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Abstract

This entry develops the Proc-Omata framework on top of HOL-CSP and its
extensions. Proc-Omata are defined from functional automata and come in
four variants: deterministic, terminating deterministic, non-deterministic,
and terminating non-deterministic. This subclass of processes combines the
expressiveness of CSP with automata-like structure (reachability, enable-
ness), making it particularly amenable to invariant-based reasoning.

We lift sequential composition and synchronization product to the au-
tomata level through combination functions and prove compactification the-
orems that enable reasoning over large process architectures. An essential
ingredient is the use of restriction spaces, which guarantees well-defined
fixed points even in the non-deterministic setting. Finally, we illustrate the
applicability of the framework with the Dining Philosophers, where com-
pactification yields proofs that scale to an arbitrary finite but unbounded
number of participants in this parameterized process architecture.
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Chapter 1

Introduction

Communicating Sequential Processes (CSP) offers a rich and expressive
framework for modeling and reasoning about concurrent systems. Its de-
notational, operational, and algebraic facets are covered by the sessions
HOL-CSP [3], HOL-CSPM [2], HOL-CSP_OpSem [4], HOL-CSP_RS [6], and HOL-CSP_PTick.
These developments, initially following Roscoes presentation [7], have since
evolved considerably to admit arbitrary types, infinite sets, parameterized
termination, and more.
However, this expressiveness comes with a cost: proofs about complex or
parametric process architectures often become intricate and hard to scale.
Proc-Omata address this issue by slightly constraining the class of processes
in order to benefit from more powerful proof techniques. First sketched
in [8] and properly conceptualized in [5], the Proc-Omata framework con-
sists in embedding functional automata into CSP. The resulting subclass of
processes combines the expressive and compositional features of CSP with
automata-like properties (reachability, enableness, absence of divergences),
making it particularly amenable to invariant reasoning.
In this entry we start by formalizing the basic notions of functional automata
such as reachability and enableness, before introducing the definitions of
Proc-Omata themselves. For synchronization product and sequential com-
position, we then provide combination functions that realize the effect of
CSP operators at the level of the underlying automata. These translations
are formally proved correct, and culminate in compactification theorems,
which generalize the constructions inductively to architectural operators.

9



10



Chapter 2

An Excursion into
Determinism

This chapter is a preliminary work. Indeed, later in the construction, we
will define the notion of Procomata which comes in different flavours, in
particular deterministic ones. We will establish then that such ProcOmata
produce deterministic processes, a classical notion in CSP that we formalize
below.

In a word, a deterministic process cannot refuse an event in which it can
engage. More formally, if s @ [e] ∈ T P, then (s, {e}) /∈ F P. In this
theory, we follow the proof sketch given in [7] for characterizing deterministic
processes as maximal elements for the failure-divergence refinement (vFD).
Other lemmas are proved with respect to CSP operators.

2.1 Accepts initials

This notion is a weak version of determinism. It captures the idea of being
deterministic for one step.

2.1.1 Definition
unbundle option-type-syntax

definition accepts-initials :: ‹( ′a, ′r) processptick ⇒ bool› (‹determ0›)
where ‹determ0 P ≡ ∀ e ∈ P0. {e} /∈ R P›

lemma accepts-initialsI : ‹(
∧

e. e ∈ P0 =⇒ {e} /∈ R P) =⇒ determ0 P›
and accepts-initialsD : ‹determ0 P =⇒ e ∈ P0 =⇒ {e} /∈ R P›
by (simp-all add: accepts-initials-def )
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lemma accepts-initials-def-bis:
‹determ0 P ←→ (∀ e ∈ P0. ∀X ∈ R P. e /∈ X)›
by (auto simp add: accepts-initials-def )
(metis Refusals-iff Un-upper1 insert-Diff insert-is-Un is-processT4 )

lemma accepts-initialsI-bis : ‹(
∧

e X . e ∈ P0 =⇒ X ∈ R P =⇒ e /∈ X) =⇒
determ0 P›

and accepts-initialsD-bis : ‹determ0 P =⇒ e ∈ P0 =⇒ X ∈ R P =⇒ e /∈ X›
by (simp-all add: accepts-initials-def-bis)

2.1.2 First properties

lemma accepts-initials-STOP [simp] : ‹determ0 STOP›
by (simp add: accepts-initials-def )

lemma accepts-initials-SKIP [simp] : ‹determ0 (SKIP r)›
by (simp add: accepts-initials-def Refusals-iff F-SKIP)

lemma not-accepts-initials-BOT [simp] : ‹¬ determ0 ⊥›
by (simp add: accepts-initials-def Refusals-iff F-BOT )

lemma accepts-initials-imp-initial-tick-iff-is-SKIP:
‹determ0 P =⇒ 3(r) ∈ P0 ←→ P = SKIP r›

proof (rule iffI )
show ‹P = SKIP r =⇒ 3(r) ∈ P0› by simp

next
assume assms : ‹determ0 P› ‹3(r) ∈ P0›
hence initials-is : ‹P0 = {3(r)}›

by (auto simp add: accepts-initials-def initials-def Refusals-iff subset-iff )
(metis append-self-conv2 is-processT6-TR-notin singletonD)

show ‹P = SKIP r›
proof (subst SKIP-F-iff [symmetric], unfold failure-refine-def , safe)

from assms show ‹(s, X) ∈ F P =⇒ (s, X) ∈ F (SKIP r)› for s X
by (cases s, auto simp add: F-SKIP accepts-initials-def-bis Refusals-iff dest!:

F-T )
(metis initials-is initials-memI singletonD,

metis T-imp-front-tickFree eventptick.disc(2 ) front-tickFree-Cons-iff
initials-is initials-memI singletonD)

qed
qed

lemma accepts-initials-imp-not-initial-tick-iff-is-STOP-or-some-initial-ev:
‹determ0 P =⇒ (range tick ∩ P0 = {}) ←→ P = STOP ∨ (∃ e. ev e ∈ P0)›
by (simp add: disjoint-iff image-iff )
(metis accepts-initials-imp-initial-tick-iff-is-SKIP all-not-in-conv eventptick.exhaust

eventptick.simps(3 ) initials-SKIP initials-empty-iff-STOP singletonD)
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2.1.3 Monotonicity
lemma mono-accepts-initials-F : ‹P vF Q =⇒ determ0 P =⇒ determ0 Q›

by (frule anti-mono-initials-F)
(auto simp add: failure-refine-def accepts-initials-def Refusals-iff subset-iff )

lemma mono-accepts-initials-FD: ‹P vFD Q =⇒ determ0 P =⇒ determ0 Q›
using leFD-imp-leF mono-accepts-initials-F by blast

lemma mono-accepts-initials: ‹P v Q =⇒ determ0 P =⇒ determ0 Q›
by (drule le-approx-lemma-F , fold failure-refine-def ) (rule mono-accepts-initials-F)

lemma restriction-adm-accepts-initials [restriction-adm-processptick-simpset, simp]
:

‹adm↓ (λx. determ0 (f x))› if ‹cont↓ f ›
for f :: ‹ ′b :: restriction ⇒ ( ′a, ′r) processptick›
proof (rule restriction-adm-subst)

from ‹cont↓ f › show ‹cont↓ f › .
next

show ‹adm↓ (determ0 :: ( ′a, ′r) processptick ⇒ bool)›
proof (rule restriction-admI )

fix σ and Σ :: ‹( ′a, ′r) processptick›
assume ‹σ −↓→ Σ› ‹determ0 (σ n)› for n
show ‹determ0 Σ›
proof (rule accepts-initialsI )

fix e assume ‹e ∈ Σ0›
from ‹σ −↓→ Σ› obtain n0

where ∗ : ‹Σ ↓ Suc (Suc 0 ) = σ n0 ↓ Suc (Suc 0 )›
by (blast dest: restriction-tendstoD)

with ‹e ∈ Σ0› have ‹e ∈ (σ n0 )0›
by (metis initials-restriction-processptick nat.distinct(1 ))

with ‹determ0 (σ n0 )› have ‹{e} /∈ R (σ n0 )›
by (fact accepts-initialsD)

with ∗ show ‹{e} /∈ R Σ›
by (metis Refusals-iff F-restriction-processptick-Suc-length-iff-F

list.size(3 ) restriction-related-pred)
qed

qed
qed

2.1.4 Behaviour on Operators
lemma accepts-initials-Mprefix [simp] : ‹determ0 (�a ∈ A → P a)›

by (simp add: accepts-initials-def initials-Mprefix Refusals-iff F-Mprefix)

lemma accepts-initials-write0 [simp] : ‹determ0 (a → P)›
by (simp add: write0-def )

lemma accepts-initials-write [simp] : ‹determ0 (c!a → P)›
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by (simp add: write-def )

lemma accepts-initials-read [simp] : ‹determ0 (c?a∈A → P a)›
by (simp add: read-def )

lemma accepts-initials-Ndet-iff :
‹determ0 (P u Q) ←→ determ0 P ∧ determ0 Q ∧ P0 = Q0›
by (auto simp add: accepts-initials-def initials-Ndet Refusals-iff F-Ndet)
(metis CollectI F-T Un-iff append-Nil initials-def is-processT1 is-processT5-S7

singletonD)+

lemma accepts-initials-GlobalNdet-iff :
‹determ0 (ua ∈ A. P a) ←→
(∀ a ∈ A. determ0 (P a) ∧ (∀ b ∈ A. (P a)0 = (P b)0))›

by (auto simp add: accepts-initials-def initials-GlobalNdet Refusals-iff F-GlobalNdet)
(metis CollectI append-Nil initials-def is-processT1-TR is-processT5-S7 single-

tonD)+

lemma accepts-initials-Mndetprefix-iff :
‹determ0 (ua ∈ A → P a) ←→ (∃ a. A ⊆ {a})›
by (simp add: Mndetprefix-GlobalNdet accepts-initials-GlobalNdet-iff initials-write0 )

blast

lemma accepts-initials-ndet-write-iff :
‹determ0 (c!!a ∈ A → P a) ←→ (∃ b. c ‘ A ⊆ {b})›
by (simp add: ndet-write-def accepts-initials-Mndetprefix-iff )

lemma accepts-initials-SKIPS-iff :
‹determ0 (SKIPS R) ←→ R = {} ∨ (∃ r . R = {r})›
by (simp add: SKIPS-def accepts-initials-GlobalNdet-iff ) blast

lemma accepts-initials-Det :
‹determ0 (P � Q) ←→ P = STOP ∨ Q = STOP ∨ range tick ∩ P0 ∩ Q0 6= {}
∨

range tick ∩ (P0 ∪ Q0) = {}›
(is ‹- ←→ ?rhs›) if accepts-initials : ‹determ0 P› ‹determ0 Q›

proof (cases ‹P = ⊥›; cases ‹Q = ⊥›)
show ‹accepts-initials (P � Q) ←→ ?rhs› if non-BOT : ‹P 6= ⊥› ‹Q 6= ⊥›
proof (rule iffI )

show ‹?rhs =⇒ determ0 (P � Q)›
proof (elim disjE)

show ‹P = STOP =⇒ determ0 (P � Q)› ‹Q = STOP =⇒ determ0 (P �
Q)›

by (simp-all add: accepts-initials)
next
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from non-BOT accepts-initials
show ‹range tick ∩ P0 ∩ Q0 6= {} =⇒ determ0 (P � Q)›

‹range tick ∩ (P0 ∪ Q0) = {} =⇒ determ0 (P � Q)›
by (simp-all add: accepts-initials-def initials-def Refusals-iff

Det-projs BOT-iff-Nil-D disjoint-iff )
(metis append-Nil is-processT6-TR-notin singletonD)

qed
next

have ∗ : ‹[[Q 6= STOP; 3(r) ∈ P0; 3(r) /∈ Q0; determ0 P; determ0 (P � Q)]]
=⇒ False›

for P Q :: ‹( ′a, ′r) processptick› and r
by (metis Un-iff accepts-initials-imp-initial-tick-iff-is-SKIP ex-in-conv

initials-Det initials-SKIP initials-empty-iff-STOP singletonD)
show ‹determ0 (P � Q) =⇒ ?rhs›

by (simp add: disjoint-iff ) (metis ∗ Det-commute accepts-initials rangeE)
qed

qed (use not-accepts-initials-BOT accepts-initials in auto)

lemma accepts-initials-GlobalDet :
‹determ0 (�a ∈ A. P a)› if ‹

∧
a. a ∈ A =⇒ determ0 (P a)›

‹range tick ∩ (
⋂

a ∈ A. (P a)0) 6= {} ∨ range tick ∩ (
⋃

a ∈ A. (P a)0) = {}›
proof (use that(2 ) in ‹elim disjE›)

from that(1 ) show ‹range tick ∩ (
⋂

a∈A. (P a)0) 6= {} =⇒ determ0 (�a ∈ A.
P a)›

by (auto simp add: accepts-initials-def initials-GlobalDet Refusals-iff F-GlobalDet)
(meson is-processT8 ,

metis accepts-initials-imp-initial-tick-iff-is-SKIP
initials-SKIP initials-memI singleton-iff that(1 ))

next
from that(1 ) show ‹range tick ∩ (

⋃
a∈A. (P a)0) = {} =⇒ determ0 (�a ∈ A.

P a)›
by (auto simp add: accepts-initials-def initials-GlobalDet Refusals-iff F-GlobalDet)

(blast, metis BOT-iff-Nil-D not-accepts-initials-BOT that(1 ),
metis UN-I disjoint-iff initials-memI rangeI )

qed

lemma accepts-initials-Seqptick :
‹determ0 (P ;3 Q) ←→ (∀ r . 3(r) ∈ P0 −→ determ0 (Q r))› if ‹determ0 P›

proof (intro iffI allI impI )
show ‹determ0 (P ;3 Q) =⇒ 3(r) ∈ P0 =⇒ determ0 (Q r)› for r

by (simp add: accepts-initials-imp-initial-tick-iff-is-SKIP ‹determ0 P›)
next

have ‹P 6= ⊥› using not-accepts-initials-BOT that by blast
show ‹determ0 (P ;3 Q)› if ∗ : ‹∀ r . 3(r) ∈ P0 −→ determ0 (Q r)›
proof (rule accepts-initialsI )

fix e assume ‹e ∈ (P ;3 Q)0›
then consider a where ‹e = ev a› ‹ev a ∈ P0› | r where ‹3(r) ∈ P0› ‹e ∈
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(Q r)0›
by (simp add: initials-Seqptick ‹P 6= ⊥›) blast

thus ‹{e} /∈ R (P ;3 Q)›
proof cases

from ‹determ0 P› ‹P 6= ⊥› show ‹e = ev a =⇒ ev a ∈ P0 =⇒ {e} /∈ R (P
;3 Q)› for a

unfolding accepts-initials-def-bis Refusals-def-bis
by (simp add: Seqptick-projs BOT-iff-Nil-D ref-Seqptick-def )
(metis ‹determ0 P› accepts-initials-imp-initial-tick-iff-is-SKIP eventptick.distinct(1 )

initials-SKIP initials-memI insertI1 singletonD)
next

show ‹3(r) ∈ P0 =⇒ e ∈ (Q r)0 =⇒ {e} /∈ R (P ;3 Q)› for r
by (simp add: ‹determ0 P› accepts-initialsD accepts-initials-imp-initial-tick-iff-is-SKIP

∗)
qed

qed
qed

corollary accepts-initials-Seq :
‹determ0 (P ; Q) ←→ (P0 ∩ range tick = {} ∨ determ0 Q)› if ‹determ0 P›
by (fold Seqptick-const, unfold accepts-initials-Seqptick[OF that]) fast

lemma (in Syncptick-locale) accepts-initials-Syncptick :
‹determ0 (P [[S ]]3 Q)› if ‹determ0 P› ‹determ0 Q›

proof (rule accepts-initialsI )
from ‹determ0 P› ‹determ0 Q› have ‹P 6= ⊥› ‹Q 6= ⊥› by auto
fix e assume ‹e ∈ (P [[S ]]3 Q)0›
with ‹P 6= ⊥› ‹Q 6= ⊥› consider

a where ‹e = ev a› ‹a ∈ S ∧ ev a ∈ P0 ∧ ev a ∈ Q0 ∨ a /∈ S ∧ (ev a ∈ P0 ∨
ev a ∈ Q0)›
| r-s r s where ‹e = 3(r-s)› ‹r ⊗3 s = br-sc› ‹3(r) ∈ P0› ‹3(s) ∈ Q0›

by (auto simp add: initials-Syncptick split: if-split-asm)
thus ‹{e} /∈ R (P [[S ]]3 Q)›
proof cases

fix a assume ‹e = ev a› ‹a ∈ S ∧ ev a ∈ P0 ∧ ev a ∈ Q0 ∨ a /∈ S ∧ (ev a ∈
P0 ∨ ev a ∈ Q0)›

from this(2 ) show ‹{e} /∈ R (P [[S ]]3 Q)›
proof (elim disjE conjE)

show ‹{e} /∈ R (P [[S ]]3 Q)› if ‹ev a ∈ P0› ‹ev a ∈ Q0›
proof (rule notI )

assume ‹{e} ∈ R (P [[S ]]3 Q)›
with ‹P 6= ⊥› ‹Q 6= ⊥› obtain X-P X-Q
where ‹([], X-P) ∈ F P› ‹([], X-Q) ∈ F Q› ‹e ∈ super-ref-Syncptick (⊗3)

X-P S X-Q›
by (auto simp add: Refusals-iff F-Syncptick BOT-iff-Nil-D dest: Nil-setinterleavesptick)
from this(3 ) have ‹ev a ∈ X-P ∨ ev a ∈ X-Q›

by (auto simp add: ‹e = ev a› super-ref-Syncptick-def )
with ‹ev a ∈ P0› ‹ev a ∈ Q0› ‹([], X-P) ∈ F P› ‹([], X-Q) ∈ F Q› show

16



False
by (fold Refusals-iff ) (metis accepts-initialsD-bis ‹determ0 P› ‹determ0

Q›)
qed

next
show ‹{e} /∈ R (P [[S ]]3 Q)› if ‹a /∈ S› ‹ev a ∈ P0›
proof (rule notI )

assume ‹{e} ∈ R (P [[S ]]3 Q)›
with ‹P 6= ⊥› ‹Q 6= ⊥› obtain X-P X-Q
where ‹([], X-P) ∈ F P› ‹([], X-Q) ∈ F Q› ‹e ∈ super-ref-Syncptick (⊗3)

X-P S X-Q›
by (auto simp add: Refusals-iff F-Syncptick BOT-iff-Nil-D dest: Nil-setinterleavesptick)
from this(3 ) have ‹ev a ∈ X-P›

by (simp add: ‹e = ev a› ‹a /∈ S› super-ref-Syncptick-def )
with ‹ev a ∈ P0› ‹([], X-P) ∈ F P› show False

by (fold Refusals-iff ) (metis accepts-initialsD-bis ‹determ0 P›)
qed

next
show ‹{e} /∈ R (P [[S ]]3 Q)› if ‹a /∈ S› ‹ev a ∈ Q0›
proof (rule notI )

assume ‹{e} ∈ R (P [[S ]]3 Q)›
with ‹P 6= ⊥› ‹Q 6= ⊥› obtain X-P X-Q
where ‹([], X-P) ∈ F P› ‹([], X-Q) ∈ F Q› ‹e ∈ super-ref-Syncptick (⊗3)

X-P S X-Q›
by (auto simp add: Refusals-iff F-Syncptick BOT-iff-Nil-D dest: Nil-setinterleavesptick)
from this(3 ) have ‹ev a ∈ X-Q›

by (simp add: ‹e = ev a› ‹a /∈ S› super-ref-Syncptick-def )
with ‹ev a ∈ Q0› ‹([], X-Q) ∈ F Q› show False

by (fold Refusals-iff ) (metis accepts-initialsD-bis ‹determ0 Q›)
qed

qed
next

fix r-s r s assume ‹e = 3(r-s)› ‹r ⊗3 s = br-sc› ‹3(r) ∈ P0› ‹3(s) ∈ Q0›
show ‹{e} /∈ R (P [[S ]]3 Q)›
proof (rule notI )

assume ‹{e} ∈ R (P [[S ]]3 Q)›
with ‹P 6= ⊥› ‹Q 6= ⊥› obtain X-P X-Q

where ‹([], X-P) ∈ F P› ‹([], X-Q) ∈ F Q› ‹e ∈ super-ref-Syncptick (⊗3)
X-P S X-Q›

by (auto simp add: Refusals-iff F-Syncptick BOT-iff-Nil-D dest: Nil-setinterleavesptick)
from this(3 ) have ‹3(r) ∈ X-P›

by (simp flip: ‹r ⊗3 s = br-sc› add: ‹e = 3(r-s)› super-ref-Syncptick-def )
(metis Refusals-iff ‹([], X-Q) ∈ F Q› ‹3(s) ∈ Q0› ‹r ⊗3 s = br-sc›

accepts-initials-def-bis inj-tick-join that(2 ))
with ‹3(r) ∈ P0› ‹([], X-P) ∈ F P› show False

by (fold Refusals-iff ) (metis accepts-initialsD-bis ‹determ0 P›)
qed

qed
qed
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corollary accepts-initials-Sync:
‹determ0 P =⇒ determ0 Q =⇒ determ0 (P [[S ]] Q)›
by (metis SyncClassic.accepts-initials-Syncptick SyncClassic-is-Sync)

lemma accepts-initials-Renaming : ‹determ0 (Renaming P f g)› if ‹determ0 P›
proof −

from ‹determ0 P› have ‹P 6= ⊥› by auto
with ‹determ0 P› show ‹determ0 (Renaming P f g)›

by (simp add: accepts-initials-def initials-Renaming Refusals-iff F-Renaming
vimage-def BOT-iff-Nil-D)

(metis (full-types) accepts-initials-def Refusals-iff accepts-initials-def-bis mem-Collect-eq)
qed

lemma accepts-initials-Throw-iff : ‹determ0 (P Θ a ∈ A. Q a) ←→ determ0 P›
using D-F by (auto simp add: accepts-initials-def initials-Throw Refusals-iff

F-Throw)

lemma accepts-initials-Sliding:
‹determ0 P =⇒ determ0 Q =⇒ determ0 (P B Q) ←→
P = STOP ∨ P0 ⊆ Q0 ∧ (range tick ∩ P0 6= {} ∨ range tick ∩ Q0 = {})›
by (auto simp add: Sliding-def accepts-initials-Ndet-iff accepts-initials-Det ini-

tials-Det)

2.1.5 Characterizations with After
context After
begin

Interesting results about the fact that we can express a process with Mprefix
and (after)

lemma leFD-SKIPS-Det-Mprefix-After :
‹P vFD SKIPS {r . 3(r) ∈ P0} � (�a ∈ {a. ev a ∈ P0} → P after a)› (is ‹P
vFD ?rhs›)
proof (unfold failure-divergence-refine-def failure-refine-def divergence-refine-def ,
safe)

show ‹s ∈ D ?rhs =⇒ s ∈ D P› for s
by (auto simp add: D-Det D-SKIPS D-Mprefix D-After)

next
show ‹(s, X) ∈ F ?rhs =⇒ (s, X) ∈ F P› for s X
proof (cases s)

show ‹s = [] =⇒ (s, X) ∈ F ?rhs =⇒ (s, X) ∈ F P›
by (simp add: F-Det SKIPS-projs STOP-projs F-Mprefix

F-After disjoint-iff image-iff split: if-split-asm)
(metis initials-memI append-Nil eventptick.exhaust is-processT1-TR is-processT5-S7 ,
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metis CollectD append.left-neutral initials-def is-processT6-TR-notin)
next

show ‹s = e # s ′ =⇒ (s, X) ∈ F ?rhs =⇒ (s, X) ∈ F P› for e s ′

by (auto simp add: F-Det SKIPS-projs STOP-projs F-Mprefix
F-After disjoint-iff image-iff split: if-split-asm)

(metis CollectD append-butlast-last-id initials-def last-ConsL list.distinct(1 )
tick-T-F)

qed
qed

lemma accepts-initials-imp-eq-Mprefix-After :
‹P = ( if ∃ r . 3(r) ∈ P0 then SKIP (THE r . 3(r) ∈ P0)

else �a ∈ {e. ev e ∈ P0} → P after a)› (is ‹P = ?rhs›)
if ‹determ0 P›

proof −
from not-accepts-initials-BOT ‹determ0 P› have non-BOT : ‹P 6= ⊥› by blast
note initial-tick-iff-is-SKIP = accepts-initials-imp-initial-tick-iff-is-SKIP[OF ‹de-

term0 P›]

have ∗ : ‹?rhs = (SKIPS {r . 3(r) ∈ P0}) �
(�a ∈ {e. ev e ∈ P0} → P after a)› (is ‹?rhs = ?rhs-bis›)

by (simp, rule impI , elim exE , simp add: initial-tick-iff-is-SKIP)

show ‹P = ?rhs›
proof (rule FD-antisym)

show ‹P vFD ?rhs› by (unfold ∗) (fact leFD-SKIPS-Det-Mprefix-After)
next

show ‹?rhs vFD P›
proof (unfold failure-divergence-refine-def failure-refine-def divergence-refine-def ,

safe)
from non-BOT show ‹s ∈ D P =⇒ s ∈ D ?rhs› for s

by (cases s; simp add: D-Det D-SKIP D-STOP D-Mprefix BOT-iff-Nil-D
image-iff D-After initial-tick-iff-is-SKIP)

(metis BOT-iff-tick-D initials-memI D-T D-imp-front-tickFree eventptick.disc(2 )
eventptick.exhaust front-tickFree-Cons-iff initials-SKIP non-BOT single-

tonD)
next

have ∗ : ‹∃ r . 3(r) ∈ P0 =⇒ ∃ !r . 3(r) ∈ P0›
by (metis eventptick.inject(2 ) initial-tick-iff-is-SKIP initials-SKIP single-

tonD)
show ‹(t, X) ∈ F P =⇒ (t, X) ∈ F ?rhs› for t X
proof (cases t)

from ∗ show ‹t = [] =⇒ (t, X) ∈ F P =⇒ (t, X) ∈ F ?rhs›
by (simp add: add: F-Mprefix disjoint-iff image-iff initial-tick-iff-is-SKIP)
(metis (lifting) ‹determ0 P› Refusals-iff [of X P]

accepts-initialsD-bis[of P - X ] the-equality[of ‹λr . P = SKIP r›])
next

from ∗ show ‹t = e # t ′ =⇒ (t, X) ∈ F P =⇒ (t, X) ∈ F ?rhs› for e t ′
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by (cases e, simp-all add: F-Mprefix F-After disjoint-iff image-iff ini-
tial-tick-iff-is-SKIP)

(metis F-T eventptick.distinct(1 ) initials-SKIP initials-memI singletonD,
metis (mono-tags, lifting) F-T initial-tick-iff-is-SKIP initials-memI

the-equality)
qed

qed
qed

qed

theorem is-some-Mprefix-iff :
‹(∃A Q. P = �a ∈ A → Q a) ←→ range tick ∩ P0 = {} ∧ accepts-initials P›
for P :: ‹( ′a, ′r) processptick›

proof (intro iffI exI )
show ‹∃A Q. P = Mprefix A Q =⇒ range tick ∩ P0 = {} ∧ accepts-initials P›

by (auto simp add: initials-Mprefix image-iff disjoint-iff )
next

from accepts-initials-imp-eq-Mprefix-After
show ‹range tick ∩ P0 = {} ∧ accepts-initials P =⇒

P = �a ∈ {e. ev e ∈ P0} → P after a›
by (meson disjoint-iff rangeI )

qed

lemma tick-not-initial-imp-STOP-Ndet-Mndetprefix-After-FD:
‹range tick ∩ P0 = {} =⇒ STOP u (�a ∈ {e. ev e ∈ P0} → P after a) vFD P›
by (cases ‹P = ⊥›, solves ‹simp›,

auto simp add: refine-defs Ndet-projs F-STOP Mprefix-projs After-projs
BOT-iff-Nil-D)

(metis initials-memI F-T Int-iff empty-iff eventptick.exhaust neq-Nil-conv rangeI ,
metis initials-memI D-T disjoint-iff eventptick.exhaust neq-Nil-conv rangeI )

— With this we could obtain something about CHAOS and tF and D P = {} but
we already have this.

lemma ‹lifelock-free P ←→ D P = {} ∧ (∀ t ∈ T P. tF t)›
using lifelock-free-is-non-terminating non-terminating-is-right nonterminating-implies-div-free

by blast

lemma STOP-Ndet-SKIPS-Ndet-Mprefix-After-leF :
‹STOP u SKIPS {r . 3(r) ∈ P0} u (�a ∈ {e. ev e ∈ P0} → P after a) vF P›
(is ‹- u ?lhs1 u ?lhs2 vF P›)

proof (unfold failure-refine-def , safe)
fix t X assume ‹(t, X) ∈ F P›
then consider ‹t = []› | r where ‹t = [3(r)]› ‹r ∈ {r . 3(r) ∈ P0}›
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| a t ′ where ‹t = ev a # t ′› ‹a ∈ {a. ev a ∈ P0}›
by (cases t, simp-all) (metis F-T F-imp-front-tickFree eventptick.exhaust

front-tickFree-Cons-iff initials-memI is-ev-def )
thus ‹(t, X) ∈ F (STOP u ?lhs1 u ?lhs2 )›
proof cases

show ‹t = [] =⇒ (t, X) ∈ F (STOP u ?lhs1 u ?lhs2 )› by (simp add: F-Ndet
F-STOP)

next
fix r assume ‹t = [3(r)]›
with ‹(t, X) ∈ F P› have ‹(t, X) ∈ F (?lhs1 )›

by (auto simp add: F-SKIPS intro!: initials-memI ′ F-T )
thus ‹(t, X) ∈ F (STOP u ?lhs1 u ?lhs2 )› by (simp add: F-Ndet)

next
fix a t ′ assume ‹t = ev a # t ′›
with ‹(t, X) ∈ F P› have ‹(t, X) ∈ F ?lhs2 ›

by (auto simp add: F-Mprefix F-After intro!: initials-memI F-T )
thus ‹(t, X) ∈ F (STOP u ?lhs1 u ?lhs2 )› by (simp add: F-Ndet)

qed
qed

lemma non-BOT-imp-Mprefix-After-leD :
‹�a ∈ {e. ev e ∈ P0} → P after a vD P› (is ‹-?lhs vD P›) if ‹P 6= ⊥›

proof (unfold divergence-refine-def , rule subsetI )
fix t assume ‹t ∈ D P›
with ‹P 6= ⊥› obtain a t ′ where ‹t = ev a # t ′›

by (cases t, simp add: BOT-iff-Nil-D, simp add: BOT-iff-tick-D)
(metis D-imp-front-tickFree eventptick.exhaust front-tickFree-Cons-iff is-ev-def )

with ‹t ∈ D P› show ‹t ∈ D ?lhs›
by (auto simp add: D-Mprefix D-After intro: D-T initials-memI )

qed

lemma non-BOT-imp-STOP-Ndet-SKIPS-Ndet-Mprefix-After-leFD :
‹P 6= ⊥ =⇒ STOP u SKIPS {r . 3(r) ∈ P0} u (�a ∈ {e. ev e ∈ P0} → P after

a) vFD P›
by (rule leF-leD-imp-leFD[OF STOP-Ndet-SKIPS-Ndet-Mprefix-After-leF ])
(use non-BOT-imp-Mprefix-After-leD Ndet-D-self-right trans-D in blast)

theorem singl-initial-imp-equals-prefix-After :
‹P = (if UNIV /∈ R P then a → P after a else STOP u (a → P after a))›
if initials-is : ‹initials P = {ev a}›

proof (split if-split, intro conjI impI )
assume not-all-refusals : ‹UNIV /∈ R P›
have $ : ‹e 6= ev a =⇒ [e] /∈ T P› for e using initials-is unfolding initials-def

by auto
{ assume ‹{ev a} ∈ R P›

from is-processT5 [rule-format, of ‹[]› ‹{ev a}› P ‹UNIV − {ev a}›, folded
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Refusals-iff ,
simplified this T-F-spec, simplified, rule-format, OF $, simplified]

have ‹UNIV ∈ R P› .
with not-all-refusals have False by simp

} hence not-in-refusal: ‹{ev a} /∈ R P› by blast
show ‹P = a → P after a›

by (unfold write0-def , subst accepts-initials-imp-eq-Mprefix-After)
(solves ‹simp add: accepts-initials-def initials-is not-in-refusal›,

auto simp add: that(1 ) intro: mono-Mprefix-eq)
next

assume all-refusals : ‹¬ UNIV /∈ R P›
from tick-not-initial-imp-STOP-Ndet-Mndetprefix-After-FD[of P]
have ∗ : ‹STOP u (a → P after a) vFD P›

by (simp add: that(1 ) Mprefix-singl image-iff )
from leFD-SKIPS-Det-Mprefix-After [of P] all-refusals
have ∗∗ : ‹P vFD STOP u (a → P after a)›

by (auto simp add: refine-defs that(1 ) write0-projs Mprefix-projs
Ndet-projs STOP-projs Refusals-iff )

(meson is-processT4 subset-UNIV )
from ∗∗ ∗ show ‹P = STOP u (a → P after a)› by (fact FD-antisym)

qed

lemma ‹{ev e} /∈ R P =⇒ ev e ∈ P0›
by (simp add: Refusals-iff initials-def )
(metis is-processT1-TR is-processT5-S7 self-append-conv2 singletonD)

end

2.2 Deterministic process

2.2.1 Definition
definition deterministic :: ‹( ′a, ′r) processptick ⇒ bool› (‹determ›)

where ‹determ P ≡ ∀ s e. s @ [e] ∈ T P −→ (s, {e}) /∈ F (P)›

lemma deterministicI : ‹(
∧

t e. t @ [e] ∈ T P =⇒ (t, {e}) /∈ F (P)) =⇒ determ
P›

and deterministicD : ‹determ P =⇒ t @ [e] ∈ T P =⇒ (t, {e}) /∈ F (P)›
by (simp-all add: deterministic-def )

lemma deterministic-STOP [simp] : ‹determ STOP›
and deterministic-SKIP [simp] : ‹determ (SKIP r)›
by (simp-all add: deterministic-def T-STOP SKIP-projs)

lemma deterministic-div-free : ‹determ P =⇒ D P = {}›
by (auto simp add: deterministic-def )
(metis D-T D-imp-front-tickFree append-butlast-last-id div-butlast-when-non-tickFree-iff

front-tickFree-single is-processT7 is-processT8 tickFree-Nil)
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lemma not-deterministic-BOT [simp] : ‹¬ determ ⊥›
using BOT-iff-Nil-D deterministic-div-free by blast

2.2.2 Monotonicity
lemma mono-deterministic-F : ‹P vF Q =⇒ determ P =⇒ determ Q›

by (meson T-F-spec deterministic-def failure-refine-def subset-iff )

lemma mono-deterministic-FD: ‹P vFD Q =⇒ determ P =⇒ determ Q›
using leFD-imp-leF mono-deterministic-F by blast

lemma mono-deterministic: ‹P v Q =⇒ determ P =⇒ determ Q›
using le-approx-imp-le-ref mono-deterministic-FD by auto

lemma restriction-adm-deterministic [restriction-adm-processptick-simpset, simp]
:

‹adm↓ (λx. determ (f x))› if ‹cont↓ f ›
for f :: ‹ ′b :: restriction ⇒ ( ′a, ′r) processptick›
proof (rule restriction-adm-subst)

from ‹cont↓ f › show ‹cont↓ f › .
next

show ‹adm↓ (determ :: ( ′a, ′r) processptick ⇒ bool)›
proof (rule restriction-admI )

fix σ and Σ :: ‹( ′a, ′r) processptick›
assume ‹σ −↓→ Σ› ‹determ (σ n)› for n
show ‹determ Σ›
proof (rule deterministicI )

fix t e assume ‹t @ [e] ∈ T Σ›
from ‹σ −↓→ Σ› obtain n0

where ∗ : ‹Σ ↓ Suc (length (t @ [e])) = σ n0 ↓ Suc (length (t @ [e]))›
by (blast dest: restriction-tendstoD)

with ‹t @ [e] ∈ T Σ› have ‹t @ [e] ∈ T (σ n0 )›
by (metis T-restriction-processptick-Suc-length-iff-T )

with ‹deterministic (σ n0 )› have ‹(t, {e}) /∈ F (σ n0 )›
by (fact deterministicD)

with ∗ show ‹(t, {e}) /∈ F Σ›
by (metis F-restriction-processptick-Suc-length-iff-F

length-append-singleton restriction-related-pred)
qed

qed
qed

2.2.3 Characterization as Maximal
Some preliminary work
definition is-processT :: ‹( ′a, ′r) traceptick set ⇒ bool›

where ‹is-processT T ≡
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[] ∈ T ∧ (∀ t ∈ T . ftF t) ∧ (∀ t u. t @ u ∈ T −→ t ∈ T ) ∧
(∀ t r e. t @ [3(r)] ∈ T −→ e 6= 3(r) −→ t @ [e] /∈ T )›

typedef ( ′a, ′r) processT = ‹{T :: ( ′a, ′r) traceptick set . is-processT T}›
proof (rule exI )

show ‹{[]} ∈ {T . is-processT T}› unfolding is-processT -def by simp
qed

setup-lifting type-definition-processT

lift-definition TracesT ::
‹( ′a, ′r) processT ⇒ ( ′a, ′r) traceptick set› (‹T T ›)
is ‹λP. Rep-processT P› .

lemma ProcessT -eq-spec : ‹T = U ←→ T T T = T T U ›
by (simp add: Rep-processT -inject TracesT .rep-eq)

lemma is-processT -1 : ‹[] ∈ T T P›
and is-processT -2 : ‹s ∈ T T P =⇒ ftF s›
and is-processT -3 : ‹s @ t ∈ T T P =⇒ s ∈ T T P›
and is-processT -4 : ‹s @ [3(r)] ∈ T T P =⇒ e 6= 3(r) =⇒ s @ [e] /∈ T T P›
by (transfer , meson Rep-processT [simplified, unfolded is-processT -def ])+

lemmas is-processT -def-bis = is-processT -def [of ‹Rep-processT -›, folded TracesT .rep-eq]

lift-definition processptick-of-processT ::
‹( ′a, ′r) processT ⇒ ( ′a, ′r) processptick›
is ‹λT . ({(s, X). s ∈ T T T ∧ X ⊆ − {e. s @ [e] ∈ T T T}}, {})›
by (auto simp add: is-process-def FAILURES-def DIVERGENCES-def

intro: is-processT -1 is-processT -2 is-processT -3 )
(meson is-processT -4 )

lemma F-processptick-of-processT :
‹F (processptick-of-processT T ) = {(s, X). s ∈ T T T ∧ X ⊆ − {e. s @ [e] ∈ T T

T}}›
and D-processptick-of-processT :
‹D (processptick-of-processT T ) = {}›
and T-processptick-of-processT :
‹T (processptick-of-processT T ) = T T T ›
by (simp-all add: Failures-def FAILURES-def Divergences-def DIVERGENCES-def

Traces-def TRACES-def processptick-of-processT .rep-eq) blast

lemmas processptick-of-processT -projs = F-processptick-of-processT
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D-processptick-of-processT T-processptick-of-processT

Now the big results

lemma bij-betw-det :
‹bij-betw processptick-of-processT UNIV {P :: ( ′a, ′r) processptick. determ P}›
(is ‹bij-betw processptick-of-processT ?S1 ?S2 ›)

proof (intro bij-betw-imageI )
show ‹inj-on processptick-of-processT ?S1 ›

by (rule inj-onI ) (auto simp add: Process-eq-spec processptick-of-processT -projs
ProcessT -eq-spec)
next

show ‹processptick-of-processT ‘ ?S1 = ?S2 ›
proof (intro subset-antisym subsetI ; clarify)

show ‹determ (processptick-of-processT P)› for P :: ‹( ′a, ′r) processT ›
by (rule deterministicI ) (simp add: processptick-of-processT -projs)

next
fix P :: ‹( ′a, ′r) processptick›
assume det : ‹deterministic P›
hence ∗ : ‹Rep-processT (Abs-processT (T P)) = T P›

by (intro Abs-processT -inverse)
(simp add: deterministic-def is-processT -def is-processT2-TR,

metis T-F-spec is-processT3 is-processT6-notin singletonD)
show ‹P ∈ processptick-of-processT ‘ ?S1 ›
proof (subst image-iff , rule bexI )

show ‹P = processptick-of-processT (Abs-processT (T P))›
by (auto intro!: Process-eq-optimizedI simp add: processptick-of-processT -projs

TracesT -def ∗ det deterministic-div-free subset-iff F-T )
(meson det deterministic-def empty-subsetI insert-subset is-processT ,

use is-processT5-S7 in blast)
next

show ‹Abs-processT (T P) ∈ ?S1 › by (simp add: TracesT -def ∗)
qed

qed
qed

lemma SKIPS-is-GlobalDet-SKIP : ‹SKIPS R = �r ∈ R. SKIP r›
by (auto simp add: Process-eq-spec SKIPS-projs GlobalDet-projs SKIP-projs)

lemma SKIP-Ndet-SKIP-is-SKIP-Det-SKIP : ‹SKIP r u SKIP s = SKIP r �
SKIP s›

by (auto simp add: Process-eq-spec Det-projs Ndet-projs SKIP-projs)

theorem P-FD-some-det :
— In the generalization, since several terminations may occur after the same trace

in the initial process, we have to specify a choice.
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fixes termination-choice :: ‹( ′a, ′r) traceptick ⇒ ′r›
assumes ‹

∧
t. ∃ r . t @ [3(r)] ∈ T P =⇒ termination-choice t ∈ {r . t @ [3(r)]

∈ T P}›
defines ‹T ≡ {t ∈ T P. ∀ t ′ < t. (∃ r . t ′ @ [3(r)] ∈ T P) −→ t = t ′ @

[3(termination-choice t ′)]}›
shows ‹P vFD processptick-of-processT (Abs-processT T )›

proof (unfold failure-divergence-refine-def failure-refine-def divergence-refine-def ,
intro conjI )

show ‹D (processptick-of-processT (Abs-processT T )) ⊆ D P› by (simp add:
D-processptick-of-processT )
next

have ∗ : ‹T ∈ {T . is-processT T}›
by (auto simp add: T-def is-processT -def T-imp-front-tickFree intro: is-processT3-TR-append)
(metis prefix-prefix append-eq-first-pref-spec less-list-def nless-le self-append-conv,

metis less-self )

show ‹F (processptick-of-processT (Abs-processT T )) ⊆ F P›
proof safe

fix s X assume ‹(s, X) ∈ F (processptick-of-processT (Abs-processT T ))›
hence ‹s ∈ T P›
by (simp add: F-processptick-of-processT TracesT -def Abs-processT -inverse[OF

∗]) (simp add: T-def )
show ‹(s, X) ∈ F P›
proof (cases ‹∃ r . s @ [3(r)] ∈ T P›)

assume ‹∃ r . s @ [3(r)] ∈ T P›
hence ‹s @ [3(termination-choice s)] ∈ T P› by (metis assms(1 ) mem-Collect-eq)
with ‹(s, X) ∈ F (processptick-of-processT (Abs-processT T ))› have ‹3(termination-choice

s) /∈ X›
unfolding F-processptick-of-processT TracesT .abs-eq Abs-processT -inverse[OF

∗]
by (simp add: subset-iff T-def )
(metis prefix-snoc append-T-imp-tickFree nless-le

non-tickFree-tick not-Cons-self2 tickFree-append-iff )
with ‹s @ [3(termination-choice s)] ∈ T P› show ‹(s, X) ∈ F P›

by (metis is-processT6-TR-notin)
next

assume ‹@ r . s @ [3(r)] ∈ T P›
with ‹(s, X) ∈ F (processptick-of-processT (Abs-processT T ))› have ‹X ⊆ −

{e. s @ [e] ∈ T P}›
unfolding F-processptick-of-processT TracesT .abs-eq Abs-processT -inverse[OF

∗]
by (simp add: subset-iff T-def )
(metis prefix-snoc append-T-imp-tickFree nless-le

non-tickFree-tick not-Cons-self2 tickFree-append-iff )
with is-processT5-S7 [OF ‹s ∈ T P›] show ‹(s, X) ∈ F P› by blast

qed
qed

qed
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theorem deterministic-iff-maximal-for-leFD:
‹determ P ←→ (∀Q. P vFD Q −→ P = Q)› for P :: ‹( ′a, ′r) processptick›
— see TPC, chapter 9)

proof (intro iffI allI impI )
fix Q assume ‹determ P› and ‹P vFD Q›
from ‹P vFD Q› have no-div : ‹D P = {}› ‹D Q = {}› and F-subset : ‹F Q
⊆ F P›

by (simp-all add: ‹determ P› deterministic-div-free refine-defs)

have same-T : ‹T P = T Q›
proof (rule subset-antisym)

show ‹T P ⊆ T Q›
proof (rule ccontr)

assume ‹¬ T P ⊆ T Q›
then obtain s e where ∗ : ‹s @ [e] ∈ min-elems (T P − T Q)›

by (metis DiffD2 Diff-eq-empty-iff Nil-elem-T elem-min-elems min-elems4
rev-exhaust)

hence ‹s ∈ T Q› unfolding min-elems-def
by simp (metis DiffI T-F-spec is-processT3 less-self )

with ∗ have ‹(s, {e}) ∈ F Q›
by (metis Diff-iff elem-min-elems is-processT5-S7 singletonD)

from set-mp[OF F-subset this] have ‹(s, {e}) ∈ F P› .
moreover have ‹(s, {e}) /∈ F P› by (metis ∗ Diff-iff ‹determ P› determin-

isticD elem-min-elems)
ultimately show False by blast

qed
next

show ‹T Q ⊆ T P› by (simp add: F-subset F-subset-imp-T-subset)
qed

have same-F : ‹F P = F Q›
proof (rule subset-antisym)

show ‹F P ⊆ F Q›
proof (rule ccontr)

assume ‹¬ F P ⊆ F Q›
then obtain s X where ∗ : ‹(s, X) ∈ F P − F Q› ‹X 6= {}›

by (metis DiffI T-F-spec same-T subrelI )

have ‹e ∈ X =⇒ s @ [e] /∈ T P› for e
by (metis ∗(1 ) DiffD1 ‹determ P› deterministicD insert-Diff insert-is-Un

is-processT4 sup-ge1 )
thus False by (metis ∗(1 ) DiffE F-T is-processT5-S7 same-T )

qed
next

show ‹F Q ⊆ F P› by (fact F-subset)
qed
show ‹P = Q› by (simp add: Process-eq-spec failure-refine-def divergence-refine-def

27



no-div same-F)

next
define termination-choice where ‹termination-choice s ≡ (SOME r . s @ [3(r)]
∈ T P)› for s

have $ : ‹∃ r . s @ [3(r)] ∈ T P =⇒ termination-choice s ∈ {r . s @ [3(r)] ∈ T
P}› for s

by (simp add: termination-choice-def ) (meson someI )

define T where ‹T ≡ {s ∈ T P. ∀ s ′ < s. (∃ r . s ′ @ [3(r)] ∈ T P) −→ s = s ′

@ [3(termination-choice s ′)]}›
have ∗ : ‹T ∈ {T . is-processT T}›
by (auto simp add: T-def is-processT -def T-imp-front-tickFree intro: is-processT3-TR-append)
(metis prefix-prefix append-eq-first-pref-spec less-list-def nless-le self-append-conv,

metis less-self )
assume maximal : ‹∀Q. P vFD Q −→ P = Q›
with $ P-FD-some-det T-def have ‹P = processptick-of-processT (Abs-processT

T )› by blast
moreover have ‹Abs-processT T ∈ {P. ∀ s r e. s @ [3(r)] ∈ T T P −→ e 6=

3(r) −→ s @ [e] /∈ T T P}›
by (simp add: TracesT -def Abs-processT -inverse[OF ∗])
(metis ∗ is-processT -def mem-Collect-eq)

ultimately show ‹determ P› using bij-betwE [OF bij-betw-det] by blast
qed

lemma ‹determ P =⇒ X ∈ R P =⇒ X ⊆ − P0›
unfolding deterministic-def Refusals-iff initials-def
by auto (metis insert-Diff insert-is-Un process-charn self-append-conv2 sup-ge1 )

We have the immediate powerful corollaries.

corollary (in After) deterministic-process-eq-SKIPS-Det-Mprefix-After :
‹determ P =⇒ P = SKIPS {r . 3(r) ∈ P0} � (�a ∈ {a. ev a ∈ P0} → P after

a)›
by (simp add: deterministic-iff-maximal-for-leFD leFD-SKIPS-Det-Mprefix-After)

lemma deterministic-imp-initial-tick-iff-eq-SKIP [simp] :
‹determ P =⇒ 3(r) ∈ P0 ←→ P = SKIP r›
by (meson deterministic-iff-maximal-for-leFD dual-order .refl initial-tick-iff-FD-SKIP)

lemma deterministic-imp-constraints-on-initials :
‹determ P =⇒ P0 = {} ∨ {a. ev a ∈ P0} = {} ∧ (∃ r . P0 = {3(r)}) ∨

{a. ev a ∈ P0} 6= {} ∧ {r . 3(r) ∈ P0} = {}›
by auto (metis deterministic-imp-initial-tick-iff-eq-SKIP eventptick.exhaust ini-

tials-SKIP)
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corollary (in After) deterministic-process-eq-SKIP-or-Mprefix-After :
‹determ P =⇒ P = (if ∃ r . 3(r) ∈ P0 then SKIP (THE r . P0 = {3(r)})

else �a ∈ {a. ev a ∈ P0} → P after a)›
by (subst deterministic-process-eq-SKIPS-Det-Mprefix-After)
(auto simp add: inj-on-eq-iff [OF inj-SKIP])

2.2.4 Characterization with After
lemma (in AfterExt) deterministic-iff-accepts-initials-After trace:

‹determ P ←→ (∀ t ∈ T P. tF t −→ determ0 (P afterT t))›
proof (intro iffI ballI impI )

show ‹determ P =⇒ t ∈ T P =⇒ tF t =⇒ determ0 (P afterT t)› for t
by (rule accepts-initialsI )
(simp add: initials-def Refusals-iff T-After trace-eq F-After trace-eq determin-

istic-def )
next

show ‹determ P› if ‹∀ t∈T P. tF t −→ determ0 (P afterT t)›
proof (rule deterministicI )

fix t e assume ‹t @ [e] ∈ T P›
have ‹t ∈ T P› and ‹tF t›

by (meson prefixI ‹t @ [e] ∈ T P› is-processT3-TR)
(use ‹t @ [e] ∈ T P› append-T-imp-tickFree in blast)

with ‹t ∈ T P› that[rule-format, OF this] show ‹t @ [e] ∈ T P =⇒ (t, {e})
/∈ F P›

by (simp add: accepts-initials-def Refusals-iff initials-def T-After trace-eq
F-After trace-eq)

qed
qed

2.2.5 Operators preserving Determinism
lemma deterministic-Mprefix-iff :

‹determ (�a ∈ A → P a) ←→ (∀ a ∈ A. determ (P a))›
by (auto simp add: deterministic-def Mprefix-projs) (metis append-Cons)

corollary deterministic-write0-iff : ‹determ (a → P) ←→ determ P›
unfolding write0-def by (simp add: deterministic-Mprefix-iff )

corollary deterministic-write-iff : ‹determ (c!a → P) ←→ determ P›
unfolding write-def by (simp add: deterministic-Mprefix-iff )

corollary deterministic-inj-on-read-iff :
‹inj-on c A =⇒ determ (c?a ∈ A → P a) ←→ (∀ a ∈ A. determ (P a))›
unfolding read-def by (simp add: deterministic-Mprefix-iff )

lemma deterministic-inj-Renaming :
‹determ (Renaming P f g)› if ‹inj f › ‹inj g› ‹determ P›

proof (rule deterministicI )

29



have $ : ‹inj (map-eventptick f g)› by (simp add: eventptick.inj-map that(1 ,2 ))
fix t e
assume ‹t @ [e] ∈ T (Renaming P f g)›
then obtain t1 where ∗ : ‹t1 ∈ T P› ‹t @ [e] = map (map-eventptick f g) t1 ›

by (simp add: T-Renaming deterministic-div-free[OF ‹determ P›]) blast
have ‹(s1 , map-eventptick f g −‘ {e}) ∈ F P =⇒ t 6= map (map-eventptick f g)

s1 › for s1
proof (rule ccontr , clarify)
assume assms : ‹(s1 , map-eventptick f g −‘ {e}) ∈ F P› ‹t = map (map-eventptick

f g) s1 ›
from assms(2 ) ∗(2 ) have ‹t1 = s1 @ [inv (map-eventptick f g) e]›

by (cases t1 rule: rev-cases; simp)
(metis (mono-tags, opaque-lifting) $ inj-map-eq-map inv-f-f )

from deterministicD[OF ‹deterministic P› ∗(1 )[unfolded this]]
have ‹(s1 , {inv (map-eventptick f g) e}) /∈ F P› .
also have ‹{inv (map-eventptick f g) e} = map-eventptick f g −‘ {e}›

using inj-vimage-singleton[OF $, of e] ∗(2 )
‹t1 = s1 @ [inv (map-eventptick f g) e]› by (auto simp add: $)

finally have ‹(s1 , map-eventptick f g −‘ {e}) /∈ F P› .
with assms(1 ) show False by simp

qed
thus ‹(t, {e}) /∈ F (Renaming P f g)›

by (auto simp add: F-Renaming deterministic-div-free[OF ‹determ P›])
qed

lemma deterministic-bij-Renaming-iff :
‹determ (Renaming P f g) ←→ determ P› if ‹bij f › and ‹bij g›

proof (rule iffI )
show ‹determ (Renaming P f g) =⇒ determ P›

by (metis Renaming-inv bij-betw-def deterministic-iff-maximal-for-leFD
mono-Renaming-FD ‹bij f › ‹bij g›)

next
show ‹determ P =⇒ determ (Renaming P f g)›

by (simp add: bij-is-inj deterministic-inj-Renaming ‹bij f › ‹bij g›)
qed

lemma deterministic-Throw : ‹determ (P Θ a ∈ A. Q a)›
if ‹determ P› ‹

∧
a. a ∈ A =⇒ a ∈ α(P) =⇒ determ (Q a)›

proof (subst Throw-is-restrictable-on-events-of )
show ‹determ (Throw P (A ∩ α(P)) Q)›
proof (rule deterministicI )

fix t e assume ‹t @ [e] ∈ T (P Θ a ∈ (A ∩ α(P)). Q a)›
moreover from ‹determ P› have ‹D P = {}›

by (simp add: deterministic-div-free)
ultimately consider
(traceL) ‹t @ [e] ∈ T P› ‹e /∈ ev ‘ (A ∩ α(P))› ‹set t ∩ ev ‘ (A ∩ α(P)) =

{}›
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| (traceR) t1 a t2 where ‹t @ [e] = t1 @ ev a # t2 › ‹t1 @ [ev a] ∈ T P›
‹set t1 ∩ ev ‘ (A ∩ α(P)) = {}› ‹a ∈ A› ‹a ∈ α(P)› ‹t2 ∈ T (Q a)›

unfolding T-Throw by auto
thus ‹(t, {e}) /∈ F (P Θ a ∈ (A ∩ α(P)). Q a)›
proof cases

case traceL
from traceL(1 ) ‹determ P› have ‹(t, {e}) /∈ F P›

by (simp add: deterministicD)
with traceL(3 ) show ‹(t, {e}) /∈ F (P Θ a ∈ (A ∩ α(P)). Q a)›

by (auto simp add: F-Throw ‹D P = {}›)
next

case traceR
from traceR(1 ) consider ‹t2 = []› ‹t = t1 › ‹e = ev a›
| t2 ′ where ‹t2 = t2 ′ @ [e]› ‹t = t1 @ ev a # t2 ′›
by (cases t2 rule: rev-cases) simp-all

thus ‹(t, {e}) /∈ F (P Θ a ∈ (A ∩ α(P)). Q a)›
proof cases

assume ‹t2 = []› ‹t = t1 › ‹e = ev a›
from ‹determ P› traceR(2 ) have ‹(t1 , {ev a}) /∈ F P›

by (simp add: deterministicD)
with traceR(3 ) show ‹(t, {e}) /∈ F (P Θ a ∈ (A ∩ α(P)). Q a)›

by (auto simp add: ‹t = t1 › ‹e = ev a› ‹D P = {}› F-Throw)
next

fix t2 ′ assume ‹t2 = t2 ′ @ [e]› ‹t = t1 @ ev a # t2 ′›
from traceR(4 , 5 ) have ‹determ (Q a)›

by (rule ‹
∧

a. a ∈ A =⇒ a ∈ α(P) =⇒ determ (Q a)›)
with ‹t2 = t2 ′ @ [e]› have ‹(t2 ′, {e}) /∈ F (Q a)›

using traceR(6 ) by (simp add: deterministicD)
with traceR(3−5 ) show ‹(t, {e}) /∈ F (P Θ a ∈ (A ∩ α(P)). Q a)›

by (simp add: ‹t = t1 @ ev a # t2 ′› ‹D P = {}› F-Throw Throw-T-third-clause-breaker)
qed

qed
qed

qed

lemma T-snoc-tick-imp-no-continuation-if-deterministic :
‹u = [] ∧ e = 3(r)› if ‹determ P› ‹t @ u @ [e] ∈ T P› ‹t @ [3(r)] ∈ T P›

proof −
have ∗ : ‹t @ [e] ∈ T P =⇒ e = 3(r)› for e

by (metis deterministicD is-processT6-TR-notin singletonD that(1 , 3 ))
show ‹u = [] ∧ e = 3(r)›
proof (cases u)

from ∗ that(2 ) show ‹u = [] =⇒ u = [] ∧ e = 3(r)› by auto
next

fix e ′ u ′

assume ‹u = e ′ # u ′›
with that(2 ) have ‹t @ [e ′] ∈ T P›
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by simp (metis F-T T-F append.assoc append-Cons append-Nil is-processT3 )
hence False
by (metis ∗ T-imp-front-tickFree ‹u = e ′# u ′› eventptick.disc(2 ) front-tickFree-append-iff

not-Cons-self snoc-eq-iff-butlast that(2 ) tickFree-Cons-iff )
thus ‹u = [] ∧ e = 3(r)› by simp

qed
qed

lemma T-snoc-ev-imp-no-tick-continuation-if-deterministic :
‹u 6= [] ∧ is-ev (hd u) ∨ is-ev e› if ‹determ P› ‹t @ u @ [e] ∈ T P› ‹t @ [ev a]
∈ T P›
proof −

have ‹t @ [e] ∈ T P =⇒ is-ev e› for e
by (metis T-snoc-tick-imp-no-continuation-if-deterministic append.left-neutral

eventptick.discI (1 ) eventptick.exhaust that(1 ,3 ))
thus ‹u 6= [] ∧ is-ev (hd u) ∨ is-ev e›

by (metis T-imp-front-tickFree append-eq-appendI front-tickFree-append-iff
list.exhaust-sel not-Cons-self snoc-eq-iff-butlast that(2 ) tickFree-Cons-iff )

qed

lemma deterministic-Seqptick : ‹determ (P ;3 Q)›
if ‹determ P› ‹

∧
r . r ∈ 3s(P) =⇒ determ (Q r)›

proof (rule deterministicI )
fix t e assume ‹t @ [e] ∈ T (P ;3 Q)›
moreover from ‹determ P› have ‹D P = {}›

by (simp add: deterministic-div-free)
ultimately consider a u where ‹e = ev a› ‹t = map (ev ◦ of-ev) u› ‹u @ [ev

a] ∈ T P› ‹tF u›
| u v r where ‹t @ [e] = map (ev ◦ of-ev) u @ v› ‹u @ [3(r)] ∈ T P› ‹tF u›

‹v ∈ T (Q r)› ‹v 6= []›
by (auto simp add: Seqptick-projs append-eq-map-conv append-eq-append-conv2

Cons-eq-append-conv)
(metis Nil-is-append-conv append.right-neutral append-Nil not-Cons-self , blast,
metis Cons-eq-appendI append-eq-appendI eq-Nil-appendI eventptick.collapse(1 )

is-processT3-TR-append)
thus ‹(t, {e}) /∈ F (P ;3 Q)›
proof cases

show ‹e = ev a =⇒ t = map (ev ◦ of-ev) u =⇒ u @ [ev a] ∈ T P =⇒ tF u
=⇒ (t, {e}) /∈ F (P ;3 Q)› for a u

by (auto simp add: tickFree-map-ev-of-ev-inj ‹D P = {}› Seqptick-projs
ref-Seqptick-def map-eq-append-conv)

(meson deterministicD empty-subsetI insertI1 insert-subset is-processT4
‹determ P›,

meson T-snoc-tick-imp-no-continuation-if-deterministic eventptick.distinct(1 )
‹determ P›)

next
fix u v r assume ‹t @ [e] = map (ev ◦ of-ev) u @ v› ‹u @ [3(r)] ∈ T P› ‹tF
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u› ‹v ∈ T (Q r)› ‹v 6= []›
from this(1 , 5 ) obtain v ′ where ‹v = v ′ @ [e]› ‹t = map (ev ◦ of-ev) u @ v ′›

by (cases v rule: rev-cases) simp-all
from ‹u @ [3(r)] ∈ T P› T-snoc-tick-imp-no-continuation-if-deterministic[OF

‹determ P›]
have ∗ : ‹map (ev ◦ of-ev) u @ v ′ = map (ev ◦ of-ev) w @ x ∧ w @ [3(s)] ∈

T P =⇒ w = u ∧ s = r› for w x s
by (auto simp add: append-eq-append-conv2 map-eq-append-conv append-eq-map-conv

append-T-imp-tickFree
dest!: tickFree-map-ev-of-ev-inj[THEN iffD1 , rotated 2 ]) blast+

have ‹determ (Q r)›
by (metis ‹D P = {}› ‹u @ [3(r)] ∈ T P› empty-iff strict-ticks-of-memI

that(2 ))
with ‹v = v ′ @ [e]› ‹v ∈ T (Q r)›
have ‹(v ′, {e}) /∈ F (Q r)› by (simp add: deterministicD)
{ fix v ′′ assume ‹(u @ v ′′, ref-Seqptick {e}) ∈ F P› ‹tF v ′′› ‹v ′ = map (ev ◦

of-ev) v ′′›
have ‹v ′′ = []›
by (metis F-T F-imp-front-tickFree T-snoc-tick-imp-no-continuation-if-deterministic

‹(u @ v ′′, ref-Seqptick {e}) ∈ F P›
‹tF v ′′› ‹u @ [3(r)] ∈ T P› front-tickFree-charn front-tickFree-nonempty-append-imp

non-tickFree-tick ‹determ P›)
with ‹(u @ v ′′, ref-Seqptick {e}) ∈ F P› have ‹(u, {3(r)}) ∈ F P›

by (simp add: ref-Seqptick-def )
(meson UNIV-I UnCI empty-subsetI insert-subset is-processT4 rev-image-eqI )

hence False by (simp add: ‹u @ [3(r)] ∈ T P› deterministicD ‹determ P›)
}
with ∗ ‹(v ′, {e}) /∈ F (Q r)› show ‹(t, {e}) /∈ F (P ;3 Q)›

by (auto simp add: Seqptick-projs ‹D P = {}› ‹t = map (ev ◦ of-ev) u @ v ′›
append-eq-map-conv ‹tF u›

dest!: tickFree-map-ev-of-ev-inj[THEN iffD1 , rotated 2 ])+
qed

qed

corollary deterministic-Seq : ‹determ P =⇒ determ Q =⇒ determ (P ; Q)›
by (metis Seqptick-const deterministic-Seqptick)

lemma (in After) initial-imp-deterministic-After :
‹ev e ∈ P0 =⇒ determ P =⇒ determ (P after e)›
unfolding deterministic-def by (simp add: After-projs)

lemma (in AfterExt) initial-imp-deterministic-After tick:
‹e ∈ P0 =⇒ (case e of 3(r) ⇒ determ (Ω P r)) =⇒
determ P =⇒ determ (P after3 e)›

unfolding deterministic-def by (cases e) (simp-all add: T-After tick F-After tick)
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2.2.6 Operators not (always) preserving Determinism
lemma deterministic-imp-accepts-initials : ‹determ P =⇒ determ0 P›

by (simp add: Refusals-iff accepts-initials-def deterministic-def initials-def )

corollary deterministic-SKIPS-iff : ‹determ (SKIPS R) ←→ R = {} ∨ (∃ r . R =
{r})›

by (metis SKIPS-empty SKIPS-singl-is-SKIP accepts-initials-SKIPS-iff
deterministic-SKIP deterministic-STOP deterministic-imp-accepts-initials)

lemma deterministic-Det:
‹determ P =⇒ determ Q =⇒
range tick ∩ P0 ∩ Q0 6= {} ∨ P0 ∩ Q0 = {} ∧ range tick ∩ (P0 ∪ Q0) = {}

=⇒ determ (P � Q)›
proof (elim disjE conjE)

show ‹determ P =⇒ determ Q =⇒ range tick ∩ P0 ∩ Q0 6= {} =⇒ determ (P
� Q)›

by (auto simp add: deterministic-def Det-projs SKIP-projs)
next

show ‹[[determ P; determ Q; P0 ∩ Q0 = {}; range tick ∩ (P0 ∪ Q0) = {}]] =⇒
determ (P � Q)›

by (auto simp add: deterministic-def Det-projs disjoint-iff deterministic-div-free
initials-def )

(metis F-T append-Cons append-Nil is-processT3-TR-append neq-Nil-conv)+
qed

2.3 Application to Operational Semantics
lemma (in OpSemFD) tickFree-trace-trans-preserves-deterministic:

‹(P :: ( ′a, ′r) processptick) FD ∗ t Q =⇒ tF t =⇒ deterministic P =⇒ deter-
ministic Q›
proof (induct rule: trace-trans.induct)

show ‹P FD τ P ′ =⇒ deterministic P =⇒ deterministic P ′› for P P ′ :: ‹( ′a,
′r) processptick›

using deterministic-iff-maximal-for-leFD by blast
next

show ‹tF [3(r)] =⇒ deterministic P›
for r :: ‹ ′r› and P :: ‹( ′a, ′r) processptick› by simp

next
fix a P P ′ and t :: ‹( ′a, ′r) traceptick› and P ′′ :: ‹( ′a, ′r) processptick›
assume ‹P FD a P ′› ‹tF (ev a # t)› ‹deterministic P›

‹tF t =⇒ deterministic P ′ =⇒ deterministic P ′′›
from ‹P FD a P ′› ‹deterministic P› have ‹deterministic P ′›
using deterministic-iff-maximal-for-leFD ev-trans-is initial-imp-deterministic-After

by blast
with ‹tF t =⇒ deterministic P ′ =⇒ deterministic P ′′› ‹tickFree (ev a # t)›
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show ‹deterministic P ′′› by simp
qed

lemma deterministic-imp-Refusals-iff : ‹deterministic P =⇒ X ∈ R P ←→ X ∩
P0 = {}›

by (auto simp add: Refusals-iff initials-def deterministic-def disjoint-iff )
(metis append-Nil empty-subsetI insert-subset process-charn,

metis Nil-elem-T append-Nil is-processT5-S7 )

lemma (in OpSemFD) deterministic-F-trace-trans-reality-check:
‹deterministic P =⇒ tF t =⇒
(t, X) ∈ F (P :: ( ′a, ′r) processptick) ←→ (∃Q. (P FD ∗t Q) ∧ X ∩ Q0 =

{})›
by (simp add: F-trace-trans-reality-check)
(metis deterministic-imp-Refusals-iff tickFree-trace-trans-preserves-deterministic)

lemma ‹¬ deterministic ((a → SKIP undefined) � SKIP undefined)›
by (metis Det-commute FD-iff-eq-Ndet Sliding-SKIP Sliding-def Un-insert-right

initials-write0 insertI1
singletonD deterministic-iff-maximal-for-leFD eventptick.simps(4 ) initials-Det

initials-SKIP)
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Chapter 3

ProcOmata: Functional
Automata embedded into
CSP Processes

We will often have to perform induction on both the list of automata and
the list of states, provided that they have the same length.
lemma induct-2-lists012 [consumes 1 , case-names Nil single Cons] :

‹[[length xs = length ys; P [] [];
∧

x1 y1 . P [x1 ] [y1 ];∧
x1 x2 xs y1 y2 ys. length xs = length ys =⇒ P xs ys =⇒

P (x2 # xs) (y2 # ys) =⇒ P (x1 # x2 # xs) (y1 # y2 # ys)]]
=⇒ P xs ys›

by (induct xs arbitrary: ys rule: induct-list012 )
(auto simp add: Suc-length-conv length-Suc-conv)

lemma nat-induct-012 [case-names 0 1 2 Suc]:
‹[[P 0 ; P (Suc 0 ); P (Suc (Suc 0 ));

∧
k. Suc (Suc 0 ) ≤ k =⇒ P k =⇒ P (Suc

k)]] =⇒ P n›
by (metis One-nat-def Suc-1 less-2-cases-iff linorder-not-le nat-induct)

The following results will be moved to Restriction_Spaces in the future.
lemma restriction-shift-iterated :

‹restriction-shift (f ^^ k) (int k ∗ m)›
if ‹restriction-shift f m› for f :: ‹ ′a ⇒ ′a :: restriction-space›

proof (induct k)
show ‹restriction-shift (f ^^ 0 ) (int 0 ∗ m)›

by (simp add: restriction-shiftI )
next

fix k assume ∗ : ‹restriction-shift (f ^^ k) (int k ∗ m)›
have ‹restriction-shift (f ^^ Suc k) (int (Suc k) ∗ m) ←→

restriction-shift (λx. f ((f ^^ k) x)) (int k ∗ m + m)›
by (simp add: comp-def distrib-left mult.commute add.commute)

also have . . . by (fact restriction-shift-comp-restriction-shift[OF that ∗])
finally show ‹restriction-shift (f ^^ Suc k) (int (Suc k) ∗ m)› .
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qed

lemma non-destructive-iterated :
‹non-destructive f =⇒ non-destructive (f ^^ k)›
for f :: ‹ ′a ⇒ ′a :: restriction-space›
by (metis mult.commute mult-zero-left non-destructive-def non-destructive-on-def

restriction-shift-def restriction-shift-iterated)

lemma constructive-iterated :
‹constructive (f ^^ k)› if ‹0 < k› ‹constructive f ›

for f :: ‹ ′a ⇒ ′a :: restriction-space›
proof −

from ‹constructive f › have ‹restriction-shift f 1 ›
unfolding constructive-def constructive-on-def restriction-shift-def by blast

with restriction-shift-iterated
have ‹restriction-shift (f ^^ k) (int k ∗ 1 )› .
hence ‹restriction-shift (f ^^ k) (int k)› by simp
with ‹0 < k› show ‹constructive (f ^^ k)›

by (metis One-nat-def constructive-def constructive-on-def
less-eq-Suc-le nat-int-comparison(3 ) of-nat-1-eq-iff
restriction-shift-def restriction-shift-imp-restriction-shift-le )

qed

lemma restriction-fix-unique-iterated :
‹[[0 < k; constructive f ; (f ^^ k) x = x]] =⇒ (υ x. f x) = x›
by (metis constructive-iterated funpow-swap1 restriction-fix-unique)

lemma restriction-fix-iterated :
‹0 < k =⇒ constructive f =⇒ (υ x. (f ^^ k) x) = (υ x. f x)›
by (metis constructive-iterated restriction-fix-eq restriction-fix-unique-iterated)

corollary restriction-fix-ind-iterated
[consumes 1 , case-names constructive adm base step]:
‹P (υ x. f x)› if ‹0 < k› ‹constructive f › ‹adm↓ P› ‹P x› ‹

∧
x. P x =⇒ P ((f ^^

k) x)›
proof −

from constructive-iterated that(1 , 2 ) have ‹constructive (f ^^ k)› .
from restriction-fix-ind[OF this that(3−5 )] have ‹P (υ x. (f ^^ k) x)› .
also from restriction-fix-iterated that(1 , 2 ) have ‹(υ x. (f ^^ k) x) = (υ x. f x)›

.
finally show ‹P (υ x. f x)› .

qed
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3.1 Definitions
3.1.1 Non-deterministic and deterministic Automata
unbundle option-type-syntax

type-synonym ( ′σ, ′a) enabl = ‹ ′σ ⇒ ′a set›
type-synonym ( ′σ, ′a, ′σ ′) trans = ‹ ′σ ⇒ ′a ⇒ ′σ ′›
type-synonym ( ′σ, ′a) transd = ‹( ′σ, ′a, ′σ option) trans›
type-synonym ( ′σ, ′a) transnd = ‹( ′σ, ′a, ′σ set) trans›

record ( ′σ, ′a, ′σ ′, ′r) A =
τ :: ‹( ′σ, ′a, ′σ ′) trans›
ω :: ‹ ′σ ⇒ ′r›

type-synonym ( ′σ, ′a, ′r) Ad = ‹( ′σ, ′a, ′σ option, ′r option) A›
type-synonym ( ′σ, ′a, ′r , ′α) Ad-scheme = ‹( ′σ, ′a, ′σ option, ′r option, ′α)
A-scheme›
type-synonym ( ′σ, ′a, ′r) And = ‹( ′σ, ′a, ′σ set, ′r set) A›
type-synonym ( ′σ, ′a, ′r , ′α) And-scheme = ‹( ′σ, ′a, ′σ set, ′r set, ′α) A-scheme›

3.1.2 Enableness
consts ε :: ‹( ′σ, ′a, ′σ ′, ′r ′, ′α) A-scheme ⇒ ( ′σ, ′a) enabl›
overloading
εd ≡ ‹ε :: ( ′σ, ′a, ′σ option, ′r ′, ′α) A-scheme ⇒ ( ′σ, ′a) enabl›
εnd ≡ ‹ε :: ( ′σ, ′a, ′σ set, ′r ′, ′α) A-scheme ⇒ ( ′σ, ′a) enabl›

begin
fun εd :: ‹( ′σ, ′a, ′σ option, ′r ′, ′α) A-scheme ⇒ ( ′σ, ′a) enabl›

where ‹εd A σ = {a. τ A σ a 6= ♦}›
fun εnd :: ‹( ′σ, ′a, ′σ set, ′r ′, ′α) A-scheme ⇒ ( ′σ, ′a) enabl›

where ‹εnd A σ = {a. τ A σ a 6= {}}›
end

lemmas ε-simps[simp del] = εd.simps εnd.simps

3.1.3 States allowing Termination
consts % :: ‹( ′σ, ′a, ′σ ′, ′r ′, ′α) A-scheme ⇒ ′σ set›
overloading
%d ≡ ‹% :: ( ′σ, ′a, ′σ ′, ′r option, ′α) A-scheme ⇒ ′σ set›
%nd ≡ ‹% :: ( ′σ, ′a, ′σ ′, ′r set, ′α) A-scheme ⇒ ′σ set›

begin
fun %d :: ‹( ′σ, ′a, ′σ ′, ′r option, ′α) A-scheme ⇒ ′σ set›

where ‹%d A = {σ. ω A σ 6= ♦}›
fun %nd :: ‹( ′σ, ′a, ′σ ′, ′r set, ′α) A-scheme ⇒ ′σ set›

where ‹%nd A = {σ. ω A σ 6= {}}›
end

lemmas %-simps[simp del] = %d.simps %nd.simps
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3.1.4 Reachability
inductive-set Rd :: ‹( ′σ, ′a, ′r , ′α) Ad-scheme ⇒ ′σ ⇒ ′σ set›

for A :: ‹( ′σ, ′a, ′r , ′α) Ad-scheme› and σ :: ′σ
where init : ‹σ ∈ Rd A σ›
| step : ‹σ ′ ∈ Rd A σ =⇒ bσ ′′c = τ A σ ′ a =⇒ σ ′′ ∈ Rd A σ›

inductive-set Rnd :: ‹( ′σ, ′a, ′r , ′α) And-scheme ⇒ ′σ ⇒ ′σ set›
for A :: ‹( ′σ, ′a, ′r , ′α) And-scheme› and σ :: ′σ
where init : ‹σ ∈ Rnd A σ›
| step : ‹σ ′ ∈ Rnd A σ =⇒ σ ′′ ∈ τ A σ ′ a =⇒ σ ′′ ∈ Rnd A σ›

lemma Rd-trans: ‹σ ′′ ∈ Rd A σ ′ =⇒ σ ′ ∈ Rd A σ =⇒ σ ′′ ∈ Rd A σ›
by (induct rule: Rd.induct, simp add: Rd.init) (meson Rd.step)

lemma Rnd-trans: ‹σ ′′ ∈ Rnd A σ ′ =⇒ σ ′ ∈ Rnd A σ =⇒ σ ′′ ∈ Rnd A σ›
by (induct rule: Rnd.induct, simp add: Rnd.init) (meson Rnd.step)

3.1.5 Morphisms

Our morphisms are defined considering that, except from τ , the fields remain
unchanged.

definition from-det-to-ndet ::
‹( ′σ, ′a, ′r , ′α) Ad-scheme ⇒ ( ′σ, ′a, ′r , ′α) And-scheme›
where ‹from-det-to-ndet A ≡

(|τ = λσ a. case τ A σ a of bσ ′c ⇒ {σ ′} | ♦ ⇒ {},
ω = λσ. case ω A σ of brc ⇒ {r} | ♦ ⇒ {}, . . . = more A|)›

definition from-ndet-to-det ::
‹( ′σ, ′a, ′r , ′α) And-scheme ⇒ ( ′σ, ′a, ′r , ′α) Ad-scheme›
where ‹from-ndet-to-det A ≡

(|τ = λσ a. if τ A σ a = {} then ♦ else bTHE σ ′. σ ′ ∈ τ A σ ac,
ω = λσ. if ω A σ = {} then ♦ else bTHE r . r ∈ ω A σc, . . . = more A|)›

definition from-σ-to-σsd ::
‹( ′σ, ′a, ′r , ′α) Ad-scheme ⇒ ( ′σ list, ′a, ′r , ′α) Ad-scheme›
where ‹from-σ-to-σsd A ≡

(|τ = λσs a. case τ A (hd σs) a of bσ ′c ⇒ b[σ ′]c | ♦ ⇒ ♦,
ω = λσs. ω A (hd σs), . . . = more A|)›

definition from-σ-to-σsnd ::
‹( ′σ, ′a, ′r , ′α) And-scheme ⇒ ( ′σ list, ′a, ′r , ′α) And-scheme›
where ‹from-σ-to-σsnd A ≡

(|τ = λσs a. {[σ ′] |σ ′. σ ′ ∈ τ A (hd σs) a},
ω = λσs. ω A (hd σs), . . . = more A|)›

definition from-σs-to-σd ::
‹( ′σ list, ′a, ′r , ′α) Ad-scheme ⇒ ( ′σ, ′a, ′r , ′α) Ad-scheme›
where ‹from-σs-to-σd A ≡

(|τ = λσ a. case τ A [σ] a of bσs ′c ⇒ bhd σs ′c | ♦ ⇒ ♦,
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ω = λσ. ω A [σ], . . . = more A|)›
definition from-σs-to-σnd ::

‹( ′σ list, ′a, ′r , ′α) And-scheme ⇒ ( ′σ, ′a, ′r , ′α) And-scheme›
where ‹from-σs-to-σnd A ≡

(|τ = λσ a. {hd σs ′ |σs ′. σs ′ ∈ τ A [σ] a},
ω = λσ. ω A [σ], . . . = more A|)›

definition from-singl-to-listd ::
‹( ′σ, ′a, ′r , ′α) Ad-scheme ⇒ ( ′σ list, ′a, ′r list, ′α) Ad-scheme›
where ‹from-singl-to-listd A ≡

(|τ = λσs a. case τ A (hd σs) a of bσ ′c ⇒ b[σ ′]c | ♦ ⇒ ♦,
ω = λσs. case ω A (hd σs) of brc ⇒ b[r ]c | ♦ ⇒ ♦, . . . = more A|)›

definition from-singl-to-listnd ::
‹( ′σ, ′a, ′r , ′α) And-scheme ⇒ ( ′σ list, ′a, ′r list, ′α) And-scheme›
where ‹from-singl-to-listnd A ≡

(|τ = λσs a. {[σ ′] |σ ′. σ ′ ∈ τ A (hd σs) a},
ω = λσs. {[r ] |r . r ∈ ω A (hd σs)}, . . . = more A|)›

definition from-list-to-singld ::
‹( ′σ list, ′a, ′r list, ′α) Ad-scheme ⇒ ( ′σ, ′a, ′r , ′α) Ad-scheme›
where ‹from-list-to-singld A ≡

(|τ = λσ a. case τ A [σ] a of bσs ′c ⇒ bhd σs ′c | ♦ ⇒ ♦,
ω = λσ. case ω A [σ] of brsc ⇒ bhd rsc | ♦ ⇒ ♦, . . . = more A|)›

definition from-list-to-singlnd ::
‹( ′σ list, ′a, ′r list, ′α) And-scheme ⇒ ( ′σ, ′a, ′r , ′α) And-scheme›
where ‹from-list-to-singlnd A ≡

(|τ = λσ a. {hd σs ′ |σs ′. σs ′ ∈ τ A [σ] a},
ω = λσ. {hd rs |rs. rs ∈ ω A [σ]}, . . . = more A|)›

lemmas det-ndet-conv-defs = from-det-to-ndet-def from-ndet-to-det-def
and σ-σs-conv-defs = from-σ-to-σsd-def from-σ-to-σsnd-def
from-σs-to-σd-def from-σs-to-σnd-def
and singl-list-conv-defs = from-singl-to-listd-def from-singl-to-listnd-def
from-list-to-singld-def from-list-to-singlnd-def

bundle functional-automata-morphisms-syntax begin

notation from-det-to-ndet (‹〈〈-〉〉d↪→nd› [0 ])
notation from-ndet-to-det (‹〈〈-〉〉nd d› [0 ])
notation from-σ-to-σsd (‹d〈〈-〉〉σ↪→σs› [0 ])
notation from-σ-to-σsnd (‹nd〈〈-〉〉σ↪→σs› [0 ])
notation from-σs-to-σd (‹d〈〈-〉〉σs σ› [0 ])
notation from-σs-to-σnd (‹nd〈〈-〉〉σs σ› [0 ])
notation from-singl-to-listd (‹d〈〈-〉〉singl↪→list› [0 ])
notation from-singl-to-listnd (‹nd〈〈-〉〉singl↪→list› [0 ])
notation from-list-to-singld (‹d〈〈-〉〉list singl› [0 ])
notation from-list-to-singlnd (‹nd〈〈-〉〉list singl› [0 ])
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end

unbundle functional-automata-morphisms-syntax

lemma morphisms-A-scheme-more-simps [simp] :
‹more 〈〈A〉〉d↪→nd = more A› ‹more 〈〈B〉〉nd d = more B›
‹more d〈〈C 〉〉σ↪→σs = more C › ‹more nd〈〈D〉〉σ↪→σs = more D›
‹more d〈〈E〉〉σs σ = more E› ‹more nd〈〈F〉〉σs σ = more F›
‹more d〈〈G〉〉singl↪→list = more G› ‹more nd〈〈H 〉〉singl↪→list = more H ›
‹more d〈〈I 〉〉list singl = more I › ‹more nd〈〈J 〉〉list singl = more J ›
by (simp-all add: det-ndet-conv-defs σ-σs-conv-defs singl-list-conv-defs)

3.1.6 Generic update Functions
definition update-both where ‹update-both A0 A1 σ0 σ1 e f ≡ f (τ A0 σ0 e) (τ
A1 σ1 e)›

definition update-left where ‹update-left A0 σ0 σ1 e f g ≡ f (τ A0 σ0 e) (g σ1)›

definition update-right where ‹update-right A1 σ0 σ1 e f g ≡ f (g σ0) (τ A1 σ1

e)›

lemmas update-defs[simp] = update-both-def update-left-def update-right-def

abbreviation f-up-set where ‹f-up-set f B C ≡ {f s t| s t. (s, t) ∈ B × C}›

abbreviation f-up-opt where ‹f-up-opt f s t ≡ case s of ♦⇒ ♦ | bs ′c ⇒ map-option
(f s ′) t›

3.1.7 Assumptions on Automata
definition finite-trans :: ‹( ′σ, ′a, ′r , ′α) And-scheme ⇒ bool›

where ‹finite-trans A ≡ ∀σ a. finite (τ A σ a)›

lemma finite-trans-morphisms-simps[simp]:
‹finite-trans 〈〈A〉〉d↪→nd›
‹finite-trans B =⇒ finite-trans nd〈〈B〉〉σ↪→σs›
‹finite-trans C =⇒ finite-trans nd〈〈C 〉〉σs σ›
‹finite-trans D =⇒ finite-trans nd〈〈D〉〉singl↪→list›
‹finite-trans E =⇒ finite-trans nd〈〈E〉〉list singl›
unfolding det-ndet-conv-defs σ-σs-conv-defs singl-list-conv-defs finite-trans-def
by (simp-all add: option.case-eq-if )

definition at-most-1-elem :: ‹( ′σ, ′a, ′r , ′α) And-scheme ⇒ bool›
where ‹at-most-1-elem A ≡

(∀σ a. τ A σ a = {} ∨ (∃σ ′. τ A σ a = {σ ′})) ∧
(∀σ. ω A σ = {} ∨ (∃ r . ω A σ = {r}))›
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lemma at-most-1-elem-def-bis :
‹at-most-1-elem A ←→ (∀σ a. ∃σ ′. τ A σ a ⊆ {σ ′}) ∧ (∀σ. ∃ r . ω A σ ⊆ {r})›
by (auto simp add: at-most-1-elem-def subset-iff )
(((metis empty-iff singleton-iff )+)[2 ],
((metis equals0D is-singletonI ′ is-singleton-some-elem)+)[2 ])

lemma at-most-1-elemI :
‹[[
∧
σ a. τ A σ a = {} ∨ (∃σ ′. τ A σ a = {σ ′});∧
σ. ω A σ = {} ∨ (∃ r . ω A σ = {r})]] =⇒ at-most-1-elem A›

by (simp add: at-most-1-elem-def )

lemma at-most-1-elemE :
‹[[τ A σ a = {} =⇒ thesis;

∧
σ ′. τ A σ a = {σ ′} =⇒ thesis]] =⇒ thesis›

‹[[ω A σ = {} =⇒ thesis;
∧

r . ω A σ = {r} =⇒ thesis]] =⇒ thesis›
if ‹at-most-1-elem A›
by (meson at-most-1-elem-def ‹at-most-1-elem A›)+

definition at-most-1-elem-trans :: ‹( ′σ, ′a, ′r , ′α) And-scheme ⇒ bool›
where ‹at-most-1-elem-trans A ≡ ∀σ a. τ A σ a = {} ∨ (∃σ ′. τ A σ a = {σ ′})›

lemma at-most-1-elem-trans-def-bis :
‹at-most-1-elem-trans A ←→ (∀σ a. ∃σ ′. τ A σ a ⊆ {σ ′})›
by (auto simp add: at-most-1-elem-trans-def subset-iff )
(metis empty-iff singleton-iff ,

metis equals0D is-singletonI ′ is-singleton-some-elem)

lemma at-most-1-elem-transI :
‹[[
∧
σ a. τ A σ a = {} ∨ (∃σ ′. τ A σ a = {σ ′})]] =⇒ at-most-1-elem-trans A›

by (simp add: at-most-1-elem-trans-def )

lemma at-most-1-elem-transE :
‹[[τ A σ a = {} =⇒ thesis;

∧
σ ′. τ A σ a = {σ ′} =⇒ thesis]] =⇒ thesis›

if ‹at-most-1-elem-trans A›
by (meson at-most-1-elem-trans-def ‹at-most-1-elem-trans A›)+

lemma at-most-1-elem-imp-at-most-1-elem-trans :
‹at-most-1-elem A =⇒ at-most-1-elem-trans A›
by (simp add: at-most-1-elem-def at-most-1-elem-trans-def )

definition length-1-transd :: ‹( ′σ list, ′a, ′r , ′α) Ad-scheme ⇒ bool›
where ‹length-1-transd A ≡

∀σs a. case τ A σs a of ♦ ⇒ True | bσs ′c ⇒ length σs ′ = Suc 0 ›

lemma length-1-transdI :
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‹[[
∧
σs a σs ′. τ A σs a = bσs ′c =⇒ length σs ′ = Suc 0 ]] =⇒ length-1-transd A›

by (simp add: length-1-transd-def split: option.split)

lemma length-1-transdE :
‹[[length-1-transd A; τ A σs a = bσs ′c;

∧
σ. σs ′ = [σ] =⇒ thesis]] =⇒ thesis›

by (simp add: length-1-transd-def split: option.split-asm)
(metis (no-types) length-0-conv length-Suc-conv)

definition length-1-transnd :: ‹( ′σ list, ′a, ′r , ′α) And-scheme ⇒ bool›
where ‹length-1-transnd A ≡ ∀σs a. ∀σs ′ ∈ τ A σs a. length σs ′ = Suc 0 ›

lemma length-1-transndI :
‹[[
∧
σs a σs ′. σs ′ ∈ τ A σs a =⇒ length σs ′ = Suc 0 ]] =⇒ length-1-transnd A›

by (simp add: length-1-transnd-def split: option.split)

lemma length-1-transndE :
‹[[length-1-transnd A; σs ′ ∈ τ A σs a;

∧
σ. σs ′ = [σ] =⇒ thesis]] =⇒ thesis›

by (simp add: length-1-transnd-def split: option.split-asm)
(metis (no-types) length-0-conv length-Suc-conv)

definition length-1 d :: ‹( ′σ list, ′a, ′r list, ′α) Ad-scheme ⇒ bool›
where ‹length-1 d A ≡

(∀σs a. case τ A σs a of ♦ ⇒ True | bσs ′c ⇒ length σs ′ = Suc 0 ) ∧
(∀σs. case ω A σs of ♦ ⇒ True | brsc ⇒ length rs = Suc 0 )›

lemma length-1 dI :
‹[[
∧
σs a σs ′. τ A σs a = bσs ′c =⇒ length σs ′ = Suc 0 ;∧
σs rs. ω A σs = brsc =⇒ length rs = Suc 0 ]] =⇒ length-1 d A›

by (simp add: length-1 d-def split: option.split)

lemma length-1 dE :
‹[[length-1 d A; τ A σs a = bσs ′c;

∧
σ. σs ′ = [σ] =⇒ thesis]] =⇒ thesis›

‹[[length-1 d A; ω A σs = brsc;
∧

r . rs = [r ] =⇒ thesis]] =⇒ thesis›
by (simp add: length-1 d-def split: option.split-asm,

metis (no-types) length-0-conv length-Suc-conv)+

definition length-1nd :: ‹( ′σ list, ′a, ′r list, ′α) And-scheme ⇒ bool›
where ‹length-1nd A ≡ (∀σs a. ∀σs ′ ∈ τ A σs a. length σs ′ = Suc 0 ) ∧

(∀σs. ∀ rs ∈ ω A σs. length rs = Suc 0 )›

lemma length-1ndI :
‹[[
∧
σs a σs ′. σs ′ ∈ τ A σs a =⇒ length σs ′ = Suc 0 ;∧
σs rs. rs ∈ ω A σs =⇒ length rs = Suc 0 ]] =⇒ length-1nd A›

by (simp add: length-1nd-def split: option.split)

lemma length-1ndE :
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‹[[length-1nd A; σs ′ ∈ τ A σs a;
∧
σ. σs ′ = [σ] =⇒ thesis]] =⇒ thesis›

‹[[length-1nd A; rs ∈ ω A σs;
∧

r . rs = [r ] =⇒ thesis]] =⇒ thesis›
by (simp add: length-1nd-def split: option.split-asm,

metis (no-types) length-0-conv length-Suc-conv)+

definition indep-enabl :: ‹( ′σ0,
′a, ′r0,

′α) Ad-scheme ⇒ ′σ0 ⇒ ′a set ⇒ ( ′σ1,
′a,

′r1,
′β) Ad-scheme ⇒ ′σ1 ⇒ bool›

where ‹indep-enabl A0 σ0 E A1 σ1 ≡ ∀ t0 ∈ Rd A0 σ0. ∀ t1 ∈ Rd A1 σ1. ε A0

t0 ∩ ε A1 t1 ⊆ E›

lemma indep-enablI :
‹(
∧

t0 t1. t0 ∈ Rd A0 σ0 =⇒ t1 ∈ Rd A1 σ1 =⇒ ε A0 t0 ∩ ε A1 t1 ⊆ E)
=⇒ indep-enabl A0 σ0 E A1 σ1›

and indep-enablD :
‹[[indep-enabl A0 σ0 E A1 σ1; t0 ∈ Rd A0 σ0; t1 ∈ Rd A1 σ1]] =⇒ ε A0 t0 ∩ ε

A1 t1 ⊆ E›
by (simp-all add: indep-enabl-def )

definition %-disjoint-ε :: ‹( ′σ, ′a, ′σ ′, ′r ′, ′α) A-scheme ⇒ bool›
where ‹%-disjoint-ε A ≡ ∀σ ∈ % A. ε A σ = {}›

lemma %-disjoint-εI : ‹(
∧
σ. σ ∈ % A =⇒ ε A σ = {}) =⇒ %-disjoint-ε A›

and %-disjoint-εD : ‹%-disjoint-ε A =⇒ σ ∈ % A =⇒ ε A σ = {}›
by (simp-all add: %-disjoint-ε-def )

definition at-most-1-elem-term :: ‹( ′σ, ′a, ′r , ′α) And-scheme ⇒ bool›
where ‹at-most-1-elem-term A ≡ ∀σ. ω A σ = {} ∨ (∃ r . ω A σ = {r})›

lemma at-most-1-elem-term-def-bis :
‹at-most-1-elem-term A ←→ (∀σ. ∃ r . ω A σ ⊆ {r})›
by (auto simp add: at-most-1-elem-term-def subset-iff )
(metis empty-iff singleton-iff ,

metis equals0D is-singletonI ′ is-singleton-some-elem)

lemma at-most-1-elem-termI :
‹[[
∧
σ. ω A σ = {} ∨ (∃ r . ω A σ = {r})]] =⇒ at-most-1-elem-term A›

by (simp add: at-most-1-elem-term-def )

lemma at-most-1-elem-termE :
‹[[ω A σ = {} =⇒ thesis;

∧
r . ω A σ = {r} =⇒ thesis]] =⇒ thesis›

if ‹at-most-1-elem-term A›
by (meson at-most-1-elem-term-def ‹at-most-1-elem-term A›)+
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lemma at-most-1-elem-imp-at-most-1-elem-term :
‹at-most-1-elem A =⇒ at-most-1-elem-term A›
by (simp add: at-most-1-elem-def at-most-1-elem-term-def )

3.2 First Properties

3.2.1 ε, % and ω first equalities
lemma base-trans-ε[simp]:

‹ε ((|τ = λσ a. ♦, ω = λσ. ♦, . . . = some|) :: ( ′σ, ′a, ′r , ′α) Ad-scheme) σ = {}›
‹ε ((|τ = λσ a. {}, ω = λσ. {}, . . . = some|) :: ( ′σ, ′a, ′r , ′α) And-scheme) σ =
{}›

by (simp-all add: ε-simps)

lemma base-trans-%[simp]:
‹% ((|τ = λσ a. ♦, ω = λσ. ♦, . . . = some|) :: ( ′σ, ′a, ′r , ′α) Ad-scheme) = {}›
‹% ((|τ = λσ a. {}, ω = λσ. {}, . . . = some|) :: ( ′σ, ′a, ′r , ′α) And-scheme) = {}›
by (simp-all add: %-simps)

lemma σ-σs-conv-ε[simp]:
‹ε d〈〈A〉〉σ↪→σs σs = ε A (hd σs)› ‹ε nd〈〈B〉〉σ↪→σs σs = ε B (hd σs)›
‹ε d〈〈C 〉〉σs σ σ = ε C [σ]› ‹ε nd〈〈D〉〉σs σ σ = ε D [σ]›
by (simp-all add: σ-σs-conv-defs ε-simps option.case-eq-if )

lemma σ-σs-conv-%[simp]:
‹% d〈〈A〉〉σ↪→σs = {σs. hd σs ∈ % A}› ‹% nd〈〈B〉〉σ↪→σs = {σs. hd σs ∈ % B}›
‹% d〈〈C 〉〉σs σ = {σ. [σ] ∈ % C}› ‹% nd〈〈D〉〉σs σ = {σ. [σ] ∈ % D}›
by (simp-all add: σ-σs-conv-defs %-simps option.case-eq-if )

lemma singl-list-conv-ε[simp]:
‹ε d〈〈A〉〉singl↪→list σs = ε A (hd σs)› ‹ε nd〈〈B〉〉singl↪→list σs = ε B (hd σs)›
‹ε d〈〈C 〉〉list singl σ = ε C [σ]› ‹ε nd〈〈D〉〉list singl σ = ε D [σ]›
by (simp-all add: singl-list-conv-defs ε-simps option.case-eq-if )

lemma singl-list-conv-%[simp]:
‹% d〈〈A〉〉singl↪→list = {σs. hd σs ∈ % A}› ‹% nd〈〈B〉〉singl↪→list = {σs. hd σs ∈ %

B}›
‹% d〈〈C 〉〉list singl = {σ. [σ] ∈ % C}› ‹% nd〈〈D〉〉list singl = {σ. [σ] ∈ % D}›
by (simp-all add: singl-list-conv-defs %-simps option.case-eq-if )

lemma det-ndet-conv-ε[simp]: ‹ε 〈〈A〉〉d↪→nd = ε A› ‹ε 〈〈B〉〉nd d = ε B›
by (rule ext, simp add: det-ndet-conv-defs ε-simps option.case-eq-if )+

lemma det-ndet-conv-%[simp]: ‹% 〈〈A〉〉d↪→nd = % A› ‹% 〈〈B〉〉nd d = % B›
by (simp-all add: det-ndet-conv-defs %-simps option.case-eq-if )

46



lemma ω-from-det-to-ndet :
‹ω 〈〈A〉〉d↪→nd = (λσ. case ω A σ of brc ⇒ {r} | ♦ ⇒ {})›
by (auto simp add: det-ndet-conv-defs)

lemma ε-ω-useless [simp] :
‹ε (A(|ω := some-ω|)) = ε A› ‹ε (B(|ω := some-ω ′|)) = ε B›
for A :: ‹( ′σ, ′a, ′σ option, ′r option, ′α) A-scheme›

and B :: ‹( ′σ, ′a, ′σ set, ′r set, ′α) A-scheme›
by (rule ext, simp add: ε-simps)+

lemma %-disjoint-ε-updated-ω [simp] :
‹%-disjoint-ε (A(|ω := λσ. ♦|))›
‹%-disjoint-ε (B(|ω := λσ. {}|))›
by (simp-all add: %-disjoint-ε-def %-simps)

lemma %-disjoint-ε-det-ndet-conv-iff [simp] :
‹%-disjoint-ε 〈〈A〉〉d↪→nd ←→ %-disjoint-ε A›
‹%-disjoint-ε 〈〈B〉〉nd d ←→ %-disjoint-ε B›
by (simp-all add: %-disjoint-ε-def )

lemma at-most-1-elem-term-updated-ω [simp] :
‹at-most-1-elem-term (A(|ω := λσ. {}|))›
by (simp add: at-most-1-elem-term-def )

lemma at-most-1-elem-term-from-det-to-ndet [simp] :
‹at-most-1-elem-term 〈〈A〉〉d↪→nd›
by (simp add: det-ndet-conv-defs at-most-1-elem-term-def split: option.split)

lemma at-most-1-elem-term-unit [simp] :
‹at-most-1-elem-term (A :: ( ′σ, ′a, unit, ′α) And-scheme)›
by (auto simp add: at-most-1-elem-term-def )

3.2.2 Properties of our morphisms
method expand-A-scheme =

match conclusion in ‹A = B› for A B :: ‹( ′σ, ′a, ′σ ′, ′r ′, ′α) A-scheme› ⇒
‹cases A, cases B›

lemma base-trans-det-ndet-conv:
‹〈〈(|τ = λσ a. ♦, ω = λσ. ♦, . . . = some|)〉〉d↪→nd =
(|τ = λσ a. {}, ω = λσ. {}, . . . = some|)›

‹〈〈(|τ = λσ a. {}, ω = λσ. {}, . . . = some|)〉〉nd d =
(|τ = λσ a. ♦, ω = λσ. ♦, . . . = some|)›

unfolding det-ndet-conv-defs by simp-all
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lemma from-det-to-ndet-σ-σs-conv-commute:
‹nd〈〈〈〈A〉〉d↪→nd〉〉σ↪→σs = 〈〈d〈〈A〉〉σ↪→σs〉〉d↪→nd› ‹nd〈〈〈〈B〉〉d↪→nd〉〉σs σ = 〈〈d〈〈B〉〉σs σ〉〉d↪→nd›
by (simp add: det-ndet-conv-defs σ-σs-conv-defs, rule ext,

auto simp add: option.case-eq-if split: if-splits)+

lemma from-det-to-ndet-singl-list-conv-commute:
‹nd〈〈〈〈A〉〉d↪→nd〉〉singl↪→list = 〈〈d〈〈A〉〉singl↪→list〉〉d↪→nd› ‹nd〈〈〈〈B〉〉d↪→nd〉〉list singl =
〈〈d〈〈B〉〉list singl〉〉d↪→nd›

by (simp add: det-ndet-conv-defs singl-list-conv-defs,
solves ‹intro conjI ext, auto split: option.split›)+

lemma from-ndet-to-det-σ-σs-conv-commute:
‹at-most-1-elem-trans A =⇒ d〈〈〈〈A〉〉nd d〉〉σ↪→σs = 〈〈nd〈〈A〉〉σ↪→σs〉〉nd d›
‹at-most-1-elem-trans B =⇒ d〈〈〈〈B〉〉nd d〉〉σs σ = 〈〈nd〈〈B〉〉σs σ〉〉nd d›

proof −
assume ∗ : ‹at-most-1-elem-trans A›
from ∗ have ‹τ d〈〈〈〈A〉〉nd d〉〉σ↪→σs σs a = τ 〈〈nd〈〈A〉〉σ↪→σs〉〉nd d σs a› for σs a

by (auto simp add: det-ndet-conv-defs σ-σs-conv-defs
elim: at-most-1-elem-transE)

moreover have ‹ω d〈〈〈〈A〉〉nd d〉〉σ↪→σs σs = ω 〈〈nd〈〈A〉〉σ↪→σs〉〉nd d σs› for σs
by (auto simp add: det-ndet-conv-defs σ-σs-conv-defs)

moreover have ‹more d〈〈〈〈A〉〉nd d〉〉σ↪→σs = more 〈〈nd〈〈A〉〉σ↪→σs〉〉nd d› by simp
ultimately show ‹d〈〈〈〈A〉〉nd d〉〉σ↪→σs = 〈〈nd〈〈A〉〉σ↪→σs〉〉nd d› by expand-A-scheme

auto
next

assume ∗ : ‹at-most-1-elem-trans B›
from ∗ have ‹τ d〈〈〈〈B〉〉nd d〉〉σs σ σ a = τ 〈〈nd〈〈B〉〉σs σ〉〉nd d σ a› for σ a

by (auto simp add: det-ndet-conv-defs σ-σs-conv-defs
elim: at-most-1-elem-transE)

moreover have ‹ω d〈〈〈〈B〉〉nd d〉〉σs σ σ = ω 〈〈nd〈〈B〉〉σs σ〉〉nd d σ› for σ
by (auto simp add: det-ndet-conv-defs σ-σs-conv-defs)

moreover have ‹more d〈〈〈〈B〉〉nd d〉〉σs σ = more 〈〈nd〈〈B〉〉σs σ〉〉nd d› by simp
ultimately show ‹d〈〈〈〈B〉〉nd d〉〉σs σ = 〈〈nd〈〈B〉〉σs σ〉〉nd d› by expand-A-scheme

auto
qed

lemma from-ndet-to-det-singl-list-conv-commute:
‹at-most-1-elem A =⇒ d〈〈〈〈A〉〉nd d〉〉singl↪→list = 〈〈nd〈〈A〉〉singl↪→list〉〉nd d›
‹at-most-1-elem B =⇒ d〈〈〈〈B〉〉nd d〉〉list singl = 〈〈nd〈〈B〉〉list singl〉〉nd d›

proof −
assume ∗ : ‹at-most-1-elem A›
from ∗ have ‹τ d〈〈〈〈A〉〉nd d〉〉singl↪→list σs a = τ 〈〈nd〈〈A〉〉singl↪→list〉〉nd d σs a›

for σs a
by (auto simp add: det-ndet-conv-defs singl-list-conv-defs

elim: at-most-1-elemE(1 ))
moreover from ∗ have ‹ω d〈〈〈〈A〉〉nd d〉〉singl↪→list σs = ω 〈〈nd〈〈A〉〉singl↪→list〉〉nd d

σs› for σs
by (auto simp add: det-ndet-conv-defs singl-list-conv-defs
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elim: at-most-1-elemE(2 ))
moreover have ‹more d〈〈〈〈A〉〉nd d〉〉singl↪→list = more 〈〈nd〈〈A〉〉singl↪→list〉〉nd d›

by simp
ultimately show ‹d〈〈〈〈A〉〉nd d〉〉singl↪→list = 〈〈nd〈〈A〉〉singl↪→list〉〉nd d› by ex-

pand-A-scheme auto
next

assume ∗ : ‹at-most-1-elem B›
from ∗ have ‹τ d〈〈〈〈B〉〉nd d〉〉list singl σ a = τ 〈〈nd〈〈B〉〉list singl〉〉nd d σ a›

for σ a
by (auto simp add: det-ndet-conv-defs singl-list-conv-defs

elim: at-most-1-elemE(1 ))
moreover from ∗ have ‹ω d〈〈〈〈B〉〉nd d〉〉list singl σ = ω 〈〈nd〈〈B〉〉list singl〉〉nd d

σ› for σ
by (auto simp add: det-ndet-conv-defs singl-list-conv-defs

elim: at-most-1-elemE(2 ))
moreover have ‹more d〈〈〈〈B〉〉nd d〉〉list singl = more 〈〈nd〈〈B〉〉list singl〉〉nd d›

by simp
ultimately show ‹d〈〈〈〈B〉〉nd d〉〉list singl = 〈〈nd〈〈B〉〉list singl〉〉nd d› by ex-

pand-A-scheme auto
qed

lemma behaviour-σ-σs-conv:
‹ε d〈〈A〉〉σ↪→σs [σ] = ε A σ›
‹τ d〈〈A〉〉σ↪→σs [σ] a = (case τ A σ a of ♦ ⇒ ♦ | btc ⇒ b[t]c)›
‹% d〈〈A〉〉σ↪→σs = {σs. hd σs ∈ % A}›
‹ω d〈〈A〉〉σ↪→σs [σ] = ω A σ›
‹ε nd〈〈B〉〉σ↪→σs [σ] = ε B σ›
‹τ nd〈〈B〉〉σ↪→σs [σ] a = {[σ ′] |σ ′. σ ′ ∈ τ B σ a}›
‹% nd〈〈B〉〉σ↪→σs = {σs. hd σs ∈ % B}›
‹ω nd〈〈B〉〉σ↪→σs [σ] = ω B σ›
‹ε d〈〈C 〉〉σs σ σ = ε C [σ]›
‹τ d〈〈C 〉〉σs σ σ a = (case τ C [σ] a of ♦ ⇒ ♦ | bσs ′c ⇒ bhd σs ′c)›
‹% d〈〈C 〉〉σs σ = {σ. [σ] ∈ % C}›
‹ω d〈〈C 〉〉σs σ σ = ω C [σ]›
‹ε nd〈〈D〉〉σs σ σ = ε D [σ]›
‹τ nd〈〈D〉〉σs σ σ a = {hd σs ′| σs ′. σs ′ ∈ τ D [σ] a}›
‹% nd〈〈D〉〉σs σ = {σ. [σ] ∈ % D}› ‹ω nd〈〈D〉〉σs σ σ = ω D [σ]›
by simp-all (simp-all add: σ-σs-conv-defs)

lemma behaviour-singl-list-conv:
‹ε d〈〈A〉〉singl↪→list [σ] = ε A σ›
‹τ d〈〈A〉〉singl↪→list [σ] a = (case τ A σ a of ♦ ⇒ ♦ | btc ⇒ b[t]c)›
‹% d〈〈A〉〉singl↪→list = {σs. hd σs ∈ % A}›
‹ω d〈〈A〉〉singl↪→list [σ] = (case ω A σ of ♦ ⇒ ♦ | brc ⇒ b[r ]c)›
‹ε nd〈〈B〉〉singl↪→list [σ] = ε B σ›
‹τ nd〈〈B〉〉singl↪→list [σ] a = {[σ ′] |σ ′. σ ′ ∈ τ B σ a}›
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‹% nd〈〈B〉〉singl↪→list = {σs. hd σs ∈ % B}›
‹ω nd〈〈B〉〉singl↪→list [σ] = {[r ] |r . r ∈ ω B σ}›
‹ε d〈〈C 〉〉list singl σ = ε C [σ]›
‹τ d〈〈C 〉〉list singl σ a = (case τ C [σ] a of ♦ ⇒ ♦ | bσs ′c ⇒ bhd σs ′c)›
‹% d〈〈C 〉〉list singl = {σ. [σ] ∈ % C}›
‹ω d〈〈C 〉〉list singl σ = (case ω C [σ] of ♦ ⇒ ♦ | brsc ⇒ bhd rsc)›
‹ε nd〈〈D〉〉list singl σ = ε D [σ]›
‹τ nd〈〈D〉〉list singl σ a = {hd σs ′| σs ′. σs ′ ∈ τ D [σ] a}›
‹% nd〈〈D〉〉list singl = {σ. [σ] ∈ % D}›
‹ω nd〈〈D〉〉list singl σ = {hd rs |rs. rs ∈ ω D [σ]}›
by simp-all (simp-all add: singl-list-conv-defs)

lemma empty-from-det-to-ndet-is-None-trans [simp] : ‹τ 〈〈A〉〉d↪→nd σ a = {} ←→
τ A σ a = ♦›

by (simp add: ε-simps det-ndet-conv-defs option.case-eq-if )

lemma at-most-1-elem-from-det-to-ndet [simp] : ‹at-most-1-elem 〈〈A〉〉d↪→nd›
by (rule at-most-1-elemI )
(simp-all add: det-ndet-conv-defs split: option.split)

lemma from-ndet-to-det-from-det-to-ndet [simp] : ‹〈〈〈〈A〉〉d↪→nd〉〉nd d = A›
by (cases A, simp add: det-ndet-conv-defs)
(intro conjI ext, simp-all split: option.split)

lemma from-det-to-ndet-from-ndet-to-det [simp] :
‹〈〈〈〈A〉〉nd d〉〉d↪→nd = A› if ‹at-most-1-elem A›

proof −
from that have ‹τ 〈〈〈〈A〉〉nd d〉〉d↪→nd σ a = τ A σ a› for σ a

by (auto simp add: det-ndet-conv-defs elim: at-most-1-elemE(1 ))
moreover from that have ‹ω 〈〈〈〈A〉〉nd d〉〉d↪→nd σ = ω A σ› for σ

by (auto simp add: det-ndet-conv-defs elim: at-most-1-elemE(2 ))
moreover have ‹more 〈〈〈〈A〉〉nd d〉〉d↪→nd = more A› by simp
ultimately show ‹〈〈〈〈A〉〉nd d〉〉d↪→nd = A› by expand-A-scheme fastforce

qed

theorem bij-betw-from-det-to-ndet :
‹bij-betw (λA. 〈〈A〉〉d↪→nd) UNIV {A. at-most-1-elem A}›
unfolding bij-betw-iff-bijections
by (rule exI [where x = ‹λA. 〈〈A〉〉nd d›]) simp

lemma bij-betw-from-ndet-to-det :
‹bij-betw (λA. 〈〈A〉〉nd d) {A. at-most-1-elem A} UNIV ›
unfolding bij-betw-iff-bijections
by (rule exI [where x = ‹λA. 〈〈A〉〉d↪→nd›]) simp
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lemma length-1-trans-from-σ-to-σs [simp] :
‹length-1-transd d〈〈A〉〉σ↪→σs› ‹length-1-transnd nd〈〈B〉〉σ↪→σs›
by (rule length-1-transdI , solves ‹auto simp add: σ-σs-conv-defs split: option.split-asm›)
(rule length-1-transndI , solves ‹auto simp add: σ-σs-conv-defs split: option.split-asm›)

lemma τ -hd-from-σ-to-σs-eq [simp] :
‹τ d〈〈A〉〉σ↪→σs [hd σs] a = τ d〈〈A〉〉σ↪→σs σs a›
‹τ nd〈〈B〉〉σ↪→σs [hd σs] a = τ nd〈〈B〉〉σ↪→σs σs a›
by (simp-all add: σ-σs-conv-defs)

lemma ω-hd-from-σ-to-σs-eq [simp] :
‹ω d〈〈A〉〉σ↪→σs [hd σs] = ω d〈〈A〉〉σ↪→σs σs›
‹ω nd〈〈B〉〉σ↪→σs [hd σs] = ω nd〈〈B〉〉σ↪→σs σs›
by (simp-all add: σ-σs-conv-defs)

lemma from-σs-to-σ-from-σ-to-σs [simp] :
‹d〈〈d〈〈A〉〉σ↪→σs〉〉σs σ = A› ‹nd〈〈nd〈〈B〉〉σ↪→σs〉〉σs σ = B›
by (cases A, simp add: σ-σs-conv-defs, intro conjI ext;

simp add: option.case-eq-if set-eq-iff ; metis list.sel(1 ))
(cases B, simp add: σ-σs-conv-defs, intro conjI ext;

simp add: option.case-eq-if set-eq-iff ; metis list.sel(1 ))

lemma from-σ-to-σs-from-σs-to-σ [simp] :
‹[[length-1-transd A;

∧
σs a. τ A [hd σs] a = τ A σs a;∧

σs. ω A [hd σs] = ω A σs]] =⇒ d〈〈d〈〈A〉〉σs σ〉〉σ↪→σs = A›
‹[[length-1-transnd B;

∧
σs a. τ B [hd σs] a = τ B σs a;∧

σs. ω B [hd σs] = ω B σs]] =⇒ nd〈〈nd〈〈B〉〉σs σ〉〉σ↪→σs = B›
proof −

assume ∗ : ‹length-1-transd A› ‹
∧
σs a. τ A [hd σs] a = τ A σs a›

‹
∧
σs. ω A [hd σs] = ω A σs›

from ∗(1 ) have ‹τ d〈〈d〈〈A〉〉σs σ〉〉σ↪→σs σs a = τ A σs a› for σs a
by (auto simp add: σ-σs-conv-defs ∗(2 ) split: option.split

elim: length-1-transdE)
moreover have ‹ω d〈〈d〈〈A〉〉σs σ〉〉σ↪→σs σs = ω A σs› for σs

by (simp add: σ-σs-conv-defs ∗(3 ))
moreover have ‹more d〈〈d〈〈A〉〉σs σ〉〉σ↪→σs = more A› by simp
ultimately show ‹d〈〈d〈〈A〉〉σs σ〉〉σ↪→σs = A› by expand-A-scheme auto

next
assume ∗ : ‹length-1-transnd B› ‹

∧
σs a. τ B [hd σs] a = τ B σs a›

‹
∧
σs. ω B [hd σs] = ω B σs›

from ∗(1 ) have ‹τ nd〈〈nd〈〈B〉〉σs σ〉〉σ↪→σs σs a = τ B σs a› for σs a
by (auto simp add: σ-σs-conv-defs ∗(2 ) elim: length-1-transndE)
(metis length-1-transndE list.sel(1 ))

moreover have ‹ω nd〈〈nd〈〈B〉〉σs σ〉〉σ↪→σs σs = ω B σs› for σs
by (simp add: σ-σs-conv-defs ∗(3 ))

moreover have ‹more nd〈〈nd〈〈B〉〉σs σ〉〉σ↪→σs = more B› by simp
ultimately show ‹nd〈〈nd〈〈B〉〉σs σ〉〉σ↪→σs = B› by expand-A-scheme fastforce
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qed

theorem bij-betw-from-σ-to-σs :
‹bij-betw (λA. d〈〈A〉〉σ↪→σs) UNIV
{A. length-1-transd A ∧ (∀σs a. τ A [hd σs] a = τ A σs a) ∧ (∀σs. ω A [hd

σs] = ω A σs)}›
(is ‹bij-betw (λA. d〈〈A〉〉σ↪→σs) UNIV ?Sd›)
‹bij-betw (λB. nd〈〈B〉〉σ↪→σs) UNIV
{B. length-1-transnd B ∧ (∀σs a. τ B σs a = τ B [hd σs] a) ∧ (∀σs. ω B [hd

σs] = ω B σs)}›
unfolding bij-betw-iff-bijections
by (rule exI [where x = ‹λA. d〈〈A〉〉σs σ›], simp)
(rule exI [where x = ‹λA. nd〈〈A〉〉σs σ›], simp)

lemma bij-betw-from-σs-to-σ :
‹bij-betw (λA. d〈〈A〉〉σs σ)
{A. length-1-transd A ∧ (∀σs a. τ A [hd σs] a = τ A σs a) ∧ (∀σs. ω A [hd

σs] = ω A σs)} UNIV ›
‹bij-betw (λB. nd〈〈B〉〉σs σ)
{B. length-1-transnd B ∧ (∀σs a. τ B σs a = τ B [hd σs] a) ∧ (∀σs. ω B [hd

σs] = ω B σs)} UNIV ›
unfolding bij-betw-iff-bijections
by (rule exI [where x = ‹λA. d〈〈A〉〉σ↪→σs›], simp)
(rule exI [where x = ‹λA. nd〈〈A〉〉σ↪→σs›], simp)

lemma length-1-from-singl-to-list [simp] :
‹length-1 d d〈〈A〉〉singl↪→list› ‹length-1nd nd〈〈B〉〉singl↪→list›
by (rule length-1 dI ; solves ‹auto simp add: singl-list-conv-defs split: option.split-asm›)
(rule length-1ndI ; solves ‹auto simp add: singl-list-conv-defs split: option.split-asm›)

lemma τ -hd-from-singl-to-list-eq [simp] :
‹τ d〈〈A〉〉singl↪→list [hd σs] a = τ d〈〈A〉〉singl↪→list σs a›
‹τ nd〈〈B〉〉singl↪→list [hd σs] a = τ nd〈〈B〉〉singl↪→list σs a›
by (simp-all add: singl-list-conv-defs)

lemma ω-hd-from-singl-to-list-eq [simp] :
‹ω d〈〈A〉〉singl↪→list [hd σs] = ω d〈〈A〉〉singl↪→list σs›
‹ω nd〈〈B〉〉singl↪→list [hd σs] = ω nd〈〈B〉〉singl↪→list σs›
by (simp-all add: singl-list-conv-defs)

lemma from-list-to-singl-from-singl-to-list [simp] :
‹d〈〈d〈〈A〉〉singl↪→list〉〉list singl = A› ‹nd〈〈nd〈〈B〉〉singl↪→list〉〉list singl = B›
by (cases A, simp add: singl-list-conv-defs, intro conjI ext;

simp add: option.case-eq-if set-eq-iff ; metis list.sel(1 ))
(cases B, simp add: singl-list-conv-defs, intro conjI ext;
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simp add: option.case-eq-if set-eq-iff ; metis list.sel(1 ))

lemma from-singl-to-list-from-list-to-singl [simp] :
‹[[length-1 d A;

∧
σs a. τ A [hd σs] a = τ A σs a;∧

σs. ω A [hd σs] = ω A σs]] =⇒ d〈〈d〈〈A〉〉list singl〉〉singl↪→list = A›
‹[[length-1nd B;

∧
σs a. τ B [hd σs] a = τ B σs a;∧

σs. ω B [hd σs] = ω B σs]] =⇒ nd〈〈nd〈〈B〉〉list singl〉〉singl↪→list = B›
proof −

assume ∗ : ‹length-1 d A› ‹
∧
σs a. τ A [hd σs] a = τ A σs a›

‹
∧
σs. ω A [hd σs] = ω A σs›

from ∗(1 ) have ‹τ d〈〈d〈〈A〉〉list singl〉〉singl↪→list σs a = τ A σs a› for σs a
by (auto simp add: singl-list-conv-defs ∗(2 )

split: option.split elim: length-1 dE(1 ))
moreover from ∗(1 ) have ‹ω d〈〈d〈〈A〉〉list singl〉〉singl↪→list σs = ω A σs› for

σs
by (auto simp add: singl-list-conv-defs ∗(3 )

split: option.split elim: length-1 dE(2 ))
moreover have ‹more d〈〈d〈〈A〉〉list singl〉〉singl↪→list = more A› by simp
ultimately show ‹d〈〈d〈〈A〉〉list singl〉〉singl↪→list = A› by expand-A-scheme auto

next
assume ∗ : ‹length-1nd B› ‹

∧
σs a. τ B [hd σs] a = τ B σs a›

‹
∧
σs. ω B [hd σs] = ω B σs›

from ∗(1 ) have ‹τ nd〈〈nd〈〈B〉〉list singl〉〉singl↪→list σs a = τ B σs a› for σs a
by (auto simp add: singl-list-conv-defs ∗(2 ) elim: length-1ndE(1 ))
(metis length-1ndE(1 ) list.sel(1 ))

moreover from ∗(1 ) have ‹ω nd〈〈nd〈〈B〉〉list singl〉〉singl↪→list σs = ω B σs› for
σs

by (auto simp add: singl-list-conv-defs ∗(3 ) elim: length-1ndE(2 ))
(metis length-1ndE(2 ) list.sel(1 ))

moreover have ‹more nd〈〈nd〈〈B〉〉list singl〉〉singl↪→list = more B› by simp
ultimately show ‹nd〈〈nd〈〈B〉〉list singl〉〉singl↪→list = B› by expand-A-scheme

fastforce
qed

theorem bij-betw-from-singl-to-list :
‹bij-betw (λA. d〈〈A〉〉singl↪→list) UNIV
{A. length-1 d A ∧ (∀σs a. τ A [hd σs] a = τ A σs a) ∧ (∀σs. ω A [hd σs] =

ω A σs)}›
(is ‹bij-betw (λA. d〈〈A〉〉singl↪→list) UNIV ?Sd›)
‹bij-betw (λB. nd〈〈B〉〉singl↪→list) UNIV
{B. length-1nd B ∧ (∀σs a. τ B σs a = τ B [hd σs] a) ∧ (∀σs. ω B [hd σs] =

ω B σs)}›
unfolding bij-betw-iff-bijections
by (rule exI [where x = ‹λA. d〈〈A〉〉list singl›], simp)
(rule exI [where x = ‹λA. nd〈〈A〉〉list singl›], simp)

lemma bij-betw-from-list-to-singl :
‹bij-betw (λA. d〈〈A〉〉list singl)
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{A. length-1 d A ∧ (∀σs a. τ A [hd σs] a = τ A σs a) ∧ (∀σs. ω A [hd σs] =
ω A σs)} UNIV ›

‹bij-betw (λB. nd〈〈B〉〉list singl)
{B. length-1nd B ∧ (∀σs a. τ B σs a = τ B [hd σs] a) ∧ (∀σs. ω B [hd σs] =

ω B σs)} UNIV ›
unfolding bij-betw-iff-bijections
by (rule exI [where x = ‹λA. d〈〈A〉〉singl↪→list›], simp)
(rule exI [where x = ‹λA. nd〈〈A〉〉singl↪→list›], simp)

3.2.3 Reachability results (for Rd and Rnd)
lemma R-base-trans[simp]: ‹Rd (|τ = λσ a. ♦, ω = λσ. ♦, . . . = some|) = (λσ.
{σ})›

‹Rnd (|τ = λσ a. {}, ω = λσ. {}, . . . = some|) = (λσ. {σ})›
by (rule ext, safe, subst (asm) Rd.simps Rnd.simps, simp-all add: Rd.init Rnd.init)+

theorem Rnd-from-det-to-ndet : ‹Rnd 〈〈A〉〉d↪→nd σ = Rd A σ›
proof safe

show ‹σ ′ ∈ Rnd 〈〈A〉〉d↪→nd σ =⇒ σ ′ ∈ Rd A σ› for σ ′

by (induct rule: Rnd.induct, fact Rd.init, erule Rd.step)
(simp add: from-det-to-ndet-def option.case-eq-if split: if-split-asm)

next
show ‹σ ′ ∈ Rd A σ =⇒ σ ′ ∈ Rnd 〈〈A〉〉d↪→nd σ› for σ ′

by (induct rule: Rd.induct, fact Rnd.init)
(metis Rnd.step det-ndet-conv-defs(1 ) option.case(2 )

option.set-intros option.simps(15 ) select-convs(1 ))
qed

lemma bij-betw-Rnd-if-same-τ : ‹bij-betw f (Rnd B0 σ0) (Rnd B1 (f σ0))›
if ‹inj-on f (Rnd B0 σ0)› and ‹

∧
σ0

′ a. σ0
′ ∈ Rnd B0 σ0 =⇒ τ B1 (f σ0

′) a =
f ‘ τ B0 σ0

′ a›
proof (rule bij-betw-imageI , fact that(1 ), auto simp add: image-def , goal-cases)

show ‹s ∈ Rnd B0 σ0 =⇒ f s ∈ Rnd B1 (f σ0)› for s
by (induct rule: Rnd.induct, simp add: Rnd.init, metis Rnd.step that(2 ) im-

age-eqI )
next

show ‹s ∈ Rnd B1 (f σ0) =⇒ ∃ t ∈ Rnd B0 σ0. s = f t› for s
by (induct rule: Rnd.induct, metis Rnd.simps, metis (mono-tags, lifting) Rnd.step

that(2 ) image-iff )
qed

lemma bij-betw-Rd-if-same-τ : ‹bij-betw f (Rd A0 σ0) (Rd A1 (f σ0))›
if ‹inj-on f (Rd A0 σ0)› and ‹

∧
σ0

′ a. σ0
′ ∈ Rd A0 σ0 =⇒ τ A1 (f σ0

′) a =
map-option f (τ A0 σ0

′ a)›
by (subst (1 2 ) Rnd-from-det-to-ndet[symmetric], rule bij-betw-Rnd-if-same-τ)
(simp-all add: Rnd-from-det-to-ndet that(1 ),
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simp add: det-ndet-conv-defs that(2 ) option.case-eq-if map-option-case)

lemmas same-τ -implies-same-Rnd = bij-betw-Rnd-if-same-τ [where f = id, sim-
plified bij-betw-def , simplified]

and same-τ -implies-same-Rd = bij-betw-Rd-if-same-τ [where f = id, simplified
bij-betw-def option.map-id, simplified]

corollary Rd-ω-useless [simp] : ‹Rd (A(|ω := some-ω|)) σ = Rd A σ›
by (auto intro!: same-τ -implies-same-Rd)

corollary Rnd-ω-useless [simp] : ‹Rnd (A(|ω := some-ω|)) σ = Rnd A σ›
by (auto intro!: same-τ -implies-same-Rnd)

corollary indep-enabl-ω-useless [simp] :
‹indep-enabl (A0(|ω := some-ω|)) σ0 E A1 σ1 ←→ indep-enabl A0 σ0 E A1 σ1›
‹indep-enabl A0 σ0 E (A1(|ω := some-ω|)) σ1 ←→ indep-enabl A0 σ0 E A1 σ1›
by (simp-all add: indep-enabl-def )

method R-subset-method uses defs opt induct init simps =
induct rule: induct, auto simp add: init defs ε-simps split: if-splits,
(metis (no-types, opaque-lifting) simps)+

method Rd-subset-method uses defs opt =
R-subset-method defs: defs opt: opt induct: Rd.induct init: Rd.init simps: Rd.simps

method Rnd-subset-method uses defs opt =
R-subset-method defs: defs opt: opt induct: Rnd.induct init: Rnd.init simps:

Rnd.simps

lemma Rnd-from-σ-to-σs-description: ‹Rnd nd〈〈B〉〉σ↪→σs [σ] = {[σ ′]| σ ′. σ ′ ∈ Rnd

B σ}›
proof safe

show ‹σs ∈ Rnd nd〈〈B〉〉σ↪→σs [σ] =⇒ ∃σ ′. σs = [σ ′] ∧ σ ′ ∈ Rnd B σ› for σs
by (induct rule: Rnd.induct, auto simp add: Rnd.init behaviour-σ-σs-conv(6 ),

metis Rnd.step)
next

show ‹σ ′ ∈ Rnd B σ =⇒ [σ ′] ∈ Rnd nd〈〈B〉〉σ↪→σs [σ]› for σ ′

by (induct rule: Rnd.induct) (simp-all add: Rnd.init Rnd.step behaviour-σ-σs-conv(6 ))
qed

lemma Rd-from-σ-to-σs-description: ‹Rd d〈〈A〉〉σ↪→σs [σ] = {[σ ′]| σ ′. σ ′ ∈ Rd A
σ}›

by (simp add: Rnd-from-σ-to-σs-description
flip: Rnd-from-det-to-ndet from-det-to-ndet-σ-σs-conv-commute(1 ))
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lemma Rnd-from-singl-to-list-description: ‹Rnd nd〈〈B〉〉singl↪→list [σ] = {[σ ′]| σ ′.
σ ′ ∈ Rnd B σ}›
proof safe

show ‹σs ∈ Rnd nd〈〈B〉〉singl↪→list [σ] =⇒ ∃σ ′. σs = [σ ′] ∧ σ ′ ∈ Rnd B σ› for
σs

by (induct rule: Rnd.induct, auto simp add: Rnd.init behaviour-singl-list-conv(6 ),
metis Rnd.step)
next

show ‹σ ′ ∈ Rnd B σ =⇒ [σ ′] ∈ Rnd nd〈〈B〉〉singl↪→list [σ]› for σ ′

by (induct rule: Rnd.induct) (simp-all add: Rnd.init Rnd.step behaviour-singl-list-conv(6 ))
qed

lemma Rd-from-singl-to-list-description: ‹Rd d〈〈A〉〉singl↪→list [σ] = {[σ ′]| σ ′. σ ′ ∈
Rd A σ}›

by (simp add: Rnd-from-singl-to-list-description
flip: Rnd-from-det-to-ndet from-det-to-ndet-singl-list-conv-commute(1 ))

lemma length-Rd-from-σ-to-σs:
‹σs ′ ∈ Rd d〈〈A〉〉σ↪→σs σs =⇒ σs ′ = σs ∨ length σs ′ = 1 ›
by (simp add: σ-σs-conv-defs)
(induct rule: Rd.induct, simp-all split: option.split-asm)

lemma length-Rnd-from-σ-to-σs:
‹σs ′ ∈ Rnd nd〈〈B〉〉σ↪→σs σs =⇒ σs ′ = σs ∨ length σs ′ = 1 ›
by (simp add: σ-σs-conv-defs)
(induct rule: Rnd.induct, auto)

lemma length-Rd-from-singl-to-list:
‹σs ′ ∈ Rd d〈〈A〉〉singl↪→list σs =⇒ σs ′ = σs ∨ length σs ′ = 1 ›
by (simp add: singl-list-conv-defs)
(induct rule: Rd.induct, simp-all split: option.split-asm)

lemma length-Rnd-from-singl-to-list:
‹σs ′ ∈ Rnd nd〈〈B〉〉singl↪→list σs =⇒ σs ′ = σs ∨ length σs ′ = 1 ›
by (simp add: singl-list-conv-defs)
(induct rule: Rnd.induct, auto)

3.3 Normalization

3.3.1 Non-deterministic Case

First version, without final state notion

abbreviation P-nd-step :: ‹[( ′σ, ′a) enabl, ( ′σ, ′a) transnd,
′σ ⇒ ( ′a, ′r) pro-

cessptick, ′σ] ⇒ ( ′a, ′r) processptick›
where ‹P-nd-step εA τA X σ ≡ � e ∈ εA σ → u σ ′ ∈ τA σ e. X σ ′›
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definition P-nd :: ‹( ′σ, ′a, ′r , ′α) And-scheme ⇒ ′σ ⇒ ( ′a, ′r) processptick›
(‹P〈〈-〉〉nd› 1000 )

where ‹P〈〈A〉〉nd ≡ υ X . P-nd-step (ε A) (τ A) X›

lemma P-nd-step-constructive [simp] : ‹constructive (P-nd-step εA τA)› by simp

lemma P-nd-step-cont [simp] : ‹∀σ a. finite (τA σ a) =⇒ cont (P-nd-step εA τA)›
by (simp add: cont-fun)

lemma P-nd-step-constructive-bis : ‹constructive (P-nd-step (ε A) (τ A))› by simp

lemma P-nd-step-cont-bis [simp] : ‹finite-trans A =⇒ cont (P-nd-step (ε A) (τ
A))›

by (simp add: finite-trans-def )

lemma P-nd-rec: ‹P〈〈A〉〉nd = (λσ. P-nd-step (ε A) (τ A) P〈〈A〉〉nd σ)›
by (unfold P-nd-def , rule ext, subst restriction-fix-eq, simp-all)

lemma P-nd-is-fix : ‹finite-trans A =⇒ P〈〈A〉〉nd = (µ X . P-nd-step (ε A) (τ A)
X)›

by (simp add: P-nd-def restriction-fix-is-fix)

lemma non-destructive-imp-restriction-cont [simp] :
‹non-destructive f =⇒ restriction-cont f ›
by (simp add: non-destructive-on-def )

lemma P-nd-ω-useless: ‹P〈〈A〉〉nd = P〈〈A(|ω := some-ω|)〉〉nd›
by (simp add: P-nd-def ε-simps)

lemma P-nd-ω-useless-bis : ‹P〈〈A〉〉nd = P〈〈A(|ω := λσ. {}|)〉〉nd›
by (fact P-nd-ω-useless)

lemma P-nd-induct [case-names adm base step] :
‹adm↓ P =⇒ P σ =⇒ (

∧
X . P X =⇒ P (P-nd-step (ε A) (τ A) X)) =⇒ P

P〈〈A〉〉nd›
unfolding P-nd-def
by (rule restriction-fix-ind[OF P-nd-step-constructive-bis]) simp-all

lemma P-nd-induct-iterated [consumes 1 , case-names adm base step] :
‹[[0 < k; adm↓ P; P σ;

∧
X . P X =⇒ P ((P-nd-step (ε A) (τ A) ^^ k) X)]] =⇒

P P〈〈A〉〉nd›
unfolding P-nd-def
by (rule restriction-fix-ind-iterated[where f = ‹P-nd-step (ε A) (τ A)›]) auto

New version with final state notion where we just have SKIPS.
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abbreviation PSKIP S-nd-step ::
‹[( ′σ, ′a) enabl, ( ′σ, ′a) transnd,

′σ ⇒ ′r set, ′σ ⇒ ( ′a, ′r) processptick, ′σ] ⇒
( ′a, ′r) processptick›

where ‹PSKIP S-nd-step εA τA ωA X σ ≡ if ωA σ = {} then P-nd-step εA τA
X σ else SKIPS (ωA σ)›

definition PSKIP S-nd :: ‹( ′σ, ′a, ′r , ′α) And-scheme ⇒ ′σ ⇒ ( ′a, ′r) processptick›
(‹PSKIP S〈〈-〉〉nd› 1000 )

where ‹PSKIP S〈〈A〉〉nd ≡ υ X . PSKIP S-nd-step (ε A) (τ A) (ω A) X›

lemma PSKIP S-nd-step-constructive [simp] : ‹constructive (PSKIP S-nd-step εA
τA ωA)› by auto

lemma PSKIP S-nd-step-cont [simp] : ‹∀σ a. finite (τA σ a) =⇒ cont (PSKIP S-nd-step
εA τA ωA)›

by (simp add: cont-fun)

lemma PSKIP S-nd-step-constructive-bis : ‹constructive (PSKIP S-nd-step (ε A)
(τ A) (ω A))› by simp

lemma PSKIP S-nd-step-cont-bis [simp] : ‹finite-trans A =⇒ cont (PSKIP S-nd-step
(ε A) (τ A) (ω A))›

by (simp add: finite-trans-def )

lemma PSKIP S-nd-rec: ‹PSKIP S〈〈A〉〉nd = (λσ. PSKIP S-nd-step (ε A) (τ A) (ω
A) PSKIP S〈〈A〉〉nd σ)›

by (unfold PSKIP S-nd-def , rule ext, subst restriction-fix-eq, simp-all)

lemma PSKIP S-nd-is-fix : ‹finite-trans A =⇒ PSKIP S〈〈A〉〉nd = (µ X . PSKIP S-nd-step
(ε A) (τ A) (ω A) X)›

by (simp add: PSKIP S-nd-def restriction-fix-is-fix)

lemma PSKIP S-nd-induct [case-names adm base step] :
‹adm↓ P =⇒ P σ =⇒ (

∧
X . P X =⇒ P (PSKIP S-nd-step (ε A) (τ A) (ω A)

X)) =⇒ P PSKIP S〈〈A〉〉nd›
unfolding PSKIP S-nd-def
by (rule restriction-fix-ind[OF PSKIP S-nd-step-constructive-bis]) simp-all

lemma PSKIP S-nd-induct-iterated [consumes 1 , case-names adm base step] :
‹[[0 < k; adm↓ P; P σ;

∧
X . P X =⇒ P ((PSKIP S-nd-step (ε A) (τ A) (ω A)

^^ k) X)]] =⇒ P PSKIP S〈〈A〉〉nd›
unfolding PSKIP S-nd-def
by (rule restriction-fix-ind-iterated[where f = ‹PSKIP S-nd-step (ε A) (τ A) (ω

A)›]) auto

Correspondence when we always have ω A σ = {}.
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lemma PSKIP S-nd-empty-% : ‹% A = {} =⇒ PSKIP S〈〈A〉〉nd = P〈〈A〉〉nd›
by (simp add: PSKIP S-nd-def P-nd-def %-simps)

lemma PSKIP S-nd-updated-ω: ‹P〈〈A〉〉nd = PSKIP S〈〈A(|ω := λσ. {}|)〉〉nd›
by (metis (mono-tags, lifting) PSKIP S-nd-empty-% P-nd-ω-useless-bis %nd.simps

empty-Collect-eq select-convs(2 ) surjective update-convs(2 ))

lemma PSKIP S-nd-empty-%-inter-Rnd:
‹PSKIP S〈〈A〉〉nd σ = P〈〈A〉〉nd σ› if ‹% A ∩ Rnd A σ = {}›

proof −
have ‹σ ′ ∈ Rnd A σ =⇒ PSKIP S〈〈A〉〉nd σ ′ = P〈〈A〉〉nd σ ′› for σ ′

proof (induct A arbitrary: σ ′ rule: PSKIP S-nd-induct)
case adm show ?case by simp

next
case base show ‹P〈〈A〉〉nd σ ′ = P〈〈A〉〉nd σ ′› ..

next
case (step X)
from step.prems(1 ) that have ‹σ ′ /∈ % A› by blast
hence ‹ω A σ ′ = {}› by (simp add: %-simps)
thus ?case

by (subst P-nd-rec, auto intro!: mono-Mprefix-eq mono-GlobalNdet-eq)
(metis (lifting) Rnd.simps step.hyps step.prems)

qed
thus ‹PSKIP S〈〈A〉〉nd σ = P〈〈A〉〉nd σ› by (simp add: Rnd.init)

qed

lemma PSKIP S-nd-rec-notin-%:
‹σ /∈ % A =⇒ PSKIP S〈〈A〉〉nd σ = P-nd-step (ε A) (τ A) PSKIP S〈〈A〉〉nd σ›
by (subst PSKIP S-nd-rec) (simp add: %-simps)

lemma PSKIP S-nd-rec-in-%: ‹σ ∈ % A =⇒ PSKIP S〈〈A〉〉nd σ = SKIPS (ω A σ)›
by (subst PSKIP S-nd-rec, simp add: %-simps)

3.3.2 Deterministic Case

First version, without final state notion.
abbreviation P-d-step :: ‹[( ′σ, ′a) enabl, ( ′σ, ′a) transd, ′σ ⇒ ( ′a, ′r) processptick,
′σ] ⇒ ( ′a, ′r) processptick›

where ‹P-d-step εA τA X s ≡ � e ∈ εA s → X dτA s ee›

definition P-d :: ‹( ′σ, ′a, ′r , ′α) Ad-scheme ⇒ ′σ ⇒ ( ′a, ′r) processptick› (‹P〈〈-〉〉d›
1000 )

where ‹P〈〈A〉〉d ≡ υ X . P-d-step (ε A) (τ A) X›

lemma P-d-step-constructive[simp] : ‹constructive (P-d-step εA τA)› by simp
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lemmas P-d-step-constructive-bis = P-d-step-constructive[of ‹ε A› ‹τ A›] for A

lemma P-d-step-cont[simp]: ‹cont (P-d-step εA τA)›
by (simp add: cont-fun)

lemmas P-d-step-cont-bis = P-d-step-cont[of ‹ε A› ‹τ A›] for A

lemma P-d-rec: ‹P〈〈A〉〉d = (λs. P-d-step (ε A) (τ A) P〈〈A〉〉d s)›
by (unfold P-d-def , subst restriction-fix-eq) simp-all

lemma P-d-is-fix : ‹P〈〈A〉〉d = (µ X . P-d-step (ε A) (τ A) X)›
by (simp add: P-d-def restriction-fix-is-fix)

lemma P-d-ω-useless: ‹P〈〈A〉〉d = P〈〈A(|ω := some-ω|)〉〉d›
by (simp add: P-d-def ε-simps)

lemma P-d-ω-useless-bis: ‹P〈〈A〉〉d = P〈〈A(|ω := λσ. ♦|)〉〉d›
by (fact P-d-ω-useless)

lemma P-d-induct [case-names adm base step] :
‹[[adm↓ P; P σ;

∧
X . P X =⇒ P (P-d-step (ε A) (τ A) X)]] =⇒ P P〈〈A〉〉d›

unfolding P-d-def
by (rule restriction-fix-ind[OF P-d-step-constructive-bis]) simp-all

lemma P-d-induct-iterated [consumes 1 , case-names adm base step] :
‹[[0 < k; adm↓ P; P σ;

∧
X . P X =⇒ P ((P-d-step (ε A) (τ A) ^^ k) X)]] =⇒

P P〈〈A〉〉d›
unfolding P-d-def
by (rule restriction-fix-ind-iterated[where f = ‹P-d-step (ε A) (τ A)›]) auto

New version with final state notion where we just SKIP.

abbreviation PSKIP S-d-step ::
‹[( ′σ, ′a) enabl, ( ′σ, ′a) transd, ′σ ⇒ ′r option, ′σ ⇒ ( ′a, ′r) processptick, ′σ] ⇒

( ′a, ′r) processptick›
where ‹PSKIP S-d-step εA τA ωA X σ ≡ case ωA σ of brc ⇒ SKIP r | ♦ ⇒

P-d-step εA τA X σ›

definition PSKIP S-d :: ‹( ′σ, ′a, ′r , ′α) Ad-scheme ⇒ ′σ ⇒ ( ′a, ′r) processptick›
(‹PSKIP S〈〈-〉〉d› 1000 )

where ‹PSKIP S〈〈A〉〉d ≡ υ X . PSKIP S-d-step (ε A) (τ A) (ω A) X›

lemma PSKIP S-d-step-constructive[simp]: ‹constructive (PSKIP S-d-step εA τA
SFA)›

by (auto simp add: option.case-eq-if )

lemmas PSKIP S-d-step-constructive-bis = PSKIP S-d-step-constructive[of ‹ε A›
‹τ A› ‹ω A›] for A
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lemma PSKIP S-d-step-cont[simp]: ‹cont (PSKIP S-d-step εA τA SFA)›
by (simp add: cont-fun option.case-eq-if )

lemmas PSKIP S-d-step-cont-bis = PSKIP S-d-step-cont[of ‹ε A› ‹τ A› ‹ω A›]
for A

lemma PSKIP S-d-rec: ‹PSKIP S〈〈A〉〉d = (λσ. PSKIP S-d-step (ε A) (τ A) (ω A)
PSKIP S〈〈A〉〉d σ)›

by (unfold PSKIP S-d-def , subst restriction-fix-eq) auto

lemma PSKIP S-d-is-fix : ‹PSKIP S〈〈A〉〉d = (µ X . PSKIP S-d-step (ε A) (τ A) (ω
A) X)›

by (simp add: PSKIP S-d-def restriction-fix-is-fix)

lemma PSKIP S-d-induct [case-names adm base step] :
‹adm↓ P =⇒ P σ =⇒ (

∧
X . P X =⇒ P (PSKIP S-d-step (ε A) (τ A) (ω A) X))

=⇒ P PSKIP S〈〈A〉〉d›
unfolding PSKIP S-d-def
by (rule restriction-fix-ind[OF PSKIP S-d-step-constructive-bis]) simp-all

lemma PSKIP S-d-induct-iterated [consumes 1 , case-names adm base step] :
‹[[0 < k; adm↓ P; P σ;

∧
X . P X =⇒ P ((PSKIP S-d-step (ε A) (τ A) (ω A) ^^

k) X)]] =⇒ P PSKIP S〈〈A〉〉d›
unfolding PSKIP S-d-def
by (rule restriction-fix-ind-iterated[where f = ‹PSKIP S-d-step (ε A) (τ A) (ω

A)›]) auto

Correspondence when we always have ω A σ = {}.

lemma PSKIP S-d-empty-% : ‹% A = {} =⇒ PSKIP S〈〈A〉〉d = P〈〈A〉〉d›
by (simp add: %-simps P-d-def PSKIP S-d-def )

lemma PSKIP S-d-updated-ω: ‹P〈〈A〉〉d = PSKIP S〈〈A(|ω := λσ. ♦|)〉〉d›
by (simp add: PSKIP S-d-empty-% P-d-ω-useless %-simps)

lemma PSKIP S-d-empty-%-inter-Rd:
‹PSKIP S〈〈A〉〉d σ = P〈〈A〉〉d σ› if ‹% A ∩ Rd A σ = {}›

proof −
have ‹σ ′ ∈ Rd A σ =⇒ PSKIP S〈〈A〉〉d σ ′ = P〈〈A〉〉d σ ′› for σ ′

proof (induct A arbitrary: σ ′ rule: PSKIP S-d-induct)
case adm show ?case by simp

next
case base show ‹P〈〈A〉〉d σ ′ = P〈〈A〉〉d σ ′› ..

next
case (step X)
from step.prems(1 ) that have ‹σ ′ /∈ % A› by blast
hence ‹ω A σ ′ = ♦› by (simp add: %-simps)
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thus ?case
by (subst P-d-rec, auto intro!: mono-Mprefix-eq mono-GlobalNdet-eq)
(subst (asm) ε-simps, auto, metis (lifting) Rd.step step.hyps step.prems)

qed
thus ‹PSKIP S〈〈A〉〉d σ = P〈〈A〉〉d σ› by (simp add: Rd.init)

qed

lemma PSKIP S-d-rec-notin-%:
‹σ /∈ % A =⇒ PSKIP S〈〈A〉〉d σ = P-d-step (ε A) (τ A) PSKIP S〈〈A〉〉d σ›
by (subst PSKIP S-d-rec) (simp add: %-simps)

lemma PSKIP S-d-rec-in-%: ‹σ ∈ % A =⇒ PSKIP S〈〈A〉〉d σ = SKIP dω A σe›
by (subst PSKIP S-d-rec, simp add: %-simps split: option.split)

3.3.3 Link between deterministic and non-deterministic Pro-
cOmata

lemma PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d : ‹PSKIP S〈〈〈〈A〉〉d↪→nd〉〉nd = PSKIP S〈〈A〉〉d›
proof (subst PSKIP S-nd-def , rule restriction-fix-unique)

show ‹constructive (PSKIP S-nd-step (ε 〈〈A〉〉d↪→nd) (τ 〈〈A〉〉d↪→nd) (ω 〈〈A〉〉d↪→nd))›
by simp
next

show ‹PSKIP S-nd-step (ε 〈〈A〉〉d↪→nd) (τ 〈〈A〉〉d↪→nd) (ω 〈〈A〉〉d↪→nd) PSKIP S〈〈A〉〉d
= PSKIP S〈〈A〉〉d›

by (subst (3 ) PSKIP S-d-rec)
(rule ext, auto simp add: from-det-to-ndet-def ε-simps

split: option.split intro: mono-Mprefix-eq)
qed

corollary P-nd-from-det-to-ndet-is-P-d : ‹P〈〈〈〈A〉〉d↪→nd〉〉nd = P〈〈A〉〉d›
proof −

have ‹P〈〈〈〈A〉〉d↪→nd〉〉nd = PSKIP S〈〈〈〈A〉〉d↪→nd(|ω := λσ. {}|)〉〉nd›
by (fact PSKIP S-nd-updated-ω)

also have ‹〈〈A〉〉d↪→nd(|ω := λσ. {}|) = 〈〈A(|ω := λσ. ♦|)〉〉d↪→nd›
by (simp add: from-det-to-ndet-def )

finally show ‹P〈〈〈〈A〉〉d↪→nd〉〉nd = P〈〈A〉〉d›
by (simp add: PSKIP S-d-updated-ω PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)

qed

3.3.4 Prove Equality between ProcOmata
This is the easiest method we can think about.
lemma P-d-eqI : ‹(

∧
σ a. τ A σ a = τ B σ a) =⇒ P〈〈A〉〉d = P〈〈B〉〉d›

by (simp add: P-d-def ε-simps)

lemma P-nd-eqI : ‹(
∧
σ a. τ A σ a = τ B σ a) =⇒ P〈〈A〉〉nd = P〈〈B〉〉nd›
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by (simp add: P-nd-def ε-simps)

lemma PSKIP S-d-eqI :
‹(
∧
σ a. σ /∈ % A =⇒ τ A σ a = τ B σ a) =⇒ (

∧
σ. ω A σ = ω B σ) =⇒

PSKIP S〈〈A〉〉d = PSKIP S〈〈B〉〉d›
by (subst PSKIP S-d-def , rule restriction-fix-unique, simp)
(subst (2 ) PSKIP S-d-rec, auto simp add: ε-simps %-simps split: option.split)

lemma PSKIP S-nd-eqI :
‹(
∧
σ a. σ /∈ % A =⇒ τ A σ a = τ B σ a) =⇒ (

∧
σ. ω A σ = ω B σ) =⇒

PSKIP S〈〈A〉〉nd = PSKIP S〈〈B〉〉nd›
by (subst PSKIP S-nd-def , rule restriction-fix-unique[OF PSKIP S-nd-step-constructive])
(subst (2 ) PSKIP S-nd-rec, auto simp add: ε-simps %-simps split: option.split)

We establish now a much more powerful theorem.

theorem PSKIP S-nd-eqI-strong:

assumes inj-on-f : ‹inj-on f (Rnd A0 σ0)›
and eq-trans : ‹

∧
σ0

′ a. σ0
′ ∈ Rnd A0 σ0 =⇒ τ A1 (f σ0

′) a = f ‘ (τ A0 σ0
′

a)›
and eq-fin : ‹

∧
σ0

′. σ0
′ ∈ Rnd A0 σ0 =⇒ ω A1 (f σ0

′) = ω A0 σ0
′›

shows ‹PSKIP S〈〈A0〉〉nd σ0 = PSKIP S〈〈A1〉〉nd (f σ0)›
proof −

have ‹σ0
′ ∈ Rnd A0 σ0 =⇒ PSKIP S〈〈A1〉〉nd (f σ0

′) = PSKIP S〈〈A0〉〉nd σ0
′› for

σ0
′

proof (induct A1 arbitrary: σ0
′ rule: PSKIP S-nd-induct)

case adm show ?case by simp
next

show ‹σ0
′ ∈ Rnd A0 σ0 =⇒ PSKIP S〈〈A0〉〉nd (inv-into (Rnd A0 σ0) f (f σ0

′))
= PSKIP S〈〈A0〉〉nd σ0

′› for σ0
′

by (simp add: inj-on-f )
next

case (step X)
from step.prems eq-trans have ‹ε A0 σ0

′ = ε A1 (f σ0
′)›

by (auto simp add: ε-simps)
moreover have ‹ω A1 (f σ0

′) = ω A0 σ0
′› by (simp add: eq-fin step.prems)

ultimately show ?case
by (subst PSKIP S-nd-rec, auto)
(metis (mono-tags, lifting) Rnd.step eq-trans mono-GlobalNdet-eq2

step.hyps step.prems)
qed
thus ‹PSKIP S〈〈A0〉〉nd σ0 = PSKIP S〈〈A1〉〉nd (f σ0)› by (simp add: Rnd.init)

qed

theorem P-nd-eqI-strong:
‹[[inj-on f (Rnd A0 σ0);∧

σ0
′ a. σ0

′ ∈ Rnd A0 σ0 =⇒ τ A1 (f σ0
′) a = f ‘ (τ A0 σ0

′ a)]]
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=⇒ P〈〈A0〉〉nd σ0 = P〈〈A1〉〉nd (f σ0)›
by (unfold PSKIP S-nd-updated-ω, rule PSKIP S-nd-eqI-strong) simp-all

theorem PSKIP S-d-eqI-strong:
assumes ‹inj-on f (Rd A0 σ0)›

and ‹
∧
σ0

′ a. σ0
′ ∈ Rd A0 σ0 =⇒ τ A1 (f σ0

′) a = map-option f (τ A0 σ0
′ a)›

and ‹
∧
σ0

′. σ0
′ ∈ Rd A0 σ0 =⇒ ω A1 (f σ0

′) = ω A0 σ0
′›

shows ‹PSKIP S〈〈A0〉〉d σ0 = PSKIP S〈〈A1〉〉d (f σ0)›
by (fold PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d, rule PSKIP S-nd-eqI-strong)
(unfold Rnd-from-det-to-ndet,

simp-all add: assms from-det-to-ndet-def map-option-case split: option.split)

theorem P-d-eqI-strong:
‹[[inj-on f (Rd A0 σ0);∧

σ0
′ a. σ0

′ ∈ Rd A0 σ0 =⇒ τ A1 (f σ0
′) a = map-option f (τ A0 σ0

′ a)]]
=⇒ P〈〈A0〉〉d σ0 = P〈〈A1〉〉d (f σ0)›

by (unfold PSKIP S-d-updated-ω, rule PSKIP S-d-eqI-strong) simp-all

lemmas PSKIP S-nd-eqI-strong-id = PSKIP S-nd-eqI-strong[of id, simplified]
and PSKIP S-d-eqI-strong-id = PSKIP S-d-eqI-strong
[of id, simplified id-def option.map-ident, simplified]
and P-nd-eqI-strong-id = P-nd-eqI-strong[of id, simplified]
and P-d-eqI-strong-id = P-d-eqI-strong
[of id, simplified id-def option.map-ident, simplified]

corollary PSKIP S-nd-from-σ-to-σs-is-PSKIP S-nd : ‹PSKIP S〈〈nd〈〈A〉〉σ↪→σs〉〉nd [σ]
= PSKIP S〈〈A〉〉nd σ›

by (auto simp add: image-iff behaviour-σ-σs-conv(6 , 8 )
intro!: inj-onI PSKIP S-nd-eqI-strong[symmetric])

corollary PSKIP S-d-from-σ-to-σs-is-PSKIP S-d : ‹PSKIP S〈〈d〈〈A〉〉σ↪→σs〉〉d [σ] =
PSKIP S〈〈A〉〉d σ›

by (auto simp add: image-iff behaviour-σ-σs-conv(2 , 4 )
intro!: inj-onI PSKIP S-d-eqI-strong[symmetric] split: option.split)

corollary P-nd-from-σ-to-σs-is-P-nd : ‹P〈〈nd〈〈A〉〉σ↪→σs〉〉nd [σ] = P〈〈A〉〉nd σ›
by (auto simp add: image-iff behaviour-σ-σs-conv(6 , 8 )

intro!: inj-onI P-nd-eqI-strong[symmetric])

corollary P-d-from-σ-to-σs-is-P-d : ‹P〈〈d〈〈A〉〉σ↪→σs〉〉d [σ] = P〈〈A〉〉d σ›
by (auto simp add: image-iff behaviour-σ-σs-conv(2 , 4 )

intro!: inj-onI P-d-eqI-strong[symmetric] split: option.split)

Behaviour of normalizations. We will use the following methods in combin-
ing theories.
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fun recursive-modifier-fund :: ‹[( ′σ × ′a) ⇒ ′σ option, (( ′σ × ′a) × ′σ option) list]
⇒ ( ′σ × ′a) ⇒ ′σ option›

where ‹recursive-modifier-fund f [] = f ›
| ‹recursive-modifier-fund f (((s, e), t) # GA) = recursive-modifier-fund (f ((s,

e) := t)) GA›

abbreviation recursive-constructor-Ad :: ‹[(( ′σ × ′a) × ′σ option) list, ′σ ⇒ ′r
option] ⇒ ( ′σ, ′a, ′r) Ad›

where ‹recursive-constructor-Ad GA ωA ≡ (|τ = curry (recursive-modifier-fund

(λ(s, e). ♦) GA), ω = ωA|)›

lemma ε-det-breaker :
‹ε ((|τ = curry (g((σ ′:: ′σ, a) 7→ σ ′′:: ′σ)), ω = some-ω, . . . = some-more|) ) σ =
(if σ = σ ′ then {a} ∪ ε (|τ = curry g, ω = some-ω|) σ ′ else ε (|τ = curry g, ω

= some-ω|) σ)›
by (auto simp add: ε-simps split: if-splits)

method ε-det-calc = (unfold recursive-modifier-fund.simps ε-det-breaker , simp cong:
if-cong)[1 ]

method τ -det-calc = (unfold recursive-modifier-fund.simps, simp cong: if-cong)[1 ]

lemma bij-Renaming-PSKIP S-nd :
fixes A :: ‹( ′σ, ′a, ′r , ′α) And-scheme› and f :: ‹ ′a ⇒ ′b› and g :: ‹ ′r ⇒ ′s›
assumes ‹bij f ›
defines B-def : ‹B ≡ (|τ = λσ b. τ A σ (inv f b), ω = λσ. g ‘ (ω A σ)|)›
shows ‹Renaming (PSKIP S〈〈A〉〉nd σ) f g = PSKIP S〈〈B〉〉nd σ› (is ‹?lhs σ = -›)

proof (rule fun-cong[of ?lhs ‹PSKIP S〈〈B〉〉nd› σ])
show ‹?lhs = PSKIP S〈〈B〉〉nd›
proof (rule restriction-fix-unique[OF PSKIP S-nd-step-constructive-bis[of B],

symmetric, folded PSKIP S-nd-def ])
show ‹PSKIP S-nd-step (ε B) (τ B) (ω B) ?lhs = ?lhs›
proof (rule ext)

have ∗ : ‹ε B σ = f ‘ ε A σ› for σ
by (simp add: B-def ε-simps image-def ) (metis ‹bij f › bij-inv-eq-iff )

have ∗∗ : ‹inv f (f a) = a› for a
by (metis ‹bij f › bij-inv-eq-iff )

have ∗∗∗ : ‹(THE a ′. f a ′ = f a) = a› for a
by (rule the1-equality ′, metis (mono-tags, lifting) Uniq-I assms(1 ) bij-betw-def

injD, simp)
show ‹PSKIP S-nd-step (ε B) (τ B) (ω B) ?lhs σ = ?lhs σ› for σ
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by (subst (2 ) PSKIP S-nd-rec, simp add: ∗)
(auto simp add: ∗∗ ∗∗∗ B-def Renaming-distrib-GlobalNdet

Renaming-Mprefix-image-inj[OF ‹bij f ›[THEN bij-is-inj]]
intro: mono-Mprefix-eq)

qed
qed

qed

lemma bij-Renaming-PSKIP S-d :
‹bij f =⇒ Renaming (PSKIP S〈〈A〉〉d σ) f g =

PSKIP S〈〈(|τ = λσ b. τ A σ (inv f b), ω = λσ. map-option g (ω A σ)|)〉〉d
σ›

by (subst (1 2 ) PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d[symmetric],
subst bij-Renaming-PSKIP S-nd, assumption)

(rule fun-cong[of - - σ], rule PSKIP S-nd-eqI ,
simp-all add: from-det-to-ndet-def split: option.split)

lemma RenamingTick-PSKIP S-nd :
‹RenamingTick (PSKIP S〈〈A〉〉nd σ) g = PSKIP S〈〈(|τ = τ A, ω = λσ. g ‘ ω A

σ|)〉〉nd σ›
by (simp add: bij-Renaming-PSKIP S-nd)

lemma RenamingTick-PSKIP S-d :
‹RenamingTick (PSKIP S〈〈A〉〉d σ) g = PSKIP S〈〈(|τ = τ A, ω = λσ. map-option

g (ω A σ)|)〉〉d σ›
by (simp add: bij-Renaming-PSKIP S-d)
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Chapter 4

Advanced Properties of
ProcOmata
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Chapter 5

Combining Automata for
Synchronization Product

5.1 Definitions

5.1.1 General Patterns

abbreviation combine-sets-Sync :: ‹ ′a set ⇒ ′a set ⇒ ′a set ⇒ ′a set›
where ‹combine-sets-Sync S0 E S1 ≡ (S0 − E − S1) ∪ (S1 − E − S0) ∪ (S0

∩ S1 − E) ∪ S0 ∩ S1 ∩ E›

definition combine-Sync-ε ::
‹[( ′σ0,

′e, ′σ0
′, ′r0,

′α0) A-scheme, ′e set,
( ′σ1,

′e, ′σ1
′, ′r1,

′α1) A-scheme, ′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ] ⇒ ′e set›
where ‹combine-Sync-ε A0 E A1 i0 i1 σs ≡ combine-sets-Sync (ε A0 (i0 σs)) E

(ε A1 (i1 σs))›

lemma combine-Sync-ε-def-bis :
‹combine-Sync-ε A0 E A1 i0 i1 σs =
ε A0 (i0 σs) ∪ ε A1 (i1 σs) − E ∪ ε A0 (i0 σs) ∩ ε A1 (i1 σs)›

by (auto simp add: combine-Sync-ε-def )

fun combined-Sync-τ ::
‹[( ′σ0,

′e, ′r0,
′α0) Ad-scheme, ′e set, ( ′σ1,

′e, ′r1,
′α1) Ad-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ0 ⇒ ′σ1 ⇒ ′σ] ⇒ ( ′σ, ′e) transd›
and combinend-Sync-τ ::
‹[( ′σ0,

′e, ′r0,
′α0) And-scheme, ′e set, ( ′σ1,

′e, ′r1,
′α1) And-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ0 ⇒ ′σ1 ⇒ ′σ] ⇒ ( ′σ, ′e) transnd›
where ‹combined-Sync-τ A0 E A1 i0 i1 f σs e =

( if e ∈ ε A0 (i0 σs) ∩ ε A1 (i1 σs)
then update-both A0 A1 (i0 σs) (i1 σs) e (f-up-opt f )

else if e ∈ ε A0 (i0 σs) − E − ε A1 (i1 σs)
then update-left A0 (i0 σs) (i1 σs) e (f-up-opt f ) (λs. bsc)

else if e ∈ ε A1 (i1 σs) − E − ε A0 (i0 σs)
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then update-right A1 (i0 σs) (i1 σs) e (f-up-opt f ) (λs. bsc)
else ♦)›

| ‹combinend-Sync-τ A0 E A1 i0 i1 f σs e =
( if e ∈ ε A0 (i0 σs) ∩ ε A1 (i1 σs) ∩ E

then update-both A0 A1 (i0 σs) (i1 σs) e (f-up-set f )
else if e ∈ ε A0 (i0 σs) ∩ ε A1 (i1 σs) − E

then update-left A0 (i0 σs) (i1 σs) e (f-up-set f ) (λs. {s})
∪ update-right A1 (i0 σs) (i1 σs) e (f-up-set f ) (λs. {s})

else if e ∈ ε A0 (i0 σs) − E − ε A1 (i1 σs)
then update-left A0 (i0 σs) (i1 σs) e (f-up-set f ) (λs. {s})

else if e ∈ ε A1 (i1 σs) − E − ε A0 (i0 σs)
then update-right A1 (i0 σs) (i1 σs) e (f-up-set f ) (λs. {s})

else {})›

fun combined-Sync-ω ::
‹[( ′σ0,

′e, ′r0,
′α0) Ad-scheme, ′e set, ( ′σ1,

′e, ′r1,
′α1) Ad-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′r0 ⇒ ′r1 ⇒ ′r option] ⇒ ( ′σ ⇒ ′r option)›
and combinend-Sync-ω ::
‹[( ′σ0,

′e, ′r0,
′α0) And-scheme, ′e set, ( ′σ1,

′e, ′r1,
′α1) And-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′r0 ⇒ ′r1 ⇒ ′r option] ⇒ ( ′σ ⇒ ′r set)›
where ‹combined-Sync-ω A0 E A1 i0 i1 g σs =

(case ω A0 (i0 σs)
of ♦ ⇒ ♦ | br0c ⇒ (case ω A1 (i1 σs) of ♦ ⇒ ♦ | br1c ⇒ g r0 r1))›

| ‹combinend-Sync-ω A0 E A1 i0 i1 g σs =
{r |r r0 r1. g r0 r1 = brc ∧ r0 ∈ ω A0 (i0 σs) ∧ r1 ∈ ω A1 (i1 σs)}›

fun combined-Sync ::
‹[( ′σ0,

′e, ′r0,
′α0) Ad-scheme, ′e set, ( ′σ1,

′e, ′r1,
′α1) Ad-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ0 ⇒ ′σ1 ⇒ ′σ, ′r0 ⇒ ′r1 ⇒ ′r option] ⇒ ( ′σ, ′e, ′r) Ad›
and combinend-Sync ::
‹[( ′σ0,

′e, ′r0,
′α0) And-scheme, ′e set, ( ′σ1,

′e, ′r1,
′α1) And-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ0 ⇒ ′σ1 ⇒ ′σ, ′r0 ⇒ ′r1 ⇒ ′r option] ⇒ ( ′σ, ′e, ′r)
And›

where ‹combined-Sync A0 E A1 i0 i1 f g =
(|τ = combined-Sync-τ A0 E A1 i0 i1 f , ω = combined-Sync-ω A0 E A1 i0

i1 g|)›
| ‹combinend-Sync A0 E A1 i0 i1 f g =

(|τ = combinend-Sync-τ A0 E A1 i0 i1 f , ω = combinend-Sync-ω A0 E A1

i0 i1 g|)›

5.1.2 Specializations
definition combinedP airlist-Sync ::

‹[( ′σ, ′e, ′r , ′α) Ad-scheme, ′e set, ( ′σ, ′e, ′r , ′β) Ad-scheme] ⇒ ( ′σ list, ′e, ′r)
Ad›

where ‹combinedP airlist-Sync A0 E A1 ≡
combined-Sync A0 E A1 hd (λσs. hd (tl σs)) (λs t. [s, t]) (λs t. if s = t

then bsc else ♦)›
definition combinendP airlist-Sync ::
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‹[( ′σ, ′e, ′r , ′α) And-scheme, ′e set, ( ′σ, ′e, ′r , ′β) And-scheme] ⇒ ( ′σ list, ′e, ′r)
And›

where ‹combinendP airlist-Sync A0 E A1 ≡
combinend-Sync A0 E A1 hd (λσs. hd (tl σs)) (λs t. [s, t]) (λs t. if s = t

then bsc else ♦)›

definition combinedP air-Sync ::
‹[( ′σ0,

′e, ′r , ′α) Ad-scheme, ′e set, ( ′σ1,
′e, ′r , ′β) Ad-scheme] ⇒ ( ′σ0 × ′σ1,

′e,
′r) Ad›

where ‹combinedP air-Sync A0 E A1 ≡
combined-Sync A0 E A1 fst snd Pair (λs t. if s = t then bsc else ♦)›

definition combinendP air-Sync ::
‹[( ′σ0,

′e, ′r , ′α) And-scheme, ′e set, ( ′σ1,
′e, ′r , ′β) And-scheme] ⇒ ( ′σ0 × ′σ1,

′e, ′r) And›
where ‹combinendP air-Sync A0 E A1 ≡

combinend-Sync A0 E A1 fst snd Pair (λs t. if s = t then bsc else ♦)›

definition combinedListslenL-Sync ::
‹[( ′σ list, ′e, ′r , ′α) Ad-scheme, nat, ′e set, ( ′σ list, ′e, ′r , ′β) Ad-scheme] ⇒ ( ′σ

list, ′e, ′r) Ad›
where ‹combinedListslenL-Sync A0 len0 E A1 ≡

combined-Sync A0 E A1 (take len0) (drop len0) (@) (λs t. if s = t then bsc
else ♦)›
definition combinendListslenL-Sync ::

‹[( ′σ list, ′e, ′r , ′α) And-scheme, nat, ′e set, ( ′σ list, ′e, ′r , ′β) And-scheme] ⇒
( ′σ list, ′e, ′r) And›

where ‹combinendListslenL-Sync A0 len0 E A1 ≡
combinend-Sync A0 E A1 (take len0) (drop len0) (@) (λs t. if s = t then

bsc else ♦)›

definition combinedRlist-Sync ::
‹[( ′σ, ′e, ′r , ′α) Ad-scheme, ′e set, ( ′σ list, ′e, ′r , ′β) Ad-scheme] ⇒ ( ′σ list, ′e,

′r) Ad›
where ‹combinedRlist-Sync A0 E A1 ≡

combined-Sync A0 E A1 hd tl (#) (λs t. if s = t then bsc else ♦)›
definition combinendRlist-Sync ::

‹[( ′σ, ′e, ′r , ′α) And-scheme, ′e set, ( ′σ list, ′e, ′r , ′β) And-scheme] ⇒ ( ′σ list,
′e, ′r) And›

where ‹combinendRlist-Sync A0 E A1 ≡
combinend-Sync A0 E A1 hd tl (#) (λs t. if s = t then bsc else ♦)›

lemmas combineP airlist-Sync-defs = combinedP airlist-Sync-def combinendP airlist-Sync-def
and combineP air-Sync-defs = combinedP air-Sync-def combinendP air-Sync-def
and combineListslenL-Sync-defs = combinedListslenL-Sync-def combinendListslenL-Sync-def
and combineRlist-Sync-defs = combinedRlist-Sync-def combinendRlist-Sync-def

lemmas combine-Sync-defs =
combineP airlist-Sync-defs combineP air-Sync-defs combineListslenL-Sync-defs com-

bineRlist-Sync-defs
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bundle combinend-Sync-syntax begin

notation combinedP airlist-Sync (‹〈〈- d⊗[[-]]P airlist -〉〉› [0 , 0 , 0 ])
notation combinendP airlist-Sync (‹〈〈- nd⊗[[-]]P airlist -〉〉› [0 , 0 , 0 ])
notation combinedP air-Sync (‹〈〈- d⊗[[-]]P air -〉〉› [0 , 0 , 0 ])
notation combinendP air-Sync (‹〈〈- nd⊗[[-]]P air -〉〉› [0 , 0 , 0 ])
notation combinedListslenL-Sync (‹〈〈- d⊗[[-, -]]ListslenL -〉〉› [0 , 0 , 0 , 0 ])
notation combinendListslenL-Sync (‹〈〈- nd⊗[[-, -]]ListslenL -〉〉› [0 , 0 , 0 , 0 ])
notation combinedRlist-Sync (‹〈〈- d⊗[[-]]Rlist -〉〉› [0 , 0 , 0 ])
notation combinendRlist-Sync (‹〈〈- nd⊗[[-]]Rlist -〉〉› [0 , 0 , 0 ])

end

unbundle combinend-Sync-syntax

5.2 First Properties
lemma finite-trans-combinend-Sync-simps [simp] :

‹finite-trans A0 =⇒ finite-trans A1 =⇒ finite-trans 〈〈A0 nd⊗[[E ]]P airlist A1〉〉›
‹finite-trans B0 =⇒ finite-trans B1 =⇒ finite-trans 〈〈B0 nd⊗[[E ]]P air B1〉〉›
‹finite-trans C 0 =⇒ finite-trans C 1 =⇒ finite-trans 〈〈C 0 nd⊗[[len0, E ]]ListslenL

C 1〉〉›
‹finite-trans D0 =⇒ finite-trans D1 =⇒ finite-trans 〈〈D0 nd⊗[[E ]]Rlist D1〉〉›
unfolding combinendP airlist-Sync-def combinendP air-Sync-def combinendListslenL-Sync-def

combinendRlist-Sync-def
by (simp-all add: finite-trans-def finite-image-set2 )

lemma ε-combineP airlist-Sync:
‹ε 〈〈A0 d⊗[[E ]]P airlist A1〉〉 σs = combine-Sync-ε A0 E A1 hd (hd ◦ tl) σs›
‹ε 〈〈B0 nd⊗[[E ]]P airlist B1〉〉 σs = combine-Sync-ε B0 E B1 hd (hd ◦ tl) σs›
by (auto simp add: combine-Sync-ε-def-bis combineP airlist-Sync-defs ε-simps)

lemma ε-combineP air-Sync:
‹ε 〈〈A0 d⊗[[E ]]P air A1〉〉 σs = combine-Sync-ε A0 E A1 fst snd σs›
‹ε 〈〈B0 nd⊗[[E ]]P air B1〉〉 σs = combine-Sync-ε B0 E B1 fst snd σs›
by (auto simp add: combine-Sync-ε-def-bis combineP air-Sync-defs ε-simps)

lemma ε-combineListslenL-Sync:
‹ε 〈〈A0 d⊗[[len0, E ]]ListslenL A1〉〉 σs = combine-Sync-ε A0 E A1 (take len0) (drop

len0) σs›
‹ε 〈〈B0 nd⊗[[len0, E ]]ListslenL B1〉〉 σs = combine-Sync-ε B0 E B1 (take len0)

(drop len0) σs›
by (auto simp add: combine-Sync-ε-def-bis combineListslenL-Sync-defs ε-simps)

lemma ε-combineRlist-Sync:
‹ε 〈〈A0 d⊗[[E ]]Rlist A1〉〉 σs = combine-Sync-ε A0 E A1 hd tl σs›
‹ε 〈〈B0 nd⊗[[E ]]Rlist B1〉〉 σs = combine-Sync-ε B0 E B1 hd tl σs›
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by (auto simp add: combine-Sync-ε-def-bis combineRlist-Sync-defs ε-simps)

lemma %-combineP airlist-Sync:
‹% 〈〈A0 d⊗[[E ]]P airlist A1〉〉 = {σs. hd σs ∈ % A0 ∧ hd (tl σs) ∈ % A1 ∧ ω A0 (hd

σs) = ω A1 (hd (tl σs))}›
‹% 〈〈B0 nd⊗[[E ]]P airlist B1〉〉 = {σs. hd σs ∈ % B0 ∧ hd (tl σs) ∈ % B1 ∧ ω B0

(hd σs) ∩ ω B1 (hd (tl σs)) 6= {}}›
by (auto simp add: combineP airlist-Sync-defs %-simps split: option.split)

lemma %-combineP air-Sync:
‹% 〈〈A0 d⊗[[E ]]P air A1〉〉 = {(σ0, σ1). σ0 ∈ % A0 ∧ σ1 ∈ % A1 ∧ ω A0 σ0 = ω A1

σ1}›
‹% 〈〈B0 nd⊗[[E ]]P air B1〉〉 = {(σ0, σ1). σ0 ∈ % B0 ∧ σ1 ∈ % B1 ∧ ω B0 σ0 ∩ ω B1

σ1 6= {}}›
by (auto simp add: combineP air-Sync-defs %-simps split: option.split)

lemma %-combineListslenL-Sync:
‹% 〈〈A0 d⊗[[len0, E ]]ListslenL A1〉〉 =
{σs. take len0 σs ∈ % A0 ∧ drop len0 σs ∈ % A1 ∧ ω A0 (take len0 σs) = ω A1

(drop len0 σs)}›
‹% 〈〈B0 nd⊗[[len0, E ]]ListslenL B1〉〉 =
{σs. take len0 σs ∈ % B0 ∧ drop len0 σs ∈ % B1 ∧ ω B0 (take len0 σs) ∩ ω B1

(drop len0 σs) 6= {}}›
by (auto simp add: combineListslenL-Sync-defs %-simps split: option.split)

lemma %-combineRlist-Sync:
‹% 〈〈A0 d⊗[[E ]]Rlist A1〉〉 =
{σs. hd σs ∈ % A0 ∧ tl σs ∈ % A1 ∧ ω A0 (hd σs) = ω A1 (tl σs)}›

‹% 〈〈B0 nd⊗[[E ]]Rlist B1〉〉 =
{σs. hd σs ∈ % B0 ∧ tl σs ∈ % B1 ∧ ω B0 (hd σs) ∩ ω B1 (tl σs) 6= {}}›

by (auto simp add: combineRlist-Sync-defs %-simps split: option.split)

lemma combine-Sync-τ [simp] :
‹combined-Sync-τ (A0(|ω := some-ω0|)) E (A1(|ω := some-ω1|)) = combined-Sync-τ

A0 E A1›
‹combinend-Sync-τ (B0(|ω := some-ω0

′|)) E (B1(|ω := some-ω1
′|)) = combinend-Sync-τ

B0 E B1›
for A :: ‹( ′σ, ′a, ′σ option, ′r option, ′α) A-scheme›

and B :: ‹( ′σ, ′a, ′σ set, ′r set, ′α) A-scheme›
by (intro ext, simp)+

5.3 Reachability
lemma Rd-combinedListslenL-Sync-subset:

‹Rd 〈〈A0 d⊗[[len0, E ]]ListslenL A1〉〉 (s0 @ s1) ⊆ {t0 @ t1| t0 t1. t0 ∈ Rd A0 s0 ∧
t1 ∈ Rd A1 s1}› (is ‹?SA ⊆ -›)
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if same-length-Rd: ‹
∧

t0. t0 ∈ Rd A0 s0 =⇒ length t0 = len0›
proof safe

show ‹t ∈ ?SA =⇒ ∃ t0 t1. t = t0 @ t1 ∧ t0 ∈ Rd A0 s0 ∧ t1 ∈ Rd A1 s1› for t
apply (induct rule: Rd.induct, metis Rd.init)
by (simp-all add: combineListslenL-Sync-defs same-length-Rd ε-simps split:

if-splits)
(metis (no-types, opaque-lifting) Rd.simps)+

qed

lemma Rnd-combinendListslenL-Sync-subset:
‹Rnd 〈〈B0 nd⊗[[len0, E ]]ListslenL B1〉〉 (s0 @ s1) ⊆ {t0 @ t1| t0 t1. t0 ∈ Rnd B0

s0 ∧ t1 ∈ Rnd B1 s1}› (is ‹?SB ⊆ -›)
if same-length-Rnd: ‹

∧
t0. t0 ∈ Rnd B0 s0 =⇒ length t0 = len0›

proof safe
show ‹t ∈ ?SB =⇒ ∃ t0 t1. t = t0 @ t1 ∧ t0 ∈ Rnd B0 s0 ∧ t1 ∈ Rnd B1 s1›

for t
apply (induct rule: Rnd.induct, metis Rnd.init)
by (simp-all add: combineListslenL-Sync-defs same-length-Rnd ε-simps split:

if-splits)
(metis (no-types, opaque-lifting) Rnd.simps)+

qed

lemma Rd-combinedP airlist-Sync-subset:
‹Rd 〈〈A0 d⊗[[E ]]P airlist A1〉〉 [s0, s1] ⊆ {[t0, t1]| t0 t1. t0 ∈ Rd A0 s0 ∧ t1 ∈ Rd

A1 s1}› (is ‹?SA ⊆ -›)
and Rnd-combinendP airlist-Sync-subset:
‹Rnd 〈〈B0 nd⊗[[E ]]P airlist B1〉〉 [s0, s1] ⊆ {[t0, t1]| t0 t1. t0 ∈ Rnd B0 s0 ∧ t1 ∈
Rnd B1 s1}› (is ‹?SB ⊆ -›)
proof safe

show ‹t ∈ ?SA =⇒ ∃ t0 t1. t = [t0, t1] ∧ t0 ∈ Rd A0 s0 ∧ t1 ∈ Rd A1 s1› for t
by (Rd-subset-method defs: combineP airlist-Sync-defs)

show ‹t ∈ ?SB =⇒ ∃ t0 t1. t = [t0, t1] ∧ t0 ∈ Rnd B0 s0 ∧ t1 ∈ Rnd B1 s1›
for t

by (Rnd-subset-method defs: combineP airlist-Sync-defs)
qed

lemma Rd-combinedP air-Sync-subset:
‹Rd 〈〈A0 d⊗[[E ]]P air A1〉〉 (s0, s1) ⊆ Rd A0 s0 × Rd A1 s1› (is ‹?SA ⊆ -›)
and Rnd-combinendP air-Sync-subset:
‹Rnd 〈〈B0 nd⊗[[E ]]P air B1〉〉 (s0, s1) ⊆ Rnd B0 s0 × Rnd B1 s1› (is ‹?SB ⊆ -›)

proof −
have ‹t ∈ ?SA =⇒ fst t ∈ Rd A0 s0 ∧ snd t ∈ Rd A1 s1› for t

by (Rd-subset-method defs: combineP air-Sync-defs)
thus ‹?SA ⊆ Rd A0 s0 × Rd A1 s1› by force

next
have ‹t ∈ ?SB =⇒ fst t ∈ Rnd B0 s0 ∧ snd t ∈ Rnd B1 s1› for t

by (Rnd-subset-method defs: combineP air-Sync-defs)
thus ‹?SB ⊆ Rnd B0 s0 × Rnd B1 s1› by force
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qed

lemma Rd-combinedRlist-Sync-subset:
‹Rd 〈〈A0 d⊗[[E ]]Rlist A1〉〉 (s0 # σs) ⊆ {t0 # σt| t0 σt. t0 ∈ Rd A0 s0 ∧ σt ∈
Rd A1 σs}› (is ‹?SA ⊆ -›)

and Rnd-combinendRlist-Sync-subset:
‹Rnd 〈〈B0 nd⊗[[E ]]Rlist B1〉〉 (s0 # σs) ⊆ {t0 # σt| t0 σt. t0 ∈ Rnd B0 s0 ∧ σt
∈ Rnd B1 σs}› (is ‹?SB ⊆ -›)
proof safe

show ‹t ∈ ?SA =⇒ ∃ t0 σt. t = t0 # σt ∧ t0 ∈ Rd A0 s0 ∧ σt ∈ Rd A1 σs› for
t

by (Rd-subset-method defs: combineRlist-Sync-defs)
next

show ‹t ∈ ?SB =⇒ ∃ t0 σt. t = t0 # σt ∧ t0 ∈ Rnd B0 s0 ∧ σt ∈ Rnd B1 σs›
for t

by (Rnd-subset-method defs: combineRlist-Sync-defs)
qed

5.4 Normalization
lemma ω-combineP airlist-Sync-behaviour :
‹ω 〈〈〈〈A0 d⊗[[E ]]P airlist A1〉〉〉〉d↪→nd [s0, s1] = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]P airlist 〈〈A1〉〉d↪→nd〉〉

[s0, s1]›
by (auto simp add: combineP airlist-Sync-defs det-ndet-conv-defs option.case-eq-if )

lemma ω-combineP air-Sync-behaviour :
‹ω 〈〈〈〈A0 d⊗[[E ]]P air A1〉〉〉〉d↪→nd (s0, s1) = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]P air 〈〈A1〉〉d↪→nd〉〉

(s0, s1)›
by (auto simp add: combineP air-Sync-defs det-ndet-conv-defs option.case-eq-if )

lemma ω-combineListslenL-Sync-behaviour :
‹ω 〈〈〈〈A0 d⊗[[len0, E ]]ListslenL A1〉〉〉〉d↪→nd (σs0 @ σs1) = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[len0,

E ]]ListslenL 〈〈A1〉〉d↪→nd〉〉 (σs0 @ σs1)›
by (auto simp add: combineListslenL-Sync-defs det-ndet-conv-defs option.case-eq-if )

lemma ω-combineRlist-Sync-behaviour :
‹ω 〈〈〈〈A0 d⊗[[E ]]Rlist A1〉〉〉〉d↪→nd (s0 # σs1) = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]Rlist 〈〈A1〉〉d↪→nd〉〉

(s0 # σs1)›
by (auto simp add: combineRlist-Sync-defs det-ndet-conv-defs option.case-eq-if )

lemma τ -combineP airlist-Sync-behaviour-when-indep:
‹ε A0 s0 ∩ ε A1 s1 ⊆ E =⇒
τ 〈〈〈〈A0 d⊗[[E ]]P airlist A1〉〉〉〉d↪→nd [s0, s1] e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]P airlist

〈〈A1〉〉d↪→nd〉〉 [s0, s1] e›
by (auto simp add: combineP airlist-Sync-defs det-ndet-conv-defs option.case-eq-if

ε-simps)
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lemma τ -combineP air-Sync-behaviour-when-indep:
‹ε A0 s0 ∩ ε A1 s1 ⊆ E =⇒
τ 〈〈〈〈A0 d⊗[[E ]]P air A1〉〉〉〉d↪→nd (s0, s1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]P air 〈〈A1〉〉d↪→nd〉〉

(s0, s1) e›
by (auto simp add: combineP air-Sync-defs det-ndet-conv-defs option.case-eq-if

ε-simps)

lemma τ -combineListslenL-Sync-behaviour-when-indep:
‹ε A0 σs0 ∩ ε A1 σs1 ⊆ E =⇒ length σs0 = len0 =⇒
τ 〈〈〈〈A0 d⊗[[len0, E ]]ListslenL A1〉〉〉〉d↪→nd (σs0 @ σs1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[len0,

E ]]ListslenL 〈〈A1〉〉d↪→nd〉〉 (σs0 @ σs1) e›
by (auto simp add: combineListslenL-Sync-defs det-ndet-conv-defs option.case-eq-if

ε-simps)

lemma τ -combineRlist-Sync-behaviour-when-indep:
‹ε A0 s0 ∩ ε A1 σs1 ⊆ E =⇒
τ 〈〈〈〈A0 d⊗[[E ]]Rlist A1〉〉〉〉d↪→nd (s0 # σs1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]Rlist

〈〈A1〉〉d↪→nd〉〉 (s0 # σs1) e›
by (auto simp add: combineRlist-Sync-defs det-ndet-conv-defs option.case-eq-if

ε-simps)

method PSKIP S-when-indep-method uses R-d-subset =
fold PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d,
rule PSKIP S-nd-eqI-strong-id,
unfold Rnd-from-det-to-ndet,
all ‹drule set-mp[OF R-d-subset, rotated]›

method P-when-indep-method uses R-d-subset =
fold P-nd-from-det-to-ndet-is-P-d,
rule P-nd-eqI-strong-id,
unfold Rnd-from-det-to-ndet,
all ‹drule set-mp[OF R-d-subset, rotated]›

lemma PSKIP S-combineP airlist-Sync-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[E ]]P airlist A1〉〉〉〉d [s0, s1] = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]P airlist

〈〈A1〉〉d↪→nd〉〉〉〉nd [s0, s1]›
if ‹indep-enabl A0 s0 E A1 s1›
by (PSKIP S-when-indep-method R-d-subset: Rd-combinedP airlist-Sync-subset,

simp-all)
(metis τ -combineP airlist-Sync-behaviour-when-indep indep-enablD that,

metis ω-combineP airlist-Sync-behaviour)

lemma P-combineP airlist-Sync-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[E ]]P airlist A1〉〉〉〉d [s0, s1] = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]P airlist 〈〈A1〉〉d↪→nd〉〉〉〉nd

[s0, s1]›
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if ‹indep-enabl A0 s0 E A1 s1›
by (P-when-indep-method R-d-subset: Rd-combinedP airlist-Sync-subset, simp-all)
(metis τ -combineP airlist-Sync-behaviour-when-indep indep-enablD that)

lemma PSKIP S-combineP air-Sync-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[E ]]P air A1〉〉〉〉d (s0, s1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]P air

〈〈A1〉〉d↪→nd〉〉〉〉nd (s0, s1)›
if ‹indep-enabl A0 s0 E A1 s1›
by (PSKIP S-when-indep-method R-d-subset: Rd-combinedP air-Sync-subset, all

‹elim SigmaE›)
(metis τ -combineP air-Sync-behaviour-when-indep indep-enablD that,

auto simp add: ω-combineP air-Sync-behaviour option.case-eq-if )

lemma P-combineP air-Sync-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[E ]]P air A1〉〉〉〉d (s0, s1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]P air 〈〈A1〉〉d↪→nd〉〉〉〉nd

(s0, s1)›
if ‹indep-enabl A0 s0 E A1 s1›
by (P-when-indep-method R-d-subset: Rd-combinedP air-Sync-subset, elim Sig-

maE)
(metis τ -combineP air-Sync-behaviour-when-indep indep-enablD that)

lemma PSKIP S-combineListslenL-Sync-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[len0, E ]]ListslenL A1〉〉〉〉d (σs0 @ σs1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd

nd⊗[[len0, E ]]ListslenL 〈〈A1〉〉d↪→nd〉〉〉〉nd (σs0 @ σs1)›
if ‹indep-enabl A0 σs0 E A1 σs1› and ‹

∧
σt0. σt0 ∈ Rd A0 σs0 =⇒ length σt0

= len0›
by (PSKIP S-when-indep-method R-d-subset: Rd-combinedListslenL-Sync-subset,

simp-all add: that(2 ))
(metis τ -combineListslenL-Sync-behaviour-when-indep indep-enablD that,

metis ω-combineListslenL-Sync-behaviour)

lemma P-combineListslenL-Sync-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[len0, E ]]ListslenL A1〉〉〉〉d (σs0 @ σs1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[len0,

E ]]ListslenL 〈〈A1〉〉d↪→nd〉〉〉〉nd (σs0 @ σs1)›
if ‹indep-enabl A0 σs0 E A1 σs1› and ‹

∧
σt0. σt0 ∈ Rd A0 σs0 =⇒ length σt0

= len0›
by (P-when-indep-method R-d-subset: Rd-combinedListslenL-Sync-subset, simp-all

add: that(2 ))
(metis τ -combineListslenL-Sync-behaviour-when-indep indep-enablD that)

lemma PSKIP S-combineRlist-Sync-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[E ]]Rlist A1〉〉〉〉d (s0 # σs1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]Rlist

〈〈A1〉〉d↪→nd〉〉〉〉nd (s0 # σs1)›
if ‹indep-enabl A0 s0 E A1 σs1›
by (PSKIP S-when-indep-method R-d-subset: Rd-combinedRlist-Sync-subset, simp-all)
(metis τ -combineRlist-Sync-behaviour-when-indep indep-enablD that,
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metis ω-combineRlist-Sync-behaviour)

lemma P-combineRlist-Sync-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[E ]]Rlist A1〉〉〉〉d (s0 # σs1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]Rlist 〈〈A1〉〉d↪→nd〉〉〉〉nd

(s0 # σs1)›
if ‹indep-enabl A0 s0 E A1 σs1›
by (P-when-indep-method R-d-subset: Rd-combinedRlist-Sync-subset, simp)
(metis τ -combineRlist-Sync-behaviour-when-indep indep-enablD that)
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Chapter 6

Compactification of
Synchronization Product

6.1 Iterated Combine

6.1.1 Definitions

fun iterated-combined-Sync :: ‹ ′e set ⇒ ( ′σ, ′e, ′r) Ad list ⇒ ( ′σ list, ′e, ′r) Ad›
(‹〈〈d

⊗
[[-]] -〉〉› [0 , 0 ])

where ‹〈〈d
⊗

[[E ]] []〉〉 = (|τ = λσs a. ♦, ω = λσs. ♦|)›
| ‹〈〈d

⊗
[[E ]] [A0]〉〉 = d〈〈A0〉〉σ↪→σs›

| ‹〈〈d
⊗

[[E ]] A0 # A1 # As〉〉 = 〈〈A0 d⊗[[E ]]Rlist 〈〈d
⊗

[[E ]] A1 # As〉〉〉〉›

fun iterated-combinend-Sync :: ‹ ′e set ⇒ ( ′σ, ′e, ′r) And list ⇒ ( ′σ list, ′e, ′r)
And› (‹〈〈nd

⊗
[[-]] -〉〉› [0 , 0 ])

where ‹〈〈nd

⊗
[[E ]] []〉〉 = (|τ = λσs a. {}, ω = λσs. {}|)›

| ‹〈〈nd

⊗
[[E ]] [A0]〉〉 = nd〈〈A0〉〉σ↪→σs›

| ‹〈〈nd

⊗
[[E ]] A0 # A1 # As〉〉 = 〈〈A0 nd⊗[[E ]]Rlist 〈〈nd

⊗
[[E ]] A1 # As〉〉〉〉›

lemma iterated-combined-Sync-simps-bis: ‹As 6= [] =⇒ 〈〈d
⊗

[[E ]] A0 # As〉〉 = 〈〈A0

d⊗[[E ]]Rlist 〈〈d
⊗

[[E ]] As〉〉〉〉›
and iterated-combinend-Sync-simps-bis: ‹Bs 6= [] =⇒ 〈〈nd

⊗
[[E ]] B0 # Bs〉〉 = 〈〈B0

nd⊗[[E ]]Rlist 〈〈nd

⊗
[[E ]] Bs〉〉〉〉›

by (induct As, simp-all) (induct Bs, simp-all)

fun iterated-combined-Sync-ε :: ‹( ′σ, ′e, ′r , ′α) Ad-scheme list ⇒ ′e set ⇒ ′σ list
⇒ ′e set›

where ‹iterated-combined-Sync-ε [] E σs = {}›
| ‹iterated-combined-Sync-ε [A0] E σs = ε A0 (hd σs)›
| ‹iterated-combined-Sync-ε (A0 # A1 # As) E σs =

combine-sets-Sync (ε A0 (hd σs)) E (iterated-combined-Sync-ε (A1 # As)
E (tl σs))›
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fun iterated-combinend-Sync-ε :: ‹( ′σ, ′e, ′r , ′α) And-scheme list ⇒ ′e set ⇒ ′σ
list ⇒ ′e set›

where ‹iterated-combinend-Sync-ε [] E σs = {}›
| ‹iterated-combinend-Sync-ε [A0] E σs = ε A0 (hd σs)›
| ‹iterated-combinend-Sync-ε (A0 # A1 # As) E σs =

combine-sets-Sync (ε A0 (hd σs)) E (iterated-combinend-Sync-ε (A1 # As)
E (tl σs))›

lemma iterated-combined-Sync-ε-simps-bis:
‹As 6= [] =⇒ iterated-combined-Sync-ε (A0 # As) E σs =

combine-sets-Sync (ε A0 (hd σs)) E (iterated-combined-Sync-ε As E
(tl σs))›

and iterated-combinend-Sync-ε-simps-bis:
‹Bs 6= [] =⇒ iterated-combinend-Sync-ε (B0 # Bs) E σs =

combine-sets-Sync (ε B0 (hd σs)) E (iterated-combinend-Sync-ε Bs
E (tl σs))›

by (induct As, simp-all) (induct Bs, simp-all)

6.1.2 First Results
lemma ε-iterated-combined-Sync:

‹length σs = length As =⇒ ε 〈〈d
⊗

[[E ]] As〉〉 σs = iterated-combined-Sync-ε As E
σs›

by (induct σs As rule: induct-2-lists012 )
(simp-all add: ε-combineRlist-Sync combine-Sync-ε-def )

lemma ε-iterated-combinend-Sync:
‹length σs = length Bs =⇒ ε 〈〈nd

⊗
[[E ]] Bs〉〉 σs = iterated-combinend-Sync-ε Bs

E σs›
by (induct σs Bs rule: induct-2-lists012 )
(simp-all add: ε-combineRlist-Sync combine-Sync-ε-def )

lemma combineListslenL-Sync-combineRlist-Sync-eq:
‹ε 〈〈d〈〈A0〉〉σ↪→σs d⊗[[1 , E ]]ListslenL A1〉〉 σs = ε 〈〈A0 d⊗[[E ]]Rlist A1〉〉 σs›
‹τ 〈〈d〈〈A0〉〉σ↪→σs d⊗[[1 , E ]]ListslenL A1〉〉 (s0 # σs) e = τ 〈〈A0 d⊗[[E ]]Rlist A1〉〉 (s0

# σs) e›
‹ε 〈〈nd〈〈B0〉〉σ↪→σs nd⊗[[1 , E ]]ListslenL B1〉〉 σs = ε 〈〈B0 nd⊗[[E ]]Rlist B1〉〉 σs›
‹τ 〈〈nd〈〈B0〉〉σ↪→σs nd⊗[[1 , E ]]ListslenL B1〉〉 (s0 # σs) e = τ 〈〈B0 nd⊗[[E ]]Rlist B1〉〉

(s0 # σs) e›
by (simp-all add: ε-combineListslenL-Sync ε-combineRlist-Sync drop-Suc com-

bine-Sync-ε-def ,
auto simp add: combineListslenL-Sync-defs combineRlist-Sync-defs σ-σs-conv-defs

ε-simps)
(metis append-Cons append-Nil)
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lemma combineP airlist-Sync-and-iterated-combinend-Sync-eq:
‹ε 〈〈A0 d⊗[[E ]]P airlist A1〉〉 [s0, s1] = ε 〈〈d

⊗
[[E ]] [A0, A1]〉〉 [s0, s1]›

‹τ 〈〈A0 d⊗[[E ]]P airlist A1〉〉 [s0, s1] e = τ 〈〈d
⊗

[[E ]] [A0, A1]〉〉 [s0, s1] e›
‹ε 〈〈B0 nd⊗[[E ]]P airlist B1〉〉 [s0, s1] = ε 〈〈nd

⊗
[[E ]] [B0, B1]〉〉 [s0, s1]›

‹τ 〈〈B0 nd⊗[[E ]]P airlist B1〉〉 [s0, s1] e = τ 〈〈nd

⊗
[[E ]] [B0, B1]〉〉 [s0, s1] e›

by (simp-all add: ε-combineP airlist-Sync ε-combineRlist-Sync)
(auto simp add: combineP airlist-Sync-defs combineRlist-Sync-defs σ-σs-conv-defs

option.case-eq-if ε-simps combine-Sync-ε-def )

lemmas combineP airlist-Sync-and-combineRlist-Sync-eq =
combineP airlist-Sync-and-iterated-combinend-Sync-eq[simplified]

6.1.3 Reachability
lemma same-length-Rd-iterated-combined-Sync-description:

‹length σs = length As =⇒ σs ′ ∈ Rd 〈〈d
⊗

[[E ]] As〉〉 σs =⇒
length σs ′ = length As ∧ (∀ i < length As. σs ′ ! i ∈ Rd (As ! i) (σs ! i))›

proof (induct σs As arbitrary: σs ′ rule: induct-2-lists012 )
case Nil thus ?case by simp

next
case (single σ1 A1 )
thus ?case by (auto simp add: Rd-from-σ-to-σs-description)

next
case (Cons σ1 σ2 σs A1 A2 As)
from set-mp[OF Rd-combinedRlist-Sync-subset, OF Cons.prems[simplified]]
obtain σ1 ′ σs ′′ where ‹σs ′ = σ1 ′ # σs ′′› ‹σ1 ′ ∈ Rd A1 σ1 ›

‹σs ′′ ∈ Rd 〈〈d
⊗

[[E ]] A2 # As〉〉 (σ2 # σs)› by blast
from Cons.hyps(3 )[OF this(3 )] this(1 , 2 )
show ?case using less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc by simp auto

qed

lemma same-length-Rnd-iterated-combinend-Sync-description:
‹length σs = length Bs =⇒ σs ′ ∈ Rnd 〈〈nd

⊗
[[E ]] Bs〉〉 σs =⇒

length σs ′ = length Bs ∧ (∀ i < length Bs. σs ′ ! i ∈ Rnd (Bs ! i) (σs ! i))›
proof (induct σs Bs arbitrary: σs ′ rule: induct-2-lists012 )

case Nil thus ?case by simp
next

case (single σ1 B1 )
thus ?case by (auto simp add: Rnd-from-σ-to-σs-description)

next
case (Cons σ1 σ2 σs A1 A2 As)
from set-mp[OF Rnd-combinendRlist-Sync-subset, OF Cons.prems[simplified]]
obtain σ1 ′ σs ′′ where ‹σs ′ = σ1 ′ # σs ′′› ‹σ1 ′ ∈ Rnd A1 σ1 ›

‹σs ′′ ∈ Rnd 〈〈nd

⊗
[[E ]] A2 # As〉〉 (σ2 # σs)› by blast

from Cons.hyps(3 )[OF this(3 )] this(1 , 2 )
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show ?case using less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc by simp auto
qed

6.1.4 Transmission of Properties
lemma finite-trans-transmission-to-iterated-combinend-Sync:

‹(
∧

A. A ∈ set As =⇒ finite-trans A) =⇒ finite-trans 〈〈nd

⊗
[[E ]] As〉〉›

by (induct As rule: induct-list012 )
(auto simp add: σ-σs-conv-defs combineRlist-Sync-defs finite-trans-def finite-image-set2 )

lemma %-disjoint-ε-transmission-to-iterated-combined-Sync:
‹(
∧

A. A ∈ set As =⇒ %-disjoint-ε A) =⇒ %-disjoint-ε 〈〈d
⊗

[[E ]] As〉〉›
by (induct As rule: induct-list012 )
(simp-all add: %-combineRlist-Sync ε-combineRlist-Sync %-disjoint-ε-def com-

bine-Sync-ε-def )

lemma %-disjoint-ε-transmission-to-iterated-combinend-Sync:
‹(
∧

A. A ∈ set As =⇒ %-disjoint-ε A) =⇒ %-disjoint-ε 〈〈nd

⊗
[[E ]] As〉〉›

by (induct As rule: induct-list012 )
(simp-all add: %-combineRlist-Sync ε-combineRlist-Sync %-disjoint-ε-def com-

bine-Sync-ε-def )

lemma at-most-1-elem-term-transmission-to-iterated-combinend-Sync:
‹(
∧

A. A ∈ set As =⇒ at-most-1-elem-term A) =⇒ at-most-1-elem-term 〈〈nd

⊗
[[E ]]

As〉〉›
by (induct As rule: induct-list012 ,

simp-all add: at-most-1-elem-term-def σ-σs-conv-defs combineRlist-Sync-defs)
fastforce

lemma same-length-indep-transmission-to-iterated-combined-Sync:
‹length σs = length As =⇒
(
∧

i j. i ≤ length As =⇒ j ≤ length As =⇒ i 6= j =⇒
indep-enabl ((A0 # As) ! i) ((s0 # σs) ! i) E ((A0 # As) ! j) ((s0 # σs) ! j))

=⇒
indep-enabl A0 s0 E 〈〈d

⊗
[[E ]] As〉〉 σs›

proof (induct σs As rule: induct-2-lists012 )
case Nil
then show ?case by (simp add: indep-enablI )

next
case (single σ1 A1)
from single.prems[of 0 1 ] show ?case

by (auto simp add: Rd-from-σ-to-σs-description
intro!: indep-enablI dest!: indep-enablD)

next
case (Cons σ1 σ2 σs A1 A2 As)
show ?case
proof (rule indep-enablI )

fix t0 ts assume assms : ‹t0 ∈ Rd A0 s0› ‹ts ∈ Rd 〈〈d
⊗

[[E ]] A1 # A2 # As〉〉
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(σ1 # σ2 # σs)›
from assms(2 ) obtain t1 ts ′ where ‹ts = t1 # ts ′›

by (metis Cons.hyps(1 ) Zero-not-Suc length-Cons list.exhaust-sel list.size(3 )
same-length-Rd-iterated-combined-Sync-description)

with assms(2 )[simplified, THEN set-mp[OF Rd-combinedRlist-Sync-subset]]
have ‹ts ′ ∈ Rd 〈〈d

⊗
[[E ]] A2 # As〉〉 (σ2 # σs)› by simp

have ‹indep-enabl A0 s0 E 〈〈d
⊗

[[E ]] A2 # As〉〉 (σ2 # σs)›
proof (rule Cons.hyps(3 ))

show ‹i ≤ length (A2 # As) =⇒ j ≤ length (A2 # As) =⇒ i 6= j =⇒
indep-enabl ((A0 # A2 # As) ! i) ((s0 # σ2 # σs) ! i) E

((A0 # A2 # As) ! j) ((s0 # σ2 # σs) ! j)› for i j
using Cons.prems[of ‹if i = 0 then 0 else Suc i› ‹if j = 0 then 0 else Suc j›]
by (cases i; cases j) simp-all

qed
from this[THEN indep-enablD, OF assms(1 ) ‹ts ′ ∈ Rd 〈〈d

⊗
[[E ]] A2 # As〉〉 (σ2

# σs)›]
have ‹ε A0 t0 ∩ ε 〈〈d

⊗
[[E ]] A2 # As〉〉 ts ′ ⊆ E› .

moreover from Cons.prems[THEN indep-enablD, of 0 ‹Suc 0 › t0 t1]
assms(2 )[simplified, THEN set-mp[OF Rd-combinedRlist-Sync-subset]] assms(1 )
have ‹ε A0 t0 ∩ ε A1 t1 ⊆ E› by (simp add: ‹ts = t1 # ts ′›)
ultimately show ‹ε A0 t0 ∩ ε 〈〈d

⊗
[[E ]] A1 # A2 # As〉〉 ts ⊆ E›

by (auto simp add: ε-combineRlist-Sync ‹ts = t1 # ts ′› combine-Sync-ε-def )
qed

qed

lemma ω-iterated-combined-Sync :
‹length σs = length As =⇒
ω 〈〈d

⊗
[[E ]] As〉〉 σs = (case those (map2 ω As σs) of ♦ ⇒ ♦

| btermsc ⇒ if card (set terms) = Suc 0 then bTHE r . set terms = {r}c else
♦)›

by (induct σs As rule: induct-2-lists012 )
(auto simp add: σ-σs-conv-defs combineRlist-Sync-defs card-1-singleton-iff the-equality

split: option.split)

lemma ω-iterated-combinend-Sync :
‹length σs = length As =⇒
ω 〈〈nd

⊗
[[E ]] As〉〉 σs = (if As = [] then {} else {r . ∀ i < length As. r ∈ ω (As !

i) (σs ! i)})›
proof (induct σs As rule: induct-2-lists012 )

case Nil show ?case by simp
next

case (single σ1 A1 )
from length-Suc-conv show ?case

by (auto simp add: σ-σs-conv-defs)
next

case (Cons σ1 σ2 σs A1 A2 As)
show ?case (is ‹- = ?rhs σ1 σ2 σs A1 A2 As›)
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proof (intro subset-antisym subsetI )
fix r assume ‹r ∈ ω 〈〈nd

⊗
[[E ]] A1 # A2 # As〉〉 (σ1 # σ2 # σs)›

hence ‹r ∈ ω A1 σ1 › ‹r ∈ ω 〈〈nd

⊗
[[E ]] A2 # As〉〉 (σ2 # σs)›

by (simp-all add: combineRlist-Sync-defs split: if-split-asm)
from this(2 ) have ‹∀ i<Suc (length As). r ∈ ω ((A2 # As) ! i) ((σ2 # σs) !

i)›
by (simp add: Cons.hyps(3 ))

with ‹r ∈ ω A1 σ1 › show ‹r ∈ ?rhs σ1 σ2 σs A1 A2 As›
by (auto simp add: less-Suc-eq-0-disj)

next
from Cons.hyps(3 )
show ‹r ∈ ?rhs σ1 σ2 σs A1 A2 As =⇒

r ∈ ω 〈〈nd

⊗
[[E ]] A1 # A2 # As〉〉 (σ1 # σ2 # σs)› for r

by (auto simp add: combineRlist-Sync-defs)
qed

qed

6.1.5 Normalization
lemma ω-iterated-combinend-Sync-det-ndet-conv:

‹length σs = length As =⇒
ω 〈〈nd

⊗
[[E ]] map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs = ω 〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d↪→nd σs›

proof (induct σs As rule: induct-2-lists012 )
case Nil
show ?case by (simp add: base-trans-det-ndet-conv(1 ))

next
case (single σ1 A1 )
show ?case by (simp add: from-det-to-ndet-σ-σs-conv-commute)

next
case (Cons σ1 σ2 σs A1 A2 As)
thus ?case
by (auto simp add: det-ndet-conv-defs combineRlist-Sync-defs split: option.split)

qed

lemma τ -iterated-combinend-Sync-behaviour-when-indep:
‹length σs = length As =⇒
(
∧

i j. [[i < length As; j < length As; i 6= j]]
=⇒ indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)) =⇒
τ 〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d↪→nd σs e = τ 〈〈nd

⊗
[[E ]] map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs e›

proof (induct σs As rule: induct-2-lists012 )
case Nil
show ?case by simp

next
case (single σ1 A1 )
show ?case by (simp add: from-det-to-ndet-σ-σs-conv-commute(1 ))

next
case (Cons σ1 σ2 σs A1 A2 As)
have ∗ : ‹τ 〈〈〈〈d

⊗
[[E ]] A2 # As〉〉〉〉d↪→nd (σ2 # σs) e =

τ 〈〈nd

⊗
[[E ]] map (λA. 〈〈A〉〉d↪→nd) (A2 # As)〉〉 (σ2 # σs) e›
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proof (rule Cons.hyps(3 ))
show ‹[[i < length (A2 # As); j < length (A2 # As); i 6= j]]

=⇒ indep-enabl ((A2 # As) ! i) ((σ2 # σs) ! i) E
((A2 # As) ! j) ((σ2 # σs) ! j)› for i j

using Cons.prems[of ‹Suc i› ‹Suc j›] by simp
qed
have ‹τ 〈〈〈〈d

⊗
[[E ]] A1 # A2 # As〉〉〉〉d↪→nd (σ1 # σ2 # σs) e =

τ 〈〈〈〈A1 〉〉d↪→nd nd⊗[[E ]]Rlist 〈〈〈〈d
⊗

[[E ]] A2 # As〉〉〉〉d↪→nd〉〉 (σ1 # σ2 # σs)
e›
proof (subst iterated-combined-Sync.simps(3 ), rule τ -combineRlist-Sync-behaviour-when-indep)

show ‹ε A1 σ1 ∩ ε 〈〈d
⊗

[[E ]] A2 # As〉〉 (σ2 # σs) ⊆ E›
proof (rule indep-enablD[OF - Rd.init Rd.init])

show ‹indep-enabl A1 σ1 E 〈〈d
⊗

[[E ]] A2 # As〉〉 (σ2 # σs)›
by (simp add: Cons.hyps(1 ) Cons.prems order-le-less-trans

same-length-indep-transmission-to-iterated-combined-Sync)
qed

qed
also have ‹. . . = τ 〈〈nd

⊗
[[E ]] map (λA. 〈〈A〉〉d↪→nd) (A1 # A2 # As)〉〉 (σ1 #

σ2 # σs) e›
by (use ∗ in ‹simp add: combineRlist-Sync-defs ε-simps›)
(metis empty-from-det-to-ndet-is-None-trans option.exhaust)

finally show ?case .
qed

lemma PSKIP S-iterated-combinend-Sync-behaviour-when-indep:
assumes same-length: ‹length σs = length As›

and indep: ‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

shows ‹PSKIP S〈〈〈〈d
⊗

[[E ]] As〉〉〉〉d σs = PSKIP S〈〈〈〈nd

⊗
[[E ]] map (λA. 〈〈A〉〉d↪→nd)

As〉〉〉〉nd σs›
proof (fold PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d, rule PSKIP S-nd-eqI-strong-id)

show ‹σs ′ ∈ Rnd 〈〈〈〈d
⊗

[[E ]] As〉〉〉〉d↪→nd σs =⇒
τ 〈〈nd

⊗
[[E ]] map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs ′ e = τ 〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d↪→nd σs ′

e› for σs ′ e
proof (rule τ -iterated-combinend-Sync-behaviour-when-indep[symmetric])

show ‹σs ′ ∈ Rnd 〈〈〈〈d
⊗

[[E ]] As〉〉〉〉d↪→nd σs =⇒ length σs ′ = length As›
by (metis Rnd-from-det-to-ndet same-length same-length-Rd-iterated-combined-Sync-description)

next
show ‹[[σs ′ ∈ Rnd 〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d↪→nd σs; i < length As; j < length As; i 6=

j]]
=⇒ indep-enabl (As ! i) (σs ′ ! i) E (As ! j) (σs ′ ! j)› for i j

by (subst (asm) Rnd-from-det-to-ndet,
drule same-length-Rd-iterated-combined-Sync-description[OF same-length])
(meson Rd-trans indep-enabl-def indep)

qed
next

show ‹σs ′ ∈ Rnd 〈〈〈〈d
⊗

[[E ]] As〉〉〉〉d↪→nd σs =⇒

85



ω 〈〈nd

⊗
[[E ]] map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs ′ = ω 〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d↪→nd σs ′›

for σs ′

by (metis Rnd-from-det-to-ndet ω-iterated-combinend-Sync-det-ndet-conv same-length
same-length-Rd-iterated-combined-Sync-description)

qed

lemma P-d-iterated-combinend-Sync-behaviour-when-indep:
assumes same-length: ‹length σs = length As›

and indep: ‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

shows ‹P〈〈〈〈d
⊗

[[E ]] As〉〉〉〉d σs = P〈〈〈〈nd

⊗
[[E ]] map (λA. 〈〈A〉〉d↪→nd) As〉〉〉〉nd σs›

proof (fold P-nd-from-det-to-ndet-is-P-d, rule P-nd-eqI-strong-id)
show ‹σs ′ ∈ Rnd 〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d↪→nd σs =⇒

τ 〈〈nd

⊗
[[E ]] map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs ′ e = τ 〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d↪→nd σs ′

e› for σs ′ e
proof (rule τ -iterated-combinend-Sync-behaviour-when-indep[symmetric])

show ‹σs ′ ∈ Rnd 〈〈〈〈d
⊗

[[E ]] As〉〉〉〉d↪→nd σs =⇒ length σs ′ = length As›
by (metis Rnd-from-det-to-ndet same-length same-length-Rd-iterated-combined-Sync-description)

next
show ‹[[σs ′ ∈ Rnd 〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d↪→nd σs; i < length As; j < length As; i 6=

j]]
=⇒ indep-enabl (As ! i) (σs ′ ! i) E (As ! j) (σs ′ ! j)› for i j

by (subst (asm) Rnd-from-det-to-ndet,
drule same-length-Rd-iterated-combined-Sync-description[OF same-length])
(meson Rd-trans indep-enabl-def indep)

qed
qed

6.2 Compactification Theorems

6.2.1 Binary

Pair

theorem PSKIP S-nd-combineP air-Sync :
fixes E :: ‹ ′a set› and A0 :: ‹( ′σ, ′a, ′r , ′α) And-scheme›
assumes %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1›

and at-most-1-elem-term : ‹at-most-1-elem-term A0› ‹at-most-1-elem-term A1›
defines A-def : ‹A ≡ 〈〈A0 nd⊗[[E ]]P air A1〉〉›
defines P-def : ‹P ≡ PSKIP S〈〈A0〉〉nd› and Q-def : ‹Q ≡ PSKIP S〈〈A1〉〉nd› and

S-def : ‹S ≡ PSKIP S〈〈A〉〉nd›
shows ‹P σ0 [[E ]] Q σ1 = S (σ0, σ1)›

proof −
let ?f = ‹PSKIP S-nd-step (ε A) (τ A) (ω A) (λσ ′. case σ ′ of (σ0, σ1) ⇒ P σ0

[[E ]] Q σ1)›
note cartprod-rwrt = GlobalNdet-cartprod[of - - ‹λx y. - (x, y)›, simplified]
note Ndet-and-Sync = Sync-distrib-GlobalNdet-left

Sync-distrib-GlobalNdet-right
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note Mprefix-Sync-constant =
SKIP-Sync-Mprefix Mprefix-Sync-SKIP
STOP-Sync-Mprefix Mprefix-Sync-STOP

note P-rec = restriction-fix-eq[OF PSKIP S-nd-step-constructive-bis[of A0], folded
PSKIP S-nd-def P-def , THEN fun-cong]
note Q-rec = restriction-fix-eq[OF PSKIP S-nd-step-constructive-bis[of A1], folded

PSKIP S-nd-def Q-def , THEN fun-cong]
have ω-A : ‹ω A (σ0

′, σ1
′) = ω A0 σ0

′ ∩ ω A1 σ1
′› for σ0

′ σ1
′

by (auto simp add: A-def combineP air-Sync-defs)
have ε-A : ‹ε A (σ0

′, σ1
′) = combine-sets-Sync (ε A0 σ0

′) E (ε A1 σ1
′)› for σ0

′

σ1
′

by (simp add: A-def ε-combineP air-Sync combine-Sync-ε-def )
have Mprefix-Sync-Mprefix-for-procomata :

‹�a∈A → P a [[E ]] �b∈B → Q b =
(�a∈(A − E − B) → (P a [[E ]] �b∈B → Q b)) �
(�b∈(B − E − A) → (�a∈A → P a [[E ]] Q b)) �
(�x∈(A ∩ B − E) → (P x [[E ]] �b∈B → Q b) u (�a∈A → P a [[E ]] Q x)) �
(�x∈(A ∩ B ∩ E) → (P x [[E ]] Q x))› (is ?eq) for A B and P Q :: ‹ ′a ⇒ ( ′a,

′r) processptick›
proof −

have ∗ : ‹�a∈(A − E) → (P a [[E ]] �b∈B → Q b) =
(�a∈(A − E − B) → (P a [[E ]] �b∈B → Q b)) �
(�a∈(A ∩ B − E) → (P a [[E ]] �b∈B → Q b))›

by (metis Diff-Int2 Diff-Int-distrib2 Mprefix-Un-distrib Un-Diff-Int)
have ∗∗ : ‹�b∈(B − E) → (�a∈A → P a [[E ]] Q b) =

(�b∈(B − E − A) → (�a∈A → P a [[E ]] Q b)) �
(�b∈(A ∩ B − E) → (�a∈A → P a [[E ]] Q b))›

by (metis (no-types) Int-Diff Int-commute Mprefix-Un-distrib Un-Diff-Int)
have ‹�a∈A → P a [[E ]] �b∈B → Q b =

(�a∈(A − E − B) → (P a [[E ]] �b∈B → Q b)) �
(�b∈(B − E − A) → (�a∈A → P a [[E ]] Q b)) �
((�a∈(A ∩ B − E) → (P a [[E ]] �b∈B → Q b)) �
(�b∈(A ∩ B − E) → (�a∈A → P a [[E ]] Q b))) �
(�x∈(A ∩ B ∩ E) → (P x [[E ]] Q x))›

unfolding Mprefix-Sync-Mprefix
by (auto simp add: ∗∗ Det-assoc intro!: arg-cong[where f = ‹λP. P � -›])
(subst (3 ) Det-commute, subst Det-assoc,

auto simp add: ∗ Det-commute intro: arg-cong[where f = ‹λP. P � -›])
also have ‹(�a∈(A ∩ B − E) → (P a [[E ]] �b∈B → Q b)) �

(�b∈(A ∩ B − E) → (�a∈A → P a [[E ]] Q b)) =
�x∈(A ∩ B − E) → ((P x [[E ]] �b∈B → Q b)) u (�a∈A → P a [[E ]]

Q x)›
by (simp add: Mprefix-Det-Mprefix, rule mono-Mprefix-eq, simp)

finally show ?thesis .
qed
show ‹P σ0 [[E ]] Q σ1 = S (σ0, σ1)›
proof (rule fun-cong[of ‹λ(σ0, σ1). P σ0 [[E ]] Q σ1› - ‹(σ0, σ1)›, simplified])

show ‹(λ(σ0, σ1). P σ0 [[E ]] Q σ1) = S›
proof (rule restriction-fix-unique[OF PSKIP S-nd-step-constructive-bis[of A],
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symmetric, folded PSKIP S-nd-def S-def ])
show ‹?f = (λ(σ0, σ1). P σ0 [[E ]] Q σ1)›
proof (rule ext, clarify)

have %-disjoint-ε-bis : ‹ω A0 σ0 6= {} =⇒ ε A0 σ0 = {}›
‹ω A1 σ1 6= {} =⇒ ε A1 σ1 = {}› for σ0 σ1

by (simp-all add: %-simps %-disjoint-εD %-disjoint-ε)
show ‹?f (σ0, σ1) = P σ0 [[E ]] Q σ1› for σ0 σ1

proof (cases ‹ω A0 σ0 = {}›; cases ‹ω A1 σ1 = {}›)
assume ‹ω A0 σ0 = {}› ‹ω A1 σ1 = {}›
hence P-rec ′ : ‹P σ0 = P-nd-step (ε A0) (τ A0) P σ0›

and Q-rec ′ : ‹Q σ1 = P-nd-step (ε A1) (τ A1) Q σ1›
and S-rec ′ : ‹PSKIP S-nd-step (ε A) (τ A) (ω A) (λ(σ0, σ1). P σ0 [[E ]]

Q σ1) (σ0, σ1) =
P-nd-step (ε A) (τ A) (λ(σ0, σ1). P σ0 [[E ]] Q σ1) (σ0, σ1)›

by (simp-all add: P-rec[of σ0] Q-rec[of σ1] ω-A)
show ‹?f (σ0, σ1) = P σ0 [[E ]] Q σ1›

unfolding P-rec ′ Q-rec ′ S-rec ′ Mprefix-Sync-Mprefix-for-procomata
unfolding ε-A Mprefix-Un-distrib

by (intro arg-cong2 [where f = ‹(�)›] mono-Mprefix-eq, fold P-rec ′ Q-rec ′,
auto simp add: A-def Ndet-and-Sync cartprod-rwrt
combineP air-Sync-defs ε-simps GlobalNdet-sets-commute[of ‹τ A1 -

-›]
simp flip: GlobalNdet-factorization-union
intro!: mono-GlobalNdet-eq arg-cong2 [where f = ‹(u)›])

next
assume ‹ω A0 σ0 6= {}› ‹ω A1 σ1 = {}›
from %-disjoint-ε(1 ) ‹ω A0 σ0 6= {}› have ‹ε A0 σ0 = {}›

by (simp add: %-disjoint-ε-def %-simps)
have ‹?f (σ0, σ1) = �b∈(ε A1 σ1 − E) → (uσ1

′∈τ A1 σ1 b. (SKIPS (ω
A0 σ0) [[E ]] Q σ1

′))›
by (auto simp add: ω-A ε-A ‹ω A1 σ1 = {}› ‹ε A0 σ0 = {}› intro!:

mono-Mprefix-eq,
auto simp add: A-def combineP air-Sync-defs ‹ω A0 σ0 6= {}›

‹ε A0 σ0 = {}› cartprod-rwrt P-rec[of σ0] intro!: mono-GlobalNdet-eq)
also have ‹. . . = P σ0 [[E ]] Q σ1›

by (unfold P-rec[of σ0] Q-rec[of σ1])
(auto simp add: SKIPS-def Ndet-and-Sync Mprefix-Sync-constant ‹ω

A0 σ0 6= {}›
GlobalNdet-Mprefix-distr GlobalNdet-sets-commute[of ‹τ A1 - -›] ‹ω

A1 σ1 = {}›
intro!: mono-Mprefix-eq mono-GlobalNdet-eq)

finally show ‹?f (σ0, σ1) = . . .› .
next

assume ‹ω A0 σ0 = {}› ‹ω A1 σ1 6= {}›
from %-disjoint-ε(2 ) ‹ω A1 σ1 6= {}› have ‹ε A1 σ1 = {}›

by (simp add: %-disjoint-ε-def %-simps)
have ‹?f (σ0, σ1) = �a∈(ε A0 σ0 − E) → (uσ0

′∈τ A0 σ0 a. (P σ0
′ [[E ]]

SKIPS (ω A1 σ1)))›
by (auto simp add: ω-A ε-A ‹ω A0 σ0 = {}› ‹ε A1 σ1 = {}› intro!:
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mono-Mprefix-eq,
auto simp add: A-def combineP air-Sync-defs ‹ω A1 σ1 6= {}›

‹ε A1 σ1 = {}› cartprod-rwrt Q-rec[of σ1] intro!: mono-GlobalNdet-eq)
also have ‹. . . = P σ0 [[E ]] Q σ1›

by (unfold P-rec[of σ0] Q-rec[of σ1])
(auto simp add: SKIPS-def Ndet-and-Sync Mprefix-Sync-constant ‹ω

A1 σ1 6= {}›
GlobalNdet-Mprefix-distr GlobalNdet-sets-commute[of ‹τ A0 - -›] ‹ω

A0 σ0 = {}›
intro!: mono-Mprefix-eq mono-GlobalNdet-eq)

finally show ‹?f (σ0, σ1) = . . .› .
next

assume ‹ω A0 σ0 6= {}› ‹ω A1 σ1 6= {}›
with %-disjoint-ε have ‹ε A0 σ0 = {}› ‹ε A1 σ1 = {}›

by (simp-all add: %-disjoint-ε-def %-simps)
from at-most-1-elem-term

show ‹ω A0 σ0 6= {} =⇒ ω A1 σ1 6= {} =⇒ ?f (σ0, σ1) = P σ0 [[E ]] Q σ1›
by (auto simp add: ‹ω A0 σ0 6= {}› ‹ω A1 σ1 6= {}› ω-A P-rec[of σ0]

Q-rec[of σ1]
SKIPS-def Ndet-and-Sync cartprod-rwrt GlobalNdet-sets-commute[of

‹ω A0 -›]
ε-A ‹ε A0 σ0 = {}› ‹ε A1 σ1 = {}› elim!: at-most-1-elem-termE)

qed
qed

qed
qed

qed

corollary P-nd-combineP air-Sync :
‹P〈〈A0〉〉nd σ0 [[E ]] P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[E ]]P air A1〉〉〉〉nd (σ0, σ1)›

proof −
have ‹P〈〈A0〉〉nd σ0 [[E ]] P〈〈A1〉〉nd σ1 =

PSKIP S〈〈A0(|ω := λσ. {}|)〉〉nd σ0 [[E ]] PSKIP S〈〈A1(|ω := λσ. {}|)〉〉nd σ1›
by (simp add: PSKIP S-nd-updated-ω)

also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. {}|) nd⊗[[E ]]P air A1(|ω := λσ. {}|)〉〉〉〉nd

(σ0, σ1)›
by (rule PSKIP S-nd-combineP air-Sync) simp-all

also have ‹〈〈A0(|ω := λσ. {}|) nd⊗[[E ]]P air A1(|ω := λσ. {}|)〉〉 = 〈〈A0 nd⊗[[E ]]P air

A1〉〉(|ω := λσ. {}|)›
by (simp add: combineP air-Sync-defs, intro ext, simp)

also have ‹PSKIP S〈〈〈〈A0 nd⊗[[E ]]P air A1〉〉(|ω := λσ. {}|)〉〉nd = P〈〈〈〈A0 nd⊗[[E ]]P air

A1〉〉〉〉nd›
by (simp add: PSKIP S-nd-updated-ω)

finally show ?thesis .
qed

corollary PSKIP S-d-combineP air-Sync:
‹PSKIP S〈〈A0〉〉d σ0 [[E ]] PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0 d⊗[[E ]]P air A1〉〉〉〉d (σ0,

σ1)›
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if ‹%-disjoint-ε A0› and ‹%-disjoint-ε A1› and ‹indep-enabl A0 σ0 E A1 σ1›
proof −

have ‹PSKIP S〈〈A0〉〉d σ0 [[E ]] PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0〉〉d↪→nd〉〉nd σ0

[[E ]] PSKIP S〈〈〈〈A1〉〉d↪→nd〉〉nd σ1›
by (simp flip: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)

also from that(1 , 2 ) have ‹. . . = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]P air 〈〈A1〉〉d↪→nd〉〉〉〉nd

(σ0, σ1)›
by (auto intro: PSKIP S-nd-combineP air-Sync)

also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗[[E ]]P air A1〉〉〉〉d (σ0, σ1)›
by (simp add: PSKIP S-combineP air-Sync-behaviour-when-indep ‹indep-enabl

A0 σ0 E A1 σ1›)
finally show ?thesis .

qed

corollary P-d-combineP air-Sync:
‹P〈〈A0〉〉d σ0 [[E ]] P〈〈A1〉〉d σ1 = P〈〈〈〈A0 d⊗[[E ]]P air A1〉〉〉〉d (σ0, σ1)›
if ‹indep-enabl A0 σ0 E A1 σ1›

proof −
have ‹P〈〈A0〉〉d σ0 [[E ]] P〈〈A1〉〉d σ1 =

PSKIP S〈〈A0(|ω := λσ. ♦|)〉〉d σ0 [[E ]] PSKIP S〈〈A1(|ω := λσ. ♦|)〉〉d σ1›
by (simp add: PSKIP S-d-updated-ω)

also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. ♦|) d⊗[[E ]]P air A1(|ω := λσ. ♦|)〉〉〉〉d (σ0,
σ1)›

by (subst PSKIP S-d-combineP air-Sync, simp-all add: %-simps %-disjoint-ε-def )
(rule indep-enablI ,
use ‹indep-enabl A0 σ0 E A1 σ1›[THEN indep-enablD] in ‹simp add: ε-simps›)

also have ‹〈〈A0(|ω := λσ. ♦|) d⊗[[E ]]P air A1(|ω := λσ. ♦|)〉〉 = 〈〈A0 d⊗[[E ]]P air

A1〉〉(|ω := λσ. ♦|)›
by (simp add: combineP air-Sync-defs, intro ext, simp)

also have ‹PSKIP S〈〈〈〈A0 d⊗[[E ]]P air A1〉〉(|ω := λσ. ♦|)〉〉d = P〈〈〈〈A0 d⊗[[E ]]P air

A1〉〉〉〉d›
by (simp add: PSKIP S-d-updated-ω)

finally show ?thesis .
qed

Pairlist

theorem PSKIP S-nd-combineP airlist-Sync :
‹PSKIP S〈〈A0〉〉nd σ0 [[E ]] PSKIP S〈〈A1〉〉nd σ1 = PSKIP S〈〈〈〈A0 nd⊗[[E ]]P airlist

A1〉〉〉〉nd [σ0, σ1]›
if ‹%-disjoint-ε A0› ‹%-disjoint-ε A1› ‹at-most-1-elem-term A0› ‹at-most-1-elem-term

A1›
proof −

from PSKIP S-nd-combineP air-Sync that
have ‹PSKIP S〈〈A0〉〉nd σ0 [[E ]] PSKIP S〈〈A1〉〉nd σ1 = PSKIP S〈〈〈〈A0 nd⊗[[E ]]P air

A1〉〉〉〉nd (σ0, σ1)› .
also have ‹. . . = PSKIP S〈〈〈〈A0 nd⊗[[E ]]P airlist A1〉〉〉〉nd [σ0, σ1]›
by (auto intro!: PSKIP S-nd-eqI-strong[of ‹λ(r , s). [r , s]› - ‹(σ0, σ1)›, simplified]

inj-onI )
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(auto simp add: combine-Sync-defs split: if-split-asm)
finally show ?thesis .

qed

corollary P-nd-combineP airlist-Sync :
‹P〈〈A0〉〉nd σ0 [[E ]] P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[E ]]P airlist A1〉〉〉〉nd [σ0, σ1]›

proof −
have ‹P〈〈A0〉〉nd σ0 [[E ]] P〈〈A1〉〉nd σ1 =

PSKIP S〈〈A0(|ω := λσ. {}|)〉〉nd σ0 [[E ]] PSKIP S〈〈A1(|ω := λσ. {}|)〉〉nd σ1›
by (simp only: PSKIP S-nd-updated-ω)

also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. {}|) nd⊗[[E ]]P airlist A1(|ω := λσ.
{}|)〉〉〉〉nd [σ0, σ1]›

by (rule PSKIP S-nd-combineP airlist-Sync) simp-all
also have ‹〈〈A0(|ω := λσ. {}|) nd⊗[[E ]]P airlist A1(|ω := λσ. {}|)〉〉 = 〈〈A0 nd⊗[[E ]]P airlist

A1〉〉(|ω := λσ. {}|)›
by (simp add: combineP airlist-Sync-defs, intro ext, simp)

also have ‹PSKIP S〈〈〈〈A0 nd⊗[[E ]]P airlist A1〉〉(|ω := λσ. {}|)〉〉nd = P〈〈〈〈A0 nd⊗[[E ]]P airlist

A1〉〉〉〉nd›
by (simp only: PSKIP S-nd-updated-ω)

finally show ?thesis .
qed

corollary PSKIP S-d-combineP airlist-Sync :
‹PSKIP S〈〈A0〉〉d σ0 [[E ]] PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0 d⊗[[E ]]P airlist A1〉〉〉〉d

[σ0, σ1]›
if ‹%-disjoint-ε A0› and ‹%-disjoint-ε A1› and ‹indep-enabl A0 σ0 E A1 σ1›

proof −
have ‹PSKIP S〈〈A0〉〉d σ0 [[E ]] PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0〉〉d↪→nd〉〉nd σ0

[[E ]] PSKIP S〈〈〈〈A1〉〉d↪→nd〉〉nd σ1›
by (simp flip: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)

also from that(1 , 2 ) have ‹. . . = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]P airlist 〈〈A1〉〉d↪→nd〉〉〉〉nd

[σ0, σ1]›
by (auto intro: PSKIP S-nd-combineP airlist-Sync)

also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗[[E ]]P airlist A1〉〉〉〉d [σ0, σ1]›
by (simp add: PSKIP S-combineP airlist-Sync-behaviour-when-indep ‹indep-enabl

A0 σ0 E A1 σ1›)
finally show ?thesis .

qed

corollary P-d-combineP airlist-Sync :
‹P〈〈A0〉〉d σ0 [[E ]] P〈〈A1〉〉d σ1 = P〈〈〈〈A0 d⊗[[E ]]P airlist A1〉〉〉〉d [σ0, σ1]›
if ‹indep-enabl A0 σ0 E A1 σ1›

proof −
have ‹P〈〈A0〉〉d σ0 [[E ]] P〈〈A1〉〉d σ1 =

PSKIP S〈〈A0(|ω := λσ. ♦|)〉〉d σ0 [[E ]] PSKIP S〈〈A1(|ω := λσ. ♦|)〉〉d σ1›
by (simp only: PSKIP S-d-updated-ω)

also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. ♦|) d⊗[[E ]]P airlist A1(|ω := λσ. ♦|)〉〉〉〉d
[σ0, σ1]›

by (subst PSKIP S-d-combineP airlist-Sync, simp-all)
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(rule indep-enablI ,
use ‹indep-enabl A0 σ0 E A1 σ1›[THEN indep-enablD] in simp)

also have ‹〈〈A0(|ω := λσ. ♦|) d⊗[[E ]]P airlist A1(|ω := λσ. ♦|)〉〉 = 〈〈A0 d⊗[[E ]]P airlist

A1〉〉(|ω := λσ. ♦|)›
by (simp add: combineP airlist-Sync-defs, intro ext, simp)

also have ‹PSKIP S〈〈〈〈A0 d⊗[[E ]]P airlist A1〉〉(|ω := λσ. ♦|)〉〉d = P〈〈〈〈A0 d⊗[[E ]]P airlist

A1〉〉〉〉d›
by (simp only: PSKIP S-d-updated-ω)

finally show ?thesis .
qed

6.2.2 Rlist
theorem PSKIP S-nd-combineRlist-Sync :
‹PSKIP S〈〈A0〉〉nd σ0 [[E ]] PSKIP S〈〈A1〉〉nd σ1 = PSKIP S〈〈〈〈A0 nd⊗[[E ]]Rlist A1〉〉〉〉nd

(σ0 # σ1)›
if ‹%-disjoint-ε A0› ‹%-disjoint-ε A1› ‹at-most-1-elem-term A0› ‹at-most-1-elem-term

A1›
proof −

from PSKIP S-nd-combineP air-Sync that
have ‹PSKIP S〈〈A0〉〉nd σ0 [[E ]] PSKIP S〈〈A1〉〉nd σ1 = PSKIP S〈〈〈〈A0 nd⊗[[E ]]P air

A1〉〉〉〉nd (σ0, σ1)› .
also have ‹. . . = PSKIP S〈〈〈〈A0 nd⊗[[E ]]Rlist A1〉〉〉〉nd (σ0 # σ1)›
by (auto intro!: PSKIP S-nd-eqI-strong[of ‹λ(r , s). r # s› - ‹(σ0, σ1)›, simplified]

inj-onI )
(auto simp add: combine-Sync-defs split: if-split-asm)

finally show ?thesis .
qed

corollary P-nd-combineRlist-Sync :
‹P〈〈A0〉〉nd σ0 [[E ]] P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[E ]]Rlist A1〉〉〉〉nd (σ0 # σ1)›

proof −
have ‹P〈〈A0〉〉nd σ0 [[E ]] P〈〈A1〉〉nd σ1 =

PSKIP S〈〈A0(|ω := λσ. {}|)〉〉nd σ0 [[E ]] PSKIP S〈〈A1(|ω := λσ. {}|)〉〉nd σ1›
by (simp only: PSKIP S-nd-updated-ω)

also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. {}|) nd⊗[[E ]]Rlist A1(|ω := λσ. {}|)〉〉〉〉nd

(σ0 # σ1)›
by (rule PSKIP S-nd-combineRlist-Sync) simp-all

also have ‹〈〈A0(|ω := λσ. {}|) nd⊗[[E ]]Rlist A1(|ω := λσ. {}|)〉〉 = 〈〈A0 nd⊗[[E ]]Rlist

A1〉〉(|ω := λσ. {}|)›
by (simp add: combineRlist-Sync-defs, intro ext, simp)

also have ‹PSKIP S〈〈〈〈A0 nd⊗[[E ]]Rlist A1〉〉(|ω := λσ. {}|)〉〉nd = P〈〈〈〈A0 nd⊗[[E ]]Rlist

A1〉〉〉〉nd›
by (simp only: PSKIP S-nd-updated-ω)

finally show ?thesis .
qed

corollary PSKIP S-d-combineRlist-Sync :
‹PSKIP S〈〈A0〉〉d σ0 [[E ]] PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0 d⊗[[E ]]Rlist A1〉〉〉〉d (σ0
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# σ1)›
if ‹%-disjoint-ε A0› and ‹%-disjoint-ε A1› and ‹indep-enabl A0 σ0 E A1 σ1›

proof −
have ‹PSKIP S〈〈A0〉〉d σ0 [[E ]] PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0〉〉d↪→nd〉〉nd σ0

[[E ]] PSKIP S〈〈〈〈A1〉〉d↪→nd〉〉nd σ1›
by (simp flip: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)

also from that(1 , 2 ) have ‹. . . = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]Rlist 〈〈A1〉〉d↪→nd〉〉〉〉nd

(σ0 # σ1)›
by (auto intro: PSKIP S-nd-combineRlist-Sync)

also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗[[E ]]Rlist A1〉〉〉〉d (σ0 # σ1)›
by (simp add: PSKIP S-combineRlist-Sync-behaviour-when-indep ‹indep-enabl

A0 σ0 E A1 σ1›)
finally show ?thesis .

qed

corollary P-d-combineRlist-Sync :
‹P〈〈A0〉〉d σ0 [[E ]] P〈〈A1〉〉d σ1 = P〈〈〈〈A0 d⊗[[E ]]Rlist A1〉〉〉〉d (σ0 # σ1)›
if ‹indep-enabl A0 σ0 E A1 σ1›

proof −
have ‹P〈〈A0〉〉d σ0 [[E ]] P〈〈A1〉〉d σ1 =

PSKIP S〈〈A0(|ω := λσ. ♦|)〉〉d σ0 [[E ]] PSKIP S〈〈A1(|ω := λσ. ♦|)〉〉d σ1›
by (simp only: PSKIP S-d-updated-ω)

also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. ♦|) d⊗[[E ]]Rlist A1(|ω := λσ. ♦|)〉〉〉〉d (σ0

# σ1)›
by (subst PSKIP S-d-combineRlist-Sync, simp-all)
(rule indep-enablI ,

use ‹indep-enabl A0 σ0 E A1 σ1›[THEN indep-enablD] in simp)
also have ‹〈〈A0(|ω := λσ. ♦|) d⊗[[E ]]Rlist A1(|ω := λσ. ♦|)〉〉 = 〈〈A0 d⊗[[E ]]Rlist

A1〉〉(|ω := λσ. ♦|)›
by (simp add: combineRlist-Sync-defs, intro ext, simp)

also have ‹PSKIP S〈〈〈〈A0 d⊗[[E ]]Rlist A1〉〉(|ω := λσ. ♦|)〉〉d = P〈〈〈〈A0 d⊗[[E ]]Rlist

A1〉〉〉〉d›
by (simp only: PSKIP S-d-updated-ω)

finally show ?thesis .
qed

6.2.3 ListslenL
theorem PSKIP S-nd-combineListslenL-Sync :

assumes same-length-reach0 : ‹
∧
σ0

′. σ0
′ ∈ Rnd A0 σ0 =⇒ length σ0

′ = len0›
and %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1› ‹at-most-1-elem-term A0›

‹at-most-1-elem-term A1›
shows ‹PSKIP S〈〈A0〉〉nd σ0 [[E ]] PSKIP S〈〈A1〉〉nd σ1 = PSKIP S〈〈〈〈A0 nd⊗[[len0,

E ]]ListslenL A1〉〉〉〉nd (σ0 @ σ1)›
proof −

from set-mp[OF Rnd-combinendP air-Sync-subset]
have ∗ : ‹σ ′ ∈ Rnd 〈〈A0 nd⊗[[E ]]P air A1〉〉 (σ0, σ1) =⇒

∃σ0
′ σ1

′. σ ′ = (σ0
′, σ1

′) ∧ σ0
′ ∈ Rnd A0 σ0 ∧ σ1

′ ∈ Rnd A1 σ1› for σ ′

by fast
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from PSKIP S-nd-combineP air-Sync assms(2−5 )
have ‹PSKIP S〈〈A0〉〉nd σ0 [[E ]] PSKIP S〈〈A1〉〉nd σ1 = PSKIP S〈〈〈〈A0 nd⊗[[E ]]P air

A1〉〉〉〉nd (σ0, σ1)› .
also have ‹. . . = PSKIP S〈〈〈〈A0 nd⊗[[len0, E ]]ListslenL A1〉〉〉〉nd (σ0 @ σ1)›

by (auto intro!: PSKIP S-nd-eqI-strong[of ‹λ(r , s). r @ s› - ‹(σ0, σ1)›, simpli-
fied] inj-onI

dest!: ∗ same-length-reach0 simp add: same-length-reach0 image-iff )
(auto simp add: combine-Sync-defs ε-simps split: if-split-asm,
(metis SigmaI UnCI case-prod-conv insertI1 )+)

finally show ?thesis .
qed

corollary P-nd-combineListslenL-Sync :
‹P〈〈A0〉〉nd σ0 [[E ]] P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[len0, E ]]ListslenL A1〉〉〉〉nd (σ0 @

σ1)›
if ‹

∧
σ0

′. σ0
′ ∈ Rnd A0 σ0 =⇒ length σ0

′ = len0›
proof −

have ‹P〈〈A0〉〉nd σ0 [[E ]] P〈〈A1〉〉nd σ1 =
PSKIP S〈〈A0(|ω := λσ. {}|)〉〉nd σ0 [[E ]] PSKIP S〈〈A1(|ω := λσ. {}|)〉〉nd σ1›

by (simp only: PSKIP S-nd-updated-ω)
also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. {}|) nd⊗[[len0, E ]]ListslenL A1(|ω :=

λσ. {}|)〉〉〉〉nd (σ0 @ σ1)›
by (rule PSKIP S-nd-combineListslenL-Sync) (simp-all add: that)

also have ‹〈〈A0(|ω := λσ. {}|) nd⊗[[len0, E ]]ListslenL A1(|ω := λσ. {}|)〉〉 = 〈〈A0

nd⊗[[len0, E ]]ListslenL A1〉〉(|ω := λσ. {}|)›
by (simp add: combineListslenL-Sync-defs, intro ext, simp)

also have ‹PSKIP S〈〈〈〈A0 nd⊗[[len0, E ]]ListslenL A1〉〉(|ω := λσ. {}|)〉〉nd = P〈〈〈〈A0

nd⊗[[len0, E ]]ListslenL A1〉〉〉〉nd›
by (simp only: PSKIP S-nd-updated-ω)

finally show ?thesis .
qed

corollary PSKIP S-d-combineListslenL-Sync :
‹PSKIP S〈〈A0〉〉d σ0 [[E ]] PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0 d⊗[[len0, E ]]ListslenL

A1〉〉〉〉d (σ0 @ σ1)›
if ‹

∧
σ0

′. σ0
′ ∈ Rd A0 σ0 =⇒ length σ0

′ = len0›
‹%-disjoint-ε A0› ‹%-disjoint-ε A1› ‹indep-enabl A0 σ0 E A1 σ1›

proof −
have ‹PSKIP S〈〈A0〉〉d σ0 [[E ]] PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0〉〉d↪→nd〉〉nd σ0

[[E ]] PSKIP S〈〈〈〈A1〉〉d↪→nd〉〉nd σ1›
by (simp flip: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)

also from that(1−3 ) have ‹. . . = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[len0, E ]]ListslenL

〈〈A1〉〉d↪→nd〉〉〉〉nd (σ0 @ σ1)›
by (auto simp add: Rnd-from-det-to-ndet intro!: PSKIP S-nd-combineListslenL-Sync)

also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗[[len0, E ]]ListslenL A1〉〉〉〉d (σ0 @ σ1)›
by (simp add: PSKIP S-combineListslenL-Sync-behaviour-when-indep that(1 ,

4 ))
finally show ?thesis .

qed
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corollary P-d-combineListslenL-Sync :
‹P〈〈A0〉〉d σ0 [[E ]] P〈〈A1〉〉d σ1 = P〈〈〈〈A0 d⊗[[len0, E ]]ListslenL A1〉〉〉〉d (σ0 @ σ1)›
if ‹

∧
σ0

′. σ0
′ ∈ Rd A0 σ0 =⇒ length σ0

′ = len0› ‹indep-enabl A0 σ0 E A1 σ1›
proof −

have ‹P〈〈A0〉〉d σ0 [[E ]] P〈〈A1〉〉d σ1 =
PSKIP S〈〈A0(|ω := λσ. ♦|)〉〉d σ0 [[E ]] PSKIP S〈〈A1(|ω := λσ. ♦|)〉〉d σ1›

by (simp only: PSKIP S-d-updated-ω)
also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. ♦|) d⊗[[len0, E ]]ListslenL A1(|ω := λσ.
♦|)〉〉〉〉d (σ0 @ σ1)›

by (subst PSKIP S-d-combineListslenL-Sync) (simp-all add: that)
also have ‹〈〈A0(|ω := λσ. ♦|) d⊗[[len0, E ]]ListslenL A1(|ω := λσ. ♦|)〉〉 = 〈〈A0

d⊗[[len0, E ]]ListslenL A1〉〉(|ω := λσ. ♦|)›
by (simp add: combineListslenL-Sync-defs, intro ext, simp)

also have ‹PSKIP S〈〈〈〈A0 d⊗[[len0, E ]]ListslenL A1〉〉(|ω := λσ. ♦|)〉〉d = P〈〈〈〈A0

d⊗[[len0, E ]]ListslenL A1〉〉〉〉d›
by (simp only: PSKIP S-d-updated-ω)

finally show ?thesis .
qed

6.2.4 Multiple
theorem PSKIP S-nd-compactification-Sync:

‹[[length σs = length As;
∧

A. A ∈ set As =⇒ %-disjoint-ε A;∧
A. A ∈ set As =⇒ at-most-1-elem-term A]]

=⇒ [[E]] (σ, A) ∈# mset (zip σs As). PSKIP S〈〈A〉〉nd σ = PSKIP S〈〈〈〈nd

⊗
[[E ]]

As〉〉〉〉nd σs›
proof (induct σs As rule: induct-2-lists012 )

case Nil show ?case by (simp, subst PSKIP S-nd-rec, simp)
next

case (single σ0 A0) show ?case
by (auto simp add: σ-σs-conv-defs intro!: inj-onI PSKIP S-nd-eqI-strong)

next
case (Cons σ0 σ1 σs A0 A1 As)
have ‹[[E]] (σ, A) ∈# mset (zip (σ0 # σ1 # σs) (A0 # A1 # As)). PSKIP S〈〈A〉〉nd

σ =
PSKIP S〈〈A0〉〉nd σ0 [[E ]] [[E]] (σ, A) ∈# mset (zip (σ1 # σs) (A1 # As)).

PSKIP S〈〈A〉〉nd σ› by simp
also have ‹[[E]] (σ, A) ∈# mset (zip (σ1 # σs) (A1 # As)). PSKIP S〈〈A〉〉nd σ =

PSKIP S〈〈〈〈nd

⊗
[[E ]] A1 # As〉〉〉〉nd (σ1 # σs)›

by (rule Cons.hyps(3 )) (simp-all add: Cons.prems)
also have ‹PSKIP S〈〈A0〉〉nd σ0 [[E ]] PSKIP S〈〈〈〈nd

⊗
[[E ]] A1 # As〉〉〉〉nd (σ1 # σs)

=
PSKIP S〈〈〈〈A0 nd⊗[[E ]]Rlist 〈〈nd

⊗
[[E ]] A1 # As〉〉〉〉〉〉nd (σ0 # σ1 # σs)›

by (rule PSKIP S-nd-combineRlist-Sync
[OF - %-disjoint-ε-transmission-to-iterated-combinend-Sync

- at-most-1-elem-term-transmission-to-iterated-combinend-Sync])
(simp-all add: Cons.prems)

also have ‹〈〈A0 nd⊗[[E ]]Rlist 〈〈nd

⊗
[[E ]] A1 # As〉〉〉〉 = 〈〈nd

⊗
[[E ]] A0 # A1 #
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As〉〉› by simp
finally show ?case .

qed

lemma P-nd-compactification-Sync:
‹length σs = length As =⇒
[[E]] (σ, A) ∈# mset (zip σs As). P〈〈A〉〉nd σ = P〈〈〈〈nd

⊗
[[E ]] As〉〉〉〉nd σs›

proof (induct σs As rule: induct-2-lists012 )
case Nil show ?case by (simp, subst P-nd-rec, simp)

next
case (single σ0 A0) show ?case

by (simp add: P-nd-from-σ-to-σs-is-P-nd)
next

case (Cons σ0 σ1 σs A0 A1 As) thus ?case
by (simp add: P-nd-combineRlist-Sync)

qed

lemma PSKIP S-d-compactification-Sync:
‹[[length σs = length As;

∧
A. A ∈ set As =⇒ %-disjoint-ε A;∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)]] =⇒

[[E]] (σ, A) ∈# mset (zip σs As). PSKIP S〈〈A〉〉d σ = PSKIP S〈〈〈〈d
⊗

[[E ]] As〉〉〉〉d
σs›
proof (induct σs As rule: induct-2-lists012 )

case Nil show ?case by (simp, subst PSKIP S-d-rec, simp)
next

case (single σ0 A0) show ?case
by (auto simp add: RenamingTick-PSKIP S-d σ-σs-conv-defs

intro!: inj-onI PSKIP S-d-eqI-strong split: option.split)
next

case (Cons σ0 σ1 σs A0 A1 As)
have %-disjoint-ε : ‹A ∈ set (A1 # As) =⇒ %-disjoint-ε A› for A

by (simp add: Cons.prems(1 ))
have indep-enabl :

‹[[i < length (A1 # As); j < length (A1 # As); i 6= j]] =⇒
indep-enabl ((A1 # As) ! i) ((σ1 # σs) ! i) E ((A1 # As) ! j) ((σ1 # σs) ! j)›

for i j
by (metis Cons.prems(2 ) Suc-less-eq length-Cons nat.inject nth-Cons-Suc)

have ‹%-disjoint-ε A0› by (simp add: Cons.prems(1 ))
moreover have ‹%-disjoint-ε 〈〈d

⊗
[[E ]] A1 # As〉〉›

by (meson %-disjoint-ε %-disjoint-ε-transmission-to-iterated-combined-Sync)
moreover have ‹indep-enabl A0 σ0 E 〈〈d

⊗
[[E ]] A1 # As〉〉 (σ1 # σs)›

by (metis Cons.hyps(1 ) Cons.prems(2 ) length-Cons less-Suc-eq-le
same-length-indep-transmission-to-iterated-combined-Sync)

ultimately show ?case
by (simp add: PSKIP S-d-combineRlist-Sync

Cons.hyps(3 )[OF %-disjoint-ε indep-enabl, simplified])
qed
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lemma P-d-compactification-Sync:
‹[[length σs = length As;∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)]] =⇒

[[E]] (σ, A) ∈# mset (zip σs As). P〈〈A〉〉d σ = P〈〈〈〈d
⊗

[[E ]] As〉〉〉〉d σs›
proof (induct σs As rule: induct-2-lists012 )

case Nil show ?case by (simp, subst P-d-rec, simp)
next

case (single σ0 A0) show ?case
by (simp, subst (1 2 ) PSKIP S-d-updated-ω)
(auto simp add: RenamingTick-PSKIP S-d σ-σs-conv-defs

intro!: inj-onI PSKIP S-d-eqI-strong split: option.split)
next

case (Cons σ0 σ1 σs A0 A1 As)
have indep-enabl :

‹[[i < length (A1 # As); j < length (A1 # As); i 6= j]] =⇒
indep-enabl ((A1 # As) ! i) ((σ1 # σs) ! i) E ((A1 # As) ! j) ((σ1 # σs) ! j)›

for i j
by (metis Cons.prems Suc-less-eq length-Cons nat.inject nth-Cons-Suc)

have ‹indep-enabl A0 σ0 E 〈〈d
⊗

[[E ]] A1 # As〉〉 (σ1 # σs)›
by (metis Cons.hyps(1 ) Cons.prems length-Cons less-Suc-eq-le

same-length-indep-transmission-to-iterated-combined-Sync)
thus ?case

by (simp add: P-d-combineRlist-Sync
Cons.hyps(3 )[OF indep-enabl, simplified])

qed

corollary PSKIP S-nd-compactification-Sync-order-is-arbitrary:
‹PSKIP S〈〈〈〈nd

⊗
[[E ]] As〉〉〉〉nd σs = PSKIP S〈〈〈〈nd

⊗
[[E ]] As ′〉〉〉〉nd σs ′›

if ‹length σs = length As› ‹length σs ′ = length As ′›
‹mset (zip σs As) = mset (zip σs ′ As ′)›
‹
∧

A. A ∈ set As =⇒ %-disjoint-ε A›
‹
∧

A. A ∈ set As =⇒ at-most-1-elem-term A›
proof −
have ‹PSKIP S〈〈〈〈nd

⊗
[[E ]] As〉〉〉〉nd σs = [[E]] (σ, A)∈#mset (zip σs As). PSKIP S〈〈A〉〉nd

σ›
by (rule PSKIP S-nd-compactification-Sync[OF that(1 , 4 , 5 ), symmetric])

also have ‹. . . = [[E]] (σ, A)∈#mset (zip σs ′ As ′). PSKIP S〈〈A〉〉nd σ›
by (simp only: that(3 ))

also have ‹. . . = PSKIP S〈〈〈〈nd

⊗
[[E ]] As ′〉〉〉〉nd σs ′›

proof (rule PSKIP S-nd-compactification-Sync[OF that(2 )])
show ‹A ∈ set As ′ =⇒ %-disjoint-ε A› for A

by (metis in-set-impl-in-set-zip2 set-mset-mset set-zip-rightD that(2−4 ))
next

show ‹A ∈ set As ′ =⇒ at-most-1-elem-term A› for A
by (metis in-set-impl-in-set-zip2 set-mset-mset set-zip-rightD that(2 , 3 , 5 ))
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qed
finally show ?thesis .

qed

corollary P-nd-compactification-Sync-order-is-arbitrary:
‹P〈〈〈〈nd

⊗
[[E ]] As〉〉〉〉nd σs = P〈〈〈〈nd

⊗
[[E ]] As ′〉〉〉〉nd σs ′›

if ‹length σs = length As› ‹length σs ′ = length As ′›
‹mset (zip σs As) = mset (zip σs ′ As ′)›

proof −
have ‹P〈〈〈〈nd

⊗
[[E ]] As〉〉〉〉nd σs = [[E]] (σ, A)∈#mset (zip σs As). P〈〈A〉〉nd σ›

by (fact P-nd-compactification-Sync[OF that(1 ), symmetric])
also have ‹. . . = [[E]] (σ, A)∈#mset (zip σs ′ As ′). P〈〈A〉〉nd σ›

by (simp only: that(3 ))
also have ‹. . . = P〈〈〈〈nd

⊗
[[E ]] As ′〉〉〉〉nd σs ′›

by (fact P-nd-compactification-Sync[OF that(2 )])
finally show ?thesis .

qed

corollary PSKIP S-d-compactification-Sync-order-is-arbitrary:
‹PSKIP S〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d σs = PSKIP S〈〈〈〈d

⊗
[[E ]] As ′〉〉〉〉d σs ′›

if ‹length σs = length As› ‹length σs ′ = length As ′›
‹mset (zip σs As) = mset (zip σs ′ As ′)›
‹
∧

A. A ∈ set As =⇒ %-disjoint-ε A›
‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

proof −
have ‹PSKIP S〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d σs = [[E]] (σ, A)∈#mset (zip σs As). PSKIP S〈〈A〉〉d

σ›
by (rule PSKIP S-d-compactification-Sync[OF that(1 , 4 , 5 ), symmetric])

also have ‹. . . = [[E]] (σ, A)∈#mset (zip σs ′ As ′). PSKIP S〈〈A〉〉d σ›
by (simp only: that(3 ))

also have ‹. . . = PSKIP S〈〈〈〈d
⊗

[[E ]] As ′〉〉〉〉d σs ′›
proof (rule PSKIP S-d-compactification-Sync[OF that(2 )])

show ‹A ∈ set As ′ =⇒ %-disjoint-ε A› for A
by (metis in-set-impl-in-set-zip2 set-mset-mset set-zip-rightD that(2−4 ))

next
from ‹length σs = length As› ‹length σs ′ = length As ′› ‹mset (zip σs As) =

mset (zip σs ′ As ′)›
obtain n where ∗ : ‹length σs = n› ‹length σs ′ = n› ‹length As = n› ‹length

As ′ = n›
by (metis length-zip min-less-iff-conj nat-neq-iff size-mset)

from that(3 )[symmetric, THEN permutation-Ex-bij] obtain f
where ∗∗ : ‹bij-betw f {..<n} {..<n}›

‹i < n =⇒ zip σs ′ As ′ ! i = zip σs As ! f i› for i by (auto simp add: ∗)
{ fix i assume ‹i < n›

hence ‹f i < n› using ∗∗(1 ) bij-betwE by blast
from ‹i < n› have ‹zip σs ′ As ′ ! i = (σs ′ ! i, As ′ ! i)› by (simp add: ∗(2 , 4 ))
moreover from ‹f i < n› have ‹zip σs As ! f i = (σs ! f i, As ! f i)›

by (simp add: ∗(1 , 3 ))
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ultimately have ‹σs ′ ! i = σs ! f i› ‹As ′ ! i = As ! f i›
using ∗∗(2 )[OF ‹i < n›] by simp-all

} note ∗∗∗ = this
fix i j assume ‹i < length As ′› ‹j < length As ′› ‹i 6= j›
hence ‹i < n› ‹j < n› by (simp-all add: ∗(2 , 4 ))
with bij-betw-imp-surj-on[OF ∗∗(1 )] bij-betw-imp-inj-on[OF ∗∗(1 )] ‹i 6= j›
have ‹f i < length As› ‹f j < length As› ‹f i 6= f j›

by (auto simp add: ∗ dest: inj-onD)
from that(5 )[OF this]
show ‹indep-enabl (As ′ ! i) (σs ′ ! i) E (As ′ ! j) (σs ′ ! j)›

by (simp add: ∗∗∗(1 , 2 ) ‹i < n› ‹j < n›)
qed
finally show ?thesis .

qed

corollary P-d-compactification-Sync-order-is-arbitrary:
‹P〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d σs = P〈〈〈〈d

⊗
[[E ]] As ′〉〉〉〉d σs ′›

if ‹length σs = length As› ‹length σs ′ = length As ′›
‹mset (zip σs As) = mset (zip σs ′ As ′)›
‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

proof −
have ‹P〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d σs = [[E]] (σ, A)∈#mset (zip σs As). P〈〈A〉〉d σ›

by (rule P-d-compactification-Sync[OF that(1 , 4 ), symmetric])
also have ‹. . . = [[E]] (σ, A)∈#mset (zip σs ′ As ′). P〈〈A〉〉d σ›

by (simp only: that(3 ))
also have ‹. . . = P〈〈〈〈d

⊗
[[E ]] As ′〉〉〉〉d σs ′›

proof (rule P-d-compactification-Sync[OF that(2 )])
from ‹length σs = length As› ‹length σs ′ = length As ′› ‹mset (zip σs As) =

mset (zip σs ′ As ′)›
obtain n where ∗ : ‹length σs = n› ‹length σs ′ = n› ‹length As = n› ‹length

As ′ = n›
by (metis length-zip min-less-iff-conj nat-neq-iff size-mset)

from that(3 )[symmetric, THEN permutation-Ex-bij] obtain f
where ∗∗ : ‹bij-betw f {..<n} {..<n}›

‹i < n =⇒ zip σs ′ As ′ ! i = zip σs As ! f i› for i by (auto simp add: ∗)
{ fix i assume ‹i < n›

hence ‹f i < n› using ∗∗(1 ) bij-betwE by blast
from ‹i < n› have ‹zip σs ′ As ′ ! i = (σs ′ ! i, As ′ ! i)› by (simp add: ∗(2 , 4 ))
moreover from ‹f i < n› have ‹zip σs As ! f i = (σs ! f i, As ! f i)›

by (simp add: ∗(1 , 3 ))
ultimately have ‹σs ′ ! i = σs ! f i› ‹As ′ ! i = As ! f i›

using ∗∗(2 )[OF ‹i < n›] by simp-all
} note ∗∗∗ = this
fix i j assume ‹i < length As ′› ‹j < length As ′› ‹i 6= j›
hence ‹i < n› ‹j < n› by (simp-all add: ∗(2 , 4 ))
with bij-betw-imp-surj-on[OF ∗∗(1 )] bij-betw-imp-inj-on[OF ∗∗(1 )] ‹i 6= j›
have ‹f i < length As› ‹f j < length As› ‹f i 6= f j›

by (auto simp add: ∗ dest: inj-onD)
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from that(4 )[OF this]
show ‹indep-enabl (As ′ ! i) (σs ′ ! i) E (As ′ ! j) (σs ′ ! j)›

by (simp add: ∗∗∗(1 , 2 ) ‹i < n› ‹j < n›)
qed
finally show ?thesis .

qed

6.3 Derived Versions
lemma PSKIP S-nd-compactification-Sync-upt-version:

‹[[E]] P ∈# mset (map Q [0 ..<n]). P = PSKIP S〈〈〈〈nd

⊗
[[E ]] map A [0 ..<n]〉〉〉〉nd

(replicate n 0 )›
if ‹

∧
i. i < n =⇒ %-disjoint-ε (A i)›

‹
∧

i. i < n =⇒ at-most-1-elem-term (A i)›
‹
∧

i. i < n =⇒ PSKIP S〈〈A i〉〉nd 0 = Q i›
proof −

have ‹[[E]] P ∈# mset (map Q [0 ..<n]). P = [[E]] i ∈# (mset-set {0 ..<n}). Q
i›

by (auto intro: mono-MultiSync-eq2 )
also have ‹. . . = [[E]] i ∈# (mset-set {0 ..<n}). PSKIP S〈〈A i〉〉nd 0 ›

by (auto simp add: that(3 ) intro: mono-MultiSync-eq)
also have ‹. . . = [[E]] (σ, A)∈#mset (zip (replicate n 0 ) (map A [0 ..<n])).

PSKIP S〈〈A〉〉nd σ›
proof (induct n rule: nat-induct-012 )

case (Suc k)
have ‹[[E]] i∈#mset-set {0 ..<Suc k}. PSKIP S〈〈A i〉〉nd 0 =

PSKIP S〈〈A k〉〉nd 0 [[E ]] [[E]] i∈#mset-set {0 ..<k}. PSKIP S〈〈A i〉〉nd 0 ›
by (subst atLeastLessThanSuc, simp, rule MultiSync-add)
(metis Suc.hyps(1 ) atLeastLessThan-empty-iff2 finite-lessThan

gr0-conv-Suc lessThan-atLeast0 mset-set-empty-iff order-less-le-trans)
also have ‹. . . = PSKIP S〈〈A k〉〉nd 0 [[E ]]

[[E]] (σ, A)∈#mset (zip (replicate k 0 ) (map A [0 ..<k])).
PSKIP S〈〈A〉〉nd σ›

by (simp only: Suc.hyps(2 ))
also have ‹. . . = [[E]] (σ, A)∈#mset (zip (replicate (Suc k) 0 ) (map A [0 ..<Suc

k])). PSKIP S〈〈A〉〉nd σ›
by (simp flip: replicate-append-same, subst MultiSync-add)
(use Suc.hyps(1 ) in auto)

finally show ?case .
qed (simp-all add: atLeastLessThanSuc Sync-commute)
also have ‹. . . = PSKIP S〈〈〈〈nd

⊗
[[E ]] map A [0 ..<n]〉〉〉〉nd (replicate n 0 )›

by (rule PSKIP S-nd-compactification-Sync)
(auto simp add: that(1 , 2 ))

finally show ?thesis .
qed

lemma P-nd-compactification-Sync-upt-version:
‹[[E]] P ∈# mset (map Q [0 ..<n]). P = P〈〈〈〈nd

⊗
[[E ]] map A [0 ..<n]〉〉〉〉nd (replicate

n 0 )›
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if ‹
∧

i. i < n =⇒ P〈〈A i〉〉nd 0 = Q i›
proof −

have ‹[[E]] P ∈# mset (map Q [0 ..<n]). P = [[E]] i ∈# (mset-set {0 ..<n}). Q
i›

by (auto intro: mono-MultiSync-eq2 )
also have ‹. . . = [[E]] i ∈# (mset-set {0 ..<n}). P〈〈A i〉〉nd 0 ›

by (auto simp add: that(1 ) intro: mono-MultiSync-eq)
also have ‹. . . = [[E]] (σ, A)∈#mset (zip (replicate n 0 ) (map A [0 ..<n])).

P〈〈A〉〉nd σ›
proof (induct n rule: nat-induct-012 )

case (Suc k)
have ‹[[E]] i∈#mset-set {0 ..<Suc k}. P〈〈A i〉〉nd 0 =

P〈〈A k〉〉nd 0 [[E ]] [[E]] i∈#mset-set {0 ..<k}. P〈〈A i〉〉nd 0 ›
by (subst atLeastLessThanSuc, simp, rule MultiSync-add)
(metis Suc.hyps(1 ) atLeastLessThan-empty-iff2 finite-lessThan

gr0-conv-Suc lessThan-atLeast0 mset-set-empty-iff order-less-le-trans)
also have ‹. . . = P〈〈A k〉〉nd 0 [[E ]] [[E]] (σ, A)∈#mset (zip (replicate k 0 ) (map

A [0 ..<k])). P〈〈A〉〉nd σ›
by (simp only: Suc.hyps(2 ))

also have ‹. . . = [[E]] (σ, A)∈#mset (zip (replicate (Suc k) 0 ) (map A [0 ..<Suc
k])). P〈〈A〉〉nd σ›

by (simp flip: replicate-append-same, subst MultiSync-add)
(use Suc.hyps(1 ) in auto)

finally show ?case .
qed (simp-all add: atLeastLessThanSuc Sync-commute)
also have ‹. . . = P〈〈〈〈nd

⊗
[[E ]] map A [0 ..<n]〉〉〉〉nd (replicate n 0 )›

by (auto intro: P-nd-compactification-Sync)
finally show ?thesis .

qed

lemma PSKIP S-d-compactification-Sync-upt-version:
‹[[E]] P ∈# mset (map Q [0 ..<n]). P = PSKIP S〈〈〈〈d

⊗
[[E ]] map A [0 ..<n]〉〉〉〉d

(replicate n 0 )›
if ‹

∧
i. i < n =⇒ %-disjoint-ε (A i)›

‹
∧

i j. i < n =⇒ j < n =⇒ i 6= j =⇒ indep-enabl (A i) 0 E (A j) 0 ›
‹
∧

i. i < n =⇒ PSKIP S〈〈A i〉〉d 0 = Q i›
proof −

have ‹[[E]] P ∈# mset (map Q [0 ..<n]). P = [[E]] i ∈# (mset-set {0 ..<n}). Q
i›

by (auto intro: mono-MultiSync-eq2 )
also have ‹. . . = [[E]] i ∈# (mset-set {0 ..<n}). PSKIP S〈〈A i〉〉d 0 ›

by (auto simp add: that(3 ) intro: mono-MultiSync-eq)
also have ‹. . . = [[E]] (σ, A)∈#mset (zip (replicate n 0 ) (map A [0 ..<n])).

PSKIP S〈〈A〉〉d σ›
proof (induct n rule: nat-induct-012 )

case (Suc k)
have ‹[[E]] i∈#mset-set {0 ..<Suc k}. PSKIP S〈〈A i〉〉d 0 =

PSKIP S〈〈A k〉〉d 0 [[E ]] [[E]] i∈#mset-set {0 ..<k}. PSKIP S〈〈A i〉〉d 0 ›
by (subst atLeastLessThanSuc, simp, rule MultiSync-add)
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(metis Suc.hyps(1 ) atLeastLessThan-empty-iff2 finite-lessThan
gr0-conv-Suc lessThan-atLeast0 mset-set-empty-iff order-less-le-trans)

also have ‹. . . = PSKIP S〈〈A k〉〉d 0 [[E ]]
[[E]] (σ, A)∈#mset (zip (replicate k 0 ) (map A [0 ..<k])). PSKIP S〈〈A〉〉d

σ›
by (simp only: Suc.hyps(2 ))

also have ‹. . . = [[E]] (σ, A)∈#mset (zip (replicate (Suc k) 0 ) (map A [0 ..<Suc
k])). PSKIP S〈〈A〉〉d σ›

by (simp flip: replicate-append-same, subst MultiSync-add)
(use Suc.hyps(1 ) in auto)

finally show ?case .
qed (simp-all add: atLeastLessThanSuc Sync-commute)
also have ‹. . . = PSKIP S〈〈〈〈d

⊗
[[E ]] map A [0 ..<n]〉〉〉〉d (replicate n 0 )›

by (rule PSKIP S-d-compactification-Sync)
(auto simp add: that(1 , 2 ))

finally show ?thesis .
qed

lemma P-d-compactification-Sync-upt-version:
‹[[E]] P ∈# mset (map Q [0 ..<n]). P = P〈〈〈〈d

⊗
[[E ]] map A [0 ..<n]〉〉〉〉d (replicate

n 0 )›
if ‹

∧
i. i < n =⇒ P〈〈A i〉〉d 0 = Q i›

‹
∧

i j. i < n =⇒ j < n =⇒ i 6= j =⇒ indep-enabl (A i) 0 E (A j) 0 ›
proof −

have ‹[[E]] P ∈# mset (map Q [0 ..<n]). P = [[E]] i ∈# (mset-set {0 ..<n}). Q
i›

by (auto intro: mono-MultiSync-eq2 )
also have ‹. . . = [[E]] i ∈# (mset-set {0 ..<n}). P〈〈A i〉〉d 0 ›

by (auto simp add: that(1 ) intro: mono-MultiSync-eq)
also have ‹. . . = [[E]] (σ, A)∈#mset (zip (replicate n 0 ) (map A [0 ..<n])). P〈〈A〉〉d

σ›
proof (induct n rule: nat-induct-012 )

case (Suc k)
have ‹[[E]] i∈#mset-set {0 ..<Suc k}. P〈〈A i〉〉d 0 =

P〈〈A k〉〉d 0 [[E ]] [[E]] i∈#mset-set {0 ..<k}. P〈〈A i〉〉d 0 ›
by (subst atLeastLessThanSuc, simp, rule MultiSync-add)
(metis Suc.hyps(1 ) atLeastLessThan-empty-iff2 finite-lessThan

gr0-conv-Suc lessThan-atLeast0 mset-set-empty-iff order-less-le-trans)
also have ‹. . . = P〈〈A k〉〉d 0 [[E ]] [[E]] (σ, A)∈#mset (zip (replicate k 0 ) (map

A [0 ..<k])). P〈〈A〉〉d σ›
by (simp only: Suc.hyps(2 ))

also have ‹. . . = [[E]] (σ, A)∈#mset (zip (replicate (Suc k) 0 ) (map A [0 ..<Suc
k])). P〈〈A〉〉d σ›

by (simp flip: replicate-append-same, subst MultiSync-add)
(use Suc.hyps(1 ) in auto)

finally show ?case .
qed (simp-all add: atLeastLessThanSuc Sync-commute)
also have ‹. . . = P〈〈〈〈d

⊗
[[E ]] map A [0 ..<n]〉〉〉〉d (replicate n 0 )›

by (rule P-d-compactification-Sync) (simp-all add: that(2 ))
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finally show ?thesis .
qed

6.4 More on Iterated Combine
lemma ε-iterated-combinend-Sync-general-form:

‹length σs = length As =⇒ ε 〈〈nd

⊗
[[E ]] As〉〉 σs =

(if As = [] then {}
else (

⋃
i < length As. ε (As ! i) (σs ! i)) − E ∪ (

⋂
i < length As. ε (As ! i)

(σs ! i)))›
for As :: ‹( ′σ, ′e, ′r) And list›

proof (subst ε-iterated-combinend-Sync, assumption, induct σs As rule: induct-2-lists012 )
case Nil show ?case by simp

next
case (single σ0 A0) show ?case by auto

next
case (Cons σ0 σ1 σs A0 A1 As)
define U and I

where U-def : ‹U As σs ≡
⋃

i<length As. ε (As ! i) (σs ! i)›
and I-def : ‹I As σs ≡

⋂
i<length As. ε (As ! i) (σs ! i)›

for As :: ‹( ′σ, ′e, ′r) And list› and σs
have ∗ : ‹U (A0 # A1 # As) (σ0 # σ1 # σs) = ε A0 σ0 ∪ U (A1 # As) (σ1 #

σs)›
by (auto simp add: U-def nth-Cons split: nat.split-asm)

have ∗∗ : ‹I (A0 # A1 # As) (σ0 # σ1 # σs) = ε A0 σ0 ∩ I (A1 # As) (σ1 #
σs)›

by (auto simp add: I-def nth-Cons split: nat.splits)
have ‹iterated-combinend-Sync-ε (A0 # A1 # As) E (σ0 # σ1 # σs) =

combine-sets-Sync (ε A0 σ0) E (U (A1 # As) (σ1 # σs) − E ∪ (I (A1 #
As) (σ1 # σs)))›

by (simp add: U-def I-def Cons.hyps(3 ))
also have ‹. . . = U (A0 # A1 # As) (σ0 # σ1 # σs) − E ∪ I (A0 # A1 # As)

(σ0 # σ1 # σs)›
unfolding ∗ ∗∗ by (auto simp add: U-def I-def )

finally show ?case by (simp add: U-def I-def )
qed

lemma ε-iterated-combined-Sync-general-form:
‹length σs = length As =⇒ ε 〈〈d

⊗
[[E ]] As〉〉 σs =

(if As = [] then {}
else (

⋃
i < length As. ε (As ! i) (σs ! i)) − E ∪ (

⋂
i < length As. ε (As ! i)

(σs ! i)))›
for As :: ‹( ′σ, ′e, ′r) Ad list›

proof (subst ε-iterated-combined-Sync, assumption, induct σs As rule: induct-2-lists012 )
case Nil show ?case by simp

next
case (single σ0 A0) show ?case by auto

next
case (Cons σ0 σ1 σs A0 A1 As)
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define U and I
where U-def : ‹U As σs ≡

⋃
i<length As. ε (As ! i) (σs ! i)›

and I-def : ‹I As σs ≡
⋂

i<length As. ε (As ! i) (σs ! i)›
for As :: ‹( ′σ, ′e, ′r) Ad list› and σs

have ∗ : ‹U (A0 # A1 # As) (σ0 # σ1 # σs) = ε A0 σ0 ∪ U (A1 # As) (σ1 #
σs)›

by (auto simp add: U-def nth-Cons split: nat.split-asm)
have ∗∗ : ‹I (A0 # A1 # As) (σ0 # σ1 # σs) = ε A0 σ0 ∩ I (A1 # As) (σ1 #

σs)›
by (auto simp add: I-def nth-Cons split: nat.splits)

have ‹iterated-combined-Sync-ε (A0 # A1 # As) E (σ0 # σ1 # σs) =
combine-sets-Sync (ε A0 σ0) E (U (A1 # As) (σ1 # σs) − E ∪ (I (A1 #

As) (σ1 # σs)))›
by (simp add: U-def I-def Cons.hyps(3 ))

also have ‹. . . = U (A0 # A1 # As) (σ0 # σ1 # σs) − E ∪ I (A0 # A1 # As)
(σ0 # σ1 # σs)›

unfolding ∗ ∗∗ by (auto simp add: U-def I-def )
finally show ?case by (simp add: U-def I-def )

qed

lemma τ -iterated-combinend-Sync-general-form:
‹[[length σs = length As; σs ′ ∈ τ 〈〈nd

⊗
[[E ]] As〉〉 σs a; i < length As]] =⇒

σs ′ ! i ∈ insert (σs ! i) (τ (As ! i) (σs ! i) a)›
proof (induct σs As arbitrary: σs ′ i rule: induct-2-lists012 )

case Nil thus ?case by simp
next

case (single σ0 A0)
from single.prems show ?case by (auto simp add: behaviour-σ-σs-conv)

next
case (Cons σ0 σ1 σs A0 A1 As)
from ‹length σs = length As› have ‹length (σ0 # σ1 # σs) = length (A0 # A1

# As)› by simp
from same-length-Rnd-iterated-combinend-Sync-description[OF this]
have ‹length σs ′ = length (A0 # A1 # As)›

by (metis Cons.prems(1 ) Rnd.init Rnd.step)
then obtain σ0

′ σ1
′ σs ′′ where ‹σs ′= σ0

′# σ1
′# σs ′′› by (metis length-Suc-conv)

with Cons.prems Cons.hyps(3 )[of ‹σ1
′ # σs ′′› ‹nat.pred i›] show ?case

by (auto simp add: combine-Sync-defs nth-Cons split: if-split-asm nat.splits)
qed

lemma τ -iterated-combined-Sync-general-form:
‹length σs = length As =⇒
τ 〈〈d

⊗
[[E ]] As〉〉 σs a =

(if As = [] then ♦ else
if a ∈ (

⋃
i < length As. ε (As ! i) (σs ! i)) − E ∪ (

⋂
i < length As. ε (As ! i)

(σs ! i))
then bmap2 (λσ A. if a ∈ ε A σ then dτ A σ ae else σ) σs Asc else ♦)›
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for As :: ‹( ′σ, ′e, ′r) Ad list›
proof (induct σs As rule: induct-2-lists012 )

case Nil show ?case by simp
next

case (single σ0 A0) show ?case by (auto simp add: behaviour-σ-σs-conv ε-simps)
next

case (Cons σ0 σ1 σs A0 A1 As)
let ?U = ‹λAs σs.

⋃
i<length As. ε (As ! i) (σs ! i)›

let ?I = ‹λAs σs.
⋂

i<length As. ε (As ! i) (σs ! i)›
show ?case
proof (split if-split, split if-split, intro conjI impI )

show ‹A0 # A1 # As = [] =⇒ τ 〈〈d
⊗

[[E ]] A0 # A1 # As〉〉 (σ0 # σ1 # σs) a
= ♦›

and ‹A0 # A1 # As = [] =⇒ τ 〈〈d
⊗

[[E ]] A0 # A1 # As〉〉 (σ0 # σ1 # σs) a
= ♦› by simp-all

next
assume ‹a /∈ ?U (A0 # A1 # As) (σ0 # σ1 # σs) − E ∪ ?I (A0 # A1 # As)

(σ0 # σ1 # σs)›
hence ‹a /∈ ε 〈〈d

⊗
[[E ]] A0 # A1 # As〉〉 (σ0 # σ1 # σs)›

by (subst ε-iterated-combined-Sync-general-form)
(simp-all add: Cons.hyps(1 ))

thus ‹τ 〈〈d
⊗

[[E ]] A0 # A1 # As〉〉 (σ0 # σ1 # σs) a = ♦›
by (simp add: ε-simps)

next
assume ∗ : ‹a ∈ ?U (A0 # A1 # As) (σ0 # σ1 # σs) − E ∪ ?I (A0 # A1 #

As) (σ0 # σ1 # σs)›
have ∗∗ : ‹?U (A0 # A1 # As) (σ0 # σ1 # σs) = ε A0 σ0 ∪ ?U (A1 # As)

(σ1 # σs)›
by (auto simp add: nth-Cons split: nat.split-asm)

have ∗∗∗ : ‹?I (A0 # A1 # As) (σ0 # σ1 # σs) = ε A0 σ0 ∩ ?I (A1 # As)
(σ1 # σs)›

by (auto simp add: nth-Cons split: nat.splits)
have ∗∗∗∗ : ‹?U (A0 # A1 # As) (σ0 # σ1 # σs) − E ∪ ?I (A0 # A1 # As)

(σ0 # σ1 # σs) =
combine-sets-Sync (ε A0 σ0) E (?U (A1 # As) (σ1 # σs) − E ∪ ?I

(A1 # As) (σ1 # σs))›
unfolding ∗∗ ∗∗∗ by auto

have $ : ‹?U (A1 # As) (σ1 # σs) − E ∪ ?I (A1 # As) (σ1 # σs) = ε
〈〈d
⊗

[[E ]] A1 # As〉〉 (σ1 # σs)›
by (subst ε-iterated-combined-Sync-general-form)
(simp-all add: Cons.hyps(1 ))

from Cons.hyps(1 ) have ‹a /∈ ?U As σs =⇒
map2 (λσ A. if a ∈ ε A σ then dτ A σ ae else σ) σs As = σs›

by (induct σs As rule: induct-2-lists012 )
(auto simp add: ε-simps lessThan-def , fastforce)

moreover have ‹?U As σs ⊆ ?U (A1 # As) (σ1 # σs)› by force
ultimately show ‹τ 〈〈d

⊗
[[E ]] A0 # A1 # As〉〉 (σ0 # σ1 # σs) a =

bmap2 (λx y. if a ∈ ε y x then dτ y x ae else x) (σ0 # σ1 # σs)
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(A0 # A1 # As)c›
using ∗ unfolding ∗∗∗∗ $
by (simp add: ε-combineRlist-Sync combine-Sync-ε-def , safe,

auto simp add: combineRlist-Sync-defs ε-simps Cons.hyps(3 ) lessThan-def
subset-iff

split: option.splits if-splits)
(metis (no-types, lifting) not-less-eq nth-Cons-Suc)

qed
qed

lemma indep-implies-only-one-enabled ′:
‹∃ !i. i < length As ∧ a ∈ ε (As ! i) (σs ! i)›
if ‹length σs = length As›

and ‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
ε (As ! i) (σs ! i) ∩ ε (As ! j) (σs ! j) ⊆ E›

and ‹a ∈ (
⋃

i<length As. ε (As ! i) (σs ! i)) − E›
proof (rule ex-ex1I )

from that(3 ) show ‹∃ i<length As. a ∈ ε (As ! i) (σs ! i)› by auto
next

fix i j assume ‹i < length As ∧ a ∈ ε (As ! i) (σs ! i)›
‹j < length As ∧ a ∈ ε (As ! j) (σs ! j)›

moreover from that(3 ) have ‹a /∈ E› by blast
ultimately show ‹i = j› using that(2 )[of i j] by auto

qed

lemma indep-implies-only-one-enabled:
‹[[length σs = length As;∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j);

a ∈ (
⋃

i<length As. ε (As ! i) (σs ! i)) − E ]] =⇒
∃ !i. i < length As ∧ a ∈ ε (As ! i) (σs ! i)›

by (erule indep-implies-only-one-enabled ′[where E = E ])
(simp-all add: indep-enabl-def subset-iff , meson IntI Rd.init)

lemma τ -iterated-combined-Sync-general-form-when-indep:
‹τ 〈〈d

⊗
[[E ]] As〉〉 σs a =

(if As = [] then ♦
else if a ∈ (

⋂
i<length As. ε (As ! i) (σs ! i))

then bmap2 (λσ A. dτ A σ ae) σs Asc
else if a ∈ (

⋃
i<length As. ε (As ! i) (σs ! i)) − E

then let i = THE i. i < length As ∧ a ∈ ε (As ! i) (σs ! i)
in bσs[i := dτ (As ! i) (σs ! i) ae]c

else ♦)›
(is ‹- = (if As = [] then ♦ else

if a ∈ ?I As σs then bmap2 (λσ A. dτ A σ ae) σs Asc else
if a ∈ ?U As σs − E then ?upd As σs else ♦)›)

if ‹length σs = length As›
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‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

proof (subst τ -iterated-combined-Sync-general-form[OF that(1 )], rule if-cong)
show ‹(if a ∈ ?U As σs − E ∪ ?I As σs

then bmap2 (λx y. if a ∈ ε y x then dτ y x ae else x) σs Asc else ♦) =
(if a ∈ ?I As σs then bmap2 (λx y. dτ y x ae) σs Asc else
if a ∈ ?U As σs − E then ?upd As σs else ♦)›

proof (split if-split, intro conjI impI )
assume ∗ : ‹a ∈ ?I As σs›
with that(1 ) have ‹(σ, A) ∈ set (zip σs As) =⇒ a ∈ ε A σ› for σ A

by (induct σs As rule: list-induct2 ) (use lessThan-Suc-eq-insert-0 in auto)
with ∗ show ‹(if a ∈ ?U As σs − E ∪ ?I As σs

then bmap2 (λx y. if a ∈ ε y x then dτ y x ae else x) σs Asc else
♦) =

bmap2 (λx y. dτ y x ae) σs Asc› by auto
next

assume ∗ : ‹a /∈ ?I As σs›
show ‹(if a ∈ ?U As σs − E ∪ ?I As σs

then bmap2 (λx y. if a ∈ ε y x then dτ y x ae else x) σs Asc else ♦) =
(if a ∈ ?U As σs − E then ?upd As σs else ♦)›

proof (rule if-cong)
assume ‹a ∈ ?U As σs − E›
from indep-implies-only-one-enabled[OF that this]
obtain i where $ : ‹i < length As› ‹a ∈ ε (As ! i) (σs ! i)›

‹j < length As =⇒ j 6= i =⇒ a /∈ ε (As ! j) (σs ! j)› for j by blast
have $$ : ‹(THE i. i < length As ∧ a ∈ ε (As ! i) (σs ! i)) = i›

using $ by blast
have ‹bmap2 (λx y. if a ∈ ε y x then dτ y x ae else x) σs Asc =

bσs[i := dτ (As ! i) (σs ! i) ae]c›
by (auto intro!: nth-equalityI simp add: that(1 ))
(use that(1 ) $(3 ) in fastforce, metis $(2 ) nth-list-update-neq)

also have ‹. . . = ?upd As σs›
using $$ by auto

finally show ‹bmap2 (λx y. if a ∈ ε y x then dτ y x ae else x) σs Asc = ?upd
As σs› .

qed (use ∗ in auto)
qed

qed simp-all

6.5 More on Events
lemma events-of-MultiSync-PSKIP S-nd :

‹α([[E]] (σ, A) ∈# mset (zip σs As). PSKIP S〈〈A〉〉nd σ) =
(if As = [] then {} else⋃

σs ′ ∈ Rnd 〈〈nd

⊗
[[E ]] As〉〉 σs. (

⋃
i<length As. ε (As ! i) (σs ′ ! i)) − E ∪

(
⋂

i<length As. ε (As ! i) (σs ′ ! i)))›
(is ‹- = ?rhs›) if ‹length σs = length As›
‹
∧

A. A ∈ set As =⇒ %-disjoint-ε A› ‹
∧

A. A ∈ set As =⇒ at-most-1-elem-term
A›
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proof −
have ‹[[E]] (σ, A) ∈# mset (zip σs As). PSKIP S〈〈A〉〉nd σ = PSKIP S〈〈〈〈nd

⊗
[[E ]]

As〉〉〉〉nd σs›
by (simp only: PSKIP S-nd-compactification-Sync[OF that])

also have ‹α(. . .) =
⋃

(ε 〈〈nd

⊗
[[E ]] As〉〉 ‘ Rnd 〈〈nd

⊗
[[E ]] As〉〉 σs)›

proof (rule events-of-PSKIP S-nd)
show ‹%-disjoint-ε 〈〈nd

⊗
[[E ]] As〉〉›

by (simp only: %-disjoint-ε-transmission-to-iterated-combinend-Sync that(2 ))
qed
also from same-length-Rnd-iterated-combinend-Sync-description[OF that(1 )]
have ‹. . . = ?rhs› by (auto simp add: ε-iterated-combinend-Sync-general-form)
finally show ?thesis .

qed

lemma events-of-MultiSync-P-nd :
‹α([[E]] (σ, A) ∈# mset (zip σs As). P〈〈A〉〉nd σ) =
(if As = [] then {} else⋃

σs ′ ∈ Rnd 〈〈nd

⊗
[[E ]] As〉〉 σs. (

⋃
i<length As. ε (As ! i) (σs ′ ! i)) − E ∪

(
⋂

i<length As. ε (As ! i) (σs ′ ! i)))›
(is ‹- = ?rhs›) if ‹length σs = length As›

proof −
have ‹[[E]] (σ, A) ∈# mset (zip σs As). P〈〈A〉〉nd σ = P〈〈〈〈nd

⊗
[[E ]] As〉〉〉〉nd σs›

by (fact P-nd-compactification-Sync[OF that])
also have ‹α(. . .) =

⋃
(ε 〈〈nd

⊗
[[E ]] As〉〉 ‘ Rnd 〈〈nd

⊗
[[E ]] As〉〉 σs)› by (fact

events-of-P-nd)
also from same-length-Rnd-iterated-combinend-Sync-description[OF that(1 )]
have ‹. . . = ?rhs› by (auto simp add: ε-iterated-combinend-Sync-general-form)
finally show ?thesis .

qed

lemma events-of-MultiSync-PSKIP S-d :
‹α([[E]] (σ, A) ∈# mset (zip σs As). PSKIP S〈〈A〉〉d σ) =
(if As = [] then {} else⋃

σs ′ ∈ Rd 〈〈d
⊗

[[E ]] As〉〉 σs. (
⋃

i<length As. ε (As ! i) (σs ′ ! i) − E ∪
(
⋂

i<length As. ε (As ! i) (σs ′ ! i))))›
(is ‹- = ?rhs›) if ‹length σs = length As› ‹

∧
A. A ∈ set As =⇒ %-disjoint-ε A›

‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

proof −
have ‹[[E]] (σ, A) ∈# mset (zip σs As). PSKIP S〈〈A〉〉d σ = PSKIP S〈〈〈〈d

⊗
[[E ]]

As〉〉〉〉d σs›
by (simp add: PSKIP S-d-compactification-Sync[OF that])

also have ‹α(. . .) =
⋃

(ε 〈〈d
⊗

[[E ]] As〉〉 ‘ Rd 〈〈d
⊗

[[E ]] As〉〉 σs)›
proof (rule events-of-PSKIP S-d)

show ‹%-disjoint-ε 〈〈d
⊗

[[E ]] As〉〉›
by (simp only: %-disjoint-ε-transmission-to-iterated-combined-Sync that(2 ))
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qed
also from same-length-Rd-iterated-combined-Sync-description[OF that(1 )]
have ‹. . . = ?rhs› by (auto simp add: ε-iterated-combined-Sync-general-form)
finally show ?thesis .

qed

lemma events-of-MultiSync-P-d :
‹α([[E]] (σ, A) ∈# mset (zip σs As). P〈〈A〉〉d σ) =
(if As = [] then {} else⋃

σs ′ ∈ Rd 〈〈d
⊗

[[E ]] As〉〉 σs. (
⋃

i<length As. ε (As ! i) (σs ′ ! i) − E ∪
(
⋂

i<length As. ε (As ! i) (σs ′ ! i))))›
(is ‹- = ?rhs›) if ‹length σs = length As›
and ‹

∧
i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

proof −
have ‹[[E]] (σ, A) ∈# mset (zip σs As). P〈〈A〉〉d σ = P〈〈〈〈d

⊗
[[E ]] As〉〉〉〉d σs›

by (simp add: P-d-compactification-Sync[OF that])
also have ‹α(. . .) =

⋃
(ε 〈〈d

⊗
[[E ]] As〉〉 ‘ Rd 〈〈d

⊗
[[E ]] As〉〉 σs)› by (fact

events-of-P-d)
also from same-length-Rd-iterated-combined-Sync-description[OF that(1 )]
have ‹. . . = ?rhs› by (auto simp add: ε-iterated-combined-Sync-general-form)
finally show ?thesis .

qed

109



110



Chapter 7

Combining Automata for
Generalized Synchronization
Product

7.1 Definitions

7.1.1 Specializations

definition combinedP airlist-Syncptick ::
‹[( ′σ, ′e, ′r , ′α) Ad-scheme, ′e set, ( ′σ, ′e, ′r , ′β) Ad-scheme] ⇒ ( ′σ list, ′e, ′r

list) Ad›
where ‹combinedP airlist-Syncptick A0 E A1 ≡

combined-Sync A0 E A1 hd (λσs. hd (tl σs)) (λs t. [s, t]) (λs t. b[s, t]c)›
definition combinendP airlist-Syncptick ::

‹[( ′σ, ′e, ′r , ′α) And-scheme, ′e set, ( ′σ, ′e, ′r , ′β) And-scheme] ⇒ ( ′σ list, ′e, ′r
list) And›

where ‹combinendP airlist-Syncptick A0 E A1 ≡ combinend-Sync A0 E A1 hd
(λσs. hd (tl σs)) (λs t. [s, t]) (λs t. b[s, t]c)›

definition combinedP air-Syncptick ::
‹[( ′σ0,

′e, ′r0,
′α) Ad-scheme, ′e set, ( ′σ1,

′e, ′r1,
′β) Ad-scheme] ⇒ ( ′σ0 × ′σ1,

′e, ′r0 × ′r1) Ad›
where ‹combinedP air-Syncptick A0 E A1 ≡ combined-Sync A0 E A1 fst snd Pair

(λs r . b(s, r)c)›
definition combinendP air-Syncptick ::

‹[( ′σ0,
′e, ′r0,

′α) And-scheme, ′e set, ( ′σ1,
′e, ′r1,

′β) And-scheme] ⇒ ( ′σ0 ×
′σ1,

′e, ′r0 × ′r1) And›
where ‹combinendP air-Syncptick A0 E A1 ≡ combinend-Sync A0 E A1 fst snd

Pair (λs r . b(s, r)c)›

definition combinedListslenL-Syncptick ::
‹[( ′σ list, ′e, ′r list, ′α) Ad-scheme, nat, ′e set, ( ′σ list, ′e, ′r list, ′β) Ad-scheme]
⇒ ( ′σ list, ′e, ′r list) Ad›
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where ‹combinedListslenL-Syncptick A0 len0 E A1 ≡ combined-Sync A0 E A1

(take len0) (drop len0) (@) (λs r . bs @ rc)›
definition combinendListslenL-Syncptick ::
‹[( ′σ list, ′e, ′r list, ′α) And-scheme, nat, ′e set, ( ′σ list, ′e, ′r list, ′β) And-scheme]
⇒ ( ′σ list, ′e, ′r list) And›

where ‹combinendListslenL-Syncptick A0 len0 E A1 ≡ combinend-Sync A0 E A1

(take len0) (drop len0) (@) (λs r . bs @ rc)›

definition combinedRlist-Syncptick ::
‹[( ′σ, ′e, ′r , ′α) Ad-scheme, ′e set, ( ′σ list, ′e, ′r list, ′β) Ad-scheme] ⇒ ( ′σ list,

′e, ′r list) Ad›
where ‹combinedRlist-Syncptick A0 E A1 ≡ combined-Sync A0 E A1 hd tl (#)

(λs r . bs # rc)›
definition combinendRlist-Syncptick ::

‹[( ′σ, ′e, ′r , ′α) And-scheme, ′e set, ( ′σ list, ′e, ′r list, ′β) And-scheme] ⇒ ( ′σ
list, ′e, ′r list) And›

where ‹combinendRlist-Syncptick A0 E A1 ≡ combinend-Sync A0 E A1 hd tl (#)
(λs r . bs # rc)›

lemmas combineP airlist-Syncptick-defs = combinedP airlist-Syncptick-def combinendP airlist-Syncptick-def
and combineP air-Syncptick-defs = combinedP air-Syncptick-def combinendP air-Syncptick-def
and combineListslenL-Syncptick-defs = combinedListslenL-Syncptick-def com-

binendListslenL-Syncptick-def
and combineRlist-Syncptick-defs = combinedRlist-Syncptick-def combinendRlist-Syncptick-def

lemmas combine-Syncptick-defs =
combineP airlist-Syncptick-defs combineP air-Syncptick-defs combineListslenL-Syncptick-defs

combineRlist-Syncptick-defs

bundle combinend-Syncptick-syntax begin

notation combinedP airlist-Syncptick (‹〈〈- d⊗[[-]]3P airlist -〉〉› [0 , 0 , 0 ])
notation combinendP airlist-Syncptick (‹〈〈- nd⊗[[-]]3P airlist -〉〉› [0 , 0 , 0 ])
notation combinedP air-Syncptick (‹〈〈- d⊗[[-]]3P air -〉〉› [0 , 0 , 0 ])
notation combinendP air-Syncptick (‹〈〈- nd⊗[[-]]3P air -〉〉› [0 , 0 , 0 ])
notation combinedListslenL-Syncptick (‹〈〈- d⊗[[-, -]]3ListslenL -〉〉› [0 , 0 , 0 , 0 ])
notation combinendListslenL-Syncptick (‹〈〈- nd⊗[[-, -]]3ListslenL -〉〉› [0 , 0 , 0 , 0 ])
notation combinedRlist-Syncptick (‹〈〈- d⊗[[-]]3Rlist -〉〉› [0 , 0 , 0 ])
notation combinendRlist-Syncptick (‹〈〈- nd⊗[[-]]3Rlist -〉〉› [0 , 0 , 0 ])

end

unbundle combinend-Syncptick-syntax

7.2 First Properties
lemma finite-trans-combinend-Syncptick-simps [simp] :

‹finite-trans A0 =⇒ finite-trans A1 =⇒ finite-trans 〈〈A0 nd⊗[[E ]]3P airlist A1〉〉›

112



‹finite-trans B0 =⇒ finite-trans B1 =⇒ finite-trans 〈〈B0 nd⊗[[E ]]3P air B1〉〉›
‹finite-trans C 0 =⇒ finite-trans C 1 =⇒ finite-trans 〈〈C 0 nd⊗[[len0, E ]]3ListslenL

C 1〉〉›
‹finite-trans D0 =⇒ finite-trans D1 =⇒ finite-trans 〈〈D0 nd⊗[[E ]]3Rlist D1〉〉›
unfolding combinendP airlist-Syncptick-def combinendP air-Syncptick-def com-

binendListslenL-Syncptick-def combinendRlist-Syncptick-def
by (simp-all add: finite-trans-def finite-image-set2 )

lemma ε-combineP airlist-Syncptick:
‹ε 〈〈A0 d⊗[[E ]]3P airlist A1〉〉 σs = combine-Sync-ε A0 E A1 hd (hd ◦ tl) σs›
‹ε 〈〈B0 nd⊗[[E ]]3P airlist B1〉〉 σs = combine-Sync-ε B0 E B1 hd (hd ◦ tl) σs›
by (auto simp add: combine-Sync-ε-def-bis combineP airlist-Syncptick-defs ε-simps)

lemma ε-combineP air-Syncptick:
‹ε 〈〈A0 d⊗[[E ]]3P air A1〉〉 σs = combine-Sync-ε A0 E A1 fst snd σs›
‹ε 〈〈B0 nd⊗[[E ]]3P air B1〉〉 σs = combine-Sync-ε B0 E B1 fst snd σs›
by (auto simp add: combine-Sync-ε-def-bis combineP air-Syncptick-defs ε-simps)

lemma ε-combineListslenL-Syncptick:
‹ε 〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉 σs = combine-Sync-ε A0 E A1 (take len0)

(drop len0) σs›
‹ε 〈〈B0 nd⊗[[len0, E ]]3ListslenL B1〉〉 σs = combine-Sync-ε B0 E B1 (take len0)

(drop len0) σs›
by (auto simp add: combine-Sync-ε-def-bis combineListslenL-Syncptick-defs ε-simps)

lemma ε-combineRlist-Syncptick:
‹ε 〈〈A0 d⊗[[E ]]3Rlist A1〉〉 σs = combine-Sync-ε A0 E A1 hd tl σs›
‹ε 〈〈B0 nd⊗[[E ]]3Rlist B1〉〉 σs = combine-Sync-ε B0 E B1 hd tl σs›
by (auto simp add: combine-Sync-ε-def-bis combineRlist-Syncptick-defs ε-simps)

lemma %-combineP airlist-Syncptick:
‹% 〈〈A0 d⊗[[E ]]3P airlist A1〉〉 = {σs. hd σs ∈ % A0 ∧ hd (tl σs) ∈ % A1}›
‹% 〈〈B0 nd⊗[[E ]]3P airlist B1〉〉 = {σs. hd σs ∈ % B0 ∧ hd (tl σs) ∈ % B1}›
by (auto simp add: combineP airlist-Syncptick-defs %-simps split: option.split)

lemma %-combineP air-Syncptick:
‹% 〈〈A0 d⊗[[E ]]3P air A1〉〉 = {(σ0, σ1). σ0 ∈ % A0 ∧ σ1 ∈ % A1}›
‹% 〈〈B0 nd⊗[[E ]]3P air B1〉〉 = {(σ0, σ1). σ0 ∈ % B0 ∧ σ1 ∈ % B1}›
by (auto simp add: combineP air-Syncptick-defs %-simps split: option.split)

lemma %-combineListslenL-Syncptick:
‹% 〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉 = {σs. take len0 σs ∈ % A0 ∧ drop len0 σs ∈

% A1}›
‹% 〈〈B0 nd⊗[[len0, E ]]3ListslenL B1〉〉 = {σs. take len0 σs ∈ % B0 ∧ drop len0 σs
∈ % B1}›

by (auto simp add: combineListslenL-Syncptick-defs %-simps split: option.split)

lemma %-combineRlist-Syncptick:
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‹% 〈〈A0 d⊗[[E ]]3Rlist A1〉〉 = {σs. hd σs ∈ % A0 ∧ tl σs ∈ % A1}›
‹% 〈〈B0 nd⊗[[E ]]3Rlist B1〉〉 = {σs. hd σs ∈ % B0 ∧ tl σs ∈ % B1}›
by (auto simp add: combineRlist-Syncptick-defs %-simps split: option.split)

7.3 Transitions are unchanged in the Generaliza-
tion

In the generalization, only the ω function is modified.

lemma τ -combineP airlist-Syncptick :
‹τ 〈〈A0 d⊗[[E ]]3P airlist A1〉〉 = τ 〈〈A0 d⊗[[E ]]P airlist A1〉〉›
‹τ 〈〈B0 nd⊗[[E ]]3P airlist B1〉〉 = τ 〈〈B0 nd⊗[[E ]]P airlist B1〉〉›
by (simp-all add: combine-Sync-defs combine-Syncptick-defs)

lemma τ -combineP air-Syncptick :
‹τ 〈〈A0 d⊗[[E ]]3P air A1〉〉 = τ 〈〈A0 d⊗[[E ]]P air A1〉〉›
‹τ 〈〈B0 nd⊗[[E ]]3P air B1〉〉 = τ 〈〈B0 nd⊗[[E ]]P air B1〉〉›
by (simp-all add: combine-Sync-defs combine-Syncptick-defs)

lemma τ -combineListslenL-Syncptick :
‹τ 〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉 = τ 〈〈A0 d⊗[[len0, E ]]ListslenL A1〉〉›
‹τ 〈〈B0 nd⊗[[len0, E ]]3ListslenL B1〉〉 = τ 〈〈B0 nd⊗[[len0, E ]]ListslenL B1〉〉›
by (simp-all add: combine-Sync-defs combine-Syncptick-defs)

τ 〈〈A0 d⊗[[E ]]3Rlist A1〉〉 and τ 〈〈B0 nd⊗[[E ]]3Rlist B1〉〉 cannot be obtained
that easily because of the types of terminations.

7.4 Reachability
lemma Rd-combinedListslenL-Syncptick-subset:

‹Rd 〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉 (s0 @ s1) ⊆ {t0 @ t1| t0 t1. t0 ∈ Rd A0 s0
∧ t1 ∈ Rd A1 s1}› (is ‹?SA ⊆ -›)

if ‹
∧

t0. t0 ∈ Rd A0 s0 =⇒ length t0 = len0›
by (subst same-τ -implies-same-Rd[of - - ‹〈〈A0 d⊗[[len0, E ]]ListslenL A1〉〉›])
(simp-all add: τ -combineListslenL-Syncptick Rd-combinedListslenL-Sync-subset

that)

lemma Rnd-combinendListslenL-Syncptick-subset:
‹Rnd 〈〈B0 nd⊗[[len0, E ]]3ListslenL B1〉〉 (s0 @ s1) ⊆ {t0 @ t1| t0 t1. t0 ∈ Rnd B0

s0 ∧ t1 ∈ Rnd B1 s1}› (is ‹?SB ⊆ -›)
if ‹

∧
t0. t0 ∈ Rnd B0 s0 =⇒ length t0 = len0›

by (subst same-τ -implies-same-Rnd[of - - ‹〈〈B0 nd⊗[[len0, E ]]ListslenL B1〉〉›])
(simp-all add: τ -combineListslenL-Syncptick Rnd-combinendListslenL-Sync-subset

that)

lemma Rd-combinedP airlist-Syncptick-subset:
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‹Rd 〈〈A0 d⊗[[E ]]3P airlist A1〉〉 [s0, s1] ⊆ {[t0, t1]| t0 t1. t0 ∈ Rd A0 s0 ∧ t1 ∈ Rd

A1 s1}› (is ‹?SA ⊆ -›)
and Rnd-combinendP airlist-Syncptick-subset:
‹Rnd 〈〈B0 nd⊗[[E ]]3P airlist B1〉〉 [s0, s1] ⊆ {[t0, t1]| t0 t1. t0 ∈ Rnd B0 s0 ∧ t1
∈ Rnd B1 s1}› (is ‹?SB ⊆ -›)
proof safe

show ‹t ∈ ?SA =⇒ ∃ t0 t1. t = [t0, t1] ∧ t0 ∈ Rd A0 s0 ∧ t1 ∈ Rd A1 s1› for t
by (Rd-subset-method defs: combineP airlist-Syncptick-defs)

show ‹t ∈ ?SB =⇒ ∃ t0 t1. t = [t0, t1] ∧ t0 ∈ Rnd B0 s0 ∧ t1 ∈ Rnd B1 s1›
for t

by (Rnd-subset-method defs: combineP airlist-Syncptick-defs)
qed

lemma Rd-combinedP air-Syncptick-subset:
‹Rd 〈〈A0 d⊗[[E ]]3P air A1〉〉 (s0, s1) ⊆ Rd A0 s0 × Rd A1 s1› (is ‹?SA ⊆ -›)
and Rnd-combinendP air-Syncptick-subset:
‹Rnd 〈〈B0 nd⊗[[E ]]3P air B1〉〉 (s0, s1) ⊆ Rnd B0 s0 × Rnd B1 s1› (is ‹?SB ⊆ -›)

proof −
have ‹t ∈ ?SA =⇒ fst t ∈ Rd A0 s0 ∧ snd t ∈ Rd A1 s1› for t

by (Rd-subset-method defs: combineP air-Syncptick-defs)
thus ‹?SA ⊆ Rd A0 s0 × Rd A1 s1› by force

next
have ‹t ∈ ?SB =⇒ fst t ∈ Rnd B0 s0 ∧ snd t ∈ Rnd B1 s1› for t

by (Rnd-subset-method defs: combineP air-Syncptick-defs)
thus ‹?SB ⊆ Rnd B0 s0 × Rnd B1 s1› by force

qed

lemma Rd-combinedRlist-Syncptick-subset:
‹Rd 〈〈A0 d⊗[[E ]]3Rlist A1〉〉 (s0 # σs) ⊆ {t0 # σt| t0 σt. t0 ∈ Rd A0 s0 ∧ σt ∈
Rd A1 σs}› (is ‹?SA ⊆ -›)

and Rnd-combinendRlist-Syncptick-subset:
‹Rnd 〈〈B0 nd⊗[[E ]]3Rlist B1〉〉 (s0 # σs) ⊆ {t0 # σt| t0 σt. t0 ∈ Rnd B0 s0 ∧ σt
∈ Rnd B1 σs}› (is ‹?SB ⊆ -›)
proof safe

show ‹t ∈ ?SA =⇒ ∃ t0 σt. t = t0 # σt ∧ t0 ∈ Rd A0 s0 ∧ σt ∈ Rd A1 σs› for
t

by (Rd-subset-method defs: combineRlist-Syncptick-defs)
next

show ‹t ∈ ?SB =⇒ ∃ t0 σt. t = t0 # σt ∧ t0 ∈ Rnd B0 s0 ∧ σt ∈ Rnd B1 σs›
for t

by (Rnd-subset-method defs: combineRlist-Syncptick-defs)
qed

7.5 Normalization
lemma ω-combineP airlist-Syncptick-behaviour :

‹ω 〈〈〈〈A0 d⊗[[E ]]3P airlist A1〉〉〉〉d↪→nd [s0, s1] = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3P airlist

〈〈A1〉〉d↪→nd〉〉 [s0, s1]›
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by (simp add: combineP airlist-Syncptick-defs det-ndet-conv-defs option.case-eq-if )

lemma ω-combineP air-Syncptick-behaviour :
‹ω 〈〈〈〈A0 d⊗[[E ]]3P air A1〉〉〉〉d↪→nd (s0, s1) = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3P air 〈〈A1〉〉d↪→nd〉〉

(s0, s1)›
by (simp add: combineP air-Syncptick-defs det-ndet-conv-defs option.case-eq-if )

lemma ω-combineListslenL-Syncptick-behaviour :
‹ω 〈〈〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉〉〉d↪→nd (σs0 @ σs1) = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[len0,

E ]]3ListslenL 〈〈A1〉〉d↪→nd〉〉 (σs0 @ σs1)›
by (simp add: combineListslenL-Syncptick-defs det-ndet-conv-defs option.case-eq-if )

lemma ω-combineRlist-Syncptick-behaviour :
‹ω 〈〈〈〈A0 d⊗[[E ]]3Rlist A1〉〉〉〉d↪→nd (s0 # σs1) = ω 〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3Rlist

〈〈A1〉〉d↪→nd〉〉 (s0 # σs1)›
by (simp add: combineRlist-Syncptick-defs det-ndet-conv-defs option.case-eq-if )

lemma τ -combineP airlist-Syncptick-behaviour-when-indep:
‹ε A0 s0 ∩ ε A1 s1 ⊆ E =⇒
τ 〈〈〈〈A0 d⊗[[E ]]3P airlist A1〉〉〉〉d↪→nd [s0, s1] e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3P airlist

〈〈A1〉〉d↪→nd〉〉 [s0, s1] e›
by (auto simp add: combineP airlist-Syncptick-defs det-ndet-conv-defs option.case-eq-if

ε-simps)

lemma τ -combineP air-Syncptick-behaviour-when-indep:
‹ε A0 s0 ∩ ε A1 s1 ⊆ E =⇒
τ 〈〈〈〈A0 d⊗[[E ]]3P air A1〉〉〉〉d↪→nd (s0, s1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3P air 〈〈A1〉〉d↪→nd〉〉

(s0, s1) e›
by (auto simp add: combineP air-Syncptick-defs det-ndet-conv-defs option.case-eq-if

ε-simps)

lemma τ -combineListslenL-Syncptick-behaviour-when-indep:
‹ε A0 σs0 ∩ ε A1 σs1 ⊆ E =⇒ length σs0 = len0 =⇒
τ 〈〈〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉〉〉d↪→nd (σs0 @ σs1) e = τ 〈〈〈〈A0〉〉d↪→nd

nd⊗[[len0, E ]]3ListslenL 〈〈A1〉〉d↪→nd〉〉 (σs0 @ σs1) e›
by (auto simp add: combineListslenL-Syncptick-defs det-ndet-conv-defs option.case-eq-if

ε-simps)

lemma τ -combineRlist-Syncptick-behaviour-when-indep:
‹ε A0 s0 ∩ ε A1 σs1 ⊆ E =⇒
τ 〈〈〈〈A0 d⊗[[E ]]3Rlist A1〉〉〉〉d↪→nd (s0 # σs1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3Rlist

〈〈A1〉〉d↪→nd〉〉 (s0 # σs1) e›
by (auto simp add: combineRlist-Syncptick-defs det-ndet-conv-defs option.case-eq-if

ε-simps)

lemma PSKIP S-combineP airlist-Syncptick-behaviour-when-indep:
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‹PSKIP S〈〈〈〈A0 d⊗[[E ]]3P airlist A1〉〉〉〉d [s0, s1] = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3P airlist

〈〈A1〉〉d↪→nd〉〉〉〉nd [s0, s1]›
if ‹indep-enabl A0 s0 E A1 s1›
by (PSKIP S-when-indep-method R-d-subset: Rd-combinedP airlist-Syncptick-subset,

simp-all)
(metis τ -combineP airlist-Syncptick-behaviour-when-indep indep-enablD that,

metis ω-combineP airlist-Syncptick-behaviour)

lemma P-combineP airlist-Syncptick-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[E ]]3P airlist A1〉〉〉〉d [s0, s1] = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3P airlist 〈〈A1〉〉d↪→nd〉〉〉〉nd

[s0, s1]›
if ‹indep-enabl A0 s0 E A1 s1›
by (P-when-indep-method R-d-subset: Rd-combinedP airlist-Syncptick-subset, simp-all)
(metis τ -combineP airlist-Syncptick-behaviour-when-indep indep-enablD that)

lemma PSKIP S-combineP air-Syncptick-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[E ]]3P air A1〉〉〉〉d (s0, s1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3P air

〈〈A1〉〉d↪→nd〉〉〉〉nd (s0, s1)›
if ‹indep-enabl A0 s0 E A1 s1›
by (PSKIP S-when-indep-method R-d-subset: Rd-combinedP air-Syncptick-subset,

all ‹elim SigmaE›)
(metis τ -combineP air-Syncptick-behaviour-when-indep indep-enablD that,

auto simp add: ω-combineP air-Syncptick-behaviour option.case-eq-if )

lemma P-combineP air-Syncptick-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[E ]]3P air A1〉〉〉〉d (s0, s1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3P air 〈〈A1〉〉d↪→nd〉〉〉〉nd

(s0, s1)›
if ‹indep-enabl A0 s0 E A1 s1›
by (P-when-indep-method R-d-subset: Rd-combinedP air-Syncptick-subset, elim

SigmaE)
(metis τ -combineP air-Syncptick-behaviour-when-indep indep-enablD that)

lemma PSKIP S-combineListslenL-Syncptick-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉〉〉d (σs0 @ σs1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd

nd⊗[[len0, E ]]3ListslenL 〈〈A1〉〉d↪→nd〉〉〉〉nd (σs0 @ σs1)›
if ‹indep-enabl A0 σs0 E A1 σs1› and ‹

∧
σt0. σt0 ∈ Rd A0 σs0 =⇒ length σt0

= len0›
by (PSKIP S-when-indep-method R-d-subset: Rd-combinedListslenL-Syncptick-subset,

simp-all add: that(2 ))
(metis τ -combineListslenL-Syncptick-behaviour-when-indep indep-enablD that,

metis ω-combineListslenL-Syncptick-behaviour)

lemma P-combineListslenL-Syncptick-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉〉〉d (σs0 @ σs1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[len0,

E ]]3ListslenL 〈〈A1〉〉d↪→nd〉〉〉〉nd (σs0 @ σs1)›
if ‹indep-enabl A0 σs0 E A1 σs1› and ‹

∧
σt0. σt0 ∈ Rd A0 σs0 =⇒ length σt0

= len0›
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by (P-when-indep-method R-d-subset: Rd-combinedListslenL-Syncptick-subset,
simp-all add: that(2 ))

(metis τ -combineListslenL-Syncptick-behaviour-when-indep indep-enablD that)

lemma PSKIP S-combineRlist-Syncptick-behaviour-when-indep:
‹PSKIP S〈〈〈〈A0 d⊗[[E ]]3Rlist A1〉〉〉〉d (s0 # σs1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3Rlist

〈〈A1〉〉d↪→nd〉〉〉〉nd (s0 # σs1)›
if ‹indep-enabl A0 s0 E A1 σs1›
by (PSKIP S-when-indep-method R-d-subset: Rd-combinedRlist-Syncptick-subset,

simp-all)
(metis τ -combineRlist-Syncptick-behaviour-when-indep indep-enablD that,

metis ω-combineRlist-Syncptick-behaviour)

lemma P-combineRlist-Syncptick-behaviour-when-indep:
‹P〈〈〈〈A0 d⊗[[E ]]3Rlist A1〉〉〉〉d (s0 # σs1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3Rlist 〈〈A1〉〉d↪→nd〉〉〉〉nd

(s0 # σs1)›
if ‹indep-enabl A0 s0 E A1 σs1›
by (P-when-indep-method R-d-subset: Rd-combinedRlist-Syncptick-subset, simp)
(metis τ -combineRlist-Syncptick-behaviour-when-indep indep-enablD that)
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Chapter 8

Compactification of
Synchronization Product
Generalized

8.1 Iterated Combine
8.1.1 Definitions
fun iterated-combined-Syncptick :: ‹ ′e set ⇒ ( ′σ, ′e, ′r) Ad list ⇒ ( ′σ list, ′e, ′r
list) Ad› (‹〈〈d

⊗
[[-]]3 -〉〉› [0 , 0 ])

where ‹〈〈d
⊗

[[E ]]3 []〉〉 = (|τ = λσs a. ♦, ω = λσs. ♦|)›
| ‹〈〈d

⊗
[[E ]]3 [A0]〉〉 = d〈〈A0〉〉singl↪→list›

| ‹〈〈d
⊗

[[E ]]3 A0 # A1 # As〉〉 = 〈〈A0 d⊗[[E ]]3Rlist 〈〈d
⊗

[[E ]]3 A1 # As〉〉〉〉›

fun iterated-combinend-Syncptick :: ‹ ′e set ⇒ ( ′σ, ′e, ′r) And list ⇒ ( ′σ list, ′e, ′r
list) And› (‹〈〈nd

⊗
[[-]]3 -〉〉› [0 , 0 ])

where ‹〈〈nd

⊗
[[E ]]3 []〉〉 = (|τ = λσs a. {}, ω = λσs. {}|)›

| ‹〈〈nd

⊗
[[E ]]3 [A0]〉〉 = nd〈〈A0〉〉singl↪→list›

| ‹〈〈nd

⊗
[[E ]]3 A0 # A1 # As〉〉 = 〈〈A0 nd⊗[[E ]]3Rlist 〈〈nd

⊗
[[E ]]3 A1 # As〉〉〉〉›

lemma iterated-combined-Syncptick-simps-bis: ‹As 6= [] =⇒ 〈〈d
⊗

[[E ]]3 A0 # As〉〉
= 〈〈A0 d⊗[[E ]]3Rlist 〈〈d

⊗
[[E ]]3 As〉〉〉〉›

and iterated-combinend-Syncptick-simps-bis: ‹Bs 6= [] =⇒ 〈〈nd

⊗
[[E ]]3 B0 # Bs〉〉

= 〈〈B0 nd⊗[[E ]]3Rlist 〈〈nd

⊗
[[E ]]3 Bs〉〉〉〉›

by (induct As, simp-all) (induct Bs, simp-all)

8.1.2 First Results
lemma τ -iterated-combine-Syncptick:

‹τ 〈〈d
⊗

[[E ]]3 As〉〉 = τ 〈〈d
⊗

[[E ]] As〉〉› ‹τ 〈〈nd

⊗
[[E ]]3 Bs〉〉 = τ 〈〈nd

⊗
[[E ]] Bs〉〉›

by (intro ext, induct rule: induct-list012 ;
simp add: σ-σs-conv-defs singl-list-conv-defs
combineRlist-Sync-defs combineRlist-Syncptick-defs ε-simps)+
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corollary ε-iterated-combine-Syncptick:
‹ε 〈〈d

⊗
[[E ]]3 As〉〉 σs = ε 〈〈d

⊗
[[E ]] As〉〉 σs›

‹ε 〈〈nd

⊗
[[E ]]3 Bs〉〉 σs = ε 〈〈nd

⊗
[[E ]] Bs〉〉 σs›

by (simp-all add: ε-simps τ -iterated-combine-Syncptick)

corollary R-iterated-combine-Syncptick:
‹Rd 〈〈d

⊗
[[E ]]3 As〉〉 = Rd 〈〈d

⊗
[[E ]] As〉〉› ‹Rnd 〈〈nd

⊗
[[E ]]3 Bs〉〉 = Rnd 〈〈nd

⊗
[[E ]]

Bs〉〉›
by (intro ext same-τ -implies-same-Rd same-τ -implies-same-Rnd,

simp add: τ -iterated-combine-Syncptick)+

lemma combineListslenL-Syncptick-combineRlist-Syncptick-eq:
‹ε 〈〈d〈〈A0〉〉singl↪→list d⊗[[1 , E ]]3ListslenL A1〉〉 σs = ε 〈〈A0 d⊗[[E ]]3Rlist A1〉〉 σs›
‹τ 〈〈d〈〈A0〉〉singl↪→list d⊗[[1 , E ]]3ListslenL A1〉〉 (s0 # σs) e = τ 〈〈A0 d⊗[[E ]]3Rlist

A1〉〉 (s0 # σs) e›
‹ε 〈〈nd〈〈B0〉〉singl↪→list nd⊗[[1 , E ]]3ListslenL B1〉〉 σs = ε 〈〈B0 nd⊗[[E ]]3Rlist B1〉〉

σs›
‹τ 〈〈nd〈〈B0〉〉singl↪→list nd⊗[[1 , E ]]3ListslenL B1〉〉 (s0 # σs) e = τ 〈〈B0 nd⊗[[E ]]3Rlist

B1〉〉 (s0 # σs) e›
by (simp-all add: ε-combineListslenL-Syncptick ε-combineRlist-Syncptick drop-Suc

combine-Sync-ε-def ,
auto simp add: combineListslenL-Syncptick-defs combineRlist-Syncptick-defs

singl-list-conv-defs ε-simps)
(metis append-Cons append-Nil)

lemma combineP airlist-Syncptick-and-iterated-combinend-Syncptick-eq:
‹ε 〈〈A0 d⊗[[E ]]3P airlist A1〉〉 [s0, s1] = ε 〈〈d

⊗
[[E ]]3 [A0, A1]〉〉 [s0, s1]›

‹τ 〈〈A0 d⊗[[E ]]3P airlist A1〉〉 [s0, s1] e = τ 〈〈d
⊗

[[E ]]3 [A0, A1]〉〉 [s0, s1] e›
‹ε 〈〈B0 nd⊗[[E ]]3P airlist B1〉〉 [s0, s1] = ε 〈〈nd

⊗
[[E ]]3 [B0, B1]〉〉 [s0, s1]›

‹τ 〈〈B0 nd⊗[[E ]]3P airlist B1〉〉 [s0, s1] e = τ 〈〈nd

⊗
[[E ]]3 [B0, B1]〉〉 [s0, s1] e›

by (simp-all add: ε-combineP airlist-Syncptick ε-combineRlist-Syncptick)
(auto simp add: combineP airlist-Syncptick-defs combineRlist-Syncptick-defs

singl-list-conv-defs
option.case-eq-if ε-simps combine-Sync-ε-def )

lemmas combineP airlist-Syncptick-and-combineRlist-Syncptick-eq =
combineP airlist-Syncptick-and-iterated-combinend-Syncptick-eq[simplified]

8.1.3 Transmission of Properties
lemma finite-trans-transmission-to-iterated-combinend-Syncptick:

‹(
∧

A. A ∈ set As =⇒ finite-trans A) =⇒ finite-trans 〈〈nd

⊗
[[E ]]3 As〉〉›

by (induct As rule: induct-list012 )
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(auto simp add: singl-list-conv-defs combineRlist-Syncptick-defs finite-trans-def
finite-image-set2 )

lemma %-disjoint-ε-transmission-to-iterated-combined-Syncptick:
‹(
∧

A. A ∈ set As =⇒ %-disjoint-ε A) =⇒ %-disjoint-ε 〈〈d
⊗

[[E ]]3 As〉〉›
by (induct As rule: induct-list012 )
(simp-all add: %-combineRlist-Syncptick ε-combineRlist-Syncptick %-disjoint-ε-def

combine-Sync-ε-def )

lemma %-disjoint-ε-transmission-to-iterated-combinend-Syncptick:
‹∀B ∈ set Bs. %-disjoint-ε B =⇒ %-disjoint-ε 〈〈nd

⊗
[[E ]]3 Bs〉〉›

by (induct Bs rule: induct-list012 )
(simp-all add: %-combineRlist-Syncptick ε-combineRlist-Syncptick %-disjoint-ε-def

combine-Sync-ε-def )

lemma same-length-indep-transmission-to-iterated-combined-Syncptick:
‹indep-enabl A0 s0 E 〈〈d

⊗
[[E ]]3 As〉〉 σs›

if ‹length σs = length As›
‹
∧

i j. [[i ≤ length As; j ≤ length As; i 6= j]] =⇒
indep-enabl ((A0 # As) ! i) ((s0 # σs) ! i) E ((A0 # As) ! j) ((s0 # σs)

! j)›
using same-length-indep-transmission-to-iterated-combined-Sync[OF that]
by (simp add: indep-enabl-def ε-iterated-combine-Syncptick

τ -iterated-combine-Syncptick R-iterated-combine-Syncptick that(1 ))

lemma ω-iterated-combined-Syncptick :
‹length σs = length As =⇒
ω 〈〈d

⊗
[[E ]]3 As〉〉 σs = (if As = [] then ♦ else those (map2 ω As σs))›

by (induct σs As rule: induct-2-lists012 )
(simp-all add: singl-list-conv-defs combineRlist-Syncptick-defs split: option.split)

lemma ω-iterated-combinend-Syncptick :
‹length σs = length As =⇒
ω 〈〈nd

⊗
[[E ]]3 As〉〉 σs =

(if As = [] then {} else {rs. length rs = length As ∧ (∀ i < length As. rs ! i ∈ ω
(As ! i) (σs ! i))})›
proof (induct σs As rule: induct-2-lists012 )

case Nil show ?case by simp
next

case (single σ1 A1 )
from length-Suc-conv show ?case

by (auto simp add: singl-list-conv-defs)
next

case (Cons σ1 σ2 σs A1 A2 As)
show ?case (is ‹- = ?rhs σ1 σ2 σs A1 A2 As›)
proof (intro subset-antisym subsetI )
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fix rs assume ‹rs ∈ ω 〈〈nd

⊗
[[E ]]3 A1 # A2 # As〉〉 (σ1 # σ2 # σs)›

then obtain r1 rs ′ where ‹rs = r1 # rs ′› ‹r1 ∈ ω A1 σ1 ›
‹rs ′ ∈ ω 〈〈nd

⊗
[[E ]]3 A2 # As〉〉 (σ2 # σs)›

by (auto simp add: combineRlist-Syncptick-defs)
from this(3 ) Cons.hyps(3 ) obtain r2 rs ′′

where ‹rs ′ = r2 # rs ′′› ‹length rs ′′ = length As›
‹∀ i<Suc (length As). (r2 # rs ′′) ! i ∈ ω ((A2 # As) ! i) ((σ2 # σs) ! i)›

by simp (metis (no-types, lifting) length-Suc-conv)
with ‹r1 ∈ ω A1 σ1 › show ‹rs ∈ ?rhs σ1 σ2 σs A1 A2 As›

by (auto simp add: ‹rs = r1 # rs ′› less-Suc-eq-0-disj)
next

from Cons.hyps(3 )
show ‹rs ∈ ?rhs σ1 σ2 σs A1 A2 As =⇒

rs ∈ ω 〈〈nd

⊗
[[E ]]3 A1 # A2 # As〉〉 (σ1 # σ2 # σs)› for rs

by (cases rs; cases ‹tl rs›, simp-all add: combineRlist-Syncptick-defs) auto
qed

qed

8.1.4 Normalization
lemma ω-iterated-combinend-Syncptick-det-ndet-conv:

‹length σs = length As =⇒
ω 〈〈nd

⊗
[[E ]]3 map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs = ω 〈〈〈〈d

⊗
[[E ]]3 As〉〉〉〉d↪→nd σs›

proof (induct σs As rule: induct-2-lists012 )
case Nil
show ?case by (simp add: base-trans-det-ndet-conv(1 ))

next
case (single σ1 A1 )
show ?case by (simp add: from-det-to-ndet-singl-list-conv-commute)

next
case (Cons σ1 σ2 σs A1 A2 As)
thus ?case

by (auto simp add: det-ndet-conv-defs combineRlist-Syncptick-defs split: op-
tion.split)
qed

lemma τ -iterated-combinend-Syncptick-behaviour-when-indep:
‹length σs = length As =⇒
(
∧

i j. [[i < length As; j < length As; i 6= j]]
=⇒ indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)) =⇒
τ 〈〈〈〈d

⊗
[[E ]]3 As〉〉〉〉d↪→nd σs e = τ 〈〈nd

⊗
[[E ]]3 map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs e›

proof (induct σs As rule: induct-2-lists012 )
case Nil
show ?case by simp

next
case (single σ1 A1 )
show ?case by (simp add: from-det-to-ndet-singl-list-conv-commute(1 ))

next
case (Cons σ1 σ2 σs A1 A2 As)
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have ∗ : ‹τ 〈〈〈〈d
⊗

[[E ]]3 A2 # As〉〉〉〉d↪→nd (σ2 # σs) e =
τ 〈〈nd

⊗
[[E ]]3 map (λA. 〈〈A〉〉d↪→nd) (A2 # As)〉〉 (σ2 # σs) e›

proof (rule Cons.hyps(3 ))
show ‹[[i < length (A2 # As); j < length (A2 # As); i 6= j]]

=⇒ indep-enabl ((A2 # As) ! i) ((σ2 # σs) ! i) E
((A2 # As) ! j) ((σ2 # σs) ! j)› for i j

using Cons.prems[of ‹Suc i› ‹Suc j›] by simp
qed
have ‹τ 〈〈〈〈d

⊗
[[E ]]3 A1 # A2 # As〉〉〉〉d↪→nd (σ1 # σ2 # σs) e =

τ 〈〈〈〈A1 〉〉d↪→nd nd⊗[[E ]]3Rlist 〈〈〈〈d
⊗

[[E ]]3 A2 # As〉〉〉〉d↪→nd〉〉 (σ1 # σ2 #
σs) e›
proof (subst iterated-combined-Syncptick.simps(3 ), rule τ -combineRlist-Syncptick-behaviour-when-indep)

show ‹ε A1 σ1 ∩ ε 〈〈d
⊗

[[E ]]3 A2 # As〉〉 (σ2 # σs) ⊆ E›
proof (rule indep-enablD[OF - Rd.init Rd.init])

show ‹indep-enabl A1 σ1 E 〈〈d
⊗

[[E ]]3 A2 # As〉〉 (σ2 # σs)›
by (simp add: Cons.hyps(1 ) Cons.prems order-le-less-trans

same-length-indep-transmission-to-iterated-combined-Syncptick)
qed

qed
also have ‹. . . = τ 〈〈nd

⊗
[[E ]]3 map (λA. 〈〈A〉〉d↪→nd) (A1 # A2 # As)〉〉 (σ1 #

σ2 # σs) e›
by (use ∗ in ‹simp add: combineRlist-Syncptick-defs ε-simps›)
(metis empty-from-det-to-ndet-is-None-trans option.exhaust)

finally show ?case .
qed

lemma PSKIP S-iterated-combinend-Syncptick-behaviour-when-indep:
assumes same-length: ‹length σs = length As›

and indep: ‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

shows ‹PSKIP S〈〈〈〈d
⊗

[[E ]]3 As〉〉〉〉d σs = PSKIP S〈〈〈〈nd

⊗
[[E ]]3 map (λA. 〈〈A〉〉d↪→nd)

As〉〉〉〉nd σs›
proof (fold PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d, rule PSKIP S-nd-eqI-strong-id)

show ‹σs ′ ∈ Rnd 〈〈〈〈d
⊗

[[E ]]3 As〉〉〉〉d↪→nd σs =⇒
τ 〈〈nd

⊗
[[E ]]3 map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs ′ e = τ 〈〈〈〈d

⊗
[[E ]]3 As〉〉〉〉d↪→nd

σs ′ e› for σs ′ e
proof (rule τ -iterated-combinend-Syncptick-behaviour-when-indep[symmetric])

show ‹σs ′ ∈ Rnd 〈〈〈〈d
⊗

[[E ]]3 As〉〉〉〉d↪→nd σs =⇒ length σs ′ = length As›
by (metis Rnd-from-det-to-ndet R-iterated-combine-Syncptick(1 ) same-length

same-length-Rd-iterated-combined-Sync-description)
next

show ‹[[σs ′ ∈ Rnd 〈〈〈〈d
⊗

[[E ]]3 As〉〉〉〉d↪→nd σs; i < length As; j < length As; i
6= j]]

=⇒ indep-enabl (As ! i) (σs ′ ! i) E (As ! j) (σs ′ ! j)› for i j
by (unfold Rnd-from-det-to-ndet R-iterated-combine-Syncptick,

drule same-length-Rd-iterated-combined-Sync-description[OF same-length])
(meson Rd-trans indep-enabl-def indep)
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qed
next

show ‹σs ′ ∈ Rnd 〈〈〈〈d
⊗

[[E ]]3 As〉〉〉〉d↪→nd σs =⇒
ω 〈〈nd

⊗
[[E ]]3 map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs ′ = ω 〈〈〈〈d

⊗
[[E ]]3 As〉〉〉〉d↪→nd σs ′›

for σs ′

by (metis Rnd-from-det-to-ndet R-iterated-combine-Syncptick(1 )
ω-iterated-combinend-Syncptick-det-ndet-conv same-length
same-length-Rd-iterated-combined-Sync-description)

qed

lemma P-d-iterated-combinend-Syncptick-behaviour-when-indep:
assumes same-length: ‹length σs = length As›

and indep: ‹
∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)›

shows ‹P〈〈〈〈d
⊗

[[E ]]3 As〉〉〉〉d σs = P〈〈〈〈nd

⊗
[[E ]]3 map (λA. 〈〈A〉〉d↪→nd) As〉〉〉〉nd

σs›
proof (fold P-nd-from-det-to-ndet-is-P-d, rule P-nd-eqI-strong-id)

show ‹σs ′ ∈ Rnd 〈〈〈〈d
⊗

[[E ]]3 As〉〉〉〉d↪→nd σs =⇒
τ 〈〈nd

⊗
[[E ]]3 map (λA. 〈〈A〉〉d↪→nd) As〉〉 σs ′ e = τ 〈〈〈〈d

⊗
[[E ]]3 As〉〉〉〉d↪→nd

σs ′ e› for σs ′ e
proof (rule τ -iterated-combinend-Syncptick-behaviour-when-indep[symmetric])

show ‹σs ′ ∈ Rnd 〈〈〈〈d
⊗

[[E ]]3 As〉〉〉〉d↪→nd σs =⇒ length σs ′ = length As›
by (metis Rnd-from-det-to-ndet R-iterated-combine-Syncptick(1 ) same-length

same-length-Rd-iterated-combined-Sync-description)
next

show ‹[[σs ′ ∈ Rnd 〈〈〈〈d
⊗

[[E ]]3 As〉〉〉〉d↪→nd σs; i < length As; j < length As; i
6= j]]

=⇒ indep-enabl (As ! i) (σs ′ ! i) E (As ! j) (σs ′ ! j)› for i j
by (unfold Rnd-from-det-to-ndet R-iterated-combine-Syncptick,

drule same-length-Rd-iterated-combined-Sync-description[OF same-length])
(meson Rd-trans indep-enabl-def indep)

qed
qed

8.2 Compactification Theorems

8.2.1 Binary

Pair

theorem PSKIP S-nd-combineP air-Syncptick :
fixes E :: ‹ ′a set›
assumes %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1›
defines A-def : ‹A ≡ 〈〈A0 nd⊗[[E ]]3P air A1〉〉›
defines P-def : ‹P ≡ PSKIP S〈〈A0〉〉nd› and Q-def : ‹Q ≡ PSKIP S〈〈A1〉〉nd› and

S-def : ‹S ≡ PSKIP S〈〈A〉〉nd›
shows ‹P σ0 [[E ]]3P air Q σ1 = S (σ0, σ1)›

proof −
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let ?f = ‹PSKIP S-nd-step (ε A) (τ A) (ω A) (λσ ′. case σ ′ of (σ0, σ1) ⇒ P σ0

[[E ]]3P air Q σ1)›
note cartprod-rwrt = GlobalNdet-cartprod[of - - ‹λx y. - (x, y)›, simplified]
note Ndet-and-SyncP air = SyncP air.Syncptick-distrib-GlobalNdet-left

SyncP air.Syncptick-distrib-GlobalNdet-right
note Mprefix-SyncP air-constant =

SyncP air.SKIP-Syncptick-Mprefix SyncP air.Mprefix-Syncptick-SKIP
SyncP air.STOP-Syncptick-Mprefix SyncP air.Mprefix-Syncptick-STOP

note P-rec = restriction-fix-eq[OF PSKIP S-nd-step-constructive-bis[of A0], folded
PSKIP S-nd-def P-def , THEN fun-cong]
note Q-rec = restriction-fix-eq[OF PSKIP S-nd-step-constructive-bis[of A1], folded

PSKIP S-nd-def Q-def , THEN fun-cong]
have ω-A : ‹ω A (σ0

′, σ1
′) = ω A0 σ0

′ × ω A1 σ1
′› for σ0

′ σ1
′

by (auto simp add: A-def combineP air-Syncptick-defs)
have ε-A : ‹ε A (σ0

′, σ1
′) = combine-sets-Sync (ε A0 σ0

′) E (ε A1 σ1
′)› for σ0

′

σ1
′

by (simp add: A-def ε-combineP air-Syncptick combine-Sync-ε-def )
show ‹P σ0 [[E ]]3P air Q σ1 = S (σ0, σ1)›
proof (rule fun-cong[of ‹λ(σ0, σ1). P σ0 [[E ]]3P air Q σ1› - ‹(σ0, σ1)›, simplified])

show ‹(λ(σ0, σ1). P σ0 [[E ]]3P air Q σ1) = S›
proof (rule restriction-fix-unique[OF PSKIP S-nd-step-constructive-bis[of A],

symmetric, folded PSKIP S-nd-def S-def ])
show ‹?f = (λ(σ0, σ1). P σ0 [[E ]]3P air Q σ1)›
proof (rule ext, clarify)

have %-disjoint-ε-bis : ‹ω A0 σ0 6= {} =⇒ ε A0 σ0 = {}›
‹ω A1 σ1 6= {} =⇒ ε A1 σ1 = {}› for σ0 σ1

by (simp-all add: %-simps %-disjoint-εD %-disjoint-ε)
show ‹?f (σ0, σ1) = P σ0 [[E ]]3P air Q σ1› for σ0 σ1

proof (cases ‹ω A0 σ0 = {}›; cases ‹ω A1 σ1 = {}›)
assume ‹ω A0 σ0 = {}› ‹ω A1 σ1 = {}›
hence P-rec ′ : ‹P σ0 = P-nd-step (ε A0) (τ A0) P σ0›

and Q-rec ′ : ‹Q σ1 = P-nd-step (ε A1) (τ A1) Q σ1›
and S-rec ′ : ‹PSKIP S-nd-step (ε A) (τ A) (ω A) (λ(σ0, σ1). P σ0

[[E ]]3P air Q σ1) (σ0, σ1) =
P-nd-step (ε A) (τ A) (λ(σ0, σ1). P σ0 [[E ]]3P air Q σ1) (σ0,

σ1)›
by (simp-all add: P-rec[of σ0] Q-rec[of σ1] ω-A)

show ‹?f (σ0, σ1) = P σ0 [[E ]]3P air Q σ1›
unfolding P-rec ′ Q-rec ′ S-rec ′ SyncP air.Mprefix-Syncptick-Mprefix-for-procomata

unfolding ε-A Mprefix-Un-distrib
by (intro arg-cong2 [where f = ‹(�)›] mono-Mprefix-eq, fold P-rec ′ Q-rec ′,

auto simp add: A-def Ndet-and-SyncP air cartprod-rwrt
combineP air-Syncptick-defs ε-simps GlobalNdet-sets-commute[of ‹τ

A1 - -›]
simp flip: GlobalNdet-factorization-union
intro!: mono-GlobalNdet-eq arg-cong2 [where f = ‹(u)›])

next
assume ‹ω A0 σ0 6= {}› ‹ω A1 σ1 = {}›
from %-disjoint-ε(1 ) ‹ω A0 σ0 6= {}› have ‹ε A0 σ0 = {}›
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by (simp add: %-disjoint-ε-def %-simps)
have ‹?f (σ0, σ1) = �b∈(ε A1 σ1 − E) → (uσ1

′∈τ A1 σ1 b. (SKIPS (ω
A0 σ0) [[E ]]3P air Q σ1

′))›
by (auto simp add: ω-A ε-A ‹ω A1 σ1 = {}› ‹ε A0 σ0 = {}› intro!:

mono-Mprefix-eq,
auto simp add: A-def combineP air-Syncptick-defs ‹ω A0 σ0 6= {}›

‹ε A0 σ0 = {}› cartprod-rwrt P-rec[of σ0] intro!: mono-GlobalNdet-eq)
also have ‹. . . = P σ0 [[E ]]3P air Q σ1›

by (unfold P-rec[of σ0] Q-rec[of σ1])
(auto simp add: SKIPS-def Ndet-and-SyncP air Mprefix-SyncP air-constant

‹ω A0 σ0 6= {}›
GlobalNdet-Mprefix-distr GlobalNdet-sets-commute[of ‹τ A1 - -›] ‹ω

A1 σ1 = {}›
intro!: mono-Mprefix-eq mono-GlobalNdet-eq)

finally show ‹?f (σ0, σ1) = . . .› .
next

assume ‹ω A0 σ0 = {}› ‹ω A1 σ1 6= {}›
from %-disjoint-ε(2 ) ‹ω A1 σ1 6= {}› have ‹ε A1 σ1 = {}›

by (simp add: %-disjoint-ε-def %-simps)
have ‹?f (σ0, σ1) = �a∈(ε A0 σ0 − E) → (uσ0

′∈τ A0 σ0 a. (P σ0
′

[[E ]]3P air SKIPS (ω A1 σ1)))›
by (auto simp add: ω-A ε-A ‹ω A0 σ0 = {}› ‹ε A1 σ1 = {}› intro!:

mono-Mprefix-eq,
auto simp add: A-def combineP air-Syncptick-defs ‹ω A1 σ1 6= {}›

‹ε A1 σ1 = {}› cartprod-rwrt Q-rec[of σ1] intro!: mono-GlobalNdet-eq)
also have ‹. . . = P σ0 [[E ]]3P air Q σ1›

by (unfold P-rec[of σ0] Q-rec[of σ1])
(auto simp add: SKIPS-def Ndet-and-SyncP air Mprefix-SyncP air-constant

‹ω A1 σ1 6= {}›
GlobalNdet-Mprefix-distr GlobalNdet-sets-commute[of ‹τ A0 - -›] ‹ω

A0 σ0 = {}›
intro!: mono-Mprefix-eq mono-GlobalNdet-eq)

finally show ‹?f (σ0, σ1) = . . .› .
next

assume ‹ω A0 σ0 6= {}› ‹ω A1 σ1 6= {}›
with %-disjoint-ε have ‹ε A0 σ0 = {}› ‹ε A1 σ1 = {}›

by (simp-all add: %-disjoint-ε-def %-simps)
show ‹ω A0 σ0 6= {} =⇒ ω A1 σ1 6= {} =⇒ ?f (σ0, σ1) = P σ0 [[E ]]3P air

Q σ1›
by (simp add: ‹ω A0 σ0 6= {}› ‹ω A1 σ1 6= {}› ω-A P-rec[of σ0] Q-rec[of

σ1] SKIPS-def
Ndet-and-SyncP air cartprod-rwrt GlobalNdet-sets-commute[of ‹ω A0

-›])
qed

qed
qed

qed
qed
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corollary P-nd-combineP air-Syncptick :
‹P〈〈A0〉〉nd σ0 [[E ]]3P air P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[E ]]3P air A1〉〉〉〉nd (σ0, σ1)›

proof −
have ‹P〈〈A0〉〉nd σ0 [[E ]]3P air P〈〈A1〉〉nd σ1 =

PSKIP S〈〈A0(|ω := λσ. {}|)〉〉nd σ0 [[E ]]3P air PSKIP S〈〈A1(|ω := λσ. {}|)〉〉nd

σ1›
by (simp add: PSKIP S-nd-updated-ω)

also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. {}|) nd⊗[[E ]]3P air A1(|ω := λσ. {}|)〉〉〉〉nd

(σ0, σ1)›
by (rule PSKIP S-nd-combineP air-Syncptick) simp-all

also have ‹〈〈A0(|ω := λσ. {}|) nd⊗[[E ]]3P air A1(|ω := λσ. {}|)〉〉 = 〈〈A0 nd⊗[[E ]]3P air

A1〉〉(|ω := λσ. {}|)›
by (auto simp add: combineP air-Syncptick-defs)

also have ‹PSKIP S〈〈〈〈A0 nd⊗[[E ]]3P air A1〉〉(|ω := λσ. {}|)〉〉nd = P〈〈〈〈A0 nd⊗[[E ]]3P air

A1〉〉〉〉nd›
by (simp add: PSKIP S-nd-updated-ω)

finally show ?thesis .
qed

corollary PSKIP S-d-combineP air-Syncptick:
‹PSKIP S〈〈A0〉〉d σ0 [[E ]]3P air PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0 d⊗[[E ]]3P air

A1〉〉〉〉d (σ0, σ1)›
if ‹%-disjoint-ε A0› and ‹%-disjoint-ε A1› and ‹indep-enabl A0 σ0 E A1 σ1›

proof −
have ‹PSKIP S〈〈A0〉〉d σ0 [[E ]]3P air PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0〉〉d↪→nd〉〉nd

σ0 [[E ]]3P air PSKIP S〈〈〈〈A1〉〉d↪→nd〉〉nd σ1›
by (simp flip: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)

also have ‹. . . = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3P air 〈〈A1〉〉d↪→nd〉〉〉〉nd (σ0, σ1)›
by (rule PSKIP S-nd-combineP air-Syncptick)
(metis %-disjoint-ε-def det-ndet-conv-ε(1 ) det-ndet-conv-%(1 ) ‹%-disjoint-ε A0›,

metis %-disjoint-ε-def det-ndet-conv-ε(1 ) det-ndet-conv-%(1 ) ‹%-disjoint-ε
A1›)

also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗[[E ]]3P air A1〉〉〉〉d (σ0, σ1)›
by (simp add: PSKIP S-combineP air-Syncptick-behaviour-when-indep ‹indep-enabl

A0 σ0 E A1 σ1›)
finally show ?thesis .

qed

corollary P-d-combineP air-Syncptick:
‹P〈〈A0〉〉d σ0 [[E ]]3P air P〈〈A1〉〉d σ1 = P〈〈〈〈A0 d⊗[[E ]]3P air A1〉〉〉〉d (σ0, σ1)›
if ‹indep-enabl A0 σ0 E A1 σ1›

proof −
have ‹P〈〈A0〉〉d σ0 [[E ]]3P air P〈〈A1〉〉d σ1 =

PSKIP S〈〈A0(|ω := λσ. ♦|)〉〉d σ0 [[E ]]3P air PSKIP S〈〈A1(|ω := λσ. ♦|)〉〉d σ1›
by (simp add: PSKIP S-d-updated-ω)

also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. ♦|) d⊗[[E ]]3P air A1(|ω := λσ. ♦|)〉〉〉〉d
(σ0, σ1)›

by (subst PSKIP S-d-combineP air-Syncptick, simp-all add: %-simps %-disjoint-ε-def )
(rule indep-enablI ,
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use ‹indep-enabl A0 σ0 E A1 σ1›[THEN indep-enablD] in ‹simp add: ε-simps›)
also have ‹〈〈A0(|ω := λσ. ♦|) d⊗[[E ]]3P air A1(|ω := λσ. ♦|)〉〉 = 〈〈A0 d⊗[[E ]]3P air

A1〉〉(|ω := λσ. ♦|)›
by (simp add: combineP air-Syncptick-defs, intro ext, simp)

also have ‹PSKIP S〈〈〈〈A0 d⊗[[E ]]3P air A1〉〉(|ω := λσ. ♦|)〉〉d = P〈〈〈〈A0 d⊗[[E ]]3P air

A1〉〉〉〉d›
by (simp add: PSKIP S-d-updated-ω)

finally show ?thesis .
qed

Pairlist

theorem PSKIP S-nd-combineP airlist-Syncptick :
fixes E :: ‹ ′a set›
assumes %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1›
shows ‹PSKIP S〈〈A0〉〉nd σ0 [[E ]]3P airlist PSKIP S〈〈A1〉〉nd σ1 = PSKIP S〈〈〈〈A0

nd⊗[[E ]]3P airlist A1〉〉〉〉nd [σ0, σ1]›
proof −

let ?A = ‹(|τ = τ 〈〈A0 nd⊗[[E ]]3P air A1〉〉, ω = λσ. (λ(r , s). [r , s]) ‘ ω 〈〈A0

nd⊗[[E ]]3P air A1〉〉 σ|)›
have ‹PSKIP S〈〈A0〉〉nd σ0 [[E ]]3P airlist PSKIP S〈〈A1〉〉nd σ1 =

RenamingTick (PSKIP S〈〈A0〉〉nd σ0 [[E ]]3P air PSKIP S〈〈A1〉〉nd σ1) (λ(r , s).
[r , s])›

by (simp only: SyncP air-to-SyncP airlist)
also have ‹. . . = RenamingTick (PSKIP S〈〈〈〈A0 nd⊗[[E ]]3P air A1〉〉〉〉nd (σ0, σ1))

(λ(r , s). [r , s])›
by (simp add: PSKIP S-nd-combineP air-Syncptick %-disjoint-ε)

also have ‹. . . = PSKIP S〈〈?A〉〉nd (σ0, σ1)›
by (simp only: RenamingTick-PSKIP S-nd)

also have ‹. . . = PSKIP S〈〈〈〈A0 nd⊗[[E ]]3P airlist A1〉〉〉〉nd [σ0, σ1]›
by (auto intro!: PSKIP S-nd-eqI-strong[of ‹λ(r , s). [r , s]› - ‹(σ0, σ1)›, simplified]

inj-onI )
(auto simp add: combine-Syncptick-defs split: if-split-asm)

finally show ?thesis .
qed

corollary P-nd-combineP airlist-Syncptick :
‹P〈〈A0〉〉nd σ0 [[E ]]3P airlist P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[E ]]3P airlist A1〉〉〉〉nd [σ0,

σ1]›
proof −

have ‹P〈〈A0〉〉nd σ0 [[E ]]3P airlist P〈〈A1〉〉nd σ1 =
PSKIP S〈〈A0(|ω := λσ. {}|)〉〉nd σ0 [[E ]]3P airlist PSKIP S〈〈A1(|ω := λσ. {}|)〉〉nd

σ1›
by (simp add: PSKIP S-nd-updated-ω)

also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. {}|) nd⊗[[E ]]3P airlist A1(|ω := λσ.
{}|)〉〉〉〉nd [σ0, σ1]›

by (rule PSKIP S-nd-combineP airlist-Syncptick) simp-all
also have ‹〈〈A0(|ω := λσ. {}|) nd⊗[[E ]]3P airlist A1(|ω := λσ. {}|)〉〉 = 〈〈A0 nd⊗[[E ]]3P airlist

A1〉〉(|ω := λσ. {}|)›
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by (simp add: combineP airlist-Syncptick-defs, intro ext, simp)
also have ‹PSKIP S〈〈〈〈A0 nd⊗[[E ]]3P airlist A1〉〉(|ω := λσ. {}|)〉〉nd = P〈〈〈〈A0

nd⊗[[E ]]3P airlist A1〉〉〉〉nd›
by (simp add: PSKIP S-nd-updated-ω)

finally show ?thesis .
qed

corollary PSKIP S-d-combineP airlist-Syncptick :
‹PSKIP S〈〈A0〉〉d σ0 [[E ]]3P airlist PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0 d⊗[[E ]]3P airlist

A1〉〉〉〉d [σ0, σ1]›
if ‹%-disjoint-ε A0› and ‹%-disjoint-ε A1› and ‹indep-enabl A0 σ0 E A1 σ1›

proof −
have ‹PSKIP S〈〈A0〉〉d σ0 [[E ]]3P airlist PSKIP S〈〈A1〉〉d σ1 = PSKIP S〈〈〈〈A0〉〉d↪→nd〉〉nd

σ0 [[E ]]3P airlist PSKIP S〈〈〈〈A1〉〉d↪→nd〉〉nd σ1›
by (simp flip: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)

also have ‹. . . = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3P airlist 〈〈A1〉〉d↪→nd〉〉〉〉nd [σ0,
σ1]›

by (rule PSKIP S-nd-combineP airlist-Syncptick)
(metis %-disjoint-ε-def det-ndet-conv-ε(1 ) det-ndet-conv-%(1 ) ‹%-disjoint-ε A0›,

metis %-disjoint-ε-def det-ndet-conv-ε(1 ) det-ndet-conv-%(1 ) ‹%-disjoint-ε
A1›)

also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗[[E ]]3P airlist A1〉〉〉〉d [σ0, σ1]›
by (simp add: PSKIP S-combineP airlist-Syncptick-behaviour-when-indep ‹in-

dep-enabl A0 σ0 E A1 σ1›)
finally show ?thesis .

qed

corollary P-d-combineP airlist-Syncptick :
‹P〈〈A0〉〉d σ0 [[E ]]3P airlist P〈〈A1〉〉d σ1 = P〈〈〈〈A0 d⊗[[E ]]3P airlist A1〉〉〉〉d [σ0, σ1]›
if ‹indep-enabl A0 σ0 E A1 σ1›

proof −
have ‹P〈〈A0〉〉d σ0 [[E ]]3P airlist P〈〈A1〉〉d σ1 =

PSKIP S〈〈A0(|ω := λσ. ♦|)〉〉d σ0 [[E ]]3P airlist PSKIP S〈〈A1(|ω := λσ. ♦|)〉〉d
σ1›

by (simp add: PSKIP S-d-updated-ω)
also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. ♦|) d⊗[[E ]]3P airlist A1(|ω := λσ. ♦|)〉〉〉〉d

[σ0, σ1]›
by (subst PSKIP S-d-combineP airlist-Syncptick, simp-all)
(rule indep-enablI ,

use ‹indep-enabl A0 σ0 E A1 σ1›[THEN indep-enablD] in simp)
also have ‹〈〈A0(|ω := λσ. ♦|) d⊗[[E ]]3P airlist A1(|ω := λσ. ♦|)〉〉 = 〈〈A0 d⊗[[E ]]3P airlist

A1〉〉(|ω := λσ. ♦|)›
by (simp add: combineP airlist-Syncptick-defs, intro ext, simp)

also have ‹PSKIP S〈〈〈〈A0 d⊗[[E ]]3P airlist A1〉〉(|ω := λσ. ♦|)〉〉d = P〈〈〈〈A0 d⊗[[E ]]3P airlist

A1〉〉〉〉d›
by (simp add: PSKIP S-d-updated-ω)

finally show ?thesis .
qed

129



8.2.2 Rlist

theorem PSKIP S-nd-combineRlist-Syncptick :
fixes E :: ‹ ′a set›
assumes %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1›
defines A-def : ‹A ≡ 〈〈A0 nd⊗[[E ]]3Rlist A1〉〉›
defines P-def : ‹P ≡ PSKIP S〈〈A0〉〉nd› and Q-def : ‹Q ≡ PSKIP S〈〈A1〉〉nd› and

S-def : ‹S ≡ PSKIP S〈〈A〉〉nd›
shows ‹P σ0 [[E ]]3Rlist Q σs = S (σ0 # σs)›

proof −
let ?A ′ = ‹(|τ = τ 〈〈A0 nd⊗[[E ]]3P air A1〉〉, ω = λσ. (λ(x, y). x # y) ‘ ω 〈〈A0

nd⊗[[E ]]3P air A1〉〉 σ|)›
from PSKIP S-nd-combineP air-Syncptick[OF %-disjoint-ε]
have ‹P σ0 [[E ]]3P air Q σs = PSKIP S〈〈〈〈A0 nd⊗[[E ]]3P air A1〉〉〉〉nd (σ0, σs)› by

(simp add: P-def Q-def )
hence ‹RenamingTick (P σ0 [[E ]]3P air Q σs) (λ(σ0, σs). σ0 # σs) =

RenamingTick (PSKIP S〈〈〈〈A0 nd⊗[[E ]]3P air A1〉〉〉〉nd (σ0, σs)) (λ(σ0, σs).
σ0 # σs)› by simp

also have ‹RenamingTick (P σ0 [[E ]]3P air Q σs) (λ(σ0, σs). σ0 # σs) = P σ0

[[E ]]3Rlist Q σs›
by (auto intro: inj-onI SyncP air.inj-on-RenamingTick-Syncptick

[of ‹λ(σ0, σs). σ0 # σs›, simplified])
also have ‹RenamingTick (PSKIP S〈〈〈〈A0 nd⊗[[E ]]3P air A1〉〉〉〉nd (σ0, σs)) (λ(σ0,

σs). σ0 # σs) = S (σ0 # σs)›
proof (unfold RenamingTick-PSKIP S-nd S-def ,

rule PSKIP S-nd-eqI-strong[of ‹λ(σ0, σs). σ0 # σs› ?A ′ ‹(σ0, σs)›, simplified])
show ‹inj-on (λ(σ0, σs). σ0 # σs) (Rnd ?A ′ (σ0, σs))› by (auto intro: inj-onI )

next
show ‹τ A (case σ ′ of (σ0, σs) ⇒ σ0 # σs) e =

(λσ ′′. case σ ′′ of (σ0, σs) ⇒ σ0 # σs) ‘ τ 〈〈A0 nd⊗[[E ]]3P air A1〉〉 σ ′ e›
for σ ′ e

by (cases σ ′) (auto simp add: A-def combineRlist-Syncptick-defs combineP air-Syncptick-defs)
next

show ‹ω A (case σ ′ of (σ0, σs) ⇒ σ0 # σs) =
(λσ ′′. case σ ′′ of (σ0, σs) ⇒ σ0 # σs) ‘ ω 〈〈A0 nd⊗[[E ]]3P air A1〉〉 σ ′› for

σ ′

by (cases σ ′) (auto simp add: A-def combineRlist-Syncptick-defs combineP air-Syncptick-defs)
qed
finally show ‹P σ0 [[E ]]3Rlist Q σs = S (σ0 # σs)› .

qed

corollary P-nd-combineRlist-Syncptick :
‹P〈〈A0〉〉nd σ0 [[E ]]3Rlist P〈〈A1〉〉nd σs = P〈〈〈〈A0 nd⊗[[E ]]3Rlist A1〉〉〉〉nd (σ0 # σs)›

proof −
have ‹P〈〈A0〉〉nd σ0 [[E ]]3Rlist P〈〈A1〉〉nd σs =

PSKIP S〈〈A0(|ω := λσ. {}|)〉〉nd σ0 [[E ]]3Rlist PSKIP S〈〈A1(|ω := λσ. {}|)〉〉nd

σs›
by (simp add: PSKIP S-nd-updated-ω)

also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. {}|) nd⊗[[E ]]3Rlist A1(|ω := λσ. {}|)〉〉〉〉nd

(σ0 # σs)›
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by (rule PSKIP S-nd-combineRlist-Syncptick)
(simp-all add: %-simps %-disjoint-ε-def )

also have ‹〈〈A0(|ω := λσ. {}|) nd⊗[[E ]]3Rlist A1(|ω := λσ. {}|)〉〉 = 〈〈A0 nd⊗[[E ]]3Rlist

A1〉〉(|ω := λσ. {}|)›
by (simp add: combineRlist-Syncptick-defs, intro ext, simp add: ε-simps)

also have ‹PSKIP S〈〈〈〈A0 nd⊗[[E ]]3Rlist A1〉〉(|ω := λσ. {}|)〉〉nd = P〈〈〈〈A0 nd⊗[[E ]]3Rlist

A1〉〉〉〉nd›
by (simp add: PSKIP S-nd-updated-ω)

finally show ?thesis .
qed

corollary PSKIP S-d-combineRlist-Syncptick:
‹PSKIP S〈〈A0〉〉d σ0 [[E ]]3Rlist PSKIP S〈〈A1〉〉d σs = PSKIP S〈〈〈〈A0 d⊗[[E ]]3Rlist

A1〉〉〉〉d (σ0 # σs)›
if ‹%-disjoint-ε A0› and ‹%-disjoint-ε A1› and ‹indep-enabl A0 σ0 E A1 σs›

proof −
have ‹PSKIP S〈〈A0〉〉d σ0 [[E ]]3Rlist PSKIP S〈〈A1〉〉d σs = PSKIP S〈〈〈〈A0〉〉d↪→nd〉〉nd

σ0 [[E ]]3Rlist PSKIP S〈〈〈〈A1〉〉d↪→nd〉〉nd σs›
by (simp flip: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)

also have ‹. . . = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[E ]]3Rlist 〈〈A1〉〉d↪→nd〉〉〉〉nd (σ0 # σs)›
by (rule PSKIP S-nd-combineRlist-Syncptick)
(metis %-disjoint-ε-def det-ndet-conv-ε(1 ) det-ndet-conv-%(1 ) ‹%-disjoint-ε A0›,

metis %-disjoint-ε-def det-ndet-conv-ε(1 ) det-ndet-conv-%(1 ) ‹%-disjoint-ε
A1›)

also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗[[E ]]3Rlist A1〉〉〉〉d (σ0 # σs)›
by (simp add: PSKIP S-combineRlist-Syncptick-behaviour-when-indep ‹indep-enabl

A0 σ0 E A1 σs›)
finally show ?thesis .

qed

corollary P-d-combineRlist-Syncptick:
‹P〈〈A0〉〉d σ0 [[E ]]3Rlist P〈〈A1〉〉d σs = P〈〈〈〈A0 d⊗[[E ]]3Rlist A1〉〉〉〉d (σ0 # σs)›
if ‹indep-enabl A0 σ0 E A1 σs›

proof −
have ‹P〈〈A0〉〉d σ0 [[E ]]3Rlist P〈〈A1〉〉d σs =

PSKIP S〈〈A0(|ω := λσ. ♦|)〉〉d σ0 [[E ]]3Rlist PSKIP S〈〈A1(|ω := λσ. ♦|)〉〉d σs›
by (simp add: PSKIP S-d-updated-ω)

also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ. ♦|) d⊗[[E ]]3Rlist A1(|ω := λσ. ♦|)〉〉〉〉d
(σ0 # σs)›

by (rule PSKIP S-d-combineRlist-Syncptick, simp-all add: %-simps %-disjoint-ε-def )
(rule indep-enablI ,
use ‹indep-enabl A0 σ0 E A1 σs›[THEN indep-enablD] in ‹simp add: ε-simps›)

also have ‹〈〈A0(|ω := λσ. ♦|) d⊗[[E ]]3Rlist A1(|ω := λσ. ♦|)〉〉 = 〈〈A0 d⊗[[E ]]3Rlist

A1〉〉(|ω := λσ. ♦|)›
by (simp add: combineRlist-Syncptick-defs, intro ext, simp add: ε-simps)

also have ‹PSKIP S〈〈〈〈A0 d⊗[[E ]]3Rlist A1〉〉(|ω := λσ. ♦|)〉〉d = P〈〈〈〈A0 d⊗[[E ]]3Rlist

A1〉〉〉〉d›
by (simp add: PSKIP S-d-updated-ω)

finally show ?thesis .
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qed

8.2.3 ListslenL
theorem PSKIP S-nd-combineListslenL-Syncptick :

fixes E :: ‹ ′a set›
assumes same-length-reach0 : ‹

∧
σ0

′. σ0
′ ∈ Rnd A0 σ0 =⇒ length σ0

′ = len0›
and same-length-term0 : ‹

∧
σ0

′ rs. σ0
′ ∈ Rnd A0 σ0 =⇒ rs ∈ ω A0 σ0

′ =⇒
length rs = len0›

and %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1›
defines A-def : ‹A ≡ 〈〈A0 nd⊗[[len0, E ]]3ListslenL A1〉〉›
defines P-def : ‹P ≡ PSKIP S〈〈A0〉〉nd› and Q-def : ‹Q ≡ PSKIP S〈〈A1〉〉nd› and

S-def : ‹S ≡ PSKIP S〈〈A〉〉nd›
shows ‹P σ0 len0

[[E ]]3ListslenL Q σ1 = S (σ0 @ σ1)›
proof −

let ?A ′ = ‹(|τ = τ 〈〈A0 nd⊗[[E ]]3P air A1〉〉, ω = λσ. (λ(x, y). x @ y) ‘ ω 〈〈A0

nd⊗[[E ]]3P air A1〉〉 σ|)›
let ?RT = RenamingTick
have ∗ : ‹σ ′ ∈ Rnd ?A ′ (σ0, σ1) =⇒ length (fst σ ′) = len0› for σ ′

by (metis (no-types, lifting) Rnd-combinendP air-Syncptick-subset mem-Sigma-iff
prod.collapse

same-τ -implies-same-Rnd same-length-reach0 select-convs(1 ) subset-iff )

from PSKIP S-nd-combineP air-Syncptick[OF %-disjoint-ε]
have ‹P σ0 [[E ]]3P air Q σ1 = PSKIP S〈〈〈〈A0 nd⊗[[E ]]3P air A1〉〉〉〉nd (σ0, σ1)›

by (simp add: P-def Q-def )

hence ‹?RT (P σ0 [[E ]]3P air Q σ1) (λ(σ0, σs). σ0 @ σs) =
?RT (PSKIP S〈〈〈〈A0 nd⊗[[E ]]3P air A1〉〉〉〉nd (σ0, σ1)) (λ(σ0, σs). σ0 @ σs)›

by simp
also have ‹?RT (P σ0 [[E ]]3P air Q σ1) (λ(σ0, σs). σ0 @ σs) = P σ0 len0

[[E ]]3ListslenL

Q σ1›
by (rule SyncP air-to-SyncListslenL[OF is-ticks-length-PSKIP S-nd[of A0, folded

P-def ]])
(fact same-length-term0 )

also have ‹?RT (PSKIP S〈〈〈〈A0 nd⊗[[E ]]3P air A1〉〉〉〉nd (σ0, σ1)) (λ(σ0, σs). σ0

@ σs) = S (σ0 @ σ1)›
by (auto simp add: RenamingTick-PSKIP S-nd S-def dest!: ∗

intro!: PSKIP S-nd-eqI-strong[of ‹λ(σ0, σs). σ0 @ σs› ?A ′ ‹(σ0, σ1)›, sim-
plified] inj-onI )

(force simp add: image-iff A-def combineListslenL-Syncptick-defs combineP air-Syncptick-defs
split: if-split-asm)+

finally show ?thesis .
qed

corollary P-nd-combineListslenL-Syncptick :
‹P〈〈A0〉〉nd σ0 len0

[[E ]]3ListslenL P〈〈A1〉〉nd σ1 = P〈〈〈〈A0 nd⊗[[len0, E ]]3ListslenL

A1〉〉〉〉nd (σ0 @ σ1)›
if same-length-reach0 : ‹

∧
σ0

′. σ0
′ ∈ Rnd A0 σ0 =⇒ length σ0

′ = len0›
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proof −
have ∗ : ‹σs ∈ Rnd 〈〈A0(|ω := λσ0. {}|) nd⊗[[len0, E ]]3ListslenL A1(|ω := λσ1.
{}|)〉〉 (σ0 @ σ1) =⇒ len0 ≤ length σs› for σs

by (auto dest: set-rev-mp[OF - Rnd-combinendListslenL-Syncptick-subset]
simp add: same-length-reach0 )

have ‹P〈〈A0〉〉nd σ0 len0
[[E ]]3ListslenL P〈〈A1〉〉nd σ1 =

PSKIP S〈〈A0(|ω := λσ0. {}|)〉〉nd σ0 len0
[[E ]]3ListslenL PSKIP S〈〈A1(|ω :=

λσ1. {}|)〉〉nd σ1›
by (simp only: PSKIP S-nd-updated-ω)

also have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ0. {}|) nd⊗[[len0, E ]]3ListslenL A1(|ω :=
λσ1. {}|)〉〉〉〉nd (σ0 @ σ1)›

by (auto intro: PSKIP S-nd-combineListslenL-Syncptick simp add: same-length-reach0 )
also have ‹. . . = PSKIP S〈〈〈〈A0 nd⊗[[len0, E ]]3ListslenL A1〉〉(|ω := λσ1. {}|)〉〉nd

(σ0 @ σ1)›
by (auto intro!: PSKIP S-nd-eqI-strong-id dest!: ∗)
(auto simp add: combineListslenL-Syncptick-defs split: if-split-asm)

also have ‹. . . = P〈〈〈〈A0 nd⊗[[len0, E ]]3ListslenL A1〉〉〉〉nd (σ0 @ σ1)›
by (simp only: PSKIP S-nd-updated-ω)

finally show ?thesis .
qed

corollary PSKIP S-d-combineListslenL-Syncptick :
assumes same-length-reach0 : ‹

∧
σ0

′. σ0
′ ∈ Rd A0 σ0 =⇒ length σ0

′ = len0›
and same-length-term0 : ‹

∧
σ0

′. σ0
′ ∈ Rd A0 σ0 =⇒ ω A0 σ0

′ 6= ♦ =⇒ length
dω A0 σ0

′e = len0›
and %-disjoint-ε : ‹%-disjoint-ε A0› ‹%-disjoint-ε A1›
and indep-enabl : ‹indep-enabl A0 σ0 E A1 σ1›

shows ‹PSKIP S〈〈A0〉〉d σ0 len0
[[E ]]3ListslenL PSKIP S〈〈A1〉〉d σ1 =

PSKIP S〈〈〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉〉〉d (σ0 @ σ1)›
proof −

have ∗ : ‹σs ∈ Rnd 〈〈〈〈A0〉〉d↪→nd nd⊗[[len0, E ]]3ListslenL 〈〈A1〉〉d↪→nd〉〉 (σ0 @ σ1)
=⇒

∃σ0
′ σ1

′. σs = σ0
′ @ σ1

′ ∧ σ0
′ ∈ Rd A0 σ0 ∧ σ1

′ ∈ Rd A1 σ1› for σs
by (auto dest!: set-rev-mp[OF - Rnd-combinendListslenL-Syncptick-subset]

simp add: Rnd-from-det-to-ndet same-length-reach0 )+
have ‹PSKIP S〈〈A0〉〉d σ0 len0

[[E ]]3ListslenL PSKIP S〈〈A1〉〉d σ1 =
PSKIP S〈〈〈〈A0〉〉d↪→nd〉〉nd σ0 len0

[[E ]]3ListslenL PSKIP S〈〈〈〈A1〉〉d↪→nd〉〉nd σ1›
by (simp only: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)

also from same-length-term0 have ‹. . . = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗[[len0, E ]]3ListslenL

〈〈A1〉〉d↪→nd〉〉〉〉nd (σ0 @ σ1)›
by (auto intro!: PSKIP S-nd-combineListslenL-Syncptick split: option.split-asm

simp add: %-disjoint-ε Rnd-from-det-to-ndet same-length-reach0 ω-from-det-to-ndet)
(metis option.sel)

also from indep-enabl have ‹. . . = PSKIP S〈〈〈〈〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉〉〉d↪→nd〉〉nd

(σ0 @ σ1)›
by (auto intro!: PSKIP S-nd-eqI-strong-id
τ -combineListslenL-Syncptick-behaviour-when-indep ω-combineListslenL-Syncptick-behaviour

simp add: same-length-reach0 dest!: ∗ indep-enablD)
also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉〉〉d (σ0 @ σ1)›
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by (simp only: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)
finally show ?thesis .

qed

corollary P-d-combineListslenL-Syncptick :
assumes same-length-reach0 : ‹

∧
σ0

′. σ0
′ ∈ Rd A0 σ0 =⇒ length σ0

′ = len0›
and indep-enabl : ‹indep-enabl A0 σ0 E A1 σ1›

shows ‹P〈〈A0〉〉d σ0 len0
[[E ]]3ListslenL P〈〈A1〉〉d σ1 =

P〈〈〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉〉〉d (σ0 @ σ1)›
proof −

have ∗ : ‹σs ∈ Rd 〈〈A0(|ω := λσ0. ♦|) d⊗[[len0, E ]]3ListslenL A1(|ω := λσ1. ♦|)〉〉
(σ0 @ σ1) =⇒ len0 ≤ length σs› for σs

by (auto dest: set-rev-mp[OF - Rd-combinedListslenL-Syncptick-subset]
simp add: same-length-reach0 )

have ‹P〈〈A0〉〉d σ0 len0
[[E ]]3ListslenL P〈〈A1〉〉d σ1 =

PSKIP S〈〈A0(|ω := λσ0. ♦|)〉〉d σ0 len0
[[E ]]3ListslenL PSKIP S〈〈A1(|ω := λσ1.

♦|)〉〉d σ1›
by (simp only: PSKIP S-d-updated-ω)

also from indep-enabl
have ‹. . . = PSKIP S〈〈〈〈A0(|ω := λσ0. ♦|) d⊗[[len0, E ]]3ListslenL A1(|ω := λσ1.
♦|)〉〉〉〉d (σ0 @ σ1)›

by (auto intro: PSKIP S-d-combineListslenL-Syncptick simp add: same-length-reach0 )
also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉(|ω := λσ0. ♦|)〉〉d (σ0

@ σ1)›
by (auto intro!: PSKIP S-d-eqI-strong-id dest!: ∗)
(auto simp add: combineListslenL-Syncptick-defs split: if-split-asm)

also have ‹. . . = P〈〈〈〈A0 d⊗[[len0, E ]]3ListslenL A1〉〉〉〉d (σ0 @ σ1)›
by (simp only: PSKIP S-d-updated-ω)

finally show ?thesis .
qed

8.2.4 Multiple
theorem PSKIP S-nd-compactification-Syncptick:

‹length σs = length As =⇒ (
∧

A. A ∈ set As =⇒ %-disjoint-ε A) =⇒
[[E]]3 (σ, A) ∈@ zip σs As. PSKIP S〈〈A〉〉nd σ = PSKIP S〈〈〈〈nd

⊗
[[E ]]3 As〉〉〉〉nd

σs›
proof (induct σs As rule: induct-2-lists012 )

case Nil show ?case by (simp, subst PSKIP S-nd-rec, simp)
next

case (single σ0 A0) show ?case
by (auto simp add: RenamingTick-PSKIP S-nd singl-list-conv-defs

intro!: inj-onI PSKIP S-nd-eqI-strong)
next

case (Cons σ0 σ1 σs A0 A1 As)
have %-disjoint-ε : ‹A ∈ set (A1 # As) =⇒ %-disjoint-ε A› for A

by (simp add: Cons.prems)
show ?case

by (simp add: Cons.hyps(3 )[OF %-disjoint-ε, simplified] Cons.prems
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PSKIP S-nd-combineRlist-Syncptick %-disjoint-ε-transmission-to-iterated-combinend-Syncptick)
qed

corollary P-nd-compactification-Syncptick:
‹length σs = length As =⇒ [[E]]3 (σ, A) ∈@ zip σs As. P〈〈A〉〉nd σ = P〈〈〈〈nd

⊗
[[E ]]3

As〉〉〉〉nd σs›
proof (induct σs As rule: induct-2-lists012 )

case Nil show ?case by (simp, subst P-nd-rec, simp)
next

case (single σ0 A0) show ?case
by (simp, subst (1 2 ) PSKIP S-nd-updated-ω)
(auto simp add: RenamingTick-PSKIP S-nd singl-list-conv-defs

intro!: inj-onI PSKIP S-nd-eqI-strong)
next

case (Cons σ0 σ1 σs A0 A1 As)
show ?case

by (simp add: Cons.hyps(3 )[simplified] Cons.prems
P-nd-combineRlist-Syncptick %-disjoint-ε-transmission-to-iterated-combinend-Syncptick)

qed

corollary PSKIP S-d-compactification-Syncptick:
‹[[length σs = length As;

∧
A. A ∈ set As =⇒ %-disjoint-ε A;∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)]] =⇒

[[E]]3 (σ, A) ∈@ zip σs As. PSKIP S〈〈A〉〉d σ = PSKIP S〈〈〈〈d
⊗

[[E ]]3 As〉〉〉〉d σs›
proof (induct σs As rule: induct-2-lists012 )

case Nil show ?case by (simp, subst PSKIP S-d-rec, simp)
next

case (single σ0 A0) show ?case
by (auto simp add: RenamingTick-PSKIP S-d singl-list-conv-defs

intro!: inj-onI PSKIP S-d-eqI-strong split: option.split)
next

case (Cons σ0 σ1 σs A0 A1 As)
have %-disjoint-ε : ‹A ∈ set (A1 # As) =⇒ %-disjoint-ε A› for A

by (simp add: Cons.prems(1 ))
have indep-enabl :

‹[[i < length (A1 # As); j < length (A1 # As); i 6= j]] =⇒
indep-enabl ((A1 # As) ! i) ((σ1 # σs) ! i) E ((A1 # As) ! j) ((σ1 # σs) ! j)›

for i j
by (metis Cons.prems(2 ) Suc-less-eq length-Cons nat.inject nth-Cons-Suc)

have ‹%-disjoint-ε A0› by (simp add: Cons.prems(1 ))
moreover have ‹%-disjoint-ε 〈〈d

⊗
[[E ]]3 A1 # As〉〉›

by (meson %-disjoint-ε %-disjoint-ε-transmission-to-iterated-combined-Syncptick)
moreover have ‹indep-enabl A0 σ0 E 〈〈d

⊗
[[E ]]3 A1 # As〉〉 (σ1 # σs)›

by (metis Cons.hyps(1 ) Cons.prems(2 ) length-Cons less-Suc-eq-le
same-length-indep-transmission-to-iterated-combined-Syncptick)

ultimately show ?case
by (simp add: PSKIP S-d-combineRlist-Syncptick

Cons.hyps(3 )[OF %-disjoint-ε indep-enabl, simplified])
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qed

corollary P-d-compactification-Syncptick:
‹[[length σs = length As;∧

i j. [[i < length As; j < length As; i 6= j]] =⇒
indep-enabl (As ! i) (σs ! i) E (As ! j) (σs ! j)]] =⇒

[[E]]3 (σ, A) ∈@ zip σs As. P〈〈A〉〉d σ = P〈〈〈〈d
⊗

[[E ]]3 As〉〉〉〉d σs›
proof (induct σs As rule: induct-2-lists012 )

case Nil show ?case by (simp, subst P-d-rec, simp)
next

case (single σ0 A0) show ?case
by (simp, subst (1 2 ) PSKIP S-d-updated-ω)
(auto simp add: RenamingTick-PSKIP S-d singl-list-conv-defs

intro!: inj-onI PSKIP S-d-eqI-strong split: option.split)
next

case (Cons σ0 σ1 σs A0 A1 As)
have indep-enabl :

‹[[i < length (A1 # As); j < length (A1 # As); i 6= j]] =⇒
indep-enabl ((A1 # As) ! i) ((σ1 # σs) ! i) E ((A1 # As) ! j) ((σ1 # σs) ! j)›

for i j
by (metis Cons.prems Suc-less-eq length-Cons nat.inject nth-Cons-Suc)

have ‹indep-enabl A0 σ0 E 〈〈d
⊗

[[E ]]3 A1 # As〉〉 (σ1 # σs)›
by (metis Cons.hyps(1 ) Cons.prems length-Cons less-Suc-eq-le

same-length-indep-transmission-to-iterated-combined-Syncptick)
thus ?case

by (simp add: P-d-combineRlist-Syncptick
Cons.hyps(3 )[OF indep-enabl, simplified])

qed

8.3 Derived Versions
lemma PSKIP S-nd-compactification-Syncptick-upt-version:

‹[[E]]3 P ∈@ map Q [0 ..<n]. P = PSKIP S〈〈〈〈nd

⊗
[[E ]]3 map A [0 ..<n]〉〉〉〉nd

(replicate n 0 )›
if ‹

∧
i. i < n =⇒ %-disjoint-ε (A i)›

‹
∧

i. i < n =⇒ PSKIP S〈〈A i〉〉nd 0 = Q i›
proof −

have ‹[[E]]3 P ∈@ map Q [0 ..<n]. P = [[E]]3 i ∈@ [0 ..<n]. Q i›
by (auto intro: mono-MultiSyncptick-eq2 )

also have ‹. . . = [[E]]3 i ∈@ [0 ..<n]. PSKIP S〈〈A i〉〉nd 0 ›
by (auto simp add: that(2 ) intro: mono-MultiSyncptick-eq)

also have ‹. . . = [[E]]3 (σ, A) ∈@ zip (replicate n 0 ) (map A [0 ..<n]). PSKIP S〈〈A〉〉nd

σ›
proof (induct n rule: nat-induct-012 )

case (Suc k)
have ‹[[E]]3 i∈@ [0 ..<Suc k]. PSKIP S〈〈A i〉〉nd 0 =

[[E]]3 i∈@ [0 ..<k]. PSKIP S〈〈A i〉〉nd 0 [[E ]]3Llist PSKIP S〈〈A k〉〉nd 0 ›
using Suc.hyps(1 ) by (simp add: MultiSyncptick-snoc)
also have ‹. . . = [[E]]3 (σ, A) ∈@ zip (replicate k 0 ) (map A [0 ..<k]).
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PSKIP S〈〈A〉〉nd σ [[E ]]3Llist PSKIP S〈〈A k〉〉nd 0 ›
by (simp only: Suc.hyps(2 ))

also have ‹. . . = [[E]]3 (σ, A) ∈@ zip (replicate (Suc k) 0 ) (map A [0 ..<Suc
k]). PSKIP S〈〈A〉〉nd σ›

using Suc.hyps(1 ) by (simp flip: replicate-append-same add: MultiSyncptick-snoc)
finally show ?case .

qed simp-all
also have ‹. . . = PSKIP S〈〈〈〈nd

⊗
[[E ]]3 map A [0 ..<n]〉〉〉〉nd (replicate n 0 )›

by (rule PSKIP S-nd-compactification-Syncptick) (auto simp add: that(1 ))
finally show ?thesis .

qed

lemma P-nd-compactification-Syncptick-upt-version:
‹[[E]]3 P ∈@ map Q [0 ..<n]. P = P〈〈〈〈nd

⊗
[[E ]]3 map A [0 ..<n]〉〉〉〉nd (replicate

n 0 )›
if ‹

∧
i. i < n =⇒ P〈〈A i〉〉nd 0 = Q i›

proof −
have ‹[[E]]3 P ∈@ map Q [0 ..<n]. P = [[E]]3 i ∈@ [0 ..<n]. Q i›

by (auto intro: mono-MultiSyncptick-eq2 )
also have ‹. . . = [[E]]3 i ∈@ [0 ..<n]. P〈〈A i〉〉nd 0 ›

by (auto simp add: that intro: mono-MultiSyncptick-eq)
also have ‹. . . = [[E]]3 (σ, A) ∈@ zip (replicate n 0 ) (map A [0 ..<n]). P〈〈A〉〉nd

σ›
proof (induct n rule: nat-induct-012 )

case (Suc k)
have ‹[[E]]3 i∈@ [0 ..<Suc k]. P〈〈A i〉〉nd 0 =

[[E]]3 i∈@ [0 ..<k]. P〈〈A i〉〉nd 0 [[E ]]3Llist P〈〈A k〉〉nd 0 ›
using Suc.hyps(1 ) by (simp add: MultiSyncptick-snoc)

also have ‹. . . = [[E]]3 (σ, A) ∈@ zip (replicate k 0 ) (map A [0 ..<k]). P〈〈A〉〉nd

σ [[E ]]3Llist P〈〈A k〉〉nd 0 ›
by (simp only: Suc.hyps(2 ))

also have ‹. . . = [[E]]3 (σ, A) ∈@ zip (replicate (Suc k) 0 ) (map A [0 ..<Suc
k]). P〈〈A〉〉nd σ›

using Suc.hyps(1 ) by (simp flip: replicate-append-same add: MultiSyncptick-snoc)
finally show ?case .

qed simp-all
also have ‹. . . = P〈〈〈〈nd

⊗
[[E ]]3 map A [0 ..<n]〉〉〉〉nd (replicate n 0 )›

by (rule P-nd-compactification-Syncptick) simp
finally show ?thesis .

qed

lemma PSKIP S-d-compactification-Syncptick-upt-version:
‹[[E]]3 P ∈@ map Q [0 ..<n]. P = PSKIP S〈〈〈〈d

⊗
[[E ]]3 map A [0 ..<n]〉〉〉〉d (replicate

n 0 )›
if ‹

∧
i. i < n =⇒ %-disjoint-ε (A i)›

‹
∧

i j. i < n =⇒ j < n =⇒ i 6= j =⇒ indep-enabl (A i) 0 E (A j) 0 ›
‹
∧

i. i < n =⇒ PSKIP S〈〈A i〉〉d 0 = Q i›
proof −

have ‹[[E]]3 P ∈@ map Q [0 ..<n]. P = [[E]]3 i ∈@ [0 ..<n]. Q i›
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by (auto intro: mono-MultiSyncptick-eq2 )
also have ‹. . . = [[E]]3 i ∈@ [0 ..<n]. PSKIP S〈〈A i〉〉d 0 ›

by (auto simp add: that(3 ) intro: mono-MultiSyncptick-eq)
also have ‹. . . = [[E]]3 (σ, A) ∈@ zip (replicate n 0 ) (map A [0 ..<n]). PSKIP S〈〈A〉〉d

σ›
proof (induct n rule: nat-induct-012 )

case (Suc k)
have ‹[[E]]3 i∈@ [0 ..<Suc k]. PSKIP S〈〈A i〉〉d 0 =

[[E]]3 i∈@ [0 ..<k]. PSKIP S〈〈A i〉〉d 0 [[E ]]3Llist PSKIP S〈〈A k〉〉d 0 ›
using Suc.hyps(1 ) by (simp add: MultiSyncptick-snoc)
also have ‹. . . = [[E]]3 (σ, A) ∈@ zip (replicate k 0 ) (map A [0 ..<k]).

PSKIP S〈〈A〉〉d σ [[E ]]3Llist PSKIP S〈〈A k〉〉d 0 ›
by (simp only: Suc.hyps(2 ))

also have ‹. . . = [[E]]3 (σ, A) ∈@ zip (replicate (Suc k) 0 ) (map A [0 ..<Suc
k]). PSKIP S〈〈A〉〉d σ›

using Suc.hyps(1 ) by (simp flip: replicate-append-same add: MultiSyncptick-snoc)
finally show ?case .

qed simp-all
also have ‹. . . = PSKIP S〈〈〈〈d

⊗
[[E ]]3 map A [0 ..<n]〉〉〉〉d (replicate n 0 )›

by (rule PSKIP S-d-compactification-Syncptick) (auto simp add: that(1 , 2 ))
finally show ?thesis .

qed

lemma P-d-compactification-Syncptick-upt-version:
‹[[E]]3 P ∈@ map Q [0 ..<n]. P = P〈〈〈〈d

⊗
[[E ]]3 map A [0 ..<n]〉〉〉〉d (replicate n

0 )›
if ‹

∧
i j. i < n =⇒ j < n =⇒ i 6= j =⇒ indep-enabl (A i) 0 E (A j) 0 ›

‹
∧

i. i < n =⇒ P〈〈A i〉〉d 0 = Q i›
proof −

have ‹[[E]]3 P ∈@ map Q [0 ..<n]. P = [[E]]3 i ∈@ [0 ..<n]. Q i›
by (auto intro: mono-MultiSyncptick-eq2 )

also have ‹. . . = [[E]]3 i ∈@ [0 ..<n]. P〈〈A i〉〉d 0 ›
by (auto simp add: that intro: mono-MultiSyncptick-eq)

also have ‹. . . = [[E]]3 (σ, A)∈@ (zip (replicate n 0 ) (map A [0 ..<n])). P〈〈A〉〉d
σ›

proof (induct n rule: nat-induct-012 )
case (Suc k)
have ‹[[E]]3 i∈@ [0 ..<Suc k]. P〈〈A i〉〉d 0 =

[[E]]3 i∈@ [0 ..<k]. P〈〈A i〉〉d 0 [[E ]]3Llist P〈〈A k〉〉d 0 ›
using Suc.hyps(1 ) by (simp add: MultiSyncptick-snoc)

also have ‹. . . = [[E]]3 (σ, A)∈@ zip (replicate k 0 ) (map A [0 ..<k]). P〈〈A〉〉d
σ [[E ]]3Llist P〈〈A k〉〉d 0 ›

by (simp only: Suc.hyps(2 ))
also have ‹. . . = [[E]]3 (σ, A)∈@ zip (replicate (Suc k) 0 ) (map A [0 ..<Suc

k]). P〈〈A〉〉d σ›
using Suc.hyps(1 ) by (simp flip: replicate-append-same add: MultiSyncptick-snoc)
finally show ?case .

qed simp-all
also have ‹. . . = P〈〈〈〈d

⊗
[[E ]]3 map A [0 ..<n]〉〉〉〉d (replicate n 0 )›
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by (rule P-d-compactification-Syncptick) (auto simp add: that(1 ))
finally show ?thesis .

qed

8.4 More on Iterated Combine and Events

Through τ -iterated-combine-Syncptick ε-iterated-combine-Syncptick R-iterated-combine-Syncptick,
we immediately recover the results proven in HOL−CSP-Proc−Omata.Compactification-Synchronization-Product.
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Chapter 9

Combining Automata for
Sequential Composition
Generalized

9.1 Definitions

9.2 General Patterns
definition combined-Seq-ε ::

‹[( ′σ0,
′a, ′r , ′α0) Ad-scheme, ′r ⇒ ( ′σ1,

′a, ′s, ′α1) Ad-scheme, ′σ ⇒ ′σ0,
′σ ⇒

′σ1,
′σ] ⇒ ′a set›

where ‹combined-Seq-ε A0 A1 i0 i1 σs ≡
if i0 σs ∈ % A0

then if i1 σs ∈ % (A1 dω A0 (i0 σs)e)
then {}
else ε (A1 dω A0 (i0 σs)e) (i1 σs)

else ε A0 (i0 σs)›

definition combinend-Seq-ε ::
‹[( ′σ0,

′a, ′r , ′α0) And-scheme, ′r ⇒ ( ′σ1,
′a, ′s, ′α1) And-scheme, ′σ ⇒ ′σ0,

′σ
⇒ ′σ1,

′σ] ⇒ ′a set›
where ‹combinend-Seq-ε A0 A1 i0 i1 σs ≡

if i0 σs ∈ % A0

then if i1 σs ∈ (
⋃

r∈ω A0 (i0 σs). % (A1 r))
then {}
else (

⋃
r ∈ ω A0 (i0 σs). ε (A1 r) (i1 σs))

else ε A0 (i0 σs)›

lemmas combine-Seq-ε-defs = combined-Seq-ε-def combinend-Seq-ε-def

fun combined-Seq ::
‹[( ′σ0,

′e, ′r , ′α0) Ad-scheme, ′r ⇒ ( ′σ1,
′e, ′s, ′α1) Ad-scheme,
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′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ0 ⇒ ′σ1 ⇒ ′σ] ⇒ ( ′σ, ′e, ′s) Ad›
and combinend-Seq ::
‹[( ′σ0,

′e, ′r , ′α0) And-scheme, ′r ⇒ ( ′σ1,
′e, ′s, ′α1) And-scheme,

′σ ⇒ ′σ0,
′σ ⇒ ′σ1,

′σ0 ⇒ ′σ1 ⇒ ′σ] ⇒ ( ′σ, ′e, ′s) And›
where ‹combined-Seq A0 A1 i0 i1 f =

(|τ = λσs e. if i0 σs ∈ % A0

then if i1 σs ∈ % (A1 dω A0 (i0 σs)e)
then ♦

else update-right (A1 dω A0 (i0 σs)e) (i0 σs) (i1 σs) e (f-up-opt
f ) (λσ. bσc)

else update-left A0 (i0 σs) (i1 σs) e (f-up-opt f ) (λσ. bσc),
ω = λσs. case ω A0 (i0 σs) of ♦ ⇒ ♦ | brc ⇒ ω (A1 r) (i1 σs)|)›

| ‹combinend-Seq A0 A1 i0 i1 f =
(|τ = λσs e. if i0 σs ∈ % A0

then if i1 σs ∈ (
⋃

r∈ω A0 (i0 σs). % (A1 r))
then {}
else (

⋃
r∈ω A0 (i0 σs). update-right (A1 r) (i0 σs) (i1 σs) e

(f-up-set f ) (λσ. {σ}))
else update-left A0 (i0 σs) (i1 σs) e (f-up-set f ) (λσ. {σ}),

ω = λσs.
⋃

r∈ω A0 (i0 σs). ω (A1 r) (i1 σs)|)›

9.3 Specializations
definition combinedP airlist-Seqptick ::

‹[( ′σ, ′e, ′r , ′α) Ad-scheme, ′r ⇒ ( ′σ, ′e, ′s, ′β) Ad-scheme] ⇒ ( ′σ list, ′e, ′s) Ad›
where ‹combinedP airlist-Seqptick A0 A1 ≡ combined-Seq A0 A1 hd (λσs. hd (tl

σs)) (λs t. [s, t])›
definition combinendP airlist-Seqptick ::

‹[( ′σ, ′e, ′r , ′α) And-scheme, ′r ⇒ ( ′σ, ′e, ′s, ′β) And-scheme] ⇒ ( ′σ list, ′e, ′s)
And›

where ‹combinendP airlist-Seqptick A0 A1 ≡ combinend-Seq A0 A1 hd (λσs. hd
(tl σs)) (λs t. [s, t])›

definition combinedP air-Seqptick ::
‹[( ′σ0,

′e, ′r , ′α) Ad-scheme, ′r ⇒ ( ′σ1,
′e, ′s, ′β) Ad-scheme] ⇒ ( ′σ0 × ′σ1,

′e,
′s) Ad›

where ‹combinedP air-Seqptick A0 A1 ≡ combined-Seq A0 A1 fst snd Pair›
definition combinendP air-Seqptick ::

‹[( ′σ0,
′e, ′r , ′α) And-scheme, ′r ⇒ ( ′σ1,

′e, ′s, ′β) And-scheme] ⇒ ( ′σ0 × ′σ1,
′e, ′s) And›

where ‹combinendP air-Seqptick A0 A1 ≡ combinend-Seq A0 A1 fst snd Pair›

definition combinedListslenL-Seqptick ::
‹[( ′σ list, ′e, ′r , ′α) Ad-scheme, nat, ′r ⇒ ( ′σ list, ′e, ′s, ′β) Ad-scheme] ⇒ ( ′σ

list, ′e, ′s) Ad›
where ‹combinedListslenL-Seqptick A0 len0 A1 ≡ combined-Seq A0 A1 (take

len0) (drop len0) (@)›
definition combinendListslenL-Seqptick ::

‹[( ′σ list, ′e, ′r , ′α) And-scheme, nat, ′r ⇒ ( ′σ list, ′e, ′s, ′β) And-scheme] ⇒ ( ′σ
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list, ′e, ′s) And›
where ‹combinendListslenL-Seqptick A0 len0 A1 ≡ combinend-Seq A0 A1 (take

len0) (drop len0) (@)›

definition combinedRlist-Seqptick ::
‹[( ′σ, ′e, ′r , ′α) Ad-scheme, ′r ⇒ ( ′σ list, ′e, ′s, ′β) Ad-scheme] ⇒ ( ′σ list, ′e, ′s)

Ad›
where ‹combinedRlist-Seqptick A0 A1 ≡ combined-Seq A0 A1 hd tl (#)›

definition combinendRlist-Seqptick ::
‹[( ′σ, ′e, ′r , ′α) And-scheme, ′r ⇒ ( ′σ list, ′e, ′s, ′β) And-scheme] ⇒ ( ′σ list, ′e,

′s) And›
where ‹combinendRlist-Seqptick A0 A1 ≡ combinend-Seq A0 A1 hd tl (#)›

lemmas combineP airlist-Seqptick-defs = combinedP airlist-Seqptick-def combinendP airlist-Seqptick-def
and combineP air-Seqptick-defs = combinedP air-Seqptick-def combinendP air-Seqptick-def
and combineListslenL-Seqptick = combinedListslenL-Seqptick-def combinendListslenL-Seqptick-def
and combineRlist-Seqptick-defs = combinedRlist-Seqptick-def combinendRlist-Seqptick-def

lemmas combine-Seq-defs =
combineP airlist-Seqptick-defs combineP air-Seqptick-defs combineListslenL-Seqptick

combineRlist-Seqptick-defs

bundle combine-Seq-syntax begin

notation combinedP airlist-Seqptick (‹〈〈- d⊗;3P airlist -〉〉› [0 , 0 ])
notation combinendP airlist-Seqptick (‹〈〈- nd⊗;3P airlist -〉〉› [0 , 0 ])
notation combinedP air-Seqptick (‹〈〈- d⊗;3P air -〉〉› [0 , 0 ])
notation combinendP air-Seqptick (‹〈〈- nd⊗;3P air -〉〉› [0 , 0 ])
notation combinedListslenL-Seqptick (‹〈〈- d⊗-;ListslenL -〉〉› [0 , 0 , 0 ])
notation combinendListslenL-Seqptick (‹〈〈- nd⊗-;ListslenL -〉〉› [0 , 0 , 0 ])
notation combinedRlist-Seqptick (‹〈〈- d⊗;3Rlist -〉〉› [0 , 0 ])
notation combinendRlist-Seqptick (‹〈〈- nd⊗;3Rlist -〉〉› [0 , 0 ])

end

unbundle combine-Seq-syntax

9.4 First Properties
lemma ε-combineP airlist-Seqptick :

‹ε 〈〈A0 d⊗;3P airlist A1〉〉 σs = combined-Seq-ε A0 A1 hd (hd ◦ tl) σs›
‹ε 〈〈B0 nd⊗;3P airlist B1〉〉 σs = combinend-Seq-ε B0 B1 hd (hd ◦ tl) σs›
by (auto simp add: combine-Seq-ε-defs combineP airlist-Seqptick-defs

ε-simps %-simps option.case-eq-if )

lemma ε-combineP air-Seqptick :
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‹ε 〈〈A0 d⊗;3P air A1〉〉 σs = combined-Seq-ε A0 A1 fst snd σs›
‹ε 〈〈B0 nd⊗;3P air B1〉〉 σs = combinend-Seq-ε B0 B1 fst snd σs›
by (auto simp add: combine-Seq-ε-defs combineP air-Seqptick-defs

ε-simps %-simps option.case-eq-if )

lemma ε-combineListslenL-Seqptick :
‹ε 〈〈A0 d⊗len0;ListslenL A1〉〉 σs = combined-Seq-ε A0 A1 (take len0) (drop len0)

σs›
‹ε 〈〈B0 nd⊗len0;ListslenL B1〉〉 σs = combinend-Seq-ε B0 B1 (take len0) (drop

len0) σs›
by (auto simp add: combine-Seq-ε-defs combineListslenL-Seqptick

ε-simps %-simps option.case-eq-if )

lemma ε-combineRlist-Seqptick :
‹ε 〈〈A0 d⊗;3Rlist A1〉〉 σs = combined-Seq-ε A0 A1 hd tl σs›
‹ε 〈〈B0 nd⊗;3Rlist B1〉〉 σs = combinend-Seq-ε B0 B1 hd tl σs›
by (auto simp add: combine-Seq-ε-defs combineRlist-Seqptick-defs

ε-simps %-simps option.case-eq-if )

9.4.1 Reachability
lemma Rd-combinedListslenL-Seqptick-subset:

‹Rd 〈〈A0 d⊗len0;ListslenL A1〉〉 (s0 @ s1) ⊆ {t0 @ t1 |t0 t1. t0 ∈ Rd A0 s0}› (is
‹?SA ⊆ -›)

if same-length-Rd: ‹
∧

t0. t0 ∈ Rd A0 s0 =⇒ length t0 = len0›
proof safe

show ‹t ∈ ?SA =⇒ ∃ t0 t1. t = t0 @ t1 ∧ t0 ∈ Rd A0 s0› for t
proof (induct rule: Rd.induct)

case init show ?case by (metis Rd.init)
next

case (step σ ′ σ ′′ a)
from step.hyps(2 ) same-length-Rd obtain t0 t1

where ‹σ ′ = t0 @ t1› ‹t0 ∈ Rd A0 s0› ‹length t0 = len0› by blast
with step.hyps(3 ) show ?case

by (auto simp add: combineListslenL-Seqptick map-option-case
split: if-split-asm option.splits) (metis Rd.step)

qed
qed

lemma Rnd-combinendListslenL-Seqptick-subset:
‹Rnd 〈〈A0 nd⊗len0;ListslenL A1〉〉 (s0 @ s1) ⊆ {t0 @ t1 |t0 t1. t0 ∈ Rnd A0 s0}›

(is ‹?SA ⊆ -›)
if same-length-Rnd: ‹

∧
t0. t0 ∈ Rnd A0 s0 =⇒ length t0 = len0›

proof safe
show ‹t ∈ ?SA =⇒ ∃ t0 t1. t = t0 @ t1 ∧ t0 ∈ Rnd A0 s0› for t
proof (induct rule: Rnd.induct)

case init show ?case by (metis Rnd.init)
next

case (step σ ′ σ ′′ a)
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from step.hyps(2 ) same-length-Rnd obtain t0 t1
where ‹σ ′ = t0 @ t1› ‹t0 ∈ Rnd A0 s0› ‹length t0 = len0› by blast

with step.hyps(3 ) show ?case
by (auto simp add: combineListslenL-Seqptick split: if-split-asm) (metis

Rnd.step)
qed

qed

lemma Rd-combinedP airlist-Seqptick-subset:
‹Rd 〈〈A0 d⊗;3P airlist A1〉〉 [s0, s1] ⊆ {[t0, t1] |t0 t1. t0 ∈ Rd A0 s0}› (is ‹?SA

⊆ -›)
proof safe

show ‹t ∈ ?SA =⇒ ∃ t0 t1. t = [t0, t1] ∧ t0 ∈ Rd A0 s0 › for t
proof (induct rule: Rd.induct)

case init show ?case by (metis Rd.init)
next

case (step σ ′ σ ′′ a)
from step.hyps(2 ) obtain t0 t1 where ‹σ ′ = [t0, t1]› ‹t0 ∈ Rd A0 s0› by blast
with step.hyps(3 ) show ?case

by (auto simp add: combineP airlist-Seqptick-defs map-option-case
split: if-split-asm option.split-asm) (metis Rd.step)

qed
qed

lemma Rnd-combinendP airlist-Seqptick-subset:
‹Rnd 〈〈A0 nd⊗;3P airlist A1〉〉 [s0, s1] ⊆ {[t0, t1] |t0 t1. t0 ∈ Rnd A0 s0}› (is ‹?SA

⊆ -›)
proof safe

show ‹t ∈ ?SA =⇒ ∃ t0 t1. t = [t0, t1] ∧ t0 ∈ Rnd A0 s0 › for t
proof (induct rule: Rnd.induct)

case init show ?case by (metis Rnd.init)
next

case (step σ ′ σ ′′ a)
from step.hyps(2 ) obtain t0 t1 where ‹σ ′ = [t0, t1]› ‹t0 ∈ Rnd A0 s0› by

blast
with step.hyps(3 ) show ?case

by (auto simp add: combineP airlist-Seqptick-defs split: if-split-asm) (metis
Rnd.step)

qed
qed

lemma Rd-combinedP air-Seqptick-subset:
‹Rd 〈〈A0 d⊗;3P air A1〉〉 (s0, s1) ⊆ {(t0, t1) |t0 t1. t0 ∈ Rd A0 s0}› (is ‹?SA ⊆

-›)
proof safe

show ‹t ∈ ?SA =⇒ ∃ t0 t1. t = (t0, t1) ∧ t0 ∈ Rd A0 s0 › for t
proof (induct rule: Rd.induct)
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case init show ?case by (metis Rd.init)
next

case (step σ ′ σ ′′ a)
from step.hyps(2 ) obtain t0 t1 where ‹σ ′ = (t0, t1)› ‹t0 ∈ Rd A0 s0› by blast
with step.hyps(3 ) show ?case

by (auto simp add: combineP air-Seqptick-defs map-option-case
split: if-split-asm option.split-asm) (metis Rd.step)

qed
qed

lemma Rnd-combinendP air-Seqptick-subset:
‹Rnd 〈〈A0 nd⊗;3P air A1〉〉 (s0, s1) ⊆ {(t0, t1) |t0 t1. t0 ∈ Rnd A0 s0}› (is ‹?SA

⊆ -›)
proof safe

show ‹t ∈ ?SA =⇒ ∃ t0 t1. t = (t0, t1) ∧ t0 ∈ Rnd A0 s0 › for t
proof (induct rule: Rnd.induct)

case init show ?case by (metis Rnd.init)
next

case (step σ ′ σ ′′ a)
from step.hyps(2 ) obtain t0 t1 where ‹σ ′ = (t0, t1)› ‹t0 ∈ Rnd A0 s0› by

blast
with step.hyps(3 ) show ?case

by (auto simp add: combineP air-Seqptick-defs split: if-split-asm) (metis
Rnd.step)

qed
qed

lemma Rd-combinedRlist-Seqptick-subset:
‹Rd 〈〈A0 d⊗;3Rlist A1〉〉 (s0 # s1) ⊆ {t0 # t1 |t0 t1. t0 ∈ Rd A0 s0}› (is ‹?SA

⊆ -›)
proof safe

show ‹t ∈ ?SA =⇒ ∃ t0 t1. t = t0 # t1 ∧ t0 ∈ Rd A0 s0 › for t
proof (induct rule: Rd.induct)

case init show ?case by (metis Rd.init)
next

case (step σ ′ σ ′′ a)
from step.hyps(2 ) obtain t0 t1 where ‹σ ′ = t0 # t1› ‹t0 ∈ Rd A0 s0› by blast
with step.hyps(3 ) show ?case

by (auto simp add: combineRlist-Seqptick-defs map-option-case
split: if-split-asm option.split-asm) (metis Rd.step)

qed
qed

lemma Rnd-combinendRlist-Seqptick-subset:
‹Rnd 〈〈A0 nd⊗;3Rlist A1〉〉 (s0 # s1) ⊆ {t0 # t1 |t0 t1. t0 ∈ Rnd A0 s0}› (is

‹?SA ⊆ -›)
proof safe

show ‹t ∈ ?SA =⇒ ∃ t0 t1. t = t0 # t1 ∧ t0 ∈ Rnd A0 s0 › for t
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proof (induct rule: Rnd.induct)
case init show ?case by (metis Rnd.init)

next
case (step σ ′ σ ′′ a)
from step.hyps(2 ) obtain t0 t1 where ‹σ ′ = t0 # t1› ‹t0 ∈ Rnd A0 s0› by

blast
with step.hyps(3 ) show ?case

by (auto simp add: combineRlist-Seqptick-defs split: if-split-asm) (metis
Rnd.step)

qed
qed

9.5 Normalization
lemma τ -combineP airlist-Seqptick-behaviour :

‹τ 〈〈〈〈A0 d⊗;3P airlist A1〉〉〉〉d↪→nd [s0, s1] e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗;3P airlist (λr .
〈〈A1 r〉〉d↪→nd)〉〉 [s0, s1] e›
by (auto simp add: combineP airlist-Seqptick-defs det-ndet-conv-defs option.case-eq-if

ε-simps %-simps)

lemma τ -combineP air-Seqptick-behaviour :
‹τ 〈〈〈〈A0 d⊗;3P air A1〉〉〉〉d↪→nd (s0, s1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗;3P air (λr . 〈〈A1

r〉〉d↪→nd)〉〉 (s0, s1) e›
by (auto simp add: combineP air-Seqptick-defs det-ndet-conv-defs option.case-eq-if

ε-simps %-simps)

lemma τ -combineListslenL-Seqptick-behaviour :
‹τ 〈〈〈〈A0 d⊗len0;ListslenL A1〉〉〉〉d↪→nd (σs0 @ σs1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗len0;ListslenL

(λr . 〈〈A1 r〉〉d↪→nd)〉〉 (σs0 @ σs1) e›
by (auto simp add: combineListslenL-Seqptick det-ndet-conv-defs option.case-eq-if

ε-simps %-simps)

lemma τ -combineRlist-Seqptick-behaviour :
‹τ 〈〈〈〈A0 d⊗;3Rlist A1〉〉〉〉d↪→nd (s0 # σs1) e = τ 〈〈〈〈A0〉〉d↪→nd nd⊗;3Rlist (λr . 〈〈A1

r〉〉d↪→nd)〉〉 (s0 # σs1) e›
by (auto simp add: combineRlist-Seqptick-defs det-ndet-conv-defs option.case-eq-if

ε-simps %-simps)

Behaviour of normalisations
lemma PSKIP S-combineP airlist-Seqptick-behaviour :
‹PSKIP S〈〈〈〈A0 d⊗;3P airlist A1〉〉〉〉d [s0, s1] = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3P airlist

(λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd [s0, s1]›
by (fold PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d,

rule PSKIP S-nd-eqI-strong-id, unfold Rnd-from-det-to-ndet)
(all ‹drule set-mp[OF Rd-combinedP airlist-Seqptick-subset]›,

auto simp add: combineP airlist-Seqptick-defs from-det-to-ndet-def %-simps
split: option.split)

lemma P-combineP airlist-Seqptick-behaviour :
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‹P〈〈〈〈A0 d⊗;3P airlist A1〉〉〉〉d [s0, s1] = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3P airlist (λr . 〈〈A1

r〉〉d↪→nd)〉〉〉〉nd [s0, s1]›
by (fold P-nd-from-det-to-ndet-is-P-d,

rule P-nd-eqI-strong-id, unfold Rnd-from-det-to-ndet)
(drule set-mp[OF Rd-combinedP airlist-Seqptick-subset],

auto simp add: combineP airlist-Seqptick-defs from-det-to-ndet-def %-simps
split: option.split)

lemma PSKIP S-combineP air-Seqptick-behaviour :
‹PSKIP S〈〈〈〈A0 d⊗;3P air A1〉〉〉〉d (s0, s1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3P air (λr .
〈〈A1 r〉〉d↪→nd)〉〉〉〉nd (s0, s1)›

by (fold PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d,
rule PSKIP S-nd-eqI-strong-id, unfold Rnd-from-det-to-ndet)

(all ‹drule set-mp[OF Rd-combinedP air-Seqptick-subset]›,
auto simp add: combineP air-Seqptick-defs from-det-to-ndet-def %-simps split:

option.split)

lemma P-combineP air-Seqptick-behaviour :
‹P〈〈〈〈A0 d⊗;3P air A1〉〉〉〉d (s0, s1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3P air (λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd

(s0, s1)›
by (fold P-nd-from-det-to-ndet-is-P-d,

rule P-nd-eqI-strong-id, unfold Rnd-from-det-to-ndet)
(drule set-mp[OF Rd-combinedP air-Seqptick-subset],

auto simp add: combineP air-Seqptick-defs from-det-to-ndet-def %-simps split:
option.split)

lemma PSKIP S-combineRlist-Seqptick-behaviour :
‹PSKIP S〈〈〈〈A0 d⊗;3Rlist A1〉〉〉〉d (s0 # s1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3Rlist

(λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd (s0 # s1)›
by (fold PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d,

rule PSKIP S-nd-eqI-strong-id, unfold Rnd-from-det-to-ndet)
(all ‹drule set-mp[OF Rd-combinedRlist-Seqptick-subset]›,

auto simp add: combineRlist-Seqptick-defs from-det-to-ndet-def %-simps split:
option.split)

lemma P-combineRlist-Seqptick-behaviour :
‹P〈〈〈〈A0 d⊗;3Rlist A1〉〉〉〉d (s0 # s1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3Rlist (λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd

(s0 # s1)›
by (fold P-nd-from-det-to-ndet-is-P-d,

rule P-nd-eqI-strong-id, unfold Rnd-from-det-to-ndet)
(drule set-mp[OF Rd-combinedRlist-Seqptick-subset],

auto simp add: combineRlist-Seqptick-defs from-det-to-ndet-def %-simps split:
option.split)

lemma PSKIP S-combineListslenL-Seqptick-behaviour :
‹PSKIP S〈〈〈〈A0 d⊗len0;ListslenL A1〉〉〉〉d (σs0 @ σs1) = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd
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nd⊗len0;ListslenL (λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd (σs0 @ σs1)›
if ‹

∧
σs0 ′. σs0 ′ ∈ Rd A0 σs0 =⇒ length σs0 ′ = len0›

by (fold PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d,
rule PSKIP S-nd-eqI-strong-id, unfold Rnd-from-det-to-ndet)

(all ‹drule set-mp[OF Rd-combinedListslenL-Seqptick-subset[OF that], rotated]›,
auto simp add: combineListslenL-Seqptick from-det-to-ndet-def %-simps split:

option.split)

lemma P-combineListslenL-Seqptick-behaviour :
‹P〈〈〈〈A0 d⊗len0;ListslenL A1〉〉〉〉d (σs0 @ σs1) = P〈〈〈〈〈〈A0〉〉d↪→nd nd⊗len0;ListslenL

(λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd (σs0 @ σs1)›
if ‹

∧
σt0. σt0 ∈ Rd A0 σs0 =⇒ length σt0 = len0›

by (fold P-nd-from-det-to-ndet-is-P-d,
rule P-nd-eqI-strong-id, unfold Rnd-from-det-to-ndet)

(drule set-mp[OF Rd-combinedListslenL-Seqptick-subset[OF that], rotated],
auto simp add: combineListslenL-Seqptick from-det-to-ndet-def %-simps split:

option.split)
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Chapter 10

Compactification of
Sequential Composition
Generalized

10.1 Iterated Combine
10.1.1 Definitions
fun iterated-combined-Seqptick :: ‹[( ′r ⇒ ( ′σ, ′e, ′r) Ad) list, ′r ] ⇒ ( ′σ list, ′e, ′r)
Ad› (‹〈〈d

⊗
;3 -〉〉› [0 ])

where ‹〈〈d
⊗

;3 []〉〉 r = (|τ = λσs a. ♦, ω = λσs. brc|)›
| ‹〈〈d

⊗
;3 [A0]〉〉 r = d〈〈A0 r〉〉σ↪→σs›

| ‹〈〈d
⊗

;3 A0 # A1 # As〉〉 r = 〈〈A0 r d⊗;3Rlist 〈〈d
⊗

;3 A1 # As〉〉〉〉›

fun iterated-combinend-Seqptick :: ‹[( ′r ⇒ ( ′σ, ′e, ′r) And) list, ′r ] ⇒ ( ′σ list, ′e,
′r) And› (‹〈〈nd

⊗
;3 -〉〉› [0 ])

where ‹〈〈nd

⊗
;3 []〉〉 r = (|τ = λσs a. {}, ω = λσs. {r}|)›

| ‹〈〈nd

⊗
;3 [A0]〉〉 r = nd〈〈A0 r〉〉σ↪→σs›

| ‹〈〈nd

⊗
;3 A0 # A1 # As〉〉 r = 〈〈A0 r nd⊗;3Rlist 〈〈nd

⊗
;3 A1 # As〉〉〉〉›

lemma iterated-combined-Seqptick-simps-bis: ‹As 6= [] =⇒ 〈〈d
⊗

;3 A0 # As〉〉 r =
〈〈A0 r d⊗;3Rlist 〈〈d

⊗
;3 As〉〉〉〉›

and iterated-combinend-Seqptick-simps-bis: ‹Bs 6= [] =⇒ 〈〈nd

⊗
;3 B0 # Bs〉〉 r =

〈〈B0 r nd⊗;3Rlist 〈〈nd

⊗
;3 Bs〉〉〉〉›

by (induct As, simp-all) (induct Bs, simp-all)

10.1.2 First Results
lemma combineListslenL-Seqptick-combineRlist-Seqptick-eq:

‹ε 〈〈d〈〈A0〉〉σ↪→σs d⊗1;ListslenL A1〉〉 (s0 # σs) = ε 〈〈A0 d⊗;3Rlist A1〉〉 (s0 # σs)›
‹τ 〈〈d〈〈A0〉〉σ↪→σs d⊗1;ListslenL A1〉〉 (s0 # σs) e = τ 〈〈A0 d⊗;3Rlist A1〉〉 (s0 #

σs) e›
‹ε 〈〈nd〈〈B0〉〉σ↪→σs nd⊗1;ListslenL B1〉〉 (s0 # σs) = ε 〈〈B0 nd⊗;3Rlist B1〉〉 (s0 #
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σs)›
‹τ 〈〈nd〈〈B0〉〉σ↪→σs nd⊗1;ListslenL B1〉〉 (s0 # σs) e = τ 〈〈B0 nd⊗;3Rlist B1〉〉 (s0

# σs) e›
by (simp-all add: ε-simps %-simps combineListslenL-Seqptick combineRlist-Seqptick-defs

σ-σs-conv-defs)
(safe, auto simp add: map-option-case split: option.splits)

lemma combineP airlist-Seqptick-and-iterated-combine-Seqptick-eq:
‹ε 〈〈A0 r d⊗;3P airlist A1〉〉 [s0, s1] = ε (〈〈d

⊗
;3 [A0, A1]〉〉 r) [s0, s1]›

‹τ 〈〈A0 r d⊗;3P airlist A1〉〉 [s0, s1] e = τ (〈〈d
⊗

;3 [A0, A1]〉〉 r) [s0, s1] e›
‹ε 〈〈B0 r nd⊗;3P airlist B1〉〉 [s0, s1] = ε (〈〈nd

⊗
;3 [B0, B1]〉〉 r) [s0, s1]›

‹τ 〈〈B0 r nd⊗;3P airlist B1〉〉 [s0, s1] e = τ (〈〈nd

⊗
;3 [B0, B1]〉〉 r) [s0, s1] e›

by (simp-all add: ε-simps %-simps combineP airlist-Seqptick-defs combineRlist-Seqptick-defs
σ-σs-conv-defs)

(safe, auto simp add: map-option-case split: option.splits)

lemma combineP airlist-Seqptick-and-combineRlist-Seqptick-eq :
‹ε 〈〈A0 d⊗;3P airlist A1〉〉 [s0, s1] = ε 〈〈A0 d⊗;3Rlist 〈〈d

⊗
;3 [A1]〉〉〉〉 [s0, s1]›

‹τ 〈〈A0 d⊗;3P airlist A1〉〉 [s0, s1] e = τ 〈〈A0 d⊗;3Rlist 〈〈d
⊗

;3 [A1]〉〉〉〉 [s0, s1] e›
‹ε 〈〈B0 nd⊗;3P airlist B1〉〉 [s0, s1] = ε 〈〈B0 nd⊗;3Rlist 〈〈nd

⊗
;3 [B1]〉〉〉〉 [s0, s1]›

‹τ 〈〈B0 nd⊗;3P airlist B1〉〉 [s0, s1] e = τ 〈〈B0 nd⊗;3Rlist 〈〈nd

⊗
;3 [B1]〉〉〉〉 [s0, s1]

e›
by (simp-all add: ε-simps %-simps combineP airlist-Seqptick-defs combineRlist-Seqptick-defs

σ-σs-conv-defs)
(safe, auto simp add: map-option-case split: option.splits)

10.1.3 Reachability
lemma same-length-τ -iterated-combined-Seqptick :

‹length σs = length As =⇒ bσtc = τ (〈〈d
⊗

;3 As〉〉 r) σs a =⇒ length σt = length
As›
proof (induct arbitrary: σt r rule: induct-2-lists012 )

case Nil thus ?case by simp
next

case (single σ0 A0) thus ?case
by simp (metis length-1-transdE length-1-trans-from-σ-to-σs(1 ) length-Cons

list.size(3 ))
next

case (Cons σ0 σ1 σs A0 A1 As)
from Cons.prems Cons.hyps(1 , 3 ) show ?case

by (simp add: combineRlist-Seqptick-defs map-option-case %-simps
split: if-split-asm option.split-asm) metis

qed

lemma same-length-τ -iterated-combinend-Seqptick :
‹length σs = length As =⇒ σt ∈ τ (〈〈nd

⊗
;3 As〉〉 r) σs a =⇒ length σt = length

As›
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proof (induct arbitrary: σt r rule: induct-2-lists012 )
case Nil thus ?case by simp

next
case (single σ0 A0) thus ?case

by simp (meson length-1-transnd-def length-1-trans-from-σ-to-σs(2 ))
next

case (Cons σ0 σ1 σs A0 A1 As)
from Cons.prems Cons.hyps(1 , 3 ) show ?case

by (auto simp add: combineRlist-Seqptick-defs map-option-case %-simps
split: if-split-asm)

qed

lemma same-length-Rd-iterated-combined-Seqptick :
‹σt ∈ Rd (〈〈d

⊗
;3 As〉〉 r) σs =⇒ length σs = length As =⇒ length σt = length

As›
by (induct rule: Rd.induct, simp) (meson same-length-τ -iterated-combined-Seqptick)

lemma same-length-Rnd-iterated-combinend-Seqptick :
‹σt ∈ Rnd (〈〈nd

⊗
;3 As〉〉 r) σs =⇒ length σs = length As =⇒ length σt = length

As›
by (induct rule: Rnd.induct, simp) (meson same-length-τ -iterated-combinend-Seqptick)

10.1.4 Transmission of Properties
lemma %-disjoint-ε-transmission-to-iterated-combine-Seqptick :

‹As 6= [] =⇒ %-disjoint-ε ((last As) r) =⇒ %-disjoint-ε (〈〈d
⊗

;3 As〉〉 r)›
‹Bs 6= [] =⇒ %-disjoint-ε ((last Bs) r) =⇒ %-disjoint-ε (〈〈nd

⊗
;3 Bs〉〉 r)›

by (induct rule: induct-list012 ;
auto simp add: %-disjoint-ε-def combineRlist-Seqptick-defs ε-simps %-simps

σ-σs-conv-defs)+

10.1.5 Normalization
lemma ω-iterated-combine-Seqptick-det-ndet-conv:

‹ω (〈〈nd

⊗
;3 map (λA r . 〈〈A r〉〉d↪→nd) As〉〉 r) σs = ω 〈〈〈〈d

⊗
;3 As〉〉 r〉〉d↪→nd σs›

by (induct As arbitrary: σs r rule: induct-list012 [case-names Nil singl Cons])
(simp-all add: from-det-to-ndet-σ-σs-conv-commute combineRlist-Seqptick-defs
ω-from-det-to-ndet split: option.split)

lemma %-iterated-combine-Seqptick-det-ndet-conv :
‹% (〈〈nd

⊗
;3 map (λA r . 〈〈A r〉〉d↪→nd) As〉〉 r) = % 〈〈〈〈d

⊗
;3 As〉〉 r〉〉d↪→nd›

by (simp add: %-simps ω-iterated-combine-Seqptick-det-ndet-conv)

lemma τ -iterated-combine-Seqptick-behaviour :
‹length σs = length As =⇒
τ 〈〈〈〈d

⊗
;3 As〉〉 r〉〉d↪→nd σs e = τ (〈〈nd

⊗
;3 map (λA r . 〈〈A r〉〉d↪→nd) As〉〉 r) σs

e›
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proof (induct σs As arbitrary: r rule: induct-2-lists012 )
case Nil show ?case by simp

next
case (single σ0 A0)
show ?case by (simp add: from-det-to-ndet-σ-σs-conv-commute(1 ))

next
case (Cons σ0 σ1 σs A0 A1 As)
show ?case

by (simp add: τ -combineRlist-Seqptick-behaviour split: option.split,
simp add: combineRlist-Seqptick-defs %-iterated-combine-Seqptick-det-ndet-conv
ω-from-det-to-ndet split: option.split)

(metis Cons.hyps(3 ) %-iterated-combine-Seqptick-det-ndet-conv det-ndet-conv-%(1 )
list.simps(9 ))
qed

lemma PSKIP S-iterated-combine-Seqptick-behaviour :
assumes same-length: ‹length σs = length As›
shows ‹PSKIP S〈〈〈〈d

⊗
;3 As〉〉 r〉〉d σs = PSKIP S〈〈〈〈nd

⊗
;3 map (λA r . 〈〈A

r〉〉d↪→nd) As〉〉 r〉〉nd σs›
proof (fold PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d, rule PSKIP S-nd-eqI-strong-id)

show ‹σt ∈ Rnd 〈〈〈〈d
⊗

;3 As〉〉 r〉〉d↪→nd σs =⇒
τ (〈〈nd

⊗
;3 map (λA r . 〈〈A r〉〉d↪→nd) As〉〉 r) σt a = τ 〈〈〈〈d

⊗
;3 As〉〉 r〉〉d↪→nd

σt a› for σt a
by (simp add: Rnd-from-det-to-ndet τ -iterated-combine-Seqptick-behaviour

same-length same-length-Rd-iterated-combined-Seqptick)
next

show ‹ω (〈〈nd

⊗
;3 map (λA r . 〈〈A r〉〉d↪→nd) As〉〉 r) σt = ω 〈〈〈〈d

⊗
;3 As〉〉 r〉〉d↪→nd

σt› for σt
by (simp add: ω-iterated-combine-Seqptick-det-ndet-conv)

qed

lemma P-iterated-combine-Seqptick-behaviour :
assumes same-length: ‹length σs = length As›
shows ‹P〈〈〈〈d

⊗
;3 As〉〉 r〉〉d σs = P〈〈〈〈nd

⊗
;3 map (λA r . 〈〈A r〉〉d↪→nd) As〉〉 r〉〉nd

σs›
proof (fold P-nd-from-det-to-ndet-is-P-d, rule P-nd-eqI-strong-id)

show ‹σt ∈ Rnd 〈〈〈〈d
⊗

;3 As〉〉 r〉〉d↪→nd σs =⇒
τ (〈〈nd

⊗
;3 map (λA r . 〈〈A r〉〉d↪→nd) As〉〉 r) σt a = τ 〈〈〈〈d

⊗
;3 As〉〉 r〉〉d↪→nd

σt a› for σt a
by (simp add: Rnd-from-det-to-ndet τ -iterated-combine-Seqptick-behaviour

same-length same-length-Rd-iterated-combined-Seqptick)
qed
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10.2 Compactification Theorems

10.2.1 Binary

Pair

lemma PSKIP S-nd-combineP air-Seqptick :
fixes A0 A1

assumes at-most-1-elem-term : ‹at-most-1-elem-term A0›
— This assumption is necessary in the new setup, otherwise the result is not

always a Procomaton (for example if ω A0 σ0 = UNIV, we have P σ0 ;3 Q σ1 =
GlobalNdet UNIV (Q σ1)).

defines A-def : ‹A ≡ 〈〈A0 nd⊗;3P air A1〉〉›
defines P-def : ‹P ≡ PSKIP S〈〈A0〉〉nd›

and Q-def : ‹Q ≡ λσ1 r . PSKIP S〈〈A1 r〉〉nd σ1›
and S-def : ‹S ≡ PSKIP S〈〈A〉〉nd›

shows ‹P σ0 ;3 Q σ1 = S (σ0, σ1)›
proof −

let ?f = ‹PSKIP S-nd-step (ε A) (τ A) (ω A) (λσ ′. case σ ′ of (σ0, σ1) ⇒ P σ0

;3 Q σ1)›
note cartprod-rwrt = GlobalNdet-cartprod[of - - ‹λx y. - (x, y)›, simplified]
note Ndet-and-Seq = Seqptick-distrib-GlobalNdet-left Seqptick-distrib-GlobalNdet-right
have P-rec : ‹P σ0 = PSKIP S-nd-step (ε A0) (τ A0) (ω A0) P σ0› for σ0

by (fact restriction-fix-eq[OF PSKIP S-nd-step-constructive-bis[of A0],
folded PSKIP S-nd-def P-def , THEN fun-cong])

have Q-rec : ‹Q σ1 = (λr . PSKIP S-nd-step (ε (A1 r)) (τ (A1 r)) (ω (A1 r))
(λσ1. Q σ1 r) σ1)› for σ1

by (rule ext, simp add: Q-def PSKIP S-nd-rec)
show ‹P σ0 ;3 Q σ1 = S (σ0, σ1)›
proof (rule fun-cong[of ‹λ(σ0, σ1).P σ0 ;3 Q σ1› - ‹(σ0, σ1)›, simplified])

show ‹(λ(σ0, σ1). P σ0 ;3 Q σ1) = S›
proof (rule restriction-fix-unique[OF PSKIP S-nd-step-constructive-bis[of A],

symmetric, folded PSKIP S-nd-def S-def ])
show ‹?f = (λ(σ0, σ1). P σ0 ;3 Q σ1)›
proof (rule ext, clarify)

show ‹?f (σ0, σ1) = P σ0 ;3 Q σ1› for σ0 σ1

proof (cases ‹σ0 ∈ % A0›)
show ‹σ0 /∈ % A0 =⇒ ?f (σ0, σ1) = P σ0 ;3 Q σ1›

by (subst (2 ) P-rec)
(auto simp add: combineP air-Seqptick-defs ε-simps A-def %-simps

Mprefix-Seqptick cartprod-rwrt Ndet-and-Seq intro!: mono-Mprefix-eq)
next

assume ‹σ0 ∈ % A0›
hence ‹ω A0 σ0 6= {}› by (simp add: %-simps)
then obtain r where ‹ω A0 σ0 = {r}›

by (meson at-most-1-elem-term at-most-1-elem-termE)
from ‹σ0 ∈ % A0› have P-rec ′ : ‹P σ0 = SKIPS (ω A0 σ0)› by (simp

add: P-rec %-simps)
have ε-A : ‹ε A (σ0, σ1) = (if σ1 ∈ % (A1 r) then {} else ε (A1 r) σ1)›
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by (simp add: A-def ε-combineP air-Seqptick combine-Seq-ε-defs ‹σ0 ∈ %
A0› ‹ω A0 σ0 = {r}›)

from ‹σ0 ∈ % A0› have ω-A : ‹ω A (σ0, σ1) = ω (A1 r) σ1›
by (simp add: A-def combineP air-Seqptick-defs ‹ω A0 σ0 = {r}›)

show ‹?f (σ0, σ1) = P σ0 ;3 Q σ1›
proof (cases ‹σ1 ∈ % (A1 r)›)

show ‹σ1 ∈ % (A1 r) =⇒ ?f (σ0, σ1) = P σ0 ;3 Q σ1›
by (subst (2 ) Q-rec)
(simp add: P-rec ′ ε-A ω-A SKIPS-def Ndet-and-Seq ‹ω A0 σ0 = {r}›

%-simps)
next

show ‹σ1 /∈ % (A1 r) =⇒ ?f (σ0, σ1) = P σ0 ;3 Q σ1›
by (subst (2 ) Q-rec, unfold ε-A ω-A SKIPS-def )
(auto simp add: A-def P-rec ′ Ndet-and-Seq ‹ω A0 σ0 = {r}›

%-simps cartprod-rwrt combineP air-Seqptick-defs intro!: mono-Mprefix-eq)
qed

qed
qed

qed
qed

qed

corollary PSKIP S-d-combineP air-Seqptick :
‹PSKIP S〈〈A0〉〉d σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉d σ1) = PSKIP S〈〈〈〈A0 d⊗;3P air A1〉〉〉〉d

(σ0, σ1)›
proof −

have ‹PSKIP S〈〈A0〉〉d σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉d σ1) =
PSKIP S〈〈〈〈A0〉〉d↪→nd〉〉nd σ0 ;3 (λr . PSKIP S〈〈〈〈A1 r〉〉d↪→nd〉〉nd σ1)›

by (simp add: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)
also have ‹. . . = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3P air (λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd (σ0,

σ1)›
by (metis PSKIP S-nd-combineP air-Seqptick at-most-1-elem-from-det-to-ndet

at-most-1-elem-imp-at-most-1-elem-term)
also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗;3P air A1〉〉〉〉d (σ0, σ1)›

by (simp add: PSKIP S-combineP air-Seqptick-behaviour)
finally show ?thesis .

qed

Pairlist

lemma PSKIP S-nd-combineP airlist-Seqptick :
‹PSKIP S〈〈A0〉〉nd σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉nd σ1) = PSKIP S〈〈〈〈A0 nd⊗;3P airlist

A1〉〉〉〉nd [σ0, σ1]›
if ‹at-most-1-elem-term A0›

proof −
from PSKIP S-nd-combineP air-Seqptick[OF ‹at-most-1-elem-term A0›]
have ‹PSKIP S〈〈A0〉〉nd σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉nd σ1) =

PSKIP S〈〈〈〈A0 nd⊗;3P air A1〉〉〉〉nd (σ0, σ1)› .
also have ‹. . . = PSKIP S〈〈〈〈A0 nd⊗;3P airlist A1〉〉〉〉nd [σ0, σ1]›
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proof (rule PSKIP S-nd-eqI-strong[of ‹λ(σ0, σ1). [σ0, σ1]› - ‹(σ0, σ1)›, simpli-
fied])

show ‹inj-on (λ(σ0, σ1). [σ0, σ1]) (Rnd 〈〈A0 nd⊗;3P air A1〉〉 (σ0, σ1))›
by (auto intro: inj-onI )

next
show ‹τ 〈〈A0 nd⊗;3P airlist A1〉〉 (case σ ′ of (σ0, σ1) ⇒ [σ0, σ1]) a =

(λσ ′. case σ ′ of (σ0, σ1) ⇒ [σ0, σ1]) ‘ τ 〈〈A0 nd⊗;3P air A1〉〉 σ ′ a› for σ ′ a
by (cases σ ′) (auto simp add: combineP air-Seqptick-defs combineP airlist-Seqptick-defs)

next
show ‹ω 〈〈A0 nd⊗;3P airlist A1〉〉 (case σ ′ of (σ0, σ1) ⇒ [σ0, σ1]) = ω 〈〈A0

nd⊗;3P air A1〉〉 σ ′› for σ ′

by (cases σ ′) (auto simp add: combineP air-Seqptick-defs combineP airlist-Seqptick-defs)
qed
finally show ?thesis .

qed

corollary PSKIP S-d-combineP airlist-Seqptick :
‹PSKIP S〈〈A0〉〉d σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉d σ1) = PSKIP S〈〈〈〈A0 d⊗;3P airlist

A1〉〉〉〉d [σ0, σ1]›
proof −

have ‹PSKIP S〈〈A0〉〉d σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉d σ1) =
PSKIP S〈〈〈〈A0〉〉d↪→nd〉〉nd σ0 ;3 (λr . PSKIP S〈〈〈〈A1 r〉〉d↪→nd〉〉nd σ1)›

by (simp add: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)
also have ‹. . . = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3P airlist (λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd

[σ0, σ1]›
by (metis PSKIP S-nd-combineP airlist-Seqptick at-most-1-elem-from-det-to-ndet

at-most-1-elem-imp-at-most-1-elem-term)
also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗;3P airlist A1〉〉〉〉d [σ0, σ1]›

by (simp add: PSKIP S-combineP airlist-Seqptick-behaviour)
finally show ?thesis .

qed

Rlist

lemma PSKIP S-nd-combineRlist-Seqptick :
‹PSKIP S〈〈A0〉〉nd σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉nd σs) = PSKIP S〈〈〈〈A0 nd⊗;3Rlist

A1〉〉〉〉nd (σ0 # σs)›
if ‹at-most-1-elem-term A0›

proof −
from PSKIP S-nd-combineP air-Seqptick[OF ‹at-most-1-elem-term A0›]
have ‹PSKIP S〈〈A0〉〉nd σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉nd σs) =

PSKIP S〈〈〈〈A0 nd⊗;3P air A1〉〉〉〉nd (σ0, σs)› .
also have ‹. . . = PSKIP S〈〈〈〈A0 nd⊗;3Rlist A1〉〉〉〉nd (σ0 # σs)›
proof (rule PSKIP S-nd-eqI-strong[of ‹λ(σ0, σs). σ0 # σs› - ‹(σ0, σs)›, simpli-

fied])
show ‹inj-on (λ(σ0, σs). σ0 # σs) (Rnd 〈〈A0 nd⊗;3P air A1〉〉 (σ0, σs))›

by (auto intro: inj-onI )
next

show ‹τ 〈〈A0 nd⊗;3Rlist A1〉〉 (case σ ′ of (σ0, σs) ⇒ σ0 # σs) a =
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(λσ ′. case σ ′ of (σ0, σs) ⇒ σ0 # σs) ‘ τ 〈〈A0 nd⊗;3P air A1〉〉 σ ′ a› for σ ′ a
by (cases σ ′) (auto simp add: combineP air-Seqptick-defs combineRlist-Seqptick-defs)

next
show ‹ω 〈〈A0 nd⊗;3Rlist A1〉〉 (case σ ′ of (σ0, σs) ⇒ σ0 # σs) = ω 〈〈A0

nd⊗;3P air A1〉〉 σ ′› for σ ′

by (cases σ ′) (auto simp add: combineP air-Seqptick-defs combineRlist-Seqptick-defs)
qed
finally show ?thesis .

qed

corollary PSKIP S-d-combineRlist-Seqptick :
‹PSKIP S〈〈A0〉〉d σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉d σs) = PSKIP S〈〈〈〈A0 d⊗;3Rlist

A1〉〉〉〉d (σ0 # σs)›
proof −

have ‹PSKIP S〈〈A0〉〉d σ0 ;3 (λr . PSKIP S〈〈A1 r〉〉d σs) =
PSKIP S〈〈〈〈A0〉〉d↪→nd〉〉nd σ0 ;3 (λr . PSKIP S〈〈〈〈A1 r〉〉d↪→nd〉〉nd σs)›

by (simp add: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)
also have ‹. . . = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗;3Rlist (λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd (σ0

# σs)›
by (metis PSKIP S-nd-combineRlist-Seqptick at-most-1-elem-from-det-to-ndet

at-most-1-elem-imp-at-most-1-elem-term)
also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗;3Rlist A1〉〉〉〉d (σ0 # σs)›

by (simp add: PSKIP S-combineRlist-Seqptick-behaviour)
finally show ?thesis .

qed

10.2.2 ListslenL
lemma PSKIP S-nd-combineListslenL-Seqptick :
‹PSKIP S〈〈A0〉〉nd σs0 ;3 (λr . PSKIP S〈〈A1 r〉〉nd σs1) = PSKIP S〈〈〈〈A0 nd⊗len0;ListslenL

A1〉〉〉〉nd (σs0 @ σs1)›
if same-length-reach : ‹

∧
σs0 ′. σs0 ′ ∈ Rnd A0 σs0 =⇒ length σs0 ′ = len0›

and ‹at-most-1-elem-term A0›
proof −

from PSKIP S-nd-combineP air-Seqptick[OF ‹at-most-1-elem-term A0›]
have ‹PSKIP S〈〈A0〉〉nd σs0 ;3 (λr . PSKIP S〈〈A1 r〉〉nd σs1) =

PSKIP S〈〈〈〈A0 nd⊗;3P air A1〉〉〉〉nd (σs0, σs1)› .
also have ‹. . . = PSKIP S〈〈〈〈A0 nd⊗len0;ListslenL A1〉〉〉〉nd (σs0 @ σs1)›
proof (rule PSKIP S-nd-eqI-strong[of ‹λ(σs0, σs1). σs0 @ σs1› - ‹(σs0, σs1)›,

simplified])
show ‹inj-on (λ(σs0, σs1). σs0 @ σs1) (Rnd 〈〈A0 nd⊗;3P air A1〉〉 (σs0, σs1))›
proof (rule inj-onI , clarify)

fix σs0 ′ σs1 ′ σs0 ′′ σs1 ′′

assume assms : ‹(σs0 ′, σs1 ′) ∈ Rnd 〈〈A0 nd⊗;3P air A1〉〉 (σs0, σs1)›
‹(σs0 ′′, σs1 ′′) ∈ Rnd 〈〈A0 nd⊗;3P air A1〉〉 (σs0, σs1)›
‹σs0 ′ @ σs1 ′ = σs0 ′′ @ σs1 ′′›

from Rnd-combinendP air-Seqptick-subset assms(1 , 2 )
have ‹σs0 ′ ∈ Rnd A0 σs0› ‹σs0 ′′ ∈ Rnd A0 σs0› by fast+
with same-length-reach have ‹length σs0 ′ = length σs0 ′′› by blast
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with assms(3 ) show ‹σs0 ′ = σs0 ′′ ∧ σs1 ′ = σs1 ′′› by simp
qed

next
fix σs ′ a
assume ‹σs ′ ∈ Rnd 〈〈A0 nd⊗;3P air A1〉〉 (σs0, σs1)›
with Rnd-combinendP air-Seqptick-subset
obtain σs0 ′ σs1 ′ where ‹σs ′ = (σs0 ′, σs1 ′)› ‹σs0 ′ ∈ Rnd A0 σs0› by fast
from ‹σs0 ′ ∈ Rnd A0 σs0› same-length-reach have ‹length σs0 ′ = len0› by

blast
show ‹τ 〈〈A0 nd⊗len0;ListslenL A1〉〉 (case σs ′ of (σs0, σs1) ⇒ σs0 @ σs1) a =

(λσs ′. case σs ′ of (σs0, σs1) ⇒ σs0 @ σs1) ‘ τ 〈〈A0 nd⊗;3P air A1〉〉 σs ′ a›
by (auto simp add: ‹σs ′ = (σs0 ′, σs1 ′)› ‹length σs0 ′ = len0›

combineP air-Seqptick-defs combineListslenL-Seqptick)
next

fix σs ′ a
assume ‹σs ′ ∈ Rnd 〈〈A0 nd⊗;3P air A1〉〉 (σs0, σs1)›
with Rnd-combinendP air-Seqptick-subset
obtain σs0 ′ σs1 ′ where ‹σs ′ = (σs0 ′, σs1 ′)› ‹σs0 ′ ∈ Rnd A0 σs0› by fast
from ‹σs0 ′ ∈ Rnd A0 σs0› same-length-reach have ‹length σs0 ′ = len0› by

blast
show ‹ω 〈〈A0 nd⊗len0;ListslenL A1〉〉 (case σs ′ of (σs0, σs1) ⇒ σs0 @ σs1) =

ω 〈〈A0 nd⊗;3P air A1〉〉 σs ′›
by (auto simp add: ‹σs ′ = (σs0 ′, σs1 ′)› ‹length σs0 ′ = len0›

combineP air-Seqptick-defs combineListslenL-Seqptick)
qed
finally show ?thesis .

qed

corollary PSKIP S-d-combineListslenL-Seqptick :
‹PSKIP S〈〈A0〉〉d σs0 ;3 (λr . PSKIP S〈〈A1 r〉〉d σs1) = PSKIP S〈〈〈〈A0 d⊗len0;ListslenL

A1〉〉〉〉d (σs0 @ σs1)›
if same-length-reach : ‹

∧
σs0 ′. σs0 ′ ∈ Rd A0 σs0 =⇒ length σs0 ′ = len0›

proof −
have ‹PSKIP S〈〈A0〉〉d σs0 ;3 (λr . PSKIP S〈〈A1 r〉〉d σs1) =

PSKIP S〈〈〈〈A0〉〉d↪→nd〉〉nd σs0 ;3 (λr . PSKIP S〈〈〈〈A1 r〉〉d↪→nd〉〉nd σs1)›
by (simp add: PSKIP S-nd-from-det-to-ndet-is-PSKIP S-d)

also have ‹. . . = PSKIP S〈〈〈〈〈〈A0〉〉d↪→nd nd⊗len0;ListslenL (λr . 〈〈A1 r〉〉d↪→nd)〉〉〉〉nd

(σs0 @ σs1)›
by (rule PSKIP S-nd-combineListslenL-Seqptick[OF same-length-reach])
(simp-all add: Rnd-from-det-to-ndet at-most-1-elem-imp-at-most-1-elem-term)

also have ‹. . . = PSKIP S〈〈〈〈A0 d⊗len0;ListslenL A1〉〉〉〉d (σs0 @ σs1)›
by (simp add: PSKIP S-combineListslenL-Seqptick-behaviour same-length-reach)

finally show ?thesis .
qed

10.2.3 Multiple
theorem PSKIP S-nd-compactification-Seqptick:
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‹[[length σs = length As;
∧

A r . A ∈ set (butlast As) =⇒ at-most-1-elem-term (A
r)]] =⇒

SEQ3 (σ, A) ∈@ zip σs As. (λr . PSKIP S〈〈A r〉〉nd σ) = (λr . PSKIP S〈〈〈〈nd

⊗
;3

As〉〉 r〉〉nd σs)›
proof (induct σs As rule: induct-2-lists012 )

case Nil show ?case by (simp add: PSKIP S-nd-rec)
next
case (single σ0 A0) show ?case by (simp add: PSKIP S-nd-from-σ-to-σs-is-PSKIP S-nd)

next
case (Cons σ0 σ1 σs A0 A1 As)
have ‹SEQ3 (σ, A) ∈@ zip (σ0 # σ1 # σs) (A0 # A1 # As). (λr . PSKIP S〈〈A

r〉〉nd σ) =
(λr . PSKIP S〈〈A0 r〉〉nd σ0 ;3 SEQ3 (σ, A) ∈@ zip (σ1 # σs) (A1 # As).

(λr . PSKIP S〈〈A r〉〉nd σ))› by simp
also have ‹SEQ3 (σ, A) ∈@ zip (σ1 # σs) (A1 # As). (λr . PSKIP S〈〈A r〉〉nd

σ) =
(λr . PSKIP S〈〈〈〈nd

⊗
;3 A1 # As〉〉 r〉〉nd (σ1 # σs))›

by (rule Cons.hyps(3 )) (simp add: Cons.prems)
also have ‹(λr . PSKIP S〈〈A0 r〉〉nd σ0 ;3 (λr . PSKIP S〈〈〈〈nd

⊗
;3 A1 # As 〉〉 r〉〉nd

(σ1 # σs))) =
(λr . PSKIP S〈〈〈〈A0 r nd⊗;3Rlist 〈〈nd

⊗
;3 A1 # As〉〉〉〉〉〉nd (σ0 # σ1 #

σs))›
by (intro ext PSKIP S-nd-combineRlist-Seqptick) (simp add: Cons.prems)

also have ‹. . . = (λr . PSKIP S〈〈〈〈nd

⊗
;3 A0 # A1 # As〉〉 r〉〉nd (σ0 # σ1 # σs))›

by simp
finally show ?case .

qed

corollary PSKIP S-d-compactification-Seqptick:
‹length σs = length As =⇒
SEQ3 (σ, A) ∈@ zip σs As. (λr . PSKIP S〈〈A r〉〉d σ) = (λr . PSKIP S〈〈〈〈d

⊗
;3

As〉〉 r〉〉d σs)›
proof (induct σs As rule: induct-2-lists012 )

case Nil show ?case by (simp add: PSKIP S-d-rec)
next
case (single σ0 A0) show ?case by (simp add: PSKIP S-d-from-σ-to-σs-is-PSKIP S-d)

next
case (Cons σ0 σ1 σs A0 A1 As)
have ‹SEQ3 (σ, A) ∈@ zip (σ0 # σ1 # σs) (A0 # A1 # As). (λr . PSKIP S〈〈A

r〉〉d σ) =
(λr . PSKIP S〈〈A0 r〉〉d σ0 ;3 SEQ3 (σ, A) ∈@ zip (σ1 # σs) (A1 # As).

(λr . PSKIP S〈〈A r〉〉d σ))› by simp
also have ‹SEQ3 (σ, A) ∈@ zip (σ1 # σs) (A1 # As). (λr . PSKIP S〈〈A r〉〉d σ)

=
(λr . PSKIP S〈〈〈〈d

⊗
;3 A1 # As〉〉 r〉〉d (σ1 # σs))›

by (fact Cons.hyps(3 ))
also have ‹(λr . PSKIP S〈〈A0 r〉〉d σ0 ;3 (λr . PSKIP S〈〈〈〈d

⊗
;3 A1 # As〉〉 r〉〉d

(σ1 # σs))) =
(λr . PSKIP S〈〈〈〈A0 r d⊗;3Rlist 〈〈d

⊗
;3 A1 # As〉〉〉〉〉〉d (σ0 # σ1 # σs))›
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by (intro ext PSKIP S-d-combineRlist-Seqptick)
also have ‹. . . = (λr . PSKIP S〈〈〈〈d

⊗
;3 A0 # A1 # As〉〉 r〉〉d (σ0 # σ1 # σs))›

by simp
finally show ?case .

qed
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Chapter 11

Application : May
Philosophers dine ?

11.1 Preliminaries

11.1.1 Preliminary lemmas for proof automation
lemma Suc-mod: ‹n > 1 =⇒ i 6= Suc i mod n›

by (metis One-nat-def mod-Suc mod-if mod-mod-trivial n-not-Suc-n)

lemmas suc-mods = Suc-mod Suc-mod[symmetric]

lemma l-suc: ‹n > 1 =⇒ ¬ n ≤ Suc 0 ›
by simp

lemma minus-suc: ‹n > 0 =⇒ n − Suc 0 6= n›
by linarith

declare Un-insert-right[simp del] Un-insert-left[simp del]

11.2 The dining processes definition
context DiningPhilosophers begin

lemma RPHIL-restriction-fix-def :
‹RPHIL i = (υ X . picks i i → picks i ((i − 1 ) mod N ) →

putsdown i ((i − 1 ) mod N ) → putsdown i i → X)›
by (simp add: RPHIL-def restriction-fix-is-fix)

lemma LPHIL0-restriction-fix-def :
‹LPHIL0 = (υ X . picks 0 (N − 1 ) → picks 0 0 →

putsdown 0 0 → putsdown 0 (N − 1 ) → X)›
by (simp add: LPHIL0-def restriction-fix-is-fix)
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lemma FORK-restriction-fix-def :
‹FORK i = (υ X . (picks i i → putsdown i i → X) �

(picks ((i + 1 ) mod N ) i → putsdown ((i + 1 ) mod N ) i → X))›
by (simp add: FORK-def restriction-fix-is-fix)

11.2.1 Unfolding rules
lemmas RPHIL-rec = cont-process-rec[OF RPHIL-def [THEN meta-eq-to-obj-eq],
simplified]

and LPHIL0-rec = cont-process-rec[OF LPHIL0-def [THEN meta-eq-to-obj-eq],
simplified]

and FORK-rec = cont-process-rec[OF FORK-def [THEN meta-eq-to-obj-eq],
simplified]

11.3 Translation into normal form
lemma N-pos[simp]: ‹N > 0 ›

using N-g1 neq0-conv by blast

lemmas N-pos-simps[simp] = suc-mods[OF N-g1 ] l-suc[OF N-g1 ] minus-suc[OF
N-pos]

11.3.1 FORK, LPHIL0 and RPHIL are normalizable

Definition of one fork and one philosopher automata
type-synonym idf ork = nat
type-synonym σf ork = nat
type-synonym idphil = nat
type-synonym σphil = nat

definition fork-A :: ‹idf ork ⇒ (σf ork, dining-event, unit) Ad› (‹Af ›)
where ‹Af i ≡ recursive-constructor-Ad

[((0 , picks i i), b1 c), ((0 , picks ((i + 1 ) mod N ) i), b2 c),
((1 , putsdown i i), b0 c), ((2 , putsdown ((i + 1 ) mod N ) i), b0 c)]

(λσ. ♦)›

definition rphil-A :: ‹idphil ⇒ (σphil, dining-event, unit) Ad› (‹Arp›)
where ‹Arp i ≡ recursive-constructor-Ad

[((0 , picks i i), b1 c), ((1 , picks i ((i−1 ) mod N )), b2 c),
((2 , putsdown i ((i−1 ) mod N )), b3 c), ((3 , putsdown i i), b0 c)]

(λσ. ♦)›

definition lphil0-A :: ‹(σphil, dining-event, unit) Ad› (‹Alp›)
where ‹Alp ≡ recursive-constructor-Ad
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[((0 , picks 0 (N − 1 )), b1 c), ((1 , picks 0 0 ), b2 c),
((2 , putsdown 0 0 ), b3 c), ((3 , putsdown 0 (N − 1 )), b0 c)] (λσ. ♦)›

Definition and first properties of associated normal processes
definition fork-P-d :: ‹idf ork ⇒ σf ork ⇒ dining-event process› where ‹fork-P-d
i ≡ P〈〈Af i〉〉d›
definition rphil-P-d :: ‹idphil ⇒ σphil ⇒ dining-event process› where ‹rphil-P-d
i ≡ P〈〈Arp i〉〉d›
definition lphil0-P-d :: ‹σphil ⇒ dining-event process› where ‹lphil0-P-d
≡ P〈〈Alp〉〉d›

lemmas fork-P-d-rec = P-d-rec[of ‹Af -›, folded fork-P-d-def ]
and rphil-P-d-rec = P-d-rec[of ‹Arp -›, folded rphil-P-d-def ]
and lphil0-P-d-rec = P-d-rec[of ‹Alp›, folded lphil0-P-d-def ]

schematic-goal fork-ε: ‹ε (Af i) σ = ?S›
and rphil-ε: ‹ε (Arp i) σ = ?T ›
and lphil0-ε: ‹ε Alp σ = ?U ›
unfolding fork-A-def rphil-A-def lphil0-A-def by (all ε-det-calc)

schematic-goal fork-τ : ‹τ (Af i) σ = ?S›
and rphil-τ : ‹τ (Arp i) σ = ?T ›
and lphil0-τ : ‹τ Alp σ = ?U ›
unfolding fork-A-def rphil-A-def lphil0-A-def by (all τ -det-calc)

corollary ev-idf orkx: ‹e ∈ ε (Af i) σ =⇒ fork e = i›
and rphil-phil: ‹e ∈ ε (Arp i) σ =⇒ phil e = i›
and lphil0-phil: ‹e ∈ ε Alp σ =⇒ phil e = 0 ›
by (auto simp add: fork-ε rphil-ε lphil0-ε split: if-split-asm)

corollary ev-idphilx: ‹i < n =⇒ σ ∈ ε ((Alp # map Arp [1 ..< n]) ! i) s =⇒ phil
σ = i›

by (cases ‹i = 0 ›) (simp-all add: lphil0-phil rphil-phil)

lemma indep-forks: ‹i 6= j =⇒ ε (Af i) σ ∩ ε (Af j) σ ′ = {}›
and indep-phils: ‹i 6= 0 =⇒ ε Alp σ ∩ ε (Arp i) σ ′ = {}›
‹i 6= j =⇒ ε (Arp i) σ ∩ ε (Arp j) σ ′ = {}›
using ev-idf orkx lphil0-phil rphil-phil by (blast, simp, fastforce, blast)

Equalities between FORK, RPHIL, LPHIL0 and respectively fork-P-d, rphil-P-d,
lphil0-P-d
lemma FORK-is-fork-P-d: ‹FORK i = fork-P-d i 0 ›
proof (unfold fork-P-d-def )
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have ‹(0 :: nat) < 2 › by simp
thus ‹FORK i = P〈〈Af i〉〉d 0 ›
proof (induct rule: P-d-induct-iterated)

show ‹FORK i = X 0 =⇒ FORK i = (P-d-step (ε (Af i)) (τ (Af i)) ^^ 2 )
X 0 › for X

by (subst FORK-rec)
(auto simp add: Mprefix-Det-Mprefix write0-def numeral-eq-Suc

fork-ε fork-τ Un-commute intro!: mono-Mprefix-eq)
qed simp-all

qed

lemma RPHIL-is-rphil-P-d: ‹RPHIL i = rphil-P-d i 0 ›
proof (unfold rphil-P-d-def )

have ‹(0 :: nat) < 4 › by simp
thus ‹RPHIL i = P〈〈Arp i〉〉d 0 ›
proof (induct rule: P-d-induct-iterated)

show ‹RPHIL i = X 0 =⇒ RPHIL i = (P-d-step (ε (Arp i)) (τ (Arp i)) ^^
4 ) X 0 › for X

by (subst RPHIL-rec)
(auto simp add: write0-def numeral-eq-Suc rphil-ε rphil-τ intro!: mono-Mprefix-eq)

qed simp-all
qed

lemma LPHIL0-is-lphil0-P-d: ‹LPHIL0 = lphil0-P-d 0 ›
proof (unfold lphil0-P-d-def )

have ‹(0 :: nat) < 4 › by simp
thus ‹LPHIL0 = P〈〈Alp〉〉d 0 ›
proof (induct rule: P-d-induct-iterated)

show ‹LPHIL0 = X 0 =⇒ LPHIL0 = (P-d-step (ε Alp) (τ Alp) ^^ 4 ) X 0 ›
for X

by (subst LPHIL0-rec)
(auto simp add: write0-def numeral-eq-Suc lphil0-ε lphil0-τ intro!: mono-Mprefix-eq)

qed simp-all
qed

11.3.2 FORKS is normalizable

Definition of the all-forks automaton
type-synonym σf orks = ‹nat list›

definition forks-A :: ‹(σf orks, dining-event, unit) Ad› (‹AF ›) where ‹AF ≡
〈〈d
⊗

[[{}]] map Af [0 ..<N ]〉〉›

Definition and first properties of the associated normal process
definition forks-P-d:: ‹σf orks ⇒ dining-event process› where ‹forks-P-d ≡ P〈〈AF 〉〉d›
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lemma forks-ε: ‹length fs = N =⇒ ε AF fs = (
⋃

i<N . ε (Af i) (fs ! i))›
unfolding forks-A-def using N-pos by (subst ε-iterated-combined-Sync-general-form)

force+

Equality between FORKS and forks-P-d
lemma NFORKS-is-forks-P-d: ‹FORKS = forks-P-d (replicate N 0 )›

unfolding forks-P-d-def forks-A-def FORKS-def
apply (subst P-d-compactification-Sync-upt-version)
by (simp-all add: FORK-is-fork-P-d[unfolded fork-P-d-def ] indep-forks indep-enabl-def )

11.3.3 PHILS is normalizable

Definition of the all-philosophers automaton
type-synonym σphils = ‹nat list›

definition phils-A :: ‹(σphils, dining-event, unit) Ad› (‹AP ›) where ‹AP ≡ 〈〈d
⊗

[[{}]]
Alp # map Arp [1 ..< N ]〉〉›

lemma phils-A-def-bis: ‹AP = 〈〈d
⊗

[[{}]] map (λi. if i = 0 then Alp else Arp i)
[0 ..<N ]〉〉›

unfolding phils-A-def apply (subst (2 ) upt-rec, simp)
apply (subgoal-tac ‹map (λi. if i = 0 then Alp else Arp i) [Suc 0 ..<N ] = map

Arp [Suc 0 ..<N ]›)
by (presburger , subst list-eq-iff-nth-eq, simp)

Definition and first properties of the associated normal process
definition phils-P-d:: ‹σphils ⇒ dining-event process› where ‹phils-P-d ≡ P〈〈AP 〉〉d›

lemma phils-ε: ‹length ps = N =⇒ ε AP ps = ε Alp (ps ! 0 ) ∪ (
⋃

i∈{1 ..<N}. ε
(Arp i) (ps ! i))›

unfolding phils-A-def-bis using N-pos
by (subst ε-iterated-combined-Sync-general-form, (auto split: if-splits)+)

Equality between PHILS and phils-P-d
lemma NPHILS-is-phils-P-d: ‹PHILS = phils-P-d (replicate N 0 )›

unfolding phils-P-d-def phils-A-def-bis PHILS-def
apply (subst P-d-compactification-Sync-upt-version[symmetric])

apply (simp-all add: indep-enabl-def indep-phils(1 ,2 ) inf-sup-aci(1 ))
apply (subgoal-tac ‹{0 ..<N} = insert 0 {1 ..<N}›)
apply (simp add: LPHIL0-is-lphil0-P-d lphil0-P-d-def )
by (rule arg-cong[OF image-mset-cong]) (auto simp add: RPHIL-is-rphil-P-d

rphil-P-d-def )

11.3.4 The complete process DINING is normalizable

Definition of the dining automaton
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definition dining-A :: ‹(σphils × σf orks, dining-event, unit) Ad› (‹AD›) where
‹AD ≡ 〈〈AP d⊗[[UNIV ]]P air AF 〉〉›

Definition and first properties of the associated normal process
definition dining-P-d:: ‹σphils × σf orks ⇒ dining-event process› where ‹din-
ing-P-d ≡ P〈〈AD〉〉d›

lemma dining-ε:
‹length ps = N =⇒ length fs = N =⇒
ε AD (ps, fs) = (ε Alp (ps ! 0 ) ∪ (

⋃
i∈{1 ..<N}. ε (Arp i) (ps ! i))) ∩ (

⋃
i<N .

ε (Af i) (fs ! i))›
by (simp add: dining-A-def ε-combineP air-Sync combine-Sync-ε-def forks-ε phils-ε)

Equality between DINING and dining-P-d
lemma DINING-is-dining-P-d: ‹DINING = dining-P-d (replicate N 0 , replicate N
0 )›

unfolding dining-P-d-def dining-A-def
apply (subst P-d-combineP air-Sync[symmetric])
apply (simp add: indep-enabl-def )

by (simp add: DINING-def NFORKS-is-forks-P-d NPHILS-is-phils-P-d Sync-commute
forks-P-d-def phils-P-d-def )

11.4 And finally: Philosophers may dine ! Always
!

method ε-sets-simp uses opt = (simp-all split: if-split-asm)?,
simp-all add: fork-ε lphil0-ε rphil-ε opt split: if-splits

method A-defs-simp uses opt = (simp-all split: if-split-asm)?,
simp-all add: fork-A-def lphil0-A-def rphil-A-def opt split: if-splits

11.4.1 Construction of an invariant for the dining automaton
definition ‹inv-dining ps fs ≡

length fs = N ∧ length ps = N
∧ (∀ i < N . fs ! i = 0 ∨ fs ! i = 1 ∨ fs ! i = 2 )
∧ (∀ i < N . ps ! i = 0 ∨ ps ! i = 1 ∨ ps ! i = 2 ∨ ps ! i = 3 )
∧ (∀ i. Suc i < N −→ ((fs ! Suc i = 1 ) ←→ ps ! Suc i 6= 0 )) ∧ (fs ! (N

− 1 ) = 2 ←→ ps ! 0 6= 0 )
∧ (∀ i < N − 1 . fs ! i = 2 ←→ ps ! Suc i = 2 ) ∧ (fs ! 0 =

1 ←→ ps ! 0 = 2 )›

lemma show-inv-dining:
‹length fs = N ∧ length ps = N =⇒
(∀ i < N . fs ! i = 0 ∨ fs ! i = 1 ∨ fs ! i = 2 ) =⇒
(∀ i < N . ps ! i = 0 ∨ ps ! i = 1 ∨ ps ! i = 2 ∨ ps ! i = 3 ) =⇒
(∀ i. Suc i < N −→ (fs ! Suc i = 1 ←→ ps ! Suc i 6= 0 )) =⇒ (fs ! (N − 1 ) =

2 ←→ ps ! 0 6= 0 ) =⇒
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(∀ i < N − 1 . fs ! i = 2 ←→ ps ! Suc i = 2 ) =⇒ (fs ! 0 = 1 ←→ ps ! 0 = 2 )
=⇒

inv-dining ps fs›
by (simp add: inv-dining-def )

lemma inv-DINING: ‹s ∈ Rd AD (replicate N 0 , replicate N 0 ) =⇒ inv-dining
(fst s) (snd s)›
proof(induct rule: Rd.induct)

case init show ?case by (simp add: inv-dining-def )
next

case (step t u e)
obtain t-ps t-fs u-ps u-fs where t-pair : ‹t = (t-ps, t-fs)› and u-pair : ‹u = (u-ps,

u-fs)› by fastforce
hence inv-hyp: ‹length t-fs = N › ‹length t-ps = N ›

‹i < N =⇒ t-fs ! i = 0 ∨ t-fs ! i = 1 ∨ t-fs ! i = 2 ›
‹i < N =⇒ t-ps ! i = 0 ∨ t-ps ! i = 1 ∨ t-ps ! i = 2 ∨ t-ps ! i = 3 ›
‹Suc i < N =⇒ (t-fs ! Suc i = 1 ) = (t-ps ! Suc i 6= 0 )›
‹(t-fs ! (N − 1 ) = 2 ) = (t-ps ! 0 6= 0 )›
‹i < N − 1 =⇒ (t-fs ! i = 2 ) = (t-ps ! Suc i = 2 )›
‹(t-fs ! 0 = 1 ) = (t-ps ! 0 = 2 )› for i
using step.hyps(2 )[simplified inv-dining-def ] by simp-all

have u-in-Rd-prem: ‹(u-ps, u-fs) ∈ Rd AP (replicate N 0 ) × Rd AF (replicate
N 0 )›

using Rd.step[OF step.hyps(1 , 3 ), simplified dining-A-def ]
by (simp add: u-pair [symmetric], rule set-mp[OF Rd-combinedP air-Sync-subset])

note u-in-Rd = u-in-Rd-prem[simplified mem-Times-iff , THEN conjunct1 , sim-
plified]

u-in-Rd-prem[simplified mem-Times-iff , THEN conjunct2 , simplified]

have same-length-u: ‹length u-ps = N › ‹length u-fs = N ›
using same-length-Rd-iterated-combined-Sync-description[rotated, OF u-in-Rd(1 )[unfolded

phils-A-def ]]
same-length-Rd-iterated-combined-Sync-description[rotated, OF u-in-Rd(2 )[unfolded

forks-A-def ]]
by simp+

have u-is: ‹bu-psc = τ AP t-ps e› ‹bu-fsc = τ AF t-fs e›
using step(3 )[simplified dining-A-def , simplified combine-Sync-defs]
by (simp-all add: t-pair u-pair option.case-eq-if map-option-case split: if-splits)

have e-in: ‹e ∈ ε Alp (t-ps ! 0 ) ∪ (
⋃

i∈{1 ..<N}. ε (Arp i) (t-ps ! i))›
‹e ∈ (

⋃
i<N . ε (Af i) (t-fs ! i))›

by (subst phils-ε[symmetric], fact inv-hyp(2 ), simp add: ε-simps, metis u-is(1 ))
(subst forks-ε[symmetric], fact inv-hyp(1 ), simp add: ε-simps, metis u-is(2 ))

have u-nth:

169



‹i < N =⇒ u-ps ! i =
(if i = 0 then (if e ∈ ε Alp (t-ps ! 0 ) then dτ Alp (t-ps ! 0 ) ee else t-ps ! 0 )
else if e ∈ ε (Arp i) (t-ps ! i) then dτ (Arp i) (t-ps ! i) ee else t-ps ! i)›

‹i < N =⇒ u-fs ! i =
(if e ∈ ε (Af i) (t-fs ! i) then dτ (Af i) (t-fs ! i) ee else t-fs ! i)› for i

by (insert u-is(1 ), unfold phils-A-def , subst (asm) τ -iterated-combined-Sync-general-form,
simp-all add: inv-hyp(2 ) split: if-splits)

(insert u-is(2 ), unfold forks-A-def , subst (asm) τ -iterated-combined-Sync-general-form,
simp-all add: inv-hyp(1 ) split: if-splits)

have ‹e ∈ ε AP t-ps› ‹e ∈ ε AF t-fs› using u-is ε-simps by fastforce+
hence e-equiv: ‹e ∈ ε Alp (t-ps ! 0 ) ←→ phil e = 0 ›

‹Suc i < N =⇒ e ∈ ε (Arp (Suc i)) (t-ps ! Suc i) ←→ phil e = Suc i›
‹i < N =⇒ e ∈ ε (Af i) (t-fs ! i) ←→ fork e = i› for i

apply (simp-all add: phils-ε[OF inv-hyp(2 )] forks-ε[OF inv-hyp(1 )])
using rphil-phil lphil0-phil ev-idf orkx by auto (metis Suc-le-eq less-irrefl-nat,

blast, metis)

show ?case
proof (simp add: u-pair , rule show-inv-dining[rule-format], simp add: same-length-u,

goal-cases)
case (1 i) thus ?case using u-nth(2 )[of i] inv-hyp(3 ) by ε-sets-simp A-defs-simp

next
case (2 i) thus ?case using u-nth(1 )[of i] inv-hyp(4 ) by ε-sets-simp A-defs-simp

next
case (3 i)
with u-nth(1 )[of ‹Suc i›] u-nth(2 )[of ‹Suc i›] show ?case

using inv-hyp(5 )[of i] apply ε-sets-simp apply A-defs-simp
using e-equiv(3 ) fork-ε e-equiv(2 ) rphil-ε by fastforce+

next
case 4

with u-nth(1 )[of 0 ] u-nth(2 ) show ?case using inv-hyp(6 ) N-g1 apply
ε-sets-simp apply A-defs-simp

apply (metis N-pos One-nat-def Suc-pred fork-ε dining-event.sel(3 )
dining-event.simps(3 ) inv-hyp(3 ) lessI singletonD e-equiv(3 ))

using lphil0-ε e-equiv(1 ) by force+
next

case (5 i)
hence ‹Suc i < N › by linarith
with u-nth(1 )[of ‹Suc i›] u-nth(2 )[of i] 5 show ?case

using inv-hyp(7 )[of i] apply ε-sets-simp apply A-defs-simp
apply (metis Suc-lessD fork-ε dining-event.sel(3 ) dining-event.simps(3 )

singletonD e-equiv(3 ))
apply (metis One-nat-def Suc-lessD bot-nat-0 .not-eq-extremum inv-hyp(3 ))

using rphil-ε e-equiv(2 ) by force+
next

case 6
with u-nth(1 )[of 0 ] u-nth(2 )[of 0 ] show ?case

using N-g1 inv-hyp(8 ) apply (simp split: if-split-asm) apply ε-sets-simp
apply A-defs-simp
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using lphil0-ε e-equiv(1 ) fork-ε e-equiv(3 ) by force+
qed

qed

11.4.2 The invariant inv-dining implies that DINING is dead-
lock-free

method nonempty-Int-by-common-element for x = rule-tac ex-in-conv[THEN iffD1 ,
OF exI , OF IntI , of x]

lemma inv-implies-DF : ‹ε AD (ps, fs) 6= {}› if hyp-inv: ‹inv-dining ps fs›
apply (subst dining-ε)

apply (insert hyp-inv, unfold inv-dining-def , simp-all add: lphil0-ε)
proof(elim conjE , intro conjI impI , goal-cases)

case 1
with 1 (3 )[rule-format, of 0 , OF N-pos] show ?case
proof(elim disjE , goal-cases)

case 11 :1
thus ?case

using 1 (3 )[rule-format, of 1 , OF N-g1 ] apply(elim disjE)

apply (subgoal-tac ‹ps ! 1 = 0 ›, nonempty-Int-by-common-element ‹picks 1
1 ›)

using N-g1 apply ε-sets-simp[3 ]
apply (metis atLeastLessThan-iff le-refl less-irrefl-nat, blast,
metis less-zeroE linorder-neqE-nat)

apply (cases ‹ps ! 1 = 1 ›, nonempty-Int-by-common-element ‹picks 1 0 ›)
using N-g1 apply ε-sets-simp[2 ]
apply (metis One-nat-def atLeastLessThan-iff diff-self-eq-0 le-refl less-numeral-extra(1 )

mod-mod-trivial mod-self ,
metis N-pos lessThan-iff mod-less)

apply (nonempty-Int-by-common-element ‹putsdown 1 1 ›)
using N-g1 apply ε-sets-simp[2 ]
apply (metis atLeastLessThan-iff le-refl less-numeral-extra(3 ) zero-less-diff ,

metis gr0-conv-Suc lessThan-iff )

apply (cases ‹N = 2 ›, simp)
apply (subgoal-tac ‹ps ! 2 = 2 ›, nonempty-Int-by-common-element ‹putsdown

2 1 ›)
using N-g1 apply ε-sets-simp

by (metis One-nat-def Suc-lessI atLeastLessThan-iff diff-Suc-1 le-SucI le-numeral-extra(4 )
mod-less n-not-Suc-n numeral-2-eq-2 zero-less-Suc,
metis One-nat-def Suc-1 Suc-lessI gr0-conv-Suc lessThan-iff
less-diff-conv mod-less plus-1-eq-Suc,
metis One-nat-def Suc-1 )

next
case 12 :2
thus ?case by linarith
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next
case 13 :3
thus ?case
apply (subgoal-tac ‹ps ! 1 = 2 ›, nonempty-Int-by-common-element ‹putsdown

1 0 ›)
using N-g1 apply ε-sets-simp

apply (metis atLeastLessThan-iff diff-self-eq-0 dvd-1-left le-Suc-eq less-2-cases-iff
mod-0 odd-one)

by (metis 13 (10 ) N-pos lessThan-iff mod-less n-not-Suc-n numeral-2-eq-2
zero-less-Suc)

qed
next

case 2
from 2 (3 , 7 , 8 , 10 ) N-g1 have f1 : ‹fs ! 0 6= 0 =⇒ ps ! 1 = 2 ∧ fs ! 0 = 2 ›

by auto
from 2 show ?case

apply (cases ‹fs ! 0 = 0 ›)
apply (nonempty-Int-by-common-element ‹picks 0 0 ›)

using N-g1 apply ε-sets-simp[2 ]
using N-pos apply blast
apply (nonempty-Int-by-common-element ‹putsdown 1 0 ›)
apply ε-sets-simp
apply (metis N-g1 One-nat-def atLeastLessThan-iff bot-nat-0 .not-eq-extremum

cancel-comm-monoid-add-class.diff-cancel dual-order .refl local.f1 mod-0 )
by (metis N-g1 N-pos One-nat-def lessThan-iff less-irrefl-nat mod-less)

next
case 3 thus ?case by (nonempty-Int-by-common-element ‹putsdown 0 0 ›)

(ε-sets-simp, metis N-pos lessThan-iff zero-less-Suc)
next

case 4 thus ?case by (nonempty-Int-by-common-element ‹putsdown 0 (N −
1 )›)

(ε-sets-simp, metis N-pos One-nat-def Suc-1 Suc-diff-1 diff-less
gr0-conv-Suc lessThan-iff mod-self n-not-Suc-n)

next
case 5 thus ?case using 5 (4 )[rule-format, of 0 ] by simp

qed

11.4.3 Conclusion

corollary deadlock-free-DINING: ‹deadlock-free DINING›
unfolding DINING-is-dining-P-d dining-P-d-def
apply (subst deadlock-free-P-d-iff )
using inv-DINING inv-implies-DF by force

172



11.5 Alternative version with only right-handed
philosophers (in order to show that it’s not
deadlock-free)

11.5.1 Setup
definition ‹RPHILS ≡ ||| P ∈# mset (map RPHIL [0 ..< N ]). P›

corollary ‹N = 3 =⇒ RPHILS = (RPHIL 0 ||| RPHIL 1 ||| RPHIL 2 )›
unfolding RPHILS-def by (simp add: eval-nat-numeral upt-rec Sync-assoc)

definition RDINING :: ‹dining-event process›
where ‹RDINING = (FORKS || RPHILS)›

11.5.2 Normalization
definition rphils-A :: ‹(σphils, dining-event, unit) Ad› (‹ARP ›) where ‹ARP ≡
〈〈d
⊗

[[{}]] map Arp [0 ..< N ]〉〉›

definition rphils-P-d:: ‹σphils ⇒ dining-event process› where ‹rphils-P-d ≡ P〈〈ARP 〉〉d›

definition rdining-A :: ‹(σphils × σf orks, dining-event, unit) Ad› (‹ARD›) where
‹ARD ≡ 〈〈ARP d⊗[[UNIV ]]P air AF 〉〉›

definition rdining-P-d:: ‹σphils × σf orks ⇒ dining-event process› where ‹rdining-P-d
≡ P〈〈ARD〉〉d›

11.5.3 Correspondance between our normalized processes and
the previous definitions

lemma rphils-ε: ‹length ps = N =⇒ ε ARP ps = (
⋃

i∈{0 ..<N}. ε (Arp i) (ps !
i))›

unfolding rphils-A-def using N-pos
by (subst ε-iterated-combined-Sync-general-form, (auto split: if-splits)+)

lemma NRPHILS-is-rphils-P-d: ‹RPHILS = rphils-P-d (replicate N 0 )›
unfolding rphils-P-d-def rphils-A-def RPHILS-def
apply (subst P-d-compactification-Sync-upt-version)
by (simp-all add: RPHIL-is-rphil-P-d[unfolded rphil-P-d-def ] indep-phils indep-enabl-def )

lemma rdining-ε:
‹length ps = N =⇒ length fs = N =⇒
ε ARD (ps, fs) = (

⋃
i∈{0 ..<N}. ε (Arp i) (ps ! i)) ∩ (

⋃
i<N . ε (Af i) (fs ! i))›

by (simp add: rdining-A-def ε-combineP air-Sync combine-Sync-ε-def forks-ε
rphils-ε)

lemma RDINING-is-rdining-P-d: ‹RDINING = rdining-P-d (replicate N 0 , repli-
cate N 0 )›
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apply (unfold rdining-P-d-def rdining-A-def )
apply (subst P-d-combineP air-Sync[symmetric])
apply (simp add: indep-enabl-def )

by (simp add: NFORKS-is-forks-P-d NRPHILS-is-rphils-P-d RDINING-def Sync-commute
forks-P-d-def

rphils-P-d-def )

11.5.4 Proof that we have a deadlock in the state (replicate N
1 , replicate N 1 )

lemma empty-enabl-replicate1 : ‹ε ARD (replicate N 1 , replicate N 1 ) = {}›
by (subst rdining-ε, auto simp add: rphil-ε fork-ε)

corollary non-dealock-free-rdining: ‹¬ deadlock-free (rdining-P-d (replicate N 1 ,
replicate N 1 ))›

unfolding rdining-P-d-def
by (subst P-d-rec, subst empty-enabl-replicate1 , simp add: non-deadlock-free-STOP)

11.5.5 Proof that this state is reachable from our initial
state, i.e. (replicate N 1 , replicate N 1 ) ∈ Rd ARD (replicate
N 0 , replicate N 0 )

lemma rdining-τ : ‹length ps = N =⇒ length fs = N =⇒ e ∈ ε ARD (ps, fs) =⇒
τ ARD (ps, fs) e = b(dτ ARP ps ee, dτ AF fs ee)c›

by (auto simp add: rdining-A-def combineP air-Sync-defs ε-simps split: if-split-asm)

lemma replicate1-reachable-from-replicate0-prelim:
‹n ≤ N =⇒ (replicate n 1 @ replicate (N − n) 0 , replicate n 1 @ replicate (N
− n) 0 ) ∈ Rd ARD (replicate N 0 , replicate N 0 )›
proof (induct n, simp add: Rd.init)

case (Suc n)
have ‹n ≤ N › by (simp add: Suc.prems Suc-leD)
define σs σt where a1 : ‹σs ≡ replicate n (1 ::nat) @ replicate (N − n)

0 ›
and a2 : ‹σt ≡ replicate (Suc n) (1 ::nat) @ replicate (N − Suc n) 0 ›

have ‹length σs = N › ‹length σt = N › ‹length σs = length σt›
by (simp-all add: ‹n ≤ N › a1 a2 Suc.prems)

have f1 : ‹(σs, σs) ∈ Rd ARD (replicate N 0 , replicate N 0 )›
using Suc.hyps(1 ) a1 Suc.prems Suc-leD by presburger

have f2 : ‹picks n n ∈ ε ARP σs› ‹picks n n ∈ ε AF σs› ‹picks n n ∈ ε ARD (σs,
σs)›

by (subst rphils-ε forks-ε, insert Suc.prems Suc-le-eq Suc-leD a1 ,
auto simp add: rdining-ε rphil-ε fork-ε nth-append)+

have ‹a ∈ ε (Arp i) (σs ! i) =⇒ i < N =⇒ a ∈ ε (Arp j) (σs ! j) =⇒ j < N
=⇒ j = i› for i j a

by (metis rphil-phil)
hence ∗ : ‹a ∈ ε (Arp i) (σs ! i) =⇒ i < N =⇒

(THE j. j < N ∧ a ∈ ε (map Arp [0 ..<N ] ! j) (σs ! j)) = i› for i a by
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auto

have ‹a ∈ ε (Af i) (σs ! i) =⇒ i < N =⇒ a ∈ ε (Af j) (σs ! j) =⇒ j < N =⇒
j = i› for i j a

by (metis ev-idf orkx)
hence ∗∗ : ‹a ∈ ε (Af i) (σs ! i) =⇒ i < N =⇒

(THE j. j < N ∧ a ∈ ε (map Af [0 ..<N ] ! j) (σs ! j)) = i› for i a by
auto

have f3 : ‹σt = dτ ARP σs (picks n n)e›
apply (unfold rphils-A-def , subst τ -iterated-combined-Sync-general-form-when-indep)
subgoal by (simp add: ‹length σs = N ›)
subgoal by (simp add: indep-enablI indep-phils(2 ))
using N-pos apply (auto simp del: N-pos)
subgoal by (metis N-g1 N-pos lessThan-iff rphil-phil zero-neq-one)
subgoal

apply (subst ∗, simp-all)
apply (auto simp add: ‹length σs = length σt› intro!: nth-equalityI )

apply (auto simp add: a1 a2 nth-Cons nth-append nth-list-update dest:
rphil-phil split: if-split-asm nat.split)

by (simp-all add: rphil-A-def )
using rphils-ε ‹length σs = N › atLeast0LessThan f2 (1 ) by force

have f4 : ‹σt = dτ AF σs (picks n n)e›
apply (unfold forks-A-def , subst τ -iterated-combined-Sync-general-form-when-indep)
subgoal by (simp add: ‹length σs = N ›)
subgoal by (simp add: indep-enabl-def indep-forks)
using N-pos apply (auto simp del: N-pos)
subgoal by (metis N-g1 N-pos ev-idf orkx lessThan-iff zero-neq-one)
subgoal

apply (subst ∗∗, simp-all)
apply (auto simp add: ‹length σs = length σt› intro!: nth-equalityI )

apply (auto simp add: a1 a2 nth-Cons nth-append nth-list-update dest:
ev-idf orkx split: if-split-asm nat.split)

using N-pos-simps(1 ) Suc-lessI by (auto simp add: fork-A-def intro: Suc-lessI )
using forks-ε ‹length σs = N › atLeast0LessThan f2 (2 ) by force

show ‹(σt, σt) ∈ Rd ARD (replicate N 0 , replicate N 0 )›
apply (rule Rd.step[OF f1 ], subst rdining-τ)
using Suc.prems a1 apply fastforce
apply (rule f2 )

using f3 f4 by blast
qed

corollary replicate1-reachable-from-replicate0 : ‹(replicate N 1 , replicate N 1 ) ∈
Rd ARD (replicate N 0 , replicate N 0 )›

by (simp add: replicate1-reachable-from-replicate0-prelim[of N , simplified])
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theorem not-deadlock-free-RDINING: ‹¬ deadlock-free RDINING›
apply (subst RDINING-is-rdining-P-d[unfolded rdining-P-d-def ])
apply (subst deadlock-free-P-d-iff )
using empty-enabl-replicate1 replicate1-reachable-from-replicate0 by blast

end
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Chapter 12

Other Results similar to
Compactification

Unlike Sync and (;), some operators like Det do not enjoy a compactification
result. Nevertheless, we still can prove some useful lemmas.

12.1 Some preliminary Results
lemma Mprefix-Det-Mprefix-bis :

‹(�a ∈ A → P a) � (�b ∈ B → Q b) =
(�x ∈ (A ∩ B) → P x u Q x) � (�a ∈ (A − B) → P a) � (�b ∈ (B − A) →

Q b)›
(is ‹?lhs = ?rhs›)

proof (subst Process-eq-spec, safe)
show ‹(t, X) ∈ F ?lhs =⇒ (t, X) ∈ F ?rhs› for t X

by (cases t) (auto simp add: F-Det F-Mprefix F-Ndet)
next

show ‹(t, X) ∈ F ?rhs =⇒ (t, X) ∈ F ?lhs› for t X
by (cases t, simp-all add: F-Mprefix F-Ndet F-Det D-Det T-Det disjoint-iff )

blast+
next

show ‹t ∈ D ?lhs =⇒ t ∈ D ?rhs› for t
by (auto simp add: D-Det D-Mprefix image-iff D-Ndet)

next
show ‹t ∈ D ?rhs =⇒ t ∈ D ?lhs› for t

by (auto simp add: D-Mprefix D-Ndet D-Det split: if-split-asm)
qed

lemma GlobalNdet-Ndet-GlobalNdet:
‹A 6= {} =⇒ B 6= {} =⇒ (ua ∈ A. P a) u (ub ∈ B. Q b) =
ux ∈ (A ∪ B). (if x ∈ A ∩ B then P x u Q x else if x ∈ A then P x else Q x)›

by (simp add: Process-eq-spec F-Ndet D-Ndet F-GlobalNdet D-GlobalNdet, safe)
(auto simp add: F-Ndet D-Ndet split: if-splits)

177



lemma GlobalNdet-Ndet-GlobalNdet-bis:
‹A ∩ B 6= {} =⇒ A − B 6= {} =⇒ B − A 6= {} =⇒
(ua ∈ A. P a) u (ub ∈ B. Q b) =
(ux ∈ (A ∩ B). P x u Q x) u (ua ∈ (A − B). P a) u (ub ∈ (B − A). Q b)›

by (auto simp add: Process-eq-spec F-Ndet D-Ndet F-GlobalNdet D-GlobalNdet)

lemma GlobalNdet-GlobalNdet:
‹(ua ∈ A. ub ∈ B a. P b) =
(if ∀ a ∈ A. B a 6= {} then ub ∈ (

⋃
a ∈ A. B a). P b else (ub ∈ (

⋃
a ∈ A. B

a). P b) u STOP)›
by (auto simp add: Process-eq-spec F-GlobalNdet D-GlobalNdet F-Ndet D-Ndet

F-STOP D-STOP)

12.2 Results for Det
lemma P-nd-set-almost-compactification-Det :

‹(� (s, A) ∈ s-A-set. P〈〈A〉〉nd s) =
�e ∈ (

⋃
(s, A) ∈ s-A-set. ε A s) →

u(s, A) ∈ {(s, A) ∈ s-A-set. e ∈ ε A s}.
us ′ ∈ τ A s e. P〈〈A〉〉nd s ′› (is ‹?lhs = ?rhs›)

proof −
have ‹?lhs = (� (s, A) ∈ s-A-set. P-nd-step (ε A) (τ A) P〈〈A〉〉nd s)›

by (auto intro: mono-GlobalDet-eq arg-cong[OF P-nd-rec])
also have ‹. . . = �s-A ∈ s-A-set. P-nd-step (ε (snd s-A)) (τ (snd s-A)) P〈〈snd

s-A〉〉nd (fst s-A)›
by (simp only: case-prod-beta ′)

also have ‹. . . = �e ∈ (
⋃

s-A ∈ s-A-set. ε (snd s-A) (fst s-A)) →
us-A ∈ {s-A ∈ s-A-set. e ∈ ε (snd s-A) (fst s-A)}.
GlobalNdet (τ (snd s-A) (fst s-A) e) P〈〈snd s-A〉〉nd›

by (simp add: GlobalDet-Mprefix)
also have ‹. . . = ?rhs› by (simp add: case-prod-beta ′)
finally show ‹?lhs = ?rhs› .

qed

lemma P-nd-set-almost-compactification-Det-bis :
‹(� (s, A) ∈ s-A-set. P〈〈A〉〉nd s) =
�e ∈ (

⋃
(s, A) ∈ s-A-set. ε A s) →

u(s ′, A) ∈ {(s ′, A)| s ′ s A. (s, A) ∈ s-A-set ∧ e ∈ ε A s ∧ s ′ ∈ τ A s e}. P〈〈A〉〉nd

s ′›
(is ‹- = ?rhs›)
by (subst P-nd-set-almost-compactification-Det, intro mono-Mprefix-eq)

(auto simp add: Process-eq-spec GlobalNdet-projs ε-simps split: if-split-asm,
blast+)
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lemma P-d-set-almost-compactification-Det:
shows ‹(� (s, A) ∈ s-A-set. P〈〈A〉〉d s) =

�e ∈ (
⋃
(s, A) ∈ s-A-set. ε A s) →

u(s, A) ∈ {(s, A) ∈ s-A-set. e ∈ ε A s}. P〈〈A〉〉d dτ A s ee› (is ‹?lhs =
?rhs›)
proof −

have ‹?lhs = (� (s, A) ∈ s-A-set. P-d-step (ε A) (τ A) P〈〈A〉〉d s)›
by (auto intro: mono-GlobalDet-eq arg-cong[OF P-d-rec])

also have ‹. . . = �s-A ∈ s-A-set. P-d-step (ε (snd s-A)) (τ (snd s-A)) P〈〈snd
s-A〉〉d (fst s-A)›

by (simp only: case-prod-beta ′)
also have ‹. . . = �e ∈ (

⋃
s-A ∈ s-A-set. ε (snd s-A) (fst s-A)) →

us-A ∈ {s-A ∈ s-A-set. e ∈ ε (snd s-A) (fst s-A)}.
P〈〈snd s-A〉〉d dτ (snd s-A) (fst s-A) ee›

by (simp add: GlobalDet-Mprefix)
also have ‹. . . = ?rhs› by (simp add: case-prod-beta ′)
finally show ‹?lhs = ?rhs› .

qed

lemma P-d-set-almost-compactification-Det-bis:
shows ‹(� (s, A) ∈ s-A-set. P〈〈A〉〉d s) =

�e ∈ (
⋃
(s, A) ∈ s-A-set. ε A s) →

u(s ′, A) ∈ {(dτ A s ee, A)| s A. (s, A) ∈ s-A-set ∧ e ∈ ε A s}. P〈〈A〉〉d s ′›
by (subst P-d-set-almost-compactification-Det, intro mono-Mprefix-eq)
(auto simp add: Process-eq-spec GlobalNdet-projs ε-simps, (metis option.sel)+)

12.3 Results for Ndet

12.4 Other Operators
12.4.1 initials
lemma initials-PSKIP S-nd :

‹(PSKIP S〈〈A〉〉nd σ)0 = (if σ ∈ % A then tick ‘ ω A σ else ev ‘ ε A σ)›
by (subst PSKIP S-nd-rec) (simp add: initials-Mprefix %-simps)

lemma initials-PSKIP S-d :
‹(PSKIP S〈〈A〉〉d σ)0 = (if σ ∈ % A then {3(dω A σe)} else ev ‘ ε A σ)›
by (subst PSKIP S-d-rec) (auto simp add: initials-Mprefix %-simps)

lemma initials-P-nd : ‹(P〈〈A〉〉nd s)0 = ev ‘ ε A s›
by (subst P-nd-rec) (simp-all add: initials-Mprefix)

lemma initials-P-d : ‹(P〈〈A〉〉d s)0 = ev ‘ ε A s›
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by (subst P-d-rec) (simp add: initials-Mprefix)

12.4.2 Throw
lemma Throw-PSKIP S-nd :

‹PSKIP S〈〈A〉〉nd σ Θ b ∈ B. Q b =
(if σ ∈ % A then SKIPS (ω A σ) else
�a∈ε A σ → (if a ∈ B then Q a else uσ ′ ∈ τ A σ a. (PSKIP S〈〈A〉〉nd σ ′ Θ b

∈ B. Q b)))›
by (auto simp add: PSKIP S-nd-rec-in-% Throw-disjoint-events-of

events-of-SKIPS PSKIP S-nd-rec-notin-% Throw-Mprefix
Throw-distrib-GlobalNdet-right
intro: mono-Mprefix-eq)

lemma Throw-PSKIP S-d :
‹PSKIP S〈〈A〉〉d σ Θ b ∈ B. Q b =
(if σ ∈ % A then SKIP dω A σe else
�a∈ε A σ → (if a ∈ B then Q a else PSKIP S〈〈A〉〉d dτ A σ ae Θ b ∈ B. Q b))›

by (simp add: PSKIP S-d-rec-in-% PSKIP S-d-rec-notin-% Throw-Mprefix)

lemma Throw-P-nd :
‹P〈〈A〉〉nd σ Θ b ∈ B. Q b =
�a∈ε A σ → (if a ∈ B then Q a else uσ ′ ∈ τ A σ a. (P〈〈A〉〉nd σ ′ Θ b ∈ B. Q

b))›
by (subst P-nd-rec)
(auto simp add: Throw-Mprefix Throw-distrib-GlobalNdet-right intro: mono-Mprefix-eq)

lemma Throw-P-d :
‹P〈〈A〉〉d σ Θ b ∈ B. Q b =
�a∈ε A σ → (if a ∈ B then Q a else P〈〈A〉〉d dτ A σ ae Θ b ∈ B. Q b)›

by (subst P-d-rec) (simp add: Throw-Mprefix)

12.4.3 (4)

lemma SKIPS-Interrupt-is-SKIPS-Det :
‹SKIPS R 4 P = SKIPS R � P›
by (auto simp add: SKIPS-def Interrupt-distrib-GlobalNdet-right

Det-distrib-GlobalNdet-right SKIP-Interrupt-is-SKIP-Det intro: mono-GlobalNdet-eq)

lemma Interrupt-PSKIP S-nd :
‹PSKIP S〈〈A〉〉nd σ 4 Q =

Q � (if σ ∈ % A then SKIPS (ω A σ) else �a ∈ ε A σ → uσ ′ ∈ τ A σ a.
PSKIP S〈〈A〉〉nd σ ′ 4 Q)›

by (subst PSKIP S-nd-rec)
(auto simp add: Interrupt-Mprefix SKIPS-Interrupt-is-SKIPS-Det Det-commute
%-simps ε-simps Interrupt-distrib-GlobalNdet-right
intro!: arg-cong2 [where f = ‹(�)›] mono-Mprefix-eq split: if-split-asm)

lemma Interrupt-PSKIP S-d :
‹PSKIP S〈〈A〉〉d σ 4 Q =
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Q � (if σ ∈ % A then SKIP dω A σe else �a ∈ ε A σ → PSKIP S〈〈A〉〉d dτ A σ
ae 4 Q)›

by (simp add: Det-commute Interrupt-Mprefix PSKIP S-d-rec-in-%
PSKIP S-d-rec-notin-% SKIP-Interrupt-is-SKIP-Det)

lemma Interrupt-P-nd :
‹P〈〈A〉〉nd σ 4 Q = Q � (�a ∈ ε A σ → uσ ′ ∈ τ A σ a. P〈〈A〉〉nd σ ′ 4 Q)›
by (subst P-nd-rec)
(auto simp add: Interrupt-Mprefix Interrupt-distrib-GlobalNdet-right ε-simps

intro!: arg-cong2 [where f = ‹(�)›] mono-Mprefix-eq split: if-split-asm)

lemma Interrupt-P-d :
‹P〈〈A〉〉d σ 4 Q = Q � (�a ∈ ε A σ → P〈〈A〉〉d dτ A σ ae 4 Q)›
by (metis Interrupt-Mprefix P-d-rec)

12.4.4 After
context After
begin

lemma After-SKIPS : ‹SKIPS R after a = Ψ (SKIPS R) a›
by (simp add: Process-eq-spec After-projs image-iff )

lemma After-PSKIP S-nd :
‹PSKIP S〈〈A〉〉nd σ after a =
(if σ ∈ % A then Ψ (SKIPS (ω A σ)) a else
if a ∈ ε A σ then uσ ′ ∈ τ A σ a. PSKIP S〈〈A〉〉nd σ ′ else Ψ (PSKIP S〈〈A〉〉nd σ)

a)›
by (subst (1 4 ) PSKIP S-nd-rec)
(simp add: ε-simps %-simps After-SKIPS After-Mprefix)

lemma After-PSKIP S-d :
‹PSKIP S〈〈A〉〉d σ after a =
(if σ ∈ % A then Ψ (SKIP dω A σe) a else
if a ∈ ε A σ then PSKIP S〈〈A〉〉d dτ A σ ae else Ψ (PSKIP S〈〈A〉〉d σ) a)›

by (subst (1 2 ) PSKIP S-d-rec)
(auto simp add: ε-simps %-simps After-SKIP After-Mprefix)

lemma After-P-nd :
‹P〈〈A〉〉nd σ after a = (if a ∈ ε A σ then uσ ′ ∈ τ A σ a. P〈〈A〉〉nd σ ′ else Ψ

(P〈〈A〉〉nd σ) a)›
by (subst (1 4 ) P-nd-rec) (simp add: ε-simps After-Mprefix)

lemma After-P-d :
‹P〈〈A〉〉d σ after a = (if a ∈ ε A σ then P〈〈A〉〉d dτ A σ ae else Ψ (P〈〈A〉〉d σ) a)›
by (subst (1 2 ) P-d-rec)
(simp add: ε-simps After-SKIP After-Mprefix)

end
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context AfterExt
begin

lemma After tick-SKIPS :
‹SKIPS R after3 e = (case e of ev a ⇒ Ψ (SKIPS R) a | 3(r) ⇒ Ω (SKIPS R)

r)›
by (cases e) (simp-all add: After tick-def After-SKIPS)

lemma After tick-PSKIP S-nd :
‹PSKIP S〈〈A〉〉nd σ after3 e =
(case e of ev a ⇒ if σ ∈ % A then Ψ (SKIPS (ω A σ)) a else

if a ∈ ε A σ then uσ ′ ∈ τ A σ a. PSKIP S〈〈A〉〉nd σ ′ else Ψ
(PSKIP S〈〈A〉〉nd σ) a

| 3(r) ⇒ if σ ∈ % A then Ω (SKIPS (ω A σ)) r else Ω (PSKIP S〈〈A〉〉nd

σ) r)›
proof (cases e)

show ‹e = ev a =⇒ ?thesis› for a
by (simp add: After-PSKIP S-nd After tick-def )

next
show ‹e = 3(r) =⇒ ?thesis› for r

by (subst (1 5 ) PSKIP S-nd-rec) (simp add: After tick-def %-simps)
qed

lemma After tick-PSKIP S-d :
‹PSKIP S〈〈A〉〉d σ after3 e =
(case e of ev a ⇒ if σ ∈ % A then Ψ (SKIP dω A σe) a else

if a ∈ ε A σ then PSKIP S〈〈A〉〉d dτ A σ ae else Ψ (PSKIP S〈〈A〉〉d
σ) a

| 3(r) ⇒ if σ ∈ % A then Ω (SKIP dω A σe) r else Ω (PSKIP S〈〈A〉〉d σ)
r)›
proof (cases e)

show ‹e = ev a =⇒ ?thesis› for a
by (simp add: After-PSKIP S-d After tick-def )

next
show ‹e = 3(r) =⇒ ?thesis› for r

by (subst (1 2 ) PSKIP S-d-rec) (auto simp add: After tick-def %-simps)
qed

lemma After tick-P-nd :
‹P〈〈A〉〉nd σ after3 e =
(case e of ev a ⇒ if a ∈ ε A σ then uσ ′ ∈ τ A σ a. P〈〈A〉〉nd σ ′ else Ψ (P〈〈A〉〉nd

σ) a
| 3(r) ⇒ Ω (P〈〈A〉〉nd σ) r)›

proof (cases e)
show ‹e = ev a =⇒ ?thesis› for a

by (simp add: After-P-nd After tick-def )
next
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show ‹e = 3(r) =⇒ ?thesis› for r
by (subst (1 2 ) P-nd-rec) (auto simp add: After tick-def )

qed

lemma After tick-P-d :
‹P〈〈A〉〉d σ after3 e =
(case e of ev a ⇒ if a ∈ ε A σ then P〈〈A〉〉d dτ A σ ae else Ψ (P〈〈A〉〉d σ) a

| 3(r) ⇒ Ω (P〈〈A〉〉d σ) r)›
proof (cases e)

show ‹e = ev a =⇒ ?thesis› for a
by (simp add: After-P-d After tick-def )

next
show ‹e = 3(r) =⇒ ?thesis› for r

by (subst (1 2 ) P-d-rec) (auto simp add: After tick-def )
qed

end

12.5 OpSem
context OpSemTransitions
begin

lemma SKIPS-τ -trans-SKIP : ‹r ∈ R =⇒ SKIPS R  τ SKIP r›
by (simp add: SKIPS-def τ -trans-GlobalNdet)

In the ProcOmata, we will absorb the τ transitions that appear when we
unfold the fixed-point operator.

lemma τ -trans-PSKIP S-nd :
‹r ∈ ω A σ =⇒ PSKIP S〈〈A〉〉nd σ  τ SKIP r›
by (subst PSKIP S-nd-rec) (auto simp add: SKIPS-τ -trans-SKIP)

lemma τ -trans-PSKIP S-d :
‹σ ∈ % A =⇒ PSKIP S〈〈A〉〉d σ  3dω A σe Ω (SKIP dω A σe) dω A σe›
by (auto simp add: PSKIP S-d-rec SKIP-trans-tick-Ω-SKIP %-simps)

lemma ev-trans-PSKIP S-nd :
‹σ /∈ % A =⇒ σ ′ ∈ τ A σ a =⇒ PSKIP S〈〈A〉〉nd σ  a PSKIP S〈〈A〉〉nd σ ′›
by (subst PSKIP S-nd-rec)
(auto simp add: %-simps ε-simps

intro: ev-trans-τ -trans[OF ev-trans-Mprefix τ -trans-GlobalNdet])

lemma ev-trans-PSKIP S-d :
‹σ /∈ % A =⇒ a ∈ ε A σ =⇒ PSKIP S〈〈A〉〉d σ  a PSKIP S〈〈A〉〉d dτ A σ ae›
by (subst PSKIP S-d-rec)
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(auto simp add: %-simps intro: ev-trans-Mprefix)

lemma ev-trans-P-nd :
‹σ ′ ∈ τ A σ a =⇒ P〈〈A〉〉nd σ  a P〈〈A〉〉nd σ ′›
by (subst P-nd-rec)
(auto simp add: ε-simps

intro: ev-trans-τ -trans[OF ev-trans-Mprefix τ -trans-GlobalNdet])

lemma ev-trans-P-d :
‹a ∈ ε A σ =⇒ P〈〈A〉〉d σ  a P〈〈A〉〉d dτ A σ ae›
by (subst P-d-rec) (auto intro: ev-trans-Mprefix)

end
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Chapter 13

Conclusion

13.1 Entry Point

This is where HOL-CSP_Proc-Omata should be imported from.

13.2 Conclusion

In this entry we have developed the Proc-Omata framework on top of HOL-CSP
and its extensions. Starting from functional automata, we introduced Proc-
Omata in four variants: deterministic, terminating deterministic, non-deterministic,
and terminating non-deterministic. They enjoy strong structural properties,
for example deadlocks can be characterized directly and established by in-
variant reasoning:

deadlock-free (P〈〈A〉〉nd σ) = (∀σ ′∈Rnd A σ. ε A σ ′ 6= ∅)
%-disjoint-ε A

deadlock-freeSKIP S (PSKIP S〈〈A〉〉nd σ) = (∀σ ′∈Rnd A σ. σ ′ ∈ % A ∨ ε A σ ′ 6= ∅)

We then lifted sequential composition and synchronization product to the
automata level, by defining suitable combination functions and proving their
correctness. A major generalization of our development is the treatment of
parameterized termination. For sequential composition we worked directly
with the generalized operator (;3), since the standard one (;) is easily re-
covered (indeed P ;3 (λr . Q) = P ; Q). In contrast, for synchronization
product we had to provide two distinct versions, as the handling of ticks
prevents any straightforward reduction from P [[A]] Q to P [[A]]3 Q.
Another central ingredient is the library Restriction_Spaces [1]. Proc-
Omata are indeed defined as fixed points of endofunctions which, in the non-
deterministic case, are not always continuous due to global non-deterministic
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choice. While deterministic prefix choice does not suffice to restore conti-
nuity under composition, it does guarantee constructiveness, allowing us to
rely on the fixed-point operator υ x. f x in all cases.
The resulting framework yields compactification theorems that support invariant-
based reasoning over large process architectures:

|σs| = |As|
[[E]] (σ, A)∈#mset (zip σs As). P〈〈A〉〉nd σ = P〈〈〈〈nd

⊗
[[E ]] As〉〉〉〉nd σs

Finally, we demonstrated the applicability of our approach with the Dining
Philosophers case study, where Proc-Omata compactification enables proofs
that scale to an arbitrary number of participants in this parameterized pro-
cess architecture.
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