
The IMAP CmRDT

Tim Jungnickel, Lennart Oldenburg, Matthias Loibl

March 17, 2025

Abstract

We provide our Isabelle/HOL formalization of a Conflict-free Replicated Data Type for
Internet Message Access Protocol commands. To this end, we show that Strong Eventual
Consistency (SEC) is guaranteed by proving the commutativity of concurrent operations.
We base our formalization on the recently proposed "framework for establishing Strong
Eventual Consistency for Conflict-free Replicated Datatypes" (AFP.CRDT) by Gomes et al.
Hence, we provide an additional example of how the recently proposed framework can be
used to design and prove CRDTs.

Contents
1 Preface 1

1.1 The IMAP CmRDT . 2
1.2 Proof Guide . 2

2 IMAP-CRDT Definitions 3

3 Commutativity of IMAP Commands 5

4 Proof Helpers 6

5 Independence of IMAP Commands 10

6 Convergence of the IMAP-CRDT 13

1 Preface
A Conflict-free Replicated Data Type (CRDT) [5] ensures convergence of replicas without re-
quiring a central coordination server or even a distributed coordination system based on con-
sensus or locking. Despite the fact that Shapiro et al. provide a comprehensive collection of
definitions for the most useful data types such as registers, sets, and lists [4], we observe that
the use of CRDTs in standard IT services is rather uncommon. Therefore, we use the Internet
Message Access Protocol (IMAP)—the de-facto standard protocol to retrieve and manipulate
mail messages on an email server—as an example to show the feasibility of using CRDTs for
replicating state of a standard IT service to achieve planetary scale.

Designing a correct CRDT is a challenging task. A CmRDT, the operation-based variant
of a CRDT, requires all operations to commute. To this end, Gomes et al. recently published
a CmRDT verification framework [1] in Isabelle/HOL.

In our most recent work [3], we presented pluto, our research prototype of a planetary-
scale IMAP service. To achieve the claimed planet-scale, we designed a CmRDT that provides

1

multi-leader replication of mailboxes without the need of synchronous operations. In order to
ensure the correctness of our proposed IMAP CmRDT, we implemented it in the verification
framework proposed by Gomes et al.

In this work, we present our Isabelle/HOL proof of the necessary properties and show that
our CmRDT indeed guarantees Strong Eventual Consistency (SEC). We contribute not only
the certainty that our CmRDT design is correct, but also provide one more example of how the
verification framework can be used to prove the correctness of a CRDT.

1.1 The IMAP CmRDT

In the rest of this work, we show how we modeled our IMAP CmRDT in Isabelle/HOL. We
start by presenting the original IMAP CmRDT, followed by the implementation details of the
Isabelle/HOL formalization. The presentation of our CmRDT in Spec. 1 is based on the syntax
introduced in [4]. We highly recommend reading the foundational work by Shapiro et al. prior
to following our proof documentation.

In essence, the IMAP CmRDT represents the state of a mailbox, containing folders (of type
N) and messages (of type M). Moreover, we introduce metadata in form of tags (of type ID).
All modeling details and a more detailed description of the CmRDT are provided in the original
paper [3].

The only notable difference between the presented specification and our Isabelle/HOL for-
malization is, that we no longer distinguish between sets ID and M and that the generated
tags of create and expunge are handled explicitly. This makes the formalization slightly eas-
ier, because less type variables are introduced. The concrete definition can be found in the
IMAP-CRDT Definitions section of the IMAP-def.thy file.

1.2 Proof Guide

Hint: In our proof, we build on top of the definitions given by Gomes et al. in [2]. We strongly
recommend to read their paper first before following our proof. In fact, in our formalization we
reuse the locales of the proposed framework and therefore this work cannot be compiled without
the reference to [1].

Operation-based CRDTs require all concurrent operations to commute in order to ensure
convergence. Therefore, we begin our verification by proving the commutativity of every com-
bination of possible concurrent operations. Initially, we used nitpick to identify corner cases in
our implementation. We prove the commutativity in Section 3 of the IMAP-proof-commute.thy
file. The critical conditions to satisfy in order to commute, can be summarized as follows:

• The tags of a create and expunge operation or the messages of an append and store
operation are never in the removed-set of a concurrent delete operation.

• The message of an append operation is never the message that is deleted by a concurrent
store or expunge operation.

• The message inserted by a store operation is never the message that is deleted by a
concurrent store or expunge operation.

The identified conditions obviously hold in regular traces of our system, because an item
that has been inserted by one operation cannot be deleted by a concurrent operation. It simply
cannot be present at the time of the initiation of the concurrent operation.

Next, we show that the identified conditions actually hold for all concurrent operations.
Because all tags and all inserted messages are globally unique, it can easily be shown that

2

Specification 1 The IMAP CmRDT
1: payload map u : N → P(ID)× P(M) . {foldername f 7→ ({tag t}, {msg m}), . . . }
2: initial (λx.(∅,∅))

3: update create (foldername f)
4: atSource
5: let α = unique()
6: downstream (f, α)
7: u(f) 7→ (u(f)1 ∪ {α}, u(f)2)
8: update delete (foldername f)
9: atSource (f)

10: let R1 = u(f)1
11: let R2 = u(f)2
12: downstream (f,R1, R2)
13: u(f) 7→ (u(f)1 \R1, u(f)2 \R2)
14: update append (foldername f,message m)
15: atSource (m)
16: pre m is globally unique
17: downstream (f,m)
18: u(f) 7→ (u(f)1, u(f)2 ∪ {m})
19: update expunge (foldername f,message m)
20: atSource (f,m)
21: pre m ∈ u(f)2
22: let α = unique()
23: downstream (f,m, α)
24: u(f) 7→ (u(f)1 ∪ {α}, u(f)2 \ {m})
25: update store (foldername f,message mold,message mnew)
26: atSource (f,mold,mnew)
27: pre mold ∈ u(f)2
28: pre mnew is globally unique
29: downstream (f,mold,mnew)
30: u(f) 7→ (u(f)1, (u(f)2 \ {mold}) ∪ {mnew})

all conditions are satisfied. In Isabelle/HOL, showing this fact takes some effort. Fortu-
nately, we were able to reuse parts of the Isabelle/HOL implementation of the OR-Set proof in
[1]. The Isabelle/HOL proofs for the critical conditions are encapsulated in the IMAP-proof-
independent.thy file.

With the introduced lemmas, we prove the final theorem that states that convergence is
guaranteed. Due to all operations being commutative in case the critical conditions are sat-
isfied and the critical conditions indeed are holding for all concurrent updates, all concurrent
operations commute. The Isabelle/HOL proof is contained in the IMAP-proof.thy file.

2 IMAP-CRDT Definitions

We begin by defining the operations on a mailbox state. In addition to the interpretation of
the operations, we define valid behaviours for the operations as assumptions for the network.
We use the network_with_constrained_ops locale from the framework.

3

theory
IMAP−def
imports

CRDT .Network
begin

datatype (′id, ′a) operation =
Create ′id ′a |
Delete ′id set ′a |
Append ′id ′a |
Expunge ′a ′id ′id |
Store ′a ′id ′id

type-synonym (′id, ′a) state = ′a ⇒ (′id set × ′id set)

definition op-elem :: (′id, ′a) operation ⇒ ′a where
op-elem oper ≡ case oper of

Create i e ⇒ e |
Delete is e ⇒ e |
Append i e ⇒ e |
Expunge e mo i ⇒ e |
Store e mo i ⇒ e

definition interpret-op :: (′id, ′a) operation ⇒ (′id, ′a) state ⇀ (′id, ′a) state
(‹〈-〉› [0] 1000) where
interpret-op oper state ≡

let metadata = fst (state (op-elem oper));
files = snd (state (op-elem oper));
after = case oper of

Create i e ⇒ (metadata ∪ {i}, files) |
Delete is e ⇒ (metadata − is, files − is) |
Append i e ⇒ (metadata, files ∪ {i}) |
Expunge e mo i ⇒ (metadata ∪ {i}, files − {mo}) |
Store e mo i ⇒ (metadata, insert i (files − {mo}))

in Some (state ((op-elem oper) := after))

In the definition of the valid behaviours of the operations, we define additional assumption the
state where the operation is executed. In essence, a the tag of a create, append, expunge, and
store operation is identical to the message number and therefore unique. A delete operation
deletes all metadata and the content of a folder. The store and expunge operations must refer
to an existing message.

definition valid-behaviours :: (′id, ′a) state ⇒ ′id × (′id, ′a) operation ⇒ bool where
valid-behaviours state msg ≡

case msg of
(i, Create j e) ⇒ i = j |
(i, Delete is e) ⇒ is = fst (state e) ∪ snd (state e) |
(i, Append j e) ⇒ i = j |
(i, Expunge e mo j) ⇒ i = j ∧ mo ∈ snd (state e) |
(i, Store e mo j) ⇒ i = j ∧ mo ∈ snd (state e)

4

locale imap = network-with-constrained-ops - interpret-op λx. ({},{}) valid-behaviours

end

3 Commutativity of IMAP Commands

In this section we prove the commutativity of operations and identify the edge cases.

theory
IMAP−proof−commute
imports

IMAP−def
begin

lemma (in imap) create-create-commute:
shows 〈Create i1 e1 〉 B 〈Create i2 e2 〉 = 〈Create i2 e2 〉 B 〈Create i1 e1 〉
〈proof 〉

lemma (in imap) create-delete-commute:
assumes i /∈ is
shows 〈Create i e1 〉 B 〈Delete is e2 〉 = 〈Delete is e2 〉 B 〈Create i e1 〉
〈proof 〉

lemma (in imap) create-append-commute:
shows 〈Create i1 e1 〉 B 〈Append i2 e2 〉 = 〈Append i2 e2 〉 B 〈Create i1 e1 〉
〈proof 〉

lemma (in imap) create-expunge-commute:
shows 〈Create i1 e1 〉 B 〈Expunge e2 mo i2 〉 = 〈Expunge e2 mo i2 〉 B 〈Create i1 e1 〉
〈proof 〉

lemma (in imap) create-store-commute:
shows 〈Create i1 e1 〉 B 〈Store e2 mo i2 〉 = 〈Store e2 mo i2 〉 B 〈Create i1 e1 〉
〈proof 〉

lemma (in imap) delete-delete-commute:
shows 〈Delete i1 e1 〉 B 〈Delete i2 e2 〉 = 〈Delete i2 e2 〉 B 〈Delete i1 e1 〉
〈proof 〉

lemma (in imap) delete-append-commute:
assumes i /∈ is
shows 〈Delete is e1 〉 B 〈Append i e2 〉 = 〈Append i e2 〉 B 〈Delete is e1 〉
〈proof 〉

lemma (in imap) delete-expunge-commute:
assumes i /∈ is
shows 〈Delete is e1 〉 B 〈Expunge e2 mo i〉 = 〈Expunge e2 mo i〉 B 〈Delete is e1 〉
〈proof 〉

5

lemma (in imap) delete-store-commute:
assumes i /∈ is
shows 〈Delete is e1 〉 B 〈Store e2 mo i〉 = 〈Store e2 mo i〉 B 〈Delete is e1 〉
〈proof 〉

lemma (in imap) append-append-commute:
shows 〈Append i1 e1 〉 B 〈Append i2 e2 〉 = 〈Append i2 e2 〉 B 〈Append i1 e1 〉
〈proof 〉

lemma (in imap) append-expunge-commute:
assumes i1 6= mo
shows (〈Append i1 e1 〉 B 〈Expunge e2 mo i2 〉) = (〈Expunge e2 mo i2 〉 B 〈Append i1 e1 〉)

〈proof 〉

lemma (in imap) append-store-commute:
assumes i1 6= mo
shows (〈Append i1 e1 〉 B 〈Store e2 mo i2 〉) = (〈Store e2 mo i2 〉 B 〈Append i1 e1 〉)

〈proof 〉

lemma (in imap) expunge-expunge-commute:
shows (〈Expunge e1 mo1 i1 〉 B 〈Expunge e2 mo2 i2 〉) = (〈Expunge e2 mo2 i2 〉 B 〈Expunge

e1 mo1 i1 〉)
〈proof 〉

lemma (in imap) expunge-store-commute:
assumes i1 6= mo2 and i2 6= mo1
shows (〈Expunge e1 mo1 i1 〉 B 〈Store e2 mo2 i2 〉) = (〈Store e2 mo2 i2 〉 B 〈Expunge e1 mo1

i1 〉)
〈proof 〉

lemma (in imap) store-store-commute:
assumes i1 6= mo2 and i2 6= mo1
shows (〈Store e1 mo1 i1 〉 B 〈Store e2 mo2 i2 〉) = (〈Store e2 mo2 i2 〉 B 〈Store e1 mo1 i1 〉)

〈proof 〉

end

4 Proof Helpers

In this section we define and prove lemmas that help to show that all identified critical conditions
hold for concurrent operations. Many of the following parts are derivations from the definitions
and lemmas of Gomes et al.

theory
IMAP−proof−helpers
imports

IMAP−def

6

begin

lemma (in imap) apply-operations-never-fails:
assumes xs prefix of i
shows apply-operations xs 6= None
〈proof 〉

lemma (in imap) create-id-valid:
assumes xs prefix of j

and Deliver (i1 , Create i2 e) ∈ set xs
shows i1 = i2

〈proof 〉

lemma (in imap) append-id-valid:
assumes xs prefix of j

and Deliver (i1 , Append i2 e) ∈ set xs
shows i1 = i2

〈proof 〉

lemma (in imap) expunge-id-valid:
assumes xs prefix of j

and Deliver (i1 , Expunge e mo i2) ∈ set xs
shows i1 = i2

〈proof 〉

lemma (in imap) store-id-valid:
assumes xs prefix of j

and Deliver (i1 , Store e mo i2) ∈ set xs
shows i1 = i2

〈proof 〉

definition (in imap) added-ids :: (′id × (′id, ′b) operation) event list ⇒ ′b ⇒ ′id list where
added-ids es p ≡ List.map-filter (λx. case x of

Deliver (i, Create j e) ⇒ if e = p then Some j else None |
Deliver (i, Expunge e mo j) ⇒ if e = p then Some j else None |
- ⇒ None) es

definition (in imap) added-files :: (′id × (′id, ′b) operation) event list ⇒ ′b ⇒ ′id list where
added-files es p ≡ List.map-filter (λx. case x of

Deliver (i, Append j e) ⇒ if e = p then Some j else None |
Deliver (i, Store e mo j) ⇒ if e = p then Some j else None |
- ⇒ None) es

— added files simplifier

lemma (in imap) [simp]:
shows added-files [] e = []
〈proof 〉

7

lemma (in imap) [simp]:
shows added-files (xs @ ys) e = added-files xs e @ added-files ys e
〈proof 〉

lemma (in imap) added-files-Broadcast-collapse [simp]:
shows added-files ([Broadcast e]) e ′ = []
〈proof 〉

lemma (in imap) added-files-Deliver-Delete-collapse [simp]:
shows added-files ([Deliver (i, Delete is e)]) e ′ = []
〈proof 〉

lemma (in imap) added-files-Deliver-Create-collapse [simp]:
shows added-files ([Deliver (i, Create j e)]) e ′ = []
〈proof 〉

lemma (in imap) added-files-Deliver-Expunge-collapse [simp]:
shows added-files ([Deliver (i, Expunge e mo j)]) e ′ = []
〈proof 〉

lemma (in imap) added-files-Deliver-Append-diff-collapse [simp]:
shows e 6= e ′ =⇒ added-files ([Deliver (i, Append j e)]) e ′ = []
〈proof 〉

lemma (in imap) added-files-Deliver-Append-same-collapse [simp]:
shows added-files ([Deliver (i, Append j e)]) e = [j]
〈proof 〉

lemma (in imap) added-files-Deliver-Store-diff-collapse [simp]:
shows e 6= e ′ =⇒ added-files ([Deliver (i, Store e mo j)]) e ′ = []
〈proof 〉

lemma (in imap) added-files-Deliver-Store-same-collapse [simp]:
shows added-files ([Deliver (i, Store e mo j)]) e = [j]
〈proof 〉

lemma (in imap) [simp]:
shows added-ids [] e = []
〈proof 〉

lemma (in imap) split-ids [simp]:
shows added-ids (xs @ ys) e = added-ids xs e @ added-ids ys e
〈proof 〉

lemma (in imap) added-ids-Broadcast-collapse [simp]:
shows added-ids ([Broadcast e]) e ′ = []
〈proof 〉

lemma (in imap) added-ids-Deliver-Delete-collapse [simp]:

8

shows added-ids ([Deliver (i, Delete is e)]) e ′ = []
〈proof 〉

lemma (in imap) added-ids-Deliver-Append-collapse [simp]:
shows added-ids ([Deliver (i, Append j e)]) e ′ = []
〈proof 〉

lemma (in imap) added-ids-Deliver-Store-collapse [simp]:
shows added-ids ([Deliver (i, Store e mo j)]) e ′ = []
〈proof 〉

lemma (in imap) added-ids-Deliver-Create-diff-collapse [simp]:
shows e 6= e ′ =⇒ added-ids ([Deliver (i, Create j e)]) e ′ = []
〈proof 〉

lemma (in imap) added-ids-Deliver-Expunge-diff-collapse [simp]:
shows e 6= e ′ =⇒ added-ids ([Deliver (i, Expunge e mo j)]) e ′ = []
〈proof 〉

lemma (in imap) added-ids-Deliver-Create-same-collapse [simp]:
shows added-ids ([Deliver (i, Create j e)]) e = [j]
〈proof 〉

lemma (in imap) added-ids-Deliver-Expunge-same-collapse [simp]:
shows added-ids ([Deliver (i, Expunge e mo j)]) e = [j]
〈proof 〉

lemma (in imap) expunge-id-not-in-set:
assumes i1 /∈ set (added-ids [Deliver (i, Expunge e mo i2)] e)
shows i1 6= i2
〈proof 〉

lemma (in imap) apply-operations-added-ids:
assumes es prefix of j

and apply-operations es = Some f
shows fst (f x) ⊆ set (added-ids es x)
〈proof 〉

lemma (in imap) apply-operations-added-files:
assumes es prefix of j

and apply-operations es = Some f
shows snd (f x) ⊆ set (added-files es x)
〈proof 〉

lemma (in imap) Deliver-added-files:
assumes xs prefix of j

and i ∈ set (added-files xs e)
shows Deliver (i, Append i e) ∈ set xs ∨ (∃ mo . Deliver (i, Store e mo i) ∈ set xs)
〈proof 〉

9

end

5 Independence of IMAP Commands

In this section we show that two concurrent operations that reference to the same tag must be
identical.

theory
IMAP−proof−independent
imports

IMAP−def
IMAP−proof−helpers

begin

lemma (in imap) Broadcast-Expunge-Deliver-prefix-closed:
assumes xs @ [Broadcast (i, Expunge e mo i)] prefix of j
shows Deliver (mo, Append mo e) ∈ set xs ∨
(∃ mo2 . Deliver (mo, Store e mo2 mo) ∈ set xs)

〈proof 〉

lemma (in imap) Broadcast-Store-Deliver-prefix-closed:
assumes xs @ [Broadcast (i, Store e mo i)] prefix of j
shows Deliver (mo, Append mo e) ∈ set xs ∨
(∃ mo2 . Deliver (mo, Store e mo2 mo) ∈ set xs)

〈proof 〉

lemma (in imap) Deliver-added-ids:
assumes xs prefix of j

and i ∈ set (added-ids xs e)
shows Deliver (i, Create i e) ∈ set xs ∨
(∃ mo . Deliver (i, Expunge e mo i) ∈ set xs)

〈proof 〉

lemma (in imap) Broadcast-Deliver-prefix-closed:
assumes xs @ [Broadcast (r , Delete ix e)] prefix of j

and i ∈ ix
shows Deliver (i, Create i e) ∈ set xs ∨

Deliver (i, Append i e) ∈ set xs ∨
(∃ mo . Deliver (i, Expunge e mo i) ∈ set xs) ∨
(∃ mo . Deliver (i, Store e mo i) ∈ set xs)

〈proof 〉

lemma (in imap) concurrent-create-delete-independent-technical:
assumes i ∈ is

and xs prefix of j
and (i, Create i e) ∈ set (node-deliver-messages xs)
and (ir , Delete is e) ∈ set (node-deliver-messages xs)

shows hb (i, Create i e) (ir , Delete is e)

10

〈proof 〉

lemma (in imap) concurrent-store-expunge-independent-technical:
assumes xs prefix of j

and (i, Store e mo i) ∈ set (node-deliver-messages xs)
and (r , Expunge e i r) ∈ set (node-deliver-messages xs)

shows hb (i, Store e mo i) (r , Expunge e i r)
〈proof 〉

lemma (in imap) concurrent-store-expunge-independent-technical2 :
assumes xs prefix of j

and (i, Store e1 mo2 i) ∈ set (node-deliver-messages xs)
and (r , Expunge e mo r) ∈ set (node-deliver-messages xs)

shows mo2 6= r
〈proof 〉

lemma (in imap) concurrent-store-delete-independent-technical:
assumes i ∈ is

and xs prefix of j
and (i, Store e mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e) ∈ set (node-deliver-messages xs)

shows hb (i, Store e mo i) (ir , Delete is e)
〈proof 〉

lemma (in imap) concurrent-append-delete-independent-technical:
assumes i ∈ is

and xs prefix of j
and (i, Append i e) ∈ set (node-deliver-messages xs)
and (ir , Delete is e) ∈ set (node-deliver-messages xs)

shows hb (i, Append i e) (ir , Delete is e)
〈proof 〉

lemma (in imap) concurrent-append-expunge-independent-technical:
assumes i = mo

and xs prefix of j
and (i, Append i e) ∈ set (node-deliver-messages xs)
and (r , Expunge e mo r) ∈ set (node-deliver-messages xs)

shows hb (i, Append i e) (r , Expunge e mo r)
〈proof 〉

lemma (in imap) concurrent-append-store-independent-technical:
assumes i = mo

and xs prefix of j
and (i, Append i e) ∈ set (node-deliver-messages xs)
and (r , Store e mo r) ∈ set (node-deliver-messages xs)

shows hb (i, Append i e) (r , Store e mo r)
〈proof 〉

lemma (in imap) concurrent-expunge-delete-independent-technical:

11

assumes i ∈ is
and xs prefix of j
and (i, Expunge e mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e) ∈ set (node-deliver-messages xs)

shows hb (i, Expunge e mo i) (ir , Delete is e)
〈proof 〉

lemma (in imap) concurrent-store-store-independent-technical:
assumes xs prefix of j

and (i, Store e mo i) ∈ set (node-deliver-messages xs)
and (r , Store e i r) ∈ set (node-deliver-messages xs)

shows hb (i, Store e mo i) (r , Store e i r)
〈proof 〉

lemma (in imap) expunge-delete-tag-causality:
assumes i ∈ is

and xs prefix of j
and (i, Expunge e1 mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)
and pre@[Broadcast (ir , Delete is e2)] prefix of k

shows Deliver (i, Expunge e2 mo i) ∈ set (history k)
〈proof 〉

lemma (in imap) expunge-delete-ids-imply-messages-same:
assumes i ∈ is

and xs prefix of j
and (i, Expunge e1 mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows e1 = e2
〈proof 〉

lemma (in imap) store-delete-ids-imply-messages-same:
assumes i ∈ is

and xs prefix of j
and (i, Store e1 mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows e1 = e2
〈proof 〉

lemma (in imap) create-delete-ids-imply-messages-same:
assumes i ∈ is

and xs prefix of j
and (i, Create i e1) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows e1 = e2
〈proof 〉

lemma (in imap) append-delete-ids-imply-messages-same:
assumes i ∈ is

12

and xs prefix of j
and (i, Append i e1) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows e1 = e2
〈proof 〉

lemma (in imap) append-expunge-ids-imply-messages-same:
assumes i = mo

and xs prefix of j
and (i, Append i e1) ∈ set (node-deliver-messages xs)
and (r , Expunge e2 mo r) ∈ set (node-deliver-messages xs)

shows e1 = e2
〈proof 〉

lemma (in imap) append-store-ids-imply-messages-same:
assumes i = mo

and xs prefix of j
and (i, Append i e1) ∈ set (node-deliver-messages xs)
and (r , Store e2 mo r) ∈ set (node-deliver-messages xs)

shows e1 = e2
〈proof 〉

lemma (in imap) expunge-store-ids-imply-messages-same:
assumes xs prefix of j

and (i, Store e1 mo i) ∈ set (node-deliver-messages xs)
and (r , Expunge e2 i r) ∈ set (node-deliver-messages xs)

shows e1 = e2
〈proof 〉

lemma (in imap) store-store-ids-imply-messages-same:
assumes xs prefix of j

and (i, Store e1 mo i) ∈ set (node-deliver-messages xs)
and (r , Store e2 i r) ∈ set (node-deliver-messages xs)

shows e1 = e2
〈proof 〉

end

6 Convergence of the IMAP-CRDT

In this final section show that concurrent updates commute and thus Strong Eventual Conver-
gence is achieved.

theory
IMAP−proof
imports

IMAP−def
IMAP−proof−commute
IMAP−proof−helpers

13

IMAP−proof−independent
begin

corollary (in imap) concurrent-create-delete-independent:
assumes ¬ hb (i, Create i e1) (ir , Delete is e2)

and ¬ hb (ir , Delete is e2) (i, Create i e1)
and xs prefix of j
and (i, Create i e1) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows i /∈ is
〈proof 〉

corollary (in imap) concurrent-append-delete-independent:
assumes ¬ hb (i, Append i e1) (ir , Delete is e2)

and ¬ hb (ir , Delete is e2) (i, Append i e1)
and xs prefix of j
and (i, Append i e1) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows i /∈ is
〈proof 〉

corollary (in imap) concurrent-append-expunge-independent:
assumes ¬ hb (i, Append i e1) (r , Expunge e2 mo r)

and ¬ hb (r , Expunge e2 mo r) (i, Append i e1)
and xs prefix of j
and (i, Append i e1) ∈ set (node-deliver-messages xs)
and (r , Expunge e2 mo r) ∈ set (node-deliver-messages xs)

shows i 6= mo
〈proof 〉

corollary (in imap) concurrent-append-store-independent:
assumes ¬ hb (i, Append i e1) (r , Store e2 mo r)

and ¬ hb (r , Store e2 mo r) (i, Append i e1)
and xs prefix of j
and (i, Append i e1) ∈ set (node-deliver-messages xs)
and (r , Store e2 mo r) ∈ set (node-deliver-messages xs)

shows i 6= mo
〈proof 〉

corollary (in imap) concurrent-expunge-delete-independent:
assumes ¬ hb (i, Expunge e1 mo i) (ir , Delete is e2)

and ¬ hb (ir , Delete is e2) (i, Expunge e1 mo i)
and xs prefix of j
and (i, Expunge e1 mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows i /∈ is
〈proof 〉

corollary (in imap) concurrent-store-delete-independent:

14

assumes ¬ hb (i, Store e1 mo i) (ir , Delete is e2)
and ¬ hb (ir , Delete is e2) (i, Store e1 mo i)
and xs prefix of j
and (i, Store e1 mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows i /∈ is
〈proof 〉

corollary (in imap) concurrent-store-expunge-independent:
assumes ¬ hb (i, Store e1 mo i) (r , Expunge e2 mo2 r)

and ¬ hb (r , Expunge e2 mo2 r) (i, Store e1 mo i)
and xs prefix of j
and (i, Store e1 mo i) ∈ set (node-deliver-messages xs)
and (r , Expunge e2 mo2 r) ∈ set (node-deliver-messages xs)

shows i 6= mo2 ∧ r 6= mo
〈proof 〉

corollary (in imap) concurrent-store-store-independent:
assumes ¬ hb (i, Store e1 mo i) (r , Store e2 mo2 r)

and ¬ hb (r , Store e2 mo2 r) (i, Store e1 mo i)
and xs prefix of j
and (i, Store e1 mo i) ∈ set (node-deliver-messages xs)
and (r , Store e2 mo2 r) ∈ set (node-deliver-messages xs)

shows i 6= mo2 ∧ r 6= mo
〈proof 〉

lemma (in imap) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)

〈proof 〉

theorem (in imap) convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)

and xs prefix of i
and ys prefix of j

shows apply-operations xs = apply-operations ys
〈proof 〉

context imap begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops.∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops λx.({},{})
〈proof 〉

end
end

15

References

[1] V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. A framework for
establishing Strong Eventual Consistency for Conflict-free Replicated Datatypes. Archive of
Formal Proofs, 2017. http://isa-afp.org/entries/CRDT.html.

[2] V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. Verifying Strong
Eventual Consistency in Distributed Systems. ArXiv e-prints, 2017.

[3] T. Jungnickel, L. Oldenburg, and M. Loibl. Designing a Planetary-Scale IMAP Service
with Conflict-free Replicated Data Types. In 21th International Conference on Principles
of Distributed Systems (OPODIS 2017), Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[4] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of Conver-
gent and Commutative Replicated Data Types. Technical report, 2011.

[5] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free Replicated Data Types.
In International Symposium on Stabilization, Safety, and Security of Distributed Systems,
SSS’11, pages 386–400, 2011.

16

http://isa-afp.org/entries/CRDT.html

	1 Preface
	1.1 The IMAP CmRDT
	1.2 Proof Guide

	2 IMAP-CRDT Definitions
	3 Commutativity of IMAP Commands
	4 Proof Helpers
	5 Independence of IMAP Commands
	6 Convergence of the IMAP-CRDT

