Hidden Markov Models

Simon Wimmer

March 17, 2025

Abstract

This entry contains a formalization of hidden Markov models [3] based on Johannes Hölzl's formalization of discrete time Markov chains [1]. The basic definitions are provided and the correctness of two main (dynamic programming) algorithms for hidden Markov models is proved: the forward algorithm for computing the likelihood of an observed sequence, and the Viterbi algorithm for decoding the most probable hidden state sequence. The Viterbi algorithm is made executable including memoization.

Hidden markov models have various applications in natural language processing. For an introduction see Jurafsky and Martin [2].

Contents

1	Hidden Markov Models		
	1.1	Definitions	2
	1.2	Iteration Rule For Likelihood	3
	1.3	Computation of Likelihood	
	1.4	Definition of Maximum Probabilities	6
	1.5	Iteration Rule For Maximum Probabilities	6
	1.6	Computation of Maximum Probabilities	8
	1.7	Decoding the Most Probable Hidden State Sequence	8
2	Implementation		
	2.1	The Forward Algorithm	12
	2.2		13
	2.3		14
	2.4	Executing Concrete HMMs	16
3	Exa	ample	17

1 Hidden Markov Models

```
\begin{array}{c} \textbf{theory} \ \textit{Hidden-Markov-Model} \\ \textbf{imports} \\ \textit{Markov-Models.Discrete-Time-Markov-Chain Auxiliary} \\ \textit{HOL-Library.IArray} \\ \textbf{begin} \end{array}
```

1.1 Definitions

locale HMM-defs =

Definition of Markov Kernels that are closed w.r.t. to a set of states.

```
\begin{aligned} &\textbf{locale} \ \textit{Closed-Kernel} = \\ &\textbf{fixes} \ \textit{K} :: 's \Rightarrow 't \ \textit{pmf} \ \textbf{and} \ \textit{S} :: 't \ \textit{set} \\ &\textbf{assumes} \ \textit{finite} : \textit{finite} \ \textit{S} \\ &\textbf{and} \ \textit{wellformed} : \textit{S} \neq \{\} \\ &\textbf{and} \ \textit{closed} : \forall \ \textit{s.} \ \textit{K} \ \textit{s} \subseteq \textit{S} \end{aligned}
```

An HMM is parameterized by a Markov kernel for the transition probabilities between internal states, a Markov kernel for the output probabilities of observations, and a fixed set of observations.

```
fixes \mathcal{K} :: 's \Rightarrow 's \ pmf \ \text{and} \ \mathcal{O} :: 's \Rightarrow 't \ pmf \ \text{and} \ \mathcal{O}_s :: 't \ set
locale HMM =
  HMM-defs + O: Closed-Kernel \mathcal{O} \mathcal{O}_s
begin
lemma observations-finite: finite \mathcal{O}_s
  and observations-wellformed: \mathcal{O}_s \neq \{\}
  and observations-closed: \forall s. \mathcal{O} s \subseteq \mathcal{O}_s
  using O.finite O.wellformed O.closed by -
end
Fixed set of internal states.
locale \mathit{HMM2-defs} = \mathit{HMM-defs} \; \mathcal{K} \; \mathcal{O} \; \text{for} \; \mathcal{K} :: 's \Rightarrow 's \; \mathit{pmf} \; \text{and} \; \mathcal{O} :: 's \Rightarrow 't \; \mathit{pmf} \; +
  fixes S :: 's \ set
locale HMM2 = HMM2-defs + HMM + K: Closed-Kernel K S
begin
lemma states-finite: finite S
  and states-wellformed: S \neq \{\}
  and states-closed: \forall s. \mathcal{K} s \subseteq \mathcal{S}
  using K.finite K.wellformed K.closed by -
```

end

The set of internal states is now given as a list to iterate over. This is needed for the computations on HMMs.

```
locale HMM3-defs = HMM2-defs \mathcal{O}_s \mathcal{K} for \mathcal{O}_s :: 't set and \mathcal{K} :: 's \Rightarrow 's pmf + fixes state-list :: 's list locale HMM3 = HMM3-defs - - \mathcal{O}_s \mathcal{K} + HMM2 \mathcal{O}_s \mathcal{K} for \mathcal{O}_s :: 't set and \mathcal{K} :: 's \Rightarrow 's pmf + assumes state-list-\mathcal{S}: set state-list = \mathcal{S} context HMM-defs begin no-notation (ASCII) comp (infix) (o) 55)
```

```
The "default" observation.
```

```
definition
```

```
obs \equiv SOME \ x. \ x \in \mathcal{O}_s
\mathbf{lemma} \ (\mathbf{in} \ HMM) \ obs:
obs \in \mathcal{O}_s
\mathbf{unfolding} \ obs-def \ \mathbf{using} \ observations\text{-}wellformed \ \mathbf{by} \ (auto \ intro: \ some I-ex)
```

The HMM is encoded as a Markov chain over pairs of states and observations. This is the Markov chain's defining Markov kernel.

definition

```
K \equiv \lambda \ (s_1, o_1 :: 't). \ bind-pmf \ (\mathcal{K} \ s_1) \ (\lambda \ s_2. \ map-pmf \ (\lambda \ o_2. \ (s_2, o_2)) \ (\mathcal{O} \ s_2))
```

sublocale MC-syntax K.

Uniform distribution of the pairs (s, o) for a fixed state s.

```
definition I(s::'s) = map-pmf(\lambda x.(s, x)) (pmf-of-set \mathcal{O}_s)
```

The likelihood of an observation sequence given a starting state s is defined in terms of the trace space of the Markov kernel given the uniform distribution of pairs for s.

definition

```
likelihood s os = T' (I s) {\omega \in space\ S. \exists\ o_0\ xs\ \omega'. \omega = (s,\ o_0)\ \#\#\ xs\ @-\ \omega' \land map\ snd\ xs = os}

abbreviation (input) L os \omega \equiv \exists\ xs\ \omega'. \omega = xs\ @-\ \omega' \land map\ snd\ xs = os

lemma likelihood-alt-def: likelihood s os = T' (I s) {(s,\ o)\ \#\#\ xs\ @-\ \omega'\ |o\ xs\ \omega'. map\ snd\ xs = os}

unfolding likelihood-def by (simp\ add:\ in-S)
```

1.2 Iteration Rule For Likelihood

```
lemma L-Nil:
  L \mid \omega = True
 by simp
lemma emeasure-T-observation-Nil:
  T(s, o_0) \{ \omega \in space \ S. \ L \mid \omega \} = 1
 by simp
lemma L-Cons:
  L (o \# os) \omega \longleftrightarrow snd (shd \omega) = o \wedge L os (stl \omega)
  apply (cases \omega; cases shd \omega; safe; clarsimp)
  apply force
  subgoal for x x s \omega'
   by (force intro: exI[where x = (x, o) \# xs])
  done
lemma L-measurable[measurable]:
  Measurable.pred S (L os)
  apply (induction os)
  apply (simp; fail)
  subgoal premises that for o os
   \mathbf{by}(subst\ L\text{-}Cons)
     (intro Measurable.pred-intros-logic
       measurable-compose[OF measurable-shd] measurable-compose[OF measurable-stl that];
       measurable)
  done
lemma init-measurable[measurable]:
  Measurable pred S(\lambda x. \exists o_0 \ xs \ \omega'. \ x = (s, o_0) \ \#\# \ xs \ @-\omega' \land map \ snd \ xs = os)
```

```
(is Measurable.pred S?f)
proof -
  have *: ?f \omega \longleftrightarrow fst (shd \omega) = s \wedge L \ os (stl \omega) \ \mathbf{for} \ \omega
   by (cases \omega) auto
  show ?thesis
    by (subst *)
       (intro Measurable.pred-intros-logic measurable-compose[OF measurable-shd]; measurable)
lemma T-init-observation-eq:
  T(s, o) \{\omega \in space \ S. \ L \ os \ \omega\} = T(s, o') \{\omega \in space \ S. \ L \ os \ \omega\}
  apply (subst emeasure-Collect-T[unfolded space-T], (measurable; fail))
  apply (subst (2) emeasure-Collect-T[unfolded space-T], (measurable; fail))
  apply (simp add: K-def)
  done
Shows that it is equivalent to define likelihood in terms of the trace space starting at a single pair of
an internal state s and the default observation obs.
lemma (in HMM) likelihood-init:
  likelihood s os = T (s, obs) {\omega \in space S. L os \omega}
proof -
  have *: (\sum o \in \mathcal{O}_s. \ emeasure \ (T(s, o)) \ \{\omega \in space \ S. \ L \ os \ \omega\}) =
    of-nat (card \mathcal{O}_s) * emeasure (T (s, obs)) {\omega \in space \ S. \ L \ os \ \omega}
    by (subst sum-constant[symmetric]) (fastforce intro: sum.cong T-init-observation-eq[simplified])
  show ?thesis
    unfolding likelihood-def
    apply (subst emeasure-T')
    subgoal
      by measurable
    using *
    apply (simp add: I-def in-S observations-finite observations-wellformed nn-integral-pmf-of-set)
    apply (subst mult.commute)
    apply (simp add: observations-finite observations-wellformed mult-divide-eq-ennreal)
    done
qed
lemma emeasure-T-observation-Cons:
  T(s, o_0) \{ \omega \in space \ S. \ L(o_1 \# os) \ \omega \} =
   (\int_{-\infty}^{\infty} t. \ ennreal \ (pmf \ (\mathcal{O} \ t) \ o_1) * T \ (t, o_1) \ \{\omega \in space \ S. \ L \ os \ \omega\} \ \partial(\mathcal{K} \ s)) \ (\mathbf{is} \ ?l = ?r)
proof -
  have *:
    \int_{-\infty}^{\infty} f(s', y) \left\{ x \in space \ S. \ \exists xs. \ (\exists \omega'. \ (s', y) \ \#\# \ x = xs \ @-\omega') \land map \ snd \ xs = o_1 \ \# \ os \right\}
       \partial measure-pmf (\mathcal{O} s') =
    ennreal (pmf \ (\mathcal{O} \ s') \ o_1) * T \ (s', \ o_1) \ \{\omega \in space \ S. \ \exists \ xs. \ (\exists \ \omega'. \ \omega = xs \ @-\omega') \land map \ snd \ xs = os\}
    (is ?L = ?R) for s'
  proof -
    have ?L = \int + x. ennreal (pmf (\mathcal{O} s') x) *
            T(s',x) {\omega \in space \ S. \ \exists xs. \ (\exists \omega'. \ (s',x) \ \#\# \ \omega = xs \ @-\omega') \land map \ snd \ xs = o_1 \ \# \ os}
          ∂count-space UNIV
      by (rule\ nn-integral-measure-pmf)
    also have \dots =
      \int_{0}^{+} o_{2} \cdot (if \ o_{2} = o_{1})
              then ennreal (pmf (\mathcal{O} s') o_1) * T (s', o_1) \{\omega \in space S. L os \omega\}
              else 0)
       \partial count-space UNIV
      apply (rule nn-integral-cong-AE
          [where v = \lambda \ o_2. if o_2 = o_1
            then ennreal (pmf (\mathcal{O} s') o_1) * T (s', o_1) \{\omega \in space S. L os \omega\} else 0]
       apply (rule AE-I2)
```

```
apply (split if-split, safe)
     subgoal
       by (auto intro!: arg-cong2[where f = times, OF HOL.reft] arg-cong2[where f = emeasure];
           metis\ list.simps(9)\ shift.simps(2)\ snd-conv
     subgoal
       by (subst arg-cong2[where f = emeasure and d = \{\}, OF HOL.refl]) auto
   also have ... = (\int_{-\infty}^{\infty} \{o_1\}). (ennreal\ (pmf\ (\mathcal{O}\ s')\ o_1) * T\ (s',\ o_1)\ \{\omega \in space\ S.\ L\ os\ \omega\})
     \partial count-space UNIV)
     by (rule nn-integral-cong-AE) auto
   also have \dots = ?R
     by simp
   finally show ?thesis.
  qed
  have ?l = \int + t. T t \{x \in space S. \exists xs \omega'. t \# \# x = xs @-\omega' \land map \ snd \ xs = o_1 \# os\} \ \partial (K(s, o_0))
   by (subst\ emeasure\ -Collect\ -T[unfolded\ space\ -T],\ measurable)
 also have \dots = ?r
   using * by (simp \ add: K-def)
 finally show ?thesis.
qed
1.3
       Computation of Likelihood
fun backward where
  backward s [] = 1 ]
  backward s (o \# os) = (f + t. ennreal (pmf (O t) o) * backward t os \partial measure-pmf (K s))
\mathbf{lemma}\ \mathit{emeasure-T-observation-backward}\colon
  emeasure (T(s, o)) \{\omega \in space S. Los \omega\} = backward sos
  using emeasure-T-observation-Cons by (induction os arbitrary: s o; simp)
lemma (in HMM) likelihood-backward:
  likelihood\ s\ os = backward\ s\ os
  unfolding likelihood-init emeasure-T-observation-backward ...
end
context HMM2
begin
fun (in HMM2-defs) forward where
 forward s \ t\text{-end} \ [] = indicator \{t\text{-end}\} \ s \ []
 forward \ s \ t\text{-}end \ (o \ \# \ os) =
   (\sum t \in \mathcal{S}. \ ennreal \ (pmf \ (\mathcal{O} \ t) \ o) * ennreal \ (pmf \ (\mathcal{K} \ s) \ t) * forward \ t \ t-end \ os)
lemma forward-split:
  forward s t (os1 @ os2) = (\sum t' \in S. forward s t' os1 * forward t' t os2)
 if s \in \mathcal{S}
  using that
 apply (induction os1 arbitrary: s)
  subgoal for s
   apply (simp add: sum-indicator-mult[OF states-finite])
   apply (subst sum.cong[where B = \{s\}])
   by auto
  subgoal for a os1 s
   apply simp
   apply (subst sum-distrib-right)
   apply (subst sum.swap)
   apply (simp add: sum-distrib-left algebra-simps)
   done
```

```
done
```

```
lemma (in -)
  (\sum t \in S. ft) = ft if finite S t \in S \forall s \in S - \{t\}. fs = 0
  thm sum.empty sum.insert sum.mono-neutral-right[of S \{t\}]
  apply (subst sum.mono-neutral-right[of S \{t\}])
  using that
     apply auto
  done
lemma forward-backward:
  (\sum t \in \mathcal{S}. \text{ forward } s \text{ t os}) = backward s \text{ os } \mathbf{if } s \in \mathcal{S}
  using \langle s \in \mathcal{S} \rangle
  apply (induction os arbitrary: s)
  subgoal for s
    by (subst sum.mono-neutral-right[of S {s}, OF states-finite])
       (auto split: if-split-asm simp: indicator-def)
  subgoal for a os s
    apply (simp add: sum.swap sum-distrib-left[symmetric])
    apply (subst nn-integral-measure-pmf-support[where A = S])
    using states-finite states-closed by (auto simp: algebra-simps)
  done
theorem likelihood-forward:
  likelihood s os = (\sum t \in \mathcal{S}. \text{ forward s } t \text{ os}) \text{ if } \langle s \in \mathcal{S} \rangle
  unfolding likelihood-backward forward-backward[symmetric, OF \langle s \in S \rangle] ...
        Definition of Maximum Probabilities
abbreviation (input) V os as \omega \equiv (\exists \omega'. \omega = zip \text{ as os } @-\omega')
definition
  max-prob s os =
  Max \{T'(Is) \mid \omega \in space \ S. \ \exists \ o \ \omega'. \ \omega = (s, \ o) \ \#\# \ zip \ as \ os \ @-\omega' \}
       | as. length as = length os \land set as \subseteq S}
fun viterbi-prob where
  viterbi-prob\ s\ t-end\ []=indicator\ \{t-end\}\ s\ |
  viter bi-prob\ s\ t-end\ (o\ \#\ os) =
    (MAX\ t \in \mathcal{S}.\ ennreal\ (pmf\ (\mathcal{O}\ t)\ o*pmf\ (\mathcal{K}\ s)\ t)*viterbi-prob\ t\ t\text{-end}\ os)
definition
  is-decoding s os as \equiv
    T'(Is) \{ \omega \in space \ S. \ \exists o \ \omega'. \ \omega = (s, o) \ \#\# \ zip \ as \ os \ @-\omega' \} = max-prob \ s \ os \ \land
    length \ as = length \ os \land set \ as \subseteq S
1.5
        Iteration Rule For Maximum Probabilities
\mathbf{lemma}\ \mathit{emeasure}\text{-}\mathit{T}\text{-}\mathit{state}\text{-}\mathit{Nil}\text{:}
  T(s, o_0) \{\omega \in space \ S. \ V \mid as \ \omega\} = 1
  by simp
\mathbf{lemma}\ \mathit{max-prob-T-state-Nil}:
  Max \{T(s, o) \{\omega \in space \ S. \ V \mid as \ \omega\} \mid as. \ length \ as = length \ | \land set \ as \subseteq S\} = 1
  by (simp add: emeasure-T-state-Nil)
lemma V-Cons: V(o \# os)(a \# as)\omega \longleftrightarrow fst(shd\omega) = a \land snd(shd\omega) = o \land Vos as(stl\omega)
  by (cases \omega) auto
lemma measurable-V[measurable]:
```

```
Measurable.pred S (\lambda \omega. V os as \omega)
proof (induction os as rule: list-induct2')
  case (4 \ x \ xs \ y \ ys)
  then show ?case
   by (subst V-Cons)
      (intro Measurable.pred-intros-logic
         measurable-compose[OF measurable-shd] measurable-compose[OF measurable-stl];
qed simp+
lemma init-V-measurable[measurable]:
  Measurable.pred S (\lambda x. \exists o \omega'. x = (s, o) \# \# zip as os @-\omega') (is Measurable.pred S?f)
proof -
  have *: ?f \omega \longleftrightarrow fst (shd \omega) = s \wedge V os as (stl \omega) for \omega
   by (cases \omega) auto
  show ?thesis
   by (subst *)
      (intro Measurable.pred-intros-logic measurable-compose[OF measurable-shd]; measurable)
lemma max-prob-Cons':
  Max \{T(s, o_1) \{\omega \in space \ S. \ V(o \# os) \ as \ \omega\} \mid as. \ length \ as = length(o \# os) \land set \ as \subseteq S\} =
    MAX \ t \in \mathcal{S}. ennreal (pmf \ (\mathcal{O} \ t) \ o * pmf \ (\mathcal{K} \ s) \ t) *
     (MAX \ as \in \{as. \ length \ as = length \ os \land set \ as \subseteq S\}. \ T \ (t, o) \ \{\omega \in space \ S. \ V \ os \ as \ \omega\})
  ) (is ?l = ?r)
  and T-V-Cons:
  T(s, o_1) \{ \omega \in space \ S. \ V(o \# os) (t \# as) \ \omega \}
  = ennreal (pmf (\mathcal{O} t) o * pmf (\mathcal{K} s) t) * T (t, o) {\omega \in space S. V os as \omega}
  (is ?l' = ?r')
  if length as = length os
proof -
  let S = \lambda os. as. length as = length os \wedge set as \subseteq S
  have S-finite: finite (?S os) for os :: 't list
    using finite-lists-length-eq[OF states-finite] by (rule finite-subset[rotated]) auto
  have S-nonempty: ?S \ os \neq \{\} for os :: 't \ list
  proof -
   let ?a = SOME \ a. \ a \in S let ?as = replicate \ (length \ os) \ ?a
   from states-wellformed have ?a \in S
     by (auto intro: some I-ex)
   then have ?as \in ?S os
     by auto
    then show ?thesis
     by force
  qed
  let ?f = \lambda t \text{ as os. } T t \{ \omega \in space S. V \text{ os as } (t \#\# \omega) \}
  let ?g = \lambda t as os. T t \{ \omega \in space S. V \text{ os as } \omega \}
  have *: ?f t \ as \ (o \# os) = ?g \ t \ (tl \ as) \ os * indicator \{(hd \ as, \ o)\} \ t
   if length as = Suc n for t as n
   unfolding indicator-def using that by (cases as) auto
  have **: K(s, o_1) \{(t, o)\} = pmf(\mathcal{O} t) o * pmf(\mathcal{K} s) t  for t
    unfolding K-def
   apply (simp add: vimage-def)
   apply (subst arg-cong2[where
         f = nn-integral and d = \lambda x. \mathcal{O} x \{xa. xa = o \land x = t\} * indicator \{t\} x,
          OF HOL.refl])
   subgoal
     by (auto simp: indicator-def)
   by (simp add: emeasure-pmf-single ennreal-mult')
  have ?l = (MAX \ as \in ?S \ (o \# os). \ \int + \ t. \ ?f \ t \ as \ (o \# os) \ \partial K \ (s, o_1))
    by (subst Max-to-image2; subst emeasure-Collect-T[unfolded space-T]; rule measurable-V HOL.reft)
```

```
also have ... = (MAX \ as \in ?S \ (o \# os). \ f + t. ?g \ t \ (tl \ as) \ os * indicator \{(hd \ as, o)\} \ t \ \partial K \ (s, o_1))
   by (simp conq: Max-image-cong-simp add: *)
  also have ... = (MAX(t, as) \in S \times ?S \text{ os. ennreal } (pmf (O t) o * pmf (K s) t) * ?g (t, o) as os)
  proof ((rule Max-eq-image-if; clarsimp?), goal-cases)
   case 1
   from S-finite[of o \# os] show ?case
     by simp
  next
   case 2
   from states-finite show ?case
     by (blast intro: S-finite)
   case (3 \ as)
   then show ?case
     by – (rule bexI[where x = hd as]; cases as; auto simp: algebra-simps **)
  \mathbf{next}
   case (4 \ x \ as)
   then show ?case
     by – (rule exI[where x = x \# as], simp add: algebra-simps **)
  qed
  also have \dots = ?r
   by (subst Max-image-left-mult[symmetric], fact+)
      (rule sym, rule Max-image-pair, rule states-finite, fact+)
  finally show ?l = ?r.
  have ?l' = \int + t'. ?f t' (t \# as) (o \# os) \partial K (s, o_1)
   by (rule emeasure-Collect-T[unfolded\ space-T]; rule measurable-V)
  also from that have ... = \int_{-\infty}^{+\infty} t' \cdot g t' as os * indicator \{(t,o)\} t' \partial K(s,o_1)
   by (subst *[of - length as]; simp)
  also have \dots = ?r'
   by (simp add: **, simp only: algebra-simps)
  finally show ?l' = ?r'.
qed
lemmas max-prob-Cons = max-prob-Cons'[OF length-replicate]
       Computation of Maximum Probabilities
  T(s, o) \{\omega \in space \ S. \ V \ os \ as \ \omega\} = T(s, o') \{\omega \in space \ S. \ V \ os \ as \ \omega\}
  apply (subst emeasure-Collect-T[unfolded\ space-T], (measurable; fail))
  \mathbf{apply}\ (subst\ (2)\ emeasure-Collect-T[unfolded\ space-T],\ (measurable;\ fail))
```

1.6

```
lemma T-init-V-eq:
 apply (simp add: K-def)
  done
lemma T'-I-T:
  T'(Is) {\omega \in space \ S. \ \exists \ o \ \omega'. \ \omega = (s, \ o) \ \#\# \ zip \ as \ os \ @-\omega'} = T(s, o) \ \{\omega \in space \ S. \ Vos \ as \ \omega\}
proof -
 have (\sum o \in \mathcal{O}_s. \ T \ (s, \ o) \ \{\omega \in space \ S. \ V \ os \ as \ \omega\}) =
   of-nat (card \mathcal{O}_s) * T(s, o) {\omega \in space S. V os as \omega} for as
   by (subst sum-constant[symmetric]) (fastforce intro: sum.cong T-init-V-eq[simplified])
  then show ?thesis
   unfolding max-prob-def
   apply (subst emeasure-T')
   subgoal
     by measurable
   apply (simp add: I-def in-S observations-finite observations-wellformed nn-integral-pmf-of-set)
   apply (subst mult.commute)
   apply (simp add: observations-finite observations-wellformed mult-divide-eq-ennreal)
   done
qed
```

```
lemma max-prob-init:
  max-prob s os = Max { T(s,o) {\omega \in space S. V os \ as \ \omega} | as. length as = length \ os \land set \ as \subseteq S}
  unfolding max-prob-def by (simp add: T'-I-T[symmetric])
lemma max-prob-Nil[simp]:
  unfolding max-prob-init[where o = obs] by auto
lemma Max-start:
  (MAX\ t \in S.\ (indicator\ \{t\}\ s::\ ennreal)) = 1\ \mathbf{if}\ s \in S
  using states-finite that by (auto simp: indicator-def intro: Max-eqI)
lemma Max-V-viterbi:
  (MAX \ t \in \mathcal{S}. \ viterbi-prob \ s \ t \ os) =
  Max \{T(s, o) \{\omega \in space \ S. \ V \ os \ as \ \omega\} \mid as. \ length \ as = length \ os \land set \ as \subseteq S\} \ \textbf{if} \ s \in S
  using that states-finite states-wellformed
  by (induction os arbitrary: s o; simp
       add: Max-start max-prob-Cons[simplified] Max-image-commute Max-image-left-mult Max-to-image2
       cong: Max-image-cong
lemma max-prob-viterbi:
  (MAX \ t \in \mathcal{S}. \ viterbi-prob \ s \ t \ os) = max-prob \ s \ os \ \mathbf{if} \ s \in \mathcal{S}
  using max-prob-init[of s os] Max-V-viterbi[OF \langle s \in S \rangle, symmetric] by simp
end
        Decoding the Most Probable Hidden State Sequence
1.7
context HMM3
begin
fun viterbi where
  viterbi\ s\ t\text{-}end\ [] = ([],\ indicator\ \{t\text{-}end\}\ s)\ []
  viterbi\ s\ t\text{-}end\ (o\ \#\ os) = fst\ (
   argmax snd (map
     (\lambda t. \ let \ (xs, \ v) = viterbi \ t \ t-end \ os \ in \ (t \ \# \ xs, \ ennreal \ (pmf \ (\mathcal{O} \ t) \ o * pmf \ (\mathcal{K} \ s) \ t) * v))
   state-list))
lemma state-list-nonempty:
  state-list \neq []
 using state-list-S states-wellformed by auto
lemma viterbi-viterbi-prob:
  snd\ (viterbi\ s\ t\text{-}end\ os) = viterbi\text{-}prob\ s\ t\text{-}end\ os
proof (induction os arbitrary: s)
 case Nil
 then show ?case
   by simp
next
  case (Cons o os)
 let ?f =
   \lambda t.\ let\ (xs,\ v)=viterbi\ t\ t-end os in (t\ \#\ xs,\ ennreal\ (pmf\ (\mathcal{O}\ t)\ o*pmf\ (\mathcal{K}\ s)\ t)*v)
 let ?xs = map ?f state-list
  from state-list-nonempty have map ?f state-list \neq []
   by simp
  from argmax(2,3)[OF this, of snd] have *:
   snd (fst (argmax snd ?xs)) = snd (argmax snd ?xs)
   snd\ (argmax\ snd\ ?xs) = (MAX\ x \in set\ ?xs.\ snd\ x).
  then show ?case
   apply (simp add: state-list-S)
```

```
apply (rule Max-eq-image-if)
       apply (intro finite-imageI states-finite; fail)
      apply (intro finite-imageI states-finite; fail)
   subgoal
     apply clarsimp
     subgoal for x
       using Cons.IH[of x] by (auto split: prod.splits)
   apply clarsimp
   subgoal for x
      using Cons.IH[of x] by (force\ split:\ prod.splits)
qed
context
begin
private fun val-of where
  val-of s [] [] = 1
  val\text{-}of\ s\ (t\ \#\ xs)\ (o\ \#\ os) = ennreal\ (pmf\ (\mathcal{O}\ t)\ o*pmf\ (\mathcal{K}\ s)\ t)*val\text{-}of\ t\ xs\ os
lemma val-of-T:
  val-of s as os = T(s, o_1) \{ \omega \in space S. \ V \ os \ as \ \omega \}  if length as = length \ os
  using that by (induction arbitrary: o<sub>1</sub> rule: val-of.induct; (subst T-V-Cons)?; simp)
lemma viterbi-sequence:
  snd\ (viterbi\ s\ t\text{-}end\ os) = val\text{-}of\ s\ (fst\ (viterbi\ s\ t\text{-}end\ os))\ os
  if snd (viterbi s t-end os) > 0
  using that
proof (induction os arbitrary: s)
  case Nil
  then show ?case
   by (simp add: indicator-def split: if-split-asm split-of-bool-asm)
next
  case (Cons \ o \ os \ s)
  let ?xs = map
    (\lambda t. \ let \ (xs, \ v) = viterbi \ t \ t\text{-end os in} \ (t \ \# \ xs, \ ennreal \ (pmf \ (\mathcal{O} \ t) \ o * pmf \ (\mathcal{K} \ s) \ t) * v))
   state	ext{-}list
  from state-list-nonempty have ?xs \neq []
   by simp
  from argmax(1)[OF this, of snd] obtain t where
    t \in set state-list
   fst (argmax snd ?xs) =
   (t \# fst \ (viterbi \ t \ t-end \ os), \ ennreal \ (pmf \ (\mathcal{O} \ t) \ o * pmf \ (\mathcal{K} \ s) \ t) * snd \ (viterbi \ t \ t-end \ os))
   by (auto split: prod.splits)
  with Cons show ?case
   by (auto simp: ennreal-zero-less-mult-iff)
qed
lemma viterbi-valid-path:
  length as = length \ os \land set \ as \subseteq S if viterbi s t-end os = (as, v)
using that proof (induction os arbitrary: s as v)
  case Nil
  then show ?case
    by simp
next
  case (Cons \ o \ os \ s \ as \ v)
  let ?xs = map
    (\lambda t. \ let \ (xs, \ v) = viterbi \ t \ t-end \ os \ in \ (t \ \# \ xs, \ ennreal \ (pmf \ (\mathcal{O} \ t) \ o * pmf \ (\mathcal{K} \ s) \ t) * v))
    state	ext{-}list
  from state-list-nonempty have ?xs \neq []
```

```
by simp
  from argmax(1)[OF\ this,\ of\ snd] obtain t where t\in\mathcal{S}
   fst (argmax snd ?xs) =
   (t \# fst \ (viterbi \ t \ t-end \ os), \ ennreal \ (pmf \ (\mathcal{O} \ t) \ o * pmf \ (\mathcal{K} \ s) \ t) * snd \ (viterbi \ t \ t-end \ os))
   by (auto simp: state-list-S split: prod.splits)
  with Cons.prems show ?case
   by (cases viterbi t t-end os; simp add: Cons.IH)
qed
definition
  viterbi-final s os = fst (argmax snd (map (\lambda t. viterbi s t os) state-list))
lemma viterbi-finalE:
  obtains t where
   t \in \mathcal{S} viterbi-final s os = viterbi s t os
   snd\ (viterbi\ s\ t\ os) = Max\ ((\lambda t.\ snd\ (viterbi\ s\ t\ os))\ `S)
proof -
  from state-list-nonempty have map (\lambda \ t. \ viterbi \ s \ t \ os) state-list \neq []
   by simp
 from argmax[OF this, of snd] show ?thesis
   by (auto simp: state-list-S image-comp comp-def viterbi-final-def intro: that)
qed
theorem viterbi-final-max-prob:
 assumes viterbi-final s os = (as, v) s \in \mathcal{S}
 shows v = max\text{-}prob\ s\ os
proof -
 obtain t where t \in S viterbi-final s os = viterbi s t os
   snd\ (viterbi\ s\ t\ os) = Max\ ((\lambda t.\ snd\ (viterbi\ s\ t\ os))\ `S)
   by (rule viterbi-finalE)
  with assms show ?thesis
   by (simp add: viterbi-viterbi-prob max-prob-viterbi)
qed
theorem viterbi-final-is-decoding:
 assumes viterbi-final s os = (as, v) v > 0 s \in S
 shows is-decoding s os as
proof -
  from viterbi-valid-path[of s - os \ as \ v] assms have as: length \ as = length \ os \ set \ as \subseteq \mathcal{S}
   \mathbf{by} - (rule\ viterbi-finalE[of\ s\ os];\ simp) +
  obtain t where t \in S viterbi-final s os = viterbi s t os
   by (rule viterbi-finalE)
  with assms viterbi-sequence [of s t os] have val-of s as os = v
   by (cases viterbi s t os) (auto simp: snd-def split!: prod.splits)
  with val-of-T as have max-prob s os = T (s, obs) \{\omega \in space S. \ V \text{ os as } \omega\}
   by (simp\ add:\ viterbi-final-max-prob[OF\ assms(1,3)])
  with as show ?thesis
   unfolding is-decoding-def by (simp only: T'-I-T)
qed
end
end
end
```

2 Implementation

theory HMM-Implementation imports

```
\begin{tabular}{ll} Hidden-Markov-Model\\ Monad-Memo-DP.State-Main\\ \end{tabular} begin
```

2.1 The Forward Algorithm

```
locale HMM4 = HMM3 - - - \mathcal{O}_s \mathcal{K} for \mathcal{O}_s :: 't \ set \ and \ \mathcal{K} :: 's \Rightarrow 's \ pmf +
 assumes states-distinct: distinct state-list
context HMM3-defs
begin
context
 fixes os :: 't iarray
begin
Alternative definition using indices into the list of states. The list of states is implemented as an
immutable array for better performance.
function forward-ix-rec where
 forward-ix-rec s t-end n = (if \ n \geq IArray.length \ os \ then \ indicator \ \{t-end\} \ s \ else
   (\sum t \leftarrow state\text{-}list.
     ennreal (pmf(\mathcal{O} t)(os!!n)) * ennreal(pmf(\mathcal{K} s) t) * forward-ix-rectt-end(n+1)))
 by auto
termination
 by (relation Wellfounded.measure (\lambda(-,-,n). IArray.length os -n)) auto
Memoization
memoize-fun forward-ix_m: forward-ix-rec
 with-memory dp-consistency-mapping
 monadifies (state) forward-ix-rec.simps[unfolded Let-def]
 term forward-ix_m'
memoize-correct
 by memoize-prover
The main theorems generated by memoization.
context
 includes state-monad-syntax
begin
thm forward-ix_m'.simps forward-ix_m-def
thm forward-ix_m.memoized-correct
end
end
definition
 forward-ix os = forward-ix-rec (IArray os)
definition
 likelihood-compute s os \equiv
   if s \in set state-list then Some (\sum t \leftarrow state-list, forward s t os) else None
end
Correctness of the alternative definition.
lemma (in HMM3) forward-ix-drop-one:
 forward-ix (o \# os) s t (n + 1) = forward-ix os s t n
 by (induction length os - n arbitrary: s n; simp add: forward-ix-def)
lemma (in HMM4) forward-ix-forward:
```

```
forward-ix os s t \theta = forward s t os
 unfolding forward-ix-def
proof (induction os arbitrary: s)
 case Nil
 then show ?case
   by simp
next
 case (Cons o os)
 show ?case
   using forward-ix-drop-one[unfolded forward-ix-def] states-distinct
   by (subst forward.simps, subst forward-ix-rec.simps)
     (simp add: Cons.IH state-list-S sum-list-distinct-conv-sum-set
           del: forward-ix-rec.simps forward.simps
qed
Instructs the code generator to use this equation instead to execute forward. Uses the memoized
version of forward-ix.
lemma (in HMM4) forward-code [code]:
 forward s t os = fst (run-state (forward-ix_m' (IArray os) s t \theta) Mapping.empty)
 by (simp only:
     forward-ix-def forward-ix_m.memoized-correct forward-ix-forward[symmetric]
     states	ext{-}distinct
theorem (in HMM4) likelihood-compute:
 likelihood-compute s os = Some x \longleftrightarrow s \in S \land x = likelihood s os
 unfolding likelihood-compute-def
 by (auto simp: states-distinct state-list-S sum-list-distinct-conv-sum-set likelihood-forward)
2.2
       The Viterbi Algorithm
{\bf context}\ {\it HMM3-defs}
begin
context
 fixes os :: 't iarray
begin
Alternative definition using indices into the list of states. The list of states is implemented as an
immutable array for better performance.
function viterbi-ix-rec where
 viterbi-ix-rec s t-end n = (if \ n \geq IArray.length \ os \ then ([], indicator \{t-end\} \ s) \ else
 fst (
   argmax snd (map
     (\lambda t. let (xs, v) = viter bi-ix-rec t t-end (n + 1) in
       (t \# xs, ennreal (pmf (\mathcal{O} t) (os !! n) * pmf (\mathcal{K} s) t) * v))
   state-list)))
 by pat-completeness auto
termination
 by (relation Wellfounded.measure (\lambda(-,-,n). IArray.length os -n)) auto
Memoization
memoize-fun viter bi-ix_m: viter bi-ix-rec
 with-memory dp-consistency-mapping
 monadifies (state) viterbi-ix-rec.simps[unfolded Let-def]
memoize-correct
```

by memoize-prover

```
The main theorems generated by memoization.
```

```
context
 includes state-monad-syntax
begin
thm viterbi-ix_m'.simps\ viterbi-ix_m-def
thm viterbi-ix_m.memoized-correct
end
end
definition
  viterbi-ix os = viterbi-ix-rec (IArray os)
end
context HMM3
begin
lemma viterbi-ix-drop-one:
  viter bi-ix (o \# os) s t (n + 1) = viter bi-ix os s t n
 by (induction length os -n arbitrary: s n; simp add: viterbi-ix-def)
lemma viterbi-ix-viterbi:
  viter bi-ix \ os \ s \ t \ \theta = viter bi \ s \ t \ os
 unfolding viterbi-ix-def
proof (induction os arbitrary: s)
  case Nil
 then show ?case
   by simp
next
  case (Cons o os)
 show ?case
   using viterbi-ix-drop-one[unfolded viterbi-ix-def]
   by (subst viterbi.simps, subst viterbi-ix-rec.simps)
      (simp add: Cons.IH del: viterbi-ix-rec.simps viterbi.simps)
qed
lemma viterbi-code [code]:
  viterbi\ s\ t\ os = fst\ (run\text{-}state\ (viterbi\text{-}ix_m'\ (IArray\ os)\ s\ t\ 0)\ Mapping.empty)
 by (simp\ only:\ viterbi-ix-def\ viterbi-ix_m.memoized-correct\ viterbi-ix-viterbi[symmetric])
end
2.3
       Misc
lemma pmf-of-alist-support-aux-1:
 assumes \forall (-, p) \in set \ \mu. \ p \geq 0
 shows (0 :: real) \leq (case map-of \mu \ x \ of None \Rightarrow 0 \mid Some \ p \Rightarrow p)
  using assms by (auto split: option.split dest: map-of-SomeD)
\mathbf{lemma}\ \mathit{pmf-of-alist-support-aux-2}\colon
  assumes \forall (-, p) \in set \ \mu. \ p \geq 0
   and sum-list (map snd \mu) = 1
   and distinct (map fst \mu)
  shows \int_{-\infty}^{+\infty} x. ennreal (case map-of \mu x of None \Rightarrow 0 \mid Some \ p \Rightarrow p) \partial count-space UNIV = 1
  using assms
 apply (subst nn-integral-count-space)
  subgoal
   by (rule finite-subset[where B = fst 'set \mu];
       force split: option.split-asm simp: image-iff dest: map-of-SomeD)
```

```
apply (subst sum.mono-neutral-left[where T = fst \text{ '} set \mu])
    apply blast
  subgoal
   by (smt ennreal-less-zero-iff map-of-eq-None-iff mem-Collect-eq option.case(1) subsetI)
  subgoal
   by auto
  subgoal premises prems
  proof -
   have (\sum x = \theta ... < length \mu. snd (\mu ! x))
     = sum (\lambda x. case map-of \mu x of None \Rightarrow 0 | Some v \Rightarrow v) (fst 'set \mu)
     apply (rule sym)
     apply (rule sum.reindex-cong[where l = \lambda i. fst (\mu ! i)])
       apply (auto split: option.split)
     subgoal
       using prems(3) by (intro inj-onI, auto simp: distinct-conv-nth)
     subgoal
       by (auto simp: in-set-conv-nth rev-image-eqI)
     subgoal
       by (simp add: map-of-eq-None-iff)
     subgoal
       using map\text{-}of\text{-}eq\text{-}Some\text{-}iff[OF\ prems(3)]
       by (metis fst-conv nth-mem option.inject prod-eqI snd-conv)
   with prems(2) show ?thesis
     by (smt pmf-of-alist-support-aux-1[OF assms(1)] atLeastLessThan-iff ennreal-1
         length-map nth-map sum.cong sum-ennreal sum-list-sum-nth
 qed
  done
lemma pmf-of-alist-support:
  assumes \forall (-, p) \in set \ \mu. \ p \geq 0
   and sum-list (map snd \mu) = 1
   and distinct (map fst \mu)
  shows set-pmf (pmf-of-alist \mu) \subseteq fst 'set \mu
  unfolding pmf-of-alist-def
  apply (subst set-embed-pmf)
  subgoal for x
   using assms(1) by (auto split: option.split dest: map-of-SomeD)
  subgoal
   using pmf-of-alist-support-aux-2[OF\ assms].
  apply (force split: option.split-asm simp: image-iff dest: map-of-SomeD)+
  done
Defining a Markov kernel from an association list.
locale Closed-Kernel-From =
  fixes K :: ('s \times ('t \times real) \ list) \ list
   and S :: 't \ list
  assumes wellformed: S \neq []
     and closed: \forall (s, \mu) \in set K. \forall (t, -) \in set \mu. t \in set S
     and is-pmf:
       \forall (-, \mu) \in set K. \forall (-, p) \in set \mu. p \geq 0
       \forall (-, \mu) \in set K. distinct (map fst <math>\mu)
       \forall (s, \mu) \in set \ K. \ sum\text{-list} \ (map \ snd \ \mu) = 1
     and is-unique:
       distinct \ (map \ fst \ K)
begin
  K's \equiv case \ map-of \ (map \ (\lambda \ (s, \ \mu). \ (s, \ PMF-Impl.pmf-of-alist \ \mu)) \ K) \ s \ of
  None \Rightarrow return-pmf (hd S)
```

```
Some s \Rightarrow s
{\bf sublocale}\ \mathit{Closed\text{-}Kernel}\ \mathit{K'}\ \mathit{set}\ \mathit{S}
  using wellformed closed is-pmf pmf-of-alist-support
  unfolding K'-def by - (standard; fastforce split: option.split-asm dest: map-of-SomeD)
definition [code]:
  K1 = map - of (map (\lambda (s, \mu), (s, map - of \mu)) K)
lemma pmf-of-alist-aux:
  assumes (s, \mu) \in set K
  shows
    pmf (pmf-of-alist \mu) t = (case map-of \mu t of
      None \Rightarrow 0
    \mid Some \ p \Rightarrow p)
  using assms is-pmf unfolding pmf-of-alist-def
  by (intro pmf-embed-pmf pmf-of-alist-support-aux-2)
    (auto 4 3 split: option.split dest: map-of-SomeD)
lemma unique: \mu = \mu' if (s, \mu) \in set K (s, \mu') \in set K
  using that is-unique
  by (smt Pair-inject distinct-conv-nth fst-conv in-set-conv-nth length-map nth-map)
lemma (in -) map-of-NoneD:
  x \notin fst 'set M if map-of M x = None
  using that by (auto dest: weak-map-of-SomeI)
lemma K'-code [code-post]:
  pmf(K's) t = (case K1 s of
      None \Rightarrow (if \ t = hd \ S \ then \ 1 \ else \ \theta)
    | Some \mu \Rightarrow case \mu t of
        None \Rightarrow 0
      | Some p \Rightarrow p
  unfolding K'-def K1-def
  apply (clarsimp split: option.split, safe)
                apply (drule map-of-SomeD, drule map-of-NoneD, force)+
         apply (fastforce dest: unique map-of-SomeD simp: pmf-of-alist-aux)+
  done
end
        Executing Concrete HMMs
2.4
locale Concrete-HMM-defs =
  fixes \mathcal{K} :: ('s \times ('s \times real) \ list) \ list
   and \mathcal{O} :: ('s × ('t × real) list) list
   and \mathcal{O}_s :: 't list
   and K_s :: 's \ list
begin
definition
  \mathcal{K}' s \equiv case \ map-of \ (map \ (\lambda \ (s, \mu). \ (s, PMF-Impl.pmf-of-alist \ \mu)) \ \mathcal{K}) \ s \ of
    None \Rightarrow return-pmf \ (hd \ \mathcal{K}_s) \mid
   Some s \Rightarrow s
definition
  \mathcal{O}' s \equiv case \ map-of \ (map \ (\lambda \ (s, \mu). \ (s, PMF-Impl.pmf-of-alist \ \mu)) \ \mathcal{O}) \ s \ of
    None \Rightarrow return-pmf \ (hd \ \mathcal{O}_s) \ |
    Some s \Rightarrow s
```

```
end
```

```
locale\ Concrete-HMM = Concrete-HMM-defs +
  assumes observations-wellformed': \mathcal{O}_s \neq []
      and observations-closed': \forall (s, \mu) \in set \mathcal{O}. \ \forall (t, -) \in set \mu. \ t \in set \mathcal{O}_s
      and observations-form-pmf':
        \forall (-, \mu) \in set \mathcal{O}. \ \forall (-, p) \in set \mu. p \geq 0
        \forall (-, \mu) \in set \mathcal{O}. distinct (map fst \mu)
        \forall (s, \mu) \in set \ \mathcal{O}. \ sum\text{-list} \ (map \ snd \ \mu) = 1
      and observations-unique:
         distinct \ (map \ fst \ \mathcal{O})
  assumes states-wellformed: \mathcal{K}_s \neq []
      and states-closed: \forall (s, \mu) \in set \ \mathcal{K}. \ \forall (t, -) \in set \ \mu. \ t \in set \ \mathcal{K}_s
      and states-form-pmf:
        \forall (-, \mu) \in set \ \mathcal{K}. \ \forall (-, p) \in set \ \mu. \ p \geq 0
        \forall (-, \mu) \in set \ \mathcal{K}. \ distinct \ (map \ fst \ \mu)
        \forall (s, \mu) \in set \ \mathcal{K}. \ sum\text{-list} \ (map \ snd \ \mu) = 1
      and states-unique:
         distinct (map fst K) distinct K_s
begin
interpretation O: Closed-Kernel-From \mathcal{O} \mathcal{O}_s
  rewrites O.K' = O'
proof -
  show \langle Closed\text{-}Kernel\text{-}From \mathcal{O} \mathcal{O}_s \rangle
    using observations-wellformed' observations-closed' observations-form-pmf' observations-unique
    by unfold-locales auto
  \mathbf{show} \, \, \langle \mathit{Closed\text{-}Kernel\text{-}From}.K' \, \mathcal{O} \, \, \mathcal{O}_s \, = \, \mathcal{O}' \rangle
    unfolding Closed-Kernel-From. K'-def[OF \land Closed-Kernel-From \mathcal{O} \mathcal{O}_s \land ] \mathcal{O}'-def
    by auto
qed
interpretation K: Closed-Kernel-From K K_s
  rewrites K.K' = K'
proof -
  show \langle Closed\text{-}Kernel\text{-}From \mathcal{K} \mathcal{K}_s \rangle
    using states-wellformed states-closed states-form-pmf states-unique by unfold-locales auto
  show \langle Closed\text{-}Kernel\text{-}From.K' \ \mathcal{K} \ \mathcal{K}_s = \mathcal{K}' \rangle
    unfolding Closed-Kernel-From. K'-def[OF \land Closed-Kernel-From K K_s \land ] K'-def
    by auto
qed
lemmas O-code = O.K'-code O.K1-def
lemmas K-code = K.K'-code K.K1-def
sublocale HMM-interp: HMM4 \mathcal{O}' set \mathcal{K}_s \mathcal{K}_s set \mathcal{O}_s \mathcal{K}'
  using O. Closed-Kernel-axioms K. Closed-Kernel-axioms states-unique(2)
  by (intro-locales; intro HMM4-axioms.intro HMM3-axioms.intro HOL.reft)
end
end
3
       Example
theory HMM-Example
  imports
    HMM	ext{-}Implementation
    HOL-Library.AList-Mapping
begin
```

We would like to implement mappings as red-black trees but they require the key type to be linearly ordered. Unfortunately, HOL-Analysis fixes the product order to the element-wise order and thus we cannot restore a linear order, and the red-black tree implementation (from HOL-Library) cannot be used.

```
The ice cream example from Jurafsky and Martin [2].
```

```
definition
 states = ["start", "hot", "cold", "end"]
definition observations :: int list where
 observations = [0, 1, 2, 3]
definition
 kernel =
     ("start", [("hot", 0.8 :: real), ("cold", 0.2)]),
             [("hot", 0.6 :: real), ("cold", 0.3), ("end", 0.1)]),
              [("hot", 0.4 :: real), ("cold", 0.5), ("end", 0.1)]),
    ("end", [("end", 1)])
definition
 emissions =
     ("hot", [(1, 0.2), (2, 0.4), (3, 0.4)]),
     ("cold", [(1, 0.5), (2, 0.4), (3, 0.1)]),
    ("end", [(0, 1)])
global-interpretation Concrete-HMM kernel emissions observations states
 defines
    viter bi-rec = HMM-interp.viter bi-ix_m'
                  = HMM-interp.viterbi
 and viterbi
 and viter bi-final = HMM-interp.viter bi-final
 and forward-rec = HMM-interp.forward-ix_m'
                   = \mathit{HMM-interp.forward}
 and forward
 and likelihood = HMM-interp.likelihood-compute
 by (standard; eval)
lemmas [code] = HMM-interp.viterbi-ix_m'.simps[unfolded O-code K-code]
lemmas [code] = HMM-interp.forward-ix_m'.simps[unfolded O-code K-code]
value likelihood "start" [1, 1, 1]
If we enforce the last observation to correspond to "end", then forward and likelihood yield the same
result.
value likelihood "start" [1, 1, 1, 0]
value forward "start" "end" [1, 1, 1, 0]
value forward "start" "end" [3, 3, 3, 0]
value forward "start" "end" [3, 1, 3, 0]
value forward "start" "end" [3, 1, 3, 1, 0]
value viterbi "start" "end" [1, 1, 1, 0]
```

```
value viterbi "start" "end" [3, 3, 3, 0]
value viterbi "start" "end" [3, 1, 3, 0]
value viterbi "start" "end" [3, 1, 3, 1, 0]
If we enforce the last observation to correspond to "end", then viterbi and viterbi-final yield the same result.
value viterbi-final "start" [3, 1, 3, 1, 0]
value viterbi-final "start" [1, 1, 1, 1, 1, 1, 1, 0]
```

end

References

value viter bi-final "start" [1, 1, 1, 1, 1, 1, 1, 1]

- [1] J. Hölzl. Markov chains and Markov decision processes in Isabelle/HOL. *Journal of Automated Reasoning*, 2017.
- [2] D. Jurafsky and J. H. Martin. Speech and language processing. 2017.
- [3] A. A. Markov. Essai d'une recherche statistique sur le texte du roman "Eugene Onegin" illustrant la liaison des epreuve en chain ('Example of a statistical investigation of the text of "Eugene Onegin" illustrating the dependence between samples in chain'). Izvistia Imperatorskoi Akademii Nauk (Bulletin de l'Académie Impériale des Sciences de St.-Pétersbourg), 7:153–162, 1913. English translation by Morris Halle, 1956.