
International Mathematical Olympiad 2019

Manuel Eberl

March 17, 2025

Abstract

This entry contains formalisations of the answers to three of the
six problem of the International Mathematical Olympiad 2019, namely
Q1, Q4, and Q5. The reason why these problems were chosen is that
they are particularly amenable to formalisation: they can be solved
with minimal use of libraries. The remaining three concern geometry
and graph theory, which, in the author’s opinion, are more difficult to
formalise resp. require a more complex library.

Contents
1 Q1 2

2 Q4 3
2.1 Auxiliary facts . 3
2.2 Main result . 5

3 Q5 8
3.1 Definition . 9
3.2 Correctness of the measure 12
3.3 Average-case analysis . 15

1

1 Q1
theory IMO2019-Q1

imports Main
begin

Consider a function f : � → � that fulfils the functional equation f (2a) +
2f (b) = f (f (a+b)) for all a, b ∈ �.
Then f is either identically 0 or of the form f (x) = 2x + c for some constant
c ∈ �.
context

fixes f :: int ⇒ int and m :: int
assumes f-eq: f (2 ∗ a) + 2 ∗ f b = f (f (a + b))
defines m ≡ (f 0 − f (−2)) div 2

begin

We first show that f is affine with slope (f (0) − f (−2)) / 2. This follows
from plugging in (0 , b) and (−1 , b + 1) into the functional equation.
lemma f-eq ′: f x = m ∗ x + f 0
proof −

have rec: f (b + 1) = f b + m for b
using f-eq[of 0 b] f-eq[of −1 b + 1] by (simp add: m-def)

moreover have f (b − 1) = f b − m for b
using rec[of b − 1] by simp

ultimately show ?thesis
by (induction x rule: int-induct[of - 0]) (auto simp: algebra-simps)

qed

This version is better for the simplifier because it prevents it from looping.
lemma f-eq ′-aux [simp]: NO-MATCH 0 x =⇒ f x = m ∗ x + f 0

by (rule f-eq ′)

Plugging in (0 , 0) and (0 , 1).
lemma f-classification: (∀ x. f x = 0) ∨ (∀ x. f x = 2 ∗ x + f 0)

using f-eq[of 0 0] f-eq[of 0 1] by auto

end

It is now easy to derive the full characterisation of the functions we consid-
ered:
theorem

fixes f :: int ⇒ int
shows (∀ a b. f (2 ∗ a) + 2 ∗ f b = f (f (a + b))) ←→

(∀ x. f x = 0) ∨ (∀ x. f x = 2 ∗ x + f 0) (is ?lhs ←→ ?rhs)
proof

assume ?lhs
thus ?rhs using f-classification[of f] by blast

2

next
assume ?rhs
thus ?lhs by (smt (verit, ccfv-threshold) mult-2)

qed

end

2 Q4
theory IMO2019-Q4

imports Prime-Distribution-Elementary.More-Dirichlet-Misc
begin

Find all pairs (k, n) of positive integers such that k! =
∏n−1

i=0 (2
n − 2i).

2.1 Auxiliary facts
lemma Sigma-insert: Sigma (insert x A) f = (λy. (x, y)) ‘ f x ∪ Sigma A f

by auto

lemma atLeastAtMost-nat-numeral:
{(m::nat)..numeral k} =

(if m ≤ numeral k then insert (numeral k) {m..pred-numeral k} else {})
by (auto simp: numeral-eq-Suc)

lemma greaterThanAtMost-nat-numeral:
{(m::nat)<..numeral k} =

(if m < numeral k then insert (numeral k) {m<..pred-numeral k} else {})
by (auto simp: numeral-eq-Suc)

lemma fact-ge-power :
fixes c :: nat
assumes fact n0 ≥ c ^ n0 c ≤ n0 + 1
assumes n ≥ n0
shows fact n ≥ c ^ n
using assms(3 ,1 ,2)

proof (induction n rule: dec-induct)
case (step n)
have c ∗ c ^ n ≤ Suc n ∗ fact n

using step by (intro mult-mono) auto
thus ?case by simp

qed auto

lemma prime-multiplicity-prime:
fixes p q :: ′a :: factorial-semiring
assumes prime p prime q
shows multiplicity p q = (if p = q then 1 else 0)
using assms by (auto simp: prime-multiplicity-other)

3

We use Legendre’s identity from the library. One could easily prove the
property in question without the library, but it probably still saves a few
lines.
legendre-aux (related to Legendre’s identity) is the multiplicity of a given
prime in the prime factorisation of n!.
lemma multiplicity-prime-fact:

fixes p :: nat
assumes prime p
shows multiplicity p (fact n) = legendre-aux n p

proof (cases p ≤ n)
case True
have fact n = (

∏
p | prime p ∧ p ≤ n. p ^ legendre-aux n p)

using legendre-identity ′[of real n] by simp
also have multiplicity p . . . = (

∑
q | prime q ∧ q ≤ n. multiplicity p (q ^

legendre-aux n q))
using assms by (subst prime-elem-multiplicity-prod-distrib) auto

also have . . . = (
∑

q∈{p}. legendre-aux n q)
using assms ‹p ≤ n› prime-multiplicity-other [of p]
by (intro sum.mono-neutral-cong-right)

(auto simp: prime-elem-multiplicity-power-distrib prime-multiplicity-prime
split: if-splits)

finally show ?thesis by simp
next

case False
hence multiplicity p (fact n) = 0
using assms by (intro not-dvd-imp-multiplicity-0) (auto simp: prime-dvd-fact-iff)

moreover from False have legendre-aux (real n) p = 0
by (intro legendre-aux-eq-0) auto

ultimately show ?thesis by simp
qed

The following are simple and trivial lower and upper bounds for legen-
dre-aux:
lemma legendre-aux-ge:

assumes prime p k ≥ 1
shows legendre-aux k p ≥ nat bk / pc

proof (cases k ≥ p)
case True
have (

∑
m∈{1}. nat bk / real p ^ mc) ≤ (

∑
m | 0 < m ∧ real p ^ m ≤ k. nat

bk / real p ^ mc)
using True finite-sum-legendre-aux[of p] assms by (intro sum-mono2) auto

with assms True show ?thesis by (simp add: legendre-aux-def)
next

case False
with assms have k / p < 1 by (simp add: field-simps)
hence nat bk / pc = 0 by simp
with False show ?thesis

by (simp add: legendre-aux-eq-0)

4

qed

lemma legendre-aux-less:
assumes prime p k ≥ 1
shows legendre-aux k p < k / (p − 1)

proof −
have (λm. (k / p) ∗ (1 / p) ^ m) sums ((k / p) ∗ (1 / (1 − 1 / p)))

using assms prime-gt-1-nat[of p] by (intro sums-mult geometric-sums) (auto
simp: field-simps)

hence sums: (λm. k / p ^ Suc m) sums (k / (p − 1))
using assms prime-gt-1-nat[of p] by (simp add: field-simps of-nat-diff)

have real (legendre-aux k p) = (
∑

m∈{0<..nat blog (real p) kc}. of-int bk / real
p ^ mc)

using assms by (simp add: legendre-aux-altdef1)
also have . . . = (

∑
m<nat blog (real p) kc. of-int bk / real p ^ Suc mc)

by (intro sum.reindex-bij-witness[of - Suc λi. i − 1]) (auto simp flip: power-Suc)
also have . . . ≤ (

∑
m<nat blog (real p) kc. k / real p ^ Suc m)

by (intro sum-mono) auto
also have . . . < (

∑
m. k / real p ^ Suc m)

using sums assms prime-gt-1-nat[of p]
by (intro sum-less-suminf) (auto simp: sums-iff intro!: divide-pos-pos)

also have . . . = k / (p − 1)
using sums by (simp add: sums-iff)

finally show ?thesis
using assms prime-gt-1-nat[of p] by (simp add: of-nat-diff)

qed

2.2 Main result

Now we move on to the main result: We fix two numbers n and k with the
property in question and derive facts from that.
The triangle number T = n(n+1)/2 is of particular importance here, so we
introduce an abbreviation for it.
context

fixes k n :: nat and rhs T :: nat
defines rhs ≡ (

∏
i<n. 2 ^ n − 2 ^ i)

defines T ≡ (n ∗ (n − 1)) div 2
assumes pos: k > 0 n > 0
assumes k-n: fact k = rhs

begin

We can rewrite the right-hand side into a more convenient form:
lemma rhs-altdef : rhs = 2 ^ T ∗ (

∏
i=1 ..n. 2 ^ i − 1)

proof −
have rhs = (

∏
i<n. 2 ^ i ∗ (2 ^ (n − i) − 1))

by (simp add: rhs-def algebra-simps flip: power-add)
also have . . . = 2 ^ (

∑
i<n. i) ∗ (

∏
i<n. 2 ^ (n − i) − 1)

5

by (simp add: prod.distrib power-sum)
also have (

∑
i<n. i) = T

unfolding T-def using Sum-Ico-nat[of 0 n] by (simp add: atLeast0LessThan)
also have (

∏
i<n. 2 ^ (n − i) − 1) = (

∏
i=1 ..n. 2 ^ i − 1)

by (rule prod.reindex-bij-witness[of - λi. n − i λi. n − i]) auto
finally show ?thesis .

qed

The multiplicity of 2 in the prime factorisation of the right-hand side is
precisely T.
lemma multiplicity-2-rhs [simp]: multiplicity 2 rhs = T
proof −

have nz: 2 ^ i − 1 6= (0 :: nat) if i ≥ 1 for i
proof −

from ‹i ≥ 1 › have 2 ^ 0 < (2 ^ i :: nat)
by (intro power-strict-increasing) auto

thus ?thesis by simp
qed

have multiplicity 2 rhs = T + multiplicity 2 (
∏

i=1 ..n. 2 ^ i − 1 :: nat)
using nz by (simp add: rhs-altdef prime-elem-multiplicity-mult-distrib)

also have multiplicity 2 (
∏

i=1 ..n. 2 ^ i − 1 :: nat) = 0
by (intro not-dvd-imp-multiplicity-0) (auto simp: prime-dvd-prod-iff)

finally show ?thesis by simp
qed

From Legendre’s identities and the associated bounds, it can easily be seen
that bk/2 c ≤ T < k:
lemma k-gt-T : k > T
proof −

have T = multiplicity 2 rhs
by simp

also have rhs = fact k
by (simp add: k-n)

also have multiplicity 2 (fact k :: nat) = legendre-aux k 2
by (simp add: multiplicity-prime-fact)

also have . . . < k
using legendre-aux-less[of 2 k] pos by simp

finally show ?thesis .
qed

lemma T-ge-half-k: T ≥ k div 2
proof −

have k div 2 ≤ legendre-aux k 2
using legendre-aux-ge[of 2 k] pos by simp linarith?

also have . . . = multiplicity 2 (fact k :: nat)
by (simp add: multiplicity-prime-fact)

also have . . . = T by (simp add: k-n)
finally show T ≥ k div 2 .

6

qed

It can also be seen fairly easily that the right-hand side is strictly smaller
than 2n

2 :
lemma rhs-less: rhs < 2 ^ n2

proof −
have rhs = 2 ^ T ∗ (

∏
i=1 ..n. 2 ^ i − 1)

by (simp add: rhs-altdef)
also have (

∏
i=1 ..n. 2 ^ i − 1 :: nat) < (

∏
i=1 ..n. 2 ^ i)

using pos by (intro prod-mono-strict[of 1]) auto
also have . . . = (

∏
i=0 ..<n. 2 ∗ 2 ^ i)

by (intro prod.reindex-bij-witness[of - Suc λi. i − 1]) (auto simp flip: power-Suc)
also have . . . = 2 ^ n ∗ 2 ^ (

∑
i=0 ..<n. i)

by (simp add: power-sum prod.distrib)
also have (

∑
i=0 ..<n. i) = T

unfolding T-def by (simp add: Sum-Ico-nat)
also have 2 ^ T ∗ (2 ^ n ∗ 2 ^ T :: nat) = 2 ^ (2 ∗ T + n)

by (simp flip: power-add power-Suc add: algebra-simps)
also have 2 ∗ T + n = n ^ 2

by (cases even n) (auto simp: T-def algebra-simps power2-eq-square)
finally show rhs < 2 ^ n2

by simp
qed

It is clear that 2n
2 ≤ 8T and that 8T < T ! if T is sufficiently big. In this

case, ‘sufficiently big’ means T ≥ 20 and thereby n ≥ 7. We can therefore
conclude that n must be less than 7.
lemma n-less-7 : n < 7
proof (rule ccontr)

assume ¬n < 7
hence n ≥ 7 by simp
have T ≥ (7 ∗ 6) div 2

unfolding T-def using ‹n ≥ 7 › by (intro div-le-mono mult-mono) auto
hence T ≥ 21 by simp

from ‹n ≥ 7 › have (n ∗ 2) div 2 ≤ T
unfolding T-def by (intro div-le-mono) auto

hence T ≥ n by simp

from ‹T ≥ 21 › have sqrt (2 ∗ pi ∗ T) ∗ (T / exp 1) ^ T ≤ fact T
using fact-bounds[of T] by simp

have fact T ≤ (fact k :: nat)
using k-gt-T by (intro fact-mono) (auto simp: T-def)

also have . . . = rhs by fact
also have rhs < 2 ^ n2 by (rule rhs-less)
also have n2 = 2 ∗ T + n

by (cases even n) (auto simp: T-def algebra-simps power2-eq-square)
also have . . . ≤ 3 ∗ T

using ‹T ≥ n› by (simp add: T-def)

7

also have 2 ^ (3 ∗ T) = (8 ^ T :: nat)
by (simp add: power-mult)

finally have fact T < (8 ^ T :: nat)
by simp

moreover have fact T ≥ (8 ^ T :: nat)
by (rule fact-ge-power [of - 20]) (use ‹T ≥ 21 › in ‹auto simp: fact-numeral›)

ultimately show False by simp
qed

We now only have 6 values for n to check. Together with the bounds that
we obtained on k, this only leaves a few combinations of n and k to check,
and we do precisely that and find that n = k = 1 and n = 2 , k = 3 are
the only possible combinations.
lemma n-k-in-set: (n, k) ∈ {(1 , 1), (2 , 3)}
proof −

define T ′ where T ′ = (λn :: nat. n ∗ (n − 1) div 2)
define A :: (nat × nat) set where A = (SIGMA n:{1 ..6}. {T ′ n<..2 ∗ T ′ n +

1})
define P where P = (λ(n, k). fact k = (

∏
i<n. 2 ^ n − 2 ^ i :: nat))

have [simp]: {0<..Suc 0} = {1} by auto
have (n, k) ∈ Set.filter P A

using k-n pos T-ge-half-k k-gt-T n-less-7
by (auto simp: A-def T ′-def T-def Set.filter-def P-def rhs-def)

also have Set.filter P A = {(1 , 1), (2 , 3)}
by (simp add: P-def Set-filter-insert A-def atMost-nat-numeral atMost-Suc

T ′-def Sigma-insert
greaterThanAtMost-nat-numeral atLeastAtMost-nat-numeral lessThan-nat-numeral

fact-numeral
cong: if-weak-cong)

finally show ?thesis .
qed

end

Using this, deriving the final result is now trivial:
theorem {(n, k). n > 0 ∧ k > 0 ∧ fact k = (

∏
i<n. 2 ^ n − 2 ^ i :: nat)} =

{(1 , 1), (2 , 3)}
(is ?lhs = ?rhs)

proof
show ?lhs ⊆ ?rhs using n-k-in-set by blast
show ?rhs ⊆ ?lhs by (auto simp: fact-numeral lessThan-nat-numeral)

qed

end

3 Q5
theory IMO2019-Q5

8

imports Complex-Main
begin

Given a sequence (c1, . . . , cn) of coins, each of which can be heads (H) or
tails (T), Harry performs the following process: Let k be the number of coins
that show H. If k > 0, flip the k-th coin and repeat the process. Otherwise,
stop.
What is the average number of steps that this process takes, averaged over
all 2n coin sequences of length n?

3.1 Definition

We represent coins as Booleans, where True indicates H and False indicates
T. Coin sequences are then simply lists of Booleans.
The following function flips the i-th coin in the sequence (in Isabelle, the
convention is that the first list element is indexed with 0).
definition flip :: bool list ⇒ nat ⇒ bool list where

flip xs i = xs[i := ¬xs ! i]

lemma flip-Cons-pos [simp]: n > 0 =⇒ flip (x # xs) n = x # flip xs (n − 1)
by (cases n) (auto simp: flip-def)

lemma flip-Cons-0 [simp]: flip (x # xs) 0 = (¬x) # xs
by (simp add: flip-def)

lemma flip-append1 [simp]: n < length xs =⇒ flip (xs @ ys) n = flip xs n @ ys
and flip-append2 [simp]: n ≥ length xs =⇒ n < length xs + length ys =⇒

flip (xs @ ys) n = xs @ flip ys (n − length xs)
by (auto simp: flip-def list-update-append nth-append)

lemma length-flip [simp]: length (flip xs i) = length xs
by (simp add: flip-def)

The following function computes the number of H in a coin sequence.
definition heads :: bool list ⇒ nat where heads xs = length (filter id xs)

lemma heads-True [simp]: heads (True # xs) = 1 + heads xs
and heads-False [simp]: heads (False # xs) = heads xs
and heads-append [simp]: heads (xs @ ys) = heads xs + heads ys
and heads-Nil [simp]: heads [] = 0
by (auto simp: heads-def)

lemma heads-Cons: heads (x # xs) = (if x then heads xs + 1 else heads xs)
by (auto simp: heads-def)

lemma heads-pos: True ∈ set xs =⇒ heads xs > 0
by (induction xs) (auto simp: heads-Cons)

9

lemma heads-eq-0 [simp]: True /∈ set xs =⇒ heads xs = 0
by (induction xs) (auto simp: heads-Cons)

lemma heads-eq-0-iff [simp]: heads xs = 0 ←→ True /∈ set xs
by (induction xs) (auto simp: heads-Cons)

lemma heads-pos-iff [simp]: heads xs > 0 ←→ True ∈ set xs
by (induction xs) (auto simp: heads-Cons)

lemma heads-le-length: heads xs ≤ length xs
by (auto simp: heads-def)

The following function performs a single step of Harry’s process.
definition harry-step :: bool list ⇒ bool list where

harry-step xs = flip xs (heads xs − 1)

lemma length-harry-step [simp]: length (harry-step xs) = length xs
by (simp add: harry-step-def)

The following is the measure function for Harry’s process, i.e. how many
steps the process takes to terminate starting from the given sequence. We
define it like this now and prove the correctness later.
function harry-meas where

harry-meas xs =
(if xs = [] then 0
else if hd xs then 1 + harry-meas (tl xs)
else if ¬last xs then harry-meas (butlast xs)
else let n = length xs in harry-meas (take (n − 2) (tl xs)) + 2 ∗ n − 1)

by auto
termination by (relation Wellfounded.measure length) (auto simp: min-def)

lemmas [simp del] = harry-meas.simps

We now prove some simple properties of harry-meas and harry-step.

We prove a more convenient case distinction rule for lists that allows us to
distinguish between lists starting with True, ending with False, and starting
with False and ending with True.
lemma head-last-cases [case-names Nil True False False-True]:

assumes xs = [] =⇒ P
assumes

∧
ys. xs = True # ys =⇒ P

∧
ys. xs = ys @ [False] =⇒ P∧

ys. xs = False # ys @ [True] =⇒ P
shows P

proof −
consider length xs = 0 | length xs = 1 | length xs ≥ 2 by linarith
thus ?thesis
proof cases

10

assume length xs = 1
hence xs = [hd xs] by (cases xs) auto
thus P using assms(2)[of []] assms(3)[of []] by (cases hd xs) auto

next
assume len: length xs ≥ 2
from len obtain x xs ′ where ∗: xs = x # xs ′

by (cases xs) auto
have ∗∗: xs ′ = butlast xs ′ @ [last xs ′]

using len by (subst append-butlast-last-id) (auto simp: ∗)
have [simp]: xs = x # butlast xs ′ @ [last xs ′]

by (subst ∗, subst ∗∗) auto
show P
using assms(2)[of xs ′] assms(3)[of x # butlast xs ′] assms(4)[of butlast xs ′] ∗∗
by (cases x; cases last xs ′) auto

qed (use assms in auto)
qed

lemma harry-meas-Nil [simp]: harry-meas [] = 0
by (simp add: harry-meas.simps)

lemma harry-meas-True-start [simp]: harry-meas (True # xs) = 1 + harry-meas
xs

by (subst harry-meas.simps) auto

lemma harry-meas-False-end [simp]: harry-meas (xs @ [False]) = harry-meas xs
proof (induction xs)

case (Cons x xs)
thus ?case by (cases x) (auto simp: harry-meas.simps)

qed (auto simp: harry-meas.simps)

lemma harry-meas-False-True: harry-meas (False # xs @ [True]) = harry-meas
xs + 2 ∗ length xs + 3

by (subst harry-meas.simps) auto

lemma harry-meas-eq-0 [simp]:
assumes True /∈ set xs
shows harry-meas xs = 0
using assms by (induction xs rule: rev-induct) auto

If the sequence starts with H, the process runs on the remaining sequence
until it terminates and then flips this H in another single step.
lemma harry-step-True-start [simp]:

harry-step (True # xs) = (if True ∈ set xs then True # harry-step xs else False
xs)

by (auto simp: harry-step-def)

If the sequence ends in T, the process simply runs on the remaining sequence
as if it were not present.
lemma harry-step-False-end [simp]:

11

assumes True ∈ set xs
shows harry-step (xs @ [False]) = harry-step xs @ [False]

proof −
have harry-step (xs @ [False]) = flip (xs @ [False]) (heads xs − 1)

using heads-le-length[of xs] by (auto simp: harry-step-def)
also have . . . = harry-step xs @ [False]

using Suc-less-eq assms heads-le-length[of xs]
by (subst flip-append1 ; fastforce simp: harry-step-def)

finally show ?thesis .
qed

If the sequence starts with T and ends with H, the process runs on the
remaining sequence inbetween as if these two were not present, eventually
leaving a sequence that consists entirely if T except for a single final H.
lemma harry-step-False-True:

assumes True ∈ set xs
shows harry-step (False # xs @ [True]) = False # harry-step xs @ [True]

proof −
have harry-step (False # xs @ [True]) = False # flip (xs @ [True]) (heads xs −

1)
using assms heads-le-length[of xs] by (auto simp: harry-step-def heads-le-length)

also have . . . = False # harry-step xs @ [True]
using assms by (subst flip-append1)

(auto simp: harry-step-def Suc-less-SucD heads-le-length less-Suc-eq-le)
finally show ?thesis .

qed

That sequence consisting only of T except for a single final H is then turned
into an all-T sequence in 2n+1 steps.
lemma harry-meas-Falses-True [simp]: harry-meas (replicate n False @ [True]) =
2 ∗ n + 1
proof (cases n = 0)

case False
hence replicate n False @ [True] = False # replicate (n − 1) False @ [True]

by (cases n) auto
also have harry-meas . . . = 2 ∗ n + 1

using False by (simp add: harry-meas-False-True algebra-simps)
finally show ?thesis .

qed auto

lemma harry-step-Falses-True [simp]:
n > 0 =⇒ harry-step (replicate n False @ [True]) = True # replicate (n − 1)

False @ [True]
by (cases n) (simp-all add: harry-step-def)

3.2 Correctness of the measure

We will now show that harry-meas indeed counts the length of the process.
As a first step, we will show that if there is a H in a sequence, applying a

12

single step decreases the measure by one.
lemma harry-meas-step-aux:

assumes True ∈ set xs
shows harry-meas xs = Suc (harry-meas (harry-step xs))
using assms

proof (induction xs rule: length-induct)
case (1 xs)
hence IH : harry-meas ys = Suc (harry-meas (harry-step ys))

if length ys < length xs True ∈ set ys for ys
using that by blast

show ?case
proof (cases xs rule: head-last-cases)

case (True ys)
thus ?thesis by (auto simp: IH)

next
case (False ys)
thus ?thesis using 1 .prems by (auto simp: IH)

next
case (False-True ys)
thus ?thesis
proof (cases True ∈ set ys)

case False
define n where n = length ys + 1
have n > 0 by (simp add: n-def)
from False have ys = replicate (n − 1) False

unfolding n-def by (induction ys) auto
with False-True ‹n > 0 › have [simp]: xs = replicate n False @ [True]

by (cases n) auto
show ?thesis using ‹n > 0 › by auto

qed (auto simp: IH False-True harry-step-False-True harry-meas-False-True)
qed (use 1 in auto)

qed

lemma harry-meas-step: True ∈ set xs =⇒ harry-meas (harry-step xs) = harry-meas
xs − 1

using harry-meas-step-aux[of xs] by simp

Next, we show that the measure is zero if and only if there is no H left in
the sequence.
lemma harry-meas-eq-0-iff [simp]: harry-meas xs = 0 ←→ True /∈ set xs
proof (induction xs rule: length-induct)

case (1 xs)
show ?case

by (cases xs rule: head-last-cases) (auto simp: 1 harry-meas-False-True 1)
qed

It follows by induction that if the measure of a sequence is n, then iterating
the step less than n times yields a sequence with at least one H in it, but

13

iterating it exactly n times yields a sequence that contains no more H.
lemma True-in-funpow-harry-step:

assumes n < harry-meas xs
shows True ∈ set ((harry-step ^^ n) xs)
using assms

proof (induction n arbitrary: xs)
case 0
show ?case by (rule ccontr) (use 0 in auto)

next
case (Suc n)
have True ∈ set xs by (rule ccontr) (use Suc in auto)
have (harry-step ^^ Suc n) xs = (harry-step ^^ n) (harry-step xs)

by (simp only: funpow-Suc-right o-def)
also have True ∈ set . . .

using Suc ‹True ∈ set xs› by (intro Suc) (auto simp: harry-meas-step)
finally show ?case .

qed

lemma True-notin-funpow-harry-step: True /∈ set ((harry-step ^^ harry-meas xs)
xs)
proof (induction harry-meas xs arbitrary: xs)

case (Suc n)
have True ∈ set xs by (rule ccontr) (use Suc in auto)
have (harry-step ^^ harry-meas xs) xs = (harry-step ^^ Suc n) xs

by (simp only: Suc)
also have . . . = (harry-step ^^ n) (harry-step xs)

by (simp only: funpow-Suc-right o-def)
also have . . . = (harry-step ^^ (harry-meas xs − 1)) (harry-step xs)

by (simp flip: Suc(2))
also have harry-meas xs − 1 = harry-meas (harry-step xs)

using ‹True ∈ set xs› by (subst harry-meas-step) auto
also have True /∈ set ((harry-step ^^ . . .) (harry-step xs))

using Suc ‹True ∈ set xs› by (intro Suc) (auto simp: harry-meas-step)
finally show ?case .

qed auto

This shows that the measure is indeed the correct one: It is the smallest
number such that iterating Harry’s step that often yields a sequence with
no heads in it.
theorem harry-meas xs = (LEAST n. True /∈ set ((harry-step ^^ n) xs))
proof (rule sym, rule Least-equality, goal-cases)

show True /∈ set ((harry-step ^^ harry-meas xs) xs)
by (rule True-notin-funpow-harry-step)

next
case (2 y)
show ?case

by (rule ccontr) (use 2 True-in-funpow-harry-step[of y] in auto)
qed

14

3.3 Average-case analysis

The set of all coin sequences of a given length.
definition seqs where seqs n = {xs :: bool list . length xs = n}

lemma length-seqs [dest]: xs ∈ seqs n =⇒ length xs = n
by (simp add: seqs-def)

lemma seqs-0 [simp]: seqs 0 = {[]}
by (auto simp: seqs-def)

The coin sequences of length n + 1 are simply what is obtained by appending
either H or T to each coin sequence of length n.
lemma seqs-Suc: seqs (Suc n) = (λxs. True # xs) ‘ seqs n ∪ (λxs. False # xs) ‘
seqs n

by (auto simp: seqs-def length-Suc-conv)

The set of coin sequences of length n is invariant under reversal.
lemma seqs-rev [simp]: rev ‘ seqs n = seqs n
proof

show rev ‘ seqs n ⊆ seqs n
by (auto simp: seqs-def)

hence rev ‘ rev ‘ seqs n ⊆ rev ‘ seqs n
by blast

thus seqs n ⊆ rev ‘ seqs n by (simp add: image-image)
qed

Hence we get a similar decomposition theorem that appends at the end.
lemma seqs-Suc ′: seqs (Suc n) = (λxs. xs @ [True]) ‘ seqs n ∪ (λxs. xs @ [False])
‘ seqs n
proof −

have rev ‘ rev ‘ ((λxs. xs @ [True]) ‘ seqs n ∪ (λxs. xs @ [False]) ‘ seqs n) =
rev ‘ ((λxs. True # xs) ‘ rev ‘ seqs n ∪ (λxs. False # xs) ‘ rev ‘ seqs n)

unfolding image-Un image-image by simp
also have (λxs. True # xs) ‘ rev ‘ seqs n ∪ (λxs. False # xs) ‘ rev ‘ seqs n =

seqs (Suc n)
by (simp add: seqs-Suc)

finally show ?thesis by (simp add: image-image)
qed

lemma finite-seqs [intro]: finite (seqs n)
by (induction n) (auto simp: seqs-Suc)

lemma card-seqs [simp]: card (seqs n) = 2 ^ n
proof (induction n)

case (Suc n)
have card (seqs (Suc n)) = card ((#) True ‘ seqs n ∪ (#) False ‘ seqs n)

by (auto simp: seqs-Suc)

15

also from Suc.IH have . . . = 2 ^ Suc n
by (subst card-Un-disjoint) (auto simp: card-image)

finally show ?case .
qed auto

lemmas seqs-code [code] = seqs-0 seqs-Suc

The sum of the measures over all possible coin sequences of a given length
(defined as a recurrence relation; correctness proven later).
fun harry-sum :: nat ⇒ nat where

harry-sum 0 = 0
| harry-sum (Suc 0) = 1
| harry-sum (Suc (Suc n)) = 2 ∗ harry-sum (Suc n) + (2 ∗ n + 4) ∗ 2 ^ n

lemma Suc-Suc-induct: P 0 =⇒ P (Suc 0) =⇒ (
∧

n. P n =⇒ P (Suc n) =⇒ P
(Suc (Suc n))) =⇒ P n

by induction-schema (pat-completeness, rule wf-measure[of id], auto)

The recurrence relation really does describe the sum over all measures:
lemma harry-sum-correct: harry-sum n = sum harry-meas (seqs n)
proof (induction n rule: Suc-Suc-induct)

case (3 n)
have seqs (Suc (Suc n)) =

(λxs. xs @ [False]) ‘ seqs (Suc n) ∪
(λxs. True # xs @ [True]) ‘ seqs n ∪
(λxs. False # xs @ [True]) ‘ seqs n

by (subst (1) seqs-Suc, subst (1 2) seqs-Suc ′) (simp add: image-Un image-image
Un-ac seqs-Suc)

also have int (sum harry-meas . . .) =
int (harry-sum (Suc n)) +
int (

∑
xs∈seqs n. 1 + harry-meas (xs @ [True])) +

int (
∑

xs∈seqs n. harry-meas (False # xs @ [True]))
by (subst sum.union-disjoint sum.reindex, auto simp: inj-on-def 3)+

also have int (
∑

xs∈seqs n. 1 + harry-meas (xs @ [True])) =
2 ^ n + int (

∑
xs∈seqs n. harry-meas (xs @ [True]))

by (subst sum.distrib) auto
also have (

∑
xs∈seqs n. harry-meas (False # xs @ [True])) = harry-sum n +

(2 ∗ n + 3) ∗ 2 ^ n
by (auto simp: 3 harry-meas-False-True sum.distrib algebra-simps length-seqs)

also have harry-sum (Suc n) = (
∑

xs∈seqs n. harry-meas (xs @ [True])) +
harry-sum n

unfolding seqs-Suc ′ 3 by (subst sum.union-disjoint sum.reindex, auto simp:
inj-on-def)+

hence int (
∑

xs∈seqs n. harry-meas (xs @ [True])) = int (harry-sum (Suc n))
− int (harry-sum n)

by simp
finally have int (

∑
x∈seqs (Suc (Suc n)). harry-meas x) =

int (2 ∗ harry-sum (Suc n) + (2 ∗ n + 4) ∗ 2 ^ n)
unfolding of-nat-add by (simp add: algebra-simps)

16

hence (
∑

x∈seqs (Suc (Suc n)). (harry-meas x)) =
(2 ∗ harry-sum (Suc n) + (2 ∗ n + 4) ∗ 2 ^ n) by linarith

thus ?case by simp
qed (auto simp: seqs-Suc)

lemma harry-sum-closed-form-aux: 4 ∗ harry-sum n = n ∗ (n + 1) ∗ 2 ^ n
by (induction n rule: harry-sum.induct) (auto simp: algebra-simps)

Solving the recurrence gives us the following solution:
theorem harry-sum-closed-form: harry-sum n = n ∗ (n + 1) ∗ 2 ^ n div 4

using harry-sum-closed-form-aux[of n] by simp

The average is now a simple consequence:
definition harry-avg where harry-avg n = harry-sum n / card (seqs n)

corollary harry-avg n = n ∗ (n + 1) / 4
proof −

have real (4 ∗ harry-sum n) = n ∗ (n + 1) ∗ 2 ^ n
by (subst harry-sum-closed-form-aux) auto

hence real (harry-sum n) = n ∗ (n + 1) ∗ 2 ^ n / 4
by (simp add: field-simps)

thus ?thesis
by (simp add: harry-avg-def field-simps)

qed

end

References

[1] 60th International Mathematical Olympiad. https://www.imo2019.uk/
wp-content/uploads/2018/07/solutions-r856.pdf. 11th–22nd July 2019.

17

https://www.imo2019.uk/wp-content/uploads/2018/07/solutions-r856.pdf
https://www.imo2019.uk/wp-content/uploads/2018/07/solutions-r856.pdf

	Q1
	Q4
	Auxiliary facts
	Main result

	Q5
	Definition
	Correctness of the measure
	Average-case analysis

