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Distributed computing is inherently based on replication, promising in-
creased tolerance to failures of individual computing nodes or communi-
cation channels. Realizing this promise, however, involves quite subtle al-
gorithmic mechanisms, and requires precise statements about the kinds and
numbers of faults that an algorithm tolerates (such as process crashes, com-
munication faults or corrupted values). The landmark theorem due to Fis-
cher, Lynch, and Paterson shows that it is impossible to achieve Consensus
among N asynchronously communicating nodes in the presence of even a
single permanent failure. Existing solutions must rely on assumptions of
“partial synchrony”.
Indeed, there have been numerous misunderstandings on what exactly a
given algorithm is supposed to realize in what kinds of environments. More-
over, the abundance of subtly different computational models complicates
comparisons between different algorithms. Charron-Bost and Schiper intro-
duced the Heard-Of model for representing algorithms and failure assump-
tions in a uniform framework, simplifying comparisons between algorithms.
In this contribution, we represent the Heard-Of model in Isabelle/HOL. We
define two semantics of runs of algorithms with different unit of atomicity
and relate these through a reduction theorem that allows us to verify algo-
rithms in the coarse-grained semantics (where proofs are easier) and infer
their correctness for the fine-grained one (which corresponds to actual execu-
tions). We instantiate the framework by verifying six Consensus algorithms
that differ in the underlying algorithmic mechanisms and the kinds of faults
they tolerate.

∗Bernadette Charron-Bost introduced us to the Heard-Of model and accompanied this
work by suggesting algorithms to study, providing or simplifying hand proofs, and giving
most valuable feedback on our formalizations. Mouna Chaouch-Saad contributed an initial
draft formalization of the reduction theorem.
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1 Introduction

We are interested in the verification of fault-tolerant distributed algorithms.
The archetypical problem in this area is the Consensus problem that re-
quires a set of distributed nodes to achieve agreement on a common value
in the presence of faults. Such algorithms are notoriously hard to design
and to get right. This is particularly true in the presence of asynchronous
communication: the landmark theorem by Fischer, Lynch, and Paterson [9]
shows that there is no algorithm solving the Consensus problem for asyn-
chronous systems in the presence of even a single, permanent fault. Existing
solutions therefore rely on assumptions of “partial synchrony” [8].
Different computational models, and different concepts for specifying the
kinds and numbers of faults such algorithms must tolerate, have been intro-
duced in the literature on distributed computing. This abundance of subtly
different notions makes it very difficult to compare different algorithms, and
has sometimes even led to misunderstandings and misinterpretations of what
an algorithm claims to achieve. The general lack of rigorous, let alone for-
mal, correctness proofs for this class of algorithms makes it even harder to
understand the field.
In this contribution, we formalize in Isabelle/HOL the Heard-Of (HO) model,
originally introduced by Charron-Bost and Schiper [7]. This model can rep-
resent algorithms that operate in communication-closed rounds, which is
true of virtually all known fault-tolerant distributed algorithms. Assump-
tions on failures tolerated by an algorithm are expressed by communication
predicates that impose bounds on the set of messages that are not received
during executions. Charron-Bost and Schiper show how the known fail-
ure hypotheses from the literature can be represented in this format. The
Heard-Of model therefore makes an interesting target for formalizing dif-
ferent algorithms, and for proving their correctness, in a uniform way. In
particular, different assumptions can be compared, and the suitability of an
algorithm for a particular situation can be evaluated.
The HO model has subsequently been extended [3] to encompass algorithms
designed to tolerate value (also known as malicious or Byzantine) faults.
In the present work, we propose a generic framework in Isabelle/HOL that
encompasses the different variants of HO algorithms, including resilience to
benign or value faults, as well as coordinated and non-coordinated algo-
rithms.
A fundamental design decision when modeling distributed algorithm is to
determine the unit of atomicity. We formally relate in Isabelle two defini-
tions of runs: we first define “coarse-grained” executions, in which entire
rounds are executed atomically, and then define “fine-grained” executions
that correspond to conventional interleaving representations of asynchronous
networks. We formally prove that every fine-grained execution corresponds
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to a certain coarse-grained execution, such that every process observes the
same sequence of local states in the two executions, up to stuttering. As a
corollary, a large class of correctness properties, including Consensus, can
be transferred from coarse-grained to fine-grained executions.
We then apply our framework for verifying six different distributed Consen-
sus algorithms w.r.t. their respective communication predicates. The first
three algorithms, One-Third Rule, UniformVoting, and LastVoting, tolerate
benign failures. The three remaining algorithms, UT,E,α, AT,E,α, and EIG-
Byzf , are designed to tolerate value failures, and solve a weaker variant of
the Consensus problem.
A preliminary report on the formalization of the LastVoting algorithm in the
HO model appeared in [6]. The paper [4] contains a paper-and-pencil proof
of the reduction theorem relating coarse-grained and fine-grained executions,
and [5] reports on the formal verification of the UT,E,α, AT,E,α, and EIGByzf
algorithms.

theory HOModel
imports Main
begin

declare if-split-asm [split] — perform default perform case splitting on conditionals

2 Heard-Of Algorithms
2.1 The Consensus Problem

We are interested in the verification of fault-tolerant distributed algorithms.
The Consensus problem is paradigmatic in this area. Stated informally, it
assumes that all processes participating in the algorithm initially propose
some value, and that they may at some point decide some value. It is
required that every process eventually decides, and that all processes must
decide the same value.
More formally, we represent runs of algorithms as ω-sequences of configu-
rations (vectors of process states). Hence, a run is modeled as a function
of type nat ⇒ ′proc ⇒ ′pst where type variables ′proc and ′pst represent
types of processes and process states, respectively. The Consensus property
is expressed with respect to a collection vals of initially proposed values (one
per process) and an observer function dec:: ′pst ⇒ val option that retrieves
the decision (if any) from a process state. The Consensus problem is stated
as the conjunction of the following properties:

Integrity. Processes can only decide initially proposed values.

Agreement. Whenever processes p and q decide, their decision values must
be the same. (In particular, process p may never change the value it
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decides, which is referred to as Irrevocability.)

Termination. Every process decides eventually.

The above properties are sometimes only required of non-faulty processes,
since nothing can be required of a faulty process. The Heard-Of model
does not attribute faults to processes, and therefore the above formulation
is appropriate in this framework.
type-synonym
( ′proc, ′pst) run = nat ⇒ ′proc ⇒ ′pst

definition
consensus :: ( ′proc ⇒ ′val) ⇒ ( ′pst ⇒ ′val option) ⇒ ( ′proc, ′pst) run ⇒ bool

where
consensus vals dec rho ≡

(∀n p v. dec (rho n p) = Some v −→ v ∈ range vals)
∧ (∀m n p q v w. dec (rho m p) = Some v ∧ dec (rho n q) = Some w

−→ v = w)
∧ (∀ p. ∃n. dec (rho n p) 6= None)

A variant of the Consensus problem replaces the Integrity requirement by

Validity. If all processes initially propose the same value v then every pro-
cess may only decide v.

definition weak-consensus where
weak-consensus vals dec rho ≡

(∀ v. (∀ p. vals p = v) −→ (∀n p w. dec (rho n p) = Some w −→ w = v))
∧ (∀m n p q v w. dec (rho m p) = Some v ∧ dec (rho n q) = Some w

−→ v = w)
∧ (∀ p. ∃n. dec (rho n p) 6= None)

Clearly, consensus implies weak-consensus.
lemma consensus-then-weak-consensus:

assumes consensus vals dec rho
shows weak-consensus vals dec rho
〈proof 〉

Over Boolean values (“binary Consensus”), weak-consensus implies consen-
sus, hence the two problems are equivalent. In fact, this theorem holds more
generally whenever at most two different values are proposed initially (i.e.,
card (range vals) ≤ 2 ).
lemma binary-weak-consensus-then-consensus:

assumes bc: weak-consensus (vals:: ′proc ⇒ bool) dec rho
shows consensus vals dec rho
〈proof 〉
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The algorithms that we are going to verify solve the Consensus or weak
Consensus problem, under different hypotheses about the kinds and number
of faults.

2.2 A Generic Representation of Heard-Of Algorithms

Charron-Bost and Schiper [7] introduce the Heard-Of (HO) model for repre-
senting fault-tolerant distributed algorithms. In this model, algorithms exe-
cute in communication-closed rounds: at any round r, processes only receive
messages that were sent for that round. For every process p and round r, the
“heard-of set” HO(p, r) denotes the set of processes from which p receives
a message in round r. Since every process is assumed to send a message to
all processes in each round, the complement of HO(p, r) represents the set
of faults that may affect p in round r (messages that were not received, e.g.
because the sender crashed, because of a network problem etc.).
The HO model expresses hypotheses on the faults tolerated by an algorithm
through “communication predicates” that constrain the sets HO(p, r) that
may occur during an execution. Charron-Bost and Schiper show that stan-
dard fault models can be represented in this form.
The original HO model is sufficient for representing algorithms tolerating
benign failures such as process crashes or message loss. A later extension
for algorithms tolerating Byzantine (or value) failures [3] adds a second
collection of sets SHO(p, r) ⊆ HO(p, r) that contain those processes q from
which process p receives the message that q was indeed supposed to send for
round r according to the algorithm. In other words, messages from processes
in HO(p, r) \ SHO(p, r) were corrupted, be it due to errors during message
transmission or because of the sender was faulty or lied deliberately. For
both benign and Byzantine errors, the HO model registers the fault but
does not try to identify the faulty component (i.e., designate the sending or
receiving process, or the communication channel as the “culprit”).
Executions of HO algorithms are defined with respect to collections HO(p, r)
and SHO(p, r). However, the code of a process does not have access to
these sets. In particular, process p has no way of determining if a message
it received from another process q corresponds to what q should have sent
or if it has been corrupted.
Certain algorithms rely on the assignment of “coordinator” processes for
each round. Just as the collections HO(p, r), the definitions assume an ex-
ternal coordinator assignment such that coord(p, r) denotes the coordinator
of process p and round r. Again, the correctness of algorithms may depend
on hypotheses about coordinator assignments – e.g., it may be assumed that
processes agree sufficiently often on who the current coordinator is.
The following definitions provide a generic representation of HO and SHO
algorithms in Isabelle/HOL. A (coordinated) HO algorithm is described by
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the following parameters:

• a finite type ′proc of processes,

• a type ′pst of local process states,

• a type ′msg of messages sent in the course of the algorithm,

• a predicate CinitState such that CinitState p st crd is true precisely
of the initial states st of process p, assuming that crd is the initial
coordinator of p,

• a function sendMsg where sendMsg r p q st yields the message that
process p sends to process q at round r, given its local state st, and

• a predicate CnextState where CnextState r p st msgs crd st ′ charac-
terizes the successor states st ′ of process p at round r, given current
state st, the vector msgs :: ′proc ⇒ ′msg option of messages that p
received at round r (msgs q = None indicates that no message has
been received from process q), and process crd as the coordinator for
the following round.

Note that every process can store the coordinator for the current round in
its local state, and it is therefore not necessary to make the coordinator a
parameter of the message sending function sendMsg.
We represent an algorithm by a record as follows.
record ( ′proc, ′pst, ′msg) CHOAlgorithm =

CinitState :: ′proc ⇒ ′pst ⇒ ′proc ⇒ bool
sendMsg :: nat ⇒ ′proc ⇒ ′proc ⇒ ′pst ⇒ ′msg
CnextState :: nat ⇒ ′proc ⇒ ′pst ⇒ ( ′proc ⇒ ′msg option) ⇒ ′proc ⇒ ′pst ⇒

bool

For non-coordinated HO algorithms, the coordinator argument of functions
CinitState and CnextState is irrelevant, and we define utility functions that
omit that argument.
definition isNCAlgorithm where

isNCAlgorithm alg ≡
(∀ p st crd crd ′. CinitState alg p st crd = CinitState alg p st crd ′)

∧ (∀ r p st msgs crd crd ′ st ′. CnextState alg r p st msgs crd st ′

= CnextState alg r p st msgs crd ′ st ′)

definition initState where
initState alg p st ≡ CinitState alg p st undefined

definition nextState where
nextState alg r p st msgs st ′ ≡ CnextState alg r p st msgs undefined st ′
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A heard-of assignment associates a set of processes with each process. The
following type is used to represent the collections HO(p, r) and SHO(p, r)
for fixed round r. Similarly, a coordinator assignment associates a process
(its coordinator) to each process.
type-synonym

′proc HO = ′proc ⇒ ′proc set

type-synonym
′proc coord = ′proc ⇒ ′proc

An execution of an HO algorithm is defined with respect to HO and SHO
assignments that indicate, for every round r and every process p, from which
sender processes p receives messages (resp., uncorrupted messages) at round
r.
The following definitions formalize this idea. We define “coarse-grained”
executions whose unit of atomicity is the round of execution. At each
round, the entire collection of processes performs a transition according to
the CnextState function of the algorithm. Consequently, a system state is
simply described by a configuration, i.e. a function assigning a process state
to every process. This definition of executions may appear surprising for an
asynchronous distributed system, but it simplifies system verification, com-
pared to a “fine-grained” execution model that records individual events
such as message sending and reception or local transitions. We will justify
later why the “coarse-grained” model is sufficient for verifying interesting
correctness properties of HO algorithms.
The predicate CSHOinitConfig describes the possible initial configurations
for algorithm A (remember that a configuration is a function that assigns
local states to every process).
definition CHOinitConfig where

CHOinitConfig A cfg (coord:: ′proc coord) ≡ ∀ p. CinitState A p (cfg p) (coord p)

Given the current configuration cfg and the HO and SHO sets HOp and
SHOp for process p at round r, the function SHOmsgVectors computes the
set of possible vectors of messages that process p may receive. For processes
q /∈ HOp, p receives no message (represented as value None). For processes q
∈ SHOp, p receives the message that q computed according to the sendMsg
function of the algorithm. For the remaining processes q ∈ HOp − SHOp,
p may receive some arbitrary value.
definition SHOmsgVectors where

SHOmsgVectors A r p cfg HOp SHOp ≡
{µ. (∀ q. q ∈ HOp ←→ µ q 6= None)
∧ (∀ q. q ∈ SHOp ∩ HOp −→ µ q = Some (sendMsg A r q p (cfg q)))}

Predicate CSHOnextConfig uses the preceding function and the algorithm’s
CnextState function to characterize the possible successor configurations in
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a coarse-grained step, and predicate CSHORun defines (coarse-grained) ex-
ecutions rho of an HO algorithm.
definition CSHOnextConfig where

CSHOnextConfig A r cfg HO SHO coord cfg ′ ≡
∀ p. ∃µ ∈ SHOmsgVectors A r p cfg (HO p) (SHO p).

CnextState A r p (cfg p) µ (coord p) (cfg ′ p)

definition CSHORun where
CSHORun A rho HOs SHOs coords ≡

CHOinitConfig A (rho 0 ) (coords 0 )
∧ (∀ r . CSHOnextConfig A r (rho r) (HOs r) (SHOs r) (coords (Suc r))

(rho (Suc r)))

For non-coordinated algorithms. the coord arguments of the above functions
are irrelevant. We define similar functions that omit that argument, and
relate them to the above utility functions for these algorithms.
definition HOinitConfig where

HOinitConfig A cfg ≡ CHOinitConfig A cfg (λq. undefined)

lemma HOinitConfig-eq:
HOinitConfig A cfg = (∀ p. initState A p (cfg p))
〈proof 〉

definition SHOnextConfig where
SHOnextConfig A r cfg HO SHO cfg ′ ≡
CSHOnextConfig A r cfg HO SHO (λq. undefined) cfg ′

lemma SHOnextConfig-eq:
SHOnextConfig A r cfg HO SHO cfg ′ =
(∀ p. ∃µ ∈ SHOmsgVectors A r p cfg (HO p) (SHO p).

nextState A r p (cfg p) µ (cfg ′ p))
〈proof 〉

definition SHORun where
SHORun A rho HOs SHOs ≡
CSHORun A rho HOs SHOs (λr q. undefined)

lemma SHORun-eq:
SHORun A rho HOs SHOs =

(HOinitConfig A (rho 0 )
∧ (∀ r . SHOnextConfig A r (rho r) (HOs r) (SHOs r) (rho (Suc r))))
〈proof 〉

Algorithms designed to tolerate benign failures are not subject to message
corruption, and therefore the SHO sets are irrelevant (more formally, each
SHO set equals the corresponding HO set). We define corresponding special
cases of the definitions of successor configurations and of runs, and prove
that these are equivalent to simpler definitions that will be more useful in
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proofs. In particular, the vector of messages received by a process in a
benign execution is uniquely determined from the current configuration and
the HO sets.
definition HOrcvdMsgs where

HOrcvdMsgs A r p HO cfg ≡
λq. if q ∈ HO then Some (sendMsg A r q p (cfg q)) else None

lemma SHOmsgVectors-HO:
SHOmsgVectors A r p cfg HO HO = {HOrcvdMsgs A r p HO cfg}
〈proof 〉

With coordinators
definition CHOnextConfig where

CHOnextConfig A r cfg HO coord cfg ′ ≡
CSHOnextConfig A r cfg HO HO coord cfg ′

lemma CHOnextConfig-eq:
CHOnextConfig A r cfg HO coord cfg ′ =
(∀ p. CnextState A r p (cfg p) (HOrcvdMsgs A r p (HO p) cfg)

(coord p) (cfg ′ p))
〈proof 〉

definition CHORun where
CHORun A rho HOs coords ≡ CSHORun A rho HOs HOs coords

lemma CHORun-eq:
CHORun A rho HOs coords =

(CHOinitConfig A (rho 0 ) (coords 0 )
∧ (∀ r . CHOnextConfig A r (rho r) (HOs r) (coords (Suc r)) (rho (Suc r))))

〈proof 〉

Without coordinators
definition HOnextConfig where

HOnextConfig A r cfg HO cfg ′ ≡ SHOnextConfig A r cfg HO HO cfg ′

lemma HOnextConfig-eq:
HOnextConfig A r cfg HO cfg ′ =
(∀ p. nextState A r p (cfg p) (HOrcvdMsgs A r p (HO p) cfg) (cfg ′ p))
〈proof 〉

definition HORun where
HORun A rho HOs ≡ SHORun A rho HOs HOs

lemma HORun-eq:
HORun A rho HOs =
( HOinitConfig A (rho 0 )
∧ (∀ r . HOnextConfig A r (rho r) (HOs r) (rho (Suc r))))
〈proof 〉
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The following derived proof rules are immediate consequences of the defini-
tion of CHORun; they simplify automatic reasoning.
lemma CHORun-0 :

assumes CHORun A rho HOs coords
and

∧
cfg. CHOinitConfig A cfg (coords 0 ) =⇒ P cfg

shows P (rho 0 )
〈proof 〉

lemma CHORun-Suc:
assumes CHORun A rho HOs coords
and

∧
r . CHOnextConfig A r (rho r) (HOs r) (coords (Suc r)) (rho (Suc r))
=⇒ P r

shows P n
〈proof 〉

lemma CHORun-induct:
assumes run: CHORun A rho HOs coords
and init: CHOinitConfig A (rho 0 ) (coords 0 ) =⇒ P 0
and step:

∧
r . [[ P r ; CHOnextConfig A r (rho r) (HOs r) (coords (Suc r))

(rho (Suc r)) ]] =⇒ P (Suc r)
shows P n
〈proof 〉

Because algorithms will not operate for arbitrary HO, SHO, and coordina-
tor assignments, these are constrained by a communication predicate. For
convenience, we split this predicate into a per Round part that is expected
to hold at every round and a global part that must hold of the sequence of
(S)HO assignments and may thus express liveness assumptions.
In the parlance of [7], a HO machine is an HO algorithm augmented with
a communication predicate. We therefore define (C)(S)HO machines as the
corresponding extensions of the record defining an HO algorithm.
record ( ′proc, ′pst, ′msg) HOMachine = ( ′proc, ′pst, ′msg) CHOAlgorithm +

HOcommPerRd:: ′proc HO ⇒ bool
HOcommGlobal::(nat ⇒ ′proc HO) ⇒ bool

record ( ′proc, ′pst, ′msg) CHOMachine = ( ′proc, ′pst, ′msg) CHOAlgorithm +
CHOcommPerRd::nat ⇒ ′proc HO ⇒ ′proc coord ⇒ bool
CHOcommGlobal::(nat ⇒ ′proc HO) ⇒ (nat ⇒ ′proc coord) ⇒ bool

record ( ′proc, ′pst, ′msg) SHOMachine = ( ′proc, ′pst, ′msg) CHOAlgorithm +
SHOcommPerRd::( ′proc HO) ⇒ ( ′proc HO) ⇒ bool
SHOcommGlobal::(nat ⇒ ′proc HO) ⇒ (nat ⇒ ′proc HO) ⇒ bool

record ( ′proc, ′pst, ′msg) CSHOMachine = ( ′proc, ′pst, ′msg) CHOAlgorithm +
CSHOcommPerRd::( ′proc HO) ⇒ ( ′proc HO) ⇒ ′proc coord ⇒ bool
CSHOcommGlobal::(nat ⇒ ′proc HO) ⇒ (nat ⇒ ′proc HO)

⇒ (nat ⇒ ′proc coord) ⇒ bool
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end — theory HOModel
theory Reduction
imports HOModel Stuttering-Equivalence.StutterEquivalence
begin

3 Reduction Theorem

We have defined the semantics of HO algorithms such that rounds are exe-
cuted atomically, by all processes. This definition is surprising for a model
of asynchronous distributed algorithms since it models a synchronous execu-
tion of rounds. However, it simplifies representing and reasoning about the
algorithms. For example, the communication network does not have to be
modeled explicitly, since the possible sets of messages received by processes
can be computed from the global configuration and the collections of HO
and SHO sets.
We will now define a more conventional “fine-grained” semantics where com-
munication is modeled explicitly and rounds of processes can be arbitrarily
interleaved (subject to the constraints of the communication predicates).
We will then establish a reduction theorem that shows that for every fine-
grained run there exists an equivalent round-based (“coarse-grained”) run in
the sense that the two runs exhibit the same sequences of local states of all
processes, modulo stuttering. We prove the reduction theorem for the most
general class of coordinated SHO algorithms. It is easy to see that the the-
orem equally holds for the special cases of uncoordinated or HO algorithms,
and since we have in fact defined these classes of algorithms from the more
general ones, we can directly apply the general theorem.
As a corollary, interesting properties remain valid in the fine-grained seman-
tics if they hold in the coarse-grained semantics. It is therefore enough to
verify such properties in the coarse-grained semantics, which is much eas-
ier to reason about. The essential restriction is that properties may not
depend on states of different processes occurring simultaneously. (For ex-
ample, the coarse-grained semantics ensures by definition that all processes
execute the same round at any instant, which is obviously not true of the
fine-grained semantics.) We claim that all “reasonable” properties of fault-
tolerant distributed algorithms are preserved by our reduction. For example,
the Consensus (and Weak Consensus) problems fall into this class.
The proofs follow Chaouch-Saad et al. [4], where the reduction theorem was
proved for uncoordinated HO algorithms.

3.1 Fine-Grained Semantics

In the fine-grained semantics, a run of an HO algorithm is represented as an
ω-sequence of system configurations. Each configuration is represented as a
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record carrying the following information:

• for every process p, the current round that process p is executing,

• the local state of every process,

• for every process p, the set of processes to which p has already sent a
message for the current round,

• for all processes p and q, the message (if any) that p has received from
q for the round that p is currently executing, and

• the set of messages in transit, represented as triples of the form (p, r, q,m)
meaning that process p sent message m to process q for round r, but
q has not yet received that message.

As explained earlier, the coordinators of processes are not recorded in the
configuration, but algorithms may record them as part of the process states.
record ( ′pst, ′proc, ′msg) config =

round :: ′proc ⇒ nat
state :: ′proc ⇒ ′pst
sent :: ′proc ⇒ ′proc set
rcvd :: ′proc ⇒ ′proc ⇒ ′msg option
network :: ( ′proc ∗ nat ∗ ′proc ∗ ′msg) set

type-synonym ( ′pst , ′proc , ′msg) fgrun = nat ⇒ ( ′pst, ′proc, ′msg) config

In an initial configuration for an algorithm, the local state of every process
satisfies the algorithm’s initial-state predicate, and all other components
have obvious default values.
definition fg-init-config where

fg-init-config A (config::( ′pst, ′proc, ′msg) config) (coord:: ′proc coord) ≡
round config = (λp. 0 )
∧ (∀ p. CinitState A p (state config p) (coord p))
∧ sent config = (λp. {})
∧ rcvd config = (λp q. None)
∧ network config = {}

In the fine-grained semantics, we have three types of transitions due to

• some process sending a message,

• some process receiving a message, and

• some process executing a local transition.

The following definition models process p sending a message to process q.
The transition is enabled if p has not yet sent any message to q for the
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current round. The message to be sent is computed according to the algo-
rithm’s sendMsg function. The effect of the transition is to add q to the sent
component of the configuration and the message quadruple to the network
component.
definition fg-send-msg where

fg-send-msg A p q config config ′ ≡
q /∈ (sent config p)
∧ config ′ = config (|

sent := (sent config)(p := (sent config p) ∪ {q}),
network := network config ∪

{(p, round config p, q,
sendMsg A (round config p) p q (state config p))} |)

The following definition models the reception of a message by process p from
process q. The action is enabled if q is in the heard-of set HO of process p
for the current round, and if the network contains some message from q to
p for the round that p is currently executing. W.l.o.g., we model message
corruption at reception: if q is not in p’s SHO set (parameter SHO), then
an arbitrary value m ′ is received instead of m.
definition fg-rcv-msg where

fg-rcv-msg p q HO SHO config config ′ ≡
∃m m ′. (q, (round config p), p, m) ∈ network config
∧ q ∈ HO
∧ config ′ = config (|

rcvd := (rcvd config)(p := (rcvd config p)(q :=
if q ∈ SHO then Some m else Some m ′)),

network := network config − {(q, (round config p), p, m)} |)

Finally, we consider local state transition of process p. A local transition
is enabled only after p has sent all messages for its current round and has
received all messages that it is supposed to receive according to its current
HO set (parameter HO). The local state is updated according to the algo-
rithm’s CnextState relation, which may depend on the coordinator crd of
the following round. The round of process p is incremented, and the sent
and rcvd components for process p are reset to initial values for the new
round.
definition fg-local where

fg-local A p HO crd config config ′ ≡
sent config p = UNIV
∧ dom (rcvd config p) = HO
∧ (∃ s. CnextState A (round config p) p (state config p) (rcvd config p) crd s
∧ config ′ = config (|

round := (round config)(p := Suc (round config p)),
state := (state config)(p := s),
sent := (sent config)(p := {}),
rcvd := (rcvd config)(p := λq. None) |))
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The next-state relation for process p is just the disjunction of the above
three types of transitions.
definition fg-next-config where

fg-next-config A p HO SHO crd config config ′ ≡
(∃ q. fg-send-msg A p q config config ′)
∨ (∃ q. fg-rcv-msg p q HO SHO config config ′)
∨ fg-local A p HO crd config config ′

Fine-grained runs are infinite sequences of configurations that start in an
initial configuration and where each step corresponds to some process send-
ing a message, receiving a message or performing a local step. We also
require that every process eventually executes every round – note that this
condition is implicit in the definition of coarse-grained runs.
definition fg-run where

fg-run A rho HOs SHOs coords ≡
fg-init-config A (rho 0 ) (coords 0 )
∧ (∀ i. ∃ p. fg-next-config A p

(HOs (round (rho i) p) p)
(SHOs (round (rho i) p) p)
(coords (round (rho (Suc i)) p) p)
(rho i) (rho (Suc i)))

∧ (∀ p r . ∃n. round (rho n) p = r)

The following function computes at which “time point” (index in the fine-
grained computation) process p starts executing round r. This function
plays an important role in the correspondence between the two semantics,
and in the subsequent proofs.
definition fg-start-round where

fg-start-round rho p r ≡ LEAST (n::nat). round (rho n) p = r

3.2 Properties of the Fine-Grained Semantics

In preparation for the proof of the reduction theorem, we establish a number
of consequences of the above definitions.

Process states change only when round numbers change during a fine-grained
run.
lemma fg-state-change:

assumes rho: fg-run A rho HOs SHOs coords
and rd: round (rho (Suc n)) p = round (rho n) p

shows state (rho (Suc n)) p = state (rho n) p
〈proof 〉

Round numbers never decrease.
lemma fg-round-numbers-increase:

assumes rho: fg-run A rho HOs SHOs coords and n: n ≤ m
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shows round (rho n) p ≤ round (rho m) p
〈proof 〉

Combining the two preceding lemmas, it follows that the local states of
process p at two configurations are the same if these configurations have the
same round number.
lemma fg-same-round-same-state:

assumes rho: fg-run A rho HOs SHOs coords
and rd: round (rho m) p = round (rho n) p

shows state (rho m) p = state (rho n) p
〈proof 〉

Since every process executes every round, function fg-startRound is well-
defined. We also list a few facts about fg-startRound that will be used to
show that it is a “stuttering sampling function”, a notion introduced in the
theories about stuttering equivalence.
lemma fg-start-round:

assumes fg-run A rho HOs SHOs coords
shows round (rho (fg-start-round rho p r)) p = r
〈proof 〉

lemma fg-start-round-smallest:
assumes round (rho k) p = r
shows fg-start-round rho p r ≤ (k::nat)
〈proof 〉

lemma fg-start-round-later :
assumes rho: fg-run A rho HOs SHOs coords

and r : round (rho n) p = r and r ′: r < r ′

shows n < fg-start-round rho p r ′ (is - < ?start)
〈proof 〉

lemma fg-start-round-0 :
assumes rho: fg-run A rho HOs SHOs coords
shows fg-start-round rho p 0 = 0
〈proof 〉

lemma fg-start-round-strict-mono:
assumes rho: fg-run A rho HOs SHOs coords
shows strict-mono (fg-start-round rho p)
〈proof 〉

Process p is at round r at all configurations between the start of round r and
the start of round r+1. By lemma fg-same-round-same-state, this implies
that the local state of process p is the same at all these configurations.
lemma fg-round-between-start-rounds:
assumes rho: fg-run A rho HOs SHOs coords

and 1 : fg-start-round rho p r ≤ n
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and 2 : n < fg-start-round rho p (Suc r)
shows round (rho n) p = r (is ?rd = r)
〈proof 〉

For any process p and round r there is some instant n where p executes a
local transition from round r. In fact, n+1 marks the start of round r+1.
lemma fg-local-transition-from-round:
assumes rho: fg-run A rho HOs SHOs coords
obtains n where round (rho n) p = r

and fg-start-round rho p (Suc r) = Suc n
and fg-local A p (HOs r p) (coords (Suc r) p) (rho n) (rho (Suc n))

〈proof 〉

We now prove two invariants asserted in [4]. The first one states that any
message m in transit from process p to process q for round r corresponds to
the message computed by p for q, given p’s state at its rth local transition.
lemma fg-invariant1 :

assumes rho: fg-run A rho HOs SHOs coords
and m: (p,r ,q,m) ∈ network (rho n) (is ?msg n)

shows m = sendMsg A r p q (state (rho (fg-start-round rho p r)) p)
〈proof 〉

The second invariant states that if process q received message m from process
p, then (a) p is in q’s HO set for that round m, and (b) if p is moreover in
q’s SHO set, then m is the message that p computed at the start of that
round.
lemma fg-invariant2a:

assumes rho: fg-run A rho HOs SHOs coords
and m: rcvd (rho n) q p = Some m (is ?rcvd n)

shows p ∈ HOs (round (rho n) q) q
(is p ∈ HOs (?rd n) q is ?P n)
〈proof 〉

lemma fg-invariant2b:
assumes rho: fg-run A rho HOs SHOs coords

and m: rcvd (rho n) q p = Some m (is ?rcvd n)
and sho: p ∈ SHOs (round (rho n) q) q (is p ∈ SHOs (?rd n) q)

shows m = sendMsg A (?rd n) p q
(state (rho (fg-start-round rho p (?rd n))) p)

(is ?P n)
〈proof 〉

3.3 From Fine-Grained to Coarse-Grained Runs

The reduction theorem asserts that for any fine-grained run rho there is a
coarse-grained run such that every process sees the same sequence of local
states in the two runs, modulo stuttering. In other words, no process can
locally distinguish the two runs.
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Given fine-grained run rho, the corresponding coarse-grained run sigma is
defined as the sequence of state vectors at the beginning of every round.
Notice in particular that the local states sigma r p and sigma r q of two
different processes p and q appear at different instants in the original run rho.
Nevertheless, we prove that sigma is a coarse-grained run of the algorithm
for the same HO, SHO, and coordinator assignments. By definition (and
the fact that local states remain equal between fg-start-round instants), the
sequences of process states in rho and sigma are easily seen to be stuttering
equivalent, and this will be formally stated below.
definition coarse-run where

coarse-run rho r p ≡ state (rho (fg-start-round rho p r)) p

theorem reduction:
assumes rho: fg-run A rho HOs SHOs coords
shows CSHORun A (coarse-run rho) HOs SHOs coords

(is CSHORun - ?cr - - -)
〈proof 〉

3.4 Locally Similar Runs and Local Properties

We say that two sequences of configurations (vectors of process states) are
locally similar if for every process the sequences of its process states are
stuttering equivalent. Observe that different stuttering reduction may be
applied for every process, hence the original sequences of configurations need
not be stuttering equivalent and can indeed differ wildly in the combinations
of local states that occur.
A property of a sequence of configurations is called local if it is insensitive
to local similarity.
definition locally-similar where

locally-similar (σ::nat ⇒ ′proc ⇒ ′pst) τ ≡
∀ p:: ′proc. (λn. σ n p) ≈ (λn. τ n p)

definition local-property where
local-property P ≡
∀σ τ. locally-similar σ τ −→ P σ −→ P τ

Local similarity is an equivalence relation.
lemma locally-similar-refl: locally-similar σ σ
〈proof 〉

lemma locally-similar-sym: locally-similar σ τ =⇒ locally-similar τ σ
〈proof 〉

lemma locally-similar-trans [trans]:
locally-similar % σ =⇒ locally-similar σ τ =⇒ locally-similar % τ
〈proof 〉
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lemma local-property-eq:
local-property P = (∀σ τ. locally-similar σ τ −→ P σ = P τ)
〈proof 〉

Consider any fine-grained run rho. The projection of rho to vectors of pro-
cess states is locally similar to the coarse-grained run computed from rho.
lemma coarse-run-locally-similar :

assumes rho: fg-run A rho HOs SHOs coords
shows locally-similar (state ◦ rho) (coarse-run rho)
〈proof 〉

Therefore, in order to verify a local property P for a fine-grained run over
given HO, SHO, and coord collections, it is enough to show that P holds for
all coarse-grained runs for these same collections. Indeed, one may restrict
attention to coarse-grained runs whose initial states agree with that of the
given fine-grained run.
theorem local-property-reduction:

assumes rho: fg-run A rho HOs SHOs coords
and P: local-property P
and coarse-correct:∧

crho. [[ CSHORun A crho HOs SHOs coords; crho 0 = state (rho 0 )]]
=⇒ P crho

shows P (state ◦ rho)
〈proof 〉

3.5 Consensus as a Local Property

Consensus and Weak Consensus are local properties and can therefore be
verified just over coarse-grained runs, according to theorem local-property-reduction.
lemma integrity-is-local:

assumes sim: locally-similar σ τ
and val:

∧
n. dec (σ n p) = Some v =⇒ v ∈ range vals

and dec: dec (τ n p) = Some v
shows v ∈ range vals
〈proof 〉

lemma validity-is-local:
assumes sim: locally-similar σ τ

and val:
∧

n. dec (σ n p) = Some w =⇒ w = v
and dec: dec (τ n p) = Some w

shows w = v
〈proof 〉

lemma agreement-is-local:
assumes sim: locally-similar σ τ
and agr :

∧
m n. [[dec (σ m p) = Some v; dec (σ n q) = Some w]] =⇒ v=w
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and v: dec (τ m p) = Some v and w: dec (τ n q) = Some w
shows v = w
〈proof 〉

lemma termination-is-local:
assumes sim: locally-similar σ τ

and trm: dec (σ m p) = Some v
shows ∃n. dec (τ n p) = Some v
〈proof 〉

theorem consensus-is-local: local-property (consensus vals dec)
〈proof 〉

theorem weak-consensus-is-local: local-property (weak-consensus vals dec)
〈proof 〉

end
theory Majorities
imports Main
begin

4 Utility Lemmas About Majorities

Consensus algorithms usually ensure that a majority of processes proposes
the same value before taking a decision, and we provide a few utility lemmas
for reasoning about majorities.

Any two subsets S and T of a finite set E such that the sum of their
cardinalities is larger than the size of E have a non-empty intersection.
lemma abs-majorities-intersect:

assumes crd: card E < card S + card T
and s: S ⊆ E and t: T ⊆ E and e: finite E

shows S ∩ T 6= {}
〈proof 〉

lemma abs-majoritiesE :
assumes crd: card E < card S + card T

and s: S ⊆ E and t: T ⊆ E and e: finite E
obtains p where p ∈ S and p ∈ T
〈proof 〉

Special case: both sets S and T are majorities.
lemma abs-majoritiesE ′:

assumes Smaj: card S > (card E) div 2 and Tmaj: card T > (card E) div 2
and s: S ⊆ E and t: T ⊆ E and e: finite E

obtains p where p ∈ S and p ∈ T
〈proof 〉
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We restate the above theorems for the case where the base type is finite
(taking E as the universal set).
lemma majorities-intersect:

assumes crd: card (UNIV ::( ′a::finite) set) < card (S :: ′a set) + card T
shows S ∩ T 6= {}
〈proof 〉

lemma majoritiesE :
assumes crd: card (UNIV ::( ′a::finite) set) < card (S :: ′a set) + card (T :: ′a set)
obtains p where p ∈ S and p ∈ T
〈proof 〉

lemma majoritiesE ′:
assumes S : card (S ::( ′a::finite) set) > (card (UNIV :: ′a set)) div 2
and T : card (T :: ′a set) > (card (UNIV :: ′a set)) div 2
obtains p where p ∈ S and p ∈ T
〈proof 〉

end
theory OneThirdRuleDefs
imports ../HOModel
begin

5 Verification of the One-Third Rule Consensus
Algorithm

We now apply the framework introduced so far to the verification of concrete
algorithms, starting with algorithm One-Third Rule, which is one of the sim-
plest algorithms presented in [7]. Nevertheless, the algorithm has some in-
teresting characteristics: it ensures safety (i.e., the Integrity and Agreement)
properties in the presence of arbitrary benign faults, and if everything works
perfectly, it terminates in just two rounds. One-Third Rule is an uncoordi-
nated algorithm tolerating benign faults, hence SHO or coordinator sets do
not play a role in its definition.

5.1 Model of the Algorithm

We begin by introducing an anonymous type of processes of finite cardinality
that will instantiate the type variable ′proc of the generic HO model.
typedecl Proc — the set of processes
axiomatization where Proc-finite: OFCLASS(Proc, finite-class)
instance Proc :: finite 〈proof 〉

abbreviation
N ≡ card (UNIV ::Proc set)
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The state of each process consists of two fields: x holds the current value
proposed by the process and decide the value (if any, hence the option type)
it has decided.
record ′val pstate =

x :: ′val
decide :: ′val option

The initial value of field x is unconstrained, but no decision has been taken
initially.
definition OTR-initState where

OTR-initState p st ≡ decide st = None

Given a vector msgs of values (possibly null) received from each process,
HOV msgs v denotes the set of processes from which value v was received.
definition HOV :: (Proc ⇒ ′val option) ⇒ ′val ⇒ Proc set where

HOV msgs v ≡ { q . msgs q = Some v }

MFR msgs v (“most frequently received”) holds for vector msgs if no value
has been received more frequently than v.
Some such value always exists, since there is only a finite set of processes
and thus a finite set of possible cardinalities of the sets HOV msgs v.
definition MFR :: (Proc ⇒ ′val option) ⇒ ′val ⇒ bool where

MFR msgs v ≡ ∀w. card (HOV msgs w) ≤ card (HOV msgs v)

lemma MFR-exists: ∃ v. MFR msgs v
〈proof 〉

Also, if a process has heard from at least one other process, the most fre-
quently received values are among the received messages.
lemma MFR-in-msgs:

assumes HO:HOs m p 6= {}
and v: MFR (HOrcvdMsgs OTR-M m p (HOs m p) (rho m)) v

(is MFR ?msgs v)
shows ∃ q ∈ HOs m p. v = the (?msgs q)
〈proof 〉

TwoThirds msgs v holds if value v has been received from more than 2/3 of
all processes.
definition TwoThirds where

TwoThirds msgs v ≡ (2∗N ) div 3 < card (HOV msgs v)

The next-state relation of algorithm One-Third Rule for every process is
defined as follows: if the process has received values from more than 2/3 of
all processes, the x field is set to the smallest among the most frequently
received values, and the process decides value v if it received v from more
than 2/3 of all processes. If p hasn’t heard from more than 2/3 of all
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processes, the state remains unchanged. (Note that Some is the constructor
of the option datatype, whereas ε is Hilbert’s choice operator.) We require
the type of values to be linearly ordered so that the minimum is guaranteed
to be well-defined.
definition OTR-nextState where

OTR-nextState r p (st::( ′val::linorder) pstate) msgs st ′ ≡
if (2∗N ) div 3 < card {q. msgs q 6= None}
then st ′ = (| x = Min {v . MFR msgs v},

decide = (if (∃ v. TwoThirds msgs v)
then Some (ε v. TwoThirds msgs v)
else decide st) |)

else st ′ = st

The message sending function is very simple: at every round, every process
sends its current proposal (field x of its local state) to all processes.
definition OTR-sendMsg where

OTR-sendMsg r p q st ≡ x st

5.2 Communication Predicate for One-Third Rule

We now define the communication predicate for the One-Third Rule algo-
rithm to be correct. It requires that, infinitely often, there is a round where
all processes receive messages from the same set Π of processes where Π
contains more than two thirds of all processes. The “per-round” part of the
communication predicate is trivial.
definition OTR-commPerRd where

OTR-commPerRd HOrs ≡ True

definition OTR-commGlobal where
OTR-commGlobal HOs ≡
∀ r . ∃ r0 Π. r0 ≥ r ∧ (∀ p. HOs r0 p = Π) ∧ card Π > (2∗N ) div 3

5.3 The One-Third Rule Heard-Of Machine

We now define the HO machine for the One-Third Rule algorithm by assem-
bling the algorithm definition and its communication-predicate. Because
this is an uncoordinated algorithm, the crd arguments of the initial- and
next-state predicates are unused.
definition OTR-HOMachine where

OTR-HOMachine =
(| CinitState = (λ p st crd. OTR-initState p st),
sendMsg = OTR-sendMsg,
CnextState = (λ r p st msgs crd st ′. OTR-nextState r p st msgs st ′),
HOcommPerRd = OTR-commPerRd,
HOcommGlobal = OTR-commGlobal |)
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abbreviation OTR-M ≡ OTR-HOMachine::(Proc, ′val::linorder pstate, ′val) HOMa-
chine

end
theory OneThirdRuleProof
imports OneThirdRuleDefs ../Reduction ../Majorities
begin

We prove that One-Third Rule solves the Consensus problem under the
communication predicate defined above. The proof is split into proofs of the
Integrity, Agreement, and Termination properties.

5.4 Proof of Integrity

Showing integrity of the algorithm is a simple, if slightly tedious exercise
in invariant reasoning. The following inductive invariant asserts that the
values of the x and decide fields of the process states are limited to the x
values present in the initial states since the algorithm does not introduce
any new values.
definition VInv where

VInv rho n ≡
let xinit = (range (x ◦ (rho 0 )))
in range (x ◦ (rho n)) ⊆ xinit
∧ range (decide ◦ (rho n)) ⊆ {None} ∪ (Some ‘ xinit)

lemma vinv-invariant:
assumes run:HORun OTR-M rho HOs
shows VInv rho n
〈proof 〉

Integrity is an immediate consequence.
theorem OTR-integrity:

assumes run:HORun OTR-M rho HOs and dec: decide (rho n p) = Some v
shows ∃ q. v = x (rho 0 q)
〈proof 〉

5.5 Proof of Agreement

The following lemma A1 asserts that if process p decides in a round on a
value v then more than 2/3 of all processes have v as their x value in their
local state.
We show a few simple lemmas in preparation.
lemma nextState-change:

assumes HORun OTR-M rho HOs
and ¬ ((2∗N ) div 3

< card {q. (HOrcvdMsgs OTR-M n p (HOs n p) (rho n)) q 6= None})
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shows rho (Suc n) p = rho n p
〈proof 〉

lemma nextState-decide:
assumes run:HORun OTR-M rho HOs
and chg: decide (rho (Suc n) p) 6= decide (rho n p)
shows TwoThirds (HOrcvdMsgs OTR-M n p (HOs n p) (rho n))

(the (decide (rho (Suc n) p)))
〈proof 〉

lemma A1 :
assumes run:HORun OTR-M rho HOs
and dec: decide (rho (Suc n) p) = Some v
and chg: decide (rho (Suc n) p) 6= decide (rho n p) (is decide ?st ′ 6= decide ?st)
shows (2∗N ) div 3 < card { q . x (rho n q) = v }
〈proof 〉

The following lemma A2 contains the crucial correctness argument: if more
than 2/3 of all processes send v and process p hears from more than 2/3 of
all processes then the x field of p will be updated to v.
lemma A2 :

assumes run: HORun OTR-M rho HOs
and HO: (2∗N ) div 3

< card { q . HOrcvdMsgs OTR-M n p (HOs n p) (rho n) q 6= None }
and maj: (2∗N ) div 3 < card { q . x (rho n q) = v }
shows x (rho (Suc n) p) = v
〈proof 〉

Therefore, once more than two thirds of the processes hold v in their x field,
this will remain true forever.
lemma A3 :

assumes run:HORun OTR-M rho HOs
and n: (2∗N ) div 3 < card { q . x (rho n q) = v } (is ?twothird n)

shows ?twothird (n+k)
〈proof 〉

It now follows that once a process has decided on some value v, more than
two thirds of all processes continue to hold v in their x field.
lemma A4 :

assumes run: HORun OTR-M rho HOs
and dec: decide (rho n p) = Some v (is ?dec n)
shows ∀ k. (2∗N ) div 3 < card { q . x (rho (n+k) q) = v }

(is ∀ k. ?twothird (n+k))
〈proof 〉

The Agreement property follows easily from lemma A4 : if processes p and
q decide values v and w, respectively, then more than two thirds of the
processes must propose v and more than two thirds must propose w. Because
these two majorities must have an intersection, we must have v=w.
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We first prove an “asymmetric” version of the agreement property before
deriving the general agreement theorem.
lemma A5 :

assumes run:HORun OTR-M rho HOs
and p: decide (rho n p) = Some v
and p ′: decide (rho (n+k) p ′) = Some w
shows v = w
〈proof 〉

theorem OTR-agreement:
assumes run:HORun OTR-M rho HOs
and p: decide (rho n p) = Some v
and p ′: decide (rho m p ′) = Some w
shows v = w
〈proof 〉

5.6 Proof of Termination

We now show that every process must eventually decide.
The idea of the proof is to observe that the communication predicate guar-
antees the existence of two uniform rounds where every process hears from
the same two-thirds majority of processes. The first such round serves to
ensure that all x fields hold the same value, the second round copies that
value into all decision fields.
Lemma A2 is instrumental in this proof.
theorem OTR-termination:

assumes run: HORun OTR-M rho HOs
and commG: HOcommGlobal OTR-M HOs

shows ∃ r v. decide (rho r p) = Some v
〈proof 〉

5.7 One-Third Rule Solves Consensus

Summing up, all (coarse-grained) runs of One-Third Rule for HO collections
that satisfy the communication predicate satisfy the Consensus property.
theorem OTR-consensus:

assumes run: HORun OTR-M rho HOs and commG: HOcommGlobal OTR-M
HOs

shows consensus (x ◦ (rho 0 )) decide rho
〈proof 〉

By the reduction theorem, the correctness of the algorithm also follows for
fine-grained runs of the algorithm. It would be much more tedious to estab-
lish this theorem directly.
theorem OTR-consensus-fg:

assumes run: fg-run OTR-M rho HOs HOs (λr q. undefined)
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and commG: HOcommGlobal OTR-M HOs
shows consensus (λp. x (state (rho 0 ) p)) decide (state ◦ rho)
(is consensus ?inits - -)

〈proof 〉

end
theory UvDefs
imports ../HOModel
begin

6 Verification of the UniformVoting Consensus
Algorithm

Algorithm UniformVoting is presented in [7]. It can be considered as a
deterministic version of Ben-Or’s well-known probabilistic Consensus algo-
rithm [2]. We formalize in Isabelle the correctness proof given in [7], using
the framework of theory HOModel.

6.1 Model of the Algorithm

We begin by introducing an anonymous type of processes of finite cardinality
that will instantiate the type variable ′proc of the generic HO model.
typedecl Proc — the set of processes
axiomatization where Proc-finite: OFCLASS(Proc, finite-class)
instance Proc :: finite 〈proof 〉

abbreviation
N ≡ card (UNIV ::Proc set) — number of processes

The algorithm proceeds in phases of 2 rounds each (we call steps the in-
dividual rounds that constitute a phase). The following utility functions
compute the phase and step of a round, given the round number.
abbreviation nSteps ≡ 2

definition phase where phase (r ::nat) ≡ r div nSteps

definition step where step (r ::nat) ≡ r mod nSteps

The following record models the local state of a process.
record ′val pstate =

x :: ′val — current value held by process
vote :: ′val option — value the process voted for, if any
decide :: ′val option — value the process has decided on, if any
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Possible messages sent during the execution of the algorithm, and charac-
teristic predicates to distinguish types of messages.
datatype ′val msg =

Val ′val
| ValVote ′val ′val option
| Null — dummy message in case nothing needs to be sent

definition isValVote where isValVote m ≡ ∃ z v. m = ValVote z v

definition isVal where isVal m ≡ ∃ v. m = Val v

Selector functions to retrieve components of messages. These functions have
a meaningful result only when the message is of appropriate kind.
fun getvote where

getvote (ValVote z v) = v

fun getval where
getval (ValVote z v) = z
| getval (Val z) = z

The x field of the initial state is unconstrained, all other fields are initialized
appropriately.
definition UV-initState where

UV-initState p st ≡ (vote st = None) ∧ (decide st = None)

We separately define the transition predicates and the send functions for
each step and later combine them to define the overall next-state relation.
definition msgRcvd where — processes from which some message was received

msgRcvd (msgs:: Proc ⇀ ′val msg) = {q . msgs q 6= None}

definition smallestValRcvd where
smallestValRcvd (msgs::Proc ⇀ ( ′val::linorder) msg) ≡
Min {v. ∃ q. msgs q = Some (Val v)}

In step 0, each process sends its current x value.
It updates its x field to the smallest value it has received. If the process
has received the same value v from all processes from which it has heard, it
updates its vote field to v.
definition send0 where

send0 r p q st ≡ Val (x st)

definition next0 where
next0 r p st (msgs::Proc ⇀ ( ′val::linorder) msg) st ′ ≡

(∃ v. (∀ q ∈ msgRcvd msgs. msgs q = Some (Val v))
∧ st ′ = st (| vote := Some v, x := smallestValRcvd msgs |))

∨ ¬(∃ v. ∀ q ∈ msgRcvd msgs. msgs q = Some (Val v))
∧ st ′ = st (| x := smallestValRcvd msgs |)
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In step 1, each process sends its current x and vote values.
definition send1 where

send1 r p q st ≡ ValVote (x st) (vote st)

definition valVoteRcvd where
— processes from which values and votes were received
valVoteRcvd (msgs :: Proc ⇀ ′val msg) ≡
{q . ∃ z v. msgs q = Some (ValVote z v)}

definition smallestValNoVoteRcvd where
smallestValNoVoteRcvd (msgs::Proc ⇀ ( ′val::linorder) msg) ≡
Min {v. ∃ q. msgs q = Some (ValVote v None)}

definition someVoteRcvd where
— set of processes from which some vote was received
someVoteRcvd (msgs :: Proc ⇀ ′val msg) ≡
{ q . q ∈ msgRcvd msgs ∧ isValVote (the (msgs q)) ∧ getvote (the (msgs q)) 6=

None }

definition identicalVoteRcvd where
identicalVoteRcvd (msgs :: Proc ⇀ ′val msg) v ≡
∀ q ∈ msgRcvd msgs. isValVote (the (msgs q)) ∧ getvote (the (msgs q)) = Some

v

definition x-update where
x-update st msgs st ′ ≡
(∃ q ∈ someVoteRcvd msgs . x st ′ = the (getvote (the (msgs q))))
∨ someVoteRcvd msgs = {} ∧ x st ′ = smallestValNoVoteRcvd msgs

definition dec-update where
dec-update st msgs st ′ ≡
(∃ v. identicalVoteRcvd msgs v ∧ decide st ′ = Some v)
∨ ¬(∃ v. identicalVoteRcvd msgs v) ∧ decide st ′ = decide st

definition next1 where
next1 r p st msgs st ′ ≡

x-update st msgs st ′

∧ dec-update st msgs st ′

∧ vote st ′ = None

The overall send function and next-state relation are simply obtained as the
composition of the individual relations defined above.
definition UV-sendMsg where

UV-sendMsg (r ::nat) ≡ if step r = 0 then send0 r else send1 r

definition UV-nextState where
UV-nextState r ≡ if step r = 0 then next0 r else next1 r
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6.2 Communication Predicate for UniformVoting

We now define the communication predicate for the UniformVoting algo-
rithm to be correct.
The round-by-round predicate requires that for any two processes there is
always one process heard by both of them. In other words, no “split rounds”
occur during the execution of the algorithm [7]. Note that in particular,
heard-of sets are never empty.
definition UV-commPerRd where

UV-commPerRd HOrs ≡ ∀ p q. ∃ pq. pq ∈ HOrs p ∩ HOrs q

The global predicate requires the existence of a (space-)uniform round during
which the heard-of sets of all processes are equal. (Observe that [7] requires
infinitely many uniform rounds, but the correctness proof uses just one such
round.)
definition UV-commGlobal where

UV-commGlobal HOs ≡ ∃ r . ∀ p q. HOs r p = HOs r q

6.3 The UniformVoting Heard-Of Machine

We now define the HO machine for Uniform Voting by assembling the al-
gorithm definition and its communication predicate. Notice that the coor-
dinator arguments for the initialization and transition functions are unused
since UniformVoting is not a coordinated algorithm.
definition UV-HOMachine where

UV-HOMachine = (|
CinitState = (λp st crd. UV-initState p st),
sendMsg = UV-sendMsg,
CnextState = (λr p st msgs crd st ′. UV-nextState r p st msgs st ′),
HOcommPerRd = UV-commPerRd,
HOcommGlobal = UV-commGlobal
|)

abbreviation
UV-M ≡ (UV-HOMachine::(Proc, ′val::linorder pstate, ′val msg) HOMachine)

end
theory UvProof
imports UvDefs ../Reduction
begin

6.4 Preliminary Lemmas

At any round, given two processes p and q, there is always some process
which is heard by both of them, and from which p and q have received the
same message.
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lemma some-common-msg:
assumes HOcommPerRd UV-M (HOs r)
shows ∃ pq. pq ∈ msgRcvd (HOrcvdMsgs UV-M r p (HOs r p) (rho r))

∧ pq ∈ msgRcvd (HOrcvdMsgs UV-M r q (HOs r q) (rho r))
∧ (HOrcvdMsgs UV-M r p (HOs r p) (rho r)) pq
= (HOrcvdMsgs UV-M r q (HOs r q) (rho r)) pq

〈proof 〉

When executing step 0, the minimum received value is always well defined.
lemma minval-step0 :

assumes com: HOcommPerRd UV-M (HOs r) and s0 : step r = 0
shows smallestValRcvd (HOrcvdMsgs UV-M r q (HOs r q) (rho r))

∈ {v. ∃ p. (HOrcvdMsgs UV-M r q (HOs r q) (rho r)) p = Some (Val v)}
(is smallestValRcvd ?msgs ∈ ?vals)

〈proof 〉

When executing step 1 and no vote has been received, the minimum among
values received in messages carrying no vote is well defined.
lemma minval-step1 :

assumes com: HOcommPerRd UV-M (HOs r) and s1 : step r 6= 0
and nov: someVoteRcvd (HOrcvdMsgs UV-M r q (HOs r q) (rho r)) = {}
shows smallestValNoVoteRcvd (HOrcvdMsgs UV-M r q (HOs r q) (rho r))

∈ {v . ∃ p. (HOrcvdMsgs UV-M r q (HOs r q) (rho r)) p
= Some (ValVote v None)}

(is smallestValNoVoteRcvd ?msgs ∈ ?vals)
〈proof 〉

The vote field is reset every time a new phase begins.
lemma reset-vote:

assumes run: HORun UV-M rho HOs and s0 : step r ′ = 0
shows vote (rho r ′ p) = None
〈proof 〉

Processes only vote for the value they hold in their x field.
lemma x-vote-eq:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and vote: vote (rho r p) = Some v

shows v = x (rho r p)
〈proof 〉

6.5 Proof of Irrevocability, Agreement and Integrity

A decision can only be taken in the second round of a phase.
lemma decide-step:

assumes run: HORun UV-M rho HOs
and decide: decide (rho (Suc r) p) 6= decide (rho r p)

shows step r = 1
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〈proof 〉

No process ever decides None.
lemma decide-nonnull:

assumes run: HORun UV-M rho HOs
and decide: decide (rho (Suc r) p) 6= decide (rho r p)

shows decide (rho (Suc r) p) 6= None
〈proof 〉

If some process p votes for v at some round r, then any message that p
received in r was holding v as a value.
lemma msgs-unanimity:

assumes run: HORun UV-M rho HOs
and vote: vote (rho (Suc r) p) = Some v
and q: q ∈ msgRcvd (HOrcvdMsgs UV-M r p (HOs r p) (rho r))

(is - ∈ msgRcvd ?msgs)
shows getval (the (?msgs q)) = v
〈proof 〉

Any two processes can only vote for the same value.
lemma vote-agreement:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and p: vote (rho r p) = Some v
and q: vote (rho r q) = Some w

shows v = w
〈proof 〉

If a process decides value v then all processes must have v in their x fields.
lemma decide-equals-x:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and decide: decide (rho (Suc r) p) 6= decide (rho r p)
and decval: decide (rho (Suc r) p) = Some v

shows x (rho (Suc r) q) = v
〈proof 〉

If at some point all processes hold value v in their x fields, then this will
still be the case at the next step.
lemma same-x-stable:

assumes run: HORun UV-M rho HOs
and comm: ∀ r . HOcommPerRd UV-M (HOs r)
and x: ∀ p. x (rho r p) = v

shows x (rho (Suc r) q) = v
〈proof 〉

Combining the last two lemmas, it follows that as soon as some process
decides value v, all processes hold v in their x fields.
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lemma safety-argument:
assumes run: HORun UV-M rho HOs

and com: ∀ r . HOcommPerRd UV-M (HOs r)
and decide: decide (rho (Suc r) p) 6= decide (rho r p)
and decval: decide (rho (Suc r) p) = Some v

shows x (rho (Suc r+k) q) = v
〈proof 〉

Any process that holds a non-null decision value has made a decision some-
time in the past.
lemma decided-then-past-decision:

assumes run: HORun UV-M rho HOs
and dec: decide (rho n p) = Some v

shows ∃m<n. decide (rho (Suc m) p) 6= decide (rho m p)
∧ decide (rho (Suc m) p) = Some v

〈proof 〉

We can now prove the safety properties of the algorithm, and start with
proving Integrity.
lemma x-values-initial:

assumes run:HORun UV-M rho HOs
and com:∀ r . HOcommPerRd UV-M (HOs r)

shows ∃ q. x (rho r p) = x (rho 0 q)
〈proof 〉

theorem uv-integrity:
assumes run: HORun UV-M rho HOs

and com: ∀ r . HOcommPerRd UV-M (HOs r)
and dec: decide (rho r p) = Some v

shows ∃ q. v = x (rho 0 q)
〈proof 〉

We now turn to Agreement.
lemma two-decisions-agree:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and decidep: decide (rho (Suc r) p) 6= decide (rho r p)
and decvalp: decide (rho (Suc r) p) = Some v
and decideq: decide (rho (Suc (r+k)) q) 6= decide (rho (r+k) q)
and decvalq: decide (rho (Suc (r+k)) q) = Some w

shows v = w
〈proof 〉

theorem uv-agreement:
assumes run: HORun UV-M rho HOs

and com: ∀ r . HOcommPerRd UV-M (HOs r)
and p: decide (rho m p) = Some v
and q: decide (rho n q) = Some w
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shows v = w
〈proof 〉

Irrevocability is a consequence of Agreement and the fact that no process
can decide None.
theorem uv-irrevocability:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and p: decide (rho m p) = Some v

shows decide (rho (m+n) p) = Some v
〈proof 〉

6.6 Proof of Termination

Two processes having the same Heard-Of set at some round will hold the
same value in their x variable at the next round.
lemma hoeq-xeq:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and hoeq: HOs r p = HOs r q

shows x (rho (Suc r) p) = x (rho (Suc r) q)
〈proof 〉

We now prove that UniformVoting terminates.
theorem uv-termination:

assumes run: HORun UV-M rho HOs
and commR: ∀ r . HOcommPerRd UV-M (HOs r)
and commG: HOcommGlobal UV-M HOs

shows ∃ r v. decide (rho r p) = Some v
〈proof 〉

6.7 UniformVoting Solves Consensus

Summing up, all (coarse-grained) runs of UniformVoting for HO collections
that satisfy the communication predicate satisfy the Consensus property.
theorem uv-consensus:

assumes run: HORun UV-M rho HOs
and commR: ∀ r . HOcommPerRd UV-M (HOs r)
and commG: HOcommGlobal UV-M HOs

shows consensus (x ◦ (rho 0 )) decide rho
〈proof 〉

By the reduction theorem, the correctness of the algorithm carries over to
the fine-grained model of runs.
theorem uv-consensus-fg:

assumes run: fg-run UV-M rho HOs HOs (λr q. undefined)
and commR: ∀ r . HOcommPerRd UV-M (HOs r)
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and commG: HOcommGlobal UV-M HOs
shows consensus (λp. x (state (rho 0 ) p)) decide (state ◦ rho)
(is consensus ?inits - -)

〈proof 〉

end
theory LastVotingDefs
imports ../HOModel
begin

7 Verification of the LastVoting Consensus Algo-
rithm

The LastVoting algorithm can be considered as a representation of Lam-
port’s Paxos consensus algorithm [11] in the Heard-Of model. It is a co-
ordinated algorithm designed to tolerate benign failures. Following [7], we
formalize its proof of correctness in Isabelle, using the framework of theory
HOModel.

7.1 Model of the Algorithm

We begin by introducing an anonymous type of processes of finite cardinality
that will instantiate the type variable ′proc of the generic CHO model.
typedecl Proc — the set of processes
axiomatization where Proc-finite: OFCLASS(Proc, finite-class)
instance Proc :: finite 〈proof 〉

abbreviation
N ≡ card (UNIV ::Proc set) — number of processes

The algorithm proceeds in phases of 4 rounds each (we call steps the in-
dividual rounds that constitute a phase). The following utility functions
compute the phase and step of a round, given the round number.
definition phase where phase (r ::nat) ≡ r div 4

definition step where step (r ::nat) ≡ r mod 4

lemma phase-zero [simp]: phase 0 = 0
〈proof 〉

lemma step-zero [simp]: step 0 = 0
〈proof 〉

lemma phase-step: (phase r ∗ 4 ) + step r = r
〈proof 〉
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The following record models the local state of a process.
record ′val pstate =

x :: ′val — current value held by process
vote :: ′val option — value the process voted for, if any
commt :: bool — did the process commit to the vote?
ready :: bool — for coordinators: did the round finish successfully?
timestamp :: nat — time stamp of current value
decide :: ′val option — value the process has decided on, if any
coordΦ :: Proc — coordinator for current phase

Possible messages sent during the execution of the algorithm.
datatype ′val msg =

ValStamp ′val nat
| Vote ′val
| Ack
| Null — dummy message in case nothing needs to be sent

Characteristic predicates on messages.
definition isValStamp where isValStamp m ≡ ∃ v ts. m = ValStamp v ts

definition isVote where isVote m ≡ ∃ v. m = Vote v

definition isAck where isAck m ≡ m = Ack

Selector functions to retrieve components of messages. These functions have
a meaningful result only when the message is of an appropriate kind.
fun val where

val (ValStamp v ts) = v
| val (Vote v) = v

fun stamp where
stamp (ValStamp v ts) = ts

The x field of the initial state is unconstrained, all other fields are initialized
appropriately.
definition LV-initState where

LV-initState p st crd ≡
vote st = None
∧ ¬(commt st)
∧ ¬(ready st)
∧ timestamp st = 0
∧ decide st = None
∧ coordΦ st = crd

We separately define the transition predicates and the send functions for
each step and later combine them to define the overall next-state relation.
definition valStampsRcvd where
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valStampsRcvd (msgs :: Proc ⇀ ′val msg) ≡
{q . ∃ v ts. msgs q = Some (ValStamp v ts)}

definition highestStampRcvd where
highestStampRcvd msgs ≡
Max {ts . ∃ q v. (msgs::Proc ⇀ ′val msg) q = Some (ValStamp v ts)}

In step 0, each process sends its current x and timestamp values to its
coordinator.
A process that considers itself to be a coordinator updates its vote field if it
has received messages from a majority of processes. It then sets its commt
field to true.
definition send0 where

send0 r p q st ≡
if q = coordΦ st then ValStamp (x st) (timestamp st) else Null

definition next0 where
next0 r p st msgs crd st ′ ≡

if p = coordΦ st ∧ card (valStampsRcvd msgs) > N div 2
then (∃ p v. msgs p = Some (ValStamp v (highestStampRcvd msgs))

∧ st ′ = st (| vote := Some v, commt := True |) )
else st ′ = st

In step 1, coordinators that have committed send their vote to all processes.
Processes update their x and timestamp fields if they have received a vote
from their coordinator.
definition send1 where

send1 r p q st ≡
if p = coordΦ st ∧ commt st then Vote (the (vote st)) else Null

definition next1 where
next1 r p st msgs crd st ′ ≡
if msgs (coordΦ st) 6= None ∧ isVote (the (msgs (coordΦ st)))
then st ′ = st (| x := val (the (msgs (coordΦ st))), timestamp := Suc(phase r) |)
else st ′ = st

In step 2, processes that have current timestamps send an acknowledgement
to their coordinator.
A coordinator sets its ready field to true if it receives a majority of acknowl-
edgements.
definition send2 where

send2 r p q st ≡
if timestamp st = Suc(phase r) ∧ q = coordΦ st then Ack else Null

— processes from which an acknowledgement was received
definition acksRcvd where

acksRcvd (msgs :: Proc ⇀ ′val msg) ≡
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{ q . msgs q 6= None ∧ isAck (the (msgs q)) }

definition next2 where
next2 r p st msgs crd st ′ ≡
if p = coordΦ st ∧ card (acksRcvd msgs) > N div 2
then st ′ = st (| ready := True |)
else st ′ = st

In step 3, coordinators that are ready send their vote to all processes.
Processes that received a vote from their coordinator decide on that value.
Coordinators reset their ready and commt fields to false. All processes reset
the coordinators as indicated by the parameter of the operator.
definition send3 where

send3 r p q st ≡
if p = coordΦ st ∧ ready st then Vote (the (vote st)) else Null

definition next3 where
next3 r p st msgs crd st ′ ≡

(if msgs (coordΦ st) 6= None ∧ isVote (the (msgs (coordΦ st)))
then decide st ′ = Some (val (the (msgs (coordΦ st))))
else decide st ′ = decide st)

∧ (if p = coordΦ st
then ¬(ready st ′) ∧ ¬(commt st ′)
else ready st ′ = ready st ∧ commt st ′ = commt st)

∧ x st ′ = x st
∧ vote st ′ = vote st
∧ timestamp st ′ = timestamp st
∧ coordΦ st ′ = crd

The overall send function and next-state relation are simply obtained as the
composition of the individual relations defined above.
definition LV-sendMsg :: nat ⇒ Proc ⇒ Proc ⇒ ′val pstate ⇒ ′val msg where

LV-sendMsg (r ::nat) ≡
if step r = 0 then send0 r
else if step r = 1 then send1 r
else if step r = 2 then send2 r
else send3 r

definition
LV-nextState :: nat ⇒ Proc ⇒ ′val pstate ⇒ (Proc ⇀ ′val msg)

⇒ Proc ⇒ ′val pstate ⇒ bool
where
LV-nextState r ≡
if step r = 0 then next0 r
else if step r = 1 then next1 r
else if step r = 2 then next2 r
else next3 r
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7.2 Communication Predicate for LastVoting

We now define the communication predicate that will be assumed for the
correctness proof of the LastVoting algorithm. The “per-round” part is
trivial: integrity and agreement are always ensured.
For the “global” part, Charron-Bost and Schiper propose a predicate that
requires the existence of infinitely many phases ph such that:

• all processes agree on the same coordinator c,

• c hears from a strict majority of processes in steps 0 and 2 of phase
ph, and

• every process hears from c in steps 1 and 3 (this is slightly weaker
than the predicate that appears in [7], but obviously sufficient).

Instead of requiring infinitely many such phases, we only assume the exis-
tence of one such phase (Charron-Bost and Schiper note that this is enough.)
definition

LV-commPerRd where
LV-commPerRd r (HO::Proc HO) (coord::Proc coord) ≡ True

definition
LV-commGlobal where
LV-commGlobal HOs coords ≡
∃ ph::nat. ∃ c::Proc.

(∀ p. coords (4∗ph) p = c)
∧ card (HOs (4∗ph) c) > N div 2
∧ card (HOs (4∗ph+2 ) c) > N div 2
∧ (∀ p. c ∈ HOs (4∗ph+1 ) p ∩ HOs (4∗ph+3 ) p)

7.3 The LastVoting Heard-Of Machine

We now define the coordinated HO machine for the LastVoting algorithm
by assembling the algorithm definition and its communication-predicate.
definition LV-CHOMachine where

LV-CHOMachine ≡
(| CinitState = LV-initState,

sendMsg = LV-sendMsg,
CnextState = LV-nextState,
CHOcommPerRd = LV-commPerRd,
CHOcommGlobal = LV-commGlobal |)

abbreviation
LV-M ≡ (LV-CHOMachine::(Proc, ′val pstate, ′val msg) CHOMachine)

end
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theory LastVotingProof
imports LastVotingDefs ../Majorities ../Reduction
begin

7.4 Preliminary Lemmas

We begin by proving some simple lemmas about the utility functions used
in the model of LastVoting. We also specialize the induction rules of the
generic CHO model for this particular algorithm.
lemma timeStampsRcvdFinite:

finite {ts . ∃ q v. (msgs::Proc ⇀ ′val msg) q = Some (ValStamp v ts)}
(is finite ?ts)
〈proof 〉

lemma highestStampRcvd-exists:
assumes nempty: valStampsRcvd msgs 6= {}
obtains p v where msgs p = Some (ValStamp v (highestStampRcvd msgs))
〈proof 〉

lemma highestStampRcvd-max:
assumes msgs p = Some (ValStamp v ts)
shows ts ≤ highestStampRcvd msgs
〈proof 〉

lemma phase-Suc:
phase (Suc r) = (if step r = 3 then Suc (phase r)

else phase r)
〈proof 〉

Many proofs are by induction on runs of the LastVoting algorithm, and we
derive a specific induction rule to support these proofs.
lemma LV-induct:

assumes run: CHORun LV-M rho HOs coords
and init: ∀ p. CinitState LV-M p (rho 0 p) (coords 0 p) =⇒ P 0
and step0 :

∧
r .
[[ step r = 0 ; P r ; phase (Suc r) = phase r ; step (Suc r) = 1 ;
∀ p. next0 r p (rho r p)

(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p)
(rho (Suc r) p) ]]

=⇒ P (Suc r)
and step1 :

∧
r .
[[ step r = 1 ; P r ; phase (Suc r) = phase r ; step (Suc r) = 2 ;
∀ p. next1 r p (rho r p)

(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p)
(rho (Suc r) p) ]]

=⇒ P (Suc r)
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and step2 :
∧

r .
[[ step r = 2 ; P r ; phase (Suc r) = phase r ; step (Suc r) = 3 ;
∀ p. next2 r p (rho r p)

(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p)
(rho (Suc r) p) ]]

=⇒ P (Suc r)
and step3 :

∧
r .

[[ step r = 3 ; P r ; phase (Suc r) = Suc (phase r); step (Suc r) = 0 ;
∀ p. next3 r p (rho r p)

(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p)
(rho (Suc r) p) ]]

=⇒ P (Suc r)
shows P n
〈proof 〉

The following rule similarly establishes a property of two successive config-
urations of a run by case distinction on the step that was executed.
lemma LV-Suc:

assumes run: CHORun LV-M rho HOs coords
and step0 : [[ step r = 0 ; step (Suc r) = 1 ; phase (Suc r) = phase r ;

∀ p. next0 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p) ]]

=⇒ P r
and step1 : [[ step r = 1 ; step (Suc r) = 2 ; phase (Suc r) = phase r ;

∀ p. next1 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p) ]]

=⇒ P r
and step2 : [[ step r = 2 ; step (Suc r) = 3 ; phase (Suc r) = phase r ;

∀ p. next2 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p) ]]

=⇒ P r
and step3 : [[ step r = 3 ; step (Suc r) = 0 ; phase (Suc r) = Suc (phase r);

∀ p. next3 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p) ]]

=⇒ P r
shows P r
〈proof 〉

Sometimes the assertion to prove talks about a specific process and follows
from the next-state relation of that particular process. We prove corre-
sponding variants of the induction and case-distinction rules. When these
variants are applicable, they help automating the Isabelle proof.
lemma LV-induct ′:
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assumes run: CHORun LV-M rho HOs coords
and init: CinitState LV-M p (rho 0 p) (coords 0 p) =⇒ P p 0
and step0 :

∧
r . [[ step r = 0 ; P p r ; phase (Suc r) = phase r ; step (Suc r) = 1 ;

next0 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p) ]]

=⇒ P p (Suc r)
and step1 :

∧
r . [[ step r = 1 ; P p r ; phase (Suc r) = phase r ; step (Suc r) = 2 ;

next1 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p) ]]

=⇒ P p (Suc r)
and step2 :

∧
r . [[ step r = 2 ; P p r ; phase (Suc r) = phase r ; step (Suc r) = 3 ;

next2 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p) ]]

=⇒ P p (Suc r)
and step3 :

∧
r . [[ step r = 3 ; P p r ; phase (Suc r) = Suc (phase r); step (Suc r)

= 0 ;
next3 r p (rho r p)

(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p) ]]

=⇒ P p (Suc r)
shows P p n
〈proof 〉

lemma LV-Suc ′:
assumes run: CHORun LV-M rho HOs coords
and step0 : [[ step r = 0 ; step (Suc r) = 1 ; phase (Suc r) = phase r ;

next0 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p) ]]

=⇒ P p r
and step1 : [[ step r = 1 ; step (Suc r) = 2 ; phase (Suc r) = phase r ;

next1 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p) ]]

=⇒ P p r
and step2 : [[ step r = 2 ; step (Suc r) = 3 ; phase (Suc r) = phase r ;

next2 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p) ]]

=⇒ P p r
and step3 : [[ step r = 3 ; step (Suc r) = 0 ; phase (Suc r) = Suc (phase r);

next3 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p) ]]

=⇒ P p r
shows P p r
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〈proof 〉

7.5 Boundedness and Monotonicity of Timestamps

The timestamp of any process is bounded by the current phase.
lemma LV-timestamp-bounded:

assumes run: CHORun LV-M rho HOs coords
shows timestamp (rho n p) ≤ (if step n < 2 then phase n else Suc (phase n))

(is ?P p n)
〈proof 〉

Moreover, timestamps can only grow over time.
lemma LV-timestamp-increasing:

assumes run: CHORun LV-M rho HOs coords
shows timestamp (rho n p) ≤ timestamp (rho (Suc n) p)
(is ?P p n is ?ts ≤ -)

〈proof 〉

lemma LV-timestamp-monotonic:
assumes run: CHORun LV-M rho HOs coords and le: m ≤ n
shows timestamp (rho m p) ≤ timestamp (rho n p)
(is ?ts m ≤ -)

〈proof 〉

The following definition collects the set of processes whose timestamp is
beyond a given bound at a system state.
definition procsBeyondTS where

procsBeyondTS ts cfg ≡ { p . ts ≤ timestamp (cfg p) }

Since timestamps grow monotonically, so does the set of processes that are
beyond a certain bound.
lemma procsBeyondTS-monotonic:

assumes run: CHORun LV-M rho HOs coords
and p: p ∈ procsBeyondTS ts (rho m) and le: m ≤ n

shows p ∈ procsBeyondTS ts (rho n)
〈proof 〉

7.6 Obvious Facts About the Algorithm

The following lemmas state some very obvious facts that follow “immedi-
ately” from the definition of the algorithm. We could prove them in one fell
swoop by defining a big invariant, but it appears more readable to prove
them separately.

Coordinators change only at step 3.
lemma notStep3EqualCoord:

assumes run: CHORun LV-M rho HOs coords and stp:step r 6= 3
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shows coordΦ (rho (Suc r) p) = coordΦ (rho r p) (is ?P p r)
〈proof 〉

lemma coordinators:
assumes run: CHORun LV-M rho HOs coords
shows coordΦ (rho r p) = coords (4∗(phase r)) p
〈proof 〉

Votes only change at step 0.
lemma notStep0EqualVote [rule-format]:

assumes run: CHORun LV-M rho HOs coords
shows step r 6= 0 −→ vote (rho (Suc r) p) = vote (rho r p) (is ?P p r)
〈proof 〉

Commit status only changes at steps 0 and 3.
lemma notStep03EqualCommit [rule-format]:

assumes run: CHORun LV-M rho HOs coords
shows step r 6= 0 ∧ step r 6= 3 −→ commt (rho (Suc r) p) = commt (rho r p)

(is ?P p r)
〈proof 〉

Timestamps only change at step 1.
lemma notStep1EqualTimestamp [rule-format]:

assumes run: CHORun LV-M rho HOs coords
shows step r 6= 1 −→ timestamp (rho (Suc r) p) = timestamp (rho r p)

(is ?P p r)
〈proof 〉

The x field only changes at step 1.
lemma notStep1EqualX [rule-format]:

assumes run: CHORun LV-M rho HOs coords
shows step r 6= 1 −→ x (rho (Suc r) p) = x (rho r p) (is ?P p r)
〈proof 〉

A process p has its commt flag set only if the following conditions hold:

• the step number is at least 1,

• p considers itself to be the coordinator,

• p has a non-null vote,

• a majority of processes consider p as their coordinator.

lemma commitE :
assumes run: CHORun LV-M rho HOs coords and cmt: commt (rho r p)
and conds: [[ 1 ≤ step r ; coordΦ (rho r p) = p; vote (rho r p) 6= None;

card {q . coordΦ (rho r q) = p} > N div 2
]] =⇒ A
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shows A
〈proof 〉

A process has a current timestamp only if:

• it is at step 2 or beyond,

• its coordinator has committed,

• its x value is the vote of its coordinator.

lemma currentTimestampE :
assumes run: CHORun LV-M rho HOs coords
and ts: timestamp (rho r p) = Suc (phase r)
and conds: [[ 2 ≤ step r ;

commt (rho r (coordΦ (rho r p)));
x (rho r p) = the (vote (rho r (coordΦ (rho r p))))

]] =⇒ A
shows A
〈proof 〉

If a process p has its ready bit set then:

• it is at step 3,

• it considers itself to be the coordinator of that phase and

• a majority of processes considers p to be the coordinator and has a
current timestamp.

lemma readyE :
assumes run: CHORun LV-M rho HOs coords and rdy: ready (rho r p)
and conds: [[ step r = 3 ; coordΦ (rho r p) = p;

card { q . coordΦ (rho r q) = p
∧ timestamp (rho r q) = Suc (phase r) } > N div 2

]] =⇒ P
shows P
〈proof 〉

A process decides only if the following conditions hold:

• it is at step 3,

• its coordinator votes for the value the process decides on,

• the coordinator has its ready and commt bits set.

lemma decisionE :
assumes run: CHORun LV-M rho HOs coords
and dec: decide (rho (Suc r) p) 6= decide (rho r p)
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and conds: [[
step r = 3 ;
decide (rho (Suc r) p) = Some (the (vote (rho r (coordΦ (rho r p)))));
ready (rho r (coordΦ (rho r p))); commt (rho r (coordΦ (rho r p)))

]] =⇒ P
shows P
〈proof 〉

7.7 Proof of Integrity

Integrity is proved using a standard invariance argument that asserts that
only values present in the initial state appear in the relevant fields.
lemma lv-integrityInvariant:

assumes run: CHORun LV-M rho HOs coords
and inv: [[ range (x ◦ (rho n)) ⊆ range (x ◦ (rho 0 ));

range (vote ◦ (rho n)) ⊆ {None} ∪ Some ‘ range (x ◦ (rho 0 ));
range (decide ◦ (rho n)) ⊆ {None} ∪ Some ‘ range (x ◦ (rho 0 ))

]] =⇒ A
shows A
〈proof 〉

Integrity now follows immediately.
theorem lv-integrity:

assumes run: CHORun LV-M rho HOs coords
and dec: decide (rho n p) = Some v

shows ∃ q. v = x (rho 0 q)
〈proof 〉

7.8 Proof of Agreement and Irrevocability

The following lemmas closely follow a hand proof provided by Bernadette
Charron-Bost.
If a process decides, then a majority of processes have a current timestamp.
lemma decisionThenMajorityBeyondTS :

assumes run: CHORun LV-M rho HOs coords
and dec: decide (rho (Suc r) p) 6= decide (rho r p)
shows card (procsBeyondTS (Suc (phase r)) (rho r)) > N div 2
〈proof 〉

No two different processes have their commit flag set at any state.
lemma committedProcsEqual:

assumes run: CHORun LV-M rho HOs coords
and cmt: commt (rho r p) and cmt ′: commt (rho r p ′)
shows p = p ′

〈proof 〉

No two different processes have their ready flag set at any state.
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lemma readyProcsEqual:
assumes run: CHORun LV-M rho HOs coords
and rdy: ready (rho r p) and rdy ′: ready (rho r p ′)
shows p = p ′

〈proof 〉

The following lemma asserts that whenever a process p commits at a state
where a majority of processes have a timestamp beyond ts, then p votes for
a value held by some process whose timestamp is beyond ts.
lemma commitThenVoteRecent:

assumes run: CHORun LV-M rho HOs coords
and maj: card (procsBeyondTS ts (rho r)) > N div 2
and cmt: commt (rho r p)
shows ∃ q ∈ procsBeyondTS ts (rho r). vote (rho r p) = Some (x (rho r q))

(is ?Q r)
〈proof 〉

The following lemma gives the crucial argument for agreement: after some
process p has decided, all processes whose timestamp is beyond the times-
tamp at the point of decision contain the decision value in their x field.
lemma XOfTimestampBeyondDecision:

assumes run: CHORun LV-M rho HOs coords
and dec: decide (rho (Suc r) p) 6= decide (rho r p)

shows ∀ q ∈ procsBeyondTS (Suc (phase r)) (rho (r+k)).
x (rho (r+k) q) = the (decide (rho (Suc r) p))

(is ∀ q ∈ ?bynd k. - = ?v is ?P p k)
〈proof 〉

We are now in position to prove Agreement: if some process decides at step
r and another (or possibly the same) process decides at step r+k then they
decide the same value.
lemma laterProcessDecidesSameValue:

assumes run: CHORun LV-M rho HOs coords
and p: decide (rho (Suc r) p) 6= decide (rho r p)
and q: decide (rho (Suc (r+k)) q) 6= decide (rho (r+k) q)
shows decide (rho (Suc (r+k)) q) = decide (rho (Suc r) p)
〈proof 〉

A process that holds some decision v has decided v sometime in the past.
lemma decisionNonNullThenDecided:

assumes run: CHORun LV-M rho HOs coords
and dec: decide (rho n p) = Some v

shows ∃m<n. decide (rho (Suc m) p) 6= decide (rho m p)
∧ decide (rho (Suc m) p) = Some v

〈proof 〉

Irrevocability and Agreement are straightforward consequences of the two
preceding lemmas.
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theorem lv-irrevocability:
assumes run: CHORun LV-M rho HOs coords

and p: decide (rho m p) = Some v
shows decide (rho (m+k) p) = Some v
〈proof 〉

theorem lv-agreement:
assumes run: CHORun LV-M rho HOs coords

and p: decide (rho m p) = Some v
and q: decide (rho n q) = Some w

shows v = w
〈proof 〉

7.9 Proof of Termination

The proof of termination relies on the communication predicate, which stip-
ulates the existence of some phase during which there is a single coordinator
that (a) receives a majority of messages and (b) is heard by everybody.
Therefore, all processes successfully execute the protocol, deciding at step 3
of that phase.
theorem lv-termination:

assumes run: CHORun LV-M rho HOs coords
and commG:CHOcommGlobal LV-M HOs coords

shows ∃ r . ∀ p. decide (rho r p) 6= None
〈proof 〉

7.10 LastVoting Solves Consensus

Summing up, all (coarse-grained) runs of LastVoting for HO collections that
satisfy the communication predicate satisfy the Consensus property.
theorem lv-consensus:

assumes run: CHORun LV-M rho HOs coords
and commG: CHOcommGlobal LV-M HOs coords

shows consensus (x ◦ (rho 0 )) decide rho
〈proof 〉

By the reduction theorem, the correctness of the algorithm carries over to
the fine-grained model of runs.
theorem lv-consensus-fg:

assumes run: fg-run LV-M rho HOs HOs coords
and commG: CHOcommGlobal LV-M HOs coords

shows consensus (λp. x (state (rho 0 ) p)) decide (state ◦ rho)
(is consensus ?inits - -)

〈proof 〉

end
theory UteDefs
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imports ../HOModel
begin

8 Verification of the UT,E,α Consensus Algorithm

Algorithm UT,E,α is presented in [3]. It is an uncoordinated algorithm that
tolerates value (a.k.a. Byzantine) faults, and can be understood as a variant
of UniformVoting. The parameters T , E, and α appear as thresholds of the
algorithm and in the communication predicates. Their values can be chosen
within certain bounds in order to adapt the algorithm to the characteristics
of different systems.
We formalize in Isabelle the correctness proof of the algorithm that appears
in [3], using the framework of theory HOModel.

8.1 Model of the Algorithm

We begin by introducing an anonymous type of processes of finite cardinality
that will instantiate the type variable ′proc of the generic HO model.
typedecl Proc — the set of processes
axiomatization where Proc-finite: OFCLASS(Proc, finite-class)
instance Proc :: finite 〈proof 〉

abbreviation
N ≡ card (UNIV ::Proc set) — number of processes

The algorithm proceeds in phases of 2 rounds each (we call steps the in-
dividual rounds that constitute a phase). The following utility functions
compute the phase and step of a round, given the round number.
abbreviation
nSteps ≡ 2

definition phase where phase (r ::nat) ≡ r div nSteps
definition step where step (r ::nat) ≡ r mod nSteps

lemma phase-zero [simp]: phase 0 = 0
〈proof 〉

lemma step-zero [simp]: step 0 = 0
〈proof 〉

lemma phase-step: (phase r ∗ nSteps) + step r = r
〈proof 〉

The following record models the local state of a process.
record ′val pstate =

x :: ′val — current value held by process
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vote :: ′val option — value the process voted for, if any
decide :: ′val option — value the process has decided on, if any

Possible messages sent during the execution of the algorithm.
datatype ′val msg =

Val ′val
| Vote ′val option

The x field of the initial state is unconstrained, all other fields are initialized
appropriately.
definition Ute-initState where

Ute-initState p st ≡
(vote st = None) ∧ (decide st = None)

The following locale introduces the parameters used for the UT,E,α algorithm
and their constraints [3].
locale ute-parameters =

fixes α::nat and T ::nat and E ::nat
assumes majE : 2∗E ≥ N + 2∗α

and majT : 2∗T ≥ N + 2∗α
and EltN : E < N
and TltN : T < N

begin

Simple consequences of the above parameter constraints.
lemma alpha-lt-N : α < N
〈proof 〉

lemma alpha-lt-T : α < T
〈proof 〉

lemma alpha-lt-E : α < E
〈proof 〉

We separately define the transition predicates and the send functions for
each step and later combine them to define the overall next-state relation.

In step 0, each process sends its current x. If it receives the value v more
than T times, it votes for v, otherwise it doesn’t vote.
definition

send0 :: nat ⇒ Proc ⇒ Proc ⇒ ′val pstate ⇒ ′val msg
where

send0 r p q st ≡ Val (x st)

definition
next0 :: nat ⇒ Proc ⇒ ′val pstate ⇒ (Proc ⇒ ′val msg option)

⇒ ′val pstate ⇒ bool
where
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next0 r p st msgs st ′ ≡
(∃ v. card {q. msgs q = Some (Val v)} > T ∧ st ′ = st (| vote := Some v |))
∨ ¬(∃ v. card {q. msgs q = Some (Val v)} > T ) ∧ st ′ = st (| vote := None |)

In step 1, each process sends its current vote.
If it receives more than α votes for a given value v, it sets its x field to v,
else it sets x to a default value.
If the process receives more than E votes for v, it decides v, otherwise it
leaves its decision unchanged.
definition

send1 :: nat ⇒ Proc ⇒ Proc ⇒ ′val pstate ⇒ ′val msg
where

send1 r p q st ≡ Vote (vote st)

definition
next1 :: nat ⇒ Proc ⇒ ′val pstate ⇒ (Proc ⇒ ′val msg option)

⇒ ′val pstate ⇒ bool
where

next1 r p st msgs st ′ ≡
( (∃ v. card {q. msgs q = Some (Vote (Some v))} > α ∧ x st ′ = v)
∨ ¬(∃ v. card {q. msgs q = Some (Vote (Some v))} > α)
∧ x st ′ = undefined )

∧ ( (∃ v. card {q. msgs q = Some (Vote (Some v))} > E ∧ decide st ′ = Some v)
∨ ¬(∃ v. card {q. msgs q = Some (Vote (Some v))} > E)
∧ decide st ′ = decide st )

∧ vote st ′ = None

The overall send function and next-state relation are simply obtained as the
composition of the individual relations defined above.
definition

Ute-sendMsg :: nat ⇒ Proc ⇒ Proc ⇒ ′val pstate ⇒ ′val msg
where

Ute-sendMsg (r ::nat) ≡ if step r = 0 then send0 r else send1 r

definition
Ute-nextState :: nat ⇒ Proc ⇒ ′val pstate ⇒ (Proc ⇒ ′val msg option)

⇒ ′val pstate ⇒ bool
where

Ute-nextState r ≡ if step r = 0 then next0 r else next1 r

8.2 Communication Predicate for UT,E,α

Following [3], we now define the communication predicate for the UT,E,α

algorithm to be correct.
The round-by-round predicate stipulates the following conditions:

• no process may receive more than α corrupted messages, and
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• every process should receive more than max(T , N + 2∗α − E − 1 )
correct messages.

[3] also requires that every process should receive more than α correct mes-
sages, but this is implied, since T > α (cf. lemma alpha-lt-T ).
definition Ute-commPerRd where

Ute-commPerRd HOrs SHOrs ≡
∀ p. card (HOrs p − SHOrs p) ≤ α
∧ card (SHOrs p ∩ HOrs p) > N + 2∗α − E − 1
∧ card (SHOrs p ∩ HOrs p) > T

The global communication predicate requires there exists some phase Φ such
that:

• all HO and SHO sets of all processes are equal in the second step
of phase Φ, i.e. all processes receive messages from the same set of
processes, and none of these messages is corrupted,

• every process receives more than T correct messages in the first step
of phase Φ+1, and

• every process receives more than E correct messages in the second step
of phase Φ+1.

The predicate in the article [3] requires infinitely many such phases, but one
is clearly enough.
definition Ute-commGlobal where

Ute-commGlobal HOs SHOs ≡
∃Φ. (let r = Suc (nSteps∗Φ)

in (∃π. ∀ p. π = HOs r p ∧ π = SHOs r p)
∧ (∀ p. card (SHOs (Suc r) p ∩ HOs (Suc r) p) > T )
∧ (∀ p. card (SHOs (Suc (Suc r)) p ∩ HOs (Suc (Suc r)) p) > E))

8.3 The UT,E,α Heard-Of Machine

We now define the coordinated HO machine for the UT,E,α algorithm by
assembling the algorithm definition and its communication-predicate.
definition Ute-SHOMachine where

Ute-SHOMachine = (|
CinitState = (λ p st crd. Ute-initState p st),
sendMsg = Ute-sendMsg,
CnextState = (λ r p st msgs crd st ′. Ute-nextState r p st msgs st ′),
SHOcommPerRd = Ute-commPerRd,
SHOcommGlobal = Ute-commGlobal
|)

abbreviation
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Ute-M ≡ (Ute-SHOMachine::(Proc, ′val pstate, ′val msg) SHOMachine)

end — locale ute-parameters

end
theory UteProof
imports UteDefs ../Majorities ../Reduction
begin

context ute-parameters
begin

8.4 Preliminary Lemmas

Processes can make a vote only at first round of each phase.
lemma vote-step:

assumes nxt: nextState Ute-M r p (rho r p) µ (rho (Suc r) p)
and vote (rho (Suc r) p) 6= None
shows step r = 0
〈proof 〉

Processes can make a new decision only at second round of each phase.
lemma decide-step:

assumes run: SHORun Ute-M rho HOs SHOs
and d1 : decide (rho r p) 6= Some v
and d2 : decide (rho (Suc r) p) = Some v
shows step r 6= 0
〈proof 〉

lemma unique-majority-E :
assumes majv: card {qq::Proc. F qq = Some m} > E
and majw: card {qq::Proc. F qq = Some m ′} > E
shows m = m ′

〈proof 〉

lemma unique-majority-E-α:
assumes majv: card {qq::Proc. F qq = m} > E − α
and majw: card {qq::Proc. F qq = m ′} > E − α
shows m = m ′

〈proof 〉

lemma unique-majority-T :
assumes majv: card {qq::Proc. F qq = Some m} > T
and majw: card {qq::Proc. F qq = Some m ′} > T
shows m = m ′

〈proof 〉

No two processes may vote for different values in the same round.
lemma common-vote:
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assumes usafe: SHOcommPerRd Ute-M HO SHO
and nxtp: nextState Ute-M r p (rho r p) µp (rho (Suc r) p)
and mup: µp ∈ SHOmsgVectors Ute-M r p (rho r) (HO p) (SHO p)
and nxtq: nextState Ute-M r q (rho r q) µq (rho (Suc r) q)
and muq: µq ∈ SHOmsgVectors Ute-M r q (rho r) (HO q) (SHO q)
and vp: vote (rho (Suc r) p) = Some vp
and vq: vote (rho (Suc r) q) = Some vq
shows vp = vq
〈proof 〉

No decision may be taken by a process unless it received enough messages
holding the same value.
lemma decide-with-threshold-E :

assumes run: SHORun Ute-M rho HOs SHOs
and usafe: SHOcommPerRd Ute-M (HOs r) (SHOs r)
and d1 : decide (rho r p) 6= Some v
and d2 : decide (rho (Suc r) p) = Some v
shows card {q. sendMsg Ute-M r q p (rho r q) = Vote (Some v)}

> E − α
〈proof 〉

8.5 Proof of Agreement and Validity

If more than E − α messages holding v are sent to some process p at round
r, then every process pp correctly receives more than α such messages.
lemma common-x-argument-1 :

assumes usafe:SHOcommPerRd Ute-M (HOs (Suc r)) (SHOs (Suc r))
and threshold: card {q. sendMsg Ute-M (Suc r) q p (rho (Suc r) q)

= Vote (Some v)} > E − α
(is card (?msgs p v) > -)

shows card (?msgs pp v ∩ (SHOs (Suc r) pp ∩ HOs (Suc r) pp)) > α
〈proof 〉

If more than E − α messages holding v are sent to p at some round r, then
any process pp will set its x to value v in r.
lemma common-x-argument-2 :

assumes run: SHORun Ute-M rho HOs SHOs
and usafe: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and nxtpp: nextState Ute-M (Suc r) pp (rho (Suc r) pp)

µpp (rho (Suc (Suc r)) pp)
and mupp: µpp ∈ SHOmsgVectors Ute-M (Suc r) pp (rho (Suc r))

(HOs (Suc r) pp) (SHOs (Suc r) pp)
and threshold: card {q. sendMsg Ute-M (Suc r) q p (rho (Suc r) q)

= Vote (Some v)} > E − α
(is card (?sent p v) > -)

shows x (rho (Suc (Suc r)) pp) = v
〈proof 〉
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Inductive argument for the agreement and validity theorems.
lemma safety-inductive-argument:

assumes run: SHORun Ute-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and ih: E − α < card {q. sendMsg Ute-M r ′ q p (rho r ′ q) = Vote (Some v)}
and stp1 : step r ′ = Suc 0
shows E − α <

card {q. sendMsg Ute-M (Suc (Suc r ′)) q p (rho (Suc (Suc r ′)) q)
= Vote (Some v)}

〈proof 〉

A process that holds some decision v has decided v sometime in the past.
lemma decisionNonNullThenDecided:

assumes run:SHORun Ute-M rho HOs SHOs and dec: decide (rho n p) = Some
v

shows ∃m<n. decide (rho (Suc m) p) 6= decide (rho m p)
∧ decide (rho (Suc m) p) = Some v

〈proof 〉

If process p1 has decided value v1 and process p2 later decides, then p2
must decide v1.
lemma laterProcessDecidesSameValue:

assumes run:SHORun Ute-M rho HOs SHOs
and comm:∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and dv1 :decide (rho (Suc r) p1 ) = Some v1
and dn2 :decide (rho (r + k) p2 ) 6= Some v2
and dv2 :decide (rho (Suc (r + k)) p2 ) = Some v2
shows v2 = v1
〈proof 〉

The Agreement property is an immediate consequence of the two preceding
lemmas.
theorem ute-agreement:

assumes run: SHORun Ute-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and p: decide (rho m p) = Some v
and q: decide (rho n q) = Some w
shows v = w
〈proof 〉

Main lemma for the proof of the Validity property.
lemma validity-argument:

assumes run: SHORun Ute-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and init: ∀ p. x ((rho 0 ) p) = v
and dw: decide (rho r p) = Some w
and stp: step r ′ = Suc 0
shows card {q. sendMsg Ute-M r ′ q p (rho r ′ q) = Vote (Some v)} > E − α
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〈proof 〉

The following theorem shows the Validity property of algorithm UT,E,α.
theorem ute-validity:

assumes run: SHORun Ute-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and init: ∀ p. x (rho 0 p) = v
and dw: decide (rho r p) = Some w
shows v = w
〈proof 〉

8.6 Proof of Termination

At the second round of a phase that satisfies the conditions expressed in the
global communication predicate, processes update their x variable with the
value v they receive in more than α messages.
lemma set-x-from-vote:

assumes run: SHORun Ute-M rho HOs SHOs
and comm: SHOcommPerRd Ute-M (HOs r) (SHOs r)
and stp: step (Suc r) = Suc 0
and π: ∀ p. HOs (Suc r) p = SHOs (Suc r) p
and nxt: nextState Ute-M (Suc r) p (rho (Suc r) p) µ (rho (Suc (Suc r)) p)
and mu: µ ∈ SHOmsgVectors Ute-M (Suc r) p (rho (Suc r))

(HOs (Suc r) p) (SHOs (Suc r) p)
and vp: α < card {qq. µ qq = Some (Vote (Some v))}
shows x ((rho (Suc (Suc r))) p) = v
〈proof 〉

Assume that HO and SHO sets are uniform at the second step of some
phase. Then at the subsequent round there exists some value v such that
any received message which is not corrupted holds v.
lemma termination-argument-1 :

assumes run: SHORun Ute-M rho HOs SHOs
and comm: SHOcommPerRd Ute-M (HOs r) (SHOs r)
and stp: step (Suc r) = Suc 0
and π: ∀ p. π0 = HOs (Suc r) p ∧ π0 = SHOs (Suc r) p
obtains v where∧

p µp ′ q.
[[ q ∈ SHOs (Suc (Suc r)) p ∩ HOs (Suc (Suc r)) p;
µp ′ ∈ SHOmsgVectors Ute-M (Suc (Suc r)) p (rho (Suc (Suc r)))

(HOs (Suc (Suc r)) p) (SHOs (Suc (Suc r)) p)
]] =⇒ µp ′ q = (Some (Val v))

〈proof 〉

If a process p votes v at some round r, then all messages received by p in r
that are not corrupted hold v.
lemma termination-argument-2 :
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assumes mup: µp ∈ SHOmsgVectors Ute-M (Suc r) p (rho (Suc r))
(HOs (Suc r) p) (SHOs (Suc r) p)

and nxtq: nextState Ute-M r q (rho r q) µq (rho (Suc r) q)
and vq: vote (rho (Suc r) q) = Some v
and qsho: q ∈ SHOs (Suc r) p ∩ HOs (Suc r) p
shows µp q = Some (Vote (Some v))
〈proof 〉

We now prove the Termination property.
theorem ute-termination:

assumes run: SHORun Ute-M rho HOs SHOs
and commR: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and commG: SHOcommGlobal Ute-M HOs SHOs
shows ∃ r v. decide (rho r p) = Some v
〈proof 〉

8.7 UT,E,α Solves Weak Consensus

Summing up, all (coarse-grained) runs of UT,E,α for HO and SHO collec-
tions that satisfy the communication predicate satisfy the Weak Consensus
property.
theorem ute-weak-consensus:

assumes run: SHORun Ute-M rho HOs SHOs
and commR: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and commG: SHOcommGlobal Ute-M HOs SHOs

shows weak-consensus (x ◦ (rho 0 )) decide rho
〈proof 〉

By the reduction theorem, the correctness of the algorithm carries over to
the fine-grained model of runs.
theorem ute-weak-consensus-fg:

assumes run: fg-run Ute-M rho HOs SHOs (λr q. undefined)
and commR: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and commG: SHOcommGlobal Ute-M HOs SHOs

shows weak-consensus (λp. x (state (rho 0 ) p)) decide (state ◦ rho)
(is weak-consensus ?inits - -)

〈proof 〉

end — context ute-parameters

end
theory AteDefs
imports ../HOModel
begin
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9 Verification of the AT,E,α Consensus algorithm

Algorithm AT,E,α is presented in [3]. Like UT,E,α, it is an uncoordinated
algorithm that tolerates value faults, and it is parameterized by values T ,
E, and α that serve a similar function as in UT,E,α, allowing the algorithm
to be adapted to the characteristics of different systems. AT,E,α can be
understood as a variant of OneThirdRule tolerating Byzantine faults.
We formalize in Isabelle the correctness proof of the algorithm that appears
in [3], using the framework of theory HOModel.

9.1 Model of the Algorithm

We begin by introducing an anonymous type of processes of finite cardinality
that will instantiate the type variable ′proc of the generic HO model.
typedecl Proc — the set of processes
axiomatization where Proc-finite: OFCLASS(Proc, finite-class)
instance Proc :: finite 〈proof 〉

abbreviation
N ≡ card (UNIV ::Proc set) — number of processes

The following record models the local state of a process.
record ′val pstate =

x :: ′val — current value held by process
decide :: ′val option — value the process has decided on, if any

The x field of the initial state is unconstrained, but no decision has yet been
taken.
definition Ate-initState where

Ate-initState p st ≡ (decide st = None)

The following locale introduces the parameters used for theAT,E,α algorithm
and their constraints [3].
locale ate-parameters =

fixes α::nat and T ::nat and E ::nat
assumes TNaE :T ≥ 2∗(N + 2∗α − E)

and TltN :T < N
and EltN :E < N

begin

The following are consequences of the assumptions on the parameters.
lemma majE : 2 ∗ (E − α) ≥ N
〈proof 〉

lemma Egta: E > α
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〈proof 〉

lemma Tge2a: T ≥ 2 ∗ α
〈proof 〉

At every round, each process sends its current x. If it received more than
T messages, it selects the smallest value and store it in x. As in algorithm
OneThirdRule, we therefore require values to be linearly ordered.
If more than E messages holding the same value are received, the process
decides that value.
definition mostOftenRcvd where

mostOftenRcvd (msgs::Proc ⇒ ′val option) ≡
{v. ∀w. card {qq. msgs qq = Some w} ≤ card {qq. msgs qq = Some v}}

definition
Ate-sendMsg :: nat ⇒ Proc ⇒ Proc ⇒ ′val pstate ⇒ ′val

where
Ate-sendMsg r p q st ≡ x st

definition
Ate-nextState :: nat ⇒ Proc ⇒ ( ′val::linorder) pstate ⇒ (Proc ⇒ ′val option)

⇒ ′val pstate ⇒ bool
where

Ate-nextState r p st msgs st ′ ≡
(if card {q. msgs q 6= None} > T
then x st ′ = Min (mostOftenRcvd msgs)
else x st ′ = x st)

∧ ( (∃ v. card {q. msgs q = Some v} > E ∧ decide st ′ = Some v)
∨ ¬ (∃ v. card {q. msgs q = Some v} > E)
∧ decide st ′ = decide st)

9.2 Communication Predicate for AT,E,α

Following [3], we now define the communication predicate for the AT,E,α al-
gorithm. The round-by-round predicate requires that no process may receive
more than α corrupted messages at any round.
definition Ate-commPerRd where

Ate-commPerRd HOrs SHOrs ≡
∀ p. card (HOrs p − SHOrs p) ≤ α

The global communication predicate stipulates the three following condi-
tions:

• for every process p there are infinitely many rounds where p receives
more than T messages,

• for every process p there are infinitely many rounds where p receives
more than E uncorrupted messages,
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• and there are infinitely many rounds in which more than E − α pro-
cesses receive uncorrupted messages from the same set of processes,
which contains more than T processes.

definition
Ate-commGlobal where
Ate-commGlobal HOs SHOs ≡

(∀ r p. ∃ r ′ > r . card (HOs r ′ p) > T )
∧ (∀ r p. ∃ r ′ > r . card (SHOs r ′ p ∩ HOs r ′ p) > E)
∧ (∀ r . ∃ r ′ > r . ∃π1 π2 .

card π1 > E − α
∧ card π2 > T
∧ (∀ p ∈ π1 . HOs r ′ p = π2 ∧ SHOs r ′ p ∩ HOs r ′ p = π2 ))

9.3 The AT,E,α Heard-Of Machine

We now define the non-coordinated SHO machine for the AT,E,α algorithm
by assembling the algorithm definition and its communication-predicate.
definition Ate-SHOMachine where

Ate-SHOMachine = (|
CinitState = (λ p st crd. Ate-initState p (st::( ′val::linorder) pstate)),
sendMsg = Ate-sendMsg,
CnextState = (λ r p st msgs crd st ′. Ate-nextState r p st msgs st ′),
SHOcommPerRd = (Ate-commPerRd:: Proc HO ⇒ Proc HO ⇒ bool),
SHOcommGlobal = Ate-commGlobal
|)

abbreviation
Ate-M ≡ (Ate-SHOMachine::(Proc, ′val::linorder pstate, ′val) SHOMachine)

end — locale ate-parameters

end
theory AteProof
imports AteDefs ../Reduction
begin

context ate-parameters
begin

9.4 Preliminary Lemmas

If a process newly decides value v at some round, then it received more than
E − α messages holding v at this round.
lemma decide-sent-msgs-threshold:

assumes run: SHORun Ate-M rho HOs SHOs
and comm: SHOcommPerRd Ate-M (HOs r) (SHOs r)
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and nvp: decide (rho r p) 6= Some v
and vp: decide (rho (Suc r) p) = Some v
shows card {qq. sendMsg Ate-M r qq p (rho r qq) = v} > E − α
〈proof 〉

If more than E − α processes send a value v to some process q at some
round, then q will receive at least N + 2∗α − E messages holding v at this
round.
lemma other-values-received:

assumes comm: SHOcommPerRd Ate-M (HOs r) (SHOs r)
and nxt: nextState Ate-M r q (rho r q) µq ((rho (Suc r)) q)
and muq: µq ∈ SHOmsgVectors Ate-M r q (rho r) (HOs r q) (SHOs r q)
and vsent: card {qq. sendMsg Ate-M r qq q (rho r qq) = v} > E − α

(is card ?vsent > -)
shows card ({qq. µq qq 6= Some v} ∩ HOs r q) ≤ N + 2∗α − E
〈proof 〉

If more than E − α processes send a value v to some process q at some
round r, and if q receives more than T messages in r, then v is the most
frequently received value by q in r.
lemma mostOftenRcvd-v:

assumes comm: SHOcommPerRd Ate-M (HOs r) (SHOs r)
and nxt: nextState Ate-M r q (rho r q) µq ((rho (Suc r)) q)
and muq: µq ∈ SHOmsgVectors Ate-M r q (rho r) (HOs r q) (SHOs r q)
and threshold-T : card {qq. µq qq 6= None} > T
and threshold-E : card {qq. sendMsg Ate-M r qq q (rho r qq) = v} > E − α
shows mostOftenRcvd µq = {v}
〈proof 〉

If at some round more than E − α processes have their x variable set to v,
then this is also true at next round.
lemma common-x-induct:

assumes run: SHORun Ate-M rho HOs SHOs
and comm: SHOcommPerRd Ate-M (HOs (r+k)) (SHOs (r+k))
and ih: card {qq. x (rho (r + k) qq) = v} > E − α
shows card {qq. x (rho (r + Suc k) qq) = v} > E − α
〈proof 〉

Whenever some process newly decides value v, then any process that updates
its x variable will set it to v.
lemma common-x:

assumes run: SHORun Ate-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd (Ate-M ::(Proc, ′val::linorder pstate, ′val) SHOMa-

chine)
(HOs r) (SHOs r)

and d1 : decide (rho r p) 6= Some v
and d2 : decide (rho (Suc r) p) = Some v
and qupdatex: x (rho (r + Suc k) q) 6= x (rho (r + k) q)
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shows x (rho (r + Suc k) q) = v
〈proof 〉

A process that holds some decision v has decided v sometime in the past.
lemma decisionNonNullThenDecided:

assumes run: SHORun Ate-M rho HOs SHOs
and dec: decide (rho n p) = Some v

obtains m where m < n
and decide (rho m p) 6= Some v
and decide (rho (Suc m) p) = Some v

〈proof 〉

9.5 Proof of Validity

Validity asserts that if all processes were initialized with the same value,
then no other value may ever be decided.
theorem ate-validity:

assumes run: SHORun Ate-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ate-M (HOs r) (SHOs r)
and initv: ∀ q. x (rho 0 q) = v
and dp: decide (rho r p) = Some w
shows w = v
〈proof 〉

9.6 Proof of Agreement

If two processes decide at the some round, they decide the same value.
lemma common-decision:

assumes run: SHORun Ate-M rho HOs SHOs
and comm: SHOcommPerRd Ate-M (HOs r) (SHOs r)
and nvp: decide (rho r p) 6= Some v
and vp: decide (rho (Suc r) p) = Some v
and nwq: decide (rho r q) 6= Some w
and wq: decide (rho (Suc r) q) = Some w
shows w = v
〈proof 〉

If process p decides at step r and process q decides at some later step r+k
then p and q decide the same value.
lemma laterProcessDecidesSameValue :

assumes run: SHORun Ate-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ate-M (HOs r) (SHOs r)
and nd1 : decide (rho r p) 6= Some v
and d1 : decide (rho (Suc r) p) = Some v
and nd2 : decide (rho (r+k) q) 6= Some w
and d2 : decide (rho (Suc (r+k)) q) = Some w
shows w = v
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〈proof 〉

The Agreement property is now an immediate consequence.
theorem ate-agreement:

assumes run: SHORun Ate-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ate-M (HOs r) (SHOs r)
and p: decide (rho m p) = Some v
and q: decide (rho n q) = Some w
shows w = v
〈proof 〉

9.7 Proof of Termination

We now prove that every process must eventually decide, given the global
and round-by-round communication predicates.
theorem ate-termination:

assumes run: SHORun Ate-M rho HOs SHOs
and commR: ∀ r . (SHOcommPerRd::((Proc, ′val::linorder pstate, ′val) SHOMa-

chine)
⇒ (Proc HO) ⇒ (Proc HO) ⇒ bool)

Ate-M (HOs r) (SHOs r)
and commG: SHOcommGlobal Ate-M HOs SHOs
shows ∃ r v. decide (rho r p) = Some v
〈proof 〉

9.8 AT,E,α Solves Weak Consensus

Summing up, all (coarse-grained) runs of AT,E,α for HO and SHO collec-
tions that satisfy the communication predicate satisfy the Weak Consensus
property.
theorem ate-weak-consensus:

assumes run: SHORun Ate-M rho HOs SHOs
and commR: ∀ r . SHOcommPerRd Ate-M (HOs r) (SHOs r)
and commG: SHOcommGlobal Ate-M HOs SHOs

shows weak-consensus (x ◦ (rho 0 )) decide rho
〈proof 〉

By the reduction theorem, the correctness of the algorithm carries over to
the fine-grained model of runs.
theorem ate-weak-consensus-fg:

assumes run: fg-run Ate-M rho HOs SHOs (λr q. undefined)
and commR: ∀ r . SHOcommPerRd Ate-M (HOs r) (SHOs r)
and commG: SHOcommGlobal Ate-M HOs SHOs

shows weak-consensus (λp. x (state (rho 0 ) p)) decide (state ◦ rho)
(is weak-consensus ?inits - -)

〈proof 〉
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end — context ate-parameters

end
theory EigbyzDefs
imports ../HOModel
begin

10 Verification of the EIGByzf Consensus Algo-
rithm

Lynch [12] presents EIGByzf , a version of the exponential information gath-
ering algorithm tolerating Byzantine faults, that works in f rounds, and
that was originally introduced in [1].
We begin by introducing an anonymous type of processes of finite cardinality
that will instantiate the type variable ′proc of the generic HO model.
typedecl Proc — the set of processes
axiomatization where Proc-finite: OFCLASS(Proc, finite-class)
instance Proc :: finite 〈proof 〉

abbreviation
N ≡ card (UNIV ::Proc set) — number of processes

The algorithm is parameterized by f , which represents the number of rounds
and the height of the tree data structure (see below).
axiomatization f ::nat
where f : f < N

10.1 Tree Data Structure

The algorithm relies on propagating information about the initially pro-
posed values among all the processes. This information is stored in trees
whose branches are labeled by lists of (distinct) processes. For example, the
interpretation of an entry [p,q] 7→ Some v is that the current process heard
from process q that it had heard from process p that its proposed value is
v. The value initially proposed by the process itself is stored at the root of
the tree.
We introduce the type of labels, which encapsulate lists of distinct process
identifiers and whose length is at most f+1.
definition Label = {xs::Proc list. length xs ≤ Suc f ∧ distinct xs}
typedef Label = Label
〈proof 〉

There is a finite number of different labels.
lemma finite-Label: finite Label
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〈proof 〉

lemma finite-UNIV-Label: finite (UNIV ::Label set)
〈proof 〉

lemma finite-Label-set [iff ]: finite (S :: Label set)
〈proof 〉

Utility functions on labels.
definition root-node where

root-node ≡ Abs-Label []

definition length-lbl where
length-lbl l ≡ length (Rep-Label l)

lemma length-lbl [intro]: length-lbl l ≤ Suc f
〈proof 〉

definition is-leaf where
is-leaf l ≡ length-lbl l = Suc f

definition last-lbl where
last-lbl l ≡ last (Rep-Label l)

definition butlast-lbl where
butlast-lbl l ≡ Abs-Label (butlast (Rep-Label l))

definition set-lbl where
set-lbl l = set (Rep-Label l)

The children of a non-leaf label are all possible extensions of that label.
definition children where

children l ≡
if is-leaf l
then {}
else { Abs-Label (Rep-Label l @ [p]) | p . p /∈ set-lbl l }

10.2 Model of the Algorithm

The following record models the local state of a process.
record ′val pstate =

vals :: Label ⇒ ′val option
newvals :: Label ⇒ ′val
decide :: ′val option

Initially, no values are assigned to non-root labels, and an arbitrary value
is assigned to the root: that value is interpreted as the initial proposal of
the process. No decision has yet been taken, and the newvals field is uncon-
strained.
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definition EIG-initState where
EIG-initState p st ≡

(∀ l. (vals st l = None) = (l 6= root-node))
∧ decide st = None

type-synonym ′val Msg = Label ⇒ ′val option

At every round, every process sends its current vals tree to all processes. In
fact, only the level of the tree corresponding to the round number is used
(cf. definition of extend-vals below).
definition EIG-sendMsg where

EIG-sendMsg r p q st ≡ vals st

During the first f−1 rounds, every process extends its tree vals according
to the values received in the round. No decision is taken.
definition extend-vals where

extend-vals r p st msgs st ′ ≡
vals st ′ = (λ l.

if length-lbl l = Suc r ∧ msgs (last-lbl l) 6= None
then (the (msgs (last-lbl l))) (butlast-lbl l)
else if length-lbl l = Suc r ∧ msgs (last-lbl l) = None then None
else vals st l)

definition next-main where
next-main r p st msgs st ′ ≡ extend-vals r p st msgs st ′ ∧ decide st ′ = None

In the final round, in addition to extending the tree as described previously,
processes construct the tree newvals, starting at the leaves. The values at
the leaves are copied from vals, except that missing values None are replaced
by the default value undefined. Moving up, if there exists a majority value
among the children, it is assigned to the parent node, otherwise the parent
node receives the default value undefined. The decision is set to the value
computed for the root of the tree.
fun fixupval :: ′val option ⇒ ′val where

fixupval None = undefined
| fixupval (Some v) = v

definition has-majority :: ′val ⇒ ( ′a ⇒ ′val) ⇒ ′a set ⇒ bool where
has-majority v g S ≡ card {e ∈ S . g e = v} > (card S) div 2

definition check-newvals :: ′val pstate ⇒ bool where
check-newvals st ≡
∀ l. is-leaf l ∧ newvals st l = fixupval (vals st l)
∨ ¬(is-leaf l) ∧
( (∃w. has-majority w (newvals st) (children l) ∧ newvals st l = w)
∨ (¬(∃w. has-majority w (newvals st) (children l))

∧ newvals st l = undefined))
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definition next-end where
next-end r p st msgs st ′ ≡

extend-vals r p st msgs st ′

∧ check-newvals st ′

∧ decide st ′ = Some (newvals st ′ root-node)

The overall next-state relation is defined such that every process applies
nextMain during rounds 0, . . . , f−1, and applies nextEnd during round f.
After that, the algorithm terminates and nothing changes anymore.
definition EIG-nextState where

EIG-nextState r ≡
if r < f then next-main r
else if r = f then next-end r
else (λp st msgs st ′. st ′ = st)

10.3 Communication Predicate for EIGByzf

The secure kernel SKr w.r.t. given HO and SHO collections consists of the
process from which every process receives the correct message.
definition SKr :: Proc HO ⇒ Proc HO ⇒ Proc set where

SKr HO SHO ≡ { q . ∀ p. q ∈ HO p ∩ SHO p}

The secure kernel SK of an entire execution (i.e., for sequences of HO and
SHO collections) is the intersection of the secure kernels for all rounds. Ob-
viously, only the first f rounds really matter, since the algorithm terminates
after that.
definition SK :: (nat ⇒ Proc HO) ⇒ (nat ⇒ Proc HO) ⇒ Proc set where

SK HOs SHOs ≡ {q. ∀ r . q ∈ SKr (HOs r) (SHOs r)}

The round-by-round predicate requires that the secure kernel at every round
contains more than (N+f ) div 2 processes.
definition EIG-commPerRd where

EIG-commPerRd HO SHO ≡ card (SKr HO SHO) > (N + f ) div 2

The global predicate requires that the secure kernel for the entire execution
contains at least N−f processes. Messages from these processes are always
correctly received by all processes.
definition EIG-commGlobal where

EIG-commGlobal HOs SHOs ≡ card (SK HOs SHOs) ≥ N − f

The above communication predicates differ from Lynch’s presentation of
EIGByzf . In fact, the algorithm was originally designed for synchronous
systems with reliable links and at most f faulty processes. In such a system,
every process receives the correct message from at least the non-faulty pro-
cesses at every round, and therefore the global predicate EIG-commGlobal
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is satisfied. The standard correctness proof assumes that N > 3f , and
therefore N −f > (N +f)÷2. Since moreover, for any r, we obviously have( ⋂

p∈Π,r′∈N
SHO(p, r′)

)
⊆

( ⋂
p∈Π

SHO(p, r)

)
,

it follows that any execution of EIGByzf where N > 3f also satisfies
EIG-commPerRd at any round. The standard correctness hypotheses thus
imply our communication predicates.
However, our proof shows that EIGByzf can indeed tolerate more transient
faults than the standard bound can express. For example, consider the case
where N = 5 and f = 2. Our predicates are satisfied in executions where
two processes exhibit transient faults, but never fail simultaneously. Indeed,
in such an execution, every process receives four correct messages at every
round, hence EIG-commPerRd always holds. Also, EIG-commGlobal is sat-
isfied because there are three processes from which every process receives
the correct messages at all rounds. By our correctness proof, it follows that
EIGByzf then achieves Consensus, unlike what one could expect from the
standard correctness predicate. This observation underlines the interest of
expressing assumptions about transient faults, as in the HO model.

10.4 The EIGByzf Heard-Of Machine

We now define the non-coordinated SHO machine for EIGByzf by assem-
bling the algorithm definition and its communication-predicate.
definition EIG-SHOMachine where

EIG-SHOMachine = (|
CinitState = (λ p st crd. EIG-initState p st),
sendMsg = EIG-sendMsg,
CnextState = (λ r p st msgs crd st ′. EIG-nextState r p st msgs st ′),
SHOcommPerRd = EIG-commPerRd,
SHOcommGlobal = EIG-commGlobal
|)

abbreviation EIG-M ≡ (EIG-SHOMachine::(Proc, ′val pstate, ′val Msg) SHOMa-
chine)

end
theory EigbyzProof
imports EigbyzDefs ../Majorities ../Reduction
begin

10.5 Preliminary Lemmas

Some technical lemmas about labels and trees.
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lemma not-leaf-length:
assumes l: ¬(is-leaf l)
shows length-lbl l ≤ f
〈proof 〉

lemma nil-is-Label: [] ∈ Label
〈proof 〉

lemma card-set-lbl: card (set-lbl l) = length-lbl l
〈proof 〉

lemma Rep-Label-root-node [simp]: Rep-Label root-node = []
〈proof 〉

lemma root-node-length [simp]: length-lbl root-node = 0
〈proof 〉

lemma root-node-not-leaf : ¬(is-leaf root-node)
〈proof 〉

Removing the last element of a non-root label gives a label.
lemma butlast-rep-in-label:

assumes l:l 6= root-node
shows butlast (Rep-Label l) ∈ Label
〈proof 〉

The label of a child is well-formed.
lemma Rep-Label-append:

assumes l: ¬(is-leaf l)
shows (Rep-Label l @ [p] ∈ Label) = (p /∈ set-lbl l)

(is ?lhs = ?rhs is (?l ′ ∈ -) = -)
〈proof 〉

The label of a child is the label of the parent, extended by a process.
lemma label-children:

assumes c: c ∈ children l
shows ∃ p. p /∈ set-lbl l ∧ Rep-Label c = Rep-Label l @ [p]
〈proof 〉

The label of any child node is one longer than the label of its parent.
lemma children-length:

assumes l ∈ children h
shows length-lbl l = Suc (length-lbl h)
〈proof 〉

The root node is never a child.
lemma children-not-root:

assumes root-node ∈ children l
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shows P
〈proof 〉

The label of a child with the last element removed is the label of the parent.
lemma children-butlast-lbl:

assumes c ∈ children l
shows butlast-lbl c = l
〈proof 〉

The root node is not a child, and it is the only such node.
lemma root-iff-no-child: (l = root-node) = (∀ l ′. l /∈ children l ′)
〈proof 〉

If some label l is not a leaf, then the set of processes that appear at the end
of the labels of its children is the set of all processes that do not appear in l.
lemma children-last-set:

assumes l: ¬(is-leaf l)
shows last-lbl ‘ (children l) = UNIV − set-lbl l
〈proof 〉

The function returning the last element of a label is injective on the set of
children of some given label.
lemma last-lbl-inj-on-children:inj-on last-lbl (children l)
〈proof 〉

The number of children of any non-leaf label l is the number of processes
that do not appear in l.
lemma card-children:

assumes ¬(is-leaf l)
shows card (children l) = N − (length-lbl l)
〈proof 〉

Suppose a non-root label l ′ of length r+1 ending in q, and suppose that q is
well heard by process p in round r. Then the value with which p decorates
l is the one that q associates to the parent of l.
lemma sho-correct-vals:

assumes run: SHORun EIG-M rho HOs SHOs
and l ′: l ′ ∈ children l
and shop: last-lbl l ′ ∈ SHOs (length-lbl l) p ∩ HOs (length-lbl l) p

(is ?q ∈ SHOs (?len l) p ∩ -)
shows vals (rho (?len l ′) p) l ′ = vals (rho (?len l) ?q) l
〈proof 〉

A process fixes the value vals l of a label at state length-lbl l, and then never
modifies the value.
lemma keep-vals:

assumes run: SHORun EIG-M rho HOs SHOs
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shows vals (rho (length-lbl l + n) p) l = vals (rho (length-lbl l) p) l
(is ?v n = ?vl)

〈proof 〉

10.6 Lynch’s Lemmas and Theorems

If some process is safely heard by all processes at round r, then all processes
agree on the value associated to labels of length r+1 ending in that process.
lemma lynch-6-15 :

assumes run: SHORun EIG-M rho HOs SHOs
and l ′: l ′ ∈ children l
and skr : last-lbl l ′ ∈ SKr (HOs (length-lbl l)) (SHOs (length-lbl l))
shows vals (rho (length-lbl l ′) p) l ′ = vals (rho (length-lbl l ′) q) l ′
〈proof 〉

Suppose that l is a non-root label whose last element was well heard by all
processes at round r, and that l ′ is a child of l corresponding to process
q that is also well heard by all processes at round r+1. Then the values
associated with l and l ′ by any process p are identical.
lemma lynch-6-16-a:

assumes run: SHORun EIG-M rho HOs SHOs
and l: l ∈ children t
and skrl: last-lbl l ∈ SKr (HOs (length-lbl t)) (SHOs (length-lbl t))
and l ′: l ′ ∈ children l
and skrl ′:last-lbl l ′ ∈ SKr (HOs (length-lbl l)) (SHOs (length-lbl l))

shows vals (rho (length-lbl l ′) p) l ′ = vals (rho (length-lbl l) p) l
〈proof 〉

For any non-leaf label l, more than half of its children end with a process
that is well heard by everyone at round length-lbl l.
lemma lynch-6-16-c:

assumes commR: EIG-commPerRd (HOs (length-lbl l)) (SHOs (length-lbl l))
(is EIG-commPerRd (HOs ?r) -)

and l: ¬(is-leaf l)
shows card {l ′ ∈ children l. last-lbl l ′ ∈ SKr (HOs ?r) (SHOs ?r)}

> card (children l) div 2
(is card ?lhs > -)

〈proof 〉

If l is a non-leaf label such that all of its children corresponding to well-heard
processes at round length-lbl l have a uniform newvals decoration at round
f+1, then l itself is decorated with that same value.
lemma newvals-skr-uniform:

assumes run: SHORun EIG-M rho HOs SHOs
and commR: EIG-commPerRd (HOs (length-lbl l)) (SHOs (length-lbl l))

(is EIG-commPerRd (HOs ?r) -)
and notleaf : ¬(is-leaf l)
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and unif :
∧

l ′. [[l ′ ∈ children l;
last-lbl l ′ ∈ SKr (HOs (length-lbl l)) (SHOs (length-lbl l))
]] =⇒ newvals (rho (Suc f ) p) l ′ = v

shows newvals (rho (Suc f ) p) l = v
〈proof 〉

A node whose label l ends with a process which is well heard at round
length-lbl l will have its newvals field set (at round f+1 ) to the “fixed-up”
value given by vals.
lemma lynch-6-16-d:

assumes run: SHORun EIG-M rho HOs SHOs
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)
and notroot: l ∈ children t
and skr : last-lbl l ∈ SKr (HOs (length-lbl t)) (SHOs (length-lbl t))

(is - ∈ SKr (HOs (?len t)) -)
shows newvals (rho (Suc f ) p) l = fixupval (vals (rho (?len l) p) l)
(is ?P l)

〈proof 〉

Following Lynch [12], we introduce some more useful concepts for reasoning
about the data structure.

A label is common if all processes agree on the final value it is decorated
with.
definition common where

common rho l ≡
∀ p q. newvals (rho (Suc f ) p) l = newvals (rho (Suc f ) q) l

The subtrees of a given label are all its possible extensions.
definition subtrees where

subtrees h ≡ { l . ∃ t. Rep-Label l = (Rep-Label h) @ t }

lemma children-in-subtree:
assumes l ∈ children h
shows l ∈ subtrees h
〈proof 〉

lemma subtrees-refl [iff ]: l ∈ subtrees l
〈proof 〉

lemma subtrees-root [iff ]: l ∈ subtrees root-node
〈proof 〉

lemma subtrees-trans:
assumes l ′′ ∈ subtrees l ′ and l ′ ∈ subtrees l
shows l ′′ ∈ subtrees l
〈proof 〉
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lemma subtrees-antisym:
assumes l ∈ subtrees l ′ and l ′ ∈ subtrees l
shows l ′ = l
〈proof 〉

lemma subtrees-tree:
assumes l ′: l ∈ subtrees l ′ and l ′′: l ∈ subtrees l ′′
shows l ′ ∈ subtrees l ′′ ∨ l ′′ ∈ subtrees l ′
〈proof 〉

lemma subtrees-cases:
assumes l ′: l ′ ∈ subtrees l

and self : l ′ = l =⇒ P
and child:

∧
c. [[ c ∈ children l; l ′ ∈ subtrees c ]] =⇒ P

shows P
〈proof 〉

lemma subtrees-leaf :
assumes l: is-leaf l and l ′: l ′ ∈ subtrees l
shows l ′ = l
〈proof 〉

lemma children-subtrees-equal:
assumes c: c ∈ children l and c ′: c ′ ∈ children l

and sub: c ′ ∈ subtrees c
shows c ′ = c
〈proof 〉

A set C of labels is a subcovering w.r.t. label l if for all leaf subtrees s of l
there exists some label h ∈ C such that s is a subtree of h and h is a subtree
of l.
definition subcovering where
subcovering C l ≡
∀ s ∈ subtrees l. is-leaf s −→ (∃ h ∈ C . h ∈ subtrees l ∧ s ∈ subtrees h)

A covering is a subcovering w.r.t. the root node.
abbreviation covering where

covering C ≡ subcovering C root-node

The set of labels whose last element is well heard by all processes throughout
the execution forms a covering, and all these labels are common.
lemma lynch-6-18-a:

assumes SHORun EIG-M rho HOs SHOs
and ∀ r . EIG-commPerRd (HOs r) (SHOs r)
and l ∈ children t
and last-lbl l ∈ SKr (HOs (length-lbl t)) (SHOs (length-lbl t))

shows common rho l
〈proof 〉
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lemma lynch-6-18-b:
assumes run: SHORun EIG-M rho HOs SHOs

and commG: EIG-commGlobal HOs SHOs
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)

shows covering {l. ∃ t. l ∈ children t ∧ last-lbl l ∈ (SK HOs SHOs)}
〈proof 〉

If C covers the subtree rooted at label l and if l /∈ C then C also covers
subtrees rooted at l’s children.
lemma lynch-6-19-a:

assumes cov: subcovering C l
and l: l /∈ C
and e: e ∈ children l

shows subcovering C e
〈proof 〉

If there is a subcovering C for a label l such that all labels in C are common,
then l itself is common as well.
lemma lynch-6-19-b:

assumes run: SHORun EIG-M rho HOs SHOs
and cov: subcovering C l
and com: ∀ l ′ ∈ C . common rho l ′

shows common rho l
〈proof 〉

The root of the tree is a common node.
lemma lynch-6-20 :

assumes run: SHORun EIG-M rho HOs SHOs
and commG: EIG-commGlobal HOs SHOs
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)

shows common rho root-node
〈proof 〉

A decision is taken only at state f+1 and then stays stable.
lemma decide:

assumes run: SHORun EIG-M rho HOs SHOs
shows decide (rho r p) =

(if r < Suc f then None
else Some (newvals (rho (Suc f ) p) root-node))

(is ?P r)
〈proof 〉

10.7 Proof of Agreement, Validity, and Termination

The Agreement property is an immediate consequence of lemma lynch-6-20.
theorem Agreement:
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assumes run: SHORun EIG-M rho HOs SHOs
and commG: EIG-commGlobal HOs SHOs
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)
and p: decide (rho m p) = Some v
and q: decide (rho n q) = Some w

shows v = w
〈proof 〉

We now show the Validity property: if all processes initially propose the
same value v, then no other value may be decided.
By lemma sho-correct-vals, value v must propagate to all children of the
root that are well heard at round 0, and lemma lynch-6-16-d implies that
v is the value assigned to all these children by newvals. Finally, lemma
newvals-skr-uniform lets us conclude.
theorem Validity:

assumes run: SHORun EIG-M rho HOs SHOs
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)
and initv: ∀ q. the (vals (rho 0 q) root-node) = v
and dp: decide (rho r p) = Some w

shows v = w
〈proof 〉

Termination is trivial for EIGByzf .
theorem Termination:

assumes SHORun EIG-M rho HOs SHOs
shows ∃ r v. decide (rho r p) = Some v
〈proof 〉

10.8 EIGByzf Solves Weak Consensus

Summing up, all (coarse-grained) runs of EIGByzf for HO and SHO collec-
tions that satisfy the communication predicate satisfy the Weak Consensus
property.
theorem eig-weak-consensus:

assumes run: SHORun EIG-M rho HOs SHOs
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)
and commG: EIG-commGlobal HOs SHOs

shows weak-consensus (λp. the (vals (rho 0 p) root-node)) decide rho
〈proof 〉

By the reduction theorem, the correctness of the algorithm carries over to
the fine-grained model of runs.
theorem eig-weak-consensus-fg:

assumes run: fg-run EIG-M rho HOs SHOs (λr q. undefined)
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)
and commG: EIG-commGlobal HOs SHOs

shows weak-consensus (λp. the (vals (state (rho 0 ) p) root-node))
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decide (state ◦ rho)
(is weak-consensus ?inits - -)

〈proof 〉

end

11 Conclusion

In this contribution we have formalized the Heard-Of model in the proof
assistant Isabelle/HOL. We have established a formal framework, in which
fault-tolerant distributed algorithms can be represented, and that caters
for different variants (benign or malicious faults, coordinated and uncoordi-
nated algorithms). We have formally proved a reduction theorem that re-
lates fine-grained (asynchronous) interleaving executions and coarse-grained
executions, in which an entire round constitutes the unit of atomicity. As a
corollary, many correctness properties, including Consensus, can be trans-
ferred from the coarse-grained to the fine-grained representation.
We have applied this framework to give formal proofs in Isabelle/HOL for
six different Consensus algorithms known from the literature. Thanks to the
reduction theorem, it is enough to verify the algorithms over coarse-grained
runs, and this keeps the effort manageable. For example, our LastVoting
algorithm is similar to the DiskPaxos algorithm verified in [10], but our
proof here is an order of magnitude shorter, although we prove safety and
liveness properties, whereas only safety was considered in [10].
We also emphasize that the uniform characterization of fault assumptions
via communication predicates in the HO model lets us consider the effects
of transient failures, contrary to standard models that consider only perma-
nent failures. For example, our correctness proof for the EIGByzf algorithm
establishes a stronger result than that claimed by the designers of the al-
gorithm. The uniform presentation also paves the way towards comparing
assumptions of different algorithms.
The encoding of the HO model as Isabelle/HOL theories is quite straightfor-
ward, and we find our Isar proofs quite readable, although they necessarily
contain the full details that are often glossed over in textbook presentations.
We believe that our framework allows algorithm designers to study different
fault-tolerant distributed algorithms, their assumptions, and their proofs, in
a clear, rigorous and uniform way.
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