
Hypergraph Basics

Chelsea Edmonds and Lawrence C. Paulson

September 22, 2023

Abstract

This entry is a simple extension of our previous entry for Combi-
natorial design theory [1], which presents new and existing concepts
using hypergraph language. Both designs and hypergraphs are types
of incident set systems, hence have the same underlying foundation.
However, they are often used in different contexts, and some defini-
tions are as such unique. This library uses locales to rewrite equiv-
alent definitions and build a basic hypergraph hierarchy with direct
links to equivalent design theory concepts to avoid repetition, further
demonstrating the power of the “locale-centric” approach. The library
includes all standard definitions (order, degree etc.), as well as some ex-
tensions on hypergraph decompositions and spanning subhypergraphs.

Contents
1 Basic Hypergraphs 1

1.1 Sub hypergraphs . 4

2 Hypergraph Variations 5
2.1 Non-trivial hypergraphs . 5
2.2 Regular and Uniform Hypergraphs 7
2.3 Factorisations . 8
2.4 Sample Graph Theory Connections 8

1 Basic Hypergraphs
Converting Design theory to hypergraph notation. Hypergraphs have tech-
nically already been formalised
theory Hypergraph

imports
Design-Theory.Block-Designs
Design-Theory.Sub-Designs
Fishers-Inequality.Design-Extras

begin

1

lemma is-singleton-image:
is-singleton C =⇒ is-singleton (f ‘ C)
〈proof 〉

lemma bij-betw-singleton-image:
assumes bij-betw f A B
assumes C ⊆ A
shows is-singleton C ←→ is-singleton (f ‘ C)
〈proof 〉

lemma image-singleton:
assumes A 6= {}
assumes

∧
x. x ∈ A =⇒ f x = c

shows f ‘ A = {c}
〈proof 〉

type-synonym colour = nat

type-synonym ′a hyp-edge = ′a set

type-synonym ′a hyp-graph = (′a set) × (′a hyp-edge multiset)

abbreviation hyp-edges :: ′a hyp-graph ⇒ ′a hyp-edge multiset where
hyp-edges H ≡ snd H

abbreviation hyp-verts :: ′a hyp-graph ⇒ ′a set where
hyp-verts H ≡ fst H

locale hypersystem = incidence-system vertices :: ′a set edges :: ′a hyp-edge multiset

for vertices (V) and edges (E)

begin

Basic definitions using hypergraph language
abbreviation horder :: nat where
horder ≡ card (V)

definition hdegree :: ′a ⇒ nat where
hdegree v ≡ size {#e ∈# E . v ∈ e #}

lemma hdegree-rep-num: hdegree v = point-replication-number E v
〈proof 〉

definition hdegree-set :: ′a set ⇒ nat where
hdegree-set vs ≡ size {#e ∈# E . vs ⊆ e#}

lemma hdegree-set-points-index: hdegree-set vs = points-index E vs

2

〈proof 〉

definition hvert-adjacent :: ′a ⇒ ′a ⇒ bool where
hvert-adjacent v1 v2 ≡ ∃ e . e ∈# E ∧ v1 ∈ e ∧ v2 ∈ e ∧ v1 ∈ V ∧ v2 ∈ V

definition hedge-adjacent :: ′a hyp-edge ⇒ ′a hyp-edge ⇒ bool where
hedge-adjacent e1 e2 ≡ e1 ∩ e2 6= {} ∧ e1 ∈# E ∧ e2 ∈# E

lemma edge-adjacent-alt-def : e1 ∈# E =⇒ e2 ∈# E =⇒ ∃ x . x ∈ V ∧ x ∈ e1
∧ x ∈ e2 =⇒

hedge-adjacent e1 e2
〈proof 〉

definition hneighborhood :: ′a ⇒ ′a set where
hneighborhood x ≡ {v ∈ V . hvert-adjacent x v}

definition hmax-degree :: nat where
hmax-degree ≡ Max {hdegree v | v. v ∈ V}

definition hrank :: nat where
hrank ≡ Max {card e | e . e ∈# E}

definition hcorank :: nat where
hcorank = Min {card e | e . e ∈# E}

definition hedge-neighbourhood :: ′a ⇒ ′a hyp-edge multiset where
hedge-neighbourhood x ≡ {# e ∈# E . x ∈ e #}

lemma degree-alt-neigbourhood: hdegree x = size (hedge-neighbourhood x)
〈proof 〉

definition hinduced-edges:: ′a set ⇒ ′a hyp-edge multiset where
hinduced-edges V ′ = {#e ∈# E . e ⊆ V ′#}

end

Sublocale for rewriting definition purposes rather than inheritance
sublocale hypersystem ⊆ incidence-system V E

rewrites point-replication-number E v = hdegree v and points-index E vs =
hdegree-set vs
〈proof 〉

Reverse sublocale to establish equality
sublocale incidence-system ⊆ hypersystem V B
rewrites hdegree v = point-replication-number B v and hdegree-set vs = points-index
B vs
〈proof 〉

Missing design identified in the design theory hierarchy
locale inf-design = incidence-system +

3

assumes blocks-nempty: bl ∈# B =⇒ bl 6= {}

sublocale design ⊆ inf-design
〈proof 〉

locale fin-hypersystem = hypersystem + finite-incidence-system V E

sublocale finite-incidence-system ⊆ fin-hypersystem V B
〈proof 〉

locale hypergraph = hypersystem + inf-design V E

sublocale inf-design ⊆ hypergraph V B
〈proof 〉

locale fin-hypergraph = hypergraph + fin-hypersystem

sublocale design ⊆ fin-hypergraph V B
〈proof 〉

sublocale fin-hypergraph ⊆ design V E
〈proof 〉

1.1 Sub hypergraphs
Sub hypergraphs and related concepts (spanning hypergraphs etc)
locale sub-hypergraph = sub: hypergraph VH EH + orig: hypergraph V :: ′a set E
+

sub-set-system VH EH V E for VH EH V E

locale spanning-hypergraph = sub-hypergraph +
assumes V = VH

lemma spanning-hypergraphI : sub-hypergraph VH EH V E =⇒ V = VH =⇒
spanning-hypergraph VH EH V E
〈proof 〉

context hypergraph
begin

definition is-subhypergraph :: ′a hyp-graph ⇒ bool where
is-subhypergraph H ≡ sub-hypergraph (hyp-verts H) (hyp-edges H) V E

lemma is-subhypergraphI :
assumes (hyp-verts H ⊆ V)
assumes (hyp-edges H ⊆# E)
assumes hypergraph (hyp-verts H) (hyp-edges H)
shows is-subhypergraph H
〈proof 〉

4

definition hypergraph-decomposition :: ′a hyp-graph multiset ⇒ bool where
hypergraph-decomposition S ≡ (∀ h ∈# S . is-subhypergraph h) ∧

partition-on-mset E {#hyp-edges h . h ∈# S#}

definition is-spanning-subhypergraph :: ′a hyp-graph ⇒ bool where
is-spanning-subhypergraph H ≡ spanning-hypergraph (hyp-verts H) (hyp-edges H)
V E

lemma is-spanning-subhypergraphI : is-subhypergraph H =⇒ (hyp-verts H) = V
=⇒

is-spanning-subhypergraph H
〈proof 〉

lemma spanning-subhypergraphI : (hyp-verts H) = V =⇒ (hyp-edges H) ⊆# E
=⇒

hypergraph (hyp-verts H) (hyp-edges H) =⇒ is-spanning-subhypergraph H
〈proof 〉

end
end

2 Hypergraph Variations
This section presents many different types of hypergraphs, introducing con-
ditions such as non-triviality, regularity, and uniform. Additionally, it briefly
formalises decompositions
theory Hypergraph-Variations

imports
Hypergraph
Undirected-Graph-Theory.Bipartite-Graphs

begin

2.1 Non-trivial hypergraphs
Non empty (ne) implies that the vertex (and edge) set is not empty. Non
trivial typically requires at least two edges
locale hyper-system-vne = hypersystem +

assumes V-nempty: V 6= {}

locale hyper-system-ne = hyper-system-vne +
assumes E-nempty: E 6= {#}

locale hypergraph-ne = hypergraph +
assumes E-nempty: E 6= {#}

begin

5

lemma V-nempty: V 6= {}
〈proof 〉

lemma sizeE-not-zero: size E 6= 0
〈proof 〉

end

sublocale hypergraph-ne ⊆ hyper-system-ne
〈proof 〉

locale hyper-system-ns = hypersystem +
assumes V-not-single: ¬ is-singleton V

locale hypersystem-nt = hyper-system-ne + hyper-system-ns

locale hypergraph-nt = hypergraph-ne + hyper-system-ns

sublocale hypergraph-nt ⊆ hypersystem-nt
〈proof 〉

locale fin-hypersystem-vne = fin-hypersystem + hyper-system-vne
begin

lemma order-gt-zero: horder > 0
〈proof 〉

lemma order-ge-one: horder ≥ 1
〈proof 〉

end

locale fin-hypersystem-nt = fin-hypersystem-vne + hypersystem-nt
begin

lemma order-gt-one: horder > 1
〈proof 〉

lemma order-ge-two: horder ≥ 2
〈proof 〉

end

locale fin-hypergraph-ne = fin-hypergraph + hypergraph-ne

sublocale fin-hypergraph-ne ⊆ fin-hypersystem-vne
〈proof 〉

6

locale fin-hypergraph-nt = fin-hypergraph + hypergraph-nt

sublocale fin-hypergraph-nt ⊆ fin-hypersystem-nt
〈proof 〉

sublocale fin-hypergraph-ne ⊆ proper-design V E
〈proof 〉

sublocale proper-design ⊆ fin-hypergraph-ne V B
〈proof 〉

2.2 Regular and Uniform Hypergraphs
locale dregular-hypergraph = hypergraph +

fixes d
assumes const-degree:

∧
x. x ∈ V =⇒ hdegree x = d

locale fin-dregular-hypergraph = dregular-hypergraph + fin-hypergraph

locale kuniform-hypergraph = hypergraph +
fixes k :: nat
assumes uniform:

∧
e . e ∈# E =⇒ card e = k

locale fin-kuniform-hypergraph = kuniform-hypergraph + fin-hypergraph

locale almost-regular-hypergraph = hypergraph +
assumes

∧
x y . x ∈ V =⇒ y ∈ V =⇒ | hdegree x − hdegree y | ≤ 1

locale kuniform-regular-hypgraph = kuniform-hypergraph V E k + dregular-hypergraph
V E k

for V E k

locale fin-kuniform-regular-hypgraph-nt = kuniform-regular-hypgraph V E k +
fin-hypergraph-nt V E

for V E k

sublocale fin-kuniform-regular-hypgraph-nt ⊆ fin-kuniform-hypergraph V E k
〈proof 〉

sublocale fin-kuniform-regular-hypgraph-nt ⊆ fin-dregular-hypergraph V E k
〈proof 〉

locale block-balanced-design = block-design + t-wise-balance

locale regular-block-design = block-design + constant-rep-design

sublocale t-design ⊆ block-balanced-design
〈proof 〉

7

locale fin-kuniform-hypergraph-nt = fin-kuniform-hypergraph + fin-hypergraph-nt

sublocale fin-kuniform-regular-hypgraph-nt ⊆ fin-kuniform-hypergraph-nt V E k
〈proof 〉

Note that block designs are defined as non-trivial and finite as they
automatically build on the proper design locale
sublocale fin-kuniform-hypergraph-nt ⊆ block-design V E k

rewrites point-replication-number E v = hdegree v and points-index E vs =
hdegree-set vs
〈proof 〉

sublocale fin-kuniform-regular-hypgraph-nt ⊆ regular-block-design V E k k
rewrites point-replication-number E v =hdegree v and points-index E vs =

hdegree-set vs
〈proof 〉

2.3 Factorisations
locale d-factor = spanning-hypergraph + dregular-hypergraph VH EH d for d

context hypergraph
begin

definition is-d-factor :: ′a hyp-graph ⇒ bool where
is-d-factor H ≡ (∃ d. d-factor (hyp-verts H) (hyp-edges H) V E d)

definition d-factorisation :: ′a hyp-graph multiset ⇒ bool where
d-factorisation S ≡ hypergraph-decomposition S ∧ (∀ h ∈# S . is-d-factor h)
end

2.4 Sample Graph Theory Connections
sublocale fin-graph-system ⊆ fin-hypersystem V mset-set E

rewrites hedge-adjacent = edge-adj
〈proof 〉

sublocale fin-bipartite-graph ⊆ fin-hypersystem-vne V mset-set E
〈proof 〉

end
theory Hypergraph-Basics-Root

imports
Hypergraph
Hypergraph-Variations

begin
end

8

References
[1] C. Edmonds and L. C. Paulson. Combinatorial design theory. Archive

of Formal Proofs, August 2021. https://isa-afp.org/entries/Design_
Theory.html, Formal proof development.

9

https://isa-afp.org/entries/Design_Theory.html
https://isa-afp.org/entries/Design_Theory.html

	Basic Hypergraphs
	Sub hypergraphs

	Hypergraph Variations
	Non-trivial hypergraphs
	Regular and Uniform Hypergraphs
	Factorisations
	Sample Graph Theory Connections

