
The IMAP CmRDT

Tim Jungnickel, Lennart Oldenburg, Matthias Loibl

March 17, 2025

Abstract

We provide our Isabelle/HOL formalization of a Conflict-free Replicated Data Type for
Internet Message Access Protocol commands. To this end, we show that Strong Eventual
Consistency (SEC) is guaranteed by proving the commutativity of concurrent operations.
We base our formalization on the recently proposed "framework for establishing Strong
Eventual Consistency for Conflict-free Replicated Datatypes" (AFP.CRDT) by Gomes et al.
Hence, we provide an additional example of how the recently proposed framework can be
used to design and prove CRDTs.

Contents
1 Preface 1

1.1 The IMAP CmRDT . 2
1.2 Proof Guide . 2

2 IMAP-CRDT Definitions 3

3 Commutativity of IMAP Commands 5

4 Proof Helpers 7

5 Independence of IMAP Commands 11

6 Convergence of the IMAP-CRDT 23

1 Preface
A Conflict-free Replicated Data Type (CRDT) [5] ensures convergence of replicas without re-
quiring a central coordination server or even a distributed coordination system based on con-
sensus or locking. Despite the fact that Shapiro et al. provide a comprehensive collection of
definitions for the most useful data types such as registers, sets, and lists [4], we observe that
the use of CRDTs in standard IT services is rather uncommon. Therefore, we use the Internet
Message Access Protocol (IMAP)—the de-facto standard protocol to retrieve and manipulate
mail messages on an email server—as an example to show the feasibility of using CRDTs for
replicating state of a standard IT service to achieve planetary scale.

Designing a correct CRDT is a challenging task. A CmRDT, the operation-based variant
of a CRDT, requires all operations to commute. To this end, Gomes et al. recently published
a CmRDT verification framework [1] in Isabelle/HOL.

In our most recent work [3], we presented pluto, our research prototype of a planetary-
scale IMAP service. To achieve the claimed planet-scale, we designed a CmRDT that provides

1

multi-leader replication of mailboxes without the need of synchronous operations. In order to
ensure the correctness of our proposed IMAP CmRDT, we implemented it in the verification
framework proposed by Gomes et al.

In this work, we present our Isabelle/HOL proof of the necessary properties and show that
our CmRDT indeed guarantees Strong Eventual Consistency (SEC). We contribute not only
the certainty that our CmRDT design is correct, but also provide one more example of how the
verification framework can be used to prove the correctness of a CRDT.

1.1 The IMAP CmRDT

In the rest of this work, we show how we modeled our IMAP CmRDT in Isabelle/HOL. We
start by presenting the original IMAP CmRDT, followed by the implementation details of the
Isabelle/HOL formalization. The presentation of our CmRDT in Spec. 1 is based on the syntax
introduced in [4]. We highly recommend reading the foundational work by Shapiro et al. prior
to following our proof documentation.

In essence, the IMAP CmRDT represents the state of a mailbox, containing folders (of type
N) and messages (of type M). Moreover, we introduce metadata in form of tags (of type ID).
All modeling details and a more detailed description of the CmRDT are provided in the original
paper [3].

The only notable difference between the presented specification and our Isabelle/HOL for-
malization is, that we no longer distinguish between sets ID and M and that the generated
tags of create and expunge are handled explicitly. This makes the formalization slightly eas-
ier, because less type variables are introduced. The concrete definition can be found in the
IMAP-CRDT Definitions section of the IMAP-def.thy file.

1.2 Proof Guide

Hint: In our proof, we build on top of the definitions given by Gomes et al. in [2]. We strongly
recommend to read their paper first before following our proof. In fact, in our formalization we
reuse the locales of the proposed framework and therefore this work cannot be compiled without
the reference to [1].

Operation-based CRDTs require all concurrent operations to commute in order to ensure
convergence. Therefore, we begin our verification by proving the commutativity of every com-
bination of possible concurrent operations. Initially, we used nitpick to identify corner cases in
our implementation. We prove the commutativity in Section 3 of the IMAP-proof-commute.thy
file. The critical conditions to satisfy in order to commute, can be summarized as follows:

• The tags of a create and expunge operation or the messages of an append and store
operation are never in the removed-set of a concurrent delete operation.

• The message of an append operation is never the message that is deleted by a concurrent
store or expunge operation.

• The message inserted by a store operation is never the message that is deleted by a
concurrent store or expunge operation.

The identified conditions obviously hold in regular traces of our system, because an item
that has been inserted by one operation cannot be deleted by a concurrent operation. It simply
cannot be present at the time of the initiation of the concurrent operation.

Next, we show that the identified conditions actually hold for all concurrent operations.
Because all tags and all inserted messages are globally unique, it can easily be shown that

2

Specification 1 The IMAP CmRDT
1: payload map u : N → P(ID)× P(M) . {foldername f 7→ ({tag t}, {msg m}), . . . }
2: initial (λx.(∅,∅))

3: update create (foldername f)
4: atSource
5: let α = unique()
6: downstream (f, α)
7: u(f) 7→ (u(f)1 ∪ {α}, u(f)2)
8: update delete (foldername f)
9: atSource (f)

10: let R1 = u(f)1
11: let R2 = u(f)2
12: downstream (f,R1, R2)
13: u(f) 7→ (u(f)1 \R1, u(f)2 \R2)
14: update append (foldername f,message m)
15: atSource (m)
16: pre m is globally unique
17: downstream (f,m)
18: u(f) 7→ (u(f)1, u(f)2 ∪ {m})
19: update expunge (foldername f,message m)
20: atSource (f,m)
21: pre m ∈ u(f)2
22: let α = unique()
23: downstream (f,m, α)
24: u(f) 7→ (u(f)1 ∪ {α}, u(f)2 \ {m})
25: update store (foldername f,message mold,message mnew)
26: atSource (f,mold,mnew)
27: pre mold ∈ u(f)2
28: pre mnew is globally unique
29: downstream (f,mold,mnew)
30: u(f) 7→ (u(f)1, (u(f)2 \ {mold}) ∪ {mnew})

all conditions are satisfied. In Isabelle/HOL, showing this fact takes some effort. Fortu-
nately, we were able to reuse parts of the Isabelle/HOL implementation of the OR-Set proof in
[1]. The Isabelle/HOL proofs for the critical conditions are encapsulated in the IMAP-proof-
independent.thy file.

With the introduced lemmas, we prove the final theorem that states that convergence is
guaranteed. Due to all operations being commutative in case the critical conditions are sat-
isfied and the critical conditions indeed are holding for all concurrent updates, all concurrent
operations commute. The Isabelle/HOL proof is contained in the IMAP-proof.thy file.

2 IMAP-CRDT Definitions

We begin by defining the operations on a mailbox state. In addition to the interpretation of
the operations, we define valid behaviours for the operations as assumptions for the network.
We use the network_with_constrained_ops locale from the framework.

3

theory
IMAP−def
imports

CRDT .Network
begin

datatype (′id, ′a) operation =
Create ′id ′a |
Delete ′id set ′a |
Append ′id ′a |
Expunge ′a ′id ′id |
Store ′a ′id ′id

type-synonym (′id, ′a) state = ′a ⇒ (′id set × ′id set)

definition op-elem :: (′id, ′a) operation ⇒ ′a where
op-elem oper ≡ case oper of

Create i e ⇒ e |
Delete is e ⇒ e |
Append i e ⇒ e |
Expunge e mo i ⇒ e |
Store e mo i ⇒ e

definition interpret-op :: (′id, ′a) operation ⇒ (′id, ′a) state ⇀ (′id, ′a) state
(‹〈-〉› [0] 1000) where
interpret-op oper state ≡

let metadata = fst (state (op-elem oper));
files = snd (state (op-elem oper));
after = case oper of

Create i e ⇒ (metadata ∪ {i}, files) |
Delete is e ⇒ (metadata − is, files − is) |
Append i e ⇒ (metadata, files ∪ {i}) |
Expunge e mo i ⇒ (metadata ∪ {i}, files − {mo}) |
Store e mo i ⇒ (metadata, insert i (files − {mo}))

in Some (state ((op-elem oper) := after))

In the definition of the valid behaviours of the operations, we define additional assumption the
state where the operation is executed. In essence, a the tag of a create, append, expunge, and
store operation is identical to the message number and therefore unique. A delete operation
deletes all metadata and the content of a folder. The store and expunge operations must refer
to an existing message.

definition valid-behaviours :: (′id, ′a) state ⇒ ′id × (′id, ′a) operation ⇒ bool where
valid-behaviours state msg ≡

case msg of
(i, Create j e) ⇒ i = j |
(i, Delete is e) ⇒ is = fst (state e) ∪ snd (state e) |
(i, Append j e) ⇒ i = j |
(i, Expunge e mo j) ⇒ i = j ∧ mo ∈ snd (state e) |
(i, Store e mo j) ⇒ i = j ∧ mo ∈ snd (state e)

4

locale imap = network-with-constrained-ops - interpret-op λx. ({},{}) valid-behaviours

end

3 Commutativity of IMAP Commands

In this section we prove the commutativity of operations and identify the edge cases.

theory
IMAP−proof−commute
imports

IMAP−def
begin

lemma (in imap) create-create-commute:
shows 〈Create i1 e1 〉 B 〈Create i2 e2 〉 = 〈Create i2 e2 〉 B 〈Create i1 e1 〉
by(auto simp add: interpret-op-def op-elem-def kleisli-def , fastforce)

lemma (in imap) create-delete-commute:
assumes i /∈ is
shows 〈Create i e1 〉 B 〈Delete is e2 〉 = 〈Delete is e2 〉 B 〈Create i e1 〉
using assms by(auto simp add: interpret-op-def kleisli-def op-elem-def , fastforce)

lemma (in imap) create-append-commute:
shows 〈Create i1 e1 〉 B 〈Append i2 e2 〉 = 〈Append i2 e2 〉 B 〈Create i1 e1 〉
by(auto simp add: interpret-op-def op-elem-def kleisli-def , fastforce)

lemma (in imap) create-expunge-commute:
shows 〈Create i1 e1 〉 B 〈Expunge e2 mo i2 〉 = 〈Expunge e2 mo i2 〉 B 〈Create i1 e1 〉
by(auto simp add: interpret-op-def op-elem-def kleisli-def , fastforce)

lemma (in imap) create-store-commute:
shows 〈Create i1 e1 〉 B 〈Store e2 mo i2 〉 = 〈Store e2 mo i2 〉 B 〈Create i1 e1 〉
by(auto simp add: interpret-op-def op-elem-def kleisli-def , fastforce)

lemma (in imap) delete-delete-commute:
shows 〈Delete i1 e1 〉 B 〈Delete i2 e2 〉 = 〈Delete i2 e2 〉 B 〈Delete i1 e1 〉
by(unfold interpret-op-def op-elem-def kleisli-def , fastforce)

lemma (in imap) delete-append-commute:
assumes i /∈ is
shows 〈Delete is e1 〉 B 〈Append i e2 〉 = 〈Append i e2 〉 B 〈Delete is e1 〉
using assms by(auto simp add: interpret-op-def kleisli-def op-elem-def , fastforce)

lemma (in imap) delete-expunge-commute:
assumes i /∈ is
shows 〈Delete is e1 〉 B 〈Expunge e2 mo i〉 = 〈Expunge e2 mo i〉 B 〈Delete is e1 〉
using assms by(auto simp add: interpret-op-def kleisli-def op-elem-def , fastforce)

5

lemma (in imap) delete-store-commute:
assumes i /∈ is
shows 〈Delete is e1 〉 B 〈Store e2 mo i〉 = 〈Store e2 mo i〉 B 〈Delete is e1 〉
using assms by(auto simp add: interpret-op-def kleisli-def op-elem-def , fastforce)

lemma (in imap) append-append-commute:
shows 〈Append i1 e1 〉 B 〈Append i2 e2 〉 = 〈Append i2 e2 〉 B 〈Append i1 e1 〉
by(auto simp add: interpret-op-def op-elem-def kleisli-def , fastforce)

lemma (in imap) append-expunge-commute:
assumes i1 6= mo
shows (〈Append i1 e1 〉 B 〈Expunge e2 mo i2 〉) = (〈Expunge e2 mo i2 〉 B 〈Append i1 e1 〉)

proof
fix x
show (〈Append i1 e1 〉 B 〈Expunge e2 mo i2 〉) x = (〈Expunge e2 mo i2 〉 B 〈Append i1 e1 〉) x

using assms by(auto simp add: interpret-op-def kleisli-def op-elem-def)
qed

lemma (in imap) append-store-commute:
assumes i1 6= mo
shows (〈Append i1 e1 〉 B 〈Store e2 mo i2 〉) = (〈Store e2 mo i2 〉 B 〈Append i1 e1 〉)

proof
fix x
show (〈Append i1 e1 〉 B 〈Store e2 mo i2 〉) x = (〈Store e2 mo i2 〉 B 〈Append i1 e1 〉) x

using assms by(auto simp add: interpret-op-def kleisli-def op-elem-def)
qed

lemma (in imap) expunge-expunge-commute:
shows (〈Expunge e1 mo1 i1 〉 B 〈Expunge e2 mo2 i2 〉) = (〈Expunge e2 mo2 i2 〉 B 〈Expunge

e1 mo1 i1 〉)
proof

fix x
show (〈Expunge e1 mo1 i1 〉 B 〈Expunge e2 mo2 i2 〉) x

= (〈Expunge e2 mo2 i2 〉 B 〈Expunge e1 mo1 i1 〉) x
by(auto simp add: interpret-op-def kleisli-def op-elem-def) qed

lemma (in imap) expunge-store-commute:
assumes i1 6= mo2 and i2 6= mo1
shows (〈Expunge e1 mo1 i1 〉 B 〈Store e2 mo2 i2 〉) = (〈Store e2 mo2 i2 〉 B 〈Expunge e1 mo1

i1 〉)
proof

fix x
show (〈Expunge e1 mo1 i1 〉 B 〈Store e2 mo2 i2 〉) x = (〈Store e2 mo2 i2 〉 B 〈Expunge e1

mo1 i1 〉) x
unfolding interpret-op-def kleisli-def op-elem-def using assms(2) by (simp, fastforce)

qed

lemma (in imap) store-store-commute:

6

assumes i1 6= mo2 and i2 6= mo1
shows (〈Store e1 mo1 i1 〉 B 〈Store e2 mo2 i2 〉) = (〈Store e2 mo2 i2 〉 B 〈Store e1 mo1 i1 〉)

proof
fix x
show (〈Store e1 mo1 i1 〉 B 〈Store e2 mo2 i2 〉) x = (〈Store e2 mo2 i2 〉 B 〈Store e1 mo1 i1 〉)

x
unfolding interpret-op-def kleisli-def op-elem-def using assms by (simp, fastforce)

qed

end

4 Proof Helpers

In this section we define and prove lemmas that help to show that all identified critical conditions
hold for concurrent operations. Many of the following parts are derivations from the definitions
and lemmas of Gomes et al.

theory
IMAP−proof−helpers
imports

IMAP−def

begin

lemma (in imap) apply-operations-never-fails:
assumes xs prefix of i
shows apply-operations xs 6= None
using assms proof(induction xs rule: rev-induct, clarsimp)
case (snoc x xs) thus ?case
proof (cases x)

case (Broadcast e) thus ?thesis
using snoc by force

next
case (Deliver e) thus ?thesis

using snoc apply clarsimp unfolding interp-msg-def apply-operations-def
by (metis (no-types, lifting) bind.bind-lunit interpret-op-def prefix-of-appendD)

qed
qed

lemma (in imap) create-id-valid:
assumes xs prefix of j

and Deliver (i1 , Create i2 e) ∈ set xs
shows i1 = i2

proof −
have ∃ s. valid-behaviours s (i1 , Create i2 e)

using assms deliver-in-prefix-is-valid by blast
thus ?thesis

by(simp add: valid-behaviours-def)
qed

7

lemma (in imap) append-id-valid:
assumes xs prefix of j

and Deliver (i1 , Append i2 e) ∈ set xs
shows i1 = i2

proof −
have ∃ s. valid-behaviours s (i1 , Append i2 e)

using assms deliver-in-prefix-is-valid by blast
thus ?thesis

by(simp add: valid-behaviours-def)
qed

lemma (in imap) expunge-id-valid:
assumes xs prefix of j

and Deliver (i1 , Expunge e mo i2) ∈ set xs
shows i1 = i2

proof −
have ∃ s. valid-behaviours s (i1 , Expunge e mo i2)

using assms deliver-in-prefix-is-valid by blast
thus ?thesis

by(simp add: valid-behaviours-def)
qed

lemma (in imap) store-id-valid:
assumes xs prefix of j

and Deliver (i1 , Store e mo i2) ∈ set xs
shows i1 = i2

proof −
have ∃ s. valid-behaviours s (i1 , Store e mo i2)

using assms deliver-in-prefix-is-valid by blast
thus ?thesis

by(simp add: valid-behaviours-def)
qed

definition (in imap) added-ids :: (′id × (′id, ′b) operation) event list ⇒ ′b ⇒ ′id list where
added-ids es p ≡ List.map-filter (λx. case x of

Deliver (i, Create j e) ⇒ if e = p then Some j else None |
Deliver (i, Expunge e mo j) ⇒ if e = p then Some j else None |
- ⇒ None) es

definition (in imap) added-files :: (′id × (′id, ′b) operation) event list ⇒ ′b ⇒ ′id list where
added-files es p ≡ List.map-filter (λx. case x of

Deliver (i, Append j e) ⇒ if e = p then Some j else None |
Deliver (i, Store e mo j) ⇒ if e = p then Some j else None |
- ⇒ None) es

— added files simplifier

lemma (in imap) [simp]:

8

shows added-files [] e = []
by (auto simp: added-files-def map-filter-def)

lemma (in imap) [simp]:
shows added-files (xs @ ys) e = added-files xs e @ added-files ys e
by (auto simp: added-files-def map-filter-append)

lemma (in imap) added-files-Broadcast-collapse [simp]:
shows added-files ([Broadcast e]) e ′ = []
by (auto simp: added-files-def map-filter-append map-filter-def)

lemma (in imap) added-files-Deliver-Delete-collapse [simp]:
shows added-files ([Deliver (i, Delete is e)]) e ′ = []
by (auto simp: added-files-def map-filter-append map-filter-def)

lemma (in imap) added-files-Deliver-Create-collapse [simp]:
shows added-files ([Deliver (i, Create j e)]) e ′ = []
by (auto simp: added-files-def map-filter-append map-filter-def)

lemma (in imap) added-files-Deliver-Expunge-collapse [simp]:
shows added-files ([Deliver (i, Expunge e mo j)]) e ′ = []
by (auto simp: added-files-def map-filter-append map-filter-def)

lemma (in imap) added-files-Deliver-Append-diff-collapse [simp]:
shows e 6= e ′ =⇒ added-files ([Deliver (i, Append j e)]) e ′ = []
by (auto simp: added-files-def map-filter-append map-filter-def)

lemma (in imap) added-files-Deliver-Append-same-collapse [simp]:
shows added-files ([Deliver (i, Append j e)]) e = [j]
by (auto simp: added-files-def map-filter-append map-filter-def)

lemma (in imap) added-files-Deliver-Store-diff-collapse [simp]:
shows e 6= e ′ =⇒ added-files ([Deliver (i, Store e mo j)]) e ′ = []
by (auto simp: added-files-def map-filter-append map-filter-def)

lemma (in imap) added-files-Deliver-Store-same-collapse [simp]:
shows added-files ([Deliver (i, Store e mo j)]) e = [j]
by (auto simp: added-files-def map-filter-append map-filter-def)

— added ids simplifier

lemma (in imap) [simp]:
shows added-ids [] e = []
by (auto simp: added-ids-def map-filter-def)

lemma (in imap) split-ids [simp]:
shows added-ids (xs @ ys) e = added-ids xs e @ added-ids ys e
by (auto simp: added-ids-def map-filter-append)

9

lemma (in imap) added-ids-Broadcast-collapse [simp]:
shows added-ids ([Broadcast e]) e ′ = []
by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in imap) added-ids-Deliver-Delete-collapse [simp]:
shows added-ids ([Deliver (i, Delete is e)]) e ′ = []
by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in imap) added-ids-Deliver-Append-collapse [simp]:
shows added-ids ([Deliver (i, Append j e)]) e ′ = []
by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in imap) added-ids-Deliver-Store-collapse [simp]:
shows added-ids ([Deliver (i, Store e mo j)]) e ′ = []
by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in imap) added-ids-Deliver-Create-diff-collapse [simp]:
shows e 6= e ′ =⇒ added-ids ([Deliver (i, Create j e)]) e ′ = []
by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in imap) added-ids-Deliver-Expunge-diff-collapse [simp]:
shows e 6= e ′ =⇒ added-ids ([Deliver (i, Expunge e mo j)]) e ′ = []
by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in imap) added-ids-Deliver-Create-same-collapse [simp]:
shows added-ids ([Deliver (i, Create j e)]) e = [j]
by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in imap) added-ids-Deliver-Expunge-same-collapse [simp]:
shows added-ids ([Deliver (i, Expunge e mo j)]) e = [j]
by (auto simp: added-ids-def map-filter-append map-filter-def)

lemma (in imap) expunge-id-not-in-set:
assumes i1 /∈ set (added-ids [Deliver (i, Expunge e mo i2)] e)
shows i1 6= i2
using assms by simp

lemma (in imap) apply-operations-added-ids:
assumes es prefix of j

and apply-operations es = Some f
shows fst (f x) ⊆ set (added-ids es x)
using assms proof (induct es arbitrary: f rule: rev-induct, force)
case (snoc x xs) thus ?case
proof (cases x, force)

case (Deliver e)
moreover obtain a b where e = (a, b) by force
ultimately show ?thesis

using snoc by(case-tac b; clarsimp simp: interp-msg-def split: bind-splits,

10

force split: if-split-asm simp add: op-elem-def interpret-op-def)
qed

qed

lemma (in imap) apply-operations-added-files:
assumes es prefix of j

and apply-operations es = Some f
shows snd (f x) ⊆ set (added-files es x)
using assms proof (induct es arbitrary: f rule: rev-induct, force)
case (snoc x xs) thus ?case
proof (cases x, force)

case (Deliver e)
moreover obtain a b where e = (a, b) by force
ultimately show ?thesis

using snoc by(case-tac b; clarsimp simp: interp-msg-def split: bind-splits,
force split: if-split-asm simp add: op-elem-def interpret-op-def)

qed
qed

lemma (in imap) Deliver-added-files:
assumes xs prefix of j

and i ∈ set (added-files xs e)
shows Deliver (i, Append i e) ∈ set xs ∨ (∃ mo . Deliver (i, Store e mo i) ∈ set xs)
using assms proof (induct xs rule: rev-induct, clarsimp)
case (snoc x xs) thus ?case
proof (cases x, force)

case X : (Deliver e ′)
moreover obtain a b where E : e ′ = (a, b) by force
ultimately show ?thesis using snoc

apply (case-tac b; clarify) apply (simp,metis prefix-of-appendD,force)
using append-id-valid apply simp
using E apply (metis

added-files-Deliver-Append-diff-collapse added-files-Deliver-Append-same-collapse
empty-iff in-set-conv-decomp list.set(1) prefix-of-appendD set-ConsD, simp)

using E apply-operations-added-files apply (blast,simp)
using E apply-operations-added-files
by (metis Un-iff

added-files-Deliver-Store-diff-collapse added-files-Deliver-Store-same-collapse empty-iff
empty-set list.set-intros(1) prefix-of-appendD set-ConsD set-append store-id-valid)

qed
qed

end

5 Independence of IMAP Commands

In this section we show that two concurrent operations that reference to the same tag must be
identical.

11

theory
IMAP−proof−independent
imports

IMAP−def
IMAP−proof−helpers

begin

lemma (in imap) Broadcast-Expunge-Deliver-prefix-closed:
assumes xs @ [Broadcast (i, Expunge e mo i)] prefix of j
shows Deliver (mo, Append mo e) ∈ set xs ∨
(∃ mo2 . Deliver (mo, Store e mo2 mo) ∈ set xs)

proof −
obtain y where apply-operations xs = Some y

using assms broadcast-only-valid-msgs by blast
moreover hence mo ∈ snd (y e)

using broadcast-only-valid-msgs[of xs (i, Expunge e mo i) j]
valid-behaviours-def [of y (i, Expunge e mo i)] assms by auto

ultimately show ?thesis
using assms Deliver-added-files apply-operations-added-files by blast

qed

lemma (in imap) Broadcast-Store-Deliver-prefix-closed:
assumes xs @ [Broadcast (i, Store e mo i)] prefix of j
shows Deliver (mo, Append mo e) ∈ set xs ∨
(∃ mo2 . Deliver (mo, Store e mo2 mo) ∈ set xs)

proof −
obtain y where apply-operations xs = Some y

using assms broadcast-only-valid-msgs by blast
moreover hence mo ∈ snd (y e)

using broadcast-only-valid-msgs[of xs (i, Store e mo i) j]
valid-behaviours-def [of y (i, Store e mo i)] assms by auto

ultimately show ?thesis
using assms Deliver-added-files apply-operations-added-files by blast

qed

lemma (in imap) Deliver-added-ids:
assumes xs prefix of j

and i ∈ set (added-ids xs e)
shows Deliver (i, Create i e) ∈ set xs ∨
(∃ mo . Deliver (i, Expunge e mo i) ∈ set xs)

using assms proof (induct xs rule: rev-induct, clarsimp)
case (snoc x xs) thus ?case
proof (cases x, force)

case X : (Deliver e ′)
moreover obtain a b where e ′ = (a, b) by force
ultimately show ?thesis

using snoc apply (case-tac b; clarify)
apply (simp, metis added-ids-Deliver-Create-diff-collapse
added-ids-Deliver-Create-same-collapse empty-iff list.set(1) set-ConsD create-id-valid

12

in-set-conv-decomp prefix-of-appendD, force)
using append-id-valid apply (simp, metis (no-types, lifting) prefix-of-appendD, simp,

metis
Un-iff added-ids-Deliver-Expunge-diff-collapse added-ids-Deliver-Expunge-same-collapse

empty-iff expunge-id-valid list.set(1) list.set-intros(1) prefix-of-appendD set-ConsD
set-append)

by (simp, blast)
qed

qed

lemma (in imap) Broadcast-Deliver-prefix-closed:
assumes xs @ [Broadcast (r , Delete ix e)] prefix of j

and i ∈ ix
shows Deliver (i, Create i e) ∈ set xs ∨

Deliver (i, Append i e) ∈ set xs ∨
(∃ mo . Deliver (i, Expunge e mo i) ∈ set xs) ∨
(∃ mo . Deliver (i, Store e mo i) ∈ set xs)

proof −
obtain y where apply-operations xs = Some y

using assms broadcast-only-valid-msgs by blast
moreover hence ix = fst (y e) ∪ snd (y e)

by (metis (mono-tags, lifting) assms(1) broadcast-only-valid-msgs operation.case(2)
option.simps(1) valid-behaviours-def case-prodD)

ultimately show ?thesis
using assms Deliver-added-ids apply-operations-added-ids
by (metis Deliver-added-files Un-iff apply-operations-added-files le-iff-sup prefix-of-appendD)

qed

lemma (in imap) concurrent-create-delete-independent-technical:
assumes i ∈ is

and xs prefix of j
and (i, Create i e) ∈ set (node-deliver-messages xs)
and (ir , Delete is e) ∈ set (node-deliver-messages xs)

shows hb (i, Create i e) (ir , Delete is e)
proof −

have f1 : Deliver (i, Create i e) ∈ set (history j)
using assms prefix-msg-in-history by blast

obtain pre k where P: pre@[Broadcast (ir , Delete is e)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

hence f2 : Deliver (i, Create i e) ∈ set pre ∨
Deliver (i, Append i e) ∈ set pre ∨
(∃ mo . Deliver (i, Expunge e mo i) ∈ set pre) ∨
(∃ mo . Deliver (i, Store e mo i) ∈ set pre)

using Broadcast-Deliver-prefix-closed assms by auto
have f3 : Deliver (i, Append i e) /∈ set pre using f1 P
by (metis (full-types) Pair-inject fst-conv network.delivery-has-a-cause network.msg-id-unique

network-axioms operation.simps(9) prefix-elem-to-carriers prefix-of-appendD)

13

have f4 : ∀ mo . Deliver (i, Expunge e mo i) /∈ set pre using f1 P
by (metis delivery-has-a-cause fst-conv msg-id-unique old.prod.inject operation.simps(11)

prefix-elem-to-carriers prefix-of-appendD)
have ∀ mo . Deliver (i, Store e mo i) /∈ set pre using f1 P

by (metis delivery-has-a-cause fst-conv msg-id-unique old.prod.inject operation.simps(13)
prefix-elem-to-carriers prefix-of-appendD)

thus ?thesis using f2 f3 f4 P events-in-local-order hb-deliver by blast
qed

lemma (in imap) concurrent-store-expunge-independent-technical:
assumes xs prefix of j

and (i, Store e mo i) ∈ set (node-deliver-messages xs)
and (r , Expunge e i r) ∈ set (node-deliver-messages xs)

shows hb (i, Store e mo i) (r , Expunge e i r)
proof −

obtain pre k where P: pre@[Broadcast (r , Expunge e i r)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

moreover hence f1 : Deliver (i, Append i e) ∈ set pre ∨
(∃ mo2 . Deliver (i, Store e mo2 i) ∈ set pre)

using Broadcast-Expunge-Deliver-prefix-closed assms(1) by auto
hence f2 : Deliver (i, Append i e) /∈ set (history k)
by (metis Pair-inject assms(1) assms(2) fst-conv msg-id-unique network.delivery-has-a-cause

network-axioms operation.distinct(17) prefix-msg-in-history)
from f1 obtain mo2 :: ′a where

Deliver (i, Store e mo2 i) ∈ set (history k) using f2
using P prefix-elem-to-carriers by blast

hence Deliver (i, Store e mo i) ∈ set (history k) using assms f1 f2 P
by (metis fst-conv msg-id-unique network.delivery-has-a-cause network-axioms

prefix-msg-in-history)
then show ?thesis

using hb.intros(2) events-in-local-order f1 f2 P
by (metis delivery-has-a-cause fst-conv msg-id-unique node-histories.prefix-of-appendD

node-histories-axioms prefix-elem-to-carriers)
qed

lemma (in imap) concurrent-store-expunge-independent-technical2 :
assumes xs prefix of j

and (i, Store e1 mo2 i) ∈ set (node-deliver-messages xs)
and (r , Expunge e mo r) ∈ set (node-deliver-messages xs)

shows mo2 6= r
proof −

obtain oid :: ′a × (′a, ′b) operation ⇒ nat where
oid: ∀ p n. Deliver p /∈ set (history n) ∨ Broadcast p ∈ set (history (oid p))
by (metis (no-types) delivery-has-a-cause)

hence f1 : Broadcast (r , Expunge e mo r) ∈ set (history (oid (r , Expunge e mo r)))
using assms(1) assms(3) prefix-msg-in-history by blast

obtain k :: ′a ⇒ ′b ⇒ (′a × (′a, ′b) operation) event list ⇒ ′a where k:
∀ i e pre. (∃mo. Deliver (i, Store e mo i) ∈ set pre) =

14

(Deliver (i, Store e (k i e pre) i) ∈ set pre)
by moura

obtain pre :: nat ⇒ (′a × (′a, ′b) operation) event ⇒ (′a × (′a, ′b) operation) event list
where pre: ∀ k op1 . (∃ op2 . op2 @ [op1] prefix of k) = (pre k op1 @ [op1] prefix of k)
by moura

hence f2 : ∀ e n. e /∈ set (history n) ∨ pre n e @ [e] prefix of n
using events-before-exist by simp

hence f3 : pre (oid (i, Store e1 mo2 i)) (Broadcast (i, Store e1 mo2 i))
prefix of oid (i, Store e1 mo2 i)

using oid assms(1) assms(2) prefix-msg-in-history by blast
have f4 : Deliver (r , Append r e1) /∈ set (history (oid (i, Store e1 mo2 i)))

by (metis (no-types) oid f1 fst-conv msg-id-unique old.prod.inject operation.distinct(15))
have Deliver (r , Store e1 (k r e1 (pre (oid (i, Store e1 mo2 i))
(Broadcast (i, Store e1 mo2 i)))) r) /∈ set (history (oid (i, Store e1 mo2 i)))

by (metis (no-types) oid f1 fst-conv msg-id-unique old.prod.inject operation.distinct(19))
thus ?thesis using oid k f2 f3 f4 assms

by (metis (no-types, lifting) Broadcast-Store-Deliver-prefix-closed
network.prefix-msg-in-history network-axioms prefix-elem-to-carriers)

qed

lemma (in imap) concurrent-store-delete-independent-technical:
assumes i ∈ is

and xs prefix of j
and (i, Store e mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e) ∈ set (node-deliver-messages xs)

shows hb (i, Store e mo i) (ir , Delete is e)
proof −

have f1 : Deliver (i, Store e mo i) ∈ set (history j) using assms prefix-msg-in-history by
auto

obtain pre k where P: pre@[Broadcast (ir , Delete is e)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

hence f2 : Deliver (i, Create i e) ∈ set pre ∨
Deliver (i, Append i e) ∈ set pre ∨
(∃ mo . Deliver (i, Expunge e mo i) ∈ set pre) ∨
(∃ mo . Deliver (i, Store e mo i) ∈ set pre)

using Broadcast-Deliver-prefix-closed assms(1) by auto
have f3 : Deliver (i, Create i e) /∈ set pre using f1 P

by (metis Pair-inject delivery-has-a-cause fst-conv msg-id-unique operation.distinct(7)
prefix-elem-to-carriers prefix-of-appendD)

have f4 : Deliver (i, Append i e) /∈ set pre using f1 P
by (metis delivery-has-a-cause fst-conv msg-id-unique operation.distinct(17)

prefix-elem-to-carriers prefix-of-appendD prod.inject)
have ∀ mo . Deliver (i, Expunge e mo i) /∈ set pre using f1 P

by (metis Pair-inject delivery-has-a-cause fst-conv msg-id-unique operation.simps(25)
prefix-elem-to-carriers prefix-of-appendD)

hence Deliver (i, Store e mo i) ∈ set pre using f1 f2 f3 f4 P
by (metis delivery-has-a-cause fst-conv msg-id-unique node-histories.prefix-of-appendD

node-histories-axioms prefix-elem-to-carriers)
thus ?thesis using P events-in-local-order hb-deliver by blast

15

qed

lemma (in imap) concurrent-append-delete-independent-technical:
assumes i ∈ is

and xs prefix of j
and (i, Append i e) ∈ set (node-deliver-messages xs)
and (ir , Delete is e) ∈ set (node-deliver-messages xs)

shows hb (i, Append i e) (ir , Delete is e)
proof −

obtain pre k where P: pre@[Broadcast (ir , Delete is e)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

hence f1 : Deliver (i, Create i e) ∈ set pre ∨
Deliver (i, Append i e) ∈ set pre ∨
(∃ mo . Deliver (i, Expunge e mo i) ∈ set pre) ∨
(∃ mo . Deliver (i, Store e mo i) ∈ set pre)

using Broadcast-Deliver-prefix-closed assms(1) by auto
hence Deliver (i, Append i e) ∈ set pre using assms P f1

by (metis (no-types, opaque-lifting) delivery-has-a-cause events-in-local-order fst-conv
hb-broadcast-exists1 hb-deliver msg-id-unique prefix-msg-in-history)

thus ?thesis using P events-in-local-order hb-deliver by blast
qed

lemma (in imap) concurrent-append-expunge-independent-technical:
assumes i = mo

and xs prefix of j
and (i, Append i e) ∈ set (node-deliver-messages xs)
and (r , Expunge e mo r) ∈ set (node-deliver-messages xs)

shows hb (i, Append i e) (r , Expunge e mo r)
proof −

obtain pre k where P: pre@[Broadcast (r , Expunge e mo r)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

hence f1 : Deliver (mo, Append mo e) ∈ set pre ∨
(∃ mo2 . Deliver (mo, Store e mo2 mo) ∈ set pre)

using Broadcast-Expunge-Deliver-prefix-closed assms(1) by auto
hence (∀ mo2 . Deliver (mo, Store e mo2 mo) /∈ set pre) using P assms
proof −

have Deliver (mo, Append mo e) ∈ set (history j)
using assms(1) assms(2) assms(3) prefix-msg-in-history by blast

thus ?thesis
by (metis (no-types) P Pair-inject delivery-has-a-cause fst-conv msg-id-unique

operation.simps(23) prefix-elem-to-carriers prefix-of-appendD)
qed
thus ?thesis

using hb.intros(2) events-in-local-order assms(1) P f1 by blast
qed

lemma (in imap) concurrent-append-store-independent-technical:
assumes i = mo

and xs prefix of j

16

and (i, Append i e) ∈ set (node-deliver-messages xs)
and (r , Store e mo r) ∈ set (node-deliver-messages xs)

shows hb (i, Append i e) (r , Store e mo r)
proof −

obtain pre k where pre: pre@[Broadcast (r , Store e mo r)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

moreover hence f1 : Deliver (mo, Append mo e) ∈ set pre ∨
(∃ mo2 . Deliver (mo, Store e mo2 mo) ∈ set pre)

using Broadcast-Store-Deliver-prefix-closed assms(1) by auto
have f2 : Deliver (i, Append i e) ∈ set (history j)

by (meson assms network.prefix-msg-in-history network-axioms)
then show ?thesis using assms f1

by (metis pre delivery-has-a-cause events-in-local-order fst-conv hb-deliver
msg-id-unique node-histories.prefix-of-appendD node-histories-axioms
prefix-elem-to-carriers)

qed

lemma (in imap) concurrent-expunge-delete-independent-technical:
assumes i ∈ is

and xs prefix of j
and (i, Expunge e mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e) ∈ set (node-deliver-messages xs)

shows hb (i, Expunge e mo i) (ir , Delete is e)
proof −

obtain pre k where pre: pre@[Broadcast (ir , Delete is e)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

moreover hence A: Deliver (i, Create i e) ∈ set pre ∨
Deliver (i, Append i e) ∈ set pre ∨
(∃ mo . Deliver (i, Expunge e mo i) ∈ set pre) ∨
(∃ mo . Deliver (i, Store e mo i) ∈ set pre)

using Broadcast-Deliver-prefix-closed assms(1) by auto
hence Deliver (i, Expunge e mo i) ∈ set pre using assms
proof −

have f1 :
∧

e. e /∈ set pre ∨ e ∈ set (history k)
using pre prefix-elem-to-carriers by blast

have f2 : Deliver (i, Expunge e mo i) ∈ set (history j)
by (meson assms network.prefix-msg-in-history network-axioms)

then show ?thesis using f1 A
by (metis (no-types, lifting) fst-conv msg-id-unique network.delivery-has-a-cause

network-axioms)
qed
ultimately show ?thesis

using hb.intros(2) events-in-local-order by blast
qed

lemma (in imap) concurrent-store-store-independent-technical:
assumes xs prefix of j

and (i, Store e mo i) ∈ set (node-deliver-messages xs)
and (r , Store e i r) ∈ set (node-deliver-messages xs)

17

shows hb (i, Store e mo i) (r , Store e i r)
proof −

obtain pre k where P: pre@[Broadcast (r , Store e i r)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

hence f1 : ∀ e. e /∈ set pre ∨ e ∈ set (history k)
using prefix-elem-to-carriers by blast

have f2 : Deliver (i, Append i e) ∈ set pre ∨ (∃ mo2 . Deliver (i, Store e mo2 i) ∈ set pre)
using Broadcast-Store-Deliver-prefix-closed assms(1) P by auto

hence Deliver (i, Store e mo i) ∈ set pre using assms f1
by (metis delivery-has-a-cause fst-conv msg-id-unique prefix-msg-in-history)

then show ?thesis
using hb.intros(2) events-in-local-order P by blast

qed

lemma (in imap) expunge-delete-tag-causality:
assumes i ∈ is

and xs prefix of j
and (i, Expunge e1 mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)
and pre@[Broadcast (ir , Delete is e2)] prefix of k

shows Deliver (i, Expunge e2 mo i) ∈ set (history k)
proof−

have f1 : Deliver (i, Append i e2) /∈ set (history k) using assms
by (metis fst-conv msg-id-unique network.delivery-has-a-cause network-axioms old.prod.inject

operation.distinct(15) prefix-msg-in-history)
have f2 : Deliver (i, Create i e2) /∈ set (history k) using assms
by (metis fst-conv msg-id-unique network.delivery-has-a-cause network-axioms old.prod.inject

operation.distinct(5) prefix-msg-in-history)
have f3 : ∀ mo. Deliver (i, Store e2 mo i) /∈ set (history k) using assms

by (metis Pair-inject fst-conv msg-id-unique network.delivery-has-a-cause network-axioms
operation.simps(25) prefix-msg-in-history)

hence ∃ mo1 . Deliver (i, Expunge e2 mo1 i) ∈ set (history k) using assms f1 f2
by (meson imap.Broadcast-Deliver-prefix-closed imap-axioms node-histories.prefix-of-appendD

node-histories-axioms prefix-elem-to-carriers)
then obtain mo1 :: ′a where

Deliver (i, Expunge e2 mo1 i) ∈ set (history k) by blast
then show ?thesis using assms f1 f2 f3
by (metis fst-conv msg-id-unique network.delivery-has-a-cause network-axioms old.prod.inject

operation.inject(4) prefix-msg-in-history)
qed

lemma (in imap) expunge-delete-ids-imply-messages-same:
assumes i ∈ is

and xs prefix of j
and (i, Expunge e1 mo i) ∈ set (node-deliver-messages xs)

18

and (ir , Delete is e2) ∈ set (node-deliver-messages xs)
shows e1 = e2

proof −
obtain pre k where P: pre@[Broadcast (ir , Delete is e2)] prefix of k

using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast
hence Deliver (i, Expunge e2 mo i) ∈ set (history k) using assms expunge-delete-tag-causality

by blast
then show ?thesis using assms

by (metis delivery-has-a-cause fst-conv network.msg-id-unique network-axioms
operation.inject(4) prefix-msg-in-history prod.inject)

qed

lemma (in imap) store-delete-ids-imply-messages-same:
assumes i ∈ is

and xs prefix of j
and (i, Store e1 mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows e1 = e2
proof −

obtain pre k where P: pre@[Broadcast (ir , Delete is e2)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

have f1 : Deliver (i, Append i e2) /∈ set (history k) using assms
by (metis fst-conv msg-id-unique network.delivery-has-a-cause network-axioms old.prod.inject

operation.distinct(17) prefix-msg-in-history)
have f2 : ∀ mo. Deliver (i, Expunge e2 mo i) /∈ set (history k) using assms

by (metis Pair-inject fst-conv msg-id-unique network.delivery-has-a-cause network-axioms
operation.distinct(19) prefix-msg-in-history)

have f3 : Deliver (i, Create i e2) /∈ set (history k) using assms
by (metis fst-conv msg-id-unique network.delivery-has-a-cause network-axioms old.prod.inject

operation.distinct(8) prefix-msg-in-history)
hence (∃ mo1 . Deliver (i, Store e2 mo1 i) ∈ set pre) using assms P f1 f2 imap-axioms

by (meson imap.Broadcast-Deliver-prefix-closed prefix-elem-to-carriers prefix-of-appendD)
then obtain mo1 :: ′a where

f3 : Deliver (i, Store e2 mo1 i) ∈ set pre by blast
then have f4 : Deliver (i, Store e2 mo1 i) ∈ set (history k)

using P prefix-elem-to-carriers by blast
hence Deliver (i, Store e2 mo i) ∈ set pre using f2 f3 assms
by (metis fst-conv msg-id-unique network.delivery-has-a-cause network-axioms old.prod.inject

operation.inject(5) prefix-msg-in-history)
moreover have Deliver(i, Store e1 mo i) ∈ set (history j)

using assms(2) assms(3) prefix-msg-in-history by blast
ultimately show ?thesis using f4

by (metis delivery-has-a-cause fst-conv msg-id-unique old.prod.inject operation.inject(5))
qed

lemma (in imap) create-delete-ids-imply-messages-same:

19

assumes i ∈ is
and xs prefix of j
and (i, Create i e1) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows e1 = e2
proof −

obtain pre k where P: pre@[Broadcast (ir , Delete is e2)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

have f1 : Deliver (i, Append i e2) /∈ set (history k)
by (metis assms(2) assms(3) delivery-has-a-cause fst-conv network.msg-id-unique

network.prefix-msg-in-history network-axioms operation.distinct(3) prod.inject)
have f2 : ∀ mo. Deliver (i, Expunge e2 mo i) /∈ set (history k)

by (metis assms(2) assms(3) fst-conv msg-id-unique network.delivery-has-a-cause net-
work-axioms

old.prod.inject operation.distinct(5) prefix-msg-in-history)
have f3 : ∀ mo. Deliver (i, Store e2 mo i) /∈ set (history k)

by (metis Pair-inject assms(2) assms(3) delivery-has-a-cause fst-conv msg-id-unique
operation.distinct(7) prefix-msg-in-history)

hence Deliver (i, Create i e2) ∈ set pre using assms P f2 f1 imap-axioms
by (meson imap.Broadcast-Deliver-prefix-closed prefix-elem-to-carriers prefix-of-appendD)

then show ?thesis using f1 f2 f3
by (metis (no-types, lifting) P assms(2) assms(3) delivery-has-a-cause fst-conv msg-id-unique

node-histories.prefix-of-appendD node-histories-axioms old.prod.inject operation.inject(1)

prefix-elem-to-carriers prefix-msg-in-history)
qed

lemma (in imap) append-delete-ids-imply-messages-same:
assumes i ∈ is

and xs prefix of j
and (i, Append i e1) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows e1 = e2
proof −

obtain pre k where P: pre@[Broadcast (ir , Delete is e2)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

hence f1 :
∧

e. e ∈ set pre =⇒ e ∈ set (history k) using prefix-elem-to-carriers by blast
have f2 : Deliver (i, Create i e2) /∈ set pre using P f1

by (metis assms(2) assms(3) fst-conv msg-id-unique network.delivery-has-a-cause net-
work-axioms

old.prod.inject operation.distinct(3) prefix-msg-in-history)
moreover have D1 : ∀ mo. Deliver (i, Expunge e2 mo i) /∈ set pre using P f1
by (metis Pair-inject assms(2) assms(3) fst-conv msg-id-unique network.delivery-has-a-cause

network-axioms operation.distinct(15) prefix-msg-in-history)
moreover have D2 : ∀ mo. Deliver (i, Store e2 mo i) /∈ set pre using P f1
by (metis Pair-inject assms(2) assms(3) fst-conv msg-id-unique network.delivery-has-a-cause

20

network-axioms operation.simps(23) prefix-msg-in-history)
moreover hence Deliver (i, Append i e2) ∈ set pre

using P D1 D2 f2 assms(1) Broadcast-Deliver-prefix-closed by blast
moreover have Deliver (i, Append i e1) ∈ set (history j)

using assms(2) assms(3) prefix-msg-in-history by blast
ultimately show ?thesis using assms

by (metis f1 msg-id-unique network.delivery-has-a-cause network-axioms old.prod.inject
operation.inject(3) prod.sel(1))

qed

lemma (in imap) append-expunge-ids-imply-messages-same:
assumes i = mo

and xs prefix of j
and (i, Append i e1) ∈ set (node-deliver-messages xs)
and (r , Expunge e2 mo r) ∈ set (node-deliver-messages xs)

shows e1 = e2
proof −

obtain pre k where pre: pre@[Broadcast (r , Expunge e2 mo r)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

moreover hence Deliver (mo, Append mo e2) ∈ set pre ∨
(∃ mo2 . Deliver (mo, Store e2 mo2 mo) ∈ set pre)

using Broadcast-Expunge-Deliver-prefix-closed assms(1)
by (meson imap.Broadcast-Deliver-prefix-closed imap-axioms)

hence Deliver (i, Append i e2) ∈ set pre using assms
by (metis (no-types, lifting) pre delivery-has-a-cause fst-conv hb-broadcast-exists1

msg-id-unique network.hb-deliver network.prefix-msg-in-history network-axioms
node-histories.events-in-local-order node-histories-axioms operation.distinct(17)
prod.inject)

moreover have Deliver (i, Append i e1) ∈ set (history j)
using assms(2) assms(3) prefix-msg-in-history by blast

ultimately show ?thesis
by (metis (no-types, lifting) fst-conv network.delivery-has-a-cause network.msg-id-unique

network-axioms operation.inject(3) prefix-elem-to-carriers prefix-of-appendD prod.inject)
qed

lemma (in imap) append-store-ids-imply-messages-same:
assumes i = mo

and xs prefix of j
and (i, Append i e1) ∈ set (node-deliver-messages xs)
and (r , Store e2 mo r) ∈ set (node-deliver-messages xs)

shows e1 = e2
proof −

obtain pre k where P: pre@[Broadcast (r , Store e2 mo r)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

moreover hence A: Deliver (mo, Append mo e2) ∈ set pre ∨
(∃ mo2 . Deliver (mo, Store e2 mo2 mo) ∈ set pre)

using Broadcast-Store-Deliver-prefix-closed assms(1)
by (meson imap.Broadcast-Deliver-prefix-closed imap-axioms)

have f1 : Deliver (i, Append i e1) ∈ set (history j)

21

using assms(2) assms(3) prefix-msg-in-history by blast
hence Deliver (i, Append i e2) ∈ set pre using assms P A

by (metis Pair-inject assms(1) P delivery-has-a-cause fst-conv msg-id-unique
operation.simps(23) prefix-elem-to-carriers prefix-of-appendD)

then show ?thesis using f1
by (metis P delivery-has-a-cause fst-conv msg-id-unique

node-histories.prefix-of-appendD node-histories-axioms operation.inject(3)
prefix-elem-to-carriers prod.inject)

qed

lemma (in imap) expunge-store-ids-imply-messages-same:
assumes xs prefix of j

and (i, Store e1 mo i) ∈ set (node-deliver-messages xs)
and (r , Expunge e2 i r) ∈ set (node-deliver-messages xs)

shows e1 = e2
proof −

obtain pre k where P: pre@[Broadcast (r , Expunge e2 i r)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

hence pprefix: pre prefix of k
using P by blast

have A: Deliver (i, Append i e2) ∈ set pre ∨
(∃ mo2 . Deliver (i, Store e2 mo2 i) ∈ set pre)

using Broadcast-Expunge-Deliver-prefix-closed assms(1) P by blast
have Deliver (i, Store e2 mo i) ∈ set pre using assms A P
proof −

obtain op1 :: ′a × (′a, ′b) operation ⇒ nat where
f1 : Broadcast (i, Store e1 mo i) ∈ set (history (op1 (i, Store e1 mo i)))
by (meson assms(1) assms(2) delivery-has-a-cause prefix-msg-in-history)

then show ?thesis
using f1 A pprefix delivery-has-a-cause network.msg-id-unique network-axioms

node-histories.prefix-to-carriers node-histories-axioms
by fastforce

qed
moreover have Deliver (i, Store e1 mo i) ∈ set (history j)

using assms(1) assms(2) prefix-msg-in-history by auto
ultimately show ?thesis using assms P

by (metis delivery-has-a-cause fst-conv msg-id-unique operation.inject(5)
prefix-elem-to-carriers prefix-of-appendD prod.inject)

qed

lemma (in imap) store-store-ids-imply-messages-same:
assumes xs prefix of j

and (i, Store e1 mo i) ∈ set (node-deliver-messages xs)
and (r , Store e2 i r) ∈ set (node-deliver-messages xs)

shows e1 = e2
proof −

obtain pre k where P: pre@[Broadcast (r , Store e2 i r)] prefix of k
using assms delivery-has-a-cause events-before-exist prefix-msg-in-history by blast

moreover hence A: Deliver (i, Append i e2) ∈ set pre ∨

22

(∃ mo2 . Deliver (i, Store e2 mo2 i) ∈ set pre)
using Broadcast-Store-Deliver-prefix-closed assms(1) by blast

have ∀ e. e /∈ set pre ∨ e ∈ set (history k)
using P prefix-elem-to-carriers by auto

hence Deliver (i, Store e2 mo i) ∈ set pre
by (metis A assms(1) assms(2) delivery-has-a-cause fst-conv msg-id-unique

operation.distinct(17) operation.inject(5) prefix-msg-in-history prod.inject)
moreover have Deliver (i, Store e1 mo i) ∈ set (history j)

using assms(1) assms(2) prefix-msg-in-history by auto
ultimately show ?thesis using assms

by (metis Pair-inject delivery-has-a-cause msg-id-unique operation.simps(5)
prefix-elem-to-carriers prefix-of-appendD prod.sel(1))

qed

end

6 Convergence of the IMAP-CRDT

In this final section show that concurrent updates commute and thus Strong Eventual Conver-
gence is achieved.

theory
IMAP−proof
imports

IMAP−def
IMAP−proof−commute
IMAP−proof−helpers
IMAP−proof−independent

begin

corollary (in imap) concurrent-create-delete-independent:
assumes ¬ hb (i, Create i e1) (ir , Delete is e2)

and ¬ hb (ir , Delete is e2) (i, Create i e1)
and xs prefix of j
and (i, Create i e1) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows i /∈ is
using assms create-delete-ids-imply-messages-same concurrent-create-delete-independent-technical

by fastforce

corollary (in imap) concurrent-append-delete-independent:
assumes ¬ hb (i, Append i e1) (ir , Delete is e2)

and ¬ hb (ir , Delete is e2) (i, Append i e1)
and xs prefix of j
and (i, Append i e1) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows i /∈ is
using assms append-delete-ids-imply-messages-same concurrent-append-delete-independent-technical

23

by fastforce

corollary (in imap) concurrent-append-expunge-independent:
assumes ¬ hb (i, Append i e1) (r , Expunge e2 mo r)

and ¬ hb (r , Expunge e2 mo r) (i, Append i e1)
and xs prefix of j
and (i, Append i e1) ∈ set (node-deliver-messages xs)
and (r , Expunge e2 mo r) ∈ set (node-deliver-messages xs)

shows i 6= mo
using assms append-expunge-ids-imply-messages-same concurrent-append-expunge-independent-technical

by fastforce

corollary (in imap) concurrent-append-store-independent:
assumes ¬ hb (i, Append i e1) (r , Store e2 mo r)

and ¬ hb (r , Store e2 mo r) (i, Append i e1)
and xs prefix of j
and (i, Append i e1) ∈ set (node-deliver-messages xs)
and (r , Store e2 mo r) ∈ set (node-deliver-messages xs)

shows i 6= mo
using assms append-store-ids-imply-messages-same concurrent-append-store-independent-technical

by fastforce

corollary (in imap) concurrent-expunge-delete-independent:
assumes ¬ hb (i, Expunge e1 mo i) (ir , Delete is e2)

and ¬ hb (ir , Delete is e2) (i, Expunge e1 mo i)
and xs prefix of j
and (i, Expunge e1 mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows i /∈ is
using assms expunge-delete-ids-imply-messages-same concurrent-expunge-delete-independent-technical

by fastforce

corollary (in imap) concurrent-store-delete-independent:
assumes ¬ hb (i, Store e1 mo i) (ir , Delete is e2)

and ¬ hb (ir , Delete is e2) (i, Store e1 mo i)
and xs prefix of j
and (i, Store e1 mo i) ∈ set (node-deliver-messages xs)
and (ir , Delete is e2) ∈ set (node-deliver-messages xs)

shows i /∈ is
using assms store-delete-ids-imply-messages-same concurrent-store-delete-independent-technical

by fastforce

corollary (in imap) concurrent-store-expunge-independent:
assumes ¬ hb (i, Store e1 mo i) (r , Expunge e2 mo2 r)

24

and ¬ hb (r , Expunge e2 mo2 r) (i, Store e1 mo i)
and xs prefix of j
and (i, Store e1 mo i) ∈ set (node-deliver-messages xs)
and (r , Expunge e2 mo2 r) ∈ set (node-deliver-messages xs)

shows i 6= mo2 ∧ r 6= mo
using assms expunge-store-ids-imply-messages-same concurrent-store-expunge-independent-technical2

concurrent-store-expunge-independent-technical by metis

corollary (in imap) concurrent-store-store-independent:
assumes ¬ hb (i, Store e1 mo i) (r , Store e2 mo2 r)

and ¬ hb (r , Store e2 mo2 r) (i, Store e1 mo i)
and xs prefix of j
and (i, Store e1 mo i) ∈ set (node-deliver-messages xs)
and (r , Store e2 mo2 r) ∈ set (node-deliver-messages xs)

shows i 6= mo2 ∧ r 6= mo
using assms store-store-ids-imply-messages-same concurrent-store-store-independent-technical

by metis

lemma (in imap) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)

proof −
{ fix a b x y

assume (a, b) ∈ set (node-deliver-messages xs)
(x, y) ∈ set (node-deliver-messages xs)
hb.concurrent (a, b) (x, y)

hence interp-msg (a, b) B interp-msg (x, y) = interp-msg (x, y) B interp-msg (a, b)
apply(unfold interp-msg-def , case-tac b; case-tac y;

simp add: create-create-commute delete-delete-commute append-append-commute
create-append-commute create-expunge-commute create-store-commute
expunge-expunge-commute hb.concurrent-def)

using assms prefix-contains-msg apply (metis (full-types)
create-id-valid create-delete-commute concurrent-create-delete-independent)

using assms prefix-contains-msg apply (metis (full-types)
create-id-valid create-delete-commute concurrent-create-delete-independent)

using assms prefix-contains-msg apply (metis
append-id-valid append-delete-ids-imply-messages-same
concurrent-append-delete-independent-technical delete-append-commute)

using assms prefix-contains-msg apply (metis
concurrent-expunge-delete-independent expunge-id-valid imap.delete-expunge-commute
imap-axioms)

using assms prefix-contains-msg apply (metis
concurrent-store-delete-independent delete-store-commute store-id-valid)

using assms prefix-contains-msg apply (metis
append-id-valid append-delete-ids-imply-messages-same
concurrent-append-delete-independent-technical delete-append-commute)

25

using assms prefix-contains-msg apply (metis
append-id-valid expunge-id-valid append-expunge-ids-imply-messages-same
concurrent-append-expunge-independent-technical append-expunge-commute)

using assms prefix-contains-msg apply (metis
append-id-valid append-store-commute concurrent-append-store-independent store-id-valid)

using assms prefix-contains-msg apply (metis
concurrent-expunge-delete-independent expunge-id-valid delete-expunge-commute)

using assms prefix-contains-msg apply (metis
append-expunge-commute append-id-valid concurrent-append-expunge-independent
expunge-id-valid)

using assms prefix-contains-msg apply (metis
expunge-id-valid expunge-store-commute imap.concurrent-store-expunge-independent
imap-axioms store-id-valid)

using assms prefix-contains-msg apply (metis
concurrent-store-delete-independent delete-store-commute store-id-valid)

using assms prefix-contains-msg apply (metis
append-id-valid append-store-commute imap.concurrent-append-store-independent imap-axioms

store-id-valid)
using assms prefix-contains-msg apply (metis

expunge-id-valid expunge-store-commute imap.concurrent-store-expunge-independent
imap-axioms store-id-valid)

using assms prefix-contains-msg by (metis concurrent-store-store-independent store-id-valid

store-store-commute)
} thus ?thesis

by(fastforce simp: hb.concurrent-ops-commute-def)
qed

theorem (in imap) convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)

and xs prefix of i
and ys prefix of j

shows apply-operations xs = apply-operations ys
using assms by(auto simp add: apply-operations-def intro: hb.convergence-ext

concurrent-operations-commute node-deliver-messages-distinct hb-consistent-prefix)

context imap begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops.∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops λx.({},{})
apply(standard; clarsimp simp add: hb-consistent-prefix node-deliver-messages-distinct

concurrent-operations-commute)
apply(metis (no-types, lifting) apply-operations-def bind.bind-lunit not-None-eq

hb.apply-operations-Snoc kleisli-def apply-operations-never-fails interp-msg-def)
using drop-last-message apply blast
done

end

26

end

References

[1] V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. A framework for
establishing Strong Eventual Consistency for Conflict-free Replicated Datatypes. Archive of
Formal Proofs, 2017. http://isa-afp.org/entries/CRDT.html.

[2] V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. Verifying Strong
Eventual Consistency in Distributed Systems. ArXiv e-prints, 2017.

[3] T. Jungnickel, L. Oldenburg, and M. Loibl. Designing a Planetary-Scale IMAP Service
with Conflict-free Replicated Data Types. In 21th International Conference on Principles
of Distributed Systems (OPODIS 2017), Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[4] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of Conver-
gent and Commutative Replicated Data Types. Technical report, 2011.

[5] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free Replicated Data Types.
In International Symposium on Stabilization, Safety, and Security of Distributed Systems,
SSS’11, pages 386–400, 2011.

27

http://isa-afp.org/entries/CRDT.html

	1 Preface
	1.1 The IMAP CmRDT
	1.2 Proof Guide

	2 IMAP-CRDT Definitions
	3 Commutativity of IMAP Commands
	4 Proof Helpers
	5 Independence of IMAP Commands
	6 Convergence of the IMAP-CRDT

