
Verifying Fault-Tolerant Distributed Algorithms In
The Heard-Of Model∗

Henri Debrat1 and Stephan Merz2

1 Université de Lorraine & LORIA
2 Inria Nancy Grand-Est & LORIA

Villers-lès-Nancy, France

March 17, 2025

Distributed computing is inherently based on replication, promising in-
creased tolerance to failures of individual computing nodes or communi-
cation channels. Realizing this promise, however, involves quite subtle al-
gorithmic mechanisms, and requires precise statements about the kinds and
numbers of faults that an algorithm tolerates (such as process crashes, com-
munication faults or corrupted values). The landmark theorem due to Fis-
cher, Lynch, and Paterson shows that it is impossible to achieve Consensus
among N asynchronously communicating nodes in the presence of even a
single permanent failure. Existing solutions must rely on assumptions of
“partial synchrony”.
Indeed, there have been numerous misunderstandings on what exactly a
given algorithm is supposed to realize in what kinds of environments. More-
over, the abundance of subtly different computational models complicates
comparisons between different algorithms. Charron-Bost and Schiper intro-
duced the Heard-Of model for representing algorithms and failure assump-
tions in a uniform framework, simplifying comparisons between algorithms.
In this contribution, we represent the Heard-Of model in Isabelle/HOL. We
define two semantics of runs of algorithms with different unit of atomicity
and relate these through a reduction theorem that allows us to verify algo-
rithms in the coarse-grained semantics (where proofs are easier) and infer
their correctness for the fine-grained one (which corresponds to actual execu-
tions). We instantiate the framework by verifying six Consensus algorithms
that differ in the underlying algorithmic mechanisms and the kinds of faults
they tolerate.

∗Bernadette Charron-Bost introduced us to the Heard-Of model and accompanied this
work by suggesting algorithms to study, providing or simplifying hand proofs, and giving
most valuable feedback on our formalizations. Mouna Chaouch-Saad contributed an initial
draft formalization of the reduction theorem.

1

Contents

1 Introduction 4

2 Heard-Of Algorithms 5
2.1 The Consensus Problem . 5
2.2 A Generic Representation of Heard-Of Algorithms 7

3 Reduction Theorem 13
3.1 Fine-Grained Semantics . 14
3.2 Properties of the Fine-Grained Semantics 17
3.3 From Fine-Grained to Coarse-Grained Runs 24
3.4 Locally Similar Runs and Local Properties 26
3.5 Consensus as a Local Property 28

4 Utility Lemmas About Majorities 30

5 Verification of the One-Third Rule Consensus Algorithm 31
5.1 Model of the Algorithm . 31
5.2 Communication Predicate for One-Third Rule 33
5.3 The One-Third Rule Heard-Of Machine 34
5.4 Proof of Integrity . 34
5.5 Proof of Agreement . 37
5.6 Proof of Termination . 41
5.7 One-Third Rule Solves Consensus 43

6 Verification of the UniformVoting Consensus Algorithm 44
6.1 Model of the Algorithm . 44
6.2 Communication Predicate for UniformVoting 47
6.3 The UniformVoting Heard-Of Machine 47
6.4 Preliminary Lemmas . 48
6.5 Proof of Irrevocability, Agreement and Integrity 50
6.6 Proof of Termination . 58
6.7 UniformVoting Solves Consensus 60

7 Verification of the LastVoting Consensus Algorithm 61
7.1 Model of the Algorithm . 61
7.2 Communication Predicate for LastVoting 65
7.3 The LastVoting Heard-Of Machine 65

2

7.4 Preliminary Lemmas . 66
7.5 Boundedness and Monotonicity of Timestamps 71
7.6 Obvious Facts About the Algorithm 72
7.7 Proof of Integrity . 80
7.8 Proof of Agreement and Irrevocability 84
7.9 Proof of Termination . 94
7.10 LastVoting Solves Consensus 96

8 Verification of the UT,E,α Consensus Algorithm 97
8.1 Model of the Algorithm . 97
8.2 Communication Predicate for UT,E,α 100
8.3 The UT,E,α Heard-Of Machine 101
8.4 Preliminary Lemmas . 101
8.5 Proof of Agreement and Validity 105
8.6 Proof of Termination . 116
8.7 UT,E,α Solves Weak Consensus 122

9 Verification of the AT,E,α Consensus algorithm 123
9.1 Model of the Algorithm . 123
9.2 Communication Predicate for AT,E,α 125
9.3 The AT,E,α Heard-Of Machine 125
9.4 Preliminary Lemmas . 126
9.5 Proof of Validity . 130
9.6 Proof of Agreement . 134
9.7 Proof of Termination . 137
9.8 AT,E,α Solves Weak Consensus 142

10 Verification of the EIGByzf Consensus Algorithm 143
10.1 Tree Data Structure . 143
10.2 Model of the Algorithm . 145
10.3 Communication Predicate for EIGByzf 147
10.4 The EIGByzf Heard-Of Machine 148
10.5 Preliminary Lemmas . 148
10.6 Lynch’s Lemmas and Theorems 153
10.7 Proof of Agreement, Validity, and Termination 162
10.8 EIGByzf Solves Weak Consensus 164

11 Conclusion 164

3

1 Introduction

We are interested in the verification of fault-tolerant distributed algorithms.
The archetypical problem in this area is the Consensus problem that re-
quires a set of distributed nodes to achieve agreement on a common value
in the presence of faults. Such algorithms are notoriously hard to design
and to get right. This is particularly true in the presence of asynchronous
communication: the landmark theorem by Fischer, Lynch, and Paterson [9]
shows that there is no algorithm solving the Consensus problem for asyn-
chronous systems in the presence of even a single, permanent fault. Existing
solutions therefore rely on assumptions of “partial synchrony” [8].
Different computational models, and different concepts for specifying the
kinds and numbers of faults such algorithms must tolerate, have been intro-
duced in the literature on distributed computing. This abundance of subtly
different notions makes it very difficult to compare different algorithms, and
has sometimes even led to misunderstandings and misinterpretations of what
an algorithm claims to achieve. The general lack of rigorous, let alone for-
mal, correctness proofs for this class of algorithms makes it even harder to
understand the field.
In this contribution, we formalize in Isabelle/HOL the Heard-Of (HO) model,
originally introduced by Charron-Bost and Schiper [7]. This model can rep-
resent algorithms that operate in communication-closed rounds, which is
true of virtually all known fault-tolerant distributed algorithms. Assump-
tions on failures tolerated by an algorithm are expressed by communication
predicates that impose bounds on the set of messages that are not received
during executions. Charron-Bost and Schiper show how the known fail-
ure hypotheses from the literature can be represented in this format. The
Heard-Of model therefore makes an interesting target for formalizing dif-
ferent algorithms, and for proving their correctness, in a uniform way. In
particular, different assumptions can be compared, and the suitability of an
algorithm for a particular situation can be evaluated.
The HO model has subsequently been extended [3] to encompass algorithms
designed to tolerate value (also known as malicious or Byzantine) faults.
In the present work, we propose a generic framework in Isabelle/HOL that
encompasses the different variants of HO algorithms, including resilience to
benign or value faults, as well as coordinated and non-coordinated algo-
rithms.
A fundamental design decision when modeling distributed algorithm is to
determine the unit of atomicity. We formally relate in Isabelle two defini-
tions of runs: we first define “coarse-grained” executions, in which entire
rounds are executed atomically, and then define “fine-grained” executions
that correspond to conventional interleaving representations of asynchronous
networks. We formally prove that every fine-grained execution corresponds

4

to a certain coarse-grained execution, such that every process observes the
same sequence of local states in the two executions, up to stuttering. As a
corollary, a large class of correctness properties, including Consensus, can
be transferred from coarse-grained to fine-grained executions.
We then apply our framework for verifying six different distributed Consen-
sus algorithms w.r.t. their respective communication predicates. The first
three algorithms, One-Third Rule, UniformVoting, and LastVoting, tolerate
benign failures. The three remaining algorithms, UT,E,α, AT,E,α, and EIG-
Byzf , are designed to tolerate value failures, and solve a weaker variant of
the Consensus problem.
A preliminary report on the formalization of the LastVoting algorithm in the
HO model appeared in [6]. The paper [4] contains a paper-and-pencil proof
of the reduction theorem relating coarse-grained and fine-grained executions,
and [5] reports on the formal verification of the UT,E,α, AT,E,α, and EIGByzf
algorithms.

theory HOModel
imports Main
begin

declare if-split-asm [split] — perform default perform case splitting on conditionals

2 Heard-Of Algorithms
2.1 The Consensus Problem

We are interested in the verification of fault-tolerant distributed algorithms.
The Consensus problem is paradigmatic in this area. Stated informally, it
assumes that all processes participating in the algorithm initially propose
some value, and that they may at some point decide some value. It is
required that every process eventually decides, and that all processes must
decide the same value.
More formally, we represent runs of algorithms as ω-sequences of configu-
rations (vectors of process states). Hence, a run is modeled as a function
of type nat ⇒ ′proc ⇒ ′pst where type variables ′proc and ′pst represent
types of processes and process states, respectively. The Consensus property
is expressed with respect to a collection vals of initially proposed values (one
per process) and an observer function dec:: ′pst ⇒ val option that retrieves
the decision (if any) from a process state. The Consensus problem is stated
as the conjunction of the following properties:

Integrity. Processes can only decide initially proposed values.

Agreement. Whenever processes p and q decide, their decision values must
be the same. (In particular, process p may never change the value it

5

decides, which is referred to as Irrevocability.)

Termination. Every process decides eventually.

The above properties are sometimes only required of non-faulty processes,
since nothing can be required of a faulty process. The Heard-Of model
does not attribute faults to processes, and therefore the above formulation
is appropriate in this framework.
type-synonym
(′proc, ′pst) run = nat ⇒ ′proc ⇒ ′pst

definition
consensus :: (′proc ⇒ ′val) ⇒ (′pst ⇒ ′val option) ⇒ (′proc, ′pst) run ⇒ bool

where
consensus vals dec rho ≡

(∀n p v. dec (rho n p) = Some v −→ v ∈ range vals)
∧ (∀m n p q v w. dec (rho m p) = Some v ∧ dec (rho n q) = Some w

−→ v = w)
∧ (∀ p. ∃n. dec (rho n p) 6= None)

A variant of the Consensus problem replaces the Integrity requirement by

Validity. If all processes initially propose the same value v then every pro-
cess may only decide v.

definition weak-consensus where
weak-consensus vals dec rho ≡

(∀ v. (∀ p. vals p = v) −→ (∀n p w. dec (rho n p) = Some w −→ w = v))
∧ (∀m n p q v w. dec (rho m p) = Some v ∧ dec (rho n q) = Some w

−→ v = w)
∧ (∀ p. ∃n. dec (rho n p) 6= None)

Clearly, consensus implies weak-consensus.
lemma consensus-then-weak-consensus:

assumes consensus vals dec rho
shows weak-consensus vals dec rho
using assms by (auto simp: consensus-def weak-consensus-def image-def)

Over Boolean values (“binary Consensus”), weak-consensus implies consen-
sus, hence the two problems are equivalent. In fact, this theorem holds more
generally whenever at most two different values are proposed initially (i.e.,
card (range vals) ≤ 2).
lemma binary-weak-consensus-then-consensus:

assumes bc: weak-consensus (vals:: ′proc ⇒ bool) dec rho
shows consensus vals dec rho

proof −
{ — Show the Integrity property, the other conjuncts are the same.

fix n p v

6

assume dec: dec (rho n p) = Some v
have v ∈ range vals
proof (cases ∃w. ∀ p. vals p = w)

case True
then obtain w where w: ∀ p. vals p = w ..

with bc have dec (rho n p) ∈ {Some w, None} by (auto simp: weak-consensus-def)
with dec w show ?thesis by (auto simp: image-def)

next
case False
— In this case both possible values occur in vals, and the result is trivial.
thus ?thesis by (auto simp: image-def)

qed
} note integrity = this
from bc show ?thesis

unfolding consensus-def weak-consensus-def by (auto elim!: integrity)
qed

The algorithms that we are going to verify solve the Consensus or weak
Consensus problem, under different hypotheses about the kinds and number
of faults.

2.2 A Generic Representation of Heard-Of Algorithms

Charron-Bost and Schiper [7] introduce the Heard-Of (HO) model for repre-
senting fault-tolerant distributed algorithms. In this model, algorithms exe-
cute in communication-closed rounds: at any round r, processes only receive
messages that were sent for that round. For every process p and round r, the
“heard-of set” HO(p, r) denotes the set of processes from which p receives
a message in round r. Since every process is assumed to send a message to
all processes in each round, the complement of HO(p, r) represents the set
of faults that may affect p in round r (messages that were not received, e.g.
because the sender crashed, because of a network problem etc.).
The HO model expresses hypotheses on the faults tolerated by an algorithm
through “communication predicates” that constrain the sets HO(p, r) that
may occur during an execution. Charron-Bost and Schiper show that stan-
dard fault models can be represented in this form.
The original HO model is sufficient for representing algorithms tolerating
benign failures such as process crashes or message loss. A later extension
for algorithms tolerating Byzantine (or value) failures [3] adds a second
collection of sets SHO(p, r) ⊆ HO(p, r) that contain those processes q from
which process p receives the message that q was indeed supposed to send for
round r according to the algorithm. In other words, messages from processes
in HO(p, r) \ SHO(p, r) were corrupted, be it due to errors during message
transmission or because of the sender was faulty or lied deliberately. For
both benign and Byzantine errors, the HO model registers the fault but

7

does not try to identify the faulty component (i.e., designate the sending or
receiving process, or the communication channel as the “culprit”).
Executions of HO algorithms are defined with respect to collections HO(p, r)
and SHO(p, r). However, the code of a process does not have access to
these sets. In particular, process p has no way of determining if a message
it received from another process q corresponds to what q should have sent
or if it has been corrupted.
Certain algorithms rely on the assignment of “coordinator” processes for
each round. Just as the collections HO(p, r), the definitions assume an ex-
ternal coordinator assignment such that coord(p, r) denotes the coordinator
of process p and round r. Again, the correctness of algorithms may depend
on hypotheses about coordinator assignments – e.g., it may be assumed that
processes agree sufficiently often on who the current coordinator is.
The following definitions provide a generic representation of HO and SHO
algorithms in Isabelle/HOL. A (coordinated) HO algorithm is described by
the following parameters:

• a finite type ′proc of processes,

• a type ′pst of local process states,

• a type ′msg of messages sent in the course of the algorithm,

• a predicate CinitState such that CinitState p st crd is true precisely
of the initial states st of process p, assuming that crd is the initial
coordinator of p,

• a function sendMsg where sendMsg r p q st yields the message that
process p sends to process q at round r, given its local state st, and

• a predicate CnextState where CnextState r p st msgs crd st ′ charac-
terizes the successor states st ′ of process p at round r, given current
state st, the vector msgs :: ′proc ⇒ ′msg option of messages that p
received at round r (msgs q = None indicates that no message has
been received from process q), and process crd as the coordinator for
the following round.

Note that every process can store the coordinator for the current round in
its local state, and it is therefore not necessary to make the coordinator a
parameter of the message sending function sendMsg.
We represent an algorithm by a record as follows.
record (′proc, ′pst, ′msg) CHOAlgorithm =

CinitState :: ′proc ⇒ ′pst ⇒ ′proc ⇒ bool
sendMsg :: nat ⇒ ′proc ⇒ ′proc ⇒ ′pst ⇒ ′msg
CnextState :: nat ⇒ ′proc ⇒ ′pst ⇒ (′proc ⇒ ′msg option) ⇒ ′proc ⇒ ′pst ⇒

bool

8

For non-coordinated HO algorithms, the coordinator argument of functions
CinitState and CnextState is irrelevant, and we define utility functions that
omit that argument.
definition isNCAlgorithm where

isNCAlgorithm alg ≡
(∀ p st crd crd ′. CinitState alg p st crd = CinitState alg p st crd ′)

∧ (∀ r p st msgs crd crd ′ st ′. CnextState alg r p st msgs crd st ′

= CnextState alg r p st msgs crd ′ st ′)

definition initState where
initState alg p st ≡ CinitState alg p st undefined

definition nextState where
nextState alg r p st msgs st ′ ≡ CnextState alg r p st msgs undefined st ′

A heard-of assignment associates a set of processes with each process. The
following type is used to represent the collections HO(p, r) and SHO(p, r)
for fixed round r. Similarly, a coordinator assignment associates a process
(its coordinator) to each process.
type-synonym

′proc HO = ′proc ⇒ ′proc set

type-synonym
′proc coord = ′proc ⇒ ′proc

An execution of an HO algorithm is defined with respect to HO and SHO
assignments that indicate, for every round r and every process p, from which
sender processes p receives messages (resp., uncorrupted messages) at round
r.
The following definitions formalize this idea. We define “coarse-grained”
executions whose unit of atomicity is the round of execution. At each
round, the entire collection of processes performs a transition according to
the CnextState function of the algorithm. Consequently, a system state is
simply described by a configuration, i.e. a function assigning a process state
to every process. This definition of executions may appear surprising for an
asynchronous distributed system, but it simplifies system verification, com-
pared to a “fine-grained” execution model that records individual events
such as message sending and reception or local transitions. We will justify
later why the “coarse-grained” model is sufficient for verifying interesting
correctness properties of HO algorithms.
The predicate CSHOinitConfig describes the possible initial configurations
for algorithm A (remember that a configuration is a function that assigns
local states to every process).
definition CHOinitConfig where

CHOinitConfig A cfg (coord:: ′proc coord) ≡ ∀ p. CinitState A p (cfg p) (coord p)

9

Given the current configuration cfg and the HO and SHO sets HOp and
SHOp for process p at round r, the function SHOmsgVectors computes the
set of possible vectors of messages that process p may receive. For processes
q /∈ HOp, p receives no message (represented as value None). For processes q
∈ SHOp, p receives the message that q computed according to the sendMsg
function of the algorithm. For the remaining processes q ∈ HOp − SHOp,
p may receive some arbitrary value.
definition SHOmsgVectors where

SHOmsgVectors A r p cfg HOp SHOp ≡
{µ. (∀ q. q ∈ HOp ←→ µ q 6= None)
∧ (∀ q. q ∈ SHOp ∩ HOp −→ µ q = Some (sendMsg A r q p (cfg q)))}

Predicate CSHOnextConfig uses the preceding function and the algorithm’s
CnextState function to characterize the possible successor configurations in
a coarse-grained step, and predicate CSHORun defines (coarse-grained) ex-
ecutions rho of an HO algorithm.
definition CSHOnextConfig where

CSHOnextConfig A r cfg HO SHO coord cfg ′ ≡
∀ p. ∃µ ∈ SHOmsgVectors A r p cfg (HO p) (SHO p).

CnextState A r p (cfg p) µ (coord p) (cfg ′ p)

definition CSHORun where
CSHORun A rho HOs SHOs coords ≡

CHOinitConfig A (rho 0) (coords 0)
∧ (∀ r . CSHOnextConfig A r (rho r) (HOs r) (SHOs r) (coords (Suc r))

(rho (Suc r)))

For non-coordinated algorithms. the coord arguments of the above functions
are irrelevant. We define similar functions that omit that argument, and
relate them to the above utility functions for these algorithms.
definition HOinitConfig where

HOinitConfig A cfg ≡ CHOinitConfig A cfg (λq. undefined)

lemma HOinitConfig-eq:
HOinitConfig A cfg = (∀ p. initState A p (cfg p))
by (auto simp: HOinitConfig-def CHOinitConfig-def initState-def)

definition SHOnextConfig where
SHOnextConfig A r cfg HO SHO cfg ′ ≡
CSHOnextConfig A r cfg HO SHO (λq. undefined) cfg ′

lemma SHOnextConfig-eq:
SHOnextConfig A r cfg HO SHO cfg ′ =
(∀ p. ∃µ ∈ SHOmsgVectors A r p cfg (HO p) (SHO p).

nextState A r p (cfg p) µ (cfg ′ p))
by (auto simp: SHOnextConfig-def CSHOnextConfig-def SHOmsgVectors-def nextState-def)

10

definition SHORun where
SHORun A rho HOs SHOs ≡
CSHORun A rho HOs SHOs (λr q. undefined)

lemma SHORun-eq:
SHORun A rho HOs SHOs =

(HOinitConfig A (rho 0)
∧ (∀ r . SHOnextConfig A r (rho r) (HOs r) (SHOs r) (rho (Suc r))))

by (auto simp: SHORun-def CSHORun-def HOinitConfig-def SHOnextConfig-def)

Algorithms designed to tolerate benign failures are not subject to message
corruption, and therefore the SHO sets are irrelevant (more formally, each
SHO set equals the corresponding HO set). We define corresponding special
cases of the definitions of successor configurations and of runs, and prove
that these are equivalent to simpler definitions that will be more useful in
proofs. In particular, the vector of messages received by a process in a
benign execution is uniquely determined from the current configuration and
the HO sets.
definition HOrcvdMsgs where

HOrcvdMsgs A r p HO cfg ≡
λq. if q ∈ HO then Some (sendMsg A r q p (cfg q)) else None

lemma SHOmsgVectors-HO:
SHOmsgVectors A r p cfg HO HO = {HOrcvdMsgs A r p HO cfg}
unfolding SHOmsgVectors-def HOrcvdMsgs-def by auto

With coordinators
definition CHOnextConfig where

CHOnextConfig A r cfg HO coord cfg ′ ≡
CSHOnextConfig A r cfg HO HO coord cfg ′

lemma CHOnextConfig-eq:
CHOnextConfig A r cfg HO coord cfg ′ =
(∀ p. CnextState A r p (cfg p) (HOrcvdMsgs A r p (HO p) cfg)

(coord p) (cfg ′ p))
by (auto simp: CHOnextConfig-def CSHOnextConfig-def SHOmsgVectors-HO)

definition CHORun where
CHORun A rho HOs coords ≡ CSHORun A rho HOs HOs coords

lemma CHORun-eq:
CHORun A rho HOs coords =

(CHOinitConfig A (rho 0) (coords 0)
∧ (∀ r . CHOnextConfig A r (rho r) (HOs r) (coords (Suc r)) (rho (Suc r))))

by (auto simp: CHORun-def CSHORun-def CHOinitConfig-def CHOnextCon-
fig-def)

Without coordinators

11

definition HOnextConfig where
HOnextConfig A r cfg HO cfg ′ ≡ SHOnextConfig A r cfg HO HO cfg ′

lemma HOnextConfig-eq:
HOnextConfig A r cfg HO cfg ′ =
(∀ p. nextState A r p (cfg p) (HOrcvdMsgs A r p (HO p) cfg) (cfg ′ p))

by (auto simp: HOnextConfig-def SHOnextConfig-eq SHOmsgVectors-HO)

definition HORun where
HORun A rho HOs ≡ SHORun A rho HOs HOs

lemma HORun-eq:
HORun A rho HOs =
(HOinitConfig A (rho 0)
∧ (∀ r . HOnextConfig A r (rho r) (HOs r) (rho (Suc r))))

by (auto simp: HORun-def SHORun-eq HOnextConfig-def)

The following derived proof rules are immediate consequences of the defini-
tion of CHORun; they simplify automatic reasoning.
lemma CHORun-0 :

assumes CHORun A rho HOs coords
and

∧
cfg. CHOinitConfig A cfg (coords 0) =⇒ P cfg

shows P (rho 0)
using assms unfolding CHORun-eq by blast

lemma CHORun-Suc:
assumes CHORun A rho HOs coords
and

∧
r . CHOnextConfig A r (rho r) (HOs r) (coords (Suc r)) (rho (Suc r))
=⇒ P r

shows P n
using assms unfolding CHORun-eq by blast

lemma CHORun-induct:
assumes run: CHORun A rho HOs coords
and init: CHOinitConfig A (rho 0) (coords 0) =⇒ P 0
and step:

∧
r . [[P r ; CHOnextConfig A r (rho r) (HOs r) (coords (Suc r))

(rho (Suc r))]] =⇒ P (Suc r)
shows P n

using run unfolding CHORun-eq by (induct n, auto elim: init step)

Because algorithms will not operate for arbitrary HO, SHO, and coordina-
tor assignments, these are constrained by a communication predicate. For
convenience, we split this predicate into a per Round part that is expected
to hold at every round and a global part that must hold of the sequence of
(S)HO assignments and may thus express liveness assumptions.
In the parlance of [7], a HO machine is an HO algorithm augmented with
a communication predicate. We therefore define (C)(S)HO machines as the
corresponding extensions of the record defining an HO algorithm.

12

record (′proc, ′pst, ′msg) HOMachine = (′proc, ′pst, ′msg) CHOAlgorithm +
HOcommPerRd:: ′proc HO ⇒ bool
HOcommGlobal::(nat ⇒ ′proc HO) ⇒ bool

record (′proc, ′pst, ′msg) CHOMachine = (′proc, ′pst, ′msg) CHOAlgorithm +
CHOcommPerRd::nat ⇒ ′proc HO ⇒ ′proc coord ⇒ bool
CHOcommGlobal::(nat ⇒ ′proc HO) ⇒ (nat ⇒ ′proc coord) ⇒ bool

record (′proc, ′pst, ′msg) SHOMachine = (′proc, ′pst, ′msg) CHOAlgorithm +
SHOcommPerRd::(′proc HO) ⇒ (′proc HO) ⇒ bool
SHOcommGlobal::(nat ⇒ ′proc HO) ⇒ (nat ⇒ ′proc HO) ⇒ bool

record (′proc, ′pst, ′msg) CSHOMachine = (′proc, ′pst, ′msg) CHOAlgorithm +
CSHOcommPerRd::(′proc HO) ⇒ (′proc HO) ⇒ ′proc coord ⇒ bool
CSHOcommGlobal::(nat ⇒ ′proc HO) ⇒ (nat ⇒ ′proc HO)

⇒ (nat ⇒ ′proc coord) ⇒ bool

end — theory HOModel
theory Reduction
imports HOModel Stuttering-Equivalence.StutterEquivalence
begin

3 Reduction Theorem

We have defined the semantics of HO algorithms such that rounds are exe-
cuted atomically, by all processes. This definition is surprising for a model
of asynchronous distributed algorithms since it models a synchronous execu-
tion of rounds. However, it simplifies representing and reasoning about the
algorithms. For example, the communication network does not have to be
modeled explicitly, since the possible sets of messages received by processes
can be computed from the global configuration and the collections of HO
and SHO sets.
We will now define a more conventional “fine-grained” semantics where com-
munication is modeled explicitly and rounds of processes can be arbitrarily
interleaved (subject to the constraints of the communication predicates).
We will then establish a reduction theorem that shows that for every fine-
grained run there exists an equivalent round-based (“coarse-grained”) run in
the sense that the two runs exhibit the same sequences of local states of all
processes, modulo stuttering. We prove the reduction theorem for the most
general class of coordinated SHO algorithms. It is easy to see that the the-
orem equally holds for the special cases of uncoordinated or HO algorithms,
and since we have in fact defined these classes of algorithms from the more
general ones, we can directly apply the general theorem.
As a corollary, interesting properties remain valid in the fine-grained seman-
tics if they hold in the coarse-grained semantics. It is therefore enough to

13

verify such properties in the coarse-grained semantics, which is much eas-
ier to reason about. The essential restriction is that properties may not
depend on states of different processes occurring simultaneously. (For ex-
ample, the coarse-grained semantics ensures by definition that all processes
execute the same round at any instant, which is obviously not true of the
fine-grained semantics.) We claim that all “reasonable” properties of fault-
tolerant distributed algorithms are preserved by our reduction. For example,
the Consensus (and Weak Consensus) problems fall into this class.
The proofs follow Chaouch-Saad et al. [4], where the reduction theorem was
proved for uncoordinated HO algorithms.

3.1 Fine-Grained Semantics

In the fine-grained semantics, a run of an HO algorithm is represented as an
ω-sequence of system configurations. Each configuration is represented as a
record carrying the following information:

• for every process p, the current round that process p is executing,

• the local state of every process,

• for every process p, the set of processes to which p has already sent a
message for the current round,

• for all processes p and q, the message (if any) that p has received from
q for the round that p is currently executing, and

• the set of messages in transit, represented as triples of the form (p, r, q,m)
meaning that process p sent message m to process q for round r, but
q has not yet received that message.

As explained earlier, the coordinators of processes are not recorded in the
configuration, but algorithms may record them as part of the process states.
record (′pst, ′proc, ′msg) config =

round :: ′proc ⇒ nat
state :: ′proc ⇒ ′pst
sent :: ′proc ⇒ ′proc set
rcvd :: ′proc ⇒ ′proc ⇒ ′msg option
network :: (′proc ∗ nat ∗ ′proc ∗ ′msg) set

type-synonym (′pst , ′proc , ′msg) fgrun = nat ⇒ (′pst, ′proc, ′msg) config

In an initial configuration for an algorithm, the local state of every process
satisfies the algorithm’s initial-state predicate, and all other components
have obvious default values.
definition fg-init-config where

14

fg-init-config A (config::(′pst, ′proc, ′msg) config) (coord:: ′proc coord) ≡
round config = (λp. 0)
∧ (∀ p. CinitState A p (state config p) (coord p))
∧ sent config = (λp. {})
∧ rcvd config = (λp q. None)
∧ network config = {}

In the fine-grained semantics, we have three types of transitions due to

• some process sending a message,

• some process receiving a message, and

• some process executing a local transition.

The following definition models process p sending a message to process q.
The transition is enabled if p has not yet sent any message to q for the
current round. The message to be sent is computed according to the algo-
rithm’s sendMsg function. The effect of the transition is to add q to the sent
component of the configuration and the message quadruple to the network
component.
definition fg-send-msg where

fg-send-msg A p q config config ′ ≡
q /∈ (sent config p)
∧ config ′ = config (|

sent := (sent config)(p := (sent config p) ∪ {q}),
network := network config ∪

{(p, round config p, q,
sendMsg A (round config p) p q (state config p))} |)

The following definition models the reception of a message by process p from
process q. The action is enabled if q is in the heard-of set HO of process p
for the current round, and if the network contains some message from q to
p for the round that p is currently executing. W.l.o.g., we model message
corruption at reception: if q is not in p’s SHO set (parameter SHO), then
an arbitrary value m ′ is received instead of m.
definition fg-rcv-msg where

fg-rcv-msg p q HO SHO config config ′ ≡
∃m m ′. (q, (round config p), p, m) ∈ network config
∧ q ∈ HO
∧ config ′ = config (|

rcvd := (rcvd config)(p := (rcvd config p)(q :=
if q ∈ SHO then Some m else Some m ′)),

network := network config − {(q, (round config p), p, m)} |)

Finally, we consider local state transition of process p. A local transition
is enabled only after p has sent all messages for its current round and has
received all messages that it is supposed to receive according to its current

15

HO set (parameter HO). The local state is updated according to the algo-
rithm’s CnextState relation, which may depend on the coordinator crd of
the following round. The round of process p is incremented, and the sent
and rcvd components for process p are reset to initial values for the new
round.
definition fg-local where

fg-local A p HO crd config config ′ ≡
sent config p = UNIV
∧ dom (rcvd config p) = HO
∧ (∃ s. CnextState A (round config p) p (state config p) (rcvd config p) crd s
∧ config ′ = config (|

round := (round config)(p := Suc (round config p)),
state := (state config)(p := s),
sent := (sent config)(p := {}),
rcvd := (rcvd config)(p := λq. None) |))

The next-state relation for process p is just the disjunction of the above
three types of transitions.
definition fg-next-config where

fg-next-config A p HO SHO crd config config ′ ≡
(∃ q. fg-send-msg A p q config config ′)
∨ (∃ q. fg-rcv-msg p q HO SHO config config ′)
∨ fg-local A p HO crd config config ′

Fine-grained runs are infinite sequences of configurations that start in an
initial configuration and where each step corresponds to some process send-
ing a message, receiving a message or performing a local step. We also
require that every process eventually executes every round – note that this
condition is implicit in the definition of coarse-grained runs.
definition fg-run where

fg-run A rho HOs SHOs coords ≡
fg-init-config A (rho 0) (coords 0)
∧ (∀ i. ∃ p. fg-next-config A p

(HOs (round (rho i) p) p)
(SHOs (round (rho i) p) p)
(coords (round (rho (Suc i)) p) p)
(rho i) (rho (Suc i)))

∧ (∀ p r . ∃n. round (rho n) p = r)

The following function computes at which “time point” (index in the fine-
grained computation) process p starts executing round r. This function
plays an important role in the correspondence between the two semantics,
and in the subsequent proofs.
definition fg-start-round where

fg-start-round rho p r ≡ LEAST (n::nat). round (rho n) p = r

16

3.2 Properties of the Fine-Grained Semantics

In preparation for the proof of the reduction theorem, we establish a number
of consequences of the above definitions.

Process states change only when round numbers change during a fine-grained
run.
lemma fg-state-change:

assumes rho: fg-run A rho HOs SHOs coords
and rd: round (rho (Suc n)) p = round (rho n) p

shows state (rho (Suc n)) p = state (rho n) p
proof −

from rho have ∃ p ′. fg-next-config A p ′ (HOs (round (rho n) p ′) p ′)
(SHOs (round (rho n) p ′) p ′)
(coords (round (rho (Suc n)) p ′) p ′)
(rho n) (rho (Suc n))

by (auto simp: fg-run-def)
with rd show ?thesis

by (auto simp: fg-next-config-def fg-send-msg-def fg-rcv-msg-def fg-local-def)
qed

Round numbers never decrease.
lemma fg-round-numbers-increase:

assumes rho: fg-run A rho HOs SHOs coords and n: n ≤ m
shows round (rho n) p ≤ round (rho m) p

proof −
from n obtain k where k: m = n+k by (auto simp: le-iff-add)
{

fix i
have round (rho n) p ≤ round (rho (n+i)) p (is ?P i)
proof (induct i)

show ?P 0 by simp
next

fix j
assume ih: ?P j
from rho have ∃ p ′. fg-next-config A p ′ (HOs (round (rho (n+j)) p ′) p ′)

(SHOs (round (rho (n+j)) p ′) p ′)
(coords (round (rho (Suc (n+j))) p ′) p ′)
(rho (n+j)) (rho (Suc (n+j)))

by (auto simp: fg-run-def)
hence round (rho (n+j)) p ≤ round (rho (n + Suc j)) p
by (auto simp: fg-next-config-def fg-send-msg-def fg-rcv-msg-def fg-local-def)

with ih show ?P (Suc j) by auto
qed

}
with k show ?thesis by simp

qed

Combining the two preceding lemmas, it follows that the local states of

17

process p at two configurations are the same if these configurations have the
same round number.
lemma fg-same-round-same-state:

assumes rho: fg-run A rho HOs SHOs coords
and rd: round (rho m) p = round (rho n) p

shows state (rho m) p = state (rho n) p
proof −

{
fix k i
have round (rho (k+i)) p = round (rho k) p

=⇒ state (rho (k+i)) p = state (rho k) p
(is ?R i =⇒ ?S i)

proof (induct i)
show ?S 0 by simp

next
fix j
assume ih: ?R j =⇒ ?S j

and r : round (rho (k + Suc j)) p = round (rho k) p
from rho have 1 : round (rho k) p ≤ round (rho (k+j)) p

by (auto elim: fg-round-numbers-increase)
from rho have 2 : round (rho (k+j)) p ≤ round (rho (k + Suc j)) p

by (auto elim: fg-round-numbers-increase)
from 1 2 r have 3 : round (rho (k+j)) p = round (rho k) p by auto
with r have round (rho (Suc (k+j))) p = round (rho (k+j)) p by simp
with rho have state (rho (Suc (k+j))) p = state (rho (k+j)) p

by (auto elim: fg-state-change)
with 3 ih show ?S (Suc j) by simp

qed
}
note aux = this
show ?thesis
proof (cases n ≤ m)

case True
then obtain k where m = n+k by (auto simp: le-iff-add)
with rd show ?thesis by (auto simp: aux)

next
case False
hence m ≤ n by simp
then obtain k where n = m+k by (auto simp: le-iff-add)
with rd show ?thesis by (auto simp: aux)

qed
qed

Since every process executes every round, function fg-startRound is well-
defined. We also list a few facts about fg-startRound that will be used to
show that it is a “stuttering sampling function”, a notion introduced in the
theories about stuttering equivalence.
lemma fg-start-round:

18

assumes fg-run A rho HOs SHOs coords
shows round (rho (fg-start-round rho p r)) p = r

using assms by (auto simp: fg-run-def fg-start-round-def intro: LeastI-ex)

lemma fg-start-round-smallest:
assumes round (rho k) p = r
shows fg-start-round rho p r ≤ (k::nat)

using assms unfolding fg-start-round-def by (rule Least-le)

lemma fg-start-round-later :
assumes rho: fg-run A rho HOs SHOs coords

and r : round (rho n) p = r and r ′: r < r ′

shows n < fg-start-round rho p r ′ (is - < ?start)
proof (rule ccontr)

assume ¬ ?thesis
hence start: ?start ≤ n by simp
from rho this have round (rho ?start) p ≤ round (rho n) p

by (rule fg-round-numbers-increase)
with r have r ′ ≤ r by (simp add: fg-start-round[OF rho])
with r ′ show False by simp

qed

lemma fg-start-round-0 :
assumes rho: fg-run A rho HOs SHOs coords
shows fg-start-round rho p 0 = 0

proof −
from rho have round (rho 0) p = 0 by (auto simp: fg-run-def fg-init-config-def)
hence fg-start-round rho p 0 ≤ 0 by (rule fg-start-round-smallest)
thus ?thesis by simp

qed

lemma fg-start-round-strict-mono:
assumes rho: fg-run A rho HOs SHOs coords
shows strict-mono (fg-start-round rho p)

proof
fix r r ′

assume r : (r ::nat) < r ′

from rho have round (rho (fg-start-round rho p r)) p = r by (rule fg-start-round)
from rho this r show fg-start-round rho p r < fg-start-round rho p r ′

by (rule fg-start-round-later)
qed

Process p is at round r at all configurations between the start of round r and
the start of round r+1. By lemma fg-same-round-same-state, this implies
that the local state of process p is the same at all these configurations.
lemma fg-round-between-start-rounds:
assumes rho: fg-run A rho HOs SHOs coords

and 1 : fg-start-round rho p r ≤ n
and 2 : n < fg-start-round rho p (Suc r)

19

shows round (rho n) p = r (is ?rd = r)
proof (rule antisym)

from 1 have round (rho (fg-start-round rho p r)) p ≤ ?rd
by (rule fg-round-numbers-increase[OF rho])

thus r ≤ ?rd by (simp add: fg-start-round[OF rho])
next

show ?rd ≤ r
proof (rule ccontr)

assume ¬ ?thesis
hence Suc r ≤ ?rd by simp
hence fg-start-round rho p (Suc r) ≤ fg-start-round rho p ?rd

by (rule rho[THEN fg-start-round-strict-mono, THEN strict-mono-mono,
THEN monoD])

also have ... ≤ n by (auto intro: fg-start-round-smallest)
also note 2
finally show False by simp

qed
qed

For any process p and round r there is some instant n where p executes a
local transition from round r. In fact, n+1 marks the start of round r+1.
lemma fg-local-transition-from-round:
assumes rho: fg-run A rho HOs SHOs coords
obtains n where round (rho n) p = r

and fg-start-round rho p (Suc r) = Suc n
and fg-local A p (HOs r p) (coords (Suc r) p) (rho n) (rho (Suc n))

proof −
have fg-start-round rho p (Suc r) 6= 0 (is ?start 6= 0)
proof

assume contr : ?start = 0
from rho have round (rho ?start) p = Suc r by (rule fg-start-round)
with contr rho show False by (auto simp: fg-run-def fg-init-config-def)

qed
then obtain n where n: ?start = Suc n by (auto simp: gr0-conv-Suc)
with fg-start-round[OF rho, of p Suc r]
have 0 : round (rho (Suc n)) p = Suc r by simp
have 1 : round (rho n) p = r
proof (rule fg-round-between-start-rounds[OF rho])

have fg-start-round rho p r < fg-start-round rho p (Suc r)
by (rule fg-start-round-strict-mono[OF rho, THEN strict-monoD]) simp

with n show fg-start-round rho p r ≤ n by simp
next

from n show n < ?start by simp
qed
from rho obtain p ′ where

fg-next-config A p ′ (HOs (round (rho n) p ′) p ′)
(SHOs (round (rho n) p ′) p ′)
(coords (round (rho (Suc n)) p ′) p ′)
(rho n) (rho (Suc n))

20

(is fg-next-config - - ?HO ?SHO ?crd ?cfg ?cfg ′)
by (force simp: fg-run-def)

hence fg-local A p (HOs r p) (coords (Suc r) p) (rho n) (rho (Suc n))
proof (auto simp: fg-next-config-def)

fix q
assume fg-send-msg A p ′ q ?cfg ?cfg ′

— impossible because round changes
with 0 1 show ?thesis by (auto simp: fg-send-msg-def)

next
fix q
assume fg-rcv-msg p ′ q ?HO ?SHO ?cfg ?cfg ′

— impossible because round changes
with 0 1 show ?thesis by (auto simp: fg-rcv-msg-def)

next
assume fg-local A p ′ ?HO ?crd ?cfg ?cfg ′

with 0 1 show ?thesis by (cases p ′ = p) (auto simp: fg-local-def)
qed
with 1 n that show ?thesis by auto

qed

We now prove two invariants asserted in [4]. The first one states that any
message m in transit from process p to process q for round r corresponds to
the message computed by p for q, given p’s state at its rth local transition.
lemma fg-invariant1 :

assumes rho: fg-run A rho HOs SHOs coords
and m: (p,r ,q,m) ∈ network (rho n) (is ?msg n)

shows m = sendMsg A r p q (state (rho (fg-start-round rho p r)) p)
using m proof (induct n)

— the base case is trivial because the network is empty
assume ?msg 0 with rho show ?thesis

by (auto simp: fg-run-def fg-init-config-def)
next

fix n
assume m ′: ?msg (Suc n) and ih: ?msg n =⇒ ?thesis
from rho obtain p ′ where

fg-next-config A p ′ (HOs (round (rho n) p ′) p ′)
(SHOs (round (rho n) p ′) p ′)
(coords (round (rho (Suc n)) p ′) p ′)
(rho n) (rho (Suc n))

(is fg-next-config - - ?HO ?SHO ?crd ?cfg ?cfg ′)
by (force simp: fg-run-def)

thus ?thesis
proof (auto simp: fg-next-config-def)

Only fg-send-msg transitions for process p are interesting, since all other transitions
cannot add a message for p, hence we can apply the induction hypothesis.

fix q ′

assume send: fg-send-msg A p ′ q ′ ?cfg ?cfg ′

show ?thesis

21

proof (cases ?msg n)
case True
with ih show ?thesis .

next
case False
with send m ′ have 1 : p ′ = p round ?cfg p = r

and 2 : m = sendMsg A r p q (state ?cfg p)
by (auto simp: fg-send-msg-def)

from rho 1 have state ?cfg p = state (rho (fg-start-round rho p r)) p
by (auto simp: fg-start-round fg-same-round-same-state)

with 1 2 show ?thesis by simp
qed

next
fix q ′

assume fg-rcv-msg p ′ q ′ ?HO ?SHO ?cfg ?cfg ′

with m ′ have ?msg n by (auto simp: fg-rcv-msg-def)
with ih show ?thesis .

next
assume fg-local A p ′ ?HO ?crd ?cfg ?cfg ′

with m ′ have ?msg n by (auto simp: fg-local-def)
with ih show ?thesis .

qed
qed

The second invariant states that if process q received message m from process
p, then (a) p is in q’s HO set for that round m, and (b) if p is moreover in
q’s SHO set, then m is the message that p computed at the start of that
round.
lemma fg-invariant2a:

assumes rho: fg-run A rho HOs SHOs coords
and m: rcvd (rho n) q p = Some m (is ?rcvd n)

shows p ∈ HOs (round (rho n) q) q
(is p ∈ HOs (?rd n) q is ?P n)

using m proof (induct n)
— The base case is trivial because q has not received any message initially
assume ?rcvd 0 with rho show ?P 0

by (auto simp: fg-run-def fg-init-config-def)
next

fix n
assume rcvd: ?rcvd (Suc n) and ih: ?rcvd n =⇒ ?P n
— For the inductive step we distinguish the possible transitions
from rho obtain p ′ where

fg-next-config A p ′ (HOs (round (rho n) p ′) p ′)
(SHOs (round (rho n) p ′) p ′)
(coords (round (rho (Suc n)) p ′) p ′)
(rho n) (rho (Suc n))

(is fg-next-config - - ?HO ?SHO ?crd ?cfg ?cfg ′)
by (force simp: fg-run-def)

thus ?P (Suc n)

22

proof (auto simp: fg-next-config-def)

Except for fg-rcv-msg steps of process q, the proof is immediately reduced to the
induction hypothesis.

fix q ′

assume rcvmsg: fg-rcv-msg p ′ q ′ ?HO ?SHO ?cfg ?cfg ′

hence rd: ?rd (Suc n) = ?rd n by (auto simp: fg-rcv-msg-def)
show ?P (Suc n)
proof (cases ?rcvd n)

case True
with ih rd show ?thesis by simp

next
case False
with rcvd rcvmsg rd show ?thesis by (auto simp: fg-rcv-msg-def)

qed
next

fix q ′

assume fg-send-msg A p ′ q ′ ?cfg ?cfg ′

with rcvd have ?rcvd n and ?rd (Suc n) = ?rd n
by (auto simp: fg-send-msg-def)

with ih show ?P (Suc n) by simp
next

assume fg-local A p ′ ?HO ?crd ?cfg ?cfg ′

with rcvd have ?rcvd n and ?rd (Suc n) = ?rd n
— in fact, p ′ = q is impossible because the rcvd field of p ′ is cleared
by (auto simp: fg-local-def)

with ih show ?P (Suc n) by simp
qed

qed

lemma fg-invariant2b:
assumes rho: fg-run A rho HOs SHOs coords

and m: rcvd (rho n) q p = Some m (is ?rcvd n)
and sho: p ∈ SHOs (round (rho n) q) q (is p ∈ SHOs (?rd n) q)

shows m = sendMsg A (?rd n) p q
(state (rho (fg-start-round rho p (?rd n))) p)

(is ?P n)
using m sho proof (induct n)

— The base case is trivial because q has not received any message initially
assume ?rcvd 0 with rho show ?P 0

by (auto simp: fg-run-def fg-init-config-def)
next

fix n
assume rcvd: ?rcvd (Suc n) and p: p ∈ SHOs (?rd (Suc n)) q

and ih: ?rcvd n =⇒ p ∈ SHOs (?rd n) q =⇒ ?P n
— For the inductive step we again distinguish the possible transitions
from rho obtain p ′ where

fg-next-config A p ′ (HOs (round (rho n) p ′) p ′)
(SHOs (round (rho n) p ′) p ′)

23

(coords (round (rho (Suc n)) p ′) p ′)
(rho n) (rho (Suc n))

(is fg-next-config - - ?HO ?SHO ?crd ?cfg ?cfg ′)
by (force simp: fg-run-def)

thus ?P (Suc n)
proof (auto simp: fg-next-config-def)

Except for fg-rcv-msg steps of process q, the proof is immediately reduced to the
induction hypothesis.

fix q ′

assume rcvmsg: fg-rcv-msg p ′ q ′ ?HO ?SHO ?cfg ?cfg ′

hence rd: ?rd (Suc n) = ?rd n by (auto simp: fg-rcv-msg-def)
show ?P (Suc n)
proof (cases ?rcvd n)

case True
with ih p rd show ?thesis by simp

next
case False
from rcvmsg obtain m ′ m ′′ where
(q ′, round ?cfg p ′, p ′, m ′) ∈ network ?cfg
rcvd ?cfg ′ = (rcvd ?cfg)(p ′ := (rcvd ?cfg p ′)(q ′ :=

if q ′ ∈ ?SHO then Some m ′ else Some m ′′))
by (auto simp: fg-rcv-msg-def split del: if-split-asm)

with False rcvd p rd have (p, ?rd n, q, m) ∈ network ?cfg by auto
with rho rd show ?thesis by (auto simp: fg-invariant1)

qed
next

fix q ′

assume fg-send-msg A p ′ q ′ ?cfg ?cfg ′

with rcvd have ?rcvd n and ?rd (Suc n) = ?rd n
by (auto simp: fg-send-msg-def)

with p ih show ?P (Suc n) by simp
next

assume fg-local A p ′ ?HO ?crd ?cfg ?cfg ′

with rcvd have ?rcvd n and ?rd (Suc n) = ?rd n
— in fact, p ′ = q is impossible because the rcvd field of p ′ is cleared
by (auto simp: fg-local-def)

with p ih show ?P (Suc n) by simp
qed

qed

3.3 From Fine-Grained to Coarse-Grained Runs

The reduction theorem asserts that for any fine-grained run rho there is a
coarse-grained run such that every process sees the same sequence of local
states in the two runs, modulo stuttering. In other words, no process can
locally distinguish the two runs.
Given fine-grained run rho, the corresponding coarse-grained run sigma is

24

defined as the sequence of state vectors at the beginning of every round.
Notice in particular that the local states sigma r p and sigma r q of two
different processes p and q appear at different instants in the original run rho.
Nevertheless, we prove that sigma is a coarse-grained run of the algorithm
for the same HO, SHO, and coordinator assignments. By definition (and
the fact that local states remain equal between fg-start-round instants), the
sequences of process states in rho and sigma are easily seen to be stuttering
equivalent, and this will be formally stated below.
definition coarse-run where

coarse-run rho r p ≡ state (rho (fg-start-round rho p r)) p

theorem reduction:
assumes rho: fg-run A rho HOs SHOs coords
shows CSHORun A (coarse-run rho) HOs SHOs coords

(is CSHORun - ?cr - - -)
proof (auto simp: CSHORun-def)

from rho show CHOinitConfig A (?cr 0) (coords 0)
by (auto simp: fg-run-def fg-init-config-def CHOinitConfig-def

coarse-run-def fg-start-round-0 [OF rho])
next

fix r
show CSHOnextConfig A r (?cr r) (HOs r) (SHOs r) (coords (Suc r))

(?cr (Suc r))
proof (auto simp add: CSHOnextConfig-def)

fix p
from rho[THEN fg-local-transition-from-round] obtain n

where n: round (rho n) p = r
and start: fg-start-round rho p (Suc r) = Suc n (is ?start = -)
and loc: fg-local A p (HOs r p) (coords (Suc r) p) (rho n) (rho (Suc n))

(is fg-local - - ?HO ?crd ?cfg ?cfg ′)
by blast

have cfg: ?cr r p = state ?cfg p
unfolding coarse-run-def proof (rule fg-same-round-same-state[OF rho])
from n show round (rho (fg-start-round rho p r)) p = round ?cfg p

by (simp add: fg-start-round[OF rho])
qed
from start have cfg ′: ?cr (Suc r) p = state ?cfg ′ p

by (simp add: coarse-run-def)
have rcvd: rcvd ?cfg p ∈ SHOmsgVectors A r p (?cr r) ?HO (SHOs r p)
proof (auto simp: SHOmsgVectors-def)

fix q
assume q ∈ ?HO
with n loc show ∃m. rcvd ?cfg p q = Some m by (auto simp: fg-local-def)

next
fix q m
assume rcvd ?cfg p q = Some m
with rho n show q ∈ ?HO by (auto simp: fg-invariant2a)

next

25

fix q
assume sho: q ∈ SHOs r p and ho: q ∈ ?HO
from ho n loc obtain m where rcvd ?cfg p q = Some m

by (auto simp: fg-local-def)
with rho n sho show rcvd ?cfg p q = Some (sendMsg A r q p (?cr r q))

by (auto simp: fg-invariant2b coarse-run-def)
qed
with n loc cfg cfg ′

show ∃µ ∈ SHOmsgVectors A r p (?cr r) ?HO (SHOs r p).
CnextState A r p (?cr r p) µ ?crd (?cr (Suc r) p)

by (auto simp: fg-local-def)
qed

qed

3.4 Locally Similar Runs and Local Properties

We say that two sequences of configurations (vectors of process states) are
locally similar if for every process the sequences of its process states are
stuttering equivalent. Observe that different stuttering reduction may be
applied for every process, hence the original sequences of configurations need
not be stuttering equivalent and can indeed differ wildly in the combinations
of local states that occur.
A property of a sequence of configurations is called local if it is insensitive
to local similarity.
definition locally-similar where

locally-similar (σ::nat ⇒ ′proc ⇒ ′pst) τ ≡
∀ p:: ′proc. (λn. σ n p) ≈ (λn. τ n p)

definition local-property where
local-property P ≡
∀σ τ. locally-similar σ τ −→ P σ −→ P τ

Local similarity is an equivalence relation.
lemma locally-similar-refl: locally-similar σ σ

by (simp add: locally-similar-def stutter-equiv-refl)

lemma locally-similar-sym: locally-similar σ τ =⇒ locally-similar τ σ
by (simp add: locally-similar-def stutter-equiv-sym)

lemma locally-similar-trans [trans]:
locally-similar % σ =⇒ locally-similar σ τ =⇒ locally-similar % τ
by (force simp add: locally-similar-def elim: stutter-equiv-trans)

lemma local-property-eq:
local-property P = (∀σ τ. locally-similar σ τ −→ P σ = P τ)
by (auto simp: local-property-def dest: locally-similar-sym)

Consider any fine-grained run rho. The projection of rho to vectors of pro-

26

cess states is locally similar to the coarse-grained run computed from rho.
lemma coarse-run-locally-similar :

assumes rho: fg-run A rho HOs SHOs coords
shows locally-similar (state ◦ rho) (coarse-run rho)

proof (auto simp: locally-similar-def)
fix p
show (λn. state (rho n) p) ≈ (λn. coarse-run rho n p) (is ?fgr ≈ ?cgr)
proof (rule stutter-equivI)

show stutter-sampler (fg-start-round rho p) ?fgr
proof (auto simp: stutter-sampler-def)

from rho show fg-start-round rho p 0 = 0
by (rule fg-start-round-0)

next
show strict-mono (fg-start-round rho p)

by (rule fg-start-round-strict-mono[OF rho])
next

fix r n
assume fg-start-round rho p r < n and n < fg-start-round rho p (Suc r)
with rho have round (rho n) p = round (rho (fg-start-round rho p r)) p

by (simp add: fg-start-round fg-round-between-start-rounds)
with rho show state (rho n) p = state (rho (fg-start-round rho p r)) p

by (rule fg-same-round-same-state)
qed

next
show stutter-sampler id ?cgr

by (rule id-stutter-sampler)
next

show ?fgr ◦ fg-start-round rho p = ?cgr ◦ id
by (auto simp: coarse-run-def)

qed
qed

Therefore, in order to verify a local property P for a fine-grained run over
given HO, SHO, and coord collections, it is enough to show that P holds for
all coarse-grained runs for these same collections. Indeed, one may restrict
attention to coarse-grained runs whose initial states agree with that of the
given fine-grained run.
theorem local-property-reduction:

assumes rho: fg-run A rho HOs SHOs coords
and P: local-property P
and coarse-correct:∧

crho. [[CSHORun A crho HOs SHOs coords; crho 0 = state (rho 0)]]
=⇒ P crho

shows P (state ◦ rho)
proof −

have coarse-run rho 0 = state (rho 0)
by (rule ext, simp add: coarse-run-def fg-start-round-0 [OF rho])

from rho[THEN reduction] this

27

have P (coarse-run rho) by (rule coarse-correct)
with coarse-run-locally-similar [OF rho] P
show ?thesis by (auto simp: local-property-eq)

qed

3.5 Consensus as a Local Property

Consensus and Weak Consensus are local properties and can therefore be
verified just over coarse-grained runs, according to theorem local-property-reduction.
lemma integrity-is-local:

assumes sim: locally-similar σ τ
and val:

∧
n. dec (σ n p) = Some v =⇒ v ∈ range vals

and dec: dec (τ n p) = Some v
shows v ∈ range vals

proof −
from sim have (λr . σ r p) ≈ (λr . τ r p) by (simp add: locally-similar-def)
then obtain m where σ m p = τ n p by (rule stutter-equiv-element-left)
from sym[OF this] dec show ?thesis by (auto elim: val)

qed

lemma validity-is-local:
assumes sim: locally-similar σ τ

and val:
∧

n. dec (σ n p) = Some w =⇒ w = v
and dec: dec (τ n p) = Some w

shows w = v
proof −

from sim have (λr . σ r p) ≈ (λr . τ r p) by (simp add: locally-similar-def)
then obtain m where σ m p = τ n p by (rule stutter-equiv-element-left)
from sym[OF this] dec show ?thesis by (auto elim: val)

qed

lemma agreement-is-local:
assumes sim: locally-similar σ τ
and agr :

∧
m n. [[dec (σ m p) = Some v; dec (σ n q) = Some w]] =⇒ v=w

and v: dec (τ m p) = Some v and w: dec (τ n q) = Some w
shows v = w

proof −
from sim have (λr . σ r p) ≈ (λr . τ r p) by (simp add: locally-similar-def)
then obtain m ′ where m ′: σ m ′ p = τ m p by (rule stutter-equiv-element-left)
from sim have (λr . σ r q) ≈ (λr . τ r q) by (simp add: locally-similar-def)
then obtain n ′ where n ′: σ n ′ q = τ n q by (rule stutter-equiv-element-left)
from sym[OF m ′] sym[OF n ′] v w show v = w by (auto elim: agr)

qed

lemma termination-is-local:
assumes sim: locally-similar σ τ

and trm: dec (σ m p) = Some v
shows ∃n. dec (τ n p) = Some v

proof −

28

from sim have (λr . σ r p) ≈ (λr . τ r p) by (simp add: locally-similar-def)
then obtain n where σ m p = τ n p by (rule stutter-equiv-element-right)
with trm show ?thesis by auto

qed

theorem consensus-is-local: local-property (consensus vals dec)
proof (auto simp: local-property-def consensus-def)

fix σ τ n p v
assume locally-similar σ τ
and ∀n p v. dec (σ n p) = Some v −→ v ∈ range vals
and dec (τ n p) = Some v
thus v ∈ range vals by (blast intro: integrity-is-local)

next
fix σ τ m n p q v w
assume locally-similar σ τ
and ∀m n p q v w. dec (σ m p) = Some v ∧ dec (σ n q) = Some w −→ v = w
and dec (τ m p) = Some v and dec (τ n q) = Some w
thus v = w by (blast intro: agreement-is-local)

next
fix σ τ p
assume locally-similar σ τ
and ∀ p. ∃m v. dec (σ m p) = Some v
thus ∃n w. dec (τ n p) = Some w by (blast dest: termination-is-local)

qed

theorem weak-consensus-is-local: local-property (weak-consensus vals dec)
proof (auto simp: local-property-def weak-consensus-def)

fix σ τ n p v w
assume locally-similar σ τ
and ∀n p w. dec (σ n p) = Some w −→ w = v
and dec (τ n p) = Some w
thus w = v by (blast intro: validity-is-local)

next
fix σ τ m n p q v w
assume locally-similar σ τ
and ∀m n p q v w. dec (σ m p) = Some v ∧ dec (σ n q) = Some w −→ v = w
and dec (τ m p) = Some v and w: dec (τ n q) = Some w
thus v = w by (blast intro: agreement-is-local)

next
fix σ τ p
assume locally-similar σ τ
and ∀ p. ∃m v. dec (σ m p) = Some v
thus ∃n w. dec (τ n p) = Some w by (blast dest: termination-is-local)

qed

end
theory Majorities
imports Main

29

begin

4 Utility Lemmas About Majorities

Consensus algorithms usually ensure that a majority of processes proposes
the same value before taking a decision, and we provide a few utility lemmas
for reasoning about majorities.

Any two subsets S and T of a finite set E such that the sum of their
cardinalities is larger than the size of E have a non-empty intersection.
lemma abs-majorities-intersect:

assumes crd: card E < card S + card T
and s: S ⊆ E and t: T ⊆ E and e: finite E

shows S ∩ T 6= {}
proof (clarify)

assume contra: S ∩ T = {}
from s t e have finite S and finite T by (auto simp: finite-subset)
with crd contra have card E < card (S ∪ T) by (auto simp add: card-Un-Int)
moreover
from s t e have card (S ∪ T) ≤ card E by (simp add: card-mono)
ultimately
show False by simp

qed

lemma abs-majoritiesE :
assumes crd: card E < card S + card T

and s: S ⊆ E and t: T ⊆ E and e: finite E
obtains p where p ∈ S and p ∈ T

proof −
from assms have S ∩ T 6= {} by (rule abs-majorities-intersect)
then obtain p where p ∈ S ∩ T by blast
with that show ?thesis by auto

qed

Special case: both sets S and T are majorities.
lemma abs-majoritiesE ′:

assumes Smaj: card S > (card E) div 2 and Tmaj: card T > (card E) div 2
and s: S ⊆ E and t: T ⊆ E and e: finite E

obtains p where p ∈ S and p ∈ T
proof (rule abs-majoritiesE [OF - s t e])

from Smaj Tmaj show card E < card S + card T by auto
qed

We restate the above theorems for the case where the base type is finite
(taking E as the universal set).
lemma majorities-intersect:

assumes crd: card (UNIV ::(′a::finite) set) < card (S :: ′a set) + card T

30

shows S ∩ T 6= {}
by (rule abs-majorities-intersect[OF crd]) auto

lemma majoritiesE :
assumes crd: card (UNIV ::(′a::finite) set) < card (S :: ′a set) + card (T :: ′a set)
obtains p where p ∈ S and p ∈ T

using crd majorities-intersect by blast

lemma majoritiesE ′:
assumes S : card (S ::(′a::finite) set) > (card (UNIV :: ′a set)) div 2
and T : card (T :: ′a set) > (card (UNIV :: ′a set)) div 2
obtains p where p ∈ S and p ∈ T

by (rule abs-majoritiesE ′[OF S T]) auto

end
theory OneThirdRuleDefs
imports ../HOModel
begin

5 Verification of the One-Third Rule Consensus
Algorithm

We now apply the framework introduced so far to the verification of concrete
algorithms, starting with algorithm One-Third Rule, which is one of the sim-
plest algorithms presented in [7]. Nevertheless, the algorithm has some in-
teresting characteristics: it ensures safety (i.e., the Integrity and Agreement)
properties in the presence of arbitrary benign faults, and if everything works
perfectly, it terminates in just two rounds. One-Third Rule is an uncoordi-
nated algorithm tolerating benign faults, hence SHO or coordinator sets do
not play a role in its definition.

5.1 Model of the Algorithm

We begin by introducing an anonymous type of processes of finite cardinality
that will instantiate the type variable ′proc of the generic HO model.
typedecl Proc — the set of processes
axiomatization where Proc-finite: OFCLASS(Proc, finite-class)
instance Proc :: finite by (rule Proc-finite)

abbreviation
N ≡ card (UNIV ::Proc set)

The state of each process consists of two fields: x holds the current value
proposed by the process and decide the value (if any, hence the option type)
it has decided.
record ′val pstate =

31

x :: ′val
decide :: ′val option

The initial value of field x is unconstrained, but no decision has been taken
initially.
definition OTR-initState where

OTR-initState p st ≡ decide st = None

Given a vector msgs of values (possibly null) received from each process,
HOV msgs v denotes the set of processes from which value v was received.
definition HOV :: (Proc ⇒ ′val option) ⇒ ′val ⇒ Proc set where

HOV msgs v ≡ { q . msgs q = Some v }

MFR msgs v (“most frequently received”) holds for vector msgs if no value
has been received more frequently than v.
Some such value always exists, since there is only a finite set of processes
and thus a finite set of possible cardinalities of the sets HOV msgs v.
definition MFR :: (Proc ⇒ ′val option) ⇒ ′val ⇒ bool where

MFR msgs v ≡ ∀w. card (HOV msgs w) ≤ card (HOV msgs v)

lemma MFR-exists: ∃ v. MFR msgs v
proof −

let ?cards = { card (HOV msgs v) | v . True }
let ?mfr = Max ?cards
have ∀ v. card (HOV msgs v) ≤ N by (auto intro: card-mono)
hence ?cards ⊆ { 0 .. N } by auto
hence fin: finite ?cards by (metis atLeast0AtMost finite-atMost finite-subset)
hence ?mfr ∈ ?cards by (rule Max-in) auto
then obtain v where v: ?mfr = card (HOV msgs v) by auto
have MFR msgs v
proof (auto simp: MFR-def)

fix w
from fin have card (HOV msgs w) ≤ ?mfr by (rule Max-ge) auto
thus card (HOV msgs w) ≤ card (HOV msgs v) by (unfold v)

qed
thus ?thesis ..

qed

Also, if a process has heard from at least one other process, the most fre-
quently received values are among the received messages.
lemma MFR-in-msgs:

assumes HO:HOs m p 6= {}
and v: MFR (HOrcvdMsgs OTR-M m p (HOs m p) (rho m)) v

(is MFR ?msgs v)
shows ∃ q ∈ HOs m p. v = the (?msgs q)

proof −
from HO obtain q where q: q ∈ HOs m p

32

by auto
with v have HOV ?msgs (the (?msgs q)) 6= {}

by (auto simp: HOV-def HOrcvdMsgs-def)
hence HOp: 0 < card (HOV ?msgs (the (?msgs q)))

by auto
also from v have . . . ≤ card (HOV ?msgs v)

by (simp add: MFR-def)
finally have HOV ?msgs v 6= {}

by auto
thus ?thesis

by (auto simp: HOV-def HOrcvdMsgs-def)
qed

TwoThirds msgs v holds if value v has been received from more than 2/3 of
all processes.
definition TwoThirds where

TwoThirds msgs v ≡ (2∗N) div 3 < card (HOV msgs v)

The next-state relation of algorithm One-Third Rule for every process is
defined as follows: if the process has received values from more than 2/3 of
all processes, the x field is set to the smallest among the most frequently
received values, and the process decides value v if it received v from more
than 2/3 of all processes. If p hasn’t heard from more than 2/3 of all
processes, the state remains unchanged. (Note that Some is the constructor
of the option datatype, whereas ε is Hilbert’s choice operator.) We require
the type of values to be linearly ordered so that the minimum is guaranteed
to be well-defined.
definition OTR-nextState where

OTR-nextState r p (st::(′val::linorder) pstate) msgs st ′ ≡
if (2∗N) div 3 < card {q. msgs q 6= None}
then st ′ = (| x = Min {v . MFR msgs v},

decide = (if (∃ v. TwoThirds msgs v)
then Some (ε v. TwoThirds msgs v)
else decide st) |)

else st ′ = st

The message sending function is very simple: at every round, every process
sends its current proposal (field x of its local state) to all processes.
definition OTR-sendMsg where

OTR-sendMsg r p q st ≡ x st

5.2 Communication Predicate for One-Third Rule

We now define the communication predicate for the One-Third Rule algo-
rithm to be correct. It requires that, infinitely often, there is a round where
all processes receive messages from the same set Π of processes where Π

33

contains more than two thirds of all processes. The “per-round” part of the
communication predicate is trivial.
definition OTR-commPerRd where

OTR-commPerRd HOrs ≡ True

definition OTR-commGlobal where
OTR-commGlobal HOs ≡
∀ r . ∃ r0 Π. r0 ≥ r ∧ (∀ p. HOs r0 p = Π) ∧ card Π > (2∗N) div 3

5.3 The One-Third Rule Heard-Of Machine

We now define the HO machine for the One-Third Rule algorithm by assem-
bling the algorithm definition and its communication-predicate. Because
this is an uncoordinated algorithm, the crd arguments of the initial- and
next-state predicates are unused.
definition OTR-HOMachine where

OTR-HOMachine =
(| CinitState = (λ p st crd. OTR-initState p st),
sendMsg = OTR-sendMsg,
CnextState = (λ r p st msgs crd st ′. OTR-nextState r p st msgs st ′),
HOcommPerRd = OTR-commPerRd,
HOcommGlobal = OTR-commGlobal |)

abbreviation OTR-M ≡ OTR-HOMachine::(Proc, ′val::linorder pstate, ′val) HOMa-
chine

end
theory OneThirdRuleProof
imports OneThirdRuleDefs ../Reduction ../Majorities
begin

We prove that One-Third Rule solves the Consensus problem under the
communication predicate defined above. The proof is split into proofs of the
Integrity, Agreement, and Termination properties.

5.4 Proof of Integrity

Showing integrity of the algorithm is a simple, if slightly tedious exercise
in invariant reasoning. The following inductive invariant asserts that the
values of the x and decide fields of the process states are limited to the x
values present in the initial states since the algorithm does not introduce
any new values.
definition VInv where

VInv rho n ≡
let xinit = (range (x ◦ (rho 0)))
in range (x ◦ (rho n)) ⊆ xinit

34

∧ range (decide ◦ (rho n)) ⊆ {None} ∪ (Some ‘ xinit)

lemma vinv-invariant:
assumes run:HORun OTR-M rho HOs
shows VInv rho n

proof (induct n)
from run show VInv rho 0

by (simp add: HORun-eq HOinitConfig-eq OTR-HOMachine-def initState-def
OTR-initState-def VInv-def image-def)

next
fix m
assume ih: VInv rho m
let ?xinit = range (x ◦ (rho 0))
have range (x ◦ (rho (Suc m))) ⊆ ?xinit
proof (clarsimp cong del: image-cong-simp)

fix p
from run
have nxt: OTR-nextState m p (rho m p)

(HOrcvdMsgs OTR-M m p (HOs m p) (rho m))
(rho (Suc m) p)

(is OTR-nextState - - ?st ?msgs ?st ′)
by (simp add: HORun-eq HOnextConfig-eq OTR-HOMachine-def nextState-def)
show x ?st ′ ∈ ?xinit
proof (cases (2∗N) div 3 < card (HOs m p))

case True
hence HO: HOs m p 6= {} by auto
let ?MFRs = {v. MFR ?msgs v}
have Min ?MFRs ∈ ?MFRs
proof (rule Min-in)

from HO have ?MFRs ⊆ (the ◦ ?msgs)‘(HOs m p)
by (auto simp: image-def intro: MFR-in-msgs)

thus finite ?MFRs by (auto elim: finite-subset)
next

from MFR-exists show ?MFRs 6= {} by auto
qed
with HO have ∃ q ∈ HOs m p. Min ?MFRs = the (?msgs q)

by (intro MFR-in-msgs) auto
hence ∃ q ∈ HOs m p. Min ?MFRs = x (rho m q)

by (auto simp: HOrcvdMsgs-def OTR-HOMachine-def OTR-sendMsg-def)
moreover
from True nxt have x ?st ′ = Min ?MFRs

by (simp add: OTR-nextState-def HOrcvdMsgs-def)
ultimately

show ?thesis using ih by (auto simp: VInv-def image-def)
next

case False
with nxt ih show ?thesis

by (auto simp: OTR-nextState-def VInv-def HOrcvdMsgs-def Let-def)
qed

35

qed
moreover
have ∀ p. decide ((rho (Suc m)) p) ∈ {None} ∪ (Some ‘ ?xinit)
proof

fix p
from run
have nxt: OTR-nextState m p (rho m p)

(HOrcvdMsgs OTR-M m p (HOs m p) (rho m))
(rho (Suc m) p)

(is OTR-nextState - - ?st ?msgs ?st ′)
by (simp add: HORun-eq HOnextConfig-eq OTR-HOMachine-def nextState-def)
show decide ?st ′ ∈ {None} ∪ (Some ‘ ?xinit)
proof (cases (2∗N) div 3 < card {q. ?msgs q 6= None})

assume HO: (2∗N) div 3 < card {q. ?msgs q 6= None}
show ?thesis
proof (cases ∃ v. TwoThirds ?msgs v)

case True
let ?dec = ε v. TwoThirds ?msgs v
from True have TwoThirds ?msgs ?dec by (rule someI-ex)
hence HOV ?msgs ?dec 6= {} by (auto simp add: TwoThirds-def)
then obtain q where x (rho m q) = ?dec

by (auto simp: HOV-def HOrcvdMsgs-def OTR-HOMachine-def
OTR-sendMsg-def)

from sym[OF this] nxt ih show ?thesis
by (auto simp: OTR-nextState-def VInv-def image-def)

next
case False
with HO nxt ih show ?thesis

by (auto simp: OTR-nextState-def VInv-def HOrcvdMsgs-def image-def)
qed

next
case False
with nxt ih show ?thesis

by (auto simp: OTR-nextState-def VInv-def image-def)
qed

qed
hence range (decide ◦ (rho (Suc m))) ⊆ {None} ∪ (Some ‘ ?xinit) by auto
ultimately
show VInv rho (Suc m) by (auto simp: VInv-def image-def)

qed

Integrity is an immediate consequence.
theorem OTR-integrity:

assumes run:HORun OTR-M rho HOs and dec: decide (rho n p) = Some v
shows ∃ q. v = x (rho 0 q)

proof −
let ?xinit = range (x ◦ (rho 0))
from run have VInv rho n by (rule vinv-invariant)
hence range (decide ◦ (rho n)) ⊆ {None} ∪ (Some ‘ ?xinit)

36

by (auto simp: VInv-def Let-def)
hence decide ((rho n) p) ∈ {None} ∪ (Some ‘ ?xinit)

by (auto simp: image-def)
with dec show ?thesis by auto

qed

5.5 Proof of Agreement

The following lemma A1 asserts that if process p decides in a round on a
value v then more than 2/3 of all processes have v as their x value in their
local state.
We show a few simple lemmas in preparation.
lemma nextState-change:

assumes HORun OTR-M rho HOs
and ¬ ((2∗N) div 3

< card {q. (HOrcvdMsgs OTR-M n p (HOs n p) (rho n)) q 6= None})
shows rho (Suc n) p = rho n p
using assms
by (auto simp: HORun-eq HOnextConfig-eq OTR-HOMachine-def

nextState-def OTR-nextState-def)

lemma nextState-decide:
assumes run:HORun OTR-M rho HOs
and chg: decide (rho (Suc n) p) 6= decide (rho n p)
shows TwoThirds (HOrcvdMsgs OTR-M n p (HOs n p) (rho n))

(the (decide (rho (Suc n) p)))
proof −

from run
have OTR-nextState n p (rho n p)

(HOrcvdMsgs OTR-M n p (HOs n p) (rho n)) (rho (Suc n) p)
by (simp add: HORun-eq HOnextConfig-eq OTR-HOMachine-def nextState-def)

with chg show ?thesis by (auto simp: OTR-nextState-def elim: someI)
qed

lemma A1 :
assumes run:HORun OTR-M rho HOs
and dec: decide (rho (Suc n) p) = Some v
and chg: decide (rho (Suc n) p) 6= decide (rho n p) (is decide ?st ′ 6= decide ?st)
shows (2∗N) div 3 < card { q . x (rho n q) = v }

proof −
from run chg
have TwoThirds (HOrcvdMsgs OTR-M n p (HOs n p) (rho n))

(the (decide ?st ′))
(is TwoThirds ?msgs -)
by (rule nextState-decide)

with dec have TwoThirds ?msgs v by simp
hence (2∗N) div 3 < card { q . ?msgs q = Some v }

by (simp add: TwoThirds-def HOV-def)

37

moreover
have { q . ?msgs q = Some v } ⊆ { q . x (rho n q) = v }

by (auto simp: OTR-HOMachine-def OTR-sendMsg-def HOrcvdMsgs-def)
hence card { q . ?msgs q = Some v } ≤ card { q . x (rho n q) = v }

by (simp add: card-mono)
ultimately
show ?thesis by simp

qed

The following lemma A2 contains the crucial correctness argument: if more
than 2/3 of all processes send v and process p hears from more than 2/3 of
all processes then the x field of p will be updated to v.
lemma A2 :

assumes run: HORun OTR-M rho HOs
and HO: (2∗N) div 3

< card { q . HOrcvdMsgs OTR-M n p (HOs n p) (rho n) q 6= None }
and maj: (2∗N) div 3 < card { q . x (rho n q) = v }
shows x (rho (Suc n) p) = v

proof −
from run
have nxt: OTR-nextState n p (rho n p)

(HOrcvdMsgs OTR-M n p (HOs n p) (rho n))
(rho (Suc n) p)

(is OTR-nextState - - ?st ?msgs ?st ′)
by (simp add: HORun-eq HOnextConfig-eq OTR-HOMachine-def nextState-def)

let ?HOVothers =
⋃
{ HOV ?msgs w | w . w 6= v}

— processes from which p received values different from v

have w: card ?HOVothers ≤ N div 3
proof −

have card ?HOVothers ≤ card (UNIV − { q . x (rho n q) = v })
by (auto simp: HOV-def HOrcvdMsgs-def OTR-HOMachine-def OTR-sendMsg-def

intro: card-mono)
also have . . . = N − card { q . x (rho n q) = v }

by (auto simp: card-Diff-subset)
also from maj have . . . ≤ N div 3 by auto
finally show ?thesis .

qed

have hov: HOV ?msgs v = { q . ?msgs q 6= None } − ?HOVothers
by (auto simp: HOV-def) blast

have othHO: ?HOVothers ⊆ { q . ?msgs q 6= None }
by (auto simp: HOV-def)

Show that v has been received from more than N/3 processes.

from HO have N div 3 < card { q . ?msgs q 6= None } − (N div 3)
by auto

38

also from w HO have . . . ≤ card { q . ?msgs q 6= None } − card ?HOVothers
by auto

also from hov othHO have . . . = card (HOV ?msgs v)
by (auto simp: card-Diff-subset)

finally have HOV : N div 3 < card (HOV ?msgs v) .

All other values are received from at most N/3 processes.

have ∀w. w 6= v −→ card (HOV ?msgs w) ≤ card ?HOVothers
by (force intro: card-mono)

with w have cardw: ∀w. w 6= v −→ card (HOV ?msgs w) ≤ N div 3 by auto

In particular, v is the single most frequently received value.

with HOV have MFR ?msgs v by (auto simp: MFR-def)

moreover
have ∀w. w 6= v −→ ¬(MFR ?msgs w)
proof (auto simp: MFR-def not-le)

fix w
assume w 6= v
with cardw HOV have card (HOV ?msgs w) < card (HOV ?msgs v) by auto
thus ∃ v. card (HOV ?msgs w) < card (HOV ?msgs v) ..

qed

ultimately
have mfrv: { w . MFR ?msgs w } = {v} by auto

have card { q . ?msgs q = Some v } ≤ card { q . ?msgs q 6= None }
by (auto intro: card-mono)

with HO mfrv nxt show ?thesis by (auto simp: OTR-nextState-def)
qed

Therefore, once more than two thirds of the processes hold v in their x field,
this will remain true forever.
lemma A3 :

assumes run:HORun OTR-M rho HOs
and n: (2∗N) div 3 < card { q . x (rho n q) = v } (is ?twothird n)

shows ?twothird (n+k)
proof (induct k)

from n show ?twothird (n+0) by simp
next

fix m
assume m: ?twothird (n+m)
have ∀ q. x (rho (n+m) q) = v −→ x (rho (n + Suc m) q) = v
proof (rule+)

fix q
assume q: x ((rho (n+m)) q) = v
let ?msgs = HOrcvdMsgs OTR-M (n+m) q (HOs (n+m) q) (rho (n+m))
show x (rho (n + Suc m) q) = v
proof (cases (2∗N) div 3 < card { q . ?msgs q 6= None })

39

case True
from m have (2∗N) div 3 < card { q . x (rho (n+m) q) = v } by simp
with True run show ?thesis by (auto elim: A2)

next
case False
with run q show ?thesis by (auto dest: nextState-change)

qed
qed
hence card {q. x (rho (n+m) q) = v} ≤ card {q. x (rho (n + Suc m) q) = v}

by (auto intro: card-mono)
with m show ?twothird (n + Suc m) by simp

qed

It now follows that once a process has decided on some value v, more than
two thirds of all processes continue to hold v in their x field.
lemma A4 :

assumes run: HORun OTR-M rho HOs
and dec: decide (rho n p) = Some v (is ?dec n)
shows ∀ k. (2∗N) div 3 < card { q . x (rho (n+k) q) = v }

(is ∀ k. ?twothird (n+k))
using dec proof (induct n)

— The base case is trivial since no process has decided
assume ?dec 0 with run show ∀ k. ?twothird (0+k)

by (simp add: HORun-eq HOinitConfig-eq OTR-HOMachine-def
initState-def OTR-initState-def)

next
— For the inductive step, we assume that process p has decided on v.
fix m
assume ih: ?dec m =⇒ ∀ k. ?twothird (m+k) and m: ?dec (Suc m)
show ∀ k. ?twothird ((Suc m) + k)
proof

fix k
have ?twothird (m + Suc k)

There are two cases to consider: if p had already decided on v before, the assertion
follows from the induction hypothesis. Otherwise, the assertion follows from lemmas
A1 and A3.

proof (cases ?dec m)
case True with ih show ?thesis by blast

next
case False
with run m have ?twothird m by (auto elim: A1)
with run show ?thesis by (blast dest: A3)

qed
thus ?twothird ((Suc m) + k) by simp

qed
qed

The Agreement property follows easily from lemma A4 : if processes p and

40

q decide values v and w, respectively, then more than two thirds of the
processes must propose v and more than two thirds must propose w. Because
these two majorities must have an intersection, we must have v=w.
We first prove an “asymmetric” version of the agreement property before
deriving the general agreement theorem.
lemma A5 :

assumes run:HORun OTR-M rho HOs
and p: decide (rho n p) = Some v
and p ′: decide (rho (n+k) p ′) = Some w
shows v = w

proof −
from run p
have (2∗N) div 3 < card {q. x (rho (n+k) q) = v} (is - < card ?V)

by (blast dest: A4)
moreover
from run p ′

have (2∗N) div 3 < card {q. x (rho ((n+k)+0) q) = w} (is - < card ?W)
by (blast dest: A4)

ultimately
have N < card ?V + card ?W by auto
then obtain proc where proc ∈ ?V ∩ ?W by (auto dest: majorities-intersect)
thus ?thesis by auto

qed

theorem OTR-agreement:
assumes run:HORun OTR-M rho HOs
and p: decide (rho n p) = Some v
and p ′: decide (rho m p ′) = Some w
shows v = w

proof (cases n ≤ m)
case True
then obtain k where m = n+k by (auto simp add: le-iff-add)
with run p p ′ show ?thesis by (auto elim: A5)

next
case False
hence m ≤ n by auto
then obtain k where n = m+k by (auto simp add: le-iff-add)
with run p p ′ have w = v by (auto elim: A5)
thus ?thesis ..

qed

5.6 Proof of Termination

We now show that every process must eventually decide.
The idea of the proof is to observe that the communication predicate guar-
antees the existence of two uniform rounds where every process hears from
the same two-thirds majority of processes. The first such round serves to

41

ensure that all x fields hold the same value, the second round copies that
value into all decision fields.
Lemma A2 is instrumental in this proof.
theorem OTR-termination:

assumes run: HORun OTR-M rho HOs
and commG: HOcommGlobal OTR-M HOs

shows ∃ r v. decide (rho r p) = Some v
proof −

from commG obtain r0 Π where
pi: ∀ q. HOs r0 q = Π and pic: card Π > (2∗N) div 3
by (auto simp: OTR-HOMachine-def OTR-commGlobal-def)

let ?msgs q r = HOrcvdMsgs OTR-M r q (HOs r q) (rho r)

from run pi have ∀ p q. ?msgs q r0 = ?msgs p r0
by (auto simp: HORun-eq OTR-HOMachine-def HOrcvdMsgs-def OTR-sendMsg-def)

then obtain µ where ∀ q. ?msgs q r0 = µ by auto
moreover
from pi pic have ∀ p. (2∗N) div 3 < card {q. ?msgs p r0 q 6= None}

by (auto simp: HORun-eq HOnextConfig-eq HOrcvdMsgs-def)
with run have ∀ q. x (rho (Suc r0) q) = Min {v . MFR (?msgs q r0) v}

by (auto simp: HORun-eq HOnextConfig-eq OTR-HOMachine-def
nextState-def OTR-nextState-def)

ultimately
have ∀ q. x (rho (Suc r0) q) = Min {v . MFR µ v} by auto
then obtain v where v:∀ q. x (rho (Suc r0) q) = v by auto

have P:∀ k. ∀ q. x (rho (Suc r0+k) q) = v
proof

fix k
show ∀ q. x (rho (Suc r0+k) q) = v
proof (induct k)

from v show ∀ q. x (rho (Suc r0+0) q) = v by simp
next

fix k
assume ih:∀ q. x (rho (Suc r0 + k) q) = v
show ∀ q. x (rho (Suc r0 + Suc k) q) = v
proof

fix q
show x (rho (Suc r0 + Suc k) q) = v
proof (cases (2∗N) div 3 < card { p . ?msgs q (Suc r0 + k) p 6= None })

case True
have N > 0 by (rule finite-UNIV-card-ge-0) simp
with ih
have (2∗N) div 3 < card { p . x (rho (Suc r0 + k) p) = v } by auto
with True run show ?thesis by (auto elim: A2)

next
case False
with run ih show ?thesis by (auto dest: nextState-change)

42

qed
qed

qed
qed

from commG obtain r0 ′ Π ′

where r0 ′: r0 ′ ≥ Suc r0
and pi ′: ∀ q. HOs r0 ′ q = Π ′

and pic ′: card Π ′ > (2∗N) div 3
by (force simp: OTR-HOMachine-def OTR-commGlobal-def)

from r0 ′ P have v ′:∀ q. x (rho r0 ′ q) = v by (auto simp: le-iff-add)

from run
have OTR-nextState r0 ′ p (rho r0 ′ p) (?msgs p r0 ′) (rho (Suc r0 ′) p)
by (simp add: HORun-eq HOnextConfig-eq OTR-HOMachine-def nextState-def)

moreover
from pi ′ pic ′ have (2∗N) div 3 < card {q. (?msgs p r0 ′) q 6= None}

by (auto simp: HOrcvdMsgs-def OTR-sendMsg-def)
moreover
from pi ′ pic ′ v ′ have TwoThirds (?msgs p r0 ′) v

by (simp add: TwoThirds-def HOrcvdMsgs-def OTR-HOMachine-def
OTR-sendMsg-def HOV-def)

ultimately
have decide (rho (Suc r0 ′) p) = Some (ε v. TwoThirds (?msgs p r0 ′) v)

by (auto simp: OTR-nextState-def)
thus ?thesis by blast

qed

5.7 One-Third Rule Solves Consensus

Summing up, all (coarse-grained) runs of One-Third Rule for HO collections
that satisfy the communication predicate satisfy the Consensus property.
theorem OTR-consensus:

assumes run: HORun OTR-M rho HOs and commG: HOcommGlobal OTR-M
HOs

shows consensus (x ◦ (rho 0)) decide rho
using OTR-integrity[OF run] OTR-agreement[OF run] OTR-termination[OF run

commG]
by (auto simp: consensus-def image-def)

By the reduction theorem, the correctness of the algorithm also follows for
fine-grained runs of the algorithm. It would be much more tedious to estab-
lish this theorem directly.
theorem OTR-consensus-fg:

assumes run: fg-run OTR-M rho HOs HOs (λr q. undefined)
and commG: HOcommGlobal OTR-M HOs

shows consensus (λp. x (state (rho 0) p)) decide (state ◦ rho)
(is consensus ?inits - -)

43

proof (rule local-property-reduction[OF run consensus-is-local])
fix crun
assume crun: CSHORun OTR-M crun HOs HOs (λr q. undefined)

and init: crun 0 = state (rho 0)
from crun have HORun OTR-M crun HOs by (unfold HORun-def SHORun-def)
from this commG have consensus (x ◦ (crun 0)) decide crun by (rule OTR-consensus)
with init show consensus ?inits decide crun by (simp add: o-def)

qed

end
theory UvDefs
imports ../HOModel
begin

6 Verification of the UniformVoting Consensus
Algorithm

Algorithm UniformVoting is presented in [7]. It can be considered as a
deterministic version of Ben-Or’s well-known probabilistic Consensus algo-
rithm [2]. We formalize in Isabelle the correctness proof given in [7], using
the framework of theory HOModel.

6.1 Model of the Algorithm

We begin by introducing an anonymous type of processes of finite cardinality
that will instantiate the type variable ′proc of the generic HO model.
typedecl Proc — the set of processes
axiomatization where Proc-finite: OFCLASS(Proc, finite-class)
instance Proc :: finite by (rule Proc-finite)

abbreviation
N ≡ card (UNIV ::Proc set) — number of processes

The algorithm proceeds in phases of 2 rounds each (we call steps the in-
dividual rounds that constitute a phase). The following utility functions
compute the phase and step of a round, given the round number.
abbreviation nSteps ≡ 2

definition phase where phase (r ::nat) ≡ r div nSteps

definition step where step (r ::nat) ≡ r mod nSteps

The following record models the local state of a process.
record ′val pstate =

x :: ′val — current value held by process

44

vote :: ′val option — value the process voted for, if any
decide :: ′val option — value the process has decided on, if any

Possible messages sent during the execution of the algorithm, and charac-
teristic predicates to distinguish types of messages.
datatype ′val msg =

Val ′val
| ValVote ′val ′val option
| Null — dummy message in case nothing needs to be sent

definition isValVote where isValVote m ≡ ∃ z v. m = ValVote z v

definition isVal where isVal m ≡ ∃ v. m = Val v

Selector functions to retrieve components of messages. These functions have
a meaningful result only when the message is of appropriate kind.
fun getvote where

getvote (ValVote z v) = v

fun getval where
getval (ValVote z v) = z
| getval (Val z) = z

The x field of the initial state is unconstrained, all other fields are initialized
appropriately.
definition UV-initState where

UV-initState p st ≡ (vote st = None) ∧ (decide st = None)

We separately define the transition predicates and the send functions for
each step and later combine them to define the overall next-state relation.
definition msgRcvd where — processes from which some message was received

msgRcvd (msgs:: Proc ⇀ ′val msg) = {q . msgs q 6= None}

definition smallestValRcvd where
smallestValRcvd (msgs::Proc ⇀ (′val::linorder) msg) ≡
Min {v. ∃ q. msgs q = Some (Val v)}

In step 0, each process sends its current x value.
It updates its x field to the smallest value it has received. If the process
has received the same value v from all processes from which it has heard, it
updates its vote field to v.
definition send0 where

send0 r p q st ≡ Val (x st)

definition next0 where
next0 r p st (msgs::Proc ⇀ (′val::linorder) msg) st ′ ≡

(∃ v. (∀ q ∈ msgRcvd msgs. msgs q = Some (Val v))

45

∧ st ′ = st (| vote := Some v, x := smallestValRcvd msgs |))
∨ ¬(∃ v. ∀ q ∈ msgRcvd msgs. msgs q = Some (Val v))
∧ st ′ = st (| x := smallestValRcvd msgs |)

In step 1, each process sends its current x and vote values.
definition send1 where

send1 r p q st ≡ ValVote (x st) (vote st)

definition valVoteRcvd where
— processes from which values and votes were received
valVoteRcvd (msgs :: Proc ⇀ ′val msg) ≡
{q . ∃ z v. msgs q = Some (ValVote z v)}

definition smallestValNoVoteRcvd where
smallestValNoVoteRcvd (msgs::Proc ⇀ (′val::linorder) msg) ≡
Min {v. ∃ q. msgs q = Some (ValVote v None)}

definition someVoteRcvd where
— set of processes from which some vote was received
someVoteRcvd (msgs :: Proc ⇀ ′val msg) ≡
{ q . q ∈ msgRcvd msgs ∧ isValVote (the (msgs q)) ∧ getvote (the (msgs q)) 6=

None }

definition identicalVoteRcvd where
identicalVoteRcvd (msgs :: Proc ⇀ ′val msg) v ≡
∀ q ∈ msgRcvd msgs. isValVote (the (msgs q)) ∧ getvote (the (msgs q)) = Some

v

definition x-update where
x-update st msgs st ′ ≡
(∃ q ∈ someVoteRcvd msgs . x st ′ = the (getvote (the (msgs q))))
∨ someVoteRcvd msgs = {} ∧ x st ′ = smallestValNoVoteRcvd msgs

definition dec-update where
dec-update st msgs st ′ ≡
(∃ v. identicalVoteRcvd msgs v ∧ decide st ′ = Some v)
∨ ¬(∃ v. identicalVoteRcvd msgs v) ∧ decide st ′ = decide st

definition next1 where
next1 r p st msgs st ′ ≡

x-update st msgs st ′

∧ dec-update st msgs st ′

∧ vote st ′ = None

The overall send function and next-state relation are simply obtained as the
composition of the individual relations defined above.
definition UV-sendMsg where

UV-sendMsg (r ::nat) ≡ if step r = 0 then send0 r else send1 r

46

definition UV-nextState where
UV-nextState r ≡ if step r = 0 then next0 r else next1 r

6.2 Communication Predicate for UniformVoting

We now define the communication predicate for the UniformVoting algo-
rithm to be correct.
The round-by-round predicate requires that for any two processes there is
always one process heard by both of them. In other words, no “split rounds”
occur during the execution of the algorithm [7]. Note that in particular,
heard-of sets are never empty.
definition UV-commPerRd where

UV-commPerRd HOrs ≡ ∀ p q. ∃ pq. pq ∈ HOrs p ∩ HOrs q

The global predicate requires the existence of a (space-)uniform round during
which the heard-of sets of all processes are equal. (Observe that [7] requires
infinitely many uniform rounds, but the correctness proof uses just one such
round.)
definition UV-commGlobal where

UV-commGlobal HOs ≡ ∃ r . ∀ p q. HOs r p = HOs r q

6.3 The UniformVoting Heard-Of Machine

We now define the HO machine for Uniform Voting by assembling the al-
gorithm definition and its communication predicate. Notice that the coor-
dinator arguments for the initialization and transition functions are unused
since UniformVoting is not a coordinated algorithm.
definition UV-HOMachine where

UV-HOMachine = (|
CinitState = (λp st crd. UV-initState p st),
sendMsg = UV-sendMsg,
CnextState = (λr p st msgs crd st ′. UV-nextState r p st msgs st ′),
HOcommPerRd = UV-commPerRd,
HOcommGlobal = UV-commGlobal
|)

abbreviation
UV-M ≡ (UV-HOMachine::(Proc, ′val::linorder pstate, ′val msg) HOMachine)

end
theory UvProof
imports UvDefs ../Reduction
begin

47

6.4 Preliminary Lemmas

At any round, given two processes p and q, there is always some process
which is heard by both of them, and from which p and q have received the
same message.
lemma some-common-msg:

assumes HOcommPerRd UV-M (HOs r)
shows ∃ pq. pq ∈ msgRcvd (HOrcvdMsgs UV-M r p (HOs r p) (rho r))

∧ pq ∈ msgRcvd (HOrcvdMsgs UV-M r q (HOs r q) (rho r))
∧ (HOrcvdMsgs UV-M r p (HOs r p) (rho r)) pq
= (HOrcvdMsgs UV-M r q (HOs r q) (rho r)) pq

using assms
by (auto simp: UV-HOMachine-def UV-commPerRd-def HOrcvdMsgs-def

UV-sendMsg-def send0-def send1-def msgRcvd-def)

When executing step 0, the minimum received value is always well defined.
lemma minval-step0 :

assumes com: HOcommPerRd UV-M (HOs r) and s0 : step r = 0
shows smallestValRcvd (HOrcvdMsgs UV-M r q (HOs r q) (rho r))

∈ {v. ∃ p. (HOrcvdMsgs UV-M r q (HOs r q) (rho r)) p = Some (Val v)}
(is smallestValRcvd ?msgs ∈ ?vals)

unfolding smallestValRcvd-def proof (rule Min-in)
have ?vals ⊆ getval ‘ ((the ◦ ?msgs) ‘ (HOs r q))

by (auto simp: HOrcvdMsgs-def image-def)
thus finite ?vals by (auto simp: finite-subset)

next
from some-common-msg[of HOs, OF com]
obtain p where p ∈ msgRcvd ?msgs by blast
with s0 show ?vals 6= {}

by (auto simp: msgRcvd-def HOrcvdMsgs-def UV-HOMachine-def
UV-sendMsg-def send0-def)

qed

When executing step 1 and no vote has been received, the minimum among
values received in messages carrying no vote is well defined.
lemma minval-step1 :

assumes com: HOcommPerRd UV-M (HOs r) and s1 : step r 6= 0
and nov: someVoteRcvd (HOrcvdMsgs UV-M r q (HOs r q) (rho r)) = {}
shows smallestValNoVoteRcvd (HOrcvdMsgs UV-M r q (HOs r q) (rho r))

∈ {v . ∃ p. (HOrcvdMsgs UV-M r q (HOs r q) (rho r)) p
= Some (ValVote v None)}

(is smallestValNoVoteRcvd ?msgs ∈ ?vals)
unfolding smallestValNoVoteRcvd-def proof (rule Min-in)

have ?vals ⊆ getval ‘ ((the ◦ ?msgs) ‘ (HOs r q))
by (auto simp: HOrcvdMsgs-def image-def)

thus finite ?vals by (auto simp: finite-subset)
next

from some-common-msg[of HOs, OF com]

48

obtain p where p ∈ msgRcvd ?msgs by blast
with s1 nov show ?vals 6= {}

by (auto simp: msgRcvd-def HOrcvdMsgs-def someVoteRcvd-def isValVote-def
UV-HOMachine-def UV-sendMsg-def send1-def)

qed

The vote field is reset every time a new phase begins.
lemma reset-vote:

assumes run: HORun UV-M rho HOs and s0 : step r ′ = 0
shows vote (rho r ′ p) = None

proof (cases r ′)
assume r ′ = 0
with run show ?thesis

by (auto simp: UV-HOMachine-def HORun-eq HOinitConfig-eq
initState-def UV-initState-def)

next
fix r
assume sucr : r ′ = Suc r
from run
have nxt: nextState UV-M r p (rho r p)

(HOrcvdMsgs UV-M r p (HOs r p) (rho r))
(rho (Suc r) p)

by (auto simp: UV-HOMachine-def HORun-eq HOnextConfig-eq nextState-def)
from s0 sucr have step r = 1 by (auto simp: step-def mod-Suc)
with nxt sucr show ?thesis

by (auto simp: UV-HOMachine-def nextState-def UV-nextState-def next1-def)
qed

Processes only vote for the value they hold in their x field.
lemma x-vote-eq:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and vote: vote (rho r p) = Some v

shows v = x (rho r p)
proof (cases r)

case 0
with run vote show ?thesis — no vote in initial state

by (auto simp: UV-HOMachine-def HORun-eq HOinitConfig-eq
initState-def UV-initState-def)

next
fix r ′

assume r : r = Suc r ′

let ?msgs = HOrcvdMsgs UV-M r ′ p (HOs r ′ p) (rho r ′)
from run have nextState UV-M r ′ p (rho r ′ p) ?msgs (rho (Suc r ′) p)

by (auto simp: HORun-eq HOnextConfig-eq nextState-def)
with vote r
have nxt0 : next0 r ′ p (rho r ′ p) ?msgs (rho r p) and s0 : step r ′ = 0

by (auto simp: nextState-def UV-HOMachine-def UV-nextState-def next1-def)
from run s0 have vote (rho r ′ p) = None by (rule reset-vote)

49

with vote nxt0
have idv: ∀ q ∈ msgRcvd ?msgs. ?msgs q = Some (Val v)

and x: x (rho r p) = smallestValRcvd ?msgs
by (auto simp: next0-def)

moreover
from com obtain q where q ∈ msgRcvd ?msgs

by (force dest: some-common-msg)
with idv have {x . ∃ qq. ?msgs qq = Some (Val x)} = {v}

by (auto simp: msgRcvd-def)
hence smallestValRcvd ?msgs = v

by (auto simp: smallestValRcvd-def)
ultimately
show ?thesis by simp

qed

6.5 Proof of Irrevocability, Agreement and Integrity

A decision can only be taken in the second round of a phase.
lemma decide-step:

assumes run: HORun UV-M rho HOs
and decide: decide (rho (Suc r) p) 6= decide (rho r p)

shows step r = 1
proof −

let ?msgs = HOrcvdMsgs UV-M r p (HOs r p) (rho r)
from run have nextState UV-M r p (rho r p) ?msgs (rho (Suc r) p)

by (auto simp: HORun-eq HOnextConfig-eq nextState-def)
with decide show ?thesis

by (auto simp: nextState-def UV-HOMachine-def UV-nextState-def
next0-def step-def)

qed

No process ever decides None.
lemma decide-nonnull:

assumes run: HORun UV-M rho HOs
and decide: decide (rho (Suc r) p) 6= decide (rho r p)

shows decide (rho (Suc r) p) 6= None
proof −

let ?msgs = HOrcvdMsgs UV-M r p (HOs r p) (rho r)
from assms have s1 : step r = 1 by (rule decide-step)
with run have next1 r p (rho r p) ?msgs (rho (Suc r) p)

by (auto simp: UV-HOMachine-def HORun-eq HOnextConfig-eq
nextState-def UV-nextState-def)

with decide show ?thesis
by (auto simp: next1-def dec-update-def)

qed

If some process p votes for v at some round r, then any message that p
received in r was holding v as a value.

50

lemma msgs-unanimity:
assumes run: HORun UV-M rho HOs

and vote: vote (rho (Suc r) p) = Some v
and q: q ∈ msgRcvd (HOrcvdMsgs UV-M r p (HOs r p) (rho r))

(is - ∈ msgRcvd ?msgs)
shows getval (the (?msgs q)) = v

proof −
have s0 : step r = 0
proof (rule ccontr)

assume step r 6= 0
hence step (Suc r) = 0 by (simp add: step-def mod-Suc)
with run vote show False by (auto simp: reset-vote)

qed
with run have novote: vote (rho r p) = None by (auto simp: reset-vote)
from run have nextState UV-M r p (rho r p) ?msgs (rho (Suc r) p)

by (auto simp: HORun-eq HOnextConfig-eq nextState-def)
with s0 have nxt: next0 r p (rho r p) ?msgs (rho (Suc r) p)

by (auto simp: UV-HOMachine-def nextState-def UV-nextState-def)
with novote vote q show ?thesis by (auto simp: next0-def)

qed

Any two processes can only vote for the same value.
lemma vote-agreement:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and p: vote (rho r p) = Some v
and q: vote (rho r q) = Some w

shows v = w
proof (cases r)

case 0
with run p show ?thesis — no votes in initial state

by (auto simp: UV-HOMachine-def HORun-eq HOinitConfig-eq
initState-def UV-initState-def)

next
fix r ′

assume r : r = Suc r ′

let ?msgs p = HOrcvdMsgs UV-M r ′ p (HOs r ′ p) (rho r ′)
from com obtain pq

where ?msgs p pq = ?msgs q pq
and smp: pq ∈ msgRcvd (?msgs p) and smq: pq ∈ msgRcvd (?msgs q)

by (force dest: some-common-msg)
moreover
from run p smp r have getval (the (?msgs p pq)) = v

by (simp add: msgs-unanimity)
moreover
from run q smq r have getval (the (?msgs q pq)) = w

by (simp add: msgs-unanimity)
ultimately
show ?thesis by simp

51

qed

If a process decides value v then all processes must have v in their x fields.
lemma decide-equals-x:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and decide: decide (rho (Suc r) p) 6= decide (rho r p)
and decval: decide (rho (Suc r) p) = Some v

shows x (rho (Suc r) q) = v
proof −

let ?msgs p ′ = HOrcvdMsgs UV-M r p ′ (HOs r p ′) (rho r)
from run decide have s1 : step r = 1 by (rule decide-step)
from run have nextState UV-M r p (rho r p) (?msgs p) (rho (Suc r) p)

by (auto simp: HORun-eq HOnextConfig-eq nextState-def)
with s1 have nxtp: next1 r p (rho r p) (?msgs p) (rho (Suc r) p)

by (auto simp: UV-HOMachine-def nextState-def UV-nextState-def)
from run have nextState UV-M r q (rho r q) (?msgs q) (rho (Suc r) q)

by (auto simp: HORun-eq HOnextConfig-eq nextState-def)
with s1 have nxtq: next1 r q (rho r q) (?msgs q) (rho (Suc r) q)

by (auto simp: UV-HOMachine-def nextState-def UV-nextState-def)

from com obtain pq where
pq: pq ∈ msgRcvd (?msgs p) pq ∈ msgRcvd (?msgs q)

(?msgs p) pq = (?msgs q) pq
by (force dest: some-common-msg)

with decide decval nxtp
have vote: isValVote (the (?msgs p pq))

getvote (the (?msgs p pq)) = Some v
by (auto simp: next1-def dec-update-def identicalVoteRcvd-def)

with nxtq pq obtain q ′ where
q ′: q ′ ∈ someVoteRcvd (?msgs q)

x (rho (Suc r) q) = the (getvote (the (?msgs q q ′)))
by (auto simp: next1-def x-update-def someVoteRcvd-def)

with s1 pq vote show ?thesis
by (auto simp: HOrcvdMsgs-def UV-HOMachine-def UV-sendMsg-def send1-def

someVoteRcvd-def msgRcvd-def vote-agreement[OF run com])
qed

If at some point all processes hold value v in their x fields, then this will
still be the case at the next step.
lemma same-x-stable:

assumes run: HORun UV-M rho HOs
and comm: ∀ r . HOcommPerRd UV-M (HOs r)
and x: ∀ p. x (rho r p) = v

shows x (rho (Suc r) q) = v
proof −

let ?msgs = HOrcvdMsgs UV-M r q (HOs r q) (rho r)
from comm obtain p where p: p ∈ msgRcvd ?msgs

by (force dest: some-common-msg)

52

from run have nextState UV-M r q (rho r q) ?msgs (rho (Suc r) q)
by (auto simp: HORun-eq HOnextConfig-eq nextState-def)

hence next0 r q (rho r q) ?msgs (rho (Suc r) q) ∧ step r = 0
∨ next1 r q (rho r q) ?msgs (rho (Suc r) q) ∧ step r 6= 0

(is ?nxt0 ∨ ?nxt1)
by (auto simp: UV-HOMachine-def nextState-def UV-nextState-def)

thus ?thesis
proof

assume nxt0 : ?nxt0
hence x (rho (Suc r) q) = smallestValRcvd ?msgs

by (auto simp: next0-def)
moreover
from nxt0 x have ∀ p ∈ msgRcvd ?msgs. ?msgs p = Some (Val v)

by (auto simp: UV-HOMachine-def HOrcvdMsgs-def UV-sendMsg-def
msgRcvd-def send0-def)

from this p have {x . ∃ p. ?msgs p = Some (Val x)} = {v}
by (auto simp: msgRcvd-def)

hence smallestValRcvd ?msgs = v
by (auto simp: smallestValRcvd-def)

ultimately
show ?thesis by simp

next
assume nxt1 : ?nxt1
show ?thesis
proof (cases someVoteRcvd ?msgs = {})

case True
with nxt1 have x (rho (Suc r) q) = smallestValNoVoteRcvd ?msgs

by (auto simp: next1-def x-update-def)
moreover
from nxt1 x True
have ∀ p ∈ msgRcvd ?msgs. ?msgs p = Some (ValVote v None)

by (auto simp: UV-HOMachine-def HOrcvdMsgs-def UV-sendMsg-def
msgRcvd-def send1-def someVoteRcvd-def isValVote-def)

from this p have {x . ∃ p. ?msgs p = Some (ValVote x None)} = {v}
by (auto simp: msgRcvd-def)

hence smallestValNoVoteRcvd ?msgs = v
by (auto simp: smallestValNoVoteRcvd-def)

ultimately show ?thesis by simp
next

case False
with nxt1 obtain p ′ v ′ where

p ′: p ′ ∈ msgRcvd ?msgs isValVote (the (?msgs p ′))
getvote (the (?msgs p ′)) = Some v ′x (rho (Suc r) q) = v ′

by (auto simp: someVoteRcvd-def next1-def x-update-def)
with nxt1 have x (rho (Suc r) q) = x (rho r p ′)

by (auto simp: UV-HOMachine-def HOrcvdMsgs-def UV-sendMsg-def
msgRcvd-def send1-def isValVote-def
x-vote-eq[OF run comm])

with x show ?thesis by auto

53

qed
qed

qed

Combining the last two lemmas, it follows that as soon as some process
decides value v, all processes hold v in their x fields.
lemma safety-argument:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and decide: decide (rho (Suc r) p) 6= decide (rho r p)
and decval: decide (rho (Suc r) p) = Some v

shows x (rho (Suc r+k) q) = v
proof (induct k arbitrary: q)

fix q
from decide-equals-x[OF assms] show x (rho (Suc r + 0) q) = v by simp

next
fix k q
assume

∧
q. x (rho (Suc r+k) q) = v

with run com show x (rho (Suc r + Suc k) q) = v
by (auto dest: same-x-stable)

qed

Any process that holds a non-null decision value has made a decision some-
time in the past.
lemma decided-then-past-decision:

assumes run: HORun UV-M rho HOs
and dec: decide (rho n p) = Some v

shows ∃m<n. decide (rho (Suc m) p) 6= decide (rho m p)
∧ decide (rho (Suc m) p) = Some v

proof −
let ?dec k = decide (rho k p)
have (∀m<n. ?dec (Suc m) 6= ?dec m −→ ?dec (Suc m) 6= Some v)

−→ ?dec n 6= Some v
(is ?P n is ?A n −→ -)

proof (induct n)
from run show ?P 0

by (auto simp: HORun-eq UV-HOMachine-def HOinitConfig-eq
initState-def UV-initState-def)

next
fix n
assume ih: ?P n thus ?P (Suc n) by force

qed
with dec show ?thesis by auto

qed

We can now prove the safety properties of the algorithm, and start with
proving Integrity.
lemma x-values-initial:

54

assumes run:HORun UV-M rho HOs
and com:∀ r . HOcommPerRd UV-M (HOs r)

shows ∃ q. x (rho r p) = x (rho 0 q)
proof (induct r arbitrary: p)

fix p
show ∃ q. x (rho 0 p) = x (rho 0 q) by auto

next
fix r p
assume ih:

∧
p ′. ∃ q. x (rho r p ′) = x (rho 0 q)

let ?msgs = HOrcvdMsgs UV-M r p (HOs r p) (rho r)
from run have nextState UV-M r p (rho r p) ?msgs (rho (Suc r) p)

by (auto simp: HORun-eq HOnextConfig-eq nextState-def)
hence next0 r p (rho r p) ?msgs (rho (Suc r) p) ∧ step r = 0

∨ next1 r p (rho r p) ?msgs (rho (Suc r) p) ∧ step r 6= 0
(is ?nxt0 ∨ ?nxt1)
by (auto simp: UV-HOMachine-def nextState-def UV-nextState-def)

thus ∃ q. x (rho (Suc r) p) = x (rho 0 q)
proof

assume nxt0 : ?nxt0
hence x (rho (Suc r) p) = smallestValRcvd ?msgs

by (auto simp: next0-def)
also with com nxt0 have . . . ∈ {v . ∃ q. ?msgs q = Some (Val v)}

by (intro minval-step0) auto
also with nxt0 have . . . = { x (rho r q) | q . q ∈ msgRcvd ?msgs }

by (auto simp: UV-HOMachine-def HOrcvdMsgs-def UV-sendMsg-def
msgRcvd-def send0-def)

finally obtain q where x (rho (Suc r) p) = x (rho r q) by auto
with ih show ?thesis by auto

next
assume nxt1 : ?nxt1
show ?thesis
proof (cases someVoteRcvd ?msgs = {})

case True
with nxt1 have x (rho (Suc r) p) = smallestValNoVoteRcvd ?msgs

by (auto simp: next1-def x-update-def)
also with com nxt1 True
have . . . ∈ {v . ∃ q. ?msgs q = Some (ValVote v None)}

by (intro minval-step1) auto
also with nxt1 True
have . . . = { x (rho r q) | q . q ∈ msgRcvd ?msgs }

by (auto simp: UV-HOMachine-def HOrcvdMsgs-def UV-sendMsg-def
someVoteRcvd-def isValVote-def msgRcvd-def send1-def)

finally obtain q where x (rho (Suc r) p) = x (rho r q) by auto
with ih show ?thesis by auto

next
case False
with nxt1 obtain q where

q ∈ someVoteRcvd ?msgs
x (rho (Suc r) p) = the (getvote (the (?msgs q)))

55

by (auto simp: next1-def x-update-def)
with nxt1 have vote (rho r q) = Some (x (rho (Suc r) p))

by (auto simp: UV-HOMachine-def HOrcvdMsgs-def UV-sendMsg-def
someVoteRcvd-def isValVote-def msgRcvd-def send1-def)

with run com have x (rho (Suc r) p) = x (rho r q)
by (rule x-vote-eq)

with ih show ?thesis by auto
qed

qed
qed

theorem uv-integrity:
assumes run: HORun UV-M rho HOs

and com: ∀ r . HOcommPerRd UV-M (HOs r)
and dec: decide (rho r p) = Some v

shows ∃ q. v = x (rho 0 q)
proof −

from run dec obtain k where
decide (rho (Suc k) p) 6= decide (rho k p)
decide (rho (Suc k) p) = Some v
by (auto dest: decided-then-past-decision)

with run com have x (rho (Suc k) p) = v
by (rule decide-equals-x)

with run com show ?thesis
by (auto dest: x-values-initial)

qed

We now turn to Agreement.
lemma two-decisions-agree:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and decidep: decide (rho (Suc r) p) 6= decide (rho r p)
and decvalp: decide (rho (Suc r) p) = Some v
and decideq: decide (rho (Suc (r+k)) q) 6= decide (rho (r+k) q)
and decvalq: decide (rho (Suc (r+k)) q) = Some w

shows v = w
proof −

from run com decidep decvalp have x (rho (Suc r+k) q) = v
by (rule safety-argument)

moreover
from run com decideq decvalq have x (rho (Suc (r+k)) q) = w

by (rule decide-equals-x)
ultimately
show ?thesis by simp

qed

theorem uv-agreement:
assumes run: HORun UV-M rho HOs

and com: ∀ r . HOcommPerRd UV-M (HOs r)

56

and p: decide (rho m p) = Some v
and q: decide (rho n q) = Some w

shows v = w
proof −

from run p obtain k where
k: decide (rho (Suc k) p) 6= decide (rho k p)

decide (rho (Suc k) p) = Some v
by (auto dest: decided-then-past-decision)

from run q obtain l where
l: decide (rho (Suc l) q) 6= decide (rho l q)

decide (rho (Suc l) q) = Some w
by (auto dest: decided-then-past-decision)

show ?thesis
proof (cases k ≤ l)

case True
then obtain m where m: l = k+m by (auto simp: le-iff-add)
from run com k l m show ?thesis by (blast dest: two-decisions-agree)

next
case False
hence l ≤ k by simp
then obtain m where m: k = l+m by (auto simp: le-iff-add)
from run com k l m show ?thesis by (blast dest: two-decisions-agree)

qed
qed

Irrevocability is a consequence of Agreement and the fact that no process
can decide None.
theorem uv-irrevocability:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and p: decide (rho m p) = Some v

shows decide (rho (m+n) p) = Some v
proof (induct n)

from p show decide (rho (m+0) p) = Some v by simp
next

fix n
assume ih: decide (rho (m+n) p) = Some v
show decide (rho (m + Suc n) p) = Some v
proof (rule classical)

assume ¬ ?thesis
with run ih obtain w where w: decide (rho (m + Suc n) p) = Some w

by (auto dest!: decide-nonnull)
with p have w = v by (auto simp: uv-agreement[OF run com])
with w show ?thesis by simp

qed
qed

57

6.6 Proof of Termination

Two processes having the same Heard-Of set at some round will hold the
same value in their x variable at the next round.
lemma hoeq-xeq:

assumes run: HORun UV-M rho HOs
and com: ∀ r . HOcommPerRd UV-M (HOs r)
and hoeq: HOs r p = HOs r q

shows x (rho (Suc r) p) = x (rho (Suc r) q)
proof −

let ?msgs p = HOrcvdMsgs UV-M r p (HOs r p) (rho r)
from hoeq have msgeq: ?msgs p = ?msgs q

by (auto simp: UV-HOMachine-def HOrcvdMsgs-def UV-sendMsg-def
send0-def send1-def)

show ?thesis
proof (cases step r = 0)

case True
with run
have ∀ p. next0 r p (rho r p) (?msgs p) (rho (Suc r) p) (is ∀ p. ?nxt0 p)

by (force simp: UV-HOMachine-def HORun-eq HOnextConfig-eq
nextState-def UV-nextState-def)

hence ?nxt0 p ?nxt0 q by auto
with msgeq show ?thesis by (auto simp: next0-def)

next
assume stp: step r 6= 0
with run
have ∀ p. next1 r p (rho r p) (?msgs p) (rho (Suc r) p) (is ∀ p. ?nxt1 p)

by (force simp: UV-HOMachine-def HORun-eq HOnextConfig-eq
nextState-def UV-nextState-def)

hence x-update (rho r p) (?msgs p) (rho (Suc r) p)
x-update (rho r q) (?msgs q) (rho (Suc r) q)

by (auto simp: next1-def)
with msgeq have

x ′: x-update (rho r p) (?msgs p) (rho (Suc r) p)
x-update (rho r q) (?msgs p) (rho (Suc r) q)

by auto
show ?thesis
proof (cases someVoteRcvd (?msgs p) = {})

case True
with x ′ show ?thesis

by (auto simp: x-update-def)
next

case False
with x ′ stp obtain qp qq where

vote (rho r qp) = Some (x (rho (Suc r) p)) and
vote (rho r qq) = Some (x (rho (Suc r) q))
by (force simp: UV-HOMachine-def HOrcvdMsgs-def UV-sendMsg-def

x-update-def someVoteRcvd-def isValVote-def

58

msgRcvd-def send1-def)
with run com show ?thesis by (rule vote-agreement)

qed
qed

qed

We now prove that UniformVoting terminates.
theorem uv-termination:

assumes run: HORun UV-M rho HOs
and commR: ∀ r . HOcommPerRd UV-M (HOs r)
and commG: HOcommGlobal UV-M HOs

shows ∃ r v. decide (rho r p) = Some v
proof −

First obtain a round where all x values agree.

from commG obtain r0 where r0 : ∀ q. HOs r0 q = HOs r0 p
by (force simp: UV-HOMachine-def UV-commGlobal-def)

let ?v = x (rho (Suc r0) p)
from run commR r0 have xs: ∀ q. x (rho (Suc r0) q) = ?v

by (auto dest: hoeq-xeq)

Now obtain a round where all votes agree.

define r ′ where r ′ = (if step (Suc r0) = 0 then Suc r0 else Suc (Suc r0))
have stp ′: step r ′ = 0

by (simp add: r ′-def step-def mod-Suc)
have x ′: ∀ q. x (rho r ′ q) = ?v
proof (auto simp: r ′-def)

fix q
from xs show x (rho (Suc r0) q) = ?v ..

next
fix q
from run commR xs show x (rho (Suc (Suc r0)) q) = ?v

by (rule same-x-stable)
qed
have vote ′: ∀ q. vote (rho (Suc r ′) q) = Some ?v
proof

fix q
let ?msgs = HOrcvdMsgs UV-M r ′ q (HOs r ′ q) (rho r ′)
from run stp ′ have next0 r ′ q (rho r ′ q) ?msgs (rho (Suc r ′) q)

by (force simp: UV-HOMachine-def HORun-eq HOnextConfig-eq
nextState-def UV-nextState-def)

moreover
from stp ′ x ′ have ∀ q ′ ∈ msgRcvd ?msgs. ?msgs q ′ = Some (Val ?v)

by (auto simp: UV-HOMachine-def HOrcvdMsgs-def UV-sendMsg-def
send0-def msgRcvd-def)

moreover
from commR have msgRcvd ?msgs 6= {}

by (force dest: some-common-msg)
ultimately

59

show vote (rho (Suc r ′) q) = Some ?v
by (auto simp: next0-def)

qed

At the subsequent round, process p will decide.

let ?r ′′ = Suc r ′

let ?msgs ′ = HOrcvdMsgs UV-M ?r ′′ p (HOs ?r ′′ p) (rho ?r ′′)
from stp ′ have stp ′′: step ?r ′′ = 1

by (simp add: step-def mod-Suc)
with run have next1 ?r ′′ p (rho ?r ′′ p) ?msgs ′ (rho (Suc ?r ′′) p)

by (auto simp: UV-HOMachine-def HORun-eq HOnextConfig-eq
nextState-def UV-nextState-def)

moreover
from stp ′′ vote ′ have identicalVoteRcvd ?msgs ′ ?v

by (auto simp: UV-HOMachine-def HOrcvdMsgs-def UV-sendMsg-def
send1-def identicalVoteRcvd-def isValVote-def msgRcvd-def)

moreover
from commR have msgRcvd ?msgs ′ 6= {}

by (force dest: some-common-msg)
ultimately
have decide (rho (Suc ?r ′′) p) = Some ?v

by (force simp: next1-def dec-update-def identicalVoteRcvd-def
msgRcvd-def isValVote-def)

thus ?thesis by blast
qed

6.7 UniformVoting Solves Consensus

Summing up, all (coarse-grained) runs of UniformVoting for HO collections
that satisfy the communication predicate satisfy the Consensus property.
theorem uv-consensus:

assumes run: HORun UV-M rho HOs
and commR: ∀ r . HOcommPerRd UV-M (HOs r)
and commG: HOcommGlobal UV-M HOs

shows consensus (x ◦ (rho 0)) decide rho
using assms unfolding consensus-def image-def
by (auto elim: uv-integrity uv-agreement uv-termination)

By the reduction theorem, the correctness of the algorithm carries over to
the fine-grained model of runs.
theorem uv-consensus-fg:

assumes run: fg-run UV-M rho HOs HOs (λr q. undefined)
and commR: ∀ r . HOcommPerRd UV-M (HOs r)
and commG: HOcommGlobal UV-M HOs

shows consensus (λp. x (state (rho 0) p)) decide (state ◦ rho)
(is consensus ?inits - -)

60

proof (rule local-property-reduction[OF run consensus-is-local])
fix crun
assume crun: CSHORun UV-M crun HOs HOs (λr q. undefined)

and init: crun 0 = state (rho 0)
from crun have HORun UV-M crun HOs

by (unfold HORun-def SHORun-def)
from this commR commG have consensus (x ◦ (crun 0)) decide crun

by (rule uv-consensus)
with init show consensus ?inits decide crun

by (simp add: o-def)
qed

end
theory LastVotingDefs
imports ../HOModel
begin

7 Verification of the LastVoting Consensus Algo-
rithm

The LastVoting algorithm can be considered as a representation of Lam-
port’s Paxos consensus algorithm [11] in the Heard-Of model. It is a co-
ordinated algorithm designed to tolerate benign failures. Following [7], we
formalize its proof of correctness in Isabelle, using the framework of theory
HOModel.

7.1 Model of the Algorithm

We begin by introducing an anonymous type of processes of finite cardinality
that will instantiate the type variable ′proc of the generic CHO model.
typedecl Proc — the set of processes
axiomatization where Proc-finite: OFCLASS(Proc, finite-class)
instance Proc :: finite by (rule Proc-finite)

abbreviation
N ≡ card (UNIV ::Proc set) — number of processes

The algorithm proceeds in phases of 4 rounds each (we call steps the in-
dividual rounds that constitute a phase). The following utility functions
compute the phase and step of a round, given the round number.
definition phase where phase (r ::nat) ≡ r div 4

definition step where step (r ::nat) ≡ r mod 4

lemma phase-zero [simp]: phase 0 = 0

61

by (simp add: phase-def)

lemma step-zero [simp]: step 0 = 0
by (simp add: step-def)

lemma phase-step: (phase r ∗ 4) + step r = r
by (auto simp add: phase-def step-def)

The following record models the local state of a process.
record ′val pstate =

x :: ′val — current value held by process
vote :: ′val option — value the process voted for, if any
commt :: bool — did the process commit to the vote?
ready :: bool — for coordinators: did the round finish successfully?
timestamp :: nat — time stamp of current value
decide :: ′val option — value the process has decided on, if any
coordΦ :: Proc — coordinator for current phase

Possible messages sent during the execution of the algorithm.
datatype ′val msg =

ValStamp ′val nat
| Vote ′val
| Ack
| Null — dummy message in case nothing needs to be sent

Characteristic predicates on messages.
definition isValStamp where isValStamp m ≡ ∃ v ts. m = ValStamp v ts

definition isVote where isVote m ≡ ∃ v. m = Vote v

definition isAck where isAck m ≡ m = Ack

Selector functions to retrieve components of messages. These functions have
a meaningful result only when the message is of an appropriate kind.
fun val where

val (ValStamp v ts) = v
| val (Vote v) = v

fun stamp where
stamp (ValStamp v ts) = ts

The x field of the initial state is unconstrained, all other fields are initialized
appropriately.
definition LV-initState where

LV-initState p st crd ≡
vote st = None
∧ ¬(commt st)
∧ ¬(ready st)

62

∧ timestamp st = 0
∧ decide st = None
∧ coordΦ st = crd

We separately define the transition predicates and the send functions for
each step and later combine them to define the overall next-state relation.
definition valStampsRcvd where

valStampsRcvd (msgs :: Proc ⇀ ′val msg) ≡
{q . ∃ v ts. msgs q = Some (ValStamp v ts)}

definition highestStampRcvd where
highestStampRcvd msgs ≡
Max {ts . ∃ q v. (msgs::Proc ⇀ ′val msg) q = Some (ValStamp v ts)}

In step 0, each process sends its current x and timestamp values to its
coordinator.
A process that considers itself to be a coordinator updates its vote field if it
has received messages from a majority of processes. It then sets its commt
field to true.
definition send0 where

send0 r p q st ≡
if q = coordΦ st then ValStamp (x st) (timestamp st) else Null

definition next0 where
next0 r p st msgs crd st ′ ≡

if p = coordΦ st ∧ card (valStampsRcvd msgs) > N div 2
then (∃ p v. msgs p = Some (ValStamp v (highestStampRcvd msgs))

∧ st ′ = st (| vote := Some v, commt := True |))
else st ′ = st

In step 1, coordinators that have committed send their vote to all processes.
Processes update their x and timestamp fields if they have received a vote
from their coordinator.
definition send1 where

send1 r p q st ≡
if p = coordΦ st ∧ commt st then Vote (the (vote st)) else Null

definition next1 where
next1 r p st msgs crd st ′ ≡
if msgs (coordΦ st) 6= None ∧ isVote (the (msgs (coordΦ st)))
then st ′ = st (| x := val (the (msgs (coordΦ st))), timestamp := Suc(phase r) |)
else st ′ = st

In step 2, processes that have current timestamps send an acknowledgement
to their coordinator.
A coordinator sets its ready field to true if it receives a majority of acknowl-
edgements.

63

definition send2 where
send2 r p q st ≡
if timestamp st = Suc(phase r) ∧ q = coordΦ st then Ack else Null

— processes from which an acknowledgement was received
definition acksRcvd where

acksRcvd (msgs :: Proc ⇀ ′val msg) ≡
{ q . msgs q 6= None ∧ isAck (the (msgs q)) }

definition next2 where
next2 r p st msgs crd st ′ ≡
if p = coordΦ st ∧ card (acksRcvd msgs) > N div 2
then st ′ = st (| ready := True |)
else st ′ = st

In step 3, coordinators that are ready send their vote to all processes.
Processes that received a vote from their coordinator decide on that value.
Coordinators reset their ready and commt fields to false. All processes reset
the coordinators as indicated by the parameter of the operator.
definition send3 where

send3 r p q st ≡
if p = coordΦ st ∧ ready st then Vote (the (vote st)) else Null

definition next3 where
next3 r p st msgs crd st ′ ≡

(if msgs (coordΦ st) 6= None ∧ isVote (the (msgs (coordΦ st)))
then decide st ′ = Some (val (the (msgs (coordΦ st))))
else decide st ′ = decide st)

∧ (if p = coordΦ st
then ¬(ready st ′) ∧ ¬(commt st ′)
else ready st ′ = ready st ∧ commt st ′ = commt st)

∧ x st ′ = x st
∧ vote st ′ = vote st
∧ timestamp st ′ = timestamp st
∧ coordΦ st ′ = crd

The overall send function and next-state relation are simply obtained as the
composition of the individual relations defined above.
definition LV-sendMsg :: nat ⇒ Proc ⇒ Proc ⇒ ′val pstate ⇒ ′val msg where

LV-sendMsg (r ::nat) ≡
if step r = 0 then send0 r
else if step r = 1 then send1 r
else if step r = 2 then send2 r
else send3 r

definition
LV-nextState :: nat ⇒ Proc ⇒ ′val pstate ⇒ (Proc ⇀ ′val msg)

64

⇒ Proc ⇒ ′val pstate ⇒ bool
where
LV-nextState r ≡
if step r = 0 then next0 r
else if step r = 1 then next1 r
else if step r = 2 then next2 r
else next3 r

7.2 Communication Predicate for LastVoting

We now define the communication predicate that will be assumed for the
correctness proof of the LastVoting algorithm. The “per-round” part is
trivial: integrity and agreement are always ensured.
For the “global” part, Charron-Bost and Schiper propose a predicate that
requires the existence of infinitely many phases ph such that:

• all processes agree on the same coordinator c,

• c hears from a strict majority of processes in steps 0 and 2 of phase
ph, and

• every process hears from c in steps 1 and 3 (this is slightly weaker
than the predicate that appears in [7], but obviously sufficient).

Instead of requiring infinitely many such phases, we only assume the exis-
tence of one such phase (Charron-Bost and Schiper note that this is enough.)
definition

LV-commPerRd where
LV-commPerRd r (HO::Proc HO) (coord::Proc coord) ≡ True

definition
LV-commGlobal where
LV-commGlobal HOs coords ≡
∃ ph::nat. ∃ c::Proc.

(∀ p. coords (4∗ph) p = c)
∧ card (HOs (4∗ph) c) > N div 2
∧ card (HOs (4∗ph+2) c) > N div 2
∧ (∀ p. c ∈ HOs (4∗ph+1) p ∩ HOs (4∗ph+3) p)

7.3 The LastVoting Heard-Of Machine

We now define the coordinated HO machine for the LastVoting algorithm
by assembling the algorithm definition and its communication-predicate.
definition LV-CHOMachine where

LV-CHOMachine ≡
(| CinitState = LV-initState,

sendMsg = LV-sendMsg,

65

CnextState = LV-nextState,
CHOcommPerRd = LV-commPerRd,
CHOcommGlobal = LV-commGlobal |)

abbreviation
LV-M ≡ (LV-CHOMachine::(Proc, ′val pstate, ′val msg) CHOMachine)

end
theory LastVotingProof
imports LastVotingDefs ../Majorities ../Reduction
begin

7.4 Preliminary Lemmas

We begin by proving some simple lemmas about the utility functions used
in the model of LastVoting. We also specialize the induction rules of the
generic CHO model for this particular algorithm.
lemma timeStampsRcvdFinite:

finite {ts . ∃ q v. (msgs::Proc ⇀ ′val msg) q = Some (ValStamp v ts)}
(is finite ?ts)

proof −
have ?ts = stamp ‘ the ‘ msgs ‘ (valStampsRcvd msgs)

by (force simp add: valStampsRcvd-def image-def)
thus ?thesis by auto

qed

lemma highestStampRcvd-exists:
assumes nempty: valStampsRcvd msgs 6= {}
obtains p v where msgs p = Some (ValStamp v (highestStampRcvd msgs))

proof −
let ?ts = {ts . ∃ q v. msgs q = Some (ValStamp v ts)}
from nempty have ?ts 6= {} by (auto simp add: valStampsRcvd-def)
with timeStampsRcvdFinite
have highestStampRcvd msgs ∈ ?ts

unfolding highestStampRcvd-def by (rule Max-in)
then obtain p v where msgs p = Some (ValStamp v (highestStampRcvd msgs))

by (auto simp add: highestStampRcvd-def)
with that show thesis .

qed

lemma highestStampRcvd-max:
assumes msgs p = Some (ValStamp v ts)
shows ts ≤ highestStampRcvd msgs
using assms unfolding highestStampRcvd-def
by (blast intro: Max-ge timeStampsRcvdFinite)

lemma phase-Suc:
phase (Suc r) = (if step r = 3 then Suc (phase r)

else phase r)

66

unfolding step-def phase-def by presburger

Many proofs are by induction on runs of the LastVoting algorithm, and we
derive a specific induction rule to support these proofs.
lemma LV-induct:

assumes run: CHORun LV-M rho HOs coords
and init: ∀ p. CinitState LV-M p (rho 0 p) (coords 0 p) =⇒ P 0
and step0 :

∧
r .
[[step r = 0 ; P r ; phase (Suc r) = phase r ; step (Suc r) = 1 ;
∀ p. next0 r p (rho r p)

(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p)
(rho (Suc r) p)]]

=⇒ P (Suc r)
and step1 :

∧
r .
[[step r = 1 ; P r ; phase (Suc r) = phase r ; step (Suc r) = 2 ;
∀ p. next1 r p (rho r p)

(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p)
(rho (Suc r) p)]]

=⇒ P (Suc r)
and step2 :

∧
r .
[[step r = 2 ; P r ; phase (Suc r) = phase r ; step (Suc r) = 3 ;
∀ p. next2 r p (rho r p)

(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p)
(rho (Suc r) p)]]

=⇒ P (Suc r)
and step3 :

∧
r .

[[step r = 3 ; P r ; phase (Suc r) = Suc (phase r); step (Suc r) = 0 ;
∀ p. next3 r p (rho r p)

(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p)
(rho (Suc r) p)]]

=⇒ P (Suc r)
shows P n

proof (rule CHORun-induct[OF run])
assume CHOinitConfig LV-M (rho 0) (coords 0)
thus P 0 by (auto simp add: CHOinitConfig-def init)

next
fix r
assume ih: P r

and nxt: CHOnextConfig LV-M r (rho r) (HOs r)
(coords (Suc r)) (rho (Suc r))

have step r ∈ {0 ,1 ,2 ,3} by (auto simp add: step-def)
thus P (Suc r)
proof auto

assume stp: step r = 0
hence step (Suc r) = 1

67

by (auto simp add: step-def mod-Suc)
with ih nxt stp show ?thesis

by (intro step0)
(auto simp: LV-CHOMachine-def CHOnextConfig-eq

LV-nextState-def LV-sendMsg-def phase-Suc)
next

assume stp: step r = Suc 0
hence step (Suc r) = 2

by (auto simp add: step-def mod-Suc)
with ih nxt stp show ?thesis

by (intro step1)
(auto simp: LV-CHOMachine-def CHOnextConfig-eq

LV-nextState-def LV-sendMsg-def phase-Suc)
next

assume stp: step r = 2
hence step (Suc r) = 3

by (auto simp add: step-def mod-Suc)
with ih nxt stp show ?thesis

by (intro step2)
(auto simp: LV-CHOMachine-def CHOnextConfig-eq

LV-nextState-def LV-sendMsg-def phase-Suc)
next

assume stp: step r = 3
hence step (Suc r) = 0

by (auto simp add: step-def mod-Suc)
with ih nxt stp show ?thesis

by (intro step3)
(auto simp: LV-CHOMachine-def CHOnextConfig-eq

LV-nextState-def LV-sendMsg-def phase-Suc)
qed

qed

The following rule similarly establishes a property of two successive config-
urations of a run by case distinction on the step that was executed.
lemma LV-Suc:

assumes run: CHORun LV-M rho HOs coords
and step0 : [[step r = 0 ; step (Suc r) = 1 ; phase (Suc r) = phase r ;

∀ p. next0 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p)]]

=⇒ P r
and step1 : [[step r = 1 ; step (Suc r) = 2 ; phase (Suc r) = phase r ;

∀ p. next1 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p)]]

=⇒ P r
and step2 : [[step r = 2 ; step (Suc r) = 3 ; phase (Suc r) = phase r ;

∀ p. next2 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))

68

(coords (Suc r) p) (rho (Suc r) p)]]
=⇒ P r

and step3 : [[step r = 3 ; step (Suc r) = 0 ; phase (Suc r) = Suc (phase r);
∀ p. next3 r p (rho r p)

(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p)]]

=⇒ P r
shows P r

proof −
from run
have nxt: CHOnextConfig LV-M r (rho r) (HOs r)

(coords (Suc r)) (rho (Suc r))
by (auto simp add: CHORun-eq)

have step r ∈ {0 ,1 ,2 ,3} by (auto simp add: step-def)
thus P r
proof (auto)

assume stp: step r = 0
hence step (Suc r) = 1

by (auto simp add: step-def mod-Suc)
with nxt stp show ?thesis

by (intro step0)
(auto simp: LV-CHOMachine-def CHOnextConfig-eq

LV-nextState-def LV-sendMsg-def phase-Suc)
next

assume stp: step r = Suc 0
hence step (Suc r) = 2

by (auto simp add: step-def mod-Suc)
with nxt stp show ?thesis

by (intro step1)
(auto simp: LV-CHOMachine-def CHOnextConfig-eq

LV-nextState-def LV-sendMsg-def phase-Suc)
next

assume stp: step r = 2
hence step (Suc r) = 3

by (auto simp add: step-def mod-Suc)
with nxt stp show ?thesis

by (intro step2)
(auto simp: LV-CHOMachine-def CHOnextConfig-eq

LV-nextState-def LV-sendMsg-def phase-Suc)
next

assume stp: step r = 3
hence step (Suc r) = 0

by (auto simp add: step-def mod-Suc)
with nxt stp show ?thesis

by (intro step3)
(auto simp: LV-CHOMachine-def CHOnextConfig-eq

LV-nextState-def LV-sendMsg-def phase-Suc)
qed

qed

69

Sometimes the assertion to prove talks about a specific process and follows
from the next-state relation of that particular process. We prove corre-
sponding variants of the induction and case-distinction rules. When these
variants are applicable, they help automating the Isabelle proof.
lemma LV-induct ′:

assumes run: CHORun LV-M rho HOs coords
and init: CinitState LV-M p (rho 0 p) (coords 0 p) =⇒ P p 0
and step0 :

∧
r . [[step r = 0 ; P p r ; phase (Suc r) = phase r ; step (Suc r) = 1 ;

next0 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p)]]

=⇒ P p (Suc r)
and step1 :

∧
r . [[step r = 1 ; P p r ; phase (Suc r) = phase r ; step (Suc r) = 2 ;

next1 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p)]]

=⇒ P p (Suc r)
and step2 :

∧
r . [[step r = 2 ; P p r ; phase (Suc r) = phase r ; step (Suc r) = 3 ;

next2 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p)]]

=⇒ P p (Suc r)
and step3 :

∧
r . [[step r = 3 ; P p r ; phase (Suc r) = Suc (phase r); step (Suc r)

= 0 ;
next3 r p (rho r p)

(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p)]]

=⇒ P p (Suc r)
shows P p n
by (rule LV-induct[OF run])

(auto intro: init step0 step1 step2 step3)

lemma LV-Suc ′:
assumes run: CHORun LV-M rho HOs coords
and step0 : [[step r = 0 ; step (Suc r) = 1 ; phase (Suc r) = phase r ;

next0 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p)]]

=⇒ P p r
and step1 : [[step r = 1 ; step (Suc r) = 2 ; phase (Suc r) = phase r ;

next1 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p)]]

=⇒ P p r
and step2 : [[step r = 2 ; step (Suc r) = 3 ; phase (Suc r) = phase r ;

next2 r p (rho r p)
(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p)]]

=⇒ P p r

70

and step3 : [[step r = 3 ; step (Suc r) = 0 ; phase (Suc r) = Suc (phase r);
next3 r p (rho r p)

(HOrcvdMsgs LV-M r p (HOs r p) (rho r))
(coords (Suc r) p) (rho (Suc r) p)]]

=⇒ P p r
shows P p r
by (rule LV-Suc[OF run])

(auto intro: step0 step1 step2 step3)

7.5 Boundedness and Monotonicity of Timestamps

The timestamp of any process is bounded by the current phase.
lemma LV-timestamp-bounded:

assumes run: CHORun LV-M rho HOs coords
shows timestamp (rho n p) ≤ (if step n < 2 then phase n else Suc (phase n))

(is ?P p n)
by (rule LV-induct ′ [OF run, where P=?P])

(auto simp: LV-CHOMachine-def LV-initState-def
next0-def next1-def next2-def next3-def)

Moreover, timestamps can only grow over time.
lemma LV-timestamp-increasing:

assumes run: CHORun LV-M rho HOs coords
shows timestamp (rho n p) ≤ timestamp (rho (Suc n) p)
(is ?P p n is ?ts ≤ -)

proof (rule LV-Suc ′[OF run, where P=?P])

The case of next1 is the only interesting one because the timestamp may change:
here we use the previously established fact that the timestamp is bounded by the
phase number.

assume stp: step n = 1
and nxt: next1 n p (rho n p)

(HOrcvdMsgs LV-M n p (HOs n p) (rho n))
(coords (Suc n) p) (rho (Suc n) p)

from stp have ?ts ≤ phase n
using LV-timestamp-bounded[OF run, where n=n, where p=p] by auto

with nxt show ?thesis by (auto simp add: next1-def)
qed (auto simp add: next0-def next2-def next3-def)

lemma LV-timestamp-monotonic:
assumes run: CHORun LV-M rho HOs coords and le: m ≤ n
shows timestamp (rho m p) ≤ timestamp (rho n p)
(is ?ts m ≤ -)

proof −
from le obtain k where k: n = m+k

by (auto simp add: le-iff-add)
have ?ts m ≤ ?ts (m+k) (is ?P k)
proof (induct k)

71

case 0 show ?P 0 by simp
next

fix k
assume ih: ?P k
from run have ?ts (m+k) ≤ ?ts (m + Suc k)

by (auto simp add: LV-timestamp-increasing)
with ih show ?P (Suc k) by simp

qed
with k show ?thesis by simp

qed

The following definition collects the set of processes whose timestamp is
beyond a given bound at a system state.
definition procsBeyondTS where

procsBeyondTS ts cfg ≡ { p . ts ≤ timestamp (cfg p) }

Since timestamps grow monotonically, so does the set of processes that are
beyond a certain bound.
lemma procsBeyondTS-monotonic:

assumes run: CHORun LV-M rho HOs coords
and p: p ∈ procsBeyondTS ts (rho m) and le: m ≤ n

shows p ∈ procsBeyondTS ts (rho n)
proof −

from p have ts ≤ timestamp (rho m p) (is - ≤ ?ts m)
by (simp add: procsBeyondTS-def)

moreover
from run le have ?ts m ≤ ?ts n by (rule LV-timestamp-monotonic)
ultimately show ?thesis

by (simp add: procsBeyondTS-def)
qed

7.6 Obvious Facts About the Algorithm

The following lemmas state some very obvious facts that follow “immedi-
ately” from the definition of the algorithm. We could prove them in one fell
swoop by defining a big invariant, but it appears more readable to prove
them separately.

Coordinators change only at step 3.
lemma notStep3EqualCoord:

assumes run: CHORun LV-M rho HOs coords and stp:step r 6= 3
shows coordΦ (rho (Suc r) p) = coordΦ (rho r p) (is ?P p r)
by (rule LV-Suc ′[OF run, where P=?P])

(auto simp: stp next0-def next1-def next2-def)

lemma coordinators:
assumes run: CHORun LV-M rho HOs coords
shows coordΦ (rho r p) = coords (4∗(phase r)) p

72

proof −
let ?r0 = (4∗(phase r) − 1)
let ?r1 = (4∗(phase r))
have coordΦ (rho ?r1 p) = coords ?r1 p
proof (cases phase r > 0)

case False
hence phase r = 0 by auto
with run show ?thesis

by (auto simp: LV-CHOMachine-def CHORun-eq CHOinitConfig-def
LV-initState-def)

next
case True
hence step (Suc ?r0) = 0 by (auto simp: step-def)
hence step ?r0 = 3 by (auto simp: mod-Suc step-def)
moreover
from run
have LV-nextState ?r0 p (rho ?r0 p)

(HOrcvdMsgs LV-M ?r0 p (HOs ?r0 p) (rho ?r0))
(coords (Suc ?r0) p) (rho (Suc ?r0) p)

by (auto simp: LV-CHOMachine-def CHORun-eq CHOnextConfig-eq)
ultimately
have nxt: next3 ?r0 p (rho ?r0 p)

(HOrcvdMsgs LV-M ?r0 p (HOs ?r0 p) (rho ?r0))
(coords (Suc ?r0) p) (rho (Suc ?r0) p)

by (auto simp: LV-nextState-def)
hence coordΦ (rho (Suc ?r0) p) = coords (Suc ?r0) p

by (auto simp: next3-def)
with True show ?thesis by auto

qed
moreover
from run
have coordΦ (rho (Suc (Suc (Suc ?r1))) p) = coordΦ (rho ?r1 p)

∧ coordΦ (rho (Suc (Suc ?r1)) p) = coordΦ (rho ?r1 p)
∧ coordΦ (rho (Suc ?r1) p) = coordΦ (rho ?r1 p)

by (auto simp: notStep3EqualCoord step-def phase-def mod-Suc)
moreover
have r ∈ {?r1 , Suc ?r1 , Suc (Suc ?r1), Suc (Suc (Suc ?r1))}

by (auto simp: step-def phase-def mod-Suc)
ultimately
show ?thesis by auto

qed

Votes only change at step 0.
lemma notStep0EqualVote [rule-format]:

assumes run: CHORun LV-M rho HOs coords
shows step r 6= 0 −→ vote (rho (Suc r) p) = vote (rho r p) (is ?P p r)
by (rule LV-Suc ′[OF run, where P=?P])

(auto simp: next0-def next1-def next2-def next3-def)

Commit status only changes at steps 0 and 3.

73

lemma notStep03EqualCommit [rule-format]:
assumes run: CHORun LV-M rho HOs coords
shows step r 6= 0 ∧ step r 6= 3 −→ commt (rho (Suc r) p) = commt (rho r p)

(is ?P p r)
by (rule LV-Suc ′[OF run, where P=?P])

(auto simp: next0-def next1-def next2-def next3-def)

Timestamps only change at step 1.
lemma notStep1EqualTimestamp [rule-format]:

assumes run: CHORun LV-M rho HOs coords
shows step r 6= 1 −→ timestamp (rho (Suc r) p) = timestamp (rho r p)

(is ?P p r)
by (rule LV-Suc ′[OF run, where P=?P])

(auto simp: next0-def next1-def next2-def next3-def)

The x field only changes at step 1.
lemma notStep1EqualX [rule-format]:

assumes run: CHORun LV-M rho HOs coords
shows step r 6= 1 −→ x (rho (Suc r) p) = x (rho r p) (is ?P p r)
by (rule LV-Suc ′[OF run, where P=?P])

(auto simp: next0-def next1-def next2-def next3-def)

A process p has its commt flag set only if the following conditions hold:

• the step number is at least 1,

• p considers itself to be the coordinator,

• p has a non-null vote,

• a majority of processes consider p as their coordinator.

lemma commitE :
assumes run: CHORun LV-M rho HOs coords and cmt: commt (rho r p)
and conds: [[1 ≤ step r ; coordΦ (rho r p) = p; vote (rho r p) 6= None;

card {q . coordΦ (rho r q) = p} > N div 2
]] =⇒ A

shows A
proof −

have commt (rho r p) −→
1 ≤ step r
∧ coordΦ (rho r p) = p
∧ vote (rho r p) 6= None
∧ card {q . coordΦ (rho r q) = p} > N div 2

(is ?P p r is - −→ ?R r)
proof (rule LV-induct ′[OF run, where P=?P])

— the only interesting step is step 0
fix n
assume nxt: next0 n p (rho n p) (HOrcvdMsgs LV-M n p (HOs n p) (rho n))

74

(coords (Suc n) p) (rho (Suc n) p)
and ph: phase (Suc n) = phase n
and stp: step n = 0 and stp ′: step (Suc n) = 1
and ih: ?P p n

show ?P p (Suc n)
proof

assume cm ′: commt (rho (Suc n) p)
from stp ih have cm: ¬ commt (rho n p) by simp
with nxt cm ′

have coordΦ (rho n p) = p
∧ vote (rho (Suc n) p) 6= None
∧ card (valStampsRcvd (HOrcvdMsgs LV-M n p (HOs n p) (rho n)))

> N div 2
by (auto simp add: next0-def)

moreover
from stp
have valStampsRcvd (HOrcvdMsgs LV-M n p (HOs n p) (rho n))

⊆ {q . coordΦ (rho n q) = p}
by (auto simp: valStampsRcvd-def LV-CHOMachine-def

HOrcvdMsgs-def LV-sendMsg-def send0-def)
hence card (valStampsRcvd (HOrcvdMsgs LV-M n p (HOs n p) (rho n)))

≤ card {q . coordΦ (rho n q) = p}
by (auto intro: card-mono)

moreover
note stp stp ′ run
ultimately
show ?R (Suc n) by (auto simp: notStep3EqualCoord)

qed
— the remaining cases are all solved by expanding the definitions
qed (auto simp: LV-CHOMachine-def LV-initState-def next1-def next2-def

next3-def notStep3EqualCoord[OF run])
with cmt show ?thesis by (intro conds, auto)

qed

A process has a current timestamp only if:

• it is at step 2 or beyond,

• its coordinator has committed,

• its x value is the vote of its coordinator.

lemma currentTimestampE :
assumes run: CHORun LV-M rho HOs coords
and ts: timestamp (rho r p) = Suc (phase r)
and conds: [[2 ≤ step r ;

commt (rho r (coordΦ (rho r p)));
x (rho r p) = the (vote (rho r (coordΦ (rho r p))))

]] =⇒ A
shows A

75

proof −
let ?ts n = timestamp (rho n p)
let ?crd n = coordΦ (rho n p)
have ?ts r = Suc (phase r) −→

2 ≤ step r
∧ commt (rho r (?crd r))
∧ x (rho r p) = the (vote (rho r (?crd r)))

(is ?Q p r is - −→ ?R r)
proof (rule LV-induct ′[OF run, where P=?Q])

— The assertion is trivially true initially because the timestamp is 0.
assume CinitState LV-M p (rho 0 p) (coords 0 p) thus ?Q p 0

by (auto simp: LV-CHOMachine-def LV-initState-def)
next

The assertion is trivially preserved by step 0 because the timestamp in the post-
state cannot be current (cf. lemma LV-timestamp-bounded).

fix n
assume stp ′: step (Suc n) = 1
with run LV-timestamp-bounded[where n=Suc n]
have ?ts (Suc n) ≤ phase (Suc n) by auto
thus ?Q p (Suc n) by simp

next

Step 1 establishes the assertion by definition of the transition relation.

fix n
assume stp: step n = 1 and stp ′:step (Suc n) = 2

and ph: phase (Suc n) = phase n
and nxt: next1 n p (rho n p) (HOrcvdMsgs LV-M n p (HOs n p) (rho n))

(coords (Suc n) p) (rho (Suc n) p)
show ?Q p (Suc n)
proof

assume ts: ?ts (Suc n) = Suc (phase (Suc n))
from run stp LV-timestamp-bounded[where n=n]
have ?ts n ≤ phase n by auto
moreover
from run stp
have vote (rho (Suc n) (?crd (Suc n))) = vote (rho n (?crd n))

by (auto simp: notStep3EqualCoord notStep0EqualVote)
moreover
from run stp
have commt (rho (Suc n) (?crd (Suc n))) = commt (rho n (?crd n))

by (auto simp: notStep3EqualCoord notStep03EqualCommit)
moreover
note ts nxt stp stp ′ ph
ultimately
show ?R (Suc n)

by (auto simp: LV-CHOMachine-def HOrcvdMsgs-def LV-sendMsg-def
next1-def send1-def isVote-def)

qed

76

next

For step 2, the assertion follows from the induction hypothesis, observing that none
of the relevant state components change.

fix n
assume stp: step n = 2 and stp ′: step (Suc n) = 3

and ph: phase (Suc n) = phase n
and ih: ?Q p n
and nxt: next2 n p (rho n p) (HOrcvdMsgs LV-M n p (HOs n p) (rho n))

(coords (Suc n) p) (rho (Suc n) p)
show ?Q p (Suc n)
proof

assume ts: ?ts (Suc n) = Suc (phase (Suc n))
from run stp
have vt: vote (rho (Suc n) (?crd (Suc n))) = vote (rho n (?crd n))

by (auto simp add: notStep3EqualCoord notStep0EqualVote)
from run stp
have cmt: commt (rho (Suc n) (?crd (Suc n))) = commt (rho n (?crd n))

by (auto simp add: notStep3EqualCoord notStep03EqualCommit)
with vt ts ph stp stp ′ ih nxt
show ?R (Suc n)

by (auto simp add: next2-def)
qed

next

The assertion is trivially preserved by step 3 because the timestamp in the post-
state cannot be current (cf. lemma LV-timestamp-bounded).

fix n
assume stp ′: step (Suc n) = 0
with run LV-timestamp-bounded[where n=Suc n]
have ?ts (Suc n) ≤ phase (Suc n) by auto
thus ?Q p (Suc n) by simp

qed
with ts show ?thesis by (intro conds) auto

qed

If a process p has its ready bit set then:

• it is at step 3,

• it considers itself to be the coordinator of that phase and

• a majority of processes considers p to be the coordinator and has a
current timestamp.

lemma readyE :
assumes run: CHORun LV-M rho HOs coords and rdy: ready (rho r p)
and conds: [[step r = 3 ; coordΦ (rho r p) = p;

card { q . coordΦ (rho r q) = p

77

∧ timestamp (rho r q) = Suc (phase r) } > N div 2
]] =⇒ P

shows P
proof −

let ?qs n = { q . coordΦ (rho n q) = p
∧ timestamp (rho n q) = Suc (phase n) }

have ready (rho r p) −→
step r = 3
∧ coordΦ (rho r p) = p
∧ card (?qs r) > N div 2

(is ?Q p r is - −→ ?R p r)
proof (rule LV-induct ′[OF run, where P=?Q])

— the interesting case is step 2
fix n
assume stp: step n = 2 and stp ′: step (Suc n) = 3

and ih: ?Q p n and ph: phase (Suc n) = phase n
and nxt: next2 n p (rho n p) (HOrcvdMsgs LV-M n p (HOs n p) (rho n))

(coords (Suc n) p) (rho (Suc n) p)
show ?Q p (Suc n)
proof

assume rdy: ready (rho (Suc n) p)
from stp ih have nrdy: ¬ ready (rho n p) by simp
with rdy nxt have coordΦ (rho n p) = p

by (auto simp: next2-def)
with run stp have coord: coordΦ (rho (Suc n) p) = p

by (simp add: notStep3EqualCoord)
let ?acks = acksRcvd (HOrcvdMsgs LV-M n p (HOs n p) (rho n))
from nrdy rdy nxt have aRcvd: card ?acks > N div 2

by (auto simp: next2-def)
have ?acks ⊆ ?qs (Suc n)
proof (clarify)

fix q
assume q: q ∈ ?acks
with stp
have n: coordΦ (rho n q) = p ∧ timestamp (rho n q) = Suc (phase n)

by (auto simp: LV-CHOMachine-def HOrcvdMsgs-def LV-sendMsg-def
acksRcvd-def send2-def isAck-def)

with run stp ph
show coordΦ (rho (Suc n) q) = p

∧ timestamp (rho (Suc n) q) = Suc (phase (Suc n))
by (simp add: notStep3EqualCoord notStep1EqualTimestamp)

qed
hence card ?acks ≤ card (?qs (Suc n))

by (intro card-mono) auto
with stp ′ coord aRcvd show ?R p (Suc n)

by auto
qed
— the remaining steps are all solved trivially

qed (auto simp: LV-CHOMachine-def LV-initState-def

78

next0-def next1-def next3-def)
with rdy show ?thesis by (blast intro: conds)

qed

A process decides only if the following conditions hold:

• it is at step 3,

• its coordinator votes for the value the process decides on,

• the coordinator has its ready and commt bits set.

lemma decisionE :
assumes run: CHORun LV-M rho HOs coords
and dec: decide (rho (Suc r) p) 6= decide (rho r p)
and conds: [[

step r = 3 ;
decide (rho (Suc r) p) = Some (the (vote (rho r (coordΦ (rho r p)))));
ready (rho r (coordΦ (rho r p))); commt (rho r (coordΦ (rho r p)))

]] =⇒ P
shows P

proof −
let ?cfg = rho r
let ?cfg ′ = rho (Suc r)
let ?crd p = coordΦ (?cfg p)
let ?dec ′ = decide (?cfg ′ p)

Except for the assertion about the commt field, the assertion can be proved directly
from the next-state relation.

have 1 : step r = 3
∧ ?dec ′ = Some (the (vote (?cfg (?crd p))))
∧ ready (?cfg (?crd p))

(is ?Q p r)
proof (rule LV-Suc ′[OF run, where P=?Q])
— for step 3, we prove the thesis by expanding the relevant definitions
assume next3 r p (?cfg p) (HOrcvdMsgs LV-M r p (HOs r p) ?cfg)

(coords (Suc r) p) (?cfg ′ p)
and step r = 3

with dec show ?thesis
by (auto simp: next3-def send3-def isVote-def LV-CHOMachine-def

HOrcvdMsgs-def LV-sendMsg-def)
next

— the other steps don’t change the decision
assume next0 r p (?cfg p) (HOrcvdMsgs LV-M r p (HOs r p) ?cfg)

(coords (Suc r) p) (?cfg ′ p)
with dec show ?thesis by (auto simp: next0-def)

next
assume next1 r p (?cfg p) (HOrcvdMsgs LV-M r p (HOs r p) ?cfg)

(coords (Suc r) p) (?cfg ′ p)
with dec show ?thesis by (auto simp: next1-def)

79

next
assume next2 r p (?cfg p) (HOrcvdMsgs LV-M r p (HOs r p) ?cfg)

(coords (Suc r) p) (?cfg ′ p)
with dec show ?thesis by (auto simp: next2-def)

qed
hence ready (?cfg (?crd p)) by blast

Because the coordinator is ready, there is a majority of processes that consider it
to be the coordinator and that have a current timestamp.

with run
have card {q . ?crd q = ?crd p ∧ timestamp (?cfg q) = Suc (phase r)}

> N div 2 by (rule readyE)
— Hence there is at least one such process . . .
hence card {q . ?crd q = ?crd p ∧ timestamp (?cfg q) = Suc (phase r)} 6= 0

by arith
then obtain q where ?crd q = ?crd p and timestamp (?cfg q) = Suc (phase r)

by auto
— . . . and by a previous lemma the coordinator must have committed.
with run have commt (?cfg (?crd p))

by (auto elim: currentTimestampE)
with 1 show ?thesis by (blast intro: conds)

qed

7.7 Proof of Integrity

Integrity is proved using a standard invariance argument that asserts that
only values present in the initial state appear in the relevant fields.
lemma lv-integrityInvariant:

assumes run: CHORun LV-M rho HOs coords
and inv: [[range (x ◦ (rho n)) ⊆ range (x ◦ (rho 0));

range (vote ◦ (rho n)) ⊆ {None} ∪ Some ‘ range (x ◦ (rho 0));
range (decide ◦ (rho n)) ⊆ {None} ∪ Some ‘ range (x ◦ (rho 0))

]] =⇒ A
shows A

proof −
let ?x0 = range (x ◦ rho 0)
let ?x0opt = {None} ∪ Some ‘ ?x0
have range (x ◦ rho n) ⊆ ?x0

∧ range (vote ◦ rho n) ⊆ ?x0opt
∧ range (decide ◦ rho n) ⊆ ?x0opt

(is ?Inv n is ?X n ∧ ?Vote n ∧ ?Decide n)
proof (induct n)

from run show ?Inv 0
by (auto simp: CHORun-eq CHOinitConfig-def LV-CHOMachine-def

LV-initState-def)
next

fix n
assume ih: ?Inv n thus ?Inv (Suc n)
proof (clarify)

80

assume x: ?X n and vt: ?Vote n and dec: ?Decide n

Proof of first conjunct

have x ′: ?X (Suc n)
proof (clarsimp)

fix p
from run
show x (rho (Suc n) p) ∈ range (λq. x (rho 0 q)) (is ?P p n)
proof (rule LV-Suc ′[where P=?P])

— only step1 is of interest
assume stp: step n = 1

and nxt: next1 n p (rho n p)
(HOrcvdMsgs LV-M n p (HOs n p) (rho n))
(coords (Suc n) p) (rho (Suc n) p)

show ?thesis
proof (cases rho (Suc n) p = rho n p)

case True
with x show ?thesis by auto

next
case False
with stp nxt have cmt: commt (rho n (coordΦ (rho n p)))

and xp: x (rho (Suc n) p) = the (vote (rho n (coordΦ (rho n p))))
by (auto simp: next1-def LV-CHOMachine-def HOrcvdMsgs-def

LV-sendMsg-def send1-def isVote-def)
from run cmt have vote (rho n (coordΦ (rho n p))) 6= None

by (rule commitE)
moreover
from vt have vote (rho n (coordΦ (rho n p))) ∈ ?x0opt

by (auto simp add: image-def)
moreover
note xp
ultimately
show ?thesis by (force simp add: image-def)

qed
— the other steps don’t change x

next
assume step n = 0
with run have x (rho (Suc n) p) = x (rho n p)

by (simp add: notStep1EqualX)
with x show ?thesis by auto

next
assume step n = 2
with run have x (rho (Suc n) p) = x (rho n p)

by (simp add: notStep1EqualX)
with x show ?thesis by auto

next
assume step n = 3
with run have x (rho (Suc n) p) = x (rho n p)

by (simp add: notStep1EqualX)

81

with x show ?thesis by auto
qed

qed

Proof of second conjunct

have vt ′: ?Vote (Suc n)
proof (clarsimp simp: image-def)

fix p v
assume v: vote (rho (Suc n) p) = Some v
from run
have vote (rho (Suc n) p) = Some v −→ v ∈ ?x0 (is ?P p n)
proof (rule LV-Suc ′[where P=?P])

— here only step0 is of interest
assume stp: step n = 0

and nxt: next0 n p (rho n p)
(HOrcvdMsgs LV-M n p (HOs n p) (rho n))
(coords (Suc n) p) (rho (Suc n) p)

show ?thesis
proof (cases rho (Suc n) p = rho n p)

case True
from vt have vote (rho n p) ∈ ?x0opt

by (auto simp: image-def)
with True show ?thesis by auto

next
case False
from nxt stp False v obtain q where v = x (rho n q)

by (auto simp: next0-def send0-def LV-CHOMachine-def
HOrcvdMsgs-def LV-sendMsg-def)

with x show ?thesis by (auto simp: image-def)
qed
— the other cases don’t change the vote

next
assume step n = 1
with run have vote (rho (Suc n) p) = vote (rho n p)

by (simp add: notStep0EqualVote)
moreover
from vt have vote (rho n p) ∈ ?x0opt

by (auto simp: image-def)
ultimately
show ?thesis by auto

next
assume step n = 2
with run have vote (rho (Suc n) p) = vote (rho n p)

by (simp add: notStep0EqualVote)
moreover
from vt have vote (rho n p) ∈ ?x0opt

by (auto simp: image-def)
ultimately
show ?thesis by auto

82

next
assume step n = 3
with run have vote (rho (Suc n) p) = vote (rho n p)

by (simp add: notStep0EqualVote)
moreover
from vt have vote (rho n p) ∈ ?x0opt

by (auto simp: image-def)
ultimately
show ?thesis by auto

qed
with v show ∃ q. v = x (rho 0 q) by auto

qed

Proof of third conjunct

have dec ′: ?Decide (Suc n)
proof (clarsimp simp: image-def)

fix p v
assume v: decide (rho (Suc n) p) = Some v
show ∃ q. v = x (rho 0 q)
proof (cases decide (rho (Suc n) p) = decide (rho n p))

case True
with dec True v show ?thesis by (auto simp: image-def)

next
case False
let ?crd = coordΦ (rho n p)
from False run
have d ′: decide (rho (Suc n) p) = Some (the (vote (rho n ?crd)))

and cmt: commt (rho n ?crd)
by (auto elim: decisionE)

from vt have vtc: vote (rho n ?crd) ∈ ?x0opt
by (auto simp: image-def)

from run cmt have vote (rho n ?crd) 6= None
by (rule commitE)

with d ′ v vtc show ?thesis by auto
qed

qed
from x ′ vt ′ dec ′ show ?thesis by simp

qed
qed
with inv show ?thesis by simp

qed

Integrity now follows immediately.
theorem lv-integrity:

assumes run: CHORun LV-M rho HOs coords
and dec: decide (rho n p) = Some v

shows ∃ q. v = x (rho 0 q)
proof −

from run have decide (rho n p) ∈ {None} ∪ Some ‘ (range (x ◦ (rho 0)))

83

by (rule lv-integrityInvariant) (auto simp: image-def)
with dec show ?thesis by (auto simp: image-def)

qed

7.8 Proof of Agreement and Irrevocability

The following lemmas closely follow a hand proof provided by Bernadette
Charron-Bost.
If a process decides, then a majority of processes have a current timestamp.
lemma decisionThenMajorityBeyondTS :

assumes run: CHORun LV-M rho HOs coords
and dec: decide (rho (Suc r) p) 6= decide (rho r p)
shows card (procsBeyondTS (Suc (phase r)) (rho r)) > N div 2
using run dec proof (rule decisionE)

Lemma decisionE tells us that we are at step 3 and that the coordinator is ready.

let ?crd = coordΦ (rho r p)
let ?qs = { q . coordΦ (rho r q) = ?crd

∧ timestamp (rho r q) = Suc (phase r) }
assume stp: step r = 3 and rdy: ready (rho r ?crd)

Now, lemma readyE implies that a majority of processes have a recent timestamp.

from run rdy have card ?qs > N div 2 by (rule readyE)
moreover
from stp LV-timestamp-bounded[OF run, where n=r]
have ∀ q. timestamp (rho r q) ≤ Suc (phase r) by auto
hence ?qs ⊆ procsBeyondTS (Suc (phase r)) (rho r)

by (auto simp: procsBeyondTS-def)
hence card ?qs ≤ card (procsBeyondTS (Suc (phase r)) (rho r))

by (intro card-mono) auto
ultimately show ?thesis by simp

qed

No two different processes have their commit flag set at any state.
lemma committedProcsEqual:

assumes run: CHORun LV-M rho HOs coords
and cmt: commt (rho r p) and cmt ′: commt (rho r p ′)
shows p = p ′

proof −
from run cmt have card {q . coordΦ (rho r q) = p} > N div 2

by (blast elim: commitE)
moreover
from run cmt ′ have card {q . coordΦ (rho r q) = p ′} > N div 2

by (blast elim: commitE)
ultimately
obtain q where coordΦ (rho r q) = p and p ′ = coordΦ (rho r q)

by (auto elim: majoritiesE ′)
thus ?thesis by simp

84

qed

No two different processes have their ready flag set at any state.
lemma readyProcsEqual:

assumes run: CHORun LV-M rho HOs coords
and rdy: ready (rho r p) and rdy ′: ready (rho r p ′)
shows p = p ′

proof −
let ?C p = {q . coordΦ (rho r q) = p ∧ timestamp (rho r q) = Suc (phase r)}
from run rdy have card (?C p) > N div 2

by (blast elim: readyE)
moreover
from run rdy ′ have card (?C p ′) > N div 2

by (blast elim: readyE)
ultimately
obtain q where coordΦ (rho r q) = p and p ′ = coordΦ (rho r q)

by (auto elim: majoritiesE ′)
thus ?thesis by simp

qed

The following lemma asserts that whenever a process p commits at a state
where a majority of processes have a timestamp beyond ts, then p votes for
a value held by some process whose timestamp is beyond ts.
lemma commitThenVoteRecent:

assumes run: CHORun LV-M rho HOs coords
and maj: card (procsBeyondTS ts (rho r)) > N div 2
and cmt: commt (rho r p)
shows ∃ q ∈ procsBeyondTS ts (rho r). vote (rho r p) = Some (x (rho r q))

(is ?Q r)
proof −

let ?bynd n = procsBeyondTS ts (rho n)
have card (?bynd r) > N div 2 ∧ commt (rho r p) −→ ?Q r (is ?P p r)
proof (rule LV-induct[OF run])

next0 establishes the property
fix n
assume stp: step n = 0

and nxt: ∀ q. next0 n q (rho n q)
(HOrcvdMsgs LV-M n q (HOs n q) (rho n))
(coords (Suc n) q)
(rho (Suc n) q)

(is ∀ q. ?nxt q)
from nxt have nxp: ?nxt p ..
show ?P p (Suc n)
proof (clarify)

assume mj: card (?bynd (Suc n)) > N div 2
and ct: commt (rho (Suc n) p)

show ?Q (Suc n)
proof −

85

let ?msgs = HOrcvdMsgs LV-M n p (HOs n p) (rho n)
from stp run have ¬ commt (rho n p) by (auto elim: commitE)
with nxp ct obtain q v where

v: ?msgs q = Some (ValStamp v (highestStampRcvd ?msgs)) and
vote: vote (rho (Suc n) p) = Some v and
rcvd: card (valStampsRcvd ?msgs) > N div 2
by (auto simp: next0-def)

from mj rcvd obtain q ′ where
q1 ′: q ′ ∈ ?bynd (Suc n) and q2 ′: q ′ ∈ valStampsRcvd ?msgs
by (rule majoritiesE ′)

have timestamp (rho n q ′) ≤ timestamp (rho n q)
proof −

from q2 ′ obtain v ′ ts ′

where ts ′: ?msgs q ′ = Some (ValStamp v ′ ts ′)
by (auto simp: valStampsRcvd-def)

hence ts ′ ≤ highestStampRcvd ?msgs
by (rule highestStampRcvd-max)

moreover
from ts ′ stp have timestamp (rho n q ′) = ts ′

by (auto simp: LV-CHOMachine-def HOrcvdMsgs-def
LV-sendMsg-def send0-def)

moreover
from v stp have timestamp (rho n q) = highestStampRcvd ?msgs

by (auto simp: LV-CHOMachine-def HOrcvdMsgs-def
LV-sendMsg-def send0-def)

ultimately
show ?thesis by simp

qed
moreover
from run stp
have timestamp (rho (Suc n) q ′) = timestamp (rho n q ′)

by (simp add: notStep1EqualTimestamp)
moreover
from run stp
have timestamp (rho (Suc n) q) = timestamp (rho n q)

by (simp add: notStep1EqualTimestamp)
moreover
note q1 ′

ultimately
have q ∈ ?bynd (Suc n)

by (simp add: procsBeyondTS-def)
moreover
from v vote stp
have vote (rho (Suc n) p) = Some (x (rho n q))

by (auto simp: LV-CHOMachine-def HOrcvdMsgs-def
LV-sendMsg-def send0-def)

moreover
from run stp have x (rho (Suc n) q) = x (rho n q)

by (simp add: notStep1EqualX)

86

ultimately
show ?thesis by force

qed
qed

next

We now prove that next1 preserves the property. Observe that next1 may establish
a majority of processes with current timestamps, so we cannot just refer to the
induction hypothesis. However, if that happens, there is at least one process with
a fresh timestamp that copies the vote of the (only) committed coordinator, thus
establishing the property.

fix n
assume stp: step n = 1

and nxt: ∀ q. next1 n q (rho n q)
(HOrcvdMsgs LV-M n q (HOs n q) (rho n))
(coords (Suc n) q)
(rho (Suc n) q)

(is ∀ q. ?nxt q)
and ih: ?P p n

from nxt have nxp: ?nxt p ..
show ?P p (Suc n)
proof (clarify)

assume mj ′: card (?bynd (Suc n)) > N div 2
and ct ′: commt (rho (Suc n) p)

from run stp ct ′ have ct: commt (rho n p)
by (simp add: notStep03EqualCommit)

from run stp have vote ′: vote (rho (Suc n) p) = vote (rho n p)
by (simp add: notStep0EqualVote)

show ?Q (Suc n)
proof (cases ∃ q ∈ ?bynd (Suc n). rho (Suc n) q 6= rho n q)

case True

in this case the property holds because q updates its x field to the vote

then obtain q where
q1 : q ∈ ?bynd (Suc n) and q2 : rho (Suc n) q 6= rho n q ..

from nxt have ?nxt q ..
with q2 stp
have x ′: x (rho (Suc n) q) = the (vote (rho n (coordΦ (rho n q))))

and coord: commt (rho n (coordΦ (rho n q)))
by (auto simp: next1-def send1-def LV-CHOMachine-def HOrcvdMsgs-def

LV-sendMsg-def isVote-def)
from run ct have vote: vote (rho n p) 6= None

by (rule commitE)
from run coord ct have coordΦ (rho n q) = p

by (rule committedProcsEqual)
with q1 x ′ vote vote ′ show ?thesis by auto

next
case False

87

if no relevant process moves then procsBeyondTS doesn’t change and we invoke the
induction hypothesis

hence bynd: ?bynd (Suc n) = ?bynd n
proof (auto simp: procsBeyondTS-def)

fix r
assume ts: ts ≤ timestamp (rho n r)
from run have timestamp (rho n r) ≤ timestamp (rho (Suc n) r)

by (simp add: LV-timestamp-monotonic)
with ts show ts ≤ timestamp (rho (Suc n) r) by simp

qed
with mj ′ have mj: card (?bynd n) > N div 2 by simp
with ct ih obtain q where

q ∈ ?bynd n and vote (rho n p) = Some (x (rho n q))
by blast

with vote ′ bynd False show ?thesis by auto
qed

qed

next

step2 preserves the property, via the induction hypothesis.
fix n
assume stp: step n = 2

and nxt: ∀ q. next2 n q (rho n q)
(HOrcvdMsgs LV-M n q (HOs n q) (rho n))
(coords (Suc n) q)
(rho (Suc n) q)

(is ∀ q. ?nxt q)
and ih: ?P p n

from nxt have nxp: ?nxt p ..
show ?P p (Suc n)
proof (clarify)

assume mj ′: card (?bynd (Suc n)) > N div 2
and ct ′: commt (rho (Suc n) p)

from run stp ct ′ have ct: commt (rho n p)
by (simp add: notStep03EqualCommit)

from run stp have vote ′: vote (rho (Suc n) p) = vote (rho n p)
by (simp add: notStep0EqualVote)

from run stp have ∀ q. timestamp (rho (Suc n) q) = timestamp (rho n q)
by (simp add: notStep1EqualTimestamp)

hence bynd ′: ?bynd (Suc n) = ?bynd n
by (auto simp add: procsBeyondTS-def)

from run stp have ∀ q. x (rho (Suc n) q) = x (rho n q)
by (simp add: notStep1EqualX)

with bynd ′ vote ′ ct mj ′ ih show ?Q (Suc n)
by auto

qed

the initial state and the step3 transition are trivial because the commt flag cannot
be set.

88

qed (auto elim: commitE [OF run])
with maj cmt show ?thesis by simp

qed

The following lemma gives the crucial argument for agreement: after some
process p has decided, all processes whose timestamp is beyond the times-
tamp at the point of decision contain the decision value in their x field.
lemma XOfTimestampBeyondDecision:

assumes run: CHORun LV-M rho HOs coords
and dec: decide (rho (Suc r) p) 6= decide (rho r p)

shows ∀ q ∈ procsBeyondTS (Suc (phase r)) (rho (r+k)).
x (rho (r+k) q) = the (decide (rho (Suc r) p))

(is ∀ q ∈ ?bynd k. - = ?v is ?P p k)
proof (induct k)

— base step
show ?P p 0
proof (clarify)

fix q
assume q: q ∈ ?bynd 0

use preceding lemmas about the decision value and the x field of processes with
fresh timestamps

from run dec
have stp: step r = 3

and v: decide (rho (Suc r) p) = Some (the (vote (rho r (coordΦ (rho r p)))))
and cmt: commt (rho r (coordΦ (rho r p)))
by (auto elim: decisionE)

from stp LV-timestamp-bounded[OF run, where n=r]
have timestamp (rho r q) ≤ Suc (phase r) by simp
with q have timestamp (rho r q) = Suc (phase r)

by (simp add: procsBeyondTS-def)
with run
have x: x (rho r q) = the (vote (rho r (coordΦ (rho r q))))

and cmt ′: commt (rho r (coordΦ (rho r q)))
by (auto elim: currentTimestampE)

from run cmt cmt ′ have coordΦ (rho r p) = coordΦ (rho r q)
by (rule committedProcsEqual)

with x v show x (rho (r+0) q) = ?v by simp
qed
next
— induction step
fix k
assume ih: ?P p k
show ?P p (Suc k)
proof (clarify)

fix q
assume q: q ∈ ?bynd (Suc k)
— distinguish the kind of transition—only step1 is interesting
have x (rho (Suc (r + k)) q) = ?v (is ?X q (r+k))

89

proof (rule LV-Suc ′[OF run, where P=?X])
assume stp: step (r + k) = 1
and nxt: next1 (r+k) q (rho (r+k) q)

(HOrcvdMsgs LV-M (r+k) q (HOs (r+k) q) (rho (r+k)))
(coords (Suc (r+k)) q)
(rho (Suc (r+k)) q)

show ?thesis
proof (cases rho (Suc (r+k)) q = rho (r+k) q)

case True
with q ih show ?thesis by (auto simp: procsBeyondTS-def)

next
case False
from run dec have card (?bynd 0) > N div 2

by (simp add: decisionThenMajorityBeyondTS)
moreover
have ?bynd 0 ⊆ ?bynd k

by (auto elim: procsBeyondTS-monotonic[OF run])
hence card (?bynd 0) ≤ card (?bynd k)

by (auto intro: card-mono)
ultimately
have maj: card (?bynd k) > N div 2 by simp
let ?crd = coordΦ (rho (r+k) q)
from False stp nxt have

cmt: commt (rho (r+k) ?crd) and
x: x (rho (Suc (r+k)) q) = the (vote (rho (r+k) ?crd))
by (auto simp: next1-def LV-CHOMachine-def HOrcvdMsgs-def

LV-sendMsg-def send1-def isVote-def)
from run maj cmt stp obtain q ′

where q1 ′: q ′ ∈ ?bynd k
and q2 ′: vote (rho (r+k) ?crd) = Some (x (rho (r+k) q ′))

by (blast dest: commitThenVoteRecent)
with x ih show ?thesis by auto

qed
next

— all other steps hold by induction hypothesis
assume step (r+k) = 0
with run have x: x (rho (Suc (r+k)) q) = x (rho (r+k) q)

and ts: timestamp (rho (Suc (r+k)) q) = timestamp (rho (r+k) q)
by (auto simp: notStep1EqualX notStep1EqualTimestamp)

from ts q have q ∈ ?bynd k
by (auto simp: procsBeyondTS-def)

with x ih show ?thesis by auto
next

assume step (r+k) = 2
with run have x: x (rho (Suc (r+k)) q) = x (rho (r+k) q)

and ts: timestamp (rho (Suc (r+k)) q) = timestamp (rho (r+k) q)
by (auto simp: notStep1EqualX notStep1EqualTimestamp)

from ts q have q ∈ ?bynd k
by (auto simp: procsBeyondTS-def)

90

with x ih show ?thesis by auto
next

assume step (r+k) = 3
with run have x: x (rho (Suc (r+k)) q) = x (rho (r+k) q)

and ts: timestamp (rho (Suc (r+k)) q) = timestamp (rho (r+k) q)
by (auto simp: notStep1EqualX notStep1EqualTimestamp)

from ts q have q ∈ ?bynd k
by (auto simp: procsBeyondTS-def)

with x ih show ?thesis by auto
qed
thus x (rho (r + Suc k) q) = ?v by simp

qed
qed

We are now in position to prove Agreement: if some process decides at step
r and another (or possibly the same) process decides at step r+k then they
decide the same value.
lemma laterProcessDecidesSameValue:

assumes run: CHORun LV-M rho HOs coords
and p: decide (rho (Suc r) p) 6= decide (rho r p)
and q: decide (rho (Suc (r+k)) q) 6= decide (rho (r+k) q)
shows decide (rho (Suc (r+k)) q) = decide (rho (Suc r) p)

proof −
let ?bynd k = procsBeyondTS (Suc (phase r)) (rho (r+k))
let ?qcrd = coordΦ (rho (r+k) q)
from run p have notNone: decide (rho (Suc r) p) 6= None

by (auto elim: decisionE)
— process q decides on the vote of its coordinator
from run q
have dec: decide (rho (Suc (r+k)) q) = Some (the (vote (rho (r+k) ?qcrd)))
and cmt: commt (rho (r+k) ?qcrd)
by (auto elim: decisionE)

— that vote is the x field of some process q ′ with a recent timestamp
from run p have card (?bynd 0) > N div 2

by (simp add: decisionThenMajorityBeyondTS)
moreover
from run have ?bynd 0 ⊆ ?bynd k

by (auto elim: procsBeyondTS-monotonic)
hence card (?bynd 0) ≤ card (?bynd k)

by (auto intro: card-mono)
ultimately
have maj: card (?bynd k) > N div 2 by simp
from run maj cmt obtain q ′

where q ′1 : q ′ ∈ ?bynd k
and q ′2 : vote (rho (r+k) ?qcrd) = Some (x (rho (r+k) q ′))

by (auto dest: commitThenVoteRecent)
— the x field of process q ′ is the value p decided on
from run p q ′1
have x (rho (r+k) q ′) = the (decide (rho (Suc r) p))

91

by (auto dest: XOfTimestampBeyondDecision)
— which proves the assertion
with dec q ′2 notNone show ?thesis by auto

qed

A process that holds some decision v has decided v sometime in the past.
lemma decisionNonNullThenDecided:

assumes run: CHORun LV-M rho HOs coords
and dec: decide (rho n p) = Some v

shows ∃m<n. decide (rho (Suc m) p) 6= decide (rho m p)
∧ decide (rho (Suc m) p) = Some v

proof −
let ?dec k = decide (rho k p)
have (∀m<n. ?dec (Suc m) 6= ?dec m −→ ?dec (Suc m) 6= Some v)

−→ ?dec n 6= Some v
(is ?P n is ?A n −→ -)

proof (induct n)
from run show ?P 0

by (auto simp: CHORun-eq LV-CHOMachine-def
CHOinitConfig-def LV-initState-def)

next
fix n
assume ih: ?P n
show ?P (Suc n)
proof (clarify)

assume p: ?A (Suc n) and v: ?dec (Suc n) = Some v
from p have ?A n by simp
with ih have ?dec n 6= Some v by simp
moreover
from p
have ?dec (Suc n) 6= ?dec n −→ ?dec (Suc n) 6= Some v by simp
ultimately
have ?dec (Suc n) 6= Some v by auto
with v show False by simp

qed
qed
with dec show ?thesis by auto

qed

Irrevocability and Agreement are straightforward consequences of the two
preceding lemmas.
theorem lv-irrevocability:

assumes run: CHORun LV-M rho HOs coords
and p: decide (rho m p) = Some v

shows decide (rho (m+k) p) = Some v
proof −

from run p obtain n where
n1 : n < m and
n2 : decide (rho (Suc n) p) 6= decide (rho n p) and

92

n3 : decide (rho (Suc n) p) = Some v
by (auto dest: decisionNonNullThenDecided)

have ∀ i. decide (rho (Suc (n+i)) p) = Some v (is ∀ i. ?dec i)
proof

fix i
show ?dec i
proof (induct i)

from n3 show ?dec 0 by simp
next

fix j
assume ih: ?dec j
show ?dec (Suc j)
proof (rule ccontr)

assume ctr : ¬ (?dec (Suc j))
with ih
have decide (rho (Suc (n + Suc j)) p) 6= decide (rho (n + Suc j) p)

by simp
with run n2
have decide (rho (Suc (n + Suc j)) p) = decide (rho (Suc n) p)

by (rule laterProcessDecidesSameValue)
with ctr n3 show False by simp

qed
qed

qed
moreover
from n1 obtain j where m+k = Suc(n+j)

by (auto dest: less-imp-Suc-add)
ultimately
show ?thesis by auto

qed

theorem lv-agreement:
assumes run: CHORun LV-M rho HOs coords

and p: decide (rho m p) = Some v
and q: decide (rho n q) = Some w

shows v = w
proof −

from run p obtain k
where k1 : decide (rho (Suc k) p) 6= decide (rho k p)

and k2 : decide (rho (Suc k) p) = Some v
by (auto dest: decisionNonNullThenDecided)

from run q obtain l
where l1 : decide (rho (Suc l) q) 6= decide (rho l q)

and l2 : decide (rho (Suc l) q) = Some w
by (auto dest: decisionNonNullThenDecided)

show ?thesis
proof (cases k ≤ l)

case True
then obtain m where m: l = k+m by (auto simp: le-iff-add)

93

from run k1 l1 m
have decide (rho (Suc l) q) = decide (rho (Suc k) p)

by (auto elim: laterProcessDecidesSameValue)
with k2 l2 show ?thesis by simp

next
case False
hence l ≤ k by simp
then obtain m where m: k = l+m by (auto simp: le-iff-add)
from run l1 k1 m
have decide (rho (Suc k) p) = decide (rho (Suc l) q)

by (auto elim: laterProcessDecidesSameValue)
with l2 k2 show ?thesis by simp

qed
qed

7.9 Proof of Termination

The proof of termination relies on the communication predicate, which stip-
ulates the existence of some phase during which there is a single coordinator
that (a) receives a majority of messages and (b) is heard by everybody.
Therefore, all processes successfully execute the protocol, deciding at step 3
of that phase.
theorem lv-termination:

assumes run: CHORun LV-M rho HOs coords
and commG:CHOcommGlobal LV-M HOs coords

shows ∃ r . ∀ p. decide (rho r p) 6= None
proof −

The communication predicate implies the existence of a “successful” phase ph, co-
ordinated by some process c for all processes.

from commG obtain ph c
where c: ∀ p. coords (4∗ph) p = c
and maj0 : card (HOs (4∗ph) c) > N div 2
and maj2 : card (HOs (4∗ph+2) c) > N div 2
and rcv1 : ∀ p. c ∈ HOs (4∗ph+1) p
and rcv3 : ∀ p. c ∈ HOs (4∗ph+3) p
by (auto simp: LV-CHOMachine-def LV-commGlobal-def)

let ?r0 = 4∗ph
let ?r1 = Suc ?r0
let ?r2 = Suc ?r1
let ?r3 = Suc ?r2
let ?r4 = Suc ?r3

Process c is the coordinator of all steps of phase ph.

from run c have c ′:∀ p. coordΦ (rho ?r p) = c
by (auto simp add: phase-def coordinators)

with run have c1 : ∀ p. coordΦ (rho ?r1 p) = c
by (auto simp add: step-def mod-Suc notStep3EqualCoord)

94

with run have c2 : ∀ p. coordΦ (rho ?r2 p) = c
by (auto simp add: step-def mod-Suc notStep3EqualCoord)

with run have c3 : ∀ p. coordΦ (rho ?r3 p) = c
by (auto simp add: step-def mod-Suc notStep3EqualCoord)

The coordinator receives ValStamp messages from a majority of processes at step
0 of phase ph and therefore commits during the transition at the end of step 0.

have 1 : commt (rho ?r1 c) (is ?P c (4∗ph))
proof (rule LV-Suc ′[OF run, where P=?P], auto simp: step-def)

assume next0 ?r c (rho ?r c) (HOrcvdMsgs LV-M ?r c (HOs ?r c) (rho ?r))
(coords (Suc ?r) c) (rho (Suc ?r) c)

with c ′ maj0 show commt (rho (Suc ?r) c)
by (auto simp: step-def next0-def send0-def valStampsRcvd-def

LV-CHOMachine-def HOrcvdMsgs-def LV-sendMsg-def)
qed

All processes receive the vote of c at step 1 and therefore update their time stamps
during the transition at the end of step 1.

have 2 : ∀ p. timestamp (rho ?r2 p) = Suc ph
proof

fix p
let ?msgs = HOrcvdMsgs LV-M ?r1 p (HOs ?r1 p) (rho ?r1)
let ?crd = coordΦ (rho ?r1 p)
from run 1 c1 rcv1
have cnd: ?msgs ?crd 6= None ∧ isVote (the (?msgs ?crd))

by (auto elim: commitE
simp: step-def LV-CHOMachine-def HOrcvdMsgs-def

LV-sendMsg-def send1-def isVote-def)
show timestamp (rho ?r2 p) = Suc ph (is ?P p (Suc (4∗ph)))
proof (rule LV-Suc ′[OF run, where P=?P], auto simp: step-def mod-Suc)

assume next1 ?r1 p (rho ?r1 p) ?msgs (coords (Suc ?r1) p) (rho ?r2 p)
with cnd show ?thesis by (auto simp: next1-def phase-def)

qed
qed

The coordinator receives acknowledgements from a majority of processes at step 2
and sets its ready flag during the transition at the end of step 2.

have 3 : ready (rho ?r3 c) (is ?P c (Suc (Suc (4∗ph))))
proof (rule LV-Suc ′[OF run, where P=?P], auto simp: step-def mod-Suc)

assume next2 ?r2 c (rho ?r2 c)
(HOrcvdMsgs LV-M ?r2 c (HOs ?r2 c) (rho ?r2))
(coords (Suc ?r2) c) (rho ?r3 c)

with 2 c2 maj2 show ?thesis
by (auto simp: mod-Suc step-def LV-CHOMachine-def HOrcvdMsgs-def

LV-sendMsg-def next2-def send2-def acksRcvd-def
isAck-def phase-def)

qed

All processes receive the vote of the coordinator during step 3 and decide during
the transition at the end of that step.

95

have 4 : ∀ p. decide (rho ?r4 p) 6= None
proof

fix p
let ?msgs = HOrcvdMsgs LV-M ?r3 p (HOs ?r3 p) (rho ?r3)
let ?crd = coordΦ (rho ?r3 p)
from run 3 c3 rcv3
have cnd: ?msgs ?crd 6= None ∧ isVote (the (?msgs ?crd))

by (auto elim: readyE
simp: step-def mod-Suc LV-CHOMachine-def HOrcvdMsgs-def

LV-sendMsg-def send3-def isVote-def numeral-3-eq-3)
show decide (rho ?r4 p) 6= None (is ?P p (Suc (Suc (Suc (4∗ph)))))
proof (rule LV-Suc ′[OF run, where P=?P], auto simp: step-def mod-Suc)

assume next3 ?r3 p (rho ?r3 p) ?msgs (coords (Suc ?r3) p) (rho ?r4 p)
with cnd show ∃ v. decide (rho ?r4 p) = Some v

by (auto simp: next3-def)
qed

qed

This immediately proves the assertion.

from 4 show ?thesis ..
qed

7.10 LastVoting Solves Consensus

Summing up, all (coarse-grained) runs of LastVoting for HO collections that
satisfy the communication predicate satisfy the Consensus property.
theorem lv-consensus:

assumes run: CHORun LV-M rho HOs coords
and commG: CHOcommGlobal LV-M HOs coords

shows consensus (x ◦ (rho 0)) decide rho
proof −

— the above statement of termination is stronger than what we need
from lv-termination[OF assms]
obtain r where ∀ p. decide (rho r p) 6= None ..
hence ∀ p. ∃ r . decide (rho r p) 6= None by blast
with lv-integrity[OF run] lv-agreement[OF run]
show ?thesis by (auto simp: consensus-def image-def)

qed

By the reduction theorem, the correctness of the algorithm carries over to
the fine-grained model of runs.
theorem lv-consensus-fg:

assumes run: fg-run LV-M rho HOs HOs coords
and commG: CHOcommGlobal LV-M HOs coords

shows consensus (λp. x (state (rho 0) p)) decide (state ◦ rho)
(is consensus ?inits - -)

proof (rule local-property-reduction[OF run consensus-is-local])
fix crun

96

assume crun: CSHORun LV-M crun HOs HOs coords
and init: crun 0 = state (rho 0)

from crun have CHORun LV-M crun HOs coords
by (unfold CHORun-def SHORun-def)

from this commG have consensus (x ◦ (crun 0)) decide crun
by (rule lv-consensus)

with init show consensus ?inits decide crun
by (simp add: o-def)

qed

end
theory UteDefs
imports ../HOModel
begin

8 Verification of the UT,E,α Consensus Algorithm

Algorithm UT,E,α is presented in [3]. It is an uncoordinated algorithm that
tolerates value (a.k.a. Byzantine) faults, and can be understood as a variant
of UniformVoting. The parameters T , E, and α appear as thresholds of the
algorithm and in the communication predicates. Their values can be chosen
within certain bounds in order to adapt the algorithm to the characteristics
of different systems.
We formalize in Isabelle the correctness proof of the algorithm that appears
in [3], using the framework of theory HOModel.

8.1 Model of the Algorithm

We begin by introducing an anonymous type of processes of finite cardinality
that will instantiate the type variable ′proc of the generic HO model.
typedecl Proc — the set of processes
axiomatization where Proc-finite: OFCLASS(Proc, finite-class)
instance Proc :: finite by (rule Proc-finite)

abbreviation
N ≡ card (UNIV ::Proc set) — number of processes

The algorithm proceeds in phases of 2 rounds each (we call steps the in-
dividual rounds that constitute a phase). The following utility functions
compute the phase and step of a round, given the round number.
abbreviation
nSteps ≡ 2

definition phase where phase (r ::nat) ≡ r div nSteps
definition step where step (r ::nat) ≡ r mod nSteps

lemma phase-zero [simp]: phase 0 = 0

97

by (simp add: phase-def)

lemma step-zero [simp]: step 0 = 0
by (simp add: step-def)

lemma phase-step: (phase r ∗ nSteps) + step r = r
by (auto simp add: phase-def step-def)

The following record models the local state of a process.
record ′val pstate =

x :: ′val — current value held by process
vote :: ′val option — value the process voted for, if any
decide :: ′val option — value the process has decided on, if any

Possible messages sent during the execution of the algorithm.
datatype ′val msg =

Val ′val
| Vote ′val option

The x field of the initial state is unconstrained, all other fields are initialized
appropriately.
definition Ute-initState where

Ute-initState p st ≡
(vote st = None) ∧ (decide st = None)

The following locale introduces the parameters used for the UT,E,α algorithm
and their constraints [3].
locale ute-parameters =

fixes α::nat and T ::nat and E ::nat
assumes majE : 2∗E ≥ N + 2∗α

and majT : 2∗T ≥ N + 2∗α
and EltN : E < N
and TltN : T < N

begin

Simple consequences of the above parameter constraints.
lemma alpha-lt-N : α < N
using EltN majE by auto

lemma alpha-lt-T : α < T
using majT alpha-lt-N by auto

lemma alpha-lt-E : α < E
using majE alpha-lt-N by auto

We separately define the transition predicates and the send functions for
each step and later combine them to define the overall next-state relation.

98

In step 0, each process sends its current x. If it receives the value v more
than T times, it votes for v, otherwise it doesn’t vote.
definition

send0 :: nat ⇒ Proc ⇒ Proc ⇒ ′val pstate ⇒ ′val msg
where

send0 r p q st ≡ Val (x st)

definition
next0 :: nat ⇒ Proc ⇒ ′val pstate ⇒ (Proc ⇒ ′val msg option)

⇒ ′val pstate ⇒ bool
where

next0 r p st msgs st ′ ≡
(∃ v. card {q. msgs q = Some (Val v)} > T ∧ st ′ = st (| vote := Some v |))
∨ ¬(∃ v. card {q. msgs q = Some (Val v)} > T) ∧ st ′ = st (| vote := None |)

In step 1, each process sends its current vote.
If it receives more than α votes for a given value v, it sets its x field to v,
else it sets x to a default value.
If the process receives more than E votes for v, it decides v, otherwise it
leaves its decision unchanged.
definition

send1 :: nat ⇒ Proc ⇒ Proc ⇒ ′val pstate ⇒ ′val msg
where

send1 r p q st ≡ Vote (vote st)

definition
next1 :: nat ⇒ Proc ⇒ ′val pstate ⇒ (Proc ⇒ ′val msg option)

⇒ ′val pstate ⇒ bool
where

next1 r p st msgs st ′ ≡
((∃ v. card {q. msgs q = Some (Vote (Some v))} > α ∧ x st ′ = v)
∨ ¬(∃ v. card {q. msgs q = Some (Vote (Some v))} > α)
∧ x st ′ = undefined)

∧ ((∃ v. card {q. msgs q = Some (Vote (Some v))} > E ∧ decide st ′ = Some v)
∨ ¬(∃ v. card {q. msgs q = Some (Vote (Some v))} > E)
∧ decide st ′ = decide st)

∧ vote st ′ = None

The overall send function and next-state relation are simply obtained as the
composition of the individual relations defined above.
definition

Ute-sendMsg :: nat ⇒ Proc ⇒ Proc ⇒ ′val pstate ⇒ ′val msg
where

Ute-sendMsg (r ::nat) ≡ if step r = 0 then send0 r else send1 r

definition
Ute-nextState :: nat ⇒ Proc ⇒ ′val pstate ⇒ (Proc ⇒ ′val msg option)

99

⇒ ′val pstate ⇒ bool
where

Ute-nextState r ≡ if step r = 0 then next0 r else next1 r

8.2 Communication Predicate for UT,E,α

Following [3], we now define the communication predicate for the UT,E,α

algorithm to be correct.
The round-by-round predicate stipulates the following conditions:

• no process may receive more than α corrupted messages, and

• every process should receive more than max(T , N + 2∗α − E − 1)
correct messages.

[3] also requires that every process should receive more than α correct mes-
sages, but this is implied, since T > α (cf. lemma alpha-lt-T).
definition Ute-commPerRd where

Ute-commPerRd HOrs SHOrs ≡
∀ p. card (HOrs p − SHOrs p) ≤ α
∧ card (SHOrs p ∩ HOrs p) > N + 2∗α − E − 1
∧ card (SHOrs p ∩ HOrs p) > T

The global communication predicate requires there exists some phase Φ such
that:

• all HO and SHO sets of all processes are equal in the second step
of phase Φ, i.e. all processes receive messages from the same set of
processes, and none of these messages is corrupted,

• every process receives more than T correct messages in the first step
of phase Φ+1, and

• every process receives more than E correct messages in the second step
of phase Φ+1.

The predicate in the article [3] requires infinitely many such phases, but one
is clearly enough.
definition Ute-commGlobal where

Ute-commGlobal HOs SHOs ≡
∃Φ. (let r = Suc (nSteps∗Φ)

in (∃π. ∀ p. π = HOs r p ∧ π = SHOs r p)
∧ (∀ p. card (SHOs (Suc r) p ∩ HOs (Suc r) p) > T)
∧ (∀ p. card (SHOs (Suc (Suc r)) p ∩ HOs (Suc (Suc r)) p) > E))

100

8.3 The UT,E,α Heard-Of Machine

We now define the coordinated HO machine for the UT,E,α algorithm by
assembling the algorithm definition and its communication-predicate.
definition Ute-SHOMachine where

Ute-SHOMachine = (|
CinitState = (λ p st crd. Ute-initState p st),
sendMsg = Ute-sendMsg,
CnextState = (λ r p st msgs crd st ′. Ute-nextState r p st msgs st ′),
SHOcommPerRd = Ute-commPerRd,
SHOcommGlobal = Ute-commGlobal
|)

abbreviation
Ute-M ≡ (Ute-SHOMachine::(Proc, ′val pstate, ′val msg) SHOMachine)

end — locale ute-parameters

end
theory UteProof
imports UteDefs ../Majorities ../Reduction
begin

context ute-parameters
begin

8.4 Preliminary Lemmas

Processes can make a vote only at first round of each phase.
lemma vote-step:

assumes nxt: nextState Ute-M r p (rho r p) µ (rho (Suc r) p)
and vote (rho (Suc r) p) 6= None
shows step r = 0

proof (rule ccontr)
assume step r 6= 0
with assms have vote (rho (Suc r) p) = None

by (auto simp:Ute-SHOMachine-def nextState-def Ute-nextState-def next1-def)
with assms show False by auto

qed

Processes can make a new decision only at second round of each phase.
lemma decide-step:

assumes run: SHORun Ute-M rho HOs SHOs
and d1 : decide (rho r p) 6= Some v
and d2 : decide (rho (Suc r) p) = Some v
shows step r 6= 0

proof
assume sr :step r = 0

101

from run obtain µ where Ute-nextState r p (rho r p) µ (rho (Suc r) p)
unfolding Ute-SHOMachine-def nextState-def SHORun-eq SHOnextConfig-eq
by force

with sr have next0 r p (rho r p) µ (rho (Suc r) p)
unfolding Ute-nextState-def by auto

hence decide (rho r p) = decide (rho (Suc r) p)
by (auto simp:next0-def)

with d1 d2 show False by auto
qed

lemma unique-majority-E :
assumes majv: card {qq::Proc. F qq = Some m} > E
and majw: card {qq::Proc. F qq = Some m ′} > E
shows m = m ′

proof −
from majv majw majE
have card {qq::Proc. F qq = Some m} > N div 2

and card {qq::Proc. F qq = Some m ′} > N div 2
by auto

then obtain qq
where qq ∈ {qq::Proc. F qq = Some m}

and qq ∈ {qq::Proc. F qq = Some m ′}
by (rule majoritiesE ′)

thus ?thesis by auto
qed

lemma unique-majority-E-α:
assumes majv: card {qq::Proc. F qq = m} > E − α
and majw: card {qq::Proc. F qq = m ′} > E − α
shows m = m ′

proof −
from majE alpha-lt-N majv majw
have card {qq::Proc. F qq = m} > N div 2

and card {qq::Proc. F qq = m ′} > N div 2
by auto

then obtain qq
where qq ∈ {qq::Proc. F qq = m}

and qq ∈ {qq::Proc. F qq = m ′}
by (rule majoritiesE ′)

thus ?thesis by auto
qed

lemma unique-majority-T :
assumes majv: card {qq::Proc. F qq = Some m} > T
and majw: card {qq::Proc. F qq = Some m ′} > T
shows m = m ′

proof −
from majT majv majw
have card {qq::Proc. F qq = Some m} > N div 2

102

and card {qq::Proc. F qq = Some m ′} > N div 2
by auto

then obtain qq
where qq ∈ {qq::Proc. F qq = Some m}

and qq ∈ {qq::Proc. F qq = Some m ′}
by (rule majoritiesE ′)

thus ?thesis by auto
qed

No two processes may vote for different values in the same round.
lemma common-vote:

assumes usafe: SHOcommPerRd Ute-M HO SHO
and nxtp: nextState Ute-M r p (rho r p) µp (rho (Suc r) p)
and mup: µp ∈ SHOmsgVectors Ute-M r p (rho r) (HO p) (SHO p)
and nxtq: nextState Ute-M r q (rho r q) µq (rho (Suc r) q)
and muq: µq ∈ SHOmsgVectors Ute-M r q (rho r) (HO q) (SHO q)
and vp: vote (rho (Suc r) p) = Some vp
and vq: vote (rho (Suc r) q) = Some vq
shows vp = vq

using assms proof −
have gtn: card {qq. sendMsg Ute-M r qq p (rho r qq) = Val vp}

+ card {qq. sendMsg Ute-M r qq q (rho r qq) = Val vq} > N
proof −

have card {qq. sendMsg Ute-M r qq p (rho r qq) = Val vp} > T − α
∧ card {qq. sendMsg Ute-M r qq q (rho r qq) = Val vq} > T − α

(is card ?vsentp > - ∧ card ?vsentq > -)
proof −

from nxtp vp have stp:step r = 0 by (auto simp: vote-step)
from mup
have {qq. µp qq = Some (Val vp)} − (HO p − SHO p)

⊆ {qq. sendMsg Ute-M r qq p (rho r qq) = Val vp}
(is ?vrcvdp − ?ahop ⊆ ?vsentp)

by (auto simp: SHOmsgVectors-def)
hence card (?vrcvdp − ?ahop) ≤ card ?vsentp

and card (?vrcvdp − ?ahop) ≥ card ?vrcvdp − card ?ahop
by (auto simp: card-mono diff-card-le-card-Diff)

hence card ?vsentp ≥ card ?vrcvdp − card ?ahop by auto
moreover
from nxtp stp have next0 r p (rho r p) µp (rho (Suc r) p)

by (auto simp: Ute-SHOMachine-def nextState-def Ute-nextState-def)
with vp have card ?vrcvdp > T

unfolding next0-def by auto
moreover
from muq
have {qq. µq qq = Some (Val vq)} − (HO q − SHO q)

⊆ {qq. sendMsg Ute-M r qq q (rho r qq) = Val vq}
(is ?vrcvdq − ?ahoq ⊆ ?vsentq)

by (auto simp: SHOmsgVectors-def)
hence card (?vrcvdq − ?ahoq) ≤ card ?vsentq

103

and card (?vrcvdq − ?ahoq) ≥ card ?vrcvdq − card ?ahoq
by (auto simp: card-mono diff-card-le-card-Diff)

hence card ?vsentq ≥ card ?vrcvdq − card ?ahoq by auto
moreover
from nxtq stp have next0 r q (rho r q) µq (rho (Suc r) q)

by (auto simp: Ute-SHOMachine-def nextState-def Ute-nextState-def)
with vq have card {qq. µq qq = Some (Val vq)} > T

by (unfold next0-def , auto)
moreover
from usafe have card ?ahop ≤ α and card ?ahoq ≤ α

by (auto simp: Ute-SHOMachine-def Ute-commPerRd-def)
ultimately
show ?thesis using alpha-lt-T by auto

qed
thus ?thesis using majT by auto

qed

show ?thesis
proof (rule ccontr)

assume vpq:vp 6= vq
have ∀ qq. sendMsg Ute-M r qq p (rho r qq)

= sendMsg Ute-M r qq q (rho r qq)
by (auto simp: Ute-SHOMachine-def Ute-sendMsg-def

step-def send0-def send1-def)
with vpq
have {qq. sendMsg Ute-M r qq p (rho r qq) = Val vp}

∩ {qq. sendMsg Ute-M r qq q (rho r qq) = Val vq} = {}
by auto

with gtn
have card ({qq. sendMsg Ute-M r qq p (rho r qq) = Val vp}

∪ {qq. sendMsg Ute-M r qq q (rho r qq) = Val vq}) > N
by (auto simp: card-Un-Int)

moreover
have card ({qq. sendMsg Ute-M r qq p (rho r qq) = Val vp}

∪ {qq. sendMsg Ute-M r qq q (rho r qq) = Val vq}) ≤ N
by (auto simp: card-mono)

ultimately
show False by auto

qed
qed

No decision may be taken by a process unless it received enough messages
holding the same value.
lemma decide-with-threshold-E :

assumes run: SHORun Ute-M rho HOs SHOs
and usafe: SHOcommPerRd Ute-M (HOs r) (SHOs r)
and d1 : decide (rho r p) 6= Some v
and d2 : decide (rho (Suc r) p) = Some v
shows card {q. sendMsg Ute-M r q p (rho r q) = Vote (Some v)}

104

> E − α
proof −

from run obtain µp
where nxt:nextState Ute-M r p (rho r p) µp (rho (Suc r) p)

and ∀ qq. qq ∈ HOs r p ←→ µp qq 6= None
and ∀ qq. qq ∈ SHOs r p ∩ HOs r p

−→ µp qq = Some (sendMsg Ute-M r qq p (rho r qq))
unfolding Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq SHOmsgVec-

tors-def
by blast

hence {qq. µp qq = Some (Vote (Some v))} − (HOs r p − SHOs r p)
⊆ {qq. sendMsg Ute-M r qq p (rho r qq) = Vote (Some v)}
(is ?vrcvdp − ?ahop ⊆ ?vsentp) by auto

hence card (?vrcvdp − ?ahop) ≤ card ?vsentp
and card (?vrcvdp − ?ahop) ≥ card ?vrcvdp − card ?ahop
by (auto simp: card-mono diff-card-le-card-Diff)

hence card ?vsentp ≥ card ?vrcvdp − card ?ahop by auto
moreover
from usafe have card (HOs r p − SHOs r p) ≤ α

by (auto simp: Ute-SHOMachine-def Ute-commPerRd-def)
moreover
from run d1 d2 have step r 6= 0 by (rule decide-step)
with nxt have next1 r p (rho r p) µp (rho (Suc r) p)

by (auto simp: Ute-SHOMachine-def nextState-def Ute-nextState-def)
with run d1 d2 have card {qq. µp qq = Some (Vote (Some v))} > E

unfolding next1-def by auto
ultimately
show ?thesis using alpha-lt-E by auto

qed

8.5 Proof of Agreement and Validity

If more than E − α messages holding v are sent to some process p at round
r, then every process pp correctly receives more than α such messages.
lemma common-x-argument-1 :

assumes usafe:SHOcommPerRd Ute-M (HOs (Suc r)) (SHOs (Suc r))
and threshold: card {q. sendMsg Ute-M (Suc r) q p (rho (Suc r) q)

= Vote (Some v)} > E − α
(is card (?msgs p v) > -)

shows card (?msgs pp v ∩ (SHOs (Suc r) pp ∩ HOs (Suc r) pp)) > α
proof −

have card (?msgs pp v) + card (SHOs (Suc r) pp ∩ HOs (Suc r) pp) > N + α
proof −

have ∀ q. sendMsg Ute-M (Suc r) q p (rho (Suc r) q)
= sendMsg Ute-M (Suc r) q pp (rho (Suc r) q)

by (auto simp: Ute-SHOMachine-def Ute-sendMsg-def
step-def send0-def send1-def)

moreover
from usafe

105

have card (SHOs (Suc r) pp ∩ HOs (Suc r) pp) > N + 2∗α − E − 1
by (auto simp: Ute-SHOMachine-def step-def Ute-commPerRd-def)

ultimately
show ?thesis using threshold by auto

qed
moreover
have card (?msgs pp v) + card (SHOs (Suc r) pp ∩ HOs (Suc r) pp)

= card (?msgs pp v ∪ (SHOs (Suc r) pp ∩ HOs (Suc r) pp))
+ card (?msgs pp v ∩ (SHOs (Suc r) pp ∩ HOs (Suc r) pp))

by (auto intro: card-Un-Int)
moreover
have card (?msgs pp v ∪ (SHOs (Suc r) pp ∩ HOs (Suc r) pp)) ≤ N

by (auto simp: card-mono)
ultimately
show ?thesis by auto

qed

If more than E − α messages holding v are sent to p at some round r, then
any process pp will set its x to value v in r.
lemma common-x-argument-2 :

assumes run: SHORun Ute-M rho HOs SHOs
and usafe: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and nxtpp: nextState Ute-M (Suc r) pp (rho (Suc r) pp)

µpp (rho (Suc (Suc r)) pp)
and mupp: µpp ∈ SHOmsgVectors Ute-M (Suc r) pp (rho (Suc r))

(HOs (Suc r) pp) (SHOs (Suc r) pp)
and threshold: card {q. sendMsg Ute-M (Suc r) q p (rho (Suc r) q)

= Vote (Some v)} > E − α
(is card (?sent p v) > -)

shows x (rho (Suc (Suc r)) pp) = v
proof −

have stp:step (Suc r) 6= 0
proof

assume sr : step (Suc r) = 0
hence ∀ q. sendMsg Ute-M (Suc r) q p (rho (Suc r) q)

= Val (x (rho (Suc r) q))
by (auto simp: Ute-SHOMachine-def Ute-sendMsg-def send0-def)

moreover
from threshold obtain qq where

sendMsg Ute-M (Suc r) qq p (rho (Suc r) qq) = Vote (Some v)
by force

ultimately
show False by simp

qed

have va: card {qq. µpp qq = Some (Vote (Some v))} > α
(is card (?msgs v) > α)

proof −
from mupp

106

have SHOs (Suc r) pp ∩ HOs (Suc r) pp
⊆ {qq. µpp qq = Some (sendMsg Ute-M (Suc r) qq pp (rho (Suc r) qq))}

unfolding SHOmsgVectors-def by auto
moreover
hence (?msgs v) ⊇ (?sent pp v) ∩ (SHOs (Suc r) pp ∩ HOs (Suc r) pp)

by auto
hence card (?msgs v)

≥ card ((?sent pp v) ∩ (SHOs (Suc r) pp ∩ HOs (Suc r) pp))
by (auto intro: card-mono)

moreover
from usafe threshold
have alph:card ((?sent pp v) ∩ (SHOs (Suc r) pp ∩ HOs (Suc r) pp)) > α

by (blast dest: common-x-argument-1)
ultimately
show ?thesis by auto

qed
moreover
from nxtpp stp
have next1 (Suc r) pp (rho (Suc r) pp) µpp (rho (Suc (Suc r)) pp)

by (auto simp: Ute-SHOMachine-def nextState-def Ute-nextState-def)
ultimately
obtain w where wa:card (?msgs w) > α and xw:x (rho (Suc (Suc r)) pp) = w

unfolding next1-def by auto

have v = w
proof −

note usafe
moreover
obtain qv where qv ∈ SHOs (Suc r) pp and µpp qv = Some (Vote (Some v))
proof −

have ¬ (?msgs v ⊆ HOs (Suc r) pp − SHOs (Suc r) pp)
proof

assume ?msgs v ⊆ HOs (Suc r) pp − SHOs (Suc r) pp
hence card (?msgs v) ≤ card ((HOs (Suc r) pp) − (SHOs (Suc r) pp))

by (auto simp: card-mono)
moreover
from usafe
have card (HOs (Suc r) pp − SHOs (Suc r) pp) ≤ α

by (auto simp: Ute-SHOMachine-def Ute-commPerRd-def)
moreover
note va
ultimately
show False by auto

qed
then obtain qv

where qv /∈ HOs (Suc r) pp − SHOs (Suc r) pp
and qsv:µpp qv = Some (Vote (Some v))

by auto
with mupp have qv ∈ SHOs (Suc r) pp

107

unfolding SHOmsgVectors-def by auto
with qsv that show ?thesis by auto

qed
with stp mupp have vote (rho (Suc r) qv) = Some v

by (auto simp: Ute-SHOMachine-def SHOmsgVectors-def
Ute-sendMsg-def send1-def)

moreover
obtain qw where

qw ∈ SHOs (Suc r) pp and µpp qw = Some (Vote (Some w))
proof −

have ¬ (?msgs w ⊆ HOs (Suc r) pp − SHOs (Suc r) pp)
proof

assume ?msgs w ⊆ HOs (Suc r) pp − SHOs (Suc r) pp
hence card (?msgs w) ≤ card ((HOs (Suc r) pp) − (SHOs (Suc r) pp))

by (auto simp: card-mono)
moreover
from usafe
have card (HOs (Suc r) pp − SHOs (Suc r) pp) ≤ α

by (auto simp: Ute-SHOMachine-def Ute-commPerRd-def)
moreover
note wa
ultimately
show False by auto

qed
then obtain qw

where qw /∈ HOs (Suc r) pp − SHOs (Suc r) pp
and qsw: µpp qw = Some (Vote (Some w))

by auto
with mupp have qw ∈ SHOs (Suc r) pp

unfolding SHOmsgVectors-def by auto
with qsw that show ?thesis by auto

qed
with stp mupp have vote (rho (Suc r) qw) = Some w

by (auto simp: Ute-SHOMachine-def SHOmsgVectors-def
Ute-sendMsg-def send1-def)

moreover
from run obtain µqv µqw

where nextState Ute-M r qv ((rho r) qv) µqv (rho (Suc r) qv)
and µqv ∈ SHOmsgVectors Ute-M r qv (rho r) (HOs r qv) (SHOs r qv)
and nextState Ute-M r qw ((rho r) qw) µqw (rho (Suc r) qw)
and µqw ∈ SHOmsgVectors Ute-M r qw (rho r) (HOs r qw) (SHOs r qw)

by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq) blast
ultimately
show ?thesis using usafe by (auto dest: common-vote)

qed
with xw show x (rho (Suc (Suc r)) pp) = v by auto

qed

Inductive argument for the agreement and validity theorems.

108

lemma safety-inductive-argument:
assumes run: SHORun Ute-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and ih: E − α < card {q. sendMsg Ute-M r ′ q p (rho r ′ q) = Vote (Some v)}
and stp1 : step r ′ = Suc 0
shows E − α <

card {q. sendMsg Ute-M (Suc (Suc r ′)) q p (rho (Suc (Suc r ′)) q)
= Vote (Some v)}

proof −
from stp1 have r ′ > 0 by (auto simp: step-def)
with stp1 obtain r where rr ′:r ′ = Suc r and stpr :step (Suc r) = Suc 0

by (auto dest: gr0-implies-Suc)

have ∀ pp. x (rho (Suc (Suc r)) pp) = v
proof

fix pp
from run obtain µpp
where µpp ∈ SHOmsgVectors Ute-M r ′ pp (rho r ′) (HOs r ′ pp) (SHOs r ′ pp)

and nextState Ute-M r ′ pp (rho r ′ pp) µpp (rho (Suc r ′) pp)
by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq)

with run comm ih rr ′ show x (rho (Suc (Suc r)) pp) = v
by (auto dest: common-x-argument-2)

qed
with run stpr
have ∀ pp p. sendMsg Ute-M (Suc (Suc r)) pp p (rho (Suc (Suc r)) pp) = Val v

by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq
Ute-sendMsg-def send0-def mod-Suc step-def)

with rr ′

have
∧

p µp ′. µp ′ ∈ SHOmsgVectors Ute-M (Suc r ′) p (rho (Suc r ′))
(HOs (Suc r ′) p) (SHOs (Suc r ′) p)

=⇒ SHOs (Suc r ′) p ∩ HOs (Suc r ′) p
⊆ {q. µp ′ q = Some (Val v)}

by (auto simp: SHOmsgVectors-def)
hence

∧
p µp ′. µp ′ ∈ SHOmsgVectors Ute-M (Suc r ′) p (rho (Suc r ′))

(HOs (Suc r ′) p) (SHOs (Suc r ′) p)
=⇒ card (SHOs (Suc r ′) p ∩ HOs (Suc r ′) p)

≤ card {q. µp ′ q = Some (Val v)}
by (auto simp: card-mono)

moreover
from comm have

∧
p. T < card (SHOs (Suc r ′) p ∩ HOs (Suc r ′) p)

by (auto simp: Ute-SHOMachine-def Ute-commPerRd-def)
ultimately
have vT :

∧
p µp ′. µp ′ ∈ SHOmsgVectors Ute-M (Suc r ′) p (rho (Suc r ′))

(HOs (Suc r ′) p) (SHOs (Suc r ′) p)
=⇒ T < card {q. µp ′ q = Some (Val v)}

by (auto dest: less-le-trans)

show ?thesis
proof −

109

have ∀ pp. vote ((rho (Suc (Suc r ′))) pp) = Some v
proof

fix pp
from run obtain µpp

where nxtpp: nextState Ute-M (Suc r ′) pp (rho (Suc r ′) pp) µpp
(rho (Suc (Suc r ′)) pp)

and mupp: µpp ∈ SHOmsgVectors Ute-M (Suc r ′) pp (rho (Suc r ′))
(HOs (Suc r ′) pp) (SHOs (Suc r ′) pp)

by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq)
with vT have vT ′:card {q. µpp q = Some (Val v)} > T

by auto
moreover
from stpr rr ′ have step (Suc r ′) = 0

by (auto simp: mod-Suc step-def)
with nxtpp
have next0 (Suc r ′) pp (rho (Suc r ′) pp) µpp (rho (Suc (Suc r ′)) pp)

by (auto simp: Ute-SHOMachine-def nextState-def Ute-nextState-def)
ultimately
obtain w

where wT :card {q. µpp q = Some (Val w)} > T
and votew:vote (rho (Suc (Suc r ′)) pp) = Some w

by (auto simp: next0-def)
from vT ′ wT have v = w

by (auto dest: unique-majority-T)
with votew show vote (rho (Suc (Suc r ′)) pp) = Some v by simp

qed
with run stpr rr ′

have ∀ p. N = card {q. sendMsg Ute-M (Suc (Suc (Suc r))) q p
((rho (Suc (Suc (Suc r)))) q) = Vote (Some v)}

by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq
Ute-sendMsg-def send1-def step-def mod-Suc)

with rr ′ majE EltN show ?thesis by auto
qed

qed

A process that holds some decision v has decided v sometime in the past.
lemma decisionNonNullThenDecided:

assumes run:SHORun Ute-M rho HOs SHOs and dec: decide (rho n p) = Some
v

shows ∃m<n. decide (rho (Suc m) p) 6= decide (rho m p)
∧ decide (rho (Suc m) p) = Some v

proof −
let ?dec k = decide ((rho k) p)
have (∀m<n. ?dec (Suc m) 6= ?dec m −→ ?dec (Suc m) 6= Some v)

−→ ?dec n 6= Some v
(is ?P n is ?A n −→ -)

proof (induct n)
from run show ?P 0

by (auto simp: Ute-SHOMachine-def SHORun-eq HOinitConfig-eq

110

initState-def Ute-initState-def)
next

fix n
assume ih: ?P n thus ?P (Suc n) by force

qed
with dec show ?thesis by auto

qed

If process p1 has decided value v1 and process p2 later decides, then p2
must decide v1.
lemma laterProcessDecidesSameValue:

assumes run:SHORun Ute-M rho HOs SHOs
and comm:∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and dv1 :decide (rho (Suc r) p1) = Some v1
and dn2 :decide (rho (r + k) p2) 6= Some v2
and dv2 :decide (rho (Suc (r + k)) p2) = Some v2
shows v2 = v1

proof −
from run dv1 obtain r1

where r1r :r1 < Suc r
and dn1 :decide (rho r1 p1) 6= Some v1
and dv1 ′:decide (rho (Suc r1) p1) = Some v1

by (auto dest: decisionNonNullThenDecided)

from r1r obtain s where rr1 :Suc r = Suc (r1 + s)
by (auto dest: less-imp-Suc-add)

then obtain k ′ where kk ′:r + k = r1 + k ′

by auto
with dn2 dv2
have dn2 ′: decide (rho (r1 + k ′) p2) 6= Some v2

and dv2 ′: decide (rho (Suc (r1 + k ′)) p2) = Some v2
by auto

from run dn1 dv1 ′ dn2 ′ dv2 ′

have rs0 :step r1 = Suc 0 and rks0 :step (r1 + k ′) = Suc 0
by (auto simp: mod-Suc step-def dest: decide-step)

have step (r1 + k ′) = step (step r1 + k ′)
unfolding step-def by (simp add: mod-add-left-eq)

with rs0 rks0 have step k ′ = 0 by (auto simp: step-def mod-Suc)
then obtain k ′′ where k ′ = k ′′∗nSteps by (auto simp: step-def)
with dn2 ′ dv2 ′

have dn2 ′′:decide (rho (r1 + k ′′∗nSteps) p2) 6= Some v2
and dv2 ′′:decide (rho (Suc (r1 + k ′′∗nSteps)) p2) = Some v2
by auto

from rs0 have stp:step (r1 + k ′′∗nSteps) = Suc 0
unfolding step-def by auto

111

have inv:card {q. sendMsg Ute-M (r1 + k ′′∗nSteps) q p1 (rho (r1 + k ′′∗nSteps)
q)

= Vote (Some v1)} > E − α
proof (induct k ′′)

from stp have step (r1 + 0∗nSteps) = Suc 0
by (auto simp: step-def)

from run comm dn1 dv1 ′

show card {q. sendMsg Ute-M (r1 + 0∗nSteps) q p1 (rho (r1 + 0∗nSteps) q)
= Vote (Some v1)} > E − α

by (intro decide-with-threshold-E) auto
next

fix k ′′

assume ih: E − α <
card {q. sendMsg Ute-M (r1 + k ′′∗nSteps) q p1 (rho (r1 + k ′′∗nSteps) q)

= Vote (Some v1)}
from rs0 have stps: step (r1 + k ′′∗nSteps) = Suc 0

by (auto simp: step-def)
with run comm ih
have E − α <

card {q. sendMsg Ute-M (Suc (Suc (r1 + k ′′∗nSteps))) q p1
(rho (Suc (Suc (r1 + k ′′∗nSteps))) q)

= Vote (Some v1)}
by (rule safety-inductive-argument)

thus E − α <
card {q. sendMsg Ute-M (r1 + Suc k ′′ ∗ nSteps) q p1

(rho (r1 + Suc k ′′ ∗ nSteps) q)
= Vote (Some v1)}

by auto
qed
moreover
from run
have ∀ q. sendMsg Ute-M (r1 + k ′′∗nSteps) q p1 (rho (r1 + k ′′∗nSteps) q)

= sendMsg Ute-M (r1 + k ′′∗nSteps) q p2 (rho (r1 + k ′′∗nSteps) q)
by (auto simp: Ute-SHOMachine-def Ute-sendMsg-def

step-def send0-def send1-def)
moreover
from run comm dn2 ′′ dv2 ′′

have E − α <
card {q. sendMsg Ute-M (r1 + k ′′∗nSteps) q p2 (rho (r1 + k ′′∗nSteps) q)

= Vote (Some v2)}
by (auto dest: decide-with-threshold-E)

ultimately
show v2 = v1 by (auto dest: unique-majority-E-α)

qed

The Agreement property is an immediate consequence of the two preceding
lemmas.
theorem ute-agreement:

assumes run: SHORun Ute-M rho HOs SHOs

112

and comm: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and p: decide (rho m p) = Some v
and q: decide (rho n q) = Some w
shows v = w

proof −
from run p obtain k

where k1 : decide (rho (Suc k) p) 6= decide (rho k p)
and k2 : decide (rho (Suc k) p) = Some v

by (auto dest: decisionNonNullThenDecided)
from run q obtain l

where l1 : decide (rho (Suc l) q) 6= decide (rho l q)
and l2 : decide (rho (Suc l) q) = Some w

by (auto dest: decisionNonNullThenDecided)
show ?thesis
proof (cases k ≤ l)

case True
then obtain m where m: l = k+m by (auto simp add: le-iff-add)
from run comm k2 l1 l2 m have w = v

by (auto elim!: laterProcessDecidesSameValue)
thus ?thesis by simp

next
case False
hence l ≤ k by simp
then obtain m where m: k = l+m by (auto simp add: le-iff-add)
from run comm l2 k1 k2 m show ?thesis

by (auto elim!: laterProcessDecidesSameValue)
qed

qed

Main lemma for the proof of the Validity property.
lemma validity-argument:

assumes run: SHORun Ute-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and init: ∀ p. x ((rho 0) p) = v
and dw: decide (rho r p) = Some w
and stp: step r ′ = Suc 0
shows card {q. sendMsg Ute-M r ′ q p (rho r ′ q) = Vote (Some v)} > E − α

proof −
define k where k = r ′ div nSteps
with stp have stp: r ′ = Suc 0 + k ∗ nSteps

using div-mult-mod-eq [of r ′ nSteps]
by (simp add: step-def)

moreover
have E − α <

card {q. sendMsg Ute-M (Suc 0 + k∗nSteps) q p ((rho (Suc 0 + k∗nSteps))
q)

= Vote (Some v)}
proof (induct k)

have ∀ pp. vote ((rho (Suc 0)) pp) = Some v

113

proof
fix pp
from run obtain µpp

where nxtpp:nextState Ute-M 0 pp (rho 0 pp) µpp (rho (Suc 0) pp)
and mupp:µpp ∈ SHOmsgVectors Ute-M 0 pp (rho 0) (HOs 0 pp) (SHOs

0 pp)
by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq)

have majv:card {q. µpp q = Some (Val v)} > T
proof −

from run init have ∀ q. sendMsg Ute-M 0 q pp (rho 0 q) = Val v
by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq

Ute-sendMsg-def send0-def step-def)
moreover
from comm have shoT :card (SHOs 0 pp ∩ HOs 0 pp) > T

by (auto simp: Ute-SHOMachine-def Ute-commPerRd-def)
moreover
from mupp
have SHOs 0 pp ∩ HOs 0 pp

⊆ {q. µpp q = Some (sendMsg Ute-M 0 q pp (rho 0 q))}
by (auto simp: SHOmsgVectors-def)

hence card (SHOs 0 pp ∩ HOs 0 pp)
≤ card {q. µpp q = Some (sendMsg Ute-M 0 q pp (rho 0 q))}

by (auto simp: card-mono)
ultimately
show ?thesis by (auto simp: less-le-trans)

qed
moreover
from nxtpp have next0 0 pp ((rho 0) pp) µpp (rho (Suc 0) pp)
by (auto simp: Ute-SHOMachine-def nextState-def Ute-nextState-def step-def)
ultimately
obtain w where majw:card {q. µpp q = Some (Val w)} > T

and votew:vote (rho (Suc 0) pp) = Some w
by (auto simp: next0-def)

from majv majw have v = w by (auto dest: unique-majority-T)
with votew show vote ((rho (Suc 0)) pp) = Some v by simp

qed
with run
have card {q. sendMsg Ute-M (Suc 0) q p (rho (Suc 0) q) = Vote (Some v)}

= N
by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq

Ute-nextState-def step-def Ute-sendMsg-def send1-def)
thus E − α <
card {q. sendMsg Ute-M (Suc 0 + 0 ∗ nSteps) q p (rho (Suc 0 + 0 ∗ nSteps)

q)
= Vote (Some v)}

using majE EltN by auto
next

fix k

114

assume ih:E − α <
card {q. sendMsg Ute-M (Suc 0 + k ∗ nSteps) q p (rho (Suc 0 + k ∗ nSteps)

q)
= Vote (Some v)}

have step (Suc 0 + k ∗ nSteps) = Suc 0
by (auto simp: mod-Suc step-def)

from run comm ih this
have E − α <

card {q. sendMsg Ute-M (Suc (Suc (Suc 0 + k ∗ nSteps))) q p
(rho (Suc (Suc (Suc 0 + k ∗ nSteps))) q)

= Vote (Some v)}
by (rule safety-inductive-argument)

thus E − α <
card {q. sendMsg Ute-M (Suc 0 + Suc k ∗ nSteps) q p

(rho (Suc 0 + Suc k ∗ nSteps) q)
= Vote (Some v)} by simp

qed
ultimately
show ?thesis by simp

qed

The following theorem shows the Validity property of algorithm UT,E,α.
theorem ute-validity:

assumes run: SHORun Ute-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and init: ∀ p. x (rho 0 p) = v
and dw: decide (rho r p) = Some w
shows v = w

proof −
from run dw obtain r1

where dnr1 :decide ((rho r1) p) 6= Some w
and dwr1 :decide ((rho (Suc r1)) p) = Some w

by (force dest: decisionNonNullThenDecided)
with run have step r1 6= 0 by (rule decide-step)
hence step r1 = Suc 0 by (simp add: step-def mod-Suc)
with assms
have E − α <

card {q. sendMsg Ute-M r1 q p (rho r1 q) = Vote (Some v)}
by (rule validity-argument)

moreover
from run comm dnr1 dwr1
have card {q. sendMsg Ute-M r1 q p (rho r1 q) = Vote (Some w)} > E − α

by (auto dest: decide-with-threshold-E)
ultimately
show v = w by (auto dest: unique-majority-E-α)

qed

115

8.6 Proof of Termination

At the second round of a phase that satisfies the conditions expressed in the
global communication predicate, processes update their x variable with the
value v they receive in more than α messages.
lemma set-x-from-vote:

assumes run: SHORun Ute-M rho HOs SHOs
and comm: SHOcommPerRd Ute-M (HOs r) (SHOs r)
and stp: step (Suc r) = Suc 0
and π: ∀ p. HOs (Suc r) p = SHOs (Suc r) p
and nxt: nextState Ute-M (Suc r) p (rho (Suc r) p) µ (rho (Suc (Suc r)) p)
and mu: µ ∈ SHOmsgVectors Ute-M (Suc r) p (rho (Suc r))

(HOs (Suc r) p) (SHOs (Suc r) p)
and vp: α < card {qq. µ qq = Some (Vote (Some v))}
shows x ((rho (Suc (Suc r))) p) = v

proof −
from nxt stp vp obtain wp

where xwp:α < card {qq. µ qq = Some (Vote (Some wp))}
and xp:x (rho (Suc (Suc r)) p) = wp

by (auto simp: Ute-SHOMachine-def nextState-def Ute-nextState-def next1-def)

have wp = v
proof −

from xwp obtain pp where smw:µ pp = Some (Vote (Some wp))
by force

have vote (rho (Suc r) pp) = Some wp
proof −

from smw mu π
have µ pp = Some (sendMsg Ute-M (Suc r) pp p (rho (Suc r) pp))

unfolding SHOmsgVectors-def by force
with stp have µ pp = Some (Vote (vote (rho (Suc r) pp)))

by (auto simp: Ute-SHOMachine-def Ute-sendMsg-def send1-def)
with smw show ?thesis by auto

qed
moreover
from vp obtain qq where smv:µ qq = Some (Vote (Some v))

by force
have vote (rho (Suc r) qq) = Some v
proof −

from smv mu π
have µ qq = Some (sendMsg Ute-M (Suc r) qq p (rho (Suc r) qq))

unfolding SHOmsgVectors-def by force
with stp have µ qq = Some (Vote (vote (rho (Suc r) qq)))

by (auto simp: Ute-SHOMachine-def Ute-sendMsg-def send1-def)
with smv show ?thesis by auto

qed
moreover
from run obtain µpp µqq

where nextState Ute-M r pp (rho r pp) µpp (rho (Suc r) pp)

116

and µpp ∈ SHOmsgVectors Ute-M r pp (rho r) (HOs r pp) (SHOs r pp)
and nextState Ute-M r qq ((rho r) qq) µqq (rho (Suc r) qq)
and µqq ∈ SHOmsgVectors Ute-M r qq (rho r) (HOs r qq) (SHOs r qq)

unfolding Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq by blast
ultimately
show ?thesis using comm by (auto dest: common-vote)

qed
with xp show ?thesis by simp

qed

Assume that HO and SHO sets are uniform at the second step of some
phase. Then at the subsequent round there exists some value v such that
any received message which is not corrupted holds v.
lemma termination-argument-1 :

assumes run: SHORun Ute-M rho HOs SHOs
and comm: SHOcommPerRd Ute-M (HOs r) (SHOs r)
and stp: step (Suc r) = Suc 0
and π: ∀ p. π0 = HOs (Suc r) p ∧ π0 = SHOs (Suc r) p
obtains v where∧

p µp ′ q.
[[q ∈ SHOs (Suc (Suc r)) p ∩ HOs (Suc (Suc r)) p;
µp ′ ∈ SHOmsgVectors Ute-M (Suc (Suc r)) p (rho (Suc (Suc r)))

(HOs (Suc (Suc r)) p) (SHOs (Suc (Suc r)) p)
]] =⇒ µp ′ q = (Some (Val v))

proof −
from π have hosho:∀ p. SHOs (Suc r) p = SHOs (Suc r) p ∩ HOs (Suc r) p

by simp

have
∧

p q. x (rho (Suc (Suc r)) p) = x (rho (Suc (Suc r)) q)
proof −

fix p q
from run obtain µp

where nxt: nextState Ute-M (Suc r) p (rho (Suc r) p)
µp (rho (Suc (Suc r)) p)

and mu: µp ∈ SHOmsgVectors Ute-M (Suc r) p (rho (Suc r))
(HOs (Suc r) p) (SHOs (Suc r) p)

by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq)

from run obtain µq
where nxtq: nextState Ute-M (Suc r) q (rho (Suc r) q)

µq (rho (Suc (Suc r)) q)
and muq: µq ∈ SHOmsgVectors Ute-M (Suc r) q (rho (Suc r))

(HOs (Suc r) q) (SHOs (Suc r) q)
by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq)

have ∀ qq. µp qq = µq qq
proof

fix qq
show µp qq = µq qq

117

proof (cases µp qq = None)
case False
with mu π have 1 :qq ∈ SHOs (Suc r) p and 2 :qq ∈ SHOs (Suc r) q

unfolding SHOmsgVectors-def by auto
from mu π 1
have µp qq = Some (sendMsg Ute-M (Suc r) qq p (rho (Suc r) qq))

unfolding SHOmsgVectors-def by auto
moreover
from muq π 2
have µq qq = Some (sendMsg Ute-M (Suc r) qq q (rho (Suc r) qq))

unfolding SHOmsgVectors-def by auto
ultimately
show ?thesis

by (auto simp: Ute-SHOMachine-def Ute-sendMsg-def step-def
send0-def send1-def)

next
case True
with mu have qq /∈ HOs (Suc r) p unfolding SHOmsgVectors-def by auto
with π muq have µq qq = None unfolding SHOmsgVectors-def by auto
with True show ?thesis by simp

qed
qed
hence vsets:

∧
v. {qq. µp qq = Some (Vote (Some v))}

= {qq. µq qq = Some (Vote (Some v))}
by auto

show x (rho (Suc (Suc r)) p) = x (rho (Suc (Suc r)) q)
proof (cases ∃ v. α < card {qq. µp qq = Some (Vote (Some v))}, clarify)

fix v
assume vp: α < card {qq. µp qq = Some (Vote (Some v))}
with run comm stp π nxt mu have x (rho (Suc (Suc r)) p) = v

by (auto dest: set-x-from-vote)
moreover
from vsets vp
have α < card {qq. µq qq = Some (Vote (Some v))} by auto
with run comm stp π nxtq muq have x (rho (Suc (Suc r)) q) = v

by (auto dest: set-x-from-vote)
ultimately
show x (rho (Suc (Suc r)) p) = x (rho (Suc (Suc r)) q)

by auto
next

assume nov: ¬ (∃ v. α < card {qq. µp qq = Some (Vote (Some v))})
with nxt stp have x (rho (Suc (Suc r)) p) = undefined

by (auto simp: Ute-SHOMachine-def nextState-def
Ute-nextState-def next1-def)

moreover
from vsets nov
have ¬ (∃ v. α < card {qq. µq qq = Some (Vote (Some v))}) by auto

118

with nxtq stp have x (rho (Suc (Suc r)) q) = undefined
by (auto simp: Ute-SHOMachine-def nextState-def

Ute-nextState-def next1-def)
ultimately
show ?thesis by simp

qed
qed
then obtain v where

∧
q. x (rho (Suc (Suc r)) q) = v by blast

moreover
from stp have step (Suc (Suc r)) = 0

by (auto simp: step-def mod-Suc)
hence

∧
p µp ′ q.

[[q ∈ SHOs (Suc (Suc r)) p ∩ HOs (Suc (Suc r)) p;
µp ′ ∈ SHOmsgVectors Ute-M (Suc (Suc r)) p (rho (Suc (Suc r)))

(HOs (Suc (Suc r)) p) (SHOs (Suc (Suc r)) p)
]] =⇒ µp ′ q = Some (Val (x (rho (Suc (Suc r)) q)))

by (auto simp: Ute-SHOMachine-def SHOmsgVectors-def Ute-sendMsg-def send0-def)
ultimately
have

∧
p µp ′ q.

[[q ∈ SHOs (Suc (Suc r)) p ∩ HOs (Suc (Suc r)) p;
µp ′ ∈ SHOmsgVectors Ute-M (Suc (Suc r)) p (rho (Suc (Suc r)))

(HOs (Suc (Suc r)) p) (SHOs (Suc (Suc r)) p)
]] =⇒ µp ′ q = (Some (Val v))
by auto

with that show thesis by blast
qed

If a process p votes v at some round r, then all messages received by p in r
that are not corrupted hold v.
lemma termination-argument-2 :

assumes mup: µp ∈ SHOmsgVectors Ute-M (Suc r) p (rho (Suc r))
(HOs (Suc r) p) (SHOs (Suc r) p)

and nxtq: nextState Ute-M r q (rho r q) µq (rho (Suc r) q)
and vq: vote (rho (Suc r) q) = Some v
and qsho: q ∈ SHOs (Suc r) p ∩ HOs (Suc r) p
shows µp q = Some (Vote (Some v))

proof −
from nxtq vq have step r = 0 by (auto simp: vote-step)
with mup qsho have µp q = Some (Vote (vote (rho (Suc r) q)))

by (auto simp: Ute-SHOMachine-def SHOmsgVectors-def Ute-sendMsg-def
step-def send1-def mod-Suc)

with vq show µp q = Some (Vote (Some v)) by auto
qed

We now prove the Termination property.
theorem ute-termination:

assumes run: SHORun Ute-M rho HOs SHOs
and commR: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and commG: SHOcommGlobal Ute-M HOs SHOs

119

shows ∃ r v. decide (rho r p) = Some v
proof −

from commG
obtain Φ π r0

where rr : r0 = Suc (nSteps ∗ Φ)
and π: ∀ p. π = HOs r0 p ∧ π = SHOs r0 p
and t: ∀ p. card (SHOs (Suc r0) p ∩ HOs (Suc r0) p) > T
and e: ∀ p. card (SHOs (Suc (Suc r0)) p ∩ HOs (Suc (Suc r0)) p) > E

by (auto simp: Ute-SHOMachine-def Ute-commGlobal-def Let-def)
from rr have stp:step r0 = Suc 0 by (auto simp: step-def)

obtain w where votew:∀ p. (vote (rho (Suc (Suc r0)) p)) = Some w
proof −

have abc:∀ p. ∃w. vote (rho (Suc (Suc r0)) p) = Some w
proof

fix p
from run stp obtain µp

where nxt:nextState Ute-M (Suc r0) p (rho (Suc r0) p) µp
(rho (Suc (Suc r0)) p)

and mup:µp ∈ SHOmsgVectors Ute-M (Suc r0) p (rho (Suc r0))
(HOs (Suc r0) p) (SHOs (Suc r0) p)

by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq)

have ∃ v. T < card {qq. µp qq = Some (Val v)}
proof −

from t have card (SHOs (Suc r0) p ∩ HOs (Suc r0) p) > T ..
moreover
from run commR stp π rr
obtain v where∧

p µp ′ q.
[[q ∈ SHOs (Suc r0) p ∩ HOs (Suc r0) p;
µp ′ ∈ SHOmsgVectors Ute-M (Suc r0) p (rho (Suc r0))

(HOs (Suc r0) p) (SHOs (Suc r0) p)
]] =⇒ µp ′ q = Some (Val v)

using termination-argument-1 by blast

with mup obtain v where∧
qq. qq ∈ SHOs (Suc r0) p ∩ HOs (Suc r0) p =⇒ µp qq = Some (Val v)

by auto
hence SHOs (Suc r0) p ∩ HOs (Suc r0) p ⊆ {qq. µp qq = Some (Val v)}

by auto
hence card (SHOs (Suc r0) p ∩ HOs (Suc r0) p)

≤ card {qq. µp qq = Some (Val v)}
by (auto intro: card-mono)

ultimately
have T < card {qq. µp qq = Some (Val v)} by auto
thus ?thesis by auto

qed
with stp nxt show ∃w. vote ((rho (Suc (Suc r0))) p) = Some w

120

by (auto simp: Ute-SHOMachine-def nextState-def Ute-nextState-def
step-def mod-Suc next0-def)

qed
then obtain qq w where qqw:vote (rho (Suc (Suc r0)) qq) = Some w

by blast
have ∀ pp. vote (rho (Suc (Suc r0)) pp) = Some w
proof

fix pp
from abc obtain wp where pwp:vote ((rho (Suc (Suc r0))) pp) = Some wp

by blast
from run obtain µpp µqq

where nxtp: nextState Ute-M (Suc r0) pp (rho (Suc r0) pp)
µpp (rho (Suc (Suc r0)) pp)

and mup: µpp ∈ SHOmsgVectors Ute-M (Suc r0) pp (rho (Suc r0))
(HOs (Suc r0) pp) (SHOs (Suc r0) pp)

and nxtq: nextState Ute-M (Suc r0) qq (rho (Suc r0) qq)
µqq (rho (Suc (Suc r0)) qq)

and muq: µqq ∈ SHOmsgVectors Ute-M (Suc r0) qq (rho (Suc r0))
(HOs (Suc r0) qq) (SHOs (Suc r0) qq)

unfolding Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq by blast
from commR this pwp qqw have wp = w

by (auto dest: common-vote)
with pwp show vote ((rho (Suc (Suc r0))) pp) = Some w

by auto
qed
with that show ?thesis by auto

qed

from run obtain µp ′

where nxtp: nextState Ute-M (Suc (Suc r0)) p (rho (Suc (Suc r0)) p)
µp ′ (rho (Suc (Suc (Suc r0))) p)

and mup ′: µp ′ ∈ SHOmsgVectors Ute-M (Suc (Suc r0)) p (rho (Suc (Suc
r0)))

(HOs (Suc (Suc r0)) p) (SHOs (Suc (Suc r0)) p)
by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq)

have
∧

qq. qq ∈ SHOs (Suc (Suc r0)) p ∩ HOs (Suc (Suc r0)) p
=⇒ µp ′ qq = Some (Vote (Some w))

proof −
fix qq
assume qqsho:qq ∈ SHOs (Suc (Suc r0)) p ∩ HOs (Suc (Suc r0)) p
from run obtain µqq where

nxtqq:nextState Ute-M (Suc r0) qq (rho (Suc r0) qq)
µqq (rho (Suc (Suc r0)) qq)

by (auto simp: Ute-SHOMachine-def SHORun-eq SHOnextConfig-eq)
from commR mup ′ nxtqq votew qqsho show µp ′ qq = Some (Vote (Some w))

by (auto dest: termination-argument-2)
qed
hence SHOs (Suc (Suc r0)) p ∩ HOs (Suc (Suc r0)) p

⊆ {qq. µp ′ qq = Some (Vote (Some w))}

121

by auto
hence wsho: card (SHOs (Suc (Suc r0)) p ∩ HOs (Suc (Suc r0)) p)

≤ card {qq. µp ′ qq = Some (Vote (Some w))}
by (auto simp: card-mono)

from stp have step (Suc (Suc r0)) = Suc 0
unfolding step-def by auto

with nxtp have next1 (Suc (Suc r0)) p (rho (Suc (Suc r0)) p) µp ′

(rho (Suc (Suc (Suc r0))) p)
by (auto simp: Ute-SHOMachine-def nextState-def Ute-nextState-def)

moreover
from e have E < card (SHOs (Suc (Suc r0)) p ∩ HOs (Suc (Suc r0)) p)

by auto
with wsho have majv:card {qq. µp ′ qq = Some (Vote (Some w))} > E

by auto
ultimately
show ?thesis by (auto simp: next1-def)

qed

8.7 UT,E,α Solves Weak Consensus

Summing up, all (coarse-grained) runs of UT,E,α for HO and SHO collec-
tions that satisfy the communication predicate satisfy the Weak Consensus
property.
theorem ute-weak-consensus:

assumes run: SHORun Ute-M rho HOs SHOs
and commR: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and commG: SHOcommGlobal Ute-M HOs SHOs

shows weak-consensus (x ◦ (rho 0)) decide rho
unfolding weak-consensus-def
using ute-validity[OF run commR]

ute-agreement[OF run commR]
ute-termination[OF run commR commG]

by auto

By the reduction theorem, the correctness of the algorithm carries over to
the fine-grained model of runs.
theorem ute-weak-consensus-fg:

assumes run: fg-run Ute-M rho HOs SHOs (λr q. undefined)
and commR: ∀ r . SHOcommPerRd Ute-M (HOs r) (SHOs r)
and commG: SHOcommGlobal Ute-M HOs SHOs

shows weak-consensus (λp. x (state (rho 0) p)) decide (state ◦ rho)
(is weak-consensus ?inits - -)

proof (rule local-property-reduction[OF run weak-consensus-is-local])
fix crun
assume crun: CSHORun Ute-M crun HOs SHOs (λr q. undefined)

and init: crun 0 = state (rho 0)
from crun have SHORun Ute-M crun HOs SHOs by (unfold SHORun-def)

122

from this commR commG
have weak-consensus (x ◦ (crun 0)) decide crun

by (rule ute-weak-consensus)
with init show weak-consensus ?inits decide crun

by (simp add: o-def)
qed

end — context ute-parameters

end
theory AteDefs
imports ../HOModel
begin

9 Verification of the AT,E,α Consensus algorithm

Algorithm AT,E,α is presented in [3]. Like UT,E,α, it is an uncoordinated
algorithm that tolerates value faults, and it is parameterized by values T ,
E, and α that serve a similar function as in UT,E,α, allowing the algorithm
to be adapted to the characteristics of different systems. AT,E,α can be
understood as a variant of OneThirdRule tolerating Byzantine faults.
We formalize in Isabelle the correctness proof of the algorithm that appears
in [3], using the framework of theory HOModel.

9.1 Model of the Algorithm

We begin by introducing an anonymous type of processes of finite cardinality
that will instantiate the type variable ′proc of the generic HO model.
typedecl Proc — the set of processes
axiomatization where Proc-finite: OFCLASS(Proc, finite-class)
instance Proc :: finite by (rule Proc-finite)

abbreviation
N ≡ card (UNIV ::Proc set) — number of processes

The following record models the local state of a process.
record ′val pstate =

x :: ′val — current value held by process
decide :: ′val option — value the process has decided on, if any

The x field of the initial state is unconstrained, but no decision has yet been
taken.
definition Ate-initState where

Ate-initState p st ≡ (decide st = None)

123

The following locale introduces the parameters used for theAT,E,α algorithm
and their constraints [3].
locale ate-parameters =

fixes α::nat and T ::nat and E ::nat
assumes TNaE :T ≥ 2∗(N + 2∗α − E)

and TltN :T < N
and EltN :E < N

begin

The following are consequences of the assumptions on the parameters.
lemma majE : 2 ∗ (E − α) ≥ N
using TNaE TltN by auto

lemma Egta: E > α
using majE EltN by auto

lemma Tge2a: T ≥ 2 ∗ α
using TNaE EltN by auto

At every round, each process sends its current x. If it received more than
T messages, it selects the smallest value and store it in x. As in algorithm
OneThirdRule, we therefore require values to be linearly ordered.
If more than E messages holding the same value are received, the process
decides that value.
definition mostOftenRcvd where

mostOftenRcvd (msgs::Proc ⇒ ′val option) ≡
{v. ∀w. card {qq. msgs qq = Some w} ≤ card {qq. msgs qq = Some v}}

definition
Ate-sendMsg :: nat ⇒ Proc ⇒ Proc ⇒ ′val pstate ⇒ ′val

where
Ate-sendMsg r p q st ≡ x st

definition
Ate-nextState :: nat ⇒ Proc ⇒ (′val::linorder) pstate ⇒ (Proc ⇒ ′val option)

⇒ ′val pstate ⇒ bool
where

Ate-nextState r p st msgs st ′ ≡
(if card {q. msgs q 6= None} > T
then x st ′ = Min (mostOftenRcvd msgs)
else x st ′ = x st)

∧ ((∃ v. card {q. msgs q = Some v} > E ∧ decide st ′ = Some v)
∨ ¬ (∃ v. card {q. msgs q = Some v} > E)
∧ decide st ′ = decide st)

124

9.2 Communication Predicate for AT,E,α

Following [3], we now define the communication predicate for the AT,E,α al-
gorithm. The round-by-round predicate requires that no process may receive
more than α corrupted messages at any round.
definition Ate-commPerRd where

Ate-commPerRd HOrs SHOrs ≡
∀ p. card (HOrs p − SHOrs p) ≤ α

The global communication predicate stipulates the three following condi-
tions:

• for every process p there are infinitely many rounds where p receives
more than T messages,

• for every process p there are infinitely many rounds where p receives
more than E uncorrupted messages,

• and there are infinitely many rounds in which more than E − α pro-
cesses receive uncorrupted messages from the same set of processes,
which contains more than T processes.

definition
Ate-commGlobal where
Ate-commGlobal HOs SHOs ≡

(∀ r p. ∃ r ′ > r . card (HOs r ′ p) > T)
∧ (∀ r p. ∃ r ′ > r . card (SHOs r ′ p ∩ HOs r ′ p) > E)
∧ (∀ r . ∃ r ′ > r . ∃π1 π2 .

card π1 > E − α
∧ card π2 > T
∧ (∀ p ∈ π1 . HOs r ′ p = π2 ∧ SHOs r ′ p ∩ HOs r ′ p = π2))

9.3 The AT,E,α Heard-Of Machine

We now define the non-coordinated SHO machine for the AT,E,α algorithm
by assembling the algorithm definition and its communication-predicate.
definition Ate-SHOMachine where

Ate-SHOMachine = (|
CinitState = (λ p st crd. Ate-initState p (st::(′val::linorder) pstate)),
sendMsg = Ate-sendMsg,
CnextState = (λ r p st msgs crd st ′. Ate-nextState r p st msgs st ′),
SHOcommPerRd = (Ate-commPerRd:: Proc HO ⇒ Proc HO ⇒ bool),
SHOcommGlobal = Ate-commGlobal
|)

abbreviation
Ate-M ≡ (Ate-SHOMachine::(Proc, ′val::linorder pstate, ′val) SHOMachine)

125

end — locale ate-parameters

end
theory AteProof
imports AteDefs ../Reduction
begin

context ate-parameters
begin

9.4 Preliminary Lemmas

If a process newly decides value v at some round, then it received more than
E − α messages holding v at this round.
lemma decide-sent-msgs-threshold:

assumes run: SHORun Ate-M rho HOs SHOs
and comm: SHOcommPerRd Ate-M (HOs r) (SHOs r)
and nvp: decide (rho r p) 6= Some v
and vp: decide (rho (Suc r) p) = Some v
shows card {qq. sendMsg Ate-M r qq p (rho r qq) = v} > E − α

proof −
from run obtain µp

where mu: µp ∈ SHOmsgVectors Ate-M r p (rho r) (HOs r p) (SHOs r p)
and nxt: nextState Ate-M r p (rho r p) µp (rho (Suc r) p)

by (auto simp: SHORun-eq SHOnextConfig-eq)
from mu
have {qq. µp qq = Some v} − (HOs r p − SHOs r p)

⊆ {qq. sendMsg Ate-M r qq p (rho r qq) = v}
(is ?vrcvdp − ?ahop ⊆ ?vsentp)

by (auto simp: SHOmsgVectors-def)
hence card (?vrcvdp − ?ahop) ≤ card ?vsentp

and card (?vrcvdp − ?ahop) ≥ card ?vrcvdp − card ?ahop
by (auto simp: card-mono diff-card-le-card-Diff)

hence card ?vsentp ≥ card ?vrcvdp − card ?ahop by auto
moreover
from nxt nvp vp have card ?vrcvdp > E

by (auto simp: Ate-SHOMachine-def nextState-def Ate-nextState-def)
moreover
from comm have card (HOs r p − SHOs r p) ≤ α

by (auto simp: Ate-SHOMachine-def Ate-commPerRd-def)
ultimately
show ?thesis using Egta by auto

qed

If more than E − α processes send a value v to some process q at some
round, then q will receive at least N + 2∗α − E messages holding v at this
round.
lemma other-values-received:

126

assumes comm: SHOcommPerRd Ate-M (HOs r) (SHOs r)
and nxt: nextState Ate-M r q (rho r q) µq ((rho (Suc r)) q)
and muq: µq ∈ SHOmsgVectors Ate-M r q (rho r) (HOs r q) (SHOs r q)
and vsent: card {qq. sendMsg Ate-M r qq q (rho r qq) = v} > E − α

(is card ?vsent > -)
shows card ({qq. µq qq 6= Some v} ∩ HOs r q) ≤ N + 2∗α − E

proof −
from nxt muq
have ({qq. µq qq 6= Some v} ∩ HOs r q) − (HOs r q − SHOs r q)

⊆ {qq. sendMsg Ate-M r qq q (rho r qq) 6= v}
(is ?notvrcvd − ?aho ⊆ ?notvsent)
unfolding SHOmsgVectors-def by auto

hence card ?notvsent ≥ card (?notvrcvd − ?aho)
and card (?notvrcvd − ?aho) ≥ card ?notvrcvd − card ?aho
by (auto simp: card-mono diff-card-le-card-Diff)

moreover
from comm have card ?aho ≤ α

by (auto simp: Ate-SHOMachine-def Ate-commPerRd-def)
moreover
have 1 : card ?notvsent + card ?vsent = card (?notvsent ∪ ?vsent)

by (subst card-Un-Int) auto
have ?notvsent ∪ ?vsent = (UNIV ::Proc set) by auto
hence card (?notvsent ∪ ?vsent) = N by simp
with 1 vsent have card ?notvsent ≤ N − (E + 1 − α) by auto
ultimately
show ?thesis using EltN Egta by auto

qed

If more than E − α processes send a value v to some process q at some
round r, and if q receives more than T messages in r, then v is the most
frequently received value by q in r.
lemma mostOftenRcvd-v:

assumes comm: SHOcommPerRd Ate-M (HOs r) (SHOs r)
and nxt: nextState Ate-M r q (rho r q) µq ((rho (Suc r)) q)
and muq: µq ∈ SHOmsgVectors Ate-M r q (rho r) (HOs r q) (SHOs r q)
and threshold-T : card {qq. µq qq 6= None} > T
and threshold-E : card {qq. sendMsg Ate-M r qq q (rho r qq) = v} > E − α
shows mostOftenRcvd µq = {v}

proof −
from muq have hodef :HOs r q = {qq. µq qq 6= None}

unfolding SHOmsgVectors-def by auto

from comm nxt muq threshold-E
have card ({qq. µq qq 6= Some v} ∩ HOs r q) ≤ N + 2∗α − E
(is card ?heardnotv ≤ -)
by (rule other-values-received)

moreover
have card ?heardnotv ≥ T + 1 − card {qq. µq qq = Some v}
proof −

127

from muq
have ?heardnotv = (HOs r q) − {qq. µq qq = Some v}

and {qq. µq qq = Some v} ⊆ HOs r q
unfolding SHOmsgVectors-def by auto

hence card ?heardnotv = card (HOs r q) − card {qq. µq qq = Some v}
by (auto simp: card-Diff-subset)

with hodef threshold-T show ?thesis by auto
qed
ultimately
have card {qq. µq qq = Some v} > card ?heardnotv

using TNaE by auto
moreover
{

fix w
assume w: w 6= v
with hodef have {qq. µq qq = Some w} ⊆ ?heardnotv by auto

hence card {qq. µq qq = Some w} ≤ card ?heardnotv by (auto simp: card-mono)
}
ultimately
have {w. card {qq. µq qq = Some w} ≥ card {qq. µq qq = Some v}} = {v}

by force
thus ?thesis unfolding mostOftenRcvd-def by auto

qed

If at some round more than E − α processes have their x variable set to v,
then this is also true at next round.
lemma common-x-induct:

assumes run: SHORun Ate-M rho HOs SHOs
and comm: SHOcommPerRd Ate-M (HOs (r+k)) (SHOs (r+k))
and ih: card {qq. x (rho (r + k) qq) = v} > E − α
shows card {qq. x (rho (r + Suc k) qq) = v} > E − α

proof −
from ih
have thrE :∀ pp. card {qq. sendMsg Ate-M (r + k) qq pp (rho (r + k) qq) = v}

> E − α
by (auto simp: Ate-SHOMachine-def Ate-sendMsg-def)

{
fix qq
assume kv:x (rho (r + k) qq) = v
from run obtain µqq

where nxt: nextState Ate-M (r + k) qq (rho (r + k) qq) µqq ((rho (Suc (r
+ k))) qq)

and muq: µqq ∈ SHOmsgVectors Ate-M (r + k) qq (rho (r + k))
(HOs (r + k) qq) (SHOs (r + k) qq)

by (auto simp: SHORun-eq SHOnextConfig-eq)

have x (rho (r + Suc k) qq) = v
proof (cases card {pp. µqq pp 6= None} > T)

128

case True
with comm nxt muq thrE have mostOftenRcvd µqq = {v}

by (auto dest: mostOftenRcvd-v)
with nxt True show x (rho (r + Suc k) qq) = v

by (auto simp: Ate-SHOMachine-def nextState-def Ate-nextState-def)
next

case False
with nxt have x (rho (r + Suc k) qq) = x (rho (r + k) qq)

by (auto simp: Ate-SHOMachine-def nextState-def Ate-nextState-def)
with kv show x (rho (r + Suc k) qq) = v by simp

qed
}
hence {qq. x (rho (r + k) qq) = v} ⊆ {qq. x (rho (r + Suc k) qq) = v}

by auto
hence card {qq. x (rho (r + k) qq) = v} ≤ card {qq. x (rho (r + Suc k) qq) =

v}
by (auto simp: card-mono)

with ih show ?thesis by auto
qed

Whenever some process newly decides value v, then any process that updates
its x variable will set it to v.
lemma common-x:

assumes run: SHORun Ate-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd (Ate-M ::(Proc, ′val::linorder pstate, ′val) SHOMa-

chine)
(HOs r) (SHOs r)

and d1 : decide (rho r p) 6= Some v
and d2 : decide (rho (Suc r) p) = Some v
and qupdatex: x (rho (r + Suc k) q) 6= x (rho (r + k) q)
shows x (rho (r + Suc k) q) = v

proof −
from comm
have SHOcommPerRd (Ate-M ::(Proc, ′val::linorder pstate, ′val) SHOMachine)

(HOs (r+k)) (SHOs (r+k)) ..
moreover
from run obtain µq

where nxt: nextState Ate-M (r+k) q (rho (r+k) q) µq (rho (r + Suc k) q)
and muq: µq ∈ SHOmsgVectors Ate-M (r+k) q (rho (r+k))

(HOs (r+k) q) (SHOs (r+k) q)
by (auto simp: SHORun-eq SHOnextConfig-eq)

moreover
from nxt qupdatex
have threshold-T : card {qq. µq qq 6= None} > T

and xsmall: x (rho (r + Suc k) q) = Min (mostOftenRcvd µq)
by (auto simp: Ate-SHOMachine-def nextState-def Ate-nextState-def)

moreover
have E − α < card {qq. x (rho (r + k) qq) = v}
proof (induct k)

129

from run comm d1 d2
have E − α < card {qq. sendMsg Ate-M r qq p (rho r qq) = v}

by (auto dest: decide-sent-msgs-threshold)
thus E − α < card {qq. x (rho (r + 0) qq) = v}

by (auto simp: Ate-SHOMachine-def Ate-sendMsg-def)
next

fix k
assume E − α < card {qq. x (rho (r + k) qq) = v}
with run comm show E − α < card {qq. x (rho (r + Suc k) qq) = v}

by (auto dest: common-x-induct)
qed
with run
have E − α < card {qq. sendMsg Ate-M (r+k) qq q (rho (r+k) qq) = v}
by (auto simp: Ate-SHOMachine-def Ate-sendMsg-def SHORun-eq SHOnextCon-

fig-eq)
ultimately
have mostOftenRcvd µq = {v} by (auto dest:mostOftenRcvd-v)
with xsmall show ?thesis by auto

qed

A process that holds some decision v has decided v sometime in the past.
lemma decisionNonNullThenDecided:

assumes run: SHORun Ate-M rho HOs SHOs
and dec: decide (rho n p) = Some v

obtains m where m < n
and decide (rho m p) 6= Some v
and decide (rho (Suc m) p) = Some v

proof −
let ?dec k = decide (rho k p)
have (∀m<n. ?dec (Suc m) 6= ?dec m −→ ?dec (Suc m) 6= Some v) −→ ?dec n
6= Some v

(is ?P n is ?A n −→ -)
proof (induct n)

from run show ?P 0
by (auto simp: Ate-SHOMachine-def SHORun-eq HOinitConfig-eq

initState-def Ate-initState-def)
next

fix n
assume ih: ?P n thus ?P (Suc n) by force

qed
with dec that show ?thesis by auto

qed

9.5 Proof of Validity

Validity asserts that if all processes were initialized with the same value,
then no other value may ever be decided.
theorem ate-validity:

130

assumes run: SHORun Ate-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ate-M (HOs r) (SHOs r)
and initv: ∀ q. x (rho 0 q) = v
and dp: decide (rho r p) = Some w
shows w = v

proof −
{

fix r
have ∀ qq. sendMsg Ate-M r qq p (rho r qq) = v
proof (induct r)

from run initv show ∀ qq. sendMsg Ate-M 0 qq p (rho 0 qq) = v
by (auto simp: SHORun-eq SHOnextConfig-eq Ate-SHOMachine-def Ate-sendMsg-def)

next
fix r
assume ih:∀ qq. sendMsg Ate-M r qq p (rho r qq) = v

have ∀ qq. x (rho (Suc r) qq) = v
proof

fix qq
from run obtain µqq

where nxt: nextState Ate-M r qq (rho r qq) µqq (rho (Suc r) qq)
and mu: µqq ∈ SHOmsgVectors Ate-M r qq (rho r) (HOs r qq) (SHOs r

qq)
by (auto simp: SHORun-eq SHOnextConfig-eq)

from nxt
have (card {pp. µqq pp 6= None} > T ∧ x (rho (Suc r) qq) = Min

(mostOftenRcvd µqq))
∨ (card {pp. µqq pp 6= None} ≤ T ∧ x (rho (Suc r) qq) = x (rho r qq))

by (auto simp: Ate-SHOMachine-def nextState-def Ate-nextState-def)
thus x (rho (Suc r) qq) = v
proof safe

assume x (rho (Suc r) qq) = x (rho r qq)
with ih show ?thesis

by (auto simp: Ate-SHOMachine-def Ate-sendMsg-def)
next

assume threshold-T :T < card {pp. µqq pp 6= None}
and xsmall:x (rho (Suc r) qq) = Min (mostOftenRcvd µqq)

have card {pp. ∃w. w 6= v ∧ µqq pp = Some w} ≤ T div 2
proof −

from comm have 1 :card (HOs r qq − SHOs r qq) ≤ α
by (auto simp: Ate-SHOMachine-def Ate-commPerRd-def)

moreover
from mu ih
have SHOs r qq ∩ HOs r qq ⊆ {pp. µqq pp = Some v}

and HOs r qq = {pp. µqq pp 6= None}
by (auto simp: SHOmsgVectors-def Ate-SHOMachine-def Ate-sendMsg-def)

hence {pp. µqq pp 6= None} − {pp. µqq pp = Some v}
⊆ HOs r qq − SHOs r qq

131

by auto
hence card ({pp. µqq pp 6= None} − {pp. µqq pp = Some v})

≤ card (HOs r qq − SHOs r qq)
by (auto simp:card-mono)

ultimately
have card ({pp. µqq pp 6= None} − {pp. µqq pp = Some v}) ≤ T div 2

using Tge2a by auto
moreover
have {pp. µqq pp 6= None} − {pp. µqq pp = Some v}

= {pp. ∃w. w 6= v ∧ µqq pp = Some w} by auto
ultimately
show ?thesis by simp

qed
moreover
have {pp. µqq pp 6= None}

= {pp. µqq pp = Some v} ∪ {pp. ∃w. w 6= v ∧ µqq pp = Some w}
and {pp. µqq pp = Some v} ∩ {pp. ∃w. w 6= v ∧ µqq pp = Some w} =

{}
by auto

hence card {pp. µqq pp 6= None}
= card {pp. µqq pp = Some v} + card {pp. ∃w. w 6= v ∧ µqq pp =

Some w}
by (auto simp: card-Un-Int)

moreover
note threshold-T
ultimately
have card {pp. µqq pp = Some v} > card {pp. ∃w. w 6= v ∧ µqq pp =

Some w}
by auto

moreover
{

fix w
assume w 6= v
hence {pp. µqq pp = Some w} ⊆ {pp. ∃w. w 6= v ∧ µqq pp = Some w}

by auto
hence card {pp. µqq pp = Some w} ≤ card {pp. ∃w. w 6= v ∧ µqq pp =

Some w}
by (auto simp: card-mono)

}
ultimately
have zz:

∧
w. w 6= v =⇒
card {pp. µqq pp = Some w} < card {pp. µqq pp = Some v}

by force
hence

∧
w. card {pp. µqq pp = Some v} ≤ card {pp. µqq pp = Some w}
=⇒ w = v

by force
with zz have mostOftenRcvd µqq = {v}

by (force simp: mostOftenRcvd-def)
with xsmall show x (rho (Suc r) qq) = v by auto

132

qed
qed
thus ∀ qq. sendMsg Ate-M (Suc r) qq p (rho (Suc r) qq) = v

by (auto simp: Ate-SHOMachine-def Ate-sendMsg-def)
qed

}
note P = this

from run dp obtain rp
where rp: rp < r decide (rho rp p) 6= Some w

decide (rho (Suc rp) p) = Some w
by (rule decisionNonNullThenDecided)

from run obtain µp
where nxt: nextState Ate-M rp p (rho rp p) µp (rho (Suc rp) p)

and mu: µp ∈ SHOmsgVectors Ate-M rp p (rho rp) (HOs rp p) (SHOs rp p)
by (auto simp: SHORun-eq SHOnextConfig-eq)

{
fix w
assume w: w 6= v
from comm have card (HOs rp p − SHOs rp p) ≤ α

by (auto simp: Ate-SHOMachine-def Ate-commPerRd-def)
moreover
from mu P
have SHOs rp p ∩ HOs rp p ⊆ {pp. µp pp = Some v}

and HOs rp p = {pp. µp pp 6= None}
by (auto simp: SHOmsgVectors-def)

hence {pp. µp pp 6= None} − {pp. µp pp = Some v}
⊆ HOs rp p − SHOs rp p

by auto
hence card ({pp. µp pp 6= None} − {pp. µp pp = Some v})

≤ card (HOs rp p − SHOs rp p)
by (auto simp: card-mono)

ultimately
have card ({pp. µp pp 6= None} − {pp. µp pp = Some v}) < E

using Egta by auto
moreover
from w have {pp. µp pp = Some w}

⊆ {pp. µp pp 6= None} − {pp. µp pp = Some v}
by auto

hence card {pp. µp pp = Some w}
≤ card ({pp. µp pp 6= None} − {pp. µp pp = Some v})

by (auto simp: card-mono)
ultimately
have card {pp. µp pp = Some w} < E by simp

}
hence PP:

∧
w. card {pp. µp pp = Some w} ≥ E =⇒ w = v by force

133

from rp nxt mu have card {q. µp q = Some w} > E
by (auto simp: SHOmsgVectors-def Ate-SHOMachine-def

nextState-def Ate-nextState-def)
with PP show ?thesis by auto

qed

9.6 Proof of Agreement

If two processes decide at the some round, they decide the same value.
lemma common-decision:

assumes run: SHORun Ate-M rho HOs SHOs
and comm: SHOcommPerRd Ate-M (HOs r) (SHOs r)
and nvp: decide (rho r p) 6= Some v
and vp: decide (rho (Suc r) p) = Some v
and nwq: decide (rho r q) 6= Some w
and wq: decide (rho (Suc r) q) = Some w
shows w = v

proof −
have gtn: card {qq. sendMsg Ate-M r qq p (rho r qq) = v}

+ card {qq. sendMsg Ate-M r qq q (rho r qq) = w} > N
proof −

from run comm nvp vp
have card {qq. sendMsg Ate-M r qq p (rho r qq) = v} > E − α

by (rule decide-sent-msgs-threshold)
moreover
from run comm nwq wq
have card {qq. sendMsg Ate-M r qq q (rho r qq) = w} > E − α

by (rule decide-sent-msgs-threshold)
ultimately
show ?thesis using majE by auto

qed

show ?thesis
proof (rule ccontr)

assume vw:w 6= v
have ∀ qq. sendMsg Ate-M r qq p (rho r qq) = sendMsg Ate-M r qq q (rho r qq)

by (auto simp: Ate-SHOMachine-def Ate-sendMsg-def)
with vw
have {qq. sendMsg Ate-M r qq p (rho r qq) = v}

∩ {qq. sendMsg Ate-M r qq q (rho r qq) = w} = {}
by auto

with gtn
have card ({qq. sendMsg Ate-M r qq p (rho r qq) = v}

∪ {qq. sendMsg Ate-M r qq q (rho r qq) = w}) > N
by (auto simp: card-Un-Int)

moreover
have card ({qq. sendMsg Ate-M r qq p (rho r qq) = v}

∪ {qq. sendMsg Ate-M r qq q (rho r qq) = w}) ≤ N
by (auto simp: card-mono)

134

ultimately
show False by auto

qed
qed

If process p decides at step r and process q decides at some later step r+k
then p and q decide the same value.
lemma laterProcessDecidesSameValue :

assumes run: SHORun Ate-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ate-M (HOs r) (SHOs r)
and nd1 : decide (rho r p) 6= Some v
and d1 : decide (rho (Suc r) p) = Some v
and nd2 : decide (rho (r+k) q) 6= Some w
and d2 : decide (rho (Suc (r+k)) q) = Some w
shows w = v

proof (rule ccontr)
assume vdifw:w 6= v
have kgt0 : k > 0
proof (rule ccontr)

assume ¬ k > 0
hence k = 0 by auto
with run comm nd1 d1 nd2 d2 have w = v

by (auto dest: common-decision)
with vdifw show False ..

qed

have 1 : {qq. sendMsg Ate-M r qq p (rho r qq) = v}
∩ {qq. sendMsg Ate-M (r+k) qq q (rho (r+k) qq) = w} = {}

(is ?sentv ∩ ?sentw = {})
proof (rule ccontr)

assume ¬ ?thesis
then obtain qq

where xrv: x (rho r qq) = v and rkw: x (rho (r+k) qq) = w
by (auto simp: Ate-SHOMachine-def Ate-sendMsg-def)

have ∃ k ′ < k. x (rho (r + k ′) qq) 6= w ∧ x (rho (r + Suc k ′) qq) = w
proof (rule ccontr)

assume f : ¬ ?thesis
{

fix k ′

assume kk ′:k ′ < k hence x (rho (r + k ′) qq) 6= w
proof (induct k ′)

from xrv vdifw
show x (rho (r + 0) qq) 6= w by simp

next
fix k ′

assume ih:k ′ < k =⇒ x (rho (r + k ′) qq) 6= w
and ksk ′:Suc k ′ < k

from ksk ′ have k ′ < k by simp
with ih f show x (rho (r + Suc k ′) qq) 6= w by auto

135

qed
}
with f have ∀ k ′ < k. x (rho (r + Suc k ′) qq) 6= w by auto
moreover
from kgt0 have k − 1 < k and kk:Suc (k − 1) = k by auto
ultimately
have x (rho (r + Suc (k − 1)) qq) 6= w by blast
with rkw kk show False by simp

qed
then obtain k ′

where k ′ < k
and w: x (rho (r + Suc k ′) qq) = w
and qqupdatex: x (rho (r + Suc k ′) qq) 6= x (rho (r + k ′) qq)

by auto
from run comm nd1 d1 qqupdatex
have x (rho (r + Suc k ′) qq) = v by (rule common-x)
with w vdifw show False by simp

qed
from run comm nd1 d1 have sentv: card ?sentv > E − α

by (auto dest: decide-sent-msgs-threshold)
from run comm nd2 d2 have card ?sentw > E − α

by (auto dest: decide-sent-msgs-threshold)
with sentv majE have (card ?sentv) + (card ?sentw) > N

by simp
with 1 vdifw have 2 : card (?sentv ∪ ?sentw) > N

by (auto simp: card-Un-Int)
have card (?sentv ∪ ?sentw) ≤ N

by (auto simp: card-mono)
with 2 show False by simp

qed

The Agreement property is now an immediate consequence.
theorem ate-agreement:

assumes run: SHORun Ate-M rho HOs SHOs
and comm: ∀ r . SHOcommPerRd Ate-M (HOs r) (SHOs r)
and p: decide (rho m p) = Some v
and q: decide (rho n q) = Some w
shows w = v

proof −
from run p obtain k where

k: k < m decide (rho k p) 6= Some v decide (rho (Suc k) p) = Some v
by (rule decisionNonNullThenDecided)

from run q obtain l where
l: l < n decide (rho l q) 6= Some w decide (rho (Suc l) q) = Some w
by (rule decisionNonNullThenDecided)

show ?thesis
proof (cases k ≤ l)

case True
then obtain i where l = k+i by (auto simp add: le-iff-add)

136

with run comm k l show ?thesis
by (auto dest: laterProcessDecidesSameValue)

next
case False
hence l ≤ k by simp
then obtain i where m: k = l+i by (auto simp add: le-iff-add)
with run comm k l show ?thesis

by (auto dest: laterProcessDecidesSameValue)
qed

qed

9.7 Proof of Termination

We now prove that every process must eventually decide, given the global
and round-by-round communication predicates.
theorem ate-termination:

assumes run: SHORun Ate-M rho HOs SHOs
and commR: ∀ r . (SHOcommPerRd::((Proc, ′val::linorder pstate, ′val) SHOMa-

chine)
⇒ (Proc HO) ⇒ (Proc HO) ⇒ bool)

Ate-M (HOs r) (SHOs r)
and commG: SHOcommGlobal Ate-M HOs SHOs
shows ∃ r v. decide (rho r p) = Some v

proof −
from commG obtain r ′ π1 π2

where πea: card π1 > E − α
and πt: card π2 > T
and hosho: ∀ p ∈ π1 . (HOs r ′ p = π2 ∧ SHOs r ′ p ∩ HOs r ′ p = π2)

by (auto simp: Ate-SHOMachine-def Ate-commGlobal-def)

obtain v where
P1 : ∀ pp. card {qq. sendMsg Ate-M (Suc r ′) qq pp (rho (Suc r ′) qq) = v} > E

− α
proof −

have ∀ p ∈ π1 . ∀ q ∈ π1 . x (rho (Suc r ′) p) = x (rho (Suc r ′) q)
proof (clarify)

fix p q
assume p: p ∈ π1 and q: q ∈ π1

from run obtain µp
where nxtp: nextState Ate-M r ′ p (rho r ′ p) µp (rho (Suc r ′) p)

and mup: µp ∈ SHOmsgVectors Ate-M r ′ p (rho r ′) (HOs r ′ p) (SHOs r ′

p)
by (auto simp: SHORun-eq SHOnextConfig-eq)

from run obtain µq
where nxtq: nextState Ate-M r ′ q (rho r ′ q) µq (rho (Suc r ′) q)

and muq: µq ∈ SHOmsgVectors Ate-M r ′ q (rho r ′) (HOs r ′ q) (SHOs r ′

q)

137

by (auto simp: SHORun-eq SHOnextConfig-eq)

from mup muq p q
have {qq. µq qq 6= None} = HOs r ′ q

and 2 :{qq. µq qq = Some (sendMsg Ate-M r ′ qq q (rho r ′ qq))}
⊇ SHOs r ′ q ∩ HOs r ′ q

and {qq. µp qq 6= None} = HOs r ′ p
and 4 :{qq. µp qq = Some (sendMsg Ate-M r ′ qq p (rho r ′ qq))}

⊇ SHOs r ′ p ∩ HOs r ′ p
by (auto simp: SHOmsgVectors-def)

with p q hosho
have aa:π2 = {qq. µq qq 6= None}

and cc:π2 = {qq. µp qq 6= None} by auto
from p q hosho 2
have bb:{qq. µq qq = Some (sendMsg Ate-M r ′ qq q (rho r ′ qq))} ⊇ π2

by auto
from p q hosho 4
have dd:{qq. µp qq = Some (sendMsg Ate-M r ′ qq p (rho r ′ qq))} ⊇ π2

by auto
have Min (mostOftenRcvd µp) = Min (mostOftenRcvd µq)
proof −

have ∀ qq. sendMsg Ate-M r ′ qq p (rho r ′ qq)
= sendMsg Ate-M r ′ qq q (rho r ′ qq)

by (auto simp: Ate-SHOMachine-def Ate-sendMsg-def)
with aa bb cc dd have ∀ qq. µp qq 6= None −→ µp qq = µq qq

by force
moreover
from aa bb cc dd
have {qq. µp qq 6= None} = {qq. µq qq 6= None} by auto
hence ∀ qq. µp qq = None ←→ µq qq = None by blast
hence ∀ qq. µp qq = None −→ µp qq = µq qq by auto
ultimately
have ∀ qq. µp qq = µq qq by blast
thus ?thesis by (auto simp: mostOftenRcvd-def)

qed
with πt aa nxtq πt cc nxtp
show x (rho (Suc r ′) p) = x (rho (Suc r ′) q)

by (auto simp: Ate-SHOMachine-def nextState-def Ate-nextState-def)
qed
then obtain v where Pv:∀ p ∈ π1 . x (rho (Suc r ′) p) = v by blast
{

fix pp
from Pv have ∀ p ∈ π1 . sendMsg Ate-M (Suc r ′) p pp (rho (Suc r ′) p) = v

by (auto simp: Ate-SHOMachine-def Ate-sendMsg-def)
hence card π1 ≤ card {qq. sendMsg Ate-M (Suc r ′) qq pp (rho (Suc r ′) qq)

= v}
by (auto intro: card-mono)

with πea
have E − α < card {qq. sendMsg Ate-M (Suc r ′) qq pp (rho (Suc r ′) qq) =

138

v}
by simp

}
with that show ?thesis by blast

qed

{
fix k pp
have E − α < card {qq. sendMsg Ate-M (Suc r ′ + k) qq pp (rho (Suc r ′ + k)

qq) = v}
(is ?P k)

proof (induct k)
from P1 show ?P 0 by simp

next
fix k
assume ih: ?P k
from commR
have (SHOcommPerRd::((Proc, ′val::linorder pstate, ′val) SHOMachine)

⇒ (Proc HO) ⇒ (Proc HO) ⇒ bool)
Ate-M (HOs (Suc r ′ + k)) (SHOs (Suc r ′ + k)) ..

moreover
from ih have E − α < card {qq. x (rho (Suc r ′ + k) qq) = v}

by (auto simp: Ate-SHOMachine-def Ate-sendMsg-def)
ultimately
have E − α < card {qq. x (rho (Suc r ′ + Suc k) qq) = v}

by (rule common-x-induct[OF run])
thus ?P (Suc k)

by (auto simp: Ate-SHOMachine-def Ate-sendMsg-def)
qed

}
note P2 = this

{
fix k pp
assume ppupdatex: x (rho (Suc r ′ + Suc k) pp) 6= x (rho (Suc r ′ + k) pp)

from commR
have (SHOcommPerRd::((Proc, ′val::linorder pstate, ′val) SHOMachine)

⇒ (Proc HO) ⇒ (Proc HO) ⇒ bool)
Ate-M (HOs (Suc r ′ + k)) (SHOs (Suc r ′ + k)) ..

moreover
from run obtain µpp

where nxt:nextState Ate-M (Suc r ′ + k) pp (rho (Suc r ′ + k) pp) µpp
(rho (Suc r ′ + Suc k) pp)

and mu: µpp ∈ SHOmsgVectors Ate-M (Suc r ′ + k) pp (rho (Suc r ′ + k))
(HOs (Suc r ′ + k) pp) (SHOs (Suc r ′ + k) pp)

by (auto simp: SHORun-eq SHOnextConfig-eq)
moreover
from nxt ppupdatex

139

have threshold-T : card {qq. µpp qq 6= None} > T
and xsmall: x (rho (Suc r ′ + Suc k) pp) = Min (mostOftenRcvd µpp)
by (auto simp: Ate-SHOMachine-def nextState-def Ate-nextState-def)

moreover
from P2
have E − α < card {qq. sendMsg Ate-M (Suc r ′ + k) qq pp (rho (Suc r ′ + k)

qq) = v} .
ultimately
have mostOftenRcvd µpp = {v} by (auto dest!: mostOftenRcvd-v)
with xsmall
have x (rho (Suc r ′ + Suc k) pp) = v by simp

}
note P3 = this

have P4 :∀ pp. ∃ k. x (rho (Suc r ′ + Suc k) pp) = v
proof

fix pp
from commG have ∃ r ′′ > r ′. card (HOs r ′′ pp) > T

by (auto simp: Ate-SHOMachine-def Ate-commGlobal-def)
then obtain k where Suc r ′ + k > r ′ and t:card (HOs (Suc r ′ + k) pp) > T

by (auto dest: less-imp-Suc-add)
moreover
from run obtain µpp

where nxt: nextState Ate-M (Suc r ′ + k) pp (rho (Suc r ′ + k) pp) µpp
(rho (Suc r ′ + Suc k) pp)

and mu: µpp ∈ SHOmsgVectors Ate-M (Suc r ′ + k) pp (rho (Suc r ′ + k))
(HOs (Suc r ′ + k) pp) (SHOs (Suc r ′ + k) pp)

by (auto simp: SHORun-eq SHOnextConfig-eq)
moreover
have x (rho (Suc r ′ + Suc k) pp) = v
proof −

from commR
have (SHOcommPerRd::((Proc, ′val::linorder pstate, ′val::linorder) SHOMa-

chine)
⇒ (Proc HO) ⇒ (Proc HO) ⇒ bool)

Ate-M (HOs (Suc r ′ + k)) (SHOs (Suc r ′ + k)) ..
moreover
from mu have HOs (Suc r ′ + k) pp = {q. µpp q 6= None}

by (auto simp: SHOmsgVectors-def)
with nxt t
have threshold-T : card {q. µpp q 6= None} > T

and xsmall: x (rho (Suc r ′ + Suc k) pp) = Min (mostOftenRcvd µpp)
by (auto simp: Ate-SHOMachine-def nextState-def Ate-nextState-def)

moreover
from P2
have E − α < card {qq. sendMsg Ate-M (Suc r ′ + k) qq pp (rho (Suc r ′ +

k) qq) = v} .
ultimately
have mostOftenRcvd µpp = {v}

140

using nxt mu by (auto dest!: mostOftenRcvd-v)
with xsmall show ?thesis by auto

qed
thus ∃ k. x (rho (Suc r ′ + Suc k) pp) = v ..

qed

have P5a: ∀ pp. ∃ rr . ∀ k. x (rho (rr + k) pp) = v
proof

fix pp
from P4 obtain rk where

xrrv: x (rho (Suc r ′ + Suc rk) pp) = v (is x (rho ?rr pp) = v)
by blast

have ∀ k. x (rho (?rr + k) pp) = v
proof

fix k
show x (rho (?rr + k) pp) = v
proof (induct k)

from xrrv show x (rho (?rr + 0) pp) = v by simp
next

fix k
assume ih: x (rho (?rr + k) pp) = v
obtain k ′ where rrk: Suc r ′ + k ′ = ?rr + k by auto
show x (rho (?rr + Suc k) pp) = v
proof (rule ccontr)

assume nv: x (rho (?rr + Suc k) pp) 6= v
with rrk ih
have x (rho (Suc r ′ + Suc k ′) pp) 6= x (rho (Suc r ′ + k ′) pp)

by (simp add: ac-simps)
hence x (rho (Suc r ′ + Suc k ′) pp) = v by (rule P3)
with rrk nv show False by (simp add: ac-simps)

qed
qed

qed
thus ∃ rr . ∀ k. x (rho (rr + k) pp) = v by blast

qed

from P5a have ∃F . ∀ pp k. x (rho (F pp + k) pp) = v by (rule choice)
then obtain R::(Proc ⇒ nat)

where imgR: R ‘ (UNIV ::Proc set) 6= {}
and R: ∀ pp k. x (rho (R pp + k) pp) = v

by blast
define rr where rr = Max (R ‘ UNIV)

have P5 : ∀ r ′ > rr . ∀ pp. x (rho r ′ pp) = v
proof (clarify)

fix r ′ pp
assume r ′: r ′ > rr
hence r ′ > R pp by (auto simp: rr-def)
then obtain i where r ′ = R pp + i

141

by (auto dest: less-imp-Suc-add)
with R show x (rho r ′ pp) = v by auto

qed

from commG have ∃ r ′ > rr . card (SHOs r ′ p ∩ HOs r ′ p) > E
by (auto simp: Ate-SHOMachine-def Ate-commGlobal-def)

with P5 obtain r ′

where r ′ > rr
and card (SHOs r ′ p ∩ HOs r ′ p) > E
and ∀ pp. sendMsg Ate-M r ′ pp p (rho r ′ pp) = v

by (auto simp: Ate-SHOMachine-def Ate-sendMsg-def)
moreover
from run obtain µp

where nxt: nextState Ate-M r ′ p (rho r ′ p) µp (rho (Suc r ′) p)
and mu: µp ∈ SHOmsgVectors Ate-M r ′ p (rho r ′) (HOs r ′ p) (SHOs r ′ p)

by (auto simp: SHORun-eq SHOnextConfig-eq)
from mu
have card (SHOs r ′ p ∩ HOs r ′ p)

≤ card {q. µp q = Some (sendMsg Ate-M r ′ q p (rho r ′ q))}
by (auto simp: SHOmsgVectors-def intro: card-mono)

ultimately
have threshold-E : card {q. µp q = Some v} > E by auto
with nxt show ?thesis

by (auto simp: Ate-SHOMachine-def nextState-def Ate-nextState-def)
qed

9.8 AT,E,α Solves Weak Consensus

Summing up, all (coarse-grained) runs of AT,E,α for HO and SHO collec-
tions that satisfy the communication predicate satisfy the Weak Consensus
property.
theorem ate-weak-consensus:

assumes run: SHORun Ate-M rho HOs SHOs
and commR: ∀ r . SHOcommPerRd Ate-M (HOs r) (SHOs r)
and commG: SHOcommGlobal Ate-M HOs SHOs

shows weak-consensus (x ◦ (rho 0)) decide rho
unfolding weak-consensus-def using assms
by (auto elim: ate-validity ate-agreement ate-termination)

By the reduction theorem, the correctness of the algorithm carries over to
the fine-grained model of runs.
theorem ate-weak-consensus-fg:

assumes run: fg-run Ate-M rho HOs SHOs (λr q. undefined)
and commR: ∀ r . SHOcommPerRd Ate-M (HOs r) (SHOs r)
and commG: SHOcommGlobal Ate-M HOs SHOs

shows weak-consensus (λp. x (state (rho 0) p)) decide (state ◦ rho)
(is weak-consensus ?inits - -)

proof (rule local-property-reduction[OF run weak-consensus-is-local])

142

fix crun
assume crun: CSHORun Ate-M crun HOs SHOs (λr q. undefined)

and init: crun 0 = state (rho 0)
from crun have SHORun Ate-M crun HOs SHOs by (unfold SHORun-def)
from this commR commG
have weak-consensus (x ◦ (crun 0)) decide crun

by (rule ate-weak-consensus)
with init show weak-consensus ?inits decide crun

by (simp add: o-def)
qed

end — context ate-parameters

end
theory EigbyzDefs
imports ../HOModel
begin

10 Verification of the EIGByzf Consensus Algo-
rithm

Lynch [12] presents EIGByzf , a version of the exponential information gath-
ering algorithm tolerating Byzantine faults, that works in f rounds, and
that was originally introduced in [1].
We begin by introducing an anonymous type of processes of finite cardinality
that will instantiate the type variable ′proc of the generic HO model.
typedecl Proc — the set of processes
axiomatization where Proc-finite: OFCLASS(Proc, finite-class)
instance Proc :: finite by (rule Proc-finite)

abbreviation
N ≡ card (UNIV ::Proc set) — number of processes

The algorithm is parameterized by f , which represents the number of rounds
and the height of the tree data structure (see below).
axiomatization f ::nat
where f : f < N

10.1 Tree Data Structure

The algorithm relies on propagating information about the initially pro-
posed values among all the processes. This information is stored in trees
whose branches are labeled by lists of (distinct) processes. For example, the
interpretation of an entry [p,q] 7→ Some v is that the current process heard
from process q that it had heard from process p that its proposed value is

143

v. The value initially proposed by the process itself is stored at the root of
the tree.
We introduce the type of labels, which encapsulate lists of distinct process
identifiers and whose length is at most f+1.
definition Label = {xs::Proc list. length xs ≤ Suc f ∧ distinct xs}
typedef Label = Label

by (auto simp: Label-def intro: exI [where x= []]) — the empty list is a label

There is a finite number of different labels.
lemma finite-Label: finite Label
proof −

have Label ⊆ {xs. set xs ⊆ (UNIV ::Proc set) ∧ length xs ≤ Suc f }
by (auto simp: Label-def)

moreover
have finite {xs. set xs ⊆ (UNIV ::Proc set) ∧ length xs ≤ Suc f }

by (rule finite-lists-length-le) auto
ultimately
show ?thesis by (auto elim: finite-subset)

qed

lemma finite-UNIV-Label: finite (UNIV ::Label set)
proof −

from finite-Label have finite (Abs-Label ‘ Label) by simp
moreover
{

fix l::Label
have l ∈ Abs-Label ‘ Label

by (rule Abs-Label-cases) auto
}
hence (UNIV ::Label set) = (Abs-Label ‘ Label) by auto
ultimately show ?thesis by simp

qed

lemma finite-Label-set [iff]: finite (S :: Label set)
using finite-UNIV-Label by (auto intro: finite-subset)

Utility functions on labels.
definition root-node where

root-node ≡ Abs-Label []

definition length-lbl where
length-lbl l ≡ length (Rep-Label l)

lemma length-lbl [intro]: length-lbl l ≤ Suc f
unfolding length-lbl-def using Label-def Rep-Label by auto

definition is-leaf where
is-leaf l ≡ length-lbl l = Suc f

144

definition last-lbl where
last-lbl l ≡ last (Rep-Label l)

definition butlast-lbl where
butlast-lbl l ≡ Abs-Label (butlast (Rep-Label l))

definition set-lbl where
set-lbl l = set (Rep-Label l)

The children of a non-leaf label are all possible extensions of that label.
definition children where

children l ≡
if is-leaf l
then {}
else { Abs-Label (Rep-Label l @ [p]) | p . p /∈ set-lbl l }

10.2 Model of the Algorithm

The following record models the local state of a process.
record ′val pstate =

vals :: Label ⇒ ′val option
newvals :: Label ⇒ ′val
decide :: ′val option

Initially, no values are assigned to non-root labels, and an arbitrary value
is assigned to the root: that value is interpreted as the initial proposal of
the process. No decision has yet been taken, and the newvals field is uncon-
strained.
definition EIG-initState where

EIG-initState p st ≡
(∀ l. (vals st l = None) = (l 6= root-node))
∧ decide st = None

type-synonym ′val Msg = Label ⇒ ′val option

At every round, every process sends its current vals tree to all processes. In
fact, only the level of the tree corresponding to the round number is used
(cf. definition of extend-vals below).
definition EIG-sendMsg where

EIG-sendMsg r p q st ≡ vals st

During the first f−1 rounds, every process extends its tree vals according
to the values received in the round. No decision is taken.
definition extend-vals where

extend-vals r p st msgs st ′ ≡
vals st ′ = (λ l.

145

if length-lbl l = Suc r ∧ msgs (last-lbl l) 6= None
then (the (msgs (last-lbl l))) (butlast-lbl l)
else if length-lbl l = Suc r ∧ msgs (last-lbl l) = None then None
else vals st l)

definition next-main where
next-main r p st msgs st ′ ≡ extend-vals r p st msgs st ′ ∧ decide st ′ = None

In the final round, in addition to extending the tree as described previously,
processes construct the tree newvals, starting at the leaves. The values at
the leaves are copied from vals, except that missing values None are replaced
by the default value undefined. Moving up, if there exists a majority value
among the children, it is assigned to the parent node, otherwise the parent
node receives the default value undefined. The decision is set to the value
computed for the root of the tree.
fun fixupval :: ′val option ⇒ ′val where

fixupval None = undefined
| fixupval (Some v) = v

definition has-majority :: ′val ⇒ (′a ⇒ ′val) ⇒ ′a set ⇒ bool where
has-majority v g S ≡ card {e ∈ S . g e = v} > (card S) div 2

definition check-newvals :: ′val pstate ⇒ bool where
check-newvals st ≡
∀ l. is-leaf l ∧ newvals st l = fixupval (vals st l)
∨ ¬(is-leaf l) ∧
((∃w. has-majority w (newvals st) (children l) ∧ newvals st l = w)
∨ (¬(∃w. has-majority w (newvals st) (children l))

∧ newvals st l = undefined))

definition next-end where
next-end r p st msgs st ′ ≡

extend-vals r p st msgs st ′

∧ check-newvals st ′

∧ decide st ′ = Some (newvals st ′ root-node)

The overall next-state relation is defined such that every process applies
nextMain during rounds 0, . . . , f−1, and applies nextEnd during round f.
After that, the algorithm terminates and nothing changes anymore.
definition EIG-nextState where

EIG-nextState r ≡
if r < f then next-main r
else if r = f then next-end r
else (λp st msgs st ′. st ′ = st)

146

10.3 Communication Predicate for EIGByzf

The secure kernel SKr w.r.t. given HO and SHO collections consists of the
process from which every process receives the correct message.
definition SKr :: Proc HO ⇒ Proc HO ⇒ Proc set where

SKr HO SHO ≡ { q . ∀ p. q ∈ HO p ∩ SHO p}

The secure kernel SK of an entire execution (i.e., for sequences of HO and
SHO collections) is the intersection of the secure kernels for all rounds. Ob-
viously, only the first f rounds really matter, since the algorithm terminates
after that.
definition SK :: (nat ⇒ Proc HO) ⇒ (nat ⇒ Proc HO) ⇒ Proc set where

SK HOs SHOs ≡ {q. ∀ r . q ∈ SKr (HOs r) (SHOs r)}

The round-by-round predicate requires that the secure kernel at every round
contains more than (N+f) div 2 processes.
definition EIG-commPerRd where

EIG-commPerRd HO SHO ≡ card (SKr HO SHO) > (N + f) div 2

The global predicate requires that the secure kernel for the entire execution
contains at least N−f processes. Messages from these processes are always
correctly received by all processes.
definition EIG-commGlobal where

EIG-commGlobal HOs SHOs ≡ card (SK HOs SHOs) ≥ N − f

The above communication predicates differ from Lynch’s presentation of
EIGByzf . In fact, the algorithm was originally designed for synchronous
systems with reliable links and at most f faulty processes. In such a system,
every process receives the correct message from at least the non-faulty pro-
cesses at every round, and therefore the global predicate EIG-commGlobal
is satisfied. The standard correctness proof assumes that N > 3f , and
therefore N −f > (N +f)÷2. Since moreover, for any r, we obviously have(⋂

p∈Π,r′∈N
SHO(p, r′)

)
⊆

(⋂
p∈Π

SHO(p, r)

)
,

it follows that any execution of EIGByzf where N > 3f also satisfies
EIG-commPerRd at any round. The standard correctness hypotheses thus
imply our communication predicates.
However, our proof shows that EIGByzf can indeed tolerate more transient
faults than the standard bound can express. For example, consider the case
where N = 5 and f = 2. Our predicates are satisfied in executions where
two processes exhibit transient faults, but never fail simultaneously. Indeed,
in such an execution, every process receives four correct messages at every
round, hence EIG-commPerRd always holds. Also, EIG-commGlobal is sat-
isfied because there are three processes from which every process receives

147

the correct messages at all rounds. By our correctness proof, it follows that
EIGByzf then achieves Consensus, unlike what one could expect from the
standard correctness predicate. This observation underlines the interest of
expressing assumptions about transient faults, as in the HO model.

10.4 The EIGByzf Heard-Of Machine

We now define the non-coordinated SHO machine for EIGByzf by assem-
bling the algorithm definition and its communication-predicate.
definition EIG-SHOMachine where

EIG-SHOMachine = (|
CinitState = (λ p st crd. EIG-initState p st),
sendMsg = EIG-sendMsg,
CnextState = (λ r p st msgs crd st ′. EIG-nextState r p st msgs st ′),
SHOcommPerRd = EIG-commPerRd,
SHOcommGlobal = EIG-commGlobal
|)

abbreviation EIG-M ≡ (EIG-SHOMachine::(Proc, ′val pstate, ′val Msg) SHOMa-
chine)

end
theory EigbyzProof
imports EigbyzDefs ../Majorities ../Reduction
begin

10.5 Preliminary Lemmas

Some technical lemmas about labels and trees.
lemma not-leaf-length:

assumes l: ¬(is-leaf l)
shows length-lbl l ≤ f
using l length-lbl[of l] by (simp add: is-leaf-def)

lemma nil-is-Label: [] ∈ Label
by (auto simp: Label-def)

lemma card-set-lbl: card (set-lbl l) = length-lbl l
unfolding set-lbl-def length-lbl-def
using Rep-Label[of l, unfolded Label-def]
by (auto elim: distinct-card)

lemma Rep-Label-root-node [simp]: Rep-Label root-node = []
using nil-is-Label by (simp add: root-node-def Abs-Label-inverse)

lemma root-node-length [simp]: length-lbl root-node = 0
by (simp add: length-lbl-def)

148

lemma root-node-not-leaf : ¬(is-leaf root-node)
by (simp add: is-leaf-def)

Removing the last element of a non-root label gives a label.
lemma butlast-rep-in-label:

assumes l:l 6= root-node
shows butlast (Rep-Label l) ∈ Label

proof −
have Rep-Label l 6= []
proof

assume Rep-Label l = []
hence Rep-Label l = Rep-Label root-node by simp
with l show False by (simp only: Rep-Label-inject)

qed
with Rep-Label[of l] show ?thesis

by (auto simp: Label-def elim: distinct-butlast)
qed

The label of a child is well-formed.
lemma Rep-Label-append:

assumes l: ¬(is-leaf l)
shows (Rep-Label l @ [p] ∈ Label) = (p /∈ set-lbl l)

(is ?lhs = ?rhs is (?l ′ ∈ -) = -)
proof

assume lhs: ?lhs thus ?rhs
by (auto simp: Label-def set-lbl-def)

next
assume p: ?rhs
from l[THEN not-leaf-length] have length ?l ′ ≤ Suc f

by (simp add: length-lbl-def)
moreover
from Rep-Label[of l] have distinct (Rep-Label l)

by (simp add: Label-def)
with p have distinct ?l ′ by (simp add: set-lbl-def)
ultimately
show ?lhs by (simp add: Label-def)

qed

The label of a child is the label of the parent, extended by a process.
lemma label-children:

assumes c: c ∈ children l
shows ∃ p. p /∈ set-lbl l ∧ Rep-Label c = Rep-Label l @ [p]

proof −
from c obtain p

where p: p /∈ set-lbl l and l: ¬(is-leaf l)
and c: c = Abs-Label (Rep-Label l @ [p])

by (auto simp: children-def)
with Rep-Label-append[OF l] show ?thesis

149

by (auto simp: Abs-Label-inverse)
qed

The label of any child node is one longer than the label of its parent.
lemma children-length:

assumes l ∈ children h
shows length-lbl l = Suc (length-lbl h)
using label-children[OF assms] by (auto simp: length-lbl-def)

The root node is never a child.
lemma children-not-root:

assumes root-node ∈ children l
shows P
using label-children[OF assms] Abs-Label-inverse[OF nil-is-Label]
by (auto simp: root-node-def)

The label of a child with the last element removed is the label of the parent.
lemma children-butlast-lbl:

assumes c ∈ children l
shows butlast-lbl c = l
using label-children[OF assms]
by (auto simp: butlast-lbl-def Rep-Label-inverse)

The root node is not a child, and it is the only such node.
lemma root-iff-no-child: (l = root-node) = (∀ l ′. l /∈ children l ′)
proof

assume l = root-node
thus ∀ l ′. l /∈ children l ′ by (auto elim: children-not-root)

next
assume rhs: ∀ l ′. l /∈ children l ′
show l = root-node
proof (rule rev-exhaust[of Rep-Label l])

assume Rep-Label l = []
hence Rep-Label l = Rep-Label root-node by simp
thus ?thesis by (simp only: Rep-Label-inject)

next
fix l ′ q
assume l ′: Rep-Label l = l ′ @ [q]
let ?l ′ = Abs-Label l ′
from Rep-Label[of l] l ′ have l ′ ∈ Label by (simp add: Label-def)
hence repl ′: Rep-Label ?l ′ = l ′ by (rule Abs-Label-inverse)

from Rep-Label[of l] l ′ have l ′ @ [q] ∈ Label by (simp add: Label-def)
with l ′ have Rep-Label l = Rep-Label (Abs-Label (l ′ @ [q]))

by (simp add: Abs-Label-inverse)
hence l = Abs-Label (l ′ @ [q]) by (simp add: Rep-Label-inject)
moreover
from Rep-Label[of l] l ′ have length l ′ < Suc f q /∈ set l ′

150

by (auto simp: Label-def)
moreover
note repl ′
ultimately have l ∈ children ?l ′

by (auto simp: children-def is-leaf-def length-lbl-def set-lbl-def)
with rhs show ?thesis by blast

qed
qed

If some label l is not a leaf, then the set of processes that appear at the end
of the labels of its children is the set of all processes that do not appear in l.
lemma children-last-set:

assumes l: ¬(is-leaf l)
shows last-lbl ‘ (children l) = UNIV − set-lbl l

proof
show last-lbl ‘ (children l) ⊆ UNIV − set-lbl l

by (auto dest: label-children simp: last-lbl-def)
next

show UNIV − set-lbl l ⊆ last-lbl ‘ (children l)
proof (auto simp: image-def)

fix p
assume p: p /∈ set-lbl l
with l have c: Abs-Label (Rep-Label l @ [p]) ∈ children l

by (auto simp: children-def)
with Rep-Label-append[OF l] p
show ∃ c ∈ children l. p = last-lbl c

by (force simp: last-lbl-def Abs-Label-inverse)
qed

qed

The function returning the last element of a label is injective on the set of
children of some given label.
lemma last-lbl-inj-on-children:inj-on last-lbl (children l)
proof (auto simp: inj-on-def)

fix c c ′

assume c: c ∈ children l and c ′: c ′ ∈ children l
and eq: last-lbl c = last-lbl c ′

from c c ′ obtain p p ′

where p: Rep-Label c = Rep-Label l @ [p]
and p ′: Rep-Label c ′ = Rep-Label l @ [p ′]

by (auto dest!: label-children)
from p p ′ eq have p = p ′ by (simp add: last-lbl-def)
with p p ′ have Rep-Label c = Rep-Label c ′ by simp
thus c = c ′ by (simp add: Rep-Label-inject)

qed

The number of children of any non-leaf label l is the number of processes
that do not appear in l.
lemma card-children:

151

assumes ¬(is-leaf l)
shows card (children l) = N − (length-lbl l)

proof −
from assms
have last-lbl ‘ (children l) = UNIV − set-lbl l

by (rule children-last-set)
moreover
have card (UNIV − set-lbl l) = card (UNIV ::Proc set) − card (set-lbl l)

by (auto simp: card-Diff-subset-Int)
moreover
from last-lbl-inj-on-children
have card (children l) = card (last-lbl ‘ children l)

by (rule sym[OF card-image])
moreover
note card-set-lbl[of l]
ultimately
show ?thesis by auto

qed

Suppose a non-root label l ′ of length r+1 ending in q, and suppose that q is
well heard by process p in round r. Then the value with which p decorates
l is the one that q associates to the parent of l.
lemma sho-correct-vals:

assumes run: SHORun EIG-M rho HOs SHOs
and l ′: l ′ ∈ children l
and shop: last-lbl l ′ ∈ SHOs (length-lbl l) p ∩ HOs (length-lbl l) p

(is ?q ∈ SHOs (?len l) p ∩ -)
shows vals (rho (?len l ′) p) l ′ = vals (rho (?len l) ?q) l

proof −
let ?r = ?len l
from run obtain µp

where nxt: nextState EIG-M ?r p (rho ?r p) µp (rho (Suc ?r) p)
and mu: µp ∈ SHOmsgVectors EIG-M ?r p (rho ?r) (HOs ?r p) (SHOs ?r p)

by (auto simp: EIG-SHOMachine-def SHORun-eq SHOnextConfig-eq)
with shop
have msl:µp ?q = Some (vals (rho ?r ?q))

by (auto simp: EIG-SHOMachine-def EIG-sendMsg-def SHOmsgVectors-def)
from nxt length-lbl[of l ′] children-length[OF l ′]
have extend-vals ?r p (rho ?r p) µp (rho (Suc ?r) p)

by (auto simp: EIG-SHOMachine-def nextState-def EIG-nextState-def
next-main-def next-end-def)

with msl l ′ show ?thesis
by (auto simp: extend-vals-def children-length children-butlast-lbl)

qed

A process fixes the value vals l of a label at state length-lbl l, and then never
modifies the value.
lemma keep-vals:

assumes run: SHORun EIG-M rho HOs SHOs

152

shows vals (rho (length-lbl l + n) p) l = vals (rho (length-lbl l) p) l
(is ?v n = ?vl)

proof (induct n)
show ?v 0 = ?vl by simp

next
fix n
assume ih: ?v n = ?vl
let ?r = length-lbl l + n
from run obtain µp

where nxt: nextState EIG-M ?r p (rho ?r p) µp (rho (Suc ?r) p)
by (auto simp: EIG-SHOMachine-def SHORun-eq SHOnextConfig-eq)

with ih show ?v (Suc n) = ?vl
by (auto simp: EIG-SHOMachine-def nextState-def EIG-nextState-def

next-main-def next-end-def extend-vals-def)
qed

10.6 Lynch’s Lemmas and Theorems

If some process is safely heard by all processes at round r, then all processes
agree on the value associated to labels of length r+1 ending in that process.
lemma lynch-6-15 :

assumes run: SHORun EIG-M rho HOs SHOs
and l ′: l ′ ∈ children l
and skr : last-lbl l ′ ∈ SKr (HOs (length-lbl l)) (SHOs (length-lbl l))
shows vals (rho (length-lbl l ′) p) l ′ = vals (rho (length-lbl l ′) q) l ′
using assms unfolding SKr-def by (auto simp: sho-correct-vals)

Suppose that l is a non-root label whose last element was well heard by all
processes at round r, and that l ′ is a child of l corresponding to process
q that is also well heard by all processes at round r+1. Then the values
associated with l and l ′ by any process p are identical.
lemma lynch-6-16-a:

assumes run: SHORun EIG-M rho HOs SHOs
and l: l ∈ children t
and skrl: last-lbl l ∈ SKr (HOs (length-lbl t)) (SHOs (length-lbl t))
and l ′: l ′ ∈ children l
and skrl ′:last-lbl l ′ ∈ SKr (HOs (length-lbl l)) (SHOs (length-lbl l))

shows vals (rho (length-lbl l ′) p) l ′ = vals (rho (length-lbl l) p) l
using assms by (auto simp: SKr-def sho-correct-vals)

For any non-leaf label l, more than half of its children end with a process
that is well heard by everyone at round length-lbl l.
lemma lynch-6-16-c:

assumes commR: EIG-commPerRd (HOs (length-lbl l)) (SHOs (length-lbl l))
(is EIG-commPerRd (HOs ?r) -)

and l: ¬(is-leaf l)
shows card {l ′ ∈ children l. last-lbl l ′ ∈ SKr (HOs ?r) (SHOs ?r)}

> card (children l) div 2

153

(is card ?lhs > -)
proof −

let ?skr = SKr (HOs ?r) (SHOs ?r)

have last-lbl ‘ ?lhs = ?skr − set-lbl l
proof

from children-last-set[OF l]
show last-lbl ‘ ?lhs ⊆ ?skr − set-lbl l

by (auto simp: children-length)
next

{
fix p
assume p: p ∈ ?skr p /∈ set-lbl l
with children-last-set[OF l]
have p ∈ last-lbl ‘ children l by auto
with p have p ∈ last-lbl ‘ ?lhs

by (auto simp: image-def children-length)
}
thus ?skr − set-lbl l ⊆ last-lbl ‘ ?lhs by auto

qed
moreover
from last-lbl-inj-on-children[of l]
have inj-on last-lbl ?lhs by (auto simp: inj-on-def)
ultimately
have card ?lhs = card (?skr − set-lbl l) by (auto dest: card-image)
also have . . . ≥ (card ?skr) − (card (set-lbl l))

by (simp add: diff-card-le-card-Diff)
finally have card ?lhs ≥ (card ?skr) − ?r

using card-set-lbl[of l] by simp

moreover
from commR have card ?skr > (N + f) div 2

by (auto simp: EIG-commPerRd-def)
with not-leaf-length[OF l] f
have (card ?skr) − ?r > (N − ?r) div 2 by auto
with card-children[OF l]
have (card ?skr) − ?r > card (children l) div 2 by simp

ultimately show ?thesis by simp
qed

If l is a non-leaf label such that all of its children corresponding to well-heard
processes at round length-lbl l have a uniform newvals decoration at round
f+1, then l itself is decorated with that same value.
lemma newvals-skr-uniform:

assumes run: SHORun EIG-M rho HOs SHOs
and commR: EIG-commPerRd (HOs (length-lbl l)) (SHOs (length-lbl l))

(is EIG-commPerRd (HOs ?r) -)
and notleaf : ¬(is-leaf l)

154

and unif :
∧

l ′. [[l ′ ∈ children l;
last-lbl l ′ ∈ SKr (HOs (length-lbl l)) (SHOs (length-lbl l))
]] =⇒ newvals (rho (Suc f) p) l ′ = v

shows newvals (rho (Suc f) p) l = v
proof −

from unif
have card {l ′ ∈ children l. last-lbl l ′ ∈ SKr (HOs ?r) (SHOs ?r)}
≤ card {l ′ ∈ children l. newvals (rho (Suc f) p) l ′ = v}

by (auto intro: card-mono)
with lynch-6-16-c[of HOs l SHOs, OF commR notleaf]
have maj: has-majority v (newvals (rho (Suc f) p)) (children l)

by (simp add: has-majority-def)

from run have check-newvals (rho (Suc f) p)
by (auto simp: EIG-SHOMachine-def SHORun-eq SHOnextConfig-eq

nextState-def EIG-nextState-def next-end-def)
with maj notleaf obtain w

where wmaj: has-majority w (newvals (rho (Suc f) p)) (children l)
and wupd: newvals (rho (Suc f) p) l = w

by (auto simp: check-newvals-def)
from maj wmaj have w = v

by (auto simp: has-majority-def elim: abs-majoritiesE ′)
with wupd show ?thesis by simp

qed

A node whose label l ends with a process which is well heard at round
length-lbl l will have its newvals field set (at round f+1) to the “fixed-up”
value given by vals.
lemma lynch-6-16-d:

assumes run: SHORun EIG-M rho HOs SHOs
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)
and notroot: l ∈ children t
and skr : last-lbl l ∈ SKr (HOs (length-lbl t)) (SHOs (length-lbl t))

(is - ∈ SKr (HOs (?len t)) -)
shows newvals (rho (Suc f) p) l = fixupval (vals (rho (?len l) p) l)
(is ?P l)

using notroot skr proof (induct Suc f − (?len l) arbitrary: l t)
fix l t
assume 0 = Suc f − ?len l
with length-lbl[of l] have leaf : is-leaf l by (simp add: is-leaf-def)

from run have check-newvals (rho (Suc f) p)
by (auto simp: EIG-SHOMachine-def SHORun-eq SHOnextConfig-eq

nextState-def EIG-nextState-def next-end-def)
with leaf show ?P l

by (auto simp: check-newvals-def is-leaf-def)
next

fix k l t
assume ih:

∧
l ′ t ′.

155

[[k = Suc f − length-lbl l ′; l ′ ∈ children t ′;
last-lbl l ′ ∈ SKr (HOs (?len t ′)) (SHOs (?len t ′))]]
=⇒ ?P l ′

and flk: Suc k = Suc f − ?len l
and notroot: l ∈ children t
and skr : last-lbl l ∈ SKr (HOs (?len t)) (SHOs (?len t))

let ?v = fixupval (vals (rho (?len l) p) l)
from flk have notlf : ¬(is-leaf l) by (simp add: is-leaf-def)

{
fix l ′
assume l ′: l ′ ∈ children l

and skr ′: last-lbl l ′ ∈ SKr (HOs (?len l)) (SHOs (?len l))

from run notroot skr l ′ skr ′

have vals (rho (?len l ′) p) l ′ = vals (rho (?len l) p) l
by (rule lynch-6-16-a)

moreover
from flk l ′ have k = Suc f − ?len l ′ by (simp add: children-length)
from this l ′ skr ′ have ?P l ′ by (rule ih)
ultimately
have newvals (rho (Suc f) p) l ′ = ?v

using notroot l ′ by (simp add: children-length)
}
with run commR notlf show ?P l by (auto intro: newvals-skr-uniform)

qed

Following Lynch [12], we introduce some more useful concepts for reasoning
about the data structure.

A label is common if all processes agree on the final value it is decorated
with.
definition common where

common rho l ≡
∀ p q. newvals (rho (Suc f) p) l = newvals (rho (Suc f) q) l

The subtrees of a given label are all its possible extensions.
definition subtrees where

subtrees h ≡ { l . ∃ t. Rep-Label l = (Rep-Label h) @ t }

lemma children-in-subtree:
assumes l ∈ children h
shows l ∈ subtrees h
using label-children[OF assms] by (auto simp: subtrees-def)

lemma subtrees-refl [iff]: l ∈ subtrees l
by (auto simp: subtrees-def)

156

lemma subtrees-root [iff]: l ∈ subtrees root-node
by (auto simp: subtrees-def)

lemma subtrees-trans:
assumes l ′′ ∈ subtrees l ′ and l ′ ∈ subtrees l
shows l ′′ ∈ subtrees l
using assms by (auto simp: subtrees-def)

lemma subtrees-antisym:
assumes l ∈ subtrees l ′ and l ′ ∈ subtrees l
shows l ′ = l
using assms by (auto simp: subtrees-def Rep-Label-inject)

lemma subtrees-tree:
assumes l ′: l ∈ subtrees l ′ and l ′′: l ∈ subtrees l ′′
shows l ′ ∈ subtrees l ′′ ∨ l ′′ ∈ subtrees l ′

using assms proof (auto simp: subtrees-def append-eq-append-conv2)
fix xs
assume Rep-Label l ′′ @ xs = Rep-Label l ′
hence Rep-Label l ′ = Rep-Label l ′′ @ xs by (rule sym)
thus ∃ ys. Rep-Label l ′ = Rep-Label l ′′ @ ys ..

qed

lemma subtrees-cases:
assumes l ′: l ′ ∈ subtrees l

and self : l ′ = l =⇒ P
and child:

∧
c. [[c ∈ children l; l ′ ∈ subtrees c]] =⇒ P

shows P
proof −

from l ′ obtain t where t: Rep-Label l ′ = (Rep-Label l) @ t
by (auto simp: subtrees-def)

have l ′ = l ∨ (∃ c ∈ children l. l ′ ∈ subtrees c)
proof (cases t)

assume t = []
with t show ?thesis by (simp add: Rep-Label-inject)

next
fix p t ′

assume cons: t = p # t ′

from Rep-Label[of l ′] t have length (Rep-Label l @ t) ≤ Suc f
by (simp add: Label-def)

with cons have notleaf : ¬(is-leaf l)
by (auto simp: is-leaf-def length-lbl-def)

let ?c = Abs-Label (Rep-Label l @ [p])
from t cons Rep-Label[of l ′] have p: p /∈ set-lbl l

by (auto simp: Label-def set-lbl-def)
with notleaf have c: ?c ∈ children l

by (auto simp: children-def)
moreover

157

from notleaf p have Rep-Label l @ [p] ∈ Label
by (simp add: Rep-Label-append)

hence Rep-Label ?c = (Rep-Label l @ [p])
by (simp add: Abs-Label-inverse)

with cons t have l ′ ∈ subtrees ?c
by (auto simp: subtrees-def)

ultimately show ?thesis by blast
qed
thus ?thesis by (auto elim!: self child)

qed

lemma subtrees-leaf :
assumes l: is-leaf l and l ′: l ′ ∈ subtrees l
shows l ′ = l

using l ′ proof (rule subtrees-cases)
fix c
assume c ∈ children l — impossible
with l show ?thesis by (simp add: children-def)

qed

lemma children-subtrees-equal:
assumes c: c ∈ children l and c ′: c ′ ∈ children l

and sub: c ′ ∈ subtrees c
shows c ′ = c

proof −
from assms have Rep-Label c ′ = Rep-Label c

by (auto simp: subtrees-def dest!: label-children)
thus ?thesis by (simp add: Rep-Label-inject)

qed

A set C of labels is a subcovering w.r.t. label l if for all leaf subtrees s of l
there exists some label h ∈ C such that s is a subtree of h and h is a subtree
of l.
definition subcovering where
subcovering C l ≡
∀ s ∈ subtrees l. is-leaf s −→ (∃ h ∈ C . h ∈ subtrees l ∧ s ∈ subtrees h)

A covering is a subcovering w.r.t. the root node.
abbreviation covering where

covering C ≡ subcovering C root-node

The set of labels whose last element is well heard by all processes throughout
the execution forms a covering, and all these labels are common.
lemma lynch-6-18-a:

assumes SHORun EIG-M rho HOs SHOs
and ∀ r . EIG-commPerRd (HOs r) (SHOs r)
and l ∈ children t
and last-lbl l ∈ SKr (HOs (length-lbl t)) (SHOs (length-lbl t))

158

shows common rho l
using assms
by (auto simp: common-def lynch-6-16-d lynch-6-15

intro: arg-cong[where f=fixupval])

lemma lynch-6-18-b:
assumes run: SHORun EIG-M rho HOs SHOs

and commG: EIG-commGlobal HOs SHOs
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)

shows covering {l. ∃ t. l ∈ children t ∧ last-lbl l ∈ (SK HOs SHOs)}
proof (clarsimp simp: subcovering-def)

fix l
assume is-leaf l
with card-set-lbl[of l] have card (set-lbl l) = Suc f

by (simp add: is-leaf-def)
with commG have N < card (SK HOs SHOs) + card (set-lbl l)

by (simp add: EIG-commGlobal-def)
hence ∃ q ∈ set-lbl l . q ∈ SK HOs SHOs

by (auto dest: majorities-intersect)
then obtain l1 q l2 where

l: Rep-Label l = (l1 @ [q]) @ l2 and q: q ∈ SK HOs SHOs
unfolding set-lbl-def by (auto intro: split-list-propE)

let ?h = Abs-Label (l1 @ [q])
from Rep-Label[of l] l have l1 @ [q] ∈ Label by (simp add: Label-def)
hence reph: Rep-Label ?h = l1 @ [q] by (rule Abs-Label-inverse)
hence length-lbl ?h 6= 0 by (simp add: length-lbl-def)
hence ?h 6= root-node by auto
then obtain t where t: ?h ∈ children t

by (auto simp: root-iff-no-child)
moreover
from reph q have last-lbl ?h ∈ SK HOs SHOs by (simp add: last-lbl-def)
moreover
from reph l have l ∈ subtrees ?h by (simp add: subtrees-def)
ultimately
show ∃ h. (∃ t. h ∈ children t) ∧ last-lbl h ∈ SK HOs SHOs ∧ l ∈ subtrees h

by blast
qed

If C covers the subtree rooted at label l and if l /∈ C then C also covers
subtrees rooted at l’s children.
lemma lynch-6-19-a:

assumes cov: subcovering C l
and l: l /∈ C
and e: e ∈ children l

shows subcovering C e
proof (clarsimp simp: subcovering-def)

fix s
assume s: s ∈ subtrees e and leaf : is-leaf s

159

from s children-in-subtree[OF e] have s ∈ subtrees l
by (rule subtrees-trans)

with leaf cov obtain h where h: h ∈ C h ∈ subtrees l s ∈ subtrees h
by (auto simp: subcovering-def)

with l obtain e ′ where e ′: e ′ ∈ children l h ∈ subtrees e ′

by (auto elim: subtrees-cases)
from ‹s ∈ subtrees h› ‹h ∈ subtrees e ′› have s ∈ subtrees e ′

by (rule subtrees-trans)
with s have e ∈ subtrees e ′ ∨ e ′ ∈ subtrees e

by (rule subtrees-tree)
with e e ′ have e ′ = e

by (auto dest: children-subtrees-equal)
with e ′ h show ∃ h∈C . h ∈ subtrees e ∧ s ∈ subtrees h by blast

qed

If there is a subcovering C for a label l such that all labels in C are common,
then l itself is common as well.
lemma lynch-6-19-b:

assumes run: SHORun EIG-M rho HOs SHOs
and cov: subcovering C l
and com: ∀ l ′ ∈ C . common rho l ′

shows common rho l
using cov proof (induct Suc f − length-lbl l arbitrary: l)

fix l
assume 0 : 0 = Suc f − length-lbl l

and C : subcovering C l
from 0 length-lbl[of l] have is-leaf l

by (simp add: is-leaf-def)
with C obtain h where h: h ∈ C h ∈ subtrees l l ∈ subtrees h

by (auto simp: subcovering-def)
hence l ∈ C by (auto dest: subtrees-antisym)
with com show common rho l ..

next
fix k l
assume k: Suc k = Suc f − length-lbl l

and C : subcovering C l
and ih:

∧
l ′. [[k = Suc f − length-lbl l ′; subcovering C l ′]] =⇒ common rho l ′

show common rho l
proof (cases l ∈ C)

case True
with com show ?thesis ..

next
case False
with C have ∀ e ∈ children l. subcovering C e

by (blast intro: lynch-6-19-a)
moreover
from k have ∀ e ∈ children l. k = Suc f − length-lbl e

by (auto simp: children-length)
ultimately

160

have com-ch: ∀ e ∈ children l. common rho e
by (blast intro: ih)

show ?thesis
proof (clarsimp simp: common-def)

fix p q
from k have notleaf : ¬(is-leaf l) by (simp add: is-leaf-def)
let ?r = Suc f
from com-ch
have ∀ e ∈ children l. newvals (rho ?r p) e = newvals (rho ?r q) e

by (auto simp: common-def)
hence ∀w. {e ∈ children l. newvals (rho ?r p) e = w}

= {e ∈ children l. newvals (rho ?r q) e = w}
by auto

moreover
from run
have check-newvals (rho ?r p) check-newvals (rho ?r q)
by (auto simp: EIG-SHOMachine-def SHORun-eq SHOnextConfig-eq nextState-def

EIG-nextState-def next-end-def)
with notleaf have
(∃w. has-majority w (newvals (rho ?r p)) (children l)

∧ newvals (rho ?r p) l = w)
∨ ¬(∃w. has-majority w (newvals (rho ?r p)) (children l))

∧ newvals (rho ?r p) l = undefined
(∃w. has-majority w (newvals (rho ?r q)) (children l)

∧ newvals (rho ?r q) l = w)
∨ ¬(∃w. has-majority w (newvals (rho ?r q)) (children l))

∧ newvals (rho ?r q) l = undefined
by (auto simp: check-newvals-def)

ultimately show newvals (rho ?r p) l = newvals (rho ?r q) l
by (auto simp: has-majority-def elim: abs-majoritiesE ′)

qed
qed

qed

The root of the tree is a common node.
lemma lynch-6-20 :

assumes run: SHORun EIG-M rho HOs SHOs
and commG: EIG-commGlobal HOs SHOs
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)

shows common rho root-node
using run lynch-6-18-b[OF assms]
proof (rule lynch-6-19-b, clarify)

fix l t
assume l ∈ children t last-lbl l ∈ SK HOs SHOs
thus common rho l by (auto simp: SK-def elim: lynch-6-18-a[OF run commR])

qed

A decision is taken only at state f+1 and then stays stable.

161

lemma decide:
assumes run: SHORun EIG-M rho HOs SHOs
shows decide (rho r p) =

(if r < Suc f then None
else Some (newvals (rho (Suc f) p) root-node))

(is ?P r)
proof (induct r)

from run show ?P 0
by (auto simp: EIG-SHOMachine-def SHORun-eq HOinitConfig-eq

initState-def EIG-initState-def)
next

fix r
assume ih: ?P r
from run obtain µp

where EIG-nextState r p (rho r p) µp (rho (Suc r) p)
by (auto simp: EIG-SHOMachine-def SHORun-eq SHOnextConfig-eq

nextState-def)
thus ?P (Suc r)
proof (auto simp: EIG-nextState-def next-main-def next-end-def)

assume ¬(r < f) r 6= f
with ih
show decide (rho r p) = Some (newvals (rho (Suc f) p) root-node)

by simp
qed

qed

10.7 Proof of Agreement, Validity, and Termination

The Agreement property is an immediate consequence of lemma lynch-6-20.
theorem Agreement:

assumes run: SHORun EIG-M rho HOs SHOs
and commG: EIG-commGlobal HOs SHOs
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)
and p: decide (rho m p) = Some v
and q: decide (rho n q) = Some w

shows v = w
using p q lynch-6-20 [OF run commG commR]
by (auto simp: decide[OF run] common-def)

We now show the Validity property: if all processes initially propose the
same value v, then no other value may be decided.
By lemma sho-correct-vals, value v must propagate to all children of the
root that are well heard at round 0, and lemma lynch-6-16-d implies that
v is the value assigned to all these children by newvals. Finally, lemma
newvals-skr-uniform lets us conclude.
theorem Validity:

assumes run: SHORun EIG-M rho HOs SHOs
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)

162

and initv: ∀ q. the (vals (rho 0 q) root-node) = v
and dp: decide (rho r p) = Some w

shows v = w
proof −

have v: ∀ q. vals (rho 0 q) root-node = Some v
proof

fix q
from run have vals (rho 0 q) root-node 6= None

by (auto simp: EIG-SHOMachine-def SHORun-eq HOinitConfig-eq
initState-def EIG-initState-def)

then obtain w where w: vals (rho 0 q) root-node = Some w
by auto

from initv have the (vals (rho 0 q) root-node) = v ..
with w show vals (rho 0 q) root-node = Some v by simp

qed

let ?len = length-lbl
let ?r = Suc f

{
fix l ′
assume l ′: l ′ ∈ children root-node

and skr : last-lbl l ′ ∈ SKr (HOs 0) (SHOs 0)
with run v have vals (rho (?len l ′) p) l ′ = Some v

by (auto dest: sho-correct-vals simp: SKr-def)

moreover
from run commR l ′ skr
have newvals (rho ?r p) l ′ = fixupval (vals (rho (?len l ′) p) l ′)

by (auto intro: lynch-6-16-d)

ultimately
have newvals (rho ?r p) l ′ = v by simp

}
with run commR root-node-not-leaf
have newvals (rho ?r p) root-node = v

by (auto intro: newvals-skr-uniform)
with dp show ?thesis by (simp add: decide[OF run])

qed

Termination is trivial for EIGByzf .
theorem Termination:

assumes SHORun EIG-M rho HOs SHOs
shows ∃ r v. decide (rho r p) = Some v
using assms by (auto simp: decide)

163

10.8 EIGByzf Solves Weak Consensus

Summing up, all (coarse-grained) runs of EIGByzf for HO and SHO collec-
tions that satisfy the communication predicate satisfy the Weak Consensus
property.
theorem eig-weak-consensus:

assumes run: SHORun EIG-M rho HOs SHOs
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)
and commG: EIG-commGlobal HOs SHOs

shows weak-consensus (λp. the (vals (rho 0 p) root-node)) decide rho
unfolding weak-consensus-def
using Validity[OF run commR]

Agreement[OF run commG commR]
Termination[OF run]

by auto

By the reduction theorem, the correctness of the algorithm carries over to
the fine-grained model of runs.
theorem eig-weak-consensus-fg:

assumes run: fg-run EIG-M rho HOs SHOs (λr q. undefined)
and commR: ∀ r . EIG-commPerRd (HOs r) (SHOs r)
and commG: EIG-commGlobal HOs SHOs

shows weak-consensus (λp. the (vals (state (rho 0) p) root-node))
decide (state ◦ rho)

(is weak-consensus ?inits - -)
proof (rule local-property-reduction[OF run weak-consensus-is-local])

fix crun
assume crun: CSHORun EIG-M crun HOs SHOs (λr q. undefined)

and init: crun 0 = state (rho 0)
from crun have SHORun EIG-M crun HOs SHOs by (unfold SHORun-def)
from this commR commG
have weak-consensus (λp. the (vals (crun 0 p) root-node)) decide crun

by (rule eig-weak-consensus)
with init show weak-consensus ?inits decide crun

by (simp add: o-def)
qed

end

11 Conclusion

In this contribution we have formalized the Heard-Of model in the proof
assistant Isabelle/HOL. We have established a formal framework, in which
fault-tolerant distributed algorithms can be represented, and that caters
for different variants (benign or malicious faults, coordinated and uncoordi-
nated algorithms). We have formally proved a reduction theorem that re-

164

lates fine-grained (asynchronous) interleaving executions and coarse-grained
executions, in which an entire round constitutes the unit of atomicity. As a
corollary, many correctness properties, including Consensus, can be trans-
ferred from the coarse-grained to the fine-grained representation.
We have applied this framework to give formal proofs in Isabelle/HOL for
six different Consensus algorithms known from the literature. Thanks to the
reduction theorem, it is enough to verify the algorithms over coarse-grained
runs, and this keeps the effort manageable. For example, our LastVoting
algorithm is similar to the DiskPaxos algorithm verified in [10], but our
proof here is an order of magnitude shorter, although we prove safety and
liveness properties, whereas only safety was considered in [10].
We also emphasize that the uniform characterization of fault assumptions
via communication predicates in the HO model lets us consider the effects
of transient failures, contrary to standard models that consider only perma-
nent failures. For example, our correctness proof for the EIGByzf algorithm
establishes a stronger result than that claimed by the designers of the al-
gorithm. The uniform presentation also paves the way towards comparing
assumptions of different algorithms.
The encoding of the HO model as Isabelle/HOL theories is quite straightfor-
ward, and we find our Isar proofs quite readable, although they necessarily
contain the full details that are often glossed over in textbook presentations.
We believe that our framework allows algorithm designers to study different
fault-tolerant distributed algorithms, their assumptions, and their proofs, in
a clear, rigorous and uniform way.

References

[1] A. Bar-Noy, D. Dolev, C. Dwork, and H. R. Strong. Shifting gears:
Changing algorithms on the fly to expedite byzantine agreement. Inf.
Comput., 97(2):205–233, 1992.

[2] M. Ben-Or. Another advantage of free choice: completely asynchronous
agreement protocols. In R. L. Probert, N. A. Lynch, and N. Santoro,
editors, Proc. 2nd Symp. Principles of Distributed Computing (PODC
1983), pages 27–30, Montreal, Canada, 1983. ACM.

[3] M. Biely, J. Widder, B. Charron-Bost, A. Gaillard, M. Hutle, and
A. Schiper. Tolerating corrupted communication. In Proc. 26th An-
nual ACM Symposium on Principles of Distributed Computing, PODC
’07, pages 244–253, New York, NY, USA, 2007. ACM.

[4] M. Chaouch-Saad, B. Charron-Bost, and S. Merz. A reduction the-
orem for the verification of round-based distributed algorithms. In
O. Bournez and I. Potapov, editors, Reachability Problems, volume 5797

165

of Lecture Notes in Computer Science, pages 93–106, Palaiseau, France,
2009. Springer.

[5] B. Charron-Bost, H. Debrat, and S. Merz. Formal verification of con-
sensus algorithms tolerating malicious faults. In X. Défago, F. Petit,
and V. Villain, editors, 13th Intl. Symp. Stabilization, Safety, and Se-
curity of Distributed Systems (SSS 2011), volume 6976 of LNCS, pages
120–134, Grenoble, France, 2011. Springer.

[6] B. Charron-Bost and S. Merz. Formal verification of a Consensus al-
gorithm in the Heard-Of model. Intl. J. Software and Informatics,
3(2-3):273–304, 2009.

[7] B. Charron-Bost and A. Schiper. The Heard-Of model: computing
in distributed systems with benign faults. Distributed Computing,
22(1):49–71, 2009.

[8] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence
of partial synchrony. J. ACM, 35(2):288–323, Apr. 1988.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. J. ACM, 32(2):374–382,
Apr. 1985.

[10] M. Jaskelioff and S. Merz. Proving the correctness of DiskPaxos.
Archive of Formal Proofs, 2005.

[11] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, 1998.

[12] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San
Mateo, CA, 1996.

166

	Introduction
	Heard-Of Algorithms
	The Consensus Problem
	A Generic Representation of Heard-Of Algorithms

	Reduction Theorem
	Fine-Grained Semantics
	Properties of the Fine-Grained Semantics
	From Fine-Grained to Coarse-Grained Runs
	Locally Similar Runs and Local Properties
	Consensus as a Local Property

	Utility Lemmas About Majorities
	Verification of the One-Third Rule Consensus Algorithm
	Model of the Algorithm
	Communication Predicate for One-Third Rule
	The One-Third Rule Heard-Of Machine
	Proof of Integrity
	Proof of Agreement
	Proof of Termination
	One-Third Rule Solves Consensus

	Verification of the UniformVoting Consensus Algorithm
	Model of the Algorithm
	Communication Predicate for UniformVoting
	The UniformVoting Heard-Of Machine
	Preliminary Lemmas
	Proof of Irrevocability, Agreement and Integrity
	Proof of Termination
	UniformVoting Solves Consensus

	Verification of the LastVoting Consensus Algorithm
	Model of the Algorithm
	Communication Predicate for LastVoting
	The LastVoting Heard-Of Machine
	Preliminary Lemmas
	Boundedness and Monotonicity of Timestamps
	Obvious Facts About the Algorithm
	Proof of Integrity
	Proof of Agreement and Irrevocability
	Proof of Termination
	LastVoting Solves Consensus

	Verification of the UT,E, Consensus Algorithm
	Model of the Algorithm
	Communication Predicate for UT,E,
	The UT,E, Heard-Of Machine
	Preliminary Lemmas
	Proof of Agreement and Validity
	Proof of Termination
	UT,E, Solves Weak Consensus

	Verification of the AT,E, Consensus algorithm
	Model of the Algorithm
	Communication Predicate for AT,E,
	The AT,E, Heard-Of Machine
	Preliminary Lemmas
	Proof of Validity
	Proof of Agreement
	Proof of Termination
	AT,E, Solves Weak Consensus

	Verification of the EIGByzf Consensus Algorithm
	Tree Data Structure
	Model of the Algorithm
	Communication Predicate for EIGByzf
	The EIGByzf Heard-Of Machine
	Preliminary Lemmas
	Lynch's Lemmas and Theorems
	Proof of Agreement, Validity, and Termination
	EIGByzf Solves Weak Consensus

	Conclusion

