
A Reuse-Based Multi-Stage Compiler Verification
for Language IMP

Pasquale Noce
Senior Staff Engineer at HID Global, Italy

pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at hidglobal dot com

March 17, 2025

Abstract
After introducing the didactic imperative programming language

IMP, Nipkow and Klein’s book on formal programming language se-
mantics (version of March 2021) specifies compilation of IMP com-
mands into a lower-level language based on a stack machine, and ex-
pounds a formal verification of that compiler. Exercise 8.4 asks the
reader to adjust such proof for a new compilation target, consisting of
a machine language that (i) accesses memory locations through their
addresses instead of variable names, and (ii) maintains a stack in mem-
ory via a stack pointer rather than relying upon a built-in stack. A
natural strategy to maximize reuse of the original proof is keeping the
original language as an assembly one and splitting compilation into
multiple steps, namely a source-to-assembly step matching the origi-
nal compilation process followed by an assembly-to-machine step. In
this way, proving assembly code-machine code equivalence is the only
extant task.

A previous paper by the present author introduces a reasoning tool-
box that allows for a compiler correctness proof shorter than the book’s
one, as such promising to constitute a further enhanced reference for
the formal verification of real-world compilers. This paper in turn
shows that such toolbox can be reused to accomplish the aforesaid task
as well, which demonstrates that the proposed approach also promotes
proof reuse in multi-stage compiler verifications.

Contents
1 Compiler formalization 2

1.1 List setup . 3
1.2 Instructions and stack machine 3
1.3 Verification infrastructure . 13
1.4 Compilation . 14

1

1.5 Preservation of semantics . 16

2 Compiler verification 16
2.1 Preliminary definitions and lemmas 17
2.2 Main theorems . 23

1 Compiler formalization
theory Compiler

imports
HOL−IMP.Big-Step
HOL−IMP.Star

begin

This paper is dedicated to Gaia and Greta, my sweet nieces, who fill my life
with love and happiness.

After introducing the didactic imperative programming language IMP, [5]
specifies compilation of IMP commands into a lower-level language based
on a stack machine, and expounds a formal verification of that compiler.
Exercise 8.4 asks the reader to adjust such proof for a new compilation
target, consisting of a machine language that (i) accesses memory locations
through their addresses instead of variable names, and (ii) maintains a stack
in memory via a stack pointer rather than relying upon a built-in stack. A
natural strategy to maximize reuse of the original proof is keeping the orig-
inal language as an assembly one and splitting compilation into multiple
steps, namely a source-to-assembly step matching the original compilation
process followed by an assembly-to-machine step. In this way, proving as-
sembly code-machine code equivalence is the only extant task.
[7] introduces a reasoning toolbox that allows for a compiler correctness
proof shorter than the book’s one, as such promising to constitute a further
enhanced reference for the formal verification of real-world compilers. This
paper in turn shows that such toolbox can be reused to accomplish the
aforesaid task as well, which demonstrates that the proposed approach also
promotes proof reuse in multi-stage compiler verifications.
The formal proof development presented in this paper consists of two theory
files, as follows.

• The former theory, briefly referred to as “the Compiler theory”, is de-
rived from the HOL−IMP.Compiler one included in the Isabelle2021-1
distribution [4].
However, the signature of function bcomp is modified in the same way
as in [7].

2

• The latter theory, briefly referred to as “the Compiler2 theory”, is de-
rived from the Compiler2 one developed in [7].
However, unlike [7], the original language IMP is considered here,
without extending it with non-deterministic choice. Hence, the ad-
ditional case pertaining to non-deterministic choice in the proof of
lemma ccomp-correct is not present any longer.

Both theory files are split into the same subsections as the respective original
theories, and only the most salient differences with respect to the original
theories are commented in both of them.
For further information about the formal definitions and proofs contained
in this paper, see Isabelle documentation, particularly [6], [3], [1], and [2].

1.1 List setup
declare [[coercion-enabled]]
declare [[coercion int :: nat ⇒ int]]
declare [[syntax-ambiguity-warning = false]]

abbreviation (output)
isize xs ≡ int (length xs)

notation isize (‹size›)

primrec (nonexhaustive) inth :: ′a list ⇒ int ⇒ ′a (infixl ‹!!› 100) where
(x # xs) !! i = (if i = 0 then x else xs !! (i − 1))

lemma inth-append [simp]:
0 ≤ i =⇒

(xs @ ys) !! i = (if i < size xs then xs !! i else ys !! (i − size xs))
〈proof 〉

1.2 Instructions and stack machine

Here below, both the syntax and the semantics of the instruction set are de-
fined. As a deterministic language is considered here, as opposed to the non-
deterministic one addressed in [7], instruction semantics can be defined via
a simple non-recursive function iexec (identical to the one used in [5], since
the instruction set is the same). However, an inductive predicate iexec-pred,
resembling the iexec one used in [7] and denoted by the same infix symbol
7→, is also defined. Though notation (ins, cf) 7→ cf ′ is just an alias for cf ′

= iexec ins cf, it is used in place of the latter in the definition of predi-
cate exec1, which formalizes single-step program execution. The reason is
that the compiler correctness proof developed in the Compiler2 theory of
[7] depends on the introduction and elimination rules deriving from predi-
cate iexec’s inductive definition. Thus, the use of predicate iexec-pred is a

3

trick enabling Isabelle’s classical reasoner to keep using such rules, which
restricts the changes to be made to the proofs in the Compiler2 theory to
those required by the change of the compilation target.
The instructions defined by type instr, which refer to memory locations
via variable names, will keep being used as an assembly language. In or-
der to have a machine language rather referring to memory locations via
their addresses, modeled as integers, an additional type m-instr of machine
instructions, in one-to-one correspondence with assembly instructions, is in-
troduced. The underlying idea is to reuse the proofs that source code and
compiled (assembly) code simulate each other built in [4] and [7], so that
the only extant task is proving that assembly code and machine code in
turn simulate each other. This is nothing but an application of the divide
et impera strategy of considering multiple compilation stages mentioned in
[5], section 8.5.
In other words, the solution developed in what follows does not require any
change to the original compiler completeness and correctness proofs. This
result is achieved by splitting compilation into multiple steps, namely a
source-to-assembly step matching the original compilation process, to which
the aforesaid proofs still apply, followed by an assembly-to-machine step. In
this way, to establish source code-machine code equivalence, the assembly
code-machine code one is all that is left to be proven. In addition to proof
reuse, this approach provides the following further advantages.

• There is no need to reason about the composition and decomposition
of machine code sequences, which would also involve the composition
and decomposition of the respective mappings between used variables
and their addresses (as opposed to what happens with assembly code
sequences).

• There is no need to change the original compilation functions, mod-
eling the source-to-assembly compilation step in the current context.
In fact, the outputs of these functions are assembly programs, namely
lists of assembly instructions, which are in one-to-one correspondence
with machine ones. Thus, the assembly-to-machine compilation step
can easily be modeled as a mapping of such a list into a machine
instruction one, where each referenced variable can be assigned an un-
ambiguous address based on the position of the first/last instruction
referencing it within the assembly program.

datatype instr =
LOADI int | LOAD vname | ADD | STORE vname |
JMP int | JMPLESS int | JMPGE int

4

type-synonym stack = val list
type-synonym config = int × state × stack

abbreviation hd2 xs ≡ hd (tl xs)
abbreviation tl2 xs ≡ tl (tl xs)

fun iexec :: instr ⇒ config ⇒ config where
iexec ins (i, s, stk) = (case ins of

LOADI n ⇒ (i + 1 , s, n # stk) |
LOAD x ⇒ (i + 1 , s, s x # stk) |
ADD ⇒ (i + 1 , s, (hd2 stk + hd stk) # tl2 stk) |
STORE x ⇒ (i + 1 , s(x := hd stk), tl stk) |
JMP n ⇒ (i + 1 + n, s, stk) |
JMPLESS n ⇒ (if hd2 stk < hd stk then i + 1 + n else i + 1 , s, tl2 stk) |
JMPGE n ⇒ (if hd2 stk ≥ hd stk then i + 1 + n else i + 1 , s, tl2 stk))

inductive iexec-pred :: instr × config ⇒ config ⇒ bool
(infix ‹ 7→› 55) where

(ins, cf) 7→ iexec ins cf

definition exec1 :: instr list ⇒ config ⇒ config ⇒ bool
(‹(-/ `/ -/ →/ -)› 55) where

P ` cf → cf ′ ≡ (P !! fst cf , cf) 7→ cf ′ ∧ 0 ≤ fst cf ∧ fst cf < size P

abbreviation exec :: instr list ⇒ config ⇒ config ⇒ bool
(‹(-/ `/ -/ →∗/ -)› 55) where

exec P ≡ star (exec1 P)

declare iexec-pred.intros [intro]

inductive-cases LoadIE [elim!]: (LOADI i, pc, s, stk) 7→ cf
inductive-cases LoadE [elim!]: (LOAD x, pc, s, stk) 7→ cf
inductive-cases AddE [elim!]: (ADD, pc, s, stk) 7→ cf
inductive-cases StoreE [elim!]: (STORE x , pc, s, stk) 7→ cf
inductive-cases JmpE [elim!]: (JMP i, pc, s, stk) 7→ cf
inductive-cases JmpLessE [elim!]: (JMPLESS i, pc, s, stk) 7→ cf
inductive-cases JmpGeE [elim!]: (JMPGE i, pc, s, stk) 7→ cf

lemmas exec-induct = star .induct [of exec1 P, split-format(complete)]

lemma iexec-simp:
(ins, cf) 7→ cf ′ = (cf ′ = iexec ins cf)
〈proof 〉

lemma exec1I [intro, code-pred-intro]:
[[c ′ = iexec (P !! i) (i, s, stk); 0 ≤ i; i < size P]] =⇒

P ` (i, s, stk) → c ′

〈proof 〉

5

type-synonym addr = int

datatype m-instr =
M-LOADI int | M-LOAD addr | M-ADD | M-STORE addr |
M-JMP int | M-JMPLESS int | M-JMPGE int

Here below are the recursive definitions of functions vars, which takes an
assembly program as input and returns a list without repetitions of the
referenced variables, and addr-of, which in turn takes a list of variables xs
and a variable x as inputs and returns the address a of x. If x is included
in xs, a is set to the one-based right offset of the leftmost occurrence of x in
xs, otherwise a is set to zero.
Therefore, for any assembly program P, function addr-of (vars P) maps each
variable occurring within P to a distinct positive address, and any other,
unused variable to a default, invalid address (zero).

primrec vars :: instr list ⇒ vname list where
vars [] = [] |
vars (ins # P) = (case ins of

LOAD x ⇒ if x ∈ set (vars P) then [] else [x] |
STORE x ⇒ if x ∈ set (vars P) then [] else [x] |
- ⇒ []) @ vars P

primrec addr-of :: vname list ⇒ vname ⇒ addr where
addr-of [] - = 0 |
addr-of (x # xs) y = (if x = y then size xs + 1 else addr-of xs y)

Functions vars and addr-of can be used to translate an assembly pro-
gram into a machine program, which is done by the subsequent functions
to-m-instr and to-m-prog. The former takes a list of variables xs and an
assembly instruction ins as inputs and returns the corresponding machine
instruction, which refers to address addr-of xs x whenever ins references
variable x. Then, the latter function turns each instruction contained in the
input assembly program P into the corresponding machine one, using func-
tion to-m-instr (vars P) for such mapping. Hence, each variable x occurring
within P is turned into the address addr-of (vars P) x, as expected.
In addition, the types m-state and m-config of machine states and configura-
tions are also defined here below. The former one encompasses any function
mapping addresses to values. The latter one reflects the fact that the third
element of a machine configuration has to be a pointer to a stack maintained
by the machine state, rather than a list-encoded stack as keeps happening
with assembly configurations. This can be achieved using a natural num-

6

ber sp as third element, standing for the current size of the machine stack.
Hence, if it is nonempty, the address of its topmost element matches −sp,
given that the machine stack will be modeled by making it start from address
−1 and grow downward.

fun to-m-instr :: vname list ⇒ instr ⇒ m-instr where
to-m-instr xs ins = (case ins of

LOADI n ⇒ M-LOADI n |
LOAD x ⇒ M-LOAD (addr-of xs x) |
ADD ⇒ M-ADD |
STORE x ⇒ M-STORE (addr-of xs x) |
JMP n ⇒ M-JMP n |
JMPLESS n ⇒ M-JMPLESS n |
JMPGE n ⇒ M-JMPGE n)

fun to-m-prog :: instr list ⇒ m-instr list where
to-m-prog P = map (to-m-instr (vars P)) P

type-synonym m-state = addr ⇒ val
type-synonym m-config = int × m-state × nat

Next are the definitions of functions to-state and to-m-state, which turn a
machine program state ms into an equivalent assembly program state s and
vice versa, based on an input list of variables xs. Here, equivalent means
that for each variable x in xs, s assigns x the same value that ms assigns to
x’s address addr-of xs x.
Function to-m-state xs s maps any positive address a up to size xs to value
s x, where x is the variable occurring within xs at the zero-based left offset
size xs − a, and any other, unused address to a default, dummy value (zero).
The resulting machine program state is equivalent to s since the zero-based
left offset size xs − a points to the same variable x within xs as the one-based
right offset a. As long as xs does not contain any repetition, as happens with
the outputs of function vars, x is indeed the variable such that addr-of xs x
= a, by virtue of the definition of function addr-of. To perform the reverse
conversion, function to-state xs ms merely needs to map any variable x to
ms (addr-of xs x).
Hence, for any assembly program P, function to-state (vars P) converts each
state of the resulting machine program to-m-prog P into an equivalent state
of P, while to-m-state (vars P) performs conversions the other way around.

fun to-state :: vname list ⇒ m-state ⇒ state where
to-state xs ms x = ms (addr-of xs x)

fun to-m-state :: vname list ⇒ state ⇒ m-state where

7

to-m-state xs s a = (if 0 < a ∧ a ≤ size xs then s (xs !! (size xs − a)) else 0)

Likewise, functions add-stack and add-m-stack are defined to convert ma-
chine stacks into assembly ones and vice versa. Function add-stack takes a
stack pointer and a machine state ms as inputs, and returns a list-encoded
stack mirroring the machine one maintained by ms. Conversely, function
add-m-stack takes a stack pointer, a list-encoded stack stk, and a machine
state ms as inputs, and returns the machine state obtained by extending ms
with a machine stack mirroring stk.

primrec add-stack :: nat ⇒ m-state ⇒ stack where
add-stack 0 - = [] |
add-stack (Suc n) ms = ms (−Suc n) # add-stack n ms

primrec add-m-stack :: nat ⇒ stack ⇒ m-state ⇒ m-state where
add-m-stack 0 - ms = ms |
add-m-stack (Suc n) stk ms = (add-m-stack n (tl stk) ms)(−Suc n := hd stk)

Here below, the semantics of machine instructions and the execution of ma-
chine programs are defined. Such definitions resemble their assembly coun-
terparts, but no inductive predicate like iexec-pred is needed here. In fact,
iexec-pred is employed to enable Isabelle’s classical reasoner to use the re-
sulting introduction and elimination rules in the compiler correctness proof
contained in the Compiler2 theory, which in the current context shows that
source code simulates assembly code. As all that is required here is to es-
tablish the further, missing link between assembly code and machine code,
the compiler correctness proof can keep referring to assembly code – indeed,
it does not demand any change at all. Consequently, no machine counter-
part of inductive predicate iexec-pred is needed in the definition of machine
instruction semantics.
As usual, any two machine configurations mcf and mcf ′ may be linked by
a single-step execution of a machine program MP only if mcf ’s program
counter points to some instruction mins within MP. However, mcf ′ is not
required to match, but just to be equivalent to the machine configuration
produced by the execution of mins in mcf ; namely, program counters and
stack pointers have to be equal, but machine states just have to match up
to the machine stack’s top. Moreover, mcf ’s machine stack has to be large
enough to store the operands, if any, required for executing mins. As shown
in what follows, these conditions are necessary for the lemmas establishing
single-step assembly code-machine code equivalence to hold.

primrec m-msp :: m-instr ⇒ nat where
m-msp (M-LOADI n) = 0 |

8

m-msp (M-LOAD a) = 0 |
m-msp M-ADD = 2 |
m-msp (M-STORE a) = 1 |
m-msp (M-JMP n) = 0 |
m-msp (M-JMPLESS n) = 2 |
m-msp (M-JMPGE n) = 2

definition msp :: instr list ⇒ int ⇒ nat where
msp P i ≡ m-msp (to-m-instr [] (P !! i))

fun m-iexec :: m-instr ⇒ m-config ⇒ m-config where
m-iexec mins (i, ms, sp) = (case mins of

M-LOADI n ⇒ (i + 1 , ms(−1 − sp := n), sp + 1) |
M-LOAD a ⇒ (i + 1 , ms(−1 − sp := ms a), sp + 1) |
M-ADD ⇒ (i + 1 , ms(1 − sp := ms (1 − sp) + ms (−sp)), sp − 1) |
M-STORE a ⇒ (i + 1 , ms(a := ms (−sp)), sp − 1) |
M-JMP n ⇒ (i + 1 + n, ms, sp) |
M-JMPLESS n ⇒
(if ms (1 − sp) < ms (−sp) then i + 1 + n else i + 1 , ms, sp − 2) |

M-JMPGE n ⇒
(if ms (1 − sp) ≥ ms (−sp) then i + 1 + n else i + 1 , ms, sp − 2))

fun m-config-equiv :: m-config ⇒ m-config ⇒ bool (infix ‹∼=› 55) where
(i, ms, sp) ∼= (i ′, ms ′, sp ′) =
(i = i ′ ∧ sp = sp ′ ∧ (∀ a ≥ −sp. ms a = ms ′ a))

definition m-exec1 :: m-instr list ⇒ m-config ⇒ m-config ⇒ bool
(‹(-/ `/ -/ →/ -)› [59 , 0 , 59] 60) where

MP ` mcf → mcf ′ ≡
mcf ′ ∼= m-iexec (MP !! fst mcf) mcf ∧ 0 ≤ fst mcf ∧ fst mcf < size MP ∧

m-msp (MP !! fst mcf) ≤ snd (snd mcf)

abbreviation m-exec :: m-instr list ⇒ m-config ⇒ m-config ⇒ bool
(‹(-/ `/ -/ →∗/ -)› [59 , 0 , 59] 60) where

m-exec MP ≡ star (m-exec1 MP)

Here below is the proof of lemma exec1-m-exec1, which states that, under
proper assumptions, single-step assembly code executions are simulated by
machine code ones. The assumptions are that the initial stack pointer is not
less than the number of the operands taken by the instruction to be run,
and not greater than the size of the initial assembly stack. Unfortunately,
the resulting stack pointer is not guaranteed to keep fulfilling the former
assumption for the next instruction; indeed, an arbitrary instruction list is
generally not so well-behaved. So, in order to prove that assembly programs
are simulated by machine ones, it needs to be proven that any machine
program produced by compiling a source one is actually well-behaved in this

9

respect; namely, that a starting machine configuration with stack pointer
zero, as well as any intermediate configuration reached thereafter, meet the
aforesaid assumptions when executing every such program. This issue will
be addressed in the Compiler2 theory.
At first glance, the need for the assumption causing this issue might appear
to result from the lower bound on the initial machine stack size introduced
in m-exec1 ’s definition. If that were really the case, the aforesaid issue could
be solved by merely dropping this condition (leaving aside its necessity for
the twin lemma m-exec1-exec1 to hold, discussed later on). Nonetheless, a
more in-depth investigation shows that the incriminated assumption would
be required all the same: were it dropped, a counterexample for lemma
exec1-m-exec1 would arise for P !! pc = ADD, sp = 1 (addition rather pops
two operands from the machine stack), and hd stk 6= 0. In fact, the initial
configuration in exec1-m-exec1 ’s conclusion would map addresses 0 and -1
to values 0 and hd stk. Hence, the configuration correspondingly output
by function m-iexec M-ADD would map address 0 to hd stk, whereas the
final configuration in exec1-m-exec1 ’s conclusion would map it to 0. Being
sp′ = 0, this state of affairs would not satisfy m-exec1 ’s definition, which
would rather require the machine states of those configurations to match at
every address from 0 upward.
Lemma exec1-m-exec1 would fail to hold if ∼= were replaced with = within
m-exec1 ’s definition. In fact, function to-m-state invariably returns machine
states mapping any nonpositive address to zero, and function add-m-stack
leaves unchanged any value below the machine stack’s top. Thus, upon
any machine instruction mins that pops a value i 6= 0 from the stack’s top
address a, the configuration obtained by applying function m-iexec mins to
the initial configuration in exec1-m-exec1 ’s conclusion maps a to i, whereas
the final configuration maps a to 0. As a result, the machine states of those
configurations match only up to the machine stack’s top, exactly as required
using ∼= in m-exec1 ’s definition.

lemma inth-map [simp]:
[[0 ≤ i; i < size xs]] =⇒ (map f xs) !! i = f (xs !! i)
〈proof 〉

lemma inth-set [simp]:
[[0 ≤ i; i < size xs]] =⇒ xs !! i ∈ set xs
〈proof 〉

lemma vars-dist:
distinct (vars P)
〈proof 〉

lemma vars-load:
[[0 ≤ i; i < size P; P !! i = LOAD x]] =⇒ x ∈ set (vars P)

10

〈proof 〉

lemma vars-store:
[[0 ≤ i; i < size P; P !! i = STORE x]] =⇒ x ∈ set (vars P)
〈proof 〉

lemma addr-of-max:
addr-of xs x ≤ size xs
〈proof 〉

lemma addr-of-neq:
1 + size xs 6= addr-of xs x
〈proof 〉

lemma addr-of-correct:
x ∈ set xs =⇒ xs !! (size xs − addr-of xs x) = x
〈proof 〉

lemma addr-of-nneg:
0 ≤ addr-of xs x
〈proof 〉

lemma addr-of-set:
x ∈ set xs =⇒ 0 < addr-of xs x
〈proof 〉

lemma addr-of-unique:
[[distinct xs; 0 < a; a ≤ size xs]] =⇒ addr-of xs (xs !! (size xs − a)) = a
〈proof 〉

lemma add-m-stack-nneg:
0 ≤ a =⇒ add-m-stack n stk ms a = ms a
〈proof 〉

lemma add-m-stack-hd:
0 < n =⇒ add-m-stack n stk ms (−n) = hd stk
〈proof 〉

lemma add-m-stack-hd2 :
1 < n =⇒ add-m-stack n stk ms (1 − int n) = hd2 stk
〈proof 〉

lemma add-m-stack-nth:
[[−n ≤ a; n ≤ length stk]] =⇒

add-m-stack n stk ms a = (if 0 ≤ a then ms a else stk ! (nat (n + a)))
〈proof 〉

lemma exec1-m-exec1 [simplified Let-def]:
[[P ` (pc, s, stk) → (pc ′, s ′, stk ′); msp P pc ≤ sp; sp ≤ length stk]] =⇒

11

let sp ′ = sp + length stk ′ − length stk in to-m-prog P `
(pc, add-m-stack sp stk (to-m-state (vars P) s), sp) →
(pc ′, add-m-stack sp ′ stk ′ (to-m-state (vars P) s ′), sp ′)

〈proof 〉

Here below is the proof of lemma m-exec1-exec1, which reverses the previ-
ous one and states that single-step machine code executions are simulated
by assembly code ones. As opposed to lemma exec1-m-exec1, the present
one does not require any assumption apart from having two arbitrary ma-
chine configurations linked by a single-step program execution. Hence, this
time there is no obstacle to proving lemma m-exec-exec, which generalizes
m-exec1-exec1 to multiple-step program executions, as a direct consequence
of m-exec1-exec1 via induction over the reflexive transitive closure of binary
predicate m-exec1 (to-m-prog P), where P is the given, arbitrary assembly
program.
If the condition that the initial machine stack be large enough to store the
operands of the current instruction were removed from m-exec1 ’s definition,
lemma m-exec1-exec1 would not hold. A counterexample would be the case
where P !! pc = ADD, sp = 1, and stk = []. Being sp′ = 0, the final assembly
stack in m-exec1-exec1 ’s conclusion would be empty, whereas according to
exec1 ’s definition, the assembly stack resulting from the execution of an
addition cannot be empty.

lemma addr-of-nset:
x /∈ set xs =⇒ addr-of xs x = 0
〈proof 〉

lemma addr-of-inj:
inj-on (addr-of xs) (set xs)
〈proof 〉

lemma addr-of-neq2 :
[[x ∈ set xs; x ′ 6= x]] =⇒ addr-of xs x ′ 6= addr-of xs x
〈proof 〉

lemma to-state-eq:
∀ a ≥ 0 . ms ′ a = ms a =⇒ to-state xs ms ′ = to-state xs ms
〈proof 〉

lemma to-state-upd:
[[∀ a ≥ 0 . ms ′ a = (if a = addr-of xs x then i else ms a); x ∈ set xs]] =⇒

to-state xs ms ′ = (to-state xs ms)(x := i)
〈proof 〉

lemma add-stack-eq:
[[∀ a ∈ {−m..<0}. ms ′ a = ms a; m = n]] =⇒ add-stack m ms ′ = add-stack n ms

12

〈proof 〉

lemma add-stack-eq2 :
[[∀ a ∈ {−n..<0}. ms ′ a = (if a = −n then i else ms a); 0 < n]] =⇒

add-stack n ms ′ = i # add-stack (n − 1) ms
〈proof 〉

lemma add-stack-hd:
0 < n =⇒ hd (add-stack n ms) = ms (−n)
〈proof 〉

lemma add-stack-hd2 :
1 < n =⇒ hd2 (add-stack n ms) = ms (1 − int n)
〈proof 〉

lemma add-stack-nnil:
0 < n =⇒ add-stack n ms 6= []
〈proof 〉

lemma add-stack-nnil2 :
1 < n =⇒ tl (add-stack n ms) 6= []
〈proof 〉

lemma add-stack-tl:
tl (add-stack n ms) = add-stack (n − 1) ms
〈proof 〉

lemma m-exec1-exec1 [simplified]:
to-m-prog P ` (pc, ms, sp) → (pc ′, ms ′, sp ′) =⇒

P ` (pc, to-state (vars P) ms, add-stack sp ms @ stk) →
(pc ′, to-state (vars P) ms ′, add-stack sp ′ ms ′ @ stk)

〈proof 〉

lemma m-exec-exec:
to-m-prog P ` (pc, ms, sp) →∗ (pc ′, ms ′, sp ′) =⇒

P ` (pc, to-state (vars P) ms, add-stack sp ms @ stk) →∗
(pc ′, to-state (vars P) ms ′, add-stack sp ′ ms ′ @ stk)

〈proof 〉

1.3 Verification infrastructure
lemma iexec-shift [simp]:
((n + i ′, s ′, stk ′) = iexec ins (n + i, s, stk)) =

((i ′, s ′, stk ′) = iexec ins (i, s, stk))
〈proof 〉

lemma exec1-appendR:
P ` c → c ′ =⇒ P @ P ′ ` c → c ′

〈proof 〉

13

lemma exec-appendR:
P ` c →∗ c ′ =⇒ P @ P ′ ` c →∗ c ′

〈proof 〉

lemma exec1-appendL:
fixes i i ′ :: int
shows P ` (i, s, stk) → (i ′, s ′, stk ′) =⇒

P ′ @ P ` (size P ′ + i, s, stk) → (size P ′ + i ′, s ′, stk ′)
〈proof 〉

lemma exec-appendL:
fixes i i ′ :: int
shows P ` (i, s, stk) →∗ (i ′, s ′, stk ′) =⇒

P ′ @ P ` (size P ′ + i, s, stk) →∗ (size P ′ + i ′, s ′, stk ′)
〈proof 〉

lemma exec-Cons-1 [intro]:
P ` (0 , s, stk) →∗ (j, t, stk ′) =⇒

ins # P ` (1 , s, stk) →∗ (1 + j, t, stk ′)
〈proof 〉

lemma exec-appendL-if [intro]:
fixes i i ′ j :: int
shows [[size P ′ ≤ i; P ` (i − size P ′, s, stk) →∗ (j, s ′, stk ′);

i ′ = size P ′ + j]] =⇒
P ′ @ P ` (i, s, stk) →∗ (i ′, s ′, stk ′)

〈proof 〉

lemma exec-append-trans [intro]:
fixes i ′ i ′′ j ′′ :: int
shows [[P ` (0 , s, stk) →∗ (i ′, s ′, stk ′); size P ≤ i ′;

P ′ ` (i ′ − size P, s ′, stk ′) →∗ (i ′′, s ′′, stk ′′); j ′′ = size P + i ′′]] =⇒
P @ P ′ ` (0 , s, stk) →∗ (j ′′, s ′′, stk ′′)

〈proof 〉

declare Let-def [simp]

1.4 Compilation

As mentioned previously, the definitions of the functions modeling source-
to-assembly compilation, reported here below, need not be changed. Partic-
ularly, function ccomp can be used to define some abbreviations for functions
to-m-prog, to-state, and to-m-state, in which their first parameter (an assem-
bly program for to-m-prog, a list of variables for the other two functions) is
replaced with a command. In fact, the compiler completeness and correct-
ness properties apply to machine programs resulting from the compilation of
source programs, that is, of commands. Consequently, such abbreviations,

14

defined here below as well, can be used to express those properties in a more
concise form.

primrec acomp :: aexp ⇒ instr list where
acomp (N i) = [LOADI i] |
acomp (V x) = [LOAD x] |
acomp (Plus a1 a2) = acomp a1 @ acomp a2 @ [ADD]

fun bcomp :: bexp × bool × int ⇒ instr list where
bcomp (Bc v, f , i) = (if v = f then [JMP i] else []) |
bcomp (Not b, f , i) = bcomp (b, ¬ f , i) |
bcomp (And b1 b2, f , i) =
(let cb2 = bcomp (b2, f , i);

cb1 = bcomp (b1, False, size cb2 + (if f then 0 else i))
in cb1 @ cb2) |

bcomp (Less a1 a2, f , i) =
acomp a1 @ acomp a2 @ (if f then [JMPLESS i] else [JMPGE i])

primrec ccomp :: com ⇒ instr list where
ccomp SKIP = [] |
ccomp (x ::= a) = acomp a @ [STORE x] |
ccomp (c1;; c2) = ccomp c1 @ ccomp c2 |
ccomp (IF b THEN c1 ELSE c2) =
(let cc1 = ccomp c1; cc2 = ccomp c2; cb = bcomp (b, False, size cc1 + 1)
in cb @ cc1 @ JMP (size cc2) # cc2) |

ccomp (WHILE b DO c) =
(let cc = ccomp c; cb = bcomp (b, False, size cc + 1)
in cb @ cc @ [JMP (− (size cb + size cc + 1))])

abbreviation m-ccomp :: com ⇒ m-instr list where
m-ccomp c ≡ to-m-prog (ccomp c)

abbreviation m-state :: com ⇒ state ⇒ m-state where
m-state c ≡ to-m-state (vars (ccomp c))

abbreviation state :: com ⇒ m-state ⇒ state where
state c ≡ to-state (vars (ccomp c))

lemma acomp-correct [intro]:
acomp a ` (0 , s, stk) →∗ (size (acomp a), s, aval a s # stk)
〈proof 〉

lemma bcomp-correct [intro]:
fixes i :: int
shows 0 ≤ i =⇒ bcomp (b, f , i) ` (0 , s, stk) →∗
(size (bcomp (b, f , i)) + (if f = bval b s then i else 0), s, stk)

〈proof 〉

15

1.5 Preservation of semantics

Like [4], this theory ends with the proof of theorem ccomp-bigstep, which
states that source programs are simulated by assembly ones, as proving that
assembly programs are in turn simulated by machine ones is still a pending
task. This missing link will be established in the Compiler2 theory. Such
a state of affairs might appear as nothing but an extravagant choice: if
the original development detailed in [5] addresses the “easy” direction of the
program bisimulation proof in the Compiler theory, why moving its machine
code add-on to the Compiler2 theory? The bad news here are that the move
has occurred as proving that assembly programs are simulated by machine
ones is no longer “easy”. Indeed, this task demands the further reasoning
tools used in the Compiler2 theory to cope with the reverse, “hard” direction
of the program bisimulation proof. On the other hand, the good news are
that such tools, in the form introduced in [7], are sufficiently general and
powerful to also accomplish that task, as will be shown shortly.

theorem ccomp-bigstep:
(c, s) ⇒ t =⇒ ccomp c ` (0 , s, stk) →∗ (size (ccomp c), t, stk)
〈proof 〉

declare Let-def [simp del]

lemma impCE2 [elim!]:
[[P −→ Q; ¬ P =⇒ R; P =⇒ Q =⇒ R]] =⇒ R
〈proof 〉

lemma Suc-lessI2 [intro!]:
[[m < n; m 6= n − 1]] =⇒ Suc m < n
〈proof 〉

end

2 Compiler verification
theory Compiler2

imports Compiler
begin

The reasoning toolbox introduced in the Compiler2 theory of [7] to cope with
the “hard” direction of the bisimulation proof can be outlined as follows.
First, predicate execl-all is defined to capture the notion of a complete small-
step program execution – an assembly program execution in the current
context –, where such an execution is modeled as a list of program config-
urations. This predicate has the property that, for any complete execution

16

of program P @ P ′ @ P ′′ making the program counter point to the begin-
ning of program P ′ in some step, there exists a sub-execution being also a
complete execution of P ′. Under the further assumption that any complete
execution of P ′ fulfills a given predicate Q, this implies the existence of a
sub-execution fulfilling Q (as established by lemma execl-all-sub in [7]).
The compilation of arithmetic/boolean expressions and commands, modeled
by functions acomp, bcomp, and ccomp, produces programs matching pat-
tern P @ P ′ @ P ′′, where sub-programs P, P ′, P ′′ may either be empty
or result from the compilation of nested expressions or commands (pos-
sibly with the insertion of further instructions). Moreover, simulation of
compiled programs by source ones can be formalized as the statement that
any complete small-step execution of a compiled program meets a proper
well-behavedness predicate cpred. By proving this statement via structural
induction over commands, the resulting subgoals assume its validity for any
nested command. If as many suitable well-behavedness predicates, apred
and bpred, have been proven to hold for any complete execution of a com-
piled arithmetic/boolean expression, the above execl-all’s property entails
that the complete execution targeted in each subgoal is comprised of pieces
satisfying apred, bpred, or cpred, which enables to conclude that the whole
execution satisfies cpred.
Can this machinery come in handy to generalize single-step assembly code
simulation by machine code, established by lemma exec1-m-exec1, to full
program executions? Actually, the gap to be filled in is showing that assem-
bly program execution unfolds in such a way, that a machine stack pointer
starting from zero complies with exec1-m-exec1 ’s assumptions in each inter-
mediate step. The key insight, which provides the previous question with
an affirmative answer, is that this property can as well be formalized as
a well-behavedness predicate mpred, so that the pending task takes again
the form of proving that such a predicate holds for any complete small-step
execution of an assembly program.
Following this insight, the present theory extends the Compiler2 theory
of [7] by reusing its reasoning toolbox to additionally prove that any such
program execution is indeed well-behaved in this respect, too.

2.1 Preliminary definitions and lemmas

To define predicate mpred, the value taken by the machine stack pointer in
every program execution step needs to be expressed as a function of just
the initial configuration and the current one, so that a quantification over
each intermediate configuration can occur in the definition’s right-hand side.
On the other hand, within exec1-m-exec1 ’s conclusion, the stack pointer sp ′

resulting from single-step execution is sp + length stk ′ − length stk, where
stk and sp are the assembly stack and the stack pointer prior to single-

17

step execution and stk ′ is the ensuing assembly stack. Thus, the aforesaid
function must be such that, by replacing sp with its value into the previous
expression, sp ′’s value is obtained. If sp = length stk − length stk0, where
stk0 is the initial assembly stack, that expression gives sp ′ = length stk −
length stk0 + length stk ′ − length stk, and the right-hand side matches length
stk ′ − length stk0 by library lemma add-diff-assoc2 provided that length stk0

≤ length stk.
Thus, to meet exec1-m-exec1 ’s former assumption for an assembly program
P, each intermediate configuration (pc, s, stk) in a list cfs must be such
that (i) length stk − length stk0 is not less than the number of the operands
taken by P’s instruction at offset pc, and (ii) length stk0 ≤ length stk. Since
the subgoals arising from structural induction will assume this to hold for
pieces of a given complete execution, it is convenient to make mpred take
two offsets m and n as further inputs besides P and cfs. This enables the
quantification to only span the configurations within cfs whose offsets are
comprised in the interval {m..<n} (the upper bound is excluded as inter-
mediate configurations alone are relevant). Unlike apred, bpred, and cpred,
mpred expresses a well-behavedness condition applying indiscriminately to
arithmetic/boolean expressions and commands, which is the reason why a
single predicate suffices, as long as it takes a list of assembly instructions as
input instead of a specific source code token.

fun execl :: instr list ⇒ config list ⇒ bool (infix ‹|=› 55) where
P |= cf # cf ′ # cfs = (P ` cf → cf ′ ∧ P |= cf ′ # cfs) |
P |= - = True

definition execl-all :: instr list ⇒ config list ⇒ bool (‹(-/ |=/ -�)› 55) where
P |= cfs� ≡ P |= cfs ∧ cfs 6= [] ∧

fst (cfs ! 0) = 0 ∧ fst (cfs ! (length cfs − 1)) /∈ {0 ..<size P}

definition apred :: aexp ⇒ config ⇒ config ⇒ bool where
apred ≡ λa (pc, s, stk) (pc ′, s ′, stk ′).

pc ′ = pc + size (acomp a) ∧ s ′ = s ∧ stk ′ = aval a s # stk

definition bpred :: bexp × bool × int ⇒ config ⇒ config ⇒ bool where
bpred ≡ λ(b, f , i) (pc, s, stk) (pc ′, s ′, stk ′).

pc ′ = pc + size (bcomp (b, f , i)) + (if bval b s = f then i else 0) ∧
s ′ = s ∧ stk ′ = stk

definition cpred :: com ⇒ config ⇒ config ⇒ bool where
cpred ≡ λc (pc, s, stk) (pc ′, s ′, stk ′).

pc ′ = pc + size (ccomp c) ∧ (c, s) ⇒ s ′ ∧ stk ′ = stk

definition mpred :: instr list ⇒ config list ⇒ nat ⇒ nat ⇒ bool where
mpred P cfs m n ≡ case cfs ! 0 of (-, -, stk0) ⇒
∀ k ∈ {m..<n}. case cfs ! k of (pc, -, stk) ⇒

18

msp P pc ≤ length stk − length stk0 ∧ length stk0 ≤ length stk

abbreviation off :: instr list ⇒ config ⇒ config where
off P cf ≡ (fst cf − size P, snd cf)

By slightly extending their conclusions, the lemmas used to prove compiler
correctness automatically for constructors N, V, Bc, and SKIP can be reused
for the new well-behavedness proof as well. Actually, it is sufficient to ad-
ditionally infer that (i) the given complete execution consists of one or two
steps and (ii) in the latter case, the initial program counter is zero, so that
the first inequality within mpred’s definition matches the trivial one 0 ≤ 0.

lemma iexec-offset [intro]:
(ins, pc, s, stk) 7→ (pc ′, s ′, stk ′) =⇒

(ins, pc − i, s, stk) 7→ (pc ′ − i, s ′, stk ′)
〈proof 〉

lemma execl-next:
[[P |= cfs; k < length cfs; k 6= length cfs − 1]] =⇒

(P !! fst (cfs ! k), cfs ! k) 7→ cfs ! Suc k ∧
0 ≤ fst (cfs ! k) ∧ fst (cfs ! k) < size P

〈proof 〉

lemma execl-last:
[[P |= cfs; k < length cfs; fst (cfs ! k) /∈ {0 ..<size P}]] =⇒

length cfs − 1 = k
〈proof 〉

lemma execl-take:
P |= cfs =⇒ P |= take n cfs
〈proof 〉

lemma execl-drop:
P |= cfs =⇒ P |= drop n cfs
〈proof 〉

lemma execl-all-N [simplified, dest]:
[LOADI i] |= cfs� =⇒ apred (N i) (cfs ! 0) (cfs ! (length cfs − 1)) ∧

length cfs = 2 ∧ fst (cfs ! 0) = 0
〈proof 〉

lemma execl-all-V [simplified, dest]:
[LOAD x] |= cfs� =⇒ apred (V x) (cfs ! 0) (cfs ! (length cfs − 1)) ∧

length cfs = 2 ∧ fst (cfs ! 0) = 0
〈proof 〉

lemma execl-all-Bc [simplified, dest]:

19

[[if v = f then [JMP i] else [] |= cfs�; 0 ≤ i]] =⇒
bpred (Bc v, f , i) (cfs ! 0) (cfs ! (length cfs − 1)) ∧
length cfs = (if v = f then 2 else 1) ∧ fst (cfs ! 0) = 0

〈proof 〉

lemma execl-all-SKIP [simplified, dest]:
[] |= cfs� =⇒ cpred SKIP (cfs ! 0) (cfs ! (length cfs − 1)) ∧ length cfs = 1
〈proof 〉

In [7], part of the proof of lemma execl-all-sub is devoted to establishing the
fundamental property of predicate execl-all stated above: for any complete
execution of program P @ P ′ @ P ′′ making the program counter point to
the beginning of P ′ in its k-th step, there exists a sub-execution starting
from the k-th step and being a complete execution of P ′.
Here below, this property is proven as a lemma in its own respect, named
execl-all, so that besides execl-all-sub, it can be reused to prove a further
lemma execl-all-sub-m. This new lemma establishes that, if (i) execl-all-sub’s
assumptions hold, (ii) any complete execution of P ′ fulfills predicate mpred,
and (iii) the initial assembly stack is not longer than the one in the k-th step,
then there exists a sub-execution starting from the k-th step and fulfilling
both predicates Q and mpred. Within the new well-behavedness proof, this
lemma will play the same role as execl-all-sub in the compiler correctness
proof; namely, for each structural induction subgoal, it will entail that the
respective complete execution is comprised of pieces fulfilling mpred. As
with execl-all-sub, Q can be instantiated to apred, bpred, or cpred; indeed,
knowing that sub-executions satisfy these predicates in addition to mpred is
necessary to show that the whole execution satisfies mpred. For example, to
draw the conclusion that the assembly code acomp a @ [STORE x] for an
assignment meets mpred, one needs to know that acomp a’s sub-execution
also meets apred, so that the assembly stack contains an element more than
the initial stack when instruction STORE x is executed.

lemma execl-sub-aux:
[[
∧

m n. ∀ k ∈ {m..<n}. Q P ′ (((pc, s, stk) # cfs) ! k) =⇒ P ′ |=
map (off P) (case m of 0 ⇒ (pc, s, stk) # take n cfs | Suc m ⇒ F cfs m n);
∀ k ∈ {m..<n+m+length cfs ′}. Q P ′ ((cfs ′ @ (pc, s, stk) # cfs) ! (k−m))]] =⇒

P ′ |= (pc − size P, s, stk) # map (off P) (take n cfs)
(is [[

∧
- -. ∀ k ∈ -. Q P ′ (?F k) =⇒ -; ∀ k ∈ ?A. Q P ′ (?G k)]] =⇒ -)

〈proof 〉

lemma execl-sub:
[[P @ P ′ @ P ′′ |= cfs; ∀ k ∈ {m..<n}.

size P ≤ fst (cfs ! k) ∧ fst (cfs ! k) − size P < size P ′]] =⇒
P ′ |= map (off P) (drop m (take (Suc n) cfs))
(is [[-; ∀ k ∈ -. ?P P ′ cfs k]] =⇒ P ′ |= map - (?F cfs m (Suc n)))

20

〈proof 〉

lemma execl-all:
assumes

A: P @ P ′ x @ P ′′ |= cfs� and
B: k < length cfs and
C : fst (cfs ! k) = size P

shows ∃ k ′ ∈ {k..<length cfs}. P ′ x |= map (off P) (drop k (take (Suc k ′) cfs))�
(is ∃ k ′ ∈ -. - |= ?F k ′�)

〈proof 〉

lemma execl-all-sub [rule-format]:
assumes

A: P @ P ′ x @ P ′′ |= cfs� and
B: k < length cfs and
C : fst (cfs ! k) = size P and
D: ∀ cfs. P ′ x |= cfs� −→ Q x (cfs ! 0) (cfs ! (length cfs − 1))

shows ∃ k ′ < length cfs. Q x (off P (cfs ! k)) (off P (cfs ! k ′))
〈proof 〉

lemma execl-all-sub2 :
assumes

A: P x @ P ′ x ′ @ P ′′ |= cfs�
(is ?P |= -�) and

B:
∧

cfs. P x |= cfs� =⇒ (λ(pc, s, stk) (pc ′, s ′, stk ′).
pc ′ = pc + size (P x) + I s ∧ Q s s ′ ∧ stk ′ = F s stk)
(cfs ! 0) (cfs ! (length cfs − 1))

(is
∧

cfs. - =⇒ ?Q x (cfs ! 0) (cfs ! (length cfs − 1))) and
C :

∧
cfs. P ′ x ′ |= cfs� =⇒ (λ(pc, s, stk) (pc ′, s ′, stk ′).

pc ′ = pc + size (P ′ x ′) + I ′ s ∧ Q ′ s s ′ ∧ stk ′ = F ′ s stk)
(cfs ! 0) (cfs ! (length cfs − 1))

(is
∧

cfs. - =⇒ ?Q ′ x ′ (cfs ! 0) (cfs ! (length cfs − 1))) and
D: I (fst (snd (cfs ! 0))) = 0

shows ∃ k < length cfs. ∃ t. (λ(pc, s, stk) (pc ′, s ′, stk ′).
pc = 0 ∧ pc ′ = size (P x) + size (P ′ x ′) + I ′ t ∧ Q s t ∧ Q ′ t s ′ ∧

stk ′ = F ′ t (F s stk)) (cfs ! 0) (cfs ! k)
〈proof 〉

lemma execl-all-sub-m [rule-format]:
assumes

A: P @ P ′ x @ P ′′ |= cfs� and
B: k < length cfs and
C : fst (cfs ! k) = size P and
D: length (snd (snd (cfs ! 0))) ≤ length (snd (snd (cfs ! k))) and
E : ∀ cfs. P ′ x |= cfs� −→ Q x (cfs ! 0) (cfs ! (length cfs − 1)) and
F : ∀ cfs. P ′ x |= cfs� −→ mpred (P ′ x) cfs 0 (length cfs − 1)

shows ∃ k ′ < length cfs. Q x (off P (cfs ! k)) (off P (cfs ! k ′)) ∧
mpred (P @ P ′ x @ P ′′) cfs k k ′

〈proof 〉

21

The lemmas here below establish the properties of predicate mpred required
for the new well-behavedness proof. In more detail:

• Lemma mpred-merge states that, if two consecutive sublists of a list of
configurations are both well-behaved, then such is the merged sublist.
This lemma is the means enabling to infer that a complete execution
made of well-behaved pieces is itself well-behaved.

• Lemma mpred-drop states that, under proper assumptions, if a sub-
list of a suffix of a list of configurations is well-behaved, then such is
the matching sublist of the whole list. In the subgoal of the well-
behavedness proof for loops where an iteration has been run, this
lemma can be used to deduce the well-behavedness of the whole exe-
cution from that of the sub-execution following that iteration.

• Lemma mpred-execl-m-exec states that, if a nonempty small-step as-
sembly code execution is well-behaved, then the machine configura-
tions corresponding to the initial and final assembly ones are linked
by a machine code execution. Namely, this lemma proves that the
well-behavedness property expressed by predicate mpred is sufficient
to fulfill the assumptions of lemma exec1-m-exec1 in each intermedi-
ate step. Once any complete small-step assembly program execution
is proven to satisfy mpred, this lemma can then be used to achieve
the final goal of establishing that source programs are simulated by
machine ones.

lemma mpred-merge:
[[mpred P cfs k m; mpred P cfs m n]] =⇒ mpred P cfs k n
〈proof 〉

lemma mpred-drop:
assumes

A: k ≤ length cfs and
B: length (snd (snd (cfs ! 0))) ≤ length (snd (snd (cfs ! k)))

shows mpred P (drop k cfs) m n =⇒ mpred P cfs (k + m) (k + n)
〈proof 〉

lemma mpred-execl-m-exec [simplified Let-def]:
[[cfs 6= []; P |= cfs; mpred P cfs 0 (length cfs − 1)]] =⇒

case (cfs ! 0 , cfs ! (length cfs − 1)) of ((pc, s, stk), (pc ′, s ′, stk ′)) ⇒
let sp ′ = length stk ′ − length stk in to-m-prog P `
(pc, to-m-state (vars P) s, 0) →∗
(pc ′, add-m-stack sp ′ stk ′ (to-m-state (vars P) s ′), sp ′)

〈proof 〉

22

2.2 Main theorems

Here below is the proof that every complete small-step execution of an assem-
bly program fulfills predicate cpred (lemma ccomp-correct), which is reused
as is from [7], followed by the proof that every such execution satisfies pred-
icate mpred as well (lemma ccomp-correct-m), which closely resembles the
former one.

lemma acomp-acomp:
[[acomp a1 @ acomp a2 @ P |= cfs�;∧

cfs. acomp a1 |= cfs� =⇒ apred a1 (cfs ! 0) (cfs ! (length cfs − 1));∧
cfs. acomp a2 |= cfs� =⇒ apred a2 (cfs ! 0) (cfs ! (length cfs − 1))]] =⇒

case cfs ! 0 of (pc, s, stk) ⇒ pc = 0 ∧ (∃ k < length cfs. cfs ! k =
(size (acomp a1 @ acomp a2), s, aval a2 s # aval a1 s # stk))

〈proof 〉

lemma bcomp-bcomp:
[[bcomp (b1, f 1, i1) @ bcomp (b2, f 2, i2) |= cfs�;∧

cfs. bcomp (b1, f 1, i1) |= cfs� =⇒
bpred (b1, f 1, i1) (cfs ! 0) (cfs ! (length cfs − 1));∧
cfs. bcomp (b2, f 2, i2) |= cfs� =⇒
bpred (b2, f 2, i2) (cfs ! 0) (cfs ! (length cfs − 1))]] =⇒

case cfs ! 0 of (pc, s, stk) ⇒ pc = 0 ∧ (bval b1 s 6= f 1 −→
(∃ k < length cfs. cfs ! k = (size (bcomp (b1, f 1, i1) @ bcomp (b2, f 2, i2)) +
(if bval b2 s = f 2 then i2 else 0), s, stk)))

〈proof 〉

lemma acomp-correct [simplified, intro]:
acomp a |= cfs� =⇒ apred a (cfs ! 0) (cfs ! (length cfs − 1))
〈proof 〉

lemma bcomp-correct [simplified, intro]:
[[bcomp x |= cfs�; 0 ≤ snd (snd x)]] =⇒ bpred x (cfs ! 0) (cfs ! (length cfs − 1))
〈proof 〉

lemma bcomp-ccomp:
[[bcomp (b, f , i) @ ccomp c @ P |= cfs�; 0 ≤ i;∧

cfs. ccomp c |= cfs� =⇒ cpred c (cfs ! 0) (cfs ! (length cfs − 1))]] =⇒
case cfs ! 0 of (pc, s, stk) ⇒ pc = 0 ∧ (bval b s 6= f −→
(∃ k < length cfs. case cfs ! k of (pc ′, s ′, stk ′) ⇒

pc ′ = size (bcomp (b, f , i) @ ccomp c) ∧ (c, s) ⇒ s ′ ∧ stk ′ = stk))
〈proof 〉

lemma ccomp-ccomp:
[[ccomp c1 @ ccomp c2 |= cfs�;∧

cfs. ccomp c1 |= cfs� =⇒ cpred c1 (cfs ! 0) (cfs ! (length cfs − 1));∧
cfs. ccomp c2 |= cfs� =⇒ cpred c2 (cfs ! 0) (cfs ! (length cfs − 1))]] =⇒

23

case cfs ! 0 of (pc, s, stk) ⇒ pc = 0 ∧ (∃ k < length cfs. ∃ t.
case cfs ! k of (pc ′, s ′, stk ′) ⇒ pc ′ = size (ccomp c1 @ ccomp c2) ∧
(c1, s) ⇒ t ∧ (c2, t) ⇒ s ′ ∧ stk ′ = stk)

〈proof 〉

lemma while-correct [simplified, intro]:
[[bcomp (b, False, size (ccomp c) + 1) @ ccomp c @

[JMP (− (size (bcomp (b, False, size (ccomp c) + 1) @ ccomp c) + 1))]
|= cfs�;∧
cfs. ccomp c |= cfs� =⇒ cpred c (cfs ! 0) (cfs ! (length cfs − 1))]] =⇒

cpred (WHILE b DO c) (cfs ! 0) (cfs ! (length cfs − Suc 0))
(is [[?cb @ ?cc @ [JMP (− ?n)] |= -�;

∧
-. - =⇒ -]] =⇒ ?Q cfs)

〈proof 〉

lemma ccomp-correct [simplified, intro]:
ccomp c |= cfs� =⇒ cpred c (cfs ! 0) (cfs ! (length cfs − 1))
〈proof 〉

lemma acomp-acomp-m:
assumes

A: acomp a1 @ acomp a2 @ P |= cfs�
(is ?P |= -�) and

B:
∧

cfs. acomp a1 |= cfs� =⇒ mpred (acomp a1) cfs 0 (length cfs − 1) and
C :

∧
cfs. acomp a2 |= cfs� =⇒ mpred (acomp a2) cfs 0 (length cfs − 1)

shows case cfs ! 0 of (pc, s, stk) ⇒ ∃ k < length cfs.
cfs ! k = (size (acomp a1 @ acomp a2), s, aval a2 s # aval a1 s # stk) ∧
mpred ?P cfs 0 k

〈proof 〉

lemma bcomp-bcomp-m [simplified, intro]:
assumes A: bcomp (b1, f 1, i1) @ bcomp (b2, f 2, i2) |= cfs�
(is bcomp ?x1 @ bcomp ?x2 |= -�)

assumes
B:

∧
cfs. bcomp ?x1 |= cfs� =⇒ mpred (bcomp ?x1) cfs 0 (length cfs − 1) and

C :
∧

cfs. bcomp ?x2 |= cfs� =⇒ mpred (bcomp ?x2) cfs 0 (length cfs − 1) and
D: size (bcomp ?x2) ≤ i1 and
E : 0 ≤ i2

shows mpred (bcomp ?x1 @ bcomp ?x2) cfs 0 (length cfs − 1)
(is mpred ?P - - -)

〈proof 〉

lemma acomp-correct-m [simplified, intro]:
acomp a |= cfs� =⇒ mpred (acomp a) cfs 0 (length cfs − 1)
〈proof 〉

lemma bcomp-correct-m [simplified, intro]:
[[bcomp x |= cfs�; 0 ≤ snd (snd x)]] =⇒ mpred (bcomp x) cfs 0 (length cfs − 1)
〈proof 〉

24

lemma bcomp-ccomp-m:
assumes A: bcomp (b, f , i) @ ccomp c @ P |= cfs�
(is bcomp ?x @ ?cc @ - |= -�)

assumes
B:

∧
cfs. ?cc |= cfs� =⇒ mpred ?cc cfs 0 (length cfs − 1) and

C : 0 ≤ i
shows case cfs ! 0 of (pc, s, stk) ⇒ ∃ k < length cfs. ∃ s ′.

cfs ! k = (size (bcomp ?x) + (if bval b s = f then i else size ?cc), s ′, stk) ∧
mpred (bcomp ?x @ ?cc @ P) cfs 0 k

〈proof 〉

lemma ccomp-ccomp-m [simplified, intro]:
assumes

A: ccomp c1 @ ccomp c2 |= cfs�
(is ?P |= -�) and

B:
∧

cfs. ccomp c1 |= cfs� =⇒ mpred (ccomp c1) cfs 0 (length cfs − 1) and
C :

∧
cfs. ccomp c2 |= cfs� =⇒ mpred (ccomp c2) cfs 0 (length cfs − 1)

shows mpred ?P cfs 0 (length cfs − 1)
〈proof 〉

lemma while-correct-m [simplified, simplified Let-def , intro]:
[[bcomp (b, False, size (ccomp c) + 1) @ ccomp c @

[JMP (− (size (bcomp (b, False, size (ccomp c) + 1) @ ccomp c) + 1))]
|= cfs�;∧
cfs. ccomp c |= cfs� =⇒ mpred (ccomp c) cfs 0 (length cfs − 1)]] =⇒

mpred (ccomp (WHILE b DO c)) cfs 0 (length cfs − Suc 0)
(is [[?cb @ ?cc @ - |= -�;

∧
-. - =⇒ -]] =⇒ -)

〈proof 〉

lemma ccomp-correct-m:
ccomp c |= cfs� =⇒ mpred (ccomp c) cfs 0 (length cfs − 1)
〈proof 〉

Here below are the proofs of theorems m-ccomp-bigstep and m-ccomp-exec,
which establish that machine programs simulate source ones and vice versa.
The former theorem is inferred from theorem ccomp-bigstep and lemmas
mpred-execl-m-exec, ccomp-correct-m, the latter one from lemma m-exec-exec
and theorem ccomp-exec, in turn derived from lemma ccomp-correct.

lemma exec-execl [dest!]:
P ` cf →∗ cf ′ =⇒ ∃ cfs. P |= cfs ∧ cfs 6= [] ∧ hd cfs = cf ∧ last cfs = cf ′

〈proof 〉

theorem m-ccomp-bigstep:
(c, s) ⇒ s ′ =⇒

25

m-ccomp c ` (0 , m-state c s, 0) →∗ (size (m-ccomp c), m-state c s ′, 0)
〈proof 〉

theorem ccomp-exec:
ccomp c ` (0 , s, stk) →∗ (size (ccomp c), s ′, stk ′) =⇒ (c, s) ⇒ s ′ ∧ stk ′ = stk
〈proof 〉

theorem m-ccomp-exec:
m-ccomp c ` (0 , ms, 0) →∗ (size (m-ccomp c), ms ′, sp) =⇒

(c, state c ms) ⇒ state c ms ′ ∧ sp = 0
〈proof 〉

end

References

[1] A. Krauss. Defining Recursive Functions in Isabelle/HOL.
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/
doc/functions.pdf.

[2] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs.
https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/
isar-overview.pdf.

[3] T. Nipkow. Programming and Proving in Isabelle/HOL, Dec. 2021.
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/
doc/prog-prove.pdf.

[4] T. Nipkow and G. Klein. Theory HOL-IMP.Compiler (in-
cluded in the Isabelle2021-1 distribution). https://isabelle.in.tum.de/
website-Isabelle2021-1/dist/library/HOL/HOL-IMP/Compiler.html.

[5] T. Nipkow and G. Klein. Concrete Semantics with Isabelle/HOL.
Springer-Verlag, Mar. 2021. (Current version: http://www.
concrete-semantics.org/concrete-semantics.pdf).

[6] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof
Assistant for Higher-Order Logic, Dec. 2021. https://isabelle.in.tum.de/
website-Isabelle2021-1/dist/Isabelle2021-1/doc/tutorial.pdf.

[7] P. Noce. A Shorter Compiler Correctness Proof for Language IMP.
Archive of Formal Proofs, June 2021. https://isa-afp.org/entries/IMP_
Compiler.html, Formal proof development.

26

https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/functions.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/functions.pdf
https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/prog-prove.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/prog-prove.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/library/HOL/HOL-IMP/Compiler.html
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/library/HOL/HOL-IMP/Compiler.html
http://www.concrete-semantics.org/concrete-semantics.pdf
http://www.concrete-semantics.org/concrete-semantics.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/tutorial.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/tutorial.pdf
https://isa-afp.org/entries/IMP_Compiler.html
https://isa-afp.org/entries/IMP_Compiler.html

	Compiler formalization
	List setup
	Instructions and stack machine
	Verification infrastructure
	Compilation
	Preservation of semantics

	Compiler verification
	Preliminary definitions and lemmas
	Main theorems

