Hybrid Multi-Lane Spatial Logic

Sven Linker

March 17, 2025

Abstract

We present a semantic embedding of a spatio-temporal multi-modal
logic, specifically defined to reason about motorway traffic, into Is-
abelle/HOL. The semantic model is an abstraction of a motorway,
emphasising local spatial properties, and parameterised by the types
of sensors deployed in the vehicles. We use the logic to define con-
troller constraints to ensure safety, i.e., the absence of collisions on
the motorway. After proving safety with a restrictive definition of sen-
sors, we relax these assumptions and show how to amend the controller
constraints to still guarantee safety.

Published in iFM 2017 [4].

Formal verification of autonomous vehicles on motorways is a challenging
problem, due to the complex interactions between dynamical behaviours and
controller choices of the vehicles. To overcome the complexities of proving
safety properties, we proposed to separate the dynamical behaviour from the
concrete changes in space [2]. To that end, we defined Multi-Lane Spatial
Logic (MLSL), which was used to express guards and invariants of controller
automata defining a protocol for safe lane-change manoeuvres. Under the
assumption that all vehicles adhere to this protocol, we proved that colli-
sions were avoided. Subsequently, we presented an extension of MLSL to
reason about changes in space over time, a system of natural deduction, and
formally proved a safety theorem [5, 3]. This proof was carried out manually
and dependent on strong assumptions about the vehicles’ sensors.

We define a semantic embedding of a further extension of MLSL, inspired
by Hybrid Logic [1]. Subsequently, we show how the safety theorem can be
proved within this embedding. Finally, we alter this formal embedding by
relaxing the assumptions on the sensors. We show that the previously proven
safety theorem does mot ensure safety in this case, and how the controller
constraints can be strengthened to guarantee safety.

Contents

1 Discrete Intervals based on Natural Numbers 2

1.1 Basic properties of discrete intervals. 3

1.2 Algebraic properties of intersection and union. 6
2 Closed Real-valued Intervals 10
3 Cars 13
4 Traffic Snapshots 13
5 Views on Traffic 19
6 Restrict Claims and Reservations to a View 24

7 Move a View according to Difference between Traffic Snap-

shots 27
8 Sensors for Cars 27
9 Visible Length of Cars with Perfect Sensors 28
10 Basic HMLSL 31

10.1 Syntax of Basic HMLSL 31

10.2 Theorems about Basic HMLSL 34
11 Perfect Sensors 40
12 HMLSL for Perfect Sensors 41
13 Safety for Cars with Perfect Sensors 43
14 Regular Sensors 45
15 HMLSL for Regular Sensors 46
16 Safety for Cars with Regular Sensors 47

1 Discrete Intervals based on Natural Numbers

We define a type of intervals based on the natural numbers. To that end, we
employ standard operators of Isabelle, but in addition prove some structural
properties of the intervals. In particular, we show that this type constitutes
a meet-semilattice with a bottom element and equality.

Furthermore, we show that this semilattice allows for a constrained join, i.e.,
the union of two intervals is defined, if either one of them is empty, or they
are consecutive. Finally, we define the notion of chopping an interval into
two consecutive subintervals.

theory NatInt
imports Main
begin

A discrete interval is a set of consecutive natural numbers, or the empty set.

typedef nat-int = {S . (3 (munat) n . {m.n }=9) }
(proof)
setup-lifting type-definition-nat-int

1.1 Basic properties of discrete intervals.

locale nat-int
interpretation nat-int-class?: nat-int (proof)

context nat-int
begin

lemma un-consec-seq: (m:nat)< n A nt+1 <1 — {m.n} U {n+1.10} = {m..1I}
{proof)

lemma int-conseq-seq: {(m:nat)..n} N {n+1..1} = {}
{proof)

lemma empty-type: {} € { S . 3 (m: nat) n . {m..n}=S5}
{proof)

lemma inter-result: Vo € {S . (3 (mznat) n . {m.n }=9) }.
Vye{S. (3 (m:nat) n.{m.n }=S) }.
zNye{S. 3 (m:mnat) n. {m.n}=9)}
{proof)

lemma union-result: Vo € {S . (3 (munat) n. {m.n }=S5) }.
Vye{S.((3 (m:nat) n. {m.n}=9) }.
£ {3} Ny#{} N Maxz +1 = Min y
— z Uy e{S. 3 (munat) n.{m.n }=5) }
(proof)

lemma union-empty-resultl: ¥i € {S . (3 (m:nat) n. {m.n }=95) }.
iU{}e{s.3 (m:nat) n. {m.n }=9) }
{proof)

lemma union-empty-result2: Vi € {S . (3 (m=nat) n . {m..n }=S5) }.
{Juie{s.3 (m:nat) n.{m.n}=5) }
{proof)

lemma finite: Vi € {S . (3 (munat) n. {m..n }=S) } . (finite 7)
(proof)

lemma not-empty-means-seq:vi € {S . (3 (munat) n. {m.n }=85)}.i#{}
— (dmn.m < n A {m.n} =1
{proof)
end

The empty set is the bottom element of the type. The infimum/meet of the
semilattice is set intersection. The order is given by the subset relation.

instantiation nat-int :: bot

begin

lift-definition bot-nat-int :: nat-int is Set.empty (proof)
instance (proof)

end

instantiation nat-int :: inf

begin

lift-definition inf-nat-int ::nat-int = nat-int = nat-int is Set.inter (proof)
instance

(proof)
end

instantiation nat-int :: order-bot

begin

lift-definition less-eg-nat-int :: nat-int = nat-int = bool is Set.subset-eq {proof)
lift-definition less-nat-int :: nat-int = nat-int = bool is Set.subset (proof)
instance

(proof)

end

instantiation nat-int :: semilattice-inf
begin
instance

(proof)

end

instantiation nat-int:: equal

begin

definition equal-nat-int :: nat-int = nat-int = bool
where equal-nat-inti j=i<jNj<i

instance

(proof)
end

context nat-int

begin

abbreviation subseteq :: nat-int = nat-int= bool (infix <C» 30)
where (C j==1{<j

abbreviation empty :: nat-int («0»)

where () = bot

notation nf (infix M 70)

The union of two intervals is only defined, if it is also a discrete interval.

definition union :: nat-int = nat-int = nat-int (infix L 69)
where i U j = Abs-nat-int (Rep-nat-int i U Rep-nat-int j)

Non-empty intervals contain a minimal and maximal element. Two non-
empty intervals ¢ and j are consecutive, if the minimum of j is the successor
of the maximum of 7. Furthermore, the interval ¢ can be chopped into
the intervals j and k, if the union of j and k equals ¢, and if j and k are
not-empty, they must be consecutive. Finally, we define the cardinality of
discrete intervals by lifting the cardinality of sets.

definition mazimum :: nat-int = nat

where mazimum-def: i # 0 = mazimum (i) = Mazx (Rep-nat-int i)

definition minimum :: nat-int = nat
where minimum-def: i # 0 = minimum(i) = Min (Rep-nat-int i)

definition consec:: nat-int=-nat-int = bool
where consec i j = (i#£D A j # O A (mazimum(i)+1 = minimum 7))

definition N-Chop :: nat-int = nat-int = nat-int = bool (<N'-Chop'(-,-,-")» 51)
where nchop-def :
N-Chop(ijk)=(i= jUk AN({G=0V k=0V consecjk))

lift-definition card’ ::nat-int = nat («|-|» 70) is card {proof)

For convenience, we also lift the membership relation and its negation to
discrete intervals.
lift-definition el::nat = nat-int = bool (infix «&> 50) is Set.member (proof)

lift-definition not-in ::nat = nat-int = bool (infix «&> 40) is Set.not-member

(proof)
end

lemmas|[simp] = nat-int.el.rep-eq nat-int.not-in.rep-eq nat-int.card’.rep-eq

context nat-int
begin

lemma in-not-in-iff1 :n € i +— — n¢ i (proof)

lemma in-not-in-iff2: n¢ i +— — n € i (proof)

lemma rep-non-empty-means-seq:i #0
— (Imn. m < n A ({m..n} =(Rep-nat-int 7)))

{proof)

lemma non-empty-maz: i # 0 — (Im . mazimum(i) = m)
{proof)

lemma non-empty-min: i # 0 — (Im . minimum(i) = m)
(proof)

lemma minimum-in: i # 0 — minimum i € 7
(proof)

lemma mazimum-in: i # 0 — mazimum i € i
{proof)

lemma non-empty-elem-in:i #) <— (In. n € i)

(proof)

lemma leg-nat-non-empty:(m::nat) < n — Abs-nat-int{m..n} # 0
(proof)

lemma leg-maz-sup:(m:nat) < n — Max {m..n} = n
{proof)

lemma leg-min-inf: (m::nat) < n — Min {m..n} = m
{proof)

lemma leg-maz-sup”:(m::nat) < n — mazimum(Abs-nat-int{m..n}) = n

(proof)

lemma leg-min-inf":(m::nat) < n — minimum(Abs-nat-int{m..n}) = m

{(proof)

lemma in-refl:(n::nat) € Abs-nat-int {n}
(proof)

lemma in-singleton: m € Abs-nat-int{n} — m =n

(proof)

1.2 Algebraic properties of intersection and union.
lemma inter-emptyl:(i:nat-int) 10 =

{proof)

lemma inter-empty2:0 N (i::nat-int) = (
{proof)

lemma un-empty-absorbl:i L = i
(proof)

lemma un-empty-absorb2:0 Ll i = i
(proof)

Most properties of the union of two intervals depends on them being con-
sectuive, to ensure that their union exists.

lemma consec-un:consec i j A n ¢ Rep-nat-int(i) U Rep-nat-int j
—n g (iUj)
(proof)

lemma un-subsetl: consecij — i C ¢ U j

(proof)

lemma un-subset?2: consec i j — j C i L j
(proof)

lemma inter-distrl:consec jk — i (U k) =GN) U (EMNE)
(proof)

lemma inter-distr2:consec jk — (U k) Mi=(GMN ¢ U (kNi)
{proof)

lemma consec-un-not-elem:consec i j A ng¢ i lj — né& i
(proof)

lemma consec-un-not-elem2:consec i j A ng¢ i lj — néj

(proof)

lemma consec-un-elementl:consec ijAn€i—ne€illj
{proof)

lemma consec-un-element2:consec tj An€j—né€ilj
(proof)

lemma consec-lesser: consec ij — (Vnm. (n € i AméEj— n<m))
(proof)

lemma consec-in-exclusivel:consec ij A n € i — n & j
(proof)

lemma consec-in-exclusive2:consec ij An € j — n & i
(proof)

lemma consec-un-maz:consec i j — mazimum j = mazimum (i U j)

(proof)

lemma consec-un-min:consec i j — minimum i = minimum (i U j)
(proof)

lemma consec-un-defined:

consec i j — (Rep-nat-int (i U 7) € {S . (3 (munat) n . {m..n }=S) })
{proof)

lemma consec-un-min-max:
consec i j — Rep-nat-int(i U j) = {minimum i .. mazimum j}

(proof)

lemma consec-un-equality:
(consec i j Nk # ()
—(minimum (i U §) = minimum (k) A mazimum (i U j) = mazimum (k))
—ildj=k

(proof)

lemma consec-trans-lesser:
consec i j N consec jk — (Vnm. (n €EiAm€Ek— n<m))

(proof)

lemma consec-inter-empty:consec i j = i M j = ()
(proof)

lemma consec-intermediatel :consec j k A consec i (j U k) — consec i j

(proof)

lemma consec-intermediate2:consec i j A\ consec (i U j) k — consec j k
(proof)

lemma un-assoc: consec i j A consec jk — (iU jH)Uk=4U(jUEK)

(proof)

lemma consec-assocl:consec j k A consec ¢ (j U k) — consec (i U j) k

{(proof)

lemma consec-assoc2:consec i j A consec (il j) k — consec i (jU k)
(proof)

lemma consec-assoc-mult:
(i2=0V consec il i2) A (i3 =0 V consec i8 if) N (consec (il U i2) (i3 U i4))
— (i1 U2) U (i3 U if) = (il U (i2 U3)) U 4/
(proof)
lemma card-subset-le: i T ' — |i| < |7
(proof)

lemma card-subset-less: (i::nat-int) < i’ — |i|<|i’|
{proof)

lemma card-empty-zero:|)| = 0

{proof)

lemma card-non-empty-geq-one:i #) +— |i| > 1
(proof)

lemma card-min-max:i # 0 — |i| = (mazimum i — minimum i) + 1

(proof)

lemma card-un-add: consec ij — |i U j| = |i| + 7]

(proof)

lemma singleton:|i| = 1 — (I n. Rep-nat-int i = {n})
(proof)

lemma singleton2: (In. Rep-nat-int i = {n}) — |i| = 1

(proof)

lemma card-seq:
Vi .li| = 2 — (Rep-nat-int i = {} V (I n. Rep-nat-int i = {n..n+(z—1)}))
(proof)

lemma rep-single: Rep-nat-int (Abs-nat-int {m..m}) = {m}
(proof)

lemma chop-empty-right: ¥ i. N-Chop(i,i,0)
(proof)

lemma chop-empty-left: ¥ i. N-Chop(i, 0, i)
(proof)

lemma chop-empty : N-Chop(0,0,0)
(proof)

lemma chop-always-possible:V i.3 j k. N-Chop(i,j,k)
(proof)

lemma chop-add1: N-Chop(i,j,k) — |i| = |7| + |k]
{proof)

lemma chop-add2:|i| = z+y — (3 j k. N-Chop(i,j,k) A |jl=z A |k|=y)
(proof)

lemma chop-single:(N-Chop(i,j,k) A |i] = 1) — (|j| =0 V |k|=0)
(proof)

lemma chop-leg-max:N-Chop(i,j,k) A consec j k —
(Vn . n € Rep-nat-int i A n < mazimum j — n € Rep-nat-int j)
(proof)

lemma chop-geq-min:N-Chop(i,j,k) A\ consec j k —
(Vn . n € Rep-nat-int ¢ A minimum k < n — n € Rep-nal-int k)
(proof)

lemma chop-min:N-Chop(i,j,k) A consec j k — minimum i = minimum j
(proof)

lemma chop-mazx:N-Chop(i,j,k) A consec j k — mazimum i = mazimum k
(proof)

lemma chop-assocl:
N-Chop(i,i1,i2) N N-Chop(i2,i3,i4)
— (N-Chop(i, i1 U 48, i) A N-Chop(il U i3, il, i3))
(proof)

lemma chop-assoc2:
N-Chop(i,il,i2) N N-Chop(il,i3,i4)
— N-Chop(i, i3, i U i2) A N-Chop(i4 U i2, i4,i2)
(proof)

lemma chop-subset!:N-Chop(i,j,k) — j C @
(proof)

lemma chop-subset2:N-Chop(i,j,k) — k C ¢
(proof)

end
end

2 Closed Real-valued Intervals

We define a type for real-valued intervals. It consists of pairs of real num-
bers, where the first is lesser or equal to the second. Both endpoints are
understood to be part of the interval, i.e., the intervals are closed. This also

implies that we do not consider empty intervals.

We define a measure on these intervals as the difference between the left and
right endpoint. In addition, we introduce a notion of shifting an interval by
a real value z. Finally, an interval r can be chopped into s and ¢, if the left
endpoint of r and s as well as the right endpoint of r and ¢ coincides, and if

the right endpoint of s is the left endpoint of ¢.

theory Reallnt
imports HOL.Real
begin

typedef real-int = {r::(realxreal) . fst r < snd r}

(proof)
setup-lifting type-definition-real-int

10

lift-definition left::real-int = real is fst (proof)
lift-definition right::real-int = real is snd (proof)

lemmas|[simp] = left.rep-eq right.rep-eq

locale real-int
interpretation real-int-class?: real-int (proof)

context real-int
begin

definition length :: real-int = real (¢||-||> 70)
where ||| = right r — left r

definition shift::real-int = real = real-int (¢ shift - -)
where (shift r ©) = Abs-real-int(left r +z, right r +1x)

definition R-Chop :: real-int = real-int = real-int = bool (<R’-Chop’(-,-,-")» 51)
where rchop-def :
R-Chop(r,s,t) == left r = left s A right s = left t A right r = right t

end

The intervals defined in this way allow for the definition of an order: the
subinterval relation.

instantiation real-int :: order
begin
definition less-eq-real-int r s = (left r > left s) A (right r < right s)
definition less-real-int v s = (left v > left s) A (right r < right s)

A —((left s > left) A (right s < right))
instance

(proof)

end

context real-int
begin

lemma left-leg-right: left r < right r
(proof)

lemma length-ge-zero : ||r|| > 0

{proof)

lemma consec-add:
left r = left s A\ right r = right t A right s = left t = ||| = ||s]| + ||¢]]
(proof)

11

lemma length-zero-iff-borders-eq:||r|| = 0 «— left r = right r
{proof)

lemma shift-left-eq-right:left (shift r x) < right (shift r)
(proof)

lemma shift-keeps-length:||r|| = || shift r z||
{proof)

lemma shift-zero:(shift r 0) = r
(proof)

lemma shift-additivity:(shift r (x+y)) = shift (shift r z) y
(proof)

lemma chop-always-possible: ¥Vr .3 s t. R-Chop(r,s,t)
(proof)

lemma chop-singleton-right: ¥V r.3 s. R-Chop(r,r,s)
(proof)

lemma chop-singleton-left: Vr.3 s. R-Chop(r,s,r)
(proof)

lemma chop-add-length:R-Chop(r,s,t) = ||| = ||s]| + ||¢]]
(proof)

lemma chop-add-length-ge-0:R-Chop(r,s,t) A ||s|| > 0 A ||t]|>0 — ||r||>0
{proof)

lemma chop-dense : ||r|| > 0 — (3 s t. R-Chop(r,s,t) A ||s||>0 A ||t||>0)
(proof)

lemma chop-assocl:
R-Chop(r,r1,r2) N R-Chop(r2,r3,14)
— R-Chop(r, Abs-real-int(left r1, right r3), r4)
A R-Chop(Abs-real-int(left r1, right r3), r1,r3)
(proof)

lemma chop-assoc2:
R-Chop(r,r1,r2) N R-Chop(rl,r3,r4)
— R-Chop(r,r3, Abs-real-int(left 4, right r2))
A R-Chop(Abs-real-int(left r4, right v2), r4,12)
(proof)

lemma chop-leql:R-Chop(r,s,t) — s < r

(proof)

lemma chop-leq2:R-Chop(r,s,t) — t < r

12

{proof)

lemma chop-emptyl:R-Chop(r,s,t) Als|| =0 — r =1t
(proof)

lemma chop-empty2:R-Chop(r,s,t) A ||t|| = 0 — r = s
(proof)

end

end

3 Cars

We define a type to refer to cars. For simplicity, we assume that (countably)
infinite cars exist.

theory Cars
imports Main
begin

The type of cars consists of the natural numbers. However, we do not define
or prove any additional structure about it.
typedef cars = {n:nat. True} (proof)

locale cars
begin

For the construction of possible counterexamples, it is beneficial to prove
that at least two cars exist. Furthermore, we show that there indeed exist
infinitely many cars.

lemma at-least-two-cars-exists:3 ¢ d ::cars . c#d

(proof)

lemma infinite-cars:infinite {c::cars . True}
(proof)

end
end

4 Traffic Snapshots

Traffic snapshots define the spatial and dynamical arrangement of cars on the
whole of the motorway at a single point in time. A traffic snapshot consists
of several functions assigning spatial properties and dynamical behaviour to
each car. The functions are named as follows.

13

e pos: positions of cars

e res: reservations of cars

e clm: claims of cars

e dyn: current dynamic behaviour of cars
o physical_size: the real sizes of cars

e braking distance: braking distance each car needs in emergency

theory Traffic
imports NatInt Reallnt Cars
begin

type-synonym lanes = nat-int
type-synonym extension = real-int

Definition of the type of traffic snapshots. The constraints on the different
functions are the sanity conditions of traffic snapshots.

typedef traffic =
{ts :: (cars=real)*(cars= lanes) (cars=>lanes)*(cars=real=real)*(cars=real)x(cars=real).
(

(Ve. ((fst (snd ts))) ¢ M ((fst (snd (snd ts)))) c=0) A
(V. |(fst (snd 1)) ¢| > 1) A
(Ve |(fst (snd ts)) ¢ < 2) A
(V. |(fst (snd (snd 15)))] < 1) A
(Ve. |(fst (snd ts)) c| + |(fst (snd (snd ts))) ¢| < 2)
(V. (fst(snd(snd (ts)))) ¢ # 0 —
(3 n. Rep-nat-int(fst (snd ts) ¢)URep-nat-int(fst (snd (snd ts)) c)
={n, n+1})) A
(Ve . fst (snd (snd (snd (snd (t))))) c>0)A
(Ve. snd (snd (snd (snd (snd (ts))))) ¢ > 0)

}
(proof)

locale traffic
begin

notation nat-int.consec (<consecy)

For brevity, we define names for the different functions within a traffic snap-
shot.

definition pos::traffic = (cars = real)
where pos ts = fst (Rep-traffic ts)

definition res:traffic = (cars = lanes)
where res ts = fst (snd (Rep-traffic ts))

14

definition clm ::traffic = (cars = lanes)
where clm ts = fst (snd (snd (Rep-traffic ts)))

definition dyn::traffic = (cars = (real= real))
where dyn ts = fst (snd (snd (snd (Rep-traffic ts))))

definition physical-size::traffic = (cars = real)
where physical-size ts = fst (snd (snd (snd (snd (Rep-traffic ts)))))

definition braking-distance::traffic = (cars = real)
where braking-distance ts = snd (snd (snd (snd (snd (Rep-traffic ts)))))

It is helpful to be able to refer to the sanity conditions of a traffic snapshot
via lemmas, hence we prove that the sanity conditions hold for each traffic
snapshot.

lemma disjoint: (res ts ¢) M (clm ts ¢) = 0

(proof)

lemma atLeastOneRes: 1 < |res ts c|

(proof)

lemma atMostTwoRes: |res ts ¢| < 2
(proof)

lemma atMostOneClm: |clm ts ¢| < 1

(proof)

IN
S

lemma atMostTwoLanes: |res ts c| +|clm ts ¢

{(proof)

lemma consecutiveRes: |res ts c| =2 — (I n . Rep-nat-int (res ts ¢) = {n,n+1})
(proof)

lemma clmNextRes :

(clm ts ¢) # 0 — (3 n. Rep-nat-int(res ts ¢) U Rep-nat-int(clm ts ¢) = {n,
n+1})

{proof)

lemma psGeZero:V c. (physical-size ts ¢ > 0)
(proof)

lemma sdGeZero:V c. (braking-distance ts ¢ > 0)
{proof)

While not a sanity condition directly, the following lemma helps to establish
general properties of HMLSL later on. It is a consequence of clmNextRes.

lemma clm-consec-res:
(clm ts) ¢ # 0 — consec (clm ts c) (res ts ¢) V consec (res ts ¢) (clm s ¢)
(proof)

15

We define several possible transitions between traffic snapshots. Cars may
create or withdraw claims and reservations, as long as the sanity conditions
of the traffic snapshots are fullfilled.

In particular, a car can only create a claim, if it possesses only a reservation
on a single lane, and does not already possess a claim. Withdrawing a claim
can be done in any situation. It only has an effect, if the car possesses a
claim. Similarly, the transition for a car to create a reservation is always
possible, but only changes the spatial situation on the road, if the car already
has a claim. Finally, a car may withdraw its reservation to a single lane, if
its current reservation consists of two lanes.

All of these transitions concern the spatial properties of a single car at a
time, i.e., for several cars to change their properties, several transitions have
to be taken.

definition create-claim :
traffic=cars=nat=-traffic=-bool («- —c'(-, - ') = - 27)
where (ts —c(e,n)— ts’) == (pos ts’) = (pos ts)
(res ts’) = (res ts)
(dyn ts) = (dyn ts)
(physical-size ts") = (physical-size ts)
(braking-distance ts") = (braking-distance ts)
A ledm ts c| = 0
A |res ts c| = 1
A((nt+1) € restscV (n—1 € res ts c))
A (cIm ts’) = (clm ts)(c:=Abs-nat-int {n})

A
A
A
A

definition withdraw-claim :
traffic= cars =traffic=-bool (- —wdc'(- ') — - 27)

where (ts —wdc(c)— ts') == (pos ts") = (pos ts)
A (res ts’) = (res ts)
A (dyn ts") = (dyn ts)
A (physical-size ts') = (physical-size ts)
A (braking-distance ts’) = (braking-distance ts)
A (clm ts’) = (clm ts)(c:=0)

definition create-reservation ::
traffic= cars=traffic=bool («- —r'(- ') — - 27)

where (ts —r(c)— ts') == (pos ts’) = (pos ts)
A (res ts') = (res ts)(c:=((res ts c)U (clm ts ¢)))
A (dyn ts’) = (dyn ts)
A (clm ts’) = (clm ts)(e:=0)
A (physical-size ts') = (physical-size ts)
A (braking-distance ts’) = (braking-distance ts)

definition withdraw-reservation ::

traffic=cars=nat=-traffic= bool (- —wdr'(-, - ') = - 27)
where (ts —wdr(c,n)— ts’) == (pos ts’) = (pos ts)

16

A (res ts') = (res ts)(c:= Abs-nat-int{n})

A (dyn ts") = (dyn ts)

A (clm ts’) = (clm ts)

A (physical-size ts') = (physical-size ts)

A (braking-distance ts’) = (braking-distance ts)
A n € (rests c)

A |res ts c| = 2

The following two transitions concern the dynamical behaviour of the cars.
Similar to the spatial properties, a car may change its dynamics, by setting
it to a new function f from real to real. Observe that this function is
indeed arbitrary and does not constrain the possible behaviour in any way.
However, this transition allows a car to change the function determining
their braking distance (in fact, all cars are allowed to change this function,
if a car changes sets a new dynamical function). That is, our model describes
an over-approximation of a concrete situation, where the braking distance
is determined by the dynamics.

The final transition describes the passing of x time units. That is, all cars
update their position according to their current dynamical behaviour. Ob-
serve that this transition requires that the dynamics of each car is at least 0,
for each time point between 0 and x. Hence, this condition denotes that all
cars drive into the same direction. If the current dynamics of a car violated
this constraint, it would have to reset its dynamics, until time may pass
again.

definition change-dyn::
traffic= cars=(real=real)=traffic= bool (« - — dyn'(-,-") — -» 27)
where (ts —dyn(c, f)— ts’) == (pos ts' = pos ts)
A (res ts’ = res ts)
A (cdm ts’ = clm ts)
A (dyn ts" = (dyn ts)(c:= f))
A (physical-size ts') = (physical-size ts)
definition drive:
traffic=real=traffic=-bool (« - — - — - 27)
where (ts — z — ts’) == (V. (pos ts’ ¢ = (pos ts ¢) + (dyn ts ¢ z)))
AV cy 0<yAny<z—dyntscy>0)
(res ts’ = res ts)
(clm ts' = clm ts)
(dyn ts’ = dyn ts)
(physical-size ts") = (physical-size ts)
A (braking-distance ts') = (braking-distance ts)

A
A
A
A

We bundle the dynamical transitions into ewvolutions, since we will only rea-
son about combinations of the dynamical behaviour. This fits to the level
of abstraction by hiding the dynamics completely inside of the model.

inductive evolve::traffic = traffic = bool (¢- ~ -»)

17

where refl : ts ~ ts |
change: Jc. 3f. (ts —dyn(c,f)—=ts) = ts' ~ ts" = ts ~ ts"' |
drive: 3z. 2> 0N (ts —x— ts') = 18" ~ ts"" = ts~ ts”

lemma evolve-trans:(ts0 ~ ts1) = (ts1 ~ ts2) = (ts0 ~> ts2)

(proof)

For general transition sequences, we introduce abstract transitions. A traffic
snapshot ts’ is reachable from ts via an abstract transition, if there is an
arbitrary sequence of transitions from ts to ts’.

inductive abstract::traffic = traffic = bool (- = -») for ts

where refl: (ts = ts) |
evolve: ts = ts' = ts' ~ ts" = ts = ts"' |
er-clm: ts = ts' =3 c. I n. (ts' —c(e,n)— ts”) = ts = ts' |
wd-clm:ts = ts’ = Jec. (ts' —wde(c)— ts") = ts = ts"' |
cr-resits = ts' = Jec. (ts' —r(c)—> ts") = ts = ts"|
wd-res:its = ts' = Je. I n. (ts’ —wdr(e,n)— ts") = ts = ts”’

lemma abs-trans: (ts1 = ts2) =>(ts0 = ts1) = (ts0 = ts2)
(proof)

Most properties of the transitions are straightforward. However, to show
that the transition to create a reservation is always possible, we need to
explicitly construct the resulting traffic snapshot. Due to the size of such a
snapshot, the proof is lengthy.

lemma create-res-subseteql:(ts —r(c)— ts’) — res ts ¢ C res ts' ¢

(proof)

lemma create-res-subseteq2:(ts —r(c)— ts’) — clm ts ¢ C res ts' ¢
(proof)

lemma create-res-subseteql-neq:(ts —r(d)— ts") A d ¢ —> rests ¢ = res ts' ¢
(proof)

lemma create-res-subseteq2-neq:(ts —r(d)— ts') A d ¢ — clm ts c= clm ts’ ¢

(proof)
lemma always-create-res:¥ ts. Its’. (ts —r(c)— ts')
(proof)

lemma create-clm-eq-res:(ts —c(d,n)— ts’) —> rests ¢ = res ts' ¢

{proof)

lemma withdraw-clm-eq-res:(ts —wdc(d)— ts") — res ts c= res ts’ ¢
{proof)

18

lemma withdraw-res-subseteq:(ts —wdr(d,n)— ts’) — res ts’ ¢ C res ts ¢
{proof)

end
end

5 Views on Traffic

In this section, we define a notion of locality for each car. These local parts
of a road are called views and define the part of the model currently under
consideration by a car. In particular, a view consists of

e the extension, a real-valued interval denoting the distance perceived,
o the lanes, a discrete interval, denoting which lanes are perceived,

e the owner, the car associated with this view.

theory Views
imports Natint Reallnt Cars
begin

type-synonym lanes = nat-int
type-synonym eztension = real-int

record view =
ext::extension
lan ::lanes
own ::cars

The orders on discrete and continuous intervals induce an order on views.
For two views v and v with v < v/, we call v a subview of v'.

instantiation wview-ext:: (order) order
begin
definition less-eq-view-ext (V:: 'a view-ext) (V': 'a view-ext) =
(ext V< ext V) A (lan V C lan V') A own V = own V'
A more V < more V'’
definition less-view-ext (V :: 'a view-ext) (V': 'a view-ext) =
(ext V < ext V) A (lan V C lan V') A own V' = own V
A more V. < more V' A
—((ext V' < ext V) A (lan V' E lan V) A own V' = own V
A more V' < more V)
instance

(proof)

end

19

locale view
begin

notation nat-int.mazimum (<maximum>)
notation nat-int.minimum (<minimumy)
notation nat-int.consec (<consecy)

We lift the chopping relations from discrete and continuous intervals to
views, and introduce new notation for these relations.

definition hchop :: view = view = wview = bool (<-=-|-»)
where (v=ul||lw) == real-int. R-Chop(ext v)(ext u)(ext w) A
lan v=lan u A
lan v=lan w A
own v = own u N
own v = own w A
more v = more w N
more v = more u
definition wvchop :: view = view = view = bool ((-=-——-))
where (v=u——w) == nat-int. N-Chop(lan v)(lan u)(lan w) A
ext v = ext u N\
ext v = ext w A
own v = own u N
own v = own w A
more v = more w N\
more v = more u

We can also switch the perspective of a view to the car ¢. That is, we
substitute ¢ for the original owner of the view.

definition switch :: view = cars = view = bool (- = - > -»)
where (v=c>w) == ext v = ext w A
lan v = lan w A
own w = ¢ A
more v = more w

Most of the lemmas in this theory are direct transfers of the corresponding
lemmas on discrete and continuous intervals, which implies rather simple
proofs. The only exception is the connection between subviews and the
chopping operations. This proof is rather lengthy, since we need to distin-
guish several cases, and within each case, we need to explicitly construct six
different views for the chopping relations.

lemma h-chop-middlel:(v=u|lw) — left (ext v) < right (ext u)
{proof)

lemma h-chop-middle2:(v=u||lw) — right (ext v) > left (ext w)
(proof)

20

lemma horizontal-chopl: 3 u w. (v=ul||w)
(proof)

lemma horizontal-chop-empty-right ¥ v. 3 u. (v=v||u)
(proof)

lemma horizontal-chop-empty-left ¥ v. Ju. (v=ullv)
{proof)

lemma horizontal-chop-non-empty:
llext v|| > 0 — (Fu w. (v=u||w) A ||ext u|]| > 0 A || ext w||>0)
(proof)

lemma horizontal-chop-split-add:

x> 0Ny >0 — |extv| =2+y — (Fuw. (v=ul|w) A |ext u|| =2 A | ext
wl = y)
(proof)

lemma horizontal-chop-assocl:
(v=0v1|[v2) A (vV2=0v8]||vi) — (30" (v=0'||v4) A (v'=0v1|v3))
(proof)

lemma horizontal-chop-assoc2:
(v=0v1|[v2) A (vI=v8||vi) — (3o’ (v=0v3|v) A (v'=0v4|v2))
(proof)

lemma horizontal-chop-width-stable:(v=ul|w)—|lan v|=|lan u|A|lan v|=|lan w|
{proof)

lemma horizontal-chop-own-trans:(v=u|w) — own u = own w
{proof)

lemma vertical-chopl:¥Vv. 3 v w. (v=u——w)
(proof)

lemma vertical-chop-empty-down:¥V v.3 u.(v=v——u)
(proof)

lemma vertical-chop-empty-up:¥ v.3 u.(v=u——v)
(proof)

lemma vertical-chop-assocl:
(v=v1——v2) A (V2=v3——v4) — (Fv" (v=v"—=v4) A (v'=v1——03))

21

(proof)

lemma vertical-chop-assoc2:
(v=v1——02) A (vI=v3——v4) — (v’ (v=v3——0v") A (v'=v]{——02))
(proof)

lemma vertical-chop-singleton:
(v=u——w) A |lan v| = 1 — (|lan u| = 0 V |lan w| = 0)
(proof)

lemma vertical-chop-addl:(v=u——w) — |lan v| = |lan u| + |lan w|
(proof)

lemma vertical-chop-add?2:
llan v] = z+y — (3 v w. (v=u——w) A |lan u] = z A |lan w| = y)

(proof)

lemma vertical-chop-length-stable:
(v=u——w) —> ||ext v|| = |ext u|]| A |ext v|]| = | ext w]|
(proof)

lemma vertical-chop-own-trans:(v=u——w) — own u = own w
{proof)

lemma vertical-chop-width-mon:
(v=v1——0v2) N (V2=v3——0v4) A |lan v8| = z — |lan v| > =
(proof)

lemma horizontal-chop-leql :(v=u|w) — u < v
{proof)

lemma horizontal-chop-leg2:(v=u||w) — w < v
{proof)

lemma vertical-chop-leql :(v=u——w) — u < v
(proof)

lemma vertical-chop-leg2:(v=u——w) — w < v
{proof)

lemma somewhere-leq:
v < v’ <— (vl v2 v3 vl vr vu vd.
(v'=vl||vl) A (vI=v2||vr) A (vV2=vd——03) A (vV8=v——1u))
(proof)

The switch relation is compatible with the chopping relations, in the follow-
ing sense. If we can chop a view v into two subviews u and w, and we can

22

reach v’ via the switch relation, then there also exist two subviews v/, w’ of
v’, such that v’ is reachable from u (and respectively for w', w).

lemma switch-unique:(v =c> u) A (v =c> w) —u = w

(proof)

lemma switch-ezists:3 ¢ u.(v=c>u)

(proof)

lemma switch-always-exists:V c¢. Ju. (v=c>u)
(proof)

lemma switch-origin: Ju. (u=(own v)>v)

(proof)

lemma switch-refl:(v=_own v)>v)
{proof)

lemma switch-symm:(v=c>u) — (u=(own v)>v)

(proof)

lemma switch-trans:(v=c>u) A (u=d>w) — (v=d>w)
{proof)

lemma switch-triangle:(v=c>u) A (v=d>w) — (u=d>w)
{proof)

lemma switch-hchopl:
(v=v1l|v2) A (v=c>v") —
(3 v1" 02" (vl =c> v1") A (V2 =c> v2') A (v'=v1']|v2"))
(proof)

lemma switch-hchop2:
(v'=v1'||v2") A (v=c>v") —
(3 v1 v2. (vI =c> v1') A (V2 =c> v2") A (v=01]|v2))
(proof)

lemma switch-vchopl:
(v=vl——0v2) A (v=c>v') —
(3 v1’v2'". (vl =c> v1’) A (V2 =c> v2') A (v'=v1"—=v2"))
(proof)

lemma switch-vchop2:
(v'=v1"—=v2") A (v=c>v') —
(3 vl v2. (v1 =c> v1) A (V2 =c> v2') A (v=v1——102))
(proof)

lemma switch-leg:u’ < u A (v=c>u) — (Fv'. (v'=c>u') A v/ <)

(proof)

end

23

end

6 Restrict Claims and Reservations to a View

To model that a view restricts the number of lanes a car may perceive, we
define a function restrict taking a view v, a function f from cars to lanes
and a car f, and returning the intersection between f(c) and the set of lanes
of v. This function will in the following only be applied to the functions
yielding reservations and claims from traffic snapshots.

The lemmas of this section describe the connection between restrict and
the different operations on traffic snapshots and views (e.g., the transition
relations or the fact that reservations and claims are consecutive).

theory Restriction
imports Traffic Views
begin

locale restriction = view+traffic

begin

definition restrict :: view = (cars = lanes) = cars = lanes
where restrict v fc== (fc¢) N lanwv

lemma restrict-def’: restrict v fc=lan v fc
(proof)

lemma restrict-subseteq:restrict v f ¢ C f ¢
(proof)

lemma restrict-clm : restrict v (clm ts) ¢ C clm ts ¢
(proof)

lemma restrict-res: restrict v (res ts) ¢ C res ts ¢

(proof)

lemma restrict-view:restrict v f ¢ C lan v
{proof)

lemma restriction-stable:(v=ul|w) — restrict u f ¢ = restrict w f ¢
{proof)

lemma restriction-stablel :(v=ul|w) — restrict v f ¢ = restrict u f ¢
{proof)

lemma restriction-stable2:(v=ul|w) — restrict v f ¢ = restrict w f ¢
(proof)

24

lemma restriction-un:
(v=u——w) — restrict v f ¢ = (restrict u f ¢ U restrict w f ¢)
{proof)

lemma restriction-monl:(v=u——w) — restrict u f ¢ C restrict v f ¢
(proof)

lemma restriction-mon2:(v=u——w) — restrict w f ¢ C restrict v f c
(proof)

lemma restriction-disj:(v=u——w) —> (restrict u f ¢) M (restrict w fc) = 0

(proof)

lemma vertical-chop-restriction-res-consec-or-empty:
(v=vl——v2) A restrict vl (res ts) ¢ # 0 A consec ((lan v1)) ((lan v2)) A
—consec (restrict vl (res ts) c) (restrict v2 (res ts) c)
— restrict v2 (rests) ¢ =0

(proof)

lemma restriction-consec-res:(v=u——w)
— restrict u (res ts) ¢ = 0 V restrict w (res ts) ¢ = 0
vV consec (restrict u (res ts) ¢) (restrict w (res ts) c)

(proof)

lemma restriction-clm-res-disjoint:
(restrict v (res ts) ¢) M (restrict v (clm ts) ¢) = 0

{proof)

lemma el-in-restriction-clm-singleton:
n € restrict v (clm ts) ¢ — (clm ts) ¢ = Abs-nat-int({n})

{(proof)

lemma restriction-clm-v2-non-empty-vi-empty:
(v=u——w) A restrict w (clm ts) ¢ # 0 A
consec ((lan u)) ((lan w)) — restrict u (clm ts) ¢ = ()
(proof)

lemma restriction-consec-clm:
(v=u——w) A consec (lan u) (lan w)
— restrict u (clm ts) ¢ = 0 V restrict w (clm ts) ¢ = 0)

{proof)

lemma restriction-add-res:
(v=u——w)
— |restrict v (res ts) c|=|restrict u (res ts) c|+|restrict w (res ts) c|

(proof)

25

lemma restriction-eg-view-card:restrict v f ¢ = lan v — |restrict v f ¢| =|lan v|
{proof)

lemma restriction-card-monl:(v=u——w) — |restrict u f ¢| < |restrict v f c|
(proof)

lemma restriction-card-mon2:(v=u——w) — |restrict w f ¢| < |restrict v f |
{proof)

lemma restriction-res-leg-two:|restrict v (res ts) ¢| < 2
(proof)

lemma restriction-clm-leg-one:|restrict v (clm ts) c¢| < 1
{proof)

lemma restriction-add-clm:
(v=u——w)
— |restrict v (clm ts) c|=|restrict u (clm ts) c|+|restrict w (clm ts) ¢

(proof)

lemma restriction-card-mon-trans:
(v=v1——v2) A (V2=v3——v4) A |restrict v3 fc| = 1 — |restrict v f ¢|>1
(proof)

lemma restriction-card-somewhere-mon:
(v=2l||v1)A(v1=v2||vr)A(v2=vu——v3)A(v3=v'——vd)A|restrict v’ f c|=1
— |restrict v f c| > 1

(proof)
lemma restrict-eq-lan-subs:

|restrict v f ¢| = |lan v| A (restrict v f ¢ C lan v) — restrict v f ¢ = lan v
(proo)

lemma create-reservation-restrict-union:
(ts—r(c)—ts”)
— restrict v (res ts’) ¢ = restrict v (res ts) ¢ U restrict v (clm ts) ¢
(proof)

lemma switch-restrict-stable:(v=c>u) — restrict v f d = restrict u f d

(proof)
end

end

26

7 Move a View according to Difference between
Traffic Snapshots

In this section, we define a function to move a view according to the changes
between two traffic snapshots. The intuition is that the view moves with
the same speed as its owner. That is, if we move a view v from ts to ts’, we
shift the extension of the view by the difference in the position of the owner
of v.

theory Mowve
imports Traffic Views
begin

context traffic
begin

definition move::traffic = traffic = view = view
where
move ts ts' v = (| ext = shift (ext v) ((pos ts’ (own v)) — pos ts (own v)),
lan = lan v,
own =own v |)

lemma move-keeps-length:||ext v|| = || ext (move ts ts’ v)||
{proof)

lemma move-keeps-lanes:lan v = lan (move ts ts' v) {proof)
lemma move-keeps-owner:own v = own (move ts ts' v) (proof)
lemma move-nothing :move ts ts v = v {proof)

lemma move-trans:
(ts = ts") A (ts’ =ts") — move ts’ ts” (move ts ts’ v) = move ts ts” v

(proof)

lemma move-stability-res:(ts—r(c)—ts’) — move ts ts' v =v
and move-stability-clm: (ts—c(c,n)—ts’) — move ts ts’ v = v
and move-stability-wdr:(ts—wdr(c,n)—ts’) — move ts ts' v =v
and move-stability-wdc:(ts—wdc(c)—>ts") — move ts ts' v =v
{proof)

end
end

8 Sensors for Cars

This section presents the abstract definition of a function determining the
sensor capabilities of cars. Such a function takes a car e, a traffic snapshot

27

ts and another car ¢, and returns the length of ¢ as perceived by e at the
situation determined by ts. The only restriction we impose is that this
length is always greater than zero.

With such a function, we define a derived notion of the space the car ¢ oc-
cupies as perceived by e. However, this does not define the lanes ¢ occupies,
but only a continuous interval. The lanes occupied by c are given by the
reservation and claim functions of the traffic snapshot ts.

theory Sensors
imports Traffic Views
begin

locale sensors = traffic + view +
fixes sensors::(cars) = traffic = (cars) = real
assumes sensors-ge:(sensors e ts ¢) > 0
begin

definition space :: traffic = view = cars = real-int
where space ts v ¢ = Abs-real-int (pos ts ¢, pos ts ¢ + sensors (own v) ts c)

lemma left-space: left (space ts v ¢) = pos ts ¢

(proof)

lemma right-space: right (space ts v ¢) = pos ts ¢ + sensors (own v) ts ¢
(proof)

lemma space-nonempty:left (space ts v ¢) < right (space ts v c)
(proof)

end
end

9 Visible Length of Cars with Perfect Sensors

Given a sensor function, we can define the length of a car ¢ as perceived by
the owner of a view v. This length is restricted by the size of the extension
of the view v, but always given by a continuous interval, which may possibly
be degenerate (i.e., a point-interval).

The lemmas connect the end-points of the perceived length with the end-
points of the current view. Furthermore, they show how the chopping and
subview relations affect the perceived length of a car.

theory Length
imports Sensors
begin

context sensors
begin

28

definition len:: view = traffic = cars = real-int
where len-def :len v (ts) ¢ ==
if (left (space ts v ¢) > right (ext v))
then Abs-real-int (right (ext v),right (ext v))
else
if (right (space ts v c¢) < left (ext v))
then Abs-real-int (left (ext v),left (ext v))
else
Abs-real-int (mazx (left (ext v)) (left (space ts v c)),
min (right (ext v)) (right (space ts v ¢)))

lemma len-left: left ((len v ts) ¢) > left (ext v)
(proof)

lemma len-right: right ((len v ts) ¢) < right (ext v)
{proof)

lemma len-sub-int:len v ts ¢ < ext v
(proof)

lemma len-space-left:
left (space ts v ¢) < right (ext v) —> left (len v ts ¢) > left (space ts v c)
(proof)

lemma len-space-right:
right (space ts v ¢) > left (ext v) — right (len v ts ¢) < right (space ts v c)
(proof)

lemma len-hchop-left-right-border:
(len v ts ¢ = ext v) A (v=v1|[v2) — (right (len vl ts ¢) = right (ext v1))
(proof)

lemma len-hchop-left-left-border:
((len v ts) ¢ = ext v) A (v=vll||v2) — (left ((len v1 ts) ¢) = left (ext v1))
(proof)

lemma len-view-hchop-left:
((len v ts) ¢ = ext v) A (v=vl||v2) — ((len vl ts) ¢ = ext vl)
(proof)

lemma len-hchop-right-left-border:
((len v ts) ¢ = ext v) A (v=vl1||v2) — (left ((len v2 ts) ¢) = left (ext v2))
(proof)

lemma len-hchop-right-right-border:
((len v ts) ¢ = ext v) A (v=vl||v2) — (right ((len v2 ts) c¢) = right (ext v2))

29

(proof)

lemma len-view-hchop-right:
((len v ts) ¢ = ext v) A (v=vl||v2) — ((len v2 ts) ¢ = ext v2)
{proof)

lemma len-compose-hchop:
(v=0v1|[v2) A (len v1 (ts) ¢ = ext v1) A (len v2 (ts) ¢ = ext v2)
— (len v (ts) ¢ = ext v)

{(proof)

lemma len-stable:(v=v1——v2) — len v1 ts ¢ = len v2 ts ¢
(proof)

lemma len-empty-on-subview? :
llen v ((ts) c|| = 0 A (v=vl]||v2) —> ||len v1 (ts) c|| = 0
(proof)

lemma len-empty-on-subview?2:
llen vts cl] = 0 A (v=v1||v2) — ||len v2 ts c|| = 0

(proof)
lemma len-hchop-add:

(v=uv1|[v2) — ||len v ts c|| = ||len vl ts c|| + ||len v2 ts ||
(proof)

lemma len-non-empty-inside:

llen v (ts) || > 0

— left (space ts v ¢) < right (ext v) A right (space ts v ¢) > left (ext v)
(proof)

lemma len-fills-subview:
llen v ts c|]| > 0
— (3 vl v2v3 v (v=v1|[v2) A (vV2=v'||v3) A len v' ts ¢ = ext v’ A
|llen v ts c|| = ||len v ts ¢|)

(proof)

lemma ext-eqg-len-eq:
ext v = ext v'A owun v = own v’ — lenvtsc=len v tsc
(proof)

lemma len-stable-down:(v=vl1——v2) — len v ts ¢ = len vl ts ¢

{proof)

lemma len-stable-up:(v=v1——v2) — len v ts ¢ = len v2 ts ¢

(proof)

lemma len-empty-subview:||len v ts c|| = 0 A (v < v) — |[len v' ts c|| = 0

30

(proof)

lemma view-leg-len-leg:(ext v < ext v’) A (own v = own v') A ||len v ts c|| > 0
—s lenvitsc<lenv'tsc

(proof)

end
end

10 Basic HMLSL

In this section, we define the basic formulas of HMLSL. All of these basic
formulas and theorems are independent of the choice of sensor function.
However, they show how the general operators (chop, changes in perspective,
atomic formulas) work.

theory HMLSL
imports Restriction Move Length
begin

10.1 Syntax of Basic HMLSL

Formulas are functions associating a traffic snapshot and a view with a
Boolean value.

type-synonym o = traffic = view = bool

locale hmlisl = restriction+
fixes sensors::cars = traffic = cars = real
assumes sensors-ge:(sensors e ts ¢) > 0 begin
end

sublocale hmlsi<sensors
(proof)

context hmlsl
begin

All formulas are defined as abbreviations. As a consequence, proofs will
directly refer to the semantics of HMLSL, i.e., traffic snapshots and views.

The first-order operators are direct translations into HOL operators.

abbreviation mirue :: o (<T))
where T = A ts w. True
abbreviation mfalse :: o («L»)
where L = X\ ts w. False
abbreviation mnot : o=0 ((0-[52]53)
where —p = A s w. —p(ts)(w)
abbreviation mnegpred :: (cars=o)=(cars=0) (<"-»[52]583)

31

where "® = \z.\ ts w. =®(x)(ts)(w)
abbreviation mand :: c=0=-0 (infixr<A\>51)
where pAY = X ts w. p(ts)(w)AY(ts)(w)
abbreviation mor :: c=0=0c (infix <V>50)
where Vi) = X ts w. p(ts)(w)Vip(ts)(w)
abbreviation mimp :: c=oc=0 (infixr«—>49)
where p—1 = X ts w. p(ts)(w)—(ts)(w)
abbreviation mequ :: oc=>0=>0 (infixr«<>>48)
where 1) = X ts w. p(ts)(w)—(ts)(w)
abbreviation mforall :: (‘a=0c)=0 (\V>)
where V& =)\ ts w.Vz. ®(z)(ts)(w)
abbreviation mforallB :: (‘a=0)=0 (binder«v)[8]9)
where Vz. ¢(z) =V
abbreviation mezists :: (‘a=0)=0 (<))
where 30 = X ¢s w.3z. D(z)(ts)(w)
abbreviation mezistsB :: (('a)=0)=0c (binder«3:[8]9)
where Jz. p(z) = T
abbreviation meq :: ‘a='a=c (infixr<=)60) — Equality
where ==y = A tsw. z =y
abbreviation mgeq :: (‘a::ord) = 'a = o (infix >) 60)
where z > y=ANtsw. ¢ >y
abbreviation mge ::('a::ord) = ’‘a = o (infix <>» 60)
where z > y=Atsw. z >y

For the spatial modalities, we use the chopping operations defined on views.
Observe that our chop modalities are existential.

abbreviation hchop :: o=oc=-0c (infixr (—~> 53)

where ¢ —~ ¢ = X ts w3 v u. (w=v||u) A @(ts)(v)AP(ts)(u)
abbreviation vchop :: o=oc=0 (infixr «—) 53)

where p — ¢ = A ts w.3v u. (w=v——u) A p(ts)(v) A ¥(ts)(u)
abbreviation somewhere ::0=0 (<(-) » 55)

where (p) = T —~ (T—p —T)~T
abbreviation everywhere::o=0 («[-]> 55)

where [¢] = 2 (—¢)

To change the perspective of a view, we use an operator in the fashion of
Hybrid Logic.

abbreviation at :: cars = 0 = o (@ - - 56)
where Qc ¢ = Mtsw . Vo' (w=c>v') — o(ts)(v”)

The behavioural modalities are defined as usual modal box-like modalities,
where the accessibility relations are given by the different types of transitions
between traffic snapshots.

abbreviation res-boz::cars = o = o («Or'(-") - 55)

where Or(c) ¢ = A ts w. Vis'. (ts—r(c)—ts’) — p(ts’)(w)
abbreviation clm-boz::cars = o = o («Oc'(-) - 55)

where Oe(c) ¢ = X ts w. Vis' n. (ts—c(e,n)—ts’) — o(ts’)(w)
abbreviation wdres-boz::cars = o = o (Dwdr'(-’) - 55)

32

where Owdr(c) ¢ = X ts w. YVits' n. (ts—wdr(c,n)—ts’) — p(ts’)(w)
abbreviation wdclm-box::cars = o = o (Dwdc'(-) -» 55)

where Owdc(c) p = A ts w. Vis'. (ts—wde(c)—ts’) — p(ts’)(w)
abbreviation time-boz::c = o («O1 -» 55)

where O ¢ = As w. Vis'. (tswts") — o(ts') (move ts ts' w)
abbreviation globally::oc = o (<G - 55)

where G ¢ = Ats w. Vis'. (ts = ts') — p(ts’)(move ts ts’ w)

The spatial atoms to refer to reservations, claims and free space are direct
translations of the original definitions of MLSL [2] into the Isabelle imple-
mentation.

abbreviation re:: cars = o («re'(-')y 70)
where
re(c) = A ts v. |lext v||> 0 Alen v its ¢c = ext v A
restrict v (res ts) ¢ = lan v A |lan v|=1

abbreviation cl:: cars = o («cl’(-)y 70)
where
c(c) = Atsv. |lext v||> 0 Alen vits ¢ = ext v A
restrict v (clm ts) ¢ = lan v A |lan v| = 1

abbreviation free:: o (free)
where
free = Xtswv. |lext v]| > 0 A |lanv| = 1 A
(Ve Jllenvtsc]| =0V
(restrict v (clm ts) ¢ = 0 A restrict v (res ts) ¢ = D))

Even though we do not need them for the subsequent proofs of safety, we
define ways to measure the number of lanes (width) and the size of the
extension (length) of a view. This allows us to connect the atomic formulas
for reservations and claims with the atom denoting free space [5].

abbreviation width-eq::nat = o («w = - 60)
where w =n =X tswv. |lanv| =n

abbreviation width-geq::nat = o («w > - 60)
where w > n= X tswv. [lanv| > n

abbreviation width-ge::nat = o (‘\w > -» 60)
where w >n=(w=n+1)— T

abbreviation length-eq::real = o (<1 = - 60)
wherel =r = Atswo. |extv]| = r

abbreviation length-ge:: real = o (<1 > - 60)
where l > r = A ts v. |ext v|]| > r

abbreviation length-geq::real = o (<1 > - 60)
wherel>r=(01=7r) Vv (1 >r)

33

For convenience, we use abbreviations for the validity and satisfiability of
formulas. While the former gives a nice way to express theorems, the latter
is useful within proofs.

abbreviation valid :: 0 = bool (= -» 10)
where = ¢ = Vis. V. o(ts)(v)

abbreviation satisfies:: traffic = view = o = bool («-, - = -» 10)
where ts,0 = ¢ = ¢(ts)(v)

10.2 Theorems about Basic HMLSL

lemma hchop-weakenl: = o — (¢ —~ T)
{proof)

lemma hchop-weaken2: = o — (T —~ @)
{proof)

lemma hchop-weaken: = o — (T —~¢@ —~ T)
(proof)

lemma hchop-negl:= = (p ~ T) = ((m @) ~ T)
{proof)

lemma hchop-neg2:= = (T—~p) = (T —~ = @)
(proof)

le<rnm%hch0p—disj—di5tr1 E= (e~ @ VX)) e (e ~Y)V(ie ~x))
PToo.

1e<mrne} >hchop-disj-distr2:|= (¥ VX)) & (P~ V(X — ¢)))
Proo

lemma hchop-assoc:=p —~ (Y —~ x) < (p —~) —~ x
(proof)

lemma v-chop-weakenl:= (¢ — (p — T))
(proof)

lemma v-chop-weaken2:= (¢ — (T — @))
(proof)

lemma v-chop-assoc:=(¢ — (¢ — x)) <> (¢ — ¥) — Xx)
(proof)

lemma vchop-disj-distrl:= ((¢ — (¥ V x)) <> ((¢ — V)V(p — X)))
(proof)

lemma vchop-disj-distr2:l= (¢ V x) — ¢) < (¢ — ©)V(x — ¢)))
(proof)

34

lemma at-exists ;= ¢ — (I c. Qc p)
(proof)

lemma at-conj-distr:=(@c (o A 1)) < ((Qc @) A (Qc 1))
(proof)

lemma at-disj-dist:=(Qc (o V) <> ((Qc p) V (Q@Qc 1))
{proof)

lemma at-hchop-distl:=(@Qc (¢ —~ ¥)) — ((Qc) ~ (Qc)
(proof)

lemma at-hchop-dist2:=((Qc ¢) —~ (Qc ¢)) — (Qc (p —~ V¥))
(proof)

lemma at-hchop-dist:=((Qc @) ~ (Qc 9)) <> (Qc (¢ —~ P))
(proof)

lemma at-vchop-distl:=(Qc (p —) — ((Qc) — (Qc Y))
(proof)

lemma at-vchop-dist2:=((Qc ¢) — (Qc ¢)) — (Qc (¢ — ¥))
(proof)

lemma at-vchop-dist:=((Qc @) — (Qc) +> (Qc (¢ — V¥))
(proof)

lemma at-eq:=(Qe ¢ = d) < (¢ = d)
{proof)

lemma at-negl :=(@c —) — = (Qc)
(proof)

lemma at-neg2:E=— (@Qc p) — ((Qc = @))
(proof)

lemma at-neg :IE=(Qc(=)) > - (Qc p)
(proof)

lemma at-neg’:its,v E = (Qc @) <> (@Qc(= @)) {proof)

lemma at-neg-negl :=(Qc) — —(Qc¢ — @)
(proof)

lemma at-neg-neg2:=—(Qc =) — (Qc o)
{proof)

lemma at-neg-neg:l= (Qc @) <> =(Qc — @)

35

{proof)

lemma globally-all-iff:i= (G(V c. v)) <> (Ve.(G ¢)) (proof)
lemma globally-all-iff :ts,v= (G(VY c. ¢)) > (Ve.(G @)) (proof)

lemma globally-refl: =(G ¢) — ¢
(proof)

lemma globally-4: E (G ¢) > G G ¢
(proof)

lemma spatial-weaken: = (p — {(p))
{proof)

lemma spatial-weaken2:= (¢ —) — (¢ — ()
(proof)

lemma somewhere-distr: = {pV) <> (©) V (¥)
{proof)

lemma somewhere-and:= (@ A) — {©) A (P)
(proof)

lemma somewhere-and-or-distr :=((x A (@ V)) <> {x AN @) V{xXAY))
(proof)

lemma width-addl:=((w = 1) — (w = y) = w = 2+y)
{proof)

lemma width-add2:=((w = z+y) = (w =12) — w = y)
(proof)

lemma width-hchop-stable: =((w = z) > ((w = 1) ~ (w=1)))
{proof)

lemma length-geg-zero:= (1 > 0)
(proof)

lemma length-split: =(1 > 0) — 1> 0) ~ (1> 0))
(proof)

lemma length-meld: E((1 > 0) ~ (1> 0) — (1 > 0))
(proof)

lemma length-dense:=((1> 0) <> (1> 0) —~ (1 > 0))
(proof)

lemma length-addl:=((1=z) ~ (1= y)) — (1= z+vy)

36

{proof)

lemma length-add2:= (x> 0N y > 0) — ((I=z+y) — ((=2) ~ (1=y)))
(proof)

lemma length-add:= (x> 0N y > 0) = ((I=z+y) < ((I=2) —~ (I=y)))
{proof)

lemma length-vchop-stable:=(1 = z) <> (1=1z) — (1= x))
{proof)

lemma res-ge-zero:l=(re(c) — 1>0)
{proof)

lemma clm-ge-zero:=(cl(c) — 1>0)
{proof)

lemma free-ge-zero:l=free — 1>0
(proof)

lemma width-res:=(re(¢) = w = 1)
(proof)

lemma width-clm:=(cl(c¢) = w = 1)
{proof)

lemma width-free:}=(free - w = 1)
{proof)

lemma width-somewhere-res:= {re(c)) — (w > 1)

{(proof)

lemma clm-disj-res:= — { cl(c) A re(c))
(proof)

lemma width-ge:= (w> 0) — (3 z. (w=12) A (z> 0))
(proof)

lemma two-res-width: |=((re(c) — re(c)) = w = 2)
{proof)
lemma res-at-most-two:=— (re(c) — re(c) — re(c))

(proof)

lemma res-at-most-two2:l== {re(c) — re(c) — re(c))

(proof)

lemma res-at-most-somewhere:l== (re(c)) ~— (re(c)) — (re(c))

37

(proof)

lemma res-adj:l=— (re(c) — (w > 0) — re(c))

(proof)

lemma clm-sing:=— (cl(c) — cl(c))
(proof)

lemma clm-sing-somewhere:== {cl(c) — cl(c))
{proof)

lemma clm-sing-not-interrupted:l= —(cl(c¢) — T — cl(c))
{proof)

lemma clm-sing-somewhere2:=— (T — cl(c) — T — cl(c) — T)
{proof)

lemma clm-sing-somewhere3: == (T — cl(c) — T — cl(c) — T))
{proof)

lemma clm-at-most-somewhere:== ({cl(c)) — (cl(c)))

(proof)

lemma res-decompose: E=(re(c) — re(c) —~ re(c))

(proof)

lemma res-compose: =(re(c¢) —~ re(c) — re(c))

(proof)

lemma res-dense:=re(c) <> re(c) —~ re(c)
{proof)

lemma res-continuous :=(re(c)) — (= (T —~ (—re(c) A1 > 0) ~ T))
(proof)

lemma no-clm-before-res:==(cl(c) —~ re(c))
{proof)

lemma no-clm-before-res2:== (cl(¢) ~ T —~ re(c))

(proof)
lemma clm-decompose: =(cl(c) — cl(c) —~ cl(c))

(proof)

lemma clm-compose: =(cl(c) —~ cl(c) — cl(c))

38

{proof)

lemma clm-dense:[=cl(c) <> cl(c) —~ cl(c)
{proof)

lemma clm-continuous :[=(cl(c)) = (= (T —~ (—cl(e) A1>0) ~T))
(proof)

lemma res-not-free: =(3 ¢. re(c) — —free)
(proof)

lemma clm-not-free: |=(3 c. cl(c) — —free)
{proof)

lemma free-no-res:=(free = —(3 c. re(c)))
(proof)

lemma free-no-clm:=(free — (3 c. cl(c)))
{proof)

lemma free-decompose:=free — (free —~ free)
(proof)

lemma free-compose:|=(free ~ free) — free

(proof)

lemma free-dense:|=free <> (free —~ free)
(proof)

lemma free-dense2:=free - T —~ free ~ T

{proof)

The next lemmas show the connection between the spatial. In particular,
if the view consists of one lane and a non-zero extension, where neither a
reservation nor a car resides, the view satisfies free (and vice versa).

lemma no-cars-means-free:
E(I>0)A(w=1)ANMc. (T —~ (clc) Vre(c)) ~T))) — free
(proof)

lemma free-means-no-cars:
Efree > (1>0) A(w=1)ANMc. 2 (T —~ (cllc) Vre(c)) ~T)))
(proof)

lemma free-eq-no-cars:

Efree <> (150) A(w=1)ANMe. = (T —~ (eclle) Vre(c)) ~T))
(proof)

39

lemma free-nowhere-res:=free — (T —~ (re(c)) —~ T)
{proof)

lemma two-res-not-res: =((re(c) — re(c)) — —re(c))
(proof)

lemma two-clm-width: =((cl(c) — cl(c)) - w = 2)
{proof)

lemma two-res-no-car: [=(re(c) — re(c)) — —(I c. (cl(c) V re(c)))
(proof)

lemma two-lanes-no-car:=(— w= 1) — =(3 c.(cl(c) V re(c)))
{proof)

lemma empty-no-car:=(1= 0) — —(3 c.(cl(c) V re(c)))
(proof)

lemma car-one-lane-non-empty: =(3 c.(cl(c) V re(c))) = ((w =1) A (1> 0))
{proof)

lemma one-lane-notfree:
< h(c;>:1) A(1> 0) A (= free) = ((T —~ (3 ¢ (re(e) V cl(c))) —~ T))
proo

lemma one-lane-empty-or-car:
Elw=1) A(I> 0) = (free V (T —~ (T ¢c. (re(c) V cl(c)) —~ T))

(proof)
end

end

11 Perfect Sensors

This section contains an instantiations of the sensor function for "perfect
sensors'. That is, each car can perceive both the physical size as well as the
braking distance of each other car.

theory Perfect-Sensors
imports ../Length
begin

definition perfect::cars = traffic = cars = real
where perfect e ts ¢ = traffic.physical-size ts ¢ + traffic.braking-distance ts ¢

locale perfect-sensors = traffic+view
begin

interpretation perfect-sensors : sensors perfect :: cars = traffic = cars = real
(proof)

40

notation perfect-sensors.space (<space)
notation perfect-sensors.len (<leny)

With this sensor definition, we can show that the perceived length of a
car is independent of the spatial transitions between traffic snapshots. The
length may only change during evolutions, in particular if the car changes
its dynamical behaviour.
lemma create-reservation-length-stable:

(ts—r(d)—ts") — lenvitsc=lenvits’ ¢
(proof)

lemma create-claim-length-stable:
(ts—c(d,n)—ts") — lenvitsc=lenvis’ ¢
(proof)

lemma withdraw-reservation-length-stable:
(ts—wdr(d,n)—ts’) — len vits c = len v ts’ ¢

(proof)

lemma withdraw-claim-length-stable:
(ts—wde(d)—ts") —> lenvits c = lenvits' ¢

(proof)

The following lemma shows that the perceived length is independent from
the owner of the view. That is, as long as two views consist of the same
extension, the perceived length of each car is the same in both views.

lemma all-own-ext-eq-len-eq:
extv=-extv’ — lenvtsc=Ilenv' tsc
(proof)

Finally, switching the perspective of a view does not change the perceived
length.

lemma switch-length-stable:(v=d>v") — len v ts ¢ = len v’ ts ¢

{proof)

end
end

12 HMLSL for Perfect Sensors

Within this section, we instantiate HMLSL for cars with perfect sensors.

theory HMLSL-Perfect
imports ../ HMLSL Perfect-Sensors
begin

41

locale hmlisl-perfect = perfect-sensors + restriction
begin

interpretation hmlisl : hmlisl perfect :: cars = traffic = cars = real

(proof)

notation hmlisl.re (<re’(-)»)
notation Amlsl.cl(<cl’(-)»)
notation hmlsl.len (<len))

The spatial atoms are independent of the perspective of the view. Hence we
can prove several lemmas on the relation between the hybrid modality and
the spatial atoms.

lemma at-res!:=(re(c)) — (Vd. @Qd re(c))

(proof)

lemma at-res2:[=(V d. Qd re(c)) — re(c)
{proof)

lemma at-res:=re(c) <> (Vd. Qd re(c))
(proof)

lemma at-res-inst:= (Qd re(c)) —re(c)

(proof)

lemma at-clmi:=cl(c) — (Vd. Qd cl(c))
{proof)

lemma at-cim2:E=(V d. Qd cl(c)) — cl(c)
(proof)

lemma at-clm:=cl(c) < (V d. @Qd cl(c))
{proof)

lemma at-clm-inst:= (Qd cl(c)) —cl(c)
(proof)

With the definition of sensors, we can also express how the spatial situation
changes after the different transitions. In particular, we can prove lemmas
corresponding to the activity and stability rules of the proof system for
MLSL [5].

Observe that we were not able to prove these rules for basic HMLSL, since its
generic sensor function allows for instantiations where the perceived length
changes during spatial transitions.

lemma backwards-res-act:
(ts —r(c) = ts') A (ts',v = re(c)) — (ts,v = re(e) V cl(c))
(proof)

42

lemma backwards-res-act-somewhere:
(ts —r(c)— ts’) A (ts,v | (re(c))) — (ts,v E{ re(c) V cl(c)))
(proof)

lemma backwards-res-stab:
(ts —r(d) — ts’) A (d #c) A (ts',v | re(c)) — (ts,v = re(c))
(proof)

lemma backwards-c-res-stab:
(ts —c(d,n) — ts’) A (ts',v = re(c)) — (ts,v = re(c))
(proof)

lemma backwards-wdc-res-stab:
(ts —wde(d) — ts’) A (ts’ v |E re(e)) — (ts,v = re(c))
(proof)

lemma backwards-wdr-res-stab:
(ts —wdr(d,n) — ts') A (ts’,v = re(c)) — (ts,v = re(c))
(proof)

We now proceed to prove the reservation lemma, which was crucial in the
manual safety proof [2].

lemma reservation!: E=(re(c) V cl(c)) — Or(c) re(c)
(proof)

lemma reservation2: E=(Or(c) re(c)) — (re(c) V cl(c))

(proof)

lemma reservation:=(0r(c) re(c)) <> (re(c) V cl(c))

(proof)
end
end

13 Safety for Cars with Perfect Sensors

This section contains the definition of requirements for lane change and
distance controllers for cars, with the assumption of perfect sensors. Us-
ing these definitions, we show that safety is an invariant along all possible
behaviour of cars.

theory Safety-Perfect
imports HMLSL-Perfect
begin

context hmlsl-perfect

begin
interpretation hmlisl : hmlsl perfect :: cars = traffic = cars = real

43

(proof)

notation hmlisl.re (<re’(-)»)
notation hmlsl.cl(<cl’(-)»)
notation hmlsl.len (<len))

Safety in the context of HMLSL means the absence of overlapping reserva-
tions. Using the somewhere modality, this is easy to formalise.

abbreviation safe::cars=o
where safe e =V c. (¢ = e) = = (re(c) A re(e))

The distance controller ensures, that as long as the cars do not try to change
their lane, they keep their distance. More formally, if the reservations of two
cars do not overlap, they will also not overlap after an arbitrary amount of
time passed. Observe that the cars are allowed to change their dynamical
behaviour, i.e., to accelerate and brake.

abbreviation DC'::o
where DC = G(Y ¢ d. =(c = d) —
—(re(c) A re(d))y — O = {re(c) A re(d)))

To identify possibly dangerous situations during a lane change manoeuvre,
we use the potential collision check. It allows us to identify situations, where
the claim of a car d overlaps with any part of the car c.

abbreviation pcc::cars = cars = o
where pecc c d = = (ec = d) A (cl(d) A (re(c) V cl(c)))

The only restriction the lane change controller imposes onto the cars is that
in the case of a potential collision, they are not allowed to change the claim
into a reservation.

abbreviation LC::o
where LC = G (Vd.(3 ¢ pec cd) — Or(d) L)

The safety theorem is as follows. If the controllers of all cars adhere to the
specifications given by LC' and DC, and we start with an initially safe traffic
snapshot, then all reachable traffic snapshots are also safe.

theorem safety:=(Ve. safe e) N DCA LC — G (V¥ e. safe e)
(proof)

While the safety theorem was only proven for a single car, we can show that
the choice of this car is irrelevant. That is, if we have a safe situation, and
switch the perspective to another car, the resulting situation is also safe.

lemma safety-switch-invariant:=(V e. safe(e)) — @c (V e. safe(e))

(proof)
end

end

44

14 Regular Sensors

This section contains an instantiations of the sensor function for "regular
sensors'. That is, each car can perceive its own physical size and braking
distance. However, it can only perceive the physical size of other cars, and
does not know about their braking distance.
theory Regular-Sensors

imports ../Length
begin

definition regular::cars = traffic = cars = real
where reqular e ts ¢ =
if (e = c) then traffic.physical-size ts ¢ + traffic.braking-distance ts c
else traffic.physical-size ts c

locale regular-sensors = traffic + view
begin

interpretation reqular-sensors: sensors reqular :: cars = traffic = cars = real
(proof)

notation regular-sensors.space (<space)
notation reqular-sensors.len (<leny)

Similar to the situation with perfect sensors, we can show that the perceived
length of a car is independent of the spatial transitions between traffic snap-
shots. The length may only change during evolutions, in particular if the
car changes its dynamical behaviour.
lemma create-reservation-length-stable:

(ts—r(d)—ts’) — lenvisc=lenvis’ ¢

(proof)

lemma create-claim-length-stable:
(ts—c(d,n)—ts) — lenvitsc=lenvits’ ¢

(proof)

lemma withdraw-reservation-length-stable:
(ts—wdr(d,n)—ts") — lenvis c=len v ts’ ¢

(proof)

lemma withdraw-claim-length-stable:
(ts—wde(d)—ts") — lenvits c=lenvis' ¢

(proof)

Since the perceived length of cars depends on the owner of the view, we can
now prove how this perception changes if we change the perspective of a
view.

lemma sensors-le:e # ¢ — regqular e ts ¢ < regular c ts ¢

45

{proof)

lemma sensors-leq: reqular e ts ¢ < reqular c ts c
(proof)

lemma space-eq: own v = own v’ — space ts v ¢ = space ts v’ ¢
(proof)

lemma switch-space-le:(own v) # ¢ A (v=c>v") — space ts v ¢ < space ts v’ ¢

{(proof)

lemma switch-space-leq:(v=c>v') — space ts v ¢ < space ts v’ ¢

(proof)
end

end

15 HMLSL for Regular Sensors

Within this section, we instantiate HMLSL for cars with regular sensors.

theory HMLSL-Regular
imports ../HMLSL Regular-Sensors
begin

locale hmlisl-reqular = regular-sensors + restriction
begin
interpretation hmlisl : hmlsl regular :: cars = traffic = cars = real

(proof)

notation hmlsl.re (<re’(-")>)
notation hmlsl.cl(<cl’(-)»)
notation hmlsl.len (<len»)

The spatial atoms are dependent of the perspective of the view, hence we
cannot prove similar lemmas as for perfect sensors.
However, we can still prove lemmas corresponding to the activity and sta-
bility rules of the proof system for MLSL [5].
Similar to the situation with perfect sensors, needed to instantiate the sensor
function, to ensure that the perceived length does not change during spatial
transitions.
lemma backwards-res-act:

(ts —r(c) = ts) A (ts’,v = re(c)) — (ts,v = re(e) V cl(c))
(proof)

lemma backwards-res-act-somewhere:

(ts —r(c)— ts") A (ts',v = (re(c))) — (ts,v E{ re(c) V cl(c)))
(proof)

46

lemma backwards-res-stab:
(ts —r(d) — ts') A (d #¢) A (ts',v = re(c)) — (ts,0 = re(c))
(proof)

lemma backwards-c-res-stab:
(ts —c(d,n) — ts) A (ts',v |= re(c)) — (ts,v = re(c))
(proof)

lemma backwards-wdc-res-stab:
(ts —wdce(d) — ts') A (ts',v = re(c)) — (ts,v = re(c))
(proof)

lemma backwards-wdr-res-stab:
(ts —wdr(d,n) — ts’) A (ts',v |E re(c)) — (ts,v = re(c))
(proof)

We now proceed to prove the reservation lemma, which was crucial in the
manual safety proof [2].

lemma reservationl: E(re(c) V cl(c)) — Or(c) re(c)

(proof)

lemma reservation2: =(0Or(c) re(c)) — (re(c) V cl(c))
{proof)

lemma reservation:=(0r(c) re(c)) <> (re(c) V cl(c))

(proof)
end

end

16 Safety for Cars with Regular Sensors

This section contains the definition of requirements for lane change and dis-
tance controllers for cars, with the assumption of regular sensors. Using
these definitions, we show that safety is an invariant along all possible be-
haviour of cars. However, we need to slightly amend our notion of safety,
compared to the safety proof for perfect sensors.

theory Safety-Regular
imports HMLSL-Reqular

begin

context hmlisl-reqular

begin

interpretation hmlisl : hmlsl regular :: cars = traffic = cars = real

(proof)
notation hmlsl.space (<space»)
notation hmlisl.re (<re’(-')»)

47

notation hmilsl.cl(«<cl’'(-"))
notation hmilsl.len (<leny)

First we show that the same "safety" theorem as for perfect senors can be
proven. However, we will subsequently show that this theorem does not
ensure safety from the perspective of each car.

The controller definitions for this "flawed" safety are the same as for perfect
Sensors.

abbreviation safe::cars=oc
where safe e =V c. =(c = e) = —(re(c) A re(e))

abbreviation DC::o
where DC = G(V ¢ d. =(c = d) —
—(re(c) A re(d)) — Or —(re(c) A re(d)))

abbreviation pcc::cars = cars = o
where pcc ¢ d = = (¢ = d) A { cl(d) A (re(c) V cl(c)))

abbreviation LC::o
where LC = G (Vd.(3 ¢ pec cd) — Or(d) L)

The safety proof is exactly the same as for perfect sensors. Note in partic-
ular, that we fix a single car e for which we show safety.

theorem safety-flawed:=(V e. safe e) AN DC A LC — G (V e. safe e)
(proof)

As stated above, the flawed safety theorem does not ensure safety for the
perspective of each car. In particular, we can construct a traffic snapshot
and a view, such that it satisfies our safety predicate for each car, but if we
switch the perspective of the view to another car, the situation is unsafe. A
visualisation of this situation can be found in the publication of this work
at iFM 2017 [4].

lemma safety-not-invariant-switch:
dts v. (ts,v = Ve. safe(e) A (T ¢c. Qe —(Ve. safe(e))))
(proof)

Now we show how to amend the controller specifications to gain safety as
an invariant even with regular sensors.

The distance controller can be strengthened, by requiring that we switch
to the perspective of one of the cars involved first, before checking for the
collision. Since all variables are universally quantified, this ensures that no
collision exists for the perspective of any car.

abbreviation DC":o
where DC'= G (V

cd. =(c=d) —
(@d —(re(c)

A re(d))) — Or @d —(re(c) A re(d)))

48

The amendment to the lane change controller is slightly different. Instead
of checking the potential collision only from the perspective of the car d
trying to change lanes, we require that also no other car may perceive a
potential collision. Note that the restriction to d’s behaviour can only be
enforced within d, if the information from the other car is somehow passed
to d. Hence, we require the cars to communicate in some way. However, we
do not need to specifiy, how this communication is implemented.

abbreviation LC":c
where LC'= G (Vd. (3 ¢. (Qc (pcc ¢ d)) V (Qd (pee ¢ d))) — Or(d) L)

With these new controllers, we can prove a stronger theorem than before.
Instead of proving safety from the perspective of a single car as previously,
we now only consider a traffic situation to be safe, if it satisfies the safety
predicate from the perspective of all cars. Note that this immediately im-
plies the safety invariance theorem proven for perfect sensors.

theorem safety:l= (Ve. Qe (safee)) AN DC’' AN LC' — G(V e. Q e (safe e))

(proof)
end

end

References

[1] T. Bratiner. Hybrid logic and its proof-theory. Springer, 2010.

[2] M. Hilscher, S. Linker, E. Olderog, and A. Ravn. An abstract model for
proving safety of multi-lane traffic manoeuvres. In ICFEM, volume 6991
of LNCS, pages 404-419. Springer, 2011.

[3] S. Linker. Proofs for Traffic Safety: Combining Diagrams and Logic.
PhD thesis, University of Oldenburg, 2015. http://oops.uni-oldenburg.
de/2337/.

[4] S. Linker. Spatial Reasoning About Motorway Traffic Safety with Is-
abelle/HOL, pages 34-49. Springer International Publishing, 2017.

[5] S. Linker and M. Hilscher. Proof theory of a multi-lane spatial logic.
LMCS, 11(3), 2015.

49

http://oops.uni-oldenburg.de/2337/
http://oops.uni-oldenburg.de/2337/

	Discrete Intervals based on Natural Numbers
	Basic properties of discrete intervals.
	Algebraic properties of intersection and union.

	Closed Real-valued Intervals
	Cars
	Traffic Snapshots
	Views on Traffic
	Restrict Claims and Reservations to a View
	Move a View according to Difference between Traffic Snapshots
	Sensors for Cars
	Visible Length of Cars with Perfect Sensors
	Basic HMLSL
	Syntax of Basic HMLSL
	Theorems about Basic HMLSL

	Perfect Sensors
	HMLSL for Perfect Sensors
	Safety for Cars with Perfect Sensors
	Regular Sensors
	HMLSL for Regular Sensors
	Safety for Cars with Regular Sensors

