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Abstract

This entry develops the Proc-Omata framework on top of HOL-CSP and its
extensions. Proc-Omata are defined from functional automata and come in
four variants: deterministic, terminating deterministic, non-deterministic,
and terminating non-deterministic. This subclass of processes combines the
expressiveness of CSP with automata-like structure (reachability, enable-
ness), making it particularly amenable to invariant-based reasoning.

We lift sequential composition and synchronization product to the au-
tomata level through combination functions and prove compactification the-
orems that enable reasoning over large process architectures. An essential
ingredient is the use of restriction spaces, which guarantees well-defined
fixed points even in the non-deterministic setting. Finally, we illustrate the
applicability of the framework with the Dining Philosophers, where com-
pactification yields proofs that scale to an arbitrary finite but unbounded
number of participants in this parameterized process architecture.






Contents

1 Introduction 9
2 An Excursion into Determinism 11
2.1 Acceptsinitials . . . . ... ... 11
2.1.1 Definition . . . . . . ... ... o 11

2.1.2 First properties . . . . . . ... Lo 12

2.1.3 Monotonicity . . . . . ... L oo 12

2.1.4 Behaviour on Operators . . . .. .. ... ....... 12

2.1.5 Characterizations with After . . ... ... ... ... 14

2.2 Deterministic process . . . . . . ... oo 16
2.2.1 Definition . . . . . . ... L o o 16

2.2.2 Monotonicity . . . .. ..o oL 16

2.2.3 Characterization as Maximal . . ... ... ... ... 16

2.2.4 Characterization with After . . . . . . ... ... ... 19

2.2.5 Operators preserving Determinism . . . . . . ... .. 19

2.2.6  Operators not (always) preserving Determinism . . . . 20

2.3 Application to Operational Semantics . . . ... ... .. .. 20

3 ProcOmata: Functional Automata embedded into CSP Pro-

cesses 23
3.1 Definitions . . . . . . . . ... 24
3.1.1 Non-deterministic and deterministic Automata . . .. 24
3.1.2 Enableness . ... ... ... ... ... ... ..., 24
3.1.3 States allowing Termination . . . . . . . .. ... ... 25
3.1.4 Reachability . . . . .. ... ... ... . .. 25
3.1.5 Morphisms . . . . ... ... 25
3.1.6 Generic update Functions . . . . ... ... ... ... 27
3.1.7 Assumptions on Automata . . ... .......... 28
3.2 First Properties . . . . . . . ... .. Lo oo 31
3.2.1 ¢, pand w first equalities . . . . ... ... ... ... 31
3.2.2 Properties of our morphisms . . . . .. ... ... .. 32
3.2.3 Reachability results (for Ry and Rpg) - - - - o o . .. 36
3.3 Normalization . . . . . . .. ... ... ... ... ....... 38



3.3.1 Non-deterministic Case . . . . . . . .. . ... .... 38

3.3.2 Deterministic Case . . . . . . .. ... ... .. .... 41
3.3.3 Link between deterministic and non-deterministic Pro-
cOmata . . . . . .. ... ... 43
3.3.4 Prove Equality between ProcOmata . . ... ... .. 43
Advanced Properties of ProcOmata 47
Combining Automata for Synchronization Product 49
5.1 Definitions. . . . . . . . . ... o 49
5.1.1 General Patterns . . . . . . .. ... ... ....... 49
5.1.2 Specializations . . . . ... .. ... ... ... ... . 50
5.2 First Properties . . . . . . . ... oo 52
5.3 Reachability . . . . . ... oo 53
5.4 Normalization . . . . . . . .. . . ... ... . 54
Compactification of Synchronization Product 57
6.1 Iterated Combine . . . . . . . . . . ... ... ... ...... 57
6.1.1 Definitions . . . . . ... ... ... oL 57
6.1.2 First Results . . ... ... ... ... ......... 58
6.1.3 Reachability . . . . .. .. .. ... ... L. 59
6.1.4 Transmission of Properties . .. .. ... ....... 59
6.1.5 Normalization. . . . . . ... ... ... ... ..... 60
6.2 Compactification Theorems . . . . .. .. ... ... ..... 60
6.2.1 Binary . . . . .. ..o 60
6.2.2 Rlist . . ... ... . ... 62
6.2.3 ListslenL. . . .. ... .. ... ... .. ... 62
6.2.4 Multiple . . . . . ..o 63
6.3 Derived Versions . . . . . . . . . ... 64
6.4 More on Iterated Combine . . . . . . . ... .. ... ..... 65
6.5 MoreonEvents . . . . . . . .. ... . 66

Combining Automata for Generalized Synchronization Prod-

uct 69
7.1 Definitions . . . . . .. Lo 69

7.1.1 Specializations . . . . ... .. ... ... ... ... . 69
7.2 First Properties . . . . . . . ... L 70
7.3 Transitions are unchanged in the Generalization. . . . . . . . 72
7.4 Reachability . . . . . ... oo 72
7.5 Normalization . . . . . . .. ... ... ... ... ....... 73

Compactification of Synchronization Product Generalized 77
8.1 Tterated Combine . . . . . . . . ... ... oL 7
8.1.1 Definitions . . . . .. .. ... Lo 77



81.2 First Results . . . . . . . . .. .. ... ... ..., 77

8.1.3 Transmission of Properties . . ... ... ... . ... 78
8.1.4 Normalization. . . . . ... ... ... ......... 79
8.2 Compactification Theorems . . . . .. ... ... .. ..... 80
821 Binary . . . .. ... 80
822 Rlist . . ... .. . 81
8.2.3 ListslenL . ... ... ... ... ... ... ..., 81
8.24 Multiple . . . . . .o 82
8.3 Derived Versions . . . . . . ... ... .. ... ... 83
8.4 More on Iterated Combine and Events . . . . . . .. ... .. 83
9 Combining Automata for Sequential Composition General-
ized 85
9.1 Definitions . . . . . . . . .. 85
9.2 General Patterns . . . . ... ... ... L. 85
9.3 Specializations . . .. ... ... o o 86
9.4 First Properties . . . . . . . . ... oL 87
9.4.1 Reachability . . . . ... ... ... ... 0oL 88
9.5 Normalization . . . . . . ... ... ... ... ......... 89
10 Compactification of Sequential Composition Generalized 91
10.1 Iterated Combine . . . . . . . . . . . .. ... ... ... ... 91
10.1.1 Definitions . . . . . . .. ... .. ... 91
10.1.2 First Results . . . . ... ... ... ... ....... 91
10.1.3 Reachability . . . . . .. .. ..o oo 92
10.1.4 Transmission of Properties . . .. .. ... ... ... 92
10.1.5 Normalization . . . . . . . . .. . ... ... ...... 93
10.2 Compactification Theorems . . . . . . . ... ... ... ... 93
10.2.1 Binary . . . . . . .. oL 93
10.2.2 Listslenl. . . . . .. ... ... ... ... 94
10.2.3 Multiple . . . . . . . ... 95
11 Application : May Philosophers dine 7 97
11.1 Preliminaries . . . . . . . . . . . .. ... ... 97
11.1.1 Preliminary lemmas for proof automation . . . . . . . 97
11.2 The dining processes definition . . . . . . .. ... ... ... 97
11.2.1 Unfolding rules . . . . . .. .. .. ... ... .. ... 98
11.3 Translation into normal form . . . ... ... ... ... ... 98
11.3.1 FORK, LPHILO and RPHIL are normalizable . ... 98
11.3.2 FORKS is normalizable . . . . .. ... ... ..... 100
11.3.3 PHILS is normalizable . . . . . ... ... ... .... 100
11.3.4 The complete process DINING is normalizable . . . . 101
11.4 And finally: Philosophers may dine ! Always!. . . . . . . .. 101

11.4.1 Construction of an invariant for the dining automaton 101

7



11.4.2 The invariant inv-dining implies that DINING is dead-

lock-free . . . . . . 102
11.4.3 Conclusion . . . . . ... ... .. ... ... ..., 102
11.5 Alternative version with only right-handed philosophers (in
order to show that it’s not deadlock-free) . . . . . . .. . ... 102
11.5.1 Setup . . . . v v v 102
11.5.2 Normalization . . . . . . . . .. . ... ... ...... 103
11.5.3 Correspondance between our normalized processes and
the previous definitions . . . . . .. .. ... 103
11.5.4 Proof that we have a deadlock in the state (replicate
N 1, replicate N 1) . . . . . . ... ... ... 103

11.5.5 Proof that this state is reachable from our initial state,
i.e. (replicate N 1, replicate N 1) € Rq Arp (replicate

N 0, replicate N 0) . . . . . . . . ... ... 103

12 Other Results similar to Compactification 105
12.1 Some preliminary Results . . . . . .. . ... ... ... ... 105
12.2 Results for Det . . . . . . . . ... .. ... o 106
12.3 Results for Ndet . . . . . . . .. ... ... ... ... ... 106
12.4 Other Operators . . . . . . . . . ... . 106
12.4.1 dndtials . . . . . . . . .. 106

12.4.2 Throw . . . . . . . . . v i i e e e 107

1243 (A) .o o 107

12.4.4 After. . . . . . . 108

125 OpSem . . . . . . . 109
13 Conclusion 111
13.1 Entry Point . . . . . ... oo 111
13.2 Conclusion . . . . . . . . ... ... 111



Chapter 1

Introduction

Communicating Sequential Processes (CSP) offers a rich and expressive
framework for modeling and reasoning about concurrent systems. Its de-
notational, operational, and algebraic facets are covered by the sessions
HOL-CSP [3], HOL-CSPM [2], HOL-CSP_OpSem [4], HOL-CSP_RS [6], and HOL-CSP_PTick.
These developments, initially following Roscoes presentation [7], have since
evolved considerably to admit arbitrary types, infinite sets, parameterized
termination, and more.

However, this expressiveness comes with a cost: proofs about complex or
parametric process architectures often become intricate and hard to scale.
Proc-Omata address this issue by slightly constraining the class of processes
in order to benefit from more powerful proof techniques. First sketched
in [8] and properly conceptualized in [5], the Proc-Omata framework con-
sists in embedding functional automata into CSP. The resulting subclass of
processes combines the expressive and compositional features of CSP with
automata-like properties (reachability, enableness, absence of divergences),
making it particularly amenable to invariant reasoning.

In this entry we start by formalizing the basic notions of functional automata
such as reachability and enableness, before introducing the definitions of
Proc-Omata themselves. For synchronization product and sequential com-
position, we then provide combination functions that realize the effect of
CSP operators at the level of the underlying automata. These translations
are formally proved correct, and culminate in compactification theorems,
which generalize the constructions inductively to architectural operators.
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Chapter 2

An Excursion into
Determinism

This chapter is a preliminary work. Indeed, later in the construction, we
will define the notion of Procomata which comes in different flavours, in
particular deterministic ones. We will establish then that such ProcOmata
produce deterministic processes, a classical notion in CSP that we formalize
below.

In a word, a deterministic process cannot refuse an event in which it can
engage. More formally, if s @ [¢] € T P, then (s, {e}) ¢ F P. In this
theory, we follow the proof sketch given in [7] for characterizing deterministic
processes as maximal elements for the failure-divergence refinement (Cpp).
Other lemmas are proved with respect to CSP operators.

2.1 Accepts initials

This notion is a weak version of determinism. It captures the idea of being
deterministic for one step.

2.1.1 Definition

unbundle option-type-syntax

definition accepts-initials :: <('a, 'r) processpiick = bool> (<determ®))
where <determ® P =Ve € P°. {e} ¢ R P>

lemma accepts-initialsl : «(\e. e € P* = {e} ¢ R P) = determ® P»

and accepts-initialsD : <determ® P = e € P’ = {e} ¢ R P»
(proof)

11



lemma accepts-initials-def-bis:
(determ® P +— (Vee PP.YX € R P.e¢ X)»
(proof)

lemma accepts-initialsI-bis : «(Ne X. e € PP = X e R P = ¢ ¢ X) =
determ® P>
and accepts-initialsD-bis : «determ’ P = e € P = X e RP = e ¢ X)

(proof)

2.1.2 First properties

lemma accepts-initials-STOP [simp] : <determ® STOP>
(proof)

lemma accepts-initials-SKIP [simp] : <determ® (SKIP 1)
(proof)

lemma not-accepts-initials-BOT [simp] : <= determ® L»

(proof)

lemma accepts-initials-imp-initial-tick-iff-is-SKIP:
(determ® P = /(r) € P° +— P = SKIP
(proof )

lemma accepts-initials-imp-not-initial-tick-iff-is-STOP-or-some-initial-ev:
«determ® P = (range tick N P* = {}) «— P = STOP V (Je. eve € P°)
(proof)

2.1.3 Monotonicity

lemma mono-accepts-initials-F: <P Cp Q = determ® P = determ® Q»
(proof)

lemma mono-accepts-initials-FD: <P Cpp Q = determ® P = determ® Q»

(proof)

lemma mono-accepts-initials: <P = Q = determ® P = determ® Q»
(proof )

lemma restriction-adm-accepts-initials [restriction-adm-processpi;c,-simpset, simp
<adm) (Az. determ® (f z))» if <conty f>

for f :: <'b :: restriction = (‘a, 'r) processpiick>
(proof)

2.1.4 Behaviour on Operators

lemma accepts-initials-Mprefiz [simp] : <determ® (Oa € A — P a)

12



(proof)

lemma accepts-initials-write0 [simp)] : «determ® (a — P)
(proof)

lemma accepts-initials-write [simp] : «determ® (cla — P)»

(proof)

lemma accepts-initials-read [simp)] : <determ® (c?a€A — P a)»
(proof)

lemma accepts-initials-Ndet-iff :
(determ® (P M Q) «+— determ® P A determ® Q A P° = Q%
(proof)

lemma accepts-initials-GlobalNdet-iff :
(determ® (Ma € A. P a) «—
(Va € A. determ® (Pa) A (Vb € A. (P a)® = (P b))
(proof)

lemma accepts-initials-Mndetprefiz-iff:
(determ® (Ma € A — Pa) < (3a. A C {a})

(proof)

lemma accepts-initials-ndet-write-iff:
«determ® (cMa € A — Pa) +— (3b. ¢ “ A C {b})
(proof)

lemma accepts-initials-SKIPS-iff :
«determ® (SKIPS R) +— R={} Vv 3r. R = {r})»
(proof)

lemma accepts-initials-Det :
«determ® (P 0 Q) +— P = STOP vV Q = STOP V range tick N P° N Q" # {}
V
range tick N (P° U Q°) = {b
(is - «— ?rhs)) if accepts-initials : <determ® P> <determ® Q>

(proof)

lemma accepts-initials-GlobalDet :
«determ® (Oa € A. P a) if <\a. a € A = determ® (P a)»
(range tick N (Na € A. (P a)®) # {} V range tick N (Ja € A. (P a)°?) = {}

(proof)
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lemma accepts-initials-Seqptick :
«determ® (P 3, Q) <— (V1. /(r) € P* — determ® (Q r))» if <determ® P>
(proof)

corollary accepts-initials-Seq :
«determ® (P 3 Q) <— (P° N range tick = {} V determ® Q) if <determ® P>
(proof)

lemma (in Syncyicr-locale) accepts-initials-Syncyiick :
«determ® (P [S], Q) if «determ® Py <determ® @Q»
(proof)

corollary accepts-initials-Sync:
(determ® P = determ® Q = determ® (P [S] Q)
(proof)

lemma accepts-initials-Renaming : <determ® (Renaming P f g)» if <determ® P»

{proof)

lemma accepts-initials- Throw-iff : <determ® (P © a € A. Q a) +— determ® P
(proof)

lemma accepts-initials-Sliding:
(determ® P = determ® Q = determ® (P > Q) +—
P = STOP v P° C Q° A (range tick N P° # {} V range tick N Q° = {})»
(proof)

2.1.5 Characterizations with After

context After
begin

Interesting results about the fact that we can express a process with Mprefix
and (after)

lemma leF'D-SKIPS-Det-Mprefix-After:

(P Crp SKIPS {r. /(r) € P°} O (Qa € {a. ev a € P’} — P after a)» (is <P
Crp ?rhs))
(proof)

lemma accepts-initials-imp-eq-Mprefiz-After:
(P = ( if 3r. /(r) € P° then SKIP (THE r. /(r) € P°)
else Ja € {e. ev e € P°} — P after a) (is <P = ?rhs))
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if «determ® P

(proof)

theorem is-some-Mprefix-iff:
(FA Q. P=0a € A — Q a) +— range tick N P° = {} A accepts-initials P>
for P :: «('a, 'r) processpiick’

(proof)

lemma tick-not-initial-imp-STOP-Ndet-Mndetprefiz-After-FD:
<range tick N P° = {} = STOP 1 (Ja € {e. eve € P’} — P after a) Cpp P»
(proof)

lemma <lifelock-free P +— D P ={} A (Vt € T P. tF t)
(proof )

lemma STOP-Ndet-SKIPS-Ndet-Mprefix-After-leF :
«(STOP 1 SKIPS {r. /(r) € P°} N (Qa € {e. eve € P°} — P after a) Cr P>
(is «- M 2lhs1 M 2lhs2 Cp P»)

(proof)

lemma non-BOT-imp-Mprefiz-After-leD :
(Ja € {e. eve € P’} — Pafter a Cp P> (is <-?lhs Cp P») if <P # L»
(proof)

lemma non-BOT-imp-STOP-Ndet-SKIPS-Ndet-Mprefix-After-leFD :
(P # 1 = STOP N SKIPS {r. /(r) € P°} 1 (Qa € {e. eve € P’} — P after
a) Cpp P»

(proof)

theorem singl-initial-imp-equals-prefiz-After:
(P = (if UNIV ¢ R P then a — P after a else STOP M (a — P after a))»
if initials-is : <initials P = {ev a}»

(proof)

lemma {eve} ¢ R P = eve e P%

(proof)

end
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2.2 Deterministic process

2.2.1 Definition

definition deterministic :: <('a, 'r) processpiick = bool> (<determy)
where «determ P=VY se. sQ e € T P — (s, {e}) ¢ F (P)

lemma deterministicl : «(\te. t Qle] € T P = (t, {e}) ¢ F (P)) = determ
P
and deterministicD : <«determ P =t Q [e] € T P = (¢, {e}) ¢ F (P)

(proof)

lemma deterministic-STOP [simp] : <determ STOP)
and deterministic-SKIP [simp)] : <determ (SKIP r)»

(proof)

lemma deterministic-div-free : <determ P = D P = {}

(proof)

lemma not-deterministic-BOT [simp] : <— determ L»
(proof)

2.2.2 Monotonicity

lemma mono-deterministic-F: <P Cp Q = determ P = determ @Q»
(proof)

lemma mono-deterministic-FD: <P Cpp Q = determ P —> determ Q>

(proof)

lemma mono-deterministic: <P & Q = determ P = determ @)»
(proof)

lemma restriction-adm-deterministic [restriction-adm-processpiick-simpset, simp]

<admy (Az. determ (f x))» if <conty f»
for f :: <'b :: restriction = (‘a, 'r) processpiick>

(proof)

2.2.3 Characterization as Maximal

Some preliminary work

definition is-processr :: «('a, 'r) tracepiicr set = bool>
where <is-processp T =
eTANteT fiFt)NVtu tQue T —teT)A
VMtretQ/(r)eT —e#V(r)— tQle ¢ T)

typedef (‘a, 'r) processy = { T :: ('a, ') tracepiick set . is-processp T}

16



(proof)

setup-lifting type-definition-processr

lift-definition Tracest ::
«('a, 'r) processy = ('a, 'r) tracepiick set> (<Tr)
is <\P. Rep-processt P> (proof)

lemma Processp-eq-spec : <T = U +— To T =T U
(proof)

lemma is-processp-1 : <[] € Tr P>
and is-processp-2 : <s € T P = ftF s
and is-processy-3 :«sQt € Tp P— s Tr P
and is-processy-4 s Q [/ (r)] € Tr P= e#£ V/(r) = sQle] ¢ Tr P»
(proof )

lemmas is-processp-def-bis = is-processp-def[of <Rep-processt -, folded Tracesr.rep-eq]

lift-definition processyi;cr-of-processr ::
«("a, 'r) processy = ('a, 'r) processpiick>
is AT. {(s, X).s€Tr TANXC —{e.s@Qle]eTr T}} {})
(proof)

lemma F-processpticr-of-processy :

«F (processpiick-of-processy T) = {(s, X). s€ Tr TAX C —{e.sQle] € Tr
Tp

and D-processpticr-0f-processt :

(D (processpiick-of-processy T) = {p

and T-processpick-of-processt :

(T (processpiick-of-processy T) = Tr T»

(proof)

lemmas processpt;cr-of-processp-projs = F-processpyick-of-processt
D-processpticr-of-processt T-processpiick -of-processt

Now the big results

lemma bij-betw-det :
<bij-betw processpyicr-of-processy UNIV {P :: (‘a, 'r) processpiick. determ P}
(is <bij-betw processpiick-of-processy 251 252»)

(proof)
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lemma SKIPS-is-GlobalDet-SKIP : <SKIPS R = Or € R. SKIP r»
(proof )

lemma SKIP-Ndet-SKIP-is-SKIP-Det-SKIP : <SKIP r N SKIP s = SKIP r [J
SKIP s»

(proof)

theorem P-FD-some-det :

— In the generalization, since several terminations may occur after the same trace
in the initial process, we have to specify a choice.

fixes termination-choice :: «('a, 'r) tracepiicy = '™

assumes (A\¢. Ir. t Q [/ (r)] € T P = termination-choice t € {r. t @ [/ (r)]
eT Ph

defines «T = {t € T P.Vt' < t. Br. t'Q [V(r)] € T P) — t =1t Q
[V (termination-choice t")]}»

shows <P Trp processpiick-of-processy (Abs-processp T)»

{proof)

theorem deterministic-iff-maximal-for-leFD:
«determ P «+— (V Q. P Cpp Q@ — P = Q)» for P :: «('a, 'r) processptick>
— see TPC, chapter 9)

(proof )

lemma <determ P = X ¢ R P = X C — P,
{proof)

We have the immediate powerful corollaries.

corollary (in After) deterministic-process-eq-SKIPS-Det-Mprefiz-After :
(determ P = P = SKIPS {r. /(r) € P°} O (Oa € {a. ev a € P’} — P after
a)

(proof)

lemma deterministic-imp-initial-tick-iff-eq-SKIP [simp] :
(determ P = /(r) € P’ «— P = SKIP r)
(proof)

lemma deterministic-imp-constraints-on-initials :
«determ P = P* = {} V{a. eva € P’} = {} A 3r. P° = {/(r)}) V
{a. eva € PO}y £ {} A {r./(r) € P°} = {}
(proof)
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corollary (in After) deterministic-process-eq-SKIP-or-Mprefiz-After :
(determ P = P = (if 3r. /(r) € PY then SKIP (THE r. P° = {/(r)})
else Ja € {a. ev a € P’} — P after a)

(proof)

2.2.4 Characterization with After

lemma (in AfterExt) deterministic-iff-accepts-initials-Afteri,qce:
(determ P +— (Nt € T P. tF t — determ® (P aftert t))

(proof)

2.2.5 Operators preserving Determinism

lemma deterministic-Mprefiz-iff :
<determ (Oa € A — P a) +— (Va € A. determ (P a))»
(proof)

corollary deterministic-write0-iff : «determ (a — P) <— determ P»
(proof)

corollary deterministic-write-iff : <determ (cla — P) <— determ P»

(proof)

corollary deterministic-inj-on-read-iff :
<ng-on ¢ A = determ (c?a € A — P a) «— (Va € A. determ (P a))

(proof)

lemma deterministic-inj- Renaming :
<determ (Renaming P f g)» if <inj f> <inj g» <determ P>
(proof)

lemma deterministic-bij- Renaming-iff :
<determ (Renaming P f g) +— determ P» if <bij f> and <bij ¢»
(proof )

lemma deterministic-Throw : <determ (P © a € A. Q a)»
if «determ P> <N\a. a € A = a € a(P) = determ (Q a)»

(proof)

lemma T-snoc-tick-imp-no-continuation-if-deterministic :
w=[ANe=V(r)if <determ P» <t Qu @ [e] € T Pt Q [V(r)] €T P>
(proof)

19



lemma T-snoc-ev-imp-no-tick-continuation-if-deterministic :

(w #£ [] Ais-ev (hd u) V is-ev e if <determ Py <t @ uw Q [e] € T Py <t Q [ev q]
eT P
(proof)

lemma deterministic-Seqpiick : <determ (P 3, Q)
if <determ Py <A\r. r € /s(P) = determ (Q r)»
(proof )

corollary deterministic-Seq : <determ P = determ @ = determ (P ; Q)»
(proof)

lemma (in After) initial-imp-deterministic-After:
(ev e € PY = determ P = determ (P after €))
(proof)

lemma (in AfterExt) initial-imp-deterministic-Afters;.:
(e € P = (case e of V/(r) = determ (Q P r)) =
determ P = determ (P after, e)

(proof)

2.2.6 Operators not (always) preserving Determinism

lemma deterministic-imp-accepts-initials : <determ P => determ® P»

(proof)

corollary deterministic-SKIPS-iff : <determ (SKIPS R) +— R={} vV (3r. R =
{r})
(proof)

lemma deterministic-Det:

<determ P — determ ) —

range tick N P° N QY # {} v P° N Q° = {} A range tick N (P° U Q°) = {}
= determ (P O Q)
(proof )

2.3 Application to Operational Semantics

lemma (in OpSemFD) tickFree-trace-trans-preserves-deterministic:

20



(P = ('a, 'r) processpiick) Fp~" t Q@ => tF t = deterministic P = deter-
ministic (>

(proof)

lemma deterministic-imp-Refusals-iff: <deterministic P — X € R P +— X N
PO ={hH
(proof)

lemma (in OpSemFD) deterministic-F-trace-trans-reality-check:

<deterministic P = tF't —

(t, X) € F (P :: (‘a, 'r) processptick) «— (3Q. (P rp~>*"t Q) AN X N Q" =
)

(proof)

lemma <~ deterministic ((a — SKIP undefined) O SKIP undefined)»
(proof)
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Chapter 3

ProcOmata: Functional
Automata embedded into

CSP Processes

We will often have to perform induction on both the list of automata and
the list of states, provided that they have the same length.

lemma induct-2-lists012 [consumes 1, case-names Nil single Cons] :
(llength zs = length ys; P[] [J; Azl y1. P [z1] [y1];
Nzl 22 xs y1 y2 ys. length xs = length ys = P xs ys —>
P (22 # xs) (y2 # ys) = P (a1 # 22 # xs) (y1 # y2 # ys)]
= P xs ys$»
(proof)

lemma nat-induct-012 [case-names 0 1 2 Suc]:

([P 0; P (Suc 0); P (Suc (Suc 0)); Nk. Suc (Suc 0) < k = Pk = P (Suc
k)] = Pm

(proof)

The following results will be moved to Restriction_Spaces in the future.

lemma restriction-shift-iterated :
crestriction-shift (f =~ k) (int k * m)»
if (restriction-shift f my for f :: <'a = 'a :: restriction-spaces

(proof)

lemma non-destructive-iterated :
<non-destructive f = non-destructive (f = k)»
for [ :: <'a = 'a :: restriction-space>
(proof)

lemma constructive-iterated :
cconstructive (f ~ k) if <0 < k» <constructive f»
for f :: <'a = 'a :: restriction-spaces

(proof)

23



lemma restriction-fiz-unique-iterated :
0 < k; constructive f; (f k) z=2] = (v fz)=n
(proof)

lemma restriction-fix-iterated :
<0 < k = constructive f = (v z. (f k) z) = (v fa)p
(proof)

corollary restriction-fix-ind-iterated

[consumes 1, case-names constructive adm base stepl:

<P (v z. fz)if <0 < k> <constructive f> <adm; P> <P x> «(A\x. Pz = P ((f
k) z)»
{proof)

3.1 Definitions

3.1.1 Non-deterministic and deterministic Automata
unbundle option-type-syntax
‘o, 'a) enabl = (o = 'a sety
, 'a, 'o’) trans = (o = 'a = ‘o
‘o, 'a) transq = «('o, 'a, 'o option) trans

‘o, 'a) transpq = «('o, ‘a, ‘o set) trans

type-synonym (‘o
type-synonym (‘o
type-synonym (
type-synonym (

record (o, 'a, o', 'r) A =
7 «('o, 'a, 'o’) trans
w:ilo="m

type-synonym (o, 'a, 'r) Aq = «('o, 'a, ‘o option, 'r option) A»
type-synonym (‘o, ‘a, 'r, 'a) Agq-scheme = ¢('o, 'a, ‘o option, 'r option, ‘a)
A-scheme>

type-synonym (‘o, ‘a, 'r) Anq = «('o, 'a, ‘o set, 'r set) A>

type-synonym (o, ‘a, 'r, 'a)) Apq-scheme = (o, 'a, ‘o set, 'r set, 'a) A-scheme>

3.1.2 Enableness

consts ¢ :: (o, ‘a, o', 'r', 'a) A-scheme = (‘o, 'a) enably

overloading
eq = <€ = ('o, 'a, ‘o option, 'r', 'a) A-scheme = ('o, 'a) enably
ena = <€ = (o, 'a, ‘o set, 'r’, 'a) A-scheme = (o, 'a) enably

begin

fun ¢4 :: <(‘o, 'a, ‘o option, 'r', 'a) A-scheme = (‘o, 'a) enabl
where <¢4 Ao ={a.7T Ao a#Op
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fun e,4 :: <('o, 'a, 'o set, 'r’, 'a) A-scheme = ('o, 'a) enabls
where «¢,g Ao ={a. 7 Ao a#{}}
end

lemmas e-simps[simp del] = e4.5imps £,4.5imps

3.1.3 States allowing Termination

consts o :: (o, ‘a, ‘o', 'r’, 'a) A-scheme = ‘o set)

overloading
0a = <o :: ('o, 'a, 'o’, 'r option, ‘o) A-scheme = ‘o set»
Ond = <0 :: (o, 'a, ‘o', 'r set, 'a) A-scheme = ‘o set)
begin

fun g4 :: <(‘o, 'a, 'o’, 'r option, ‘a) A-scheme = ‘o set)
where 9 A={c. w Ao # Oh

fun 0,4 :: <('o, 'a, o', 'r set, 'a) A-scheme = ‘o set»
where <9, A ={0.w Ao # {}}p

end

lemmas g-simps[simp del] = oq4.8imps opq.stMps

3.1.4 Reachability

inductive-set Ry :: «('o, 'a, 'r, 'a) Ag-scheme = ‘o = o set
for A :: «('o, 'a, 'r, 'a) Ag-scheme> and o :: ‘o
where init : <0 € Rq A o

| step:w'€Rj Ao = |d"|=TAc'a=0c"€eRs A

inductive-set R, 4 :: (o, 'a, 'r, 'a) A, q-scheme = ‘o0 = ‘o sel»
for A :: «('o, 'a, 'r, 'a) Apq-schemes and o :: ‘o
where init : <0 € Rypq A o)

| step: w0’ €RpgAo=—=c0"€TAc’"a=0c"€Rpqg Ao

lemma Rg4-trans: «c"" € Rg Ao’ = o' € Rg Ao = c""€ Rqg A o
(proof)

lemma R, 4-trans: «c"’ € Rpg Ao’ = o' € Rpg Ao = c" € Rp,q A o>

(proof)

3.1.5 Morphisms

Our morphisms are defined considering that, except from 7, the fields remain
unchanged.

definition from-det-to-ndet ::
(o, 'a, 'r, 'a) Ag-scheme = (‘o, 'a, 'r, 'a) A, 4-scheme>
where (from-det-to-ndet A =
(t=Xa.caset Ao aof || = {c}| 0= {},
w=2Mo.casew Ao of |r] ={r}|0={}, ... = more A
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definition from-ndet-to-det ::
(o, 'a, 'r, 'a) Ang-scheme = (o, 'a, 'r, 'a) Agq-scheme>
where (from-ndet-to-det A =
(tr=Xoa. if T Ao a=/{} then Q) else |THE 0’. 0’ € 7 Ao al,
w=Ao.if wAo=/{}then O else |THEr.r € w A o], ... = more Al)»

definition from-o-to-osq ::
(o, 'a, 'r, 'a) Ag-scheme = (‘o list, 'a, 'r, 'a)) Agq-scheme>
where <from-o-to-o0sq A =
(7 = Aos a. case 7 A (hd 0s) a of |o'| = |[o]] | O = O,
w=Aos.w A (hd os), ... = more A)>»
definition from-o-to-os,q ::
(o, 'a, 'r, 'a) Ang-scheme = (‘o list, 'a, 'r, 'a) Apq-scheme»
where <from-o-to-0s,q A =
(r =Xosa. {[c] |o" o' €T A (hd 05) a},
w=Aos.w A (hd 05), ... = more A)»

definition from-os-to-o4 ::
(o list, 'a, 'r, 'a) Ag-scheme = (o, 'a, 'r, 'a) Agq-scheme>
where (from-os-to-o4 A =
(7 = Ao a. case 7 A 0] a of |os'] = |hd o8’ | O = O,
w=Ao.w A o], ... = more A
definition from-os-to-0,4 ::
(o list, 'a, 'r, 'a) Apgq-scheme = (‘o, 'a, 'r, 'a) Apq-scheme>
where (from-os-to-0,q A =
(7 = Ao a. {hd 05’ |os’. o8’ € 7 A [0] a},
w=Ao.w A o], ... = more A

definition from-singl-to-listy ::
(o, 'a, 'r, o) Ag-scheme = (‘o list, 'a, 'r list, 'a) Ag-scheme>
where <from-singl-to-listy A =
(t = Xos a. case 7 A (hd 05) a of |o'| = |[c]] | O = O,
w = Aos. case w A (hd 0s) of |r] = |[r]] | O = O, ... = more A
definition from-singl-to-list,q ::
(o, 'a, 'r, 'a) Ang-scheme = (‘o list, 'a, 'r list, ‘o) A,q-scheme)
where <from-singl-to-list,qg A =
(r =Xosa. {lo] |o" o' €
w=Aos. {[r]|r.rewA

7 A (hd 05) a},
(hd 038)}, ... = more A))»

definition from-list-to-singly ::
(‘o list, 'a, 'r list, 'a) Agq-scheme = ('o, 'a, 'r, 'a) Ag-scheme>
where <from-list-to-singly A =
(7 = Ao a. case T A 0] a of |os'] = |hd 08’ | O = O,
w=Ao. case w A [0] of |rs] = |hd rs] | O = O, ... = more A
definition from-list-to-singl,q ::
(o list, 'a, 'r list, ‘o) Anq-scheme = ('o, 'a, 'r, 'a) A,q-scheme)
where <from-list-to-singl,q A =
(7 = Xo a. {hd 05’ |os’. o8’ € T A [0] a},
w=Ao. {hd rs|rs. rs € w A [0]}, ... = more A))»
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lemmas det-ndet-conv-defs = from-det-to-ndet-def from-ndet-to-det-def
and o-os-conv-defs = from-o-to-osq-def from-o-to-os,q-def
from-o s-to-o 4-def from-os-to-o,q-def
and singl-list-conv-defs = from-singl-to-listy-def from-singl-to-list, q-def
from-list-to-singly-def from-list-to-singl,, q-def

bundle functional-automata-morphisms-syntaxr begin

notation from-det-to-ndet (<{-)a—na> [0])
notation from-ndet-to-det (<{-)ndg~a> [0])
notation from-o-to-0sq (<a{-Yo—os® [0])

notation from-o-t0-0sp,q (¢nd{-Yo—os’ [0])
notation from-os-to-c4 (<a{-)os—o> [0])

notation from-s-to-0,4 (\nd{-)os—wo’ [0])
notation from-singl-to-listy (<¢{-)singi—iist> [0])
notation from-singl-to-list,q (<na{-)singi—iist> [0])
notation from-list-to-singly (<a{-Yiist~singt® [0])
notation from-list-to-singlnq (<na{-Yiist~singt> [0])

end
unbundle functional-automata-morphisms-syntax

lemma morphisms-A-scheme-more-simps [simp] :
<more (A)qg—sna = more Ay <more {B)ndg—a = more B»
«more 4{C)ysos = more C <more pg{D)s—os = more D)
«more 4{E) 5o = more Ey <more q{F)oswo = more F»
(more ¢{(G)singisiist = more Gy <more na(H)singi—siist = more H»
(more g(I)iistwsingt = more Iy <more nq(J)iistssingt = more J»

(proof)

3.1.6 Generic update Functions

definition update-both where (update-both Ag A1 o9 o1 ef = f (1 Ag 00 €) (T
Al 01 6)}

definition update-left where <update-left Ag oo o1 efg =f (1 Ag oo €) (g o1)

definition update-right where <update-right Ay o9 o1 e fg = f (g 00) (T 41 01

e)
lemmas update-defs[simp] = update-both-def update-left-def update-right-def

abbreviation f-up-set where <f-up-set f B C = {fst| st. (s,t) € Bx Ch
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abbreviation f-up-opt where <f-up-opt f s t = case s of O = O | | s'| = map-option

(fs" v

3.1.7 Assumptions on Automata

definition finite-trans :: <(‘o, 'a, 'r, 'a) Ap,q-scheme = bool
where «finite-trans A = Vo a. finite (1 A o a))

lemma finite-trans-morphisms-simps[simp):
finite-trans (AYgesnd>
finite-trans B = finite-trans pa{B)s—os’
finite-trans C = finite-trans nq{C)
(finite-trans D = finite-trans na{D)singisiist’
finite-trans E = finite-trans ,q{F

(proof)

>o‘swa>

>>list->singl)

definition at-most-1-elem :: <(‘c, 'a, 'r, 'a) A,q-scheme = bool
where <at-most-1-elem A =
MVoatTAoca={}Vv (3o . 7TAca={c}) A
NMVo.wAo={}Vv@E@3r.wdoc={r}))

lemma at-most-1-elem-def-bis :
<at-most-1-elem A «+— (Vo a. Jo'. 1 Ao a C{c'}) AN (Vo.Ir.w Ao C {r})p

(proof)

lemma at-most-1-eleml :
Ao a.TAoca={}Vv (3. 7Aoo a={0"});
NoowAo={}Vv (3r.w Ado={r})] = at-most-1-elem A»
(proof)

lemma at-most-1-elemE :
r Ao a={} = thesis; N\o’. 7 A o a = {0’} = thesis] = thesis)
(w A o = {} = thesis; Ar. w A 0 = {r} = thesis] = thesis
if <at-most-1-elem A»

(proof)

definition at-most-1-elem-trans :: «(‘o, ‘a, 'r, 'a) A,4-scheme = bool
where <at-most-1-elem-trans A=Vo a1 Aca={} V(3o 7 Ao a={c"})p

lemma at-most-1-elem-trans-def-bis :
<at-most-1-elem-trans A +— (Vo a. Jo'. 7 Ao a C {c'})

(proof)

lemma at-most-1-elem-transli :
qAoc a.T Ao a={}Vv 3o’ 7 Ao a={0'})] = at-most-1-elem-trans A»
(proof)
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lemma at-most-1-elem-transkE :
(r Ao a={} = thesis; N\o'. 7 A o a = {0’} = thesis] = thesis
if (at-most-1-elem-trans A
(proof)

lemma at-most-1-elem-imp-at-most-1-elem-trans :
<at-most-1-elem A = at-most-1-elem-trans A

(proof)

definition length-1-transy :: (‘o list, 'a, 'r, ‘o) Ag-scheme = bool»
where <length-1-transqy A =
Vos a. case T A osaof O = True| |os’| = length os’ = Suc 0»

lemma length-1-transyI :
qAos aos’. T Aosa=|os'| = length 0s’ = Suc 0] = length-1-transq A

(proof)

lemma length-1-transqE :
[length-1-transq A; 7 A 0s a = |os’|; No. 08’ = [0] = thesis] = thesis»

(proof)

definition length-1-trans,q :: «('c list, ‘a, 'r, 'a) A,q-scheme = booly
where <length-1-trans,q A =Vos a.Vos' € 7 A os a. length o0s’ = Suc 0»

lemma length-1-trans,q1 :
qAos a os’. os’ € T A gs a = length os’ = Suc 0] = length-1-trans,q A>

(proof)

lemma length-1-trans,qF :
([length-1-trans,q A; 0s’ € 7 A 05 a; \o. 0s’ = [0] = thesis] = thesis)

(proof)

definition length-14 :: <(‘o list, ‘a, 'r list, 'a)) A4-scheme = bool
where <length-14 A =
(Vosa. case T Aosaof O = True| |os’'] = length os’ = Suc 0) A
(Vos. case w A os of O = True | |rs| = length rs = Suc 0)»

lemma length-141 :
(qAos aos’. T Aosa=|os'| = length os’ = Suc 0;
Nos rs.w A os = |rs] = length rs = Suc 0] = length-14 A»

(proof)

lemma length-14F :
(length-14 A; 7 A os a = |o8']; No. 0s’ = [0] = thesis] = thesis)
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(length-14 A; w A s = |rs|; \r. rs = [r] = thesis] = thesis

(proof)

definition length-1,q :: <(‘o list, 'a, 'r list, 'a) A,q-scheme = bool)
where <length-1,4 A = (Vos a. Vos' € 7 A os a. length 08’ = Suc 0) A
(Vos. Vrs € w A os. length rs = Suc 0)»

lemma length-1,41 :
{A\os aocs’. os’" €T Aosa= length os’ = Suc 0;
Nos rs. rs € w A 0s = length rs = Suc 0] = length-1,q4 A>

(proof)

lemma length-1,4F :
(llength-1,4 A; 08’ € 7 A 0s a; No. os’ = [0] = thesis] = thesis)
(length-1,4 A; rs € w A os; Ar. rs = [r] = thesis] = thesis

(proof)

definition indep-enabl :: «(‘oq, 'a, 'ro, ‘a) Ag-scheme = ‘o9 = 'a set = ('oq, 'a,
'r1, 'B) Ag-scheme = ‘o1 = bool

where (indep-enabl Ag o9 E A1 01 =Vig € Rq Ag 09. Vi1 € Rqg A1 01. € Ag
toﬂEAl t1§E>

lemma indep-enabll :

<(/\t0t1. to € RqgAgog = t1 € Rg A1 01 = ¢ Ag tg Ne A tlgE)

— indep-enabl Ag o9 E Ay 01>

and indep-enablD :

<[[indep-enabl Ag 09 E Ay o1; tg € Rgq Ag 0g; t1 € Rq Ar 0'1]] — e Ay tgNe
Al t; C B

(proof)

definition o-disjoint-¢ :: «(‘o, 'a, ‘o', 'r', 'a) A-scheme = bool

where (p-disjoint-e A=VoecpA e Ao={}p
lemma g-disjoint-cl : «(\o. 0 € p A = ¢ A 0 = {}) = p-disjoint-¢ A

and p-disjoint-cD : <p-disjoint-e A=—oc € p A= e Ao ={}p
(proof)

definition at-most-1-elem-term :: <(‘o, 'a, 'r, 'a) Apq-scheme = bool
where <at-most-1-elem-term A =Vo.w Ao ={} V (3r.w Ao ={r})p

lemma at-most-1-elem-term-def-bis :
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<at-most-1-elem-term A «— (Vo. 3Ir.w Ao C {r})

(proof)

lemma at-most-1-elem-terml :
Ao w Ao ={} Vv (3r.w Ao ={r})] = at-most-1-elem-term A»

(proof)

lemma at-most-1-elem-termkE :
(w A 0 = {} = thesis; Ar. w A 0 = {r} = thesis] = thesis»
if (at-most-1-elem-term A»
(proof)

lemma at-most-1-elem-imp-at-most-1-elem-term :
<at-most-1-elem A = at-most-1-elem-term A»

(proof)

3.2 First Properties

3.2.1 ¢, o and w first equalities

lemma base-trans-¢[simp]:

€ ((r=Aoa. O,w=Ao.90, ... =some) :: (o, 'a, 'r, 'a) Ag-scheme) o = {}
€ ((r=x0a. {},w=2Xo.{}, ... =some) :: (o, 'a, 'r, ‘@) A,q-scheme) o =
th
(proof)
lemma base-trans-p[simp):
w(T=Xoa O,w=2>XA0. 0, ... =some) :: (o, ‘a, 'r, ‘o) Ag-scheme) = {}»
o ((t =X a. {},w=2xo.{}, ... = some| :: (o, 'a, 'r, 'a) Apq-scheme) = {}
(proof)

lemma o-0s-conv-g[simp):
€ g{A)osos 0s =€ A (hd 05) <€ na{B)osos 08 =€ B (hd os)
€ g{CVosmo 0= C o] <€ na{D)oswo 0 =€ D [o]
(proof)

lemma o-0s-conv-g[simp]:
0 i{A)ss0s = {0s. hd os € 90 A} <0 na{B)o—sos = {0s. hd 0s € o B}
zg d(<fc;>)gswg ={o. o] € 0 C} <0 na{D)oswo = {0. [0] € 0 D}
Proo

lemma singl-list-conv-¢[simpl:
€ a{A)singi—siist 05 =€ A (hd 05)> <€ na{B)singl—siist 08 =€ B (hd os)
(€ d<<0>>listwsingl c=¢C [U]) (& nd<<D>>list->singl c=¢D [0])

(proof)

lemma singl-list-conv-g[simpl:
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0 a(A)singisiist = {os. hd 05 € 0 A} <0 na(B)singi—tist = {0s. hd 05 € 0
B}»

0 d<<c>>listv~>singl = {U~ [U] Sl C}> 0 nd<<D>>list->singl = {U- [U] co D}>

(proof)

lemma det-ndet-conv-e[simp]: <€ (AYgsnd = € A> € (BYndwd = € B

(proof)

lemma det-ndet-conv-o[simp): <0 {(AYagsna = 0 A> <0 (BYndwa = 0 B
(proof)

lemma w-from-det-to-ndet :
W (AYgsna = (Ao. casew Ao of |r] = {r} ] 0= {})
(proof)

lemma e-w-useless [simp] :
€ (A(w := some-w))) = e A <¢ (B(w := some-w')) = ¢ B>
for A :: «('o, 'a, 'o option, 'r option, 'a) A-scheme
and B :: «('o, 'a, 'o set, 'r set, ‘o) A-scheme)

(proof)

lemma g-disjoint-c-updated-w [simp] :
co-disjoint-e (Aw = Ao. O))
<p-disjoint-e (B(w := Aa. {}))»
(proof )

lemma p-disjoint-e-det-ndet-conv-iff [simp] :
co-disjoint-¢ {A)geyna <— o-disjoint-c A»
o-disjoint-¢ {B)nd-—a <— 0-disjoint-c B>

(proof)

lemma at-most-1-elem-term-updated-w [simp)] :
<at-most-1-elem-term (A(w = Ao. {}))
(proof)

lemma at-most-1-elem-term-from-det-to-ndet [simp) :
<at-most-1-elem-term (A)gesna

(proof)

lemma at-most-1-elem-term-unit [simp] :
<at-most-1-elem-term (A :: (‘o, 'a, unit, ‘o) A,q-scheme))

(proof)

3.2.2 Properties of our morphisms

method ezxpand-A-scheme =
match conclusion in <A = B) for A B :: «(o, 'a, o/, 'r’, 'a) A-scheme> =
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<cases A, cases B»

lemma base-trans-det-ndet-conv:

(= Xga. O, w=Ao. 0, ... = some|))gna =
(r=Xoa {},w=2Xo.{}, ... = some]p

(lr=Xdoa. {},w=Xxo. {}, ... = some))ngwd =
(=X a. O, w=Ao. O, ... = somel)»

(proof)

lemma from-det-to-ndet-o-os-conv-commute:

<<nd<<<<;1>>>d‘—>nd>>o%as = (a(A)osos)dosna nd{(B)dsnd)os—wo = (i{B)oswo)dsnd’
proo

lemma from-det-to-ndet-singl-list-conv-commute:

td{{A)asna)singistist = (a{A)singtstist)asnd’ nd{{B)dsna)iist—singl =
<<d<<B>>listwsingl>>df—>nd>

(proof)

lemma from-ndet-to-det-o-0s-conv-commute:
<at-most-1-elem-trans A = 4{{AVndwd)oos = {nd{A)oos)ndwd’
<at-most-1-elem-trans B => 4{{B)ndwd)os—wo = {nd{B)os~—o)ndwd’
(proof)

lemma from-ndet-to-det-singl-list-conv-commute:
<at-most-1-elem A = d<<<<A>>nd->d>>singl;>list = <<nd<<A>>sinnglist>>nd->d)
<at-most-1-elem B — d<<<<B>>ndv->d>>list->singl = <<nd<<B>>list->singl>>nd->d>

(proof)

lemma behaviour-o-os-conv:
€ i{A)osos [0 =€ A o>
T a{A)os0s [0] a = (case T Ao aof O = 0| [t] = [[t]])
0 a{A)sos = {os. hd os € p Ap
w i{A)osos [0 =w A o>

€ na{B)owos [0] =€ B o>

T nd{B)owsos [0] a ={[c] |6". 0" € T Bo a}»
0 nd{B)o—os = {0s. hd 0s € o B}

W nd{B)oos [0] =w B o>

&
a
=

Q
~

oswo 0 =¢ C [o]

oswo 0 0= (case T C o] aof O = 0| |os’| = |hd os'|)
ocs~a — {0'. [U] SRY O}>

Voswo 0 =w C [o]

Voswo 0 =€ D [o]

Yoswo 0 a ={hd 0s'| 0s'. 05’ € T D [o] a}>

Yoswe = {0.[0] € 0 D} «w ni{D)oswo 0 =w D [o]

~

2

ISH

=
QQ
F e F

€
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(proof)

lemma behaviour-singl-list-conv:
€ d<<A>>Si’ﬂgl‘—>list [U] =c Ao
T @{A)singisiist [0] a = (case T Ao aof O = O | [t] = [[t]])»
N4 d<<A>>singl;>list = {US. hd os € o A})
w q(A >>smgl;>list [o] = (case w Ao of O = O | |r] = |[r]])
€ nd<B>>Sanl‘—>list [U} =ec Bo
nd B>>s7,ngl<—>list [0] a = {[0/} |U/. c'eTBo a}>
{0 nd B>>szngl‘—>list = {03~ hd os € 0 B}>
(w nd< >>szngl;>list [0'} = {[T’] |7“. rEcwiB O’})
€ a{Cliist~ssingt 0 =€ C [o]
T a{CViist—singt 0 a = (case 7 C o] a of O = O | los'| = |[hd os'])»
Y d<<C>>lzstwsingl = {U~ [U] SNY] C})
W g{(CViist—msingt 0 = (case w C [o] of O = O | [rs] = [hd rs])
>>lzst->szngl oc=¢D [ ]

/\AA/\

(€ nd<<D

T nd{DViistmsingl 0 a = {hd os'| 0s’. s’ € T D [o] a}
Y nd<<D>>lzetv->szngl = {(7 [ ] €0 D})

W nd{DYiistwmsingt 0 = {hd 15 |rs. rs € w D [o]}»

lemma empty-from-det-to-ndet-is-None-trans [simp] : <7 {(AYgesna 0 a = {} +—
TAoa=
(proof)

lemma at-most-1-elem-from-det-to-ndet [simp] : <at-most-1-elem (AYqg—sna>

(proof)

lemma from-ndet-to-det-from-det-to-ndet [simp] : <{{AYasnd)ndwd = 4>
(proof)

lemma from-det-to-ndet-from-ndet-to-det [simp] :
(A ndwd)d—na = A> if <at-most-1-elem A»
(proof )

theorem bij-betw-from-det-to-ndet :
<bij-betw (AA. (A)gsna) UNIV {A. at-most-1-elem A}»

(proof)

lemma bij-betw-from-ndet-to-det :
<bij-betw (AA. (A)ndwa) {A. at-most-1-elem A} UNIV)»

(proof)
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lemma length-1-trans-from-o-to-cs [simp] :
dength-1-transg ¢{A)s—os* length-1-transpq nd{B)o—os’
(proof )

lemma 7-hd-from-o-to-os-eq [simp] :
T i{A)osos [Md o8] a =T g{(A)ss0s 08 @
(T nd{B)osos [hd o8] a = T pa{B)osos 08 ad

(proof)

lemma w-hd-from-o-to-os-eq [simp] :
W i{A)osos [hd o8] = w g{(A)osos T8
(W nd<<B>>a‘—>Us [hd 03] =w nd<<B>>a‘—>as gs)
(proof)

lemma from-os-to-o-from-c-to-os [simp) :

<d<<d<<A>>UHUs>>US->U =4 <nd<<nd<<B>>UH0's>>as->U =D
(proof)

lemma from-o-to-os-from-os-to-o [simp)] :
[length-1-transq A; Nos a. 7 A [hd o8] a =T A 0s a;
Nos.w A [hd o8] =w A 0] = 4{a{A)oswo)osos = A
[length-1-trans,q B; Nos a. 7 B [hd 0s] a =T B 0s a;
Nos.w B [hd 0] = w B 0s] = nal{nd{B)oswo)osos = B
(proof)

theorem bij-betw-from-o-to-os :
<bij-betw (AA. 4(A)ss0s) UNIV

{A. length-1-transq A N Vos a. 7 A[hd 0s) a =T A osa) A (Vos.

os] =w Aos)p
(is <bij-betw (MNA. ¢{A)oos) UNIV 25))
<bij-betw (AB. na{B)oos) UNIV

{B. length-1-trans,q B AN (Vos a. T Bosa =7 B [hd 0s] a) A (Vos.

os] =w Bos)p
(proof)

lemma bij-betw-from-os-to-o :
bij-betw (AA. 4{A)sso)

{A. length-1-transq A N Vos a. 7 A [hd 05| a =7 A os a) N (Vos.

os] =w A os)}y UNIV)
<bij-betw (AB. na{B)oswo)

{B. length-1-trans,q B AN (Vos a. T Bosa =71 B [hd cs] a) A (Vos.

os] =w Bos)} UNIV)
(proof)

lemma length-1-from-singl-to-list [simp)] :
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<length'ld d<<A>>sinnglist> <length'lnd nd<<B>>singl‘—>list)
(proof)

lemma 7-hd-from-singl-to-list-eq [simp] :
T d<<A>>singl<—>list [hd US] a =T d<<A>>singl‘—>list gs a)
(T nd<<B>>singl<—>list [hd 05] a =T nd<<B>>singl<—>list ags a»

(proof)

lemma w-hd-from-singl-to-list-eq [simp] :
(W d<<A>>singl<—>list [hd 05] = w d<<A>>singl<—>list as)
(W nd<<B>>singl‘—>list [hd 03] =w nd<<B>>singl<—>list as)

(proof)

lemma from-list-to-singl-from-singl-to-list [simp] :
@a{A) singistist)iistwsingl = A malnd(B)singistist)iist~singl = B

(proof)

lemma from-singl-to-list-from-list-to-singl [simp)] :
length-14 A; Nos a. 7 A [hd 0s] a =7 A os a;
/\US. w A [hd US] =wA JS]] - d<<d<<A>>listwsingl>>singl<—>list = A
length-1,4 B; Nos a. 7 B [hd 0s] a =T B os a;
/\0'5- w B [hd 05] =wiB 03]] — nd<<nd<<B>>listwsingl>>singl‘—>list =B

(proof)

theorem bij-betw-from-singl-to-list :

<bij-betw (NA. d<<A>>singl<—>list) UNIV

{A. length-14 AN NVosa. 7 A[hd os) a =7 Aosa) AN Vos.w A [hd o8] =
wAos)p

(iS <bz’j—betw (>‘A d<<A>>singl‘—)list) UNIV ?Sd>)

<bij—betw ()\B nd<<B>>singl<—)list) UNIV

{B. length-1,4 BN Vosa.7 Bosa =17 B [hd 0s] a) A\ (Vos. w B [hd os] =
w Bos)p

(proof)

lemma bij-betw-from-list-to-singl :

<bij—betw ()\A d<<A>>listwsingl>

{A. length-14 AN NVosa. 7 A[hd os) a =7 Aosa) N Vos.w A [hd o8] =
w A os)y UNIV)

<bz’j—bet’w ()‘B nd<<B>>listwsingl)

{B. length-1,0 BN (Nosa. T Bosa =7 B[hd os] a) A (Vos. w B [hd os] =
w B os)} UNIV)»

(proof)

3.2.3 Reachability results (for R,; and R,,)

lemma R-base-trans[simpl: <Rq (7 = Ao a. O, w = Ao. O, ... = some]) = (\o.

{o})
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Rpag (T =X a. {}, w=Xo. {}, ... = some)) = (Ao. {o})
(proof)

theorem R, 4-from-det-to-ndet : <Rnq (A)dsnd 0 = Ra A o>
(proof)

lemma bij-betw-R,, q-if-same-1 : <bij-betw f (Rna Bo 00) (Runa B1 (f 00))»
if <inj-on f (Rna Bo 0o)» and <Aoo’ a. 09’ € Rpag Bo 09 = 7 By (f 00’) a =
ffT Bygoy @

(proof)

lemma bij-betw-R4-if-same-7: <bij-betw f (Rq Ao 00) (Ra A1 (f 00))>
if <inj—0nf (Rd Ay O’Q)> and </\O’0/ a. 0'0/ € Rq Ag 09 =— 7 A (f 0'0/) a =
map-option [ (7 Ao oo’ a)»

(proof)

lemmas same-7-implies-same-R,q = bij-betw-R,,4-if-same-T[where f = id, sim-
plified bij-betw-def, simplified]

and same-T-implies-same-Rq = bij-betw-R 4-if-same-T[where f = id, simplified
bij-betw-def option.map-id, simplified]

corollary Rg-w-useless [simp] : <Rq (A(w := some-w)) 0 = Rq A o»
(proof)

corollary R, q-w-useless [simp] : (Rpq (A(w := some-w)) 0 = Rpq A o

(proof)

corollary indep-enabl-w-useless [simp] :
<indep-enabl (Ag(w := some-w)) o9 E Ay o1 +— indep-enabl Ag o9 E Ay 01>
<indep-enabl Ay og E (A1(w := some-w))) o1 «— indep-enabl Ay o9 E Ay 01>

(proof)

method R-subset-method uses defs opt induct init simps =
induct rule: induct, auto simp add: init defs e-simps split: if-splits,
(metis (no-types, opaque-lifting) simps)-+

method R;-subset-method uses defs opt =
R-subset-method defs: defs opt: opt induct: Rq.induct init: Rq.init simps: Rq.simps

method R, 4-subset-method uses defs opt =
R-subset-method defs: defs opt: opt induct: R,q-induct init: R,q.init simps:
Rnd.stmps

lemma R,,4-from-o-to-os-description: {Rpd nd{B)o—os (0] = {[o']] 0’ 0’ € Rua
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B o}
{proof)

lemma Rg-from-o-to-os-description: <Rq 4{A)ssos [0] = {[c]]| ' 0’ € Rq A
op
(proof)

lemma R,,q-from-singl-to-list-description: (Rnq nd{B)singi—1ist 0] = {[c]] o".
o’ e Rna B 0’})
(proof )

lemma Rg-from-singl-to-list-description: <Rq a{A)singi—1ist 0] = {[o']| 0’ 0" €
Rd A U})
(proof )

lemma length-R4-from-o-to-os:
08" € Rq a{A)osos 08 = 08’ = 05 V length os’ = 1»

(proof)

lemma length-R,,4-from-o-to-os:
08" € Rud nd{B)osos 08 => 08’ = os V length os’ = 1»

(proof)

lemma length-R 4-from-singl-to-list:
08" € Ra a{A)singisiist 08 = 08’ = 05V length 0s’' = 1»
(proof)

lemma length-R,,q-from-singl-to-list:
08" € Rud nd{B)singi—list 0§ = 08’ = os V length 0s’' = 1)

(proof)

3.3 Normalization

3.3.1 Non-deterministic Case

First version, without final state notion

abbreviation P-nd-step :: ([('o, 'a) enabl, ('o, 'a) trans,q, 'c = (

cessprick, '0] = ('a, 'r) processpiick>
where «P-nd-step eq 7o Xo=0ec€eypo—-MNo' €etpaoe Xoh

‘a, 'r) pro-

definition P-nd :: «('o, 'a, 'r, 'a) An4-scheme = ‘o = (‘a, 'r) processpiick’
(«P{-)na> 1000)
where <P{A),q = v X. P-nd-step (¢ A) (1 A) X>
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lemma P-nd-step-constructive [simp] : <constructive (P-nd-step €4 T4)» (proof)

lemma P-nd-step-cont [simp] : <V o a. finite (T4 0 a) = cont (P-nd-step e4 T4)>

(proof)

lemma P-nd-step-constructive-bis : (constructive (P-nd-step (¢ A) (1 A))» (proof)

lemma P-nd-step-cont-bis [simp] : «finite-trans A => cont (P-nd-step (¢ A) (1
A
(proof)

lemma P-nd-rec: <P{A)nq = (Ao. P-nd-step (¢ A) (1 A) P{A)pq o)
(proof)

lemma P-nd-is-fix : «finite-trans A = P{A)na = (n X. P-nd-step (¢ A) (7 A)
X)
(proof)

lemma non-destructive-imp-restriction-cont [simp)] :
«non-destructive f = restriction-cont f»

(proof)

lemma P-nd-w-useless: <P{A)nq = P{A(w = some-w|))na>
(proof)

lemma P-nd-w-useless-bis : <P{(AY)nq = P{A(w := Ao. {}))na’
(proof)

lemma P-nd-induct [case-names adm base step) :

<admy P = P 0 = (AX. P X = P (P-nd-step (¢ A) (t A) X)) = P
P<<A>>nd>

(proof)

lemma P-nd-induct-iterated [consumes 1, case-names adm base step] :

[0 < k; admy P; P o; NX. PX = P ((P-nd-step (¢ A) (1 A) k) X)] =
P P<<A>>nd)

(proof)

New version with final state notion where we just have SKIPS.

abbreviation Pgxps-nd-step ::

("o, 'a) enabl, (‘c, 'a) transnq, 'c = 'r set, ‘o = ('a, 'r) processpiick, ‘0] =
("a, 'r) processpiick’

where (Pgsgrps-nd-step €4 74 wa X 0 = if wa 0 = {} then P-nd-step €4 Ta
X o else SKIPS (wa o)
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definition Psy;ps-nd :: <('o, 'a, 'r, 'a) Ang-scheme = 'o = ('a, 'r) processypick’
(«<Psxrps(-Yna> 1000)
where «Psrips(A)na = v X. Psxrps-nd-step (e A) (1 A) (w A) X>

lemma Pgpg-nd-step-constructive [simp] : <constructive (Pgxps-nd-step €4
Ta wa)r (proof)

lemma Pg g1 pg-nd-step-cont [simp] : <V o a. finite (T4 0 a) = cont (Psx1ps-nd-step
EATA WA

(proof)

lemma Pg i pgs-nd-step-constructive-bis : <constructive (Pgsgjps-nd-step (e A)

(1 A) (w A)) (proof)

lemma Pg k1 pg-nd-step-cont-bis [simp] : «finite-trans A = cont (Psps-nd-step
(e A) (1 A) (w A))
(proof)

lemma Pgxrpg-nd-rec: <Psgrps{A)na = (Ao. Pskrps-nd-step (¢ A) (7 A) (w
A) Pskrps(A)na o)
(proof )

lemma Pg g jpg-nd-is-fix : <finite-trans A = Psk1ps{AYna = (1t X. Psk1ps-nd-step
(e A) (1 A) (wA) X)»
(proof)

lemma Pggjps-nd-induct [case-names adm base step)| :

<adm; P = P 0 = (AX. P X = P (Pgkrps-nd-step (¢ A) (1 A) (w A)
X)) = P Pskips{A)na

(proof)

lemma Pggpgs-nd-induct-iterated [consumes 1, case-names adm base step] :
O < k; admy P; P o; NX. PX = P ((Pskips-nd-step (¢ A) (7 A) (w A)
Mk) X)]] — P PSKIPS<<A>>nd>
(proof)

Correspondence when we always have w A o = {}.

lemma PSijs-nd-empty-Q Ry A= {} — PSKIPS<<A>>nd = P<<A>>nd>
(proof)

lemma PSKIPS—nd—updated—w: <P<<A>>nd = PSKIPS<<A(IW = MAo. {}D>>nd>
(proof)

lemma Pgpg-nd-empty-p-inter-R,,q:

Pskrps{A)na 0 = P(A)na o> if <0 ANRpa Ao ={p
(proof)
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lemma Pg g pg-nd-rec-notin-o:
o ¢ 0 A — PSKIPS<<A>>nd o = P-nd-step (E A) (T A) PSKIPS<<A>>nd o)
(proof)

lemma Pg g ps-nd-rec-in-g: <0 € ¢ A = Psgrps{A)na 0 = SKIPS (w A o))
(proof)

3.3.2 Deterministic Case

First version, without final state notion.

abbreviation P-d-step :: <[(‘c, 'a) enabl, (', 'a) transq, 'o = (a, 'r) processpiick,
‘o] = ('a, 'r) processpiick?

where «P-d-step eg 74 X s=0e€ecqgs— X [1a se]
definition P-d :: (o, ‘a, 'r, ‘o)) Ag-scheme = ‘o = ('a, 'r) processpiicr> (<P{-)a>
1000)

where (P(A)y = v X. P-d-step (¢ A) (1 A) X»

lemma P-d-step-constructive[simp] : <constructive (P-d-step €4 T4)> (proof)
lemmas P-d-step-constructive-bis = P-d-step-constructive[of ¢ Ay <t A»] for A

lemma P-d-step-cont[simp]: <cont (P-d-step €4 Ta)>
(proof)

lemmas P-d-step-cont-bis = P-d-step-cont[of ¢ A» <t A»] for A

lemma P-d-rec: <P{A)q = (As. P-d-step (¢ A) (1 A) P{(A)q s)»
(proof)

lemma P-d-is-fiz : <P{A)q = (u X. P-d-step (¢ A) (1 A) X)»
(proof)

lemma P-d-w-useless: «<P{A)y = P{A(w := some-w|))q>
(proof)

lemma P-d-w-useless-bis: <P{A)q = P{A(w := Ao. O))a>
(proof)

lemma P-d-induct [case-names adm base step] :
(Jadm, P; P o; NX. PX = P (P-d-step (¢ A) (1 A) X)] = P P(A)o
(proof)

lemma P-d-induct-iterated [consumes 1, case-names adm base step] :
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0 < k; admy P; P o; AX. PX = P ((P-d-step (¢ A) (1 A) T k) X)] =
proof

New version with final state notion where we just SKIP.

abbreviation Pgkpg-d-step :

(('o, 'a) enabl, ('o, 'a) transq, 'c = 'r option, 'c = ('a, 'r) processpiick, '0] =
(‘a, ') processptick?

where (Pskrpg-d-step €4 74 wa X 0 = case wq o of |r| = SKIPr | 0 =
P-d-step ey 74 X o)

definition Psxrps-d = «('o, 'a, 'r, ‘o) Ag-scheme = ‘o = (a, 'r) processpiick>
(‘PSKIPS<<'>>d> 1000)
where <Psxrps{A)s = v X. Psxrpsg-d-step (¢ A) (7 4) (w 4) X»

lemma Pg g pgs-d-step-constructive[simp|: <constructive (Psxipg-d-step €4 Ta
SFA)>
(proof)

lemmas Pg 1 pg-d-step-constructive-bis = Pgps-d-step-constructive[of & A»
«7 A w A] for A

lemma Pgkpg-d-step-cont[simpl: <cont (Pskrps-d-step ea T4 Spa)

(proof)

lemmas Pgpg-d-step-cont-bis = Pgipg-d-step-cont[of < Ay <7 Ay «w A
for A

lemma Pgipg-d-rec: <PSKIPS<<A>>d = ()\0‘. Pskrps-d-step (6 A) (T A) (UJ A)
Pskrps(A)a o)
(proof)

lemma Pggrpg-d-is-fix : <Psgrps{A)a = (u X. Psxrps-d-step (¢ A) (7 A) (w
A) X)»
(proof )

lemma Pgsgpgs-d-induct [case-names adm base step) :

<admy P=—= P o = (AX. PX = P (Pskips-d-step (¢ A) (1 A) (w A) X))
= P Pskrprs{A)a

(proof)

lemma Pg g jpg-d-induct-iterated [consumes 1, case-names adm base step] :

0 < k; adm; P; Po; NX. PX = P (Pskips-d-step (¢ A) (1 A) (w A) 7
k) X)]] — P PSKIPS<<A>>d>

(proof)

Correspondence when we always have w A o0 = {}.
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lemma Pggrpg-d-empty-0 : <0 A = {} = Pskrps{A)a = P{A)a>
(proof)

lemma PSijs—d—updated—w: <P<<A>>d = PSKIPS<<A(IW = MAo. <>D>>d>
(proof )

lemma Pggpgs-d-empty-o-inter-Ry:
(Psgips{A)a 0 = P(A)a or if c0o ANRy Ao ={}p
(proof)

lemma Pggpg-d-rec-notin-o:
o ¢ 0 A — PSKIPS<<A>>d o = P-d-step (6 A) (T A) PSKIPS<<A>>d o)
(proof)

lemma Pggps-d-rec-in-g: <¢ € 0 A = Psgrps{A)q 0 = SKIP [w A o]»

(proof)

3.3.3 Link between deterministic and non-deterministic Pro-
cOmata

lemma PSKIPS-nd—from-det—to—ndet-is-PSKIPs—d : <PSKIPS<<<<A>>d‘—>nd>>nd = PSKIPS<<A>>d>

(proof)

corollary P-nd-from-det-to-ndet-is-P-d : <P{{A)asnd)nd = P{A)a>
(proof)

3.3.4 Prove Equality between ProcOmata

This is the easiest method we can think about.

lemma P-d-eql : <(Ao a. 7 Ao a=7 Bo a) = P(A)q = P(B)a>
(proof)

lemma P-nd-eql : «(\o a. 7 Ao a=7Bo a) = P{A)na = P{(B)na>
(proof)

lemma Pgsgpg-d-eql :

(Ncoa.co ¢ p A= 1 Aoca=7Boa) = (N\oowdo=wDBo) =
Pskrps{A)a = Pskrps(B)a

(proof )

lemma Pgxrps-nd-eql :

(Ncoa.c ¢ p A= 1 Aca=7Boa) = (\oowdo=wBo) =
Pskrps{A)na = Pskips(B)na’

(proof)
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We establish now a much more powerful theorem.

theorem Pgpg-nd-eql-strong:

assumes nj-on-f : <inj-on f (Rpa Ao 0o)>
and eg-trans : <N\oo’ a. 00’ € Rpg Ag 00 = 7 A1 (f 00’) a = f “ (7 Ao o0’
a)
and eq—ﬁn : (/\00/. 00/ € Rud AO o) — W Ay (f 00/) = w AO 00/>
shows «Psxrps(Ao)nd 00 = Psxrps{Ai)na (f 00)

(proof)

theorem P-nd-eql-strong:
(inj-on f (Rna Ao 00);
Noo’ a. 00’ € Rpg Ao 00 = 7 A1 (f 00)) a=f ‘(7 Ag 00’ a)]
= P(Ao)na 00 = P{A1)na (f o0)
(proof)

theorem Pgps-d-eql-strong:
assumes (inj-on f (Rq Ao oo)
and <Aoo’ a. 09’ € Rq Ag 00 = 7 Ay (f 00’) a = map-option [ (1 Ag oo’ a)
and (/\00/. CT()/ € Ry AO o) — W Ay (f O'o/) = w AO O'ol>
shows «Psk1ps(Ao)d 00 = Pskips{Ai)a (f oo)

(proof)

theorem P-d-eql-strong:
[inj-on f (Rq Ao 00);
Noo’ a. 00’ € Rq Ay 09 = 7 A1 (f 00’) a = map-option | (7 Ay 0o’ a)]
— P<<A0>>d o9 = P<<A1>>d (f 0‘0)>
(proof)

lemmas Pgg1ps-nd-eql-strong-id = Pgkps-nd-eql-strong|of id, simplified]
and Pggipg-d-eql-strong-id = Pgk1ps-d-eql-strong
[of id, simplified id-def option.map-ident, simplified]
and P-nd-eql-strong-id = P-nd-eql-strong[of id, simplified]
and P-d-eql-strong-id = P-d-eql-strong
[of id, simplified id-def option.map-ident, simplified)

corollary Pgpg-nd-from-o-to-0s-is-Psxrps-nd : <Psk1ps{ni{AYoos)nd [0]
= Pskrps(A)na o
(proof)

corollary Pgirps-d-from-o-to-os-is-Pskrps-d : <Pskrps{i{A)sos)a [0] =

Pskrps{A)a o
(proof)
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corollary P-nd-from-o-to-cs-is-P-nd : <P{ni{A)oos)nd [0] = P{A)na o>
(proof)

corollary P-d-from-o-to-0s-is-P-d : <P{4{A)s—os)a [0] = P{A)q o
(proof)

Behaviour of normalizations. We will use the following methods in combin-
ing theories.

fun recursive-modifier-fung :: <[(‘c x 'a) = ‘o option, (('oc x 'a) X ‘o option) list]
= (‘o x 'a) = ‘o option>

where <recursive-modifier-fung f [| = [

| <recursive-modifier-fung f (((s, €), t) # Ga) = recursive-modifier-fung (f((s,

e) :=1)) Ga>

abbreviation recursive-constructor-Aq = <[(('oc x 'a) x ‘o option) list, 'c = 'r
option] = (‘o, 'a, 'r) Ap
where (recursive-constructor-Ag Ga wa = (7 = curry (recursive-modifier-fung

(A(s, ). 0) Ga), w = walp

lemma e-det-breaker:
€ (7 = curry (9((o":'o, a) — o"":'0)), w = some-w, ... = some-more|) ) o =
(if o =o' then {a} Ue (T = curry g, w = some-w| o’ else e (T = curry g, w
= some-w| o)

(proof)

method e-det-calc = (unfold recursive-modifier-fung.simps e-det-breaker, simp cong:
if-cong)[1]

method 7-det-calc = (unfold recursive-modifier-fung.simps, simp cong: if-cong)[1]

lemma bij-Renaming-Pskrps-nd :
fixes A :: «(‘o, 'a, 'r, 'a) Ang-schemer and f :: <‘a = by and g :: r = s
assumes <bij f»
defines B-def : <B=(r=Xo b. 7 Ao (inv fb),w = XAo. g ‘(w A o))
shows <Renaming (PSKIPS<<A>>nd 0') fg = PSKIPS<<B>>nd g (iS <?lhs 0 = —))
(proof)

lemma bij-Renaming-Pskrps-d :
<bij f = Renaming (Psxips{A)q o) fg =
Pskrps{(r = Xo b. 7 Ao (inv fb), w= Ao. map-option g (w A o))
o
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(proof)

lemma RenamingTick-Pskrps-nd :
«RenamingTick (Psxrps{AYna 0) g = Pskxrps{(r =7 A, w =Xo. g ‘w A
o) Vnd o

(proof)

lemma RenamingTick-Pskips-d :

«RenamingTick (Pskrps{A)a 0) g = Pskrps{(T = 7 A, w = Ao. map-option
g (w A o)) o

(proof)

46



Chapter 4

Advanced Properties of
ProcOmata

(proof ) (proof ) (proof ) (proof ) (proof ) (proof ) (proof ) (proof ) (proof ) (proof ) (proof ) (proof ) (proof ) (proof ) (proof ) (proof )
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Chapter 5

Combining Automata for
Synchronization Product

5.1 Definitions

5.1.1 General Patterns

abbreviation combine-sets-Sync :: <'a set = ’a set = 'a set = 'a set)
where <combine-sets-Sync Sog E S1 = (So — E — S1) U (S1 — E — Sp) U (So
NS —E)USyN S NE

definition combine-Sync-¢ :
(oo, e, o0, "o, ‘) A-scheme, ‘e set,
('oy, e, 'o1’, 'r1, 'aq) A-scheme, 'oc = oy, ‘o0 = ‘o1, ‘o] = 'e sety
where <combine-Sync-c¢ Ay E Ay ig i1 05 = combine-sets-Sync (¢ Ag (ig 05)) E
(e Ay (i1 os))

lemma combine-Sync-e-def-bis :
<combine-Sync-e Ag FE A1 ig i1 08 =
9 A() (Z() O'S) Ue A1 (’Ll O'S) —FuUue A() (ZO O'S) ne A1 (’Ll O'S))
(proof)

fun combiney-Sync-t ::
(Yoo, ‘e, 'ro, 'ag) Agq-scheme, ‘e set, (o1, ‘e, 'r1, 'ay) Ag-scheme,
'c = oy, ‘o0 = ‘o1, ‘o9 = ‘o1 = o] = (o, 'e) transy
and combine, q-Sync-T ::
(Yoo, ‘e, 'ro, 'ag) Ana-scheme, e set, (o1,
‘o = log, ‘o0 = ‘o1, 'og = o1 = o] = (
where <combineg-Sync-t Ay E Ay ig i1 f 0s e =
( ife€5A() (i() US)ﬂ&Al (Zl O'S)
then update-both Ay Ay (ig 08) (i1 08) e (f-up-opt f)
else if e € € Ag (ig 0s) — E — ¢ Ay (i1 09)
then update-left Ag  (ig 0s) (i1 0s) e (f-up-opt f) (As. |s])
else ifece Ay (i1 0s) — E —¢e Ao (ig 09)

‘e, 'r1, ‘a1) Anq-scheme,
/

o, 'e) trans, g
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then update-right Ay (ig os) (i1 0s) e (frup-opt f) (As. |s])

else o)
| ccombinenq-Sync-t Ag E Ay ig i1 f ose=
( ifece Ay (ip os) Ne Ay (i1 os) N E

then update-both Ay Ay (ig 08) (i1 0s) e (f-up-set f)
else ifece Ay (igos)Ne Ay (i1 0s) — E

then update-left Ay (ig 0s) (i1 05) e (f-up-set f) (As. {s})

U update-right Ay (ip o) (i1 os) e (f-up-set f) (As. {s})

else ifece Ay (ig 0s) — E — e Ay (i1 03)

then update-left Ay (i os) (i1 08) e (fup-set f) (As. {s})
else ifece Ay (iy 08) — E — e Ag (ip 09)

then update-right Ay (ig os) (i1 0s) e (frup-set f) (As. {s})
else {}»

fun combiney-Sync-w ::
(Yoo, ‘e, 'ro, 'ag) Agq-scheme, ‘e set, (‘o1, ‘e, 'r1, ‘a1) Ag-scheme,
‘o = ‘oo, 'o0 = ‘o1, 'ro = 'r1 = 'r option] = (‘o = 'r option)»
and combine,q-Sync-w ::
(oo, ‘e, 'ro, ‘ag) Ana-scheme, ‘e set, (‘o1, ‘e, 'r1, ‘aq) Apq-scheme,
'c = 'og, ‘o0 = ‘o1, 'ro = 'r1 = 'r option] = (‘o = 'r set)
where <combineg-Sync-w Ag E Ay iy i1 g 08 =
(case w Ag (ip 08)
of 0= 0| [ro] = (case w Ay (i1 08) of O = O | |r1] = gro 1))
| ccombinepq-Sync-w Ag E Ay ig i1 g 08 =
{rlrror.grori=1[r] ANro€w Ay (ip 0s) ANr1 € w Ay (i1 08P

fun combiney-Sync ::
(Yoo, ‘e, 'ro, 'ag) Agq-scheme, ‘e set, (o1, ‘e, 'r1, 'a1) Ag-scheme,
‘o = oy, o = ‘o1, ‘o9 = ‘o1 = o, 'rg = 'r1 = 'r option] = (o, ‘e, 'r) Ap
and combine, 4-Sync ::
(Yoo, ‘e, 'ro, 'ag) Ang-scheme, ‘e set, (‘o1 e, 'r1, ‘a1) Apq-scheme,
‘o = oo, o0 = o1, 'og = ‘o1 = ‘o, 'rg = 'r1 = 'r option] = (', e, ')
And>
where (combineg-Sync Ag E Ay ig i1 fg =
(7 = combineq-Sync-t Ay E A1 iy i1 f, w = combineg-Sync-w Ay E Ay i
Z'l gl))
| ccombinenq-Sync Ag E Ay ig i1 fg =
(7 = combinenq-Sync-1 Ag E Ay ig 11 f, w = combinenq-Sync-w Ay E Ay
1o 11 gl))

5.1.2 Specializations

definition combinegpqiriist-Sync ::
("o, 'e, 'r, ‘o) Ag-scheme, e set, (o, ‘e, 'r, '8) Aq-scheme] = (‘o list, e, 'r)
Ad>
where <(combinegpgiriist-Sync Ag E A1 =
combineq-Sync Ag E Ay hd (Aos. hd (tl os)) (As t. [s, t]) (As t. if s =t
then | s| else O)»
definition combine,qpairiist-Sync :
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(Yo, ‘e, 'r, 'a)) Anq-scheme, ‘e set, ('o, e, 'r, '8) Ana-scheme] = (‘o list, ‘e, 'r)
And)
where <combine,gpairiist-Sync Ag B A1 =
combine,q-Sync Ag E Ay hd (Aos. hd (tl os)) (Ast. [s, t]) (Ast. if s =1
then |s] else O)»

definition combineypqir-Sync :
(oo, 'e, 'r, 'a) Ag-scheme, e set, ('oq, ‘e, 'r, 'B) Agq-scheme] = (‘oo X o1, e,
/1”) Ad>
where <combinegpgir-Sync Ag E A1 =
combineq-Sync Ay E Ay fst snd Pair (As t. if s = t then |s] else O)»
definition combine,qpqir-Sync :
(oo, ‘e, 'r, 'a) Apq-scheme, ‘e set, ('o1, ‘e, 'r, 'B) Apq-scheme] = (‘'og X ‘o1,
‘e, 'r) Ana>
where <combine, pqir-Sync Ag B Ay =
combine, q-Sync Ag E Ay fst snd Pair (As t. if s = t then |s] else O)»

definition combineyr,istsienr-Sync :
(o list, ‘e, 'r, 'a) Ag-scheme, nat, 'e set, (‘o list, e, 'r, '8) Aq-scheme] = (‘o
list, ‘e, ') Ap
where <combinegristsienr-Sync Ag leng B Ay =
combineg-Sync Ag E Ay (take leng) (drop leng) (@) (As t. if s = ¢ then |s]
else O)»
definition combine,qristsienr-SYnc :
(Yo list, ‘e, 'r, 'a) Anq-scheme, nat, ‘e set, (‘o list, ‘e, 'r, '8) Anq-scheme] =
("o list, ‘e, 'r) Ana>
where <combine,qristsienr-Sync Ag leng E A1 =
combine,q-Sync Ay E Ay (take leng) (drop leng) (Q) (As t. if s = t then
|s] else O)»

definition combineggy;st-Sync ::
(o, e, 'r, ‘o)) Ag-scheme, ‘e set, (‘o list, ‘e, 'r, '8) Ag-scheme| = (‘o list, ‘e,
/’I“) Ad)
where (combinegri;si-Sync Ag E Ay =
combineq-Sync Ag E Ay hd tl (#) (As t. if s = t then |s] else O)»
definition combine,qryist-Sync ::
("o, ‘e, 'r, 'a) Anq-scheme, ‘e set, (‘o list, ‘e, 'r, 'B) Anq-scheme] = (‘o list,
‘e, 'r) Ana>
where (combine,qriisi-Sync Ag E Ay =
combine,q-Sync Ag E Ay hd tl (#) (As t. if s = t then |s] else Q)

lemmas combinep q;riis¢-Sync-defs = combineq pqiriist-Sync-def combine, qpairiist-Sync-def
and combinepq;.-Sync-defs = combinegpqir-Sync-def combine, qpqir-Sync-def
and combiner;stsienr-Sync-defs = combinegp;stsienr-Sync-def combine,qristsienr-Sync-def
and combinepr;st-Sync-defs = combineqpyist-Sync-def combine,qriist-Sync-def

lemmas combine-Sync-defs =

combinep g iriist-Sync-defs combinepqi--Sync-defs combiner; st sienr-Sync-defs com-
binegy;st-Sync-defs
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bundle combine,, 4-Sync-syntaxr begin

notation combineqpairiisi-Sync (({- a®[-Jpairtist -)> [0, 0, 0])
notation combine,qpairiist-Sync ({{- na®@[-lpairiist -)> [0, 0, 0])
notation combinegpqir-Sync («{- a®[-]pair -)> [0, 0, 0])

notation combine,qpair-Sync (<{- na®[-]pair -)* [0, 0, 0])

notation CombinedListslenL’Sync (<<<' d®[['7 ’]]ListslenL '>>> [07 07 03 0])
notation combinendListslenL'SynC (<<<' nd®[['7 ']]ListslenL '>>> [07 07 0a 0])
notation combinegriist-Sync («{- a®[-|riist -)> [0, 0, 0])

notation combine,qriist-Sync ({- na®[-|riist -)> [0, 0, 0])

end

unbundle combine,q-Sync-syntax

5.2 First Properties

lemma finite-trans-combine, q-Sync-simps [simp] :
finite-trans Ag = finite-trans Ay = finite-trans (Ao nd®[E]pairiist A1)
finite-trans By = finite-trans By = finite-trans {Bo ndQ[E]pair B1)>
(finite-trans Cy = finite-trans C'; = finite-trans {Co na®[leno, E]ListsienL
01>>>
finite-trans Dy = finite-trans D1 = finite-trans (Do na®[E]riist D1)»

(proof)

lemma c-combinepqiriis¢-Sync:
€ (Ao a®[E]pairiist A1) os = combine-Sync-c Ag E A1 hd (hd o tl) o8
€ {Bo nd®[E]pairiist B1) 0s = combine-Sync-e By E By hd (hd o ) 0%
(proof)

lemma e-combinep,;--Sync:
€ (Ao a®[E]pair A1) 0s = combine-Sync-¢ Ay E Ay fst snd os
€ {Bo nd®[E]pair B1) 0s = combine-Sync-e By E By fst snd o
(proof)

lemma e-combiner;s¢sienr-Sync:

€ (Ao a®[leno, E]Listsienr, A1) 08 = combine-Sync-c Ag E Ay (take leng) (drop
leng) os)

€ {(Bo na®[leng, Elristsienr B1) 0s = combine-Sync-e By E By (take leng)
(drop leng) os»

(proof)

lemma e-combiner;si-Sync:
€ (Ao a®[E]riist A1) o8 = combine-Sync-e Ay E Ay hd tl os»
€ (Bo nd®[F]riist B1) os = combine-Sync-c By E By hd tl os
(proof)
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lemma g-combinepg;rist-Sync:

<0 (Ao a®[E]pairiist A1) = {os. hd 0s € p Ag AN hd (tl 0s) € 0 A1 AN w Ag (hd
os) =w A1 (hd (tl o)) P

(0 <<B0 nd@[[E]]Pairlist Bl>> = {US. hd os € o By A hd (tl O’S) € 0 Bi ANw By
(hd os) Nw By (hd (tl 0s)) # {} }»

(proof)

lemma p-combinep y;,--Sync:

0 (Ao a®[E]pair A1) = {(00, 01). 00 €0 Ag No1 € 0 A1 ANw Ag 09 =w Ay
o1}

<0 <<BO nd®[[E]]Pair Bl>> = {(0’07 0'1). gp € 0By No1 €oBy ANw ByogNw By
o1 # {}b

(proof)

lemma g-combiner;stsienr-Sync:

0 (Ao a®[leno, E]ristsienr A1) =

{os. take leng 0s € o Ag A drop leng os € 0 A1 N w Ay (take leng 08) = w Ay
(drop leng os)}»

0 (Bo na®[leno, E]ristsienr B1) =

{os. take leng os € o By A drop leng 0s € o By A w By (take leng 0s) N w By
(drop leng os) # {}p

(proof)

lemma p-combineg;si-Sync:
0 (Ao a®[E]riist A1) =
{os. hd os € p Ag Ntlos € p Ay ANw Ag (hd 08) =w Ay (L os)p
0 (Bo na®[E]Rriist B1) =
{os. hd os € p By ANtlos € p Bl Nw By (hd 0s) Nw By (tl os) # {}p
(proof )

lemma combine-Sync-t [simp) :

<combineg-Sync-T (Ag(w = some-wq)) E (A1 (w := some-w1|) = combineq-Sync-T
AO F Al)

<combiney, qg-Sync-1 (Bo(w := some-wy’)) E (B1(w := some-w1')) = combine, q4-Sync-1
BO E Bl)

for A :: «('o, 'a, ‘o option, 'r option, ‘a) A-scheme)

and B :: «('o, 'a, o set, 'r set, 'a) A-scheme>
(proof)

5.3 Reachability

lemma Rg-combineqr;stsienr-Sync-subset:

(Ra (Ao a®[leno, Elristsient A1) (s0 @ s1) € {to @ t1] to t1. to € Ry Ao So A
ty € Rq Ay 51}) (iS (?SA - ->)

if same-length-Rq: <A\to. to € Raq Ao so = length tg = leng»
(proof)
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lemma R, 4-combine,qristsien-Sync-subset:

<Rnd <<BO nd®[len07 EﬂListsle7LL Bl>> (50 @ 51) g {to @ t1| to tl. to S Rnd Bo
so A t1 € Rpa B1 81}> (iS «?285p C —))

if same-length-Rpq: <\to. to € Rna Bo so = length tg = leny

(proof )

lemma R;-combinegqpgiriist-Sync-subset:

Ry (Ao a®[E]pairtist A1) [s0, s1] C {[to, t1]| to t1- to € Ra Ao s0 A t1 € Ry
A1 51}) (iS (?SA - -))

and R, q-combine, qpqiriist-Sync-subset:

(Rnd (Bo nd®[E]pairtist B1) [s0, s1] C {[to, t1]| to ti. to € Rna Bo so N t1 €
Rna B1 s1p (is <255 C )
(proof )

lemma R;-combineypqir-Sync-subset:
Ry <<A0 d®ﬂEﬂPai7' A1>> (So, 81) C Rq Ag so X Rq A1 sp» (iS (25,4 C —))
and R, q-combine, qpq;r-Sync-subset:
(Rna (Bo na®[E]pair B1) (s0, 51) € Rna Bo so X Rna B1 sy (is <25 C =)
(proof )

lemma R;-combinegryist-Sync-subset:

Ry <<A0 d®[[E]]Rlist A1>> (50 # O’S) - {to # CTt| to ot. tg € Rq Ag 59 N ot €
Ra Ar O’S}> (is <254 C =)

and R, q-combine,qriist-Sync-subset:

(Rund <<BO nd®[[E]]Rlist Bl>> (80 # 0’8) - {to # 0t| to ot. to € Rpqg Bo so N ot
€ Ruq By os}y (is <25 C )
(proof)

5.4 Normalization

lemma w-combinepq;riist-Sync-behaviour:

[ ‘w <<<<]Ao dR[E]pairtist A1))d—snd [50, $1] = w ((Ao)dnd nd®R[E] Pairtist (A1)d—snd)

(proof)

lemma w-combinep,;-Sync-behaviour:

<<w <<<<)A0 dD[E]pair A1))d—sna (S0, 51) = w ((Ao)dsnd na®@[E]pair (A1)d—na)
So, S1)?

(proof)

lemma w-combiner st sienr,-Sync-behaviour:

(W <<<<A0 d®|[l€n0, E]]ListslenL A1>>>>d<—>nd (030 Q@ 031) =w <<<<AO>>d<—>nd nd®[[len0,
E]]ListslenL <<A1>>d<—>nd>> (050 @ 031)>

(proof)

lemma w-combinery;s¢-Sync-behaviour:
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w ((Ao a®[E]riist A1))a—nd (S0 # 051) = w ((Ao)d—snd nd®R[E]riist (A1)d—nd)

(s0 # os1)»
(proof )

lemma 7-combinep gy s¢-Sync-behaviour-when-indep:
<€A050ﬂ€A1S1§E:>
T ((Ao a®[E]pPairtist A1))dsna [s0, s1] € = T ((Ao)dsnd nd®[E]pairiist
(A1) dsna) [s0, s1] e
(proof)

lemma 7-combinep q;.-Sync-behaviour-when-indep:

(8A0500€A151QE:>

T ((Ao a®[E] Pair A1))d—nd (50, 51) € =T ((A0)d—nd nd®[E]Pair (A1)d—na)
(s0, $1) ©

(proof)

lemma 7-combiner;stsienr-Sync-behaviour-when-indep:

¢ Ag 0sg Ne Ay 0s1 € E = length sy = leng —

T (Ao a®[leno, Elristsient A1))dsnd (050 Qos1) e =7 ((Ao)dsnd na®[leno,
Elvistsient. {(A1)dsnda) (050 Q 0s1) e

(proof)

lemma 7-combineg;;s¢-Sync-behaviour-when-indep:
(5A08006A10$1§E:>
T ((Ao a®[E]riist A1))acsna (50 # 0s1) e = 7 ((Ao)asnd nd®[E]Riist
(A1)asna) (so # o51)
(proof)

method Pgxps-when-indep-method uses R-d-subset =
fold Pskps-nd-from-det-to-ndet-is-Ps ik ps-d,
rule Pgk1pg-nd-eql-strong-id,
unfold R, q-from-det-to-ndet,
all <drule set-mp[OF R-d-subset, rotated]

method P-when-indep-method uses R-d-subset =
fold P-nd-from-det-to-ndet-is-P-d,
rule P-nd-eql-strong-id,
unfold R, q-from-det-to-ndet,
all <drule set-mp|OF R-d-subset, rotated)

lemma Pggpg-combinepqiriisi-Sync-behaviour-when-indep:
Psrrps{(Ao a®[E]pairiist A1))a [s0, $1] = Psx1ps{{{Ao)a—nd nda®[E]pPairiist

(A1)asna))na [s0, s1]
if <indep-enabl Ag so E A1 s1»
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(proof)

lemma P-combinep,;riist-Sync-behaviour-when-indep:

(P{(Ao a®[E]pairtist A1))a [s0, 51) = P{((A0)d—nd na®[E]Pairtist (A1)d—snd))nd
[s0, 1]

if <indep-enabl Ag so E A1 s>

(proof)

lemma Pgpgs-combinepqi.-Sync-behaviour-when-indep:

(Pskrps{(Ao a®@[E]pair A1))a (50, 51) = Pskxrps{{{Ao)a—nd na®[E]pair
(A1)asnd))na (0, 1)

if <indep-enabl Ay so E Ay s>

(proof)

lemma P-combinep,;,-Sync-behaviour-when-indep:

(P{(Ao a®[E]pair A1))a (S0, 51) = P{{{A0)dsnd na®[E]pPair {A1)asnd))nd
(so, s1)»

if <indep-enabl Ay so E Ay s>

(proof)

lemma Pgps-combinerstsienr-Sync-behaviour-when-indep:

(Pskrps{(Ao a®[leng, E]ristsienr A1))a (050 Q@ 051) = Pskrps{{{Ao)i—nd
na®[leno, E]lpistsient, (A1)d—nd))na (0o @ os1)>

if <indep-enabl Ag osy E Ay os1> and <\otg. otg € Rq Ag 089 = length oty
= leng»

(proof)

lemma P-combiner,;sisienr,-Sync-behaviour-when-indep:

(P((Ao a®[leno, Elristsient A1))a (0s0 @ os1) = P{((Ao)d—na na®[leno,
Elristsient (A1)dsnd))na (050 @ os1)

if <indep-enabl Ag osg E Ay os1> and <Aotg. otg € Rq Ag 089 = length oty
= leng»

(proof)

lemma Pgps-combinerist-Sync-behaviour-when-indep:
(Pskrprs{(Ao a®[E]riist A1))a (s0 # 051) = Psxrps{({A0)dmnd nd®[E]riist

(A1) dand)na (80 # 051)
if <indep-enabl Ay sg E A1 osp>

(proof)

lemma P-combinegr;;st-Sync-behaviour-when-indep:

(<P$Ao d)®[[E]]Rlist A))a (so # 051) = P(((Ao)dsnd na®[E]riist (A1)d—nd))nd
S oS8 )
iof <indep-enabl Ay sg E A1 osp»

(proof)
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Chapter 6

Compactification of
Synchronization Product

6.1 Iterated Combine

6.1.1 Definitions

fun iterated-combiney-Sync :: e set = (o, ‘e, 'r) Aq list = (‘o list, ‘e, ') Ap
(@ T] - [0, 0])

where (4@ [E] [|) = (7 = Aos a. O, w = Ags. O))»

| (e I[E] [Ao]) = a{Ao)osos

| (a®E] Ao # Ar # As) = (Ao a®[E]riist (aQ [E] A1 # As))»

fun idterated-combine,q4-Sync :: e set = (‘o, ‘e, 'r) Anq list = (‘o list, ‘e, 'r)
Ana> (na@ T -)> [0, 01)

where (s [E] [|) = (7 = Aos a. {}, w = Aos. {})

| <<<nd® [[Eﬂ [AO]>> = nd<<A0>>O"—)O'S>

| <<<nd® [[Eﬂ AO # Al # A5>> = <<AO nd®[[E]]Rlist <<nd® [[E]] Al # AS>>>>>

lemma iterated-combineq-Sync-simps-bis: <As # [| = (4@ [E] Ao # As) = (Ao
a®[E]riist (@ [E] As))>
and iterated-combine, q4-Sync-simps-bis: <Bs # [| = {(naQ [E] Bo # Bs) = (B
nd<®[[E.}}]>%list <<nd® [[EH B5>>>>>
proo

fun iterated-combiney-Sync-c :: <('o, ‘e, 'r, ‘a) Ag-scheme list = ‘e set = ‘o list
= e set)
where <iterated-combineq-Sync-c || E os = {}
| <iterated-combineq-Sync-e [Ao] E o0s =€ Ay (hd os)>
| terated-combineg-Sync-e (Ag # A1 # As) E os =
combine-sets-Sync (¢ Ag (hd 0s)) E (iterated-combiney-Sync-e (A1 # As)
E (tl os))
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fun iterated-combine, q-Sync-e :: «('o, e, 'r, ‘a) Apq-scheme list = ‘e set = ‘o

list = e set»
where <iterated-combine, q-Sync-¢ [| E os = {}
| «terated-combiney, q-Sync-e [Ao] E s = ¢ Ao (hd os)
| <iterated-combine, 4-Sync-€ (Ao # A1 # As) E os =
combine-sets-Sync (e Ay (hd 05)) E (iterated-combine,q-Sync-c (A1 # As)
E (tl os))»

lemma iterated-combiney-Sync-e-simps-bis:
(As # || = iterated-combiney-Sync-e (Ag # As) E 0s =
combine-sets-Sync (¢ Ag (hd 0s)) E (iterated-combineq-Sync-¢ As E
(tl os))»
and iterated-combine,, 4-Sync-e-simps-bis:
(Bs # || = iterated-combine,q-Sync-e (By # Bs) E os =
combine-sets-Sync (¢ By (hd 0s)) E (iterated-combine,q-Sync-¢ Bs
E (tl os))»
(proof )

6.1.2 First Results

lemma e-iterated-combineg-Sync:
length os = length As = ¢ (4@ [E] As) os = iterated-combineq-Sync-e As E
o8

(proof)

lemma e-iterated-combine, q-Sync:
ength os = length Bs => € (na@ [E] Bs) os = iterated-combine,q-Sync-¢ Bs
E os

(proof)

lemma combiner;sisienr-Sync-combinery; s¢-Sync-eq:

€ <<d<<AO>>U‘—>crs d®|[1; E]]ListslenL A1>> 0s =¢& <<AO d®[[E]]Rlist A1>> as)

7 (a{Ao)osos a®[1, Elristsient. A1) (so # 05) e =T (Ao a®[E]riist A1) (s0
#os) e

€ <<nd<<BO>>o;>as nd®[[la E]]ListslenL Bl>> g8 =¢& <<BO nd®[[E]]Rlist Bl>> gs)

T (na(Bo)osos nd®[1, E]lristsienr B1) (so # 0s) e =7 (Bo na®[E]Rriist B1)
(so # 0s) e

(proof)

lemma combinep q;ri;s¢-Sync-and-iterated-combine, 4-Sync-eq:
€ (Ao a®[E]pairtist A1) [0, s1] = € (a@ [E] [Ao, A1]) [s0, s1]>
(Ao a®[E]pairiist A1) [50, s1] e = 7 (a@ [E] [Ao, A1]) [s0, s1] &
€ (Bo na®[E]pairtist B1) [s0, 51] = € (na@ [£] [Bo, B1]) [s0, s1]>
zT <<Bj:0> nd®@[E]pairtist B1) [s0, 51] € = 7 (na@ [E] [Bo, B1]) [s0, 51] e
Proo



lemmas combinepgiriise-Sync-and-combiner; s¢-Sync-eq =
combinepqri;st-Sync-and-iterated-combine, q-Sync-eq|simplified]

6.1.3 Reachability

lemma same-length-R 4-iterated-combiney-Sync-description:

length os = length As = 0s’ € Rq (4@ [E] As) 0s =

length os' = length As N (Vi < length As. os' ! i € Ry (As! i) (os! i)
(proof)

lemma same-length-R,, q-iterated-combine, q4-Sync-description:

length os = length Bs = 08’ € Rua (na@ [E] Bs) o0s =

length os' = length Bs \ (Vi < length Bs. os’! i € Ryq (Bs!i) (os! )
(proof)

6.1.4 Transmission of Properties

lemma finite-trans-transmission-to-iterated-combine, 4-Sync:
(N\A. A € set As = finite-trans A) = finite-trans (4@ [E] As)>
(proof)

lemma p-disjoint-e-transmission-to-iterated-combineq-Sync:
(N\A. A € set As = p-disjoint-e A) = p-disjoint-¢ {4 [E] As)»
(proof)

lemma p-disjoint-e-transmission-to-iterated-combine, q-Sync:
(N\A. A € set As = p-disjoint-e A) = p-disjoint-¢ (na@ [E] As)>
(proof)

lemma at-most-1-elem-term-transmission-to-iterated-combine,, g-Sync:

(N\A. A € set As = at-most-1-elem-term A) = at-most-1-elem-term (4@ [E]
Ash

(proof)

lemma same-length-indep-transmission-to-iterated-combineg-Sync:

<length os = length As —

(Aij. i < length As = j < length As = i # j =

indep-enabl ((Ag # As) 1i) ((so # os) ! i) E ((Ao # As) 1 j) ((so # 05) ! j))
_—

indep-enabl Ag so E (4@ [E] As) os
(proof)

lemma w-iterated-combineg-Sync :
<length os = length As =
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w (4@ [E] As) os = (case those (map2 w As os) of O = O
| [terms| = if card (set terms) = Suc 0 then | THE r. set terms = {r}| else
o)
(proof)

lemma w-iterated-combine, 4-Sync :

<length os = length As —

w (na@[E] As) os = (if As =[] then {} else {r. Vi < length As. r € w (As!
i) (s )}
(proof)

6.1.5 Normalization

lemma w-iterated-combine,, q4-Sync-det-ndet-conv:

<length os = length As =

W {(na@ [E] map (MA. {(AYgsna) As) 0s = w ((a@Q [E] A8))da—sna o9
(proof )

lemma T7-iterated-combine,, q-Sync-behaviour-when-indep:
<length os = length As =
(ANij. [i < length As; j < length As; i # j]
= indep-enabl (As ! i) (cs!i) E (As!j) (os!j) =
< T (<<<>d® [E] As))asnd 08 € =T {na@ [E] map (AA. (A)asna) As) os e
proof

lemma Pg g pg-iterated-combine, q-Sync-behaviour-when-indep:
assumes same-length: <length os = length As»
and indep: <\i j. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os! )
shows <PSKIPS<<<<d® [[E]] AS>>>>d g8 = PSKIPS<<<<nd® [[E]] map (/\A <<A>>d=—>nd)
AsYYna o8
(proof )

lemma P-d-iterated-combine, q-Sync-behaviour-when-indep:
assumes same-length: <length os = length As»
and indep: <\i j. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os! i)
< shovs>rs P{aQ[E] As))a 05 = P{{(na@ [E] map (NA. {A)asna) AS))na o8
proof

6.2 Compactification Theorems

6.2.1 Binary
Pair

theorem Pgps-nd-combinep,;--Sync :
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fixes F :: <'a set» and Ag :: (o, ‘a, 'r, 'a) A,q-scheme»
assumes p-disjoint-¢ : <p-disjoint-¢ Ag> <p-disjoint-c¢ Ay»
and at-most-1-elem-term : <at-most-1-elem-term Ag» <at-most-1-elem-term Aq»

defines A-def: <A = (Ao na®[E]pair A1)

defines P-def: <P = Pskrps{Ao)na> and Q-def: «Q = Pskrps{Ai)na> and
S—def: S = PSKIPS<<A>>nd>

shows <P o [E] Q 01 = S (09, 01)»
(proof)

corollary P-nd-combinep;--Sync :
< <P<</;0>>nd o0 [E] P(A1)na 01 = P{(Ao na®[E]Pair A1))na (00, 01)>
proof

corollary Pgkps-d-combinepq;--Sync:

(Pskrps{Ao)a 0o [E] Pskips{Ai)a 01 = Pskips{{Ao a®[E]pair A1))a (00,
O’1)>

if <p-disjoint-c Ag> and <p-disjoint-¢ A1y and <indep-enabl Ag o9 E A1 01>
(proof)

corollary P-d-combinep,;r-Sync:

(P{Ao)a 00 [E] P(A1)a 01 = P{(Ao a®[E]pair A1))a (00, 01)»
if <indep-enabl Ag 09 E A1 o>

(proof)

Pairlist

theorem Pgps-nd-combinepgiriist-Sync :

(Psk1ps{Ao)na 00 [E] Pskrps{(Ai)nd 01 = Pskips{{(Ao nd®[E]pairtist
A1) )na [00, 01]
if <p-disjoint-€ Ag» <p-disjoint-€ A1y <at-most-1-elem-term Ag» <at-most-1-elem-term
Al)
(proof)

corollary P-nd-combinepgiriist-Sync :
(P{Ao)na 00 [E] P(A1)na 01 = P({A0 na®[E]pairtist A1))na [00, o1]
(proof )

corollary Pgips-d-combinepqiriist-Sync :

(Pskrps(Ao)d 00 [E] Pskrps{Ai)a 01 = Psxiprs((Ao a®[E]pairiist A1))a
[c0, o1

if «o-disjoint-e Ay> and <g-disjoint-e Ay» and <indep-enabl Ay 09 E Ay 01>
(proof)

corollary P-d-combinepiriist-Sync :

(P{Ao)a 00 [E] P(A1)a 01 = P{{Ao a®[E]pPairiist A1))a (00, 01]
if <indep-enabl Ay o9 E A1 o>

(proof)
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6.2.2 Rlist

theorem Pgpg-nd-combinery;st-Sync :

(Pskr1ps{Ao)na oo [E] Pskrps(Ai)na 01 = Pskrprs{{Ao na®[E]riist A1))na
(o0 # o1)

if <o-disjoint-c Ay <p-disjoint-¢ Ay> <at-most-1-elem-term Ag> <at-most-1-elem-term
A1>
(proof )

corollary P-nd-combinery;s¢-Sync :
< <P<<fA>O>>nd 00 [E] P(A1)na 01 = P{(Ao na®[E]riist A1))na (00 # o1)»
Proo,

corollary Pggpg-d-combinery;st-Sync :

(Pskrps{Ao)a oo [E] Psxips{Ai1)a 01 = Pskrps{(Ao a®[E]riist A1))a (00
# o1)

if <p-disjoint-c Ag> and <p-disjoint-e A1y and <indep-enabl Ag o9 E Ay 01>
(proof )

corollary P-d-combinery;st-Sync :
(P{Ao)a 00 [E] P(A1)a 01 = P{{Ao a®[E]riist A1))a (00 # o1)»
if <indep-enabl Ay o9 F A1 01>

(proof )

6.2.3 ListslenL

theorem Pgpg-nd-combinerstsienr-Sync :
assumes same-length-reach0 : <N\oo’. 0o’ € Rpa Ao 00 = length oo’ = leng>
and p-disjoint-¢ : <p-disjoint-e Agy» <o-disjoint-¢ Ay> <at-most-1-elem-term Ag>
<at-most-1-elem-term Aqp»
shows Pskrps{Ao)nd 00 [E] Psxips{Ai)nd 01 = Psk1ps{{Ao na®[leno,
E]]ListslenL A1>>>>nd (OO Q 01))
(proof)

corollary P-nd-combiner,;stsienr-Sync :

(P{Ao)na o0 [E] P(A1)na 01 = P{(Ao na®[leno, E]ristsienr A1))na (00 @
O‘1)>

if <Aoo’ 00’ € Rna Ao 00 = length oo’ = leng»

{proof)

corollary Pggpg-d-combineristsienr,-Sync :
(Psk1ps{Ao)a 0o [E] Psxips{Ai)a 01 = Pskips{(Ao a®[leno, E]Listsient
A1>>>>d (0’0 Q 0’1)>
if <Aoo’ 00’ € Ry Ay 09 = length oo’ = leng>
<o-disjoint-e Ag> <o-disjoint-¢ Ay> <indep-enabl Ay o9 E A1 01>
(proof)

corollary P-d-combiner;stsienr-Sync :

(P{Ao)a 00 [E] P(A1)a 01 = P({Ao a®[leno, E]Listsient A1))a (00 @ 01)>
if <Aoo’ 00’ € Ry Ay 09 = length oo’ = leng> <indep-enabl Ag o9 E A1 01>
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(proof)

6.2.4 Multiple

theorem Pgpg-nd-compactification-Sync:
([length os = length As; NA. A € set As = p-disjoint-c A
NA. A € set As = at-most-1-elem-term A]
— [[E]] (O’, A) €7 mset (Zip oS AS). PS’KIPS<<A>>nd o= PSKIPS<<<<nd® [[E]]
AsY)na oo
(proof)

lemma P-nd-compactification-Sync:

length os = length As =

[E] (o, A) €# mset (zip os As). P{A)na 0 = P{{(na@ [E] AS))na o8
(proof )

lemma Pgxps-d-compactification-Sync:
([length os = length As; NA. A € set As = p-disjoint-¢ A;
Nij. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os!i) E (As!j) (os!j)] =
I[E]] (0', A) E# mset (zip ags AS) P5K1p5<<A>>d g = PSKIPS<<<<d® [[E]] A8>>>>d
o8

(proof)

lemma P-d-compactification-Sync:
[length os = length As;
Nij. [i < length As; j < length As; i # j] =
indep-enabl (As! i) (os! i) E (4s!j) (os!j)] =
< [E] (o, A) €# mset (zip os As). P{(A)q 0 = P{{a@ [E] As))a o
proof)

corollary Pg g ps-nd-compactification-Sync-order-is-arbitrary:

Psk1ps{(na@ [E] As))na 05 = Psx1ps{(na@ [E] As"))na 05"
if (length os = length As) <length os’ = length As’s

«mset (zip os As) = mset (zip os’ As')

(NA. A € set As = p-disjoint-c A»

(NA. A € set As = at-most-1-elem-term A»

(proof)

corollary P-nd-compactification-Sync-order-is-arbitrary:

P{(na@[E] As))na o5 = P((naQ [E] As'))na 05"

if (length os = length As) <length os’ = length As’s
«mset (zip s As) = mset (zip os’ As’)

(proof)

corollary Pgps-d-compactification-Sync-order-is-arbitrary:
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<PSKIPS<<<<d® [[Eﬂ A8>>>>d gs = PSKIPS<<<<d® [[Eﬂ ASI>>>>d osh
if «length os = length As) <length os’ = length As’s

«mset (zip os As) = mset (zip os’ As'))
(NA. A € set As = p-disjoint-= A>
«Nij. [i < length As; j < length As; i # j] =
indep-enabl (As! i) (os! i) E (As!j) (os!j)
(proof )

corollary P-d-compactification-Sync-order-is-arbitrary:
P((aQ [E] As))a o5 = P{(aQ[E] As))a 05"
if (length os = length As) <length os’ = length As’s
«mset (zip os As) = mset (zip os’ As’)»
Nij. [i < length As; j < length As; i # j] =
indep-enabl (As! i) (os! i) E (As!j) (os!j)
(proof)

6.3 Derived Versions

lemma Pgxjps-nd-compactification-Sync-upt-version:
[E] P €# mset (map Q [0..<n]). P = Pskrps{{na® [E] map A [0..<n]))na
(replicate n 0)»
if «(A\i. i < n = p-disjoint-e (A i)
(N\i. i < n = at-most-1-elem-term (A 7))
</\i. 1< n— PSKIPS<<A i>>nd 0=Qn
(proof)

lemma P-nd-compactification-Sync-upt-version:

E] P €4 mset (map Q [0..<n]). P = P{{na@Q [E] map A [0..<n]))na (replicate
n 0)

if <\Ni. i <n= P(Ai)pa 0=0Qn
(proof)

lemma Pgjps-d-compactification-Sync-upt-version:
([E] P €# mset (map Q [0..<n]). P = Pskrps{{a@[E] map A [0..<n]))a
(replicate n 0)»
if <A\i. i < n = p-disjoint-c (A i)
Nij. i<n= j<n=i+#j=— indep-enabl (A i) 0 E (4 j) O»
</\i. 1< n= P5K1p5<<A i>>d 0=Qv»
(proof )

lemma P-d-compactification-Sync-upt-version:
(E] P €# mset (map Q [0..<n]). P = P{{aQ [E] map A [0..<n]))a (replicate
n 0)
it Nii<n= P(Ai)g 0= Q0
(Nij.i<n= j<n= i+#j= indep-enabl (A i) 0 E (Aj) 0
(proof)
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6.4 More on Iterated Combine

lemma e-iterated-combine, q-Sync-general-form:
length os = length As = ¢ (na@ [E] As) os =
(if As =[] then {}
else (Ui < length As. ¢ (As ! i) (os 1)) — E U (i < length As. € (As ! 9)
(os ! i)
for As :: <('o, ‘e, 'r) Apq listy

(proof)

lemma e-iterated-combineq-Sync-general-form:
dength os = length As = € (4Q [E] As) os =
(if As =[] then {}
else (Ui < length As. e (As! i) (os! i) — E U ()i < length As. € (As ! )
(st i)n
for As :: «('o, ‘e, 'r) Ay list>
(proof)

lemma T7-iterated-combine,, q-Sync-general-form:
([length os = length As; 0s’ € T {ndaQ [E] As) os a; i < length As] =
os’ Vi € insert (os14) (1 (As i) (os!4) a)

(proof)

lemma 7-iterated-combineq-Sync-general-form:
length os = length As =
T (aQ [E] As) o0sa =
(if As =[] then ¢ else
if a € (Ui < length As. € (As! i) (os!i)) — EU (i < length As. € (As ! i)
(os!1))
then |map2 (Ao A. if a € € A o then [T A o a] else o) os As| else O)»
for As :: «('o, 'e, 'r) Ay list

(proof)

lemma indep-implies-only-one-enabled’:
3. i < length As N a € € (As Q) (os ! i)
if <length os = length As)
and (A7 j. [i < length As; j < length As; i # j] =
e (As i) (os!i)ne (4s!j) (os!j) C E»
and <a € ({Ji<length As. € (As! i) (os i) — E»
(proof)

lemma indep-implies-only-one-enabled:
([length os = length As;
Nij. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os!j);
a € (Ui<length As. € (As 1 4) (o0s!1i)) — E] =
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Jli. i < length As N a € e (As! Q) (os! i)
(proof)

lemma T7-iterated-combiney-Sync-general-form-when-indep:
7 (4 [E] As) o0sa =
(if As =[] then ¢
else if a € ([i<length As. € (As! i) (os! 1))
then |map2 (Ao A. [T Ao al]) os As]
else if a € (Ji<length As. € (As! i) (0s! i) — E
then let i = THE i. i < length As A a € € (As ! i) (os! 1)
in |os[i == [ (As ! 4) (os! i) al]]
else O)»
(is - = (if As =[] then O else
if a € 21 As os then |map2 (Ao A. [T A o a]) os As| else
if a € 2U As o0s — E then ?upd As os else O)»)
if <length os = length As)
<N\ j. [i < length As; j < length As; i # j] =
indep-enabl (As! i) (os!i) E (As!j) (os!j)
(proof)

6.5 More on Events

lemma events-of-MultiSync-Pskrps-nd :

«([E] (o, A) €# mset (zip 0s As). Pskrps{A)na o) =

(if As =[] then {} else

U 05’ € Rud (naQ[E] As) os. (Ji<length As. e (As! i) (os’14)) — E U

(Ni<length As. € (As! i) (os' i)

(is - = %rhsy) if «length os = length As)

(NA. A € set As = p-disjoint-¢ A> <\NA. A € set As => at-most-1-elem-term
A»

(proof)

lemma events-of-MultiSync-P-nd :
«([E] (o, A) €# mset (zip 0s As). P{AYnq 0) =
(if As =[] then {} else
U 05’ € Rua (naQ [E] As) os. (Ji<length As. € (As! i) (os’14)) — E U
(Ni<length As. € (As! i) (os' i)
(is <- = ?rhsy) if <length os = length As
(proof )

lemma events-of-MultiSync-Pskrps-d :
«([E] (o, A) €# mset (zip 0s As). Psxrps{A)q o) =
(if As =[] then {} else
U o5’ € Ry (aQ [E] 4s) os. (Ui<length As. e (As! i) (os'Vi) — E U
(Ni<length As. € (As!4) (os' 1))
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(is «<- = ?rhsy) if <length os = length As» «(NA. A € set As = p-disjoint-e¢ A>
Nij. [i < length As; j < length As; i # j] =
indep-enabl (As! i) (os!i) E (As!j) (os!j)
(proof)

lemma events-of-MultiSync-P-d :

«([E] (o, A) €# mset (zip o0s As). P(A)a 0) =

(if As =[] then {} else

U os’ € Ry (a@[E] As) os. (Ui<length As. € (As! i) (0s'!i) — EU
(Ni<length As. e (As! i) (s’ !4))))
(is <- = ?rhs) if <length os = length As
and (A7 j. [i < length As; j < length As; i # j] =
indep-enabl (As! i) (os! i) E (As!j) (os! i)

(proof)
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Chapter 7

Combining Automata for
Generalized Synchronization
Product

7.1 Definitions

7.1.1 Specializations

definition combineqpqgiriist-SYncptick

(o, ‘e, 'r, 'a) Ag-scheme, ‘e set, (o, ‘e, 'r, 'B) Ag-scheme] = (‘o list, ‘e, 'r
list) Ad>

where <combineqpairiist-Syncprick Ao £ A1 =

combineq-Sync Ag E A1 hd (Aos. hd (tl 0s)) (As t. [s, ¢]) (As . |[s, t]] )

definition combine,qpairiist-Syncptick

(o, ‘e, 'r, 'a) Apq-scheme, ‘e set, ('o, ‘e, 'r, 'B) Apq-scheme] = (‘o list, ‘e, 'r
list) And>

where <combinenqpairiist-Syncptick Ao E A1 = combinenq-Sync Ao E A1 hd
(Aos. hd (tl 0s)) (As t. [s, t]) (As t. |[s, t]])»

definition combineqpgir-Syncprick

(oo, ‘e, 'ro, ') Ag-scheme, ‘e set, (o1, ‘e, 'r1, 'B) Agq-scheme] = (‘o¢ x oy,
e, 'ro X 'r1) Ap

where (combineqpair-Syncprick Ao £ A1 = combineq-Sync Ao E A1 fst snd Pair
(Asr. (s, 7))
definition combine,qpqir-Syncptick

(("oo, ‘e, 'ro, 'a) Anq-scheme, ‘e set, (‘o1, ‘e, 'r1, 'B) Apa-scheme] = (‘og X
‘o1, 'e, 'rg X 'r1) Apa

where (combine,qpair-Syncptick Ao £ A1 = combinenq-Sync Ag E Ay fst snd
Pair (Asr. (s, 7)])

/

definition combineqristsienr-SYncptick
(o list, 'e, 'r list, ') Aq-scheme, nat, ‘e set, (‘o list, ‘e, 'r list, '8) Ag4-scheme]
= (‘o list, ‘e, 'r list) Ag>
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where <combineqristsienr-SYncprick Ao leng £ Ay = combineq-Sync Ag E A
(take leng) (drop leng) (@) (Asr. [s Q r])
definition combine,qristsienr-SYncptick

(‘o list, ‘e, 'r list, 'a) A, q-scheme, nat, ‘e set, (‘o list, ‘e, 'r list, '8) Anq-scheme]
= (‘o list, ‘e, 'r list) Ana>

where (combinenqristsienr,-SYncprick Ao leng £ Ay = combine,q-Sync Ay E 4
(take leng) (drop leng) (@) (Asr. [s Q r])

definition combineqriisi-Syncptick

("o, ‘e, 'r, 'a)) Ag-scheme, ‘e set, (‘o list, ‘e, 'r list, 'B) Ag-scheme] = (‘o list,
‘e, 'r list) Ay

where <combineqriisi-Syncprick Ao E A1 = combiney-Sync Ao E Ay hd tl (#)
(Asr. |s# r|)p
definition combine,qriist-Syncprick

("o, e, 'r, 'a) Ang-scheme, ‘e set, (‘o list, ‘e, 'r list, 'B) Apq-scheme] = (o
list, ‘e, 'r list) Ana>

where <combine,qriisi-Syncprick Ao E A1 = combine,q-Sync Ag E Ay hd tl (#)
(Asr. [s# 1)

lemmas CombinePairlist'Syncptick'defs = CombinedPairlist'Syncptick'def combinendpairlist'SynCptick“
and combinepqir-Syncptick-defs = combineqpqir-Syncptick-def combinenqpqair-Syncptick-def
and CombineListslenL'Syncptick'defs = combinedListslenL'Syncptick'def com-
bznendListslenL'Syncptick'def
and combiner;ist-SYncptick-defs = combineqriist-SYncptick-def combinenqriist-SYncpiick-def

lemmas combine-Syncpiick-defs =
Combinel:’airlist'Syncptick:'defs Combinepair'syncptick'defs CombineListslenL'Syncptick'defs
combineriist-SYncptick-defs

bundle combine,q-Syncpiick-syntar begin

notation combineqpairiist-Syncptick (- a®[-1y/ Pairtist -)> [0, 0, 0])
notation Combinendpairlist'Syncptick (<<<’ nd®ﬂ’]/PuiT'list ’>>> [Oa 07 0])
notation combinegpair-Syncptick (({- a®[-ly/Pair -)> [0, 0, 0])
notation combine,qpair-Syncptick ({- na®[-ly pPair - [0, 0, 0])
notation combineqristsienr-Syncptick (<(- a®[-, -1/ Listsienr -)» [0, 0, 0, 0])
notation CombinendListslenL'Syncptick (<<<' nd®[['a ']]/ListslenL '>>) [Oa 07 07 0])
notation combineqriist-Syncprick ((- a®[-1/ riist -)» [0, 0, 0])

notation combinenqriist-Syncprick (<(- na®[-l/ riist -)> [0, 0, 0])

end

unbundle combine,q-Syncpiick-syntax

7.2 First Properties

lemma finite-trans-combine,,q-Syncpiicr-simps [simp) :
finite-trans Ay = finite-trans Ay = finite-trans (Ao na®[E]/ Pairtist A1)
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(finite-trans By = finite-trans By = finite-trans (Bo »4a®[E]/ pair B1)»

(finite-trans Cy = finite-trans Cy = finite-trans (Co na®[leno, E] s ListsienL
C1>>>

(finite-trans Dy == finite-trans D1 = finite-trans (Do na®[E] s riist D1)»

(proof)

lemma e-combinepqiriist-SYncpick:
€ (Ao a®[E] s Pairtist A1) 0s = combine-Sync-c Ag E Ay hd (hd o tl) os
€ (Bo na®[E]y Pairiist B1) os = combine-Sync-e By E By hd (hd o tl) s
(proof)

lemma e-combinepqir-SYncptick:
€ (Ao a®[E] s pair A1) 05 = combine-Sync-e Ag E Ay fst snd os
€ (Bo na®[E]ypair B1) 0s = combine-Sync-e By E By fst snd s
(proof)

lemma e-combineristsienr-SYnNCptick:

€ (Ao a®[leno, Elsristsient. A1) os = combine-Sync-e Ag E Ay (take leng)
(drop leng) o

€ (Bo na®[leng, E)sristsient. B1) 0s = combine-Sync-e By E By (take leng)
(drop leng) os»

(proof )

lemma e-combineri;st-Syncprick:
€ (Ao a®[E] s riist A1) 05 = combine-Sync-e Ay E Ay hd tl os
(€ (Bo nd®[E]yriist B1) 0s = combine-Sync-e By E By hd tl o5
(proof)

lemma Q‘CombinePairlist'Syncptick:
0 (Ao a®[E] s pairiist A1) = {os. hd 0s € p Ag N hd (tl 0s) € 0 A1}
(0 <<B() nd®[[E]]/Pairlist Bl>> = {US. hd os € o By N\ hd (tl 0'8) € Bl})
(proof)

lemma o-combinepqir-Syncptick:
0 (Ao a®[E] s pair A1) = {(00, 01). 00 € 0 Ag N o1 € 0 A1}
0 (Bo nd®[Ely/pair B1) = {(00, 01). 00 € 0 Bo AN o1 € 0 Bip
(proof )

lemma o-combiner;stsienr-SYNCptick:

0 (Ao a®[leng, E]sListsient A1) = {os. take leng s € 0 Ag A drop leng os €
o A1}>

<0 (Bo na®[leng, E] sristsient B1) = {os. take leng os € 0 Bo A drop leng os
ISN] Bl}}

(proof)

lemma o-combineriisi-SYncpick:
99 <<A0 d®[[E]]/Rlist A1>> = {(TS. hd os € p Ag Ntlos € p A1}>
0 (Bo nd®[E]/riist B1) = {os. hd 0s € p By AN tlos € o0 B1 }»
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(proof)

7.3 Transitions are unchanged in the Generaliza-
tion

In the generalization, only the w function is modified.

lemma 7-combinepgiriist-Syncprick :
7 (Ao a®[E] s pairtist A1) = 7 (Ao a®[E]pairtist A1)
(T <<BO nd®|IE]]/Pairlist Bl>> =T <<BO nd®|IE]]Pairlist Bl>>>
(proof)

lemma 7-combinepqir-Syncptick :
T <<A0 d®[[E]]/Pair A1>> =T <<A0 d®[[E]]PaiT' A1>>>
T <<B0 nd®[[E]]/Pair B1>> =T <<BO nd®[[E]]Pair Bl>>>
(proof)

lemma 7-combineristsienr-SYnNCptick :
« (Ao q®[leng, E]sristsienr A1) = T (Ao a®[leno, Elristsient, A1)
T <<BO nd®[[len07 E]]/ListslenL Bl>> =T <<BO nd®[[l€n07 E]]ListslenL Bl>>>
(proof)

T (Ao a®[E]sRriist A1) and 7 (Bo na®[E]/ Rriist B1) cannot be obtained
that easily because of the types of terminations.

7.4 Reachability

lemma Rg-combineqrisisienr-SYncptick-subset:

(Ra (Ao a®[leno, E] sristsienr, A1) (S0 Q s1) C {to @ t1| to t1. to € Ra Ao so
ANt € Rg Ay 81}> (iS <?SA - -))

if <Ato. to € Rq Ag so = length ty = leng»

{proof)

lemma R, q-combinenqristsien-SYNCptick-subset:

(Rpa (Bo na®[leng, E] sristsienr B1) (so @ s1) C {to @ t1| to t1. to € Rpa Bo
so ANty € Rpg B1 51}> (iS «?5p C —))

if (/\to. to € Rnag Bo so = length to = leng»

(proof)

lemma Rgj-combineqpairiist-SYncptick-subset:

Raq (Ao a®[E] s Pairtist A1) [s0, 1] € {[to, t1]| to t1. to € Ra Ao s0 A t1 € Ra
Ay s1p (is <254 C =)

and R, q-combinenqpairiist-SYncprick-subset:

Rud (Bo nd®[E] s pairtist B1) [s0, s1] C {[to, t1]| to t1. to € Rna Bo so A t1
€ Rpa B1 s1}» (is <255 C =)
(proof)
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lemma Rj-combineqpqir-Syncptick-subset:
Ry <<A0 d®[[E]]/Pai7' A1>> (So, 81) C Ry AO S0 X Ry A sy (iS 254 C —))
and R, q-combine,qpqir-SyYncptick-subset:
(Rnd (Bo na®[E]y pair B1) (s0, $1) € Rna Bo so X Rna By s1» (is <25 C =)
(proof)

lemma Rg4-combineqriist-SYncptick-subset:

Ry <<A0 d®[[E]]/Rlist A1>> (So # O’S) - {to # O't| to ot. tg € Rq Ag s N ot €
Ra A1 osp (is <254 C )

and R,,q-combinen,qriist-SYNcprick-subset:

Rnd <<Bo nd®[[E]]/Rlist Bl>> (80 # O'S) - {to # O'tl to ot. to € Rpag Bo so N ot
€ Rnaq By os}r (is <25 C )
(proof)

7.5 Normalization

lemma w-combinepqiriist-SYncptick-behaviour:

w ((Ao a®[E] s Pairtist A1))dsna [0, s1] = w ((A0)dsnd nd®[E]/ Pairiist
(Ar)dna) [s0, s1]>

(proof)

lemma w-combinepqir-Syncpticr-behaviour:
w ((Ao a®[E]y/ Pair A1))d—nd (S0, 51) = w ((Ao)dsnd nd®R[E]/ Pair (A1)d—nd)
(s0, 1)

(proof)

lemma w-combineristsienr.-SYNCpiick-behaviour:

w ((Ao a®[leno, E] sristsient A1))d—nd (050 Q 051) = w ((Ao)a—nd na®[leno,
E]]/ListslenL <<A1>>d‘—>nd>> (USO Q 031))

(proof)

lemma w-combiner;s¢-Syncpick-behaviour:

w ((Ao a®[E]/Rriist A1))asnd (0 # 051) = w ((Ao)dsnd nd®[E]/ Rriist
<<A1>>d<—>nd>> (80 # 081)>

(proof)

lemma 7-combinepqiriist-SYncptick-behaviour-when-indep:

e Ag soNe Ay 51 C F =

T ((Ao a®[E]/ Pairtist A1))d—snd [S0, s1] € = T ((Ao)dsnd nd®[E] s Pairiist
(A1)a—na) [s0, 51] e

(proof)

lemma 7-combinepqir-Syncptick-behaviour-when-indep:

e Ag soNe Ay 51 C F =

T (Ao a®[E] s Pair A1))d—snd (50, 51) € =T ((Ao)d—nd nd®[E]/ Pair {A1)d—snd)
(s0, $1) ©

(proof)
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lemma 7-combineristsienr-SYncptick-behaviour-when-indep:
¢ Ag 0sg Ne Ay 081 C E = length sy = leng —
7 ((Ao a®[leng, E] ristsienr A1))dsnd (050 @ os1) e = 7 ((Ao)dsna
na®[leno, E]/ristsient (A1)dsna) (050 @ 0s1) e
(proof)

lemma 7-combiner;st-Syncprick -behaviour-when-indep:
(5A0$0ﬁ€A10’51§E:>
T ((Ao a®[E]y/Rriist A1))dsna (s0 # 051) e = 7 ((Ao)a—nd nd®[E]/ Rriist
(A1) asna) (so # os1) e
(proof)

lemma Pg g ps-combinepgiriist-SYncptick-behaviour-when-indep:

(Pskrprs{(Ao a®[E]/ pairtist A1))a [0, s1] = Psk1ps{{{Ao)d—nd nd®R[E]/ Pairtist
(A1) asnd))nd [0, s1]

if <indep-enabl Ay so E Ay s>

(proof)

lemma P-combinepqiriist-SYncptick-behaviour-when-indep:

(P{{Ao a®[E] s Pairtist A1))d [0, s1] = P{{{A0)dsnd nd®[E] s Pairtist {A1)d—nd))nd
[s0, s1]>

if <indep-enabl Ay so E Ay s>

(proof)

lemma Pg g pg-combinepqir-Syncpticr-behaviour-when-indep:

(Pskrprs{(Ao a®[E]y pair A1))a (s0, 51) = Pskxrprs{{(40)isnd na®[E]/Pair
(A1) dsna))na (s0, 51)

if <indep-enabl Ay so E Ay s1»

(proof )

lemma P-combinepqir-Syncpticr-behaviour-when-indep:

(<P<<<<1;10 a®[E] s Pair A1))a (50, 1) = P{{{A0)a—=nd nd®[E]ly/ Pair (A1)dsnd))nd
isz <;ndep—enabl Ay sog E Ay sy

(proof)

lemma Pggps-combinerisisienr-SYncpiick-behaviour-when-indep:

(Pskrprs{(Ao a®[leno, E]lsristsient A1))d (050 Qos1) = Psrrps{{(Ao)a—nd
nd®[[len0a E]]/ListslenL <<A1>>dHnd>>>>nd (030 Q 0-51)>

if <indep-enabl Ay osg E Ay os1» and «A\otg. otg € Ry Ao 0sg = length oty
= 16710)

(proof)

lemma P-combiner,istsienr-SYnCptick -behaviour-when-indep:
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(P{(Ao q®[leno, Elsristsient A1))a (050 Q@ 051) = P({{A0)d—nd na®[leno,
El/ristsient. {A1)d—snd))nd (050 Q@ os1)>

if <indep-enabl Ay osg E Ay os1) and «A\otg. oty € Rgq Ao 059 = length oty
= lengy»

(proof)

lemma Pggps-combiner;st-Syncptick -behaviour-when-indep:
Pskrps{(Ao a®[E]/riist A1))a (so # 051) = Pskrps{({4o)a—nd na®[E]/ riist

(A1)asna))na (so # os1)»
if <indep-enabl Ay s9 F A1 os1»

(proof)

lemma P-combiner;st-Syncpiick-behaviour-when-indep:

(<P§£<<Ao d)®[[E]]/Rlist A1))a (so # 0s1) = P({(Ao)d—nd na®[E]/ riist (A1)d—snd))nd
iof <z'ndelp-enabl Ay sog E Ay osp»

(proof)
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Chapter 8

Compactification of
Synchronization Product
Generalized

8.1 Iterated Combine

8.1.1 Definitions

fun iterated-combineq-Syncpick = <'e set = (‘o, ‘e, 'r) Aq list = (‘o list, ‘e, 'r
list) Apr (<@ [-]y -)> [0, 0])

where (4@ [E]/ ) = (7 = Aos a. O, w = Aos. O))»

| (@ I[E], [Ao]) = a{Ao)singtsiist>

| (a®[E], Ao # A1 # As) = (Ao a®[E] s riist («@[E], A1 # As))

fun iterated-combine,q-Syncpiick e set = ('o, e, 'r) A,q list = (‘o list, ‘e, 'r

list) Ana> (<{na@ [-I/ -)> [0, 0])
where ((,a@ [E]/ []) = (7 = Aos a. {}, w = Xos. {}])»
| <<<7’L0l® [[E]]/ [A0]>> = nd<<AO>>sinnglist>
| (na@[E]l, Ao # A1 # As) = (Ao na®[E]/Rriist (na@ [E], A1 # As))

lemma iterated-combineq-Syncpiicr-simps-bis: <As # [| = (a@Q [E], Ao # As)

= (Ao a®[E]y riist («@[E], As))»
and iterated-combiney q-Syncpick-simps-bis: «Bs # [| = (naQ [E], Bo # Bs)

= (Bo nd®[E]yriist (na@ [E], Bs))>
{(proof)

8.1.2 First Results

lemma 7-iterated-combine-Syncpeick:
27 <<d;? [E], As) = 7 (4@ [E] As)r 7 (2a@ [E]y Bs) = 7 (2a@ [E] Bs)»
Proo

corollary e-iterated-combine-Syncp;cr:

7



€ (aQIE], As) 05 = e (aQ[E] As) o5
25 (,L;;® [E], Bs) 0s = ¢ {(na@ [E] Bs) os
proo

corollary R-iterated-combine-Syncptick:
B<7>>3d (1@ [E], As) = Ra (@ [E] As)> Rna (na® [Ely Bs) = Ry (na@ [E]
(proof)

lemma combiner;stsienr-SYNCptick-COMbINER;st-SYNCptick-€q:

€ (a{Ao)singisiist a®[1, E] sristsienr A1) 05 =€ (Ao a®[E] /s Rriist A1) 08

1 (a(Ao)singistist a®[1, E]sristsienr A1) (so # 05) e = 7 (Ao a®[E] s Riist
A1) (so # 0s) e

€ <nd<<BO>>singlf—>list nd®[[17 E]],/ListslenL Bl>> 0§ = ¢ <<BO nd®|IE]]/Rlist Bl>>
o8

(T <<nd<<BO>>sinnglist nd®[[1a E]]/ListslenL Bl>> (50 # O'S) E=T <<B0 nd®[[E]]/Rlist
B1) (so # os) e

(proof)

lemma combinepqiriist-SYncptick-and-iterated-combine, 4-Syncptick-€q:
€ (Ao a®[E] Pairtist A1) [50, s1] = € (a@ [E], [Ao, A1]) [s0, s1]>
(Ao a®[E]y pairiist A1) [s0, s1] e = 7 (a@ [E],/ [Ao, 41]) [50, s1] &
€ (Bo nd®[E]/Pairtist B1) [s0, s1] = € (na@ [E], [Bo, B1l) [s0, s1]»
27 (ﬁj% nd®[E]/ Pairtist B1) [s0, s1] e = T (na@ [E]/ [Bo, Bil) [s0, s1] e
proo

lemmas combinepqiriist-SYncptick-and-combinerist-SYncptick-€q =
combinep qiriist-SYNCprick -and-iterated-combine, 4-Syncpiick-eq[simplified)

8.1.3 Transmission of Properties

lemma finite-trans-transmission-to-iterated-combine, q-Syncptick:
(NA. A € set As = finite-trans A) = finite-trans (,qa@ [E], As)>
(proof)

lemma o-disjoint-e-transmission-to-iterated-combineq-Syncptick:
(NA. A € set As = p-disjoint-c¢ A) = p-disjoint-c¢ (¢@ [E], As)>
(proof)

lemma o-disjoint-e-transmission-to-iterated-combine, q-Syncptick:
VB € set Bs. p-disjoint-e B => p-disjoint-c (naQ [E], Bs)>
(proof)
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lemma same-length-indep-transmission-to-iterated-combiney-Syncptick:
(ndep-enabl Ag so E (4@ [E], As) os
if <length os = length As)
«N\ij. [i < length As; j < length As; i # j] =
indep-enabl ((Ag # As) i) ((so # 0s) 1 9) E (Ao # As) ! j) ((so # 09)
Vi)
(proof)

lemma w-iterated-combineq-Syncpiick :
<length os = length As —
w (aQ[E], As) os = (if As = || then { else those (map2 w As 0s))
(proof)

lemma w-iterated-combine, ¢-Syncptick :

«length os = length As =

w (@ [Ely As) o5 =

(if As =[] then {} else {rs. length rs = length As N (Vi < length As. rs ! i € w
(As14) (os i)}
(proof)

8.1.4 Normalization

lemma w-iterated-combine, 4-Syncpticr -det-ndet-conv:

<length os = length As —

W (na@ [E], map (AA. (A)dsna) As) 05 = w ((aQ [E], AS))dsnd 05
(proof)

lemma 7-iterated-combine,, q-Syncpticr -behaviour-when-indep:
length os = length As =
(A\i 7. [i < length As; j < length As; i # j]
= indep-enabl (As i) (os! i) E (As!j) (os!]) =
< T (@ [El, As))and 0s € =T (na@ [E], map (AA. (A)asna) As) os e
proof)

lemma Pg g pg-iterated-combine, q-Syncpticr-behaviour-when-indep:
assumes same-length: <length os = length As»
and indep: <\i j. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os! )
shows <PSKIPS<<<<d® [[Eﬂ/ AS>>>>(1 g8 = PSKIPS<<<<nd® [[Eﬂ/ map ()\A <<A>>d‘—>nd)
AsY)na o
(proof)

lemma P-d-iterated-combine, q-Syncpt;cr-behaviour-when-indep:
assumes same-length: <length os = length As»
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and indep: <\i j. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os! i)
shows <P<<<<d® [[E]]/ A5>>>>d gs = P<<<<nd® [[E]]/ map ()\A <<A>>d;>nd) A5>>>>nd

ags)

{proof)

8.2 Compactification Theorems

8.2.1 Binary
Pair

theorem Pggpg-nd-combinepqir-Syncptick :

fixes F :: </a set

assumes p-disjoint-¢ : <p-disjoint-¢ Ag> <p-disjoint-c¢ Ay>

defines A-def: <A = (Ao na®[E]/pair A1)

defines P-def: <P = Pskips{Ao)na® and @Q-def: <Q = Pskrps{A1)na> and
S-def: S = PSKIPS<<A>>nd>

shows «P o [E]/pair @ 01 = S (00, 01)
(proof)

corollary P-nd-combinepqir-Syncptick
(P(Ao)nd 00 [ElsPair P{A1)na 01 = P{(Ao na®[E]/Pair A1))na (00, 01)>
(proof )

corollary Pgskps-d-combinepqir-Syncptick:

Pskrprs{Ao)a oo [Elypair Psxirs{Ai)a 01 = Pskips{{Ao a®[E]/ Pair
A1))a (o0, o1)

if <p-disjoint-c Ag> and <p-disjoint-¢ A1y and <indep-enabl Ag o9 E Ay 01>
(proof )

corollary P-d-combinepqir-Syncptick:

(P(Ao)a 00 [E]yPair P(A1)a 01 = P{{Ao a®[E]/Pair A1))a (00, 01)
if <indep-enabl Ay o9 F A1 01>

(proof)

Pairlist

theorem Pgps-nd-combinepairiist-Syncptick

fixes F :: <'a set

assumes p-disjoint-¢ : <p-disjoint-c Ag> <o-disjoint-e Ap>

shows «Psirps(Ao)na 00 [[E]]/Pairlist Pskips{Ai1)na 01 = Psxrps{{4o
nd@[[E]]/Pairlist A1>>>>nd [0'07 0'1])
{proof )

corollary P-nd-combinepqiriist-SYncprick :

<]P<(Ao>>nd 00 [E]yPairtist P{A1)na 01 = P{{Ao na®[E]/ Pairiist A1))nd 00,

(proof)

80



corollary Pgsips-d-combinepgiriist-SYncptick :

Psriprs(Ao)d oo [Elypairtist Pskips{Ai)a o1 = Pskrprs{{Ao a®[E]/ Pairiist
A1>>>>d [0'0, 0'1]>

if <p-disjoint-¢ Ay> and <p-disjoint-¢ Ay» and <indep-enabl Ay 09 E Ay 01>
(proof)

corollary P-d-combinepqiriist-Syncptick :
(P(Ao)a 00 [E]yPairtist P(A1)a 01 = P{(Ao a®[E]/ Pairiist A1))a 00, o1]
if <indep-enabl Ay o9 E A1 01>

(proof)

8.2.2 Rlist

theorem Pggpgs-nd-combinery;st-Syncprick :

fixes F :: </a set

assumes p-disjoint-€ : <p-disjoint-¢ Ag> <p-disjoint-c¢ Ay»

defines A-def: <A = (Ao na®[E]/Rriist A1)

defines P-def: <P = Psirps{Ao)na> and Q-def: «Q = Pskrps{Ai)na> and
S-def: S = PSKIPS<<A>>nd>

shows «P o¢ [E]/riist Q 0s =S (00 # os)»
(proof)

corollary P-nd-combiner;;st-Syncptick :

< <P<<}4>0>>nd 00 [E]/riist P{A1)na 05 = P{{Ao na®[E]/ riist A1))nda (00 # os)
proo

corollary Pggpg-d-combineriisi-Syncprick:

Psrkips(Ao)a 00 [El/riist Psxirs{Ai)a 0s = Pskrps{{Ao a®[E]/ Rriist
A1) )a (o0 # os)

if «p-disjoint-e Ay> and <p-disjoint-e Ay» and <indep-enabl Ay o9 E Ay o8
(proof)

corollary P-d-combineriist-Syncptick:
(P{Ao)a 00 [E]/riist P{A1)a 05 = P((Ao a®[E]/ riist A1))a (00 # o)
if <indep-enabl Ag 09 E A1 0%

(proof)

8.2.3 ListslenL

theorem Pggpgs-nd-combineristsienr-SYncptick :
fixes F :: <'a set
assumes same-length-reach0 : <N\oo’. 0o’ € Rypa Ao 00 = length oo’ = leng»
and same-length-term0 : <N\oo’ 1s. 00’ € Rpg Ag 00 = 18 € w Ay 09/ =
length rs = leng»
and p-disjoint-¢ : <p-disjoint-c Ay> <o-disjoint-e Aq»
defines A-def: <A = (Ao na®[leno, E]sristsient. A1)
defines P-def: <P = Pskrps{Ao)na> and Q-def: «Q = Pskrps{Ai)na> and
S-def: S = PSKIPS<<A>>nd>
shows «P g0 leno[[Eﬂ./ListslenL Q g1 = S (O’o @ 0'1))
(proof)
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corollary P-nd-combiner;stsienr-SYNCptick :

(P(Ao)nd 00 jenglEl/Listsienr. P(A1)na 01 = P{{Ao na®[leno, E]/Listsient
A1>>>>nd (UO Q 0'1)>

if same-length-reach0 : <N\oo’. 00’ € Rpa Ao 00 = length oo’ = leng>

(proof )

corollary PSKIPS‘d‘COmbineListslenL'Syncptick: :
assumes same-length-reach0 : <\oo’. 0o’ € Rq Ao 09 = length oo’ = leny»
and same-length-term0 : <\oo’. 0o’ € Rq Ay 00 = w Ag 0o’ # O = length
[w Ag 00| = leny>
and p-disjoint-c : <p-disjoint-c Ay <o-disjoint-c Ay»
and indep-enabl : <indep-enabl Ay oo E A1 01>
shows «Psk1ps(Ao)d 00 jeng[ElyListsient Psx1ps{Ai)a o1 =
Pskrps((A4o a®[leno, E] ristsient A1))a (00 @ 1)
(proof )

corollary P-d-combineristsienr-SYncptick :
assumes same-length-reach0 : <Aoo’ o9’ € Ry Ag 09 = length oo’ = leny»
and indep-enabl : <indep-enabl Ay oo E A1 01>
shows «P(Ao)a 00 1en,[El/Listsient P(A1)a 01 =
P{(Ao a®[leny, E]sristsienr A1))a (0o @ o1)>
(proof )

8.2.4 Multiple

theorem Pg g 1pg-nd-compactification-Syncpicr:

<length s = length As = (A\A. A € set As = p-disjoint-c¢ A) =

[E]l, (o, A) €Q zip 0s As. Pskips{A)na 0 = Pskrps{{na®@ [E]l, As))na
o8

(proof)

corollary P-nd-compactification-Syncptick:

length os = length As = [E] s (0, A) €Q zip 05 As. P(A)na 0 = P{(naQ [E],/
AsYYna o8
(proof )

corollary Pgkpgs-d-compactification-Syncptick:
[length os = length As; NA. A € set As = p-disjoint-¢ A;
Nij. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os! )] =
< [[E]L)/ (0’, A) €Q zip os As. PSKIPS<<A>>d o = PSKIPS<<<<d® [[E]]‘/ AS>>>>d oS
proof

corollary P-d-compactification-Syncpiicr:
[length os = length As;
NAij. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os!i) E (As!j) (os!j)] =
[E]l, (o, A) €Q zip 0s As. P(A)q 0 = P((aQ[E], As))a o5
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(proof)

8.3 Derived Versions

lemma Pg g ps-nd-compactification-Syncp;c,-upt-version:
({El, P €@ map Q [0..<n]. P = Pskrps{{na@ [E], map A [0..<n]))nd
(replicate n 0)»
if <A\i. i < n = p-disjoint-c (A i)
</\Z'. 1< n = PSK[p5<<A Z'>>nd 0= Q )

(proof)

lemma P-nd-compactification-Syncp;ck-upt-version:

(E]l, P €Q map Q [0..<n]. P = P{(na@ [E], map A [0..<n]))na (replicate
n 0)

if <\Ni. i <n= P(Ai)pa 0=0Qn
(proof)

lemma Pg k1 ps-d-compactification-Syncy;cr-upt-version:
<|IEI|/ P e@ map Q [0<Tl] P= PSKIPS<<<<d® [[E]]/ map A [0<n}>>>>d (Teplicate
n 0)
if)</\z'. i < n = p-disjoint-c (A i)
Nij.i<n=j<n=1i+#j= indep-enabl (A i) 0 E (Aj) 0>
</\Z'. i <n= Psgrps{A i)a 0=0Qun
(proof)

lemma P-d-compactification-Syncpticr-upt-version:
{Ely P €Q map Q [0..<n]. P = P{(a@[E], map A [0..<n]))a (replicate n
0)
if <\Nij.i<n=j<n=1i+#j= indep-enabl (A i) 0 E (43j) 0>
Ni.i<n= P(Ai)a 0=Q0
(proof)

8.4 More on Iterated Combine and Events

Through 7-iterated-combine-Syncpticr, €-iterated-combine-Syncpticr, R-iterated-combine-Syncpticr,
we immediately recover the results proven in HOL— CSP-Proc— Omata. Compactification-Synchronization-I
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Chapter 9

Combining Automata for
Sequential Composition
Generalized

9.1 Definitions

9.2 General Patterns

definition combiney-Seq-¢ ::
(oo, 'a, 'r, 'ag) Agq-scheme, 'r = ('o1, 'a, 's, ‘aq) Ag-scheme, 'c = 'og, 'oc =
‘o1, ‘o] = 'a sety
where <combiney-Seq-e Ay A1 ig i1 05 =
Zf 9 0S € 0 Ao
then if iy 0s € o (A1 [w Ag (ip 09)])
then {}
else € (A [w Ao (ig 09)]) (i1 o8)
else € Ag (ip os)

definition combine,q-Seq-¢ ::
(oo, 'a, 'r, 'ag) Ana-scheme, 'r = (‘o1, 'a, 's, 'a1) Ana-scheme, ‘o = ‘og, ‘o
= o1, 'o] = 'a seb
where <combine, 4-Seq-¢ Ay A1 ig i1 05 =
Zf ig 08 € o Ag
then if i1 os € (Jrew Ao (ip 08). 0 (A1 1))
then {}
else (Jr € w Ap (ig 0s). € (A1 1) (i1 09))
else € Ag (ip 0s)

lemmas combine-Seq-c-defs = combineg-Seq-c-def combine, q-Seq-¢-def

fun combinegy-Seq ::
(oo, ‘e, ', 'ag) Ag-scheme, 'r = ('oq, ‘e, 's, ‘a1) Aq-scheme,
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'c = oo, ‘o0 = ‘o1, ‘o9 = ‘o1 = o] = (o, e, 's) Ap>
and combine, -Seq ::
(oo, ‘e, 'r, 'ap) Apa-scheme, 'r = (‘o1, e, 's, 'ay) Apq-scheme,
'c = oo, ‘o0 = ‘o1, ‘o9 = o1 = o] = (o, e, 's) Anad
where <combineg-Seq Ag A1 ig i1 [ =
(7 =AXose. ifigos€p Ao
then if i1 0s € o (A1 [w Ag (ip 08)])
then ¢
else update-right (A1 [w Ao (ig 05)]) (i 05) (i1 08) e (f-up-opt
7 (. o))
e (frup-opt f) (M\o. |o]),

else update-left Ao (ig os) (i1 os
| |r] = w (41 ) (i1 09)]»

w = Ags. case w Ag (ip 0s) of O = O
| <combine,q-Seq Ag Ay ig 11 [ =
(7= Xos e ifig os € p Ao
then if iy os € (Urew Ao (i 05). 0 (A1 7))
then {}
else (Jrew Ao (ig 0s). update-right (A1 1) (ig os) (i1 0s) e
(Fup-set 1) (\a. {o})
else update-left Ag (ig 08) (i1 0s) e (f-up-set ) (Ao. {o}),
w = Aos. Jrew Ao (ip 05). w (A1 1) (i1 os))»

9.3 Specializations

definition combineipgiriist-Sedptick

(('o, ‘e, 'r, 'a) Ag-scheme, 'r = (o, 'e, 's, '8) Aq-scheme] = (‘o list, ‘e, 's) Ay

where <combineipairiist-Sedprick Ao A1 = combineq-Seq Ao A1 hd (Aos. hd (tl
0s)) (As t. [s, t])
definition combinenapairiist-Seqptick

("o, ‘e, 'r, 'a) Ang-scheme, 'r = (‘o, ‘e, 's, 'B) Ana-scheme] = (‘o list, e, 's)
And>

where (combine,apairiist-Seqprick Ao A1 = combine,q-Seq Ao A1 hd (Aos. hd
(tl os)) (As t. [s, t])»

definition combineqpair-Seqprick

(Yoo, ‘e, 'r, 'a) Ag-scheme, 'r = (‘o1, e, 's, '8) Ag-scheme] = (‘og x ‘o1, e,
IS) Ad>

where <combineqpqir-Seqptick Ao A1 = combineq-Seq Ay Ay fst snd Pair)
definition combine,qpqair-Segptick ::

(('o0, ‘e, 'r, ‘o) Apg-scheme, 'r = (o1, ‘e, 's, 'B) Ana-scheme] = (‘og x ‘o1,
‘e, 's) Apa>

where <combine,qpair-Seqptick Ao A1 = combine,q-Seq Ao A1 fst snd Pair)

definition combineqristsienr-Seqptick

(‘o list, 'e, 'r, 'a) Aq-scheme, nat, 'r = (‘o list, ‘e, 's, '8) Aq-scheme] = (‘o
list, ‘e, 's) Ag»

where <combinegristsienr-Sedptick Ao leng A1 = combineq-Seq Ao Ay (take
leng) (drop leng) (@)
definition combinenqristsienr-Selptick ::

(o list, ‘e, 'r, 'a) Anq-scheme, nat, 'r = (‘o list, 'e, s, '8) Apq-scheme] = (‘o
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list, ‘e, 's) Ana>
where (combinenqristsienr-Seqprick Ao leng A1 = combine,q-Seq Ay A1 (take
leng) (drop leng) (@Q)»

definition combineiriist-Seqptick

("o, ‘e, 'r, ‘o) Ag-scheme, 'r = (‘o list, e, 's, '8) Agq-scheme] = (‘o list, ‘e, 's)
Ad>

where (combineqriist-Seqprick Ao A1 = combineq-Seq Ag A1 hd tl (#)»
definition combine,qriist-Seqprick

("o, ‘e, 'r, 'a) Ana-scheme, 'r = (‘o list, ‘e, 's, 'B) Anq-scheme] = (‘o list, 'e,
's) Apa>

where <combine,qriisi-Sedprick Ao A1 = combine,q-Seq Ao A1 hd tl (#)

lemmas CombinePairlist‘Seqptick'defs = combinedpairlist‘Seqptick'def combinendPairlist'Seqptick'def
and combinepqir-Seqptick-defs = combineq pgir-Seqptick-def combinenqpqir-Seqptick-def
and CombineListslenL'Seq;otick = CombinedListslenL'Seq;)tick'def CombinendListslenL'Seq;)tick:'def
and combineriist-Seqprick-defs = combineqriist-Seqptick-def combinenqriist-Sedptick-def

lemmas combine-Seq-defs =
CombinePairlist'Seqptick'defs CombinePair'Seqptick'defs CombineListslenL'Sertick:
combineriist-Seqptick-defs

bundle combine-Seq-syntar begin

notation combinegpairiist-Seqptick (((- a3y pairtist -)> [0, 0])
notation CombinendPairlist'Sertick (<<<' nd®;/Pairlist '>>) [07 0])
notation combineqpair-Seqptick (<{- a®3y Pair -)> [0, 0])

notation combine,qpair-Seqprick (<{- na®sy Pair -)» [0, 0])

notation combineqristsienr-Seqptick (({- a®-3ristsient -)> [0, 0, 0])
notation combinenaristsient-Selptick ({(- nd®-3Listsienr -)> [0, 0, 0])
notation combineqriist-Seqprick (<(- a®sy riist -)> [0, 0])

notation combine,qriist-Seqptick (({(- nd®3/ riist -)> [0, 0])

end

unbundle combine-Seq-syntax

9.4 First Properties

lemma e-combinepairiist-Sedptick :
€ (Ao a®3/ Pairtist A1) 0s = combineq-Seq-c Ag A1 hd (hd o tl) s
€ {Bo nd®3y Pairlist B1) 0s = combine,q-Seq-c By Bi hd (hd o tl) os
(proof)

lemma e-combinepqir-Seqptick :
€ (Ao a®3/ Pair A1) 05 = combineg-Seq-e Ay Ay fst snd os
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€ (Bo nd®;y Pair B1) 0s = combine,q-Seq-e By By fst snd os
(proof)

lemma e-combinerisisienr-Seqptick

e (Ao a®lengspistsienr A1) 08 = combineg-Seq-e Ay Ay (take leng) (drop leng)
o8

€ (Bo na®lenoinistsienr. B1) 08 = combine,q-Seq-e By By (take leng) (drop
leng) o$)

(proof )

lemma e-combiner;st-Seqptick :
€ (Ao a®3/ riist A1) 0s = combineq-Seq-c Ag A1 hd tl o5
€ (Bo na®sy Rriist B1) 0s = combineyq-Seq-c By By hd tl o5
(proof)

9.4.1 Reachability

lemma Rg4-combineqristsienr-S€qptick-subset:

(Ra (Ao a®lenosristsient. A1) (so @ s1) C {to Q t1 [to t1. to € Ra Ao so}> (is
<254 C 2)

if same-length-Rq: <A\to. to € Rq Ag so = length tg = leng>
(proof)

lemma R, q-combinenqristsienr-S€qptick-subset:

(Rnd (Ao na®lenosristsient. A1) (50 @ s1) € {to @ t1 |to t1. to € Rna Ao S0}
(is <254 C =)

if same-length-Rpq: <\to- to € Rna Ao so = length tg = leng>
(proof)

lemma Rj-combineqpqiriist-Seqptick-subset:

Ra (Ao a®s5y Pairtist A1) [s0, s1] € {[to, t1] |to t1- to € Ra Ao so}> (is «#Sa
C )

{proof)

lemma R, q-combine,qpairiist-Seqptick-subset:

(Rnd (Ao nd®sy Pairtist A1) [0, s1] C {[to, t1] |to t1. to € Rpa Ao so}> (is <254
C )

{proof)

lemma Rg-combineqpqir-Seqptick-subset:

(Ra (Ao a®sy/pair A1) (50, 51) € {(to, t1) |to t1. to € Raq Ag so}> (is <254 C
_>)
(proof)

lemma R, q-combine,qpqir-Seqptick-subset:

Rund <<A0 nd®3y/ Pair A1>> (50, 81) - {(to, tl) ‘to t1. to € Rpg Ao SQ}) (iS <254
C )
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(proof)

lemma Rg4-combineqriist-Seqprick-subset:

(Ra (Ao a®syriist A1) (so # s1) € {to # t1 |to t1. to € Rq Ao sop> (is <?5a
C )

(proof)

lemma R, q-combine,qriist-Seqprick-subset:
Rpa (Ao nd®s/Rriist A1) (so # s1) € {to # t1 |to t1. to € Rna Ao sop> (is
<?SA - -))

(proof)

9.5 Normalization

lemma 7-combinepgiriist-Seqptick-behaviour:

7 ((Ao a®3y Pairtist A1))d—nd [0, s1] € = T ((Ao)d—snd nd®iy Pairtist (AT
(A1 m)asna)) [s0, s1] @

(proof)

lemma 7-combinep qir-Seqptick-behaviour:
1 ((Ao a®3/Pair A1))d—snd (S0, 51) € = T ((A0)dsnd nd®sy Pair (Ar. (A1
TVdsnd)) (S0, 51) €

(proof)

lemma 7-combineristsienr-S€qptick-behaviour:

1 ((Ao a®lenosristsiens A1))d—sna (050 Qos1) e =7 ((Ao)dsnd na®lenosristsient
(Ar. (A1 mYasna)) (050 Q@ os1) e

(proof)

lemma 7-combiner;si-Seqpeick-behaviour:

7 ((Ao a®s5/ Rriist A1))dsnd (S0 # 051) e =T ((Ao)d—snd nd®iy Rriist (Ar. (A1
mVd—na)) (S0 # 0s1) e

(proof)

Behaviour of normalisations

lemma Pgsgps-combinepgiriist-Sedptick-behaviour:

Psri1ps((Ao a®s5y Pairtist A1))a [S0, 51] = Psxrps{{{Ao)d—nd nd®s/ Pairiist
(Ar. (A1 m)and)))na [0, s1]

(proof )

lemma P-combinepgiriist-Seqptick-behaviour:

(P({Ao a®3/ Pairtist A1))a [50, s1] = P(({A0)d=nd nd®sy Pairtist (Ar. (A1
r>><d<—>n;§>>>>nd [807 81]>
Proo

lemma Pggps-combinepqir-Seqpiicr-behaviour:
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Pskrps{(Ao a®s;y/ pair A1))a (50, 51) = Pskrprs{({Ao)dmnd nd®sy pair (AT
<<1211 T));;md))%d (s0, 51)»
proo

lemma P-combinepqir-Seqptick-behaviour:
(<P<(<<§10 A3y Pair A1))d (50, 51) = P{{(A0)d—nd nd®s/ Pair (AT. (A1 T)asnd)))nd
So, S1)?

(proof)

lemma Pggps-combinerist-Seqptick-behaviour:

(Pskrps{(Ao a®s/riist A1))a (50 # s1) = Psxips{{{Ao)a—nd na®sy Riist
(Ar. (A1 r)acsnd)))na (s0 # s1)

(proof)

lemma P-combinery;st-Seqptick-behaviour:

(<P§<§£<<A0)d®;/Rlist A))a (so # s1) = P{{(A0)d—nd nd®sy/ riist (Ar. (A1 )dnd)))nd
S0 S1 )
(proof)

lemma Pggps-combineristsienr-Sedptick-behaviour:
(Pskrps{(Ao a®lenosnistsient,. A1))a (050 Q@ 0s1) = Pskrps{{{Ao)d—nd

nd®lenosristsient ()\1” <<A1 T>>d;>nd)>>>>nd (O'SO Q@ 0'51)>
if <Aoso’. 0so’ € Rq Ag os9 = length osy’ = leng>

(proof)

lemma P-combiner,istsienr-Seqptick-behaviour:

(P<<<<AO a®lenosListsient A1>>>>d (030 Q 051) = P<<<<<<AO>>d‘—>nd nd®lenosListsienL
(Ar. (A1 ™Yasnd)))na (0so @ os1)»

if (/\O’to. oty € Rq Ag 059 = length oty = leng»

(proof)
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Chapter 10

Compactification of
Sequential Composition
Generalized

10.1 Iterated Combine

10.1.1 Definitions

fun iterated-combineq-Seqpiick 2 <([('r = ('o, ‘e, 'r) Aq) list, 'r] = (‘o list, ‘e, 'r)
Ar ((a® sy -)> [0])

where (4@, [|) 7= (7 = Xos a. O, w = Aos. [r]])

| <<d® W [AO]>> r= d<< 0 r>>0"—>0'5>

| (a® sy Ao # A1 # As) = (Ao 7 a®s/riist (aQ 3y A1 # As))

fun dterated-combine,q-Seqpiick = ([('r = ('o, ‘e, 'r) Anaq) list, 'r] = (‘o list, e,
'r) Ana> ((na@ s,/ -0 [0])

where ((,a®;/ ) 7 = (7 = Aos a. {}, w = Aos. {r}|»

| <<<1’Ld® Iv4 [AO]>> r= nd<<AO r>>0;>as>

| (na®sy Ao # Ay # As) 1 = (Ao T na®s/Riist (nd@ 5y A1 # As))

lemma iterated-combiney-Seqpyicr-simps-bis: <As # [| = (4@ 3, Ao # As) r =

(Ao r a®s5/Rriist (@35 As))
and iterated-combine, q-Seqptick-simps-bis: «Bs # [| = (na@ 3y Bo # Bs) r =

(Bo r na®syRiist (na@ sy Bs))
{(proof)

10.1.2 First Results

lemma combinerisisienr-Seqptick-cOMbineriist-Seqptick-€q:
€ (a(Ao)oos a®Linistsienr A1) (S0 # 08) = € (Ao a®sy riist A1) (so # os)
T (a{A0)osos d®@LiListsienr A1) (50 # 05) e = T (Ao a®3yRriist A1) (o #
os) e

€ <<nd<<B0>>a‘—>as nd®1;List5lenL Bl>> (50 # 05) =£ <<BO nd®;/Rlist B1>> (50 #

91



o8)

(T {na{Bo)osos nd®@LiListsient B1) (so # 08) e = T (Bo nd®3y riist B1) (S0
# os) e

(proof)

lemma combinepqiriist-Seqptick-and-iterated-combine-Seqpticr.-€q:
€ <<A0 T dQ5/ Pairlist A1>> [So, 81] =& (<<d® 5 [Ao, A1]>> 7") [50, 51]>
1 (Ao 7 a®3y Pairtist A1) [50, s1] e = 7 ((a@ 3y [Ao, A1]) 7) [50, 51] e
€ (Bo T nd®sy Pairtist B1) [s0, s1] = € ({(na@® 3y [Bo, Bil) ) [s0, s1]
(7 (Bo 7 nd®3y Pairtist B1) [s0, s1] € = 7 ((na® 3/ [Bo, Bi]) 7) [s0, s1] e
(proof)

lemma combinepairiist-Seqptick-and-combineriisi-Seqprick-€q

€ (Ao a®sy Pairtist A1) [s0, 51) = € (Ao a®5/Rriist (@35 [A1])) [s0, 1]

1 (Ao a®3 Pairtist A1) [s0, s1] e = T (Ao a®35y/ Rriist (@35 [A1])) [s0, 51] &
€ (Bo nd®sy Pairtist B1) [s0, 51] = € (Bo na®sy/Rriist (nd@® s/ [B1])) [s0, s1]
7 {Bo nd®;y Pairtist B1) [S0, s1] € = T (Bo na®3y Rriist (nd@ sy [B1])) [50, 51]
e

(proof)

10.1.3 Reachability

lemma same-length-t-iterated-combineq-Seqptick
dength os = length As = |ot] =7 ((a@Q 3y As) 1) 05 a = length ot = length
As»

{proof)

lemma same-length-T-iterated-combine, q-Seqpick :
dength os = length As = ot € T ((na® 3, As) r) 0s a = length ot = length
As»

(proof)

lemma same-length-Rq-iterated-combineq-Seqpiick
wt € Ra ((aQ 3y As) r) 0s = length s = length As = length ot = length
Asy

(proof)

lemma same-length-R,q-iterated-combine, q-Seqptick :
w0t € Ruag ((na® s, As) r) 0s = length os = length As = length ot = length
As»

(proof)

10.1.4 Transmission of Properties

lemma p-disjoint-e-transmission-to-iterated-combine-Seqpiick
(As # [| = o-disjoint-c ((last As) r) = o-disjoint-c ((a@) 3, As) )
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(Bs # [| = o-disjoint- ((last Bs) r) = p-disjoint-c¢ ((na@ 3, Bs) )
(proof)

10.1.5 Normalization

lemma w-iterated-combine-Seqpy;cr-det-ndet-conv:

<<w (((}l;®;/ map (AA 1. (A r)ana) As) r) 05 = w ((a@ 3/ AS) T)asna 05
Proo

lemma g-iterated-combine-Seqpticr-det-ndet-conv :

29 (<<7}(>1® s map (AA 1. (A r)acsna) As) 1) = 0 ((a@ 3/ As) T)asna>
Proo

lemma 7-iterated-combine-Seqpt;cr-behaviour:

<length os = length As =

T ((a® 5/ As) m)asna 0s e =T ((na@ s, map (AA 7. (A T)agsna) As) 1) o5
e

(proof)

lemma Pg g pgs-iterated-combine-Seqpticr-behaviour:

assumes same-length: <length os = length As»

shows <PSKIPS<<<<(1®§/ AS>> r))d gs = PSKIPS<<<<7L(1®;/ map ()\A r. <<A
TVdnd) AS) TVna o

(proof)

lemma P-iterated-combine-Seqpticr-behaviour:
assumes same-length: <length os = length As»

shows (P((aQ ;s As) r)a 0s = P((na@ sy map ANA r. (A r)acsna) AS) T)na

ags)

(proof)

10.2 Compactification Theorems

10.2.1 Binary
Pair

lemma Pggps-nd-combinepqir-Seqptick :
fixes A() Al
assumes at-most-1-elem-term : <at-most-1-elem-term Ag»
— This assumption is necessary in the new setup, otherwise the result is not
always a Procomaton (for example if w Ag 09 = UNIV, we have P 0¢ 5, Q 01 =
GlobalNdet UNIV (Q 01)).

defines A-def: <A = (Ao na®3y Pair A1)
defines P—def: P = PSKIPS<<AO>>nd>
and Q—def: (Q = )\0'1 T. PSK]p5<<A1 T>>7zd o1?

93



and S-def: «S = Pskrps{A)na>
shows <P 0¢ 5, Q 01 = S (00, 01)»

(proof)

corollary Pgkps-d-combinepqir-Seqptick :
Pskrps{Ao)d 003y (A Psxrps{Ai m)ao1) = Psxrps((4o a®i/ pair A1))d
(00, 1)

(proof)

Pairlist

lemma Pggps-nd-combinepairiist-Seqptick :
(Pskrps{Ao)nd 005/ (Ar. Psxips(A1 m)na 01) = Psx1prs{{Ao nd®3i/ pPairtist
A1>>>>nd [00, 01]>

if (at-most-1-elem-term Agy»

{proof)

corollary Pgskps-d-combinepgiriist-Sedptick

(Pskips{Ao)a o0 35y (Ar. Psxrps{Ai r)a 01) = Pskiprs{(Ao a®;/ Pairiist
A1))a oo, o1
(proof )

Rlist

lemma Pgsgps-nd-combinerisi-Seqptick :
(Pskrps{Ao)na 00 57 (Ar. Psxrps{A1 m)nd 05) = Psrxips{{Ao na®;/ riist
A1>>>>nd (UO # US))

if <at-most-1-elem-term Agy»
(proof)

corollary Pgpg-d-combineriisi-Seqpick :

Pskrps{Ao)a oo 3y (Ar. Psxrps(A1 7)a 05) = Pskrps((4o a®sy riist
A1) )a (o9 # os)
(proof )

10.2.2 ListslenL

lemma Pgsgps-nd-combiner;stsienr-S€lptick :
(Pski1ps{Ao)nd 050 57 (AT. Psxips{A1 m)nda 051) = Psk1ps{{Ao na®lenosristsient
A1>>>>nd (080 Q 0'81))
if same-length-reach : <N\osy’. 080’ € Rpa Ao 089 = length osy’ = leng»
and <at-most-1-elem-term Ag>
(proof )

corollary Pgsgpg-d-combineristsienr-Sedptick

(Psirps{Ao)a oso sy (Ar. Pskrps{Ar r)a os1) = Psxips{{Ao a®lenosristsient
A1) )a (s Q os1)
if same-length-reach : «(N\oso’. oso’ € Rq Ao 089 = length osy’ = leng>

(proof)
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10.2.3 Multiple

theorem Pgsg1ps-nd-compactification-Seqptick:

[length os = length As; NA r. A € set (butlast As) = at-most-1-elem-term (A
r)] =

SEQ (0, A) €Q zip 0s As. (Ar. Psxips(A r)nda 0) = (Ar. Psxrps{{(ni® i/
ASY TVna o8)
(proof)

corollary Pg g ps-d-compactification-Seqpiick:

<length os = length As —

SEQ (o, A) €Q zip 05 As. (A\r. Psgrps{A m)a 0) = (Ar. Pskxrprs{{aQ ;s
As) Vg o8)
(proof)
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Chapter 11

Application : May
Philosophers dine ?

11.1 Preliminaries

11.1.1 Preliminary lemmas for proof automation

lemma Suc-mod: <n > 1 = i # Suc i mod n»

(proof)

lemmas suc-mods = Suc-mod Suc-mod[symmetric]

lemma [-suc: <n > 1 = = n < Suc 0»

(proof)

lemma minus-suc: <n > 0 = n — Suc 0 # m»
(proof )

declare Un-insert-right[simp del] Un-insert-left[simp del]

11.2 The dining processes definition
context DiningPhilosophers begin

lemma RPHIL-restriction-fiz-def:
«(RPHIL i = (v X. picks i i — picks i ((i — 1) mod N) —
putsdown i ((i — 1) mod N) — putsdown i i — X)»
(proof)

lemma LPHILO-restriction-fix-def:
«(LPHILO = (v X. picks 0 (N — 1) — picks 0 0 —
putsdown 0 0 — putsdown 0 (N — 1) — X)»
(proof)
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lemma FORK-restriction-fiz-def:
(FORK i = (v X. (picks i i — putsdown i i — X) O
(picks ((i + 1) mod N) i — putsdown ((i + 1) mod N) i — X))
(proof)

11.2.1 Unfolding rules

lemmas RPHIL-rec = cont-process-rec|OF RPHIL-def|[ THEN meta-eg-to-obj-eq],
simplified]

and LPHILO-rec = cont-process-rec|OF LPHILO-def[THEN meta-eg-to-obj-eql,
simplified]

and FORK-rec = cont-process-rec|OF FORK-def|[THEN meta-eg-to-obj-eq],
simplified]

11.3 Translation into normal form

lemma N-pos[simp]: <N > 0»
(proof)

lemmas N-pos-simps[simp] = suc-mods[OF N-g1] l-suc[OF N-g1] minus-suc[OF
N-pos]

11.3.1 FORK, LPHILO and RPHIL are normalizable

Definition of one fork and one philosopher automata

type-synonym id¢,,, = nat

type-synonym o, = nat
type-synonym idy,n;; = nat
type-synonym o,,;; = nat

definition fork-A :: <idforr = (0fork, dining-event, unit) Ap (¢Ap>)
where (A i = recursive-constructor-Ag
[((0, picks i ), |1]), ((0, picks ((i + 1) mod N) ), [2]),
((1, putsdown i %), |0]), ((2, putsdown ((i + 1) mod N) 7), | 0])]
(Ma. O)

definition 7rphil-A :: <dppi = (0phit, dining-event, unit) Ap (<Ayp)
where <A7.p 1 = recursive-constructor-Ag
[((0, picks i 1), L[1]), (1, picks i ((i—1) mod N)), |2]),
((2, putsdown i ((i—1) mod N)), |3]), ((3, putsdown i 7), 10])]
(MAo. O)

definition Iphil0-A :: «(oppii, dining-event, unit) Aq> (<Aip»)
where (A;, = recursive-constructor-Aq

98



[((0, picks 0 (N — 1)), | 1]), ((1, picks 0 0), 12]),
((2, putsdown 0 0), |3]), (3, putsdown 0 (N — 1)), |0])] (Ao. O)»

Definition and first properties of associated normal processes

definition fork-P-d :: (idjori = Ofork = dining-event process> where «fork-P-d
1= P<<Af i>>d)

definition rphil-P-d :: <idphy = opni = dining-event process) where <rphil-P-d
7= P<<Arp ’[>>d>

definition Iphil0-P-d :: <opni = dining-event process» where <Iphil0-P-d
= P<<Alp>>d>

lemmas fork-P-d-rec = P-d-rec[of <Ay -, folded fork-P-d-def]
and rphil-P-d-rec = P-d-rec[of <A, -, folded rphil-P-d-def]
and Iphil0-P-d-rec = P-d-recof <Aip>, folded Iphil0-P-d-def)

schematic-goal fork-c: «¢ (A5 7) 0 = 25)
and rphil-e: <€ (A,p 1) 0 = ?T)
and Ilphil0-c: < Ajp 0 = ?2U»
(proof)

schematic-goal fork-r: <7 (Ay i) 0 = 25
and rphil-m: <17 (Ayp 1) 0 = 2T
and lphil0-1: <1 Ajp 0 = ?U>»
(proof)

corollary ev-idsorpa: <e € € (Af ©) 0 = fork e =1
and rphil-phil: <e € € (Ayp 1) 0 = phil e = i
and lphil0-phil: <e € € Ajp, o = phil e = 0»
(proof)

corollary ev-idppz: <t < n =0 € ¢ ((Aip # map Arp [1..< n]) ! i) s = phil
o=

(proof)

lemma indep-forks: <i # j = ¢ (Ay i) o Ne (A j) o' ={p
and indep-phils: <i # 0 = ¢ Ajp o Ne (4, 7)) o' ={p
dFj=e(Api)one (4, 7)o ={h
(proof)

Equalities between FORK, RPHIL, LPHILO and respectively fork-P-d, rphil-P-d,
Iphil0-P-d

lemma FORK-is-fork-P-d: <FORK i = fork-P-d i 0»
(proof )
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lemma RPHIL-is-rphil-P-d: <RPHIL i = rphil-P-d i 0»
(proof)

lemma LPHILO-is-lphil0-P-d: «LPHILO = Iphil0-P-d 0>
(proof)

11.3.2 FORKS is normalizable

Definition of the all-forks automaton

type-synonym oy, = (nat list

definition forks-A :: «(0forks, dining-event, unit) Ay (<Ap») where (Ap =

(aQ[{}] map Af [0..<N)>

Definition and first properties of the associated normal process

definition forks-P-d:: <o orrs = dining-event process> where «forks-P-d = P{AF)a>

lemma forks-e: ength fs = N = ¢ Ap fs = (Ui<N. e (A5 7) (fs ! i)
(proof)

Equality between FORKS and forks-P-d

lemma NFORKS-is-forks-P-d: <FORKS = forks-P-d (replicate N 0)»
(proof)

11.3.3 PHILS is normalizable

Definition of the all-philosophers automaton

type-synonym o1, = (nat list

definition phils-A :: <(ophi1s, dining-event, unit) Ay (¢(Ap>) where <Ap = (4@ [{}]
Ay # map Ayp [1..< N

lemma phils-A-def-bis: «Ap = (4Q [{}] map (Xi. if i = 0 then A, else Ay 7)
[0..<N])»
(proof)

Definition and first properties of the associated normal process

definition phils-P-d:: <ophi1s = dining-event process) where «phils-P-d = P(Ap)a>

lemma phils-e: <length ps = N = ¢ Ap ps =¢ Ay, (ps! 0) U (Jie{l..<N}. ¢
(Arp 4) (ps ! i)
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(proof)

Equality between PHILS and phils-P-d

lemma NPHILS-is-phils-P-d: «PHILS = phils-P-d (replicate N 0)»
(proof)

11.3.4 The complete process DINING is normalizable

Definition of the dining automaton

definition dining-A :: <((Ophits X Oforks, dining-event, unit) Aq> (¢Ap>) where
(Ap = <<Ap d®[[UNIV]]pm‘r AF>>>

Definition and first properties of the associated normal process

definition dining-P-d:: <0phits X Oforks = dining-event process) where <din-
ing-P-d = P{Ap)a

lemma dining-¢:

«length ps = N = length fs = N =

e Ap (ps, fs) = (¢ Ajp (ps ! 0) U (Uie{l..<N}. e (4yp 7) (ps! i) N (Ui<N.
e (A i) (fs L))

(proof)

Equality between DINING and dining-P-d

lemma DINING-is-dining-P-d: <DINING = dining-P-d (replicate N 0, replicate N
0)
(proof)

11.4 And finally: Philosophers may dine ! Always
!

method e-sets-simp uses opt = (simp-all split: if-split-asm) ?,
simp-all add: fork-e lphil0-¢ rphil-e opt split: if-splits

method A-defs-simp uses opt = (simp-all split: if-split-asm) ?,
simp-all add: fork-A-def Iphil0-A-def rphil-A-def opt split: if-splits

11.4.1 Construction of an invariant for the dining automaton

definition <inv-dining ps fs =

length fs = N A length ps = N

ANVi<N. fsli=0Vfsli=1Vfsli=2)

ANVMi<N.psli=0Vpsli=1Vps!li=2Vps!li=23)

ANNVi Suci < N— ((fs! Suci=1)«— ps! Suci##0))A(fs! (N
—1)=2¢—=ps!0#0)

ANNVi<N-—1. fsli=2 +—ps!Suci=2) N (fs!0 =
1 «—ps!l0=2)
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lemma show-inv-dining:

<length fs = N A length ps = N =

Vi< N.fsli=0Vfsli=1V/fsli=2) =

(Vi< N.psli=0Vpsli=1Vpsli=2Vps!li=38) =

(Vi. Suci < N — (fs! Suci=1+—ps! Suci#0)) = (fs! (N —-1)=
2+—ps!0+#0) =
Vi<N—-—1.fs!i=2+—>ps!Suci=2)= (fs!0 =1+—ps!0=2)
_—

nv-dining ps fs

(proof)

lemma inv-DINING: <s € R4y Ap (replicate N 0, replicate N 0) = inv-dining
(fst s) (snd s)»
(proof )

11.4.2 The invariant inv-dining implies that DINING is dead-
lock-free

method nonempty-Int-by-common-element for x = rule-tac ex-in-conv[THEN iffD1,
OF exl, OF Intl, of x]

lemma inv-implies-DF: ¢ Ap (ps, fs) # {}» if hyp-inv: <inv-dining ps fs)
(proof)

11.4.3 Conclusion

corollary deadlock-free-DINING: <deadlock-free DINING)
(proof)

11.5 Alternative version with only right-handed
philosophers (in order to show that it’s not
deadlock-free)

11.5.1 Setup

definition «(RPHILS = ||| P €# mset (map RPHIL [0..< N]). P»

corollary <N = 3 = RPHILS = (RPHIL 0 ||| RPHIL 1 ||| RPHIL 2)»
(proof)

definition RDINING :: «dining-event process»
where <RDINING = (FORKS || RPHILS))
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11.5.2 Normalization

definition rphils-A :: «(ophits, dining-event, unit) Aq> (<(Arp>) where (Agp =

(a® [{}] map Arp [0..< N>
definition rphils-P-d:: <oppis = dining-event process) where <rphils-P-d = P(Arp) s

definition rdining-A :: ((Ophits X Oforks, dining-event, unit) Ay (<Arp>) where
(ARD = <<ARP d®ﬂUNIVﬂpair AF>>>

definition rdining-P-d:: <Ophits X 0forks = dining-event process> where (rdining-P-d
= P<<ARD>>d>

11.5.3 Correspondance between our normalized processes and
the previous definitions

lemma rphils-e: <length ps = N = ¢ Arp ps = (Ji€{0..<N}. € (4;p ©) (ps!
1))
(proof )

lemma NRPHILS-is-rphils-P-d: <RPHILS = rphils-P-d (replicate N 0)»
(proof )

lemma rdining-¢:
length ps = N = length fs = N =
€ Arp (ps, fs) = (Ui€{0..<N}. e (Arp @) (ps!9)) N (Ui<N. e (Af 7) (fs!9))
(proof)

lemma RDINING-is-rdining-P-d: «<RDINING = rdining-P-d (replicate N 0, repli-
cate N 0)»
(proof)

11.5.4 Proof that we have a deadlock in the state (replicate N
1, replicate N 1)

lemma empty-enabl-replicatel: ¢ Arp (replicate N 1, replicate N 1) = {}
(proof)

corollary non-dealock-free-rdining: «— deadlock-free (rdining-P-d (replicate N 1,
replicate N 1))»
(proof)

11.5.5 Proof that this state is reachable from our initial
state, i.e. (replicate N 1, replicate N 1) € Ry Agp (replicate
N 0, replicate N 0)

lemma rdining-7: <length ps = N = length fs = N = e € ¢ Arp (ps, fs) =
T Arp (ps, fs) e = | ([t Arp pse], [T Ar fse])]»
(proof)
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lemma replicatel-reachable-from-replicate0-prelim:

«n < N = (replicate n 1 Q replicate (N — n) 0, replicate n 1 @ replicate (N
—n) 0) € Rq Arp (replicate N 0, replicate N 0)»
(proof)

corollary replicate1-reachable-from-replicate0: «(replicate N 1, replicate N 1) €
Ra Arp (replicate N 0, replicate N 0)»
(proof)

theorem not-deadlock-free-RDINING: <= deadlock-free RDINING)

(proof)

end
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Chapter 12

Other Results similar to
Compactification

Unlike Sync and (3), some operators like Det do not enjoy a compactification
result. Nevertheless, we still can prove some useful lemmas.

12.1 Some preliminary Results

lemma Mprefiz-Det-Mprefiz-bis :
«(ODacA—-Pa)O(@ObeB— Qb =
(ze(ANB)—-»PznNQz)0lac (A-B)—-Pe)OHbe (B—-A4) —
Q b)
(is «?lhs = %rhs))

(proof)

lemma GlobalNdet-Ndet-GlobalNdet:
A#{} = B#{}= (NMac€ A Pa)N(Nbe B. Qb) =
Nz € (AU B). (ifx € AN Bthen Pz N Q x else if x € A then P x else Q x)»

(proof)

lemma GlobalNdet-Ndet-GlobalNdet-bis:
ANB#{}=A-B#{} =B-A#{} =
(Mae€e A. Pa) (Mb e B. Qb) =
(Mze(ANB).PzNQz)yN(Mae€ (A—-DB). Pa)n(Mbe (B—4). Qb
(proof)

lemma GlobalNdet-GlobalNdet:

«(Mae A.Mbe Ba. Pb) =

(if Va€ A. Ba# {} thenb € (Ua € A. Ba). Pbelse (Mbe (Ja € A. B
a). P b) 11 STOP))

(proof)
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12.2 Results for Det

lemma P-nd-set-almost-compactification-Det :
«(O (s, A) € s-A-set. P(A)pa s) =
Oe e (U(s, A) € s-A-set. ¢ A s) —
M(s, A) € {(s, A) € s-A-set. e € ¢ A s}.
MNs' €1 Ase P{(A)nq s (is «<%lhs = ?rhs)
(proof)

lemma P-nd-set-almost-compactification-Det-bis :
«(O (s, A) € s-A-set. P(A)pa s) =
Oee (U(s, A) € s-A-set. € A s) —
N(s’, A) € {(s’, A)| s’ s A. (s, A) € s-A-set Ne€cec AsNs' €T Ase}. P(A)na

s’

(is «<- = ?rhsy)

(proof)

lemma P-d-set-almost-compactification-Det:
shows (O (s, A) € s-A-set. P(A)q s) =
Oe e (U(s, A) € s-A-set. € A 5) —
(s, A) € {(s, 4) € s-A-set. e € ¢ A s}. P(A)q [T A s e]» (is «%lhs =
?rhs»)
(proof )

lemma P-d-set-almost-compactification-Det-bis:
shows «(O (s, A) € s-A-set. P(A)q s) =
Oe e (U(s, A) € s-A-set. € A 5) —
N(s’, A) e {([t A sel], A)| s A. (s, A) € s-A-set N e € € A s}. P(A)q s’
(proof)

12.3 Results for Ndet
12.4 Other Operators

12.4.1 initials

lemma initials-Pskrps-nd :
(Psxips{AYna 0)° = (if 0 € 0 A then tick ‘w A o else ev ‘e A o)
(proof)

lemma initials-Pskrps-d :
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(Pskips{A)a o) = (if 0 € 0 A then {V([w A o))} else ev ‘e A o)
(proof)

lemma initials-P-nd : «(P{A)nq 8)° = ev ‘¢ A &
(proof)

lemma initials-P-d : «(P{A)y s)’ = ev ‘e A &
(proof)

12.4.2 Throw

lemma Throw-Psgrps-nd :
(Pskrps{A)nac © b€ B. Qb=
(if o € 0 A then SKIPS (w A o) else
Oace Ao — (ifa € Bthen Qaelse o’ € 7 Ao a. (Pskrps{AYyna o' © b
€ B. Qb))
(proof)

lemma Throw-Psgrps-d :
<PSKIPS<<A>>d oc0©beB. Q b=
(if o € o A then SKIP [w A o] else
Oa€e Ao — (if a € Bthen Q a else Pskrps{A)a [T Ao a] © b€ B. Qb))
(proof)

lemma Throw-P-nd :

(P(A)na o © b€ B. Qb=

Oace Ao — (ifa € Bthen QaelseMo’ €T Ao a. (P{A)na o' ©® b€ B. Q
b))

(proof)

lemma Throw-P-d :
(P(A)g 5O beB. Qb=
Oace Ao — (if a € B then Q a else P{(A)q [T Ao a] © b€ B. Q b)»
(proof )

12.4.3 (D)

lemma SKIPS-Interrupt-is-SKIPS-Det :
«SKIPS R A\ P = SKIPS R O P»

(proof)

lemma Interrupt-Psgrps-nd :

Psrrps{(Ahna o A Q =
QO (if 0 € p A then SKIPS (w Ao) else Jda€ec Ao =T’ €1 Ao a.

Pskrps(A)na o' AN Q)
(proof)

lemma Interrupt-Pskrps-d :
(Psgrps(A)a o A Q =
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QO (if 0 € o A then SKIP [w A o] else Oa € e Ao — Psxrps{A)a [T Ao
al & Q)
(proof)

lemma Interrupt-P-nd :
(P(AYypao A Q=Q0([Hace Ao —TNo' €T Ao a. P(A)pg o' A Q)

(proof)

lemma Interrupt-P-d :
(P(A)ago A Q=Q00aceAdo— P(A)a [t Adoal & Q)
(proof)

12.4.4 After

context After
begin

lemma After-SKIPS : «SKIPS R after a = ¥ (SKIPS R) a»
(proof)

lemma After-Pgxrps-nd :

Psirps{A)na o after a =
(if o € o0 A then ¥ (SKIPS (w A 7)) a else
ifa€ecActhenTo’' €T Ao a. Psxrps{AYna o' else ¥V (Psxrps{AYna o)
a)

(proof)

lemma After-Pskrps-d :
(Pskrps{A)a o after a =
(if o € 0 A then ¥ (SKIP [w A o)) a else
ifa € Ao then Pskgrps{A)a [T Ao a] else ¥ (Pskrps{A)a o) a)

(proof)

lemma After-P-nd :
(P{AYpqg o after a = (if a € ¢ A o then To’ € 7 A 0 a. P(A)nq o' else ¥

(P{A)na o) a)
(proof)

lemma After-P-d :
2P(<AJZ)>d o after a = (if a € ¢ A o then P(A)q [T A o a] else ¥ (P{A)q o) a)
Proo

end

context AfterExt
begin

lemma After;;.,-SKIPS :
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«(SKIPS R after y e = (case e of eva = V (SKIPS R) a | /(1) = Q (SKIPS R)
)

(proof)

lemma After;;.p-Pskxrps-nd :
(Pski1ps(A)na 0 after, e =
(case e of ev a = if 0 € p A then U (SKIPS (w A o)) a else
ifa€e Ao thenMo' € 7 Ao a Pskrps{A)na o’ else U
(Pskips{A)na o) a
| V(r) = if 0 € p A then Q (SKIPS (w A 0)) 7 else Q (Psxips{A)nd
o) r)

(proof)

lemma Aﬁertick‘PSKIPS‘d :
(Pskrps(A)a o after, e =
(case e of eva = if 0 € 9 A then ¥ (SKIP [w A o)) a else
ifa €e Ao then Pskrps{A)a [T Ao a] else ¥ (Pskrps{A)a
o) a
| V(r) = if o € 0 A then Q (SKIP [w A o]) relse Q (Pskxrps{A)d o)
)

(proof)

lemma After;;.i-P-nd :
(P(A)na o aftery e =
(case e of eva = ifa€ec Ao thenMo’ € 7 Ao a. P(A)nq o' else ¥ (P{A)pna
o) a
| V(r) = Q (P{A)pnq o) T)
(proof)

lemma After;;c.,-P-d :

(P(A)q o after, e =

(case e of ev a = if a € € A o then P(A)q [T A o a] else ¥ (P{A)q4 0) a
(oroof) | V(1) = Q (P{(A)q o) )
proo

end

12.5 OpSem

context OpSemTransitions
begin

lemma SKIPS-t-trans-SKIP : <«r € R — SKIPS R ~, SKIP r»
{proof)

In the ProcOmata, we will absorb the 7 transitions that appear when we
unfold the fixed-point operator.
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lemma 7-trans-Psgrps-nd :
rewdido— P5K1p5<<A>>nd o ~,. SKIP r)

(proof)

lemma 7-trans-Pskrps-d :
(0 € 0 A — PSKIPS<<A>>d o W/[W A o) Q (SK]P (w A O'—|) (w A O'-|>

(proof)

lemma ev-trans-Psgrps-nd :
(o ¢ 0 A= oc'€eTA0c 0= PSKIPS<<A>>nd o ~a PSKIPS<<A>>nd o’y
(proof)

lemma ev-trans-Psgrps-d :
(O ¢ 0 A= acecAdo— PSKIPS<<A>>d g ~q PSKIPS<<A>>d |—T Ao Cﬂ)

(proof)

lemma ev-trans-P-nd :
w'eT Ao a= P{AYng o0 ~q P{(A)pna o’
(proof)

lemma ev-trans-P-d :
<a € Ao = P(A)q 0 ~q P{(A)g [T Ao a)
(proof)

end
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Chapter 13

Conclusion

13.1 Entry Point

This is where HOL-CSP_Proc-0Omata should be imported from.

13.2 Conclusion

In this entry we have developed the Proc-Omata framework on top of HOL-CSP

and its extensions. Starting from functional automata, we introduced Proc-
Omata in four variants: deterministic, terminating deterministic, non-deterministic,
and terminating non-deterministic. They enjoy strong structural properties,

for example deadlocks can be characterized directly and established by in-
variant reasoning:

deadlock-free (P(A)ng 0) = (Vo'€Rpng A o. e Ao’ #0)
o-disjoint-¢ A

deadlock-frees1ps (Pskrps{AYng 0) = (Vo'€Rpg Ao. 0’ € 0 AV e Ao’ #10)

We then lifted sequential composition and synchronization product to the
automata level, by defining suitable combination functions and proving their
correctness. A major generalization of our development is the treatment of
parameterized termination. For sequential composition we worked directly
with the generalized operator (), since the standard one (3) is easily re-
covered (indeed P 5, (Ar. Q) = P ; Q). In contrast, for synchronization
product we had to provide two distinct versions, as the handling of ticks
prevents any straightforward reduction from P [A] @ to P [A4], Q.

Another central ingredient is the library Restriction_Spaces [1]. Proc-
Omata are indeed defined as fixed points of endofunctions which, in the non-
deterministic case, are not always continuous due to global non-deterministic
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choice. While deterministic prefix choice does not suffice to restore conti-
nuity under composition, it does guarantee constructiveness, allowing us to
rely on the fixed-point operator v z. f x in all cases.

The resulting framework yields compactification theorems that support invariant-
based reasoning over large process architectures:

|os| = |4s|
[E] (o, A)e#mset (zip s As). P{(A)pqg 0 = P<<<<nd® [E] As))na o5

Finally, we demonstrated the applicability of our approach with the Dining
Philosophers case study, where Proc-Omata compactification enables proofs
that scale to an arbitrary number of participants in this parameterized pro-
cess architecture.
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