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Abstract

IMP2 is a simple imperative language together with Isabelle tooling
to create a program verification environment in Isabelle/HOL. The
tools include a C-like syntax, a verification condition generator, and
Isabelle commands for the specification of programs. The framework
is modular, i.e., it allows easy reuse of already proved programs within
larger programs.

This entry comes with a quickstart guide and a large collection
of examples, spanning basic algorithms with simple proofs to more
advanced algorithms and proof techniques like data refinement. Some
highlights from the examples are: Bisection Square Root, Extended
FEuclid, Exponentiation by Squaring, Binary Search, Insertion Sort,
Quicksort, Depth First Search.

The abstract syntax and semantics are very simple and well-documented.
They are suitable to be used in a course, as extension to the IMP lan-
guage which comes with the Isabelle distribution.

While this entry is limited to a simple imperative language, the
ideas could be extended to more sophisticated languages.
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1 Abstract Syntax of IMP2

theory Syntaz
imports Main
begin

We define the abstract syntax of the IMP2 language, and a min-
imal concrete syntax for direct use in terms.

1.1 Primitives

Variable and procedure names are strings.

type-synonym vname = string
type-synonym pname = string

The variable names are partitioned into local and global vari-
ables.

fun is-global :: vname = bool where
is-global [| +— True

| is-global (CHR "G'"'#-) «+— True

| is-global - «— False

abbreviation is-local a = —is-global a

Primitive values are integers, and values are arrays modeled as
functions from integers to primitive values.

Note that values and primitive values are usually part of the se-
mantics, however, as they occur as literals in the abstract syntax,
we already define them here.

type-synonym pval = int
type-synonym wval = int = pval

1.2 Arithmetic Expressions

Arithmetic expressions consist of constants, indexed array vari-
ables, and unary and binary operations. The operations are mod-
eled by reflecting arbitrary functions into the abstract syntax.

datatype aexp =
N int



| Vidz vname aexp
| Unop int = int aexp
| Binop int = int = int aexp aexp

1.3 Boolean Expressions

Boolean expressions consist of constants, the not operation, bi-
nary connectives, and comparison operations. Binary connec-
tives and comparison operations are modeled by reflecting arbi-
trary functions into the abstract syntax. The not operation is the
only meaningful unary Boolean operation, so we chose to model
it explicitly instead of reflecting and unary Boolean function.

datatype bexp =
Bc bool
| Not bexp
| BBinop bool = bool = bool bexp bexp
| Cmpop int = int = bool aexp aexp

1.4 Commands
The commands can roughly be put into five categories:

Skip The no-op command

Assignment commands Commands to assign the value of an
arithmetic expression, copy or clear arrays, and a command
to simultaneously assign all local variables, which is only
used internally to simplify the definition of a small-step se-
mantics.

Block commands The standard sequential composition, if-then-
else, and while commands, and a scope command which
executes a command with a fresh set of local variables.

Procedure commands Procedure call, and a procedure scope
command, which executes a command in a specified proce-
dure environment. Similar to the scope command, which
introduces new local variables, and thus limits the effect
of variable manipulations to the content of the command,
the procedure scope command introduces new procedures,
and limits the validity of their names to the content of the
command. This greatly simplifies modular definition of pro-
grams, as procedure names can be used locally.

datatype
com =

SKIP — No-op



— Assignment

| Assignldz vname aexp aexp — Assign to index in array
| ArrayCpy vname vname — Copy whole array
| ArrayClear vname — Clear array
| Assign-Locals vname = val ~ — Internal: Assign all local

variables simultaneously

— Block

| Seq  com com — Sequential composition
| If  bexp com com — Conditional

| While bexp com — While-loop

| Scope com — Local variable scope

— Procedure

| PCall pname — Procedure call

| PScope pname — com com — Procedure scope

1.4.1 Minimal Concrete Syntax

The commands come with a minimal concrete syntax, which is
compatible to the syntax of IMP.

notation Assignldx (¢<-[-] ==~ [1000, 0, 61] 61)

notation ArrayCpy («-[] == - [1000, 1000] 61)

notation ArrayClear  (<CLEAR -[]» [1000] 61)

notation Seq (x-5;/ - [61, 60] 60)

notation If («((IF -/ THEN -] ELSE -)» [0, 0, 61] 61)
notation While («(WHILE -/ DO -)» [0, 61] 61)
notation Scope («<SCOPE -» [61] 61)

1.5 Program

type-synonym program = pname — com

1.6 Default Array Index

We define abbreviations to make arrays look like plain integer
variables: Without explicitly specifying an array index, the index
0 will be used automatically.

abbreviation Vz = Vide z (N 0)

abbreviation Assign (¢- ::= - [1000, 61] 61)
where z ::= a = ([N 0] ::= a)
end



2 Semantics of IMP

theory Semantics
imports Syntaxr HOL— Eisbach.Fisbach-Tools
begin

2.1 State

The state maps variable names to values

type-synonym state = vname = val

We introduce some syntax for the null state, and a state where
only certain variables are set.

definition null-state (<<>>) where
null-state = Ax. Ai. 0

syntax

-State :: updbinds => 'a ({<->))
translations

-State ms == -Update <> ms

-State (-updbinds b bs) <= -Update (-State b) bs

2.1.1 State Combination

The state combination operator constructs a state by taking the
local variables from one state, and the globals from another state.

definition combine-states :: state = state = state («<-|->» [0,0]
1000)
where <s|t> n = (if is-local n then s n else t n)

We prove some basic facts.

Note that we use Isabelle’s context command to locally declare
the definition of combine-states as simp lemma, such that it is
unfolded automatically.

context notes [simp] = combine-states-def begin
lemma combine-collapse: <s|s> = s (proof)

lemma combine-nest:
<s|<s|t>> = <s|t>
<<s|t>|t> = <s|t>

(proof)

lemma combine-query:
is-local t = <s|t>z = sz
is-global t = <s|t>z =t
(proof)



lemma combine-upd:
is-local 1 = <s|t>(z:=v) = <s(z:=v)|t>
is-global T = <s|t>(x:=v) = <s|t(z:=v)>

(proof)

lemma combine-cases|cases type]:
obtains [ ¢ where s = <l|g>

(proof)

end

2.2 Arithmetic Expressions

The evaluation of arithmetic expressions is straightforward.

fun aval :: aexp = state = pval where
aval (Nn) s=mn
| aval (Vide x i) s = sz (aval i )
| aval (Unop fa1) s = f (aval a; s)
| aval (Binop f a1 as) s = f (aval a1 s) (aval ag )

2.3 Boolean Expressions

The evaluation of Boolean expressions is straightforward.

fun bwal :: bexp = state = bool where
bval (Bcv) s = v
| bval (Not b) s = (— bval b s)
| bval (BBinop f by ba) s = f (bval by s) (bval by s)
| bval (Cmpop fay az) s = f (aval a1 s) (aval ay )

2.4 Big-Step Semantics

The big-step semantics is a relation from commands and start
states to end states, such that there is a terminating execution.

If there is no such execution, no end state will be related to the
command and start state. This either means that the program
does not terminate, or gets stuck because it tries to call an un-

defined procedure.

The inference rules of the big-step semantics are pretty straight-

forward.

inductive big-step :: program = com X state = state = bool
(<=1 - = - [1000,55,55] 55)

where
— No-Op
Skip: m:(SKIP,s) = s

— Assignments



| Assignldz: m:(z[i] = a,s) = s(z := (s z)(aval i s := aval a s))
| ArrayCpy: m:(z]] == y,s) = s(z := s y)

| ArrayClear: m:(CLEAR z[],s) = s(z := (A-. 0))

| Assign-Locals: m:(Assign-Locals 1,s) = <l|s>

— Block commands
| Seq: [ m:(c1,81) = s2; mi(ca,82) = s3] = m:(c1s;e2, 1) = S3
| If True: [ bval b s; w:(c1,8) = t | = m:(IF b THEN ¢y ELSE co, s)
=t
| IfFalse: | —bval b s; m:(ce,8) = t ] = m:(IF b THEN ¢y ELSE c3,
s) =t
| Scope: [ m:(c,<<>|s>) = s’ ]| = m:(SCOPE ¢, s5) = <s|s">
| WhileFalse: —bval b s = m:(WHILE b DO ¢,s) = s
| WhileTrue: [ bval b s1; m:(c,81) = s2; m:(WHILE b DO ¢, s2) =
S3 ]]

= m:(WHILE b DO ¢, s1) = s3

— Procedure commands
| PCall: [ ® p = Some ¢; m:(¢,s) = t | = m:(PCall p,s) =t
| PScope: [ w":(¢c,s) = t ]| = m:(PScope ©' ¢, s) = ¢

2.4.1 Proof Automation

We do some setup to make proofs over the big-step semantics
more automatic.

declare big-step.intros [intro)
lemmas big-step-induct[induct set] = big-step.induct|split-format(complete)]

inductive-simps Skip-simp: m:(SKIP,s) = t
inductive-simps Assignldz-simp: 7:(z[i] == a,s) = t
inductive-simps ArrayCpy-simp: m:(z[] == y,8) = ¢
inductive-simps Arraylnit-simp: m:(CLEAR z[],s) = t
inductive-simps AssignLocals-simp: 7:(Assign-Locals 1,s) = t

inductive-simps Seq-simp: 7:(c1;;¢2,s1) = s8
inductive-simps If-simp: 7:(IF b THEN c1 ELSE c2,s) = t
inductive-simps Scope-simp: 7:(SCOPE ¢,s) = t
inductive-simps PCall-simp: m:(PCall p,s) = t
inductive-simps PScope-simp: 7:(PScope ©' p,s) = ¢

lemmas big-step-simps =
Skip-simp Assignldz-simp ArrayCpy-simp ArrayInit-simp
Seq-simp If-simp Scope-simp PCall-simp PScope-simp

inductive-cases SkipE[elim!]: m:(SKIP,s) = t
inductive-cases AssignldzE[elim!]: m:(z[i] = a,8) =t
inductive-cases ArrayCpyE[elim!]: m:(z]] == y,s) =t
inductive-cases ArraylnitE[elim!]: m:(CLEAR z[|,s) = t



inductive-cases AssignLocalsE[elim!]: m:(Assign-Locals 1,s) = t

inductive-cases SeqFE[eliml]: m:(c1;;¢2,81) = s3
inductive-cases IfE[elim!]: m:(IF b THEN c1 ELSE c2,s) =t
inductive-cases ScopeE[elim!]: m:(SCOPE c¢,s) =t
inductive-cases PCullE[elim!]: m:(PCall p,s) =t
inductive-cases PScopeE[elim!]: m:(PScope 7’ p,s) = t

inductive-cases WhileE[elim]: m:(WHILE b DO ¢,s) = t

2.4.2 Automatic Derivation

lemma Assign’”: s’ = s(z := (s z)(aval i s := aval a s)) = m:(z[i]
= a, s) = s’ (proof)

lemma ArrayCpy": s’ = s(z := (s y)) = m:(z]] ==y, 5) = s’
(proof)

lemma ArrayClear”: s’ = s(z := (A-. 0)) = m:(CLEAR zf], s) =
s/ {proof)

lemma Scope’: 51 = <<>|s> = 7m:(c,81) = t = t' = <s|t> =
m:(Scope ¢,s) = t' (proof)

named-theorems deriv-unfolds < Unfold rules before derivations»

method bs-simp = simp add: combine-nest combine-upd combine-query
fun-upd-same fun-upd-other del: fun-upd-apply

method big-step’ =
rule Skip Seq PScope
| (rule Assign’ ArrayCpy’ ArrayClear’, (bs-simp;fail))
| (rule If True IfFalse While True WhileFalse PCall Scope’), (bs-simp;fail)
| unfold deriv-unfolds
| (bs-simp; fail)

method big-step =
rule Skip
| rule Seq, (big-step;fail), (big-step;fail)
| rule PScope, (big-step;fail)
| (rule Assign’ ArrayCpy’ ArrayClear’, (bs-simp;fail))
| (rule If True IfFalse), (bs-simp;fail), (big-step;fail)
| rule WhileTrue, (bs-simp;fail), (big-step;fail), (big-step;fail)
| rule WhileFalse, (bs-simp;fail)
| rule PCall, (bs-simp;fail), (big-step;fail)
| (rule Scope’, (bs-simp;fail), (big-step;fail), (bs-simp;fail))
| unfold deriv-unfolds, big-step

schematic-goal Map.empty: (
ol o= N 1::
i Ial

10



WHILE Cmpop (Ax y. y < z) (V "'n'") (N 0) DO (
//a// e anop (+) (V //a//) (V //a//)’,
"n'" = Binop (=) (V "n") (N 1)

), <''n":i=(A-. 5)>) = s

(proof)

2.5 Command Equivalence

Two commands are equivalent if they have the same semantics.

definition
equiv-c 1 com = com = bool (infix (~» 50) where
c~c'=Wnst m(es) =t =m(cs)=t)

lemma equivl[intro?: |
Ns t . m:(e,s) = t = m:(c’)s) = &
Nst m m(c,s) = t = m:(c,s) = {]
= c~c
(proof)

lemma equivD[dest]: ¢ ~ ¢/ = m:(¢,s) = t «— m:(c'ys) = ¢

(proof)

Command equivalence is an equivalence relation, i.e. it is reflex-
ive, symmetric, and transitive.

lemma equiv-refi[simp, introl]: ¢ ~ ¢

(proof)

lemma equiv-sym[sym]: (¢ ~ ¢/) = (¢’ ~ ¢)

(proof)
lemma equiv-trans(trans]: ¢ ~ ¢’ = ¢/ ~ ¢ = ¢~ ¢”

(proof)

2.5.1 Basic Equivalences

lemma while-unfold:
(WHILE b DO ¢) ~ (IF b THEN ¢;; WHILE b DO ¢ ELSE SKIP)

(proof)

lemma triv-if:
(IF b THEN ¢ ELSE ¢) ~ ¢
(proof )

lemma commute-if:
(IF b1 THEN (IF b2 THEN c11 ELSE ¢12) ELSE c2)

~

(IF b2 THEN (IF b1 THEN c11 ELSE c2) ELSE (IF b1 THEN
c12 ELSE c2))

(proof)

lemma sim-while-cong-auz:

11



[7:(WHILE b DO ¢,s) = t; bval b = bval b; ¢ ~ ¢'| = m:(WHILE
b DO c¢'is) =t
(proof)

lemma sim-while-cong: bval b = bval b = ¢ ~ ¢’ = WHILE b DO
¢~ WHILE b' DO ¢’

(proof)

2.6 Execution is Deterministic

This proof is automatic.

theorem big-step-determ: [ m:(c,s) = t; m:(c,s) = v ] = u=1
(proof)

2.7 Small-Step Semantics

The small step semantics is defined by a step function on a pair of
command and state. Intuitively, the command is the remaining
part of the program that still has to be executed. The step
function is defined to stutter if the command is SKIP.

Moreover, the step function is explicitly partial, returning None
on error, i.e., on an undefined procedure call.

Most steps are straightforward. For a sequential composition,
steps are performed on the first command, until it has been re-
duced to SKIP, then the sequential composition is reduced to
the second command.

A while command is reduced by unfolding the loop once.

A scope command is reduced to the inner command, followed by
an Assign-Locals command to restore the original local variables.

A procedure scope command is reduced by performing a step in
the inner command, with the new procedure environment, until
the inner command has been reduced to SKIP. Then, the whole
command is reduced to SKIP.

fun small-step :: program = com x state — com X state where
small-step © (z[i]::=a,s) = Some (SKIP, s(z := (s z)(aval i s :=

aval a s)))

| small-step m (z[)::=y,s) = Some (SKIP, s(z := s y))

| small-step m (CLEAR «zl],s) = Some (SKIP, s(x := (A-. 0)))

| small-step m (Assign-Locals l,s) = Some (SKIP,<l|s>)

| small-step m (SKIP;;c,s) = Some (c,s)

| small-step m (c155¢2,8) = (case small-step © (c1,8) of Some (c1,s”)

= Some (c1';¢2,8") | - = None)

| small-step m (IF b THEN c¢; ELSE ca,s) = Some (if bval b s then

(c1,9) else (c2,8))

| small-step m (SCOPE ¢, s) = Some (c;;Assign-Locals s, <<>|s>)

12



| small-step 7 (WHILE b DO c¢,s) = Some (IF b THEN c;; WHILE b
DO ¢ ELSE SKIP, s)

| small-step m (PCall p, s) = (case w p of Some ¢ = Some (¢, s) | -
= None)

| small-step m (PScope ' SKIP, s) = Some (SKIP,s)

| small-step m (PScope ' ¢, s) = (case small-step 7’ (¢,s) of Some
(¢';s") = Some (PScope ' ¢', s") | - = None)

| small-step m (SKIP,s) = Some (SKIP,s)

We define the reflexive transitive closure of the step function.

inductive small-steps :: program = com X state = (com X state)
option = bool where

[simp]: small-steps 7 cs (Some cs)
| [ small-step m ¢s = None | = small-steps m cs None
| [ small-step m cs = Some cs1; small-steps m cs1 ¢s2 | = small-steps
T ¢S c82

lemma small-steps-append: small-steps m csy (Some csa) => small-steps
T ¢Sy cS3 = small-steps m cs1 cs3

(proof)

2.7.1 Equivalence to Big-Step Semantics

We show that the small-step semantics yields a final configura-
tion if and only if the big-step semantics terminates with the
respective state.

Moreover, we show that the big-step semantics gets stuck if the
small-step semantics yields an error.

lemma small-big-append: small-step w cs; = Some cso = : ¢S =
§3 == M. CS1 = 83
(proof)

lemma smalls-big-append: small-steps m cs1 (Some csa) = m: cs2 =
83 — T:. CS1 = S3

(proof)

lemma small-imp-big:
assumes small-steps m csy (Some (SKIP,s3))
shows 7: ¢cs1 = so

(proof)

lemma small-steps-skip-term|[simp|: small-steps m (SKIP, s) cs’ +—
cs'=Some (SKIP,s)
(proof )

lemma small-seq: [c¢£SKIP; small-step 7 (¢,s) = Some (c¢',s")] =

small-step m (c;;cx,s) = Some (c';;cx,s’)

(proof)
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lemma smalls-seq: [small-steps m (¢,s) (Some (¢’,s"))] = small-steps
7 (¢;cm,s) (Some (¢'s;ex,s”))

(proof)

lemma small-pscope:

[c¢#£SKIP; small-step ©' (¢,s) = Some (c¢',s')] = small-step =
(PScope 7' ¢,s) = Some (PScope ' ¢',s”)

(proof)

lemma smalls-pscope:

small-steps ©' (¢, s) (Some (¢’, s')) = small-steps = (PScope ' ¢,
s) (Some (PScope 7' ¢',s"))

(proof)

lemma big-imp-small:
assumes m: ¢S = {
shows small-steps m cs (Some (SKIP,t))

(proof)

The big-step semantics yields a state ¢, iff and only iff there is a
transition of the small-step semantics to (SKIP,t).

theorem big-eq-small: : cs=t «— small-steps m cs (Some (SKIP,t))

(proof)

lemma small-steps-determ:
assumes small-steps m ¢s None
shows —small-steps © ¢s (Some (SKIP, t))

(proof)

If the small-step semantics reaches a failure state, the big-step
semantics gets stuck.
corollary small-imp-big-fail:

assumes small-steps ™ ¢s None

shows Bt. m: cs = ¢

(proof)

2.8 Weakest Precondition

The following definitions are made wrt. a fixed program 7, which
becomes the first parameter of the defined constants when the
context is left.

context
fixes 7 :: program
begin
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Weakest precondition: ¢ terminates with a state that satisfies @),
when started from s.

definition wp ¢ Q s = 3t. m: (¢,8) = t A Q ¢t
— Note that this definition exploits that the semantics is determin-
istic! In general, we must ensure absence of infinite executions

Weakest liberal precondition: If ¢ terminates when started from
s, the new state satisfies Q).

definition wip ¢ Q s =Vt m(c,s) =t — Q¢

2.8.1 Basic Properties

context
notes [abs-def ,simp] = wp-def wlp-def
begin
lemma wp-imp-wlp: wp ¢ Q@ s = wilp ¢ Q s
(proof)

lemma wip-and-term-imp-wp: wlp ¢ Q s N\ w:(c¢,8) = t = wp ¢

Q s (proof)

lemma wp-equiv: ¢ ~ ¢/ = wp ¢ = wp ¢’ (proof)
lemma wp-conseq: wp ¢ P s = [A\s. Ps = Q s] = wp c Qs

(proof)

lemma wlip-equiv: ¢ ~ ¢/ = wlp ¢ = wlp ¢’ {proof)
lemma wip-conseq: wlp ¢ P s = [\s. P s = Q s] = wlp ¢ Q
s (proof)

2.8.2 Unfold Rules

lemma wp-skip-eq: wp SKIP @ s = Q s {proof)

lemma wp-assign-idz-eq: wp (z[i]:=a) Q s = Q (s(z:=(s z)(aval
i 8 := aval a s))) (proof)

lemma wp-arraycpy-eq: wp (z[]::=a) Q s = Q (s(z:=s a)) (proof)

lemma wp-arrayinit-eq: wp (CLEAR z[]) @ s = Q (s(z:=(A-. 0)))
(proof)

lemma wp-assign-locals-eq: wp (Assign-Locals 1) Q s = Q <l|s>
(proof )

lemma wp-seg-eq: wp (c15562) Q@ s = wp ¢1 (wp ca Q) s (proof)

lemma wp-if-eq: wp (IF b THEN ¢y ELSE ¢3) Q s

= (if bval b s then wp ¢1 @ s else wp ca Q s) (proof)

lemma wp-scope-eq: wp (SCOPE ¢) Q s = wp ¢ (As'. @ <s|s’>)
<<>|s> (proof)
lemma wp-pcall-eq: ™ p = Some ¢ = wp (PCall p) Q s = wp ¢

Q s (proof)
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lemmas wp-eq = wp-skip-eq wp-assign-idz-eq wp-arraycpy-eq wp-arrayinit-eq

wp-assign-locals-eq wp-seq-eq wp-scope-eq
lemmas wp-eq’ = wp-eq wp-if-eq

lemma wlip-skip-eq: wlp SKIP Q s = Q s {proof)
lemma wlip-assign-idz-eq: wlp (z[i]::=a) Q s = Q (s(z:=(s z)(aval
is:= aval a s))) (proof)
lemma wip-arraycpy-eq: wlp (z[]::=a) Q s = Q (s(z:=s a)) (proof)
lemma wip-arrayinit-eq: wlp (CLEAR z[]) Q s = Q (s(z:=(A-.
0))) (proof)
lemma wip-assign-locals-eq: wlp (Assign-Locals 1) @ s = Q <l|s>
(proof)
lemma wip-seg-eq: wlp (c1;;¢2) @ s = wip ¢y (wlp co Q) s (proof)
lemma wlip-if-eq: wlp (IF b THEN ¢; ELSE ¢3) Q s
= (if bval b s then wip c1 Q s else wlp c2 Q s) {proof)

lemma wlip-scope-eq: wlp (SCOPE ¢) Q s = wlp ¢ (As’. Q <s|s">)
<<>|s> (proof)
lemma wip-pcall-eq: m p = Some ¢ = wlp (PCall p) Q s = wlp

¢ Qs (proof)

lemmas wip-eq = wlp-skip-eq wip-assign-idx-eq wip-arraycpy-eq
wlp-arrayinit-eq
wlp-assign-locals-eq wip-seq-eq wlp-scope-eq
lemmas wip-eq’ = wlp-eq wip-if-eq
end

lemma wlp-while-unfold: wlp (WHILE b DO ¢) Q s = (if bval b s
then wlp ¢ (wlp (WHILE b DO ¢) Q) s else Q s)

(proof)

lemma wp-while-unfold: wp (WHILE b DO ¢) @ s = (if bval b s
then wp ¢ (wp (WHILE b DO ¢) Q) s else Q s)
(proof)

end — Context fixing program

Unfold rules for procedure scope

lemma wp-pscope-eq: wp ® (PScope 1’ ¢) Q@ s = wp ' (¢) Q s
(proof)

lemma wip-pscope-eq: wlp = (PScope 7w’ ¢) Q s = wip 7’ (¢) Q s
(proof )

2.8.3 Weakest precondition and Program Equivalence

The following three statements are equivalent:
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1. The commands ¢ and ¢’ are equivalent

2. The weakest preconditions are equivalent, for all procedure
environments

3. The weakest liberal preconditions are equivalent, for all pro-
cedure environments

lemma wp-equiv-iff: (V7. wp m ¢ = wp w ¢) +— ¢ ~ ¢’
(proof)

lemma wip-equiv-iff: (V. wlp m ¢ = wlp 7w ¢) +— ¢ ~ ¢’

(proof)

2.8.4 'While Loops and Weakest Precondition

Exchanging the loop condition by an equivalent one, and the
loop body by one with the same weakest precondition, does not
change the weakest precondition of the loop.

lemma sim-while-wp-aux:
assumes bval b = bval b’

assumes wp ™ ¢ = wp W ¢’
assumes 7: (WHILE b DO ¢, s) =t
shows m: (WHILE b’ DO ¢', s) = t

(proof)

lemma sim-while-wp: bval b = bval b’ = wp 7 ¢ = wp ™ ¢’ = wp
7 (WHILE b DO ¢) = wp = (WHILE b’ DO ¢')
(proof )

The same lemma for weakest liberal preconditions.

lemma sim-while-wlp-aux:
assumes bval b = bval b’
assumes wlp ™ ¢ = wlp 7 ¢’

assumes 7: (WHILE b DO ¢, s) =t
shows m: (WHILE b’ DO ¢, s) =t

(proof)

lemma sim-while-wlp: bval b = bval b’ = wip 7 ¢ = wip 7 ¢/ =
wip 7 (WHILE b DO ¢) = wip = (WHILE b’ DO ¢)
(proof)

2.9 Invariants for While-Loops

We prove the standard invariant rules for while loops. We first
prove them in a slightly non-standard form, summarizing the
loop step and loop exit assumptions. Then, we derive the stan-
dard form with separate assumptions for step and loop exit.
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2.9.1 Partial Correctness

lemma wip-whilel”:
assumes INIT: I sy
assumes STEP: \s. I s = (if bval b s then wip w ¢ I s else Q s)
shows wip m# (WHILE b DO ¢) Q sp
(proof )

lemma
assumes INIT: I sy
assumes STEP: \s. I s = (if bval b s then wip w ¢ I s else Q s)
shows wip m# (WHILE b DO ¢) Q so
(proof)

2.9.2 Total Correctness

For total correctness, each step must decrease the state wrt. a
well-founded relation.

lemma wp-whilel ":
assumes WF: wf R
assumes INIT: I sg
assumes STEP: N\s. I s = (if bval b s then wp m ¢ (As’. I s' A
(s’,s)ER) s else Q s)
shows wp # (WHILE b DO ¢) Q sg
(proof)

lemma
assumes WF: wf R
assumes INIT: I sy
assumes STEP: A\s. I s = (if bval b s then wp 7 ¢ (As’. I s' A
(s",$)ER) s else Q s)
shows wp # (WHILE b DO ¢) Q sp
(proof)

2.9.3 Standard Forms of While Rules

lemma wip-whilel:
assumes INIT: I sg
assumes STEP: N\s. [I s; bvalbs ] = wlp 7w c I s
assumes FINAL: A\s. [ I s; -bvalbs] = Q@ s
shows wilp m# (WHILE b DO ¢) Q so
(proof)

lemma wp-whilel:
assumes WF: wf R
assumes INIT: I sg
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assumes STEP: A\s. [I s; bval bs | = wp m ¢ (As’. I s’ A
(s',5)ER) s

assumes FINAL: N\s. [ I s; —bvalbs | = Q s

shows wp # (WHILE b DO ¢) Q so

(proof)

2.10 Modularity of Programs

Adding more procedures does not change the semantics of the
existing ones.

lemma map-leD: mC,,m’ = m x = Some v = m’ z = Some v

(proof)

lemma big-step-mono-prog:
assumes 1™ C,, '
assumes 7:(c,s) = t
shows 7":(¢,s) = ¢

(proof)

Wrapping a set of recursive procedures into a procedure scope
lemma localize-recursion:
7’s (PScope 7 ¢, s) = t +— m:(c,8) = ¢
(proof)
2.11 Strongest Postcondition
context fixes m :: program begin
definition sp P ct =3s. Ps A7 (c,8) = t
context notes [simp] = sp-def[abs-def] begin

Intuition: There exists an old value vz for the assigned variable

lemma sp-arraycpy-eq: sp P (z[]::=y) t +— (Juvz. let s = t(x:=wvx)
intx=sy A Ps)
(proof )

Version with renaming of assigned variable

lemma sp-arraycpy-eq”: sp P (z[]i=y) t «+— tz =ty A (Jvz. P
(t(z:=vz,y:=t x)))
(proof )

lemma sp-skip-eq: sp P SKIP t <— P t (proof)
lemma sp-seg-eq: sp P (c1;5¢2) t <— sp (sp P ¢1) co t (proof)

end
end
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2.12 Hoare-Triples

A Hoare-triple summarizes the precondition, command, and post-
condition.

definition HT
where HT 7 P ¢ Q = (Vsg. P so — wp m ¢ (Q so) So)

definition HT-partial
where HT-partial 7 P c Q = (Vso. P so — wlp m ¢ (Q so) So)

Consequence rule—strengthen the precondition, weaken the post-
condition.

lemma HT-conseq:
assumes HT m P ¢ @)
assumes A\s. P's = Ps
assumes Asg s. [P so; P/ so; Q@ sos] = Q' so s
shows HT © P’ ¢ Q'
(proof)

lemma HT-partial-conseq:
assumes HT-partial m P ¢ Q
assumes \s. P’ s = P s
assumes A\sg s. [P so; P/ so; @ sos] = Q' so s
shows HT-partial © P’ ¢ Q'
(proof)

Simple rule for presentation in lecture: Use a Hoare-triple during
VCG.

lemma wp-modularity-rule:
[HT m Pc @Q; Ps; (As" Qss' = Q' s")] = wpmcQs
(proof )

2.12.1 Sets of Hoare-Triples

type-synonym hiset = ((state = bool) x com x (state = state =
bool)) set

definition HTset 1 © = VY (P,c,Q)€O. HT w P ¢ Q

definition HTset-r r m © = V(P,c,Q)€®. HT w (As. rc¢s AN P s) ¢
Q

2.12.2 Deriving Parameter Frame Adjustment Rules

The following rules can be used to derive Hoare-triples when
adding prologue and epilogue code, and wrapping the command
into a scope.
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This will be used to implement the local variables and parameter
passing protocol of procedures.

Intuition: New precondition is weakest one we need to ensure P
after prologue.

lemma adjust-prologue:

assumes HT 7w P body @

shows HT 7 (wp 7 prologue P) (prologue;;body) (Asg s. wp 7 prologue
(Aso. @ s0 S) So)

(proof)

Intuition: New postcondition is strongest one we can get from @
after epilogue.

We have to be careful with non-terminating epilogue, though!

lemma adjust-epilogue:
assumes HT 7w P body @
assumes TERMINATES: Vs. 3t. w: (epilogue,s) = t
shows HT © P (body;;epilogue) (Aso. sp m (Q so) epilogue)
(proof)

Intuition: Scope can be seen as assignment of locals before and
after inner command. Thus, this rule is a combined forward and
backward assignment rule, for the epilogue locals:=<> and the
prologue locals:=old-locals.

lemma adjust-scope:

assumes HT 7w P body @

shows HT 7 (As. P <<>|s>) (SCOPE body) (Asg 5. 1. Q (<<>|s0>)
(<ls>))

(proof)

2.12.3 Proof for Recursive Specifications

Prove correct any set of Hoare-triples, e.g., mutually recursive
ones.

lemma HTsetl:

assumes wf R

assumes RL: AP ¢ Q so. [ HTset-r (Ac’ s”. ((¢',s),(¢,80))ER ) ™ ©;
(P,c,Q)€O; P sy ]| = wp m ¢ (Q so) o

shows HTset m ©

(proof)

lemma HT-simple-recursivel:

assumes wf R

assumes As. [HT © (As”. (fs', fs)eRAPs)c@Q; Ps] = wpm
c(Qs) s

shows HT m P ¢ Q
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(proof)

lemma HT-simple-recursive-procl:

assumes wf R

assumes A\s. [HT © (As’. (fs’, fs)eR AN P s') (PCall p) Q; P s]
= wp 7 (PCall p) (Q s) s

shows HT 7 P (PCall p) @

(proof)

lemma
assumes wf R
assumes A\s Pp Q. |
AP’ ' Q' (P'p',Q)€0
= HT 7 (\s’. ((p’,s"),(p,s))ER N P' s") (PCall p") Q"
(P.p,Q)€EO; Ps
] = wp 7 (PCall p) (Q s) s
shows V (P,p,Q)€0. HT © P (PCall p) Q
(proof )

2.13 Completeness of While-Rule

Idea: Use wip as invariant

lemma wip-whilel -complete:
assumes wlp 7 (WHILE b DO ¢) @ so
obtains I where
I S0
As. Is = ifbval b s then wip 7w ¢ I s else Q s
(proof )

Idea: Remaining loop iterations as variant

inductive count-it for 7 b ¢ where
—bval b s = count-it m b cs 0
| [bval b s; w: (¢,s) = s'; count-it m b c s’ n]| = count-it m b ¢ s

(Sucn)

lemma count-it-determ:
count-it tbcsn = count-it tbcsn' = n'=n

(proof)

lemma count-it-ex:
assumes m: (WHILE b DO ¢,s) = ¢
shows dn. count-it @ b ¢ s n

(proof)

definition variant m b ¢ s = THE n. count-it m b ¢c s n
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lemma variant-decreases:
assumes STEPB: bval b s
assumes STEPC: m: (¢,s) = s’
assumes TERM: n: (WHILE b DO c¢,s’) =t
shows variant m b ¢ s’ < variant m b c s

(proof)

lemma wp-whilel-complete:
fixes T b ¢
defines R=measure (variant ™ b c)
assumes wp m (WHILE b DO ¢) Q so
obtains I where
wf R
I S0
Ns. I's = if bval b s then wp m ¢ (As’. T 8" A (s/,s)ER) s else Q s
(proof )

end

3 Annotated Syntax

theory Annotated-Syntax
imports Semantics
begin

Unfold theorems to strip annotations from program, before it is
defined as constant

named-theorems vcg-annotation-defs <« Definitions of Annotations)
Marker that is inserted around all annotations by the specifica-
tion parser.

definition ANNOTATION = \z. z

3.1 Annotations

The specification parser must interpret the annotations in the
program.
definition WHILE-annotl :: (state = bool) = bexp = com = com
(«(WHILFE {-} -/ DO -)» [0, 0, 61] 61)

where [vcg-annotation-defs]: WHILE-annotl (I::state = bool) =
While
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lemmas annotate-whilel = WHILE-annotI-def[symmetric]

definition WHILE-annotRVI :: 'a rel = (state = 'a) = (state =
bool) = bexp = com = com
(«(WHILE {-} {-} {-} -/ DO -)» [0, 0, 0, 0, 61] 61)
where [vcg-annotation-defs|: WHILE-annotRVI R V I = While
for RV I

lemmas annotate-whileRVI = WHILE-annotRVI-def [symmetric]

definition WHILE-annotVI :: (state = int) = (state = bool) =
bexp = com = com
(«(WHILE {-} {-} -/ DO -)» [0, 0, 0, 61] 61)
where [vcg-annotation-defs]: WHILE-annotVI V I = While for V I
lemmas annotate-whileVI = WHILE-annotVI-def[symmetric]

3.2 Hoare-Triples for Annotated Commands

The command is a function from pre-state to command, as the
annotations that are contained in the command may depend on
the pre-state!

type-synonym HT'-type = program = (state = bool) = (state =
com) = (state = state=-bool) = bool

definition HT'-partial :: HT '-type
where HT -partial m P ¢ Q@ = (Vsg. P so — wip 7 (¢ s0) (Q so0)
s0)

definition HT' :: HT -type
where HT' 7 P c Q = (Vso. P so — wp 7 (¢ s0) (@ s0) So)

lemma HT'-e¢-HT: HT' 7 P (A-. ¢) Q= HT ®# Pc Q
(proof)

lemma HT'-partial-e¢-HT: HT ' '-partial @ P (M-. ¢) @ = HT-partial
T Pc@
(proof)

lemmas HT'-unfolds = HT'-eq-HT HT'-partial-eq-HT
type-synonym ‘a Oelem-t = (state="a) x ((state = bool) x (state
= com) X (state = state=bool))

definition HT'set :: program = ’a Oelem-t set = bool where
HT'set 1 © =V (n,(P,c,Q))€O. HT'm P ¢ Q

definition HT 'set-r :: - = program = 'a ©elem-t set = bool where
HT'set-rr m © =V (n,(P,c,Q))€O. HT'mw (As. rns A Ps) cQ
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lemma HT'setl:
assumes wf R
assumes RL: \f P ¢ Q so. [ HT 'set-r (Af' s’. ((f' s"),(f s0))€R )
T 0; (f,(P,ec,Q))€O; P sy | = wp 7 (¢ s0) (Q so) o
shows HT'set m ©

(proof)

lemma HT'setD:
assumes HT'set 7 (insert (f,(P,c,Q)) O)
shows HT' 7w P ¢ Q and HT'set 7 ©

(proof)

end

4 Quickstart Guide

theory Quickstart-Guide
imports ../IMP2
begin

4.1 Introductory Examples

IMP2 provides commands to define program snippets or proce-
dures together with their specification.

procedure-spec div-ab (a,b) returns ¢
assumes (b#0)
ensures <c=ag div by>
defines <c = a/b

(proof)

The specification consists of the signature (name, parameters,
return variables), precondition, postcondition, and program text.

Signature The procedure name and variable names must be
valid Isabelle names. The returns declaration is optional,
by default, nothing is returned. Multiple values can be
returned by returns (x1,...,Z).

Precondition An Isabelle formula. Parameter names are valid
variables.

Postcondition An Isabelle formula over the return variables,
and parameter names suffixed with .
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Program Text The procedure body, in a C-like syntax.

The procedure-spec command will open a proof to show that
the program satisfies the specification. The default way of dis-
charging this goal is by using IMP2’s verification condition gen-
erator, followed by manual discharging of the generated VCs as
necessary.

Note that the vcg-cs method will apply clarsimp to all generated
VCs, which, in our case, already solves them. You can use wvcg
to get the raw VCs.

If the VCs have been discharged, procedure-spec adds prologue
and epilogue code for parameter passing, defines a constant for
the procedure, and lifts the pre- and postcondition over the con-
stant definition.

thm div-ab-spec — Final theorem proved
thm div-ab-def — Constant definition, with parameter passing code

The final theorem has the form HT-mods m vs P ¢ @), where 7«
is an arbitrary procedure environment, vs is a syntactic approxi-
mation of the (global) variables modified by the procedure, P,Q
are the pre- and postcondition, lifted over the parameter passing
code, and c¢ is the defined constant for the procedure.

The precondition is a function state = bool. It starts with a
series of variable bindings that map program variables to logical
variables, followed by precondition that was specified, wrapped
ina BB-PROTECT constant, which serves as a tag for the VCG,
and is defined as the identity (BB-PROTECT = \a. a).

The final theorem is declared to the VCG, such that the specifi-
cation will be used automatically for calls to this procedure.

procedure-spec use-div-ab(a) returns r assumes <a#() ensures
«<r=1> defines «r = div-ab(a,a)> (proof)

4.1.1 Variant and Invariant Annotations

Loops must be annotated with variants and invariants.

procedure-spec mult-ab(a,b) returns ¢ assumes ¢ True) ensures
c=ag*bgy
defines «
if (a<0) {a =—a; b= —b};
c=0;
while (a>0)
Quariant <a»
Qinvariant <0<a N a<|ap| N ¢ = ( |ag| — a) * by * sgn agp>

{
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c=c+b;
a=a—1

}

>

(proof)

The variant and invariant can use the program variables. Vari-
ables suffixed with  refer to the values of parameters at the start
of the program.

The variant must be an expression of type int, which decreases
with every loop iteration and is always >0.

Pitfall: If the variant has a more general type, e.g., ‘a, an explicit
type annotation must be added. Otherwise, you’ll get an ugly
error message directly from Isabelle’s type checker!

4.1.2 Recursive Procedures

IMP2 supports mutually recursive procedures. All procedures of
a mutually recursive specification have to be specified and proved
simultaneously.

Each procedure has to be annotated with a variant over the
parameters. On a recursive call, the variant of the callee for the
arguments must be smaller than the variant of the caller (for its
initial arguments).

Recursive invocations inside the specification have to be tagged
by the rec keyword.

recursive-spec
odd-imp(n) returns b assumes n>0 ensures <b#0 +— odd ng>
variant <n)
defines <if (n==0) b=0 else b=rec even-imp(n—1)»
and
even-imp(n) returns b assumes n>0 ensures (b#0 <— even
ng» variant <n»
defines «if (n==0) b=1 else b=rec odd-imp(n—1)>
(proof)

After proving the VCs, constants are defined as usual, and the
correctness theorems are lifted and declared to the VCG for fu-
ture use.

thm odd-imp-spec even-imp-spec

4.2 The VCG

The VCG is designed to produce human-readable VCs. It takes
care of presenting the VCs with reasonable variable names, and
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a location information from where a VC originates.

procedure-spec mult-ab’(a,b) returns ¢ assumes < True) ensures
c=ap*by
defines ¢
if (a<0) {a = —a; b= —b};
c=0;
while (a>0)
Quariant <a>
Qinvariant <0<a N a<|ap| N ¢ = ( |ag| — a) * by * sgn ap>
{
c=c+b;
a=a—1
}

>

(proof)

4.3 Advanced Features

4.3.1 Custom Termination Relations

Both for loops and recursive procedures, a custom termination
relation can be specified, with the relation annotation. The vari-
ant must be a function into the domain of this relation.

Pitfall: You have to ensure, by type annotations, that the most
general type of the relation and variant fit together. Otherwise,
ugly low-level errors will be the result.

procedure-spec mult-ab’”’(a,b) returns ¢ assumes < True> ensures
c=ag*bgy
defines «
if (a<0) {a = —a; b= —b};
c=0;
while (a>0)
Qrelation <measure nat»
Quariant <a>
Qinvariant <0<a N a<|ap| N ¢ = ( |ag| — a) * by * sgn ap>
{
c=c+b;
a=a—1
¥

>

(proof)

recursive-spec relation (measure nat»
odd-imp'(n) returns b assumes n>0 ensures <b#0 «— odd ng>
variant <n)
defines <if (n==0) b=0 else b=rec even-imp'(n—1)»
and
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even-imp’(n) returns b assumes n>0 ensures <b#0 <— even
ng> variant <n»

defines «if (n==0) b=1 else b=rec odd-imp'(n—1)>

(proof)

4.3.2 Partial Correctness

IMP2 supports partial correctness proofs only for while-loops.
Recursive procedures must always be proved totally correct!

procedure-spec (partial) nonterminating() returns o assumes
True ensures <a=0) defines
<while (a#£0) Qinvariant < True»
a=a—1)»
(proof)

4.3.3 Arrays

IMP2 provides one-dimensional arrays of integers, which are in-
dexed by integers. Arrays do not have to be declared or allo-
cated. By default, every index maps to zero.

In the specifications, arrays are modeled as functions of type int
= int.

lemma array-sum-auz: lo<| = {ly..<l + 1} = insert | {lp..<l}
for Iy [ :: int (proof)

procedure-spec array-sum(a,l,h) returns s assumes [<h ensures
<s = (D] i=lp..<hg. ag 1)> defines
< s=0;
while (I<h)
Quariant <h—1»
Qinvariant <lg<I N I<h A s = (] i=lp..<l. a i)
{s=s+aq[l]; I=14+1 }>
(proof)

4.4 Proving Techniques

This section contains a small collection of techniques to tackle
large proofs.

4.4.1 Auxiliary Lemmas

Prove auxiliary lemmas, and try to keep the actual proof of the
specification small. As a rule of thumb: All VCs that cannot

! Adding partial correctness for recursion is possible, however, compared to total cor-
rectness, showing that the prove rule is sound requires some effort that we have not (yet)
invested.
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be solved by a simple auto invocation should go to an auxiliary
lemma.

The auxiliary lemma may either re-state the whole VC, or only
prove the “essence” of the VC, such that the rest of its proof
becomes automatic again. See the array-sum program above for
an example or the latter case.

Pitfall When extracting auxiliary lemmas, it is too easy to
get too general types, which may render the lemmas unprov-
able. As an example, omitting the explicit type constraints from
array-sum-auz will yield an unprovable statement.

4.4.2 Inlining

More complex procedure bodies can be modularized by either
splitting them into multiple procedures, or using inlining and
program-spec to explicitly prove a specification for a part of a
program. Cf. the insertion sort example for the latter technique.

4.4.3 Functional Refinement

Sometimes, it makes sense to state the algorithm functionally
first, and then prove that the implementation behaves like the
functional program, and, separately, that the functional program
is correct. Cf. the mergesort example.

4.4.4 Data Refinement

Moreover, it sometimes makes sense to abstract the concrete
variables to abstract types, over which the algorithm is then
specified. For example, an array a with a range [..<h can be
understood as a list. Or an array can be used as a bitvector set.
Cf. the mergesort and dedup examples.

4.5 Troubleshooting

We list a few common problems and their solutions here

4.5.1 Invalid Variables in Annotations

Undeclared variables in annotations are highlighted, however, no
warning or error is produced. Usually, the generated VCs will
not be provable. The most common mistake is to forget the
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o suffix when referring to parameter values in (in)variants and
postconditions.

Note the highlighting of unused variables in the following exam-
ple
procedure-spec foo(zl,z2) returns y assumes zl>z2+z3 en-

sures y = zlo+22 defines «

y=0;

while (x1>0)
Quariant <y + x3»
Q@invariant <y>x3>»

{
rl=x2

}
»
(proof)

Even worse, if the most general type of an annotation becomes
too general, as free variables have type ‘a by default, you will see
an internal type error.

Try replacing the variant or invariant with a free variable in the
above example.

4.5.2 Wrong Annotations

For total correctness, you must annotate a loop variant and in-
variant. For partial correctness, you must annotate an invariant,
but no variant.
When not following this rule, the VCG will get stuck in an in-
ternal state

procedure-spec (partial) foo () assumes True ensures True de-

fines <
while (n>0) Quariant <ny Qinvariant < True>

{ n=n—1}
)
(proof)

4.5.3 Calls to Undefined Procedures

Calling an undefined procedure usually results in a type error,
as the procedure name gets interpreted as an Isabelle term, e.g.,
either it refers to an existing constant, or is interpreted as a free
variable
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4.6 Missing Features

This is an (incomplete) list of missing features.

4.6.1 Elaborate Warnings and Errors

Currently, the IMP2 tools only produce minimal error and warn-
ing messages. Quite often, the user sees the raw error message
as produced by Isabelle unfiltered, including all internal details
of the tools.

4.6.2 Static Type Checking

We do no static type checking at all. In particular, we do not
check, nor does our semantic enforce, that procedures are called
with the same number of arguments as they were declared. Pro-
grams that violate this convention may even have provable prop-
erties, as argument and parameter passing is modeled as macros
on top of the semantics, and the semantics has no notion of fail-
ure.

4.6.3 Structure Types

Every variable is an integer arrays. Plain integer variables are
implemented as macros on top of this, by referring to index 0.
The most urgent addition to increase usability would be record
types. With them, we could model encapsulation and data refine-
ment more explicitly, by collecting all parts of a data structure
in a single (record-typed) variable.

An easy way of adding record types would follow a similar route
as arrays, modeling values of variables as a recursive tree-structured
datatype.

datatype val = PRIM int | STRUCT fname = val | ARRAY int =
val

However, for modeling the semantics, we most likely want to
introduce an explicit error state, to distinguish type errors (e.g.
accessing a record field of an integer value) from nontermination.

4.6.4 Function Calls as Expressions

Currently, function calls are modeled as statements, and thus,
cannot be nested into expressions. Doing so would require to
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simultaneously specify the semantics of commands and expres-
sions, which makes things more complex.

As the language is intended to be simple, we have not done this.

4.6.5 Ghost Variables

Ghost variables are a valuable tool for expressing (data) refine-
ment, and hinting the VCG towards the abstract algorithm struc-
ture.

We believe that we can add ghost variables with annotations on
top of the VCG, without actually changing the program seman-
tics.

4.6.6 Concurrency

IMP2 is a single threaded language. We have no current plans
to add concurrency, as this would greatly complicate both the
semantics and the VCG, which is contrary to the goal of a simple
language for educational purposes.

4.6.7 Pointers and Memory

Adding pointers and memory allocation to IMP2 is theoretically
possible, but, again, this would complicate the semantics and the
VCG.

However, as the author has some experience in VCGs using sep-
aration logic, he might actually add pointers and memory allo-
cation to IMP2 in the near future.

end

5 Introduction to IMP2-VCG, based on
IMP

theory IMP2-from-IMP
imports ../IMP2
begin

This document briefly introduces the extensions of IMP2 over
IMP.

5.1 Fancy Syntax

Standard Syntax
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definition ezp-count-upl =
// 1 = N 1’7
// 12 = N 077
WHILE Cmpop (<) (V "¢") (V "'n"") DO (
// 17 = anop (*) ( ) ( //a//)
// 17 s BZnOp (_|_) ( 17 l/) (N 1))

Fancy Syntax
definition ezp-count-up2 = imp«

— Initialization

a =1,

c =0,

while (c<n) { — Tterate until ¢ has reached n
a=2x*a; — Double a
c=c+1 — Increment ¢

}

>

lemma ezp-count-upl = exp-count-up2

(proof)

5.2 Operators and Arrays

We reflect arbitrary Isabelle functions into the syntax:

value bval (Cmpop (<) (Binop (+) (Unop uminus (V ""z")) (N 42))
(N 50)) <"z'""=(\-. —5)>

thm aval.simps bval.simps

Every variable is an array, indexed by integers, no bounds. Syn-
tax shortcuts to access index 0.

term «Vidz "'’ (i::aexp)y — Array access at index 4

lemma V "z" = Vidz "z (N 0) (proof)

New commands:

term <Assignldz "o’ (i::aexp) (v:iiaexp)> — Assign at index. Re-
places assign.
term (”a’[i] := v» — Standard syntax

term <imps afi] = v »» — Fancy syntax

1.1

lemma <Assign ""z"" v = Assignldz "z (N 0) v> (proof)
term 'z’ ::= v term <imp<z = v+1»

Note: In fancy syntax, assignment between variables is always
parsed as array copy. This is no problem unless a variable is
used as both, array and plain value, which should be avoided
anyway.
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//d// ”S”

term <ArrayCpy
variable names.
term (”d"[] == "'s"y term <imp«d = s»

y — Copy whole array. Both operands are

term <ArrayClear o'’y — Initialize array to all zeroes.

term «CLEAR "a'[]» term <impcclear a[]»

Semantics of these is straightforward

thm big-step. Assignldz big-step. ArrayCpy big-step. ArrayClear

5.3 Local and Global Variables

term <is-global) term <is-local) — Partitions variable names
term <<s;p|s9>» — State with locals from s; and globals from so

term (SCOPE ¢ term <imp«scope { skip }>» — Execute ¢ with
fresh set of local variables
thm big-step.Scope

5.3.1 Parameter Passing

Parameters and return values by global variables: This is syn-
tactic sugar only:

context fixes f :: com begin
term <imp¢ (r1,72) = f(x1,22,23)»
end

5.4 Recursive procedures

term <PCall "name’
thm big-step. PCall

5.4.1 Procedure Scope

Execute command with local set of procedures

term <PScope w ¢
thm big-step. PScope

5.4.2 Syntactic sugar for procedure call with parame-
ters

term «dmp«(r1,r2) = rec name(x1,r2,23)»

5.5 More Readable VCs

lemmas nat-distribs = nat-add-distrib nat-diff-distrib Suc-diff-le nat-mult-distrib
nat-div-distrib
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lemma sg n’’ 0 > 0 = wlp 7 exp-count-upl (As. s ""a”’ 0 =
27nat (so "n’" 0)) so
(proof)

lemma sg "n’’ 0 > 0 = wlp 7 exp-count-upl (As. s ""a’’ 0 =
27nat (so "'n’ 0)) so
(proof)

5.6 Specification Commands

IMP2 provides a set of commands to simplify specification and
annotation of programs.

Old way of proving a specification:

lemma let n = so "'n” 0inn > 0

= wlp 7 exp-count-upl (As. let a = s ""a’’ 0; ng = sop "'n”" 0 in
a = 2"nat (no)) So
(proof)
lemma VAR (s z) P = (let v=s x in P v) {proof)
IMP2 specification commands
program-spec (partial) exp-count-up
assumes 0<n — Precondition. Use variable names of
program.
ensures a = 2 nat ng — Postcondition. Use variable names
of programs. Suffix with - to refer to initial state
defines — Program
¢
a =1,
c = 0,
while (c<n)
Q@invariant <n=ng A a=2 nat ¢ N 0<c N c<n» — Invar

annotation. Variable names and suffix .o for variables from initial
state.

{
a=2x%aj;
c=c+1

}

>

(proof)

thm exp-count-up-spec
thm ezp-count-up-def

procedure-spec ezp-count-up-proc(n) returns a
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assumes 0<n
ensures a = 2 nat ng

defines
¢
a =1,
c=0;

while (c<n)
@¢nwvariant <n=ng N a=2"nat c A 0<c A c<ny
Quariant <n—c»

{
a=2x%a;
c=c+1

}

>

(proof)

Simple Recursion

recursive-spec
exp-rec(n) returns a assumes 0<n ensures a=2 nat ng variant

defines <if (n==0) a=1 else {t=rec exp-rec(n—1); a=2xt}>»
(proof)
Mutual Recursion: See Examples

end

theory Eramples

imports ../IMP2 ../lib/ IMP2- Auz-Lemmas
begin

6 Examples

lemmas nat-distribs = nat-add-distrib nat-diff-distrib Suc-diff-le nat-mult-distrib
nat-div-distrib
6.1 Common Loop Patterns

6.1.1 Count Up

Counter ¢ counts from 0 to n, such that loop is executed n times.
The result is computed in an accumulator a.

The invariant states that we have computed the function for the
counter value ¢

The variant is the difference between n and ¢, i.e., the number
of loop iterations that we still have to do

program-spec ezxp-count-up
assumes 0<n
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ensures a = 2 nat ng
defines «

a =1,

c =0,

while (c<n)

Quariant <n—c»
Qinvariant <0<c A ¢c<n A\ a=2 nat ¢

{G—par = a; scope { a = G-par; a=2xa; G-ret = a }; a = G-ret;
c=c+1
}
)
(proof)

program-spec sum-prog
assumes n > 0 ensures s = »_ {0..ng}
defines <
s = 0;
i = 0;
while (i < n)

Quariant <ng — >
Qinvariant <ng =n A0 <iANi<nAs=>Y {0.ip

{

1=14+ 1;
s=54+1
}
»
(proof)

program-spec sq-prog
assumes n > () ensures a = ng * Ng
defines «
a = 0,
z=1;
1= 0;
while (i < n)

Quariant <ng —
Qinvariant <ng = n A0 <iANi<nANa=1ixiNz=2%1i+

1
{
a=a+ z
z2=2z4+ 2
i1 =1+ 1
}
y
(proof)

fun factorial :: int = int where
factorial i = (if i < 0 then 1 else © * factorial (i — 1))
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program-spec factorial-prog
assumes n > ( ensures a = factorial ng

defines ¢
a = 1;
i=1;

while (i < n)
Quariant <ng + 1 — D
Q@invariant <ng =n A1 <iANi<n+ 1A a= factorial (i —

a = a* 1
1 =1+

}

>

(proof)

fun fib :: int = int where
fibi = (if i < 0then 0 else if i = 1 then 1 else fib (i — 2) + fib (¢
- 1))

lemma fib-simps[simpl:
1<0= fibi=20

i=1= fibi=1
i> 1= fibi=fib(i—2)+fib(i—1)
(proof )

lemmas [simp del] = fib.simps

With precondition

program-spec fib-prog
assumes n > () ensures a = fib n
defines ¢
a=0;b=1;
i = 0;
while (i < n)
Quariant <ng — >
Qinvariant <n =ng AN 0 < iANi<nAa=fibiNb=fib(i+
1)
{
=a + b
=i+ 1

S SN0

}

>

(proof)

Without precondition, returning 0 for negative numbers
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program-spec fib-prog’
assumes True ensures a = fib ng

defines «
a=0;b=1;
1= 0,

while (i < n)
Quariant <ng — o>
Qinvariant <n =nog A (0 <iANIi<nVn<O0ANi=0)Na=
fibi A b= fib(i+ 1)

(proof)

6.1.2 Count down

Essentially the same as count up, but we (ab)use the input vari-
able as a counter.

The invariant is the same as for count-up. Only that we have
to compute the actual number of loop iterations by ng — n. We
locally introduce the name ¢ for that.
program-spec exp-count-down
assumes 0<n
ensures a = 2 nat ng
defines «
a =1,
while (n>0)
Quariant <n»
Q@invariant <let ¢ = ng—n in 0<n A n<ng A a=2 nat ¢

{
a=2x*a;
n=n—1

}

>

(proof)

6.1.3 Approximate from Below

Used to invert a monotonic function. We count up, until we
overshoot the desired result, then we subtract one.

The invariant states that the r—17 is not too big. When the loop
terminates, r—1 is not too big, but r is already too big, so r—1
is the desired value (rounding down).
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The variant measures the gap that we have to the correct result.
Note that the loop will do a final iteration, when the result has
been reached exactly. We account for that by adding one, such
that the measure also decreases in this case.

program-spec sqr-approz-below
assumes 0<n
ensures 0<r A 72 < ng A ng < (r+1)>?
defines ¢
r=1;
while (rxr < n)
Quariant <n + 1 — r*r»
Qinvariant <0<r A (r—1)% < ng
{r=r+11}
r=r—1
>

(proof)

6.1.4 Bisection

A more efficient way of inverting monotonic functions is by bi-
section, that is, one keeps track of a possible interval for the
solution, and halfs the interval in each step. The program will
need O(logn) iterations, and is thus very efficient in practice.
Although the final algorithm looks quite simple, getting it right
can be quite tricky.

The invariant is surprisingly easy, just stating that the solution
is in the interval [..<h.

lemma Ah [ ng :: int.
19" invar—final”’; 0 < ng; = 1 + 1< h; 0 < ;1< hylx1< ng;

n0<h*h]
= ng <1+ (Ixl+1x%x2)
(proof)

program-spec sqr-bisect
assumes (0<n ensures 7°<ng A no<(r+1)?>
defines «
=0; h=n+1;
while (I4+1 < h)
Quariant <h—0D
Qinvariant <0<l A I<h A P<n A n < h%
{
m=({+h)/ 2
if (mxm < n) l=m else h=m

r=I
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(proof)

6.2 Debugging
6.2.1 Testing Programs

Stepwise

schematic-goal Map.empty: (sgr-approx-below,<''n':=\-. 4>) = %s

(proof)

Or all steps at once
schematic-goal Map.empty: (sqr-bisect,<''n’:=\-. 4900000001 >) =
?s

(proof)

6.3 More Numeric Algorithms

6.3.1 Euclid’s Algorithm (with subtraction)
thm ged.commute ged-diff1

program-spec euclid1
assumes a>0 A b>0
ensures a = gcd ag by
defines «
while (a#b)
@invariant <ged a b = ged ag bo A (a>0 A b>0)»
Quariant <a+b»

if (a<b) b= b—a
else a = a—b

}

>

(proof)

6.3.2 Euclid’s Algorithm (with mod)

thm gcd-red-int[symmetric]

program-spec euclid2
assumes a>0 A b>0
ensures a = gcd ag by
defines ¢
while (b£0)
Q@invariant <ged a b = ged ag bg A b>0 A a>0>
Quariant <b»
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b=1tmodb
}

’
(proof)

6.3.3 Extended Euclid’s Algorithm

locale extended-euclid-auz-lemmas begin

lemma aux2:
fixes a b :: int
assumes b =t x by + s *x ag ¢ = a div b ged a b = ged ag by
shows ged b (a — (ag * (s x q) + by * (t * q))) = ged ag by
(proof)

lemma auz3:

fixes a b :: int

assumes b =t x by + sxag g =a divbb> 0
shows t x (bg * ¢) + s * (ag x q) < a

(proof)

end

The following is a direct translation of the pseudocode for the Ex-
tended Euclidean algorithm as described by the English version

of Wikipedia (https://en.wikipedia.org/wiki/Extended_Euclidean__
algorithm):

program-spec euclid-extended
assumes a>0 A b>0
ensures old-r = gcd ag by N ged ag bg = ag * old-s + by * old-t
defines ¢
s=0; old-s=1;
t=1; old-t= 0,
r==0b  oldr = a
while (r#£0)
Qinvariant <
ged old-r r = ged ag by N 7>0 A old-r>0
A ag * old-s + bg * old-t = old-r N ag x s + bg x t = r
>
Quariant <r»

{
quotient = old-r | r;
temp = old-r;
old-r = r;
r = temp — quotient x 1
temp = old-s;
old-s = s;
s = temp — quotient * S;
temp = old-t;
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old-t = t;
t = temp — quotient *x t

}

)
(proof)

Non-Wikipedia version

context ertended-euclid-auz-lemmas begin
lemma aquz:
fixes a b q x y:: int
assumes a = old-y * by + old-x * ag b =y * bg + x *x ap ¢ = a
div b
shows
amodb+ (ag * (xxq) + by * (y*q) =a
(proof)

end

program-spec euclid-extended’

assumes a>0 A b>0

ensures a = ged ag bg A ged ag bg = ag *x x + by x y
defines «

Tz = 0;
y=1;
old-r = 1;
old-y = 0;

while (b£0)
Qinvariant <
ged a b = ged ag bg A b>0 N a>0 A a = ag * old-x + by *
old-y Nb=uag*x+ byg*xy
»
Quariant <b»

{
qg=a/ b
t = a;
a = b
b =t mod b;
t = x;
x = old-x — q * x;
old-x = t;
t=y;
y=oldy — q=*y;
old-y =t

b

r = old-x;

y = old-y

)
(proof)
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6.3.4 Exponentiation by Squaring

lemma ez-by-sq-aux:

fixes z :: int and n :: nat

assumes n mod 2 = 1

shows z x (z xz) " (ndiv2) =2z "n
(proof)

A classic algorithm for computing z™ works by repeated squar-
ing, using the following recurrence:

o 2" =z % ("= 1)/22if n is odd

n — 2/22 if n is even

program-spec ex-by-sq
assumes n>0
ensures 7 = xg _ nat ng
defines ¢
r=1;
while (n#£0)
Qinvariant <
n>0Ar*xxz natn=1xz9 nat ng
>
Quariant <n»

{
if (nmod 2 ==1){
b
n — n/ 2,
}
)
(proof)

6.3.5 Power-Tower of 2s

fun tower2 where
tower2 0 = 1
| tower2 (Suc n) = 2 ~ tower2 n

definition tower2’ n = int (tower2 (nat n))

program-spec tower2-imp
assumes (m>0>
ensures <a = tower2’ mg»
defines ¢
a=1;
while (m>0)
Quariant <m>»
Q@invariant <0<m A m<mqg A a = tower2’ (mo—m)>
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n=aj;

a =1,
while (n>0)
Quariant <n»
Qinvariant < True» — This will get ugly, there is no ng that we
could use!
{
a=2xa;
n=n—1

(proof)

We prove the inner loop separately instead! (It happens to be
exactly our ezp-count-down program.)

program-spec tower2-imp
assumes <m>0)
ensures <a = tower2’ mg»
defines ¢
a=1;
while (m>0)
Quariant <m»
Qinvariant <0<m A m<mqg A a = tower2’ (mo—m)>
{
n=a;
inline exp-count-down;
m=m—1
}

>

(proof)

6.4 Array Algorithms

6.4.1 Summation

program-spec array-sum
assumes [<h
ensures r = (3 i=ly..<hg. ap 7)
defines «
r=0;
while (I<h)
Qinvariant <<l AN I<h AT = (3 i=ly..<l. ag i)
Quariant <h—1»

{
r=r+ all;
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I=l+1
}

’
(proof)

6.4.2 Finding Least Index of Element

program-spec find-least-idz
assumes <[<h»
ensures <if [=hg then zo ¢ ag{lo..<ho} else l€{ly..<ho} A ag | =
To N 1:0¢a0 ‘{lo..<l} )
defines «
while (I<h A a[l] # z)
Quariant <h—0D
Qinvariant <<l AN I<h A z¢a*{ly..<l}
I=l+1
>
(proof)

6.4.3 Check for Sortedness

term ran-sorted

program-spec check-sorted
assumes <[<h»
ensures r#£( <+— ran-sorted ag ly ho>
defines «
if (I==h) r=1
else {
I=1+1;
while (I<h A a[l—1] < a[l])
Quariant <h—10
@invariant <lg<l N I<h A ran-sorted a ly 1)
I=l+1;

if (I==h) r=1 else r=0
}

»
(proof)

6.4.4 Find Equilibrium Index

definition is-equil a lhi = I<i Ni<h A (D j=l..<i.aj) = () j=i..<h.
@ j)
program-spec equilibrium
assumes <([<h»
ensures <is-equil a [ h iV i=h A (i. is-equil a I h i)
defines «
usum=0; 1=lI;
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while (i<h)
Quariant <h—1i>
Q@Qinvariant <I<i A i<h A usum = (> j=I1..<i. a j)
{
usum = usum + ali]; i=i+1
}
i=l; lsum=0;
while (usum # lsum A i<h)
Quariant <h—1»
Qinvariant I<i A i<h
A lsum=(}_ j=l..<i. a j)
A usum=(>_ j=i..<h. a j)
A (Vj<i. —is-equil a L h j)
)
{
lsum = lsum + afi];
usum = usum — ali;
i=1+1
}

)
(proof)

6.4.5 Rotate Right

program-spec rotate-right
assumes 0<n
ensures Vic{0..<n}. a i = ag ((i—1) mod n)
defines «
i = 0;
prev = a[n — 1];
while (i < n)
Qinvariant <
0<iNi<n
A (Vje{0..<i}. aj = ao ((j—1) mod n))
A (Vjel{i.<n}. aj= ao j)
A prev = ag ((i—1) mod n)
)
Quariant <n — 0

temp = ali;
ali] = prev;
prev = temp;
1=1+ 1

}

>

(proof)
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6.4.6 Binary Search, Leftmost Element

We first specify the pre- and postcondition

definition bin-search-pre a I h <— I<h A ran-sorted a l h

definition bin-search-post a I h © i +—
I<ini<h A (Vie{l.<i}. ai < xz) A (Vie{i.<h}. z < a9)

Then we prove that the program is correct

program-spec binsearch

assumes <bin-search-pre a | h»

ensures <bin-search-post ag lo hg zo >

defines «

while (I < h)
Quariant <h—1D
Qinvariant <lo<I N I<h A h<hy A (Vi€{ly..<l}. a i < x) A

(Vie{h..<ho}. z < a i)

{
m=(l+h)/2;
if (alm] <z)l=m+ 1
else h =m

}

)

(proof)

Next, we show that our postcondition (which was easy to prove)
implies the expected properties of the algorithm.

lemma
assumes bin-search-pre a | h bin-search-post a | h = ©
shows bin-search-decide-membership: x€a“{l..<h} +— (i<h AN x =
a )
and bin-search-leftmost: z¢a*{l..<i}

(proof)

6.4.7 Naive String Search

program-spec match-string
assumes [ < hl
ensures (Vje {0.<i}.a(I+j)=b (Ul +7))A(E<hl -1l —
a(l+ i) #b (1 +1)
ANO<iNi<hl—II
defines «
1= 0,
while (11 + 7 < h1 A a[l 4+ i] == b[l1 + 1))
Qinvariant «Vje {0.<i}. a (I + ) =b {1 + ) N0 <iNi<
hi — 11>
Q@Quariant <«(h1 — (11 + 7))
{

1=1+ 1
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}

>

(proof)

lemma lran-eq-iff - lran a 11 (11 + (h — 1)) =lrana’ I h
+—— Vi, 0<iNi<h—-Il—a(ll+i)=a(l+10)ifl<h
(proof)

program-spec match-string’
assumes [1 < hi
ensures i = hl — Il «— lranal (I + (hl — 1)) = lran b I1 hl
for i h1 i1 1 af] b])
defines <inline match-string>

(proof)

program-spec substring
assumes [ < h A 11 < hi
ensures match = 1 «— (3 j € {lp..<ho}. lran a j (j + (h1 — 1))
= lran b l1 h1)
for af] b[]
defines <
match = 0,
while (I < h A match == 0)
Q@invariant<ly < I AN 1 < h A match € {0,1} A
(if match = 1
then lran a l (I + (h1 — 1)) =lran b 11 h1 N1 < h
else (Vj € {lo.<l}. lranaj (j + (bl — 11)) # lran b 11 h1))
Quariant«(h — 1) x (1 — match)»
{
inline match-string’;
if (i ==h1 —11) {match = 1}
else {l=1+ 1}
}

>

(proof)

program-spec substring’
assumes [ < h A 11 < hl
ensures match = 1 «— (3 j € {lg..ho—(h1 — I1)}. lran a j (j +
(h1 —11)) = lran b 1 h1)
for af] b[]
defines «
match = 0,
if (14 (h1 —11) < h){
h=h— (hi —11)+ 1;
inline substring

}

>

(proof)

)
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program-spec substring’’
assumes | < h A 11 < hl
ensures match = 1 «+— (3 j € {lp..<ho—(h1 — 11)}. lran a j (j +
(h1 — 1)) = lran b l1 h1)
for al] b
defines ¢
match = 0;
if (14 (h1 —11)<h){
while (I + (b1 — I1) < h A match == 0)
Qinvariant<dy < I AN 1< h — (h1 — l1) A match € {0,1} A
(if match = 1
then lran a1 (I + (h1 — 1)) =lran b1l h1 N1 < h — (h1 — 11)
else (Vj € {lp..<l}. lran a j (j + (b1 — 11)) # lran b 11 h1))
Q@Quariant«(h — 1) = (1 — match)»
{
inline match-string’;
if (i ==~h1 —11) {match = 1}
else {l=1+ 1}
}
}

>

(proof)

lemma Iran-split:
lranalh=Ilranalp Qlranap hif I <pp <h
(proof)

lemma Iran-eq-append-iff:

lran alh =asQbs+— (F i. I<iANi<hAas=lranali A bs
=lranaih)ifl <h

(proof)

lemma Iran-split”:
(Fje{l.h — (b1 — 1)} lranaj (j + (b1 — 11)) = lran b I1 h1)
= (Fasbs. lran alh =as Qlran b 11 h1 Q bs) if | < h 11 < hi
(proof )

program-spec substring-final

assumes | < h A 0 < len

ensures match = 1 «— (Jas bs. lran a ly hg = as Q lran b 0 len
Q@ bs)

for [ h len match al] b]

defines <l1 = 0; hi1 = len; inline substring”

(proof)
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6.4.8 Insertion Sort

We first prove the inner loop. The specification here specifies
what the algorithm does as closely as possible, such that it be-
comes easier to prove. In this case, sortedness is not a precondi-
tion for the inner loop to move the key element backwards over
all greater elements.

definition insort-insert-post 1 j ag a i
+— (let key = ag j in
ie{l—1..<j} — 7 is in range
— Content of new array
AN (Vke{l.i}. a k= ag k)
Aa (i+1) = key
AN (Vkeli+2..5}. a k = ap (k—1))
A a = ag on —{l..j}
— Placement of key
A (1>l — a i < key) — Element at ¢ smaller than key, if it exists
A (Vke{i+2..5}. a k > key) — Elements >i+2 greater than key

)
for [ ji:: int and ag a :: int = int

program-spec insort-insert
assumes [<j
ensures insort-insert-post 1 j ag a i
defines ¢
key = aljl;
i = j—1;
while (i>1 A a[i]>key)
Quariant <i—I+1>
Qinvariant <I—1<i A i<j
A (Vke{l..i}. a k = ap k)
AN (Vke{i+2..5}. ak > key AN ak =ap (k—1))
A a = ag on —{l..j}
»

{
ali+1] = ald;
1=i—1
h
ali+1] = key
)
(proof)

Next, we show that our specification that was easy to prove im-
plies the specification that the outer loop expects:

Invoking insort-insert will sort in the element

lemma insort-insert-sorted:
assumes [<j
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assumes insort-insert-post 1 j a a’ i’
assumes ran-sorted a [ j
shows ran-sorted a’ 1 (j + 1)

(proof)

Invoking insort-insert will only mutate the elements

lemma insort-insert-rani :
assumes [<j
assumes insort-insert-post | j a a’ i
shows mset-ran o’ {l..j} = mset-ran a {l..5}

{proof)

The property [?l < %j; insort-insert-post 2l ?j ?a ?a’ %] =
mset-ran ?a’ {?1..2j} = mset-ran ?a {?1..%j} extends to the
whole array to be sorted

lemma insort-insert-ran2:
assumes [<j j<h
assumes insort-insert-post | j a a’ i
shows mset-ran o’ {l..<h} = mset-ran a {I..<h} (is ?thesis!)
and a’'=a on —{l..<h} (is ?thesis2)

(proof)

Finally, we specify and prove correct the outer loop

program-spec insort
assumes [<h
ensures ran-sorted a | h A mset-ran a {I..<h} = mset-ran ag {l..<h}
A a=ag on —{l..<h}
for af]
defines «
j=1+1;
while (j<h)
Quariant <h—j»
Qinvariant <
I<j N j<h — j in range
A ran-sorted a | j ~ — Array is sorted up to j
A mset-ran a {l..<h} = mset-ran ay {l..<h} — Elements in
range only permuted
A a=ag on —{l..<h}
)
{
inline insort-insert;
j=j+1
}

>

(proof)

6.4.9 Quicksort

procedure-spec partition-auz(a,l,h,p) returns (a,i)
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assumes [<h
ensures mset-ran ag {lp..<ho} = mset-ran a {ly..<ho}
A (Vie{lo..<i}. a j < po)
A (V]E{Z<h0} aj > po)
A lp<i N i<hg
A ag = a on —{lp..<hp}

defines «
i=l; j=I;
while (j<h)
Q@invariant <
I<i A i<j A j<h
A mset-ran ag {lg..<ho} = mset-ran a {ly..<ho}
A (VEke{l.<i}. a k < p)
A (VEke{i.<j}. a k > p)
N (Vke{j.<h}. ap k= a k)
A ag = a on —{lp..<ho}
)
Q@uariant <(h—j)»

if (alj)<p) {temp = ald}; ali] = alj]; alj] = temp; i=i+1};
j=i+1

>

(proof)

procedure-spec partition(a,l,h,p) returns (a,i)
assumes [<h
ensures mset-ran ag {lp..<ho} = mset-ran a {ly..<ho}
A (Vie{lp..<i}. aj < ai)
A (Vjeli.<ho}. aj > ai)
A lg<i N i<hg A ag (ho—]) =a1
A ag = a on —{lyg..<ho}

defines «
p = alh—1};
(a,i) = partition-auz(a,l,h—1,p);
alh—1] = alil;
ali] = p
)

(proof)

lemma quicksort-sorted-auz:
assumes BOUNDS: [ < ii<h

assumes LESS: Vjie{l.<i}. a1 j < a1 ¢

54



assumes GEQ: Vje{i.<h}. a1 i < a1 j

assumes R1: mset-ran a1 {l..<i} = mset-ran ag {l..<i}
assumes EI: a1 = as on — {l..<i}

assumes SL: ran-sorted as 11

assumes R2: mset-ran ay {i + 1..<h} = mset-ran ag {i + 1..<h}
assumes E2: ay = a3 on — {i + 1..<h}

assumes SH: ran-sorted a3 (i + 1) h

shows ran-sorted ag I h

{proof)

lemma quicksort-mset-aux:
assumes B: [(<i i<hg
assumes R1: mset-ran a {lp..<i} = mset-ran aa {ly..<i}
assumes EI: a = aa on — {lp..<i}
assumes R2: mset-ran aa {i + 1..<hg} = mset-ran ab {i + 1..<hg}
assumes E2: aa = ab on — {i + 1..<hp}
shows mset-ran a {ly..<ho} = mset-ran ab {lp..<ho}
(proof)

recursive-spec quicksort(a,l,h) returns a
assumes True
ensures ran-sorted a lg hg AN mset-ran ag {lp..<ho} = mset-ran a
{lo..<h0} N ap=a on —{lo..<h0}
variant h—I
defines «
if (1<h) {
(a,i) = partition(a,l,h,a[l]);
a = rec quicksort(a,l,i);
a = rec quicksort(a,i+1,h)
}

>

(proof)

6.5 Data Refinement
6.5.1 Filtering

program-spec array-filter-negative
assumes [<h
ensures lran a lg 1 = filter (Az. 2>0) (lran ag ly ho)
defines «
i=l; j=lI;
while (j<h)
Qinvariant <
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I<i A i<j A j<h
Alran a li = filter (Az. 2>0) (lran ag 1 5)
Alran a jh = lran ag j h
)
Quariant <h—j»

{
if (alj]>0) {ali] = alj]; i=i+1};
j=i+1

}

>

(proof)

6.5.2 Merge Two Sorted Lists

We define the merge function abstractly first, as a functional
program on lists.

fun merge where
merge [] ys = ys
| merge xs [| = xs
| merge (z#txs) (y#ys) = (if z<y then z#merge xs (y#ys) else y#merge
(s25) vs)

lemma merge-add-simp[simp|: merge xs [| = xs (proof)

It’s straightforward to show that this produces a sorted list with
the same elements.

lemma merge-sorted:
assumes sorted xs sorted ys
shows sorted (merge xs ys) N set (merge xzs ys) = set xs U set ys
(proof)

lemma merge-mset: mset (merge xs ys) = mset s + mset ys

(proof)

Next, we prove an equation that characterizes one step of the
while loop, on the list level.
lemma merge-eq: xs#[] V ys#[] = merge xs ys = (
if ys=[] V (zs#£[] A hd zs < hd ys) then hd zs # merge (¢ zs) ys
else hd ys # merge xs (tl ys)

)
(proof)

We do a first proof that our merge implementation on the arrays
and indexes behaves like the functional merge on the correspond-
ing lists.

The annotations use the [ran function to map from the imple-
mentation level to the list level. Moreover, the invariant of the
implementation, [<h, is carried through explicitly.
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program-spec merge-imp’
assumes [I1<hl AN 12<h2
ensures let ms = lran m 0 j; xsg = lran alg 1o hlg; yso = lran
a?o l?o h,?o mn
j=>0 N ms = merge xsg YSo
defines «
J=0;
while (11#h1 V 12#h2)
Quariant <hl1 + h2 — 11 — 12»
Qinvariant <let
zs=lran al 11 hi; ys = lran a2 12 h2; ms = lran m 0 j;
xsg = lran alg l1g hlg; yso = lran a2q 12¢ h2g
n
l1<hl NI2<h2 AN 0<j A
merge TSo yso = msQmerge xs ys
>

{
if (12==h2 Vv (l1#h1 A al]ll] < a2[12))) {
mlj] = alll1];
l1=l1+1
} else {
mlj] = a2[I2];
2=12+1
b
J=j+1
}

>

Given the merge-eq theorem, which captures the essence of a
loop step, and the theorems 2l < ¢h = lran %a 2l (?h + 1) =
lran ?a 21 ?h Q [?a ?h], lran %a (1 + 1) ?h = tl (Iran %a 21 %h),
and 2l < h = hd (lran %a ?l ?h) = ?a ?l, which convert from
the operations on arrays and indexes to operations on lists, the
proof is straightforward

(proof)
In a next step, we refine our proof to combine it with the abstract
properties we have proved about merge. The program does not
change (we simply inline the original one here).
procedure-spec merge-imp (al,l1,h1,a2,12,h2) returns (m,j)
assumes [1 <hl A 12<h2 A sorted (lran al 11 h1) A sorted (lran a2
12 h2)
ensures let ms = lran m 0 j in
j=z0
A sorted ms
A mset ms = mset (lran alg 1o hlg) + mset (lran a2y 120 h20)
for I1 h112 h2 al[] a2[] m]] j
defines <inline merge-imp’s
(proof )
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thm merge-imp-spec
thm merge-imp-def

lemma [named-ss vcg-bb):
UNIV U a = UNIV
a U UNIV = UNIV

(proof)

lemma merge-msets-auz: [I<m; m<h] = mset (lran a l m) + mset
(lran a m h) = mset (lran a 1 h)

(proof)

recursive-spec mergesort (a,l,h) returns (b,j)
assumes [<h
ensures <0<j A sorted (lran b 0 j) A mset (Iran b 0 j) = mset (Iran
ap lo ho))
variant <h—10»
for al] b
defines <
if (I==h) j=0
else if (I+1==h) {
b[0] = all];
j=1
} else {
m = (h+1) / 2;
(al,h1) = rec mergesort (a,l,m);
(a2,h2) = rec mergesort (a,m,h);
(b,7) = merge-imp (al,0,h1,a2,0,h2)
}

>

(proof)

print-theorems

6.5.3 Remove Duplicates from Array, using Bitvector
Set

We use an array to represent a set of integers.

If we only insert elements in range {0..<n}, this representation
is called bit-vector (storing a single bit per index is enough).

definition set-of :: (int = int) = int set where set-of a = {i. a i #

0}

context notes [simp] = set-of-def begin
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lemma set-of-empty[simp]: set-of (A-. 0) = {} (proof)
lemma set-of-insert[simp|: x#0 = set-of (a(i:=x)) = insert i
(set-of a) (proof)
lemma set-of-remove[simp): set-of (a(i:=0)) = set-of a — {i} (proof)
lemma set-of-mem|[simpl: i€set-of a +— a i # 0 {proof)
end

program-spec dedup
assumes <[<h»
ensures <set (Iran a 1 i) = set (lran ag 1 h) A distinct (lran a 1 i)
defines «
i=l; j=1;
clear b[;
while (j<h)
Quariant <h—j»
Q@invariant <I<i N\ i<j A j<h
A set (lran a 1) = set (lran ag 1)
A distinct (lran a 1 1)
Alran ajh = lran ag jh
A set-of b = set (lran a 1 7)
)
{
if (blaljl] == 0) {
ali] = alj]; i=i+1; blalj]] = 1
b
J=j+1
}

>

(proof)

procedure-spec bv-init () returns b
assumes True ensures <set-of b = {}
defines <clear b[]»

(proof)

procedure-spec buv-insert (z, b) returns b
assumes True ensures <set-of b = insert xo (set-of by)»
defines <b[z] = 1»

(proof)

procedure-spec buv-remove (z, b) returns b
assumes True ensures (set-of b = set-of bg — {zo}
defines <b[z] = 0»

(proof)
procedure-spec buv-elem (z,b) returns r

assumes True ensures (r#(0 <— rgE€set-of by»
defines <r = bz
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(proof)

procedure-spec dedup’ (a,l,h) returns (a,l,7)
assumes ([<h» ensures (set (lran a 1 i) = set (Iran ag ly ho) A
distinct (Iran a 1 7) »
for b[]
defines «
b = bu-init();

i=l; j=1;

while (j<h)
Quariant <h—j»
Qinvariant <I<i N\ i<j A j<h
A set (Iran a 1 i) = set (Iran ag 1)
A distinct (lran a 1 i)
Alran ajh = lran ag jh
A set-of b = set (lran a 1 7)
)
{
mem = bv-elem (alj],b);
if (mem == 0) {
ali] = alj]; i=i+1; b = bu-insert(alj],b)
=it
}

»
(proof)

6.6 Recursion

6.6.1 Recursive Fibonacci

recursive-spec fib-imp (i) returns r assumes True ensures <r =
fib ig> variant <7
defines <
if (i<0) r=0
else if (i==1) r=1
else {
rl=rec fib-imp (i—2);
r2=rec fib-imp (i—1);
r=rl+r2

}

»
(proof)
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6.6.2 Homeier’s Cycling Termination

A contrived example from Homeier’s thesis. Only the termina-
tion proof is done.

recursive-spec
pedal (n,m) returns () assumes <n>0 A m>0) ensures True vari-
ant <n+m»
defines <
if (n£0 A mA0) {
G=G+ m
if (n<m) rec coast (n—1,m—1) else rec pedal(n—1,m)

)
and
coast (n,m) returns () assumes «n>0 A m>0> ensures True vari-
ant «n+m+1)»
defines <
G =G+ n;
if (n<m) rec coast (n,m—1) else rec pedal (n,m)
)

(proof)

6.6.3 Ackermann

fun ack :: nat = nat = nat where
ack O0n = n+1

| ack m 0 = ack (m—1) 1

| ack m n = ack (m—1) (ack m (n—1))

lemma ack-add-simps|simp]:
m#0 = ack m 0 = ack (m—1)
[m#0; n£0] = ack m n = ack (m—1) (ack m (n—1))
(proof)

recursive-spec relation less-than <xlexx> less-than
ack-imp (m,n) returns r
assumes m>0 A n>0 ensures r=int (ack (nat mg) (nat ng))
variant (nat m, nat n)

defines ¢
if (m==0)r=n+1
else if (n==0) r = rec ack-imp (m—1,1)
else {

t = rec ack-imp (m,n—1);
r = rec ack-imp (m—1,t)

}

>

(proof)
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6.6.4 McCarthy’s 91 Function

A standard benchmark for verification of recursive functions. We
use Homeier’s version with a global variable.

recursive-spec p91(y) assumes True ensures if 100<yg then G =
yo—10 else G = 91 variant 101—y
for G
defines «
if (100<y) G=y—10
else {
rec p91 (y+11);
rec p91 (G)
}

>

(proof)

6.6.5 Odd/Even

recursive-spec
odd-imp (a) returns b
assumes True
ensures b#0 <— odd ag
variant |a|
defines <
if (a==0) b=0
else if (a<0) b = rec even-imp (a+1)
else b = rec even-imp (a—1)
)
and
even-imp (a) returns b
assumes True
ensures b#0 <— even agp
variant |a|
defines <
if (a==0) b=1
else if (a<0) b = rec odd-imp (a+1)
else b = rec odd-imp (a—1)
)
(proof)

thm even-imp-spec

6.6.6 Pandya and Joseph’s Product Producers

Again, taking the version from Homeier’s thesis, but with a mod-
ification to also terminate for negative y.

recursive-spec relation (measure nat <xlexx> less-than»
product () assumes True ensures <GZ = GZy + GX¢+xGY () vari-
ant (|GY|,1::nat)
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for GX GY GZ
defines
¢
e = even-imp (GY);
if (e£0) rec evenproduct() else rec oddproduct()
)
and
oddproduct() assumes <odd GY» ensures «GZ = GZy + GXoxGY >
variant (|GY|,0::nat)

for GX GY GZ
defines
¢
if (GY<0){
GY = GY + 1;
GZ = GZ — GX
1 else {
GY = GY — 1;
GZ = GZ + GX
h

rec evenproduct()
)
and
evenproduct() assumes <even GY» ensures «GZ = GZg + GXoxGY o>
variant (|GY|,0:nat)

for GX GY GZ
defines
¢
if (GY£0) {
GX = 2xGX;
GY =GY / 2;
rec product()
}
)
(proof)

6.7 Graph Algorithms
6.7.1 DFS

A graph is stored as an array of integers. Each node is an index
into this array, pointing to a size-prefixed list of successors.

Example for node 7, which has successors s1... sn:
Indexes: ... | i | i+1 | ... | i+n |

Data: ...l n |s1 | ... | sn |

definition succs where
suces a i = a ‘{i+1..<a i} for a :: int = int
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definition Fdges where
Edges a = {(4, j). j € succs a i}

procedure-spec push’ (z, stack, ptr) returns (stack, ptr)
assumes ptr > 0 ensures <lran stack 0 ptr = lran stackg 0 ptro @
[zo] A ptr = ptro + 1>
defines <stack[ptr] = z; ptr = ptr + 1»
(proof)

procedure-spec push (z, stack, ptr) returns (stack, ptr)
assumes ptr > 0 ensures <stack ‘ {0..<ptr} = {zo} U stacko
{0..<ptro} A ptr = ptro + 1>
for stack]]
defines <stack[ptr]| = z; ptr = ptr + 1)
(proof)

¢

program-spec get-succs
assumes j < stop A stop=a (j — 1) N0 < i
ensures
stack ‘< {0..<i} = {z. (jo — 1, z) € Edges a N\ z ¢ set-of visited}
U stacky “{0..<ip}
Ni 2>
for i j stop stack[] a[] visited]]
defines
¢
while (j < stop)
Qinvariant <stack ‘ {0..<i} = {z. x € a ‘ {jo..<j} N z ¢ set-of
visited} U stacky ‘ {0..<ip}
NJ < stop Nig <t N jo <]
)
Quariant <(stop — j)»
{
suce = alj;
is-elem = bv-elem(succ,visited);
if (is-elem == 0) {
(stack, i) = push (succe, stack, 1)
b
j=j+1
}

>

(proof)

procedure-spec pop (stack, ptr) returns (z, ptr)

assumes ptr > 1 ensures <stacky ‘ {0..<ptro} = stacky ‘{0..<ptr}
U {z} A ptro = ptr + 1»

for stack]]

defines <ptr = ptr — 1; x = stack[ptr]

(proof)
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procedure-spec stack-init () returns ¢
assumes True ensures i = (>
defines i = 0»

(proof)

lemma FEdges-empty:
Edges a “{i} ={}ifi+1>ai
(proof)

This is one of the main insights of the algorithm: if a set of visited
states is closed w.r.t. to the edge relation, then it is guaranteed
to contain all the states that are reachable from any state within
the set.

lemma reachability-invariant:
assumes reachable: (s, x) € (Edges a)*
and closed: ¥V vevisited. Edges a ““ {v} C visited
and start: s € wvisited
shows z € wvisited

(proof)

program-spec (partial) dfs
assumes 0 <z A 0 < s
ensures b = 1 +— z € (Edges a)* ““ {s} defines «
b= 0;
clear stackl];
i = stack-init();
(stack, ©) = push (s, stack, 7);
clear visited||;
while (b==0 N i # 0)
@invariant <0 < i A (s € stack {0..<i} V s € set-of visited) N
(b=0vb=1)A(
if b = 0 then
stack “{0..<i} C (Edges a)* ““ {s}
A (Yo € set-of visited. (Edges a) ““ {v} C set-of visited U stack *
{0..<i})
A (z ¢ set-of visited)
else © € (Edges a)* ““{s})
)
{
(next, i) = pop(stack, i); — Take the top most element from the
stack.
visited = bv-insert(next, visited); — Mark it as visited,
if (next == z) {
b = 1 — If it is the target, we are done.
1 else {
— Else, put its successors on the stack if they are not yet visited.
stop = a[neat];
j = next + 1,
if (j < stop) {
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inline get-succs
}
}
}

>

(proof)

Assuming that the input graph is finite, we can also prove that
the algorithm terminates. We will thus use an Isabelle context
to fix a certain finite graph and a start state:

context

fixes start :: int and edges

assumes finite-graph[introl]: finite ((Edges edges)* ** {start})
begin

lemma sub-insert-same-iff: s C insert © s «— x¢s (proof)

program-spec dfsl!

assumes 0 < x A 0 < s A start = s N\ edges = a

ensures b = 1 «— z € (Edges a)* ““ {s}

for visited]]

defines
¢

b= 0;

— 4 will point to the next free space in the stack (i.e. it is the size
of the stack)

1= 1;
— Initially, we put s on the stack.
stack[0] = s;

visited = bu-init();
while (b==0 N i # 0)
Qinvariant <
0 <A (s€ stack ‘{0..<i} V s € set-of visited) AN (b=0V b=
1) A
set-of visited C (Edges edges)* “ {start} A (
if b = 0 then
stack ¢ {0..<i} C (Edges a)* ““ {s}
A (Yo € set-of visited. (Edges a) ““ {v} C set-of visited U stack *
{0..<i})
A (z ¢ set-of visited)
else © € (Edges a)* ““{s})
)
Q@relation «finite-psupset ((Edges edges)* ““{start}) <xlexx> less-than)
Q@uariant ¢ (set-of visited, nat 7))
{
— Take the top most element from the stack.
(next, i) = pop(stack, i);
if (next == z) {
— If it is the target, we are done.

66



visited = bu-insert(next, visited);
b=1
1 else {

is-elem = bv-elem(next, visited);
if (is-elem == 0) {

visited = bu-insert(next, visited);
— Else, put its successors on the stack if they are not yet visited.

stop = a[next];

j = next + 1;

if (j < stop) {

inline get-succs

end
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