
Hello World

Cornelius Diekmann, Lars Hupel

March 17, 2025

Abstract

In this article, we present a formalization of the well-known “Hello,
World!” code, including a formal framework for reasoning about IO.
Our model is inspired by the handling of IO in Haskell. We start by
formalizing the m and embrace the IO monad afterwards. Then we
present a sample main :: IO (), followed by its proof of correctness.

Contents
1 IO Monad 1

1.1 Real World . 1
1.2 IO Monad . 2
1.3 Monad Operations . 2
1.4 Monad Laws . 3
1.5 Code Generator Setup . 3
1.6 Modelling Running an ′α io Function 5

2 Hello, World! 6

3 Generating Code 6
3.1 Haskell . 6
3.2 SML . 7

4 Correctness 8
4.1 Modeling Input and Output 8
4.2 Correctness of Hello World 8

theory IO
imports

Main
HOL−Library.Monad-Syntax

begin

1

1 IO Monad

Inspired by Haskell. Definitions from https://wiki.haskell.org/IO_inside

1.1 Real World

We model the real world with a fake type.
WARNING: Using low-level commands such as typedecl instead of high-
level datatype is dangerous. We explicitly use a typedecl instead of a
datatype because we never want to instantiate the world. We don’t need
a constructor, we just need the type.
The following models an arbitrary type we cannot reason about. Don’t
reason about the complete world! Only write down some assumptions about
parts of the world.
typedecl real-world (‹m›)

For examples, see HelloWorld_Proof.thy. In said theory, we model STDIN
and STDOUT as parts of the world and describe how this part of the wold can
be affected. We don’t model the rest of the world. This allows us to reason
about STDIN and STDOUT as part of the world, but nothing more.

1.2 IO Monad

The set of all functions which take a m and return an ′α and a m.
The rough idea of all IO functions is the following: You are given the world
in its current state. You can do whatever you like to the world. You can
produce some value of type ′α and you have to return the modified world.
For example, the main function is Haskell does not produce a value, there-
fore, main in Haskell is of type IO (). Another example in Haskell is
getLine, which returns String. It’s type in Haskell is IO String. All
those functions may also modify the state of the world.
typedef ′α io = UNIV :: (m ⇒ ′α × m) set
proof −

show ∃ x. x ∈ UNIV by simp
qed

Related Work: Programming TLS in Isabelle/HOL by Andreas Lochbihler
and Marc Züst uses a partial function (⇀). typedecl real-world typedef
′α io = UNIV :: (m ⇀ ′α × m) set by simp We use a total function.
This implies the dangerous assumption that all IO functions are total (i.e.,
terminate).

The typedef above gives us some convenient definitions. Since the model
of ′α io is just a mode, those definitions should not end up in generated
code.

2

https://wiki.haskell.org/IO_inside

term Abs-io — Takes a m ⇒ ′α × m and abstracts it to an ′α io.
term Rep-io — Unpacks an ′α io to a m ⇒ ′α × m

1.3 Monad Operations

Within an ′α io context, execute action1 and action2 sequentially. The world
is passed through and potentially modified by each action.
definition bind :: ′α io ⇒ (′α ⇒ ′β io) ⇒ ′β io where [code del]:

bind action1 action2 = Abs-io (λworld0.
let (a, world1) = (Rep-io action1) world0;

(b, world2) = (Rep-io (action2 a)) world1

in (b, world2))

In Haskell, the definition for bind (>>=) is:
(>>=) :: IO a -> (a -> IO b) -> IO b
(action1 >>= action2) world0 =

let (a, world1) = action1 world0
(b, world2) = action2 a world1

in (b, world2)

hide-const (open) bind
adhoc-overloading bind ⇀↽ IO.bind

Thanks to adhoc-overloading, we can use monad syntax.
lemma bind (foo :: ′α io) (λa. bar a) = foo >>= (λa. bar a)

by simp

definition return :: ′α ⇒ ′α io where [code del]:
return a ≡ Abs-io (λworld. (a, world))

hide-const (open) return

In Haskell, the definition for return is::
return :: a -> IO a
return a world0 = (a, world0)

1.4 Monad Laws
lemma left-id:

fixes f :: ′α ⇒ ′β io — Make sure we use our (>>=).
shows (IO.return a >>= f) = f a
by(simp add: return-def IO.bind-def Abs-io-inverse Rep-io-inverse)

3

lemma right-id:
fixes m :: ′α io — Make sure we use our (>>=).
shows (m >>= IO.return) = m
by(simp add: return-def IO.bind-def Abs-io-inverse Rep-io-inverse)

lemma bind-assoc:
fixes m :: ′α io — Make sure we use our (>>=).
shows ((m >>= f) >>= g) = (m >>= (λx. f x >>= g))
by(simp add: IO.bind-def Abs-io-inverse Abs-io-inject fun-eq-iff split: prod.splits)

1.5 Code Generator Setup

We don’t expose our (>>=) definition to code. We use the built-in definitions
of the target language (e.g., Haskell, SML).
code-printing constant IO.bind ⇀ (Haskell) - >>= -

and (SML) bind
| constant IO.return ⇀ (Haskell) return

and (SML) (() => -)

SML does not come with a bind function. We just define it (hopefully
correct).
code-printing code-module Bind ⇀ (SML) ‹
fun bind x f () = f (x ()) ();
›
code-reserved (SML) bind return

Make sure the code generator does not try to define ′α io by itself, but
always uses the one of the target language. For Haskell, this is the fully
qualified Prelude.IO. For SML, we wrap it in a nullary function.
code-printing type-constructor io ⇀ (Haskell) Prelude.IO -

and (SML) unit −> -

In Isabelle, a string is just a type synonym for char list. When translating a
string to Haskell, Isabelle does not use Haskell’s String or [Prelude.Char].
Instead, Isabelle serializes its own data Char = Char Bool Bool Bool Bool
Bool Bool Bool Bool. The resulting code will look just ugly.
To use the native strings of Haskell, we use the Isabelle type String.literal.
This gets translated to a Haskell String.
A string literal in Isabelle is created with STR ′′foo ′′.

We define IO functions in Isabelle without implementation. For a proof in
Isabelle, we will only describe their externally observable properties. For
code generation, we map those functions to the corresponding function of
the target language.
Our assumption is that our description in Isabelle corresponds to the real
behavior of those functions in the respective target language.

4

We use axiomatization instead of consts to axiomatically define that
those functions exist, but there is no implementation of them. This makes
sure that we have to explicitly write down all our assumptions about their
behavior. Currently, no assumptions (apart from their type) can be made
about those functions.
axiomatization

println :: String.literal ⇒ unit io and
getLine :: String.literal io

A Haskell module named StdIO which just implements println and getLine.
code-printing code-module StdIO ⇀ (Haskell) ‹
module StdIO (println, getLine) where
import qualified Prelude (putStrLn, getLine)
println = Prelude.putStrLn
getLine = Prelude.getLine
› and (SML) ‹
(∗ Newline behavior in SML is odd.∗)
fun println s () = TextIO.print (s ^ \n);
fun getLine () = case (TextIO.inputLine TextIO.stdIn) of

SOME s => String.substring (s, 0 , String.size s − 1)
| NONE => raise Fail getLine;

›

code-reserved (Haskell) StdIO println getLine
code-reserved (SML) println print getLine TextIO

When the code generator sees the functions println or getLine, we tell it to
use our language-specific implementation.
code-printing constant println ⇀ (Haskell) StdIO.println

and (SML) println
| constant getLine ⇀ (Haskell) StdIO.getLine

and (SML) getLine

Monad syntax and println examples.
lemma bind (println (STR ′′foo ′′))

(λ-. println (STR ′′bar ′′)) =
println (STR ′′foo ′′) >>= (λ-. println (STR ′′bar ′′))

by simp
lemma do { - ← println (STR ′′foo ′′);

println (STR ′′bar ′′)} =
println (STR ′′foo ′′) >> (println (STR ′′bar ′′))

by simp

1.6 Modelling Running an ′α io Function

Apply some function iofun to a specific world and return the new world
(discarding the result of iofun).

5

definition exec :: ′α io ⇒ m ⇒ m where
exec iofun world = snd (Rep-io iofun world)

Similar, but only get the result.
definition eval :: ′α io ⇒ m ⇒ ′α where

eval iofun world = fst (Rep-io iofun world)

Essentially, exec and eval extract the payload ′α and m when executing an
′α io.
lemma Abs-io (λworld. (eval iofun world, exec iofun world)) = iofun

by(simp add: exec-def eval-def Rep-io-inverse)

lemma exec-Abs-io: exec (Abs-io f) world = snd (f world)
by(simp add: exec-def Abs-io-inverse)

lemma exec-then:
exec (io1 >> io2) world = exec io2 (exec io1 world)

and eval-then:
eval (io1 >> io2) world = eval io2 (exec io1 world)

by (simp-all add: exec-def eval-def bind-def Abs-io-inverse split-beta)

lemma exec-bind:
exec (io1 >>= io2) world = exec (io2 (eval io1 world)) (exec io1 world)

and eval-bind:
eval (io1 >>= io2) world = eval (io2 (eval io1 world)) (exec io1 world)

by(simp-all add: exec-def eval-def bind-def Abs-io-inverse split-beta)

lemma exec-return:
exec (IO.return a) world = world

and
eval (IO.return a) world = a

by (simp-all add: exec-def eval-def Abs-io-inverse return-def)

end
theory HelloWorld

imports IO
begin

2 Hello, World!

The idea of a main function is that, upon start of your program, you will
be handed a value of type m. You can pass this world through your code
and modify it. Be careful with the m, it’s the only one we have.

The main function, defined in Isabelle. It should have the right type in
Haskell.

6

definition main :: unit io where
main ≡ do {

- ← println (STR ′′Hello World! What is your name? ′′);
name ← getLine;
println (STR ′′Hello, ′′ + name + STR ′′! ′′)
}

3 Generating Code

Checking that the generated code compiles.
export-code main checking Haskell? SML

3.1 Haskell

The generated code in Haskell (including the prelude) is shown below.

module StdIO (println, getLine) where
import qualified Prelude (putStrLn, getLine)
println = Prelude.putStrLn
getLine = Prelude.getLine

{-# LANGUAGE EmptyDataDecls, RankNTypes, ScopedTypeVariables #-}

module HelloWorld(main) where {

import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/),
(**),

(>>=), (>>), (=<<), (&&), (||), (^), (^^), (.), ($), ($!), (++), (!!),
Eq,

error, id, return, not, fst, snd, map, filter, concat, concatMap, reverse,
zip, null, takeWhile, dropWhile, all, any, Integer, negate, abs, divMod,
String, Bool(True, False), Maybe(Nothing, Just));

import Data.Bits ((.&.), (.|.), (.^.));
import qualified Prelude;
import qualified Data.Bits;
import qualified StdIO;

main :: Prelude.IO ();
main =

(StdIO.println
"Hello World! What is your name?") >>= (\ _ ->
StdIO.getLine >>= (\ name -> StdIO.println (("Hello, " ++ name) ++

"!")));

}

7

3.2 SML

The generated code in SML (including the prelude) is shown below.

fun bind x f () = f (x ()) ();

(* Newline behavior in SML is odd.*)
fun println s () = TextIO.print (s ^ "\n");
fun getLine () = case (TextIO.inputLine TextIO.stdIn) of

SOME s => String.substring (s, 0, String.size s - 1)
| NONE => raise Fail "getLine";

structure HelloWorld : sig
val main : unit -> unit

end = struct

val main : unit -> unit =
bind (println "Hello World! What is your name?")

(fn _ => bind getLine (fn name => println ("Hello, " ^ name ^ "!")));

end; (*struct HelloWorld*)
end

theory HelloWorld-Proof
imports HelloWorld

begin

4 Correctness
4.1 Modeling Input and Output

With the appropriate assumptions about println and getLine, we can even
prove something. We summarize our model about input and output in the
assumptions of a locale.
locale io-stdio =

— We model STDIN and STDOUT as part of the m. Note that we know nothing
about m, we just model that we can find STDIN and STDOUT somewhere in there.

fixes stdout-of ::m ⇒ string list
and stdin-of ::m ⇒ string list

— Assumptions about STDIN: Calling println appends to the end of STDOUT and
getLine does not change anything.
assumes stdout-of-println[simp]:

stdout-of (exec (println str) world) = stdout-of world@[String.explode str]
and stdout-of-getLine[simp]:

stdout-of (exec getLine world) = stdout-of world

8

— Assumptions about STDIN: Calling println does not change anything and get-
Line removes the first element from the STDIN stream.

and stdin-of-println[simp]:
stdin-of (exec (println str) world) = stdin-of world

and stdin-of-getLine:
stdin-of world = inp#stdin =⇒
stdin-of (exec getLine world) = stdin ∧ eval getLine world = String.implode

inp
begin
end

4.2 Correctness of Hello World

Correctness of main: If STDOUT is initially empty and only ′′corny ′′ will be
typed into STDIN, then the program will output: [′′Hello World! What is
your name? ′′, ′′Hello, corny! ′′].
theorem (in io-stdio)

assumes stdout: stdout-of world = []
and stdin: stdin-of world = [′′corny ′′]

shows stdout-of (exec main world) =
[′′Hello World! What is your name? ′′,
′′Hello, corny! ′′]

proof −
let ?world1=exec (println (STR ′′Hello World! What is your name? ′′)) world
have stdout-world2 :

literal.explode STR ′′Hello World! What is your name? ′′ =
′′Hello World! What is your name? ′′

by code-simp
from stdin-of-getLine[where stdin=[], OF stdin] have stdin-world2 :

eval getLine ?world1 = String.implode ′′corny ′′

by (simp add: stdin-of-getLine stdin)
show ?thesis

unfolding main-def
apply(simp add: exec-bind)
apply(simp add: stdout)
apply(simp add: stdout-world2 stdin-world2)
apply(simp add: plus-literal.rep-eq)
apply code-simp
done

qed

end

9

	IO Monad
	Real World
	IO Monad
	Monad Operations
	Monad Laws
	Code Generator Setup
	Modelling Running an 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mu io Function

	Hello, World!
	Generating Code
	Haskell
	SML

	Correctness
	Modeling Input and Output
	Correctness of Hello World

