A Shorter Compiler Correctness Proof
for Language IMP

Pasquale Noce
Software Engineer at HID Global, Italy
pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at hidglobal dot com

March 17, 2025

Abstract

This paper presents a compiler correctness proof for the didac-
tic imperative programming language IMP, introduced in Nipkow and
Klein’s book on formal programming language semantics (version of
March 2021), whose size is just two thirds of the book’s proof in the
number of formal text lines. As such, it promises to constitute a fur-
ther enhanced reference for the formal verification of compilers meant
for larger, real-world programming languages.

The presented proof does not depend on language determinism,
so that the proposed approach can be applied to non-deterministic
languages as well. As a confirmation, this paper extends IMP with
an additional non-deterministic choice command, and proves compiler
correctness, viz. the simulation of compiled code execution by source
code, for such extended language.

Contents

1 Compiler formalization 1
1.1 Introduction 2
1.2 Definitions 2

2 Compiler correctness 6
2.1 Preliminary definitions and lemmas 6
2.2 Main theoremo o 10

1 Compiler formalization

theory Compiler
imports
HOL—IMP.BEzp

HOL—IMP.Star
begin

1.1 Introduction

This paper presents a compiler correctness proof for the didactic impera-
tive programming language IMP, introduced in [5], shorter than the proof
described in [5] and included in the Isabelle2021 distribution [1]. Actually,
the size of the presented proof is just two thirds of the book’s proof in the
number of formal text lines, and as such it promises to constitute a further
enhanced reference for the formal verification of compilers meant for larger,
real-world programming languages.

Given compiler completeness, viz. the simulation of source code execution by
compiled code, "in a deterministic language like IMP", compiler correctness
"reduces to preserving termination: if the machine program terminates, so
must the source program", even though proving this "is not much easier" ([5],
section 8.4). However, the presented proof does not depend on language de-
terminism, so that the proposed approach is applicable to non-deterministic
languages as well.

As a confirmation, this paper extends IMP with an additional command ¢;
OR cs, standing for the non-deterministic choice between commands ¢ and
c9, and proves compiler correctness, viz. the simulation of compiled code
execution by source code, for such extended language. Of course, the afore-
said comparison between proof sizes does not consider the lines in the proof
of lemma ccomp-correct (which proves compiler correctness for commands)
pertaining to non-deterministic choice, since this command is not included
in the original language IMP. Anyway, non-deterministic choice turns out to
extend that proof just by a modest number of lines.

For further information about the formal definitions and proofs contained
in this paper, see Isabelle documentation, particularly [6], [4], [2], and [3].

1.2 Definitions

Here below are the definitions of IMP commands, extended with non-deterministic
choice, as well as of their big-step semantics.

As in the original theory file [1], program counter’s values are modeled using
type int rather than nat. As a result, the same declarations and definitions
used in [1] to deal with this modeling choice are adopted here as well.

declare [[coercion-enabled]]
declare [[coercion int :: nat = int]]
declare [[syntaz-ambiguity-warning = false]]

datatype com =
SKIP |
Assign vname aexp (- = - [1000, 61] 61) |
Seq com com (<-3;/ - [60, 61] 60) |
If bexp com com («(IF -/ THEN -/ ELSE -)» [0, 0, 61] 61) |
Or com com («(- OR -)» [60, 61] 61) |
While bexp com («(WHILE -/ DO -)» [0, 61] 61)

inductive big-step :: com x state = state = bool (infix =) 55) where

Skip: (SKIP, s) = s |

Assign: (z ::= a, s) = s(z := aval a s) |

Seq: [(c1, s1) = s2; (c2, s2) = s3] = (135 ¢2, 51) = s3 |

IfTrue: [bval b s; (c1, s) = t] = (IF b THEN ¢y ELSE co, s) = t |

IfFalse: [- bval b s; (ca, 8) = t] = (IF b THEN c¢; ELSE cq,) = t |

Orl: (c1,8) =t = (c1 OR cq,) = t |

Or2: (ca, 8) =t = (c1 OR ¢q,) = t |

WhileFalse: — bval b s = (WHILE b DO ¢, s) = s |

WhileTrue: [bval b s1; (¢, $1) = s2; (WHILE b DO ¢, s2) = s3] =
(WHILE b DO ¢, s1) = s3

declare big-step.intros [intro]

abbreviation (output)
isize xs = int (length xs)

notation isize (<size)

primrec (nonezhaustive) inth :: 'a list = int = 'a (infixl <!> 100) where
(x# xs) M i=(if i = 0thenzelsexs!! (i — 1))

lemma inth-append [simp):
0<i—

(zs @ ys) 1 ¢ = (if i < size zs then xs !l i else ys ! (i — size zs))
(proof)

Next, the instruction set and its semantics are defined. Particularly, to allow
for the compilation of non-deterministic choice commands, the instruction
set is extended with an additional instruction JMPND performing a non-
deterministic jump — viz. as a result of its execution, the program counter
unconditionally either jumps by the specified offset, or just moves to the

next instruction.

As instruction execution can be non-deterministic, an inductively defined
predicate iexec, rather than a simple non-recursive function as the one used

in [1], must be introduced to define instruction semantics.

datatype instr =
LOADI int | LOAD vname | ADD | STORE vname

JMP int | JMPLESS int | JMPGE int | JMPND int

type-synonym stack = val list
type-synonym config = int X state x stack

abbreviation hd2 zs = hd (tl xs)
abbreviation #2 xs = tl (tl zs)

inductive iexec :: instr X config = config = bool (infix <—» 55) where
Loadl: (LOADI i, pc, s, stk) — (pc + 1, s, i # stk) |
Load: (LOAD z, pc, s, stk) — (pc + 1, s, s © # stk) |
Add: (ADD, pc, s, stk) — (pc + 1, s, (hd2 stk + hd stk) # ti2 stk) |
Store: (STORE z, pe, s, stk) — (pc + 1, s(z := hd stk), tl stk) |
Jmp: (JMP i, pc, s, stk) — (pc + @ + 1, s, stk) |
JmpLessY: hd2 stk < hd stk —=
(JMPLESS i, pc, s, stk) — (pc + i + 1, s, tI2 stk) |
JmpLessN: hd stk < hd2 stk =
(JMPLESS i, pe, s, stk) — (pc + 1, s, tI2 stk) |
JmpGeY: hd stk < hd2 stk =
(JMPGE i, pc, s, stk) — (pc + @ + 1, s, t2 stk) |
JmpGeN: hd2 stk < hd stk =
(JMPGE i, pe, s, stk) — (pc + 1, s, t2 stk) |
JmpNdY: (JMPND i, pc, s, stk) — (pc + i + 1, s, stk) |
JmpNdN: (JMPND i, pe, s, stk) — (pc + 1, s, stk)

declare iexec.intros [intro]

inductive-cases LoadIE [elim!]: (LOADI i, pc, s, stk) — cf
inductive-cases LoadE [elim!]: (LOAD z, pc, s, stk) — cf
inductive-cases AddE [elim!]: (ADD, pc, s, stk) — cf
inductive-cases StoreE [elim!]: (STORE z, pc, s, stk) — cf
inductive-cases JmpE [elim!]: (JMP i, pc, s, stk) — cf
inductive-cases JmpLessE [elim!]: (JMPLESS i, pe, s, stk) — cf
inductive-cases JmpGeE [elim!]: (JMPGE i, pc, s, stk) — cf
inductive-cases JmpNdE [elim!]: (JMPND i, pc, s, stk) — cf

definition exec! :: instr list = config = config = bool
(«(-/ v/ -/ =/ -)» 55) where
Pleof = cf = (PN fstef, cf) — cf' ANO < fstcf A fstcf < sizeP

abbreviation ezec :: instr list = config = config = bool
(«(-/ F/ -/ =%/ -)» 55) where
exec P = star (execl P)

Next, compilation is formalized for arithmetic and boolean expressions (func-
tions acomp and bcomp), as well as for commands (function ccomp). Partic-
ularly, as opposed to what happens in [1], here bcomp takes a single input,
viz. a 3-tuple comprised of a boolean expression, a flag, and a jump off-

set. In this way, all three functions accept a single input, which enables to
streamline the compiler correctness proof developed in what follows.

primrec acomp :: aexp = instr list where

acomp (N i) = [LOADI 1] |

acomp (V z) = [LOAD 1] |

acomp (Plus a1 ag) = acomp a3 Q acomp as @ [ADD]

fun bcomp :: bexp x bool X int = instr list where
beomp (Bc v, f, i) = (if v = f then [JMP 1] else []) |
beomp (Not b, f, i) = becomp (b, = f, 7) |
bcomp (And by bs, f, ©) =

(let cby = beomp (be, f, 7);

cby = beomp (b1, False, size cby + (if f then 0 else 7))

in cby @ cby) |
beomp (Less a1 az, f, i) =

acomp a1 Q@ acomp az Q (if f then [JMPLESS i else [JMPGE 1))

primrec ccomp :: com = instr list where
ccomp SKIP = |] |
ccomp (z ::= a) = acomp a Q [STORE z] |
ccomp (c13; ¢2) = ccomp ¢ @ ccomp ca |
ccomp (IF b THEN ¢y ELSE ¢3) =
(let cc; = ccomp c1; cco = ccomp ca; ¢b = beomp (b, False, size ccq + 1)
in ¢b Q ccy @ JMP (size cca) # cc2) |
ccomp (¢1 OR ¢3) =
(let cc; = ccomp cq; cco = ccomp ¢
in JMPND (size ccy + 1) # cc; @ JMP (size cca) # cca) |
ccomp (WHILE b DO ¢) =
(let cc = ccomp ¢; cb = becomp (b, False, size cc + 1)
in cb @ cc @ [JMP (— (size ¢b + size cc + 1))])

Finally, two lemmas are proven automatically (both seem not to be included
in the standard library, though being quite basic) and registered for use by
automatic proof tactics. In more detail:

e The former lemma is an elimination rule similar to impCFE, with the
difference that it retains the antecedent of the implication in the
premise where the consequent is assumed to hold. This rule permits
to have both assumptions — bval b s and bval b s in the respective
cases resulting from the execution of boolean expression b in state s.

e The latter one is an introduction rule similar to Suc-lessl, with the
difference that its second assumption is more convenient for proving
statements of the form Suc m < n arising from the compiler correctness
proof developed in what follows.

lemma impCE2 [elim]]:
[P— Q- P— R, P— Q= R] — R
(proof)

lemma Suc-lessI2 [introl]:
[m<n;m#n-— 1] = Sucm < n
(proof)

end

2 Compiler correctness

theory Compiler2
imports Compiler
begin

2.1 Preliminary definitions and lemmas

Now everything is ready for the compiler correctness proof. First, two pred-
icates are introduced, execl and ezecl-all, both taking as inputs a program,
i.e. a list of instructions, P and a list of program configurations cfs, and
respectively denoted using notations P = c¢fs and P |= ¢fsld. In more detail:

o P = cfs means that program P may transform each configuration
within ¢fs into the subsequent one, if any (word may reflects the fact
that programs can be non-deterministic in this case study).

Thus, execl formalizes the notion of a small-step program execution.

o P E c¢fsdd reinforces P = cfs by additionally requiring that cfs be

nonempty, the initial program counter be zero (viz. execution starts
from the first instruction in P), and the final program counter falls
outside P (viz. execution terminates).
Thus, execl-all formalizes the notion of a complete small-step program
execution, so that assumptions acomp a = c¢fsd], bcomp x = cfsC,
ccomp ¢ = c¢fstd will be used in the compiler correctness proofs for
arithmetic/boolean expressions and commands.

Moreover, predicates apred, bpred, and cpred are defined to capture the link
between the initial and the final configuration upon the execution of an
arithmetic expression, a boolean expression, and a whole program, respec-
tively, and abbreviation off is introduced as a commodity to shorten the
subsequent formal text.

fun execl :: instr list = config list = bool (infix (=) 55) where

Plcf#of #cfs= (PHof > of NPl of # cfs) |
P -= True

definition ezecl-all :: instr list = config list = bool («(-/ =/ -0)» 55) where

PlEcosO=PEcsNcfs#][A
fst (cfs! 0) =0 N fst (cfs! (length cfs — 1)) ¢ {0..<size P}

definition apred :: aexp = config = config = bool where
apred = Aa (pe, s, stk) (pc’, s', stk’).
pc’ = pe + size (acomp a) A s' = s A stk! = aval a s # stk

definition bpred :: bexp X bool x int = config = config = bool where
bpred = (b, f, ©) (pe, s, stk) (pc’, s'; stk’).
pc’ = pc + size (beomp (b, f, ©)) + (if bval b s = f then i else 0) A
s'= s A stk = stk

definition cpred :: com = config = config = bool where
cpred = Ac (pe, s, stk) (pc!, s, stk’).
pc’ = pe + size (ccomp ¢) A (¢, s) = s' A stk' = stk

abbreviation off :: instr list = config = config where
off P ¢f = (fst ¢f — size P, snd cf)

Next, some lemmas about ezecl and ezecl-all are proven. In more detail,
given a program P and a list of configurations c¢fs such that P = cfs:

e Lemma ezecl-next states that for any configuration in cfs but the last
one, the subsequent configuration must result from the execution of
the referenced instruction of P in that configuration.

Thus, execl-next permits to reproduce the execution of a single instruc-
tion.

e Lemma ezecl-last states that a configuration in cfs whose program
counter falls outside P must be the last one in cfs.
Thus, ezecl-last permits to infer the completion of program execution.

o Lemma execl-drop states that P |= drop n cfs for any natural number
n, and will be used to prove compiler correctness for loops by induction
over the length of the list of configurations cfs.

Furthermore, some other lemmas enabling to prove compiler correctness
automatically for constructors N, V (arithmetic expressions), Bc (boolean
expressions) and SKIP (commands) are also proven.

lemma iezec-offset-aux:
(iuint)+ 1 —j=i—j+1Ni+j—k+1=i—k+j+1

(proof)

lemma iezec-offset [intro]:
(ins, pe, s, stk) — (pc’, ', stk’) =
(ins, pc — 14, s, stk) — (pc’ — i, s, stk’)

(proof)

lemma execl-next:

[P E cfs; k < length cfs; k # length cfs — 1] =
(PN fst (cfs! k), cfs! k) — cfs! Suck

(proof)

lemma execl-last:

[P |= cfs; k < length cfs; fst (c¢fs 1 k) ¢ {0..<size P}] =
length cfs — 1 = k

(proof)

lemma execl-drop:
P = ¢fs = P |= drop n cfs
(proof)

lemma execl-all-N [simplified, intro):
[LOADI i] |= ¢fs0) = apred (N i) (cfs! 0) (¢fs ! (length cfs — 1))
(proof)

lemma execl-all-V [simplified, intro):
[LOAD 2] |= cfs) = apred (V z) (cfs ! 0) (cfs ! (length cfs — 1))
(proof)

lemma execl-all-Be [simplified, intro):

[if v = f then [JMP i) else || E ¢fs0; 0 < i] =
bpred (Bc v, f,) (cfs! 0) (cfs ! (length cfs — 1))

(proof)

lemma ezecl-all-SKIP [simplified, intro]:
[| E ¢fs0 = cpred SKIP (cfs ! 0) (c¢fs ! (length cfs — 1))
(proof)

Next, lemma ezecl-all-sub is proven. It states that, if P @ P’ @ P |
cfsC], configuration cf within cfs refers to the start of program P’ z, and
the initial and the final configuration in every complete execution of P’ z
satisfy predicate @ z, then there exists a configuration c¢f’ in c¢fs such that
cf and cf’ satisfy Q .

Thus, this lemma permits to reproduce the execution of a subprogram, par-
ticularly:

e a compiled arithmetic expression a, where () = apred and z = a,

o a compiled boolean expression b, where @ = bpred and z = (b, f, @)
(given a flag f and a jump offset 7), and

e a compiled command ¢, where () = cpred and z = c.

Furthermore, lemma execl-all-sub2 is derived from execl-all-sub to enable a
shorter symbolical execution of two consecutive subprograms.

lemma execl-sub-auz:
[Amn. Yk e {m.<n}. Q@ P'(((pc, s, stk) # cfs) ' k) = P' =
map (off P) (case m of 0 = (pc, s, stk) # take n cfs | Suc m = F cfs m n);
Vk € {m..<n+m+length cfs’}. Q P’ ((c¢fs' @ (pc, s, stk) # cfs) ! (k—m))] =
P’ = (pc — size P, s, stk) # map (off P) (take n cfs)
(is [N---Vke - QP (?Fk) = -;Vke ?A. Q P' (?G k)] = -)
(proof)

lemma execl-sub:
[P@P @P"E cfs; Vk € {m..<n}.
size P < fst (cfs ! k) A fst (cfs ! k) — size P < size P'| =
P’ \= map (off P) (drop m (take (Suc n) cfs))
(is [Vk € -. 2P P’ ¢fs k] = P' = map - (?F cfs m (Suc n)))
(proof)

lemma execl-all-sub [rule-format]:
assumes
A: P@Q P 'z @ P" | ¢fs0d and
B: k < length cfs and
C: fst (cfs | k) = size P and
D:Vefs. Pla = cfsd — Qu (cfs! 0) (cfs! (length cfs — 1))
shows 3k’ < length cfs. Q z (off P (cfs ' k)) (off P (cfs ! k')
(proof)

lemma execl-all-sub2:
assumes
A: Pz @ P'z’Q P | ¢fsO
(is 2P = -O0) and
B: Ncfs. Pz = ¢fs00 = (A(pc, s, stk) (pc', s, stk').
pe’ = pe + size (Px)+1s AN Qs s’ A stk! =F s stk)
(cfs ! 0) (cfs ! (length cfs — 1))
(is Acfs. - = ?2Q z (cfs ! 0) (cfs ! (length cfs — 1))) and
C: Nefs. P2’ | cfs = (A(pe, s, stk) (pc', s’ stk').
pc’ = pe + size (P'a’) +1"s AN Q' s s’ A\ stk’ = F' s stk)
(cfs ! 0) (cfs ! (length cfs — 1))
(is Acfs. - = 2Q" z' (¢fs ! 0) (cfs ! (length c¢fs — 1))) and
D: T (fst (snd (¢fs!0))) =0
shows 3k < length cfs. 3t. (A(pc, s, stk) (pc', s'; stk').
pc =0 A pc' = size (Px)+ size (P +T"tNQstANQ ts A
stk’ = F't (F s stk)) (c¢fs! 0) (cfs! k)
(proof)

2.2 Main theorem

It is time to prove compiler correctness. First, lemmas acomp-acomp, bcomp-bcomp
are derived from ezecl-all-sub2 to reproduce the execution of two consec-
utive compiled arithmetic expressions (possibly generated by both acomp

and bcomp) and boolean expressions (possibly generated by bcomp), respec-
tively. Subsequently, the correctness of acomp and bcomp is proven in lem-

mas acomp-correct, bcomp-correct.

lemma acomp-acomp:
lacomp a1 @ acomp az @ P = cfs0;
Ncfs. acomp a1 = cfsT) = apred a1 (cfs ! 0) (cfs ! (length cfs — 1));
Ncfs. acomp as = cfs0) = apred az (cfs ! 0) (cfs ! (length cfs — 1))] =
case cfs | 0 of (pc, s, stk) = pc = 0 A (Tk < length cfs. ¢fs | k =
(size (acomp a1 @Q acomp az), s, aval ay s # aval ay s # stk))
(proof)

lemma bcomp-bcomp:
[bcomp (b1, f1, i1) @ beomp (ba, fa, i2) = cfsC;
Ncfs. beomp (b1, f1, i1) E ofsd =
bpred (b1, f1, 71) (¢fs ! 0) (cfs ! (length cfs — 1));
Ncfs. beomp (ba, fa, i2) E cfsd =
bpred (b, fa, i2) (cfs! 0) (cfs ! (length c¢fs — 1))] =
case cfs ! 0 of (pc, s, stk) = pc = 0 A (bval by s # f1 —
(3k < length cfs. cfs | k = (size (bcomp (b1, f1, i1) @ bcomp (ba, fa, i2)) +
(if bval by s = fo then iy else 0), s, stk)))
(proof)

lemma acomp-correct [simplified, intro]:
acomp a = cfs = apred a (cfs ! 0) (cfs ! (length cfs — 1))
(proof)

lemma becomp-correct [simplified, introl:
[ocomp x |= cfs0; 0 < snd (snd x)] = bpred z (cfs ! 0) (cfs ! (length cfs — 1))
(proof)

Next, lemmas bcomp-ccomp, ccomp-ccomp are derived to reproduce the ex-
ecution of a compiled boolean expression followed by a compiled command
and of two consecutive compiled commands, respectively (possibly generated
by ccomp). Then, compiler correctness for loops and for all commands is
proven in lemmas while-correct and ccomp-correct, respectively by induction
over the length of the list of configurations and by structural induction over
commands.

lemma bcomp-ccomp:
[bcomp (b, f, i) Q@ ccomp ¢ Q P |= ¢fs0d; 0 < 4

10

Ncfs. ccomp ¢ |= cfs0) = cpred ¢ (cfs ! 0) (cfs ! (length c¢fs — 1))] =
case cfs ! 0 of (pc, s, stk) = pc = 0 A (bval b s # f —
(3k < length cfs. case cfs ! k of (pc’, s'; stk) =
pc! = size (becomp (b, f, i) Q ccomp ¢) A (¢, s) = s’ A stk’ = stk))
(proof)

lemma ccomp-ccomp:
[ecomp ¢1 @ ccomp ¢y = cfs;
Ncfs. ccomp er | cfsT = cpred c¢1 (cfs ! 0) (cfs ! (length cfs — 1));
Ncfs. ccomp co = cfsd = cpred ca (cfs ! 0) (cfs ! (length cfs — 1))] =
case cfs ! 0 of (pc, s, stk) = pc = 0 A (Fk < length cfs. I t.
case cfs V' k of (pc'; s/, stk’) = pc’ = size (ccomp ¢1 @ ccomp co) A
(c1, 8) = t A (co, t) = s' A stk’ = stk)
(proof)

lemma while-correct [simplified, intro):
[bcomp (b, False, size (ccomp ¢) + 1) @ ccomp ¢ Q
[JMP (— (size (bcomp (b, False, size (ccomp c¢) + 1) @Q ccomp ¢) + 1))] |=
cfsd;
Ncfs. ccomp ¢ |E cfs0 = cpred ¢ (cfs ! 0) (¢fs ! (length ¢fs — 1))] =
cpred (WHILE b DO c¢) (cfs! 0) (cfs ! (length cfs — Suc 0))
(is [%cb @ 2cc @Q [JMP (— %n)] = -0, A-. - = -] = ?2Q cfs)
(proof)

lemma ccomp-correct:
ccomp ¢ = cfsT) = cpred ¢ (cfs ! 0) (cfs ! (length cfs — 1))
(proof)

Finally, the main compiler correctness theorem, expressed using predicate
exec, is proven. First, P F ¢f —x cf’is shown to imply the existence of a
nonempty list of configurations cfs such that P |= cfs, whose initial and final
configurations match c¢f and cf’, respectively. Then, the main theorem is
derived as a straightforward consequence of this lemma and of the previous
lemma ccomp-correct.

lemma exec-ezxecl [dest!]:

Pt o = cf/f = dcfs. Pl cfs Acfs # || A hd cfs = cf A last cfs = ¢f’
(proof)

theorem ccomp-exec:

ccomp ¢ b (0, s, stk) —x (size (ccomp c), s', stk’) = (¢, s) = s’ A stk’ = stk
(proof)

end

11

References

1]

G. Klein. Theory HOL-IMP.Compiler2 (included in the Isabelle2021
distribution). https://isabelle.in.tum.de/website-Isabelle2021 /dist /
library /HOL /HOL-IMP /Compiler2.html.

A. Krauss. Defining Recursive Functions in Isabelle/HOL.
https://isabelle.in.tum.de/website-Isabelle2021 /dist /Isabelle2021/
doc/functions.pdf.

T. Nipkow. A Tutorial Introduction to Structured Isar Proofs.
https:/ /isabelle.in.tum.de/website-Isabelle2011 /dist /Isabelle2011/doc/
isar-overview.pdf.

T. Nipkow. Programming and Proving in Isabelle/HOL, Feb. 2021.
https://isabelle.in.tum.de/website-Isabelle2021 /dist /Isabelle2021 /doc/
prog-prove.pdf.

T. Nipkow and G. Klein. Concrete Semantics with Isabelle/HOL.
Springer-Verlag, Mar. 2021. (Current version: http://www.
concrete-semantics.org/concrete-semantics.pdf).

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, Feb. 2021. https://isabelle.in.tum.de/
website-Isabelle2021 /dist /Isabelle2021 /doc/tutorial.pdf.

12

https://isabelle.in.tum.de/website-Isabelle2021/dist/library/HOL/HOL-IMP/Compiler2.html
https://isabelle.in.tum.de/website-Isabelle2021/dist/library/HOL/HOL-IMP/Compiler2.html
https://isabelle.in.tum.de/website-Isabelle2021/dist/Isabelle2021/doc/functions.pdf
https://isabelle.in.tum.de/website-Isabelle2021/dist/Isabelle2021/doc/functions.pdf
https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
https://isabelle.in.tum.de/website-Isabelle2021/dist/Isabelle2021/doc/prog-prove.pdf
https://isabelle.in.tum.de/website-Isabelle2021/dist/Isabelle2021/doc/prog-prove.pdf
http://www.concrete-semantics.org/concrete-semantics.pdf
http://www.concrete-semantics.org/concrete-semantics.pdf
https://isabelle.in.tum.de/website-Isabelle2021/dist/Isabelle2021/doc/tutorial.pdf
https://isabelle.in.tum.de/website-Isabelle2021/dist/Isabelle2021/doc/tutorial.pdf

	Compiler formalization
	Introduction
	Definitions

	Compiler correctness
	Preliminary definitions and lemmas
	Main theorem

