HOL-CSP_ Proc-Omata: A Bridge between CSP
Processes and Functional Automata

Benoit Ballenghien Burkhart Wolff

February 4, 2026

Abstract

This entry develops the Proc-Omata framework on top of HOL-CSP and its
extensions. Proc-Omata are defined from functional automata and come in
four variants: deterministic, terminating deterministic, non-deterministic,
and terminating non-deterministic. This subclass of processes combines the
expressiveness of CSP with automata-like structure (reachability, enable-
ness), making it particularly amenable to invariant-based reasoning.

We lift sequential composition and synchronization product to the au-
tomata level through combination functions and prove compactification the-
orems that enable reasoning over large process architectures. An essential
ingredient is the use of restriction spaces, which guarantees well-defined
fixed points even in the non-deterministic setting. Finally, we illustrate the
applicability of the framework with the Dining Philosophers, where com-
pactification yields proofs that scale to an arbitrary finite but unbounded
number of participants in this parameterized process architecture.

Contents

1 Introduction 9
2 An Excursion into Determinism 11
2.1 Acceptsinitials 11
2.1.1 Definition o 11

2.1.2 First properties Lo 12

2.1.3 Monotonicity L oo 13

2.1.4 Behaviour on Operators 13

2.1.5 Characterizations with After 18

2.2 Deterministic process oo 22
2.2.1 Definition L o o 22

2.2.2 Monotonicityo oL 23

2.2.3 Characterization as Maximal 23

2.2.4 Characterization with After 29

2.2.5 Operators preserving Determinism 29

2.2.6 Operators not (always) preserving Determinism 34

2.3 Application to Operational Semantics 34

3 ProcOmata: Functional Automata embedded into CSP Pro-

cesses 37
3.1 Definitions 39
3.1.1 Non-deterministic and deterministic Automata 39
3.1.2 Enableness, 39
3.1.3 States allowing Termination 39
3.1.4 Reachability 40
3.1.5 Morphisms 40
3.1.6 Generic update Functions 42
3.1.7 Assumptions on Automata 42
3.2 First Properties Lo oo 46
3.2.1 ¢, pand w first equalities 46
3.2.2 Properties of our morphisms 47
3.2.3 Reachability results (for Ry and Rpg) - - - - o o . .. 54
3.3 Normalization 56

3.3.1 Non-deterministic Case 56

3.3.2 Deterministic Case 59
3.3.3 Link between deterministic and non-deterministic Pro-
cOmata 62
3.3.4 Prove Equality between ProcOmata 62
Advanced Properties of ProcOmata 67
Combining Automata for Synchronization Product 69
5.1 Definitions 69
5.1.1 General Patterns 69
5.1.2 Specializations 70
5.2 First Properties oo 72
5.3 Reachability oo 73
5.4 Normalization 75
Compactification of Synchronization Product 79
6.1 Iterated Combine 79
6.1.1 Definitions oL 79
6.1.2 First Results 80
6.1.3 Reachability L. 81
6.1.4 Transmission of Properties 82
6.1.5 Normalization. 84
6.2 Compactification Theorems 86
6.2.1 Binaryo 86
6.2.2 Rlist 92
6.2.3 ListslenL. 93
6.2.4 Multipleo 95
6.3 Derived Versions 100
6.4 More on Iterated Combine 103
6.5 MoreonEvents 107

Combining Automata for Generalized Synchronization Prod-

uct

7.1

7.2
7.3
7.4
7.5

111
Definitions Lo o 111
7.1.1 Specializations 111
First Properties oL 112
Transitions are unchanged in the Generalization. 114
Reachability oo 114
Normalization 115

Compactification of Synchronization Product Generalized 119

8.1

Iterated Combine 119
8.1.1 Definitions 119

81.2 First Results, 119

8.1.3 Transmission of Properties 120
8.1.4 Normalization 122
8.2 Compactification Theorems 124
821 Binary 124
822 Rlist 130
8.2.3 ListslenL, 132
8.24 Multipleo 134
8.3 Derived Versions e 136
8.4 More on Iterated Combine and Events 139

9 Combining Automata for Sequential Composition General-

ized 141
9.1 Definitions 141
9.2 General Patterns L. 141
9.3 Specializations Lo 142
9.4 First Properties oL 143

9.4.1 Reachability 0oL 144
9.5 Normalization 147

10 Compactification of Sequential Composition Generalized 151

10.1 Iterated Combine 151
10.1.1 Definitionso oo 151
10.1.2 First Results 151
10.1.3 Reachabilityo oo 152
10.1.4 Transmission of Properties 153
10.1.5 Normalization 153

10.2 Compactification Theorems 155
10.2.1 Binary 155
10.2.2 ListslenL. oo oo 158
10.2.3 Multipleo oo 159

11 Application : May Philosophers dine 7 163

11.1 Preliminaries 163
11.1.1 Preliminary lemmas for proof automation 163

11.2 The dining processes definition 163
11.2.1 Unfolding rules 164

11.3 Translation into normal form 164
11.3.1 FORK, LPHIL0O and RPHIL are normalizable 164
11.3.2 FORKS is normalizable 166
11.3.3 PHILS is normalizable 167
11.3.4 The complete process DINING is normalizable 167

11.4 And finally: Philosophers may dine ! Always!. 168

11.4.1 Construction of an invariant for the dining automaton 168

7

11.4.2 The invariant inv-dining implies that DINING is dead-

lock-free 171
11.4.3 Conclusion, 172
11.5 Alternative version with only right-handed philosophers (in
order to show that it’s not deadlock-free) 173
11.5.1 Setup v v v 173
11.5.2 Normalization 173
11.5.3 Correspondance between our normalized processes and
the previous definitions 173
11.5.4 Proof that we have a deadlock in the state (replicate
N 1, replicate N 1) 174

11.5.5 Proof that this state is reachable from our initial state,
i.e. (replicate N 1, replicate N 1) € Rq Arp (replicate

N 0, replicate N 0) 174

12 Other Results similar to Compactification 177
12.1 Some preliminary Results 177
12.2 Results for Det o 178
12.3 Results for Ndet 179
12.4 Other Operators 179
12.4.1 dndtials 179

12.4.2 Throw v i i e e e 180

1243 (A) .o o 180

12.4.4 After. 181

125 OpSem 183
13 Conclusion 185
13.1 Entry Point oo 185
13.2 Conclusion 185

Chapter 1

Introduction

Communicating Sequential Processes (CSP) offers a rich and expressive
framework for modeling and reasoning about concurrent systems. Its de-
notational, operational, and algebraic facets are covered by the sessions
HOL-CSP [3], HOL-CSPM [2], HOL-CSP_OpSem [4], HOL-CSP_RS [6], and HOL-CSP_PTick.
These developments, initially following Roscoes presentation [7], have since
evolved considerably to admit arbitrary types, infinite sets, parameterized
termination, and more.

However, this expressiveness comes with a cost: proofs about complex or
parametric process architectures often become intricate and hard to scale.
Proc-Omata address this issue by slightly constraining the class of processes
in order to benefit from more powerful proof techniques. First sketched
in [8] and properly conceptualized in [5], the Proc-Omata framework con-
sists in embedding functional automata into CSP. The resulting subclass of
processes combines the expressive and compositional features of CSP with
automata-like properties (reachability, enableness, absence of divergences),
making it particularly amenable to invariant reasoning.

In this entry we start by formalizing the basic notions of functional automata
such as reachability and enableness, before introducing the definitions of
Proc-Omata themselves. For synchronization product and sequential com-
position, we then provide combination functions that realize the effect of
CSP operators at the level of the underlying automata. These translations
are formally proved correct, and culminate in compactification theorems,
which generalize the constructions inductively to architectural operators.

10

Chapter 2

An Excursion into
Determinism

This chapter is a preliminary work. Indeed, later in the construction, we
will define the notion of Procomata which comes in different flavours, in
particular deterministic ones. We will establish then that such ProcOmata
produce deterministic processes, a classical notion in CSP that we formalize
below.

In a word, a deterministic process cannot refuse an event in which it can
engage. More formally, if s @ [¢] € T P, then (s, {e}) ¢ F P. In this
theory, we follow the proof sketch given in [7] for characterizing deterministic
processes as maximal elements for the failure-divergence refinement (Cpp).
Other lemmas are proved with respect to CSP operators.

2.1 Accepts initials

This notion is a weak version of determinism. It captures the idea of being
deterministic for one step.

2.1.1 Definition

unbundle option-type-syntax

definition accepts-initials :: <('a, 'r) processpiick = bool> (<determ®))
where <determ® P =Ve € P°. {e} ¢ R P>

lemma accepts-initialsl : «(\e. e € P* = {e} ¢ R P) = determ® P»

and accepts-initialsD : <determ® P = e € P’ = {e} ¢ R P»
by (simp-all add: accepts-initials-def)

11

lemma accepts-initials-def-bis:
(determ® P +— (Vee PP.YX € R P.e¢ X)»
by (auto simp add: accepts-initials-def)
(metis Refusals-iff Un-upperl insert-Diff insert-is-Un is-processT4)

lemma accepts-initialsl-bis : «(\e X. e € PP = X € R P = e ¢ X) —
determ® P
and accepts-initialsD-bis : «determ’ P = e € P = X e RP = e ¢ X)
by (simp-all add: accepts-initials-def-bis)

2.1.2 First properties

lemma accepts-initials-STOP [simp] : <determ® STOP)
by (simp add: accepts-initials-def)

lemma accepts-initials-SKIP [simp)] : <determ® (SKIP r)»
by (simp add: accepts-initials-def Refusals-iff F-SKIP)

lemma not-accepts-initials-BOT [simp] : < determ® L»
by (simp add: accepts-initials-def Refusals-iff F-BOT)

lemma accepts-initials-imp-initial-tick-iff-is-SKIP:
«determ® P = /(1) € P° «— P = SKIP)
proof (rule iffT)
show (P = SKIP r = /(r) € P% by simp
next
assume assms : <determ® P> «/(r) € P%)
hence initials-is : <P = {/(r)}
by (auto simp add: accepts-initials-def initials-def Refusals-iff subset-iff)
(metis append-self-conv2 is-processT6-TR-notin singletonD)
show (P = SKIP
proof (subst SKIP-F-iff [symmetric], unfold failure-refine-def, safe)
from assms show «(s, X) € F P = (s, X) € F (SKIP r)» for s X
by (cases s, auto simp add: F-SKIP accepts-initials-def-bis Refusals-iff dest!:
F-T)
(metis initials-is initials-meml singletonD,
metis T-imp-front-tickFree event,y;ck.disc(2) front-tickFree-Cons-iff
initials-is initials-memlI singletonD)
qed
qed

lemma accepts-initials-imp-not-initial-tick-iff-is-S TOP-or-some-initial-ev:
«determ® P = (range tick N P* = {}) «— P = STOP V (Fe. eve € P°)
by (simp add: disjoint-iff image-iff)
(metis accepts-initials-imp-initial-tick-iff-is-SKIP all-not-in-conv eventyy; . exhaust
eventpiick.simps(8) initials-SKIP initials-empty-iff-STOP singletonD)

12

2.1.3 Monotonicity

lemma mono-accepts-initials-F: <P Cp Q = determ® P = determ® Q»
by (frule anti-mono-initials-F)
(auto simp add: failure-refine-def accepts-initials-def Refusals-iff subset-iff)

lemma mono-accepts-initials-FD: <P Cpp Q = determ® P = determ® Q»
using leFD-imp-leF mono-accepts-initials-F by blast

lemma mono-accepts-initials: <P C Q = determ® P = determ® @Q»
by (drule le-approz-lemma-F, fold failure-refine-def) (rule mono-accepts-initials-F)

lemma restriction-adm-accepts-initials [restriction-adm-process,; i -simpset, sim,
D P

cadmy (A\z. determ® (f z))» if <cont; f>
for f :: <'b = restriction = ('a, 'r) processptick>
proof (rule restriction-adm-subst)
from <cont, f» show <cont| f> .
next
show «<adm, (determ® :: (‘a, 'r) processptick = bool)
proof (rule restriction-admlI)
fix o and ¥ :: «(“a, 'r) processpiick>
assume <0 —|— X <«determ® (o n)» for n
show <determ®)
proof (rule accepts-initialsl)
fix e assume (e € ©0
from <0 —|— X» obtain n0
where * : <X | Suc (Suc 0) = o n0 | Suc (Suc 0)»
by (blast dest: restriction-tendstoD)
with <e € £% have <e € (o n0)%
by (metis initials-restriction-processpi;cx, nat.distinct(1))
with <determ® (o n0)) have {e} ¢ R (o n0)»
by (fact accepts-initialsD)
with * show «{e} ¢ R ©»
by (metis Refusals-iff F-restriction-processyi;cx-Suc-length-iff-F
list.size(8) restriction-related-pred)
qed
qed
ged

2.1.4 Behaviour on Operators

lemma accepts-initials-Mprefiz [simp] : <determ® (Oa € A — P a)»
by (simp add: accepts-initials-def initials-Mprefiz Refusals-iff F-Mprefix)

lemma accepts-initials-write0 [simp] : <determ® (a — P)»
by (simp add: write0-def)

lemma accepts-initials-write [simp] : «determ® (cla — P)>

13

by (simp add: write-def)

lemma accepts-initials-read [simp] : <determ® (c?a€A — P a)»
by (simp add: read-def)

lemma accepts-initials-Ndet-iff :
«determ® (P 1 Q) «— determ® P A determ® Q A P° = Q%
by (auto simp add: accepts-initials-def initials-Ndet Refusals-iff F-Ndet)
(metis Collect] F-T Un-iff append-Nil initials-def is-processT1 is-processT5-S7
singletonD)+

lemma accepts-initials- GlobalNdet-iff :
(determ® (Ma € A. P a) «—
(Va € A. determ® (P a) A (Vb€ A. (P a) = (Pb)%)
by (auto simp add: accepts-initials-def initials-GlobalNdet Refusals-iff F-GlobalNdet)
(metis Collect] append-Nil initials-def is-processT1-TR is-processT5-S7 single-
tonD)+

lemma accepts-initials-Mndetprefiz-iff:

(determ® (Ma € A — P a) «— (Ja. A C {a})»

by (simp add: Mndetprefiz-GlobalNdet accepts-initials-GlobalNdet-iff initials-write0)
blast

lemma accepts-initials-ndet-write-iff:
(determ® (cMa € A — Pa) +— (3b. ¢ “ A C {b})»
by (simp add: ndet-write-def accepts-initials-Mndetprefiz-iff)

lemma accepts-initials-SKIPS-iff :
determ® (SKIPS R) «— R={} Vv 3r. R = {r})»
by (simp add: SKIPS-def accepts-initials-GlobalNdet-iff) blast

lemma accepts-initials-Det :
(determ® (P O Q) «— P = STOP Vv Q = STOP V range tick N P° N Q° # {}
\Y
range tick N (P° U Q°) = {}
(is <- «— ?rhs») if accepts-initials : <determ® P» <determ® Q»
proof (cases <P = 1); cases <@ = 1)
show <accepts-initials (P O Q) <— ?rhs) if non-BOT : <P # 1y «Q # L»
proof (rule iffI)
show «?rhs = determ® (P O Q)»
proof (elim disjE)
show (P = STOP = determ® (P O Q)> «Q = STOP = determ® (P O
Q)
by (simp-all add: accepts-initials)
next

14

from non-BOT accepts-initials
show <range tick N P° N Q" # {} = determ® (P O Q)»
<range tick N (P° U Q°) = {} = determ® (P O Q)»
by (simp-all add: accepts-initials-def initials-def Refusals-iff
Det-projs BOT-iff-Nil-D disjoint-iff)
(metis append-Nil is-processT6-TR-notin singletonD)
ged
next
have x : ([Q # STOP; /(r) € P% /(r) ¢ Q% determ® P; determ® (P O Q)]
= Fualse»
for P Q :: <("a, 'r) processpiicr> and
by (metis Un-iff accepts-initials-imp-initial-tick-iff-is-SKIP ex-in-conv
initials-Det initials-SKIP initials-empty-iff-STOP singletonD)
show <determ® (P O Q) = ?rhs
by (simp add: disjoint-iff) (metis * Det-commute accepts-initials rangeE)
qed
qged (use not-accepts-initials-BOT accepts-initials in auto)

lemma accepts-initials-GlobalDet :
«determ® (Oa € A. P a) if <\a. a € A = determ® (P a)»
range tick N (N a € A. (P a)®) # {} V range tick N (Ja € A. (P a)?) = {}
proof (use that(2) in <elim disjE>)
from that(1) show <range tick N () a€A. (P a)°) # {} = determ® (Oa € A.
P a)
by (auto simp add: accepts-initials-def initials-GlobalDet Refusals-iff F-GlobalDet)
(meson is-processT8,
metis accepts-initials-imp-initial-tick-iff-is-SKIP
initials-SKIP initials-memlI singleton-iff that(1))
next
from that(1) show <range tick N (|Ja€A. (P a)°) = {} = determ® (Qa € A.
P a)
by (auto simp add: accepts-initials-def initials-GlobalDet Refusals-iff F-GlobalDet)
(blast, metis BOT-iff-Nil-D not-accepts-initials-BOT that(1),
metis UN-I disjoint-iff initials-memlI rangel)
qed

lemma accepts-initials-Seqptick :
«determ® (P 3, Q) «— (V1. /(r) € P* — determ® (Q r))» if <determ® P»
proof (intro iffI alll impl)
show «determ® (P 3, Q) = V/(r) € P* = determ® (Q r)» for r
by (simp add: accepts-initials-imp-initial-tick-iff-is-SKIP <determ® P»)
next
have <P # 1) using not-accepts-initials-BOT that by blast
show «determ® (P, Q) if x : Vr. /(r) € P — determ® (Q r)»
proof (rule accepts-initialsl)
fix e assume e € (P;, Q)%
then consider a where (¢ = ev a) <ev a € P% | r where «/(r) € P% (e €

15

Q)%
by (simp add: initials-Seqpiick, <P # L) blast
thus ({e} ¢ R (P, Q)
proof cases
from <determ® P> <P # 1) show (e = eva = eva € P’ = {e} ¢ R (P
3v Q) for a
unfolding accepts-initials-def-bis Refusals-def-bis
by (simp add: Seqpiick-projs BOT-iff-Nil-D ref-Seqpiick-def)
(metis <determ® P» accepts-initials-imp-initial-tick-iff-is-SKIP eventpi; k. distinct(1)
initials-SKIP initials-meml insertll singletonD)
next
show «/(r) e PP = e € (Qr)’ = {e} ¢ R (P;, Q) for r
by (simp add: <determ® P accepts-initialsD accepts-initials-imp-initial-tick-iff-is-SKIP

%)
qed
qed
ged

corollary accepts-initials-Seq :
(determ® (P 3 Q) «— (P° N range tick = {} V determ® Q)» if «determ® P»
by (fold Seqpiick-const, unfold accepts-initials-Seqpiick[|OF that]) fast

lemma (in Syncpiick-locale) accepts-initials-Syncpiick :
«determ® (P [S], Q)» if «determ® P» <determ® Q»
proof (rule accepts-initialsl)
from <determ® P> «determ® Q) have (P # 1) «Q # L by auto
fix e assume e € (P [S], Q)"
with <P #£ 1) «Q # 1) consider
awhere <e=cvar«a€ SAewac PPhNewac QVagSA(ewae PV
eva€ Q)
| -5 r s where (e = V/(r-s)) <r @V s = |[r-s]» «/(r) € P° «/(s) € Q%
by (auto simp add: initials-Syncpiicr split: if-split-asm)
thus ({e} ¢ R (P [S], @)
proof cases
fix o assume <¢e = evar «a € SAeva€ PPANevac Q" Vad SA(ewac
POV evae Q)
from this(2) show «{e} ¢ R (P [S], Q)
proof (elim disjE conjE)
show {e} ¢ R (P [S], Q) if <ecva € P ceva e Q%
proof (rule notl)
assume {e} € R (P [S], Q)
with <P # 1) <Q # 1) obtain X-P X-Q
where «([|, X-P) € F P «([], X-Q) € F @ <e € super-ref-Syncpick (V)
X-P S X-Q»
by (auto simp add: Refusals-iff F-Syncpiick BOT-iff-Nil-D dest: Nil-setinterleavespyick)
from this(3) have <eva € X-P V eva € X-OQ»
by (auto simp add: <e = ev a» super-ref-Syncyiicx-def)
with <ev a € P% <eva e Q% «([], X-P) € F P> ([}, X-Q) € F Q> show

16

Fulse
by (fold Refusals-iff) (metis accepts-initialsD-bis <determ® P» <determ®
Q)
qed
next
show «{e} ¢ R (P [S], Q) if <a ¢ S)» <eva € P
proof (rule notl)
assume {e} € R (P [S], Q)
with <P # 1) «Q # L) obtain X-P X-@Q
where (([|, X-P) € F P> «([], X-Q) € F @ <e € super-ref-Syncpiicr (V)
X-P S X-Q»
by (auto simp add: Refusals-iff F-Syncpiick BOT-iff-Nil-D dest: Nil-setinterleavespick)
from this(3) have <ev a € X-P»
by (simp add: <e = ev @ <a ¢ S» super-ref-Syncpiick-def)
with <ev a € P% «([], X-P) € F P> show False
by (fold Refusals-iff) (metis accepts-initialsD-bis «determ® P»)
ged
next
show «{e} ¢ R (P [S], Q) if <a ¢ S» <eva € Q%
proof (rule notl)
assume {e} € R (P [S], Q)
with <P # 1) <@Q # 1) obtain X-P X-Q
where «([], X-P) € F P) «([], X-Q) € F @ <e € super-ref-Syncpiick (V)
X-P 8 X-Q
by (auto simp add: Refusals-iff F-Syncpiicx BOT-iff-Nil-D dest: Nil-setinterleavespiick)
from this(3) have <ev a € X-Q»
by (simp add: <e = ev @ <a ¢ S» super-ref-Syncpticr-def)
with <eva € Q% «([], X-Q) € F Q> show False
by (fold Refusals-iff) (metis accepts-initialsD-bis «determ® Q)
qed
qed
next
fix r-s r s assume <e = v (r-s)) «r @/ s = |r-s) «/(r) € P% «/(s) € Q%
show «({e} ¢ R (P [S], Q)
proof (rule notl)
assume {e} € R (P [S], Q)
with <P # 1) «Q # L) obtain X-P X-@Q
where (([], X-P) € F Py «([], X-Q) € F @ <e € super-ref-Syncptick (V)
X-P 8§ X-Q
by (auto simp add: Refusals-iff F-Syncpiicr BOT-iff-Nil-D dest: Nil-setinterleavesptick)
from this(3) have «/(r) € X-P»
by (simp flip: «r @/ s = |r-s]> add: <e = /(r-5)> super-ref-Syncpiici-def)
(metis Refusals-iff «([], X-Q) € F @ «/(s) € Q% «r @V s = |r-s|
accepts-initials-def-bis inj-tick-join that(2))
with «/(r) € P% «([], X-P) € F P> show False
by (fold Refusals-iff) (metis accepts-initialsD-bis <determ® P»)
qed
qed
qed

17

corollary accepts-initials-Sync:
«determ® P = determ® Q = determ® (P [S] Q)
by (metis Syncciassic-accepts-initials-Syncprick SYNcciassic-is-Sync)

lemma accepts-initials-Renaming : <determ® (Renaming P f g)» if «determ® P»
proof —
from (determ® P> have <P # L) by auto
with <determ® P> show «determ® (Renaming P f g)
by (simp add: accepts-initials-def initials-Renaming Refusals-iff F-Renaming
vimage-def BOT-iff-Nil-D)
(metis (full-types) accepts-initials-def Refusals-iff accepts-initials-def-bis mem-Collect-eq)
qed

lemma accepts-initials- Throw-iff : «determ® (P © a € A. Q a) +— determ® P»
using D-F by (auto simp add: accepts-initials-def initials- Throw Refusals-iff
F-Throw)

lemma accepts-initials-Sliding:

(determ® P = determ® Q = determ® (P > Q) +—

P = STOP v P° C Q° A (range tick N P° # {} V range tick N Q° = {})»

by (auto simp add: Sliding-def accepts-initials-Ndet-iff accepts-initials-Det ini-
tials-Det)

2.1.5 Characterizations with After

context After
begin

Interesting results about the fact that we can express a process with Mprefix
and (after)

lemma leF'D-SKIPS-Det-Mprefix-After:
(P Cpp SKIPS {r. /(r) € P°} O ("a € {a. ev a € P’} — P after a)» (is <P
EFD ?’I‘hs))
proof (unfold failure-divergence-refine-def failure-refine-def divergence-refine-def,
safe)
show «<s € D %rhs = s € D P» for s
by (auto simp add: D-Det D-SKIPS D-Mprefix D-After)
next
show «(s, X) € F ?rhs = (s, X) € F P> for s X
proof (cases s)
show «<s = [| = (s, X) € F ?rhs = (s, X) € F P»
by (simp add: F-Det SKIPS-projs STOP-projs F-Mprefix
F-After disjoint-iff image-iff split: if-split-asm)
(metis initials-memlI append-Nil event,y;x.exhaust is-processT1-TR is-processT5-57,

18

metis CollectD append.left-neutral initials-def is-processT6-TR-notin)
next
show (s =e# s' = (s, X) € F rhs = (s, X) € F P> for e s’
by (auto simp add: F-Det SKIPS-projs STOP-projs F-Mprefiz
F-After disjoint-iff image-iff split: if-split-asm)
(metis CollectD append-butlast-last-id initials-def last-ConsL list.distinct(1)
tick-T-F)
qed
qed

lemma accepts-initials-imp-eq-Mprefiz-After:

«(P=(if 3r. /(r) € P° then SKIP (THE r. /(r) € P°)

else Oa € {e. ev e € P’} — P after a) (is <P = ?rhs»)

if «determ® P,
proof —

from not-accepts-initials-BOT <determ® P> have non-BOT: <P # L1, by blast
note initial-tick-iff-is-SKIP = accepts-initials-imp-initial-tick-iff-is-SKIP[OF <de-
term® P»)

have * : «?rhs = (SKIPS {r. /(r) € P°}) O
(Oa € {e. ev e € P’} — P after a) (is «?rhs = ?rhs-bis»)
by (simp, rule impl, elim exE, simp add: initial-tick-iff-is-SKIP)

show (P = ?rhs)
proof (rule FD-antisym)
show «P Crp ?rhsy by (unfold %) (fact leFD-SKIPS-Det-Mprefix-After)
next
show «?rhs Cpp P»
proof (unfold failure-divergence-refine-def failure-refine-def divergence-refine-def,
safe)
from non-BOT show <s € D P = s € D %rhs) for s
by (cases s; simp add: D-Det D-SKIP D-STOP D-Mprefiz BOT-iff-Nil-D
image-iff D-After initial-tick-iff-is-SKIP)
(metis BOT-iff-tick-D initials-memlI D-T D-imp-front-tickFree eventy;cy.disc(2)
eventyiick-echaust front-tickFree-Cons-iff initials-SKIP non-BOT single-
tonD)
next
have * : Ir. /(r) € P° = 3!r. /(r) € P%
by (metis eventpiick.inject(2) initial-tick-iff-is-SKIP initials-SKIP single-
tonD)
show «(t, X) e F P = (t, X) € F ?rhs) for t X
proof (cases t)
from x show «t = [| = (¢, X) € F P = (t, X) € F %rhs)
by (simp add: add: F-Mprefiz disjoint-iff image-iff initial-tick-iff-is-SKIP)
(metis (lifting) «determ® P» Refusals-iff[of X P]
accepts-initialsD-bis[of P - X] the-equality[of <A\r. P = SKIP 1))
next
from x* show «t =e# t'—= (t, X) € F P = (¢, X) € F %rhs for e t’

19

by (cases e, simp-all add: F-Mprefiz F-After disjoint-iff image-iff ini-

tial-tick-iff-is-SKIP)
(metis F-T eventpi;ck.distinct(1) initials-SKIP initials-meml singletonD,

metis (mono-tags, lifting) F-T initial-tick-iff-is-SKIP initials-meml
the-equality)
qed
qed
qed
qed

theorem is-some-Mprefix-iff:
(3A Q. P=0a € A — Q a) < range tick N P° = {} A accepts-initials P>
for P :: «(("a, 'r) processpiick>
proof (intro iffI exI)
show (34 Q. P = Mprefix A Q = range tick N P° = {} A accepts-initials P>
by (auto simp add: initials-Mprefiz image-iff disjoint-iff)
next
from accepts-initials-imp-eq-Mprefiz-After
show <range tick N P° = {} A accepts-initials P =—>
P =0a € {e. eve € P’} — P after
by (meson disjoint-iff rangel)
qed

lemma tick-not-initial-imp-STOP-Ndet-Mndetprefiz-After-FD:
<range tick N P* = {} = STOP N (Ja € {e. eve € P} — P after a) Cpp P>
by (cases <P = 1>, solves (simpy,
auto simp add: refine-defs Ndet-projs F-STOP Mprefix-projs After-projs
BOT-iff-Nil-D)
(metis initials-memlI F-T Int-iff empty-iff eventpi;ck.exhaust neq-Nil-conv rangel ,
metis initials-memI D-T disjoint-iff eventpick-exhaust neq-Nil-conv rangel)

— With this we could obtain something about CHAOS and tF and D P = {} but
we already have this.

lemma <lifelock-free P +— D P = {} A (Vt € T P. tF t)
using lifelock-free-is-non-terminating non-terminating-is-right nonterminating-implies-div-free
by blast

lemma STOP-Ndet-SKIPS-Ndet-Mprefix-After-leF :
«(STOP 11 SKIPS {r. /(r) € P°} 1 (Qa € {e. eve € P°} — P after a) Cp P>
(is < M Zlhst N 2Ihs2 Cp Py)
proof (unfold failure-refine-def, safe)
fix t X assume «(t, X) € F P»
then consider (¢t = []» | r where <t = [V(r)]y «<r € {r. /(r) € P°}

20

| a t’ where <t = eva # t" a € {a. eva € P°h
by (cases t, simp-all) (metis F-T F-imp-front-tickFree eventy;cr.erhaust
front-tickFree-Cons-iff initials-meml is-ev-def)
thus «(t, X) € F (STOP N ¢lhst N ?lhs2)»
proof cases
show «t = [| = (¢, X) € F (STOP N ?lhs1 N ?lhs2)y by (simp add: F-Ndet
F-STOP)
next
fix r assume <t = [V(r)]»
with «(¢, X) € F P» have «(t, X) € F (?lhs1)»
by (auto simp add: F-SKIPS introl: initials-memlI’ F-T')
thus «(t, X) € F (STOP 1 ?lhst N ?lhs2)> by (simp add: F-Ndet)
next
fix a t’ assume <t = ev a # t
with «(¢, X) € F P> have «(t, X) € F ?lhs2»
by (auto simp add: F-Mprefiz F-After introl: initials-meml F-T')
thus «(t, X) € F (STOP 1 ?lhs1 N ?lhs2) by (simp add: F-Ndet)
qed
qed

lemma non-BOT-imp-Mprefix-After-leD :
(Ja € {e. eve € P’} — Pafter a Cp P> (is «<-?lhs Cp P») if <P # L»
proof (unfold divergence-refine-def, rule subsetl)
fix t assume <t € D P
with <P # 1) obtain a t’ where <t = ev a # t
by (cases t, simp add: BOT-iff-Nil-D, simp add: BOT-iff-tick-D)
(metis D-imp-front-tickFree eventy;ck.exhaust front-tickFree- Cons-iff is-ev-def)
with <t € D P) show <t € D ?lhs»
by (auto simp add: D-Mprefix D-After intro: D-T initials-meml)
qed

lemma non-BOT-imp-STOP-Ndet-SKIPS-Ndet-Mprefiz-After-leFD
(P # 1 = STOP N SKIPS {r. /(r) € P°} 1 (Qa € {e. eve € P°} — P after
a) Cpp P»
by (rule leF-leD-imp-leFD[OF STOP-Ndet-SKIPS-Ndet-Mprefiz-After-leF])
(use non-BOT-imp-Mprefiz-After-leD Ndet-D-self-right trans-D in blast)

theorem singl-initial-imp-equals-prefiz-After:

«(P = (if UNIV ¢ R P then a — P after a else STOP M (a — P after a))»

if initials-is : <initials P = {ev a}
proof (split if-split, intro conjl impl)

assume not-all-refusals : <UNIV ¢ R P»

have $: <e # ev a = [e] ¢ T P» for e using initials-is unfolding initials-def
by auto

{ assume {eva} € R P>

from is-processT5 [rule-format, of <[> «{ev a}» P <UNIV — {ev a}», folded

21

Refusals-iff
simplified this T-F-spec, simplified, rule-format, OF $, simplified]
have «UNIV € R P> .
with not-all-refusals have False by simp
} hence not-in-refusal: «{ev a} ¢ R P> by blast
show (P = a — P after a
by (unfold write0-def, subst accepts-initials-imp-eq-Mprefiz-After)
(solves <simp add: accepts-initials-def initials-is not-in-refusaly,
auto simp add: that(1) intro: mono-Mprefiz-eq)
next
assume all-refusals : <= UNIV ¢ R P»
from tick-not-initial-imp-STOP-Ndet-Mndetprefiz-After-FD[of P]
have x : <STOP M (a — P after a) Cpp P>
by (simp add: that(1) Mprefiz-singl image-iff)
from leF'D-SKIPS-Det-Mprefiz-After[of P] all-refusals
have #x : (P Cpp STOP M (a — P after a)»
by (auto simp add: refine-defs that(1) write0-projs Mprefiz-projs
Ndet-projs STOP-projs Refusals-iff)
(meson is-processT4 subset-UNIV)
from xx % show <P = STOP M (a — P after a)» by (fact FD-antisym)
qed

lemma ({eve} ¢ R P = eve e P%
by (simp add: Refusals-iff initials-def)
(metis is-processT1-TR is-processT5-S7 self-append-conv2 singletonD)

end

2.2 Deterministic process

2.2.1 Definition

definition deterministic :: «('a, 'r) processpiick = bool> (<determy)
where (determ P =V se.sQ[e] € T P — (s, {e}) ¢ F (P)

lemma deterministicl : «(\te. t Qle] € T P = (t, {e}) ¢ F (P)) = determ
Py

and deterministicD : <«determ P =t Q [e] € T P = (¢, {e}) ¢ F (P)

by (simp-all add: deterministic-def)

lemma deterministic-STOP [simp] : <determ STOP)
and deterministic-SKIP [simp] : <determ (SKIP r))
by (simp-all add: deterministic-def T-STOP SKIP-projs)

lemma deterministic-div-free : «determ P = D P = {}
by (auto simp add: deterministic-def)
(metis D-T D-imp-front-tickFree append-butlast-last-id div-butlast-when-non-tickFree-iff
front-tickFree-single is-processT7 is-processT8 tickFree-Nil)

22

lemma not-deterministic-BOT [simp] : <— determ L)
using BOT-iff-Nil-D deterministic-div-free by blast

2.2.2 Monotonicity

lemma mono-deterministic-F: <P Cp () = determ P —> determ Q)
by (meson T-F-spec deterministic-def failure-refine-def subset-iff)

lemma mono-deterministic-FD: <P Cpp Q = determ P = determ Q>
using leF'D-imp-leF mono-deterministic-F by blast

lemma mono-deterministic: <P C @Q = determ P —> determ @)
using le-approx-imp-le-ref mono-deterministic-F'D by auto

lemma restriction-adm-deterministic [restriction-adm-processpiick-simpset, simp]

<admy (Az. determ (f x))» if <cont f»
for f :: <'b = restriction = ('a, 'r) processptick>
proof (rule restriction-adm-subst)
from (cont, f» show «cont| f> .
next
show <adm, (determ :: (‘a, 'r) processpiick, = bool)
proof (rule restriction-admlI)
fix o and ¥ :: «((“a, 'r) processpiick>
assume <o —]— X «determ (o n)» for n
show «<determ %»
proof (rule deterministicl)
fix t e assume <t Q [e] € T 3
from <o —|— ¥» obtain n0
where * : <X | Suc (length (t Q [e])) = o n0 | Suc (length (t @ [e]))
by (blast dest: restriction-tendstoD)
with «t @ [e] € T X» have <t Q [e] € T (o n0)»
by (metis T-restriction-processy;cr-Suc-length-iff-T)
with «deterministic (o n0)> have «(t, {e}) ¢ F (o n0)»
by (fact deterministicD)
with x show «(¢, {e}) ¢ F 2>
by (metis F-restriction-processpt;ck-Suc-length-iff-F
length-append-singleton restriction-related-pred)
qged
qed
qed

2.2.3 Characterization as Maximal

Some preliminary work

definition is-processy :: «('a, 'r) tracepiicr set = booly
where <is-processy T =

23

eTANteT fiFt)NVtu tQue T —teT)A
VMtretQ/(r)]eT —e#/(r)— tQle ¢ T)H

typedef (‘a, 'r) processy = {T :: ('a, 'r) tracepick set . is-processy T}
proof (rule exI)

show «({[]} € {T. is-processy T} unfolding is-processp-def by simp
qed

setup-lifting type-definition-processt

lift-definition Tracest :
«('a, 'r) processp = ('a, 'r) tracepiick set> ((Tr»)
is <A\P. Rep-processt P> .

lemma Processp-eq-spec : <T = U +— Tp T =Tr U
by (simp add: Rep-processy-inject Tracesr.rep-eq)

lemma is-processy-1 : <[] € Tr P>
and is-processp-2 : <s € Tp P = ftF s
and is-processy-3 :«sQt € T P—= se€Tr P
and is-processy-4 1 s Q W/ (r)| € Tr P=e# /(r) = sQe] ¢ Tr P
by (transfer, meson Rep-processt|simplified, unfolded is-processt-def])+

lemmas is-processy-def-bis = is-processt-def|[of «Rep-processt -y, folded Tracest.rep-eq|

lift-definition processyi;ci-of-processt ::
«("a, 'r) processy = ('a, 'r) processpiick>
is AT. {(5, X). s€Tr TANXC —{e.sQleleTr T}} {})»
by (auto simp add: is-process-def FAILURES-def DIVERGENCES-def
intro: is-processy-1 is-processy-2 is-processy-3)
(meson is-processp-4)

lemma F-processyt;cr-of-processt :

«F (processpiick-of-processp T) = {(s, X). s€e Tr TANX C —{e.sQle] € Tr
T}

and D-processpyiick-of-processy :

(D (processpiick-of-processy T) = {}

and T-processpiick-of-processr :

T (processpiick-of-processy T) = Tp T

by (simp-all add: Failures-def FAILURES-def Divergences-def DIVERGENCES-def

Traces-def TRACES-def processpiici-of-processy.rep-eq) blast

lemmas processptic-of-processp-projs = F-processptici-of-processt

24

D-processptick-of-processt T-processptick-of-processt

Now the big results

lemma bij-betw-det :
<bij-betw processpiick-of-processy UNIV {P :: (‘a, 'r) processpiick. determ P}»
(is <bij-betw processpiick-of-processy 251 252»)
proof (intro bij-betw-imagel)
show «<inj-on processpticr-of-processy 251>
by (rule inj-onl) (auto simp add: Process-eq-spec processpiick-0f-processp-projs
Processr-eq-spec)
next
show «(processptici-of-processy © 251 = 252»
proof (intro subset-antisym subsetl; clarify)
show <determ (processpiick-of-processy P)» for P :: «(a, 'r) processr>
by (rule deterministicI) (simp add: processyi;ck-of-processp-projs)
next
fix P :: «('a, 'r) processptick>
assume det : <deterministic P>
hence * : <Rep-processt (Abs-processy (T P)) =T P
by (intro Abs-processp-inverse)
(simp add: deterministic-def is-processp-def is-processT2-TR,
metis T-F-spec is-processT3 is-processT6-notin singletonD)
show (P € processptick-0of-processy © 251
proof (subst image-iff, rule bexl)
show <P = processpck-of-processp (Abs-processy (T P))»
by (auto introl: Process-eg-optimizedl simp add: processpi;ck-of-processp-projs
Tracesp-def x det deterministic-div-free subset-iff F-T')
(meson det deterministic-def empty-subsetl insert-subset is-processT,
use is-processT5-S7 in blast)
next
show <Abs-processy (T P) € 251y by (simp add: Tracesp-def *)
qged
qed
qed

lemma SKIPS-is-GlobalDet-SKIP : <SKIPS R = Or € R. SKIP r»
by (auto simp add: Process-eq-spec SKIPS-projs GlobalDet-projs SKIP-projs)

lemma SKIP-Ndet-SKIP-is-SKIP-Det-SKIP : <SKIP r 1 SKIP s = SKIP r [J
SKIP s)
by (auto simp add: Process-eq-spec Det-projs Ndet-projs SKIP-projs)

theorem P-FD-some-det :
— In the generalization, since several terminations may occur after the same trace
in the initial process, we have to specify a choice.

25

fixes termination-choice :: «('a, 'r) tracepiicr = '™

assumes <A\t. Ir. t Q [/(r)] € T P = termination-choice t € {r. t Q [V (r)]
eT Ph

defines «<T = {t € T P.Vt' < ¢t. @r. ' Q[V(r)) e T P) — ¢t =1 Q@
[V (termination-choice t")]}»

shows (P Crp processpiick-of-processy (Abs-processy T)»
proof (unfold failure-divergence-refine-def failure-refine-def divergence-refine-def,
intro conjl)

show (D (processpiick-of-processy (Abs-processy T)) € D P» by (simp add:
D-processpiicr-of-processr)
next

have x : «<T € {T. is-processp T}

by (auto simp add: T-def is-processy-def T-imp-front-tickFree intro: is-process T3-TR-append)

(metis prefix-prefix append-eq-first-pref-spec less-list-def nless-le self-append-conv,
metis less-self)

show «F (processpiick-of-processy (Abs-processy T)) C F P»
proof safe
fix s X assume «(s, X) € F (processpiick-of-processy (Abs-processt T'))»
hence <s € T P»
by (simp add: F-processpiicr-of-processy Tracesy-def Abs-processy-inverse[OF
*]) (simp add: T-def)
show «(s, X) € F P»
proof (cases «<Ir. s Q@ [V (r)] € T P»)
assume <3r. s Q [V (r)] € T P»
hence «s @ [V (termination-choice s)] € T P» by (metis assms(1) mem-Collect-eq)
with «(s, X) € F (processpiici-of-processy (Abs-processy T))» have «/ (termination-choice
s) ¢ X»
unfolding F-processpiick-of-processy Tracesy.abs-eq Abs-processy-inverse[OF
*
]
by (simp add: subset-iff T-def)
(metis prefiz-snoc append-T-imp-tickFree nless-le
non-tickFree-tick not-Cons-self2 tickFree-append-iff)
with «s @ [V (termination-choice s)] € T P> show «(s, X) € F P»
by (metis is-processT6-TR-notin)
next
assume Ar. s Q [/(r)] € T P>
with «(s, X) € F (processpiick-of-processp (Abs-processy T))» have <X C —
{e.sQ e e T Ph
unfolding F-processpiick-of-processy Tracesy.abs-eq Abs-processp-inverse[OF
*
]
by (simp add: subset-iff T-def)
(metis prefix-snoc append-T-imp-tickFree nless-le
non-tickFree-tick not-Cons-self2 tickFree-append-iff)
with is-processT5-S7[OF «s € T P»] show «(s, X) € F P» by blast
qed
qed
qed

26

theorem deterministic-iff-mazimal-for-leFD:

(determ P «+— (V Q. P Cpp Q@ — P = Q)» for P :: «('a, 'r) processptick>

— see TPC, chapter 9)
proof (intro iffI alll impl)

fix Q assume (determ P> and <P Crp Q)

from <P Crp @ have no-div: <D P = {}» <D Q = {}> and F-subset : <F Q
CF P

by (simp-all add: <determ P» deterministic-div-free refine-defs)

have same-T : <T P =T @
proof (rule subset-antisym,)
show <T P C T
proof (rule ccontr)
assume (=7 P C T
then obtain s e where x : (s @ [e] € min-elems (T P — T Q)
by (metis DiffD2 Diff-eq-empty-iff Nil-elem-T elem-min-elems min-elems/,
rev-exhaust)
hence (s € T @ unfolding min-elems-def
by simp (metis Diff] T-F-spec is-processT3 less-self)
with * have (s, {e}) € F @
by (metis Diff-iff elem-min-elems is-processT5-S7 singletonD)
from set-mp[OF F-subset this] have (s, {e}) € F P> .
moreover have (s, {e}) ¢ F P» by (metis * Diff-iff «<determ P> determin-
isticD elem-min-elems)
ultimately show Fulse by blast
qged
next
show T @Q C T P> by (simp add: F-subset F-subset-imp-T-subset)
qed

have same-F : «<F P = F @
proof (rule subset-antisym,)
show «<F P C F @
proof (rule ccontr)
assume (- F P C F @
then obtain s X where % : «(s, X) e F P — F @ <X # {}
by (metis Diffl T-F-spec same-T subrell)

have <e € X = s@Q [e] ¢ T P» for e
by (metis %(1) DiffD1 <determ P deterministicD insert-Diff insert-is-Un
is-processT4 sup-gel)
thus False by (metis (1) DiffE F-T is-processT5-S7 same-T)
qged
next
show «F @Q C F P» by (fact F-subset)
qed
show «P = @ by (simp add: Process-eq-spec failure-refine-def divergence-refine-def

27

no-div same-F)

next
define termination-choice where <termination-choice s = (SOME r. s @ [/(7)]
€ T P) for s
have $: «(3r. s Q [/ (r)] € T P = termination-choice s € {r. sQ [/ (r)] € T
P} for s
by (simp add: termination-choice-def) (meson somel)

define T where «T ={se€ T P.Vs'<s. (3r.s’Q[/(r)] €T P) — s=s’
Q@ [V (termination-choice s')]}»
have x : «<T € {T. is-processp T}
by (auto simp add: T-def is-processy-def T-imp-front-tickFree intro: is-process T3-TR-append)
(metis prefix-prefix append-eq-first-pref-spec less-list-def nless-le self-append-conv,
metis less-self)
assume mazximal : <V Q. P Cpp @ — P = @
with $§ P-FD-some-det T-def have (P = processpici-of-processy (Abs-processy
T)> by blast
moreover have <Abs-processy T € {P.Vsre sQ[/(r)] € Tr P — e #
(r)—sQle] ¢ Tr Ph
by (simp add: Tracesp-def Abs-processy-inverse[OF])
(metis * is-process-def mem-Collect-eq)
ultimately show <determ P) using bij-betwE[OF bij-betw-det] by blast
qed

lemma <«determ P = X e R P — X C — PY%
unfolding deterministic-def Refusals-iff initials-def
by auto (metis insert-Diff insert-is-Un process-charn self-append-conv2 sup-gel)

We have the immediate powerful corollaries.

corollary (in After) deterministic-process-eq-SKIPS-Det-Mprefiz-After :

(determ P => P = SKIPS {r. /(r) € P°} O (Oa € {a. ev a € P’} — P after
a)

by (simp add: deterministic-iff-mazimal-for-leF'D leFD-SKIPS-Det-Mprefiz-After)

lemma deterministic-imp-initial-tick-iff-eq-SKIP [simp] :
(determ P = /(r) € P’ «— P = SKIP r»
by (meson deterministic-iff-mazximal-for-leFD dual-order.refl initial-tick-iff-F'D-SKIP)

lemma deterministic-imp-constraints-on-initials :
(determ P = P = {} V {a. eva € P°} = {} A 3r. P° ={/(1)}) V
{a. eva € P}y £ {} A{r. /(r) € P°} ={}
by auto (metis deterministic-imp-initial-tick-iff-eq-SKIP eventyi;ck.exhaust ini-
tials-SKIP)

28

corollary (in After) deterministic-process-eq-SKIP-or-Mprefiz-After :
(determ P = P = (if 3r. /(r) € PY then SKIP (THE r. P° = {/(r)})
else Ja € {a. ev a € P’} — P after a)»
by (subst deterministic-process-eq-SKIPS-Det-Mprefiz-After)
(auto simp add: inj-on-eq-iff [OF inj-SKIP])

2.2.4 Characterization with After

lemma (in AfterExt) deterministic-iff-accepts-initials-Afteri,qce:
(determ P +— (Nt € T P. tF t — determ® (P aftert t))
proof (intro iffI balll impI)
show (determ P =t € T P => tF t = determ® (P aftery t)) for ¢
by (rule accepts-initialsI)
(simp add: initials-def Refusals-iff T-Aftersrqce-eq F-Aftersyqce-eq determin-
istic-def)
next
show (determ Py if «<Vt€T P. tF't — determ® (P aftery t)»
proof (rule deterministicl)
fix t e assume <t Q [¢] € T P»
have «t € T P> and «tF)
by (meson prefizl <t Q [e] € T P» is-processT3-TR)
(use <t Q [e] € T P» append-T-imp-tickFree in blast)
with <t € T P» that[rule-format, OF this| show <t Q [e] € T P = (¢, {e})
¢ F P
by (simp add: accepts-initials-def Refusals-iff initials-def T-Afterirqce-€q
F'Aftertrace‘EQ)
qed
qed

2.2.5 Operators preserving Determinism

lemma deterministic-Mprefix-iff :
<determ (Oa € A — P a) «— (Va € A. determ (P a))»
by (auto simp add: deterministic-def Mprefiz-projs) (metis append-Cons)

corollary deterministic-write0-iff : «determ (a — P) <— determ P»
unfolding write0-def by (simp add: deterministic-Mprefiz-iff)

corollary deterministic-write-iff : <determ (cla — P) <— determ P»
unfolding write-def by (simp add: deterministic-Mprefiz-iff)

corollary deterministic-inj-on-read-iff :
<inj-on ¢ A = determ (c?a € A — P a) «— (Va € A. determ (P a))»
unfolding read-def by (simp add: deterministic-Mprefiz-iff)

lemma deterministic-inj- Renaming :
<determ (Renaming P f g)» if <inj f> <inj ¢» <determ P>
proof (rule deterministicl)

29

have $: «inj (map-eventyicr, [g)> by (simp add: eventpy;ck.inj-map that(1,2))
fix te
assume <t Q [e] € T (Renaming P f g)
then obtain t! where x : <t1 € T P» <t Q [e] = map (map-eventpiick fg) t1»
by (simp add: T-Renaming deterministic-div-free|OF <determ P>]) blast
have «(s1, map-eventyyicr, fg — {e}) € F P = t # map (map-eventyiick [g)
s1» for si1
proof (rule ccontr, clarify)
assume assms : (s1, map-eventpiick fg —{e}) € F P> <t = map (map-eventyi;ck
fa) st
from assms(2) *(2) have «t1 = s1 Q [inv (map-eventyick [g) €
by (cases t1 rule: rev-cases; simp)
(metis (mono-tags, opaque-lifting) $ inj-map-eq-map inv-f-f)
from deterministicD[OF <deterministic P> %(1)[unfolded this|]
have «(s1, {inv (map-eventpiicr fg) €}) ¢ F P> .
also have «{inv (map-event,iicr [g) e} = map-eventpick fg —* {ep
using inj-vimage-singleton[OF $, of €] *(2)
«t1 = s1 Q@ [inv (map-eventpick [9) €] by (auto simp add: §)
finally have «(sI, map-eventyicr, fg —‘{e}) ¢ F P» .
with assms(1) show False by simp
qed
thus (¢, {e}) ¢ F (Renaming P f g)
by (auto simp add: F-Renaming deterministic-div-free[OF <determ P>])
qed

lemma deterministic-bij- Renaming-iff :
<determ (Renaming P f g) +— determ P> if <bij f> and <bij ¢»
proof (rule iffI)
show <determ (Renaming P f g) = determ P>
by (metis Renaming-inv bij-betw-def deterministic-iff-mazimal-for-leFD
mono-Renaming-FD «bij f» <bij ¢»)
next
show «determ P = determ (Renaming P f g)»
by (simp add: bij-is-inj deterministic-inj-Renaming <bij > <bij g»)
qed

lemma deterministic-Throw : «determ (P © a € A. Q a))
if <determ Py «(\a. a € A = a € o(P) = determ (Q a)»
proof (subst Throw-is-restrictable-on-events-of)
show «determ (Throw P (A N «(P)) Q)
proof (rule deterministicl)
fix t e assume (1t Q [e] € T (PO a € (AN a(P)). Q a)
moreover from <determ P> have <D P = {}»
by (simp add: deterministic-div-free)
ultimately consider
(tracel) <t @ [e] € T Py <e ¢ ev ‘(AN a(P)) «settNev ‘(AN alP) =
h

30

| (traceR) t1 a t2 where <t Q [e] = t1 Q ev a # t2) <t] Qleva]l € T P»
set t1 Nev ‘(AN a(P))={} cae€ A ae€alP) 2T (Qa)y
unfolding T-Throw by auto
thus «(¢, {e}) ¢ F (PO a € (AN a(P)). Q a)
proof cases
case traceL
from traceL(1) «determ P> have «(t, {e}) ¢ F P»
by (simp add: deterministicD)
with traceL(3) show «(t, {e}) ¢ F (P © a € (AN «a(P)). Q a)
by (auto simp add: F-Throw <D P = {}»)
next
case traceR
from traceR(1) consider <t2 = [<t = t1) <e = ev ay
| 12’ where «t2 = 12’ Q [e]y <t = 11 Q ev a # 2%
by (cases t2 rule: rev-cases) simp-all
thus (¢, {e}) ¢ F (P © a € (AN a(P)). Q a)
proof cases
assume (t2 = [» <t = t1) <e = ev @
from <determ P» traceR(2) have «(t1, {ev a}) ¢ F P»
by (simp add: deterministicD)
with traceR(8) show «(t, {e}) ¢ F (P © a € (AN «a(P)). Q a)
by (auto simp add: <t = t1» <e = ev a» <D P = {}» F-Throw)
next
fix t2/ assume <12 = t2' Q [e]» <t = t1 Q ev a # 2
from traceR(4, 5) have «determ (Q a)»
by (rule <\a. a € A = a € a(P) = determ (Q a)»)
with <2 = {2’ @ [e]> have (¢2, {e}) ¢ F (Q a)»
using traceR(6) by (simp add: deterministicD)
with traceR(3—5) show (¢, {e}) ¢ F (P © a € (AN «a(P)). Q a)
by (simp add: <t =11 Q eva # t2"» <D P = {}» F-Throw Throw- T-third-clause-breaker)
qed
qed
qed
qed

lemma T-snoc-tick-imp-no-continuation-if-deterministic :
w=1[ANe=V(r)if <determ P <t Qu @ [e] € T Pt Q[/(r)] €T P>
proof —
have x : <t Q [e] € T P = e = /(r) for e
by (metis deterministicD is-processT6-TR-notin singletonD that(1, 3))
show (u =[] A e = /(1)
proof (cases u)
from * that(2) show «u =[] = u =[] A e = /(r)» by auto
next
fix e’ u’
assume <u = e’ # u’
with that(2) have «t @ [e/] € T P»

31

by simp (metis F-T T-F append.assoc append-Cons append-Nil is-processT3)
hence Fulse
by (metis x T-imp-front-tickFree <u = e’ # u'» eventpiick.disc(2) front-tickFree-append-iff
not-Cons-self snoc-eq-iff-butlast that(2) tickFree-Cons-iff)
thus (u =[] A e = /(1) by simp
qed
qed

lemma T-snoc-ev-imp-no-tick-continuation-if-deterministic :
(u #£ [] Ais-ev (hd u) V is-ev e if <determ Py <t @ uw Q [e] € T P> <t Q [ev d]
eT P
proof —
have <t @ [e] € T P = is-ev e for e
by (metis T-snoc-tick-imp-no-continuation-if-deterministic append.left-neutral
eventptick.discl(1) eventpi;ck.exhaust that(1,3))
thus «u # [| A is-ev (hd u) V is-ev e
by (metis T-imp-front-tickFree append-eq-appendl front-tickFree-append-iff
list.exhaust-sel not-Cons-self snoc-eq-iff-butlast that(2) tickFree-Cons-iff)
qed

lemma deterministic-Seqptick : <determ (P 3, Q)
if <determ Py <Ar. r € /s(P) = determ (Q r)»
proof (rule deterministicl)
fix ¢t e assume <t Q [e] € T (P35, Q)
moreover from <determ P> have <D P = {}»
by (simp add: deterministic-div-free)
ultimately consider a v where <e = ev a» <t = map (ev o of-ev) w» <u Q [ev
al € T Py «tF w
| wvr where <t Q [e] = map (ev o of-ev) u @ vy <u @ [V/(r)] € T Py «tF w
weT (Qry wHp
by (auto simp add: Seqpiick-projs append-eg-map-conv append-eq-append-conv2
Cons-eq-append-conv)
(metis Nil-is-append-conv append.right-neutral append-Nil not-Cons-self, blast,
metis Cons-eg-appendl append-eq-appendl eq-Nil-appendl eventyi;cr.collapse(1)
is-process T3-TR-append)
thus «(t, {¢}) ¢ F (P, Q)
proof cases
show <e = ev a = t = map (ev o of-ev) u = u Q [eval € T P = tF u
= (t, {e}) ¢ F (P35, Q) for au
by (auto simp add: tickFree-map-ev-of-ev-inj <D P = {}» Seqpiicr-projs
ref-Seqpiick-def map-eg-append-conv)
(meson deterministicD empty-subsetl insertll insert-subset is-processT/,
<determ P,
meson T-snoc-tick-imp-no-continuation-if-deterministic eventpy; . distinct(1)
<determ P»)
next
fix v v r assume <t Q [e] = map (ev o of-ev) v Q@ v» «u @ [V (r)] € T P> «tF

32

wweT (Qr) w#Ip
from this(1, 5) obtain v’ where (v = v’/ @ [e]> <t = map (ev o of-ev) v Q v’
by (cases v rule: rev-cases) simp-all
from «u Q [V (r)] € T P> T-snoc-tick-imp-no-continuation-if-deterministic| OF
<determ P»]
have « : <map (ev o of-ev) u @ v/ = map (ev o of-ev) w @ z A w Q [V ()] €
TP=w=uAs=nforwzs
by (auto simp add: append-eq-append-conv2 map-eq-append-conv append-eg-map-conv
append-T-imp-tickFree
dest!: tickFree-map-ev-of-ev-inj| THEN iffD1, rotated 2]) blast+
have (determ (Q r)»
by (metis <D P = {}p «u Q [V(r)] € T P> empty-iff strict-ticks-of-memlI
that(2))
with «v=0v"Q [e}y <v € T (Q)
have «(v/, {e}) ¢ F (Q r)» by (simp add: deterministicD)
{ fix v assume «(u @ v, ref-Seqpiick, {€}) € F Py <tF v <v' = map (ev o
of-ev) v""
have v = [»
by (metis F-T F-imp-front-tickFree T-snoc-tick-imp-no-continuation-if-deterministic
(u @ 0", ref-Seqprick {€}) € F P>
F vy cu @ [/ (r)] € T P> front-tickFree-charn front-tickFree-nonempty-append-imp
non-tickFree-tick <determ P»)
with <(u @ v”, ref-Seqpiick {€}) € F P> have «(u, {V/(r)}) € F P»
by (simp add: ref-Seqpiick-def)
(meson UNIV-I UnCI empty-subsetl insert-subset is-process T4 rev-image-eql)
hence Fulse by (simp add: <u @ [/(r)] € T P» deterministicD <determ P»)

}
with * «(v’, {e}) ¢ F (Q r)> show «(t, {e}) ¢ F (P;, Q)
by (auto simp add: Seqpiick-projs <D P = {}» <t = map (ev o of-ev) v Q v’
append-eq-map-conv <tF w)
dest!: tickFree-map-ev-of-ev-inj| THEN iffD1, rotated 2])+
qed
qged

corollary deterministic-Seq : <determ P = determ @Q = determ (P ; Q)»
by (metis Seqpiick-const deterministic-Seqptick)

lemma (in After) initial-imp-deterministic-After:
(ev e € P = determ P = determ (P after €)»
unfolding deterministic-def by (simp add: After-projs)

lemma (in AfterExt) initial-imp-deterministic-Afters;
(e € PY = (case e of /(1) = determ (Q P r)) =
determ P = determ (P after s e)»
unfolding deterministic-def by (cases e) (simp-all add: T-After;cr F-Aftersick)

33

2.2.6 Operators not (always) preserving Determinism

lemma deterministic-imp-accepts-initials : <determ P => determ® P>
by (simp add: Refusals-iff accepts-initials-def deterministic-def initials-def)

corollary deterministic-SKIPS-iff : <determ (SKIPS R) +— R={} v (3r. R =
[
by (metis SKIPS-empty SKIPS-singl-is-SKIP accepts-initials-SKIPS-iff
deterministic-SKIP deterministic-STOP deterministic-imp-accepts-initials)

lemma deterministic-Det:
<determ P = determ) —
range tick N P° N Q% # {} v P° N Q° = {} A range tick N (P° U Q°) = {}
= determ (P O Q)
proof (elim disjE conjE)
show <determ P = determ Q = range tick N P’ N Q° # {} = determ (P
O @)y
by (auto simp add: deterministic-def Det-projs SKIP-projs)
next
show ([determ P; determ Q; P° N Q° = {}; range tick N (P° U Q°) = {}] =
determ (P O Q)»
by (auto simp add: deterministic-def Det-projs disjoint-iff deterministic-div-free
initials-def)
(metis F-T append-Cons append-Nil is-processT3-TR-append neg-Nil-conv)+
qed

2.3 Application to Operational Semantics

lemma (in OpSemFD) tickFree-trace-trans-preserves-deterministic:
(P = ('a, 'r) processpiick) Fp~* t Q => tF t = deterministic P = deter-
ministic
proof (induct rule: trace-trans.induct)
show (P pp~, P’ = deterministic P = deterministic P’s for P P’ :: «('a,
'r) processpiick>
using deterministic-iff-maximal-for-leFD by blast
next
show «tF [/ (r)] = deterministic P»
for r :: </ry and P :: <(a, 'r) processpiick® by simp
next
fix a P P’ and ¢ :: <(‘a, ') traceptickr and P’ :: «(‘a, 'r) processpiick?
assume (P pp~gq P (tF (ev a # t)» «deterministic P>
(tF t = deterministic P' = deterministic P’
from (P pp~sq P’ <deterministic Py have (deterministic P’
using deterministic-iff-maximal-for-leFD ev-trans-is initial-imp-deterministic- After
by blast
with «(tF t = deterministic P’ = deterministic P'"y «tickFree (ev a # t)

34

show <deterministic P'"y by simp
qed

lemma deterministic-imp-Refusals-iff: <deterministic P — X € R P +— X N
P ={}
by (auto simp add: Refusals-iff initials-def deterministic-def disjoint-iff)
(metis append-Nil empty-subsetl insert-subset process-charn,
metis Nil-elem-T append-Nil is-processT5-S7)

lemma (in OpSemFD) deterministic-F-trace-trans-reality-check:
<deterministic P —> tF t —>
(t, X) € F (P :: (‘a, 'r) processprick) «— (3Q. (P rp~>*"t Q) AN X N Q" =
)
by (simp add: F-trace-trans-reality-check)
(metis deterministic-imp-Refusals-iff tickEree-trace-trans-preserves-deterministic)

lemma <« deterministic ((a — SKIP undefined) O SKIP undefined)>
by (metis Det-commute FD-iff-eq-Ndet Sliding-SKIP Sliding-def Un-insert-right
initials-write0 insertl1
singletonD deterministic-iff-mazimal-for-leFD eventy,;cx.simps(4) initials-Det
initials-SKIP)

35

36

Chapter 3

ProcOmata: Functional

Automata embedded into
CSP Processes

We will often have to perform induction on both the list of automata and
the list of states, provided that they have the same length.

lemma induct-2-lists012 [consumes 1, case-names Nil single Cons] :
(llength zs = length ys; P[] [J; Azl y1. P [z1] [y1];
Nzl 22 xs y1 y2 ys. length xs = length ys = P xs ys —>
P (22 # xs) (y2 # ys) = P (a1 # 22 # xs) (y1 # y2 # ys)]
= P xs ys$»
by (induct xs arbitrary: ys rule: induct-list012)
(auto simp add: Suc-length-conv length-Suc-conv)

lemma nat-induct-012 [case-names 0 1 2 Suc]:

([P 0; P (Suc 0); P (Suc (Suc 0)); Nk. Suc (Suc 0) < k = Pk = P (Suc
k)] = Pn

by (metis One-nat-def Suc-1 less-2-cases-iff linorder-not-le nat-induct)

The following results will be moved to Restriction_Spaces in the future.

lemma restriction-shift-iterated :
crestriction-shift (f = k) (int k * m)»
if (restriction-shift f m) for f :: <'a = ’'a :: restriction-space)
proof (induct k)
show «restriction-shift (f =~ 0) (int 0 = m)»
by (simp add: restriction-shiftl)
next
fix k assume * : (restriction-shift (f " k) (int k x m)»
have (restriction-shift (f = Suc k) (int (Suc k) * m) <—
restriction-shift (Ax. f (f 77 k) x)) (int k x m + m)»
by (simp add: comp-def distrib-left mult.commute add.commute)
also have ... by (fact restriction-shift-comp-restriction-shift|OF that *])
finally show <restriction-shift (f = Suc k) (int (Suc k) = m)> .

37

qed

lemma non-destructive-iterated :
<non-destructive f = non-destructive (f =~ k)»
for f :: <'a = 'a :: restriction-space’
by (metis mult.commute mult-zero-left non-destructive-def non-destructive-on-def
restriction-shift-def restriction-shift-iterated)

lemma constructive-iterated :
<constructive (f ~ k)» if <0 < k> <constructive >
for f :: <a = 'a :: restriction-space’
proof —
from <constructive f» have <restriction-shift f 1»
unfolding constructive-def constructive-on-def restriction-shift-def by blast
with restriction-shift-iterated
have <restriction-shift (f ~" k) (int k = 1) .
hence «restriction-shift (f " k) (int k)> by simp
with <0 < k> show «constructive (f = k)»
by (metis One-nat-def constructive-def constructive-on-def
less-eq-Suc-le nat-int-comparison(8) of-nat-1-eq-iff
restriction-shift-def restriction-shift-imp-restriction-shift-le)
qed

lemma restriction-fiz-unique-iterated :
0 < k; constructive f; (f T k)z=2] = (v fz)=n
by (metis constructive-iterated funpow-swapl restriction-fiz-unique)

lemma restriction-fix-iterated :
<0 < k = constructive f = (vz. (f k) z) = (v fa)p
by (metis constructive-iterated restriction-fix-eq restriction-fiz-unique-iterated)

corollary restriction-fiz-ind-iterated

[consumes 1, case-names constructive adm base stepl:

P (v z. fz)if <0 < k> <constructive f> <adm; P> <P x> «Az. Pz = P ((f
k) z)»
proof —

from constructive-iterated that(1, 2) have <constructive (f = k)» .

from restriction-fix-ind[OF this that(3—5)] have «P (v z. (f " k) z)» .

also from restriction-fiz-iterated that(1, 2) have <(v z. (f k) z) = (v z. fx)»

finally show <P (v z. fz) .
qed

38

3.1 Definitions

3.1.1 Non-deterministic and deterministic Automata
unbundle option-type-syntax

‘o, 'a) enabl = <o = 'a set>
o

type-synonym (
("o, 'a, 'o’) trans = <o = 'a = o’
(/
(

type-synonym
type-synonym
type-synonym

o, 'a) transg = «('o, 'a, ‘o option) trans

‘o, 'a) transpq = (o, ‘a, ‘o set) trans

record (o, 'a, '’ 'r) A =
7 ¢('o, 'a, 'o’) trans
w:do= "

type-synonym (o, ‘a, 'r) Aq = «('o, 'a, ‘o option, 'r option) A»
type-synonym (o, ‘a, 'r, 'a) Ag-scheme = (o, 'a, ‘o option, 'r option, ‘a)
A-scheme)

type-synonym (o, 'a, 'r) Anq = «('o, 'a, ‘o set, 'r set) A>

type-synonym (o, ‘a, 'r, 'a) A,q-scheme = (', 'a, ‘o set, 'r set, ‘a) A-scheme>

3.1.2 Enableness

consts ¢ :: «('o, 'a, o', 'r', 'a)) A-scheme = ('o, 'a) enabls

overloading
eq = <€ 2 (o, 'a, 'o option, 'r', 'a) A-scheme = ('o, 'a) enabl
enag = <€ = (Yo, 'a, 'o set, 'r’, 'a) A-scheme = (‘o, 'a) enabl

begin

fun ¢4 :: <(‘o, 'a, ‘o option, 'r’, 'a) A-scheme = (o, 'a) enably
where «¢g Ao ={a.7T Ao a#0p

fun e,,4 :: «('o, 'a, ‘o set, 'r’, 'a) A-scheme = (‘o, 'a) enably
where «¢,g Ao ={a. 7 Ao a#{}}

end

lemmas e-simps[simp del] = e4.5imps £,4.5iMps

3.1.3 States allowing Termination

consts o :: (o, ‘a, ‘o', 'r’, 'a) A-scheme = o sel»

overloading
04 = <o :: ('o, 'a, 'o’, 'r option, ‘o) A-scheme = ‘o set»
ond = <0 (', 'a, o', 'r set, 'a) A-scheme = ‘o set)
begin

fun o4 :: «('o, 'a, ‘o', 'r option, ‘o) A-scheme = ‘o set>
where <o A ={0.w Ao # O}

fun 0,4 :: <('o, 'a, o', 'r set, 'a) A-scheme = ‘o set»
where <p,qg A ={0c.w Ao # {}p

end

lemmas o-simps[simp del] = 04.5imps 0nq.stMps

39

3.1.4 Reachability

inductive-set Ry :: «('o, 'a, 'r, 'a) Ag-scheme = ‘o0 = ‘o seb»
for A :: «('o, 'a, 'r, 'a) Ag-scheme> and o :: ‘o
where init : <0 € Rq A o>

| step:w'€Rj Ao = |d"|=7TAc’'a=0c"€Rs Ao

inductive-set R, 4 :: (o, 'a, 'r, 'a) A, q-scheme = ‘o0 = ‘o set)
for A :: «('o, 'a, 'r, 'a) Apq-schemer and o :: ‘o
where init : <0 € Rpq A4 o

| step: o' €RpgAo=—=oc"€TAc’ a=0c"€Rpqg Ao

lemma Rg4-trans: <cd”’ € Rg Ao’ = o' € Rg Ao = cd" € Ry A o>
by (induct rule: Rq.induct, simp add: Rgq.init) (meson Rq.step)

lemma R, 4-trans: <c"" € Rpg Ao’ = ' € Rpg Ao = 0" € Rpqg 4 o>
by (induct rule: R, q.induct, simp add: Ryq.init) (meson R, q4.step)

3.1.5 Morphisms

Our morphisms are defined considering that, except from 7, the fields remain
unchanged.

definition from-det-to-ndet ::
(o, 'a, 'r, 'a) Ag-scheme = ('o, 'a, 'r, 'a) A,q-scheme>
where (from-det-to-ndet A =
(r=Xoa.caset Ao aof |0 = {c'} | 0=},
w=Ao.casew Ao of |[r] ={r}]|0={} ... =more A
definition from-ndet-to-det ::
(o, 'a, 'r, 'a) Apq-scheme = ('o, 'a, 'r, 'a) Ag-scheme>
where (from-ndet-to-det A =
(tr=Xa.if T Ao a={}then § else |THE ¢'. 0’ € 7 A ¢ a],
w=MXo.if wAo=/{}then Qelse | THEr.r € w Ac], ... = more A

definition from-o-to-osg ::
(o, 'a, 'r, 'a) Ag-scheme = (‘o list, 'a, 'r, 'a) A4-scheme)
where <from-o-to-ocsq4 A =
(7 = Aos a. case 7 A (hd 0s) a of |o'] = [[o]] | O = O,
w=Aos.w A (hd 0s), ... = more A|)»
definition from-o-to-ospq ::
(o, 'a, 'r, 'a) Apg-scheme = (‘o list, 'a, 'r, ‘o) Apq-scheme
where (from-o-to-cs,q A =
(r=MXosa. {[o]|o". o' €T A(hd os) a},
w=Aos.w A (hd 0s), ... = more Al)»

definition from-os-to-oq ::
(‘o list, 'a, 'r, ‘o) Ag-scheme = (o, 'a, 'r, 'a) A4-scheme)
where <from-os-to-oq4 A =
(7= Ao a. case T A [0] a of |os'| = |hd os'] | O = O,

40

w=2MXo.w A [o], ... = more A
definition from-os-to-o,4 ::
(o list, 'a, 'r, 'a) Apq-scheme = (‘o, 'a, 'r, 'a) Apq-scheme>
where <from-os-to-0,q A =
(r = Ao a. {hd 05" |os’. 08’ € T A [o] a},
w=2MXo.w A [o],... = more A

definition from-singl-to-listy ::
(o, 'a, 'r, 'a) Ag-scheme = (‘o list, 'a, 'r list, ‘o) Ag-scheme>
where <from-singl-to-listy A =
(r = Aos a. case 7 A (hd 05) a of |o'| = |[c]] | O = O,
w = Aos. case w A (hd os) of |r] = [[r]] | 0 = O, ... = more A)»
definition from-singl-to-list,q ::
(o, 'a, 'r, 'a)) Ang-scheme = (‘o list, 'a, 'r list, 'a)) A,q-scheme>
where <from-singl-to-list,qg A =
(r=Xosa. {[o]|o". o' €T A (hd os) a},
w=2MXos. {[r] |r. r €w A (hd 08)}, ... = more A])»

definition from-list-to-singly ::
(Yo list, 'a, 'r list, 'a) Ag-scheme = (‘o, 'a, 'r, 'a) Ag4-scheme>
where <from-list-to-singly A =
(7t =MXo a. case T A o] a of |os']| = |hd 0s’] | O = O,
w=MAo. case w A [o] of |rs] = |[hd 13| | O = O, ... = more A»
definition from-list-to-singl,q ::
(‘o list, 'a, 'r list, 'a) Apq-scheme = (‘o, 'a, 'r, 'a) A,q4-scheme>
where <from-list-to-singl,qg A =
(7 = Ao a. {hd 08’ |os’. 0s’" € T A [0] a},
w=2MXo. {hd rs|rs. rs € w A [o]}, ... = more A)»

lemmas det-ndet-conv-defs = from-det-to-ndet-def from-ndet-to-det-def
and o-0s-conv-defs = from-o-to-osq-def from-o-to-os,q-def
from-o s-to-o 4-def from-os-to-o,q-def
and singl-list-conv-defs = from-singl-to-listy-def from-singl-to-list, q-def
from-list-to-singly-def from-list-to-singl, q-def

bundle functional-automata-morphisms-syntar begin

notation from-det-to-ndet (<{-)a—na> [0])
notation from-ndet-to-det (<{-)ndg~a> [0])
notation from-o-to-0sq (<a{-)o—os> [0])

notation from-0-t0-05,q4 (‘na{-Yo—os [0])
notation from-os-to-04 ({a{-)os—wo> [0])

notation from-o0s-to-0,4 (\nd{-)os—~o> [0])
notation from-singl-to-listy (<a{-)singi—1iist> [0])
notation from-singl-to-list,q (<na{-)singi—iist> [0])
notation from-list-to-singly (<a{-Yiist~ssing> [0])
notation from-list-to-singlna (<na{-)iist~singt> [0])

41

end
unbundle functional-automata-morphisms-syntax

lemma morphisms-A-scheme-more-simps [simp] :
<more {A)gyna = more Ay <more {B)ndg—a = more B>
<more 4{C)y—os = more Cy <more pg{D)s—os = more D)
«more 4{E) s = more Ey <more ,q{(F)oswo = more F
«more ¢(G)singi—siist = more Gy <more na(H)singi—iist = more H»
«more g{I)iistsingl = more I+ <more na{J)iistssingt = more J»
by (simp-all add: det-ndet-conv-defs o-os-conv-defs singl-list-conv-defs)

3.1.6 Generic update Functions

definition update-both where <update-both Ag A1 09 o1 ef = f (1 Ag 00 €) (T
A1 g1 €)>

definition update-left where <update-left Ay oo o1 efg = f (1 Ag g €) (g o1)»

definition update-right where <update-right Ay oo 01 e fg = f (g 00) (T 41 01
e)

lemmas update-defs[simp] = update-both-def update-left-def update-right-def
abbreviation f-up-set where <f-up-set f B C = {fst| st. (s,t) € Bx C}h

abbreviation f-up-opt where «f-up-opt f s t = case s of O = O | | s'| = map-option

(fs" v

3.1.7 Assumptions on Automata

definition finite-trans :: «(‘o, 'a, 'r, 'a) A, q-scheme = bool
where «finite-trans A = Vo a. finite (T A o a))

lemma finite-trans-morphisms-simps[simp]:
finite-trans (AYg—na>
finite-trans B = finite-trans pa{B)s—os’
finite-trans C = finite-trans nq{C)
(finite-trans D = finite-trans nq{D)singisiist’
(finite-trans E = finite-trans nq{E)iist-—singl’
unfolding det-ndet-conv-defs o-0s-conv-defs singl-list-conv-defs finite-trans-def
by (simp-all add: option.case-eq-if)

>sza>

definition at-most-1-elem :: <('c, 'a, 'r, ‘@) Anq-scheme = bool)
where <at-most-1-elem A =
NVoatAca={}V (o .7Aca={c}) A
NMVoowAo={}Vv@3rwdo={r}))

42

lemma at-most-1-elem-def-bis :
<at-most-1-elem A <— (Vo a. Jo'. 71 Ao a C{oc'}) AN(Vo.Ir.w Ao C {r})
by (auto simp add: at-most-1-elem-def subsetl-iff)
(((metis empty-iff singleton-iff)+)[2],
((metis equalsOD is-singletonl’ is-singleton-some-elem)—+)[2])

lemma at-most-1-eleml :
Ao a.7TAoca={}Vv (3. 7Aoo a={0"});
NoowAo={}Vv (3r.wdo={r})] = at-most-1-elem A»
by (simp add: at-most-1-elem-def)

lemma at-most-1-elemFE :
(r Ao a={} = thesis; N\o'. 7 A o a = {0’} = thesis] = thesis
(w A 0 = {} = thesis; Ar. w A 0 = {r} = thesis] = thesis»
if <at-most-1-elem A>
by (meson at-most-1-elem-def <at-most-1-elem A»)+

definition at-most-1-elem-trans :: «(‘o, 'a, 'r, 'a) A,4-scheme = bools
where <at-most-1-elem-trans A=Voa. 1 Aca={}V (3o 7 Ao a={c"})p

lemma at-most-1-elem-trans-def-bis :
<at-most-1-elem-trans A +— (Vo a. Jo'. 7 Ao a C {c'})
by (auto simp add: at-most-1-elem-trans-def subset-iff)
(metis empty-iff singleton-iff,
metis equalsOD is-singletonl’ is-singleton-some-elem)

lemma at-most-1-elem-transl :
Ao a.7 Ao a={}Vv (3c'. 7 Ao a={0'})] = at-most-1-elem-trans A>
by (simp add: at-most-1-elem-trans-def)

lemma at-most-1-elem-transk :
(r Ao a={} = thesis; N\o'. 7 A o a = {0’} = thesis] = thesis
if <at-most-1-elem-trans A»
by (meson at-most-1-elem-trans-def <at-most-1-elem-trans A»)+

lemma at-most-1-elem-imp-at-most-1-elem-trans :

<at-most-1-elem A = at-most-1-elem-trans A»
by (simp add: at-most-1-elem-def at-most-1-elem-trans-def)

definition length-1-transy :: (‘o list, 'a, 'r, ‘o) Ag-scheme = bool»
where <length-1-transq A =
Vosa. case T A os aof O = True| |os’| = length s’ = Suc 0»

lemma length-1-transql :

43

qAcos acs’. T Aosa=|os'| = length os’ = Suc 0] = length-1-transq A»
by (simp add: length-1-transq-def split: option.split)

lemma length-1-transgE :
(llength-1-transqg A; 7 A 0s a = |os']; No. 08’ = [0] = thesis] = thesis)
by (simp add: length-1-transq-def split: option.split-asm)
(metis (no-types) length-0-conv length-Suc-conv)

definition length-1-trans,q :: <('c list, 'a, 'r, 'a) A,4-scheme = bool
where <length-1-trans,q A =Vos a.Vos' € 7 A os a. length o0s’ = Suc 0>

lemma length-1-trans,q1I :
(Aos aos’.os’" € T Aosa= length os'" = Suc 0] = length-1-trans,q A>
by (simp add: length-1-trans, q-def split: option.split)

lemma length-1-trans, F :
[length-1-trans,q A; 0s’ € 7 A os a; No. 0s’ = [0] = thesis] = thesis»
by (simp add: length-1-trans, q-def split: option.split-asm)
(metis (no-types) length-0-conv length-Suc-conv)

definition length-1,4 :: «('o list, ‘a, 'r list, o) Agq-scheme = bool
where <length-14 A =
(Vos a. case T A os a of O = True| |os’| = length os’ = Suc 0) A
(Vos. case w A os of & = True | |rs] = length rs = Suc 0)»

lemma length-141 :
qAos acs’. T Aosa=|os'| = length os’ = Suc 0;
Nos rs.w A os = |rs] = length rs = Suc 0] = length-14 A>
by (simp add: length-1 4-def split: option.split)

lemma length-14F :
length-14 A; 7 A s a = |os’]; No. 0s’ = [0] = thesis] = thesis
length-14 A; w A s = |rs|; \r. rs = [r] = thesis] = thesis
by (simp add: length-1 4-def split: option.split-asm,
metis (no-types) length-0-conv length-Suc-conv)+

definition length-1,4 :: <(‘o list, 'a, 'r list, 'a) Ay q-scheme = bool
where (length-1,4 A = Vos a.Vos' € 7 A os a. length s’ = Suc 0) A
(Vos. Vrs € w A os. length rs = Suc 0)»

lemma length-1,41 :
A\osaocs’. os’" € T Aosa= length 0s’ = Suc 0;
Nos rs. rs € w A 0s = length rs = Suc 0] = length-1,q4 A>
by (simp add: length-1,4-def split: option.split)

lemma length-1,4F :

44

length-1,4 A; 08’ € T A os a; \o. 08’ = [0] = thesis] = thesis
(length-1,4 A; rs € w A os; \r. rs = [r] = thesis] = thesis
by (simp add: length-1,4-def split: option.split-asm,

metis (no-types) length-0-conv length-Suc-conv)+

definition indep-enabl :: «('og, 'a, 'ro, ‘@) Ag-scheme = ‘o = ‘a set = ('oq, a,
'r1, '8) Ag-scheme = ‘o1 = bool

where (indep-enabl Ay o9 E Ay 01 =Vig € Rq Ag 09. Vi1 € Rq Ay 01. € Ao
t() Nne A1 t1 C E)»

lemma indep-enadll :

<(/\t0 t1.tg € Rq Ag 09 = t1 € Rq A1 01 = ¢ Ag tg Ne Ay tlgE)

— indep-enabl Ag o9 E Ay 01>

and indep-enablD :

([indep-enabl Ag o9 E Ay 01; to € Ra Ap 00; t1 € Rq A1 01] = € Ag to N e
Al tl Q B>

by (simp-all add: indep-enabl-def)

definition p-disjoint-¢ :: «('o, 'a, 'o’, 'r’, 'a)) A-scheme = bool»

where <p-disjoint-ce A=Vo € pA.e Ao ={}h

lemma g-disjoint-cl : «(\o. 0 € 0 A = ¢ A 0 = {}) = p-disjoint-c A>
and p-disjoint-eD : <p-disjoint-e A=— o € p A= Ao ={}p
by (simp-all add: o-disjoint--def)

definition at-most-1-elem-term :: «(‘c, ‘a, 'r, 'a) Apq-scheme = bool)
where <at-most-1-elem-term A =Vo.w Ao ={} V(3r.w Ao ={r}p

lemma at-most-1-elem-term-def-bis :
<at-most-1-elem-term A «— (Vo. 3r.w Ao C {r})
by (auto simp add: at-most-1-elem-term-def subset-iff)
(metis empty-iff singleton-iff,
metis equalsOD is-singletonl’ is-singleton-some-elem)

lemma at-most-1-elem-termlI :
qAo. w Ao ={}Vv (3r.w Ao ={r})] = at-most-1-elem-term A»
by (simp add: at-most-1-elem-term-def)

lemma at-most-1-elem-termkFE :
(w A 0 = {} = thesis; Ar. w A 0 = {r} = thesis] = thesis)
if <at-most-1-elem-term A»
by (meson at-most-1-elem-term-def <at-most-1-elem-term A»)+

45

lemma at-most-1-elem-imp-at-most-1-elem-term :
<at-most-1-elem A = at-most-1-elem-term A»
by (simp add: at-most-1-elem-def at-most-1-elem-term-def)

3.2 First Properties

3.2.1 &, o and w first equalities

lemma base-trans-¢[simpl:
€ ((1=Xoa. O,w=Xro.0, ... =some|) :: ("o, 'a, 'r, 'a) Ag-scheme) o = {}
€ ((r=x0a {},w=2Xxo{}, ... =some) :: (o, 'a, 'r, 'a) Anq-scheme) o =
{p

by (simp-all add: e-simps)

lemma base-trans-p[simp):
0 (T =X0 a. O, w =Ao. 0, ... = some) :: (o, 'a, 'r, 'a) Agq-scheme) = {}»
o (=X a. {},w=2Xo.{}, ... = some) :: (o, ‘a, 'r, 'a) Apq-scheme) = {}
by (simp-all add: o-simps)

lemma o-0s-conv-[simp):
€ g{AYosos 0s =€ A (hd 08) <€ pi{B)oos 08 =€ B (hd os)»
€ g{CVosmo 0 =¢ C o] <€ na{D)oswo 0 =€ D [o]
by (simp-all add: o-0s-conv-defs e-simps option.case-eq-if)

lemma o-0s-conv-g[simp):
0 i{A)os0s = {0s. hd os € 0 A} <0 na{B)o—sos = {0s. hd os € p B}»
0 a{CVoswmo ={0. (0] € 0 C} <0 na{D)oswo = {o. [0] € 0 D}
by (simp-all add: o-0s-conv-defs o-simps option.case-eq-if)

lemma singl-list-conv-¢[simp]:
3 d<<A>>singl<—>list cs=¢c¢ A (hd O’S)) € nd<>singl<—>list cs=¢B (hd 08))
(€ d<<0>>listwsingl oc=¢cC [U]> (€ nd<<D>>listwsingl oc=¢D [U]>
by (simp-all add: singl-list-conv-defs e-simps option.case-eq-if)

lemma singl-list-conv-g[simpl:

0 d<<A>>singl€—>list = {05' hd os € 0 A}> N nd<>singl‘—>list = {U& hd os € 0
B}

0 d<<c>>list->singl = {U~ [U] Sl C}) 0 nd<<D>>listwsingl = {U- [O] € D}>

by (simp-all add: singl-list-conv-defs o-simps option.case-eq-if)

lemma det-ndet-conv-e[simp|: <€ (AYgyna = € A> € (B)ndwa =€ B
by (rule ext, simp add: det-ndet-conv-defs e-simps option.case-eq-if)+

lemma det-ndet-conv-g[simpl: <0 {(AYgsna = 0 A> <0 {BYnd—wa = 0 B>
by (simp-all add: det-ndet-conv-defs o-simps option.case-eq-if)

46

lemma w-from-det-to-ndet :

W (A)gsna = (Ao. case w A o of |r] = {r} |0 = {})
by (auto simp add: det-ndet-conv-defs)

lemma e-w-useless [simp] :
€ (A(w := some-w)) = e A « (B(w := some-w’)) = ¢ B>
for A :: «('o, 'a, ‘o option, 'r option, 'a) A-scheme>
and B :: (o, 'a, 'o set, 'r set, 'a) A-scheme)
by (rule ext, simp add: e-simps)+

lemma g-disjoint-c-updated-w [simp] :
co-disjoint-e (Aw = Ao. Q)
<p-disjoint-e (B(w := Ao. {}))»
by (simp-all add: o-disjoint-c-def o-simps)

lemma g-disjoint-e-det-ndet-conv-iff [simp)] :
<o-disjoint-e (A)qgyna — o-disjoint-e A)
<o-disjoint-¢ {B)nd—wa <— o0-disjoint-c B»
by (simp-all add: o-disjoint-e-def)

lemma at-most-1-elem-term-updated-w [simp] :
<at-most-1-elem-term (A(w = Ao. {}))
by (simp add: at-most-1-elem-term-def)

lemma at-most-1-elem-term-from-det-to-ndet [simp] :
<at-most-1-elem-term (AYgsnad’
by (simp add: det-ndet-conv-defs at-most-1-elem-term-def split: option.split)

lemma at-most-1-elem-term-unit [simp) :
<at-most-1-elem-term (A :: (‘o 'a, unit, 'a) Anq-scheme))
by (auto simp add: at-most-1-elem-term-def)

3.2.2 Properties of our morphisms

method expand-A-scheme =
match conclusion in <A = B) for A B :: (o, 'a, o/, 'r’, 'a) A-schemer =
<cases A, cases B»

lemma base-trans-det-ndet-conv:

(= Xroa. O, w=2Ac. 0, ... = some))desna =

(t = Xo a. {}, w=Ao. {}, ... = some|»
((r=Xoa. {},w=Xo. {}, ... = some))ngwa =
(7t =Xoa. O, w=XAo. 0, ... = some|)»

unfolding det-ndet-conv-defs by simp-all

47

lemma from-det-to-ndet-o-0s-conv-commute:
d{{A)dsnd)osos = (d{A)osos)dond’ nd{{B)dsnd)oswo = (a{B)oswo)dmsna’
by (simp add: det-ndet-conv-defs o-0s-conv-defs, rule ext,
auto simp add: option.case-eq-if split: if-splits)+

lemma from-det-to-ndet-singl-list-conv-commute:
<nd<<<<A>>d;>nd>>singl;)list = <<d<<A>>singl‘—>list>>d;>nd> <nd<<<>d<—>nd>>list->singl =
<<d<>listwsingl>>d‘—>nd>
by (simp add: det-ndet-conv-defs singl-list-conv-defs,
solves «intro conjl ext, auto split: option.splity)+

lemma from-ndet-to-det-o-0s-conv-commute:
<at-most-1-elem-trans A => 4{({A)nd—d)oos = {(nd{A)oos)nd—d’
<at-most-1-elem-trans B = 4{{B)nd—wd)oswo = {nd{B)os~wo)nd—wd’
proof —
assume * : <at-most-1-elem-trans A»
from * have 7 4((A)ndwd)osos 0 @ = T {ni{AYosos)ndwd 0s a> for os a
by (auto simp add: det-ndet-conv-defs o-0s-conv-defs
elim: at-most-1-elem-transE)
moreover have w ¢{({(A)niwd)osos 08 = W {ni{A)oos)ndwa o8 for os
by (auto simp add: det-ndet-conv-defs o-0s-conv-defs)
moreover have (more ¢({(A)ndwd)osos = Mmore {nd{A)ssos)ndwd> DY simp
ultimately show < {({(A)nd—wd)o—os = {ni{A)o—os)niwa> DY expand-A-scheme
auto
next
assume x : (at-most-1-elem-trans B>
from x have 7 4{((B)ndwd)oswo 0 ¢ = T {nd{B)os—wo)ndwd 0 a> for o a
by (auto simp add: det-ndet-conv-defs o-0s-conv-defs
elim: at-most-1-elem-transE)
moreover have (w ¢{({B)ndwd)oswo 0 = W {ni{B)os~o)ndwda 0+ for o
by (auto simp add: det-ndet-conv-defs o-0s-conv-defs)
moreover have (more 4{({B)nd—wd)oswo = More {nd{B)oswo)ndwd> DY simp
ultimately show 4((B)ndwd)oswo = {nd{B)os—wo)ndwd> Dy expand-A-scheme
auto
qed

lemma from-ndet-to-det-singl-list-conv-commute:
<at-most-1-elem A = d<<<<A>>nd->d>>singl‘—>list = <<nd<<A>>singl;>list>>nd->d}
<at-most-1-elem B = d<<<>nd->d>>listwsingl = <<nd<>listwsingl>>ndv~>d>
proof —
assume x : <at-most-1-elem A
from * have «r d<<<<A>>ndwd>>singl<—>list osa=T <<nd<<A>>singl‘—>list>>ndv~>d gs a)
for os a
by (auto simp add: det-ndet-conv-defs singl-list-conv-defs
elim: at-most-1-elemE(1))
moreover from *x have (w d<<<<A>>ndv~>d>>singl<—>list g8 = w <<nd<<A>>singl<—>list>>ndwd
oy for os
by (auto simp add: det-ndet-conv-defs singl-list-conv-defs

48

elim: at-most-1-elemE(2))
moreover have (more d<<<<A>>nd->d>>singl<—>list = more <<nd<<A>>singl<—>list>>nd->d>
by simp
UItimately show (d<<<<A>>nd«~>d>>singl¢—>list - <<nd<<A>>singlt—>list>>nde} by €x-
pand-A-scheme auto
next
assume x : <at-most-1-elem B>
from * have (1 d<<<>ndwd>>l'ist->singl g a=T <<nd<>listwsingl>>nd«~>d o a)
for o a
by (auto simp add: det-ndet-conv-defs singl-list-conv-defs
elim: at-most-1-elemE(1))
moreover from * have («w d<<<>nd->d>>list->singl o=w <<nd<>listwsingl>>nd«~>d
o) for o
by (auto simp add: det-ndet-conv-defs singl-list-conv-defs
elim: at-most-1-elemE(2))
moreover have (more ¢((B)ndwd)iist~singl = More {(na{B)iist—singl)ndd’
by simp
ultimately show <d<<<>nd->d>>listwsingl = <<nd<>listwsingl>>nde> by ex-
pand-A-scheme auto
qed

lemma behaviour-o-os-conv:
€ g{A)osos (0] =€ A o
(T a{A)osos 0] a = (case 7 Ao aof O =0 [t] = [[t]])»
0 a{A)ssos = {os. hd os € p Ap
w i{A)osos [0 =w A o>
€ na{B)owos [0] =€ B o>
T nd{B)owsos [0] a ={[c] |6". ' € T Bo a}»
0 nd{B)o—os = {0s. hd 0s € o B}
W nd{B)oos [0] =w B o>
€ g{CVosm0 0= C [o]
T 4{CVoswo 0 a = (case T C o] a of O = O | |os’| = |hd os'|)»
0 d{Closmo ={0.[0] € 0 C}h
W g{Closmo 0 =w C [o]
€ nd{D)oswo 0 =€ D [o]
T nd{D)oswo 0 a ={hd 0s'| 08’ 0s" € 7 D [o] a}p
0 nd{DYos—wo = {0. [0] € 0 Dp W na{(D)sswe 0 =w D [o]
by simp-all (simp-all add: o-0s-conv-defs)

2N N
PP S

=

lemma behaviour-singl-list-conv:
€ 4(A)singistist [0] = Ao
T a{A)singisiist [0] a = (case T Ao aof O = O | [t] = [[]])
0 a{A)singisiist = {os. hd os € p A}
W a(A)singisiist 0] = (case w A o of O = O | |r] = |[r]])
(€ na(B)singisiist [0] =€ B o»
T nd{B)singistist (0] a ={[c] |0’ 0" €T Boa}p

49

0 nd<>singl‘—>list = {0'8. hd os € 0 B})

W nd{BYsingitist [o] = {[r] |r. r€ew Boh

>list->singl oc=¢(C [O’])

Vistwsingt 0 a = (case T C [0] a of O = O | |os'] = |hd o5'])>
»listwsingl = {U~ [U] SNY] C})

Vistwsingt 0 @ = {hd 0’| 0s". 0s’" € T D [o] a}>
>listwsingl = {U- [U] €o D}>

W nd{DYiistwssingt 0 = {hd s |rs. rs € w D [o]}p

by simp-all (simp-all add: singl-list-conv-defs)

lemma empty-from-det-to-ndet-is-None-trans [simp| : <7 (A)agsna 0 a = {} +—
TAoa=
by (simp add: e-simps det-ndet-conv-defs option.case-eq-if)

lemma at-most-1-elem-from-det-to-ndet [simp] : <at-most-1-elem (AYa—sna>
by (rule at-most-1-elemI)
(simp-all add: det-ndet-conv-defs split: option.split)

lemma from-ndet-to-det-from-det-to-ndet [simp] : <({{AYdasnd)ndwd = 4>
by (cases A, simp add: det-ndet-conv-defs)
(intro conjl ext, simp-all split: option.split)

lemma from-det-to-ndet-from-ndet-to-det [simp)] :
{{AYndwmd)d—na = A if <at-most-1-elem A»
proof —
from that have 7 {({A)ndwd)d—sndi o a =7 Ao a for o a
by (auto simp add: det-ndet-conv-defs elim: at-most-1-elemE(1))
moreover from that have «w ((A)ndwd)d—snd 0 = w A o> for o
by (auto simp add: det-ndet-conv-defs elim: at-most-1-elemFE(2))
moreover have <more ({A)nd—d)d—sna = more A by simp
ultimately show <{({A)nd—d)d—snda = A> by expand-A-scheme fastforce
qed

theorem bij-betw-from-det-to-ndet :
<bij-betw (AA. (AYayna) UNIV {A. at-most-1-elem A}»
unfolding bij-betw-iff-bijections
by (rule exl[where © = <AA. (A)ng—a’]) simp

lemma bij-betw-from-ndet-to-det :
<bij-betw (AA. (A)ndwa) {A. at-most-1-elem A} UNIV)»
unfolding bij-betw-iff-bijections
by (rule exl[where z = <AA. (A)gna’]) simp

50

lemma length-1-trans-from-o-to-c's [simp] :
ength-1-transg 4{A)s—os* <length-1-trans,q nd{BYo—os’
by (rule length-1-transyI, solves <auto simp add: o-os-conv-defs split: option.split-asmy)
(rule length-1-trans, 41, solves <auto simp add: o-0s-conv-defs split: option.split-asmy)

lemma 7-hd-from-o-to-os-eq [simp] :
T @A) osos [Rd o8] a =T 4(A)osos 05 @

T na{B)osos [Md o8] a =T na{BYosos 05 ad
by (simp-all add: o-0s-conv-defs)

lemma w-hd-from-o-to-os-eq [simp] :
W g{A)osos [hd o8] = w ¢{A)oos T8

W nd{B)osos [8] = w na{Blosos T8
by (simp-all add: o-0s-conv-defs)

lemma from-os-to-o-from-c-to-os [simp] :
<d<<d<<A>>a;>as>>aswﬂ = A <nd<<nd<>a‘—>as>>nswa =B
by (cases A, simp add: o-0s-conv-defs, intro conjl ext;
simp add: option.case-eq-if set-eq-iff; metis list.sel(1))
(cases B, simp add: o-0s-conv-defs, intro conjl ext;
simp add: option.case-eq-if set-eq-iff; metis list.sel(1))

lemma from-o-to-os-from-os-to-o [simp)] :
[length-1-transq A; Nos a. 7 A[hd os] a =T A 0s a;
Nos.w A [hd o8] =w A 0s] = 4{a{A)oswo)osos = A
[length-1-trans,q B; Nos a. 7 B [hd 0s] a =T B 0s a;
Nos.w B [hd 0] = w B 0s] = na{nd{B)oswo)osos = B
proof —
assume x : <length-1-transg A> <N\os a. 7 A [hd 0s] a =7 A 05 @
«Nos. w A [hd os] =w A os
from (1) have 7 4(i{A)sswo)osos 0sa =T A os a» for os a
by (auto simp add: o-os-conv-defs x(2) split: option.split
elim: length-1-trans, E)
moreover have w ¢{(a{A)oswo)osos 08 =w A o5 for os
by (simp add: o-0s-conv-defs x(3))
moreover have (more j{i{(A)oswo)osos = more A» by simp
ultimately show 4(i{(A)sswo)osos = A> by expand-A-scheme auto
next
assume x : <length-1-trans,q B> «\os a. 7 B [hd 0s] a =7 B os a)
«<N\os. w B [hd 0s] =w B os
from (1) have (7 ,,i{ni{B)oswo)osos 0s a =T Bos a for os a
by (auto simp add: o-os-conv-defs %(2) elim: length-1-trans, F)
(metis length-1-trans,qF list.sel(1))
moreover have W ,i{ni{B)os—wo)osos 08 = w B os for os
by (simp add: o-0s-conv-defs *(3))
moreover have (more ,q{na{B)oswo)osos = more By by simp
ultimately show <, q{ni{B)oswo)osos = B> by expand-A-scheme fastforce

o1

qed

theorem bij-betw-from-o-to-os :
(bij-betw (NA. 3(A)oeses) UNIV
{A. length-1-transq A N (Vos a. 7 A[hd 0s) a =7 Aosa) AN Vos. w A [hd
osl=w Aos)p
(is <bij-betw (ANA. 4{(AYoos) UNIV 254))
<bij-betw (AB. pa{B)s—os) UNIV
{B. length-1-trans,q B N (Vos a. 7 Bosa =71 B [hd 0s] a) A (Yos. w B [hd
os] =w Bos)p
unfolding bij-betw-iff-bijections
by (rule exl[where z = <AA. 4{A)ss0’], sSiMP)
(rule exI[where = = \A. ,4{A)ss—o?], SIMP)

lemma bij-betw-from-os-to-o :
<bij-betw (AA. 4{(A)os—mo)
{A. length-1-transq A N (Vos a. 7 A[hd 0s) a =T Aosa) AN Vos. w A [hd
os] =w A os)} UNIV»
bij-betw (AB. na(B)oso)
{B. length-1-trans,q B AN (Vosa. T Bosa =71 B [hd 0s] a) AN (Vos. w B [hd
os] = w B os)} UNIV)
unfolding bij-betw-iff-bijections
by (rule exI[where z = (A\A. 4{A)ss0s’], siMmP)
(rule exI[where © = \A. ,4{A)s—0s?], stMP)

lemma length-1-from-singl-to-list [simp) :
<length'ld d<<A>>singl~'—)list> <length‘lnd nd<>singl;>list>
by (rule length-141; solves <auto simp add: singl-list-conv-defs split: option.split-asmy)
(rule length-1,41; solves <auto simp add: singl-list-conv-defs split: option.split-asm>)

lemma 7-hd-from-singl-to-list-eq [simp] :
(T d<<A>>singl‘—>list [hd 0'5] a =T d<<A>>singl‘—>lz'st ags a)
(T nd<>singl<—>list [hd 03] a =T nd<>singl<—>list gs a)
by (simp-all add: singl-list-conv-defs)

lemma w-hd-from-singl-to-list-eq [simp)] :
(W d<<A>>singl;>list [hd 05] = Ww d<<A>>singl<—>list g8
(W nd<>singl‘—>list [hd 0—5} = w nd<>singl‘—>list as)
by (simp-all add: singl-list-conv-defs)

lemma from-list-to-singl-from-singl-to-list [simp] :
<d<<d<<A>>singl;>list>>listwsingl =4 <nd<<nd<>singl‘—>list»listwsingl =B
by (cases A, simp add: singl-list-conv-defs, intro conjl ext;
simp add: option.case-eq-if set-eq-iff; metis list.sel(1))
(cases B, simp add: singl-list-conv-defs, intro conjl ext;

52

simp add: option.case-eq-if set-eq-iff; metis list.sel(1))

lemma from-singl-to-list-from-list-to-singl [simp) :
([length-14 A; Nos a. 7 A [hd o8] a =7 A s a;
/\05' w A [hd 05] =wA US]] - d<<d<<A>>listwsingl>>singl%list = A
[length-1,4 B; Nos a. 7 B [hd 0s] a =7 B os a;
/\03- w B [hd 03] =wB 0-3]] = nd<<nd<>listwsingl>>sinnglist =B
proof —
assume x : length-14 A> <Nosa. 7 Ahd os] a =7 A os &
«Nos. w A [hd o8] =w A os
from (1) have 7 4(a(A)iistsingl)singlsiist 0 a =T A os a» for os a
by (auto simp add: singl-list-conv-defs x(2)
split: option.split elim: length-14E(1))
moreover from *(1) have w ¢{a{A)iist~singl)singlstist 08 = w A os» for
os
by (auto simp add: singl-list-conv-defs x(3)
split: option.split elim: length-14E(2))
moreover have <more ¢{a{AYiist~singl)singlslist = more A» by simp
ultimately show < {a{A)iist—singl)singisiist = A» by expand-A-scheme auto
next
assume x : <length-1,,4 B> <Nosa. 7 B[hd 0s] a =T B os a
«<N\os. w B [hd 0s] =w B os
from *(1) have <7 ,,q{na{B)iist~singl)singiiist 0S a =T B os a» for os a
by (auto simp add: singl-list-conv-defs *(2) elim: length-1,4E(1))
(metis length-1,4F(1) list.sel(1))
moreover from (1) have «w nq{na{B)iist~singl)singlslist 08 = w B os for
o
by (auto simp add: singl-list-conv-defs x(3) elim: length-1,4E(2))
(metis length-1,4F(2) list.sel(1))
moreover have <more nq{nd{B)iist~singl)singliist = more By by simp
ultimately show <,q{na{B)iist~singl)singi—iist = B> by expand-A-scheme
fastforce
qged

theorem bij-betw-from-singl-to-list :

<bij—betw (/\A d<<A>>singl‘—>list) UNIV

{A. length-14 AN (Nosa. 7T A[hd os)a=7 Aosa) N (Vos. w A [hd o8] =
wAos)p

(iS <bz'j—betw ()\A d<<A>>singlf—>list) UNIV ?Sd>)

<bij—betw ()\B nd<>singl‘—>list) UNIV

{B. length-1,4 BN (Vosa. T Bosa =7 B [hd 0s] a) A (Vos.w B [hd os] =
w Bos)p

unfolding bij-betw-iff-bijections

by (rule exl[where z = (\A. g(A)iist~ssing’], SIMP)

(rule exI[where £ = AA. pa{A)iist—singl’], SIMP)

lemma bij-betw-from-list-to-singl :
<bz'j-betw ()\A d<<A>>list->singl)

53

{A. length-14 AN NVosa. 7 A[hd os) a =7 Aosa) N Vos. w A [hd o8] =
w A os)} UNIV)

<bij'betw ()‘B nd<>list->singl)

{B. length-1,4d BN Vosa.T Bosa =7 B [hd 0s] a) A (Vos. w B [hd os] =
w B os)} UNIV»

unfolding bij-betw-iff-bijections

by (rule exI[where © = (\A. 4{A)singi—1ist’], STmp)

(rule exI[where © = \A. ,a{A)singl1ist’], simp)

3.2.3 Reachability results (for R, and R,4)

lemma R-base-trans[simp]: <Rq (7 = Ao a. O, w = Ao. O, ... = some]) = (Ao.
{o})
Rpg (T =Xo a. {}, w=Xo.{}, ... = some)) = (Ao. {o})

by (rule ext, safe, subst (asm) Rq.simps Ry q.stmps, simp-all add: Rg.init R, q.init)+

theorem R, 4-from-det-to-ndet : <Rpq (A)dsnda 0 = Ra A o>
proof safe
show 0’ € Rpg (AYdsnd 0 = 0’ € Rq A o) for o’
by (induct rule: Ry, q.induct, fact Rq.init, erule Ry.step)
(simp add: from-det-to-ndet-def option.case-eq-if split: if-split-asm)
next
show 0/ € Rg Ao = 0’ € Rpq (A)dsna o for o’
by (induct rule: Rq.induct, fact Ryq.init)
(metis Ryq.step det-ndet-conv-defs(1) option.case(2)
option.set-intros option.simps(15) select-convs(1))
qed

lemma bij-betw-R,, q-if-same-1 : <bij-betw f (Rna Bo 00) (Rua B1 (f 00))»

if <z'nj—onf (Rnd B() 0'0)) and (/\O’OI a. 00/ S Rnd BO o) —> T Bl (f CTO/) a =
f ‘T BO UOI a)
proof (rule bij-betw-imagel, fact that(1), auto simp add: image-def, goal-cases)

show «s € R,q Bo 09 = s € Rna B1 (f 0o) for s

by (induct rule: Rpq.induct, simp add: R, q.init, metis Ry q.step that(2) im-

age-eql)
next

show (s € R,,q B1 (f 09) = 3t € Rya By 0p. s = ft» for s

by (induct rule: R, q4.induct, metis Ry, q.stmps, metis (mono-tags, lifting) Rpq.step
that(2) image-iff)
qed

lemma bij-betw-R-if-same-7: <bij-betw f (Rq Ao 00) (Ra A1 (f 00))
if <inj-on f (Rq Ao oo) and <Aoo’ a. 09’ € Rq Ao 09 = 7 A1 (f 00’) a =
map-option f (7 Ao oo’ a)»
by (subst (1 2) R, q-from-det-to-ndet[symmetric], rule bij-betw-R,,q-if-same-)
(simp-all add: Ryq-from-det-to-ndet that(1),

54

simp add: det-ndet-conv-defs that(2) option.case-eq-if map-option-case)

lemmas same-7-implies-same-R, 4 = bij-betw-R,, q-if-same-T[where f = id, sim-
plified bij-betw-def, simplified)

and same-T-implies-same-Rq = bij-betw-R 4-if-same-T[where f = id, simplified
bij-betw-def option.map-id, simplified]

corollary Rg-w-useless [simp] : <Rq (A(w := some-w)) 0 = Rq A o»
by (auto introl: same-T-implies-same-Rq)

corollary R, q-w-useless [simp] : (Rpq (A(w := some-w)) 0 = Rpq A o
by (auto intro!: same-T-implies-same-R,,q)

corollary indep-enabl-w-useless [simp] :
<indep-enabl (Ag(w := some-w)) o9 E Ay 01 «— indep-enabl Ay 09 E A1 01>
<indep-enabl Ay og E (A1(w := some-w))) o1 +— indep-enabl Ay o¢9 E Ay o1>
by (simp-all add: indep-enabl-def)

method R-subset-method uses defs opt induct init simps =
induct rule: induct, auto simp add: init defs e-simps split: if-splits,
(metis (no-types, opaque-lifting) simps)+

method R;-subset-method uses defs opt =
R-subset-method defs: defs opt: opt induct: Rq.induct init: Rq.init simps: Rq.simps

method R, 4-subset-method uses defs opt =
R-subset-method defs: defs opt: opt induct: R,q-induct init: R,q.init simps:
Rpd-stmps

lemma R,,4-from-o-to-os-description: <Rpg nd{B)o—os (0] = {[c']| 0" 0’ € Rua
Boh
proof safe

show s € Rud na{B)owos [0) = Jo'. 0s =[0'| Ao’ € Rnq B o> for os

by (induct rule: Ry, q.induct, auto simp add: R, q.init behaviour-o-os-conv(6),

metis Ryq.step)
next

show 0’ € Rpg Bo = [0'] € Rud na{B)o—os [0] for o’

by (induct rule: Ry q4.induct) (simp-all add: Ry, q.init Ry, q.step behaviour-o-0s-conv(6))
qed

lemma R 4-from-o-to-os-description: <Rq 4{A)ss0os [0] = {[c]| 0" 0’ € R4 A

op
by (simp add: R, q-from-o-to-os-description
flip: Ryq-from-det-to-ndet from-det-to-ndet-o-os-conv-commute(1))

55

lemma R, 4-from-singl-to-list-description: <Ruq na{B)singi—iist [0] = {[o']] o".
o’ e Rna B O’})
proof safe

show «os € Ryaq na{B)singisiist [0] = Jo’. 0s = [0 N o' € Ryq B o) for
os

by (induct rule: Ry q.induct, auto simp add: R, q4.init behaviour-singl-list-conv(6),
metis Rpq.step)
next

show 0’ € Rpq B o = [0'] € Rua na(B)singiiist (0] for o’

by (induct rule: Ry q.induct) (simp-all add: Ry, q.init Ry,q.step behaviour-singl-list-conv(6))
qed

lemma R4-from-singl-to-list-description: <Rq a{A)singi—iist (0] = {[o']| ¢’ 0’ €
Ra Aoh
by (simp add: R, q-from-singl-to-list-description
flip: Ry q-from-det-to-ndet from-det-to-ndet-singl-list-conv-commute(1))

lemma length-R4-from-o-to-os:
08" € Rq a{A)osos 08 = 08’ = 05 V length os’ = 1»

by (simp add: o-0s-conv-defs)
(induct rule: Ry.induct, simp-all split: option.split-asm)

lemma length-R, q-from-c-to-os:
08" € Rud nd{B)osos 08 = 08’ = gs V length os’ = 1»
by (simp add: o-0s-conv-defs)
(induct rule: Rpq.induct, auto)

lemma length-R4-from-singl-to-list:
w0s'" € Rq a(A)singisiist 08 => 08’ = 05 V length o0s’ = 1)
by (simp add: singl-list-conv-defs)
(induct rule: Rq.induct, simp-all split: option.split-asm)

lemma length-R,, q-from-singl-to-list:
05" € Rpg nd{B)singls1ist 05 => 05’ = s V length os’ = 1»
by (simp add: singl-list-conv-defs)
(induct rule: Rpq-induct, auto)

3.3 Normalization

3.3.1 Non-deterministic Case

First version, without final state notion

abbreviation P-nd-step :: ([('o, 'a) enabl, ('o, 'a) trans,q, 'c = (‘a, 'r) pro-
cesspiick, ‘0] = ('a, 'r) processpiick’

where «P-nd-step eqa 7o X o=0ec€egpo Mo’ €rpo0e Xoh

56

definition P-nd :: «('o, ‘a, 'r, 'a) Anq-scheme = ‘o = (/

(«P{-Yna> 1000)
where <P{A),q = v X. P-nd-step (¢ A) (1 A) X>

a, 'r) processpiick’

lemma P-nd-step-constructive [simp)] : <constructive (P-nd-step e 74)> by simp

lemma P-nd-step-cont [simp] : <V o a. finite (T4 0 a) = cont (P-nd-step €4 Ta)>
by (simp add: cont-fun)

lemma P-nd-step-constructive-bis : <constructive (P-nd-step (e A) (7 A))» by simp

lemma P-nd-step-cont-bis [simp] : <finite-trans A => cont (P-nd-step (¢ A) (T
A
by (simp add: finite-trans-def)

lemma P-nd-rec: <P{A)nq = (Ao. P-nd-step (¢ A) (1 A) P{(A)nq o)
by (unfold P-nd-def, rule ext, subst restriction-fiz-eq, simp-all)

lemma P-nd-is-fic : <finite-trans A = P{A)nq = (u X. P-nd-step (¢ A) (7 A4)
X)»
by (simp add: P-nd-def restriction-fiz-is-fix)

lemma non-destructive-imp-restriction-cont [simp) :
<non-destructive f = restriction-cont f»
by (simp add: non-destructive-on-def)

lemma P-nd-w-useless: <P{A)nq = P{A(w := some-w|))na>
by (simp add: P-nd-def e-simps)

lemma P-nd-w-useless-bis : <P{A)na = P{A(w = Ao. {}))na>
by (fact P-nd-w-useless)

lemma P-nd-induct [case-names adm base step) :

<admy P = P 0 = (AX. P X = P (P-nd-step (¢ A) (t A) X)) = P
P<<A>>nd)

unfolding P-nd-def

by (rule restriction-fiz-ind[OF P-nd-step-constructive-bis]) simp-all

lemma P-nd-induct-iterated [consumes 1, case-names adm base step] :

[0 < k; admy P; P o; NX. PX = P ((P-nd-step (¢ A) (1 A) 7" k) X)] =
P P(A)na>

unfolding P-nd-def

by (rule restriction-fiz-ind-iterated[where f = <P-nd-step (¢ A) (1 A)]) auto

New version with final state notion where we just have SKIPS.

o7

abbreviation Pggpg-nd-step ::

(o, 'a) enabl, (o, 'a) trans,q4, 'oc = 'r set, ‘o = (
('a, ') processprick’

where <Pggxrps-nd-step €4 74 wa X 0 = if wa 0 = {} then P-nd-step €4 74
X o else SKIPS (w4 o)

‘a, 'r) processpiick, ‘0] =

definition Psg ps-nd :: «('o, 'a, 'r, 'a) Anq-scheme = 'o = (‘a, ') processytick
(«<Psxrps(-Yna> 1000)
where (Psgrps{A)na = v X. Psxrps-nd-step (¢ A) (1 A) (w 4) X>

lemma Pgpgs-nd-step-constructive [simp] : <constructive (Pgipgs-nd-step €4
Ta wa) by auto

lemma Pg g1 pg-nd-step-cont [simp] : <V o a. finite (T4 0 a) = cont (Psx1ps-nd-step
EATA wA)>
by (simp add: cont-fun)

lemma Pg g pg-nd-step-constructive-bis : <constructive (Pggps-nd-step (e A)
(1 A) (w A))» by simp

lemma Pg g pg-nd-step-cont-bis [simp)] : «finite-trans A => cont (Ps k1 ps-nd-step
(e A) (1 A) (w A))
by (simp add: finite-trans-def)

lemma Pggrps-nd-rec: <Psikrps{A)na = (Ao. Pskrps-nd-step (¢ A) (7 A) (w

A) Psxips{A)nd o)
by (unfold Pskps-nd-def, rule ext, subst restriction-fix-eq, simp-all)

lemma Pg g pg-nd-is-fix : <finite-trans A = Psxrps{A)na = (@ X. Pskrps-nd-step
(e A) (1 A) (wA) X)
by (simp add: Pgrpgs-nd-def restriction-fiz-is-fiz)

lemma Pggpg-nd-induct [case-names adm base step)| :

<admy P = P o0 = (AX. P X = P (Pgkips-nd-step (¢ 4) (1 A) (w A)
X)) = P Pskrprs(A)na>

unfolding Pgsyps-nd-def

by (rule restriction-fiz-ind[OF Pg g 1 ps-nd-step-constructive-bis|) simp-all

lemma Pg g pg-nd-induct-iterated [consumes 1, case-names adm base step] :

O < k; admy P; P o; NX. PX = P ((Pskips-nd-step (¢ A) (1 A) (w A)
k) X)] = P Pskips{A)na

unfolding Pgskps-nd-def

by (rule restriction-fiz-ind-iterated[where f = «Pskrpg-nd-step (¢ A) (1 A) (w
A)]) auto

Correspondence when we always have w A o0 = {}.

58

lemma PSKIPS-nd-empty-g <o A= {} — PSKIPS<<A>>nd = P<<A>>nd)
by (simp add: Pgkps-nd-def P-nd-def o-simps)

lemma PSKIPS—nd—updated—w: (P<<A>>nd = PSK[p5<<A(|w = \o. {}D>>nd)
by (metis (mono-tags, lifting) Pskr1ps-nd-empty-0 P-nd-w-useless-bis opnq.simps
empty-Collect-eq select-convs(2) surjective update-convs(2))

lemma Pgypgs-nd-empty-o-inter-R,,q:
(Pskrps{AYna 0 = P(A)na o> if <0 ANRuqg Ao ={h
proof —
have 0/ € Rpg A 0 = Pskrps{A)na 0’ = P{(A)nq o for o’
proof (induct A arbitrary: o’ rule: Pgps-nd-induct)
case adm show Zcase by simp
next
case base show (P{A)nq 0’ = P{AYpnq o’ ..
next
case (step X)
from step.prems(1) that have o' ¢ o A> by blast
hence «w A o’ = {}» by (simp add: o-simps)
thus ?case
by (subst P-nd-rec, auto intro!: mono-Mprefiz-eq mono-GlobalNdet-eq)
(metis (lifting) Rpq.simps step.hyps step.prems)
qed
thus <Pskrps{AYna 0 = P{A)na o> by (simp add: R, q.init)
qed

lemma Pg g pg-nd-rec-notin-p:
(O ¢ 0 A= PSKIPS<<A>>nd g = P—nd—step (6 A) (T A) PSKIPS<<A>>nd o)
by (subst Pskps-nd-rec) (simp add: o-simps)

lemma Pggpg-nd-rec-in-g: <0 € 0 A = Pskrps{A)na 0 = SKIPS (w A o))
by (subst Pskps-nd-rec, simp add: o-simps)

3.3.2 Deterministic Case

First version, without final state notion.

abbreviation P-d-step :: <[(‘o, ‘a) enabl, (o, 'a) transq, 'c = ('a, 'r) processpiick,
‘o] = (‘a, 'r) processpiick?

where (P-d-stepega 74 Xs=0Oecey s = X [1a se]

definition P-d :: «(‘o, ‘a, 'r, 'a) Ag-scheme = "o = ('a, 'r) processptick> ((P{-)a>
1000)
where <P{A)y = v X. P-d-step (¢ A) (1 4) X

lemma P-d-step-constructive[simp] : <constructive (P-d-step €4 Ta)» by simp

59

lemmas P-d-step-constructive-bis = P-d-step-constructive[of ¢ Ay «r A] for A

lemma P-d-step-cont[simp]: <cont (P-d-step ea Ta)»
by (simp add: cont-fun)

lemmas P-d-step-cont-bis = P-d-step-cont[of «¢ Ay «7 A] for A

lemma P-d-rec: <P{A)q = (As. P-d-step (¢ A) (1 A) P(A)q s)»
by (unfold P-d-def, subst restriction-fiz-eq) simp-all

lemma P-d-is-fix : <P{A)q = (n X. P-d-step (¢ A) (t A) X)»
by (simp add: P-d-def restriction-fix-is-fix)

lemma P-d-w-useless: (P{A)y = P{A(w = some-w|))q>
by (simp add: P-d-def e-simps)

lemma P-d-w-useless-bis: <P{A)q = P{A(w := Ao. O))a
by (fact P-d-w-useless)

lemma P-d-induct [case-names adm base step] :
Jadm, P; P o; AX. PX = P (P-d-step (¢ A) (1 A) X)] = P P(A)o
unfolding P-d-def
by (rule restriction-fiz-ind[OF P-d-step-constructive-bis]) simp-all

lemma P-d-induct-iterated [consumes 1, case-names adm base step] :

0 < k; admy P; P o; AX. PX = P ((P-d-step (¢ A) (1 A) k) X)] =
P P<<A>>d)

unfolding P-d-def

by (rule restriction-fiz-ind-iterated[where f = «P-d-step (¢ A) (7 A)]) auto

New version with final state notion where we just SKIP.

abbreviation Pggpg-d-step :

(('o, 'a) enabl, ('o, 'a) transq, 'c = 'r option, ‘o = ('a, 'r) processpiick, '0] =
(‘a, ') processptick?

where (Pskrpgs-d-step €4 74 wa X 0 = case wq o of |r| = SKIPr | O =
P-d-step ey 74 X o)

definition Psxrps-d = «('o, 'a, 'r, ‘o) Ag-scheme = ‘o = ('a, 'r) processpiick>
(‘PS’KIPS<<'>>d> 1000)
where <Pskrps{A)s =v X. Psxrps-d-step (¢ A) (7 4) (w 4) X>

lemma Pg g pg-d-step-constructive[simp|: <constructive (Pskrpg-d-step €4 Ta
SFA)>
by (auto simp add: option.case-eq-if)

lemmas Pg 1 pg-d-step-constructive-bis = Pgps-d-step-constructive[of <& A»
7 A w A] for A

60

lemma Pgkps-d-step-cont[simp]: <cont (Pskrps-d-step ea Ta Spa)
by (simp add: cont-fun option.case-eq-if)

lemmas Pggrps-d-step-cont-bis = Pgsgrpg-d-step-cont[of ¢ Ay «7 A «w A)]
for A

lemma PSijs—d—’I‘EC: <PSKIPS<<A>>d = ()\O’ PSK]ps—d—Step (E A) (7’ A) (w A)

Pskrps{A)a o)
by (unfold Pskps-d-def, subst restriction-fiz-eq) auto

lemma Pgips-d-is-fix : <Psxrps{A)a = (@ X. Psxrps-d-step (¢ A) (1 4) (w
A) X)
by (simp add: Pgkps-d-def restriction-fix-is-fix)

lemma Pggps-d-induct [case-names adm base step) :

<adm; P = P 0 = (AX. PX = P (Pskrps-d-step (¢ A) (1 A) (w A) X))
= P Pskrps{A)a

unfolding Pgskpg-d-def

by (rule restriction-fiz-ind[OF Pgk 1 pgs-d-step-constructive-bis]) simp-all

lemma Pgkps-d-induct-iterated [consumes 1, case-names adm base step) :

(0 < k; adm; P; Po; NAX. PX = P ((Pskips-d-step (¢ A) (1 A) (w A) ™
k) X)]] — PPSK[ps<<A>>d>

unfolding Pgskpg-d-def

by (rule restriction-fiz-ind-iterated[where f = «Psgps-d-step (¢ A) (1 A) (w
A)]) auto

Correspondence when we always have w A 0 = {}.

lemma Pggrpg-d-empty-0: <0 A = {} = Pskips{A)a = P{A)a>
by (simp add: o-simps P-d-def Pskps-d-def)

lemma Pggps-d-updated-w: <P{A)qy = Pskips{A(w := Ao. O))a>
by (simp add: Pskrps-d-empty-o P-d-w-useless o-simps)

lemma Pggpg-d-empty-o-inter-Ry:
<PSKIPS<<A>>d o= P<<A>>d orif «fo ANRy Ao = {})
proof —
have 0/ € Ry A 0 = Pskips{A)a 0’ = P(A)q o’ for o’
proof (induct A arbitrary: o’ rule: Pskps-d-induct)
case adm show Zcase by simp
next
case base show (P(A)q o' = P{A)q o’ ..
next
case (step X)
from step.prems(1) that have o' ¢ o A> by blast
hence «w A o’ = ¢» by (simp add: o-simps)

61

thus “case
by (subst P-d-rec, auto introl: mono-Mprefiz-eq mono-GlobalNdet-eq)
(subst (asm) e-simps, auto, metis (lifting) Rq.step step.hyps step.prems)
qed
thus «Pskrps{A)a 0 = P{A)q o> by (simp add: Rg.init)
qed

lemma Pgxpg-d-rec-notin-o:

o ¢ 0 A — PSKIPS<<A>>d o = P-d-step (E A) (T A) PSKIPS<<A>>d o)
by (subst Pskps-d-rec) (simp add: o-simps)

lemma PSKIPS—d—T’BC—in—Q: (0 € 0 A= PSKIPS<<A>>d o = SKIP [w A 0’})
by (subst Pskps-d-rec, simp add: o-simps split: option.split)

3.3.3 Link between deterministic and non-deterministic Pro-
cOmata

lemma Pg k1 ps-nd-from-det-to-ndet-is-Psgrps-d : <Psxrps{{A)d—nd)nd = Psxrps{A)a>
proof (subst Pgs1ps-nd-def, rule restriction-fiz-unique)

show (constructive (Pgkpgs-nd-step (¢ {(A)asnd) (T {A)asnd) (W {A)d—sna))
by simp
next

show «Psirps-nd-step (¢ (A)a—sna) (T (A)asna) (W (A)dsnd) Psxrps{A)a
= Pskips{A)a

by (subst (3) Pskps-d-rec)
(rule ext, auto simp add: from-det-to-ndet-def e-simps
split: option.split intro: mono-Mprefiz-eq)

qged

corollary P-nd-from-det-to-ndet-is-P-d : <P{{A)d—nd)na = P{A)a>
proof —

have (P((A)d—nd)na = Psxrps{{A)asnalw := Ao. {}))na>
by (fact Psk1ps-nd-updated-w)

also have ((A) 4, na(w := Ao. {}) = (A(w := Ao. O))awna
by (simp add: from-det-to-ndet-def)
finally show <P{{A)qsnda)na = P{A)a>
by (simp add: Pskps-d-updated-w Pg 1 ps-nd-from-det-to-ndet-is-Ps i rps-d)
qed

3.3.4 Prove Equality between ProcOmata

This is the easiest method we can think about.

lemma P-d-eql : (Ao a. 7 Ao a=7Bo a) = P(A)q = P(B)o
by (simp add: P-d-def e-simps)

lemma P-nd-eql : (N\o a.7 Ao a=71 Bo a) = P(A)na = P(B)na>

62

by (simp add: P-nd-def e-simps)

lemma PSK]ps—d—eq[:
(Noca.ocodtpA=17Aca=17Boa) = (No-wAo=wDBo) =
Pskips(A)a = Pskrps(B)a>
by (subst Psx1ps-d-def, rule restriction-fiz-unique, simp)
(subst (2) Pskrps-d-rec, auto simp add: e-simps g-simps split: option.split)

lemma Pggrps-nd-eql :
(Noca.o¢dpAdA=T17Aoa=7Boa = (Noowdo=wDBo) =
Pskrps{(A)na = Psxrps{B)na’
by (subst Ps k1 ps-nd-def, rule restriction-fix-unique[OF Pg i 1 pg-nd-step-constructive])
(subst (2) Pskrps-nd-rec, auto simp add: e-simps o-simps split: option.split)

We establish now a much more powerful theorem.

theorem Pgpg-nd-eql-strong:

assumes inj-on-f : «nj-on f (Rpa Ao 00)®
and eg-trans : «N\oo’ a. 00’ € Rpg Ao 00 = 7 A1 (f 00’) a = f ‘(7 Ao oo’
a)
and eg-fin : «(N\oo’. 00’ € Runag Ap 00 = w A1 (f 00’) = w Ao 00"
shows «Psk1ps(Ao)nd 00 = Psxips{Ai)na (f 00)
proof —
h/ave 00" € Rpa Ao 00 = Pskrprs{Ai)na (f 00') = Pskrps{Ao)na 00" for
o0
proof (induct Ay arbitrary: oo’ rule: Pskps-nd-induct)
case adm show Zcase by simp
next
show <o’ € Rpq Ao 00 = Pskrps{Ao)na (inv-into (Rnq Ao o0) f (f 00”))
= Psk1ps{Ao)na 00" for og’
by (simp add: inj-on-f)
next
case (step X)
from step.prems eq-trans have <¢ Ag oo’ = ¢ Ay (f oo’
by (auto simp add: e-simps)
moreover have w Ay (f 0¢’) = w Ao 0o’ by (simp add: eq-fin step.prems)
ultimately show ?Zcase
by (subst Pskps-nd-rec, auto)
(metis (mono-tags, lifting) Rpq.step eg-trans mono-GlobalNdet-eq2
step.hyps step.prems)
qed
thus <PSKIPS<<AO>>nd gpg = PSKIPS<<A1>>nd (f 0'0)> by (sz’mp add: Rnd.init)
qed

theorem P-nd-eql-strong:
([ing-on f (Rna Ao 00);
/\0’0/ a. 0'0/ € Rna AO o) —> T Ay (f O'O,) a = f ‘ (7' AO 0'0/ CL)II

63

= P(Ao)na 00 = P{A1)na (f 00)
by (unfold Pgk 1 ps-nd-updated-w, rule Pg g jps-nd-eql-strong) simp-all

theorem Pgps-d-eql-strong:

assumes (inj-on [(Rq Ao oo)
and <Aoo’ a. 09’ € Rq Ag 00 = 7 A1 (f 00’) a = map-option f (1 Ag 0o’ a)
and (/\O'Q/. 0'0/ € Rq Ag 09 = w Ay (f O’ol) =w Ay O’ol>

shows «Psk1ps(Ao)d 00 = Pskips{Ai)a (f o)

by (fold Ps k1 ps-nd-from-det-to-ndet-is-Ps i 1 ps-d, rule Ps 1 ps-nd-eql-strong)
(unfold R, q-from-det-to-ndet,

simp-all add: assms from-det-to-ndet-def map-option-case split: option.split)

theorem P-d-eql-strong:
<[[inj—0nf (Rd AO O'o);
Noo’ a. 00’ € Rq Ay 09 = 7 A1 (f 00”) a = map-option f (7 Ay 0o’ a)]
— P<<A0>>d o = P<<A1>>d (f 0'0))
by (unfold Pgkps-d-updated-w, rule Pg 1 ps-d-eql-strong) simp-all

lemmas Pgg1ps-nd-eql-strong-id = Pgkps-nd-eql-strong|of id, simplified]
and Pgips-d-eql-strong-id = Pgkpg-d-eql-strong
[of id, simplified id-def option.map-ident, simplified)
and P-nd-eql-strong-id = P-nd-eql-strong|of id, simplified)
and P-d-eql-strong-id = P-d-eql-strong
[of id, simplified id-def option.map-ident, simplified]

corollary PSKIps—nd—from—o—to—as—is—PSKlpS—nd : <PSKIPS<<nd<<A>>a‘—>as>>nd [O’]

= Pski1ps{A)na o
by (auto simp add: image-iff behaviour-o-os-conv(6, 8)
introl: inj-onl Pg 1ps-nd-eql-strong[symmetric])

corollary PSK[PS—d—f’r’OTTL—O’—tO—O’S—iS—PSKIps—d : <PSKIPS<<d<<A>>a"—>as>>d [O’] =
Pskips(A)a o>
by (auto simp add: image-iff behaviour-o-os-conv(2, 4)
introl: inj-onl Pg 1ps-d-eql-strong[symmetric] split: option.split)

corollary P-nd-from-o-to-os-is-P-nd : <P{ni{A)s—cs)nd [0] = P{A)na o>
by (auto simp add: image-iff behaviour-o-os-conv(6, 8)
introl: inj-onl P-nd-eql-strong[symmetric])

corollary P-d-from-o-to-0s-is-P-d : <P{q{A)s0s)d [0] = P{A)a o>

by (auto simp add: image-iff behaviour-o-cs-conv(2, 4)
intro!: inj-onl P-d-eql-strong[symmetric] split: option.split)

Behaviour of normalizations. We will use the following methods in combin-
ing theories.

64

fun recursive-modifier-fung :: <[('c x 'a) = ‘o option, (('oc x 'a) x ‘o option) list]
= (‘o x 'a) = ‘o option>

where <recursive-modifier-fung f [| = [

| <recursive-modifier-fung f (((s, €), t) # Ga) = recursive-modifier-fung (f((s,

e) = 1)) Ga>

abbreviation recursive-constructor-Aq :: <[(('oc x 'a) x ‘o option) list, 'c = 'r
option] = (‘o, 'a, ') Ap
where (recursive-constructor-Ag Ga wa = (7 = curry (recursive-modifier-fung

(A(s, €). Q) Ga), w = wal>

lemma e-det-breaker:
€ (7 = curry (9((o”:'o, a) — 0"":'0)), w = some-w, ... = some-more|)) o =
(if 0 =o' then {a} Ue (7 = curry g, w = some-w| o’ else e (T = curry g, w
= some-w| o)
by (auto simp add: e-simps split: if-splits)

method e-det-calc = (unfold recursive-modifier-fung.simps e-det-breaker, simp cong:
if-cong)[1]

method 7-det-calc = (unfold recursive-modifier-fung.simps, simp cong: if-cong)[1]

lemma bij-Renaming-Pskrps-nd :
fixes A :: «(‘o, 'a, 'r, 'a) Anq-schemer and f :: <‘a = by and g 'r =
assumes <bij f»
defines B-def : <B=(r=Xob. 7 Ao (inv fb),w = Ao. g ‘(w A o))
shows <Renaming (PSKIPS<<A>>nd 0') fg = PSKIPS<>nd g (iS <?lhs 0 = —))
proof (rule fun-conglof ?lhs <Psk1ps{B)na’ o))
show «?lhs = PSKIPS<>nd>
proof (rule restriction-fix-unique| OF Pg k1 pg-nd-step-constructive-bis[of B,
symmetric, folded Pskps-nd-def])
show «Pgips-nd-step (¢ B) (1 B) (w B) ?lhs = ?lhs
proof (rule ext)
have x : «¢ Bo=f‘e Ao for o
by (simp add: B-def e-simps image-def) (metis <bij f> bij-inv-eq-iff)
have *x : «inv f (fa) = a» for a
by (metis <bij > bij-inv-eq-iff)
have xxx : ((THE a’. fa' = fa) = @ for a
by (rule thel-equality’, metis (mono-tags, lifting) Unig-I assms(1) bij-betw-def
ingD, simp)
show «Pgirps-nd-step (e B) (1 B) (w B) ?lhs 0 = ?lhs o> for o

65

by (subst (2) Pskrps-nd-rec, simp add: x)

(auto simp add: xx x*xx B-def Renaming-distrib-GlobalNdet
Renaming-Mprefiz-image-inj[OF <bij fy[THEN bij-is-inj]]
intro: mono-Mprefiz-eq)

qed
qed
qed

lemma bij-Renaming-Pskrps-d :
<bij f = Renaming (Pskips{A)a o) fg =
Pskrps{(mr =Xo b. 7 Ao (inv fb), w= Ao. map-option g (w A 0)]))a
o)
by (subst (1 2) Psk1ps-nd-from-det-to-ndet-is-Pg i 1 ps-d[symmetric],
subst bij-Renaming-Pgs k1 ps-nd, assumption)
(rule fun-cong|of - - o], rule Pskrps-nd-eql,
stmp-all add: from-det-to-ndet-def split: option.split)

lemma RenamingTick-Pskrps-nd :

<RenamingTick (Pskips{AYnd 0) g = Pskips{(t =7 A, w=Xo. g ‘w A
) Vna o

by (simp add: bij-Renaming-Pskrps-nd)

lemma RenamingTick-Pskips-d :
<RenamingTick (Pskxips{A)a 0) g = Pskips{(t =7 A, w = Ao. map-option

g (w Ao)))a o
by (simp add: bij-Renaming-Pskrps-d)

66

Chapter 4

Advanced Properties of
ProcOmata

67

68

Chapter 5

Combining Automata for
Synchronization Product

5.1 Definitions

5.1.1 General Patterns

abbreviation combine-sets-Sync :: <'a set = ’a set = 'a set = 'a set)
where <combine-sets-Sync Sog E S1 = (So — E — S1) U (S1 — E — Sp) U (So
NS —E)USyN S NE

definition combine-Sync-¢ :
(oo, e, o0, "o, ‘) A-scheme, ‘e set,
('oy, e, 'o1’, 'r1, 'aq) A-scheme, 'oc = oy, ‘o0 = ‘o1, ‘o] = 'e sety
where <combine-Sync-c¢ Ay E Ay ig i1 05 = combine-sets-Sync (¢ Ag (ig 05)) E
(e Ay (i1 os))

lemma combine-Sync-e-def-bis :
<combine-Sync-e Ag FE A1 ig i1 08 =
9 A() (Z() O'S) Ue A1 (’Ll O'S) —FuUue A() (ZO O'S) ne A1 (’Ll O'S))
by (auto simp add: combine-Sync-e-def)

fun combiney-Sync-t ::
(Yoo, ‘e, 'ro, 'ag) Agq-scheme, ‘e set, (o1, ‘e, 'r1, 'ay) Ag-scheme,
'c = oy, ‘o0 = ‘o1, ‘o9 = ‘o1 = o] = (o, 'e) transy
and combine, q-Sync-T ::
(Yoo, ‘e, 'ro, 'ag) Ana-scheme, e set, (o1,
‘o = log, ‘o0 = ‘o1, 'og = o1 = o] = (
where <combineg-Sync-t Ay E Ay ig i1 f 0s e =
(ife€5A() (i() US)ﬂ&Al (Zl O'S)
then update-both Ay Ay (ig 08) (i1 08) e (f-up-opt f)
else if e € € Ag (ig 0s) — E — ¢ Ay (i1 09)
then update-left Ag (ig 0s) (i1 0s) e (f-up-opt f) (As. |s])
else ifece Ay (i1 0s) — E —¢e Ao (ig 09)

‘e, 'r1, ‘a1) Anq-scheme,
/

o, 'e) trans, g

69

then update-right Ay (ig os) (i1 0s) e (frup-opt f) (As. |s])

else o)
| ccombinenq-Sync-t Ag E Ay ig i1 f ose=
(ifece Ay (ip os) Ne Ay (i1 os) N E

then update-both Ay Ay (ig 08) (i1 0s) e (f-up-set f)
else ifece Ay (igos)Ne Ay (i1 0s) — E

then update-left Ay (ig 0s) (i1 05) e (f-up-set f) (As. {s})

U update-right Ay (ip o) (i1 os) e (f-up-set f) (As. {s})

else ifece Ay (ig 0s) — E — e Ay (i1 03)

then update-left Ay (i os) (i1 08) e (fup-set f) (As. {s})
else ifece Ay (iy 08) — E — e Ag (ip 09)

then update-right Ay (ig os) (i1 0s) e (frup-set f) (As. {s})
else {}»

fun combiney-Sync-w ::
(Yoo, ‘e, 'ro, 'ag) Agq-scheme, ‘e set, (‘o1, ‘e, 'r1, ‘a1) Ag-scheme,
‘o = ‘oo, 'o0 = ‘o1, 'ro = 'r1 = 'r option] = (‘o = 'r option)»
and combine,q-Sync-w ::
(oo, ‘e, 'ro, ‘ag) Ana-scheme, ‘e set, (‘o1, ‘e, 'r1, ‘aq) Apq-scheme,
'c = 'og, ‘o0 = ‘o1, 'ro = 'r1 = 'r option] = (‘o = 'r set)
where <combineg-Sync-w Ag E Ay iy i1 g 08 =
(case w Ag (ip 08)
of 0= 0| [ro] = (case w Ay (i1 08) of O = O | |r1] = gro 1))
| ccombinepq-Sync-w Ag E Ay ig i1 g 08 =
{rlrror.grori=1[r] ANro€w Ay (ip 0s) ANr1 € w Ay (i1 08P

fun combiney-Sync ::
(Yoo, ‘e, 'ro, 'ag) Agq-scheme, ‘e set, (o1, ‘e, 'r1, 'a1) Ag-scheme,
‘o = oy, o = ‘o1, ‘o9 = ‘o1 = o, 'rg = 'r1 = 'r option] = (o, ‘e, 'r) Ap
and combine, 4-Sync ::
(Yoo, ‘e, 'ro, 'ag) Ang-scheme, ‘e set, (‘o1 e, 'r1, ‘a1) Apq-scheme,
‘o = oo, o0 = o1, 'og = ‘o1 = ‘o, 'rg = 'r1 = 'r option] = (', e, ')
And>
where (combineg-Sync Ag E Ay ig i1 fg =
(7 = combineq-Sync-t Ay E A1 iy i1 f, w = combineg-Sync-w Ay E Ay i
Z'l gl))
| ccombinenq-Sync Ag E Ay ig i1 fg =
(7 = combinenq-Sync-1 Ag E Ay ig 11 f, w = combinenq-Sync-w Ay E Ay
1o 11 gl))

5.1.2 Specializations

definition combinegpqiriist-Sync ::
("o, 'e, 'r, ‘o) Ag-scheme, e set, (o, ‘e, 'r, '8) Aq-scheme] = (‘o list, e, 'r)
Ad>
where <(combinegpgiriist-Sync Ag E A1 =
combineq-Sync Ag E Ay hd (Aos. hd (tl os)) (As t. [s, t]) (As t. if s =t
then | s| else O)»
definition combine,qpairiist-Sync :

70

(Yo, ‘e, 'r, 'a)) Anq-scheme, ‘e set, ('o, e, 'r, '8) Ana-scheme] = (‘o list, ‘e, 'r)
And)
where <combine,gpairiist-Sync Ag B A1 =
combine,q-Sync Ag E Ay hd (Aos. hd (tl os)) (Ast. [s, t]) (Ast. if s =1
then |s] else O)»

definition combineypqir-Sync :
(oo, 'e, 'r, 'a) Ag-scheme, e set, ('oq, ‘e, 'r, 'B) Agq-scheme] = (‘oo X o1, e,
/1”) Ad>
where <combinegpgir-Sync Ag E A1 =
combineq-Sync Ay E Ay fst snd Pair (As t. if s = t then |s] else O)»
definition combine,qpqir-Sync :
(oo, ‘e, 'r, 'a) Apq-scheme, ‘e set, ('o1, ‘e, 'r, 'B) Apq-scheme] = (‘'og X ‘o1,
‘e, 'r) Ana>
where <combine, pqir-Sync Ag B Ay =
combine, q-Sync Ag E Ay fst snd Pair (As t. if s = t then |s] else O)»

definition combineyr,istsienr-Sync :
(o list, ‘e, 'r, 'a) Ag-scheme, nat, 'e set, (‘o list, e, 'r, '8) Aq-scheme] = (‘o
list, ‘e, ') Ap
where <combinegristsienr-Sync Ag leng B Ay =
combineg-Sync Ag E Ay (take leng) (drop leng) (@) (As t. if s = ¢ then |s]
else O)»
definition combine,qristsienr-SYnc :
(Yo list, ‘e, 'r, 'a) Anq-scheme, nat, ‘e set, (‘o list, ‘e, 'r, '8) Anq-scheme] =
("o list, ‘e, 'r) Ana>
where <combine,qristsienr-Sync Ag leng E A1 =
combine,q-Sync Ay E Ay (take leng) (drop leng) (Q) (As t. if s = t then
|s] else O)»

definition combineggy;st-Sync ::
(o, e, 'r, ‘o)) Ag-scheme, ‘e set, (‘o list, ‘e, 'r, '8) Ag-scheme| = (‘o list, ‘e,
/’I“) Ad)
where (combinegri;si-Sync Ag E Ay =
combineq-Sync Ag E Ay hd tl (#) (As t. if s = t then |s] else O)»
definition combine,qryist-Sync ::
("o, ‘e, 'r, 'a) Anq-scheme, ‘e set, (‘o list, ‘e, 'r, 'B) Anq-scheme] = (‘o list,
‘e, 'r) Ana>
where (combine,qriisi-Sync Ag E Ay =
combine,q-Sync Ag E Ay hd tl (#) (As t. if s = t then |s] else Q)

lemmas combinep q;riis¢-Sync-defs = combineq pqiriist-Sync-def combine, qpairiist-Sync-def
and combinepq;.-Sync-defs = combinegpqir-Sync-def combine, qpqir-Sync-def
and combiner;stsienr-Sync-defs = combinegp;stsienr-Sync-def combine,qristsienr-Sync-def
and combinepr;st-Sync-defs = combineqpyist-Sync-def combine,qriist-Sync-def

lemmas combine-Sync-defs =

combinep g iriist-Sync-defs combinepqi--Sync-defs combiner; st sienr-Sync-defs com-
binegy;st-Sync-defs

71

bundle combine,, 4-Sync-syntaxr begin

notation combineqpairiisi-Sync (({- a®[-Jpairtist -)> [0, 0, 0])
notation combine,qpairiist-Sync ({{- na®@[-lpairiist -)> [0, 0, 0])
notation combinegpqir-Sync («{- a®[-]pair -)> [0, 0, 0])

notation combine,qpair-Sync (<{- na®[-]pair -)* [0, 0, 0])

notation CombinedListslenL’Sync (<<<' d®[['7 ’]]ListslenL '>>> [07 07 03 0])
notation combinendListslenL'SynC (<<<' nd®[['7 ']]ListslenL '>>> [07 07 0a 0])
notation combinegriist-Sync («{- a®[-|riist -)> [0, 0, 0])

notation combine,qriist-Sync ({- na®[-|riist -)> [0, 0, 0])

end

unbundle combine,q-Sync-syntax

5.2 First Properties

lemma finite-trans-combine, q-Sync-simps [simp] :

finite-trans Ag = finite-trans Ay = finite-trans (Ao nd®[E]pairiist A1)

finite-trans By = finite-trans By = finite-trans {Bo ndQ[E]pair B1)>

(finite-trans Cy = finite-trans C'; = finite-trans {Co na®[leno, E]ListsienL
01>>>

finite-trans Dy = finite-trans D1 = finite-trans (Do na®[E]riist D1)»

unfolding combine, qpairiist-Sync-def combine, qpqir-Sync-def combine, qristsienr-Sync-def
combinen qRriist-Sync-def

by (simp-all add: finite-trans-def finite-image-set2)

lemma e-combinepqiriist-Sync:
€ (Ao a®[E]pairtist A1) os = combine-Sync-c Ag E A1 hd (hd o tl) os»
€ {Bo nd®[E]pairiist B1) 0s = combine-Sync-e By E By hd (hd o tl) 0%
by (auto simp add: combine-Sync-c-def-bis combinep q;riist-Sync-defs e-simps)

lemma e-combinepq;--Sync:
€ (Ao a®[E]pair A1) 0s = combine-Sync-c Ay E Ay fst snd o
€ {Bo nd®[E]pair B1) 05 = combine-Sync-e By E By fst snd o
by (auto simp add: combine-Sync-e-def-bis combinep q;--Sync-defs e-simps)

lemma e-combiner;sisienr-Sync:

e {Ap a®[leng, E]Listsienr, A1) 08 = combine-Sync-e Ay E Ay (take leng) (drop
leng) o8

€ (Bo na®[leng, E]Listsienr B1) o0s = combine-Sync-e By E By (take leng)
(drop leng) os»

by (auto simp add: combine-Sync-e-def-bis combiner,;stsien-Sync-defs e-simps)

lemma e-combiner;st-Sync:

€ (Ao a®[E]riist A1) 08 = combine-Sync-e Ay E Ay hd tl os»
€ {Bo na®[E]Rriist B1) 0s = combine-Sync-¢ By E By hd tl os»

72

by (auto simp add: combine-Sync-c-def-bis combineg;st-Sync-defs e-simps)

lemma p-combinepg;rist-Sync:

0 <<A0 d®|IEHPairlist A1>> = {US. hd os € p Ag N hd (tl G'S) € oAl Nw Ao (hd
os) =w Ay (hd (tl 08))}>

<0 {Bo nd®[E]pairiist B1) = {os. hd 0s € o Bo A hd (tl 0s) € p By A w By
(hd os) Nw By (hd (tl os)) # {} }»

by (auto simp add: combinepq;riisi-Sync-defs p-simps split: option.split)

lemma g-combinepy;,-Sync:

(0 <<A0 d®[[E]]Pair A1>> = {(0’0, 0'1). opg € 0 Ag N oy € 0 Al ANw Ag og = w Ay
O'1}>

(0 <<BO nd®[[EI|Pair Bl>> = {(O’(), 01). oo €0 BygANoy €0Bi ANw BgogNuw By
o1 # {}b

by (auto simp add: combinepqi.-Sync-defs o-simps split: option.split)

lemma g-combiner;stsienr-Sync:

0 (Ao a®[leno, Elristsienr A1) =

{os. take leng os € p Ag A drop leng s € p A1 AN w Ag (take leng 0s) = w 43
(drop leng os)}»

0 (Bo na®[leno, Elristsient B1) =

{os. take leng 0s € o By A drop leng 0s € o By A w By (take leng 0s) N w By

(drop leng os) # {} 1>
by (auto simp add: combiner,;stsienr,-Sync-defs p-simps split: option.split)

lemma g-combineg;s¢-Sync:
0 (Ao a®[E]Rriist A1) =
{os. hdos € p Ag Ntlos € 0 Ay ANw Ay (hd 08) = w Ay (Hl os)}
0 (Bo na®[E]riist B1) =
{os. hd os € p By ANtlos € p By Nw By (hd 0s) Nw By (tl 0s) # {} b
by (auto simp add: combinery;st-Sync-defs o-simps split: option.split)

lemma combine-Sync-t [simp) :

<combineq-Sync-T (Ao (w := some-wo)) E (A1 (w := some-w1])) = combineq-Sync-1
AO E A1>

<combiney, q-Sync-1 (Bo(w := some-wg’)) E (B1(w := some-w1’)) = combineyq-Sync-1
BQ E Bl>

for A :: «('o, 'a, ‘o option, 'r option, 'a) A-scheme>

and B :: (o, 'a, 'o set, 'r set, 'a) A-scheme)
by (intro ext, simp)+

5.3 Reachability

lemma Rg-combinegristsienr-Sync-subset:
(Ra (Ao a®[leng, E]pistsient A1) (so @ s1) C {to @Q t1] to t1. to € Raq Ao 50 A
t1 € Rqg A1 s1p (is <254 C =)

73

if same-length-Ra: <N\to. to € Raq Ao so = length to = leny>
proof safe
show «(t € ?SA:>E|t0 tl.t:to@tl/\tongA()S()/\tlGRdAl s> for t
apply (induct rule: Rq.induct, metis Rq.init)
by (simp-all add: combiner;stsienr-Sync-defs same-length-R4 e-simps split:
if-splits)
(metis (no-types, opaque-lifting) Rq.simps)—+
qed

lemma R, g-combine,qristsienr-Sync-subset:
(Rpad (Bo na®[leny, Elristsienr B1) (so @ s1) C {to Q 1| to t1. to € Rna Bo
So N t1 € Rpg By s1}» (is <255 C)
if same-length-Rpq: <\to- to € Rna Bo so = length to = leng>
proof safe
show (t € 25 — dig t1. t =ty Q@ t; A to € Rna Bo so N t1 € Rng B sp»
for ¢
apply (induct rule: R, q.induct, metis Ry q.init)
by (simp-all add: combiner,;stsienr-Sync-defs same-length-R,q e-simps split:
if-splits)
(metis (no-types, opaque-lifting) Rnq.simps)+
qed

lemma R4-combinegpqiriist-Sync-subset:
(Ra (Ao a®[E]pairtist A1) [s0, s1] C {[to, t1]| to t1. to € Ra Ao 50 A t1 € Ry
Ay s1h (is <254 C =)
and R, q-combine, qpairiist-Sync-subset:
(Rnd (Bo nda®[E]pairiist B1) [s0, s1] C {[to, t1]| to ti. to € Rna Bo so A t1 €
Rna B1 s1p (is <255 C)
proof safe
show <t € 254 — dig t1. t = [to, tl] A tg € Ry AO so ANt € Ry Aq s for t
by (Rg-subset-method defs: combinep qiriist-Sync-defs)
show «t € 9Sp = dtg t1. t = [to, tl] A to € Rpa Bo so A t1 € Rpag B sp»
for ¢
by (R, q-subset-method defs: combinepqiriist-Sync-defs)
qed

lemma R;-combineypqir-Sync-subset:
<Ra <<A0 d®HE]Pair A1>> (So, 81) C Ryg Ag sog X Rgq A1 sp (iS 284 C —))
and R, q-combine, qpqir-Sync-subset:
(Rna (Bo na®[E]pair B1) (s0, 51) € Rna Bo so X Rna B1 sy (is <25 C)
proof —
have <t € 254 = fstt € Rq Ag so A sndt € Rq Ay s1» for ¢
by (R4-subset-method defs: combinep q;r-Sync-defs)
thus (2S5, C Ry Ag so X Rq Ay s1» by force
next
have <t € ?2Sg = fst t € Rpq Bo sog N\ sndt € Rpq By s1» for t
by (Rnq-subset-method defs: combinepq;,-Sync-defs)
thus <255 C R4 Bo so X Rnqg B1 s1> by force

74

qged

lemma R;-combinegryisi-Sync-subset:
Ry <<A0 d®[[EﬂRlist A1>> (so # Js) - {to # ot] tg ot. to € Rq Ao so N ot €
Ra A1 osp (is <254 C)
and R, 4-combine,qriist-Sync-subset:
(Rna (Bo na®[E]riist B1) (so # 0s) C {to # ot| to ot. o € Rypq Bo so N ot
€ Rpaq By os}y (is <25 C)
proof safe
show <t € 25, = dtgot. t = tg # ot AN tg € Rq Ag sog N ot € Rq A1 0% for
t
by (Rg-subset-method defs: combineg;;st-Sync-defs)
next
show (t € 255 — ditg ot. t =ty #U’t/\ to € Rpnag Bg so A ot € Rpq B1 0%
for ¢
by (Rnq-subset-method defs: combineg;st-Sync-defs)
qed

5.4 Normalization

lemma w-combinepqiriise-Sync-behaviour:

w ((Ao a®[E]pairtist A1))d—nd [S0, 51) = w ((A0)dsnd nd®@[E]Pairtist (A1)d—na)
[s0, s1]>

by (auto simp add: combinepq;ri;ist-Sync-defs det-ndet-conv-defs option.case-eq-if)

lemma w-combinep,;--Sync-behaviour:

w ((Ao a®[E]pair A1))dsnd (S0, $1) = w ((A0)dnd na@[E]lpair (A1)d—nd)
(s0, s1)»

by (auto simp add: combinepq;.-Sync-defs det-ndet-conv-defs option.case-eq-if)

lemma w-combiner ;stsienr,-Sync-behaviour:
w ((Ao a®[leno, E]ristsient A1))dsnd (050 Q@ 051) = w ({(Ao)d—snd na®[leno,

E]]ListslenL <<A1>>d<—>nd>> (030 Q 051)>
by (auto simp add: combiner;stsienr-Sync-defs det-ndet-conv-defs option.case-eq-if)

lemma w-combinepr;st-Sync-behaviour:
w ((Ao a®[E]riist A1))a—nda (so # 051) =w ((Ao)a—nd ndR[E]riist (A1)d—nd)
(50 # 0'81))

by (auto simp add: combinepr;;st-Sync-defs det-ndet-conv-defs option.case-eq-if)

lemma 7-combinep g1 s¢-Sync-behaviour-when-indep:
(5A0$005A181§E:>
T ((Ao a®[E]pairtist A1))dsnda [50, s1] € = T ((Ao)dsnd nd®[E]pairiist
(A1) asna) [s0, s1] e
by (auto simp add: combinep qiriist-Sync-defs det-ndet-conv-defs option.case-eq-if
€-simps)

75

lemma 7-combinep q;.-Sync-behaviour-when-indep:

<5A05005A151§E:>

T ((Ao a®[E] Pair A1))d—nd (S0, 51) € =T ((A0)dsnd na®@[E]Pair (A1)d—na)
(s0, $1) €

by (auto simp add: combinepq;.-Sync-defs det-ndet-conv-defs option.case-eq-if
e-8imps)

lemma 7-combiney;stsienr-Sync-behaviour-when-indep:

¢ Ag o0sg Ne Ay 081 C E = length sy = leng =

T ((Ao a®@[leno, E]lristsient, A1))d—snd (050 Q@ os1) e =7 ((Ao)d—na na®[leno,
E]]ListslenL <<A1>>d<—>nd>> (050 Q 031) e

by (auto simp add: combiner ;stsien 1, -Sync-defs det-ndet-conv-defs option.case-eq-if
£-simps)

lemma 7-combinep;;si-Sync-behaviour-when-indep:
e Ag soNe Ay 081 C FE =
7 ((Ao a®[E]riist A1))a—snd (50 # 051) e = 7 ((Ao)dosnd nd®[E]riist
<<A1>>d‘—>nd>> (SO # 0'51) e
by (auto simp add: combiner;;si-Sync-defs det-ndet-conv-defs option.case-eq-if
€-5imps)

method Pgkps-when-indep-method uses R-d-subset =
fold PSKIPS—nd—fmm—det—to—ndet—z’s—PSK]ps—d,
rule Pgk1ps-nd-eql-strong-id,
unfold R, q-from-det-to-ndet,
all <drule set-mp[OF R-d-subset, rotated)

method P-when-indep-method uses R-d-subset =
fold P-nd-from-det-to-ndet-is-P-d,
rule P-nd-eql-strong-id,
unfold R, q-from-det-to-ndet,
all <drule set-mp[OF R-d-subset, rotated)]

lemma Pgps-combinepqiriist-Sync-behaviour-when-indep:

(Pskrprs{(Ao a®[E]pairtist A1))a [0, 51] = Pskrps{{{Ao)d—snd na®R[E]pairiist
(A1) dsna))nd [so0, 51

if <indep-enabl Ay so E Ay s>

by (Psk1ps-when-indep-method R-d-subset: Rg-combinegpairiist-Sync-subset,
stmp-all)

(metis T-combinepqiriist-Sync-behaviour-when-indep indep-enablD that,
metis w-combinepqiriist-Sync-behaviour)

lemma P-combinepqiriist-Sync-behaviour-when-indep:

[<P<<<<]Ao d[E] pairtist A1))a [s0, 51) = P{({A0)d—nd na®@[E]pairtist (A1)d—snd))nd

76

if <indep-enabl Ag so E A1 s1»
by (P-when-indep-method R-d-subset: Rq-combineqpqiriist-Sync-subset, simp-all)
(metis T-combinepqiriist-Sync-behaviour-when-indep indep-enablD that)

lemma Pgpg-combinep q;.-Sync-behaviour-when-indep:

(Pskrps{(Ao a®[E]pair A1))a (50, 51) = Pskrps{{{(Ao)a—snd na®[E]pair
<<A1>>d‘—>nd>>>>nd (507 51)>

if <indep-enabl Ay sg E Ay s1»

by (Psk1ps-when-indep-method R-d-subset: Rq-combineqpqir-Sync-subset, all
celim SigmaFE)»)

(metis T-combinepqqr-Sync-behaviour-when-indep indep-enablD that,
auto simp add: w-combinep 4;-Sync-behaviour option.case-eq-if)

lemma P-combinep,;.-Sync-behaviour-when-indep:
(P((Ao a®[E]pair A1))a (50, s1) = P{((A0)dsnd nd®[E]Pair (A1)dsnd))nd
(s0, 1)
if <indep-enabl Ay sg E A1 s1»
by (P-when-indep-method R-d-subset: Rg-combineqpqir-Sync-subset, elim Sig-
mak)
(metis T-combinep qr-Sync-behaviour-when-indep indep-enablD that)

lemma Pggps-combinerstsienr-Sync-behaviour-when-indep:

(Pskrprs{(Ao a®[leng, E]ristsienr, A1))a (050 @ 051) = Psxrps{{{Ao)a—nd
nd®[[len07 E]]ListslenL <<A1>>d<—>nd>>>>nd (030 Q@ 051)>

if <indep-enabl Ag osy E A1 os1» and <A\otg. otg € Rq Ao 089 = length oty
= leny>

by (Pgsk1ps-when-indep-method R-d-subset: Rg-combineqristsiens-Sync-subset,
simp-all add: that(2))

(metis T-combiner;stsien1,-Sync-behaviour-when-indep indep-enablD that,
metis w-combiner;stsienr-Sync-behaviour)

lemma P-combiney ;stsienr,-Sync-behaviour-when-indep:

(P({Ao a®[leno, Elristsient. A1))a (050 Q o51) = P{{{A0)d—nd na®[leno,
E]]ListslenL <<A1>>d=—>nd>>>>nd (0—50 Q@ 051)}

if <indep-enabl Ag osg E Ay os1» and <\otg. otg € Rq Ao 089 = length oty
= lengy»

by (P-when-indep-method R-d-subset: Rg-combineqr;stsienr-Sync-subset, simp-all
add: that(2))

(metis T-combiner;stsien,-Sync-behaviour-when-indep indep-enablD that)

lemma Pgyps-combiner;st-Sync-behaviour-when-indep:
(Pskrps{(Ao a®[E]riist A1))a (so # 051) = Pskxrps{({Ao)d—snd na®[E]Rriist
(A1) asna)nd (so # os1)
if <indep-enabl Ay sg F A1 os1>
by (Psk1ps-when-indep-method R-d-subset: R4-combineqry;st-Sync-subset, simp-all)
(metis T-combinegy;st-Sync-behaviour-when-indep indep-enablD that,

7

metis w-combinery; st-Sync-behaviour)

lemma P-combinery;si-Sync-behaviour-when-indep:
(P{(Ao a®[E]riist A1))a (so # 051) = P({{A0)d—nd na®[E]riist (A1) d—nd))nd
(so # os1)
if <indep-enabl Ag so E A1 osp»
by (P-when-indep-method R-d-subset: Rg-combineqryist-Sync-subset, simp)
(metis T-combinegy;st-Sync-behaviour-when-indep indep-enablD that)

78

Chapter 6

Compactification of
Synchronization Product

6.1 Iterated Combine

6.1.1 Definitions

fun iterated-combiney-Sync :: e set = (o, ‘e, 'r) Aq list = (‘o list, ‘e, ') Ap
(@ T] - [0, 0])

where (4@ [E] [|) = (7 = Aos a. O, w = Ags. O))»

| (e I[E] [Ao]) = a{Ao)osos

| (a®E] Ao # Ar # As) = (Ao a®[E]riist (aQ [E] A1 # As))»

fun idterated-combine,q4-Sync :: e set = (‘o, ‘e, 'r) Anq list = (‘o list, ‘e, 'r)
Ana> (na@ T -)> [0, 01)

where (s [E] [|) = (7 = Aos a. {}, w = Aos. {})

| <<<nd® [[Eﬂ [AO]>> = nd<<A0>>O"—)O'S>

| <<<nd® [[Eﬂ AO # Al # A5>> = <<AO nd®[[E]]Rlist <<nd® [[E]] Al # AS>>>>>

lemma iterated-combineq-Sync-simps-bis: <As # [| = (4@ [E] Ao # As) = (Ao
d®[E]riist (a@ [E] As))»
and iterated-combine, q4-Sync-simps-bis: <Bs # [| = {(naQ [E] Bo # Bs) = (B

nd®[[EﬂRlist <<nd® [[EH B5>>>>>
by (induct As, simp-all) (induct Bs, simp-all)

fun iterated-combiney-Sync-c :: <('o, ‘e, 'r, ‘a) Ag-scheme list = ‘e set = ‘o list
= e set)
where <iterated-combineq-Sync-c || E os = {}
| <iterated-combineq-Sync-e [Ao] E o0s =€ Ay (hd os)>
| terated-combineg-Sync-e (Ag # A1 # As) E os =
combine-sets-Sync (¢ Ag (hd 0s)) E (iterated-combiney-Sync-e (A1 # As)
E (tl os))

79

fun iterated-combine, q-Sync-e :: «('o, e, 'r, ‘a) Apq-scheme list = ‘e set = ‘o

list = e set»
where <iterated-combine, q-Sync-¢ [| E os = {}
| «terated-combiney, q-Sync-e [Ao] E s = ¢ Ao (hd os)
| <iterated-combine, 4-Sync-€ (Ao # A1 # As) E os =
combine-sets-Sync (e Ay (hd 05)) E (iterated-combine,q-Sync-c (A1 # As)
E (tl os))»

lemma iterated-combiney-Sync-e-simps-bis:
(As # || = iterated-combiney-Sync-e (Ag # As) E 0s =
combine-sets-Sync (¢ Ag (hd 0s)) E (iterated-combineq-Sync-¢ As E
(tl os))»
and iterated-combine,, 4-Sync-e-simps-bis:
(Bs # || = iterated-combine,q-Sync-e (By # Bs) E os =
combine-sets-Sync (¢ By (hd 0s)) E (iterated-combine,q-Sync-¢ Bs
E (tl os))»
by (induct As, simp-all) (induct Bs, simp-all)

6.1.2 First Results

lemma e-iterated-combineg-Sync:
length os = length As = ¢ (4@ [E] As) os = iterated-combineq-Sync-e As E
T8
by (induct os As rule: induct-2-lists012)
(simp-all add: e-combiner;si-Sync combine-Sync-e-def)

lemma c-iterated-combine, q-Sync:
dength os = length Bs = € (na@ [E] Bs) os = iterated-combine,q-Sync-¢ Bs
Eos
by (induct os Bs rule: induct-2-lists012)
(simp-all add: e-combinery;si-Sync combine-Sync-e-def)

lemma combiney;sisienr-Sync-combinery;st-Sync-eq:
€ (i{Ao)osos a®[1, E]ristsienr, A1) 05 =€ (Ao a®[E]riist A1) 09
7 (a{A0)os0s d®[1, E]ristsient A1) (so # 05) e =7 (Ao a®[E]riist A1) (s0
os) e
(€ <<nd<<BO>>cr<—>0's nd®[[1; E]]ListslenL Bl>> 0s =¢& <<BO nd®[[E]]Rlist Bl>> g8y
T (na(Bo)osos nd®[1, Elristsienr, B1) (so # 0s) e =T (Bo na®[E]Rriist B1)
(so # 05) e
by (simp-all add: e-combiner;stsienr,-Sync e-combinery;st-Sync drop-Suc com-
bine-Sync-c-def,
auto simp add: combiner;sisien-Sync-defs combinery;si-Sync-defs o-os-conv-defs
e-simps)
(metis append-Cons append-Nil)

80

lemma combinep q;ri;st-Sync-and-iterated-combine, q-Sync-eq:
€ (Ao a®[E]pairtist A1) [s0, s1] = € (4@ [E] [Ao, A1]) [s0, s1]>
1 (Ao a®[E]pairtist A1) [s0, 51] e = 7 {a@ [E] [Ao, A1]) [s0, 51] &
€ <<BO nd®[[E]]Pazrlzst Bl>> [50; 51] =¢£ <<nd® [[E]] [BOa Bl]>> [307 51]>
7 (Bo na®[E]pairtist B1) [s0, 1] € = T {na@ [E] [Bo, Bi1]) [s0, s1] e

by
(

(simp-all add: e-combinepgiriist-Sync e-combinery;st-Sync)

auto simp add: combinep q;ri;st-Sync-defs combinery; s¢-Sync-defs -0 s-conv-defs

option.case-eq-if e-simps combine-Sync-e-def)

lemmas combinepg;ri;st-Sync-and-combiner; s¢-Sync-eq =
combinep qiriist-Sync-and-iterated-combine,, 4-Sync-eq|simplified]

6.1.3 Reachability

lemma same-length-R -iterated-combineq-Sync-description:
dength os = length As = 05’ € Ry (4Q [E] As) 0s =
length os’ = length As N (Vi < length As. 05’1 i € Rq (As!4) (os! i)
proof (induct os As arbitrary: os’ rule: induct-2-lists012)
case Nil thus ?case by simp
next
case (single 01 A1)
thus ?case by (auto simp add: R4-from-o-to-os-description)
next
case (Cons 01 02 os A1 A2 As)
from set-mp[OF Rg-combineyri;si-Sync-subset, OF Cons.prems|[simplified)
obtain 01’ 0s” where (08’ =01’ # 05’ <01’ € Rq Al 01>

08" € Ry (aQ[E] A2 # As) (62 # os)» by blast

from Cons.hyps(3)[OF this(8)] this(1, 2)
show ?case using less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc by simp auto

qed

lemma same-length-R,, 4-iterated-combine, q-Sync-description:
length os = length Bs = 08’ € Rud (na@ [E] Bs) 0s =
length os’ = length Bs A (Vi < length Bs. 0s’! i € Rypq (Bs! i) (os! i)
proof (induct os Bs arbitrary: os’ rule: induct-2-lists012)
case Nil thus ?case by simp
next
case (single o1 B1)
thus ?case by (auto simp add: R, q4-from-o-to-os-description)
next
case (Cons 01 02 ogs A1 A2 As)
from set-mp[OF R, q-combine,qriist-Sync-subset, OF Cons.prems|simplified]]
obtain o1’ 0s" where <«0s’ = 01’ # 05’ <01’ € Rpq Al 01>

08" € Rpa (nd@Q[E] A2 # As) (02 # os)» by blast

from Cons.hyps(3)[OF this(3)] this(1, 2)

81

show ?case using less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc by simp auto
qed

6.1.4 Transmission of Properties

lemma finite-trans-transmission-to-iterated-combine, q-Sync:
(ANA. A € set As = finite-trans A) = finite-trans (na@ [E] As)>
by (induct As rule: induct-list012)
(auto simp add: o-os-conv-defs combinery;st-Sync-defs finite-trans-def finite-image-set2)

lemma p-disjoint-c-transmission-to-iterated-combineq-Sync:
(AN\A. A € set As = p-disjoint-e A) = p-disjoint-¢ (4@ [E] As)>
by (induct As rule: induct-list012)
(simp-all add: o-combinegy;si-Sync e-combiner;si-Sync o-disjoint-c-def com-
bine-Sync-e-def)

lemma p-disjoint-c-transmission-to-iterated-combine, q-Sync:
(ANA. A € set As = p-disjoint-c A) = p-disjoint-c (na@ [E] As)>
by (induct As rule: induct-list012)
(simp-all add: o-combinegry;st-Sync e-combinegy;s¢-Sync o-disjoint-c-def com-
bine-Sync-e-def)

lemma at-most-1-elem-term-transmission-to-iterated-combine,, 4-Sync:
(ANA. A € set As = at-most-1-elem-term A) = at-most-1-elem-term (4@ [E]
Ash
by (induct As rule: induct-list012,
stmp-all add: at-most-1-elem-term-def o-0s-conv-defs combinery; s¢-Sync-defs)
fastforce

lemma same-length-indep-transmission-to-iterated-combiney-Sync:
<length os = length As —
(Aij. i <length As = j < length As — i # j =
indep-enabl (Ao # As) 1) ((s0 # 05) ! §) E (Ao # As) 1 J) (50 # 05) ! 7))
=
indep-enabl Ag so E (4@ [E] As) os»
proof (induct os As rule: induct-2-lists012)
case Nil
then show ?case by (simp add: indep-enabll)
next
case (single o1 Ay)
from single.prems[of 0 1] show ?case
by (auto simp add: R4-from-o-to-os-description
intro!: indep-enabll dest!: indep-enablD)
next
case (Cons o1 09 0s A1 Ay As)
show ?Zcase
proof (rule indep-enabll)
fix to ts assume assms : <tp € Rq Ao so» <ts € Ry (aQ [E] A1 # Aa # As)

82

(01 # o2 # o8
from assms(2) obtain t; ts’ where <ts = t1 # ts’
by (metis Cons.hyps(1) Zero-not-Suc length-Cons list.exhaust-sel list.size(3)
same-length-R 4-iterated-combiney-Sync-description)
with assms(2)[simplified, THEN set-mp|OF R q-combineqri;st-Sync-subset]
have (ts’ € Rq (a@ [E] Az # As) (o2 # os)> by simp

have (indep-enabl Ay so E (4@ [E] A2 # As) (o2 # os)
proof (rule Cons.hyps(3))
show (i < length (As # As) = j < length (Ay # As) = { # j =
indep-enabl ((Ag # Az # As) Q) ((so # o2 # 08) i) E
(Ao # A # As) 1 j) ((s0 # o2 # 05) ! j)» for i j
using Cons.prems|[of <if i = 0 then 0 else Suc ©> <if j = 0 then 0 else Suc]
by (cases i; cases j) simp-all
qed
from this|[THEN indep-enablD, OF assms(1) «ts’ € Rq (4@ [E] Az # As) (o2
os)]
have «¢ Ay to Ne (4@ [E] A2 # As) ts’' C E» .
moreover from Cons.prems|THEN indep-enablD, of 0 <Suc 0> tg 1]
assms(2)[simplified, THEN set-mp|OF Rg4-combineqriist-Sync-subset]] assms(1)
have « Ay tg Ne Ay t1 C E» by (simp add: <ts = t1 # ts)
ultimately show <« Ay to N e (4@ [E] A1 # Az # As) ts C E»
by (auto simp add: e-combinegry;st-Sync <ts = t; # ts"» combine-Sync-c-def)
qed
qed

lemma w-iterated-combineg-Sync :

<length os = length As =

w (aQ [E] As) os = (case those (map2 w As os) of ¢ = ¢

| [terms| = if card (set terms) = Suc 0 then | THE r. set terms = {r}| else

o)

by (induct os As rule: induct-2-lists012)

(auto simp add: o-0s-conv-defs combinegy;st-Sync-defs card-1-singleton-iff the-equality
split: option.split)

lemma w-iterated-combine,, q-Sync :

length os = length As =

w (na@[E] As) os = (if As =[] then {} else {r. Vi < length As. r € w (As!
i) (os ! 9)}p
proof (induct os As rule: induct-2-lists012)

case Nil show ?case by simp
next

case (single 01 A1)

from length-Suc-conv show Zcase

by (auto simp add: o-0s-conv-defs)

next

case (Cons 01 02 os A1 A2 As)

show Zcase (is <- = ?rhs 01 02 0s A1 A2 As))

83

proof (intro subset-antisym subsetl)
fix r assume «r € w (,aQ [E] Al # A2 # As) (o1 # 02 # os)
hence (r € w A1 o1) «r € w {naQ [E] A2 # As) (62 # os)
by (simp-all add: combinep;s¢-Sync-defs split: if-split-asm)
from this(2) have Vi<Suc (length As). r € w ((A2 # As) 1 i) (02 # o0s) !
i)
by (simp add: Cons.hyps(3))
with «r € w A1 01> show <r € ?rhs 01 02 os A1 A2 As
by (auto simp add: less-Suc-eq-0-disj)
next
from Cons.hyps(3)
show «r € 2rhs 01 02 0s Al A2 As =
r€w (na@[E] Al # A2 # As) (01 # o2 # os)) for r
by (auto simp add: combinegy;si-Sync-defs)
qed
qed

6.1.5 Normalization

lemma w-iterated-combine, q-Sync-det-ndet-conv:

<length os = length As —

W {na@Q [E] map (AA. {A)a—nd) As) 0s = w ({a@ [E] As))a—na o8
proof (induct os As rule: induct-2-lists012)

case Nil

show ?case by (simp add: base-trans-det-ndet-conv(1))
next

case (single 01 A1)

show ?case by (simp add: from-det-to-ndet-o-o s-conv-commute)
next

case (Cons 01 02 os A1 A2 As)

thus Zcase

by (auto simp add: det-ndet-conv-defs combinery;si-Sync-defs split: option.split)
qed

lemma T7-iterated-combine,, q-Sync-behaviour-when-indep:

<length os = length As =

(Aij. [i < length As; j < length As; i # j]

= indep-enabl (As i) (os!i) E (As!j) (os!) =

T {(aQ [E] As))asna 05 € = T {na@ [E] map (AA. {AYgsna) As) os e
proof (induct os As rule: induct-2-lists012)

case Nil

show ?case by simp
next

case (single 01 A1)

show ?case by (simp add: from-det-to-ndet-c -0 s-conv-commute(1))
next

case (Cons 01 02 os A1 A2 As)

have * : 7 ((aQ[E] A2 # As))asnd (02 # 05) e =
T (na@ [E] map (ANA. (A)asna) (A2 # As)) (02 # 0s5) &

84

proof (rule Cons.hyps(3))

show «[i < length (A2 # As); j < length (A2 # As); i # j]

= indep-enabl ((A2 # As) i) ((c2 # 0s) i) E
((A2 # As) 'j) (62 # os) 1 j)» for i j
using Cons.prems[of «Suc ©> «Suc §»] by simp
qed
have 7 ((4@ [E] A1 # A2 # As))aesna (01 # 02 # 05) e =
T ((A1)asnd na®[E]riist ((a@Q[E] A2 # As))asna) (01 # 02 # 05)

e
proof (subst iterated-combiney-Sync.simps(3), rule T-combinery; s¢-Sync-behaviour-when-indep)
show ¢ A1 o1 Ne (4Q[E] A2 # As) (62 # os) C E»
proof (rule indep-enablD[OF - R4.init Rq.init])
show <indep-enabl A1 o1 E (4@ [E] A2 # As) (02 # os)
by (simp add: Cons.hyps(1) Cons.prems order-le-less-trans
same-length-indep-transmission-to-iterated-combiney-Sync)
qed
qed
also have «... = 7 (na@ [E] map (NA. (A)asna) (A1 # A2 # As)) (01 #
o2 # os) e
by (use * in <simp add: combinery;si-Sync-defs e-simps»)
(metis empty-from-det-to-ndet-is-None-trans option.exhaust)
finally show ?case .
qed

lemma Pg g pg-iterated-combine, q-Sync-behaviour-when-indep:
assumes same-length: <length os = length As»
and indep: <\i j. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os!)
shows (PSKIPS<<<<d® [[E]] AS>>>>d g8 = PSKIPS<<<<nd® [[E]] map ()\A <<A>>dc_)nd)
AsY)na o8
proof (fold Ps k1 ps-nd-from-det-to-ndet-is-Ps i 1 ps-d, rule Ps k1 ps-nd-eql-strong-id)
show «os’ € Rpq ((aQ [E] A8))dsnd 058 =
T {na@ [E] map (AA. (A)agsna) As) 08’ e = 7 ((a@ [E] A$))a—snd 08’
e» for os’ e
proof (rule T-iterated-combine,, 4-Sync-behaviour-when-indep[symmetric])
show <08’ € Ruaq ((aQ [E] As))asna 08 = length os’ = length As
by (metis R q-from-det-to-ndet same-length same-length-R 4-iterated-combiney-Sync-description)
next

show ([os’ € Rpa ((aQ [E] As))a—sna 0s; @ < length As; j < length As; i #
il

= indep-enabl (As ! i) (o8’ i) E (As!j) (o8’ ! j)» for i j
by (subst (asm) R, q-from-det-to-ndet,
drule same-length-R q-iterated-combineq-Sync-description| OF same-length])
(meson Rg-trans indep-enabl-def indep)
qed
next
show <05’ € Rpa ((uQ [E] As))asna 05 =

85

W {nd@ [E] map (AA. (A)asnd) As) 08’ = w ((aQ [E] As))dsna os"
for os’
by (metis R, q-from-det-to-ndet w-iterated-combine,, 4-Sync-det-ndet-conv same-length
same-length-R 4-iterated-combiney-Sync-description)
qed

lemma P-d-iterated-combine,, 4-Sync-behaviour-when-indep:
assumes same-length: <length os = length As»
and indep: <\i j. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os! i)
shows (P((a@ [E] As))a 05 = P{{na@ [E] map (M. (A)inda) AS))na 0
proof (fold P-nd-from-det-to-ndet-is-P-d, rule P-nd-eql-strong-id)
show (s’ € R4 <<<<d® [[E]] A5>>>>d<—>nd g8 —
T {na@ [E] map (M. (A)gsna) As) 0s’ e = 7 {({a@ [E] As))a—na o8’
e» for os’ e
proof (rule T-iterated-combine,, q-Sync-behaviour-when-indep|symmetric))
show <08’ € Rug ((aQ [E] As))a—snd 08 = length os’ = length As
by (metis Rpq-from-det-to-ndet same-length same-length-R 4-iterated-combineq-Sync-description)
next
show <([os’ € Rpa ((dQ[E] As))asna os; i < length As; j < length As; i #
7l

= indep-enabl (As ! i) (o8’ Vi) E (As!j) (s’ ! j) for i j
by (subst (asm) Ryq-from-det-to-ndet,
drule same-length-R 4-iterated-combiney-Sync-description| OF same-length])
(meson Rg-trans indep-enabl-def indep)
qed
qed

6.2 Compactification Theorems

6.2.1 Binary
Pair

theorem Pgyps-nd-combinepq;,--Sync :
fixes F :: (/a sety and Ag :: <('o, 'a, 'r, ‘@) Anq-scheme)
assumes p-disjoint-¢ : <p-disjoint-¢ Ag> <p-disjoint-€¢ Ay>
and at-most-1-elem-term : <at-most-1-elem-term Ag> <at-most-1-elem-term Aq»
defines A-def: (A = (Ao na®[E]pair A1)
defines P-def: <P = Pskrps{Ao)na> and Q-def: <Q = Pskrps{Ai)ns> and
S—def: S = P5K1p5<<A>>nd>
shows <P o [E] Q 01 = S (00, 01)»
proof —
let ?f = «Pskrps-nd-step (¢ A) (1 A) (w A) (Ao’. case o’ of (00, 1) = P 09
[E] Q 1)
note cartprod-rwrt = GlobalNdet-cartprod[of - - <Az y. - (z, y)», simplified]
note Ndet-and-Sync = Sync-distrib-GlobalNdet-left
Sync-distrib-GlobalNdet-right

86

note Mprefix-Sync-constant =
SKIP-Sync-Mprefix Mprefiz-Sync-SKIP
STOP-Sync-Mprefix Mprefix-Sync-STOP
note P-rec = restriction-fiz-eqOF Pg 1 pg-nd-step-constructive-bis[of Ag), folded
Pskrps-nd-def P-def, THEN fun-cong]
note Q-rec = restriction-fiz-eq| OF Pgs k1 ps-nd-step-constructive-bis[of A1), folded
Pskips-nd-def Q-def, THEN fun-cong]
have w-A : «w A (0o, 01") = w Ap 00’ Nw Ay 01" for o¢’ o1’
by (auto simp add: A-def combinep q;--Sync-defs)
have ¢-A : «¢ A (00, 01') = combine-sets-Sync (¢ Ay o¢’) E (¢ Ay 01')» for o’
g1 !
by (simp add: A-def e-combinepq.-Sync combine-Sync-e-def)
have Mprefix-Sync-Mprefiz-for-procomata :
({TacA — Pa [E] ObeB — Q b =
(Dac(A — E — B) — (P a [E] ObeB — Q b)) O
(Obe(B — E — A) — (Qa€d — P a [E] Qb)) O
(Oze(ANB—FE)— (Pz[E]0beB — Qb) N (HacA — Pa[E] Q) O
(Oze(ANBNE)— (Pz[E] Q) (is ?eq) for A Band P Q :: <'a = ('a

'r) processpiick>
proof —
have *:<{Ja€(4d — E) —» (Pa [E] ObeB — Qb) =
(Oae(A — FE — B) —» (Pa [E] ObeB = Qb)) O
(Oae(ANB—E)— (Pa[F] OB — Qb))
by (metis Diff-Int2 Diff-Int-distrib2 Mprefiz-Un-distrib Un-Diff-Int)
have xx : «0be(B — E) — (HOa€A — Pa [E] Qb) =
(Obe(B—E — A) - (Oacd - Pa [E] Qb)) O
(O0be(AN B —E)— (Oacd — Pa [E] Qb))
by (metis (no-types) Int-Diff Int-commute Mprefiz-Un-distrib Un-Diff-Int)
have <JacA — P o [E] ObeB — Q b =
(Oae(A — F — B) — (P a [E] ObeB — Q b))
(Obe(B—E — A) = (OacAd — Pa [E] Q b))
((Hae(AN B — FE) — (Pa[E)ObeB — Qb))
(Obe(ANB—FE)— (HacAd — Pa [E] QD))
(Oee(ANBNE)— (Pz[E] Q)
unfolding Mpreﬁx—Sync—Mpreﬁm
by (auto simp add: xx Det-assoc intro!: arg-cong[where f
(subst (3) Det-commute, subst Det-assoc,
auto simp add: * Det-commute intro: arg-conglwhere f = <AP. P O -])
also have «(Hac(ANB - E) = (Pa [E] ObeB - Qb)) O
(Obe(ANB - FE)— (Oacd — Pa [E] QD)) =
Oze(ANB—E)— (Pz[E] ObeB — Qb)) M (Qacd — P a [E]

oooo

= A\P. PO

Q x)»
by (simp add: Mprefiz-Det-Mprefiz, rule mono-Mprefiz-eq, simp)

finally show ?thesis .

qed

show <P ao [[EII Q g1 = S (O’O7 Cfl))

proof (rule fun-conglof «\(oo, 01). P oo [E] Q o1 - (00, 01), simplified])
show «(A(og, 01). P og [E] Q 01) = 5
proof (rule restriction-fix-unique[OF Pg k1 ps-nd-step-constructive-bis[of A],

87

symmetric, folded Pskpgs-nd-def S-def])
show «?f = (A(0g, 01). P oo [E] Q o1)»
proof (rule ext, clarify)
have o-disjoint-c-bis : «w Ag 09 # {} = € Ao 00 = {}p
w Ay o1 #{} = ¢ Ay 01 = {} for gy 01
by (simp-all add: p-simps o-disjoint-cD o-disjoint-¢)
show «?f (0g, 01) = P o¢ [E] Q o1 for og 04
proof (cases «w Ag o9 = {}»; cases w Ay o1 = {})
assume «w Ag o9 = {p w 4; o1 = {p
hence P-rec’: <P oy = P-nd-step (¢ Ag) (7 Ag) P oo
and Q-rec’: <Q o1 = P-nd-step (¢ A1) (7 41) Q o>
and S-rec’: «Psgrps-nd-step (¢ A) (1 A) (w A) (A (o0, 01). P 0¢ [E]

Q o1) (00, 01) =
Pond-step (e 4) (1 4) (Moo, 01). P oy [E] Q 01) (00, 01)»
by (simp-all add: P-reclof og] Q-reclof o1] w-A)
show «?f (09, 01) = P o¢ [E] Q o1
unfolding P-rec’ Q-rec’ S-rec’ Mprefiz-Sync-Mprefiz-for-procomata
unfolding e-A Mprefiz-Un-distrib
by (intro arg-cong2[where f = «(O))] mono-Mprefiz-eq, fold P-rec’ Q-rec’,
auto stmp add: A-def Ndet-and-Sync cartprod-rwrt
combinepqr-Sync-defs e-simps GlobalNdet-sets-commutelof T A; -

simp flip: GlobalNdet-factorization-union
introl: mono-GlobalNdet-eq arg-cong2[where f = «(M)])
next
assume w Ag o9 # {} «w A o1 ={}
from p-disjoint-e(1) «w Ay o¢g # {}> have «¢ Ag 09 = {}
by (simp add: o-disjoint-e-def o-simps)
have «?f (0¢, 01) = 0bg(e A1 01 — E) — (Moy’er Ay 01 b. (SKIPS (w
Ag 00) [E] Q@ 01))
by (auto simp add: w-A e-A «w Ay 01 = {}» <€ Ag o9 = {}> introl:
mono-Mprefix-eq,
auto simp add: A-def combinepqir-Sync-defs «w Ag o9 # {}
e Ag o9 = {}» cartprod-rwrt P-reclof o] intro!: mono-GlobalNdet-eq)
also have «... = P og [E] Q o1
by (unfold P-reclof o¢] Q-rec[of o1])
(auto simp add: SKIPS-def Ndet-and-Sync Mprefiz-Sync-constant <w
AO ago # {})
GlobalNdet-Mprefiz-distr GlobalNdet-sets-commute[of <1 Ay - -] w
A1 g1 = {})
intro!: mono-Mprefiz-eq mono-GlobalNdet-eq)
finally show «?f (op, 01) = .. .
next
assume w Ag o9 = {}» «w Ay 01 #{}P
from p-disjoint-¢(2) «w Ay o1 # {}> have « 4; o1 = {p
by (simp add: o-disjoint-e-def o-simps)
have (?f (O’o, 0'1) = DCLE(E Ag og — E) — (HO’O/ET Ay o a. (P 0'0/ HEH
SKIPS (w Ay 01)))»
by (auto simp add: w-A e-A «w Ay o9 = {}» ¢ A1 o1 = {}> introl:

88

mono-Mprefix-eq,
auto simp add: A-def combinepqir-Sync-defs «w Ay o1 # {}
e Ay o1 = {}> cartprod-rwrt Q-recof o1] introl: mono-GlobalNdet-eq)
also have ... = P o¢ [E] Q o1»
by (unfold P-rec[of oo] Q-rec[of o1])
(auto simp add: SKIPS-def Ndet-and-Sync Mprefiz-Sync-constant (w
Ay oy #{p

AO gg — {})

GlobalNdet-Mprefiz-distr GlobalNdet-sets-commute[of <t Ag - -] w

intro!: mono-Mprefiz-eq mono-GlobalNdet-eq)
finally show <?f (09, 01) = .. .
next
assume w Ag og # {} w A1 o1 £ {p
with p-disjoint-« have ¢ Ay 09 = {}> «¢ A1 01 = {}
by (simp-all add: o-disjoint-e-def o-simps)
from at-most-1-elem-term
show w Ay 09 #{} = w A1 01 # {} = ?f (00, 01) = P oo [E] Q o>
by (auto simp add: «w Ay 09 # {}> «w A1 01 # {} w-A P-rec[of o)
Q-reclof o1]
SKIPS-def Ndet-and-Sync cartprod-rwrt GlobalNdet-sets-commute[of
w Ag -]
g-A e Ag o9 = {}» <€ A1 o1 = {}> elim!: at-most-1-elem-termE)
qed
qed
qed
qed
qed

corollary P-nd-combinep;--Sync :
(P(Ao)na 00 [E] P(A1)na 01 = P{{A0 na®[E]pair A1))na (00, 01)»
proof —
have <P<<A0>>nd go [[E]] P<<A1>>nd g1 =
P5K1p5<<A0qw = \o. {}D>>nd oo [[E]] PSK[p5<<A1(]w =)\o. {}D>>nd o1»
by (simp add: Pgkps-nd-updated-w)
also have «... = PSKIPS<<<<AO(IW =)\O’. {}D nd®[[E]]Pair Al(lw = \o. {}D>>>>nd
(O’Q, 01))
by (rule Pskps-nd-combinepq;--Sync) simp-all
also have <<<A0(]UJ = Ao. {}D nd®[[E]]Pair Alqw = \o. {}D>> = <<AQ nd®[[E]]Pair
A1) (w = Ao. {})
by (simp add: combinepq;.-Sync-defs, intro ext, simp)
also have (Psx1ps((A4o na®@[E]pair A1)(w :=Ao. {}))na = P{{A40 na®[E]pair
A1>>>>nd>
by (simp add: Pskps-nd-updated-w)
finally show ?thesis .
qed

corollary Pgypg-d-combinep,;--Sync:

<§DSKIPS<<AO>>d 00 [E] Psxrps{Ai)a 01 = Pskxrps{(4o a®[E]pair A1))a (00,
o1)

89

if <p-disjoint-c Ag> and <p-disjoint-¢ A1y and <indep-enabl Ag o9 E Ay 01>
proof —
have (Psiips(Ao)d 0o [E] Pskrps{Ai)a 01 = Pskips{(Ao)d—snd)nd 0o
[E] Pskrps{{A1)a—nd)na o1’
by (simp flip: Pskrps-nd-from-det-to-ndet-is-Pskpgs-d)
also from th(lt(], 2) have «... = PSKIPS<<<<<<AO>>d<—>nd nd®[[E]]Pair <<A1>>d‘—>nd>>>>nd
(00, 1)
by (auto intro: Pgkpsg-nd-combinep q;r-Sync)
also have «... = PSK[p5<<<<A0 d®ﬂEHPair A1>>>>d (0’0, 0'1)>
by (simp add: Pgskps-combinepq;-Sync-behaviour-when-indep <indep-enabl
AO g0 E A1 0'1))
finally show ?Zthesis .
qed

corollary P-d-combinep;--Sync:
(P{Ao)a o0 [E] P(A1)q 01 = P{(Ao a®[E]pair A1))a (00, 01)»
if <indep-enabl Ag 09 E A1 o>
proof —
have <P<<A0>>d o) [[E]] P<<A1>>d o1 =
Pskrps{Ao(w := Ao. O))a o0 [E] Pskrps{Ai(w = Aa. O))a o1
by (simp add: Pskps-d-updated-w)
a)lso have ... = Pskrps{{Ao(w := Ao. O)) a®[E]pair A1(w := Aa. O)))a (00,
o1)
by (subst Pgsk1ps-d-combinepq;--Sync, simp-all add: o-simps o-disjoint-c-def)
(rule indep-enabll,
use <indep-enabl Ag o9 E Ay 01| THEN indep-enablD] in <simp add: e-simps»)
also have «(Ag(w = Ao. Q) a®[E]pair A1(w := Ao. O)) = (Ao a®[E]pair
A1) (w := Ao. O)»
by (simp add: combinepqi.-Sync-defs, intro ext, simp)
also have <PSKIPS<<<<AO d®[[E]]Pair A1>>(|w = Ao. <>D>>d = P<<<<A0 d®[[E]]Pair
Ar))ar
by (simp add: Pskps-d-updated-w)
finally show ?thesis .
qed

Pairlist

theorem Pgps-nd-combinepqiriise-Sync :
Pskrps{Ao)nd 0o [E] Psxips{Ai)na 01 = Pskiprs{{Ao na®[E]pairiist
A1) na o0, o1]>
if <o-disjoint-e Ay <p-disjoint-¢ Ay» <at-most-1-elem-term Ag> <at-most-1-elem-term
Al)
proof —
from Pggpg-nd-combinepq;.-Sync that
have (Pskrps(Ao)nd 00 [E] Pskrrs{Ai)nd 01 = Pskips{{A4o na®[E]pair
A1>>>>nd (0‘07 0'1)) .
also have (... = Psgrps((4o na®[E]pairiist A1))na [00, o1]>
by (auto intro!: Pgk1ps-nd-eql-strong[of <\(r, s). [r, s]> - (00, 01)>, simplified]
inj-onl)

90

(auto simp add: combine-Sync-defs split: if-split-asm)
finally show ?thesis .
qed

corollary P-nd-combinepgiriist-Sync :
(P{Ao)na 00 [E] P{A1)na 01 = P({A0 na®[E]pairtist A1))na [00, 01]>
proof —
have <P<<AO>>nd go [[E]] P<<A1>>nd g1 =
Pskrps{Ao(w := Ao. {}))na 00 [E] Psxrps(Ai(w := Ao. {}))na o1
by (simp only: Psk1ps-nd-updated-w)
also have «... = Psgrps{{Ao(w = Ao. {}) na®[E]pairiist A1(w = Ao.
{))na [o0, o]
by (rule Pskps-nd-combinepqiriist-Sync) simp-all
also have <<<A0(|w = M\o. {}D nd®[[E]]Pairlist Al(]w = Ao. {}D>> = <<A0 nd®|[E]]Pairlist
A1) (w = Xo. {})
by (simp add: combinepqiriist-Sync-defs, intro ext, simp)
also have (Psx1ps((A4o na®[E]pairiist A1) (w = Ao. {}))na = P{(Ao na®[E]pairiist
A1>>>>nd>
by (simp only: Psk1ps-nd-updated-w)
finally show ?thesis .
qed

corollary Pgyps-d-combinepqiriist-Sync :
[<PSK]IPS<<AO>>d 00 [E] Pskrps{Ai)a 01 = Psxrps{{Ao a®[E]pairtist A1))a
0o, 01

if <p-disjoint-c Ag> and <p-disjoint-e A1» and <indep-enabl Ag o9 E Ay 01>
proof —

have (Pskrps{Ao)a 00 [E] Pskips{Ai)a 01 = Pskrps{(Ao)d—nd)nd o0
[E] Pskips{{A1)asnd)na o1

by (simp ﬂip: PSKIPS—nd—fmm—det—to—ndet—z’s—PSKIpS—d)
also from that(-lv 2) have ... = PSKIPS<<<<<<AO>>dC—)nd nd®[[E]]Pairlist <<A1>>dt—>nd>>>>nd

[00, 1]
by (auto intro: Pgps-nd-combinepqiriist-Sync)
also have (... = Psgrps((Ao a®[Elpairiist A1))a [00, o1]

by (simp add: Pgk1ps-combinepqiriist-Sync-behaviour-when-indep <indep-enabl
AO s} E A1 01))

finally show ?thesis .
qed

corollary P-d-combinepqriist-Sync :
(P(Ao)a o0 [E] P{A1)a 01 = P{(Ao a®[Elpairiist A1))a [00, o1
if <indep-enabl Ay o9 E A1 01>
proof —
have <P<<A0>>d g0 [[E]] P<<A1>>d g1 =
Pskrps{Ao(w := Xo. O))a 00 [E] Pskiprs{Ai(w := Ao. O))a 01>
by (simp only: Pskps-d-updated-w)
also have (... = Psgrps{{4o(w := Ao. Q) a®[E]pairiist A1(w := Aa. O)))a
[c0, o1
by (subst Psxr1ps-d-combinepgiriist-Sync, simp-all)

91

(rule indep-enabll,
use <indep-enabl Ay 09 E Ay o [THEN indep-enablD] in simp)
also have «(Ag(w := Ao. O)) a®[E] pairtist A1(w = Ao. Q) = (Ao a®[E] pairiist
A1) (w = Ao. O
by (simp add: combinepq;riist-Sync-defs, intro ext, simp)
also have (Psxrps((Ao a®[E]pairiist A1)(w = Xo. Q))a = P((Ao a®[E]pairiist
A1>>>>d>
by (simp only: Pskps-d-updated-w)
finally show “thesis .
qed

6.2.2 Rlist

theorem Pgps-nd-combinery;s¢-Sync :

(Pskr1ps{Ao)na oo [E] Pskrps{Ai)na 01 = Pskrps{{Ao na®[E]Rriist A1))nd
(o0 # o1)

if (p-disjoint-¢ Ay <p-disjoint-€¢ Ay> <at-most-1-elem-term Agy> <at-most-1-elem-term
A1>
proof —

from Pggpg-nd-combinepq;.-Sync that

have (Psk1ps(Ao)nd 00 [E] Pskrps{Ai)nd 01 = Pskrps{{A4o na®[E]pair
A1>>>>nd (O’O7 Cfl)) .

also have ¢... = PSK[p5<<<<A0 nd®|IE]]Rlist A1>>>>nd (0’0 # 01))
by (auto introl: Pg g 1ps-nd-eql-strong[of <\(r, s). r # s - (00, 01)», simplified]
ing-onl)

(auto simp add: combine-Sync-defs split: if-split-asm)
finally show ¢thesis .
qed

corollary P-nd-combineg;s¢-Sync :
(P{Ao)nda 00 [E] P{A1)na 01 = P({Ao na®[E]Rriist A1))na (00 # o1)>
proof —
have <P<<A0>>nd (s} HE]] P<<A1>>nd o1 =
PSK[p5<<A0(|w = A\o. {}D>>nd g0 [[E]] PSKIPS<<A1(IW = Ao. {}D>>nd o1?
by (simp only: Pskrps-nd-updated-w)
also have <... = PSK]p5<<<<AquJ = \o. {}D nd®[[E]]Rlist Al(]w = \o. {}D>>>>nd
(UO # 0’1)>
by (rule Pskps-nd-combiner;si-Sync) simp-all
also have ((Ayg(w := Ao. {}) na®[E]riist A1(w = Xo. {})) = (4o na®[E]Rrisst
A1) (w = Ao. {3
by (simp add: combineg;st-Sync-defs, intro ext, simp)
also have (Psi1ps{{A4o na®[E]riist A1) (w :=Ao. {}))na = P{{A0 na®[E] riist
A1>>>>nd>
by (simp only: Pskips-nd-updated-w)
finally show #“thesis .
qed

corollary Pgsgpg-d-combinery;st-Sync :
(Pski1ps{Ao)d oo [E] Pskrrs{Ai)a 01 = Pskrprs{{Ao a®[E]riist A1))a (o0

92

01)>
if «o-disjoint-e Ay> and <g-disjoint-e Ay and <indep-enabl Ay o9 E Ay 01>
proof —
have (Psxrps{Ao)a oo [E] Psxrps{Ai)a 01 = Pskrps{{Ao)a—nda)nd oo
[E] Pskrps{{A1)a—snd)na o1
by (simp flip: Pskps-nd-from-det-to-ndet-is-Ps k1 pg-d)
also from that(1, 2) have «... = Psxrps{{(A0)da—nd na®[E]riist (A1)dsnda))nd

(o0 # o1)
by (auto intro: Pgpg-nd-combinery;si-Sync)
also have ¢... = PSKIPS<<<<A(] d®[[E]]Rlist A1>>>>d (00 # 01)>

by (simp add: Pskps-combineryist-Sync-behaviour-when-indep <indep-enabl
A() ago E A1 0'1))
finally show ?thesis .
qed

corollary P-d-combinery;st-Sync :
(P{Ao)a 00 [E] P(A1)a 01 = P{{(Ao a®[E]riist A1))a (00 # o1)
if <indep-enabl Ag 09 E A1 01>
proof —
have <P<<A0>>d g0 [[E]] P<<A1>>d g1 —
PSK[p5<<A0(]w = Mo. <>D>>d o1 [[E]] PSKIPS<<Aqu = \o. <>D>>d g1»
by (simp only: Pskrps-d-updated-w)
also have «... = Psirps{{Ao(w := Mo. Q) a®[E]riist A1(w := Aa. O)))a (o0
01)>
by (subst Pgsk1ps-d-combinery;st-Sync, simp-all)
(rule indep-enabll,
use <indep-enabl Ay 09 E Ay o)[THEN indep-enablD] in simp)
also have <<<A0(]w = \o. <>D d®[[E]]Rlist A1Qw = M\o. <>D>> = <<A0 d®[[E]]Rlist
A1) (w == Ao. O
by (simp add: combinegy;si-Sync-defs, intro ext, simp)
also have (Pskrps((Ao a®[E]riist A1)(w == Ao. O))a = P((Ao a®@[E]riist
A1>>>>d)
by (simp only: Psk1ps-d-updated-w)
finally show ?thesis .
qed

6.2.3 ListslenL

theorem Pgps-nd-combiner;sisiens-Sync :
assumes same-length-reach0 : <N\oo’. 0o’ € Rypa Ao 00 = length oo’ = leng»
and p-disjoint-¢ : <o-disjoint-c Ag> <o-disjoint-€ A1» <at-most-1-elem-term Ag>
<at-most-1-elem-term Ajp»
shows (Psxrps(Ao)na 00 [E] Psxips{Ai)na 01 = Pskrprs{(Ao na®[leno,
E]]ListslenL A1>>>>nd (UO @ 01)>
proof —
from set-mp[OF R, q-combine,qpqir-Sync-subset]
have * : <0/ € R4 <<A0 nd®[[EﬂPair A1>> (0’0, 0'1) —
doo’ 01" 0" = (00’, 01") N oo’ € Rpa Ao 00 N 01’ € Rpa A1 o1 for o’
by fast

93

from Pgips-nd-combinepq;r-Sync assms(2—15)
have (Psk1ps{Ao)nd 00 [E] Pskrps{Ai)nd 01 = Pskrps{{Ao na®[E]pair
A1>>>>nd ((707 0’1)) .
also have (... = Psgrps((4o na®[leno, Elristsient. A1))na (00 @ 1)
by (auto intro!: Pskps-nd-eql-stronglof <\(r, s). r Q) - (o, 01)>, simpli-
fied] inj-onl
dest!: x same-length-reach0 simp add: same-length-reach0 image-iff)
(auto simp add: combine-Sync-defs e-simps split: if-split-asm,
(metis Sigmal UnCI case-prod-conv insertI1)+)
finally show #“thesis .
qed

corollary P-nd-combiner;stsienr-Sync :
<P<<AO>>nd g0 [[E]] P<<A1>>nd g1 = P<<<<AO nd®[[len07 E]]ListslenL Al>>>>nd (UO Q@
01)>
if </\O’0/. O’O/ € Rpag Ag 00 — length 0'0’ = leng»
proof —
have <P<<A0>>nd ago [[E]] P<<A1>>nd g1 =
Pskrps{Ao(w := Ao. {}))na 00 [E] Psxrps{Ailw := Ao. {}))na o1
by (simp only: Pskips-nd-updated-w)
also have (... = P5K1p5(<<<Aon = Mo. {}D nd@[leno, E]]ListslenL Al(]w =
Ao {})))nd (o0 @ o1)
by (rule Pskps-nd-combiner;stsienr-Sync) (simp-all add: that)
also have «(Ao(w := Ao. {}) na®[leno, E]ristsienr A1(w = Ao. {})) = (4o
nd®ﬂlen03 E]]ListslenL A1>>Qw = Ao. {}D>
by (simp add: combiner;sisienr-Sync-defs, intro ext, simp)
also have <PSKIPS<<<<A0 nd®[[len0, EﬂListslenL A1>>qw = M\o. {}D>>nd = P<<<<A0
nd®[[len0a E]]ListslenL A1>>>>nd>
by (simp only: Psk1ps-nd-updated-w)
finally show %thesis .
qed

corollary Pgyps-d-combineristsienr,-Sync :
(Pskrps{Ao)a oo [E] Psxrps{Ai1)a 01 = Pskips{{A4o a®[leno, E]ristsient
A1>>>>d (O’O @ 0'1))
if (/\0’0’. 0'0/ € Ry Ay 09 = length 0_0/ = leng»
<o-disjoint-e Ag> <o-disjoint-¢ A1» <indep-enabl Ay o9 E A1 01>
proof —
have «Pskrps{Ao)a 00 [E] Psxips{Ai1)a 01 = Pskiprs{{Ao)d—nd)nd 00
[E] Psxips{{A1)a—snd)na o1
by (simp flip: Psk1ps-nd-from-det-to-ndet-is-Pspg-d)
also from that(1—3) have ... = Psgrps{{{40)asnd na®[leno, ElristsienL
(A1) dsnd))na (00 @ o)

by (auto simp add: R,q4-from-det-to-ndet introl: Psx1pg-nd-combiner;stsienr-Sync)

also have «... = Psxrps((Ao a®[leno, E]ristsient A1))a (00 @ o1)
by (simp add: Pgskps-combinerstsienr,-Sync-behaviour-when-indep that(1,

4))

finally show #“thesis .
qed

94

corollary P-d-combiner;stsienr-Sync :
(P{Ao)a 00 [E] P(A1)a 01 = P{(Ao a®[leno, E]ristsienr A1))a (00 Q@ o1)
if <\oo’. 00’ € Rq Ag 0o = length oo’ = leny> <indep-enabl Ay o9 E Ay o>
proof —
have (P{Ao)q oo [E] P(A1)q 01 =
Pskrps{Ao(w := Ao. O))a 0o [E] Psxrps{Ai(w := Xo. O))a o1
by (simp only: Pskps-d-updated-w)
also have «... = Psgrps{{Ao(w := Ao. Q) a®[leno, E]ristsienr A1(w := Ao.
<>D>>>>d (00 @ 01)>
by (subst Psx1pg-d-combiner;stsienr-Sync) (simp-all add: that)
also have ((Ap(w = Ao. Q) a®[leno, Elristsienr A1(w := Ao. O)) = (4o
d®[[lenOa E]]ListslenL A1>>(|W = Ao. <>|)>
by (simp add: combiner;stsienr-Sync-defs, intro ext, simp)
also have <Psirps{{4o a®[leno, Elristsienr. A1)(w := Ao. O)Ya = P{{Ao
a®[leng, Elristsient. A1))a>
by (simp only: Psk1ps-d-updated-w)
finally show ?thesis .
qed

6.2.4 Multiple

theorem Pgpgs-nd-compactification-Sync:
([length os = length As; NA. A € set As = p-disjoint-¢ A;
NA. A € set As = at-most-1-elem-term A]
- [[E]] (O’7 A) E# mset (Zip g8 AS) PSKIPS<<A>>nd o = PSKIPS<<<<nd® [[E]]
AsY)na o
proof (induct os As rule: induct-2-lists012)
case Nil show ?case by (simp, subst Pgkps-nd-rec, simp)
next
case (single o9 Ag) show Zcase
by (auto simp add: o-0s-conv-defs introl: inj-onl Pgkps-nd-eql-strong)
next
case (Cons og o1 s Ag A1 As)

have ([E] (o, A) €# mset (zip (00 # 01 # 05) (Ao # A1 # As)). Psxrps{A)na

Pskrps{Ao)na oo [E] [E] (o, A) €# mset (zip (01 # os) (A1 # As)).
Pskrps{A)na o> by simp
also have ([E] (o, A) €# mset (zip (o1 # 05) (A1 # As)). Psxrps{A)na 0 =
Pskrps{(nd@[E] A1 # As))na (01 # os)
by (rule Cons.hyps(3)) (simp-all add: Cons.prems)
also have (Pskrps{Ao)nd 00 [E] Pskips({nd@ [E] A1 # As))na (01 # 035)

Pskrps{(Ao na®[Elriist (nd@[E] A1 # As)))na (00 # o1 # os)>
by (rule Pskps-nd-combinery;si-Sync
[OF - o-disjoint-e-transmission-to-iterated-combine, q-Sync
- at-most-1-elem-term-transmission-to-iterated-combine, 4-Sync])
(simp-all add: Cons.prems)

also have (Ay ni®[E]riist (na@ [E] A1 # As)) = (na@ [E] Ao # A1 #

95

As)» by simp
finally show ?case .
qed

lemma P-nd-compactification-Sync:
<length os = length As =
LE] (o, A) €# mset (zip os As). P{(AYna 0 = P{{(naQ [E] As))na o9
proof (induct os As rule: induct-2-lists012)
case Nil show ?case by (simp, subst P-nd-rec, simp)
next
case (single o¢ Ap) show ?case
by (simp add: P-nd-from-o-to-os-is-P-nd)
next
case (Cons oy 01 0s Ag A1 As) thus ?Zcase
by (simp add: P-nd-combinepr;;si-Sync)
qed

lemma Pg g pg-d-compactification-Sync:
([length os = length As; NA. A € set As = p-disjoint-¢ A;
Nij. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os!)] =
[E] (o, A) €# mset (zip os As). Pskrps{A)a 0 = Psxrps{{aQ[E] As))a
o$)
proof (induct os As rule: induct-2-lists012)
case Nil show ?case by (simp, subst Pgs1pg-d-rec, simp)
next
case (single o¢ Ap) show ?case
by (auto simp add: RenamingTick-Pskps-d o-0s-conv-defs
intro!: inj-onl Pg k1 ps-d-eql-strong split: option.split)
next
case (Cons oo o1 0s Ag A1 As)
have o-disjoint-c : <A € set (A1 # As) = p-disjoint-e A> for A
by (simp add: Cons.prems(1))
have indep-enabl :
i < length (A1 # As); j < length (A1 # As); i # j] =
indep-enabl (A1 # As) Vi) (o1 # 0s) 1 i) E ((A1 # As) 1 j) ((o1 # 0s) 1 j)»
for i j
by (metis Cons.prems(2) Suc-less-eq length-Cons nat.inject nth-Cons-Suc)
have «p-disjoint-e Ay> by (simp add: Cons.prems(1))
moreover have (p-disjoint-c (4@ [E] A1 # As)
by (meson o-disjoint- o-disjoint-e-transmission-to-iterated-combineq-Sync)
moreover have «indep-enabl Ay oo E (4@ [E] A1 # As) (o1 # os)
by (metis Cons.hyps(1) Cons.prems(2) length-Cons less-Suc-eq-le
same-length-indep-transmission-to-iterated-combiney-Sync)
ultimately show Zcase
by (simp add: Pgkps-d-combiner;si-Sync
Cons.hyps(3)[OF p-disjoint-c indep-enabl, simplified])
qed

96

lemma P-d-compactification-Sync:
([length os = length As;
Nij. [i < length As; j < length As; i # j] =
indep-enabl (As! i) (os! i) E (4s!j) (os!j)] =
[E] (o, A) €# mset (zip os As). P{(A)q 0 = P{{a@ [E] As))a o
proof (induct os As rule: induct-2-lists012)
case Nil show ?case by (simp, subst P-d-rec, simp)
next
case (single g Ap) show Zcase
by (simp, subst (1 2) Pskps-d-updated-w)
(auto simp add: RenamingTick-Psk1ps-d o-0s-conv-defs
intro!: inj-onl Pg 1 ps-d-eql-strong split: option.split)
next
case (Cons og 01 s Ag A1 As)
have indep-enabl :
(i < length (A1 # As); j < length (A1 # As); i # j] =
indep-enabl ((Ay # As) Vi) ((o1 # 0s) i) E ((A1 # As) ' j) (o1 # 08) 1 i)
for 7 j
by (metis Cons.prems Suc-less-eq length-Cons nat.inject nth-Cons-Suc)
have (indep-enabl Ay oo E (4@ [E] A1 # As) (o1 # os)
by (metis Cons.hyps(1) Cons.prems length-Cons less-Suc-eg-le
same-length-indep-transmission-to-iterated-combineq-Sync)
thus ?case
by (simp add: P-d-combinery;si-Sync
Cons.hyps(3)[OF indep-enabl, simplified])
qed

corollary Pg k1 pg-nd-compactification-Sync-order-is-arbitrary:
(Psk1ps{(nd@[E] As))na 05 = Psxrps{{(nd@ [E] As"))na os"
if (length os = length As) <length os’ = length As’s
«mset (zip os As) = mset (zip os’ As')
(NA. A € set As = p-disjoint-¢ A>
(NA. A € set As = at-most-1-elem-term A»
proof —
have (Psk1ps{{ndQ [E] As))na os = [E] (o, A)e#mset (zip o8 As). Pskrps{A)nd
o)
by (rule Pskps-nd-compactification-Sync[OF that(1, 4, 5), symmetric])

also have «... = [E] (0, A)e#mset (zip 08’ As"). Psxrps{A)na o
by (simp only: that(3))
also have (... = Psirps{{nd® [E] As))na os"

proof (rule Pgkps-nd-compactification-Sync| OF that(2)])
show <A € set As' = p-disjoint-e As for A
by (metis in-set-impl-in-set-zip2 set-mset-mset set-zip-rightD that(2—4))
next
show <A € set As’ = at-most-1-elem-term A) for A
by (metis in-set-impl-in-set-zip2 set-mset-mset set-zip-rightD that(2, 3, 5))

97

qed
finally show ?thesis .
qed

corollary P-nd-compactification-Sync-order-is-arbitrary:
PUni@ [E] AVt 75 = PUUnd® [F] A5Yna 05"
if «length os = length As) <length os’ = length As’s
«mset (zip os As) = mset (zip os’ As'))
proof —
have <P{{(na@ [E] As))na os = [E] (o, A)e#mset (zip os As). P{A)na o>
by (fact P-nd-compactification-Sync|[OF that(1), symmetric])
also have «... = [E] (o, A)e#mset (zip 08’ As’). P(A)na o>
by (simp only: that(3))
also have «... = P{{naQ [E] As))na 08"
by (fact P-nd-compactification-Sync[OF that(2)])
finally show #“thesis .
ged

corollary Pggps-d-compactification-Sync-order-is-arbitrary:
Pskrps{(a®[E] As))a 0s = Pskrps{(a® [E] As'))a os"
if (length os = length As) <length os’ = length As’s
«mset (zip os As) = mset (zip os’ As’)»
(NA. A € set As = p-disjoint-e A
Nij. [i < length As; j < length As; i # j] =
indep-enabl (As! i) (os! i) E (As!j) (os!j)
proof —
have (Pskrps{{a@ [E] As))a os = [E] (o, A)e#mset (zip os As). Pskrps{A)a
o)
by (rule Pskps-d-compactification-Sync|OF that(1, 4, 5), symmetric])
also have «... = [E] (o, A)e#mset (zip 05’ As'). Psxips{A)a o
by (simp only: that(3))
also have (... = Psgrps{{aQ [E] As))a s’
proof (rule Pgps-d-compactification-Sync[OF that(2)])
show <A € set As’ = p-disjoint-¢ A» for A
by (metis in-set-impl-in-set-zip2 set-mset-mset set-zip-rightD that(2—4))
next
from <length os = length As) length os’ = length As"» «mset (zip os As) =
mset (zip s’ As’)
obtain n where x : <length os = n» <length os’ = ny «length As = ny <length
As’ = n»
by (metis length-zip min-less-iff-conj nat-neq-iff size-mset)
from that(3)[symmetric, THEN permutation-Ez-bij| obtain f
where s : <bij-betw f {..<n} {..<n}
G < m=> zipos As' | i = zip os As! f i for i by (auto simp add: *)
{ fix i assume i < n
hence (f i < n» using *x(1) bij-betwE by blast
from (i < n) have <zip os’ As’ i = (os’! i, As’! i)» by (simp add: x(2, 4))
moreover from <fi < n> have «zip 0s As ! fi = (os ! fi, As ! fi)
by (simp add: x(1, 3))

98

ultimately have <os’'! i =o0s ! fiy «(As' ! i = As | fi»
using *x(2)[OF <i < m] by simp-all
} note xxx = this
fix i j assume (i < length As"» <j < length As"» i #
hence i < ny <j < w» by (simp-all add: (2, 4))
with bij-betw-imp-surj-on[OF xx(1)] bij-betw-imp-inj-on[OF xx(1)] <i #
have «f i < length Asy <f j < length Asy <fi % f
by (auto simp add: x dest: inj-onD)
from that(5)[OF this)
show «indep-enabl (As'! i) (os’ 1 i) E (As'!j) (os’! i)
by (simp add: xxx(1, 2) <i < ny j < n)
qed
finally show ?thesis .
qed

corollary P-d-compactification-Sync-order-is-arbitrary:
PUR [E] As))a 75 = PR [E] A} 05"
if (length os = length As) <length os’ = length As’s
«mset (zip os As) = mset (zip os’ As')
<N\ij. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os ! j)
proof —
have (P{{(4Q [E] As))a os = [E] (o, A)eH#mset (zip os As). P(A)q o>
by (rule P-d-compactification-Sync[OF that(1, 4), symmetric])
also have «... = [E] (0, A)e#mset (zip os" As'). P(A)q o>
by (simp only: that(3))
also have «... = P{{aQ [E] As"))aq os"
proof (rule P-d-compactification-Sync[OF that(2)])
from <length os = length As) length os’ = length As’s <mset (zip os As) =
mset (zip os’ As’)
obtain n where * : <length os = n> <length os’ = ny (length As = ny «length
As'=m
by (metis length-zip min-less-iff-conj nat-neq-iff size-mset)
from that(3)[symmetric, THEN permutation-Ez-bij] obtain f
where sx : <bij-betw f {.<n} {.<n}
(i < n=> zip os’ As’ | i = zip os As ! fi> for i by (auto simp add: x)
{ fix i assume i < n»
hence «f i < n» using *x(1) bij-betwE by blast
from ¢i < n» have <zip o8’ As’1 i = (o’ i, As’ ! i)y by (simp add: x(2, 4))
moreover from <fi < n) have «zip 0s As! fi = (os ! fi, As! fi)
by (simp add: x(1, 3))
ultimately have <os’'! i = os ! fiy «As'! i = As ! fi»
using *x(2)[OF «i < m] by simp-all
} note xxx = this
fix i j assume (i < length As’y j < length As"y <i # >
hence i < n» j < m» by (simp-all add: %(2, 4))
with bij-betw-imp-surj-on[OF xx(1)] bij-betw-imp-inj-on|OF *x(1)] <i # j»
have <f i < length Asy <f j < length Asy <fi # [
by (auto simp add: % dest: inj-onD)

99

from that(4)[OF this]
show <indep-enabl (As'! i) (os’ i) E (As’ ! j) (o8’ ! j)
by (simp add: *xx(1, 2) <i < n)> G < n)
qed
finally show #“thesis .
qed

6.3 Derived Versions

lemma Pg g ps-nd-compactification-Sync-upt-version:
E] P €# mset (map Q [0..<n]). P = Psgips{{na@ [E] map A [0..<n]))nd
(replicate n 0)»
if «(A\i. i < n = p-disjoint-e (A i)
(\i. ¢ < n => at-most-1-elem-term (A i)
</\i. 1< n—= PSK]p5'<<A 7'.>>nd 0=Qn
proof —
have ([E] P €# mset (map Q [0..<n]). P = [E] i €# (mset-set {0..<n}). Q
i)
by (auto intro: mono-MultiSync-eq2)

also have «... = [E] ¢ €# (mset-set {0..<n}). Pskxips{A i)na 0>
by (auto simp add: that(3) intro: mono-MultiSync-eq)
also have ¢... = [E] (o, A)e#mset (zip (replicate n 0) (map A [0..<n])).

Pskips{A)na o>
proof (induct n rule: nat-induct-012)
case (Suc k)
have ([E] ic#mset-set {0..<Suc k}. Psxrps{A i)na 0 =
PSKIPS<<A k>>nd 0 [[E]] IIE]] 1€#mset-set {0<k} PSK[p5<<A Z.>>nd 0>
by (subst atLeastLessThanSuc, simp, rule MultiSync-add)
(metis Suc.hyps(1) atLeastLessThan-empty-iff2 finite-lessThan
gr0-conv-Suc lessThan-atLeast) mset-set-empty-iff order-less-le-trans)
also have «... = Pgsgrps{A k)na 0 [E]
[E] (o, A)e#mset (zip (replicate k 0) (map A [0..<Kk])).
Pskips{A)na o>
by (simp only: Suc.hyps(2))
also have «... = [E] (o, A)e#mset (zip (replicate (Suc k) 0) (map A [0..<Suc
K])). Psxrps{A)na o
by (simp flip: replicate-append-same, subst MultiSync-add)
(use Suc.hyps(1) in auto)
finally show ?case .
qed (simp-all add: atLeastLessThanSuc Sync-commute)
also have (... = Psgrps{{na@ [E] map A [0..<n]))na (replicate n 0)
by (rule Pgsk 1 ps-nd-compactification-Sync)
(auto simp add: that(1, 2))
finally show “thesis .
qed

lemma P-nd-compactification-Sync-upt-version:
E] P €4 mset (map Q [0..<n]). P = P{{nd@Q [E] map A [0..<n]))na (replicate
n 0)

100

if (Ni. i< n= P(Ai)pa 0=Q
proof —
have «([E] P €# mset (map Q [0..<n]). P = [E] i €# (mset-set {0..<n}). Q
1)
by (auto intro: mono-MultiSync-eq2)

also have «... = [E] i €# (mset-set {0..<n}). P(A i)nq 0>
by (auto simp add: that(1) intro: mono-MultiSync-eq)
also have «... = [E] (o, A)e#mset (zip (replicate n 0) (map A [0..<n])).

P<<A>>nd (o
proof (induct n rule: nat-induct-012)
case (Suc k)
have «([E] i€#mset-set {0..<Suc k}. P{A i)pa 0 =
P({A k)na O [E] [E] ic#mset-set {0..<k}. P(A i)nq O>
by (subst atLeastLessThanSuc, simp, rule MultiSync-add)
(metis Suc.hyps(1) atLeastLessThan-empty-iff2 finite-lessThan
gr0-conv-Suc less Than-atLeast() mset-set-empty-iff order-less-le-trans)
also have «... = P(A k)nq 0 [E] [E] (o, A)e#mset (zip (replicate k 0) (map
A [0..<k))). P{A)pna o>
by (simp only: Suc.hyps(2))
also have «... = [E] (o, A)e#mset (zip (replicate (Suc k) 0) (map A [0..<Suc
k])). P{A)na o>
by (simp flip: replicate-append-same, subst MultiSync-add)
(use Suc.hyps(1) in auto)
finally show ?case .
qged (simp-all add: atLeastLessThanSuc Sync-commute)
also have (... = P{{»aQ [E] map A [0..<n]))na (replicate n 0)>
by (auto intro: P-nd-compactification-Sync)
finally show ?thesis .
qed

lemma Pgpgs-d-compactification-Sync-upt-version:
([E] P €# mset (map Q [0..<n]). P = Pskips{{aQ [E] map A [0..<n]))q
(replicate n 0)»
if <A\i. i < n = p-disjoint-c (A i)
Nij.i<n=j<n=1i%#j= indep-enabl (A7) 0 E (Aj) O»
</\Z'. < n = PSK[p5<<A i>>d 0= Q)
proof —
have «[E] P €# mset (map Q [0..<n]). P = [E] ¢ €# (mset-set {0..<n}). Q
i
by (auto intro: mono-MultiSync-eq2)

also have «... = [E] i €# (mset-set {0..<n}). Psxrps{A i)a O
by (auto simp add: that(3) intro: mono-MultiSync-eq)
also have ¢... = [E] (o, A)e#mset (zip (replicate n 0) (map A [0..<n])).

Pskrps{A)a o
proof (induct n rule: nat-induct-012)
case (Suc k)
have ([E] i€#mset-set {0..<Suc k}. Psixrps{A i)q 0 =

PSKIPS<<A k>>d 0 [[E]] [[E]] 1€E#mset-set {0..<k}. PSK1p5'<<A i>>d 0>
by (subst atLeastLessThanSuc, simp, rule MultiSync-add)

101

(metis Suc.hyps(1) atLeastLessThan-empty-iff2 finite-lessThan
gr0-conv-Suc less Than-atLeast0 mset-set-empty-iff order-less-le-trans)
also have «... = PSKIPS<<A k‘>>d 0 [[E]]
[E] (o, A)e#mset (zip (replicate k 0) (map A [0..<k])). Psxrps{A)a
o>
by (simp only: Suc.hyps(2))
also have «... = [E] (o, A)e#mset (zip (replicate (Suc k) 0) (map A [0..<Suc
k). Pskrps{A)a o
by (simp flip: replicate-append-same, subst MultiSync-add)
(use Suc.hyps(1) in auto)
finally show ?case .
qged (simp-all add: atLeastLessThanSuc Sync-commute)
also have (... = Psgrps{{a® [E] map A [0..<n]))q (replicate n 0))
by (rule Pgs 1 ps-d-compactification-Sync)
(auto simp add: that(1, 2))
finally show #“thesis .
ged

lemma P-d-compactification-Sync-upt-version:
E] P €# mset (map Q [0..<n]). P = P{{aQ [E] map A [0..<n]))a (replicate
n 0)
if Ni.i<n= P(Ai)g 0=Q
Nij i<n=j<n=1i#j—= indep-enabl (A i) 0 E (Aj) O»
proof —
have ([E] P €# mset (map Q [0..<n]). P = [E] i €# (mset-set {0..<n}). Q
1)
by (auto intro: mono-MultiSync-eq2)

also have «... = [E] ¢ €# (mset-set {0..<n}). P{(A i)q O»
by (auto simp add: that(1) intro: mono-MultiSync-eq)
also have «... = [E] (o, A)e#mset (zip (replicate n 0) (map A [0..<n])). P{A)q
o)

proof (induct n rule: nat-induct-012)
case (Suc k)
have ([E] ic#mset-set {0..<Suc k}. P{A i)q 0 =
P(A k)q 0 [E] [E] ic#mset-set {0..<k}. P{A i)q 0>
by (subst atLeastLessThanSuc, simp, rule MultiSync-add)
(metis Suc.hyps(1) atLeastLessThan-empty-iff2 finite-lessThan
gr0-conv-Suc less Than-atLeast0 mset-set-empty-iff order-less-le-trans)
also have «... = P{A k)4 0 [E] [E] (o, A)e#mset (zip (replicate k 0) (map
A [0..<k))). P(A)q o>
by (simp only: Suc.hyps(2))
also have «... = [E] (o, A)e#mset (zip (replicate (Suc k) 0) (map A [0..<Suc
k])). P(A)q o>
by (simp flip: replicate-append-same, subst MultiSync-add)
(use Suc.hyps(1) in auto)
finally show ?case .
qed (simp-all add: atLeastLessThanSuc Sync-commute)
also have (... = P{{a@ [E] map A [0..<n]))aq (replicate n 0)>
by (rule P-d-compactification-Sync) (simp-all add: that(2))

102

finally show ?thesis .
qed

6.4 More on Iterated Combine

lemma e-iterated-combine, 4-Sync-general-form:
dength os = length As = € {(na@ [E] As) os =
(if As =[] then {}
else (Ui < length As. e (As! i) (os! i) — E U ()i < length As. € (As !)
(os 1))
for As :: «('o, e, 'r) Apq listy
proof (subst e-iterated-combine, 4-Sync, assumption, induct os As rule: induct-2-lists012)
case Nil show ?case by simp
next
case (single o9 Ag) show ?case by auto
next
case (Cons oo o1 s Ag A1 As)
define U and [
where U-def : «U As o0s = |J i<length As. ¢ (As ! i) (os ! i)
and I-def : <I As os = (i<length As. e (As! 1) (os! i)
for As :: «('o, 'e, 'r) Apq list) and os
have x : <U (Ao # A1 # As) (o9 # 01 # 0s) =€ Ag o9 U U (A1 # As) (o1 #
os)
by (auto simp add: U-def nth-Cons split: nat.split-asm)
have xx : <I (Ag # A1 # As) (oo # 01 # 0s) =¢ Ag oo NI (A1 # As) (o1 #
as)
by (auto simp add: I-def nth-Cons split: nat.splits)
have <iterated-combine, q-Sync-e (Ao # A1 # As) E (0o # 01 # 05) =
combine-sets-Sync (€ Ag 0o) E (U (A1 # As) (01 # 0s) — EU (I (41 #
As) (o1 # 09))
by (simp add: U-def I-def Cons.hyps(3))
also have «... = U (Ao # A1 # As) (o9 # 01 # 0s) — EU T (Ag # A1 # As)
(00 # 01 # os)
unfolding * xx by (auto simp add: U-def I-def)
finally show ?case by (simp add: U-def I-def)
qed

lemma e-iterated-combineg-Sync-general-form:
ength os = length As = € (4Q [E] As) os =
(if As =[] then {}
else (Ui < length As. e (As! i) (os! i) — E U ()i < length As. € (As !)
(os!9))
for As :: «('o, 'e, 'r) Ay list
proof (subst e-iterated-combiney-Sync, assumption, induct os As rule: induct-2-lists012)
case Nil show ?case by simp
next
case (single o9 Ag) show ?case by auto
next
case (Cons og 01 s Ag A1 As)

103

define U and [
where U-def : <U As os = |Ji<length As. € (4s! i) (os ! i)
and I-def : <I As os = (i<length As. € (As! %) (os ! i)
for As :: «('o, ‘e, 'r) Ag listy and os
have x : <U (Ao # A1 # As) (0o # 01 # 0s) = ¢ Ag oo U U (A1 # As) (o1 #
a8)
by (auto simp add: U-def nth-Cons split: nat.split-asm,)
have xx : I (Ao # A1 # As) (oo # 01 # 05) =€ Ag oo N I (A1 # As) (o1 #
os)
by (auto simp add: I-def nth-Cons split: nat.splits)
have <iterated-combiney-Sync-e (Ao # A1 # As) E (oo # 01 # 08) =
combine-sets-Sync (¢ Ag 09) E (U (A1 # As) (o1 #0s) — EU (I (A1 #
As) (o1 # 05)))
by (simp add: U-def I-def Cons.hyps(3))
also have «... = U (Ao # A1 # As) (oo # 01 # 0s) — EU I (Ao # A1 # As)
(oo # o1 # os)
unfolding * xx by (auto simp add: U-def I-def)
finally show ?case by (simp add: U-def I-def)
qed

lemma T7-iterated-combine, q-Sync-general-form:
length os = length As; 08’ € T {naQ [E] As) os a; i < length As] =
s’ i € insert (os!4) (1 (As ! 4) (os! Q) a)
proof (induct os As arbitrary: os’ i rule: induct-2-lists012)
case Nil thus ?case by simp
next
case (single o¢ Ap)
from single.prems show ?case by (auto simp add: behaviour-o-os-conv)
next
case (Cons oo o1 0s Ag A1 As)
from <length os = length As> have <length (o9 # o1 # os) = length (Ao # A1
As)» by simp
from same-length-R,,q-iterated-combine, 4-Sync-description| OF this]
have <length os’ = length (Ag # A1 # As)
by (metis Cons.prems(1) Rpq.init Rpq.step)
then obtain 0y’ 01’ 0s” where «os’ = oo’ # 01’ # o5’ by (metis length-Suc-conv)
with Cons.prems Cons.hyps(3)[of «o1’ # o5’y <nat.pred i) show ?case
by (auto simp add: combine-Sync-defs nth-Cons split: if-split-asm nat.splits)
qed

lemma T7-iterated-combiney-Sync-general-form:
<length os = length As =
T (4@ [E] As) o0sa =
(if As =[] then O else
ifa € (Ui < length As. € (As! i) (os! %) — EU (i < length As. € (As ! %)
(os 1))
then [map2 (Ao A. ifa € ¢ A o then [T A o a] else o) os As| else Q)

104

for As :: «('o, e, ') Ay list>
proof (induct os As rule: induct-2-lists012)
case Nil show ?case by simp
next
case (single o9 Ag) show ?case by (auto simp add: behaviour-o-os-conv e-simps)
next
case (Cons g 01 0s Ag A1 As)
let 2U = «A\As os. |Ji<length As. ¢ (As ! i) (os! i)
let 21 = <\As os. [i<length As. € (As! i) (os! i)
show ?case
proof (split if-split, split if-split, intro conjl impl)
show (Ag # A1 # As =[] = 7 (uaQ [E] Ao # A1 # As) (00 # 01 # 05) a
= O
and Ao # A1 # As = [| = 7 («Q [E] Ao # A1 # As) (00 # 01 # 05) a
= O» by simp-all
next
assume <a ¢ ?U (Ao # A1 # As) (o9 # 01 # 0s) — EU 21 (Ag # Ay # As)
(00 # o1 # os)
hence (a ¢ ¢ (4Q [E] Ao # A1 # As) (oo # o1 # os)
by (subst e-iterated-combiney-Sync-general-form,)
(simp-all add: Cons.hyps(1))
thus 7 (4@ [E] Ao # A1 # As) (00 # o1 # 05) a = O
by (simp add: e-simps)
next
assume x : <a € U (Ao # A1 # As) (oo # 01 # 0s) — EU 21 (Ag # A1 #
AS) (0() # 01 # O'S))
have sx : <2U (Ag # A1 # As) (0o # 01 # 0s) =€ Ag o9 U ?2U (A1 # As)
(o1 # os)
by (auto simp add: nth-Cons split: nat.split-asm,)
have sxx : <?I (Ao # A1 # As) (0o # 01 # 0s) =€ Ag o9 N 21 (A1 # As)
(o1 # os)
by (auto simp add: nth-Cons split: nat.splits)
have sxxx 0 «2U (Ag # A1 # As) (o9 # o1 # 0s) — E U 21 (Ag # A1 # As)
(o0 # o1 # 05) =
combine-sets-Sync (¢ Ag 09) E (?U (A1 # As) (o1 # 0s) — EU ?1
(A1 # As) (o1 # os))
unfolding xx x*xx by auto
have § : «?U (A1 # As) (01 # 0s) — E U 21 (A # As) (01 # 0s) = ¢
(R E] A1 # As) (o1 # os)
by (subst e-iterated-combiney-Sync-general-form,)
(simp-all add: Cons.hyps(1))

from Cons.hyps(1) have <a ¢ ?U As 0s =
map2 (Ao A. ifa € e Ao then [T Ao a] else o) o8 As = o
by (induct os As rule: induct-2-lists012)
(auto simp add: e-simps lessThan-def, fastforce)
moreover have ?U As os C ?U (A; # As) (01 # os)> by force
ultimately show 7 (4@ [E] Ao # A1 # As) (oo # 01 # 08) a =
[map2 Az y. if a € € y z then [T y z a| else x) (o9 # 01 # 03)

105

(AO # Al # AS)J)

using * unfolding #xxx $

by (simp add: e-combiner;si-Sync combine-Sync-e-def, safe,

auto simp add: combiner;st-Sync-defs e-simps Cons.hyps(3) lessThan-def
subset-iff
split: option.splits if-splits)
(metis (no-types, lifting) not-less-eq nth-Cons-Suc)
qed

qed

lemma indep-implies-only-one-enabled’:
315 ¢ < length As AN a € € (As 1 7) (os ! i)
if <length os = length As)
and (A7 j. [i < length As; j < length As; i # j] =
e (As i) (os!i)ne (4s!j) (os!j) C E>
and <a € (|Ji<length As. e (As! i) (os i) — B>
proof (rule ex-ex1I)
from that(3) show «Ji<length As. a € € (As ! i) (os! i) by auto
next
fix ¢ j assume <i < length As A a € € (As 1 4) (os ! i)
j < length As N a € € (As ! §) (os! 7D
moreover from that(3) have <a ¢ E» by blast
ultimately show «i = j» using that(2)[of i j] by auto
qed

lemma indep-implies-only-one-enabled:

[length os = length As;

Nij. [i < length As; j < length As; © # j] =
indep-enabl (As! i) (os! i) E (4s!j) (os! j);

a € (Ji<length As. € (As! i) (os! i) — E] =
Ili. i < length As N a € e (As! i) (os! i)

by (erule indep-implies-only-one-enabled [where E = E))
(simp-all add: indep-enabl-def subset-iff, meson Intl Ry.init)

lemma T7-iterated-combiney-Sync-general-form-when-indep:
7 (4@ [E] As) 05 a =
(if As =[] then ¢
else if a € ((i<length As. ¢ (As! i) (05! 1))
then |map2 (Ao A. [T Ao a]) os As]
else if a € (Ji<length As. € (As!4) (os!i)) — FE
then let i = THE i. i < length As A a € € (As ! %) (os! 1)
in |os[i = [1 (As ! 4) (os! i) al]]
else O)»
(is - = (if As =[] then O else
if a € ?I As os then |map2 (Mg A. [T A o a]) os As| else
if a € 2U As o0s — E then ?upd As os else O)»)
if <length os = length As)

106

<N\ij. [i < length As; j < length As; i # j] =
indep-enabl (As! i) (os!i) E (As!j) (os!)
proof (subst T-iterated-combineq-Sync-general-form|[OF that(1)], rule if-cong)
show «(ifa € U Asos — E U 9] As os
then |map2 Az y. if a € € y x then [T y x a] else z) os As] else) =
(if a € ?2I As os then [map2 Az y. [T y z a]) os As| else
if a € 2U As 0s — F then ?upd As os else O)»
proof (split if-split, intro conjl impl)
assume * : <a € 2l As o)
with that(1) have (o, A) € set (zip 0s As) = a € € A o> for o A
by (induct os As rule: list-induct2) (use lessThan-Suc-eq-insert-0 in auto)
with x show ¢(if a € U Asos — E U 2] As os
then |map2 (Az y. if a € € y x then [T y x a] else x) os As]| else
0) =
|map2 Az y. [T y z a]) os As]) by auto
next
assume * : <a ¢ ?I As o
show «(if a € ?U Asos — EU ?I As os
then [map2 (Az y. if a € € y x then [T y x a] else x) os As] else) =
(if a € 2U As 0s — E then ?upd As os else O)»
proof (rule if-cong)
assume <a € U As 0s — E»
from indep-implies-only-one-enabled|OF that this]
obtain ¢ where § : i < length As» <a € e (As! i) (os! i)
j < length As = j # i = a ¢ e (As ! j) (os! j) for j by blast
have $$: «(THE i. i < length As A\ a € ¢ (As ! 4) (os!4)) =
using $ by blast
have «|map2 (Az y. if a € € y x then [T y x a] else x) s As| =
los[i == [1 (As ! 4) (os! Q) a]]]»
by (auto introl: nth-equalityl simp add: that(1))
(use that(1) $(3) in fastforce, metis $(2) nth-list-update-neq)
also have «... = ?upd As os»
using $$ by auto
finally show «|map2 (Ax y. if a € € y x then [T y x a] else x) os As|] = Zupd
As osy .
qed (use x in auto)
qed
qed simp-all

6.5 More on Events

lemma events-of-MultiSync-Pskps-nd :

«([E] (o, A) €# mset (zip 0s As). Psxips{AYna 0) =

(if As =[] then {} else

U o8’ € Rud (na® [E] As) os. (Ji<length As. e (As! i) (os'14)) — EU
(Ni<length As. € (As!4) (os’! i)

(is <- = ?rhs) if <length os = length As

(NA. A € set As = p-disjoint-¢ Ay (\NA. A € set As = at-most-1-elem-term
Ay

107

proof —
have (l[E]] (0’, A) 6# mset (zip gs AS) PSKIPS<<A>>nd g = PSKIPS<<<<nd® [[Eﬂ
AsYYna o
by (simp only: Pgkps-nd-compactification-Sync[OF that])
also have «a(...) = (¢ (na@[E] 4s) ‘Rnd {(naQ [E] As) os)
proof (rule events-of-Pgirps-nd)
show <p-disjoint-e {(,a@ [E] As)>
by (simp only: o-disjoint-e-transmission-to-iterated-combine,q-Sync that(2))
qed
also from same-length-R,, q-iterated-combine, q4-Sync-description| OF that(1)]

have «... = ?rhsy by (auto simp add: e-iterated-combine, q-Sync-general-form)
finally show ?Zthesis .
qed

lemma events-of-MultiSync-P-nd :
«([E] (o, A) €# mset (zip 0s As). P{AYnq 0) =
(if As =[] then {} else
U 05’ € Rud (naQ[E] As) os. (Ui<length As. € (As! i) (os’14)) — E U
(Ni<length As. € (As! Q) (os' i)
(is <- = ?rhs)) if <length os = length As
proof —
have ([E] (o, A) €# mset (zip os As). P(A)na 0 = P{{na® [E] As))na o5
by (fact P-nd-compactification-Sync|[OF that])
also have <a(...) = U (e (na®[E] As) ‘ Rna (naQ [E] As) os)» by (fact
events-of-P-nd)
also from same-length-R,,q-iterated-combine, 4-Sync-description| OF that(1)]

have «... = ?rhs) by (auto simp add: e-iterated-combine, q-Sync-general-form,)
finally show ?thesis .
qed

lemma events-of-MultiSync-Pskps-d :
«([E] (o, A) €# mset (zip 0s As). Psxips{A)q o) =
(if As =[] then {} else
U os’ € Ry (a@[E] As) os. (Ui<length As. € (As %) (os'! i) — EU
(Ni<length As. € (As! i) (os' 1))
(is ¢<- = ?rhs) if <length os = length As» < NA. A € set As = p-disjoint-€ A>
<N\ij. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os!)
proof —
have <([E] (o, A) €# mset (zip 0s As). Pskrps{A)a 0 = Psxrps{{aQ [E]
As)yg o8
by (simp add: Pgsk1ps-d-compactification-Sync|OF that))
also have «a(...) = U (¢ («Q[E] As) ‘Ra (aQ[E] As) os)
proof (rule events-of-Pskrps-d)
show <p-disjoint-= (4@ [E] As)>
by (simp only: o-disjoint-e-transmission-to-iterated-combineq-Sync that(2))

108

qed
also from same-length-R 4-iterated-combineq-Sync-description[OF that(1)]

have «... = ?rhs) by (auto simp add: e-iterated-combineq-Sync-general-form)
finally show ?thesis .
qed

lemma events-of-MultiSync-P-d :
«([E] (o, A) €# mset (zip os As). P{A)q o) =
(if As =[] then {} else
U s’ € Raq (a@ [E] As) os. (Ui<length As. e (As! i) (68’1 i) — E U
(Ni<length As. e (As! i) (s’ !4))))
(is <- = ?rhs) if <length os = length As»
and <A\ij. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os!)
proof —
have ([E] (o, A) €# mset (zip os As). P{A)q 0 = P{{a@ [E] As))a o5
by (simp add: P-d-compactification-Sync|[OF that))
also have a(...) = U (¢ (u@®[E] 4s) ‘ Ra (aQ[E] As) os)» by (fact
events-of-P-d)
also from same-length-R q-iterated-combineq-Sync-description| OF that(1)]

have (... = ?rhs) by (auto simp add: e-iterated-combiney-Sync-general-form)
finally show ?thesis .
qed

109

110

Chapter 7

Combining Automata for
Generalized Synchronization
Product

7.1 Definitions

7.1.1 Specializations

definition combineqpqgiriist-SYncptick

(o, ‘e, 'r, 'a) Ag-scheme, ‘e set, (o, ‘e, 'r, 'B) Ag-scheme] = (‘o list, ‘e, 'r
list) Ad>

where <combineqpairiist-Syncprick Ao £ A1 =

combineq-Sync Ag E A1 hd (Aos. hd (tl 0s)) (As t. [s, ¢]) (As . |[s, t]])

definition combine,qpairiist-Syncptick

(o, ‘e, 'r, 'a) Apq-scheme, ‘e set, ('o, ‘e, 'r, 'B) Apq-scheme] = (‘o list, ‘e, 'r
list) And>

where <combinenqpairiist-Syncptick Ao E A1 = combinenq-Sync Ao E A1 hd
(Aos. hd (tl 0s)) (As t. [s, t]) (As t. |[s, t]])»

definition combineqpgir-Syncprick

(oo, ‘e, 'ro, ') Ag-scheme, ‘e set, (o1, ‘e, 'r1, 'B) Agq-scheme] = (‘o¢ x oy,
e, 'ro X 'r1) Ap

where (combineqpair-Syncprick Ao £ A1 = combineq-Sync Ao E A1 fst snd Pair
(Asr. (s, 7))
definition combine,qpqir-Syncptick

(("oo, ‘e, 'ro, 'a) Anq-scheme, ‘e set, (‘o1, ‘e, 'r1, 'B) Apa-scheme] = (‘og X
‘o1, 'e, 'rg X 'r1) Apa

where (combine,qpair-Syncptick Ao £ A1 = combinenq-Sync Ag E Ay fst snd
Pair (Asr. (s, 7)])

/

definition combineqristsienr-SYncptick
(o list, 'e, 'r list, ') Aq-scheme, nat, ‘e set, (‘o list, ‘e, 'r list, '8) Ag4-scheme]
= (‘o list, ‘e, 'r list) Ag>

111

where <combineqristsienr-SYncprick Ao leng £ Ay = combineq-Sync Ag E A
(take leng) (drop leng) (@) (Asr. [s Q r])
definition combine,qristsienr-SYncptick

(‘o list, ‘e, 'r list, 'a) A, q-scheme, nat, ‘e set, (‘o list, ‘e, 'r list, '8) Anq-scheme]
= (‘o list, ‘e, 'r list) Ana>

where (combinenqristsienr,-SYncprick Ao leng £ Ay = combine,q-Sync Ay E 4
(take leng) (drop leng) (@) (Asr. [s Q r])

definition combineqriisi-Syncptick

("o, ‘e, 'r, 'a)) Ag-scheme, ‘e set, (‘o list, ‘e, 'r list, 'B) Ag-scheme] = (‘o list,
‘e, 'r list) Ay

where <combineqriisi-Syncprick Ao E A1 = combiney-Sync Ao E Ay hd tl (#)
(Asr. |s# r|)p
definition combine,qriist-Syncprick

("o, e, 'r, 'a) Ang-scheme, ‘e set, (‘o list, ‘e, 'r list, 'B) Apq-scheme] = (o
list, ‘e, 'r list) Ana>

where <combine,qriisi-Syncprick Ao E A1 = combine,q-Sync Ag E Ay hd tl (#)
(Asr. [s# 1)

lemmas CombinePairlist'Syncptick'defs = CombinedPairlist'Syncptick'def combinendpairlist'SynCptick“
and combinepqir-Syncptick-defs = combineqpqir-Syncptick-def combinenqpqair-Syncptick-def
and CombineListslenL'Syncptick'defs = combinedListslenL'Syncptick'def com-
bznendListslenL'Syncptick'def
and combiner;ist-SYncptick-defs = combineqriist-SYncptick-def combinenqriist-SYncpiick-def

lemmas combine-Syncpiick-defs =
Combinel:’airlist'Syncptick:'defs Combinepair'syncptick'defs CombineListslenL'Syncptick'defs
combineriist-SYncptick-defs

bundle combine,q-Syncpiick-syntar begin

notation combineqpairiist-Syncptick (- a®[-1y/ Pairtist -)> [0, 0, 0])
notation Combinendpairlist'Syncptick (<<<’ nd®ﬂ’]/PuiT'list ’>>> [Oa 07 0])
notation combinegpair-Syncptick (({- a®[-ly/Pair -)> [0, 0, 0])
notation combine,qpair-Syncptick ({- na®[-ly pPair - [0, 0, 0])
notation combineqristsienr-Syncptick (<(- a®[-, -1/ Listsienr -)» [0, 0, 0, 0])
notation CombinendListslenL'Syncptick (<<<' nd®[['a ']]/ListslenL '>>) [Oa 07 07 0])
notation combineqriist-Syncprick ((- a®[-1/ riist -)» [0, 0, 0])

notation combinenqriist-Syncprick (<(- na®[-l/ riist -)> [0, 0, 0])

end

unbundle combine,q-Syncpiick-syntax

7.2 First Properties

lemma finite-trans-combine,,q-Syncpiicr-simps [simp) :
finite-trans Ay = finite-trans Ay = finite-trans (Ao na®[E]/ Pairtist A1)

112

(finite-trans By = finite-trans By = finite-trans (Bo »4a®[E]/ pair B1)»

(finite-trans Cy = finite-trans Cy = finite-trans (Co na®[leno, E] s ListsienL
C1>>>

(finite-trans Dy == finite-trans D1 = finite-trans (Do na®[E] s riist D1)»

unfolding combinendPairlist'Syncptick'def CombinendPair'Syncptick'def com-
binendListslenL'Syncptick'def Combinendeist'Syncptick'def

by (simp-all add: finite-trans-def finite-image-set2)

lemma e-combinepqiriist-SYncprick:
€ (Ao a®[E] s Pairiist A1) os = combine-Sync-c Ay E Ay hd (hd o tl) s
(€ (Bo nd®[E]ypairiist B1) 0s = combine-Sync-e By E By hd (hd o tl) os
by (auto simp add: combine-Sync-c-def-bis combinepqiriist-SYncpiick-defs e-simps)

lemma e-combinepqir-SYncptick:
€ (Ao ¢®[E] s Pair A1) 0s = combine-Sync-e Ay E Ay fst snd os)
(€ (Bo nd®[E]ypair B1) os = combine-Sync-c By E By fst snd os
by (auto simp add: combine-Sync-e-def-bis combinepqir-SYncppick-defs e-simps)

lemma e-combineristsienr-SYnCptick:

€ (Ao a®[leno, Elsristsient. A1) os = combine-Sync-e Ay E Ay (take leng)
(drop leng) os»

€ (Bo na®[leng, E) ristsient. B1) 0s = combine-Sync-e By E By (take leng)
(drop leng) os»

by (auto simp add: combine-Sync-c-def-bis combiner;sisienr-SYncptick-defs e-simps)

lemma e-combineri;si-SYncpiick:
€ (Ao a®[E] s Riist A1) 0s = combine-Sync-c Ay E Ay hd tl o5
(€ (Bo nd®[E] s riist B1) 0s = combine-Sync-e By E By hd tl o5
by (auto simp add: combine-Sync-c-def-bis combineri;si-Syncptick-defs e-simps)

lemma g-combinepqiriist-SYncptick:
0 (Ao a®[E] s pairiist A1) = {os. hd os € p Ag A\ hd (tl 0s) € 0 A1}
0 (Bo nd®[E]/Pairiist B1) = {os. hd s € o Bg A hd (tl 0s) € o B1}»
by (auto simp add: combinepqiriist-SYncptick-defs o-simps split: option.split)

lemma p-combinepqir-Syncptick:
0 (Ao a®[E] s pair A1) = {(00, 01). 00 € 0 Ao N o1 € 0 A1}
0 (Bo nd®[E]/Pair B1) = {(00, 01). 00 € 0 Bo N o1 € ¢ Bi}»
by (auto simp add: combinepqir-Syncptick-defs o-simps split: option.split)

lemma Q'combineListslenL'Syncptick:
0 (Ao a®[leng, E] sListsienr A1) = {os. take leng s € 0 Ag A drop leng os €

0o Aip

0 (Bo na®[leng, E] sristsienrt B1) = {os. take leng os € 0 Bo A drop leng os
S o Bl})

by (auto simp add: combiner;stsienr-SYncprick-defs o-simps split: option.split)

lemma o-combiner;ist-Syncptick:

113

0 (Ao a®[E] s riist A1) = {os. hd os € p Ag Ntlos € p AP
0 (Bo nd®[E]/riist B1) = {os. hd 0s € p By Ntlos € o0 B }p
by (auto simp add: combinery;st-Syncpick-defs o-simps split: option.split)

7.3 Transitions are unchanged in the Generaliza-
tion

In the generalization, only the w function is modified.

lemma 7-combinepgiriist-SYncpick :
(Ao a®[E] pairtist A1) = 7 (Ao a®[E]pairiist A1)
(7 (Bo nd®[E]sPairtist B1) = 7 {(Bo na®[E]pPairiist B1)>
by (simp-all add: combine-Sync-defs combine-Syncyi;cx-defs)

lemma 7-combinepqir-Syncptick :
1 (Ao 4®[E] s Pair A1) = 7 (Ao a®[E]pair A1)
(T <<BO nd®[[E]]/Pair Bl>> =T <<BO nd®[[E]]Pair Bl>>>
by (simp-all add: combine-Sync-defs combine-Syncpt;cr-defs)

lemma 7-combineristsienr-SYncptick :
1 (Ao q®[leng, E]sristsienr A1) = T (Ao a®[leno, Elristsient, A1)
(T <<BO nd®[[len07 E]]/ListslenL B1>> =T <<BO nd®[[len0> E]]ListslenL Bl>>>
by (simp-all add: combine-Sync-defs combine-Syncpticr-defs)

T (Ao a®[E] s Rriist A1) and 7 (Bo na®[E]y riist B1) cannot be obtained
that easily because of the types of terminations.

7.4 Reachability

lemma Rg4-combineqristsien . -SYNCprick-subset:
(Ra (Ao a®[leno, E]sListsienr A1) (S0 @ s1) C {to Q t1| to t1. to € Ra Ao so
ANt € Rqg Ay s1}b (Is <254 C)
if <Ato. to € Rq Ao so = length to = leny>
by (subst same-T-implies-same-Rqlof - - «(Ao a®[leno, Elristsienr. A1)?])
(simp-all add: T-combiner;sisienr-SYNCptick Ra-combineqristsienr-Sync-subset
that)

lemma R, q-combinenqristsien-SYNCptick-subset:

(Rpa (Bo na®[leng, E] sristsienr B1) (so @ s1) C {to @ t1| to t1. to € Rna Bo
so Aty € Rpg B1 51}) (iS «?25p C —))

if (/\tg. to € Rnag Bg so = length to = leng»

by (subst same-T-implies-same-Ryq[of - - <{Bo na®[leno, Elristsienr. B1)])

(Simp'a” add: T'combineListslenL'Syncptick Rnd'combinendListslenL'SynC'SUbset
that)

lemma Rg-combineqpairiist-SYncptick-subset:

114

(Rq (Ao a®[E] s Pairtist A1) [s0, s1] C {[to, t1]| to ti. to € Ra Ao so A t1 € Ry
Ay s1h (is <254 C =)
and Ry q-combinenapairiist-SYnCprick-subset:
(Rnd (Bo nd®[E]/pairtist B1) [s0, s1] € {[to, t1]| to t1. to € Rna Bo so A t1
€ Rna B1 81}> (is «?5p C —>)
proof safe
show <t € 254 — ditg t1. t = [to, tl} Aty € Ry Ao so N t1 € Rq Ay s1» for ¢t
by (Rg-subset-method defs: combinepqiriist-SYncpiick-defs)
show «t € 25 — ditg t1. t = [to, tl] Aty € Rung Bo so N t1 € Rpa B1 s>
for ¢
by (R q-subset-method defs: combinepgiriist-SYncprick-defs)
qed

lemma Rg-combineqpqir-Syncptick-subset:
Ry <<A0 d®[[E]]/Pair A1>> (80, 51) C Rq Ag s X Rq A1 s (iS 25,4 C —>)
and R, q-combinenqpqir-SYncptick-subset:
(Rnd (Bo na®[E]y pair B1) (50, 51) € Rna Bo s0 X Rna By s1» (is <25 C =)
proof —
have <t € 25, = fstt € Rq Ag so A sndt € Rq A1 s1» for ¢
by (Ra-subset-method defs: combinepqir-Syncpiick-defs)
thus <254 C Ry Ag so X Rq A1 s1» by force
next
have «(t € 255 = fstt € Rpq Bo so N snd t € R,q By s1» for t
by (Ryaq-subset-method defs: combinep qir-Syncptick-defs)
thus <255 C Rpq By so9 X Rng By s1> by force
qed

lemma Rg4-combineqriist-SYncptick-subset:
Ry <<A0 d®HEH/Rlist A1>> (50 # O’S) - {to # O’t| to ot. tg € Rq Ag s A\ ot €
Ra A1 osp (is <254 C =)
and R,,q-combine,qriist-SYNcprick-subset:
(Rnd (Bo na®[E]sriist B1) (so # os) C {to # ot| to ot. to € Rpg Bo so A ot
€ Rpa B1 os} (is <255 C =)
proof safe
show <t € 254 = Jtg ot. t =ty # ot N tg € Rq Ag s Aot € Rg Ay o8 for
t
by (Rg4-subset-method defs: combineriisi-Syncpiicr-defs)
next
show «t € 9Sgp = Ttg ot. t = tg # ot N tg € Rng Bo so AN ot € Rpq By o9
for ¢
by (Rna-subset-method defs: combineri;st-Syncpiicr-defs)
qed

7.5 Normalization

lemma w-combinepairiist-SYncpick-behaviour:
w ((Ao a®[E]y Pairtist A1))da—na [0, s1] = w ((Ao)d—nd na®[E]y Pairtist
(A1)asnd) [s0, 1]

115

by (simp add: combinep giriist-SYncpiick-defs det-ndet-conv-defs option.case-eg-if)

lemma w-combinepqir-SYncpticr-behaviour:

w ((Ao a®[E]/ Pair A1))d—sna (50, 51) =w ((Ao)a—snd nd®[E]y Pair (A1) d—na)
(so, s1)»

by (simp add: combinep qir-Syncpick-defs det-ndet-conv-defs option.case-eq-if)

lemma w-combineristsienr-SYncptick -behaviour:
w ((Ao a®[leno, E] s ristsient A1))d—snd (050 Q 051) = w ((Ao)d—nd na®[leno,

E]],/ListslenL <<A1>>d<—>nd>> (JSO Q 0—51)>
by (sitmp add: combineristsienr-SYncptick-defs det-ndet-conv-defs option. case-eq-if)

lemma w-combineri;st-SYncyticr-behaviour:
w ((Ao d®ﬂEﬂ/Rlist A1V asna (S0 # 0s1) = w {{Ao)d—nd nd®[[E]]/Rlist
<<A1>>d<—>nd>> (50 # 0'81))

by (simp add: combineri;si-Syncpiick-defs det-ndet-conv-defs option.case-eq-if)

lemma 7-combinepqiriist-SYncptick -behaviour-when-indep:
<5A03005A131§E:>
T ((Ao a®[E]/ Pairtist A1))d—nd [S0;, s1] € = T ((Ao)dsnd nd®[E] s Pairiist
(A1) ana) [s0, s1] e
by (auto simp add: combinep giriist-SYncprick-defs det-ndet-conv-defs option. case-eg-if
e-simps)

lemma 7-combinepqir-Syncptick-behaviour-when-indep:

e Ag spNe A s1 C F =

7 (Ao a®[E]/ Pair A1))dsnd (S0, 1) e =T ({Ao)asnd na®[E]y/Pair (A1)dsnda)
(s0, $1) €

by (auto simp add: combinep q;r-Syncptick-defs det-ndet-conv-defs option.case-eg-if
e-simps)

lemma 7-combiner,;stsienr-SYncptick-behaviour-when-indep:
e Ag 0sg Ne Ay 0s1 € E = length osg = leng —
T ((Ao a®[leng, E] Listsienr A1))d—snd (050 Q@ os1) e = T ((Ao)d—nd
na®[leng, E] sristsient {(A1)dsna) (050 Q 0s1) e
by (auto simp add: combiner;stsienr-SYncptick-defs det-ndet-conv-defs option.case-eq-if
e-8imps)

lemma 7-combineri;st-Syncptick -behaviour-when-indep:
<5A05005A1051§E:>
7 ((Ao a®[E]y/Rriist A1))dsna (s0 # 0s51) e = 7 ((Ao)d—nd nd®[E]/ Rrisst
(A1)asna) (so # os1) e
by (auto simp add: combinegy;si-Syncpiick-defs det-ndet-conv-defs option.case-eq-if
e-simps)

lemma Pg g ps-combinepgiriist-SYyncptick-behaviour-when-indep:

116

(Pskrps{(Ao a®[E] s pairiist A1))a [0, 51] = Psk1ps{{{Ao)a—nd nd®[E]/Pairtist
(A1) dsna))na [s0, 1]
if <indep-enabl Ay sg E Ay s1»
by (Psk1ps-when-indep-method R-d-subset: Rq-combineqpairiist-SYncprick-subset,
sitmp-all)
(metis T-combinepgiriist-SYncprick-behaviour-when-indep indep-enablD that,
metis w-combinepqiriist-SYNCpiick-behaviour)

lemma P-combinepqiriist-SYncptick-behaviour-when-indep:
(P{(Ao a®[E]y Pairtist A1))a [s0; 51) = P{({A0)dnd na®@[E]y Pairtist (A1)dsnd))nd
[s0, s1]»
if <indep-enabl Ay so E A1 s1»
by (P-when-indep-method R-d-subset: Rq-combineqpairiist-SYncpiick-subset, simp-all)
(metis T-combinepqiriist-SYNcpiick-behaviour-when-indep indep-enablD that)

lemma Pg g ps-combinepqir-Syncpiick-behaviour-when-indep:

(Pskrps{(Ao a®[E]/ pair A1))a (50, 51) = Pskxrprs{{{Ao)d—snd na®[E]/ Pair
(A1) dsna))na (so, 51)»

if <indep-enabl Ay sg E Ay s1»

by (Psk1ps-when-indep-method R-d-subset: Rq-combineqpqir-SYncpiick-subset,
all <elim SigmakE))

(metis T-combinep qir-SYncptick-behaviour-when-indep indep-enablD that,
auto simp add: w-combinepq;r-SYncpiick-behaviour option.case-eq-if)

lemma P-combinep qir-Syncptick-behaviour-when-indep:
(P{(Ao a®[E]/ Pair A1))a (50, 51) = P{{{A0)dsnd nd®[E]/ Pair (A1)dnd))nd
(s0, 1)
if <indep-enabl Ay so E A1 s1»
by (P-when-indep-method R-d-subset: Rq-combineqpqir-Syncpiick-subset, elim
Sigmak)
(metis T-combinep gir-SYncpiick-behaviour-when-indep indep-enablD that)

lemma Pgsgps-combineristsienr-SYncptick -behaviour-when-indep:

Pskrps{(Ao a®[leny, E]lsristsient A1))d (050 Qos1) = Psrrps{{(Ao)a—nd
na®[leno, E]sristsient. {(A1)d—snd))na (00 Q os1)

if <indep-enabl Ag osy E A1 os1» and <Aotg. otg € Rq Ao 089 = length oty
= leny>

by (Psk1ps-when-indep-method R-d-subset: Rq-combineqristsiens-SYNCpiick-subset,
simp-all add: that(2))

(metis T-combiner;stsienr-SYNCptick-behaviour-when-indep indep-enablD that,
metis w-combiner;stsien L-SYNCptick-behaviour)

lemma P-combineristsien-SYncptick-behaviour-when-indep:
(P({Ao a®[leno, E]/ristsient A1))a (050 @ os1) = P(({Ao)dsnd na®[leno,

Elsristsient. (A1)a—nd))nd (050 Q o51)>
if <indep-enabl Ag osy E Ay os1» and <A\otg. otg € Rq Ao 089 = length oty
= leny»

117

by (P-when-indep-method R-d-subset: Rg-combineqrisisiens-SYNCprick-subset,
simp-all add: that(2))

(metis T-combiner;stsienr,-SYNCprick-behaviour-when-indep indep-enablD that)

lemma Pg g ps-combinery;st-Syncptick-behaviour-when-indep:

(Psk1ps{(Ao a®[E]y riist A1))a (so # 051) = Psxrps{{{A0)d=nd na®[E]y Riist
(A1) da—nd))na (80 # 051)

if <indep-enabl Ay sg E A1 osp»

by (Psk1ps-when-indep-method R-d-subset: Rq-combineqrisst-Syncptick-subset,
stmp-all)

(metis T-combinery;si-SYncpiick -behaviour-when-indep indep-enablD that,
metis w-combinery;st-SYncptick-behaviour)

lemma P-combinery;st-Syncpiick-behaviour-when-indep:
(P{(Ao a®[E] s Rriist A1))a (so # 051) = P{{(Ao)a—nd nd®[E]/ riist (A1)d—nd))nd
(so # os1)
if <indep-enabl Ay sg E A1 osp>
by (P-when-indep-method R-d-subset: Rq-combineqriist-SYncptick-subset, simp)
(metis T-combinery;st-SYncpiick -behaviour-when-indep indep-enablD that)

118

Chapter 8

Compactification of
Synchronization Product
Generalized

8.1 Iterated Combine

8.1.1 Definitions

fun iterated-combineq-Syncpick = <'e set = (‘o, ‘e, 'r) Aq list = (‘o list, ‘e, 'r
list) Apr (<@ [-]y -)> [0, 0])

where (4@ [E]/) = (7 = Aos a. O, w = Aos. O))»

| <<<d® [[E]]/ [AO]>> = d<<A0>>Sinnglist>

| (a®[E], Ao # A1 # As) = (Ao a®[E] s riist («@[E], A1 # As))
fun iterated-combine,q-Syncpiick e set = ('o, e, 'r) A,q list = (‘o list, ‘e, 'r
list) Ana> (<{na@ [-I/ -)> [0, 0])

where ((,a@ [E]/ []) = (7 = Aos a. {}, w = Xos. {}])»

| <<<1’Ld® [[E]]/ [AO]>> = nd<<AO>>sinnglist)

| (@ [E]l, Ao # A1 # As) = (Ao na®[E] s riist (nd@[E], A1 # As))>

lemma iterated-combineq-Syncpiicr-simps-bis: <As # [| = (a@Q [E], Ao # As)

= (Ao a®[E]y riist («Q[E], As))>
and iterated-combiney q-Syncpick-simps-bis: «Bs # [| = (naQ [E], Bo # Bs)

= (Bo na®[E]y riist (na@ [E]l, Bs))»
by (induct As, simp-all) (induct Bs, simp-all)

8.1.2 First Results

lemma 7-iterated-combine-Syncpeick:
T (4 [E], As) = 7 (a® [E] Ash> 7 (na@ [E], Bs) = 7 (na® [E] Bs)»
by (intro ext, induct rule: induct-list012;
simp add: o-0s-conv-defs singl-list-conv-defs
combineryisi-Sync-defs combinery;si-Syncpiick-defs e-simps)+

119

corollary e-iterated-combine-Syncpeick:
€ (aQIE], As) 05 = e (aQ[E] As) o5
€ (na@[E], Bs) os =€ (na@[E] Bs) os

by (simp-all add: e-simps T-iterated-combine-Syncpicr,)

corollary R-iterated-combine-Syncptick:
Ra (iQ[E], As) = Ra (a@ [E] As)> Rna {na® [E], Bs) = Runa (na@ [E]
Bs)»
by (intro ext same-T-implies-same-R g4 same-T-implies-same-R, 4,
simp add: T-iterated-combine-Syncpicr)+

lemma combiner;stsienr-SYNCptick-COMbINER;st-SYNCpiick-€q:

€ (a{Ao)singistist a®[1, Elsristsient A1) 05 = € (Ao a®[E]/Rriist A1) o8

(1 (a(Ao)singisiist a®[1, E]sristsienr A1) (so # 05) e = T (Ao a®[E] s Riist
A1) (so # 0s8) e

€ (na{Bo)singtstist na®[1, E]ysristsient B1) 08 = € (Bo na®[E]/riist B1)
o8

T (na(Bo)singt—stist na®[1, E] s rListsienr B1) (S0 # 05) e =T (Bo na®[E] s Rriist
B1) (sg # 05) e

by (simp-all add: e-combiner;stsien,-SYNCptick €-COMINERL; st-SYNCptick drop-Suc
combine-Sync-e-def,

auto stmp add: combiner;stsienr-SYNCptick-defs combinery;st-Syncpiicr-defs
singl-list-conv-defs e-simps)
(metis append-Cons append-Nil)

~=

lemma combinepqiriist-SYncptick-and-iterated-combine, g-Syncptick-€q:
€ (Ao a®[E]y Pairiist A1) [0, s1] = € (a@[E], [Ao, A1]) [s0, s1]>
7 (Ao a®[E]yPairtist A1) [s0, s1] e = 7 (4a@ [E]/ [Ao, Ai]) [s0, 1] &
€ (Bo nd®[E]yPairiist B1) [s0, 51] = € (na@ [E], [Bo, Bi1]) [s0, s1]»
T <<BO nd®[[E]]/Paulzbt Bl>> [50; 31] €E=T <<nd® [[E]]/ [307 Bl}>> [80, 51] €)
by (simp-all add: e-combinepqiriist-SYncptick €-combineri;st-Syncptick)
(auto sitmp add: combinepqiriist-SYncprick-defs combinery; st-Syncprick-defs
singl-list-conv-defs
option.case-eq-if e-simps combine-Sync-e-def)

lemmas combinepqiriist-SYncprick-and-combiner;si-SYncprick-q =
combinep qiriist-SYNCptick -and-iterated-combine, 4-Syncprick-eq[simplified)

8.1.3 Transmission of Properties

lemma finite-trans-transmission-to-iterated-combine, q-Syncptick:
(NA. A € set As = finite-trans A) = finite-trans (na@ [E], As)
by (induct As rule: induct-list012)

120

(auto simp add: singl-list-conv-defs combineri;si-Syncptick-defs finite-trans-def
finite-image-set2)

lemma o-disjoint-e-transmission-to-iterated-combineq-Syncpiick:

(NA. A € set As = p-disjoint-c¢ A) = p-disjoint-c¢ (4@ [E], As)>

by (induct As rule: induct-list012)

(simp-all add: o-combineryisi-SYncprick €-combineryist-SYncptick 0-disjoint-c-def
combine-Sync-e-def)

lemma o-disjoint-e-transmission-to-iterated-combine, q-Syncptick:

VB € set Bs. p-disjoint-c B = o-disjoint-¢ (na@Q [E], Bs)»

by (induct Bs rule: induct-list012)

(simp-all add: o-combineryist-SYncpick €-combineryisi-SYncptick 0-disjoint-c-def
combine-Sync-e-def)

lemma same-length-indep-transmission-to-iterated-combiney-Syncptick:

(ndep-enabl Ag so E (4@ [E], As) os

if <length os = length As»

«N\ij. [i < length As; j < length As; i # j] =
indep-enabl ((Ag # As) i) ((so # 08) 1 9) E (Ao # As) ! j) ((so # 09)

Vi)

using same-length-indep-transmission-to-iterated-combineq-Sync[OF that]

by (simp add: indep-enabl-def e-iterated-combine-Syncyiick

T-iterated-combine-Syncpiicr R-iterated-combine-Syncpiick that(1))

lemma w-iterated-combineq-Syncpiick :
<length os = length As =
w (4@ [E], As) os = (if As =[] then { else those (map2 w As os))»
by (induct os As rule: induct-2-lists012)
(simp-all add: singl-list-conv-defs combineri;st-Syncptick-defs split: option.split)

lemma w-iterated-combine, q-Syncptick :
<length os = length As =
w (i@ Bl As) o5 —
(if As =[] then {} else {rs. length rs = length As A (Vi < length As. rs ! i € w
(As @) (os ! @)}y
proof (induct os As rule: induct-2-lists012)
case Nil show ?case by simp
next
case (single o1 A1)
from length-Suc-conv show ?case
by (auto simp add: singl-list-conv-defs)
next
case (Cons 01 02 os A1 A2 As)
show ?case (is - = ?rhs 01 02 os A1 A2 As»)
proof (intro subset-antisym subsetl)

121

fix rs assume rs € w (,a@ [E], Al # A2 # As) (01 # 02 # os)
then obtain r1 rs’ where (rs = r1 # rs’» «r1 € w Al o>
rs' € w (na@ [Ely A2 # As) (02 # os)»
by (auto simp add: combineri;si-Syncpiicr-defs)
from this(8) Cons.hyps(3) obtain r2 rs"’
where (rs’ = r2 # rs’’s «length rs’’ = length As»
N i<Suc (length As). (r2 # rs”) Vi€ w ((A2 # As) i) ((c2 # os) ! i)
by simp (metis (no-types, lifting) length-Suc-conv)
with «r1 € w A1 01> show <rs € %rhs 01 02 os A1 A2 As»
by (auto simp add: <rs = r1 # rs’s less-Suc-eq-0-disj)
next
from Cons.hyps(3)
show «rs € ?rhs o1 02 0s Al A2 As =
rs € w (na@Q [Ely Al # A2 # As) (01 # 02 # os) for rs
by (cases rs; cases <tl rs), simp-all add: combineriist-Syncptick-defs) auto
qed
ged

8.1.4 Normalization

lemma w-iterated-combine, g-Syncptick -det-ndet-conv:
<length os = length As =

W (na@ [E], map (AA. (A)dsna) As) 0s = w ((aQ [E], AS))asna 05
proof (induct os As rule: induct-2-lists012)

case Nil
show ?case by (simp add: base-trans-det-ndet-conv(1))
next

case (single 01 A1)

show ?case by (simp add: from-det-to-ndet-singl-list-conv-commute)
next

case (Cons 01 02 os A1 A2 As)

thus ?case

by (auto simp add: det-ndet-conv-defs combineri;st-Syncpiick-defs split: op-

tion.split)
qed

lemma 7-iterated-combine,,q-Syncpticr -behaviour-when-indep:
<length os = length As =
(ANij. [i < length As; j < length As; i # j]
= indep-enabl (As ! i) (os i) E (As!j) (os!j)) =
T ((aQ[E]l, As))a—snd 05 € =T (na@ [E], map (AA. (A)asna) As) os e
proof (induct os As rule: induct-2-lists012)

case Nil
show ?case by simp
next

case (single o1 A1)
show ?case by (simp add: from-det-to-ndet-singl-list-conv-commute(1))
next

case (Cons 01 02 os A1 A2 As)

122

have : <7 ((4@[El, A2 # As))a—sna (02 # 05) e =
T (nd@ [E], map (AA. (A)asna) (A2 # As)) (02 # 0s) e
proof (rule Cons.hyps(3))
show «[i < length (A2 # As); j < length (A2 # As); i # j]
= indep-enabl ((A2 # As) i) (02 # 0s) i) E
((A2 # As) 1j) (62 # os) ! j)» for i j
using Cons.prems[of «Suc ©> «Suc] by simp
qed
have 7 ((a@ [E], Al # A2 # As))asna (01 # 02 # 05) e =
| 7 ((A1)asnd na®[E]/riist ((a@[Ely A2 # As))asna) (01 # 02 #
os) e
proof (subst iterated-combineq-Syncpiick.-stmps(8), rule T-combineryisi-Syncpiick-behaviour-when-indep)
show « A1 01 Ne (4Q[E], A2 # As) (02 # os) C E»
proof (rule indep-enablD[OF - R4.init Rq.init])
show (indep-enabl A1 o1 E (4@ [E], A2 # As) (62 # os))
by (simp add: Cons.hyps(1) Cons.prems order-le-less-trans
same-length-indep-transmission-to-iterated-combineq-Syncptick)
ged
qed
also have «... = 7 (,a@ [E], map (AA. (A)asna) (A1 # A2 # As)) (o1 #
02 # os) e
by (use * in <simp add: combinery;si-SYncptick-defs e-simps»)
(metis empty-from-det-to-ndet-is-None-trans option.exhaust)
finally show ?case .
qed

lemma Pg k1 pgs-iterated-combiney, q-Syncpticr -behaviour-when-indep:
assumes same-length: <length os = length As»
and indep: <\i j. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os! i)
shows <PSKIPS<<<<d® [[Eﬂ/ AS>>>>d g8 = PSKIPS<<<<nd® [[Eﬂ/ map ()\A. <<A>>d'—>nd)
AsY)na o9
proof (fold Pg k1 ps-nd-from-det-to-ndet-is-Pg i 1 ps-d, rule Pg k1 ps-nd-eql-strong-id)
show <05’ € Ruaq ((aQ[E]l, As))asna 05 =
7 (na® [E]ly map (AA. (A)asna) As) s’ e = 7 ((a® [E], As))asna
os' e» for os’ e
proof (rule T-iterated-combine, q-Syncptick-behaviour-when-indep[symmetric])
show s’ € Ryq ((aQ[E], As))a—sna 05 = length os’ = length As)
by (metis Ryq-from-det-to-ndet R-iterated-combine-Syncpiick(1) same-length
same-length-R 4-iterated-combiney-Sync-description)
next
show «[os’ € Rpa ((dQ[Ely As))a—sna os; @ < length As; j < length As; i
j]
= indep-enabl (As i) (o8’ Vi) E (As!j) (os’!j) for i j
by (unfold R, q-from-det-to-ndet R-iterated-combine-Syncpt;cr,
drule same-length-R 4-iterated-combineq-Sync-description| OF same-length))
(meson Rg-trans indep-enabl-def indep)

123

qed
next
show (s’ € R4 <<<<d® [[E]]/ A5>>>>d‘—>nd g8 —>
w (na@ [E]y map (AA. (A)asna) As) 08" = w ((«@ [E], As))ana o5
for os’
by (metis Rpq-from-det-to-ndet R-iterated-combine-Syncpiic (1)
w-iterated-combiney, q-Syncpi;ck-det-ndet-conv same-length
same-length-R 4-iterated-combiney-Sync-description)
qed

lemma P-d-iterated-combine,,q-Syncpyticr-behaviour-when-indep:
assumes same-length: <length os = length As»
and indep: <\ij. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os!)
shows (P((4Q [E], As))a 0s = P((na@ [E], map (ANA. {(A)asnd) AS))nd
o8
proof (fold P-nd-from-det-to-ndet-is-P-d, rule P-nd-eql-strong-id)
show (05’ € R4 <<<<d® [[E]]/ A5>>>>d‘—>nd o8 —>
7 (na@[E], map (AA. (A)ana) As) o5’ e = 7 (4@ [E]y As))and
os' e for os’ e
proof (rule T-iterated-combine,q-Syncyi;cx-behaviour-when-indep[symmetric|)
show s’ € Ryq ((aQ[E], As))a—sna 05 = length os’ = length As)
by (metis Ry q-from-det-to-ndet R-iterated-combine-Syncptick(1) same-length
same-length-R 4-iterated-combiney-Sync-description)
next
show «[os’ € Rpa ((aQ[E]y AS))dsna 0s; @ < length As; j < length As; i
]
= indep-enabl (As ! i) (o8’ Vi) E (As!j) (os’!j) for i j
by (unfold R, q-from-det-to-ndet R-iterated-combine-Syncpi;ck,
drule same-length-R 4-iterated-combiney-Sync-description| OF same-length])
(meson Rg-trans indep-enabl-def indep)
qed
qed

8.2 Compactification Theorems

8.2.1 Binary
Pair

theorem Pggpg-nd-combinepqr-Syncptick :

fixes F :: <'a set

assumes p-disjoint-€ : <p-disjoint-¢ Ag> <p-disjoint-€ Ay>

defines A-def: <A = (Ao na®[E]/Pair A1)

defines P-def: <P = Pskrps{Ao)na> and Q-def: <Q = Pskrps{Ai1)nas> and
S-def: S = PSKIPS<<A>>nd>

shows «P oq [E]/pair @ 01 = S (00, 01)
proof —

124

let ?f = «Pgkrps-nd-step (¢ A) (1 A) (w A) (Ao’. case o’ of (09, 01) = P 09
[E]l/Pair Q 1)
note cartprod-rwrt = GlobalNdet-cartprod|of - - <Az y. - (z, y)», simplified]
note Ndet-and-Syncpair = SYncpair.SYncpiick-distrib-GlobalNdet-left
Syncpgir-SYncpticr-distrib-GlobalNdet-right
note Mprefix-Syncpqir-constant =
Syncpair- SKIP-Syncpticr-Mprefiz Syncpqqir. Mprefiz-Syncpticr-SKIP
Syncpair-STOP-Syncptick.-Mprefix Syncpqir.Mprefiz-Syncyiicr-STOP
note P-rec = restriction-fiz-eq|OF Pg 1 pg-nd-step-constructive-bis[of Ay), folded
Pskrps-nd-def P-def, THEN fun-cong]
note Q-rec = restriction-fiz-eq| OF Pg k1 ps-nd-step-constructive-bis[of A1), folded
Pskrps-nd-def Q-def, THEN fun-cong]
have w-A : «w A (0¢’, 01") = w Ao 00’ X w Ay 01" for oo’ o1’
by (auto simp add: A-def combinepqir-Syncpiick-defs)
have -4 : «¢ A (0¢/, 01') = combine-sets-Sync (¢ Ay 0o’) E (¢ A1 01') for op’
0'1/
by (simp add: A-def e-combinepqir-Syncpiick combine-Sync-e-def)
show <P [os) [[E]]/pmr Q o1 =8 (0’0, 0’1))
proof (rule fun-conglof «\(oo, 01). P 0o [E]/pair Q 01> - (00, 01)>, simplified])
show (()\(00, 0’1). P go [[E]]/Pair Q 0'1) =5
proof (rule restriction-fix-unique[OF Pg i1 pg-nd-step-constructive-bis[of A],
symmetric, folded Pskps-nd-def S-def])
show (Qf = ()\(0'07 0'1). P oo [[E]]/pm‘r Q 0'1))
proof (rule ext, clarify)
have g-disjoint-e-bis : «w Ag 09 # {} = € Ao 00 = {}p
(W A1 01 7& {} — € A1 g1 = {}) for og 01
by (simp-all add: o-simps p-disjoint-cD o-disjoint-¢)
show <9f (0’07 0'1) =P ago [[E]]/Pair Q g1? for gpg 01
proof (cases «w Ag o9 = {}»; cases «w Ay o1 = {})
assume w Ag o9 = {} w 41 o1 = {p
hence P-rec’ : <P oy = P-nd-step (¢ Ag) (7 Ao) P o>
and Q-rec’ : <Q o1 = P-nd-step (¢ A1) (7 41) Q o>
and S-rec’ : «Pggrps-nd-step (¢ A) (1 A) (w 4) (Moo, 01). P 09
[El/pair Q 01) (00, 01) =
P-nd-step (¢ A) (1 A) (Moo, 01). P oo [E]/pair @ 01) (00,
O'1)>
by (simp-all add: P-reclof oo] Q-reclof o1] w-A)
show <?f (09, 01) = P 0o [E]l/Pair Q o1
unfolding P-rec’ Q-rec’ S-rec’ Syncp qir. Mprefiz-Syncpiicr-Mprefiz-for-procomata
unfolding ¢-A Mprefix-Un-distrib
by (intro arg-cong2[where f = «(O)] mono-Mprefiz-eq, fold P-rec’ Q-rec’,
auto simp add: A-def Ndet-and-Syncpqir cartprod-rwrt
combinep gir-Syncprick-defs e-simps GlobalNdet-sets-commutelof T
Al - ->]
simp flip: GlobalNdet-factorization-union
introl: mono-GlobalNdet-eq arg-cong2[where f = «(M)])
next
assume <w Ag o9 # {} «w A o1 ={}p
from p-disjoint-e(1) «w Ag o9 # {}> have «¢ Ay 09 = {}

125

by (simp add: o-disjoint-e-def o-simps)
have «?f (g, 01) = 0bg(e A1 01 — E) — (Moy’er Ay 01 b. (SKIPS (w
Ao 00) [ElyPair @ o1"))
by (auto simp add: w-A e-A «w Ay 01 = {}» <€ Ay 09 = {}» introl:
mono-Mprefix-eq,
auto simp add: A-def combinep gir-Syncprick-defs «w Ag oo # {P
e Ag o9 = {}» cartprod-rwrt P-reclof o] intro!: mono-GlobalNdet-eq)
also have (... = P o [E]/pair Q 01
by (unfold P-reclof o¢] Q-rec[of o1])
(auto simp add: SKIPS-def Ndet-and-Syncpqir Mprefiz-Syncpqi.-constant
(W AO go 7é {})
GlobalNdet-Mprefiz-distr GlobalNdet-sets-commute[of <1 Ay - -] w
A1 g1 = {})
intro!: mono-Mprefiz-eq mono-GlobalNdet-eq)
finally show «?f (0g, 01) = .. .
next
assume w Ag o9 = {}» «w Ay o1 #{}
from p-disjoint-¢(2) «w Ay 01 # {}> have « 4; o1 = {}
by (simp add: o-disjoint-e-def o-simps)
have <?f (00, 0'1) = Da€(€ Ag 09 — E) — (HUQ/GT Ay o9 a. (P O'OI
[E]l/ Pair SKIPS (w Ay 01)))
by (auto simp add: w-A e-A «w Ay o9 = {}» ¢ A1 o1 = {}> introl:
mono-Mprefix-eq,
auto simp add: A-def combinepqir-Syncpiick-defs «w A o1 # {P
e Ay o1 = {}> cartprod-rwrt Q-rec[of o1] introl: mono-GlobalNdet-eq)
also have «... = P o [E]/pair Q o1
by (unfold P-rec[of oo] Q-rec[of o1])
(auto simp add: SKIPS-def Ndet-and-Syncpqir Mprefiz-Syncpqqr-constant
(W A1 g1 7é {})
GlobalNdet-Mprefiz-distr GlobalNdet-sets-commutelof <t Ay - -] w

Ao o0 = {p
introl: mono-Mprefix-eq mono-GlobalNdet-eq)
finally show «?f (g, 01) = .. .
next

assume «w Ag og # {p w A1 o1 £ {p
with p-disjoint- have « Ay o9 = {}» «¢ A1 01 = {}»
by (simp-all add: o-disjoint-e-def o-simps)
show «w Ag 0¢g # {} = w 41 01 # {} = ?f (00, 01) = P 0y [[E]]/Pair
Qo
by (simp add: «w Ag o9 # {}> «w Ay 01 # {}» w-A P-reclof o¢] Q-rec[of
o1] SKIPS-def
Ndet-and-Syncpqir cartprod-rwrt GlobalNdet-sets-commutelof «w Ao
-])
qed

qed
qed
qed
qed

126

corollary P-nd-combinepqir-Syncptick :
(P{Ao)nda 00 [E]yPair P{A1)na 01 = P({A0 na®[E]/Pair A1))nd (00, 01)>
proof —
have <P(Ao)na o0 [ElyPair P{A1)na 01 =
Pskips(Ao(w == Xo. {}))nd 00 [E]l/Pair Psxrrs{Ai(w := Ao. {}))nd
o1’
by (simp add: Pgskps-nd-updated-w)
also have «... = PSK]P3<<<<A0(|LU = A\o. {}D nd®[[E]]/Pair Al(]w = A\o. {}D>>>>nd
(0'0, 01)>
by (rule Pskrps-nd-combinepqir-Syncptick) simp-all
also have «((Ao(w := Ao. {}|) na®[E]/ Pair A1(w = Ao. {})) = (4o na®[E]/ Pair
A1) (w = Ao. {})
by (auto simp add: combinep qir-Syncptick-defs)
also have (Psx1ps((A4o nd®[E]y Pair A1)(w :=Ao. {}))na = P({A0 na®[E]/Pair
A1>>>>nd>
by (simp add: Pskps-nd-updated-w)
finally show ?thesis .
qed

corollary Pggpg-d-combinepqir-Syncptick:
(Pskrps{Ao)d 0o [Elypair Pskirs{Ai)a 01 = Psxrrs{{Ao a®[E]/ Pair
A1))a (o0, 01)
if «p-disjoint-e Ay> and <p-disjoint-e Ay» and <indep-enabl Ay o9 E Ay 01>
proof —
have «Pskrps(Ao)a 0o [Elypair Pskirs{Ai)a 01 = Pskrrs{{Ao)a—nd)nd
00 [E]lyPair Psxrps{{A1)d—snd)nd o1’
by (simp flip: Psk1ps-nd-from-det-to-ndet-is-Ps k1 pgs-d)
also have (... = Psgrps(({Ao)isnd nd®[E]/ Pair (A1)d—snd))nd (00, 01)>
by (rule Pskps-nd-combinepqir-Syncptick)
(metis o-disjoint-e-def det-ndet-conv-e(1) det-ndet-conv-o(1) <p-disjoint- Ag»,
metis o-disjoint-e-def det-ndet-conv-e(1) det-ndet-conv-o(1) <o-disjoint-€
A1>)
also have ¢... = PSKIPS<<<<A0 d®[[E]]/Pair A1>>>>d (0’07 0'1))
by (simp add: Pg g 1pg-combinep qir-Syncpiick-behaviour-when-indep «indep-enabl
AO (s} E A1 0'1))
finally show ?thesis .
qed

corollary P-d-combinepqir-Syncptick:

(P{Ao)a 00 [E]ypair P(A1)a 01 = P{{Ao a®[E]y Pair A1))a (00, 01)

if <indep-enabl Ay o9 E A1 01>
proof —

have <P<<A0>>d go [[E]]/Pair P<<A1>>d g1 =

Pskrps(Ao(w := Ao. O))a 00 [E]lypair Psxrps{Ai(w := Ao. O))a op>
by (simp add: Pgkps-d-updated-w)

also have «... = PSK[p5<<<<A0(]w = Mo. <>D d®[[E]]/Pair A1(|w = Ao. <>D>>>>d
(0'0, 01))

by (subst Pg 1 ps-d-combinepqr-Syncpiick, simp-all add: o-simps o-disjoint-e-def)

(rule indep-enabll,

127

use <indep-enabl Ag o9 E Ay 01| THEN indep-enablD] in <simp add: e-simps»)
also have «(Ao(w = Ao. Q) a®[E]/ pair A1(w := Ao. O)) = (Ao a®[E]/ Pair
A1) (w = Ao. O
by (simp add: combinepqir-Syncptick-defs, intro ext, simp)
also have <PSK[p5'<<<<A() d®[[EH,/Pa7;r A1)>(]w = \o. <>D>>d = P<<<<A0 d®[[E]],/Pair
A1>>>>d)
by (simp add: Pgkps-d-updated-w)
finally show “thesis .
qed

Pairlist

theorem Pgy1pg-nd-combinepqiriist-Syncptick :

fixes F :: <'a set

assumes p-disjoint-¢ : <p-disjoint-¢ Ag> <p-disjoint-c Ay>

shows «Psk1ps{Ao)na 00 [E]yPairtist Pskrps{Ai)na 01 = Pskrps{{4o
nd®ﬂE]]/Pairlist A1>>>>nd [0'0, 01]>
proof —

let 74 = (7 = 7 (Ao nd®[E]/Pair A1), w = Xa. (A(r, s). [r, s]) “w (4o
nd®[[E]]/Pair A1>> 0D>

have Psr1ps{Ao)na 00 [E]/Pairtist Pskips{Ai)na 01 =

RenamingTick (Pskrps{Ao)nd 0o [ElyPair Pskips{Ai)na o1) (A(r, s).
[, s])»
by (szmp Only: SynCPair'tO'SyncPairlist)

also have «... = RenamingTick (Pskrps{{Ao nd®[E]/Pair A1))nd (00, 01))

(A(ry 8). [r, s])»

by (simp add: Pgg1ps-nd-combinepqir-Syncptick 0-disjoint-€)

also have «... = PSKIPS<<?A>>nd (00, 01))
by (simp only: RenamingTick-Pskps-nd)
also have (... = Psgrps((Ao na®[E]/ Pairtist A1))nd [00, 1]

by (auto introl: Pskps-nd-eql-stronglof <\(r, s). [r, s]> - (00, 01)>, simplified]
inj-onl)
(auto simp add: combine-Syncyi;cx-defs split: if-split-asm)
finally show #“thesis .
qed

corollary P-nd-combinepgiriist-SYncptick :
(P{Ao)nd 00 [Ely Pairtist P{A1)na 01 = P{(Ao na®[E]y Pairtist A1))nd [00,
o1)»
pr]oof —
have <P(Ao)na oo [ElyPairtist P(A1)na 01 =
Pskips{Ao(w := Ao. {}))nda 00 [E]/ Pairtist Psk1ps{Ai(w := Ao. {}))na
g1’
by (simp add: Pgkps-nd-updated-w)
also have (... = Pggrps{{(Ao(w := Ao. {}) na®[E]/ Pairtist A1(w = Ao.
{30))na [o0, o1]
by (rule Pskps-nd-combinepqiriist-SYncprick) simp-all
also have <<<A0(|w = \o. {}D nd®[[E]]/Pairlist Al(lw = \o. {}D>> = <<A0 nd®ﬂEH/Pairlist
A1) (w = Ao. {})»

128

by (simp add: combinepqiriisi-SYncprick-defs, intro ext, simp)
also have Psirps{{Ao na®[E]y pairiist A1)(w = Ao. {}))na = P{(Ao
nd®[[EH/Pairlist A1>>>>nd)
by (simp add: Pgkps-nd-updated-w)
finally show ?thesis .
qed

corollary Pgskps-d-combinepairiist-Syncptick :
Pskrprs{Ao)a 0o [E]ly pairiist Pskrps{Ai1)a o1 = Pskrps{(Ao a®[E]y pairiist
Ai))a oo, o1]
if <p-disjoint-c Ag> and <p-disjoint-¢ A1y and <indep-enabl Ag o9 E A1 01>
proof —
have (Psk1ps{Ao)a 00 [E]/Pairiist Pskips{Ai1)a 01 = Psxi1ps{{Ao)i—snd)na
o0 [E]yPairtist Psxips{{A1)a—nd)nd 01>
by (simp flip: Pskps-nd-from-det-to-ndet-is-Ps i rps-d)
TISO have «... = Pskrps{((4o)dmnd nd®[E]/Pairtist (A1)d—snd))na [00,
o1
by (rule Psg1ps-nd-combinepqiriist-Syncprick)
(metis o-disjoint-e-def det-ndet-conv-e(1) det-ndet-conv-o(1) <o-disjoint-e Ag»,
melis o-disjoint-e-def det-ndet-conv-e(1) det-ndet-conv-o(1) <o-disjoint-€
A1>)
also have (... = Psgrps((4o a®[E]/ Pairtist A1))a (00, 01]
by (simp add: Pggps-combinepqiriist-SYncpiick-behaviour-when-indep <in-
dep-enabl Ag o9 E Ay 01))
finally show ?thesis .
qed

corollary P-d-combinepgiriist-Syncptick :
(P{Ao)a 00 [E]/Pairtist P{A1)a 01 = P({Ao a®[E]/Pairtist A1))a (00, o1]
if <indep-enabl Ay o9 E A1 o>
proof —
have (P(Ao)a 00 [E]yPairiist P{(A1)a 01 =
Pskrps(Ao(w := Ao. O))a 0o [Elypairtist Psxrps{Ai(w := Ao. O))a

g1
by (simp add: Pgkps-d-updated-w)
also have «... = P5K1p3<<<<A0(|w = A\o. <>D d®[[EH/Pairlist A1(|o.) = Ao. <>D>>>>d
[0'0, 0'1])

by (subst Pgr1pg-d-combinepqiriist-Syncprick, simp-all)
(rule indep-enabll,
use <indep-enabl Ay o9 E Ay o1)[THEN indep-enablD] in simp)
also have <<<A0(|w = MAo. <>D d®[[E]]/Pairlist A1(|w = M\o. <>D>> = <<A0 d®[[E]]/Pairlist
A1) (w == Ao. O
by (simp add: combinepqiriist-SYncprick-defs, intro ext, simp)
also have (Psx1ps((Ao a®[E]/pairtist A1)(w :=Ao. O))a = P{{Ao a®[E]/ Pairiist
A1>>>>d>
by (simp add: Pgkps-d-updated-w)
finally show ?thesis .
qed

129

8.2.2 Rlist

theorem Pggpg-nd-combineriisi-SYncprick :
fixes F :: <'a set
assumes p-disjoint-¢ : <p-disjoint-c Ag> <o-disjoint-e Ap>
defines A-def: <A = (Ao na®[E]/Rriist A1)
defines P—def: P = PSKIPS<<AO>>nd> and Q—def: (Q = PSKIPS<<A1>>nd> and
S—def: S = PSKIPS<<A>>nd>
shows «P o [E]/riist Q@ 0s =S (00 # os)»
proof —
let A" = (|7 = 7 (Ao na®[E]yPair A1), w = Ao. Mz, y). 2 # y) ‘w (4o
nd®[[E]]/Pmlr A1>> UD>
from Pggpg-nd-combinepqir-Syncprick| OF o-disjoint-¢]
have <P og [E]/pair @ 05 = Psxrps{{A4o na®[E]/ Pair A1))na (00, 05)> by
(simp add: P-def Q-def)
hence <RenamingTick (P oo [E]/pair @ 05) (Moo, 05). 00 # 05) =
RenamingTick (Pskips((Ao nd®[E]/Pair A1))nd (00, 05)) (Moo, 0s).
oo # 0s)» by simp
also have «RenamingTick (P oo [E]/pair Q 05) (A(0oo, 05). 09 # 05) = P 0y
[E]l/ Rriist Q 05
by (auto intro: inj-onl Syncp qir.inj-on-Renaming Tick-Syncpick
[of <Moo, 05). 09 # o3, simplified])
also have <RenamingTick (Pskrps{(Ao na®[E]/Pair A1))na (00, 05)) (A(oo,
0s). o9 # 0s) = S (o9 # os)
proof (unfold RenamingTick-Pgskps-nd S-def,
rule Ps g 1ps-nd-eql-strong|of <\ og, 08). 0g # 08> ?A" (00, 08)>, simplified))
show <inj-on (A(og, 08). o9 # 08) (Rna 24’ (00, 05))» by (auto intro: inj-onl)
next
show <7 A (case o' of (00, 08) = 0o # 0s) e =
(Ao case o' of (09, 05) = 0o # 05) ‘T (Ao na®[E]yPair A1) 0’ &
for o’ ¢
by (cases o') (auto simp add: A-def combineryisi-Syncpiick-defs combinepqir-Syncpiicr-defs)
next
show «w A (case o’ of (00, 08) = 09 # 05) =
(Ao case "' of (00, 05) = 00 # 05) ‘w (Ao na®[E] s Pair A1) o for

by (cases o') (auto simp add: A-def combineryisi-Syncpick-defs combinepqir-Syncppicr-defs)
qed
finally show «P o¢ [E]/riist Q@ 05 =S (00 # 05)> .
qed

corollary P-nd-combiner;st-Syncptick :
(P(Ao)nd 00 [Elyriist P{A1)na 05 = P((Ao na®[E]/Rriist A1))nd (00 # o5)
proof —
have <P<<A0>>nd s} [[E]]/Rlist P<<A1>>nd g8 =
Psrrps{Ao(w == Ao. {}))na 00 [ElyRiist Psxrps{Ai(w := Ao. {}))na
o8
by (simp add: Pgk1ps-nd-updated-w)
also have «... = P5K1p5<<<<A0(|w = Ao {}D nd@[[E]]/Rlist A1(|w = A\o. {}D>>>>nd
(o0 # os)

130

by (rule Pskps-nd-combineri;si-Syncptick)
(simp-all add: o-simps o-disjoint-c-def)
also have <<<A0(|w = M\o. {}D nd®[[E]]/Rlist A1(|w = M\o. {}D>> = <<A0 nd®ﬂEH/Rlist
A1) (w = Xo. {})
by (simp add: combinegy;si-Syncprick-defs, intro ext, simp add: e-simps)
also have (Psx1ps((A4o nd®[E]/ riist A1) (w :=Xo. {}))na = P((Ao na®[E]/ riist
A1>>>>nd>
by (simp add: Pgkps-nd-updated-w)
finally show ?thesis .
qed

corollary Pgskpgs-d-combiner;st-Syncptick:
Pskrps{Ao)a oo [E]yriist Psxips{Ai1)a 0s = Psxrps{((Ao a®[E]/ Rriist
A))a (o0 4 o5
if «p-disjoint-¢ Ap> and <p-disjoint-¢ A1» and <indep-enabl Ay 09 E Ay o8
proof —
have «Psxrps(Ao)a 0o [Elyriist Pskrps{Ai)a 0s = Psxrps{{Ao)d—nd)nd
00 [Elyriist Psxips{{A1)dsnd)na 08
by (simp flip: Pskps-nd-from-det-to-ndet-is-Ps i pgs-d)
also have «... = Psrps{{(Ao)a—snd na®[E]/ riist (A1)d—snda))na (0o # os)
by (rule Pskrps-nd-combineriise-Syncptick)
(metis o-disjoint-c-def det-ndet-conv-(1) det-ndet-conv-o(1) <p-disjoint-c Ag>,
metis o-disjoint-e-def det-ndet-conv-e(1) det-ndet-conv-o(1) <o-disjoint-€
Al))
also have «... = PSK[ps<<<<A0 d®[[E]]/Rlist A1>>>>d (0'0 # O’S)>
by (simp add: Pgs1ps-combineriist-Syncptick-behaviour-when-indep <indep-enabl
Ag o9 E Ay o8)
finally show ?thesis .
qed

corollary P-d-combineriist-Syncptick:
(P(Ao)a o0 [E]/riist P(A1)a 05 = P((Ao a®[E]/riist A1))a (00 # os)>
if <indep-enabl Ag 09 E A1 0%
proof —
have <P<<A0>>d g0 [[E]]/Rlist P<<A1>>d g8 =
Pskrps(Ao(w := Xo. O))a 00 [E]/riist Psxrps{Ai(w := Xo. Q))a os
by (simp add: Pgk1ps-d-updated-w)
also have ... = Pggrps{{do(w = Xo. Q) a®[E]/riist A1(w = Ao. O)))a
(o0 # os)
by (rule Psk1ps-d-combineriisi-Syncpick, simp-all add: p-simps o-disjoint-e-def)
(rule indep-enabll,
use <indep-enabl Ag o9 E Ay 08 [THEN indep-enablD] in <simp add: e-simps»)
also have <<<A0(]w = Ao. <>D d®[[E]]/Rlist Alqw = Ao. <>D>> = <<A0 d®|IE]]/Rlist
A1) (w := Aa. O
by (simp add: combinery;si-Syncprick-defs, intro ext, simp add: e-simps)
also have (Psxrps((A4o a®[E]/ riist A1)(w :=Xo. O))a = P({Ao a®[E], Rriist
A1>>>>d)
by (simp add: Pgkps-d-updated-w)
finally show ?thesis .

131

qed

8.2.3 ListslenL

theorem Pggps-nd-combineristsienr-SYncptick :
fixes F :: </a set
assumes same-length-reach0 : <N\og’. 0o’ € Rpg Ao 00 = length oo’ = leng»
and same-length-term0 : <N\oo' rs. 0o’ € Rpag Ao 09 = 18 € w Ay 0/ =
length rs = leng»
and p-disjoint-¢ : <p-disjoint-c Ay <o-disjoint-c Ay»
defines A-def: <A = <<A0 nd®[[len0, E]]/ListslenL A1>>>
defines P—def: P = PSKIPS<<AO>>nd> and Q—def: <Q = PSKIPS<<A1>>nd> and
S—def: S = PS’KIPS<<A>>nd>
shows (P oy leno[[E]]/ListslenL Qo1 =5 (6g Qo)
proof —
let A" = (|7 = 7 (Ao na®[E]/Pair A1), w = Ao. (M(z, y). 2 Q@ y) ‘w (4o
nd®ﬂE]]/Pair A1>> UD>
let YRT = RenamingTick
have x : <0’ € R,q ?A’ (00, 01) = length (fst o) = leng» for o’
by (metis (no-types, lifting) Ryq-combinenqdpqir-SYncpiick-subset mem-Sigma-iff
prod.collapse
same-T-implies-same-Rpq same-length-reach0 select-convs(1) subset-iff)

from Pgyps-nd-combinepqir-Syncprick|OF o-disjoint-¢]
have <P o¢ [E]/pair @ 01 = Psk1prs{(4o na®[E]y/Pair A1))na (00, 01)>
by (simp add: P-def Q-def)

hence ?RT (P o¢ [E]/pair Q@ 01) (A(og, 05). 09 Q 05) =
?RT (Psk1ps{{A4o na®[E]/Pair A1))na (00, 01)) (A(00, 05). 09 @ 05)>
by simp
also have «?RT (P (os) HEH/PaiT Q 0'1) ()\(0'0, O'S). oo @ O'S) =P os) leng [[E]]/ListslenL
Q g1)
by (rule Syncpqir-to-Syncristsienr,|OF is-ticks-length-Ps i 1 ps-nd[of Ao, folded
P-def]])
(fact same-length-term0)
also have (?RT (Pskrps{{(Ao na®[E]/Pair A1))na (00, 1)) (A(00, 05). 00
@os) =S8 (00 @oyr)
by (auto simp add: RenamingTick-Pgyps-nd S-def dest!: *
introl: Psk1ps-nd-eql-stronglof «\(og, 0s). 09 @ o8> ?A’ (00, 01)>, sim-
plified] inj-onlI)
(force simp add: image-iff A-def combineristsienr-SYncprick-defs combinep qir-Syncprick-defs
split: if-split-asm)+
finally show %thesis .
qed

corollary P-nd-combiner;stsienr-SYNCptick :
(P(Ao)nd 00 1englEl/Listsienr. P(A1)na 01 = P{{Ao na®[leno, E]/Listsient

A1>>>>nd (UO Q 0'1)>
if same-length-reach0 : «N\oo'. 00’ € Rna Ao 00 = length o¢’ = lengy>

132

proof —
have * : (05 € Ryq (Ao(w := Aoo. {}) na®[leno, E]lsristsient. A1(w = Aoy.
{})) (60 @ 01) = leng < length o> for os
by (auto dest: set-rev-mp[OF - Ry q-combinenqristsien-SYNCptick-subset]
stmp add: same-length-reach0)
have (P(Ao)nd 00 1eny[El/Listsient P(A1)na 01 =
Pskrps{Ao(w = Aoo. {}))nd 00 1eny[ElyListsient Psxrps{Ai(w =
AO’l. {}D>>nd o1
by (simp only: Psk1ps-nd-updated-w)
also have «... = Psxrps{(Ao(w := Aoo. {}) na®[leno, E]/ristsient A1(w :=
Aot {}))nd (00 @ 1)
by (auto intro: Ps k1 ps-nd-combinerisisienr-SYncprick Simp add: same-length-reach0)
also have «... = PSKIPS<<<<AO nd@[[leno, E]]/ListslenL A1>>(|w = Aoy {}D»nd
(O’O (@ 01))
by (auto introl: Pskps-nd-eql-strong-id dest!: x)
(auto simp add: combiner;stsienr-SYncprick-defs split: if-split-asm)
also have «... = P{{Ag na®[leno, E]]/ListslenL A1)V na (o0 Q@ o1)
by (simp only: Psk1ps-nd-updated-w)
finally show ?thesis .
qed

corollary Pgskps-d-combiner;stsienr-SYNCptick
assumes same-length-reach0 : <N\oo’. 0o’ € Rq Ao 00 = length oo’ = leny»
and same-length-term0 : <N\oo'. 00’ € Rq Ap 00 = w Ag 0o’ # O = length
(w AO O'()rl = l@'flo)
and p-disjoint-¢ : <p-disjoint-c Ay> <o-disjoint-e Aq»
and indep-enabl : <indep-enabl Ay o9 F A1 01>
shows «Psr1ps(Ao)d 00 1eny[ElyListsient Psxips{Ai)a o1 =
Pskrps{{Ao a®[leno, E]sListsienr A1))a (00 Q 1)
proof —
have * : <05 € Ryaq ((Ao)a—nd na®[leno, E]ristsient (A1)d—na) (00 Q o1)
—
Jog' o1’ 0s=09' Qo1 Nog' € Rqg Ag 09 N o1’ € Rq A1 o1 for os
by (auto dest!: set-rev-mp[OF - R, q-combinenqristsienr-SYNCprick-subset]
simp add: R, q-from-det-to-ndet same-length-reach0)+
have (Psk1ps{Ao)a 00 jeny[Ely Listsient. Psxrps{Ai)a o1 =
Psk1ps({Ao)dsnd)nd 00 jeng[Ely/Listsient Psx1ps{{A1)dsnda)na o1
by (simp only: Pgkrps-nd-from-det-to-ndet-is-Psirps-d)
also from same-length-term0 have «... = Psg1ps(((A4o)d—nd na®[leno, E]/ristsient
(A1)asna))na (00 @ o1)
by (auto intro!: Pskrps-nd-combinerstsienr,-SYncptick split: option.split-asm
stmp add: o-disjoint-€ R, q-from-det-to-ndet same-length-reach0 w-from-det-to-ndet)
(metis option.sel)
also from indep-enabl have «... = PSKIPS<<<<<<AO d®[[len0, Eﬂ/ListslenL A1>>>>d;>nd>>nd
(00 @ o)
by (auto intro!: Pgkps-nd-eql-strong-id
T-combiner;stsien L -SYNCptick-behaviour-when-indep w-combiner,;stsienr,-SYNCptick-behaviour
simp add: same-length-reach0 dest!: x indep-enablD)
also have ¢... = PSKIPS<<<<A0 d®[[len0, Eﬂ/ListslenL A1>>>>d (0’0 @ 0’1))

133

by (simp only: Pgsk1ps-nd-from-det-to-ndet-is-Psrrps-d)
finally show ?thesis .
qed

corollary P-d-combineristsienr-SYNCptick :
assumes same-length-reach0 : <N\oo’. 00’ € Rq Ao 00 = length oo’ = lengy»
and indep-enabl : <indep-enabl Ag o9 E Ay 01>
shows «P(Ao)d 00 jeno[El/Listsienr. P(A1)a 01 =
P((Ao a®[lenoy, Elsristsient. A1))a (00 @ 1)
proof —
have * : <05 € Rq (Ao(w = Aog. Q) a®[leno, E] s Listsienr, A1(w = Aoi. Q)
(00 @ 1) = leng < length os> for os
by (auto dest: set-rev-mp[OF - Rq-combineqrstsienr-SYNCptick-subset]
simp add: same-length-reach0)
have «P(Ao)a 00 jeno[Ely Listsient P{A1)a 01 =
Psk1ps{Ao(w := Ago. ODVa 00 jeno[Ely Listsient. Psxrps{Ai(w := Aoy.
ODda o1
by (simp only: Pskrps-d-updated-w)
also from indep-enabl
have «... = PSK]ps<<<<A0qw = Aog. OD d®[[len0, E]]/ListslenL A1(|w = Aoy
ODN)a (o0 @ 01
by (auto intro: Psk 1 ps-d-combiner;sisient-SYnCptick Simp add: same-length-reach0)
also have «... = Pgxrps{{A4o a®[leno, E]sListsienr A1)(w := Xog. O))a (00
@ 0'1))
by (auto intro!: Pskps-d-eql-strong-id dest!: x)
(auto simp add: combineristsiens-Syncoriek-defs split: if-split-asm)
also have (... = P((Ao a®[leno, E]sristsient. A1))a (00 @ 1)
by (simp only: Pskips-d-updated-w)
finally show ?thesis .
qed

8.2.4 Multiple

theorem Pggpg-nd-compactification-Syncpgick:
length os = length As = (\A. A € set As = p-disjoint-c A) =
[[E]]/ (0’, A) €Q zip os As. PSKIPS<<A>>nd o = PSKIPS<<<<nd® [[E]]/ AS>>>>nd
o8
proof (induct os As rule: induct-2-lists012)
case Nil show ?case by (simp, subst Pgkpg-nd-rec, simp)
next
case (single o¢ Ap) show ?case
by (auto simp add: RenamingTick-Pgk1ps-nd singl-list-conv-defs
intro!: inj-onl Pg k1 ps-nd-eql-strong)
next
case (Cons o9 01 0s Ag A1 As)
have p-disjoint-c : <A € set (A1 # As) = p-disjoint-e As for A
by (simp add: Cons.prems)
show ?case
by (simp add: Cons.hyps(3)[OF o-disjoint-e, simplified] Cons.prems

134

Ps i 1ps-nd-combinerisi-Syncpiick 0-disjoint-e-transmission-to-iterated-combine,q-Syncpiick)
qed

corollary P-nd-compactification-Syncpici:
dength os = length As = [E] /s (0, A) €Q zip 0s As. P(A)naq 0 = P{(naQ [E],/
AsYyna o8
proof (induct os As rule: induct-2-lists012)
case Nil show ?case by (simp, subst P-nd-rec, simp)
next
case (single o0g Ap) show Zcase
by (simp, subst (1 2) Pskrps-nd-updated-w)
(auto simp add: RenamingTick-Pgx1ps-nd singl-list-conv-defs
intro!: inj-onl Pg 1 pg-nd-eql-strong)
next
case (Cons og 01 s Ag A1 As)
show ?case
by (simp add: Cons.hyps(3)[simplified] Cons.prems
P-nd-combinegy; st -Syncprick, 0-disjoint-e-transmission-to-iterated-combine, q-Syncprick)
qed

corollary Pg g ps-d-compactification-Syncptick:
[length os = length As; NA. A € set As = p-disjoint-¢ A;
Nij. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os!j)] =
IIE]]/ (O’, A) €@ Zip os As. PSK]p5<<A>>d g = PSKIPS<<<<d® [[E]]/ AS>>>>d g8)
proof (induct os As rule: induct-2-lists012)
case Nil show Zcase by (simp, subst Psxpg-d-rec, simp)
next
case (single oo Ap) show Zcase
by (auto simp add: RenamingTick-Pgyps-d singl-list-conv-defs
introl: inj-onl Pg 1 pg-d-eql-strong split: option.split)
next
case (Cons oo o1 0s Ag A1 As)
have g-disjoint-c : <A € set (A1 # As) = p-disjoint-e A for A
by (simp add: Cons.prems(1))
have indep-enabl :
(i < length (A1 # As); j < length (A1 # As); i # j] =
indep-enabl ((Ay # As) Vi) ((o1 # 0s) i) E ((A1 # As) ! j) (o1 # 08) 1 i)
for 7 j
by (metis Cons.prems(2) Suc-less-eq length-Cons nat.inject nth-Cons-Suc)
have <p-disjoint-c Ag> by (simp add: Cons.prems(1))
moreover have <p-disjoint-c¢ (4@ [E], A1 # As)>
by (meson p-disjoint-¢ o-disjoint-e-transmission-to-iterated-combineq-Syncptick)
moreover have (indep-enabl Ay oo E (4Q [E], A1 # As) (o1 # os)
by (metis Cons.hyps(1) Cons.prems(2) length-Cons less-Suc-eg-le
same-length-indep-transmission-to-iterated-combineq-Syncptick)
ultimately show ?case
by (simp add: Pskpg-d-combineriist-Syncptick
Cons.hyps(3)[OF o-disjoint-¢ indep-enabl, simplified)])

135

qed

corollary P-d-compactification-Syncpeick:
[length os = length As;
Nij. [i < length As; j < length As; i # j] =
indep-enabl (As ! i) (os! i) E (As!j) (os!)] =
[El, (0, A) €Q zip 0s As. P(A)q 0 = P((a@[E]l, As))a o5
proof (induct os As rule: induct-2-lists012)
case Nil show ?case by (simp, subst P-d-rec, simp)
next
case (single o¢ Ap) show ?case
by (simp, subst (1 2) Pskrps-d-updated-w)
(auto simp add: RenamingTick-Ps1ps-d singl-list-conv-defs
intro!: inj-onl Pg k1 ps-d-eql-strong split: option.split)
next
case (Cons oo o1 s Ag Ay As)
have indep-enabl :
i < length (A1 # As); j < length (A1 # As); i # j] =
indep-enabl (A1 # As) 'i) (o1 # 0s) 1 i) E ((A1 # As) 1 j) ((o1 # 0s) ! j)»
for i j
by (metis Cons.prems Suc-less-eq length-Cons nat.inject nth-Cons-Suc)
have (indep-enabl Ay oo E (aQ [E], A1 # As) (o1 # os)
by (metis Cons.hyps(1) Cons.prems length-Cons less-Suc-eg-le
same-length-indep-transmission-to-iterated-combineq-Syncptick)
thus ?case
by (simp add: P-d-combineriist-Syncptick
Cons.hyps(3)[OF indep-enabl, simplified])
qed

8.3 Derived Versions

lemma Pg k1 pgs-nd-compactification-Syncy;cr-upt-version:
([[E]]/ P €@ map Q [0<n] P = PSKIPS<<<<nd® [[E]]/ map A [0<Tl]>>>>nd
(replicate n 0)»
if «(A\i. i < n = p-disjoint-e (4 i)
</\i. 1< n—= P5K1p5'<<A i>>nd 0=Qn
proof —
have ([E], P €Q map Q [0..<n]. P = [E], i €Q [0..<n]. Q ©
by (auto intro: mono-MultiSyncpticr-€q2)
also have (... = [E], ¢ €Q [0..<n]. Psxrps{A ©)na O»
by (auto simp add: that(2) intro: mono-MultiSyncptick-€q)
also have «... = [E] s (0, A) €Q zip (replicate n 0) (map A [0..<n]). Psx1ps{A)nd
o)
proof (induct n rule: nat-induct-012)
case (Suc k)
have ([E] , i€Q [0..<Suc k|. Psxrps(A i)na 0 =
[E]l, ic@ [0..<k]. Pskips(A i)na 0 [E]l/riist Psxips{A k)na 0>
using Suc.hyps(1) by (simp add: MultiSyncyi;cr-snoc)
also have «... = [E], (0, A) €Q zip (replicate k 0) (map A [0..<Fk]).

136

Pskips{AYna 0 [El/riist Psxips{A k)na 0>
by (simp only: Suc.hyps(2))
also have «... = [E]/ (0, A) €Q zip (replicate (Suc k) 0) (map A [0..<Suc
k]). Psxrps{A)na o
using Suc.hyps(1) by (simp flip: replicate-append-same add: MultiSyncyi;ci-snoc)
finally show ?case .
qed simp-all
also have (... = Psxrps((na® [E], map A [0..<n|))na (replicate n 0)>
by (rule Pskrps-nd-compactification-Syncpiick) (auto simp add: that(1))
finally show ?Zthesis .
qed

lemma P-nd-compactification-Syncy;ck-upt-version:
{E], P €@ map Q [0..<n]. P = P{{(na@[E], map A [0..<n]))na (replicate
n 0)
if (Ni.i<n= P{(Ai)na 0=0QD
proof —
have ([E], P €Q map Q [0..<n]. P = [E], i €Q [0..<n]. Q@ ©
by (auto intro: mono-MultiSyncptick-€q2)

also have «... = [E], ¢ €Q [0..<n]. P(A i)pa 0>
by (auto simp add: that intro: mono-MultiSyncyiick-€q)
also have «... = [E]/ (0, A) €Q zip (replicate n 0) (map A [0..<n]). P(A)nq
o>

proof (induct n rule: nat-induct-012)
case (Suc k)
have ([E] s i€@ [0..<Suc k|. P(A i)nq 0 =
ﬂ:E]]/ 1€@ [0..<k]. P<<A i>>nd 0 [[E]]/Llist P<<A k>>'n,d 0»
using Suc.hyps(1) by (simp add: MultiSyncyi;ck-snoc)
also have «... = [E]/ (0, A) €Q zip (replicate k 0) (map A [0..<k]). P(A)na
o [Elyriist P{A k)na 0>
by (simp only: Suc.hyps(2))
also have «... = [E]/ (o, A) €Q zip (replicate (Suc k) 0) (map A [0..<Suc
k). P{A)pnq o>
using Suc.hyps(1) by (simp flip: replicate-append-same add: MultiSyncy;cr-snoc)
finally show ?Zcase .
qed simp-all
also have «... = P((na@ [E], map A [0..<n]))na (replicate n 0)>
by (rule P-nd-compactification-Syncpicr) simp
finally show ?thesis .
qed

lemma Pg g ps-d-compactification-Syncpecr-upt-version:
<|[£>Z’]]/ P eQmap Q[0..<n]. P=Psrrps{(a@Q [E], map A [0..<n]))q (replicate
n 0)»
if <A\i. i < n = p-disjoint-c (A i)
Nij.i<n=j<n=1i#j= indep-enabl (A i) 0 E (Aj) 0>
Ni. i <n= Psgrps{Ai)a 0=Q0
proof —
have ([E], P €Q map Q [0..<n]. P = [E], i €Q [0..<n]. Q D

137

by (auto intro: mono-MultiSyncpick-€q2)
also have «... = IIE]]/ i €Q [0..<n]. Psxrps{A4 i)a O»
by (auto simp add: that(3) intro: mono-MultiSyncptick-€q)
also have «... = [E] s (0, A) €Q zip (replicate n 0) (map A [0..<n]). Pskrps(A)a
o)
proof (induct n rule: nat-induct-012)
case (Suc k)
have <|IE]]/ 1€@ [0..<SUC k} PSKIPS<<A Z'>>d 0=
|IE]]/ 1€Q [0<I{7] PSK]p5<<A i>>d 0 [[E]]/Llist PSK[ps<<A k>>d 0»
using Suc.hyps(1) by (simp add: MultiSyncyi;cr-snoc)
also have «... = [E], (0, A) €Q zip (replicate k 0) (map A [0..<k]).
Pskrps(A)a o [E]lyriist Psxips(A k)a 0>
by (simp only: Suc.hyps(2))
also have «... = [E]/ (o, A) €Q zip (replicate (Suc k) 0) (map A [0..<Suc
k). Psxrps{A)a o
using Suc.hyps(1) by (simp flip: replicate-append-same add: MultiSyncyycr-snoc)
finally show ?case .
qed simp-all
also have (... = Psxrps((a® [E], map A [0..<n]))a (replicate n 0)>
by (rule Pskps-d-compactification-Syncpiicr) (auto simp add: that(1, 2))
finally show #“thesis .
qed

lemma P-d-compactification-Syncpticr-upt-version:
{E], P €Q map Q [0..<n]. P = P{(a@ [E], map A [0..<n]))q (replicate n
0)
if <Nij.i<n=j<n=i+#j= indep-enabl (A i) 0 E (Aj) 0>
Ni.i <n= P(Ai)g 0=Q b
proof —
have ([E], P €Q map Q [0..<n]. P = [E], i €Q [0..<n]. Q ©
by (auto intro: mono-MultiSyncptici-eq2)

also have (... = [E], ¢ €Q [0..<n]. P(A i)q 0>
by (auto simp add: that intro: mono-MultiSyncyiick-eq)
also have (... = [E] / (o, A)€Q (zip (replicate n 0) (map A [0..<n])). P(A)q
o

proof (induct n rule: nat-induct-012)
case (Suc k)
have ([E] , i€Q [0..<Suc k|. P(A i)q 0 =
[[E]]/ 1€@ [0<k] P<<A i>>d 0 HE]/Llist P<<A k>>d 0>
using Suc.hyps(1) by (simp add: MultiSyncyi;cr-snoc)
also have «... = [E], (o, A)€Q zip (replicate k 0) (map A [0..<k]). P(A)a
o HEH/Llist P<<A k>>d 0>
by (simp only: Suc.hyps(2))
also have «... = [E], (o, A)€Q zip (replicate (Suc k) 0) (map A [0..<Suc
k]). P(A)q o>
using Suc.hyps(1) by (simp flip: replicate-append-same add: MultiSyncpyicr-snoc)
finally show ?case .
qed simp-all
also have (... = P((a@ [E], map A [0..<n]))q (replicate n 0)»

138

by (rule P-d-compactification-Syncpiick) (auto simp add: that(1))
finally show ?thesis .
qed

8.4 More on Iterated Combine and Events

Through 7-iterated-combine-Syncpiicr, €-iterated-combine-Syncpiicr, R-iterated-combine-Syncptick,
we immediately recover the results proven in HOL— CSP-Proc— Omata. Compactification-Synchronization-F

139

140

Chapter 9

Combining Automata for
Sequential Composition
Generalized

9.1 Definitions

9.2 General Patterns

definition combiney-Seq-¢ ::
(oo, 'a, 'r, 'ag) Agq-scheme, 'r = ('o1, 'a, 's, ‘aq) Ag-scheme, 'c = 'og, 'oc =
‘o1, ‘o] = 'a sety
where <combiney-Seq-e Ay A1 ig i1 05 =
Zf 9 0S € 0 Ao
then if iy 0s € o (A1 [w Ag (ip 09)])
then {}
else € (A [w Ao (ig 09)]) (i1 o8)
else € Ag (ip os)

definition combine,q-Seq-¢ ::
(oo, 'a, 'r, 'ag) Ana-scheme, 'r = (‘o1, 'a, 's, 'a1) Ana-scheme, ‘o = ‘og, ‘o
= o1, 'o] = 'a seb
where <combine, 4-Seq-¢ Ay A1 ig i1 05 =
Zf ig 08 € o Ag
then if i1 os € (Jrew Ao (ip 08). 0 (A1 1))
then {}
else (Jr € w Ap (ig 0s). € (A1 1) (i1 09))
else € Ag (ip 0s)

lemmas combine-Seq-c-defs = combineg-Seq-c-def combine, q-Seq-¢-def

fun combinegy-Seq ::
(oo, ‘e, ', 'ag) Ag-scheme, 'r = ('oq, ‘e, 's, ‘a1) Aq-scheme,

141

'c = oo, ‘o0 = ‘o1, ‘o9 = ‘o1 = o] = (o, e, 's) Ap>
and combine, -Seq ::
(oo, ‘e, 'r, 'ap) Apa-scheme, 'r = (‘o1, e, 's, 'ay) Apq-scheme,
'c = oo, ‘o0 = ‘o1, ‘o9 = o1 = o] = (o, e, 's) Anad
where <combineg-Seq Ag A1 ig i1 [=
(7 =AXose. ifigos€p Ao
then if i1 0s € o (A1 [w Ag (ip 08)])
then ¢
else update-right (A1 [w Ao (ig 05)]) (i 05) (i1 08) e (f-up-opt
7 (. o))
e (frup-opt f) (M\o. |o]),

else update-left Ao (ig os) (i1 os
| |r] = w (41) (i1 09)]»

w = Ags. case w Ag (ip 0s) of O = O
| <combine,q-Seq Ag Ay ig 11 [=
(7= Xos e ifig os € p Ao
then if iy os € (Urew Ao (i 05). 0 (A1 7))
then {}
else (Jrew Ao (ig 0s). update-right (A1 1) (ig os) (i1 0s) e
(Fup-set 1) (\a. {o})
else update-left Ag (ig 08) (i1 0s) e (f-up-set) (Ao. {o}),
w = Aos. Jrew Ao (ip 05). w (A1 1) (i1 os))»

9.3 Specializations

definition combineipgiriist-Sedptick

(('o, ‘e, 'r, 'a) Ag-scheme, 'r = (o, 'e, 's, '8) Aq-scheme] = (‘o list, ‘e, 's) Ay

where <combineipairiist-Sedprick Ao A1 = combineq-Seq Ao A1 hd (Aos. hd (tl
0s)) (As t. [s, t])
definition combinenapairiist-Seqptick

("o, ‘e, 'r, 'a) Ang-scheme, 'r = (‘o, ‘e, 's, 'B) Ana-scheme] = (‘o list, e, 's)
And>

where (combine,apairiist-Seqprick Ao A1 = combine,q-Seq Ao A1 hd (Aos. hd
(tl os)) (As t. [s, t])»

definition combineqpair-Seqprick

(Yoo, ‘e, 'r, 'a) Ag-scheme, 'r = (‘o1, e, 's, '8) Ag-scheme] = (‘og x ‘o1, e,
IS) Ad>

where <combineqpqir-Seqptick Ao A1 = combineq-Seq Ay Ay fst snd Pair)
definition combine,qpqair-Segptick ::

(('o0, ‘e, 'r, ‘o) Apg-scheme, 'r = (o1, ‘e, 's, 'B) Ana-scheme] = (‘og x ‘o1,
‘e, 's) Apa>

where <combine,qpair-Seqptick Ao A1 = combine,q-Seq Ao A1 fst snd Pair)

definition combineqristsienr-Seqptick

(‘o list, 'e, 'r, 'a) Aq-scheme, nat, 'r = (‘o list, ‘e, 's, '8) Aq-scheme] = (‘o
list, ‘e, 's) Ag»

where <combinegristsienr-Sedptick Ao leng A1 = combineq-Seq Ao Ay (take
leng) (drop leng) (@)
definition combinenqristsienr-Selptick ::

(o list, ‘e, 'r, 'a) Anq-scheme, nat, 'r = (‘o list, 'e, s, '8) Apq-scheme] = (‘o

142

list, ‘e, 's) Ana>
where (combinenqristsienr-Seqprick Ao leng A1 = combine,q-Seq Ay A1 (take
leng) (drop leng) (@Q)»

definition combineiriist-Seqptick

("o, ‘e, 'r, ‘o) Ag-scheme, 'r = (‘o list, e, 's, '8) Agq-scheme] = (‘o list, ‘e, 's)
Ad>

where (combineqriist-Seqprick Ao A1 = combineq-Seq Ag A1 hd tl (#)»
definition combine,qriist-Seqprick

("o, ‘e, 'r, 'a) Ana-scheme, 'r = (‘o list, ‘e, 's, 'B) Anq-scheme] = (‘o list, 'e,
's) Apa>

where <combine,qriisi-Sedprick Ao A1 = combine,q-Seq Ao A1 hd tl (#)

lemmas CombinePairlist‘Seqptick'defs = combinedpairlist‘Seqptick'def combinendPairlist'Seqptick'def
and combinepqir-Seqptick-defs = combineq pgir-Seqptick-def combinenqpqir-Seqptick-def
and CombineListslenL'Seq;otick = CombinedListslenL'Seq;)tick'def CombinendListslenL'Seq;)tick:'def
and combineriist-Seqprick-defs = combineqriist-Seqptick-def combinenqriist-Sedptick-def

lemmas combine-Seq-defs =
CombinePairlist'Seqptick'defs CombinePair'Seqptick'defs CombineListslenL'Sertick:
combineriist-Seqptick-defs

bundle combine-Seq-syntar begin

notation combinegpairiist-Seqptick (((- a3y pairtist -)> [0, 0])
notation CombinendPairlist'Sertick (<<<' nd®;/Pairlist '>>) [07 0])
notation combineqpair-Seqptick (<{- a®3y Pair -)> [0, 0])

notation combine,qpair-Seqprick (<{- na®sy Pair -)» [0, 0])

notation combineqristsienr-Seqptick (({- a®-3ristsient -)> [0, 0, 0])
notation combinenaristsient-Selptick ({(- nd®-3Listsienr -)> [0, 0, 0])
notation combineqriist-Seqprick (<(- a®sy riist -)> [0, 0])

notation combine,qriist-Seqptick (({(- nd®3/ riist -)> [0, 0])

end

unbundle combine-Seq-syntax

9.4 First Properties

lemma e-combinepairiist-Sedptick :
€ (Ao a®3/ Pairtist A1) 0s = combineq-Seq-c Ag A1 hd (hd o tl) s
€ {Bo nd®3y Pairlist B1) 0s = combine,q-Seq-c By Bi hd (hd o tl) os
by (auto simp add: combine-Seq-c-defs combinepgiriisi-Sedprick-defs
e-simps o-simps option.case-eq-if)

lemma e-combinepqir-Seqpiick :

143

€ (Ao a®3/ pair A1) 05 = combineq-Seq-e Ay Ay fst snd os

€ (Bo nd®3y Pair B1) 05 = combine, 4-Seq-e By By fst snd os

by (auto simp add: combine-Seg-c-defs combinepqir-Seqpick-defs
e-simps o-simps option.case-eq-if)

lemma e-combineristsienr-Seqptick :
€ (Ag a®lenoiristsienr A1) 08 = combineg-Seq-= Ay A1 (take leng) (drop leng)
o8
€ {Bo na®lengsristsienr, B1) 0s = combine,q-Seq-¢ By By (take leng) (drop
leng) os)
by (auto simp add: combine-Seq-e-defs combinerisisienL-S€qptick
g-simps o-simps option.case-eq-if)

lemma e-combineri;st-Seqptick :
€ (Ao a®s/riist A1) 05 = combineq-Seq-e Ay A1 hd tl o5
(€ (Bo nd®;y Riist B1) 0s = combineyq-Seq-c By By hd tl o5
by (auto simp add: combine-Seg-e-defs combinery;si-Seqpiick-defs
g-simps 0-simps option.case-eq-if)

9.4.1 Reachability

lemma Rg-combineqristsien-S€qptick-subset:
(Ra (Ao a®lenogsristsient A1) (S0 Q@ s1) C {to Q@ t1 [t t1. tog € Ra Ao sop> (is
<254 C o)
if same-length-Ra: <A\to. to € Raq Ao so = length to = leny
proof safe
show (t € 54 = Jig t1. t = tg Q 1 A tg € Rq Ag so» for ¢
proof (induct rule: Rq.induct)
case init show ?Zcase by (metis Rq.init)
next
case (step o’ o' a)
from step.hyps(2) same-length-R4 obtain tg 1
where 0’ = ty Q 1) (tg € Rq Ap so> <length tg = lengy by blast
with step.hyps(3) show ?case
by (auto simp add: combiner;stsienr-Seqptick Mmap-option-case
split: if-split-asm option.splits) (metis Rq.step)
qed
qed

lemma R, q-combinenqristsienr-S€qptick-subset:
(Rpd (Ao na®lengsristsient A1) (so Q@ s1) C {to Q t; |t t1. to € Rpa Ao S0}
(is <254 C =)
if same-length-Rpq: <\to- to € Rna Ao so = length tg = leng>
proof safe
show <t € 254 =— Ttg t1. t = tg Q 1 A tg € Rpg Ag so» for ¢
proof (induct rule: R, q.induct)
case init show ?case by (metis Ry, q.init)
next
case (step o’ 0" a)

144

from step.hyps(2) same-length-R., 4 obtain ty t;
where 0’ = tg Q t1> <tg € Rna Ao so» <length tg = leng> by blast
with step.hyps(3) show ?case
by (auto simp add: combiner;sisienr-Seqptick split: if-split-asm) (metis
Rud.step)
qed
qed

lemma Rg-combineqpairiist-Seqprick-subset:
<R)d (Ao a®s5/ Pairtist A1) [s0, s1] C {[to, t1] |to t1. to € Raq Ao so}> (is <254
C -
proof safe
show <t € 25, = Jity t1. t = [to, tl] Aty € Rq Ag so » for t
proof (induct rule: Rq.induct)
case init show ?case by (metis Rg.init)
next
case (step o’ o' a)
from step.hyps(2) obtain ¢y t; where o’ = [to, t1]> <tog € Raq Ao so> by blast
with step.hyps(3) show ?case
by (auto simp add: combinepqiriist-Seqptick-defs map-option-case
split: if-split-asm option.split-asm) (metis Rq.step)
qed
qed

lemma R, q-combine,apairiist-Seqptick-subset:
<R7)1d (Ao nd®3/ Pairtist A1) [S0, s1] C {[to, t1] |to t1. to € Rna Ao so}> (is <254
C -
proof safe
show <t € 25, = Jitg t1. t = [to, tl] Aty € Rpa Ag so » for t
proof (induct rule: Rpq.induct)
case init show ?case by (metis R q.init)
next
case (step o’ 0" a)
from step.hyps(2) obtain ty t; where <o’ = [to, t1]) (to € Rna Ao so> by
blast
with step.hyps(3) show ?case
by (auto simp add: combinepqiriist-Sedprick-defs split: if-split-asm) (metis
Rond-step)
qed
qed

lemma R-combineqpqir-Seqptick-subset:

(Ra (Ao a®sy Pair A1) (50, 51) € {(to, t1) |to t1. to € Ra Ao so}» (is <254 C
)
proof safe

show <t € 254 = Jitp t1. t = (t(), tl) Aty € Rq Ag sg » for ¢

proof (induct rule: Rq.induct)

145

case init show ?Zcase by (metis Rq.init)
next
case (step o’ 0" a)
from step.hyps(2) obtain ¢, t; where <o’ = (tg, t1)> <tg € Rq Ao so> by blast
with step.hyps(3) show ?case
by (auto simp add: combinep qir-Seqpiick-defs map-option-case
split: if-split-asm option.split-asm) (metis Rq.step)
qed
qed

lemma R, q-combine,qpqir-Seqptick-subset:
<R;d (Ao na®;y Pair A1) (S0, s1) € {(to, t1) |to t1. to € Rpa Ao so}> (is «?Sa
C -
proof safe
show <t € 254 = Jity t1. t = (to, tl) Aty € Rpg Ag so » for t
proof (induct rule: Ryq4.induct)
case init show Zcase by (metis Ry, q.init)
next
case (step o’ 0" a)
from step.hyps(2) obtain ty t; where o’/ = (to, t1)) <to € Rna Ao so> by
blast
with step.hyps(3) show ?case
by (auto simp add: combinepgir-Seqpiick-defs split: if-split-asm) (metis
Rya-step)
qed
qed

lemma Rg-combineqriist-Seqpeick-subset:
(Ra (Ao a®syriist A1) (so # s1) C {to # t1 |to t1. to € Raq Ao sop> (is <254
C)
proof safe
show <t € 254 = dtg t1. t = tg # t1 N tg € Rq Ao so » for ¢t
proof (induct rule: Rq.induct)
case init show ?Zcase by (metis Rq.init)
next
case (step o’ o' a)
from step.hyps(2) obtain ¢y t; where o' = tg # t1» <tg € Rq Ao so» by blast
with step.hyps(3) show ?case
by (auto simp add: combinepy;si-Seqpiick-defs map-option-case
split: if-split-asm option.split-asm) (metis Ry.step)
qed
qed

lemma R, q-combine,qriist-Seqptick-subset:

(Rna (Ao na®;/riist A1) (so # s1) € {to # t1 |to t1. to € Rna Ao sop> (is
<254 C o)
proof safe

show <t € 254 = tg t1. t = tg # t1 A tg € Rpg Ao so » for t

146

proof (induct rule: R q.induct)
case init show ?case by (metis R, q.init)
next
case (step o’ ¢ a)
from step.hyps(2) obtain ty, ¢t; where <o’ = ty # t1> <tg € Rna Ao So> by
blast
with step.hyps(3) show Zcase
by (auto simp add: combineriisi-Seqpiick-defs split: if-split-asm) (metis
Rud-step)
qed
qed

9.5 Normalization

lemma 7-combinepqiriist-Seqptick-behaviour:

7 ((Ao a®3y Pairtist A1))dsnd [50, 51] € = T ((Ao)dsnd nd®3y Pairtist (AT
(A1 m)asna)) [s0, 51] &

by (auto simp add: combinepqiriist-Seqptick-defs det-ndet-conv-defs option.case-eq-if
e-simps p-simps)

lemma 7-combinepqir-Seqpick-behaviour:

T ((Ao a®3/Pair A1))dsnd (S0, 51) € = T ((Ao)dsnd na®sy Pair (Ar. (A1
mYa—na)) (50, 81) €

by (auto simp add: combinep qir-Seqpiick-defs det-ndet-conv-defs option.case-eq-if
e-simps 0-simps)

lemma 7-combineristsienr-Sedptick-behaviour:

1 ((Ao a®lenosristsienr A1))d—nd (050 Qos1) e =7 ((Ao)dosnd na®lenosListsient
(Ar. (A1 mYasna)) (0so Q@ os1) e

by (auto simp add: combiner;sisienr-Seqptick det-ndet-conv-defs option.case-eq-if
e-simps 0-simps)

lemma 7-combiner;si-Seqpeick-behaviour:

7 ((Ao a®s5y Rriist A1))dsnd (So # 051) e =T ((Ao)d—snd nd®iy riist (Ar. (A1
TVd—na)) (S0 # 0s1) e

by (auto simp add: combinegy;si-Seqpiick-defs det-ndet-conv-defs option.case-eq-if
e-simps 0-simps)

Behaviour of normalisations

lemma Pggps-combinepgiriist-Sedptick-behaviour:

(Pskrps{(Ao a®iy pairtist A1))d [50, 51] = Pskrprs{({Ao)d—nd nd®sy Pairtist
(Ar. (A1 Y asnd)))nd [0, s1]

by (fold Psk1ps-nd-from-det-to-ndet-is-Ps k1 ps-d,

rule Pg k1 pg-nd-eql-strong-id, unfold R, q-from-det-to-ndet)
(all <drule set-mp[OF Rg-combineqpqiriist-Seqptick-subset],
auto simp add: combinepgiriist-Sedptick-defs from-det-to-ndet-def o-simps

split: option.split)

lemma P-combinepqiriist-Seqptick-behaviour:

147

(P{(Ao a®3/ Pairtist A1))a [50, s1] = P{{(Ao)d—nd nd®sy Pairtist (Ar. (A1
TYdsnd)))nd [S0, 1]
by (fold P-nd-from-det-to-ndet-is-P-d,
rule P-nd-eql-strong-id, unfold R, q-from-det-to-ndet)
(dm‘de Set'mp[OF Rd'combinedpairlist'SGthick'SUbseﬂv
auto simp add: combinepgiriist-Seqptick-defs from-det-to-ndet-def o-simps
split: option.split)

lemma Pgsgps-combinepqir-Seqptick-behaviour:
Psrrprs{(Ao a®3/ pair A1))a (S0, 51) = Psxrprs{{((Ao)dsnd nd®3y Pair (AT
(A1 rYasnd)))nd (so, 51)»
by (fold Pskps-nd-from-det-to-ndet-is-Ps k1 ps-d,
rule Pg k1 pgs-nd-eql-strong-id, unfold R, q-from-det-to-ndet)
(all <drule set-mp[OF Rg-combineqpqir-Seqptick-subset]),
auto simp add: combinepqir-Seqpick-defs from-det-to-ndet-def o-simps split:
option.split)

lemma P-combinepqir-Seqpiick-behaviour:
(<P<<<<x;10 A3y Pair A1))d (50, 51) = P{{{A0)d—nd nd®s/ Pair (AT. (A1 T)asnd)))nd
S0, S1)°
by (fold P-nd-from-det-to-ndet-is-P-d,
rule P-nd-eql-strong-id, unfold R, q-from-det-to-ndet)
(drule set-mp[OF Rq-combineqpqir-Seqpiick-subset],

auto simp add: combinepqir-Seqpiick-defs from-det-to-ndet-def o-simps split:

option.split)

lemma Pgxps-combineriist-Seqptick -behaviour:
(Psri1ps{(Ao a®;/Rriist A1))a (so # 51) = Psxiprs{((Ao)asnd nd®i/ riist
(Ar. (A1 T)asnd))Ina (S0 # s1)
by (fold Pskps-nd-from-det-to-ndet-is-Psx ps-d,
rule Psk1pgs-nd-eql-strong-id, unfold R, q-from-det-to-ndet)
(all <drule set-mp[OF Rg-combineqriist-Seqptick-subset],
auto simp add: combineriist-Seqpiick-defs from-det-to-ndet-def o-simps split:
option.split)

lemma P-combinery;st-Seqptick-behaviour:
(P{(Ao a®3/ riist A1))a (50 # 51) = P{((A0)d—nd na®sy riist (AT (A1 ")dsnd))) nd
(s0 # s1)
by (fold P-nd-from-det-to-ndet-is-P-d,
rule P-nd-eql-strong-id, unfold R, q-from-det-to-ndet)
(drule set-mp|OF Rg-combineqriist-Seqpiick-subset],
auto simp add: combineriist-Seqprick-defs from-det-to-ndet-def o-simps split:
option.split)

lemma Pggps-combineristsienr-Sedptick-behaviour:
(Pskrps{(Ao a®lenosnistsienr A1))a (050 Q 0s1) = Psrrps{({A4o)d—na

148

nd®lenosristsient, (Ar. (A1 ")asnd)))nd (050 Q@ o51)>
if <Aoso’. 050’ € Raq Ag 089 = length sy’ = leng>
by (fOld PSKIPS—nd—fmm—det—to—ndet—is—PSK]pg—d,
rule Pg k1 pg-nd-eql-strong-id, unfold R, q-from-det-to-ndet)
(all <drule set-mp[OF Rg-combineqristsien-Seqptick-subset| OF that], rotated)y,
auto simp add: combiner;stsienr-S€qptick from-det-to-ndet-def o-simps split:
option.split)

lemma P-combineristsienr-Seqptick-behaviour:
(P{(Ao a®lenosristsienr A1))a (050 @ 0s1) = P{{(Ao)d—nd na®lenosristsient
(Ar. (A1 m)asnd)))na (0so Q os1)
if «<A\otg. oty € Rq Ao 059 = length oty = leng>
by (fold P-nd-from-det-to-ndet-is-P-d,
rule P-nd-eql-strong-id, unfold R, q-from-det-to-ndet)
(drule set-mp[OF Rq-combineqristsienr,-Seqptick-subset| OF that], rotated),
auto simp add: combiner;stsienr-S€qptick from-det-to-ndet-def o-simps split:
option.split)

149

150

Chapter 10

Compactification of
Sequential Composition
Generalized

10.1 Iterated Combine

10.1.1 Definitions

fun iterated-combineq-Seqpiick 2 <([('r = ('o, ‘e, 'r) Aq) list, 'r] = (‘o list, ‘e, 'r)
Ar ((a® sy -)> [0])

where (4@, [|) 7= (7 = Xos a. O, w = Aos. [r]])

| <<d® W [AO]>> r= d<< 0 r>>0"—>0'5>

| (a® sy Ao # A1 # As) = (Ao 7 a®s/riist (aQ 3y A1 # As))

fun dterated-combine,q-Seqpiick = ([('r = ('o, ‘e, 'r) Anaq) list, 'r] = (‘o list, e,
'r) Ana> ((na@ s,/ -0 [0])

where ((,a®;/) 7 = (7 = Aos a. {}, w = Aos. {r}|»

| <<<1’Ld® Iv4 [AO]>> r= nd<<AO r>>0;>as>

| (na®sy Ao # Ay # As) 1 = (Ao T na®s/Riist (nd@ 5y A1 # As))

lemma iterated-combiney-Seqpyicr-simps-bis: <As # [| = (4@ 3, Ao # As) r =

(Ao r a®s5/Rriist (@35 As))
and iterated-combine, q-Seqptick-simps-bis: «Bs # [| = (na@ 3y Bo # Bs) r =

(Bo 7 na®syriist (na@ sy Bs))»
by (induct As, simp-all) (induct Bs, simp-all)

10.1.2 First Results

lemma combinerisisienr-Seqptick-cOMbineriist-Seqptick-€q:
€ (a(Ao)oos a®Linistsienr A1) (S0 # 08) = € (Ao a®sy riist A1) (so # os)
T (a{A0)osos d®@LiListsienr A1) (50 # 05) e = T (Ao a®3yRriist A1) (o #
os) e

€ <<nd<<B0>>a‘—>as nd®1;List5lenL Bl>> (50 # 05) =£ <<BO nd®;/Rlist B1>> (50 #

151

o8)
(T {na{Bo)osos nd®@LiListsient B1) (so # 08) e = T (Bo nd®3y riist B1) (S0
os) e
by (Simp_a” add: s—simps Q‘Simps CombineListslenL'Seq;?tick combineRlist‘Sethick‘defs
o-0s-conv-defs)
(safe, auto simp add: map-option-case split: option.splits)

lemma combinepqiriist-Seqptick-and-iterated-combine-Seqpi;cr-€q:

€ (Ao r a®sypairtist A1) [s0, 51] = € (a5 [Ao, A1]) 7) [s0, s1]>

7 (Ao T a®3y Pairtist A1) [s0, s1] e = 7 ((a@ 5/ [Ao, A1]) 1) [s0, 51] ©

€ (Bo T nd®sy Pairtist B1) [s0, s1] = € ({(na@® 3y [Bo, Bil)) [s0, s1]

7 (Bo T na®;3y Pairtist B1) [s0, 51] e = T ((na@ 3/ [Bo, Bi]) r) [s0, 51] e

by (Slmp_all add: s—simps Q‘Simps CombinePairlist'SQthick'defs CombineRlist‘Sethick‘defs
o-0s-conv-defs)

(safe, auto simp add: map-option-case split: option.splits)

=

lemma combinepqiriist-Seqpiick-and-combinery;st-Seqptick-€q :

€ (Ao a®s/ Pairtist A1) [0, s1] = € (Ao a®3/Rriist (a3 [A1])) 50, 1]

1 (Ao a®3y Pairtist A1) [s0, s1] e = T (Ao a®s/ riist (@35 [A1])) [s0, 51] e

€ (Bo na®;3y pairtist B1) [50, 1] = € (Bo na®;y riist (nd® sy [B1l)) [s0, s1]>

T (Bo nd®;y Pairtist B1) [S0, 51] € = T (Bo nd®s/Rriist (nd@® sy [Bi])) [50, s1]
e

by (Simp_a” add: 6—simps Q‘Simps CombinePairlist'Seqptick'defS CombineRlist‘Sethick‘defS
o-0s-conv-defs)

(safe, auto simp add: map-option-case split: option.splits)

10.1.3 Reachability

lemma same-length-7-iterated-combineq-Seqptick

dength os = length As = |ot] =7 ((a@Q 3y As) 1) 05 a = length ot = length
As»
proof (induct arbitrary: ot r rule: induct-2-lists012)

case Nil thus ?case by simp
next

case (single og Ap) thus ?case

by simp (metis length-1-transqyE length-1-trans-from-o-to-os(1) length-Cons

list.size(3))
next

case (Cons oo o1 s Ag A1 As)

from Cons.prems Cons.hyps(1, 3) show ?Zcase

by (simp add: combinepy;si-Seqpiick-defs map-option-case g-simps
split: if-split-asm option.split-asm) metis

qed

lemma same-length-t-iterated-combine, q-Seqpick :

dength os = length As = ot € T ((na® ;s As) r) 05 a = length ot = length
As»

152

proof (induct arbitrary: ot r rule: induct-2-lists012)
case Nil thus ?case by simp
next
case (single og Ap) thus ?case
by simp (meson length-1-trans, 4-def length-1-trans-from-o-to-cs(2))
next
case (Cons g 01 0s Ag A1 As)
from Cons.prems Cons.hyps(1, 3) show ?case
by (auto simp add: combineri;si-Seqpiick-defs map-option-case p-simps
split: if-split-asm)
qed

lemma same-length-Rq-iterated-combineq-Seqprick :

ot € Rqg ((aQ 3y As) r) os = length os = length As = length ot = length
As»

by (induct rule: Rq4.induct, simp) (meson same-length-t-iterated-combineq-Seqpiick)

lemma same-length-R, q-iterated-combine, q-Seqptick
(0t € Rya ((na® s, As) 1) 0s = length os = length As = length ot = length
As»
by (induct rule: R q.induct, simp) (meson same-length-t-iterated-combine, 4-Seqptick)

10.1.4 Transmission of Properties

lemma o-disjoint-e-transmission-to-iterated-combine-Seqpiici, :
(As # [| = o-disjoint-c ((last As) r) = p-disjoint-c ((a@) 3, As))
(Bs # [| = o-disjoint-¢ ((last Bs) r) = p-disjoint-c¢ ((na@ 3, Bs))
by (induct rule: induct-list012;
auto simp add: o-disjoint-e-def combineri;si-Seqptick-defs e-simps o-simps
o-os-conv-defs)+

10.1.5 Normalization

lemma w-iterated-combine-Seqpticr-det-ndet-conv:

W ((na® s, map (AA 7. (A r)ana) As)) 05 = w ((a@ 35/ AS) T)dsna 0
by (induct As arbitrary: os r rule: induct-list012[case-names Nil singl Cons])
(simp-all add: from-det-to-ndet-o-0s-conv-commute combineryisi-Seqptick-defs
w-from-det-to-ndet split: option.split)

lemma p-iterated-combine-Seqpt;cr-det-ndet-conv :

0 ((na® sy map (AA 1. (A m)asna) As) 1) = 0 ((aQ s/ As) T)asna>

by (simp add: o-simps w-iterated-combine-Seqpicr-det-ndet-conv)

lemma 7-iterated-combine-Seqpticr-behaviour:
«length os = length As =

T ((a® 5/ As) T)asnda 0s e =T ((na@ 35, map (AA 7. (A T)gna) As) 1) 05

153

proof (induct os As arbitrary: r rule: induct-2-lists012)
case Nil show ?case by simp
next
case (single og Ap)
show ?case by (simp add: from-det-to-ndet-o-os-conv-commute(1))
next
case (Cons g 01 0s Ag A1 As)
show ?case
by (simp add: T-combinery;st-Seqpiick-behaviour split: option.split,
simp add: combineryisi-Seqprick-defs o-iterated-combine-Seqpiicr-det-ndet-conv
w-from-det-to-ndet split: option.split)
(metis Cons.hyps(8) o-iterated-combine-Seqp;ck-det-ndet-conv det-ndet-conv-p(1)
list.simps(9))
qed

lemma Pgkpgs-iterated-combine-Seqpy;cr-behaviour:
assumes same-length: <length os = length As»
shows <PSKIPS<<<<d®§/ AS>> T>>d g8 = PSKIPS<<<<nd®;/ map ()\A r. <<A
TVdsnd) AS) TVna 08
proof (fold Ps k1 ps-nd-from-det-to-ndet-is-Ps x y ps-d, rule Ps k1 ps-nd-eql-strong-id)
show (ot € Rpa ((i® 3/ AS) Vdsna 05 =
T ((na@® sy map (AA . (A 1)agsna) As)) ot a =7 ((a@ 5/ A5) TVasnd

ot ay for ot a
by (simp add: R,q-from-det-to-ndet T-iterated-combine-Seqpi;ci-behaviour
same-length same-length-R-iterated-combineq-Seqptick)
next
show «w ({na@ 3, map (NA 7. (A 1)4gsna) As) 1) ot = w ((a@ 5/ AS) T)a—nd
oty for ot
by (simp add: w-iterated-combine-Seqpy;cr-det-ndet-conv)
qed

lemma P-iterated-combine-Seqpticr-behaviour:

assumes same-length: <length os = length As»

shows (P{{(aQ 3/ As) mVa 05 = P{{na@® s, map (AA 7. (A r)asna) AS) TY)na
o8
proof (fold P-nd-from-det-to-ndet-is-P-d, rule P-nd-eql-strong-id)

show (ot € Rpa ((i® 3/ AS) Vasna 05 =

T ((nd® 5/ map (ANA 1. (A 1)agsna) As) 1) ot a =7 ((a@ 5/ As) T)asnd
ot a) for ot a
by (simp add: R,q-from-det-to-ndet T-iterated-combine-Seqpi;ci-behaviour
same-length same-length-R-iterated-combineq-Seqptick)

qed

154

10.2 Compactification Theorems

10.2.1 Binary
Pair

lemma Pggps-nd-combinepqir-Seqptick :
fixes Ag A
assumes at-most-1-elem-term : <at-most-1-elem-term Ag»
— This assumption is necessary in the new setup, otherwise the result is not
always a Procomaton (for example if w Ag 09 = UNIV, we have P ¢ 5, Q 01 =
GlobalNdet UNIV (Q o1)).

defines A-def: <A = (Ao na®3y Pair A1)
defines P-def: <P = Pskrps{Ao)na’
and Q-def: (Q =)\0'1 r. PSK[p5<<A1 r>>nd g1?
and S—def: S = PSKIPS<<A>>7Ld>
shows «P 0¢ 5, Q 01 = S (00, 01)»
proof —
let ?f = «Pskrps-nd-step (¢ A) (1 A) (w A) (Ao’ case o’ of (00, 1) = P 09
s Qo)
note cartprod-rwrt = GlobalNdet-cartprod|of - - <Az y. - (z, y)», simplified]
note Ndet-and-Seq = Seqpick-distrib-GlobalNdet-left Seqpiicr-distrib-GlobalNdet-right
have P-rec : <P 0y = Pggips-nd-step (¢ Ag) (7 Ap) (w Ap) P og» for og
by (fact restriction-fiz-eq|OF Pgk 1ps-nd-step-constructive-bis[of Ao,
folded Psgrps-nd-def P-def, THEN fun-cong|)
have Q-rec : «Q o1 = (A\r. Pskrps-nd-step (¢ (A1 1)) (1 (A1 1)) (w (41 1))
(Ao1. Q o1 1) 01)» for oy
by (rule ext, simp add: Q-def Pskps-nd-rec)
show <P og 5, Q 01 = S (09, 01)
proof (rule fun-cong[of <\(oo, 01).P 00 3, Q 01> - <(00, 1), simplified])
show «(A(og, 01). P og 5, Q 01) = S
proof (rule restriction-fiz-unique[OF Pg 1 ps-nd-step-constructive-bis[of A],
symmetric, folded Pgskjps-nd-def S-def])
show <?f = ()\(U()7 01). P 00 5/ Q O'1)>
proof (rule ext, clarify)
show «?f (09, 01) = P 09 5, Q o1 for o 04
proof (cases oo € o Ap»)
show <o ¢ 0 AO — ?f (0'0, 0'1) = P oy 14 Q o1
by (subst (2) P-rec)
(auto simp add: combinepqir-Seqpiick-defs e-simps A-def o-simps
Mprefiz-Seqpiick cartprod-rwrt Ndet-and-Seq introl: mono-Mprefiz-eq)
next
assume (og € 0 Ay
hence «w Ay oo # {} by (simp add: o-simps)
then obtain r where «w Ay o9 = {r}p
by (meson at-most-1-elem-term at-most-1-elem-termE)
from <oy € ¢ Ag> have P-rec’ : <P o9 = SKIPS (w Ag 09)» by (simp
add: P-rec o-simps)
have ¢-A : <€ A (09, 01) = (if 01 € 0 (41 1) then {} else e (A1) 1)

155

by (simp add: A-def e-combinepgir-Seqpiick, combine-Seg-e-defs <oy €
Ao) (W AO g = {7”}))
from «og € p Ap> have w-4 : «w A (00, 01) =w (A1 1) o1
by (simp add: A-def combinepqir-Seqptick-defs «w Ag oo = {r})
show «?f (09, 01) = P oo 5, Q 01>
proof (cases <01 € o (A1 r))
show o1 € o (A1) = ?f (00, 01) = P oo 5, Q o1
by (subst (2) Q-rec)
(simp add: P-rec’ e-A w-A SKIPS-def Ndet-and-Seq «w Ag o9 = {r}
0-simps)
next
show o1 ¢ o (A1) = ?f (00, 01) = P oo 5, Q o1
by (subst (2) Q-rec, unfold e-A w-A SKIPS-def)
(auto simp add: A-def P-rec’ Ndet-and-Seq «w Ag 09 = {r}
o0-sitmps cartprod-rwrt combinepq;r-Seqpiick-defs introl: mono-Mprefiz-eq)
qed
qged
qed
qed
qed
qed

corollary Pgkps-d-combinepqir-Seqptick :
(Pskrps{Ao)a 003y (Ar. Pskrps{A1 m)a01) = Psxrps((Ao a®iy/ Pair A1))d
(007 0—1)>
proof —
have (Pskrps{Ao)a 00 5 (A\r. Pskrps(A1L m)a 01) =
Psk1ps{{Ao)dsnd)nd 00 5/ (AT. Psx1ps{{A1 m)asnd)na 01)
by (simp add: Pgkps-nd-from-det-to-ndet-is-Ps i ps-d)
also have «... = Psgrps{{(Ao)dsnd nd®iypPair (AT. (A1 T)and)))na (00,
01))
by (metis Psi1ps-nd-combinepgir-Seqprick at-most-1-elem-from-det-to-ndet
at-most-1-elem-imp-at-most-1-elem-term)
also have «... = P5K1p5<<<<A0 dQ3/ Pair A1>>>>d (0'0, O'1)>
by (simp add: Pgg1pg-combinepqir-Seqpiick-behaviour)
finally show #thesis .
qed

Pairlist

lemma Pgg1ps-nd-combinepairiist-Seqptick :

(Pski1ps{Ao)nd 003/ (Ar. Pskrps(A1 m)na 01) = Psxiprs{(Ao nd®sy/ Pairtist
A1) na [00, 01]

if (at-most-1-elem-term Agy»
proof —

from Pgypg-nd-combinepgir-Seqprick|OF <at-most-1-elem-term Ag]

have (Psk1ps{Ao)na 00 5 (A\r. Pskrps(A1 m)na 01) =

Pskrps((Ao nd®sy/ pair A1))na (00, 01)> «
also have (... = Psgrps{(Ao nd®;y/ Pairtist A1))nda [00, 1]

156

proof (rule Pskps-nd-eql-strong[of «\(og, 01). [00, 01]> - (00, 01)>, simpli-
fied])
show <inj-on (Moo, 01). [00, 01]) (Rnd (Ao nd®3y/ Pair A1) (00, 01))
by (auto intro: inj-onl)
next
show «7 (Ao nd®;y pairtist A1) (case o’ of (09, 01) = [00, 01]) a =
(Ao’. case o’ of (00, 01) = [00, 01]) ‘T (Ao nd®sy Pair A1) 0’ > for o’ a
by (cases o) (auto simp add: combinep qir-Seqptick-defs combinepqiriist-Seqptick-defs)
next
show (w <<A() nd®;/Pairlist A1>> (case o’ Of (O'(), 01) = [0'0, 01]) = w <<A(]
nd®3y Pair A1) o’ for o’
by (cases o) (auto simp add: combinep qir-Seqpiick-defs combinepqiriist-Seqptick-defs)
qed
finally show ?thesis .
qed

corollary Pgskps-d-combinepgiriist-Sedptick
Psrips{Ao)a o0 5y (Ar. Psxrps{Ai r)a 01) = Pskiprs((Ao a®s/ Pairiist
A1))a [o0, 1]
proof —
have (Pskrps{Ao)a 00 3y (A\r. Pskrps(AL 7)a 01) =
Pskrps((Ao)dsna)nd 00 37 (A\r. Psxrps{{A1 m)asnd)nd 01)
by (simp add: Pgkps-nd-from-det-to-ndet-is-Ps i ps-d)
also have «... = PSKIPS<<<<<<AO>>d;>nd nd®;/Pairlist (>\T <<A1 7”>>d‘—>nd)>>>>nd
[007 Ul]>
by (metis Pg g 1ps-nd-combinepairiist-Sedptick at-most-1-elem-from-det-to-ndet
at-most-1-elem-imp-at-most-1-elem-term)
also have (... = Psxrps((Ao a®;y/ Pairtist A1))d [00, o1]
by (simp add: Pg1pg-combinepgiriist-Seqptick-behaviour)
finally show ?thesis .
qed

Rlist

lemma Pggps-nd-combineriist-Seqptick :
(Psk1ps{Ao)na 00 5y (Ar. Psk1ps{A1)na 05) = Pskrps{{Ao na®iy/ riist
A1)V na (o0 # os)
if (at-most-1-elem-term Agy>
proof —
from Pgyps-nd-combinepgir-Seqprick|OF <at-most-1-elem-term Ag>]
have (Pskrps{Ao)nda 00 5 (A\r. Pskrps{AL 7)na 05) =
Pskrps((Ao nd®;y/ pair A1))na (00, 08)> «
also have «... = Pskrps{({A4o na®;/ riist A1))nd (00 # 05)
proof (rule Pgkjps-nd-eql-stronglof <Moo, 08). o9 # o8y - (00, 05)>, simpli-
fied))
show (inj-on (A(og, 0s). 00 # 05) (Rna (Ao nd®sy Pair A1) (00, 05))
by (auto intro: inj-onl)
next
show 7 (Ao nd®3/ Rriist A1) (case o’ of (00, 08) = 00 # 05) a

157

(Ao’. case o’ of (00, 05) = 00 # 05) ‘T (Ao nd®sy Pair A1) 0’ @ for o’ a
by (cases o') (auto simp add: combinep qir-Seqptick-defs combinery;si-Seqpiick-defs)
next
show w (Ao na®3/riist A1) (case o’ of (00, 0s) = o9 # 0s) = w (Ao
nd®;,/Pair A1>> o’ for o’
by (cases o') (auto simp add: combinep qir-Seqpiick-defs combinery;si-Seqpiick-defs)
qed
finally show “thesis .
qed

corollary Pgkps-d-combinerist-Seqptick :
(Psgrps{Ao)a oo 5y (Ar. Pskrps{Ar r)a 0s) = Pskrps{{Ao a®;/ Rriist
Ai))a (o0 # os)
proof —
have (Psirps{Ao)d 00 3y (Ar. Pskxrps{A1 r)q 0s) =
Pskrps((Ao)dsnda)nd 00 3y (A\r. Psxrps{{A1 m)a—snd)nd 05)
by (simp add: Pgkps-nd-from-det-to-ndet-is-Ps k1 ps-d)
alS()) have «... = Psrrps{({Ao)a—snd na®s/riist (AT. (A1 T)asna)))na (00
os)»
by (metis Pgi1pgs-nd-combineriisi-Seqptick at-most-1-elem-from-det-to-ndet
at-most-1-elem-imp-at-most-1-elem-term)
also have (... = Psxrps((Ao a®;y/ riist A1))a (00 # os)
by (simp add: Pggpg-combinerist-Seqptick-behaviour)
finally show ?thesis .
qed

10.2.2 ListslenL

lemma Pgxrps-nd-combinerstsienr,-Sedptick

(Psirps{Ao)nd 050 5y (AT. Psigrps{A1 7)na 051) = Psxrps{{Ao na®lenosristsient
A1)V na (089 Q os1)>
if same-length-reach : «<N\oso’. 080’ € Rua Ao 059 = length osy’ = leng»
and <at-most-1-elem-term Ag>
proof —
from Pgypg-nd-combinepgir-Seqprick|OF <at-most-1-elem-term Ag]
have (Pskrps{Ao)na 050 57 (A\r. Pskrps(A1 T)na 051) =
Pskrps((Ao nd®sy Pair A1))na (050, 051)> -
also have (... = Psgrps{(Ao na®lenosristsienr, A1))nd (050 Q os1)»
proof (rule Pgkps-nd-eql-stronglof <\(osg, 0s1). 089 @ os1> - (089, 051),
simplified])
show <inj-on (A(oso, 0s1). 050 Q 051) (Rna (Ao nd®3/ pair A1) (050, 051))
proof (rule inj-onl, clarify)
fix 0sg’ 051" 050" 051"
assume assms : ((0so’, 051") € Rpa (Ao nd®sy pair A1) (050, 051)
(os0”, 051") € Rpa (Ao na®;y pair A1) (050, 051)
089’ Q@ o5 = 059" @Q 51"
from R, 4-combine,qpair-Seqpiick-subset assms(1, 2)
have <05y’ € Rpg Ao 059> 089" € Rpgq Ao 059> by fast+
with same-length-reach have <length osq’ = length osy’’s by blast

158

with assms(8) show <osy’ = gs9”" N 0s1' = 051" by simp
qged
next
fix o0s’ a
assume s’ € Rpa (Ao nd®3y pair A1) (050, 051)
with R, q-combine,qpqir-Seqptick-subset
obtain osy’ 0s;’ where <os’ = (059, 081")) <080’ € Rpa Ao gso» by fast
from (osy’ € Rng Ao 089> same-length-reach have <length osq’ = leng> by
blast
show 7 (Ao na®lenosListsient A1) (case as’ of (s, 081) = 089 Q 081) a =
(Aos’. case as" of (080, 051) = 0590 Q@ 751) ‘T (Ao ndD3y Pair A1) 08" @
by (auto simp add: «os’ = (os¢’, 0817)» «length oso’ = leng>
CombinePair‘Seq;otick‘defs CombineListslenL‘Seq;ntick)
next
fix o0s’ a
assume s’ € Rpg (Ao nd®3y pair A1) (050, 051)
with R, q-combine,qpqir-Seqptick-subset
obtain osy’ 0s;’ where <gs’ = (050, 081")) <080’ € Rpaq Ao gso» by fast
from (osg’ € Rng Ao 089> same-length-reach have <length osq’ = leng> by
blast
show «w (Ao na®lenosristsienr, A1) (case s’ of (0sy, 081) = 089 Q 081) =
w (Ao nd®sy Pair A1) 08"
by (auto simp add: «os’ = (os¢’, 0817)» <length oso’ = leng>
combinePair‘Squ)tick'defs CombineListslenL‘Seq;ntick)
qed
finally show ?thesis .
qed

corollary Pgsxps-d-combinerstsienr-Septick :
Psikips(Ao)a 0503y (Ar. Psxips{A1 m)a 0s1) = Pskxrps{{Ao a®lenosristsient
A1>>>>d (050 @ 0'81))
if same-length-reach : <N\oso’. 08¢’ € Raq Ao 059 = length osy’ = lengy>
proof —
have (Pskrps{Ao)a 050 5 (A\r. Pskrps(Ar m)a 0s1) =
Pski1ps({Ao)d—sna)na 00 5, (AT Psk1ps({A1 mYasnd)na os1)
by (simp add: Pgkps-nd-from-det-to-ndet-is-Ps i1 ps-d)
also have «... = Psgrps{({Ao)a—snd na®lenosristsient. (A7 (A1 ")asna)))nd
(o0 @ os1)»
by (rule Pskrps-nd-combineristsienr-Seqprick| OF same-length-reach])
(simp-all add: Ry q-from-det-to-ndet at-most-1-elem-imp-at-most-1-elem-term)
also have (... = Psgrps{{d4o a®lenosristsienr A1))a (050 @ 051)>
by (simp add: Psxps-combinerstsienr-Seqptick-behaviour same-length-reach)
finally show ?thesis .
qed

10.2.3 Multiple

theorem Pgsg1ps-nd-compactification-Seqpeick:

159

[length os = length As; NA r. A € set (butlast As) => at-most-1-elem-term (A
] =
SEQ/ (0’, A) E@ Zl'p os As. (/\7‘ PSKIPS<<A T>>nd 0’) = ()\T PSKIPS<<<<nd® ;/
As) mVpa os)
proof (induct os As rule: induct-2-lists012)
case Nil show ?case by (simp add: Pggps-nd-rec)
next
case (single oo Ap) show ?case by (simp add: Pgs g ps-nd-from-o-to-0s-is-Pgkps-nd)
next
case (Cons o9 01 0s Ag A1 As)
have (SEQ/ (o, A) €Q zip (09 # o1 # 05) (Ag # A1 # As). (Ar. Pskrps(A
TVnd 0) =
(Ar. Pskips(Ao m™)na 00 5, SEQ, (0, A) €Q zip (01 # 0s) (A1 # As).
()\7“. PSK[p5<<A r>>nd 0))) by simp
also have <SEQ, (o, A) €Q zip (01 # os) (A1 # As). (A\r. Psxrps{A m)nd
o) =
(Ar. Pskips{{ni@ ;s A1 # As) r)na (01 # 05))
by (rule Cons.hyps(3)) (simp add: Cons.prems)
also have <()\T. PSKIPS<<A0 r>>nd ago ;/ ()\T PSKIPS<<<<nd®;/ A1 # As >> ’r‘>>nd
(o1 # %)) =
: (Ar. Psgrps{{Ao 7 na®syriist (nd@ sy A1 # As))Ina (00 # o1 #
os))»
by (intro ext Pgxps-nd-combinery;si-Seqpiick) (simp add: Cons.prems)
also have (... = (A7. Psk1ps{(na® s/ Ao # A1 # As) r)na (00 # 01 # 05))»
by simp
finally show ?Zcase .
qed

corollary Pgkpgs-d-compactification-Seqptick:
<length os = length As =
SEQ/ (o, A) €Q zip 0s As. (Ar. Pskips{A4 r)q o) = (Ar. PSKIPS<<<<d®;/
As) r)q os)
proof (induct os As rule: induct-2-lists012)
case Nil show ?case by (simp add: Pggps-d-rec)
next
case (single oo Ag) show ?case by (simp add: Pskps-d-from-o-to-os-is-Psips-d)
next
case (Cons oo o1 0s Ag A1 As)
have (SEQ (o, A) €Q zip (09 # 01 # 05) (Ag # A1 # As). (Ar. Pskrps(A
rVa o) =
()\7”. PSK]ps<<A0 7”>>d 00 3/ SEQ/ (O’, A) €@ zip (0'1 # O'S) (Al # AS)
(Ar. Pskrps{A r)q o)) by simp
also have (SEQ/ (0, A) €Q zip (o1 # os) (A1 # As). (A\r. Psxrps(A r)a o)
(Ar. Pskrps{(a® ;s A1 # As) r)a (o1 # 0s))
by (fact Cons.hyps(3))
also have «(Ar. Psrxrps{A4o m)a 00 5 (Ar. Psxrps{{a® ;s A1 # As) r)a
(01 # 03))) =
(Ar. Psrrps{{Ao r a®syriist (4@ sy A1 # As)))a (o0 # o1 # 035))»

160

by (intro ext Pgkps-d-combinegiisi-Seqptick)
also have (... = (Ar. Psrrps((a®Q s/ Ao # A1 # As) r)a (00 # o1 # os))»
by simp
finally show ?case .
qed

161

162

Chapter 11

Application : May
Philosophers dine ?

11.1 Preliminaries

11.1.1 Preliminary lemmas for proof automation

lemma Suc-mod: <n > 1 = i # Suc i mod n»
by (metis One-nat-def mod-Suc mod-if mod-mod-trivial n-not-Suc-n)

lemmas suc-mods = Suc-mod Suc-mod[symmetric]

lemma [-suc: <n > 1 = = n < Suc 0»
by simp

lemma minus-suc: <n > 0 = n — Suc 0 # m»
by linarith

declare Un-insert-right[simp del] Un-insert-left[simp del]

11.2 The dining processes definition
context DiningPhilosophers begin

lemma RPHIL-restriction-fiz-def:
«(RPHIL i = (v X. picks i i — picks i ((i — 1) mod N) —
putsdown i ((i — 1) mod N) — putsdown i i — X)»
by (simp add: RPHIL-def restriction-fiz-is-fir)

lemma LPHILO-restriction-fix-def:
«(LPHILO = (v X. picks 0 (N — 1) — picks 0 0 —
putsdown 0 0 — putsdown 0 (N — 1) — X)»
by (simp add: LPHILO-def restriction-fiz-is-fir)

163

lemma FORK-restriction-fiz-def:
(FORK i = (v X. (picks i i — putsdown i i — X) O
(picks ((i + 1) mod N) i — putsdown ((i + 1) mod N) i — X))
by (simp add: FORK-def restriction-fiz-is-fix)

11.2.1 Unfolding rules

lemmas RPHIL-rec = cont-process-rec|OF RPHIL-def|[THEN meta-eg-to-obj-eq],
simplified]

and LPHILO-rec = cont-process-rec|OF LPHILO-def[THEN meta-eg-to-obj-eql,
simplified]

and FORK-rec = cont-process-rec|OF FORK-def|[THEN meta-eg-to-obj-eq],
simplified]

11.3 Translation into normal form

lemma N-pos[simp]: <N > 0»
using N-g1 neq0-conv by blast

lemmas N-pos-simps[simp] = suc-mods[OF N-g1] l-suc[OF N-g1] minus-suc[OF
N-pos]

11.3.1 FORK, LPHILO and RPHIL are normalizable

Definition of one fork and one philosopher automata

type-synonym id¢,,, = nat

type-synonym o, = nat
type-synonym idy,n;; = nat
type-synonym o,,;; = nat

definition fork-A :: <idforr = (0fork, dining-event, unit) Ap (¢Ap>)
where (A i = recursive-constructor-Ag
[((0, picks i), |1]), ((0, picks ((i + 1) mod N)), [2]),
((1, putsdown i %), |0]), ((2, putsdown ((i + 1) mod N) 7), | 0])]
(Ma. O)

definition 7rphil-A :: <dppi = (0phit, dining-event, unit) Ap (<Ayp)
where <A7.p 1 = recursive-constructor-Ag
[((0, picks i 1), L[1]), (1, picks i ((i—1) mod N)), |2]),
((2, putsdown i ((i—1) mod N)), |3]), ((3, putsdown i 7), 10])]
(MAo. O)

definition Iphil0-A :: «(oppii, dining-event, unit) Aq> (<Aip»)
where (A;, = recursive-constructor-Aq

164

[((0, picks 0 (N — 1)), | 1]), ((1, picks 0 0), 12]),
((2, putsdown 0 0), |3]), (3, putsdown 0 (N — 1)), |0])] (Ao. O)»

Definition and first properties of associated normal processes

definition fork-P-d :: (idjori = Ofork = dining-event process> where «fork-P-d
1= P<<Af i>>d)

definition rphil-P-d :: <idphy = opni = dining-event process) where <rphil-P-d
7= P<<Arp ’[>>d>

definition Iphil0-P-d :: <opni = dining-event process» where <Iphil0-P-d
= P<<Alp>>d>

lemmas fork-P-d-rec = P-d-rec[of <Ay -, folded fork-P-d-def]
and rphil-P-d-rec = P-d-rec[of <A, -, folded rphil-P-d-def]
and Iphil0-P-d-rec = P-d-recof <Aip>, folded Iphil0-P-d-def)

schematic-goal fork-c: «¢ (A5 7) 0 = 25)
and rphil-e: <€ (A,p 1) 0 = ?T)
and Ilphil0-c: < Ajp 0 = ?2U»
unfolding fork-A-def rphil-A-def lphil0-A-def by (all e-det-calc)

schematic-goal fork-r: <7 (Ay i) 0 = 25
and rphil-m: <17 (Ayp 1) 0 = 2T
and lphil0-1: <1 Ajp 0 = ?U>»
unfolding fork-A-def rphil-A-def Iphil0-A-def by (all T-det-calc)

corollary ev-idsorpa: <e € € (Af ©) 0 = fork e =1
and rphil-phil: <e € € (Ayp 1) 0 = phil e = i
and lphil0-phil: <e € € Ajp, o = phil e = 0»
by (auto simp add: fork-c rphil-e lphil0-¢ split: if-split-asm)

corollary ev-idppz: <t < n =0 € ¢ ((Aip # map Arp [1..< n]) ! i) s = phil
o=
by (cases <i = 0v) (simp-all add: lphil0-phil rphil-phil)

lemma indep-forks: <i # j = ¢ (Ay i) o Ne (A j) o' ={p
and indep-phils: <i # 0 = ¢ Ajp o Ne (4, 7)) o' ={p
dFj=e(Api)one (4, 7)o ={h
using ev-id o1& Iphil0-phil rphil-phil by (blast, simp, fastforce, blast)

Equalities between FORK, RPHIL, LPHILO and respectively fork-P-d, rphil-P-d,
Iphil0-P-d

lemma FORK-is-fork-P-d: <FORK i = fork-P-d i 0»
proof (unfold fork-P-d-def)

165

have (0 :: nat) < 2) by simp

thus «<FORK i = P<<Af iYa 0>

proof (induct rule: P-d-induct-iterated)

show (FORK ¢ = X 0 = FORK i = (P-d-step (¢ (Ay 1)) (1 (Af 7)) 7 2)
X 0> for X
by (subst FORK-rec)
(auto simp add: Mprefiz-Det-Mprefiz write0-def numeral-eq-Suc
fork-e fork-t Un-commute introl: mono-Mprefiz-eq)

qed simp-all

qed

lemma RPHIL-is-rphil-P-d: <RPHIL i = rphil-P-d i 0»
proof (unfold rphil-P-d-def)
have (0 :: nat) < 4> by simp
thus <RPHIL i = P(A,, i)q O»
proof (induct rule: P-d-induct-iterated)
show (RPHIL i = X 0 = RPHIL i = (P-d-step (¢ (4yp ©)) (7 (Arp 7))
4) X 0> for X
by (subst RPHIL-rec)
(auto simp add: write0-def numeral-eq-Suc rphil-c rphil-t introl: mono-Mprefiz-eq)
qed simp-all
qed

lemma LPHILO-is-lphil0-P-d: «LPHILO = Iphil0-P-d 0
proof (unfold lphil0-P-d-def)
have «(0 :: nat) < 4> by simp
thus (LPHILO = P(A;,)a 0>
proof (induct rule: P-d-induct-iterated)
show (LPHIL0 = X 0 = LPHILO = (P-d-step (¢ Aip) (T Aip) ~ 4) X O»
for X
by (subst LPHILO-rec)
(auto simp add: write0-def numeral-eq-Suc lphil0-¢ lphil0-T intro!: mono-Mprefix-eq)
qed simp-all
qed

11.3.2 FORKS is normalizable

Definition of the all-forks automaton

type-synonym oy, = (nat list»

definition forks-A @ «(0forks, dining-event, unit) Ag» (<Ap») where (Ap =

(aQ[{}] map Ay [0..<NI)>

Definition and first properties of the associated normal process

definition forks-P-d:: <0 orks = dining-event process» where <forks-P-d = P(Arp)a>

166

lemma forks-e: dength fs = N = ¢ Ap fs = (Ji<N. e (A5 7) (fs! 7))
unfolding forks-A-def using N-pos by (subst e-iterated-combineq-Sync-general-form)
force+

Equality between FORKS and forks-P-d

lemma NFORKS-is-forks-P-d: <FORKS = forks-P-d (replicate N 0)»
unfolding forks-P-d-def forks-A-def FORKS-def
apply (subst P-d-compactification-Sync-upt-version)
by (simp-all add: FORK-is-fork-P-d[unfolded fork-P-d-def] indep-forks indep-enabl-def)

11.3.3 PHILS is normalizable

Definition of the all-philosophers automaton

type-synonym o, = (nat list

definition phils-A :: <(opni1s, dining-event, unit) Ay (<Ap») where <Ap = (4@ [{}]
Ay # map Ay [1..< N

lemma phils-A-def-bis: <Ap = (4@ [{}] map (Xi. if ¢ = 0 then A;p else Ayp 7)
[0..<N)»

unfolding phils-A-def apply (subst (2) upt-rec, simp)

apply (subgoal-tac <map (Ai. if i = 0 then A;, else A,p i) [Suc 0..<N] = map
Ayp [Suc 0..<NJ)

by (presburger, subst list-eq-iff-nth-eq, simp)

Definition and first properties of the associated normal process

definition phils-P-d:: <oppi1s = dining-event process» where <phils-P-d = P(Ap)q>

lemma phils-e: <length ps = N = ¢ Ap ps =¢ Ay, (ps! 0) U (Jie{l..<N}. ¢
(Arp @) (ps 1 i)

unfolding phils-A-def-bis using N-pos

by (subst e-iterated-combiney-Sync-general-form, (auto split: if-splits)+)

Equality between PHILS and phils-P-d
lemma NPHILS-is-phils-P-d: «PHILS = phils-P-d (replicate N 0)»

unfolding phils-P-d-def phils-A-def-bis PHILS-def

apply (subst P-d-compactification-Sync-upt-version|symmetric))

apply (simp-all add: indep-enabl-def indep-phils(1,2) inf-sup-aci(1))

apply (subgoal-tac <{0..<N} = insert 0 {1.<N})

apply (simp add: LPHILO0-is-lphil0-P-d Iphil0-P-d-def)

by (rule arg-cong[OF image-mset-cong]) (auto simp add: RPHIL-is-rphil-P-d
rphil-P-d-def)

11.3.4 The complete process DINING is normalizable

Definition of the dining automaton

167

definition dining-A :: <«(Ophits X Oforks, dining-event, unit) Aq> (¢Ap>) where
(Ap = <<Ap d@[[UN[V]]pair AF>>>

Definition and first properties of the associated normal process

definition dining-P-d:: <ophits X Oforks = dining-event process» where <din-
ing-P-d = P{Ap)a

lemma dining-¢:
<length ps = N = length fs = N =
e Ap (ps, fs) = (e Ajp (ps! 0) U (Jie{1..<N}. e (4rp 7)) (ps!9)) N (Ui<N.
= (47 0) (fs L 1))y
by (simp add: dining-A-def e-combinepq;.-Sync combine-Sync-e-def forks-e phils-¢)

Equality between DINING and dining-P-d

lemma DINING-is-dining-P-d: < DINING = dining-P-d (replicate N 0, replicate N
0)
unfolding dining-P-d-def dining-A-def
apply (subst P-d-combinepq;-Sync|[symmetric))
apply (simp add: indep-enabl-def)
by (simp add: DINING-def NFORKS-is-forks-P-d NPHILS-is-phils-P-d Sync-commute
forks-P-d-def phils-P-d-def)

11.4 And finally: Philosophers may dine ! Always
!

method e-sets-simp uses opt = (simp-all split: if-split-asm) ?,
simp-all add: fork-e Iphil0- rphil-c opt split: if-splits

method A-defs-simp uses opt = (simp-all split: if-split-asm) ?,
simp-all add: fork-A-def lphil0-A-def rphil-A-def opt split: if-splits

11.4.1 Construction of an invariant for the dining automaton

definition <inv-dining ps fs =
length fs = N A length ps = N
ANNVi<N.fsli=0Vfsli=1Vfs!li=2)
ANVi<N.psli=0Vps!li=1Vps!li=2Vps!li=23)
ANWNVi Suci < N— ((fs! Suci=1)<«— ps! Suci##0))A(fs! (N
—1)=2<¢—=ps!0#0)
ANVi<N-—-1. fsli=2 <«—ps!Suci=2) N (fs!0 =
1 «—ps!0=2)p

lemma show-inv-dining:

<length fs = N A length ps = N =

(Vi< N.fsli=0Vfsli=1Vfsli=2) =
Mi<N.psli=0Vpsli=1Vpsli=2vVps!li=3) =

(Vi.Suci < N — (fs! Suci=1+«+—ps! Suci#0)) = (fs! (N —-1)=
2+—ps!0+#0)=

168

Vi< N—1.fs!li=2«—ps!Suci=2)= (fs!0 =1+—ps!0=2)
_—

inv-dining ps fs

by (simp add: inv-dining-def)

lemma inv-DINING: <s € Rq Ap (replicate N 0, replicate N 0) = inv-dining
(fst s) (snd s)»
proof (induct rule: Rq.induct)
case init show ?Zcase by (simp add: inv-dining-def)
next
case (step t u e)
obtain t-ps t-fs u-ps u-fs where t-pair: <t = (t-ps, t-fs)» and u-pair: <u = (u-ps,
u-fs)» by fastforce
hence inv-hyp: <length t-fs = N> <length t-ps = N>
U< N=tfsli=0Vifsli=1Vifsli=2
< N=tps!li=0Vitps!li=1Vips!i=2Vips!i=23
Suci < N = (t-fs! Suci=1) = (t-ps! Suci # 0)»
(t-fs V(N —1)=2)=(t-ps! 0 # 0)
G<N—1= (t-fs'i=2)=(t-ps! Suci=2)
(t-fs!'0=1) = (t-ps! 0 = 2) for i
using step.hyps(2)[simplified inv-dining-def] by simp-all

have u-in-Rg-prem: «(u-ps, u-fs) € Rq Ap (replicate N 0) x Ry Ap (replicate
N 0)»
using Ry.step[OF step.hyps(1, 3), simplified dining-A-def]
by (simp add: u-pair[symmetric], rule set-mp[OF R q4-combineqp qir-Sync-subset])
note u-in-Rq = u-in-Rq-prem[simplified mem-Times-iff, THEN conjunctl, sim-
plified]
u-in-R g-prem[simplified mem-Times-iff, THEN conjunct2, simplified)

have same-length-u: <length u-ps = N> <length u-fs = N>
using same-length-R q-iterated-combiney-Sync-description|rotated, OF u-in-Rq(1)[unfolded
phils-A-def]]
same-length-R 4-iterated-combiney-Sync-description|rotated, OF u-in-Rq4(2)[unfolded
forks-A-def]]
by simp+

have u-is: <|u-ps|] =7 Ap t-ps e <|u-fs| =7 Ap t-fs &
using step(3)[simplified dining-A-def, simplified combine-Sync-defs]
by (simp-all add: t-pair u-pair option.case-eq-if map-option-case split: if-splits)

have e-in: <e € ¢ A (t-ps! 0) U (Jie{l..<N}. e (A ©) (E-ps ! i)
e € (Ji<N. e (Ay @) (t-fs 1 9))
by (subst phils-e[symmetric|, fact inv-hyp(2), simp add: e-simps, metis u-is(1))

(subst forks-e[symmetric], fact inv-hyp(1), simp add: e-simps, metis u-is(2))

have u-nth:

169

U< N= ups!i=
(if i = O then (if e € € Ajp (t-ps! 0) then [T Ajp (t-ps! 0) €] else t-ps! 0)
else if e € € (Ayp ©) (t-ps ! 7) then [T (Arp ©) (t-ps! Q) e] else t-ps ! i)
< N = ufs!li=
(if e € € (Ay @) (t-fs ! ©) then [T (Ay 7) (t-fs ! i) e] else t-fs ! i) for ¢
by (insert u-is(1), unfold phils-A-def, subst (asm) T-iterated-combiney-Sync-general-form,
simp-all add: inv-hyp(2) split: if-splits)
(insert u-is(2), unfold forks-A-def, subst (asm) T-iterated-combiney-Sync-general-form,
simp-all add: inv-hyp(1) split: if-splits)
have <e € ¢ Ap t-ps» <e € € Ap t-fs» using u-is e-simps by fastforce+
hence e-equiv: <e € € Ay, (t-ps! 0) «— phil e = O»
Suci < N = e € € (A,p (Suc i) (t-ps! Suc i) +— phil e = Suc
4 < N=ece(Ay i) (t-fs! i) «— fork e = i for ¢
apply (simp-all add: phils-[OF inv-hyp(2)] forks-e[OF inv-hyp(1)])
using rphil-phil Iphil0-phil ev-idsorpx by auto (metis Suc-le-eq less-irrefi-nat,
blast, metis)

show ?case
proof (simp add: u-pair, rule show-inv-dining[rule-format], simp add: same-length-u,
goal-cases)
case (I i) thus ?case using u-nth(2)[of i] inv-hyp(8) by e-sets-simp A-defs-simp
next
case (214) thus ?case using u-nth(1)[of 7| inv-hyp(4) by e-sets-simp A-defs-simp
next
case (3 19)
with u-nth(1)[of <Suc ©»] u-nth(2)[of <Suc i>] show ?case
using inv-hyp(5)[of i| apply e-sets-simp apply A-defs-simp
using e-equiv(3) fork-e e-equiv(2) rphil-e by fastforce+
next
case 4
with u-nth(1)[of 0] u-nth(2) show %case using inv-hyp(6) N-gI apply
e-sets-simp apply A-defs-simp
apply (metis N-pos One-nat-def Suc-pred fork-e dining-event.sel(3)
dining-event.simps(3) inv-hyp(3) lessI singletonD e-equiv(3))
using Iphil0-¢ e-equiv(1) by force+
next
case (9 7)
hence «Suc i < N» by linarith
with u-nth(1)[of <Suc O] u-nth(2)[of 7] 5 show ?Zcase
using inv-hyp(7)[of i| apply e-sets-simp apply A-defs-simp
apply (metis Suc-lessD fork-e dining-event.sel(3) dining-event.simps(3)
singletonD e-equiv(3))
apply (metis One-nat-def Suc-lessD bot-nat-0.not-eg-extremum inv-hyp(3))
using rphil-c e-equiv(2) by force+
next
case 6
with u-nth(1)[of 0] u-nth(2)[of 0] show ?case
using N-gI inv-hyp(8) apply (simp split: if-split-asm) apply e-sets-simp
apply A-defs-simp

170

using Iphil0-e e-equiv(1) fork-e e-equiv(3) by force+
qed
qed

11.4.2 The invariant inv-dining implies that DINING is dead-
lock-free

method nonempty-Int-by-common-element for © = rule-tac ex-in-conv| THEN iffD1,
OF ez, OF Intl, of z]

lemma inv-implies-DF: <¢ Ap (ps, fs) # {}» if hyp-inv: <inv-dining ps fs»
apply (subst dining-¢)
apply (insert hyp-inv, unfold inv-dining-def, simp-all add: Iphil0-¢)
proof (elim conjE, intro conjl impl, goal-cases)
case I
with 1(3)[rule-format, of 0, OF N-pos] show ?case
proof (elim disjE, goal-cases)
case 11:1
thus ?case
using 1(8)[rule-format, of 1, OF N-g1] apply(elim disjE)

apply (subgoal-tac <ps! 1 = 0>, nonempty-Int-by-common-element <picks 1
1)
using N-g! apply e-sets-simp[3]
apply (metis atLeastLess Than-iff le-refl less-irrefl-nat, blast,
metis less-zeroE linorder-negE-nat)

apply (cases <ps! 1 = 1>, nonempty-Int-by-common-element <picks 1 0»)

using N-g! apply e-sets-simp[2]

apply (metis One-nat-def atLeastLess Than-iff diff-self-eq-0 le-refl less-numeral-extra(1)

mod-mod-trivial mod-self,

metis N-pos less Than-iff mod-less)

apply (nonempty-Int-by-common-element <putsdown 1 1)

using N-g1 apply e-sets-simp[2]

apply (metis atLeastLess Than-iff le-refl less-numeral-extra(3) zero-less-diff,
metis gr0-conv-Suc lessThan-iff)

apply (cases (N = 2, simp)
apply (subgoal-tac <ps! 2 = 2>, nonempty-Int-by-common-element <putsdown
2 1)
using N-g1 apply e-sets-simp
by (metis One-nat-def Suc-lessI atLeastLess Than-iff diff-Suc-1 le-Sucl le-numeral-extra(4)
mod-less n-not-Suc-n numeral-2-eq-2 zero-less-Suc,
metis One-nat-def Suc-1 Suc-lessl gr0-conv-Suc less Than-iff
less-diff-conv mod-less plus-1-eq-Suc,
metis One-nat-def Suc-1)
next
case 12:2
thus ?case by linarith

171

next
case 13:3
thus ?case
apply (subgoal-tac <ps! 1 = 2», nonempty-Int-by-common-element <putsdown
10v)
using N-g1 apply e-sets-simp
apply (metis atLeastLess Than-iff diff-self-eq-0 dvd-1-left le-Suc-eq less-2-cases-iff
mod-0 odd-one)
by (metis 13(10) N-pos lessThan-iff mod-less n-not-Suc-n numeral-2-eq-2
zero-less-Suc)
qed
next
case 2
from 2(3, 7, 8, 10) N-g1 have f1: «fs! 0 #0 = ps! 1 =2 N fs! 0 = 2>
by auto
from 2 show ?Zcase
apply (cases «fs | 0 = 0»)
apply (nonempty-Int-by-common-element <picks 0 0»)
using N-gI apply e-sets-simp[2]
using N-pos apply blast
apply (nonempty-Int-by-common-element <putsdown 1 0)
apply e-sets-simp
apply (metis N-g1 One-nat-def atLeastLess Than-iff bot-nat-0.not-eq-extrernum
cancel-comm-monoid-add-class.diff-cancel dual-order.refl local.f1 mod-0)
by (metis N-g1 N-pos One-nat-def lessThan-iff less-irrefl-nat mod-less)
next
case 3 thus Zcase by (nonempty-Int-by-common-element <putsdown 0 0»)
(e-sets-simp, metis N-pos lessThan-iff zero-less-Suc)
next
case 4 thus %case by (nonempty-Int-by-common-element <putsdown 0 (N —
1))
(e-sets-simp, metis N-pos One-nat-def Suc-1 Suc-diff-1 diff-less
gr0-conv-Suc less Than-iff mod-self n-not-Suc-n)
next
case § thus ?Zcase using 5 (4)[rule-format, of 0] by simp
qed

11.4.3 Conclusion

corollary deadlock-free-DINING: <deadlock-free DINING)
unfolding DINING-is-dining-P-d dining-P-d-def
apply (subst deadlock-free-P-d-iff)
using inv-DINING inv-implies-DF by force

172

11.5 Alternative version with only right-handed
philosophers (in order to show that it’s not

deadlock-free)
11.5.1 Setup
definition (RPHILS = ||| P €# mset (map RPHIL [0..< N]). P»

corollary <N = 8 = RPHILS = (RPHIL 0 ||| RPHIL 1 ||| RPHIL 2))
unfolding RPHILS-def by (simp add: eval-nat-numeral upt-rec Sync-assoc)

definition RDINING :: <dining-event process»
where <RDINING = (FORKS || RPHILS))

11.5.2 Normalization

definition rphils-A :: «(ophits, dining-event, unit) Aq> (<(Arp>) where (Agp =

(a@ [{}] map Arp [0..< N}
definition rphils-P-d:: <oppis = dining-event process) where <rphils-P-d = P(Arp) s>

definition rdining-A :: ((0phits X O forks, dining-event, unit) Ay (<Arp>) where
(Arp = (Arp a®[UNIV]pair Ar)>

definition rdining-P-d:: <0ppiis X Oforks = dining-event process> where <rdining-P-d
= P<<ARD>>(1>

11.5.3 Correspondance between our normalized processes and
the previous definitions

lemma rphils-e: <length ps = N = ¢ Arp ps = (Ui€{0..<N}. € (4,p @) (ps!
i)

unfolding rphils-A-def using N-pos

by (subst e-iterated-combiney-Sync-general-form, (auto split: if-splits)+)

lemma NRPHILS-is-rphils-P-d: <RPHILS = rphils-P-d (replicate N 0)»
unfolding rphils-P-d-def rphils-A-def RPHILS-def
apply (subst P-d-compactification-Sync-upt-version)
by (simp-all add: RPHIL-is-rphil-P-d[unfolded rphil-P-d-def] indep-phils indep-enabl-def)

lemma rdining-¢:
<length ps = N = length fs = N =
€ Arp (ps, fs) = (Uie{0..<N}. e (Arp @) (ps!9)) N (Ui<N. € (Af 7) (fs!9))
by (simp add: rdining-A-def e-combinepq;--Sync combine-Sync-c-def forks-e
rphils-€)

lemma RDINING-is-rdining-P-d: <RDINING = rdining-P-d (replicate N 0, repli-
cate N 0)»

173

apply (unfold rdining-P-d-def rdining-A-def)
apply (subst P-d-combinepq;,-Sync[symmetric))
apply (simp add: indep-enabl-def)
by (simp add: NFORKS-is-forks-P-d NRPHILS-is-rphils-P-d RDINING-def Sync-commute
forks-P-d-def
rphils- P-d-def)

11.5.4 Proof that we have a deadlock in the state (replicate N
1, replicate N 1)

lemma empty-enabl-replicatel: <¢ Agrp (replicate N 1, replicate N 1) = {}
by (subst rdining-e, auto simp add: rphil-e fork-e)

corollary non-dealock-free-rdining: «— deadlock-free (rdining-P-d (replicate N 1,
replicate N 1))»

unfolding rdining-P-d-def

by (subst P-d-rec, subst empty-enabl-replicatel , simp add: non-deadlock-free-STOP)

11.5.5 Proof that this state is reachable from our initial
state, i.e. (replicate N 1, replicate N 1) € Rq Arp (replicate
N 0, replicate N 0)

lemma rdining-7: <length ps = N = length fs = N = e € ¢ Arp (ps, fs) =
T Arp (ps, fs) e = | ([T Arp pse|, [T Ar fse])]
by (auto simp add: rdining-A-def combinep q;-Sync-defs e-simps split: if-split-asm,)

lemma replicatel-reachable-from-replicate0-prelim:
«n < N = (replicate n 1 Q replicate (N — n) 0, replicate n 1 @ replicate (N
—n) 0) € Rq Arp (replicate N 0, replicate N 0)»
proof (induct n, simp add: Rgq.init)
case (Suc n)
have (n < N» by (simp add: Suc.prems Suc-leD)
define os ot where al: <os = replicate n (1:nat) Q replicate (N — n)
0»
and a2: (ot = replicate (Suc n) (1::nat) @ replicate (N — Suc n) 0»
have <length 0s = N» <length ot = N> <length os = length ot»
by (simp-all add: <n < N» al a2 Suc.prems)
have f1: «(os, 0s) € Rq Arp (replicate N 0, replicate N 0)»
using Suc.hyps(1) al Suc.prems Suc-leD by presburger
have f2: «picksnn € ¢ Agp 08 «picksnn € € Ap os» <picks nn € ¢ Agp (os,
a8)
by (subst rphils- forks-, insert Suc.prems Suc-le-eq Suc-leD al,
auto simp add: rdining-e rphil-e fork-c nth-append)+

have <a € ¢ (A;p 7)) (0s!i) = i< N=a€ec(4ypj) (os!j)=j<N
= j=0forija
by (metis rphil-phil)
hence % : <a € € (4, 1) (05! i) = i< N =
(THEj. j < N Na€e (map Arp [0..<N]!j) (os!4)) = for i a by

174

auto

have <a € ¢ (A5 i) (0s!i) = i< N=a€c(4;j)(os!j) = j< N =
j=dbforija
by (metis ev-idfori2)
hence *x : <a € € (A5 i) (0s!i) = i < N =
(THEj.j < N ANa€e (map A; [0.<N]!j) (os!4)) = o for i a by
auto

have f3: <ot = [T Agrp os (picks n n)]
apply (unfold rphils-A-def, subst T-iterated-combiney-Sync-general-form-when-indep)
subgoal by (simp add: <length os = N»)
subgoal by (simp add: indep-enabll indep-phils(2))
using N-pos apply (auto simp del: N-pos)
subgoal by (metis N-g1 N-pos lessThan-iff rphil-phil zero-neg-one)
subgoal
apply (subst *, simp-all)
apply (auto simp add: <length os = length ot> intro!: nth-equalityl)
apply (auto simp add: al a2 nth-Cons nth-append nth-list-update dest:
rphil-phil split: if-split-asm nat.split)
by (simp-all add: rphil-A-def)
using rphils-c <length s = N» atLeastOLessThan f2(1) by force

have f/: <ot = [T Ap os (picks n n)]»
apply (unfold forks-A-def, subst T-iterated-combineg-Sync-general-form-when-indep)
subgoal by (simp add: <length s = N»)
subgoal by (simp add: indep-enabl-def indep-forks)
using N-pos apply (auto simp del: N-pos)
subgoal by (metis N-g1 N-pos ev-id s,z lessThan-iff zero-negq-one)
subgoal
apply (subst xx, simp-all)
apply (auto simp add: <length os = length ot intro!: nth-equalityl)
apply (auto simp add: al a2 nth-Cons nth-append nth-list-update dest:
ev-id s or i split: if-split-asm nat.split)
using N-pos-simps(1) Suc-lessI by (auto simp add: fork-A-def intro: Suc-lessI)
using forks-e <length 0s = N> atLeastOLessThan f2(2) by force
show «(ot, ot) € Rq Arp (replicate N 0, replicate N 0)»
apply (rule Rq.step[OF f1], subst rdining-T)
using Suc.prems al apply fastforce
apply (rule f2)
using f3 f4 by blast
qed

corollary replicate1-reachable-from-replicate0: «(replicate N 1, replicate N 1) €
Ra Arp (replicate N 0, replicate N 0)»
by (simp add: replicatel-reachable-from-replicateO-prelim|of N, simplified))

175

theorem not-deadlock-free-RDINING: <— deadlock-free RDINING»
apply (subst RDINING-is-rdining-P-d[unfolded rdining-P-d-def])
apply (subst deadlock-free-P-d-iff)
using empty-enabl-replicatel replicatel-reachable-from-replicate0 by blast

end

176

Chapter 12

Other Results similar to
Compactification

Unlike Sync and (3), some operators like Det do not enjoy a compactification
result. Nevertheless, we still can prove some useful lemmas.

12.1 Some preliminary Results

lemma Mprefiz-Det-Mprefiz-bis :
(OaeA—-Pa)O@ObeB— Qb)) =
(Oze€(ANB) - PznNQz)0(0aec(A—B)—»Pa)0(@Obe (B— A) —
Q b)»
(is «?lhs = %rhs))
proof (subst Process-eq-spec, safe)
show «(t, X) € F ?lhs = (t, X) € F ?rhs» for t X
by (cases t) (auto simp add: F-Det F-Mprefix F-Ndet)
next
show «(t, X) € F %rhs = (t, X) € F ?lhs» for t X
by (cases t, simp-all add: F-Mprefiz F-Ndet F-Det D-Det T-Det disjoint-iff)
blast+
next
show «t € D ?lhs =t € D ?rhs» for ¢
by (auto simp add: D-Det D-Mprefiz image-iff D-Ndet)
next
show «t € D ?rhs = t € D ?lhs) for t
by (auto simp add: D-Mprefiz D-Ndet D-Det split: if-split-asm)
qed

lemma GlobalNdet-Ndet-GlobalNdet:
A#£{}=B#{} = (Ma€ A. Pa)N(Mbe B. Qb) =
Nz € (AU B). (ifx € AN Bthen Pz N Q x else if x € A then P x else Q x)»
by (simp add: Process-eq-spec F-Ndet D-Ndet F-GlobalNdet D-GlobalNdet, safe)
(auto simp add: F-Ndet D-Ndet split: if-splits)

177

lemma GlobalNdet-Ndet-GlobalNdet-bis:
(ANB#{} = A-B#{} =B-A#{} =
(Mae€e A. Pa)nn(Mbe B. Qb) =
(Mre(ANB).PznNQz)N(Mae (A—-DB). Pa)nn (Mbe (B— A4). Qb
by (auto simp add: Process-eq-spec F-Ndet D-Ndet F-GlobalNdet D-GlobalNdet)

lemma GlobalNdet-GlobalNdet:

«(Mae€ A.Mbe Ba. Pb) =

(if Vae A. Ba# {} thenb € (Ua € A. Ba). Pbelse (Mbe (Ja € A. B
a). P b) M STOP)»

by (auto simp add: Process-eq-spec F-GlobalNdet D-GlobalNdet F-Ndet D-Ndet
F-STOP D-STOP)

12.2 Results for Det

lemma P-nd-set-almost-compactification-Det :
(0O (s, A) € s-A-set. P(AYpq s) =
Oe e (U(s, A) € s-A-set. ¢ A s) —
(s, A) € {(s, A) € s-A-set. e € £ A s}.
Ns" €t Ase P{A)na s (is <%lhs = ?rhs)
proof —
have <?%lhs = (O (s, A) € s-A-set. P-nd-step (¢ A) (1 A) P{A)nq s)
by (auto intro: mono-GlobalDet-eq arg-cong|OF P-nd-rec])
also have «... = Os-A € s-A-set. P-nd-step (e (snd s-A)) (7 (snd s-A)) P{snd
s-AYna (fst s-A)»
by (simp only: case-prod-beta’)
also have (... = Oe € (|Js-4 € s-A-set. € (snd s-A) (fst s-A)) —
Ms-A € {s-A € s-A-set. e € € (snd s-A) (fst s-A)}.
GlobalNdet (1 (snd s-A) (fst s-A) e) P{snd s-A)na>
by (simp add: GlobalDet-Mprefir)

also have «... = ?rhs» by (simp add: case-prod-beta’)
finally show «?lhs = ?rhs) .
qed

lemma P-nd-set-almost-compactification-Det-bis :

«(0O (s, A) € s-A-set. P(AYpq s) =

Oe e (U(s, A) € s-A-set. ¢ A s) —

N(s’, A) € {(s’, A)| s’ s A. (s, A) € s-A-set Necec AsNs' €T Ase}. P(A)na
sh

(is - = 7rhsy)

by (subst P-nd-set-almost-compactification-Det, intro mono-Mprefiz-eq)

(auto simp add: Process-eq-spec GlobalNdet-projs e-simps split: if-split-asm,

blast+)

178

lemma P-d-set-almost-compactification-Det:
shows «(0O (s, A) € s-A-set. P(A)q s) =
Oe e (U(s, A) € s-A-set. ¢ A s) —
MN(s, A) € {(s, A) € s-A-set. e € ¢ A s}. P(A)q [T A s e]y (is «?lhs =
?rhs)
proof —
have «?lhs = (O (s, A) € s-A-set. P-d-step (¢ A) (1 A) P{A)q s)»
by (auto intro: mono-GlobalDet-eq arg-cong|OF P-d-rec])
also have (... = Os-A € s-A-set. P-d-step (e (snd s-A)) (7 (snd s-A)) P{snd
s-A)a (fst s-A)
by (simp only: case-prod-beta’)
also have «... = Qe € (|Js-A € s-A-set. € (snd s-A) (fst s-A)) —
Ms-A € {s-A € s-A-set. e € € (snd s-A) (fst s-A)}.
P{snd s-A)q [T (snd s-A) (fst s-A) e
by (simp add: GlobalDet-Mprefiz)

also have «... = ?rhs» by (simp add: case-prod-beta’)
finally show «?lhs = ?rhs) .
qed

lemma P-d-set-almost-compactification-Det-bis:
shows «(O (s, A) € s-A-set. P(A)q s) =
Oe e (U(s, A) € s-A-set. e A s) —
N(s’, A) e {([t Asel], A)| s A. (s, A) € s-A-set N e € e A s}. P(A)q s)
by (subst P-d-set-almost-compactification-Det, intro mono-Mprefiz-eq)
(auto simp add: Process-eq-spec GlobalNdet-projs e-simps, (metis option.sel)+)

12.3 Results for Ndet

12.4 Other Operators

12.4.1 initials

lemma initials—PSKIpS—nd :
(Pskrps(A)na 0)® = (if o € o A then tick “w A o else ev ‘e A o)
by (subst Psxrpg-nd-rec) (simp add: initials-Mprefix o-simps)

lemma initials-Psips-d :
(Pskips{A)a o) = (if 0 € 0 A then {V([w A o))} else ev ‘e A o)
by (subst Pskps-d-rec) (auto simp add: initials-Mprefix o-simps)

lemma initials-P-nd : «(P{A)nq 8)° = ev ‘¢ A &
by (subst P-nd-rec) (simp-all add: initials-Mprefiz)

lemma initials-P-d : «(P{A)q s)° = ev ‘e A &

179

by (subst P-d-rec) (simp add: initials-Mprefix)

12.4.2 Throw

lemma ThT’O’w—PSK]ps—’I’Ld :
«(Pskrps{A)ynac © be B. Qb=
(if 0 € 0 A then SKIPS (w A o) else
Oace Ao — (ifa € Bthen QaelseNo’ € 7 Ao a. (Psxrps{A)na o' © b
€ B. Qb))
by (auto simp add: Psgps-nd-rec-in-o Throw-disjoint-events-of
events-of-SKIPS Pgs1ps-nd-rec-notin-o Throw-Mprefiz
Throw-distrib-GlobalNdet-right
intro: mono-Mprefiz-eq)

lemma Throw—PSijs—d :
<PSKIPS<<A>>d cO®beB. Qb=
(if 0 € 0 A then SKIP [w A o] else
Oace Ao — (ifa € Bthen Q a else Psxrps{A)a [T Ao a] © be B. Qb))
by (simp add: Pskps-d-rec-in-o Pskpgs-d-rec-notin-o Throw-Mprefiz)

lemma Throw-P-nd :
(P{A)nao®@be B Qb=
Oace Ao — (ifa € Bthen QaelseMNo’' €T Ao a. (P{A)na o' ©® be B. Q
b))
by (subst P-nd-rec)
(auto simp add: Throw-Mprefix Throw-distrib-GlobalNdet-right intro: mono-Mprefiz-eq)

lemma Throw-P-d :
(P(A)qc©@beB. Qb=
Oace Ao — (if a € B then Q a else P(A)q [T Ao a] © b€ B. Q b)
by (subst P-d-rec) (simp add: Throw-Mprefix)

12.4.3 (1)

lemma SKIPS-Interrupt-is-SKIPS-Det :
«SKIPS R A\ P = SKIPS R (0 P»
by (auto simp add: SKIPS-def Interrupt-distrib-GlobalNdet-right
Det-distrib-GlobalNdet-right SKIP-Interrupt-is-SKIP-Det intro: mono-GlobalNdet-eq)

lemma Interrupt-Psxrps-nd :

Psrips{AYna o & Q =
QO (if 0 € 0 A then SKIPS (w Ao) else o €e Ao —-TNo’ e Ao a.

Pskrps{A)na o' & Q)
by (subst Pgkps-nd-rec)
(auto simp add: Interrupt-Mprefiz SKIPS-Interrupt-is-SKIPS-Det Det-commute
o-simps e-simps Interrupt-distrib-GlobalNdet-right
introl: arg-cong2|where f = «(O)] mono-Mprefiz-eq split: if-split-asm)

lemma Interrupt-Pskips-d :
(Pskgrps{A)a o A Q=

180

QO (if o € o A then SKIP [w Ao else Ja € e Ao — Psgrps{A)a [T Ao
al A Q)
by (simp add: Det-commute Interrupt-Mprefiz Psk 1 ps-d-rec-in-o
Psi1ps-d-rec-notin-o SKIP-Interrupt-is-SKIP-Det)

lemma Interrupt-P-nd :
(P(AYpago A Q=QU0 ([0a€cec Ao —No’' €T Ao a P(A)na o' AN Q)
by (subst P-nd-rec)
(auto simp add: Interrupt-Mprefiz Interrupt-distrib-GlobalNdet-right e-simps
introl: arg-cong2[where f = «(O)] mono-Mprefiz-eq split: if-split-asm)

lemma Interrupt-P-d :
(P(AY)go AN Q=Q0 (Hacec Ao — P(A)g [T Ao a]l &N Q)
by (metis Interrupt-Mprefiz P-d-rec)

12.4.4 After

context After
begin

lemma After-SKIPS : «<SKIPS R after a = ¥ (SKIPS R) a»
by (simp add: Process-eq-spec After-projs image-iff)

lemma After-Psgrps-nd :

(Pskrps{A)na o after a =
(if 0 € 0 A then U (SKIPS (w A 0)) a else
ifa€eAothenNo’' €T Ao a. Pskrps{AYyna o' else U (Pskips{A)na o)
a)
by (subst (1 4) Pskips-nd-rec)
(simp add: e-simps o-simps After-SKIPS After-Mprefix)

lemma Afte’I‘—PSijs-d :

(Psirps{A)q o after a =
(if o € o A then U (SKIP [w A o]) a else

ifa € e Ao then Pskrps{A)a [T A o a] else U (Psxrps{A)q o) a)
by (subst (1 2) Pskrps-d-rec)
(auto simp add: e-simps o-simps After-SKIP After-Mprefix)

lemma After-P-nd :

(P{AYnq o after a = (if a € ¢ A o then o’ € 7 A 0 a. P(A)nq o' else ¥
(P(A)na o) a)

by (subst (1 4) P-nd-rec) (simp add: e-simps After-Mprefix)

lemma After-P-d :
(P{(A)q o after a = (if a € € A o then P(A)q [T A o a] else U (P{A)q 0) a)
by (subst (1 2) P-d-rec)
(simp add: e-simps After-SKIP After-Mprefiz)

end

181

context AfterExt
begin

lemma After;;c;-SKIPS :

(SKIPS R after , e = (case e of ev a = ¥ (SKIPS R) a | /(1) = Q (SKIPS R)
)

by (cases e) (simp-all add: Aftery;cr-def After-SKIPS)

lemma After;;cx-Psxrps-nd :
(Pski1ps(A)na o after, e =
(case e of eva = if 0 € 0 A then U (SKIPS (w A 0)) a else
ifa€e Ao thenTo' € 7 Ao a Pskrps{A)ng o' else U
(Pskips{A)na 0) a
| V(r) = if 0 € 0 A then Q (SKIPS (w A 0)) relse Q (Psxrprs{A)nd
o))
proof (cases e)
show <e = ev a => ?thesis» for a
by (simp add: After-Psips-nd Aftery;cx-def)
next
show e = V/(r) = ?thesis» for r
by (subst (1 5) Pskips-nd-rec) (simp add: Aftery;.x-def o-simps)
qed

lemma Aftery;cr-Pskips-d :
(Pskrps(A)a o after, e =
(case e of eva = if 0 € o A then U (SKIP [w A o) a else
ifa€e Ao then Psgrps{A)a [T Ao a] else U (Pskrps{A)a
o) a
| V(r) = if 0 € 0 A then Q (SKIP [w A o) relse Q (Pskrps{A)d o)
)
proof (cases e)
show (e = ev a = ?thesis) for a
by (simp add: After-Psi1ps-d Aftery;c-def)
next
show (e = v/ (r) = ?%thesis> for r
by (subst (1 2) Pskrps-d-rec) (auto simp add: Afters;cr-def o-simps)
qed

lemma After;;cr-P-nd :

(P(A)na o after, e =

(case e of eva = ifa€ec Ao thenNo’' € 7 Ao a. P(A)nq o' else ¥ (P{A)pna
o) a

/(1) = Q (P{AYoa 0) 7>

proof (cases e)

show (e = ev a = ?thesis) for a

by (simp add: After-P-nd Aftery;cr-def)

next

182

show (e = V/(r) = ?thesis) for r
by (subst (1 2) P-nd-rec) (auto simp add: Aftery;.x-def)
qed

lemma After;;.,-P-d :
(P(A)q o after, e =
(case e of eva = if a € € A o then P(A)q [T A o a] else ¥ (P{A)q4 0) a
| V(1) = Q (P{(A)q o))
proof (cases e)
show <e = ev a = ?thesis) for a
by (simp add: After-P-d Afteri;ci-def)
next
show (e = V/(r) = ?thesis) for r
by (subst (1 2) P-d-rec) (auto simp add: Aftery;cr-def)
qed

end

12.5 OpSem

context OpSemTransitions
begin

lemma SKIPS-t-trans-SKIP : <«r € R —> SKIPS R ~», SKIP r»
by (simp add: SKIPS-def T-trans-GlobalNdet)

In the ProcOmata, we will absorb the 7 transitions that appear when we
unfold the fixed-point operator.

lemma 7-trans-Psgrps-nd :
«r cw Ao = Pskrps{A)na 0 ~>+ SKIP 1)
by (subst Psk1ps-nd-rec) (auto simp add: SKIPS-T-trans-SKIP)

lemma 7-trans-Psgrps-d :
weoA= Pskiprs(A)a 0~y 4 o) @ (SKIP [w Ao]) [w A o]
by (auto simp add: Pgkps-d-rec SKIP-trans-tick-Q-SKIP o-simps)

lemma ev-trans-Psgrps-nd :
(o ¢ 0 A — c'etAoa—= PSKIPS<<A>>nd 0O ~q PSKIPS<<A>>nd o’
by (subst Pskps-nd-rec)
(auto simp add: p-simps e-simps
intro: ev-trans-t-trans|OF ev-trans-Mprefiz T-trans-GlobalNdet))

lemma ev-trans-Psgrps-d :

(o §é 0 A= acecAdoc— PSKIPS<<A>>d g ~q PSKIPS<<A>>d [7’ Ao (ﬂ)
by (subst PSK]ps—d—Tec)

183

(auto simp add: o-simps intro: ev-trans-Mprefix)

lemma ev-trans-P-nd :
«wo'eT Ao a= P{AYnqg o ~q P{(A)pg o’
by (subst P-nd-rec)
(auto simp add: e-simps
intro: ev-trans-t-trans|OF ev-trans-Mprefiz T-trans-GlobalNdet))

lemma ev-trans-P-d :
a €e Ao = P{A)qg o ~q P(A)y [T Ao a]
by (subst P-d-rec) (auto intro: ev-trans-Mprefix)

end

184

Chapter 13

Conclusion

13.1 Entry Point

This is where HOL-CSP_Proc-0Omata should be imported from.

13.2 Conclusion

In this entry we have developed the Proc-Omata framework on top of HOL-CSP

and its extensions. Starting from functional automata, we introduced Proc-
Omata in four variants: deterministic, terminating deterministic, non-deterministic,
and terminating non-deterministic. They enjoy strong structural properties,

for example deadlocks can be characterized directly and established by in-
variant reasoning:

deadlock-free (P(A)ng 0) = (Vo'€Rpng A o. e Ao’ #0)
o-disjoint-¢ A

deadlock-frees1ps (Pskrps{AYng 0) = (Vo'€Rpg Ao. 0’ € 0 AV e Ao’ #10)

We then lifted sequential composition and synchronization product to the
automata level, by defining suitable combination functions and proving their
correctness. A major generalization of our development is the treatment of
parameterized termination. For sequential composition we worked directly
with the generalized operator (), since the standard one (3) is easily re-
covered (indeed P 5, (Ar. Q) = P ; Q). In contrast, for synchronization
product we had to provide two distinct versions, as the handling of ticks
prevents any straightforward reduction from P [A] @ to P [A4], Q.

Another central ingredient is the library Restriction_Spaces [1]. Proc-
Omata are indeed defined as fixed points of endofunctions which, in the non-
deterministic case, are not always continuous due to global non-deterministic

185

choice. While deterministic prefix choice does not suffice to restore conti-
nuity under composition, it does guarantee constructiveness, allowing us to
rely on the fixed-point operator v z. f x in all cases.

The resulting framework yields compactification theorems that support invariant-
based reasoning over large process architectures:

|os| = |4s|
[E] (o, A)e#mset (zip s As). P{(A)pqg 0 = P<<<<nd® [E] As))na o5

Finally, we demonstrated the applicability of our approach with the Dining
Philosophers case study, where Proc-Omata compactification enables proofs
that scale to an arbitrary number of participants in this parameterized pro-
cess architecture.

186

Bibliography

[1]

B. Ballenghien, B. Puyobro, and B. Wolff. Restriction spaces: a fixed-
point theory. Archive of Formal Proofs, May 2025. https://isa-afp.org/
entries/Restriction_ Spaces.html, Formal proof development.

B. Ballenghien, S. Taha, and B. Wolff. Hol-cspm - architectural operators
for hol-csp. Archive of Formal Proofs, December 2023. https://isa-afp.
org/entries/HOL-CSPM.html, Formal proof development.

B. Ballenghien, S. Taha, B. Wolff, and L. Ye. Hol-csp version 2.0. Archive
of Formal Proofs, April 2019. https://isa-afp.org/entries/HOL-CSP.
html, Formal proof development.

B. Ballenghien and B. Wolff. Operational semantics formally proven in
hol-csp. Archive of Formal Proofs, December 2023. https://isa-afp.org/
entries/HOL-CSP__OpSem.html, Formal proof development.

B. Ballenghien and B. Wolff. A theory of proc-omataand proof meth-
ods for process architectures. In Theoretical Aspects of Computing IC-
TAC 2024: 21st International Colloguium, Bangkok, Thailand, Novem-
ber 2529, 2024, Proceedings, page 272289, Berlin, Heidelberg, 2024.
Springer-Verlag.

B. Ballenghien and B. Wolff. Csp semantics over restriction spaces.
Archive of Formal Proofs, May 2025. https://isa-afp.org/entries/
HOL-CSP__RS.html, Formal proof development.

A. Roscoe. Theory and Practice of Concurrency. Prentice Hall, 1997.

S. Taha, B. Wolff, and L. Ye. Philosophers may dine - definitively! In
Integrated Formal Methods: 16th International Conference, IFM 2020,
Lugano, Switzerland, November 1620, 2020, Proceedings, page 419439,
Berlin, Heidelberg, 2020. Springer-Verlag.

187

https://isa-afp.org/entries/Restriction_Spaces.html
https://isa-afp.org/entries/Restriction_Spaces.html
https://isa-afp.org/entries/HOL-CSPM.html
https://isa-afp.org/entries/HOL-CSPM.html
https://isa-afp.org/entries/HOL-CSP.html
https://isa-afp.org/entries/HOL-CSP.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://isa-afp.org/entries/HOL-CSP_RS.html
https://isa-afp.org/entries/HOL-CSP_RS.html

	Introduction
	An Excursion into Determinism
	Accepts initials
	Definition
	First properties
	Monotonicity
	Behaviour on Operators
	Characterizations with After

	Deterministic process
	Definition
	Monotonicity
	Characterization as Maximal
	Characterization with After
	Operators preserving Determinism
	Operators not (always) preserving Determinism

	Application to Operational Semantics

	ProcOmata: Functional Automata embedded into CSP Processes
	Definitions
	Non-deterministic and deterministic Automata
	Enableness
	States allowing Termination
	Reachability
	Morphisms
	Generic update Functions
	Assumptions on Automata

	First Properties
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 , 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 first equalities
	Properties of our morphisms
	Reachability results (for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Rd and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Rnd)

	Normalization
	Non-deterministic Case
	Deterministic Case
	Link between deterministic and non-deterministic ProcOmata
	Prove Equality between ProcOmata

	Advanced Properties of ProcOmata
	Combining Automata for Synchronization Product
	Definitions
	General Patterns
	Specializations

	First Properties
	Reachability
	Normalization

	Compactification of Synchronization Product
	Iterated Combine
	Definitions
	First Results
	Reachability
	Transmission of Properties
	Normalization

	Compactification Theorems
	Binary
	Rlist
	ListslenL
	Multiple

	Derived Versions
	More on Iterated Combine
	More on Events

	Combining Automata for Generalized Synchronization Product
	Definitions
	Specializations

	First Properties
	Transitions are unchanged in the Generalization
	Reachability
	Normalization

	Compactification of Synchronization Product Generalized
	Iterated Combine
	Definitions
	First Results
	Transmission of Properties
	Normalization

	Compactification Theorems
	Binary
	Rlist
	ListslenL
	Multiple

	Derived Versions
	More on Iterated Combine and Events

	Combining Automata for Sequential Composition Generalized
	Definitions
	General Patterns
	Specializations
	First Properties
	Reachability

	Normalization

	Compactification of Sequential Composition Generalized
	Iterated Combine
	Definitions
	First Results
	Reachability
	Transmission of Properties
	Normalization

	Compactification Theorems
	Binary
	ListslenL
	Multiple

	Application : May Philosophers dine ?
	Preliminaries
	Preliminary lemmas for proof automation

	The dining processes definition
	Unfolding rules

	Translation into normal form
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 FORK, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 LPHIL0 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 RPHIL are normalizable
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 FORKS is normalizable
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 PHILS is normalizable
	The complete process 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 DINING is normalizable

	And finally: Philosophers may dine ! Always !
	Construction of an invariant for the dining automaton
	The invariant 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 inv-dining implies that 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 DINING is 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 deadlock-free
	Conclusion

	Alternative version with only right-handed philosophers (in order to show that it's not 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 deadlock-free)
	Setup
	Normalization
	Correspondance between our normalized processes and the previous definitions
	Proof that we have a deadlock in the state 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (replicate N 1, replicate N 1)
	Proof that this state is reachable from our initial state, i.e. 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (replicate N 1, replicate N 1) Rd ARD (replicate N 0, replicate N 0)

	Other Results similar to Compactification
	Some preliminary Results
	Results for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Det
	Results for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Ndet
	Other Operators
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 initials
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Throw
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ()
	After

	OpSem

	Conclusion
	Entry Point
	Conclusion

