
HOL-CSP_Proc-Omata: A Bridge between CSP
Processes and Functional Automata

Benoît Ballenghien Burkhart Wolff

February 4, 2026

2

Abstract

This entry develops the Proc-Omata framework on top of HOL-CSP and its
extensions. Proc-Omata are defined from functional automata and come in
four variants: deterministic, terminating deterministic, non-deterministic,
and terminating non-deterministic. This subclass of processes combines the
expressiveness of CSP with automata-like structure (reachability, enable-
ness), making it particularly amenable to invariant-based reasoning.

We lift sequential composition and synchronization product to the au-
tomata level through combination functions and prove compactification the-
orems that enable reasoning over large process architectures. An essential
ingredient is the use of restriction spaces, which guarantees well-defined
fixed points even in the non-deterministic setting. Finally, we illustrate the
applicability of the framework with the Dining Philosophers, where com-
pactification yields proofs that scale to an arbitrary finite but unbounded
number of participants in this parameterized process architecture.

3

4

Contents

1 Introduction 9

2 An Excursion into Determinism 11
2.1 Accepts initials . 11

2.1.1 Definition . 11
2.1.2 First properties . 12
2.1.3 Monotonicity . 12
2.1.4 Behaviour on Operators 12
2.1.5 Characterizations with After 14

2.2 Deterministic process . 16
2.2.1 Definition . 16
2.2.2 Monotonicity . 16
2.2.3 Characterization as Maximal 16
2.2.4 Characterization with After 19
2.2.5 Operators preserving Determinism 19
2.2.6 Operators not (always) preserving Determinism 20

2.3 Application to Operational Semantics 20

3 ProcOmata: Functional Automata embedded into CSP Pro-
cesses 23
3.1 Definitions . 24

3.1.1 Non-deterministic and deterministic Automata 24
3.1.2 Enableness . 24
3.1.3 States allowing Termination 25
3.1.4 Reachability . 25
3.1.5 Morphisms . 25
3.1.6 Generic update Functions 27
3.1.7 Assumptions on Automata 28

3.2 First Properties . 31
3.2.1 ε, % and ω first equalities 31
3.2.2 Properties of our morphisms 32
3.2.3 Reachability results (for Rd and Rnd) 36

3.3 Normalization . 38

5

3.3.1 Non-deterministic Case 38
3.3.2 Deterministic Case . 41
3.3.3 Link between deterministic and non-deterministic Pro-

cOmata . 43
3.3.4 Prove Equality between ProcOmata 43

4 Advanced Properties of ProcOmata 47

5 Combining Automata for Synchronization Product 49
5.1 Definitions . 49

5.1.1 General Patterns . 49
5.1.2 Specializations . 50

5.2 First Properties . 52
5.3 Reachability . 53
5.4 Normalization . 54

6 Compactification of Synchronization Product 57
6.1 Iterated Combine . 57

6.1.1 Definitions . 57
6.1.2 First Results . 58
6.1.3 Reachability . 59
6.1.4 Transmission of Properties 59
6.1.5 Normalization . 60

6.2 Compactification Theorems 60
6.2.1 Binary . 60
6.2.2 Rlist . 62
6.2.3 ListslenL . 62
6.2.4 Multiple . 63

6.3 Derived Versions . 64
6.4 More on Iterated Combine . 65
6.5 More on Events . 66

7 Combining Automata for Generalized Synchronization Prod-
uct 69
7.1 Definitions . 69

7.1.1 Specializations . 69
7.2 First Properties . 70
7.3 Transitions are unchanged in the Generalization 72
7.4 Reachability . 72
7.5 Normalization . 73

8 Compactification of Synchronization Product Generalized 77
8.1 Iterated Combine . 77

8.1.1 Definitions . 77

6

8.1.2 First Results . 77
8.1.3 Transmission of Properties 78
8.1.4 Normalization . 79

8.2 Compactification Theorems 80
8.2.1 Binary . 80
8.2.2 Rlist . 81
8.2.3 ListslenL . 81
8.2.4 Multiple . 82

8.3 Derived Versions . 83
8.4 More on Iterated Combine and Events 83

9 Combining Automata for Sequential Composition General-
ized 85
9.1 Definitions . 85
9.2 General Patterns . 85
9.3 Specializations . 86
9.4 First Properties . 87

9.4.1 Reachability . 88
9.5 Normalization . 89

10 Compactification of Sequential Composition Generalized 91
10.1 Iterated Combine . 91

10.1.1 Definitions . 91
10.1.2 First Results . 91
10.1.3 Reachability . 92
10.1.4 Transmission of Properties 92
10.1.5 Normalization . 93

10.2 Compactification Theorems 93
10.2.1 Binary . 93
10.2.2 ListslenL . 94
10.2.3 Multiple . 95

11 Application : May Philosophers dine ? 97
11.1 Preliminaries . 97

11.1.1 Preliminary lemmas for proof automation 97
11.2 The dining processes definition 97

11.2.1 Unfolding rules . 98
11.3 Translation into normal form 98

11.3.1 FORK, LPHIL0 and RPHIL are normalizable 98
11.3.2 FORKS is normalizable 100
11.3.3 PHILS is normalizable 100
11.3.4 The complete process DINING is normalizable 101

11.4 And finally: Philosophers may dine ! Always ! 101
11.4.1 Construction of an invariant for the dining automaton 101

7

11.4.2 The invariant inv-dining implies that DINING is dead-
lock-free . 102

11.4.3 Conclusion . 102
11.5 Alternative version with only right-handed philosophers (in

order to show that it’s not deadlock-free) 102
11.5.1 Setup . 102
11.5.2 Normalization . 103
11.5.3 Correspondance between our normalized processes and

the previous definitions 103
11.5.4 Proof that we have a deadlock in the state (replicate

N 1 , replicate N 1) . 103
11.5.5 Proof that this state is reachable from our initial state,

i.e. (replicate N 1 , replicate N 1) ∈ Rd ARD (replicate
N 0 , replicate N 0) . 103

12 Other Results similar to Compactification 105
12.1 Some preliminary Results . 105
12.2 Results for Det . 106
12.3 Results for Ndet . 106
12.4 Other Operators . 106

12.4.1 initials . 106
12.4.2 Throw . 107
12.4.3 (4) . 107
12.4.4 After . 108

12.5 OpSem . 109

13 Conclusion 111
13.1 Entry Point . 111
13.2 Conclusion . 111

8

Chapter 1

Introduction

Communicating Sequential Processes (CSP) offers a rich and expressive
framework for modeling and reasoning about concurrent systems. Its de-
notational, operational, and algebraic facets are covered by the sessions
HOL-CSP [3], HOL-CSPM [2], HOL-CSP_OpSem [4], HOL-CSP_RS [6], and HOL-CSP_PTick.
These developments, initially following Roscoes presentation [7], have since
evolved considerably to admit arbitrary types, infinite sets, parameterized
termination, and more.
However, this expressiveness comes with a cost: proofs about complex or
parametric process architectures often become intricate and hard to scale.
Proc-Omata address this issue by slightly constraining the class of processes
in order to benefit from more powerful proof techniques. First sketched
in [8] and properly conceptualized in [5], the Proc-Omata framework con-
sists in embedding functional automata into CSP. The resulting subclass of
processes combines the expressive and compositional features of CSP with
automata-like properties (reachability, enableness, absence of divergences),
making it particularly amenable to invariant reasoning.
In this entry we start by formalizing the basic notions of functional automata
such as reachability and enableness, before introducing the definitions of
Proc-Omata themselves. For synchronization product and sequential com-
position, we then provide combination functions that realize the effect of
CSP operators at the level of the underlying automata. These translations
are formally proved correct, and culminate in compactification theorems,
which generalize the constructions inductively to architectural operators.

9

10

Chapter 2

An Excursion into
Determinism

This chapter is a preliminary work. Indeed, later in the construction, we
will define the notion of Procomata which comes in different flavours, in
particular deterministic ones. We will establish then that such ProcOmata
produce deterministic processes, a classical notion in CSP that we formalize
below.

In a word, a deterministic process cannot refuse an event in which it can
engage. More formally, if s @ [e] ∈ T P, then (s, {e}) /∈ F P. In this
theory, we follow the proof sketch given in [7] for characterizing deterministic
processes as maximal elements for the failure-divergence refinement (vFD).
Other lemmas are proved with respect to CSP operators.

2.1 Accepts initials

This notion is a weak version of determinism. It captures the idea of being
deterministic for one step.

2.1.1 Definition
unbundle option-type-syntax

definition accepts-initials :: ‹(′a, ′r) processptick ⇒ bool› (‹determ0›)
where ‹determ0 P ≡ ∀ e ∈ P0. {e} /∈ R P›

lemma accepts-initialsI : ‹(
∧

e. e ∈ P0 =⇒ {e} /∈ R P) =⇒ determ0 P›
and accepts-initialsD : ‹determ0 P =⇒ e ∈ P0 =⇒ {e} /∈ R P›
〈proof 〉

11

lemma accepts-initials-def-bis:
‹determ0 P ←→ (∀ e ∈ P0. ∀X ∈ R P. e /∈ X)›
〈proof 〉

lemma accepts-initialsI-bis : ‹(
∧

e X . e ∈ P0 =⇒ X ∈ R P =⇒ e /∈ X) =⇒
determ0 P›

and accepts-initialsD-bis : ‹determ0 P =⇒ e ∈ P0 =⇒ X ∈ R P =⇒ e /∈ X›
〈proof 〉

2.1.2 First properties
lemma accepts-initials-STOP [simp] : ‹determ0 STOP›
〈proof 〉

lemma accepts-initials-SKIP [simp] : ‹determ0 (SKIP r)›
〈proof 〉

lemma not-accepts-initials-BOT [simp] : ‹¬ determ0 ⊥›
〈proof 〉

lemma accepts-initials-imp-initial-tick-iff-is-SKIP:
‹determ0 P =⇒ 3(r) ∈ P0 ←→ P = SKIP r›
〈proof 〉

lemma accepts-initials-imp-not-initial-tick-iff-is-STOP-or-some-initial-ev:
‹determ0 P =⇒ (range tick ∩ P0 = {}) ←→ P = STOP ∨ (∃ e. ev e ∈ P0)›
〈proof 〉

2.1.3 Monotonicity
lemma mono-accepts-initials-F : ‹P vF Q =⇒ determ0 P =⇒ determ0 Q›
〈proof 〉

lemma mono-accepts-initials-FD: ‹P vFD Q =⇒ determ0 P =⇒ determ0 Q›
〈proof 〉

lemma mono-accepts-initials: ‹P v Q =⇒ determ0 P =⇒ determ0 Q›
〈proof 〉

lemma restriction-adm-accepts-initials [restriction-adm-processptick-simpset, simp]
:

‹adm↓ (λx. determ0 (f x))› if ‹cont↓ f ›
for f :: ‹ ′b :: restriction ⇒ (′a, ′r) processptick›
〈proof 〉

2.1.4 Behaviour on Operators
lemma accepts-initials-Mprefix [simp] : ‹determ0 (�a ∈ A → P a)›

12

〈proof 〉

lemma accepts-initials-write0 [simp] : ‹determ0 (a → P)›
〈proof 〉

lemma accepts-initials-write [simp] : ‹determ0 (c!a → P)›
〈proof 〉

lemma accepts-initials-read [simp] : ‹determ0 (c?a∈A → P a)›
〈proof 〉

lemma accepts-initials-Ndet-iff :
‹determ0 (P u Q) ←→ determ0 P ∧ determ0 Q ∧ P0 = Q0›
〈proof 〉

lemma accepts-initials-GlobalNdet-iff :
‹determ0 (ua ∈ A. P a) ←→
(∀ a ∈ A. determ0 (P a) ∧ (∀ b ∈ A. (P a)0 = (P b)0))›
〈proof 〉

lemma accepts-initials-Mndetprefix-iff :
‹determ0 (ua ∈ A → P a) ←→ (∃ a. A ⊆ {a})›
〈proof 〉

lemma accepts-initials-ndet-write-iff :
‹determ0 (c!!a ∈ A → P a) ←→ (∃ b. c ‘ A ⊆ {b})›
〈proof 〉

lemma accepts-initials-SKIPS-iff :
‹determ0 (SKIPS R) ←→ R = {} ∨ (∃ r . R = {r})›
〈proof 〉

lemma accepts-initials-Det :
‹determ0 (P � Q) ←→ P = STOP ∨ Q = STOP ∨ range tick ∩ P0 ∩ Q0 6= {}
∨

range tick ∩ (P0 ∪ Q0) = {}›
(is ‹- ←→ ?rhs›) if accepts-initials : ‹determ0 P› ‹determ0 Q›
〈proof 〉

lemma accepts-initials-GlobalDet :
‹determ0 (�a ∈ A. P a)› if ‹

∧
a. a ∈ A =⇒ determ0 (P a)›

‹range tick ∩ (
⋂

a ∈ A. (P a)0) 6= {} ∨ range tick ∩ (
⋃

a ∈ A. (P a)0) = {}›
〈proof 〉

13

lemma accepts-initials-Seqptick :
‹determ0 (P ;3 Q) ←→ (∀ r . 3(r) ∈ P0 −→ determ0 (Q r))› if ‹determ0 P›
〈proof 〉

corollary accepts-initials-Seq :
‹determ0 (P ; Q) ←→ (P0 ∩ range tick = {} ∨ determ0 Q)› if ‹determ0 P›
〈proof 〉

lemma (in Syncptick-locale) accepts-initials-Syncptick :
‹determ0 (P [[S]]3 Q)› if ‹determ0 P› ‹determ0 Q›
〈proof 〉

corollary accepts-initials-Sync:
‹determ0 P =⇒ determ0 Q =⇒ determ0 (P [[S]] Q)›
〈proof 〉

lemma accepts-initials-Renaming : ‹determ0 (Renaming P f g)› if ‹determ0 P›
〈proof 〉

lemma accepts-initials-Throw-iff : ‹determ0 (P Θ a ∈ A. Q a) ←→ determ0 P›
〈proof 〉

lemma accepts-initials-Sliding:
‹determ0 P =⇒ determ0 Q =⇒ determ0 (P B Q) ←→
P = STOP ∨ P0 ⊆ Q0 ∧ (range tick ∩ P0 6= {} ∨ range tick ∩ Q0 = {})›
〈proof 〉

2.1.5 Characterizations with After
context After
begin

Interesting results about the fact that we can express a process with Mprefix
and (after)

lemma leFD-SKIPS-Det-Mprefix-After :
‹P vFD SKIPS {r . 3(r) ∈ P0} � (�a ∈ {a. ev a ∈ P0} → P after a)› (is ‹P
vFD ?rhs›)
〈proof 〉

lemma accepts-initials-imp-eq-Mprefix-After :
‹P = (if ∃ r . 3(r) ∈ P0 then SKIP (THE r . 3(r) ∈ P0)

else �a ∈ {e. ev e ∈ P0} → P after a)› (is ‹P = ?rhs›)

14

if ‹determ0 P›
〈proof 〉

theorem is-some-Mprefix-iff :
‹(∃A Q. P = �a ∈ A → Q a) ←→ range tick ∩ P0 = {} ∧ accepts-initials P›
for P :: ‹(′a, ′r) processptick›
〈proof 〉

lemma tick-not-initial-imp-STOP-Ndet-Mndetprefix-After-FD:
‹range tick ∩ P0 = {} =⇒ STOP u (�a ∈ {e. ev e ∈ P0} → P after a) vFD P›
〈proof 〉

lemma ‹lifelock-free P ←→ D P = {} ∧ (∀ t ∈ T P. tF t)›
〈proof 〉

lemma STOP-Ndet-SKIPS-Ndet-Mprefix-After-leF :
‹STOP u SKIPS {r . 3(r) ∈ P0} u (�a ∈ {e. ev e ∈ P0} → P after a) vF P›
(is ‹- u ?lhs1 u ?lhs2 vF P›)
〈proof 〉

lemma non-BOT-imp-Mprefix-After-leD :
‹�a ∈ {e. ev e ∈ P0} → P after a vD P› (is ‹-?lhs vD P›) if ‹P 6= ⊥›
〈proof 〉

lemma non-BOT-imp-STOP-Ndet-SKIPS-Ndet-Mprefix-After-leFD :
‹P 6= ⊥ =⇒ STOP u SKIPS {r . 3(r) ∈ P0} u (�a ∈ {e. ev e ∈ P0} → P after

a) vFD P›
〈proof 〉

theorem singl-initial-imp-equals-prefix-After :
‹P = (if UNIV /∈ R P then a → P after a else STOP u (a → P after a))›
if initials-is : ‹initials P = {ev a}›
〈proof 〉

lemma ‹{ev e} /∈ R P =⇒ ev e ∈ P0›
〈proof 〉

end

15

2.2 Deterministic process
2.2.1 Definition
definition deterministic :: ‹(′a, ′r) processptick ⇒ bool› (‹determ›)

where ‹determ P ≡ ∀ s e. s @ [e] ∈ T P −→ (s, {e}) /∈ F (P)›

lemma deterministicI : ‹(
∧

t e. t @ [e] ∈ T P =⇒ (t, {e}) /∈ F (P)) =⇒ determ
P›

and deterministicD : ‹determ P =⇒ t @ [e] ∈ T P =⇒ (t, {e}) /∈ F (P)›
〈proof 〉

lemma deterministic-STOP [simp] : ‹determ STOP›
and deterministic-SKIP [simp] : ‹determ (SKIP r)›
〈proof 〉

lemma deterministic-div-free : ‹determ P =⇒ D P = {}›
〈proof 〉

lemma not-deterministic-BOT [simp] : ‹¬ determ ⊥›
〈proof 〉

2.2.2 Monotonicity
lemma mono-deterministic-F : ‹P vF Q =⇒ determ P =⇒ determ Q›
〈proof 〉

lemma mono-deterministic-FD: ‹P vFD Q =⇒ determ P =⇒ determ Q›
〈proof 〉

lemma mono-deterministic: ‹P v Q =⇒ determ P =⇒ determ Q›
〈proof 〉

lemma restriction-adm-deterministic [restriction-adm-processptick-simpset, simp]
:

‹adm↓ (λx. determ (f x))› if ‹cont↓ f ›
for f :: ‹ ′b :: restriction ⇒ (′a, ′r) processptick›
〈proof 〉

2.2.3 Characterization as Maximal

Some preliminary work
definition is-processT :: ‹(′a, ′r) traceptick set ⇒ bool›

where ‹is-processT T ≡
[] ∈ T ∧ (∀ t ∈ T . ftF t) ∧ (∀ t u. t @ u ∈ T −→ t ∈ T) ∧
(∀ t r e. t @ [3(r)] ∈ T −→ e 6= 3(r) −→ t @ [e] /∈ T)›

typedef (′a, ′r) processT = ‹{T :: (′a, ′r) traceptick set . is-processT T}›

16

〈proof 〉

setup-lifting type-definition-processT

lift-definition TracesT ::
‹(′a, ′r) processT ⇒ (′a, ′r) traceptick set› (‹T T ›)
is ‹λP. Rep-processT P› 〈proof 〉

lemma ProcessT -eq-spec : ‹T = U ←→ T T T = T T U ›
〈proof 〉

lemma is-processT -1 : ‹[] ∈ T T P›
and is-processT -2 : ‹s ∈ T T P =⇒ ftF s›
and is-processT -3 : ‹s @ t ∈ T T P =⇒ s ∈ T T P›
and is-processT -4 : ‹s @ [3(r)] ∈ T T P =⇒ e 6= 3(r) =⇒ s @ [e] /∈ T T P›
〈proof 〉

lemmas is-processT -def-bis = is-processT -def [of ‹Rep-processT -›, folded TracesT .rep-eq]

lift-definition processptick-of-processT ::
‹(′a, ′r) processT ⇒ (′a, ′r) processptick›
is ‹λT . ({(s, X). s ∈ T T T ∧ X ⊆ − {e. s @ [e] ∈ T T T}}, {})›
〈proof 〉

lemma F-processptick-of-processT :
‹F (processptick-of-processT T) = {(s, X). s ∈ T T T ∧ X ⊆ − {e. s @ [e] ∈ T T

T}}›
and D-processptick-of-processT :
‹D (processptick-of-processT T) = {}›
and T-processptick-of-processT :
‹T (processptick-of-processT T) = T T T ›
〈proof 〉

lemmas processptick-of-processT -projs = F-processptick-of-processT
D-processptick-of-processT T-processptick-of-processT

Now the big results

lemma bij-betw-det :
‹bij-betw processptick-of-processT UNIV {P :: (′a, ′r) processptick. determ P}›
(is ‹bij-betw processptick-of-processT ?S1 ?S2 ›)
〈proof 〉

17

lemma SKIPS-is-GlobalDet-SKIP : ‹SKIPS R = �r ∈ R. SKIP r›
〈proof 〉

lemma SKIP-Ndet-SKIP-is-SKIP-Det-SKIP : ‹SKIP r u SKIP s = SKIP r �
SKIP s›
〈proof 〉

theorem P-FD-some-det :
— In the generalization, since several terminations may occur after the same trace

in the initial process, we have to specify a choice.
fixes termination-choice :: ‹(′a, ′r) traceptick ⇒ ′r›
assumes ‹

∧
t. ∃ r . t @ [3(r)] ∈ T P =⇒ termination-choice t ∈ {r . t @ [3(r)]

∈ T P}›
defines ‹T ≡ {t ∈ T P. ∀ t ′ < t. (∃ r . t ′ @ [3(r)] ∈ T P) −→ t = t ′ @

[3(termination-choice t ′)]}›
shows ‹P vFD processptick-of-processT (Abs-processT T)›
〈proof 〉

theorem deterministic-iff-maximal-for-leFD:
‹determ P ←→ (∀Q. P vFD Q −→ P = Q)› for P :: ‹(′a, ′r) processptick›
— see TPC, chapter 9)
〈proof 〉

lemma ‹determ P =⇒ X ∈ R P =⇒ X ⊆ − P0›
〈proof 〉

We have the immediate powerful corollaries.

corollary (in After) deterministic-process-eq-SKIPS-Det-Mprefix-After :
‹determ P =⇒ P = SKIPS {r . 3(r) ∈ P0} � (�a ∈ {a. ev a ∈ P0} → P after

a)›
〈proof 〉

lemma deterministic-imp-initial-tick-iff-eq-SKIP [simp] :
‹determ P =⇒ 3(r) ∈ P0 ←→ P = SKIP r›
〈proof 〉

lemma deterministic-imp-constraints-on-initials :
‹determ P =⇒ P0 = {} ∨ {a. ev a ∈ P0} = {} ∧ (∃ r . P0 = {3(r)}) ∨

{a. ev a ∈ P0} 6= {} ∧ {r . 3(r) ∈ P0} = {}›
〈proof 〉

18

corollary (in After) deterministic-process-eq-SKIP-or-Mprefix-After :
‹determ P =⇒ P = (if ∃ r . 3(r) ∈ P0 then SKIP (THE r . P0 = {3(r)})

else �a ∈ {a. ev a ∈ P0} → P after a)›
〈proof 〉

2.2.4 Characterization with After
lemma (in AfterExt) deterministic-iff-accepts-initials-After trace:

‹determ P ←→ (∀ t ∈ T P. tF t −→ determ0 (P afterT t))›
〈proof 〉

2.2.5 Operators preserving Determinism
lemma deterministic-Mprefix-iff :

‹determ (�a ∈ A → P a) ←→ (∀ a ∈ A. determ (P a))›
〈proof 〉

corollary deterministic-write0-iff : ‹determ (a → P) ←→ determ P›
〈proof 〉

corollary deterministic-write-iff : ‹determ (c!a → P) ←→ determ P›
〈proof 〉

corollary deterministic-inj-on-read-iff :
‹inj-on c A =⇒ determ (c?a ∈ A → P a) ←→ (∀ a ∈ A. determ (P a))›
〈proof 〉

lemma deterministic-inj-Renaming :
‹determ (Renaming P f g)› if ‹inj f › ‹inj g› ‹determ P›
〈proof 〉

lemma deterministic-bij-Renaming-iff :
‹determ (Renaming P f g) ←→ determ P› if ‹bij f › and ‹bij g›
〈proof 〉

lemma deterministic-Throw : ‹determ (P Θ a ∈ A. Q a)›
if ‹determ P› ‹

∧
a. a ∈ A =⇒ a ∈ α(P) =⇒ determ (Q a)›

〈proof 〉

lemma T-snoc-tick-imp-no-continuation-if-deterministic :
‹u = [] ∧ e = 3(r)› if ‹determ P› ‹t @ u @ [e] ∈ T P› ‹t @ [3(r)] ∈ T P›
〈proof 〉

19

lemma T-snoc-ev-imp-no-tick-continuation-if-deterministic :
‹u 6= [] ∧ is-ev (hd u) ∨ is-ev e› if ‹determ P› ‹t @ u @ [e] ∈ T P› ‹t @ [ev a]
∈ T P›
〈proof 〉

lemma deterministic-Seqptick : ‹determ (P ;3 Q)›
if ‹determ P› ‹

∧
r . r ∈ 3s(P) =⇒ determ (Q r)›

〈proof 〉

corollary deterministic-Seq : ‹determ P =⇒ determ Q =⇒ determ (P ; Q)›
〈proof 〉

lemma (in After) initial-imp-deterministic-After :
‹ev e ∈ P0 =⇒ determ P =⇒ determ (P after e)›
〈proof 〉

lemma (in AfterExt) initial-imp-deterministic-After tick:
‹e ∈ P0 =⇒ (case e of 3(r) ⇒ determ (Ω P r)) =⇒
determ P =⇒ determ (P after3 e)›
〈proof 〉

2.2.6 Operators not (always) preserving Determinism
lemma deterministic-imp-accepts-initials : ‹determ P =⇒ determ0 P›
〈proof 〉

corollary deterministic-SKIPS-iff : ‹determ (SKIPS R) ←→ R = {} ∨ (∃ r . R =
{r})›
〈proof 〉

lemma deterministic-Det:
‹determ P =⇒ determ Q =⇒
range tick ∩ P0 ∩ Q0 6= {} ∨ P0 ∩ Q0 = {} ∧ range tick ∩ (P0 ∪ Q0) = {}

=⇒ determ (P � Q)›
〈proof 〉

2.3 Application to Operational Semantics
lemma (in OpSemFD) tickFree-trace-trans-preserves-deterministic:

20

‹(P :: (′a, ′r) processptick) FD ∗ t Q =⇒ tF t =⇒ deterministic P =⇒ deter-
ministic Q›
〈proof 〉

lemma deterministic-imp-Refusals-iff : ‹deterministic P =⇒ X ∈ R P ←→ X ∩
P0 = {}›
〈proof 〉

lemma (in OpSemFD) deterministic-F-trace-trans-reality-check:
‹deterministic P =⇒ tF t =⇒
(t, X) ∈ F (P :: (′a, ′r) processptick) ←→ (∃Q. (P FD ∗t Q) ∧ X ∩ Q0 =

{})›
〈proof 〉

lemma ‹¬ deterministic ((a → SKIP undefined) � SKIP undefined)›
〈proof 〉

21

22

Chapter 3

ProcOmata: Functional
Automata embedded into
CSP Processes

We will often have to perform induction on both the list of automata and
the list of states, provided that they have the same length.
lemma induct-2-lists012 [consumes 1 , case-names Nil single Cons] :

‹[[length xs = length ys; P [] [];
∧

x1 y1 . P [x1] [y1];∧
x1 x2 xs y1 y2 ys. length xs = length ys =⇒ P xs ys =⇒

P (x2 # xs) (y2 # ys) =⇒ P (x1 # x2 # xs) (y1 # y2 # ys)]]
=⇒ P xs ys›
〈proof 〉

lemma nat-induct-012 [case-names 0 1 2 Suc]:
‹[[P 0 ; P (Suc 0); P (Suc (Suc 0));

∧
k. Suc (Suc 0) ≤ k =⇒ P k =⇒ P (Suc

k)]] =⇒ P n›
〈proof 〉

The following results will be moved to Restriction_Spaces in the future.
lemma restriction-shift-iterated :

‹restriction-shift (f ^^ k) (int k ∗ m)›
if ‹restriction-shift f m› for f :: ‹ ′a ⇒ ′a :: restriction-space›
〈proof 〉

lemma non-destructive-iterated :
‹non-destructive f =⇒ non-destructive (f ^^ k)›
for f :: ‹ ′a ⇒ ′a :: restriction-space›
〈proof 〉

lemma constructive-iterated :
‹constructive (f ^^ k)› if ‹0 < k› ‹constructive f ›

for f :: ‹ ′a ⇒ ′a :: restriction-space›
〈proof 〉

23

lemma restriction-fix-unique-iterated :
‹[[0 < k; constructive f ; (f ^^ k) x = x]] =⇒ (υ x. f x) = x›
〈proof 〉

lemma restriction-fix-iterated :
‹0 < k =⇒ constructive f =⇒ (υ x. (f ^^ k) x) = (υ x. f x)›
〈proof 〉

corollary restriction-fix-ind-iterated
[consumes 1 , case-names constructive adm base step]:
‹P (υ x. f x)› if ‹0 < k› ‹constructive f › ‹adm↓ P› ‹P x› ‹

∧
x. P x =⇒ P ((f ^^

k) x)›
〈proof 〉

3.1 Definitions
3.1.1 Non-deterministic and deterministic Automata
unbundle option-type-syntax

type-synonym (′σ, ′a) enabl = ‹ ′σ ⇒ ′a set›
type-synonym (′σ, ′a, ′σ ′) trans = ‹ ′σ ⇒ ′a ⇒ ′σ ′›
type-synonym (′σ, ′a) transd = ‹(′σ, ′a, ′σ option) trans›
type-synonym (′σ, ′a) transnd = ‹(′σ, ′a, ′σ set) trans›

record (′σ, ′a, ′σ ′, ′r) A =
τ :: ‹(′σ, ′a, ′σ ′) trans›
ω :: ‹ ′σ ⇒ ′r›

type-synonym (′σ, ′a, ′r) Ad = ‹(′σ, ′a, ′σ option, ′r option) A›
type-synonym (′σ, ′a, ′r , ′α) Ad-scheme = ‹(′σ, ′a, ′σ option, ′r option, ′α)
A-scheme›
type-synonym (′σ, ′a, ′r) And = ‹(′σ, ′a, ′σ set, ′r set) A›
type-synonym (′σ, ′a, ′r , ′α) And-scheme = ‹(′σ, ′a, ′σ set, ′r set, ′α) A-scheme›

3.1.2 Enableness
consts ε :: ‹(′σ, ′a, ′σ ′, ′r ′, ′α) A-scheme ⇒ (′σ, ′a) enabl›
overloading
εd ≡ ‹ε :: (′σ, ′a, ′σ option, ′r ′, ′α) A-scheme ⇒ (′σ, ′a) enabl›
εnd ≡ ‹ε :: (′σ, ′a, ′σ set, ′r ′, ′α) A-scheme ⇒ (′σ, ′a) enabl›

begin
fun εd :: ‹(′σ, ′a, ′σ option, ′r ′, ′α) A-scheme ⇒ (′σ, ′a) enabl›

where ‹εd A σ = {a. τ A σ a 6= ♦}›

24

fun εnd :: ‹(′σ, ′a, ′σ set, ′r ′, ′α) A-scheme ⇒ (′σ, ′a) enabl›
where ‹εnd A σ = {a. τ A σ a 6= {}}›

end

lemmas ε-simps[simp del] = εd.simps εnd.simps

3.1.3 States allowing Termination
consts % :: ‹(′σ, ′a, ′σ ′, ′r ′, ′α) A-scheme ⇒ ′σ set›
overloading
%d ≡ ‹% :: (′σ, ′a, ′σ ′, ′r option, ′α) A-scheme ⇒ ′σ set›
%nd ≡ ‹% :: (′σ, ′a, ′σ ′, ′r set, ′α) A-scheme ⇒ ′σ set›

begin
fun %d :: ‹(′σ, ′a, ′σ ′, ′r option, ′α) A-scheme ⇒ ′σ set›

where ‹%d A = {σ. ω A σ 6= ♦}›
fun %nd :: ‹(′σ, ′a, ′σ ′, ′r set, ′α) A-scheme ⇒ ′σ set›

where ‹%nd A = {σ. ω A σ 6= {}}›
end

lemmas %-simps[simp del] = %d.simps %nd.simps

3.1.4 Reachability
inductive-set Rd :: ‹(′σ, ′a, ′r , ′α) Ad-scheme ⇒ ′σ ⇒ ′σ set›

for A :: ‹(′σ, ′a, ′r , ′α) Ad-scheme› and σ :: ′σ
where init : ‹σ ∈ Rd A σ›
| step : ‹σ ′ ∈ Rd A σ =⇒ bσ ′′c = τ A σ ′ a =⇒ σ ′′ ∈ Rd A σ›

inductive-set Rnd :: ‹(′σ, ′a, ′r , ′α) And-scheme ⇒ ′σ ⇒ ′σ set›
for A :: ‹(′σ, ′a, ′r , ′α) And-scheme› and σ :: ′σ
where init : ‹σ ∈ Rnd A σ›
| step : ‹σ ′ ∈ Rnd A σ =⇒ σ ′′ ∈ τ A σ ′ a =⇒ σ ′′ ∈ Rnd A σ›

lemma Rd-trans: ‹σ ′′ ∈ Rd A σ ′ =⇒ σ ′ ∈ Rd A σ =⇒ σ ′′ ∈ Rd A σ›
〈proof 〉

lemma Rnd-trans: ‹σ ′′ ∈ Rnd A σ ′ =⇒ σ ′ ∈ Rnd A σ =⇒ σ ′′ ∈ Rnd A σ›
〈proof 〉

3.1.5 Morphisms

Our morphisms are defined considering that, except from τ , the fields remain
unchanged.
definition from-det-to-ndet ::

‹(′σ, ′a, ′r , ′α) Ad-scheme ⇒ (′σ, ′a, ′r , ′α) And-scheme›
where ‹from-det-to-ndet A ≡

(|τ = λσ a. case τ A σ a of bσ ′c ⇒ {σ ′} | ♦ ⇒ {},
ω = λσ. case ω A σ of brc ⇒ {r} | ♦ ⇒ {}, . . . = more A|)›

25

definition from-ndet-to-det ::
‹(′σ, ′a, ′r , ′α) And-scheme ⇒ (′σ, ′a, ′r , ′α) Ad-scheme›
where ‹from-ndet-to-det A ≡

(|τ = λσ a. if τ A σ a = {} then ♦ else bTHE σ ′. σ ′ ∈ τ A σ ac,
ω = λσ. if ω A σ = {} then ♦ else bTHE r . r ∈ ω A σc, . . . = more A|)›

definition from-σ-to-σsd ::
‹(′σ, ′a, ′r , ′α) Ad-scheme ⇒ (′σ list, ′a, ′r , ′α) Ad-scheme›
where ‹from-σ-to-σsd A ≡

(|τ = λσs a. case τ A (hd σs) a of bσ ′c ⇒ b[σ ′]c | ♦ ⇒ ♦,
ω = λσs. ω A (hd σs), . . . = more A|)›

definition from-σ-to-σsnd ::
‹(′σ, ′a, ′r , ′α) And-scheme ⇒ (′σ list, ′a, ′r , ′α) And-scheme›
where ‹from-σ-to-σsnd A ≡

(|τ = λσs a. {[σ ′] |σ ′. σ ′ ∈ τ A (hd σs) a},
ω = λσs. ω A (hd σs), . . . = more A|)›

definition from-σs-to-σd ::
‹(′σ list, ′a, ′r , ′α) Ad-scheme ⇒ (′σ, ′a, ′r , ′α) Ad-scheme›
where ‹from-σs-to-σd A ≡

(|τ = λσ a. case τ A [σ] a of bσs ′c ⇒ bhd σs ′c | ♦ ⇒ ♦,
ω = λσ. ω A [σ], . . . = more A|)›

definition from-σs-to-σnd ::
‹(′σ list, ′a, ′r , ′α) And-scheme ⇒ (′σ, ′a, ′r , ′α) And-scheme›
where ‹from-σs-to-σnd A ≡

(|τ = λσ a. {hd σs ′ |σs ′. σs ′ ∈ τ A [σ] a},
ω = λσ. ω A [σ], . . . = more A|)›

definition from-singl-to-listd ::
‹(′σ, ′a, ′r , ′α) Ad-scheme ⇒ (′σ list, ′a, ′r list, ′α) Ad-scheme›
where ‹from-singl-to-listd A ≡

(|τ = λσs a. case τ A (hd σs) a of bσ ′c ⇒ b[σ ′]c | ♦ ⇒ ♦,
ω = λσs. case ω A (hd σs) of brc ⇒ b[r]c | ♦ ⇒ ♦, . . . = more A|)›

definition from-singl-to-listnd ::
‹(′σ, ′a, ′r , ′α) And-scheme ⇒ (′σ list, ′a, ′r list, ′α) And-scheme›
where ‹from-singl-to-listnd A ≡

(|τ = λσs a. {[σ ′] |σ ′. σ ′ ∈ τ A (hd σs) a},
ω = λσs. {[r] |r . r ∈ ω A (hd σs)}, . . . = more A|)›

definition from-list-to-singld ::
‹(′σ list, ′a, ′r list, ′α) Ad-scheme ⇒ (′σ, ′a, ′r , ′α) Ad-scheme›
where ‹from-list-to-singld A ≡

(|τ = λσ a. case τ A [σ] a of bσs ′c ⇒ bhd σs ′c | ♦ ⇒ ♦,
ω = λσ. case ω A [σ] of brsc ⇒ bhd rsc | ♦ ⇒ ♦, . . . = more A|)›

definition from-list-to-singlnd ::
‹(′σ list, ′a, ′r list, ′α) And-scheme ⇒ (′σ, ′a, ′r , ′α) And-scheme›
where ‹from-list-to-singlnd A ≡

(|τ = λσ a. {hd σs ′ |σs ′. σs ′ ∈ τ A [σ] a},
ω = λσ. {hd rs |rs. rs ∈ ω A [σ]}, . . . = more A|)›

26

lemmas det-ndet-conv-defs = from-det-to-ndet-def from-ndet-to-det-def
and σ-σs-conv-defs = from-σ-to-σsd-def from-σ-to-σsnd-def
from-σs-to-σd-def from-σs-to-σnd-def
and singl-list-conv-defs = from-singl-to-listd-def from-singl-to-listnd-def
from-list-to-singld-def from-list-to-singlnd-def

bundle functional-automata-morphisms-syntax begin

notation from-det-to-ndet (‹〈〈-〉〉d↪→nd› [0])
notation from-ndet-to-det (‹〈〈-〉〉nd d› [0])
notation from-σ-to-σsd (‹d〈〈-〉〉σ↪→σs› [0])
notation from-σ-to-σsnd (‹nd〈〈-〉〉σ↪→σs› [0])
notation from-σs-to-σd (‹d〈〈-〉〉σs σ› [0])
notation from-σs-to-σnd (‹nd〈〈-〉〉σs σ› [0])
notation from-singl-to-listd (‹d〈〈-〉〉singl↪→list› [0])
notation from-singl-to-listnd (‹nd〈〈-〉〉singl↪→list› [0])
notation from-list-to-singld (‹d〈〈-〉〉list singl› [0])
notation from-list-to-singlnd (‹nd〈〈-〉〉list singl› [0])

end

unbundle functional-automata-morphisms-syntax

lemma morphisms-A-scheme-more-simps [simp] :
‹more 〈〈A〉〉d↪→nd = more A› ‹more 〈〈B〉〉nd d = more B›
‹more d〈〈C 〉〉σ↪→σs = more C › ‹more nd〈〈D〉〉σ↪→σs = more D›
‹more d〈〈E〉〉σs σ = more E› ‹more nd〈〈F〉〉σs σ = more F›
‹more d〈〈G〉〉singl↪→list = more G› ‹more nd〈〈H 〉〉singl↪→list = more H ›
‹more d〈〈I 〉〉list singl = more I › ‹more nd〈〈J 〉〉list singl = more J ›
〈proof 〉

3.1.6 Generic update Functions
definition update-both where ‹update-both A0 A1 σ0 σ1 e f ≡ f (τ A0 σ0 e) (τ
A1 σ1 e)›

definition update-left where ‹update-left A0 σ0 σ1 e f g ≡ f (τ A0 σ0 e) (g σ1)›

definition update-right where ‹update-right A1 σ0 σ1 e f g ≡ f (g σ0) (τ A1 σ1

e)›

lemmas update-defs[simp] = update-both-def update-left-def update-right-def

abbreviation f-up-set where ‹f-up-set f B C ≡ {f s t| s t. (s, t) ∈ B × C}›

27

abbreviation f-up-opt where ‹f-up-opt f s t ≡ case s of ♦⇒ ♦ | bs ′c ⇒ map-option
(f s ′) t›

3.1.7 Assumptions on Automata
definition finite-trans :: ‹(′σ, ′a, ′r , ′α) And-scheme ⇒ bool›

where ‹finite-trans A ≡ ∀σ a. finite (τ A σ a)›

lemma finite-trans-morphisms-simps[simp]:
‹finite-trans 〈〈A〉〉d↪→nd›
‹finite-trans B =⇒ finite-trans nd〈〈B〉〉σ↪→σs›
‹finite-trans C =⇒ finite-trans nd〈〈C 〉〉σs σ›
‹finite-trans D =⇒ finite-trans nd〈〈D〉〉singl↪→list›
‹finite-trans E =⇒ finite-trans nd〈〈E〉〉list singl›
〈proof 〉

definition at-most-1-elem :: ‹(′σ, ′a, ′r , ′α) And-scheme ⇒ bool›
where ‹at-most-1-elem A ≡

(∀σ a. τ A σ a = {} ∨ (∃σ ′. τ A σ a = {σ ′})) ∧
(∀σ. ω A σ = {} ∨ (∃ r . ω A σ = {r}))›

lemma at-most-1-elem-def-bis :
‹at-most-1-elem A ←→ (∀σ a. ∃σ ′. τ A σ a ⊆ {σ ′}) ∧ (∀σ. ∃ r . ω A σ ⊆ {r})›
〈proof 〉

lemma at-most-1-elemI :
‹[[
∧
σ a. τ A σ a = {} ∨ (∃σ ′. τ A σ a = {σ ′});∧
σ. ω A σ = {} ∨ (∃ r . ω A σ = {r})]] =⇒ at-most-1-elem A›

〈proof 〉

lemma at-most-1-elemE :
‹[[τ A σ a = {} =⇒ thesis;

∧
σ ′. τ A σ a = {σ ′} =⇒ thesis]] =⇒ thesis›

‹[[ω A σ = {} =⇒ thesis;
∧

r . ω A σ = {r} =⇒ thesis]] =⇒ thesis›
if ‹at-most-1-elem A›
〈proof 〉

definition at-most-1-elem-trans :: ‹(′σ, ′a, ′r , ′α) And-scheme ⇒ bool›
where ‹at-most-1-elem-trans A ≡ ∀σ a. τ A σ a = {} ∨ (∃σ ′. τ A σ a = {σ ′})›

lemma at-most-1-elem-trans-def-bis :
‹at-most-1-elem-trans A ←→ (∀σ a. ∃σ ′. τ A σ a ⊆ {σ ′})›
〈proof 〉

lemma at-most-1-elem-transI :
‹[[
∧
σ a. τ A σ a = {} ∨ (∃σ ′. τ A σ a = {σ ′})]] =⇒ at-most-1-elem-trans A›

〈proof 〉

28

lemma at-most-1-elem-transE :
‹[[τ A σ a = {} =⇒ thesis;

∧
σ ′. τ A σ a = {σ ′} =⇒ thesis]] =⇒ thesis›

if ‹at-most-1-elem-trans A›
〈proof 〉

lemma at-most-1-elem-imp-at-most-1-elem-trans :
‹at-most-1-elem A =⇒ at-most-1-elem-trans A›
〈proof 〉

definition length-1-transd :: ‹(′σ list, ′a, ′r , ′α) Ad-scheme ⇒ bool›
where ‹length-1-transd A ≡

∀σs a. case τ A σs a of ♦ ⇒ True | bσs ′c ⇒ length σs ′ = Suc 0 ›

lemma length-1-transdI :
‹[[
∧
σs a σs ′. τ A σs a = bσs ′c =⇒ length σs ′ = Suc 0]] =⇒ length-1-transd A›

〈proof 〉

lemma length-1-transdE :
‹[[length-1-transd A; τ A σs a = bσs ′c;

∧
σ. σs ′ = [σ] =⇒ thesis]] =⇒ thesis›

〈proof 〉

definition length-1-transnd :: ‹(′σ list, ′a, ′r , ′α) And-scheme ⇒ bool›
where ‹length-1-transnd A ≡ ∀σs a. ∀σs ′ ∈ τ A σs a. length σs ′ = Suc 0 ›

lemma length-1-transndI :
‹[[
∧
σs a σs ′. σs ′ ∈ τ A σs a =⇒ length σs ′ = Suc 0]] =⇒ length-1-transnd A›

〈proof 〉

lemma length-1-transndE :
‹[[length-1-transnd A; σs ′ ∈ τ A σs a;

∧
σ. σs ′ = [σ] =⇒ thesis]] =⇒ thesis›

〈proof 〉

definition length-1 d :: ‹(′σ list, ′a, ′r list, ′α) Ad-scheme ⇒ bool›
where ‹length-1 d A ≡

(∀σs a. case τ A σs a of ♦ ⇒ True | bσs ′c ⇒ length σs ′ = Suc 0) ∧
(∀σs. case ω A σs of ♦ ⇒ True | brsc ⇒ length rs = Suc 0)›

lemma length-1 dI :
‹[[
∧
σs a σs ′. τ A σs a = bσs ′c =⇒ length σs ′ = Suc 0 ;∧
σs rs. ω A σs = brsc =⇒ length rs = Suc 0]] =⇒ length-1 d A›

〈proof 〉

lemma length-1 dE :
‹[[length-1 d A; τ A σs a = bσs ′c;

∧
σ. σs ′ = [σ] =⇒ thesis]] =⇒ thesis›

29

‹[[length-1 d A; ω A σs = brsc;
∧

r . rs = [r] =⇒ thesis]] =⇒ thesis›
〈proof 〉

definition length-1nd :: ‹(′σ list, ′a, ′r list, ′α) And-scheme ⇒ bool›
where ‹length-1nd A ≡ (∀σs a. ∀σs ′ ∈ τ A σs a. length σs ′ = Suc 0) ∧

(∀σs. ∀ rs ∈ ω A σs. length rs = Suc 0)›

lemma length-1ndI :
‹[[
∧
σs a σs ′. σs ′ ∈ τ A σs a =⇒ length σs ′ = Suc 0 ;∧
σs rs. rs ∈ ω A σs =⇒ length rs = Suc 0]] =⇒ length-1nd A›

〈proof 〉

lemma length-1ndE :
‹[[length-1nd A; σs ′ ∈ τ A σs a;

∧
σ. σs ′ = [σ] =⇒ thesis]] =⇒ thesis›

‹[[length-1nd A; rs ∈ ω A σs;
∧

r . rs = [r] =⇒ thesis]] =⇒ thesis›
〈proof 〉

definition indep-enabl :: ‹(′σ0,
′a, ′r0,

′α) Ad-scheme ⇒ ′σ0 ⇒ ′a set ⇒ (′σ1,
′a,

′r1,
′β) Ad-scheme ⇒ ′σ1 ⇒ bool›

where ‹indep-enabl A0 σ0 E A1 σ1 ≡ ∀ t0 ∈ Rd A0 σ0. ∀ t1 ∈ Rd A1 σ1. ε A0

t0 ∩ ε A1 t1 ⊆ E›

lemma indep-enablI :
‹(
∧

t0 t1. t0 ∈ Rd A0 σ0 =⇒ t1 ∈ Rd A1 σ1 =⇒ ε A0 t0 ∩ ε A1 t1 ⊆ E)
=⇒ indep-enabl A0 σ0 E A1 σ1›

and indep-enablD :
‹[[indep-enabl A0 σ0 E A1 σ1; t0 ∈ Rd A0 σ0; t1 ∈ Rd A1 σ1]] =⇒ ε A0 t0 ∩ ε

A1 t1 ⊆ E›
〈proof 〉

definition %-disjoint-ε :: ‹(′σ, ′a, ′σ ′, ′r ′, ′α) A-scheme ⇒ bool›
where ‹%-disjoint-ε A ≡ ∀σ ∈ % A. ε A σ = {}›

lemma %-disjoint-εI : ‹(
∧
σ. σ ∈ % A =⇒ ε A σ = {}) =⇒ %-disjoint-ε A›

and %-disjoint-εD : ‹%-disjoint-ε A =⇒ σ ∈ % A =⇒ ε A σ = {}›
〈proof 〉

definition at-most-1-elem-term :: ‹(′σ, ′a, ′r , ′α) And-scheme ⇒ bool›
where ‹at-most-1-elem-term A ≡ ∀σ. ω A σ = {} ∨ (∃ r . ω A σ = {r})›

lemma at-most-1-elem-term-def-bis :

30

‹at-most-1-elem-term A ←→ (∀σ. ∃ r . ω A σ ⊆ {r})›
〈proof 〉

lemma at-most-1-elem-termI :
‹[[
∧
σ. ω A σ = {} ∨ (∃ r . ω A σ = {r})]] =⇒ at-most-1-elem-term A›

〈proof 〉

lemma at-most-1-elem-termE :
‹[[ω A σ = {} =⇒ thesis;

∧
r . ω A σ = {r} =⇒ thesis]] =⇒ thesis›

if ‹at-most-1-elem-term A›
〈proof 〉

lemma at-most-1-elem-imp-at-most-1-elem-term :
‹at-most-1-elem A =⇒ at-most-1-elem-term A›
〈proof 〉

3.2 First Properties

3.2.1 ε, % and ω first equalities
lemma base-trans-ε[simp]:

‹ε ((|τ = λσ a. ♦, ω = λσ. ♦, . . . = some|) :: (′σ, ′a, ′r , ′α) Ad-scheme) σ = {}›
‹ε ((|τ = λσ a. {}, ω = λσ. {}, . . . = some|) :: (′σ, ′a, ′r , ′α) And-scheme) σ =
{}›
〈proof 〉

lemma base-trans-%[simp]:
‹% ((|τ = λσ a. ♦, ω = λσ. ♦, . . . = some|) :: (′σ, ′a, ′r , ′α) Ad-scheme) = {}›
‹% ((|τ = λσ a. {}, ω = λσ. {}, . . . = some|) :: (′σ, ′a, ′r , ′α) And-scheme) = {}›
〈proof 〉

lemma σ-σs-conv-ε[simp]:
‹ε d〈〈A〉〉σ↪→σs σs = ε A (hd σs)› ‹ε nd〈〈B〉〉σ↪→σs σs = ε B (hd σs)›
‹ε d〈〈C 〉〉σs σ σ = ε C [σ]› ‹ε nd〈〈D〉〉σs σ σ = ε D [σ]›
〈proof 〉

lemma σ-σs-conv-%[simp]:
‹% d〈〈A〉〉σ↪→σs = {σs. hd σs ∈ % A}› ‹% nd〈〈B〉〉σ↪→σs = {σs. hd σs ∈ % B}›
‹% d〈〈C 〉〉σs σ = {σ. [σ] ∈ % C}› ‹% nd〈〈D〉〉σs σ = {σ. [σ] ∈ % D}›
〈proof 〉

lemma singl-list-conv-ε[simp]:
‹ε d〈〈A〉〉singl↪→list σs = ε A (hd σs)› ‹ε nd〈〈B〉〉singl↪→list σs = ε B (hd σs)›
‹ε d〈〈C 〉〉list singl σ = ε C [σ]› ‹ε nd〈〈D〉〉list singl σ = ε D [σ]›
〈proof 〉

lemma singl-list-conv-%[simp]:

31

‹% d〈〈A〉〉singl↪→list = {σs. hd σs ∈ % A}› ‹% nd〈〈B〉〉singl↪→list = {σs. hd σs ∈ %
B}›

‹% d〈〈C 〉〉list singl = {σ. [σ] ∈ % C}› ‹% nd〈〈D〉〉list singl = {σ. [σ] ∈ % D}›
〈proof 〉

lemma det-ndet-conv-ε[simp]: ‹ε 〈〈A〉〉d↪→nd = ε A› ‹ε 〈〈B〉〉nd d = ε B›
〈proof 〉

lemma det-ndet-conv-%[simp]: ‹% 〈〈A〉〉d↪→nd = % A› ‹% 〈〈B〉〉nd d = % B›
〈proof 〉

lemma ω-from-det-to-ndet :
‹ω 〈〈A〉〉d↪→nd = (λσ. case ω A σ of brc ⇒ {r} | ♦ ⇒ {})›
〈proof 〉

lemma ε-ω-useless [simp] :
‹ε (A(|ω := some-ω|)) = ε A› ‹ε (B(|ω := some-ω ′|)) = ε B›
for A :: ‹(′σ, ′a, ′σ option, ′r option, ′α) A-scheme›

and B :: ‹(′σ, ′a, ′σ set, ′r set, ′α) A-scheme›
〈proof 〉

lemma %-disjoint-ε-updated-ω [simp] :
‹%-disjoint-ε (A(|ω := λσ. ♦|))›
‹%-disjoint-ε (B(|ω := λσ. {}|))›
〈proof 〉

lemma %-disjoint-ε-det-ndet-conv-iff [simp] :
‹%-disjoint-ε 〈〈A〉〉d↪→nd ←→ %-disjoint-ε A›
‹%-disjoint-ε 〈〈B〉〉nd d ←→ %-disjoint-ε B›
〈proof 〉

lemma at-most-1-elem-term-updated-ω [simp] :
‹at-most-1-elem-term (A(|ω := λσ. {}|))›
〈proof 〉

lemma at-most-1-elem-term-from-det-to-ndet [simp] :
‹at-most-1-elem-term 〈〈A〉〉d↪→nd›
〈proof 〉

lemma at-most-1-elem-term-unit [simp] :
‹at-most-1-elem-term (A :: (′σ, ′a, unit, ′α) And-scheme)›
〈proof 〉

3.2.2 Properties of our morphisms
method expand-A-scheme =

match conclusion in ‹A = B› for A B :: ‹(′σ, ′a, ′σ ′, ′r ′, ′α) A-scheme› ⇒

32

‹cases A, cases B›

lemma base-trans-det-ndet-conv:
‹〈〈(|τ = λσ a. ♦, ω = λσ. ♦, . . . = some|)〉〉d↪→nd =
(|τ = λσ a. {}, ω = λσ. {}, . . . = some|)›

‹〈〈(|τ = λσ a. {}, ω = λσ. {}, . . . = some|)〉〉nd d =
(|τ = λσ a. ♦, ω = λσ. ♦, . . . = some|)›
〈proof 〉

lemma from-det-to-ndet-σ-σs-conv-commute:
‹nd〈〈〈〈A〉〉d↪→nd〉〉σ↪→σs = 〈〈d〈〈A〉〉σ↪→σs〉〉d↪→nd› ‹nd〈〈〈〈B〉〉d↪→nd〉〉σs σ = 〈〈d〈〈B〉〉σs σ〉〉d↪→nd›
〈proof 〉

lemma from-det-to-ndet-singl-list-conv-commute:
‹nd〈〈〈〈A〉〉d↪→nd〉〉singl↪→list = 〈〈d〈〈A〉〉singl↪→list〉〉d↪→nd› ‹nd〈〈〈〈B〉〉d↪→nd〉〉list singl =
〈〈d〈〈B〉〉list singl〉〉d↪→nd›
〈proof 〉

lemma from-ndet-to-det-σ-σs-conv-commute:
‹at-most-1-elem-trans A =⇒ d〈〈〈〈A〉〉nd d〉〉σ↪→σs = 〈〈nd〈〈A〉〉σ↪→σs〉〉nd d›
‹at-most-1-elem-trans B =⇒ d〈〈〈〈B〉〉nd d〉〉σs σ = 〈〈nd〈〈B〉〉σs σ〉〉nd d›
〈proof 〉

lemma from-ndet-to-det-singl-list-conv-commute:
‹at-most-1-elem A =⇒ d〈〈〈〈A〉〉nd d〉〉singl↪→list = 〈〈nd〈〈A〉〉singl↪→list〉〉nd d›
‹at-most-1-elem B =⇒ d〈〈〈〈B〉〉nd d〉〉list singl = 〈〈nd〈〈B〉〉list singl〉〉nd d›
〈proof 〉

lemma behaviour-σ-σs-conv:
‹ε d〈〈A〉〉σ↪→σs [σ] = ε A σ›
‹τ d〈〈A〉〉σ↪→σs [σ] a = (case τ A σ a of ♦ ⇒ ♦ | btc ⇒ b[t]c)›
‹% d〈〈A〉〉σ↪→σs = {σs. hd σs ∈ % A}›
‹ω d〈〈A〉〉σ↪→σs [σ] = ω A σ›
‹ε nd〈〈B〉〉σ↪→σs [σ] = ε B σ›
‹τ nd〈〈B〉〉σ↪→σs [σ] a = {[σ ′] |σ ′. σ ′ ∈ τ B σ a}›
‹% nd〈〈B〉〉σ↪→σs = {σs. hd σs ∈ % B}›
‹ω nd〈〈B〉〉σ↪→σs [σ] = ω B σ›
‹ε d〈〈C 〉〉σs σ σ = ε C [σ]›
‹τ d〈〈C 〉〉σs σ σ a = (case τ C [σ] a of ♦ ⇒ ♦ | bσs ′c ⇒ bhd σs ′c)›
‹% d〈〈C 〉〉σs σ = {σ. [σ] ∈ % C}›
‹ω d〈〈C 〉〉σs σ σ = ω C [σ]›
‹ε nd〈〈D〉〉σs σ σ = ε D [σ]›
‹τ nd〈〈D〉〉σs σ σ a = {hd σs ′| σs ′. σs ′ ∈ τ D [σ] a}›
‹% nd〈〈D〉〉σs σ = {σ. [σ] ∈ % D}› ‹ω nd〈〈D〉〉σs σ σ = ω D [σ]›

33

〈proof 〉

lemma behaviour-singl-list-conv:
‹ε d〈〈A〉〉singl↪→list [σ] = ε A σ›
‹τ d〈〈A〉〉singl↪→list [σ] a = (case τ A σ a of ♦ ⇒ ♦ | btc ⇒ b[t]c)›
‹% d〈〈A〉〉singl↪→list = {σs. hd σs ∈ % A}›
‹ω d〈〈A〉〉singl↪→list [σ] = (case ω A σ of ♦ ⇒ ♦ | brc ⇒ b[r]c)›
‹ε nd〈〈B〉〉singl↪→list [σ] = ε B σ›
‹τ nd〈〈B〉〉singl↪→list [σ] a = {[σ ′] |σ ′. σ ′ ∈ τ B σ a}›
‹% nd〈〈B〉〉singl↪→list = {σs. hd σs ∈ % B}›
‹ω nd〈〈B〉〉singl↪→list [σ] = {[r] |r . r ∈ ω B σ}›
‹ε d〈〈C 〉〉list singl σ = ε C [σ]›
‹τ d〈〈C 〉〉list singl σ a = (case τ C [σ] a of ♦ ⇒ ♦ | bσs ′c ⇒ bhd σs ′c)›
‹% d〈〈C 〉〉list singl = {σ. [σ] ∈ % C}›
‹ω d〈〈C 〉〉list singl σ = (case ω C [σ] of ♦ ⇒ ♦ | brsc ⇒ bhd rsc)›
‹ε nd〈〈D〉〉list singl σ = ε D [σ]›
‹τ nd〈〈D〉〉list singl σ a = {hd σs ′| σs ′. σs ′ ∈ τ D [σ] a}›
‹% nd〈〈D〉〉list singl = {σ. [σ] ∈ % D}›
‹ω nd〈〈D〉〉list singl σ = {hd rs |rs. rs ∈ ω D [σ]}›
〈proof 〉

lemma empty-from-det-to-ndet-is-None-trans [simp] : ‹τ 〈〈A〉〉d↪→nd σ a = {} ←→
τ A σ a = ♦›
〈proof 〉

lemma at-most-1-elem-from-det-to-ndet [simp] : ‹at-most-1-elem 〈〈A〉〉d↪→nd›
〈proof 〉

lemma from-ndet-to-det-from-det-to-ndet [simp] : ‹〈〈〈〈A〉〉d↪→nd〉〉nd d = A›
〈proof 〉

lemma from-det-to-ndet-from-ndet-to-det [simp] :
‹〈〈〈〈A〉〉nd d〉〉d↪→nd = A› if ‹at-most-1-elem A›
〈proof 〉

theorem bij-betw-from-det-to-ndet :
‹bij-betw (λA. 〈〈A〉〉d↪→nd) UNIV {A. at-most-1-elem A}›
〈proof 〉

lemma bij-betw-from-ndet-to-det :
‹bij-betw (λA. 〈〈A〉〉nd d) {A. at-most-1-elem A} UNIV ›
〈proof 〉

34

lemma length-1-trans-from-σ-to-σs [simp] :
‹length-1-transd d〈〈A〉〉σ↪→σs› ‹length-1-transnd nd〈〈B〉〉σ↪→σs›
〈proof 〉

lemma τ -hd-from-σ-to-σs-eq [simp] :
‹τ d〈〈A〉〉σ↪→σs [hd σs] a = τ d〈〈A〉〉σ↪→σs σs a›
‹τ nd〈〈B〉〉σ↪→σs [hd σs] a = τ nd〈〈B〉〉σ↪→σs σs a›
〈proof 〉

lemma ω-hd-from-σ-to-σs-eq [simp] :
‹ω d〈〈A〉〉σ↪→σs [hd σs] = ω d〈〈A〉〉σ↪→σs σs›
‹ω nd〈〈B〉〉σ↪→σs [hd σs] = ω nd〈〈B〉〉σ↪→σs σs›
〈proof 〉

lemma from-σs-to-σ-from-σ-to-σs [simp] :
‹d〈〈d〈〈A〉〉σ↪→σs〉〉σs σ = A› ‹nd〈〈nd〈〈B〉〉σ↪→σs〉〉σs σ = B›
〈proof 〉

lemma from-σ-to-σs-from-σs-to-σ [simp] :
‹[[length-1-transd A;

∧
σs a. τ A [hd σs] a = τ A σs a;∧

σs. ω A [hd σs] = ω A σs]] =⇒ d〈〈d〈〈A〉〉σs σ〉〉σ↪→σs = A›
‹[[length-1-transnd B;

∧
σs a. τ B [hd σs] a = τ B σs a;∧

σs. ω B [hd σs] = ω B σs]] =⇒ nd〈〈nd〈〈B〉〉σs σ〉〉σ↪→σs = B›
〈proof 〉

theorem bij-betw-from-σ-to-σs :
‹bij-betw (λA. d〈〈A〉〉σ↪→σs) UNIV
{A. length-1-transd A ∧ (∀σs a. τ A [hd σs] a = τ A σs a) ∧ (∀σs. ω A [hd

σs] = ω A σs)}›
(is ‹bij-betw (λA. d〈〈A〉〉σ↪→σs) UNIV ?Sd›)
‹bij-betw (λB. nd〈〈B〉〉σ↪→σs) UNIV
{B. length-1-transnd B ∧ (∀σs a. τ B σs a = τ B [hd σs] a) ∧ (∀σs. ω B [hd

σs] = ω B σs)}›
〈proof 〉

lemma bij-betw-from-σs-to-σ :
‹bij-betw (λA. d〈〈A〉〉σs σ)
{A. length-1-transd A ∧ (∀σs a. τ A [hd σs] a = τ A σs a) ∧ (∀σs. ω A [hd

σs] = ω A σs)} UNIV ›
‹bij-betw (λB. nd〈〈B〉〉σs σ)
{B. length-1-transnd B ∧ (∀σs a. τ B σs a = τ B [hd σs] a) ∧ (∀σs. ω B [hd

σs] = ω B σs)} UNIV ›
〈proof 〉

lemma length-1-from-singl-to-list [simp] :

35

‹length-1 d d〈〈A〉〉singl↪→list› ‹length-1nd nd〈〈B〉〉singl↪→list›
〈proof 〉

lemma τ -hd-from-singl-to-list-eq [simp] :
‹τ d〈〈A〉〉singl↪→list [hd σs] a = τ d〈〈A〉〉singl↪→list σs a›
‹τ nd〈〈B〉〉singl↪→list [hd σs] a = τ nd〈〈B〉〉singl↪→list σs a›
〈proof 〉

lemma ω-hd-from-singl-to-list-eq [simp] :
‹ω d〈〈A〉〉singl↪→list [hd σs] = ω d〈〈A〉〉singl↪→list σs›
‹ω nd〈〈B〉〉singl↪→list [hd σs] = ω nd〈〈B〉〉singl↪→list σs›
〈proof 〉

lemma from-list-to-singl-from-singl-to-list [simp] :
‹d〈〈d〈〈A〉〉singl↪→list〉〉list singl = A› ‹nd〈〈nd〈〈B〉〉singl↪→list〉〉list singl = B›
〈proof 〉

lemma from-singl-to-list-from-list-to-singl [simp] :
‹[[length-1 d A;

∧
σs a. τ A [hd σs] a = τ A σs a;∧

σs. ω A [hd σs] = ω A σs]] =⇒ d〈〈d〈〈A〉〉list singl〉〉singl↪→list = A›
‹[[length-1nd B;

∧
σs a. τ B [hd σs] a = τ B σs a;∧

σs. ω B [hd σs] = ω B σs]] =⇒ nd〈〈nd〈〈B〉〉list singl〉〉singl↪→list = B›
〈proof 〉

theorem bij-betw-from-singl-to-list :
‹bij-betw (λA. d〈〈A〉〉singl↪→list) UNIV
{A. length-1 d A ∧ (∀σs a. τ A [hd σs] a = τ A σs a) ∧ (∀σs. ω A [hd σs] =

ω A σs)}›
(is ‹bij-betw (λA. d〈〈A〉〉singl↪→list) UNIV ?Sd›)
‹bij-betw (λB. nd〈〈B〉〉singl↪→list) UNIV
{B. length-1nd B ∧ (∀σs a. τ B σs a = τ B [hd σs] a) ∧ (∀σs. ω B [hd σs] =

ω B σs)}›
〈proof 〉

lemma bij-betw-from-list-to-singl :
‹bij-betw (λA. d〈〈A〉〉list singl)
{A. length-1 d A ∧ (∀σs a. τ A [hd σs] a = τ A σs a) ∧ (∀σs. ω A [hd σs] =

ω A σs)} UNIV ›
‹bij-betw (λB. nd〈〈B〉〉list singl)
{B. length-1nd B ∧ (∀σs a. τ B σs a = τ B [hd σs] a) ∧ (∀σs. ω B [hd σs] =

ω B σs)} UNIV ›
〈proof 〉

3.2.3 Reachability results (for Rd and Rnd)
lemma R-base-trans[simp]: ‹Rd (|τ = λσ a. ♦, ω = λσ. ♦, . . . = some|) = (λσ.
{σ})›

36

‹Rnd (|τ = λσ a. {}, ω = λσ. {}, . . . = some|) = (λσ. {σ})›
〈proof 〉

theorem Rnd-from-det-to-ndet : ‹Rnd 〈〈A〉〉d↪→nd σ = Rd A σ›
〈proof 〉

lemma bij-betw-Rnd-if-same-τ : ‹bij-betw f (Rnd B0 σ0) (Rnd B1 (f σ0))›
if ‹inj-on f (Rnd B0 σ0)› and ‹

∧
σ0

′ a. σ0
′ ∈ Rnd B0 σ0 =⇒ τ B1 (f σ0

′) a =
f ‘ τ B0 σ0

′ a›
〈proof 〉

lemma bij-betw-Rd-if-same-τ : ‹bij-betw f (Rd A0 σ0) (Rd A1 (f σ0))›
if ‹inj-on f (Rd A0 σ0)› and ‹

∧
σ0

′ a. σ0
′ ∈ Rd A0 σ0 =⇒ τ A1 (f σ0

′) a =
map-option f (τ A0 σ0

′ a)›
〈proof 〉

lemmas same-τ -implies-same-Rnd = bij-betw-Rnd-if-same-τ [where f = id, sim-
plified bij-betw-def , simplified]

and same-τ -implies-same-Rd = bij-betw-Rd-if-same-τ [where f = id, simplified
bij-betw-def option.map-id, simplified]

corollary Rd-ω-useless [simp] : ‹Rd (A(|ω := some-ω|)) σ = Rd A σ›
〈proof 〉

corollary Rnd-ω-useless [simp] : ‹Rnd (A(|ω := some-ω|)) σ = Rnd A σ›
〈proof 〉

corollary indep-enabl-ω-useless [simp] :
‹indep-enabl (A0(|ω := some-ω|)) σ0 E A1 σ1 ←→ indep-enabl A0 σ0 E A1 σ1›
‹indep-enabl A0 σ0 E (A1(|ω := some-ω|)) σ1 ←→ indep-enabl A0 σ0 E A1 σ1›
〈proof 〉

method R-subset-method uses defs opt induct init simps =
induct rule: induct, auto simp add: init defs ε-simps split: if-splits,
(metis (no-types, opaque-lifting) simps)+

method Rd-subset-method uses defs opt =
R-subset-method defs: defs opt: opt induct: Rd.induct init: Rd.init simps: Rd.simps

method Rnd-subset-method uses defs opt =
R-subset-method defs: defs opt: opt induct: Rnd.induct init: Rnd.init simps:

Rnd.simps

lemma Rnd-from-σ-to-σs-description: ‹Rnd nd〈〈B〉〉σ↪→σs [σ] = {[σ ′]| σ ′. σ ′ ∈ Rnd

37

B σ}›
〈proof 〉

lemma Rd-from-σ-to-σs-description: ‹Rd d〈〈A〉〉σ↪→σs [σ] = {[σ ′]| σ ′. σ ′ ∈ Rd A
σ}›
〈proof 〉

lemma Rnd-from-singl-to-list-description: ‹Rnd nd〈〈B〉〉singl↪→list [σ] = {[σ ′]| σ ′.
σ ′ ∈ Rnd B σ}›
〈proof 〉

lemma Rd-from-singl-to-list-description: ‹Rd d〈〈A〉〉singl↪→list [σ] = {[σ ′]| σ ′. σ ′ ∈
Rd A σ}›
〈proof 〉

lemma length-Rd-from-σ-to-σs:
‹σs ′ ∈ Rd d〈〈A〉〉σ↪→σs σs =⇒ σs ′ = σs ∨ length σs ′ = 1 ›
〈proof 〉

lemma length-Rnd-from-σ-to-σs:
‹σs ′ ∈ Rnd nd〈〈B〉〉σ↪→σs σs =⇒ σs ′ = σs ∨ length σs ′ = 1 ›
〈proof 〉

lemma length-Rd-from-singl-to-list:
‹σs ′ ∈ Rd d〈〈A〉〉singl↪→list σs =⇒ σs ′ = σs ∨ length σs ′ = 1 ›
〈proof 〉

lemma length-Rnd-from-singl-to-list:
‹σs ′ ∈ Rnd nd〈〈B〉〉singl↪→list σs =⇒ σs ′ = σs ∨ length σs ′ = 1 ›
〈proof 〉

3.3 Normalization

3.3.1 Non-deterministic Case

First version, without final state notion

abbreviation P-nd-step :: ‹[(′σ, ′a) enabl, (′σ, ′a) transnd,
′σ ⇒ (′a, ′r) pro-

cessptick, ′σ] ⇒ (′a, ′r) processptick›
where ‹P-nd-step εA τA X σ ≡ � e ∈ εA σ → u σ ′ ∈ τA σ e. X σ ′›

definition P-nd :: ‹(′σ, ′a, ′r , ′α) And-scheme ⇒ ′σ ⇒ (′a, ′r) processptick›
(‹P〈〈-〉〉nd› 1000)

where ‹P〈〈A〉〉nd ≡ υ X . P-nd-step (ε A) (τ A) X›

38

lemma P-nd-step-constructive [simp] : ‹constructive (P-nd-step εA τA)› 〈proof 〉

lemma P-nd-step-cont [simp] : ‹∀σ a. finite (τA σ a) =⇒ cont (P-nd-step εA τA)›
〈proof 〉

lemma P-nd-step-constructive-bis : ‹constructive (P-nd-step (ε A) (τ A))› 〈proof 〉

lemma P-nd-step-cont-bis [simp] : ‹finite-trans A =⇒ cont (P-nd-step (ε A) (τ
A))›
〈proof 〉

lemma P-nd-rec: ‹P〈〈A〉〉nd = (λσ. P-nd-step (ε A) (τ A) P〈〈A〉〉nd σ)›
〈proof 〉

lemma P-nd-is-fix : ‹finite-trans A =⇒ P〈〈A〉〉nd = (µ X . P-nd-step (ε A) (τ A)
X)›
〈proof 〉

lemma non-destructive-imp-restriction-cont [simp] :
‹non-destructive f =⇒ restriction-cont f ›
〈proof 〉

lemma P-nd-ω-useless: ‹P〈〈A〉〉nd = P〈〈A(|ω := some-ω|)〉〉nd›
〈proof 〉

lemma P-nd-ω-useless-bis : ‹P〈〈A〉〉nd = P〈〈A(|ω := λσ. {}|)〉〉nd›
〈proof 〉

lemma P-nd-induct [case-names adm base step] :
‹adm↓ P =⇒ P σ =⇒ (

∧
X . P X =⇒ P (P-nd-step (ε A) (τ A) X)) =⇒ P

P〈〈A〉〉nd›
〈proof 〉

lemma P-nd-induct-iterated [consumes 1 , case-names adm base step] :
‹[[0 < k; adm↓ P; P σ;

∧
X . P X =⇒ P ((P-nd-step (ε A) (τ A) ^^ k) X)]] =⇒

P P〈〈A〉〉nd›
〈proof 〉

New version with final state notion where we just have SKIPS.

abbreviation PSKIP S-nd-step ::
‹[(′σ, ′a) enabl, (′σ, ′a) transnd,

′σ ⇒ ′r set, ′σ ⇒ (′a, ′r) processptick, ′σ] ⇒
(′a, ′r) processptick›

where ‹PSKIP S-nd-step εA τA ωA X σ ≡ if ωA σ = {} then P-nd-step εA τA
X σ else SKIPS (ωA σ)›

39

definition PSKIP S-nd :: ‹(′σ, ′a, ′r , ′α) And-scheme ⇒ ′σ ⇒ (′a, ′r) processptick›
(‹PSKIP S〈〈-〉〉nd› 1000)

where ‹PSKIP S〈〈A〉〉nd ≡ υ X . PSKIP S-nd-step (ε A) (τ A) (ω A) X›

lemma PSKIP S-nd-step-constructive [simp] : ‹constructive (PSKIP S-nd-step εA
τA ωA)› 〈proof 〉

lemma PSKIP S-nd-step-cont [simp] : ‹∀σ a. finite (τA σ a) =⇒ cont (PSKIP S-nd-step
εA τA ωA)›
〈proof 〉

lemma PSKIP S-nd-step-constructive-bis : ‹constructive (PSKIP S-nd-step (ε A)
(τ A) (ω A))› 〈proof 〉

lemma PSKIP S-nd-step-cont-bis [simp] : ‹finite-trans A =⇒ cont (PSKIP S-nd-step
(ε A) (τ A) (ω A))›
〈proof 〉

lemma PSKIP S-nd-rec: ‹PSKIP S〈〈A〉〉nd = (λσ. PSKIP S-nd-step (ε A) (τ A) (ω
A) PSKIP S〈〈A〉〉nd σ)›
〈proof 〉

lemma PSKIP S-nd-is-fix : ‹finite-trans A =⇒ PSKIP S〈〈A〉〉nd = (µ X . PSKIP S-nd-step
(ε A) (τ A) (ω A) X)›
〈proof 〉

lemma PSKIP S-nd-induct [case-names adm base step] :
‹adm↓ P =⇒ P σ =⇒ (

∧
X . P X =⇒ P (PSKIP S-nd-step (ε A) (τ A) (ω A)

X)) =⇒ P PSKIP S〈〈A〉〉nd›
〈proof 〉

lemma PSKIP S-nd-induct-iterated [consumes 1 , case-names adm base step] :
‹[[0 < k; adm↓ P; P σ;

∧
X . P X =⇒ P ((PSKIP S-nd-step (ε A) (τ A) (ω A)

^^ k) X)]] =⇒ P PSKIP S〈〈A〉〉nd›
〈proof 〉

Correspondence when we always have ω A σ = {}.

lemma PSKIP S-nd-empty-% : ‹% A = {} =⇒ PSKIP S〈〈A〉〉nd = P〈〈A〉〉nd›
〈proof 〉

lemma PSKIP S-nd-updated-ω: ‹P〈〈A〉〉nd = PSKIP S〈〈A(|ω := λσ. {}|)〉〉nd›
〈proof 〉

lemma PSKIP S-nd-empty-%-inter-Rnd:
‹PSKIP S〈〈A〉〉nd σ = P〈〈A〉〉nd σ› if ‹% A ∩ Rnd A σ = {}›
〈proof 〉

40

lemma PSKIP S-nd-rec-notin-%:
‹σ /∈ % A =⇒ PSKIP S〈〈A〉〉nd σ = P-nd-step (ε A) (τ A) PSKIP S〈〈A〉〉nd σ›
〈proof 〉

lemma PSKIP S-nd-rec-in-%: ‹σ ∈ % A =⇒ PSKIP S〈〈A〉〉nd σ = SKIPS (ω A σ)›
〈proof 〉

3.3.2 Deterministic Case

First version, without final state notion.
abbreviation P-d-step :: ‹[(′σ, ′a) enabl, (′σ, ′a) transd, ′σ ⇒ (′a, ′r) processptick,
′σ] ⇒ (′a, ′r) processptick›

where ‹P-d-step εA τA X s ≡ � e ∈ εA s → X dτA s ee›

definition P-d :: ‹(′σ, ′a, ′r , ′α) Ad-scheme ⇒ ′σ ⇒ (′a, ′r) processptick› (‹P〈〈-〉〉d›
1000)

where ‹P〈〈A〉〉d ≡ υ X . P-d-step (ε A) (τ A) X›

lemma P-d-step-constructive[simp] : ‹constructive (P-d-step εA τA)› 〈proof 〉

lemmas P-d-step-constructive-bis = P-d-step-constructive[of ‹ε A› ‹τ A›] for A

lemma P-d-step-cont[simp]: ‹cont (P-d-step εA τA)›
〈proof 〉

lemmas P-d-step-cont-bis = P-d-step-cont[of ‹ε A› ‹τ A›] for A

lemma P-d-rec: ‹P〈〈A〉〉d = (λs. P-d-step (ε A) (τ A) P〈〈A〉〉d s)›
〈proof 〉

lemma P-d-is-fix : ‹P〈〈A〉〉d = (µ X . P-d-step (ε A) (τ A) X)›
〈proof 〉

lemma P-d-ω-useless: ‹P〈〈A〉〉d = P〈〈A(|ω := some-ω|)〉〉d›
〈proof 〉

lemma P-d-ω-useless-bis: ‹P〈〈A〉〉d = P〈〈A(|ω := λσ. ♦|)〉〉d›
〈proof 〉

lemma P-d-induct [case-names adm base step] :
‹[[adm↓ P; P σ;

∧
X . P X =⇒ P (P-d-step (ε A) (τ A) X)]] =⇒ P P〈〈A〉〉d›

〈proof 〉

lemma P-d-induct-iterated [consumes 1 , case-names adm base step] :

41

‹[[0 < k; adm↓ P; P σ;
∧

X . P X =⇒ P ((P-d-step (ε A) (τ A) ^^ k) X)]] =⇒
P P〈〈A〉〉d›
〈proof 〉

New version with final state notion where we just SKIP.

abbreviation PSKIP S-d-step ::
‹[(′σ, ′a) enabl, (′σ, ′a) transd, ′σ ⇒ ′r option, ′σ ⇒ (′a, ′r) processptick, ′σ] ⇒

(′a, ′r) processptick›
where ‹PSKIP S-d-step εA τA ωA X σ ≡ case ωA σ of brc ⇒ SKIP r | ♦ ⇒

P-d-step εA τA X σ›

definition PSKIP S-d :: ‹(′σ, ′a, ′r , ′α) Ad-scheme ⇒ ′σ ⇒ (′a, ′r) processptick›
(‹PSKIP S〈〈-〉〉d› 1000)

where ‹PSKIP S〈〈A〉〉d ≡ υ X . PSKIP S-d-step (ε A) (τ A) (ω A) X›

lemma PSKIP S-d-step-constructive[simp]: ‹constructive (PSKIP S-d-step εA τA
SFA)›
〈proof 〉

lemmas PSKIP S-d-step-constructive-bis = PSKIP S-d-step-constructive[of ‹ε A›
‹τ A› ‹ω A›] for A

lemma PSKIP S-d-step-cont[simp]: ‹cont (PSKIP S-d-step εA τA SFA)›
〈proof 〉

lemmas PSKIP S-d-step-cont-bis = PSKIP S-d-step-cont[of ‹ε A› ‹τ A› ‹ω A›]
for A

lemma PSKIP S-d-rec: ‹PSKIP S〈〈A〉〉d = (λσ. PSKIP S-d-step (ε A) (τ A) (ω A)
PSKIP S〈〈A〉〉d σ)›
〈proof 〉

lemma PSKIP S-d-is-fix : ‹PSKIP S〈〈A〉〉d = (µ X . PSKIP S-d-step (ε A) (τ A) (ω
A) X)›
〈proof 〉

lemma PSKIP S-d-induct [case-names adm base step] :
‹adm↓ P =⇒ P σ =⇒ (

∧
X . P X =⇒ P (PSKIP S-d-step (ε A) (τ A) (ω A) X))

=⇒ P PSKIP S〈〈A〉〉d›
〈proof 〉

lemma PSKIP S-d-induct-iterated [consumes 1 , case-names adm base step] :
‹[[0 < k; adm↓ P; P σ;

∧
X . P X =⇒ P ((PSKIP S-d-step (ε A) (τ A) (ω A) ^^

k) X)]] =⇒ P PSKIP S〈〈A〉〉d›
〈proof 〉

Correspondence when we always have ω A σ = {}.

42

lemma PSKIP S-d-empty-% : ‹% A = {} =⇒ PSKIP S〈〈A〉〉d = P〈〈A〉〉d›
〈proof 〉

lemma PSKIP S-d-updated-ω: ‹P〈〈A〉〉d = PSKIP S〈〈A(|ω := λσ. ♦|)〉〉d›
〈proof 〉

lemma PSKIP S-d-empty-%-inter-Rd:
‹PSKIP S〈〈A〉〉d σ = P〈〈A〉〉d σ› if ‹% A ∩ Rd A σ = {}›
〈proof 〉

lemma PSKIP S-d-rec-notin-%:
‹σ /∈ % A =⇒ PSKIP S〈〈A〉〉d σ = P-d-step (ε A) (τ A) PSKIP S〈〈A〉〉d σ›
〈proof 〉

lemma PSKIP S-d-rec-in-%: ‹σ ∈ % A =⇒ PSKIP S〈〈A〉〉d σ = SKIP dω A σe›
〈proof 〉

3.3.3 Link between deterministic and non-deterministic Pro-
cOmata

lemma PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d : ‹PSKIP S〈〈〈〈A〉〉d↪→nd〉〉nd = PSKIP S〈〈A〉〉d›
〈proof 〉

corollary P-nd-from-det-to-ndet-is-P-d : ‹P〈〈〈〈A〉〉d↪→nd〉〉nd = P〈〈A〉〉d›
〈proof 〉

3.3.4 Prove Equality between ProcOmata

This is the easiest method we can think about.

lemma P-d-eqI : ‹(
∧
σ a. τ A σ a = τ B σ a) =⇒ P〈〈A〉〉d = P〈〈B〉〉d›

〈proof 〉

lemma P-nd-eqI : ‹(
∧
σ a. τ A σ a = τ B σ a) =⇒ P〈〈A〉〉nd = P〈〈B〉〉nd›

〈proof 〉

lemma PSKIP S-d-eqI :
‹(
∧
σ a. σ /∈ % A =⇒ τ A σ a = τ B σ a) =⇒ (

∧
σ. ω A σ = ω B σ) =⇒

PSKIP S〈〈A〉〉d = PSKIP S〈〈B〉〉d›
〈proof 〉

lemma PSKIP S-nd-eqI :
‹(
∧
σ a. σ /∈ % A =⇒ τ A σ a = τ B σ a) =⇒ (

∧
σ. ω A σ = ω B σ) =⇒

PSKIP S〈〈A〉〉nd = PSKIP S〈〈B〉〉nd›
〈proof 〉

43

We establish now a much more powerful theorem.

theorem PSKIP S-nd-eqI-strong:

assumes inj-on-f : ‹inj-on f (Rnd A0 σ0)›
and eq-trans : ‹

∧
σ0

′ a. σ0
′ ∈ Rnd A0 σ0 =⇒ τ A1 (f σ0

′) a = f ‘ (τ A0 σ0
′

a)›
and eq-fin : ‹

∧
σ0

′. σ0
′ ∈ Rnd A0 σ0 =⇒ ω A1 (f σ0

′) = ω A0 σ0
′›

shows ‹PSKIP S〈〈A0〉〉nd σ0 = PSKIP S〈〈A1〉〉nd (f σ0)›
〈proof 〉

theorem P-nd-eqI-strong:
‹[[inj-on f (Rnd A0 σ0);∧

σ0
′ a. σ0

′ ∈ Rnd A0 σ0 =⇒ τ A1 (f σ0
′) a = f ‘ (τ A0 σ0

′ a)]]
=⇒ P〈〈A0〉〉nd σ0 = P〈〈A1〉〉nd (f σ0)›
〈proof 〉

theorem PSKIP S-d-eqI-strong:
assumes ‹inj-on f (Rd A0 σ0)›

and ‹
∧
σ0

′ a. σ0
′ ∈ Rd A0 σ0 =⇒ τ A1 (f σ0

′) a = map-option f (τ A0 σ0
′ a)›

and ‹
∧
σ0

′. σ0
′ ∈ Rd A0 σ0 =⇒ ω A1 (f σ0

′) = ω A0 σ0
′›

shows ‹PSKIP S〈〈A0〉〉d σ0 = PSKIP S〈〈A1〉〉d (f σ0)›
〈proof 〉

theorem P-d-eqI-strong:
‹[[inj-on f (Rd A0 σ0);∧

σ0
′ a. σ0

′ ∈ Rd A0 σ0 =⇒ τ A1 (f σ0
′) a = map-option f (τ A0 σ0

′ a)]]
=⇒ P〈〈A0〉〉d σ0 = P〈〈A1〉〉d (f σ0)›
〈proof 〉

lemmas PSKIP S-nd-eqI-strong-id = PSKIP S-nd-eqI-strong[of id, simplified]
and PSKIP S-d-eqI-strong-id = PSKIP S-d-eqI-strong
[of id, simplified id-def option.map-ident, simplified]
and P-nd-eqI-strong-id = P-nd-eqI-strong[of id, simplified]
and P-d-eqI-strong-id = P-d-eqI-strong
[of id, simplified id-def option.map-ident, simplified]

corollary PSKIP S-nd-from-σ-to-σs-is-PSKIP S-nd : ‹PSKIP S〈〈nd〈〈A〉〉σ↪→σs〉〉nd [σ]
= PSKIP S〈〈A〉〉nd σ›
〈proof 〉

corollary PSKIP S-d-from-σ-to-σs-is-PSKIP S-d : ‹PSKIP S〈〈d〈〈A〉〉σ↪→σs〉〉d [σ] =
PSKIP S〈〈A〉〉d σ›
〈proof 〉

44

corollary P-nd-from-σ-to-σs-is-P-nd : ‹P〈〈nd〈〈A〉〉σ↪→σs〉〉nd [σ] = P〈〈A〉〉nd σ›
〈proof 〉

corollary P-d-from-σ-to-σs-is-P-d : ‹P〈〈d〈〈A〉〉σ↪→σs〉〉d [σ] = P〈〈A〉〉d σ›
〈proof 〉

Behaviour of normalizations. We will use the following methods in combin-
ing theories.

fun recursive-modifier-fund :: ‹[(′σ × ′a) ⇒ ′σ option, ((′σ × ′a) × ′σ option) list]
⇒ (′σ × ′a) ⇒ ′σ option›

where ‹recursive-modifier-fund f [] = f ›
| ‹recursive-modifier-fund f (((s, e), t) # GA) = recursive-modifier-fund (f ((s,

e) := t)) GA›

abbreviation recursive-constructor-Ad :: ‹[((′σ × ′a) × ′σ option) list, ′σ ⇒ ′r
option] ⇒ (′σ, ′a, ′r) Ad›

where ‹recursive-constructor-Ad GA ωA ≡ (|τ = curry (recursive-modifier-fund

(λ(s, e). ♦) GA), ω = ωA|)›

lemma ε-det-breaker :
‹ε ((|τ = curry (g((σ ′:: ′σ, a) 7→ σ ′′:: ′σ)), ω = some-ω, . . . = some-more|)) σ =
(if σ = σ ′ then {a} ∪ ε (|τ = curry g, ω = some-ω|) σ ′ else ε (|τ = curry g, ω

= some-ω|) σ)›
〈proof 〉

method ε-det-calc = (unfold recursive-modifier-fund.simps ε-det-breaker , simp cong:
if-cong)[1]

method τ -det-calc = (unfold recursive-modifier-fund.simps, simp cong: if-cong)[1]

lemma bij-Renaming-PSKIP S-nd :
fixes A :: ‹(′σ, ′a, ′r , ′α) And-scheme› and f :: ‹ ′a ⇒ ′b› and g :: ‹ ′r ⇒ ′s›
assumes ‹bij f ›
defines B-def : ‹B ≡ (|τ = λσ b. τ A σ (inv f b), ω = λσ. g ‘ (ω A σ)|)›
shows ‹Renaming (PSKIP S〈〈A〉〉nd σ) f g = PSKIP S〈〈B〉〉nd σ› (is ‹?lhs σ = -›)
〈proof 〉

lemma bij-Renaming-PSKIP S-d :
‹bij f =⇒ Renaming (PSKIP S〈〈A〉〉d σ) f g =

PSKIP S〈〈(|τ = λσ b. τ A σ (inv f b), ω = λσ. map-option g (ω A σ)|)〉〉d
σ›

45

〈proof 〉

lemma RenamingTick-PSKIP S-nd :
‹RenamingTick (PSKIP S〈〈A〉〉nd σ) g = PSKIP S〈〈(|τ = τ A, ω = λσ. g ‘ ω A

σ|)〉〉nd σ›
〈proof 〉

lemma RenamingTick-PSKIP S-d :
‹RenamingTick (PSKIP S〈〈A〉〉d σ) g = PSKIP S〈〈(|τ = τ A, ω = λσ. map-option

g (ω A σ)|)〉〉d σ›
〈proof 〉

46

Chapter 4

Advanced Properties of
ProcOmata

〈proof 〉

47

48

Chapter 5

Combining Automata for
Synchronization Product

5.1 Definitions

5.1.1 General Patterns

abbreviation combine-sets-Sync :: ‹ ′a set ⇒ ′a set ⇒ ′a set ⇒ ′a set›
where ‹combine-sets-Sync S0 E S1 ≡ (S0 − E − S1) ∪ (S1 − E − S0) ∪ (S0

∩ S1 − E) ∪ S0 ∩ S1 ∩ E›

definition combine-Sync-ε ::
‹[(′σ0,

′e, ′σ0
′, ′r0,

′α0) A-scheme, ′e set,
(′σ1,

′e, ′σ1
′, ′r1,

′α1) A-scheme, ′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ] ⇒ ′e set›
where ‹combine-Sync-ε A0 E A1 i0 i1 σs ≡ combine-sets-Sync (ε A0 (i0 σs)) E

(ε A1 (i1 σs))›

lemma combine-Sync-ε-def-bis :
‹combine-Sync-ε A0 E A1 i0 i1 σs =
ε A0 (i0 σs) ∪ ε A1 (i1 σs) − E ∪ ε A0 (i0 σs) ∩ ε A1 (i1 σs)›
〈proof 〉

fun combined-Sync-τ ::
‹[(′σ0,

′e, ′r0,
′α0) Ad-scheme, ′e set, (′σ1,

′e, ′r1,
′α1) Ad-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ0 ⇒ ′σ1 ⇒ ′σ] ⇒ (′σ, ′e) transd›
and combinend-Sync-τ ::
‹[(′σ0,

′e, ′r0,
′α0) And-scheme, ′e set, (′σ1,

′e, ′r1,
′α1) And-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ0 ⇒ ′σ1 ⇒ ′σ] ⇒ (′σ, ′e) transnd›
where ‹combined-Sync-τ A0 E A1 i0 i1 f σs e =

(if e ∈ ε A0 (i0 σs) ∩ ε A1 (i1 σs)
then update-both A0 A1 (i0 σs) (i1 σs) e (f-up-opt f)

else if e ∈ ε A0 (i0 σs) − E − ε A1 (i1 σs)
then update-left A0 (i0 σs) (i1 σs) e (f-up-opt f) (λs. bsc)

else if e ∈ ε A1 (i1 σs) − E − ε A0 (i0 σs)

49

then update-right A1 (i0 σs) (i1 σs) e (f-up-opt f) (λs. bsc)
else ♦)›

| ‹combinend-Sync-τ A0 E A1 i0 i1 f σs e =
(if e ∈ ε A0 (i0 σs) ∩ ε A1 (i1 σs) ∩ E

then update-both A0 A1 (i0 σs) (i1 σs) e (f-up-set f)
else if e ∈ ε A0 (i0 σs) ∩ ε A1 (i1 σs) − E

then update-left A0 (i0 σs) (i1 σs) e (f-up-set f) (λs. {s})
∪ update-right A1 (i0 σs) (i1 σs) e (f-up-set f) (λs. {s})

else if e ∈ ε A0 (i0 σs) − E − ε A1 (i1 σs)
then update-left A0 (i0 σs) (i1 σs) e (f-up-set f) (λs. {s})

else if e ∈ ε A1 (i1 σs) − E − ε A0 (i0 σs)
then update-right A1 (i0 σs) (i1 σs) e (f-up-set f) (λs. {s})

else {})›

fun combined-Sync-ω ::
‹[(′σ0,

′e, ′r0,
′α0) Ad-scheme, ′e set, (′σ1,

′e, ′r1,
′α1) Ad-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′r0 ⇒ ′r1 ⇒ ′r option] ⇒ (′σ ⇒ ′r option)›
and combinend-Sync-ω ::
‹[(′σ0,

′e, ′r0,
′α0) And-scheme, ′e set, (′σ1,

′e, ′r1,
′α1) And-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′r0 ⇒ ′r1 ⇒ ′r option] ⇒ (′σ ⇒ ′r set)›
where ‹combined-Sync-ω A0 E A1 i0 i1 g σs =

(case ω A0 (i0 σs)
of ♦ ⇒ ♦ | br0c ⇒ (case ω A1 (i1 σs) of ♦ ⇒ ♦ | br1c ⇒ g r0 r1))›

| ‹combinend-Sync-ω A0 E A1 i0 i1 g σs =
{r |r r0 r1. g r0 r1 = brc ∧ r0 ∈ ω A0 (i0 σs) ∧ r1 ∈ ω A1 (i1 σs)}›

fun combined-Sync ::
‹[(′σ0,

′e, ′r0,
′α0) Ad-scheme, ′e set, (′σ1,

′e, ′r1,
′α1) Ad-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ0 ⇒ ′σ1 ⇒ ′σ, ′r0 ⇒ ′r1 ⇒ ′r option] ⇒ (′σ, ′e, ′r) Ad›
and combinend-Sync ::
‹[(′σ0,

′e, ′r0,
′α0) And-scheme, ′e set, (′σ1,

′e, ′r1,
′α1) And-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ0 ⇒ ′σ1 ⇒ ′σ, ′r0 ⇒ ′r1 ⇒ ′r option] ⇒ (′σ, ′e, ′r)
And›

where ‹combined-Sync A0 E A1 i0 i1 f g =
(|τ = combined-Sync-τ A0 E A1 i0 i1 f , ω = combined-Sync-ω A0 E A1 i0

i1 g|)›
| ‹combinend-Sync A0 E A1 i0 i1 f g =

(|τ = combinend-Sync-τ A0 E A1 i0 i1 f , ω = combinend-Sync-ω A0 E A1

i0 i1 g|)›

5.1.2 Specializations
definition combinedP airlist-Sync ::

‹[(′σ, ′e, ′r , ′α) Ad-scheme, ′e set, (′σ, ′e, ′r , ′β) Ad-scheme] ⇒ (′σ list, ′e, ′r)
Ad›

where ‹combinedP airlist-Sync A0 E A1 ≡
combined-Sync A0 E A1 hd (λσs. hd (tl σs)) (λs t. [s, t]) (λs t. if s = t

then bsc else ♦)›
definition combinendP airlist-Sync ::

50

‹[(′σ, ′e, ′r , ′α) And-scheme, ′e set, (′σ, ′e, ′r , ′β) And-scheme] ⇒ (′σ list, ′e, ′r)
And›

where ‹combinendP airlist-Sync A0 E A1 ≡
combinend-Sync A0 E A1 hd (λσs. hd (tl σs)) (λs t. [s, t]) (λs t. if s = t

then bsc else ♦)›

definition combinedP air-Sync ::
‹[(′σ0,

′e, ′r , ′α) Ad-scheme, ′e set, (′σ1,
′e, ′r , ′β) Ad-scheme] ⇒ (′σ0 × ′σ1,

′e,
′r) Ad›

where ‹combinedP air-Sync A0 E A1 ≡
combined-Sync A0 E A1 fst snd Pair (λs t. if s = t then bsc else ♦)›

definition combinendP air-Sync ::
‹[(′σ0,

′e, ′r , ′α) And-scheme, ′e set, (′σ1,
′e, ′r , ′β) And-scheme] ⇒ (′σ0 × ′σ1,

′e, ′r) And›
where ‹combinendP air-Sync A0 E A1 ≡

combinend-Sync A0 E A1 fst snd Pair (λs t. if s = t then bsc else ♦)›

definition combinedListslenL-Sync ::
‹[(′σ list, ′e, ′r , ′α) Ad-scheme, nat, ′e set, (′σ list, ′e, ′r , ′β) Ad-scheme] ⇒ (′σ

list, ′e, ′r) Ad›
where ‹combinedListslenL-Sync A0 len0 E A1 ≡

combined-Sync A0 E A1 (take len0) (drop len0) (@) (λs t. if s = t then bsc
else ♦)›
definition combinendListslenL-Sync ::

‹[(′σ list, ′e, ′r , ′α) And-scheme, nat, ′e set, (′σ list, ′e, ′r , ′β) And-scheme] ⇒
(′σ list, ′e, ′r) And›

where ‹combinendListslenL-Sync A0 len0 E A1 ≡
combinend-Sync A0 E A1 (take len0) (drop len0) (@) (λs t. if s = t then

bsc else ♦)›

definition combinedRlist-Sync ::
‹[(′σ, ′e, ′r , ′α) Ad-scheme, ′e set, (′σ list, ′e, ′r , ′β) Ad-scheme] ⇒ (′σ list, ′e,

′r) Ad›
where ‹combinedRlist-Sync A0 E A1 ≡

combined-Sync A0 E A1 hd tl (#) (λs t. if s = t then bsc else ♦)›
definition combinendRlist-Sync ::

‹[(′σ, ′e, ′r , ′α) And-scheme, ′e set, (′σ list, ′e, ′r , ′β) And-scheme] ⇒ (′σ list,
′e, ′r) And›

where ‹combinendRlist-Sync A0 E A1 ≡
combinend-Sync A0 E A1 hd tl (#) (λs t. if s = t then bsc else ♦)›

lemmas combineP airlist-Sync-defs = combinedP airlist-Sync-def combinendP airlist-Sync-def
and combineP air-Sync-defs = combinedP air-Sync-def combinendP air-Sync-def
and combineListslenL-Sync-defs = combinedListslenL-Sync-def combinendListslenL-Sync-def
and combineRlist-Sync-defs = combinedRlist-Sync-def combinendRlist-Sync-def

lemmas combine-Sync-defs =
combineP airlist-Sync-defs combineP air-Sync-defs combineListslenL-Sync-defs com-

bineRlist-Sync-defs

51

bundle combinend-Sync-syntax begin

notation combinedP airlist-Sync (‹〈〈- d⊗[[-]]P airlist -〉〉› [0 , 0 , 0])
notation combinendP airlist-Sync (‹〈〈- nd⊗[[-]]P airlist -〉〉› [0 , 0 , 0])
notation combinedP air-Sync (‹〈〈- d⊗[[-]]P air -〉〉› [0 , 0 , 0])
notation combinendP air-Sync (‹〈〈- nd⊗[[-]]P air -〉〉› [0 , 0 , 0])
notation combinedListslenL-Sync (‹〈〈- d⊗[[-, -]]ListslenL -〉〉› [0 , 0 , 0 , 0])
notation combinendListslenL-Sync (‹〈〈- nd⊗[[-, -]]ListslenL -〉〉› [0 , 0 , 0 , 0])
notation combinedRlist-Sync (‹〈〈- d⊗[[-]]Rlist -〉〉› [0 , 0 , 0])
notation combinendRlist-Sync (‹〈〈- nd⊗[[-]]Rlist -〉〉› [0 , 0 , 0])

end

unbundle combinend-Sync-syntax

5.2 First Properties
lemma finite-trans-combinend-Sync-simps [simp] :

‹finite-trans A0 =⇒ finite-trans A1 =⇒ finite-trans 〈〈A0 nd⊗[[E]]P airlist A1〉〉›
‹finite-trans B0 =⇒ finite-trans B1 =⇒ finite-trans 〈〈B0 nd⊗[[E]]P air B1〉〉›
‹finite-trans C 0 =⇒ finite-trans C 1 =⇒ finite-trans 〈〈C 0 nd⊗[[len0, E]]ListslenL

C 1〉〉›
‹finite-trans D0 =⇒ finite-trans D1 =⇒ finite-trans 〈〈D0 nd⊗[[E]]Rlist D1〉〉›
〈proof 〉

lemma ε-combineP airlist-Sync:
‹ε 〈〈A0 d⊗[[E]]P airlist A1〉〉 σs = combine-Sync-ε A0 E A1 hd (hd ◦ tl) σs›
‹ε 〈〈B0 nd⊗[[E]]P airlist B1〉〉 σs = combine-Sync-ε B0 E B1 hd (hd ◦ tl) σs›
〈proof 〉

lemma ε-combineP air-Sync:
‹ε 〈〈A0 d⊗[[E]]P air A1〉〉 σs = combine-Sync-ε A0 E A1 fst snd σs›
‹ε 〈〈B0 nd⊗[[E]]P air B1〉〉 σs = combine-Sync-ε B0 E B1 fst snd σs›
〈proof 〉

lemma ε-combineListslenL-Sync:
‹ε 〈〈A0 d⊗[[len0, E]]ListslenL A1〉〉 σs = combine-Sync-ε A0 E A1 (take len0) (drop

len0) σs›
‹ε 〈〈B0 nd⊗[[len0, E]]ListslenL B1〉〉 σs = combine-Sync-ε B0 E B1 (take len0)

(drop len0) σs›
〈proof 〉

lemma ε-combineRlist-Sync:
‹ε 〈〈A0 d⊗[[E]]Rlist A1〉〉 σs = combine-Sync-ε A0 E A1 hd tl σs›
‹ε 〈〈B0 nd⊗[[E]]Rlist B1〉〉 σs = combine-Sync-ε B0 E B1 hd tl σs›
〈proof 〉

52

lemma %-combineP airlist-Sync:
‹% 〈〈A0 d⊗[[E]]P airlist A1〉〉 = {σs. hd σs ∈ % A0 ∧ hd (tl σs) ∈ % A1 ∧ ω A0 (hd

σs) = ω A1 (hd (tl σs))}›
‹% 〈〈B0 nd⊗[[E]]P airlist B1〉〉 = {σs. hd σs ∈ % B0 ∧ hd (tl σs) ∈ % B1 ∧ ω B0

(hd σs) ∩ ω B1 (hd (tl σs)) 6= {}}›
〈proof 〉

lemma %-combineP air-Sync:
‹% 〈〈A0 d⊗[[E]]P air A1〉〉 = {(σ0, σ1). σ0 ∈ % A0 ∧ σ1 ∈ % A1 ∧ ω A0 σ0 = ω A1

σ1}›
‹% 〈〈B0 nd⊗[[E]]P air B1〉〉 = {(σ0, σ1). σ0 ∈ % B0 ∧ σ1 ∈ % B1 ∧ ω B0 σ0 ∩ ω B1

σ1 6= {}}›
〈proof 〉

lemma %-combineListslenL-Sync:
‹% 〈〈A0 d⊗[[len0, E]]ListslenL A1〉〉 =
{σs. take len0 σs ∈ % A0 ∧ drop len0 σs ∈ % A1 ∧ ω A0 (take len0 σs) = ω A1

(drop len0 σs)}›
‹% 〈〈B0 nd⊗[[len0, E]]ListslenL B1〉〉 =
{σs. take len0 σs ∈ % B0 ∧ drop len0 σs ∈ % B1 ∧ ω B0 (take len0 σs) ∩ ω B1

(drop len0 σs) 6= {}}›
〈proof 〉

lemma %-combineRlist-Sync:
‹% 〈〈A0 d⊗[[E]]Rlist A1〉〉 =
{σs. hd σs ∈ % A0 ∧ tl σs ∈ % A1 ∧ ω A0 (hd σs) = ω A1 (tl σs)}›

‹% 〈〈B0 nd⊗[[E]]Rlist B1〉〉 =
{σs. hd σs ∈ % B0 ∧ tl σs ∈ % B1 ∧ ω B0 (hd σs) ∩ ω B1 (tl σs) 6= {}}›
〈proof 〉

lemma combine-Sync-τ [simp] :
‹combined-Sync-τ (A0(|ω := some-ω0|)) E (A1(|ω := some-ω1|)) = combined-Sync-τ

A0 E A1›
‹combinend-Sync-τ (B0(|ω := some-ω0

′|)) E (B1(|ω := some-ω1
′|)) = combinend-Sync-τ

B0 E B1›
for A :: ‹(′σ, ′a, ′σ option, ′r option, ′α) A-scheme›

and B :: ‹(′σ, ′a, ′σ set, ′r set, ′α) A-scheme›
〈proof 〉

5.3 Reachability
lemma Rd-combinedListslenL-Sync-subset:

‹Rd 〈〈A0 d⊗[[len0, E]]ListslenL A1〉〉 (s0 @ s1) ⊆ {t0 @ t1| t0 t1. t0 ∈ Rd A0 s0 ∧
t1 ∈ Rd A1 s1}› (is ‹?SA ⊆ -›)

if same-length-Rd: ‹
∧

t0. t0 ∈ Rd A0 s0 =⇒ length t0 = len0›
〈proof 〉

53

lemma Rnd-combinendListslenL-Sync-subset:
‹Rnd 〈〈B0 nd⊗[[len0, E]]ListslenL B1〉〉 (s0 @ s1) ⊆ {t0 @ t1| t0 t1. t0 ∈ Rnd B0

s0 ∧ t1 ∈ Rnd B1 s1}› (is ‹?SB ⊆ -›)
if same-length-Rnd: ‹

∧
t0. t0 ∈ Rnd B0 s0 =⇒ length t0 = len0›

〈proof 〉

lemma Rd-combinedP airlist-Sync-subset:
‹Rd 〈〈A0 d⊗[[E]]P airlist A1〉〉 [s0, s1] ⊆ {[t0, t1]| t0 t1. t0 ∈ Rd A0 s0 ∧ t1 ∈ Rd

A1 s1}› (is ‹?SA ⊆ -›)
and Rnd-combinendP airlist-Sync-subset:
‹Rnd 〈〈B0 nd⊗[[E]]P airlist B1〉〉 [s0, s1] ⊆ {[t0, t1]| t0 t1. t0 ∈ Rnd B0 s0 ∧ t1 ∈
Rnd B1 s1}› (is ‹?SB ⊆ -›)
〈proof 〉

lemma Rd-combinedP air-Sync-subset:
‹Rd 〈〈A0 d⊗[[E]]P air A1〉〉 (s0, s1) ⊆ Rd A0 s0 × Rd A1 s1› (is ‹?SA ⊆ -›)
and Rnd-combinendP air-Sync-subset:
‹Rnd 〈〈B0 nd⊗[[E]]P air B1〉〉 (s0, s1) ⊆ Rnd B0 s0 × Rnd B1 s1› (is ‹?SB ⊆ -›)
〈proof 〉

lemma Rd-combinedRlist-Sync-subset:
‹Rd 〈〈A0 d⊗[[E]]Rlist A1〉〉 (s0 # σs) ⊆ {t0 # σt| t0 σt. t0 ∈ Rd A0 s0 ∧ σt ∈
Rd A1 σs}› (is ‹?SA ⊆ -›)

and Rnd-combinendRlist-Sync-subset:
‹Rnd 〈〈B0 nd⊗[[E]]Rlist B1〉〉 (s0 # σs) ⊆ {t0 # σt| t0 σt. t0 ∈ Rnd B0 s0 ∧ σt
∈ Rnd B1 σs}› (is ‹?SB ⊆ -›)
〈proof 〉

5.4 Normalization
lemma ω-combineP airlist-Sync-behaviour :
‹ω 〈〈〈〈A0 d⊗[[E]]P airlist A1〉〉〉〉d↪→nd [s0, s1] = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]P airlist 〈〈A1〉〉d↪→nd〉〉

[s0, s1]›
〈proof 〉

lemma ω-combineP air-Sync-behaviour :
‹ω 〈〈〈〈A0 d⊗[[E]]P air A1〉〉〉〉d↪→nd (s0, s1) = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]P air 〈〈A1〉〉d↪→nd〉〉

(s0, s1)›
〈proof 〉

lemma ω-combineListslenL-Sync-behaviour :
‹ω 〈〈〈〈A0 d⊗[[len0, E]]ListslenL A1〉〉〉〉d↪→nd (σs0 @ σs1) = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[len0,

E]]ListslenL 〈〈A1〉〉d↪→nd〉〉 (σs0 @ σs1)›
〈proof 〉

lemma ω-combineRlist-Sync-behaviour :

54

‹ω 〈〈〈〈A0 d⊗[[E]]Rlist A1〉〉〉〉d↪→nd (s0 # σs1) = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]Rlist 〈〈A1〉〉d↪→nd〉〉
(s0 # σs1)›
〈proof 〉

lemma τ -combineP airlist-Sync-behaviour-when-indep:
‹ε A0 s0 ∩ ε A1 s1 ⊆ E =⇒
τ 〈〈〈〈A0 d⊗[[E]]P airlist A1〉〉〉〉d↪→nd [s0, s1] e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]P airlist

〈〈A1〉〉d↪→nd〉〉 [s0, s1] e›
〈proof 〉

lemma τ -combineP air-Sync-behaviour-when-indep:
‹ε A0 s0 ∩ ε A1 s1 ⊆ E =⇒
τ 〈〈〈〈A0 d⊗[[E]]P air A1〉〉〉〉d↪→nd (s0, s1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]P air 〈〈A1〉〉d↪→nd〉〉

(s0, s1) e›
〈proof 〉

lemma τ -combineListslenL-Sync-behaviour-when-indep:
‹ε A0 σs0 ∩ ε A1 σs1 ⊆ E =⇒ length σs0 = len0 =⇒
τ 〈〈〈〈A0 d⊗[[len0, E]]ListslenL A1〉〉〉〉d↪→nd (σs0 @ σs1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[len0,

E]]ListslenL 〈〈A1〉〉d↪→nd〉〉 (σs0 @ σs1) e›
〈proof 〉

lemma τ -combineRlist-Sync-behaviour-when-indep:
‹ε A0 s0 ∩ ε A1 σs1 ⊆ E =⇒
τ 〈〈〈〈A0 d⊗[[E]]Rlist A1〉〉〉〉d↪→nd (s0 # σs1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]Rlist

〈〈A1〉〉d↪→nd〉〉 (s0 # σs1) e›
〈proof 〉

method PSKIP S-when-indep-method uses R-d-subset =
fold PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d,
rule PSKIP S-nd-eqI-strong-id,
unfold Rnd-from-det-to-ndet,
all ‹drule set-mp[OF R-d-subset, rotated]›

method P-when-indep-method uses R-d-subset =
fold P-nd-from-det-to-ndet-is-P-d,
rule P-nd-eqI-strong-id,
unfold Rnd-from-det-to-ndet,
all ‹drule set-mp[OF R-d-subset, rotated]›

lemma PSKIP S-combineP airlist-Sync-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[E]]P airlist A1〉〉〉〉d [s0, s1] = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]P airlist

〈〈A1〉〉d↪→nd〉〉〉〉nd [s0, s1]›
if ‹indep-enabl A0 s0 E A1 s1›

55

〈proof 〉

lemma P-combineP airlist-Sync-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[E]]P airlist A1〉〉〉〉d [s0, s1] = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]P airlist 〈〈A1〉〉d↪→nd〉〉〉〉nd

[s0, s1]›
if ‹indep-enabl A0 s0 E A1 s1›
〈proof 〉

lemma PSKIP S-combineP air-Sync-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[E]]P air A1〉〉〉〉d (s0, s1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]P air

〈〈A1〉〉d↪→nd〉〉〉〉nd (s0, s1)›
if ‹indep-enabl A0 s0 E A1 s1›
〈proof 〉

lemma P-combineP air-Sync-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[E]]P air A1〉〉〉〉d (s0, s1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]P air 〈〈A1〉〉d↪→nd〉〉〉〉nd

(s0, s1)›
if ‹indep-enabl A0 s0 E A1 s1›
〈proof 〉

lemma PSKIP S-combineListslenL-Sync-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[len0, E]]ListslenL A1〉〉〉〉d (σs0 @ σs1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd

nd⊗[[len0, E]]ListslenL 〈〈A1〉〉d↪→nd〉〉〉〉nd (σs0 @ σs1)›
if ‹indep-enabl A0 σs0 E A1 σs1› and ‹

∧
σt0. σt0 ∈ Rd A0 σs0 =⇒ length σt0

= len0›
〈proof 〉

lemma P-combineListslenL-Sync-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[len0, E]]ListslenL A1〉〉〉〉d (σs0 @ σs1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[len0,

E]]ListslenL 〈〈A1〉〉d↪→nd〉〉〉〉nd (σs0 @ σs1)›
if ‹indep-enabl A0 σs0 E A1 σs1› and ‹

∧
σt0. σt0 ∈ Rd A0 σs0 =⇒ length σt0

= len0›
〈proof 〉

lemma PSKIP S-combineRlist-Sync-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[E]]Rlist A1〉〉〉〉d (s0 # σs1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]Rlist

〈〈A1〉〉d↪→nd〉〉〉〉nd (s0 # σs1)›
if ‹indep-enabl A0 s0 E A1 σs1›
〈proof 〉

lemma P-combineRlist-Sync-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[E]]Rlist A1〉〉〉〉d (s0 # σs1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]Rlist 〈〈A1〉〉d↪→nd〉〉〉〉nd

(s0 # σs1)›
if ‹indep-enabl A0 s0 E A1 σs1›
〈proof 〉

56

Chapter 6

Compactification of
Synchronization Product

6.1 Iterated Combine

6.1.1 Definitions

fun iterated-combined-Sync :: ‹ ′e set ⇒ (′σ, ′e, ′r) Ad list ⇒ (′σ list, ′e, ′r) Ad›
(‹〈〈d

⊗
[[-]] -〉〉› [0 , 0])

where ‹〈〈d
⊗

[[E]] []〉〉 = (|τ = λσs a. ♦, ω = λσs. ♦|)›
| ‹〈〈d

⊗
[[E]] [A0]〉〉 = d〈〈A0〉〉σ↪→σs›

| ‹〈〈d
⊗

[[E]] A0 # A1 # As〉〉 = 〈〈A0 d⊗[[E]]Rlist 〈〈d
⊗

[[E]] A1 # As〉〉〉〉›

fun iterated-combinend-Sync :: ‹ ′e set ⇒ (′σ, ′e, ′r) And list ⇒ (′σ list, ′e, ′r)
And› (‹〈〈nd

⊗
[[-]] -〉〉› [0 , 0])

where ‹〈〈nd

⊗
[[E]] []〉〉 = (|τ = λσs a. {}, ω = λσs. {}|)›

| ‹〈〈nd

⊗
[[E]] [A0]〉〉 = nd〈〈A0〉〉σ↪→σs›

| ‹〈〈nd

⊗
[[E]] A0 # A1 # As〉〉 = 〈〈A0 nd⊗[[E]]Rlist 〈〈nd

⊗
[[E]] A1 # As〉〉〉〉›

lemma iterated-combined-Sync-simps-bis: ‹As 6= [] =⇒ 〈〈d
⊗

[[E]] A0 # As〉〉 = 〈〈A0

d⊗[[E]]Rlist 〈〈d
⊗

[[E]] As〉〉〉〉›
and iterated-combinend-Sync-simps-bis: ‹Bs 6= [] =⇒ 〈〈nd

⊗
[[E]] B0 # Bs〉〉 = 〈〈B0

nd⊗[[E]]Rlist 〈〈nd

⊗
[[E]] Bs〉〉〉〉›

〈proof 〉

fun iterated-combined-Sync-ε :: ‹(′σ, ′e, ′r , ′α) Ad-scheme list ⇒ ′e set ⇒ ′σ list
⇒ ′e set›

where ‹iterated-combined-Sync-ε [] E σs = {}›
| ‹iterated-combined-Sync-ε [A0] E σs = ε A0 (hd σs)›
| ‹iterated-combined-Sync-ε (A0 # A1 # As) E σs =

combine-sets-Sync (ε A0 (hd σs)) E (iterated-combined-Sync-ε (A1 # As)
E (tl σs))›

57

fun iterated-combinend-Sync-ε :: ‹(′σ, ′e, ′r , ′α) And-scheme list ⇒ ′e set ⇒ ′σ
list ⇒ ′e set›

where ‹iterated-combinend-Sync-ε [] E σs = {}›
| ‹iterated-combinend-Sync-ε [A0] E σs = ε A0 (hd σs)›
| ‹iterated-combinend-Sync-ε (A0 # A1 # As) E σs =

combine-sets-Sync (ε A0 (hd σs)) E (iterated-combinend-Sync-ε (A1 # As)
E (tl σs))›

lemma iterated-combined-Sync-ε-simps-bis:
‹As 6= [] =⇒ iterated-combined-Sync-ε (A0 # As) E σs =

combine-sets-Sync (ε A0 (hd σs)) E (iterated-combined-Sync-ε As E
(tl σs))›

and iterated-combinend-Sync-ε-simps-bis:
‹Bs 6= [] =⇒ iterated-combinend-Sync-ε (B0 # Bs) E σs =

combine-sets-Sync (ε B0 (hd σs)) E (iterated-combinend-Sync-ε Bs
E (tl σs))›
〈proof 〉

6.1.2 First Results
lemma ε-iterated-combined-Sync:

‹length σs = length As =⇒ ε 〈〈d
⊗

[[E]] As〉〉 σs = iterated-combined-Sync-ε As E
σs›
〈proof 〉

lemma ε-iterated-combinend-Sync:
‹length σs = length Bs =⇒ ε 〈〈nd

⊗
[[E]] Bs〉〉 σs = iterated-combinend-Sync-ε Bs

E σs›
〈proof 〉

lemma combineListslenL-Sync-combineRlist-Sync-eq:
‹ε 〈〈d〈〈A0〉〉σ↪→σs d⊗[[1 , E]]ListslenL A1〉〉 σs = ε 〈〈A0 d⊗[[E]]Rlist A1〉〉 σs›
‹τ 〈〈d〈〈A0〉〉σ↪→σs d⊗[[1 , E]]ListslenL A1〉〉 (s0 # σs) e = τ 〈〈A0 d⊗[[E]]Rlist A1〉〉 (s0

σs) e›
‹ε 〈〈nd〈〈B0〉〉σ↪→σs nd⊗[[1 , E]]ListslenL B1〉〉 σs = ε 〈〈B0 nd⊗[[E]]Rlist B1〉〉 σs›
‹τ 〈〈nd〈〈B0〉〉σ↪→σs nd⊗[[1 , E]]ListslenL B1〉〉 (s0 # σs) e = τ 〈〈B0 nd⊗[[E]]Rlist B1〉〉

(s0 # σs) e›
〈proof 〉

lemma combineP airlist-Sync-and-iterated-combinend-Sync-eq:
‹ε 〈〈A0 d⊗[[E]]P airlist A1〉〉 [s0, s1] = ε 〈〈d

⊗
[[E]] [A0, A1]〉〉 [s0, s1]›

‹τ 〈〈A0 d⊗[[E]]P airlist A1〉〉 [s0, s1] e = τ 〈〈d
⊗

[[E]] [A0, A1]〉〉 [s0, s1] e›
‹ε 〈〈B0 nd⊗[[E]]P airlist B1〉〉 [s0, s1] = ε 〈〈nd

⊗
[[E]] [B0, B1]〉〉 [s0, s1]›

‹τ 〈〈B0 nd⊗[[E]]P airlist B1〉〉 [s0, s1] e = τ 〈〈nd

⊗
[[E]] [B0, B1]〉〉 [s0, s1] e›

〈proof 〉

58

lemmas combineP airlist-Sync-and-combineRlist-Sync-eq =
combineP airlist-Sync-and-iterated-combinend-Sync-eq[simplified]

6.1.3 Reachability
lemma same-length-Rd-iterated-combined-Sync-description:

‹length σs = length As =⇒ σs ′ ∈ Rd 〈〈d
⊗

[[E]] As〉〉 σs =⇒
length σs ′ = length As ∧ (∀ i < length As. σs ′ ! i ∈ Rd (As ! i) (σs ! i))›

〈proof 〉

lemma same-length-Rnd-iterated-combinend-Sync-description:
‹length σs = length Bs =⇒ σs ′ ∈ Rnd 〈〈nd

⊗
[[E]] Bs〉〉 σs =⇒

length σs ′ = length Bs ∧ (∀ i < length Bs. σs ′ ! i ∈ Rnd (Bs ! i) (σs ! i))›
〈proof 〉

6.1.4 Transmission of Properties
lemma finite-trans-transmission-to-iterated-combinend-Sync:

‹(
∧

A. A ∈ set As =⇒ finite-trans A) =⇒ finite-trans 〈〈nd

⊗
[[E]] As〉〉›

〈proof 〉

lemma %-disjoint-ε-transmission-to-iterated-combined-Sync:
‹(
∧

A. A ∈ set As =⇒ %-disjoint-ε A) =⇒ %-disjoint-ε 〈〈d
⊗

[[E]] As〉〉›
〈proof 〉

lemma %-disjoint-ε-transmission-to-iterated-combinend-Sync:
‹(
∧

A. A ∈ set As =⇒ %-disjoint-ε A) =⇒ %-disjoint-ε 〈〈nd

⊗
[[E]] As〉〉›

〈proof 〉

lemma at-most-1-elem-term-transmission-to-iterated-combinend-Sync:
‹(
∧

A. A ∈ set As =⇒ at-most-1-elem-term A) =⇒ at-most-1-elem-term 〈〈nd

⊗
[[E]]

As〉〉›
〈proof 〉

lemma same-length-indep-transmission-to-iterated-combined-Sync:
‹length σs = length As =⇒
(
∧

i j. i ≤ length As =⇒ j ≤ length As =⇒ i 6= j =⇒
indep-enabl ((A0 # As) ! i) ((s0 # σs) ! i) E ((A0 # As) ! j) ((s0 # σs) ! j))

=⇒
indep-enabl A0 s0 E 〈〈d

⊗
[[E]] As〉〉 σs›

〈proof 〉

lemma ω-iterated-combined-Sync :
‹length σs = length As =⇒

59

ω 〈〈d
⊗

[[E]] As〉〉 σs = (case those (map2 ω As σs) of ♦ ⇒ ♦
| btermsc ⇒ if card (set terms) = Suc 0 then bTHE r . set terms = {r}c else

♦)›
〈proof 〉

lemma ω-iterated-combinend-Sync :
‹length σs = length As =⇒
ω 〈〈nd

⊗
[[E]] As〉〉 σs = (if As = [] then {} else {r . ∀ i < length As. r ∈ ω (As !

i) (σs ! i)})›
〈proof 〉

6.1.5 Normalization
lemma ω-iterated-combinend-Sync-det-ndet-conv:

‹length σs = length As =⇒
ω 〈〈nd

⊗
[[E]] map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs = ω 〈〈〈〈d

⊗
[[E]] As〉〉〉〉d↪→nd σs›

〈proof 〉

lemma τ -iterated-combinend-Sync-behaviour-when-indep:
‹length σs = length As =⇒
(
∧

i j. [[i < length As; j < length As; i 6= j]]
=⇒ indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)) =⇒
τ 〈〈〈〈d

⊗
[[E]] As〉〉〉〉d↪→nd σs e = τ 〈〈nd

⊗
[[E]] map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs e›

〈proof 〉

lemma PSKIP S-iterated-combinend-Sync-behaviour-when-indep:
assumes same-length: ‹length σs = length As›

and indep: ‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

shows ‹PSKIP S〈〈〈〈d
⊗

[[E]] As〉〉〉〉d σs = PSKIP S〈〈〈〈nd

⊗
[[E]] map (λA. 〈〈A〉〉d↪→nd)

As〉〉〉〉nd σs›
〈proof 〉

lemma P-d-iterated-combinend-Sync-behaviour-when-indep:
assumes same-length: ‹length σs = length As›

and indep: ‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

shows ‹P〈〈〈〈d
⊗

[[E]] As〉〉〉〉d σs = P〈〈〈〈nd

⊗
[[E]] map (λA. 〈〈A〉〉d↪→nd) As〉〉〉〉nd σs›

〈proof 〉

6.2 Compactification Theorems
6.2.1 Binary
Pair
theorem PSKIP S-nd-combineP air-Sync :

60

fixes E :: ‹ ′a set› and A0 :: ‹(′σ, ′a, ′r , ′α) And-scheme›
assumes %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1›

and at-most-1-elem-term : ‹at-most-1-elem-term A0› ‹at-most-1-elem-term A1›
defines A-def : ‹A ≡ 〈〈A0 nd⊗[[E]]P air A1〉〉›
defines P-def : ‹P ≡ PSKIP S〈〈A0〉〉nd› and Q-def : ‹Q ≡ PSKIP S〈〈A1〉〉nd› and

S-def : ‹S ≡ PSKIP S〈〈A〉〉nd›
shows ‹P σ0 [[E]] Q σ1 = S (σ0, σ1)›
〈proof 〉

corollary P-nd-combineP air-Sync :
‹P〈〈A0〉〉nd σ0 [[E]] P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[E]]P air A1〉〉〉〉nd (σ0, σ1)›
〈proof 〉

corollary PSKIP S-d-combineP air-Sync:
‹PSKIP S〈〈A0〉〉d σ0 [[E]] PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0 d⊗[[E]]P air A1〉〉〉〉d (σ0,

σ1)›
if ‹%-disjoint-ε A0› and ‹%-disjoint-ε A1› and ‹indep-enabl A0 σ0 E A1 σ1›
〈proof 〉

corollary P-d-combineP air-Sync:
‹P〈〈A0〉〉d σ0 [[E]] P〈〈A1〉〉d σ1 = P〈〈〈〈A0 d⊗[[E]]P air A1〉〉〉〉d (σ0, σ1)›
if ‹indep-enabl A0 σ0 E A1 σ1›
〈proof 〉

Pairlist

theorem PSKIP S-nd-combineP airlist-Sync :
‹PSKIP S〈〈A0〉〉nd σ0 [[E]] PSKIP S〈〈A1〉〉nd σ1 = PSKIP S〈〈〈〈A0 nd⊗[[E]]P airlist

A1〉〉〉〉nd [σ0, σ1]›
if ‹%-disjoint-ε A0› ‹%-disjoint-ε A1› ‹at-most-1-elem-term A0› ‹at-most-1-elem-term

A1›
〈proof 〉

corollary P-nd-combineP airlist-Sync :
‹P〈〈A0〉〉nd σ0 [[E]] P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[E]]P airlist A1〉〉〉〉nd [σ0, σ1]›
〈proof 〉

corollary PSKIP S-d-combineP airlist-Sync :
‹PSKIP S〈〈A0〉〉d σ0 [[E]] PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0 d⊗[[E]]P airlist A1〉〉〉〉d

[σ0, σ1]›
if ‹%-disjoint-ε A0› and ‹%-disjoint-ε A1› and ‹indep-enabl A0 σ0 E A1 σ1›
〈proof 〉

corollary P-d-combineP airlist-Sync :
‹P〈〈A0〉〉d σ0 [[E]] P〈〈A1〉〉d σ1 = P〈〈〈〈A0 d⊗[[E]]P airlist A1〉〉〉〉d [σ0, σ1]›
if ‹indep-enabl A0 σ0 E A1 σ1›
〈proof 〉

61

6.2.2 Rlist
theorem PSKIP S-nd-combineRlist-Sync :
‹PSKIP S〈〈A0〉〉nd σ0 [[E]] PSKIP S〈〈A1〉〉nd σ1 = PSKIP S〈〈〈〈A0 nd⊗[[E]]Rlist A1〉〉〉〉nd

(σ0 # σ1)›
if ‹%-disjoint-ε A0› ‹%-disjoint-ε A1› ‹at-most-1-elem-term A0› ‹at-most-1-elem-term

A1›
〈proof 〉

corollary P-nd-combineRlist-Sync :
‹P〈〈A0〉〉nd σ0 [[E]] P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[E]]Rlist A1〉〉〉〉nd (σ0 # σ1)›
〈proof 〉

corollary PSKIP S-d-combineRlist-Sync :
‹PSKIP S〈〈A0〉〉d σ0 [[E]] PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0 d⊗[[E]]Rlist A1〉〉〉〉d (σ0

σ1)›
if ‹%-disjoint-ε A0› and ‹%-disjoint-ε A1› and ‹indep-enabl A0 σ0 E A1 σ1›
〈proof 〉

corollary P-d-combineRlist-Sync :
‹P〈〈A0〉〉d σ0 [[E]] P〈〈A1〉〉d σ1 = P〈〈〈〈A0 d⊗[[E]]Rlist A1〉〉〉〉d (σ0 # σ1)›
if ‹indep-enabl A0 σ0 E A1 σ1›
〈proof 〉

6.2.3 ListslenL
theorem PSKIP S-nd-combineListslenL-Sync :

assumes same-length-reach0 : ‹
∧
σ0

′. σ0
′ ∈ Rnd A0 σ0 =⇒ length σ0

′ = len0›
and %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1› ‹at-most-1-elem-term A0›

‹at-most-1-elem-term A1›
shows ‹PSKIP S〈〈A0〉〉nd σ0 [[E]] PSKIP S〈〈A1〉〉nd σ1 = PSKIP S〈〈〈〈A0 nd⊗[[len0,

E]]ListslenL A1〉〉〉〉nd (σ0 @ σ1)›
〈proof 〉

corollary P-nd-combineListslenL-Sync :
‹P〈〈A0〉〉nd σ0 [[E]] P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[len0, E]]ListslenL A1〉〉〉〉nd (σ0 @

σ1)›
if ‹

∧
σ0

′. σ0
′ ∈ Rnd A0 σ0 =⇒ length σ0

′ = len0›
〈proof 〉

corollary PSKIP S-d-combineListslenL-Sync :
‹PSKIP S〈〈A0〉〉d σ0 [[E]] PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0 d⊗[[len0, E]]ListslenL

A1〉〉〉〉d (σ0 @ σ1)›
if ‹

∧
σ0

′. σ0
′ ∈ Rd A0 σ0 =⇒ length σ0

′ = len0›
‹%-disjoint-ε A0› ‹%-disjoint-ε A1› ‹indep-enabl A0 σ0 E A1 σ1›

〈proof 〉

corollary P-d-combineListslenL-Sync :
‹P〈〈A0〉〉d σ0 [[E]] P〈〈A1〉〉d σ1 = P〈〈〈〈A0 d⊗[[len0, E]]ListslenL A1〉〉〉〉d (σ0 @ σ1)›
if ‹

∧
σ0

′. σ0
′ ∈ Rd A0 σ0 =⇒ length σ0

′ = len0› ‹indep-enabl A0 σ0 E A1 σ1›

62

〈proof 〉

6.2.4 Multiple
theorem PSKIP S-nd-compactification-Sync:

‹[[length σs = length As;
∧

A. A ∈ set As =⇒ %-disjoint-ε A;∧
A. A ∈ set As =⇒ at-most-1-elem-term A]]

=⇒ [[E]] (σ, A) ∈# mset (zip σs As). PSKIP S〈〈A〉〉nd σ = PSKIP S〈〈〈〈nd

⊗
[[E]]

As〉〉〉〉nd σs›
〈proof 〉

lemma P-nd-compactification-Sync:
‹length σs = length As =⇒
[[E]] (σ, A) ∈# mset (zip σs As). P〈〈A〉〉nd σ = P〈〈〈〈nd

⊗
[[E]] As〉〉〉〉nd σs›

〈proof 〉

lemma PSKIP S-d-compactification-Sync:
‹[[length σs = length As;

∧
A. A ∈ set As =⇒ %-disjoint-ε A;∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)]] =⇒

[[E]] (σ, A) ∈# mset (zip σs As). PSKIP S〈〈A〉〉d σ = PSKIP S〈〈〈〈d
⊗

[[E]] As〉〉〉〉d
σs›
〈proof 〉

lemma P-d-compactification-Sync:
‹[[length σs = length As;∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)]] =⇒

[[E]] (σ, A) ∈# mset (zip σs As). P〈〈A〉〉d σ = P〈〈〈〈d
⊗

[[E]] As〉〉〉〉d σs›
〈proof 〉

corollary PSKIP S-nd-compactification-Sync-order-is-arbitrary:
‹PSKIP S〈〈〈〈nd

⊗
[[E]] As〉〉〉〉nd σs = PSKIP S〈〈〈〈nd

⊗
[[E]] As ′〉〉〉〉nd σs ′›

if ‹length σs = length As› ‹length σs ′ = length As ′›
‹mset (zip σs As) = mset (zip σs ′ As ′)›
‹
∧

A. A ∈ set As =⇒ %-disjoint-ε A›
‹
∧

A. A ∈ set As =⇒ at-most-1-elem-term A›
〈proof 〉

corollary P-nd-compactification-Sync-order-is-arbitrary:
‹P〈〈〈〈nd

⊗
[[E]] As〉〉〉〉nd σs = P〈〈〈〈nd

⊗
[[E]] As ′〉〉〉〉nd σs ′›

if ‹length σs = length As› ‹length σs ′ = length As ′›
‹mset (zip σs As) = mset (zip σs ′ As ′)›

〈proof 〉

corollary PSKIP S-d-compactification-Sync-order-is-arbitrary:

63

‹PSKIP S〈〈〈〈d
⊗

[[E]] As〉〉〉〉d σs = PSKIP S〈〈〈〈d
⊗

[[E]] As ′〉〉〉〉d σs ′›
if ‹length σs = length As› ‹length σs ′ = length As ′›

‹mset (zip σs As) = mset (zip σs ′ As ′)›
‹
∧

A. A ∈ set As =⇒ %-disjoint-ε A›
‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

〈proof 〉

corollary P-d-compactification-Sync-order-is-arbitrary:
‹P〈〈〈〈d

⊗
[[E]] As〉〉〉〉d σs = P〈〈〈〈d

⊗
[[E]] As ′〉〉〉〉d σs ′›

if ‹length σs = length As› ‹length σs ′ = length As ′›
‹mset (zip σs As) = mset (zip σs ′ As ′)›
‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

〈proof 〉

6.3 Derived Versions

lemma PSKIP S-nd-compactification-Sync-upt-version:
‹[[E]] P ∈# mset (map Q [0 ..<n]). P = PSKIP S〈〈〈〈nd

⊗
[[E]] map A [0 ..<n]〉〉〉〉nd

(replicate n 0)›
if ‹

∧
i. i < n =⇒ %-disjoint-ε (A i)›

‹
∧

i. i < n =⇒ at-most-1-elem-term (A i)›
‹
∧

i. i < n =⇒ PSKIP S〈〈A i〉〉nd 0 = Q i›
〈proof 〉

lemma P-nd-compactification-Sync-upt-version:
‹[[E]] P ∈# mset (map Q [0 ..<n]). P = P〈〈〈〈nd

⊗
[[E]] map A [0 ..<n]〉〉〉〉nd (replicate

n 0)›
if ‹

∧
i. i < n =⇒ P〈〈A i〉〉nd 0 = Q i›

〈proof 〉

lemma PSKIP S-d-compactification-Sync-upt-version:
‹[[E]] P ∈# mset (map Q [0 ..<n]). P = PSKIP S〈〈〈〈d

⊗
[[E]] map A [0 ..<n]〉〉〉〉d

(replicate n 0)›
if ‹

∧
i. i < n =⇒ %-disjoint-ε (A i)›

‹
∧

i j. i < n =⇒ j < n =⇒ i 6= j =⇒ indep-enabl (A i) 0 E (A j) 0 ›
‹
∧

i. i < n =⇒ PSKIP S〈〈A i〉〉d 0 = Q i›
〈proof 〉

lemma P-d-compactification-Sync-upt-version:
‹[[E]] P ∈# mset (map Q [0 ..<n]). P = P〈〈〈〈d

⊗
[[E]] map A [0 ..<n]〉〉〉〉d (replicate

n 0)›
if ‹

∧
i. i < n =⇒ P〈〈A i〉〉d 0 = Q i›

‹
∧

i j. i < n =⇒ j < n =⇒ i 6= j =⇒ indep-enabl (A i) 0 E (A j) 0 ›
〈proof 〉

64

6.4 More on Iterated Combine

lemma ε-iterated-combinend-Sync-general-form:
‹length σs = length As =⇒ ε 〈〈nd

⊗
[[E]] As〉〉 σs =

(if As = [] then {}
else (

⋃
i < length As. ε (As ! i) (σs ! i)) − E ∪ (

⋂
i < length As. ε (As ! i)

(σs ! i)))›
for As :: ‹(′σ, ′e, ′r) And list›
〈proof 〉

lemma ε-iterated-combined-Sync-general-form:
‹length σs = length As =⇒ ε 〈〈d

⊗
[[E]] As〉〉 σs =

(if As = [] then {}
else (

⋃
i < length As. ε (As ! i) (σs ! i)) − E ∪ (

⋂
i < length As. ε (As ! i)

(σs ! i)))›
for As :: ‹(′σ, ′e, ′r) Ad list›
〈proof 〉

lemma τ -iterated-combinend-Sync-general-form:
‹[[length σs = length As; σs ′ ∈ τ 〈〈nd

⊗
[[E]] As〉〉 σs a; i < length As]] =⇒

σs ′ ! i ∈ insert (σs ! i) (τ (As ! i) (σs ! i) a)›
〈proof 〉

lemma τ -iterated-combined-Sync-general-form:
‹length σs = length As =⇒
τ 〈〈d

⊗
[[E]] As〉〉 σs a =

(if As = [] then ♦ else
if a ∈ (

⋃
i < length As. ε (As ! i) (σs ! i)) − E ∪ (

⋂
i < length As. ε (As ! i)

(σs ! i))
then bmap2 (λσ A. if a ∈ ε A σ then dτ A σ ae else σ) σs Asc else ♦)›

for As :: ‹(′σ, ′e, ′r) Ad list›
〈proof 〉

lemma indep-implies-only-one-enabled ′:
‹∃ !i. i < length As ∧ a ∈ ε (As ! i) (σs ! i)›
if ‹length σs = length As›

and ‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
ε (As ! i) (σs ! i) ∩ ε (As ! j) (σs ! j) ⊆ E›

and ‹a ∈ (
⋃

i<length As. ε (As ! i) (σs ! i)) − E›
〈proof 〉

lemma indep-implies-only-one-enabled:
‹[[length σs = length As;∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j);

a ∈ (
⋃

i<length As. ε (As ! i) (σs ! i)) − E]] =⇒

65

∃ !i. i < length As ∧ a ∈ ε (As ! i) (σs ! i)›
〈proof 〉

lemma τ -iterated-combined-Sync-general-form-when-indep:
‹τ 〈〈d

⊗
[[E]] As〉〉 σs a =

(if As = [] then ♦
else if a ∈ (

⋂
i<length As. ε (As ! i) (σs ! i))

then bmap2 (λσ A. dτ A σ ae) σs Asc
else if a ∈ (

⋃
i<length As. ε (As ! i) (σs ! i)) − E

then let i = THE i. i < length As ∧ a ∈ ε (As ! i) (σs ! i)
in bσs[i := dτ (As ! i) (σs ! i) ae]c

else ♦)›
(is ‹- = (if As = [] then ♦ else

if a ∈ ?I As σs then bmap2 (λσ A. dτ A σ ae) σs Asc else
if a ∈ ?U As σs − E then ?upd As σs else ♦)›)

if ‹length σs = length As›
‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

〈proof 〉

6.5 More on Events
lemma events-of-MultiSync-PSKIP S-nd :

‹α([[E]] (σ, A) ∈# mset (zip σs As). PSKIP S〈〈A〉〉nd σ) =
(if As = [] then {} else⋃

σs ′ ∈ Rnd 〈〈nd

⊗
[[E]] As〉〉 σs. (

⋃
i<length As. ε (As ! i) (σs ′ ! i)) − E ∪

(
⋂

i<length As. ε (As ! i) (σs ′ ! i)))›
(is ‹- = ?rhs›) if ‹length σs = length As›
‹
∧

A. A ∈ set As =⇒ %-disjoint-ε A› ‹
∧

A. A ∈ set As =⇒ at-most-1-elem-term
A›
〈proof 〉

lemma events-of-MultiSync-P-nd :
‹α([[E]] (σ, A) ∈# mset (zip σs As). P〈〈A〉〉nd σ) =
(if As = [] then {} else⋃

σs ′ ∈ Rnd 〈〈nd

⊗
[[E]] As〉〉 σs. (

⋃
i<length As. ε (As ! i) (σs ′ ! i)) − E ∪

(
⋂

i<length As. ε (As ! i) (σs ′ ! i)))›
(is ‹- = ?rhs›) if ‹length σs = length As›
〈proof 〉

lemma events-of-MultiSync-PSKIP S-d :
‹α([[E]] (σ, A) ∈# mset (zip σs As). PSKIP S〈〈A〉〉d σ) =
(if As = [] then {} else⋃

σs ′ ∈ Rd 〈〈d
⊗

[[E]] As〉〉 σs. (
⋃

i<length As. ε (As ! i) (σs ′ ! i) − E ∪
(
⋂

i<length As. ε (As ! i) (σs ′ ! i))))›

66

(is ‹- = ?rhs›) if ‹length σs = length As› ‹
∧

A. A ∈ set As =⇒ %-disjoint-ε A›
‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

〈proof 〉

lemma events-of-MultiSync-P-d :
‹α([[E]] (σ, A) ∈# mset (zip σs As). P〈〈A〉〉d σ) =
(if As = [] then {} else⋃

σs ′ ∈ Rd 〈〈d
⊗

[[E]] As〉〉 σs. (
⋃

i<length As. ε (As ! i) (σs ′ ! i) − E ∪
(
⋂

i<length As. ε (As ! i) (σs ′ ! i))))›
(is ‹- = ?rhs›) if ‹length σs = length As›
and ‹

∧
i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

〈proof 〉

67

68

Chapter 7

Combining Automata for
Generalized Synchronization
Product

7.1 Definitions

7.1.1 Specializations

definition combinedP airlist-Syncptick ::
‹[(′σ, ′e, ′r , ′α) Ad-scheme, ′e set, (′σ, ′e, ′r , ′β) Ad-scheme] ⇒ (′σ list, ′e, ′r

list) Ad›
where ‹combinedP airlist-Syncptick A0 E A1 ≡

combined-Sync A0 E A1 hd (λσs. hd (tl σs)) (λs t. [s, t]) (λs t. b[s, t]c)›
definition combinendP airlist-Syncptick ::

‹[(′σ, ′e, ′r , ′α) And-scheme, ′e set, (′σ, ′e, ′r , ′β) And-scheme] ⇒ (′σ list, ′e, ′r
list) And›

where ‹combinendP airlist-Syncptick A0 E A1 ≡ combinend-Sync A0 E A1 hd
(λσs. hd (tl σs)) (λs t. [s, t]) (λs t. b[s, t]c)›

definition combinedP air-Syncptick ::
‹[(′σ0,

′e, ′r0,
′α) Ad-scheme, ′e set, (′σ1,

′e, ′r1,
′β) Ad-scheme] ⇒ (′σ0 × ′σ1,

′e, ′r0 × ′r1) Ad›
where ‹combinedP air-Syncptick A0 E A1 ≡ combined-Sync A0 E A1 fst snd Pair

(λs r . b(s, r)c)›
definition combinendP air-Syncptick ::

‹[(′σ0,
′e, ′r0,

′α) And-scheme, ′e set, (′σ1,
′e, ′r1,

′β) And-scheme] ⇒ (′σ0 ×
′σ1,

′e, ′r0 × ′r1) And›
where ‹combinendP air-Syncptick A0 E A1 ≡ combinend-Sync A0 E A1 fst snd

Pair (λs r . b(s, r)c)›

definition combinedListslenL-Syncptick ::
‹[(′σ list, ′e, ′r list, ′α) Ad-scheme, nat, ′e set, (′σ list, ′e, ′r list, ′β) Ad-scheme]
⇒ (′σ list, ′e, ′r list) Ad›

69

where ‹combinedListslenL-Syncptick A0 len0 E A1 ≡ combined-Sync A0 E A1

(take len0) (drop len0) (@) (λs r . bs @ rc)›
definition combinendListslenL-Syncptick ::
‹[(′σ list, ′e, ′r list, ′α) And-scheme, nat, ′e set, (′σ list, ′e, ′r list, ′β) And-scheme]
⇒ (′σ list, ′e, ′r list) And›

where ‹combinendListslenL-Syncptick A0 len0 E A1 ≡ combinend-Sync A0 E A1

(take len0) (drop len0) (@) (λs r . bs @ rc)›

definition combinedRlist-Syncptick ::
‹[(′σ, ′e, ′r , ′α) Ad-scheme, ′e set, (′σ list, ′e, ′r list, ′β) Ad-scheme] ⇒ (′σ list,

′e, ′r list) Ad›
where ‹combinedRlist-Syncptick A0 E A1 ≡ combined-Sync A0 E A1 hd tl (#)

(λs r . bs # rc)›
definition combinendRlist-Syncptick ::

‹[(′σ, ′e, ′r , ′α) And-scheme, ′e set, (′σ list, ′e, ′r list, ′β) And-scheme] ⇒ (′σ
list, ′e, ′r list) And›

where ‹combinendRlist-Syncptick A0 E A1 ≡ combinend-Sync A0 E A1 hd tl (#)
(λs r . bs # rc)›

lemmas combineP airlist-Syncptick-defs = combinedP airlist-Syncptick-def combinendP airlist-Syncptick-def
and combineP air-Syncptick-defs = combinedP air-Syncptick-def combinendP air-Syncptick-def
and combineListslenL-Syncptick-defs = combinedListslenL-Syncptick-def com-

binendListslenL-Syncptick-def
and combineRlist-Syncptick-defs = combinedRlist-Syncptick-def combinendRlist-Syncptick-def

lemmas combine-Syncptick-defs =
combineP airlist-Syncptick-defs combineP air-Syncptick-defs combineListslenL-Syncptick-defs

combineRlist-Syncptick-defs

bundle combinend-Syncptick-syntax begin

notation combinedP airlist-Syncptick (‹〈〈- d⊗[[-]]3P airlist -〉〉› [0 , 0 , 0])
notation combinendP airlist-Syncptick (‹〈〈- nd⊗[[-]]3P airlist -〉〉› [0 , 0 , 0])
notation combinedP air-Syncptick (‹〈〈- d⊗[[-]]3P air -〉〉› [0 , 0 , 0])
notation combinendP air-Syncptick (‹〈〈- nd⊗[[-]]3P air -〉〉› [0 , 0 , 0])
notation combinedListslenL-Syncptick (‹〈〈- d⊗[[-, -]]3ListslenL -〉〉› [0 , 0 , 0 , 0])
notation combinendListslenL-Syncptick (‹〈〈- nd⊗[[-, -]]3ListslenL -〉〉› [0 , 0 , 0 , 0])
notation combinedRlist-Syncptick (‹〈〈- d⊗[[-]]3Rlist -〉〉› [0 , 0 , 0])
notation combinendRlist-Syncptick (‹〈〈- nd⊗[[-]]3Rlist -〉〉› [0 , 0 , 0])

end

unbundle combinend-Syncptick-syntax

7.2 First Properties
lemma finite-trans-combinend-Syncptick-simps [simp] :

‹finite-trans A0 =⇒ finite-trans A1 =⇒ finite-trans 〈〈A0 nd⊗[[E]]3P airlist A1〉〉›

70

‹finite-trans B0 =⇒ finite-trans B1 =⇒ finite-trans 〈〈B0 nd⊗[[E]]3P air B1〉〉›
‹finite-trans C 0 =⇒ finite-trans C 1 =⇒ finite-trans 〈〈C 0 nd⊗[[len0, E]]3ListslenL

C 1〉〉›
‹finite-trans D0 =⇒ finite-trans D1 =⇒ finite-trans 〈〈D0 nd⊗[[E]]3Rlist D1〉〉›
〈proof 〉

lemma ε-combineP airlist-Syncptick:
‹ε 〈〈A0 d⊗[[E]]3P airlist A1〉〉 σs = combine-Sync-ε A0 E A1 hd (hd ◦ tl) σs›
‹ε 〈〈B0 nd⊗[[E]]3P airlist B1〉〉 σs = combine-Sync-ε B0 E B1 hd (hd ◦ tl) σs›
〈proof 〉

lemma ε-combineP air-Syncptick:
‹ε 〈〈A0 d⊗[[E]]3P air A1〉〉 σs = combine-Sync-ε A0 E A1 fst snd σs›
‹ε 〈〈B0 nd⊗[[E]]3P air B1〉〉 σs = combine-Sync-ε B0 E B1 fst snd σs›
〈proof 〉

lemma ε-combineListslenL-Syncptick:
‹ε 〈〈A0 d⊗[[len0, E]]3ListslenL A1〉〉 σs = combine-Sync-ε A0 E A1 (take len0)

(drop len0) σs›
‹ε 〈〈B0 nd⊗[[len0, E]]3ListslenL B1〉〉 σs = combine-Sync-ε B0 E B1 (take len0)

(drop len0) σs›
〈proof 〉

lemma ε-combineRlist-Syncptick:
‹ε 〈〈A0 d⊗[[E]]3Rlist A1〉〉 σs = combine-Sync-ε A0 E A1 hd tl σs›
‹ε 〈〈B0 nd⊗[[E]]3Rlist B1〉〉 σs = combine-Sync-ε B0 E B1 hd tl σs›
〈proof 〉

lemma %-combineP airlist-Syncptick:
‹% 〈〈A0 d⊗[[E]]3P airlist A1〉〉 = {σs. hd σs ∈ % A0 ∧ hd (tl σs) ∈ % A1}›
‹% 〈〈B0 nd⊗[[E]]3P airlist B1〉〉 = {σs. hd σs ∈ % B0 ∧ hd (tl σs) ∈ % B1}›
〈proof 〉

lemma %-combineP air-Syncptick:
‹% 〈〈A0 d⊗[[E]]3P air A1〉〉 = {(σ0, σ1). σ0 ∈ % A0 ∧ σ1 ∈ % A1}›
‹% 〈〈B0 nd⊗[[E]]3P air B1〉〉 = {(σ0, σ1). σ0 ∈ % B0 ∧ σ1 ∈ % B1}›
〈proof 〉

lemma %-combineListslenL-Syncptick:
‹% 〈〈A0 d⊗[[len0, E]]3ListslenL A1〉〉 = {σs. take len0 σs ∈ % A0 ∧ drop len0 σs ∈

% A1}›
‹% 〈〈B0 nd⊗[[len0, E]]3ListslenL B1〉〉 = {σs. take len0 σs ∈ % B0 ∧ drop len0 σs
∈ % B1}›
〈proof 〉

lemma %-combineRlist-Syncptick:
‹% 〈〈A0 d⊗[[E]]3Rlist A1〉〉 = {σs. hd σs ∈ % A0 ∧ tl σs ∈ % A1}›
‹% 〈〈B0 nd⊗[[E]]3Rlist B1〉〉 = {σs. hd σs ∈ % B0 ∧ tl σs ∈ % B1}›

71

〈proof 〉

7.3 Transitions are unchanged in the Generaliza-
tion

In the generalization, only the ω function is modified.
lemma τ -combineP airlist-Syncptick :

‹τ 〈〈A0 d⊗[[E]]3P airlist A1〉〉 = τ 〈〈A0 d⊗[[E]]P airlist A1〉〉›
‹τ 〈〈B0 nd⊗[[E]]3P airlist B1〉〉 = τ 〈〈B0 nd⊗[[E]]P airlist B1〉〉›
〈proof 〉

lemma τ -combineP air-Syncptick :
‹τ 〈〈A0 d⊗[[E]]3P air A1〉〉 = τ 〈〈A0 d⊗[[E]]P air A1〉〉›
‹τ 〈〈B0 nd⊗[[E]]3P air B1〉〉 = τ 〈〈B0 nd⊗[[E]]P air B1〉〉›
〈proof 〉

lemma τ -combineListslenL-Syncptick :
‹τ 〈〈A0 d⊗[[len0, E]]3ListslenL A1〉〉 = τ 〈〈A0 d⊗[[len0, E]]ListslenL A1〉〉›
‹τ 〈〈B0 nd⊗[[len0, E]]3ListslenL B1〉〉 = τ 〈〈B0 nd⊗[[len0, E]]ListslenL B1〉〉›
〈proof 〉

τ 〈〈A0 d⊗[[E]]3Rlist A1〉〉 and τ 〈〈B0 nd⊗[[E]]3Rlist B1〉〉 cannot be obtained
that easily because of the types of terminations.

7.4 Reachability
lemma Rd-combinedListslenL-Syncptick-subset:

‹Rd 〈〈A0 d⊗[[len0, E]]3ListslenL A1〉〉 (s0 @ s1) ⊆ {t0 @ t1| t0 t1. t0 ∈ Rd A0 s0
∧ t1 ∈ Rd A1 s1}› (is ‹?SA ⊆ -›)

if ‹
∧

t0. t0 ∈ Rd A0 s0 =⇒ length t0 = len0›
〈proof 〉

lemma Rnd-combinendListslenL-Syncptick-subset:
‹Rnd 〈〈B0 nd⊗[[len0, E]]3ListslenL B1〉〉 (s0 @ s1) ⊆ {t0 @ t1| t0 t1. t0 ∈ Rnd B0

s0 ∧ t1 ∈ Rnd B1 s1}› (is ‹?SB ⊆ -›)
if ‹

∧
t0. t0 ∈ Rnd B0 s0 =⇒ length t0 = len0›

〈proof 〉

lemma Rd-combinedP airlist-Syncptick-subset:
‹Rd 〈〈A0 d⊗[[E]]3P airlist A1〉〉 [s0, s1] ⊆ {[t0, t1]| t0 t1. t0 ∈ Rd A0 s0 ∧ t1 ∈ Rd

A1 s1}› (is ‹?SA ⊆ -›)
and Rnd-combinendP airlist-Syncptick-subset:
‹Rnd 〈〈B0 nd⊗[[E]]3P airlist B1〉〉 [s0, s1] ⊆ {[t0, t1]| t0 t1. t0 ∈ Rnd B0 s0 ∧ t1
∈ Rnd B1 s1}› (is ‹?SB ⊆ -›)
〈proof 〉

72

lemma Rd-combinedP air-Syncptick-subset:
‹Rd 〈〈A0 d⊗[[E]]3P air A1〉〉 (s0, s1) ⊆ Rd A0 s0 × Rd A1 s1› (is ‹?SA ⊆ -›)
and Rnd-combinendP air-Syncptick-subset:
‹Rnd 〈〈B0 nd⊗[[E]]3P air B1〉〉 (s0, s1) ⊆ Rnd B0 s0 × Rnd B1 s1› (is ‹?SB ⊆ -›)
〈proof 〉

lemma Rd-combinedRlist-Syncptick-subset:
‹Rd 〈〈A0 d⊗[[E]]3Rlist A1〉〉 (s0 # σs) ⊆ {t0 # σt| t0 σt. t0 ∈ Rd A0 s0 ∧ σt ∈
Rd A1 σs}› (is ‹?SA ⊆ -›)

and Rnd-combinendRlist-Syncptick-subset:
‹Rnd 〈〈B0 nd⊗[[E]]3Rlist B1〉〉 (s0 # σs) ⊆ {t0 # σt| t0 σt. t0 ∈ Rnd B0 s0 ∧ σt
∈ Rnd B1 σs}› (is ‹?SB ⊆ -›)
〈proof 〉

7.5 Normalization
lemma ω-combineP airlist-Syncptick-behaviour :

‹ω 〈〈〈〈A0 d⊗[[E]]3P airlist A1〉〉〉〉d↪→nd [s0, s1] = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]3P airlist

〈〈A1〉〉d↪→nd〉〉 [s0, s1]›
〈proof 〉

lemma ω-combineP air-Syncptick-behaviour :
‹ω 〈〈〈〈A0 d⊗[[E]]3P air A1〉〉〉〉d↪→nd (s0, s1) = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]3P air 〈〈A1〉〉d↪→nd〉〉

(s0, s1)›
〈proof 〉

lemma ω-combineListslenL-Syncptick-behaviour :
‹ω 〈〈〈〈A0 d⊗[[len0, E]]3ListslenL A1〉〉〉〉d↪→nd (σs0 @ σs1) = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[len0,

E]]3ListslenL 〈〈A1〉〉d↪→nd〉〉 (σs0 @ σs1)›
〈proof 〉

lemma ω-combineRlist-Syncptick-behaviour :
‹ω 〈〈〈〈A0 d⊗[[E]]3Rlist A1〉〉〉〉d↪→nd (s0 # σs1) = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]3Rlist

〈〈A1〉〉d↪→nd〉〉 (s0 # σs1)›
〈proof 〉

lemma τ -combineP airlist-Syncptick-behaviour-when-indep:
‹ε A0 s0 ∩ ε A1 s1 ⊆ E =⇒
τ 〈〈〈〈A0 d⊗[[E]]3P airlist A1〉〉〉〉d↪→nd [s0, s1] e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]3P airlist

〈〈A1〉〉d↪→nd〉〉 [s0, s1] e›
〈proof 〉

lemma τ -combineP air-Syncptick-behaviour-when-indep:
‹ε A0 s0 ∩ ε A1 s1 ⊆ E =⇒
τ 〈〈〈〈A0 d⊗[[E]]3P air A1〉〉〉〉d↪→nd (s0, s1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]3P air 〈〈A1〉〉d↪→nd〉〉

(s0, s1) e›
〈proof 〉

73

lemma τ -combineListslenL-Syncptick-behaviour-when-indep:
‹ε A0 σs0 ∩ ε A1 σs1 ⊆ E =⇒ length σs0 = len0 =⇒
τ 〈〈〈〈A0 d⊗[[len0, E]]3ListslenL A1〉〉〉〉d↪→nd (σs0 @ σs1) e = τ 〈〈〈〈A0〉〉d↪→nd

nd⊗[[len0, E]]3ListslenL 〈〈A1〉〉d↪→nd〉〉 (σs0 @ σs1) e›
〈proof 〉

lemma τ -combineRlist-Syncptick-behaviour-when-indep:
‹ε A0 s0 ∩ ε A1 σs1 ⊆ E =⇒
τ 〈〈〈〈A0 d⊗[[E]]3Rlist A1〉〉〉〉d↪→nd (s0 # σs1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]3Rlist

〈〈A1〉〉d↪→nd〉〉 (s0 # σs1) e›
〈proof 〉

lemma PSKIP S-combineP airlist-Syncptick-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[E]]3P airlist A1〉〉〉〉d [s0, s1] = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]3P airlist

〈〈A1〉〉d↪→nd〉〉〉〉nd [s0, s1]›
if ‹indep-enabl A0 s0 E A1 s1›
〈proof 〉

lemma P-combineP airlist-Syncptick-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[E]]3P airlist A1〉〉〉〉d [s0, s1] = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]3P airlist 〈〈A1〉〉d↪→nd〉〉〉〉nd

[s0, s1]›
if ‹indep-enabl A0 s0 E A1 s1›
〈proof 〉

lemma PSKIP S-combineP air-Syncptick-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[E]]3P air A1〉〉〉〉d (s0, s1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]3P air

〈〈A1〉〉d↪→nd〉〉〉〉nd (s0, s1)›
if ‹indep-enabl A0 s0 E A1 s1›
〈proof 〉

lemma P-combineP air-Syncptick-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[E]]3P air A1〉〉〉〉d (s0, s1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]3P air 〈〈A1〉〉d↪→nd〉〉〉〉nd

(s0, s1)›
if ‹indep-enabl A0 s0 E A1 s1›
〈proof 〉

lemma PSKIP S-combineListslenL-Syncptick-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[len0, E]]3ListslenL A1〉〉〉〉d (σs0 @ σs1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd

nd⊗[[len0, E]]3ListslenL 〈〈A1〉〉d↪→nd〉〉〉〉nd (σs0 @ σs1)›
if ‹indep-enabl A0 σs0 E A1 σs1› and ‹

∧
σt0. σt0 ∈ Rd A0 σs0 =⇒ length σt0

= len0›
〈proof 〉

lemma P-combineListslenL-Syncptick-behaviour-when-indep:

74

‹P〈〈〈〈A0 d⊗[[len0, E]]3ListslenL A1〉〉〉〉d (σs0 @ σs1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[len0,
E]]3ListslenL 〈〈A1〉〉d↪→nd〉〉〉〉nd (σs0 @ σs1)›

if ‹indep-enabl A0 σs0 E A1 σs1› and ‹
∧
σt0. σt0 ∈ Rd A0 σs0 =⇒ length σt0

= len0›
〈proof 〉

lemma PSKIP S-combineRlist-Syncptick-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[E]]3Rlist A1〉〉〉〉d (s0 # σs1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]3Rlist

〈〈A1〉〉d↪→nd〉〉〉〉nd (s0 # σs1)›
if ‹indep-enabl A0 s0 E A1 σs1›
〈proof 〉

lemma P-combineRlist-Syncptick-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[E]]3Rlist A1〉〉〉〉d (s0 # σs1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E]]3Rlist 〈〈A1〉〉d↪→nd〉〉〉〉nd

(s0 # σs1)›
if ‹indep-enabl A0 s0 E A1 σs1›
〈proof 〉

75

76

Chapter 8

Compactification of
Synchronization Product
Generalized

8.1 Iterated Combine
8.1.1 Definitions
fun iterated-combined-Syncptick :: ‹ ′e set ⇒ (′σ, ′e, ′r) Ad list ⇒ (′σ list, ′e, ′r
list) Ad› (‹〈〈d

⊗
[[-]]3 -〉〉› [0 , 0])

where ‹〈〈d
⊗

[[E]]3 []〉〉 = (|τ = λσs a. ♦, ω = λσs. ♦|)›
| ‹〈〈d

⊗
[[E]]3 [A0]〉〉 = d〈〈A0〉〉singl↪→list›

| ‹〈〈d
⊗

[[E]]3 A0 # A1 # As〉〉 = 〈〈A0 d⊗[[E]]3Rlist 〈〈d
⊗

[[E]]3 A1 # As〉〉〉〉›

fun iterated-combinend-Syncptick :: ‹ ′e set ⇒ (′σ, ′e, ′r) And list ⇒ (′σ list, ′e, ′r
list) And› (‹〈〈nd

⊗
[[-]]3 -〉〉› [0 , 0])

where ‹〈〈nd

⊗
[[E]]3 []〉〉 = (|τ = λσs a. {}, ω = λσs. {}|)›

| ‹〈〈nd

⊗
[[E]]3 [A0]〉〉 = nd〈〈A0〉〉singl↪→list›

| ‹〈〈nd

⊗
[[E]]3 A0 # A1 # As〉〉 = 〈〈A0 nd⊗[[E]]3Rlist 〈〈nd

⊗
[[E]]3 A1 # As〉〉〉〉›

lemma iterated-combined-Syncptick-simps-bis: ‹As 6= [] =⇒ 〈〈d
⊗

[[E]]3 A0 # As〉〉
= 〈〈A0 d⊗[[E]]3Rlist 〈〈d

⊗
[[E]]3 As〉〉〉〉›

and iterated-combinend-Syncptick-simps-bis: ‹Bs 6= [] =⇒ 〈〈nd

⊗
[[E]]3 B0 # Bs〉〉

= 〈〈B0 nd⊗[[E]]3Rlist 〈〈nd

⊗
[[E]]3 Bs〉〉〉〉›

〈proof 〉

8.1.2 First Results
lemma τ -iterated-combine-Syncptick:

‹τ 〈〈d
⊗

[[E]]3 As〉〉 = τ 〈〈d
⊗

[[E]] As〉〉› ‹τ 〈〈nd

⊗
[[E]]3 Bs〉〉 = τ 〈〈nd

⊗
[[E]] Bs〉〉›

〈proof 〉

corollary ε-iterated-combine-Syncptick:

77

‹ε 〈〈d
⊗

[[E]]3 As〉〉 σs = ε 〈〈d
⊗

[[E]] As〉〉 σs›
‹ε 〈〈nd

⊗
[[E]]3 Bs〉〉 σs = ε 〈〈nd

⊗
[[E]] Bs〉〉 σs›

〈proof 〉

corollary R-iterated-combine-Syncptick:
‹Rd 〈〈d

⊗
[[E]]3 As〉〉 = Rd 〈〈d

⊗
[[E]] As〉〉› ‹Rnd 〈〈nd

⊗
[[E]]3 Bs〉〉 = Rnd 〈〈nd

⊗
[[E]]

Bs〉〉›
〈proof 〉

lemma combineListslenL-Syncptick-combineRlist-Syncptick-eq:
‹ε 〈〈d〈〈A0〉〉singl↪→list d⊗[[1 , E]]3ListslenL A1〉〉 σs = ε 〈〈A0 d⊗[[E]]3Rlist A1〉〉 σs›
‹τ 〈〈d〈〈A0〉〉singl↪→list d⊗[[1 , E]]3ListslenL A1〉〉 (s0 # σs) e = τ 〈〈A0 d⊗[[E]]3Rlist

A1〉〉 (s0 # σs) e›
‹ε 〈〈nd〈〈B0〉〉singl↪→list nd⊗[[1 , E]]3ListslenL B1〉〉 σs = ε 〈〈B0 nd⊗[[E]]3Rlist B1〉〉

σs›
‹τ 〈〈nd〈〈B0〉〉singl↪→list nd⊗[[1 , E]]3ListslenL B1〉〉 (s0 # σs) e = τ 〈〈B0 nd⊗[[E]]3Rlist

B1〉〉 (s0 # σs) e›
〈proof 〉

lemma combineP airlist-Syncptick-and-iterated-combinend-Syncptick-eq:
‹ε 〈〈A0 d⊗[[E]]3P airlist A1〉〉 [s0, s1] = ε 〈〈d

⊗
[[E]]3 [A0, A1]〉〉 [s0, s1]›

‹τ 〈〈A0 d⊗[[E]]3P airlist A1〉〉 [s0, s1] e = τ 〈〈d
⊗

[[E]]3 [A0, A1]〉〉 [s0, s1] e›
‹ε 〈〈B0 nd⊗[[E]]3P airlist B1〉〉 [s0, s1] = ε 〈〈nd

⊗
[[E]]3 [B0, B1]〉〉 [s0, s1]›

‹τ 〈〈B0 nd⊗[[E]]3P airlist B1〉〉 [s0, s1] e = τ 〈〈nd

⊗
[[E]]3 [B0, B1]〉〉 [s0, s1] e›

〈proof 〉

lemmas combineP airlist-Syncptick-and-combineRlist-Syncptick-eq =
combineP airlist-Syncptick-and-iterated-combinend-Syncptick-eq[simplified]

8.1.3 Transmission of Properties
lemma finite-trans-transmission-to-iterated-combinend-Syncptick:

‹(
∧

A. A ∈ set As =⇒ finite-trans A) =⇒ finite-trans 〈〈nd

⊗
[[E]]3 As〉〉›

〈proof 〉

lemma %-disjoint-ε-transmission-to-iterated-combined-Syncptick:
‹(
∧

A. A ∈ set As =⇒ %-disjoint-ε A) =⇒ %-disjoint-ε 〈〈d
⊗

[[E]]3 As〉〉›
〈proof 〉

lemma %-disjoint-ε-transmission-to-iterated-combinend-Syncptick:
‹∀B ∈ set Bs. %-disjoint-ε B =⇒ %-disjoint-ε 〈〈nd

⊗
[[E]]3 Bs〉〉›

〈proof 〉

78

lemma same-length-indep-transmission-to-iterated-combined-Syncptick:
‹indep-enabl A0 s0 E 〈〈d

⊗
[[E]]3 As〉〉 σs›

if ‹length σs = length As›
‹
∧

i j. [[i ≤ length As; j ≤ length As; i 6= j]] =⇒
indep-enabl ((A0 # As) ! i) ((s0 # σs) ! i) E ((A0 # As) ! j) ((s0 # σs)

! j)›
〈proof 〉

lemma ω-iterated-combined-Syncptick :
‹length σs = length As =⇒
ω 〈〈d

⊗
[[E]]3 As〉〉 σs = (if As = [] then ♦ else those (map2 ω As σs))›

〈proof 〉

lemma ω-iterated-combinend-Syncptick :
‹length σs = length As =⇒
ω 〈〈nd

⊗
[[E]]3 As〉〉 σs =

(if As = [] then {} else {rs. length rs = length As ∧ (∀ i < length As. rs ! i ∈ ω
(As ! i) (σs ! i))})›
〈proof 〉

8.1.4 Normalization
lemma ω-iterated-combinend-Syncptick-det-ndet-conv:

‹length σs = length As =⇒
ω 〈〈nd

⊗
[[E]]3 map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs = ω 〈〈〈〈d

⊗
[[E]]3 As〉〉〉〉d↪→nd σs›

〈proof 〉

lemma τ -iterated-combinend-Syncptick-behaviour-when-indep:
‹length σs = length As =⇒
(
∧

i j. [[i < length As; j < length As; i 6= j]]
=⇒ indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)) =⇒
τ 〈〈〈〈d

⊗
[[E]]3 As〉〉〉〉d↪→nd σs e = τ 〈〈nd

⊗
[[E]]3 map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs e›

〈proof 〉

lemma PSKIP S-iterated-combinend-Syncptick-behaviour-when-indep:
assumes same-length: ‹length σs = length As›

and indep: ‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

shows ‹PSKIP S〈〈〈〈d
⊗

[[E]]3 As〉〉〉〉d σs = PSKIP S〈〈〈〈nd

⊗
[[E]]3 map (λA. 〈〈A〉〉d↪→nd)

As〉〉〉〉nd σs›
〈proof 〉

lemma P-d-iterated-combinend-Syncptick-behaviour-when-indep:
assumes same-length: ‹length σs = length As›

79

and indep: ‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

shows ‹P〈〈〈〈d
⊗

[[E]]3 As〉〉〉〉d σs = P〈〈〈〈nd

⊗
[[E]]3 map (λA. 〈〈A〉〉d↪→nd) As〉〉〉〉nd

σs›
〈proof 〉

8.2 Compactification Theorems
8.2.1 Binary
Pair
theorem PSKIP S-nd-combineP air-Syncptick :

fixes E :: ‹ ′a set›
assumes %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1›
defines A-def : ‹A ≡ 〈〈A0 nd⊗[[E]]3P air A1〉〉›
defines P-def : ‹P ≡ PSKIP S〈〈A0〉〉nd› and Q-def : ‹Q ≡ PSKIP S〈〈A1〉〉nd› and

S-def : ‹S ≡ PSKIP S〈〈A〉〉nd›
shows ‹P σ0 [[E]]3P air Q σ1 = S (σ0, σ1)›
〈proof 〉

corollary P-nd-combineP air-Syncptick :
‹P〈〈A0〉〉nd σ0 [[E]]3P air P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[E]]3P air A1〉〉〉〉nd (σ0, σ1)›
〈proof 〉

corollary PSKIP S-d-combineP air-Syncptick:
‹PSKIP S〈〈A0〉〉d σ0 [[E]]3P air PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0 d⊗[[E]]3P air

A1〉〉〉〉d (σ0, σ1)›
if ‹%-disjoint-ε A0› and ‹%-disjoint-ε A1› and ‹indep-enabl A0 σ0 E A1 σ1›
〈proof 〉

corollary P-d-combineP air-Syncptick:
‹P〈〈A0〉〉d σ0 [[E]]3P air P〈〈A1〉〉d σ1 = P〈〈〈〈A0 d⊗[[E]]3P air A1〉〉〉〉d (σ0, σ1)›
if ‹indep-enabl A0 σ0 E A1 σ1›
〈proof 〉

Pairlist
theorem PSKIP S-nd-combineP airlist-Syncptick :

fixes E :: ‹ ′a set›
assumes %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1›
shows ‹PSKIP S〈〈A0〉〉nd σ0 [[E]]3P airlist PSKIP S〈〈A1〉〉nd σ1 = PSKIP S〈〈〈〈A0

nd⊗[[E]]3P airlist A1〉〉〉〉nd [σ0, σ1]›
〈proof 〉

corollary P-nd-combineP airlist-Syncptick :
‹P〈〈A0〉〉nd σ0 [[E]]3P airlist P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[E]]3P airlist A1〉〉〉〉nd [σ0,

σ1]›
〈proof 〉

80

corollary PSKIP S-d-combineP airlist-Syncptick :
‹PSKIP S〈〈A0〉〉d σ0 [[E]]3P airlist PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0 d⊗[[E]]3P airlist

A1〉〉〉〉d [σ0, σ1]›
if ‹%-disjoint-ε A0› and ‹%-disjoint-ε A1› and ‹indep-enabl A0 σ0 E A1 σ1›
〈proof 〉

corollary P-d-combineP airlist-Syncptick :
‹P〈〈A0〉〉d σ0 [[E]]3P airlist P〈〈A1〉〉d σ1 = P〈〈〈〈A0 d⊗[[E]]3P airlist A1〉〉〉〉d [σ0, σ1]›
if ‹indep-enabl A0 σ0 E A1 σ1›
〈proof 〉

8.2.2 Rlist
theorem PSKIP S-nd-combineRlist-Syncptick :

fixes E :: ‹ ′a set›
assumes %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1›
defines A-def : ‹A ≡ 〈〈A0 nd⊗[[E]]3Rlist A1〉〉›
defines P-def : ‹P ≡ PSKIP S〈〈A0〉〉nd› and Q-def : ‹Q ≡ PSKIP S〈〈A1〉〉nd› and

S-def : ‹S ≡ PSKIP S〈〈A〉〉nd›
shows ‹P σ0 [[E]]3Rlist Q σs = S (σ0 # σs)›
〈proof 〉

corollary P-nd-combineRlist-Syncptick :
‹P〈〈A0〉〉nd σ0 [[E]]3Rlist P〈〈A1〉〉nd σs = P〈〈〈〈A0 nd⊗[[E]]3Rlist A1〉〉〉〉nd (σ0 # σs)›
〈proof 〉

corollary PSKIP S-d-combineRlist-Syncptick:
‹PSKIP S〈〈A0〉〉d σ0 [[E]]3Rlist PSKIP S〈〈A1〉〉d σs = PSKIP S〈〈〈〈A0 d⊗[[E]]3Rlist

A1〉〉〉〉d (σ0 # σs)›
if ‹%-disjoint-ε A0› and ‹%-disjoint-ε A1› and ‹indep-enabl A0 σ0 E A1 σs›
〈proof 〉

corollary P-d-combineRlist-Syncptick:
‹P〈〈A0〉〉d σ0 [[E]]3Rlist P〈〈A1〉〉d σs = P〈〈〈〈A0 d⊗[[E]]3Rlist A1〉〉〉〉d (σ0 # σs)›
if ‹indep-enabl A0 σ0 E A1 σs›
〈proof 〉

8.2.3 ListslenL
theorem PSKIP S-nd-combineListslenL-Syncptick :

fixes E :: ‹ ′a set›
assumes same-length-reach0 : ‹

∧
σ0

′. σ0
′ ∈ Rnd A0 σ0 =⇒ length σ0

′ = len0›
and same-length-term0 : ‹

∧
σ0

′ rs. σ0
′ ∈ Rnd A0 σ0 =⇒ rs ∈ ω A0 σ0

′ =⇒
length rs = len0›

and %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1›
defines A-def : ‹A ≡ 〈〈A0 nd⊗[[len0, E]]3ListslenL A1〉〉›
defines P-def : ‹P ≡ PSKIP S〈〈A0〉〉nd› and Q-def : ‹Q ≡ PSKIP S〈〈A1〉〉nd› and

S-def : ‹S ≡ PSKIP S〈〈A〉〉nd›
shows ‹P σ0 len0

[[E]]3ListslenL Q σ1 = S (σ0 @ σ1)›
〈proof 〉

81

corollary P-nd-combineListslenL-Syncptick :
‹P〈〈A0〉〉nd σ0 len0

[[E]]3ListslenL P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[len0, E]]3ListslenL

A1〉〉〉〉nd (σ0 @ σ1)›
if same-length-reach0 : ‹

∧
σ0

′. σ0
′ ∈ Rnd A0 σ0 =⇒ length σ0

′ = len0›
〈proof 〉

corollary PSKIP S-d-combineListslenL-Syncptick :
assumes same-length-reach0 : ‹

∧
σ0

′. σ0
′ ∈ Rd A0 σ0 =⇒ length σ0

′ = len0›
and same-length-term0 : ‹

∧
σ0

′. σ0
′ ∈ Rd A0 σ0 =⇒ ω A0 σ0

′ 6= ♦ =⇒ length
dω A0 σ0

′e = len0›
and %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1›
and indep-enabl : ‹indep-enabl A0 σ0 E A1 σ1›

shows ‹PSKIP S〈〈A0〉〉d σ0 len0
[[E]]3ListslenL PSKIP S〈〈A1〉〉d σ1 =

PSKIP S〈〈〈〈A0 d⊗[[len0, E]]3ListslenL A1〉〉〉〉d (σ0 @ σ1)›
〈proof 〉

corollary P-d-combineListslenL-Syncptick :
assumes same-length-reach0 : ‹

∧
σ0

′. σ0
′ ∈ Rd A0 σ0 =⇒ length σ0

′ = len0›
and indep-enabl : ‹indep-enabl A0 σ0 E A1 σ1›

shows ‹P〈〈A0〉〉d σ0 len0
[[E]]3ListslenL P〈〈A1〉〉d σ1 =

P〈〈〈〈A0 d⊗[[len0, E]]3ListslenL A1〉〉〉〉d (σ0 @ σ1)›
〈proof 〉

8.2.4 Multiple
theorem PSKIP S-nd-compactification-Syncptick:

‹length σs = length As =⇒ (
∧

A. A ∈ set As =⇒ %-disjoint-ε A) =⇒
[[E]]3 (σ, A) ∈@ zip σs As. PSKIP S〈〈A〉〉nd σ = PSKIP S〈〈〈〈nd

⊗
[[E]]3 As〉〉〉〉nd

σs›
〈proof 〉

corollary P-nd-compactification-Syncptick:
‹length σs = length As =⇒ [[E]]3 (σ, A) ∈@ zip σs As. P〈〈A〉〉nd σ = P〈〈〈〈nd

⊗
[[E]]3

As〉〉〉〉nd σs›
〈proof 〉

corollary PSKIP S-d-compactification-Syncptick:
‹[[length σs = length As;

∧
A. A ∈ set As =⇒ %-disjoint-ε A;∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)]] =⇒

[[E]]3 (σ, A) ∈@ zip σs As. PSKIP S〈〈A〉〉d σ = PSKIP S〈〈〈〈d
⊗

[[E]]3 As〉〉〉〉d σs›
〈proof 〉

corollary P-d-compactification-Syncptick:
‹[[length σs = length As;∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)]] =⇒

[[E]]3 (σ, A) ∈@ zip σs As. P〈〈A〉〉d σ = P〈〈〈〈d
⊗

[[E]]3 As〉〉〉〉d σs›

82

〈proof 〉

8.3 Derived Versions
lemma PSKIP S-nd-compactification-Syncptick-upt-version:

‹[[E]]3 P ∈@ map Q [0 ..<n]. P = PSKIP S〈〈〈〈nd

⊗
[[E]]3 map A [0 ..<n]〉〉〉〉nd

(replicate n 0)›
if ‹

∧
i. i < n =⇒ %-disjoint-ε (A i)›

‹
∧

i. i < n =⇒ PSKIP S〈〈A i〉〉nd 0 = Q i›
〈proof 〉

lemma P-nd-compactification-Syncptick-upt-version:
‹[[E]]3 P ∈@ map Q [0 ..<n]. P = P〈〈〈〈nd

⊗
[[E]]3 map A [0 ..<n]〉〉〉〉nd (replicate

n 0)›
if ‹

∧
i. i < n =⇒ P〈〈A i〉〉nd 0 = Q i›

〈proof 〉

lemma PSKIP S-d-compactification-Syncptick-upt-version:
‹[[E]]3 P ∈@ map Q [0 ..<n]. P = PSKIP S〈〈〈〈d

⊗
[[E]]3 map A [0 ..<n]〉〉〉〉d (replicate

n 0)›
if ‹

∧
i. i < n =⇒ %-disjoint-ε (A i)›

‹
∧

i j. i < n =⇒ j < n =⇒ i 6= j =⇒ indep-enabl (A i) 0 E (A j) 0 ›
‹
∧

i. i < n =⇒ PSKIP S〈〈A i〉〉d 0 = Q i›
〈proof 〉

lemma P-d-compactification-Syncptick-upt-version:
‹[[E]]3 P ∈@ map Q [0 ..<n]. P = P〈〈〈〈d

⊗
[[E]]3 map A [0 ..<n]〉〉〉〉d (replicate n

0)›
if ‹

∧
i j. i < n =⇒ j < n =⇒ i 6= j =⇒ indep-enabl (A i) 0 E (A j) 0 ›

‹
∧

i. i < n =⇒ P〈〈A i〉〉d 0 = Q i›
〈proof 〉

8.4 More on Iterated Combine and Events

Through τ -iterated-combine-Syncptick ε-iterated-combine-Syncptick R-iterated-combine-Syncptick,
we immediately recover the results proven in HOL−CSP-Proc−Omata.Compactification-Synchronization-Product.

83

84

Chapter 9

Combining Automata for
Sequential Composition
Generalized

9.1 Definitions

9.2 General Patterns
definition combined-Seq-ε ::

‹[(′σ0,
′a, ′r , ′α0) Ad-scheme, ′r ⇒ (′σ1,

′a, ′s, ′α1) Ad-scheme, ′σ ⇒ ′σ0,
′σ ⇒

′σ1,
′σ] ⇒ ′a set›

where ‹combined-Seq-ε A0 A1 i0 i1 σs ≡
if i0 σs ∈ % A0

then if i1 σs ∈ % (A1 dω A0 (i0 σs)e)
then {}
else ε (A1 dω A0 (i0 σs)e) (i1 σs)

else ε A0 (i0 σs)›

definition combinend-Seq-ε ::
‹[(′σ0,

′a, ′r , ′α0) And-scheme, ′r ⇒ (′σ1,
′a, ′s, ′α1) And-scheme, ′σ ⇒ ′σ0,

′σ
⇒ ′σ1,

′σ] ⇒ ′a set›
where ‹combinend-Seq-ε A0 A1 i0 i1 σs ≡

if i0 σs ∈ % A0

then if i1 σs ∈ (
⋃

r∈ω A0 (i0 σs). % (A1 r))
then {}
else (

⋃
r ∈ ω A0 (i0 σs). ε (A1 r) (i1 σs))

else ε A0 (i0 σs)›

lemmas combine-Seq-ε-defs = combined-Seq-ε-def combinend-Seq-ε-def

fun combined-Seq ::
‹[(′σ0,

′e, ′r , ′α0) Ad-scheme, ′r ⇒ (′σ1,
′e, ′s, ′α1) Ad-scheme,

85

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ0 ⇒ ′σ1 ⇒ ′σ] ⇒ (′σ, ′e, ′s) Ad›
and combinend-Seq ::
‹[(′σ0,

′e, ′r , ′α0) And-scheme, ′r ⇒ (′σ1,
′e, ′s, ′α1) And-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ0 ⇒ ′σ1 ⇒ ′σ] ⇒ (′σ, ′e, ′s) And›
where ‹combined-Seq A0 A1 i0 i1 f =

(|τ = λσs e. if i0 σs ∈ % A0

then if i1 σs ∈ % (A1 dω A0 (i0 σs)e)
then ♦

else update-right (A1 dω A0 (i0 σs)e) (i0 σs) (i1 σs) e (f-up-opt
f) (λσ. bσc)

else update-left A0 (i0 σs) (i1 σs) e (f-up-opt f) (λσ. bσc),
ω = λσs. case ω A0 (i0 σs) of ♦ ⇒ ♦ | brc ⇒ ω (A1 r) (i1 σs)|)›

| ‹combinend-Seq A0 A1 i0 i1 f =
(|τ = λσs e. if i0 σs ∈ % A0

then if i1 σs ∈ (
⋃

r∈ω A0 (i0 σs). % (A1 r))
then {}
else (

⋃
r∈ω A0 (i0 σs). update-right (A1 r) (i0 σs) (i1 σs) e

(f-up-set f) (λσ. {σ}))
else update-left A0 (i0 σs) (i1 σs) e (f-up-set f) (λσ. {σ}),

ω = λσs.
⋃

r∈ω A0 (i0 σs). ω (A1 r) (i1 σs)|)›

9.3 Specializations
definition combinedP airlist-Seqptick ::

‹[(′σ, ′e, ′r , ′α) Ad-scheme, ′r ⇒ (′σ, ′e, ′s, ′β) Ad-scheme] ⇒ (′σ list, ′e, ′s) Ad›
where ‹combinedP airlist-Seqptick A0 A1 ≡ combined-Seq A0 A1 hd (λσs. hd (tl

σs)) (λs t. [s, t])›
definition combinendP airlist-Seqptick ::

‹[(′σ, ′e, ′r , ′α) And-scheme, ′r ⇒ (′σ, ′e, ′s, ′β) And-scheme] ⇒ (′σ list, ′e, ′s)
And›

where ‹combinendP airlist-Seqptick A0 A1 ≡ combinend-Seq A0 A1 hd (λσs. hd
(tl σs)) (λs t. [s, t])›

definition combinedP air-Seqptick ::
‹[(′σ0,

′e, ′r , ′α) Ad-scheme, ′r ⇒ (′σ1,
′e, ′s, ′β) Ad-scheme] ⇒ (′σ0 × ′σ1,

′e,
′s) Ad›

where ‹combinedP air-Seqptick A0 A1 ≡ combined-Seq A0 A1 fst snd Pair›
definition combinendP air-Seqptick ::

‹[(′σ0,
′e, ′r , ′α) And-scheme, ′r ⇒ (′σ1,

′e, ′s, ′β) And-scheme] ⇒ (′σ0 × ′σ1,
′e, ′s) And›

where ‹combinendP air-Seqptick A0 A1 ≡ combinend-Seq A0 A1 fst snd Pair›

definition combinedListslenL-Seqptick ::
‹[(′σ list, ′e, ′r , ′α) Ad-scheme, nat, ′r ⇒ (′σ list, ′e, ′s, ′β) Ad-scheme] ⇒ (′σ

list, ′e, ′s) Ad›
where ‹combinedListslenL-Seqptick A0 len0 A1 ≡ combined-Seq A0 A1 (take

len0) (drop len0) (@)›
definition combinendListslenL-Seqptick ::

‹[(′σ list, ′e, ′r , ′α) And-scheme, nat, ′r ⇒ (′σ list, ′e, ′s, ′β) And-scheme] ⇒ (′σ

86

list, ′e, ′s) And›
where ‹combinendListslenL-Seqptick A0 len0 A1 ≡ combinend-Seq A0 A1 (take

len0) (drop len0) (@)›

definition combinedRlist-Seqptick ::
‹[(′σ, ′e, ′r , ′α) Ad-scheme, ′r ⇒ (′σ list, ′e, ′s, ′β) Ad-scheme] ⇒ (′σ list, ′e, ′s)

Ad›
where ‹combinedRlist-Seqptick A0 A1 ≡ combined-Seq A0 A1 hd tl (#)›

definition combinendRlist-Seqptick ::
‹[(′σ, ′e, ′r , ′α) And-scheme, ′r ⇒ (′σ list, ′e, ′s, ′β) And-scheme] ⇒ (′σ list, ′e,

′s) And›
where ‹combinendRlist-Seqptick A0 A1 ≡ combinend-Seq A0 A1 hd tl (#)›

lemmas combineP airlist-Seqptick-defs = combinedP airlist-Seqptick-def combinendP airlist-Seqptick-def
and combineP air-Seqptick-defs = combinedP air-Seqptick-def combinendP air-Seqptick-def
and combineListslenL-Seqptick = combinedListslenL-Seqptick-def combinendListslenL-Seqptick-def
and combineRlist-Seqptick-defs = combinedRlist-Seqptick-def combinendRlist-Seqptick-def

lemmas combine-Seq-defs =
combineP airlist-Seqptick-defs combineP air-Seqptick-defs combineListslenL-Seqptick

combineRlist-Seqptick-defs

bundle combine-Seq-syntax begin

notation combinedP airlist-Seqptick (‹〈〈- d⊗;3P airlist -〉〉› [0 , 0])
notation combinendP airlist-Seqptick (‹〈〈- nd⊗;3P airlist -〉〉› [0 , 0])
notation combinedP air-Seqptick (‹〈〈- d⊗;3P air -〉〉› [0 , 0])
notation combinendP air-Seqptick (‹〈〈- nd⊗;3P air -〉〉› [0 , 0])
notation combinedListslenL-Seqptick (‹〈〈- d⊗-;ListslenL -〉〉› [0 , 0 , 0])
notation combinendListslenL-Seqptick (‹〈〈- nd⊗-;ListslenL -〉〉› [0 , 0 , 0])
notation combinedRlist-Seqptick (‹〈〈- d⊗;3Rlist -〉〉› [0 , 0])
notation combinendRlist-Seqptick (‹〈〈- nd⊗;3Rlist -〉〉› [0 , 0])

end

unbundle combine-Seq-syntax

9.4 First Properties
lemma ε-combineP airlist-Seqptick :

‹ε 〈〈A0 d⊗;3P airlist A1〉〉 σs = combined-Seq-ε A0 A1 hd (hd ◦ tl) σs›
‹ε 〈〈B0 nd⊗;3P airlist B1〉〉 σs = combinend-Seq-ε B0 B1 hd (hd ◦ tl) σs›
〈proof 〉

lemma ε-combineP air-Seqptick :
‹ε 〈〈A0 d⊗;3P air A1〉〉 σs = combined-Seq-ε A0 A1 fst snd σs›

87

‹ε 〈〈B0 nd⊗;3P air B1〉〉 σs = combinend-Seq-ε B0 B1 fst snd σs›
〈proof 〉

lemma ε-combineListslenL-Seqptick :
‹ε 〈〈A0 d⊗len0;ListslenL A1〉〉 σs = combined-Seq-ε A0 A1 (take len0) (drop len0)

σs›
‹ε 〈〈B0 nd⊗len0;ListslenL B1〉〉 σs = combinend-Seq-ε B0 B1 (take len0) (drop

len0) σs›
〈proof 〉

lemma ε-combineRlist-Seqptick :
‹ε 〈〈A0 d⊗;3Rlist A1〉〉 σs = combined-Seq-ε A0 A1 hd tl σs›
‹ε 〈〈B0 nd⊗;3Rlist B1〉〉 σs = combinend-Seq-ε B0 B1 hd tl σs›
〈proof 〉

9.4.1 Reachability
lemma Rd-combinedListslenL-Seqptick-subset:

‹Rd 〈〈A0 d⊗len0;ListslenL A1〉〉 (s0 @ s1) ⊆ {t0 @ t1 |t0 t1. t0 ∈ Rd A0 s0}› (is
‹?SA ⊆ -›)

if same-length-Rd: ‹
∧

t0. t0 ∈ Rd A0 s0 =⇒ length t0 = len0›
〈proof 〉

lemma Rnd-combinendListslenL-Seqptick-subset:
‹Rnd 〈〈A0 nd⊗len0;ListslenL A1〉〉 (s0 @ s1) ⊆ {t0 @ t1 |t0 t1. t0 ∈ Rnd A0 s0}›

(is ‹?SA ⊆ -›)
if same-length-Rnd: ‹

∧
t0. t0 ∈ Rnd A0 s0 =⇒ length t0 = len0›

〈proof 〉

lemma Rd-combinedP airlist-Seqptick-subset:
‹Rd 〈〈A0 d⊗;3P airlist A1〉〉 [s0, s1] ⊆ {[t0, t1] |t0 t1. t0 ∈ Rd A0 s0}› (is ‹?SA

⊆ -›)
〈proof 〉

lemma Rnd-combinendP airlist-Seqptick-subset:
‹Rnd 〈〈A0 nd⊗;3P airlist A1〉〉 [s0, s1] ⊆ {[t0, t1] |t0 t1. t0 ∈ Rnd A0 s0}› (is ‹?SA

⊆ -›)
〈proof 〉

lemma Rd-combinedP air-Seqptick-subset:
‹Rd 〈〈A0 d⊗;3P air A1〉〉 (s0, s1) ⊆ {(t0, t1) |t0 t1. t0 ∈ Rd A0 s0}› (is ‹?SA ⊆

-›)
〈proof 〉

lemma Rnd-combinendP air-Seqptick-subset:
‹Rnd 〈〈A0 nd⊗;3P air A1〉〉 (s0, s1) ⊆ {(t0, t1) |t0 t1. t0 ∈ Rnd A0 s0}› (is ‹?SA

⊆ -›)

88

〈proof 〉

lemma Rd-combinedRlist-Seqptick-subset:
‹Rd 〈〈A0 d⊗;3Rlist A1〉〉 (s0 # s1) ⊆ {t0 # t1 |t0 t1. t0 ∈ Rd A0 s0}› (is ‹?SA

⊆ -›)
〈proof 〉

lemma Rnd-combinendRlist-Seqptick-subset:
‹Rnd 〈〈A0 nd⊗;3Rlist A1〉〉 (s0 # s1) ⊆ {t0 # t1 |t0 t1. t0 ∈ Rnd A0 s0}› (is

‹?SA ⊆ -›)
〈proof 〉

9.5 Normalization
lemma τ -combineP airlist-Seqptick-behaviour :

‹τ 〈〈〈〈A0 d⊗;3P airlist A1〉〉〉〉d↪→nd [s0, s1] e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗;3P airlist (λr .
〈〈A1 r〉〉d↪→nd)〉〉 [s0, s1] e›
〈proof 〉

lemma τ -combineP air-Seqptick-behaviour :
‹τ 〈〈〈〈A0 d⊗;3P air A1〉〉〉〉d↪→nd (s0, s1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗;3P air (λr . 〈〈A1

r〉〉d↪→nd)〉〉 (s0, s1) e›
〈proof 〉

lemma τ -combineListslenL-Seqptick-behaviour :
‹τ 〈〈〈〈A0 d⊗len0;ListslenL A1〉〉〉〉d↪→nd (σs0 @ σs1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗len0;ListslenL

(λr . 〈〈A1 r〉〉d↪→nd)〉〉 (σs0 @ σs1) e›
〈proof 〉

lemma τ -combineRlist-Seqptick-behaviour :
‹τ 〈〈〈〈A0 d⊗;3Rlist A1〉〉〉〉d↪→nd (s0 # σs1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗;3Rlist (λr . 〈〈A1

r〉〉d↪→nd)〉〉 (s0 # σs1) e›
〈proof 〉

Behaviour of normalisations

lemma PSKIP S-combineP airlist-Seqptick-behaviour :
‹PSKIP S〈〈〈〈A0 d⊗;3P airlist A1〉〉〉〉d [s0, s1] = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3P airlist

(λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd [s0, s1]›
〈proof 〉

lemma P-combineP airlist-Seqptick-behaviour :
‹P〈〈〈〈A0 d⊗;3P airlist A1〉〉〉〉d [s0, s1] = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3P airlist (λr . 〈〈A1

r〉〉d↪→nd)〉〉〉〉nd [s0, s1]›
〈proof 〉

lemma PSKIP S-combineP air-Seqptick-behaviour :

89

‹PSKIP S〈〈〈〈A0 d⊗;3P air A1〉〉〉〉d (s0, s1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3P air (λr .
〈〈A1 r〉〉d↪→nd)〉〉〉〉nd (s0, s1)›
〈proof 〉

lemma P-combineP air-Seqptick-behaviour :
‹P〈〈〈〈A0 d⊗;3P air A1〉〉〉〉d (s0, s1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3P air (λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd

(s0, s1)›
〈proof 〉

lemma PSKIP S-combineRlist-Seqptick-behaviour :
‹PSKIP S〈〈〈〈A0 d⊗;3Rlist A1〉〉〉〉d (s0 # s1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3Rlist

(λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd (s0 # s1)›
〈proof 〉

lemma P-combineRlist-Seqptick-behaviour :
‹P〈〈〈〈A0 d⊗;3Rlist A1〉〉〉〉d (s0 # s1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3Rlist (λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd

(s0 # s1)›
〈proof 〉

lemma PSKIP S-combineListslenL-Seqptick-behaviour :
‹PSKIP S〈〈〈〈A0 d⊗len0;ListslenL A1〉〉〉〉d (σs0 @ σs1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd

nd⊗len0;ListslenL (λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd (σs0 @ σs1)›
if ‹

∧
σs0 ′. σs0 ′ ∈ Rd A0 σs0 =⇒ length σs0 ′ = len0›

〈proof 〉

lemma P-combineListslenL-Seqptick-behaviour :
‹P〈〈〈〈A0 d⊗len0;ListslenL A1〉〉〉〉d (σs0 @ σs1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗len0;ListslenL

(λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd (σs0 @ σs1)›
if ‹

∧
σt0. σt0 ∈ Rd A0 σs0 =⇒ length σt0 = len0›

〈proof 〉

90

Chapter 10

Compactification of
Sequential Composition
Generalized

10.1 Iterated Combine
10.1.1 Definitions
fun iterated-combined-Seqptick :: ‹[(′r ⇒ (′σ, ′e, ′r) Ad) list, ′r] ⇒ (′σ list, ′e, ′r)
Ad› (‹〈〈d

⊗
;3 -〉〉› [0])

where ‹〈〈d
⊗

;3 []〉〉 r = (|τ = λσs a. ♦, ω = λσs. brc|)›
| ‹〈〈d

⊗
;3 [A0]〉〉 r = d〈〈A0 r〉〉σ↪→σs›

| ‹〈〈d
⊗

;3 A0 # A1 # As〉〉 r = 〈〈A0 r d⊗;3Rlist 〈〈d
⊗

;3 A1 # As〉〉〉〉›

fun iterated-combinend-Seqptick :: ‹[(′r ⇒ (′σ, ′e, ′r) And) list, ′r] ⇒ (′σ list, ′e,
′r) And› (‹〈〈nd

⊗
;3 -〉〉› [0])

where ‹〈〈nd

⊗
;3 []〉〉 r = (|τ = λσs a. {}, ω = λσs. {r}|)›

| ‹〈〈nd

⊗
;3 [A0]〉〉 r = nd〈〈A0 r〉〉σ↪→σs›

| ‹〈〈nd

⊗
;3 A0 # A1 # As〉〉 r = 〈〈A0 r nd⊗;3Rlist 〈〈nd

⊗
;3 A1 # As〉〉〉〉›

lemma iterated-combined-Seqptick-simps-bis: ‹As 6= [] =⇒ 〈〈d
⊗

;3 A0 # As〉〉 r =
〈〈A0 r d⊗;3Rlist 〈〈d

⊗
;3 As〉〉〉〉›

and iterated-combinend-Seqptick-simps-bis: ‹Bs 6= [] =⇒ 〈〈nd

⊗
;3 B0 # Bs〉〉 r =

〈〈B0 r nd⊗;3Rlist 〈〈nd

⊗
;3 Bs〉〉〉〉›

〈proof 〉

10.1.2 First Results
lemma combineListslenL-Seqptick-combineRlist-Seqptick-eq:

‹ε 〈〈d〈〈A0〉〉σ↪→σs d⊗1;ListslenL A1〉〉 (s0 # σs) = ε 〈〈A0 d⊗;3Rlist A1〉〉 (s0 # σs)›
‹τ 〈〈d〈〈A0〉〉σ↪→σs d⊗1;ListslenL A1〉〉 (s0 # σs) e = τ 〈〈A0 d⊗;3Rlist A1〉〉 (s0 #

σs) e›
‹ε 〈〈nd〈〈B0〉〉σ↪→σs nd⊗1;ListslenL B1〉〉 (s0 # σs) = ε 〈〈B0 nd⊗;3Rlist B1〉〉 (s0 #

91

σs)›
‹τ 〈〈nd〈〈B0〉〉σ↪→σs nd⊗1;ListslenL B1〉〉 (s0 # σs) e = τ 〈〈B0 nd⊗;3Rlist B1〉〉 (s0

σs) e›
〈proof 〉

lemma combineP airlist-Seqptick-and-iterated-combine-Seqptick-eq:
‹ε 〈〈A0 r d⊗;3P airlist A1〉〉 [s0, s1] = ε (〈〈d

⊗
;3 [A0, A1]〉〉 r) [s0, s1]›

‹τ 〈〈A0 r d⊗;3P airlist A1〉〉 [s0, s1] e = τ (〈〈d
⊗

;3 [A0, A1]〉〉 r) [s0, s1] e›
‹ε 〈〈B0 r nd⊗;3P airlist B1〉〉 [s0, s1] = ε (〈〈nd

⊗
;3 [B0, B1]〉〉 r) [s0, s1]›

‹τ 〈〈B0 r nd⊗;3P airlist B1〉〉 [s0, s1] e = τ (〈〈nd

⊗
;3 [B0, B1]〉〉 r) [s0, s1] e›

〈proof 〉

lemma combineP airlist-Seqptick-and-combineRlist-Seqptick-eq :
‹ε 〈〈A0 d⊗;3P airlist A1〉〉 [s0, s1] = ε 〈〈A0 d⊗;3Rlist 〈〈d

⊗
;3 [A1]〉〉〉〉 [s0, s1]›

‹τ 〈〈A0 d⊗;3P airlist A1〉〉 [s0, s1] e = τ 〈〈A0 d⊗;3Rlist 〈〈d
⊗

;3 [A1]〉〉〉〉 [s0, s1] e›
‹ε 〈〈B0 nd⊗;3P airlist B1〉〉 [s0, s1] = ε 〈〈B0 nd⊗;3Rlist 〈〈nd

⊗
;3 [B1]〉〉〉〉 [s0, s1]›

‹τ 〈〈B0 nd⊗;3P airlist B1〉〉 [s0, s1] e = τ 〈〈B0 nd⊗;3Rlist 〈〈nd

⊗
;3 [B1]〉〉〉〉 [s0, s1]

e›
〈proof 〉

10.1.3 Reachability
lemma same-length-τ -iterated-combined-Seqptick :

‹length σs = length As =⇒ bσtc = τ (〈〈d
⊗

;3 As〉〉 r) σs a =⇒ length σt = length
As›
〈proof 〉

lemma same-length-τ -iterated-combinend-Seqptick :
‹length σs = length As =⇒ σt ∈ τ (〈〈nd

⊗
;3 As〉〉 r) σs a =⇒ length σt = length

As›
〈proof 〉

lemma same-length-Rd-iterated-combined-Seqptick :
‹σt ∈ Rd (〈〈d

⊗
;3 As〉〉 r) σs =⇒ length σs = length As =⇒ length σt = length

As›
〈proof 〉

lemma same-length-Rnd-iterated-combinend-Seqptick :
‹σt ∈ Rnd (〈〈nd

⊗
;3 As〉〉 r) σs =⇒ length σs = length As =⇒ length σt = length

As›
〈proof 〉

10.1.4 Transmission of Properties
lemma %-disjoint-ε-transmission-to-iterated-combine-Seqptick :

‹As 6= [] =⇒ %-disjoint-ε ((last As) r) =⇒ %-disjoint-ε (〈〈d
⊗

;3 As〉〉 r)›

92

‹Bs 6= [] =⇒ %-disjoint-ε ((last Bs) r) =⇒ %-disjoint-ε (〈〈nd

⊗
;3 Bs〉〉 r)›

〈proof 〉

10.1.5 Normalization
lemma ω-iterated-combine-Seqptick-det-ndet-conv:

‹ω (〈〈nd

⊗
;3 map (λA r . 〈〈A r〉〉d↪→nd) As〉〉 r) σs = ω 〈〈〈〈d

⊗
;3 As〉〉 r〉〉d↪→nd σs›

〈proof 〉

lemma %-iterated-combine-Seqptick-det-ndet-conv :
‹% (〈〈nd

⊗
;3 map (λA r . 〈〈A r〉〉d↪→nd) As〉〉 r) = % 〈〈〈〈d

⊗
;3 As〉〉 r〉〉d↪→nd›

〈proof 〉

lemma τ -iterated-combine-Seqptick-behaviour :
‹length σs = length As =⇒
τ 〈〈〈〈d

⊗
;3 As〉〉 r〉〉d↪→nd σs e = τ (〈〈nd

⊗
;3 map (λA r . 〈〈A r〉〉d↪→nd) As〉〉 r) σs

e›
〈proof 〉

lemma PSKIP S-iterated-combine-Seqptick-behaviour :
assumes same-length: ‹length σs = length As›
shows ‹PSKIP S〈〈〈〈d

⊗
;3 As〉〉 r〉〉d σs = PSKIP S〈〈〈〈nd

⊗
;3 map (λA r . 〈〈A

r〉〉d↪→nd) As〉〉 r〉〉nd σs›
〈proof 〉

lemma P-iterated-combine-Seqptick-behaviour :
assumes same-length: ‹length σs = length As›
shows ‹P〈〈〈〈d

⊗
;3 As〉〉 r〉〉d σs = P〈〈〈〈nd

⊗
;3 map (λA r . 〈〈A r〉〉d↪→nd) As〉〉 r〉〉nd

σs›
〈proof 〉

10.2 Compactification Theorems
10.2.1 Binary
Pair
lemma PSKIP S-nd-combineP air-Seqptick :

fixes A0 A1

assumes at-most-1-elem-term : ‹at-most-1-elem-term A0›
— This assumption is necessary in the new setup, otherwise the result is not

always a Procomaton (for example if ω A0 σ0 = UNIV, we have P σ0 ;3 Q σ1 =
GlobalNdet UNIV (Q σ1)).

defines A-def : ‹A ≡ 〈〈A0 nd⊗;3P air A1〉〉›
defines P-def : ‹P ≡ PSKIP S〈〈A0〉〉nd›

and Q-def : ‹Q ≡ λσ1 r . PSKIP S〈〈A1 r〉〉nd σ1›

93

and S-def : ‹S ≡ PSKIP S〈〈A〉〉nd›
shows ‹P σ0 ;3 Q σ1 = S (σ0, σ1)›
〈proof 〉

corollary PSKIP S-d-combineP air-Seqptick :
‹PSKIP S〈〈A0〉〉d σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉d σ1) = PSKIP S〈〈〈〈A0 d⊗;3P air A1〉〉〉〉d

(σ0, σ1)›
〈proof 〉

Pairlist
lemma PSKIP S-nd-combineP airlist-Seqptick :
‹PSKIP S〈〈A0〉〉nd σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉nd σ1) = PSKIP S〈〈〈〈A0 nd⊗;3P airlist

A1〉〉〉〉nd [σ0, σ1]›
if ‹at-most-1-elem-term A0›
〈proof 〉

corollary PSKIP S-d-combineP airlist-Seqptick :
‹PSKIP S〈〈A0〉〉d σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉d σ1) = PSKIP S〈〈〈〈A0 d⊗;3P airlist

A1〉〉〉〉d [σ0, σ1]›
〈proof 〉

Rlist
lemma PSKIP S-nd-combineRlist-Seqptick :

‹PSKIP S〈〈A0〉〉nd σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉nd σs) = PSKIP S〈〈〈〈A0 nd⊗;3Rlist

A1〉〉〉〉nd (σ0 # σs)›
if ‹at-most-1-elem-term A0›
〈proof 〉

corollary PSKIP S-d-combineRlist-Seqptick :
‹PSKIP S〈〈A0〉〉d σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉d σs) = PSKIP S〈〈〈〈A0 d⊗;3Rlist

A1〉〉〉〉d (σ0 # σs)›
〈proof 〉

10.2.2 ListslenL
lemma PSKIP S-nd-combineListslenL-Seqptick :
‹PSKIP S〈〈A0〉〉nd σs0 ;3 (λr . PSKIP S〈〈A1 r〉〉nd σs1) = PSKIP S〈〈〈〈A0 nd⊗len0;ListslenL

A1〉〉〉〉nd (σs0 @ σs1)›
if same-length-reach : ‹

∧
σs0 ′. σs0 ′ ∈ Rnd A0 σs0 =⇒ length σs0 ′ = len0›

and ‹at-most-1-elem-term A0›
〈proof 〉

corollary PSKIP S-d-combineListslenL-Seqptick :
‹PSKIP S〈〈A0〉〉d σs0 ;3 (λr . PSKIP S〈〈A1 r〉〉d σs1) = PSKIP S〈〈〈〈A0 d⊗len0;ListslenL

A1〉〉〉〉d (σs0 @ σs1)›
if same-length-reach : ‹

∧
σs0 ′. σs0 ′ ∈ Rd A0 σs0 =⇒ length σs0 ′ = len0›

〈proof 〉

94

10.2.3 Multiple
theorem PSKIP S-nd-compactification-Seqptick:

‹[[length σs = length As;
∧

A r . A ∈ set (butlast As) =⇒ at-most-1-elem-term (A
r)]] =⇒

SEQ3 (σ, A) ∈@ zip σs As. (λr . PSKIP S〈〈A r〉〉nd σ) = (λr . PSKIP S〈〈〈〈nd

⊗
;3

As〉〉 r〉〉nd σs)›
〈proof 〉

corollary PSKIP S-d-compactification-Seqptick:
‹length σs = length As =⇒
SEQ3 (σ, A) ∈@ zip σs As. (λr . PSKIP S〈〈A r〉〉d σ) = (λr . PSKIP S〈〈〈〈d

⊗
;3

As〉〉 r〉〉d σs)›
〈proof 〉

95

96

Chapter 11

Application : May
Philosophers dine ?

11.1 Preliminaries

11.1.1 Preliminary lemmas for proof automation
lemma Suc-mod: ‹n > 1 =⇒ i 6= Suc i mod n›
〈proof 〉

lemmas suc-mods = Suc-mod Suc-mod[symmetric]

lemma l-suc: ‹n > 1 =⇒ ¬ n ≤ Suc 0 ›
〈proof 〉

lemma minus-suc: ‹n > 0 =⇒ n − Suc 0 6= n›
〈proof 〉

declare Un-insert-right[simp del] Un-insert-left[simp del]

11.2 The dining processes definition
context DiningPhilosophers begin

lemma RPHIL-restriction-fix-def :
‹RPHIL i = (υ X . picks i i → picks i ((i − 1) mod N) →

putsdown i ((i − 1) mod N) → putsdown i i → X)›
〈proof 〉

lemma LPHIL0-restriction-fix-def :
‹LPHIL0 = (υ X . picks 0 (N − 1) → picks 0 0 →

putsdown 0 0 → putsdown 0 (N − 1) → X)›
〈proof 〉

97

lemma FORK-restriction-fix-def :
‹FORK i = (υ X . (picks i i → putsdown i i → X) �

(picks ((i + 1) mod N) i → putsdown ((i + 1) mod N) i → X))›
〈proof 〉

11.2.1 Unfolding rules
lemmas RPHIL-rec = cont-process-rec[OF RPHIL-def [THEN meta-eq-to-obj-eq],
simplified]

and LPHIL0-rec = cont-process-rec[OF LPHIL0-def [THEN meta-eq-to-obj-eq],
simplified]

and FORK-rec = cont-process-rec[OF FORK-def [THEN meta-eq-to-obj-eq],
simplified]

11.3 Translation into normal form
lemma N-pos[simp]: ‹N > 0 ›
〈proof 〉

lemmas N-pos-simps[simp] = suc-mods[OF N-g1] l-suc[OF N-g1] minus-suc[OF
N-pos]

11.3.1 FORK, LPHIL0 and RPHIL are normalizable

Definition of one fork and one philosopher automata
type-synonym idf ork = nat
type-synonym σf ork = nat
type-synonym idphil = nat
type-synonym σphil = nat

definition fork-A :: ‹idf ork ⇒ (σf ork, dining-event, unit) Ad› (‹Af ›)
where ‹Af i ≡ recursive-constructor-Ad

[((0 , picks i i), b1 c), ((0 , picks ((i + 1) mod N) i), b2 c),
((1 , putsdown i i), b0 c), ((2 , putsdown ((i + 1) mod N) i), b0 c)]

(λσ. ♦)›

definition rphil-A :: ‹idphil ⇒ (σphil, dining-event, unit) Ad› (‹Arp›)
where ‹Arp i ≡ recursive-constructor-Ad

[((0 , picks i i), b1 c), ((1 , picks i ((i−1) mod N)), b2 c),
((2 , putsdown i ((i−1) mod N)), b3 c), ((3 , putsdown i i), b0 c)]

(λσ. ♦)›

definition lphil0-A :: ‹(σphil, dining-event, unit) Ad› (‹Alp›)
where ‹Alp ≡ recursive-constructor-Ad

98

[((0 , picks 0 (N − 1)), b1 c), ((1 , picks 0 0), b2 c),
((2 , putsdown 0 0), b3 c), ((3 , putsdown 0 (N − 1)), b0 c)] (λσ. ♦)›

Definition and first properties of associated normal processes
definition fork-P-d :: ‹idf ork ⇒ σf ork ⇒ dining-event process› where ‹fork-P-d
i ≡ P〈〈Af i〉〉d›
definition rphil-P-d :: ‹idphil ⇒ σphil ⇒ dining-event process› where ‹rphil-P-d
i ≡ P〈〈Arp i〉〉d›
definition lphil0-P-d :: ‹σphil ⇒ dining-event process› where ‹lphil0-P-d
≡ P〈〈Alp〉〉d›

lemmas fork-P-d-rec = P-d-rec[of ‹Af -›, folded fork-P-d-def]
and rphil-P-d-rec = P-d-rec[of ‹Arp -›, folded rphil-P-d-def]
and lphil0-P-d-rec = P-d-rec[of ‹Alp›, folded lphil0-P-d-def]

schematic-goal fork-ε: ‹ε (Af i) σ = ?S›
and rphil-ε: ‹ε (Arp i) σ = ?T ›
and lphil0-ε: ‹ε Alp σ = ?U ›
〈proof 〉

schematic-goal fork-τ : ‹τ (Af i) σ = ?S›
and rphil-τ : ‹τ (Arp i) σ = ?T ›
and lphil0-τ : ‹τ Alp σ = ?U ›
〈proof 〉

corollary ev-idf orkx: ‹e ∈ ε (Af i) σ =⇒ fork e = i›
and rphil-phil: ‹e ∈ ε (Arp i) σ =⇒ phil e = i›
and lphil0-phil: ‹e ∈ ε Alp σ =⇒ phil e = 0 ›
〈proof 〉

corollary ev-idphilx: ‹i < n =⇒ σ ∈ ε ((Alp # map Arp [1 ..< n]) ! i) s =⇒ phil
σ = i›
〈proof 〉

lemma indep-forks: ‹i 6= j =⇒ ε (Af i) σ ∩ ε (Af j) σ ′ = {}›
and indep-phils: ‹i 6= 0 =⇒ ε Alp σ ∩ ε (Arp i) σ ′ = {}›
‹i 6= j =⇒ ε (Arp i) σ ∩ ε (Arp j) σ ′ = {}›
〈proof 〉

Equalities between FORK, RPHIL, LPHIL0 and respectively fork-P-d, rphil-P-d,
lphil0-P-d
lemma FORK-is-fork-P-d: ‹FORK i = fork-P-d i 0 ›
〈proof 〉

99

lemma RPHIL-is-rphil-P-d: ‹RPHIL i = rphil-P-d i 0 ›
〈proof 〉

lemma LPHIL0-is-lphil0-P-d: ‹LPHIL0 = lphil0-P-d 0 ›
〈proof 〉

11.3.2 FORKS is normalizable

Definition of the all-forks automaton
type-synonym σf orks = ‹nat list›

definition forks-A :: ‹(σf orks, dining-event, unit) Ad› (‹AF ›) where ‹AF ≡
〈〈d
⊗

[[{}]] map Af [0 ..<N]〉〉›

Definition and first properties of the associated normal process
definition forks-P-d:: ‹σf orks ⇒ dining-event process› where ‹forks-P-d ≡ P〈〈AF 〉〉d›

lemma forks-ε: ‹length fs = N =⇒ ε AF fs = (
⋃

i<N . ε (Af i) (fs ! i))›
〈proof 〉

Equality between FORKS and forks-P-d
lemma NFORKS-is-forks-P-d: ‹FORKS = forks-P-d (replicate N 0)›
〈proof 〉

11.3.3 PHILS is normalizable

Definition of the all-philosophers automaton
type-synonym σphils = ‹nat list›

definition phils-A :: ‹(σphils, dining-event, unit) Ad› (‹AP ›) where ‹AP ≡ 〈〈d
⊗

[[{}]]
Alp # map Arp [1 ..< N]〉〉›

lemma phils-A-def-bis: ‹AP = 〈〈d
⊗

[[{}]] map (λi. if i = 0 then Alp else Arp i)
[0 ..<N]〉〉›
〈proof 〉

Definition and first properties of the associated normal process
definition phils-P-d:: ‹σphils ⇒ dining-event process› where ‹phils-P-d ≡ P〈〈AP 〉〉d›

lemma phils-ε: ‹length ps = N =⇒ ε AP ps = ε Alp (ps ! 0) ∪ (
⋃

i∈{1 ..<N}. ε
(Arp i) (ps ! i))›

100

〈proof 〉

Equality between PHILS and phils-P-d
lemma NPHILS-is-phils-P-d: ‹PHILS = phils-P-d (replicate N 0)›
〈proof 〉

11.3.4 The complete process DINING is normalizable

Definition of the dining automaton
definition dining-A :: ‹(σphils × σf orks, dining-event, unit) Ad› (‹AD›) where
‹AD ≡ 〈〈AP d⊗[[UNIV]]P air AF 〉〉›

Definition and first properties of the associated normal process
definition dining-P-d:: ‹σphils × σf orks ⇒ dining-event process› where ‹din-
ing-P-d ≡ P〈〈AD〉〉d›

lemma dining-ε:
‹length ps = N =⇒ length fs = N =⇒
ε AD (ps, fs) = (ε Alp (ps ! 0) ∪ (

⋃
i∈{1 ..<N}. ε (Arp i) (ps ! i))) ∩ (

⋃
i<N .

ε (Af i) (fs ! i))›
〈proof 〉

Equality between DINING and dining-P-d
lemma DINING-is-dining-P-d: ‹DINING = dining-P-d (replicate N 0 , replicate N
0)›
〈proof 〉

11.4 And finally: Philosophers may dine ! Always
!

method ε-sets-simp uses opt = (simp-all split: if-split-asm)?,
simp-all add: fork-ε lphil0-ε rphil-ε opt split: if-splits

method A-defs-simp uses opt = (simp-all split: if-split-asm)?,
simp-all add: fork-A-def lphil0-A-def rphil-A-def opt split: if-splits

11.4.1 Construction of an invariant for the dining automaton
definition ‹inv-dining ps fs ≡

length fs = N ∧ length ps = N
∧ (∀ i < N . fs ! i = 0 ∨ fs ! i = 1 ∨ fs ! i = 2)
∧ (∀ i < N . ps ! i = 0 ∨ ps ! i = 1 ∨ ps ! i = 2 ∨ ps ! i = 3)
∧ (∀ i. Suc i < N −→ ((fs ! Suc i = 1) ←→ ps ! Suc i 6= 0)) ∧ (fs ! (N

− 1) = 2 ←→ ps ! 0 6= 0)
∧ (∀ i < N − 1 . fs ! i = 2 ←→ ps ! Suc i = 2) ∧ (fs ! 0 =

1 ←→ ps ! 0 = 2)›

101

lemma show-inv-dining:
‹length fs = N ∧ length ps = N =⇒
(∀ i < N . fs ! i = 0 ∨ fs ! i = 1 ∨ fs ! i = 2) =⇒
(∀ i < N . ps ! i = 0 ∨ ps ! i = 1 ∨ ps ! i = 2 ∨ ps ! i = 3) =⇒
(∀ i. Suc i < N −→ (fs ! Suc i = 1 ←→ ps ! Suc i 6= 0)) =⇒ (fs ! (N − 1) =

2 ←→ ps ! 0 6= 0) =⇒
(∀ i < N − 1 . fs ! i = 2 ←→ ps ! Suc i = 2) =⇒ (fs ! 0 = 1 ←→ ps ! 0 = 2)

=⇒
inv-dining ps fs›
〈proof 〉

lemma inv-DINING: ‹s ∈ Rd AD (replicate N 0 , replicate N 0) =⇒ inv-dining
(fst s) (snd s)›
〈proof 〉

11.4.2 The invariant inv-dining implies that DINING is dead-
lock-free

method nonempty-Int-by-common-element for x = rule-tac ex-in-conv[THEN iffD1 ,
OF exI , OF IntI , of x]

lemma inv-implies-DF : ‹ε AD (ps, fs) 6= {}› if hyp-inv: ‹inv-dining ps fs›
〈proof 〉

11.4.3 Conclusion

corollary deadlock-free-DINING: ‹deadlock-free DINING›
〈proof 〉

11.5 Alternative version with only right-handed
philosophers (in order to show that it’s not
deadlock-free)

11.5.1 Setup

definition ‹RPHILS ≡ ||| P ∈# mset (map RPHIL [0 ..< N]). P›

corollary ‹N = 3 =⇒ RPHILS = (RPHIL 0 ||| RPHIL 1 ||| RPHIL 2)›
〈proof 〉

definition RDINING :: ‹dining-event process›
where ‹RDINING = (FORKS || RPHILS)›

102

11.5.2 Normalization
definition rphils-A :: ‹(σphils, dining-event, unit) Ad› (‹ARP ›) where ‹ARP ≡
〈〈d
⊗

[[{}]] map Arp [0 ..< N]〉〉›

definition rphils-P-d:: ‹σphils ⇒ dining-event process› where ‹rphils-P-d ≡ P〈〈ARP 〉〉d›

definition rdining-A :: ‹(σphils × σf orks, dining-event, unit) Ad› (‹ARD›) where
‹ARD ≡ 〈〈ARP d⊗[[UNIV]]P air AF 〉〉›

definition rdining-P-d:: ‹σphils × σf orks ⇒ dining-event process› where ‹rdining-P-d
≡ P〈〈ARD〉〉d›

11.5.3 Correspondance between our normalized processes and
the previous definitions

lemma rphils-ε: ‹length ps = N =⇒ ε ARP ps = (
⋃

i∈{0 ..<N}. ε (Arp i) (ps !
i))›
〈proof 〉

lemma NRPHILS-is-rphils-P-d: ‹RPHILS = rphils-P-d (replicate N 0)›
〈proof 〉

lemma rdining-ε:
‹length ps = N =⇒ length fs = N =⇒
ε ARD (ps, fs) = (

⋃
i∈{0 ..<N}. ε (Arp i) (ps ! i)) ∩ (

⋃
i<N . ε (Af i) (fs ! i))›

〈proof 〉

lemma RDINING-is-rdining-P-d: ‹RDINING = rdining-P-d (replicate N 0 , repli-
cate N 0)›
〈proof 〉

11.5.4 Proof that we have a deadlock in the state (replicate N
1 , replicate N 1)

lemma empty-enabl-replicate1 : ‹ε ARD (replicate N 1 , replicate N 1) = {}›
〈proof 〉

corollary non-dealock-free-rdining: ‹¬ deadlock-free (rdining-P-d (replicate N 1 ,
replicate N 1))›
〈proof 〉

11.5.5 Proof that this state is reachable from our initial
state, i.e. (replicate N 1 , replicate N 1) ∈ Rd ARD (replicate
N 0 , replicate N 0)

lemma rdining-τ : ‹length ps = N =⇒ length fs = N =⇒ e ∈ ε ARD (ps, fs) =⇒
τ ARD (ps, fs) e = b(dτ ARP ps ee, dτ AF fs ee)c›

〈proof 〉

103

lemma replicate1-reachable-from-replicate0-prelim:
‹n ≤ N =⇒ (replicate n 1 @ replicate (N − n) 0 , replicate n 1 @ replicate (N
− n) 0) ∈ Rd ARD (replicate N 0 , replicate N 0)›
〈proof 〉

corollary replicate1-reachable-from-replicate0 : ‹(replicate N 1 , replicate N 1) ∈
Rd ARD (replicate N 0 , replicate N 0)›
〈proof 〉

theorem not-deadlock-free-RDINING: ‹¬ deadlock-free RDINING›
〈proof 〉

end

104

Chapter 12

Other Results similar to
Compactification

Unlike Sync and (;), some operators like Det do not enjoy a compactification
result. Nevertheless, we still can prove some useful lemmas.

12.1 Some preliminary Results
lemma Mprefix-Det-Mprefix-bis :

‹(�a ∈ A → P a) � (�b ∈ B → Q b) =
(�x ∈ (A ∩ B) → P x u Q x) � (�a ∈ (A − B) → P a) � (�b ∈ (B − A) →

Q b)›
(is ‹?lhs = ?rhs›)
〈proof 〉

lemma GlobalNdet-Ndet-GlobalNdet:
‹A 6= {} =⇒ B 6= {} =⇒ (ua ∈ A. P a) u (ub ∈ B. Q b) =
ux ∈ (A ∪ B). (if x ∈ A ∩ B then P x u Q x else if x ∈ A then P x else Q x)›
〈proof 〉

lemma GlobalNdet-Ndet-GlobalNdet-bis:
‹A ∩ B 6= {} =⇒ A − B 6= {} =⇒ B − A 6= {} =⇒
(ua ∈ A. P a) u (ub ∈ B. Q b) =
(ux ∈ (A ∩ B). P x u Q x) u (ua ∈ (A − B). P a) u (ub ∈ (B − A). Q b)›
〈proof 〉

lemma GlobalNdet-GlobalNdet:
‹(ua ∈ A. ub ∈ B a. P b) =
(if ∀ a ∈ A. B a 6= {} then ub ∈ (

⋃
a ∈ A. B a). P b else (ub ∈ (

⋃
a ∈ A. B

a). P b) u STOP)›
〈proof 〉

105

12.2 Results for Det
lemma P-nd-set-almost-compactification-Det :

‹(� (s, A) ∈ s-A-set. P〈〈A〉〉nd s) =
�e ∈ (

⋃
(s, A) ∈ s-A-set. ε A s) →

u(s, A) ∈ {(s, A) ∈ s-A-set. e ∈ ε A s}.
us ′ ∈ τ A s e. P〈〈A〉〉nd s ′› (is ‹?lhs = ?rhs›)

〈proof 〉

lemma P-nd-set-almost-compactification-Det-bis :
‹(� (s, A) ∈ s-A-set. P〈〈A〉〉nd s) =
�e ∈ (

⋃
(s, A) ∈ s-A-set. ε A s) →

u(s ′, A) ∈ {(s ′, A)| s ′ s A. (s, A) ∈ s-A-set ∧ e ∈ ε A s ∧ s ′ ∈ τ A s e}. P〈〈A〉〉nd

s ′›
(is ‹- = ?rhs›)
〈proof 〉

lemma P-d-set-almost-compactification-Det:
shows ‹(� (s, A) ∈ s-A-set. P〈〈A〉〉d s) =

�e ∈ (
⋃
(s, A) ∈ s-A-set. ε A s) →

u(s, A) ∈ {(s, A) ∈ s-A-set. e ∈ ε A s}. P〈〈A〉〉d dτ A s ee› (is ‹?lhs =
?rhs›)
〈proof 〉

lemma P-d-set-almost-compactification-Det-bis:
shows ‹(� (s, A) ∈ s-A-set. P〈〈A〉〉d s) =

�e ∈ (
⋃
(s, A) ∈ s-A-set. ε A s) →

u(s ′, A) ∈ {(dτ A s ee, A)| s A. (s, A) ∈ s-A-set ∧ e ∈ ε A s}. P〈〈A〉〉d s ′›
〈proof 〉

12.3 Results for Ndet

12.4 Other Operators
12.4.1 initials
lemma initials-PSKIP S-nd :

‹(PSKIP S〈〈A〉〉nd σ)0 = (if σ ∈ % A then tick ‘ ω A σ else ev ‘ ε A σ)›
〈proof 〉

lemma initials-PSKIP S-d :

106

‹(PSKIP S〈〈A〉〉d σ)0 = (if σ ∈ % A then {3(dω A σe)} else ev ‘ ε A σ)›
〈proof 〉

lemma initials-P-nd : ‹(P〈〈A〉〉nd s)0 = ev ‘ ε A s›
〈proof 〉

lemma initials-P-d : ‹(P〈〈A〉〉d s)0 = ev ‘ ε A s›
〈proof 〉

12.4.2 Throw
lemma Throw-PSKIP S-nd :

‹PSKIP S〈〈A〉〉nd σ Θ b ∈ B. Q b =
(if σ ∈ % A then SKIPS (ω A σ) else
�a∈ε A σ → (if a ∈ B then Q a else uσ ′ ∈ τ A σ a. (PSKIP S〈〈A〉〉nd σ ′ Θ b

∈ B. Q b)))›
〈proof 〉

lemma Throw-PSKIP S-d :
‹PSKIP S〈〈A〉〉d σ Θ b ∈ B. Q b =
(if σ ∈ % A then SKIP dω A σe else
�a∈ε A σ → (if a ∈ B then Q a else PSKIP S〈〈A〉〉d dτ A σ ae Θ b ∈ B. Q b))›
〈proof 〉

lemma Throw-P-nd :
‹P〈〈A〉〉nd σ Θ b ∈ B. Q b =
�a∈ε A σ → (if a ∈ B then Q a else uσ ′ ∈ τ A σ a. (P〈〈A〉〉nd σ ′ Θ b ∈ B. Q

b))›
〈proof 〉

lemma Throw-P-d :
‹P〈〈A〉〉d σ Θ b ∈ B. Q b =
�a∈ε A σ → (if a ∈ B then Q a else P〈〈A〉〉d dτ A σ ae Θ b ∈ B. Q b)›
〈proof 〉

12.4.3 (4)

lemma SKIPS-Interrupt-is-SKIPS-Det :
‹SKIPS R 4 P = SKIPS R � P›
〈proof 〉

lemma Interrupt-PSKIP S-nd :
‹PSKIP S〈〈A〉〉nd σ 4 Q =

Q � (if σ ∈ % A then SKIPS (ω A σ) else �a ∈ ε A σ → uσ ′ ∈ τ A σ a.
PSKIP S〈〈A〉〉nd σ ′ 4 Q)›
〈proof 〉

lemma Interrupt-PSKIP S-d :
‹PSKIP S〈〈A〉〉d σ 4 Q =

107

Q � (if σ ∈ % A then SKIP dω A σe else �a ∈ ε A σ → PSKIP S〈〈A〉〉d dτ A σ
ae 4 Q)›
〈proof 〉

lemma Interrupt-P-nd :
‹P〈〈A〉〉nd σ 4 Q = Q � (�a ∈ ε A σ → uσ ′ ∈ τ A σ a. P〈〈A〉〉nd σ ′ 4 Q)›
〈proof 〉

lemma Interrupt-P-d :
‹P〈〈A〉〉d σ 4 Q = Q � (�a ∈ ε A σ → P〈〈A〉〉d dτ A σ ae 4 Q)›
〈proof 〉

12.4.4 After
context After
begin

lemma After-SKIPS : ‹SKIPS R after a = Ψ (SKIPS R) a›
〈proof 〉

lemma After-PSKIP S-nd :
‹PSKIP S〈〈A〉〉nd σ after a =
(if σ ∈ % A then Ψ (SKIPS (ω A σ)) a else
if a ∈ ε A σ then uσ ′ ∈ τ A σ a. PSKIP S〈〈A〉〉nd σ ′ else Ψ (PSKIP S〈〈A〉〉nd σ)

a)›
〈proof 〉

lemma After-PSKIP S-d :
‹PSKIP S〈〈A〉〉d σ after a =
(if σ ∈ % A then Ψ (SKIP dω A σe) a else
if a ∈ ε A σ then PSKIP S〈〈A〉〉d dτ A σ ae else Ψ (PSKIP S〈〈A〉〉d σ) a)›
〈proof 〉

lemma After-P-nd :
‹P〈〈A〉〉nd σ after a = (if a ∈ ε A σ then uσ ′ ∈ τ A σ a. P〈〈A〉〉nd σ ′ else Ψ

(P〈〈A〉〉nd σ) a)›
〈proof 〉

lemma After-P-d :
‹P〈〈A〉〉d σ after a = (if a ∈ ε A σ then P〈〈A〉〉d dτ A σ ae else Ψ (P〈〈A〉〉d σ) a)›
〈proof 〉

end

context AfterExt
begin

lemma After tick-SKIPS :

108

‹SKIPS R after3 e = (case e of ev a ⇒ Ψ (SKIPS R) a | 3(r) ⇒ Ω (SKIPS R)
r)›
〈proof 〉

lemma After tick-PSKIP S-nd :
‹PSKIP S〈〈A〉〉nd σ after3 e =
(case e of ev a ⇒ if σ ∈ % A then Ψ (SKIPS (ω A σ)) a else

if a ∈ ε A σ then uσ ′ ∈ τ A σ a. PSKIP S〈〈A〉〉nd σ ′ else Ψ
(PSKIP S〈〈A〉〉nd σ) a

| 3(r) ⇒ if σ ∈ % A then Ω (SKIPS (ω A σ)) r else Ω (PSKIP S〈〈A〉〉nd

σ) r)›
〈proof 〉

lemma After tick-PSKIP S-d :
‹PSKIP S〈〈A〉〉d σ after3 e =
(case e of ev a ⇒ if σ ∈ % A then Ψ (SKIP dω A σe) a else

if a ∈ ε A σ then PSKIP S〈〈A〉〉d dτ A σ ae else Ψ (PSKIP S〈〈A〉〉d
σ) a

| 3(r) ⇒ if σ ∈ % A then Ω (SKIP dω A σe) r else Ω (PSKIP S〈〈A〉〉d σ)
r)›
〈proof 〉

lemma After tick-P-nd :
‹P〈〈A〉〉nd σ after3 e =
(case e of ev a ⇒ if a ∈ ε A σ then uσ ′ ∈ τ A σ a. P〈〈A〉〉nd σ ′ else Ψ (P〈〈A〉〉nd

σ) a
| 3(r) ⇒ Ω (P〈〈A〉〉nd σ) r)›

〈proof 〉

lemma After tick-P-d :
‹P〈〈A〉〉d σ after3 e =
(case e of ev a ⇒ if a ∈ ε A σ then P〈〈A〉〉d dτ A σ ae else Ψ (P〈〈A〉〉d σ) a

| 3(r) ⇒ Ω (P〈〈A〉〉d σ) r)›
〈proof 〉

end

12.5 OpSem
context OpSemTransitions
begin

lemma SKIPS-τ -trans-SKIP : ‹r ∈ R =⇒ SKIPS R τ SKIP r›
〈proof 〉

In the ProcOmata, we will absorb the τ transitions that appear when we
unfold the fixed-point operator.

109

lemma τ -trans-PSKIP S-nd :
‹r ∈ ω A σ =⇒ PSKIP S〈〈A〉〉nd σ τ SKIP r›
〈proof 〉

lemma τ -trans-PSKIP S-d :
‹σ ∈ % A =⇒ PSKIP S〈〈A〉〉d σ 3dω A σe Ω (SKIP dω A σe) dω A σe›
〈proof 〉

lemma ev-trans-PSKIP S-nd :
‹σ /∈ % A =⇒ σ ′ ∈ τ A σ a =⇒ PSKIP S〈〈A〉〉nd σ a PSKIP S〈〈A〉〉nd σ ′›
〈proof 〉

lemma ev-trans-PSKIP S-d :
‹σ /∈ % A =⇒ a ∈ ε A σ =⇒ PSKIP S〈〈A〉〉d σ a PSKIP S〈〈A〉〉d dτ A σ ae›
〈proof 〉

lemma ev-trans-P-nd :
‹σ ′ ∈ τ A σ a =⇒ P〈〈A〉〉nd σ a P〈〈A〉〉nd σ ′›
〈proof 〉

lemma ev-trans-P-d :
‹a ∈ ε A σ =⇒ P〈〈A〉〉d σ a P〈〈A〉〉d dτ A σ ae›
〈proof 〉

end

110

Chapter 13

Conclusion

13.1 Entry Point

This is where HOL-CSP_Proc-Omata should be imported from.

13.2 Conclusion

In this entry we have developed the Proc-Omata framework on top of HOL-CSP
and its extensions. Starting from functional automata, we introduced Proc-
Omata in four variants: deterministic, terminating deterministic, non-deterministic,
and terminating non-deterministic. They enjoy strong structural properties,
for example deadlocks can be characterized directly and established by in-
variant reasoning:

deadlock-free (P〈〈A〉〉nd σ) = (∀σ ′∈Rnd A σ. ε A σ ′ 6= ∅)
%-disjoint-ε A

deadlock-freeSKIP S (PSKIP S〈〈A〉〉nd σ) = (∀σ ′∈Rnd A σ. σ ′ ∈ % A ∨ ε A σ ′ 6= ∅)

We then lifted sequential composition and synchronization product to the
automata level, by defining suitable combination functions and proving their
correctness. A major generalization of our development is the treatment of
parameterized termination. For sequential composition we worked directly
with the generalized operator (;3), since the standard one (;) is easily re-
covered (indeed P ;3 (λr . Q) = P ; Q). In contrast, for synchronization
product we had to provide two distinct versions, as the handling of ticks
prevents any straightforward reduction from P [[A]] Q to P [[A]]3 Q.
Another central ingredient is the library Restriction_Spaces [1]. Proc-
Omata are indeed defined as fixed points of endofunctions which, in the non-
deterministic case, are not always continuous due to global non-deterministic

111

choice. While deterministic prefix choice does not suffice to restore conti-
nuity under composition, it does guarantee constructiveness, allowing us to
rely on the fixed-point operator υ x. f x in all cases.
The resulting framework yields compactification theorems that support invariant-
based reasoning over large process architectures:

|σs| = |As|
[[E]] (σ, A)∈#mset (zip σs As). P〈〈A〉〉nd σ = P〈〈〈〈nd

⊗
[[E]] As〉〉〉〉nd σs

Finally, we demonstrated the applicability of our approach with the Dining
Philosophers case study, where Proc-Omata compactification enables proofs
that scale to an arbitrary number of participants in this parameterized pro-
cess architecture.

112

Bibliography

[1] B. Ballenghien, B. Puyobro, and B. Wolff. Restriction spaces: a fixed-
point theory. Archive of Formal Proofs, May 2025. https://isa-afp.org/
entries/Restriction_Spaces.html, Formal proof development.

[2] B. Ballenghien, S. Taha, and B. Wolff. Hol-cspm - architectural operators
for hol-csp. Archive of Formal Proofs, December 2023. https://isa-afp.
org/entries/HOL-CSPM.html, Formal proof development.

[3] B. Ballenghien, S. Taha, B. Wolff, and L. Ye. Hol-csp version 2.0. Archive
of Formal Proofs, April 2019. https://isa-afp.org/entries/HOL-CSP.
html, Formal proof development.

[4] B. Ballenghien and B. Wolff. Operational semantics formally proven in
hol-csp. Archive of Formal Proofs, December 2023. https://isa-afp.org/
entries/HOL-CSP_OpSem.html, Formal proof development.

[5] B. Ballenghien and B. Wolff. A theory of proc-omataand proof meth-
ods for process architectures. In Theoretical Aspects of Computing IC-
TAC 2024: 21st International Colloquium, Bangkok, Thailand, Novem-
ber 2529, 2024, Proceedings, page 272289, Berlin, Heidelberg, 2024.
Springer-Verlag.

[6] B. Ballenghien and B. Wolff. Csp semantics over restriction spaces.
Archive of Formal Proofs, May 2025. https://isa-afp.org/entries/
HOL-CSP_RS.html, Formal proof development.

[7] A. Roscoe. Theory and Practice of Concurrency. Prentice Hall, 1997.

[8] S. Taha, B. Wolff, and L. Ye. Philosophers may dine - definitively! In
Integrated Formal Methods: 16th International Conference, IFM 2020,
Lugano, Switzerland, November 1620, 2020, Proceedings, page 419439,
Berlin, Heidelberg, 2020. Springer-Verlag.

113

https://isa-afp.org/entries/Restriction_Spaces.html
https://isa-afp.org/entries/Restriction_Spaces.html
https://isa-afp.org/entries/HOL-CSPM.html
https://isa-afp.org/entries/HOL-CSPM.html
https://isa-afp.org/entries/HOL-CSP.html
https://isa-afp.org/entries/HOL-CSP.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://isa-afp.org/entries/HOL-CSP_RS.html
https://isa-afp.org/entries/HOL-CSP_RS.html

	Introduction
	An Excursion into Determinism
	Accepts initials
	Definition
	First properties
	Monotonicity
	Behaviour on Operators
	Characterizations with After

	Deterministic process
	Definition
	Monotonicity
	Characterization as Maximal
	Characterization with After
	Operators preserving Determinism
	Operators not (always) preserving Determinism

	Application to Operational Semantics

	ProcOmata: Functional Automata embedded into CSP Processes
	Definitions
	Non-deterministic and deterministic Automata
	Enableness
	States allowing Termination
	Reachability
	Morphisms
	Generic update Functions
	Assumptions on Automata

	First Properties
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 , 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 first equalities
	Properties of our morphisms
	Reachability results (for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Rd and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Rnd)

	Normalization
	Non-deterministic Case
	Deterministic Case
	Link between deterministic and non-deterministic ProcOmata
	Prove Equality between ProcOmata

	Advanced Properties of ProcOmata
	Combining Automata for Synchronization Product
	Definitions
	General Patterns
	Specializations

	First Properties
	Reachability
	Normalization

	Compactification of Synchronization Product
	Iterated Combine
	Definitions
	First Results
	Reachability
	Transmission of Properties
	Normalization

	Compactification Theorems
	Binary
	Rlist
	ListslenL
	Multiple

	Derived Versions
	More on Iterated Combine
	More on Events

	Combining Automata for Generalized Synchronization Product
	Definitions
	Specializations

	First Properties
	Transitions are unchanged in the Generalization
	Reachability
	Normalization

	Compactification of Synchronization Product Generalized
	Iterated Combine
	Definitions
	First Results
	Transmission of Properties
	Normalization

	Compactification Theorems
	Binary
	Rlist
	ListslenL
	Multiple

	Derived Versions
	More on Iterated Combine and Events

	Combining Automata for Sequential Composition Generalized
	Definitions
	General Patterns
	Specializations
	First Properties
	Reachability

	Normalization

	Compactification of Sequential Composition Generalized
	Iterated Combine
	Definitions
	First Results
	Reachability
	Transmission of Properties
	Normalization

	Compactification Theorems
	Binary
	ListslenL
	Multiple

	Application : May Philosophers dine ?
	Preliminaries
	Preliminary lemmas for proof automation

	The dining processes definition
	Unfolding rules

	Translation into normal form
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 FORK, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 LPHIL0 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 RPHIL are normalizable
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 FORKS is normalizable
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 PHILS is normalizable
	The complete process 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 DINING is normalizable

	And finally: Philosophers may dine ! Always !
	Construction of an invariant for the dining automaton
	The invariant 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 inv-dining implies that 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 DINING is 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 deadlock-free
	Conclusion

	Alternative version with only right-handed philosophers (in order to show that it's not 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 deadlock-free)
	Setup
	Normalization
	Correspondance between our normalized processes and the previous definitions
	Proof that we have a deadlock in the state 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (replicate N 1, replicate N 1)
	Proof that this state is reachable from our initial state, i.e. 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (replicate N 1, replicate N 1) Rd ARD (replicate N 0, replicate N 0)

	Other Results similar to Compactification
	Some preliminary Results
	Results for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Det
	Results for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Ndet
	Other Operators
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 initials
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Throw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ()
	After

	OpSem

	Conclusion
	Entry Point
	Conclusion

