IMP2 Binary Heap

Simon Griebel

March 17, 2025

Abstract

In this submission array-based binary minimum heaps are formal-
ized. The correctness of the following heap operations is proven: insert,
get-min, delete-min and make-heap. These are then used to verify an
in-place heapsort. The formalization is based on IMP2, an imper-
ative program verification framework implemented in Isabelle/HOL.
The verified heap functions are iterative versions of the partly recur-
sive functions found in “Algorithms and Data Structures — The Basic
Toolbox” by K. Mehlhorn and P. Sanders and “Introduction to Algo-
rithms” by T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein.

Contents
1 Introduction 3
2 Heap Related Definitions and Theorems 3
2.1 Array Bounds 3
2.2 Parent and Children, 3
2.2.1 Definitions o 3
222 Lemmas 4
2.3 Heap Invariants oL,)
2.3.1 Definitions 5
232 Lemmas 6
2.3.3 First Heap Element 7
3 General Lemmas on Arrays 8
3.1 Lemmas on mset-ran 8
3.2 Lemmas on swap and eq-on 9
4 Imperative Heap Implementation 10
4.1 Simple Functions 11
4.1.1 Parent, Children and Swap 11
4.1.2 get-min oL 11
4.2 Modifying Functions 12

4.3

4.2.1 sift-up and insert 12

4.2.2 sift-down, del-min and make-heap 14
Heapsort Implementation 16
4.3.1 Auxiliary Lemmas 16
4.3.2 Implementation 17

theory IMP2-Binary-Heap
imports IMP2.IMP2 IMP2.IMP2-Auz-Lemmas
begin

1 Introduction

In this submission imperative versions of the following array-based binary
minimum heap functions are implemented and verified: insert, get-min, delete-
min, make-heap. The latter three are then used to prove the correctness of
an in-place heapsort, which sorts an array in descending order. To do that in
Isabelle/HOL, the proof framework IMP2 [2] is used. Here arrays are mod-
eled by int = int functions. The imperative implementations are iterative
versions of the partly recursive algorithms described in [3] and [1].

This submission starts with the basic definitions and lemmas, which are
needed for array-based binary heaps. These definitions and lemmas are
parameterised with an arbitrary (transitive) comparison function (where
such a function is needed), so they are not only applicable to minimum
heaps. After some more general, useful lemmas on arrays, the imperative
minimum heap functions and the heapsort are implemented and verified.

2 Heap Related Definitions and Theorems

2.1 Array Bounds

A small helper function is used to define valid array indices. Note that the
lower index bound [is arbitrary and not fixed to 0 or 1. The upper index
bound r is not a valid index itself, so that the empty array can be denoted
by having [= r.

abbreviation bounded :: int = int = int = bool where
bounded lrx=1l<zxANzx<Tr

2.2 Parent and Children
2.2.1 Definitions

For the notion of an array-based binary heap, the parent and child relations
on the array indices need to be defined.

definition parent :: int = int = int where

parent lc =1+ (c — 1 — 1) div 2

definition [-child :: int = int = int where
l-childlp=2x%xp—1+ 1

definition r-child :: int = int = int where
r-childlp=2x*p—1+ 2

2.2.2 Lemmas

lemma parent-upper-bound: parent [¢ < ¢ +— [l < ¢

(proof)

lemma parent-upper-bound-alt: | < parent | ¢ = parent [¢ < ¢

(proof)

lemma parent-lower-bound: | < parent l ¢ +— 1 < ¢

(proof)

lemma grand-parent-upper-bound: parent | (parent [¢) < ¢ +— [< ¢

(proof)

corollary parent-bounds: | < x = x < r = bounded | r (parent [x)

(proof)

lemma [-child-lower-bound: p < l-childlp +— [< p

(proof)

corollary I-child-lower-bound-alt: | < x —= 2 < p =z < l-child | p

(proof)

lemma parent-I-child[simp]: parent | (I-child [n) = n

(proof)

lemma r-child-lower-bound: | < p = p < r-child I p

(proof)

corollary r-child-lower-bound-alt: | < x = x < p = z < r-child l p

(proof)

lemma parent-r-child[simp]: parent | (r-child I n) = n

(proof)

lemma smaller-l-child: I-child | x < r-child |

(proof)

lemma parent-two-children:
(¢ = l-child l p V ¢ = r-child | p) <— parent [¢ = p
(proof)

2.3 Heap Invariants

2.3.1 Definitions

The following heap invariants and the following lemmas are parameterised
with an arbitrary (transitive) comparison function. For the concrete function
implementations at the end of this submission < on ints is used.

For the make-heap function, which transforms an unordered array into a
valid heap, the notion of a partial heap is needed. Here the heap invariant
only holds for array indices between a certain valid array index m and r.
The standard heap invariant is then simply the special case where m = I.

definition is-partial-heap
it (‘azzorder = 'a:order = bool) = (int = 'a::order) = int = int = int
= bool where
is-partial-heap cmp heap I m r = (¥ z. bounded m r v —
bounded m r (parent |) — cmp (heap (parent | z)) (heap x))

abbreviation is-heap

i ("azzorder = 'a::order = bool) = (int = 'a::order) = int = int = bool
where

is-heap cmp heap | r = is-partial-heap cmp heap 1 r

During all of the modifying heap functions the heap invariant is temporar-
ily violated at a single index 7 and it is then gradually restored by either
sift-down or sift-up. The following definitions formalize these weakened in-
variants.

The second part of the conjunction in the following definitions states, that
the comparison between the parent of ¢ and each of the children of 7 evaluates
to True without explicitly using the child relations.

definition is-partial-heap-except-down
it ("azorder = 'a:order = bool) = (int = 'a::order) = int = int = int
= int = bool where
is-partial-heap-ezxcept-down cmp heap L m r i = (V z. bounded m r z —»
((parent | © # i —> bounded m r (parent | x) — cmp (heap (parent |
%)) (heap 2)) A
(parent | x = i — bounded m r (parent | (parent [x))
— cmp (heap (parent | (parent | z))) (heap z))))

abbreviation is-heap-except-down

it (Yaorder = 'a::order = bool) = (int = 'a::order) = int = int = int
= bool where

is-heap-except-down cmp heap | r i = is-partial-heap-except-down cmp heap
llri

As mentioned the notion of a partial heap is only needed for make-heap,
which only uses sift-down internally, so there doesn’t need to be an additional
definition for the partial heap version of the sift-up invariant.

definition is-heap-except-up
it ('azorder = 'a:order = bool) = (int = 'a::order) = int = int = int
= bool where
is-heap-except-up cmp heap I r i = (V x. bounded | r z —>
((z # i — bounded | r (parent | x) — cmp (heap (parent | x)) (heap
z)) A
(parent | x = i — bounded | v (parent | (parent [x))
— cmp (heap (parent I (parent | z))) (heap x))))

2.3.2 Lemmas

lemma empty-partial-heap[simp|: is-partial-heap cmp heap [r 1

(proof)

lemma is-partial-heap-smaller-back:
is-partial-heap cmp heap | m r = r' < r = is-partial-heap cmp heap |
/
mr

(proof)

lemma is-partial-heap-smaller-front:
is-partial-heap cmp heap | m r = m < m' = is-partial-heap cmp heap
Im'r

(proof)

The second half of each array is a is a partial binary heap, since it contains
only leafs, which are all trivial binary heaps.

lemma snd-half-is-partial-heap:
(I + r) div 2 < m = is-partial-heap cmp heap | m r

{proof)

lemma modify-outside-partial-heap:
assumes
heap = heap’ on {m..<r}
is-partial-heap cmp heap l m r
shows is-partial-heap cmp heap’ l m r

(proof)

The next few lemmas formalize how the heap invariant is weakened, when
the heap is modified in a certain way.

This lemma is used by make-heap.

lemma partial-heap-added-first-el:
assumes
I<mm<r
is-partial-heap cmp heap | (m + 1) r
shows is-partial-heap-except-down cmp heap I m r m

(proof)

This lemma is used by del-min.

lemma heap-changed-first-el:
assumes is-heap cmp heap [1 < r
shows is-heap-except-down cmp (heap(l := b)) I r

(proof)

This lemma is used by insert.

lemma heap-appended-el:
assumes
is-heap cmp heap [r
heap = heap’ on {l..<r}
shows is-heap-except-up cmp heap’ | (r+1) r
(proof)

2.3.3 First Heap Element

The next step is to show that the first element of the heap is always the
“smallest” according to the given comparison function. For the proof a rule
for strong induction on lower bounded integers is needed. Its proof is based
on the proof of strong induction on natural numbers found in [4].

lemma strong-int-gr-induct-helper:

assumes k < (izint) (Ni. k< i = (Nj.k<j—=j<i—=— Pj) =
P)

shows \j. k< j=—=j<i=— Pj

(proof)

theorem strong-int-gr-induct:
assumes
k < (i:int)
Ni.k<i= (Nj.k<j=—j<i=— Pj)= Pi)
shows P i

(proof)

Now the main theorem, that the first heap element is the “smallest” accord-
ing to the given comparison function, can be proven.

theorem heap-first-el:
assumes
is-heap cmp heap | r
transp cmp
l<zz<r
shows c¢cmp (heap 1) (heap x)

(proof)

3 General Lemmas on Arrays

Some additional lemmas on mset-ran, swap and eg-on are needed for the
final proofs.

3.1 Lemmas on mset-ran

abbreviation arr-mset :: (int = 'a) = int = int = 'a multiset where
arr-mset arr | r = mset-ran arr {l..<r}

lemma in-mset-imp-in-array:
r €% (arr-mset arr 1 r) <— (3i. bounded I v i A arr i = x)

(proof)

lemma arr-mset-remove-last:
| < r = arr-mset arr L v = arr-mset arr | (r + 1) — {#arr r#}

(proof)

lemma arr-mset-append:
| <r = arr-mset arr | (r + 1) = arr-mset arr | v + {#arr r#}

(proof)

corollary arr-mset-append-alt:
| < r = arr-mset (arr(r := b)) l (r + 1) = arr-mset arr | r + {#b#}
(proof)

lemma arr-mset-remove-first:
i < r = arr-mset arr (i — 1) r = arr-mset arr i v + {#Farr (i — 1)#}

(proof)

lemma arr-mset-split:

assumes [< mm < r
shows arr-mset arr | r = arr-mset arr | m + arr-mset arr m r

(proof)

That the first element in a heap is the “smallest”, can now be expressed
using multisets.

corollary heap-first-el-alt:
assumes
transp cmp
is-heap cmp heap 1 r
x €# (arr-mset heap [1)
heap | # x
shows c¢cmp (heap 1) x

(proof)

3.2 Lemmas on swap and eg-on

lemma eq-on-subset:
arrl = arr2on R = S C R = arrl = arr2 on S

(proof)

lemma swap-swaps:
arr’ = swap arr xy = arr’' y = arrx A arr’ z = arry

(proof)

lemma swap-only-swaps:
arr' = swap arrxy = 2z # v = 2 # y = arr’ z = arr z

(proof)

lemma swap-commute: swap arr © y = swap arr y x

(proof)

lemma swap-eq-on:
arrl = arr2on S —= ¢ S = y ¢ S = arrl = swap arr2 xy on S

(proof)

corollary swap-parent-eq-on:

assumes
arrl = arr2 on — {l..<r}
I<ce<r
shows arrl = swap arr2 (parent [¢) ¢ on — {l..<r}
(proof)

corollary swap-child-eq-on:

assumes
arrl = arr2 on — {l..<r}
c=l-childlpV ¢ = r-child l p
[<pc<r

shows arr! = swap arr2 p ¢ on — {l..<r}

(proof)

lemma swap-child-mset:
assumes
arr-mset arrl |l r = arr-mset arr2 l r
¢c=1l-childlpV c=r-childlp
[<pec<r
shows arr-mset arrl | r = arr-mset (swap arr2 p c) lr
(proof)

The following lemma shows, which propositions have to hold on the pre-swap
array, so that a comparison between two elements holds on the post-swap
array. This is useful for the proofs of the loop invariants of sift-up and
sift-down. The lemma is kept quite general (except for the argument order)
and could probably be more closely related to the parent relation for more
concise proofs.

lemma cmp-swapl:
fixes arr::'a::order = 'a::order
assumes
mnANzx <y
m<nAz<y=z=m==y=n= P (arrn) (arr m)
m<nANr<y=z#Fm-=—=zc#n=—y#m=—y#n=—P~P
(arr m) (arr n)
m<nAz<y=—z=m=—y#*m=—y#*n=— P (arrvy) (arr
n)
m<nAr<y=z=n= y#m=—=y#n= P (arrm) (arr
v)
m<nAz<y=cs#Fm=—=z#n=y=n= P (arrm) (arr z)
m<nAz<y=—zc#m=—x#n=—y=m=— P (arrx) (arrn)
shows P (swap arr x y m) (swap arr x y n)

(proof)

4 Imperative Heap Implementation

The following imperative heap functions are based on [3] and [1]. All func-
tions, that are recursive in these books, are iterative in the following imple-
mentations. The function definitions are done with IMP2 [2]. From now on
the heaps only contain ints and only use < as comparison function. The aux-

10

iliary lemmas used from now on are heavily modeled after the proof goals,
that are generated by the vcg tool (also part of IMP2).

4.1 Simple Functions
4.1.1 Parent, Children and Swap

In this section the parent and children relations are expressed as IMP2
procedures. Additionally a simple procedure, that swaps two array elements,

is defined.

procedure-spec prnt (I, z) returns p
assumes True
ensures p = parent ly xg
defines <p = ((z — 1 — 1)/ 2 + 1)
(proof)

procedure-spec left-child (I, z) returns lc
assumes True
ensures [c = [-child Iy xg
defines <lc =2 xz — |+ 1>

(proof)

procedure-spec right-child (I,) returns rc
assumes True
ensures rc = r-child ly g
defines <rc = 2 xx — 1 + 2»

(proof)

procedure-spec swp (heap, z, y) returns heap
assumes True
ensures heap = swap heapy Ty Yo
defines «tmp = heap(z|; heaplz] = heaply]; heap|y] = tmp>
(proof)

4.1.2 get-min

In this section get-min is defined, which simply returns the first element (the
minimum) of the heap. For this definition an additional theorem is proven,
which enables the use of Min-mset in the postcondition.

theorem heap-minimum:
assumes
l<r
is-heap (<) heap | r

11

shows heap | = Min-mset (arr-mset heap [1)

(proof)

procedure-spec get-min (heap, I, r) returns min
assumes [< r A is-heap (<) heap I r
ensures min = Min-mset (arr-mset heapy lo T0)

for heap|| [r
defines «min = heapll]»
(proof)

4.2 Modifying Functions
4.2.1 sift-up and insert

The next heap function is insert, which internally uses sift-up. In the be-
ginning of this section sift-up-step is proven, which states that each sift-up
loop iteration correctly transforms the weakened heap invariant. For its
proof two additional auxiliary lemmas are used. After sift-up-step sift-up
and then insert are verified.

sift-up-step can be proven directly by the smt-solver without auxiliary lem-
mas, but they were introduced to show the proof details. The analogous
proofs for sift-down were just solved with smt, since the proof structure
should be very similar, even though the sift-down proof goals are slightly
more complex.

lemma sift-up-step-auzl:
fixes heap::int = int
assumes
is-heap-except-up (<) heap | r x
parent | © > 1
(heap) < (heap (parent [x))
bounded | r k
k # (parent | x)
bounded I r (parent | k)
shows (swap heap (parent | x) z (parent 1 k)) < (swap heap (parent | x)
z k)
(proof)

lemma sift-up-step-auz2:
fixes heap::int = int
assumes
is-heap-except-up (<) heap | r x
parent [x > 1
heap © < (heap (parent [x))

12

bounded I r k
parent | k = parent | x
bounded | r (parent | (parent | k))
shows
swap heap (parent | x) x (parent | (parent 1 k)) < swap heap (parent | x)
zk

(proof)

lemma sift-up-step:
fixes heap::int = int
assumes
is-heap-except-up (<) heap | r x
parent [x > 1
(heap) < (heap (parent [x))
shows is-heap-except-up (<) (swap heap (parent | z)) I r (parent | x)
(proof)

sift-up restores the heap invariant, that is only violated at the current po-
sition, by iteratively swapping the current element with its parent until the
beginning of the array is reached or the current element is bigger than its

parent.

procedure-spec sift-up (heap, [, r,) returns heap
assumes is-heap-except-up (<) heap I vz A bounded | r
ensures is-heap (<) heap ly o A
arr-mset heapg lg 7o = arr-mset heap ly 7o A
heapy = heap on — {lyp..<ro}
for heap[] Lz T
defines ¢
p = prat(l, z);
while (x > | A heap[z] < heap[p])
Quariant <z — [y
Qinvariant <is-heap-except-up (<) heap I rx A p = parent | z A
bounded | r x A arr-mset heapg log ro = arr-mset heap [r N

heapy = heap on — {l..<r}

{

heap = swp(heap, p, x);

T = p;
p = prot(l,)
b
(proof)

insert inserts an element into a heap by appending it to the heap and restor-
ing the heap invariant with sift-up.

procedure-spec insert (heap, I, r, el) returns (heap, [, r)

13

assumes is-heap (<) heap [r N1 <r
ensures is-heap (<) heap I r A
arr-mset heap | v = arr-mset heapg lo ro + {Felo#} A
l=1IgANr=r9g+ 1 A heapy = heap on — {l..<r}
for heap [r el
defines ¢
heap[r] = el;
x =
r=r+ 1;
heap = sift-up(heap, 1, r, x)
)

(proof)

4.2.2 sift-down, del-min and make-heap

The next heap functions are del-min and make-heap, which both use sift-down
to restore/establish the heap invariant. sift-down is proven first (this time
without additional auxiliary lemmas) followed by del-min and make-heap.

sift-down restores the heap invariant, that is only violated at the current
position, by iteratively swapping the current element with its smallest child
until the end of the array is reached or the current element is smaller than
its children.

procedure-spec sift-down(heap, I, r,) returns heap
assumes is-partial-heap-except-down (<) heap lzrax Nl <z ANz <T
ensures is-partial-heap (<) heap ly zo ro A
arr-mset heapg lg 7o = arr-mset heap ly 7o A
heapy = heap on — {ly..<ro}
defines «
le = left-child(l, x);
rc = right-child(l, x);
while (le < r A (heap[lc] < heaplz] V (rc < r A heap[rc] < heap[z])))
Quariant <r —
Qinvariant <is-partial-heap-except-down (<) heap l xy rx A
o<z ANz <rAlc=Ilchildlx N rc=r-childlx A
arr-mset heapy | r = arr-mset heap [r A
heapy = heap on — {l..<r}
{
smallest = lc;
if (re < r A heap[re] < heap[ic]) {
smallest = rc
b
heap = swp(heap, x, smallest);
r = smallest;

14

le = left-child(l, x);
rc = right-child(l, z)
b
(proof)

del-min needs an additional lemma which shows, that it actually removes
(only) the minimum from the heap.

lemma del-min-mset:
fixes heap::int = int
assumes
l<r
is-heap (<) heap I r
mod-heap = heap(l := heap (r — 1))
arr-mset mod-heap | (r — 1) = arr-mset new-heap | (r — 1)
shows
arr-mset new-heap | (r — 1) = arr-mset heap | v — {# Min-mset (arr-mset
heap 1 r)#}
(proof)

del-min removes the minimum element from the heap by replacing the first
element with the last element, shrinking the array by one and subsequently
restoring the heap invariant with sift-down.

procedure-spec del-min (heap, I, r) returns (heap, [,)
assumes [< r A is-heap (<) heap I r
ensures is-heap (<) heap I r A
arr-mset heap | v = arr-mset heapg lo ro — {# Min-mset (arr-mset
heapo Io ro)#} A
l=IlgANr=r9g—1A\
heapy = heap on — {ly..<rp}

for heap I r
defines ¢«
r=r— 1;

heap[l] = heap|r];
heap = sift-down(heap, I, r, [)
)

(proof)

make-heap transforms an arbitrary array into a heap by iterating through
all array positions from the middle of the array up to the beginning of the
array and calling sift-down for each one.

procedure-spec make-heap (heap, I,) returns heap
assumes [< r
ensures is-heap (<) heap ly ro N
arr-mset heap lg ro = arr-mset heapy ly 79 A

15

heapy = heap on — {ly..< ro}
for heapl] I r
defines «
y=(r+10/2 -1
while (y > 1)
Q@uariant <y — 1 + 1>
Qinvariant <is-partial-heap (<) heap | (y + 1) r A
arr-mset heap | r = arr-mset heapg lg ro9 N
l—1<yANy<rAheapy = heap on — {l..<r}
{
heap = sift-down(heap, I, r, y);
y=y—1
b
(proof)

4.3 Heapsort Implementation

The final part of this submission is the implementation of the in-place heap-
sort. Firstly it builds the <-heap and then it iteratively removes the min-
imum of the heap, which is put at the now vacant end of the shrinking
heap. This is done until the heap is empty, which leaves the array sorted in
descending order.

4.3.1 Auxiliary Lemmas

Firstly the notion of a sorted array is needed. This is more or less the same
as ran-sorted generalized for arbitrary comparison functions.

definition array-is-sorted :: (int = int = bool) = (int = int) = int =
int = bool where

array-is-sorted cmp a |l r = V4. Vj. bounded | r i — bounded l rj — i
<j— emp (@) (a])

This lemma states, that the heapsort doesn’t change the elements contained
in the array during the loop iterations.

lemma heap-sort-mset-step:
fixes arr:int = int
assumes
I<mm<r
arr-mset arr’ 1 (m — 1) = arr-mset arr | m — {#Min-mset (arr-mset
arr L m)#}
arr = arr’ on — {l..<m}
mod-arr = arr'(m — 1 := Min-mset (arr-mset arr | m))
shows arr-mset arr | r = arr-mset mod-arr [r

16

(proof)

This lemma states, that each loop iteration leaves the growing second half
of the array sorted in descending order.

lemma heap-sort-second-half-sorted-step:

fixes arr::int = int

assumes
lp <mm < rg
arr = arr’ on — {lp..<m}
Vi.Vj. bounded m ro i — bounded mrg j — ¢ <j—> arrj < arri
YV xefarr-mset arr ly m. Y ye#arr-mset arr m rg. ~z < y
bounded (m — 1) ro i
bounded (m — 1) ro j

i <j
mod-arr = (arr'(m — 1 := Min-mset (arr-mset arr lg m)))
shows mod-arr j < mod-arr i
(proof)

The following lemma shows that all elements in the first part of the array
(the binary heap) are bigger than the elements in the second part (the sorted
part) after every iteration. This lemma and the invariant of the heap-sort
loop use = = < y instead of z > y since wvcg-cs doesn’t terminate in the
latter case.

lemma heap-sort-fst-part-bigger-snd-part-step:
fixes arr:int = int
assumes
lp <m
m < 1o
arr-mset arr’ ly (m — 1) = arr-mset arr ly m — {#Min-mset (arr-mset
arr lp m)#}
arr = arr’ on — {lp..<m}
YV x€Farr-mset arr lg m. Y yEHarr-mset arr m rg. - x < y
mod-arr = arr'(m — 1 := Min-mset (arr-mset arr ly m))
x€F#arr-mset mod-arr lo (m — 1)
yeFarr-mset mod-arr (m — 1) 1o
shows =z < y

(proof)

4.3.2 Implementation

Now finally the correctness of the heap-sort is shown. As mentioned, it starts
by transforming the array into a minimum heap using make-heap. Then in
each iteration it removes the first element from the heap with del-min after

17

its value was retrieved with get-min. This value is then put at the position
freed by del-min.

program-spec heap-sort
assumes [< r
ensures array-is-sorted (>) arr ly ro A
arr-mset arrg lo ro = arr-mset arr lg rog A
arrg = arr on — {ly .<rg } ANl =1lg A1 =r9
for [r arr|]
defines ¢
arr = make-heap(arr, 1, r);
m=r;
while (m > 1)
Quariant «<m — [+ 1»
Qinvariant <is-heap (<) arr I m A
array-is-sorted (>) arr m ro A
(Yx €# arr-mset arr lyg m. Vy €# arr-mset arr m ro. =z < y) A
arr-mset arrg lo ro = arr-mset arr lg rog A
I<mAm<rogANlL=1y A arrg=arron — {ly ..<rop
{
min = get-min(arr, I, m);
(arr, I, m) = del-min(arr, I, m);
arr[m] = min
}

>

(proof)

end

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. 2009.

[2] P. Lammich and S. Wimmer. IMP2 — Simple Program Verification in
Isabelle/HOL. Archive of Formal Proofs, Jan. 2019. http://isa-afp.org/
entries/IMP2.html, Formal proof development.

[3] K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The
Basic Toolbox. 2007.

[4] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, page 184. 2018. http://isabelle.in.
tum.de/dist/Isabelle2018 /doc/tutorial.pdf.

18

http://isa-afp.org/entries/IMP2.html
http://isa-afp.org/entries/IMP2.html
http://isabelle.in.tum.de/dist/Isabelle2018/doc/tutorial.pdf
http://isabelle.in.tum.de/dist/Isabelle2018/doc/tutorial.pdf

	Introduction
	Heap Related Definitions and Theorems
	Array Bounds
	Parent and Children
	Definitions
	Lemmas

	Heap Invariants
	Definitions
	Lemmas
	First Heap Element

	General Lemmas on Arrays
	Lemmas on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mset-ran
	Lemmas on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 swap and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eq-on

	Imperative Heap Implementation
	Simple Functions
	Parent, Children and Swap
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 get-min

	Modifying Functions
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sift-up and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sift-down, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 del-min and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 make-heap

	Heapsort Implementation
	Auxiliary Lemmas
	Implementation

