
Formalizing a Seligman-Style Tableau System for
Hybrid Logic

Asta Halkjær From

March 17, 2025

Abstract

This work is a formalization of soundness and completeness proofs
for a Seligman-style tableau system for hybrid logic. The complete-
ness result is obtained via a synthetic approach using maximally con-
sistent sets of tableau blocks. The formalization differs from previous
work [1, 2] in a few ways. First, to avoid the need to backtrack in
the construction of a tableau, the formalized system has no unnamed
initial segment, and therefore no Name rule. Second, I show that the
full Bridge rule is admissible in the system. Third, I start from rules
restricted to only extend the branch with new formulas, including only
witnessing diamonds that are not already witnessed, and show that
the unrestricted rules are admissible. Similarly, I start from simpler
versions of the @-rules and show that these are sufficient. The GoTo
rule is restricted using a notion of potential such that each application
consumes potential and potential is earned through applications of the
remaining rules. I show that if a branch can be closed then it can be
closed starting from a single unit. Finally, Nom is restricted by a fixed
set of allowed nominals. The resulting system should be terminating.

Preamble
The formalization was part of the author’s MSc thesis in Computer Science
and Engineering at the Technical University of Denmark (DTU).

Supervisors:

• Jørgen Villadsen

• Alexander Birch Jensen (co-supervisor)

• Patrick Blackburn (Roskilde University, external supervisor)

1

Contents
1 Syntax 3

2 Semantics 4
2.1 Examples . 4

3 Tableau 5

4 Soundness 8

5 No Detours 11
5.1 Free GoTo . 18

6 Indexed Mapping 18
6.1 Indexing . 18
6.2 Mapping . 20

7 Duplicate Formulas 22
7.1 Removable indices . 22
7.2 Omitting formulas . 23
7.3 Induction . 30
7.4 Unrestricted rules . 35

8 Substitution 37
8.1 Unrestricted (♦) rule . 45

9 Structural Properties 46

10 Bridge 54
10.1 Replacing . 54
10.2 Descendants . 57
10.3 Induction . 60
10.4 Derivation . 76

11 Completeness 76
11.1 Hintikka . 76

11.1.1 Named model . 78
11.2 Lindenbaum-Henkin . 86

11.2.1 Consistency . 87
11.2.2 Maximality . 94
11.2.3 Saturation . 94

11.3 Smullyan-Fitting . 97
11.4 Result . 103

References 105

2

theory Hybrid-Logic imports HOL−Library.Countable begin

1 Syntax
datatype (′a, ′b) fm
= Pro ′a
| Nom ′b
| Neg ‹(′a, ′b) fm› (‹¬ -› [40] 40)
| Dis ‹(′a, ′b) fm› ‹(′a, ′b) fm› (infixr ‹∨› 30)
| Dia ‹(′a, ′b) fm› (‹♦ -› 10)
| Sat ′b ‹(′a, ′b) fm› (‹@ - -› 10)

We can give other connectives as abbreviations.
abbreviation Top (‹>›) where

‹> ≡ (undefined ∨ ¬ undefined)›

abbreviation Con (infixr ‹∧› 35) where
‹p ∧ q ≡ ¬ (¬ p ∨ ¬ q)›

abbreviation Imp (infixr ‹−→› 25) where
‹p −→ q ≡ ¬ (p ∧ ¬ q)›

abbreviation Box (‹� -› 10) where
‹� p ≡ ¬ (♦ ¬ p)›

primrec nominals :: ‹(′a, ′b) fm ⇒ ′b set› where
‹nominals (Pro x) = {}›
| ‹nominals (Nom i) = {i}›
| ‹nominals (¬ p) = nominals p›
| ‹nominals (p ∨ q) = nominals p ∪ nominals q›
| ‹nominals (♦ p) = nominals p›
| ‹nominals (@ i p) = {i} ∪ nominals p›

primrec sub :: ‹(′b ⇒ ′c) ⇒ (′a, ′b) fm ⇒ (′a, ′c) fm› where
‹sub - (Pro x) = Pro x›
| ‹sub f (Nom i) = Nom (f i)›
| ‹sub f (¬ p) = (¬ sub f p)›
| ‹sub f (p ∨ q) = (sub f p ∨ sub f q)›
| ‹sub f (♦ p) = (♦ sub f p)›
| ‹sub f (@ i p) = (@ (f i) (sub f p))›

lemma sub-nominals: ‹nominals (sub f p) = f ‘ nominals p›
by (induct p) auto

lemma sub-id: ‹sub id p = p›
by (induct p) simp-all

lemma sub-upd-fresh: ‹i /∈ nominals p =⇒ sub (f (i := j)) p = sub f p›
by (induct p) auto

3

2 Semantics

Type variable ′w stands for the set of worlds and ′a for the set of proposi-
tional symbols. The accessibility relation is given by R and the valuation
by V. The mapping from nominals to worlds is an extra argument g to the
semantics.
datatype (′w, ′a) model =

Model (R: ‹ ′w ⇒ ′w set›) (V : ‹ ′w ⇒ ′a ⇒ bool›)

primrec semantics
:: ‹(′w, ′a) model ⇒ (′b ⇒ ′w) ⇒ ′w ⇒ (′a, ′b) fm ⇒ bool›
(‹-, -, - |= -› [50 , 50 , 50] 50) where
‹(M , -, w |= Pro x) = V M w x›
| ‹(-, g, w |= Nom i) = (w = g i)›
| ‹(M , g, w |= ¬ p) = (¬ M , g, w |= p)›
| ‹(M , g, w |= (p ∨ q)) = ((M , g, w |= p) ∨ (M , g, w |= q))›
| ‹(M , g, w |= ♦ p) = (∃ v ∈ R M w. M , g, v |= p)›
| ‹(M , g, - |= @ i p) = (M , g, g i |= p)›

lemma ‹M , g, w |= >›
by simp

lemma semantics-fresh:
‹i /∈ nominals p =⇒ (M , g, w |= p) = (M , g(i := v), w |= p)›
by (induct p arbitrary: w) auto

2.1 Examples
abbreviation is-named :: ‹(′w, ′b) model ⇒ bool› where

‹is-named M ≡ ∀w. ∃ a. V M a = w›

abbreviation reflexive :: ‹(′w, ′b) model ⇒ bool› where
‹reflexive M ≡ ∀w. w ∈ R M w›

abbreviation irreflexive :: ‹(′w, ′b) model ⇒ bool› where
‹irreflexive M ≡ ∀w. w /∈ R M w›

abbreviation symmetric :: ‹(′w, ′b) model ⇒ bool› where
‹symmetric M ≡ ∀ v w. w ∈ R M v ←→ v ∈ R M w›

abbreviation asymmetric :: ‹(′w, ′b) model ⇒ bool› where
‹asymmetric M ≡ ∀ v w. ¬ (w ∈ R M v ∧ v ∈ R M w)›

abbreviation transitive :: ‹(′w, ′b) model ⇒ bool› where
‹transitive M ≡ ∀ v w x. w ∈ R M v ∧ x ∈ R M w −→ x ∈ R M v›

abbreviation universal :: ‹(′w, ′b) model ⇒ bool› where
‹universal M ≡ ∀ v w. v ∈ R M w›

4

lemma ‹irreflexive M =⇒ M , g, w |= @ i ¬ (♦ Nom i)›
proof −

assume ‹irreflexive M ›
then have ‹g i /∈ R M (g i)›

by simp
then have ‹¬ M , g, g i |= ♦ Nom i›

by simp
then have ‹M , g, g i |= ¬ (♦ Nom i)›

by simp
then show ‹M , g, w |= @ i ¬ (♦ Nom i)›

by simp
qed

We can automatically show some characterizations of frames by pure axioms.
lemma ‹irreflexive M = (∀ g w. M , g, w |= @ i ¬ (♦ Nom i))›

by auto

lemma ‹asymmetric M = (∀ g w. M , g, w |= @ i (� ¬ (♦ Nom i)))›
by auto

lemma ‹universal M = (∀ g w. M , g, w |= ♦ Nom i)›
by auto

3 Tableau

A block is defined as a list of formulas paired with an opening nominal. The
opening nominal is not necessarily in the list. A branch is a list of blocks.
type-synonym (′a, ′b) block = ‹(′a, ′b) fm list × ′b›
type-synonym (′a, ′b) branch = ‹(′a, ′b) block list›

abbreviation member-list :: ‹ ′a ⇒ ′a list ⇒ bool› (‹- ∈. -› [51 , 51] 50) where
‹x ∈. xs ≡ x ∈ set xs›

The predicate on presents the opening nominal as appearing on the block.
primrec on :: ‹(′a, ′b) fm ⇒ (′a, ′b) block ⇒ bool› (‹- on -› [51 , 51] 50) where

‹p on (ps, i) = (p ∈. ps ∨ p = Nom i)›

syntax
-Ballon :: ‹pttrn ⇒ ′a set ⇒ bool ⇒ bool› (‹(3∀ (-/on-)./ -)› [0 , 0 , 10] 10)
-Bexon :: ‹pttrn ⇒ ′a set ⇒ bool ⇒ bool› (‹(3∃ (-/on-)./ -)› [0 , 0 , 10] 10)

syntax-consts
-Ballon
 All and
-Bexon
 Ex

translations
∀ p on A. P ⇀ ∀ p. p on A −→ P

5

∃ p on A. P ⇀ ∃ p. p on A ∧ P

abbreviation list-nominals :: ‹(′a, ′b) fm list ⇒ ′b set› where
‹list-nominals ps ≡ (

⋃
p ∈ set ps. nominals p)›

primrec block-nominals :: ‹(′a, ′b) block ⇒ ′b set› where
‹block-nominals (ps, i) = {i} ∪ list-nominals ps›

definition branch-nominals :: ‹(′a, ′b) branch ⇒ ′b set› where
‹branch-nominals branch ≡ (

⋃
block ∈ set branch. block-nominals block)›

abbreviation at-in-branch :: ‹(′a, ′b) fm ⇒ ′b ⇒ (′a, ′b) branch ⇒ bool› where
‹at-in-branch p a branch ≡ ∃ ps. (ps, a) ∈. branch ∧ p on (ps, a)›

notation at-in-branch (‹- at - in -› [51 , 51 , 51] 50)

definition new :: ‹(′a, ′b) fm ⇒ ′b ⇒ (′a, ′b) branch ⇒ bool› where
‹new p a branch ≡ ¬ p at a in branch›

definition witnessed :: ‹(′a, ′b) fm ⇒ ′b ⇒ (′a, ′b) branch ⇒ bool› where
‹witnessed p a branch ≡ ∃ i. (@ i p) at a in branch ∧ (♦ Nom i) at a in branch›

A branch has a closing tableau iff it is contained in the following inductively
defined set. In that case I call the branch closeable. The first argument on
the left of the turnstile, A, is a fixed set of nominals restricting Nom. This
set rules out the copying of nominals and accessibility formulas introduced
by DiaP. The second argument is "potential", used to restrict the GoTo rule.
inductive STA :: ‹ ′b set ⇒ nat ⇒ (′a, ′b) branch ⇒ bool› (‹-, - ` -› [50 , 50 , 50]
50)

for A :: ‹ ′b set› where
Close:
‹p at i in branch =⇒ (¬ p) at i in branch =⇒
A, n ` branch›

| Neg:
‹(¬ ¬ p) at a in (ps, a) # branch =⇒
new p a ((ps, a) # branch) =⇒
A, Suc n ` (p # ps, a) # branch =⇒
A, n ` (ps, a) # branch›

| DisP:
‹(p ∨ q) at a in (ps, a) # branch =⇒
new p a ((ps, a) # branch) =⇒ new q a ((ps, a) # branch) =⇒
A, Suc n ` (p # ps, a) # branch =⇒ A, Suc n ` (q # ps, a) # branch =⇒
A, n ` (ps, a) # branch›

| DisN :
‹(¬ (p ∨ q)) at a in (ps, a) # branch =⇒
new (¬ p) a ((ps, a) # branch) ∨ new (¬ q) a ((ps, a) # branch) =⇒
A, Suc n ` ((¬ q) # (¬ p) # ps, a) # branch =⇒
A, n ` (ps, a) # branch›

| DiaP:

6

‹(♦ p) at a in (ps, a) # branch =⇒
i /∈ A ∪ branch-nominals ((ps, a) # branch) =⇒
@ a. p = Nom a =⇒ ¬ witnessed p a ((ps, a) # branch) =⇒
A, Suc n ` ((@ i p) # (♦ Nom i) # ps, a) # branch =⇒
A, n ` (ps, a) # branch›

| DiaN :
‹(¬ (♦ p)) at a in (ps, a) # branch =⇒
(♦ Nom i) at a in (ps, a) # branch =⇒
new (¬ (@ i p)) a ((ps, a) # branch) =⇒
A, Suc n ` ((¬ (@ i p)) # ps, a) # branch =⇒
A, n ` (ps, a) # branch›

| SatP:
‹(@ a p) at b in (ps, a) # branch =⇒
new p a ((ps, a) # branch) =⇒
A, Suc n ` (p # ps, a) # branch =⇒
A, n ` (ps, a) # branch›

| SatN :
‹(¬ (@ a p)) at b in (ps, a) # branch =⇒
new (¬ p) a ((ps, a) # branch) =⇒
A, Suc n ` ((¬ p) # ps, a) # branch =⇒
A, n ` (ps, a) # branch›

| GoTo:
‹i ∈ branch-nominals branch =⇒
A, n ` ([], i) # branch =⇒
A, Suc n ` branch›

| Nom:
‹p at b in (ps, a) # branch =⇒ Nom a at b in (ps, a) # branch =⇒
∀ i. p = Nom i ∨ p = (♦ Nom i) −→ i ∈ A =⇒
new p a ((ps, a) # branch) =⇒
A, Suc n ` (p # ps, a) # branch =⇒
A, n ` (ps, a) # branch›

abbreviation STA-ex-potential :: ‹ ′b set ⇒ (′a, ′b) branch ⇒ bool› (‹- ` -› [50 ,
50] 50) where

‹A ` branch ≡ ∃n. A, n ` branch›

lemma STA-Suc: ‹A, n ` branch =⇒ A, Suc n ` branch›
by (induct n branch rule: STA.induct) (simp-all add: STA.intros)

A verified derivation in the calculus.
lemma

fixes i
defines ‹p ≡ ¬ (@ i (Nom i))›
shows ‹A, Suc n ` [([p], a)]›

proof −
have ‹i ∈ branch-nominals [([p], a)]›

unfolding p-def branch-nominals-def by simp
then have ?thesis if ‹A, n ` [([], i), ([p], a)]›

using that GoTo by fast

7

moreover have ‹new (¬ Nom i) i [([], i), ([p], a)]›
unfolding p-def new-def by auto

moreover have ‹(¬ (@ i (Nom i))) at a in [([], i), ([p], a)]›
unfolding p-def by fastforce

ultimately have ?thesis if ‹A, Suc n ` [([¬ Nom i], i), ([p], a)]›
using that SatN by fast

then show ?thesis
by (meson Close list.set-intros(1) on.simps)

qed

4 Soundness

An i-block is satisfied by a model M and assignment g if all formulas on the
block are true under M at the world g i A branch is satisfied by a model
and assignment if all blocks on it are.
primrec block-sat :: ‹(′w, ′a) model ⇒ (′b ⇒ ′w) ⇒ (′a, ′b) block ⇒ bool›
(‹-, - |=B -› [50 , 50] 50) where
‹(M , g |=B (ps, i)) = (∀ p on (ps, i). M , g, g i |= p)›

abbreviation branch-sat ::
‹(′w, ′a) model ⇒ (′b ⇒ ′w) ⇒ (′a, ′b) branch ⇒ bool›
(‹-, - |=Θ -› [50 , 50] 50) where
‹M , g |=Θ branch ≡ ∀ (ps, i) ∈ set branch. M , g |=B (ps, i)›

lemma block-nominals:
‹p on block =⇒ i ∈ nominals p =⇒ i ∈ block-nominals block›
by (induct block) auto

lemma block-sat-fresh:
assumes ‹M , g |=B block› ‹i /∈ block-nominals block›
shows ‹M , g(i := v) |=B block›
using assms

proof (induct block)
case (Pair ps a)
then have ‹∀ p on (ps, a). i /∈ nominals p›

using block-nominals by fast
moreover have ‹i 6= a›

using calculation by simp
ultimately have ‹∀ p on (ps, a). M , g(i := v), (g(i := v)) a |= p›

using Pair semantics-fresh by fastforce
then show ?case

by (meson block-sat.simps)
qed

lemma branch-sat-fresh:
assumes ‹M , g |=Θ branch› ‹i /∈ branch-nominals branch›
shows ‹M , g(i := v) |=Θ branch›
using assms using block-sat-fresh unfolding branch-nominals-def by fast

8

If a branch has a derivation then it cannot be satisfied.
lemma soundness ′: ‹A, n ` branch =⇒ M , g |=Θ branch =⇒ False›
proof (induct n branch arbitrary: g rule: STA.induct)

case (Close p i branch)
then have ‹M , g, g i |= p› ‹M , g, g i |= ¬ p›

by fastforce+
then show ?case

by simp
next

case (Neg p a ps branch)
have ‹M , g, g a |= p›

using Neg(1 , 5) by fastforce
then have ‹M , g |=Θ (p # ps, a) # branch›

using Neg(5) by simp
then show ?case

using Neg(4) by blast
next

case (DisP p q a ps branch)
consider ‹M , g, g a |= p› | ‹M , g, g a |= q›

using DisP(1 , 8) by fastforce
then consider

‹M , g |=Θ (p # ps, a) # branch› |
‹M , g |=Θ (q # ps, a) # branch›
using DisP(8) by auto

then show ?case
using DisP(5 , 7) by metis

next
case (DisN p q a ps branch)
have ‹M , g, g a |= ¬ p› ‹M , g, g a |= ¬ q›

using DisN (1 , 5) by fastforce+
then have ‹M , g |=Θ ((¬ q) # (¬ p) # ps, a) # branch›

using DisN (5) by simp
then show ?case

using DisN (4) by blast
next

case (DiaP p a ps branch i)
then have ∗: ‹M , g |=B (ps, a)›

by simp

have ‹i /∈ nominals p›
using DiaP(1−2) unfolding branch-nominals-def by fastforce

have ‹M , g, g a |= ♦ p›
using DiaP(1 , 7) by fastforce

then obtain v where ‹v ∈ R M (g a)› ‹M , g, v |= p›
by auto

then have ‹M , g(i := v), v |= p›
using ‹i /∈ nominals p› semantics-fresh by metis

then have ‹M , g(i := v), g a |= @ i p›

9

by simp
moreover have ‹M , g(i := v), g a |= ♦ Nom i›

using ‹v ∈ R M (g a)› by simp
moreover have ‹M , g(i := v) |=Θ (ps, a) # branch›

using DiaP(2 , 7) branch-sat-fresh by fast
moreover have ‹i /∈ block-nominals (ps, a)›

using DiaP(2) unfolding branch-nominals-def by simp
then have ‹∀ p on (ps, a). M , g(i := v), g a |= p›

using ∗ semantics-fresh by fastforce
ultimately have

‹M , g(i := v) |=Θ ((@ i p) # (♦ Nom i) # ps, a) # branch›
by auto

then show ?case
using DiaP by blast

next
case (DiaN p a ps branch i)
have ‹M , g, g a |= ¬ (♦ p)› ‹M , g, g a |= ♦ Nom i›

using DiaN (1−2 , 6) by fastforce+
then have ‹M , g, g a |= ¬ (@ i p)›

by simp
then have ‹M , g |=Θ ((¬ (@ i p)) # ps, a) # branch›

using DiaN (6) by simp
then show ?thesis

using DiaN (5) by blast
next

case (SatP a p b ps branch)
have ‹M , g, g a |= p›

using SatP(1 , 5) by fastforce
then have ‹M , g |=Θ (p # ps, a) # branch›

using SatP(5) by simp
then show ?case

using SatP(4) by blast
next

case (SatN a p b ps branch)
have ‹M , g, g a |= ¬ p›

using SatN (1 , 5) by fastforce
then have ‹M , g |=Θ ((¬ p) # ps, a) # branch›

using SatN (5) by simp
then show ?case

using SatN (4) by blast
next

case (GoTo i branch)
then show ?case

by auto
next

case (Nom p b ps a branch)
have ‹M , g, g b |= p› ‹M , g, g b |= Nom a›

using Nom(1−2 , 7) by fastforce+
moreover have ‹M , g |=B (ps, a)›

10

using Nom(7) by simp
ultimately have ‹M , g |=B (p # ps, a)›

by simp
then have ‹M , g |=Θ (p # ps, a) # branch›

using Nom(7) by simp
then show ?case

using Nom(6) by blast
qed

lemma block-sat: ‹∀ p on block. M , g, w |= p =⇒ M , g |=B block›
by (induct block) auto

lemma branch-sat:
assumes ‹∀ (ps, i) ∈ set branch. ∀ p on (ps, i). M , g, w |= p›
shows ‹M , g |=Θ branch›
using assms block-sat by fast

lemma soundness:
assumes ‹A, n ` branch›
shows ‹∃ block ∈ set branch. ∃ p on block. ¬ M , g, w |= p›
using assms soundness ′ branch-sat by fast

corollary ‹¬ A, n ` []›
using soundness by fastforce

theorem soundness-fresh:
assumes ‹A, n ` [([¬ p], i)]› ‹i /∈ nominals p›
shows ‹M , g, w |= p›

proof −
from assms(1) have ‹M , g, g i |= p› for g

using soundness by fastforce
then have ‹M , g(i := w), (g(i := w)) i |= p›

by blast
then have ‹M , g(i := w), w |= p›

by simp
then have ‹M , g(i := g i), w |= p›

using assms(2) semantics-fresh by metis
then show ?thesis

by simp
qed

5 No Detours

We only need to spend initial potential when we apply GoTo twice in a row.
Otherwise another rule will have been applied in-between that justifies the
GoTo. Therefore, by filtering out detours we can close any closeable branch
starting from a single unit of potential.
primrec nonempty :: ‹(′a, ′b) block ⇒ bool› where

11

‹nonempty (ps, i) = (ps 6= [])›

lemma nonempty-Suc:
assumes

‹A, n ` (ps, a) # filter nonempty left @ right›
‹q at a in (ps, a) # filter nonempty left @ right› ‹q 6= Nom a›

shows ‹A, Suc n ` filter nonempty ((ps, a) # left) @ right›
proof (cases ps)

case Nil
then have ‹a ∈ branch-nominals (filter nonempty left @ right)›

unfolding branch-nominals-def using assms(2−3) by fastforce
then show ?thesis

using assms(1) Nil GoTo by auto
next

case Cons
then show ?thesis

using assms(1) STA-Suc by auto
qed

lemma STA-nonempty:
‹A, n ` left @ right =⇒ A, Suc m ` filter nonempty left @ right›

proof (induct n ‹left @ right› arbitrary: left right rule: STA.induct)
case (Close p i n)
have ‹(¬ p) at i in filter nonempty left @ right›

using Close(2) by fastforce
moreover from this have ‹p at i in filter nonempty left @ right›

using Close(1) by fastforce
ultimately show ?case

using STA.Close by fast
next

case (Neg p a ps branch n)
then show ?case
proof (cases left)

case Nil
then have ‹A, Suc m ` (p # ps, a) # branch›

using Neg(4) by fastforce
then have ‹A, m ` (ps, a) # branch›

using Neg(1−2) STA.Neg by fast
then show ?thesis

using Nil Neg(5) STA-Suc by auto
next

case (Cons - left ′)
then have ‹A, Suc m ` (p # ps, a) # filter nonempty left ′ @ right›

using Neg(4)[where left=‹- # left ′›] Neg(5) by fastforce
moreover have ∗: ‹(¬ ¬ p) at a in (ps, a) # filter nonempty left ′ @ right›

using Cons Neg(1 , 5) by fastforce
moreover have ‹new p a ((ps, a) # filter nonempty left ′ @ right)›

using Cons Neg(2 , 5) unfolding new-def by auto
ultimately have ‹A, m ` (ps, a) # filter nonempty left ′ @ right›

12

using STA.Neg by fast
then have ‹A, Suc m ` filter nonempty ((ps, a) # left ′) @ right›

using ∗ nonempty-Suc by fast
then show ?thesis

using Cons Neg(5) by auto
qed

next
case (DisP p q a ps branch n)
then show ?case
proof (cases left)

case Nil
then have ‹A, Suc m ` (p # ps, a) # branch› ‹A, Suc m ` (q # ps, a) #

branch›
using DisP(5 , 7) by fastforce+

then have ‹A, m ` (ps, a) # branch›
using DisP(1−3) STA.DisP by fast

then show ?thesis
using Nil DisP(8) STA-Suc by auto

next
case (Cons - left ′)
then have

‹A, Suc m ` (p # ps, a) # filter nonempty left ′ @ right›
‹A, Suc m ` (q # ps, a) # filter nonempty left ′ @ right›
using DisP(5 , 7)[where left=‹- # left ′›] DisP(8) by fastforce+

moreover have ∗: ‹(p ∨ q) at a in (ps, a) # filter nonempty left ′ @ right›
using Cons DisP(1 , 8) by fastforce

moreover have
‹new p a ((ps, a) # filter nonempty left ′ @ right)›
‹new q a ((ps, a) # filter nonempty left ′ @ right)›
using Cons DisP(2−3 , 8) unfolding new-def by auto

ultimately have ‹A, m ` (ps, a) # filter nonempty left ′ @ right›
using STA.DisP by fast

then have ‹A, Suc m ` filter nonempty ((ps, a) # left ′) @ right›
using ∗ nonempty-Suc by fast

then show ?thesis
using Cons DisP(8) by auto

qed
next

case (DisN p q a ps branch n)
then show ?case
proof (cases left)

case Nil
then have ‹A, Suc m ` ((¬ q) # (¬ p) # ps, a) # branch›

using DisN (4) by fastforce
then have ‹A, m ` (ps, a) # branch›

using DisN (1−2) STA.DisN by fast
then show ?thesis

using Nil DisN (5) STA-Suc by auto
next

13

case (Cons - left ′)
then have ‹A, Suc m ` ((¬ q) # (¬ p) # ps, a) # filter nonempty left ′ @

right›
using DisN (4)[where left=‹- # left ′›] DisN (5) by fastforce

moreover have ∗: ‹(¬ (p ∨ q)) at a in (ps, a) # filter nonempty left ′ @ right›
using Cons DisN (1 , 5) by fastforce

moreover consider
‹new (¬ p) a ((ps, a) # filter nonempty left ′ @ right)› |
‹new (¬ q) a ((ps, a) # filter nonempty left ′ @ right)›
using Cons DisN (2 , 5) unfolding new-def by auto

ultimately have ‹A, m ` (ps, a) # filter nonempty left ′ @ right›
using STA.DisN by metis

then have ‹A, Suc m ` filter nonempty ((ps, a) # left ′) @ right›
using ∗ nonempty-Suc by fast

then show ?thesis
using Cons DisN (5) by auto

qed
next

case (DiaP p a ps branch i n)
then show ?case
proof (cases left)

case Nil
then have ‹A, Suc m ` ((@ i p) # (♦ Nom i) # ps, a) # branch›

using DiaP(6) by fastforce
then have ‹A, m ` (ps, a) # branch›

using DiaP(1−4) STA.DiaP by fast
then show ?thesis

using Nil DiaP(7) STA-Suc by auto
next

case (Cons - left ′)
then have ‹A, Suc m ` ((@ i p) # (♦ Nom i) # ps, a) # filter nonempty left ′

@ right›
using DiaP(6)[where left=‹- # left ′›] DiaP(7) by fastforce

moreover have ∗: ‹(♦ p) at a in (ps, a) # filter nonempty left ′ @ right›
using Cons DiaP(1 , 7) by fastforce

moreover have ‹i /∈ A ∪ branch-nominals ((ps, a) # filter nonempty left ′ @
right)›

using Cons DiaP(2 , 7) unfolding branch-nominals-def by auto
moreover have ‹¬ witnessed p a ((ps, a) # filter nonempty left ′ @ right)›

using Cons DiaP(4 , 7) unfolding witnessed-def by auto
ultimately have ‹A, m ` (ps, a) # filter nonempty left ′ @ right›

using DiaP(3) STA.DiaP by fast
then have ‹A, Suc m ` filter nonempty ((ps, a) # left ′) @ right›

using ∗ nonempty-Suc by fast
then show ?thesis

using Cons DiaP(7) by auto
qed

next
case (DiaN p a ps branch i n)

14

then show ?case
proof (cases left)

case Nil
then have ‹A, Suc m ` ((¬ (@ i p)) # ps, a) # branch›

using DiaN (5) by fastforce
then have ‹A, m ` (ps, a) # branch›

using DiaN (1−3) STA.DiaN by fast
then show ?thesis

using Nil DiaN (6) STA-Suc by auto
next

case (Cons - left ′)
then have ‹A, Suc m ` ((¬ (@ i p)) # ps, a) # filter nonempty left ′ @ right›

using DiaN (5)[where left=‹- # left ′›] DiaN (6) by fastforce
moreover have ∗: ‹(¬ (♦ p)) at a in (ps, a) # filter nonempty left ′ @ right›

using Cons DiaN (1 , 6) by fastforce
moreover have ∗: ‹(♦ Nom i) at a in (ps, a) # filter nonempty left ′ @ right›

using Cons DiaN (2 , 6) by fastforce
moreover have ‹new (¬ (@ i p)) a ((ps, a) # filter nonempty left ′ @ right)›

using Cons DiaN (3 , 6) unfolding new-def by auto
ultimately have ‹A, m ` (ps, a) # filter nonempty left ′ @ right›

using STA.DiaN by fast
then have ‹A, Suc m ` filter nonempty ((ps, a) # left ′) @ right›

using ∗ nonempty-Suc by fast
then show ?thesis

using Cons DiaN (6) by auto
qed

next
case (SatP a p b ps branch n)
then show ?case
proof (cases left)

case Nil
then have ‹A, Suc m ` (p # ps, a) # branch›

using SatP(4) by fastforce
then have ‹A, m ` (ps, a) # branch›

using SatP(1−2) STA.SatP by fast
then show ?thesis

using Nil SatP(5) STA-Suc by auto
next

case (Cons - left ′)
then have ‹A, Suc m ` (p # ps, a) # filter nonempty left ′ @ right›

using SatP(4)[where left=‹- # left ′›] SatP(5) by fastforce
moreover have ‹(@ a p) at b in (ps, a) # filter nonempty left ′ @ right›

using Cons SatP(1 , 5) by fastforce
moreover have ‹new p a ((ps, a) # filter nonempty left ′ @ right)›

using Cons SatP(2 , 5) unfolding new-def by auto
ultimately have ∗: ‹A, m ` (ps, a) # filter nonempty left ′ @ right›

using STA.SatP by fast
then have ‹A, Suc m ` filter nonempty ((ps, a) # left ′) @ right›
proof (cases ps)

15

case Nil
then have ‹a ∈ branch-nominals (filter nonempty left ′ @ right)›

unfolding branch-nominals-def using SatP(1 , 5) Cons by fastforce
then show ?thesis

using ∗ Nil GoTo by fastforce
next

case Cons
then show ?thesis

using ∗ STA-Suc by auto
qed
then show ?thesis

using Cons SatP(5) by auto
qed

next
case (SatN a p b ps branch n)
then show ?case
proof (cases left)

case Nil
then have ‹A, Suc m ` ((¬ p) # ps, a) # branch›

using SatN (4) by fastforce
then have ‹A, m ` (ps, a) # branch›

using SatN (1−2) STA.SatN by fast
then show ?thesis

using Nil SatN (5) STA-Suc by auto
next

case (Cons - left ′)
then have ‹A, Suc m ` ((¬ p) # ps, a) # filter nonempty left ′ @ right›

using SatN (4)[where left=‹- # left ′›] SatN (5) by fastforce
moreover have ‹(¬ (@ a p)) at b in (ps, a) # filter nonempty left ′ @ right›

using Cons SatN (1 , 5) by fastforce
moreover have ‹new (¬ p) a ((ps, a) # filter nonempty left ′ @ right)›

using Cons SatN (2 , 5) unfolding new-def by auto
ultimately have ∗: ‹A, m ` (ps, a) # filter nonempty left ′ @ right›

using STA.SatN by fast
then have ‹A, Suc m ` filter nonempty ((ps, a) # left ′) @ right›
proof (cases ps)

case Nil
then have ‹a ∈ branch-nominals (filter nonempty left ′ @ right)›

unfolding branch-nominals-def using SatN (1 , 5) Cons by fastforce
then show ?thesis

using ∗ Nil GoTo by fastforce
next

case Cons
then show ?thesis

using ∗ STA-Suc by auto
qed
then show ?thesis

using Cons SatN (5) by auto
qed

16

next
case (GoTo i n)
show ?case

using GoTo(3)[where left=‹([], i) # left›] by simp
next

case (Nom p b ps a branch n)
then show ?case
proof (cases left)

case Nil
then have ‹A, Suc m ` (p # ps, a) # branch›

using Nom(6) by fastforce
then have ‹A, m ` (ps, a) # branch›

using Nom(1−4) STA.Nom by metis
then show ?thesis

using Nil Nom(7) STA-Suc by auto
next

case (Cons - left ′)
then have ‹A, Suc m ` (p # ps, a) # filter nonempty left ′ @ right›

using Nom(6)[where left=‹- # left ′›] Nom(7) by fastforce
moreover have

‹p at b in (ps, a) # filter nonempty left ′ @ right› and a:
‹Nom a at b in (ps, a) # filter nonempty left ′ @ right›
using Cons Nom(1−2 , 7) by simp-all (metis empty-iff empty-set)+

moreover have ‹new p a ((ps, a) # filter nonempty left ′ @ right)›
using Cons Nom(4 , 7) unfolding new-def by auto

ultimately have ∗: ‹A, m ` (ps, a) # filter nonempty left ′ @ right›
using Nom(3) STA.Nom by metis

then have ‹A, Suc m ` filter nonempty ((ps, a) # left ′) @ right›
proof (cases ps)

case Nil
moreover have ‹a 6= b›

using Nom(1 , 4) unfolding new-def by blast
ultimately have ‹a ∈ branch-nominals (filter nonempty left ′ @ right)›

using a unfolding branch-nominals-def by fastforce
then show ?thesis

using ∗ Nil GoTo by auto
next

case Cons
then show ?thesis

using ∗ STA-Suc by auto
qed
then show ?thesis

using Cons Nom(7) by auto
qed

qed

theorem STA-potential: ‹A, n ` branch =⇒ A, Suc m ` branch›
using STA-nonempty[where left=‹[]›] by auto

17

corollary STA-one: ‹A, n ` branch =⇒ A, 1 ` branch›
using STA-potential by auto

5.1 Free GoTo

The above result allows us to prove a version of GoTo that works "for free."
lemma GoTo ′:

assumes ‹A, Suc n ` ([], i) # branch› ‹i ∈ branch-nominals branch›
shows ‹A, Suc n ` branch›
using assms GoTo STA-potential by fast

6 Indexed Mapping

This section contains some machinery for showing admissible rules.

6.1 Indexing

We use pairs of natural numbers to index into the branch. The first compo-
nent specifies the block and the second specifies the formula on that block.
We index from the back to ensure that indices are stable under the addition
of new formulas and blocks.
primrec rev-nth :: ‹ ′a list ⇒ nat ⇒ ′a option› (infixl ‹!.› 100) where

‹[] !. v = None›
| ‹(x # xs) !. v = (if length xs = v then Some x else xs !. v)›

lemma rev-nth-last: ‹xs !. 0 = Some x =⇒ last xs = x›
by (induct xs) auto

lemma rev-nth-zero: ‹(xs @ [x]) !. 0 = Some x›
by (induct xs) auto

lemma rev-nth-snoc: ‹(xs @ [x]) !. Suc v = Some y =⇒ xs !. v = Some y›
by (induct xs) auto

lemma rev-nth-Suc: ‹(xs @ [x]) !. Suc v = xs !. v›
by (induct xs) auto

lemma rev-nth-bounded: ‹v < length xs =⇒ ∃ x. xs !. v = Some x›
by (induct xs) simp-all

lemma rev-nth-Cons: ‹xs !. v = Some y =⇒ (x # xs) !. v = Some y›
proof (induct xs arbitrary: v rule: rev-induct)

case (snoc a xs)
then show ?case
proof (induct v)

case (Suc v)

18

then have ‹xs !. v = Some y›
using rev-nth-snoc by fast

then have ‹(x # xs) !. v = Some y›
using Suc(2) by blast

then show ?case
using Suc(3) by auto

qed simp
qed simp

lemma rev-nth-append: ‹xs !. v = Some y =⇒ (ys @ xs) !. v = Some y›
using rev-nth-Cons[where xs=‹- @ xs›] by (induct ys) simp-all

lemma rev-nth-mem: ‹block ∈. branch ←→ (∃ v. branch !. v = Some block)›
proof

assume ‹block ∈. branch›
then show ‹∃ v. branch !. v = Some block›
proof (induct branch)

case (Cons block ′ branch)
then show ?case
proof (cases ‹block = block ′›)

case False
then have ‹∃ v. branch !. v = Some block›

using Cons by simp
then show ?thesis

using rev-nth-Cons by fast
qed auto

qed simp
next

assume ‹∃ v. branch !. v = Some block›
then show ‹block ∈. branch›
proof (induct branch)

case (Cons block ′ branch)
then show ?case

by simp (metis option.sel)
qed simp

qed

lemma rev-nth-on: ‹p on (ps, i) ←→ (∃ v. ps !. v = Some p) ∨ p = Nom i›
by (simp add: rev-nth-mem)

lemma rev-nth-Some: ‹xs !. v = Some y =⇒ v < length xs›
proof (induct xs arbitrary: v rule: rev-induct)

case (snoc x xs)
then show ?case

by (induct v) (simp-all, metis rev-nth-snoc)
qed simp

lemma index-Cons:
assumes ‹((ps, a) # branch) !. v = Some (qs, b)› ‹qs !. v ′ = Some q›

19

shows ‹∃ qs ′. ((p # ps, a) # branch) !. v = Some (qs ′, b) ∧ qs ′ !. v ′ = Some q›
proof −

have
‹((p # ps, a) # branch) !. v = Some (qs, b) ∨
((p # ps, a) # branch) !. v = Some (p # qs, b)›

using assms(1) by auto
moreover have ‹qs !. v ′ = Some q› ‹(p # qs) !. v ′ = Some q›

using assms(2) rev-nth-Cons by fast+
ultimately show ?thesis

by fastforce
qed

6.2 Mapping
primrec mapi :: ‹(nat ⇒ ′a ⇒ ′b) ⇒ ′a list ⇒ ′b list› where

‹mapi f [] = []›
| ‹mapi f (x # xs) = f (length xs) x # mapi f xs›

primrec mapi-block ::
‹(nat ⇒ (′a, ′b) fm ⇒ (′a, ′b) fm) ⇒ ((′a, ′b) block ⇒ (′a, ′b) block)› where
‹mapi-block f (ps, i) = (mapi f ps, i)›

definition mapi-branch ::
‹(nat ⇒ nat ⇒ (′a, ′b) fm ⇒ (′a, ′b) fm) ⇒ ((′a, ′b) branch ⇒ (′a, ′b) branch)›

where
‹mapi-branch f branch ≡ mapi (λv. mapi-block (f v)) branch›

abbreviation mapper ::
‹((′a, ′b) fm ⇒ (′a, ′b) fm) ⇒
(nat × nat) set ⇒ nat ⇒ nat ⇒ (′a, ′b) fm ⇒ (′a, ′b) fm› where

‹mapper f xs v v ′ p ≡ (if (v, v ′) ∈ xs then f p else p)›

lemma mapi-block-add-oob:
assumes ‹length ps ≤ v ′›
shows

‹mapi-block (mapper f ({(v, v ′)} ∪ xs) v) (ps, i) =
mapi-block (mapper f xs v) (ps, i)›

using assms by (induct ps) simp-all

lemma mapi-branch-add-oob:
assumes ‹length branch ≤ v›
shows

‹mapi-branch (mapper f ({(v, v ′)} ∪ xs)) branch =
mapi-branch (mapper f xs) branch›

unfolding mapi-branch-def using assms by (induct branch) simp-all

lemma mapi-branch-head-add-oob:
‹mapi-branch (mapper f ({(length branch, length ps)} ∪ xs)) ((ps, a) # branch)

=

20

mapi-branch (mapper f xs) ((ps, a) # branch)›
using mapi-branch-add-oob[where branch=branch] unfolding mapi-branch-def
using mapi-block-add-oob[where ps=ps] by simp

lemma mapi-branch-mem:
assumes ‹(ps, i) ∈. branch›
shows ‹∃ v. (mapi (f v) ps, i) ∈. mapi-branch f branch›
unfolding mapi-branch-def using assms by (induct branch) auto

lemma rev-nth-mapi-branch:
assumes ‹branch !. v = Some (ps, a)›
shows ‹(mapi (f v) ps, a) ∈. mapi-branch f branch›
unfolding mapi-branch-def using assms
by (induct branch) (simp-all, metis mapi-block.simps option.inject)

lemma rev-nth-mapi-block:
assumes ‹ps !. v ′ = Some p›
shows ‹f v ′ p on (mapi f ps, a)›
using assms by (induct ps) (simp-all, metis option.sel)

lemma mapi-append:
‹mapi f (xs @ ys) = mapi (λv. f (v + length ys)) xs @ mapi f ys›
by (induct xs) simp-all

lemma mapi-block-id: ‹mapi-block (mapper f {} v) (ps, i) = (ps, i)›
by (induct ps) auto

lemma mapi-branch-id: ‹mapi-branch (mapper f {}) branch = branch›
unfolding mapi-branch-def using mapi-block-id by (induct branch) auto

lemma length-mapi: ‹length (mapi f xs) = length xs›
by (induct xs) auto

lemma mapi-rev-nth:
assumes ‹xs !. v = Some x›
shows ‹mapi f xs !. v = Some (f v x)›
using assms

proof (induct xs arbitrary: v)
case (Cons y xs)
have ∗: ‹mapi f (y # xs) = f (length xs) y # mapi f xs›

by simp
show ?case
proof (cases ‹v = length xs›)

case True
then have ‹mapi f (y # xs) !. v = Some (f (length xs) y)›

using length-mapi ∗ by (metis rev-nth.simps(2))
then show ?thesis

using Cons.prems True by auto
next

21

case False
then show ?thesis

using ∗ Cons length-mapi by (metis rev-nth.simps(2))
qed

qed simp

7 Duplicate Formulas
7.1 Removable indices
abbreviation ‹proj ≡ Equiv-Relations.proj›

definition all-is :: ‹(′a, ′b) fm ⇒ (′a, ′b) fm list ⇒ nat set ⇒ bool› where
‹all-is p ps xs ≡ ∀ v ∈ xs. ps !. v = Some p›

definition is-at :: ‹(′a, ′b) fm ⇒ ′b ⇒ (′a, ′b) branch ⇒ nat ⇒ nat ⇒ bool› where
‹is-at p i branch v v ′ ≡ ∃ ps. branch !. v = Some (ps, i) ∧ ps !. v ′ = Some p›

This definition is slightly complicated by the inability to index the opening
nominal.
definition is-elsewhere :: ‹(′a, ′b) fm ⇒ ′b ⇒ (′a, ′b) branch ⇒ (nat × nat) set
⇒ bool› where

‹is-elsewhere p i branch xs ≡ ∃w w ′ ps. (w, w ′) /∈ xs ∧
branch !. w = Some (ps, i) ∧ (p = Nom i ∨ ps !. w ′ = Some p)›

definition Dup :: ‹(′a, ′b) fm ⇒ ′b ⇒ (′a, ′b) branch ⇒ (nat × nat) set ⇒ bool›
where

‹Dup p i branch xs ≡ ∀ (v, v ′) ∈ xs.
is-at p i branch v v ′ ∧ is-elsewhere p i branch xs›

lemma Dup-all-is:
assumes ‹Dup p i branch xs› ‹branch !. v = Some (ps, a)›
shows ‹all-is p ps (proj xs v)›
using assms unfolding Dup-def is-at-def all-is-def proj-def by auto

lemma Dup-branch:
‹Dup p i branch xs =⇒ Dup p i (extra @ branch) xs›
unfolding Dup-def is-at-def is-elsewhere-def using rev-nth-append by fast

lemma Dup-block:
assumes ‹Dup p i ((ps, a) # branch) xs›
shows ‹Dup p i ((ps ′ @ ps, a) # branch) xs›
unfolding Dup-def

proof safe
fix v v ′

assume ‹(v, v ′) ∈ xs›
then show ‹is-at p i ((ps ′ @ ps, a) # branch) v v ′›

using assms rev-nth-append unfolding Dup-def is-at-def by fastforce
next

22

fix v v ′

assume ‹(v, v ′) ∈ xs›
then obtain w w ′ qs where

‹(w, w ′) /∈ xs› ‹((ps, a) # branch) !. w = Some (qs, i)›
‹p = Nom i ∨ qs !. w ′ = Some p›
using assms unfolding Dup-def is-elsewhere-def by blast

then have
‹∃ qs. ((ps ′ @ ps, a) # branch) !. w = Some (qs, i) ∧
(p = Nom i ∨ qs !. w ′ = Some p)›

using rev-nth-append by fastforce
then show ‹is-elsewhere p i ((ps ′ @ ps, a) # branch) xs›

unfolding is-elsewhere-def using ‹(w, w ′) /∈ xs› by blast
qed

definition only-touches :: ‹ ′b ⇒ (′a, ′b) branch ⇒ (nat × nat) set ⇒ bool› where
‹only-touches i branch xs ≡ ∀ (v, v ′) ∈ xs. ∀ ps a. branch !. v = Some (ps, a) −→

i = a›

lemma Dup-touches: ‹Dup p i branch xs =⇒ only-touches i branch xs›
unfolding Dup-def is-at-def only-touches-def by auto

lemma only-touches-opening:
assumes ‹only-touches i branch xs› ‹(v, v ′) ∈ xs› ‹branch !. v = Some (ps, a)›
shows ‹i = a›
using assms unfolding only-touches-def is-at-def by auto

lemma Dup-head:
‹Dup p i ((ps, a) # branch) xs =⇒ Dup p i ((q # ps, a) # branch) xs›
using Dup-block[where ps ′=‹[-]›] by simp

lemma Dup-head-oob ′:
assumes ‹Dup p i ((ps, a) # branch) xs›
shows ‹(length branch, k + length ps) /∈ xs›
using assms rev-nth-Some unfolding Dup-def is-at-def by fastforce

lemma Dup-head-oob:
assumes ‹Dup p i ((ps, a) # branch) xs›
shows ‹(length branch, length ps) /∈ xs›
using assms Dup-head-oob ′[where k=0] by fastforce

7.2 Omitting formulas
primrec omit :: ‹nat set ⇒ (′a, ′b) fm list ⇒ (′a, ′b) fm list› where

‹omit xs [] = []›
| ‹omit xs (p # ps) = (if length ps ∈ xs then omit xs ps else p # omit xs ps)›

primrec omit-block :: ‹nat set ⇒ (′a, ′b) block ⇒ (′a, ′b) block› where
‹omit-block xs (ps, a) = (omit xs ps, a)›

23

definition omit-branch :: ‹(nat × nat) set ⇒ (′a, ′b) branch ⇒ (′a, ′b) branch›
where

‹omit-branch xs branch ≡ mapi (λv. omit-block (proj xs v)) branch›

lemma omit-mem: ‹ps !. v = Some p =⇒ v /∈ xs =⇒ p ∈. omit xs ps›
proof (induct ps)

case (Cons q ps)
then show ?case

by (cases ‹v = length ps›) simp-all
qed simp

lemma omit-id: ‹omit {} ps = ps›
by (induct ps) auto

lemma omit-block-id: ‹omit-block {} block = block›
using omit-id by (cases block) simp

lemma omit-branch-id: ‹omit-branch {} branch = branch›
unfolding omit-branch-def proj-def using omit-block-id
by (induct branch) fastforce+

lemma omit-branch-mem-diff-opening:
assumes ‹only-touches i branch xs› ‹(ps, a) ∈. branch› ‹i 6= a›
shows ‹(ps, a) ∈. omit-branch xs branch›

proof −
obtain v where v: ‹branch !. v = Some (ps, a)›

using assms(2) rev-nth-mem by fast
then have ‹omit-branch xs branch !. v = Some (omit (proj xs v) ps, a)›

unfolding omit-branch-def by (simp add: mapi-rev-nth)
then have ∗: ‹(omit (proj xs v) ps, a) ∈. omit-branch xs branch›

using rev-nth-mem by fast
moreover have ‹proj xs v = {}›

unfolding proj-def using assms(1 , 3) v only-touches-opening by fast
then have ‹omit (proj xs v) ps = ps›

using omit-id by auto
ultimately show ?thesis

by simp
qed

lemma Dup-omit-branch-mem-same-opening:
assumes ‹Dup p i branch xs› ‹p at i in branch›
shows ‹p at i in omit-branch xs branch›

proof −
obtain ps where ps: ‹(ps, i) ∈. branch› ‹p on (ps, i)›

using assms(2) by blast
then obtain v where v: ‹branch !. v = Some (ps, i)›

using rev-nth-mem by fast
then have ‹omit-branch xs branch !. v = Some (omit (proj xs v) ps, i)›

unfolding omit-branch-def by (simp add: mapi-rev-nth)

24

then have ∗: ‹(omit (proj xs v) ps, i) ∈. omit-branch xs branch›
using rev-nth-mem by fast

consider
v ′ where ‹ps !. v ′ = Some p› ‹(v, v ′) ∈ xs› |
v ′ where ‹ps !. v ′ = Some p› ‹(v, v ′) /∈ xs› |
‹p = Nom i›
using ps v rev-nth-mem by fastforce

then show ?thesis
proof cases

case (1 v ′)
then obtain qs w w ′ where qs:

‹(w, w ′) /∈ xs› ‹branch !. w = Some (qs, i)› ‹p = Nom i ∨ qs !. w ′ = Some p›
using assms(1) unfolding Dup-def is-elsewhere-def by blast

then have ‹omit-branch xs branch !. w = Some (omit (proj xs w) qs, i)›
unfolding omit-branch-def by (simp add: mapi-rev-nth)

then have ‹(omit (proj xs w) qs, i) ∈. omit-branch xs branch›
using rev-nth-mem by fast

moreover have ‹p on (omit (proj xs w) qs, i)›
unfolding proj-def using qs(1 , 3) omit-mem by fastforce

ultimately show ?thesis
by blast

next
case (2 v ′)
then show ?thesis

using ∗ omit-mem unfolding proj-def
by (metis Image-singleton-iff on.simps)

next
case 3
then show ?thesis

using ∗ by auto
qed

qed

lemma omit-del:
assumes ‹p ∈. ps› ‹p /∈ set (omit xs ps)›
shows ‹∃ v. ps !. v = Some p ∧ v ∈ xs›
using assms omit-mem rev-nth-mem by metis

lemma omit-all-is:
assumes ‹all-is p ps xs› ‹q ∈. ps› ‹q /∈ set (omit xs ps)›
shows ‹q = p›
using assms omit-del unfolding all-is-def by fastforce

definition all-is-branch :: ‹(′a, ′b) fm ⇒ ′b ⇒ (′a, ′b) branch ⇒ (nat × nat) set
⇒ bool› where

‹all-is-branch p i branch xs ≡ ∀ (v, v ′) ∈ xs. v < length branch −→ is-at p i branch
v v ′›

25

lemma all-is-branch:
‹all-is-branch p i branch xs =⇒ branch !. v = Some (ps, a) =⇒ all-is p ps (proj

xs v)›
unfolding all-is-branch-def is-at-def all-is-def proj-def using rev-nth-Some by

fastforce

lemma Dup-all-is-branch: ‹Dup p i branch xs =⇒ all-is-branch p i branch xs›
unfolding all-is-branch-def Dup-def by fast

lemma omit-branch-mem-diff-formula:
assumes ‹all-is-branch p i branch xs› ‹q at i in branch› ‹p 6= q›
shows ‹q at i in omit-branch xs branch›

proof −
obtain ps where ps: ‹(ps, i) ∈. branch› ‹q on (ps, i)›

using assms(2) by blast
then obtain v where v: ‹branch !. v = Some (ps, i)›

using rev-nth-mem by fast
then have ‹omit-branch xs branch !. v = Some (omit (proj xs v) ps, i)›

unfolding omit-branch-def by (simp add: mapi-rev-nth)
then have ∗: ‹(omit (proj xs v) ps, i) ∈. omit-branch xs branch›

using rev-nth-mem by fast
moreover have ‹all-is p ps (proj xs v)›

using assms(1) v all-is-branch by fast
then have ‹q on (omit (proj xs v) ps, i)›

using ps assms(3) omit-all-is by auto
ultimately show ?thesis

by blast
qed

lemma Dup-omit-branch-mem:
assumes ‹Dup p i branch xs› ‹q at a in branch›
shows ‹q at a in omit-branch xs branch›
using assms omit-branch-mem-diff-opening Dup-touches Dup-omit-branch-mem-same-opening

omit-branch-mem-diff-formula Dup-all-is-branch by fast

lemma omit-set: ‹set (omit xs ps) ⊆ set ps›
by (induct ps) auto

lemma on-omit: ‹p on (omit xs ps, i) =⇒ p on (ps, i)›
using omit-set by auto

lemma all-is-set:
assumes ‹all-is p ps xs›
shows ‹{p} ∪ set (omit xs ps) = {p} ∪ set ps›
using assms omit-all-is omit-set unfolding all-is-def by fast

lemma all-is-list-nominals:
assumes ‹all-is p ps xs›
shows ‹nominals p ∪ list-nominals (omit xs ps) = nominals p ∪ list-nominals

26

ps›
using assms all-is-set by fastforce

lemma all-is-block-nominals:
assumes ‹all-is p ps xs›
shows ‹nominals p ∪ block-nominals (omit xs ps, i) = nominals p ∪ block-nominals

(ps, i)›
using assms by (simp add: all-is-list-nominals)

lemma all-is-branch-nominals ′:
assumes ‹all-is-branch p i branch xs›
shows

‹nominals p ∪ branch-nominals (omit-branch xs branch) =
nominals p ∪ branch-nominals branch›

proof −
have ‹∀ (v, v ′) ∈ xs. v < length branch −→ is-at p i branch v v ′›

using assms unfolding all-is-branch-def is-at-def by auto
then show ?thesis
proof (induct branch)

case Nil
then show ?case

unfolding omit-branch-def by simp
next

case (Cons block branch)
then show ?case
proof (cases block)

case (Pair ps a)
have ‹∀ (v, v ′) ∈ xs. v < length branch −→ is-at p i branch v v ′›

using Cons(2) rev-nth-Cons unfolding is-at-def by auto
then have

‹nominals p ∪ branch-nominals (omit-branch xs branch) =
nominals p ∪ branch-nominals branch›

using Cons(1) by blast
then have

‹nominals p ∪ branch-nominals (omit-branch xs ((ps, a) # branch)) =
nominals p ∪ block-nominals (omit (proj xs (length branch)) ps, a) ∪
branch-nominals branch›

unfolding branch-nominals-def omit-branch-def by auto
moreover have ‹all-is p ps (proj xs (length branch))›

using Cons(2) Pair unfolding proj-def all-is-def is-at-def by auto
then have

‹nominals p ∪ block-nominals (omit (proj xs (length branch)) ps, a) =
nominals p ∪ block-nominals (ps, a)›

using all-is-block-nominals by fast
then have

‹nominals p ∪ block-nominals (omit-block (proj xs (length branch)) (ps, a))
=

nominals p ∪ block-nominals (ps, a)›
by simp

27

ultimately have
‹nominals p ∪ branch-nominals (omit-branch xs ((ps, a) # branch)) =

nominals p ∪ block-nominals (ps, a) ∪ branch-nominals branch›
by auto

then show ?thesis
unfolding branch-nominals-def using Pair by auto

qed
qed

qed

lemma Dup-branch-nominals:
assumes ‹Dup p i branch xs›
shows ‹branch-nominals (omit-branch xs branch) = branch-nominals branch›

proof (cases ‹xs = {}›)
case True
then show ?thesis

using omit-branch-id by metis
next

case False
with assms obtain ps w w ′ where

‹(w, w ′) /∈ xs› ‹branch !. w = Some (ps, i)› ‹p = Nom i ∨ ps !. w ′ = Some p›
unfolding Dup-def is-elsewhere-def by fast

then have ∗: ‹(ps, i) ∈. branch› ‹p on (ps, i)›
using rev-nth-mem rev-nth-on by fast+

then have ‹nominals p ⊆ branch-nominals branch›
unfolding branch-nominals-def using block-nominals by fast

moreover obtain ps ′ where
‹(ps ′, i) ∈. omit-branch xs branch› ‹p on (ps ′, i)›
using assms ∗ Dup-omit-branch-mem by fast

then have ‹nominals p ⊆ branch-nominals (omit-branch xs branch)›
unfolding branch-nominals-def using block-nominals by fast

moreover have
‹nominals p ∪ branch-nominals (omit-branch xs branch) =
nominals p ∪ branch-nominals branch›

using assms all-is-branch-nominals ′ Dup-all-is-branch by fast
ultimately show ?thesis

by blast
qed

lemma omit-branch-mem-dual:
assumes ‹p at i in omit-branch xs branch›
shows ‹p at i in branch›

proof −
obtain ps where ps: ‹(ps, i) ∈. omit-branch xs branch› ‹p on (ps, i)›

using assms(1) by blast
then obtain v where v: ‹omit-branch xs branch !. v = Some (ps, i)›

using rev-nth-mem unfolding omit-branch-def by fast
then have ‹v < length (omit-branch xs branch)›

using rev-nth-Some by fast

28

then have ‹v < length branch›
unfolding omit-branch-def using length-mapi by metis

then obtain ps ′ i ′ where ps ′: ‹branch !. v = Some (ps ′, i ′)›
using rev-nth-bounded by (metis surj-pair)

then have ‹omit-branch xs branch !. v = Some (omit (proj xs v) ps ′, i ′)›
unfolding omit-branch-def by (simp add: mapi-rev-nth)

then have ‹ps = omit (proj xs v) ps ′› ‹i = i ′›
using v by simp-all

then have ‹p on (ps ′, i)›
using ps omit-set by auto

moreover have ‹(ps ′, i) ∈. branch›
using ps ′ ‹i = i ′› rev-nth-mem by fast

ultimately show ?thesis
using ‹ps = omit (proj xs v) ps ′› by blast

qed

lemma witnessed-omit-branch:
assumes ‹witnessed p a (omit-branch xs branch)›
shows ‹witnessed p a branch›

proof −
obtain ps qs i where

ps: ‹(ps, a) ∈. omit-branch xs branch› ‹(@ i p) on (ps, a)› and
qs: ‹(qs, a) ∈. omit-branch xs branch› ‹(♦ Nom i) on (qs, a)›
using assms unfolding witnessed-def by blast

from ps obtain ps ′ where
‹(ps ′, a) ∈. branch› ‹(@ i p) on (ps ′, a)›
using omit-branch-mem-dual by fast

moreover from qs obtain qs ′ where
‹(qs ′, a) ∈. branch› ‹(♦ Nom i) on (qs ′, a)›
using omit-branch-mem-dual by fast

ultimately show ?thesis
unfolding witnessed-def by blast

qed

lemma new-omit-branch:
assumes ‹new p a branch›
shows ‹new p a (omit-branch xs branch)›
using assms omit-branch-mem-dual unfolding new-def by fast

lemma omit-oob:
assumes ‹length ps ≤ v›
shows ‹omit ({v} ∪ xs) ps = omit xs ps›
using assms by (induct ps) simp-all

lemma omit-branch-oob:
assumes ‹length branch ≤ v›
shows ‹omit-branch ({(v, v ′)} ∪ xs) branch = omit-branch xs branch›
using assms

proof (induct branch)

29

case Nil
then show ?case

unfolding omit-branch-def by simp
next

case (Cons block branch)
let ?xs = ‹({(v, v ′)} ∪ xs)›
show ?case
proof (cases block)

case (Pair ps a)
then have

‹omit-branch ?xs ((ps, a) # branch) =
(omit (proj ?xs (length branch)) ps, a) # omit-branch xs branch›

using Cons unfolding omit-branch-def by simp
moreover have ‹proj ?xs (length branch) = proj xs (length branch)›

using Cons(2) unfolding proj-def by auto
ultimately show ?thesis

unfolding omit-branch-def by simp
qed

qed

7.3 Induction
lemma STA-Dup:

assumes ‹A, n ` branch› ‹Dup q i branch xs›
shows ‹A, n ` omit-branch xs branch›
using assms

proof (induct n branch)
case (Close p i ′ branch n)
have ‹p at i ′ in omit-branch xs branch›

using Close(1 , 3) Dup-omit-branch-mem by fast
moreover have ‹(¬ p) at i ′ in omit-branch xs branch›

using Close(2 , 3) Dup-omit-branch-mem by fast
ultimately show ?case

using STA.Close by fast
next

case (Neg p a ps branch n)
have ‹A, Suc n ` omit-branch xs ((p # ps, a) # branch)›

using Neg(4−) Dup-head by fast
moreover have ‹(length branch, length ps) /∈ xs›

using Neg(5) Dup-head-oob by fast
ultimately have
‹A, Suc n ` (p # omit (proj xs (length branch)) ps, a) # omit-branch xs branch›
unfolding omit-branch-def proj-def by simp

moreover have ‹(¬ ¬ p) at a in omit-branch xs ((ps, a) # branch)›
using Neg(1 , 5) Dup-omit-branch-mem by fast

moreover have ‹new p a (omit-branch xs ((ps, a) # branch))›
using Neg(2) new-omit-branch by fast

ultimately show ?case
by (simp add: omit-branch-def STA.Neg)

30

next
case (DisP p q a ps branch n)
have

‹A, Suc n ` omit-branch xs ((p # ps, a) # branch)›
‹A, Suc n ` omit-branch xs ((q # ps, a) # branch)›
using DisP(4−) Dup-head by fast+

moreover have ‹(length branch, length ps) /∈ xs›
using DisP(8) Dup-head-oob by fast

ultimately have
‹A, Suc n ` (p # omit (proj xs (length branch)) ps, a) # omit-branch xs branch›
‹A, Suc n ` (q # omit (proj xs (length branch)) ps, a) # omit-branch xs branch›
unfolding omit-branch-def proj-def by simp-all

moreover have ‹(p ∨ q) at a in omit-branch xs ((ps, a) # branch)›
using DisP(1 , 8) Dup-omit-branch-mem by fast

moreover have ‹new p a (omit-branch xs ((ps, a) # branch))›
using DisP(2) new-omit-branch by fast

moreover have ‹new q a (omit-branch xs ((ps, a) # branch))›
using DisP(3) new-omit-branch by fast

ultimately show ?case
by (simp add: omit-branch-def STA.DisP)

next
case (DisN p q a ps branch n)
have ‹A, Suc n ` omit-branch xs (((¬ q) # (¬ p) # ps, a) # branch)›

using DisN (4−) Dup-block[where ps ′=‹[-, -]›] by fastforce
moreover have ‹(length branch, length ps) /∈ xs›

using DisN (5) Dup-head-oob by fast
moreover have ‹(length branch, 1 + length ps) /∈ xs›

using DisN (5) Dup-head-oob ′ by fast
ultimately have

‹A, Suc n ` ((¬ q) # (¬ p) # omit (proj xs (length branch)) ps, a) #
omit-branch xs branch›

unfolding omit-branch-def proj-def by simp
moreover have ‹(¬ (p ∨ q)) at a in omit-branch xs ((ps, a) # branch)›

using DisN (1 , 5) Dup-omit-branch-mem by fast
moreover have

‹new (¬ p) a (omit-branch xs ((ps, a) # branch)) ∨
new (¬ q) a (omit-branch xs ((ps, a) # branch))›

using DisN (2) new-omit-branch by fast
ultimately show ?case

by (simp add: omit-branch-def STA.DisN)
next

case (DiaP p a ps branch i n)
have ‹A, Suc n ` omit-branch xs (((@ i p) # (♦ Nom i) # ps, a) # branch)›

using DiaP(4−) Dup-block[where ps ′=‹[-, -]›] by fastforce
moreover have ‹(length branch, length ps) /∈ xs›

using DiaP(7) Dup-head-oob by fast
moreover have ‹(length branch, 1+ length ps) /∈ xs›

using DiaP(7) Dup-head-oob ′ by fast
ultimately have

31

‹A, Suc n ` ((@ i p) # (♦ Nom i) # omit (proj xs (length branch)) ps, a) #
omit-branch xs branch›

unfolding omit-branch-def proj-def by simp
moreover have ‹(♦ p) at a in omit-branch xs ((ps, a) # branch)›

using DiaP(1 , 7) Dup-omit-branch-mem by fast
moreover have ‹i /∈ A ∪ branch-nominals (omit-branch xs ((ps, a) # branch))›

using DiaP(2 , 7) Dup-branch-nominals by fast
moreover have ‹¬ witnessed p a (omit-branch xs ((ps, a) # branch))›

using DiaP(4) witnessed-omit-branch by fast
ultimately show ?case

using DiaP(3) by (simp add: omit-branch-def STA.DiaP)
next

case (DiaN p a ps branch i n)
have ‹A, Suc n ` omit-branch xs (((¬ (@ i p)) # ps, a) # branch)›

using DiaN (4−) Dup-head by fast
moreover have ‹(length branch, length ps) /∈ xs›

using DiaN (6) Dup-head-oob by fast
ultimately have

‹A, Suc n ` ((¬ (@ i p)) # omit (proj xs (length branch)) ps, a) #
omit-branch xs branch›

unfolding omit-branch-def proj-def by simp
moreover have ‹(¬ (♦ p)) at a in omit-branch xs ((ps, a) # branch)›

using DiaN (1 , 6) Dup-omit-branch-mem by fast
moreover have ‹(♦ Nom i) at a in omit-branch xs ((ps, a) # branch)›

using DiaN (2 , 6) Dup-omit-branch-mem by fast
moreover have ‹new (¬ (@ i p)) a (omit-branch xs ((ps, a) # branch))›

using DiaN (3) new-omit-branch by fast
ultimately show ?case

by (simp add: omit-branch-def STA.DiaN)
next

case (SatP a p b ps branch n)
have ‹A, Suc n ` omit-branch xs ((p # ps, a) # branch)›

using SatP(4−) Dup-head by fast
moreover have ‹(length branch, length ps) /∈ xs›

using SatP(5) Dup-head-oob by fast
ultimately have
‹A, Suc n ` (p # omit (proj xs (length branch)) ps, a) # omit-branch xs branch›
unfolding omit-branch-def proj-def by simp

moreover have ‹(@ a p) at b in omit-branch xs ((ps, a) # branch)›
using SatP(1 , 5) Dup-omit-branch-mem by fast

moreover have ‹new p a (omit-branch xs ((ps, a) # branch))›
using SatP(2) new-omit-branch by fast

ultimately show ?case
by (simp add: omit-branch-def STA.SatP)

next
case (SatN a p b ps branch n)
have ‹A, Suc n ` omit-branch xs (((¬ p) # ps, a) # branch)›

using SatN (4−) Dup-head by fast
moreover have ‹(length branch, length ps) /∈ xs›

32

using SatN (5) Dup-head-oob by fast
ultimately have

‹A, Suc n ` ((¬ p) # omit (proj xs (length branch)) ps, a) # omit-branch xs
branch›

unfolding omit-branch-def proj-def by simp
moreover have ‹(¬ (@ a p)) at b in omit-branch xs ((ps, a) # branch)›

using SatN (1 , 5) Dup-omit-branch-mem by fast
moreover have ‹new (¬ p) a (omit-branch xs ((ps, a) # branch))›

using SatN (2) new-omit-branch by fast
ultimately show ?case

by (simp add: omit-branch-def STA.SatN)
next

case (GoTo i branch n)
then have ‹A, n ` omit-branch xs (([], i) # branch)›

using Dup-branch[where extra=‹[([], i)]›] by fastforce
then have ‹A, n ` ([], i) # omit-branch xs branch›

unfolding omit-branch-def by simp
moreover have ‹i ∈ branch-nominals (omit-branch xs branch)›

using GoTo(1 , 4) Dup-branch-nominals by fast
ultimately show ?case

unfolding omit-branch-def by (simp add: STA.GoTo)
next

case (Nom p b ps a branch n)
have ‹A, Suc n ` omit-branch xs ((p # ps, a) # branch)›

using Nom(4−) Dup-head by fast
moreover have ‹(length branch, length ps) /∈ xs›

using Nom(7) Dup-head-oob by fast
ultimately have
‹A, Suc n ` (p # omit (proj xs (length branch)) ps, a) # omit-branch xs branch›
unfolding omit-branch-def proj-def by simp

moreover have ‹p at b in omit-branch xs ((ps, a) # branch)›
using Nom(1 , 7) Dup-omit-branch-mem by fast

moreover have ‹Nom a at b in omit-branch xs ((ps, a) # branch)›
using Nom(2 , 7) Dup-omit-branch-mem by fast

moreover have ‹new p a (omit-branch xs ((ps, a) # branch))›
using Nom(4) new-omit-branch by fast

ultimately show ?case
using Nom(3) by (simp add: omit-branch-def STA.Nom)

qed

theorem Dup:
assumes ‹A, n ` (p # ps, a) # branch› ‹¬ new p a ((ps, a) # branch)›
shows ‹A, n ` (ps, a) # branch›

proof −
obtain qs where qs:

‹(qs, a) ∈. (ps, a) # branch› ‹p on (qs, a)›
using assms(2) unfolding new-def by blast

let ?xs = ‹{(length branch, length ps)}›

33

have ∗: ‹is-at p a ((p # ps, a) # branch) (length branch) (length ps)›
unfolding is-at-def by simp

have ‹Dup p a ((p # ps, a) # branch) ?xs›
proof (cases ‹p = Nom a›)

case True
moreover have ‹((p # ps, a) # branch) !. length branch = Some (p # ps, a)›

by simp
moreover have ‹p on (p # ps, a)›

by simp
ultimately have ‹is-elsewhere p a ((p # ps, a) # branch) ?xs›

unfolding is-elsewhere-def using assms(2) rev-nth-Some
by (metis (mono-tags, lifting) Pair-inject less-le singletonD)

then show ?thesis
unfolding Dup-def using ∗ by blast

next
case false: False
then show ?thesis
proof (cases ‹ps = qs›)

case True
then obtain w ′ where w ′: ‹qs !. w ′ = Some p›

using qs(2) false rev-nth-mem by fastforce
then have ‹(p # ps) !. w ′ = Some p›

using True rev-nth-Cons by fast
moreover have ‹((p # ps, a) # branch) !. length branch = Some (p # ps,

a)›
by simp

moreover have ‹(length branch, w ′) /∈ ?xs›
using True w ′ rev-nth-Some by fast

ultimately have ‹is-elsewhere p a ((p # ps, a) # branch) ?xs›
unfolding is-elsewhere-def by fast

then show ?thesis
unfolding Dup-def using ∗ by fast

next
case False
then obtain w where w: ‹branch !. w = Some (qs, a)›

using qs(1) rev-nth-mem by fastforce
moreover obtain w ′ where w ′: ‹qs !. w ′ = Some p›

using qs(2) false rev-nth-mem by fastforce
moreover have ‹(w, w ′) /∈ ?xs›

using rev-nth-Some w by fast
ultimately have ‹is-elsewhere p a ((p # ps, a) # branch) ?xs›

unfolding is-elsewhere-def using rev-nth-Cons by fast
then show ?thesis

unfolding Dup-def using ∗ by fast
qed

qed

34

then have ‹A, n ` omit-branch ?xs ((p # ps, a) # branch)›
using assms(1) STA-Dup by fast

then have ‹A, n ` (omit (proj ?xs (length branch)) ps, a) # omit-branch ?xs
branch›

unfolding omit-branch-def proj-def by simp
moreover have ‹omit-branch ?xs branch = omit-branch {} branch›

using omit-branch-oob by auto
then have ‹omit-branch ?xs branch = branch›

using omit-branch-id by simp
moreover have ‹proj ?xs (length branch) = {length ps}›

unfolding proj-def by blast
then have ‹omit (proj ?xs (length branch)) ps = omit {} ps›

using omit-oob by auto
then have ‹omit (proj ?xs (length branch)) ps = ps›

using omit-id by simp
ultimately show ?thesis

by simp
qed

7.4 Unrestricted rules
lemma STA-add: ‹A, n ` branch =⇒ A, m + n ` branch›

using STA-Suc by (induct m) auto

lemma STA-le: ‹A, n ` branch =⇒ n ≤ m =⇒ A, m ` branch›
using STA-add by (metis le-add-diff-inverse2)

lemma Neg ′:
assumes

‹(¬ ¬ p) at a in (ps, a) # branch›
‹A, n ` (p # ps, a) # branch›

shows ‹A, n ` (ps, a) # branch›
using assms Neg Dup STA-Suc by metis

lemma DisP ′:
assumes

‹(p ∨ q) at a in (ps, a) # branch›
‹A, n ` (p # ps, a) # branch› ‹A, n ` (q # ps, a) # branch›

shows ‹A, n ` (ps, a) # branch›
proof (cases ‹new p a ((ps, a) # branch) ∧ new q a ((ps, a) # branch)›)

case True
moreover have ‹A, Suc n ` (p # ps, a) # branch› ‹A, Suc n ` (q # ps, a) #

branch›
using assms(2−3) STA-Suc by fast+

ultimately show ?thesis
using assms(1) DisP by fast

next
case False
then show ?thesis

35

using assms Dup by fast
qed

lemma DisP ′′:
assumes

‹(p ∨ q) at a in (ps, a) # branch›
‹A, n ` (p # ps, a) # branch› ‹A, m ` (q # ps, a) # branch›

shows ‹A, max n m ` (ps, a) # branch›
proof (cases ‹n ≤ m›)

case True
then have ‹A, m ` (p # ps, a) # branch›

using assms(2) STA-le by blast
then show ?thesis

using assms True by (simp add: DisP ′ max.absorb2)
next

case False
then have ‹A, n ` (q # ps, a) # branch›

using assms(3) STA-le by fastforce
then show ?thesis

using assms False by (simp add: DisP ′ max.absorb1)
qed

lemma DisN ′:
assumes

‹(¬ (p ∨ q)) at a in (ps, a) # branch›
‹A, n ` ((¬ q) # (¬ p) # ps, a) # branch›

shows ‹A, n ` (ps, a) # branch›
proof (cases ‹new (¬ q) a ((ps, a) # branch) ∨ new (¬ p) a ((ps, a) # branch)›)

case True
then show ?thesis

using assms DisN STA-Suc by fast
next

case False
then show ?thesis

using assms Dup
by (metis (no-types, lifting) list.set-intros(1−2) new-def on.simps set-ConsD)

qed

lemma DiaP ′:
assumes

‹(♦ p) at a in (ps, a) # branch›
‹i /∈ A ∪ branch-nominals ((ps, a) # branch)›
‹@ a. p = Nom a›
‹¬ witnessed p a ((ps, a) # branch)›
‹A, n ` ((@ i p) # (♦ Nom i) # ps, a) # branch›

shows ‹A, n ` (ps, a) # branch›
using assms DiaP STA-Suc by fast

lemma DiaN ′:

36

assumes
‹(¬ (♦ p)) at a in (ps, a) # branch›
‹(♦ Nom i) at a in (ps, a) # branch›
‹A, n ` ((¬ (@ i p)) # ps, a) # branch›

shows ‹A, n ` (ps, a) # branch›
using assms DiaN Dup STA-Suc by fast

lemma SatP ′:
assumes

‹(@ a p) at b in (ps, a) # branch›
‹A, n ` (p # ps, a) # branch›

shows ‹A, n ` (ps, a) # branch›
using assms SatP Dup STA-Suc by fast

lemma SatN ′:
assumes

‹(¬ (@ a p)) at b in (ps, a) # branch›
‹A, n ` ((¬ p) # ps, a) # branch›

shows ‹A, n ` (ps, a) # branch›
using assms SatN Dup STA-Suc by fast

lemma Nom ′:
assumes

‹p at b in (ps, a) # branch›
‹Nom a at b in (ps, a) # branch›
‹∀ i. p = Nom i ∨ p = (♦ Nom i) −→ i ∈ A›
‹A, n ` (p # ps, a) # branch›

shows ‹A, n ` (ps, a) # branch›
proof (cases ‹new p a ((ps, a) # branch)›)

case True
moreover have ‹A, Suc n ` (p # ps, a) # branch›

using assms(4) STA-Suc by blast
ultimately show ?thesis

using assms(1−3) Nom by metis
next

case False
then show ?thesis

using assms Dup by fast
qed

8 Substitution
lemma finite-nominals: ‹finite (nominals p)›

by (induct p) simp-all

lemma finite-block-nominals: ‹finite (block-nominals block)›
using finite-nominals by (induct block) auto

lemma finite-branch-nominals: ‹finite (branch-nominals branch)›

37

unfolding branch-nominals-def by (induct branch) (auto simp: finite-block-nominals)

abbreviation sub-list :: ‹(′b ⇒ ′c) ⇒ (′a, ′b) fm list ⇒ (′a, ′c) fm list› where
‹sub-list f ps ≡ map (sub f) ps›

primrec sub-block :: ‹(′b ⇒ ′c) ⇒ (′a, ′b) block ⇒ (′a, ′c) block› where
‹sub-block f (ps, i) = (sub-list f ps, f i)›

definition sub-branch :: ‹(′b ⇒ ′c) ⇒ (′a, ′b) branch ⇒ (′a, ′c) branch› where
‹sub-branch f blocks ≡ map (sub-block f) blocks›

lemma sub-block-mem: ‹p on block =⇒ sub f p on sub-block f block›
by (induct block) auto

lemma sub-branch-mem:
assumes ‹(ps, i) ∈. branch›
shows ‹(sub-list f ps, f i) ∈. sub-branch f branch›
unfolding sub-branch-def using assms image-iff by fastforce

lemma sub-block-nominals: ‹block-nominals (sub-block f block) = f ‘ block-nominals
block›

by (induct block) (auto simp: sub-nominals)

lemma sub-branch-nominals:
‹branch-nominals (sub-branch f branch) = f ‘ branch-nominals branch›
unfolding branch-nominals-def sub-branch-def
by (induct branch) (auto simp: sub-block-nominals)

lemma sub-list-id: ‹sub-list id ps = ps›
using sub-id by (induct ps) auto

lemma sub-block-id: ‹sub-block id block = block›
using sub-list-id by (induct block) auto

lemma sub-branch-id: ‹sub-branch id branch = branch›
unfolding sub-branch-def using sub-block-id by (induct branch) auto

lemma sub-block-upd-fresh:
assumes ‹i /∈ block-nominals block›
shows ‹sub-block (f (i := j)) block = sub-block f block›
using assms by (induct block) (auto simp add: sub-upd-fresh)

lemma sub-branch-upd-fresh:
assumes ‹i /∈ branch-nominals branch›
shows ‹sub-branch (f (i := j)) branch = sub-branch f branch›
using assms unfolding branch-nominals-def sub-branch-def
by (induct branch) (auto simp: sub-block-upd-fresh)

lemma sub-comp: ‹sub f (sub g p) = sub (f o g) p›

38

by (induct p) simp-all

lemma sub-list-comp: ‹sub-list f (sub-list g ps) = sub-list (f o g) ps›
using sub-comp by (induct ps) auto

lemma sub-block-comp: ‹sub-block f (sub-block g block) = sub-block (f o g) block›
using sub-list-comp by (induct block) simp-all

lemma sub-branch-comp:
‹sub-branch f (sub-branch g branch) = sub-branch (f o g) branch›
unfolding sub-branch-def using sub-block-comp by (induct branch) fastforce+

lemma swap-id: ‹(id(i := j, j := i)) o (id(i := j, j := i)) = id›
by auto

lemma at-in-sub-branch:
assumes ‹p at i in (ps, a) # branch›
shows ‹sub f p at f i in (sub-list f ps, f a) # sub-branch f branch›
using assms sub-branch-mem by fastforce

lemma sub-still-allowed:
assumes ‹∀ i. p = Nom i ∨ p = (♦ Nom i) −→ i ∈ A›
shows ‹sub f p = Nom i ∨ sub f p = (♦ Nom i) −→ i ∈ f ‘ A›

proof safe
assume ‹sub f p = Nom i›
then obtain i ′ where i ′: ‹p = Nom i ′› ‹f i ′ = i›

by (cases p) simp-all
then have ‹i ′ ∈ A›

using assms by fast
then show ‹i ∈ f ‘ A›

using i ′ by fast
next

assume ‹sub f p = (♦ Nom i)›
then obtain i ′ where i ′: ‹p = (♦ Nom i ′)› ‹f i ′ = i›
proof (induct p)

case (Dia q)
then show ?case

by (cases q) simp-all
qed simp-all
then have ‹i ′ ∈ A›

using assms by fast
then show ‹i ∈ f ‘ A›

using i ′ by fast
qed

If a branch has a closing tableau then so does any branch obtained by
renaming nominals as long as the substitution leaves some nominals free.
This is always the case for substitutions that do not change the type of
nominals. Since some formulas on the renamed branch may no longer be

39

new, they do not contribute any potential and so we existentially quantify
over the potential needed to close the new branch. We assume that the set
of allowed nominals A is finite such that we can obtain a free nominal.
lemma STA-sub ′:

fixes f :: ‹ ′b ⇒ ′c›
assumes ‹

∧
(f :: ′b ⇒ ′c) i A. finite A =⇒ i /∈ A =⇒ ∃ j. j /∈ f ‘ A›

‹finite A› ‹A, n ` branch›
shows ‹f ‘ A ` sub-branch f branch›
using assms(3−)

proof (induct n branch arbitrary: f rule: STA.induct)
case (Close p i branch n)
have ‹sub f p at f i in sub-branch f branch›

using Close(1) sub-branch-mem by fastforce
moreover have ‹(¬ sub f p) at f i in sub-branch f branch›

using Close(2) sub-branch-mem by force
ultimately show ?case

using STA.Close by fast
next

case (Neg p a ps branch n f)
then have ‹f ‘ A ` (sub f p # sub-list f ps, f a) # sub-branch f branch›

unfolding sub-branch-def by simp
moreover have ‹(¬ ¬ sub f p) at f a in (sub-list f ps, f a) # sub-branch f branch›
using Neg(1) at-in-sub-branch by (metis (no-types, opaque-lifting) sub.simps(3))

ultimately have ‹f ‘ A ` (sub-list f ps, f a) # sub-branch f branch›
using Neg ′ by fast

then show ?case
unfolding sub-branch-def by simp

next
case (DisP p q a ps branch n)
then have

‹f ‘ A ` (sub f p # sub-list f ps, f a) # sub-branch f branch›
‹f ‘ A ` (sub f q # sub-list f ps, f a) # sub-branch f branch›
unfolding sub-branch-def by simp-all

moreover have ‹(sub f p ∨ sub f q) at f a in (sub-list f ps, f a) # sub-branch f
branch›

using DisP(1) at-in-sub-branch by (metis (no-types, opaque-lifting) sub.simps(4))
ultimately have ‹f ‘ A ` (sub-list f ps, f a) # sub-branch f branch›

using DisP ′′ by fast
then show ?case

unfolding sub-branch-def by simp
next

case (DisN p q a ps branch n)
then have ‹f ‘ A ` ((¬ sub f q) # (¬ sub f p) # sub-list f ps, f a) # sub-branch

f branch›
unfolding sub-branch-def by simp

moreover have ‹(¬ (sub f p ∨ sub f q)) at f a in (sub-list f ps, f a) # sub-branch
f branch›

using DisN (1) at-in-sub-branch by (metis (no-types, opaque-lifting) sub.simps(3−4))
ultimately have ‹f ‘ A ` (sub-list f ps, f a) # sub-branch f branch›

40

using DisN ′ by fast
then show ?case

unfolding sub-branch-def by simp
next

case (DiaP p a ps branch i n)
have ‹i /∈ A›

using DiaP(2) by simp

show ?case
proof (cases ‹witnessed (sub f p) (f a) (sub-branch f ((ps, a) # branch))›)

case True
then obtain i ′ where

rs: ‹(@ i ′ (sub f p)) at f a in (sub-list f ps, f a) # sub-branch f branch› and
ts: ‹(♦ Nom i ′) at f a in (sub-list f ps, f a) # sub-branch f branch›
unfolding sub-branch-def witnessed-def by auto

from rs have rs ′:
‹(@ i ′ (sub f p)) at f a in ((♦ Nom i ′) # sub-list f ps, f a) # sub-branch f

branch›
by fastforce

let ?f = ‹f (i := i ′)›
let ?branch = ‹sub-branch ?f branch›
have ‹sub-branch ?f ((ps, a) # branch) = sub-branch f ((ps, a) # branch)›

using DiaP(2) sub-branch-upd-fresh by fast
then have ∗∗: ‹sub-list ?f ps = sub-list f ps› ‹?f a = f a› ‹?branch = sub-branch

f branch›
unfolding sub-branch-def by simp-all

have p: ‹sub ?f p = sub f p›
using DiaP(1−2) sub-upd-fresh unfolding branch-nominals-def by fastforce

have ‹?f ‘ A ` sub-branch ?f (((@ i p) # (♦ Nom i) # ps, a) # branch)›
using DiaP(6) by blast

then have
‹?f ‘ A ` ((@ (?f i) (sub ?f p)) # (♦ Nom (?f i)) # sub-list ?f ps, ?f a) #

?branch›
unfolding sub-branch-def by fastforce

then have
‹?f ‘ A ` ((@ i ′ (sub f p)) # (♦ Nom i ′) # sub-list f ps, f a) # sub-branch f

branch›
using p ∗∗ by simp

then have ‹?f ‘ A ` ((♦ Nom i ′) # sub-list f ps, f a) # sub-branch f branch›
using rs ′ by (meson Dup new-def)

then have ‹?f ‘ A ` (sub-list f ps, f a) # sub-branch f branch›
using ts by (meson Dup new-def)

moreover have ‹?f ‘ A = f ‘ A›
using ‹i /∈ A› by auto

ultimately show ?thesis
unfolding sub-branch-def by auto

41

next
case False
have ‹finite (branch-nominals ((ps, a) # branch))›

by (simp add: finite-branch-nominals)
then have ‹finite (A ∪ branch-nominals ((ps, a) # branch))›

using ‹finite A› by simp
then obtain j where ∗: ‹j /∈ f ‘ (A ∪ branch-nominals ((ps, a) # branch))›

using DiaP(2) assms by metis
then have ‹j /∈ f ‘ A›

by blast

let ?f = ‹f (i := j)›
let ?branch = ‹sub-branch ?f branch›
have ∗∗: ‹sub-branch ?f ((ps, a) # branch) = sub-branch f ((ps, a) # branch)›

using DiaP(2) sub-branch-upd-fresh by fast
then have ∗∗∗: ‹sub-list ?f ps = sub-list f ps› ‹?f a = f a› ‹?branch = sub-branch

f branch›
unfolding sub-branch-def by simp-all

moreover have p: ‹sub ?f p = sub f p›
using DiaP(1−2) sub-upd-fresh unfolding branch-nominals-def by fastforce
ultimately have ‹¬ witnessed (sub ?f p) (?f a) (sub-branch ?f ((ps, a) #

branch))›
using False ∗∗ by simp

then have w: ‹¬ witnessed (sub ?f p) (?f a) ((sub-list ?f ps, ?f a) # ?branch)›
unfolding sub-branch-def by simp

have f : ‹?f ‘ A = f ‘ A›
using ‹i /∈ A› by auto

have ‹?f ‘ A ` sub-branch ?f (((@ i p) # (♦ Nom i) # ps, a) # branch)›
using DiaP(6) by blast

then have ‹f ‘ A ` ((@ (?f i) (sub ?f p)) # (♦ Nom (?f i)) # sub-list ?f ps,
?f a) # ?branch›

unfolding sub-branch-def using f by simp
moreover have ‹sub ?f (♦ p) at ?f a in (sub-list ?f ps, ?f a) # sub-branch ?f

branch›
using DiaP(1) at-in-sub-branch by fast

then have ‹(♦ sub ?f p) at ?f a in (sub-list ?f ps, ?f a) # sub-branch ?f branch›
by simp

moreover have ‹@ a. sub ?f p = Nom a›
using DiaP(3) by (cases p) simp-all

moreover have ‹j /∈ f ‘ (branch-nominals ((ps, a) # branch))›
using ∗ by blast

then have ‹?f i /∈ branch-nominals ((sub-list ?f ps, ?f a) # ?branch)›
using ∗∗ sub-branch-nominals unfolding sub-branch-def
by (metis fun-upd-same list.simps(9) sub-block.simps)

ultimately have ‹f ‘ A ` (sub-list ?f ps, ?f a) # ?branch›
using w DiaP ′ ‹j /∈ f ‘ A› by (metis Un-iff fun-upd-same)

then show ?thesis

42

using ∗∗∗ unfolding sub-branch-def by simp
qed

next
case (DiaN p a ps branch i n)
then have ‹f ‘ A ` ((¬ (@ (f i) (sub f p))) # sub-list f ps, f a) # sub-branch f

branch›
unfolding sub-branch-def by simp

moreover have ‹(¬ (♦ sub f p)) at f a in (sub-list f ps, f a) # sub-branch f
branch›

using DiaN (1) at-in-sub-branch by (metis (no-types, opaque-lifting) sub.simps(3 ,
5))

moreover have ‹(♦ Nom (f i)) at f a in (sub-list f ps, f a) # sub-branch f branch›
using DiaN (2) at-in-sub-branch by (metis (no-types, opaque-lifting) sub.simps(2 ,

5))
ultimately have ‹f ‘ A ` (sub-list f ps, f a) # sub-branch f branch›

using DiaN ′ by fast
then show ?case

unfolding sub-branch-def by simp
next

case (SatP a p b ps branch n)
then have ‹f ‘ A ` (sub f p # sub-list f ps, f a) # sub-branch f branch›

unfolding sub-branch-def by simp
moreover have ‹(@ (f a) (sub f p)) at f b in (sub-list f ps, f a) # sub-branch f

branch›
using SatP(1) at-in-sub-branch by (metis (no-types, opaque-lifting) sub.simps(6))

ultimately have ‹f ‘ A ` (sub-list f ps, f a) # sub-branch f branch›
using SatP ′ by fast

then show ?case
unfolding sub-branch-def by simp

next
case (SatN a p b ps branch n)
then have ‹f ‘ A ` ((¬ sub f p) # sub-list f ps, f a) # sub-branch f branch›

unfolding sub-branch-def by simp
moreover have ‹(¬ (@ (f a) (sub f p))) at f b in (sub-list f ps, f a) # sub-branch

f branch›
using SatN (1) at-in-sub-branch by (metis (no-types, opaque-lifting) sub.simps(3 ,

6))
ultimately have ‹f ‘ A ` (sub-list f ps, f a) # sub-branch f branch›

using SatN ′ by fast
then show ?case

unfolding sub-branch-def by simp
next

case (GoTo i branch n)
then have ‹f ‘ A ` ([], f i) # sub-branch f branch›

unfolding sub-branch-def by simp
moreover have ‹f i ∈ branch-nominals (sub-branch f branch)›

using GoTo(1) sub-branch-nominals by fast
ultimately show ?case

using STA.GoTo by fast

43

next
case (Nom p b ps a branch n)
then have ‹f ‘ A ` sub-branch f ((p # ps, a) # branch)›

by blast
then have ‹f ‘ A ` (sub f p # sub-list f ps, f a) # sub-branch f branch›

unfolding sub-branch-def by simp
moreover have ‹sub f p at f b in (sub-list f ps, f a) # sub-branch f branch›

using Nom(1) at-in-sub-branch by fast
moreover have ‹Nom (f a) at f b in (sub-list f ps, f a) # sub-branch f branch›
using Nom(2) at-in-sub-branch by (metis (no-types, opaque-lifting) sub.simps(2))

moreover have ‹∀ i. sub f p = Nom i ∨ sub f p = (♦ Nom i) −→ i ∈ f ‘ A›
using Nom(3) sub-still-allowed by metis

ultimately have ‹f ‘ A ` (sub-list f ps, f a) # sub-branch f branch›
using Nom ′ by metis

then show ?case
unfolding sub-branch-def by simp

qed

lemma ex-fresh-gt:
fixes f :: ‹ ′b ⇒ ′c›
assumes ‹∃ g :: ′c ⇒ ′b. surj g› ‹finite A› ‹i /∈ A›
shows ‹∃ j. j /∈ f ‘ A›

proof (rule ccontr)
assume ‹@ j. j /∈ f ‘ A›
moreover obtain g :: ‹ ′c ⇒ ′b› where ‹surj g›

using assms(1) by blast
ultimately show False

using assms(2−3)
by (metis UNIV-I UNIV-eq-I card-image-le card-seteq finite-imageI image-comp

subsetI)
qed

corollary STA-sub-gt:
fixes f :: ‹ ′b ⇒ ′c›
assumes ‹∃ g :: ′c ⇒ ′b. surj g› ‹A ` branch›

‹finite A› ‹∀ i ∈ branch-nominals branch. f i ∈ f ‘ A −→ i ∈ A›
shows ‹f ‘ A ` sub-branch f branch›
using assms ex-fresh-gt STA-sub ′ by metis

corollary STA-sub-inf :
fixes f :: ‹ ′b ⇒ ′c›
assumes ‹infinite (UNIV :: ′c set)› ‹A ` branch›

‹finite A› ‹∀ i ∈ branch-nominals branch. f i ∈ f ‘ A −→ i ∈ A›
shows ‹f ‘ A ` sub-branch f branch›

proof −
have ‹finite A =⇒ ∃ j. j /∈ f ‘ A› for A and f :: ‹ ′b ⇒ ′c›

using assms(1) ex-new-if-finite by blast
then show ?thesis

using assms(2−) STA-sub ′ by metis

44

qed

corollary STA-sub:
fixes f :: ‹ ′b ⇒ ′b›
assumes ‹A ` branch› ‹finite A›
shows ‹f ‘ A ` sub-branch f branch›

proof −
have ‹finite A =⇒ i /∈ A =⇒ ∃ j. j /∈ f ‘ A› for i A and f :: ‹ ′b ⇒ ′b›

by (metis card-image-le card-seteq finite-imageI subsetI)
then show ?thesis

using assms STA-sub ′ by metis
qed

8.1 Unrestricted (♦) rule
lemma DiaP ′′:

assumes
‹(♦ p) at a in (ps, a) # branch›
‹i /∈ A ∪ branch-nominals ((ps, a) # branch)› ‹@ a. p = Nom a›
‹finite A›
‹A ` ((@ i p) # (♦ Nom i) # ps, a) # branch›

shows ‹A ` (ps, a) # branch›
proof (cases ‹witnessed p a ((ps, a) # branch)›)

case True
then obtain i ′ where

rs: ‹(@ i ′ p) at a in (ps, a) # branch› and
ts: ‹(♦ Nom i ′) at a in (ps, a) # branch›
unfolding witnessed-def by blast

then have rs ′:
‹(@ i ′ p) at a in ((♦ Nom i ′) # ps, a) # branch›
by fastforce

let ?f = ‹id(i := i ′)›

have ‹?f ‘ A ` sub-branch ?f (((@ i p) # (♦ Nom i) # ps, a) # branch)›
using assms(4−5) STA-sub by blast

then have ‹?f ‘ A ` ((@ i ′ (sub ?f p)) # (♦ Nom i ′) # sub-list ?f ps, ?f a) #
sub-branch ?f branch›

unfolding sub-branch-def by simp
moreover have ‹i /∈ nominals p› ‹i /∈ list-nominals ps› ‹i 6= a› ‹i /∈ branch-nominals

branch›
using assms(1−3) unfolding branch-nominals-def by fastforce+

then have ‹sub ?f p = p›
by (simp add: sub-id sub-upd-fresh)

moreover have ‹sub-list ?f ps = ps›
using ‹i /∈ list-nominals ps› by (simp add: map-idI sub-id sub-upd-fresh)

moreover have ‹?f a = a›
using ‹i 6= a› by simp

moreover have ‹sub-branch ?f branch = branch›

45

using ‹i /∈ branch-nominals branch› by (simp add: sub-branch-id sub-branch-upd-fresh)
ultimately have ‹?f ‘ A ` ((@ i ′ p) # (♦ Nom i ′) # ps, a) # branch›

by simp
then have ‹?f ‘ A ` ((♦ Nom i ′) # ps, a) # branch›

using rs ′ by (meson Dup new-def)
then have ‹?f ‘ A ` (ps, a) # branch›

using ts by (meson Dup new-def)
moreover have ‹?f ‘ A = A›

using assms(2) by auto
ultimately show ?thesis

by simp
next

case False
then show ?thesis

using assms DiaP ′ STA-Suc by fast
qed

9 Structural Properties
lemma block-nominals-branch:

assumes ‹block ∈. branch›
shows ‹block-nominals block ⊆ branch-nominals branch›
unfolding branch-nominals-def using assms by blast

lemma sub-block-fresh:
assumes ‹i /∈ branch-nominals branch› ‹block ∈. branch›
shows ‹sub-block (f (i := j)) block = sub-block f block›
using assms block-nominals-branch sub-block-upd-fresh by fast

lemma list-down-induct [consumes 1 , case-names Start Cons]:
assumes ‹∀ y ∈ set ys. Q y› ‹P (ys @ xs)›

‹
∧

y xs. Q y =⇒ P (y # xs) =⇒ P xs›
shows ‹P xs›
using assms by (induct ys) auto

If the last block on a branch has opening nominal a and the last formulas
on that block occur on another block alongside nominal a, then we can drop
those formulas.
lemma STA-drop-prefix:

assumes ‹set ps ⊆ set qs› ‹(qs, a) ∈. branch› ‹A, n ` (ps @ ps ′, a) # branch›
shows ‹A, n ` (ps ′, a) # branch›

proof −
have ‹∀ p ∈ set ps. p on (qs, a)›

using assms(1) by auto
then show ?thesis
proof (induct ps ′ rule: list-down-induct)

case Start
then show ?case

46

using assms(3) .
next

case (Cons p ps)
then show ?case

using assms(2) by (meson Dup new-def list.set-intros(2))
qed

qed

We can drop a block if it is subsumed by another block.
lemma STA-drop-block:

assumes
‹set ps ⊆ set ps ′› ‹(ps ′, a) ∈. branch›
‹A, n ` (ps, a) # branch›

shows ‹A, Suc n ` branch›
using assms

proof (induct branch)
case Nil
then show ?case

by simp
next

case (Cons block branch)
then show ?case
proof (cases block)

case (Pair qs b)
then have ‹A, n ` ([], a) # (qs, b) # branch›

using Cons(2−4) STA-drop-prefix[where branch=‹(qs, b) # branch›] by
simp

moreover have ‹a ∈ branch-nominals ((qs, b) # branch)›
unfolding branch-nominals-def using Cons(3) Pair by fastforce

ultimately have ‹A, Suc n ` (qs, b) # branch›
by (simp add: GoTo)

then show ?thesis
using Pair Dup by fast

qed
qed

lemma STA-drop-block ′:
assumes ‹A, n ` (ps, a) # branch› ‹(ps, a) ∈. branch›
shows ‹A, Suc n ` branch›
using assms STA-drop-block by fastforce

lemma sub-branch-image: ‹set (sub-branch f branch) = sub-block f ‘ set branch›
unfolding sub-branch-def by simp

lemma sub-block-repl:
assumes ‹j /∈ block-nominals block›
shows ‹i /∈ block-nominals (sub-block (id(i := j, j := i)) block)›
using assms by (simp add: image-iff sub-block-nominals)

47

lemma sub-branch-repl:
assumes ‹j /∈ branch-nominals branch›
shows ‹i /∈ branch-nominals (sub-branch (id(i := j, j := i)) branch)›
using assms by (simp add: image-iff sub-branch-nominals)

If a finite set of blocks has a closing tableau then so does any finite superset.
lemma STA-struct:

fixes branch :: ‹(′a, ′b) branch›
assumes

inf : ‹infinite (UNIV :: ′b set)› and fin: ‹finite A› and
‹A, n ` branch› ‹set branch ⊆ set branch ′›

shows ‹A ` branch ′›
using assms(3−)

proof (induct n branch arbitrary: branch ′ rule: STA.induct)
case (Close p i branch n)
then show ?case

using STA.Close by fast
next

case (Neg p a ps branch n)
have ‹A ` (p # ps, a) # branch ′›

using Neg(4−) by (simp add: subset-code(1))
moreover have ‹(¬ ¬ p) at a in (ps, a) # branch ′›

using Neg(1 , 5) by auto
ultimately have ‹A ` (ps, a) # branch ′›

using Neg ′ by fast
moreover have ‹(ps, a) ∈. branch ′›

using Neg(5) by simp
ultimately show ?case

using STA-drop-block ′ by fast
next

case (DisP p q a ps branch n)
have ‹A ` (p # ps, a) # branch ′› ‹A ` (q # ps, a) # branch ′›

using DisP(5 , 7−) by (simp-all add: subset-code(1))
moreover have ‹(p ∨ q) at a in (ps, a) # branch ′›

using DisP(1 , 8) by auto
ultimately have ‹A ` (ps, a) # branch ′›

using DisP ′′ by fast
moreover have ‹(ps, a) ∈. branch ′›

using DisP(8) by simp
ultimately show ?case

using STA-drop-block ′ by fast
next

case (DisN p q a ps branch n)
have ‹A ` ((¬ q) # (¬ p) # ps, a)# branch ′›

using DisN (4−) by (simp add: subset-code(1))
moreover have ‹(¬ (p ∨ q)) at a in (ps, a) # branch ′›

using DisN (1 , 5) by auto
ultimately have ‹A ` (ps, a) # branch ′›

using DisN ′ by fast

48

moreover have ‹(ps, a) ∈. branch ′›
using DisN (5) by simp

ultimately show ?case
using STA-drop-block ′ by fast

next
case (DiaP p a ps branch i n)
have ‹finite (A ∪ branch-nominals branch ′)›

using fin by (simp add: finite-branch-nominals)
then obtain j where j: ‹j /∈ A ∪ branch-nominals branch ′›

using assms ex-new-if-finite by blast
then have j ′: ‹j /∈ branch-nominals ((ps, a) # branch)›

using DiaP(7) unfolding branch-nominals-def by blast

let ?f = ‹id(i := j, j := i)›
let ?branch ′ = ‹sub-branch ?f branch ′›
have branch ′: ‹sub-branch ?f ?branch ′ = branch ′›

using sub-branch-comp sub-branch-id swap-id by metis

have ‹i /∈ branch-nominals ((ps, a) # branch)›
using DiaP(2) by blast

then have branch: ‹sub-branch ?f ((ps, a) # branch) = (ps, a) # branch›
using DiaP(2) j ′ sub-branch-id sub-branch-upd-fresh by metis

moreover have
‹set (sub-branch ?f ((ps, a) # branch)) ⊆ set ?branch ′›
using DiaP(7) sub-branch-image by blast

ultimately have ∗: ‹set ((ps, a) # branch) ⊆ set ?branch ′›
unfolding sub-branch-def by auto

have ‹i /∈ block-nominals (ps, a)›
using DiaP unfolding branch-nominals-def by simp

moreover have ‹i /∈ branch-nominals ?branch ′›
using j sub-branch-repl by fast

ultimately have i: ‹i /∈ branch-nominals ((ps, a) # ?branch ′)›
unfolding branch-nominals-def by simp

have ‹?f ‘ A = A›
using DiaP(2) j by auto

have ‹A ` ((@ i p) # (♦ Nom i) # ps, a) # ?branch ′›
using DiaP(6) ∗

by (metis (no-types, lifting) subset-code(1) insert-mono list.set(2) set-subset-Cons)
moreover have ‹(♦ p) at a in (ps, a) # ?branch ′›

using DiaP(1 , 7) ∗ by (meson set-subset-Cons subset-code(1))
ultimately have ‹A ` (ps, a) # ?branch ′›

using inf DiaP(2−3) fin i DiaP ′′ by (metis Un-iff)
then have ‹?f ‘ A ` sub-branch ?f ((ps, a) # ?branch ′)›

using STA-sub fin by blast
then have ‹A ` (ps, a) # branch ′›

using ‹?f ‘ A = A› branch ′ branch unfolding sub-branch-def by simp

49

moreover have ‹(ps, a) ∈. branch ′›
using ‹set ((ps, a) # branch) ⊆ set branch ′› by simp

ultimately show ?case
using STA-drop-block ′ by fast

next
case (DiaN p a ps branch i n)
have ‹A ` ((¬ (@ i p)) # ps, a) # branch ′›

using DiaN (5−) by (simp add: subset-code(1))
moreover have

‹(¬ (♦ p)) at a in (ps, a) # branch ′›
‹(♦ Nom i) at a in (ps, a) # branch ′›
using DiaN (1−2 , 6) by auto

ultimately have ‹A ` (ps, a) # branch ′›
using DiaN ′ by fast

moreover have ‹(ps, a) ∈. branch ′›
using DiaN (6) by simp

ultimately show ?case
using STA-drop-block ′ by fast

next
case (SatP a p b ps branch n)
have ‹A ` (p # ps, a) # branch ′›

using SatP(4−) by (simp add: subset-code(1))
moreover have ‹(@ a p) at b in (ps, a) # branch ′›

using SatP(1 , 5) by auto
ultimately have ‹A ` (ps, a) # branch ′›

using SatP ′ by fast
moreover have ‹(ps, a) ∈. branch ′›

using SatP(5) by simp
ultimately show ?case

using STA-drop-block ′ by fast
next

case (SatN a p b ps branch n)
have ‹A ` ((¬ p) # ps, a) # branch ′›

using SatN (4−) by (simp add: subset-code(1))
moreover have ‹(¬ (@ a p)) at b in (ps, a) # branch ′›

using SatN (1 , 5) by auto
ultimately have ‹A ` (ps, a) # branch ′›

using SatN ′ by fast
moreover have ‹(ps, a) ∈. branch ′›

using SatN (5) by simp
ultimately show ?case

using STA-drop-block ′ by fast
next

case (GoTo i branch n)
then have ‹A ` ([], i) # branch ′›

by (simp add: subset-code(1))
moreover have ‹i ∈ branch-nominals branch ′›

using GoTo(1 , 4) unfolding branch-nominals-def by auto
ultimately show ?case

50

using GoTo(2) STA.GoTo by fast
next

case (Nom p b ps a branch n)
have ‹A ` (p # ps, a) # branch ′›

using Nom(6−) by (simp add: subset-code(1))
moreover have ‹p at b in (ps, a) # branch ′›

using Nom(1 , 7) by auto
moreover have ‹Nom a at b in (ps, a) # branch ′›

using Nom(2 , 7) by auto
ultimately have ‹A ` (ps, a) # branch ′›

using Nom(3) Nom ′ by metis
moreover have ‹(ps, a) ∈. branch ′›

using Nom(7) by simp
ultimately show ?case

using STA-drop-block ′ by fast
qed

If a branch has a closing tableau then we can replace the formulas of the
last block on that branch with any finite superset and still obtain a closing
tableau.
lemma STA-struct-block:

fixes branch :: ‹(′a, ′b) branch›
assumes

inf : ‹infinite (UNIV :: ′b set)› and fin: ‹finite A› and
‹A, n ` (ps, a) # branch› ‹set ps ⊆ set ps ′›

shows ‹A ` (ps ′, a) # branch›
using assms(3−)

proof (induct n ‹(ps, a) # branch› arbitrary: ps ps ′ rule: STA.induct)
case (Close p i n ts ts ′)
then have ‹p at i in (ts ′, a) # branch› ‹(¬ p) at i in (ts ′, a) # branch›

by auto
then show ?case

using STA.Close by fast
next

case (Neg p ps n)
then have ‹(¬ ¬ p) at a in (ps ′, a) # branch›

by auto
moreover have ‹A ` (p # ps ′, a) # branch›

using Neg(4−) by (simp add: subset-code(1))
ultimately show ?case

using Neg ′ by fast
next

case (DisP p q ps n)
then have ‹(p ∨ q) at a in (ps ′, a) # branch›

by auto
moreover have ‹A ` (p # ps ′, a) # branch› ‹A ` (q # ps ′, a) # branch›

using DisP(5 , 7−) by (simp-all add: subset-code(1))
ultimately show ?case

using DisP ′′ by fast

51

next
case (DisN p q ps n)
then have ‹(¬ (p ∨ q)) at a in (ps ′, a) # branch›

by auto
moreover have ‹A ` ((¬ q) # (¬ p) # ps ′, a) # branch›

using DisN (4−) by (simp add: subset-code(1))
ultimately show ?case

using DisN ′ by fast
next

case (DiaP p ps i n)
have ‹finite (A ∪ branch-nominals ((ps ′, a) # branch))›

using fin finite-branch-nominals by blast
then obtain j where j: ‹j /∈ A ∪ branch-nominals ((ps ′, a) # branch)›

using assms ex-new-if-finite by blast
then have j ′: ‹j /∈ block-nominals (ps, a)›

using DiaP.prems unfolding branch-nominals-def by auto

let ?f = ‹id(i := j, j := i)›
let ?ps ′ = ‹sub-list ?f ps ′›
have ps ′: ‹sub-list ?f ?ps ′ = ps ′›

using sub-list-comp sub-list-id swap-id by metis

have ‹i /∈ block-nominals (ps, a)›
using DiaP(1−2) unfolding branch-nominals-def by simp

then have ps: ‹sub-block ?f (ps, a) = (ps, a)›
using j ′ sub-block-id sub-block-upd-fresh by metis

moreover have ‹set (sub-list ?f ps) ⊆ set (sub-list ?f ps ′)›
using ‹set ps ⊆ set ps ′› by auto

ultimately have ∗: ‹set ps ⊆ set ?ps ′›
by simp

have ‹i /∈ branch-nominals branch›
using DiaP unfolding branch-nominals-def by simp

moreover have ‹j /∈ branch-nominals branch›
using j unfolding branch-nominals-def by simp

ultimately have branch: ‹sub-branch ?f branch = branch›
using sub-branch-id sub-branch-upd-fresh by metis

have ‹i 6= a› ‹j 6= a›
using DiaP j unfolding branch-nominals-def by simp-all

then have ‹?f a = a›
by simp

moreover have ‹j /∈ block-nominals (ps ′, a)›
using j unfolding branch-nominals-def by simp

ultimately have ‹i /∈ block-nominals (?ps ′, a)›
using sub-block-repl[where block=‹(ps ′, a)› and i=i and j=j] by simp

have ‹?f ‘ A = A›
using DiaP(2) j by auto

52

have ‹(♦ p) at a in (?ps ′, a) # branch›
using DiaP(1) ∗ by fastforce

moreover have ‹A ` ((@ i p) # (♦ Nom i) # ?ps ′, a) # branch›
using ∗ DiaP(6) fin by (simp add: subset-code(1))

moreover have ‹i /∈ A ∪ branch-nominals ((?ps ′, a) # branch)›
using DiaP(2) ‹i /∈ block-nominals (?ps ′, a)› unfolding branch-nominals-def

by simp
ultimately have ‹A ` (?ps ′, a) # branch›

using DiaP(3) fin DiaP ′′ by metis
then have ‹?f ‘ A ` sub-branch ?f ((?ps ′, a) # branch)›

using STA-sub fin by blast
then have ‹A ` (sub-list ?f ?ps ′, ?f a) # sub-branch ?f branch›

unfolding sub-branch-def using ‹?f ‘ A = A› by simp
then show ?case

using ‹?f a = a› ps ′ branch by simp
next

case (DiaN p ps i n)
then have

‹(¬ (♦ p)) at a in (ps ′, a) # branch›
‹(♦ Nom i) at a in (ps ′, a) # branch›
by auto

moreover have ‹A ` ((¬ (@ i p)) # ps ′, a) # branch›
using DiaN (5−) by (simp add: subset-code(1))

ultimately show ?case
using DiaN ′ by fast

next
case (SatP p b ps n)
then have ‹(@ a p) at b in (ps ′, a) # branch›

by auto
moreover have ‹A ` (p # ps ′, a) # branch›

using SatP(4−) by (simp add: subset-code(1))
ultimately show ?case

using SatP ′ by fast
next

case (SatN p b ps n)
then have ‹(¬ (@ a p)) at b in (ps ′, a) # branch›

by auto
moreover have ‹A ` ((¬ p) # ps ′, a) # branch›

using SatN (4−) by (simp add: subset-code(1))
ultimately show ?case

using SatN ′ by fast
next

case (GoTo i n ps)
then have ‹A, Suc n ` (ps, a) # branch›

using STA.GoTo by fast
then obtain m where ‹A, m ` (ps, a) # (ps ′, a) # branch›

using inf fin STA-struct[where branch ′=‹(ps, a) # - # -›] by fastforce
then have ‹A, Suc m ` (ps ′, a) # branch›

53

using GoTo(4) by (simp add: STA-drop-block[where a=a])
then show ?case

by blast
next

case (Nom p b ps n)
have ‹p at b in (ps ′, a) # branch›

using Nom(1 , 7) by auto
moreover have ‹Nom a at b in (ps ′, a) # branch›

using Nom(2 , 7) by auto
moreover have ‹A ` (p # ps ′, a) # branch›

using Nom(6−) by (simp add: subset-code(1))
ultimately show ?case

using Nom(3) Nom ′ by metis
qed

10 Bridge

We define a descendants k i branch relation on sets of indices. The sets are
built on the index of a ♦ Nom k on an i-block in branch and can be extended
by indices of formula occurrences that can be thought of as descending from
that ♦ Nom k by application of either the (¬ ♦) or Nom rule.
We show that if we have nominals j and k on the same block in a closeable
branch, then the branch obtained by the following transformation is also
closeable: For every index v, if the formula at v is ♦ Nom k, replace it by ♦
Nom j and if it is ¬ (@ k p) replace it by ¬ (@ j p). There are no other
cases.
From this transformation we can show admissibility of the Bridge rule under
the assumption that j is an allowed nominal.

10.1 Replacing
abbreviation bridge ′ :: ‹ ′b ⇒ ′b ⇒ (′a, ′b) fm ⇒ (′a, ′b) fm› where

‹bridge ′ k j p ≡ case p of
(♦ Nom k ′) ⇒ (if k = k ′ then (♦ Nom j) else (♦ Nom k ′))
| (¬ (@ k ′ q)) ⇒ (if k = k ′ then (¬ (@ j q)) else (¬ (@ k ′ q)))
| p ⇒ p›

abbreviation bridge ::
‹ ′b ⇒ ′b ⇒ (nat × nat) set ⇒ nat ⇒ nat ⇒ (′a, ′b) fm ⇒ (′a, ′b) fm› where
‹bridge k j ≡ mapper (bridge ′ k j)›

lemma bridge-on-Nom:
‹Nom i on (ps, a) =⇒ Nom i on (mapi (bridge k j xs v) ps, a)›
by (induct ps) auto

lemma bridge ′-nominals:

54

‹nominals (bridge ′ k j p) ∪ {k, j} = nominals p ∪ {k, j}›
proof (induct p)

case (Neg p)
then show ?case by (cases p) auto

next
case (Dia p)
then show ?case by (cases p) auto

qed auto

lemma bridge-nominals:
‹nominals (bridge k j xs v v ′ p) ∪ {k, j} = nominals p ∪ {k, j}›

proof (cases ‹(v, v ′) ∈ xs›)
case True
then have ‹nominals (bridge k j xs v v ′ p) = nominals (bridge ′ k j p)›

by simp
then show ?thesis

using bridge ′-nominals by metis
qed simp

lemma bridge-block-nominals:
‹block-nominals (mapi-block (bridge k j xs v) (ps, a)) ∪ {k, j} =
block-nominals (ps, a) ∪ {k, j}›

proof (induct ps)
case Nil
then show ?case

by simp
next

case (Cons p ps)
have ‹?case ←→
(nominals (bridge k j xs v (length ps) p)) ∪
(block-nominals (mapi-block (bridge k j xs v) (ps, a)) ∪ {k, j}) =
(nominals p) ∪ (block-nominals (ps, a) ∪ {k, j})›
by simp

also have ‹. . . ←→
(nominals (bridge k j xs v (length ps) p) ∪ {k, j}) ∪
(block-nominals (mapi-block (bridge k j xs v) (ps, a)) ∪ {k, j}) =
(nominals p ∪ {k, j}) ∪ (block-nominals (ps, a) ∪ {k, j})›
by blast

moreover have
‹nominals (bridge k j xs v (length ps) p) ∪ {k, j} = nominals p ∪ {k, j}›
using bridge-nominals by metis

moreover note Cons
ultimately show ?case

by argo
qed

lemma bridge-branch-nominals:
‹branch-nominals (mapi-branch (bridge k j xs) branch) ∪ {k, j} =
branch-nominals branch ∪ {k, j}›

55

proof (induct branch)
case Nil
then show ?case

unfolding branch-nominals-def mapi-branch-def
by simp

next
case (Cons block branch)
have ‹?case ←→
(block-nominals (mapi-block (bridge k j xs (length branch)) block)) ∪
(branch-nominals (mapi-branch (bridge k j xs) branch) ∪ {k, j}) =
(block-nominals block) ∪ (branch-nominals branch ∪ {k, j})›
unfolding branch-nominals-def mapi-branch-def by simp

also have ‹. . . ←→
(block-nominals (mapi-block (bridge k j xs (length branch)) block) ∪ {k, j}) ∪
(branch-nominals (mapi-branch (bridge k j xs) branch) ∪ {k, j}) =
(block-nominals block ∪ {k, j}) ∪ (branch-nominals branch ∪ {k, j})›
by blast

moreover have
‹block-nominals (mapi-block (bridge k j xs (length branch)) block) ∪ {k, j} =
block-nominals block ∪ {k, j}›

using bridge-block-nominals[where ps=‹fst block› and a=‹snd block›] by simp
ultimately show ?case

using Cons by argo
qed

lemma at-in-mapi-branch:
assumes ‹p at a in branch› ‹p 6= Nom a›
shows ‹∃ v v ′. f v v ′ p at a in mapi-branch f branch›
using assms by (meson mapi-branch-mem rev-nth-mapi-block rev-nth-on)

lemma nom-at-in-bridge:
fixes k j xs
defines ‹f ≡ bridge k j xs›
assumes ‹Nom i at a in branch›
shows ‹Nom i at a in mapi-branch f branch›

proof −
obtain qs where qs: ‹(qs, a) ∈. branch› ‹Nom i on (qs, a)›

using assms(2) by blast
then obtain l where ‹(mapi (f l) qs, a) ∈. mapi-branch f branch›

using mapi-branch-mem by fast
moreover have ‹Nom i on (mapi (f l) qs, a)›

unfolding f-def using qs(2) by (induct qs) auto
ultimately show ?thesis

by blast
qed

lemma nominals-mapi-branch-bridge:
assumes ‹Nom k at j in branch›
shows ‹branch-nominals (mapi-branch (bridge k j xs) branch) = branch-nominals

56

branch›
proof −

let ?f = ‹bridge k j xs›
have ‹Nom k at j in mapi-branch ?f branch›

using assms nom-at-in-bridge by fast
then have

‹j ∈ branch-nominals (mapi-branch ?f branch)›
‹k ∈ branch-nominals (mapi-branch ?f branch)›
unfolding branch-nominals-def by fastforce+

moreover have ‹j ∈ branch-nominals branch› ‹k ∈ branch-nominals branch›
using assms unfolding branch-nominals-def by fastforce+

moreover have
‹branch-nominals (mapi-branch ?f branch) ∪ {k, j} = branch-nominals branch

∪ {k, j}›
using bridge-branch-nominals by metis

ultimately show ?thesis
by blast

qed

lemma bridge-proper-dia:
assumes ‹@ a. p = Nom a›
shows ‹bridge k j xs v v ′ (♦ p) = (♦ p)›
using assms by (induct p) simp-all

lemma bridge-compl-cases:
fixes k j xs v v ′ w w ′ p
defines ‹q ≡ bridge k j xs v v ′ p› and ‹q ′ ≡ bridge k j xs w w ′ (¬ p)›
shows

‹(q = (♦ Nom j) ∧ q ′ = (¬ (♦ Nom k))) ∨
(∃ r . q = (¬ (@ j r)) ∧ q ′ = (¬ ¬ (@ k r))) ∨
(∃ r . q = (@ k r) ∧ q ′ = (¬ (@ j r))) ∨

(q = p ∧ q ′ = (¬ p))›
proof (cases p)

case (Neg p)
then show ?thesis

by (cases p) (simp-all add: q-def q ′-def)
next

case (Dia p)
then show ?thesis

by (cases p) (simp-all add: q-def q ′-def)
qed (simp-all add: q-def q ′-def)

10.2 Descendants
inductive descendants :: ‹ ′b ⇒ ′b ⇒ (′a, ′b) branch ⇒ (nat × nat) set ⇒ bool›
where

Initial:
‹branch !. v = Some (qs, i) =⇒ qs !. v ′ = Some (♦ Nom k) =⇒

descendants k i branch {(v, v ′)}›

57

| Derived:
‹branch !. v = Some (qs, a) =⇒ qs !. v ′ = Some (¬ (@ k p)) =⇒

descendants k i branch xs =⇒ (w, w ′) ∈ xs =⇒
branch !. w = Some (rs, a) =⇒ rs !. w ′ = Some (♦ Nom k) =⇒
descendants k i branch ({(v, v ′)} ∪ xs)›

| Copied:
‹branch !. v = Some (qs, a) =⇒ qs !. v ′ = Some p =⇒

descendants k i branch xs =⇒ (w, w ′) ∈ xs =⇒
branch !. w = Some (rs, b) =⇒ rs !. w ′ = Some p =⇒
Nom a at b in branch =⇒
descendants k i branch ({(v, v ′)} ∪ xs)›

lemma descendants-initial:
assumes ‹descendants k i branch xs›
shows ‹∃ (v, v ′) ∈ xs. ∃ ps.

branch !. v = Some (ps, i) ∧ ps !. v ′ = Some (♦ Nom k)›
using assms by (induct k i branch xs rule: descendants.induct) simp-all

lemma descendants-bounds-fst:
assumes ‹descendants k i branch xs› ‹(v, v ′) ∈ xs›
shows ‹v < length branch›
using assms rev-nth-Some
by (induct k i branch xs rule: descendants.induct) fast+

lemma descendants-bounds-snd:
assumes ‹descendants k i branch xs› ‹(v, v ′) ∈ xs› ‹branch !. v = Some (ps, a)›
shows ‹v ′ < length ps›
using assms
by (induct k i branch xs rule: descendants.induct) (auto simp: rev-nth-Some)

lemma descendants-branch:
‹descendants k i branch xs =⇒ descendants k i (extra @ branch) xs›

proof (induct k i branch xs rule: descendants.induct)
case (Initial branch v qs i v ′ k)
then show ?case

using rev-nth-append descendants.Initial by fast
next

case (Derived branch v qs a v ′ k p i xs w w ′ rs)
then have

‹(extra @ branch) !. v = Some (qs, a)›
‹(extra @ branch) !. w = Some (rs, a)›
using rev-nth-append by fast+

then show ?case
using Derived(2 , 4−5 , 7) descendants.Derived by fast

next
case (Copied branch v qs a v ′ p k i xs w w ′ rs b)
then have

‹(extra @ branch) !. v = Some (qs, a)›
‹(extra @ branch) !. w = Some (rs, b)›

58

using rev-nth-append by fast+
moreover have ‹Nom a at b in (extra @ branch)›

using Copied(8) by auto
ultimately show ?case

using Copied(2−4 , 5−7) descendants.Copied by fast
qed

lemma descendants-block:
assumes ‹descendants k i ((ps, a) # branch) xs›
shows ‹descendants k i ((ps ′ @ ps, a) # branch) xs›
using assms

proof (induct k i ‹(ps, a) # branch› xs arbitrary: ps a branch rule: descen-
dants.induct)

case (Initial v qs i v ′ k)
have

‹((ps ′ @ ps, a) # branch) !. v = Some (qs, i) ∨
((ps ′ @ ps, a) # branch) !. v = Some (ps ′ @ qs, i)›

using Initial(1) by auto
moreover have

‹qs !. v ′ = Some (♦ Nom k)› ‹(ps ′ @ qs) !. v ′ = Some (♦ Nom k)›
using Initial(2) rev-nth-append by simp-all

ultimately show ?case
using descendants.Initial by fast

next
case (Derived v qs a ′ v ′ k p i xs w w ′ rs)
have

‹((ps ′ @ ps, a) # branch) !. v = Some (qs, a ′) ∨
((ps ′ @ ps, a) # branch) !. v = Some (ps ′ @ qs, a ′)›

using Derived(1) by auto
moreover have

‹qs !. v ′ = Some (¬ (@ k p))› ‹(ps ′ @ qs) !. v ′ = Some (¬ (@ k p))›
using Derived(2) rev-nth-append by simp-all

moreover have
‹((ps ′ @ ps, a) # branch) !. w = Some (rs, a ′) ∨
((ps ′ @ ps, a) # branch) !. w = Some (ps ′ @ rs, a ′)›

using ‹((ps, a) # branch) !. w = Some (rs, a ′)› by auto
moreover have

‹rs !. w ′ = Some (♦ Nom k)› ‹(ps ′ @ rs) !. w ′ = Some (♦ Nom k)›
using Derived(7) rev-nth-append by simp-all

ultimately show ?case
using Derived(4−5) descendants.Derived by fast

next
case (Copied v qs a ′ v ′ p k i xs w w ′ rs b)
have

‹((ps ′ @ ps, a) # branch) !. v = Some (qs, a ′) ∨
((ps ′ @ ps, a) # branch) !. v = Some (ps ′ @ qs, a ′)›

using Copied(1) by auto
moreover have ‹qs !. v ′ = Some p› ‹(ps ′ @ qs) !. v ′ = Some p›

using Copied(2) rev-nth-append by simp-all

59

moreover have
‹((ps ′ @ ps, a) # branch) !. w = Some (rs, b) ∨
((ps ′ @ ps, a) # branch) !. w = Some (ps ′ @ rs, b)›

using Copied(6) by auto
moreover have ‹rs !. w ′ = Some p› ‹(ps ′ @ rs) !. w ′ = Some p›

using Copied(7) rev-nth-append by simp-all
moreover have

‹((ps ′ @ ps, a) # branch) !. w = Some (rs, b) ∨
((ps ′ @ ps, a) # branch) !. w = Some (ps ′ @ rs, b)›

using Copied(6) by auto
moreover have ‹rs !. w ′ = Some p› ‹(ps ′ @ rs) !. w ′ = Some p›

using Copied(7) rev-nth-append by simp-all
moreover have ‹Nom a ′ at b in (ps ′ @ ps, a) # branch›

using Copied(8) by fastforce
ultimately show ?case
using Copied(4−5) descendants.Copied[where branch=‹(ps ′@ ps, a) # branch›]

by blast
qed

lemma descendants-no-head:
assumes ‹descendants k i ((ps, a) # branch) xs›
shows ‹descendants k i ((p # ps, a) # branch) xs›
using assms descendants-block[where ps ′=‹[-]›] by simp

lemma descendants-types:
assumes

‹descendants k i branch xs› ‹(v, v ′) ∈ xs›
‹branch !. v = Some (ps, a)› ‹ps !. v ′ = Some p›

shows ‹p = (♦ Nom k) ∨ (∃ q. p = (¬ (@ k q)))›
using assms by (induct k i branch xs arbitrary: v v ′ ps a) fastforce+

lemma descendants-oob-head ′:
assumes ‹descendants k i ((ps, a) # branch) xs›
shows ‹(length branch, m + length ps) /∈ xs›
using assms descendants-bounds-snd by fastforce

lemma descendants-oob-head:
assumes ‹descendants k i ((ps, a) # branch) xs›
shows ‹(length branch, length ps) /∈ xs›
using assms descendants-oob-head ′[where m=0] by fastforce

10.3 Induction

We induct over an arbitrary set of indices. That way, we can determine in
each case whether the extension gets replaced or not by manipulating the
set before applying the induction hypothesis.
lemma STA-bridge ′:

fixes a :: ′b
assumes

60

inf : ‹infinite (UNIV :: ′b set)› and fin: ‹finite A› and ‹j ∈ A›
‹A, n ` (ps, a) # branch›
‹descendants k i ((ps, a) # branch) xs›
‹Nom k at j in branch›

shows ‹A ` mapi-branch (bridge k j xs) ((ps, a) # branch)›
using assms(4−)

proof (induct n ‹(ps, a) # branch› arbitrary: ps a branch xs rule: STA.induct)
case (Close p i ′ n)
let ?f = ‹bridge k j xs›
let ?branch = ‹mapi-branch ?f ((ps, a) # branch)›

obtain qs where qs: ‹(qs, i ′) ∈. (ps, a) # branch› ‹p on (qs, i ′)›
using Close(1) by blast

obtain rs where rs: ‹(rs, i ′) ∈. (ps, a) # branch› ‹(¬ p) on (rs, i ′)›
using Close(2) by blast

obtain v where v: ‹(mapi (?f v) qs, i ′) ∈. ?branch›
using qs mapi-branch-mem by fast

obtain w where w: ‹(mapi (?f w) rs, i ′) ∈. ?branch›
using rs mapi-branch-mem by fast

have k: ‹Nom k at j in ?branch›
using Close(4) nom-at-in-bridge unfolding mapi-branch-def by fastforce

show ?case
proof (cases ‹∃ a. p = Nom a›)

case True
then have ‹p on (mapi (?f v) qs, i ′)›

using qs bridge-on-Nom by fast
moreover have ‹(¬ p) on (mapi (?f w) rs, i ′)›

using rs(2) True by (induct rs) auto
ultimately show ?thesis

using v w STA.Close by fast
next

case False
then obtain v ′ where ‹qs !. v ′ = Some p›

using qs rev-nth-on by fast
then have qs ′: ‹(?f v v ′ p) on (mapi (?f v) qs, i ′)›

using rev-nth-mapi-block by fast

then obtain w ′ where ‹rs !. w ′ = Some (¬ p)›
using rs rev-nth-on by fast

then have rs ′: ‹(?f w w ′ (¬ p)) on (mapi (?f w) rs, i ′)›
using rev-nth-mapi-block by fast

obtain q q ′ where q: ‹?f v v ′ p = q› and q ′: ‹?f w w ′ (¬ p) = q ′›
by simp-all

then consider
(dia) ‹q = (♦ Nom j)› ‹q ′ = (¬ (♦ Nom k))› |

61

(satn)‹∃ r . q = (¬ (@ j r)) ∧ q ′ = (¬ ¬ (@ k r))› |
(sat) ‹∃ r . q = (@ k r) ∧ q ′ = (¬ (@ j r))› |
(old) ‹q = p› ‹q ′ = (¬ p)›
using bridge-compl-cases by fast

then show ?thesis
proof cases

case dia
then have ∗:

‹(♦ Nom j) on (mapi (?f v) qs, i ′)›
‹(¬ (♦ Nom k)) on (mapi (?f w) rs, i ′)›
using q qs ′ q ′ rs ′ by simp-all

have ‹i ′ ∈ branch-nominals ?branch›
unfolding branch-nominals-def using v by fastforce

then have ?thesis if ‹A ` ([], i ′) # ?branch›
using that GoTo by fast

moreover have ‹(mapi (?f v) qs, i ′) ∈. ([], i ′) # ?branch›
using v by simp

moreover have ‹(mapi (?f w) rs, i ′) ∈. ([], i ′) # ?branch›
using w by simp

ultimately have ?thesis if ‹A ` ([¬ (@ j (Nom k))], i ′) # ?branch›
using that ∗ by (meson DiaN ′)

moreover have ‹j ∈ branch-nominals (([¬ (@ j (Nom k))], i ′) # ?branch)›
unfolding branch-nominals-def by simp

ultimately have ?thesis if ‹A ` ([], j) # ([¬ (@ j (Nom k))], i ′) # ?branch›
using that GoTo by fast

moreover have ‹(¬ (@ j (Nom k))) at i ′ in ([], j) # ([¬ (@ j (Nom k))],
i ′) # ?branch›

by fastforce
ultimately have ?thesis if ‹A ` ([¬ Nom k], j) # ([¬ (@ j (Nom k))], i ′)

?branch›
using that SatN ′ by fast

moreover have ‹Nom k at j in ([¬ Nom k], j) # ([¬ (@ j (Nom k))], i ′) #
?branch›

using k by fastforce
moreover have ‹(¬ Nom k) at j in ([¬ Nom k], j) # ([¬ (@ j (Nom k))],

i ′) # ?branch›
by fastforce

ultimately show ?thesis
using STA.Close by fast

next
case satn
then obtain r where ∗:

‹(¬ (@ j r)) on (mapi (?f v) qs, i ′)›
‹(¬ ¬ (@ k r)) on (mapi (?f w) rs, i ′)›
using q qs ′ q ′ rs ′ by auto

have ‹i ′ ∈ branch-nominals ?branch›
unfolding branch-nominals-def using v by fastforce

62

then have ?thesis if ‹A ` ([], i ′) # ?branch›
using that GoTo by fast

moreover have ‹(mapi (?f w) rs, i ′) ∈. ([], i ′) # ?branch›
using w by simp

ultimately have ?thesis if ‹A ` ([@ k r], i ′) # ?branch›
using that ∗(2) by (meson Neg ′)

moreover have ‹j ∈ branch-nominals (([@ k r], i ′) # ?branch)›
unfolding branch-nominals-def using k by fastforce

ultimately have ?thesis if ‹A ` ([], j) # ([@ k r], i ′) # ?branch›
using that GoTo by fast

moreover have ‹(¬ (@ j r)) at i ′ in ([], j) # ([@ k r], i ′) # ?branch›
using ∗(1) v by auto

ultimately have ?thesis if ‹A ` ([¬ r], j) # ([@ k r], i ′) # ?branch›
using that SatN ′ by fast

moreover have ‹k ∈ branch-nominals (([¬ r], j) # ([@ k r], i ′) # ?branch)›
unfolding branch-nominals-def using k by fastforce

ultimately have ?thesis if ‹A ` ([], k) # ([¬ r], j) # ([@ k r], i ′) # ?branch›
using that GoTo by fast

moreover have ‹(@ k r) at i ′ in ([], k) # ([¬ r], j) # ([@ k r], i ′) # ?branch›
by fastforce
ultimately have ?thesis if ‹A ` ([r], k) # ([¬ r], j) # ([@ k r], i ′) #

?branch›
using that SatP ′ by fast

moreover have
‹Nom k at j in ([r], k) # ([¬ r], j) # ([@ k r], i ′) # ?branch›
‹(¬ r) at j in ([r], k) # ([¬ r], j) # ([@ k r], i ′) # ?branch›
using k by fastforce+

ultimately have ?thesis if ‹A ` ([¬ r , r], k) # ([¬ r], j) # ([@ k r], i ′) #
?branch›

using that by (meson Nom ′ fm.distinct(21) fm.simps(18))
moreover have

‹r at k in ([¬ r , r], k) # ([¬ r], j) # ([@ k r], i ′) # ?branch›
‹(¬ r) at k in ([¬ r , r], k) # ([¬ r], j) # ([@ k r], i ′) # ?branch›
by fastforce+

ultimately show ?thesis
using STA.Close by fast

next
case sat
then obtain r where ∗:

‹(@ k r) on (mapi (?f v) qs, i ′)›
‹(¬ (@ j r)) on (mapi (?f w) rs, i ′)›
using q qs ′ q ′ rs ′ by auto

have ‹j ∈ branch-nominals ?branch›
unfolding branch-nominals-def using k by fastforce

then have ?thesis if ‹A ` ([], j) # ?branch›
using that GoTo by fast

moreover have ‹(¬ (@ j r)) at i ′ in ([], j) # ?branch›
using ∗(2) w by auto

63

ultimately have ?thesis if ‹A ` ([¬ r], j) # ?branch›
using that by (meson SatN ′)

moreover have ‹k ∈ branch-nominals (([¬ r], j) # ?branch)›
unfolding branch-nominals-def using k by fastforce

ultimately have ?thesis if ‹A ` ([], k) # ([¬ r], j) # ?branch›
using that GoTo by fast

moreover have ‹(@ k r) at i ′ in ([], k) # ([¬ r], j) # ?branch›
using ∗(1) v by auto

ultimately have ?thesis if ‹A ` ([r], k) # ([¬ r], j) # ?branch›
using that SatP ′ by fast

moreover have
‹Nom k at j in ([r], k) # ([¬ r], j) # ?branch›
‹(¬ r) at j in ([r], k) # ([¬ r], j) # ?branch›
using k by fastforce+

ultimately have ?thesis if ‹A ` ([¬ r , r], k) # ([¬ r], j) # ?branch›
using that by (meson Nom ′ fm.distinct(21) fm.simps(18))

moreover have
‹r at k in ([¬ r , r], k) # ([¬ r], j) # ?branch›
‹(¬ r) at k in ([¬ r , r], k) # ([¬ r], j) # ?branch›
by fastforce+

ultimately show ?thesis
using STA.Close by fast

next
case old
then have ‹p on (mapi (?f v) qs, i ′)› ‹(¬ p) on (mapi (?f w) rs, i ′)›

using q qs ′ q ′ rs ′ by simp-all
then show ?thesis

using v w STA.Close[where p=p and i=i ′] by fast
qed

qed
next

case (Neg p a ps branch n)
let ?f = ‹bridge k j xs›
have p: ‹?f l l ′ (¬ ¬ p) = (¬ ¬ p)› for l l ′

by simp

have ‹descendants k i ((p # ps, a) # branch) xs›
using Neg(5) descendants-no-head by fast

then have ‹A ` mapi-branch ?f ((p # ps, a) # branch)›
using Neg(4−) by blast

moreover have ‹(length branch, length ps) /∈ xs›
using Neg(5) descendants-oob-head by fast

ultimately have ‹A ` (p # mapi (?f (length branch)) ps, a) # mapi-branch ?f
branch›

unfolding mapi-branch-def by simp
moreover have ‹∃ l l ′. ?f l l ′ (¬ ¬ p) at a in mapi-branch ?f ((ps, a) # branch)›

using Neg(1) at-in-mapi-branch by fast
then have ‹(¬ ¬ p) at a in (mapi (?f (length branch)) ps, a) # mapi-branch ?f

branch›

64

unfolding mapi-branch-def using p by simp
ultimately have ‹A ` (mapi (?f (length branch)) ps, a) # mapi-branch ?f

branch›
using Neg ′ by fast

then show ?case
unfolding mapi-branch-def by auto

next
case (DisP p q a ps branch n)
let ?f = ‹bridge k j xs›
have p: ‹?f l l ′ (p ∨ q) = (p ∨ q)› for l l ′

by simp

have
‹descendants k i ((p # ps, a) # branch) xs›
‹descendants k i ((q # ps, a) # branch) xs›
using DisP(8) descendants-no-head by fast+

then have
‹A ` mapi-branch ?f ((p # ps, a) # branch)›
‹A ` mapi-branch ?f ((q # ps, a) # branch)›
using DisP(5−) by blast+

moreover have ‹(length branch, length ps) /∈ xs›
using DisP(8) descendants-oob-head by fast

ultimately have
‹A ` (p # mapi (?f (length branch)) ps, a) # mapi-branch ?f branch›
‹A ` (q # mapi (?f (length branch)) ps, a) # mapi-branch ?f branch›
unfolding mapi-branch-def by simp-all

moreover have ‹∃ l l ′. ?f l l ′ (p ∨ q) at a in mapi-branch ?f ((ps, a) # branch)›
using DisP(1) at-in-mapi-branch by fast

then have ‹(p ∨ q) at a in (mapi (?f (length branch)) ps, a) # mapi-branch ?f
branch›

unfolding mapi-branch-def using p by simp
ultimately have ‹A ` (mapi (?f (length branch)) ps, a) # mapi-branch ?f

branch›
using DisP ′′ by fast

then show ?case
unfolding mapi-branch-def by auto

next
case (DisN p q a ps branch n)
let ?f = ‹bridge k j xs›
have p: ‹?f l l ′ (¬ (p ∨ q)) = (¬ (p ∨ q))› for l l ′

by simp

have ‹descendants k i (((¬ p) # ps, a) # branch) xs›
using DisN (5) descendants-no-head by fast

then have ‹descendants k i (((¬ q) # (¬ p) # ps, a) # branch) xs›
using descendants-no-head by fast

then have ‹A ` mapi-branch ?f (((¬ q) # (¬ p) # ps, a) # branch)›
using DisN (4−) by blast

moreover have ‹(length branch, length ps) /∈ xs›

65

using DisN (5) descendants-oob-head by fast
moreover have ‹(length branch, 1 + length ps) /∈ xs›

using DisN (5) descendants-oob-head ′ by fast
ultimately have ‹A ` ((¬ q) # (¬ p) # mapi (?f (length branch)) ps, a) #

mapi-branch ?f branch›
unfolding mapi-branch-def by simp

moreover have ‹∃ l l ′. ?f l l ′ (¬ (p ∨ q)) at a in mapi-branch ?f ((ps, a) #
branch)›

using DisN (1) at-in-mapi-branch by fast
then have ‹(¬ (p ∨ q)) at a in (mapi (?f (length branch)) ps, a) # mapi-branch

?f branch›
unfolding mapi-branch-def using p by simp

ultimately have ‹A ` (mapi (?f (length branch)) ps, a) # mapi-branch ?f
branch›

using DisN ′ by fast
then show ?case

unfolding mapi-branch-def by auto
next

case (DiaP p a ps branch i ′ n)
let ?f = ‹bridge k j xs›
have p: ‹?f l l ′ (♦ p) = (♦ p)› for l l ′

using DiaP(3) bridge-proper-dia by fast

have ‹branch-nominals (mapi-branch ?f ((ps, a) # branch)) = branch-nominals
((ps, a) # branch)›

using DiaP(8−) nominals-mapi-branch-bridge[where j=j and k=k and branch=‹(ps,
a) # branch›]

by auto
then have i ′:

‹i ′ /∈ A ∪ branch-nominals ((mapi (?f (length branch)) ps, a) # mapi-branch
?f branch)›

unfolding mapi-branch-def using DiaP(2) by simp

have 1 : ‹?f (length branch) (1 + length ps) (@ i ′ p) = (@ i ′ p)›
by simp

have ‹i ′ 6= k›
using DiaP(2 , 8) unfolding branch-nominals-def by fastforce

then have 2 : ‹?f (length branch) (length ps) (♦ Nom i ′) = (♦ Nom i ′)›
by simp

have ‹i ′ 6= j›
using DiaP(2 , 8) unfolding branch-nominals-def by fastforce

moreover have ‹descendants k i (((@ i ′ p) # (♦ Nom i ′) # ps, a) # branch)
xs›

using DiaP(7) descendants-block[where ps ′=‹[-, -]›] by fastforce
ultimately have ‹A ` mapi-branch ?f (((@ i ′ p) # (♦ Nom i ′) # ps, a) #

branch)›
using DiaP(4−) by blast

then have ‹A ` ((@ i ′ p) # (♦ Nom i ′) # mapi (?f (length branch)) ps, a) #

66

mapi-branch ?f branch›
unfolding mapi-branch-def using 1 by (simp add: 2)

moreover have ‹∃ l l ′. ?f l l ′ (♦ p) at a in mapi-branch ?f ((ps, a) # branch)›
using DiaP(1) at-in-mapi-branch by fast

then have ‹(♦ p) at a in (mapi (?f (length branch)) ps, a) # mapi-branch ?f
branch›

unfolding mapi-branch-def using p by simp
ultimately have ‹A ` (mapi (?f (length branch)) ps, a) # mapi-branch ?f

branch›
using i ′ DiaP(3) fin DiaP ′′ by fast

then show ?case
unfolding mapi-branch-def by simp

next
case (DiaN p a ps branch i ′ n)
have p: ‹bridge k j xs l l ′ (¬ (♦ p)) = (¬ (♦ p))› for xs l l ′

by simp

obtain rs where rs: ‹(rs, a) ∈. (ps, a) # branch› ‹(♦ Nom i ′) on (rs, a)›
using DiaN (2) by fast

obtain v where v: ‹((ps, a) # branch) !. v = Some (rs, a)›
using rs(1) rev-nth-mem by fast

obtain v ′ where v ′: ‹rs !. v ′ = Some (♦ Nom i ′)›
using rs(2) rev-nth-on by fast

show ?case
proof (cases ‹(v, v ′) ∈ xs›)

case True
then have ‹i ′ = k›

using DiaN (6) v v ′ descendants-types by fast

let ?xs = ‹{(length branch, length ps)} ∪ xs›
let ?f = ‹bridge k j ?xs›
let ?branch = ‹((¬ (@ i ′ p)) # ps, a) # branch›

obtain rs ′ where
‹(((¬ (@ k p)) # ps, a) # branch) !. v = Some (rs ′, a)›
‹rs ′ !. v ′ = Some (♦ Nom i ′)›
using v v ′ index-Cons by fast

moreover have ‹descendants k i (((¬ (@ k p)) # ps, a) # branch) xs›
using DiaN (6) descendants-block[where ps ′=‹[-]›] by fastforce

moreover have ‹?branch !. length branch = Some ((¬ (@ k p)) # ps, a)›
using ‹i ′ = k› by simp

moreover have ‹((¬ (@ k p)) # ps) !. length ps = Some (¬ (@ k p))›
by simp

ultimately have ‹descendants k i (((¬ (@ k p)) # ps, a) # branch) ?xs›
using True ‹i ′ = k› Derived[where branch=‹- # branch›] by simp

then have ‹A ` mapi-branch ?f (((¬ (@ k p)) # ps, a) # branch)›
using ‹i ′ = k› DiaN (5−) by blast

67

then have ‹A ` ((¬ (@ j p)) # mapi (?f (length branch)) ps, a) #
mapi-branch (bridge k j ?xs) branch›

unfolding mapi-branch-def using ‹i ′ = k› by simp
moreover have ‹∃ l l ′. ?f l l ′ (¬ (♦ p)) at a in mapi-branch ?f ((ps, a) #

branch)›
using DiaN (1) at-in-mapi-branch by fast

then have ‹(¬ (♦ p)) at a in (mapi (?f (length branch)) ps, a) # mapi-branch
?f branch›

unfolding mapi-branch-def using p[where xs=‹?xs›] by simp
moreover have ‹(mapi (?f v) rs, a) ∈. mapi-branch ?f ((ps, a) # branch)›

using v rev-nth-mapi-branch by fast
then have ‹(mapi (?f v) rs, a) ∈

set ((mapi (?f (length branch)) ps, a) # mapi-branch ?f branch)›
unfolding mapi-branch-def by simp

moreover have ‹?f v v ′ (♦ Nom i ′) on (mapi (?f v) rs, a)›
using v ′ rev-nth-mapi-block by fast

then have ‹(♦ Nom j) on (mapi (?f v) rs, a)›
using True ‹i ′ = k› by simp

ultimately have ‹A ` (mapi (?f (length branch)) ps, a) # mapi-branch ?f
branch›

by (meson DiaN ′)
then have ‹A ` (mapi (bridge k j xs (length branch)) ps, a) #

mapi-branch (bridge k j xs) branch›
using mapi-branch-head-add-oob[where branch=branch and ps=ps] unfold-

ing mapi-branch-def
by simp

then show ?thesis
unfolding mapi-branch-def by simp

next
case False
let ?f = ‹bridge k j xs›

have ‹descendants k i (((¬ (@ i ′ p)) # ps, a) # branch) xs›
using DiaN (6) descendants-no-head by fast

then have ‹A ` mapi-branch ?f (((¬ (@ i ′ p)) # ps, a) # branch)›
using DiaN (5−) by blast

moreover have ‹(length branch, length ps) /∈ xs›
using DiaN (6) descendants-oob-head by fast

ultimately have ‹A ` ((¬ (@ i ′ p)) # mapi (?f (length branch)) ps, a) #
mapi-branch ?f branch›

unfolding mapi-branch-def by simp
moreover have ‹∃ l l ′. ?f l l ′ (¬ (♦ p)) at a in mapi-branch ?f ((ps, a) #

branch)›
using DiaN (1) at-in-mapi-branch by fast

then have ‹(¬ (♦ p)) at a in (mapi (?f (length branch)) ps, a) # mapi-branch
?f branch›

unfolding mapi-branch-def using p[where xs=‹xs›] by simp
moreover have ‹(mapi (?f v) rs, a) ∈. mapi-branch ?f ((ps, a) # branch)›

using v rev-nth-mapi-branch by fast

68

then have ‹(mapi (?f v) rs, a) ∈
set ((mapi (?f (length branch)) ps, a) # mapi-branch ?f branch)›

unfolding mapi-branch-def by simp
moreover have ‹?f v v ′ (♦ Nom i ′) on (mapi (?f v) rs, a)›

using v ′ rev-nth-mapi-block by fast
then have ‹(♦ Nom i ′) on (mapi (?f v) rs, a)›

using False by simp
ultimately have ‹A ` (mapi (?f (length branch)) ps, a) # mapi-branch ?f

branch›
by (meson DiaN ′)

then show ?thesis
unfolding mapi-branch-def by simp

qed
next

case (SatP a p b ps branch n)
let ?f = ‹bridge k j xs›
have p: ‹?f l l ′ (@ a p) = (@ a p)› for l l ′

by simp

have ‹descendants k i ((p # ps, a) # branch) xs›
using SatP(5) descendants-no-head by fast

then have ‹A ` mapi-branch ?f ((p # ps, a) # branch)›
using SatP(4−) by blast

moreover have ‹(length branch, length ps) /∈ xs›
using SatP(5) descendants-oob-head by fast

ultimately have ‹A ` (p # mapi (?f (length branch)) ps, a) # mapi-branch ?f
branch›

unfolding mapi-branch-def by simp
moreover have ‹∃ l l ′. ?f l l ′ (@ a p) at b in mapi-branch ?f ((ps, a) # branch)›

using SatP(1) at-in-mapi-branch by fast
then have ‹(@ a p) at b in (mapi (?f (length branch)) ps, a) # mapi-branch ?f

branch›
unfolding mapi-branch-def using p by simp

ultimately have ‹A ` (mapi (?f (length branch)) ps, a) # mapi-branch ?f
branch›

using SatP ′ by fast
then show ?case

unfolding mapi-branch-def by simp
next

case (SatN a p b ps branch n)
obtain qs where qs: ‹(qs, b) ∈. (ps, a) # branch› ‹(¬ (@ a p)) on (qs, b)›

using SatN (1) by fast
obtain v where v: ‹((ps, a) # branch) !. v = Some (qs, b)›

using qs(1) rev-nth-mem by fast
obtain v ′ where v ′: ‹qs !. v ′ = Some (¬ (@ a p))›

using qs(2) rev-nth-on by fast

show ?case
proof (cases ‹(v, v ′) ∈ xs›)

69

case True
then have ‹a = k›

using SatN (5) v v ′ descendants-types by fast

let ?f = ‹bridge k j xs›
let ?branch = ‹((¬ p) # ps, a) # branch›
have p: ‹?f v v ′ (¬ (@ k p)) = (¬ (@ j p))›

using True by simp

obtain rs ′ where
‹?branch !. v = Some (rs ′, b)›
‹rs ′ !. v ′ = Some (¬ (@ k p))›
using v v ′ ‹a = k› index-Cons by fast

have ‹descendants k i ?branch xs›
using SatN (5) descendants-no-head by fast

then have ‹A ` mapi-branch ?f ?branch›
using ‹a = k› SatN (4−) by blast

moreover have ‹(length branch, length ps) /∈ xs›
using SatN (5) descendants-oob-head by fast

ultimately have ‹A ` ((¬ p) # mapi (?f (length branch)) ps, a) # mapi-branch
?f branch›

unfolding mapi-branch-def using ‹a = k› by simp
moreover have ‹set (((¬ p) # mapi (?f (length branch)) ps, a) # mapi-branch

?f branch) ⊆
set (((¬ p) # mapi (?f (length branch)) ps, a) # ([¬ p], j) # mapi-branch

?f branch)›
by auto

ultimately have ∗:
‹A ` ((¬ p) # mapi (?f (length branch)) ps, a) # ([¬ p], j) # mapi-branch

?f branch›
using inf fin STA-struct by fastforce

have k: ‹Nom k at j in mapi-branch ?f ((ps, a) # branch)›
using SatN (6) nom-at-in-bridge unfolding mapi-branch-def by fastforce

have ‹(mapi (?f v) qs, b) ∈. mapi-branch ?f ((ps, a) # branch)›
using v rev-nth-mapi-branch by fast

moreover have ‹?f v v ′ (¬ (@ k p)) on (mapi (?f v) qs, b)›
using v ′ ‹a = k› rev-nth-mapi-block by fast

then have ‹(¬ (@ j p)) on (mapi (?f v) qs, b)›
using p by simp

ultimately have satn: ‹(¬ (@ j p)) at b in mapi-branch ?f ((ps, a) # branch)›
by blast

have ‹j ∈ branch-nominals (mapi-branch ?f ((ps, a) # branch))›
unfolding branch-nominals-def using k by fastforce

then have ?thesis if ‹A ` ([], j) # mapi-branch ?f ((ps, a) # branch)›
using that GoTo by fast
moreover have ‹(¬ (@ j p)) at b in ([], j) # mapi-branch ?f ((ps, a) #

70

branch)›
using satn by auto
ultimately have ?thesis if ‹A ` ([¬ p], j) # mapi-branch ?f ((ps, a) #

branch)›
using that SatN ′ by fast

then have ?thesis if ‹A ` ([¬ p], j) # mapi-branch ?f ((ps, a) # branch)›
using that SatN ′ by fast

then have ?thesis if
‹A ` ([¬ p], j) # (mapi (?f (length branch)) ps, a) # mapi-branch ?f branch›
using that unfolding mapi-branch-def by simp
moreover have ‹set ((mapi (?f (length branch)) ps, a) # ([¬ p], j) #

mapi-branch ?f branch) ⊆
set (([¬ p], j) # (mapi (?f (length branch)) ps, a) # mapi-branch ?f branch)›
by auto

ultimately have ?thesis if
‹A ` (mapi (?f (length branch)) ps, a) # ([¬ p], j) # mapi-branch ?f branch›
using that inf fin STA-struct by blast

moreover have
‹Nom k at j in (mapi (?f (length branch)) ps, a) # ([¬ p], j) # mapi-branch

?f branch›
using k unfolding mapi-branch-def by auto

moreover have
‹(¬ p) at j in (mapi (?f (length branch)) ps, a) # ([¬ p], j) # mapi-branch

?f branch›
by fastforce

ultimately have ?thesis if
‹A ` ((¬ p) # mapi (?f (length branch)) ps, a) # ([¬ p], j) # mapi-branch

?f branch›
using that ‹a = k› by (meson Nom ′ fm.distinct(21) fm.simps(18))

then show ?thesis
using ∗ by blast

next
case False
let ?f = ‹bridge k j xs›

have ‹descendants k i (((¬ p) # ps, a) # branch) xs›
using SatN (5) descendants-no-head by fast

then have ‹A ` mapi-branch (bridge k j xs) (((¬ p) # ps, a) # branch)›
using SatN (4−) by blast

moreover have ‹(length branch, length ps) /∈ xs›
using SatN (5) descendants-oob-head by fast

ultimately have ‹A ` ((¬ p) # mapi (?f (length branch)) ps, a) # mapi-branch
?f branch›

unfolding mapi-branch-def by simp
moreover have ‹(mapi (?f v) qs, b) ∈. mapi-branch ?f ((ps, a) # branch)›

using v rev-nth-mapi-branch by fast
then have ‹(mapi (?f v) qs, b) ∈

set ((mapi (?f (length branch)) ps, a) # mapi-branch ?f branch)›
unfolding mapi-branch-def by simp

71

moreover have ‹?f v v ′ (¬ (@ a p)) on (mapi (?f v) qs, b)›
using v ′ rev-nth-mapi-block by fast

then have ‹(¬ (@ a p)) on (mapi (?f v) qs, b)›
using False by simp

ultimately have ‹A ` (mapi (?f (length branch)) ps, a) # mapi-branch ?f
branch›

by (meson SatN ′)
then show ?thesis

unfolding mapi-branch-def by simp
qed

next
case (GoTo i ′ n ps a branch)
let ?f = ‹bridge k j xs›

have ‹descendants k i (([], i ′) # (ps, a) # branch) xs›
using GoTo(4) descendants-branch[where extra=‹[-]›] by simp

then have ‹A ` mapi-branch ?f (([], i ′) # (ps, a) # branch)›
using GoTo(3 , 5−) by auto

then have ‹A ` ([], i ′) # mapi-branch ?f ((ps, a) # branch)›
unfolding mapi-branch-def by simp

moreover have
‹branch-nominals (mapi-branch ?f ((ps, a) # branch)) = branch-nominals ((ps,

a) # branch)›
using GoTo(5−) nominals-mapi-branch-bridge[where j=j and k=k and branch=‹(ps,

a) # branch›]
by auto

then have ‹i ′∈ branch-nominals (mapi-branch (bridge k j xs) ((ps, a) # branch))›
using GoTo(1) by blast

ultimately show ?case
using STA.GoTo by fast

next
case (Nom p b ps a branch n)
show ?case
proof (cases ‹∃ j. p = Nom j›)

case True
let ?f = ‹bridge k j xs›

have ‹descendants k i ((p # ps, a) # branch) xs›
using Nom(7) descendants-block[where ps ′=‹[p]›] by simp

then have ‹A ` mapi-branch ?f ((p # ps, a) # branch)›
using Nom(6−) by blast

moreover have ‹?f (length branch) (length ps) p = p›
using True by auto

ultimately have ‹A ` (p # mapi (?f (length branch)) ps, a) # mapi-branch
?f branch›

unfolding mapi-branch-def by simp
moreover have ‹p at b in mapi-branch ?f ((ps, a) # branch)›

using Nom(1) True nom-at-in-bridge by fast
then have ‹p at b in (mapi (?f (length branch)) ps, a) # mapi-branch ?f

72

branch›
unfolding mapi-branch-def by simp

moreover have ‹Nom a at b in mapi-branch ?f ((ps, a) # branch)›
using Nom(2) True nom-at-in-bridge by fast

then have ‹Nom a at b in (mapi (?f (length branch)) ps, a) # mapi-branch ?f
branch›

unfolding mapi-branch-def by simp
ultimately have ‹A ` (mapi (?f (length branch)) ps, a) # mapi-branch ?f

branch›
by (meson Nom ′ Nom.hyps(3))

then show ?thesis
unfolding mapi-branch-def by simp

next
case False
obtain qs where qs: ‹(qs, b) ∈. (ps, a) # branch› ‹p on (qs, b)›

using Nom(1) by blast
obtain v where v: ‹((ps, a) # branch) !. v = Some (qs, b)›

using qs(1) rev-nth-mem by fast
obtain v ′ where v ′: ‹qs !. v ′ = Some p›

using qs(2) False rev-nth-on by fast

show ?thesis
proof (cases ‹(v, v ′) ∈ xs›)

case True
let ?xs = ‹{(length branch, length ps)} ∪ xs›
let ?f = ‹bridge k j ?xs›

let ?p = ‹bridge ′ k j p›
have p: ‹?f v v ′ p = ?p›

using True by simp

consider (dia) ‹p = (♦ Nom k)› | (satn) q where ‹p = (¬ (@ k q))› | (old)
‹?p = p›

by (meson Nom.prems(1) True descendants-types v v ′)
then have A: ‹∀ i. ?p = Nom i ∨ ?p = (♦ Nom i) −→ i ∈ A›

using Nom(3) ‹j ∈ A› by cases simp-all

obtain qs ′ where
‹((p # ps, a) # branch) !. v = Some (qs ′, b)›
‹qs ′ !. v ′ = Some p›
using v v ′ index-Cons by fast

moreover have ‹Nom a at b in (p # ps, a) # branch›
using Nom(2) by fastforce

moreover have ‹descendants k i ((p # ps, a) # branch) xs›
using Nom(7) descendants-block[where ps ′=‹[p]›] by simp

moreover have
‹((p # ps, a) # branch) !. length branch = Some (p # ps, a)›
‹(p # ps) !. length ps = Some p›
by simp-all

73

ultimately have ‹descendants k i ((p # ps, a) # branch) ?xs›
using True Copied by fast

then have ‹A ` mapi-branch ?f ((p # ps, a) # branch)›
using Nom(6−) by blast

then have ‹A ` (?p # mapi (?f (length branch)) ps, a) # mapi-branch ?f
branch›

unfolding mapi-branch-def by simp

moreover have ‹(mapi (?f v) qs, b) ∈. mapi-branch ?f ((ps, a) # branch)›
using v rev-nth-mapi-branch by fast

then have ‹(mapi (?f v) qs, b) ∈. (mapi (?f (length branch)) ps, a) #
mapi-branch ?f branch›

unfolding mapi-branch-def by simp
moreover have ‹?f v v ′ p on (mapi (?f v) qs, b)›

using v v ′ rev-nth-mapi-block by fast
then have ‹?p on (mapi (?f v) qs, b)›

using p by simp

moreover have ‹Nom a at b in mapi-branch ?f ((ps, a) # branch)›
using Nom(2) nom-at-in-bridge by fast

then have ‹Nom a at b in (mapi (?f (length branch)) ps, a) # mapi-branch
?f branch›

unfolding mapi-branch-def by simp
ultimately have ‹A ` (mapi (?f (length branch)) ps, a) # mapi-branch ?f

branch›
using A by (meson Nom ′ Nom(3))

then have ‹A ` (mapi (bridge k j xs (length branch)) ps, a) #
mapi-branch (bridge k j xs) branch›

using mapi-branch-head-add-oob[where branch=branch and ps=ps]
unfolding mapi-branch-def by simp

then show ?thesis
unfolding mapi-branch-def by simp

next
case False
let ?f = ‹bridge k j xs›

have ‹descendants k i ((p # ps, a) # branch) xs›
using Nom(7) descendants-no-head by fast

then have ‹A ` mapi-branch ?f ((p # ps, a) # branch)›
using Nom(6−) by blast

moreover have ‹(length branch, length ps) /∈ xs›
using Nom(7) descendants-oob-head by fast

ultimately have ‹A ` (p # mapi (?f (length branch)) ps, a) # mapi-branch
?f branch›

unfolding mapi-branch-def by simp

moreover have ‹(mapi (?f v) qs, b) ∈. mapi-branch ?f ((ps, a) # branch)›
using v rev-nth-mapi-branch by fast

then have ‹(mapi (?f v) qs, b) ∈. (mapi (?f (length branch)) ps, a) #

74

mapi-branch ?f branch›
unfolding mapi-branch-def by simp

moreover have ‹?f v v ′ p on (mapi (?f v) qs, b)›
using v v ′ rev-nth-mapi-block by fast

then have ‹p on (mapi (?f v) qs, b)›
using False by simp

moreover have ‹Nom a at b in mapi-branch ?f ((ps, a) # branch)›
using Nom(2) nom-at-in-bridge by fast

then have ‹Nom a at b in (mapi (?f (length branch)) ps, a) # mapi-branch
?f branch›

unfolding mapi-branch-def by simp
ultimately have ‹A ` (mapi (?f (length branch)) ps, a) # mapi-branch ?f

branch›
by (meson Nom ′ Nom(3))

then show ?thesis
unfolding mapi-branch-def by simp

qed
qed

qed

lemma STA-bridge:
fixes i :: ′b
assumes

inf : ‹infinite (UNIV :: ′b set)› and
‹A ` branch› ‹descendants k i branch xs›
‹Nom k at j in branch›
‹finite A› ‹j ∈ A›

shows ‹A ` mapi-branch (bridge k j xs) branch›
proof −

have ‹A ` ([], j) # branch›
using assms(2 , 5−6) inf STA-struct[where branch ′=‹([], j) # branch›] by

auto
moreover have ‹descendants k i (([], j) # branch) xs›

using assms(3) descendants-branch[where extra=‹[-]›] by fastforce
ultimately have ‹A ` mapi-branch (bridge k j xs) (([], j) # branch)›

using STA-bridge ′ inf assms(3−) by fast
then have ∗: ‹A ` ([], j) # mapi-branch (bridge k j xs) branch›

unfolding mapi-branch-def by simp
have ‹branch-nominals (mapi-branch (bridge k j xs) branch) = branch-nominals

branch›
using nominals-mapi-branch-bridge assms(4−) by fast

moreover have ‹j ∈ branch-nominals branch›
using assms(4) unfolding branch-nominals-def by fastforce

ultimately have ‹j ∈ branch-nominals (mapi-branch (bridge k j xs) branch)›
by simp

then show ?thesis
using ∗ GoTo by fast

qed

75

10.4 Derivation
theorem Bridge:

fixes i :: ′b
assumes inf : ‹infinite (UNIV :: ′b set)› and fin: ‹finite A› and ‹j ∈ A›

‹Nom k at j in (ps, i) # branch› ‹(♦ Nom j) at i in (ps, i) # branch›
‹A ` ((♦ Nom k) # ps, i) # branch›

shows ‹A ` (ps, i) # branch›
proof −

let ?xs = ‹{(length branch, length ps)}›

have ‹descendants k i (((♦ Nom k) # ps, i) # branch) ?xs›
using Initial by force

moreover have ‹Nom k at j in ((♦ Nom k) # ps, i) # branch›
using assms(4) by fastforce

ultimately have ‹A ` mapi-branch (bridge k j ?xs) (((♦ Nom k) # ps, i) #
branch)›

using STA-bridge inf fin assms(3 , 6) by fast
then have ‹A ` ((♦ Nom j) # mapi (bridge k j ?xs (length branch)) ps, i) #

mapi-branch (bridge k j ?xs) branch›
unfolding mapi-branch-def by simp

moreover have ‹mapi-branch (bridge k j {(length branch, length ps)}) branch =
mapi-branch (bridge k j {}) branch›

using mapi-branch-add-oob[where xs=‹{}›] by fastforce
moreover have ‹mapi (bridge k j ?xs (length branch)) ps =

mapi (bridge k j {} (length branch)) ps›
using mapi-block-add-oob[where xs=‹{}› and ps=ps] by simp

ultimately have ‹A ` ((♦ Nom j) # ps, i) # branch›
using mapi-block-id[where ps=ps] mapi-branch-id[where branch=branch] by

simp
then show ?thesis

using Dup assms(5) by (metis new-def)
qed

11 Completeness
11.1 Hintikka
abbreviation at-in-set :: ‹(′a, ′b) fm ⇒ ′b ⇒ (′a, ′b) block set ⇒ bool› where

‹at-in-set p a S ≡ ∃ ps. (ps, a) ∈ S ∧ p on (ps, a)›

notation at-in-set (‹- at - in ′′ -› [51 , 51 , 51] 50)

A set of blocks is Hintikka if it satisfies the following requirements. Intu-
itively, if it corresponds to an exhausted open branch with respect to the
fixed set of allowed nominals A. For example, we only require symmetry, "if
j occurs at i then i occurs at j" if i ∈ A.
locale Hintikka =

fixes A :: ‹ ′b set› and H :: ‹(′a, ′b) block set› assumes

76

ProP: ‹Nom j at i in ′ H =⇒ Pro x at j in ′ H =⇒ ¬ (¬ Pro x) at i in ′ H › and
NomP: ‹Nom a at i in ′ H =⇒ ¬ (¬ Nom a) at i in ′ H › and
NegN : ‹(¬ ¬ p) at i in ′ H =⇒ p at i in ′ H › and
DisP: ‹(p ∨ q) at i in ′ H =⇒ p at i in ′ H ∨ q at i in ′ H › and
DisN : ‹(¬ (p ∨ q)) at i in ′ H =⇒ (¬ p) at i in ′ H ∧ (¬ q) at i in ′ H › and
DiaP: ‹@ a. p = Nom a =⇒ (♦ p) at i in ′ H =⇒
∃ j. (♦ Nom j) at i in ′ H ∧ (@ j p) at i in ′ H › and

DiaN : ‹(¬ (♦ p)) at i in ′ H =⇒ (♦ Nom j) at i in ′ H =⇒ (¬ (@ j p)) at i in ′

H › and
SatP: ‹(@ i p) at a in ′ H =⇒ p at i in ′ H › and
SatN : ‹(¬ (@ i p)) at a in ′ H =⇒ (¬ p) at i in ′ H › and
GoTo: ‹i ∈ nominals p =⇒ ∃ a. p at a in ′ H =⇒ ∃ ps. (ps, i) ∈ H › and
Nom: ‹∀ a. p = Nom a ∨ p = (♦ Nom a) −→ a ∈ A =⇒

p at i in ′ H =⇒ Nom j at i in ′ H =⇒ p at j in ′ H ›

Two nominals i and j are equivalent in respect to a Hintikka set H if H
contains an i-block with j on it. This is an equivalence relation on the
names in H intersected with the allowed nominals A.
definition hequiv :: ‹(′a, ′b) block set ⇒ ′b ⇒ ′b ⇒ bool› where

‹hequiv H i j ≡ Nom j at i in ′ H ›

abbreviation hequiv-rel :: ‹ ′b set ⇒ (′a, ′b) block set ⇒ (′b × ′b) set› where
‹hequiv-rel A H ≡ {(i, j) |i j. hequiv H i j ∧ i ∈ A ∧ j ∈ A}›

definition names :: ‹(′a, ′b) block set ⇒ ′b set› where
‹names H ≡ {i |ps i. (ps, i) ∈ H}›

lemma hequiv-refl: ‹i ∈ names H =⇒ hequiv H i i›
unfolding hequiv-def names-def by simp

lemma hequiv-refl ′: ‹(ps, i) ∈ H =⇒ hequiv H i i›
using hequiv-refl unfolding names-def by fastforce

lemma hequiv-sym ′:
assumes ‹Hintikka A H › ‹i ∈ A› ‹hequiv H i j›
shows ‹hequiv H j i›

proof −
have ‹i ∈ A −→ Nom i at i in ′ H −→ Nom j at i in ′ H −→ Nom i at j in ′ H ›

for i j
using assms(1) Hintikka.Nom by fast

then show ?thesis
using assms(2−) unfolding hequiv-def by auto

qed

lemma hequiv-sym: ‹Hintikka A H =⇒ i ∈ A =⇒ j ∈ A =⇒ hequiv H i j ←→
hequiv H j i›

by (meson hequiv-sym ′)

lemma hequiv-trans:

77

assumes ‹Hintikka A H › ‹i ∈ A› ‹k ∈ A› ‹hequiv H i j› ‹hequiv H j k›
shows ‹hequiv H i k›

proof −
have ‹hequiv H j i›

by (meson assms(1−2 , 4) hequiv-sym ′)
moreover have ‹k ∈ A −→ Nom k at j in ′ H −→ Nom i at j in ′ H −→ Nom k

at i in ′ H › for i k j
using assms(1) Hintikka.Nom by fast

ultimately show ?thesis
using assms(3−) unfolding hequiv-def by blast

qed

lemma hequiv-names: ‹hequiv H i j =⇒ i ∈ names H ›
unfolding hequiv-def names-def by blast

lemma hequiv-names-rel:
assumes ‹Hintikka A H ›
shows ‹hequiv-rel A H ⊆ names H × names H ›
using assms hequiv-names hequiv-sym by fast

lemma hequiv-refl-rel:
assumes ‹Hintikka A H ›
shows ‹refl-on (names H ∩ A) (hequiv-rel A H)›
unfolding refl-on-def using assms hequiv-refl hequiv-names-rel by fast

lemma hequiv-sym-rel: ‹Hintikka A H =⇒ sym (hequiv-rel A H)›
unfolding sym-def using hequiv-sym by fast

lemma hequiv-trans-rel: ‹Hintikka B A =⇒ trans (hequiv-rel B A)›
unfolding trans-def using hequiv-trans by fast

lemma hequiv-rel: ‹Hintikka A H =⇒ equiv (names H ∩ A) (hequiv-rel A H)›
using hequiv-refl-rel hequiv-sym-rel hequiv-trans-rel by (rule equivI)

lemma nominal-in-names:
assumes ‹Hintikka A H › ‹∃ block ∈ H . i ∈ block-nominals block›
shows ‹i ∈ names H ›
using assms Hintikka.GoTo unfolding names-def by fastforce

11.1.1 Named model

Given a Hintikka set H, a formula p on a block in H and a set of allowed
nominals A which contains all "root-like" nominals in p we construct a model
that satisfies p.
The worlds of our model are sets of equivalent nominals and nominals are
assigned to the equivalence class of an equivalent allowed nominal. This
definition resembles the "ur-father" notion.
From a world is, we can reach a world js iff there is an i ∈ is and a j ∈ js

78

s.t. there is an i-block in H with ♦ Nom j on it.
A propositional symbol p is true in a world is if there exists an i ∈ is s.t. p
occurs on an i-block in H.
definition assign :: ‹ ′b set ⇒ (′a, ′b) block set ⇒ ′b ⇒ ′b set› where

‹assign A H i ≡ if ∃ a. a ∈ A ∧ Nom a at i in ′ H
then proj (hequiv-rel A H) (SOME a. a ∈ A ∧ Nom a at i in ′ H)
else {i}›

definition reach :: ‹ ′b set ⇒ (′a, ′b) block set ⇒ ′b set ⇒ ′b set set› where
‹reach A H is ≡ {assign A H j |i j. i ∈ is ∧ (♦ Nom j) at i in ′ H}›

definition val :: ‹(′a, ′b) block set ⇒ ′b set ⇒ ′a ⇒ bool› where
‹val H is x ≡ ∃ i ∈ is. Pro x at i in ′ H ›

lemma ex-assignment:
assumes ‹Hintikka A H ›
shows ‹assign A H i 6= {}›

proof (cases ‹∃ b. b ∈ A ∧ Nom b at i in ′ H ›)
case True
let ?b = ‹SOME b. b ∈ A ∧ Nom b at i in ′ H ›
have ∗: ‹?b ∈ A ∧ Nom ?b at i in ′ H ›

using someI-ex True .
moreover from this have ‹hequiv H ?b ?b›

using assms block-nominals nominal-in-names hequiv-refl
by (metis (no-types, lifting) nominals.simps(2) singletonI)

ultimately show ?thesis
unfolding assign-def proj-def by auto

next
case False
then show ?thesis

unfolding assign-def by auto
qed

lemma ur-closure:
assumes ‹Hintikka A H › ‹p at i in ′ H › ‹∀ a. p = Nom a ∨ p = (♦ Nom a) −→

a ∈ A›
shows ‹∀ a ∈ assign A H i. p at a in ′ H ›

proof (cases ‹∃ b. b ∈ A ∧ Nom b at i in ′ H ›)
case True
let ?b = ‹SOME b. b ∈ A ∧ Nom b at i in ′ H ›
have ∗: ‹?b ∈ A ∧ Nom ?b at i in ′ H ›

using someI-ex True .
then have ‹p at ?b in ′ H ›

using assms by (meson Hintikka.Nom)
then have ‹p at a in ′ H › if ‹hequiv H ?b a› for a

using that assms(1 , 3) unfolding hequiv-def by (meson Hintikka.Nom)
moreover have ‹assign A H i = proj (hequiv-rel A H) ?b›

unfolding assign-def using True by simp

79

ultimately show ?thesis
unfolding proj-def by blast

next
case False
then show ?thesis

unfolding assign-def using assms by auto
qed

lemma ur-closure ′:
assumes ‹Hintikka A H › ‹p at i in ′ H › ‹∀ a. p = Nom a ∨ p = (♦ Nom a) −→

a ∈ A›
shows ‹∃ a ∈ assign A H i. p at a in ′ H ›

proof −
obtain a where ‹a ∈ assign A H i›

using assms(1) ex-assignment by fast
then show ?thesis

using assms ur-closure[where i=i] by blast
qed

lemma mem-hequiv-rel: ‹a ∈ proj (hequiv-rel A H) b =⇒ a ∈ A›
unfolding proj-def by blast

lemma hequiv-proj:
assumes ‹Hintikka A H ›

‹Nom a at i in ′ H › ‹a ∈ A› ‹Nom b at i in ′ H › ‹b ∈ A›
shows ‹proj (hequiv-rel A H) a = proj (hequiv-rel A H) b›

proof −
have ‹equiv (names H ∩ A) (hequiv-rel A H)›

using assms(1) hequiv-rel by fast
moreover have ‹{a, b} ⊆ names H ∩ A›

using assms(1−5) nominal-in-names by fastforce
moreover have ‹Nom b at a in ′ H ›

using assms(1−2 , 4−5) Hintikka.Nom by fast
then have ‹hequiv H a b›

unfolding hequiv-def by simp
ultimately show ?thesis

by (simp add: proj-iff)
qed

lemma hequiv-proj-opening:
assumes ‹Hintikka A H › ‹Nom a at i in ′ H › ‹a ∈ A› ‹i ∈ A›
shows ‹proj (hequiv-rel A H) a = proj (hequiv-rel A H) i›
using hequiv-proj assms by fastforce

lemma assign-proj-refl:
assumes ‹Hintikka A H › ‹Nom i at i in ′ H › ‹i ∈ A›
shows ‹assign A H i = proj (hequiv-rel A H) i›

proof −
let ?a = ‹SOME a. a ∈ A ∧ Nom a at i in ′ H ›

80

have ‹∃ a. a ∈ A ∧ Nom a at i in ′ H ›
using assms(2−3) by fast

with someI-ex have ∗: ‹?a ∈ A ∧ Nom ?a at i in ′ H › .
then have ‹assign A H i = proj (hequiv-rel A H) ?a›

unfolding assign-def by auto
then show ?thesis

unfolding assign-def
using hequiv-proj ∗ assms by fast

qed

lemma assign-named:
assumes ‹Hintikka A H › ‹i ∈ proj (hequiv-rel A H) a›
shows ‹i ∈ names H ›
using assms unfolding proj-def by simp (meson hequiv-names hequiv-sym ′)

lemma assign-unique:
assumes ‹Hintikka A H › ‹a ∈ assign A H i›
shows ‹assign A H a = assign A H i›

proof (cases ‹∃ b. b ∈ A ∧ Nom b at i in ′ H ›)
case True
let ?b = ‹SOME b. b ∈ A ∧ Nom b at i in ′ H ›
have ∗: ‹?b ∈ A ∧ Nom ?b at i in ′ H ›

using someI-ex True .

have ∗∗: ‹assign A H i = proj (hequiv-rel A H) ?b›
unfolding assign-def using True by simp

moreover from this have ‹Nom a at a in ′ H ›
using assms assign-named unfolding names-def by fastforce

ultimately have ‹assign A H a = proj (hequiv-rel A H) a›
using assms assign-proj-refl mem-hequiv-rel by fast

with ∗∗ show ?thesis
unfolding proj-def using assms
by simp (meson hequiv-sym ′ hequiv-trans)

next
case False
then have ‹assign A H i = {i}›

unfolding assign-def by auto
then have ‹a = i›

using assms(2) by simp
then show ?thesis

by simp
qed

lemma assign-val:
assumes

‹Hintikka A H › ‹Pro x at a in ′ H › ‹(¬ Pro x) at i in ′ H ›
‹a ∈ assign A H i› ‹i ∈ names H ›

shows False
using assms Hintikka.ProP ur-closure by fastforce

81

lemma Hintikka-model:
assumes ‹Hintikka A H ›
shows

‹p at i in ′ H =⇒ nominals p ⊆ A =⇒
Model (reach A H) (val H), assign A H , assign A H i |= p›

‹(¬ p) at i in ′ H =⇒ nominals p ⊆ A =⇒
¬ Model (reach A H) (val H), assign A H , assign A H i |= p›

proof (induct p arbitrary: i)
fix i
case (Pro x)
assume ‹Pro x at i in ′ H ›
then show ‹Model (reach A H) (val H), assign A H , assign A H i |= Pro x›

using assms(1) ur-closure ′ unfolding val-def by fastforce
next

fix i
case (Pro x)
assume ‹(¬ Pro x) at i in ′ H ›
then have ‹@ a. a ∈ assign A H i ∧ Pro x at a in ′ H ›

using assms(1) assign-val unfolding names-def by fast
then have ‹¬ val H (assign A H i) x›

unfolding proj-def val-def hequiv-def by simp
then show ‹¬ Model (reach A H) (val H), assign A H , assign A H i |= Pro x›

by simp
next

fix i
case (Nom a)
assume ∗: ‹Nom a at i in ′ H › ‹nominals (Nom a) ⊆ A›

let ?b = ‹SOME b. b ∈ A ∧ Nom b at i in ′ H ›
let ?c = ‹SOME b. b ∈ A ∧ Nom b at a in ′ H ›

have ‹a ∈ A›
using ∗(2) by simp

then have ‹∃ b. b ∈ A ∧ Nom b at i in ′ H ›
using ∗ by fast

with someI-ex have b: ‹?b ∈ A ∧ Nom ?b at i in ′ H › .
then have ‹assign A H i = proj (hequiv-rel A H) ?b›

unfolding assign-def by auto
also have ‹proj (hequiv-rel A H) ?b = proj (hequiv-rel A H) a›

using hequiv-proj assms(1) b ∗ ‹a ∈ A› by fast

also have ‹Nom a at a in ′ H ›
using ∗ ‹a ∈ A› assms(1) Hintikka.Nom by fast

then have ‹∃ c. c ∈ A ∧ Nom c at a in ′ H ›
using ‹a ∈ A› by blast

with someI-ex have c: ‹?c ∈ A ∧ Nom ?c at a in ′ H › .
then have ‹assign A H a = proj (hequiv-rel A H) ?c›

unfolding assign-def by auto

82

then have ‹proj (hequiv-rel A H) a = assign A H a›
using hequiv-proj-opening assms(1) ‹a ∈ A› c by fast

finally have ‹assign A H i = assign A H a› .
then show ‹Model (reach A H) (val H), assign A H , assign A H i |= Nom a›

by simp
next

fix i
case (Nom a)
assume ∗: ‹(¬ Nom a) at i in ′ H › ‹nominals (Nom a) ⊆ A›
then have ‹a ∈ A›

by simp

have ‹hequiv H a a›
using hequiv-refl ∗ nominal-in-names assms(1) by fastforce

obtain j where j: ‹j ∈ assign A H i› ‹(¬ Nom a) at j in ′ H ›
using ur-closure ′ assms(1) ∗ by fastforce

then have ‹¬ Nom a at j in ′ H ›
using assms(1) Hintikka.NomP by fast

moreover have ‹∀ b ∈ assign A H a. Nom a at b in ′ H ›
using assms ‹a ∈ A› ‹hequiv H a a› ur-closure unfolding hequiv-def by fast

ultimately have ‹assign A H a 6= assign A H i›
using j by blast

then show ‹¬ Model (reach A H) (val H), assign A H , assign A H i |= Nom a›
by simp

next
fix i
case (Neg p)
moreover assume ‹(¬ p) at i in ′ H › ‹nominals (¬ p) ⊆ A›
ultimately show ‹Model (reach A H) (val H), assign A H , assign A H i |= ¬

p›
by simp

next
fix i
case (Neg p)
moreover assume ∗: ‹(¬ ¬ p) at i in ′ H ›
then have ‹p at i in ′ H ›

using assms(1) Hintikka.NegN by fast
moreover assume ‹nominals (¬ p) ⊆ A›
moreover from this ∗ have ‹∀ a. p = (♦ Nom a) −→ a ∈ A›

by auto
ultimately show ‹¬ Model (reach A H) (val H), assign A H , assign A H i |=

¬ p›
using assms(1) by auto

next
fix i
case (Dis p q)
moreover assume ∗: ‹(p ∨ q) at i in ′ H ›

83

then have ‹p at i in ′ H ∨ q at i in ′ H ›
using assms(1) Hintikka.DisP by fast

moreover assume ‹nominals (p ∨ q) ⊆ A›
moreover from this ∗ have ‹∀ a. p = (♦ Nom a) −→ a ∈ A› ‹∀ a. q = (♦ Nom

a) −→ a ∈ A›
by auto

ultimately show ‹Model (reach A H) (val H), assign A H , assign A H i |= (p
∨ q)›

by simp metis
next

fix i
case (Dis p q)
moreover assume ∗: ‹(¬ (p ∨ q)) at i in ′ H ›
then have ‹(¬ p) at i in ′ H › ‹(¬ q) at i in ′ H ›

using assms(1) Hintikka.DisN by fast+
moreover assume ‹nominals (p ∨ q) ⊆ A›
moreover from this ∗ have ‹∀ a. p = (♦ Nom a) −→ a ∈ A› ‹∀ a. q = (♦ Nom

a) −→ a ∈ A›
by auto

ultimately show ‹¬ Model (reach A H) (val H), assign A H , assign A H i |=
(p ∨ q)›

by auto
next

fix i
case (Dia p)
assume ∗: ‹(♦ p) at i in ′ H › ‹nominals (♦ p) ⊆ A›
with ∗ have p: ‹∀ a. p = (♦ Nom a) −→ a ∈ A›

by auto

show ‹Model (reach A H) (val H), assign A H , assign A H i |= ♦ p›
proof (cases ‹∃ j. p = Nom j›)

case True
then obtain j where j: ‹p = Nom j› ‹j ∈ A›

using ∗(2) by auto
then obtain a where a: ‹a ∈ assign A H i› ‹(♦ Nom j) at a in ′ H ›

using ur-closure ′ assms(1) ‹(♦ p) at i in ′ H › by fast

from j have ‹(♦ Nom j) at i in ′ H ›
using ∗(1) by simp

then have ‹(♦ Nom j) at a in ′ H ›
using ur-closure assms(1) a(2) by fast

then have ‹assign A H j ∈ reach A H (assign A H i)›
unfolding reach-def using a(1) by fast

then show ?thesis
using j(1) by simp

next
case False
then obtain a where a: ‹a ∈ assign A H i› ‹(♦ p) at a in ′ H ›

using ur-closure ′ assms(1) ‹(♦ p) at i in ′ H › by fast

84

then have ‹∃ j. (♦ Nom j) at a in ′ H ∧ (@ j p) at a in ′ H ›
using False assms ‹(♦ p) at i in ′ H › by (meson Hintikka.DiaP)

then obtain j where j: ‹(♦ Nom j) at a in ′ H › ‹(@ j p) at a in ′ H ›
by blast

from j(2) have ‹p at j in ′ H ›
using assms(1) Hintikka.SatP by fast

then have ‹Model (reach A H) (val H), assign A H , assign A H j |= p›
using Dia p ∗(2) by simp

moreover have ‹assign A H j ∈ reach A H (assign A H i)›
unfolding reach-def using a(1) j(1) by blast

ultimately show ?thesis
by auto

qed
next

fix i
case (Dia p)
assume ∗: ‹(¬ (♦ p)) at i in ′ H › ‹nominals (♦ p) ⊆ A›
then obtain a where a: ‹a ∈ assign A H i› ‹(¬ (♦ p)) at a in ′ H ›

using ur-closure ′ assms(1) by fast
{

fix j b
assume ‹(♦ Nom j) at b in ′ H › ‹b ∈ assign A H a›
moreover have ‹(¬ (♦ p)) at b in ′ H ›

using a(2) assms(1) calculation(2) ur-closure by fast
ultimately have ‹(¬ (@ j p)) at b in ′ H ›

using assms(1) Hintikka.DiaN by fast
then have ‹(¬ p) at j in ′ H ›

using assms(1) Hintikka.SatN by fast
then have ‹¬ Model (reach A H) (val H), assign A H , assign A H j |= p›

using Dia ∗(2) by simp
}
then have ‹¬ Model (reach A H) (val H), assign A H , assign A H a |= ♦ p›

unfolding reach-def by auto
moreover have ‹assign A H a = assign A H i›

using assms(1) a assign-unique by fast
ultimately show ‹¬ Model (reach A H) (val H), assign A H , assign A H i |=

♦ p›
by simp

next
fix i
case (Sat j p)
assume ‹(@ j p) at i in ′ H › ‹nominals (@ j p) ⊆ A›
moreover from this have ‹∀ a. p = (♦ Nom a) −→ a ∈ A›

by auto
moreover have ‹p at j in ′ H › if ‹∃ a. (@ j p) at a in ′ H ›

using that assms(1) Hintikka.SatP by fast
ultimately show ‹Model (reach A H) (val H), assign A H , assign A H i |= @

j p›

85

using Sat by auto
next

fix i
case (Sat j p)
assume ‹(¬ (@ j p)) at i in ′ H › ‹nominals (@ j p) ⊆ A›
moreover from this have ‹∀ a. p = (♦ Nom a) −→ a ∈ A›

by auto
moreover have ‹(¬ p) at j in ′ H › if ‹∃ a. (¬ (@ j p)) at a in ′ H ›

using that assms(1) Hintikka.SatN by fast
ultimately show ‹¬ Model (reach A H) (val H), assign A H , assign A H i |=

@ j p›
using Sat by fastforce

qed

11.2 Lindenbaum-Henkin

A set of blocks is consistent if no finite subset can be derived. Given a con-
sistent set of blocks we are going to extend it to be saturated and maximally
consistent and show that is then Hintikka. All definitions are with respect
to the set of allowed nominals.
definition consistent :: ‹ ′b set ⇒ (′a, ′b) block set ⇒ bool› where

‹consistent A S ≡ @S ′. set S ′ ⊆ S ∧ A ` S ′›

instance fm :: (countable, countable) countable
by countable-datatype

definition proper-dia :: ‹(′a, ′b) fm ⇒ (′a, ′b) fm option› where
‹proper-dia p ≡ case p of (♦ p) ⇒ (if @ a. p = Nom a then Some p else None) |

- ⇒ None›

lemma proper-dia: ‹proper-dia p = Some q =⇒ p = (♦ q) ∧ (@ a. q = Nom a)›
unfolding proper-dia-def by (cases p) (simp-all, metis option.discI option.inject)

The following function witnesses each ♦ p in a fresh world.
primrec witness-list :: ‹(′a, ′b) fm list ⇒ ′b set ⇒ (′a, ′b) fm list› where

‹witness-list [] - = []›
| ‹witness-list (p # ps) used =

(case proper-dia p of
None ⇒ witness-list ps used
| Some q ⇒

let i = SOME i. i /∈ used
in (@ i q) # (♦ Nom i) # witness-list ps ({i} ∪ used))›

primrec witness :: ‹(′a, ′b) block ⇒ ′b set ⇒ (′a, ′b) block› where
‹witness (ps, a) used = (witness-list ps used, a)›

lemma witness-list:
‹proper-dia p = Some q =⇒ witness-list (p # ps) used =

86

(let i = SOME i. i /∈ used
in (@ i q) # (♦ Nom i) # witness-list ps ({i} ∪ used))›

by simp

primrec extend ::
‹ ′b set ⇒ (′a, ′b) block set ⇒ (nat ⇒ (′a, ′b) block) ⇒ nat ⇒ (′a, ′b) block set›

where
‹extend A S f 0 = S›
| ‹extend A S f (Suc n) =

(if ¬ consistent A ({f n} ∪ extend A S f n)
then extend A S f n
else
let used = A ∪ (

⋃
block ∈ {f n} ∪ extend A S f n. block-nominals block)

in {f n, witness (f n) used} ∪ extend A S f n)›

definition Extend ::
‹ ′b set ⇒ (′a, ′b) block set ⇒ (nat ⇒ (′a, ′b) block) ⇒ (′a, ′b) block set› where
‹Extend A S f ≡ (

⋃
n. extend A S f n)›

lemma extend-chain: ‹extend A S f n ⊆ extend A S f (Suc n)›
by auto

lemma extend-mem: ‹S ⊆ extend A S f n›
by (induct n) auto

lemma Extend-mem: ‹S ⊆ Extend A S f ›
unfolding Extend-def using extend-mem by fast

11.2.1 Consistency
lemma split-list:

‹set A ⊆ {x} ∪ X =⇒ x ∈. A =⇒ ∃B. set (x # B) = set A ∧ x /∈ set B›
by simp (metis Diff-insert-absorb mk-disjoint-insert set-removeAll)

lemma consistent-drop-single:
fixes a :: ′b
assumes

inf : ‹infinite (UNIV :: ′b set)› and
fin: ‹finite A› and
cons: ‹consistent A ({(p # ps, a)} ∪ S)›

shows ‹consistent A ({(ps, a)} ∪ S)›
unfolding consistent-def

proof
assume ‹∃S ′. set S ′ ⊆ {(ps, a)} ∪ S ∧ A ` S ′›
then obtain S ′ n where ‹set S ′ ⊆ {(ps, a)} ∪ S› ‹(ps, a) ∈. S ′› ‹A, n ` S ′›

using assms unfolding consistent-def by blast
then obtain S ′′ where ‹set ((ps, a) # S ′′) = set S ′› ‹(ps, a) /∈ set S ′′›

using split-list by metis
then have ‹A ` (ps, a) # S ′′›

87

using inf fin STA-struct ‹A, n ` S ′› by blast
then have ‹A ` (p # ps, a) # S ′′›

using inf fin STA-struct-block[where ps ′=‹p # ps›] by fastforce
moreover have ‹set ((p # ps, a) # S ′′) ⊆ {(p # ps, a)} ∪ S›

using ‹(ps, a) /∈ set S ′′› ‹set ((ps, a) # S ′′) = set S ′› ‹set S ′ ⊆ {(ps, a)} ∪ S›
by auto

ultimately show False
using cons unfolding consistent-def by blast

qed

lemma consistent-drop-block: ‹consistent A ({block} ∪ S) =⇒ consistent A S›
unfolding consistent-def by blast

lemma inconsistent-weaken: ‹¬ consistent A S =⇒ S ⊆ S ′ =⇒ ¬ consistent A S ′›
unfolding consistent-def by blast

lemma finite-nominals-set: ‹finite S =⇒ finite (
⋃

block ∈ S . block-nominals block)›
by (induct S rule: finite-induct) (simp-all add: finite-block-nominals)

lemma witness-list-used:
fixes i :: ′b
assumes inf : ‹infinite (UNIV :: ′b set)› and ‹finite used› ‹i /∈ list-nominals ps›
shows ‹i /∈ list-nominals (witness-list ps ({i} ∪ used))›
using assms(2−)

proof (induct ps arbitrary: used)
case (Cons p ps)
then show ?case
proof (cases ‹proper-dia p›)

case (Some q)
let ?j = ‹SOME j. j /∈ {i} ∪ used›
have ‹finite ({i} ∪ used)›

using ‹finite used› by simp
then have ‹∃ j. j /∈ {i} ∪ used›

using inf ex-new-if-finite by metis
then have j: ‹?j /∈ {i} ∪ used›

using someI-ex by metis

have ‹witness-list (p # ps) ({i} ∪ used) =
(@ ?j q) # (♦ Nom ?j) # witness-list ps ({?j} ∪ ({i} ∪ used))›

using Some witness-list by metis
then have ∗: ‹list-nominals (witness-list (p # ps) ({i} ∪ used)) =
{?j} ∪ nominals q ∪ list-nominals (witness-list ps ({?j} ∪ ({i} ∪ used)))›

by simp

have ‹finite ({?j} ∪ used)›
using ‹finite used› by simp

moreover have ‹i /∈ list-nominals ps›
using ‹i /∈ list-nominals (p # ps)› by simp

ultimately have ‹i /∈ list-nominals (witness-list ps ({i} ∪ ({?j} ∪ used)))›

88

using Cons by metis
moreover have ‹{i} ∪ ({?j} ∪ used) = {?j} ∪ ({i} ∪ used)›

by blast
moreover have ‹i 6= ?j›

using j by auto
ultimately have ‹i ∈ list-nominals (witness-list (p # ps) ({i} ∪ used)) ←→ i

∈ nominals q›
using ∗ by simp

moreover have ‹i /∈ nominals q›
using Cons(3) Some proper-dia by fastforce

ultimately show ?thesis
by blast

qed simp
qed simp

lemma witness-used:
fixes i :: ′b
assumes inf : ‹infinite (UNIV :: ′b set)› and

‹finite used› ‹i /∈ block-nominals block›
shows ‹i /∈ block-nominals (witness block ({i} ∪ used))›
using assms witness-list-used by (induct block) fastforce

lemma consistent-witness-list:
fixes a :: ′b
assumes inf : ‹infinite (UNIV :: ′b set)› and ‹consistent A S›

‹(ps, a) ∈ S› ‹finite used› ‹A ∪
⋃

(block-nominals ‘ S) ⊆ used›
shows ‹consistent A ({(witness-list ps used, a)} ∪ S)›
using assms(2−)

proof (induct ps arbitrary: used S)
case Nil
then have ‹{(witness-list [] used, a)} ∪ S = S›

by auto
moreover have ‹finite {}› ‹{} ∩ used = {}›

by simp-all
ultimately show ?case

using ‹consistent A S› by simp
next

case (Cons p ps)
have fin: ‹finite A›

using assms(4−5) finite-subset by fast
have ‹{(p # ps, a)} ∪ S = S›

using ‹(p # ps, a) ∈ S› by blast
then have ‹consistent A ({(p # ps, a)} ∪ S)›

using ‹consistent A S› by simp
then have ‹consistent A ({(ps, a)} ∪ S)›

using inf fin consistent-drop-single by fast
moreover have ‹(ps, a) ∈ {(ps, a)} ∪ S›

by simp
moreover have ‹A ∪

⋃
(block-nominals ‘ ({(ps, a)} ∪ S)) ⊆ extra ∪ used› for

89

extra
using ‹(p # ps, a) ∈ S› ‹A ∪

⋃
(block-nominals ‘ S) ⊆ used› by fastforce

moreover have ‹finite (extra ∪ used)› if ‹finite extra› for extra
using that ‹finite used› by blast

ultimately have cons:
‹consistent A ({(witness-list ps (extra ∪ used), a)} ∪ ({(ps, a)} ∪ S))›
if ‹finite extra› for extra
using that Cons by metis

show ?case
proof (cases ‹proper-dia p›)

case None
then have ‹witness-list (p # ps) used = witness-list ps used›

by auto
moreover have ‹consistent A ({(witness-list ps used, a)} ∪ ({(ps, a)} ∪ S))›

using cons[where extra=‹{}›] by simp
then have ‹consistent A ({(witness-list ps used, a)} ∪ S)›

using consistent-drop-block[where block=‹(ps, a)›] by auto
ultimately show ?thesis

by simp
next

case (Some q)
let ?i = ‹SOME i. i /∈ used›
have ‹∃ i. i /∈ used›

using ex-new-if-finite inf ‹finite used› .
with someI-ex have ‹?i /∈ used› .
then have i: ‹?i /∈

⋃
(block-nominals ‘ S)›

using Cons by auto
then have ‹?i /∈ block-nominals (p # ps, a)›

using Cons by blast

let ?tail = ‹witness-list ps ({?i} ∪ used)›

have ‹consistent A ({(?tail, a)} ∪ ({(ps, a)} ∪ S))›
using cons[where extra=‹{?i}›] by blast

then have ∗: ‹consistent A ({(?tail, a)} ∪ S)›
using consistent-drop-block[where block=‹(ps, a)›] by simp

have ‹witness-list (p # ps) used = (@ ?i q) # (♦ Nom ?i) # ?tail›
using Some witness-list by metis

moreover have ‹consistent A ({((@ ?i q) # (♦ Nom ?i) # ?tail, a)} ∪ S)›
unfolding consistent-def

proof
assume ‹∃S ′. set S ′ ⊆ {((@ ?i q) # (♦ Nom ?i) # ?tail, a)} ∪ S ∧ A ` S ′›
then obtain S ′ n where

‹A, n ` S ′› and S ′:
‹set S ′ ⊆ {((@ ?i q) # (♦ Nom ?i) # ?tail, a)} ∪ S›
‹((@ ?i q) # (♦ Nom ?i) # ?tail, a) ∈. S ′›
using ∗ unfolding consistent-def by blast

90

then obtain S ′′ where S ′′:
‹set (((@ ?i q) # (♦ Nom ?i) # ?tail, a) # S ′′) = set S ′›
‹((@ ?i q) # (♦ Nom ?i) # ?tail, a) /∈ set S ′′›
using split-list[where x=‹((@ ?i q) # (♦ Nom ?i) # ?tail, a)›] by blast

then have ‹A ` ((@ ?i q) # (♦ Nom ?i) # ?tail, a) # S ′′›
using inf ‹finite A› STA-struct ‹A, n ` S ′› by blast

moreover have ‹set (((@ ?i q) # (♦ Nom ?i) # ?tail, a) # S ′′) ⊆
set (((@ ?i q) # (♦ Nom ?i) # ?tail, a) # (p # ps, a) # S ′′)›
by auto

ultimately have ∗∗: ‹A ` ((@ ?i q) # (♦ Nom ?i) # ?tail, a) # (p # ps,
a) # S ′′›

using inf ‹finite A› STA-struct by blast

have ‹?i /∈ block-nominals (?tail, a)›
using inf ‹finite used› ‹?i /∈ block-nominals (p # ps, a)› witness-used by

fastforce
moreover have ‹?i /∈ branch-nominals S ′′›

unfolding branch-nominals-def using i S ′ S ′′ by auto
ultimately have ‹?i /∈ branch-nominals ((?tail, a) # (p # ps, a) # S ′′)›

using ‹?i /∈ block-nominals (p # ps, a)› unfolding branch-nominals-def
by simp

then have ‹?i /∈ A ∪ branch-nominals ((?tail, a) # (p # ps, a) # S ′′)›
using ‹?i /∈ used› Cons.prems(4) by blast

moreover have ‹@ a. q = Nom a›
using Some proper-dia by blast

moreover have ‹(p # ps, a) ∈. (?tail, a) # (p # ps, a) # S ′′›
by simp

moreover have ‹p = (♦ q)›
using Some proper-dia by blast

then have ‹(♦ q) on (p # ps, a)›
by simp

ultimately have ‹A ` (?tail, a) # (p # ps, a) # S ′′›
using ∗∗ ‹finite A› DiaP ′′ by fast

moreover have ‹set ((p # ps, a) # S ′′) ⊆ S›
using Cons(3) S ′ S ′′ by auto

ultimately show False
using ∗ unfolding consistent-def by (simp add: subset-Un-eq)

qed
ultimately show ?thesis

by simp
qed

qed

lemma consistent-witness:
fixes block :: ‹(′a, ′b) block›
assumes ‹infinite (UNIV :: ′b set)›

‹consistent A S› ‹finite (
⋃

(block-nominals ‘ S))› ‹block ∈ S› ‹finite A›
shows ‹consistent A ({witness block (A ∪

⋃
(block-nominals ‘ S))} ∪ S)›

91

using assms consistent-witness-list by (cases block) fastforce

lemma consistent-extend:
fixes S :: ‹(′a, ′b) block set›
assumes inf : ‹infinite (UNIV :: ′b set)› and fin: ‹finite A› and

‹consistent A (extend A S f n)› ‹finite (
⋃

(block-nominals ‘ extend A S f n))›
shows ‹consistent A (extend A S f (Suc n))›

proof (cases ‹consistent A ({f n} ∪ extend A S f n)›)
case True
let ?used = ‹A ∪ (

⋃
block ∈ {f n} ∪ extend A S f n. block-nominals block)›

have ∗: ‹extend A S f (n + 1) = {f n, witness (f n) ?used} ∪ extend A S f n›
using True by simp

have ‹consistent A ({f n} ∪ extend A S f n)›
using True by simp

moreover have ‹finite ((
⋃

(block-nominals ‘ ({f n} ∪ extend A S f n))))›
using ‹finite (

⋃
(block-nominals ‘ extend A S f n))› finite-nominals-set by

force
moreover have ‹f n ∈ {f n} ∪ extend A S f n›

by simp
ultimately have ‹consistent A ({witness (f n) ?used} ∪ ({f n} ∪ extend A S f

n))›
using inf fin consistent-witness by blast

then show ?thesis
using ∗ by simp

next
case False
then show ?thesis

using assms(3) by simp
qed

lemma finite-nominals-extend:
assumes ‹finite (

⋃
(block-nominals ‘ S))›

shows ‹finite (
⋃

(block-nominals ‘ extend A S f n))›
using assms by (induct n) (auto simp add: finite-block-nominals)

lemma consistent-extend ′:
fixes S :: ‹(′a, ′b) block set›
assumes ‹infinite (UNIV :: ′b set)› ‹finite A› ‹consistent A S› ‹finite (

⋃
(block-nominals ‘ S))›

shows ‹consistent A (extend A S f n)›
using assms

proof (induct n)
case (Suc n)
then show ?case

by (metis consistent-extend finite-nominals-extend)
qed simp

lemma UN-finite-bound:

92

assumes ‹finite A› ‹A ⊆ (
⋃

n. f n)›
shows ‹∃m :: nat. A ⊆ (

⋃
n ≤ m. f n)›

using assms
proof (induct A rule: finite-induct)

case (insert x A)
then obtain m where ‹A ⊆ (

⋃
n ≤ m. f n)›

by fast
then have ‹A ⊆ (

⋃
n ≤ (m + k). f n)› for k

by fastforce
moreover obtain m ′ where ‹x ∈ f m ′›

using insert(4) by blast
ultimately have ‹{x} ∪ A ⊆ (

⋃
n ≤ m + m ′. f n)›

by auto
then show ?case

by blast
qed simp

lemma extend-bound: ‹(
⋃

n ≤ m. extend A S f n) = extend A S f m›
proof (induct m)

case (Suc m)
have ‹

⋃
(extend A S f ‘ {..Suc m}) =

⋃
(extend A S f ‘ {..m}) ∪ extend A S f

(Suc m)›
using atMost-Suc by auto

also have ‹. . . = extend A S f m ∪ extend A S f (Suc m)›
using Suc by blast

also have ‹. . . = extend A S f (Suc m)›
using extend-chain by blast

finally show ?case
by simp

qed simp

lemma consistent-Extend:
fixes S :: ‹(′a, ′b) block set›
assumes inf : ‹infinite (UNIV :: ′b set)› and ‹finite A›

‹consistent A S› ‹finite (
⋃

(block-nominals ‘ S))›
shows ‹consistent A (Extend A S f)›
unfolding Extend-def

proof (rule ccontr)
assume ‹¬ consistent A (

⋃
(range (extend A S f)))›

then obtain S ′ n where ∗:
‹A, n ` S ′›
‹set S ′ ⊆ (

⋃
n. extend A S f n)›

unfolding consistent-def by blast
moreover have ‹finite (set S ′)›

by simp
ultimately obtain m where ‹set S ′ ⊆ (

⋃
n ≤ m. extend A S f n)›

using UN-finite-bound by metis
then have ‹set S ′ ⊆ extend A S f m›

using extend-bound by blast

93

moreover have ‹consistent A (extend A S f m)›
using assms consistent-extend ′ by blast

ultimately show False
unfolding consistent-def using ∗ by blast

qed

11.2.2 Maximality

A set of blocks is maximally consistent if any proper extension makes it
inconsistent.
definition maximal :: ‹ ′b set ⇒ (′a, ′b) block set ⇒ bool› where

‹maximal A S ≡ consistent A S ∧ (∀ block. block /∈ S −→ ¬ consistent A ({block}
∪ S))›

lemma extend-not-mem:
‹f n /∈ extend A S f (Suc n) =⇒ ¬ consistent A ({f n} ∪ extend A S f n)›
by (metis Un-insert-left extend.simps(2) insertI1)

lemma maximal-Extend:
fixes S :: ‹(′a, ′b) block set›
assumes inf : ‹infinite (UNIV :: ′b set)› and ‹finite A›

‹consistent A S› ‹finite (
⋃

(block-nominals ‘ S))› ‹surj f ›
shows ‹maximal A (Extend A S f)›

proof (rule ccontr)
assume ‹¬ maximal A (Extend A S f)›
then obtain block where

‹block /∈ Extend A S f › ‹consistent A ({block} ∪ Extend A S f)›
unfolding maximal-def using assms consistent-Extend by metis

obtain n where n: ‹f n = block›
using ‹surj f › unfolding surj-def by metis

then have ‹block /∈ extend A S f (Suc n)›
using ‹block /∈ Extend A S f › extend-chain unfolding Extend-def by blast

then have ‹¬ consistent A ({block} ∪ extend A S f n)›
using n extend-not-mem by blast

moreover have ‹block /∈ extend A S f n›
using ‹block /∈ extend A S f (Suc n)› extend-chain by blast

then have ‹{block} ∪ extend A S f n ⊆ {block} ∪ Extend A S f ›
unfolding Extend-def by blast

ultimately have ‹¬ consistent A ({block} ∪ Extend A S f)›
using inconsistent-weaken by blast

then show False
using ‹consistent A ({block} ∪ Extend A S f)› by simp

qed

11.2.3 Saturation

A set of blocks is saturated if every ♦ p is witnessed.
definition saturated :: ‹(′a, ′b) block set ⇒ bool› where

94

‹saturated S ≡ ∀ p i. (♦ p) at i in ′ S −→ (@ a. p = Nom a) −→
(∃ j. (@ j p) at i in ′ S ∧ (♦ Nom j) at i in ′ S)›

lemma witness-list-append:
‹∃ extra. witness-list (ps @ qs) used = witness-list ps used @ witness-list qs (extra
∪ used)›
proof (induct ps arbitrary: used)

case Nil
then show ?case

by (metis Un-absorb append-self-conv2 witness-list.simps(1))
next

case (Cons p ps)
show ?case
proof (cases ‹∃ q. proper-dia p = Some q›)

case True
let ?i = ‹SOME i. i /∈ used›
from True obtain q where q: ‹proper-dia p = Some q›

by blast
moreover have ‹(p # ps) @ qs = p # (ps @ qs)›

by simp
ultimately have

‹witness-list ((p # ps) @ qs) used = (@ ?i q) # (♦ Nom ?i) #
witness-list (ps @ qs) ({?i} ∪ used)›

using witness-list by metis
then have

‹∃ extra. witness-list ((p # ps) @ qs) used = (@ ?i q) # (♦ Nom ?i) #
witness-list ps ({?i} ∪ used) @ witness-list qs (extra ∪ ({?i} ∪ used))›

using Cons by metis
moreover have ‹(@ ?i q) # (♦ Nom ?i) # witness-list ps ({?i} ∪ used) =

witness-list (p # ps) used›
using q witness-list by metis

ultimately have ‹∃ extra. witness-list ((p # ps) @ qs) used =
witness-list (p # ps) used @ witness-list qs (extra ∪ ({?i} ∪ used))›

by (metis append-Cons)
then have ‹∃ extra. witness-list ((p # ps) @ qs) used =

witness-list (p # ps) used @ witness-list qs (({?i} ∪ extra) ∪ used)›
by simp

then show ?thesis
by blast

qed (simp add: Cons)
qed

lemma ex-witness-list:
assumes ‹p ∈. ps› ‹proper-dia p = Some q›
shows ‹∃ i. {@ i q, ♦ Nom i} ⊆ set (witness-list ps used)›
using ‹p ∈. ps›

proof (induct ps arbitrary: used)
case (Cons a ps)
then show ?case

95

proof (induct ‹a = p›)
case True
then have

‹∃ i. witness-list (a # ps) used = (@ i q) # (♦ Nom i) #
witness-list ps ({i} ∪ used)›

using ‹proper-dia p = Some q› witness-list by metis
then show ?case

by auto
next

case False
then have ‹∃ i. {@ i q, ♦ Nom i} ⊆ set (witness-list ps (extra ∪ used))› for

extra
by simp

moreover have ‹∃ extra. witness-list (a # ps) used =
witness-list [a] used @ witness-list ps (extra ∪ used)›

using witness-list-append[where ps=‹[-]›] by simp
ultimately show ?case

by fastforce
qed

qed simp

lemma saturated-Extend:
fixes S :: ‹(′a, ′b) block set›
assumes inf : ‹infinite (UNIV :: ′b set)› and fin: ‹finite A› and

‹consistent A S› ‹finite (
⋃

(block-nominals ‘ S))› ‹surj f ›
shows ‹saturated (Extend A S f)›
unfolding saturated-def

proof safe
fix ps i p
assume ‹(ps, i) ∈ Extend A S f › ‹(♦ p) on (ps, i)› ‹@ a. p = Nom a›
obtain n where n: ‹f n = (ps, i)›

using ‹surj f › unfolding surj-def by metis

let ?used = ‹A ∪ (
⋃

block ∈ {f n} ∪ extend A S f n. block-nominals block)›

have ‹extend A S f n ⊆ Extend A S f ›
unfolding Extend-def by auto

moreover have ‹consistent A (Extend A S f)›
using assms consistent-Extend by blast

ultimately have ‹consistent A ({(ps, i)} ∪ extend A S f n)›
using ‹(ps, i) ∈ Extend A S f › inconsistent-weaken by blast

then have ‹extend A S f (Suc n) = {f n, witness (f n) ?used} ∪ extend A S f n›
using n ‹(♦ p) on (ps, i)› by auto

then have ‹witness (f n) ?used ∈ Extend A S f ›
unfolding Extend-def by blast

then have ∗: ‹(witness-list ps ?used, i) ∈ Extend A S f ›
using n by simp

have ‹(♦ p) ∈. ps›

96

using ‹(♦ p) on (ps, i)› by simp
moreover have ‹proper-dia (♦ p) = Some p›

unfolding proper-dia-def using ‹@ a. p = Nom a› by simp
ultimately have ‹∃ j.

(@ j p) on (witness-list ps ?used, i) ∧
(♦ Nom j) on (witness-list ps ?used, i)›

using ex-witness-list by fastforce
then show ‹∃ j.

(∃ qs. (qs, i) ∈ Extend A S f ∧ (@ j p) on (qs, i)) ∧
(∃ rs. (rs, i) ∈ Extend A S f ∧ (♦ Nom j) on (rs, i))›

using ∗ by blast
qed

11.3 Smullyan-Fitting
lemma Hintikka-Extend:

fixes S :: ‹(′a, ′b) block set›
assumes inf : ‹infinite (UNIV :: ′b set)› and fin: ‹finite A› and

‹maximal A S› ‹consistent A S› ‹saturated S›
shows ‹Hintikka A S›
unfolding Hintikka-def

proof safe
fix x i j ps qs rs
assume

ps: ‹(ps, i) ∈ S› ‹Nom j on (ps, i)› and
qs: ‹(qs, j) ∈ S› ‹Pro x on (qs, j)› and
rs: ‹(rs, i) ∈ S› ‹(¬ Pro x) on (rs, i)›

then have ‹¬ A, n ` [(qs, j), (ps, i), (rs, i)]› for n
using ‹consistent A S› unfolding consistent-def by simp

moreover have ‹A, n ` [((¬ Pro x) # qs, j), (ps, i), (rs, i)]› for n
using qs(2) Close
by (metis (no-types, lifting) list.set-intros(1) on.simps set-subset-Cons subsetD)

then have ‹A, n ` [(qs, j), (ps, i), (rs, i)]› for n
using ps(2) rs(2)

by (meson Nom ′ fm.distinct(21) fm.simps(18) list.set-intros(1) set-subset-Cons
subsetD)

ultimately show False
by blast

next
fix a i ps qs
assume

ps: ‹(ps, i) ∈ S› ‹Nom a on (ps, i)› and
qs: ‹(qs, i) ∈ S› ‹(¬ Nom a) on (qs, i)›

then have ‹¬ A , n ` [(ps, i), (qs, i)]› for n
using ‹consistent A S› unfolding consistent-def by simp

moreover have ‹A, n ` [(ps, i), (qs, i)]› for n
using ps(2) qs(2) by (meson Close list.set-intros(1) set-subset-Cons sub-

set-code(1))
ultimately show False

97

by blast
next

fix p i ps
assume ps: ‹(ps, i) ∈ S› ‹(¬ ¬ p) on (ps, i)›
show ‹p at i in ′ S›
proof (rule ccontr)

assume ‹¬ p at i in ′ S›
then obtain S ′ n where

‹A, n ` S ′› and S ′: ‹set S ′ ⊆ {(p # ps, i)} ∪ S› and ‹(p # ps, i) ∈. S ′›
using ‹maximal A S› unfolding maximal-def consistent-def
by (metis insert-is-Un list.set-intros(1) on.simps subset-insert)

then obtain S ′′ where S ′′:
‹set ((p # ps, i) # S ′′) = set S ′› ‹(p # ps, i) /∈ set S ′′›
using split-list[where x=‹(p # ps, i)›] by blast

then have ‹A ` (p # ps, i) # S ′′›
using inf fin STA-struct ‹A, n ` S ′› by blast

then have ‹A ` (ps, i) # S ′′›
using ps by (meson Neg ′ list.set-intros(1))

moreover have ‹set ((ps, i) # S ′′) ⊆ S›
using S ′ S ′′ ps by auto

ultimately show False
using ‹consistent A S› unfolding consistent-def by blast

qed
next

fix p q i ps
assume ps: ‹(ps, i) ∈ S› ‹(p ∨ q) on (ps, i)› and ∗: ‹¬ q at i in ′ S›
show ‹p at i in ′ S›
proof (rule ccontr)

assume ‹¬ p at i in ′ S›
then obtain Sp ′ np where
‹A, np ` Sp ′› and Sp ′: ‹set Sp ′ ⊆ {(p # ps, i)} ∪ S› and ‹(p # ps, i) ∈. Sp ′›
using ‹maximal A S› unfolding maximal-def consistent-def
by (metis insert-is-Un list.set-intros(1) on.simps subset-insert)

then obtain Sp ′′ where Sp ′′:
‹set ((p # ps, i) # Sp ′′) = set Sp ′› ‹(p # ps, i) /∈ set Sp ′′›
using split-list[where x=‹(p # ps, i)›] by blast

then have ‹A ` (p # ps, i) # Sp ′′›
using ‹A, np ` Sp ′› inf fin STA-struct by blast

obtain Sq ′ nq where
‹A, nq ` Sq ′› and Sq ′: ‹set Sq ′ ⊆ {(q # ps, i)} ∪ S› and ‹(q # ps, i) ∈. Sq ′›
using ∗ ‹maximal A S› unfolding maximal-def consistent-def
by (metis insert-is-Un list.set-intros(1) on.simps subset-insert)

then obtain Sq ′′ where Sq ′′:
‹set ((q # ps, i) # Sq ′′) = set Sq ′› ‹(q # ps, i) /∈ set Sq ′′›
using split-list[where x=‹(q # ps, i)›] by blast

then have ‹A ` (q # ps, i) # Sq ′′›
using ‹A, nq ` Sq ′› inf fin STA-struct by blast

98

obtain S ′′ where S ′′: ‹set S ′′ = set Sp ′′ ∪ set Sq ′′›
by (meson set-union)

then have
‹set ((p # ps, i) # Sp ′′) ⊆ set ((p # ps, i) # S ′′)›
‹set ((q # ps, i) # Sq ′′) ⊆ set ((q # ps, i) # S ′′)›
by auto

then have ‹A ` (p # ps, i) # S ′′› ‹A ` (q # ps, i) # S ′′›
using ‹A ` (p # ps, i) # Sp ′′› ‹A ` (q # ps, i) # Sq ′′› inf fin STA-struct

by blast+
then have ‹A ` (ps, i) # S ′′›

using ps by (meson DisP ′′ list.set-intros(1))
moreover have ‹set ((ps, i) # S ′′) ⊆ S›

using ps Sp ′ Sp ′′ Sq ′ Sq ′′ S ′′ by auto
ultimately show False

using ‹consistent A S› unfolding consistent-def by blast
qed

next
fix p q i ps
assume ps: ‹(ps, i) ∈ S› ‹(¬ (p ∨ q)) on (ps, i)›
show ‹(¬ p) at i in ′ S›
proof (rule ccontr)

assume ‹¬ (¬ p) at i in ′ S›
then obtain S ′ where

‹A ` S ′› and
S ′: ‹set S ′ ⊆ {((¬ q) # (¬ p) # ps, i)} ∪ S› and
‹((¬ q) # (¬ p) # ps, i) ∈. S ′›
using ‹maximal A S› unfolding maximal-def consistent-def

by (metis (mono-tags, lifting) insert-is-Un insert-subset list.simps(15) on.simps
set-subset-Cons subset-insert)

then obtain S ′′ where S ′′:
‹set (((¬ q) # (¬ p) # ps, i) # S ′′) = set S ′›
‹((¬ q) # (¬ p) # ps, i) /∈ set S ′′›
using split-list[where x=‹((¬ q) # (¬ p) # ps, i)›] by blast

then have ‹A ` ((¬ q) # (¬ p) # ps, i) # S ′′›
using inf fin STA-struct ‹A ` S ′› by blast

then have ‹A ` (ps, i) # S ′′›
using ps by (meson DisN ′ list.set-intros(1))

moreover have ‹set ((ps, i) # S ′′) ⊆ S›
using S ′ S ′′ ps by auto

ultimately show False
using ‹consistent A S› unfolding consistent-def by blast

qed
next

fix p q i ps
assume ps: ‹(ps, i) ∈ S› ‹(¬ (p ∨ q)) on (ps, i)›
show ‹(¬ q) at i in ′ S›
proof (rule ccontr)

assume ‹¬ (¬ q) at i in ′ S›
then obtain S ′ where

99

‹A ` S ′› and
S ′: ‹set S ′ ⊆ {((¬ q) # (¬ p) # ps, i)} ∪ S› and
‹((¬ q) # (¬ p) # ps, i) ∈. S ′›
using ‹maximal A S› unfolding maximal-def consistent-def

by (metis (mono-tags, lifting) insert-is-Un insert-subset list.simps(15) on.simps
set-subset-Cons subset-insert)

then obtain S ′′ where S ′′:
‹set (((¬ q) # (¬ p) # ps, i) # S ′′) = set S ′›
‹((¬ q) # (¬ p) # ps, i) /∈ set S ′′›
using split-list[where x=‹((¬ q) # (¬ p) # ps, i)›] by blast

then have ‹A ` ((¬ q) # (¬ p) # ps, i) # S ′′›
using inf fin STA-struct ‹A ` S ′› by blast

then have ‹A ` (ps, i) # S ′′›
using ps by (meson DisN ′ list.set-intros(1))

moreover have ‹set ((ps, i) # S ′′) ⊆ S›
using S ′ S ′′ ps by auto

ultimately show False
using ‹consistent A S› unfolding consistent-def by blast

qed
next

fix p i ps
assume ‹@ a. p = Nom a› ‹(ps, i) ∈ S› ‹(♦ p) on (ps, i)›
then show ‹∃ j. (♦ Nom j) at i in ′ S ∧ (@ j p) at i in ′ S›

using ‹saturated S› unfolding saturated-def by blast
next

fix p i j ps qs
assume

ps: ‹(ps, i) ∈ S› ‹(¬ (♦ p)) on (ps, i)› and
qs: ‹(qs, i) ∈ S› ‹(♦ Nom j) on (qs, i)›

show ‹(¬ (@ j p)) at i in ′ S›
proof (rule ccontr)

assume ‹¬ (¬ (@ j p)) at i in ′ S›
then obtain S ′ n where

‹A, n ` S ′› and S ′: ‹set S ′ ⊆ {([¬ (@ j p)], i)} ∪ S› and ‹([¬ (@ j p)], i)
∈. S ′›

using ‹maximal A S› unfolding maximal-def consistent-def
by (metis insert-is-Un list.set-intros(1) on.simps subset-insert)

then obtain S ′′ where S ′′:
‹set (([¬ (@ j p)], i) # S ′′) = set S ′› ‹([¬ (@ j p)], i) /∈ set S ′′›
using split-list[where x=‹([¬ (@ j p)], i)›] by blast

then have ‹A ` ([¬ (@ j p)], i) # S ′′›
using inf fin STA-struct ‹A, n ` S ′› by blast

then have ‹A ` ([¬ (@ j p)], i) # (ps, i) # (qs, i) # S ′′›
using inf fin STA-struct[where branch ′=‹([-], -) # (ps, i) # (qs, i) # S ′′›]

‹A, n ` S ′›
by fastforce

then have ‹A ` ([], i) # (ps, i) # (qs, i) # S ′′›
using ps(2) qs(2) by (meson DiaN ′ list.set-intros(1) set-subset-Cons sub-

set-iff)

100

moreover have ‹i ∈ branch-nominals ((ps, i) # (qs, i) # S ′′)›
unfolding branch-nominals-def by simp

ultimately have ‹A ` (ps, i) # (qs, i) # S ′′›
using GoTo by fast

moreover have ‹set ((ps, i) # (qs, i) # S ′′) ⊆ S›
using S ′ S ′′ ps qs by auto

ultimately show False
using ‹consistent A S› unfolding consistent-def by blast

qed
next

fix p i ps a
assume ps: ‹(ps, a) ∈ S› ‹(@ i p) on (ps, a)›
show ‹p at i in ′ S›
proof (rule ccontr)

assume ‹¬ p at i in ′ S›
then obtain S ′ n where

‹A, n ` S ′› and S ′: ‹set S ′ ⊆ {([p], i)} ∪ S› and ‹([p], i) ∈. S ′›
using ‹maximal A S› unfolding maximal-def consistent-def
by (metis insert-is-Un list.set-intros(1) on.simps subset-insert)

then obtain S ′′ where S ′′:
‹set (([p], i) # S ′′) = set S ′› ‹([p], i) /∈ set S ′′›
using split-list[where x=‹([p], i)›] by blast

then have ‹A ` ([p], i) # S ′′›
using inf fin STA-struct ‹A, n ` S ′› by blast

moreover have ‹set (([p], i) # S ′′) ⊆ set (([p], i) # (ps, a) # S ′′)›
by auto

ultimately have ‹A ` ([p], i) # (ps, a) # S ′′›
using inf fin STA-struct ‹A, n ` S ′› by blast

then have ‹A ` ([], i) # (ps, a) # S ′′›
using ps by (metis SatP ′ insert-iff list.simps(15))

moreover have ‹i ∈ branch-nominals ((ps, a) # S ′′)›
using ps unfolding branch-nominals-def by fastforce

ultimately have ‹A ` (ps, a) # S ′′›
using GoTo by fast

moreover have ‹set ((ps, a) # S ′′) ⊆ S›
using S ′ S ′′ ps by auto

ultimately show False
using ‹consistent A S› unfolding consistent-def by blast

qed
next

fix p i ps a
assume ps: ‹(ps, a) ∈ S› ‹(¬ (@ i p)) on (ps, a)›
show ‹(¬ p) at i in ′ S›
proof (rule ccontr)

assume ‹¬ (¬ p) at i in ′ S›
then obtain S ′ n where

‹A, n ` S ′› and S ′: ‹set S ′ ⊆ {([¬ p], i)} ∪ S› and ‹([¬ p], i) ∈. S ′›
using ‹maximal A S› unfolding maximal-def consistent-def
by (metis insert-is-Un list.set-intros(1) on.simps subset-insert)

101

then obtain S ′′ where S ′′:
‹set (([¬ p], i) # S ′′) = set S ′› ‹([¬ p], i) /∈ set S ′′›
using split-list[where x=‹([¬ p], i)›] by blast

then have ‹A ` ([¬ p], i) # S ′′›
using inf fin STA-struct ‹A, n ` S ′› by blast

then have ‹A ` ([¬ p], i) # (ps, a) # S ′′›
using inf fin STA-struct[where branch ′=‹([¬ p], i) # - # S ′′›] ‹A, n ` S ′›
by fastforce

then have ‹A ` ([], i) # (ps, a) # S ′′›
using ps by (metis SatN ′ insert-iff list.simps(15))

moreover have ‹i ∈ branch-nominals ((ps, a) # S ′′)›
using ps unfolding branch-nominals-def by fastforce

ultimately have ‹A ` (ps, a) # S ′′›
using GoTo by fast

moreover have ‹set ((ps, a) # S ′′) ⊆ S›
using S ′ S ′′ ps by auto

ultimately show False
using ‹consistent A S› unfolding consistent-def by blast

qed
next

fix p i ps a
assume i: ‹i ∈ nominals p› and ps: ‹(ps, a) ∈ S› ‹p on (ps, a)›
show ‹∃ qs. (qs, i) ∈ S›
proof (rule ccontr)

assume ‹@ qs. (qs, i) ∈ S›
then obtain S ′ n where

‹A, n ` S ′› and S ′: ‹set S ′ ⊆ {([], i)} ∪ S› and ‹([], i) ∈. S ′›
using ‹maximal A S› unfolding maximal-def consistent-def
by (metis insert-is-Un subset-insert)

then obtain S ′′ where S ′′:
‹set (([], i) # S ′′) = set S ′› ‹([], i) /∈ set S ′′›
using split-list[where x=‹([], i)›] by blast

then have ‹A ` ([], i) # (ps, a) # S ′′›
using inf fin STA-struct[where branch ′=‹([], i) # (ps, a) # S ′′›] ‹A, n ` S ′›

by fastforce
moreover have ‹i ∈ branch-nominals ((ps, a) # S ′′)›

using i ps unfolding branch-nominals-def by auto
ultimately have ‹A ` (ps, a) # S ′′›

using GoTo by fast
moreover have ‹set ((ps, a) # S ′′) ⊆ S›

using S ′ S ′′ ps by auto
ultimately show False

using ‹consistent A S› unfolding consistent-def by blast
qed

next
fix p i j ps qs
assume

p: ‹∀ a. p = Nom a ∨ p = (♦ Nom a) −→ a ∈ A› and
ps: ‹(ps, i) ∈ S› ‹p on (ps, i)› and

102

qs: ‹(qs, i) ∈ S› ‹Nom j on (qs, i)›

show ‹p at j in ′ S›
proof (rule ccontr)

assume ‹@ rs. (rs, j) ∈ S ∧ p on (rs, j)›
then obtain S ′ n where

‹A, n ` S ′› and S ′: ‹set S ′ ⊆ {([p], j)} ∪ S› and ‹([p], j) ∈. S ′›
using ‹maximal A S› unfolding maximal-def consistent-def
by (metis insert-is-Un list.set-intros(1) on.simps subset-insert)

then obtain S ′′ where S ′′:
‹set (([p], j) # S ′′) = set S ′› ‹([p], j) /∈ set S ′′›
using split-list[where x=‹([p], j)›] by blast

then have ‹A ` ([p], j) # S ′′›
using inf fin STA-struct ‹A, n ` S ′› by blast

then have ‹A ` ([p], j) # (ps, i) # (qs, i) # S ′′›
using inf fin STA-struct[where branch ′=‹([-], -) # (ps, i) # (qs, i) # S ′′›]

‹A, n ` S ′›
by fastforce

then have ‹A ` ([], j) # (ps, i) # (qs, i) # S ′′›
using ps(2) qs(2) p by (meson Nom ′ in-mono list.set-intros(1) set-subset-Cons)
moreover have ‹j ∈ branch-nominals ((ps, i) # (qs, i) # S ′′)›

using qs(2) unfolding branch-nominals-def by fastforce
ultimately have ‹A ` (ps, i) # (qs, i) # S ′′›

using GoTo by fast
moreover have ‹set ((ps, i) # (qs, i) # S ′′) ⊆ S›

using S ′ S ′′ ps qs by auto
ultimately show False

using ‹consistent A S› unfolding consistent-def by blast
qed

qed

11.4 Result
theorem completeness:

fixes p :: ‹(′a :: countable, ′b :: countable) fm›
assumes

inf : ‹infinite (UNIV :: ′b set)› and
valid: ‹∀ (M :: (′b set, ′a) model) g w. M , g, w |= p›

shows ‹nominals p, 1 ` [([¬ p], i)]›
proof −

let ?A = ‹nominals p›

have ‹?A ` [([¬ p], i)]›
proof (rule ccontr)

assume ‹¬ ?A ` [([¬ p], i)]›
moreover have ‹finite ?A›

using finite-nominals by blast
ultimately have ∗: ‹consistent ?A {([¬ p], i)}›

unfolding consistent-def using STA-struct inf

103

by (metis empty-set list.simps(15))

let ?S = ‹Extend ?A {([¬ p], i)} from-nat›
have ‹finite {([¬ p], i)}›

by simp
then have fin: ‹finite (

⋃
(block-nominals ‘ {([¬ p], i)}))›

using finite-nominals-set by blast

have ‹consistent ?A ?S›
using consistent-Extend inf ∗ fin ‹finite ?A› by blast

moreover have ‹maximal ?A ?S›
using maximal-Extend inf ∗ fin by fastforce

moreover have ‹saturated ?S›
using saturated-Extend inf ∗ fin by fastforce

ultimately have ‹Hintikka ?A ?S›
using Hintikka-Extend inf ‹finite ?A› by blast

moreover have ‹([¬ p], i) ∈ ?S›
using Extend-mem by blast

moreover have ‹(¬ p) on ([¬ p], i)›
by simp

ultimately have ‹¬ Model (reach ?A ?S) (val ?S), assign ?A ?S , assign ?A
?S i |= p›

using Hintikka-model(2) by fast
then show False

using valid by blast
qed
then show ?thesis

using STA-one by fast
qed

We arbitrarily fix nominal and propositional symbols to be natural numbers
(any countably infinite type suffices) and define validity as truth in all models
with sets of natural numbers as worlds. We show below that this implies
validity for any type of worlds.
abbreviation

‹valid p ≡ ∀ (M :: (nat set, nat) model) (g :: nat ⇒ -) w. M , g, w |= p›

A formula is valid iff its negation has a closing tableau from a fresh world.
We can assume a single unit of potential and take the allowed nominals to
be the root nominals.
theorem main:

assumes ‹i /∈ nominals p›
shows ‹valid p ←→ nominals p, 1 ` [([¬ p], i)]›

proof
assume ‹valid p›
then show ‹nominals p, 1 ` [([¬ p], i)]›

using completeness by blast
next

104

assume ‹nominals p, 1 ` [([¬ p], i)]›
then show ‹valid p›

using assms soundness-fresh by fast
qed

The restricted validity implies validity in general.
theorem valid-semantics:

‹valid p −→ M , g, w |= p›
proof

assume ‹valid p›
then have ‹i /∈ nominals p =⇒ nominals p ` [([¬ p], i)]› for i

using main by blast
moreover have ‹∃ i. i /∈ nominals p›

by (simp add: finite-nominals ex-new-if-finite)
ultimately show ‹M , g, w |= p›

using soundness-fresh by fast
qed

end

References

[1] P. Blackburn, T. Bolander, T. Braüner, and K. F. Jørgensen. Complete-
ness and Termination for a Seligman-style Tableau System. Journal of
Logic and Computation, 27(1):81–107, 2017.

[2] K. F. Jørgensen, P. Blackburn, T. Bolander, and T. Braüner. Synthetic
Completeness Proofs for Seligman-style Tableau Systems. In Advances
in Modal Logic, volume 11, pages 302–321, 2016.

105

	Syntax
	Semantics
	Examples

	Tableau
	Soundness
	No Detours
	Free GoTo

	Indexed Mapping
	Indexing
	Mapping

	Duplicate Formulas
	Removable indices
	Omitting formulas
	Induction
	Unrestricted rules

	Substitution
	Unrestricted 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 () rule

	Structural Properties
	Bridge
	Replacing
	Descendants
	Induction
	Derivation

	Completeness
	Hintikka
	Named model

	Lindenbaum-Henkin
	Consistency
	Maximality
	Saturation

	Smullyan-Fitting
	Result

	References

