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Abstract

The scope of information flow control via static type systems is
in principle much broader than information flow security, since this
concept promises to cope with information flow correctness in full gen-
erality. Such a correctness policy can be expressed by extending the
notion of a single stateless level-based interference relation applying
throughout a program – addressed by the static security type systems
described by Volpano, Smith, and Irvine, and formalized in Nipkow
and Klein’s book on formal programming language semantics (in the
version of February 2023) – to that of a stateful interference function
mapping program states to (generally) intransitive interference rela-
tions.

This paper studies information flow control via stateful intransitive
noninterference. First, the notion of termination-sensitive information
flow security with respect to a level-based interference relation is gen-
eralized to that of termination-sensitive information flow correctness
with respect to such a correctness policy. Then, a static type system is
specified and is proven to be capable of enforcing such policies. Finally,
the information flow correctness notion and the static type system in-
troduced here are proven to degenerate to the counterparts formalized
in Nipkow and Klein’s book in case of a stateless level-based infor-
mation flow correctness policy. Although the operational semantics of
the didactic programming language IMP employed in the book is used
for this purpose, the introduced concepts apply to larger, real-world
imperative programming languages as well.
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1 Underlying concepts and formal definitions
theory Definitions

imports HOL−IMP.Small-Step
begin

In a passage of his book Clean Architecture: A Craftsman’s Guide to Software
Structure and Design (Prentice Hall, 2017), Robert C. Martin defines a
computer program as “a detailed description of the policy by which inputs
are transformed into outputs”, remarking that “indeed, at its core, that’s all
a computer program actually is”. Accordingly, the scope of information flow
control via static type systems is in principle much broader than language-
based information flow security, since this concept promises to cope with
information flow correctness in full generality.
This is already shown by a basic program implementing the Euclidean algo-
rithm, in Donald Knuth’s words “the granddaddy of all algorithms, because
it is the oldest nontrivial algorithm that has survived to the present day”
(from The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms, third edition, Addison-Wesley, 1997). Here below is a sample such
C program, where variables a and b initially contain two positive integers
and a will finally contain the output, namely the greatest common divisor
of those integers.
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1 do
2 {
3 r = a % b;
4 a = b;
5 b = r;
6 } while (b);

Even in a so basic program, information is not allowed to indistinctly flow
from any variable to any other one, on pain of the program being incorrect.
If an incautious programmer swapped a for b in the assignment at line 4,
the greatest common divisor output for any two inputs a and b would in-
variably match a, whereas swapping the sides of the assignment at line 5
would give rise to an endless loop. Indeed, despite the marked differences in
the resulting program behavior, both of these potential errors originate in
information flowing between variables along paths other than the demanded
ones. A sound implementation of the Euclidean algorithm does not provide
for any information flow from a to b, or from b to r.
The static security type systems addressed in [11], [10], and [7] restrict the
information flows occurring in a program based on a mapping of each of
its variables to a domain along with an interference relation between such
domains, including any pair of domains such that the former may interfere
with the latter. Accordingly, if function dom stands for such a mapping,
and infix notation u  v denotes the inclusion of any pair of domains (u, v)
in such a relation (both notations are borrowed from [9]), the above errors
would be detected at compile time by a static type system enforcing an
interference relation such that:

• dom a  dom r, dom b  dom r (line 3),

• dom b  dom a (line 4),

• dom r  dom b (line 5),

and ruling out any other pair of distinct domains. Such an interference
relation would also embrace the implicit information flow from b to the
other two variables arising from the loop’s termination condition (line 6).
Remarkably, as dom a  dom r and dom r  dom b but ¬ dom a  
dom b, this interference relation turns out to be intransitive. Therefore,
unlike the security static type systems studied in [11] and [10], which deal
with level-based, and then transitive, interference relations, a static type
system aimed at enforcing information flow correctness in full generality
must be capable of dealing with intransitive interference relations as well.
This should come as no surprise, since [9] shows that this is the general
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case already for interference relations expressing information flow security
policies.
But the bar can be raised further. Considering the above program again,
the information flows needed for its operation, as listed above, need not be
allowed throughout the program. Indeed, information needs to flow from
a and b to r at line 3, from b to a at line 4, from r to b at line 5, and
then (implicitly) from b to the other two variables at line 6. Based on
this observation, error detection at compile time can be made finer-grained
by rewriting the program as follows, where i is a further integer variable
introduced for this purpose.

1 do
2 {
3 i = 0;
4 r = a % b;
5 i = 1;
6 a = b;
7 i = 2;
8 b = r;
9 i = 3;

10 } while (b);

In this program, i serves as a state variable whose value in every execution
step can be determined already at compile time. Since a distinct set of
information flows is allowed for each of its values, a finer-grained information
flow correctness policy for this program can be expressed by extending the
concept of a single, stateless interference relation applying throughout the
program to that of a stateful interference function mapping program states
to interference relations (in this case, according to the value of i). As a result
of this extension, for each program state, a distinct interference relation –
that is, the one to which the applied interference function maps that state
– can be enforced at compile time by a suitable static type system.
If mixfix notation s: u  v denotes the inclusion of any pair of domains (u,
v) in the interference relation associated with any state s, a finer-grained
information flow correctness policy for this program can then be expressed
as an interference function such that:

• s: dom a  dom r, s: dom b  dom r for any s where i = 0 (line 4),

• s: dom b  dom a for any s where i = 1 (line 6),

• s: dom r  dom b for any s where i = 2 (line 8),

• s: dom b  dom a, s: dom b  dom r, s: dom b  dom i for any s
where i = 3 (line 10),
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and ruling out any other pair of distinct domains in any state.
Notably, to enforce such an interference function, a static type system would
not need to keep track of the full program state in every program execution
step (which would be unfeasible, as the values of a, b, and r cannot be
determined at compile time), but only of the values of some specified state
variables (in this case, of i alone). Accordingly, term state variable will
henceforth refer to any program variable whose value may affect that of the
interference function expressing the information flow correctness policy in
force, namely the interference relation to be applied.
Needless to say, there would be something artificial about the introduction
of such a state variable into the above sample program, since it is indeed so
basic as not to provide for a state machine on its own, so that i would be
aimed exclusively at enabling the enforcement of such an information flow
correctness policy. Yet, real-world imperative programs, for which error
detection at compile time is truly meaningful, do typically provide for state
machines such that only a subset of all the potential information flows is
allowed in each state; and even for those which do not, the addition of some
ad hoc state variable to enforce such a policy could likely be an acceptable
trade-off.
Accordingly, the goal of this paper is to study information flow control
via stateful intransitive noninterference. First, the notion of termination-
sensitive information flow security with respect to a level-based interference
relation, as defined in [7], section 9.2.6, is generalized to that of termination-
sensitive information flow correctness with respect to a stateful interfer-
ence function having (generally) intransitive interference relations as values.
Then, a static type system is specified and is proven to be capable of enforc-
ing such information flow correctness policies. Finally, the information flow
correctness notion and the static type system introduced here are proven to
degenerate to the counterparts addressed in [7], section 9.2.6, in case of a
stateless level-based information flow correctness policy.
Although the operational semantics of the didactic imperative programming
language IMP employed in [7] is used for this purpose, the introduced con-
cepts are applicable to larger, real-world imperative programming languages
as well, by just affording the additional type system complexity arising from
richer language constructs. Accordingly, the informal explanations accom-
panying formal content in what follows will keep making use of sample C
code snippets.
For further information about the formal definitions and proofs contained
in this paper, see Isabelle documentation, particularly [8], [4], [2], [3], and
[1].
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1.1 Global context definitions
declare [[syntax-ambiguity-warning = false]]

datatype com-flow =
Assign vname aexp (- ::= - [1000 , 61 ] 70 ) |
Observe vname set (〈-〉 [61 ] 70 )

type-synonym flow = com-flow list
type-synonym config = state set × vname set
type-synonym scope = config set × bool

abbreviation eq-states :: state ⇒ state ⇒ vname set ⇒ bool
((- = - ′(⊆ - ′)) [51 , 51 ] 50 ) where

s = t (⊆ X) ≡ ∀ x ∈ X . s x = t x

abbreviation univ-states :: state set ⇒ vname set ⇒ state set
((Univ - ′(⊆ - ′)) [51 ] 75 ) where

Univ A (⊆ X) ≡ {s. ∃ t ∈ A. s = t (⊆ X)}

abbreviation univ-vars-if :: state set ⇒ vname set ⇒ vname set
((Univ?? - -) [51 , 75 ] 75 ) where

Univ?? A X ≡ if A = {} then UNIV else X

abbreviation tl2 xs ≡ tl (tl xs)

fun run-flow :: flow ⇒ state ⇒ state where
run-flow (x ::= a # cs) s = run-flow cs (s(x := aval a s)) |
run-flow (- # cs) s = run-flow cs s |
run-flow - s = s

primrec no-upd :: flow ⇒ vname ⇒ bool where
no-upd (c # cs) x =

((case c of y ::= - ⇒ y 6= x | - ⇒ True) ∧ no-upd cs x) |
no-upd [] - = True

primrec avars :: aexp ⇒ vname set where
avars (N i) = {} |
avars (V x) = {x} |
avars (Plus a1 a2) = avars a1 ∪ avars a2

primrec bvars :: bexp ⇒ vname set where
bvars (Bc v) = {} |
bvars (Not b) = bvars b |
bvars (And b1 b2) = bvars b1 ∪ bvars b2 |
bvars (Less a1 a2) = avars a1 ∪ avars a2
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fun flow-aux :: com list ⇒ flow where
flow-aux ((x ::= a) # cs) = (x ::= a) # flow-aux cs |
flow-aux ((IF b THEN - ELSE -) # cs) = 〈bvars b〉 # flow-aux cs |
flow-aux ((c;; -) # cs) = flow-aux (c # cs) |
flow-aux (- # cs) = flow-aux cs |
flow-aux [] = []

definition flow :: (com × state) list ⇒ flow where
flow cfs = flow-aux (map fst cfs)

function small-stepsl ::
com × state ⇒ (com × state) list ⇒ com × state ⇒ bool
((- →∗ ′{- ′} -) [51 , 51 ] 55 )

where
cf →∗{[]} cf ′ = (cf = cf ′) |
cf →∗{cfs @ [cf ′]} cf ′′ = (cf →∗{cfs} cf ′ ∧ cf ′→ cf ′′)

by (atomize-elim, auto intro: rev-cases)
termination by lexicographic-order

lemmas small-stepsl-induct = small-stepsl.induct [split-format(complete)]

1.2 Local context definitions

In what follows, stateful intransitive noninterference will be formalized within
the local context defined by means of a locale [1], named noninterf. Later
on, this will enable to prove the degeneracy of the following definitions to
the stateless level-based counterparts addressed in [11], [10], and [7], and
formalized in [5] and [6], via a suitable locale interpretation.
Locale noninterf contains three parameters, as follows.

• A stateful interference function interf mapping program states to in-
terference predicates of two domains, intended to be true just in case
the former domain is allowed to interfere with the latter.

• A function dom mapping program variables to their respective do-
mains.

• A set state collecting all state variables.

As the type of the domains is modeled using a type variable, it may be
assigned arbitrarily by any locale interpretation, which will enable to set it
to nat upon proving degeneracy. Moreover, the above mixfix notation s: u
 v is adopted to express the fact that any two domains u, v satisfy the
interference predicate interf s associated with any state s, namely the fact
that u is allowed to interfere with v in state s.
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Locale noninterf also contains an assumption, named interf-state, which
serves the purpose of supplying parameter state with its intended seman-
tics, namely standing for the set of all state variables. The assumption is
that function interf maps any two program states agreeing on the values
of all the variables in set state to the same interference predicate. Corre-
spondingly, any locale interpretation instantiating parameter state as the
empty set must instantiate parameter interf as a function mapping any two
program states, even if differing in the values of all variables, to the same
interference predicate – namely, as a constant function. Hence, any such
locale interpretation refers to a single, stateless interference predicate ap-
plying throughout the program. Unsurprisingly, this is the way how those
parameters will be instantiated upon proving degeneracy.
The one just mentioned is the only locale assumption. Particularly, the fol-
lowing formalization does not rely upon the assumption that the interference
predicates returned by function interf be reflexive, although this will be the
case for any meaningful real-world information flow correctness policy.

locale noninterf =
fixes

interf :: state ⇒ ′d ⇒ ′d ⇒ bool
((-: -  -) [51 , 51 , 51 ] 50 ) and

dom :: vname ⇒ ′d and
state :: vname set

assumes
interf-state: s = t (⊆ state) =⇒ interf s = interf t

context noninterf
begin

Locale parameters interf and dom are provided with their intended seman-
tics by the definitions of functions sources and correct, which are formalized
here below based on the following underlying ideas.
As long as a stateless transitive interference relation between domains is
considered, the condition for the correctness of the value of a variable re-
sulting from a full or partial program execution need not take into account
the execution flow producing it, but rather the initial program state only. In
fact, this is what happens with the stateless level-based correctness condi-
tion addressed in [11], [10], and [7]: the resulting value of a variable of level
l is correct if the same value is produced for any initial state agreeing with
the given one on the value of every variable of level not higher than l.
Things are so simple because, for any variables x, y, and z, if dom z  dom
y and dom y  dom x, transitivity entails dom z  dom x, and these inter-
ference relationships hold statelessly. Therefore, z may be counted among
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the variables whose initial values are allowed to affect x independently of
whether some intermediate value of y may affect x within the actual execu-
tion flow.
Unfortunately, switching to stateful intransitive interference relations puts
an end to that happy circumstance – indeed, even statefulness or intransi-
tivity alone would suffice for this sad ending. In this context, deciding about
the correctness of the resulting value of a variable x still demands the detec-
tion of the variables whose initial values are allowed to interfere with x, but
the execution flow leading from the initial program state to the resulting
one needs to be considered to perform such detection.
This is precisely the task of function sources, so named after its finite state
machine counterpart defined in [9]. It takes as inputs an execution flow
cs, an initial program state s, and a variable x, and outputs the set of the
variables whose values in s are allowed to affect the value of x in the state
s ′ into which cs turns s, according to cs as well as to the information flow
correctness policy expressed by parameters interf and dom.
In more detail, execution flows are modeled as lists comprising items of two
possible kinds, namely an assignment of the value of an arithmetic expres-
sion a to a variable z or else an observation of the values of the variables
in a set X, denoted through notations z ::= a (same as with assignment
commands) and 〈X〉 and keeping track of explicit and implicit information
flows, respectively. Particularly, item 〈X〉 refers to the act of observing the
values of the variables in X leaving the program state unaltered. During
the execution of an IMP program, this happens upon any evaluation of a
boolean expression containing all and only the variables in X.
Function sources is defined along with an auxiliary function sources-aux by
means of mutual recursion. Based on this definition, sources cs s x contains
a variable y if there exist a descending sequence of left sublists csn+1, csn

@ [cn], ..., cs1 @ [c1] of cs and a sequence of variables yn+1, ..., y1, where
n ≥ 1, csn+1 = cs, yn+1 = x, and y1 = y, satisfying the following conditions.

• For each positive integer i ≤ n, ci is an assignment yi+1 ::= ai where:

– yi ∈ avars ai,
– run-flow csi s: dom yi  dom yi+1, and
– the right sublist of csi+1 complementary to csi @ [ci] does not

comprise any assignment to variable yi+1 (as assignment ci would
otherwise be irrelevant),

or else an observation 〈X i〉 where:

– yi ∈ X i and
– run-flow csi s: dom yi  dom yi+1.

9



• cs1 does not comprise any assignment to variable y.

In addition, sources cs s x contains variable x also if cs does not comprise
any assignment to variable x.

function
sources :: flow ⇒ state ⇒ vname ⇒ vname set and
sources-aux :: flow ⇒ state ⇒ vname ⇒ vname set where

sources (cs @ [c]) s x = (case c of
z ::= a ⇒ if z = x

then sources-aux cs s x ∪
⋃
{sources cs s y | y.

run-flow cs s: dom y  dom x ∧ y ∈ avars a}
else sources cs s x |
〈X〉 ⇒

sources cs s x ∪
⋃
{sources cs s y | y.

run-flow cs s: dom y  dom x ∧ y ∈ X}) |

sources [] - x = {x} |

sources-aux (cs @ [c]) s x = (case c of
- ::= - ⇒

sources-aux cs s x |
〈X〉 ⇒

sources-aux cs s x ∪
⋃
{sources cs s y | y.

run-flow cs s: dom y  dom x ∧ y ∈ X}) |

sources-aux [] - - = {}

proof (atomize-elim)
fix a :: flow × state × vname + flow × state × vname
{

assume
∀ cs c s x. a 6= Inl (cs @ [c], s, x) and
∀ s x. a 6= Inl ([], s, x) and
∀ s x. a 6= Inr ([], s, x)

hence ∃ cs c s x. a = Inr (cs @ [c], s, x)
by (metis obj-sumE prod-cases3 rev-exhaust)

}
thus
(∃ cs c s x. a = Inl (cs @ [c], s, x)) ∨
(∃ s x. a = Inl ([], s, x)) ∨
(∃ cs c s x. a = Inr (cs @ [c], s, x)) ∨
(∃ s x. a = Inr ([], s, x))
by blast

qed auto

termination by lexicographic-order
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lemmas sources-induct = sources-sources-aux.induct

Predicate correct takes as inputs a program c, a set of program states A, and
a set of variables X. Its truth value equals that of the following termination-
sensitive information flow correctness condition: for any state s agreeing
with a state in A on the values of the state variables in X, if the small-step
program semantics turns configuration (c, s) into configuration (c1, s1), and
(c1, s1) into configuration (c2, s2), then for any state t1 agreeing with s1 on
the values of the variables in sources cs s1 x, where cs is the execution flow
leading from (c1, s1) to (c2, s2), the small-step semantics turns (c1, t1) into
some configuration (c2

′, t2) such that:

• c2
′ = SKIP (namely, (c2

′, t2) is a final configuration) just in case c2

= SKIP, and

• the value of variable x in state t2 is the same as in state s2.

Here below are some comments about this definition.

• As sources cs s1 x is the set of the variables whose values in s1 are
allowed to affect the value of x in s2, this definition requires any state
t1 indistinguishable from s1 in the values of those variables to produce
a state where variable x has the same value as in s2 in the continuation
of program execution.

• Configuration (c2
′, t2) must be the same one for any variable x such

that s1 and t1 agree on the values of any variable in sources cs s1

x. Otherwise, even if states s2 and t2 agreed on the value of x, they
could be distinguished all the same based on a discrepancy between the
respective values of some other variable. Likewise, if state t2 alone had
to be the same for any such x, while command c2

′ were allowed to vary,
state t1 could be distinguished from s1 based on the continuation of
program execution. This is the reason why the universal quantification
over x is nested within the existential quantification over both c2

′ and
t2.

• The state machine for a program typically provides for a set of initial
states from which its execution is intended to start. In any such case,
information flow correctness need not be assessed for arbitrary initial
states, but just for those complying with the settled tuples of initial
values for state variables. The values of any other variables do not
matter, as they do not affect function interf ’s ones. This is the moti-
vation for parameter A, which then needs to contain just one state for
each of such tuples, while parameter X enables to exclude the state
variables, if any, whose initial values are not settled.
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• If locale parameter state matches the empty set, s will be any state
agreeing with some state in A on the value of possibly even no variable
at all, that is, a fully arbitrary state provided that A is nonempty. This
makes s range over all possible states, as required for establishing
the degeneracy of the present definition to the stateless level-based
counterpart addressed in [7], section 9.2.6.

Why express information flow correctness in terms of the small-step pro-
gram semantics, instead of resorting to the big-step one as happens with the
stateless level-based correctness condition in [7], section 9.2.6? The answer
is provided by the following sample C programs, where i is a state variable.

1 y = i;
2 i = (i) ? 1 : 0;
3 x = i + y;

1 x = 0;
2 if (i == 10)
3 {
4 x = 10;
5 }
6 i = (i) ? 1 : 0;
7 x += i;

Let i be allowed to interfere with x just in case i matches 0 or 1, and y be
never allowed to do so. If s1 were constrained to be the initial state, for
both programs i would be included among the variables on which t1 needs
to agree with s1 in order to be indistinguishable from s1 in the value of
x resulting from the final assignment. Thus, both programs would fail to
be labeled as wrong ones, although in both of them the information flow
blatantly bypasses the sanitization of the initial value of i, respectively due
to an illegal explicit flow and an illegal implicit flow. On the contrary,
the present information flow correctness definition detects any such illegal
information flow by checking every partial program execution on its own.

abbreviation ok-flow :: com ⇒ com ⇒ state ⇒ state ⇒ flow ⇒ bool where
ok-flow c1 c2 s1 s2 cs ≡
∀ t1. ∃ c2

′ t2. ∀ x.
s1 = t1 (⊆ sources cs s1 x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP) ∧ s2 x = t2 x

definition correct :: com ⇒ state set ⇒ vname set ⇒ bool where
correct c A X ≡
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∀ s ∈ Univ A (⊆ state ∩ X). ∀ c1 c2 s1 s2 cfs.
(c, s) →∗ (c1, s1) ∧ (c1, s1) →∗{cfs} (c2, s2) −→

ok-flow c1 c2 s1 s2 (flow cfs)

abbreviation interf-set :: state set ⇒ ′d set ⇒ ′d set ⇒ bool
((-: -  -) [51 , 51 , 51 ] 50 ) where

A: U  W ≡ ∀ s ∈ A. ∀ u ∈ U . ∀w ∈ W . s: u  w

abbreviation ok-flow-aux ::
config set ⇒ com ⇒ com ⇒ state ⇒ state ⇒ flow ⇒ bool where

ok-flow-aux U c1 c2 s1 s2 cs ≡
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux cs s1 x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources cs s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ p ∈ U . case p of (B, Y ) ⇒
∃ s ∈ B. ∃ y ∈ Y . ¬ s: dom y  dom x) −→ no-upd cs x)

The next step is defining a static type system guaranteeing that well-typed
programs satisfy this information flow correctness criterion. Whenever defin-
ing a function, and the pursued type system is obviously no exception, the
primary question that one has to answer is: which inputs and outputs should
it provide for? The type system formalized in [6] simply makes a pass/fail
decision on an input program, based on an input security level, and outputs
the verdict as a boolean value. Is this still enough in the present case? The
answer can be found by considering again the above C program that com-
putes the greatest common divisor of two positive integers a, b using a state
variable i, along with its associated stateful interference function. For the
reader’s convenience, the program is reported here below.

1 do
2 {
3 i = 0;
4 r = a % b;
5 i = 1;
6 a = b;
7 i = 2;
8 b = r;
9 i = 3;

10 } while (b);

As s: dom a  dom r only for a state s where i = 0, the type system can-
not determine that the assignment r = a % b at line 4 is well-typed without
knowing that i = 0 whenever that step is executed. Consequently, upon
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checking the assignment i = 0 at line 3, the type system must output infor-
mation indicating that i = 0 as a result of its execution. This information
will then be input to the type system when it is recursively invoked to check
line 4, so as to enable the well-typedness of the next assignment to be as-
certained.
Therefore, in addition to the program under scrutiny, the type system needs
to take a set of program states as input, and as long as the program is
well-typed, the output must include a set of states covering any change to
the values of the state variables possibly triggered by the input program.
In other words, the type system has to simulate the execution of the input
program at compile time as regards the values of its state variables. In
the following formalization, this results in making the type system take an
input of type state set and output a value of the same type. Yet, since state
variables alone are relevant, a real-world implementation of the type system
would not need to work with full state values, but just with tuples of state
variables’ values.
Is the input/output of a set of program states sufficient to keep track of the
possible values of the state variables at each execution step? Here below is a
sample C program helping find an answer, which determines the minimum
of two integers a, b and assigns it to variable a using a state variable i.

1 i = (a > b) ? 1 : 0;
2 if (i > 0)
3 {
4 a = b;
5 }

Assuming that the initial value of i is 0, the information flow correctness
policy for this program will be such that:

• s: dom a  dom i, s: dom b  dom i for any program state s where
i = 0 (line 1),

• s: dom i  dom a for any s where i = 0 or i = 1 (line 2, more on this
later),

• s: dom b  dom a for any s where i = 1 (line 4),

ruling out any other pair of distinct domains in any state.
So far, everything has gone smoothly. However, what happens if the program
is changed as follows?

1 i = a - b;
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2 if (i > 0)
3 {
4 a = b;
5 }

Upon simulating the execution of the former program, the type system can
determine the set {0, 1} of the possible values of variable i arising from the
conditional assignment i = (a > b) ? 1 : 0 at line 1. On the contrary, in
the case of the latter program, the possible values of i after the assignment
i = a - b at line 1 must be marked as being indeterminate, since they depend
on the initial values of variables a and b, which are unknown at compile time.
Hence, the type system needs to provide for an additional input/output
parameter of type vname set, whose input and output values shall collect
the variables whose possible values before and after the execution of the
input program are determinate.
The correctness of the simulation of program execution by the type system
can be expressed as the following condition. Suppose that the type sys-
tem outputs a state set A ′ and a vname set X ′ when it is input a program
c, a state set A, and a vname set X. Then, for any state s agreeing with
some state in A on the value of every state variable in X, if (c, s) ⇒ s ′, s ′

must agree with some state in A ′ on the value of every state variable in X ′.
This can be summarized by saying that the type system must overapproxi-
mate program semantics, since any algorithm simulating program execution
cannot but be imprecise (see [7], incipit of chapter 13).
In turn, if the outputs for c, A ′, X ′ are A ′′, X ′′ and (c, s ′) ⇒ s ′′, s ′′ must
agree with some state in A ′′ on the value of every state variable in X ′′.
But if c is a loop and (c, s) ⇒ s ′, then (c, s ′) ⇒ s ′′ just in case s ′ = s ′′,
so that the type system is guaranteed to overapproximate the semantics
of c only if states consistent with A ′, X ′ are also consistent with A ′′, X ′′

and vice versa. Thus, the type system needs to be idempotent if c is a
loop, that is, it must be such that A ′ = A ′′ and X ′ = X ′′ in this case.
Since idempotence is not required for control structures other than loops,
the main type system ctyping2 formalized in what follows will delegate the
simulation of the execution of loop bodies to an auxiliary, idempotent type
system ctyping1.
This type system keeps track of the program state updates possibly occurring
in its input program using sets of lists of functions of type vname ⇒ val
option option. Command SKIP is mapped to a singleton made of the empty
list, as no state update takes place. An assignment to a variable x is mapped
to a singleton made of a list comprising a single function, whose value is
Some (Some i) or Some None for x if it is a state variable and the right-
hand side is a constant N i or a non-constant expression, respectively, and
None otherwise. That is, None stands for unchanged/non-state variable

15



(remember, only state variable updates need to be tracked), whereas Some
None stands for indeterminate variable, since the value of a non-constant
expression in a loop iteration (remember, ctyping1 is meant for simulating
the execution of loop bodies) is in general unknown at compile time.
At first glance, a conditional statement could simply be mapped to the
union of the sets tracking the program state updates possibly occurring in
its branches. However, things are not so simple, as shown by the sample C
loop here below, which has a conditional statement as its body.

1 for (i = 0; i < 2; i++)
2 {
3 if (n % 2)
4 {
5 a = 1;
6 b = 1;
7 n++;
8 }
9 else

10 {
11 a = 2;
12 c = 2;
13 n++;
14 }
15 }

If the initial value of the integer variable n is even, the final values of variables
a, b, and c will be 1, 1, 2, whereas if the initial value of n is odd, the final
values of the aforesaid variables will be 2, 1, 2. Assuming that their initial
value is 0, the potential final values tracked by considering each branch
individually are 1, 1, 0 and 2, 0, 2 instead. These are exactly the values
generated by a single loop iteration; if they are fed back into the loop body
along with the increased value of n, the actual final values listed above are
produced.
As a result, a mere union of the sets tracking the program state updates
possibly occurring in each branch would not be enough for the type system
to be idempotent. The solution is to rather construct every possible alter-
nate concatenation without repetitions of the lists contained in each set,
which is referred to as merging those sets in the following formalization. In
fact, alternating the state updates performed by each branch in the previ-
ous example produces the actual final values listed above. Since the latest
occurrence of a state update makes any previous occurrence irrelevant for
the final state, repetitions need not be taken into account, which ensures
the finiteness of the construction provided that the sets being merged are
finite. In the special case where the boolean condition can be evaluated at
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compile time, considering the picked branch alone is of course enough.
Another case trickier than what one could expect at first glance is that of
sequential composition. This is shown by the sample C loop here below,
whose body consists of the sequential composition of some assignments with
a conditional statement.

1 for (i = 0; i < 2; i++)
2 {
3 a = 1;
4 b = 1;
5 if (n % 2)
6 {
7 a = 2;
8 c = 2;
9 n++;

10 }
11 else
12 {
13 b = 3;
14 d = 3;
15 n++;
16 }
17 }

If the initial value of the integer variable n is even, the final values of variables
a, b, c, and d will be 2, 1, 2, 3, whereas if the initial value of n is odd, the
final values of the aforesaid variables will be 1, 3, 2, 3. Assuming that
their initial value is 0, the potential final values tracked by considering the
sequences of the state updates triggered by the starting assignments with the
updates, simulated as described above, possibly triggered by the conditional
statement rather are:

• 2, 1, 2, 0,

• 1, 3, 0, 3,

• 2, 3, 2, 3.

The first two tuples of values match the ones generated by a single loop
iteration, and produce the actual final values listed above if they are fed
back into the loop body along with the increased value of n.
Hence, concatenating the lists tracking the state updates possibly triggered
by the first command in the sequence (the starting assignment sequence
in the previous example) with the lists tracking the updates possibly trig-
gered by the second command in the sequence (the conditional statement in
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the previous example) would not suffice for the type system to be idempo-
tent. The solution is to rather append the latter lists to those constructed
by merging the sets tracking the state updates possibly performed by each
command in the sequence. Again, provided that such sets are finite, this con-
struction is finite, too. In the special case where the latter set is a singleton,
the aforesaid merging is unnecessary, as it would merely insert a preceding
occurrence of the single appended list into the resulting concatenated lists,
and such repetitions are irrelevant as observed above.
Surprisingly enough, the case of loops is actually simpler than possible first-
glance expectations. A loop defines two branches, namely its body and an
implicit alternative branch doing nothing. Thus, it can simply be mapped
to the union of the set tracking the state updates possibly occurring in its
body with a singleton made of the empty list. As happens with conditional
statements, in the special case where the boolean condition can be evaluated
at compile time, considering the selected branch alone is obviously enough.
Type system ctyping1 uses the set of lists resulting from this recursion over
the input command to construct a set F of functions of type vname ⇒
val option option, as follows: for each list ys in the former set, F contains
the function mapping any variable x to the rightmost occurrence, if any, of
pattern Some v to which x is mapped by any function in ys (that is, to the
latest update, if any, of x tracked in ys), or else to None. Then, if A, X are
the input state set and vname set, and B, Y the output ones:

• B is the set of the program states constructed by picking a function f
and a state s from F and A, respectively, and mapping any variable x

to i if f x = Some (Some i), or else to s x if f x = None (namely, to
its value in the initial state s if f marks it as being unchanged).

• Y is UNIV if A = {} (more on this later), or else the set of the
variables not mapped to Some None (that is, not marked as being
indeterminate) by any function in F, and contained in X (namely,
being initially determinate) if mapped to None (that is, if marked as
being unchanged) by some function in F.

When can ctyping1 evaluate the boolean condition of a conditional state-
ment or a loop, so as to possibly detect and discard some “dead” branch?
This question can be answered by examining the following sample C loop,
where n is a state variable, while integer j is unknown at compile time.

1 for (i = 0; i != j; i++)
2 {
3 if (n == 1)
4 {
5 n = 2;
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6 }
7 else if (n == 0)
8 {
9 n = 1;

10 }
11 }

Assuming that the initial value of n is 0, its final value will be 0, 1, or 2 ac-
cording to whether j matches 0, 1, or any other positive integer, respectively,
whereas the loop will not even terminate if j is negative. Consequently, the
type system cannot avoid tracking the state updates possibly triggered in
every branch, on pain of failing to be idempotent. As a result, evaluating
the boolean conditions in the conditional statement at compile time so as
to discard some branch is not possible, even though they only depend on
an initially determinate state variable. The conclusion is that ctyping1 may
generally evaluate boolean conditions just in case they contain constants
alone, namely only if they are trivial enough to be possibly eliminated by
program optimization. This is exactly what ctyping1 does by passing any
boolean condition found in the input program to the type system btyping1
for boolean expressions, defined here below as well.

primrec btyping1 :: bexp ⇒ bool option ((` -) [51 ] 55 ) where

` Bc v = Some v |

` Not b = (case ` b of
Some v ⇒ Some (¬ v) | - ⇒ None) |

` And b1 b2 = (case (` b1, ` b2) of
(Some v1, Some v2) ⇒ Some (v1 ∧ v2) | - ⇒ None) |

` Less a1 a2 = (if avars a1 ∪ avars a2 = {}
then Some (aval a1 (λx. 0 ) < aval a2 (λx. 0 )) else None)

type-synonym state-upd = vname ⇒ val option option

inductive-set ctyping1-merge-aux :: state-upd list set ⇒
state-upd list set ⇒ (state-upd list × bool) list set
(infix

⊔
55 ) for A and B where

xs ∈ A =⇒ [(xs, True)] ∈ A
⊔

B |

ys ∈ B =⇒ [(ys, False)] ∈ A
⊔

B |

[[ws ∈ A
⊔

B; ¬ snd (last ws); xs ∈ A; (xs, True) /∈ set ws]] =⇒
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ws @ [(xs, True)] ∈ A
⊔

B |

[[ws ∈ A
⊔

B; snd (last ws); ys ∈ B; (ys, False) /∈ set ws]] =⇒
ws @ [(ys, False)] ∈ A

⊔
B

declare ctyping1-merge-aux.intros [intro]

definition ctyping1-append ::
state-upd list set ⇒ state-upd list set ⇒ state-upd list set
(infixl @ 55 ) where

A @ B ≡ {xs @ ys | xs ys. xs ∈ A ∧ ys ∈ B}

definition ctyping1-merge ::
state-upd list set ⇒ state-upd list set ⇒ state-upd list set
(infixl t 55 ) where

A t B ≡ {concat (map fst ws) | ws. ws ∈ A
⊔

B}

definition ctyping1-merge-append ::
state-upd list set ⇒ state-upd list set ⇒ state-upd list set
(infixl t@ 55 ) where

A t@ B ≡ (if card B = Suc 0 then A else A t B) @ B

primrec ctyping1-aux :: com ⇒ state-upd list set
((` -) [51 ] 60 ) where

` SKIP = {[]} |

` y ::= a = {[λx. if x = y ∧ y ∈ state
then if avars a = {} then Some (Some (aval a (λx. 0 ))) else Some None
else None]} |

` c1;; c2 = ` c1 t@ ` c2 |

` IF b THEN c1 ELSE c2 = (let f = ` b in
(if f ∈ {Some True, None} then ` c1 else {}) t
(if f ∈ {Some False, None} then ` c2 else {})) |

` WHILE b DO c = (let f = ` b in
(if f ∈ {Some False, None} then {[]} else {}) ∪
(if f ∈ {Some True, None} then ` c else {}))

definition ctyping1-seq :: state-upd ⇒ state-upd ⇒ state-upd
(infixl ;; 55 ) where

S ;; T ≡ λx. case T x of None ⇒ S x | Some v ⇒ Some v

definition ctyping1 :: com ⇒ state set ⇒ vname set ⇒ config
((` - ′(⊆ -, - ′)) [51 ] 55 ) where
` c (⊆ A, X) ≡ let F = {λx. foldl (;;) (λx. None) ys x | ys. ys ∈ ` c} in
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({λx. case f x of None ⇒ s x | Some None ⇒ t x | Some (Some i) ⇒ i |
f s t. f ∈ F ∧ s ∈ A},

Univ?? A {x. ∀ f ∈ F . f x 6= Some None ∧ (f x = None −→ x ∈ X)})

A further building block propaedeutic to the definition of the main type
system ctyping2 is the definition of its own companion type system btyping2
for boolean expressions. The goal of btyping2 is splitting, whenever feasible
at compile time, an input state set into two complementary subsets, respec-
tively comprising the program states making the input boolean expression
true or false. This enables ctyping2 to apply its information flow correct-
ness checks to conditional branches by considering only the program states
in which those branches are executed.
As opposed to btyping1, btyping2 may evaluate its input boolean expression
even if it contains variables, provided that all of their values are known at
compile time, namely that all of them are determinate state variables – hence
btyping2, like ctyping2, needs to take a vname set collecting determinate
variables as an additional input. In fact, in the case of a loop body, the
dirty work of covering any nested branch by skipping the evaluation of non-
constant boolean conditions is already done by ctyping1, so that any state set
and vname set input to btyping2 already encompass every possible execution
flow.

primrec btyping2-aux :: bexp ⇒ state set ⇒ vname set ⇒ state set option
((||= - ′(⊆ -, - ′)) [51 ] 55 ) where

||= Bc v (⊆ A, -) = Some (if v then A else {}) |

||= Not b (⊆ A, X) = (case ||= b (⊆ A, X) of
Some B ⇒ Some (A − B) | - ⇒ None) |

||= And b1 b2 (⊆ A, X) = (case (||= b1 (⊆ A, X), ||= b2 (⊆ A, X)) of
(Some B1, Some B2) ⇒ Some (B1 ∩ B2) | - ⇒ None) |

||= Less a1 a2 (⊆ A, X) = (if avars a1 ∪ avars a2 ⊆ state ∩ X
then Some {s. s ∈ A ∧ aval a1 s < aval a2 s} else None)

definition btyping2 :: bexp ⇒ state set ⇒ vname set ⇒
state set × state set
((|= - ′(⊆ -, - ′)) [51 ] 55 ) where
|= b (⊆ A, X) ≡ case ||= b (⊆ A, X) of

Some A ′⇒ (A ′, A − A ′) | - ⇒ (A, A)

It is eventually time to define the main type system ctyping2. Its output
consists of the state set of the final program states and the vname set of
the finally determinate variables produced by simulating the execution of
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the input program, based on the state set of initial program states and the
vname set of initially determinate variables taken as inputs, if information
flow correctness checks are passed; otherwise, the output is None.
An additional input is the counterpart of the level input to the security type
systems formalized in [6], in that it specifies the scope in which information
flow correctness is validated. It consists of a set of state set × vname set
pairs and a boolean flag. The set keeps track of the variables contained
in the boolean conditions, if any, nesting the input program, in association
with the program states in which they are evaluated. The flag is False if
the input program is nested in a loop, in which case state variables set to
non-constant expressions are marked as being indeterminate (as observed
previously, the value of a non-constant expression in a loop iteration is in
general unknown at compile time).
In the recursive definition of ctyping2, the equations dealing with condi-
tional branches, namely those applying to conditional statements and loops,
construct the output state set and vname set respectively as the union and
the intersection of the sets computed for each branch. In fact, a possible
final state is any one resulting from either branch, and a variable is finally
determinate just in case it is such regardless of the branch being picked.
Yet, a “dead” branch should have no impact on the determinateness of vari-
ables, as it only depends on the other branch. Accordingly, provided that
information flow correctness checks are passed, the cases where the output is
constructed non-recursively, namely those of SKIP, assignments, and loops,
return UNIV as vname set if the input state set is empty. In the case of a
loop, the state set and the vname set resulting from one or more iterations
of its body are computed using the auxiliary type system ctyping1. This
explains why ctyping1 returns UNIV as vname set if the input state set is
empty, as mentioned previously.
As happens with the syntax-directed security type system formalized in
[6], the cases performing non-recursive information flow correctness checks
are those of assignments and loops. In the former case, ctyping2 verifies
that the sets of variables contained in the scope, as well as any variable
occurring in the expression on the right-hand side of the assignment, are
allowed to interfere with the variable on the left-hand side, respectively in
their associated sets of states and in the input state set. In the latter case,
ctyping2 verifies that the sets of variables contained in the scope, as well as
any variable occurring in the boolean condition of the loop, are allowed to
interfere with every variable, respectively in their associated sets of states
and in the states in which the boolean condition is evaluated. In both cases,
if the applying interference relation is unknown as some state variable is
indeterminate, each of those checks must be passed for any possible state
(unless the respective set of states is empty).
Why do the checks performed for loops test interference with every variable?
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The answer is provided by the following sample C program, which sets vari-
ables a and b to the terms in the zero-based positions j and j + 1 of the
Fibonacci sequence.

1 a = 0;
2 b = 1;
3 for (i = 0; i != j; i++)
4 {
5 c = b;
6 b += a;
7 a = c;
8 }

The loop in this program terminates for any nonnegative value of j. For any
variable x, suppose that j is not allowed to interfere with x in such an initial
state, say s. According to the above information flow correctness definition,
any initial state t differing from s in the value of j must make execution
terminate all the same in order for the program to be correct. However, this
is not the case, since execution does not terminate for any negative value
of j. Thus, the type system needs to verify that j may interfere with x, on
pain of returning a wrong pass verdict.
The cases that change the scope upon recursively calling the type system are
those of conditional statements and loops. In the latter case, the boolean
flag is set to False, and the set of state set × vname set pairs is empty as
the whole scope nesting the loop body, including any variable occurring in
the boolean condition of the loop, must be allowed to interfere with every
variable. In the former case, for both branches, the boolean flag is left
unchanged, whereas the set of pairs is extended with the pair composed
of the input state set (or of UNIV if some state variable is indeterminate,
unless the input state set is empty) and of the set of the variables, if any,
occurring in the boolean condition of the statement.
Why is the scope extended with the whole input state set for both branches,
rather than just with the set of states in which each single branch is se-
lected? Once more, the question can be answered by considering a sample C
program, namely a previous one determining the minimum of two integers
a and b using a state variable i. For the reader’s convenience, the program
is reported here below.

1 i = (a > b) ? 1 : 0;
2 if (i > 0)
3 {
4 a = b;
5 }
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Since the branch changing the value of variable a is executed just in case i

= 1, suppose that in addition to b, i also is not allowed to interfere with a

for i = 0, and let s be any initial state where a ≤ b. Based on the above
information flow correctness definition, any initial state t differing from s in
the value of b (not bound by the interference of i with a) must produce the
same final value of a in order for the program to be correct. However, this
is not the case, as the final value of a will change for any state t where a >
b. Therefore, the type system needs to verify that i may interfere with a

for i = 0, too, on pain of returning a wrong pass verdict. This is the reason
why, as mentioned previously, an information flow correctness policy for this
program should be such that s: dom i  dom a even for any state s where
i = 0.
An even simpler example explains why, in the case of an assignment or a
loop, the information flow correctness checks described above need to be
applied to the set of state set × vname set pairs in the scope even if the
input state set is empty, namely even if the assignment or the loop are nested
in a “dead” branch. Here below is a sample C program showing this.

1 if (i)
2 {
3 a = 1;
4 }

Assuming that the initial value of i is 0, the assignment nested within the
conditional statement is not executed, so that the final value of a matches
the initial one, say 0. Suppose that i is not allowed to interfere with a in such
an initial state, say s. According to the above information flow correctness
definition, any initial state t differing from s in the value of i must produce
the same final value of a in order for the program to be correct. However,
this is not the case, as the final value of a is 1 for any nonzero value of i.
Therefore, the type system needs to verify that i may interfere with a in
state s even though the conditional branch is not executed in that state, on
pain of returning a wrong pass verdict.

abbreviation atyping :: bool ⇒ aexp ⇒ vname set ⇒ bool
((- |= - ′(⊆ - ′)) [51 , 51 ] 50 ) where

v |= a (⊆ X) ≡ avars a = {} ∨ avars a ⊆ state ∩ X ∧ v

definition univ-states-if :: state set ⇒ vname set ⇒ state set
((Univ? - -) [51 , 75 ] 75 ) where

Univ? A X ≡ if state ⊆ X then A else Univ A (⊆ {})
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fun ctyping2 :: scope ⇒ com ⇒ state set ⇒ vname set ⇒ config option
((- |= - ′(⊆ -, - ′)) [51 , 51 ] 55 ) where

- |= SKIP (⊆ A, X) = Some (A, Univ?? A X) |

(U , v) |= x ::= a (⊆ A, X) =
(if (∀ (B, Y ) ∈ insert (Univ? A X , avars a) U . B: dom ‘ Y  {dom x})
then Some (if x ∈ state ∧ A 6= {}

then if v |= a (⊆ X)
then ({s(x := aval a s) | s. s ∈ A}, insert x X) else (A, X − {x})

else (A, Univ?? A X))
else None) |

(U , v) |= c1;; c2 (⊆ A, X) =
(case (U , v) |= c1 (⊆ A, X) of

Some (B, Y ) ⇒ (U , v) |= c2 (⊆ B, Y ) | - ⇒ None) |

(U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) =
(case (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) of (U ′, B1, B2) ⇒

case ((U ′, v) |= c1 (⊆ B1, X), (U ′, v) |= c2 (⊆ B2, X)) of
(Some (C 1, Y 1), Some (C 2, Y 2)) ⇒ Some (C 1 ∪ C 2, Y 1 ∩ Y 2) |
- ⇒ None) |

(U , v) |= WHILE b DO c (⊆ A, X) = (case |= b (⊆ A, X) of (B1, B2) ⇒
case ` c (⊆ B1, X) of (C , Y ) ⇒ case |= b (⊆ C , Y ) of (B1

′, B2
′) ⇒

if ∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: dom ‘ W  UNIV

then case (({}, False) |= c (⊆ B1, X), ({}, False) |= c (⊆ B1
′, Y )) of

(Some -, Some -) ⇒ Some (B2 ∪ B2
′, Univ?? B2 X ∩ Y ) |

- ⇒ None
else None)

end

end

2 Idempotence of the auxiliary type system meant
for loop bodies

theory Idempotence
imports Definitions

begin

The purpose of this section is to prove that the auxiliary type system ctyp-
ing1 used to simulate the execution of loop bodies is idempotent, namely
that if its output for a given input is the pair composed of state set B and
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vname set Y, then the same output is returned if B and Y are fed back into
the type system (lemma ctyping1-idem).

2.1 Global context proofs
lemma remdups-filter-last:
last [x←remdups xs. P x] = last [x←xs. P x ]

by (induction xs, auto simp: filter-empty-conv)

lemma remdups-append:
set xs ⊆ set ys =⇒ remdups (xs @ ys) = remdups ys

by (induction xs, simp-all)

lemma remdups-concat-1 :
remdups (concat (remdups [])) = remdups (concat [])

by simp

lemma remdups-concat-2 :
remdups (concat (remdups xs)) = remdups (concat xs) =⇒

remdups (concat (remdups (x # xs))) = remdups (concat (x # xs))
by (simp, subst (2 3 ) remdups-append2 [symmetric], clarsimp,
subst remdups-append, auto)

lemma remdups-concat:
remdups (concat (remdups xs)) = remdups (concat xs)

by (induction xs, rule remdups-concat-1 , rule remdups-concat-2 )

2.2 Local context proofs
context noninterf
begin

lemma ctyping1-seq-last:
foldl (;;) S xs = (λx. let xs ′ = [T←xs. T x 6= None] in

if xs ′ = [] then S x else last xs ′ x)
by (rule ext, induction xs rule: rev-induct, auto simp: ctyping1-seq-def )

lemma ctyping1-seq-remdups:
foldl (;;) S (remdups xs) = foldl (;;) S xs

by (simp add: Let-def ctyping1-seq-last, subst remdups-filter-last,
simp add: remdups-filter [symmetric])

lemma ctyping1-seq-remdups-concat:
foldl (;;) S (concat (remdups xs)) = foldl (;;) S (concat xs)

by (subst (1 2 ) ctyping1-seq-remdups [symmetric], simp add: remdups-concat)

lemma ctyping1-seq-eq:
assumes A: foldl (;;) (λx. None) xs = foldl (;;) (λx. None) ys
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shows foldl (;;) S xs = foldl (;;) S ys
proof −

have ∀ x. ([T←xs. T x 6= None] = [] ←→ [T←ys. T x 6= None] = []) ∧
last [T←xs. T x 6= None] x = last [T←ys. T x 6= None] x
(is ∀ x. (?xs ′ x = [] ←→ ?ys ′ x = []) ∧ -)

proof
fix x
from A have (if ?xs ′ x = [] then None else last (?xs ′ x) x) =

(if ?ys ′ x = [] then None else last (?ys ′ x) x)
by (drule-tac fun-cong [where x = x], auto simp: ctyping1-seq-last)

moreover have ?xs ′ x 6= [] =⇒ last (?xs ′ x) x 6= None
by (drule last-in-set, simp)

moreover have ?ys ′ x 6= [] =⇒ last (?ys ′ x) x 6= None
by (drule last-in-set, simp)

ultimately show (?xs ′ x = [] ←→ ?ys ′ x = []) ∧
last (?xs ′ x) x = last (?ys ′ x) x
by (auto split: if-split-asm)

qed
thus ?thesis

by (auto simp: ctyping1-seq-last)
qed

lemma ctyping1-merge-aux-butlast:
[[ws ∈ A

⊔
B; butlast ws 6= []]] =⇒

snd (last (butlast ws)) = (¬ snd (last ws))
by (erule ctyping1-merge-aux.cases, simp-all)

lemma ctyping1-merge-aux-distinct:
ws ∈ A

⊔
B =⇒ distinct ws

by (induction rule: ctyping1-merge-aux.induct, simp-all)

lemma ctyping1-merge-aux-nonempty:
ws ∈ A

⊔
B =⇒ ws 6= []

by (induction rule: ctyping1-merge-aux.induct, simp-all)

lemma ctyping1-merge-aux-item:
[[ws ∈ A

⊔
B; w ∈ set ws]] =⇒ fst w ∈ (if snd w then A else B)

by (induction rule: ctyping1-merge-aux.induct, auto)

lemma ctyping1-merge-aux-take-1 [elim]:
[[take n ws ∈ A

⊔
B; ¬ snd (last ws); xs ∈ A; (xs, True) /∈ set ws]] =⇒

take n ws @ take (n − length ws) [(xs, True)] ∈ A
⊔

B
by (cases n ≤ length ws, auto)

lemma ctyping1-merge-aux-take-2 [elim]:
[[take n ws ∈ A

⊔
B; snd (last ws); ys ∈ B; (ys, False) /∈ set ws]] =⇒

take n ws @ take (n − length ws) [(ys, False)] ∈ A
⊔

B
by (cases n ≤ length ws, auto)
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lemma ctyping1-merge-aux-take:
[[ws ∈ A

⊔
B; 0 < n]] =⇒ take n ws ∈ A

⊔
B

by (induction rule: ctyping1-merge-aux.induct, auto)

lemma ctyping1-merge-aux-drop-1 [elim]:
assumes

A: xs ∈ A and
B: ys ∈ B

shows drop n [(xs, True)] @ [(ys, False)] ∈ A
⊔

B
proof −

from A have [(xs, True)] ∈ A
⊔

B ..
with B have [(xs, True)] @ [(ys, False)] ∈ A

⊔
B

by fastforce
with B show ?thesis

by (cases n, auto)
qed

lemma ctyping1-merge-aux-drop-2 [elim]:
assumes

A: xs ∈ A and
B: ys ∈ B

shows drop n [(ys, False)] @ [(xs, True)] ∈ A
⊔

B
proof −

from B have [(ys, False)] ∈ A
⊔

B ..
with A have [(ys, False)] @ [(xs, True)] ∈ A

⊔
B

by fastforce
with A show ?thesis

by (cases n, auto)
qed

lemma ctyping1-merge-aux-drop-3 :
assumes

A:
∧

xs v. (xs, True) /∈ set (drop n ws) =⇒
xs ∈ A =⇒ v =⇒ drop n ws @ [(xs, True)] ∈ A

⊔
B and

B: xs ∈ A and
C : ys ∈ B and
D: (xs, True) /∈ set ws and
E : (ys, False) /∈ set (drop n ws)

shows drop n ws @ drop (n − length ws) [(xs, True)] @
[(ys, False)] ∈ A

⊔
B

proof −
have set (drop n ws) ⊆ set ws

by (rule set-drop-subset)
hence drop n ws @ [(xs, True)] ∈ A

⊔
B

using A and B and D by blast
hence (drop n ws @ [(xs, True)]) @ [(ys, False)] ∈ A

⊔
B

using C and E by fastforce

28



thus ?thesis
using C by (cases n ≤ length ws, auto)

qed

lemma ctyping1-merge-aux-drop-4 :
assumes

A:
∧

ys v. (ys, False) /∈ set (drop n ws) =⇒
ys ∈ B =⇒ ¬ v =⇒ drop n ws @ [(ys, False)] ∈ A

⊔
B and

B: ys ∈ B and
C : xs ∈ A and
D: (ys, False) /∈ set ws and
E : (xs, True) /∈ set (drop n ws)

shows drop n ws @ drop (n − length ws) [(ys, False)] @
[(xs, True)] ∈ A

⊔
B

proof −
have set (drop n ws) ⊆ set ws

by (rule set-drop-subset)
hence drop n ws @ [(ys, False)] ∈ A

⊔
B

using A and B and D by blast
hence (drop n ws @ [(ys, False)]) @ [(xs, True)] ∈ A

⊔
B

using C and E by fastforce
thus ?thesis

using C by (cases n ≤ length ws, auto)
qed

lemma ctyping1-merge-aux-drop:
[[ws ∈ A

⊔
B; w /∈ set (drop n ws);

fst w ∈ (if snd w then A else B); snd w = (¬ snd (last ws))]] =⇒
drop n ws @ [w] ∈ A

⊔
B

proof (induction arbitrary: w rule: ctyping1-merge-aux.induct)
fix xs ws w
show
[[ws ∈ A

⊔
B;∧

w. w /∈ set (drop n ws) =⇒
fst w ∈ (if snd w then A else B) =⇒
snd w = (¬ snd (last ws)) =⇒
drop n ws @ [w] ∈ A

⊔
B;

¬ snd (last ws);
xs ∈ A;
(xs, True) /∈ set ws;
w /∈ set (drop n (ws @ [(xs, True)]));
fst w ∈ (if snd w then A else B);
snd w = (¬ snd (last (ws @ [(xs, True)])))]] =⇒

drop n (ws @ [(xs, True)]) @ [w] ∈ A
⊔

B
by (cases w, auto intro: ctyping1-merge-aux-drop-3 )

next
fix ys ws w
show
[[ws ∈ A

⊔
B;

29



∧
w. w /∈ set (drop n ws) =⇒
fst w ∈ (if snd w then A else B) =⇒
snd w = (¬ snd (last ws)) =⇒
drop n ws @ [w] ∈ A

⊔
B;

snd (last ws);
ys ∈ B;
(ys, False) /∈ set ws;
w /∈ set (drop n (ws @ [(ys, False)]));
fst w ∈ (if snd w then A else B);
snd w = (¬ snd (last (ws @ [(ys, False)])))]] =⇒

drop n (ws @ [(ys, False)]) @ [w] ∈ A
⊔

B
by (cases w, auto intro: ctyping1-merge-aux-drop-4 )

qed auto

lemma ctyping1-merge-aux-closed-1 :
assumes

A: ∀ vs. length vs ≤ length us −→
(∀ ls rs. vs = ls @ rs −→ ls ∈ A

⊔
B −→ rs ∈ A

⊔
B −→

(∃ws ∈ A
⊔

B. foldl (;;) (λx. None) (concat (map fst ws)) =
foldl (;;) (λx. None) (concat (map fst (ls @ rs))) ∧

length ws ≤ length (ls @ rs) ∧ snd (last ws) = snd (last rs)))
(is ∀ -. - −→ (∀ ls rs. - −→ - −→ - −→ (∃ws ∈ -. ?P ws ls rs))) and

B: us ∈ A
⊔

B and
C : fst v ∈ (if snd v then A else B) and
D: snd v = (¬ snd (last us))

shows ∃ws ∈ A
⊔

B. foldl (;;) (λx. None) (concat (map fst ws)) =
foldl (;;) (λx. None) (concat (map fst (us @ [v]))) ∧
length ws ≤ Suc (length us) ∧ snd (last ws) = snd v

proof (cases v ∈ set us, cases hd us = v)
assume E : hd us = v
moreover have distinct us

using B by (rule ctyping1-merge-aux-distinct)
ultimately have v /∈ set (drop (Suc 0 ) us)

by (cases us, simp-all)
with B have drop (Suc 0 ) us @ [v] ∈ A

⊔
B

(is ?ws ∈ -)
using C and D by (rule ctyping1-merge-aux-drop)

moreover have foldl (;;) (λx. None) (concat (map fst ?ws)) =
foldl (;;) (λx. None) (concat (map fst (us @ [v])))
using E by (cases us, simp, subst (1 2 ) ctyping1-seq-remdups-concat
[symmetric], simp)

ultimately show ?thesis
by fastforce

next
assume v ∈ set us
then obtain ls and rs where E : us = ls @ v # rs ∧ v /∈ set rs

by (blast dest: split-list-last)
moreover assume hd us 6= v
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ultimately have ls 6= []
by (cases ls, simp-all)

hence take (length ls) us ∈ A
⊔

B
by (simp add: ctyping1-merge-aux-take B)

moreover have v /∈ set (drop (Suc (length ls)) us)
using E by simp

with B have drop (Suc (length ls)) us @ [v] ∈ A
⊔

B
using C and D by (rule ctyping1-merge-aux-drop)

ultimately have ∃ws ∈ A
⊔

B. ?P ws ls (rs @ [v])
using A and E by (drule-tac spec [of - ls @ rs @ [v]],
simp, drule-tac spec [of - ls], simp)

moreover have foldl (;;) (λx. None) (concat (map fst (ls @ rs @ [v]))) =
foldl (;;) (λx. None) (concat (map fst (us @ [v])))
using E by (subst (1 2 ) ctyping1-seq-remdups-concat [symmetric],
simp, subst (1 2 ) remdups-append2 [symmetric], simp)

ultimately show ?thesis
using E by auto

next
assume E : v /∈ set us
show ?thesis
proof (rule bexI [of - us @ [v]])

show foldl (;;) (λx. None) (concat (map fst (us @ [v]))) =
foldl (;;) (λx. None) (concat (map fst (us @ [v]))) ∧
length (us @ [v]) ≤ Suc (length us) ∧
snd (last (us @ [v])) = snd v
by simp

next
from B and C and D and E show us @ [v] ∈ A

⊔
B

by (cases v, cases snd (last us), auto)
qed

qed

lemma ctyping1-merge-aux-closed:
assumes

A: ∀ xs ∈ A. ∀ ys ∈ A. ∃ zs ∈ A.
foldl (;;) (λx. None) zs = foldl (;;) (λx. None) (xs @ ys) and

B: ∀ xs ∈ B. ∀ ys ∈ B. ∃ zs ∈ B.
foldl (;;) (λx. None) zs = foldl (;;) (λx. None) (xs @ ys)

shows [[us ∈ A
⊔

B; vs ∈ A
⊔

B]] =⇒
∃ws ∈ A

⊔
B. foldl (;;) (λx. None) (concat (map fst ws)) =

foldl (;;) (λx. None) (concat (map fst (us @ vs))) ∧
length ws ≤ length (us @ vs) ∧ snd (last ws) = snd (last vs)
(is [[-; -]] =⇒ ∃ws ∈ -. ?P ws us vs)

proof (induction us @ vs arbitrary: us vs rule: length-induct)
fix us vs
let ?f = foldl (;;) (λx. None)
assume

C : ∀ ts. length ts < length (us @ vs) −→
(∀ ls rs. ts = ls @ rs −→ ls ∈ A

⊔
B −→ rs ∈ A

⊔
B −→
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(∃ws ∈ A
⊔

B. ?f (concat (map fst ws)) =
?f (concat (map fst (ls @ rs))) ∧

length ws ≤ length (ls @ rs) ∧ snd (last ws) = snd (last rs)))
(is ∀ -. - −→ (∀ ls rs. - −→ - −→ - −→ (∃ws ∈ -. ?Q ws ls rs))) and

D: us ∈ A
⊔

B and
E : vs ∈ A

⊔
B

{
fix vs ′ v
assume F : vs = vs ′ @ [v]
have ∃ws ∈ A

⊔
B. ?f (concat (map fst ws)) =

?f (concat (map fst (us @ vs ′ @ [v]))) ∧
length ws ≤ Suc (length us + length vs ′) ∧ snd (last ws) = snd v

proof (cases vs ′, cases (¬ snd (last us)) = snd v)
assume vs ′ = [] and (¬ snd (last us)) = snd v
thus ?thesis

using ctyping1-merge-aux-closed-1 [OF - D] and
ctyping1-merge-aux-item [OF E ] and C and F
by (auto simp: less-Suc-eq-le)

next
have G: us 6= []

using D by (rule ctyping1-merge-aux-nonempty)
hence fst (last us) ∈ (if snd (last us) then A else B)

using ctyping1-merge-aux-item and D by auto
moreover assume H : (¬ snd (last us)) 6= snd v
ultimately have fst (last us) ∈ (if snd v then A else B)

by simp
moreover have fst v ∈ (if snd v then A else B)

using ctyping1-merge-aux-item and E and F by auto
ultimately have ∃ zs ∈ if snd v

then A else B. ?f zs = ?f (concat (map fst [last us, v]))
(is ∃ zs ∈ -. ?R zs)
using A and B by auto

then obtain zs where
I : zs ∈ (if snd v then A else B) and J : ?R zs ..

let ?w = (zs, snd v)
assume K : vs ′ = []
{

fix us ′ u
assume Cons: butlast us = u # us ′

hence L: snd v = (¬ snd (last (butlast us)))
using D and H by (drule-tac ctyping1-merge-aux-butlast, simp-all)

let ?S = ?f (concat (map fst (butlast us)))
have take (length (butlast us)) us ∈ A

⊔
B

using Cons by (auto intro: ctyping1-merge-aux-take [OF D])
hence M : butlast us ∈ A

⊔
B

by (subst (asm) (2 ) append-butlast-last-id [OF G, symmetric], simp)
have N : ∀ ts. length ts < length (butlast us @ [last us, v]) −→

(∀ ls rs. ts = ls @ rs −→ ls ∈ A
⊔

B −→ rs ∈ A
⊔

B −→
(∃ws ∈ A

⊔
B. ?Q ws ls rs))
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using C and F and K by (subst (asm) append-butlast-last-id
[OF G, symmetric], simp)

have ∃ws ∈ A
⊔

B. ?f (concat (map fst ws)) =
?f (concat (map fst (butlast us @ [?w]))) ∧
length ws ≤ Suc (length (butlast us)) ∧ snd (last ws) = snd ?w

proof (rule ctyping1-merge-aux-closed-1 )
show ∀ ts. length ts ≤ length (butlast us) −→

(∀ ls rs. ts = ls @ rs −→ ls ∈ A
⊔

B −→ rs ∈ A
⊔

B −→
(∃ws ∈ A

⊔
B. ?Q ws ls rs))

using N by force
next

from M show butlast us ∈ A
⊔

B .
next

show fst (zs, snd v) ∈ (if snd (zs, snd v) then A else B)
using I by simp

next
show snd (zs, snd v) = (¬ snd (last (butlast us)))

using L by simp
qed
moreover have foldl (;;) ?S zs =

foldl (;;) ?S (concat (map fst [last us, v]))
using J by (rule ctyping1-seq-eq)

ultimately have ∃ws ∈ A
⊔

B. ?f (concat (map fst ws)) =
?f (concat (map fst ((butlast us @ [last us]) @ [v]))) ∧
length ws ≤ Suc (length us) ∧ snd (last ws) = snd v
by auto

}
with K and I and J show ?thesis

by (simp, subst append-butlast-last-id [OF G, symmetric],
cases butlast us, (force split: if-split-asm)+)

next
case Cons
hence take (length vs ′) vs ∈ A

⊔
B

by (auto intro: ctyping1-merge-aux-take [OF E ])
hence vs ′ ∈ A

⊔
B

using F by simp
then obtain ws where G: ws ∈ A

⊔
B and H : ?Q ws us vs ′

using C and D and F by force
have I : ∀ ts. length ts ≤ length ws −→

(∀ ls rs. ts = ls @ rs −→ ls ∈ A
⊔

B −→ rs ∈ A
⊔

B −→
(∃ws ∈ A

⊔
B. ?Q ws ls rs))

proof (rule allI , rule impI )
fix ts :: (state-upd list × bool) list
assume J : length ts ≤ length ws
show ∀ ls rs. ts = ls @ rs −→ ls ∈ A

⊔
B −→ rs ∈ A

⊔
B −→

(∃ws ∈ A
⊔

B. ?Q ws ls rs)
proof (rule spec [OF C , THEN mp])

show length ts < length (us @ vs)
using F and H and J by simp

33



qed
qed
hence J : snd (last (butlast vs)) = (¬ snd (last vs))

by (metis E F Cons butlast-snoc ctyping1-merge-aux-butlast
list.distinct(1 ))

have ∃ws ′ ∈ A
⊔

B. ?f (concat (map fst ws ′)) =
?f (concat (map fst (ws @ [v]))) ∧
length ws ′ ≤ Suc (length ws) ∧ snd (last ws ′) = snd v

proof (rule ctyping1-merge-aux-closed-1 [OF I G])
show fst v ∈ (if snd v then A else B)

by (rule ctyping1-merge-aux-item [OF E ], simp add: F)
next

show snd v = (¬ snd (last ws))
using F and H and J by simp

qed
thus ?thesis

using H by auto
qed

}
note F = this
show ∃ws ∈ A

⊔
B. ?P ws us vs

proof (rule rev-cases [of vs])
assume vs = []
thus ?thesis

by (simp add: ctyping1-merge-aux-nonempty [OF E ])
next

fix vs ′ v
assume vs = vs ′ @ [v]
thus ?thesis

using F by simp
qed

qed

lemma ctyping1-merge-closed:
assumes

A: ∀ xs ∈ A. ∀ ys ∈ A. ∃ zs ∈ A.
foldl (;;) (λx. None) zs = foldl (;;) (λx. None) (xs @ ys) and

B: ∀ xs ∈ B. ∀ ys ∈ B. ∃ zs ∈ B.
foldl (;;) (λx. None) zs = foldl (;;) (λx. None) (xs @ ys) and

C : xs ∈ A t B and
D: ys ∈ A t B

shows ∃ zs ∈ A t B. foldl (;;) (λx. None) zs =
foldl (;;) (λx. None) (xs @ ys)

proof −
let ?f = foldl (;;) (λx. None)
obtain us where us ∈ A

⊔
B and

E : xs = concat (map fst us)
using C by (auto simp: ctyping1-merge-def )
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moreover obtain vs where vs ∈ A
⊔

B and
F : ys = concat (map fst vs)
using D by (auto simp: ctyping1-merge-def )

ultimately have ∃ws ∈ A
⊔

B. ?f (concat (map fst ws)) =
?f (concat (map fst (us @ vs))) ∧
length ws ≤ length (us @ vs) ∧ snd (last ws) = snd (last vs)
using A and B by (blast intro: ctyping1-merge-aux-closed)

then obtain ws where ws ∈ A
⊔

B and
?f (concat (map fst ws)) = ?f (xs @ ys)
using E and F by auto

thus ?thesis
by (auto simp: ctyping1-merge-def )

qed

lemma ctyping1-merge-append-closed:
assumes

A: ∀ xs ∈ A. ∀ ys ∈ A. ∃ zs ∈ A.
foldl (;;) (λx. None) zs = foldl (;;) (λx. None) (xs @ ys) and

B: ∀ xs ∈ B. ∀ ys ∈ B. ∃ zs ∈ B.
foldl (;;) (λx. None) zs = foldl (;;) (λx. None) (xs @ ys) and

C : xs ∈ A t@ B and
D: ys ∈ A t@ B

shows ∃ zs ∈ A t@ B. foldl (;;) (λx. None) zs =
foldl (;;) (λx. None) (xs @ ys)

proof −
let ?f = foldl (;;) (λx. None)
{

assume E : card B = Suc 0
moreover from C and this obtain as bs where
xs = as @ bs ∧ as ∈ A ∧ bs ∈ B
by (auto simp: ctyping1-append-def ctyping1-merge-append-def )

moreover from D and E obtain as ′ bs ′ where
ys = as ′ @ bs ′ ∧ as ′ ∈ A ∧ bs ′ ∈ B
by (auto simp: ctyping1-append-def ctyping1-merge-append-def )

ultimately have F : xs @ ys = as @ bs @ as ′ @ bs ∧
{as, as ′} ⊆ A ∧ bs ∈ B
by (auto simp: card-1-singleton-iff )

hence ?f (xs @ ys) = ?f (remdups (as @ remdups (bs @ as ′ @ bs)))
by (simp add: ctyping1-seq-remdups)

also have . . . = ?f (remdups (as @ remdups (as ′ @ bs)))
by (simp add: remdups-append)

finally have G: ?f (xs @ ys) = ?f (as @ as ′ @ bs)
by (simp add: ctyping1-seq-remdups)

obtain as ′′ where H : as ′′ ∈ A and I : ?f as ′′ = ?f (as @ as ′)
using A and F by auto

have ∃ zs ∈ A @ B. ?f zs = ?f (xs @ ys)
proof (rule bexI [of - as ′′ @ bs])

show foldl (;;) (λx. None) (as ′′ @ bs) =
foldl (;;) (λx. None) (xs @ ys)
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using G and I by simp
next

show as ′′ @ bs ∈ A @ B
using F and H by (auto simp: ctyping1-append-def )

qed
}
moreover {

fix n
assume E : card B 6= Suc 0
moreover from C and this obtain ws bs where
xs = ws @ bs ∧ ws ∈ A t B ∧ bs ∈ B
by (auto simp: ctyping1-append-def ctyping1-merge-append-def )

moreover from D and E obtain ws ′ bs ′ where
ys = ws ′ @ bs ′ ∧ ws ′ ∈ A t B ∧ bs ′ ∈ B
by (auto simp: ctyping1-append-def ctyping1-merge-append-def )

ultimately have F : xs @ ys = ws @ bs @ ws ′ @ bs ′ ∧
{ws, ws ′} ⊆ A t B ∧ {bs, bs ′} ⊆ B
by simp

hence [(bs, False)] ∈ A
⊔

B
by blast

hence G: bs ∈ A t B
by (force simp: ctyping1-merge-def )

have ∃ vs ∈ A t B. ?f vs = ?f (ws @ bs)
(is ∃ vs ∈ -. ?P vs ws bs)

proof (rule ctyping1-merge-closed)
show ∀ xs ∈ A. ∀ ys ∈ A. ∃ zs ∈ A. foldl (;;) (λx. None) zs =

foldl (;;) (λx. None) (xs @ ys)
using A by simp

next
show ∀ xs ∈ B. ∀ ys ∈ B. ∃ zs ∈ B. foldl (;;) (λx. None) zs =

foldl (;;) (λx. None) (xs @ ys)
using B by simp

next
show ws ∈ A t B

using F by simp
next

from G show bs ∈ A t B .
qed
then obtain vs where H : vs ∈ A t B and I : ?P vs ws bs ..
have ∃ vs ′ ∈ A t B. ?P vs ′ vs ws ′

proof (rule ctyping1-merge-closed)
show ∀ xs ∈ A. ∀ ys ∈ A. ∃ zs ∈ A. foldl (;;) (λx. None) zs =

foldl (;;) (λx. None) (xs @ ys)
using A by simp

next
show ∀ xs ∈ B. ∀ ys ∈ B. ∃ zs ∈ B. foldl (;;) (λx. None) zs =

foldl (;;) (λx. None) (xs @ ys)
using B by simp

next
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from H show vs ∈ A t B .
next

show ws ′ ∈ A t B
using F by simp

qed
then obtain vs ′ where J : vs ′ ∈ A t B and K : ?P vs ′ vs ws ′ ..
have ∃ zs ∈ A t B @ B. ?f zs = ?f (xs @ ys)
proof (rule bexI [of - vs ′ @ bs ′])

show foldl (;;) (λx. None) (vs ′ @ bs ′) =
foldl (;;) (λx. None) (xs @ ys)
using F and I and K by simp

next
show vs ′ @ bs ′ ∈ A t B @ B

using F and J by (auto simp: ctyping1-append-def )
qed

}
ultimately show ?thesis

using A and B and C and D by (auto simp: ctyping1-merge-append-def )
qed

lemma ctyping1-aux-closed:
[[xs ∈ ` c; ys ∈ ` c]] =⇒ ∃ zs ∈ ` c. foldl (;;) (λx. None) zs =

foldl (;;) (λx. None) (xs @ ys)
by (induction c arbitrary: xs ys, auto
intro: ctyping1-merge-closed ctyping1-merge-append-closed
simp: Let-def ctyping1-seq-def simp del: foldl-append)

lemma ctyping1-idem-1 :
assumes

A: s ∈ A and
B: xs ∈ ` c and
C : ys ∈ ` c

shows ∃ f r .
(∃ t.

(λx. case foldl (;;) (λx. None) ys x of
None ⇒ case foldl (;;) (λx. None) xs x of

None ⇒ s x | Some None ⇒ t ′ x | Some (Some i) ⇒ i |
Some None ⇒ t ′′ x | Some (Some i) ⇒ i) =

(λx. case f x of
None ⇒ r x | Some None ⇒ t x | Some (Some i) ⇒ i)) ∧

(∃ zs. f = foldl (;;) (λx. None) zs ∧ zs ∈ ` c) ∧
r ∈ A

proof −
let ?f = foldl (;;) (λx. None)
let ?t = λx. case ?f ys x of

None ⇒ case ?f xs x of Some None ⇒ t ′ x | - ⇒ (0 :: val) |
Some None ⇒ t ′′ x | - ⇒ 0

have ∃ zs ∈ ` c. ?f zs = ?f (xs @ ys)
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using B and C by (rule ctyping1-aux-closed)
then obtain zs where zs ∈ ` c and ?f zs = ?f (xs @ ys) ..
with A show ?thesis

by (rule-tac exI [of - ?f zs], rule-tac exI [of - s],
rule-tac conjI , rule-tac exI [of - ?t], fastforce dest: last-in-set
simp: Let-def ctyping1-seq-last split: option.split, blast)

qed

lemma ctyping1-idem-2 :
assumes

A: s ∈ A and
B: xs ∈ ` c

shows ∃ f r .
(∃ t.

(λx. case foldl (;;) (λx. None) xs x of
None ⇒ s x | Some None ⇒ t ′ x | Some (Some i) ⇒ i) =

(λx. case f x of
None ⇒ r x | Some None ⇒ t x | Some (Some i) ⇒ i)) ∧

(∃ xs. f = foldl (;;) (λx. None) xs ∧ xs ∈ ` c) ∧
(∃ f s.

(∃ t. r = (λx. case f x of
None ⇒ s x | Some None ⇒ t x | Some (Some i) ⇒ i)) ∧

(∃ xs. f = foldl (;;) (λx. None) xs ∧ xs ∈ ` c) ∧
s ∈ A)

proof −
let ?f = foldl (;;) (λx. None)
let ?g = λf s t x. case f x of

None ⇒ s x | Some None ⇒ t x | Some (Some i) ⇒ i
show ?thesis

by (rule exI [of - ?f xs], rule exI [of - ?g (?f xs) s t ′],
(fastforce simp: A B split: option.split)+)

qed

lemma ctyping1-idem:
` c (⊆ A, X) = (B, Y ) =⇒ ` c (⊆ B, Y ) = (B, Y )

by (cases A = {}, auto simp: ctyping1-def
intro: ctyping1-idem-1 ctyping1-idem-2 )

end

end

3 Overapproximation of program semantics by the
type system

theory Overapproximation
imports Idempotence

begin
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The purpose of this section is to prove that type system ctyping2 overap-
proximates program semantics, namely that if (a) (c, s) ⇒ t, (b) the type
system outputs a state set B and a vname set Y when it is input program
c, state set A, and vname set X, and (c) state s agrees with a state in A on
the value of every state variable in X, then t must agree with some state in
B on the value of every state variable in Y (lemma ctyping2-approx).
This proof makes use of the lemma ctyping1-idem proven in the previous
section.

3.1 Global context proofs
lemma avars-aval:
s = t (⊆ avars a) =⇒ aval a s = aval a t

by (induction a, simp-all)

3.2 Local context proofs
context noninterf
begin

lemma interf-set-mono:
[[A ′ ⊆ A; X ⊆ X ′; ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y ;
∀ (B, Y ) ∈ insert (Univ? A X , Z ) U . B: dom ‘ Y  W ]] =⇒
∀ (B, Y ) ∈ insert (Univ? A ′ X ′, Z ) U ′. B: dom ‘ Y  W

by (subgoal-tac Univ? A ′ X ′ ⊆ Univ? A X , fastforce,
auto simp: univ-states-if-def )

lemma btyping1-btyping2-aux-1 [elim]:
assumes

A: avars a1 = {} and
B: avars a2 = {} and
C : aval a1 (λx. 0 ) < aval a2 (λx. 0 )

shows aval a1 s < aval a2 s
proof −

have aval a1 s = aval a1 (λx. 0 ) ∧ aval a2 s = aval a2 (λx. 0 )
using A and B by (blast intro: avars-aval)

thus ?thesis
using C by simp

qed

lemma btyping1-btyping2-aux-2 [elim]:
assumes

A: avars a1 = {} and
B: avars a2 = {} and
C : ¬ aval a1 (λx. 0 ) < aval a2 (λx. 0 ) and
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D: aval a1 s < aval a2 s
shows False

proof −
have aval a1 s = aval a1 (λx. 0 ) ∧ aval a2 s = aval a2 (λx. 0 )

using A and B by (blast intro: avars-aval)
thus ?thesis

using C and D by simp
qed

lemma btyping1-btyping2-aux:
` b = Some v =⇒ ||= b (⊆ A, X) = Some (if v then A else {})

by (induction b arbitrary: v, auto split: if-split-asm option.split-asm)

lemma btyping1-btyping2 :
` b = Some v =⇒ |= b (⊆ A, X) = (if v then (A, {}) else ({}, A))

by (simp add: btyping2-def btyping1-btyping2-aux)

lemma btyping2-aux-subset:
||= b (⊆ A, X) = Some A ′ =⇒ A ′ = {s. s ∈ A ∧ bval b s}

by (induction b arbitrary: A ′, auto split: if-split-asm option.split-asm)

lemma btyping2-aux-diff :
[[||= b (⊆ A, X) = Some B; ||= b (⊆ A ′, X ′) = Some B ′; A ′ ⊆ A; B ′ ⊆ B]] =⇒

A ′ − B ′ ⊆ A − B
by (blast dest: btyping2-aux-subset)

lemma btyping2-aux-mono:
[[||= b (⊆ A, X) = Some B; A ′ ⊆ A; X ⊆ X ′]] =⇒
∃B ′. ||= b (⊆ A ′, X ′) = Some B ′ ∧ B ′ ⊆ B

by (induction b arbitrary: B, auto dest: btyping2-aux-diff split:
if-split-asm option.split-asm)

lemma btyping2-mono:
[[|= b (⊆ A, X) = (B1, B2); |= b (⊆ A ′, X ′) = (B1

′, B2
′); A ′ ⊆ A; X ⊆ X ′]] =⇒

B1
′ ⊆ B1 ∧ B2

′ ⊆ B2

by (simp add: btyping2-def split: option.split-asm,
frule-tac [3−4 ] btyping2-aux-mono, auto dest: btyping2-aux-subset)

lemma btyping2-un-eq:
|= b (⊆ A, X) = (B1, B2) =⇒ B1 ∪ B2 = A

by (auto simp: btyping2-def dest: btyping2-aux-subset split: option.split-asm)

lemma btyping2-fst-empty:
|= b (⊆ {}, X) = ({}, {})

by (auto simp: btyping2-def dest: btyping2-aux-subset split: option.split)

lemma btyping2-aux-eq:
[[||= b (⊆ A, X) = Some A ′; s = t (⊆ state ∩ X)]] =⇒ bval b s = bval b t

proof (induction b arbitrary: A ′)
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fix A ′ v
show
[[||= Bc v (⊆ A, X) = Some A ′; s = t (⊆ state ∩ X)]] =⇒

bval (Bc v) s = bval (Bc v) t
by simp

next
fix A ′ b
show
[[
∧

A ′. ||= b (⊆ A, X) = Some A ′ =⇒ s = t (⊆ state ∩ X) =⇒
bval b s = bval b t;
||= Not b (⊆ A, X) = Some A ′; s = t (⊆ state ∩ X)]] =⇒

bval (Not b) s = bval (Not b) t
by (simp split: option.split-asm)

next
fix A ′ b1 b2

show
[[
∧

A ′. ||= b1 (⊆ A, X) = Some A ′ =⇒ s = t (⊆ state ∩ X) =⇒
bval b1 s = bval b1 t;∧
A ′. ||= b2 (⊆ A, X) = Some A ′ =⇒ s = t (⊆ state ∩ X) =⇒
bval b2 s = bval b2 t;
||= And b1 b2 (⊆ A, X) = Some A ′; s = t (⊆ state ∩ X)]] =⇒

bval (And b1 b2) s = bval (And b1 b2) t
by (simp split: option.split-asm)

next
fix A ′ a1 a2

show
[[||= Less a1 a2 (⊆ A, X) = Some A ′; s = t (⊆ state ∩ X)]] =⇒

bval (Less a1 a2) s = bval (Less a1 a2) t
by (subgoal-tac aval a1 s = aval a1 t,
subgoal-tac aval a2 s = aval a2 t,
auto intro!: avars-aval split: if-split-asm)

qed

lemma ctyping1-merge-in:
xs ∈ A ∪ B =⇒ xs ∈ A t B

by (force simp: ctyping1-merge-def )

lemma ctyping1-merge-append-in:
[[xs ∈ A; ys ∈ B]] =⇒ xs @ ys ∈ A t@ B

by (force simp: ctyping1-merge-append-def ctyping1-append-def ctyping1-merge-in)

lemma ctyping1-aux-nonempty:
` c 6= {}

by (induction c, simp-all add: Let-def ctyping1-append-def
ctyping1-merge-def ctyping1-merge-append-def , fastforce+)

lemma ctyping1-mono:
[[(B, Y ) = ` c (⊆ A, X); (B ′, Y ′) = ` c (⊆ A ′, X ′); A ′ ⊆ A; X ⊆ X ′]] =⇒
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B ′ ⊆ B ∧ Y ⊆ Y ′

by (auto simp: ctyping1-def )

lemma ctyping2-fst-empty:
Some (B, Y ) = (U , v) |= c (⊆ {}, X) =⇒ (B, Y ) = ({}, UNIV )

proof (induction (U , v) c {} :: state set X arbitrary: B Y U v
rule: ctyping2 .induct)
fix C X Y U v b c1 c2

show
[[
∧

U ′ p B2 C Y .
(U ′, p) = (insert (Univ? {} X , bvars b) U , |= b (⊆ {}, X)) =⇒
({}, B2) = p =⇒ Some (C , Y ) = (U ′, v) |= c1 (⊆ {}, X) =⇒
(C , Y ) = ({}, UNIV );∧
U ′ p B1 C Y .
(U ′, p) = (insert (Univ? {} X , bvars b) U , |= b (⊆ {}, X)) =⇒
(B1, {}) = p =⇒ Some (C , Y ) = (U ′, v) |= c2 (⊆ {}, X) =⇒
(C , Y ) = ({}, UNIV );

Some (C , Y ) = (U , v) |= IF b THEN c1 ELSE c2 (⊆ {}, X)]] =⇒
(C , Y ) = ({}, UNIV )

by (fastforce simp: btyping2-fst-empty split: option.split-asm)
next

fix B X Z U v b c
show
[[
∧

B2 C Y B1
′ B2

′ B Z .
({}, B2) = |= b (⊆ {}, X) =⇒
(C , Y ) = ` c (⊆ {}, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? {} X ∪ Univ? C Y , bvars b) U .
B: dom ‘ W  UNIV =⇒

Some (B, Z ) = ({}, False) |= c (⊆ {}, X) =⇒
(B, Z ) = ({}, UNIV );∧
B1 B2 C Y B2

′ B Z .
(B1, B2) = |= b (⊆ {}, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
({}, B2

′) = |= b (⊆ C , Y ) =⇒
∀ (B, W ) ∈ insert (Univ? {} X ∪ Univ? C Y , bvars b) U .

B: dom ‘ W  UNIV =⇒
Some (B, Z ) = ({}, False) |= c (⊆ {}, Y ) =⇒
(B, Z ) = ({}, UNIV );

Some (B, Z ) = (U , v) |= WHILE b DO c (⊆ {}, X)]] =⇒
(B, Z ) = ({}, UNIV )

by (simp split: if-split-asm option.split-asm prod.split-asm,
(fastforce simp: btyping2-fst-empty ctyping1-def )+)

qed (simp-all split: if-split-asm option.split-asm prod.split-asm)

lemma ctyping2-mono-assign [elim!]:
[[(U , False) |= x ::= a (⊆ A, X) = Some (C , Z ); A ′ ⊆ A; X ⊆ X ′;
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y ]] =⇒
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∃C ′ Z ′. (U ′, False) |= x ::= a (⊆ A ′, X ′) = Some (C ′, Z ′) ∧
C ′ ⊆ C ∧ Z ⊆ Z ′

by (frule interf-set-mono [where W = {dom x}], auto split: if-split-asm)

lemma ctyping2-mono-seq:
assumes

A:
∧

A ′ B X ′ Y U ′.
(U , False) |= c1 (⊆ A, X) = Some (B, Y ) =⇒ A ′ ⊆ A =⇒ X ⊆ X ′ =⇒
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃B ′ Y ′. (U ′, False) |= c1 (⊆ A ′, X ′) = Some (B ′, Y ′) ∧

B ′ ⊆ B ∧ Y ⊆ Y ′ and
B:

∧
p B Y B ′ C Y ′ Z U ′.

(U , False) |= c1 (⊆ A, X) = Some p =⇒ (B, Y ) = p =⇒
(U , False) |= c2 (⊆ B, Y ) = Some (C , Z ) =⇒ B ′ ⊆ B =⇒ Y ⊆ Y ′ =⇒
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃C ′ Z ′. (U ′, False) |= c2 (⊆ B ′, Y ′) = Some (C ′, Z ′) ∧

C ′ ⊆ C ∧ Z ⊆ Z ′ and
C : (U , False) |= c1;; c2 (⊆ A, X) = Some (C , Z ) and
D: A ′ ⊆ A and
E : X ⊆ X ′ and
F : ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y

shows ∃C ′ Z ′. (U ′, False) |= c1;; c2 (⊆ A ′, X ′) = Some (C ′, Z ′) ∧
C ′ ⊆ C ∧ Z ⊆ Z ′

proof −
obtain B Y where (U , False) |= c1 (⊆ A, X) = Some (B, Y ) ∧

(U , False) |= c2 (⊆ B, Y ) = Some (C , Z )
using C by (auto split: option.split-asm)

moreover from this obtain B ′ Y ′ where
G: (U ′, False) |= c1 (⊆ A ′, X ′) = Some (B ′, Y ′) ∧ B ′ ⊆ B ∧ Y ⊆ Y ′

using A and D and E and F by fastforce
ultimately obtain C ′ Z ′ where
(U ′, False) |= c2 (⊆ B ′, Y ′) = Some (C ′, Z ′) ∧ C ′ ⊆ C ∧ Z ⊆ Z ′

using B and F by fastforce
thus ?thesis

using G by simp
qed

lemma ctyping2-mono-if :
assumes

A:
∧

W p B1 B2 B1
′ C 1 X ′ Y 1 W ′. (W , p) =

(insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒ (B1, B2) = p =⇒
(W , False) |= c1 (⊆ B1, X) = Some (C 1, Y 1) =⇒ B1

′ ⊆ B1 =⇒
X ⊆ X ′ =⇒ ∀ (B ′, Y ′) ∈ W ′. ∃ (B, Y ) ∈ W . B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃C 1

′ Y 1
′. (W ′, False) |= c1 (⊆ B1

′, X ′) = Some (C 1
′, Y 1

′) ∧
C 1

′ ⊆ C 1 ∧ Y 1 ⊆ Y 1
′ and

B:
∧

W p B1 B2 B2
′ C 2 X ′ Y 2 W ′. (W , p) =

(insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒ (B1, B2) = p =⇒
(W , False) |= c2 (⊆ B2, X) = Some (C 2, Y 2) =⇒ B2

′ ⊆ B2 =⇒
X ⊆ X ′ =⇒ ∀ (B ′, Y ′) ∈ W ′. ∃ (B, Y ) ∈ W . B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
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∃C 2
′ Y 2

′. (W ′, False) |= c2 (⊆ B2
′, X ′) = Some (C 2

′, Y 2
′) ∧

C 2
′ ⊆ C 2 ∧ Y 2 ⊆ Y 2

′ and
C : (U , False) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (C , Y ) and
D: A ′ ⊆ A and
E : X ⊆ X ′ and
F : ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y

shows ∃C ′ Y ′. (U ′, False) |= IF b THEN c1 ELSE c2 (⊆ A ′, X ′) =
Some (C ′, Y ′) ∧ C ′ ⊆ C ∧ Y ⊆ Y ′

proof −
let ?W = insert (Univ? A X , bvars b) U
let ?W ′ = insert (Univ? A ′ X ′, bvars b) U ′

obtain B1 B2 C 1 C 2 Y 1 Y 2 where
G: (C , Y ) = (C 1 ∪ C 2, Y 1 ∩ Y 2) ∧ (B1, B2) = |= b (⊆ A, X) ∧

Some (C 1, Y 1) = (?W , False) |= c1 (⊆ B1, X) ∧
Some (C 2, Y 2) = (?W , False) |= c2 (⊆ B2, X)

using C by (simp split: option.split-asm prod.split-asm)
moreover obtain B1

′ B2
′ where H : (B1

′, B2
′) = |= b (⊆ A ′, X ′)

by (cases |= b (⊆ A ′, X ′), simp)
ultimately have I : B1

′ ⊆ B1 ∧ B2
′ ⊆ B2

by (metis btyping2-mono D E)
moreover have J : ∀ (B ′, Y ′) ∈ ?W ′. ∃ (B, Y ) ∈ ?W . B ′ ⊆ B ∧ Y ′ ⊆ Y

using D and E and F by (auto simp: univ-states-if-def )
ultimately have ∃C 1

′ Y 1
′.

(?W ′, False) |= c1 (⊆ B1
′, X ′) = Some (C 1

′, Y 1
′) ∧ C 1

′ ⊆ C 1 ∧ Y 1 ⊆ Y 1
′

using A and E and G by force
moreover have ∃C 2

′ Y 2
′.

(?W ′, False) |= c2 (⊆ B2
′, X ′) = Some (C 2

′, Y 2
′) ∧ C 2

′ ⊆ C 2 ∧ Y 2 ⊆ Y 2
′

using B and E and G and I and J by force
ultimately show ?thesis

using G and H by (auto split: prod.split)
qed

lemma ctyping2-mono-while:
assumes

A:
∧

B1 B2 C Y B1
′ B2

′ D1 E X ′ V U ′. (B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒ (B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: dom ‘ W  UNIV =⇒
({}, False) |= c (⊆ B1, X) = Some (E , V ) =⇒ D1 ⊆ B1 =⇒

X ⊆ X ′ =⇒ ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ {}. B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃E ′ V ′. (U ′, False) |= c (⊆ D1, X ′) = Some (E ′, V ′) ∧

E ′ ⊆ E ∧ V ⊆ V ′ and
B:

∧
B1 B2 C Y B1

′ B2
′ D1

′ F Y ′ W U ′. (B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒ (B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: dom ‘ W  UNIV =⇒
({}, False) |= c (⊆ B1

′, Y ) = Some (F , W ) =⇒ D1
′ ⊆ B1

′ =⇒
Y ⊆ Y ′ =⇒ ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ {}. B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃F ′ W ′. (U ′, False) |= c (⊆ D1

′, Y ′) = Some (F ′, W ′) ∧
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F ′ ⊆ F ∧ W ⊆ W ′ and
C : (U , False) |= WHILE b DO c (⊆ A, X) = Some (B, Z ) and
D: A ′ ⊆ A and
E : X ⊆ X ′ and
F : ∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y

shows ∃B ′ Z ′. (U ′, False) |= WHILE b DO c (⊆ A ′, X ′) = Some (B ′, Z ′) ∧
B ′ ⊆ B ∧ Z ⊆ Z ′

proof −
obtain B1 B1

′ B2 B2
′ C E F V W Y where G: (B1, B2) = |= b (⊆ A, X) ∧

(C , Y ) = ` c (⊆ B1, X) ∧ (B1
′, B2

′) = |= b (⊆ C , Y ) ∧
(∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .

B: dom ‘ W  UNIV ) ∧
Some (E , V ) = ({}, False) |= c (⊆ B1, X) ∧
Some (F , W ) = ({}, False) |= c (⊆ B1

′, Y ) ∧
(B, Z ) = (B2 ∪ B2

′, Univ?? B2 X ∩ Y )
using C by (force split: if-split-asm option.split-asm prod.split-asm)

moreover obtain D1 D2 where H : |= b (⊆ A ′, X ′) = (D1, D2)
by (cases |= b (⊆ A ′, X ′), simp)

ultimately have I : D1 ⊆ B1 ∧ D2 ⊆ B2

by (smt (verit) btyping2-mono D E)
moreover obtain C ′ Y ′ where J : (C ′, Y ′) = ` c (⊆ D1, X ′)

by (cases ` c (⊆ D1, X ′), simp)
ultimately have K : C ′ ⊆ C ∧ Y ⊆ Y ′

by (meson ctyping1-mono E G)
moreover obtain D1

′ D2
′ where L: |= b (⊆ C ′, Y ′) = (D1

′, D2
′)

by (cases |= b (⊆ C ′, Y ′), simp)
ultimately have M : D1

′ ⊆ B1
′ ∧ D2

′ ⊆ B2
′

by (smt (verit) btyping2-mono G)
then obtain F ′ W ′ where
({}, False) |= c (⊆ D1

′, Y ′) = Some (F ′, W ′) ∧ F ′ ⊆ F ∧ W ⊆ W ′

using B and F and G and K by force
moreover obtain E ′ V ′ where
({}, False) |= c (⊆ D1, X ′) = Some (E ′, V ′) ∧ E ′ ⊆ E ∧ V ⊆ V ′

using A and E and F and G and I by force
moreover have Univ? A ′ X ′ ⊆ Univ? A X

using D and E by (auto simp: univ-states-if-def )
moreover have Univ? C ′ Y ′ ⊆ Univ? C Y

using K by (auto simp: univ-states-if-def )
ultimately have (U ′, False) |= WHILE b DO c (⊆ A ′, X ′) =

Some (D2 ∪ D2
′, Univ?? D2 X ′ ∩ Y ′)

using F and G and H and J [symmetric] and L by force
moreover have D2 ∪ D2

′ ⊆ B
using G and I and M by auto

moreover have Z ⊆ Univ?? D2 X ′ ∩ Y ′

using E and G and I and K by auto
ultimately show ?thesis

by simp
qed
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lemma ctyping2-mono:
[[(U , False) |= c (⊆ A, X) = Some (C , Z ); A ′ ⊆ A; X ⊆ X ′;
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y ]] =⇒
∃C ′ Z ′. (U ′, False) |= c (⊆ A ′, X ′) = Some (C ′, Z ′) ∧ C ′ ⊆ C ∧ Z ⊆ Z ′

proof (induction (U , False) c A X arbitrary: A ′ C X ′ Z U U ′

rule: ctyping2 .induct)
fix A A ′ X X ′ U U ′ C Z c1 c2

show
[[
∧

A ′ B X ′ Y U ′.
(U , False) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
A ′ ⊆ A =⇒ X ⊆ X ′ =⇒
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃B ′ Y ′. (U ′, False) |= c1 (⊆ A ′, X ′) = Some (B ′, Y ′) ∧

B ′ ⊆ B ∧ Y ⊆ Y ′;∧
p B Y A ′ C X ′ Z U ′. (U , False) |= c1 (⊆ A, X) = Some p =⇒
(B, Y ) = p =⇒ (U , False) |= c2 (⊆ B, Y ) = Some (C , Z ) =⇒
A ′ ⊆ B =⇒ Y ⊆ X ′ =⇒
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃C ′ Z ′. (U ′, False) |= c2 (⊆ A ′, X ′) = Some (C ′, Z ′) ∧

C ′ ⊆ C ∧ Z ⊆ Z ′;
(U , False) |= c1;; c2 (⊆ A, X) = Some (C , Z );
A ′ ⊆ A; X ⊆ X ′;
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y ]] =⇒
∃C ′ Z ′. (U ′, False) |= c1;; c2 (⊆ A ′, X ′) = Some (C ′, Z ′) ∧

C ′ ⊆ C ∧ Z ⊆ Z ′

by (rule ctyping2-mono-seq)
next

fix A A ′ X X ′ U U ′ C Z b c1 c2

show
[[
∧

U ′′ p B1 B2 A ′ C X ′ Z U ′.
(U ′′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ (U ′′, False) |= c1 (⊆ B1, X) = Some (C , Z ) =⇒
A ′ ⊆ B1 =⇒ X ⊆ X ′ =⇒
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U ′′. B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃C ′ Z ′. (U ′, False) |= c1 (⊆ A ′, X ′) = Some (C ′, Z ′) ∧

C ′ ⊆ C ∧ Z ⊆ Z ′;∧
U ′′ p B1 B2 A ′ C X ′ Z U ′.
(U ′′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ (U ′′, False) |= c2 (⊆ B2, X) = Some (C , Z ) =⇒
A ′ ⊆ B2 =⇒ X ⊆ X ′ =⇒
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U ′′. B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃C ′ Z ′. (U ′, False) |= c2 (⊆ A ′, X ′) = Some (C ′, Z ′) ∧

C ′ ⊆ C ∧ Z ⊆ Z ′;
(U , False) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (C , Z );
A ′ ⊆ A; X ⊆ X ′;
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y ]] =⇒
∃C ′ Z ′. (U ′, False) |= IF b THEN c1 ELSE c2 (⊆ A ′, X ′) =

Some (C ′, Z ′) ∧ C ′ ⊆ C ∧ Z ⊆ Z ′

by (rule ctyping2-mono-if )
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next
fix A A ′ X X ′ U U ′ B Z b c
show
[[
∧

B1 B2 C Y B1
′ B2

′ A ′ B X ′ Z U ′.
(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: dom ‘ W  UNIV =⇒

({}, False) |= c (⊆ B1, X) = Some (B, Z ) =⇒
A ′ ⊆ B1 =⇒ X ⊆ X ′ =⇒
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ {}. B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃B ′ Z ′. (U ′, False) |= c (⊆ A ′, X ′) = Some (B ′, Z ′) ∧

B ′ ⊆ B ∧ Z ⊆ Z ′;∧
B1 B2 C Y B1

′ B2
′ A ′ B X ′ Z U ′.

(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: dom ‘ W  UNIV =⇒

({}, False) |= c (⊆ B1
′, Y ) = Some (B, Z ) =⇒

A ′ ⊆ B1
′ =⇒ Y ⊆ X ′ =⇒

∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ {}. B ′ ⊆ B ∧ Y ′ ⊆ Y =⇒
∃B ′ Z ′. (U ′, False) |= c (⊆ A ′, X ′) = Some (B ′, Z ′) ∧

B ′ ⊆ B ∧ Z ⊆ Z ′;
(U , False) |= WHILE b DO c (⊆ A, X) = Some (B, Z );
A ′ ⊆ A; X ⊆ X ′;
∀ (B ′, Y ′) ∈ U ′. ∃ (B, Y ) ∈ U . B ′ ⊆ B ∧ Y ′ ⊆ Y ]] =⇒
∃B ′ Z ′. (U ′, False) |= WHILE b DO c (⊆ A ′, X ′) =

Some (B ′, Z ′) ∧ B ′ ⊆ B ∧ Z ⊆ Z ′

by (rule ctyping2-mono-while)
qed fastforce+

lemma ctyping1-ctyping2-fst-assign [elim!]:
assumes

A: (C , Z ) = ` x ::= a (⊆ A, X) and
B: Some (C ′, Z ′) = (U , False) |= x ::= a (⊆ A, X)

shows C ′ ⊆ C
proof −

{
fix s
assume s ∈ A
moreover assume avars a = {}
hence aval a s = aval a (λx. 0 )

by (blast intro: avars-aval)
ultimately have ∃ s ′. (∃ t. s(x := aval a s) = (λx ′. case case

if x ′ = x then Some (Some (aval a (λx. 0 ))) else None of
None ⇒ None | Some v ⇒ Some v of
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None ⇒ s ′ x ′ | Some None ⇒ t x ′ | Some (Some i) ⇒ i)) ∧ s ′ ∈ A
by fastforce

}
note C = this
from A and B show ?thesis

by (clarsimp simp: ctyping1-def ctyping1-seq-def split: if-split-asm,
erule-tac C , simp, fastforce)

qed

lemma ctyping1-ctyping2-fst-seq:
assumes

A:
∧

B B ′ Y Y ′. (B, Y ) = ` c1 (⊆ A, X) =⇒
Some (B ′, Y ′) = (U , False) |= c1 (⊆ A, X) =⇒ B ′ ⊆ B and

B:
∧

p B Y C C ′ Z Z ′. (U , False) |= c1 (⊆ A, X) = Some p =⇒
(B, Y ) = p =⇒ (C , Z ) = ` c2 (⊆ B, Y ) =⇒

Some (C ′, Z ′) = (U , False) |= c2 (⊆ B, Y ) =⇒ C ′ ⊆ C and
C : (C , Z ) = ` c1;; c2 (⊆ A, X) and
D: Some (C ′, Z ′) = (U , False) |= c1;; c2 (⊆ A, X)

shows C ′ ⊆ C
proof −

let ?f = foldl (;;) (λx. None)
let ?P = λr A S . ∃ f s. (∃ t. r = (λx. case f x of

None ⇒ s x | Some None ⇒ t x | Some (Some i) ⇒ i)) ∧
(∃ ys. f = ?f ys ∧ ys ∈ S) ∧ s ∈ A

let ?F = λA S . {r . ?P r A S}
{

fix s3 B ′ Y ′

assume
E :

∧
B ′′ B C C ′ Z ′. B ′ = B ′′ =⇒ B = B ′′ =⇒ C = ?F B ′′ (` c2) =⇒

Some (C ′, Z ′) = (U , False) |= c2 (⊆ B ′′, Y ′) =⇒
C ′ ⊆ ?F B ′′ (` c2) and

F :
∧

B B ′′. B = ?F A (` c1) =⇒ B ′′ = B ′ =⇒ B ′ ⊆ ?F A (` c1) and
G: Some (C ′, Z ′) = (U , False) |= c2 (⊆ B ′, Y ′) and
H : s3 ∈ C ′

have ?P s3 A (` c1 t@ ` c2)
proof −

obtain s2 and t2 and ys2 where
I : s3 = (λx. case ?f ys2 x of

None ⇒ s2 x | Some None ⇒ t2 x | Some (Some i) ⇒ i) ∧
s2 ∈ B ′ ∧ ys2 ∈ ` c2

using E and G and H by fastforce
from this obtain s1 and t1 and ys1 where

J : s2 = (λx. case ?f ys1 x of
None ⇒ s1 x | Some None ⇒ t1 x | Some (Some i) ⇒ i) ∧
s1 ∈ A ∧ ys1 ∈ ` c1

using F by fastforce
let ?t = λx. case ?f ys2 x of

None ⇒ case ?f ys1 x of Some None ⇒ t1 x | - ⇒ 0 |
Some None ⇒ t2 x | - ⇒ 0
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from I and J have s3 = (λx. case ?f (ys1 @ ys2) x of
None ⇒ s1 x | Some None ⇒ ?t x | Some (Some i) ⇒ i)
by (fastforce dest: last-in-set simp: Let-def ctyping1-seq-last
split: option.split)

moreover have ys1 @ ys2 ∈ ` c1 t@ ` c2

by (simp add: ctyping1-merge-append-in I J )
ultimately show ?thesis

using J by fastforce
qed

}
note E = this
from A and B and C and D show ?thesis

by (auto simp: ctyping1-def split: option.split-asm, erule-tac E)
qed

lemma ctyping1-ctyping2-fst-if :
assumes

A:
∧

U ′ p B1 B2 C 1 C 1
′ Y 1 Y 1

′.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒

(B1, B2) = p =⇒ (C 1, Y 1) = ` c1 (⊆ B1, X) =⇒
Some (C 1

′, Y 1
′) = (U ′, False) |= c1 (⊆ B1, X) =⇒ C 1

′ ⊆ C 1 and
B:

∧
U ′ p B1 B2 C 2 C 2

′ Y 2 Y 2
′.

(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ (C 2, Y 2) = ` c2 (⊆ B2, X) =⇒

Some (C 2
′, Y 2

′) = (U ′, False) |= c2 (⊆ B2, X) =⇒ C 2
′ ⊆ C 2 and

C : (C , Y ) = ` IF b THEN c1 ELSE c2 (⊆ A, X) and
D: Some (C ′, Y ′) = (U , False) |= IF b THEN c1 ELSE c2 (⊆ A, X)

shows C ′ ⊆ C
proof −

let ?f = foldl (;;) (λx. None)
let ?P = λr A S . ∃ f s. (∃ t. r = (λx. case f x of

None ⇒ s x | Some None ⇒ t x | Some (Some i) ⇒ i)) ∧
(∃ ys. f = ?f ys ∧ ys ∈ S) ∧ s ∈ A

let ?F = λA S . {r . ?P r A S}
let ?S1 = λf . if f = Some True ∨ f = None then ` c1 else {}
let ?S2 = λf . if f = Some False ∨ f = None then ` c2 else {}
{

fix s ′ B1 B2 C 1

assume
E :

∧
U ′ B1

′ C 1
′ C 1

′′. U ′ = insert (Univ? A X , bvars b) U =⇒
B1

′ = B1 =⇒ C 1
′ = ?F B1 (` c1) =⇒ C 1

′′ = C 1 =⇒
C 1 ⊆ ?F B1 (` c1) and

F : |= b (⊆ A, X) = (B1, B2) and
G: s ′ ∈ C 1

have ?P s ′ A (let f = ` b in ?S1 f t ?S2 f )
proof −

obtain s and t and ys where
H : s ′ = (λx. case ?f ys x of

None ⇒ s x | Some None ⇒ t x | Some (Some i) ⇒ i) ∧
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s ∈ B1 ∧ ys ∈ ` c1

using E and G by fastforce
moreover from F and this have s ∈ A

by (blast dest: btyping2-un-eq)
moreover from F and H have ` b 6= Some False

by (auto dest: btyping1-btyping2 [where A = A and X = X ])
hence ys ∈ (let f = ` b in ?S1 f ∪ ?S2 f )

using H by (auto simp: Let-def )
hence ys ∈ (let f = ` b in ?S1 f t ?S2 f )

by (auto simp: Let-def intro: ctyping1-merge-in)
ultimately show ?thesis

by blast
qed

}
note E = this
{

fix s ′ B1 B2 C 2

assume
F :

∧
U ′ B2

′ C 2
′ C 2

′′. U ′ = insert (Univ? A X , bvars b) U =⇒
B2

′ = B1 =⇒ C 2
′ = ?F B2 (` c2) =⇒ C 2

′′ = C 2 =⇒
C 2 ⊆ ?F B2 (` c2) and

G: |= b (⊆ A, X) = (B1, B2) and
H : s ′ ∈ C 2

have ?P s ′ A (let f = ` b in ?S1 f t ?S2 f )
proof −

obtain s and t and ys where
I : s ′ = (λx. case ?f ys x of

None ⇒ s x | Some None ⇒ t x | Some (Some i) ⇒ i) ∧
s ∈ B2 ∧ ys ∈ ` c2

using F and H by fastforce
moreover from G and this have s ∈ A

by (blast dest: btyping2-un-eq)
moreover from G and I have ` b 6= Some True

by (auto dest: btyping1-btyping2 [where A = A and X = X ])
hence ys ∈ (let f = ` b in ?S1 f ∪ ?S2 f )

using I by (auto simp: Let-def )
hence ys ∈ (let f = ` b in ?S1 f t ?S2 f )

by (auto simp: Let-def intro: ctyping1-merge-in)
ultimately show ?thesis

by blast
qed

}
note F = this
from A and B and C and D show ?thesis

by (auto simp: ctyping1-def split: option.split-asm prod.split-asm,
erule-tac [2 ] F , erule-tac E)

qed

lemma ctyping1-ctyping2-fst-while:
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assumes
A: (C , Y ) = ` WHILE b DO c (⊆ A, X) and
B: Some (C ′, Y ′) = (U , False) |= WHILE b DO c (⊆ A, X)

shows C ′ ⊆ C
proof −

let ?f = foldl (;;) (λx. None)
let ?P = λr A S . ∃ f s. (∃ t. r = (λx. case f x of

None ⇒ s x | Some None ⇒ t x | Some (Some i) ⇒ i)) ∧
(∃ ys. f = ?f ys ∧ ys ∈ S) ∧ s ∈ A

let ?F = λA S . {r . ?P r A S}
let ?S1 = λf . if f = Some False ∨ f = None then {[]} else {}
let ?S2 = λf . if f = Some True ∨ f = None then ` c else {}
{

fix s ′ B1 B2 B1
′ B2

′

assume
C : |= b (⊆ A, X) = (B1, B2) and
D: |= b (⊆ ?F B1 (` c), Univ?? B1 {x. ∀ f ∈ {?f ys |ys. ys ∈ ` c}.

f x 6= Some None ∧ (f x = None −→ x ∈ X)}) = (B1
′, B2

′)
(is |= - (⊆ ?C , ?Y ) = -)

assume s ′ ∈ C ′ and Some (C ′, Y ′) = (if (∀ s ∈ Univ? A X ∪
Univ? ?C ?Y . ∀ x ∈ bvars b. All (interf s (dom x))) ∧
(∀ p ∈ U . ∀B W . p = (B, W ) −→ (∀ s ∈ B. ∀ x ∈ W . All (interf s (dom x))))

then Some (B2 ∪ B2
′, Univ?? B2 X ∩ ?Y )

else None)
hence s ′ ∈ B2 ∪ B2

′

by (simp split: if-split-asm)
hence ?P s ′ A (let f = ` b in ?S1 f ∪ ?S2 f )
proof

assume E : s ′ ∈ B2

hence s ′ ∈ A
using C by (blast dest: btyping2-un-eq)

moreover from C and E have ` b 6= Some True
by (auto dest: btyping1-btyping2 [where A = A and X = X ])

hence [] ∈ (let f = ` b in ?S1 f ∪ ?S2 f )
by (auto simp: Let-def )

ultimately show ?thesis
by force

next
assume s ′ ∈ B2

′

then obtain s and t and ys where
E : s ′ = (λx. case ?f ys x of

None ⇒ s x | Some None ⇒ t x | Some (Some i) ⇒ i) ∧
s ∈ B1 ∧ ys ∈ ` c

using D by (blast dest: btyping2-un-eq)
moreover from C and this have s ∈ A

by (blast dest: btyping2-un-eq)
moreover from C and E have ` b 6= Some False

by (auto dest: btyping1-btyping2 [where A = A and X = X ])
hence ys ∈ (let f = ` b in ?S1 f ∪ ?S2 f )
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using E by (auto simp: Let-def )
ultimately show ?thesis

by blast
qed

}
note C = this
from A and B show ?thesis

by (auto intro: C simp: ctyping1-def
split: option.split-asm prod.split-asm)

qed

lemma ctyping1-ctyping2-fst:
[[(C , Z ) = ` c (⊆ A, X); Some (C ′, Z ′) = (U , False) |= c (⊆ A, X)]] =⇒

C ′ ⊆ C
proof (induction (U , False) c A X arbitrary: C C ′ Z Z ′ U
rule: ctyping2 .induct)
fix A X C C ′ Z Z ′ U c1 c2

show
[[
∧

C C ′ Z Z ′.
(C , Z ) = ` c1 (⊆ A, X) =⇒
Some (C ′, Z ′) = (U , False) |= c1 (⊆ A, X) =⇒
C ′ ⊆ C ;∧
p B Y C C ′ Z Z ′. (U , False) |= c1 (⊆ A, X) = Some p =⇒
(B, Y ) = p =⇒ (C , Z ) = ` c2 (⊆ B, Y ) =⇒
Some (C ′, Z ′) = (U , False) |= c2 (⊆ B, Y ) =⇒
C ′ ⊆ C ;

(C , Z ) = ` c1;; c2 (⊆ A, X);
Some (C ′, Z ′) = (U , False) |= c1;; c2 (⊆ A, X)]] =⇒

C ′ ⊆ C
by (rule ctyping1-ctyping2-fst-seq)

next
fix A X C C ′ Z Z ′ U b c1 c2

show
[[
∧

U ′ p B1 B2 C C ′ Z Z ′.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ (C , Z ) = ` c1 (⊆ B1, X) =⇒
Some (C ′, Z ′) = (U ′, False) |= c1 (⊆ B1, X) =⇒
C ′ ⊆ C ;∧
U ′ p B1 B2 C C ′ Z Z ′.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ (C , Z ) = ` c2 (⊆ B2, X) =⇒
Some (C ′, Z ′) = (U ′, False) |= c2 (⊆ B2, X) =⇒
C ′ ⊆ C ;

(C , Z ) = ` IF b THEN c1 ELSE c2 (⊆ A, X);
Some (C ′, Z ′) = (U , False) |= IF b THEN c1 ELSE c2 (⊆ A, X)]] =⇒

C ′ ⊆ C
by (rule ctyping1-ctyping2-fst-if )

next
fix A X B B ′ Z Z ′ U b c
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show
[[
∧

B1 B2 C Y B1
′ B2

′ B B ′ Z Z ′.
(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: dom ‘ W  UNIV =⇒

(B, Z ) = ` c (⊆ B1, X) =⇒
Some (B ′, Z ′) = ({}, False) |= c (⊆ B1, X) =⇒
B ′ ⊆ B;∧
B1 B2 C Y B1

′ B2
′ B B ′ Z Z ′.

(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: dom ‘ W  UNIV =⇒

(B, Z ) = ` c (⊆ B1
′, Y ) =⇒

Some (B ′, Z ′) = ({}, False) |= c (⊆ B1
′, Y ) =⇒

B ′ ⊆ B;
(B, Z ) = ` WHILE b DO c (⊆ A, X);
Some (B ′, Z ′) = (U , False) |= WHILE b DO c (⊆ A, X)]] =⇒

B ′ ⊆ B
by (rule ctyping1-ctyping2-fst-while)

qed (simp add: ctyping1-def , auto)

lemma ctyping1-ctyping2-snd-assign [elim!]:
[[(C , Z ) = ` x ::= a (⊆ A, X);

Some (C ′, Z ′) = (U , False) |= x ::= a (⊆ A, X)]] =⇒ Z ⊆ Z ′

by (auto simp: ctyping1-def ctyping1-seq-def split: if-split-asm)

lemma ctyping1-ctyping2-snd-seq:
assumes

A:
∧

B B ′ Y Y ′. (B, Y ) = ` c1 (⊆ A, X) =⇒
Some (B ′, Y ′) = (U , False) |= c1 (⊆ A, X) =⇒ Y ⊆ Y ′ and

B:
∧

p B Y C C ′ Z Z ′. (U , False) |= c1 (⊆ A, X) = Some p =⇒
(B, Y ) = p =⇒ (C , Z ) = ` c2 (⊆ B, Y ) =⇒

Some (C ′, Z ′) = (U , False) |= c2 (⊆ B, Y ) =⇒ Z ⊆ Z ′ and
C : (C , Z ) = ` c1;; c2 (⊆ A, X) and
D: Some (C ′, Z ′) = (U , False) |= c1;; c2 (⊆ A, X)

shows Z ⊆ Z ′

proof −
let ?f = foldl (;;) (λx. None)
let ?F = λA S . {r . ∃ f s. (∃ t. r = (λx. case f x of

None ⇒ s x | Some None ⇒ t x | Some (Some i) ⇒ i)) ∧
(∃ ys. f = ?f ys ∧ ys ∈ S) ∧ s ∈ A}

let ?G = λX S . {x. ∀ f ∈ {?f ys | ys. ys ∈ S}.
f x 6= Some None ∧ (f x = None −→ x ∈ X)}

{
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fix x B Y
assume

∧
B ′ B ′′ C C ′ Z ′. B = B ′ =⇒ B ′′ = B ′ =⇒ C = ?F B ′ (` c2) =⇒

Some (C ′, Z ′) = (U , False) |= c2 (⊆ B ′, Y ) =⇒
Univ?? B ′ (?G Y (` c2)) ⊆ Z ′ and

Some (C ′, Z ′) = (U , False) |= c2 (⊆ B, Y )
hence E : Univ?? B (?G Y (` c2)) ⊆ Z ′

by simp
assume

∧
C B ′. C = ?F A (` c1) =⇒ B ′ = B =⇒

Univ?? A (?G X (` c1)) ⊆ Y
hence F : Univ?? A (?G X (` c1)) ⊆ Y

by simp
assume G: ∀ f . (∃ zs. f = ?f zs ∧ zs ∈ ` c1 t@ ` c2) −→

f x 6= Some None ∧ (f x = None −→ x ∈ X)
{

fix ys
have ` c1 6= {}

by (rule ctyping1-aux-nonempty)
then obtain xs where xs ∈ ` c1

by blast
moreover assume ys ∈ ` c2

ultimately have xs @ ys ∈ ` c1 t@ ` c2

by (rule ctyping1-merge-append-in)
moreover assume ?f ys x = Some None
hence ?f (xs @ ys) x = Some None

by (simp add: Let-def ctyping1-seq-last split: if-split-asm)
ultimately have False

using G by blast
}
hence H : ∀ ys ∈ ` c2. ?f ys x 6= Some None

by blast
{

fix xs ys
assume xs ∈ ` c1 and ys ∈ ` c2

hence xs @ ys ∈ ` c1 t@ ` c2

by (rule ctyping1-merge-append-in)
moreover assume ?f xs x = Some None and ?f ys x = None
hence ?f (xs @ ys) x = Some None

by (auto dest: last-in-set simp: Let-def ctyping1-seq-last
split: if-split-asm)

ultimately have (∃ ys ∈ ` c2. ?f ys x = None) −→
(∀ xs ∈ ` c1. ?f xs x 6= Some None)
using G by blast

}
hence I : (∃ ys ∈ ` c2. ?f ys x = None) −→

(∀ xs ∈ ` c1. ?f xs x 6= Some None)
by blast

{
fix xs ys
assume xs ∈ ` c1 and J : ys ∈ ` c2
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hence xs @ ys ∈ ` c1 t@ ` c2

by (rule ctyping1-merge-append-in)
moreover assume ?f xs x = None and K : ?f ys x = None
hence ?f (xs @ ys) x = None

by (simp add: Let-def ctyping1-seq-last split: if-split-asm)
ultimately have x ∈ X

using G by blast
moreover have ∀ xs ∈ ` c1. ?f xs x 6= Some None

using I and J and K by blast
ultimately have x ∈ Z ′

using E and F and H by fastforce
}
moreover {

fix ys
assume ys ∈ ` c2 and ?f ys x = None
hence ∀ xs ∈ ` c1. ?f xs x 6= Some None

using I by blast
moreover assume ∀ xs ∈ ` c1. ∃ v. ?f xs x = Some v
ultimately have x ∈ Z ′

using E and F and H by fastforce
}
moreover {

assume ∀ ys ∈ ` c2. ∃ v. ?f ys x = Some v
hence x ∈ Z ′

using E and H by fastforce
}
ultimately have x ∈ Z ′

by (cases ∃ ys ∈ ` c2. ?f ys x = None,
cases ∃ xs ∈ ` c1. ?f xs x = None, auto)

moreover assume x /∈ Z ′

ultimately have False
by contradiction

}
note E = this
from A and B and C and D show ?thesis

by (auto dest: ctyping2-fst-empty ctyping2-fst-empty [OF sym]
simp: ctyping1-def split: option.split-asm, erule-tac E)

qed

lemma ctyping1-ctyping2-snd-if :
assumes

A:
∧

U ′ p B1 B2 C 1 C 1
′ Y 1 Y 1

′.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒

(B1, B2) = p =⇒ (C 1, Y 1) = ` c1 (⊆ B1, X) =⇒
Some (C 1

′, Y 1
′) = (U ′, False) |= c1 (⊆ B1, X) =⇒ Y 1 ⊆ Y 1

′ and
B:

∧
U ′ p B1 B2 C 2 C 2

′ Y 2 Y 2
′.

(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ (C 2, Y 2) = ` c2 (⊆ B2, X) =⇒

Some (C 2
′, Y 2

′) = (U ′, False) |= c2 (⊆ B2, X) =⇒ Y 2 ⊆ Y 2
′ and
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C : (C , Y ) = ` IF b THEN c1 ELSE c2 (⊆ A, X) and
D: Some (C ′, Y ′) = (U , False) |= IF b THEN c1 ELSE c2 (⊆ A, X)

shows Y ⊆ Y ′

proof −
let ?f = foldl (;;) (λx. None)
let ?F = λA S . {r . ∃ f s. (∃ t. r = (λx. case f x of

None ⇒ s x | Some None ⇒ t x | Some (Some i) ⇒ i)) ∧
(∃ ys. f = ?f ys ∧ ys ∈ S) ∧ s ∈ A}

let ?G = λX S . {x. ∀ f ∈ {?f ys | ys. ys ∈ S}.
f x 6= Some None ∧ (f x = None −→ x ∈ X)}

let ?S1 = λf . if f = Some True ∨ f = None then ` c1 else {}
let ?S2 = λf . if f = Some False ∨ f = None then ` c2 else {}
let ?P = λx. ∀ f . (∃ ys. f = ?f ys ∧ ys ∈ (let f = ` b in ?S1 f t ?S2 f )) −→

f x 6= Some None ∧ (f x = None −→ x ∈ X)
let ?U = insert (Univ? A X , bvars b) U
{

fix B1 B2 Y 1
′ Y 2

′ and C 1
′ :: state set and C 2

′ :: state set
assume

∧
U ′ B1

′ C 1 C 1
′′. U ′ = ?U =⇒ B1

′ = B1 =⇒
C 1 = ?F B1 (` c1) =⇒ C 1

′′ = C 1
′ =⇒ Univ?? B1 (?G X (` c1)) ⊆ Y 1

′

hence E : Univ?? B1 (?G X (` c1)) ⊆ Y 1
′

by simp
moreover assume

∧
U ′ B1

′ C 2 C 2
′′. U ′ = ?U =⇒ B1

′ = B1 =⇒
C 2 = ?F B2 (` c2) =⇒ C 2

′′ = C 2
′ =⇒ Univ?? B2 (?G X (` c2)) ⊆ Y 2

′

hence F : Univ?? B2 (?G X (` c2)) ⊆ Y 2
′

by simp
moreover assume G: |= b (⊆ A, X) = (B1, B2)
moreover {

fix x
assume ?P x
have x ∈ Y 1

′

proof (cases ` b = Some False)
case True
with E and G show ?thesis

by (drule-tac btyping1-btyping2 [where A = A and X = X ], auto)
next

case False
{

fix xs
assume xs ∈ ` c1

with False have xs ∈ (let f = ` b in ?S1 f t ?S2 f )
by (auto intro: ctyping1-merge-in simp: Let-def )

hence ?f xs x 6= Some None ∧ (?f xs x = None −→ x ∈ X)
using ‹?P x› by auto

}
hence x ∈ Univ?? B1 (?G X (` c1))

by auto
thus ?thesis

using E ..
qed
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}
moreover {

fix x
assume ?P x
have x ∈ Y 2

′

proof (cases ` b = Some True)
case True
with F and G show ?thesis

by (drule-tac btyping1-btyping2 [where A = A and X = X ], auto)
next

case False
{

fix ys
assume ys ∈ ` c2

with False have ys ∈ (let f = ` b in ?S1 f t ?S2 f )
by (auto intro: ctyping1-merge-in simp: Let-def )

hence ?f ys x 6= Some None ∧ (?f ys x = None −→ x ∈ X)
using ‹?P x› by auto

}
hence x ∈ Univ?? B2 (?G X (` c2))

by auto
thus ?thesis

using F ..
qed

}
ultimately have (A = {} −→ UNIV ⊆ Y 1

′ ∧ UNIV ⊆ Y 2
′) ∧

(A 6= {} −→ {x. ?P x} ⊆ Y 1
′ ∧ {x. ?P x} ⊆ Y 2

′)
by (auto simp: btyping2-fst-empty)

}
note E = this
from A and B and C and D show ?thesis

by (clarsimp simp: ctyping1-def split: option.split-asm prod.split-asm,
erule-tac E)

qed

lemma ctyping1-ctyping2-snd-while:
assumes

A: (C , Y ) = ` WHILE b DO c (⊆ A, X) and
B: Some (C ′, Y ′) = (U , False) |= WHILE b DO c (⊆ A, X)

shows Y ⊆ Y ′

proof −
let ?f = foldl (;;) (λx. None)
let ?F = λA S . {r . ∃ f s. (∃ t. r = (λx. case f x of

None ⇒ s x | Some None ⇒ t x | Some (Some i) ⇒ i)) ∧
(∃ ys. f = ?f ys ∧ ys ∈ S) ∧ s ∈ A}

let ?S1 = λf . if f = Some False ∨ f = None then {[]} else {}
let ?S2 = λf . if f = Some True ∨ f = None then ` c else {}
let ?P = λx. ∀ f . (∃ ys. f = ?f ys ∧ ys ∈ (let f = ` b in ?S1 f ∪ ?S2 f )) −→

f x 6= Some None ∧ (f x = None −→ x ∈ X)
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let ?Y = λA. Univ?? A {x. ∀ f ∈ {?f ys |ys. ys ∈ ` c}.
f x 6= Some None ∧ (f x = None −→ x ∈ X)}

{
fix B1 B2 B1

′ B2
′

assume C : |= b (⊆ A, X) = (B1, B2)
assume Some (C ′, Y ′) = (if (∀ s ∈ Univ? A X ∪

Univ? (?F B1 (` c)) (?Y B1). ∀ x ∈ bvars b. All (interf s (dom x))) ∧
(∀ p ∈ U . ∀B W . p = (B, W ) −→ (∀ s ∈ B. ∀ x ∈ W . All (interf s (dom x))))

then Some (B2 ∪ B2
′, Univ?? B2 X ∩ ?Y B1)

else None)
hence D: Y ′ = Univ?? B2 X ∩ ?Y B1

by (simp split: if-split-asm)
{

fix x
assume A = {}
hence x ∈ Y ′

using C and D by (simp add: btyping2-fst-empty)
}
moreover {

fix x
assume ?P x
{

assume ` b 6= Some True
hence [] ∈ (let f = ` b in ?S1 f ∪ ?S2 f )

by (auto simp: Let-def )
hence x ∈ X

using ‹?P x› by auto
}
hence E : ` b 6= Some True −→ x ∈ Univ?? B2 X

by auto
{

fix ys
assume ` b 6= Some False and ys ∈ ` c
hence ys ∈ (let f = ` b in ?S1 f ∪ ?S2 f )

by (auto simp: Let-def )
hence ?f ys x 6= Some None ∧ (?f ys x = None −→ x ∈ X)

using ‹?P x› by auto
}
hence F : ` b 6= Some False −→ x ∈ ?Y B1

by auto
have x ∈ Y ′

proof (cases ` b)
case None
thus ?thesis

using D and E and F by simp
next

case (Some v)
show ?thesis
proof (cases v)
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case True
with C and D and F and Some show ?thesis

by (drule-tac btyping1-btyping2 [where A = A and X = X ], simp)
next

case False
with C and D and E and Some show ?thesis

by (drule-tac btyping1-btyping2 [where A = A and X = X ], simp)
qed

qed
}
ultimately have (A = {} −→ UNIV ⊆ Y ′) ∧ (A 6= {} −→ {x. ?P x} ⊆ Y ′)

by auto
}
note C = this
from A and B show ?thesis

by (auto intro!: C simp: ctyping1-def
split: option.split-asm prod.split-asm)

qed

lemma ctyping1-ctyping2-snd:
[[(C , Z ) = ` c (⊆ A, X); Some (C ′, Z ′) = (U , False) |= c (⊆ A, X)]] =⇒

Z ⊆ Z ′

proof (induction (U , False) c A X arbitrary: C C ′ Z Z ′ U
rule: ctyping2 .induct)
fix A X C C ′ Z Z ′ U c1 c2

show
[[
∧

B B ′ Y Y ′.
(B, Y ) = ` c1 (⊆ A, X) =⇒
Some (B ′, Y ′) = (U , False) |= c1 (⊆ A, X) =⇒
Y ⊆ Y ′;∧
p B Y C C ′ Z Z ′. (U , False) |= c1 (⊆ A, X) = Some p =⇒
(B, Y ) = p =⇒ (C , Z ) = ` c2 (⊆ B, Y ) =⇒
Some (C ′, Z ′) = (U , False) |= c2 (⊆ B, Y ) =⇒
Z ⊆ Z ′;

(C , Z ) = ` c1;; c2 (⊆ A, X);
Some (C ′, Z ′) = (U , False) |= c1;; c2 (⊆ A, X)]] =⇒

Z ⊆ Z ′

by (rule ctyping1-ctyping2-snd-seq)
next

fix A X C C ′ Z Z ′ U b c1 c2

show
[[
∧

U ′ p B1 B2 C C ′ Z Z ′.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ (C , Z ) = ` c1 (⊆ B1, X) =⇒
Some (C ′, Z ′) = (U ′, False) |= c1 (⊆ B1, X) =⇒
Z ⊆ Z ′;∧
U ′ p B1 B2 C C ′ Z Z ′.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ (C , Z ) = ` c2 (⊆ B2, X) =⇒
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Some (C ′, Z ′) = (U ′, False) |= c2 (⊆ B2, X) =⇒
Z ⊆ Z ′;

(C , Z ) = ` IF b THEN c1 ELSE c2 (⊆ A, X);
Some (C ′, Z ′) = (U , False) |= IF b THEN c1 ELSE c2 (⊆ A, X)]] =⇒

Z ⊆ Z ′

by (rule ctyping1-ctyping2-snd-if )
next

fix A X B B ′ Z Z ′ U b c
show
[[
∧

B1 B2 C Y B1
′ B2

′ B B ′ Z Z ′.
(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: dom ‘ W  UNIV =⇒

(B, Z ) = ` c (⊆ B1, X) =⇒
Some (B ′, Z ′) = ({}, False) |= c (⊆ B1, X) =⇒
Z ⊆ Z ′;∧
B1 B2 C Y B1

′ B2
′ B B ′ Z Z ′.

(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: dom ‘ W  UNIV =⇒

(B, Z ) = ` c (⊆ B1
′, Y ) =⇒

Some (B ′, Z ′) = ({}, False) |= c (⊆ B1
′, Y ) =⇒

Z ⊆ Z ′;
(B, Z ) = ` WHILE b DO c (⊆ A, X);
Some (B ′, Z ′) = (U , False) |= WHILE b DO c (⊆ A, X)]] =⇒

Z ⊆ Z ′

by (rule ctyping1-ctyping2-snd-while)
qed (simp add: ctyping1-def , auto)

lemma ctyping1-ctyping2 :
[[` c (⊆ A, X) = (C , Z ); (U , False) |= c (⊆ A, X) = Some (C ′, Z ′)]] =⇒

C ′ ⊆ C ∧ Z ⊆ Z ′

by (rule conjI , ((rule ctyping1-ctyping2-fst [OF sym sym] |
rule ctyping1-ctyping2-snd [OF sym sym]), assumption+)+)

lemma btyping2-aux-approx-1 [elim]:
assumes

A: ||= b1 (⊆ A, X) = Some B1 and
B: ||= b2 (⊆ A, X) = Some B2 and
C : bval b1 s and
D: bval b2 s and
E : r ∈ A and
F : s = r (⊆ state ∩ X)
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shows ∃ r ′ ∈ B1 ∩ B2. r = r ′ (⊆ state ∩ X)
proof −

from A and C and E and F have r ∈ B1

by (frule-tac btyping2-aux-subset, drule-tac btyping2-aux-eq, auto)
moreover from B and D and E and F have r ∈ B2

by (frule-tac btyping2-aux-subset, drule-tac btyping2-aux-eq, auto)
ultimately show ?thesis

by blast
qed

lemma btyping2-aux-approx-2 [elim]:
assumes

A: avars a1 ⊆ state and
B: avars a2 ⊆ state and
C : avars a1 ⊆ X and
D: avars a2 ⊆ X and
E : aval a1 s < aval a2 s and
F : r ∈ A and
G: s = r (⊆ state ∩ X)

shows ∃ r ′. r ′ ∈ A ∧ aval a1 r ′ < aval a2 r ′ ∧ r = r ′ (⊆ state ∩ X)
proof −

have aval a1 s = aval a1 r ∧ aval a2 s = aval a2 r
using A and B and C and D and G by (blast intro: avars-aval)

thus ?thesis
using E and F by auto

qed

lemma btyping2-aux-approx-3 [elim]:
assumes

A: avars a1 ⊆ state and
B: avars a2 ⊆ state and
C : avars a1 ⊆ X and
D: avars a2 ⊆ X and
E : ¬ aval a1 s < aval a2 s and
F : r ∈ A and
G: s = r (⊆ state ∩ X)

shows ∃ r ′ ∈ A − {s ∈ A. aval a1 s < aval a2 s}. r = r ′ (⊆ state ∩ X)
proof −

have aval a1 s = aval a1 r ∧ aval a2 s = aval a2 r
using A and B and C and D and G by (blast intro: avars-aval)

thus ?thesis
using E and F by auto

qed

lemma btyping2-aux-approx:
[[||= b (⊆ A, X) = Some A ′; s ∈ Univ A (⊆ state ∩ X)]] =⇒

s ∈ Univ (if bval b s then A ′ else A − A ′) (⊆ state ∩ X)
by (induction b arbitrary: A ′, auto dest: btyping2-aux-subset
split: if-split-asm option.split-asm)
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lemma btyping2-approx:
[[|= b (⊆ A, X) = (B1, B2); s ∈ Univ A (⊆ state ∩ X)]] =⇒

s ∈ Univ (if bval b s then B1 else B2) (⊆ state ∩ X)
by (drule sym, simp add: btyping2-def split: option.split-asm,
drule btyping2-aux-approx, auto)

lemma ctyping2-approx-assign [elim!]:
[[∀ t ′. aval a s = t ′ x −→ (∀ s. t ′ = s(x := aval a s) −→ s /∈ A) ∨

(∃ y ∈ state ∩ X . y 6= x ∧ t y 6= t ′ y);
v |= a (⊆ X); t ∈ A; s = t (⊆ state ∩ X)]] =⇒ False

by (drule spec [of - t(x := aval a t)], cases a,
(fastforce simp del: aval.simps(3 ) intro: avars-aval)+)

lemma ctyping2-approx-if-1 :
[[bval b s; |= b (⊆ A, X) = (B1, B2); r ∈ A; s = r (⊆ state ∩ X);

(insert (Univ? A X , bvars b) U , v) |= c1 (⊆ B1, X) = Some (C 1, Y 1);∧
A B X Y U v. (U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
∃ r ∈ A. s = r (⊆ state ∩ X) =⇒ ∃ r ′ ∈ B. t = r ′ (⊆ state ∩ Y )]] =⇒

∃ r ′ ∈ C 1 ∪ C 2. t = r ′ (⊆ state ∩ (Y 1 ∩ Y 2))
by (drule btyping2-approx, blast, fastforce)

lemma ctyping2-approx-if-2 :
[[¬ bval b s; |= b (⊆ A, X) = (B1, B2); r ∈ A; s = r (⊆ state ∩ X);

(insert (Univ? A X , bvars b) U , v) |= c2 (⊆ B2, X) = Some (C 2, Y 2);∧
A B X Y U v. (U , v) |= c2 (⊆ A, X) = Some (B, Y ) =⇒
∃ r ∈ A. s = r (⊆ state ∩ X) =⇒ ∃ r ′ ∈ B. t = r ′ (⊆ state ∩ Y )]] =⇒

∃ r ′ ∈ C 1 ∪ C 2. t = r ′ (⊆ state ∩ (Y 1 ∩ Y 2))
by (drule btyping2-approx, blast, fastforce)

lemma ctyping2-approx-while-1 [elim]:
[[¬ bval b s; r ∈ A; s = r (⊆ state ∩ X); |= b (⊆ A, X) = (B, {})]] =⇒
∃ t ∈ C . s = t (⊆ state ∩ Y )

by (drule btyping2-approx, blast, simp)

lemma ctyping2-approx-while-2 [elim]:
[[∀ t ∈ B2 ∪ B2

′. ∃ x ∈ state ∩ (X ∩ Y ). r x 6= t x; ¬ bval b s;
r ∈ A; s = r (⊆ state ∩ X); |= b (⊆ A, X) = (B1, B2)]] =⇒ False

by (drule btyping2-approx, blast, auto)

lemma ctyping2-approx-while-aux:
assumes

A: |= b (⊆ A, X) = (B1, B2) and
B: ` c (⊆ B1, X) = (C , Y ) and
C : |= b (⊆ C , Y ) = (B1

′, B2
′) and

D: ({}, False) |= c (⊆ B1, X) = Some (D, Z ) and
E : ({}, False) |= c (⊆ B1

′, Y ) = Some (D ′, Z ′) and
F : r1 ∈ A and
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G: s1 = r1 (⊆ state ∩ X) and
H : bval b s1 and
I :

∧
C B Y W U . (case |= b (⊆ C , Y ) of (B1

′, B2
′) ⇒

case ` c (⊆ B1
′, Y ) of (C ′, Y ′) ⇒

case |= b (⊆ C ′, Y ′) of (B1
′′, B2

′′) ⇒
if (∀ s ∈ Univ? C Y ∪ Univ? C ′ Y ′. ∀ x ∈ bvars b. All (interf s (dom x))) ∧

(∀ p ∈ U . case p of (B, W ) ⇒ ∀ s ∈ B. ∀ x ∈ W . All (interf s (dom x)))
then case ({}, False) |= c (⊆ B1

′, Y ) of
None ⇒ None | Some - ⇒ case ({}, False) |= c (⊆ B1

′′, Y ′) of
None ⇒ None | Some - ⇒ Some (B2

′ ∪ B2
′′, Univ?? B2

′ Y ∩ Y ′)
else None) = Some (B, W ) =⇒
∃ r ∈ C . s2 = r (⊆ state ∩ Y ) =⇒ ∃ r ∈ B. s3 = r (⊆ state ∩ W )

(is
∧

C B Y W U . ?P C B Y W U =⇒ - =⇒ -) and
J :

∧
A B X Y U v. (U , v) |= c (⊆ A, X) = Some (B, Y ) =⇒

∃ r ∈ A. s1 = r (⊆ state ∩ X) =⇒ ∃ r ∈ B. s2 = r (⊆ state ∩ Y ) and
K : ∀ s ∈ Univ? A X ∪ Univ? C Y . ∀ x ∈ bvars b. All (interf s (dom x)) and
L: ∀ p ∈ U . ∀B W . p = (B, W ) −→

(∀ s ∈ B. ∀ x ∈ W . All (interf s (dom x)))
shows ∃ r ∈ B2 ∪ B2

′. s3 = r (⊆ state ∩ Univ?? B2 X ∩ Y )
proof −

obtain C ′ Y ′ where M : (C ′, Y ′) = ` c (⊆ B1
′, Y )

by (cases ` c (⊆ B1
′, Y ), simp)

obtain B1
′′ B2

′′ where N : (B1
′′, B2

′′) = |= b (⊆ C ′, Y ′)
by (cases |= b (⊆ C ′, Y ′), simp)

let ?B = B2
′ ∪ B2

′′

let ?W = Univ?? B2
′ Y ∩ Y ′

have (C , Y ) = ` c (⊆ C , Y )
using ctyping1-idem and B by auto

moreover have B1
′ ⊆ C

using C by (blast dest: btyping2-un-eq)
ultimately have O: C ′ ⊆ C ∧ Y ⊆ Y ′

by (rule ctyping1-mono [OF - M ], simp)
hence Univ? C ′ Y ′ ⊆ Univ? C Y

by (auto simp: univ-states-if-def )
moreover from I have ?P C ?B Y ?W U =⇒
∃ r ∈ C . s2 = r (⊆ state ∩ Y ) =⇒ ∃ r ∈ ?B. s3 = r (⊆ state ∩ ?W ) .

ultimately have (case ({}, False) |= c (⊆ B1
′′, Y ′) of

None ⇒ None | Some - ⇒ Some (?B, ?W )) = Some (?B, ?W ) =⇒
∃ r ∈ C . s2 = r (⊆ state ∩ Y ) =⇒ ∃ r ∈ ?B. s3 = r (⊆ state ∩ ?W )

using C and E and K and L and M and N
by (fastforce split: if-split-asm prod.split-asm)

moreover have P: B1
′′ ⊆ B1

′ ∧ B2
′′ ⊆ B2

′

by (metis btyping2-mono C N O)
hence ∃D ′′ Z ′′. ({}, False) |= c (⊆ B1

′′, Y ′) =
Some (D ′′, Z ′′) ∧ D ′′ ⊆ D ′ ∧ Z ′ ⊆ Z ′′

using E and O by (auto intro: ctyping2-mono)
ultimately have
∃ r ∈ C . s2 = r (⊆ state ∩ Y ) =⇒ ∃ r ∈ ?B. s3 = r (⊆ state ∩ ?W )
by fastforce
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moreover from A and D and F and G and H and J obtain r2 where
r2 ∈ D and s2 = r2 (⊆ state ∩ Z )
by (drule-tac btyping2-approx, blast, force)

moreover have D ⊆ C ∧ Y ⊆ Z
using B and D by (rule ctyping1-ctyping2 )

ultimately obtain r3 where Q: r3 ∈ ?B and R: s3 = r3 (⊆ state ∩ ?W )
by blast

show ?thesis
proof (rule bexI [of - r3])

show s3 = r3 (⊆ state ∩ Univ?? B2 X ∩ Y )
using O and R by auto

next
show r3 ∈ B2 ∪ B2

′

using P and Q by blast
qed

qed

lemmas ctyping2-approx-while-3 =
ctyping2-approx-while-aux [where B2 = {}, simplified]

lemma ctyping2-approx-while-4 :
[[|= b (⊆ A, X) = (B1, B2);
` c (⊆ B1, X) = (C , Y );
|= b (⊆ C , Y ) = (B1

′, B2
′);

({}, False) |= c (⊆ B1, X) = Some (D, Z );
({}, False) |= c (⊆ B1

′, Y ) = Some (D ′, Z ′);
r1 ∈ A; s1 = r1 (⊆ state ∩ X); bval b s1;∧

C B Y W U . (case |= b (⊆ C , Y ) of (B1
′, B2

′) ⇒
case ` c (⊆ B1

′, Y ) of (C ′, Y ′) ⇒
case |= b (⊆ C ′, Y ′) of (B1

′′, B2
′′) ⇒

if (∀ s ∈ Univ? C Y ∪ Univ? C ′ Y ′. ∀ x ∈ bvars b. All (interf s (dom x))) ∧
(∀ p ∈ U . case p of (B, W ) ⇒ ∀ s ∈ B. ∀ x ∈ W . All (interf s (dom x)))

then case ({}, False) |= c (⊆ B1
′, Y ) of

None ⇒ None | Some - ⇒ case ({}, False) |= c (⊆ B1
′′, Y ′) of

None ⇒ None | Some - ⇒ Some (B2
′ ∪ B2

′′, Univ?? B2
′ Y ∩ Y ′)

else None) = Some (B, W ) =⇒
∃ r ∈ C . s2 = r (⊆ state ∩ Y ) =⇒ ∃ r ∈ B. s3 = r (⊆ state ∩ W );∧
A B X Y U v. (U , v) |= c (⊆ A, X) = Some (B, Y ) =⇒
∃ r ∈ A. s1 = r (⊆ state ∩ X) =⇒ ∃ r ∈ B. s2 = r (⊆ state ∩ Y );
∀ s ∈ Univ? A X ∪ Univ? C Y . ∀ x ∈ bvars b. All (interf s (dom x));
∀ p ∈ U . ∀B W . p = (B, W ) −→ (∀ s ∈ B. ∀ x ∈ W . All (interf s (dom x)));
∀ r ∈ B2 ∪ B2

′. ∃ x ∈ state ∩ (X ∩ Y ). s3 x 6= r x]] =⇒
False

by (drule ctyping2-approx-while-aux, assumption+, auto)

lemma ctyping2-approx:
[[(c, s) ⇒ t; (U , v) |= c (⊆ A, X) = Some (B, Y );

s ∈ Univ A (⊆ state ∩ X)]] =⇒ t ∈ Univ B (⊆ state ∩ Y )
proof (induction arbitrary: A B X Y U v rule: big-step-induct)
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fix A B X Y U v b c1 c2 s t
show
[[bval b s; (c1, s) ⇒ t;∧

A C X Y U v. (U , v) |= c1 (⊆ A, X) = Some (C , Y ) =⇒
s ∈ Univ A (⊆ state ∩ X) =⇒
t ∈ Univ C (⊆ state ∩ Y );

(U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (B, Y );
s ∈ Univ A (⊆ state ∩ X)]] =⇒

t ∈ Univ B (⊆ state ∩ Y )
by (auto split: option.split-asm prod.split-asm,
rule ctyping2-approx-if-1 )

next
fix A B X Y U v b c1 c2 s t
show
[[¬ bval b s; (c2, s) ⇒ t;∧

A C X Y U v. (U , v) |= c2 (⊆ A, X) = Some (C , Y ) =⇒
s ∈ Univ A (⊆ state ∩ X) =⇒
t ∈ Univ C (⊆ state ∩ Y );

(U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (B, Y );
s ∈ Univ A (⊆ state ∩ X)]] =⇒

t ∈ Univ B (⊆ state ∩ Y )
by (auto split: option.split-asm prod.split-asm,
rule ctyping2-approx-if-2 )

next
fix A B X Y U v b c s1 s2 s3

show
[[bval b s1; (c, s1) ⇒ s2;∧

A B X Y U v. (U , v) |= c (⊆ A, X) = Some (B, Y ) =⇒
s1 ∈ Univ A (⊆ state ∩ X) =⇒
s2 ∈ Univ B (⊆ state ∩ Y );

(WHILE b DO c, s2) ⇒ s3;∧
A B X Y U v. (U , v) |= WHILE b DO c (⊆ A, X) = Some (B, Y ) =⇒
s2 ∈ Univ A (⊆ state ∩ X) =⇒
s3 ∈ Univ B (⊆ state ∩ Y );

(U , v) |= WHILE b DO c (⊆ A, X) = Some (B, Y );
s1 ∈ Univ A (⊆ state ∩ X)]] =⇒

s3 ∈ Univ B (⊆ state ∩ Y )
by (auto split: if-split-asm option.split-asm prod.split-asm,
erule-tac [2 ] ctyping2-approx-while-4 ,
erule ctyping2-approx-while-3 )

qed (auto split: if-split-asm option.split-asm prod.split-asm)

end

end
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4 Sufficiency of well-typedness for information flow
correctness

theory Correctness
imports Overapproximation

begin

The purpose of this section is to prove that type system ctyping2 is correct
in that it guarantees that well-typed programs satisfy the information flow
correctness criterion expressed by predicate correct, namely that if the type
system outputs a value other than None (that is, a pass verdict) when it is
input program c, state set A, and vname set X, then correct c A X (theorem
ctyping2-correct).
This proof makes use of the lemmas ctyping1-idem and ctyping2-approx
proven in the previous sections.

4.1 Global context proofs
lemma flow-append-1 :

assumes A:
∧

cfs ′ :: (com × state) list.
c # map fst (cfs :: (com × state) list) = map fst cfs ′ =⇒

flow-aux (map fst cfs ′ @ map fst cfs ′′) =
flow-aux (map fst cfs ′) @ flow-aux (map fst cfs ′′)

shows flow-aux (c # map fst cfs @ map fst cfs ′′) =
flow-aux (c # map fst cfs) @ flow-aux (map fst cfs ′′)

using A [of (c, λx. 0 ) # cfs] by simp

lemma flow-append:
flow (cfs @ cfs ′) = flow cfs @ flow cfs ′

by (simp add: flow-def , induction map fst cfs arbitrary: cfs
rule: flow-aux.induct, auto, rule flow-append-1 )

lemma flow-cons:
flow (cf # cfs) = flow-aux (fst cf # []) @ flow cfs

by (subgoal-tac cf # cfs = [cf ] @ cfs, simp only: flow-append,
simp-all add: flow-def )

lemma small-stepsl-append:
[[(c, s) →∗{cfs} (c ′, s ′); (c ′, s ′) →∗{cfs ′} (c ′′, s ′′)]] =⇒

(c, s) →∗{cfs @ cfs ′} (c ′′, s ′′)
by (induction c ′ s ′ cfs ′ c ′′ s ′′ rule: small-stepsl-induct,
simp, simp only: append-assoc [symmetric] small-stepsl.simps)

lemma small-stepsl-cons-1 :
(c, s) →∗{[cf ]} (c ′′, s ′′) =⇒

cf = (c, s) ∧
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(∃ c ′ s ′. (c, s) → (c ′, s ′) ∧ (c ′, s ′) →∗{[]} (c ′′, s ′′))
by (subst (asm) append-Nil [symmetric],
simp only: small-stepsl.simps, simp)

lemma small-stepsl-cons-2 :
[[(c, s) →∗{cf # cfs} (c ′′, s ′′) =⇒

cf = (c, s) ∧
(∃ c ′ s ′. (c, s) → (c ′, s ′) ∧ (c ′, s ′) →∗{cfs} (c ′′, s ′′));

(c, s) →∗{cf # cfs @ [(c ′′, s ′′)]} (c ′′′, s ′′′)]] =⇒
cf = (c, s) ∧
(∃ c ′ s ′. (c, s) → (c ′, s ′) ∧

(c ′, s ′) →∗{cfs @ [(c ′′, s ′′)]} (c ′′′, s ′′′))
by (simp only: append-Cons [symmetric],
simp only: small-stepsl.simps, simp)

lemma small-stepsl-cons:
(c, s) →∗{cf # cfs} (c ′′, s ′′) =⇒

cf = (c, s) ∧
(∃ c ′ s ′. (c, s) → (c ′, s ′) ∧ (c ′, s ′) →∗{cfs} (c ′′, s ′′))

by (induction c s cfs c ′′ s ′′ rule: small-stepsl-induct,
erule small-stepsl-cons-1 , rule small-stepsl-cons-2 )

lemma small-steps-stepsl-1 :
∃ cfs. (c, s) →∗{cfs} (c, s)

by (rule exI [of - []], simp)

lemma small-steps-stepsl-2 :
[[(c, s) → (c ′, s ′); (c ′, s ′) →∗{cfs} (c ′′, s ′′)]] =⇒
∃ cfs ′. (c, s) →∗{cfs ′} (c ′′, s ′′)

by (rule exI [of - [(c, s)] @ cfs], rule small-stepsl-append
[where c ′ = c ′ and s ′ = s ′], subst append-Nil [symmetric],
simp only: small-stepsl.simps)

lemma small-steps-stepsl:
(c, s) →∗ (c ′, s ′) =⇒ ∃ cfs. (c, s) →∗{cfs} (c ′, s ′)

by (induction c s c ′ s ′ rule: star-induct,
rule small-steps-stepsl-1 , blast intro: small-steps-stepsl-2 )

lemma small-stepsl-steps:
(c, s) →∗{cfs} (c ′, s ′) =⇒ (c, s) →∗ (c ′, s ′)

by (induction c s cfs c ′ s ′ rule: small-stepsl-induct,
auto intro: star-trans)

lemma small-stepsl-skip:
(SKIP, s) →∗{cfs} (c, t) =⇒

(c, t) = (SKIP, s) ∧ flow cfs = []
by (induction SKIP s cfs c t rule: small-stepsl-induct,
auto simp: flow-def )
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lemma small-stepsl-assign-1 :
(x ::= a, s) →∗{[]} (c ′, s ′) =⇒

(c ′, s ′) = (x ::= a, s) ∧ flow [] = [] ∨
(c ′, s ′) = (SKIP, s(x := aval a s)) ∧ flow [] = [x ::= a]

by (simp add: flow-def )

lemma small-stepsl-assign-2 :
[[(x ::= a, s) →∗{cfs} (c ′, s ′) =⇒

(c ′, s ′) = (x ::= a, s) ∧ flow cfs = [] ∨
(c ′, s ′) = (SKIP, s(x := aval a s)) ∧ flow cfs = [x ::= a];

(x ::= a, s) →∗{cfs @ [(c ′, s ′)]} (c ′′, s ′′)]] =⇒
(c ′′, s ′′) = (x ::= a, s) ∧

flow (cfs @ [(c ′, s ′)]) = [] ∨
(c ′′, s ′′) = (SKIP, s(x := aval a s)) ∧

flow (cfs @ [(c ′, s ′)]) = [x ::= a]
by (auto, (simp add: flow-append, simp add: flow-def )+)

lemma small-stepsl-assign:
(x ::= a, s) →∗{cfs} (c, t) =⇒

(c, t) = (x ::= a, s) ∧ flow cfs = [] ∨
(c, t) = (SKIP, s(x := aval a s)) ∧ flow cfs = [x ::= a]

by (induction x ::= a :: com s cfs c t rule: small-stepsl-induct,
erule small-stepsl-assign-1 , rule small-stepsl-assign-2 )

lemma small-stepsl-seq-1 :
(c1;; c2, s) →∗{[]} (c ′, s ′) =⇒

(∃ c ′′ cfs ′. c ′ = c ′′;; c2 ∧
(c1, s) →∗{cfs ′} (c ′′, s ′) ∧
flow [] = flow cfs ′) ∨

(∃ s ′′ cfs ′ cfs ′′. length cfs ′′ < length [] ∧
(c1, s) →∗{cfs ′} (SKIP, s ′′) ∧
(c2, s ′′) →∗{cfs ′′} (c ′, s ′) ∧
flow [] = flow cfs ′ @ flow cfs ′′)

by force

lemma small-stepsl-seq-2 :
assumes

A: (c1;; c2, s) →∗{cfs} (c ′, s ′) =⇒
(∃ c ′′ cfs ′. c ′ = c ′′;; c2 ∧

(c1, s) →∗{cfs ′} (c ′′, s ′) ∧
flow cfs = flow cfs ′) ∨

(∃ s ′′ cfs ′ cfs ′′. length cfs ′′ < length cfs ∧
(c1, s) →∗{cfs ′} (SKIP, s ′′) ∧
(c2, s ′′) →∗{cfs ′′} (c ′, s ′) ∧
flow cfs = flow cfs ′ @ flow cfs ′′) and

B: (c1;; c2, s) →∗{cfs @ [(c ′, s ′)]} (c ′′, s ′′)
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shows
(∃ d cfs ′. c ′′ = d;; c2 ∧

(c1, s) →∗{cfs ′} (d, s ′′) ∧
flow (cfs @ [(c ′, s ′)]) = flow cfs ′) ∨

(∃ t cfs ′ cfs ′′. length cfs ′′ < length (cfs @ [(c ′, s ′)]) ∧
(c1, s) →∗{cfs ′} (SKIP, t) ∧
(c2, t) →∗{cfs ′′} (c ′′, s ′′) ∧
flow (cfs @ [(c ′, s ′)]) = flow cfs ′ @ flow cfs ′′)

(is ?P ∨ ?Q)
proof −

{
assume C : (c ′, s ′) → (c ′′, s ′′)
assume
(∃ d. c ′ = d;; c2 ∧ (∃ cfs ′.

(c1, s) →∗{cfs ′} (d, s ′) ∧
flow cfs = flow cfs ′)) ∨

(∃ t cfs ′ cfs ′′. length cfs ′′ < length cfs ∧
(c1, s) →∗{cfs ′} (SKIP, t) ∧
(c2, t) →∗{cfs ′′} (c ′, s ′) ∧
flow cfs = flow cfs ′ @ flow cfs ′′)

(is (∃ d. ?R d ∧ (∃ cfs ′. ?S d cfs ′)) ∨
(∃ t cfs ′ cfs ′′. ?T t cfs ′ cfs ′′))

hence ?thesis
proof

assume ∃ c ′′. ?R c ′′ ∧ (∃ cfs ′. ?S c ′′ cfs ′)
then obtain d and cfs ′ where

D: c ′ = d;; c2 and
E : (c1, s) →∗{cfs ′} (d, s ′) and
F : flow cfs = flow cfs ′

by blast
hence (d;; c2, s ′) → (c ′′, s ′′)

using C by simp
moreover {

assume
G: d = SKIP and
H : (c ′′, s ′′) = (c2, s ′)

have ?Q
proof (rule exI [of - s ′], rule exI [of - cfs ′],
rule exI [of - []])
from D and E and F and G and H show
length [] < length (cfs @ [(c ′, s ′)]) ∧
(c1, s) →∗{cfs ′} (SKIP, s ′) ∧
(c2, s ′) →∗{[]} (c ′′, s ′′) ∧
flow (cfs @ [(c ′, s ′)]) = flow cfs ′ @ flow []
by (simp add: flow-append, simp add: flow-def )

qed
}
moreover {

fix d ′ t ′

69



assume
G: (d, s ′) → (d ′, t ′) and
H : (c ′′, s ′′) = (d ′;; c2, t ′)

have ?P
proof (rule exI [of - d ′], rule exI [of - cfs ′ @ [(d, s ′)]])

from D and E and F and G and H show
c ′′ = d ′;; c2 ∧
(c1, s) →∗{cfs ′ @ [(d, s ′)]} (d ′, s ′′) ∧
flow (cfs @ [(c ′, s ′)]) = flow (cfs ′ @ [(d, s ′)])
by (simp add: flow-append, simp add: flow-def )

qed
}
ultimately show ?thesis

by blast
next

assume ∃ t cfs ′ cfs ′′. ?T t cfs ′ cfs ′′

then obtain t and cfs ′ and cfs ′′ where
D: length cfs ′′ < length cfs and
E : (c1, s) →∗{cfs ′} (SKIP, t) and
F : (c2, t) →∗{cfs ′′} (c ′, s ′) and
G: flow cfs = flow cfs ′ @ flow cfs ′′

by blast
show ?thesis
proof (rule disjI2 , rule exI [of - t], rule exI [of - cfs ′],
rule exI [of - cfs ′′ @ [(c ′, s ′)]])
from C and D and E and F and G show
length (cfs ′′ @ [(c ′, s ′)]) < length (cfs @ [(c ′, s ′)]) ∧
(c1, s) →∗{cfs ′} (SKIP, t) ∧
(c2, t) →∗{cfs ′′ @ [(c ′, s ′)]} (c ′′, s ′′) ∧
flow (cfs @ [(c ′, s ′)]) =

flow cfs ′ @ flow (cfs ′′ @ [(c ′, s ′)])
by (simp add: flow-append)

qed
qed

}
with A and B show ?thesis

by simp
qed

lemma small-stepsl-seq:
(c1;; c2, s) →∗{cfs} (c, t) =⇒

(∃ c ′ cfs ′. c = c ′;; c2 ∧
(c1, s) →∗{cfs ′} (c ′, t) ∧
flow cfs = flow cfs ′) ∨

(∃ s ′ cfs ′ cfs ′′. length cfs ′′ < length cfs ∧
(c1, s) →∗{cfs ′} (SKIP, s ′) ∧ (c2, s ′) →∗{cfs ′′} (c, t) ∧
flow cfs = flow cfs ′ @ flow cfs ′′)

by (induction c1;; c2 s cfs c t arbitrary: c1 c2

rule: small-stepsl-induct, erule small-stepsl-seq-1 ,
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rule small-stepsl-seq-2 )

lemma small-stepsl-if-1 :
(IF b THEN c1 ELSE c2, s) →∗{[]} (c ′, s ′) =⇒

(c ′, s ′) = (IF b THEN c1 ELSE c2, s) ∧
flow [] = [] ∨

bval b s ∧ (c1, s) →∗{tl []} (c ′, s ′) ∧
flow [] = 〈bvars b〉 # flow (tl []) ∨
¬ bval b s ∧ (c2, s) →∗{tl []} (c ′, s ′) ∧

flow [] = 〈bvars b〉 # flow (tl [])
by (simp add: flow-def )

lemma small-stepsl-if-2 :
assumes

A: (IF b THEN c1 ELSE c2, s) →∗{cfs} (c ′, s ′) =⇒
(c ′, s ′) = (IF b THEN c1 ELSE c2, s) ∧

flow cfs = [] ∨
bval b s ∧ (c1, s) →∗{tl cfs} (c ′, s ′) ∧

flow cfs = 〈bvars b〉 # flow (tl cfs) ∨
¬ bval b s ∧ (c2, s) →∗{tl cfs} (c ′, s ′) ∧

flow cfs = 〈bvars b〉 # flow (tl cfs) and
B: (IF b THEN c1 ELSE c2, s) →∗{cfs @ [(c ′, s ′)]} (c ′′, s ′′)

shows
(c ′′, s ′′) = (IF b THEN c1 ELSE c2, s) ∧

flow (cfs @ [(c ′, s ′)]) = [] ∨
bval b s ∧ (c1, s) →∗{tl (cfs @ [(c ′, s ′)])} (c ′′, s ′′) ∧

flow (cfs @ [(c ′, s ′)]) = 〈bvars b〉 # flow (tl (cfs @ [(c ′, s ′)])) ∨
¬ bval b s ∧ (c2, s) →∗{tl (cfs @ [(c ′, s ′)])} (c ′′, s ′′) ∧

flow (cfs @ [(c ′, s ′)]) = 〈bvars b〉 # flow (tl (cfs @ [(c ′, s ′)]))
(is - ∨ ?P)

proof −
{

assume
C : (IF b THEN c1 ELSE c2, s) →∗{cfs} (c ′, s ′) and
D: (c ′, s ′) → (c ′′, s ′′)

assume
c ′ = IF b THEN c1 ELSE c2 ∧ s ′ = s ∧

flow cfs = [] ∨
bval b s ∧ (c1, s) →∗{tl cfs} (c ′, s ′) ∧

flow cfs = 〈bvars b〉 # flow (tl cfs) ∨
¬ bval b s ∧ (c2, s) →∗{tl cfs} (c ′, s ′) ∧

flow cfs = 〈bvars b〉 # flow (tl cfs)
(is ?Q ∨ ?R ∨ ?S)

hence ?P
proof (rule disjE , erule-tac [2 ] disjE)

assume ?Q
moreover from this have (IF b THEN c1 ELSE c2, s) → (c ′′, s ′′)

using D by simp

71



ultimately show ?thesis
using C by (erule-tac IfE , auto dest: small-stepsl-cons
simp: tl-append flow-cons split: list.split)

next
assume ?R
with C and D show ?thesis

by (auto simp: tl-append flow-cons split: list.split)
next

assume ?S
with C and D show ?thesis

by (auto simp: tl-append flow-cons split: list.split)
qed

}
with A and B show ?thesis

by simp
qed

lemma small-stepsl-if :
(IF b THEN c1 ELSE c2, s) →∗{cfs} (c, t) =⇒

(c, t) = (IF b THEN c1 ELSE c2, s) ∧
flow cfs = [] ∨

bval b s ∧ (c1, s) →∗{tl cfs} (c, t) ∧
flow cfs = 〈bvars b〉 # flow (tl cfs) ∨
¬ bval b s ∧ (c2, s) →∗{tl cfs} (c, t) ∧

flow cfs = 〈bvars b〉 # flow (tl cfs)
by (induction IF b THEN c1 ELSE c2 s cfs c t arbitrary: b c1 c2

rule: small-stepsl-induct, erule small-stepsl-if-1 ,
rule small-stepsl-if-2 )

lemma small-stepsl-while-1 :
(WHILE b DO c, s) →∗{[]} (c ′, s ′) =⇒

(c ′, s ′) = (WHILE b DO c, s) ∧ flow [] = [] ∨
(IF b THEN c;; WHILE b DO c ELSE SKIP, s) →∗{tl []} (c ′, s ′) ∧

flow [] = flow (tl [])
by (simp add: flow-def )

lemma small-stepsl-while-2 :
assumes

A: (WHILE b DO c, s) →∗{cfs} (c ′, s ′) =⇒
(c ′, s ′) = (WHILE b DO c, s) ∧

flow cfs = [] ∨
(IF b THEN c;; WHILE b DO c ELSE SKIP, s) →∗{tl cfs} (c ′, s ′) ∧

flow cfs = flow (tl cfs) and
B: (WHILE b DO c, s) →∗{cfs @ [(c ′, s ′)]} (c ′′, s ′′)

shows
(c ′′, s ′′) = (WHILE b DO c, s) ∧

flow (cfs @ [(c ′, s ′)]) = [] ∨
(IF b THEN c;; WHILE b DO c ELSE SKIP, s)
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→∗{tl (cfs @ [(c ′, s ′)])} (c ′′, s ′′) ∧
flow (cfs @ [(c ′, s ′)]) = flow (tl (cfs @ [(c ′, s ′)]))

(is - ∨ ?P)
proof −

{
assume

C : (WHILE b DO c, s) →∗{cfs} (c ′, s ′) and
D: (c ′, s ′) → (c ′′, s ′′)

assume
c ′ = WHILE b DO c ∧ s ′ = s ∧

flow cfs = [] ∨
(IF b THEN c;; WHILE b DO c ELSE SKIP, s) →∗{tl cfs} (c ′, s ′) ∧

flow cfs = flow (tl cfs)
(is ?Q ∨ ?R)

hence ?P
proof

assume ?Q
moreover from this have (WHILE b DO c, s) → (c ′′, s ′′)

using D by simp
ultimately show ?thesis

using C by (erule-tac WhileE , auto dest: small-stepsl-cons
simp: tl-append flow-cons split: list.split)

next
assume ?R
with C and D show ?thesis

by (auto simp: tl-append flow-cons split: list.split)
qed

}
with A and B show ?thesis

by simp
qed

lemma small-stepsl-while:
(WHILE b DO c, s) →∗{cfs} (c ′, s ′) =⇒

(c ′, s ′) = (WHILE b DO c, s) ∧
flow cfs = [] ∨

(IF b THEN c;; WHILE b DO c ELSE SKIP, s) →∗{tl cfs} (c ′, s ′) ∧
flow cfs = flow (tl cfs)

by (induction WHILE b DO c s cfs c ′ s ′ arbitrary: b c
rule: small-stepsl-induct, erule small-stepsl-while-1 ,
rule small-stepsl-while-2 )

lemma bvars-bval:
s = t (⊆ bvars b) =⇒ bval b s = bval b t

by (induction b, simp-all, rule arg-cong2 , auto intro: avars-aval)

lemma run-flow-append:
run-flow (cs @ cs ′) s = run-flow cs ′ (run-flow cs s)

73



by (induction cs s rule: run-flow.induct, simp-all (no-asm))

lemma no-upd-append:
no-upd (cs @ cs ′) x = (no-upd cs x ∧ no-upd cs ′ x)

by (induction cs, simp-all)

lemma no-upd-run-flow:
no-upd cs x =⇒ run-flow cs s x = s x

by (induction cs s rule: run-flow.induct, auto)

lemma small-stepsl-run-flow-1 :
(c, s) →∗{[]} (c ′, s ′) =⇒ s ′ = run-flow (flow []) s

by (simp add: flow-def )

lemma small-stepsl-run-flow-2 :
(c, s) → (c ′, s ′) =⇒ s ′ = run-flow (flow-aux [c]) s

by (induction [c] arbitrary: c c ′ rule: flow-aux.induct, auto)

lemma small-stepsl-run-flow-3 :
[[(c, s) →∗{cfs} (c ′, s ′) =⇒ s ′ = run-flow (flow cfs) s;

(c, s) →∗{cfs @ [(c ′, s ′)]} (c ′′, s ′′)]] =⇒
s ′′ = run-flow (flow (cfs @ [(c ′, s ′)])) s

by (simp add: flow-append run-flow-append,
auto intro: small-stepsl-run-flow-2 simp: flow-def )

lemma small-stepsl-run-flow:
(c, s) →∗{cfs} (c ′, s ′) =⇒ s ′ = run-flow (flow cfs) s

by (induction c s cfs c ′ s ′ rule: small-stepsl-induct,
erule small-stepsl-run-flow-1 , rule small-stepsl-run-flow-3 )

4.2 Local context proofs
context noninterf
begin

lemma no-upd-sources:
no-upd cs x =⇒ x ∈ sources cs s x

by (induction cs rule: rev-induct, auto simp: no-upd-append
split: com-flow.split)

lemma sources-aux-sources:
sources-aux cs s x ⊆ sources cs s x

by (induction cs rule: rev-induct, auto split: com-flow.split)

lemma sources-aux-append:
sources-aux cs s x ⊆ sources-aux (cs @ cs ′) s x

by (induction cs ′ rule: rev-induct, simp, subst append-assoc [symmetric],
auto simp del: append-assoc split: com-flow.split)

74



lemma sources-aux-observe-hd-1 :
∀ y ∈ X . s: dom y  dom x =⇒ X ⊆ sources-aux [〈X〉] s x

by (subst append-Nil [symmetric], subst sources-aux.simps, auto)

lemma sources-aux-observe-hd-2 :
(∀ y ∈ X . s: dom y  dom x =⇒ X ⊆ sources-aux (〈X〉 # xs) s x) =⇒
∀ y ∈ X . s: dom y  dom x =⇒ X ⊆ sources-aux (〈X〉 # xs @ [x ′]) s x

by (subst append-Cons [symmetric], subst sources-aux.simps,
auto split: com-flow.split)

lemma sources-aux-observe-hd:
∀ y ∈ X . s: dom y  dom x =⇒ X ⊆ sources-aux (〈X〉 # cs) s x

by (induction cs rule: rev-induct,
erule sources-aux-observe-hd-1 , rule sources-aux-observe-hd-2 )

lemma sources-observe-tl-1 :
assumes

A:
∧

z a. c = (x ::= a :: com-flow) =⇒ z = x =⇒
sources-aux cs s x ⊆ sources-aux (〈X〉 # cs) s x and

B:
∧

z a y. c = (x ::= a :: com-flow) =⇒ z = x =⇒
sources cs s y ⊆ sources (〈X〉 # cs) s y and

C :
∧

z a. c = (z ::= a :: com-flow) =⇒ z 6= x =⇒
sources cs s x ⊆ sources (〈X〉 # cs) s x and

D:
∧

Y y. c = 〈Y 〉 =⇒
sources cs s y ⊆ sources (〈X〉 # cs) s y and

E : z ∈ (case c of
z ::= a ⇒ if z = x

then sources-aux cs s x ∪
⋃
{sources cs s y | y.

run-flow cs s: dom y  dom x ∧ y ∈ avars a}
else sources cs s x |
〈X〉 ⇒

sources cs s x ∪
⋃
{sources cs s y | y.

run-flow cs s: dom y  dom x ∧ y ∈ X})
shows z ∈ sources (〈X〉 # cs @ [c]) s x

proof −
{

fix a
assume

F : ∀A. (∀ y. run-flow cs s: dom y  dom x −→
A = sources (〈X〉 # cs) s y −→ y /∈ avars a) ∨ z /∈ A and

G: c = x ::= a
have z ∈ sources-aux cs s x ∪

⋃
{sources cs s y | y.

run-flow cs s: dom y  dom x ∧ y ∈ avars a}
using E and G by simp

hence z ∈ sources-aux (〈X〉 # cs) s x
using A and G proof (erule-tac UnE , blast)

assume z ∈
⋃
{sources cs s y | y.
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run-flow cs s: dom y  dom x ∧ y ∈ avars a}
then obtain y where

H : z ∈ sources cs s y and
I : run-flow cs s: dom y  dom x and
J : y ∈ avars a
by blast

have z ∈ sources (〈X〉 # cs) s y
using B and G and H by blast

hence y /∈ avars a
using F and I by blast

thus ?thesis
using J by contradiction

qed
}
moreover {

fix y a
assume c = y ::= a and y 6= x
moreover from this have z ∈ sources cs s x

using E by simp
ultimately have z ∈ sources (〈X〉 # cs) s x

using C by blast
}
moreover {

fix Y
assume

F : ∀A. (∀ y. run-flow cs s: dom y  dom x −→
A = sources (〈X〉 # cs) s y −→ y /∈ Y ) ∨ z /∈ A and

G: c = 〈Y 〉
have z ∈ sources cs s x ∪

⋃
{sources cs s y | y.

run-flow cs s: dom y  dom x ∧ y ∈ Y }
using E and G by simp

hence z ∈ sources (〈X〉 # cs) s x
using D and G proof (erule-tac UnE , blast)

assume z ∈
⋃
{sources cs s y | y.

run-flow cs s: dom y  dom x ∧ y ∈ Y }
then obtain y where

H : z ∈ sources cs s y and
I : run-flow cs s: dom y  dom x and
J : y ∈ Y
by blast

have z ∈ sources (〈X〉 # cs) s y
using D and G and H by blast

hence y /∈ Y
using F and I by blast

thus ?thesis
using J by contradiction

qed
}
ultimately show ?thesis
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by (simp only: append-Cons [symmetric] sources.simps,
auto split: com-flow.split)

qed

lemma sources-observe-tl-2 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒
sources-aux cs s x ⊆ sources-aux (〈X〉 # cs) s x and

B:
∧

Y . c = 〈Y 〉 =⇒
sources-aux cs s x ⊆ sources-aux (〈X〉 # cs) s x and

C :
∧

Y y. c = 〈Y 〉 =⇒
sources cs s y ⊆ sources (〈X〉 # cs) s y and

D: z ∈ (case c of
z ::= a ⇒

sources-aux cs s x |
〈X〉 ⇒

sources-aux cs s x ∪
⋃
{sources cs s y | y.

run-flow cs s: dom y  dom x ∧ y ∈ X})
shows z ∈ sources-aux (〈X〉 # cs @ [c]) s x

proof −
{

fix y a
assume c = y ::= a
moreover from this have z ∈ sources-aux cs s x

using D by simp
ultimately have z ∈ sources-aux (〈X〉 # cs) s x

using A by blast
}
moreover {

fix Y
assume

E : ∀A. (∀ y. run-flow cs s: dom y  dom x −→
A = sources (〈X〉 # cs) s y −→ y /∈ Y ) ∨ z /∈ A and

F : c = 〈Y 〉
have z ∈ sources-aux cs s x ∪

⋃
{sources cs s y | y.

run-flow cs s: dom y  dom x ∧ y ∈ Y }
using D and F by simp

hence z ∈ sources-aux (〈X〉 # cs) s x
using B and F proof (erule-tac UnE , blast)

assume z ∈
⋃
{sources cs s y | y.

run-flow cs s: dom y  dom x ∧ y ∈ Y }
then obtain y where

H : z ∈ sources cs s y and
I : run-flow cs s: dom y  dom x and
J : y ∈ Y
by blast

have z ∈ sources (〈X〉 # cs) s y
using C and F and H by blast

hence y /∈ Y
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using E and I by blast
thus ?thesis

using J by contradiction
qed

}
ultimately show ?thesis

by (simp only: append-Cons [symmetric] sources-aux.simps,
auto split: com-flow.split)

qed

lemma sources-observe-tl:
sources cs s x ⊆ sources (〈X〉 # cs) s x

and sources-aux-observe-tl:
sources-aux cs s x ⊆ sources-aux (〈X〉 # cs) s x

proof (induction cs s x and cs s x rule: sources-induct)
fix cs c s x
show
[[
∧

z a. c = z ::= a =⇒ z = x =⇒
sources-aux cs s x ⊆ sources-aux (〈X〉 # cs) s x;∧
z a b y. c = z ::= a =⇒ z = x =⇒
sources cs s y ⊆ sources (〈X〉 # cs) s y;∧
z a. c = z ::= a =⇒ z 6= x =⇒
sources cs s x ⊆ sources (〈X〉 # cs) s x;∧
Y . c = 〈Y 〉 =⇒
sources cs s x ⊆ sources (〈X〉 # cs) s x;∧
Y a y. c = 〈Y 〉 =⇒
sources cs s y ⊆ sources (〈X〉 # cs) s y]] =⇒
sources (cs @ [c]) s x ⊆ sources (〈X〉 # cs @ [c]) s x

by (auto, rule sources-observe-tl-1 )
next

fix s x
show sources [] s x ⊆ sources [〈X〉] s x

by (subst (3 ) append-Nil [symmetric],
simp only: sources.simps, simp)

next
fix cs c s x
show
[[
∧

z a. c = z ::= a =⇒
sources-aux cs s x ⊆ sources-aux (〈X〉 # cs) s x;∧
Y . c = 〈Y 〉 =⇒
sources-aux cs s x ⊆ sources-aux (〈X〉 # cs) s x;∧
Y a y. c = 〈Y 〉 =⇒
sources cs s y ⊆ sources (〈X〉 # cs) s y]] =⇒
sources-aux (cs @ [c]) s x ⊆ sources-aux (〈X〉 # cs @ [c]) s x

by (auto, rule sources-observe-tl-2 )
qed simp

lemma sources-member-1 :
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assumes
A:

∧
z a. c = (x ::= a :: com-flow) =⇒ z = x =⇒

y ∈ sources-aux cs ′ (run-flow cs s) x =⇒
sources cs s y ⊆ sources-aux (cs @ cs ′) s x and

B:
∧

z a w. c = (x ::= a :: com-flow) =⇒ z = x =⇒
y ∈ sources cs ′ (run-flow cs s) w =⇒

sources cs s y ⊆ sources (cs @ cs ′) s w and
C :

∧
z a. c = (z ::= a :: com-flow) =⇒ z 6= x =⇒

y ∈ sources cs ′ (run-flow cs s) x =⇒
sources cs s y ⊆ sources (cs @ cs ′) s x and

D:
∧

Y w. c = 〈Y 〉 =⇒
y ∈ sources cs ′ (run-flow cs s) w =⇒

sources cs s y ⊆ sources (cs @ cs ′) s w and
E : y ∈ (case c of

z ::= a ⇒ if z = x
then sources-aux cs ′ (run-flow cs s) x ∪⋃

{sources cs ′ (run-flow cs s) y | y.
run-flow cs ′ (run-flow cs s): dom y  dom x ∧ y ∈ avars a}

else sources cs ′ (run-flow cs s) x |
〈X〉 ⇒

sources cs ′ (run-flow cs s) x ∪⋃
{sources cs ′ (run-flow cs s) y | y.

run-flow cs ′ (run-flow cs s): dom y  dom x ∧ y ∈ X}) and
F : z ∈ sources cs s y

shows z ∈ sources (cs @ cs ′ @ [c]) s x
proof −

{
fix a
assume

G: ∀A. (∀ y. run-flow cs ′ (run-flow cs s): dom y  dom x −→
A = sources (cs @ cs ′) s y −→ y /∈ avars a) ∨ z /∈ A and

H : c = x ::= a
have y ∈ sources-aux cs ′ (run-flow cs s) x ∪⋃

{sources cs ′ (run-flow cs s) y | y.
run-flow cs ′ (run-flow cs s): dom y  dom x ∧ y ∈ avars a}

using E and H by simp
hence z ∈ sources-aux (cs @ cs ′) s x
using A and F and H proof (erule-tac UnE , blast)

assume y ∈
⋃
{sources cs ′ (run-flow cs s) y | y.

run-flow cs ′ (run-flow cs s): dom y  dom x ∧ y ∈ avars a}
then obtain w where

I : y ∈ sources cs ′ (run-flow cs s) w and
J : run-flow cs ′ (run-flow cs s): dom w  dom x and
K : w ∈ avars a
by blast

have z ∈ sources (cs @ cs ′) s w
using B and F and H and I by blast

hence w /∈ avars a
using G and J by blast
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thus ?thesis
using K by contradiction

qed
}
moreover {

fix w a
assume c = w ::= a and w 6= x
moreover from this have y ∈ sources cs ′ (run-flow cs s) x

using E by simp
ultimately have z ∈ sources (cs @ cs ′) s x

using C and F by blast
}
moreover {

fix Y
assume

G: ∀A. (∀ y. run-flow cs ′ (run-flow cs s): dom y  dom x −→
A = sources (cs @ cs ′) s y −→ y /∈ Y ) ∨ z /∈ A and

H : c = 〈Y 〉
have y ∈ sources cs ′ (run-flow cs s) x ∪⋃

{sources cs ′ (run-flow cs s) y | y.
run-flow cs ′ (run-flow cs s): dom y  dom x ∧ y ∈ Y }

using E and H by simp
hence z ∈ sources (cs @ cs ′) s x
using D and F and H proof (erule-tac UnE , blast)

assume y ∈
⋃
{sources cs ′ (run-flow cs s) y | y.

run-flow cs ′ (run-flow cs s): dom y  dom x ∧ y ∈ Y }
then obtain w where

I : y ∈ sources cs ′ (run-flow cs s) w and
J : run-flow cs ′ (run-flow cs s): dom w  dom x and
K : w ∈ Y
by blast

have z ∈ sources (cs @ cs ′) s w
using D and F and H and I by blast

hence w /∈ Y
using G and J by blast

thus ?thesis
using K by contradiction

qed
}
ultimately show ?thesis

by (simp only: append-assoc [symmetric] sources.simps,
auto simp: run-flow-append split: com-flow.split)

qed

lemma sources-member-2 :
assumes

A:
∧

z a. c = (z ::= a :: com-flow) =⇒
y ∈ sources-aux cs ′ (run-flow cs s) x =⇒

sources cs s y ⊆ sources-aux (cs @ cs ′) s x and
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B:
∧

Y . c = 〈Y 〉 =⇒
y ∈ sources-aux cs ′ (run-flow cs s) x =⇒

sources cs s y ⊆ sources-aux (cs @ cs ′) s x and
C :

∧
Y w. c = 〈Y 〉 =⇒

y ∈ sources cs ′ (run-flow cs s) w =⇒
sources cs s y ⊆ sources (cs @ cs ′) s w and

D: y ∈ (case c of
z ::= a ⇒

sources-aux cs ′ (run-flow cs s) x |
〈X〉 ⇒

sources-aux cs ′ (run-flow cs s) x ∪⋃
{sources cs ′ (run-flow cs s) y | y.

run-flow cs ′ (run-flow cs s): dom y  dom x ∧ y ∈ X}) and
E : z ∈ sources cs s y

shows z ∈ sources-aux (cs @ cs ′ @ [c]) s x
proof −

{
fix w a
assume c = w ::= a
moreover from this have y ∈ sources-aux cs ′ (run-flow cs s) x

using D by simp
ultimately have z ∈ sources-aux (cs @ cs ′) s x

using A and E by blast
}
moreover {

fix Y
assume

G: ∀A. (∀ y. run-flow cs ′ (run-flow cs s): dom y  dom x −→
A = sources (cs @ cs ′) s y −→ y /∈ Y ) ∨ z /∈ A and

H : c = 〈Y 〉
have y ∈ sources-aux cs ′ (run-flow cs s) x ∪⋃

{sources cs ′ (run-flow cs s) y | y.
run-flow cs ′ (run-flow cs s): dom y  dom x ∧ y ∈ Y }

using D and H by simp
hence z ∈ sources-aux (cs @ cs ′) s x
using B and E and H proof (erule-tac UnE , blast)

assume y ∈
⋃
{sources cs ′ (run-flow cs s) y | y.

run-flow cs ′ (run-flow cs s): dom y  dom x ∧ y ∈ Y }
then obtain w where

I : y ∈ sources cs ′ (run-flow cs s) w and
J : run-flow cs ′ (run-flow cs s): dom w  dom x and
K : w ∈ Y
by blast

have z ∈ sources (cs @ cs ′) s w
using C and E and H and I by blast

hence w /∈ Y
using G and J by blast

thus ?thesis
using K by contradiction
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qed
}
ultimately show ?thesis

by (simp only: append-assoc [symmetric] sources-aux.simps,
auto simp: run-flow-append split: com-flow.split)

qed

lemma sources-member :
y ∈ sources cs ′ (run-flow cs s) x =⇒

sources cs s y ⊆ sources (cs @ cs ′) s x
and sources-aux-member :
y ∈ sources-aux cs ′ (run-flow cs s) x =⇒

sources cs s y ⊆ sources-aux (cs @ cs ′) s x
proof (induction cs ′ s x and cs ′ s x rule: sources-induct)

fix cs ′ c s x
show
[[
∧

z a. c = z ::= a =⇒ z = x =⇒
y ∈ sources-aux cs ′ (run-flow cs s) x =⇒

sources cs s y ⊆ sources-aux (cs @ cs ′) s x;∧
z a b w. c = z ::= a =⇒ z = x =⇒
y ∈ sources cs ′ (run-flow cs s) w =⇒

sources cs s y ⊆ sources (cs @ cs ′) s w;∧
z a. c = z ::= a =⇒ z 6= x =⇒
y ∈ sources cs ′ (run-flow cs s) x =⇒

sources cs s y ⊆ sources (cs @ cs ′) s x;∧
Y . c = 〈Y 〉 =⇒
y ∈ sources cs ′ (run-flow cs s) x =⇒

sources cs s y ⊆ sources (cs @ cs ′) s x;∧
Y a w. c = 〈Y 〉 =⇒
y ∈ sources cs ′ (run-flow cs s) w =⇒

sources cs s y ⊆ sources (cs @ cs ′) s w;
y ∈ sources (cs ′ @ [c]) (run-flow cs s) x]] =⇒

sources cs s y ⊆ sources (cs @ cs ′ @ [c]) s x
by (auto, rule sources-member-1 )

next
fix cs ′ c s x
show
[[
∧

z a. c = z ::= a =⇒
y ∈ sources-aux cs ′ (run-flow cs s) x =⇒

sources cs s y ⊆ sources-aux (cs @ cs ′) s x;∧
Y . c = 〈Y 〉 =⇒
y ∈ sources-aux cs ′ (run-flow cs s) x =⇒

sources cs s y ⊆ sources-aux (cs @ cs ′) s x;∧
Y a w. c = 〈Y 〉 =⇒
y ∈ sources cs ′ (run-flow cs s) w =⇒

sources cs s y ⊆ sources (cs @ cs ′) s w;
y ∈ sources-aux (cs ′ @ [c]) (run-flow cs s) x]] =⇒

sources cs s y ⊆ sources-aux (cs @ cs ′ @ [c]) s x
by (auto, rule sources-member-2 )
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qed simp-all

lemma ctyping2-confine:
[[(c, s) ⇒ s ′; (U , v) |= c (⊆ A, X) = Some (B, Y );
∃ (C , Z ) ∈ U . ¬ C : dom ‘ Z  {dom x}]] =⇒ s ′ x = s x

by (induction arbitrary: A B X Y U v rule: big-step-induct,
auto split: if-split-asm option.split-asm prod.split-asm, fastforce+)

lemma ctyping2-term-if :
[[
∧

x ′ y ′ z ′′ s. x ′ = x =⇒ y ′ = y =⇒ z = z ′′ =⇒ ∃ s ′. (c1, s) ⇒ s ′;∧
x ′ y ′ z ′′ s. x ′ = x =⇒ y ′ = y =⇒ z ′ = z ′′ =⇒ ∃ s ′. (c2, s) ⇒ s ′]] =⇒

∃ s ′. (IF b THEN c1 ELSE c2, s) ⇒ s ′

by (cases bval b s, fastforce+)

lemma ctyping2-term:
[[(U , v) |= c (⊆ A, X) = Some (B, Y );
∃ (C , Z ) ∈ U . ¬ C : dom ‘ Z  UNIV ]] =⇒ ∃ s ′. (c, s) ⇒ s ′

by (induction (U , v) c A X arbitrary: B Y U v s rule: ctyping2 .induct,
auto split: if-split-asm option.split-asm prod.split-asm, fastforce,
erule ctyping2-term-if )

lemma ctyping2-correct-aux-skip [elim]:
[[(SKIP, s) →∗{cfs1} (c1, s1); (c1, s1) →∗{cfs2} (c2, s2)]] =⇒

(∀ t1. ∃ c2
′ t2. ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c1, t1) →∗ (c2

′, t2) ∧ (c2 = SKIP) = (c2
′ = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧
(∀ x. (∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→ no-upd (flow cfs2) x)

by (fastforce dest: small-stepsl-skip)

lemma ctyping2-correct-aux-assign [elim]:
assumes

A: (if (∀ s ∈ Univ? A X . ∀ y ∈ avars a. s: dom y  dom x) ∧
(∀ p ∈ U . ∀B Y . p = (B, Y ) −→

(∀ s ∈ B. ∀ y ∈ Y . s: dom y  dom x))
then Some (if x ∈ state ∧ A 6= {}

then if v |= a (⊆ X)
then ({s(x := aval a s) |s. s ∈ A}, insert x X)
else (A, X − {x})

else (A, Univ?? A X))
else None) = Some (B, Y )

(is (if ?P then - else -) = -) and
B: (x ::= a, s) →∗{cfs1} (c1, s1) and
C : (c1, s1) →∗{cfs2} (c2, s2) and
D: r ∈ A and
E : s = r (⊆ state ∩ X)
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shows
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ p ∈ U . case p of (B, Y ) ⇒
∃ s ∈ B. ∃ y ∈ Y . ¬ s: dom y  dom x) −→ no-upd (flow cfs2) x)

proof −
have ?P

using A by (simp split: if-split-asm)
have F : avars a ⊆ {y. s: dom y  dom x}
proof (cases state ⊆ X)

case True
with E have interf s = interf r

by (blast intro: interf-state)
with D and ‹?P› show ?thesis

by (erule-tac conjE , drule-tac bspec, auto simp: univ-states-if-def )
next

case False
with D and ‹?P› show ?thesis

by (erule-tac conjE , drule-tac bspec, auto simp: univ-states-if-def )
qed
have (c1, s1) = (x ::= a, s) ∨ (c1, s1) = (SKIP, s(x := aval a s))

using B by (blast dest: small-stepsl-assign)
thus ?thesis
proof

assume (c1, s1) = (x ::= a, s)
moreover from this have (x ::= a, s) →∗{cfs2} (c2, s2)

using C by simp
hence (c2, s2) = (x ::= a, s) ∧ flow cfs2 = [] ∨

(c2, s2) = (SKIP, s(x := aval a s)) ∧ flow cfs2 = [x ::= a]
by (rule small-stepsl-assign)

moreover {
fix t
have ∃ c ′ t ′. ∀ y.

(y = x −→
(s = t (⊆ sources-aux [x ::= a] s x) −→

(x ::= a, t) →∗ (c ′, t ′) ∧ c ′ = SKIP) ∧
(s = t (⊆ sources [x ::= a] s x) −→ aval a s = t ′ x)) ∧

(y 6= x −→
(s = t (⊆ sources-aux [x ::= a] s y) −→

(x ::= a, t) →∗ (c ′, t ′) ∧ c ′ = SKIP) ∧
(s = t (⊆ sources [x ::= a] s y) −→ s y = t ′ y))

proof (rule exI [of - SKIP], rule exI [of - t(x := aval a t)])
{

assume s = t (⊆ sources [x ::= a] s x)
hence s = t (⊆ {y. s: dom y  dom x ∧ y ∈ avars a})

by (subst (asm) append-Nil [symmetric],
simp only: sources.simps, auto)
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hence aval a s = aval a t
using F by (blast intro: avars-aval)

}
moreover {

fix y
assume s = t (⊆ sources [x ::= a] s y) and y 6= x
hence s y = t y

by (subst (asm) append-Nil [symmetric],
simp only: sources.simps, auto)

}
ultimately show ∀ y.

(y = x −→
(s = t (⊆ sources-aux [x ::= a] s x) −→

(x ::= a, t) →∗ (SKIP, t(x := aval a t)) ∧ SKIP = SKIP) ∧
(s = t (⊆ sources [x ::= a] s x) −→

aval a s = (t(x := aval a t)) x)) ∧
(y 6= x −→

(s = t (⊆ sources-aux [x ::= a] s y) −→
(x ::= a, t) →∗ (SKIP, t(x := aval a t)) ∧ SKIP = SKIP) ∧

(s = t (⊆ sources [x ::= a] s y) −→
s y = (t(x := aval a t)) y))

by simp
qed

}
ultimately show ?thesis

using ‹?P› by fastforce
next

assume (c1, s1) = (SKIP, s(x := aval a s))
moreover from this have (SKIP, s(x := aval a s)) →∗{cfs2} (c2, s2)

using C by simp
hence (c2, s2) = (SKIP, s(x := aval a s)) ∧ flow cfs2 = []

by (rule small-stepsl-skip)
ultimately show ?thesis

by auto
qed

qed

lemma ctyping2-correct-aux-seq:
assumes

A:
∧

B ′ s c ′ c ′′ s1 s2 cfs1 cfs2. B = B ′ =⇒
∃ r ∈ A. s = r (⊆ state ∩ X) =⇒

(c1, s) →∗{cfs1} (c ′, s1) =⇒ (c ′, s1) →∗{cfs2} (c ′′, s2) =⇒
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c ′, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→

no-upd (flow cfs2) x) and
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B:
∧

B ′ B ′′ C Z s c ′ c ′′ s1 s2 cfs1 cfs2. B = B ′ =⇒ B ′′ = B ′ =⇒
(U , v) |= c2 (⊆ B ′, Y ) = Some (C , Z ) =⇒
∃ r ∈ B ′. s = r (⊆ state ∩ Y ) =⇒

(c2, s) →∗{cfs1} (c ′, s1) =⇒ (c ′, s1) →∗{cfs2} (c ′′, s2) =⇒
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c ′, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→

no-upd (flow cfs2) x) and
C : (U , v) |= c1 (⊆ A, X) = Some (B, Y ) and
D: (U , v) |= c2 (⊆ B, Y ) = Some (C , Z ) and
E : (c1;; c2, s) →∗{cfs1} (c ′, s1) and
F : (c ′, s1) →∗{cfs2} (c ′′, s2) and
G: r ∈ A and
H : s = r (⊆ state ∩ X)

shows
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c ′, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→ no-upd (flow cfs2) x)

proof −
have
(∃ d ′ cfs. c ′ = d ′;; c2 ∧

(c1, s) →∗{cfs} (d ′, s1)) ∨
(∃ s ′ cfs cfs ′.

(c1, s) →∗{cfs} (SKIP, s ′) ∧
(c2, s ′) →∗{cfs ′} (c ′, s1))

using E by (blast dest: small-stepsl-seq)
thus ?thesis
proof (rule disjE , (erule-tac exE)+, (erule-tac [2 ] exE)+,
erule-tac [!] conjE)
fix d ′ cfs
assume

I : c ′ = d ′;; c2 and
J : (c1, s) →∗{cfs} (d ′, s1)

hence (d ′;; c2, s1) →∗{cfs2} (c ′′, s2)
using F by simp

hence
(∃ d ′′ cfs ′. c ′′ = d ′′;; c2 ∧

(d ′, s1) →∗{cfs ′} (d ′′, s2) ∧
flow cfs2 = flow cfs ′) ∨

(∃ s ′ cfs ′ cfs ′′.
(d ′, s1) →∗{cfs ′} (SKIP, s ′) ∧
(c2, s ′) →∗{cfs ′′} (c ′′, s2) ∧
flow cfs2 = flow cfs ′ @ flow cfs ′′)
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by (blast dest: small-stepsl-seq)
thus ?thesis
proof (rule disjE , (erule-tac exE)+, (erule-tac [2 ] exE)+,
(erule-tac [!] conjE)+)
fix d ′′ cfs ′

assume (d ′, s1) →∗{cfs ′} (d ′′, s2)
hence K :
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs ′) s1 x) −→

(d ′, t1) →∗ (c2
′, t2) ∧ (d ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs ′) s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→ no-upd (flow cfs ′) x)

using A [of B s cfs d ′ s1 cfs ′ d ′′ s2] and J and G and H by blast
moreover assume c ′′ = d ′′;; c2 and flow cfs2 = flow cfs ′

moreover {
fix t1
obtain c2

′ and t2 where L: ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs ′) s1 x) −→

(d ′, t1) →∗ (c2
′, t2) ∧ (d ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs ′) s1 x) −→ s2 x = t2 x)
using K by blast

have ∃ c2
′ t2. ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs ′) s1 x) −→
(d ′;; c2, t1) →∗ (c2

′, t2) ∧ c2
′ 6= SKIP) ∧

(s1 = t1 (⊆ sources (flow cfs ′) s1 x) −→ s2 x = t2 x)
proof (rule exI [of - c2

′;; c2], rule exI [of - t2])
show ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs ′) s1 x) −→
(d ′;; c2, t1) →∗ (c2

′;; c2, t2) ∧ c2
′;; c2 6= SKIP) ∧

(s1 = t1 (⊆ sources (flow cfs ′) s1 x) −→ s2 x = t2 x)
using L by (auto intro: star-seq2 )

qed
}
ultimately show ?thesis

using I by auto
next

fix s ′ cfs ′ cfs ′′

assume
K : (d ′, s1) →∗{cfs ′} (SKIP, s ′) and
L: (c2, s ′) →∗{cfs ′′} (c ′′, s2)

moreover have M : s ′ = run-flow (flow cfs ′) s1

using K by (rule small-stepsl-run-flow)
ultimately have N :
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs ′) s1 x) −→

(d ′, t1) →∗ (c2
′, t2) ∧ (SKIP = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs ′) s1 x) −→

run-flow (flow cfs ′) s1 x = t2 x)) ∧
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(∀ x. (∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→ no-upd (flow cfs ′) x)

using A [of B s cfs d ′ s1 cfs ′ SKIP s ′] and J and G and H by blast
have O: s2 = run-flow (flow cfs ′′) s ′

using L by (rule small-stepsl-run-flow)
moreover have (c1, s) →∗{cfs @ cfs ′} (SKIP, s ′)

using J and K by (simp add: small-stepsl-append)
hence (c1, s) ⇒ s ′

by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s ′ ∈ Univ B (⊆ state ∩ Y )

using C and G and H by (erule-tac ctyping2-approx, auto)
ultimately have P:
(∀ t1. ∃ c2

′ t2. ∀ x.
(run-flow (flow cfs ′) s1 = t1

(⊆ sources-aux (flow cfs ′′) (run-flow (flow cfs ′) s1) x) −→
(c2, t1) →∗ (c2

′, t2) ∧ (c ′′ = SKIP) = (c2
′ = SKIP)) ∧

(run-flow (flow cfs ′) s1 = t1
(⊆ sources (flow cfs ′′) (run-flow (flow cfs ′) s1) x) −→

run-flow (flow cfs ′′) (run-flow (flow cfs ′) s1) x = t2 x)) ∧
(∀ x. (∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→ no-upd (flow cfs ′′) x)

using B [of B B C Z s ′ [] c2 s ′ cfs ′′ c ′′ s2]
and D and L and M by simp

moreover assume flow cfs2 = flow cfs ′ @ flow cfs ′′

moreover {
fix t1
obtain c2

′ and t2 where Q: ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs ′) s1 x) −→

(d ′, t1) →∗ (SKIP, t2) ∧ (SKIP = SKIP) = (c2
′ = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs ′) s1 x) −→
run-flow (flow cfs ′) s1 x = t2 x)

using N by blast
obtain c3

′ and t3 where R: ∀ x.
(run-flow (flow cfs ′) s1 = t2

(⊆ sources-aux (flow cfs ′′) (run-flow (flow cfs ′) s1) x) −→
(c2, t2) →∗ (c3

′, t3) ∧ (c ′′ = SKIP) = (c3
′ = SKIP)) ∧

(run-flow (flow cfs ′) s1 = t2
(⊆ sources (flow cfs ′′) (run-flow (flow cfs ′) s1) x) −→

run-flow (flow cfs ′′) (run-flow (flow cfs ′) s1) x = t3 x)
using P by blast

{
fix x
assume S : s1 = t1

(⊆ sources-aux (flow cfs ′ @ flow cfs ′′) s1 x)
moreover have sources-aux (flow cfs ′) s1 x ⊆

sources-aux (flow cfs ′ @ flow cfs ′′) s1 x
by (rule sources-aux-append)

ultimately have (d ′, t1) →∗ (SKIP, t2)
using Q by blast
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hence (d ′;; c2, t1) →∗ (SKIP;; c2, t2)
by (rule star-seq2 )

hence (d ′;; c2, t1) →∗ (c2, t2)
by (blast intro: star-trans)

moreover have run-flow (flow cfs ′) s1 = t2
(⊆ sources-aux (flow cfs ′′) (run-flow (flow cfs ′) s1) x)

proof
fix y
assume y ∈ sources-aux (flow cfs ′′)

(run-flow (flow cfs ′) s1) x
hence sources (flow cfs ′) s1 y ⊆

sources-aux (flow cfs ′ @ flow cfs ′′) s1 x
by (rule sources-aux-member)

thus run-flow (flow cfs ′) s1 y = t2 y
using Q and S by blast

qed
hence (c2, t2) →∗ (c3

′, t3) ∧ (c ′′ = SKIP) = (c3
′ = SKIP)

using R by simp
ultimately have (d ′;; c2, t1) →∗ (c3

′, t3) ∧
(c ′′ = SKIP) = (c3

′ = SKIP)
by (blast intro: star-trans)

}
moreover {

fix x
assume S : s1 = t1

(⊆ sources (flow cfs ′ @ flow cfs ′′) s1 x)
have run-flow (flow cfs ′) s1 = t2

(⊆ sources (flow cfs ′′) (run-flow (flow cfs ′) s1) x)
proof

fix y
assume y ∈ sources (flow cfs ′′)

(run-flow (flow cfs ′) s1) x
hence sources (flow cfs ′) s1 y ⊆

sources (flow cfs ′ @ flow cfs ′′) s1 x
by (rule sources-member)

thus run-flow (flow cfs ′) s1 y = t2 y
using Q and S by blast

qed
hence run-flow (flow cfs ′′) (run-flow (flow cfs ′) s1) x = t3 x

using R by simp
}
ultimately have ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs ′ @ flow cfs ′′) s1 x) −→

(d ′;; c2, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs ′ @ flow cfs ′′) s1 x) −→

run-flow (flow cfs ′′) (run-flow (flow cfs ′) s1) x = t2 x)
by auto

}
ultimately show ?thesis
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using I and N and M and O by (auto simp: no-upd-append)
qed

next
fix s ′ cfs cfs ′

assume (c1, s) →∗{cfs} (SKIP, s ′)
hence (c1, s) ⇒ s ′

by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s ′ ∈ Univ B (⊆ state ∩ Y )

using C and G and H by (erule-tac ctyping2-approx, auto)
moreover assume (c2, s ′) →∗{cfs ′} (c ′, s1)
ultimately show ?thesis

using B [of B B C Z s ′ cfs ′ c ′ s1 cfs2 c ′′ s2] and D and F by simp
qed

qed

lemma ctyping2-correct-aux-if :
assumes

A:
∧

U ′ B C s c ′ c ′′ s1 s2 cfs1 cfs2.
U ′ = insert (Univ? A X , bvars b) U =⇒ B = B1 =⇒ C 1 = C =⇒
∃ r ∈ B1. s = r (⊆ state ∩ X) =⇒

(c1, s) →∗{cfs1} (c ′, s1) =⇒ (c ′, s1) →∗{cfs2} (c ′′, s2) =⇒
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c ′, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x.
((∃ s ∈ Univ? A X . ∃ y ∈ bvars b. ¬ s: dom y  dom x) −→

no-upd (flow cfs2) x) ∧
((∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→

no-upd (flow cfs2) x)) and
B:

∧
U ′ B C s c ′ c ′′ s1 s2 cfs1 cfs2.

U ′ = insert (Univ? A X , bvars b) U =⇒ B = B1 =⇒ C 2 = C =⇒
∃ r ∈ B2. s = r (⊆ state ∩ X) =⇒

(c2, s) →∗{cfs1} (c ′, s1) =⇒ (c ′, s1) →∗{cfs2} (c ′′, s2) =⇒
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c ′, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x.
((∃ s ∈ Univ? A X . ∃ y ∈ bvars b. ¬ s: dom y  dom x) −→

no-upd (flow cfs2) x) ∧
((∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→

no-upd (flow cfs2) x)) and
C : |= b (⊆ A, X) = (B1, B2) and
D: (insert (Univ? A X , bvars b) U , v) |= c1 (⊆ B1, X) =

Some (C 1, Y 1) and
E : (insert (Univ? A X , bvars b) U , v) |= c2 (⊆ B2, X) =
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Some (C 2, Y 2) and
F : (IF b THEN c1 ELSE c2, s) →∗{cfs1} (c ′, s1) and
G: (c ′, s1) →∗{cfs2} (c ′′, s2) and
H : r ∈ A and
I : s = r (⊆ state ∩ X)

shows
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c ′, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→ no-upd (flow cfs2) x)

proof −
let ?U ′ = insert (Univ? A X , bvars b) U
have J : ∀ cs t x. s = t (⊆ sources-aux (〈bvars b〉 # cs) s x) −→

bval b s 6= bval b t −→ ¬ Univ? A X : dom ‘ bvars b  {dom x}
proof (clarify del: notI )

fix cs t x
assume s = t (⊆ sources-aux (〈bvars b〉 # cs) s x)
moreover assume bval b s 6= bval b t
hence ¬ s = t (⊆ bvars b)

by (erule-tac contrapos-nn, auto dest: bvars-bval)
ultimately have ¬ (∀ y ∈ bvars b. s: dom y  dom x)

by (blast dest: sources-aux-observe-hd)
moreover {

fix r y
assume r ∈ A and y ∈ bvars b and ¬ s: dom y  dom x
moreover assume state ⊆ X and s = r (⊆ state ∩ X)
hence interf s = interf r

by (blast intro: interf-state)
ultimately have ∃ s ∈ A. ∃ y ∈ bvars b. ¬ s: dom y  dom x

by auto
}
ultimately show ¬ Univ? A X : dom ‘ bvars b  {dom x}

using H and I by (auto simp: univ-states-if-def )
qed
have
(c ′, s1) = (IF b THEN c1 ELSE c2, s) ∨
bval b s ∧ (c1, s) →∗{tl cfs1} (c ′, s1) ∨
¬ bval b s ∧ (c2, s) →∗{tl cfs1} (c ′, s1)
using F by (blast dest: small-stepsl-if )

thus ?thesis
proof (rule disjE , erule-tac [2 ] disjE , erule-tac [2−3 ] conjE)

assume K : (c ′, s1) = (IF b THEN c1 ELSE c2, s)
hence (IF b THEN c1 ELSE c2, s) →∗{cfs2} (c ′′, s2)

using G by simp
hence
(c ′′, s2) = (IF b THEN c1 ELSE c2, s) ∧

flow cfs2 = [] ∨
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bval b s ∧ (c1, s) →∗{tl cfs2} (c ′′, s2) ∧
flow cfs2 = 〈bvars b〉 # flow (tl cfs2) ∨
¬ bval b s ∧ (c2, s) →∗{tl cfs2} (c ′′, s2) ∧

flow cfs2 = 〈bvars b〉 # flow (tl cfs2)
by (rule small-stepsl-if )

thus ?thesis
proof (rule disjE , erule-tac [2 ] disjE , (erule-tac [2−3 ] conjE)+)

assume (c ′′, s2) = (IF b THEN c1 ELSE c2, s) ∧ flow cfs2 = []
thus ?thesis

using K by auto
next

assume L: bval b s
with C and H and I have s ∈ Univ B1 (⊆ state ∩ X)

by (drule-tac btyping2-approx [where s = s], auto)
moreover assume M : (c1, s) →∗{tl cfs2} (c ′′, s2)
moreover from this have N : s2 = run-flow (flow (tl cfs2)) s

by (rule small-stepsl-run-flow)
ultimately have O:
(∀ t1. ∃ c2

′ t2. ∀ x.
(s = t1 (⊆ sources-aux (flow (tl cfs2)) s x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s = t1 (⊆ sources (flow (tl cfs2)) s x) −→

run-flow (flow (tl cfs2)) s x = t2 x)) ∧
(∀ x.

((∃ s ∈ Univ? A X . ∃ y ∈ bvars b. ¬ s: dom y  dom x) −→
no-upd (flow (tl cfs2)) x) ∧

((∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→

no-upd (flow (tl cfs2)) x))
using A [of ?U ′ B1 C 1 s [] c1 s tl cfs2 c ′′ s2] by simp

moreover assume flow cfs2 = 〈bvars b〉 # flow (tl cfs2)
moreover {

fix t1
have ∃ c2

′ t2. ∀ x.
(s = t1 (⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x) −→

(IF b THEN c1 ELSE c2, t1) →∗ (c2
′, t2) ∧

(c ′′ = SKIP) = (c2
′ = SKIP)) ∧

(s = t1 (⊆ sources (〈bvars b〉 # flow (tl cfs2)) s x) −→
run-flow (flow (tl cfs2)) s x = t2 x)

proof (cases bval b t1)
case True
hence P: (IF b THEN c1 ELSE c2, t1) → (c1, t1) ..
obtain c2

′ and t2 where Q: ∀ x.
(s = t1 (⊆ sources-aux (flow (tl cfs2)) s x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s = t1 (⊆ sources (flow (tl cfs2)) s x) −→

run-flow (flow (tl cfs2)) s x = t2 x)
using O by blast

{
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fix x
assume s = t1

(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x)
moreover have sources-aux (flow (tl cfs2)) s x ⊆

sources-aux (〈bvars b〉 # flow (tl cfs2)) s x
by (rule sources-aux-observe-tl)

ultimately have (IF b THEN c1 ELSE c2, t1) →∗ (c2
′, t2) ∧

(c ′′ = SKIP) = (c2
′ = SKIP)

using P and Q by (blast intro: star-trans)
}
moreover {

fix x
assume s = t1

(⊆ sources (〈bvars b〉 # flow (tl cfs2)) s x)
moreover have sources (flow (tl cfs2)) s x ⊆

sources (〈bvars b〉 # flow (tl cfs2)) s x
by (rule sources-observe-tl)

ultimately have run-flow (flow (tl cfs2)) s x = t2 x
using Q by blast

}
ultimately show ?thesis

by auto
next

assume P: ¬ bval b t1
show ?thesis
proof (cases ∃ x. s = t1
(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x))
from P have (IF b THEN c1 ELSE c2, t1) → (c2, t1) ..
moreover assume ∃ x. s = t1

(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x)
hence ∃ x. ¬ Univ? A X : dom ‘ bvars b  {dom x}

using J and L and P by blast
then obtain t2 where Q: (c2, t1) ⇒ t2

using E by (blast dest: ctyping2-term)
hence (c2, t1) →∗ (SKIP, t2)

by (simp add: big-iff-small)
ultimately have

R: (IF b THEN c1 ELSE c2, t1) →∗ (SKIP, t2)
by (blast intro: star-trans)

show ?thesis
proof (cases c ′′ = SKIP)

case True
show ?thesis
proof (rule exI [of - SKIP], rule exI [of - t2])

{
have (IF b THEN c1 ELSE c2, t1) →∗ (SKIP, t2) ∧

(c ′′ = SKIP) = (SKIP = SKIP)
using R and True by simp

}
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moreover {
fix x
assume S : s = t1

(⊆ sources (〈bvars b〉 # flow (tl cfs2)) s x)
moreover have
sources-aux (〈bvars b〉 # flow (tl cfs2)) s x ⊆
sources (〈bvars b〉 # flow (tl cfs2)) s x
by (rule sources-aux-sources)

ultimately have s = t1
(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x)
by blast

hence T : ¬ Univ? A X : dom ‘ bvars b  {dom x}
using J and L and P by blast

hence U : no-upd (〈bvars b〉 # flow (tl cfs2)) x
using O by simp

hence run-flow (flow (tl cfs2)) s x = s x
by (simp add: no-upd-run-flow)

also from S and U have . . . = t1 x
by (blast dest: no-upd-sources)

also from E and Q and T have . . . = t2 x
by (drule-tac ctyping2-confine, auto)

finally have run-flow (flow (tl cfs2)) s x = t2 x .
}
ultimately show ∀ x.

(s = t1
(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x) −→

(IF b THEN c1 ELSE c2, t1) →∗ (SKIP, t2) ∧
(c ′′ = SKIP) = (SKIP = SKIP)) ∧

(s = t1
(⊆ sources (〈bvars b〉 # flow (tl cfs2)) s x) −→

run-flow (flow (tl cfs2)) s x = t2 x)
by blast

qed
next

case False
show ?thesis
proof (rule exI [of - IF b THEN c1 ELSE c2],
rule exI [of - t1])
{

have (IF b THEN c1 ELSE c2, t1) →∗
(IF b THEN c1 ELSE c2, t1) ∧

(c ′′ = SKIP) = (IF b THEN c1 ELSE c2 = SKIP)
using False by simp

}
moreover {

fix x
assume S : s = t1

(⊆ sources (〈bvars b〉 # flow (tl cfs2)) s x)
moreover have
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sources-aux (〈bvars b〉 # flow (tl cfs2)) s x ⊆
sources (〈bvars b〉 # flow (tl cfs2)) s x
by (rule sources-aux-sources)

ultimately have s = t1
(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x)
by blast

hence ¬ Univ? A X : dom ‘ bvars b  {dom x}
using J and L and P by blast

hence T : no-upd (〈bvars b〉 # flow (tl cfs2)) x
using O by simp

hence run-flow (flow (tl cfs2)) s x = s x
by (simp add: no-upd-run-flow)

also have . . . = t1 x
using S and T by (blast dest: no-upd-sources)

finally have run-flow (flow (tl cfs2)) s x = t1 x .
}
ultimately show ∀ x.

(s = t1
(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x) −→

(IF b THEN c1 ELSE c2, t1) →∗
(IF b THEN c1 ELSE c2, t1) ∧

(c ′′ = SKIP) = (IF b THEN c1 ELSE c2 = SKIP)) ∧
(s = t1

(⊆ sources (〈bvars b〉 # flow (tl cfs2)) s x) −→
run-flow (flow (tl cfs2)) s x = t1 x)

by blast
qed

qed
qed blast

qed
}
ultimately show ?thesis

using K and N by auto
next

assume L: ¬ bval b s
with C and H and I have s ∈ Univ B2 (⊆ state ∩ X)

by (drule-tac btyping2-approx [where s = s], auto)
moreover assume M : (c2, s) →∗{tl cfs2} (c ′′, s2)
moreover from this have N : s2 = run-flow (flow (tl cfs2)) s

by (rule small-stepsl-run-flow)
ultimately have O:
(∀ t1. ∃ c2

′ t2. ∀ x.
(s = t1 (⊆ sources-aux (flow (tl cfs2)) s x) −→

(c2, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s = t1 (⊆ sources (flow (tl cfs2)) s x) −→

run-flow (flow (tl cfs2)) s x = t2 x)) ∧
(∀ x.

((∃ s ∈ Univ? A X . ∃ y ∈ bvars b. ¬ s: dom y  dom x) −→
no-upd (flow (tl cfs2)) x) ∧
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((∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→

no-upd (flow (tl cfs2)) x))
using B [of ?U ′ B1 C 2 s [] c2 s tl cfs2 c ′′ s2] by simp

moreover assume flow cfs2 = 〈bvars b〉 # flow (tl cfs2)
moreover {

fix t1
have ∃ c2

′ t2. ∀ x.
(s = t1 (⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x) −→

(IF b THEN c1 ELSE c2, t1) →∗ (c2
′, t2) ∧

(c ′′ = SKIP) = (c2
′ = SKIP)) ∧

(s = t1 (⊆ sources (〈bvars b〉 # flow (tl cfs2)) s x) −→
run-flow (flow (tl cfs2)) s x = t2 x)

proof (cases ¬ bval b t1)
case True
hence P: (IF b THEN c1 ELSE c2, t1) → (c2, t1) ..
obtain c2

′ and t2 where Q: ∀ x.
(s = t1 (⊆ sources-aux (flow (tl cfs2)) s x) −→

(c2, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s = t1 (⊆ sources (flow (tl cfs2)) s x) −→

run-flow (flow (tl cfs2)) s x = t2 x)
using O by blast

{
fix x
assume s = t1

(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x)
moreover have sources-aux (flow (tl cfs2)) s x ⊆

sources-aux (〈bvars b〉 # flow (tl cfs2)) s x
by (rule sources-aux-observe-tl)

ultimately have (IF b THEN c1 ELSE c2, t1) →∗ (c2
′, t2) ∧

(c ′′ = SKIP) = (c2
′ = SKIP)

using P and Q by (blast intro: star-trans)
}
moreover {

fix x
assume s = t1

(⊆ sources (〈bvars b〉 # flow (tl cfs2)) s x)
moreover have sources (flow (tl cfs2)) s x ⊆

sources (〈bvars b〉 # flow (tl cfs2)) s x
by (rule sources-observe-tl)

ultimately have run-flow (flow (tl cfs2)) s x = t2 x
using Q by blast

}
ultimately show ?thesis

by auto
next

case False
hence P: bval b t1

by simp
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show ?thesis
proof (cases ∃ x. s = t1
(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x))
from P have (IF b THEN c1 ELSE c2, t1) → (c1, t1) ..
moreover assume ∃ x. s = t1

(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x)
hence ∃ x. ¬ Univ? A X : dom ‘ bvars b  {dom x}

using J and L and P by blast
then obtain t2 where Q: (c1, t1) ⇒ t2

using D by (blast dest: ctyping2-term)
hence (c1, t1) →∗ (SKIP, t2)

by (simp add: big-iff-small)
ultimately have

R: (IF b THEN c1 ELSE c2, t1) →∗ (SKIP, t2)
by (blast intro: star-trans)

show ?thesis
proof (cases c ′′ = SKIP)

case True
show ?thesis
proof (rule exI [of - SKIP], rule exI [of - t2])

{
have (IF b THEN c1 ELSE c2, t1) →∗ (SKIP, t2) ∧

(c ′′ = SKIP) = (SKIP = SKIP)
using R and True by simp

}
moreover {

fix x
assume S : s = t1

(⊆ sources (〈bvars b〉 # flow (tl cfs2)) s x)
moreover have
sources-aux (〈bvars b〉 # flow (tl cfs2)) s x ⊆
sources (〈bvars b〉 # flow (tl cfs2)) s x
by (rule sources-aux-sources)

ultimately have s = t1
(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x)
by blast

hence T : ¬ Univ? A X : dom ‘ bvars b  {dom x}
using J and L and P by blast

hence U : no-upd (〈bvars b〉 # flow (tl cfs2)) x
using O by simp

hence run-flow (flow (tl cfs2)) s x = s x
by (simp add: no-upd-run-flow)

also from S and U have . . . = t1 x
by (blast dest: no-upd-sources)

also from D and Q and T have . . . = t2 x
by (drule-tac ctyping2-confine, auto)

finally have run-flow (flow (tl cfs2)) s x = t2 x .
}
ultimately show ∀ x.
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(s = t1
(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x) −→

(IF b THEN c1 ELSE c2, t1) →∗ (SKIP, t2) ∧
(c ′′ = SKIP) = (SKIP = SKIP)) ∧

(s = t1
(⊆ sources (〈bvars b〉 # flow (tl cfs2)) s x) −→

run-flow (flow (tl cfs2)) s x = t2 x)
by blast

qed
next

case False
show ?thesis
proof (rule exI [of - IF b THEN c1 ELSE c2],
rule exI [of - t1])
{

have (IF b THEN c1 ELSE c2, t1) →∗
(IF b THEN c1 ELSE c2, t1) ∧

(c ′′ = SKIP) = (IF b THEN c1 ELSE c2 = SKIP)
using False by simp

}
moreover {

fix x
assume S : s = t1

(⊆ sources (〈bvars b〉 # flow (tl cfs2)) s x)
moreover have
sources-aux (〈bvars b〉 # flow (tl cfs2)) s x ⊆
sources (〈bvars b〉 # flow (tl cfs2)) s x
by (rule sources-aux-sources)

ultimately have s = t1
(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x)
by blast

hence ¬ Univ? A X : dom ‘ bvars b  {dom x}
using J and L and P by blast

hence T : no-upd (〈bvars b〉 # flow (tl cfs2)) x
using O by simp

hence run-flow (flow (tl cfs2)) s x = s x
by (simp add: no-upd-run-flow)

also have . . . = t1 x
using S and T by (blast dest: no-upd-sources)

finally have run-flow (flow (tl cfs2)) s x = t1 x .
}
ultimately show ∀ x.

(s = t1
(⊆ sources-aux (〈bvars b〉 # flow (tl cfs2)) s x) −→

(IF b THEN c1 ELSE c2, t1) →∗
(IF b THEN c1 ELSE c2, t1) ∧
(c ′′ = SKIP) = (IF b THEN c1 ELSE c2 = SKIP)) ∧

(s = t1
(⊆ sources (〈bvars b〉 # flow (tl cfs2)) s x) −→
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run-flow (flow (tl cfs2)) s x = t1 x)
by blast

qed
qed

qed blast
qed

}
ultimately show ?thesis

using K and N by auto
qed

next
assume bval b s and (c1, s) →∗{tl cfs1} (c ′, s1)
moreover from this and C and H and I have s ∈ Univ B1 (⊆ state ∩ X)

by (drule-tac btyping2-approx [where s = s], auto)
ultimately show ?thesis

using A [of ?U ′ B1 C 1 s tl cfs1 c ′ s1 cfs2 c ′′ s2] and G by simp
next

assume ¬ bval b s and (c2, s) →∗{tl cfs1} (c ′, s1)
moreover from this and C and H and I have s ∈ Univ B2 (⊆ state ∩ X)

by (drule-tac btyping2-approx [where s = s], auto)
ultimately show ?thesis

using B [of ?U ′ B1 C 2 s tl cfs1 c ′ s1 cfs2 c ′′ s2] and G by simp
qed

qed

lemma ctyping2-correct-aux-while:
assumes

A:
∧

B C ′ B ′ D ′ s c1 c2 s1 s2 cfs1 cfs2.
B = B1 =⇒ C ′ = C =⇒ B ′ = B1

′ =⇒
(∀ s ∈ Univ? A X ∪ Univ? C Y . ∀ x ∈ bvars b. All (interf s (dom x))) ∧
(∀ p ∈ U . case p of (B, W ) ⇒ ∀ s ∈ B. ∀ x ∈ W . All (interf s (dom x))) =⇒

D = D ′ =⇒ ∃ r ∈ B1. s = r (⊆ state ∩ X) =⇒
(c, s) →∗{cfs1} (c1, s1) =⇒ (c1, s1) →∗{cfs2} (c2, s2) =⇒
∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x) and

B:
∧

B C ′ B ′ D ′′ s c1 c2 s1 s2 cfs1 cfs2.
B = B1 =⇒ C ′ = C =⇒ B ′ = B1

′ =⇒
(∀ s ∈ Univ? A X ∪ Univ? C Y . ∀ x ∈ bvars b. All (interf s (dom x))) ∧
(∀ p ∈ U . case p of (B, W ) ⇒ ∀ s ∈ B. ∀ x ∈ W . All (interf s (dom x))) =⇒

D ′ = D ′′ =⇒ ∃ r ∈ B1
′. s = r (⊆ state ∩ Y ) =⇒

(c, s) →∗{cfs1} (c1, s1) =⇒ (c1, s1) →∗{cfs2} (c2, s2) =⇒
∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x) and

C : (if (∀ s ∈ Univ? A X ∪ Univ? C Y . ∀ x ∈ bvars b. All (interf s (dom x))) ∧
(∀ p ∈ U . ∀B W . p = (B, W ) −→ (∀ s ∈ B. ∀ x ∈ W . All (interf s (dom x))))
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then Some (B2 ∪ B2
′, Univ?? B2 X ∩ Y ) else None) = Some (B, W ) and

D: |= b (⊆ A, X) = (B1, B2) and
E : ` c (⊆ B1, X) = (C , Y ) and
F : |= b (⊆ C , Y ) = (B1

′, B2
′) and

G: ({}, False) |= c (⊆ B1, X) = Some (D, Z ) and
H : ({}, False) |= c (⊆ B1

′, Y ) = Some (D ′, Z ′)
shows
[[(WHILE b DO c, s) →∗{cfs1} (c1, s1);

(c1, s1) →∗{cfs2} (c2, s2);
s ∈ Univ A (⊆ state ∩ X) ∪ Univ C (⊆ state ∩ Y )]] =⇒

(∀ t1. ∃ c2
′ t2. ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c1, t1) →∗ (c2

′, t2) ∧ (c2 = SKIP) = (c2
′ = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧
(∀ x. (∃ p ∈ U . case p of (B, W ) ⇒
∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→ no-upd (flow cfs2) x)

proof (induction cfs1 @ cfs2 arbitrary: cfs1 cfs2 s c1 s1 rule: length-induct)
fix cfs1 cfs2 s c1 s1

assume
I : (WHILE b DO c, s) →∗{cfs1} (c1, s1) and
J : (c1, s1) →∗{cfs2} (c2, s2)

assume ∀ cfs. length cfs < length (cfs1 @ cfs2) −→
(∀ cfs1 cfs2. cfs = cfs1 @ cfs2 −→

(∀ s c1 s1. (WHILE b DO c, s) →∗{cfs1} (c1, s1) −→
(c1, s1) →∗{cfs2} (c2, s2) −→

s ∈ Univ A (⊆ state ∩ X) ∪ Univ C (⊆ state ∩ Y ) −→
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ (B, W ) ∈ U . ∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→
no-upd (flow cfs2) x)))

note K = this [rule-format]
assume L: s ∈ Univ A (⊆ state ∩ X) ∪ Univ C (⊆ state ∩ Y )
moreover {

fix s ′

assume s ∈ Univ A (⊆ state ∩ X) and bval b s
hence N : s ∈ Univ B1 (⊆ state ∩ X)

using D by (drule-tac btyping2-approx, auto)
assume (c, s) ⇒ s ′

hence s ′ ∈ Univ D (⊆ state ∩ Z )
using G and N by (rule ctyping2-approx)

moreover have D ⊆ C ∧ Y ⊆ Z
using E and G by (rule ctyping1-ctyping2 )

ultimately have s ′ ∈ Univ C (⊆ state ∩ Y )
by blast

}
moreover {

fix s ′

100



assume s ∈ Univ C (⊆ state ∩ Y ) and bval b s
hence N : s ∈ Univ B1

′ (⊆ state ∩ Y )
using F by (drule-tac btyping2-approx, auto)

assume (c, s) ⇒ s ′

hence s ′ ∈ Univ D ′ (⊆ state ∩ Z ′)
using H and N by (rule ctyping2-approx)

moreover obtain C ′ and Y ′ where O: ` c (⊆ B1
′, Y ) = (C ′, Y ′)

by (cases ` c (⊆ B1
′, Y ), simp)

hence D ′ ⊆ C ′ ∧ Y ′ ⊆ Z ′

using H by (rule ctyping1-ctyping2 )
ultimately have P: s ′ ∈ Univ C ′ (⊆ state ∩ Y ′)

by blast
have ` c (⊆ C , Y ) = (C , Y )

using E by (rule ctyping1-idem)
moreover have B1

′ ⊆ C
using F by (blast dest: btyping2-un-eq)

ultimately have C ′ ⊆ C ∧ Y ⊆ Y ′

by (metis order-refl ctyping1-mono O)
hence s ′ ∈ Univ C (⊆ state ∩ Y )

using P by blast
}
ultimately have M :
∀ s ′. (c, s) ⇒ s ′ −→ bval b s −→ s ′ ∈ Univ C (⊆ state ∩ Y )
by blast

have N :
(∀ s ∈ Univ? A X ∪ Univ? C Y . ∀ x ∈ bvars b. All (interf s (dom x))) ∧
(∀ p ∈ U . ∀B W . p = (B, W ) −→ (∀ s ∈ B. ∀ x ∈ W . All (interf s (dom x))))
using C by (simp split: if-split-asm)

hence ∀ cs x. (∃ (B, Y ) ∈ U .
∃ s ∈ B. ∃ y ∈ Y . ¬ s: dom y  dom x) −→ no-upd cs x
by auto

moreover {
fix r t1
assume O: r ∈ A and P: s = r (⊆ state ∩ X)
have Q: ∀ x. ∀ y ∈ bvars b. s: dom y  dom x
proof (cases state ⊆ X)

case True
with P have interf s = interf r

by (blast intro: interf-state)
with N and O show ?thesis

by (erule-tac conjE , drule-tac bspec,
auto simp: univ-states-if-def )

next
case False
with N and O show ?thesis

by (erule-tac conjE , drule-tac bspec,
auto simp: univ-states-if-def )

qed
have (c1, s1) = (WHILE b DO c, s) ∨
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(IF b THEN c;; WHILE b DO c ELSE SKIP, s) →∗{tl cfs1} (c1, s1)
using I by (blast dest: small-stepsl-while)

hence ∃ c2
′ t2. ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c1, t1) →∗ (c2

′, t2) ∧ (c2 = SKIP) = (c2
′ = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)
proof

assume R: (c1, s1) = (WHILE b DO c, s)
hence (WHILE b DO c, s) →∗{cfs2} (c2, s2)

using J by simp
hence
(c2, s2) = (WHILE b DO c, s) ∧

flow cfs2 = [] ∨
(IF b THEN c;; WHILE b DO c ELSE SKIP, s) →∗{tl cfs2} (c2, s2) ∧

flow cfs2 = flow (tl cfs2)
(is ?P ∨ ?Q ∧ ?R)
by (rule small-stepsl-while)

thus ?thesis
proof (rule disjE , erule-tac [2 ] conjE)

assume ?P
with R show ?thesis

by auto
next

assume ?Q and ?R
have
(c2, s2) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ∧

flow (tl cfs2) = [] ∨
bval b s ∧ (c;; WHILE b DO c, s) →∗{tl2 cfs2} (c2, s2) ∧

flow (tl cfs2) = 〈bvars b〉 # flow (tl2 cfs2) ∨
¬ bval b s ∧ (SKIP, s) →∗{tl2 cfs2} (c2, s2) ∧

flow (tl cfs2) = 〈bvars b〉 # flow (tl2 cfs2)
using ‹?Q› by (rule small-stepsl-if )

thus ?thesis
proof (erule-tac disjE , erule-tac [2 ] disjE , (erule-tac [2−3 ] conjE)+)

assume (c2, s2) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ∧
flow (tl cfs2) = []

with R and ‹?R› show ?thesis
by auto

next
assume S : bval b s
with D and O and P have T : s ∈ Univ B1 (⊆ state ∩ X)

by (drule-tac btyping2-approx [where s = s], auto)
assume U : (c;; WHILE b DO c, s) →∗{tl2 cfs2} (c2, s2)
hence
(∃ c ′ cfs. c2 = c ′;; WHILE b DO c ∧

(c, s) →∗{cfs} (c ′, s2) ∧
flow (tl2 cfs2) = flow cfs) ∨

(∃ s ′ cfs cfs ′. length cfs ′ < length (tl2 cfs2) ∧
(c, s) →∗{cfs} (SKIP, s ′) ∧
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(WHILE b DO c, s ′) →∗{cfs ′} (c2, s2) ∧
flow (tl2 cfs2) = flow cfs @ flow cfs ′)

by (rule small-stepsl-seq)
moreover assume flow (tl cfs2) = 〈bvars b〉 # flow (tl2 cfs2)
moreover have s2 = run-flow (flow (tl2 cfs2)) s

using U by (rule small-stepsl-run-flow)
moreover {

fix c ′ cfs
assume (c, s) →∗{cfs} (c ′, run-flow (flow cfs) s)
then obtain c2

′ and t2 where V : ∀ x.
(s = t1 (⊆ sources-aux (flow cfs) s x) −→

(c, t1) →∗ (c2
′, t2) ∧ (c ′ = SKIP) = (c2

′ = SKIP)) ∧
(s = t1 (⊆ sources (flow cfs) s x) −→

run-flow (flow cfs) s x = t2 x)
using A [of B1 C B1

′ D s [] c s cfs c ′

run-flow (flow cfs) s] and N and T by force
{

fix x
assume W : s = t1 (⊆ sources-aux (〈bvars b〉 # flow cfs) s x)
moreover have sources-aux (flow cfs) s x ⊆

sources-aux (〈bvars b〉 # (flow cfs)) s x
by (rule sources-aux-observe-tl)

ultimately have (c, t1) →∗ (c2
′, t2)

using V by blast
hence (c;; WHILE b DO c, t1) →∗ (c2

′;; WHILE b DO c, t2)
by (rule star-seq2 )

moreover have s = t1 (⊆ bvars b)
using Q and W by (blast dest: sources-aux-observe-hd)

hence bval b t1
using S by (blast dest: bvars-bval)

hence (WHILE b DO c, t1) →∗ (c;; WHILE b DO c, t1)
by (blast intro: star-trans)

ultimately have (WHILE b DO c, t1) →∗
(c2

′;; WHILE b DO c, t2) ∧ c2
′;; WHILE b DO c 6= SKIP

by (blast intro: star-trans)
}
moreover {

fix x
assume s = t1 (⊆ sources (〈bvars b〉 # flow cfs) s x)
moreover have sources (flow cfs) s x ⊆

sources (〈bvars b〉 # (flow cfs)) s x
by (rule sources-observe-tl)

ultimately have run-flow (flow cfs) s x = t2 x
using V by blast

}
ultimately have ∃ c2

′ t2. ∀ x.
(s = t1 (⊆ sources-aux (〈bvars b〉 # flow cfs) s x) −→

(WHILE b DO c, t1) →∗ (c2
′, t2) ∧ c2

′ 6= SKIP) ∧
(s = t1 (⊆ sources (〈bvars b〉 # flow cfs) s x) −→
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run-flow (flow cfs) s x = t2 x)
by blast

}
moreover {

fix s ′ cfs cfs ′

assume
V : length cfs ′ < length cfs2 − Suc (Suc 0 ) and
W : (c, s) →∗{cfs} (SKIP, s ′) and
X : (WHILE b DO c, s ′) →∗{cfs ′}

(c2, run-flow (flow cfs ′) (run-flow (flow cfs) s))
then obtain c2

′ and t2 where ∀ x.
(s = t1 (⊆ sources-aux (flow cfs) s x) −→

(c, t1) →∗ (c2
′, t2) ∧ (SKIP = SKIP) = (c2

′ = SKIP)) ∧
(s = t1 (⊆ sources (flow cfs) s x) −→ s ′ x = t2 x)
using A [of B1 C B1

′ D s [] c s cfs SKIP s ′]
and N and T by force

moreover have Y : s ′ = run-flow (flow cfs) s
using W by (rule small-stepsl-run-flow)

ultimately have Z : ∀ x.
(s = t1 (⊆ sources-aux (flow cfs) s x) −→

(c, t1) →∗ (SKIP, t2)) ∧
(s = t1 (⊆ sources (flow cfs) s x) −→

run-flow (flow cfs) s x = t2 x)
by blast

assume s2 = run-flow (flow cfs ′) (run-flow (flow cfs) s)
moreover have (c, s) ⇒ s ′

using W by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s ′ ∈ Univ C (⊆ state ∩ Y )

using M and S by blast
ultimately obtain c3

′ and t3 where AA: ∀ x.
(run-flow (flow cfs) s = t2

(⊆ sources-aux (flow cfs ′) (run-flow (flow cfs) s) x) −→
(WHILE b DO c, t2) →∗ (c3

′, t3) ∧
(c2 = SKIP) = (c3

′ = SKIP)) ∧
(run-flow (flow cfs) s = t2

(⊆ sources (flow cfs ′) (run-flow (flow cfs) s) x) −→
run-flow (flow cfs ′) (run-flow (flow cfs) s) x = t3 x)

using K [of cfs ′ [] cfs ′ s ′ WHILE b DO c s ′]
and V and X and Y by force

{
fix x
assume AB: s = t1

(⊆ sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x)
moreover have sources-aux (flow cfs) s x ⊆

sources-aux (flow cfs @ flow cfs ′) s x
by (rule sources-aux-append)

moreover have AC : sources-aux (flow cfs @ flow cfs ′) s x ⊆
sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x
by (rule sources-aux-observe-tl)
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ultimately have (c, t1) →∗ (SKIP, t2)
using Z by blast

hence (c;; WHILE b DO c, t1) →∗ (SKIP;; WHILE b DO c, t2)
by (rule star-seq2 )

moreover have s = t1 (⊆ bvars b)
using Q and AB by (blast dest: sources-aux-observe-hd)

hence bval b t1
using S by (blast dest: bvars-bval)

hence (WHILE b DO c, t1) →∗ (c;; WHILE b DO c, t1)
by (blast intro: star-trans)

ultimately have (WHILE b DO c, t1) →∗ (WHILE b DO c, t2)
by (blast intro: star-trans)

moreover have run-flow (flow cfs) s = t2
(⊆ sources-aux (flow cfs ′) (run-flow (flow cfs) s) x)

proof
fix y
assume y ∈ sources-aux (flow cfs ′)

(run-flow (flow cfs) s) x
hence sources (flow cfs) s y ⊆

sources-aux (flow cfs @ flow cfs ′) s x
by (rule sources-aux-member)

hence sources (flow cfs) s y ⊆
sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x
using AC by simp

thus run-flow (flow cfs) s y = t2 y
using Z and AB by blast

qed
hence (WHILE b DO c, t2) →∗ (c3

′, t3) ∧
(c2 = SKIP) = (c3

′ = SKIP)
using AA by simp

ultimately have (WHILE b DO c, t1) →∗ (c3
′, t3) ∧

(c2 = SKIP) = (c3
′ = SKIP)

by (blast intro: star-trans)
}
moreover {

fix x
assume AB: s = t1

(⊆ sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x)
have run-flow (flow cfs) s = t2

(⊆ sources (flow cfs ′) (run-flow (flow cfs) s) x)
proof

fix y
assume y ∈ sources (flow cfs ′)

(run-flow (flow cfs) s) x
hence sources (flow cfs) s y ⊆

sources (flow cfs @ flow cfs ′) s x
by (rule sources-member)

moreover have sources (flow cfs @ flow cfs ′) s x ⊆
sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x
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by (rule sources-observe-tl)
ultimately have sources (flow cfs) s y ⊆

sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x
by simp

thus run-flow (flow cfs) s y = t2 y
using Z and AB by blast

qed
hence run-flow (flow cfs ′) (run-flow (flow cfs) s) x = t3 x

using AA by simp
}
ultimately have ∃ c3

′ t3. ∀ x.
(s = t1

(⊆ sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x) −→
(WHILE b DO c, t1) →∗ (c3

′, t3) ∧
(c2 = SKIP) = (c3

′ = SKIP)) ∧
(s = t1

(⊆ sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x) −→
run-flow (flow cfs ′) (run-flow (flow cfs) s) x = t3 x)

by auto
}
ultimately show ?thesis

using R and ‹?R› by (auto simp: run-flow-append)
next

assume
S : ¬ bval b s and
T : flow (tl cfs2) = 〈bvars b〉 # flow (tl2 cfs2)

moreover assume (SKIP, s) →∗{tl2 cfs2} (c2, s2)
hence U : (c2, s2) = (SKIP, s) ∧ flow (tl2 cfs2) = []

by (rule small-stepsl-skip)
show ?thesis
proof (rule exI [of - SKIP], rule exI [of - t1])

{
fix x
have (WHILE b DO c, t1) →

(IF b THEN c;; WHILE b DO c ELSE SKIP, t1) ..
moreover assume s = t1 (⊆ sources-aux [〈bvars b〉] s x)
hence s = t1 (⊆ bvars b)

using Q by (blast dest: sources-aux-observe-hd)
hence ¬ bval b t1

using S by (blast dest: bvars-bval)
hence (IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →

(SKIP, t1) ..
ultimately have (WHILE b DO c, t1) →∗ (SKIP, t1)

by (blast intro: star-trans)
}
moreover {

fix x
assume s = t1 (⊆ sources [〈bvars b〉] s x)
hence s x = t1 x
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by (subst (asm) append-Nil [symmetric],
simp only: sources.simps, auto)

}
ultimately show ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c1, t1) →∗ (SKIP, t1) ∧ (c2 = SKIP) = (SKIP = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t1 x)
using R and T and U and ‹?R› by auto

qed
qed

qed
next
assume (IF b THEN c;; WHILE b DO c ELSE SKIP, s) →∗{tl cfs1} (c1, s1)
hence
(c1, s1) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ∧

flow (tl cfs1) = [] ∨
bval b s ∧ (c;; WHILE b DO c, s) →∗{tl2 cfs1} (c1, s1) ∧

flow (tl cfs1) = 〈bvars b〉 # flow (tl2 cfs1) ∨
¬ bval b s ∧ (SKIP, s) →∗{tl2 cfs1} (c1, s1) ∧

flow (tl cfs1) = 〈bvars b〉 # flow (tl2 cfs1)
by (rule small-stepsl-if )

thus ?thesis
proof (rule disjE , erule-tac [2 ] disjE , erule-tac conjE ,
(erule-tac [2−3 ] conjE)+)
assume R: (c1, s1) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s)
hence (IF b THEN c;; WHILE b DO c ELSE SKIP, s) →∗{cfs2} (c2, s2)

using J by simp
hence
(c2, s2) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ∧

flow cfs2 = [] ∨
bval b s ∧ (c;; WHILE b DO c, s) →∗{tl cfs2} (c2, s2) ∧

flow cfs2 = 〈bvars b〉 # flow (tl cfs2) ∨
¬ bval b s ∧ (SKIP, s) →∗{tl cfs2} (c2, s2) ∧

flow cfs2 = 〈bvars b〉 # flow (tl cfs2)
by (rule small-stepsl-if )

thus ?thesis
proof (erule-tac disjE , erule-tac [2 ] disjE , (erule-tac [2−3 ] conjE)+)

assume (c2, s2) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ∧
flow cfs2 = []

with R show ?thesis
by auto

next
assume S : bval b s
with D and O and P have T : s ∈ Univ B1 (⊆ state ∩ X)

by (drule-tac btyping2-approx [where s = s], auto)
assume U : (c;; WHILE b DO c, s) →∗{tl cfs2} (c2, s2)
hence
(∃ c ′ cfs. c2 = c ′;; WHILE b DO c ∧

(c, s) →∗{cfs} (c ′, s2) ∧
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flow (tl cfs2) = flow cfs) ∨
(∃ s ′ cfs cfs ′. length cfs ′ < length (tl cfs2) ∧

(c, s) →∗{cfs} (SKIP, s ′) ∧
(WHILE b DO c, s ′) →∗{cfs ′} (c2, s2) ∧
flow (tl cfs2) = flow cfs @ flow cfs ′)

by (rule small-stepsl-seq)
moreover assume flow cfs2 = 〈bvars b〉 # flow (tl cfs2)
moreover have s2 = run-flow (flow (tl cfs2)) s

using U by (rule small-stepsl-run-flow)
moreover {

fix c ′ cfs
assume (c, s) →∗{cfs} (c ′, run-flow (flow cfs) s)
then obtain c2

′ and t2 where V : ∀ x.
(s = t1 (⊆ sources-aux (flow cfs) s x) −→

(c, t1) →∗ (c2
′, t2) ∧ (c ′ = SKIP) = (c2

′ = SKIP)) ∧
(s = t1 (⊆ sources (flow cfs) s x) −→

run-flow (flow cfs) s x = t2 x)
using A [of B1 C B1

′ D s [] c s cfs c ′

run-flow (flow cfs) s] and N and T by force
{

fix x
assume W : s = t1 (⊆ sources-aux (〈bvars b〉 # flow cfs) s x)
moreover have sources-aux (flow cfs) s x ⊆

sources-aux (〈bvars b〉 # (flow cfs)) s x
by (rule sources-aux-observe-tl)

ultimately have (c, t1) →∗ (c2
′, t2)

using V by blast
hence (c;; WHILE b DO c, t1) →∗ (c2

′;; WHILE b DO c, t2)
by (rule star-seq2 )

moreover have s = t1 (⊆ bvars b)
using Q and W by (blast dest: sources-aux-observe-hd)

hence bval b t1
using S by (blast dest: bvars-bval)

hence (IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →
(c;; WHILE b DO c, t1) ..

ultimately have
(IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →∗

(c2
′;; WHILE b DO c, t2) ∧ c2

′;; WHILE b DO c 6= SKIP
by (blast intro: star-trans)

}
moreover {

fix x
assume s = t1 (⊆ sources (〈bvars b〉 # flow cfs) s x)
moreover have sources (flow cfs) s x ⊆

sources (〈bvars b〉 # (flow cfs)) s x
by (rule sources-observe-tl)

ultimately have run-flow (flow cfs) s x = t2 x
using V by blast

}
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ultimately have ∃ c2
′ t2. ∀ x.

(s = t1 (⊆ sources-aux (〈bvars b〉 # flow cfs) s x) −→
(IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →∗ (c2

′, t2) ∧
c2

′ 6= SKIP) ∧
(s = t1 (⊆ sources (〈bvars b〉 # flow cfs) s x) −→

run-flow (flow cfs) s x = t2 x)
by blast

}
moreover {

fix s ′ cfs cfs ′

assume
V : length cfs ′ < length cfs2 − Suc 0 and
W : (c, s) →∗{cfs} (SKIP, s ′) and
X : (WHILE b DO c, s ′) →∗{cfs ′}

(c2, run-flow (flow cfs ′) (run-flow (flow cfs) s))
then obtain c2

′ and t2 where ∀ x.
(s = t1 (⊆ sources-aux (flow cfs) s x) −→

(c, t1) →∗ (c2
′, t2) ∧ (SKIP = SKIP) = (c2

′ = SKIP)) ∧
(s = t1 (⊆ sources (flow cfs) s x) −→ s ′ x = t2 x)
using A [of B1 C B1

′ D s [] c s cfs SKIP s ′]
and N and T by force

moreover have Y : s ′ = run-flow (flow cfs) s
using W by (rule small-stepsl-run-flow)

ultimately have Z : ∀ x.
(s = t1 (⊆ sources-aux (flow cfs) s x) −→

(c, t1) →∗ (SKIP, t2)) ∧
(s = t1 (⊆ sources (flow cfs) s x) −→

run-flow (flow cfs) s x = t2 x)
by blast

assume s2 = run-flow (flow cfs ′) (run-flow (flow cfs) s)
moreover have (c, s) ⇒ s ′

using W by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s ′ ∈ Univ C (⊆ state ∩ Y )

using M and S by blast
ultimately obtain c3

′ and t3 where AA: ∀ x.
(run-flow (flow cfs) s = t2

(⊆ sources-aux (flow cfs ′) (run-flow (flow cfs) s) x) −→
(WHILE b DO c, t2) →∗ (c3

′, t3) ∧
(c2 = SKIP) = (c3

′ = SKIP)) ∧
(run-flow (flow cfs) s = t2

(⊆ sources (flow cfs ′) (run-flow (flow cfs) s) x) −→
run-flow (flow cfs ′) (run-flow (flow cfs) s) x = t3 x)

using K [of cfs ′ [] cfs ′ s ′ WHILE b DO c s ′]
and V and X and Y by force

{
fix x
assume AB: s = t1

(⊆ sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x)
moreover have sources-aux (flow cfs) s x ⊆
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sources-aux (flow cfs @ flow cfs ′) s x
by (rule sources-aux-append)

moreover have AC : sources-aux (flow cfs @ flow cfs ′) s x ⊆
sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x
by (rule sources-aux-observe-tl)

ultimately have (c, t1) →∗ (SKIP, t2)
using Z by blast

hence (c;; WHILE b DO c, t1) →∗ (SKIP;; WHILE b DO c, t2)
by (rule star-seq2 )

moreover have s = t1 (⊆ bvars b)
using Q and AB by (blast dest: sources-aux-observe-hd)

hence bval b t1
using S by (blast dest: bvars-bval)

hence (IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →
(c;; WHILE b DO c, t1) ..

ultimately have (IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →∗
(WHILE b DO c, t2)
by (blast intro: star-trans)

moreover have run-flow (flow cfs) s = t2
(⊆ sources-aux (flow cfs ′) (run-flow (flow cfs) s) x)

proof
fix y
assume y ∈ sources-aux (flow cfs ′)

(run-flow (flow cfs) s) x
hence sources (flow cfs) s y ⊆

sources-aux (flow cfs @ flow cfs ′) s x
by (rule sources-aux-member)

hence sources (flow cfs) s y ⊆
sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x
using AC by simp

thus run-flow (flow cfs) s y = t2 y
using Z and AB by blast

qed
hence (WHILE b DO c, t2) →∗ (c3

′, t3) ∧
(c2 = SKIP) = (c3

′ = SKIP)
using AA by simp

ultimately have
(IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →∗

(c3
′, t3) ∧ (c2 = SKIP) = (c3

′ = SKIP)
by (blast intro: star-trans)

}
moreover {

fix x
assume AB: s = t1

(⊆ sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x)
have run-flow (flow cfs) s = t2

(⊆ sources (flow cfs ′) (run-flow (flow cfs) s) x)
proof

fix y
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assume y ∈ sources (flow cfs ′)
(run-flow (flow cfs) s) x

hence sources (flow cfs) s y ⊆
sources (flow cfs @ flow cfs ′) s x
by (rule sources-member)

moreover have sources (flow cfs @ flow cfs ′) s x ⊆
sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x
by (rule sources-observe-tl)

ultimately have sources (flow cfs) s y ⊆
sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x
by simp

thus run-flow (flow cfs) s y = t2 y
using Z and AB by blast

qed
hence run-flow (flow cfs ′) (run-flow (flow cfs) s) x = t3 x

using AA by simp
}
ultimately have ∃ c3

′ t3. ∀ x.
(s = t1

(⊆ sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x) −→
(IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →∗ (c3

′, t3) ∧
(c2 = SKIP) = (c3

′ = SKIP)) ∧
(s = t1

(⊆ sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x) −→
run-flow (flow cfs ′) (run-flow (flow cfs) s) x = t3 x)

by auto
}
ultimately show ?thesis

using R by (auto simp: run-flow-append)
next

assume
S : ¬ bval b s and
T : flow cfs2 = 〈bvars b〉 # flow (tl cfs2)

assume (SKIP, s) →∗{tl cfs2} (c2, s2)
hence U : (c2, s2) = (SKIP, s) ∧ flow (tl cfs2) = []

by (rule small-stepsl-skip)
show ?thesis
proof (rule exI [of - SKIP], rule exI [of - t1])

{
fix x
assume s = t1 (⊆ sources-aux [〈bvars b〉] s x)
hence s = t1 (⊆ bvars b)

using Q by (blast dest: sources-aux-observe-hd)
hence ¬ bval b t1

using S by (blast dest: bvars-bval)
hence (IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →

(SKIP, t1) ..
}
moreover {
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fix x
assume s = t1 (⊆ sources [〈bvars b〉] s x)
hence s x = t1 x

by (subst (asm) append-Nil [symmetric],
simp only: sources.simps, auto)

}
ultimately show ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c1, t1) →∗ (SKIP, t1) ∧ (c2 = SKIP) = (SKIP = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t1 x)
using R and T and U by auto

qed
qed

next
assume R: bval b s
with D and O and P have S : s ∈ Univ B1 (⊆ state ∩ X)

by (drule-tac btyping2-approx [where s = s], auto)
assume (c;; WHILE b DO c, s) →∗{tl2 cfs1} (c1, s1)
hence
(∃ c ′ cfs ′. c1 = c ′;; WHILE b DO c ∧

(c, s) →∗{cfs ′} (c ′, s1) ∧
flow (tl2 cfs1) = flow cfs ′) ∨

(∃ s ′ cfs ′ cfs ′′. length cfs ′′ < length (tl2 cfs1) ∧
(c, s) →∗{cfs ′} (SKIP, s ′) ∧
(WHILE b DO c, s ′) →∗{cfs ′′} (c1, s1) ∧
flow (tl2 cfs1) = flow cfs ′ @ flow cfs ′′)

by (rule small-stepsl-seq)
moreover {

fix c ′ cfs
assume

T : (c, s) →∗{cfs} (c ′, s1) and
U : c1 = c ′;; WHILE b DO c

hence V : (c ′;; WHILE b DO c, s1) →∗{cfs2} (c2, s2)
using J by simp

hence W : s2 = run-flow (flow cfs2) s1

by (rule small-stepsl-run-flow)
have
(∃ c ′′ cfs ′. c2 = c ′′;; WHILE b DO c ∧

(c ′, s1) →∗{cfs ′} (c ′′, s2) ∧
flow cfs2 = flow cfs ′) ∨

(∃ s ′ cfs ′ cfs ′′. length cfs ′′ < length cfs2 ∧
(c ′, s1) →∗{cfs ′} (SKIP, s ′) ∧
(WHILE b DO c, s ′) →∗{cfs ′′} (c2, s2) ∧
flow cfs2 = flow cfs ′ @ flow cfs ′′)

using V by (rule small-stepsl-seq)
moreover {

fix c ′′ cfs ′

assume (c ′, s1) →∗{cfs ′} (c ′′, s2)
then obtain c2

′ and t2 where X : ∀ x.
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(s1 = t1 (⊆ sources-aux (flow cfs ′) s1 x) −→
(c ′, t1) →∗ (c2

′, t2) ∧ (c ′′ = SKIP) = (c2
′ = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs ′) s1 x) −→
run-flow (flow cfs2) s1 x = t2 x)

using A [of B1 C B1
′ D s cfs c ′ s1 cfs ′ c ′′

run-flow (flow cfs2) s1] and N and S and T and W by force
assume

Y : c2 = c ′′;; WHILE b DO c and
Z : flow cfs2 = flow cfs ′

have ?thesis
proof (rule exI [of - c2

′;; WHILE b DO c], rule exI [of - t2])
from U and W and X and Y and Z show ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c1, t1) →∗ (c2

′;; WHILE b DO c, t2) ∧
(c2 = SKIP) = (c2

′;; WHILE b DO c = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)
by (auto intro: star-seq2 )

qed
}
moreover {

fix s ′ cfs ′ cfs ′′

assume
X : length cfs ′′ < length cfs2 and
Y : (c ′, s1) →∗{cfs ′} (SKIP, s ′) and
Z : (WHILE b DO c, s ′) →∗{cfs ′′} (c2, s2)

then obtain c2
′ and t2 where ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs ′) s1 x) −→
(c ′, t1) →∗ (c2

′, t2) ∧ (SKIP = SKIP) = (c2
′ = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs ′) s1 x) −→ s ′ x = t2 x)
using A [of B1 C B1

′ D s cfs c ′ s1 cfs ′ SKIP s ′]
and N and S and T by force

moreover have AA: s ′ = run-flow (flow cfs ′) s1

using Y by (rule small-stepsl-run-flow)
ultimately have AB: ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs ′) s1 x) −→
(c ′, t1) →∗ (SKIP, t2)) ∧

(s1 = t1 (⊆ sources (flow cfs ′) s1 x) −→
run-flow (flow cfs ′) s1 x = t2 x)

by blast
have AC : s2 = run-flow (flow cfs ′′) s ′

using Z by (rule small-stepsl-run-flow)
moreover have (c, s) →∗{cfs @ cfs ′} (SKIP, s ′)

using T and Y by (simp add: small-stepsl-append)
hence (c, s) ⇒ s ′

by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s ′ ∈ Univ C (⊆ state ∩ Y )

using M and R by blast
ultimately obtain c2

′ and t3 where AD: ∀ x.
(run-flow (flow cfs ′) s1 = t2
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(⊆ sources-aux (flow cfs ′′) (run-flow (flow cfs ′) s1) x) −→
(WHILE b DO c, t2) →∗ (c2

′, t3) ∧
(c2 = SKIP) = (c2

′ = SKIP)) ∧
(run-flow (flow cfs ′) s1 = t2

(⊆ sources (flow cfs ′′) (run-flow (flow cfs ′) s1) x) −→
run-flow (flow cfs ′′) (run-flow (flow cfs ′) s1) x = t3 x)

using K [of cfs ′′ [] cfs ′′ s ′ WHILE b DO c s ′]
and X and Z and AA by force

moreover assume flow cfs2 = flow cfs ′ @ flow cfs ′′

moreover {
fix x
assume AE : s1 = t1

(⊆ sources-aux (flow cfs ′ @ flow cfs ′′) s1 x)
moreover have sources-aux (flow cfs ′) s1 x ⊆

sources-aux (flow cfs ′ @ flow cfs ′′) s1 x
by (rule sources-aux-append)

ultimately have (c ′, t1) →∗ (SKIP, t2)
using AB by blast

hence (c ′;; WHILE b DO c, t1) →∗ (SKIP;; WHILE b DO c, t2)
by (rule star-seq2 )

hence (c ′;; WHILE b DO c, t1) →∗ (WHILE b DO c, t2)
by (blast intro: star-trans)

moreover have run-flow (flow cfs ′) s1 = t2
(⊆ sources-aux (flow cfs ′′) (run-flow (flow cfs ′) s1) x)

proof
fix y
assume y ∈ sources-aux (flow cfs ′′)

(run-flow (flow cfs ′) s1) x
hence sources (flow cfs ′) s1 y ⊆

sources-aux (flow cfs ′ @ flow cfs ′′) s1 x
by (rule sources-aux-member)

thus run-flow (flow cfs ′) s1 y = t2 y
using AB and AE by blast

qed
hence (WHILE b DO c, t2) →∗ (c2

′, t3) ∧
(c2 = SKIP) = (c2

′ = SKIP)
using AD by simp

ultimately have (c ′;; WHILE b DO c, t1) →∗ (c2
′, t3) ∧

(c2 = SKIP) = (c2
′ = SKIP)

by (blast intro: star-trans)
}
moreover {

fix x
assume AE : s1 = t1

(⊆ sources (flow cfs ′ @ flow cfs ′′) s1 x)
have run-flow (flow cfs ′) s1 = t2

(⊆ sources (flow cfs ′′) (run-flow (flow cfs ′) s1) x)
proof

fix y
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assume y ∈ sources (flow cfs ′′)
(run-flow (flow cfs ′) s1) x

hence sources (flow cfs ′) s1 y ⊆
sources (flow cfs ′ @ flow cfs ′′) s1 x
by (rule sources-member)

thus run-flow (flow cfs ′) s1 y = t2 y
using AB and AE by blast

qed
hence run-flow (flow cfs ′′)

(run-flow (flow cfs ′) s1) x = t3 x
using AD by simp

}
ultimately have ?thesis

by (metis U AA AC )
}
ultimately have ?thesis

by blast
}
moreover {

fix s ′ cfs cfs ′

assume
length cfs ′ < length (tl2 cfs1) and
(c, s) →∗{cfs} (SKIP, s ′) and
(WHILE b DO c, s ′) →∗{cfs ′} (c1, s1)

moreover from this have (c, s) ⇒ s ′

by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s ′ ∈ Univ C (⊆ state ∩ Y )

using M and R by blast
ultimately have ?thesis

using K [of cfs ′ @ cfs2 cfs ′ cfs2 s ′ c1 s1] and J by force
}
ultimately show ?thesis

by blast
next

assume (SKIP, s) →∗{tl2 cfs1} (c1, s1)
hence (c1, s1) = (SKIP, s)

by (blast dest: small-stepsl-skip)
moreover from this have (c2, s2) = (SKIP, s) ∧ flow cfs2 = []

using J by (blast dest: small-stepsl-skip)
ultimately show ?thesis

by auto
qed

qed
}
moreover {

fix r t1
assume O: r ∈ C and P: s = r (⊆ state ∩ Y )
have Q: ∀ x. ∀ y ∈ bvars b. s: dom y  dom x
proof (cases state ⊆ Y )
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case True
with P have interf s = interf r

by (blast intro: interf-state)
with N and O show ?thesis

by (erule-tac conjE , drule-tac bspec,
auto simp: univ-states-if-def )

next
case False
with N and O show ?thesis

by (erule-tac conjE , drule-tac bspec,
auto simp: univ-states-if-def )

qed
have (c1, s1) = (WHILE b DO c, s) ∨

(IF b THEN c;; WHILE b DO c ELSE SKIP, s) →∗{tl cfs1} (c1, s1)
using I by (blast dest: small-stepsl-while)

hence ∃ c2
′ t2. ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c1, t1) →∗ (c2

′, t2) ∧ (c2 = SKIP) = (c2
′ = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)
proof

assume R: (c1, s1) = (WHILE b DO c, s)
hence (WHILE b DO c, s) →∗{cfs2} (c2, s2)

using J by simp
hence
(c2, s2) = (WHILE b DO c, s) ∧

flow cfs2 = [] ∨
(IF b THEN c;; WHILE b DO c ELSE SKIP, s) →∗{tl cfs2} (c2, s2) ∧

flow cfs2 = flow (tl cfs2)
(is ?P ∨ ?Q ∧ ?R)
by (rule small-stepsl-while)

thus ?thesis
proof (rule disjE , erule-tac [2 ] conjE)

assume ?P
with R show ?thesis

by auto
next

assume ?Q and ?R
have
(c2, s2) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ∧

flow (tl cfs2) = [] ∨
bval b s ∧ (c;; WHILE b DO c, s) →∗{tl2 cfs2} (c2, s2) ∧

flow (tl cfs2) = 〈bvars b〉 # flow (tl2 cfs2) ∨
¬ bval b s ∧ (SKIP, s) →∗{tl2 cfs2} (c2, s2) ∧

flow (tl cfs2) = 〈bvars b〉 # flow (tl2 cfs2)
using ‹?Q› by (rule small-stepsl-if )

thus ?thesis
proof (erule-tac disjE , erule-tac [2 ] disjE , (erule-tac [2−3 ] conjE)+)

assume (c2, s2) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ∧
flow (tl cfs2) = []
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with R and ‹?R› show ?thesis
by auto

next
assume S : bval b s
with F and O and P have T : s ∈ Univ B1

′ (⊆ state ∩ Y )
by (drule-tac btyping2-approx [where s = s], auto)

assume U : (c;; WHILE b DO c, s) →∗{tl2 cfs2} (c2, s2)
hence
(∃ c ′ cfs. c2 = c ′;; WHILE b DO c ∧

(c, s) →∗{cfs} (c ′, s2) ∧
flow (tl2 cfs2) = flow cfs) ∨

(∃ s ′ cfs cfs ′. length cfs ′ < length (tl2 cfs2) ∧
(c, s) →∗{cfs} (SKIP, s ′) ∧
(WHILE b DO c, s ′) →∗{cfs ′} (c2, s2) ∧
flow (tl2 cfs2) = flow cfs @ flow cfs ′)

by (rule small-stepsl-seq)
moreover assume flow (tl cfs2) = 〈bvars b〉 # flow (tl2 cfs2)
moreover have s2 = run-flow (flow (tl2 cfs2)) s

using U by (rule small-stepsl-run-flow)
moreover {

fix c ′ cfs
assume (c, s) →∗{cfs} (c ′, run-flow (flow cfs) s)
then obtain c2

′ and t2 where V : ∀ x.
(s = t1 (⊆ sources-aux (flow cfs) s x) −→

(c, t1) →∗ (c2
′, t2) ∧ (c ′ = SKIP) = (c2

′ = SKIP)) ∧
(s = t1 (⊆ sources (flow cfs) s x) −→

run-flow (flow cfs) s x = t2 x)
using B [of B1 C B1

′ D ′ s [] c s cfs c ′

run-flow (flow cfs) s] and N and T by force
{

fix x
assume W : s = t1 (⊆ sources-aux (〈bvars b〉 # flow cfs) s x)
moreover have sources-aux (flow cfs) s x ⊆

sources-aux (〈bvars b〉 # (flow cfs)) s x
by (rule sources-aux-observe-tl)

ultimately have (c, t1) →∗ (c2
′, t2)

using V by blast
hence (c;; WHILE b DO c, t1) →∗ (c2

′;; WHILE b DO c, t2)
by (rule star-seq2 )

moreover have s = t1 (⊆ bvars b)
using Q and W by (blast dest: sources-aux-observe-hd)

hence bval b t1
using S by (blast dest: bvars-bval)

hence (WHILE b DO c, t1) →∗ (c;; WHILE b DO c, t1)
by (blast intro: star-trans)

ultimately have (WHILE b DO c, t1) →∗
(c2

′;; WHILE b DO c, t2) ∧ c2
′;; WHILE b DO c 6= SKIP

by (blast intro: star-trans)
}
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moreover {
fix x
assume s = t1 (⊆ sources (〈bvars b〉 # flow cfs) s x)
moreover have sources (flow cfs) s x ⊆

sources (〈bvars b〉 # (flow cfs)) s x
by (rule sources-observe-tl)

ultimately have run-flow (flow cfs) s x = t2 x
using V by blast

}
ultimately have ∃ c2

′ t2. ∀ x.
(s = t1 (⊆ sources-aux (〈bvars b〉 # flow cfs) s x) −→

(WHILE b DO c, t1) →∗ (c2
′, t2) ∧ c2

′ 6= SKIP) ∧
(s = t1 (⊆ sources (〈bvars b〉 # flow cfs) s x) −→

run-flow (flow cfs) s x = t2 x)
by blast

}
moreover {

fix s ′ cfs cfs ′

assume
V : length cfs ′ < length cfs2 − Suc (Suc 0 ) and
W : (c, s) →∗{cfs} (SKIP, s ′) and
X : (WHILE b DO c, s ′) →∗{cfs ′}

(c2, run-flow (flow cfs ′) (run-flow (flow cfs) s))
then obtain c2

′ and t2 where ∀ x.
(s = t1 (⊆ sources-aux (flow cfs) s x) −→

(c, t1) →∗ (c2
′, t2) ∧ (SKIP = SKIP) = (c2

′ = SKIP)) ∧
(s = t1 (⊆ sources (flow cfs) s x) −→ s ′ x = t2 x)
using B [of B1 C B1

′ D ′ s [] c s cfs SKIP s ′]
and N and T by force

moreover have Y : s ′ = run-flow (flow cfs) s
using W by (rule small-stepsl-run-flow)

ultimately have Z : ∀ x.
(s = t1 (⊆ sources-aux (flow cfs) s x) −→

(c, t1) →∗ (SKIP, t2)) ∧
(s = t1 (⊆ sources (flow cfs) s x) −→

run-flow (flow cfs) s x = t2 x)
by blast

assume s2 = run-flow (flow cfs ′) (run-flow (flow cfs) s)
moreover have (c, s) ⇒ s ′

using W by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s ′ ∈ Univ C (⊆ state ∩ Y )

using M and S by blast
ultimately obtain c3

′ and t3 where AA: ∀ x.
(run-flow (flow cfs) s = t2

(⊆ sources-aux (flow cfs ′) (run-flow (flow cfs) s) x) −→
(WHILE b DO c, t2) →∗ (c3

′, t3) ∧
(c2 = SKIP) = (c3

′ = SKIP)) ∧
(run-flow (flow cfs) s = t2

(⊆ sources (flow cfs ′) (run-flow (flow cfs) s) x) −→
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run-flow (flow cfs ′) (run-flow (flow cfs) s) x = t3 x)
using K [of cfs ′ [] cfs ′ s ′ WHILE b DO c s ′]
and V and X and Y by force

{
fix x
assume AB: s = t1

(⊆ sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x)
moreover have sources-aux (flow cfs) s x ⊆

sources-aux (flow cfs @ flow cfs ′) s x
by (rule sources-aux-append)

moreover have AC : sources-aux (flow cfs @ flow cfs ′) s x ⊆
sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x
by (rule sources-aux-observe-tl)

ultimately have (c, t1) →∗ (SKIP, t2)
using Z by blast

hence (c;; WHILE b DO c, t1) →∗ (SKIP;; WHILE b DO c, t2)
by (rule star-seq2 )

moreover have s = t1 (⊆ bvars b)
using Q and AB by (blast dest: sources-aux-observe-hd)

hence bval b t1
using S by (blast dest: bvars-bval)

hence (WHILE b DO c, t1) →∗ (c;; WHILE b DO c, t1)
by (blast intro: star-trans)

ultimately have (WHILE b DO c, t1) →∗ (WHILE b DO c, t2)
by (blast intro: star-trans)

moreover have run-flow (flow cfs) s = t2
(⊆ sources-aux (flow cfs ′) (run-flow (flow cfs) s) x)

proof
fix y
assume y ∈ sources-aux (flow cfs ′)

(run-flow (flow cfs) s) x
hence sources (flow cfs) s y ⊆

sources-aux (flow cfs @ flow cfs ′) s x
by (rule sources-aux-member)

hence sources (flow cfs) s y ⊆
sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x
using AC by simp

thus run-flow (flow cfs) s y = t2 y
using Z and AB by blast

qed
hence (WHILE b DO c, t2) →∗ (c3

′, t3) ∧
(c2 = SKIP) = (c3

′ = SKIP)
using AA by simp

ultimately have (WHILE b DO c, t1) →∗ (c3
′, t3) ∧

(c2 = SKIP) = (c3
′ = SKIP)

by (blast intro: star-trans)
}
moreover {

fix x
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assume AB: s = t1
(⊆ sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x)

have run-flow (flow cfs) s = t2
(⊆ sources (flow cfs ′) (run-flow (flow cfs) s) x)

proof
fix y
assume y ∈ sources (flow cfs ′)

(run-flow (flow cfs) s) x
hence sources (flow cfs) s y ⊆

sources (flow cfs @ flow cfs ′) s x
by (rule sources-member)

moreover have sources (flow cfs @ flow cfs ′) s x ⊆
sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x
by (rule sources-observe-tl)

ultimately have sources (flow cfs) s y ⊆
sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x
by simp

thus run-flow (flow cfs) s y = t2 y
using Z and AB by blast

qed
hence run-flow (flow cfs ′) (run-flow (flow cfs) s) x = t3 x

using AA by simp
}
ultimately have ∃ c3

′ t3. ∀ x.
(s = t1

(⊆ sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x) −→
(WHILE b DO c, t1) →∗ (c3

′, t3) ∧
(c2 = SKIP) = (c3

′ = SKIP)) ∧
(s = t1

(⊆ sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x) −→
run-flow (flow cfs ′) (run-flow (flow cfs) s) x = t3 x)

by auto
}
ultimately show ?thesis

using R and ‹?R› by (auto simp: run-flow-append)
next

assume
S : ¬ bval b s and
T : flow (tl cfs2) = 〈bvars b〉 # flow (tl2 cfs2)

assume (SKIP, s) →∗{tl2 cfs2} (c2, s2)
hence U : (c2, s2) = (SKIP, s) ∧ flow (tl2 cfs2) = []

by (rule small-stepsl-skip)
show ?thesis
proof (rule exI [of - SKIP], rule exI [of - t1])

{
fix x
have (WHILE b DO c, t1) →

(IF b THEN c;; WHILE b DO c ELSE SKIP, t1) ..
moreover assume s = t1 (⊆ sources-aux [〈bvars b〉] s x)

120



hence s = t1 (⊆ bvars b)
using Q by (blast dest: sources-aux-observe-hd)

hence ¬ bval b t1
using S by (blast dest: bvars-bval)

hence (IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →
(SKIP, t1) ..

ultimately have (WHILE b DO c, t1) →∗ (SKIP, t1)
by (blast intro: star-trans)

}
moreover {

fix x
assume s = t1 (⊆ sources [〈bvars b〉] s x)
hence s x = t1 x

by (subst (asm) append-Nil [symmetric],
simp only: sources.simps, auto)

}
ultimately show ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c1, t1) →∗ (SKIP, t1) ∧ (c2 = SKIP) = (SKIP = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t1 x)
using R and T and U and ‹?R› by auto

qed
qed

qed
next
assume (IF b THEN c;; WHILE b DO c ELSE SKIP, s) →∗{tl cfs1} (c1, s1)
hence
(c1, s1) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ∧

flow (tl cfs1) = [] ∨
bval b s ∧ (c;; WHILE b DO c, s) →∗{tl2 cfs1} (c1, s1) ∧

flow (tl cfs1) = 〈bvars b〉 # flow (tl2 cfs1) ∨
¬ bval b s ∧ (SKIP, s) →∗{tl2 cfs1} (c1, s1) ∧

flow (tl cfs1) = 〈bvars b〉 # flow (tl2 cfs1)
by (rule small-stepsl-if )

thus ?thesis
proof (rule disjE , erule-tac [2 ] disjE , erule-tac conjE ,
(erule-tac [2−3 ] conjE)+)
assume R: (c1, s1) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s)
hence (IF b THEN c;; WHILE b DO c ELSE SKIP, s) →∗{cfs2} (c2, s2)

using J by simp
hence
(c2, s2) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ∧

flow cfs2 = [] ∨
bval b s ∧ (c;; WHILE b DO c, s) →∗{tl cfs2} (c2, s2) ∧

flow cfs2 = 〈bvars b〉 # flow (tl cfs2) ∨
¬ bval b s ∧ (SKIP, s) →∗{tl cfs2} (c2, s2) ∧

flow cfs2 = 〈bvars b〉 # flow (tl cfs2)
by (rule small-stepsl-if )

thus ?thesis
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proof (erule-tac disjE , erule-tac [2 ] disjE , (erule-tac [2−3 ] conjE)+)
assume (c2, s2) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ∧

flow cfs2 = []
with R show ?thesis

by auto
next

assume S : bval b s
with F and O and P have T : s ∈ Univ B1

′ (⊆ state ∩ Y )
by (drule-tac btyping2-approx [where s = s], auto)

assume U : (c;; WHILE b DO c, s) →∗{tl cfs2} (c2, s2)
hence
(∃ c ′ cfs. c2 = c ′;; WHILE b DO c ∧

(c, s) →∗{cfs} (c ′, s2) ∧
flow (tl cfs2) = flow cfs) ∨

(∃ s ′ cfs cfs ′. length cfs ′ < length (tl cfs2) ∧
(c, s) →∗{cfs} (SKIP, s ′) ∧
(WHILE b DO c, s ′) →∗{cfs ′} (c2, s2) ∧
flow (tl cfs2) = flow cfs @ flow cfs ′)

by (rule small-stepsl-seq)
moreover assume flow cfs2 = 〈bvars b〉 # flow (tl cfs2)
moreover have s2 = run-flow (flow (tl cfs2)) s

using U by (rule small-stepsl-run-flow)
moreover {

fix c ′ cfs
assume (c, s) →∗{cfs} (c ′, run-flow (flow cfs) s)
then obtain c2

′ and t2 where V : ∀ x.
(s = t1 (⊆ sources-aux (flow cfs) s x) −→

(c, t1) →∗ (c2
′, t2) ∧ (c ′ = SKIP) = (c2

′ = SKIP)) ∧
(s = t1 (⊆ sources (flow cfs) s x) −→

run-flow (flow cfs) s x = t2 x)
using B [of B1 C B1

′ D ′ s [] c s cfs c ′

run-flow (flow cfs) s] and N and T by force
{

fix x
assume W : s = t1 (⊆ sources-aux (〈bvars b〉 # flow cfs) s x)
moreover have sources-aux (flow cfs) s x ⊆

sources-aux (〈bvars b〉 # (flow cfs)) s x
by (rule sources-aux-observe-tl)

ultimately have (c, t1) →∗ (c2
′, t2)

using V by blast
hence (c;; WHILE b DO c, t1) →∗ (c2

′;; WHILE b DO c, t2)
by (rule star-seq2 )

moreover have s = t1 (⊆ bvars b)
using Q and W by (blast dest: sources-aux-observe-hd)

hence bval b t1
using S by (blast dest: bvars-bval)

hence (IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →
(c;; WHILE b DO c, t1) ..

ultimately have

122



(IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →∗
(c2

′;; WHILE b DO c, t2) ∧ c2
′;; WHILE b DO c 6= SKIP

by (blast intro: star-trans)
}
moreover {

fix x
assume s = t1 (⊆ sources (〈bvars b〉 # flow cfs) s x)
moreover have sources (flow cfs) s x ⊆

sources (〈bvars b〉 # (flow cfs)) s x
by (rule sources-observe-tl)

ultimately have run-flow (flow cfs) s x = t2 x
using V by blast

}
ultimately have ∃ c2

′ t2. ∀ x.
(s = t1 (⊆ sources-aux (〈bvars b〉 # flow cfs) s x) −→

(IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →∗ (c2
′, t2) ∧

c2
′ 6= SKIP) ∧

(s = t1 (⊆ sources (〈bvars b〉 # flow cfs) s x) −→
run-flow (flow cfs) s x = t2 x)

by blast
}
moreover {

fix s ′ cfs cfs ′

assume
V : length cfs ′ < length cfs2 − Suc 0 and
W : (c, s) →∗{cfs} (SKIP, s ′) and
X : (WHILE b DO c, s ′) →∗{cfs ′}

(c2, run-flow (flow cfs ′) (run-flow (flow cfs) s))
then obtain c2

′ and t2 where ∀ x.
(s = t1 (⊆ sources-aux (flow cfs) s x) −→

(c, t1) →∗ (c2
′, t2) ∧ (SKIP = SKIP) = (c2

′ = SKIP)) ∧
(s = t1 (⊆ sources (flow cfs) s x) −→ s ′ x = t2 x)
using B [of B1 C B1

′ D ′ s [] c s cfs SKIP s ′]
and N and T by force

moreover have Y : s ′ = run-flow (flow cfs) s
using W by (rule small-stepsl-run-flow)

ultimately have Z : ∀ x.
(s = t1 (⊆ sources-aux (flow cfs) s x) −→

(c, t1) →∗ (SKIP, t2)) ∧
(s = t1 (⊆ sources (flow cfs) s x) −→

run-flow (flow cfs) s x = t2 x)
by blast

assume s2 = run-flow (flow cfs ′) (run-flow (flow cfs) s)
moreover have (c, s) ⇒ s ′

using W by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s ′ ∈ Univ C (⊆ state ∩ Y )

using M and S by blast
ultimately obtain c3

′ and t3 where AA: ∀ x.
(run-flow (flow cfs) s = t2
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(⊆ sources-aux (flow cfs ′) (run-flow (flow cfs) s) x) −→
(WHILE b DO c, t2) →∗ (c3

′, t3) ∧
(c2 = SKIP) = (c3

′ = SKIP)) ∧
(run-flow (flow cfs) s = t2

(⊆ sources (flow cfs ′) (run-flow (flow cfs) s) x) −→
run-flow (flow cfs ′) (run-flow (flow cfs) s) x = t3 x)

using K [of cfs ′ [] cfs ′ s ′ WHILE b DO c s ′]
and V and X and Y by force

{
fix x
assume AB: s = t1

(⊆ sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x)
moreover have sources-aux (flow cfs) s x ⊆

sources-aux (flow cfs @ flow cfs ′) s x
by (rule sources-aux-append)

moreover have AC : sources-aux (flow cfs @ flow cfs ′) s x ⊆
sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x
by (rule sources-aux-observe-tl)

ultimately have (c, t1) →∗ (SKIP, t2)
using Z by blast

hence (c;; WHILE b DO c, t1) →∗ (SKIP;; WHILE b DO c, t2)
by (rule star-seq2 )

moreover have s = t1 (⊆ bvars b)
using Q and AB by (blast dest: sources-aux-observe-hd)

hence bval b t1
using S by (blast dest: bvars-bval)

hence (IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →
(c;; WHILE b DO c, t1) ..

ultimately have (IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →∗
(WHILE b DO c, t2)
by (blast intro: star-trans)

moreover have run-flow (flow cfs) s = t2
(⊆ sources-aux (flow cfs ′) (run-flow (flow cfs) s) x)

proof
fix y
assume y ∈ sources-aux (flow cfs ′)

(run-flow (flow cfs) s) x
hence sources (flow cfs) s y ⊆

sources-aux (flow cfs @ flow cfs ′) s x
by (rule sources-aux-member)

hence sources (flow cfs) s y ⊆
sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x
using AC by simp

thus run-flow (flow cfs) s y = t2 y
using Z and AB by blast

qed
hence (WHILE b DO c, t2) →∗ (c3

′, t3) ∧
(c2 = SKIP) = (c3

′ = SKIP)
using AA by simp
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ultimately have
(IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →∗

(c3
′, t3) ∧ (c2 = SKIP) = (c3

′ = SKIP)
by (blast intro: star-trans)

}
moreover {

fix x
assume AB: s = t1

(⊆ sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x)
have run-flow (flow cfs) s = t2

(⊆ sources (flow cfs ′) (run-flow (flow cfs) s) x)
proof

fix y
assume y ∈ sources (flow cfs ′)

(run-flow (flow cfs) s) x
hence sources (flow cfs) s y ⊆

sources (flow cfs @ flow cfs ′) s x
by (rule sources-member)

moreover have sources (flow cfs @ flow cfs ′) s x ⊆
sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x
by (rule sources-observe-tl)

ultimately have sources (flow cfs) s y ⊆
sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x
by simp

thus run-flow (flow cfs) s y = t2 y
using Z and AB by blast

qed
hence run-flow (flow cfs ′) (run-flow (flow cfs) s) x = t3 x

using AA by simp
}
ultimately have ∃ c3

′ t3. ∀ x.
(s = t1

(⊆ sources-aux (〈bvars b〉 # flow cfs @ flow cfs ′) s x) −→
(IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →∗ (c3

′, t3) ∧
(c2 = SKIP) = (c3

′ = SKIP)) ∧
(s = t1

(⊆ sources (〈bvars b〉 # flow cfs @ flow cfs ′) s x) −→
run-flow (flow cfs ′) (run-flow (flow cfs) s) x = t3 x)

by auto
}
ultimately show ?thesis

using R by (auto simp: run-flow-append)
next

assume
S : ¬ bval b s and
T : flow cfs2 = 〈bvars b〉 # flow (tl cfs2)

assume (SKIP, s) →∗{tl cfs2} (c2, s2)
hence U : (c2, s2) = (SKIP, s) ∧ flow (tl cfs2) = []

by (rule small-stepsl-skip)
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show ?thesis
proof (rule exI [of - SKIP], rule exI [of - t1])

{
fix x
assume s = t1 (⊆ sources-aux [〈bvars b〉] s x)
hence s = t1 (⊆ bvars b)

using Q by (blast dest: sources-aux-observe-hd)
hence ¬ bval b t1

using S by (blast dest: bvars-bval)
hence (IF b THEN c;; WHILE b DO c ELSE SKIP, t1) →

(SKIP, t1) ..
}
moreover {

fix x
assume s = t1 (⊆ sources [〈bvars b〉] s x)
hence s x = t1 x

by (subst (asm) append-Nil [symmetric],
simp only: sources.simps, auto)

}
ultimately show ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c1, t1) →∗ (SKIP, t1) ∧ (c2 = SKIP) = (SKIP = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t1 x)
using R and T and U by auto

qed
qed

next
assume R: bval b s
with F and O and P have S : s ∈ Univ B1

′ (⊆ state ∩ Y )
by (drule-tac btyping2-approx [where s = s], auto)

assume (c;; WHILE b DO c, s) →∗{tl2 cfs1} (c1, s1)
hence
(∃ c ′ cfs ′. c1 = c ′;; WHILE b DO c ∧

(c, s) →∗{cfs ′} (c ′, s1) ∧
flow (tl2 cfs1) = flow cfs ′) ∨

(∃ s ′ cfs ′ cfs ′′. length cfs ′′ < length (tl2 cfs1) ∧
(c, s) →∗{cfs ′} (SKIP, s ′) ∧
(WHILE b DO c, s ′) →∗{cfs ′′} (c1, s1) ∧
flow (tl2 cfs1) = flow cfs ′ @ flow cfs ′′)

by (rule small-stepsl-seq)
moreover {

fix c ′ cfs
assume

T : (c, s) →∗{cfs} (c ′, s1) and
U : c1 = c ′;; WHILE b DO c

hence V : (c ′;; WHILE b DO c, s1) →∗{cfs2} (c2, s2)
using J by simp

hence W : s2 = run-flow (flow cfs2) s1

by (rule small-stepsl-run-flow)
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have
(∃ c ′′ cfs ′. c2 = c ′′;; WHILE b DO c ∧

(c ′, s1) →∗{cfs ′} (c ′′, s2) ∧
flow cfs2 = flow cfs ′) ∨

(∃ s ′ cfs ′ cfs ′′. length cfs ′′ < length cfs2 ∧
(c ′, s1) →∗{cfs ′} (SKIP, s ′) ∧
(WHILE b DO c, s ′) →∗{cfs ′′} (c2, s2) ∧
flow cfs2 = flow cfs ′ @ flow cfs ′′)

using V by (rule small-stepsl-seq)
moreover {

fix c ′′ cfs ′

assume (c ′, s1) →∗{cfs ′} (c ′′, s2)
then obtain c2

′ and t2 where X : ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs ′) s1 x) −→

(c ′, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs ′) s1 x) −→

run-flow (flow cfs2) s1 x = t2 x)
using B [of B1 C B1

′ D ′ s cfs c ′ s1 cfs ′ c ′′

run-flow (flow cfs2) s1] and N and S and T and W by force
assume

Y : c2 = c ′′;; WHILE b DO c and
Z : flow cfs2 = flow cfs ′

have ?thesis
proof (rule exI [of - c2

′;; WHILE b DO c], rule exI [of - t2])
from U and W and X and Y and Z show ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c1, t1) →∗ (c2

′;; WHILE b DO c, t2) ∧
(c2 = SKIP) = (c2

′;; WHILE b DO c = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)
by (auto intro: star-seq2 )

qed
}
moreover {

fix s ′ cfs ′ cfs ′′

assume
X : length cfs ′′ < length cfs2 and
Y : (c ′, s1) →∗{cfs ′} (SKIP, s ′) and
Z : (WHILE b DO c, s ′) →∗{cfs ′′} (c2, s2)

then obtain c2
′ and t2 where ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs ′) s1 x) −→
(c ′, t1) →∗ (c2

′, t2) ∧ (SKIP = SKIP) = (c2
′ = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs ′) s1 x) −→ s ′ x = t2 x)
using B [of B1 C B1

′ D ′ s cfs c ′ s1 cfs ′ SKIP s ′]
and N and S and T by force

moreover have AA: s ′ = run-flow (flow cfs ′) s1

using Y by (rule small-stepsl-run-flow)
ultimately have AB: ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs ′) s1 x) −→
(c ′, t1) →∗ (SKIP, t2)) ∧
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(s1 = t1 (⊆ sources (flow cfs ′) s1 x) −→
run-flow (flow cfs ′) s1 x = t2 x)

by blast
have AC : s2 = run-flow (flow cfs ′′) s ′

using Z by (rule small-stepsl-run-flow)
moreover have (c, s) →∗{cfs @ cfs ′} (SKIP, s ′)

using T and Y by (simp add: small-stepsl-append)
hence (c, s) ⇒ s ′

by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s ′ ∈ Univ C (⊆ state ∩ Y )

using M and R by blast
ultimately obtain c2

′ and t3 where AD: ∀ x.
(run-flow (flow cfs ′) s1 = t2

(⊆ sources-aux (flow cfs ′′) (run-flow (flow cfs ′) s1) x) −→
(WHILE b DO c, t2) →∗ (c2

′, t3) ∧
(c2 = SKIP) = (c2

′ = SKIP)) ∧
(run-flow (flow cfs ′) s1 = t2

(⊆ sources (flow cfs ′′) (run-flow (flow cfs ′) s1) x) −→
run-flow (flow cfs ′′) (run-flow (flow cfs ′) s1) x = t3 x)

using K [of cfs ′′ [] cfs ′′ s ′ WHILE b DO c s ′]
and X and Z and AA by force

moreover assume flow cfs2 = flow cfs ′ @ flow cfs ′′

moreover {
fix x
assume AE : s1 = t1

(⊆ sources-aux (flow cfs ′ @ flow cfs ′′) s1 x)
moreover have sources-aux (flow cfs ′) s1 x ⊆

sources-aux (flow cfs ′ @ flow cfs ′′) s1 x
by (rule sources-aux-append)

ultimately have (c ′, t1) →∗ (SKIP, t2)
using AB by blast

hence (c ′;; WHILE b DO c, t1) →∗ (SKIP;; WHILE b DO c, t2)
by (rule star-seq2 )

hence (c ′;; WHILE b DO c, t1) →∗ (WHILE b DO c, t2)
by (blast intro: star-trans)

moreover have run-flow (flow cfs ′) s1 = t2
(⊆ sources-aux (flow cfs ′′) (run-flow (flow cfs ′) s1) x)

proof
fix y
assume y ∈ sources-aux (flow cfs ′′)

(run-flow (flow cfs ′) s1) x
hence sources (flow cfs ′) s1 y ⊆

sources-aux (flow cfs ′ @ flow cfs ′′) s1 x
by (rule sources-aux-member)

thus run-flow (flow cfs ′) s1 y = t2 y
using AB and AE by blast

qed
hence (WHILE b DO c, t2) →∗ (c2

′, t3) ∧
(c2 = SKIP) = (c2

′ = SKIP)

128



using AD by simp
ultimately have (c ′;; WHILE b DO c, t1) →∗ (c2

′, t3) ∧
(c2 = SKIP) = (c2

′ = SKIP)
by (blast intro: star-trans)

}
moreover {

fix x
assume AE : s1 = t1

(⊆ sources (flow cfs ′ @ flow cfs ′′) s1 x)
have run-flow (flow cfs ′) s1 = t2

(⊆ sources (flow cfs ′′) (run-flow (flow cfs ′) s1) x)
proof

fix y
assume y ∈ sources (flow cfs ′′)

(run-flow (flow cfs ′) s1) x
hence sources (flow cfs ′) s1 y ⊆

sources (flow cfs ′ @ flow cfs ′′) s1 x
by (rule sources-member)

thus run-flow (flow cfs ′) s1 y = t2 y
using AB and AE by blast

qed
hence run-flow (flow cfs ′′)

(run-flow (flow cfs ′) s1) x = t3 x
using AD by simp

}
ultimately have ?thesis

by (metis U AA AC )
}
ultimately have ?thesis

by blast
}
moreover {

fix s ′ cfs cfs ′

assume
length cfs ′ < length (tl2 cfs1) and
(c, s) →∗{cfs} (SKIP, s ′) and
(WHILE b DO c, s ′) →∗{cfs ′} (c1, s1)

moreover from this have (c, s) ⇒ s ′

by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s ′ ∈ Univ C (⊆ state ∩ Y )

using M and R by blast
ultimately have ?thesis

using K [of cfs ′ @ cfs2 cfs ′ cfs2 s ′ c1 s1] and J by force
}
ultimately show ?thesis

by blast
next

assume (SKIP, s) →∗{tl2 cfs1} (c1, s1)
hence (c1, s1) = (SKIP, s)
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by (blast dest: small-stepsl-skip)
moreover from this have (c2, s2) = (SKIP, s) ∧ flow cfs2 = []

using J by (blast dest: small-stepsl-skip)
ultimately show ?thesis

by auto
qed

qed
}
ultimately show
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ (B, Y ) ∈ U . ∃ s ∈ B. ∃ y ∈ Y . ¬ s: dom y  dom x) −→
no-upd (flow cfs2) x)

using L by auto
qed

lemma ctyping2-correct-aux:
[[(U , v) |= c (⊆ A, X) = Some (B, Y ); s ∈ Univ A (⊆ state ∩ X);

(c, s) →∗{cfs1} (c1, s1); (c1, s1) →∗{cfs2} (c2, s2)]] =⇒
ok-flow-aux U c1 c2 s1 s2 (flow cfs2)

proof (induction (U , v) c A X arbitrary: B Y U v s c1 c2 s1 s2 cfs1 cfs2

rule: ctyping2 .induct)
fix A X C Z U v c1 c2 c ′ c ′′ s s1 s2 cfs1 cfs2

show
[[
∧

B Y s c ′ c ′′ s1 s2 cfs1 cfs2.
(U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
s ∈ Univ A (⊆ state ∩ X) =⇒
(c1, s) →∗{cfs1} (c ′, s1) =⇒
(c ′, s1) →∗{cfs2} (c ′′, s2) =⇒
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c ′, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ (B, W ) ∈ U . ∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→
no-upd (flow cfs2) x);∧

p B Y C Z s c ′ c ′′ s1 s2 cfs1 cfs2.
(U , v) |= c1 (⊆ A, X) = Some p =⇒
(B, Y ) = p =⇒
(U , v) |= c2 (⊆ B, Y ) = Some (C , Z ) =⇒
s ∈ Univ B (⊆ state ∩ Y ) =⇒
(c2, s) →∗{cfs1} (c ′, s1) =⇒
(c ′, s1) →∗{cfs2} (c ′′, s2) =⇒
(∀ t1. ∃ c2

′′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c ′, t1) →∗ (c2
′′, t2) ∧ (c ′′ = SKIP) = (c2

′′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ (B, W ) ∈ U . ∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→
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no-upd (flow cfs2) x);
(U , v) |= c1;; c2 (⊆ A, X) = Some (C , Z );
s ∈ Univ A (⊆ state ∩ X);
(c1;; c2, s) →∗{cfs1} (c ′, s1);
(c ′, s1) →∗{cfs2} (c ′′, s2)]] =⇒

(∀ t1. ∃ c2
′ t2. ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c ′, t1) →∗ (c2

′, t2) ∧ (c ′′ = SKIP) = (c2
′ = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧
(∀ x. (∃ (B, W ) ∈ U . ∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→

no-upd (flow cfs2) x)
by (auto del: conjI split: option.split-asm,
rule ctyping2-correct-aux-seq)

next
fix A X C Y U v b c1 c2 c ′ c ′′ s s1 s2 cfs1 cfs2

show
[[
∧

U ′ p B1 B2 C Y s c ′ c ′′ s1 s2 cfs1 cfs2.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒
(U ′, v) |= c1 (⊆ B1, X) = Some (C , Y ) =⇒
s ∈ Univ B1 (⊆ state ∩ X) =⇒
(c1, s) →∗{cfs1} (c ′, s1) =⇒
(c ′, s1) →∗{cfs2} (c ′′, s2) =⇒
(∀ t1. ∃ c2

′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c ′, t1) →∗ (c2
′, t2) ∧ (c ′′ = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ (B, W ) ∈ U ′. ∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→
no-upd (flow cfs2) x);∧

U ′ p B1 B2 C Y s c ′ c ′′ s1 s2 cfs1 cfs2.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒
(U ′, v) |= c2 (⊆ B2, X) = Some (C , Y ) =⇒
s ∈ Univ B2 (⊆ state ∩ X) =⇒
(c2, s) →∗{cfs1} (c ′, s1) =⇒
(c ′, s1) →∗{cfs2} (c ′′, s2) =⇒
(∀ t1. ∃ c2

′′ t2. ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→

(c ′, t1) →∗ (c2
′′, t2) ∧ (c ′′ = SKIP) = (c2

′′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧

(∀ x. (∃ (B, W ) ∈ U ′. ∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→
no-upd (flow cfs2) x);

(U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (C , Y );
s ∈ Univ A (⊆ state ∩ X);
(IF b THEN c1 ELSE c2, s) →∗{cfs1} (c ′, s1);
(c ′, s1) →∗{cfs2} (c ′′, s2)]] =⇒

(∀ t1. ∃ c2
′ t2. ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c ′, t1) →∗ (c2

′, t2) ∧ (c ′′ = SKIP) = (c2
′ = SKIP)) ∧
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(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧
(∀ x. (∃ (B, W ) ∈ U . ∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→

no-upd (flow cfs2) x)
by (auto del: conjI split: option.split-asm prod.split-asm,
rule ctyping2-correct-aux-if )

next
fix A X B Y U v b c c1 c2 s s1 s2 cfs1 cfs2

show
[[
∧

B1 B2 C Y B1
′ B2

′ D Z s c1 c2 s1 s2 cfs1 cfs2.
(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: dom ‘ W  UNIV =⇒

({}, False) |= c (⊆ B1, X) = Some (D, Z ) =⇒
s ∈ Univ B1 (⊆ state ∩ X) =⇒
(c, s) →∗{cfs1} (c1, s1) =⇒
(c1, s1) →∗{cfs2} (c2, s2) =⇒
(∀ t1. ∃ c2

′ t2. ∀B1.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 B1) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 B1) −→ s2 B1 = t2 B1)) ∧

(∀ x. (∃ (B, W ) ∈ {}. ∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→
no-upd (flow cfs2) x);∧

B1 B2 C Y B1
′ B2

′ D ′ Z ′ s c1 c2 s1 s2 cfs1 cfs2.
(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: dom ‘ W  UNIV =⇒

({}, False) |= c (⊆ B1
′, Y ) = Some (D ′, Z ′) =⇒

s ∈ Univ B1
′ (⊆ state ∩ Y ) =⇒

(c, s) →∗{cfs1} (c1, s1) =⇒
(c1, s1) →∗{cfs2} (c2, s2) =⇒
(∀ t1. ∃ c2

′ t2. ∀B1.
(s1 = t1 (⊆ sources-aux (flow cfs2) s1 B1) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs2) s1 B1) −→ s2 B1 = t2 B1)) ∧

(∀ x. (∃ (B, W ) ∈ {}. ∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→
no-upd (flow cfs2) x);

(U , v) |= WHILE b DO c (⊆ A, X) = Some (B, Y );
s ∈ Univ A (⊆ state ∩ X);
(WHILE b DO c, s) →∗{cfs1} (c1, s1);
(c1, s1) →∗{cfs2} (c2, s2)]] =⇒

(∀ t1. ∃ c2
′ t2. ∀ x.

(s1 = t1 (⊆ sources-aux (flow cfs2) s1 x) −→
(c1, t1) →∗ (c2

′, t2) ∧ (c2 = SKIP) = (c2
′ = SKIP)) ∧

(s1 = t1 (⊆ sources (flow cfs2) s1 x) −→ s2 x = t2 x)) ∧
(∀ x. (∃ (B, W ) ∈ U . ∃ s ∈ B. ∃ y ∈ W . ¬ s: dom y  dom x) −→
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no-upd (flow cfs2) x)
by (auto del: conjI split: option.split-asm prod.split-asm,
rule ctyping2-correct-aux-while, assumption+, blast)

qed (auto del: conjI split: prod.split-asm)

theorem ctyping2-correct:
assumes A: (U , v) |= c (⊆ A, X) = Some (B, Y )
shows correct c A X

proof −
{

fix c1 c2 s1 s2 cfs t1
assume ok-flow-aux U c1 c2 s1 s2 (flow cfs)
then obtain c2

′ and t2 where A: ∀ x.
(s1 = t1 (⊆ sources-aux (flow cfs) s1 x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP)) ∧
(s1 = t1 (⊆ sources (flow cfs) s1 x) −→ s2 x = t2 x)
by blast

have ∃ c2
′ t2. ∀ x. s1 = t1 (⊆ sources (flow cfs) s1 x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP) ∧ s2 x = t2 x
proof (rule exI [of - c2

′], rule exI [of - t2])
have ∀ x. s1 = t1 (⊆ sources (flow cfs) s1 x) −→

s1 = t1 (⊆ sources-aux (flow cfs) s1 x)
proof (rule allI , rule impI )

fix x
assume s1 = t1 (⊆ sources (flow cfs) s1 x)
moreover have sources-aux (flow cfs) s1 x ⊆

sources (flow cfs) s1 x
by (rule sources-aux-sources)

ultimately show s1 = t1 (⊆ sources-aux (flow cfs) s1 x)
by blast

qed
with A show ∀ x. s1 = t1 (⊆ sources (flow cfs) s1 x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP) ∧ s2 x = t2 x
by auto

qed
}
with A show ?thesis

by (clarsimp dest!: small-steps-stepsl simp: correct-def ,
drule-tac ctyping2-correct-aux, auto)

qed

end

end
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5 Degeneracy to stateless level-based information
flow control

theory Degeneracy
imports Correctness HOL−IMP.Sec-TypingT

begin

The goal of this concluding section is to prove the degeneracy of the informa-
tion flow correctness notion and the static type system defined in this paper
to the classical counterparts addressed in [7], section 9.2.6, and formalized
in [5] and [6], in case of a stateless level-based information flow correctness
policy.
First of all, locale noninterf is interpreted within the context of the class
sec defined in [5], as follows.

• Parameter dom is instantiated as function sec, which also sets the type
variable standing for the type of the domains to nat.

• Parameter interf is instantiated as the predicate such that for any
program state, the output is True just in case the former input level
may interfere with, namely is not larger than, the latter one.

• Parameter state is instantiated as the empty set, consistently with the
fact that the policy is represented by a single, stateless interference
predicate.

Next, the information flow security notion implied by theorem noninterfer-
ence in [6] is formalized as a predicate secure taking a program as input.
This notion is then proven to be implied, in the degenerate interpretation
described above, by the information flow correctness notion formalized as
predicate correct (theorem correct-secure). Particularly:

• This theorem demands the additional assumption that the state set A
input to correct is nonempty, since correct is vacuously true for A =
{}.

• In order for this theorem to hold, predicate secure needs to slight
differ from the information flow security notion implied by theorem
noninterference, in that it requires state t ′ to exist if there also exists
some variable with a level not larger than l, namely if condition s =
t (≤ l) is satisfied nontrivially – actually, no leakage may arise from
two initial states disagreeing on the value of every variable. In fact,
predicate correct requires a nontrivial configuration (c2

′, t2) to exist in
case condition s1 = t1 (⊆ sources cs s1 x) is satisfied for some variable
x.
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Finally, the static type system ctyping2 is proven to be equivalent to the
sec-type one defined in [6] in the above degenerate interpretation (theorems
ctyping2-sec-type and sec-type-ctyping2 ). The former theorem, which proves
that a pass verdict from ctyping2 implies the issuance of a pass verdict from
sec-type as well, demands the additional assumptions that (a) the state set
input to ctyping2 is nonempty, (b) the input program does not contain any
loop with Bc True as boolean condition, and (c) the input program has
undergone constant folding, as addressed in [7], section 3.1.3 for arithmetic
expressions and in [7], section 3.2.1 for boolean expressions. Why?
This need arises from the different ways in which the two type systems
handle “dead” conditional branches. Type system sec-type does not try to
detect “dead” branches; it simply applies its full range of information flow
security checks to any conditional branch contained in the input program,
even if it actually is a “dead” one. On the contrary, type system ctyping2
detects “dead” branches whenever boolean conditions can be evaluated at
compile time, and applies only a subset of its information flow correctness
checks to such branches.
As parameter state is instantiated as the empty set, boolean conditions con-
taining variables cannot be evaluated at compile time, yet they can if they
only contain constants. Thus, assumption (a) prevents ctyping2 from han-
dling the entire input program as a “dead” branch, while assumptions (b)
and (c) ensure that ctyping2 will not detect any “dead” conditional branch
within the program. On the whole, those assumptions guarantee that ctyp-
ing2, like sec-type, applies its full range of checks to any conditional branch
contained in the input program, as required for theorem ctyping2-sec-type
to hold.

5.1 Global context definitions and proofs
fun cgood :: com ⇒ bool where
cgood (c1;; c2) = (cgood c1 ∧ cgood c2) |
cgood (IF - THEN c1 ELSE c2) = (cgood c1 ∧ cgood c2) |
cgood (WHILE b DO c) = (b 6= Bc True ∧ cgood c) |
cgood - = True

fun seq :: com ⇒ com ⇒ com where
seq SKIP c = c |
seq c SKIP = c |
seq c1 c2 = c1;; c2

fun ifc :: bexp ⇒ com ⇒ com ⇒ com where
ifc (Bc True) c - = c |
ifc (Bc False) - c = c |
ifc b c1 c2 = (if c1 = c2 then c1 else IF b THEN c1 ELSE c2)
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fun while :: bexp ⇒ com ⇒ com where
while (Bc False) - = SKIP |
while b c = WHILE b DO c

primrec csimp :: com ⇒ com where
csimp SKIP = SKIP |
csimp (x ::= a) = x ::= asimp a |
csimp (c1;; c2) = seq (csimp c1) (csimp c2) |
csimp (IF b THEN c1 ELSE c2) = ifc (bsimp b) (csimp c1) (csimp c2) |
csimp (WHILE b DO c) = while (bsimp b) (csimp c)

lemma not-size:
size (not b) ≤ Suc (size b)

by (induction b rule: not.induct, simp-all)

lemma and-size:
size (and b1 b2) ≤ Suc (size b1 + size b2)

by (induction b1 b2 rule: and.induct, simp-all)

lemma less-size:
size (less a1 a2) = 0

by (induction a1 a2 rule: less.induct, simp-all)

lemma bsimp-size:
size (bsimp b) ≤ size b

by (induction b, auto intro: le-trans not-size and-size simp: less-size)

lemma seq-size:
size (seq c1 c2) ≤ Suc (size c1 + size c2)

by (induction c1 c2 rule: seq.induct, simp-all)

lemma ifc-size:
size (ifc b c1 c2) ≤ Suc (size c1 + size c2)

by (induction b c1 c2 rule: ifc.induct, simp-all)

lemma while-size:
size (while b c) ≤ Suc (size c)

by (induction b c rule: while.induct, simp-all)

lemma csimp-size:
size (csimp c) ≤ size c

by (induction c, auto intro: le-trans seq-size ifc-size while-size)

lemma avars-asimp:
avars a = {} =⇒ ∃ i. asimp a = N i
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by (induction a, auto)

lemma seq-match [dest!]:
seq (csimp c1) (csimp c2) = c1;; c2 =⇒ csimp c1 = c1 ∧ csimp c2 = c2

by (rule seq.cases [of (csimp c1, csimp c2)],
insert csimp-size [of c1], insert csimp-size [of c2], simp-all)

lemma ifc-match [dest!]:
ifc (bsimp b) (csimp c1) (csimp c2) = IF b THEN c1 ELSE c2 =⇒

bsimp b = b ∧ (∀ v. b 6= Bc v) ∧ csimp c1 = c1 ∧ csimp c2 = c2

by (insert csimp-size [of c1], insert csimp-size [of c2],
subgoal-tac csimp c1 6= IF b THEN c1 ELSE c2, auto intro: ifc.cases
[of (bsimp b, csimp c1, csimp c2)] split: if-split-asm)

lemma while-match [dest!]:
while (bsimp b) (csimp c) = WHILE b DO c =⇒

bsimp b = b ∧ b 6= Bc False ∧ csimp c = c
by (rule while.cases [of (bsimp b, csimp c)], auto)

5.2 Local context definitions and proofs
context sec
begin

interpretation noninterf λs. (≤) sec {}
by (unfold-locales, simp)

notation interf-set ((-: -  -) [51 , 51 , 51 ] 50 )
notation univ-states-if ((Univ? - -) [51 , 75 ] 75 )
notation atyping ((- |= - ′(⊆ - ′)) [51 , 51 ] 50 )
notation btyping2-aux ((||= - ′(⊆ -, - ′)) [51 ] 55 )
notation btyping2 ((|= - ′(⊆ -, - ′)) [51 ] 55 )
notation ctyping1 ((` - ′(⊆ -, - ′)) [51 ] 55 )
notation ctyping2 ((- |= - ′(⊆ -, - ′)) [51 , 51 ] 55 )

abbreviation eq-le-ext :: state ⇒ state ⇒ level ⇒ bool
((- = - ′(≤ - ′)) [51 , 51 , 0 ] 50 ) where

s = t (≤ l) ≡ s = t (≤ l) ∧ (∃ x :: vname. sec x ≤ l)

definition secure :: com ⇒ bool where
secure c ≡ ∀ s s ′ t l. (c, s) ⇒ s ′ ∧ s = t (≤ l) −→

(∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ (≤ l))

definition levels :: config set ⇒ level set where
levels U ≡ insert 0 (sec ‘

⋃
(snd ‘ {(B, Y ) ∈ U . B 6= {}}))
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lemma avars-finite:
finite (avars a)

by (induction a, simp-all)

lemma avars-in:
n < sec a =⇒ sec a ∈ sec ‘ avars a

by (induction a, auto simp: max-def )

lemma avars-sec:
x ∈ avars a =⇒ sec x ≤ sec a

by (induction a, auto)

lemma avars-ub:
sec a ≤ l = (∀ x ∈ avars a. sec x ≤ l)

by (induction a, auto)

lemma bvars-finite:
finite (bvars b)

by (induction b, simp-all add: avars-finite)

lemma bvars-in:
n < sec b =⇒ sec b ∈ sec ‘ bvars b

by (induction b, auto dest!: avars-in simp: max-def )

lemma bvars-sec:
x ∈ bvars b =⇒ sec x ≤ sec b

by (induction b, auto dest: avars-sec)

lemma bvars-ub:
sec b ≤ l = (∀ x ∈ bvars b. sec x ≤ l)

by (induction b, auto simp: avars-ub)

lemma levels-insert:
assumes

A: A 6= {} and
B: finite (levels U )

shows finite (levels (insert (A, bvars b) U )) ∧
Max (levels (insert (A, bvars b) U )) = max (sec b) (Max (levels U ))
(is finite (levels ?U ′) ∧ ?P)

proof −
have C : levels ?U ′ = sec ‘ bvars b ∪ levels U

using A by (auto simp: image-def levels-def univ-states-if-def )
hence D: finite (levels ?U ′)

using B by (simp add: bvars-finite)
moreover have ?P
proof (rule Max-eqI [OF D])

fix l
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assume l ∈ levels (insert (A, bvars b) U )
thus l ≤ max (sec b) (Max (levels U ))

using C by (auto dest: Max-ge [OF B] bvars-sec)
next

show max (sec b) (Max (levels U )) ∈ levels (insert (A, bvars b) U )
using C by (insert Max-in [OF B],
fastforce dest: bvars-in simp: max-def not-le levels-def )

qed
ultimately show ?thesis ..

qed

lemma sources-le:
y ∈ sources cs s x =⇒ sec y ≤ sec x

and sources-aux-le:
y ∈ sources-aux cs s x =⇒ sec y ≤ sec x

by (induction cs s x and cs s x rule: sources-induct,
auto split: com-flow.split-asm if-split-asm, fastforce+)

lemma bsimp-btyping2-aux-not [intro]:
[[bsimp b = b =⇒ ∀ v. b 6= Bc v =⇒ ||= b (⊆ A, X) = None;

not (bsimp b) = Not b]] =⇒ ||= b (⊆ A, X) = None
by (rule not.cases [of bsimp b], auto)

lemma bsimp-btyping2-aux-and [intro]:
assumes

A: [[bsimp b1 = b1; ∀ v. b1 6= Bc v]] =⇒ ||= b1 (⊆ A, X) = None and
B: and (bsimp b1) (bsimp b2) = And b1 b2

shows ||= b1 (⊆ A, X) = None
proof −

{
assume bsimp b2 = And b1 b2

hence Bc True = b1

by (insert bsimp-size [of b2], simp)
}
moreover {

assume bsimp b2 = And (Bc True) b2

hence False
by (insert bsimp-size [of b2], simp)

}
moreover {

assume bsimp b1 = And b1 b2

hence False
by (insert bsimp-size [of b1], simp)

}
ultimately have bsimp b1 = b1 ∧ (∀ v. b1 6= Bc v)

using B by (auto intro: and.cases [of (bsimp b1, bsimp b2)])
thus ?thesis

using A by simp
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qed

lemma bsimp-btyping2-aux-less [elim]:
[[less (asimp a1) (asimp a2) = Less a1 a2;

avars a1 = {}; avars a2 = {}]] =⇒ False
by (fastforce dest: avars-asimp)

lemma bsimp-btyping2-aux:
[[bsimp b = b; ∀ v. b 6= Bc v]] =⇒ ||= b (⊆ A, X) = None

by (induction b, auto split: option.split)

lemma bsimp-btyping2 :
[[bsimp b = b; ∀ v. b 6= Bc v]] =⇒ |= b (⊆ A, X) = (A, A)

by (auto dest: bsimp-btyping2-aux [of - A X ] simp: btyping2-def )

lemma csimp-ctyping2-if :
[[
∧

U ′ B B ′. U ′ = U =⇒ B = B1 =⇒ {} = B ′ =⇒ B1 6= {} =⇒ False; s ∈ A;
|= b (⊆ A, X) = (B1, B2); bsimp b = b; ∀ v. b 6= Bc v]] =⇒

False
by (drule bsimp-btyping2 [of - A X ], auto)

lemma csimp-ctyping2-while:
[[(if P then Some (B2 ∪ B2

′, Y ) else None) = Some ({}, Z ); s ∈ A;
|= b (⊆ A, X) = (B1, B2); bsimp b = b; b 6= Bc True; b 6= Bc False]] =⇒

False
by (drule bsimp-btyping2 [of - A X ], auto split: if-split-asm)

lemma csimp-ctyping2 :
[[(U , v) |= c (⊆ A, X) = Some (B, Y ); A 6= {}; cgood c; csimp c = c]] =⇒

B 6= {}
proof (induction (U , v) c A X arbitrary: B Y U v rule: ctyping2 .induct)

fix A X B Y U v c1 c2

show
[[
∧

B Y . (U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
A 6= {} =⇒ cgood c1 =⇒ csimp c1 = c1 =⇒
B 6= {};∧
p B Y C Z . (U , v) |= c1 (⊆ A, X) = Some p =⇒
(B, Y ) = p =⇒ (U , v) |= c2 (⊆ B, Y ) = Some (C , Z ) =⇒
B 6= {} =⇒ cgood c2 =⇒ csimp c2 = c2 =⇒
C 6= {};

(U , v) |= c1;; c2 (⊆ A, X) = Some (B, Y );
A 6= {}; cgood (c1;; c2);
csimp (c1;; c2) = c1;; c2]] =⇒

B 6= {}
by (fastforce split: option.split-asm)

next
fix A X C Y U v b c1 c2

show
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[[
∧

U ′ p B1 B2 C Y .
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ (U ′, v) |= c1 (⊆ B1, X) = Some (C , Y ) =⇒
B1 6= {} =⇒ cgood c1 =⇒ csimp c1 = c1 =⇒
C 6= {};∧
U ′ p B1 B2 C Y .
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ (U ′, v) |= c2 (⊆ B2, X) = Some (C , Y ) =⇒
B2 6= {} =⇒ cgood c2 =⇒ csimp c2 = c2 =⇒
C 6= {};
(U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (C , Y );

A 6= {}; cgood (IF b THEN c1 ELSE c2);
csimp (IF b THEN c1 ELSE c2) = IF b THEN c1 ELSE c2]] =⇒

C 6= {}
by (auto split: option.split-asm prod.split-asm,
rule csimp-ctyping2-if )

next
fix A X B Z U v b c
show
[[
∧

B1 B2 C Y B1
′ B2

′ B Z .
(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: sec ‘ W  UNIV =⇒

({}, False) |= c (⊆ B1, X) = Some (B, Z ) =⇒
B1 6= {} =⇒ cgood c =⇒ csimp c = c =⇒
B 6= {};∧
B1 B2 C Y B1

′ B2
′ B Z .

(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: sec ‘ W  UNIV =⇒

({}, False) |= c (⊆ B1
′, Y ) = Some (B, Z ) =⇒

B1
′ 6= {} =⇒ cgood c =⇒ csimp c = c =⇒

B 6= {};
(U , v) |= WHILE b DO c (⊆ A, X) = Some (B, Z );
A 6= {}; cgood (WHILE b DO c);
csimp (WHILE b DO c) = WHILE b DO c]] =⇒

B 6= {}
by (auto split: option.split-asm prod.split-asm,
rule csimp-ctyping2-while)

qed (simp-all split: if-split-asm)

theorem correct-secure:
assumes

A: correct c A X and
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B: A 6= {}
shows secure c

proof −
{

fix s s ′ t l and x :: vname
assume (c, s) ⇒ s ′

then obtain cfs where C : (c, s) →∗{cfs} (SKIP, s ′)
by (auto dest: small-steps-stepsl simp: big-iff-small)

assume D: s = t (≤ l)
have E : ∀ x. sec x ≤ l −→ s = t (⊆ sources (flow cfs) s x)
proof (rule allI , rule impI )

fix x :: vname
assume sec x ≤ l
moreover have sources (flow cfs) s x ⊆ {y. sec y ≤ sec x}

by (rule subsetI , simp, rule sources-le)
ultimately show s = t (⊆ sources (flow cfs) s x)

using D by auto
qed
assume ∀ s c1 c2 s1 s2 cfs.

(c, s) →∗ (c1, s1) ∧ (c1, s1) →∗{cfs} (c2, s2) −→
(∀ t1. ∃ c2

′ t2. ∀ x.
s1 = t1 (⊆ sources (flow cfs) s1 x) −→

(c1, t1) →∗ (c2
′, t2) ∧ (c2 = SKIP) = (c2

′ = SKIP) ∧
s2 x = t2 x)

note F = this [rule-format]
obtain t ′ where G: ∀ x.

s = t (⊆ sources (flow cfs) s x) −→
(c, t) →∗ (SKIP, t ′) ∧ s ′ x = t ′ x

using F [of s c s cfs SKIP s ′ t] and C by blast
assume H : sec x ≤ l
{

have s = t (⊆ sources (flow cfs) s x)
using E and H by simp

hence (c, t) ⇒ t ′

using G by (simp add: big-iff-small)
}
moreover {

fix x :: vname
assume sec x ≤ l
hence s = t (⊆ sources (flow cfs) s x)

using E by simp
hence s ′ x = t ′ x

using G by simp
}
ultimately have ∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ (≤ l)

by auto
}
with A and B show ?thesis

by (auto simp: correct-def secure-def split: if-split-asm)
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qed

lemma ctyping2-sec-type-assign [elim]:
assumes

A: (if ((∃ s. s ∈ Univ? A X) −→ (∀ y ∈ avars a. sec y ≤ sec x)) ∧
(∀ p ∈ U . ∀B Y . p = (B, Y ) −→ B = {} ∨ (∀ y ∈ Y . sec y ≤ sec x))
then Some (if x ∈ {} ∧ A 6= {}

then if v |= a (⊆ X)
then ({s(x := aval a s) |s. s ∈ A}, insert x X) else (A, X − {x})

else (A, Univ?? A X))
else None) = Some (B, Y )
(is (if (- −→ ?P) ∧ ?Q then - else -) = -) and

B: s ∈ A and
C : finite (levels U )

shows Max (levels U ) ` x ::= a
proof −

have ?P ∧ ?Q
using A and B by (auto simp: univ-states-if-def split: if-split-asm)

moreover from this have Max (levels U ) ≤ sec x
using C by (subst Max-le-iff , auto simp: levels-def , blast)

ultimately show Max (levels U ) ` x ::= a
by (auto intro: Assign simp: avars-ub)

qed

lemma ctyping2-sec-type-seq:
assumes

A:
∧

B ′ s. B = B ′ =⇒ s ∈ A =⇒ Max (levels U ) ` c1 and
B:

∧
B ′ B ′′ C Z s ′. B = B ′ =⇒ B ′′ = B ′ =⇒

(U , v) |= c2 (⊆ B ′, Y ) = Some (C , Z ) =⇒
s ′ ∈ B ′ =⇒ Max (levels U ) ` c2 and

C : (U , v) |= c1 (⊆ A, X) = Some (B, Y ) and
D: (U , v) |= c2 (⊆ B, Y ) = Some (C , Z ) and
E : s ∈ A and
F : cgood c1 and
G: csimp c1 = c1

shows Max (levels U ) ` c1;; c2

proof −
have Max (levels U ) ` c1

using A and E by simp
moreover from C and E and F and G have B 6= {}

by (erule-tac csimp-ctyping2 , blast)
hence Max (levels U ) ` c2

using B and D by blast
ultimately show ?thesis ..

qed

lemma ctyping2-sec-type-if :
assumes
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A:
∧

U ′ B C s. U ′ = insert (Univ? A X , bvars b) U =⇒
B = B1 =⇒ C 1 = C =⇒ s ∈ B1 =⇒

finite (levels (insert (Univ? A X , bvars b) U )) =⇒
Max (levels (insert (Univ? A X , bvars b) U )) ` c1

(is
∧

- - - -. - = ?U ′ =⇒ - =⇒ - =⇒ - =⇒ - =⇒ -)
assumes

B:
∧

U ′ B C s. U ′ = ?U ′ =⇒ B = B1 =⇒ C 2 = C =⇒ s ∈ B2 =⇒
finite (levels ?U ′) =⇒ Max (levels ?U ′) ` c2 and

C : |= b (⊆ A, X) = (B1, B2) and
D: s ∈ A and
E : bsimp b = b and
F : ∀ v. b 6= Bc v and
G: finite (levels U )

shows Max (levels U ) ` IF b THEN c1 ELSE c2

proof −
from D and G have H : finite (levels ?U ′) ∧

Max (levels ?U ′) = max (sec b) (Max (levels U ))
using levels-insert by (auto simp: univ-states-if-def )

moreover have I : |= b (⊆ A, X) = (A, A)
using E and F by (rule bsimp-btyping2 )

hence Max (levels ?U ′) ` c1

using A and C and D and H by auto
moreover have Max (levels ?U ′) ` c2

using B and C and D and H and I by auto
ultimately show ?thesis

by (auto intro: If )
qed

lemma ctyping2-sec-type-while:
assumes

A:
∧

B C ′ B ′ D ′ s. B = B1 =⇒ C ′ = C =⇒ B ′ = B1
′ =⇒

((∃ s. s ∈ Univ? A X ∨ s ∈ Univ? C Y ) −→
(∀ x ∈ bvars b. All ((≤) (sec x)))) ∧

(∀ p ∈ U . case p of (B, W ) ⇒ (∃ s. s ∈ B) −→
(∀ x ∈ W . All ((≤) (sec x)))) =⇒
D = D ′ =⇒ s ∈ B1 =⇒ finite (levels {}) =⇒ Max (levels {}) ` c

(is
∧

- - - - -. - =⇒ - =⇒ - =⇒
?P ∧ (∀ p ∈ -. case p of (-, W ) ⇒ - −→ ?Q W ) =⇒

- =⇒ - =⇒ - =⇒ -)
assumes

B: (if ?P ∧ (∀ p ∈ U . ∀B W . p = (B, W ) −→ B = {} ∨ ?Q W )
then Some (B2 ∪ B2

′, Univ?? B2 X ∩ Y ) else None) = Some (B, Z )
(is (if ?R then - else -) = -) and

C : |= b (⊆ A, X) = (B1, B2) and
D: s ∈ A and
E : bsimp b = b and
F : b 6= Bc False and
G: b 6= Bc True and
H : finite (levels U )
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shows Max (levels U ) ` WHILE b DO c
proof −

have ?R
using B by (simp split: if-split-asm)

hence sec b ≤ 0
using D by (subst bvars-ub, auto simp: univ-states-if-def , fastforce)

moreover have |= b (⊆ A, X) = (A, A)
using E and F and G by (blast intro: bsimp-btyping2 )

hence 0 ` c
using A and C and D and ‹?R› by (fastforce simp: levels-def )

moreover have Max (levels U ) = 0
proof (rule Max-eqI [OF H ])

fix l
assume l ∈ levels U
thus l ≤ 0

using ‹?R› by (fastforce simp: levels-def )
next

show 0 ∈ levels U
by (simp add: levels-def )

qed
ultimately show ?thesis

by (auto intro: While)
qed

theorem ctyping2-sec-type:
[[(U , v) |= c (⊆ A, X) = Some (B, Y );

s ∈ A; cgood c; csimp c = c; finite (levels U )]] =⇒
Max (levels U ) ` c

proof (induction (U , v) c A X arbitrary: B Y U v s rule: ctyping2 .induct)
fix U
show Max (levels U ) ` SKIP

by (rule Skip)
next

fix A X C Z U v c1 c2 s
show
[[
∧

B Y s. (U , v) |= c1 (⊆ A, X) = Some (B, Y ) =⇒
s ∈ A =⇒ cgood c1 =⇒ csimp c1 = c1 =⇒ finite (levels U ) =⇒
Max (levels U ) ` c1;∧
p B Y C Z s. (U , v) |= c1 (⊆ A, X) = Some p =⇒
(B, Y ) = p =⇒ (U , v) |= c2 (⊆ B, Y ) = Some (C , Z ) =⇒
s ∈ B =⇒ cgood c2 =⇒ csimp c2 = c2 =⇒ finite (levels U ) =⇒
Max (levels U ) ` c2;

(U , v) |= c1;; c2 (⊆ A, X) = Some (C , Z );
s ∈ A; cgood (c1;; c2);
csimp (c1;; c2) = c1;; c2;
finite (levels U )]] =⇒

Max (levels U ) ` c1;; c2

by (auto split: option.split-asm, rule ctyping2-sec-type-seq)
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next
fix A X B Y U v b c1 c2 s
show
[[
∧

U ′ p B1 B2 C Y s.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ (U ′, v) |= c1 (⊆ B1, X) = Some (C , Y ) =⇒
s ∈ B1 =⇒ cgood c1 =⇒ csimp c1 = c1 =⇒ finite (levels U ′) =⇒
Max (levels U ′) ` c1;∧
U ′ p B1 B2 C Y s.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ (U ′, v) |= c2 (⊆ B2, X) = Some (C , Y ) =⇒
s ∈ B2 =⇒ cgood c2 =⇒ csimp c2 = c2 =⇒ finite (levels U ′) =⇒
Max (levels U ′) ` c2;

(U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (B, Y );
s ∈ A; cgood (IF b THEN c1 ELSE c2);
csimp (IF b THEN c1 ELSE c2) = IF b THEN c1 ELSE c2;
finite (levels U )]] =⇒

Max (levels U ) ` IF b THEN c1 ELSE c2

by (auto split: option.split-asm prod.split-asm,
rule ctyping2-sec-type-if )

next
fix A X B Z U v b c s
show
[[
∧

B1 B2 C Y B1
′ B2

′ D Z s.
(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: sec ‘ W  UNIV =⇒

({}, False) |= c (⊆ B1, X) = Some (D, Z ) =⇒
s ∈ B1 =⇒ cgood c =⇒ csimp c = c =⇒ finite (levels {}) =⇒
Max (levels {}) ` c;∧
B1 B2 C Y B1

′ B2
′ D ′ Z ′ s.

(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: sec ‘ W  UNIV =⇒

({}, False) |= c (⊆ B1
′, Y ) = Some (D ′, Z ′) =⇒

s ∈ B1
′ =⇒ cgood c =⇒ csimp c = c =⇒ finite (levels {}) =⇒

Max (levels {}) ` c;
(U , v) |= WHILE b DO c (⊆ A, X) = Some (B, Z );
s ∈ A; cgood (WHILE b DO c);
csimp (WHILE b DO c) = WHILE b DO c;
finite (levels U )]] =⇒

Max (levels U ) ` WHILE b DO c
by (auto split: option.split-asm prod.split-asm,
rule ctyping2-sec-type-while)

qed (auto split: prod.split-asm)
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lemma sec-type-ctyping2-if :
assumes

A:
∧

U ′ B1 B2. U ′ = insert (Univ? A X , bvars b) U =⇒
(B1, B2) = |= b (⊆ A, X) =⇒

Max (levels (insert (Univ? A X , bvars b) U )) ` c1 =⇒
finite (levels (insert (Univ? A X , bvars b) U )) =⇒

∃C Y . (insert (Univ? A X , bvars b) U , v) |= c1 (⊆ B1, X) =
Some (C , Y )

(is
∧

- - -. - = ?U ′ =⇒ - =⇒ - =⇒ - =⇒ -)
assumes

B:
∧

U ′ B1 B2. U ′ = ?U ′ =⇒ (B1, B2) = |= b (⊆ A, X) =⇒
Max (levels ?U ′) ` c2 =⇒ finite (levels ?U ′) =⇒
∃C Y . (?U ′, v) |= c2 (⊆ B2, X) = Some (C , Y ) and

C : finite (levels U ) and
D: max (sec b) (Max (levels U )) ` c1 and
E : max (sec b) (Max (levels U )) ` c2

shows ∃C Y . (U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (C , Y )
proof −

obtain B1 B2 where F : (B1, B2) = |= b (⊆ A, X)
by (cases |= b (⊆ A, X), simp)

moreover have ∃C 1 C 2 Y 1 Y 2. (?U ′, v) |= c1 (⊆ B1, X) = Some (C 1, Y 1) ∧
(?U ′, v) |= c2 (⊆ B2, X) = Some (C 2, Y 2)

proof (cases A = {})
case True
hence levels ?U ′ = levels U

by (auto simp: levels-def univ-states-if-def )
moreover have Max (levels U ) ` c1

using D by (auto intro: anti-mono)
moreover have Max (levels U ) ` c2

using E by (auto intro: anti-mono)
ultimately show ?thesis

using A and B and C and F by simp
next

case False
with C have finite (levels ?U ′) ∧

Max (levels ?U ′) = max (sec b) (Max (levels U ))
by (simp add: levels-insert univ-states-if-def )

thus ?thesis
using A and B and D and E and F by simp

qed
ultimately show ?thesis

by (auto split: prod.split)
qed

lemma sec-type-ctyping2-while:
assumes

A:
∧

B1 B2 C Y B1
′ B2

′. (B1, B2) = |= b (⊆ A, X) =⇒
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(C , Y ) = ` c (⊆ B1, X) =⇒ (B1
′, B2

′) = |= b (⊆ C , Y ) =⇒
((∃ s. s ∈ Univ? A X ∨ s ∈ Univ? C Y ) −→

(∀ x ∈ bvars b. All ((≤) (sec x)))) ∧
(∀ p ∈ U . case p of (B, W ) ⇒ (∃ s. s ∈ B) −→

(∀ x ∈ W . All ((≤) (sec x)))) =⇒
Max (levels {}) ` c =⇒ finite (levels {}) =⇒
∃D Z . ({}, False) |= c (⊆ B1, X) = Some (D, Z )

(is
∧

- - C Y - -. - =⇒ - =⇒ - =⇒ ?P C Y =⇒ - =⇒ - =⇒ -)
assumes

B:
∧

B1 B2 C Y B1
′ B2

′. (B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒ (B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

?P C Y =⇒ Max (levels {}) ` c =⇒ finite (levels {}) =⇒
∃D Z . ({}, False) |= c (⊆ B1

′, Y ) = Some (D, Z ) and
C : finite (levels U ) and
D: Max (levels U ) = 0 and
E : sec b = 0 and
F : 0 ` c

shows ∃B Y . (U , v) |= WHILE b DO c (⊆ A, X) = Some (B, Y )
proof −

obtain B1 B2 where G: (B1, B2) = |= b (⊆ A, X)
by (cases |= b (⊆ A, X), simp)

moreover obtain C Y where H : (C , Y ) = ` c (⊆ B1, X)
by (cases ` c (⊆ B1, X), simp)

moreover obtain B1
′ B2

′ where I : (B1
′, B2

′) = |= b (⊆ C , Y )
by (cases |= b (⊆ C , Y ), simp)

moreover {
fix l x s B W
assume J : (B, W ) ∈ U and K : x ∈ W and L: s ∈ B
have sec x ≤ l
proof (rule le-trans, rule Max-ge [OF C ])

show sec x ∈ levels U
using J and K and L by (fastforce simp: levels-def )

next
show Max (levels U ) ≤ l

using D by simp
qed

}
hence J : ?P C Y

using E by (auto dest: bvars-sec)
ultimately have ∃D D ′ Z Z ′. ({}, False) |= c (⊆ B1, X) = Some (D, Z ) ∧

({}, False) |= c (⊆ B1
′, Y ) = Some (D ′, Z ′)

using A and B and F by (force simp: levels-def )
thus ?thesis

using G and H and I and J by (auto split: prod.split)
qed

theorem sec-type-ctyping2 :
[[Max (levels U ) ` c; finite (levels U )]] =⇒
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∃B Y . (U , v) |= c (⊆ A, X) = Some (B, Y )
proof (induction (U , v) c A X arbitrary: U v rule: ctyping2 .induct)

fix A X U v x a
show Max (levels U ) ` x ::= a =⇒ finite (levels U ) =⇒
∃B Y . (U , v) |= x ::= a (⊆ A, X) = Some (B, Y )
by (fastforce dest: avars-sec simp: levels-def )

next
fix A X U v b c1 c2

show
[[
∧

U ′ p B1 B2.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ Max (levels U ′) ` c1 =⇒ finite (levels U ′) =⇒
∃B Y . (U ′, v) |= c1 (⊆ B1, X) = Some (B, Y );∧
U ′ p B1 B2.
(U ′, p) = (insert (Univ? A X , bvars b) U , |= b (⊆ A, X)) =⇒
(B1, B2) = p =⇒ Max (levels U ′) ` c2 =⇒ finite (levels U ′) =⇒
∃B Y . (U ′, v) |= c2 (⊆ B2, X) = Some (B, Y );

Max (levels U ) ` IF b THEN c1 ELSE c2; finite (levels U )]] =⇒
∃B Y . (U , v) |= IF b THEN c1 ELSE c2 (⊆ A, X) = Some (B, Y )

by (auto simp del: ctyping2 .simps(4 ), rule sec-type-ctyping2-if )
next

fix A X U v b c
show
[[
∧

B1 B2 C Y B1
′ B2

′.
(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: sec ‘ W  UNIV =⇒

Max (levels {}) ` c =⇒ finite (levels {}) =⇒
∃B Z . ({}, False) |= c (⊆ B1, X) = Some (B, Z );∧
B1 B2 C Y B1

′ B2
′.

(B1, B2) = |= b (⊆ A, X) =⇒
(C , Y ) = ` c (⊆ B1, X) =⇒
(B1

′, B2
′) = |= b (⊆ C , Y ) =⇒

∀ (B, W ) ∈ insert (Univ? A X ∪ Univ? C Y , bvars b) U .
B: sec ‘ W  UNIV =⇒

Max (levels {}) ` c =⇒ finite (levels {}) =⇒
∃B Z . ({}, False) |= c (⊆ B1

′, Y ) = Some (B, Z );
Max (levels U ) ` WHILE b DO c; finite (levels U )]] =⇒
∃B Z . (U , v) |= WHILE b DO c (⊆ A, X) = Some (B, Z )

by (auto simp del: ctyping2 .simps(5 ), rule sec-type-ctyping2-while)
qed auto

end

end
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