
HOL-CSP_PTick
Parameterized Termination for Sequential
Composition and Synchronization Product

Benoît Ballenghien

February 4, 2026

2

Abstract

Recently, parameterized termination has been introduced in HOL-CSP, allow-
ing the termination event tick to carry a result value, in a way analogous to
the return of a state monad. This conservative extension of the CSP the-
ory required the generalization of several denotational definitions and the
adaptation of numerous proofs. Since Isabelle2025, this work has been com-
pleted for the HOL-CSP, HOL-CSPM, and HOL-CSP_OpSem sessions. However,
for two operators—namely sequential composition and the synchronization
product—the most direct generalizations turn out to be conceptually un-
satisfactory, in particular with respect to their interaction with SKIP . To
address this issue, we introduce in this entry generalized versions of these
operators that fully exploit the expressive power of parameterized termina-
tion; in particular, the resulting notion of sequential composition satisfies the
monad laws. Building on these definitions, we establish a range of algebraic
and operational laws, as well as fundamental properties such as continuity
and non-destructiveness.

3

4

Contents

1 Introduction 11
1.1 Motivations . 11
1.2 The Global Architecture of HOL-CSP_PTick 12

2 Finite Ticks Predicate 15
2.1 Definitions . 15
2.2 Properties . 16

2.2.1 Constant Processes . 16
2.2.2 Other properties . 16

2.3 Laws . 18
2.3.1 Laws of �3(P) . 18
2.3.2 Laws of �3⇒(f) . 20

3 Generalization of the Sequential Composition 23
3.1 Definition . 23

3.1.1 Preliminaries . 23
3.1.2 Formal Definition . 25

3.2 Projections . 25

4 Generalization of the Synchronization Product 29
4.1 Trace Interleaving . 29

4.1.1 Motivation . 29
4.1.2 Definition . 30
4.1.3 First Properties . 32
4.1.4 Lengths . 36
4.1.5 Trace Prefix Interleaving 36
4.1.6 Hiding Events . 37

4.2 Synchronization Product . 39
4.2.1 Definition . 39
4.2.2 Projections . 41
4.2.3 First Properties . 42

5

5 Some Work on Renaming 45
5.1 Tick Swap Operator . 45

5.1.1 Preliminaries . 45
5.1.2 The Operator . 51

5.2 Splitting the Renaming Operator 58
5.2.1 Renaming only Events 59
5.2.2 Renaming only Ticks 60
5.2.3 Properties . 61

5.3 Renaming and Generalized Synchronization Product 63

6 Commutativity and Associativity of Synchronization 65
6.1 Commutativity . 65

6.1.1 Motivation . 65
6.1.2 Formalization . 65
6.1.3 First Properties . 66
6.1.4 Commutativity . 66

6.2 Associativity . 67
6.2.1 Motivation . 67
6.2.2 Formalization . 67
6.2.3 First Properties . 68
6.2.4 Associativity for the Traces 68
6.2.5 Associativity . 69

7 First Laws 71
7.1 Behaviour with Constant Processes 71

7.1.1 The Laws of ⊥ . 71
7.1.2 The Laws of STOP . 71
7.1.3 The Laws of SKIP . 72

7.2 Associativity of Sequential Composition 74
7.3 Distributivity of Non-Determinism 74

7.3.1 Sequential Composition 74
7.3.2 Synchronization Product 74

8 Communications 77
8.1 Step Laws . 77

8.1.1 Sequential Composition 77
8.1.2 Synchronization Product 77

8.2 Extended step Laws . 78
8.2.1 Sequential Composition 78
8.2.2 Synchronization Product 78

8.3 Read and Write Laws . 83
8.3.1 Sequential Composition 83
8.3.2 Synchronization Product 83

6

9 Operational Semantics Laws 101
9.1 Behaviour of initials . 101

9.1.1 TickSwap . 101
9.1.2 Sequential Composition 101
9.1.3 Synchronization Product 101

9.2 Laws of After . 101
9.2.1 Sequential Composition 101
9.2.2 Synchronization Product 103

9.3 Small Steps Transitions . 104
9.3.1 Extension of the After Operator 104
9.3.2 Sequential Composition 104
9.3.3 Generic Operational Semantics as Locales 106

10 Declensions of the Generalized Synchronization Product 111
10.1 Interpretations . 111

10.1.1 Classical Version . 111
10.1.2 Product Type . 111
10.1.3 List Type . 112

10.2 Associativities . 114
10.2.1 Classical Version . 114
10.2.2 Product Type . 114
10.2.3 List Type . 115

10.3 Properties . 115
10.3.1 Actual Generalization 115
10.3.2 Other Properties . 116

10.4 Ticks Length and Conversions 116
10.4.1 Ticks Length . 116
10.4.2 Conversions . 120

10.5 First Laws . 122
10.6 Operational Laws . 124

10.6.1 Classical Version . 124
10.6.2 Product Type . 125
10.6.3 List Type . 125

11 Architectural Versions 129
11.1 Sequential Composition . 129

11.1.1 Definition . 129
11.1.2 First Properties . 129
11.1.3 Behaviour with binary version 130
11.1.4 Other Properties . 130
11.1.5 Behaviour with injectivity 130

11.2 Synchronization Product . 131
11.2.1 Definition . 131
11.2.2 First properties . 132

7

11.2.3 Properties . 132
11.2.4 Behaviour with binary version 133
11.2.5 Behaviour with injectivity 133
11.2.6 Permuting the Sequence 133

12 Events and Ticks 137
12.1 Preliminaries . 137
12.2 Sequential Composition . 137

12.2.1 Events . 137
12.2.2 Ticks . 137

12.3 Synchronization Product . 138
12.3.1 Events . 138
12.3.2 Ticks . 138

12.4 Architectural Operators . 138
12.4.1 Events . 138
12.4.2 Ticks . 139

13 Continuity Rules 141
13.1 Sequential Composition . 141

13.1.1 Monotonicity . 141
13.1.2 Preliminaries . 141
13.1.3 Continuity . 142

13.2 Synchronization Product . 143
13.2.1 Monotonicity . 143
13.2.2 Preliminaries . 143
13.2.3 Continuity . 143

14 Monotonicity Properties 145
14.0.1 Sequential Composition 145
14.0.2 Multiple Sequential Composition 145
14.0.3 Synchronization Product 146
14.0.4 Multiple Synchronization Product 146

15 Non Destructiveness Rules 147
15.1 Synchronization Product . 147

15.1.1 Refinement . 147
15.1.2 Non Destructiveness 148
15.1.3 Setup . 148

16 Other Laws 149
16.1 Laws of Renaming . 149

16.1.1 Renaming and Sequential Composition 149
16.1.2 Renaming and Synchronization Product 150

16.2 Laws of Hiding . 150

8

16.3 Hiding and Sequential Composition 150
16.4 Hiding and Synchronization Product 150
16.5 Other Laws of Synchronization Product 151

16.5.1 Synchronization Set can be restricted 151
16.5.2 Some Refinements . 152

17 Deadlock Results 153
17.1 First Results . 153

17.1.1 Non Terminating . 153
17.1.2 Deadlock Free . 153

17.2 Renaming and reference Processes 154
17.2.1 Alternative Definitions with restriction fixed-point Op-

erator . 155
17.2.2 Stronger Results . 155

17.3 Data Independence . 156
17.3.1 An interesting equivalence 156
17.3.2 STOP and SKIP synchronized with DF A 156
17.3.3 Finally, deadlock-free (P ||| Q) 157

18 Conclusion 159
18.1 Main Entry Point . 159
18.2 Conclusion . 159

18.2.1 Summary . 159
18.2.2 Sequential Composition 160
18.2.3 Synchronization Product 161

9

10

Chapter 1

Introduction

1.1 Motivations

Recently, the question arose whether HOL-CSP could accommodate a param-
eterized notion of termination.1 The idea is very simple: replace at the very
beginning of the formalization

datatype ′a event = ev ′a | tick (‹3›)

(isomorphic to option type) by

datatype (′a, ′r) eventptick = ev ′a | tick ′r (‹3 ′(- ′)›)

(isomorphic to sum type), so that the explicit termination event carries a
return value.

Certain definitions must therefore be adapted (mainly by replacing 3 with
range tick). For example, a trace t was said to be tick-free if 3 /∈ set t. In
this new setup, such a trace instead satisfies range tick ∩ set t = {}. Sur-
prisingly, once these few intuitive adjustments have been made, most of the
existing Isar proofs remain valid with little to no modification. This gen-
eralization has already been carried out, and the AFP entries for HOL-CSP,
HOL-CSPM, and HOL-CSP_OpSem have all been updated accordingly [2, 1, 3].
More recently, HOL-CSP_RS [5] has been added as well. However, two oper-
ators do not behave as satisfactorily as one might hope.

Firstly, sequential composition no longer admits SKIP as a neutral element.
In the classical theory, we have Skip ; P = P and P ; Skip = P. But in
the generalized setting, SKIP carries a value and if the first law can still be
adapted and proven: SKIP r ; P = P, the second one only holds when the
return type is unit (which amounts to ignoring the generalization). From a

1This idea was sparked by an innocent remark from Simon Foster, which we later
explored in depth.

11

broader perspective, one would in fact like the right-hand process to depend
on the return value of the left-hand process, which is not the case in the
current framework.

Secondly, the synchronization product does not properly support synchro-
nized termination. Classically, we have Skip [[S]] Skip = Skip, adapted in
the last version of HOL-CSP as SKIP r [[A]] SKIP s = (if r = s then SKIP r
else STOP). When restricted to ′a process (which is (′a, unit) processptick)
the behavior is fine, but with general return values deadlocks may occur.
One would rather expect a law like SKIP r [[A]] SKIP s = SKIP (r , s), yet
defining such an operator raises non-trivial technical challenges.

In this entry, we propose generalized definitions for sequential composition
and synchronization product that not only respect the invariant is-process
but also fulfill the expectations outlined above. Beyond this substantial
work, we establish algebraic and operational properties of these operators,
as well as the lemmas required for fixed-point reasoning. In particular, it
can be pointed out that the resulting sequential composition operator fulfills
the laws of a monad.

1.2 The Global Architecture of HOL-CSP_PTick

Our formalization attempts to take full advantage of parallelization, explain-
ing the shape of the session graph shown in Figure 1.1.

12

After_CSP_PTick_Laws

Basic_CSP_PTick_Laws

CSP_PTick_Conclusion

CSP_PTick_Deadlock_Results

CSP_PTick_Introduction

CSP_PTick_Laws

CSP_PTick_Monotonicities

CSP_PTick_Renaming

Events_Ticks_CSP_PTick_Laws

Finite_Ticks

HOL-CSP_PTick

Multi_Sequential_Composition_Generalized Multi_Synchronization_Product_Generalized

Non_Deterministic_CSP_PTick_Distributivity

Operational_Semantics_CSP_PTick_LawsRead_Write_CSP_PTick_Laws

Sequential_Composition_Generalized

Sequential_Composition_Generalized_Cont

Sequential_Composition_Generalized_Non_Destructive

Step_CSP_PTick_Laws

Step_CSP_PTick_Laws_Extended

Synchronization_Product_Generalized

Synchronization_Product_Generalized_Associativity Synchronization_Product_Generalized_Commutativity

Synchronization_Product_Generalized_Cont

Synchronization_Product_Generalized_Interpretations

Synchronization_Product_Generalized_Non_Destructive

[HOL-CSPM]

[HOL-CSP]

[HOL-CSP_OpSem]

[HOL-CSP_RS]

[HOL-Combinatorics]

[HOL-Eisbach]

[HOL-Library]

[HOLCF]

[HOL]

[Pure]

[Restriction_Spaces-HOLCF]

[Restriction_Spaces]

[Tools]

Figure 1.1: The overall architecture

13

14

Chapter 2

Finite Ticks Predicate

2.1 Definitions

Due to our generalization, the generalized sequential composition will require
this additional assumption for continuity. Intuitively, having an infinite
number of possible terminations after a given trace will lead to a infinite
branching preventing continuity, to a certain extent like what happens with
global non deterministic choice.
definition finite-all-ticks :: ‹(′a, ′r) processptick ⇒ bool›

where ‹finite-all-ticks P ≡ ∀ t ∈ T P. finite {r . t @ [3(r)] ∈ T P}›

lemma finite-all-ticksI : ‹(
∧

t. t ∈ T P =⇒ finite {r . t @ [3(r)] ∈ T P}) =⇒
finite-all-ticks P›
〈proof 〉

lemma finite-all-ticksD : ‹finite-all-ticks P =⇒ finite {r . t @ [3(r)] ∈ T P}›
〈proof 〉

Actually, when a tick only appears in divergences, it will not matter for
continuity. We therefore introduce the modified predicate, which is much
more useful.
definition finite-ticks :: ‹(′a, ′r) processptick ⇒ bool› (‹�3

′(- ′)›)
where ‹�3(P) ≡ ∀ t ∈ T P. finite {r . t @ [3(r)] ∈ T P − D P}›

lemma finite-ticksI :
‹(
∧

t. t ∈ T P =⇒ t /∈ D P =⇒ finite {r . t @ [3(r)] ∈ T P}) =⇒ �3(P)›
〈proof 〉

lemma finite-ticksD :
‹�3(P) =⇒ t /∈ D P =⇒ finite {r . t @ [3(r)] ∈ T P}›
〈proof 〉

lemma finite-all-ticks-imp-finite-ticks [simp] : ‹finite-all-ticks P =⇒ �3(P)›

15

〈proof 〉

lemma finite-all-ticks-is-finite-ticks-or-finite-UNIV :
‹finite-all-ticks P ←→ (if D P = {} then �3(P) else finite (UNIV :: ′r set))›
— This is justifying why finite-all-ticks is not really interesting.
for P :: ‹(′a, ′r) processptick›
〈proof 〉

We also introduce the concept that a function can preserve finite-ticks. Un-
fortunately, we will not succeed in proving continuity under this condition
for generalized sequential composition.
definition finite-ticks-fun :: ‹((′a, ′r) processptick ⇒ (′b, ′s) processptick) ⇒ bool›
(‹�3⇒

′(- ′)›)
where ‹�3⇒(f) ≡ ∀P. �3(P) −→ �3(f P)›

lemma finite-ticks-funI : ‹(
∧

P. �3(P) =⇒ �3(f P)) =⇒ �3⇒(f)›
〈proof 〉

lemma finite-ticks-funD: ‹�3⇒(f) =⇒ �3(P) =⇒ �3(f P)›
〈proof 〉

2.2 Properties
named-theorems finite-ticks-simps
named-theorems finite-ticks-fun-simps

2.2.1 Constant Processes
lemma finite-ticks-BOT [finite-ticks-simps] : ‹�3(⊥)›
〈proof 〉

lemma finite-ticks-fun-BOT [finite-ticks-fun-simps] : ‹�3⇒(⊥)›
〈proof 〉

lemma finite-ticks-SKIP [finite-ticks-simps] : ‹�3(SKIP r)›
〈proof 〉

lemma finite-ticks-STOP [finite-ticks-simps] : ‹�3(STOP)›
〈proof 〉

lemma finite-ticks-SKIPS-iff [finite-ticks-simps] : ‹�3(SKIPS R) ←→ finite R›
〈proof 〉

2.2.2 Other properties
lemma finite-strict-ticks-of-imp-finite-ticks [finite-ticks-simps] :

‹finite 3s(P) =⇒ �3(P)›
〈proof 〉

16

lemma finite-strict-ticks-of-image-imp-finite-ticks-fun [finite-ticks-fun-simps] :
‹(
∧

x. finite 3s(f x)) =⇒ �3⇒(f)›
〈proof 〉

lemma anti-mono-finite-ticks [finite-ticks-simps] :
‹�3(P)› if ‹P v Q› ‹�3(Q)›
〈proof 〉

lemma anti-mono-finite-ticks-fun [finite-ticks-fun-simps] :
‹f v g =⇒ �3⇒(g) =⇒ �3⇒(f)›
〈proof 〉

lemma finite-ticks-LUB-iff [finite-ticks-fun-simps] :
‹�3(

⊔
i. Y i) ←→ (∀ i. �3(Y i))› if ‹chain Y ›

〈proof 〉

lemma adm-finite-ticks [finite-ticks-simps] : ‹adm (λP. �3(P))›
〈proof 〉

lemma finite-ticks-fix [finite-ticks-simps] :
‹�3(µ X . f X)› if ‹cont f › and ‹�3⇒(f)›
〈proof 〉

lemma adm-finite-ticks-fun [finite-ticks-fun-simps] : ‹adm (λf . �3⇒(f))›
〈proof 〉

lemma finite-ticks-fun-fix [finite-ticks-fun-simps] :
‹�3⇒(µ X . f X)› if ‹cont f › and ‹

∧
x. �3⇒(x) =⇒ �3⇒(f x)›

〈proof 〉

lemma finite-ticks-fun-id [finite-ticks-fun-simps] :
‹�3⇒(id)› ‹�3⇒(λx. x)›
〈proof 〉

lemma finite-ticks-fun-const-iff [finite-ticks-fun-simps] :
‹�3⇒(λx. P) ←→ �3(P)›
〈proof 〉

lemma finite-ticks-fun-comp [finite-ticks-fun-simps] :
‹�3⇒(g) =⇒ �3⇒(f) =⇒ �3⇒(λx. g (f x))›
〈proof 〉

17

2.3 Laws

2.3.1 Laws of �3(P)

lemma finite-ticks-Ndet [finite-ticks-simps] :
‹�3(P u Q)› if ‹�3(P)› ‹�3(Q)›
〈proof 〉

lemma finite-ticks-Det [finite-ticks-simps] :
‹�3(P � Q)› if ‹�3(P)› ‹�3(Q)›
〈proof 〉

lemma finite-ticks-Sliding [finite-ticks-simps] :
‹�3(P) =⇒ �3(Q) =⇒ �3(P B Q)›
〈proof 〉

lemma finite-ticks-Interrupt [finite-ticks-simps] :
‹�3(P 4 Q)› if ‹�3(P)› ‹�3(Q)›
〈proof 〉

lemma finite-ticks-Throw [finite-ticks-simps] :
‹�3(P Θ a∈A. Q a)› if ‹�3(P)› ‹

∧
a. a ∈ A =⇒ �3(Q a)›

〈proof 〉

lemma finite-ticks-Renaming [finite-ticks-simps] :
‹�3(Renaming P f g)› if ‹finitary f › ‹finitary g› ‹�3(P)›
〈proof 〉

lemma finite-ticks-Seq [finite-ticks-simps] :
‹�3(P ; Q)› if ‹�3(Q)›
〈proof 〉

lemma finite-ticks-Sync [finite-ticks-simps] :
‹�3(P [[S]] Q)› if ‹�3(P) ∨ �3(Q)›
〈proof 〉

corollary ‹�3(P) ∨ �3(Q) =⇒ �3(P || Q)›
and ‹�3(P) ∨ �3(Q) =⇒ �3(P ||| Q)›
〈proof 〉

18

lemma finite-ticks-GlobalNdet [finite-ticks-simps] :
‹finite A =⇒ (

∧
a. a ∈ A =⇒ �3(P a)) =⇒ �3(ua∈A. P a)›

— We can’t expect infinite A here, see �3(SKIPS R) = finite R.
〈proof 〉

lemma finite-ticks-GlobalDet [finite-ticks-simps] :
‹finite A =⇒ (

∧
a. a ∈ A =⇒ �3(P a)) =⇒ �3(�a∈A. P a)›

〈proof 〉

lemma ‹L = [] =⇒ �3(SEQ l∈@L. P l)› 〈proof 〉

lemma finite-ticks-MultiSeq-nonempty [finite-ticks-simps] :
‹L 6= [] =⇒ �3(P (last L)) =⇒ �3(SEQ l∈@L. P l)›
〈proof 〉

lemma finite-ticks-MultiSync [finite-ticks-simps] :
‹(
∧

m. m ∈# M =⇒ �3(P m)) =⇒ �3([[S]] m∈#M . P m)›
〈proof 〉

corollary ‹(
∧

m. m ∈# M =⇒ �3(P m)) =⇒ �3(|| m∈#M . P m)›
and ‹(

∧
m. m ∈# M =⇒ �3(P m)) =⇒ �3(||| m∈#M . P m)›

〈proof 〉

lemma finite-ticks-Mprefix-iff [finite-ticks-simps] :
‹�3(�a∈A → P a) ←→ (∀ a∈A. �3(P a))›
〈proof 〉

lemma finite-ticks-Mndetprefix-iff [finite-ticks-simps] :
‹�3(ua∈A → P a) ←→ (∀ a∈A. �3(P a))›
〈proof 〉

lemma finite-ticks-write0-iff [finite-ticks-simps] : ‹�3(a → P) ←→ �3(P)›
〈proof 〉

lemma finite-ticks-write-iff [finite-ticks-simps] : ‹�3(c!a → P) ←→ �3(P)›
〈proof 〉

lemma finite-ticks-read-iff :
‹�3(c?a∈A → P a) ←→ (∀ b∈c ‘ A. �3(P (inv-into A c b)))›
〈proof 〉

lemma finite-ticks-inj-on-read-iff [finite-ticks-simps] :
‹inj-on c A =⇒ �3(c?a∈A → P a) ←→ (∀ a∈A. �3(P a))›
〈proof 〉

lemma finite-ticks-ndet-write-iff :
‹�3(c!!a∈A → P a) ←→ (∀ b∈c ‘ A. �3(P (inv-into A c b)))›

19

〈proof 〉

lemma finite-ticks-inj-on-ndet-write-iff [finite-ticks-simps] :
‹inj-on c A =⇒ �3(c!!a∈A → P a) ←→ (∀ a∈A. �3(P a))›
〈proof 〉

2.3.2 Laws of �3⇒(f)
lemma finite-ticks-fun-Det [finite-ticks-fun-simps] :

‹�3⇒(f) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x � g x)›
〈proof 〉

lemma finite-ticks-fun-Ndet [finite-ticks-fun-simps] :
‹�3⇒(f) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x u g x)›
〈proof 〉

lemma finite-ticks-fun-Sliding [finite-ticks-fun-simps] :
‹�3⇒(f) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x B g x)›
〈proof 〉

lemma finite-ticks-fun-Interrupt [finite-ticks-fun-simps] :
‹�3⇒(f) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x 4 g x)›
〈proof 〉

lemma finite-ticks-fun-Throw [finite-ticks-fun-simps] :
‹�3⇒(f) =⇒ (

∧
a. a ∈ A =⇒ �3⇒(g a)) =⇒ �3⇒(λx. f x Θ a∈A. g a x)›

〈proof 〉

lemma finite-ticks-fun-Renaming [finite-ticks-fun-simps] :
‹�3⇒(P) =⇒ finitary f =⇒ finitary g =⇒ �3⇒(λx. Renaming (P x) f g)›
〈proof 〉

lemma finite-ticks-fun-RenamingF [finite-ticks-fun-simps] :
‹�3⇒(P) =⇒ �3⇒(λx. (P x) [[a := b]] [[c := d]])›
〈proof 〉

lemma finite-ticks-fun-Seq [finite-ticks-fun-simps] :
‹�3⇒(g) =⇒ �3⇒(λx. f x ; g x)›
〈proof 〉

lemma finite-ticks-fun-Sync [finite-ticks-fun-simps] :
‹�3⇒(f) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x [[S]] g x)›
〈proof 〉

corollary ‹�3⇒(f) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x || g x)›
and ‹�3⇒(f) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x ||| g x)›
〈proof 〉

20

lemma finite-ticks-fun-GlobalNdet [finite-ticks-fun-simps] :
‹finite A =⇒ (

∧
a. a ∈ A =⇒ �3⇒(f a)) =⇒ �3⇒(λx. ua∈A. f a x)›

〈proof 〉

lemma finite-ticks-fun-GlobalDet :
‹finite A =⇒ (

∧
a. a ∈ A =⇒ �3⇒(f a)) =⇒ �3⇒(λx. �a∈A. f a x)›

〈proof 〉

lemma finite-ticks-fun-MultiSeq [finite-ticks-fun-simps] :
‹L = [] =⇒ �3⇒(λx. SEQ l∈@L. f l x)›
‹L 6= [] =⇒ �3⇒(f (last L)) =⇒ �3⇒(λx. SEQ l∈@L. f l x)›
〈proof 〉

lemma finite-ticks-fun-MultiSync [finite-ticks-fun-simps] :
‹(
∧

m. m ∈# M =⇒ �3⇒(f m)) =⇒ �3⇒(λx. [[S]] m∈#M . f m x)›
〈proof 〉

corollary ‹(
∧

m. m ∈# M =⇒ �3⇒(f m)) =⇒ �3⇒(λx. || m∈#M . f m x)›
and ‹(

∧
m. m ∈# M =⇒ �3⇒(f m)) =⇒ �3⇒(λx. ||| m∈#M . f m x)›

〈proof 〉

lemma finite-ticks-fun-Mprefix-iff :
‹�3⇒(λx. �a∈A → f a x) ←→ (∀ a ∈ A. �3⇒(f a))›
〈proof 〉

lemma finite-ticks-fun-Mprefix [finite-ticks-fun-simps] :
‹(
∧

a. a ∈ A =⇒ �3⇒(f a)) =⇒ �3⇒(λx. �a∈A → f a x)›
〈proof 〉

lemma finite-ticks-fun-Mndetprefix-iff [finite-ticks-fun-simps] :
‹�3⇒(λx. ua∈A → f a x) ←→ (∀ a ∈ A. �3⇒(f a))›
〈proof 〉

lemma finite-ticks-fun-Mndetprefix [finite-ticks-fun-simps] :
‹(
∧

a. a ∈ A =⇒ �3⇒(f a)) =⇒ �3⇒(λx. ua∈A → f a x)›
〈proof 〉

lemma finite-ticks-fun-write0-iff [finite-ticks-fun-simps] :
‹�3⇒(λx. a → f x) ←→ �3⇒(f)›
〈proof 〉

lemma finite-ticks-fun-write-iff [finite-ticks-fun-simps] :
‹�3⇒(λx. c!a → f x) ←→ �3⇒(f)›
〈proof 〉

21

lemma finite-ticks-fun-read-iff :
‹�3⇒(λx. c?a∈A → f a x) ←→ (∀ b∈c ‘ A. �3⇒(f (inv-into A c b)))›
〈proof 〉

lemma finite-ticks-fun-read [finite-ticks-fun-simps] :
‹(
∧

a. a ∈ A =⇒ �3⇒(λx. f a x)) =⇒ �3⇒(λx. c?a∈A → f a x)›
〈proof 〉

lemma finite-ticks-fun-ndet-write-iff :
‹�3⇒(λx. c!!a∈A → f a x) ←→ (∀ b∈c ‘ A. �3⇒(f (inv-into A c b)))›
〈proof 〉

lemma finite-ticks-fun-ndet-write [finite-ticks-fun-simps] :
‹(
∧

a. a ∈ A =⇒ �3⇒(λx. f a x)) =⇒ �3⇒(λx. c!!a∈A → f a x)›
〈proof 〉

22

Chapter 3

Generalization of the
Sequential Composition

3.1 Definition

For the sequential composition, the generalization seems quite straightfor-
ward. In a nutshell, we just replace Q with Q r in the definition of P
; Q since Q is now of type ′r ⇒ (′a, ′r) processptick (instead of (′a, ′r)
processptick).
lift-definition Seqptick ::

‹[(′a, ′r) processptick, ′r ⇒ (′a, ′r) processptick] ⇒ (′a, ′r) processptick› (infixl
‹;3› 74)

is ‹λP Q. ({(t, X) |t X . (t, X ∪ range tick) ∈ F P ∧ tF t} ∪
{(t @ u, X) |t u r X . t @ [3(r)] ∈ T P ∧ (u, X) ∈ F (Q r)} ∪
{(t, X). t ∈ D P},
D P ∪ {t @ u |t u r . t @ [3(r)] ∈ T P ∧ u ∈ D (Q r)})›

〈proof 〉

Except that this is not a fully satisfactory definition yet. Indeed, here, the
right-hand side argument must produce processes whose terminations keep
the same type. In other words, Q is of type ′r ⇒ (′a, ′r) processptick while
we would like to have in full generality ′r ⇒ (′a, ′s) processptick. The final
definition given below is not immediate, and involves a precise understanding
of the behaviour of the sequential composition.

3.1.1 Preliminaries

The first key for generalizing the definition is to see that map (ev ◦ of-ev)
allows for changing the type of termination in tick-free traces.
lemma tickFree-map-ev-of-ev-same-type-is : ‹tF t =⇒ map (ev ◦ of-ev) t = t›

— In this case the type of termination remains unchanged.
〈proof 〉

23

lemma tickFree-map-ev-of-ev-eq-iff :
‹tF t =⇒ map (ev ◦ of-ev) t = t ′ =⇒ t = map (ev ◦ of-ev) t ′›
〈proof 〉

lemma tickFree-map-ev-of-ev-inj :
‹tF t =⇒ tF t ′ =⇒ map (ev ◦ of-ev) t = map (ev ◦ of-ev) t ′←→ t = t ′›
〈proof 〉

lemma map-ev-of-ev-map-ev-of-ev [simp] :
‹map (ev ◦ of-ev) (map (ev ◦ of-ev) t) = map (ev ◦ of-ev) t› 〈proof 〉

lemma map-ev-of-ev-map-ev-of-ev-simplified [simp] :
‹map (ev ◦ of-ev ◦ (ev ◦ of-ev)) t = map (ev ◦ of-ev) t› 〈proof 〉

lemma tickFree-map-ev-of-ev-eq-imp-ev-mem-iff :
‹tF t ′ =⇒ t = map (ev ◦ of-ev) t ′ =⇒ ev a ∈ set t ←→ ev a ∈ set t ′›
〈proof 〉

The second key is to understand that X ∪ range tick can be rewritten as
(ev ◦ of-ev) ‘ (X ∩ range ev) ∪ range tick, and that this second expression
also allows for changing the type of termination.
definition ref-Seqptick :: ‹(′a, ′r) eventptick set ⇒ (′a, ′s) eventptick set›

where ‹ref-Seqptick X ≡ (ev ◦ of-ev) ‘ (X ∩ range ev) ∪ range tick›

lemma ref-Seqptick-same-type-is : ‹ref-Seqptick X = X ∪ range tick›
— In this case the type of termination remains unchanged.
〈proof 〉

lemma mono-ref-Seqptick : ‹X ⊆ Y =⇒ ref-Seqptick X ⊆ ref-Seqptick Y ›
〈proof 〉

lemma ref-Seqptick-idem : ‹ref-Seqptick (ref-Seqptick X) = ref-Seqptick X›
〈proof 〉

lemma ref-Seqptick-comp-ref-Seqptick : ‹ref-Seqptick ◦ ref-Seqptick = ref-Seqptick›
〈proof 〉

lemma ref-Seqptick-eq-iff :
‹ref-Seqptick X = ref-Seqptick Y ←→ X ∩ range ev = Y ∩ range ev›
〈proof 〉

lemma ref-Seqptick-is-map-eventptick-image :

24

‹ref-Seqptick X = map-eventptick id g ‘ (X ∩ range ev) ∪ range tick›
— Note that g is free here and does not matter.
〈proof 〉

lemma ref-Seqptick-union-image-ev :
‹ref-Seqptick (X ∪ ev ‘ S) = ref-Seqptick X ∪ ev ‘ S›
〈proof 〉

lemma ref-Seqptick-UNIV : ‹ref-Seqptick UNIV = UNIV ›
〈proof 〉

3.1.2 Formal Definition
definition div-Seqptick ::

‹[(′a, ′r) processptick, ′r ⇒ (′a, ′s) processptick] ⇒ (′a, ′s) traceptick set›
where ‹div-Seqptick P Q ≡

{map (ev ◦ of-ev) t @ u |t u. t ∈ D P ∧ tF t ∧ ftF u} ∪
{map (ev ◦ of-ev) t @ u |t u r . t @ [3(r)] ∈ T P ∧ tF t ∧ u ∈ D (Q r)}›

definition fail-Seqptick ::
‹[(′a, ′r) processptick, ′r ⇒ (′a, ′s) processptick] ⇒ (′a, ′s) failureptick set›
where ‹fail-Seqptick P Q ≡

{(map (ev ◦ of-ev) t, X) |t X . (t, ref-Seqptick X) ∈ F P ∧ tF t} ∪
{(map (ev ◦ of-ev) t @ u, X) |t u r X . t @ [3(r)] ∈ T P ∧ tF t ∧ (u, X)

∈ F (Q r)} ∪
{(map (ev ◦ of-ev) t @ u, X) |t u X . t ∈ D P ∧ tF t ∧ ftF u}›

— tF t is trivial when t @ [3(r)] ∈ T P, but we add it for proof automation

lift-definition Seqptick ::
‹[(′a, ′r) processptick, ′r ⇒ (′a, ′s) processptick] ⇒ (′a, ′s) processptick› (infixl

‹;3› 74)
is ‹λP Q. (fail-Seqptick P Q, div-Seqptick P Q)›
〈proof 〉

3.2 Projections
lemma F-Seqptick : ‹F (P ;3 Q) = fail-Seqptick P Q›
〈proof 〉

lemma D-Seqptick : ‹D (P ;3 Q) = div-Seqptick P Q›
〈proof 〉

lemma T-Seqptick-bis :
‹T (P ;3 Q) = {map (ev ◦ of-ev) t |t. (t, range tick) ∈ F P ∧ tF t} ∪

{map (ev ◦ of-ev) t @ u |t u r . t @ [3(r)] ∈ T P ∧ tF t ∧ u ∈ T (Q
r)} ∪

25

{map (ev ◦ of-ev) t @ u |t u. t ∈ D P ∧ tF t ∧ ftF u}›
〈proof 〉

lemma T-Seqptick :
‹T (P ;3 Q) = {map (ev ◦ of-ev) t |t. t ∈ T P ∧ tF t} ∪

{map (ev ◦ of-ev) t @ u |t u r . t @ [3(r)] ∈ T P ∧ tF t ∧ u ∈ T (Q
r)} ∪

{map (ev ◦ of-ev) t @ u |t u. t ∈ D P ∧ tF t ∧ ftF u}›
— Often easier to use
〈proof 〉

lemmas Seqptick-projs = F-Seqptick D-Seqptick T-Seqptick fail-Seqptick-def div-Seqptick-def

lemma mono-Seqptick-eq : ‹P ;3 Q = P ′ ;3 Q ′› if ∗ : ‹P = P ′› ‹
∧

r . r ∈ 3s(P)
=⇒ Q r = Q ′ r›

for P P ′ :: ‹(′a, ′r) processptick› and Q Q ′ :: ‹ ′r ⇒ (′a, ′s) processptick›
〈proof 〉

Note that this definition allowing for changing the type of termination is
actually a generalization of the first idea that we mentioned at the beginning.
Indeed, when we enforce the type of P and Q to be (′a, ′r) processptick and
′r ⇒ (′a, ′s) processptick respectively, the projections can be rewritten as
follows.
lemma F-Seqptick-same-type :

‹F (P ;3 Q) = {(t, X) |t X . (t, X ∪ range tick) ∈ F P ∧ tF t} ∪
{(t @ u, X) |t u r X . t @ [3(r)] ∈ T P ∧ (u, X) ∈ F (Q r)} ∪
{(t, X). t ∈ D P}›

〈proof 〉

lemma D-Seqptick-same-type : ‹D (P ;3 Q) = D P ∪ {t @ u |t u r . t @ [3(r)] ∈
T P ∧ u ∈ D (Q r)}›
〈proof 〉

lemma T-Seqptick-same-type-bis :
‹T (P ;3 Q) = {t. (t, range tick) ∈ F P ∧ tF t} ∪

{t @ u |t u r . t @ [3(r)] ∈ T P ∧ u ∈ T (Q r)} ∪
D P›

〈proof 〉

lemma T-Seqptick-same-type :
‹T (P ;3 Q) = {t ∈ T P. tF t} ∪ {t @ u |t u r . t @ [3(r)] ∈ T P ∧ u ∈ T (Q

r)} ∪ D P›
— Often easier to use
〈proof 〉

26

lemmas Seqptick-same-type-projs = F-Seqptick-same-type D-Seqptick-same-type T-Seqptick-same-type

27

28

Chapter 4

Generalization of the
Synchronization Product

4.1 Trace Interleaving
4.1.1 Motivation

The notion of trace interleaving found in HOL-CSP does not allow us to
precisely handle termination. Indeed, as soon as r 6= s, we cannot have t
setinterleaves (([3(r)], [3(s)]), range tick ∪ ev ‘ A).
lemma ‹r 6= s =⇒ ¬ t setinterleaves (([3(r)], [3(s)]), range tick ∪ ev ‘ A)› 〈proof 〉

The actual issue of this previous definition is that no distinction is done
between the “regular” events (like ev a) and the terminations (like 3(r)).
Here, while we still want the same behaviour for regular events, we want
instead the interleaving of 3(r) and 3(s) to be 3((r , s)). But we would
also like this interleaving to generalize the old one, i.e. be able to prevent
sometimes two ticks from being combined. Our solution is therefore to rely
on a parameter: tick-join of type ′r ⇒ ′s ⇒ ′t option whose role is to specify
how two ticks can be combined (or not).
bundle option-type-syntax
begin

no-notation floor (‹(‹open-block notation=‹mixfix floor››b-c)›)
no-notation ceiling (‹(‹open-block notation=‹mixfix ceiling››d-e)›)

notation Some (‹(‹open-block notation=‹mixfix Some››b-c)›)
notation the (‹(‹open-block notation=‹mixfix the››d-e)›)
notation None (‹♦›)

end

unbundle option-type-syntax

29

4.1.2 Definition

type-synonym (′a, ′r , ′s, ′t) setinterleavingptick-args =
‹(′r ⇒ ′s ⇒ ′t option) × (′a, ′r) traceptick × ′a set × (′a, ′s) traceptick›

fun setinterleavingptick ::
‹(′a, ′r , ′s, ′t) setinterleavingptick-args ⇒ (′a, ′t) traceptick set›
where Nil-setinterleavingptick-Nil :

‹setinterleavingptick (tick-join, [], A, []) = {[]}›

| ev-setinterleavingptick-Nil :
‹setinterleavingptick (tick-join, ev a # u, A, []) =
(if a ∈ A then {}
else {ev a # t| t. t ∈ setinterleavingptick (tick-join, u, A, [])})›

| tick-setinterleavingptick-Nil :
‹setinterleavingptick (tick-join, 3(r) # u, A, []) = {}›

| Nil-setinterleavingptick-ev :
‹setinterleavingptick (tick-join, [], A, ev b # v) =
(if b ∈ A then {}
else {ev b # t| t. t ∈ setinterleavingptick (tick-join, [], A, v)})›

| Nil-setinterleavingptick-tick :
‹setinterleavingptick (tick-join, [], A, 3(s) # v) = {}›

| ev-setinterleavingptick-ev :
‹setinterleavingptick (tick-join, ev a # u, A, ev b # v) =
(if a ∈ A
then if b ∈ A

then if a = b
then {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, v)}
else {}

else {ev b # t |t. t ∈ setinterleavingptick (tick-join, ev a # u, A, v)}
else if b ∈ A

then {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, ev b # v)}
else {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, ev b # v)} ∪
{ev b # t |t. t ∈ setinterleavingptick (tick-join, ev a # u, A, v)})›

| ev-setinterleavingptick-tick :
‹setinterleavingptick (tick-join, ev a # u, A, 3(s) # v) =
(if a ∈ A then {}
else {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, 3(s) # v)})›

| tick-setinterleavingptick-ev :
‹setinterleavingptick (tick-join, 3(r) # u, A, ev b # v) =
(if b ∈ A then {}
else {ev b # t |t. t ∈ setinterleavingptick (tick-join, 3(r) # u, A, v)})›

| tick-setinterleavingptick-tick :
‹setinterleavingptick (tick-join, 3(r) # u, A, 3(s) # v) =
(case tick-join r s
of br-sc ⇒ {3(r-s) # t |t. t ∈ setinterleavingptick (tick-join, u, A, v)}
| ♦ ⇒ {})›

30

lemmas setinterleavingptick-induct
[case-names Nil-setinterleavingptick-Nil ev-setinterleavingptick-Nil

tick-setinterleavingptick-Nil Nil-setinterleavingptick-ev
Nil-setinterleavingptick-tick ev-setinterleavingptick-ev
ev-setinterleavingptick-tick tick-setinterleavingptick-ev
tick-setinterleavingptick-tick,
induct type: setinterleavingptick-args] = setinterleavingptick.induct

lemma Cons-setinterleavingptick-Nil :
‹setinterleavingptick (tick-join, e # u, A, []) =
(case e of ev a ⇒
(if a ∈ A then {}
else {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, [])})

| 3(r) ⇒ {})›
〈proof 〉

lemma Nil-setinterleavingptick-Cons :
‹setinterleavingptick (tick-join, [], A, e # v) =
(case e of ev a ⇒
(if a ∈ A then {}
else {ev a # t |t. t ∈ setinterleavingptick (tick-join, [], A, v)})

| 3(r) ⇒ {})›
〈proof 〉

lemma Cons-setinterleavingptick-Cons :
‹setinterleavingptick (tick-join, e # u, A, f # v) =
(case e of ev a ⇒
(case f of ev b ⇒

if a ∈ A
then if b ∈ A

then if a = b
then {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, v)}
else {}

else {ev b # t |t. t ∈ setinterleavingptick (tick-join, ev a # u, A, v)}
else if b ∈ A

then {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, ev b # v)}
else {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, ev b # v)} ∪
{ev b # t |t. t ∈ setinterleavingptick (tick-join, ev a # u, A, v)}

| 3(s) ⇒ if a ∈ A then {}
else {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, 3(s)

v)})
| 3(r) ⇒

(case f of ev b ⇒
if b ∈ A then {}

else {ev b # t| t. t ∈ setinterleavingptick (tick-join, 3(r) # u, A, v)}
| 3(s) ⇒

31

(case tick-join r s of br-sc ⇒
{3(r-s) # t |t. t ∈ setinterleavingptick (tick-join, u, A, v)}

| ♦ ⇒ {})))›
〈proof 〉

lemmas setinterleavingptick-simps =
Cons-setinterleavingptick-Nil Nil-setinterleavingptick-Cons Cons-setinterleavingptick-Cons

abbreviation setinterleavesptick ::
‹[(′a, ′t) traceptick, ′r ⇒ ′s ⇒ ′t option,
(′a, ′r) traceptick, (′a, ′s) traceptick, ′a set] ⇒ bool›

(‹(- /(setinterleaves3)-/ ′(() ′(-, - ′)(), - ′))› [63 ,0 ,0 ,0 ,0] 64)
where ‹t setinterleaves3tick-join ((u, v), A) ≡

t ∈ setinterleavingptick (tick-join, u, A, v)›

4.1.3 First Properties

First of all: this formalization may seem tricky, but is actually a generaliza-
tion of the old setup.
theorem setinterleaves-is-setinterleavesptick :

‹t setinterleaves ((u, v), range tick ∪ ev ‘ A) ←→
t setinterleaves3λr s. if r = s then brc else ♦ ((u, v), A)›

for t :: ‹(′a, ′r) traceptick›
〈proof 〉

corollary setinterleaves-is-setinterleavesptick-unit :
‹t setinterleaves ((u, v), insert 3 (ev ‘ A)) ←→
t setinterleaves3λr s. brc ((u, v), A)› (is ‹?lhs ←→ ?rhs›)

〈proof 〉

lemma setinterleavesptick-sym :
— Of course not suitable for simplifier.
‹t setinterleaves3λs r . tick-join r s ((v, u), A) ←→
t setinterleaves3λr s. tick-join r s ((u, v), A)›
〈proof 〉

lemma setinterleavesP air-UNIV-iff :
‹t setinterleaves3λr s. b(r , s)c ((u, v), UNIV) ←→
u = map (map-eventptick id fst) t ∧
v = map (map-eventptick id snd) t› for t :: ‹(′a, ′r × ′s) traceptick›

32

〈proof 〉

lemma setinterleavesptick-empty :
‹t setinterleaves3tick-join ((u, v), {}) =⇒
ev a ∈ set t ←→ ev a ∈ set u ∨ ev a ∈ set v›

for u :: ‹(′a, ′r) traceptick ›
〈proof 〉

lemma tickFree-setinterleavesptick-any-tick-join :
‹t setinterleaves3tick-join ((u, v), A) ←→
t setinterleaves3tick-join ′ ((u, v), A)›

if ‹tF t ∨ tF u ∨ tF v›
〈proof 〉

lemma tickFree-setinterleavesptick-iff :
‹t setinterleaves3tick-join ((u, v), A) =⇒ tF t ←→ tF u ∧ tF v›
〈proof 〉

lemma setinterleavesptick-tickFree-imp :
‹tF u ∨ tF v =⇒ t setinterleaves3tick-join ((u, v), A) =⇒ tF t ∧ tF u ∧ tF v›
〈proof 〉

lemma setinterleavesptick-NilL-iff :
‹t setinterleaves3tick-join (([], v), A) ←→
tF v ∧ set v ∩ ev ‘ A = {} ∧ t = map ev (map of-ev v)›

for tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option›
〈proof 〉

lemma setinterleavesptick-NilR-iff :
‹t setinterleaves3tick-join ((u, []), A) ←→
tF u ∧ set u ∩ ev ‘ A = {} ∧ t = map ev (map of-ev u)›

for tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option›
〈proof 〉

lemma setinterleavesptick-subsetL :
‹tF t =⇒ {a. ev a ∈ set u} ⊆ A =⇒
t setinterleaves3tick-join ((u, v), A) =⇒
t = map ev (map of-ev v)›
〈proof 〉

lemma setinterleavesptick-subsetR :
‹tF t =⇒ {a. ev a ∈ set v} ⊆ A =⇒

33

t setinterleaves3tick-join ((u, v), A) =⇒
t = map ev (map of-ev u)›
〈proof 〉

lemma Nil-setinterleavesptick :
‹[] setinterleaves3tick-join ((u, v), A) =⇒ u = [] ∧ v = []›
〈proof 〉

lemma front-tickFree-setinterleavesptick-iff :
‹t setinterleaves3tick-join ((u, v), A) =⇒ ftF t ←→ ftF u ∧ ftF v›
〈proof 〉

lemma setinterleavesptick-snoc-notinL :
‹t setinterleaves3tick-join ((u, v), A) =⇒ a /∈ A =⇒
t @ [ev a] setinterleaves3tick-join ((u @ [ev a], v), A)›
〈proof 〉

lemma setinterleavesptick-snoc-notinR :
‹t setinterleaves3tick-join ((u, v), A) =⇒ a /∈ A =⇒
t @ [ev a] setinterleaves3tick-join ((u, v @ [ev a]), A)›
〈proof 〉

lemma setinterleavesptick-snoc-inside :
‹t setinterleaves3tick-join ((u, v), A) =⇒ a ∈ A =⇒
t @ [ev a] setinterleaves3tick-join ((u @ [ev a], v @ [ev a]), A)›
〈proof 〉

lemma setinterleavesptick-snoc-tick :
‹t setinterleaves3tick-join ((u, v), A) =⇒ tick-join r s = br-sc =⇒
t @ [3(r-s)] setinterleaves3tick-join ((u @ [3(r)], v @ [3(s)]), A)›
〈proof 〉

lemma Cons-tick-setinterleavesptickE :
‹3(r-s) # t setinterleaves3tick-join ((u, v), A) =⇒
(
∧

u ′ v ′ r s. [[tick-join r s = br-sc; u = 3(r) # u ′; v = 3(s) # v ′;
t setinterleaves3tick-join ((u ′, v ′), A)]] =⇒ thesis) =⇒ thesis›

〈proof 〉

lemma Cons-ev-setinterleavesptickE :
‹ev a # t setinterleaves3tick-join ((u, v), A) =⇒
(
∧

u ′. a /∈ A =⇒ u = ev a # u ′ =⇒ t setinterleaves3tick-join ((u ′, v), A) =⇒

34

thesis) =⇒
(
∧

v ′. a /∈ A =⇒ v = ev a # v ′ =⇒ t setinterleaves3tick-join ((u, v ′), A) =⇒
thesis) =⇒

(
∧

u ′ v ′. a ∈ A =⇒ u = ev a # u ′ =⇒ v = ev a # v ′ =⇒
t setinterleaves3tick-join ((u ′, v ′), A) =⇒ thesis) =⇒ thesis›

〈proof 〉

lemma rev-setinterleavesptick-rev-rev-iff :
‹rev t setinterleaves3tick-join ((rev u, rev v), A)

←→ t setinterleaves3tick-join ((u, v), A)›
for u :: ‹(′a, ′r) traceptick› and v :: ‹(′a, ′s) traceptick›
〈proof 〉

lemma setinterleavesptick-preserves-ev-notin-set :
‹[[ev a /∈ set u; ev a /∈ set v; t setinterleaves3tick-join ((u, v), A)]] =⇒ ev a /∈ set

t›
〈proof 〉

lemma setinterleavesptick-inj-preserves-tick-notin-set :
‹[[tick-join r s = br-sc; 3(r) /∈ set u ∨ 3(s) /∈ set v;

t setinterleaves3tick-join ((u, v), A)]] =⇒ 3(r-s) /∈ set t›
— This is a weakened injectivity property.
if inj-tick-join : ‹

∧
r ′ s ′. tick-join r ′ s ′ = br-sc =⇒ r ′ = r ∧ s ′ = s›

〈proof 〉

lemma setinterleavesptick-preserves-ev-inside-set :
‹[[ev a ∈ set u; ev a ∈ set v; t setinterleaves3tick-join ((u, v), A)]] =⇒ ev a ∈ set

t›
〈proof 〉

lemma ev-notin-both-sets-imp-empty-setinterleavingptick :
‹[[ev a ∈ set u ∧ ev a /∈ set v ∨ ev a /∈ set u ∧ ev a ∈ set v; a ∈ A]] =⇒
setinterleavingptick (tick-join, u, A, v) = {}›
〈proof 〉

lemma setinterleavesptick-snoc-tick-snoc-tickE :
‹(
∧

t ′ r-s. tick-join r s = br-sc =⇒ t ′ setinterleaves3tick-join ((u, v), A) =⇒
t = t ′ @ [3(r-s)] =⇒ thesis) =⇒ thesis›

if ‹t setinterleaves3tick-join ((u @ [3(r)], v @ [3(s)]), A)›
〈proof 〉

lemma snoc-tick-setinterleavesptickE :
‹(
∧

u ′ v ′ r s. [[tick-join r s = br-sc; t setinterleaves3tick-join ((u ′, v ′), A);

u = u ′ @ [3(r)]; v = v ′ @ [3(s)]]] =⇒ thesis) =⇒ thesis›
if ‹t @ [3(r-s)] setinterleaves3tick-join ((u, v), A)›

35

〈proof 〉

4.1.4 Lengths
lemma length-setinterleavesptick-eq-sum-minus-filterL :

‹t setinterleaves3tick-join ((u, v), A) =⇒
length t = length u + length v − length (filter (λe. e ∈ range tick ∪ ev ‘ A) u)›

〈proof 〉

lemma length-setinterleavesptick-eq-sum-minus-filterR :
‹t setinterleaves3tick-join ((u, v), A) =⇒
length t = length u + length v − length (filter (λe. e ∈ range tick ∪ ev ‘ A) v)›
〈proof 〉

lemma setinterleavesptick-eq-length :
‹t setinterleaves3tick-join ((u, v), A) =⇒
t ′ setinterleaves3tick-join ((u, v), A) =⇒ length t = length t ′›
〈proof 〉

lemma setinterleavesptick-imp-lengthLR-le :
‹t setinterleaves3tick-join ((u, v), A) =⇒
length u ≤ length t ∧ length v ≤ length t›
〈proof 〉

4.1.5 Trace Prefix Interleaving

We start with versions involving (@) before giving corollaries about the
prefix ordering on traces.
lemma setinterleavesptick-appendL :

‹t setinterleaves3tick-join ((u1 @ u2 , v), A) =⇒
∃ t1 t2 v1 v2 . t = t1 @ t2 ∧ v = v1 @ v2 ∧

t1 setinterleaves3tick-join ((u1 , v1), A) ∧
t2 setinterleaves3tick-join ((u2 , v2), A)›

〈proof 〉

corollary setinterleavesptick-appendR :
‹∃ t1 t2 u1 u2 . t = t1 @ t2 ∧ u = u1 @ u2 ∧

t1 setinterleaves3tick-join ((u1 , v1), A) ∧
t2 setinterleaves3tick-join ((u2 , v2), A)›

if ‹t setinterleaves3tick-join ((u, v1 @ v2), A)›
〈proof 〉

lemma append-setinterleavesptick :
‹t1 @ t2 setinterleaves3tick-join ((u, v), A) =⇒

36

∃ u1 u2 v1 v2 . u = u1 @ u2 ∧ v = v1 @ v2 ∧
t1 setinterleaves3tick-join ((u1 , v1), A) ∧
t2 setinterleaves3tick-join ((u2 , v2), A)›

〈proof 〉

corollary setinterleavesptick-le-prefixL :
‹t setinterleaves3tick-join ((u, v), A) =⇒ u ′ ≤ u =⇒
∃ t ′ ≤ t. ∃ v ′ ≤ v. t ′ setinterleaves3tick-join ((u ′, v ′), A)›
〈proof 〉

corollary setinterleavesptick-le-prefixR :
‹t setinterleaves3tick-join ((u, v), A) =⇒ v ′ ≤ v =⇒
∃ t ′ ≤ t. ∃ u ′ ≤ u. t ′ setinterleaves3tick-join ((u ′, v ′), A)›
〈proof 〉

corollary le-prefix-setinterleavesptick :
‹t setinterleaves3tick-join ((u, v), A) =⇒ t ′ ≤ t =⇒
∃ u ′ ≤ u. ∃ v ′ ≤ v. t ′ setinterleaves3tick-join ((u ′, v ′), A)›
〈proof 〉

lemma setinterleavesptick-less-prefixL :
‹t setinterleaves3tick-join ((u, v), A) =⇒ u ′ < u =⇒
∃ t ′ v ′. t ′ < t ∧ v ′ ≤ v ∧ t ′ setinterleaves3tick-join ((u ′, v ′), A)›

〈proof 〉

corollary setinterleavesptick-less-prefixR :
‹t setinterleaves3tick-join ((u, v), A) =⇒ v ′ < v =⇒
∃ t ′ u ′. t ′ < t ∧ u ′ ≤ u ∧ t ′ setinterleaves3tick-join ((u ′, v ′), A)›
〈proof 〉

lemma setinterleavesptick-le-prefixLR :
‹t setinterleaves3tick-join ((u, v), A) =⇒ u ′ ≤ u =⇒ v ′ ≤ v =⇒
(∃ t ′ ≤ t. ∃ v ′′ ≤ v ′. t ′ setinterleaves3tick-join ((u ′, v ′′), A)) ∨
(∃ t ′ ≤ t. ∃ u ′′ ≤ u ′. t ′ setinterleaves3tick-join ((u ′′, v ′), A))›

〈proof 〉

4.1.6 Hiding Events
lemma setinterleavesptick-trace-hide :

‹t setinterleaves3tick-join ((u, v), S) =⇒

37

trace-hide t (ev ‘ A) setinterleaves3tick-join
((trace-hide u (ev ‘ A), trace-hide v (ev ‘ A)), S)›

〈proof 〉

lemma trace-hide-map-map-eventptick :
‹trace-hide (map (map-eventptick f g) t) S =
map (map-eventptick f g) (trace-hide t (map-eventptick f g −‘ S))›
〈proof 〉

lemma tickFree-trace-hide-map-ev-comp-of-ev :
‹tF t =⇒ trace-hide (map (ev ◦ of-ev) t) (ev ‘ A) =

map (ev ◦ of-ev) (trace-hide t (ev ‘ A))›
〈proof 〉

lemma tickFree-disjoint-setinterleavesptick-appendL :
‹tF u1 =⇒ {a. ev a ∈ set u1} ∩ A = {} =⇒ t setinterleaves3tick-join ((u2 , v),

A)
=⇒ map (ev ◦ of-ev) u1 @ t setinterleaves3tick-join ((u1 @ u2 , v), A)›

〈proof 〉

corollary tickFree-disjoint-setinterleavesptick-appendR :
‹[[tF v1 ; {a. ev a ∈ set v1} ∩ A = {}; t setinterleaves3tick-join ((u, v2), A)]]

=⇒ map (ev ◦ of-ev) v1 @ t setinterleaves3tick-join ((u, v1 @ v2), A)›
〈proof 〉

lemma tickFree-disjoint-setinterleavesptick-append-tailL :
‹t @ map (ev ◦ of-ev) u2 setinterleaves3tick-join ((u1 @ u2 , v), A)›
if ‹tF u2 › ‹{a. ev a ∈ set u2} ∩ A = {}› ‹t setinterleaves3tick-join ((u1 , v), A)›
〈proof 〉

corollary tickFree-disjoint-setinterleavesptick-append-tailR :
‹[[tF v2 ; {a. ev a ∈ set v2} ∩ A = {}; t setinterleaves3tick-join ((u, v1), A)]]

=⇒ t @ map (ev ◦ of-ev) v2 setinterleaves3tick-join ((u, v1 @ v2), A)›
〈proof 〉

lemma disjoint-trace-hide-setinterleavesptick :
‹t setinterleaves3tick-join
((trace-hide u (ev ‘ A), trace-hide v (ev ‘ A)), S) =⇒
∃ t ′. t = trace-hide t ′ (ev ‘ A) ∧
t ′ setinterleaves3tick-join ((u, v), S)› if ‹A ∩ S = {}›

for t :: ‹(′a, ′t) traceptick› and u :: ‹(′a, ′r) traceptick› and v :: ‹(′a, ′s) traceptick›
〈proof 〉

38

lemma setinterleavesptick-inj-map-map-eventptick-iff-weak :
‹map (map-eventptick f id) t setinterleaves3tick-join
((map (map-eventptick f id) u, map (map-eventptick f id) v), f ‘ A) ←→
t setinterleaves3tick-join ((u, v), A)› if ‹inj f ›
〈proof 〉

lemma setinterleavesptick-inj-map-map-eventptick-iff-strong :
‹t setinterleaves3tick-join
((map (map-eventptick f id) u, map (map-eventptick f id) v), f ‘ A) ←→
(∃ t ′. t = map (map-eventptick f id) t ′ ∧
t ′ setinterleaves3tick-join ((u, v), A))› if ‹inj f ›

— We could probably prove a stronger version with inj-on f (A ∪ {a. ev a ∈ set
u ∨ ev a ∈ set v}) instead of inj f.
〈proof 〉

lemma setinterleavesptick-append-setinterleavesptick :
‹t1 @ t2 setinterleaves3tick-join ((u1 @ u2 , v1 @ v2), A)›
if ‹t1 setinterleaves3tick-join ((u1 , v1), A)›

and ‹t2 setinterleaves3tick-join ((u2 , v2), A)›
〈proof 〉

lemma setinterleavesptick-set-subsetL :
‹t setinterleaves3tick-join ((u, v), A) =⇒
{a. ev a ∈ set (drop n u)} ⊆ {a. ev a ∈ set (drop n t)}›

〈proof 〉

lemma setinterleavesptick-set-subsetR :
‹t setinterleaves3tick-join ((u, v), A) =⇒
{a. ev a ∈ set (drop n v)} ⊆ {a. ev a ∈ set (drop n t)}›
〈proof 〉

4.2 Synchronization Product

4.2.1 Definition
definition super-ref-Syncptick ::

‹[′r ⇒ ′s ⇒ ′t option, (′a, ′r) refusalptick, ′a set, (′a, ′s) refusalptick] ⇒ (′a, ′t)
refusalptick›

39

where ‹super-ref-Syncptick tick-join X-P A X-Q ≡
{ev a |a. ev a ∈ X-P ∧ ev a ∈ X-Q ∨ (a ∈ A ∧ (ev a ∈ X-P ∨ ev a ∈

X-Q))} ∪
{3(r-s) |r s r-s. tick-join r s = br-sc ∧ (3(r) ∈ X-P ∨ 3(s) ∈ X-Q)} ∪

— This is the last addition: since we generalize with the parameter tick-join,
we must add the following term to refuse the unreachable ticks.

{3(r-s) |r-s. @ r s. tick-join r s = br-sc}›

For proving that the invariant is-process is preserved, we will need a kind of
injectivity for the parameter tick-join. We implement this through a locale.
locale Syncptick-locale =

fixes tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option› (infixl ‹⊗3› 100)
assumes inj-tick-join :

‹r ⊗3 s = br-sc =⇒ r ′ ⊗3 s ′ = br-sc =⇒ r ′ = r ∧ s ′ = s›
begin

sublocale Syncptick-locale-sym : Syncptick-locale ‹λs r . r ⊗3 s›
〈proof 〉

lift-definition Syncptick ::
‹[(′a, ′r) processptick, ′a set, (′a, ′s) processptick] ⇒ (′a, ′t) processptick›
(‹(- [[-]]3 -)› [70 , 0 , 71] 70)
is ‹λP A Q.

({(t, X). ∃ t-P t-Q X-P X-Q.
(t-P, X-P) ∈ F P ∧ (t-Q, X-Q) ∈ F Q ∧
t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
X ⊆ super-ref-Syncptick (⊗3) X-P A X-Q} ∪

{(t @ u, X) |t u t-P t-Q X .
ftF u ∧ (tF t ∨ u = []) ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)},

{t @ u |t u t-P t-Q.
ftF u ∧ (tF t ∨ u = []) ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)})›

〈proof 〉

Here X ⊆ super-ref-Syncptick (⊗3) X-P A X-Q may seem surprising (in-
stead of for example X = super-ref-Syncptick (⊗3) X-P A X-Q, closer to the
specification of Sync). Actually, edge cases in the behaviour of tick ensure
that a definition with the latter would violate the invariant.
end

abbreviation (in Syncptick-locale) Interptick ::
‹[(′a, ′r) processptick, (′a, ′s) processptick] ⇒
(′a, ′t) processptick› (‹(- |||3 -)› [72 , 73] 72)

where ‹P |||3 Q ≡ P [[{}]]3 Q›

40

abbreviation (in Syncptick-locale) Parptick ::
‹[(′a, ′r) processptick, (′a, ′s) processptick] ⇒
(′a, ′t) processptick› (‹(- ||3 -)› [74 , 75] 74)

where ‹P ||3 Q ≡ P [[UNIV]]3 Q›

notation (in Syncptick-locale) Syncptick-locale-sym.Syncptick
(‹(- [[-]]3sym -)› [70 , 0 , 71] 70)

notation (in Syncptick-locale) Syncptick-locale-sym.Interptick

(‹(- |||3sym -)› [72 , 73] 72)

notation (in Syncptick-locale) Syncptick-locale-sym.Parptick

(‹(- ||3sym -)› [74 , 75] 74)

4.2.2 Projections
context Syncptick-locale begin

lemma D-Syncptick ′ :
‹D (P [[A]]3 Q) =
{t @ u |t u t-P t-Q.

ftF u ∧ (tF t ∨ u = []) ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)}›

〈proof 〉

corollary D-Syncptick :
— This version is easier to use.
‹D (P [[A]]3 Q) =
{t @ u |t u t-P t-Q.

tF t ∧ ftF u ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)}›

(is ‹- = ?rhs›)
〈proof 〉

lemma F-Syncptick ′ :
‹F (P [[A]]3 Q) =
{(t, X). ∃ t-P t-Q X-P X-Q.

(t-P, X-P) ∈ F P ∧ (t-Q, X-Q) ∈ F Q ∧
t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
X ⊆ super-ref-Syncptick (⊗3) X-P A X-Q} ∪

{(t @ u, X) |t u t-P t-Q X .
ftF u ∧ (tF t ∨ u = []) ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)}›

〈proof 〉

lemma F-Syncptick :
‹F (P [[A]]3 Q) =
{(t, X). ∃ t-P t-Q X-P X-Q.

41

(t-P, X-P) ∈ F P ∧ (t-Q, X-Q) ∈ F Q ∧
t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
X ⊆ super-ref-Syncptick (⊗3) X-P A X-Q} ∪

{(t @ u, X) |t u t-P t-Q X .
tF t ∧ ftF u ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)}›

〈proof 〉

lemma T-Syncptick ′ :
‹T (P [[A]]3 Q) =
{t. ∃ t-P t-Q. t-P ∈ T P ∧ t-Q ∈ T Q ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A)}

∪
{t @ u |t u t-P t-Q.

ftF u ∧ (tF t ∨ u = []) ∧
t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)}›

〈proof 〉

lemma T-Syncptick :
‹T (P [[A]]3 Q) =
{t. ∃ t-P t-Q. t-P ∈ T P ∧ t-Q ∈ T Q ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A)}

∪
{t @ u |t u t-P t-Q.

tF t ∧ ftF u ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)}›

〈proof 〉

lemmas Syncptick-projs ′ = F-Syncptick ′ D-Syncptick ′ T-Syncptick ′

— Classical versions, but the ones below are often more convenient to use.

lemmas Syncptick-projs = F-Syncptick D-Syncptick T-Syncptick

lemma (in Syncptick-locale) Syncptick-same-tick-join-on-strict-ticks-of :
‹Syncptick-locale.Syncptick tick-join ′ P S Q = P [[S]]3 Q›
if ‹Syncptick-locale tick-join ′› and ‹

∧
r s. r ∈ 3s(P) =⇒ s ∈ 3s(Q) =⇒ tick-join ′

r s = r ⊗3 s›
〈proof 〉

4.2.3 First Properties
abbreviation range-tick-join :: ‹ ′t set›

where ‹range-tick-join ≡ {r-s |r-s r s. r ⊗3 s = br-sc}›

lemma setinterleavesptick-imp-set-range-tick-join :
‹t setinterleaves3(⊗3) ((u, v), A) =⇒
{r-s. 3(r-s) ∈ set t} ⊆ range-tick-join›

42

〈proof 〉

end

lemma
— Of course not suitable for simplifier.
‹t setinterleaves3λs r . tick-join r s ((v, u), A) ←→
t setinterleaves3λr s. tick-join r s ((u, v), A)›
〈proof 〉

lemma super-ref-Syncptick-sym :
— Of course not suitable for simplifier.
‹super-ref-Syncptick (λs r . tick-join r s) X-Q S X-P =
super-ref-Syncptick (λr s. tick-join r s) X-P S X-Q›
〈proof 〉

lemma super-ref-Syncptick-mono :
‹A ⊆ A ′ =⇒ X-P ⊆ X-P ′ =⇒ X-Q ⊆ X-Q ′ =⇒
super-ref-Syncptick tick-join X-P A X-Q ⊆
super-ref-Syncptick tick-join X-P ′ A ′ X-Q ′›
〈proof 〉

context Syncptick-locale begin

lemma Syncptick-sym : ‹Q [[A]]3sym P = P [[A]]3 Q›
〈proof 〉

lemma interpretable-inj-on-range-tick-join :
‹inj-on g range-tick-join =⇒
Syncptick-locale (λr s. case r ⊗3 s of br-sc ⇒ bg r-sc | ♦ ⇒ ♦)›
〈proof 〉

lemma inj-on-map-map-eventptick-setinterleavesptick :
‹t setinterleaves3(⊗3) ((u, v), A) =⇒
map (map-eventptick id g) t
setinterleaves3λr s. case r ⊗3 s of br-sc ⇒ bg r-sc | ♦ ⇒ ♦ ((u, v), A)›
(is ‹- =⇒ - setinterleaves3?tick-join ′ ((u, v), A)›)
if inj-on-g : ‹inj-on g range-tick-join›
〈proof 〉

43

lemma vimage-inj-on-subset-super-ref-Syncptick-iff :
‹map-eventptick id g −‘ X ⊆
super-ref-Syncptick (⊗3) X-P A X-Q ←→
X ⊆ super-ref-Syncptick (λr s. case r ⊗3 s of br-sc ⇒ bg r-sc | ♦ ⇒ ♦) X-P A

X-Q›
(is ‹?lhs1 ⊆ ?lhs2 ←→ X ⊆ ?rhs›)
if inj-on-g : ‹inj-on g range-tick-join›
〈proof 〉

The two following lemmas are necessary for the proof of continuity.
lemma finite-setinterleavesptick-tick-join :

‹finite {(u, v). t setinterleaves3(⊗3) ((u, v), A)}›
(is ‹finite {(u, v). ?f t u v}›)
〈proof 〉

lemma finite-setinterleavesptick-tick-join-Syncptick:
‹finite {(t-P, t-Q, u). u setinterleaves3(⊗3) ((t-P, t-Q), A) ∧

(∃ v. t = u @ v ∧ ftF v ∧ (tF u ∨ v = []))}›
(is ‹finite {(t-P, t-Q, u). ?f u t-P t-Q ∧ ?g t u}›)
〈proof 〉

end

44

Chapter 5

Some Work on Renaming

unbundle option-type-syntax

This chapter contains several developments related to the Renaming oper-
ator. Some are not directly related to this session and may be moved to
HOL-CSP or HOL-CSPM in the future, while others specifically concern the
operator Syncptick-locale.Syncptick.

5.1 Tick Swap Operator

We want to define an operator for swapping the values inside termination.
Intuitively, we want TickSwap (SKIP (r , s)) = SKIP (s, r).

5.1.1 Preliminaries
Swapping an Event

We start by defining tick-swap, which is swapping the values inside termina-
tion but only for an event. Then this will be generalized to a trace, a refusal
and a failure.
fun tick-swap :: ‹(′a, ′r × ′s) eventptick ⇒ (′a, ′s × ′r) eventptick›

where ‹tick-swap (ev a) = ev a›
| ‹tick-swap 3((r , s)) = 3((s, r))›

lemma tick-swap-tick : ‹tick-swap 3(r-s) = (case r-s of (r , s) ⇒ 3((s, r)))›
〈proof 〉

lemma tick-swap-tick-swap [simp] : ‹tick-swap (tick-swap e) = e›
〈proof 〉

45

lemma tick-swap-comp-tick-swap [simp] : ‹tick-swap ◦ tick-swap = id›
〈proof 〉

lemma inj-tick-swap [simp] : ‹inj tick-swap›
〈proof 〉

lemma surj-tick-swap [simp] : ‹surj tick-swap›
〈proof 〉

lemma bij-tick-swap [simp] : ‹bij tick-swap›
〈proof 〉

lemma bij-betw-tick-swap :
‹bij-betw tick-swap (range ev) (range ev)›
‹bij-betw tick-swap (range tick) (range tick)›
〈proof 〉

lemma ev-eq-tick-swap-iff [simp] : ‹ev a = tick-swap e ←→ e = ev a›
and tick-swap-eq-ev-iff [simp] : ‹tick-swap e = ev a ←→ e = ev a›
and tick-eq-tick-swap-iff [simp] : ‹3((r , s)) = tick-swap e ←→ e = 3((s, r))›
and tick-swap-eq-tick-iff [simp] : ‹tick-swap e = 3((r , s)) ←→ e = 3((s, r))›
〈proof 〉

Swapping a Trace

fun trace-tick-swap :: ‹(′a, (′r × ′s)) traceptick ⇒ (′a, (′s × ′r)) traceptick›
where ‹trace-tick-swap [] = []›
| ‹trace-tick-swap (ev a # t) = ev a # trace-tick-swap t›
| ‹trace-tick-swap (3((r , s)) # t) = 3((s, r)) # trace-tick-swap t›

lemma trace-tick-swap-tick-Cons :
‹trace-tick-swap (3(r-s) # t) = (case r-s of (r , s) ⇒ 3((s, r)) # trace-tick-swap

t)›
〈proof 〉

lemma trace-tick-swap-def : ‹trace-tick-swap = map tick-swap›
〈proof 〉

lemma trace-tick-swap-append : ‹trace-tick-swap (t @ u) = trace-tick-swap t @
trace-tick-swap u›
〈proof 〉

lemma trace-tick-swap-singl [simp] : ‹trace-tick-swap [e] = [tick-swap e]›
〈proof 〉

lemma trace-tick-swap-comp-trace-tick-swap [simp] : ‹trace-tick-swap ◦ trace-tick-swap

46

= id›
〈proof 〉

lemma trace-tick-swap-trace-tick-swap [simp] : ‹trace-tick-swap (trace-tick-swap t)
= t›
〈proof 〉

lemma inj-trace-tick-swap [simp] : ‹inj trace-tick-swap›
〈proof 〉

lemma surj-trace-tick-swap [simp] : ‹surj trace-tick-swap›
〈proof 〉

lemma bij-trace-tick-swap [simp] : ‹bij trace-tick-swap›
〈proof 〉

lemma strict-mono-trace-tick-swap : ‹strict-mono trace-tick-swap›
〈proof 〉

lemma image-trace-tick-swap-min-elems :
‹trace-tick-swap ‘ (min-elems T) = min-elems (trace-tick-swap ‘ T)›
〈proof 〉

lemma Nil-eq-trace-tick-swap-iff [iff] : ‹[] = trace-tick-swap t ←→ t = []›
and trace-tick-swap-eq-Nil-iff [iff] : ‹trace-tick-swap t = [] ←→ t = []›
〈proof 〉

lemma ev-Cons-eq-trace-tick-swap-iff [iff] :
‹ev a # t = trace-tick-swap u ←→ u = ev a # trace-tick-swap t›
and trace-tick-swap-eq-ev-Cons-iff [iff] :
‹trace-tick-swap u = ev a # t ←→ u = ev a # trace-tick-swap t›
〈proof 〉

lemma tick-Cons-eq-trace-tick-swap-iff [iff] :
‹3((r , s)) # t = trace-tick-swap u ←→ u = 3((s, r)) # trace-tick-swap t›
and trace-tick-swap-eq-tick-Cons-iff [iff] :
‹trace-tick-swap u = 3((r , s)) # t ←→ u = 3((s, r)) # trace-tick-swap t›
〈proof 〉

lemma snoc-ev-eq-trace-tick-swap-iff [iff] :
‹t @ [ev a] = trace-tick-swap u ←→ u = trace-tick-swap t @ [ev a]›
and trace-tick-swap-eq-snoc-ev-iff [iff] :
‹trace-tick-swap u = t @ [ev a] ←→ u = trace-tick-swap t @ [ev a]›
〈proof 〉

47

lemma snoc-tick-eq-trace-tick-swap-iff [iff] :
‹t @ [3((r , s))] = trace-tick-swap u ←→ u = trace-tick-swap t @ [3((s, r))]›
and trace-tick-swap-eq-snoc-tick-iff [iff] :
‹trace-tick-swap u = t @ [3((r , s))] ←→ u = trace-tick-swap t @ [3((s, r))]›
〈proof 〉

lemma trace-tick-swap-eq-ev-ConsE :
‹trace-tick-swap u = ev a # t =⇒ (

∧
u ′. u = ev a # u ′ =⇒ t = trace-tick-swap

u ′ =⇒ thesis) =⇒ thesis›
and trace-tick-swap-eq-tick-ConsE :
‹trace-tick-swap u = 3((r , s)) # t =⇒ (

∧
u ′. u = 3((s, r)) # u ′ =⇒ t =

trace-tick-swap u ′ =⇒ thesis) =⇒ thesis›
and trace-tick-swap-eq-snoc-evE :
‹trace-tick-swap u = t @ [ev a] =⇒ (

∧
u ′. u = u ′ @ [ev a] =⇒ t = trace-tick-swap

u ′ =⇒ thesis) =⇒ thesis›
and trace-tick-swap-eq-snoc-tickE :
‹trace-tick-swap u = t @ [3((r , s))] =⇒ (

∧
u ′. u = u ′ @ [3((s, r))] =⇒ t =

trace-tick-swap u ′ =⇒ thesis) =⇒ thesis›
〈proof 〉

lemma trace-tick-swap-tickFree :
‹tF t =⇒ trace-tick-swap t = map (ev ◦ of-ev) t› for t :: ‹(′a, (′r × ′s)) traceptick›
〈proof 〉

lemma trace-tick-swap-front-tickFree :
‹trace-tick-swap t = (if tF t then map (ev ◦ of-ev) t

else map (ev ◦ of-ev) (butlast t) @ [case last t of 3((r , s)) ⇒ 3((s,
r))])›

if ‹ftF t› for t :: ‹(′a, (′r × ′s)) traceptick›
〈proof 〉

lemma tickFree-trace-tick-swap-iff [simp] : ‹tF (trace-tick-swap t) ←→ tF t›
〈proof 〉

lemma front-tickFree-trace-tick-swap-iff [simp] : ‹ftF (trace-tick-swap t) ←→ ftF
t›
〈proof 〉

Swapping a Refusal

definition refusal-tick-swap :: ‹(′a, (′r × ′s)) refusalptick ⇒ (′a, (′s × ′r)) re-
fusalptick›

where ‹refusal-tick-swap X = tick-swap ‘ X›

lemma refusal-tick-swap-empty [simp] : ‹refusal-tick-swap {} = {}›
〈proof 〉

48

lemma refusal-tick-swap-insert [simp] :
‹refusal-tick-swap (insert x X) = insert (tick-swap x) (refusal-tick-swap X)›
〈proof 〉

lemma refusal-tick-swap-union :
‹refusal-tick-swap (X ∪ Y) = refusal-tick-swap X ∪ refusal-tick-swap Y ›
〈proof 〉

lemma refusal-tick-swap-diff :
‹refusal-tick-swap (X − Y) = refusal-tick-swap X − refusal-tick-swap Y ›
〈proof 〉

lemma refusal-tick-swap-inter :
‹refusal-tick-swap (X ∩ Y) = refusal-tick-swap X ∩ refusal-tick-swap Y ›
〈proof 〉

lemma refusal-tick-swap-singl : ‹refusal-tick-swap {e} = {tick-swap e}› 〈proof 〉

lemma refusal-tick-swap-comp-refusal-tick-swap [simp] :
‹refusal-tick-swap ◦ refusal-tick-swap = id›
〈proof 〉

lemma refusal-tick-swap-refusal-tick-swap [simp] :
‹refusal-tick-swap (refusal-tick-swap X) = X›
〈proof 〉

lemma inj-refusal-tick-swap [simp] : ‹inj refusal-tick-swap›
〈proof 〉

lemma surj-refusal-tick-swap [simp] : ‹surj refusal-tick-swap›
〈proof 〉

lemma bij-refusal-tick-swap [simp] : ‹bij refusal-tick-swap›
〈proof 〉

lemma strict-mono-refusal-tick-swap : ‹strict-mono refusal-tick-swap›
〈proof 〉

lemma empty-eq-refusal-tick-swap-iff [iff] : ‹{} = refusal-tick-swap X ←→ X =
{}›

and refusal-tick-swap-eq-empty-iff [iff] : ‹refusal-tick-swap X = {} ←→ X = {}›
〈proof 〉

lemma insert-ev-eq-refusal-tick-swap-iff [iff] :
‹insert (ev a) X = refusal-tick-swap Y ←→ Y = insert (ev a) (refusal-tick-swap

X)›

49

and refusal-tick-swap-eq-insert-ev-iff [iff] :
‹refusal-tick-swap Y =insert (ev a) X ←→ Y = insert (ev a) (refusal-tick-swap

X)›
〈proof 〉

lemma insert-tick-eq-refusal-tick-swap-iff [iff] :
‹insert 3((r , s)) X = refusal-tick-swap Y ←→ Y = insert 3((s, r)) (refusal-tick-swap

X)›
and refusal-tick-swap-eq-insert-tick-iff [iff] :
‹refusal-tick-swap Y = insert 3((r , s)) X ←→ Y = insert 3((s, r)) (refusal-tick-swap

X)›
〈proof 〉

lemma refusal-tick-swap-eq-insert-evE :
‹refusal-tick-swap Y = insert (ev a) X =⇒ (

∧
Y ′. Y = insert (ev a) Y ′ =⇒ X

= refusal-tick-swap Y ′ =⇒ thesis) =⇒ thesis›
and refusal-tick-swap-eq-insert-tickE :
‹refusal-tick-swap Y = insert 3((r , s)) X =⇒ (

∧
Y ′. Y = insert 3((s, r)) Y ′

=⇒ X = refusal-tick-swap Y ′ =⇒ thesis) =⇒ thesis›
〈proof 〉

lemma refusal-tick-swap-tickFree :
‹X ⊆ range ev =⇒ refusal-tick-swap X = (ev ◦ of-ev) ‘ X›
〈proof 〉

lemma tickFree-refusal-tick-swap-iff :
‹refusal-tick-swap X ⊆ range ev ←→ X ⊆ range ev›
〈proof 〉

The old version of interleaving of traces is not affected.

lemma setinterleaves-imp-setinterleaves-trace-tick-swap :
‹t setinterleaves ((u, v), S) =⇒
trace-tick-swap t setinterleaves ((trace-tick-swap u, trace-tick-swap v), refusal-tick-swap

S)›
〈proof 〉

lemma trace-tick-swap-setinterleaves-iff :
‹trace-tick-swap t setinterleaves ((u, v), S) ←→
t setinterleaves ((trace-tick-swap u, trace-tick-swap v), refusal-tick-swap S)›
〈proof 〉

Swapping a Failure
definition failure-tick-swap :: ‹(′a, (′r × ′s)) failureptick ⇒ (′a, (′s × ′r)) fail-
ureptick›
where ‹failure-tick-swap F ≡ case F of (t, X)⇒ (trace-tick-swap t, refusal-tick-swap

X)›

50

lemma failure-tick-swap-empty [simp] : ‹failure-tick-swap ([], {}) = ([], {})›
〈proof 〉

lemma failure-tick-swap-comp-failure-tick-swap [simp] :
‹failure-tick-swap ◦ failure-tick-swap = id›
〈proof 〉

lemma failure-tick-swap-failure-tick-swap [simp] :
‹failure-tick-swap (failure-tick-swap F) = F›
〈proof 〉

lemma inj-failure-tick-swap [simp] : ‹inj failure-tick-swap›
〈proof 〉

lemma surj-failure-tick-swap [simp] : ‹surj failure-tick-swap›
〈proof 〉

lemma bij-failure-tick-swap [simp] : ‹bij failure-tick-swap›
〈proof 〉

lemma empty-eq-failure-tick-swap-iff [iff] : ‹([], {}) = failure-tick-swap F ←→ F
= ([], {})›

and failure-tick-swap-eq-empty-iff [iff] : ‹failure-tick-swap F = ([], {}) ←→ F =
([], {})›
〈proof 〉

5.1.2 The Operator
Definition
lift-definition TickSwap :: ‹(′a, ′r × ′s) processptick ⇒ (′a, ′s × ′r) processptick›

is ‹λP. ({(t, X). failure-tick-swap (t, X) ∈ F P}, {t. trace-tick-swap t ∈ D P})›
— One might expect λP. (failure-tick-swap ‘ F P, trace-tick-swap ‘ D P) instead.

This is equivalent, see the projections below, but easier for the following proof
obligation.
〈proof 〉

Projections
lemma F-TickSwap ′ : ‹F (TickSwap P) = {(t, X). failure-tick-swap (t, X) ∈ F
P}›
〈proof 〉

lemma D-TickSwap ′ : ‹D (TickSwap P) = {t. trace-tick-swap t ∈ D P}›
〈proof 〉

51

lemma T-TickSwap ′ : ‹T (TickSwap P) = {t. trace-tick-swap t ∈ T P}›
〈proof 〉

lemmas TickSwap-projs ′ = F-TickSwap ′ D-TickSwap ′ T-TickSwap ′

This is not very intuitive. The following lemmas are more intuitive.
lemma F-TickSwap : ‹F (TickSwap P) = failure-tick-swap ‘ F P›
〈proof 〉

lemma D-TickSwap : ‹D (TickSwap P) = trace-tick-swap ‘ D P›
〈proof 〉

lemma T-TickSwap : ‹T (TickSwap P) = trace-tick-swap ‘ T P›
〈proof 〉

lemmas TickSwap-projs = F-TickSwap D-TickSwap T-TickSwap

We finally give the following versions, sometimes more convenient to use.
lemma F-TickSwap ′′ : ‹F (TickSwap P) = {(trace-tick-swap t, refusal-tick-swap
X)| t X . (t, X) ∈ F P}›
〈proof 〉

lemma D-TickSwap ′′ : ‹D (TickSwap P) = {trace-tick-swap t| t. t ∈ D P}›
〈proof 〉

lemma T-TickSwap ′′ : ‹T (TickSwap P) = {trace-tick-swap t| t. t ∈ T P}›
〈proof 〉

lemmas TickSwap-projs ′′ = F-TickSwap ′′ D-TickSwap ′′ T-TickSwap ′′

Properties
lemma events-TickSwap [simp] : ‹events-of (TickSwap P) = events-of P›
〈proof 〉

lemma ticks-TickSwap [simp] : ‹ticks-of (TickSwap P) = {(s, r). (r , s) ∈ ticks-of
P}›
〈proof 〉

lemma strict-ticks-TickSwap [simp] :
‹strict-ticks-of (TickSwap P) = {(s, r). (r , s) ∈ strict-ticks-of P}›
〈proof 〉

lemma trace-tick-swap-image-setinterleavingP air :
‹trace-tick-swap ‘ setinterleavingptick (λr s. b(r , s)c, u, A, v) =
setinterleavingptick (λr s. b(r , s)c, v, A, u)›

for u :: ‹(′a, ′r) traceptick› and v :: ‹(′a, ′s) traceptick›
〈proof 〉

52

lemma trace-tick-swap-setinterleavesP air-iff [iff] :
‹trace-tick-swap t setinterleaves3λr s. b(r , s)c ((u, v), A) ←→
t setinterleaves3λr s. b(r , s)c ((v, u), A)›
〈proof 〉

The following theorem is a bridge with the existing operators: TickSwap can
be expressed via the Renaming operator.
lemma tick-swap-is-map-eventptick : ‹tick-swap = map-eventptick id prod.swap›
〈proof 〉

lemma trace-tick-swap-is-map-map-eventptick :
‹trace-tick-swap = map (map-eventptick id prod.swap)›
〈proof 〉

lemma refusal-tick-swap-is-image-map-eventptick :
‹refusal-tick-swap = (‘) (map-eventptick id prod.swap)›
〈proof 〉

theorem TickSwap-is-Renaming :
‹TickSwap P = Renaming P id prod.swap› (is ‹?lhs = ?rhs›)
〈proof 〉

lemma TickSwap-TickSwap [simp] : ‹TickSwap (TickSwap P) = P›
〈proof 〉

lemma TickSwap-comp-TickSwap [simp] : ‹TickSwap ◦ TickSwap = id›
〈proof 〉

lemma TickSwap-eq-iff-eq-TickSwap : ‹TickSwap P = Q ←→ P = TickSwap Q›
〈proof 〉

lemma inj-TickSwap [simp] : ‹inj TickSwap›
〈proof 〉

lemma surj-TickSwap [simp] : ‹surj TickSwap›
〈proof 〉

lemma bij-TickSwap [simp] : ‹bij TickSwap›
〈proof 〉

lemma strict-mono-TickSwap : ‹strict-mono TickSwap›
〈proof 〉

Monotonicity Properties
lemma mono-TickSwap : ‹P v Q =⇒ TickSwap P v TickSwap Q›

53

〈proof 〉

lemma mono-TickSwap-FD : ‹P vFD Q =⇒ TickSwap P vFD TickSwap Q›
and mono-TickSwap-DT : ‹P vDT Q =⇒ TickSwap P vDT TickSwap Q›
and mono-TickSwap-F : ‹P vF Q =⇒ TickSwap P vF TickSwap Q›
and mono-TickSwap-D : ‹P vD Q =⇒ TickSwap P vD TickSwap Q›
and mono-TickSwap-T : ‹P vT Q =⇒ TickSwap P vT TickSwap Q›
〈proof 〉

lemmas monos-TickSwap = mono-TickSwap mono-TickSwap-FD mono-TickSwap-DT
mono-TickSwap-F mono-TickSwap-D mono-TickSwap-T

lemma le-approx-TickSwap-iff : ‹TickSwap P v TickSwap Q ←→ P v Q›
and FD-TickSwap-iff : ‹TickSwap P vFD TickSwap Q ←→ P vFD Q›
and DT-TickSwap-iff : ‹TickSwap P vDT TickSwap Q ←→ P vDT Q›
and F-TickSwap-iff : ‹TickSwap P vF TickSwap Q ←→ P vF Q›
and D-TickSwap-iff : ‹TickSwap P vD TickSwap Q ←→ P vD Q›
and T-TickSwap-iff : ‹TickSwap P vT TickSwap Q ←→ P vT Q›
〈proof 〉

lemmas le-TickSwap-iff = le-approx-TickSwap-iff FD-TickSwap-iff DT-TickSwap-iff
F-TickSwap-iff D-TickSwap-iff T-TickSwap-iff

Continuity

Continuity is a direct corollary of the continuity of Renaming.
lemma TickSwap-cont[simp] : ‹cont P =⇒ cont (λx. TickSwap (P x))›
〈proof 〉

Algebraic Laws
Constant Processes lemma TickSwap-STOP [simp] : ‹TickSwap STOP =
STOP›
〈proof 〉

lemma TickSwap-is-STOP-iff [simp] : ‹TickSwap P = STOP ←→ P = STOP›
〈proof 〉

lemma TickSwap-BOT [simp] : ‹TickSwap ⊥ = ⊥›
〈proof 〉

lemma TickSwap-is-BOT-iff [simp] : ‹TickSwap P = ⊥ ←→ P = ⊥›
〈proof 〉

lemma TickSwap-SKIP [simp] : ‹TickSwap (SKIP (r , s)) = SKIP (s, r)›
〈proof 〉

54

lemma TickSwap-is-SKIP-iff [simp] : ‹TickSwap P = SKIP (r , s) ←→ P = SKIP
(s, r)›
〈proof 〉

lemma TickSwap-SKIPS [simp] : ‹TickSwap (SKIPS R-S) = SKIPS {(s, r). (r ,
s) ∈ R-S}›
〈proof 〉

lemma TickSwap-is-SKIPS-iff [simp] :
‹TickSwap P = SKIPS R-S ←→ P = SKIPS {(s, r). (r , s) ∈ R-S}›
〈proof 〉

Binary (or less) Operators lemma TickSwap-Ndet [simp] : ‹TickSwap (P
u Q) = TickSwap P u TickSwap Q›
〈proof 〉

lemma TickSwap-is-Ndet-iff [simp] : ‹TickSwap P = Q u R ←→ P = TickSwap
Q u TickSwap R›
〈proof 〉

lemma TickSwap-Det [simp] :
‹TickSwap (P � Q) = TickSwap P � TickSwap Q›
〈proof 〉

lemma TickSwap-is-Det-iff [simp] : ‹TickSwap P = Q � R ←→ P = TickSwap
Q � TickSwap R›
〈proof 〉

lemma TickSwap-Sliding [simp] : ‹TickSwap (P B Q) = TickSwap P B TickSwap
Q›
〈proof 〉

lemma TickSwap-is-Sliding-iff [simp] : ‹TickSwap P = Q B R ←→ P = TickSwap
Q B TickSwap R›
〈proof 〉

lemma TickSwap-Sync [simp] :
‹TickSwap (P [[S]] Q) = TickSwap P [[S]] TickSwap Q›
〈proof 〉

lemma TickSwap-is-Sync-iff [simp] :
‹TickSwap P = Q [[S]] R ←→ P = TickSwap Q [[S]] TickSwap R›
〈proof 〉

55

lemma TickSwap-Seq [simp] :
‹TickSwap (P ; Q) = TickSwap P ; TickSwap Q›
〈proof 〉

lemma TickSwap-is-Seq-iff [simp] :
‹TickSwap P = Q ; R ←→ P = TickSwap Q ; TickSwap R›
〈proof 〉

lemma TickSwap-Renaming [simp] :
‹TickSwap (Renaming P f g) =
Renaming (TickSwap P) f (prod.swap ◦ g ◦ prod.swap)›
〈proof 〉

lemma TickSwap-Renaming ′ :
‹TickSwap (Renaming P f g) = Renaming P f (prod.swap ◦ g)›
〈proof 〉

lemma TickSwap-is-Renaming-iff [simp] :
‹TickSwap P = Renaming Q f g ←→ P = Renaming (TickSwap Q) f (prod.swap
◦ g ◦ prod.swap)›
〈proof 〉

lemma TickSwap-Hiding [simp] : ‹TickSwap (P \ S) = TickSwap P \ S›
〈proof 〉

lemma TickSwap-is-Hiding-iff [simp] : ‹TickSwap P = Q \ S ←→ P = TickSwap
Q \ S›
〈proof 〉

lemma TickSwap-Interrupt [simp] :
‹TickSwap (P 4 Q) = TickSwap P 4 TickSwap Q›
〈proof 〉

lemma TickSwap-is-Interrupt-iff [simp] :
‹TickSwap P = Q 4 R ←→ P = TickSwap Q 4 TickSwap R›
〈proof 〉

lemma TickSwap-Throw [simp] :
‹TickSwap (P Θ a ∈ A. Q a) = TickSwap P Θ a ∈ A. TickSwap (Q a)›
〈proof 〉

lemma TickSwap-is-Throw-iff [simp] :
‹TickSwap P = Q Θ a ∈ A. R a ←→ P = TickSwap Q Θ a ∈ A. TickSwap (R

a)›

56

〈proof 〉

Architectural Operators lemma TickSwap-GlobalNdet [simp] :
‹TickSwap (ua ∈ A. P a) = ua ∈ A. TickSwap (P a)›
〈proof 〉

lemma TickSwap-is-GlobalNdet-iff [simp] :
‹TickSwap P = ua ∈ A. Q a ←→ P = ua ∈ A. TickSwap (Q a)›
〈proof 〉

lemma TickSwap-GlobalDet [simp] :
‹TickSwap (�a ∈ A. P a) = �a ∈ A. TickSwap (P a)›
〈proof 〉

lemma TickSwap-is-GlobalDet-iff [simp] :
‹TickSwap P = �a ∈ A. Q a ←→ P = �a ∈ A. TickSwap (Q a)›
〈proof 〉

lemma TickSwap-MultiSync [simp] :
‹TickSwap ([[S]] m ∈# M . P m) = [[S]] m ∈# M . TickSwap (P m)›
〈proof 〉

lemma TickSwap-is-TickSwap-MultiSync-iff [simp] :
‹TickSwap P = [[S]] m ∈# M . Q m ←→ P = [[S]] m ∈# M . TickSwap (Q m)›
〈proof 〉

lemma TickSwap-MultiSeq [simp] :
‹L 6= [] =⇒ TickSwap (SEQ l ∈@ L. P l) = SEQ l ∈@ L. TickSwap (P l)›
〈proof 〉

lemma TickSwap-is-MultiSeq-iff [simp] :
‹L 6= [] =⇒ TickSwap P = SEQ l ∈@ L. Q l ←→ P = SEQ l ∈@ L. TickSwap

(Q l)›
〈proof 〉

Communications lemma TickSwap-write0 [simp] : ‹TickSwap (e → P) = e
→ TickSwap P›
〈proof 〉

lemma TickSwap-is-write0-iff [simp] : ‹TickSwap P = e → Q ←→ P = e →
TickSwap Q›
〈proof 〉

lemma TickSwap-write [simp] : ‹TickSwap (c!e → P) = c!e → TickSwap P›
〈proof 〉

57

lemma TickSwap-is-write-iff [simp] : ‹TickSwap P = c!e → Q ←→ P = c!e →
TickSwap Q›
〈proof 〉

lemma TickSwap-Mprefix [simp] :
‹TickSwap (�a ∈ A → P a) = �a ∈ A → TickSwap (P a)›
〈proof 〉

lemma TickSwap-is-Mprefix-iff [simp] :
‹TickSwap P = (�a ∈ A → Q a) ←→ P = �a ∈ A → TickSwap (Q a)›
〈proof 〉

lemma TickSwap-read [simp] : ‹TickSwap (c?a∈A → P a) = c?a∈A → TickSwap
(P a)›
〈proof 〉

lemma TickSwap-is-read-iff [simp] :
‹TickSwap P = c?a∈A → Q a ←→ P = c?a∈A → TickSwap (Q a)›
〈proof 〉

lemma TickSwap-Mndetprefix [simp] :
‹TickSwap (ua ∈ A → P a) = ua ∈ A → TickSwap (P a)›
〈proof 〉

lemma TickSwap-is-Mndetprefix-iff [simp] :
‹TickSwap P = (ua ∈ A → Q a) ←→ P = ua ∈ A → TickSwap (Q a)›
〈proof 〉

lemma TickSwap-ndet-write [simp] : ‹TickSwap (c!!a∈A → P a) = c!!a∈A →
TickSwap (P a)›
〈proof 〉

lemma TickSwap-is-ndet-write-iff [simp] :
‹TickSwap P = c!!a∈A → Q a ←→ P = c!!a∈A → TickSwap (Q a)›
〈proof 〉

5.2 Splitting the Renaming Operator

We split the Renaming operator in two: the first one only renames the
“regular” events, the second one only the ticks.

58

5.2.1 Renaming only Events

abbreviation RenamingEv :: ‹[(′a, ′r) processptick, ′a ⇒ ′b] ⇒ (′b, ′r) pro-
cessptick›

where ‹RenamingEv P f ≡ Renaming P f id›

lemma RenamingEv-id-unfolded [iff] :
‹Renaming P f (λr . r) = RenamingEv P f › 〈proof 〉

lemmas strict-ticks-of-RenamingEv-subset = strict-ticks-of-Renaming-subset [where
g = id, simplified]

and strict-ticks-of-inj-on-RenamingEv = strict-ticks-of-inj-on-Renaming [where
g = id, simplified]

lemmas monos-RenamingEv = monos-Renaming[where g = id]

lemma RenamingEv-SKIP : ‹RenamingEv (SKIP r) f = SKIP r› 〈proof 〉

lemma RenamingEv-cont :
‹cont P =⇒ finitary f =⇒ cont (λx. RenamingEv (P x) f)› 〈proof 〉

lemma RenamingEv-Seq :
‹RenamingEv (P ; Q) f = RenamingEv P f ; RenamingEv Q f ›
〈proof 〉

declare Renaming-id [simp]

lemmas RenamingEv-id = Renaming-id
and RenamingEv-STOP = Renaming-STOP [where g = id]
and RenamingEv-BOT = Renaming-BOT [where g = id]
and RenamingEv-is-STOP-iff = Renaming-is-STOP-iff [where g = id]
and RenamingEv-is-BOT-iff = Renaming-is-BOT-iff [where g = id]

lemmas RenamingEv-Det = Renaming-Det [where g = id]
and RenamingEv-Ndet = Renaming-Ndet [where g = id]
and RenamingEv-Sliding = Renaming-Sliding [where g = id]
and RenamingEv-Interrupt = Renaming-Interrupt [where g = id]
and RenamingEv-write0 = Renaming-write0 [where g = id]
and RenamingEv-write = Renaming-write [where g = id]
and RenamingEv-comp = Renaming-comp [of - - - id id, simplified]
and RenamingEv-inv = Renaming-inv [where g = id, simplified]
and inv-RenamingEv = inv-Renaming [where g = id, simplified]

59

lemmas bij-RenamingEv-Sync = bij-Renaming-Sync [where g = id, sim-
plified]

and bij-RenamingEv-Hiding = bij-Renaming-Hiding [where g = id, simplified]
and inj-on-RenamingEv-Throw = inj-on-Renaming-Throw [where g = id]
and RenamingEv-fix = Renaming-fix [where g = id, simplified]

lemmas RenamingEv-distrib-GlobalDet = Renaming-distrib-GlobalDet [where g
= id]

and RenamingEv-distrib-GlobalNDet = Renaming-distrib-GlobalNdet [where g
= id]

and RenamingEv-Mprefix = Renaming-Mprefix [where g = id]
and RenamingEv-Mndetprefix = Renaming-Mndetprefix [where g =

id]
and RenamingEv-read = Renaming-read [where g = id]
and RenamingEv-ndet-write = Renaming-ndet-write [where g = id]

5.2.2 Renaming only Ticks
abbreviation RenamingTick :: ‹[(′a, ′r) processptick, ′r ⇒ ′s] ⇒ (′a, ′s) pro-
cessptick›

where ‹RenamingTick P g ≡ Renaming P id g›

lemma RenamingTick-id-unfolded [iff] :
‹Renaming P (λa. a) g = RenamingTick P g› 〈proof 〉

lemmas strict-ticks-of-RenamingTick-subset = strict-ticks-of-Renaming-subset [where
f = id]
and strict-ticks-of-inj-on-RenamingTick = strict-ticks-of-inj-on-Renaming [where

f = id, simplified]

lemmas monos-RenamingTick = monos-Renaming[where f = id]

lemma RenamingTick-cont :
‹cont P =⇒ finitary g =⇒ cont (λx. RenamingTick (P x) g)› 〈proof 〉

lemmas RenamingTick-id = Renaming-id
and RenamingTick-STOP = Renaming-STOP [where f = id]
and RenamingTick-SKIP = Renaming-SKIP [where f = id]
and RenamingTick-BOT = Renaming-BOT [where f = id]
and RenamingTick-is-STOP-iff = Renaming-is-STOP-iff [where f = id]
and RenamingTick-is-BOT-iff = Renaming-is-BOT-iff [where f = id]

lemmas RenamingTick-Seq = Renaming-Seq[where f = id]
and RenamingTick-Det = Renaming-Det [where f = id]
and RenamingTick-Ndet = Renaming-Ndet [where f = id]
and RenamingTick-Sliding = Renaming-Sliding [where f = id]

60

and RenamingTick-Interrupt = Renaming-Interrupt [where f = id]
and RenamingTick-write0 = Renaming-write0 [where f = id, simplified]
and RenamingTick-write = Renaming-write [where f = id, simplified]
and RenamingTick-comp = Renaming-comp [of - id id , simplified]
and RenamingTick-inv = Renaming-inv [where f = id, simplified]
and inv-RenamingTick = inv-Renaming [where f = id, simplified]

lemmas bij-RenamingTick-Sync = bij-Renaming-Sync [where f = id,
simplified]

and RenamingTick-fix = Renaming-fix [where f = id, simplified]

— The assumption bij g is actually not necessary for RenamingTick and (\), see
below.

lemma RenamingTick-Throw :
‹RenamingTick (P Θ a∈A. Q a) g = RenamingTick P g Θ a∈A. RenamingTick

(Q a) g›
〈proof 〉

lemmas RenamingTick-distrib-GlobalDet = Renaming-distrib-GlobalDet [where
f = id]

and RenamingTick-distrib-GlobalNDet = Renaming-distrib-GlobalNdet [where f
= id]

and RenamingTick-Mprefix = Renaming-Mprefix-image-inj [where f
= id, simplified]

and RenamingTick-Mndetprefix = Renaming-Mndetprefix-inj [where f
= id, simplified]

and RenamingTick-read = Renaming-read [where f = id,
simplified]

and RenamingTick-ndet-write = Renaming-ndet-write [where f =
id, simplified]

lemma RenamingEv-RenamingTick-is-Renaming :
‹RenamingEv (RenamingTick P g) f = Renaming P f g›
and RenamingTick-RenamingEv-is-Renaming :
‹RenamingTick (RenamingEv P f) g = Renaming P f g›
〈proof 〉

5.2.3 Properties
lemma isInfHidden-seqRun-imp-tickFree-seqRun :

‹isInfHidden-seqRun x P A t =⇒ tF (seqRun t x i)›
〈proof 〉

61

lemma tickFree-map-map-eventptick-is :
‹tF t =⇒ map (map-eventptick f g) t = map (ev ◦ f ◦ of-ev) t›
〈proof 〉

lemma RenamingTick-Hiding :
‹RenamingTick (P \ A) g = RenamingTick P g \ A›
(is ‹?lhs = ?rhs›) for P :: ‹(′a, ′r) processptick›
〈proof 〉

corollary bij-Renaming-Hiding :
‹Renaming (P \ S) f g = Renaming P f g \ f ‘ S› (is ‹?lhs = ?rhs›) if ‹bij f ›
— We already have [[bij fa; bij ga]] =⇒ Renaming (Pa \ Sa) fa ga = Renaming

Pa fa ga \ fa ‘ Sa, but he assumption bij g is actually not necessary.
〈proof 〉

lemma Renaming-is-restrictable-on-events-of-strict-ticks-of :
‹Renaming P f g = Renaming P f ′ g ′›
if fun-hyps : ‹

∧
a. a ∈ α(P) =⇒ f a = f ′ a›

‹
∧

r . r ∈ 3s(P) =⇒ g r = g ′ r›
for f f ′ :: ‹ ′a ⇒ ′b› and g g ′ :: ‹ ′r ⇒ ′t›

— probably also possible to strengthen with strict-events-of
〈proof 〉

corollary Renaming-is-restrictable-on-events-of-ticks-of :
‹[[
∧

a. a ∈ α(P) =⇒ f a = f ′ a;
∧

r . r ∈ 3s(P) =⇒ g r = g ′ r]]
=⇒ Renaming P f g = Renaming P f ′ g ′›
〈proof 〉

corollary RenamingEv-is-restrictable-on-events-of :
‹(
∧

a. a ∈ α(P) =⇒ f a = f ′ a) =⇒ RenamingEv P f = RenamingEv P f ′›
〈proof 〉

corollary RenamingTick-is-restrictable-on-strict-ticks-of :
‹(
∧

r . r ∈ 3s(P) =⇒ g r = g ′ r) =⇒ RenamingTick P g = RenamingTick P g ′›
〈proof 〉

corollary RenamingTick-is-restrictable-on-ticks-of :
‹(
∧

r . r ∈ 3s(P) =⇒ g r = g ′ r) =⇒ RenamingTick P g = RenamingTick P g ′›
〈proof 〉

62

5.3 Renaming and Generalized Synchronization Prod-
uct

lemma (in Syncptick-locale) inj-on-RenamingTick-Syncptick :
‹RenamingTick (P [[S]]3 Q) g =
Syncptick-locale.Syncptick (λr s. case r ⊗3 s of br-sc ⇒ bg r-sc | ♦ ⇒ ♦) P S

Q›
(is ‹?lhs = ?rhs›)
if inj-on-g : ‹inj-on g range-tick-join›
〈proof 〉

lemma (in Syncptick-locale) inj-RenamingTick-Syncptick-inj-RenamingTick :
‹RenamingTick P g [[S]]3 RenamingTick Q h =
Syncptick-locale.Syncptick (λr s. g r ⊗3 h s) P S Q› (is ‹?lhs = ?rhs›)

if ‹inj g› and ‹inj h›

for P :: ‹(′a, ′r ′) processptick› and Q :: ‹(′a, ′s ′) processptick›
〈proof 〉

63

64

Chapter 6

Commutativity and
Associativity of
Synchronization

6.1 Commutativity
6.1.1 Motivation

The classical synchronization product is commutative: P [[A]] Q = Q [[A]]
P but in our generalization such a law cannot be obtained in all generality.
Imagine for example that the (⊗3) parameter is actually λr s. b(r , s)c: we
easily figure out that in this case the corresponding law should be something
like P [[A]]3P air Q = TickSwap (Q [[A]]3P air P). More generally, in the
locale, when writing P [[A]]3 Q, P is of type (′a, ′r) processptick while Q is
of type (′a, ′s) processptick so we want to find an abstract setup in which we
can establish a quasi-commutativity. This is done in the next subsection.

6.1.2 Formalization
locale Syncptick-comm-locale =

Syncptick-locale ‹(⊗3)› for tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option› (infixl ‹⊗3› 100)
+
fixes tick-join-rev :: ‹ ′s ⇒ ′r ⇒ ′u option› (infixl ‹⊗3rev› 100)

and tick-join-conv :: ‹ ′t ⇒ ′u› (‹⊗3⇒⊗3rev›)
and tick-join-rev-conv :: ‹ ′u ⇒ ′t› (‹⊗3rev⇒⊗3›)

assumes tick-join-None-iff :
‹r ⊗3 s = ♦ ←→ s ⊗3rev r = ♦›
and tick-join-Some-imp :
‹r ⊗3 s = br-sc =⇒ s ⊗3rev r = b⊗3⇒⊗3rev r-sc›
and tick-join-rev-Some-imp :
‹s ⊗3rev r = bs-rc =⇒ r ⊗3 s = b⊗3rev⇒⊗3 s-rc›

begin

65

There is an obvious symmetry over the variables.
sublocale Syncptick-comm-locale-sym :

Syncptick-comm-locale ‹(⊗3rev)› ‹(⊗3)› ‹⊗3rev⇒⊗3› ‹⊗3⇒⊗3rev›
〈proof 〉

notation Syncptick-comm-locale-sym.Syncptick (‹(- [[-]]3rev -)› [70 , 0 , 71] 70)
notation Syncptick-comm-locale-sym.Interptick (‹(- |||3rev -)› [72 , 73] 72)
notation Syncptick-comm-locale-sym.Parptick (‹(- ||3rev -)› [74 , 75] 74)

6.1.3 First Properties
lemma tick-join-conv-image-range-tick-join :

‹⊗3⇒⊗3rev ‘ range-tick-join = Syncptick-comm-locale-sym.range-tick-join›
〈proof 〉

lemma tick-join-rev-conv-comp-tick-join-conv [simp] :
‹r-s ∈ range-tick-join =⇒ ⊗3rev⇒⊗3 (⊗3⇒⊗3rev r-s) = r-s›
〈proof 〉

lemma inj-on-tick-join-conv : ‹inj-on ⊗3⇒⊗3rev range-tick-join›
〈proof 〉

lemma bij-betw-tick-join-conv :
‹bij-betw ⊗3⇒⊗3rev range-tick-join Syncptick-comm-locale-sym.range-tick-join›
〈proof 〉

lemma map-tick-join-rev-conv-map-tick-join-conv :
‹{r-s. 3(r-s) ∈ set t} ⊆ range-tick-join =⇒
map (map-eventptick id ⊗3rev⇒⊗3) (map (map-eventptick id ⊗3⇒⊗3rev) t)

= t›
〈proof 〉

end

6.1.4 Commutativity
context Syncptick-comm-locale begin

lemma setinterleavesptick-imp-setinterleavesptick-rev :
‹t setinterleaves3(⊗3) ((u, v), A) =⇒
map (map-eventptick id ⊗3⇒⊗3rev) t
setinterleaves3(⊗3rev) ((v, u), A)›

— Finally not used, and probably obtainable as a corollary of t setinterleaves3(⊗3)
((u, v), A) =⇒ map (map-eventptick id ⊗3⇒⊗3rev) t setinterleaves3λr s. case r ⊗3 s of ♦ ⇒ ♦ | br-sc ⇒ b⊗3⇒⊗3rev r-sc
((u, v), A)
〈proof 〉

66

lemma vimage-tick-join-rev-conv-subset-super-ref-Syncptick-iff :
‹map-eventptick id ⊗3rev⇒⊗3 −‘ X ⊆ super-ref-Syncptick (⊗3rev) X-Q A X-P
←→ X ⊆ super-ref-Syncptick (⊗3) X-P A X-Q›
(is ‹?lhs1 ⊆ ?lhs2 ←→ X ⊆ ?rhs›)
— Same: finally not used, and probably obtainable as a corollary of (map-eventptick

id ⊗3rev⇒⊗3 −‘ ?X ⊆ super-ref-Syncptick (⊗3rev) ?X-P ?A ?X-Q) = (?X ⊆
super-ref-Syncptick (λr s. case r ⊗3rev s of ♦ ⇒ ♦ | br-sc ⇒ b⊗3rev⇒⊗3 r-sc)
?X-P ?A ?X-Q).
〈proof 〉

In the end, the proof is quite simple: mainly a corollary of inj-on g range-tick-join
=⇒ RenamingTick (P [[S]]3 Q) g = Syncptick-locale.Syncptick (λr s. case r
⊗3 s of ♦ ⇒ ♦ | br-sc ⇒ bg r-sc) P S Q.

theorem Syncptick-commute :
‹RenamingTick (P [[A]]3 Q) ⊗3⇒⊗3rev = Q [[A]]3rev P›
〈proof 〉

end

6.2 Associativity
6.2.1 Motivation

The classical synchronization product is associative: P [[A]] (Q [[A]] R) = P
[[A]] Q [[A]] R but in our generalization such a law cannot be obtained in all
generality. We already encountered a similar issue for the commutativity:
we have to find a setup in which the different combinations of the ticks that
we need make sense, and prove the quasi-associativity.

6.2.2 Formalization
locale Syncptick-assoc-locale =

Syncptick1 : Syncptick-locale ‹(⊗31)› +
Syncptick2 : Syncptick-locale ‹(⊗32)› +
Syncptick3 : Syncptick-locale ‹(⊗33)› +
Syncptick4 : Syncptick-locale ‹(⊗34)›
for tick-join1 :: ‹ ′r ⇒ ′s ⇒ ′t option› (infixl ‹⊗31 › 100)

and tick-join2 :: ‹ ′t ⇒ ′u ⇒ ′v option› (infixl ‹⊗32 › 100)
and tick-join3 :: ‹ ′r ⇒ ′w ⇒ ′x option› (infixl ‹⊗33 › 100)
and tick-join4 :: ‹ ′s ⇒ ′u ⇒ ′w option› (infixl ‹⊗34 › 100) +

fixes tick-assoc-ren :: ‹ ′v ⇒ ′x› (‹⊗32⇒⊗33 ›)
and tick-assoc-ren-conv :: ‹ ′x ⇒ ′v› (‹⊗33⇒⊗32 ›)

assumes None-assms-tick-join :

67

‹r ⊗31 s = ♦ =⇒ s ⊗34 u = ♦ ∨ r ⊗33 ds ⊗34 ue = ♦›
‹r ⊗31 s 6= ♦ =⇒ dr ⊗31 se ⊗32 u = ♦ =⇒ s ⊗34 u = ♦ ∨ r ⊗33 ds ⊗34

ue = ♦›
‹s ⊗34 u = ♦ =⇒ r ⊗31 s = ♦ ∨ dr ⊗31 se ⊗32 u = ♦›
‹s ⊗34 u 6= ♦ =⇒ r ⊗33 ds ⊗34 ue = ♦ =⇒ r ⊗31 s = ♦ ∨ dr ⊗31 se ⊗32

u = ♦›
and tick-assoc-ren-hyp :
‹r ⊗31 s = btc =⇒ t ⊗32 u = bvc =⇒ dr ⊗33 ds ⊗34 uee = ⊗32⇒⊗33 v›
and tick-assoc-ren-conv-hyp :
‹s ⊗34 u = bwc =⇒ r ⊗33 w = bxc =⇒ ddr ⊗31 se ⊗32 ue = ⊗33⇒⊗32

x›
begin

There is a symmetry over the variables.
sublocale Syncptick-assoc-locale-sym :

Syncptick-assoc-locale ‹λu s. s ⊗34 u› ‹λw r . r ⊗33 w› ‹λu t. t ⊗32 u›
‹λs r . r ⊗31 s› ‹⊗33⇒⊗32 › ‹⊗32⇒⊗33 ›
〈proof 〉

end

6.2.3 First Properties
lemma (in Syncptick-assoc-locale) tick-assoc-ren-tick-assoc-ren-conv :

‹∃ r s u w. s ⊗34 u = bwc ∧ r ⊗33 w = bxc =⇒
⊗32⇒⊗33 (⊗33⇒⊗32 x) = x›
〈proof 〉

lemma (in Syncptick-assoc-locale) tick-assoc-ren-conv-tick-assoc-ren :
‹∃ r s t u. r ⊗31 s = btc ∧ t ⊗32 u = bvc =⇒ ⊗33⇒⊗32 (⊗32⇒⊗33 v) =

v›
〈proof 〉

lemma (in Syncptick-assoc-locale) inj-on-tick-assoc-ren :
‹inj-on ⊗32⇒⊗33 {v. ∃ r s t u. r ⊗31 s = btc ∧ t ⊗32 u = bvc}›
〈proof 〉

lemma (in Syncptick-assoc-locale) inj-on-tick-assoc-ren-conv :
‹inj-on ⊗33⇒⊗32 {x. ∃ r s u w. s ⊗34 u = bwc ∧ r ⊗33 w = bxc}›
〈proof 〉

6.2.4 Associativity for the Traces
lemma (in Syncptick-assoc-locale) setinterleavesptick-assoc-left :

‹[[tt setinterleaves3(⊗31) ((tr, ts), A);

tv setinterleaves3(⊗32) ((tt, tu), A)]] =⇒
∃ tw. map (map-eventptick id ⊗32⇒⊗33) tv setinterleaves3(⊗33) ((tr, tw),

A) ∧
tw setinterleaves3(⊗34) ((ts, tu), A)›

68

〈proof 〉

lemma (in Syncptick-assoc-locale) setinterleavesptick-assoc-right :
‹tw setinterleaves3(⊗34) ((ts, tu), A) =⇒
tx setinterleaves3(⊗33) ((tr, tw), A) =⇒
∃ tt. map (map-eventptick id ⊗33⇒⊗32) tx setinterleaves3(⊗32) ((tt, tu), A)

∧
tt setinterleaves3(⊗31) ((tr, ts), A)›

〈proof 〉

6.2.5 Associativity
context Syncptick-assoc-locale
begin

notation Syncptick1.Syncptick (‹(- [[-]]31 -)› [70 , 0 , 71] 70)
notation Syncptick2.Syncptick (‹(- [[-]]32 -)› [70 , 0 , 71] 70)
notation Syncptick3.Syncptick (‹(- [[-]]33 -)› [70 , 0 , 71] 70)
notation Syncptick4.Syncptick (‹(- [[-]]34 -)› [70 , 0 , 71] 70)

lemma Syncptick-assoc-oneside :
‹P [[S]]33 (Q [[S]]34 R) vFD RenamingTick (P [[S]]31 Q [[S]]32 R) ⊗32⇒⊗33 ›

(is ‹?lhs vFD ?rhs›)
〈proof 〉

end

lemma (in Syncptick-locale) strict-ticks-of-Syncptick-subset :
‹3s(P [[S]]3 Q) ⊆ {r-s |r-s r s. r ⊗3 s = br-sc ∧

r ∈ 3s(P) ∧ s ∈ 3s(Q)}› (is ‹- ⊆ ?S›)
〈proof 〉

theorem (in Syncptick-assoc-locale) Syncptick-assoc :
‹P [[S]]33 (Q [[S]]34 R) = RenamingTick (P [[S]]31 Q [[S]]32 R) ⊗32⇒⊗33 › (is

‹?lhs = ?rhs›)
〈proof 〉

69

70

Chapter 7

First Laws

unbundle option-type-syntax

7.1 Behaviour with Constant Processes

By “basic” laws we mean the behaviour of ⊥, STOP and SKIP, plus the
associativity of some concerned operators.

lemma Seqptick-const [simp] : ‹P ;3 (λr . Q) = P ; Q›
— Very basic law.
〈proof 〉

7.1.1 The Laws of ⊥
lemma Seqptick-is-BOT-iff : ‹P ;3 Q = ⊥ ←→ P = ⊥ ∨ (∃ r . [3(r)] ∈ T P ∧ Q
r = ⊥)›
〈proof 〉

lemma BOT-Seqptick [simp] : ‹⊥ ;3 P = ⊥› 〈proof 〉

lemma (in Syncptick-locale) Syncptick-is-BOT-iff : ‹P [[S]]3 Q = ⊥ ←→ P = ⊥
∨ Q = ⊥›
〈proof 〉

lemma (in Syncptick-locale) Syncptick-BOT [simp] : ‹P [[S]]3 ⊥ = ⊥› and BOT-Syncptick
[simp] : ‹⊥ [[S]]3 Q = ⊥›
〈proof 〉

7.1.2 The Laws of STOP
lemma Seqptick-is-STOP-iff :

‹P ;3 Q = STOP ←→ T P ⊆ insert [] {[3(r)]| r . True} ∧
(∀ r . [3(r)] ∈ T P −→ Q r = STOP)› (is ‹?lhs ←→ ?rhs›)

71

〈proof 〉

lemma Seqptick-is-STOP-iff-bis :
‹P ;3 Q = STOP ←→ SKIPS {r . [3(r)] ∈ T P} vDT P ∧ (∀ r . [3(r)] ∈ T P
−→ Q r = STOP)›
(is ‹?lhs ←→ ?rhs›)
〈proof 〉

corollary STOP-Seqptick [simp] : ‹STOP ;3 P = STOP›
〈proof 〉

lemma (in Syncptick-locale) STOP-Syncptick-STOP [simp] : ‹STOP [[S]]3 STOP
= STOP›
〈proof 〉

More powerful Laws lemma (in Syncptick-locale) Interptick-STOP :
— Here, g is a free parameter.
‹P |||3 STOP = RenamingTick (P ; STOP)

(λr . the (tick-join r (g r)))› (is ‹?lhs = ?rhs›)
〈proof 〉

lemma (in Syncptick-locale) STOP-Interptick :
‹STOP |||3 Q = RenamingTick (Q ; STOP)

(λs. the (tick-join (g s) s))›
〈proof 〉

lemma (in Syncptick-locale) Parptick-STOP [simp] : ‹P ||3 STOP = (if P = ⊥
then ⊥ else STOP)›
〈proof 〉

lemma (in Syncptick-locale) STOP-Parptick [simp] : ‹STOP ||3 P = (if P = ⊥
then ⊥ else STOP)›
〈proof 〉

7.1.3 The Laws of SKIP
Sequential Composition

SKIP is neutral for Seqptick!
lemma SKIP-Seqptick [simp] : ‹SKIP r ;3 P = P r›
〈proof 〉

lemma Seqptick-SKIP [simp] : ‹P ;3 SKIP = P›

72

〈proof 〉

lemma SKIPS-Seqptick [simp] : ‹SKIPS R ;3 P = ur ∈ R. P r›
〈proof 〉

lemma finite-ticks-Seqptick [finite-ticks-simps] : ‹�3(P ;3 Q)›
if ‹�3(P)› and ‹(

∧
r . r ∈ 3s(P) =⇒ �3(Q r))›

〈proof 〉

lemma finite-ticks-fun-Seqptick-bis :
‹�3⇒(f) =⇒ (

∧
x r . r ∈ 3s(f x) =⇒ �3(x) =⇒ �3(g x r)) =⇒ �3⇒(λx. f x ;3

g x)›
〈proof 〉

lemma finite-ticks-fun-Seqptick [finite-ticks-fun-simps] :
— Big approximation.
‹�3⇒(f) =⇒ (

∧
r . r ∈ (

⋃
x. 3s(f x)) =⇒ �3⇒(λx. g x r)) =⇒ �3⇒(λx. f x ;3

g x)›
〈proof 〉

Synchronization Product

The generalization of the synchronization product was essentially motivated
by the following theorem (in comparison to SKIP r [[A]] SKIP s = (if r =
s then SKIP r else STOP)).
theorem (in Syncptick-locale) SKIP-Syncptick-SKIP [simp] :

‹SKIP r [[A]]3 SKIP s = (case tick-join r s of br-sc ⇒ SKIP r-s | ♦ ⇒ STOP)›
〈proof 〉

lemma (in Syncptick-locale) STOP-Syncptick-SKIP [simp] : ‹STOP [[A]]3 SKIP
s = STOP›

and SKIP-Syncptick-STOP [simp] : ‹SKIP r [[A]]3 STOP = STOP›
〈proof 〉

lemma (in Syncptick-locale) Mprefix-Syncptick-SKIP :
‹�a ∈ A → P a [[S]]3 SKIP r =
�a ∈ (A − S) → (P a [[S]]3 SKIP r)› (is ‹?lhs = ?rhs›)

〈proof 〉

corollary (in Syncptick-locale) SKIP-Syncptick-Mprefix :
‹SKIP r [[S]]3 �b ∈ B → Q b = �b ∈ (B − S) → (SKIP r [[S]]3 Q b)› (is ‹?lhs

= ?rhs›)

73

〈proof 〉

lemma (in Syncptick-locale) finite-ticks-Syncptick [finite-ticks-simps] :
‹�3(P [[S]]3 Q)› if ‹�3(P)› and ‹�3(Q)›
〈proof 〉

lemma (in Syncptick-locale) finite-ticks-fun-Syncptick [finite-ticks-fun-simps] :
‹�3⇒(f) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x [[S]]3 g x)›
〈proof 〉

7.2 Associativity of Sequential Composition
lemma Seqptick-assoc : ‹P ;3 (λr . Q r ;3 R) = P ;3 Q ;3 R›

for P :: ‹(′a, ′r) processptick›
and Q :: ‹ ′r ⇒ (′a, ′s) processptick›
and R :: ‹ ′s ⇒ (′a, ′t) processptick›

〈proof 〉

7.3 Distributivity of Non-Determinism
7.3.1 Sequential Composition
lemma Seqptick-distrib-GlobalNdet-left :

‹P ;3 (λr . u a∈A. Q a r) = (if A = {} then P ;3 (λr . STOP) else u a∈A. (P
;3 Q a))›
〈proof 〉

lemma Seqptick-distrib-GlobalNdet-right : ‹(u a∈A. P a) ;3 Q = u a∈A. (P a ;3
Q)›
〈proof 〉

lemma Seqptick-distrib-Ndet-left : ‹P ;3 (λr . Q r u R r) = (P ;3 Q) u (P ;3 R)›
〈proof 〉

lemma Seqptick-distrib-Ndet-right : ‹P u Q ;3 R = (P ;3 R) u (Q ;3 R)›
〈proof 〉

7.3.2 Synchronization Product
context Syncptick-locale begin

lemma Syncptick-distrib-GlobalNdet-left :
‹P [[S]]3 u a∈A. Q a = (if A = {} then P [[S]]3 STOP else u a∈A. (P [[S]]3 Q

a))›

74

(is ‹?lhs = (if A = {} then P [[S]]3 STOP else ?rhs)›)
〈proof 〉

lemma Syncptick-distrib-GlobalNdet-right :
‹u a∈A. P a [[S]]3 Q = (if A = {} then STOP [[S]]3 Q else u a∈A. (P a [[S]]3

Q))›
(is ‹?lhs = (if A = {} then STOP [[S]]3 Q else ?rhs)›)
〈proof 〉

lemma (in Syncptick-locale) Syncptick-GlobalNdet-cartprod:
‹(u (a, b) ∈ A × B. (P a [[S]]3 Q b)) =
(if A = {} ∨ B = {} then STOP else (ua ∈ A. P a) [[S]]3 (ub ∈ B. Q b))›
〈proof 〉

lemma Syncptick-distrib-Ndet-left :
‹P [[S]]3 Q u R = (P [[S]]3 Q) u (P [[S]]3 R)›
〈proof 〉

corollary Syncptick-distrib-Ndet-right :
‹P u Q [[S]]3 R = (P [[S]]3 R) u (Q [[S]]3 R)›
〈proof 〉

end

75

76

Chapter 8

Communications

8.1 Step Laws
8.1.1 Sequential Composition
lemma Mprefix-Seqptick: ‹�a ∈ A → P a ;3 Q = �a ∈ A → (P a ;3 Q)› (is
‹?lhs = ?rhs›)
〈proof 〉

8.1.2 Synchronization Product
lemma (in Syncptick-locale) Mprefix-Syncptick-Mprefix-bis :

‹�a∈(A ∪ A ′) → P a [[S]]3 �b∈(B ∪ B ′) → Q b =
(�a∈A → (P a [[S]]3 �b∈(B ∪ B ′) → Q b)) �
(�b∈B → (�a∈(A ∪ A ′) → P a [[S]]3 Q b)) �
(�x∈(A ′ ∩ B ′) → (P x [[S]]3 Q x))›
(is ‹?lhs1 [[S]]3 ?lhs2 = ?rhs1 � ?rhs2 � ?rhs3 ›)
if sets-assms: ‹A ∩ S = {}› ‹A ′ ⊆ S› ‹B ∩ S = {}› ‹B ′ ⊆ S›
〈proof 〉

corollary (in Syncptick-locale) Mprefix-Syncptick-Mprefix:
— This version is easier to use.
‹�a∈A → P a [[S]]3 �b∈B → Q b =
(�a∈(A − S) → (P a [[S]]3 �b∈B → Q b)) �
(�b∈(B − S) → (�a∈A → P a [[S]]3 Q b)) �
(�x∈(A ∩ B ∩ S) → (P x [[S]]3 Q x))›
〈proof 〉

corollary (in Syncptick-locale) Mprefix-Syncptick-Mprefix-for-procomata:
— Specialized version for Proc-Omata.
‹�a∈A → P a [[S]]3 �b∈B → Q b =
(�a∈(A − S − B) → (P a [[S]]3 �b∈B → Q b)) �
(�b∈(B − S − A) → (�a∈A → P a [[S]]3 Q b)) �
(�x∈(A ∩ B − S) → (P x [[S]]3 �b∈B → Q b) u (�a∈A → P a [[S]]3 Q x)) �

77

(�x∈(A ∩ B ∩ S) → (P x [[S]]3 Q x))›
〈proof 〉

unbundle option-type-syntax

8.2 Extended step Laws

8.2.1 Sequential Composition
lemma Mndetprefix-Seqptick: ‹ua ∈ A → P a ;3 Q = ua ∈ A → (P a ;3 Q)›
〈proof 〉

8.2.2 Synchronization Product

Behaviour of SKIPS

lemma (in Syncptick-locale) SKIPS-Syncptick-SKIPS :
‹SKIPS R [[A]]3 SKIPS S = u(r , s) ∈ R × S . (case r ⊗3 s of br-sc ⇒ SKIP

r-s | ♦ ⇒ STOP)›
〈proof 〉

In order for the right-hand side to be rewritten as a SKIPS, an assumption
is required: the ticks involved must be able to be combined.

lemma GlobalNdet-prod-SKIP-is-SKIPS :
‹u(r , s) ∈ R × S . SKIP dtick-join r se =
SKIPS ((the ◦ (λ(r , s). tick-join r s)) ‘ (R × S))›
〈proof 〉

lemma GlobalNdet-prod-case-SKIP-STOP-is-GlobalNdet-prod-SKIP-iff :
‹u(r , s) ∈ R × S . (case tick-join r s of ♦ ⇒ STOP | br-sc ⇒ SKIP r-s) =
u(r , s) ∈ R × S . SKIP dtick-join r se
←→ (∀ r s. r ∈ R −→ s ∈ S −→ tick-join r s 6= ♦)›
(is ‹?lhs1 = ?lhs2 ←→ ?rhs›)
〈proof 〉

lemma (in Syncptick-locale) SKIPS-Syncptick-SKIPS-bis :
‹SKIPS R [[A]]3 SKIPS S = SKIPS ((the ◦ (λ(r , s). r ⊗3 s)) ‘ (R × S))›
if ‹

∧
r s. r ∈ R =⇒ s ∈ S =⇒ r ⊗3 s 6= ♦›

〈proof 〉

lemma (in Syncptick-locale)
SKIPS-Syncptick-STOP [simp] : ‹SKIPS R [[A]]3 STOP = STOP›
and STOP-Syncptick-SKIPS [simp] : ‹STOP [[A]]3 SKIPS S = STOP›
〈proof 〉

78

Derived step Laws with Non-Determinism
context Syncptick-locale begin

lemma Mprefix-Interptick-Mprefix :
‹�a∈A → P a |||3 �b∈B → Q b =
(�a∈A → (P a |||3 �b∈B → Q b)) � (�b∈B → (�a ∈ A → P a |||3 Q b))›
〈proof 〉

lemma Mprefix-Parptick-Mprefix : ‹�a∈A → P a ||3 �b∈B → Q b = �x∈(A ∩
B) → (P x ||3 Q x)›
〈proof 〉

lemma Mprefix-Syncptick-Mprefix-subset :
‹[[A ⊆ S ; B ⊆ S]] =⇒ �a∈A → P a [[S]]3 �b∈B → Q b = �x∈(A ∩ B) → (P

x [[S]]3 Q x)›
〈proof 〉

lemma Mprefix-Syncptick-Mprefix-indep :
‹[[A ∩ S = {}; B ∩ S = {}]] =⇒
�a∈A → P a [[S]]3 �b∈B → Q b =
(�a∈A → (P a [[S]]3 �b∈B → Q b)) � (�b∈B → (�a∈A → P a [[S]]3 Q b))›
〈proof 〉

lemma Mprefix-Syncptick-Mprefix-left :
‹[[A ∩ S = {}; B ⊆ S]] =⇒ �a∈A → P a [[S]]3 �b∈B → Q b = �a∈A → (P a

[[S]]3 �b∈B → Q b)›
〈proof 〉

lemma Mprefix-Syncptick-Mprefix-right :
‹[[A ⊆ S ; B ∩ S = {}]] =⇒ �a∈A → P a [[S]]3 �b∈B → Q b = �b∈B → (�a∈A
→ P a [[S]]3 Q b)›
〈proof 〉

lemma Mprefix-Syncptick-STOP : ‹�a ∈ A → P a [[S]]3 STOP = �a ∈ (A − S)
→ (P a [[S]]3 STOP)›
〈proof 〉

lemma STOP-Syncptick-Mprefix : ‹STOP [[S]]3 �b ∈ B → Q b = �b ∈ (B − S)
→ (STOP [[S]]3 Q b)›
〈proof 〉

Mixing deterministic and non deterministic prefix choices lemma
Mndetprefix-Syncptick-Mprefix :

‹(ua ∈ A → P a) [[S]]3 (�b ∈ B → Q b) =
(if A = {} then STOP [[S]]3 (�b ∈ B → Q b)
else ua∈A. (if a ∈ S then STOP else (a → (P a [[S]]3 (�b ∈ B → Q b)))) �

(�b∈(B − S) → ((a → P a) [[S]]3 Q b)) �
(if a ∈ B ∩ S then (a → (P a [[S]]3 Q a)) else STOP))›

79

〈proof 〉

lemma Mprefix-Syncptick-Mndetprefix :
‹(�a ∈ A → P a) [[S]]3 (ub ∈ B → Q b) =
(if B = {} then (�a ∈ A → P a) [[S]]3 STOP
else ub∈B. (if b ∈ S then STOP else (b → ((�a ∈ A → P a) [[S]]3 Q b))) �

(�a∈(A − S) → (P a [[S]]3 (b → Q b))) �
(if b ∈ A ∩ S then (b → (P b [[S]]3 Q b)) else STOP))›

〈proof 〉

In particular, we can obtain the theorem for Mndetprefix synchronized with
STOP.

lemma Mndetprefix-Syncptick-STOP :
‹(ua ∈ A → P a) [[S]]3 STOP =
(if A ∩ S = {} then ua ∈ A → (P a [[S]]3 STOP)
else (ua ∈ (A − S) → (P a [[S]]3 STOP)) u STOP)›

(is ‹?lhs = (if A ∩ S = {} then ?rhs1 else ?rhs2 u STOP)›)
〈proof 〉

lemma STOP-Syncptick-Mndetprefix :
‹STOP [[S]]3 (ub ∈ B → Q b) =
(if B ∩ S = {} then ub ∈ B → (STOP [[S]]3 Q b)
else (ub ∈ (B − S) → (STOP [[S]]3 Q b)) u STOP)›

(is ‹?lhs = (if B ∩ S = {} then ?rhs1 else ?rhs2 u STOP)›)
〈proof 〉

corollary Mndetprefix-Syncptick-Mprefix-subset :
‹(ua ∈ A → P a) [[S]]3 (�b ∈ B → Q b) =
(if A ⊆ B then u a ∈ A → (P a [[S]]3 Q a)
else (ua ∈ (A ∩ B) → (P a [[S]]3 Q a)) u STOP)›

(is ‹?lhs = (if A ⊆ B then ?rhs1 else ?rhs2)›) if ‹A ⊆ S› ‹B ⊆ S›
〈proof 〉

corollary Mprefix-Syncptick-Mndetprefix-subset :
‹�a ∈ A → P a [[S]]3 ub ∈ B → Q b =
(if B ⊆ A then ub ∈ B → (P b [[S]]3 Q b)
else (ub ∈ (A ∩ B) → (P b [[S]]3 Q b)) u STOP)›

(is ‹?lhs = (if B ⊆ A then ?rhs1 else ?rhs2)›) if ‹A ⊆ S› ‹B ⊆ S›
〈proof 〉

corollary Mndetprefix-Syncptick-Mprefix-indep :
‹(ua ∈ A → P a) [[S]]3 (�b ∈ B → Q b) =
(if A = {} then �b∈B → (STOP [[S]]3 Q b)
else ua∈A. (a → (P a [[S]]3 (�b ∈ B → Q b))) �

(�b∈B → ((a → P a) [[S]]3 Q b)))›

80

if ‹A ∩ S = {}› and ‹B ∩ S = {}›
〈proof 〉

corollary Mprefix-Syncptick-Mndetprefix-indep :
‹(�a ∈ A → P a) [[S]]3 (ub ∈ B → Q b) =
(if B = {} then �a ∈ A → (P a [[S]]3 STOP)
else ub∈B. (b → ((�a ∈ A → P a) [[S]]3 Q b)) �

(�a∈A → (P a [[S]]3 (b → Q b))))›
if ‹A ∩ S = {}› ‹B ∩ S = {}›
〈proof 〉

corollary Mndetprefix-Syncptick-Mprefix-left :
‹(ua ∈ A → P a) [[S]]3 (�b ∈ B → Q b) =
(if A = {} then STOP [[S]]3 (�b ∈ B → Q b)
else ua∈A → (P a [[S]]3 (�b ∈ B → Q b)))›

if ‹A ∩ S = {}› and ‹B ⊆ S›
〈proof 〉

corollary Mndetprefix-Syncptick-Mprefix-right :
‹(ua ∈ A → P a) [[S]]3 (�b ∈ B → Q b) =
(if A = {} then STOP [[S]]3 (�b ∈ B → Q b)
else �b∈B → ((ua∈A → P a) [[S]]3 Q b))›

if ‹A ⊆ S› and ‹B ∩ S = {}›
〈proof 〉

corollary Mprefix-Syncptick-Mndetprefix-left :
‹(�a ∈ A → P a) [[S]]3 (ub ∈ B → Q b) =
(if B = {} then (�a ∈ A → P a) [[S]]3 STOP
else �a∈A → (P a [[S]]3 (ub ∈ B → Q b)))›

if ‹A ∩ S = {}› ‹B ⊆ S›
〈proof 〉

corollary Mprefix-Syncptick-Mndetprefix-right :
‹(�a ∈ A → P a) [[S]]3 (ub ∈ B → Q b) =
(if B = {} then (�a ∈ A → P a) [[S]]3 STOP
else ub∈B → ((�a ∈ A → P a) [[S]]3 Q b))›

if ‹A ⊆ S› ‹B ∩ S = {}›
〈proof 〉

corollary Mndetprefix-Parptick-Mprefix :
‹ua ∈ A → P a ||3 �b ∈ B → Q b =
(if A ⊆ B then ua ∈ A → (P a ||3 Q a) else (ua ∈ (A ∩ B) → (P a ||3 Q a))

u STOP)›
〈proof 〉

corollary Mprefix-Parptick-Mndetprefix :

81

‹�a ∈ A → P a ||3 ub ∈ B → Q b =
(if B ⊆ A then ub ∈ B → (P b ||3 Q b) else (ub ∈ (A ∩ B) → (P b ||3 Q b))

u STOP)›
〈proof 〉

corollary Mndetprefix-Interptick-Mprefix :
‹ua ∈ A → P a |||3 �b ∈ B → Q b =
(if A = {} then �b ∈ B → RenamingTick (Q b ; STOP) (λs. the (tick-join (g

s) s))
else ua∈A. (a → (P a |||3 �b ∈ B → Q b)) �

(�b∈B → (a → P a |||3 Q b)))›
〈proof 〉

corollary Mprefix-Interptick-Mndetprefix :
‹�a ∈ A → P a |||3 ub ∈ B → Q b =
(if B = {} then �a ∈ A → RenamingTick (P a ; STOP) (λr . the (tick-join r

(g r)))
else ub∈B. (b → (�a ∈ A → P a |||3 Q b)) �

(�a∈A → (P a |||3 b → Q b)))›
〈proof 〉

Mixing two non deterministic prefix choices lemma Mndetprefix-Syncptick-Mndetprefix
:

‹ua∈A → P a [[S]]3 ub∈B → Q b =
(if A = {} then if B ∩ S = {} then ub∈B → (STOP [[S]]3 Q b)

else (ux ∈ (B − S) → (STOP [[S]]3 Q x)) u STOP
else if B = {} then if A ∩ S = {} then ua∈A → (P a [[S]]3 STOP)

else (ux ∈(A − S) → (P x [[S]]3 STOP)) u STOP
else ub∈B. ua∈A.

(if a ∈ S then STOP else a → (P a [[S]]3 b → Q b)) �
(if b ∈ S then STOP else b → (a → P a [[S]]3 Q b)) �
(if a = b ∧ b ∈ S then b → (P a [[S]]3 Q b) else STOP))›

(is ‹?lhs = (if A = {} then if B ∩ S = {} then ?mv-right else ?mv-right ′ u
STOP

else if B = {} then if A ∩ S = {} then ?mv-left else ?mv-left ′ u
STOP

else ?huge-mess)›)
〈proof 〉

lemma Mndetprefix-Syncptick-Mndetprefix-subset :
‹ua∈A → P a [[S]]3 ub∈B → Q b =
(if ∃ b. A = {b} ∧ B = {b}
then (THE b. B = {b}) → (P (THE a. A = {a}) [[S]]3 Q (THE b. B = {b}))
else (ux ∈ (A ∩ B) → (P x [[S]]3 Q x)) u STOP)›

(is ‹?lhs = (if ?cond then ?rhs1 else ?rhs2)›) if ‹A ⊆ S› ‹B ⊆ S›
〈proof 〉

82

lemma Mndetprefix-Syncptick-Mndetprefix-indep :
‹A ∩ S = {} =⇒ B ∩ S = {} =⇒
ua∈A → P a [[S]]3 ub∈B → Q b =
(if A = {} then ub∈B → (STOP [[S]]3 Q b)
else if B = {} then ua∈A → (P a [[S]]3 STOP)

else ub∈B. ua∈A.
((a → (P a [[S]]3 b → Q b))) �
((b → (a → P a [[S]]3 Q b))))›

〈proof 〉

lemma Mndetprefix-Syncptick-Mndetprefix-left :
‹ua∈A → P a [[S]]3 ub∈B → Q b = ua∈A → (P a [[S]]3 ub∈B → Q b)›
(is ‹?lhs = ?rhs›) if ‹A ∩ S = {}› ‹B ⊆ S›
〈proof 〉

end

corollary (in Syncptick-locale) Mndetprefix-Syncptick-Mndetprefix-right :
‹ua∈A → P a [[S]]3 ub∈B → Q b = ub∈B → (ua∈A → P a [[S]]3 Q b)›
(is ‹?lhs = ?rhs›) if ‹A ⊆ S› ‹B ∩ S = {}›
〈proof 〉

8.3 Read and Write Laws

8.3.1 Sequential Composition
lemma read-Seqptick : ‹c?a∈A → P a ;3 Q = c?a∈A → (P a ;3 Q)›
〈proof 〉

lemma write0-Seqptick : ‹a → P ;3 Q = a → (P ;3 Q)›
〈proof 〉

lemma ndet-write-Seqptick : ‹c!!a∈A → P a ;3 Q = c!!a∈A → (P a ;3 Q)›
〈proof 〉

lemma write-Seqptick : ‹c!a → P ;3 Q = c!a → (P ;3 Q)›
〈proof 〉

8.3.2 Synchronization Product

General Laws

context Syncptick-locale begin

83

read lemma read-Syncptick-read :
— This is the general case.
‹c?a∈A → P a [[S]]3 d?b∈B → Q b =
(c?a∈(A − c −‘ S) → (P a [[S]]3 d?b∈B → Q b)) �
(d?b∈(B − d −‘ S) → (c?a∈A → P a [[S]]3 Q b)) �
(�x∈(c ‘ A ∩ d ‘ B ∩ S) → (P (inv-into A c x) [[S]]3 Q (inv-into B d x)))›
(is ‹?lhs = ?rhs1 � ?rhs2 � ?rhs3 ›)
if ‹c ‘ A ∩ S = {} ∨ c ‘ A ⊆ S ∨ inj-on c A›

‹d ‘ B ∩ S = {} ∨ d ‘ B ⊆ S ∨ inj-on d B›
— Assumptions may seem strange, but the motivation is that when A − c −‘ S

6= {} (which is equivalent to ¬ c ‘ A ⊆ S), we need to ensure that inv-into (A − c
−‘ S) c is equal to inv-into A c. This requires A − c −‘ S = A (which is equivalent
to c ‘ A ∩ S = {}) or inj-on c A. We need obviously a similar assumption for B.
〈proof 〉

Enforce read lemma read-Syncptick-read-forced-read-left :
‹c?a∈A → P a [[S]]3 d?b∈B → Q b =
(c?a∈(A − c −‘ S) → (P a [[S]]3 d?b∈B → Q b)) �
(d?b∈(B − d −‘ S) → (c?a∈A → P a [[S]]3 Q b)) �
(c?x∈(A ∩ c −‘ (d ‘ B ∩ S)) → (P x [[S]]3 Q x))›
(is ‹?lhs = ?rhs1 � ?rhs2 � ?rhs3 ›)
if ‹c ‘ A ∩ S = {} ∨ inj-on c A›

‹d ‘ B ∩ S = {} ∨ inj-on d B›
‹
∧

a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ d b ∈ S =⇒ a = b›
〈proof 〉

corollary (in Syncptick-locale) read-Syncptick-read-forced-read-right:
‹c?a∈A → P a [[S]]3 d?b∈B → Q b =
(c?a∈(A − c −‘ S) → (P a [[S]]3 d?b∈B → Q b)) �
(d?b∈(B − d −‘ S) → (c?a∈A → P a [[S]]3 Q b)) �
(d?x∈(B ∩ d −‘ (c ‘ A ∩ S)) → (P x [[S]]3 Q x))›
(is ‹?lhs = ?rhs1 � ?rhs2 � ?rhs3 ›)
if ‹c ‘ A ∩ S = {} ∨ inj-on c A›

‹d ‘ B ∩ S = {} ∨ inj-on d B›
‹
∧

a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ d b ∈ S =⇒ a = b›
〈proof 〉

Special Cases lemma read-Syncptick-read-subset :
‹c?a∈A → P a [[S]]3 d?b∈B → Q b =
�x∈(c ‘ A ∩ d ‘ B) → (P (inv-into A c x) [[S]]3 Q (inv-into B d x))›

if ‹c ‘ A ⊆ S› ‹d ‘ B ⊆ S›
〈proof 〉

lemma read-Syncptick-read-subset-forced-read-left :
‹c?a∈A → P a [[S]]3 d?b∈B → Q b = c?x∈(A ∩ c −‘ d ‘ B) → (P x [[S]]3 Q x)›
if ‹c ‘ A ⊆ S› ‹d ‘ B ⊆ S› ‹inj-on c A› ‹inj-on d B›

‹
∧

a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ d b ∈ S =⇒ a = b›
〈proof 〉

84

lemma read-Syncptick-read-subset-forced-read-right :
‹c?a∈A → P a [[S]]3 d?b∈B → Q b = d?x∈(B ∩ d −‘ c ‘ A) → (P x [[S]]3 Q x)›
if ‹c ‘ A ⊆ S› ‹d ‘ B ⊆ S› ‹inj-on c A› ‹inj-on d B›

‹
∧

a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ d b ∈ S =⇒ a = b›
〈proof 〉

lemma read-Syncptick-read-indep :
‹c?a∈A → P a [[S]]3 d?b∈B → Q b =
(c?a∈A → (P a [[S]]3 (d?b∈B → Q b))) � (d?b∈B → ((c?a∈A → P a) [[S]]3 Q

b))›
if ‹c ‘ A ∩ S = {}› ‹d ‘ B ∩ S = {}›
〈proof 〉

lemma read-Syncptick-read-left :
‹c?a∈A → P a [[S]]3 d?b∈B → Q b = c?a∈A → (P a [[S]]3 (d?b∈B → Q b))›
if ‹c ‘ A ∩ S = {}› ‹d ‘ B ⊆ S›
〈proof 〉

lemma read-Syncptick-read-right :
‹c?a∈A → P a [[S]]3 d?b∈B → Q b = d?b∈B → ((c?a∈A → P a) [[S]]3 Q b)›
if ‹c ‘ A ⊆ S› ‹d ‘ B ∩ S = {}›
〈proof 〉

corollary read-Parptick-read :
‹c?a∈A → P a ||3 d?b∈B → Q b =
�x∈(c ‘ A ∩ d ‘ B) → (P (inv-into A c x) ||3 Q (inv-into B d x))›
〈proof 〉

corollary read-Parptick-read-forced-read-left :
‹[[inj-on c A; inj-on d B;

∧
a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ a = b]] =⇒

c?a∈A → P a ||3 d?b∈B → Q b = c?x∈(A ∩ c −‘ d ‘ B) → (P x ||3 Q x)›
〈proof 〉

corollary read-Parptick-read-forced-read-right :
‹[[inj-on c A; inj-on d B;

∧
a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ a = b]] =⇒

c?a∈A → P a ||3 d?b∈B → Q b = d?x∈(B ∩ d −‘ c ‘ A) → (P x ||3 Q x)›
〈proof 〉

corollary read-Interptick-read :
‹[[inj-on c A; inj-on d B;

∧
a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ a = b]] =⇒

c?a∈A → P a |||3 d?b∈B → Q b =
(c?a∈A → (P a |||3 d?b∈B → Q b)) � (d?b∈B → (c?a∈A → P a |||3 Q b))›
〈proof 〉

85

Same channel Some results can be rewritten when we have the same
channel.
lemma read-Syncptick-read-forced-read-same-chan :

‹c?a∈A → P a [[S]]3 c?b∈B → Q b =
(c?a∈(A − c −‘ S) → (P a [[S]]3 c?b∈B → Q b)) �
(c?b∈(B − c −‘ S) → (c?a∈A → P a [[S]]3 Q b)) �
(c?x∈(A ∩ B ∩ c −‘ S) → (P x [[S]]3 Q x))›
(is ‹?lhs = ?rhs1 � ?rhs2 � ?rhs3 ›)
if ‹c ‘ A ∩ S = {} ∨ inj-on c A› ‹c ‘ B ∩ S = {} ∨ inj-on c B›

‹
∧

a b. a ∈ A =⇒ b ∈ B =⇒ c a = c b =⇒ c b ∈ S =⇒ a = b›
〈proof 〉

lemma read-Syncptick-read-forced-read-same-chan-weaker :
— Easier with a stronger assumption.
‹inj-on c (A ∪ B) =⇒
c?a∈A → P a [[S]]3 c?b∈B → Q b =
(c?a∈(A − c −‘ S) → (P a [[S]]3 c?b∈B → Q b)) �
(c?b∈(B − c −‘ S) → (c?a∈A → P a [[S]]3 Q b)) �
(c?x∈(A ∩ B ∩ c −‘ S) → (P x [[S]]3 Q x))›
〈proof 〉

lemma read-Syncptick-read-subset-forced-read-same-chan :
— In the subset case, the assumption inj-on c (A ∪ B) is equivalent. The result

is not weaker anymore.
‹c?a∈A → P a [[S]]3 c?b∈B → Q b = c?x∈(A ∩ B) → (P x [[S]]3 Q x)›
if ‹c ‘ A ⊆ S› ‹c ‘ B ⊆ S› ‹inj-on c (A ∪ B)›
〈proof 〉

read and ndet-write. lemma ndet-write-Syncptick-read :
‹c!!a∈A → P a [[S]]3 d?b∈B → Q b =
(if A = {} then STOP [[S]]3 d?b∈B → Q b
else ua∈c ‘ A. (if a ∈ S then STOP else a → (P (inv-into A c a) [[S]]3 d?b∈B

→ Q b)) �
(�b∈(d ‘ B − S) → (a → P (inv-into A c a) [[S]]3 Q (inv-into B d

b))) �
(if a ∈ d ‘ B ∩ S then a → (P (inv-into A c a) [[S]]3 Q (inv-into B

d a)) else STOP))›
〈proof 〉

lemma read-Syncptick-ndet-write :
‹c?a∈A → P a [[S]]3 d!!b∈B → Q b =
(if B = {} then c?a∈A → P a [[S]]3 STOP
else ub∈d ‘ B. (if b ∈ S then STOP else b → (c?a∈A → P a [[S]]3 Q (inv-into

B d b))) �
(�a∈(c ‘ A − S) → (P (inv-into A c a) [[S]]3 b → Q (inv-into B d

b))) �
(if b ∈ c ‘ A ∩ S then b → (P (inv-into A c b) [[S]]3 Q (inv-into B

d b)) else STOP))›

86

〈proof 〉

lemma ndet-write-Syncptick-read-subset :
‹c ‘ A ⊆ S =⇒ d ‘ B ⊆ S =⇒
c!!a∈A → P a [[S]]3 d?b∈B → Q b =
(if c ‘ A ⊆ d ‘ B then ua∈c ‘ A → (P (inv-into A c a) [[S]]3 Q (inv-into B d

a))
else (ua∈(c ‘ A ∩ d ‘ B) → (P (inv-into A c a) [[S]]3 Q (inv-into B d a))) u

STOP)›
〈proof 〉

lemma read-Syncptick-ndet-write-subset :
‹c ‘ A ⊆ S =⇒ d ‘ B ⊆ S =⇒
c?a∈A → P a [[S]]3 d!!b∈B → Q b =
(if d ‘ B ⊆ c ‘ A then ub∈d ‘ B → (P (inv-into A c b) [[S]]3 Q (inv-into B d

b))
else (ub∈(c ‘ A ∩ d ‘ B) → (P (inv-into A c b) [[S]]3 Q (inv-into B d b))) u

STOP)›
〈proof 〉

lemma ndet-write-Syncptick-read-subset-same-chan:
‹c!!a∈A → P a [[S]]3 c?b∈B → Q b =
(if A ⊆ B then c!!a∈A → (P a [[S]]3 Q a) else (c!!a∈(A ∩ B) → (P a [[S]]3 Q

a)) u STOP)›
if ‹c ‘ A ⊆ S› ‹c ‘ B ⊆ S› ‹inj-on c (A ∪ B)›
〈proof 〉

corollary (in Syncptick-locale) read-Syncptick-ndet-write-subset-same-chan:
‹c?a∈A → P a [[S]]3 c!!b∈B → Q b =
(if B ⊆ A then c!!b∈B → (P b [[S]]3 Q b) else (c!!b∈(A ∩ B) → (P b [[S]]3 Q

b)) u STOP)›
if ‹c ‘ A ⊆ S› ‹c ‘ B ⊆ S› ‹inj-on c (A ∪ B)›
〈proof 〉

lemma ndet-write-Syncptick-read-indep :
‹c ‘ A ∩ S = {} =⇒ d ‘ B ∩ S = {} =⇒
c!!a∈A → P a [[S]]3 d?b∈B → Q b =
(if A = {} then d?b∈B → (STOP [[S]]3 Q b)
else ua∈c ‘ A. (a → (P (inv-into A c a) [[S]]3 d?b∈B → Q b)) �

(d?b∈B → (a → P (inv-into A c a) [[S]]3 Q b)))›
〈proof 〉

lemma read-Syncptick-ndet-write-indep :
‹c ‘ A ∩ S = {} =⇒ d ‘ B ∩ S = {} =⇒
c?a∈A → P a [[S]]3 d!!b∈B → Q b =
(if B = {} then c?a∈A → (P a [[S]]3 STOP)
else ub∈d ‘ B. (b → (c?a∈A → P a [[S]]3 Q (inv-into B d b))) �

(c?a∈A → (P a [[S]]3 b → Q (inv-into B d b))))›

87

〈proof 〉

lemma ndet-write-Syncptick-read-left :
‹c!!a∈A → P a [[S]]3 d?b∈B → Q b = c!!a∈A → (P a [[S]]3 d?b∈B → Q b)›
(is ‹?lhs = ?rhs›) if ‹c ‘ A ∩ S = {}› ‹d ‘ B ⊆ S›
〈proof 〉

lemma read-Syncptick-ndet-write-left :
‹c?a∈A → P a [[S]]3 d!!b∈B → Q b = c?a∈A → (P a [[S]]3 d!!b∈B → Q b)›
(is ‹?lhs = ?rhs›) if ‹c ‘ A ∩ S = {}› ‹d ‘ B ⊆ S›
〈proof 〉

corollary (in Syncptick-locale) ndet-write-Syncptick-read-right :
‹c!!a∈A → P a [[S]]3 d?b∈B → Q b = d?b∈B → (c!!a∈A → P a [[S]]3 Q b)›
if ‹c ‘ A ⊆ S› ‹d ‘ B ∩ S = {}›
〈proof 〉

corollary (in Syncptick-locale) read-Syncptick-ndet-write-right :
‹c?a∈A → P a [[S]]3 d!!b∈B → Q b = d!!b∈B → (c?a∈A → P a [[S]]3 Q b)›
if ‹c ‘ A ⊆ S› ‹d ‘ B ∩ S = {}›
〈proof 〉

read and write. lemma write-Syncptick-read :
‹c!a → P [[S]]3 d?b∈B → Q b =
(if c a ∈ S then STOP else c!a → (P [[S]]3 d?b∈B → Q b)) �
(�b∈(d ‘ B − S) → (c!a → P [[S]]3 Q (inv-into B d b))) �
(if c a ∈ d ‘ B ∩ S then c!a → (P [[S]]3 Q (inv-into B d (c a))) else STOP)›
〈proof 〉

lemma read-Syncptick-write :
‹c?a∈A → P a [[S]]3 d!b → Q =
(if d b ∈ S then STOP else d!b → (c?a∈A → P a [[S]]3 Q)) �
(�a∈(c ‘ A − S) → (P (inv-into A c a) [[S]]3 d!b → Q)) �
(if d b ∈ c ‘ A ∩ S then d!b → (P (inv-into A c (d b)) [[S]]3 Q) else STOP)›
〈proof 〉

lemma write-Syncptick-read-subset :
‹c a ∈ S =⇒ d ‘ B ⊆ S =⇒
c!a → P [[S]]3 d?b∈B → Q b =
(if c a ∈ d ‘ B then c!a → (P [[S]]3 Q (inv-into B d (c a))) else STOP)›
〈proof 〉

lemma read-Syncptick-write-subset :
‹c ‘ A ⊆ S =⇒ d b ∈ S =⇒
c?a∈A → P a [[S]]3 d!b → Q =
(if d b ∈ c ‘ A then d!b → (P (inv-into A c (d b)) [[S]]3 Q) else STOP)›

88

〈proof 〉
lemma write-Syncptick-read-subset-same-chan:

‹c a ∈ S =⇒ c ‘ B ⊆ S =⇒ inj-on c (insert a B) =⇒
c!a → P [[S]]3 c?b∈B → Q b = (if a ∈ B then c!a → (P [[S]]3 Q a) else STOP)›
〈proof 〉

lemma read-Syncptick-write-subset-same-chan:
‹c ‘ A ⊆ S =⇒ c b ∈ S =⇒ inj-on c (insert b A) =⇒
c?a∈A → P a [[S]]3 c!b → Q = (if b ∈ A then c!b → (P b [[S]]3 Q) else STOP)›
〈proof 〉

lemma write-Syncptick-read-indep :
‹c a /∈ S =⇒ d ‘ B ∩ S = {} =⇒
c!a → P [[S]]3 d?b∈B → Q b =
(c!a → (P [[S]]3 d?b∈B → Q b)) � (d?b∈B → (c!a → P [[S]]3 Q b))›
〈proof 〉

lemma read-Syncptick-write-indep :
‹c ‘ A ∩ S = {} =⇒ d b /∈ S =⇒
c?a∈A → P a [[S]]3 d!b → Q =
(d!b → (c?a∈A → P a [[S]]3 Q)) � (c?a∈A → (P a [[S]]3 d!b → Q))›
〈proof 〉

lemma write-Syncptick-read-left :
‹c a /∈ S =⇒ d ‘ B ⊆ S =⇒
c!a → P [[S]]3 d?b∈B → Q b = c!a → (P [[S]]3 d?b∈B → Q b)›
〈proof 〉

lemma read-Syncptick-write-left :
‹c ‘ A ∩ S = {} =⇒ d b ∈ S =⇒
c?a∈A → P a [[S]]3 d!b → Q = c?a∈A → (P a [[S]]3 d!b → Q)›
〈proof 〉

lemma write-Syncptick-read-right :
‹c a ∈ S =⇒ d ‘ B ∩ S = {} =⇒
c!a → P [[S]]3 d?b∈B → Q b = d?b∈B → (c!a → P [[S]]3 Q b)›
〈proof 〉

lemma read-Syncptick-write-right :
‹c ‘ A ⊆ S =⇒ d b /∈ S =⇒
c?a∈A → P a [[S]]3 d!b → Q = d!b → (c?a∈A → P a [[S]]3 Q)›
〈proof 〉

ndet-write and ndet-write lemma ndet-write-Syncptick-ndet-write :
‹c!!a∈A → P a [[S]]3 d!!b∈B → Q b =
(if A = {} then if d ‘ B ∩ S = {} then d!!b∈B → (STOP [[S]]3 Q b)

89

else (ux∈d ‘ (B − d −‘ S) → (STOP [[S]]3 Q (inv-into B d x)))
u STOP

else if B = {} then if c ‘ A ∩ S = {} then c!!a∈A → (P a [[S]]3 STOP)
else (ux∈c ‘ (A − c −‘ S) → (P (inv-into A c x) [[S]]3

STOP)) u STOP
else ub∈d ‘ B. ua∈c ‘ A.

(if a ∈ S then STOP else a → (P (inv-into A c a) [[S]]3 b → Q (inv-into
B d b))) �

(if b ∈ S then STOP else b → (a → P (inv-into A c a) [[S]]3 Q (inv-into
B d b))) �

(if a = b ∧ b ∈ S then b → (P (inv-into A c a) [[S]]3 Q (inv-into B d
b)) else STOP))›
〈proof 〉

lemma ndet-write-Syncptick-ndet-write-subset :
‹c ‘ A ⊆ S =⇒ d ‘ B ⊆ S =⇒
c!!a∈A → P a [[S]]3 d!!b∈B → Q b =
(if ∃ b. c ‘ A = {b} ∧ d ‘ B = {b}
then (THE b. d ‘ B = {b}) → (P (inv-into A c (THE a. c ‘ A = {a})) [[S]]3 Q

(inv-into B d (THE b. d ‘ B = {b})))
else (ux∈(c ‘ A ∩ d ‘ B) → (P (inv-into A c x) [[S]]3 Q (inv-into B d x))) u

STOP)›
〈proof 〉

corollary inj-on-ndet-write-Syncptick-ndet-write-subset :
‹c!!a∈A → P a [[S]]3 d!!b∈B → Q b =
(if ∃ b. c ‘ A = {b} ∧ d ‘ B = {b}
then d (THE b. B = {b}) → (P (THE a. A = {a}) [[S]]3 Q (THE b. B = {b}))
else (ux∈(c ‘ A ∩ d ‘ B) → (P (inv-into A c x) [[S]]3 Q (inv-into B d x))) u

STOP)›
if ‹inj-on c A› ‹inj-on d B› ‹c ‘ A ⊆ S› ‹d ‘ B ⊆ S›
〈proof 〉

lemma ndet-write-Syncptick-ndet-write-indep :
‹c ‘ A ∩ S = {} =⇒ d ‘ B ∩ S = {} =⇒
c!!a∈A → P a [[S]]3 d!!b∈B → Q b =
(if A = {} then d!!b∈B → (STOP [[S]]3 Q b)
else if B = {} then c!!a∈A → (P a [[S]]3 STOP)

else ub∈d ‘ B. ua∈c ‘ A.
((a → (P (inv-into A c a) [[S]]3 b → Q (inv-into B d b)))) �
((b → (a → P (inv-into A c a) [[S]]3 Q (inv-into B d b)))))›

〈proof 〉

lemma ndet-write-Syncptick-ndet-write-left :
‹c ‘ A ∩ S = {} =⇒ d ‘ B ⊆ S =⇒

90

c!!a∈A → P a [[S]]3 d!!b∈B → Q b = c!!a∈A → (P a [[S]]3 d!!b∈B → Q b)›
〈proof 〉

lemma ndet-write-Syncptick-ndet-write-right :
‹c ‘ A ⊆ S =⇒ d ‘ B ∩ S = {} =⇒
c!!a∈A → P a [[S]]3 d!!b∈B → Q b = d!!b∈B → (c!!a∈A → P a [[S]]3 Q b)›
〈proof 〉

ndet-write and write lemma write-Syncptick-ndet-write :
‹c!a → P [[S]]3 d!!b∈B → Q b =
(if B = {} then c!a → P [[S]]3 STOP
else ub∈d ‘ B. (if b ∈ S then STOP else b → (c!a → P [[S]]3 Q (inv-into B d

b))) �
(if c a ∈ S then STOP else c!a → (P [[S]]3 b → Q (inv-into B d

b))) �
(if b = c a ∧ c a ∈ S then c!a → (P [[S]]3 Q (inv-into B d (c a)))

else STOP))›
〈proof 〉

lemma ndet-write-Syncptick-write :
‹c!!a∈A → P a [[S]]3 d!b → Q =
(if A = {} then STOP [[S]]3 d!b → Q
else ua∈c ‘ A. (if a ∈ S then STOP else a → (P (inv-into A c a) [[S]]3 d!b →

Q)) �
(if d b ∈ S then STOP else d!b → (a → P (inv-into A c a) [[S]]3

Q)) �
(if a = d b ∧ d b ∈ S then d!b → (P (inv-into A c a) [[S]]3 Q) else

STOP))›
〈proof 〉

lemma write-Syncptick-ndet-write-subset :
‹c!a → P [[S]]3 d!!b∈B → Q b =
(if c a /∈ d ‘ B then STOP else if d ‘ B = {c a} then c!a → (P [[S]]3 Q (inv-into

B d (c a)))
else (c!a → (P [[S]]3 Q (inv-into B d (c a)))) u STOP)› if ‹c a ∈ S› ‹d ‘ B ⊆

S›
〈proof 〉

corollary (in Syncptick-locale) ndet-write-Syncptick-write-subset :
‹(c!!a∈A → P a) [[S]]3 (d!b → Q) =
(if d b /∈ c ‘ A then STOP else if c ‘ A = {d b} then d!b → (P (inv-into A c

(d b)) [[S]]3 Q)
else (d!b → (P (inv-into A c (d b)) [[S]]3 Q)) u STOP)› if ‹c ‘ A ⊆ S› ‹d b ∈

S›
〈proof 〉

91

lemma write-Syncptick-ndet-write-indep :
‹c a /∈ S =⇒ d ‘ B ∩ S = {} =⇒
c!a → P [[S]]3 d!!b∈B → Q b =
(if B = {} then c!a → (P [[S]]3 STOP)
else ub∈d ‘ B. (c!a → (P [[S]]3 b → Q (inv-into B d b))) �

(b → (c!a → P [[S]]3 Q (inv-into B d b))))›
〈proof 〉

lemma ndet-write-Syncptick-write-indep :
‹c ‘ A ∩ S = {} =⇒ d b /∈ S =⇒
c!!a∈A → P a [[S]]3 d!b → Q =
(if A = {} then d!b → (STOP [[S]]3 Q)
else ua∈c ‘ A. (a → (P (inv-into A c a) [[S]]3 d!b → Q)) �

(d!b → (a → P (inv-into A c a) [[S]]3 Q)))›
〈proof 〉

lemma write-Syncptick-ndet-write-left :
‹c a /∈ S =⇒ d ‘ B ⊆ S =⇒ c!a → P [[S]]3 d!!b∈B → Q b = c!a → (P [[S]]3

d!!b∈B → Q b)›
〈proof 〉

lemma ndet-write-Syncptick-write-left :
‹c ‘ A ∩ S = {} =⇒ d b ∈ S =⇒ c!!a∈A → P a [[S]]3 d!b → Q = c!!a∈A → (P

a [[S]]3 d!b → Q)›
〈proof 〉

lemma write-Syncptick-ndet-write-right :
‹c a ∈ S =⇒ d ‘ B ∩ S = {} =⇒ c!a → P [[S]]3 d!!b∈B → Q b = d!!b∈B →

(c!a → P [[S]]3 Q b)›
〈proof 〉

lemma ndet-write-Syncptick-write-right :
‹c ‘ A ⊆ S =⇒ d b /∈ S =⇒ c!!a∈A → P a [[S]]3 d!b → Q = d!b → (c!!a∈A →

P a [[S]]3 Q)›
〈proof 〉

write and write lemma write-Syncptick-write :
‹c!a → P [[S]]3 d!b → Q =
(if d b ∈ S then STOP else d!b → (c!a → P [[S]]3 Q)) �
(if c a ∈ S then STOP else c!a → (P [[S]]3 d!b → Q)) �
(if c a = d b ∧ d b ∈ S then c!a → (P [[S]]3 Q) else STOP)›
〈proof 〉

lemma write-Interptick-write :
‹c!a → P |||3 d!b → Q = (c!a → (P |||3 d!b → Q)) � (d!b → (c!a → P |||3

Q))›
〈proof 〉

92

lemma write-Parptick-write :
‹c!a → P ||3 d!b → Q = (if c a = d b then c!a → (P ||3 Q) else STOP)›
〈proof 〉

lemma write-Syncptick-write-subset :
‹c a ∈ S =⇒ d b ∈ S =⇒
c!a → P [[S]]3 d!b → Q = (if c a = d b then c!a → (P [[S]]3 Q) else STOP)›
〈proof 〉

lemma write-Syncptick-write-indep :
‹c a /∈ S =⇒ d b /∈ S =⇒
c!a → P [[S]]3 d!b → Q = (c!a → (P [[S]]3 d!b → Q)) � (d!b → (c!a → P [[S]]3

Q))›
〈proof 〉

lemma write-Syncptick-write-left :
‹c a /∈ S =⇒ d b ∈ S =⇒ c!a → P [[S]]3 d!b → Q = c!a → (P [[S]]3 d!b → Q)›
〈proof 〉

lemma write-Syncptick-write-right :
‹c a ∈ S =⇒ d b /∈ S =⇒ c!a → P [[S]]3 d!b → Q = d!b → (c!a → P [[S]]3 Q)›
〈proof 〉

read and (→). lemma write0-Syncptick-read :
‹a → P [[S]]3 d?b∈B → Q b =
(if a ∈ S then STOP else a → (P [[S]]3 d?b∈B → Q b)) �
(�b∈(d ‘ B − S) → (a → P [[S]]3 Q (inv-into B d b))) �
(if a ∈ d ‘ B ∩ S then a → (P [[S]]3 Q (inv-into B d a)) else STOP)›
〈proof 〉

lemma read-Syncptick-write0 :
‹c?a∈A → P a [[S]]3 b → Q =
(if b ∈ S then STOP else b → (c?a∈A → P a [[S]]3 Q)) �
(�a∈(c ‘ A − S) → (P (inv-into A c a) [[S]]3 b → Q)) �
(if b ∈ c ‘ A ∩ S then b → (P (inv-into A c b) [[S]]3 Q) else STOP)›
〈proof 〉

lemma write0-Syncptick-read-subset :
‹a ∈ S =⇒ d ‘ B ⊆ S =⇒
a → P [[S]]3 d?b∈B → Q b =
(if a ∈ d ‘ B then a → (P [[S]]3 Q (inv-into B d a)) else STOP)›
〈proof 〉

lemma read-Syncptick-write0-subset :
‹c ‘ A ⊆ S =⇒ b ∈ S =⇒

93

c?a∈A → P a [[S]]3 b → Q =
(if b ∈ c ‘ A then b → (P (inv-into A c b) [[S]]3 Q) else STOP)›
〈proof 〉

lemma write0-Syncptick-read-subset-same-chan:
‹a ∈ S =⇒ B ⊆ S =⇒
a → P [[S]]3 id?b∈B → Q b = (if a ∈ B then a → (P [[S]]3 Q a) else STOP)›
〈proof 〉

lemma read-Syncptick-write0-subset-same-chan:
‹A ⊆ S =⇒ b ∈ S =⇒
id?a∈A → P a [[S]]3 b → Q = (if b ∈ A then b → (P b [[S]]3 Q) else STOP)›
〈proof 〉

lemma write0-Syncptick-read-indep :
‹a /∈ S =⇒ d ‘ B ∩ S = {} =⇒
a → P [[S]]3 d?b∈B → Q b =
(a → (P [[S]]3 d?b∈B → Q b)) � (d?b∈B → (a → P [[S]]3 Q b))›
〈proof 〉

lemma read-Syncptick-write0-indep :
‹c ‘ A ∩ S = {} =⇒ b /∈ S =⇒
c?a∈A → P a [[S]]3 b → Q =
(b → (c?a∈A → P a [[S]]3 Q)) � (c?a∈A → (P a [[S]]3 b → Q))›
〈proof 〉

lemma write0-Syncptick-read-left :
‹a /∈ S =⇒ d ‘ B ⊆ S =⇒ a → P [[S]]3 d?b∈B → Q b = a → (P [[S]]3 d?b∈B
→ Q b)›
〈proof 〉

lemma read-Syncptick-write0-left :
‹c ‘ A ∩ S = {} =⇒ b ∈ S =⇒ c?a∈A → P a [[S]]3 b → Q = c?a∈A → (P a

[[S]]3 b → Q)›
〈proof 〉

lemma write0-Syncptick-read-right :
‹a ∈ S =⇒ d ‘ B ∩ S = {} =⇒ a → P [[S]]3 d?b∈B → Q b = d?b∈B → (a →

P [[S]]3 Q b)›
〈proof 〉

lemma read-Syncptick-write0-right :
‹c ‘ A ⊆ S =⇒ b /∈ S =⇒ c?a∈A → P a [[S]]3 b → Q = b → (c?a∈A → P a

[[S]]3 Q)›
〈proof 〉

ndet-write and (→) lemma write0-Syncptick-ndet-write :
‹a → P [[S]]3 d!!b∈B → Q b =
(if B = {} then a → P [[S]]3 STOP

94

else ub∈d ‘ B. (if b ∈ S then STOP else b → (a → P [[S]]3 Q (inv-into B d
b))) �

(if a ∈ S then STOP else a → (P [[S]]3 b → Q (inv-into B d b))) �
(if b = a ∧ a ∈ S then a → (P [[S]]3 Q (inv-into B d a)) else

STOP))›
〈proof 〉

lemma ndet-write-Syncptick-write0 :
‹c!!a∈A → P a [[S]]3 b → Q =
(if A = {} then STOP [[S]]3 b → Q
else ua∈c ‘ A. (if a ∈ S then STOP else a → (P (inv-into A c a) [[S]]3 b →

Q)) �
(if b ∈ S then STOP else b → (a → P (inv-into A c a) [[S]]3 Q)) �

(if a = b ∧ b ∈ S then b → (P (inv-into A c a) [[S]]3 Q) else
STOP))›
〈proof 〉

lemma write0-Syncptick-ndet-write-subset :
‹a ∈ S =⇒ d ‘ B ⊆ S =⇒
a → P [[S]]3 d!!b∈B → Q b =
(if a /∈ d ‘ B then STOP else if d ‘ B = {a} then a → (P [[S]]3 Q (inv-into B

d a))
else (a → (P [[S]]3 Q (inv-into B d a))) u STOP)›
〈proof 〉

lemma ndet-write-Syncptick-write0-subset :
‹c ‘ A ⊆ S =⇒ b ∈ S =⇒
c!!a∈A → P a [[S]]3 b → Q =
(if b /∈ c ‘ A then STOP else if c ‘ A = {b} then b → (P (inv-into A c b) [[S]]3

Q)
else (b → (P (inv-into A c b) [[S]]3 Q)) u STOP)›
〈proof 〉

lemma write0-Syncptick-ndet-write-indep :
‹a /∈ S =⇒ d ‘ B ∩ S = {} =⇒
a → P [[S]]3 d!!b∈B → Q b =
(if B = {} then a → (P [[S]]3 STOP)
else ub∈d ‘ B. (a → (P [[S]]3 b → Q (inv-into B d b))) �

(b → (a → P [[S]]3 Q (inv-into B d b))))›
〈proof 〉

lemma ndet-write-Syncptick-write0-indep :
‹c ‘ A ∩ S = {} =⇒ b /∈ S =⇒
c!!a∈A → P a [[S]]3 b → Q =
(if A = {} then b → (STOP [[S]]3 Q)
else ua∈c ‘ A. (a → (P (inv-into A c a) [[S]]3 b → Q)) �

(b → (a → P (inv-into A c a) [[S]]3 Q)))›
〈proof 〉

95

lemma write0-Syncptick-ndet-write-left :
‹a /∈ S =⇒ d ‘ B ⊆ S =⇒ a → P [[S]]3 d!!b∈B → Q b = a → (P [[S]]3 d!!b∈B
→ Q b)›
〈proof 〉

lemma ndet-write-Syncptick-write0-left :
‹c ‘ A ∩ S = {} =⇒ b ∈ S =⇒ c!!a∈A → P a [[S]]3 b → Q = c!!a∈A → (P a

[[S]]3 b → Q)›
〈proof 〉

lemma write-Syncptick-ndet-write0-right :
‹a ∈ S =⇒ d ‘ B ∩ S = {} =⇒ a → P [[S]]3 d!!b∈B → Q b = d!!b∈B → (a →

P [[S]]3 Q b)›
〈proof 〉

lemma ndet-write-Syncptick-write0-right :
‹c ‘ A ⊆ S =⇒ b /∈ S =⇒ c!!a∈A → P a [[S]]3 b → Q = b → (c!!a∈A → P a

[[S]]3 Q)›
〈proof 〉

(→) and (→) lemma write0-Syncptick-write0 :
‹a → P [[S]]3 b → Q =
(if b ∈ S then STOP else b → (a → P [[S]]3 Q)) �
(if a ∈ S then STOP else a → (P [[S]]3 b → Q)) �
(if a = b ∧ b ∈ S then a → (P [[S]]3 Q) else STOP)›
〈proof 〉

lemma write0-Syncptick-write0-bis :
‹(a → P) [[S]]3 (b → Q) =
(if a ∈ S
then if b ∈ S

then if a = b
then a → (P [[S]]3 Q)
else STOP

else (b → ((a → P) [[S]]3 Q))
else if b ∈ S

then a → (P [[S]]3 (b → Q))
else (a → (P [[S]]3 (b → Q))) � (b → ((a → P) [[S]]3 Q)))›
〈proof 〉

lemma write0-Interptick-write0 :
‹a → P |||3 b → Q = (a → (P |||3 b → Q)) � (b → (a → P |||3 Q))›
〈proof 〉

lemma write0-Parptick-write0 :
‹a → P ||3 b → Q = (if a = b then a → (P ||3 Q) else STOP)›
〈proof 〉

96

lemma write0-Syncptick-write0-subset :
‹a ∈ S =⇒ b ∈ S =⇒ a → P [[S]]3 b → Q = (if a = b then a → (P [[S]]3 Q)

else STOP)›
〈proof 〉

lemma write0-Syncptick-write0-indep :
‹a /∈ S =⇒ b /∈ S =⇒ a → P [[S]]3 b → Q = (a → (P [[S]]3 b → Q)) � (b →

(a → P [[S]]3 Q))›
〈proof 〉

lemma write0-Syncptick-write0-left :
‹a /∈ S =⇒ b ∈ S =⇒ a → P [[S]]3 b → Q = a → (P [[S]]3 b → Q)›
〈proof 〉

lemma write0-Syncptick-write0-right :
‹a ∈ S =⇒ b /∈ S =⇒ a → P [[S]]3 b → Q = b → (a → P [[S]]3 Q)›
〈proof 〉

write and (→) lemma write0-Syncptick-write :
‹a → P [[S]]3 d!b → Q =
(if d b ∈ S then STOP else d!b → (a → P [[S]]3 Q)) �
(if a ∈ S then STOP else a → (P [[S]]3 d!b → Q)) �
(if a = d b ∧ d b ∈ S then a → (P [[S]]3 Q) else STOP)›
〈proof 〉

lemma write-Syncptick-write0 :
‹c!a → P [[S]]3 b → Q =
(if b ∈ S then STOP else b → (c!a → P [[S]]3 Q)) �
(if c a ∈ S then STOP else c!a → (P [[S]]3 b → Q)) �
(if c a = b ∧ b ∈ S then c!a → (P [[S]]3 Q) else STOP)›
〈proof 〉

lemma write0-Syncptick-write-subset :
‹a ∈ S =⇒ d b ∈ S =⇒
a → P [[S]]3 d!b → Q = (if a = d b then a → (P [[S]]3 Q) else STOP)›
〈proof 〉

lemma write-Syncptick-write0-subset :
‹c a ∈ S =⇒ b ∈ S =⇒
c!a → P [[S]]3 b → Q = (if c a = b then c!a → (P [[S]]3 Q) else STOP)›
〈proof 〉

lemma write0-Syncptick-write-indep :
‹a /∈ S =⇒ d b /∈ S =⇒
a → P [[S]]3 d!b → Q = (a → (P [[S]]3 d!b → Q)) � (d!b → (a → P [[S]]3 Q))›
〈proof 〉

97

lemma write-Syncptick-write0-indep :
‹c a /∈ S =⇒ b /∈ S =⇒
c!a → P [[S]]3 b → Q = (c!a → (P [[S]]3 b → Q)) � (b → (c!a → P [[S]]3 Q))›
〈proof 〉

lemma write0-Syncptick-write-left :
‹a /∈ S =⇒ d b ∈ S =⇒ a → P [[S]]3 d!b → Q = a → (P [[S]]3 d!b → Q)›
〈proof 〉

lemma write-Syncptick-write0-left :
‹c a /∈ S =⇒ b ∈ S =⇒ c!a → P [[S]]3 b → Q = c!a → (P [[S]]3 b → Q)›
〈proof 〉

lemma write0-Syncptick-write-right :
‹a ∈ S =⇒ d b /∈ S =⇒ a → P [[S]]3 d!b → Q = d!b → (a → P [[S]]3 Q)›
〈proof 〉

lemma write-Syncptick-write0-right :
‹c a ∈ S =⇒ b /∈ S =⇒ c!a → P [[S]]3 b → Q = b → (c!a → P [[S]]3 Q)›
〈proof 〉

Synchronization with SKIP and STOP

SKIP Without injectivity, the result is a trivial corollary of read c A P ≡
Mprefix (c ‘ A) (P ◦ inv-into A c) and Mprefix A P [[S]]3 SKIP r = �a∈(A
− S) → (P a [[S]]3 SKIP r).
lemma read-Syncptick-SKIP :

‹c?a∈A → P a [[S]]3 SKIP r = c?a∈(A − c −‘ S) → (P a [[S]]3 SKIP r)› if
‹inj-on c A›
〈proof 〉

lemma SKIP-Syncptick-read :
‹SKIP r [[S]]3 d?b∈B → Q b = d?b∈(B − d −‘ S) → (SKIP r [[S]]3 Q b)› if

‹inj-on d B›
〈proof 〉

corollary write-Syncptick-SKIP :
‹c!a → P [[S]]3 SKIP s = (if c a ∈ S then STOP else c!a → (P [[S]]3 SKIP s))›
and SKIP-Syncptick-write :
‹SKIP r [[S]]3 d!b → Q = (if d b ∈ S then STOP else d!b → (SKIP r [[S]]3 Q))›
〈proof 〉

corollary write0-Syncptick-SKIP :
‹a → P [[S]]3 SKIP s = (if a ∈ S then STOP else a → (P [[S]]3 SKIP s))›
and SKIP-Syncptick-write0 :

98

‹SKIP r [[S]]3 b → Q = (if b ∈ S then STOP else b → (SKIP r [[S]]3 Q))›
〈proof 〉

lemma ndet-write-Syncptick-SKIP :
‹c!!a∈A → P a [[S]]3 SKIP r =
(if c ‘ A ∩ S = {} then c!!a∈A → (P a [[S]]3 SKIP r)
else (c!!a∈(A − c −‘ S) → (P a [[S]]3 SKIP r)) u STOP)›

(is ‹?lhs = (if - then ?rhs1 else ?rhs2 u STOP)›) if ‹inj-on c A›
〈proof 〉

corollary (in Syncptick-locale) SKIP-Syncptick-ndet-write :
‹inj-on d B =⇒ SKIP r [[S]]3 d!!b∈B → Q b =
(if d ‘ B ∩ S = {} then d!!b∈B → (SKIP r [[S]]3 Q b)
else (d!!b∈(B − d −‘ S) → (SKIP r [[S]]3 Q b)) u STOP)›
〈proof 〉

corollary (in Syncptick-locale) Mndetprefix-Syncptick-SKIP :
‹ua ∈ A → P a [[S]]3 SKIP r =
(if A ∩ S = {} then ua ∈ A → (P a [[S]]3 SKIP r)
else (ua ∈ (A − S) → (P a [[S]]3 SKIP r)) u STOP)›
〈proof 〉

corollary (in Syncptick-locale) Syncptick-SKIP-Mndetprefix :
‹SKIP r [[S]]3 ub ∈ B → Q b =
(if B ∩ S = {} then ub ∈ B → (SKIP r [[S]]3 Q b)
else (ub ∈ (B − S) → (SKIP r [[S]]3 Q b)) u STOP)›
〈proof 〉

STOP Without injectivity, the result is a trivial corollary of read c A P ≡
Mprefix (c ‘ A) (P ◦ inv-into A c) and Mprefix A P [[S]]3 SKIP r = �a∈(A
− S) → (P a [[S]]3 SKIP r).

lemma read-Syncptick-STOP :
‹c?a∈A→ P a [[S]]3 STOP = c?a∈(A − c −‘ S)→ (P a [[S]]3 STOP)› if ‹inj-on

c A›
〈proof 〉

lemma STOP-Syncptick-read :
‹STOP [[S]]3 d?b∈B → Q b = d?b∈(B − d −‘ S) → (STOP [[S]]3 Q b)› if

‹inj-on d B›
〈proof 〉

corollary write-Syncptick-STOP :
‹c!a → P [[S]]3 STOP = (if c a ∈ S then STOP else c!a → (P [[S]]3 STOP))›

99

and STOP-Syncptick-write :
‹STOP [[S]]3 d!b → Q = (if d b ∈ S then STOP else d!b → (STOP [[S]]3 Q))›
〈proof 〉

corollary write0-Syncptick-STOP :
‹a → P [[S]]3 STOP = (if a ∈ S then STOP else a → (P [[S]]3 STOP))›
and STOP-Syncptick-write0 :
‹STOP [[S]]3 b → Q = (if b ∈ S then STOP else b → (STOP [[S]]3 Q))›
〈proof 〉

lemma ndet-write-Syncptick-STOP :
‹c!!a∈A → P a [[S]]3 STOP =
(if c ‘ A ∩ S = {} then c!!a∈A → (P a [[S]]3 STOP)
else (c!!a∈(A − c −‘ S) → (P a [[S]]3 STOP)) u STOP)›

(is ‹?lhs = (if - then ?rhs1 else ?rhs2 u STOP)›) if ‹inj-on c A›
〈proof 〉

corollary (in Syncptick-locale) STOP-Syncptick-ndet-write :
‹inj-on d B =⇒ STOP [[S]]3 d!!b∈B → Q b =
(if d ‘ B ∩ S = {} then d!!b∈B → (STOP [[S]]3 Q b)
else (d!!b∈(B − d −‘ S) → (STOP [[S]]3 Q b)) u STOP)›
〈proof 〉

end

100

Chapter 9

Operational Semantics Laws

9.1 Behaviour of initials
9.1.1 TickSwap
lemma initials-TickSwap :

‹(TickSwap P)0 = (if P = ⊥ then UNIV
else {ev a |a. ev a ∈ P0} ∪ {3((s, r)) |r s. 3((r , s)) ∈ P0})›

〈proof 〉

9.1.2 Sequential Composition
lemma initials-Seqptick :

‹(P ;3 Q)0 = (if P = ⊥ then UNIV
else {ev a |a. ev a ∈ P0} ∪ (

⋃
r∈{r . 3(r) ∈ P0}. (Q r)0))›

(is ‹- = (if - then - else ?rhs)›)
〈proof 〉

9.1.3 Synchronization Product
lemma (in Syncptick-locale) initials-Syncptick :

‹(P [[S]]3 Q)0 =
(if P = ⊥ ∨ Q = ⊥ then UNIV else
{ev a |a. a ∈ S ∧ ev a ∈ P0 ∧ ev a ∈ Q0 ∨ a /∈ S ∧ (ev a ∈ P0 ∨ ev a ∈ Q0)}

∪
{3(r-s) |r-s r s. tick-join r s = Some r-s ∧ 3(r) ∈ P0 ∧ 3(s) ∈ Q0})›

(is ‹(P [[S]]3 Q)0 = (if P = ⊥ ∨ Q = ⊥ then UNIV else ?rhs-ev ∪ ?rhs-tick)›)
〈proof 〉

9.2 Laws of After
9.2.1 Sequential Composition
locale AfterDuplicated-same-events = AfterDuplicated Ψα Ψβ

for Ψα :: ‹(′a, ′r) processptick ⇒ ′a ⇒ (′a, ′r) processptick›
and Ψβ :: ‹(′a, ′s) processptick ⇒ ′a ⇒ (′a, ′s) processptick›

101

begin

notation Afterα.After (infixl ‹afterα› 86)
notation Afterβ .After (infixl ‹afterβ› 86)

lemma not-skippable-or-not-initialR-After-Seqptick:
‹(P ;3 Q) afterβ a = (if ev a ∈ P0 then P afterα a ;3 Q else Ψβ (P ;3 Q) a)›
if ‹range tick ∩ P0 = {} ∨ (∀ r . 3(r) ∈ P0 −→ ev a /∈ (Q r)0)›
〈proof 〉

lemma skippable-not-initialL-After-Seqptick:
‹(P ;3 Q) afterβ a = (if (∃ r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0)

then ur∈{r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0}. Q r afterβ a
else Ψβ (P ;3 Q) a)›

(is ‹(P ;3 Q) afterβ a = (if ?prem then ?rhs else -)›) if ‹ev a /∈ P0›
〈proof 〉

lemma skippable-initialL-initialR-After-Seqptick:
‹(P ;3 Q) afterβ a = (P afterα a ;3 Q) u (ur∈{r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0}.

Q r afterβ a)›
(is ‹(P ;3 Q) afterβ a = (P afterα a ;3 Q) u ?rhs›)
if assms : ‹∃ r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0› ‹ev a ∈ P0›
〈proof 〉

lemma not-initialL-not-initialR-After-Seqptick:
‹ev a /∈ P0 =⇒ (

∧
r . 3(r) ∈ P0 =⇒ ev a /∈ (Q r)0) =⇒

(P ;3 Q) afterβ a = Ψβ (P ;3 Q) a›
〈proof 〉

lemma After-Seqptick:
‹(P ;3 Q) afterβ a =
(if ∀ r . 3(r) ∈ P0 −→ ev a /∈ (Q r)0
then if ev a ∈ P0 then P afterα a ;3 Q else Ψβ (P ;3 Q) a
else if ev a ∈ P0

then (P afterα a ;3 Q) u (ur∈{r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0}. Q r afterβ

a)
else ur∈{r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0}. Q r afterβ a)›

〈proof 〉

end

102

9.2.2 Synchronization Product

Because of the types, we have to extend the locale.

locale After-Syncptick-locale = Syncptick-locale tick-join +
After lhs : After Ψlhs + Afterrhs : After Ψrhs + Afterptick : After Ψptick

for tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option›
and Ψlhs :: ‹[(′a, ′r) processptick, ′a] ⇒ (′a, ′r) processptick›
and Ψrhs :: ‹[(′a, ′s) processptick, ′a] ⇒ (′a, ′s) processptick›
and Ψptick :: ‹[(′a, ′t) processptick, ′a] ⇒ (′a, ′t) processptick›

begin

notation After lhs.After (infixl ‹after lhs› 86)
notation Afterrhs.After (infixl ‹afterrhs› 86)
notation Afterptick.After (infixl ‹afterptick› 86)

sublocale After-Syncptick-locale-sym :
After-Syncptick-locale ‹λs r . tick-join r s› Ψrhs Ψlhs Ψptick

〈proof 〉

lemma initialL-not-initialR-not-in-After-Syncptick:
‹(P [[S]]3 Q) afterptick a = P after lhs a [[S]]3 Q› (is ‹?lhs = ?rhs›)
if initial-hyps: ‹ev a ∈ P0› ‹ev a /∈ Q0› and notin: ‹a /∈ S›
〈proof 〉

lemma (in After-Syncptick-locale) not-initialL-initialR-not-in-After-Syncptick:
‹(P [[S]]3 Q) afterptick a = P [[S]]3 Q afterrhs a› (is ‹?lhs = ?rhs›)
if initial-hyps: ‹ev a /∈ P0› ‹ev a ∈ Q0› and notin: ‹a /∈ S›
〈proof 〉

lemma not-initialL-in-After-Syncptick:
‹ev a /∈ P0 =⇒ a ∈ S =⇒
(P [[S]]3 Q) afterptick a = (if Q = ⊥ then ⊥ else Ψptick (P [[S]]3 Q) a)›
〈proof 〉

lemma not-initialR-in-After-Syncptick:
‹ev a /∈ Q0 =⇒ a ∈ S =⇒
(P [[S]]3 Q) afterptick a = (if P = ⊥ then ⊥ else Ψptick (P [[S]]3 Q) a)›
〈proof 〉

lemma initialL-initialR-in-After-Syncptick:
‹(P [[S]]3 Q) afterptick a = P after lhs a [[S]]3 Q afterrhs a› (is ‹?lhs = ?rhs›)
if initial-hyps: ‹ev a ∈ P0› ‹ev a ∈ Q0› and inside: ‹a ∈ S›
〈proof 〉

103

lemma initialL-initialR-not-in-After-Syncptick:
‹(P [[S]]3 Q) afterptick a = (P after lhs a [[S]]3 Q) u (P [[S]]3 Q afterrhs a)›
(is ‹?lhs = ?rhs1 u ?rhs2 ›)
if initial-hyps: ‹ev a ∈ P0› ‹ev a ∈ Q0› and notin: ‹a /∈ S›
〈proof 〉

lemma not-initialL-not-initialR-After-Syncptick :
‹ev a /∈ P0 =⇒ ev a /∈ Q0 =⇒ (P [[S]]3 Q) afterptick a = Ψptick (P [[S]]3 Q) a›
〈proof 〉

Finally, the monster theorem !

theorem After-Syncptick:
‹(P [[S]]3 Q) afterptick a =
(if P = ⊥ ∨ Q = ⊥ then ⊥
else if ev a ∈ P0 ∧ ev a ∈ Q0

then if a ∈ S then P after lhs a [[S]]3 Q afterrhs a
else (P after lhs a [[S]]3 Q) u (P [[S]]3 Q afterrhs a)

else if ev a ∈ P0 ∧ a /∈ S then P after lhs a [[S]]3 Q
else if ev a ∈ Q0 ∧ a /∈ S then P [[S]]3 Q afterrhs a

else Ψptick (P [[S]]3 Q) a)›
〈proof 〉

end

9.3 Small Steps Transitions
9.3.1 Extension of the After Operator

9.3.2 Sequential Composition
locale AfterExtDuplicated-same-events = AfterExtDuplicated Ψα Ωα Ψβ Ωβ

for Ψα :: ‹[(′a, ′r) processptick, ′a] ⇒ (′a, ′r) processptick›
and Ωα :: ‹[(′a, ′r) processptick, ′r] ⇒ (′a, ′r) processptick›
and Ψβ :: ‹[(′a, ′s) processptick, ′a] ⇒ (′a, ′s) processptick›
and Ωβ :: ‹[(′a, ′s) processptick, ′s] ⇒ (′a, ′s) processptick›

sublocale AfterExtDuplicated-same-events ⊆ AfterDuplicated-same-events 〈proof 〉

104

context AfterExtDuplicated-same-events
begin

notation After tickα.After (infixl ‹afterα› 86)
notation After tickβ .After (infixl ‹afterβ› 86)
notation After tickα.After tick (infixl ‹after3α› 86)
notation After tickβ .After tick (infixl ‹after3β› 86)

lemma After tick-Seqptick :
‹(P ;3 Q) after3β e =
(case e of 3(r) ⇒ Ωβ (P ;3 Q) r

| ev a ⇒
if ∀ r . 3(r) ∈ P0 −→ ev a /∈ (Q r)0

then if ev a ∈ P0

then P after3α ev a ;3 Q else Ψβ (P ;3 Q) a
else if ev a ∈ P0

then (P after3α ev a ;3 Q) u
(ur∈{r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0}. Q r after3β ev a)

else ur∈{r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0}. Q r after3β ev a)›
〈proof 〉

end

Synchronization Product

locale AfterExt-Syncptick-locale = Syncptick-locale tick-join +
AfterExtlhs : AfterExt Ψlhs Ωlhs +
AfterExtrhs : AfterExt Ψrhs Ωrhs +
AfterExtptick : AfterExt Ψptick Ωptick

for tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option›
and Ψlhs :: ‹[(′a, ′r) processptick, ′a] ⇒ (′a, ′r) processptick›
and Ωlhs :: ‹[(′a, ′r) processptick, ′r] ⇒ (′a, ′r) processptick›
and Ψrhs :: ‹[(′a, ′s) processptick, ′a] ⇒ (′a, ′s) processptick›
and Ωrhs :: ‹[(′a, ′s) processptick, ′s] ⇒ (′a, ′s) processptick›
and Ψptick :: ‹[(′a, ′t) processptick, ′a] ⇒ (′a, ′t) processptick›
and Ωptick :: ‹[(′a, ′t) processptick, ′t] ⇒ (′a, ′t) processptick›

begin

sublocale After-Syncptick-locale tick-join Ψlhs Ψrhs Ψptick 〈proof 〉

sublocale AfterExt-Syncptick-locale-sym :
AfterExt-Syncptick-locale ‹λs r . tick-join r s› Ψrhs Ωrhs Ψlhs Ωlhs Ψptick Ωptick

〈proof 〉

notation AfterExtlhs.After tick (infixl ‹after3lhs› 86)
notation AfterExtrhs.After tick (infixl ‹after3rhs› 86)

105

notation AfterExtptick.After tick (infixl ‹after3ptick› 86)

theorem After tick-Syncptick:
‹(P [[S]]3 Q) after3ptick e =
(case e of 3(r-s) ⇒ Ωptick (P [[S]]3 Q) r-s

| ev a ⇒
if P = ⊥ ∨ Q = ⊥ then ⊥

else if ev a ∈ P0 ∧ ev a ∈ Q0

then if a ∈ S then P after3lhs ev a [[S]]3 Q after3rhs ev a
else (P after3lhs ev a [[S]]3 Q) u (P [[S]]3 Q after3rhs ev a)

else if ev a ∈ P0 ∧ a /∈ S then P after3lhs ev a [[S]]3 Q
else if ev a ∈ Q0 ∧ a /∈ S then P [[S]]3 Q after3rhs ev a

else Ψptick (P [[S]]3 Q) a)›
〈proof 〉

end

9.3.3 Generic Operational Semantics as Locales
Sequential Composition
locale OpSemTransitionsDuplicated-same-events =

OpSemTransitionsDuplicated Ψα Ωα τ -transα Ψβ Ωβ τ -transβ
for Ψα :: ‹[(′a, ′r) processptick, ′a] ⇒ (′a, ′r) processptick›

and Ωα :: ‹[(′a, ′r) processptick, ′r] ⇒ (′a, ′r) processptick›
and τ -transα :: ‹[(′a, ′r) processptick, (′a, ′r) processptick] ⇒ bool› (infixl

‹α τ › 50)
and Ψβ :: ‹[(′a, ′s) processptick, ′a] ⇒ (′a, ′s) processptick›
and Ωβ :: ‹[(′a, ′s) processptick, ′s] ⇒ (′a, ′s) processptick›

and τ -transβ :: ‹[(′a, ′s) processptick, (′a, ′s) processptick]⇒ bool› (infixl ‹β τ ›
50)

sublocale OpSemTransitionsDuplicated-same-events ⊆ AfterExtDuplicated-same-events
〈proof 〉

context OpSemTransitionsDuplicated-same-events begin

notation OpSemTransitionsα.ev-trans (‹- α - -› [50 , 3 , 51] 50)
notation OpSemTransitionsα.tick-trans (‹- α 3- -› [50 , 3 , 51] 50)
notation OpSemTransitionsβ .ev-trans (‹- β - -› [50 , 3 , 51] 50)
notation OpSemTransitionsβ .tick-trans (‹- β 3- -› [50 , 3 , 51] 50)

lemma τ -trans-SeqptickR: ‹P ;3 Q β τ Q ′› if ‹P α 3r P ′› and ‹Q r β τ Q ′›
〈proof 〉

lemma ‹3(r) ∈ P0 =⇒ Q r β e Q ′ =⇒ P ;3 Q β e Q ′› for P :: ‹(′a, ′r)
processptick›
〈proof 〉

106

end

locale OpSemTransitionsSeqptick =
OpSemTransitionsDuplicated-same-events Ψα Ωα τ -transα Ψβ Ωβ τ -transβ
for Ψα :: ‹[(′a, ′r) processptick, ′a] ⇒ (′a, ′r) processptick›

and Ωα :: ‹[(′a, ′r) processptick, ′r] ⇒ (′a, ′r) processptick›
and τ -transα :: ‹[(′a, ′r) processptick, (′a, ′r) processptick] ⇒ bool› (infixl

‹α τ › 50)
and Ψβ :: ‹[(′a, ′s) processptick, ′a] ⇒ (′a, ′s) processptick›
and Ωβ :: ‹[(′a, ′s) processptick, ′s] ⇒ (′a, ′s) processptick›

and τ -transβ :: ‹[(′a, ′s) processptick, (′a, ′s) processptick]⇒ bool› (infixl ‹β τ ›
50) +

assumes τ -trans-SeqptickL : ‹P α τ P ′ =⇒ P ;3 Q β τ P ′ ;3 Q›
begin

lemma ev-trans-SeqptickL: ‹P α e P ′ =⇒ P ;3 Q β e P ′ ;3 Q›
〈proof 〉

lemmas Seqptick-OpSem-rules = τ -trans-SeqptickL ev-trans-SeqptickL τ -trans-SeqptickR

end

Synchronization Product

locale OpSemTransitions-Syncptick-locale = Syncptick-locale ‹(⊗3)› +
OpSemTransitionslhs : OpSemTransitions Ψlhs Ωlhs ‹(lhs τ)› +
OpSemTransitionsrhs : OpSemTransitions Ψrhs Ωrhs ‹(rhs τ)› +
OpSemTransitionsptick : OpSemTransitions Ψptick Ωptick ‹(ptick τ)›
for tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option› (infixl ‹⊗3› 100)

and Ψlhs :: ‹[(′a, ′r) processptick, ′a] ⇒ (′a, ′r) processptick›
and Ωlhs :: ‹[(′a, ′r) processptick, ′r] ⇒ (′a, ′r) processptick›
and τ -translhs :: ‹[(′a, ′r) processptick, (′a, ′r) processptick] ⇒ bool› (infixl

‹lhs τ › 50)
and Ψrhs :: ‹[(′a, ′s) processptick, ′a] ⇒ (′a, ′s) processptick›
and Ωrhs :: ‹[(′a, ′s) processptick, ′s] ⇒ (′a, ′s) processptick›
and τ -transrhs :: ‹[(′a, ′s) processptick, (′a, ′s) processptick] ⇒ bool› (infixl

‹rhs τ › 50)
and Ψptick :: ‹[(′a, ′t) processptick, ′a] ⇒ (′a, ′t) processptick›
and Ωptick :: ‹[(′a, ′t) processptick, ′t] ⇒ (′a, ′t) processptick›
and τ -transptick :: ‹[(′a, ′t) processptick, (′a, ′t) processptick] ⇒ bool› (infixl

‹ptick τ › 50) +
assumes τ -trans-SyncptickL : ‹P lhs τ P ′ =⇒ P [[A]]3 Q ptick τ P ′ [[A]]3 Q›

and τ -trans-SyncptickR : ‹Q rhs τ Q ′ =⇒ P [[A]]3 Q ptick τ P [[A]]3 Q ′›
begin

107

sublocale AfterExt-Syncptick-locale 〈proof 〉

sublocale OpSemTransitions-Syncptick-locale-sym :
OpSemTransitions-Syncptick-locale
‹λs r . r ⊗3 s› Ψrhs Ωrhs ‹(rhs τ)› Ψlhs Ωlhs ‹(lhs τ)› Ψptick Ωptick ‹(ptick τ)›
〈proof 〉

notation OpSemTransitionslhs.ev-trans (‹- lhs - -› [50 , 3 , 51] 50)
notation OpSemTransitionslhs.tick-trans (‹- lhs 3- -› [50 , 3 , 51] 50)
notation OpSemTransitionsrhs.ev-trans (‹- rhs - -› [50 , 3 , 51] 50)
notation OpSemTransitionsrhs.tick-trans (‹- rhs 3- -› [50 , 3 , 51] 50)
notation OpSemTransitionsptick.ev-trans (‹- ptick - -› [50 , 3 , 51] 50)
notation OpSemTransitionsptick.tick-trans (‹- ptick 3- -› [50 , 3 , 51] 50)

We do not need the assumptions τ -trans-SyncptickL τ -trans-SyncptickR for
the three following lemmas.

lemma τ -trans-SKIP-SyncptickL :
‹P [[A]]3 Q ptick τ SKIP r [[A]]3 Q› if ‹P lhs 3r P ′›
〈proof 〉

lemma τ -trans-SKIP-SyncptickR :
‹P [[A]]3 Q ptick τ P [[A]]3 SKIP s› if ‹Q rhs 3s Q ′›
〈proof 〉

lemma tick-trans-SKIP-Syncptick-SKIP:
‹r ⊗3 s = Some r-s =⇒ SKIP r [[A]]3 SKIP s ptick 3r-s Ωptick (SKIP r-s)

r-s›
〈proof 〉

lemma ev-trans-SyncptickL :
‹a /∈ A =⇒ P lhs a P ′ =⇒ P [[A]]3 Q ptick a P ′ [[A]]3 Q›
〈proof 〉

lemma ev-trans-SyncptickR :
‹a /∈ A =⇒ Q rhs a Q ′ =⇒ P [[A]]3 Q ptick a P [[A]]3 Q ′›
〈proof 〉

lemma ev-trans-SyncptickLR :
‹a ∈ A =⇒ P lhs a P ′ =⇒ Q rhs a Q ′ =⇒ P [[A]]3 Q ptick a P ′ [[A]]3 Q ′›
〈proof 〉

lemmas Syncptick-OpSem-rules = τ -trans-SyncptickL τ -trans-SyncptickR
ev-trans-SyncptickL ev-trans-SyncptickR

108

ev-trans-SyncptickLR
τ -trans-SKIP-SyncptickL τ -trans-SKIP-SyncptickR
tick-trans-SKIP-Syncptick-SKIP

end

109

110

Chapter 10

Declensions of the
Generalized Synchronization
Product

unbundle option-type-syntax

10.1 Interpretations

For practical reasons, we directly interpret Syncptick-comm-locale. Then,
the laws of associativity will be derived manually (instead of globally inter-
preting the locale Syncptick-assoc-locale).

10.1.1 Classical Version

The following interpretation is initially the reason we wanted the parame-
ter (⊗3) to be of type ′r ⇒ ′s ⇒ ′t option instead of just ′r ⇒ ′s ⇒ ′t
(we wanted the operator Sync already defined in HOL-CSP to indeed be a
particular case of the new one).
interpretation SyncClassic : Syncptick-comm-locale

‹λr s. if r = s then brc else ♦›
‹λs r . if s = r then bsc else ♦› id id
〈proof 〉

notation SyncClassic.Syncptick (‹(- [[-]]3Classic -)› [70 , 0 , 71] 70)
notation SyncClassic.Interptick (‹(- |||3Classic -)› [72 , 73] 72)
notation SyncClassic.Parptick (‹(- ||3Classic -)› [74 , 75] 74)

10.1.2 Product Type
interpretation SyncP air : Syncptick-comm-locale

111

‹λr s. b(r , s)c› ‹λs r . b(s, r)c› prod.swap prod.swap
〈proof 〉

notation SyncP air.Syncptick (‹(- [[-]]3P air -)› [70 , 0 , 71] 70)
notation SyncP air.Interptick (‹(- |||3P air -)› [72 , 73] 72)
notation SyncP air.Parptick (‹(- ||3P air -)› [74 , 75] 74)

10.1.3 List Type

Pair

interpretation SyncP airlist : Syncptick-comm-locale
‹λr s. b[r , s]c› ‹λs r . b[s, r]c›
‹λrs. [rs ! Suc 0 , rs ! 0]› ‹λrs. [rs ! Suc 0 , rs ! 0]›
〈proof 〉

notation SyncP airlist.Syncptick (‹(- [[-]]3P airlist -)› [70 , 0 , 71] 70)
notation SyncP airlist.Interptick (‹(- |||3P airlist -)› [72 , 73] 72)
notation SyncP airlist.Parptick (‹(- ||3P airlist -)› [74 , 75] 74)

Right List

Here, we want to have one process of type (′a, ′r) processptick on the left
hand side, and one of type (′a, ′r list) processptick on the right hand side.

interpretation SyncRlist : Syncptick-comm-locale
‹λr s. br # sc› ‹λs r . bs @ [r]c›
‹rotate1 › ‹λrs. if rs = [] then [] else last rs # butlast rs›
— λrs. last rs # butlast rs is not injective.
〈proof 〉

notation SyncRlist.Syncptick (‹(- [[-]]3Rlist -)› [70 , 0 , 71] 70)
notation SyncRlist.Interptick (‹(- |||3Rlist -)› [72 , 73] 72)
notation SyncRlist.Parptick (‹(- ||3Rlist -)› [74 , 75] 74)

Left List

Here, we want to have one process of type (′a, ′r list) processptick on the
left hand side, and one of type (′a, ′r) processptick on the right hand side.
There is no need to do a new interpretation, the operator we are looking for
is actually the symmetric of the one we defined just above.

notation SyncRlist.Syncptick-comm-locale-sym.Syncptick (‹(- [[-]]3Llist -)› [70 ,
0 , 71] 70)
notation SyncRlist.Syncptick-comm-locale-sym.Interptick (‹(- |||3Llist -)› [72 , 73]
72)
notation SyncRlist.Syncptick-comm-locale-sym.Parptick (‹(- ||3Llist -)› [74 ,
75] 74)

112

Arbitrary Lists

We believed for a long time that it was not possible to handle the case where
both processes have their ticks of type ′r list. Indeed the concatenation
on the lists is not injective, resulting in the impossibility of interpreting
Syncptick-locale. But it turns out that by adding some control on the length
of the lists, we actually can!

Control on one side context fixes lenL :: nat begin

global-interpretation SyncListslenL : Syncptick-comm-locale
‹λr s. if length r = lenL then br @ sc else ♦›
‹λs r . if length r = lenL then bs @ rc else ♦›
‹λrs. drop lenL rs @ take lenL rs›
‹λrs. rev (take lenL (rev rs)) @ rev (drop lenL (rev rs))›
〈proof 〉

end

abbreviation SyncListslenL-syntax ::
‹[(′a, ′r list) processptick, nat, ′a set, (′a, ′r list) processptick]
⇒ (′a, ′r list) processptick› (‹(- -([[-]]3ListslenL) -)› [70 , 0 , 0 , 71] 70)

where ‹P lenL[[A]]3ListslenL Q ≡ SyncListslenL.Syncptick lenL P A Q›

abbreviation InterListslenL-syntax ::
‹[(′a, ′r list) processptick, nat, (′a, ′r list) processptick]
⇒ (′a, ′r list) processptick› (‹(- -(|||3ListslenL) -)› [72 , 0 , 73] 72)

where ‹P lenL|||3ListslenL Q ≡ SyncListslenL.Interptick lenL P Q›

abbreviation ParListslenL-syntax ::
‹[(′a, ′r list) processptick, nat, (′a, ′r list) processptick]
⇒ (′a, ′r list) processptick› (‹(- -(||3ListslenL) -)› [74 , 0 , 75] 75)

where ‹P lenL||3ListslenL Q ≡ SyncListslenL.Parptick lenL P Q›

The control is done on the left process, so with the symmetric version of this
operator we control the ticks length of the right one.
abbreviation SyncListslenR-syntax ::

‹[(′a, ′r list) processptick, nat, ′a set, (′a, ′r list) processptick]
⇒ (′a, ′r list) processptick› (‹(- -([[-]]3ListslenR) -)› [70 , 0 , 0 , 71] 70)

where ‹P lenL[[A]]3ListslenR Q ≡ SyncListslenL.Syncptick-comm-locale-sym.Syncptick
lenL P A Q›

abbreviation InterListslenR-syntax ::
‹[(′a, ′r list) processptick, nat, (′a, ′r list) processptick]
⇒ (′a, ′r list) processptick› (‹(- -(|||3ListslenR) -)› [72 , 0 , 73] 72)

where ‹P lenL|||3ListslenR Q ≡ SyncListslenL.Syncptick-comm-locale-sym.Interptick

lenL P Q›

113

abbreviation ParListslenR-syntax ::
‹[(′a, ′r list) processptick, nat, (′a, ′r list) processptick]
⇒ (′a, ′r list) processptick› (‹(- -(||3ListslenR) -)› [74 , 0 , 75] 75)
where ‹P lenL||3ListslenR Q ≡ SyncListslenL.Syncptick-locale-sym.Parptick

lenL P Q›

Control on both sides context fixes lenL :: nat and lenR :: nat begin

global-interpretation SyncLists : Syncptick-comm-locale
‹λr s. if length r = lenL ∧ length s = lenR then br @ sc else ♦›
‹λs r . if length s = lenR ∧ length r = lenL then bs @ rc else ♦›
‹λrs. drop lenL rs @ take lenL rs›
‹λrs. drop lenR rs @ take lenR rs›
〈proof 〉

end

abbreviation SyncLists-syntax ::
‹[(′a, ′r list) processptick, nat, ′a set, nat, (′a, ′r list) processptick]
⇒ (′a, ′r list) processptick› (‹(- -([[-]]3)- -)› [70 , 0 , 0 , 0 , 71] 70)

where ‹P lenL[[A]]3lenR Q ≡ SyncLists.Syncptick lenL lenR P A Q›

abbreviation InterLists-syntax ::
‹[(′a, ′r list) processptick, nat, nat, (′a, ′r list) processptick]
⇒ (′a, ′r list) processptick› (‹(- -(|||3)- -)› [72 , 0 , 0 , 73] 72)

where ‹P lenL|||3lenR Q ≡ SyncLists.Interptick lenL lenR P Q›

abbreviation ParLists-syntax ::
‹[(′a, ′r list) processptick, nat, nat, (′a, ′r list) processptick]
⇒ (′a, ′r list) processptick› (‹(- -(||3)- -)› [74 , 0 , 0 , 75] 75)

where ‹P lenL||3lenR Q ≡ SyncLists.Parptick lenL lenR P Q›

10.2 Associativities

10.2.1 Classical Version
lemma SyncClassic-assoc :

‹P [[S]]3Classic (Q [[S]]3Classic R) = P [[S]]3Classic Q [[S]]3Classic R›
〈proof 〉

10.2.2 Product Type
lemma SyncP air-assoc :

‹P [[S]]3P air (Q [[S]]3P air R) = RenamingTick (P [[S]]3P air Q [[S]]3P air R)
(λ((r , s), t). (r , s, t))›
〈proof 〉

114

10.2.3 List Type
lemma SyncRlist-SyncP airlist-assoc :

‹P [[S]]3Rlist (Q [[S]]3P airlist R) = (P [[S]]3P airlist Q) [[S]]3Llist R›
〈proof 〉

lemma SyncRlist-SyncLlist-assoc :
‹P [[S]]3Rlist (Q [[S]]3Llist R) = (P [[S]]3Rlist Q) [[S]]3Llist R›
〈proof 〉

lemma SyncRlist-SyncListslenL-assoc :
‹P [[S]]3Rlist (Q lenQ[[S]]3ListslenL R) = (P [[S]]3Rlist Q) Suc lenQ[[S]]3ListslenL

R›
〈proof 〉

lemma SyncListslenR-SyncLlist-assoc :
‹P Suc lenQ[[S]]3ListslenR (Q [[S]]3Llist R) = (P lenQ[[S]]3ListslenR Q) [[S]]3Llist

R›
〈proof 〉

lemma SyncLists-assoc :
‹P lenP[[S]]3lenQ + lenR (Q lenQ[[S]]3lenR R) =

P lenP[[S]]3lenQ Q lenP + lenQ[[S]]3lenR R›
〈proof 〉

lemma SyncRlist-SyncRlist-assoc :
‹P [[S]]3Rlist (Q [[S]]3Rlist R) = (P [[S]]3P airlist Q) Suc (Suc 0)[[S]]3ListslenL

R›
〈proof 〉

lemma SyncListslenR-SyncP airlist-assoc :
‹P Suc (Suc 0)[[S]]3ListslenR (Q [[S]]3P airlist R) = (P [[S]]3Llist Q) [[S]]3Llist

R›
〈proof 〉

10.3 Properties

10.3.1 Actual Generalization

We can actually recover the classical synchronization product defined in
session HOL-CSP as a particular case of our generalization.

theorem SyncClassic-is-Sync : ‹P [[A]]3Classic Q = P [[A]] Q›
〈proof 〉

115

10.3.2 Other Properties
lemma ‹SyncLists.Syncptick-locale-sym.Syncptick lenL lenR Q A P = P lenL[[A]]3lenR
Q›
〈proof 〉

corollary TickSwap-SyncP air [simp] : ‹TickSwap (P [[S]]3P air Q) = Q [[S]]3P air

P›
〈proof 〉

lemma TickSwap-is-SyncP air-iff [simp] :
‹TickSwap P = Q [[S]]3P air R ←→ P = R [[S]]3P air Q›
〈proof 〉

corollary SyncClassic-commute : ‹P [[S]]3Classic Q = Q [[S]]3Classic P›
〈proof 〉

lemma ‹RenamingTick (P lenL[[S]]3lenR Q) (λr-s. drop lenL r-s @ take lenL r-s)
=

Q lenR[[S]]3lenL P›
〈proof 〉

10.4 Ticks Length and Conversions

Through RenamingTick, conversions can be established between the inter-
pretations. For this, we sometimes need an assumption about the length of
the ticks.

10.4.1 Ticks Length
Definition and first Properties
definition is-ticks-length ::

‹nat ⇒ (′a, ′r list) processptick ⇒ bool› (‹(length3)-(′(- ′))›)
where ‹length3n(P) ≡ ∀ rs ∈ 3s(P). length rs = n›

We might imagine ∀ rs∈3s(P). length rs = n instead. But when the process
P has divergences, the predicate would not hold. Additionally, we only need
the control about traces that are not divergences.
lemma is-ticks-lengthI : ‹(

∧
rs. rs ∈ 3s(P) =⇒ length rs = n) =⇒ length3n(P)›

〈proof 〉

lemma is-ticks-lengthD : ‹length3n(P) =⇒ rs ∈ 3s(P) =⇒ length rs = n›
〈proof 〉

116

lemma is-ticks-length-unique :
— Not suitable for simplifier.
‹length3n(P) ←→ 3s(P) = {} ∨ (∀m. length3m(P) ←→ m = n)›
〈proof 〉

lemma empty-strict-ticks-of-imp-is-ticks-length :
‹3s(P) = {} =⇒ length3n(P)›
〈proof 〉

lemma nonempty-strict-ticks-of-imp-is-ticks-length-unique :
‹3s(P) 6= {} =⇒ length3n(P) =⇒ length3m(P) =⇒ m = n›
〈proof 〉

Behaviour
named-theorems is-ticks-length-simp
named-theorems is-ticks-length-intro

Constant Processes lemma is-ticks-length-STOP [is-ticks-length-simp] :
‹length3n(STOP)› 〈proof 〉

lemma is-ticks-length-BOT [is-ticks-length-simp] :
‹length3n(⊥)› 〈proof 〉

lemma is-ticks-length-SKIP-iff [is-ticks-length-simp] :
‹length3n(SKIP rs) ←→ length rs = n›
〈proof 〉

lemma is-ticks-length-SKIPS-iff [is-ticks-length-simp] :
‹length3n(SKIPS R) ←→ (∀ rs ∈ R. length rs = n)›
〈proof 〉

Binary (or less) Operators lemma is-ticks-length-Ndet [is-ticks-length-intro]
:

‹length3n(P) =⇒ length3n(Q) =⇒ length3n(P u Q)›
〈proof 〉

lemma is-ticks-length-Det [is-ticks-length-intro] :
‹length3n(P) =⇒ length3n(Q) =⇒ length3n(P � Q)›
〈proof 〉

lemma is-ticks-length-Sliding [is-ticks-length-intro] :
‹length3n(P) =⇒ length3n(Q) =⇒ length3n(P B Q)›
〈proof 〉

lemma is-ticks-length-Sync [is-ticks-length-intro] :
‹length3n(P) =⇒ length3n(Q) =⇒ length3n(P [[S]] Q)›
〈proof 〉

117

lemma is-ticks-length-Seq [is-ticks-length-intro] :
‹non-terminating P ∨ length3n(Q) =⇒ length3n(P ; Q)›
〈proof 〉

lemma is-ticks-length-Hiding [is-ticks-length-intro] :
‹length3n(P \ S)› if ‹length3n(P)›
〈proof 〉

lemma is-ticks-length-Interrupt [is-ticks-length-intro] :
‹length3n(P) =⇒ length3n(Q) =⇒ length3n(P 4 Q)›
〈proof 〉

lemma strict-ticks-Throw-subset :
‹3s(P Θ a∈A. Q a) ⊆ 3s(P) ∪ (

⋃
a∈A ∩ α(P). 3s(Q a))›

〈proof 〉

lemma is-ticks-length-Throw [is-ticks-length-intro] :
‹length3n(P Θ a ∈ A. Q a)›
if ‹length3n(P)› ‹

∧
a. a ∈ α(P) =⇒ length3n(Q a)›

〈proof 〉

lemma is-ticks-length-Renaming [is-ticks-length-intro] :
‹length3n(Renaming P f g) › if ‹

∧
r . r ∈ 3s(P) =⇒ length (g r) = n›

〈proof 〉

Architectural Operators lemma is-ticks-length-GlobalNdet [is-ticks-length-intro]
:

‹(
∧

a. a ∈ A =⇒ length3n(P a)) =⇒ length3n(ua ∈ A. P a)›
〈proof 〉

lemma is-ticks-length-GlobalDet [is-ticks-length-intro] :
‹(
∧

a. a ∈ A =⇒ length3n(P a)) =⇒ length3n(�a ∈ A. P a)›
〈proof 〉

lemma is-ticks-length-MultiSync [is-ticks-length-intro] :
‹(
∧

m. m ∈ set-mset M =⇒ length3n(P m)) =⇒ length3n([[S]] m ∈# M . P m)›
〈proof 〉

lemma is-ticks-length-MultiSeq [is-ticks-length-intro] :
‹L 6= [] =⇒ length3n(P (last L)) =⇒ length3n(SEQ l ∈@ L. P l)›
〈proof 〉

Communications lemma is-ticks-length-write0-iff [is-ticks-length-simp] :
‹length3n(e → P) ←→ length3n(P)›
〈proof 〉

118

lemma is-ticks-length-write-iff [is-ticks-length-simp] :
‹length3n(c!e → P) ←→ length3n(P)›
〈proof 〉

lemma is-ticks-length-Mprefix-iff [is-ticks-length-simp] :
‹length3n(�a ∈ A → P a) = (∀ a ∈ A. length3n(P a))›
〈proof 〉

lemma is-ticks-length-read-iff [is-ticks-length-simp] :
‹length3n(c?a∈A → P a) = (∀ b ∈ c ‘ A. length3n(P (inv-into A c b)))›
〈proof 〉

corollary ‹inj-on c A =⇒ length3n(c?a∈A → P a) = (∀ a ∈ A. length3n(P a))›
〈proof 〉

lemma is-ticks-length-Mndetprefix-iff [is-ticks-length-simp] :
‹length3n(ua ∈ A → P a) = (∀ a ∈ A. length3n(P a))›
〈proof 〉

lemma is-ticks-length-ndet-write-iff [is-ticks-length-simp] :
‹length3n(c!!a∈A → P a) = (∀ b ∈ c ‘ A. length3n(P (inv-into A c b)))›
〈proof 〉

corollary ‹inj-on c A =⇒ length3n(c!!a∈A → P a) = (∀ a ∈ A. length3n(P a))›
〈proof 〉

Generalizations lemma strict-ticks-of-Seqptick-subset : ‹3s(P ;3 Q) ⊆
⋃

{3s(Q r) |r . r ∈ 3s(P)}›
〈proof 〉

lemma non-terminating-Seqptick :
‹P ;3 Q = RenamingTick P g› if ‹non-terminating P›
〈proof 〉

lemma is-ticks-length-Seqptick [is-ticks-length-intro] :
‹non-terminating P ∨ (∀ r∈3s(P). length3n(Q r)) =⇒ length3n(P ;3 Q)›
〈proof 〉

lemma is-ticks-length-Syncptick :
‹length3n(Syncptick-locale.Syncptick tick-join P A Q)›
— We cannot work directly inside the locale since in this context the types of

ticks ′t cannot be set to ′r list.
if ‹Syncptick-locale tick-join›

and ‹
∧

r s. r ∈ 3s(P) =⇒ s ∈ 3s(Q) =⇒

119

case tick-join r s of ♦ ⇒ True | br-sc ⇒ length r-s = n›
〈proof 〉

lemma is-ticks-length-One-RenamingTick-singl [is-ticks-length-simp] :
‹length3Suc 0(RenamingTick P (λr . [r]))›
〈proof 〉

lemma is-ticks-length-Two-SyncP airlist [is-ticks-length-simp] :
‹length3Suc (Suc 0)(P [[S]]3P airlist Q)›
〈proof 〉

lemma is-ticks-length-Suc-SyncRlist [is-ticks-length-intro] :
‹length3n(Q) =⇒ length3Suc n(P [[S]]3Rlist Q)›
〈proof 〉

The equivalence is false.

lemma False if ‹
∧

P Q n. length3Suc n(P [[S]]3Rlist Q) =⇒ length3n(Q)›
〈proof 〉

lemma is-ticks-length-Suc-SyncLlist [is-ticks-length-intro] :
‹length3n(P) =⇒ length3Suc n(P [[S]]3Llist Q)›
〈proof 〉

lemma is-ticks-length-sum-SyncListslenL [is-ticks-length-intro] :
‹length3m(Q) =⇒ length3n + m(P n[[S]]3ListslenL Q)›
〈proof 〉

lemma is-ticks-length-sum-SyncListslenR [is-ticks-length-intro] :
‹length3n(P) =⇒ length3n + m(P m[[S]]3ListslenR Q)›
〈proof 〉

lemma is-ticks-length-sum-SyncLists [is-ticks-length-intro] :
‹length3n + m(P n[[S]]3m Q)›
〈proof 〉

10.4.2 Conversions
lemma SyncP airlist-to-SyncRlist :

‹P [[S]]3P airlist Q = P [[S]]3Rlist RenamingTick Q (λs. [s])›
〈proof 〉

lemma SyncP airlist-to-SyncLlist :
‹P [[S]]3P airlist Q = RenamingTick P (λr . [r]) [[S]]3Llist Q›
〈proof 〉

120

lemma SyncRlist-to-SyncListslenL :
‹P [[S]]3Rlist Q = RenamingTick P (λr . [r]) Suc 0[[S]]3ListslenL Q›
〈proof 〉

lemma SyncLlist-to-SyncListslenR :
‹P [[S]]3Llist Q = P Suc 0[[S]]3ListslenR RenamingTick Q (λs. [s])›
〈proof 〉

lemma SyncListslenL-to-SyncLists :
‹length3m(Q) =⇒ P n[[S]]3ListslenL Q = P n[[S]]3m Q›
〈proof 〉

lemma SyncListslenR-to-SyncLists :
‹length3n(P) =⇒ P m[[S]]3ListslenR Q = P n[[S]]3m Q›
〈proof 〉

corollary SyncListslenL-is-SyncListslenR :
‹length3n(P) =⇒ length3m(Q) =⇒ P n[[S]]3ListslenL Q = P m[[S]]3ListslenR

Q›
〈proof 〉

corollary SyncP airlist-to-SyncListslenL :
‹P [[S]]3P airlist Q = RenamingTick P (λr . [r]) Suc 0[[S]]3ListslenL Renam-

ingTick Q (λs. [s])›
〈proof 〉

corollary SyncP airlist-to-SyncListslenR :
‹P [[S]]3P airlist Q = RenamingTick P (λr . [r]) Suc 0[[S]]3ListslenR Renam-

ingTick Q (λs. [s])›
〈proof 〉

corollary SyncRlist-to-SyncLists :
‹length3m(Q) =⇒ P [[S]]3Rlist Q = RenamingTick P (λr . [r]) Suc 0[[S]]3m Q›
〈proof 〉

corollary SyncLlist-to-SyncLists :
‹length3n(P) =⇒ P [[S]]3Llist Q = P n[[S]]3Suc 0 RenamingTick Q (λs. [s])›
〈proof 〉

corollary SyncP airlist-to-SyncLists :
‹P [[S]]3P airlist Q = RenamingTick P (λr . [r]) Suc 0[[S]]3Suc 0 RenamingTick

Q (λs. [s])›
〈proof 〉

121

lemma SyncP air-to-SyncP airlist :
‹RenamingTick (P [[S]]3P air Q) (λ(r , s). [r , s]) = P [[S]]3P airlist Q›
〈proof 〉

lemma SyncP airlist-to-SyncP air :
‹RenamingTick (P [[S]]3P airlist Q) (λrs. (rs ! 0 , rs ! Suc 0)) = P [[S]]3P air Q›
〈proof 〉

lemma SyncP air-to-SyncRlist :
‹RenamingTick (P [[S]]3P air Q) (λ(r , s). r # s) = P [[S]]3Rlist Q›
〈proof 〉

lemma SyncP air-to-SyncLlist :
‹RenamingTick (P [[S]]3P air Q) (λ(r , s). r @ [s]) = P [[S]]3Llist Q›
〈proof 〉

lemma SyncP air-to-SyncListslenL :
‹RenamingTick (P [[S]]3P air Q) (λ(r , s). r @ s) = P n[[S]]3ListslenL Q›
(is ‹?lhs = ?rhs›) if ‹length3n(P)›
〈proof 〉

corollary SyncP air-to-SyncListslenR :
‹RenamingTick (P [[S]]3P air Q) (λ(r , s). r @ s) = P n[[S]]3ListslenR Q›
(is ‹?lhs = ?rhs›) if ‹length3n(Q)›
〈proof 〉

corollary SyncP air-to-SyncLists :
‹RenamingTick (P [[S]]3P air Q) (λ(r , s). r @ s) = P n[[S]]3m Q›
(is ‹?lhs = ?rhs›) if ‹length3n(P)› and ‹length3m(Q)›
〈proof 〉

10.5 First Laws
corollary InterClassic-STOP [simp] :

‹P |||3Classic STOP = P ; STOP›
〈proof 〉

corollary InterP air-STOP :
‹P |||3P air STOP = RenamingTick (P ; STOP) (λr . (r , g r))›
〈proof 〉

corollary InterP airlist-STOP :
‹P |||3P airlist STOP = RenamingTick (P ; STOP) (λr . [r , g r])›
〈proof 〉

corollary InterRlist-STOP :

122

‹P |||3Rlist STOP = RenamingTick (P ; STOP) (λr . r # g r)›
〈proof 〉

corollary InterLlist-STOP :
‹P |||3Llist STOP = RenamingTick (P ; STOP) (λr . r @ [g r])›
〈proof 〉

corollary InterListslenL-STOP :
‹P n|||3ListslenL STOP =
RenamingTick (P ; STOP) (λr . if length r = n then r @ g r else undefined)›
〈proof 〉

corollary InterListslenR-STOP :
‹P n|||3ListslenR STOP =
RenamingTick (P ; STOP) (λr . if length (g r) = n then r @ g r else undefined)›
〈proof 〉

corollary InterLists-STOP :
‹P n|||3m STOP =
RenamingTick (P ; STOP) (λr . if length r = n ∧ length (g r) = m then r @ g

r else undefined)›
〈proof 〉

corollary STOP-InterClassic [simp] :
‹STOP |||3Classic Q = Q ; STOP›
〈proof 〉

corollary STOP-InterP air :
‹STOP |||3P air Q = RenamingTick (Q ; STOP) (λs. (g s, s))›
〈proof 〉

corollary STOP-InterP airlist :
‹STOP |||3P airlist Q = RenamingTick (Q ; STOP) (λs. [g s, s])›
〈proof 〉

corollary STOP-InterRlist :
‹STOP |||3Rlist Q = RenamingTick (Q ; STOP) (λs. g s # s)›
〈proof 〉

corollary STOP-InterLlist :
‹STOP |||3Llist Q = RenamingTick (Q ; STOP) (λs. g s @ [s])›
〈proof 〉

corollary STOP-InterListslenL :
‹STOP n|||3ListslenL Q =
RenamingTick (Q ; STOP) (λr . if length (g r) = n then g r @ r else undefined)›
〈proof 〉

123

corollary STOP-InterListslenR :
‹STOP n|||3ListslenR Q =
RenamingTick (Q ; STOP) (λr . if length r = n then g r @ r else undefined)›
〈proof 〉

corollary STOP-InterLists :
‹STOP n|||3m Q =
RenamingTick (Q ; STOP) (λr . if length (g r) = n ∧ length r = m then g r @

r else undefined)›
〈proof 〉

corollary SKIP-SyncClassic-SKIP :
‹SKIP r [[A]]3Classic SKIP s =
(if r = s then SKIP r else STOP)› 〈proof 〉

corollary SKIP-SyncP air-SKIP :
‹SKIP r [[A]]3P air SKIP s = SKIP (r , s)› 〈proof 〉

corollary SKIP-SyncP airlist-SKIP :
‹SKIP r [[A]]3P airlist SKIP s = SKIP [r , s]› 〈proof 〉

corollary SKIP-SyncRlist-SKIP :
‹SKIP r [[A]]3Rlist SKIP s = SKIP (r # s)› 〈proof 〉

corollary SKIP-SyncLlist-SKIP :
‹SKIP r [[A]]3Llist SKIP s = SKIP (r @ [s])› 〈proof 〉

corollary SKIP-SyncListslenL-SKIP :
‹SKIP r n[[A]]3ListslenL SKIP s =
(if length r = n then SKIP (r @ s) else STOP)› 〈proof 〉

corollary SKIP-SyncListslenR-SKIP :
‹SKIP r n[[A]]3ListslenR SKIP s =
(if length s = n then SKIP (r @ s) else STOP)› 〈proof 〉

corollary SKIP-SyncLists-SKIP :
‹SKIP r n[[A]]3m SKIP s =
(if length r = n ∧ length s = m then SKIP (r @ s) else STOP)› 〈proof 〉

10.6 Operational Laws

10.6.1 Classical Version
locale After-SyncClassic-locale = After-Syncptick-locale ‹λr s. if r = s then brc
else ♦›
begin

124

— Just checking...
lemma ‹Syncptick P S Q = P [[S]]3Classic Q› 〈proof 〉

end

locale AfterExt-SyncClassic-locale =
AfterExt-Syncptick-locale ‹λr s. if r = s then brc else ♦›

sublocale AfterExt-SyncClassic-locale ⊆ After-SyncClassic-locale
〈proof 〉

locale OpSemTransitions-SyncClassic-locale =
OpSemTransitions-Syncptick-locale ‹λr s. if r = s then brc else ♦›

sublocale OpSemTransitions-SyncClassic-locale ⊆ AfterExt-SyncClassic-locale
〈proof 〉

10.6.2 Product Type
locale After-SyncP air-locale = After-Syncptick-locale ‹λr s. b(r , s)c›
begin

— Just checking...
lemma ‹Syncptick P S Q = P [[S]]3P air Q› 〈proof 〉

end

locale AfterExt-SyncP air-locale =
AfterExt-Syncptick-locale ‹λr s. b(r , s)c›

sublocale AfterExt-SyncP air-locale ⊆ After-SyncP air-locale
〈proof 〉

locale OpSemTransitions-SyncP air-locale =
OpSemTransitions-Syncptick-locale ‹λr s. b(r , s)c›

sublocale OpSemTransitions-SyncP air-locale ⊆ AfterExt-SyncP air-locale
〈proof 〉

10.6.3 List Type
Pair
locale After-SyncP airlist-locale = After-Syncptick-locale ‹λr s. b[r , s]c›
begin

— Just checking...
lemma ‹Syncptick P S Q = P [[S]]3P airlist Q› 〈proof 〉

125

end

locale AfterExt-SyncP airlist-locale =
AfterExt-Syncptick-locale ‹λr s. b[r , s]c›

sublocale AfterExt-SyncP airlist-locale ⊆ After-SyncP airlist-locale
〈proof 〉

locale OpSemTransitions-SyncP airlist-locale =
OpSemTransitions-Syncptick-locale ‹λr s. b[r , s]c›

sublocale OpSemTransitions-SyncP airlist-locale ⊆ AfterExt-SyncP airlist-locale
〈proof 〉

Right List
locale After-SyncRlist-locale = After-Syncptick-locale ‹λr s. br # sc›
begin

— Just checking...
lemma ‹Syncptick P S Q = P [[S]]3Rlist Q› 〈proof 〉

end

locale AfterExt-SyncRlist-locale =
AfterExt-Syncptick-locale ‹λr s. br # sc›

sublocale AfterExt-SyncRlist-locale ⊆ After-SyncRlist-locale
〈proof 〉

locale OpSemTransitions-SyncRlist-locale =
OpSemTransitions-Syncptick-locale ‹λr s. br # sc›

sublocale OpSemTransitions-SyncRlist-locale ⊆ AfterExt-SyncRlist-locale
〈proof 〉

Left List
locale After-SyncLlist-locale = After-Syncptick-locale ‹λr s. br @ [s]c›
begin

— Just checking...
lemma ‹Syncptick P S Q = P [[S]]3Llist Q› 〈proof 〉

end

locale AfterExt-SyncLlist-locale =
AfterExt-Syncptick-locale ‹λr s. br @ [s]c›

sublocale AfterExt-SyncLlist-locale ⊆ After-SyncLlist-locale

126

〈proof 〉

locale OpSemTransitions-SyncLlist-locale =
OpSemTransitions-Syncptick-locale ‹λr s. br @ [s]c›

sublocale OpSemTransitions-SyncLlist-locale ⊆ AfterExt-SyncLlist-locale
〈proof 〉

Arbitrary Lists

Control on left side locale After-SyncListslenL-locale =
After-Syncptick-locale ‹λr s. if length r = lenL then br @ sc else ♦›
for lenL :: nat

begin

— Just checking...
lemma ‹Syncptick P S Q = P lenL[[S]]3ListslenL Q› 〈proof 〉

end

locale AfterExt-SyncListslenL-locale =
AfterExt-Syncptick-locale ‹λr s. if length r = lenL then br @ sc else ♦›
for lenL :: nat

sublocale AfterExt-SyncListslenL-locale ⊆ After-SyncListslenL-locale
〈proof 〉

locale OpSemTransitions-SyncListslenL-locale =
OpSemTransitions-Syncptick-locale ‹λr s. if length r = lenL then br @ sc else ♦›
for lenL :: nat

sublocale OpSemTransitions-SyncListslenL-locale ⊆ AfterExt-SyncListslenL-locale
〈proof 〉

Control on right side locale After-SyncListslenR-locale =
After-Syncptick-locale ‹λr s. if length s = lenR then br @ sc else ♦›
for lenR :: nat

begin

— Just checking...
lemma ‹Syncptick P S Q = P lenR[[S]]3ListslenR Q› 〈proof 〉

end

locale AfterExt-SyncListslenR-locale =
AfterExt-Syncptick-locale ‹λr s. if length s = lenR then br @ sc else ♦›
for lenR :: nat

sublocale AfterExt-SyncListslenR-locale ⊆ After-SyncListslenR-locale

127

〈proof 〉

locale OpSemTransitions-SyncListslenR-locale =
OpSemTransitions-Syncptick-locale ‹λr s. if length r = lenL then br @ sc else ♦›
for lenL :: nat

sublocale OpSemTransitions-SyncListslenR-locale ⊆ AfterExt-SyncListslenR-locale
〈proof 〉

Control on both sides locale After-SyncLists-locale =
After-Syncptick-locale
‹λr s. if length r = lenL ∧ length s = lenR then br @ sc else ♦›
for lenL lenR :: nat

begin

— Just checking...
lemma ‹Syncptick P S Q = P lenL[[S]]3lenR Q› 〈proof 〉

end

locale AfterExt-SyncLists-locale =
AfterExt-Syncptick-locale
‹λr s. if length r = lenL ∧ length s = lenR then br @ sc else ♦›
for lenL lenR :: nat

sublocale AfterExt-SyncLists-locale ⊆ After-SyncLists-locale
〈proof 〉

locale OpSemTransitions-SyncLists-locale =
OpSemTransitions-Syncptick-locale
‹λr s. if length r = lenL ∧ length s = lenR then br @ sc else ♦›
for lenL lenR :: nat

sublocale OpSemTransitions-SyncLists-locale ⊆ AfterExt-SyncLists-locale
〈proof 〉

128

Chapter 11

Architectural Versions

11.1 Sequential Composition
11.1.1 Definition
fun MultiSeqptick :: ‹[′b list, ′b ⇒ ′r ⇒ (′a, ′r) processptick, ′r] ⇒ (′a, ′r) pro-
cessptick›

where MultiSeqptick-Nil : ‹MultiSeqptick [] P = SKIP›
| MultiSeqptick-Cons : ‹MultiSeqptick (l # L) P = (λr . P l r ;3 MultiSeqptick

L P)›

syntax -MultiSeqptick ::
‹[pttrn, ′b list, ′b ⇒ ′r ⇒ (′a, ′r) processptick, ′r] ⇒ (′a, ′r) processptick›
(‹(3SEQ3 - ∈@ -./ -)› [78 ,78 ,77] 77)

syntax-consts -MultiSeqptick
 MultiSeqptick

translations SEQ3 p ∈@ L. P
 CONST MultiSeqptick L (λp. P)

11.1.2 First Properties
lemma ‹SEQ3 p ∈@ []. P p = SKIP›

and ‹SEQ3 p ∈@ [a]. P p = (λr . P a r)›
and ‹SEQ3 p ∈@ [a, b]. P p = (λr . P a r ;3 P b)›
and ‹SEQ3 p ∈@ [a, b, c]. P p = (λr . P a r ;3 P b ;3 P c)›
〈proof 〉

lemma ‹SEQ3 p ∈@ [1 ::int .. 3]. P p = (λr . P 1 r ;3 P 2 ;3 P 3)›
〈proof 〉

lemma ‹(SEQ3 p ∈@ []. P p) = SKIP› 〈proof 〉

lemma ‹(SEQ3 l ∈@ (a # L). P l) = (λr . P a r ;3 SEQ3 l ∈@ L. P l)› 〈proof 〉

129

lemma MultiSeqptick-singl [simp] : ‹SEQ3 l ∈@ [a]. P l = P a› 〈proof 〉

lemma MultiSeqptick-snoc : ‹SEQ3 l ∈@ (L @ [a]). P l = (λr . (SEQ3 l ∈@ L.
P l) r ;3 P a)›
〈proof 〉

lemma mono-MultiSeqptick-eq:
‹(
∧

l. l ∈ set L =⇒ P l = Q l) =⇒ SEQ3 l ∈@ L. P l = SEQ3 l ∈@ L. Q l›
〈proof 〉

lemma MultiSeqptick-const [simp] :
‹(SEQ3 l ∈@ L. (λr . P l)) =
(if L = [] then SKIP else (λr . SEQ l ∈@ L. P l))›
〈proof 〉

11.1.3 Behaviour with binary version
lemma MultiSeqptick-append:

‹SEQ3 l ∈@ (L1 @ L2). P l = (λr . (SEQ3 l ∈@ L1 . P l) r ;3 SEQ3 l ∈@ L2 .
P l)›
〈proof 〉

11.1.4 Other Properties
lemma MultiSeqptick-SKIP-neutral:

‹P a = SKIP =⇒ SEQ3 l ∈@ (L1 @ [a] @ L2). P l = SEQ3 l ∈@ (L1 @ L2).
P l›
〈proof 〉

lemma MultiSeqptick-BOT-absorb:
‹P a = ⊥ =⇒ SEQ3 l ∈@ (L1 @ [a] @ L2). P l = (λr . (SEQ3 l ∈@ L1 . P l)

r ;3 ⊥)›
〈proof 〉

lemma MultiSeqptick-STOP-absorb:
‹P a = (λr . STOP) =⇒ SEQ3 l ∈@ (L1 @ [a] @ L2). P l =

(λr . (SEQ3 l ∈@ L1 . P l) r ; STOP)›
〈proof 〉

lemma is-ticks-length-MultiSeqptick [is-ticks-length-intro] :
‹length3n((SEQ3 l ∈@ L. P l) r)›
if ‹L 6= []› and ‹

∧
r ′. r ′ ∈ 3s((SEQ3 l ∈@ (butlast L). P l) r) =⇒ length3n(P

(last L) r ′)›
〈proof 〉

11.1.5 Behaviour with injectivity
lemma inj-on-mapping-over-MultiSeqptick:

130

‹inj-on f (set L) =⇒
SEQ3 l ∈@ L. P l = SEQ3 l ∈@ map f L. P (inv-into (set L) f l)›

〈proof 〉

unbundle no funcset-syntax
— Inherited from HOL−Combinatorics.List-Permutation.

11.2 Synchronization Product
11.2.1 Definition

The generalized synchronization product is not really commutative (see Re-
namingTick (P [[A]]3 Q) ⊗3⇒⊗3rev = Q [[A]]3rev P). We therefore define
the architectural version on a list.
fun MultiSyncptick ::

‹[′a set, ′b list, ′b ⇒ (′a, ′r) processptick] ⇒ (′a, ′r list) processptick›
where ‹MultiSyncptick S [] P = STOP›
| ‹MultiSyncptick S [l] P = RenamingTick (P l) (λr . [r])›
| ‹MultiSyncptick S (l # m # L) P = P l [[S]]3Rlist MultiSyncptick S (m #

L) P›

syntax -MultiSyncptick ::
‹[pttrn, ′a set, ′b list, (′a, ′r) processptick] ⇒ (′a, ′r) processptick›
(‹(3[[-]]3 - ∈@ -./ -)› [78 ,78 ,78 ,77] 77)

syntax-consts -MultiSyncptick
 MultiSyncptick
translations [[S]]3 l ∈@ L. P
 CONST MultiSyncptick S L (λl. P)

Special case of MultiSyncptick S P when S = {}.
abbreviation MultiInterptick ::

‹[′b list, ′b ⇒ (′a, ′r) processptick] ⇒ (′a, ′r list) processptick›
where ‹MultiInterptick L P ≡ MultiSyncptick {} L P›

syntax -MultiInterptick ::
‹[pttrn, ′b list, (′a, ′r) processptick] ⇒ (′a, ′r) processptick›
(‹(3|||3 -∈@-./ -)› [78 ,78 ,77] 77)

syntax-consts -MultiInterptick
 MultiInterptick

translations |||3 l ∈@ L. P
 CONST MultiInterptick L (λl. P)

Special case of MultiSyncptick S P when S = UNIV.
abbreviation MultiParptick ::

‹[′b list, ′b ⇒ (′a, ′r) processptick] ⇒ (′a, ′r list) processptick›
where ‹MultiParptick L P ≡ MultiSyncptick UNIV L P›

syntax -MultiParptick ::
‹[pttrn, ′b list, (′a, ′r) processptick] ⇒ (′a, ′r) processptick›

131

(‹(3||3 -∈@-./ -)› [78 ,78 ,77] 77)
syntax-consts -MultiParptick
 MultiParptick

translations ||3 l ∈@ L. P
 CONST MultiParptick L (λl. P)

11.2.2 First properties
lemma is-ticks-length-MultiSyncptick [is-ticks-length-intro] :

‹length3length L([[S]]3 l ∈@ L. P l)›
〈proof 〉

lemma MultiSyncptick-Cons :
‹[[S]]3 m ∈@ (l # L). P m =
(if L = [] then RenamingTick (P l) (λr . [r])
else P l [[S]]3Rlist [[S]]3 m ∈@ L. P m)›
〈proof 〉

lemma mono-MultiSyncptick-eq :
‹(
∧

l. l ∈ set L =⇒ P l = Q l) =⇒ [[S]]3 l ∈@ L. P l = [[S]]3 l ∈@ L. Q l›
〈proof 〉

lemma mono-MultiSyncptick-eq2 :
‹(
∧

l. l ∈ set L =⇒ P (f l) = Q l) =⇒ [[S]]3 l ∈@ map f L. P l = [[S]]3 l ∈@ L.
Q l›
〈proof 〉

lemma ‹([[S]]3 l ∈@ []. P l) = STOP›
and ‹([[S]]3 l ∈@ [a]. P l) = RenamingTick (P a) (λr . [r])›
and ‹([[S]]3 l ∈@ [a, b]. P l) = P a [[S]]3Rlist RenamingTick (P b) (λr . [r])›
and ‹([[S]]3 l ∈@ [a, b, c]. P l) = P a [[S]]3Rlist (P b [[S]]3Rlist RenamingTick

(P c) (λr . [r]))›
〈proof 〉

11.2.3 Properties
lemma MultiSyncptick-is-BOT-iff :

‹[[S]]3 l ∈@ L. P l = ⊥ ←→ (∃ l ∈ set L. P l = ⊥)›
〈proof 〉

lemma MultiSyncptick-BOT-absorb:
‹l ∈ set L =⇒ P l = ⊥ =⇒ [[S]]3 l ∈@ L. P l = ⊥›
〈proof 〉

lemma MultiSyncptick-SKIP-id :
‹[[S]]3 r ∈@ L. SKIP r = (if L = [] then STOP else SKIP L)›
〈proof 〉

132

11.2.4 Behaviour with binary version
lemma MultiSyncptick-append :

‹L1 6= [] =⇒ L2 6= [] =⇒
[[S]]3 l ∈@ (L1 @ L2). P l =
[[S]]3 l ∈@ L1 . P l length L1[[S]]3length L2 [[S]]3 l ∈@ L2 . P l›

〈proof 〉

11.2.5 Behaviour with injectivity
lemma inj-on-mapping-over-MultiSyncptick:

‹inj-on f (set L) =⇒
[[S]]3 l ∈@ L. P l = [[S]]3 l ∈@ map f L. P (inv-into (set L) f l)›

〈proof 〉

11.2.6 Permuting the Sequence
A particular Case
lemma MultiSyncptick-snoc :

‹[[S]]3 m ∈@ (L @ [l]). P m =
(if L = [] then RenamingTick (P l) (λr . [r])
else [[S]]3 m ∈@ L. P m [[S]]3Llist P l)›
〈proof 〉

At the beginning, we wanted to prove the following property.

theorem MultiSyncptick-rev :
‹[[S]]3 l ∈@ (rev L). P l = RenamingTick ([[S]]3 l ∈@ L. P l) rev›
〈proof 〉

This has just been established for rev L, which is a particular permutation
of the list L. It turns out that it actually holds for any permutation. The
rest of this file constitutes the proof.

Arbitrary Permutation
Some preliminary results lemma permute-list-transpose-eq-list-update :

‹i < length xs =⇒ j < length xs =⇒
permute-list (Transposition.transpose i j) xs = xs[i := xs!j, j := xs!i]›
〈proof 〉

lemma inj-on-permute-list-transpose :
‹i < n =⇒ j < n =⇒ inj-on (permute-list (Transposition.transpose i j)) {xs. n
≤ length xs}›
〈proof 〉

lemma rev-permute-list-transpose :
‹i < length L =⇒ j < length L =⇒
rev (permute-list (Transposition.transpose i j) L) =

133

permute-list (Transposition.transpose (length L − Suc i) (length L − Suc j)) (rev
L)›
〈proof 〉

lemma permute-list-transpose-rev :
‹i < length L =⇒ j < length L =⇒
permute-list (Transposition.transpose i j) (rev L) =
rev (permute-list (Transposition.transpose (length L − Suc i) (length L − Suc

j)) L)›
〈proof 〉

lemma tickFree-map-map-eventptick-id-eq :
‹tF t =⇒ map (map-eventptick id g) t = t›
and tickFree-mem-T-RenamingTick-iff-mem-T :
‹tF t =⇒ t ∈ T (RenamingTick P g) ←→ t ∈ T P›
and tickFree-mem-D-RenamingTick-iff-mem-D :
‹tF t =⇒ t ∈ D (RenamingTick P g) ←→ t ∈ D P›
for P :: ‹(′a, ′r) processptick› and g :: ‹ ′r ⇒ ′r›

— Necessarily here, antecedents and images for g share the same type.
〈proof 〉

The proof We start by proving that the RenamingTick of the right-hand
side process Q by a transposition can be “taken to the outside” of the syn-
chronization P [[S]]3Rlist Q.
lemma SyncRlist-RenamingTick-permute-list-transpose :

‹P [[S]]3Rlist RenamingTick Q (permute-list (Transposition.transpose i j)) =
RenamingTick (P [[S]]3Rlist Q) (permute-list (Transposition.transpose (Suc i)

(Suc j)))›
(is ‹?lhs = ?rhs›) if ‹i < n› ‹j < n› ‹

∧
rs. rs ∈ 3s(Q) =⇒ n ≤ length rs›

〈proof 〉

lemma RenamingTick-permute-list-transpose-SyncListslenL :
‹RenamingTick P (permute-list (Transposition.transpose i j)) n[[S]]3ListslenL Q

=
RenamingTick (P n[[S]]3ListslenL Q) (permute-list (Transposition.transpose i

j))›
(is ‹?lhs = ?rhs›) if ‹i < n› ‹j < n› for P :: ‹(′a, ′r list) processptick›
〈proof 〉

Then, we establish the result when the permutation is only a transposition.
lemma MultiSyncptick-permute-list-transpose :

‹i < length L =⇒ j < length L =⇒
[[S]]3 l ∈@ permute-list (Transposition.transpose i j) L. P l =
RenamingTick ([[S]]3 l ∈@ L. P l) (permute-list (Transposition.transpose i j))›

for L :: ‹ ′b list›

134

〈proof 〉

Finally, the proof of the general version relies on the fact that a permutation
can be written as finite product of transpositions.
theorem MultiSyncptick-permute-list :

‹[[S]]3 l ∈@ permute-list f L. P l =
RenamingTick ([[S]]3 l ∈@ L. P l) (permute-list f)›

if f-permutes : ‹f permutes {..<length L}›
〈proof 〉

135

136

Chapter 12

Events and Ticks

12.1 Preliminaries
lemma strict-events-of-memE-optimized-tickFree :

‹(
∧

t. t ∈ T P =⇒ t /∈ D P =⇒ ev a ∈ set t =⇒ tF t =⇒ thesis) =⇒ thesis› if
‹a ∈ α(P)›
〈proof 〉

lemma events-of-memE-optimized-tickFree :
‹(
∧

t. t ∈ T P =⇒ ev a ∈ set t =⇒ tF t =⇒ thesis) =⇒ thesis› if ‹a ∈ α(P)›
〈proof 〉

12.2 Sequential Composition
12.2.1 Events
lemma events-of-Seqptick : ‹α(P ;3 Q) = α(P) ∪ (

⋃
r ∈ 3s(P). α(Q r))›

〈proof 〉
lemma events-of-Seqptick-subset : ‹α(P ;3 Q) ⊆ α(P) ∪ (

⋃
r . α(Q r))›

〈proof 〉
corollary events-of-Seq-subset : ‹α(P ; Q) ⊆ α(P) ∪ α(Q)›
〈proof 〉

lemma strict-events-of-Seqptick-subset : ‹α(P ;3 Q) ⊆ α(P) ∪ (
⋃

r ∈ 3s(P).α(Q
r))›
〈proof 〉

12.2.2 Ticks
lemma ticks-of-Seqptick :

‹3s(P ;3 Q) = (if D P = {} then (
⋃

r ∈ 3s(P). 3s(Q r)) else UNIV)›
〈proof 〉

137

lemma ‹3s(P ;3 Q) ⊆
⋃
{3s(Q r) |r . r ∈ 3s(P)}›

— Already proven earlier in the construction.
〈proof 〉

12.3 Synchronization Product
12.3.1 Events
lemma (in Syncptick-locale) events-of-Syncptick-subset : ‹α(P [[S]]3 Q) ⊆ α(P) ∪
α(Q)›
〈proof 〉

lemma (in Syncptick-locale) events-of-Interptick: ‹α(P |||3 Q) = α(P) ∪ α(Q)›
〈proof 〉

lemma (in Syncptick-locale) strict-events-of-Syncptick-subset :
‹α(P [[S]]3 Q) ⊆ α(P) ∪ α(Q)›
〈proof 〉

12.3.2 Ticks
lemma (in Syncptick-locale)

‹3s(P [[S]]3 Q) ⊆ {r-s |r-s r s. r ⊗3 s = Some r-s ∧ r ∈ 3s(P) ∧ s ∈ 3s(Q)}›
— Already proven earlier in the construction.
〈proof 〉

lemma (in Syncptick-locale) ticks-of-no-div-Syncptick-subset :
‹D (P [[S]]3 Q) = {} =⇒

3s(P [[S]]3 Q) ⊆ {r-s |r-s r s. tick-join r s = Some r-s ∧ r ∈ 3s(P) ∧ s ∈
3s(Q)}›
〈proof 〉

12.4 Architectural Operators
12.4.1 Events
lemma events-of-MultiSeq-subset :

‹α(SEQ l ∈@ L. P l) ⊆ (
⋃

l ∈ set L.
⋃

r . α(P l))›
〈proof 〉

lemma events-of-MultiSeqptick-subset :
‹α((SEQ3 l ∈@ L. P l) r) ⊆ (

⋃
l ∈ set L.

⋃
r . α(P l r))›

〈proof 〉

lemma strict-events-of-MultiSeq-subset :

‹α(SEQ l ∈@ L. P l) ⊆ (
⋃

l ∈ set L.
⋃

r . α(P l))›

138

〈proof 〉

lemma strict-events-of-MultiSeqptick-subset :
‹α((SEQ3 l ∈@ L. P l) r) ⊆ (

⋃
l ∈ set L.

⋃
r . α(P l r))›

〈proof 〉

lemma events-of-MultiSyncptick-subset :
‹α([[S]]3 l ∈@ L. P l) ⊆ (

⋃
l ∈ set L. α(P l))›

〈proof 〉

lemma events-of-MultiInterptick :
‹α(|||3 l ∈@ L. P l) = (

⋃
l ∈ set L. α(P l))›

〈proof 〉

lemma strict-events-of-MultiSyncptick-subset :
‹α([[S]]3 l ∈@ L. P l) ⊆ (

⋃
l ∈ set L. α(P l))›

〈proof 〉

12.4.2 Ticks

We only look at strict-ticks-of lemmas: ticks-of is harder to deal with be-
cause it requires more control on the divergences.
lemma strict-ticks-of-MultiSeqptick-subset :

‹3s((SEQ3 l ∈@ L. P l) r) ⊆ (if L = [] then {r} else (
⋃

r . 3s(P (last L) r)))›
〈proof 〉

lemma strict-ticks-of-MultiSeq-subset :
‹3s(SEQ l ∈@ L. P l) ⊆ (if L = [] then {undefined} else (

⋃
r . 3s(P (last L))))›

〈proof 〉

lemma strict-ticks-of-MultiSyncptick-subset :
‹3s([[S]]3 l ∈@ L. P l) ⊆
{l. length l = length L ∧ (∀ i < length L. l ! i ∈ 3s(P (L ! i)))}›

〈proof 〉

139

140

Chapter 13

Continuity Rules

13.1 Sequential Composition
13.1.1 Monotonicity
lemma tickFree-mem-min-elems-D : ‹t ∈ min-elems (D P) =⇒ tF t›
〈proof 〉

lemma mono-Seqptick : ‹P ;3 R v Q ;3 S› if ‹P v Q› and ‹R v S›
for P Q :: ‹(′a, ′r) processptick› and R S :: ‹ ′r ⇒ (′a, ′s) processptick›
〈proof 〉

13.1.2 Preliminaries
context begin

private lemma chain-Seqptick-left: ‹chain Y =⇒ chain (λi. Y i ;3 S)›
〈proof 〉 lemma chain-Seqptick-right: ‹chain Y =⇒ chain (λi. S ;3 Y i)›
〈proof 〉 lemma cont-left-prem-Seqptick :
‹(
⊔

i. Y i) ;3 S = (
⊔

i. Y i ;3 S)› (is ‹?lhs = ?rhs›) if ‹chain Y ›
— We have to add this hypothesis in the generalization.
〈proof 〉

lemma ‹finite R =⇒ chain Y =⇒ ur ∈ R. (
⊔

i. Y i r) = (
⊔

i. ur ∈ R. Y i r)›
〈proof 〉

lemma infinite-GlobalNdet-not-cont :
— This is a counter example.
defines Y-def : ‹Y ≡ λi r :: nat. if r ≤ i then STOP else ⊥ :: (nat, nat)

processptick›
shows ‹chain Y › ‹ur ∈ UNIV . (

⊔
i. Y i r) 6= (

⊔
i. ur ∈ UNIV . Y i r)›

〈proof 〉

141

The same counter-example works for Seqptick.

lemma infinite-Seqptick-not-cont :
— This is a counter example.
defines P-def : ‹P ≡ SKIPS UNIV :: (nat, nat) processptick›
and Y-def : ‹Y ≡ λi r :: nat. if r ≤ i then STOP else ⊥ :: (nat, nat) processptick›

shows ‹chain Y › ‹P ;3 (
⊔

i. Y i) 6= (
⊔

i. P ;3 Y i)›
〈proof 〉

We must therefore find a condition under which Seqptick is continuous.

private lemma cont-right-prem-Seqptick :
‹S ;3 (

⊔
i. Y i) = (

⊔
i. S ;3 Y i)› (is ‹?lhs = ?rhs›) if ‹chain Y › and ‹�3(S)›

— We have to add this hypothesis in the generalization.
〈proof 〉

13.1.3 Continuity

We then spent a lot of time trying to prove the continuity under the as-
sumption of finite-ticks-fun.

lemma Seqptick-cont [simp] : ‹cont (λx. f x ;3 g x)›
if ‹cont f › and ‹cont g› and ‹�3⇒(f)›
for g :: ‹- ⇒ - ⇒ (′a, ′s) processptick›
〈proof 〉

We could therefore only prove the weaker following version.

lemma Seqptick-cont [simp] : ‹cont (λx. f x ;3 g x)›
if ‹cont f › and ‹cont g› and ‹

∧
x. �3(f x)›

for g :: ‹- ⇒ - ⇒ (′a, ′s) processptick›
〈proof 〉

end

corollary ‹cont f =⇒ cont g =⇒ cont (λx. f x ;3 g x)›
for f :: ‹ ′b :: cpo ⇒ (′a, ′r :: finite) processptick›
〈proof 〉

lemma MultiSeqptick-cont[simp]:
‹[[
∧

l. l ∈ set L =⇒ cont (f l);
∧

l r x. l ∈ set (butlast L) =⇒ �3(f l x r)]]
=⇒ cont (λx. (SEQ3 l ∈@ L. f l x) r)›

〈proof 〉

142

13.2 Synchronization Product
context Syncptick-locale begin

13.2.1 Monotonicity
lemma mono-Syncptick : ‹P [[A]]3 Q v P ′ [[A]]3 Q ′› if ‹P v P ′› and ‹Q v Q ′›
〈proof 〉

13.2.2 Preliminaries
lemma chain-Syncptick-left : ‹chain Y =⇒ chain (λi. Y i [[A]]3 Q)›

and chain-Syncptick-right : ‹chain Z =⇒ chain (λi. P [[A]]3 Z i)›
〈proof 〉

lemma cont-left-prem-Syncptick :
‹(
⊔

i. Y i) [[A]]3 Q = (
⊔

i. Y i [[A]]3 Q)› if chain: ‹chain Y ›
〈proof 〉

lemma (in Syncptick-locale) cont-right-prem-Syncptick :
‹P [[A]]3 (

⊔
i. Z i) = (

⊔
i. P [[A]]3 Z i)› if ‹chain Z ›

〈proof 〉

13.2.3 Continuity
lemma Syncptick-cont[simp]: ‹cont (λx. f x [[A]]3 g x)› if ‹cont f › ‹cont g›
〈proof 〉

end

lemma MultiSyncptick-cont [simp] :
‹(
∧

l. l ∈ set L =⇒ cont (P l)) =⇒ cont (λx. [[S]]3 l ∈@ L. P l x)›
〈proof 〉

143

144

Chapter 14

Monotonicity Properties

14.0.1 Sequential Composition
lemma mono-Seqptick-FD : ‹P vFD P ′ =⇒ (

∧
r . Q r vFD Q ′ r) =⇒ P ;3 Q

vFD P ′ ;3 Q ′›
〈proof 〉

lemma mono-Seqptick-DT : ‹P vDT P ′ =⇒ (
∧

r . Q r vDT Q ′ r) =⇒ P ;3 Q
vDT P ′ ;3 Q ′›
〈proof 〉

lemma mono-Seqptick-F-right : ‹(
∧

r . Q r vF Q ′ r) =⇒ P ;3 Q vF P ;3 Q ′›
〈proof 〉

lemma mono-Seqptick-D-right : ‹(
∧

r . Q r vD Q ′ r) =⇒ P ;3 Q vD P ;3 Q ′›
〈proof 〉

lemma mono-Seqptick-T-right : ‹(
∧

r . Q r vT Q ′ r) =⇒ P ;3 Q vT P ;3 Q ′›
〈proof 〉

Left Sequence monotonicity doesn’t hold for (vF), (vD) and (vT).
lemmas monos-Seqptick = mono-Seqptick mono-Seqptick-FD mono-Seqptick-DT

mono-Seqptick-F-right mono-Seqptick-D-right mono-Seqptick-T-right

14.0.2 Multiple Sequential Composition
lemma mono-MultiSeqptick :

‹(
∧

x r . x ∈ set L =⇒ P x r v Q x r) =⇒
(SEQ3 l ∈@ L. P l) r v (SEQ3 l ∈@ L. Q l) r›
〈proof 〉

lemma mono-MultiSeqptick-FD :
‹(
∧

x r . x ∈ set L =⇒ P x r vFD Q x r) =⇒
(SEQ3 l ∈@ L. P l) r vFD (SEQ3 l ∈@ L. Q l) r›

and mono-MultiSeqptick-DT :

145

‹(
∧

x r . x ∈ set L =⇒ P x r vDT Q x r) =⇒
(SEQ3 l ∈@ L. P l) r vDT (SEQ3 l ∈@ L. Q l) r›
〈proof 〉

lemmas monos-MultiSeqptick =
mono-MultiSeqptick mono-MultiSeqptick-FD mono-MultiSeqptick-FD

14.0.3 Synchronization Product
context Syncptick-locale begin

lemma mono-Syncptick-DT :
‹P vDT P ′ =⇒ Q vDT Q ′ =⇒ P [[A]]3 Q vDT P ′ [[A]]3 Q ′›
〈proof 〉

lemma mono-Syncptick-FD : ‹P [[A]]3 Q vFD P ′ [[A]]3 Q ′›
if ‹P vFD P ′› and ‹Q vFD Q ′›
〈proof 〉

lemmas monos-Syncptick = mono-Syncptick mono-Syncptick-FD mono-Syncptick-DT

end

14.0.4 Multiple Synchronization Product
lemma mono-MultiSyncptick :

‹(
∧

l. l ∈ set L =⇒ P l v Q l) =⇒ [[S]]3 l ∈@ L. P l v [[S]]3 l ∈@ L. Q l›
〈proof 〉

lemma mono-MultiSyncptick-FD :
‹(
∧

l. l ∈ set L =⇒ P l vFD Q l) =⇒ [[S]]3 l ∈@ L. P l vFD [[S]]3 l ∈@ L. Q l›
〈proof 〉

lemma mono-MultiSyncptick-DT :
‹(
∧

l. l ∈ set L =⇒ P l vDT Q l) =⇒ [[S]]3 l ∈@ L. P l vDT [[S]]3 l ∈@ L. Q l›
〈proof 〉

lemmas monos-MultiSyncptick =
mono-MultiSyncptick mono-MultiSyncptick-FD mono-MultiSyncptick-DT

146

Chapter 15

Non Destructiveness Rules

〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

15.1 Synchronization Product

15.1.1 Refinement
lemma (in Syncptick-locale) restriction-processptick-Syncptick-FD-div-oneside :

assumes ‹tF u› ‹ftF v› ‹t-P ∈ D (P ↓ n)› ‹t-Q ∈ T (Q ↓ n)›
‹u setinterleaves3tick-join ((t-P, t-Q), A)›

shows ‹u @ v ∈ D (P [[A]]3 Q ↓ n)›
〈proof 〉

lemma (in Syncptick-locale) restriction-processptick-Syncptick-FD :
‹P [[A]]3 Q ↓ n vFD (P ↓ n) [[A]]3 (Q ↓ n)› (is ‹?lhs vFD ?rhs›)
〈proof 〉

The equality does not hold in general, but we can establish it by adding an
assumption over the strict alphabets of the processes.

lemma (in Syncptick-locale) strict-events-of-subset-restriction-processptick-Syncptick
:

‹P [[A]]3 Q ↓ n = (P ↓ n) [[A]]3 (Q ↓ n)› (is ‹?lhs = ?rhs›)
if ‹α(P) ⊆ A ∨ α(Q) ⊆ A›
〈proof 〉

corollary restriction-processptick-MultiSyncptick-FD :
‹[[A]]3 l ∈@ L. P l ↓ n vFD [[A]]3 l ∈@ L. (P l ↓ n)›
〈proof 〉

147

The generalization of the lemma α(P) ⊆ A ∨ α(Q) ⊆ A =⇒ P [[A]]3 Q ↓
n = (P ↓ n) [[A]]3 (Q ↓ n) is not straightforward. We can already observe
with only three processes that one can not expect the first synchronization
to have its strict alphabets contained in the synchronization set. Therefore,
we have to assume the condition on at least length L − 1 processes.
corollary strict-events-of-subset-restriction-processptick-MultiSyncptick :

‹[[A]]3 l ∈@ L. P l ↓ n = (if n = 0 then ⊥ else [[A]]3 l ∈@ L. (P l ↓ n))›
— if n = 0 then ⊥ else - is necessary because we can have L = [].
if ‹

∧
l. l ∈ set (tl L) =⇒ α(P l) ⊆ A›

〈proof 〉

corollary (in Syncptick-locale) restriction-processptick-Parptick :
‹P ||3 Q ↓ n = (P ↓ n) ||3 (Q ↓ n)›
〈proof 〉

corollary restriction-processptick-MultiParptick :
‹||3 l ∈@ L. P l ↓ n = (if n = 0 then ⊥ else ||3 l ∈@ L. (P l ↓ n))›
〈proof 〉

15.1.2 Non Destructiveness
lemma (in Syncptick-locale) Syncptick-non-destructive :

‹non-destructive (λ(P, Q). P [[A]]3 Q)›
〈proof 〉

15.1.3 Setup
lemma (in Syncptick-locale) Syncptick-restriction-shift-processptick
[restriction-shift-processptick-simpset, simp] :
‹non-destructive f =⇒ non-destructive g =⇒ non-destructive (λx. f x [[S]]3 g x)›
‹constructive f =⇒ constructive g =⇒ constructive (λx. f x [[S]]3 g x)›
〈proof 〉

lemma MultiSyncptick-restriction-shift-processptick
[restriction-shift-processptick-simpset, simp] :
‹(
∧

l. l ∈ set L =⇒ non-destructive (f l)) =⇒ non-destructive (λx. [[S]]3 l ∈@ L.
f l x)›

‹(
∧

l. l ∈ set L =⇒ constructive (f l)) =⇒ constructive (λx. [[S]]3 l ∈@ L. f l x)›
〈proof 〉

corollary MultiSyncptick-non-destructive : ‹non-destructive (λP. [[S]]3 l ∈@ L. P
l)›
〈proof 〉

148

Chapter 16

Other Laws

declare [[metis-instantiate]]

16.1 Laws of Renaming
16.1.1 Renaming and Sequential Composition
lemma FD-Renaming-Seqptick :

‹Renaming P f g ;3 (λg-r . ur ∈ {r ∈ 3s(P). g-r = g r}. Renaming (Q r) f g ′)
vFD Renaming (P ;3 Q) f g ′› (is ‹?lhs vFD ?rhs›)

〈proof 〉

lemma inj-on-Renaming-Seqptick :
‹Renaming (P ;3 Q) f g ′ =
Renaming P f g ;3 (λg-r . Renaming (Q (THE r . r ∈ 3s(P) ∧ g-r = g r)) f g ′)›
(is ‹?lhs = ?rhs›) if ‹inj-on g 3s(P)›
— This assumption is necessary, otherwise we cannot know which tick triggered

Q.
〈proof 〉

When ′r is set on unit, we recover the version that we had before the gen-
eralization.
lemma ‹Renaming (P ;3 Q) f g = Renaming P f g ;3 (λr . Renaming (Q ()) f g)›
〈proof 〉

lemma TickSwap-Seqptick [simp] :
‹TickSwap (P ;3 Q) = TickSwap P ;3 (λ(s, r). TickSwap (Q (r , s)))› (is ‹?lhs

= ?rhs›)
〈proof 〉

149

lemma TickSwap-is-Seqptick-iff [simp] :
‹TickSwap P = Q ;3 R ←→ P = TickSwap Q ;3 (λ(r , s). TickSwap (R (s, r)))›
〈proof 〉

16.1.2 Renaming and Synchronization Product
theorem (in Syncptick-locale) inj-RenamingEv-Syncptick :

‹RenamingEv (P [[S]]3 Q) f = RenamingEv P f [[f ‘ S]]3 RenamingEv Q f ›
(is ‹?lhs = ?rhs›) if ‹inj f ›
〈proof 〉

16.2 Laws of Hiding

16.3 Hiding and Sequential Composition

We start by giving a counter example when the assumption �3(P) is not
satisfied.
notepad begin
〈proof 〉

end

In general, only one refinement is holding.
theorem Hiding-Seq-FD-Seq-Hiding :

‹(P ;3 Q) \ S vFD (P \ S) ;3 (λr . Q r \ S)› (is ‹?lhs vFD ?rhs›)
〈proof 〉

16.4 Hiding and Synchronization Product
lemma setinterleavesptick-imp-superset-ev :

‹t setinterleaves3tick-join ((u, v), A) =⇒
{ev a |a. ev a ∈ set u} ∪ {ev a |a. ev a ∈ set v} ⊆ {ev a |a. ev a ∈ set t}›

〈proof 〉

lemma (in Syncptick-locale) disjoint-isInfHidden-seqRunL-to-Syncptick :
assumes ‹A ∩ S = {}› and ‹isInfHidden-seqRun x P A t-P›

and ‹t-Q ∈ T Q› and ‹t setinterleaves3(⊗3) ((t-P, t-Q), S)›
shows ‹isInfHidden-seqRun (ev ◦ of-ev ◦ x) (P [[S]]3 Q) A t›
〈proof 〉

lemma (in Syncptick-locale) disjoint-isInfHidden-seqRunR-to-Syncptick :
‹[[A ∩ S = {}; isInfHidden-seqRun x Q A t-Q; t-P ∈ T P;

t setinterleaves3(⊗3) ((t-P, t-Q), S)]] =⇒
isInfHidden-seqRun (ev ◦ of-ev ◦ x) (P [[S]]3 Q) A t›
〈proof 〉

150

lemma (in Syncptick-locale) disjoint-Hiding-Syncptick-FD-Syncptick-Hiding-aux :
— This lemma avoids duplication of the proof work.
assumes ‹A ∩ S = {}› ‹tF u› ‹ftF v› ‹t-P ∈ D (P \ A)› ‹t-Q ∈ T (Q \ A)›

and ∗ : ‹u setinterleaves3(⊗3) ((t-P, t-Q), S)›
shows ‹u @ v ∈ D (P [[S]]3 Q \ A)›
〈proof 〉

theorem (in Syncptick-locale) disjoint-Hiding-Syncptick-FD-Syncptick-Hiding :
‹P [[S]]3 Q \ A vFD (P \ A) [[S]]3 (Q \ A)› if ‹A ∩ S = {}›
〈proof 〉

theorem (in Syncptick-locale) disjoint-finite-Hiding-Syncptick :
‹P [[S]]3 Q \ A = (P \ A) [[S]]3 (Q \ A)› if ‹A ∩ S = {}› and ‹finite A›
— Monster theorem!
〈proof 〉

lemma disjoint-Hiding-MultiSyncptick-FD-MultiSyncptick-Hiding :
‹[[S]]3 l ∈@ L. P l \ A vFD [[S]]3 l ∈@ L. (P l \ A)› if ‹A ∩ S = {}›
〈proof 〉

lemma disjoint-finite-Hiding-MultiSyncptick :
‹[[S]]3 l ∈@ L. P l \ A = [[S]]3 l ∈@ L. (P l \ A)› if ‹A ∩ S = {}› and ‹finite

A›
〈proof 〉

16.5 Other Laws of Synchronization Product
16.5.1 Synchronization Set can be restricted
lemma setinterleavesptick-is-restrictable-on-superset-events-of :

‹{a. ev a ∈ set u ∨ ev a ∈ set v} ⊆ A =⇒
t setinterleaves3tick-join ((u, v), S) ←→
t setinterleaves3tick-join ((u, v), S ∩ A)›
〈proof 〉

lemma (in Syncptick-locale) Syncptick-is-restrictable-on-events-of :
‹P [[S]]3 Q = P [[S ∩ (α(P) ∪ α(Q))]]3 Q›
〈proof 〉

151

corollary (in Syncptick-locale) Syncptick-is-restrictable-on-superset-events-of :
‹P [[S]]3 Q = P [[S ∩ A]]3 Q› if ‹α(P) ∪ α(Q) ⊆ A›
〈proof 〉

lemma ‹tF t =⇒ {a. ev a ∈ set u} ∩ S = {} =⇒ a ∈ S =⇒
¬ t setinterleaves3tick-join ((u, ev a # v), S)›

〈proof 〉

16.5.2 Some Refinements
context Syncptick-locale begin

lemma Mndetprefix-Syncptick-Det-distr-FD :
‹(u a ∈ A → (P a [[C]]3 (u b ∈ B → Q b))) �
(u b ∈ B → ((u a ∈ A → P a) [[C]]3 Q b))
vFD (u a ∈ A → P a) [[C]]3 (u b ∈ B → Q b)›
(is ‹?lhs1 � ?lhs2 vFD ?rhs›)
if ‹A 6= {}› ‹B 6= {}› ‹A ∩ C = {}› ‹B ∩ C = {}›
〈proof 〉

lemmas Mndetprefix-Syncptick-Det-distr-F =
Mndetprefix-Syncptick-Det-distr-FD[THEN leFD-imp-leF]

lemmas Mndetprefix-Syncptick-Det-distr-D =
Mndetprefix-Syncptick-Det-distr-FD[THEN leFD-imp-leD]

lemmas Mndetprefix-Syncptick-Det-distr-T =
Mndetprefix-Syncptick-Det-distr-F [THEN leF-imp-leT]

lemma Mndetprefix-Syncptick-Det-distr-DT :
‹[[A 6= {}; B 6= {}; A ∩ C = {}; B ∩ C = {}]] =⇒
(u a ∈ A → (P a [[C]]3 (u b ∈ B → Q b))) �
(u b ∈ B → ((u a ∈ A → P a) [[C]]3 Q b))
vDT (u a ∈ A → P a) [[C]]3 (u b ∈ B → Q b)›
〈proof 〉

end

152

Chapter 17

Deadlock Results

17.1 First Results
17.1.1 Non Terminating

Keep in mind lifelock-freeSKIP S P = (D P = {}).

Sequential Composition
lemma ‹non-terminating P =⇒ P ;3 Q = RenamingTick P g›

— Already proven earlier.
〈proof 〉

Synchronization Product
lemma (in Syncptick-locale) non-terminating-Syncptick :

‹non-terminating P =⇒ lifelock-freeSKIP S Q =⇒ non-terminating (P [[A]]3 Q)›
‹lifelock-freeSKIP S P =⇒ non-terminating Q =⇒ non-terminating (P [[A]]3 Q)›
〈proof 〉

17.1.2 Deadlock Free
Sequential Composition
lemma ‹deadlock-free P =⇒ deadlock-free (P ;3 Q)›
〈proof 〉

The next lemma is of course more interesting.
lemma deadlock-freeSKIP S-Seqptick :

‹deadlock-freeSKIP S (P ;3 Q)›
if df-assms : ‹deadlock-freeSKIP S P› ‹

∧
r . r ∈ 3s(P) =⇒ deadlock-freeSKIP S

(Q r)›
〈proof 〉

153

corollary deadlock-free-Seqptick :
‹[[deadlock-freeSKIP S P;

∧
r . r ∈ 3s(P) =⇒ deadlock-free (Q r)]]

=⇒ deadlock-free (P ;3 Q)›
〈proof 〉

Synchronization Product
context Syncptick-locale begin

lemma deadlock-free-Det-bis :
‹P = STOP ∧ Q 6= STOP ∨ deadlock-free P =⇒
Q = STOP ∧ P 6= STOP ∨ deadlock-free Q =⇒ deadlock-free (P � Q)›
〈proof 〉

lemma deadlock-free-Mprefix-Syncptick-Mprefix :
assumes not-all-empty: ‹¬ A ⊆ S ∨ ¬ B ⊆ S ∨ A ∩ B ∩ S 6= {}›

and ‹
∧

a. a ∈ A − S =⇒ deadlock-free (P a [[S]]3 �b∈B → Q b)›
and ‹

∧
b. b ∈ B − S =⇒ deadlock-free (�a∈A → P a [[S]]3 Q b)›

and ‹
∧

x. x ∈ A ∩ B ∩ S =⇒ deadlock-free (P x [[S]]3 Q x)›
shows ‹deadlock-free (�a∈A → P a [[S]]3 �b ∈ B → Q b)›
〈proof 〉

lemma deadlock-free-Mprefix-Syncptick-Mprefix-subset :
‹[[A ⊆ S ; B ⊆ S ; A ∩ B 6= {};∧

x. x ∈ A ∩ B ∩ S =⇒ deadlock-free (P x [[S]]3 Q x)]]
=⇒ deadlock-free (�a∈A → P a [[S]]3 �b∈B → Q b)›

and deadlock-free-Mprefix-Syncptick-Mprefix-indep :
‹[[A ∩ S = {}; B ∩ S = {}; A 6= {} ∨ B 6= {};∧

a. a ∈ A − S =⇒ deadlock-free (P a [[S]]3 �b∈B → Q b);∧
b. b ∈ B − S =⇒ deadlock-free (�a∈A → P a [[S]]3 Q b)]]

=⇒ deadlock-free (�a∈A → P a [[S]]3 �b∈B → Q b)›
and deadlock-free-Mprefix-Syncptick-Mprefix-right :
‹[[A ⊆ S ; B ∩ S = {}; B 6= {};∧

b. b ∈ B − S =⇒ deadlock-free (�a∈A → P a [[S]]3 Q b)]]
=⇒ deadlock-free (�a∈A → P a [[S]]3 �b∈B → Q b)›

and deadlock-free-Mprefix-Syncptick-Mprefix-left :
‹[[A ∩ S = {}; B ⊆ S ; A 6= {};∧

a. a ∈ A − S =⇒ deadlock-free (P a [[S]]3 �b∈B → Q b)]]
=⇒ deadlock-free (�a∈A → P a [[S]]3 �b∈B → Q b)›
〈proof 〉

end

17.2 Renaming and reference Processes
lemma DF-empty [simp] : ‹DF {} = STOP›

and DFSKIP S-empty [simp] : ‹DFSKIP S {} {} = STOP›

154

and RUN-empty [simp] : ‹RUN {} = STOP›
and CHAOS-empty [simp] : ‹CHAOS {} = STOP›
and CHAOSSKIP S-empty [simp] : ‹CHAOSSKIP S {} {} = STOP›
〈proof 〉

17.2.1 Alternative Definitions with restriction fixed-point Op-
erator

For now, we have lemmas such as DF (f ‘ A) vFD Renaming (DF A) f g, but
the other refinement is requiring finitary assumptions ([[finitary f ; finitary
g]] =⇒ Renaming (DF A) f g vFD DF (f ‘ A)).
lemma DF-restriction-fix-def : ‹DF A = (υ X . ua ∈ A → X)›
〈proof 〉

lemma DFSKIP S-restriction-fix-def : ‹DFSKIP S A R = (υ X . (ua ∈ A → X)
u SKIPS R)›
〈proof 〉

lemma RUN-restriction-fix-def : ‹RUN A = (υ X . �a ∈ A → X)›
〈proof 〉

lemma CHAOS-restriction-fix-def : ‹CHAOS A = (υ X . STOP u (�a ∈ A →
X))›
〈proof 〉

lemma CHAOSSKIP S-restriction-fix-def : ‹CHAOSSKIP S A R = (υ X . SKIPS
R u STOP u (�a ∈ A → X))›
〈proof 〉

17.2.2 Stronger Results

With restriction-fix induction, removing these assumptions is trivial.
lemma Renaming-DF : ‹Renaming (DF A) f g = DF (f ‘ A)›
〈proof 〉

lemma Renaming-DFSKIP S : ‹Renaming (DFSKIP S A R) f g = DFSKIP S (f ‘
A) (g ‘ R)›
〈proof 〉

lemma Renaming-RUN : ‹Renaming (RUN A) f g = RUN (f ‘ A)›
〈proof 〉

lemma Renaming-CHAOS : ‹Renaming (CHAOS A) f g = CHAOS (f ‘ A)›
〈proof 〉

lemma Renaming-CHAOSSKIP S : ‹Renaming (CHAOSSKIP S A R) f g = CHAOSSKIP S

(f ‘ A) (g ‘ R)›
〈proof 〉

155

17.3 Data Independence

When working with the new interleaving P [[{}]]3 Q, we intuitively expect
it to be deadlock-free when both P and Q are. The purpose of this section
is to prove it.

17.3.1 An interesting equivalence
lemma (in Syncptick-locale) deadlock-free-of-Syncptick-iff-DF-FD-DF-Syncptick-DF :

‹(∀P Q. deadlock-free P −→ deadlock-free Q −→ deadlock-free (P [[S]]3 Q))
←→ DF UNIV vFD (DF UNIV [[S]]3 DF UNIV)› (is ‹?lhs ←→ ?rhs›)

〈proof 〉

17.3.2 STOP and SKIP synchronized with DF A

The two results below form a stronger (and generalized) version of r = s
=⇒ (DF A vFD DF A [[S]] SKIP r) = (A ∩ S = {}).
context Syncptick-locale begin

lemma (in Syncptick-locale) DF-FD-DF-Syncptick-SKIPS-imp-disjoint :
‹A ∩ S = {}› if ‹DF A vFD DF A [[S]]3 SKIPS R›
〈proof 〉

lemma disjoint-imp-DF-eq-DF-Syncptick-SKIPS :
‹DF A = DF A [[S]]3 SKIPS R› if ‹A ∩ S = {}›
〈proof 〉

corollary DF-FD-DF-Syncptick-STOP-imp-disjoint :
‹DF A vFD DF A [[S]]3 STOP =⇒ A ∩ S = {}›
and DF-FD-DF-Syncptick-SKIP-imp-disjoint :
‹DF A vFD DF A [[S]]3 SKIP r =⇒ A ∩ S = {}›
and disjoint-imp-DF-eq-DF-Syncptick-STOP :
‹A ∩ S = {} =⇒ DF A = DF A [[S]]3 STOP›
and disjoint-imp-DF-eq-DF-Syncptick-SKIP :
‹A ∩ S = {} =⇒ DF A = DF A [[S]]3 SKIP r›
〈proof 〉

end

corollary (in Syncptick-locale) DF-FD-SKIPS-Syncptick-DF-imp-disjoint :
‹DF A vFD SKIPS R [[S]]3 DF A =⇒ A ∩ S = {}›
〈proof 〉

lemma (in Syncptick-locale) disjoint-imp-DF-eq-SKIPS-Syncptick-DF :

156

‹A ∩ S = {} =⇒ DF A = SKIPS R [[S]]3 DF A›
〈proof 〉

corollary (in Syncptick-locale) DF-FD-STOP-Syncptick-DF-imp-disjoint :
‹DF A vFD STOP [[S]]3 DF A =⇒ A ∩ S = {}›
and DF-FD-SKIP-Syncptick-DF-imp-disjoint :
‹DF A vFD SKIP r [[S]]3 DF A =⇒ A ∩ S = {}›
and disjoint-imp-DF-eq-STOP-Syncptick-DF :
‹A ∩ S = {} =⇒ DF A = STOP [[S]]3 DF A›
and disjoint-imp-DF-eq-SKIP-Syncptick-DF :
‹A ∩ S = {} =⇒ DF A = SKIP r [[S]]3 DF A›
〈proof 〉

17.3.3 Finally, deadlock-free (P ||| Q)

theorem (in Syncptick-locale) DF-F-DF-Syncptick-DF-weak : ‹DF (A ∪ B) vF

DF A [[S]]3 DF B›
if nonempty: ‹A 6= {}› ‹B 6= {}›

and intersect-hyp: ‹B ∩ S = {} ∨ (∃ y. B ∩ S = {y} ∧ A ∩ S ⊆ {y})›
〈proof 〉

theorem (in Syncptick-locale) DF-F-DF-Syncptick-DF :
‹DF (A ∪ B) vF DF A [[S]]3 DF B› if ‹A 6= {}› ‹B 6= {}›
and ‹A ∩ S = {} ∨ (∃ a. A ∩ S = {a} ∧ B ∩ S ⊆ {a}) ∨

B ∩ S = {} ∨ (∃ b. B ∩ S = {b} ∧ A ∩ S ⊆ {b})›
〈proof 〉

lemma (in Syncptick-locale) DF-FD-DF-Syncptick-DF :
‹DF (A ∪ B) vFD DF A [[S]]3 DF B› if ‹A 6= {}› ‹B 6= {}›
and ‹A ∩ S = {} ∨ (∃ a. A ∩ S = {a} ∧ B ∩ S ⊆ {a}) ∨

B ∩ S = {} ∨ (∃ b. B ∩ S = {b} ∧ A ∩ S ⊆ {b})›
〈proof 〉

theorem (in Syncptick-locale) DF-FD-DF-Syncptick-DF-iff :
‹DF (A ∪ B) vFD DF A [[S]]3 DF B ←→
(if A = {} then B ∩ S = {}
else if B = {} then A ∩ S = {}
else A ∩ S = {} ∨ (∃ a. A ∩ S = {a} ∧ B ∩ S ⊆ {a}) ∨

B ∩ S = {} ∨ (∃ b. B ∩ S = {b} ∧ A ∩ S ⊆ {b}))›
(is ‹?FD-ref ←→ (if A = {} then B ∩ S = {}

else if B = {} then A ∩ S = {}
else ?cases)›)

〈proof 〉

157

lemma DF-FD-DF-MultiSyncptick-DF :
‹[[
∧

l. l ∈ set L =⇒ X l 6= {}; ∃ s. (
⋃

l ∈ set L. X l) ∩ S ⊆ {s}]]
=⇒ DF (

⋃
l ∈ set L. X l) vFD [[S]]3 l ∈@ L. (DF (X l) :: (′a, ′r) processptick)›

〈proof 〉

lemma (in Syncptick-locale) ‹DF {a} = DF {a} [[S]]3 STOP ←→ a /∈ S›
〈proof 〉

lemma (in Syncptick-locale) ‹DF {a} [[S]]3 STOP = STOP ←→ a ∈ S›
〈proof 〉

corollary (in Syncptick-locale) DF-FD-DF-Interptick-DF : ‹DF A vFD DF A |||3
DF A›
〈proof 〉

corollary (in Syncptick-locale) DF-UNIV-FD-DF-UNIV-Interptick-DF-UNIV :
‹DF UNIV vFD DF UNIV |||3 DF UNIV ›
〈proof 〉

corollary (in Syncptick-locale) Interptick-deadlock-free :
‹deadlock-free P =⇒ deadlock-free Q =⇒ deadlock-free (P |||3 Q)›
〈proof 〉

theorem MultiInterptick-deadlock-free :
‹[[L 6= [];

∧
l. l ∈ set L =⇒ deadlock-free (P l)]] =⇒

deadlock-free (|||3 l ∈@ L. P l)›
〈proof 〉

158

Chapter 18

Conclusion

18.1 Main Entry Point

This is where the session HOL-CSP_PTick should be imported from.
declare finite-ticks-simps [simp]
declare finite-ticks-fun-simps [simp]

unbundle no option-type-syntax

18.2 Conclusion
18.2.1 Summary

In this session, we introduced generalized versions of the sequential compo-
sition and synchronization operators, thus completing the generalization of
HOL-CSP (and its extensions) to support parameterized termination. The
main motivation was to propagate return values across processes, so that
algebraic laws such as those involving SKIP continue to hold in a natural
way. While the sequential composition adapts relatively smoothly, the syn-
chronization product required a more substantial redesign: the interleaving
theory of the classical Sync operator could not be reused, and the failures
specification had to be carefully adjusted.
Overall, the results confirm that the parameterized setting integrates well
with the broader CSP framework. Most classical laws remain valid with
only minor modifications, and the new operators exhibit the algebraic and
operational properties one expects. The formalization is fairly extensive and
provides a solid foundation for further developments of CSP theories with
enriched termination behavior.

159

18.2.2 Sequential Composition

The new version of the sequential composition is of type (′a, ′r) processptick
⇒ (′r ⇒ (′a, ′s) processptick) ⇒ (′a, ′s) processptick, so that the process
on the right-hand side is now parameterized with the value returned by the
process on the left-hand side. The main motivation for this generalization
was to have SKIP as neutral element. This is now the case.

P ;3 SKIP = P SKIP r ;3 Q = Q r

Additionally, with the following associativity property :

P ;3 (λr . Q r ;3 R) = P ;3 Q ;3 R

we can conclude that this generalized sequential composition fulfills the
monad laws.
Unsurprisingly, the correspondence with classical version is very intuitive.

P ;3 (λr . Q) = P ; Q

The expected step law has also been established.

�a∈A → P a ;3 Q = �a∈A → (P a ;3 Q)

Additionally, in the same way as described in [4], operational laws have been
derived.

P α τ P ′

P ;3 Q β τ P ′ ;3 Q
a α P P ′

a ;3 Q β P P ′ ;3 Q
r α 3P P ′ Q P β τ Q ′

r ;3 Q β τ Q ′

The continuity has only be obtained under a kind of finiteness assumption,
but non-destructiveness holds in general.
Finally, an architectural version is defined. It satisfies the following property.

SEQ3 l ∈@ (L1 @ L2). P l = (λr . (SEQ3 l ∈@ L1 . P l) r ;3 SEQ3 l
∈@ L2 . P l)

160

18.2.3 Synchronization Product

The main motivation for generalizing the synchronization product was to
have a satisfying handling of the synchronization of two terminations. In-
deed, with the Sync operator inherited from HOL-CSP, the returned values
were lost (most of the time).

SKIP r [[A]] SKIP s = (if r = s then SKIP r else STOP)

With the new definition, this is not the case anymore.

SKIP r [[A]]3 SKIP s = (case r ⊗3 s of None ⇒ STOP | Some r-s ⇒ SKIP r-s)

This law is directly extracted from the core of the construction, which is
done in a very abstract way through a locale specification. The operator is
then declined in several variations, leading to the following rules.

SKIP r [[A]]3P air SKIP s = SKIP (r , s)
SKIP r [[A]]3P airlist SKIP s = SKIP [r , s]
SKIP r [[A]]3Rlist SKIP s = SKIP (r · s)

SKIP r [[A]]3Llist SKIP s = SKIP (r @ [s])
SKIP r n[[A]]3ListslenL SKIP s = (if |r | = n then SKIP (r @ s) else

STOP)

SKIP r n[[A]]3ListslenR SKIP s = (if |s| = n then SKIP (r @ s) else
STOP)

SKIP r n[[A]]3m SKIP s = (if |r | = n ∧ |s| = m then SKIP (r @ s) else
STOP)

SKIP r [[A]]3Classic SKIP s = (if r = s then SKIP r else STOP)

Moreover, the last declension is proved to be equal to the old version, en-
suring that this work is actually a generalization.

P [[A]]3Classic Q = P [[A]] Q

We also established commutativity and associativity, modulo renaming the
ticks. The underlying abstract setup is quite obscure, so we will only display
here the pair versions.

RenamingTick (P [[A]]3P air Q) prod.swap = Q [[A]]3P air P
P [[A]]3P air (Q [[A]]3P air R) =

RenamingTick (P [[A]]3P air Q [[A]]3P air R) (λ((r , s), t). (r , s, t))

Again, the expected step law has been established.

161

�a∈A → P a ;3 Q = �a∈A → (P a ;3 Q)

In this abstract setup, the operational laws have also been derived.

P lhs τ P ′

P [[A]]3 Q ptick τ P ′ [[A]]3 Q
Q rhs τ Q ′

A [[P]]3 Q ptick τ A [[P]]3 Q ′

a /∈ A P lhs a P ′

P [[A]]3 Q ptick a P ′ [[A]]3 Q
a /∈ A Q rhs a Q ′

P [[A]]3 Q ptick a P [[A]]3 Q ′

a ∈ A P lhs a P ′ Q rhs a Q ′

P [[A]]3 Q ptick a P ′ [[A]]3 Q ′

P lhs 3r P ′

P [[A]]3 Q ptick τ SKIP r [[A]]3 Q
Q rhs 3s Q ′

P [[A]]3 Q ptick τ P [[A]]3 SKIP s
r ⊗3 s = Some r-s

SKIP r [[A]]3 SKIP s ptick 3r-s Ωptick (SKIP r-s) r-s

Continuity and non-destructiveness hold in general, and an architectural
version is defined. It satisfies the following property.

L1 6= [] L2 6= []

[[S]]3 l ∈@ (L1 @ L2). P l = [[S]]3 l ∈@ L1 . P l |L1 |[[S]]3|L2 | [[S]]3 l ∈@ L2 . P l

It is defined on a list (while its counterpart MultiSync based on the Sync
operator is defined on a multiset) because the order of appearance of the
ticks matters. However, as long as we keep track of the positions, we can
permute the list. This is summarized by the following theorem.

f permutes {..<|L|}
[[S]]3 l ∈@ permute-list f L. P l = RenamingTick ([[S]]3 l ∈@ L. P l) (permute-list f)

162

Bibliography

[1] B. Ballenghien, S. Taha, and B. Wolff. Hol-cspm - architectural operators
for hol-csp. Archive of Formal Proofs, December 2023. https://isa-afp.
org/entries/HOL-CSPM.html, Formal proof development.

[2] B. Ballenghien, S. Taha, B. Wolff, and L. Ye. Hol-csp version 2.0. Archive
of Formal Proofs, April 2019. https://isa-afp.org/entries/HOL-CSP.
html, Formal proof development.

[3] B. Ballenghien and B. Wolff. Operational semantics formally proven in
hol-csp. Archive of Formal Proofs, December 2023. https://isa-afp.org/
entries/HOL-CSP_OpSem.html, Formal proof development.

[4] B. Ballenghien and B. Wolff. An Operational Semantics in Isabelle/HOL-
CSP. In Y. Bertot, T. Kutsia, and M. Norrish, editors, 15th Interna-
tional Conference on Interactive Theorem Proving (ITP 2024), volume
309 of Leibniz International Proceedings in Informatics (LIPIcs), pages
7:1–7:18, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

[5] B. Ballenghien and B. Wolff. Csp semantics over restriction spaces.
Archive of Formal Proofs, May 2025. https://isa-afp.org/entries/
HOL-CSP_RS.html, Formal proof development.

163

https://isa-afp.org/entries/HOL-CSPM.html
https://isa-afp.org/entries/HOL-CSPM.html
https://isa-afp.org/entries/HOL-CSP.html
https://isa-afp.org/entries/HOL-CSP.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://isa-afp.org/entries/HOL-CSP_RS.html
https://isa-afp.org/entries/HOL-CSP_RS.html

	Introduction
	Motivations
	The Global Architecture of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HOL`CSP`_PTick

	Finite Ticks Predicate
	Definitions
	Properties
	Constant Processes
	Other properties

	Laws
	Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ✓(P)
	Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ✓(f)

	Generalization of the Sequential Composition
	Definition
	Preliminaries
	Formal Definition

	Projections

	Generalization of the Synchronization Product
	Trace Interleaving
	Motivation
	Definition
	First Properties
	Lengths
	Trace Prefix Interleaving
	Hiding Events

	Synchronization Product
	Definition
	Projections
	First Properties

	Some Work on Renaming
	Tick Swap Operator
	Preliminaries
	The Operator

	Splitting the Renaming Operator
	Renaming only Events
	Renaming only Ticks
	Properties

	Renaming and Generalized Synchronization Product

	Commutativity and Associativity of Synchronization
	Commutativity
	Motivation
	Formalization
	First Properties
	Commutativity

	Associativity
	Motivation
	Formalization
	First Properties
	Associativity for the Traces
	Associativity

	First Laws
	Behaviour with Constant Processes
	The Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	The Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 STOP
	The Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 SKIP

	Associativity of Sequential Composition
	Distributivity of Non-Determinism
	Sequential Composition
	Synchronization Product

	Communications
	Step Laws
	Sequential Composition
	Synchronization Product

	Extended step Laws
	Sequential Composition
	Synchronization Product

	Read and Write Laws
	Sequential Composition
	Synchronization Product

	Operational Semantics Laws
	Behaviour of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 initials
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 TickSwap
	Sequential Composition
	Synchronization Product

	Laws of After
	Sequential Composition
	Synchronization Product

	Small Steps Transitions
	Extension of the After Operator
	Sequential Composition
	Generic Operational Semantics as Locales

	Declensions of the Generalized Synchronization Product
	Interpretations
	Classical Version
	Product Type
	List Type

	Associativities
	Classical Version
	Product Type
	List Type

	Properties
	Actual Generalization
	Other Properties

	Ticks Length and Conversions
	Ticks Length
	Conversions

	First Laws
	Operational Laws
	Classical Version
	Product Type
	List Type

	Architectural Versions
	Sequential Composition
	Definition
	First Properties
	Behaviour with binary version
	Other Properties
	Behaviour with injectivity

	Synchronization Product
	Definition
	First properties
	Properties
	Behaviour with binary version
	Behaviour with injectivity
	Permuting the Sequence

	Events and Ticks
	Preliminaries
	Sequential Composition
	Events
	Ticks

	Synchronization Product
	Events
	Ticks

	Architectural Operators
	Events
	Ticks

	Continuity Rules
	Sequential Composition
	Monotonicity
	Preliminaries
	Continuity

	Synchronization Product
	Monotonicity
	Preliminaries
	Continuity

	Monotonicity Properties
	Sequential Composition
	Multiple Sequential Composition
	Synchronization Product
	Multiple Synchronization Product

	Non Destructiveness Rules
	Synchronization Product
	Refinement
	Non Destructiveness
	Setup

	Other Laws
	Laws of Renaming
	Renaming and Sequential Composition
	Renaming and Synchronization Product

	Laws of Hiding
	Hiding and Sequential Composition
	Hiding and Synchronization Product
	Other Laws of Synchronization Product
	Synchronization Set can be restricted
	Some Refinements

	Deadlock Results
	First Results
	Non Terminating
	Deadlock Free

	Renaming and reference Processes
	Alternative Definitions with restriction fixed-point Operator
	Stronger Results

	Data Independence
	An interesting equivalence
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 STOP and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 SKIP synchronized with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 DF A
	Finally, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 deadlock-free (P Q)

	Conclusion
	Main Entry Point
	Conclusion
	Summary
	Sequential Composition
	Synchronization Product

