Hidden Markov Models

Simon Wimmer

March 17, 2025

Abstract

This entry contains a formalization of hidden Markov models [3] based on Johannes Holzl’s
formalization of discrete time Markov chains [1]. The basic definitions are provided and the cor-
rectness of two main (dynamic programming) algorithms for hidden Markov models is proved: the
forward algorithm for computing the likelihood of an observed sequence, and the Viterbi algorithm
for decoding the most probable hidden state sequence. The Viterbi algorithm is made executable
including memoization.

Hidden markov models have various applications in natural language processing. For an intro-
duction see Jurafsky and Martin [2].

Contents

1 Hidden Markov Models
1.1 Definitions e
1.2 Tteration Rule For Likelihood
1.3 Computation of Likelihood
1.4 Definition of Maximum Probabilities
1.5 TIteration Rule For Maximum Probabilities
1.6 Computation of Maximum Probabilities
1.7 Decoding the Most Probable Hidden State Sequence

2 Implementation
2.1 The Forward Algorithm
2.2 The Viterbi Algorithm
2.3 Misc e
2.4 Executing Concrete HMMs L L

3 Example

© 00O DUt W NN

-t
ot

12
13
14
16

17

1 Hidden Markov Models

theory Hidden-Markov-Model
imports
Markov-Models. Discrete- Time-Markov-Chain Auziliary
HOL—- Library.IArray
begin

1.1 Definitions

Definition of Markov Kernels that are closed w.r.t. to a set of states.

locale Closed-Kernel =
fixes K :: 's = 't pmf and S :: 't set
assumes finite: finite S
and wellformed: S # {}
and closed: V s. K s C S

An HMM is parameterized by a Markov kernel for the transition probabilites between internal states,
a Markov kernel for the output probabilities of observations, and a fixed set of observations.

locale HMM-defs =
fixes K :: 's = s pmf and O :: 's = 't pmf and O, :: 't set

locale HMM =
HMM-defs + O: Closed-Kernel O Oy
begin

lemma observations-finite: finite O
and observations-wellformed: Oy # {}
and observations-closed: ¥V s. O s C O
using O.finite O.wellformed O.closed by —

end

Fixed set of internal states.
locale HMM2-defs = HMM-defs K O for K :: 's = 's pmf and O :: 's = 't pmf +

fixes S :: 's set

locale HMM?2 = HMMZ2-defs + HMM + K: Closed-Kernel I S
begin

lemma states-finite: finite S
and states-wellformed: S # {}
and states-closed:V s. K s C S
using K.finite K.wellformed K.closed by —

end

The set of internal states is now given as a list to iterate over. This is needed for the computations
on HMMs.

locale HMMS3-defs = HMM2-defs O, K for O, :: 't set and K :: 's = 's pmf +
fixes state-list :: 's list

locale HMM3 = HMMS3-defs - - Os K + HMM2 Oy K for O, :: 't set and K :: 's = 's pmf +
assumes state-list-S: set state-list = S

context HMM-defs
begin

no-notation (ASCII) comp (infixl (o> 55)

The “default” observation.

definition
obs = SOME z. z € O,

lemma (in HMM) obs:
obs € O,
unfolding obs-def using observations-wellformed by (auto intro: somel-ex)

The HMM is encoded as a Markov chain over pairs of states and observations. This is the Markov
chain’s defining Markov kernel.

definition
K =X (s1, 01 = "t). bind-pmf (K s1) (A sa. map-pmf (X o2. (s2, 02)) (O s2))

sublocale MC-syntax K .

Uniform distribution of the pairs (s, o) for a fixed state s.

definition I (s :: 's) = map-pmf (X z. (s, x)) (pmf-of-set O;)

The likelihood of an observation sequence given a starting state s is defined in terms of the trace space
of the Markov kernel given the uniform distribution of pairs for s.

definition
likelihood s 0s = T' (I s) {w € space S. 3 09 xs w'. w = (8, 09) ## xs Q— w’' A map snd zs = os}

abbreviation (input) L os w =3 2s w'. w = zs Q— w’ A map snd zs = os

lemma likelihood-alt-def: likelihood s os = T' (I s) {(s, 0) ## xs Q— w' |0 xs w'. map snd zs = os}
unfolding likelihood-def by (simp add: in-S)

1.2 TIteration Rule For Likelihood

lemma L-Nil:
L[] w= True
by simp

lemma emeasure-T-observation-Nil:
T (s, 0p) {w € space S. L [w} =1
by simp

lemma L-Cons:
L (0 # 0s) w <— snd (shd w) = o A L os (stl w)
apply (cases w; cases shd w; safe; clarsimp)
apply force
subgoal for z zs w’
by (force intro: exl[where © = (x, 0) # zs))
done

lemma L-measurable[measurable]:
Measurable.pred S (L 0s)
apply (induction 0s)
apply (simp; fail)
subgoal premises that for o os
by (subst L-Cons)
(intro Measurable.pred-intros-logic
measurable-compose| OF measurable-shd] measurable-compose] OF measurable-stl that];
measurable)
done

lemma init-measurable[measurable]:
Measurable.pred S (Ax. Fog xs w'. x = (s, 09) ## s Q— w’ A map snd zs = 0s)

(is Measurable.pred S ?f)
proof —
have x: 2f w +— fst (shd w) = s A L 0s (stl w) for w
by (cases w) auto
show ?thesis
by (subst *)
(intro Measurable.pred-intros-logic measurable-compose| OF measurable-shd]; measurable)
qed

lemma T-init-observation-eq:
T (s, 0) {w € space S. L os w} = T (s, 0') {w € space S. L os w}
apply (subst emeasure-Collect-T[unfolded space-T], (measurable; fail))
apply (subst (2) emeasure-Collect-T[unfolded space-T|, (measurable; fail))
apply (simp add: K-def)
done

Shows that it is equivalent to define likelihood in terms of the trace space starting at a single pair of
an internal state s and the default observation obs.

lemma (in HMM) likelihood-init:
likelihood s 0s = T (s, obs) {w € space S. L os w}
proof —
have *: (3> 0€Q;. emeasure (T (s, 0)) {w € space S. L os w}) =
of-nat (card Og) * emeasure (T (s, obs)) {w € space S. L o0s w}
by (subst sum-constant[symmetric]) (fastforce intro: sum.cong T-init-observation-eq[simplified])
show ?thesis
unfolding likelihood-def
apply (subst emeasure-T")
subgoal
by measurable
using x
apply (simp add: I-def in-S observations-finite observations-wellformed nn-integral-pmf-of-set)
apply (subst mult.commute)
apply (simp add: observations-finite observations-wellformed mult-divide-eq-ennreal)
done
qed

lemma emeasure-T-observation-Cons:
T (s, 0p) {w € space S. L (01 # o0s) w} =
(J " t. ennreal (pmf (O t) 01) * T (t, 01) {w € space S. L os w} O(K s)) (is 7l = ?r)
proof —
have x*:
[Ty T (s, y) {z € space S. Jus. (3w’. (s', y) ## © = xs Q— w') A map snd zs = o1 # os}
Omeasure-pmf (O s') =
ennreal (pmf (O s') 01) x T (s, 01) {w € space S. Fzs. (Fw’. w = xs Q— w') A map snd xs = os}
(is 2L = ?R) for s’
proof —
have ?L = [T z. ennreal (pmf (O s') z) x
T (s', z) {w € space S. Fxs. (Jw’. (s', x) ## w = zs Q— w') A map snd xs = 01 # os}
dcount-space UNIV
by (rule nn-integral-measure-pmf)
also have ... =
f+ 09. (’ifOQ = 01
then ennreal (pmf (O s’) 01) * T (s', 01) {w € space S. L 0s w}
else 0)
dcount-space UNIV
apply (rule nn-integral-cong-AE
[where v = X 03. if 02 = 01
then ennreal (pmf (O s') 01) * T (s', 01) {w € space S. L os w} else 0]

apply (rule AE-12)

apply (split if-split, safe)
subgoal
by (auto intro!: arg-cong2|where f = times, OF HOL.refl] arg-cong2[where f = emeasure];
metis list.simps(9) shift.simps(2) snd-conv

)

subgoal
by (subst arg-cong2[where f = emeasure and d = {}, OF HOL.refl]) auto
done
also have ... = ([Tos€{o01}. (ennreal (pmf (O s') 01) x T (s, 01) {w € space S. L o0s w})

Odcount-space UNIV)
by (rule nn-integral-cong-AE) auto

also have ... = ?R
by simp
finally show ?thesis .
qged

have 7l = [T t. Tt {z € space S. Fas w'. t ## = = zs Q— w' A map snd zs = o1 # os} & (K (s, 0g))
by (subst emeasure-Collect-T[unfolded space-T|, measurable)
also have ... = 7r
using * by (simp add: K-def)
finally show ?thesis .
qed

1.3 Computation of Likelihood

fun backward where
backward s [| = 1 |
backward s (o # os) = ([T t. ennreal (pmf (O t) 0) * backward t os dmeasure-pmf (K s))

lemma emeasure-T-observation-backward:
emeasure (T (s, 0)) {w € space S. L 0s w} = backward s os
using emeasure-T-observation-Cons by (induction os arbitrary: s o; simp)

lemma (in HMM) likelihood-backward:
likelihood s 0os = backward s os
unfolding likelihood-init emeasure-T-observation-backward ..

end

context HMM?2
begin

fun (in HMMZ2-defs) forward where
forward s t-end || = indicator {t-end} s |
forward s t-end (o # o0s) =
>t € S. ennreal (pmf (O t) o) * ennreal (pmf (K s) t) * forward t t-end o0s)

lemma forward-split:
forward s t (os1 @Q 0s2) = (3.t € S. forward s t’ 0s1 * forward t' t 0s2)
ifseS
using that
apply (induction osl arbitrary: s)
subgoal for s
apply (simp add: sum-indicator-mult|OF states-finite])
apply (subst sum.cong[where B = {s}])
by auto
subgoal for a os1 s
apply simp
apply (subst sum-distrib-right)
apply (subst sum.swap)
apply (simp add: sum-distrib-left algebra-simps)
done

done

lemma (in —)
SoteS. fty=ftiffinite St € SV se€ S —{t}. fs=0
thm sum.empty sum.insert sum.mono-neutral-right[of S {t}]
apply (subst sum.mono-neutral-right[of S {t}])
using that
apply auto
done

lemma forward-backward:

Oot e S. forward s t os) = backward s os if s € S

using <s € &)

apply (induction os arbitrary: s)

subgoal for s
by (subst sum.mono-neutral-right[of S {s}, OF states-finite])

(auto split: if-split-asm simp: indicator-def)

subgoal for a os s
apply (simp add: sum.swap sum-distrib-left[symmetric])
apply (subst nn-integral-measure-pmf-support[where A = S])
using states-finite states-closed by (auto simp: algebra-simps)

done

theorem likelihood-forward:
likelihood s 0s = (3.t € S. forward s t os) if «s € &)
unfolding likelihood-backward forward-backward[symmetric, OF s € &)] ..

1.4 Definition of Maximum Probabilities

abbreviation (input) V os as w = (3 w'. w = zip as os @— w')

definition
maz-prob s 0s =
Maz {T' (I s) {w € space S. Jo w'. w = (s, 0) ## zip as 0s A— w'}
| as. length as = length os A set as C S}

fun viterbi-prob where
viterbi-prob s t-end [| = indicator {t-end} s |
viterbi-prob s t-end (0 # 0s) =
(MAX t € S. ennreal (pmf (O t) o x pmf (K s) t) x viterbi-prob t t-end o0s)

definition
is-decoding s 0s as =
T'(Is){w € space S. Jo w'. w = (s, 0) ## zip as os Q— w'} = maz-prob s os N
length as = length os A set as C S

1.5 TIteration Rule For Maximum Probabilities

lemma emeasure-T-state-Nil:
T (s, 00) {w € space S. V [] as w} = 1
by simp

lemma mazx-prob-T-state-Nil:
Maz {T (s, 0) {w € space S. V [| as w} | as. length as = length [| A set as C S} = 1
by (simp add: emeasure-T-state-Nil)

lemma V-Cons: V (0 # 08) (a # as) w «— fst (shd w) = a A snd (shd w) = o A V 0s as (stl w)
by (cases w) auto

lemma measurable-V[measurable]:

Measurable.pred S (Aw. V 0s as w)
proof (induction os as rule: list-induct2’)
case (4 T zs y ys)
then show “case
by (subst V-Cons)
(intro Measurable.pred-intros-logic
measurable-compose] OF measurable-shd] measurable-compose[OF measurable-stl];
measurable)
qed simp+

lemma init- V-measurable[measurable]:
Measurable.pred S (Ax. Jo w'. © = (s, 0) ## zip as os Q— w’) (is Measurable.pred S ?f)
proof —
have *: ?f w «— fst (shd w) = s A V o0s as (stl w) for w
by (cases w) auto
show ?thesis
by (subst *)
(intro Measurable.pred-intros-logic measurable-compose] OF measurable-shd]; measurable)
qed

lemma maz-prob-Cons':
Max {T (s, 01) {w € space S. V (o # 0s) as w} | as. length as = length (o # 0s) A set as C S} =

MAX t € S. ennreal (pmf (O t) o x pmf (K s) t) *
(MAX as € {as. length as = length os A set as C S}. T (t, o) {w € space S. V 0s as w})
) (is 21 = %r)
and T-V-Cons:
T (s, 01) {w € space S. V (0 # os) (t # as) w}
= ennreal (pmf (O t) o x pmf (K s) t) x T (¢, 0) {w € space S. V 0s as w}
(is 71’ = 2r')
if length as = length os
proof —
let 25 = X os. {as. length as = length os A set as C S}
have S-finite: finite (2S os) for os :: 't list
using finite-lists-length-eqOF states-finite] by (rule finite-subset[rotated]) auto
have S-nonempty: 25 os # {} for os :: 't list
proof —
let a = SOME a. a € S let %as = replicate (length os) ?a
from states-wellformed have ?a € S
by (auto intro: somel-ex)
then have %as € 25 os
by auto
then show ?thesis
by force
qed
let 2f = At as os. Tt {w € space S. V 0s as (t ## w)}
let 29 = Mt as os. Tt {w € space S. V 0s as w}
have x: 2f t as (o # 0s) = ?g t (tl as) os * indicator {(hd as, 0)} t
if length as = Suc n for t as n
unfolding indicator-def using that by (cases as) auto
have xx: K (s, 01) {(¢, 0)} = pmf (O t) o *x pmf (K s) t for ¢
unfolding K-def
apply (simp add: vimage-def)
apply (subst arg-cong2[where
[= nn-integral and d = X z. O = {za. za = o A = t} * indicator {t} z,
OF HOL.refl])
subgoal
by (auto simp: indicator-def)
by (simp add: emeasure-pmf-single ennreal-mult’)
have 2] = (MAX as € 25 (0o # 0s). [T t. ?f t as (o # o0s) OK (s, 01))
by (subst Maz-to-image2; subst emeasure-Collect-T[unfolded space-T1]; rule measurable-V HOL.refl)

also have ... = (MAX as € 25 (o # os). [T t. 29t (&l as) os x indicator {(hd as,0)} t OK (s,01))
by (simp cong: Maz-image-cong-simp add: x)
also have ... = (MAX(t, as)e€ S x 2S5 os. ennreal (pmf (O t) o * pmf (K s) t) x ?g (¢, 0) as 0s)
proof ((rule Maz-eq-image-if; clarsimp?), goal-cases)
case I
from S-finite[of o # os] show ?case
by simp
next
case 2
from states-finite show Zcase
by (blast intro: S-finite)
next
case (3 as)
then show ?case
by — (rule bexI[where x = hd as]; cases as; auto simp: algebra-simps *x)
next
case (4 z as)
then show ?case
by — (rule exI[where © = x # as|, simp add: algebra-simps xx)
qged
also have ... = 7r
by (subst Maz-image-left-mult[symmetric], fact+)
(rule sym, rule Maz-image-pair, rule states-finite, fact+)
finally show ¢ =
have 21" = [T ¢" 2f t' (t # as) (o # o0s) OK (s, 01)
by (rule emeasure-Collect-T[unfolded space-TY]; rule measurable-V')

also from that have ... = [T t’. 29 t' as os indicator {(t,0)} t' OK (s,01)
by (subst *[of - length as]; simp)
also have ... = 7/

by (simp add: xx, simp only: algebra-simps)
finally show 21’ = or'.
qed

lemmas maz-prob-Cons = max-prob-Cons’|OF length-replicate]

1.6 Computation of Maximum Probabilities

lemma T-init-V-eq:
T (s, 0) {w € space S. Vosasw}t =T (s, 0') {w € space S. V 0s as w}
apply (subst emeasure-Collect-T[unfolded space-T], (measurable; fail))
apply (subst (2) emeasure-Collect-T[unfolded space-T|, (measurable; fail))
apply (simp add: K-def)
done

lemma T'-I-T:
T' (Is){w € space S. Jow'. w = (s, 0) ## zip as 0s @— w'} = T (s,0) {w € space S. V 0s as w}
proof —
have (3 0€0;. T (s, 0) {w € space S. V 0s as w}) =
of-nat (card Og) * T (s, 0) {w € space S. V 0s as w} for as
by (subst sum-constant[symmetric]) (fastforce intro: sum.cong T-init-V-eq|simplified])
then show ?thesis
unfolding maz-prob-def
apply (subst emeasure-T")
subgoal
by measurable
apply (simp add: I-def in-S observations-finite observations-wellformed nn-integral-pmf-of-set)
apply (subst mult.commute)
apply (simp add: observations-finite observations-wellformed mult-divide-eq-ennreal)
done
qed

lemma maz-prob-init:
maz-prob s os = Max {T (s,0) {w € space S. V os as w} | as. length as = length os A set as C S}
unfolding maz-prob-def by (simp add: T'-I-T[symmetric])

lemma maz-prob-Nil[simp]:
maz-prob s [| = 1
unfolding maz-prob-init[where o = obs] by auto

lemma Maz-start:
(MAX teS. (indicator {t} s :: ennreal)) = 1 if s € S
using states-finite that by (auto simp: indicator-def intro: Maz-eqI)

lemma Maz- V-viterbi:
(MAX t € S. viterbi-prob s t 0s) =
Maz {T (s, 0) {w € space S. V 0s as w} | as. length as = length os N set as C S} if s € S
using that states-finite states-wellformed
by (induction os arbitrary: s o; simp
add: Maz-start maz-prob-Cons[simplified] Max-image-commute Maz-image-left-mult Maz-to-image2
cong: Maz-image-cong

)

lemma mazx-prob-viterbi:
(MAX t € S. viterbi-prob s t os) = maz-prob s os if s € S
using maz-prob-init[of s os] Maz-V-viterbi|OF s € S», symmetric| by simp

end

1.7 Decoding the Most Probable Hidden State Sequence

context HMMS3
begin

fun wviterbi where
viterbi s t-end [| = ([], indicator {t-end} s) |
viterbi s t-end (o # o0s) = fst (
argmaz snd (map
(At let (ws, v) = viterbi t t-end os in (¢t # xs, ennreal (pmf (O t) o x pmf (K s) t) * v))
state-list))

lemma state-list-nonempty:
state-list # ||
using state-list-S states-wellformed by auto

lemma viterbi-viterbi-prob:
snd (viterbi s t-end os) = wviterbi-prob s t-end os
proof (induction os arbitrary: s)
case Nil
then show ?case
by simp
next
case (Cons o 0s)
let 7f =
At. let (zs, v) = viterbi t t-end os in (t # xs, ennreal (pmf (O t) o x pmf (K s) t) * v)
let ?zs = map ?f state-list
from state-list-nonempty have map ?f state-list # [
by simp
from argmaz(2,3)[OF this, of snd] have x:
snd (fst (argmaz snd ?zs)) = snd (argmaz snd ?zs)
snd (argmax snd ?1s) = (MAX © € set ?zs. snd x) .
then show ?case
apply (simp add: state-list-S)

apply (rule Maz-eq-image-if)
apply (intro finite-imagel states-finite; fail)
apply (intro finite-imagel states-finite; fail)
subgoal
apply clarsimp
subgoal for z
using Cons.IH[of z] by (auto split: prod.splits)
done
apply clarsimp
subgoal for z
using Cons.IH|[of x| by (force split: prod.splits)
done
qed

context
begin

private fun val-of where
val-of s [| [] = 1 |
val-of s (t # xs) (o # 0s) = ennreal (pmf (O t) o * pmf (K s) t) * val-of t zs os

lemma val-of-T:
val-of s as 0s = T (s, 01) {w € space S. V os as w} if length as = length os
using that by (induction arbitrary: o1 rule: val-of .induct; (subst T-V-Cons)?; simp)

lemma viterbi-sequence:
snd (viterbi s t-end 0s) = wal-of s (fst (viterbi s t-end 0s)) os
if snd (viterbi s t-end o0s) > 0
using that
proof (induction os arbitrary: s)
case Nil
then show ?case
by (simp add: indicator-def split: if-split-asm split-of-bool-asm)
next
case (Cons 0 0s s)
let ?zs = map
(At. let (ws, v) = viterbi t t-end os in (t # xs, ennreal (pmf (O t) o x pmf (K s) t) * v))
state-list
from state-list-nonempty have ?zs # ||
by simp
from argmaz(1)[OF this, of snd] obtain t where
t € set state-list
fst (argmaz snd ?xs) =
(t # fst (viterbi t t-end o0s), ennreal (pmf (O t) o x pmf (K s) t) * snd (viterbi t t-end o0s))
by (auto split: prod.splits)
with Cons show Zcase
by (auto simp: ennreal-zero-less-mult-iff)
qed

lemma viterbi-valid-path:
length as = length os N\ set as C S if viterbi s t-end os = (as, v)
using that proof (induction os arbitrary: s as v)
case Nil
then show ?case
by simp
next
case (Cons 0 0s s as v)
let ?zs = map
(At. let (ws, v) = viterbi t t-end os in (t # xs, ennreal (pmf (O t) o x pmf (K s) t) * v))
state-list
from state-list-nonempty have ?xs # [|

10

by simp

from argmaz(1)[OF this, of snd] obtain t where t € S
fst (argmaz snd ?xs) =
(t # fst (viterbi t t-end o0s), ennreal (pmf (O t) o x pmf (K s) t) * snd (viterbi t t-end 0s))
by (auto simp: state-list-S split: prod.splits)

with Cons.prems show ?case
by (cases viterbi t t-end os; simp add: Cons.IH)

qed

definition
viterbi-final s os = fst (argmaz snd (map (X t. viterbi s t os) state-list))

lemma viterbi-finalE:
obtains ¢ where
t € S viterbi-final s os = viterbi s t os
snd (viterbi s t os) = Mazx ((\t. snd (viterbi s t 0s)) ©S)
proof —
from state-list-nonempty have map (\ t. viterbi s t os) state-list # ||
by simp
from argmaz[OF this, of snd] show ?Zthesis
by (auto simp: state-list-S image-comp comp-def viterbi-final-def intro: that)
qed

theorem viterbi-final-maz-prob:
assumes viterbi-final s 0os = (as, v) s € S
shows v = maz-prob s os
proof —
obtain ¢t where ¢t € S wviterbi-final s os = viterbi s t os
snd (viterbi s t os) = Max ((At. snd (viterbi s t 0s)) *S)
by (rule viterbi-finalE)
with assms show ?thesis
by (simp add: viterbi-viterbi-prob maz-prob-viterbi)
qed

theorem viterbi-final-is-decoding:
assumes viterbi-final s os = (as, v) v > 0s € S
shows is-decoding s os as
proof —
from viterbi-valid-pathlof s - os as v] assms have as: length as = length os set as C S
by — (rule viterbi-finalE[of s os]; simp)+
obtain ¢t where ¢t € S viterbi-final s os = viterbi s t os
by (rule viterbi-finalF)
with assms viterbi-sequence[of s t os] have val-of s as 0s = v
by (cases viterbi s t os) (auto simp: snd-def split!: prod.splits)
with val-of-T as have maz-prob s os = T (s, 0bs) {w € space S. V 0s as w}
by (simp add: viterbi-final-maz-prob| OF assms(1,3)])
with as show ?thesis
unfolding is-decoding-def by (simp only: T'-I-T)
qed

end
end

end

2 Implementation

theory HMM-Implementation
imports

11

Hidden-Markov-Model
Monad-Memo-DP.State-Main
begin

2.1 The Forward Algorithm

locale HMM} = HMMS3 - - - O4 K for Oy :: 't set and K :: 's = 's pmf +
assumes states-distinct: distinct state-list

context HMMS3-defs
begin

context
fixes os :: 't iarray
begin

Alternative definition using indices into the list of states. The list of states is implemented as an
immutable array for better performance.

function forward-iz-rec where
forward-iz-rec s t-end n = (if n > IArray.length os then indicator {t-end} s else
(>°t < state-list.
ennreal (pmf (O t) (0os ! n)) * ennreal (pmf (K s) t) % forward-iz-rec t t-end (n + 1)))

by auto
termination
by (relation Wellfounded.measure (A(-,-,n). IArray.length os — n)) auto

Memoization

memoize-fun forward-iz,,: forward-iz-rec
with-memory dp-consistency-mapping
monadifies (state) forward-iz-rec.simps[unfolded Let-def)
term forward-iz,,’
memoize-correct
by memoize-prover

The main theorems generated by memoization.

context
includes state-monad-syntax
begin
thm forward-iz,,’.simps forward-iz,, -def
thm forward-iz,,.memoized-correct
end

end

definition
forward-ix 0os = forward-iz-rec (IArray os)

definition
likelihood-compute s os =
if s € set state-list then Some (D>t < state-list. forward s t os) else None

end

Correctness of the alternative definition.

lemma (in HMMS3) forward-iz-drop-one:
forward-ix (o # 0s) st (n + 1) = forward-iz os s t n
by (induction length os — n arbitrary: s n; simp add: forward-iz-def)

lemma (in HMMY) forward-iz-forward:

12

forward-iz os s t 0 = forward s t os
unfolding forward-iz-def
proof (induction os arbitrary: s)
case Nil
then show ?case
by simp
next
case (Cons o 0s)
show ?Zcase
using forward-iz-drop-one[unfolded forward-iz-def] states-distinct
by (subst forward.simps, subst forward-ix-rec.simps)
(simp add: Cons.IH state-list-S sum-list-distinct-conv-sum-set
del: forward-iz-rec.simps forward.simps
)

qed

Instructs the code generator to use this equation instead to execute forward. Uses the memoized
version of forward-iz.

lemma (in HMMY) forward-code [code]:
forward s t os = fst (run-state (forward-iz,,’ (IArray os) s t 0) Mapping.empty)
by (simp only:
forward-ix-def forward-ix,,.memoized-correct forward-iz-forward|symmetric]
states-distinct

)

theorem (in HMM)) likelihood-compute:
likelihood-compute s os = Some x «— s € S N\ x = likelihood s os
unfolding likelihood-compute-def
by (auto simp: states-distinct state-list-S sum-list-distinct-conv-sum-set likelihood-forward)

2.2 The Viterbi Algorithm

context HMMS-defs
begin

context
fixes os :: 't iarray
begin

Alternative definition using indices into the list of states. The list of states is implemented as an
immutable array for better performance.

function viterbi-iz-rec where
viterbi-iz-rec s t-end n = (if n > IArray.length os then ([], indicator {t-end} s) else
it (
argmaz snd (map
(At let (xs, v) = viterbi-iz-rec t t-end (n + 1) in
(t # zs, ennreal (pmf (O t) (0os ! n) x pmf (K s) t) * v))
state-list)))

by pat-completeness auto
termination
by (relation Wellfounded.measure (A(-,-,n). IArray.length os — n)) auto

Memoization

memoize-fun viterbi-iz,,: viterbi-ix-rec
with-memory dp-consistency-mapping
monadifies (state) viterbi-iz-rec.simps|unfolded Let-def]

memoize-correct
by memoize-prover

13

The main theorems generated by memoization.

context

includes state-monad-syntax
begin
thm viterbi-iz,, . simps viterbi-iz,, -def
thm viterbi-iz,,.memoized-correct
end

end

definition
viterbi-iz os = wviterbi-iz-rec (IArray os)

end

context HMMS3
begin

lemma viterbi-ix-drop-one:
viterbi-iz (o # 0s) st (n + 1) = viterbi-iz 0s s t n
by (induction length os — n arbitrary: s n; simp add: viterbi-iz-def)

lemma viterbi-ix-viterbi:
viterbi-iz os s t 0 = viterbi s t os
unfolding viterbi-iz-def
proof (induction os arbitrary: s)
case Nil
then show ?case
by simp
next
case (Cons o 0s)
show ?Zcase
using viterbi-iz-drop-one|unfolded viterbi-ix-def)
by (subst viterbi.simps, subst viterbi-iz-rec.simps)
(simp add: Cons.IH del: viterbi-iz-rec.simps viterbi.simps)
qed

lemma viterbi-code [code]:
viterbi s t os = fst (run-state (viterbi-ix,,’ (IArray o0s) s t 0) Mapping.empty)
by (simp only: viterbi-iz-def viterbi-ix,,.memoized-correct viterbi-iz-viterbi[symmetric])

end

2.3 Misc

lemma pmf-of-alist-support-aux-1:
assumes V (-, p) € set u. p > 0
shows (0 :: real) < (case map-of u x of None = 0 | Some p = p)
using assms by (auto split: option.split dest: map-of-SomeD)

lemma pmf-of-alist-support-auz-2:

assumes V (-, p) € set u. p > 0

and sum-list (map snd p) = 1

and distinct (map fst p)
shows [T z. ennreal (case map-of p x of None = 0 | Some p = p) dcount-space UNIV = 1
using assms
apply (subst nn-integral-count-space)
subgoal

by (rule finite-subset[where B = fst ‘ set pl;

force split: option.split-asm simp: image-iff dest: map-of-SomeD)

14

apply (subst sum.mono-neutral-leftilwhere T = fst ‘ set p])
apply blast
subgoal
by (smt ennreal-less-zero-iff map-of-eq-None-iff mem-Collect-eq option.case(1) subsetl)
subgoal
by auto
subgoal premises prems
proof —
have (> z = 0..<length p. snd (u ! z))
= sum (A x. case map-of p x of None = 0 | Some v = v) (fst ‘ set)
apply (rule sym)
apply (rule sum.reindex-conglwhere [= X i. fst (u ! 7)])
apply (auto split: option.split)
subgoal
using prems(3) by (intro inj-onl, auto simp: distinct-conv-nth)
subgoal
by (auto simp: in-set-conv-nth rev-image-eql)
subgoal
by (simp add: map-of-eq-None-iff)
subgoal
using map-of-eq-Some-iff [OF prems(3)]
by (metis fst-conv nth-mem option.inject prod-eql snd-conv)
done
with prems(2) show ?thesis
by (smt pmf-of-alist-support-auz-1[OF assms(1)] atLeastLessThan-iff ennreal-1
length-map nth-map sum.cong sum-ennreal sum-list-sum-nth
)
qed
done

lemma pmf-of-alist-support:
assumes V (-, p) € set p. p > 0
and sum-list (map snd p) = 1
and distinct (map fst p)
shows set-pmf (pmf-of-alist p) C fst ‘ set p
unfolding pmf-of-alist-def
apply (subst set-embed-pmf)
subgoal for z
using assms(1) by (auto split: option.split dest: map-of-SomeD)
subgoal
using pmf-of-alist-support-auz-2[OF assms] .
apply (force split: option.split-asm simp: image-iff dest: map-of-SomeD)+
done

Defining a Markov kernel from an association list.

locale Closed-Kernel-From =
fixes K :: ('s x ('t x real) list) list
and S :: 't list
assumes wellformed: S # ||
and closed: ¥ (s, p) € set K.V (t, -) € set u. t € set S
and is-pmf:
V (-, p) € set K.V (-, p) € set u. p >0
YV (-, u) € set K. distinct (map fst p)
Y (s, p) € set K. sum-list (map snd p) = 1
and is-unique:
distinct (map fst K)
begin

definition

K’ s = case map-of (map (X (s, p). (s, PMF-Impl.pmf-of-alist u)) K) s of
None = return-pmf (hd S) |

15

Some s = s

sublocale Closed-Kernel K' set S
using wellformed closed is-pmf pmf-of-alist-support
unfolding K'-def by — (standard; fastforce split: option.split-asm dest: map-of-SomeD)

definition [code]:
K1 = map-of (map (\ (s,). (s, map-of 1)) K)

lemma pmf-of-alist-auz:

assumes (s, p) € set K

shows
pmf (pmf-of-alist p) t = (case map-of u t of

None = 0

| Some p = p)

using assms is-pmf unfolding pmf-of-alist-def

by (intro pmf-embed-pmf pmf-of-alist-support-auz-2)
(auto 4 8 split: option.split dest: map-of-SomeD)

lemma unique: p = p’ if (s, p) € set K (s, p') € set K
using that is-unique
by (smt Pair-inject distinct-conv-nth fst-conv in-set-conv-nth length-map nth-map)

lemma (in —) map-of-NoneD:
x ¢ fst ‘ set M if map-of M z = None
using that by (auto dest: weak-map-of-Somel)

lemma K'’-code [code-post]:
pmf (K’ s) t = (case K1 s of
None = (if t = hd S then 1 else 0)
| Some p = case p t of
None = 0
| Somep = p
)
unfolding K'-def K1-def
apply (clarsimp split: option.split, safe)
apply (drule map-of-SomeD, drule map-of-NoneD, force)+
apply (fastforce dest: unique map-of-SomeD simp: pmf-of-alist-auz)+
done

end

2.4 Executing Concrete HMMs

locale Concrete-HMM-defs =
fixes K :: ('s x ('s x real) list) list
and O :: ('s x ('t x real) list) list
and O, :: 't list
and K, :: 's list
begin

definition
K’ s = case map-of (map (X (s, p). (s, PMF-Impl.pmf-of-alist p)) K) s of
None = return-pmf (hd Ks) |
Some s = s

definition
O’ s = case map-of (map (X (s, p). (s, PMF-Impl.pmf-of-alist 1)) O) s of
None = return-pmf (hd Oy) |
Some s = s

16

end

locale Concrete-HMM = Concrete-HMM-defs +
assumes observations-wellformed’: O5 # |]
and observations-closed”: ¥ (s, u) € set 0.V (t, -) € set p. t € set Oy
and observations-form-pmf’:
YV (-, p) € set O.Y (-, p) € set u.p> 10
YV (-,) € set O. distinct (map fst p)
Y (s, pu) € set O. sum-list (map snd p) = 1
and observations-unique:
distinct (map fst O)
assumes states-wellformed: s # |]
and states-closed: ¥ (s, u) € set K.V (¢, -) € set p. t € set K
and states-form-pmf:
V (-, p) €set K.V (-, p) € set . p >0
YV (-, w) € set K. distinct (map fst p)
Y (s, p) € set K. sum-list (map snd p) = 1
and states-unique:
distinct (map fst K) distinct K
begin

interpretation O: Closed-Kernel-From O O
rewrites O.K' = O’
proof —
show < Closed-Kernel-From O Og)»
using observations-wellformed’ observations-closed’ observations-form-pmf’ observations-unique
by unfold-locales auto
show (Closed-Kernel-From.K' O O, = O
unfolding Closed-Kernel-From.K'-def[OF «Closed-Kernel-From O Og)] O’-def
by auto
qed

interpretation K: Closed-Kernel-From K K
rewrites K.K' = K’
proof —
show < Closed-Kernel-From K K>
using states-wellformed states-closed states-form-pmf states-unique by unfold-locales auto
show «Closed-Kernel-From. K' K K, = K’
unfolding Closed-Kernel-From.K'-def[OF <Closed-Kernel-From K K¢ K'-def
by auto
qed

lemmas O-code = O.K'-code O.K1-def
lemmas K-code = K.K'-code K.KI1-def

sublocale HMM-interp: HMMj O’ set K, K4 set O K’
using O.Closed-Kernel-azioms K.Closed-Kernel-azioms states-unique(2)
by (intro-locales; intro HMMj-azioms.intro HMMS3-azxioms.intro HOL.refl)

end

end

3 Example

theory HMM-Example
imports
HMM-Implementation
HOL- Library.AList-Mapping
begin

17

We would like to implement mappings as red-black trees but they require the key type to be linearly
ordered. Unfortunately, HOL— Analysis fixes the product order to the element-wise order and thus we
cannot restore a linear order, and the red-black tree implementation (from HOL— Library) cannot be
used.

The ice cream example from Jurafsky and Martin [2].

definition
states = ["start”’, ""hot'’, "cold"’, ""end”’

definition observations :: int list where
observations = [0, 1, 2, 3]

definition
kernel =
[
("start”, [(""hot",0.8 :: real), ("cold,0.2)]),
("hot", [("hot”,0.6 :: real), ("cold”,0.3), ("end"”, 0.1)]),
("cold", [("hot",0.4 :: real), ("cold”,0.5), ("end”, 0.1)]),
(//end//’ I:(//e,n/d//7 1)])

)

definition
| =
("hot", (1, 0.2)))
("eold”, [(1, 0.5), (2, 0.4), (3, 0.1)]
| ("end”, (0, 1)])

global-interpretation Concrete-HMM kernel emissions observations states

defines

viterbi-rec = HMDM-interp.viterbi-iz,,’
and wviterbi = HMM-interp.viterbi
and viterbi-final = HMM-interp.viterbi-final
and forward-rec = HMM-interp.forward-iz,,’
and forward = HMDM-interp.forward

and likelihood = HMM-interp.likelihood-compute
by (standard; eval)

lemmas [code] = HMM-interp.viterbi-ix,,".simps[unfolded O-code K-code]
lemmas [code] = HMM-interp.forward-iz,, . simps[unfolded O-code K-code]
value likelihood "start” [1, 1, 1]

If we enforce the last observation to correspond to "end”, then forward and likelihood yield the same
result.

value likelihood "start” [1, 1, 1, 0]

value forward "start’” "end' |1, 1, 1, 0]
value forward "start’” "end" [3, 3, 3, 0]
value forward "start’” "end’ |3, 1, 3, 0]
value forward "start’” "end’ |3, 1, 3, 1, 0]

value viterbi "'start”” "end’ [1, 1, 1, 0]

18

value viterbi "start’” "end’ [3, 8, &, 0]
value viterbi "start’”’ "end’ [3, 1, 3, 0]

value viterbi "'start’”’ "end" [3, 1, 3, 1, 0]

If we enforce the last observation to correspond to ""end’, then viterbi and wviterbi-final yield the same
result.

value viterbi-final "start” [3, 1, 3, 1, 0]
value viterbi-final "start’ [1, 1, 1,1,1,1, 1, 0]
value viterbi-final "start’” [1, 1,1, 1,1, 1, 1, 1]

end

References

[1] J. Holzl. Markov chains and Markov decision processes in Isabelle/HOL. Journal of Automated
Reasoning, 2017.

[2] D. Jurafsky and J. H. Martin. Speech and language processing. 2017.

[3] A. A. Markov. Essai d’une recherche statistique sur le texte du roman “Eugene Onegin” illustrant
la liaison des epreuve en chain (‘Example of a statistical investigation of the text of “Eugene
Onegin" illustrating the dependence between samples in chain’). Izvistia Imperatorskoi Akademii
Nauk (Bulletin de I’Académie Impériale des Sciences de St.-Pétersbourg), 7:153-162, 1913. English
translation by Morris Halle, 1956.

19

	Hidden Markov Models
	Definitions
	Iteration Rule For Likelihood
	Computation of Likelihood
	Definition of Maximum Probabilities
	Iteration Rule For Maximum Probabilities
	Computation of Maximum Probabilities
	Decoding the Most Probable Hidden State Sequence

	Implementation
	The Forward Algorithm
	The Viterbi Algorithm
	Misc
	Executing Concrete HMMs

	Example

