Imperative Insertion Sort

Christian Sternagel
February 23, 2021

Contents

1 Looping Constructs for Imperative HOL 1
 1.1 While Loops 1
 1.2 For Loops 3

2 Insertion Sort 4
 2.1 The Algorithm 4
 2.2 Partial Correctness 6
 2.3 Total Correctness 7

1 Looping Constructs for Imperative HOL

theory Imperative-Loops
imports HOL-Imperative-HOL
begin

1.1 While Loops

We would have liked to restrict to read-only loop conditions using a condition of type \texttt{heap \Rightarrow bool} together with \texttt{tap}. However, this does not allow for code generation due to breaking the heap-abstraction.

partial-function (heap) while :: bool Heap \Rightarrow 'b Heap \Rightarrow unit Heap
where
 [code]: while p f = do {
 b ← p;
 if b then f >> while p f
 else return ()
 }

definition cond p h ←→ fst (the (execute p h))

A locale that restricts to read-only loop conditions.

locale ro-cond =
 fixes p :: bool Heap
assumes read-only: success p h \implies snd (the (execute p h)) = h

begin

lemma ro-cond: ro-cond p
⟨proof⟩

lemma cond-cases [execute-simps]:
 success p h \implies cond p h \implies execute p h = Some (True, h)
 success p h \implies \neg cond p h \implies execute p h = Some (False, h)
⟨proof⟩

lemma execute-while-unfolds [execute-simps]:
 success p h \implies cond p h \implies execute (while p f) h = execute (f \gg while p f) h
 success p h \implies \neg cond p h \implies execute (while p f) h = execute (return ()) h
⟨proof⟩

lemma success-while-cond: success p h \implies cond p h \implies effect f h h' r \implies success (while p f) h'
⟨proof⟩

lemma success-while-not-cond: success p h \implies \neg cond p h \implies success (while p f) h
⟨proof⟩

lemma success-cond-effect:
 success p h \implies cond p h \implies effect p h h True
⟨proof⟩

lemma success-not-cond-effect:
 success p h \implies \neg cond p h \implies effect p h h False
⟨proof⟩

end

The loop-condition does no longer hold after the loop is finished.

lemma ro-cond-effect-while-post:
assumes ro-cond p
and effect (while p f) h h' r
shows success p h' \land \neg cond p h'
⟨proof⟩

A rule for proving partial correctness of while loops.

lemma ro-cond-effect-while-induct:
assumes ro-cond p
assumes effect (while p f) h h' u
and I h
and \forall h h'. I h \implies success p h \implies cond p h \implies effect f h h' u \implies I h'
shows I h'
⟨proof⟩
lemma effect-success-conv:
(∃ h’. effect c h h’ () ∧ I h’) ←→ success c h ∧ I (snd (the (execute c h)))
⟨proof⟩

context ro-cond
begin

lemmas

effect-while-post = ro-cond-effect-while-post [OF ro-cond] and
effect-while-induct [consumes 1, case-names base step] = ro-cond-effect-while-induct [OF ro-cond]

A rule for proving total correctness of while loops.

lemma wf-while-induct [consumes 1, case-names success-cond success-body base step]:
assumes wf R — a well-founded relation on heaps proving termination of the loop
and success-p: ∀ h. I h ⇒ success p h — the loop-condition terminates
and success-f: ∀ h. I h ⇒ success p h ⇒ cond p h ⇒ success f h — the loop-body terminates
and I h — the invariant holds before the loop is entered
and step: ∀ h h’ r. I h ⇒ success p h ⇒ cond p h ⇒ effect f h h’ r ⇒ (h’, h) ∈ R ∧ I h’
— the invariant is preserved by iterating the loop
shows ∃ h’. effect (while p f) h h’ () ∧ I h’
⟨proof⟩

A rule for proving termination of while loops.

lemmas

success-while-induct [consumes 1, case-names success-cond success-body base step]
= wf-while-induct [unfolded effect-success-conv, THEN conjunct1]
end

1.2 For Loops

fun for :: 'a list ⇒ ('a ⇒ 'b Heap) ⇒ unit Heap
where
for [] f = return () |
for (x # xs) f = f x >> for xs f

A rule for proving partial correctness of for loops.

lemma effect-for-induct [consumes 2, case-names base step]:
assumes i ≤ j
and effect (for [i ..< j] f) h h’ u
and I i h
and ∀ k h h’. i ≤ k ⇒ k < j ⇒ I k h ⇒ effect (f k) h h’ r ⇒ I (Suc k) h’

shows $I \ j \ h'$

(proof)

A rule for proving total correctness of for loops.

lemma for-induct [consumes 1, case-names succeed base step]:

assumes $i \leq j$

and $\forall h. I \ k \ h \ implies \ i \leq k \ implies k < j \ implies \ success (f \ k) \ h$

and $I \ i \ h$

and $\forall h \ h' \ r. I \ k \ h \ implies i \leq k \ implies k < j \ implies \ effect (f \ k) \ h \ h' \ r \ implies I (Suc \ k) \ h'$

shows $\exists h'. \ effect (\ for [i ..< j] f) \ h \ h' () \wedge I \ j \ h' (\ is \ ?P \ i \ h)$

(proof)

A rule for proving termination of for loops.

lemmas

$success$-for-$induct$ [consumes 1, case-names succeed base step] =

for-$induct$ [unfolded effect-success-cone, THEN conjunct1]

end

2 Insertion Sort

theory Imperative-Insertion-Sort

imports

Imperative-Loops

HOL-Library.Multiset

begin

2.1 The Algorithm

abbreviation

array-update :: 'a::heap array \Rightarrow nat \Rightarrow 'a \Rightarrow 'a array Heap ($(\cdot, (\cdot)) \leftarrow/ \cdot$) [1000, 0, 13] 14)

where

$a.(i) \leftarrow x \equiv\ Array.upd \ i \ x \ a$

abbreviation array-nth :: 'a::heap array \Rightarrow nat \Rightarrow 'a Heap $(\cdot, (\cdot))$ [1000, 0] 14)

where

$a.(i) \equiv\ Array.nth \ a \ i$

A definition of insertion sort as given by Cormen et al. in *Introduction to Algorithms*. Compared to the informal textbook version the variant below is a bit unwieldy due to explicit dereferencing of variables on the heap.

To avoid ambiguities with existing syntax we use OCaml’s notation for accessing $(a.(i))$ and updating $(a.(i) \leftarrow x)$ an array a at position i.

definition

insertion-sort a = do {
\[l \leftarrow \text{Array.len } a; \]
\[\text{for } [1..< l] \text{ (λj. do } \]
\[\quad \text{Insert } a[j] \text{ into the sorted subarray } a[1 .. j - 1]. \]
\[\text{key } \leftarrow a.(j); \]
\[\text{i } \leftarrow \text{ref } j; \]
\[\text{while (do } \]
\[\quad \text{i}' \leftarrow ! i; \]
\[\quad \text{if } i' > 0 \text{ then do } \{ \]
\[\quad \quad x \leftarrow a.(i' - 1); \]
\[\quad \quad \text{return } (x > \text{key}) \}
\[\quad \text{else return False} \}
\[\text{do } \]
\[\quad \text{i}' \leftarrow ! i; \]
\[\quad a.(i') \leftarrow x; \]
\[\quad i := i' - 1 \}
\[)); \]
\[\text{i}' \leftarrow ! i; \]
\[a.(i') \leftarrow \text{key} \}
\[\text{)} \]
\[\text{)} \]

The following definitions decompose the nested loops of the algorithm into more manageable chunks.

\textbf{definition} \hspace{1em} \text{shiftr-p } a \hspace{1em} (\text{key}::a::\{\text{heap, linorder}\}) \hspace{1em} \text{i } =
\[(\text{do } \{ i' \leftarrow ! i; \if i' > 0 \text{ then do } \{ x \leftarrow a.(i' - 1); \text{return } (x > \text{key}) \} \text{ else return False} \}\)
\[\text{do } \]
\[\quad \text{i}' \leftarrow ! i; \]
\[\quad x \leftarrow a.(i' - 1); \]
\[\quad a.(i') \leftarrow x; \]
\[\quad i := i' - 1 \}
\[)); \]
\[i' \leftarrow ! i; \]
\[a.(i') \leftarrow \text{key} \}
\[)) \]

\textbf{definition} \hspace{1em} \text{shiftr-f } a \text{ i } = \text{do } \{
\[i' \leftarrow ! i; \]
\[x \leftarrow a.(i' - 1); \]
\[a.(i') \leftarrow x; \]
\[i := i' - 1 \}
\[\}

\textbf{definition} \hspace{1em} \text{shiftr } a \text{ key } i = \text{while } (\text{shiftr-p } a \text{ key } i) \text{ (shiftr-f } a \text{ i)}

\textbf{definition} \hspace{1em} \text{insert-elt } a \hspace{1em} = \hspace{1em} (\lambda j. \text{ do } \{
\[\text{key } \leftarrow a.(j); \]
\[i \leftarrow \text{ref } j; \]
\[\text{shiftr } a \text{ key } i; \]
\[i' \leftarrow ! i; \]
\[a.(i') \leftarrow \text{key} \}
\[)) \]

\textbf{definition} \hspace{1em} \text{sort-upto } a \hspace{1em} = \hspace{1em} (\lambda l. \text{ for } [1 .. < l] \text{ (insert-elt } a))

\textbf{lemma} \hspace{1em} \text{insertion-sort-alt-def}: \hspace{1em} \text{insertion-sort } a = (\text{Array.len } a \gg= \text{ sort-upto } a)
\text{ (proof)}
2.2 Partial Correctness

lemma effect-shiftr-f:
 assumes effect (shiftr-f a i) h h' u
 shows Ref.get h' i = Ref.get h i - 1 ∧
 Array.get h' a = list-update (Array.get h a) (Ref.get h i) (Array.get h a ! (Ref.get h i - 1))
⟨proof⟩

lemma success-shiftr-p:
 Ref.get h i < Array.length h a ⇒ success (shiftr-p a key i) h
⟨proof⟩

interpretation ro-shiftr-p: ro-cond shiftr-p a key i for a key i
⟨proof⟩

definition [simp]: ini h a j = take j (Array.get h a)
definition [simp]: left h a i = take (Ref.get h i) (Array.get h a)
definition [simp]: right h a j i = take (j - Ref.get h i) (drop (Ref.get h i + 1) (Array.get h a))
definition [simp]: both h a j i = left h a i ⊖ right h a j i

lemma effect-shiftr:
 assumes Ref.get h i = j (is ?i h = -) and j < Array.length h a and sorted (take j (Array.get h a)) and effect (while (shiftr-p a key i) (shiftr-f a i)) h h' u
 shows Array.length h a = Array.length h' a ∧
 ?i h' ≤ j ∧
 mset (list-update (Array.get h a) j key) =
 mset (list-update (Array.get h' a) (?i h') key) ∧
 ini h a j = both h' a j i ∧
 sorted (both h' a j i) ∧
 (∀ x ∈ set (right h' a j i). x > key)
⟨proof⟩

lemma sorted-take-nth:
 assumes 0 < i and i < length xs and xs ! (i - 1) ≤ y and sorted (take i xs)
 shows ∀ x ∈ set (take i xs). x ≤ y
⟨proof⟩

lemma effect-for-insert-elt:
 assumes l ≤ Array.length h a and 1 ≤ l and effect (for [1..< l] (insert-elt a)) h h' u
shows Array.length h a = Array.length h' a ∧
sorted (take l (Array.get h' a)) ∧
 mset (Array.get h a) = mset (Array.get h' a)
⟨proof⟩

lemma effect-insertion-sort:
assumes effect (insertion-sort a) h h' u
shows mset (Array.get h a) = mset (Array.get h' a) ∧ sorted (Array.get h' a)
⟨proof⟩

2.3 Total Correctness

lemma success-shiftr-f:
assumes Ref.get h i < Array.length h a
shows success (shiftr-f a i) h
⟨proof⟩

lemma success-shiftr:
assumes Ref.get h i < Array.length h a
shows success (while (shiftr-p a key i) (shiftr-f a i)) h
⟨proof⟩

lemma effect-shiftr-index:
assumes effect (shiftr a key i) h h' a
shows Ref.get h' i ≤ Ref.get h i
⟨proof⟩

lemma effect-shiftr-length:
assumes effect (shiftr a key i) h h' a
shows Array.length h' a = Array.length h a
⟨proof⟩

lemma success-insert-elt:
assumes k < Array.length h a
shows success (insert-elt a k) h
⟨proof⟩

lemma for-insert-elt-correct:
assumes l ≤ Array.length h a
and 1 ≤ l
shows ∃ h'. effect (for [1 ..< l] (insert-elt a)) h h' () ∧
 Array.length h a = Array.length h' a ∧
 sorted (take l (Array.get h' a)) ∧
 mset (Array.get h a) = mset (Array.get h' a)
⟨proof⟩

lemma insertion-sort-correct:
∃ h'. effect (insertion-sort a) h h' u ∧
mset (Array.get h a) = mset (Array.get h' a) ∧
sorted \((Array.get \, h' \, a)\)

(proof)

\textbf{export-code} \textit{insertion-sort} \textbf{in} \textit{Haskell}

\textbf{end}