HOL-CSP_ PTick
Parameterized Termination for Sequential
Composition and Synchronization Product

Benoit Ballenghien

February 4, 2026






Abstract

Recently, parameterized termination has been introduced in HOL-CSP, allow-
ing the termination event tick to carry a result value, in a way analogous to
the return of a state monad. This conservative extension of the CSP the-
ory required the generalization of several denotational definitions and the
adaptation of numerous proofs. Since Isabelle2025, this work has been com-
pleted for the HOL-CSP, HOL-CSPM, and HOL-CSP_OpSem sessions. However,
for two operators—namely sequential composition and the synchronization
product—the most direct generalizations turn out to be conceptually un-
satisfactory, in particular with respect to their interaction with SKIP. To
address this issue, we introduce in this entry generalized versions of these
operators that fully exploit the expressive power of parameterized termina-
tion; in particular, the resulting notion of sequential composition satisfies the
monad laws. Building on these definitions, we establish a range of algebraic
and operational laws, as well as fundamental properties such as continuity
and non-destructiveness.






Contents

Introduction
1.1 Motivations . . . . . . . . .
1.2 The Global Architecture of HOL-CSP_PTick . . . . ... ...

Finite Ticks Predicate

2.1 Definitions . . . . . . . ...
2.2 Properties . . . . ...
2.2.1 Constant Processes . . . . . ... .. ... .......
2.2.2  Other properties . . . . ... .. ... ... ...,
23 Laws . . . . e e
231 Lawsof F (P) ... ...................
232 Lawsof F = (f) ... ... .. ... ........

Generalization of the Sequential Composition
3.1 Definition . . . . . .. oo

3.1.1 Preliminaries . . . . . . . . . . . ...
3.1.2 Formal Definition . . . . . . . . ... ... ... ....
3.2 Projections . . . ... ... o

Generalization of the Synchronization Product

4.1 Trace Interleaving . . . . . . . . .. .o,
4.1.1 DMotivation . . . ... ... oL
4.1.2 Definition . . . . . . ..o
4.1.3 First Properties. . . . . . . .. .. ... ... ...
414 Lengths . . . . .. ... L o
4.1.5 Trace Prefix Interleaving . . . . . . . . ... ... ...
4.1.6 Hiding Events. . . . . . . .. ... ..

4.2 Synchronization Product . . . . . . . .. ..o
4.2.1 Definition . . . . . .. ..o
4.2.2 Projections . . . . .. ... oo
4.2.3 First Properties . . . . . . . ... ... L.

11
11
12

15
15
16
16
16
18
18
20

23
23
23
25
25



5

7

Some Work on Renaming

5.1 Tick Swap Operator . . . . . .. .. ... ... ... .....
5.1.1 Preliminaries . . . . . . ... ... .. 0.
5.1.2 The Operator . . . . . . . . ... ... ... .. ...,

5.2  Splitting the Renaming Operator . . . . . . .. .. ... ...
5.2.1 Renaming only Events . . . . . . .. ... ... ... ..
5.2.2 Renaming only Ticks . . . . .. ... ... ... ....
5.2.3 Properties . . . . ..o

5.3 Renaming and Generalized Synchronization Product . . . . .

Commutativity and Associativity of Synchronization

6.1 Commutativity . . . . . . . ... ... L
6.1.1 Motivation . . ... ... ... ...
6.1.2 Formalization . . . . . .. ... ... ... ... ... .
6.1.3 First Properties. . . . . . . ... ... ... ... ...
6.1.4 Commutativity . . . . . ... ... ... ... ... ..

6.2 Associativity . . . .. ...
6.2.1 Motivation . . . ... .. ... ...
6.2.2 Formalization . . . . . . . . ... ... .. ... ..
6.2.3 First Properties. . . . . . . ... .. oL
6.2.4 Associativity for the Traces . . . . . .. .. ... ...
6.2.5 Associativity . . . .. ...

First Laws

7.1 Behaviour with Constant Processes . . . . . . ... ... ...
711 TheLawsof L ... ... ... ... ... .......
7.1.2 The Laws of STOP . . . . . . . . ... ... ......
7.1.3 The Lawsof SKIP . . . . . ... .. ... .......

7.2 Associativity of Sequential Composition . . . . ... ... ..

7.3 Distributivity of Non-Determinism . . . . . .. .. ... ...
7.3.1 Sequential Composition . . . . ... ... ... ....
7.3.2 Synchronization Product . . . . . . .. .. .. .. ...

Communications

81 StepLaws . . . . . .. .
8.1.1 Sequential Composition . . . .. .. ... ... ....
8.1.2 Synchronization Product. . . . . ... ... ... ...

8.2 Extended step Laws . . . .. .. ... ... L.
8.2.1 Sequential Composition . . . .. ... ... ... ...
8.2.2 Synchronization Product . . . . . . ... ... ... ..

8.3 Read and Write Laws . . . . .. .. .. ...
8.3.1 Sequential Composition . . . .. ... ... ... ...
8.3.2 Synchronization Product . . . . . . .. ... ... ...

6

45
45
45
o1
o8
99
60
61
63

65
65
65
65
66
66
67
67
67
68
68
69

71
71
71
71
72
74
74
74
74



9 Operational Semantics Laws 101

9.1

9.2

9.3

Behaviour of initials . . . . . . .. ... 101
9.1.1  TickSwap . . . . . . . . 101
9.1.2 Sequential Composition . . . .. .. ... ... .... 101
9.1.3 Synchronization Product . . . . . . ... ... ... .. 101
Laws of After . . . . . . . . . . ... . 101
9.2.1 Sequential Composition . . . .. ... ... ... ... 101
9.2.2 Synchronization Product. . . . . ... ... ... ... 103
Small Steps Transitions . . . .. ... ... ... ....... 104
9.3.1 Extension of the After Operator . . .. ... ... .. 104
9.3.2 Sequential Composition . . . .. .. ... ... .... 104
9.3.3 Generic Operational Semantics as Locales . . . . . .. 106

10 Declensions of the Generalized Synchronization Product 111

10.1 Interpretations . . . . . . . . .. ... .o 111
10.1.1 Classical Version . . . . .. .. .. .. ... ...... 111
10.1.2 Product Type . . . . . . .. .. .. .. 111
10.1.3 List Type . . . . .. o o o 112

10.2 Associativities . . . . . . . ... 114
10.2.1 Classical Version . . . . .. .. ... ... ....... 114
10.2.2 Product Type . . . . . . .. .. . .. 114
10.2.3 List Type . . . . .. o oo 115

10.3 Properties . . . . . . . ... 115
10.3.1 Actual Generalization . . . . .. ... ... ... ... 115
10.3.2 Other Properties . . . . . ... ... .. ... ..... 116

10.4 Ticks Length and Conversions . . . . . . . . . ... ... ... 116
10.4.1 Ticks Length . . . . .. .. ... . . . 116
10.4.2 Conversions . . . . . . . v i oo 120

105 First Laws . . . . . . . . . . . 122

10.6 Operational Laws . . . . . . . . . . ... ... ... ..., 124
10.6.1 Classical Version . . . . .. .. ... ... ....... 124
10.6.2 Product Type . . . . . . .. .. .. ..o . 125
10.6.3 List Type . . . . . . . . . . 125

11 Architectural Versions 129

11.1 Sequential Composition . . . . . . . .. .. ... ... ..., 129
11.1.1 Definition . . . . . . . .. ... .. ... ... ..., 129
11.1.2 First Properties. . . . . . . . ... ... ... ... .. 129
11.1.3 Behaviour with binary version . . .. ... ... ... 130
11.1.4 Other Properties . . . . . . .. .. .. .. ... .... 130
11.1.5 Behaviour with injectivity . . . . . . ... .. ... .. 130

11.2 Synchronization Product . . . . . . . . . .. .. ... 131
11.2.1 Definition . . . . . . . .. ... .. ... 131
11.2.2 First properties . . . . . . .. . ..., 132



11.2.3 Properties . . . . . . . . ... o 132

11.2.4 Behaviour with binary version . . ... ... ... .. 133

11.2.5 Behaviour with injectivity . . . . . .. .. .. .. ... 133

11.2.6 Permuting the Sequence . . . . . . .. .. .. .. ... 133

12 Events and Ticks 137
12.1 Preliminaries . . . . . . . . .. . . L 137
12.2 Sequential Composition . . . . . . . . . ... ... ... ... 137
12.2.1 Events . . . . . . . . oo 137

12.2.2 Ticks . . . . o oL 137

12.3 Synchronization Product . . . . . . . .. ... ... 138
12.3.1 Events . . . . . . .. Lo 138

12.3.2 Ticks . . . . . . 138

12.4 Architectural Operators . . . . . .. .. ... ... ... ... 138
12.4.1 Events . . . . . . .. oo 138

12.4.2 Ticks . . . . . L 139

13 Continuity Rules 141
13.1 Sequential Composition . . . . . . .. .. .. ... ... ... 141
13.1.1 Monotonicity . . . . .. ..o 141

13.1.2 Preliminaries . . . . . . . .. ... ... ... 141

13.1.3 Continuity . . . . . .. .. ... 0oL 142

13.2 Synchronization Product . . . . . . . ... ... 143
13.2.1 Monotonicity . . . . . .. . ... 143

13.2.2 Preliminaries . . . . . . . .. ... ... 143

13.2.3 Continuity . . . . . . . .. ..o 143

14 Monotonicity Properties 145
14.0.1 Sequential Composition . . . . .. .. ... ... ... 145

14.0.2 Multiple Sequential Composition . . . . . . . .. ... 145

14.0.3 Synchronization Product . . . . . . . .. ... ... .. 146

14.0.4 Multiple Synchronization Product . . . ... ... .. 146

15 Non Destructiveness Rules 147
15.1 Synchronization Product . . . . . . . . . . ... ... ... 147
15.1.1 Refinement . . . . .. ... ... ... ... ... 147

15.1.2 Non Destructiveness . . . . . . .. ... ... .. ... 148

15.1.3 Setup . . . . . ... 148

16 Other Laws 149
16.1 Laws of Renaming . . . . . .. .. ... ... ... ...... 149
16.1.1 Renaming and Sequential Composition . . . . . . . . . 149

16.1.2 Renaming and Synchronization Product . . . . . . .. 150

16.2 Laws of Hiding . . . . . . . .. . ... .. ... 150



16.3 Hiding and Sequential Composition . . . . . . . .. ... ... 150

16.4 Hiding and Synchronization Product . . . . . . .. .. .. .. 150
16.5 Other Laws of Synchronization Product . . . . ... .. ... 151
16.5.1 Synchronization Set can be restricted . . .. .. ... 151
16.5.2 Some Refinements . . . . . .. ... ... .. ..... 152
17 Deadlock Results 153
17.1 First Results . . . . .. .. .. 153
17.1.1 Non Terminating . . . . . .. ... ... ... ..... 153
17.1.2 Deadlock Free. . . . . . . ... .. ... ... ... 153
17.2 Renaming and reference Processes . . . . . . . ... ... .. 154
17.2.1 Alternative Definitions with restriction fixed-point Op-
erator . . ... L. L. 155
17.2.2 Stronger Results . . . . .. .. .. ... ... ..... 155
17.3 Data Independence . . . . . . . . . ... oo 156
17.3.1 An interesting equivalence . . . . . . ... ... oL 156
17.3.2 STOP and SKIP synchronized with DFF A . . . . . . . 156
17.3.3 Finally, deadlock-free (P ||| Q) . . . . . . .. .. ... 157
18 Conclusion 159
18.1 Main Entry Point . . . . . . .. ... oo 159
18.2 Conclusion . . . . . .. .. L 159
18.2.1 Summary . . . .. ... 159
18.2.2 Sequential Composition . . . . .. .. ... ... ... 160
18.2.3 Synchronization Product . . . . . . . . ... ... ... 161



10



Chapter 1

Introduction

1.1 Motivations

Recently, the question arose whether HOL-CSP could accommodate a param-
eterized notion of termination.! The idea is very simple: replace at the very
beginning of the formalization

datatype ‘a event = ev a | tick («vV»)
(isomorphic to option type) by
datatype (‘a, ') eventpiick = ev 'a | tick 'r («/(-'))

(isomorphic to sum type), so that the explicit termination event carries a
return value.

Certain definitions must therefore be adapted (mainly by replacing v with
range tick). For example, a trace t was said to be tick-free if v ¢ set ¢t. In
this new setup, such a trace instead satisfies range tick N set t = {}. Sur-
prisingly, once these few intuitive adjustments have been made, most of the
existing Isar proofs remain valid with little to no modification. This gen-
eralization has already been carried out, and the AFP entries for HOL-CSP,
HOL-CSPM, and HOL-CSP_OpSem have all been updated accordingly [2, 1, 3].
More recently, HOL-CSP_RS [5] has been added as well. However, two oper-
ators do not behave as satisfactorily as one might hope.

Firstly, sequential composition no longer admits SKIP as a neutral element.
In the classical theory, we have Skip ; P = P and P ; Skip = P. But in
the generalized setting, SKIP carries a value and if the first law can still be
adapted and proven: SKIP r ; P = P, the second one only holds when the
return type is unit (which amounts to ignoring the generalization). From a

'This idea was sparked by an innocent remark from Simon Foster, which we later
explored in depth.

11



broader perspective, one would in fact like the right-hand process to depend
on the return value of the left-hand process, which is not the case in the
current framework.

Secondly, the synchronization product does not properly support synchro-
nized termination. Classically, we have Skip [S] Skip = Skip, adapted in
the last version of HOL-CSP as SKIP r [A] SKIP s = (if r = s then SKIP r
else STOP). When restricted to ‘a process (which is (‘a, unit) processpticr)
the behavior is fine, but with general return values deadlocks may occur.
One would rather expect a law like SKIP r [A] SKIP s = SKIP (r, s), yet
defining such an operator raises non-trivial technical challenges.

In this entry, we propose generalized definitions for sequential composition
and synchronization product that not only respect the invariant is-process
but also fulfill the expectations outlined above. Beyond this substantial
work, we establish algebraic and operational properties of these operators,
as well as the lemmas required for fixed-point reasoning. In particular, it
can be pointed out that the resulting sequential composition operator fulfills
the laws of a monad.

1.2 The Global Architecture of HOL-CSP_PTick

Our formalization attempts to take full advantage of parallelization, explain-
ing the shape of the session graph shown in Figure 1.1.

12



[Tools]

[HOL-Library]

[HOL-Combinatorics] | [ THOLCF] ] [ [Restriction_spaces] |

[HOL-Eisbach] [ (Restriction_Spaces-HOLCF] |

[HOL-CSP]

CSP_PTick_Introduction | [ Sequential_Composition_¢ ] [synd _Product_ | TiroLcsem)

Non_Deterministic_CSP_PTick_Distributivity | [ Step_CSP_PTick_Laws | [ CSP_PTick Renaming | [ Finite_Ticks | [ [HOL-CSP_Opsem]

Basic_CSP_PTick Laws | [ Synchronization_Product ( ] [synd _Product_ [HoL-csp rs)

Step_CSP_PTick_Laws_Extended | [(After_csP_pTick_taws

Read_Write_CSP_PTick_Laws. ‘ ‘ Operational_Semantics_CSP_PTick_Laws

Sy fon_Product_{

Multi_Sequential_Composition ¢ ] [Multisynd fon_Product_(

Sequential_Composition_Generalized Cont | [ Events_Ticks_C5P_PTick_Laws | [ Synchronization_Product_Generalized_Cont

CSP_PTick_Monotonicities

CSP_PTick_Deadlock Results | [ CsP_PTick Laws | [ Sequential_Composition_Generalized_Non_Destructive | [ Synchronization_Product_Generalized_Non_Destructive

HOL-CSP_PTick

CSP_PTick_Conclusion

Figure 1.1: The overall architecture

13



14



Chapter 2

Finite Ticks Predicate

2.1 Definitions

Due to our generalization, the generalized sequential composition will require
this additional assumption for continuity. Intuitively, having an infinite
number of possible terminations after a given trace will lead to a infinite
branching preventing continuity, to a certain extent like what happens with
global non deterministic choice.

definition finite-all-ticks :: <('a, 'r) processptick = bool>
where (finite-all-ticks P =Vt € T P. finite {r. t Q [/(r)] € T P}

lemma finite-all-ticksl : «(A\t. t € T P = finite {r. t Q [/ (r)] € T P}) =
finite-all-ticks P>
(proof )

lemma finite-all-ticksD : «finite-all-ticks P = finite {r. t Q [/ (r)] € T P}
{proof )

Actually, when a tick only appears in divergences, it will not matter for
continuity. We therefore introduce the modified predicate, which is much
more useful.
definition finite-ticks :: «("a, 'r) processpticr = bool> (<F,'(-")»)

where (F,(P) =Vt e T P. finite {r. t Q [/(r)] € T P — D P}

lemma finite-ticksl :
(Nt.te T P=t¢DP = finite {r. t Q@ [/(r)] € T P}) = F,(P)
(proof)
lemma finite-ticksD :
Fy(P) =t ¢ D P = finite {r. t Q [/(r)] € T Ph
(proof)

lemma finite-all-ticks-imp-finite-ticks [simp)] : «finite-all-ticks P = F ,(P)

15



(proof)

lemma finite-all-ticks-is-finite-ticks-or-finite-UNIV :
(finite-all-ticks P <— (if D P = {} then F,(P) else finite (UNIV :: 'r set))»
— This is justifying why finite-all-ticks is not really interesting.
for P :: «('a, 'r) processpiick>

(proof)

We also introduce the concept that a function can preserve finite-ticks. Un-
fortunately, we will not succeed in proving continuity under this condition
for generalized sequential composition.

definition finite-ticks-fun :: <(('a, 'r) processpiick = ('b, 's) processpiick) = bool>

(Fy='(-)
where (F,_ (f) =VP.F,(P) — F/(f P)

lemma finite-ticks-funl: «(A\P.F,(P) = F,(f P)) = F =(f)
(proof )

lemma finite-ticks-funD: <F - (f) = ¥ ,(P) = F /(f P)»
(proof)

2.2 Properties

named-theorems finite-ticks-simps

named-theorems finite-ticks-fun-simps

2.2.1 Constant Processes

lemma finite-ticks-BOT |finite-ticks-simps| : <F /(L)
(proof)

lemma finite-ticks-fun-BOT |[finite-ticks-fun-simps] : <F s (L)
(proof)

lemma finite-ticks-SKIP [finite-ticks-simps] : <F ,(SKIP 1))
(proof)

lemma finite-ticks-STOP |[finite-ticks-simps| : <F ,(STOP)»
(proof)

lemma finite-ticks-SKIPS-iff [finite-ticks-simps| : <F ,(SKIPS R) <— finite R»
(proof)

2.2.2 Other properties

lemma finite-strict-ticks-of-imp-finite-ticks [finite-ticks-simps] :
(finite /'s(P) = F /(P)»
(proof)

16



lemma finite-strict-ticks-of-image-imp-finite-ticks-fun [finite-ticks-fun-simps] :
(Az. finite /s(f z)) = F = (f)
(proof)

lemma anti-mono-finite-ticks [finite-ticks-simps] :
dF,(P)y if <P C @ F/(Q)
(proof)

lemma anti-mono-finite-ticks-fun [finite-ticks-fun-simps] :
fEg=F,=(9) = F/=(f)
(proof)

lemma finite-ticks-LUB-iff [finite-ticks-fun-simps] :
F (i Yi)— (Vi. F (Y i) if «chain Y»
(proof )

lemma adm-finite-ticks [finite-ticks-simps] : <adm (AP.F /(P))
(proof)

lemma finite-ticks-fix [finite-ticks-simps] :
dF (pn X. fX)if <cont f> and (F,_(f)
(proof)

lemma adm-finite-ticks-fun |finite-ticks-fun-simps] : <adm (A\f. F, - (f))
(proof)

lemma finite-ticks-fun-fix [finite-ticks-fun-simps] :
Fyo(p X. fX)if <cont fr and <A\z. F/ - (2) = F - (f z)
(proof)

lemma finite-ticks-fun-id [finite-ticks-fun-simps| :
(F /= (id)y <F/ = (Az. z)
(proof)

lemma finite-ticks-fun-const-iff [finite-ticks-fun-simps] :
<]F/:>(>\$. P) — ]F/(P))
(proof)

lemma finite-ticks-fun-comp [finite-ticks-fun-simps| :

F,.(9) = F 5 () = Fyu(ha. g (f2))
(proof)

17



2.3 Laws

2.3.1 Laws of F,(P)

lemma finite-ticks-Ndet [finite-ticks-simps] :
dF, (PN Q) if <F, (P) F, (Q)
(proof )

lemma finite-ticks-Det |[finite-ticks-simps] :
dF (PO Q) if (F,(P) F,/(Q)
(proof)

lemma finite-ticks-Sliding [finite-ticks-simps] :
<]F/(P) - IF/(Q) — ]F‘/(P > Q))
(proof )

lemma finite-ticks-Interrupt [finite-ticks-simps] :
dF, (P AN Q) if F,(P) F, (Q)
(proof )

lemma finite-ticks- Throw [finite-ticks-simps] :
A, (P O acA. Q a) if <F/(P) «N\a. a € A = F,(Q a)
(proof )

lemma finite-ticks-Renaming [finite-ticks-simps] :
(F s (Renaming P f g)» if «finitary f> «finitary g» <F /(P)>
(proof)

lemma finite-ticks-Seq [finite-ticks-simps] :
dF (P ; Q) if F, (Q)
(proof )

lemma finite-ticks-Sync [finite-ticks-simps] :
@, (P [S] Q) if <F,(P) VFE,(Q)
(proof )

corollary <F,(P) V F,(Q) = F/ (P || Q)
and @F/(P) V F/(Q) = F (P || Q)
(proof)

18



lemma finite-ticks-GlobalNdet [finite-ticks-simps] :
(finite A = (Na. « € A = F /(P a)) = F,(MNacA. P a)
— We can’t expect infinite A here, see F,(SKIPS R) = finite R.
(proof)

lemma finite-ticks-GlobalDet [finite-ticks-simps] :
(finite A = (Na. a € A = F /(P a)) = F,(OacA. P a)
(proof)

lemma <L = [| = F(SEQ l€QL. P 1)) (proof)

lemma finite-ticks-MultiSeq-nonempty [finite-ticks-simps| :
(L # [| = F /(P (last L)) = F,(SEQ l€QL. P I))
(proof)

lemma finite-ticks-MultiSync [finite-ticks-simps] :
(Am. m e# M = F (P m)) = F,([S] me#M. P m)»
(proof)

corollary «(Am. m e# M = F /(P m)) = F /(|| me#M. P m),
and «(Am. m €# M = F,(P m)) = F /(||| me#M. P m),

(proof)

lemma finite-ticks-Mprefiz-iff [finite-ticks-simps] :
(Fy(OacA — Pa) «— (VacA. F /(P a))
(proof)

lemma finite-ticks-Mndetprefiz-iff [finite-ticks-simps] :
F (MacA = Pa) +— (VacA. F (P a))
(proof)

lemma finite-ticks-write0-iff [finite-ticks-simps] : <F,(a — P) «— F /(P)>
(proof)

lemma finite-ticks-write-iff [finite-ticks-simps] : <F /(cla — P) <— F,(P)»
(proof)

lemma finite-ticks-read-iff :
F,(c?acA = Pa) «— (Vbec “ A. F /(P (inv-into A ¢ b)))»
(proof)

lemma finite-ticks-inj-on-read-iff [finite-ticks-simps] :
unj-on ¢ A = F (c?a€cA — P a) «— (VacA. F /(P a))
(proof)

lemma finite-ticks-ndet-write-iff :

Fy(MNacA — Pa) +— (Vbec “A. F (P (inv-into A ¢ b))

19



(proof)

lemma finite-ticks-inj-on-ndet-write-iff [finite-ticks-simps] :
<ng-on ¢ A = F  (cla€A — P a) «— (Va€A. F (P a))
(proof )

2.3.2 Laws of F,_(f)

lemma finite-ticks-fun-Det [finite-ticks-fun-simps] :
Fyo(f) =F, =(9) = F,/o(Az. f2Ogaz)
(proof)

lemma finite-ticks-fun-Ndet [finite-ticks-fun-simps] :
F o (f) = Fy=(9) = Fyo(Az. fz M ga)
(proof)

lemma finite-ticks-fun-Sliding [finite-ticks-fun-simps] :
Fyo(f) = F, o(9) = Fo(Az. fz > ga)
{(proof)

lemma finite-ticks-fun-Interrupt [finite-ticks-fun-simps] :
Fyo(f) = F o(9g) = F/o(Az. fz A ga)
(proof)

lemma finite-ticks-fun-Throw [finite-ticks-fun-simps]
Fyo(f) = (Na.a€c A= F, - (ga)) = F, o (\z. fz © a€A. g a )
(proof)

lemma finite-ticks-fun-Renaming [finite-ticks-fun-simps| :
EIF/:>(>P) = finitary f = finitary ¢ = F /- (A\z. Renaming (P z) f g)
proof

lemma finite-ticks-fun-RenamingF [finite-ticks-fun-simps] :
Fy=(P) = F o (Az. (P z) [a:=b] [c:=d])
(proof)

lemma finite-ticks-fun-Seq [finite-ticks-fun-simps] :
Fy=(9) = Fyo(Az. fosga)
(proof)

lemma finite-ticks-fun-Sync [finite-ticks-fun-simps] :
Fy(f) = Fy=(9) = Fyro(a. fo [S] ga)p
(proof)

corollary <F,_(f) = F/ - (9) = F /o (Az. fz || ga)
and (F,_(f) = F /= (9) = F /o (A\z. fz ||| g )
(proof)

20



lemma finite-ticks-fun-GlobalNdet [finite-ticks-fun-simps] :
(finite A = (N\a. a € A = F /- (fa)) = F /= (Az. Na€A. faz)
{proof )

lemma finite-ticks-fun-GlobalDet :
finite A = (Na. a € A = F /- (fa)) = F o (Az. OacA. fa z)
(proof)

lemma finite-ticks-fun-MultiSeq [finite-ticks-fun-simps] :
(L =[] = F = (\z. SEQ l€QL. flz)
(L #[| = F - (f (last L)) = F,— (Az. SEQ I€QL. f1z)
(proof)

lemma finite-ticks-fun-MultiSync [finite-ticks-fun-simps]
(Am. m e# M = F, - (fm)) = F, o (Az. [S] me#M. fm z)
(proof)

corollary <«(Am. m e# M = F, - (f m)) = F /= (Az. || me#M. fm z))
and (Am. m €# M = F - (f m)) = F o (Az. ||| me#M. fm z)
(proof)

lemma finite-ticks-fun-Mprefiz-iff :
Fyo(Az. Oacd = faz) «— Vae€ A F o (fa))
(proof)

lemma finite-ticks-fun-Mprefix [finite-ticks-fun-simps] :
(Na. a e A= F, - (fa)) = F /o (Az. JacAd — fa z)
(proof)

lemma finite-ticks-fun-Mndetprefiz-iff [finite-ticks-fun-simps] :
Fyo(Az.NacAd = faz) <— Vac A F o (fa))
(proof)

lemma finite-ticks-fun-Mndetprefiz [finite-ticks-fun-simps] :
(Na.a € A= F /- (fa)) = F o (Az. Ma€A — fa z)
(proof)

lemma finite-ticks-fun-write0-iff |finite-ticks-fun-simps] :
Fyo(Az. a = fz) «— F o (f)
(proof)

lemma finite-ticks-fun-write-iff [finite-ticks-fun-simps] :
F oAz la = fz) «— F ()
(proof)

21



lemma finite-ticks-fun-read-iff :
Fyo(Az. c?acA = fax) «— (Vbec ‘A F /- (f (inv-into A c b))
(proof)

lemma finite-ticks-fun-read [finite-ticks-fun-simps] :
(Na.a € A= F o (\z. faz)) = F, o (Az. c?acAd — faz)
(proof)

lemma finite-ticks-fun-ndet-write-iff :
F oAz, MacA = faz) +— (Vbec ‘A F o (f (inv-into A c b)))»
(proof )

lemma finite-ticks-fun-ndet-write [finite-ticks-fun-simps] :
(Na.a € A= F /o (Az. faz)) = F o (Az. ctlacA — faz)
(proof)

22



Chapter 3

Generalization of the
Sequential Composition

3.1 Definition

For the sequential composition, the generalization seems quite straightfor-
ward. In a nutshell, we just replace ) with @ r in the definition of P
; @ since @ is now of type 'r = (a, 'r) processprick (instead of (‘a, r)
PTOCESSptick)-
lift-definition Seqpiicr

(("a, 'r) processpiick, T = ('a, 'r) processpiick] = ('a, 'r) processpiicr> (infixl
Gy 1)

is AP Q. ({(t, X) |t X. (¢, X U range tick) € F P A tF t} U
{tQu, X) turX. tQV(r)]eTPA(u, X)eF(Qr)}U
{(t, X). t € D P},

DPu{tQultur.t@Q/(r)eT PAueD(Qr)})

(proof)

Except that this is not a fully satisfactory definition yet. Indeed, here, the
right-hand side argument must produce processes whose terminations keep
the same type. In other words, Q is of type 'r = (‘a, 'r) processpiick, while
we would like to have in full generality r = (‘a, 's) processptici. The final
definition given below is not immediate, and involves a precise understanding
of the behaviour of the sequential composition.

3.1.1 Preliminaries
The first key for generalizing the definition is to see that map (ev o of-ev)
allows for changing the type of termination in tick-free traces.

lemma tickFree-map-ev-of-ev-same-type-is : <tF t => map (ev o of-ev) t = b
— In this case the type of termination remains unchanged.

(proof )

23



lemma tickFree-map-ev-of-ev-eq-iff :
tF t = map (ev o of-ev) t = t' = t = map (ev o of-ev) t"

(proof)

lemma tickFree-map-ev-of-ev-inj :
(F t = tF t' = map (ev o of-ev) t = map (ev o of-ev) t' +— t =t
(proof)

lemma map-ev-of-ev-map-ev-of-ev [simp] :
«map (ev o of-ev) (map (ev o of-ev) t) = map (ev o of-ev) t» (proof)

lemma map-ev-of-ev-map-ev-of-ev-simplified [simp] :
<map (ev o of-ev o (ev o of-ev)) t = map (ev o of-ev) t» (proof)

lemma tickFree-map-ev-of-ev-eq-imp-ev-mem-iff :
(tF t' =t = map (ev o of-ev) t' = ev a € set t < ev a € set th

(proof)

The second key is to understand that X U range tick can be rewritten as
(ev o of-ev) ‘(X N range ev) U range tick, and that this second expression
also allows for changing the type of termination.

definition ref-Seqpiick :: <('a, 'r) eventpiicr set = (a, 's) eventyyicr sety

where (ref-Seqpic X = (ev o of-ev) ‘(X N range ev) U range tick»

lemma ref-Seqpticr-same-type-is : <ref-Seqpiick X = X U range tick
— In this case the type of termination remains unchanged.

(proof)

lemma mono-ref-Seqptick : <X C Y = ref-Seqptick X C ref-Seqprick Y
(proof)

lemma ref-Seqpiick-idem : <ref-Seqpiick (ref-Seqprick X) = ref-Seqprick X»

(proof)

lemma ref-Seqpici,-comp-ref-Seqpiick : <ref-Seqptick © Tef-Seqptick = ref-Seqptick>

(proof)

lemma ref-Seqpici-eq-iff
<ref-Segprick X = ref-Seqprick Y +— X N range ev = Y N range ev

{proof)

lemma ref-Seqpticr-is-map-eventy;cx-image :

24



ref-Seqprick X = map-eventyyicr id g ¢ (X N range ev) U range tick)
— Note that g is free here and does not matter.

(proof)

lemma ref-Seqpticr-union-image-ev :
ref-Seqprick (X U ev ©S) = ref-Seqprick X U ev © S»
(proof)

lemma ref-Seqpiick-UNIV @ <ref-Seqpiicty UNIV = UNIV»
(proof)

3.1.2 Formal Definition

definition div-Seqpiick
(("a, 'r) processpiick, T = ('a, 's) processprick] = (‘a, 's) tracepiick sety
where <div-Seqptick, P Q =
{map (ev o of-ev) t Qu [t u.t € D P AtFtA ftFu} U
{map (evo of-ev) t Qu [tur.tQ/(r)] e T PANtFtANueD(Qnr)h

definition fail-Seqpticr
(("a, 'r) processprick, T = (
where «fail-Seqpiicr, P Q =
{(map (ev o of-ev) t, X) |t X. (t, ref-Seqprick X) € F P A tF t} U
{(map (ev o of-ev) t Q@ u, X) [turX. tQ [V(r)) € T PAtFtA (u, X)
€F(@n}u
{(map (ev o of-ev) t Q@ u, X) [t u X.t € D P ANtFtAftFu}
— tF' t is trivial when ¢t @Q [V (r)] € T P, but we add it for proof automation

/ /

a, 's) processpiick] = (‘a, 's) failurepiicr sety

lift-definition Seqpiicr

(("a, 'r) processpiick, ' = ('a, 's) processpiick] = ('a, 's) processpiickr (infixl
Gy 74)

is <AP Q. (fail-Seqpiick P Q, div-Segqprick P Q)
(proof)

3.2 Projections

lemma F-Seqpiick - <F (P35, Q) = fail-Seqpiick P Q>
(proof)

lemma D-Seqpiicr - <D (P, Q) = div-Seqpiick P Q>
(proof)

lemma T-Seqpiicr-bis :
(T (P3y Q) = {map (ev o of-ev) t |t. (t, range tick) € F P A tF t} U
{map (evo of-ev) tQu|tur.tQV(r)] €T PAFtANueT (Q
)} U

25



{map (ev o of-ev) t Q u [t u. t € D P A tF t A ftF u}»
(proof)

lemma T-Seqpiick :
(T (P3y Q) = {map (ev o of-ev) t |t. t € T P AN tFt} U
{map (evo of-ev) tQultur. tQ/(r)]e T PANtFtAueT (Q
r)} U

{map (ev o of-ev) t Qu |t u.t € D P AtFt A ftF up
— Often easier to use

(proof)

lemmas Sertick'prOjs = F'SEthick D'Seq;)tick' T‘Seq;otick fail'squ)tick"def div'sefh)tick‘def

lemma mono-Seqpiicr-eq : <P, Q= P35, Q) if x: <P =P <A\r. r € /s(P)
= Qr=Qn
for P P’ :: «('a, 'r) processpiick) and @ Q' :: <'r = (‘a, 's) processpiick’

{proof)

Note that this definition allowing for changing the type of termination is
actually a generalization of the first idea that we mentioned at the beginning.
Indeed, when we enforce the type of P and @ to be (‘a, 'r) processpticr and
'r = ('a, 's) processptick respectively, the projections can be rewritten as
follows.
lemma F-Segpt;cr-same-type :
F (P35 Q) ={(t, X) |t X. (t, X U range tick) € F P N tF t} U
{tQu, X) turX. tQ/(r)eT PA(u, X) e F(Qr)} U
{(t, X).t € D Ph
(proof)

lemma D-Seqyiicr-same-type : <D (P35, Q) =D PU{tQu[tur. tQ [/(r)] e
TPAueD(Qnr)hb
(proof)

lemma T-Seqpi;cr-same-type-bis :
T (P Q) ={t. (¢, range tick) € F P AN tF t} U
{tQultur.tQ/(r)eTPAueT (Qr)}uU
D P

(proof)

lemma T-Seqpicr-same-type :

(T (P35, Q) ={teTP.tFt}uU{tQultur.tQ[/(r))]eTPAueT (Q
T} UD P

— Often easier to use

(proof)

26



lemmas Seqptick-same-type-projs = F-Seqpiick-same-type D-Seqp;cr-same-type T-Seqpeick-same-type

27



28



Chapter 4

Generalization of the
Synchronization Product

4.1 Trace Interleaving
4.1.1 Motivation

The notion of trace interleaving found in HOL-CSP does not allow us to
precisely handle termination. Indeed, as soon as r # s, we cannot have ¢
setinterleaves (([V/ ()], [V (s)]), range tick U ev © A).

lemma «r # s = = t setinterleaves (([V ()], [V'(s)]), range tick U ev © A)» {proof)

The actual issue of this previous definition is that no distinction is done
between the “regular” events (like ev a) and the terminations (like v/(7)).
Here, while we still want the same behaviour for regular events, we want
instead the interleaving of v/ (r) and v/ (s) to be v ((r, s)). But we would
also like this interleaving to generalize the old one, i.e. be able to prevent
sometimes two ticks from being combined. Our solution is therefore to rely
on a parameter: tick-join of type 'r = s = 't option whose role is to specify
how two ticks can be combined (or not).

bundle option-type-syntax
begin

no-notation floor (:(<open-block notation=<mizfix floor»s|-|)»)
no-notation ceiling (<(<open-block notation=<mizfix ceiling»>[-])»)

notation Some (<(<open-block notation=<«mizfiz Somes»|-|)»)
notation the («(<open-block notation=«mizfic the»>[-]))
notation None («O)

end

unbundle option-type-syntax

29



4.1.2 Definition

type-synonym (’a, 'r, ’s, 't) setinterleavingpi;cr-args =

('t ="s = "t option) x ('a, 'r) traceprick X 'a set x (’

a, 's) tracepiick>
fun setinterleavingpeic i
«('a, 'r,'s, 't) setinterleavingpiick-args = (‘a, 't) tracepiicr set>
where Nil-setinterleavingp;ci.-Nil :
setinterleavingpicr (tick-join, [], A, []) = {[|p

| ev-setinterleavingpicr-Nil :
«setinterleavingpicr, (tick-join, ev a # u, 4, []) =
( if a € A then {}
else {ev a # t| t. t € setinterleavingpicr (tick-join, u, A, [|)})
| tick-setinterleavingyy;cr-Nil :
«setinterleavingpicr, (tick-join, V(1) # u, A, [])) = {p

| Nil-setinterleavingptici-ev :
(setinterleavingpiicr, (tick-join, [|, A, ev b # v) =
( ifbe Athen {}
else {ev b # t| t. t € setinterleavingpiicr, (tick-join, [], A, v)})
| Nil-setinterleavingpic-tick :
«setinterleavingpicr, (tick-join, [|, A, vV (s) # v) = {b

| ev-setinterleavingptick-ev :
«setinterleavingpicr, (tick-join, ev a # u, A, ev b # v) =

(ifac A
then ifbe A
then ifa=10>

then {ev a # t |t. t € setinterleavingpiicr (tick-join, u, A, v)}
else {}
else {ev b # t |t. t € setinterleavingpiick (tick-join, ev a # u, A, v)}
else ifbe A
then {ev a # t |t. t € setinterleavingpiicr (tick-join, u, A, ev b # v)}
else {ev a # t |t. t € setinterleavingpiick (tick-join, u, A, ev b # v)} U
{ev b # t |t. t € setinterleavingpiick (tick-join, ev a # u, A, v)})
| ev-setinterleavingpeick-tick :
«setinterleavingpiicr (tick-join, ev a # u, A, /(s) # v) =
( if a € A then {}
else {ev a # t |t. t € setinterleavingpsicr (tick-join, u, A, /(s) # v)})
| tick-setinterleavingpiicr-ev :
«setinterleavingpiicr (tick-join, V(1) # u, A, ev b # v) =
( if be Athen {}
else {ev b # t |t. t € setinterleavingpiick (tick-join, /(1) # u, A, v)})
| tick-setinterleavingp i cr-tick :
«setinterleavingpicr (tick-join, V(1) # u, A, /(s) # v) =
(case tick-join r s
of |r-s] = {V/(r-s) # t |t. t € setinterleavingpiick (tick-join, u, A, v)}
o= (1)

30



lemmas setinterleavingpticr-induct
[case-names Nil-setinterleavingpi;ck-Nil ev-setinterleavingpy;cr-Nil
tick-setinterleavingpeicr-Nil Nil-setinterleavingpi;cr-ev
Nil-setinterleavingpick-tick ev-setinterleavingpiicy-ev
ev-setinterleavingy;ci-tick tick-setinterleavingpi;cr-ev
tick-setinterleavingpticr -tick,
induct type: setinterleavingpicr-args] = setinterleavingpiicy.induct

lemma Cons-setinterleavingp;cr-Nil :
(setinterleavingpicr (tick-join, e # u, A, []) =
(case e of ev a =
( if a € A then {}
else {ev a # t |t. t € setinterleavingpiick (tick-join, w, A, [))})
/() = ()

(proof)

lemma Nil-setinterleavingpticr-Cons :
(setinterleavingpicr (tick-join, [|, A, e # v) =
(case e of ev a =
( if a € A then {}
else {ev a # t |t. t € setinterleavingyiicr (tick-join, [, A, v)})
MGES
(proof)

lemma Cons-setinterleavingpicr-Cons :
(setinterleavingpicr (tick-join, e # u, A, f # v) =
(case e of ev a =
(case f of ev b =
ifae A
then ifbe A
then ifa =10
then {ev a # t |t. t € setinterleavingyi;cr (tick-join, u, A, v)}
else {}
else {ev b # t |t. t € setinterleavingpiick (tick-join, ev a # u, A, v)}
else ifbe A
then {ev a # t |t. t € setinterleavingyiicr (tick-join, u, A, ev b # v)}
else {ev a # t |t. t € setinterleavingyiicr (tick-join, u, A, ev b # v)} U
{ev b # t |t. t € setinterleavingpiick (tick-join, ev a # u, A, v)}
| V(s) = ifae€ Athen {}
else {ev a # t |t. t € setinterleavingpiicr, (tick-join, u, A, /()
4 0)})
| V(1) =
(case f of ev b =
if b € A then {}
else {ev b # t| t. t € setinterleavingpiick (tick-join, /' (r) # u, A, v)}
| V(s) =

31



(case tick-join r s of |r-s| =
{V(r-s) # t |t. t € setinterleavingpi;cr (tick-join, u, A, v)}
| o= {))
(proof)

lemmas setinterleavingpticr-simps =
Cons-setinterleavingpticr -INil Nil-setinterleavingpicr-Cons Cons-setinterleavingpyi;cr-Cons

abbreviation setinterleavesyicy ::
(("a, t) tracepiick, T = 's = 't option,
(‘a, 'r) tracepiick, ('a, 's) tracepiick, 'a set] = bools
(«(- /(setinterleaves )./ "(()'(-, -)(), -"))» [63,0,0,0,0] 64)
where <t setinterleaves yick_join (v, v), A) =
t € setinterleavingpicr (tick-join, u, A, v))

4.1.3 First Properties

First of all: this formalization may seem tricky, but is actually a generaliza-
tion of the old setup.

theorem setinterleaves-is-setinterleavesyiick
<t setinterleaves ((u, v), range tick U ev * A) <—
t setinterleavesy \y. o if v = s then || else ¢ ((u, v), A)
for t :: «(‘a, 'r) traceptick?

(proof)

corollary setinterleaves-is-setinterleavesyci-unit :
«t setinterleaves ((u, v), insert v (ev * A)) «—
t setinterleavesy . s | r| ((u, v), A)> (is ¢ ?lhs <— ?rhs»)

(proof)

lemma setinterleaves,ici-sym :
— Of course not suitable for simplifier.
«t setinterleaves s\ r. tick-join r s (v, w), A) —

t setinterleavess \r s tick-join r s (4, ), A)

(proof)

lemma setinterleavesp ;- UNIV-iff :
(t setinterleaves y,. ¢ L(r, 5)] ((u, v), UNIV) +—

u = map (map-eventyyicr id fst) t A
v = map (map-eventyiicr id snd) t» for t :: «(Ya, 'r x 's) tracepiick

32



(proof)

lemma setinterleavesyi;cr-empty :
«t setinterleaves s yick_join (4, v), {}) =
eva € sett +— eva € setuV eva € set v
for u :: «('a, 'r) tracepiick

(proof)

lemma tickFree-setinterleavesy;cr-any-tick-join :
«t setinterleaves s yick_join (4, v), A) +—
t setz’nterleaves/tick_jomf ((u, v), A)»
if «tFtV tFuV tF v

(proof)

lemma tickFree-setinterleavesy;cr-iff :
«t setinterleaves s yick_join (U, v), A) = tF ¢t «— tF u A tF v

(proof)

lemma setinterleavesy;cy-tickFree-imp :
UF u vV IF v = t setinterleaves s yickjoin ((u, v), A) = tF t N tF u A tF v

(proof)

lemma setinterleavesy;cr-NUL-iff
«t setinterleaves s yick_join ([, v), 4) <—
tFoAsetvnNev A={}At=map ev (map of-ev v))
for tick-join :: <'r = 's = 't option)
(proof )

lemma setinterleavesy;cr-NiUR-iff
«t setinterleaves s yick_join (4 [1), A) «—
tFuAsetunNev‘A={} At= map ev (map of-ev u)
for tick-join :: <'r = 's = 't option)

(proof)

lemma setinterleavesycy-subsetl :
(tFt = {a. eva € setu} C A =
t setinterleaves s yick_join ((u, v), A) =
t = map ev (map of-ev v)»

(proof)

lemma setinterleavesyi;cr-subsetR :
(tFt = {a. eva € set v} C A =

33



t setinterleaves s yick-join ((u, v), A) =
t = map ev (map of-ev u)»

(proof)

lemma Nil-setinterleavespiicr
([] setinterleaves s yickjoin (4, v), A) = u=1[ Av=][p

(proof)

lemma front-tickFree-setinterleavesy;cr-iff :
«t setinterleaves s yick_join (U, v), A) = ftF t <— ftF u A ftF' v

{proof)

lemma setinterleavesy;cr-snoc-notink :
«t setinterleaves s yickjoin (4, v), A) = a ¢ A =
t @ [ev a] setinterleaves s yick join (v @ [ev a], v), A)

(proof)

lemma setinterleavesyi;cr-snoc-notinkt :
«t setinterleaves s yick_join (U, v), A) = a ¢ A =
t @ [ev a] setinterleaves yick_join ((u, v @ [ev a]), A)

(proof)

lemma setinterleaves, i -snoc-inside :
«t setinterleaves s yick_join (4, v), A) = a € A =
t @ [ev a] setinterleaves yick_join (v @ [ev al, v @ [ev a]), A)»

(proof)

lemma setinterleavesy;cr-snoc-tick :
«t setinterleaves s yick_join ((u, v), A) = tick-join r s = [r-s] =
t @ [/ (r-s)] setinterleaves s yicf_join ((u @ [/ (r)], v @ [/(5)]), A
(proof)

lemma Cons-tick-setinterleavespicr E :
W/ (r-s) # t setinterleaves s yick_join ((u, v), A) =
(Au' v’ 1 s. [tick-join r s = |r-s|; u=V(r) # u'; v = V(s) # v
t setinterleaves s yickjoin (0, v), A)] = thesis) = thesis
(proof)

lemma Cons-ev-setinterleavesyiick B

cev a # t setinterleaves s yick_join ((u, v), A) =
(Au'. a ¢ A= u=eva# u = tsetinterleaves s yick_join ((u', v), A) =

34



thesis) =
(Av'.a @ A= v=cevad# v = tsetinterleavesy yjcpjoin ((u, v'), A) =
thesis) =
Nu'viace A= u=eva# v = v=eva# v =
t setinterleaves s yick_join ((u', v'), A) = thesis) => thesis)
(proof)

lemma rev-setinterleavesyy;qr-rev-rev-iff :

<rev ¢ setinterleaves s yick_ioin ((rev u, rev v), A)

< t setinterleaves s yick_join (4, v), A)

for u :: «('a, 'r) tracepiick> and vz «(‘a, 's) tracepiick>
(proof )

lemma setinterleavesy;cr-preserves-ev-notin-set :
(feva ¢ set u; eva ¢ set v; t setinterleaves s yick_join ((u, v), A)] = ev a ¢ set
12

(proof)

lemma setinterleavesyy;.-inj-preserves-tick-notin-set :
(tick-join r s = |r-s|; /(1) ¢ set u V /(s) ¢ set v;
t setinterleaves yick_join ((u, v), A)] = V/(r-s) & set t»
— This is a weakened injectivity property.
if inj-tick-join : <\r' s'. tick-join v’ s’ = |r-s] = r'=rAs' =9

(proof)

lemma setinterleavesy;c,-preserves-ev-inside-set :
([ev a € set u; ev a € set v; t setinterleaves s yick_join (4, v), A)] = ev a € set
t»

(proof)

lemma ev-notin-both-sets-imp-empty-setinterleavingpticr,
(eva e setuNevadsetvVevadsetuAeva€ setv; a€ A] =
setinterleavingptick (tick-join, u, A, v) = {}
(proof)

lemma setinterleavesy;cr-snoc-tick-snoc-tickE:
(N\t' r-s. tick-join v s = |r-s] = t’ setinterleaves yjcpjoin (v, v), A) =
t =t'Q [/(r-s)] = thesis) = thesis)
if «¢ setinterleaves s yick_join ((u @ [V (r)], v @ [/(5)]), A
(proof)

lemma snoc-tick-setinterleavespticr E :
(Au' v’ rs. [tick-join r s = [r-s]; t setinterleaves s yickjoin ((u', v'), A);
u=u"Q[/(r);v=12v Q[/(s)]] = thesis) = thesis»
if «t @ [/ (r-s)] setinterleaves s ickjoin ((u, v), A)

35



(proof)

4.1.4 Lengths

lemma length-setinterleavesy;ck-eq-sum-minus-filterL :

«t setinterleaves s yick_join (4, v), A) =

length t = length u + length v — length (filter (Ae. e € range tick U ev * A) u))
(proof)

lemma length-setinterleavesyy;cr-eq-sum-minus-filterR :
«t setinterleaves s yick_join (4, v), A) =
length t = length u + length v — length (filter (Ae. e € range tick U ev * A) v)»
(proof)

lemma setinterleavesyt;cr-eq-length :
«t setinterleaves s yick_join (4, v), A) =
t’ setinterleaves s yick_join (v, v), A) = length t = length t"

(proof)

lemma setinterleavesy . -imp-lengthLR-le :
«t setinterleaves s yick_join (4, v), A) =
length v < length t A length v < length t

(proof)

4.1.5 Trace Prefix Interleaving

We start with versions involving (@) before giving corollaries about the
prefix ordering on traces.

lemma setinterleavesyt;cr-appendlL :
«t setinterleaves s yick_join ((ul @ u2, v), A) =
Jt1t2vlv2. t=1t1 Q2 N v =0l Qv2 A
t1 setinterleaves s ickjoin ((ul, v1), A) A
t2 setinterleaves s ickjoin ((u2, v2), A)>

{proof)

corollary setinterleaves,;cr-appendR :
Jt1t2ulul. t=1t1 Q2 Nu=ul Qu2 A
t1 setinterleaves s ickjoin ((ul, v1), A) A
t2 setinterleaves s ickjoin ((u2, v2), A)>
if <t setinterleavesy ickjoin ((u, v @ v2), A)

(proof)

lemma append-setinterleavesytcr :
(t1 @ 12 setinterleaves yick_join ((u, v), A) =

36



Jul w2 vivl. u=ul Qu2 Av=uvlQv2A
t1 setinterleaves s ick-join ((ul, v1), A) A
t2 setinterleaves s ick-join ((u2, v2), A)

(proof)

corollary setinterleavesyt;cr-le-preficzL :
«t setinterleaves s yick_join (4, v), A) = v’ < uw =
Jt' <t Fo" <.t setinterleaves s yiek_join (0, 0), A)

(proof)

corollary setinterleavesyt;cr-le-prefizR :
«t setinterleaves s yick_join (4, v), A) = v/ < v =
Jt' < t. Ju’ < .t setinterleaves s yicpjoin (0, v'), A)
(proof)

corollary le-prefiz-setinterleavespicy, :
«t setinterleaves s yick_join (U, v), A) =t/ <t =
Ju’' < u. Fv' <o t! setinterleaves s yick_join (0, v7), A)

(proof)

lemma setinterleavesy;cr-less-prefizL :
«t setinterleaves s yic_join (4, v), A) = v’ < u =
Jt vt <t AV < v At setinterleaves s yiok_join ((u', v), A)

(proof)

corollary setinterleavesy;cr-less-prefizR :
«t setinterleaves s yick_join (4, v), A) = v’ < v =
't <t A’ < u At setinterleaves s yickjoin (0, v'), A)
(proof)

lemma setinterleavesy;cr-le-prefixLR :
«t setinterleaves s yick_join (4, v), A) = v' < u= v' < v =
(Ft' <t Fv" < o't setinterleaves s gk join ((u', 0"), A)) V
(Ft' <t Ju" < w1 setinterleaves s ek join ((u”, V'), A))

(proof)

4.1.6 Hiding Events

lemma setinterleavesy;c,-trace-hide :
«t setinterleaves s yick_join (4, v), §) =

37



trace-hide t (ev * A) setinterleaves yick_join
((trace-hide u (ev * A), trace-hide v (ev © A)), S)»
(proof)

lemma trace-hide-map-map-event,iicy :
<trace-hide (map (map-eventyicr fg) t) S =
map (map-eventpiick fg) (trace-hide t (map-eventyick fg —*S))
(proof)

lemma tickFree-trace-hide-map-ev-comp-of-ev :
(tF t = trace-hide (map (ev o of-ev) t) (ev * A) =
map (ev o of-ev) (trace-hide t (ev © A))»
(proof)

lemma tickFree-disjoint-setinterleavesy;ci-appendL :

Ful = {a. eva € set ul} N A = {} = 1 setinterleaves yjcpjoin ((u2, v),
4)

= map (ev o of-ev) ul Q@ t setinterleavesy yjcpjoin ((ul @ u2, v), A)

(proof)

corollary tickFree-disjoint-setinterleavesy;cr-appendR :
(tFv1; {a. eva € set vi} N A= {}; t setinterleaves s ek join ((u, v2), A)]
= map (ev o of-ev) vl Q@ t setinterleaves s yjcpjoin ((u, vI @ v2), A)»

(proof)

lemma tickFree-disjoint-setinterleavesytcr-append-taill :

t @ map (ev o of-ev) u?2 setinterleaves s yick_join ((ul @ u2, v), A)

if «¢tF u2» {a. eva € setu2} N A= {} «t setinterleaves yicpjoin ((ul, v), A)
{proof)

corollary tickFree-disjoint-setinterleavespy ;i -append-tailR :
([tF v2; {a. eva € set v2} N A = {}; t setinterleaves yjcpjoin ((u, v1), A)]
= 1 @ map (ev o of-ev) v2 setinterleaves s yick join ((u, v1 @ v2), A)>
(proof)

lemma disjoint-trace-hide-setinterleavesyticy :
(t setinterleaves s ick_join
((trace-hide u (ev ¢ A), trace-hide v (ev ¢ A)), ) =
At’. t = trace-hide t' (ev * A) A
t’ setinterleaves s yickjoin ((u, v), S) if <A NS ={p
for t :: «(“a, 't) tracepiick> and u :: «(‘a, 1) tracepiickr and v i «(‘a, 's) tracepiicr)

{proof)

38



lemma setinterleavesy;ck-inj-map-map-event ;e -iff-weak :
«map (map-eventyyicr fid) t setinterleaves s ick_join
((map (map-eventyyicr, fid) u, map (map-eventyiick fid) v), f < A) «—
t setinterleaves s yick_join ((u, v), A) if <inj f>

(proof)

lemma setinterleavesptick—inj—map—map—eventptick—iﬁ—stmng :
(t setinterleaves s ick_join
((map (map-eventpiick fid) u, map (map-eventyiick fid) v), f < A) +—
(3t t = map (map-eventpyick fid) t' A
t' setinterleaves s yick_join ((u, v), A)) if <inj >
— We could probably prove a stronger version with inj-on f (A U {a. ev a € set
uV eva € set v}) instead of inj f.
(proof)

lemma setinterleavesy;c,-append-setinterleavesyiicr
(t1 @ 12 setinterleavesy yickjoin ((ul @ u2, vl @ v2), A)
if «t1 setinterleaves yick_join ((ul, v1), A)
and <t2 setinterleaves s yick_join ((u2, v2), A)

(proof)

lemma setinterleavesy ;i -set-subsetl :
«t setinterleaves s yickjoin (4, v), A) =
{a. ev a € set (drop n u)} C {a. ev a € set (drop n t)}>»

(proof)

lemma setinterleavesy;cr-set-subsetR :
«t setinterleaves s yick_join (4, v), A) =
{a. ev a € set (drop n v)} C {a. ev a € set (drop n t)}p
(proof)

4.2 Synchronization Product

4.2.1 Definition

definition super-ref-Syncpiick
d'r = 's = 't option, (‘a, 'r) refusalyiick, ‘a set, ('a, 's) refusalyiick] = (‘a, 't)
refusalpiic)

39



where <super-ref-Syncpiicr tick-join X-P A X-Q =
{evala. evae X-PANeva€ X-QV (a€ AN(ewa€ X-PV eva €
X-Q))}u
{V(r-s) |r s r-s. tick-join r s = |r-s] A (V(r) € X-P V /(s) € X-Q)} U
— This is the last addition: since we generalize with the parameter tick-join,
we must add the following term to refuse the unreachable ticks.
{V(r-5) |r-s. Br s. tick-join r s = |r-s| b

For proving that the invariant is-process is preserved, we will need a kind of
injectivity for the parameter tick-join. We implement this through a locale.

locale Syncptici-locale =
fixes tick-join :: <'r = 's = 't option> (infixl «®@v"> 100)
assumes inj-tick-join :
rev s=rs| =r'e/ s=|rsl=r'=rAns’ =9
begin

sublocale Syncpi;cr-locale-sym : Syncpticr-locale <As . m @V s
(proof)

lift-definition Syncpiicr
(("a, 'r) processpiick, 'a set, (‘a, 's) processprick] = (a, 't) processpiick>
(- [y - [70, 0, 71] 70)
is < AP A Q.
({(t, X). 3t-P +-Q X-P X-Q.
(t-P, X-P)e FPA(+-Q, X-Q) e F QA
tsetinterleavesl(®/) ((t-P, t-Q), A) A
X C super-ref-Syncpiicr, (V) X-P A X-Q} U
{(t @ u, X) |t ut-PtQX.
fiIEu N (IFtV u=1])A tsetinterleaves/(®/) ((t-P, t-Q), A) A
(tPeDPAE+QeT QVE-PeTPAt-QeDQ)},
{t @ ultut-P1t-Q.
fiFu N (tFtV u=1])A tsetinterleaves/(®/) ((t-P, t-Q), A) A
(tPeEDPAtQeT QVEPeT PALQeDQ)})
(proof )

Here X C super-ref-Syncpiicr, (V) X-P A X-@Q may seem surprising (in-
stead of for example X = super-ref-Syncptick, (®v) X-P A X-@Q), closer to the
specification of Sync). Actually, edge cases in the behaviour of tick ensure
that a definition with the latter would violate the invariant.

end

abbreviation (in Syncptick-locale) Interpiicy
(("a, 'r) processpiick, ('a, 's) processpiick] =
(‘a, 't) processprick> (<(- |||/ -)» [72, 73] 72)
where P |||, Q=P [{} ], @

40



abbreviation (in Syncp;ck-locale) Parpiick
(("a, 'r) processpiick, ('a, 's) processpiick] =
(a, 2) processpuions (<(- ll, ) [74, 73] 74)
where <P ||, Q=P [ UNIV ], @

notation (in Syncpiick-locale) Syncpiicr-locale-sym.Syncyiick
(<(' [H]/Sym _)> [707 0, 71] 70)

notation (in Syncpiicr-locale) Syncpiick-locale-sym.Interpyicr
(< Mlysym =) [72, 73] 72)

notation (in Syncpy;ck-locale) Syncpiick-locale-sym.Parpiick
(<(- [lsym )[4, 75] 74)

4.2.2 Projections

context Syncpici-locale begin

lemma D-Syncpick’ :
D (P [A], Q) =
{t @ u |t utPtQ.
fFEuAN({FtVu=][)A tsetinterleaves/(®/) ((t-P, t-Q), A) A
(tPeDPA+QeET QVEPeT PALQeD Q)
(proof )

corollary D-Syncpticr :
— This version is easier to use.
D (P 4], Q) =
{t @ u |t utPtQ.
tEt A ftF u A tsetinterleaves/(®/) ((t-P, t-Q), A) A
(tPeDPAEQeET QVEPeT PALQeD Q)
(is - = 7rhs))
(proof)

lemma F-Syncpick’ :
«F (P [A], Q) =
{(t, X). It-P -Q X-P X-Q.
(t-P, X-P) e FPA(t+-Q, X-Q) € F Q A
t setinterleaves s q) ((+-P, t-Q), A) A
X C super-ref-Syncpiick (&V) X-P A X-Q} U
{(t @ u, X) |t ut-PitQX.
fifFEu N (tFtV u=1])A t setinterleaves s () ((+-P, t-Q), A) A
(t-PeDPAtQeT QVEPeT PALQeD Q)P
(proof )

lemma F-Syncptick :

F(PAl, Q) =
{(t, X). 3t-P t-Q X-P X-Q.

41



(t-P, X-P) e F P A (+-Q, X-Q) € F Q A
tsetinterleaves/(®/) ((t-P, t-Q), A) A
X C super-ref-Syncprick (V) X-P A X-Q} U
{(t Q@ u, X) |t ut-Pt-QX.
tF ¢t A ftF u A tsetinterleaves/(@)/) ((t-P, t-Q), A) A
(t-PeDPAt-QeT QVEPeT PALQeD Q)
(proof)

lemma T-Syncpiick’ :
T (P Al Q)
{t. 3t-Pt-Q. t-P € T PAt+Q €T QA tsetz'nterleaves/(@/) ((+-P, t-Q), A)}
U
{t @ u |t utPt-Q.
fiAFu N (tFtV u=1])A
tsetinterleaves/(®/) ((t-P, t-Q), A) A
(tPeDPALQeT QVE+PeTPALQeDQ)}p
(proof)

lemma T-Syncptick :
(T (P [A], Q) =
{t. 3t-Pt-Q. P T PAtQ T QA t setinterleaves,s (g /) ((+-P, t-Q), A)}
U
{t @ u|tutPitQ.
tFt A ftF u At setinterleaves s g ) ((t-P, t-Q), A) A
(tPeEDPALQeT QVE+PeT PALQeDQ)}p
(proof )

i / / /
lemmas Syncpiicr-projs’ = F-Syncpiick’ D-Syncpricr’ T-Syncptick
— Classical versions, but the ones below are often more convenient to use.

lemmas Syncpiick-projs = F-Syncptick D-Syncprick T-Syncptick

lemma (in Syncpiick-locale) Syncyiscr-same-tick-join-on-strict-ticks-of :
(Syncpiicr-locale.Syncpiicy tick-join’ PS Q = P [S], @
if «Syncpiick-locale tick-join’y and <A\rs. r € /'s(P) = s € /'s(Q) = tick-join’
rs=r Qv s
(proof )

4.2.3 First Properties

abbreviation range-tick-join :: 't set»
where <range-tick-join = {r-s |r-s rs. r @/ s = |r-s| b

lemma setinterleavesy;cr-imp-set-range-tick-join :
«t setinterleaves s (g .) ((u, v), A) =
{r-s. /(r-s) € set t} C range-tick-join

42



(proof)

end

lemma
— Of course not suitable for simplifier.
(t setinterleaves ) . tick-join s ((v, u), A) +—

t setinterleavess \y . tick-join r s ((u, v), A

(proof)

lemma super-ref-Syncpiicr-sym :
— Of course not suitable for simplifier.
super-ref-Syncprick (As 1. tick-join v s) X-Q S X-P =
super-ref-Syncpiick (Ar s. tick-join v s) X-P S X-Q»
(proof)

lemma super-ref-Syncptick-mono :
(ACA'"=— X-PC X-P=— X-QCX-Q'—
super-ref-Syncptick tick-join X-P A X-Q C
super-ref-Syncpiick tick-join X-P' A" X-Q"»
(proof)

context Syncpiicr-locale begin

lemma Syncpiick-sym : <Q [A]lysym P = P [A], @
(proof )

lemma interpretable-inj-on-range-tick-join :
<inj-on g range-tick-join —
Syncpiick-locale (Ar s. case v @V s of |r-s| = [gr-s] | O = O]
{proof )

lemma inj-on-map-map-eventyicr-setinterleavesytick
<t setinterleaves/(®/) ((u, v), A) =
map (map-eventpiick id g) t
setinterleavesy yr s case r @V s of r-s] = lgrs] |0 =0 ((u, v), 4
(is <- = - setinterleaves Ptick-join’ ((u, v), A))
if inj-on-g : <inj-on g range-tick-join>

(proof)

43



lemma vimage-inj-on-subset-super-ref-Syncpiick-iff :

«map-eventpiicr 1d g — X C

super-ref-Syncprick (V) X-P A X-Q +—

X C super-ref-Syncprick (A1 s. case r @/ s of [r-s] = [gr-s] | 0= ) X-P A
X-@Q»

(is «?lhsl C ?lhs2 +— X C %rhsy)

if inj-on-g : <inj-on g range-tick-join»

(proof)

The two following lemmas are necessary for the proof of continuity.
lemma finite-setinterleaves,;cr-tick-join :
finite {(u, v). t setinterleaves s () ((u, v), A)p

(is <finite {(u, v). 2f t u v})
(proof)

lemma finite-setinterleavesyt;cy -tick-join-Syncptick:
<finite {(t-P, t-Q, u). u setinterleaves/(®/) ((t-P, t-Q), A) A
Guv.t=u@QuAftFvA(tFuVov=I[))h
(is <finite {(t-P, t-Q, u). f u t-P t-Q A ?g t u}>)
(proof )

end

44



Chapter 5

Some Work on Renaming

unbundle option-type-syntax

This chapter contains several developments related to the Renaming oper-
ator. Some are not directly related to this session and may be moved to
HOL-CSP or HOL-CSPM in the future, while others specifically concern the
operator Syncpiick-locale.Syncpiick.-

5.1 Tick Swap Operator

We want to define an operator for swapping the values inside termination.
Intuitively, we want TickSwap (SKIP (r, s)) = SKIP (s, r).

5.1.1 Preliminaries

Swapping an Event

We start by defining tick-swap, which is swapping the values inside termina-
tion but only for an event. Then this will be generalized to a trace, a refusal
and a failure.

fun tick-swap :: <('a, 'r x 's) eventprick = (‘a, 's X 1) eventpiick

where <tick-swap (ev a) = ev ay
| <tick-swap /((r, 8)) = /((s, 7))

lemma tick-swap-tick : <tick-swap v (r-s) = (case r-s of (r, s) = /((s, 7))
(proof)

lemma tick-swap-tick-swap [simp] : <tick-swap (tick-swap e) = e

(proof)

45



lemma tick-swap-comp-tick-swap [simp] : <tick-swap o tick-swap = id>

(proof)

lemma inj-tick-swap [simp] : <inj tick-swap»

(proof)

lemma surj-tick-swap [simp)] : <surj tick-swap>

(proof)

lemma bij-tick-swap [simp)] : <bij tick-swap>

(proof)

lemma bij-betw-tick-swap :
<bij-betw tick-swap (range ev ) (range ev )»
<bij-betw tick-swap (range tick) (range tick)»
(proof)

lemma ev-eg-tick-swap-iff [simp] : <ev a = tick-swap e +— e = ev @
and tick-swap-eq-ev-iff [simp] : <tick-swap e = ev a +— e = ev @)
and tick-eq-tick-swap-iff [simp] : </ ((r, 8)) = tick-swap e +— e =/ ((s, 7))
and tick-swap-eg-tick-iff [simp] : <tick-swap e = /((r, 8)) «— e =V ((s, 7))
(proof)

Swapping a Trace

fun trace-tick-swap :: «(‘a, ('r x 's)) traceprick = (‘a, ('s x 1)) tracepiick>
where <trace-tick-swap [| = []»
| trace-tick-swap (ev a # t) = ev a # trace-tick-swap t»
| <trace-tick-swap (V' ((r, ) # t) = V/((s, 1)) # trace-tick-swap t»

lemma trace-tick-swap-tick-Cons :

<trace-tick-swap (V' (r-s) # t) = (case r-s of (r, s) = V/((s, 1)) # trace-tick-swap
1)

(proof)

lemma trace-tick-swap-def : <trace-tick-swap = map tick-swap>
(proof )

lemma trace-tick-swap-append : <trace-tick-swap (t @ u) = trace-tick-swap t Q
trace-tick-swap u»

(proof)

lemma trace-tick-swap-singl [simp)] : <trace-tick-swap [e] = [tick-swap e])

(proof)

lemma trace-tick-swap-comp-trace-tick-swap [simp] : <trace-tick-swap o trace-tick-swap

46



= id>
(proof)

lemma trace-tick-swap-trace-tick-swap [simp] : <trace-tick-swap (trace-tick-swap t)
=1b
{proof )

lemma inj-trace-tick-swap [simp] : <inj trace-tick-swap>
(proof)

lemma surj-trace-tick-swap [simp] : <surj trace-tick-swap)
(proof)

lemma bij-trace-tick-swap [simp] : <bij trace-tick-swap)
(proof)

lemma strict-mono-trace-tick-swap : <strict-mono trace-tick-swap)

(proof)

lemma image-trace-tick-swap-min-elems :
trace-tick-swap ¢ (min-elems T) = min-elems (trace-tick-swap * T)»

(proof)

lemma Nil-eq-trace-tick-swap-iff [iff] : <[] = trace-tick-swap t +— t = []»
and trace-tick-swap-eq-Nil-iff [iff] : <trace-tick-swap t =[] «+— t = []»
(proof)

lemma ev-Cons-eg-trace-tick-swap-iff [iff] :
<ev a # t = trace-tick-swap v <— u = ev a F# trace-tick-swap t»
and trace-tick-swap-eq-ev-Cons-iff [iff] :
<trace-tick-swap u = ev a # t +— u = ev a F# trace-tick-swap t»

(proof)

lemma tick-Cons-eq-trace-tick-swap-iff [iff] :
W ((r, 8)) # t = trace-tick-swap u +— u = /((s, 1)) # trace-tick-swap t»
and trace-tick-swap-eq-tick-Cons-iff [iff] :
<trace-tick-swap u = /((r, s)) # t +— u = V/((s, r)) # trace-tick-swap )
(proof)

lemma snoc-ev-eg-trace-tick-swap-iff [iff] :
t Q [ev a] = trace-tick-swap u «— u = trace-tick-swap t Q [ev a]>
and trace-tick-swap-eq-snoc-ev-iff [iff] :
<trace-tick-swap v = t Q [ev a] +— u = trace-tick-swap t Q [ev a)
(proof)

47



lemma snoc-tick-eq-trace-tick-swap-iff [iff] :
<t Q [V ((r, s))] = trace-tick-swap u +— u = trace-tick-swap t Q [V ((s, r))]>
and trace-tick-swap-eq-snoc-tick-iff [iff] :
trace-tick-swap v = t Q [V ((r, s))] +— u = trace-tick-swap t Q [V ((s, T))]»
(proof)

lemma trace-tick-swap-eq-ev-ConsE :

trace-tick-swap u = ev a # t = (A\u'. v = ev a # u' = ¢ = trace-tick-swap
u' = thesis) = thesis»

and trace-tick-swap-eq-tick-ConsE :

<trace-tick-swap uw = /((r, 8)) # t = (Nu’. v =V((s, 1)) # v = t =
trace-tick-swap u' => thesis) = thesis

and trace-tick-swap-eq-snoc-evE :

<trace-tick-swap u = t Q [ev a] = (Au'. v = v’ Q [ev a] = t = trace-tick-swap
u' = thesis) = thesis

and trace-tick-swap-eq-snoc-tickE :

<trace-tick-swap w = t Q [V((r, 8))] = (Auv’. v =u" Q@ [V((s, 7)) = t =
trace-tick-swap u' = thesis) = thesis

(proof)

lemma trace-tick-swap-tickFree :
(tF' t = trace-tick-swap t = map (ev o of-ev) t» for t :: «(‘a, ('r X 's)) tracepiick’
(proof)

lemma trace-tick-swap-front-tickFree :
trace-tick-swap t = ( if tF t then map (ev o of-ev) t
else map (ev o of-ev) (butlast t) Q [case last t of V/((r, s)) = /((s,
r)])»

if (ftF t» for ¢ :: «(“a, ('r x 's)) tracepiick>

{proof)

lemma tickFree-trace-tick-swap-iff [simp] : «tF (trace-tick-swap t) «+— tF t»
(proof)

lemma front-tickFree-trace-tick-swap-iff [simp] : «ftF (trace-tick-swap t) +— ftF
2]
(proof )

Swapping a Refusal

I

definition refusal-tick-swap :: «(‘a, ('r x 's)) refusalpiick = (‘a, ('s x 'r)) re-

Jusalpiici>
where <refusal-tick-swap X = tick-swap ¢ X»

lemma refusal-tick-swap-empty [simp)] : <refusal-tick-swap {} = {P
(proof)

48



lemma refusal-tick-swap-insert [simp] :
<refusal-tick-swap (insert © X) = insert (tick-swap ) (refusal-tick-swap X)»
(proof)

lemma refusal-tick-swap-union :
<refusal-tick-swap (X U Y) = refusal-tick-swap X U refusal-tick-swap Y
(proof)

lemma refusal-tick-swap-diff :
<refusal-tick-swap (X — Y) = refusal-tick-swap X — refusal-tick-swap V>
(proof)

lemma refusal-tick-swap-inter :
<refusal-tick-swap (X N'Y) = refusal-tick-swap X N refusal-tick-swap Y»
(proof)

lemma refusal-tick-swap-singl : <refusal-tick-swap {e} = {tick-swap e}» (proof)

lemma refusal-tick-swap-comp-refusal-tick-swap [simp) :
<refusal-tick-swap o refusal-tick-swap = id>

(proof )

lemma refusal-tick-swap-refusal-tick-swap [simp] :
<refusal-tick-swap (refusal-tick-swap X) = X»
(proof)

lemma inj-refusal-tick-swap [simp] : <inj refusal-tick-swap»

(proof )

lemma surj-refusal-tick-swap [simp)] : <surj refusal-tick-swap>

(proof)

lemma bij-refusal-tick-swap [simp] : <bij refusal-tick-swap»
(proof)

lemma strict-mono-refusal-tick-swap : <strict-mono refusal-tick-swap>

(proof)

lemma empty-eq-refusal-tick-swap-iff [iff] : «{} = refusal-tick-swap X +— X =

{

and refusal-tick-swap-eq-empty-iff [iff] : <refusal-tick-swap X = {} +— X ={}b
(proof)

lemma insert-ev-eq-refusal-tick-swap-iff [iff] :
<insert (ev a) X = refusal-tick-swap Y +— Y = insert (ev a) (refusal-tick-swap
X)»

49



and refusal-tick-swap-eg-insert-ev-iff [iff] :

<refusal-tick-swap 'Y =insert (ev a) X +— Y = insert (ev a) (refusal-tick-swap
X)»

(proof)

lemma insert-tick-eq-refusal-tick-swap-iff [iff] :

ansert /' ((r, 8)) X = refusal-tick-swap Y +— Y = insert /((s, 1)) (refusal-tick-swap
X)»

and refusal-tick-swap-eg-insert-tick-iff [iff] :

<refusal-tick-swap Y = insert /((r, s)) X «— Y = insert /((s, r)) (refusal-tick-swap
X)

(proof )

lemma refusal-tick-swap-eq-insert-evE :

<refusal-tick-swap Y = insert (ev a) X = (AY'" Y = insert (eva) V' = X
= refusal-tick-swap Y' = thesis) = thesis

and refusal-tick-swap-eg-insert-tickE :

<refusal-tick-swap Y = insert /((r, s)) X = (AY" Y = insert /((s, 7)) Y’
= X = refusal-tick-swap Y' = thesis) = thesis»

(proof)

lemma refusal-tick-swap-tickFree :
«X C range ev = refusal-tick-swap X = (ev o of-ev) * X»
(proof)

lemma tickFree-refusal-tick-swap-iff :
<refusal-tick-swap X C range ev +— X C range ev»

(proof)

The old version of interleaving of traces is not affected.

lemma setinterleaves-imp-setinterleaves-trace-tick-swap :

<t setinterleaves ((u, v), ) =

trace-tick-swap t setinterleaves ((trace-tick-swap u, trace-tick-swap v), refusal-tick-swap
S)
(proof )

lemma trace-tick-swap-setinterleaves-iff :
<trace-tick-swap t setinterleaves ((u, v), S) <—
t setinterleaves ((trace-tick-swap u, trace-tick-swap v), refusal-tick-swap S)»

(proof)

Swapping a Failure

definition failure-tick-swap :: <(‘a, ('r x 's)) failureppick = (‘a, ('s x 'r)) fail-
UTEptick?

where «failure-tick-swap F = case F of (t, X) = (trace-tick-swap t, refusal-tick-swap
X)»

50



lemma failure-tick-swap-empty [simp] : <failure-tick-swap ([], {}) = ([}, {})»
(proof)

lemma failure-tick-swap-comp-failure-tick-swap [simp) :
failure-tick-swap o failure-tick-swap = id»

(proof)

lemma failure-tick-swap-failure-tick-swap [simp) :
failure-tick-swap (failure-tick-swap F) = F»
(proof)

lemma inj-failure-tick-swap [simp)| : <inj failure-tick-swap>
(proof)

lemma surj-failure-tick-swap [simp)] : <surj failure-tick-swap>

(proof)

lemma bij-failure-tick-swap [simp)] : <bij failure-tick-swap)

(proof )

lemma empty-eq-failure-tick-swap-iff [iff] : <«([], {}) = failure-tick-swap F +— F

=0, )

and failure-tick-swap-eq-empty-iff [iff] : «failure-tick-swap F = ([], {}) +— F =
{1,
(proof)

5.1.2 The Operator

Definition

lift-definition TickSwap :: <("a, 'r x 's) processpiick = ('a, 's x 'r) processpiici>
is AP. ({(¢t, X). failure-tick-swap (t, X) € F P}, {t. trace-tick-swap t € D P})»
— One might expect AP. (failure-tick-swap ‘ F P, trace-tick-swap ‘D P) instead.

This is equivalent, see the projections below, but easier for the following proof
obligation.

(proof)

Projections

lemma F-TickSwap' : «F (TickSwap P) = {(t, X). failure-tick-swap (t, X) € F
PhH
(proof)

lemma D-TickSwap’: <D (TickSwap P) = {t. trace-tick-swap t € D P}
(proof)

o1



lemma T-TickSwap’ : «T (TickSwap P) = {t. trace-tick-swap t € T P}
(proof)

lemmas TickSwap-projs’ = F-TickSwap’ D-TickSwap’ T-TickSwap’

This is not very intuitive. The following lemmas are more intuitive.

lemma F-TickSwap : «F (TickSwap P) = failure-tick-swap ‘ F P>
(proof)

lemma D-TickSwap : <D (TickSwap P) = trace-tick-swap ‘D P>
(proof )

lemma T-TickSwap : <T (TickSwap P) = trace-tick-swap ‘T P>
(proof)

lemmas TickSwap-projs = F-TickSwap D-TickSwap T-TickSwap

We finally give the following versions, sometimes more convenient to use.
lemma F-TickSwap' : «F (TickSwap P) = {(trace-tick-swap t, refusal-tick-swap
X)| tX. (t, X) € F Ph

(proof )

lemma D-TickSwap' : <D (TickSwap P) = {trace-tick-swap t| t. t € D P}
(proof)

lemma T-TickSwap” : «<T (TickSwap P) = {trace-tick-swap t| t. t € T P}
(proof)

lemmas TickSwap-projs’’ = F-TickSwap'' D-TickSwap'' T-TickSwap’

Properties

lemma events-TickSwap [simp] : <events-of (TickSwap P) = events-of P)

(proof)

lemma ticks-TickSwap [simp] : <ticks-of (TickSwap P) = {(s, r). (r, s) € ticks-of
P}
(proof)

lemma strict-ticks- TickSwap [simp] :
«strict-ticks-of (TickSwap P) = {(s, r). (r, s) € strict-ticks-of P}»
(proof)

lemma trace-tick-swap-image-setinterleavingpqir :
<trace-tick-swap  setinterleavingpiicr (Ars. [(r, s)], u, A, v) =
setinterleavingpiick (Ar s. |(r, s)|, v, A, u)
for u :: «('a, 'r) tracepick> and vz (‘a, 's) tracepiick>

(proof)

52



lemma trace-tick-swap-setinterleavespqr-iff [iff] :
(trace-tick-swap t setinterleavesy y,. o L(r, 5)] ((u, v), A) +—

t setinterleavesy ), s |(r, )| ((v, w), A
(proof)

The following theorem is a bridge with the existing operators: TickSwap can
be expressed via the Renaming operator.

lemma tick-swap-is-map-event,iicy : (tick-swap = map-eventptick, id prod.swap»

(proof)

lemma trace-tick-swap-is-map-map-eventppick
(trace-tick-swap = map (map-eventyy;cr id prod.swap)>

(proof)

lemma refusal-tick-swap-is-image-map-eventptick :
<refusal-tick-swap = () (map-eventyiicr id prod.swap)»
(proof)

theorem TickSwap-is-Renaming :
«TickSwap P = Renaming P id prod.swap> (is ¢?lhs = %rhs))
(proof)

lemma TickSwap-TickSwap [simp)] : « TickSwap (TickSwap P) = P»
(proof)

lemma TickSwap-comp-TickSwap [simp] : < TickSwap o TickSwap = id>
(proof)

lemma TickSwap-eq-iff-eq-TickSwap : «TickSwap P = @ +— P = TickSwap Q>
(proof)

lemma inj-TickSwap [simp] : <inj TickSwap>
(proof)

lemma surj-TickSwap [simp] : <surj TickSwap»

(proof)

lemma bij-TickSwap [simp)] : <bij TickSwap»
(proof)

lemma strict-mono-TickSwap : <strict-mono TickSwap>

(proof)

Monotonicity Properties

lemma mono-TickSwap : <P T ) = TickSwap P T TickSwap Q>

53



(proof)

lemma mono-TickSwap-FD : <P Epp @ = TickSwap P Cpp TickSwap @Q»
and mono-TickSwap-DT : <P Cpr Q = TickSwap P Cpr TickSwap Q>
and mono-TickSwap-F : <P Cp Q = TickSwap P Cp TickSwap Q>
and mono-TickSwap-D : <P Cp Q — TickSwap P Cp TickSwap Q>
and mono-TickSwap-T : <P Cr Q — TickSwap P Cr TickSwap Q»

(proof)

lemmas monos- TickSwap = mono-TickSwap mono-TickSwap-FD mono-TickSwap-DT
mono-TickSwap-F mono-TickSwap-D mono-TickSwap-T

lemma le-approx-TickSwap-iff : < TickSwap P T TickSwap @ <+— P C @

and FD-TickSwap-iff : «TickSwap P Crpp TickSwap Q@ <— P Cpp @
and DT-TickSwap-iff : <TickSwap P Cpr TickSwap Q «— P Cpr Q>
and F-TickSwap-iff : <TickSwap P Cp TickSwap @ +— P Cp @
and D-TickSwap-iff : «TickSwap P Cp TickSwap @ <— P Cp @
and T-TickSwap-iff : «TickSwap P Ty TickSwap Q «— P Cp @
(proof)

lemmas le- TickSwap-iff = le-approz- TickSwap-iff FD-TickSwap-iff DT- TickSwap-iff
F-TickSwap-iff D-TickSwap-iff T-TickSwap-iff

Continuity

Continuity is a direct corollary of the continuity of Renaming.

lemma TickSwap-cont[simp] : <cont P => cont (Az. TickSwap (P z))»

(proof)

Algebraic Laws

Constant Processes lemma TickSwap-STOP [simp] : « TickSwap STOP =
STOP)

(proof)

lemma TickSwap-is-STOP-iff [simp] : « TickSwap P = STOP <— P = STOP:
(proof )

lemma TickSwap-BOT [simp] : <TickSwap L = 1>
(proof )

lemma TickSwap-is-BOT-iff [simp] : «TickSwap P = 1L +— P = 1)

(proof)

lemma TickSwap-SKIP [simp] : < TickSwap (SKIP (r, s)) = SKIP (s, r)»
(proof)

54



lemma TickSwap-is-SKIP-iff [simp] : « TickSwap P = SKIP (r, s) «— P = SKIP
(s, )
(proof)

lemma TickSwap-SKIPS [simp] : « TickSwap (SKIPS R-S) = SKIPS {(s, r). (r,
s) € R-ShH
(proof)

lemma TickSwap-is-SKIPS-iff [simp] :
«TickSwap P = SKIPS R-S «+— P = SKIPS {(s, r). (r, s) € R-S}
(proof)

Binary (or less) Operators lemma TickSwap-Ndet [simp] : « TickSwap (P
N Q) = TickSwap P M TickSwap Q>

(proof)

lemma TickSwap-is-Ndet-iff [simp] : <TickSwap P = Q@ M R +— P = TickSwap
Q N TickSwap R»
(proof)

lemma TickSwap-Det [simp) :
«TickSwap (P O Q) = TickSwap P O TickSwap Q»

(proof)

lemma TickSwap-is-Det-iff [simp] : «TickSwap P = Q O R «— P = TickSwap
Q O TickSwap R»
(proof)

lemma TickSwap-Sliding [simp)] : « TickSwap (P > Q) = TickSwap P > TickSwap
@
(proof)

lemma TickSwap-is-Sliding-iff [simp] : < TickSwap P = @Q > R +— P = TickSwap
Q > TickSwap R»
(proof)

lemma TickSwap-Sync [simp] :
«TickSwap (P [S] Q) = TickSwap P [S] TickSwap Q>
(proof )

lemma TickSwap-is-Sync-iff [simp] :

«TickSwap P = Q [S] R +— P = TickSwap Q [S] TickSwap R»
(proof)

55



lemma TickSwap-Seq [simp] :
<TickSwap (P 3 Q) = TickSwap P 5 TickSwap Q>
(proof )

lemma TickSwap-is-Seq-iff [simp] :
<TickSwap P = @Q 3 R «<— P = TickSwap Q ; TickSwap R>
(proof)

lemma TickSwap-Renaming [simp] :
«TickSwap (Renaming P f g) =
Renaming (TickSwap P) f (prod.swap o g o prod.swap)»
(proof)

lemma TickSwap-Renaming’ :
«TickSwap (Renaming P f g) = Renaming P f (prod.swap o g)»

(proof)

lemma TickSwap-is-Renaming-iff [simp] :

<TickSwap P = Renaming Q f g <— P = Renaming (TickSwap Q) f (prod.swap
o g o prod.swap)»

(proof)

lemma TickSwap-Hiding [simp] : «TickSwap (P \ S) = TickSwap P \ S»
(proof)

lemma TickSwap-is-Hiding-iff [simp] : « TickSwap P = Q \ S +— P = TickSwap
Q\ S
(proof)

lemma TickSwap-Interrupt [simp] :
<TickSwap (P A Q) = TickSwap P A TickSwap Q>

(proof)

lemma TickSwap-is-Interrupt-iff [simp] :
<TickSwap P = Q A R <— P = TickSwap Q A TickSwap R»
(proof)

lemma TickSwap-Throw [simp] :
«TickSwap (P © a € A. Q a) = TickSwap P © a € A. TickSwap (Q a)»

(proof)

lemma TickSwap-is- Throw-iff [simp] :
<TickSwap P = Q © a € A. R a +— P = TickSwap Q © a € A. TickSwap (R
a)y

56



(proof)

Architectural Operators lemma TickSwap-GlobalNdet [simp] :
<TickSwap (Ma € A. P a) = MNa € A. TickSwap (P a)

(proof)

lemma TickSwap-is-GlobalNdet-iff [simp] :
«TickSwap P =Na € A. Q a +— P =TNa € A. TickSwap (Q a)>

(proof)

lemma TickSwap-GlobalDet [simp] :
«TickSwap (Oa € A. P a) = 0Oa € A. TickSwap (P a)»

(proof)

lemma TickSwap-is-GlobalDet-iff [simp] :
<TickSwap P =0a € A. Q a +— P =0a € A. TickSwap (Q a)>
{proof )

lemma TickSwap-MultiSync [simp)] :
«TickSwap ([S] m €# M. P m) = [S] m €# M. TickSwap (P m)»
(proof)

lemma TickSwap-is- TickSwap-MultiSync-iff [simp] :
(TickSwap P = [S] m €# M. Q m +— P = [[S] m €# M. TickSwap (Q m)>
(proof)

lemma TickSwap-MultiSeq [simp] :
<L # || = TickSwap (SEQ 1 €Q L. Pl) = SEQ | €Q L. TickSwap (P 1)

(proof)

lemma TickSwap-is-MultiSeq-iff [simp] :

<L # [] = TickSwap P = SEQ 1 €Q L. Ql +— P = SEQ ! €Q L. TickSwap
(@1

(proof)

Communications lemma TickSwap-write0 [simp] : < TickSwap (e — P) = e
— TickSwap P>

(proof)
lemma TickSwap-is-write0-iff [simp] : «TickSwap P = ¢ - Q «— P = ¢ —

TickSwap Q>
(proof)

lemma TickSwap-write [simp] : < TickSwap (cle — P) = cle — TickSwap P>
(proof)

o7



lemma TickSwap-is-write-iff [simp] : «TickSwap P = cle - Q +— P = cle —
TickSwap Q>
(proof)

lemma TickSwap-Mprefix [simp)] :
<TickSwap (Oa € A — P a) =0a € A — TickSwap (P a))
(proof)

lemma TickSwap-is-Mprefiz-iff [simp] :
<TickSwap P = (0a € A = Q a) +— P =0a € A — TickSwap (Q a)>
(proof)

lemma TickSwap-read [simp] : « TickSwap (c?a€A — P a) = c¢?a€A — TickSwap
(P a)
(proof)

lemma TickSwap-is-read-iff [simp] :
<TickSwap P = c?acA — Q a +— P = c?acA — TickSwap (Q a))
(proof )

lemma TickSwap-Mndetprefiz [simp)] :
«TickSwap (Ma € A — P a) =Na € A — TickSwap (P a)»
(proof )

lemma TickSwap-is-Mndetprefiz-iff [simp] :
«TickSwap P = (Ma € A — Q a) «— P =Na € A — TickSwap (Q a)
(proof)

lemma TickSwap-ndet-write [simp] : «TickSwap (MNa€d — P a) = cllacAd —
TickSwap (P a)»
(proof)

lemma TickSwap-is-ndet-write-iff [simp)] :
<TickSwap P = cMacA — Q a +— P = cMacA — TickSwap (Q a)»
(proof )

5.2 Splitting the Renaming Operator

We split the Renaming operator in two: the first one only renames the
“regular” events, the second one only the ticks.

58



5.2.1 Renaming only Events

abbreviation RenamingEv :: <[('a, 'r) processpiick, 'a = 'b] = ('b, 'r) pro-
cesSptick?
where (RenamingEv P f = Renaming P f id>

lemma RenamingEv-id-unfolded [iff] :
<Renaming P f (Ar. r) = RenamingEv P f» (proof)

lemmas strict-ticks-of-RenamingFEv-subset = strict-ticks-of-Renaming-subset [where
g = id, simplified)

and strict-ticks-of-inj-on-RenamingEv = strict-ticks-of-inj-on-Renaming [where
g = id, simplified]

lemmas monos-RenamingEv = monos-Renaming[where g = id]
lemma RenamingEv-SKIP : <RenamingEv (SKIP r) f = SKIP r» (proof)
lemma RenamingFEv-cont :

<cont P = finitary f => cont (Az. RenamingEv (P z) f)» {proof)

lemma RenamingEv-Seq :
(RenamingEv (P 5 Q) f = RenamingFEv P f; RenamingEv Q f>
(proof)

declare Renaming-id [simp)

lemmas RenamingEv-id = Renaming-id
and RenamingEv-STOP = Renaming-STOP [where g = id]
and RenamingEv-BOT = Renaming-BOT [where g = id]

and RenamingEv-is-STOP-iff = Renaming-is-STOP-iff [where g = id]
and RenamingEv-is-BOT-iff = Renaming-is-BOT-iff [where g = id]

lemmas RenamingEv-Det = Renaming-Det [where g = id]
and RenamingEv-Ndet = Renaming-Ndet [where g = id]
and RenamingFEv-Sliding = Renaming-Sliding [where g = id]
and RenamingEv-Interrupt = Renaming-Interrupt [where g = id]

and RenamingEv-write0) = Renaming-write0 |[where g = id]
and RenamingEv-write = Renaming-write [where g = id]
and RenamingEv-comp = Renaming-comp [of - - - id id, simplified]
and RenamingEv-inv = Renaming-inv [where g = id, simplified]
and inv-RenamingEv = inv-Renaming [where g = id, simplified]

59



lemmas bij-RenamingFEv-Sync = bij-Renaming-Sync [where g = id, sim-
plified)
and bij-RenamingEv-Hiding = bij-Renaming-Hiding [where g = id, simplified)
and inj-on-RenamingEv-Throw = inj-on-Renaming- Throw [where g = id|
and RenamingFEv-fix = Renaming-fix [where g = id, simplified)

lemmas RenamingEv-distrib-GlobalDet = Renaming-distrib-GlobalDet [where g
= id]
and RenamingFEv-distrib-GlobalNDet = Renaming-distrib-GlobalNdet [where g

= id|
and RenamingEv-Mprefix = Renaming-Mprefiz [where g = id]
and RenamingEv-Mndetprefix = Renaming-Mndetprefiz [where g =
id]
and RenamingFEv-read = Renaming-read [where g = id]
and RenamingFv-ndet-write = Renaming-ndet-write [where g = id]

5.2.2 Renaming only Ticks

! !

abbreviation RenamingTick :: <[( a, 's) pro-
CESSptick’

where <RenamingTick P g = Renaming P id ¢

a, 'r) processpiick, ' = 's] = (

lemma RenamingTick-id-unfolded [iff] :
<Renaming P (Aa. a) g = RenamingTick P g» (proof)

lemmas strict-ticks-of-Renaming Tick-subset = strict-ticks-of-Renaming-subset [where
f = id]

and strict-ticks-of-inj-on-Renaming Tick = strict-ticks-of-inj-on-Renaming [where
f = id, simplified]

lemmas monos-RenamingTick = monos-Renaming[where f = id]

lemma RenamingTick-cont :
<cont P = finitary g = cont (A\x. RenamingTick (P x) g)» (proof)

lemmas RenamingTick-id = Renaming-id
and RenamingTick-STOP = Renaming-STOP [where [ = id]
and RenamingTick-SKIP = Renaming-SKIP [where f = id]
and RenamingTick-BOT = Renaming-BOT [where f = id]

and RenamingTick-is-STOP-iff = Renaming-is-STOP-iff [where f = id]
and RenamingTick-is-BOT-iff = Renaming-is-BOT-iff [where f = id]

lemmas RenamingTick-Seq = Renaming-Seq[where f = id]
and RenamingTick-Det = Renaming-Det [where [ = id]
and RenamingTick-Ndet = Renaming-Ndet [where f = id|
and RenamingTick-Sliding = Renaming-Sliding |[where f = id]

60



and RenamingTick-Interrupt = Renaming-Interrupt [where f = id]

and RenamingTick-write0 = Renaming-write0  |[where f = id, simplified)

and RenamingTick-write ~ = Renaming-write [where [ = id, simplified)

and RenamingTick-comp = Renaming-comp [of - id id , simplified]

and RenamingTick-inv = Renaming-inv [where f = id, simplified]

and inv-RenamingTick = inv-Renaming [where f = id, simplified]
lemmas bij-Renaming Tick-Sync = bij-Renaming-Sync [where [ = id,
simplified)

and RenamingTick-fix = Renaming-fiz [where f = id, simplified]

— The assumption bij ¢ is actually not necessary for RenamingTick and (\), see
below.

lemma RenamingTick-Throw :

<RenamingTick (P © a€A. Q a) g = RenamingTick P g © a€A. RenamingTick
(Qa) 9
(proof)

lemmas RenamingTick-distrib-GlobalDet = Renaming-distrib-GlobalDet [where
f=id
and RenamingTick-distrib-GlobalNDet = Renaming-distrib-GlobalNdet [where f

= id]

and RenamingTick-Mprefix = Renaming-Mprefiz-image-inj [where f
= id, simplified]

and RenamingTick-Mndetprefix = Renaming-Mndetprefiz-inj ~ [where f
= id, simplified)

and RenamingTick-read = Renaming-read [where f = id,
simplified)

and RenamingTick-ndet-write = Renaming-ndet-write [where f =

id, simplified)

lemma RenamingEv-RenamingTick-is-Renaming :
<RenamingEv (RenamingTick P g) f = Renaming P f ¢
and RenamingTick-RenamingEv-is-Renaming :
<RenamingTick (RenamingEv P f) g = Renaming P f ¢
(proof)

5.2.3 Properties

lemma isinfHidden-seqRun-imp-tickFree-seqRun :
<asInfHidden-seqRun © P A t => tF (seqRun t i)
(proof)

61



lemma tickFree-map-map-eventyticr-is :
(tF't => map (map-eventpiicr fg) t = map (ev o f o of-ev) &
(proof)

lemma RenamingTick-Hiding :
<RenamingTick (P \ A) g = RenamingTick P g \ A
(is <?lhs = ?rhs)) for P :: «('a, 'r) processpiick>
(proof)

corollary bij-Renaming-Hiding :
<Renaming (P \ S) fg = Renaming P fg\ f*S» (is «%lhs = ?rhsy) if <bij >
— We already have [bij fa; bij ga] = Renaming (Pa \ Sa) fa ga = Renaming
Pa fa ga \ fa ‘ Sa, but he assumption bij g is actually not necessary.

{proof)

lemma Renaming-is-restrictable-on-events-of-strict-ticks-of :
<Renaming P f g = Renaming P [’ g"
if fun-hyps : <N\a. a € a(P) = fa=f"w
Nr.revs(P)=gr=yg'n
for ff'::<a="bband g g’ :: <r="b
— probably also possible to strengthen with strict-events-of

{proof)

corollary Renaming-is-restrictable-on-events-of-ticks-of :
(Aa. a € a(P) = fa=f"a; A\r.r € /s(P) = gr=yg'r]
= Renaming P f g = Renaming P [’ g"
(proof)

corollary RenamingEv-is-restrictable-on-events-of :
«(A\a. a € a(P) = fa = f"a) = RenamingEv P f = RenamingEv P f’
(proof)

corollary RenamingTick-is-restrictable-on-strict-ticks-of :
(Ar.r e s(P) = gr =g r) = RenamingTick P g = RenamingTick P g’
(proof)

corollary RenamingTick-is-restrictable-on-ticks-of :
(Ar.r e s(P)= gr =g’ r) = RenamingTick P g = RenamingTick P g’
(proof)

62



5.3 Renaming and Generalized Synchronization Prod-
uct

lemma (in Syncpiick-locale) inj-on-Renaming Tick-Syncpiick :

(RenamingTick (P [S], Q) g =

Syncptick-locale.Syncptick (Ars. case r v/ s of |r-s|] = |grs| | O =0)PS
o

(is «<?lhs = ?rhsy)

if inj-on-g : <inj-on g range-tick-join>
(proof)

lemma (in Syncpi;ck-locale) inj-Renaming Tick-Syncpiick-ing-Renaming Tick
(RenamingTick P g [S], RenamingTick Q h =
Syncptick-locale.Syncptick (Ars. gr &/ hs) PS @ (is «?lhs = ?rhsy)
if <inj ¢> and <inj h»

for P :: «("a, 'r’) processpiick> and Q :: «(a, 's’) processpiick’

(proof)

63



64



Chapter 6

Commutativity and
Associativity of
Synchronization

6.1 Commutativity
6.1.1 Motivation

The classical synchronization product is commutative: P [A] @ = Q [4]
P but in our generalization such a law cannot be obtained in all generality.
Imagine for example that the (®v') parameter is actually Ar s. [(r, s)]: we
easily figure out that in this case the corresponding law should be something
like P [A]/pair @ = TickSwap (Q [A]ypair P). More generally, in the
locale, when writing P [A], @, P is of type (‘a, 'r) processpticr while Q) is
of type (‘a, 's) processpiick so we want to find an abstract setup in which we
can establish a quasi-commutativity. This is done in the next subsection.

6.1.2 Formalization

locale Syncpticr-comm-locale =
Syncpiick-locale «(@V')y for tick-join :: <'r = 's = 't option> (infixl «@v"» 100)
+
fixes tick-join-rev i ¢'s = 'r = u optiony (Infix]l «@v e, 100)
and tick-join-conv <t = 'uy (V=R pey?)
and tick-join-rev-conv :: <'u = 't ((\QV yer=QV)
assumes tick-join-None-iff :
(r QR 8§ =0+ S pep 7 =
and tick-join-Some-imp :
(r @/ s = |18 = $ @ ey ' = |QV =RV ey T-8])
and tick-join-rev-Some-imp :
(§ A peo T = |81 = 17 5§ = |QV per=>V s-1]>
begin

65



There is an obvious symmetry over the variables.

sublocale Syncp;cr-comm-locale-sym :
Syncptick-comm-locale (@ rep)? (V) (RV ey =RV (V' =RV pey?
(proof)

notation Syncyicr-comm-locale-sym.Syncpeick (<(- [-]frev ) [70, 0, 71] 70)
notation Syncpicr-comm-locale-sym.Interpiick (<(- ||| /rev =) [72, 73] 72)
notation Syncyicr-comm-locale-sym.Parpiicr (<(- ||/rev -)> [74, 75] 74)

6.1.3 First Properties

lemma tick-join-conv-image-range-tick-join :
(R =@V rey * Tange-tick-join = Syncpiicr-comm-locale-sym.range-tick-join)

(proof)

lemma tick-join-rev-conv-comp-tick-join-conv [simp] :
<r-s € range-tick-join => Qv ey =V (V' =QV ey T-8) = T-8)

(proof)

lemma inj-on-tick-join-conv : <inj-on Q' =RV ¢, range-tick-join)

(proof)

lemma bij-betw-tick-join-conv :
<bij-betw V' =>QV ey Tange-tick-join Syncyiicr-comm-locale-sym.range-tick-join)

{proof)

lemma map-tick-join-rev-conv-map-tick-join-conv :

{r-s. /(r-s) € set t} C range-tick-join =

map (map-eventpiick id QV rey=0V") (map (map-eventpi;cr id V=RV rey) t)
=t
(proof )

end

6.1.4 Commutativity

context Syncpiicr-comm-locale begin

lemma setinterleavesycr-imp-setinterleaves,icy-rev :
<t setinterleaves s (g .) ((u, v), A) =
map (map-eventpiick 1d V=@V rey) t
setinterleaves/(@)/rev) ((v, u), A)»
— Finally not used, and probably obtainable as a corollary of ¢ setinterleaves /(&)

((u, v), A) = map (map-evenlpicr, id V=RV rey) t setinterleavesy y,. ¢ cuse r &/ sof 0= 0|

((u, v), 4)
(proof)

66

r-s] =



lemma vimage-tick-join-rev-conv-subset-super-ref-Syncpiick-iff :
«map-eventpiick 1d V rey =0V —°X C super-ref-Syncpiick (O rev) X-Q A X-P
> X C super-ref-Syncpiick (®v') X-P A X-Q»
(is «?lhs1 C ?lhs2 «— X C 2rhsy)
— Same: finally not used, and probably obtainable as a corollary of (map-event,;ck
id Y rer=>0V —* ?X C super-ref-Syncpick (@ rev) ?X-P ?A 2X-Q) = (?X C
super-ref-Syncpiick (Ar s. case r v rey s of O = O | [1-8] = | @V rer=QV 7-5])
?X-P ?A ?X-Q).
(proof)

In the end, the proof is quite simple: mainly a corollary of inj-on g range-tick-join
= RenamingTick (P [S], Q) g = Syncptick-locale.Syncptick (AT s. case r
@ sof O =0 | |rs] = |grs]) PSQ.

theorem Syncyy;cr-commute :
(RenamingTick (P [A], Q) @/ =0V rev = Q [Alyrev P>
(proof)

end

6.2 Associativity
6.2.1 Motivation

The classical synchronization product is associative: P [A] (@ [A] R) = P
[A] @ [A] R but in our generalization such a law cannot be obtained in all
generality. We already encountered a similar issue for the commutativity:
we have to find a setup in which the different combinations of the ticks that
we need make sense, and prove the quasi-associativity.

6.2.2 Formalization

locale Syncpiicr-assoc-locale =

Syncptick1 : Syncprick-locale «(@v'1)r +
Syncpticka @ Syncptick-locale «(QRv 2)r +
Syncpticks @ Syncprick-locale «((QV' 3)r +
Syncpticka : Syncprick-locale (v 4)»

for tick-joinl :: <'r = 's = 't option) (infixl «®v 1) 100)
and ftick-join2 :: <'t = 'u = v option> (infixl «®V 2> 100)
and tick-joins :: <'r = 'w = 'z option> (infixl <@V 8y 100)
and tick-joing :: <'s = 'u = "w optiony (infixl «@v 4> 100) +
fixes tick-assoc-ren 2= o (@Y 2=RVE)Y)
and tick-assoc-ren-conv :: <t = vy ((QV 3=V 2))
assumes None-assms-tick-join :

67



refls=0=s@4u=0Vre/3[sa/ju =0

(refl1s£20 = [re/l1s]v2u=0=s4u=0Vre/s s/
u] = O,

SWiu=0=r1r1s=0V [re/ls] e/ 2u=~"0

SWAUAO=r@ 8 [s/{iu]l=0=r1s=0V [ra/ls| /2
u =

and tick-assoc-ren-hyp :

rels=t] =te/2u=|v] = [rev/3 [sev4ul] =/ 2=R/3 v

and tick-assoc-ren-conv-hyp :

sV 4u=|w = re/lw=|z] = [[rev/ls] 2u] = 3=V 2
T
begin

There is a symmetry over the variables.

sublocale Syncy;ck-assoc-locale-sym :
Syncptick-assoc-locale <Au s. s @4 w Awr. r Q3w Aut. t Q2w
AST. 1 Q1 8 (R ISR 2 Q2= 3

(proof)

end

6.2.3 First Properties

lemma (in Syncyyicr-assoc-locale) tick-assoc-ren-tick-assoc-ren-conv :
Arsuvw. sV 4u=|w ANre/3w=|z] =
RV 2=Rv 3 (Y 3=V 2 1) =
(proof)

lemma (in Syncpiicr-assoc-locale) tick-assoc-ren-conv-tick-assoc-ren :
Grstu.refls= [t ANt 2u=|v] = QI3=/2 (V2= 3v) =
vy

(proof)

lemma (in Syncptick-assoc-locale) inj-on-tick-assoc-ren :
<ng-on 2=V 3 {v. Arstu. r @1 s=[t] Nt 2u=|v]|h
(proof)

lemma (in Syncpiick-assoc-locale) inj-on-tick-assoc-ren-conv :
<ng-on 3=V 2 {z. Irsuvw. s 4 u=|w ANr@3w=|z|b
(proof )

6.2.4 Associativity for the Traces

lemma (in Syncpiick-assoc-locale) setinterleaves,; x-assoc-left :
|t setinterleavess (g 1) ((tr, ts), A);
ty setinterleaves/(®/2) ((te, ty), A)] =
Fty. map (map-eventpiick id V' 2=V 3) t, setinterleaves/(®/3) ((tr, tw),
A) A
tw setinterleavess gy ;) ((ts, tu), A

68



(proof)

lemma (in Syncpiick-assoc-locale) setinterleavesytcr-assoc-right :
(tw setz’nterleaves‘/(@/4) ((ts, tu), A) =
ts setinterleaves/(®/3) ((tr, tw), A) =

Iti. map (map-eventyiicr 1d V' 3=V 2) ty, setinterleaves/(®/2) ((te, tu), A)
AN
ty setinterleaves/(®/1) ((tr, ts), A

(proof)

6.2.5 Associativity

context Syncpiicr-assoc-locale

begin

notation Syncpiick1-Syncptick (<(- [-]1 -)» [70, 0, 71] 70)
notation Syncpiicka-Syncptick (<(- [-]y2 -)» [70, 0, 71] 70)
notation Syncpiicks.-Syncpeick (<(- [-]3 -)» [70, 0, 71] 70)
notation Syncpiicka.Syncptick (<(- [-]ya -)» [70, 0, 71] 70)

lemma Syncpicr-assoc-oneside :

(P [S]y3 (Q [S]ya R) Erp RenamingTick (P [S],1 @ [S]y2 R) @/ 2=V 3
(is «?lhs Cpp ?rhsy)
(proof)

end

lemma (in Syncpiick-locale) strict-ticks-of-Syncptick-subset :
Ws(P[Sly Q) C{rs|rsrs r/ s=|rs| A
revs(P)Asevs(Q)} (is «- C 25))
(proof)

theorem (in Syncyyicr-assoc-locale) Syncpyicr-assoc :
P [S]y3 (Q [S]ya R) = RenamingTick (P [S]/1 Q [S]/2 R) @/ 2=V 3 (is
«?lhs = ?rhs»)

(proof)

69



70



Chapter 7

First Laws

unbundle option-type-syntax

7.1 Behaviour with Constant Processes

By “basic” laws we mean the behaviour of 1, STOP and SKIP, plus the
associativity of some concerned operators.

lemma Seqypicr-const [simp] : <P, (Ar. Q) = P @
— Very basic law.
(proof)

7.1.1 The Laws of L

lemma Seqpicr-is-BOT-iff : <P3, Q=1L<+—P=1LV @3r.[V(r)]eTPAQ
r= 1)
(proof )

lemma BOT-Seqpick [simp] : <L 5, P = L» (proof)

lemma (in Syncyiicr-locale) Syncpiicr-is-BOT-iff : <P [S], @ = L +— P =1
vV Q=1
(proof)

lemma (in Syncyiicr-locale) Syncpiick-BOT [simp] : <P [S], L = Ly and BOT-Syncpiick
[stimp] : «L [S], @ = L»
(proof)

7.1.2 The Laws of STOP

lemma Seqypi;cr-i5-STOP-iff :
(P3y Q= STOP «— T P C insert || {[V(r)]| r. True} A
Vr.[V(r)] € T P— Qr = STOP) (is < ?lhs <— ?rhs»)

71



(proof)

lemma Seqypt;cr-i5-STOP-iff-bis :

<Py, Q= STOP <— SKIPS {r. [/(r)) € T P} Cpr PA(Nr. /(r) € T P
— Q r = STOP)»

(is <?lhs <— ?rhsy)

(proof)

corollary STOP-Seqptick [simp) : «<STOP ;, P = STOP»
(proof)

lemma (in Syncp¢ick-locale) STOP-Syncyiicr-STOP [simp) : «STOP [S], STOP
= STOP»
(proof)

More powerful Laws lemma (in Syncpi;cx-locale) Inter,y;cp-STOP :
— Here, g is a free parameter.
(P |||y STOP = RenamingTick (P ; STOP)
(Ar. the (tick-join r (g r)))» (is «?lhs = ?rhs))
(proof)

lemma (in Syncyyick-locale) STOP-Intery,yick
«(STOP |||, @ = RenamingTick (Q ; STOP)
(As. the (tick-join (g s) s))»
(proof)

lemma (in Syncpiick-locale) Parpiicr-STOP [simp] : <P ||, STOP = (if P = L
then L else STOP)»
{proof)

lemma (in Syncpiick-locale) STOP-Parpgicr [simp] : <STOP ||, P = (if P = L
then L else STOP)»
(proof)

7.1.3 The Laws of SKIP
Sequential Composition

SKIP is neutral for Seqpticr!

lemma SKIP-Seqyicr [simp] : <SKIP r;, P = P 1)
(proof)

lemma Seqypicr-SKIP [simp] : <P 3, SKIP = P)

72



(proof)

lemma SKIPS-Seqpick, [simp) : <SKIPS R 5, P =Nr € R. P
(proof)

lemma finite-ticks-Seqptick [finite-ticks-simps] : <F /(P 3, Q)
if <F,/(P)» and «((A\r.r € V/s(P) = F,(Qr))
(proof)

lemma finite-ticks-fun-Seqp;cr-bis :

Fyo(f) = (Nzr.revs(fz) =TF, (z) = F (gar) = F,o(\z. fz;,
g )

(proof)

lemma finite-ticks-fun-Seqpiick [finite-ticks-fun-simps] :

— Big approximation.

Fyo(f) = (Ar.r € (Uz. vs(fz)) = F/o(Az.gzr)) = F, oAz fos,
g z)

(proof )

Synchronization Product

The generalization of the synchronization product was essentially motivated
by the following theorem (in comparison to SKIP r [A] SKIP s = (if r =
s then SKIP r else STOP)).
theorem (in Syncpiicr-locale) SKIP-Syncptic-SKIP [simp)

(SKIP r [A],, SKIP s = (case tick-join r s of |r-s| = SKIP r-s | O = STOP))
(proof)

lemma (in Syncpiicr-locale) STOP-Syncyiicr-SKIP [simp] : «STOP [A], SKIP
s = STOP»

and SKIP-Syncpick-STOP [simp] : <SKIP r [A] , STOP = STOP»

(proof)

lemma (in Syncp;cr-locale) Mprefiz-Syncpicr-SKIP :
(Oae€ A— PalS], SKIPr =
Oa e (A—8) = (Pal[S], SKIP ) (is <?lhs = ?rhs)
(proof)

corollary (in Syncpiici-locale) SKIP-Syncpiick-Mprefiz :
(SKIP 7 [S], Obe B— Qb=0be (B—S) — (SKIP r [S], Q b)» (is «Zlhs
= %rhsy)

73



(proof)

lemma (in Syncpiicr-locale) finite-ticks-Syncpiick [finite-ticks-simps) :
(P [S], Q) if <F/(P)> and <F/(Q)
(proof )

lemma (in Syncpiick-locale) finite-ticks-fun-Syncpiick [finite-ticks-fun-simps] :
F = (f) = F =(9) = Fyo(Az. fz [S], g )
(proof)

7.2 Associativity of Sequential Composition

lemma Seqpicr-assoc : <P, (Ar. Qriys R) =P, Q3/ R
for P :: «('a, 'r) processpiick>
and @ :: <'r = (‘a, 's) processpiick’
and R :: <'s = (‘a, 't) processpiick>

(proof)

7.3 Distributivity of Non-Determinism

7.3.1 Sequential Composition

lemma Seqy;ck-distrib-GlobalNdet-left :
Py (Ar.MacA. Qar) = (if A= {} then P, (Ar. STOP) else M acA. (P

v @ a))
(proof )

lemma Seqp;cr-distrib-GlobalNdet-right : «(M a€A. Pa) 5, Q@ =N acA. (Pasy
Q)
(proof)

lemma Seqp;cx-distrib-Ndet-left : <P, (Ar. @ r M Rr)=(P;, Q) N (P;,s R
(proof)

lemma Seqy;ck-distrib-Ndet-right : <P 11 Q 3, R = (P, R) 1M (Q 3, R)
(proof)

7.3.2 Synchronization Product
context Syncpiici-locale begin
lemma Syncpicr-distrib-GlobalNdet-left
(P [S]y MacA. Qa= (if A= {} then P [S], STOP else M acA. (P [S], @

a))

74



(is «%lhs = (if A = {} then P [S], STOP else ?rhs)»)
(proof)

lemma Syncy;ck-distrib-GlobalNdet-right :
M acA. Pal[S), Q= (if A= {} then STOP [S], Q else M acA. (P a [S],

Q)
(is <%lhs = (if A = {} then STOP [S], Q else ?rhs)))

(proof)

lemma (in Syncpicr-locale) Syncyiicr,-GlobalNdet-cartprod:
(M (a, b)) e Ax B.(Pa[S], Qb)) =
(if A={} vV B ={} then STOP else (Ma € A. P a) [S], (Mb € B. Qb))
(proof)

lemma Syncp;cr-distrib-Ndet-left :
P [5], @nR=(P[Sl, @ 1 (PI[S]l, R)
(proof)

corollary Syncpiicr-distrib-Ndet-right :
PN QILS], R=(P[S], R) M (Q[S], R)
(proof)

end

75



76



Chapter 8

Communications

8.1 Step Laws

8.1.1 Sequential Composition

lemma Mprefiz-Seqpiicr: (Ha € A = Pas, Q =0a€ A — (Pajs, Q) (is
<?lhs = ?rhs»)

(proof)

8.1.2 Synchronization Product

lemma (in Syncpiick-locale) Mprefiz-Syncpyicr-Mprefiz-bis
(Oac(AU A") = Pa[S],0Obe(BUB') = Qb=
(Oacd — (P a [S], Obe(BU B) — Qb)) O
(ObeB — (Qac(A U A') > P a [S], Qb)) O
(Oze(A'N B") = (Pz [S], Q)
(is «?lhs1 [S], ?lhs2 = 2rhs1 O 2rhs2 O ?rhs3»)
if sets-assms: <ANS={h A’ CS$HBNS={Hh<B' TS

(proof)

corollary (in Syncpiici-locale) Mprefiz-Syncpiick-Mprefia:
— This version is easier to use.
(OacA — Pa [S], 0beB —- Qb=
(Bac(4 - S) = (Pa[S], ObeB = Qb)) O
(Obe(B — S) = (OacA - Pa [S], QD)) O
(Oze(ANBNS) = (Pz[S], Q)
(proof )

corollary (in Syncpiick-locale) Mprefix-Syncyi;cr-Mprefiz-for-procomata:
— Specialized version for Proc-Omata.
(OacA — Pa [S], 0beB - Qb=

(Oac(A — S — B) = (Pa[S], ObeB = QD)) O
(Obe(B—- S — A) = (HacA - Pa [S], QD)) O
(Oze(ANB - 8) = (Pz[S], 0beB - Qb) N (JacA — Pa[S], Qz)) O

7



(Oze(ANBNS) = (Pz[S], Q)
(proof)

unbundle option-type-syntax

8.2 Extended step Laws

8.2.1 Sequential Composition

lemma Mndetprefiz-Seqpiick: <la € A= Pasy, Q=Nac€ A— (Pas, Q)
(proof )

8.2.2 Synchronization Product

Behaviour of SKIPS

lemma (in Syncyiick-locale) SKIPS-Syncpyicr-SKIPS :

«(SKIPS R [A] , SKIPS S = N(r, s) € R x S. (case r @V s of |r-s| = SKIP
r-s | O = STOP)»

(proof)

In order for the right-hand side to be rewritten as a SKIPS, an assumption
is required: the ticks involved must be able to be combined.

lemma GlobalNdet-prod-SKIP-is-SKIPS :
«(r, s) € R x S. SKIP [tick-join r s] =
SKIPS ((the o (A(r, s). tick-join r s)) ‘(R x S))
(proof)

lemma GlobalNdet-prod-case-SKIP-STOP-is-GlobalNdet-prod-SKIP-iff :
(r, s) € R x S. (case tick-join v s of O = STOP | |r-s] = SKIP r-s)
M(r, s) € R x S. SKIP [tick-join r s]
+— (Vrs.reR— s€ S — tick-joinr s # Q)
(is «?lhsl = ?lhs2 <— ?rhs))

{proof)

lemma (in Syncyeicr-locale) SKIPS-Syncpyicr-SKIPS-bis :
«(SKIPS R [A], SKIPS S = SKIPS ((the o (A(r, s). 7 @/ s)) ‘(R x S))
if<A\rs.TreR=s€S=rea/s#®»
(proof)

lemma (in Syncy;cr-locale)
SKIPS-Syncptick-STOP [simp] : <SKIPS R [A] , STOP = STOP>
and STOP-Syncpiick-SKIPS [simp] : «<STOP [A] , SKIPS S = STOP»
(proof)

78



Derived step Laws with Non-Determinism

context Syncpicx-locale begin

lemma Mprefiz-Interpeicr-Mprefiz
{OacA - Palll, ObeB = Qb=
(OacA = (Palll, ObeB - Qb)) O (ObeB - (Hac A— Puallly, Qb))

(proof)

lemma Mprefiz-Pary;cr.-Mprefix : <OacA — Pa ||, ObeB — Q b = Oze(4A N
B) = (Pzll, Q)
(proof)

lemma Mprefiz-Syncpiicr-Mprefiz-subset :

(AC S;BCS] = 0acA — Pa[S], 0beB - Qb =0ze(AN B) = (P
z [S], Q z)

(proof)

lemma Mprefiz-Syncpiicr-Mprefiz-indep :
JqANS={xBnNnS={}]] =
OacA — Pa [S], ObeB - Qb=
(OacA = (P a [S], ObeB — Qb)) O (ObeB — (HacA — Pa [S], Qb))
(proof)

lemma Mprefiz-Syncpiicr-Mprefiz-left

AN S={}; BCS] = 0OacA = Pa[S],0beB = Qb=0acA = (Pa
[S], ObeB — Q b)»

(proof)

lemma Mprefiz-Syncpiicr-Mprefiz-right
qACS;BNS={}] = 0acd - Pa[S], ObeB — Qb=0beB — (HacA
— Pa [[S]]/ Q b))
(proof)

lemma Mprefiz-Syncpiick-STOP : <Oa € A — Pa [S], STOP =a € (A - S)
— (P a [S], STOP))
(proof )

lemma STOP-Syncptick-Mprefiz : <STOP [S],0be B— Qb=0be (B - 5)
— (STOP [S], @Q b)
(proof)

Mixing deterministic and non deterministic prefix choices lemma
Mndetprefiz-Syncpicr-Mprefiz
(M€ A— Pa)[S], (Obe B— Qb) =
( if A={} then STOP [S], (Ob€ B — Q)
else Ma€A. (if a € S then STOP else (a — (P a [S], (Ob € B— Qb)))) O
(Bbe(B - 8) = ((a = Pa)[S], Qb)) O
(ifa € BN Sthen (a — (P a [S], Q a)) else STOP))»

79



(proof)

lemma Mprefiz-Syncyiicr-Mndetprefix :
(Oa€A— Pa)[S], (Mbe B— Qb) =
( if B={} then (Oa € A — Pa) [S], STOP
else MbeB. (if b € S then STOP else (b — (Ha € A — Pa) [S], QD)) O
(Oac(A - 8) = (Pa[S], (b— QV))) O
(ifbe An Sthen (b — (P b [S], Qb)) else STOP))»
(proof)

In particular, we can obtain the theorem for Mndetprefir synchronized with
STOP.

lemma Mndetprefiz-Syncpiick-STOP :
«(MNa € A — Pa)lS], STOP =
(ifAnS={}thenNaec A— (Pal[S], STOP)
else (MNa € (A —8) = (Pa[S], STOP)) N STOP),
(is «?lhs = (if AN S = {} then ?rhsl else ?rhs2 M STOP)»)
(proof)

lemma STOP-Syncpticr-Mndetprefiz :
«(STOP [S], (Mbe B— Qb) =
(ifBNS={} then b e B — (STOP [S], Q b)
else (Mb e (B —S5)— (STOP [S], @ b)) N STOP)»
(is <?lhs = (if BN S = {} then ?rhsl else ?rhs2 M STOP))
(proof )

corollary Mndetprefiz-Syncpeicr-Mprefiz-subset :
(Mae A— Pa)[S], (Obe B— Qb) =
(ifAC BthenNae A— (Pal[S], Qa)
else (Ma € (AN B) = (Pal[S], Qa)) N STOP)
(is «?lhs = (if A C B then ?rhsi else ?rhs2)y) if <A C $H» «B C S»
(proof)

corollary Mprefiz-Syncpyticr-Mndetprefiz-subset :
OaecA—PalS]yMbeB— Qb=
(ifBC Athenibe B— (Pb[S], QD)
else (Mbe (AN B) = (Pb[S], Qb)) N STOP),
(is «?lhs = (if B C A then ?rhsl else ?rhs2)y) if <A C $» «<BC S
(proof )

corollary Mndetprefiz-Syncpticr-Mprefiz-indep :

(Mae€e A— Pa)[S], (Obe B— Qb) =
( if A= {} then ObeB — (STOP [S], Q b)
else MacA. (a = (Pa [S], (Obe B— Q1)) O
(0beB — ((a — Pa) [S], QD))

80



if«<AnS={pand BN S ={p
(proof)

corollary Mprefiz-Syncpi;ci-Mndetprefiz-indep :
(Oa€A— Pa)[S], (Mbe B— Qb) =
( ifB={}thenUOa € A — (Pa[S], STOP)
else MbeB. (b — (Ha€ A — Pa) [S], Qb)) O
(BacA = (Pa[S], (b— QD))
ifcAnS={hBnS={p
(proof)

corollary Mndetprefiz-Syncpiicr-Mprefiz-left
(Ma€ A— Pa)[S], (Obe B— Qb) =
( if A={} then STOP [S], (Obe B — Qb)
else Ma€A — (P a [S], (Obe B— Qb))
if <AnS={}pand «<BC S

(proof)

corollary Mndetprefiz-Syncpeicr-Mprefiz-right :
(Mae€e A— Pa)[S], (Obe B— Qb) =
( if A={} then STOP [S], (Obe B — Q)
else JbeB — ((MacA — P a) [S], Q b))
if ckACS>and<«BNnS={}p

(proof)

corollary Mprefiz-Syncpyticr-Mndetprefiz-left
(Jae€A— Pa)[S], (Mbe B— Qb) =
( if B=1{} then (Oa € A — Pua) [S], STOP
else JacA — (P a [S], (Mbe B — Qb))
if<AnS={p«BCS
(proof)

corollary Mprefiz-Syncyiicr-Mndetprefiz-right :
(bacA— Pa)[S], (Mbe B— Qb) =
( if B={} then (Ha € A — Pua)[S], STOP
else MbeB — ((Oa € A — Pa) [S], Qb))
if«<ACS$H«BNnS={p

(proof)

corollary Mndetprefiz-Parpyi;cr-Mprefiz

Ma€eA—Pall,0beB— Qb=

(if AC BthenTlae A— (Pally, Qa)else(Maec (ANB) = (Pally Qa))
n STOP)»

(proof)

corollary Mprefiz-Paryi;cr-Mndetprefiz

81



OacA—PallybeB— Qb=

(if BC Athenibe B— (Pbll, Qb)elseMbe (ANDB)—= (Pbll, QD))
N STOP))
(proof)

corollary Mndetprefiz-Interps;ci-Mprefix :
Mae€A—Palll,0beB— Qb=

( if A= {} then OJb € B — RenamingTick (Q b5 STOP) (As. the (tick-join (g
5) 5))

else MacA. (a — (Palll, 0Obe B— Qb)) O
(0beB — (a— Pallly QD))
(proof)

corollary Mprefiz-Intery;cr,-Mndetprefiz :
HacA—-Pall|lyMMbeB— Qb=

( if B={} then Oa € A — RenamingTick (P a ; STOP) (\r. the (tick-join r
(97))

else MbeB. (b - (Ha€ A —= Palll, Qb)) O
(Oacd = (Pallly b— Qb))
(proof)

Mixing two non deterministic prefix choices lemma Mndetprefiz-Syncyiicr-Mndetprefiz

(Ma€A — Pa [S], MbeB — Q b =

( if A={}then if BN S ={} then NbeB — (STOP [S], Q b)
else (Nz € (B — 8) = (STOP [S], Q z)) N STOP

else if B={} then if AN S = {} then NacA — (P a [S], STOP)
else (Mz €(A — §) — (P z [S], STOP)) N STOP

else MbeB. MacA.

(if a € S then STOP else a — (P a [S], b— Qb)) O
(if b € S then STOP else b — (a — P a [S], Q b)) O
(ifa=0bAN0bec Sthenb— (Pal[S], Qb) else STOP)),
(is «?lhs = ( if A = {} then if BN S = {} then ?mu-right else ?mu-right’ N
STOP

else if B = {} then if AN S = {} then ?muv-left else ?muv-left’ M
STOP

else Zhuge-mess)»)

{proof)

lemma Mndetprefiz-Syncpyiicr-Mndetprefiz-subset :
(MacA — Pa [S], MbeB — Qb =

(if 3b. A= {b} A B = {b}

then (THE b. B = {b}) — (P (THE a. A = {a}) [S], Q (THE b. B = {b}))
else (Mz € (AN B) = (Pz[S], Q) 1 STOP),

(is «<?lhs = (if ?cond then ?rhsl else ?rhs2)) if <A C S» <B C S
(proof)

82



lemma Mndetprefiz-Syncpi;cr-Mndetprefiz-indep :
ANS={}=BnS={} =
Ma€cA — Pa [S], MbeB — Q b =
( if A={} thenbeB — (STOP [S], Q b)
else if B = {} then MacA — (P a [S], STOP)
else MbeB. MacA.
((a = (PalS]yb— Q) O
(b= (a— PalSl, Qb))
(proof)

lemma Mndetprefiz-Syncpi;cr-Mndetprefiz-left
(NMa€A — P a [S], MbeB — Q b=TacA — (Pa [S], NbeB = Q b)
(is <%lhs = ?rhsy) if AN S={pH «BC S

(proof)

end

corollary (in Syncpiicr-locale) Mndetprefiz-Syncpiscr-Mndetprefiz-right
(Ma€A — P a [S], MbeB — Q b =1MbeB — (MacA — Pa [S], Q b)
(is «?lhs = ?rhe)) if <A C S» kBN S ={}p
(proof)

8.3 Read and Write Laws

8.3.1 Sequential Composition

lemma read-Seqpiick : <c?a€A — Pasy, Q = clacA = (Pas, Q)

(proof)

lemma write0-Seqptick : <¢ = P35/, Q =a— (P, Q)
(proof)

lemma ndet-write-Seqpiick : <cMa€Ad — Pas, Q = cMacAd = (Pas, Q)

(proof)
lemma write-Seqptick : <cta = P35, Q = cla = (P35, Q)

(proof)

8.3.2 Synchronization Product

General Laws

context Syncpiicr-locale begin

83



read lemma read-Syncpiick-read :
— This is the general case.
«c?acA — Pa [S], d?beB — Qb =
(c?ac(A — ¢ —*S) = (Pa[S], d?beB — Qb)) O
(d2be(B — d —* 8) — (c?a€A — P a [S], Q b)) O
(Oze(c “And BNS)— (P (inv-into A ¢ z) [S], Q (inv-into B d x)))
(is < ?lhs = %rhsl O 2rhs2 O 2rhs3»)
if<«c‘AnNS={}Vve ACSVinj-oncA
«ld‘BnNnS={}vd BCSVinjondB
— Assumptions may seem strange, but the motivation is that when 4 — ¢ —* §
# {} (which is equivalent to = ¢ * A C §), we need to ensure that inv-into (A — ¢
—8) cisequal to inv-into A c. This requires A — ¢ —“ S = A (which is equivalent
toc ‘AN S ={})orinj-on ¢ A. We need obviously a similar assumption for B.
(proof)

Enforce read lemma read-Syncy;cr-read-forced-read-left :
«c?a€A — Pa [S], d?beB — Qb =
(c?ac(A — ¢ —‘S) = (Pa[S], d?beB — Qb)) O
(d?be(B—d —*S) = (c?acA — Pa [S], Qb)) O
(c?ze(Anc—(d*BnS)) = (Pz[S], Qx))
(is «?lhs = %rhsl O 2rhs2 O 2rhs3»)
if «¢c AN S ={}VinjoncA
«d *BnNS={}VinjondB
Nab.ae A= beB=ca=db=dbe S = a=b
{proof )

corollary (in Syncpick-locale) read-Syncptcr-read-forced-read-right:
«c?ac€A — Pa [S], d?beB — Qb =
(c?ac(A —c—S) = (Pa[S], d?beB — Qb)) O
(d?be(B —d —*S) — (ctacA — Pa [S], Qb)) O
(d?ze(BNd—"(c “ANS)) = (Pz[S], Q)
(is «%lhs = %rhsl O 2rhs2 O 2rhs3»)
if <¢c “ANS={}VinjoncA
«d *BnNnS={}VinjondB
Nab.aec A= beB=ca=db=dbeS=a=b
(proof)

Special Cases lemma read-Syncpiicr-read-subset :
«c?a€A — Pa [S], d?beB — Qb =
Oze(c “ANd ‘B) — (P (inv-into A ¢ z) [S], Q (inv-into B d x))
if«c‘AC S r«d*“BCS

(proof)

lemma read-Syncpeicr-read-subset-forced-read-left
«c?a€A — Pa[S], d?beB = Qb= c?lzc(ANc—‘d‘B)—= (Pz[S], Qx)
if «c*AC S «d*BCS) <inj-on ¢ A> <inj-on d B>
Nab.ae A= beB=ca=db=dbeS=a=b
(proof)

84



lemma read-Syncy;cr-read-subset-forced-read-right :
«c?a€A = Pa[S], d?beB - Qb=d?ze(BNd—‘c‘A) = (Pz[S], Q)
if <¢c “AC S «d ‘B CS» <inj-on ¢ Ay <inj-on d B»
Nab.aed=beB=ca=db=dbeS=a=b

(proof )

lemma read-Syncpticr-read-indep :

«c?a€A — Pa [S], d?beB — Qb =

(c?acA — (P a [S], (d?beB — Qb)) O (d?beB — ((c?acA — Pa) [S], @Q
b))

if<«c‘AnS={p«d‘BnS={p
(proof)

lemma read-Syncpyiicr-read-left :
«c?a€A — Pa [S], d?beB — Q b = c?acA — (P a [S], (d?beB — Q b))
if«‘ ANnS={h<«d*BCS

(proof)

lemma read-Syncyticr-read-right :
«c?a€A — Pa [S], d?beB — Q b = d?beB — ((c?acA — P a) [S], Q D)
if«‘ACSH «d‘BnS={p

(proof)

corollary read-Pary;;cr-read :
«c?a€A - Pal|, d?beB — Qb=
Oze(c “ANnd‘B) — (P (inv-into A ¢ ) ||, Q (inv-into B d z))»
(proof)

corollary read-Paryi;cr-read-forced-read-left :
[inj-on ¢ A; injron d B; N\ab.a € A—beEB=ca=db= a=0 =
c?acA = Pally d?beB — Qb= c?lzc(ANc—-‘d ‘B)—= (Pzll, Q)
(proof)

corollary read-Paryy;ci-read-forced-read-right :
[inj-on ¢ A; injron d B; N\ab.a € A— beEB=ca=db= a=0 =
c?acA = Pally d?beB - Qb=dlze(BNd—-‘c‘A) = (Pzll, Q)
(proof)

corollary read-Interps;cr-read :
[inj-on ¢ A; injron d B; N\ab.a € A—beEB=ca=db=—= a=0 =
c?acA — Palll, d?beB — Q b =
(c?a€A — (P a |||, d?beB — Q b)) O (d2b€B — (c?a€d — Pa |||, Q b))
(proof)

85



Same channel Some results can be rewritten when we have the same
channel.

lemma read-Syncpt;c-read-forced-read-same-chan :
«c?a€A — Pa [S], c?beB — Qb =
(c?ac(A — ¢ —*8) = (Pa[S]y c?beB — Qb)) O
(c?be(B—c—‘8) = (c?acA —- Pa[S], Qb)) O
(c?ze(ANBNc—°8)—= (Pz[S], Q)
(is < ?lhs = %rhsl O 2rhs2 O 2rhs3»)
if <«c*AnS={}VinjoncA «¢c‘ BnNnS={}VinjonchB

Nab.aeA=beB=ca=cb=cbeS=a=b

(proof)

lemma read-Syncpt;cr-read-forced-read-same-chan-weaker :
— Easier with a stronger assumption.
<ing-on ¢ (AU B) =
c?acA — Pa [S], c?beB — Qb =
(c?ac(A — ¢ —S) = (Pa[S], c?beB — Qb)) O
(c?be(B—c—‘8) = (c?acA = Pa[S], Qb)) O
(c?ze(ANBNc—°8) = (Pz[S], Q)
(proof)

lemma read-Syncyt;cr-read-subset-forced-read-same-chan :

— In the subset case, the assumption inj-on ¢ (4 U B) is equivalent. The result
is not weaker anymore.

«c?a€A = Pa [S], c?beB = Qb= c?lzc(AN B) = (Pz [S], Q x)

if <«¢c“AC S <c“BCS» «injonc (AU B)
(proof )

read and ndet-write. lemma ndet-write-Syncy;cx-read :
(cMa€d — P a[S], d?beB — Qb =
( if A= {} then STOP [S], d?beB — Qb
else Macc * A. (if a € S then STOP else a — (P (inv-into A ¢ a) [S], d?beB
— Qb)) 0O
(Obe(d B — S) = (a — P (inv-into A ¢ a) [S], Q (inv-into B d
b)) O
(ifa € dBn Sthen a — (P (inv-into A ¢ a) [S], Q (inv-into B
d a)) else STOP))»
(proof)

lemma read-Syncpt;cr-ndet-write :
(c?a€d — P a [S], dMbeB — Qb =
( if B={} then c?acA — P a [S], STOP
else bed ‘ B. (if b € S then STOP else b — (c?acA — P a [S], Q (inv-into
B d b)) O
(Oaeg(c ‘A — 8) — (P (inv-into A ¢ a) [S], b — Q (inv-into B d
b)) O
(ifbec An Sthen b — (P (inv-into A ¢ b) [S], Q (inv-into B
d b)) else STOP))»

86



(proof)

lemma ndet-write-Syncpiicr-read-subset :

«c‘ACS=d‘BCS=

cMacA — Pa[S], d?beB — Qb =

(ifc“ACd‘Bthen Nacc ‘A — (P (inv-into A ¢ a) [S], @ (inv-into B d
a))

else (Mac(c “ANd ‘B) — (P (inv-into A ¢ a) [S], @ (inv-into B d a))) N

STOP)»

(proof)

lemma read-Syncyi;cr-ndet-write-subset :

«ic‘ACS—=d‘BCS—

c?a€A — Pa [S], d'beB — Qb =

(ifd “BCc‘Athennbed ‘B — (P (inv-into A ¢ b) [S], @ (inv-into B d
b))

else (Mbe(c “ANd‘B) — (P (inv-into A ¢ b) [S], Q (inv-into B d b))) N

STOP)»

(proof)
lemma ndet-write-Syncptick-read-subset-same-chan:

(MacA — Pa[S], c?beB = Qb=

(if A C B then ctlacA — (P a [S], Q a) else (cMac(A N B) = (Pa[S], @
a)) N STOP)»

if <«¢c*AC S <«c“BCS» ¢inj-onc (AU B)
(proof)

corollary (in Syncpick-locale) read-Syncyy;cr-ndet-write-subset-same-chan:
«c?acA — Pa [S], MNbeB = Qb=
(if B C A then c'beB — (P b [S], @ b) else (cttbe(A N B) = (P b [S], @
b)) N STOP)»
if «¢c “AC S «c“BCS) «injonc (AU B)
(proof )

lemma ndet-write-Syncpeicr-read-indep
c‘AnS={}=d‘BnS={} =
cMacA — Pa[S], d?beB — Qb =
( if A={} then d?beB — (STOP [S], Qb)
else Macc “ A. (a — (P (inv-into A ¢ a) [S], d?beB — Q b)) O
(d?beB — (a — P (inv-into A c a) [S], Q D)))
(proof)

lemma read-Syncyt;cr-ndet-write-indep :
c‘AnNS={}=d‘BnS={} =
c?acA — P a [S], dbeB — Q b =
( if B={} then c?acA — (P a [S], STOP)
else Mbed “ B. (b — (c?acA — P a [S], Q (inv-into B d b))) O
(c?acA — (P a [S], b — Q (inv-into B d b))))

87



(proof)

lemma ndet-write-Syncpeicr-read-left :
(MacA — Pa[S], d?beB — Q b= cllacA — (P a [S], d?beB — Q b)»
(is «?lhs = ?rhsy) if «c “ANS={php«d*BCS

(proof )

lemma read-Syncyiicr-ndet-write-left :
«c?a€A — Pa [S], d'beB — Qb= c?acA — (P a [S], d'beB — Q b)»
(is «?lhs = ?rhey) if «c “ANS={} «d *BCS

(proof )

corollary (in Syncpiicr-locale) ndet-write-Syncpiicr-read-right :
(MacA — Pa[S], d?beB — Q b= d?beB — (c!acA — Pa [S], Q b)
if«‘ACS «d‘BnS={p
(proof)

corollary (in Syncyiick-locale) read-Syncpiicr-ndet-write-right :
«c?a€A — Pa [S], d'beB — Q b= d"'beB — (c?acA — Pa [S], Q b)
if«‘ACS «d‘BnS={p
(proof)

read and write. lemma write-Syncyicr-read :
«cta = P [S], d?beB — Q b =
(if ¢ a € S then STOP else cla — (P [S], d?beB — Q b)) O
(Obe(d B — S) = (cla — P [S], Q (inv-into B d b))) O
(ifcaedBn Sthen cta — (P [S], Q (inv-into B d (c a))) else STOP)»
(proof)

lemma read-Syncpicr-write :
«c?a€A = Pa [S], d'b — Q =
(if d b € S then STOP else d'b — (c?acA — P a [S], Q)) O
(Oag(c “A — S) — (P (inv-into A ¢ a) [S], d'b — Q)) O
(ifdbec AN Sthen db — (P (inv-into A ¢ (d b)) [S], Q) else STOP)»
(proof )

lemma write-Syncpyticr-read-subset :
«ica€S=d‘BCS—=
cla - P [S], d?beB — Q b =
(if ca € d*Bthen cla — (P [S], Q (inv-into B d (c a))) else STOP))
(proof)

lemma read-Syncpt;cr-write-subset :
«c‘ACS=dbe S =
c?acA — Pa [S], d'b — Q=
(ifdb e c’Athen d'b — (P (inv-into A ¢ (d b)) [S], Q) else STOP),

88



(proof)

lemma write-Syncpi;cr-read-subset-same-chan:
«ca€ S = c‘BCS = inj-onc (insert a B) =
cla — P [S)/ c?beB — Qb = (if a € B then cta — (P [S], Q a) else STOP)»
(proof)

lemma read-Syncyi;cr-write-subset-same-chan:
(c‘AC S = cbe S = inj-onc (insert b A) =
c?acA — Pa[S], ctb — Q = (if b € A then ctb — (P b [S], Q) else STOP)»
(proof)

lemma write-Syncpi;cr-read-indep :
«ca¢ S=d‘BnsS={ =
cla = P [S], d?beB — Q b =
(cta — (P [S], d?beB — Q b)) O (d?beB — (cta — P [S], Q b))
(proof)

lemma read-Syncpi;cr-write-indep :
c ' ANS={}=4db¢ S =
c?acA — Pa[S], d'b — Q=
(b — (c?a€Ad — P a [S], Q) O (c?acA — (P a [S], d'b — Q)
(proof)

lemma write-Syncpiick-read-left :
«ca¢ S=d*‘BCS=
cla = P [S], d?beB — Q b= cla — (P [S], d?beB — Q b)
(proof)

lemma read-Syncpiicr-write-left
‘' AnS={=dbe S =
c?acA — Pa[S], d'b — Q= c?acA — (P a [S], d'b — Q)
(proof)

lemma write-Syncpticr-read-right :
«caeS=d*‘BnS={} =
cla = P [S], d?beB — Q b = d?beB — (cla — P [S], Q b)
(proof)

lemma read-Syncpiicr-write-right :
(c‘ACS=db¢ S =
c?acA — Pa[S], d'b — Q= d'b — (c?acA — P a [S], Q)
(proof)

ndet-write and ndet-write lemma ndet-write-Syncpicr-ndet-write :
<clacA — Pa [[S]]/ anlveB — Qb=
(if A={}then ifd BN S={}then dlbeB — (STOP [S], Q b)

89



else (Mzed ‘(B —d —*S) — (STOP [S], Q (inv-into B d z)))
N STOP
else if B={} then ifc ‘AN S =/{} then clacA — (P a [S], STOP)
else (Mzeec ‘(A — ¢ = S) — (P (inv-into A ¢ z) [S],
STOP)) N STOP
else Mbed ‘ B. Macc “ A.
(if a € S then STOP else a — (P (inv-into A ¢ a) [S], b — @Q (inv-into
B db))) O
(if b € S then STOP else b — (a — P (inv-into A ¢ a) [S], @ (inv-into
Bdb)) O
(ifa=bAbe Sthen b — (P (inv-into A ¢ a) [S], @ (inv-into B d
b)) else STOP))»
{proof )

lemma ndet-write-Syncp;cr-ndet-write-subset :
ic‘ACS=—=d‘BCS—
MacA — Pa[S], dbeB - Qb=
(if3b.c A={b}Ad*B=1{b}
then (THE b. d * B = {b}) — (P (inv-into A ¢ (THE a. ¢ * A = {a})) [S], @
(inv-into B d (THE b. d * B = {b})))
else (Mze(c “ANd*‘B) — (P (inv-into A ¢ z) [S], Q (inv-into B d x))) N
STOP)»
(proof)

corollary inj-on-ndet-write-Syncpi;cr-ndet-write-subset :
«MacA — Pa[S], d'beB = Qb=
(i db.c“A={b} Nd*B={b}
then d (THE b. B = {b}) — (P (THE a. A = {a}) [S], Q@ (THE b. B = {b}))
else (Mze(c AN d ‘B) — (P (inv-into A ¢ z) [S], Q (inv-into B d z))) N
STOP)»
if <inj-on ¢ Ay <inj-on d B> <¢c “A C Sy «d ‘B C S
(proof )

lemma ndet-write-Syncpt;ci,-ndet-write-indep :
c‘AnNS={}=d‘BnS={} =
MacA — Pa[S], dbeB - Qb=
(if A={} then d1beB — (STOP [S], Q b)
else if B = {} then cMlacA — (P a [S], STOP)
else Mbed ‘ B. Maec “ A.
((a = (P (inv-into A c a) [S], b — @Q (inv-into B d b)))) O
((b = (a — P (inv-into A c a) [S], Q (inv-into B d b)))))»
(proof )

lemma ndet-write-Syncpticr-ndet-write-left :
«c‘AnS={}=d‘BCS=

90



cMacA — Pa[S], d'beB — Qb= cllacA — (P a [S], d"'beB — Q b)»
(proof)

lemma ndet-write-Syncpticr-ndet-write-right :
(c‘ACS=d‘BnS={} =
cMacA — Pa[S], d'beB — Q b= d'beB — (MNacA — Pa [S], Q b)
(proof)

ndet-write and write lemma write-Syncyy;cr-ndet-write :
«cla — P [S], d'beB — Qb=
( if B={} then cta — P [S], STOP
else Mbed “ B. (if b € S then STOP else b — (cla — P [S], Q (inv-into B d

(if ¢ a € S then STOP else cta — (P [S], b — Q (inv-into B d

(ifb=—ca N cac Sthen cla — (P [S], Q (inv-into B d (c a)))
else STOP))»
(proof)

lemma ndet-write-Syncpeicr-write :
(cMa€d — Pa[S], db— Q =
( if A= {} then STOP [S], d'b — Q
else Macc “ A. (if a € S then STOP else a — (P (inv-into A ¢ a) [S], d'b —

(if d b € S then STOP else d'b — (a — P (inv-into A ¢ a) [S],

(ifa=dbA dbe Sthen dib — (P (inv-into A ¢ a) [S], Q) else
STOP))»
(proof)

lemma write-Syncyi;cr-ndet-write-subset :
«cla — P [S], d'beB - Qb=
(ifcad¢ d’Bthen STOP elseif d ‘B = {c a} then cta — (P [S], @ (inv-into
B d (¢ a)))
else (cla — (P [S], Q (inv-into B d (c a)))) M STOP) if <ca € S) «d ‘B C
S»
(proof)

corollary (in Syncptick-locale) ndet-write-Syncp; ok -write-subset :
(cMacA — Pa) [S], (d'b — Q) =
(ifdbé¢ c*Athen STOP else if ¢ * A = {d b} then d'b — (P (inv-into A c
(d b)) [Sl, @)
else (d'b — (P (inv-into A ¢ (d b)) [S], Q)) N STOP)) if <«¢ ‘A C S»«db e
S
(proof)

91



lemma write-Syncpiicr-ndet-write-indep :
«cag¢ S=d‘BnS={ =
cla = P [S], d'beB — Q b =
( if B={} then cta — (P [S], STOP)
else Mbed ‘ B. (cta — (P [S], b — @Q (inv-into B d b))) O
(b= (cla — P [S], Q (inv-into B d b))))
(proof )

lemma ndet-write-Syncpeicr-write-indep :
c‘AnS={}=dbv¢ S =
MacA = Pa[S], db— Q=
( if A={} then d'b — (STOP [S], Q)
else Macc “ A. (a — (P (inv-into A c a) [S], d'b — @Q)) O
(d'b — (a — P (inv-into A c a) [S], Q)))
(proof)

lemma write-Syncpiicr-ndet-write-left :
«ca¢S=d BCS= cla— P[S], deB = Qb= cla— (P[S],/
d"beB — Q b)»
(proof)

lemma ndet-write-Syncpe;cr-write-left :
c‘'AnNS={}=dbe S = cllacAd = Pa[S], db— Q= cllacAd — (P
a[S], d'o — Q)
(proof)

lemma write-Syncpi;cr-ndet-write-right :
caeS=d‘'BnNS={} = ca— P[S], dWeB - Qb= dlbeB —
(cta — P [S], Qb)
(proof)

lemma ndet-write-Syncpeicr-write-right :

c ' ACS=db¢ S = cllacA = Pa[S], d'b = Q= dlb — (c!lacA —
Pa [[S]]/ Q))

(proof)

write and write lemma write-Syncyi;cr-write :
«cta —- P [S], d'b— Q =
(if d b € S then STOP else d'b — (cla — P [S], Q)) O
(if ¢ a € S then STOP else cta — (P [S], d'b — @Q)) O
(ifca=dbAdbe Sthen cta — (P [S], Q) else STOP))
(proof)

lemma write-Intery;c,-write :

«cla = Pllly db— Q= (cla— (Pl d'b— Q) O (d'b — (cla — P |||/
Q)

(proof)

92



lemma write-Pary;c,-write :
«cla = Plly db— Q= (ifca=dbthen cla = (P ||, Q) else STOP))
(proof)

lemma write-Syncpt;cr-write-subset :
icaeS=dbe S =
cla — P [S], d'b— Q= (if ca = d b then cta — (P [S], Q) else STOP))
(proof)

lemma write-Syncpt;cr-write-indep :

«cad §S=db¢ S =

ca— P[S], db— Q= (cta— (P[S], db— Q) O (d'db— (cla— P [S],
Q)

(proof)

lemma write-Syncp;cr-write-left
«ca¢ S=dbe S= cla— P[S], d'b— Q= cla— (P[S], d'b— Q)
(proof)

lemma write-Syncpiscr-write-right :
«caeS=db¢ S = cla— P[S], db— Q=db— (cta— P[S], Q)
(proof)

read and (—). lemma write0-Syncyiick-read :
<a — P [S], d?beB — Qb =
(if a € S then STOP else a — (P [S], d?beB — Qb)) O
(Obe(d ‘B - S) = (a — P [S], @Q (inv-into B d b))) O
(ifaed BnSthen a— (P[S], Q (inv-into B d a)) else STOP))
(proof)

lemma read-Syncpticr-writel :
«c?a€A - Pa[S], b— Q=
(if b € S then STOP else b — (c?acA — P a [S], Q)) O
(Bac(c “A = S) = (P (inv-into A ca) [S], b— Q) O
(ifbe c AN Sthen b — (P (inv-into A ¢ b) [S], Q) else STOP))
(proof)

lemma write0-Syncy;cr-read-subset :
«aeS=—=d‘BCS—=
a— P[S], d?beB — Qb=
(ifa € d “ B then a — (P [S], @Q (inv-into B d a)) else STOP)»
(proof)

lemma read-Syncpi;cr-write0-subset :
ic‘ACS—=be S =

93



c?acA - Pa[S], b— Q=
(if b€ ¢ “ A then b — (P (inv-into A ¢ b) [S], Q) else STOP))
(proof)

lemma write0-Syncyticr-read-subset-same-chan:
ia€ S =— BCS—
a— P [S], id?beB — Q b= (ifa € B then a — (P [S], Q a) else STOP))
(proof)

lemma read-Syncpeicr-write0-subset-same-chan:
(ACS=be S =
id?acA - Pa[S]y b— Q= (ifbe Athenb— (Pb[S], Q) else STOP),
(proof)

lemma write0-Syncpiicr-read-indep :
¢ S=d‘BnsS={ =
a— P[S], d?beB — Qb=
(a = (P [S], d?beB — Qb)) O (d?beB — (a — P [S], Q b))
(proof)

lemma read-Syncpiicr-write0-indep :
c‘AnNS={}=0bv¢5 =
c?acA - Pa[S], b— Q=
(b= (c?acA = Pa [S], Q) O (c?acA — (Pa [S], b— Q)
(proof)

lemma write0-Syncpticr-read-left :

¢ S=d‘ BCS=a— P[S], d?beB - Qb=a— (P [S], d?beB
— Qb

(proof)

lemma read-Syncyt;cr-write0-left :

' AnS={} =beS= ctacA > Pa[S]yb— Q= c?acA - (Pa
[S]y b — Q)

(proof)

lemma write0-Syncyt;cr-read-right :
«weS=d‘BNS={}=a— P[S], d?beB = Qb= d?beB — (a —
P [[S]]/ Q b))
(proof)

lemma read-Syncpeicr-write0-right :
c‘ACS=b¢ S = c?lacA - Pa[S]yb— Q=0b— (c?7ac€A — Pa
[5], @)
(proof)

ndet-write and (—) lemma write0-Syncpt;cr-ndet-write :
<a — P [S], d'beB — Qb=
( if B={} then a — P [S], STOP

94



else Mbed ‘ B. (if b € S then STOP else b — (a — P [S], @Q (inv-into B d
b)) O
(if a € S then STOP else a — (P [S], b — Q (inv-into B d b))) O
(if b=a N a € S then a — (P [S], Q (inv-into B d a)) else
STOP))»
(proof)

lemma ndet-write-Syncpticr-writel :
«MNacA - PalS],b— Q=
( if A= {} then STOP [S], b — Q
else Nacc “ A. (if a € S then STOP else a — (P (inv-into A ¢ a) [S], b —
Q) O
(if b € S then STOP else b — (a — P (inv-into A c a) [S], Q)) O
(ifa = b A be Sthen b — (P (inv-into A c a) [S], Q) else
STOP))»
(proof)

lemma write0-Syncyt;cr-ndet-write-subset :
<aeS=d‘BCS=
a— P[S], dbeB — Qb=
( ifaé¢d‘Bthen STOP else if d * B = {a} then a — (P [S], @ (inv-into B
d a))
else (a — (P [S], @Q (inv-into B d a))) N STOP)»
(proof)

lemma ndet-write-Syncpeicr-write0-subset :
ic‘'ACS=beS=
cMacA - Pa[S],b— Q=
(ifb¢ c“Athen STOP else if c * A = {b} then b — (P (inv-into A ¢ b) [S],
Q)
else (b — (P (inv-into A ¢ b) [S], Q)) M STOP))
(proof)

lemma write0-Syncpcr-ndet-write-indep :
ag¢ S=d‘BnsS={} =
a— P[S], d'beB - Qb=
( if B={} thena — (P [S], STOP)
else Mbed “ B. (a — (P [S], b — Q (inv-into B d b))) O
(b = (a = P [S], @Q (inv-into B d b))))»
(proof)

lemma ndet-write-Syncpiicr-write0-indep :
‘' AnS={}=10¢5=
cMacA - Pa[S],b— Q=
( if A={} thenb — (STOP [S], Q)
else Macc “ A. (a — (P (inv-into A c a) [S], b — @Q)) O
(b = (a = P (inv-into A c a) [S], Q)))
(proof)

95



lemma write0-Syncyticr-ndet-write-left :

¢ S=d‘'BCS=a— P[S], dWeB - Qb=a— (P[S], d!bcB
= Qb

(proof)

lemma ndet-write-Syncp;cr-write0-left :

' AnS={}=beS= tacAd > Pal[S], b— Q= cllacA — (Pa
[S]y b — Q)

(proof)

lemma write-Syncpt;cr-ndet-write0-right :

eSS =d‘'BNS={} = a— P[S], deB — Qb= d'beB — (a —
P [[S]]/ Q b))

(proof)

lemma ndet-write-Syncp;ci-write0-right :
c‘ACS=b¢gS= ctlacA - Pa[S]yb— Q=0b— (MacAd = Pa
[5], Q)
(proof)

(=) and (—) lemma write0-Syncyt;cr-writel :
a— P[S],b— Q=
(if b € S then STOP else b — (a — P [S], Q)) O
(if a € S then STOP else a — (P [S], b — Q)) O
(ifa=bAbe Sthena— (P [S], Q) else STOP)»
(proof )

lemma write0-Syncpticr-write0-bis :
(a— P)[Sly (b— Q) =
(ifaesS
then ifbe S
then ifa=1»>
then a — (P [S], Q)
else STOP
else (b — ((a — P) [S], Q))
else ifbe S
then a — (P [S]/ (b — Q))
else (a — (P [S], (b — @) O (b — ((e = P) [S], Q)
(proof)

lemma write0-Interp;cr-writel :
ta—=Plllyb=>Q=(a—=(Pllly, b= )0k = (a—=Plll, Q)
(proof)

lemma write0-Paryi;cr-writel :
o= Pllyb— Q= (ifa=">bthena— (P ||, Q) else STOP))
(proof)

96



lemma write0-Syncpyt;cr-write0-subset :
weS=beS=a—->P[S]yb— Q= (ifa="0thena— (P[S], Q)
else STOP)»
(proof)

lemma write0-Syncpt;cr-write0-indep :

¢ S=>0¢S=a—-P[S]lyb=>Q=(—=(P[S]y,b— Q) O(b—
(a = P[], Q)

(proof)

lemma write0-Syncyt;cr-write0-left :
w¢gS=beS=a—->P[S]yb—>Q=0a— (P[S], b— Q)
(proof )

lemma write0-Syncpticr-write0-right :
weS=b¢S=a—->P[S]yb—-Q=0b—(a— P[], Q)
(proof)

write and (—) lemma write0-Syncyiicr-write :
a — P[S], db— Q=
(if d b € S then STOP else d'b — (a — P [S], Q)) O
(if a € S then STOP else a — (P [S], d'b — Q)) O
(ifa=dbAdbe Sthena — (P [S], Q) else STOP)»

(proof)

lemma write-Syncpicr-writel :
«cla = P[S]lyb— Q=
(if b € S then STOP else b — (cta — P [S], Q)) O
(if ¢ a € S then STOP else cla — (P [S], b — Q)) O
(ifca=0bNADbe Sthen cla — (P [S], Q) else STOP))
(proof )

lemma write0-Syncpt;cr-write-subset :
iaeS=—=dbe S —=
a— P[S], db— Q= (ifa=dbthena — (P [S], Q) else STOP))
(proof)

lemma write-Syncp;cr-write0-subset :
ica €S =—=besS—=
cla = P[S], b— Q= (if ca=bthen cta — (P [S], Q) else STOP))
(proof)

lemma write0-Syncpyt;cr-write-indep :
ag¢S=db¢ S =
a— P[S], db— Q= (a— (P[S], db— Q) O(db— (e« = P[S], Q)
(proof)

97



lemma write-Syncpi;cr-write0-indep :
icad S=0b¢ S =
cda—P[S]lyb— Q= (la— (P[S]y,b— Q) O(b— (cta— P[S], Q)
(proof)

lemma write0-Syncpticr-write-left :
wg¢gS=dbeS=a—P[S], db— Q=a— (P[S], db— Q)
(proof)

lemma write-Syncpticr-write0-left :
cagS=beS=cla—=P[S],b— Q=cla— (P[S],b— Q)
(proof)

lemma write0-Syncpticr-write-right :
weS=db¢S=a— P[S],db— Q=db— (e« = P[S], Q»
(proof)

lemma write-Syncp;cr-write0-right :
caeS=0¢S=cla—=P[S],b—=Q=0b— (cla— P[S], Q)
(proof)

Synchronization with SKIP and STOP

SKIP Without injectivity, the result is a trivial corollary of read ¢ A P =
Mprefiz (¢ © A) (P o inv-into A ¢) and Mprefiz A P [S], SKIP r = Qac(A
- 8) = (P a[S], SKIP r).
lemma read-Syncpticr-SKIP :

«c?a€A — P a [S], SKIP r = c?ac(A — ¢ —*8) — (P a [S], SKIP r) if
<ing-on ¢ A»
{proof )

lemma SKIP-Syncptick-read :

(SKIP r [S], d?beB — Q b = d?be(B — d —° S) — (SKIP r [S], Q b)» if
<inj-on d B»
(proof)

corollary write-Syncpticr-SKIP :
«cta — P [S], SKIP s = (if c a € S then STOP else cta — (P [S], SKIP s))»
and SKIP-Syncpiicr-write :
«(SKIP r [S], d'b — Q = (if d b € S then STOP else d'b — (SKIP r [S], Q))
(proof)

corollary write0-Syncpticr-SKIP :

<a — P [S], SKIP s = (if a € S then STOP else a — (P [S], SKIP s))>
and SKIP-Syncpiicr-write0 :

98



(SKIP r [S], b — Q = (if b € S then STOP else b — (SKIP r [S], Q))
(proof)

lemma ndet-write-Syncpicr-SKIP :
«MacA — Pa[S], SKIP r =
(ifc AN S ={} then MNacA — (P a [S], SKIP r)
else (Mac(A — ¢ —=*8) = (P a [S], SKIP r)) M STOP))
(is <%lhs = (if - then ?rhsl else ?rhs2 T STOP)») if <inj-on ¢ A»
(proof)

corollary (in Syncpiick-locale) SKIP-Syncpiick-ndet-write :
unj-on d B = SKIP r [S], d'beB — Q b =
(ifd BN S={} then dbeB — (SKIP r [S], Q b)
else (dNbe(B — d —* §) — (SKIP r [S], @ b)) N STOP)»
(proof)

corollary (in Syncpiick-locale) Mndetprefiz-Syncpiicr-SKIP :
(Ma € A— PalS], SKIPr =
(if AN S ={} then Na € A — (P a [S], SKIP r)
else (MNa € (A —8) = (Pa[S], SKIP r)) M STOP))
(proof)

corollary (in Syncpiick-locale) Syncpiicr-SKIP-Mndetprefiz :
(SKIP r [S],nMbe B— Qb=
(ifBNS={} thenbe B— (SKIPr [S], QD)
else (Mb € (B — §) — (SKIP r [S],, Q b)) 1 STOP),
(proof)

STOP Without injectivity, the result is a trivial corollary of read ¢ A P =
Mprefiz (¢ < A) (P o inv-into A ¢) and Mprefix A P [S], SKIP r = Oac(A
—8) = (PalS), SKIP r).

lemma read-Syncpiick-STOP :

«c?a€A — Pa[S], STOP = c?ac(A — ¢ —‘S) = (P a [S], STOP) if <inj-on
c A
(proof)

lemma STOP-Syncptici-read :

«STOP [S], d?beB — Q b = d?be(B — d —°S§) — (STOP [S], Q b) if
<inj-on d B>
(proof)

corollary write-Syncpiicr-STOP :
«cla — P [S], STOP = (if c a € S then STOP else cta — (P [S], STOP))

99



and STOP-Syncpici-write :
«(STOP [S], d'b — Q = (if d b € S then STOP else d'b — (STOP [S], Q))
(proof)

corollary write0-Syncpticr-STOP :
<a — P [S], STOP = (if a € S then STOP else a — (P [S], STOP))»
and STOP-Syncpick-write0 :
«(STOP [S]y b — Q = (if b € S then STOP else b — (STOP [S], Q))
(proof)

lemma ndet-write-Syncpiicr-STOP :
«cMacA — Pa[S], STOP =
(ifc AN S ={}then ctlacA — (P a [S], STOP)
else (MNac(A — ¢ —°8S) = (P a [S], STOP)) 1N STOP),
(is <?lhs = (if - then ?rhsl else ?rhs2 M STOP)») if <inj-on ¢ A»
(proof )

corollary (in Syncpiick-locale) STOP-Syncpicr-ndet-write :
dnj-on d B = STOP [S], d"'beB — Q b =
(ifd “Bn S ={} then dbeB — (STOP [S], Q b)
else (d"be(B — d —*S) — (STOP [S], Qb)) 1 STOP)»
(proof)

end

100



Chapter 9

Operational Semantics Laws

9.1 Behaviour of initials

9.1.1 TickSwap

lemma initials- TickSwap :
((TickSwap P)° = ( if P = L then UNIV
else {ev a |a. eva € P°} U {V/((s, 7)) |rs. /((r, s)) € P°})»
(proof)

9.1.2 Sequential Composition

lemma initials-Seqpiick
«(P3y Q)° = ( if P= L then UNIV
else {ev a |a. eva € P} U (Jre{r. /(r) € P°}. (Q r)°))
(is <- = (if - then - else ?rhs)»)
(proof )

9.1.3 Synchronization Product

lemma (in Syncpiicr-locale) initials-Syncpiick
(P ISl Q) =
(f P=1LV Q= L then UNIV else
{evala.ae SANewae PPANevace Q®Vag SA(ewae PPVevae Q)}
U
{V(r-5) |r-s 1 s. tick-join 7 s = Some -5 A V/(r) € P° A /(s) € Q°})»
(is (P [S], @) = (if P= LV Q= L then UNIV else ?rhs-ev U ?rhs-tick)»)
(proof)

9.2 Laws of After

9.2.1 Sequential Composition

locale AfterDuplicated-same-events = AfterDuplicated ¥, Vg
for ¥, :: <('a, 'r ) processpiick = 'a = (‘a, 'r) processpiick>
and Uy = «(‘a, 's) processprick = 'a = ('a, ’s) processpiick>

101



begin

notation After,.After (infixl <after,> 86)
notation Afterg.After (infixl «afterg> 86)

lemma not-skippable-or-not-initialR-After-Seqptick:
«(P3y Q) afterg a = (if ev a € P° then P aftery a3, Q else Vg (P35, Q) a)
if «<range tick N P° = {} v (Vr. /(r) € P* — eva ¢ (Q 1)°)

(proof)

lemma skippable-not-initialL- After-Seqpiicr:
(P35, Q) afterg a=( if Br./(r) e PP ANeva e (Qr)°)
then Mre{r. /(r) € PP A eva € (Q r)°}. Q r afters a
else Vg (P35, Q) a)
(is «(P 3, Q) afterg a = (if ?prem then ?rhs else -)») if <ev a ¢ P%)
{proof)

lemma skippable-initialL-initialR-After-Seqpiick:

«(Ps/ Q) afterg a = (P afterq a3, Q) N (Mre{r. /(r) € PP Aeva e (Qr)°}.
Q r afterg a)

(is «(P 3/ Q) afterg a = (P afterq a3, Q) N ?rhs)

if assms : Ar. /(r) € PP ANeva e (Qr) <evae P

{proof)

lemma not-initialL-not-initialR-After-Seqpiicr:
eva ¢ PP = (Ar./(r) e PP = evag¢g (Qr)°) =
(Psy Q) afterg a =Yg (P35, Q) w
(proof)

lemma After-Seqpiick:
«(Psy Q) afterg a =
(ifvr./(r)e P’ — evad (Qr)°
then if ev a € P° then P after, a5, Q else Vg (P35, Q) a
else if eva € P°
then (P afterq a3, Q) M (Mre{r. /(r) € PO Aeva € (Q r)°}. Q rafterg

0
else Mre{r. /(r) € P° A eva € (Q r)°}. Q r afterg a)
(proof)
end

102



9.2.2 Synchronization Product

Because of the types, we have to extend the locale.

locale After-Syncpiick-locale = Syncpiick-locale tick-join +
Afterps © After Wips + Afterpns @ After Wops + Afterpricr © After Upiick
for tick-join :: <'r = 's = 't option)

and ¥y, = <[(‘a, 'r) processpiick, 'a] = (‘a, 'r) processpiici>

and U, 2 <[("a, 's) processpiick, 'a] = (‘a, 's) processpiick?

and U,k 2 <[(‘a, 't) processpiick, 'al = (‘a, 't) processpiick>
begin

notation After;,s. After (infixl <after;s» 86)
notation After, . After (infixl <after, s> 86)
notation After,i;cr. After (infixl <afterpiicr> 86)

sublocale After-Syncpticr-locale-sym :
After-Syncpiick-locale <As 1. tick-join v 8> Wons Wine Yprick

(proof)

lemma initialL-not-initialR-not-in-After-Syncptick:
(P [Sly Q) afterpiick a = P afterins a [S], @ (is <%lhs = Zrhs»)
if initial-hyps: <ev a € P% <eva ¢ Q° and notin: <a ¢ S»

(proof)

lemma (in After-Syncyiicr-locale) not-initialL-initialR-not-in-After-Syncptick:
(P [Sly Q) afterpiick a = P [S], @Q afterrns a> (is <?lhs = ?rhs»)
if initial-hyps: <ev a ¢ P% <eva € Q° and notin: <a ¢ S)

(proof)

lemma not-initialL-in-After-Syncpiick:
ewag¢ PP=ae S =
(P [S], Q) afterptick a = (if Q@ = L then L else Ve (P [S], Q) a)
(proof)

lemma not-initialR-in-After-Syncptick:
ewag¢ QP = ac S =
(P [S], Q) afterptick a = (if P = L then L else Ypicr (P [S]y Q) a)
(proof)

lemma initialL-initialR-in-After-Syncpiick:
(P [Sly Q) afterpiick a = P afterins a [S], Q afteryns a> (is <%lhs = ?rhsy)
if initial-hyps: <ev a € P% <ev a € Q° and inside: <a € S

(proof)

103



lemma initialL-initialR-not-in-After-Syncpiick:

(P [Sly Q) afterpiick a = (P afterins o [S], Q) M (P [S], @Q afteryhs a)
(is <?lhs = ?rhs1 M 2rhs2y)
if initial-hyps: <ev a € P% <ev a € Q° and notin: <a ¢ S»

(proof)

lemma not-initialL-not-initialR-After-Syncptick :
eva¢ PP = eva¢ Q"= (P [S], Q) afterprick a = Yprick (P [S], Q)
(proof)

Finally, the monster theorem !

theorem After-Syncpick:
(P [S]y Q) afterpiick a =
(fP=L1LvVvV Q=1 then L
else ifevac PP Aevac Q°
then if a € S then P after;ps a [S], Q afteryns a
else (P after;ns a [S], Q) N (P [S], @ afteryns a)
else ifeva € P A a ¢ S then P afterps a [S], Q
else ifevac Q° N a¢ Sthen P[S], Q after,ns a
else Ypiicr (P [S]y Q) a)
(proof)

end

9.3 Small Steps Transitions

9.3.1 Extension of the After Operator

9.3.2 Sequential Composition

locale AfterExtDuplicated-same-events = AfterExtDuplicated ¥, Qo Y3 Qg
for ¥, :: <[('a, ') processpiick, 'a] = (‘a, ') processpiick>
and Q, :: <[('a, 'r) processptick, 'T] = (‘a, 'r) processpiick>
and Yg :: <[('a, 's) processpiick, 'a] = ('a, 's) processpiick>
and Qg =z <[('a, 's) processpiick, 's] = (‘a, 's) processpiick>

sublocale AfterExtDuplicated-same-events C AfterDuplicated-same-events (proof)

104



context AfterExtDuplicated-same-events
begin

notation Aftery;crq.After (infixl <after,> 86)
notation After,;.,z.After (infixl <aftergs 86)
notation After;jcia.Aftersicr (infixl after s> 86)
notation Afterycip.Afteryicr (infixl <after s3> 86)

lemma Aftery;cr-Seqpick :
(P Q) afteryp e =
(case e of /(1) = Qp (P35, Q) T
| eva =
ifVr./(r)e PP — eva g (Qr)°
then if eva € PY
then P after yo ev a s, Q else Vg (P35, Q) a
else if eva € P°
then (P after yo eva s, Q) M
(Mre{r. /(r) € PP A eva € (Qr)}. Qrafter s eva)
else NMre{r. /(r) € P° A eva € (Q r)°}. Q rafters5 ev a)
(proof)

end

Synchronization Product

locale AfterExt-Syncyiicr-locale = Syncpeici-locale tick-join +
AfterExtyps @ AfterExt Vins Qps +
AfterExt,pns : AfterExt V,.ps Qpps +
AfterExtyiick + AfterExt Woticr Qptick
for tick-join :: <'r = 's = 't option)

and Uy, = <[(a, ') processpiick, ‘a] = (‘a, ') processptick>

and Qs 2 ([(‘a, 'r) processpick, 'r] = (‘a, 'r) processpiick

and U, 2 <[("a, 's) processpiick, 'a] = (‘a, 's) processpiick?

and Q.5 :: <[(‘a, 's) processpiick, 's] = (‘a, 's) processpiick>

and U, <[('a, ’t) processptick, 'a] = ('a, 't) processpiick>

and Qpick = <[("a, 't) processprick, 't] = (‘a, 't) processpiick>
begin

sublocale After-Syncptici-locale tick-join Vips Urps Vpricr (proof)

sublocale AfterExt-Syncpiicr-locale-sym :
AfterExt-Syncpicr-locale <As 1. tick-join v 8» Wrns Qprns Ying QUns Yprick Uprick

(proof)

notation AfterExt;y . Afteryicr (infixl <after sins> 86)
notation AfterExt, . Afteryicr, (infixl <after s.ps> 86)

105



notation AfterExt, ;i . Aftersicr (infixl <after spiicr> 86)

theorem Aftery;cr-Syncptick:
(P [Sly Q) after sptick € =
(case e of V/(1-8) = Qptick (P [S], Q) r-s
| eva=
ifP=1V Q=1 then L
else ifevae PP ANevae Q°
then if a € S then P after sins ev a [S], Q after srhs ev a
else (P after sins ev a [S], Q) 1N (P [S], Q after srhs ev a)
else ifeva € PY A a ¢ S then P after y1ps eva [S], Q
else ifevae Q° N a¢ Sthen P[S], Q after s €va
else Wpiicr (P [S]y Q) a)
(proof)

end

9.3.3 Generic Operational Semantics as Locales

Sequential Composition

locale OpSemTransitionsDuplicated-same-events =
OpSemTransitionsDuplicated Vo Qo T-trans, Vg Qg T-transg
for ¥, = <[(‘a, ') processpiick, ‘a] = (‘a, ') processpiick?
and Q, :: <[('a, 'r) processprick, 'T] = (‘a, 'r) processpiick>
and 7-trans, :: «[(‘a, 'r) processpiick, ('a, 'r) processpiick] = booly (infixl
Ca~rd 50)
and Yg :: [('a, 's) processpiick, 'al = ('a, 's) processpiick>
and Qg =2 <[(‘a, 's) processpiick, 's] = (‘a, 's) processprick?
and 7-transg :: <[('a, 's) processpiick, ('a, 's) processpiick] = booly (infixl <g~-,»
50)

sublocale OpSem TransitionsDuplicated-same-events C After ExtDuplicated-same-events

(proof)

context OpSemTransitionsDuplicated-same-events begin

notation OpSemTransitions,.ev-trans (<- o~- - [50, 8, 51] 50)
notation OpSemTransitionsy.tick-trans (<- o~ /- - [50, 3, 51] 50)
notation OpSemTransitionsg.ev-trans (¢- g~- - [50, 3, 51] 50)
notation OpSemTransitionsg.tick-trans (<- g~ - - [50, 3, 51] 50)

lemma 7-trans-SeqpiickR: <P 35/ Q g~ Q) if (P o~/ P and <Q r g~ Q)
(proof)

lemma «/(r) € P = Q r g~e Q' = P35, Q g~e Q) for P iz <(‘a, 'r)

Processptick’

(proof)

106



end

locale OpSemTransitionsSeqpiick =
OpSemTransitionsDuplicated-same-events ¥, Qo T-trans, Wg Qg T-transg
for W, :: <[('a, 'r) processpiick, 'a] = ('a, 'r) processpiick?
and Q, :: «[(‘a, 'r) processpiick, Tl = ('a, 'r) processpiick>
and 7-transe = <[('a, 'r) processpiick, (‘a, 'r) processpiick] = booly (infixl
(a~rr 50)
and Vg == ([(‘a, 's) processpiick, 'al = ('a, 's) processpiick?
and Qg :: <[(‘a, 's) processpiick, 's] = ('a, 's) processprick’
and 7-transg :: <[(‘a, 's) processpiick, ('a, 's) processpiick] = booly (infixl <g~-r»
50) +
assumes T-trans-Seqpiick Ll 1 <P o~ P'= P, Q g~ P35, @
begin

/

lemma ev-trans-SeqpiiciL: <P o~e P'== P, Q g~e P35/ @
(proof)

lemmas Seqptici-OpSem-rules = T-trans-Seqptick L ev-trans-Seqpiick L T-trans-Seqptick R
end

Synchronization Product

locale OpSemTransitions-Syncpiick-locale = Syncpiick-locale «(@V')y +
OpSemTransitions;ps : OpSemTransitions Wins  ns  (hs~r) +
OpSemTransitions,ps : OpSemTransitions V,.ps Qpps  (rhs~r)r +
OpSemTransitionsyiicr, : OpSemTransitions Ypiick Qprick (ptick~>7)
for tick-join :: <'r = 's = 't option> (infix]l «®v» 100)

and V5, = <[(‘a, 'r) processpiick, 'a] = (‘a, 'r) processpiici

and Qs 2 <[("a, 'r) processprick, 'r] = (‘a, 'r) processpiick?

and T-trans;ps 2 <[('a, 'r) processpiick, ('a, 'T) processpiick] = boolr (infixl
(Uhs~rr 50)

and U, 2 <[("a, 's) processpiick, 'a] = (‘a, 's) processpiick?

and Q. :: <[(‘a, 's) processpiick, 's] = (‘a, 's) processpiick’

and 7-trans,ns = [(‘a, 's) processprick, ('a, 's) processpiick] = boolr (infixl
Srhs™r? 50)

and U,k 2 <[(‘a, 't) processpirick, 'a] = (‘a, 't) processpiick’

and Qpick = <[("a, 't) processprick, 't] = (‘a, 't) processpiick’

and T-transpiick 2 <[(‘a, 't) processprick, ('a, 't) processpiicr] = booly (infixl

{ptick™~r? 50) +
assumes 7-trans-Syncptick L : (P ihsvr PP = P [A]/ Q ptick~+ P’ [A]l, @

and 7-trans-Syncptick R : <Q rhs~r Q' = P [A]l, Q ptick~r P [A], @)
begin

/

107



sublocale AfterExt-Syncyiicr-locale (proof)

sublocale OpSemTransitions-Syncy;ck-locale-sym :
OpSemTransitions-Syncp;cr-locale
AsT. T ®‘/ S \I/Ths ths <(rhswr)) \Illhs ths <(lhsw‘r)> \I]ptick thick <(ptick“’">7')>
(proof )

notation OpSem Transitions;ys.ev-trans (<- jps~- - [50, 8, 51] 50)
notation OpSemTransitions;ps.tick-trans (<- 1ps~ - - [50, 8, 51] 50)
notation OpSem Transitions,ps.ev-trans (<- pps~>- - [50, 3, 51] 50)
notation OpSemTransitions,s.tick-trans (<- pps~ - - [50, 3, 51] 50)
notation OpSemTransitionspick.ev-trans (- prick~- - [50, 3, 51] 50)
notation OpSemTransitionsy;cy.tick-trans (<- ptick~> - - [50, 8, 51] 50)

We do not need the assumptions 7-trans-Syncpiicr L T-trans-Syncpiicr R for
the three following lemmas.

lemma 7-trans-SKIP-SyncpticiL :
P [Aly Q prick~+ SKIP r [A]l, Q@ if <P jpo~yp Ph
{proof )

lemma 7-trans-SKIP-Syncpiick R :
P [Al, Q ptick~=+ P [A], SKIP sy if <Q rps~ys Q@
{proof)

lemma tick-trans-SKIP-Syncp;cr-SKIP:
(r @/ s = Some r-s = SKIP r [A], SKIP s ptick~*yr-s Qptick (SKIP 1-5)
r-8)

(proof)

lemma ev-trans-Syncpiickl :
(a ¢ A= P lhs™a P/:> P [[A]]/ Q ptick™a P’ [[A]]/ Q)
(proof)

lemma ev-trans-Syncprick R :
(@ ¢ A= Q rhs™?a Q/ = P [[A]]/ Q ptick™a p [[A]]/ QI>
(proof)

lemma ev-trans-Syncpticr LR :

<a € A= P lhs™a P= Q rhs™’a Q/ = P [[A]]/ Q ptick™a P’ [[A]]/ Q/>
(proof)

lemmas Syncpiicr-OpSem-rules = T-trans-Syncpiicr L T-trans-Syncptici R
ev-trans-Syncpiick L ev-trans-Syncpiicr R

108



ev-trans-Syncpiick LR
T-trans-SKIP-Syncpiicr L T-trans-SKIP-Syncpiicr R
tick-trans-SKIP-Syncpticr-SKIP

end

109



110



Chapter 10

Declensions of the
Generalized Synchronization
Product

unbundle option-type-syntax

10.1 Interpretations

For practical reasons, we directly interpret Syncpiicr-comm-locale. Then,
the laws of associativity will be derived manually (instead of globally inter-
preting the locale Syncptick-assoc-locale).

10.1.1 Classical Version

The following interpretation is initially the reason we wanted the parame-
ter (®v) to be of type 'r = 's = 't option instead of just r = ‘s = 't
(we wanted the operator Sync already defined in HOL-CSP to indeed be a
particular case of the new one).

interpretation Syncciqssic @ SYncptick-comm-locale
AT s. if r = s then |r]| else O»
As r.if s = r then |s]| else Oy id id
(proof )

notation Syncciassic-Syncprick (((- [-l/classic -)» [70, 0, 71] 70)

notation SynCClassioInte"'ptick‘ (<(_ |H/Classic _)> [727 73} 72)
notation SyncClassic'Pantick (<(‘ ||/Classic ')> [747 75] 74)

10.1.2 Product Type

interpretation Syncpair : Syncpiick-comme-locale

111



Ars. | (ry, 8)]> <Asr. (s, 7)]» prod.swap prod.swap
(proof)

notation Syncpair.Syncprick (<(- [-]/pair -)» [70, 0, 71] 70)
notation Syncpqir.Interpiick (<(- |||/ Pair -)» [72, 73] 72)
notation Syncpair.-Parpiick  (<(- ||/ Pair -)> [74, 75] 74)

10.1.3 List Type
Pair

interpretation Syncpairiist : SYncpiick-comm-locale
Ar s |[r, s]]y As . |[s, 7]
Ars. [rs ! Suc 0, rs ! 0] <Ars. [rs ! Suc 0, rs ! 0]

(proof)

notation SynCPairlist~Syncptick (<(_ [[‘]]/Pairlist _)} [707 0’ 71] 70)
notation Syncpairiist.-Interprick (<(- |||/ Pairtist ) [72, 73] 72)
notation SyncPairlist-Pa'rptick (<(' H/Pairlist ')> [747 75] 74)

Right List

Here, we want to have one process of type (‘a, 'r) processpticr on the left
hand side, and one of type (‘a, 'r list) processptick on the right hand side.

interpretation Syncriist @ Syncpiicr-comm-locale
AT s, |7 # s As o | s @ [r]]»

<rotately «Ars. if rs =[] then [] else last rs # butlast rs»
— Ars. last rs # butlast rs is not injective.
(proof )

notation Syncriist-Syncprick (((- [-1y riist -)» [70, 0, 71] 70)
notation Syncgiise-Interpiick (<(- |||/ riise =) [72, 78] 72)
notation Syncriise.Parprick  (<(- ||/ riist -)> 74, 75] 74)

Left List

Here, we want to have one process of type (‘a, 'r list) processpticr on the
left hand side, and one of type (‘a, 'r) processpiicr, on the right hand side.
There is no need to do a new interpretation, the operator we are looking for
is actually the symmetric of the one we defined just above.

notation Syncriist.Syncpiick-comm-locale-sym.Syncpric  (<(- [-]/Liise -)» [70,
0, 71] 70)

notation Syncri;s¢.Syncptick-comm-locale-sym.Interpiicr (<(- |||/ Liist -)> [72, 73]
72)

notation Syncriise.Syncprick-comm-locale-sym.Parpiict  (((- ||/riist =) [74,
75) 74)

112



Arbitrary Lists

We believed for a long time that it was not possible to handle the case where
both processes have their ticks of type r list. Indeed the concatenation
on the lists is not injective, resulting in the impossibility of interpreting
Syncpiick-locale. But it turns out that by adding some control on the length
of the lists, we actually can!

Control on one side context fixes lenL :: nat begin

global-interpretation Syncristsienr @ SYncptick-comm-locale
AT s. if length r = lenL then |r @ s| else O»
<As . if length v = lenL then |s Q r] else {»
<Ars. drop lenL rs Q take lenL rs»
Ars. rev (take lenL (rev rs)) @ rev (drop lenL (rev rs))»

(proof)

end

abbreviation Syncr;stsienr-syntazx :
(("a, 'r list) processpiick, nat, ‘a set, ('a, 'r list) processpiick]
= (‘a, 'r list) processprick> (<(- -([-]/Liststenr) -)» [70, 0, 0, 71] 70)
where <P lenL[[A]]/ListslenL Q = SynCListslenL~SynCptick lenL, P A Q>

abbreviation Interp;stsienr-syntax ::
(("a, 'r list) processpiick, nat, ('a, 'r list) processpiick)
= (‘a, 'r list) processptick> (<(- -(|||/Listsiens) -)> [72, 0, 73] 72)
where <P l@nL|||/ListslenL Q = SyncListslenL~Interptick lenL P Q>

abbreviation Pary;stsienr-syntax :
(("a, 'r list) processpiick, nat, ('a, 'r list) processpiick)
= (‘a, 'r list) processprick> ((- -(||/Listsient) -)> [74, 0, 75] 75)
where (P l@nL”/ListslenL Q= SynCListslenL-Parptick lenL. P (>

The control is done on the left process, so with the symmetric version of this
operator we control the ticks length of the right one.

abbreviation Syncyp;s;sienr-syntax ::
(("a, 'r list) processpiick, nat, 'a set, ('a, 'r list) processyiick]
= ('a, 'r list) processpiick> (<(- -([-]/Liststenr) -)> [70, 0, 0, 71] 70)
where (P 1,1 [Al s Listsienr Q@ = SYncristsienr-SYncptick-comm-locale-sym.Syncpt;ci
lenL P A @Q»

abbreviation Interr;sisienr-Syntazx :
(('a, 'r list) processpiick, nat, (‘a, 'r list) processpiick)
= (‘a, 'r list) processptick> (((- -(|||/Listsienr) -) [72, 0, 73] 72)
where (P 11|/ Listsienr @ = Syncristsienr-SYncptick-comm-locale-sym.Intery;cr,
lenL P @Q»

113



abbreviation Pary;stsienr-syntax :

(("a, 'r list) processpiick, nat, (‘a, 'r list) processyiick)

= ('a, 'r list) processpiick> (<(- -(||/Listsienr) -)> [74, 0, 75] 15)

where <P le’rLLH./ListslenR Q = SynCListslenL~Syncptick‘locale'sym'Parptick
lenL P @Q»

Control on both sides context fixes lenL :: nat and lenR :: nat begin

global-interpretation Syncrists : SYyncptick-comm-locale
A1 s, if length v = lenL A length s = lenR then |r Q s| else O
s 1. if length s = lenR A length r = lenL then |s @ r| else O»
<Ars. drop lenL rs @Q take lenL rs»
<Ars. drop lenR rs Q take lenR rs»

(proof)

end

abbreviation Syncy,;sts-syntaz ::
(("a, 'r list) processpiick, nat, ‘a set, nat, ('a, 'r list) processpiick)
= (‘a, 'r list) processprickr (<(- -([-]/)- -)» [70, 0, 0, 0, 71] 70)
where <P ;.1 [Al /1enr @ = Syncrists-Syncprick lenl lenR P A Q)

abbreviation Intery;sis-syntax :
(("a, 'r list) processpiick, nat, nat, ('a, 'r list) processpiick]
= ('a, 'r list) processprick> (<(- -(|||/)- -)» [72, 0, 0, 73] 72)
where <P ;.1 |||/ 1enk @ = Syncrists. Interpiick lenl lenR P Q>

abbreviation Pary;s¢s-syntax ::
(("a, 'r list) processpiick, nat, nat, ('a, 'r list) processpiick]
= (‘a, 'r list) processprick> (<(- -(||/)- - [7%4, 0, 0, 75] 75)
where P .1l /1enk @ = Syncrists-Parpiick lenL lenR P @)

10.2 Associativities

10.2.1 Classical Version

lemma Synccoiqssic-assoc :
<P HS]]/Classic (Q [[S]]/Classic R) =P HS]]/Classic Q [[S]]/Classic R)
(proof)

10.2.2 Product Type

lemma Syncpg;--assoc :

P [[S]]/Pair (Q [[S]]/Pair R) = RenamingTz'ck (P [[S]]/Pair Q [[S]]/Pair R)
(A((r, 8), 8). (r, s, 1))
(proof)

114



10.2.3 List Type

lemma Syncriist-SYncpqiriist-assoc :
(P [S]/riist (Q [S]yPairtist R) = (P [S]yPairtist @) [S]yLiist R
(proof)

lemma Syncpriist-Syncr;s¢-assoc :

< P [[f]]/Rlist (Q [Slyriist R) = (P [S]yriist Q) [S]yLiise R
proof

lemma Syncpriist-SYNcristsienr-assoc :

<P [[S]]/Rlist (Q lenQ[[S]]/ListslenL R) = (P [[S]]/Rlist Q) Suc lenQ[[S]]/ListslenL
R

(proof)

lemma Syncristsienr-SYNCriist-assoc :

<P Suc lenQ[[S]]/ListslenR (Q [[S]]/Llist R) = (P lenQ[[S]]/ListslenR Q) [[S]]/Llist
R

(proof)

lemma Syncy;ss-assoc :
P lenP[[S]]/lenQ + lenR (@ lenQ[[S]]/lenR R) =
P lenP[[SH/lenQ Q lenp + lenQ[[S]]/lenR R
(proof)

lemma Syncpryisi-SYncryist-assoc :
P [S]yriist (Q [Slyriist B) = (P [Slypairtist @) Suc (Suc 0)[5]v Listsient
Ry

(proof)

lemma SyncListslenR'SyncPairlist‘aSSOC :
P gue (Suc 0)I9sListsienr (Q [S]yPairiist R) = (P [SlyLiise @) [S]yLiise
R

(proof)

10.3 Properties

10.3.1 Actual Generalization

We can actually recover the classical synchronization product defined in
session HOL-CSP as a particular case of our generalization.

theorem Syncciassic-is-Sync : <P [A] yciassic @ = P [A] @
(proof)

115



10.3.2 Other Properties

lemma <Syncrsis.Syncprick-locale-sym.Syncpgicr lenL lenR Q A P = P 1,1 [A]l /1enR
Q
(proof)

corollary TickSwap-Syncpair [simp] : «TickSwap (P [S]/pair Q) = Q [S]y/Pair
P
(proof)

lemma TickSwap-is-Syncpqir-iff [simp] :

«TickSwap P = Q [S]/Pair R <— P = R [S]/pair @
(proof)

corollary Syncciassic-commute : <P [S] sciassic @ = Q [S]y/ciassic P
(proof)

lemma «RenamingTick (P 1,151/ 1enr @) (Ar-s. drop lenL r-s Q take lenL r-s)

Q 1enr[S1/ 1ent, P
(proof)

10.4 Ticks Length and Conversions

Through RenamingTick, conversions can be established between the inter-
pretations. For this, we sometimes need an assumption about the length of
the ticks.

10.4.1 Ticks Length

Definition and first Properties

definition is-ticks-length ::
(nat = ('a, 'r list) processpiici = booly (<(length,)-('(-")))
where <length /n(P) = Vrs € /s(P). length rs = n»

We might imagine V rs€v s(P). length rs = n instead. But when the process
P has divergences, the predicate would not hold. Additionally, we only need
the control about traces that are not divergences.

lemma is-ticks-lengthl : «(\rs. rs € /'s(P) = length rs = n) = length s n(P)
(proof)

lemma is-ticks-lengthD : <length yn(P) = rs € /'s(P) = length rs = n»
(proof)

116



lemma is-ticks-length-unique :
— Not suitable for simplifier.
dength yn(P) «— V/s(P) = {} V (Ym. lengthsm(P) <— m = n)
(proof)

lemma empty-strict-ticks-of-imp-is-ticks-length :
W's(P) = {} = length sn(P)
(proof)

lemma nonempty-strict-ticks-of-imp-is-ticks-length-unique :
W's(P) # {} = lengthyn(P) = lengthym(P) = m = n
(proof)

Behaviour

named-theorems is-ticks-length-simp
named-theorems is-ticks-length-intro

Constant Processes lemma is-ticks-length-STOP [is-ticks-length-simp] :
dength s n(STOP)) (proof)

lemma is-ticks-length-BOT [is-ticks-length-simp) :
ength sn(L)y (proof)

lemma is-ticks-length-SKIP-iff [is-ticks-length-simp) :
dength s n(SKIP rs) <— length rs = n»
(proof)

lemma is-ticks-length-SKIPS-iff [is-ticks-length-simp] :
dength yn(SKIPS R) <— (Vrs € R. length rs = n)»
(proof)

Binary (or less) Operators lemma is-ticks-length-Ndet [is-ticks-length-intro]

dength yn(P) = length yn(Q) = length n(P M Q)
(proof)

lemma is-ticks-length-Det [is-ticks-length-intro] :
ength yn(P) = length s n(Q) = length,n(P O Q)
(proof)

lemma is-ticks-length-Sliding [is-ticks-length-intro] :
dength yn(P) = length yn(Q) = length sn(P > Q)
(proof)

lemma is-ticks-length-Sync [is-ticks-length-intro] :
dength yn(P) = length yn(Q) = lengthn(P [S] Q)
(proof)

117



lemma is-ticks-length-Seq [is-ticks-length-intro| :
<non-terminating P V length yn(Q) = length sn(P ; Q)
(proof )

lemma is-ticks-length-Hiding [is-ticks-length-intro] :
dength (P \ S)» if <length /n(P)
{proof )

lemma is-ticks-length-Interrupt [is-ticks-length-intro] :
dength yn(P) = length yn(Q) = length n(P A Q)
(proof)

lemma strict-ticks- Throw-subset :
«W's(P O acA. Qa) CVs(P)U (JacA N a(P). /s(Q a))
(proof )

lemma is-ticks-length- Throw [is-ticks-length-intro] :
dengthyn(P © a € A. Q a)
if «engthn(P)> <\a. a € a(P) = length/n(Q a)
(proof)

lemma is-ticks-length-Renaming [is-ticks-length-intro] :
dength s n(Renaming P f g) » if <A\r. r € /s(P) = length (g r) = n
(proof )

Architectural Operators lemma is-ticks-length-GlobalNdet [is-ticks-length-intro]

(Aa. a € A = lengthyn(P a)) = lengthsn(MNa € A. P a)»
(proof)

lemma is-ticks-length-GlobalDet [is-ticks-length-intro] :
(Aa. a € A = lengthyn(P a)) = lengthyn(0a € A. P a))
(proof)

lemma is-ticks-length-MultiSync [is-ticks-length-intro] :
(Am. m € set-mset M = length sn(P m)) = length sn([S] m €# M. P m))
(proof)

lemma is-ticks-length-MultiSeq [is-ticks-length-intro| :
<L # [| = lengthyn(P (last L)) = length n(SEQ | €@ L. P [)
(proof)

Communications lemma is-ticks-length-write0-iff [is-ticks-length-simp] :
dengthyn(e = P) «— length s n(P)
(proof)

118



lemma is-ticks-length-write-iff [is-ticks-length-simp)] :
dength yn(cte = P) «— length sn(P)>
(proof)

lemma is-ticks-length-Mprefiz-iff [is-ticks-length-simp] :
dengthyn(Ca € A — Pa) = (Ya € A. lengthyn(P a))
(proof)

lemma is-ticks-length-read-iff [is-ticks-length-simp] :
dength yn(c?a€A — Pa) = (Vb € ¢ “ A. lengthsn(P (inv-into A c b)))»
(proof)

corollary <inj-on ¢ A = lengthsn(c?acA — P a) = (Va € A. lengthyn(P a))
(proof)

lemma is-ticks-length-Mndetprefiz-iff [is-ticks-length-simp] :
dengthyn(Ma € A — Pa) = (Ya € A. lengthsn(P a))
(proof)

lemma is-ticks-length-ndet-write-iff [is-ticks-length-simp)] :
dengthyn(cMa€A — Pa) = (Vb € ¢ * A. lengthyn(P (inv-into A ¢ b)))»
(proof)

corollary <inj-on ¢ A = lengthsn(cMta€cA — P a) = (Ya € A. lengthsn(P a))
(proof)

Generalizations lemma strict-ticks-of-Seqptick-subset : «/s(P 5, Q) € U
{Vs(Qr)|r.re/s(P)p
(proof)

lemma non-terminating-Seqptick :
<P/ Q= RenamingTick P ¢ if (non-terminating P>
(proof)

lemma is-ticks-length-Seqptick [is-ticks-length-intro] :
(non-terminating P vV (Vre/s(P). lengthsn(Q 1)) = length n(P 3, Q)
(proof)

lemma is-ticks-length-Syncpiick :
ength s n(Syncpiick-locale. Syncpiicr tick-join P A Q)
— We cannot work directly inside the locale since in this context the types of
ticks 't cannot be set to r list.
if «Syncpiick-locale tick-join)
and (A\rs. r € /s(P) = s € /s(Q) =

119



case tick-join r s of O = True | |r-s| = length r-s = n»
(proof)

lemma is-ticks-length-One-Renaming Tick-singl [is-ticks-length-simp) :
dength s e o(RenamingTick P (Ar. [r]))»
(proof)

lemma is-ticks-length- Two-Syncpairiist [is-ticks-length-simp] :
<l€ngth‘/suc (Suc 0) (P [[S]]/Pairlist Q)’
(proof)

lemma is-ticks-length-Suc-Syncriise [is-ticks-length-intro] :
dength yn(Q) = length s gye n(P [Sly/ Rriist Q)
(proof)

The equivalence is false.

lemma False if <\P Q n. length s gye n(P [S]/Rriist Q) = lengthn(Q)>
(proof)

lemma is-ticks-length-Suc-Syncy st [is-ticks-length-intro] :
dength yn(P) = lengthy gye n(P [S1/Liist Q)
(proof)

lemma is-ticks-length-sum-Syncristsienr, [is-ticks-length-intro] :
<length/m(Q) = length/n + m(P RHSH/ListslenL Q)>
(proof )

lemma is-ticks-length-sum-Syncristsienr [is-ticks-length-intro] :
dengthyn(P) = lengthyspn + m(P mlSl/Listsienr Q)
(proof )

lemma is-ticks-length-sum-Syncr;sts [is-ticks-length-intro] :
dengthyn + m(P n[S]ym Q)
(proof)

10.4.2 Conversions

lemma SynCPairlist’to_Synchist :
P [S]/Pairtist @ = P [S]yriist RenamingTick @ (Xs. [s])
(proof )

lemma Syncpairiist-to-Syncriise :

(P [S]/pPairiist @ = RenamingTick P (Ar. [r]) [S]/Liist @
(proof)

120



lemma Syncpriis¢-to-Syncristsient :
(P [Sl/riist @ = RenamingTick P (Ar. [r]) gyc olS1/Listsient. @
(proof)

lemma Syncyr;s¢-to-Syncristsienn :
P [Slyriist @ =P gye lSlyListsienr RenamingTick @ (As. [s])
(proof)

lemma SyncListslenL'tO'SyncLists .
<length/m(Q) — P n[[S]]/ListslenL Q =P n[[S]]/m Q>
(proof)

lemma SyncListslenR'to'SyncLists :
dengthyn(P) = P m[S]/Listsienr @ = P n[S]ym @
(proof )

corollary SynCListslenL‘Z'S'SyncListslenR :

<l€ngth/’ﬂ(P) - length/m(@) = P n[[S]]/ListslenL Q =P m[[S]]/ListslenR
(05

{proof)

corollary SynCPairlist‘tO'SyncListslenL :

P [S)/Pairiist @ = RenamingTick P (Ar. [r]) gyue olS1/Listsienr Renam-
ingTick Q (As. [s])

(proof )

corollary SynCPairlist‘tO'SynCListslenR :

<P [[S]]/Pairlist Q = RenamlngTZCk P ()\7” [’f‘]) Suc UIIS]]./ListslenR Renam-
ingTick Q (As. [s])

(proof)

corollary Syncgri;si-to-Syncrises :

dengthym(Q) = P [S)/riist @ = RenamingTick P (Ar. [r]) gyue olS]ym @
(proof)

corollary Syncpjist-to-Syncr;sts :
dengthyn(P) = P [S]/riist @ = P n[S]/ suc 9 RenamingTick @ (Xs. [s])»
(proof)

corollary Syncpgiriist-to-Syncrists :

P [S)/Pairiist @ = RenamingTick P (Ar. [1]) sue 0181y suc 0 RenamingTick
Q (As. [s])»

(proof)

121



lemma Syncpgir-to-Syncpairiise :
(RenamingTick (P [S]ypair @) (A(7, 8). [r, s]) = P [Sl/Pairtist @
(proof)

lemma SynCPairlist'tO'SyncPair :
(RenamingTick (P [S]/pairtist @) (Ars. (rs ! 0, rs! Suc 0)) = P [S]/pair @
(proof)

lemma Syncpgir-to-Syncriise :
«RenamingTick (P [S]ypair Q) (A(r, 5). v # 5) = P [S]l/Riist @
(proof)

lemma Syncpgi--to-Syncriise :
(RenamingTick (P [S]/pair @) (A\(r, 5). 7 Q [s]) = P [S]/riist @
(proof)

lemma SynCPair‘tO'SynCListslenL :
(RenamingTick (P [S]/pair Q) (A(r, s). 7 @ s) = P p[S]/Listsienr @
(is «%lhs = ?rhs») if <length s n(P)>

(proof)

corollary Syncpgi--to-Syncristsienr :
«RenamingTick (P [S]y/pair Q) (\(r, 8). 7 @ s) = P y[S]/Listsienr @
(is «?lhs = ?rhsy) if <ength /n(Q)>

(proof)

corollary Syncpgi--to-Syncrises :
(RenamingTick (P [S]/pair Q) (A(r, 5). 7 @ s) = P »[S]/m @
(is «?lhs = ?rhsy) if <length sn(P)» and <ength ,m(Q)>
(proof)

10.5 First Laws

COI‘Ollary Intercigssic-STOP [szmp] :
P H‘/Classic STOP = P; STOP»
(proof)

corollary Interpg,;--STOP :
(P ||| Pair STOP = RenamingTick (P ; STOP) (Ar. (r, g r))
(proof)

corollary Interpgiriis¢-STOP :
(P |||/ Pairiist STOP = RenamingTick (P 5 STOP) (Ar. [r, g r])»
(proof)

corollary Interg;s¢-STOP :

122



(P |||/ riist STOP = RenamingTick (P 5 STOP) (Ar. r # gr)
(proof)

corollary Intery;s¢-STOP :
(P ||| sLiist STOP = RenamingTick (P ; STOP) (Ar. r @ [g r])»
(proof)

corollary Intery;sisienr,-STOP :
<P n|||/ListslenL STOP =
RenamingTick (P ; STOP) (Ar. if length r = n then r Q g r else undefined)>

(proof)

corollary Interr;sisienr-STOP :
<P n|||/ListslenR STOP =
RenamingTick (P 3 STOP) (Ar. if length (g r) = n then r Q g r else undefined)>

(proof)

corollary Intery;sis-STOP :

P plllym STOP =

RenamingTick (P 3 STOP) (Ar. if length r = n A length (g r) = m then r Q ¢
r else undefined)»

(proof )

corollary STOP-Interciqssic [simp) :
«STOP |||./Classic Q = Q; STOP»

(proof)

corollary STOP-Interpg;, :
(STOP |||/ Pair @ = RenamingTick (Q ; STOP) (Xs. (g s, s))»
(proof)

corollary STOP-Interpairiist :
(STOP ||| s Pairtist @ = RenamingTick (Q ;5 STOP) (Xs. [g s, s])»

(proof)

corollary STOP-Interp;st :
(STOP ||| s riist @ = RenamingTick (Q ; STOP) (Xs. g s # s)»
(proof)

corollary STOP-Intery;ss :
(STOP ||| sL1ist @ = RenamingTick (Q ; STOP) (Xs. g s @ [s])»

(proof)

corollary STOP-Intery;sisienl :

«STOP ’I’L|||/L7LstslenL Q =
RenamingTick (Q 5 STOP) (Ar. if length (g r) = n then g r Q r else undefined)>

(proof)

123



corollary STOP-Intery;sisienRr :
«STOP 7’L|H/L1’stslenR Q =
RenamingTick (Q ;3 STOP) (Ar. if length r = n then g r Q r else undefined)>

(proof)

corollary STOP-Intery;sis :

«STOP nm/m Q=

RenamingTick (Q ;3 STOP) (Ar. if length (g ) = n A length r = m then g r @
7 else undefined)>

(proof)

corollary SKIP-Syncciassic-SKIP :
(SKIP 1 [AlyClassic SKIP s =
(if r = s then SKIP r else STOP)» (proof)

corollary SKIP-Syncpg;-SKIP :
(SKIP r [A] s pair SKIP s = SKIP (r, s)» (proof)

corollary SKIP-Syncpairiist-SKIP :
(SKIP r [A] s pairtist SKIP s = SKIP [r, s]» (proof)

corollary SKIP-Syncpryis¢-SKIP :
(SKIP r [A] s Riist SKIP s = SKIP (r # s)» (proof)

corollary SKIP-Syncypist-SKIP :
(SKIP r [A] yL1ist SKIP s = SKIP (r Q [s])» (proof)

corollary SKIP-Syncr;stsienr-SKIP :
«SKIP r n[[AH/ListslenL SKIP s =
(if length v = n then SKIP (r Q s) else STOP)) (proof)

corollary SKIP-Syncristsienr-SKIP :
«SKIP r n[[Aﬂ,/ListslenR SKIP s =
(if length s = n then SKIP (r @Q s) else STOP) (proof)

corollary SKIP-Syncyp;sts-SKIP :

(SKIP 1 n[A]m SKIP s =
(if length 7 = n A length s = m then SKIP (r Q s) else STOP)) (proof)

10.6 Operational Laws

10.6.1 Classical Version

locale After-Synccigssic-locale = After-Syncpiick-locale <Ar s. if r = s then |r]
else O»
begin

124



— Just checking...
lemma «Syncpiick P S Q = P [S]/ciassic @ (proof)

end

locale AfterExt-Syncciqssic-locale =
AfterExt-Syncpyick-locale <\t s. if r = s then |r] else O»

sublocale AfterEzt-Syncciassic-locale C After-Syncoiassic-locale
(proof)

locale OpSemTransitions-Syncciqssic-locale =
OpSemTransitions-Syncpick-locale <A1 s. if 1 = s then |r] else O»

sublocale OpSemTransitions-Syncciassic-locale C AfterExt-Synccoiqssic-locale

(proof)

10.6.2 Product Type

locale After-Syncpqir-locale = After-Syncpiick-locale <Ars. |(r, )]
begin

— Just checking...
lemma <Syncpiick P S Q = P [S]/pair @ (proof)

end

locale AfterExt-Syncpqir-locale =
AfterExt-Syncpiick-locale <Ar s. [(r, s)]»

sublocale AfterExt-Syncpqir--locale C After-Syncpqqr-locale

(proof)

locale OpSemTransitions-Syncpq;r-locale =
OpSemTransitions-Syncpicr-locale <Ars. |(r, s)]»

sublocale OpSemTransitions-Syncpq;r-locale C AfterExt-Syncpq;r-locale

(proof)

10.6.3 List Type
Pair

locale After-Syncpairiisi-locale = After-Syncpiicr-locale <Ars. |[r, s||»
begin

— Just checking...
lemma <Syncpiick P S Q = P [S]/pairiist @ (proof)

125



end

locale AfterExt-Syncpgiriist-locale =
AfterExt-Syncpiick-locale <Ar s. |[r, s|]»

sublocale AfterExt-Syncpqiriist-locale C After-Syncpqiriist-locale

(proof)

locale OpSemTransitions-Syncpairiist-locale =
OpSem Transitions-Syncpyick-locale <\rs. [[r, s||»

sublocale OpSemTransitions-Syncpairiist-locale C AfterExt-Syncpqiriist-locale

(proof)

Right List

locale After-Syncriisi-locale = After-Syncptick-locale <Ar s. v # s>
begin

— Just checking...
lemma <Syncpiick P S Q = P [S]/riist @ (proof)

end

locale AfterExt-Syncri;si-locale =
AfterExt-Syncpiick-locale <Ar s. |r # s|»

sublocale AfterExt-Syncrisi-locale C After-Syncgy;se-locale

(proof)

locale OpSemTransitions-Syncri;st-locale =
OpSemTransitions-Syncpick-locale <Ars. |r # s]

sublocale OpSemTransitions-Syncgy;st-locale C AfterExt-Syncryist-locale

(proof)

Left List

locale After-Syncriisi-locale = After-Syncpiick-locale <Ars. |r Q [s]]»
begin

— Just checking...
lemma <Syncptick P S Q = P [S]/riist @ (proof)

end

locale AfterExt-Syncy;st-locale =
AfterExt-Syncpiick-locale <Ar s. [ @ [s]]»

sublocale AfterExt-Syncy;s¢-locale C After-Syncyrise-locale

126



(proof)

locale OpSemTransitions-Syncy,;si-locale =
OpSemTransitions-Syncpyicr-locale <Ars. |r @ [s]]»

sublocale OpSemTransitions-Syncy,;st-locale C AfterExt-Syncr;s¢-locale

(proof)

Arbitrary Lists

Control on left side locale After-Syncr;stsienrs-locale =
After-Syncpiicx-locale <Ar s. if length v = lenL then [r Q s] else O»
for lenL :: nat

begin

— Just checking...
lemma <Syncpiick P S Q = P e[S/ Listsienr @ (proof)

end

locale AfterExt-Syncristsienr-locale =
AfterExt-Syncpyick-locale <\r s. if length v = lenL then |r Q s| else ¢»
for lenL :: nat

sublocale AfterExt-Syncyristsiens-locale C After-Syncristsienr-locale

(proof)

locale OpSemTransitions-Syncr;stsienr-locale =
OpSemTransitions-Syncpiick-locale <At s. if length r = lenL then [r Q s| else O»
for lenL :: nat

sublocale OpSem Transitions-Syncr;stsienr-locale C AfterExt-Syncyistsienr -locale

(proof)

Control on right side locale After-Syncristsienr-locale =
After-Syncpiick-locale <At s. if length s = lenR then |r @Q s] else O»
for lenR :: nat

begin

— Just checking...
lemma <Syncptick: PS Q =P lenR[[S]]/ListslenR Q) <p7’00f>

end
locale AfterExt-Syncristsienr-locale =
AfterExt-Syncpiick-locale <Ar s. if length s = lenR then |r Q s| else O

for lenR :: nat

sublocale AfterExt-Syncyristsienr-locale C After-Syncristsien r-locale

127



(proof)

locale OpSemTransitions-Syncyristsienr-locale =
OpSemTransitions-Syncpyick-locale <Ar s. if length r = lenL then |r Q s| else O»
for lenL :: nat

sublocale OpSem Transitions-Syncr;sisienr-locale C AfterExt-Syncr;sisien r-locale

(proof)

Control on both sides locale After-Syncyr;sis-locale =
After-Syncpiicr-locale
A1 s. if length v = lenL A length s = lenR then |r Q s| else O
for lenL lenR :: nat

begin

— Just checking...
lemma <Syncpiick P S Q = P 101,151/ 1enr @ (proof)

end

locale AfterExt-Syncy;sts-locale =
AfterExt-Syncpyicr-locale
A1 s. if length v = lenL A length s = lenR then |r Q s| else O»
for lenL lenR :: nat

sublocale AfterExt-Syncyisis-locale C After-Syncy;sts-locale
(proof)

locale OpSemTransitions-Syncy;sts-locale =
OpSemTransitions-Syncpiicr-locale
AT s, if length v = lenL A length s = lenR then |r Q s| else »
for lenL lenR :: nat

sublocale OpSemTransitions-Syncy;sts-locale C AfterExt-Syncy;sts-locale

(proof)

128



Chapter 11

Architectural Versions

11.1 Sequential Composition

11.1.1 Definition

fun MultiSeqptick = <['b list, 'b = ' = (‘a, 'r) processpiick, '] = (‘a, 'r) pro-
cessptick>
where MultiSeqpick-Nil : «MultiSeqpricr, [| P = SKIP»

| MultiSeqpticr-Cons : <MultiSeqpiicr (I # L) P = (Ar. P13, MultiSeqptick
L P)

syntax -MultiSeqptick
(pttrn, 'b list, 'b = 'r = ('a, 'r) processpiick, 'r] = (‘a, ') processpiici>
((3SEQ, - €@ -/ ) [78,78,77) 77)

syntax-consts -MultiSeqpiicr = MultiSeqptick

translations SEQ, p €@ L. P = CONST MultiSeqpiick L (Ap. P)

11.1.2 First Properties

lemma «SEQ, p €Q [|. P p = SKIP»
and «(SEQ/ p €Q [a]. Pp = (Ar. Pa 1)
and «(SEQ/ p €Q [a, b]. Pp= (Ar. Par;, Pb)
and «(SEQ/ p €Q [a, b, c]. Pp=(Ar.Parsi, Pbs, Pc)
(proof)

lemma «SEQ/, p €Q [1zint .. 3]. Pp=(Ar. P11, P23, P 3)
(proof)

lemma «(SEQ, p €Q [|. P p) = SKIP) (proof)

lemma «(SEQ, 1 €Q (a # L). Pl) = (Ar. Par;, SEQ, | €Q L. P 1), (proof)

129



lemma MultiSeqpticr-singl [simp] : <SEQ, | €Q [a]. Pl = P a) (proof)

lemma MultiSeqyiici-snoc : <SEQ, 1 €Q (L Q [a]). Pl = (Ar. (SEQ, | €Q L.
Pl)yr;, Pa)
(proof)

lemma mono-MultiSeqp;c-eq:
(Nl.leset L= Pl=QIl)= SEQ,1€Q L. Pl=SEQ,1cQL.QD
(proof)

lemma MultiSeqptick-const [simp] :
(SEQ 1 €@ L. (Ar. P 1)) =
(if L =[] then SKIP else (A\r. SEQ 1 €@ L. P I))
(proof)

11.1.3 Behaviour with binary version

lemma MultiSeqpt;ci-append:

(SEQ, 1 €Q (L1 QL2). Pl= (Ar. (SEQ, l€Q L1. Pl)r;, SEQ, | €Q L2.
Pl

(proof)

11.1.4 Other Properties

lemma MultiSeqp;cr-SKIP-neutral:

(Pa=SKIP = SEQ/, 1 €Q (L1 Qla] @ L2). Pl=SEQ, | €Q (L1 Q L2).
Pl

(proof)

lemma MultiSeqpiicr-BOT-absorb:

(Pa=1= SEQ/, 1 €Q (L1 Q[a] @L2). Pl=(Ar. (SEQ, l €Q L1. PI)
Ty L)

(proof)

lemma MultiSeqyi;cr-STOP-absorb:
(Pa=(Ar. STOP) = SEQ, l €Q (L1 @ [a) @ L2). Pl =
(Ar. (SEQy l €@ L1. Pl) r; STOP)
(proof)

lemma is-ticks-length-MultiSeqpiick [is-ticks-length-intro] :

length yn((SEQ, 1 €Q L. P 1) 1)

if <L # [» and <A\r’. v’ € /s((SEQ, | €Q (butlast L). P 1) r) = length s n(P
(last L) r')»
(proof)

11.1.5 Behaviour with injectivity

lemma inj-on-mapping-over-MultiSeqptick:

130



<inj-on [ (set L) =
SEQy l€Q L. Pl= SEQ, | €Q map f L. P (inv-into (set L) f1)»
(proof )

unbundle no funcset-syntax
— Inherited from HOL— Combinatorics.List-Permutation.

11.2 Synchronization Product

11.2.1 Definition

The generalized synchronization product is not really commutative (see Re-
namingTick (P [A]ly Q) &/ =@V rev = Q [A]yrev P). We therefore define
the architectural version on a list.

fun MultiSyncpiick

(’a set, 'b list, 'b = ('a, 'r) processpiick] = ('a, 'r list) processpiick>

where «MultiSyncpiick, S [| P = STOP)

| «MultiSyncpiicr S [I] P = RenamingTick (P 1) (Ar. [r])»

| MultiSyncpick S (I # m # L) P = P 1 [S] s riist MultiSyncpiicr S (m #
L) P

syntax -MultiSyncpiicr
pttrn, 'a set, 'b list, ("a, 'r) processpiick] = ('a, ') processpiick?
((S[1y, - €@ -/ ) [18,78,78,77] 77)

syntax-consts -MultiSyncpticr = MultiSyncpiicr

translations [S], | €Q L. P = CONST MultiSyncpiici S L (Al. P)

Special case of MultiSyncptick, S P when S = {}.

abbreviation Multilnter,;cr
(' list, 'b = ('a, 'r) processpiick] = (‘a, 'r list) processpiick>
where «Multilnterpiicry L P = MultiSyncpiick {} L P>

syntax -Multilnterpicy,
(pttrn, 'b list, ('a, 'r) processpiick] = ('a, 'T) processpiick’
(3l -€Q-./ -)» [78,78,77) 77)

syntax-consts -Multilnterpsicr = Multilnterpy;cr

translations |||, [ €@ L. P = CONST Multilnterp;cr, L (Al P)

Special case of MultiSyncyiicr, S P when S = UNIV.

abbreviation MultiParpgicr, ::
('b list, 'b = ('a, 'r) processpiick] = ('a, 'r list) processptick>
where <MultiParpiicr, L P = MultiSyncpiic UNIV L P>

syntax -MultiParpiicr
(pttrn, 'b list, (‘a, 'r) processpiick] = (‘a, 'r) processpiick>

131



(3| -€Q-./ -)» [78,78,77) 17)
syntax-consts -MultiParyiicr, = MultiParpticr
translations ||, [ €@ L. P = CONST MultiParyicr L (M. P)

11.2.2 First properties

lemma is-ticks-length-MultiSyncpiick [is-ticks-length-intro] :
dength’/length L([[S]]/ le@ L. Pl
(proof)

lemma MultiSyncpiicr-Cons :
[Sly meQ (I# L). Pm =
( if L =] then RenamingTick (P 1) (Ar. [r])
else Pl [[S]]/Rlist HS]]/ m €Q L. P m)>
(proof)

lemma mono-MultiSyncpiicr-eq :
(Nl.leset L= Pl=QIl)=[S],1cQL Pl=[S], QL QD
(proof)

lemma mono-MultiSyncpiicr-eq2:
(ANlL.leset L= P (fl)=Q1) = [Sl, 1 €Q map fL. Pl =[S], | €Q L.
Qb
(proof)
lemma «([S], ! €@ [].
and «([S]/ | €Q [d]
and «([S]/ ! €Q [a,
and «([S]/ ! €Q [a,
(P ¢) (. 1)
(proof)

l) = STOP»

) = RenamingTick (P a) (Ar. [r])»

. P1l)=Pal[S]/riist RenamingTick (P b) (Ar. [r])

s cl. Pl)=Pal[S)/riist (Pb[S]/Riist RenamingTick

T

o>~ S

11.2.3 Properties

lemma MultiSyncy;cr-is-BOT-iff:
qSl, 1 €@ L. Pl=1+— (3l csetL Pl= 1)
(proof)

lemma MultiSyncyi;cr-BOT-absorb:
deset L= Pl=1=[S],1€QL Pl=1

(proof)

lemma MultiSyncpiicr-SKIP-id :
Sl r €Q L. SKIP r = (if L = || then STOP else SKIP L))

(proof)

132



11.2.4 Behaviour with binary version

lemma MultiSyncy;cr-append :
(L1 £ = L2 # || =
[Sl, | €@ (L1 @ L2). P =

IIS]]/ le@L1. Pl length LZ[[S]]/length L2 IIS]]/ le@ L2. P
(proof)

11.2.5 Behaviour with injectivity

lemma inj-on-mapping-over-MultiSyncpsick:

<ng-on [ (set L) =

[Slyte@ L. Pl =[S, ! €Q map f L. P (inv-into (set L) f1)
(proof)

11.2.6 Permuting the Sequence

A particular Case

lemma MultiSyncy;cr-snoc :
(Sl me@ (L@ [l]). Pm=
( if L =[] then RenamingTick (P 1) (Ar. [r])
else [S]y, m €@ L. P m [S]/riist P 1)
(proof )

At the beginning, we wanted to prove the following property.

theorem MultiSyncptici-rev :
(Sl ! €Q (rev L). Pl = RenamingTick ([S], | €Q L. P 1) rev

(proof)

This has just been established for rev L, which is a particular permutation
of the list L. It turns out that it actually holds for any permutation. The
rest of this file constitutes the proof.

Arbitrary Permutation

Some preliminary results lemma permute-list-transpose-eq-list-update :
i < length xs =—> j < length xs —
permute-list ( Transposition.transpose i j) xs = asli 1= aslj, j := zsli]»
(proof)

lemma inj-on-permute-list-transpose :

i < n = j < n = inj-on (permute-list (Transposition.transpose i j)) {zs. n
< length xs}

(proof)

lemma rev-permute-list-transpose :

i < length L = j < length L —
rev (permute-list ( Transposition.transpose i j) L) =

133



permute-list ( Transposition.transpose (length L — Suc ) (length L — Suc j)) (rev
L)
(proof)

lemma permute-list-transpose-rev :

<1 < length L = j < length L —

permute-list ( Transposition.transpose i j) (rev L) =

rev (permute-list (Transposition.transpose (length L — Suc i) (length L — Suc
7)) L)

(proof )

lemma tickFree-map-map-eventycr-id-eq :

«tF't => map (map-eventpicr id g) t = b

and tickFree-mem-T-Renaming Tick-iff-mem-T :

F t =t €T (RenamingTick P g) +— t € T P»
and tickFree-mem-D-Renaming Tick-iff-mem-D :

«(tF t = t € D (RenamingTick P g) +— t € D P»
for P :: «('a, 'r) processpiick> and g <'r = '

— Necessarily here, antecedents and images for g share the same type.

{proof)

The proof We start by proving that the RenamingTick of the right-hand
side process @ by a transposition can be “taken to the outside” of the syn-
chronization P [S]/riist @

lemma Syncpry;si-Renaming Tick-permute-list-transpose :

(P [S]/Rriist RenamingTick Q (permute-list (Transposition.transpose i j)) =

RenamingTick (P [S]/riist @) (permute-list (Transposition.transpose (Suc %)
(Suc 7))

(is «?lhs = 2rhs)) if i < ny j < ny <A\rs. rs € /s(Q) = n < length rs»
(proof)

lemma RenamingTick-permute-list-transpose-Syncr;stsienl :
(RenamingTick P (permute-list (Transposition.transpose i j)) n[S]/ristsient @

RenamingTick (P n[S]/Listsient Q) (permute-list (Transposition.transpose i
Dk
(is <?lhs = ?rhs») if <i < ny j < ) for P :: «('a, 'r list) processpiick?

(proof)

Then, we establish the result when the permutation is only a transposition.

lemma MultiSyncyi;cr-permute-list-transpose :
i < length L = j < length L —
[51, ! €@ permute-list (Transposition.transpose i j) L. Pl =
RenamingTick ([S], | €@ L. P 1) (permute-list (Transposition.transpose i j))»
for L :: <'b listy

134



(proof)

Finally, the proof of the general version relies on the fact that a permutation
can be written as finite product of transpositions.

theorem MultiSyncpeicr-permute-list
(S, | €Q permute-list f L. Pl =
RenamingTick ([S], | €Q L. P 1) (permute-list f)
if f-permutes : <f permutes {..<length L}>

(proof )

135



136



Chapter 12

Events and Ticks

12.1 Preliminaries

lemma strict-events-of-memE-optimized-tickFree :
(Nt.teTP=1t¢DP = eva € set t => tF t = thesis) = thesis» if
a € aP)

(proof)

lemma events-of-memE-optimized-tickFree :
(AN\t.t € T P=> eva€ sett = tF t => thesis) = thesis» if «a € a(P)

(proof)

12.2 Sequential Composition

12.2.1 Events

lemma events-of-Seqpiick : «a(P 3, Q) = a(P) U (Ur € vs(P). a(Q 7))

(proof)
lemma events-of-Seqpticr-subset : «a(P 3, Q) € a(P) U (Ur. o(Q 1))

(proof)
corollary events-of-Seq-subset : «a(P ; Q) C a(P) U a(Q)

(proof)

lemma strict-events-of-Seqptick-subset : <a(P 3, Q) C a(P) U (Jr € v/s(P).a(Q
)
(proof)

12.2.2 Ticks

lemma ticks-of-Seqpiick :
W's(Psy Q)= (if DP ={}then (Jr € /s(P). /s(Q 1)) else UNIV))
(proof)

137



lemma «/s(P;, Q) C U {vVs(Qr) |r.r e /s(P)p
— Already proven earlier in the construction.

(proof)

12.3 Synchronization Product

12.3.1 Events

lemma (in Syncyiici-locale) events-of-Syncpeick-subset - «a(P [S], Q) € a(P) U
(@)
(proof)

lemma (in Syncyiicr-locale) events-of-Interyiicr: <a(P |||, Q) = a(P) U a(Q)>

(proof)

lemma (in Syncpiick-locale) strict-events-of-Syncpiicr-subset :
@(P[Sl, Q) C a(P) U a(Q)
(proof )

12.3.2 Ticks

lemma (in Syncy;cr-locale)
Ws(P[S], Q) C{rs|rsrsrev/ s=Somers \Nrev/s(P)Nsec/s(Qp
— Already proven earlier in the construction.
(proof)

lemma (in Syncpeicr-locale) ticks-of-no-div-Syncpi;cr,-subset :

D (P[S]y Q) ={} =
s(P [S], Q) € {r-s |r-s r s. tick-join r s = Some r-s A v € /s(P) N s €

vs(Q)p
(proof)

12.4 Architectural Operators

12.4.1 Events

lemma events-of-MultiSeq-subset :

«(SEQle@ L. PI)C (JlesetL Jr. alPI))
(proof)

lemma events-of-MultiSeqpticr-subset :
«((SEQy le@ L. Pl)r)C (Uleset L.Jr. a(Plr))
(proof)

lemma strict-events-of-MultiSeq-subset :

«(SEQle@ L. Pl)C(JlesetL.Ur. a(P)

138



(proof)

lemma strict-events-of-MultiSeqp;cr-subset :
«@((SEQy le@ L. Pl)r)C (UlesetL.Ur a(Plr))
(proof )

lemma events-of-MultiSyncyy;cx-subset :
w([S]lyte@ L. Pl)C (JlesetL afPl))

(proof)

lemma events-of-Multilnter,;cy
«(l|ly €@ L. Pl)= (! € set L. a(P 1))

(proof)

lemma strict-events-of-MultiSyncpticr-subset :
w@([Slyte@ L. Pl)C (Ul € set L. a(P1)
(proof)

12.4.2 Ticks

We only look at strict-ticks-of lemmas: ticks-of is harder to deal with be-
cause it requires more control on the divergences.

lemma strict-ticks-of-MultiSeqp;cr-subset :
Ws((SEQ, 1 €Q L. P1)r) C (if L =[] then {r} else ({(Jr. v/s(P (last L) r)))»
(proof)

lemma strict-ticks-of-MultiSeq-subset :
«Ws(SEQ1 €@ L. PI) C (if L =[] then {undefined} else (|Jr. /s(P (last L))))>

(proof)

lemma strict-ticks-of-MultiSyncy;cr-subset :

Ws([Sly le@ L. Pl) C

{l. length I = length L N (Vi < length L. 11 i € /s(P (L!49))}p
(proof)

139



140



Chapter 13

Continuity Rules

13.1 Sequential Composition

13.1.1 Monotonicity

lemma tickFree-mem-min-elems-D : «t € min-elems (D P) = tF t»
(proof)

lemma mono-Seqpiick : <P 3, RE Q3 S if <PE  and <RC S
for P Q :: <('a, 'r) processpiickr and R S :: <'r = (‘a, 's) processpiici’

(proof)

13.1.2 Preliminaries

context begin

private lemma chain-Seqp¢ici-left: <chain Y = chain (Xi. Y i35, S)
(proof) lemma chain-Seqpiicr-right: <chain Y = chain (Xi. S5, Y i)
(proof) lemma cont-left-prem-Seqpiick
«(Ue. Yoy, S=Uce Yisy S (is «?lhs = ?rhsy) if <chain Y
— We have to add this hypothesis in the generalization.

(proof )

lemma «finite R = chain Y = MNr € R. (| |i. Yir)=(]i. r € R. Yir)y

(proof)

lemma infinite-GlobalNdet-not-cont :

— This is a counter example.

defines Y-def : <Y = Xi r :: nat. if r < i then STOP else L :: (nat, nat)
processptick’

shows <chain Y» «<Mr € UNIV. (| |i. Yir) # (| ]i. Mr € UNIV. Yir)

(proof)

141



The same counter-example works for Segpick-

lemma infinite-Seqpi;cr-not-cont :
— This is a counter example.
defines P-def : <P = SKIPS UNIV :: (nat, nat) processpiick’
and Y-def : <Y = Xir:: nat. if r < i then STOP else L :: (nat, nat) processpiick’
shows «chain Y» <P, (| |i. Y i) # (i P35y Yip
(proof)

We must therefore find a condition under which Segp;cr is continuous.

private lemma cont-right-prem-Seqpici, :
S5y (Ue Yi) = (i Ss5y Yi) (is <?lhs = ?rhsy) if <chain Y> and (F /(S)>
— We have to add this hypothesis in the generalization.

{proof )

13.1.3 Continuity

We then spent a lot of time trying to prove the continuity under the as-
sumption of finite-ticks-fun.

lemma Seqp¢ici-cont [simp] : <cont (\z. fx 3, g x)
if <cont > and «cont ¢» and (F/_.(f)
for g :: <- = - = (‘a, 's) processpiick>

(proof)

We could therefore only prove the weaker following version.

lemma Seqp¢ici-cont [simp) : <cont (A\z. fz 3, g x)
if <cont > and «cont ¢» and <Az. F/(f z)
for g :: <- = - = (‘a, 's) processpiick>

(proof)

end

corollary <cont f = cont g = cont (\z. fz 3, g x)
for f :: /b cpo = (“a, 'r it finite) processpiick?
(proof)

lemma MultiSeqp;ci-cont[simp):
(AL 1 € set L = cont (f1); Nlrz. 1€ set (butlast L) = F,(f l z r)]
= cont (A\z. (SEQ, 1 €Q L. flz) r)

{proof)

142



13.2 Synchronization Product

context Syncpiici-locale begin

13.2.1 Monotonicity

lemma mono-Syncpiick @ <P [A], Q@ CE P’ [A], Q" if <P T P)» and <Q C Q"
(proof)

13.2.2 Preliminaries

lemma chain-Syncpiick-left : «chain Y = chain (Xi. Y i [A], Q)
and chain-Syncpiicr-right : <chain Z = chain (Xi. P [A], Z i)
(proof)

lemma cont-left-prem-Syncpeick
(e Yo [Al, @ = (e Yi[A]l, Q) if chain: <chain Y
(proof)

lemma (in Syncptick-locale) cont-right-prem-Syncpiick
P [Al, Ui Zi) = (Ui P[A]l, Z i) if <chain Z)
(proof)

13.2.3 Continuity

lemma Syncpiick-cont[simp): <cont (\z. fx [A], g x)» if <cont f» <cont g»

(proof)

end

lemma MultiSyncptick-cont [simp] :
(AL 1€ set L = cont (P1)) = cont (A\z. [S], | €Q L. Plx)
(proof)

143



144



Chapter 14

Monotonicity Properties

14.0.1 Sequential Composition

lemma mono-Seqptick-FD : <P Cpp P’ = (Ar. Q " Cpp Q' 1) = P, Q
Crp P’/ Q)
(proof)

lemma mono-Seqptick-DT : <P Cpr P'= (Ar. Q r Cpr Q' r) = P, Q
Cpr P'5/ Q"
(proof )

lemma mono-Seqyiicr-F-right : «(Ar. Q r Cp Q") = P, QCr P, Q)
(proof)

lemma mono-Seqpiicr-D-right : «(A\r. @ Cp Q' r) = P3, QCp P, Q)
(proof )

lemma mono-Seqpiick-T-right : «(A\r. Qr Cr Q' r) = P, Q Cr P35, Q)
(proof)

Left Sequence monotonicity doesn’t hold for (Cr), (Cp) and (Cp).

lemmas monos-Seqpiick, = mono-Seqpick Mono-Seqpiick-FD mono-Seqpiicr-DT
mono-Seqptick-F-right mono-Seqptick-D-right mono-Seqpi;cr-T-right

14.0.2 Multiple Sequential Composition

lemma mono-MultiSeqpticr
(Nzr.z€set L= PaxrC Qur) =
(SEQy 1€ L. Pl)rC (SEQ, l€Q L. Q1) n
(proof)

lemma mono-MultiSeqptici-FD :
(Nexr.ze€setL=— PzxrCpp Qar) =
(SEQy 1 €Q L. Pl) r Cpp (SEQ, 1 €@ L. Q1) m
and mono-MultiSeqpiicr-DT :

145



(Ner.ze€setL— PzxrCpr Quzr) =
(SEQy 1 €Q L. Pl)r Epr (SEQ, 1 €Q L. Q1) m
(proof)

lemmas monos-MultiSeqpticr =
mono-MultiSeqpiicr, mono-MultiSeqpticr-FD mono-MultiSeqpticr-FD

14.0.3 Synchronization Product

context Syncpiicx-locale begin

lemma mono-Syncpiicr-DT :
«(PCpr P'= QCpr Q"= P [A], Q Epr P'[A], Q"
(proof)

lemma mono-Syncpiick-FD : <P [A]l, Q Crp P’ [A], @)
if <P EFD P’y and (Q EFD Q/>
(proof)

lemmas monos-Syncpiick = Mono-SYncpiick MoONo-SYncptick-FD mono-Syncpiick-DT

end

14.0.4 Multiple Synchronization Product

lemma mono-MultiSyncpiick
(Nl.leset L= PIC QIl)=[S], QL PIC[S],1l€QL. Q1D
(proof)

lemma mono-MultiSyncpyiicr-FD :
<(/\l.l€56tL:>PlEFD Ql)ﬁ [[S]]/lE@L.PlEFD [[S]]/lE@L. Qb
(proof)

lemma mono-MultiSyncpiicr-DT :
<(/\l.lESetL$PlEDT Ql):> ﬂSﬂ/lE@L.PlEDT [[S]]JZE@L. Qb
(proof)

lemmas monos-MultiSyncpiicr, =
mono-MultiSyncpiicr, mono-MultiSyncpticr-FD mono-MultiSyncyiicr-DT

146



Chapter 15

Non Destructiveness Rules

{proof ) (proof ) (proof ) (proof ) (proof ) (proof )

15.1 Synchronization Product

15.1.1 Refinement

lemma (in Syncpiick-locale) restriction-processpiick-Syncpiick-FD-div-oneside :
assumes (tF w (ftF v» <t-P € D (P | n) «t+-Q € T (Q | n)
(u setinterleaves s yick_join ((¢-P, +-Q), A)»
shows «u @ v e D (P [A]l, Q | n)
(proof)

lemma (in Syncptick-locale) restriction-processpiick-Syncptick-FD :
(P JA]l, @l nCpp (Pl n)[Al, (Q 1 n) (is <?lhs Cpp ?rhs»)
(proof)

The equality does not hold in general, but we can establish it by adding an
assumption over the strict alphabets of the processes.

lemma (in Syncpiicr-locale) strict-events-of-subset-restriction-processptick-SYNcptick

CPAl, Qln=(PLn)[Al, (QLn) (is flhs = ?rhs)
if «a(P) C AV a(Q) C A

(proof)

corollary restriction-processpticr-MultiSyncpiicr-FD :
<|IA]]/Z€@LPZ\LTLEFD IIA]]/ZG@L (Plin))
(proof)

147



The generalization of the lemma a(P) C AV a(Q) C A = P [4], Q|
n= (Pl n)[A], (Q ! n)is not straightforward. We can already observe
with only three processes that one can not expect the first synchronization
to have its strict alphabets contained in the synchronization set. Therefore,
we have to assume the condition on at least length L — 1 processes.

corollary strict-events-of-subset-restriction-processy;cr-MultiSyncpticr :
JAly l€e@Q L. Pl] n=(ifn=0then L else [A], 1 €Q L. (P 1] n))
— if n = 0 then L else - is necessary because we can have L = [].
if <\Al.l€set (tll) = a(Pl)C A

{proof)

corollary (in Syncpicr-locale) restriction-processpiick-Parptick
Plly,Q@ln=(Pin)ll,(QLn)
(proof)

corollary restriction-processpticr-MultiParpicr, -
lyle@L.Plln=(ifn=0then Lelsel||, 1 €Q L. (Pl]n))
(proof)

15.1.2 Non Destructiveness

lemma (in Syncpiick-locale) Syncyiic,-non-destructive :
(non-destructive (A\(P, Q). P [A], Q)
(proof)

15.1.3 Setup

lemma (in Syncptick-locale) Syncpiicr-restriction-shift-processptick
[restriction-shift-processpiici-simpset, simp) :
<non-destructive f = non-destructive ¢ = non-destructive (Az. fz [S]/ g )
(constructive f = constructive g = constructive (A\z. fz [S], g x)>

(proof)

lemma MultiSyncyi;cr-restriction-shift-processptick
[restriction-shift-processpiick-simpset, simp)
(AL 1 € set L = non-destructive (f 1)) = non-destructive (Az. [S], | €@ L.
flaz)
(ALl 1 € set L => constructive (f 1)) = constructive (Az. [S], | €Q L. flz))
(proof)

corollary MultiSyncy;cr-non-destructive : <non-destructive (AP. [S], | €Q L. P
)
(proof)

148



Chapter 16

Other Laws

declare [[metis-instantiate]]

16.1 Laws of Renaming

16.1.1 Renaming and Sequential Composition

lemma FD-Renaming-Seqpicrk :
(Renaming P f g5, (Ag-r. Nr € {r € /s(P). g-r = g r}. Renaming (Q r) f g’)
Crp Renaming (P, Q) fg" (is <?lhs Tpp ?rhsy)

(proof)

lemma inj-on-Renaming-Seqptick
(Renaming (P35, Q) fg' =
Renaming P f g5, (Ag-r. Renaming (Q (THE r.r € /'s(P) AN g-r=g71)) fg')
(is «<%lhs = %rhsy) if <inj-on g /s(P)»
— This assumption is necessary, otherwise we cannot know which tick triggered
Q.
(proof)

When r is set on unit, we recover the version that we had before the gen-
eralization.

lemma (Renaming (P, Q) f g = Renaming P f g3, (Ar. Renaming (Q ()) f g)»
(proof)

lemma TickSwap-Seqpiicrk [simp] :
(TickSwap (P 3, Q) = TickSwap P 5, (A(s, r). TickSwap (Q (r, s)))» (is «?lhs
= ?rhs))

(proof)

149



lemma TickSwap-is-Seqpick-iff [simp] :
«TickSwap P = Q 3, R «— P = TickSwap Q 5, (A(r, s). TickSwap (R (s, r)))»
(proof)

16.1.2 Renaming and Synchronization Product

theorem (in Syncpicr-locale) inj-RenamingEv-Syncpick
(RenamingEv (P [S], Q) f = RenamingEv P f [f * S|, RenamingEv Q f>
(is «?lhs = %rhsy) if <inj f>

(proof )

16.2 Laws of Hiding

16.3 Hiding and Sequential Composition

We start by giving a counter example when the assumption F/(P) is not
satisfied.

notepad begin
(proof)

end

In general, only one refinement is holding.

theorem Hiding-Seq-FD-Seq-Hiding :
(Ps3y Q) \SCrp (P\S)s5, (Ar. Qr\ S) (is «?lhs Tpp ?rhsy)
(proof )

16.4 Hiding and Synchronization Product

lemma setinterleavesy;cr-imp-superset-ev :
«t setinterleaves s yickjoin (4, v), A) =
{ev a |a. eva € set u} U {eva |a. eva € set v} C {eva |a. ev a € set t}h

(proof)

lemma (in Syncpiicr-locale) disjoint-isInfHidden-seqRunL-to-Syncpiick
assumes (A N S = {}» and «isInfHidden-seqRun x P A t-P»
and «t-Q € T @ and <t setinterleaves/(®/) ((t-P, t-Q), S
shows <isInfHidden-seqRun (ev o of-ev o z) (P [S], Q) At
(proof)

lemma (in Syncpiick-locale) disjoint-isInfHidden-seqRunR-to-Syncpiick
A N S = {}; isInfHidden-seqRun © Q A t-Q; t-P € T P;
t setinterleaves s (/) ((t-P, +-Q), 9)] =
isInfHidden-seqRun (ev o of-ev o x) (P [S], Q) A t»
(proof)

150



lemma (in Syncpiick-locale) disjoint-Hiding-Syncpiicr-FD-Syncpiicr-Hiding-auz :
— This lemma avoids duplication of the proof work.
assumes (AN S = {}p «Fw ftF v «t-P € D (P \ Ap «t-Q € T (Q \ Ap
and * : <u setinterleaves/(®/) ((t-P, t-Q), S)»
shows «u @ v e D (P [S], Q \ A)»
(proof )

theorem (in Syncpiicr-locale) disjoint-Hiding-Syncptick-FD-Syncpicr-Hiding :
P [Sl, Q\ACrp (P\A)[Sy (Q\ A if AN S ={b
(proof)

theorem (in Syncpiicr-locale) disjoint-finite-Hiding-Syncptick
P[Sly @\ A=(P\ A)[Sl, (Q\ Ay if <AN S = {}» and «finite A>
— Monster theorem!

(proof)

lemma disjoint-Hiding-MultiSyncpticr-FD-MultiSyncyicr-Hiding :
qSly 1@ L. PI\ ACpp [Sly 1 €@ L. (PIL\ Ay if (AN S ={h
(proof)

lemma disjoint-finite- Hiding-MultiSyncpicr, :
Sly 1@ L. PI\A=1[S], €L (Pl\ A)if <An S ={} and «(finite
A

(proof)

16.5 Other Laws of Synchronization Product

16.5.1 Synchronization Set can be restricted

lemma setinterleavesy;qi-is-restrictable-on-superset-events-of :
{a. eva€setuVevac€ setv) C A=
t setinterleaves s yick_join (4, v), S) «—
t setinterleaves s yick_join (v, v), S N A)

(proof)

lemma (in Syncpiick-locale) Syncptick-is-restrictable-on-events-of :
P [Sl, @=P[SN (a(P)U(@Q))], @
(proof)

151



corollary (in Syncpiick-locale) Syncpyick-is-restrictable-on-superset-events-of :
P [S]y, @ =PI[SnA], @ if «a(P)Ua(Q) C A
(proof)

lemma (tF t = {a. eva€ setut NS ={} = a€e S =
- t setinterleaves s yick_join (U, v a # v), S)

(proof)

16.5.2 Some Refinements

context Syncpiicr-locale begin

lemma Mndetprefiz-Syncpeicr-Det-distr-FD :
(MaeA—=(Pa[C],(MbeB— QD)) O
(MbeB—=(MacA—=Pa)[C], QD))
EFD(HCLEA—)PO,)[[Cﬂ/(ﬂbEB%Qb))
(is «?lhs? O ?lhs2 Cpp ?rhsy)
if<A#{p B#{hAnC={hBnC={p

{proof)

lemmas Mndetprefiz-Syncp;cr-Det-distr-F =
Mndetprefiz-Syncpiicr-Det-distr-FD[THEN leFD-imp-leF

lemmas Mndetprefiz-Syncptick-Det-distr-D =
Mndetprefiz-Syncyiicr-Det-distr-FD[ THEN leFD-imp-leD]

lemmas Mndetprefiz-Syncpiick-Det-distr-T =
Mndetprefiz-Syncpiicr-Det-distr-F[THEN leF-imp-leT]

lemma Mndetprefiz-Syncpiicr-Det-distr-DT
qA#{hsB#{hAnC={sBnC={}]] =
(MacA—=(Pa[C]y,(MbeB— QV))) O
(MbeB—=((MacA—Pa)[C], QD))
Cpr(Ma€A—=Pa)[C],(Mbe B— Qb
(proof )

end

152



Chapter 17

Deadlock Results

17.1 First Results
17.1.1 Non Terminating

Keep in mind lifelock-freesxrps P = (D P = {}).

Sequential Composition

lemma (non-terminating P = P ;, () = RenamingTick P g
— Already proven earlier.

(proof)

Synchronization Product

lemma (in Syncpiick-locale) non-terminating-Syncpiick
(non-terminating P = lifelock-freesxrps @ == non-terminating (P [A], Q)
lifelock-freesxrps P = non-terminating Q = non-terminating (P [A], Q)

(proof)

17.1.2 Deadlock Free

Sequential Composition

lemma <deadlock-free P = deadlock-free (P 3, Q)
(proof)

The next lemma is of course more interesting.

lemma deadlock-freesk1ps-Seqptick :

(deadlock-freesx1ps (P 3y Q)
if df-assms : <deadlock-freesxps P> <\r. r € /s(P) = deadlock-freeskips

(@r)
(proof)

153



corollary deadlock-free-Seqptick :
[deadlock-freesxrps P; N\r. v € /'s(P) = deadlock-free (Q r)]
= deadlock-free (P ;, Q)
(proof)

Synchronization Product

context Syncpi;cx-locale begin

lemma deadlock-free-Det-bis :
<P =STOP AN Q # STOP V deadlock-free P —>
Q = STOP N P # STOP V deadlock-free Q = deadlock-free (P O Q)»
(proof)

lemma deadlock-free-Mprefiz-Syncpiicr-Mprefic :
assumes not-all-empty: <+ ACSV-BCSVANBNS#{p
and (A\a. a € A — S = deadlock-free (P a [S], ObeB — Q b)
and <\b. b € B — § = deadlock-free (HacA — P a [S], Q b)
and «Az. z € AN BN S = deadlock-free (P z [S], Q z)
shows <deadlock-free (DacA — P a [S], Ob € B — Q b)»

(proof)

lemma deadlock-free-Mprefiz-Syncpicr-Mprefiz-subset :
qAC S;BCS; AnB# {};
Nz.z € AN BN S = deadlock-free (P z [S], Q z)]
= deadlock-free (DacA — P a [S], ObeB — Q b)»
and deadlock-free-Mprefiz-Syncyiicr-Mprefiz-indep :
qANS={hBNS=1{hAr{}vEB#I{k
Na. a € A — S = deadlock-free (P a [S], DbeB — Q b);
Ab. b € B — S = deadlock-free (acA — P a [S], Q b)]
= deadlock-free (HacA — P a [S], ObeB — Q b)»
and deadlock-free-Mprefiz-Syncpiicr-Mprefiz-right
qAcs;BnS={kB#{}
N\b. b € B — S = deadlock-free (acA — P a [S], Q b)]
= deadlock-free (OacA — P a [S], ObeB — Q b)»
and deadlock-free-Mprefiz-Syncpiicr-Mprefiz-left
[ANS=1{}BCS AZI{
Na. a € A — § = deadlock-free (P a [S], ObeB — Q b)]
= deadlock-free (DacA — P a [S], ObeB — Q b)
(proof)

end

17.2 Renaming and reference Processes

lemma DF-empty [simp] : <DF {} = STOP»
and DFSKIPS—empty [szmp] : <DFSKIPS {} {} = STOP)

154



and RUN-empty [simp] : <RUN {} = STOP:»
and CHAOS-empty  [simp] : <CHAOS {} = STOP>»
and CHAOSskps-empty [simp] : <CHAOSskips {} {} = STOP»

(proof)

17.2.1 Alternative Definitions with restriction fixed-point Op-
erator

For now, we have lemmas such as DF (f * A) Crp Renaming (DF A) f g, but
the other refinement is requiring finitary assumptions ([finitary f; finitary
g] = Renaming (DF A) fg Cpp DF (f < A)).

lemma DF-restriction-fiz-def : <DF A= (v X.Ta € A — X)»
(proof)

lemma DF gk pg-restriction-fiz-def : <DFsgips A R = (v X. (Ma € 4 — X)
N SKIPS R)»

(proof)

lemma RUN-restriction-fiz-def : <RUN A= (v X.Oa € A — X)»
(proof)

lemma CHAOS-restriction-fiz-def : <CHAOS A = (v X. STOP 1N (Ha € A —
X))
(proof)

lemma CHAOSg k1 ps-restriction-fiz-def : «<CHAOSskips A R = (v X. SKIPS
RN STOP N (Qa € A — X))

(proof)

17.2.2 Stronger Results

With restriction-fizr induction, removing these assumptions is trivial.

lemma Renaming-DF' : <Renaming (DF A) fg = DF (f “ A)»
(proof)

lemma Renaming-DF s rps : <Renaming (DFskrps A R) fg = DFskrps (f ¢
A) (9 * R)
(proof)

lemma Renaming-RUN : <Renaming (RUN A) fg = RUN (f ‘ A)
(proof)

lemma Renaming-CHAOS : (Renaming (CHAOS A) fg = CHAOS (f < A)»
(proof)

lemma Renaming-CHAOSsk1ps : <Renaming (CHAOSskips A R) fg= CHAOSsk1ps

(f*A4) (g "Ry
(proof)

155



17.3 Data Independence

When working with the new interleaving P [{}], @, we intuitively expect
it to be deadlock-free when both P and @) are. The purpose of this section
is to prove it.

17.3.1 An interesting equivalence

lemma (in Syncp;cr-locale) deadlock-free-of-Syncpiick-iff-DF-FD-DF-Syncptici-DF':
(VP Q. deadlock-free P — deadlock-free Q — deadlock-free (P [S], @Q))
«— DF UNIV Cpp (DF UNIV [S]., DF UNIV)) (is <Zlhs < ?rhs))

{proof)

17.3.2 STOP and SKIP synchronized with DF A

The two results below form a stronger (and generalized) version of r = s
= (DF ACpp DF A[S] SKIPr) = (AN S ={}).

context Syncpi;ci-locale begin

lemma (in Syncpiick-locale) DF-FD-DF-Syncyyicr-SKIPS-imp-disjoint :
(AN S ={pif <DF ACrp DF A[S], SKIPS R
(proof)

lemma disjoint-imp-DF-eq-DF-Syncpticr-SKIPS :
«(DFF A = DF A [S], SKIPS Ry if (AN S ={}h
(proof)

corollary DF-FD-DF-Syncpt;cr-STOP-imp-disjoint :
«<DF ACgpp DF A [[S]]/ STOP — AN S = {})
and DF-FD-DF-Syncpytcr-SKIP-imp-disjoint :
(DF ACpp DFA[S), SKIPr = AN S ={p
and disjoint-imp-DF-eq-DF-Syncpticr-STOP :
(ANS={} = DF A= DF A[S], STOP)
and disjoint-imp-DF-eq-DF-Syncpici-SKIP :
(ANS={} = DF A= DF A[S], SKIP
(proof)

end

corollary (in Syncpiick-locale) DF-FD-SKIPS-Syncpiick-DF-imp-disjoint :
(DF ACpp SKIPSR [S]|y DFA= AN S={}h
(proof)

lemma (in Syncpiick-locale) disjoint-imp-DF-eq-SKIPS-Syncpiick-DF -

156



(AN S ={} = DF A = SKIPS R [S], DF A
(proof )

corollary (in Syncpiick-locale) DF-FD-STOP-Syncyic,-DF-imp-disjoint :
(DF ACpp STOP [S]y DFA= AN S={}p
and DF-FD-SKIP-Syncptcr-DF-imp-disjoint :
«<DF A Cpp SK[PT[[S]]/ DFA:>AHS:{}>
and disjoint-imp-DF-eq-STOP-Syncpticr-DF
(AN S ={} = DF A= STOP [S], DF A
and disjoint-imp-DF-eq-SKIP-Syncpic-DF :
(AN S ={} = DF A= SKIP r [S], DF A
(proof)

17.3.3 Finally, deadlock-free (P ||| Q)

theorem (in Syncpiick-locale) DF-F-DF-Syncpiick,-DF-weak : «DF (AU B) Cp
DF A [S], DF B>
if nonempty: <A # {b «B # {}h
and intersect-hyp: <BN S ={}v (3y. BN S={y} AANS C{y})
(proof)

theorem (in Syncyyicr-locale) DF-F-DEF-Syncyyicr-DF :
«(DF (AU B) Cp DF A [S], DF B» if <A # {} B # {}
and < ANS={}v@BaAnS={a} ABNSC{a})V
BnS={v@bBnNnS={b}ANANSC{b})»
(proof)

lemma (in Syncpiick-locale) DF-FD-DF-Syncpiick-DF :

«(DF (AU B) Cpp DF A [S], DF By if <A # {}» «<B # {}
and (ANS={}v@BaAnS={a} ABNSC{a})V
BNnS={}v@3bBnNnS={b} ANANSC {b})

(proof)

theorem (in Syncpyick-locale) DF-FD-DF-Syncyi;cr-DF-iff:
(DF (AU B) Cpp DF A [S], DF B +—
( ifA={}then BN S=1{}
else if B={} then An S = {}
else ANS={}Vv(FaAnS={a} ABNSC{a})V
BNnS={v@bBnNnS={b}AANSC{d}))»
(is <?FD-ref «— (  if A={} then BN S ={}
else if B={} then An S ={}
else ?cases)))

(proof)

157



lemma DF-FD-DF-MultiSyncpicr-DF :

AL leset L= X1#{};3s. (U l€set L. X1)NSC{s}]

= DF (JlesetL. X1)Cpp [S], 1 €Q L. (DF (X 1) :: ("a, 'r) processpiick)
{proof)

lemma (in Syncyiicr-locale) <DF {a} = DF {a} [S], STOP +— a & S»
(proof)

lemma (in Sync,iicr-locale) «DF {a} [S], STOP = STOP <— a € S
(proof)

corollary (in Syncpiick-locale) DF-FD-DF-Interpiicr-DF : <DF ACpp DF All|,
DF A»
(proof)

corollary (in Syncpyick-locale) DF-UNIV-FD-DF-UNIV-Inter,;c,-DF-UNIV:
«<DF UNIV Cgpp DF UNIV |||/ DF UNIV»

(proof)

corollary (in Syncpiicr-locale) Intery,;cr-deadlock-free :
(deadlock-free P = deadlock-free QQ = deadlock-free (P |||, Q)

(proof)

theorem Multilntery,;qr-deadlock-free :
L # [J; Nl. 1 € set L = deadlock-free (P 1)] =
deadlock-free (|||, 1 €Q L. P 1)

(proof)

158



Chapter 18

Conclusion

18.1 Main Entry Point

This is where the session HOL-CSP_PTick should be imported from.

declare finite-ticks-simps  [simp]
declare finite-ticks-fun-simps [simp)

unbundle no option-type-syntax

18.2 Conclusion

18.2.1 Summary

In this session, we introduced generalized versions of the sequential compo-
sition and synchronization operators, thus completing the generalization of
HOL-CSP (and its extensions) to support parameterized termination. The
main motivation was to propagate return values across processes, so that
algebraic laws such as those involving SKIP continue to hold in a natural
way. While the sequential composition adapts relatively smoothly, the syn-
chronization product required a more substantial redesign: the interleaving
theory of the classical Sync operator could not be reused, and the failures
specification had to be carefully adjusted.

Overall, the results confirm that the parameterized setting integrates well
with the broader CSP framework. Most classical laws remain valid with
only minor modifications, and the new operators exhibit the algebraic and
operational properties one expects. The formalization is fairly extensive and
provides a solid foundation for further developments of CSP theories with
enriched termination behavior.

159



18.2.2 Sequential Composition

The new version of the sequential composition is of type (‘a, 'r) Processptick
= ('r = ('a, 's) processptick) = ('a, 's) processpiick, so that the process
on the right-hand side is now parameterized with the value returned by the
process on the left-hand side. The main motivation for this generalization
was to have SKIP as neutral element. This is now the case.

P, SKIP = P SKIPri;, Q=Qr
Additionally, with the following associativity property :
Psy(Ar.Qrsys R)=Ps/ Qs/ R
we can conclude that this generalized sequential composition fulfills the

monad laws.

Unsurprisingly, the correspondence with classical version is very intuitive.
Psys(Ar. Q) =P;Q
The expected step law has also been established.
Oewcd - Pas, Q=0acA — (Pas, Q)

Additionally, in the same way as described in [4], operational laws have been
derived.

P o~; P’ a o~p P’
Pis Qpwr Pliy Q asy Qpvwp Py Q
TaW/PP/ QPﬁWT Ql
T3/ QB“"')T Ql

The continuity has only be obtained under a kind of finiteness assumption,
but non-destructiveness holds in general.

Finally, an architectural version is defined. It satisfies the following property.

SEQ, 1 €@ (L1 @ L2). Pl = (Ar. (SEQ, 1 €@ L1. P 1) r3;, SEQ,
€@ L2. P)

160



18.2.3 Synchronization Product

The main motivation for generalizing the synchronization product was to
have a satisfying handling of the synchronization of two terminations. In-
deed, with the Sync operator inherited from HOL-CSP, the returned values
were lost (most of the time).

SKIP r [A] SKIP s = (if r = s then SKIP r else STOP)

With the new definition, this is not the case anymore.

SKIP r [A], SKIP s = (case r @/ s of None = STOP | Some r-s = SKIP r-s)

This law is directly extracted from the core of the construction, which is
done in a very abstract way through a locale specification. The operator is
then declined in several variations, leading to the following rules.

SKIP r [A]ypair SKIP s = SKIP (r, s)
SKIP 1 [A] pairtist SKIP s = SKIP [r,
SKIP r [[A]]/Rlist SKIP s = SKIP (T‘ . 5)
SKIP r [A]yrLiist SKIP s = SKIP (r Q [s])
SKIP r p[A]/Listsienr SKIP s = (if |r| = n then SKIP (r Q s) else

STOP)
SKIP r n[A]/Listsienr SKIP s = (if |s| = n then SKIP (r Q s) else
STOP)
SKIP r y[A]ym SKIP s = (if |r| = n A |s| = m then SKIP (r Q s) else
STOP)

SKIP r [A]sciassic SKIP s = (if r = s then SKIP r else STOP)

Moreover, the last declension is proved to be equal to the old version, en-
suring that this work is actually a generalization.

P [[A]]/Classic Q =P [[A]] Q

We also established commutativity and associativity, modulo renaming the
ticks. The underlying abstract setup is quite obscure, so we will only display
here the pair versions.

RenamingTick (P [A]/pair Q) prod.swap = Q [A]ypair P
P [A]ypair (Q [AlyPair R) =
RenamingTick (P [A]ypair @ [A]lyPair R) (A((r, 5), t). (1, s, 1))

Again, the expected step law has been established.

161



OacA - Pajy Q@ =0acA - (Pajy Q)

In this abstract setup, the operational laws have also been derived.

P ips~r P’ Q rhs™7T QI
P A], @ ptick™T P’ [Al, @ AlPl, Q ptick~>r A [Pls Q'
G¢A Plhs“’"apl G¢A Q rhs~a Ql

P [Aly Q ptick~a P'[A]l, Q P [Aly Q ptick~a P [Al, Q'
a€ A P ips~=a P’ Q rhs~a Q'
P [Aly @ ptick~a P’ [Al, Q'

P ips~yr P’

P [Al, Q ptick~+ SKIP r [A], @Q
Q rhs™/'s Ql

P [Aly Q ptick~+ P [A], SKIP s

r &/ s = Some r-s
SKIP r [A], SKIP s ptick~>yr-s Qptick (SKIP r-s) -5

Continuity and non-destructiveness hold in general, and an architectural
version is defined. It satisfies the following property.

L1 # ] L2 # ]
[S]]‘/ [ €@ (L] Q L,?). Pl= [Sﬂ/ le@ L1. Pl \L1|[[S]]/|L2| |IS]]/ le@ L2. Pl

It is defined on a list (while its counterpart MultiSync based on the Sync
operator is defined on a multiset) because the order of appearance of the
ticks matters. However, as long as we keep track of the positions, we can
permute the list. This is summarized by the following theorem.

[ permutes {..<|L|}
[ €@ permute-list f L. Pl = RenamingTick le@ L. P1l) (permute-list f
v v

162



Bibliography

[1]

B. Ballenghien, S. Taha, and B. Wolff. Hol-cspm - architectural operators
for hol-csp. Archive of Formal Proofs, December 2023. https://isa-afp.
org/entries/HOL-CSPM.html, Formal proof development.

B. Ballenghien, S. Taha, B. Wolff, and L. Ye. Hol-csp version 2.0. Archive
of Formal Proofs, April 2019. https://isa-afp.org/entries/HOL-CSP.
html, Formal proof development.

B. Ballenghien and B. Wolff. Operational semantics formally proven in
hol-csp. Archive of Formal Proofs, December 2023. https://isa-afp.org/
entries/HOL-CSP__OpSem.html, Formal proof development.

B. Ballenghien and B. Wolff. An Operational Semantics in Isabelle/HOL-
CSP. In Y. Bertot, T. Kutsia, and M. Norrish, editors, 15th Interna-
tional Conference on Interactive Theorem Proving (ITP 2024), volume
309 of Leibniz International Proceedings in Informatics (LIPIcs), pages
7:1-7:18, Dagstuhl, Germany, 2024. Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik.

B. Ballenghien and B. Wolff. Csp semantics over restriction spaces.
Archive of Formal Proofs, May 2025. https://isa-afp.org/entries/
HOL-CSP__RS.html, Formal proof development.

163


https://isa-afp.org/entries/HOL-CSPM.html
https://isa-afp.org/entries/HOL-CSPM.html
https://isa-afp.org/entries/HOL-CSP.html
https://isa-afp.org/entries/HOL-CSP.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://isa-afp.org/entries/HOL-CSP_RS.html
https://isa-afp.org/entries/HOL-CSP_RS.html

	Introduction
	Motivations
	The Global Architecture of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HOL`CSP`_PTick

	Finite Ticks Predicate
	Definitions
	Properties
	Constant Processes
	Other properties

	Laws
	Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ✓(P)
	Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ✓(f)


	Generalization of the Sequential Composition
	Definition
	Preliminaries
	Formal Definition

	Projections

	Generalization of the Synchronization Product
	Trace Interleaving
	Motivation
	Definition
	First Properties
	Lengths
	Trace Prefix Interleaving
	Hiding Events

	Synchronization Product
	Definition
	Projections
	First Properties


	Some Work on Renaming
	Tick Swap Operator
	Preliminaries
	The Operator

	Splitting the Renaming Operator
	Renaming only Events
	Renaming only Ticks
	Properties

	Renaming and Generalized Synchronization Product

	Commutativity and Associativity of Synchronization
	Commutativity
	Motivation
	Formalization
	First Properties
	Commutativity

	Associativity
	Motivation
	Formalization
	First Properties
	Associativity for the Traces
	Associativity


	First Laws
	Behaviour with Constant Processes
	The Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 
	The Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 STOP
	The Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 SKIP

	Associativity of Sequential Composition
	Distributivity of Non-Determinism
	Sequential Composition
	Synchronization Product


	Communications
	Step Laws
	Sequential Composition
	Synchronization Product

	Extended step Laws
	Sequential Composition
	Synchronization Product

	Read and Write Laws
	Sequential Composition
	Synchronization Product


	Operational Semantics Laws
	Behaviour of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 initials
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 TickSwap
	Sequential Composition
	Synchronization Product

	Laws of After
	Sequential Composition
	Synchronization Product

	Small Steps Transitions
	Extension of the After Operator
	Sequential Composition
	Generic Operational Semantics as Locales


	Declensions of the Generalized Synchronization Product
	Interpretations
	Classical Version
	Product Type
	List Type

	Associativities
	Classical Version
	Product Type
	List Type

	Properties
	Actual Generalization
	Other Properties

	Ticks Length and Conversions
	Ticks Length
	Conversions

	First Laws
	Operational Laws
	Classical Version
	Product Type
	List Type


	Architectural Versions
	Sequential Composition
	Definition
	First Properties
	Behaviour with binary version
	Other Properties
	Behaviour with injectivity

	Synchronization Product
	Definition
	First properties
	Properties
	Behaviour with binary version
	Behaviour with injectivity
	Permuting the Sequence


	Events and Ticks
	Preliminaries
	Sequential Composition
	Events
	Ticks

	Synchronization Product
	Events
	Ticks

	Architectural Operators
	Events
	Ticks


	Continuity Rules
	Sequential Composition
	Monotonicity
	Preliminaries
	Continuity

	Synchronization Product
	Monotonicity
	Preliminaries
	Continuity


	Monotonicity Properties
	Sequential Composition
	Multiple Sequential Composition
	Synchronization Product
	Multiple Synchronization Product


	Non Destructiveness Rules
	Synchronization Product
	Refinement
	Non Destructiveness
	Setup


	Other Laws
	Laws of Renaming
	Renaming and Sequential Composition
	Renaming and Synchronization Product

	Laws of Hiding
	Hiding and Sequential Composition
	Hiding and Synchronization Product
	Other Laws of Synchronization Product
	Synchronization Set can be restricted
	Some Refinements


	Deadlock Results
	First Results
	Non Terminating
	Deadlock Free

	Renaming and reference Processes
	Alternative Definitions with restriction fixed-point Operator
	Stronger Results

	Data Independence
	An interesting equivalence
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 STOP and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 SKIP synchronized with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 DF A
	Finally, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 deadlock-free (P  Q)


	Conclusion
	Main Entry Point
	Conclusion
	Summary
	Sequential Composition
	Synchronization Product



