Gromov hyperbolic spaces in Isabelle

Sebastien Gouezel

Abstract

A geodesic metric space is Gromov hyperbolic if all its geodesic
triangles are thin, i.e., every side is contained in a fixed thickening
of the two other sides. While this definition looks innocuous, it has
proved extremely important and versatile in modern geometry since
its introduction by Gromov. We formalize the basic classical proper-
ties of Gromov hyperbolic spaces, notably the Morse lemma asserting
that quasigeodesics are close to geodesics, the invariance of hyperbolic-
ity under quasi-isometries, we define and study the Gromov boundary
and its associated distance, and prove that a quasi-isometry between
Gromov hyperbolic spaces extends to a homeomorphism of the bound-
aries. We also classify the isometries of hyperbolic spaces into elliptic,
parabolic and loxodromic ones, both in terms of translation length and
of fixed points at infinity. We also prove a less classical theorem, by
Bonk and Schramm, asserting that a Gromov hyperbolic space embeds
isometrically in a geodesic Gromov-hyperbolic space. As the original
proof uses a transfinite sequence of Cauchy completions, this is an
interesting formalization exercise. Along the way, we introduce basic
material on isometries, quasi-isometries, geodesic spaces, the Hausdorff
distance, the Cauchy completion of a metric space, and the exponential
on extended real numbers.
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1 Additions to the library

theory Library-Complements
imports HOL— Analysis. Analysis HOL— Cardinals. Cardinal-Order-Relation
begin

1.1 Mono intros

We have a lot of (large) inequalities to prove. It is very convenient to have
a set of introduction rules for this purpose (a lot should be added to it, I
have put here all the ones I needed).

The typical use case is when one wants to prove some inequality, say exp(x *
x) <y+exp(l+z*z+y), assuming y > 0 and 0 < z < z. One would write
it has

have "0 + \exp(0 + x * x + 0) < =y + \exp(1 + z *x z + y)"
using ‘y > = 0¢ ‘x < = z¢ by (intro mono_intros)

When the left and right hand terms are written in completely analogous ways
as above, then the introduction rules (that contain monotonicity of addition,



of the exponential, and so on) reduce this to comparison of elementary terms
in the formula. This is a very naive strategy, that fails in many situations,
but that is very efficient when used correctly.

named-theorems mono-intros structural introduction rules to prove inequalities

declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare

le-imp-neg-le [mono-intros]
add-left-mono [mono-intros]
add-right-mono [mono-intros
add-strict-left-mono [mono-intros]
add-strict-right-mono [mono-intros]
add-mono [mono-intros]
add-less-le-mono [mono-intros]
diff-right-mono [mono-intros]
diff-left-mono [mono-intros
diff-mono [mono-intros
mult-left-mono [mono-intros]
mult-right-mono [mono-intros)
mult-mono [mono-intros]
mazx.mono [mono-intros
min.mono [mono-intros]

declare power-mono [mono-intros|

declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare

In-ge-zero [mono-intros]
In-le-minus-one [mono-intros]
ennreal-minus-mono [mono-intros
ennreal-lel [mono-intros
e2ennreal-mono [mono-intros]
enn2ereal-nonneg [mono-intros]
zero-le [mono-intros)

top-greatest [mono-intros]
bot-least [mono-intros]
dist-triangle [mono-intros]
dist-triangle2 [mono-intros]
dist-triangle3 [mono-intros]
exp-ge-add-one-self [mono-intros]
exp-gt-one [mono-intros]
exp-less-mono [mono-intros
dist-triangle [mono-intros]
abs-triangle-ineq [mono-intros]
abs-triangle-ineg2 [mono-intros|
abs-triangle-ineq2-sym [mono-intros]
abs-triangle-ineq3 [mono-intros]
abs-triangle-ineq [mono-intros]
Liminf-le-Limsup [mono-intros]
ereal-liminf-add-mono [mono-intros]
le-of-int-ceiling [mono-intros]
ereal-minus-mono [mono-intros]
infdist-triangle [mono-intros]
divide-right-mono [mono-intros)
self-le-power [mono-intros]



lemma In-le-cancell [mono-intros:
assumes (0:real) < zx <y
shows Inz < Iny

(proof)

lemma exp-le-cancell [mono-intros]:
assumes z < (y::real)
shows exp z < exp y

(proof)

lemma mult-gel-mono [mono-intros:
assumes a > (0::'a::linordered-idom) b > 1
shows a < axba<bxa

(proof)

A few convexity inequalities we will need later on.

lemma zy-le-uzz-vyy [mono-intros|:
assumes u > 0 u x v = (1::real)
shows z x y < uxz2/2 +vx*y 2/2
(proof )

lemma zy-le-za-yy [mono-intros]:
zxy <z 2/24 y2/2 for x y:real
(proof)

lemma In-squared-bound [mono-intros|:
(lnz)™2 < 2xx— 2ifx> 1 for x:real

{(proof)

In the next lemma, the assumptions are too strong (negative numbers less
than —1 also work well to have a square larger than 1), but in practice one
proves inequalities with nonnegative numbers, so this version is really the
useful one for mono_intros.

lemma mult-gel-powers [mono-intros|:

assumes a > (1::'a::linordered-idom)
shows 1 <axal <axaxal <axax*xax*a

(proof)

lemmas [mono-intros] = In-bound

lemma mono-cSup:
fixes f :: 'a::conditionally-complete-lattice = 'b::conditionally-complete-lattice
assumes bdd-above A A # {} mono f
shows Sup (f‘A) < f (Sup A)

(proof)

lemma mono-cSup-bij:
fixes f :: ‘a::conditionally-complete-linorder = 'b::conditionally-complete-linorder
assumes bdd-above A A # {} mono f bij f



shows Sup (f‘A) = f(Sup A)
(proof)

1.2 More topology

In situations of interest to us later on, convergence is well controlled only
for sequences living in some dense subset of the space (but the limit can
be anywhere). This is enough to establish continuity of the function, if the
target space is well enough separated.

The statement we give below is very general, as we do not assume that
the function is continuous inside the original set .5, it will typically only be
continuous at a set T’ contained in the closure of S. In many applications,
T will be the closure of S, but we are also thinking of the case where one
constructs an extension of a function inside a space, to its boundary, and
the behaviour at the boundary is better than inside the space. The example
we have in mind is the extension of a quasi-isometry to the boundary of a
Gromov hyperbolic space.

In the following criterion, we assume that if u,, inside S converges to a point
at the boundary 7', then f(u,) converges (where f is some function inside).
Then, we can extend the function f at the boundary, by picking the limit
value of f(u,) for some sequence converging to u,. Then the lemma asserts
that f is continuous at every point b on the boundary.

The proof is done in two steps:

1. First, if v, is another inside sequence tending to the same point b on
the boundary, then f(v,) converges to the same value as f(uy): this
is proved by considering the sequence w equal to u at even times and
to v at odd times, and saying that f(w,) converges. Its limit is equal
to the limit of f(uy) and of f(v,), so they have to coincide.

2. Now, consider a general sequence v (in the space or the boundary) con-
verging to b. We want to show that f(v,) tends to f(b). If v, is inside
S, we have already done it in the first step. If it is on the boundary, on
the other hand, we can approximate it by an inside point w,, for which
f(wy,) is very close to f(v,). Then w, is an inside sequence converging
to b, hence f(wy,) converges to f(b) by the first step, and then f(v,)
also converges to f(b). The precise argument is more conveniently
written by contradiction. It requires good separation properties of the
target space.

First, we introduce the material to interpolate between two sequences, one
at even times and the other one at odd times.

definition even-odd-interpolate::(nat = 'a) = (nat = 'a) = (nat = 'a)
where even-odd-interpolate u v n = (if even n then u (n div 2) else v (n div 2))



lemma even-odd-interpolate-compose:
even-odd-interpolate (f o u) (f 0 v) = f o (even-odd-interpolate u v)

{proof)

lemma even-odd-interpolate-filterlim:
filterlim u F' sequentially A filterlim v F sequentially <— filterlim (even-odd-interpolate
u v) F sequentially

(proof)

Then, we prove the continuity criterion for extensions of functions to the
boundary 7T of a set S. The first assumption is that f(u,) converges when
f converges to the boundary, and the second one that the extension of f to
the boundary has been defined using the limit along some sequence tending
to the point under consideration. The following criterion is the most general
one, but this is not the version that is most commonly applied so we use a
prime in its name.
lemma continuous-at-extension-sequentially’:

fixes f :: 'a::{first-countable-topology, t2-space} = 'b::t3-space

assumes b € T

Aubd. (Vn.unel) = be T = u——> b= convergent (An. f (u

n))
Nb.be T = Ju. Vn.unecS) Au——>bA ((An. f(un) ——
f)
shows continuous (at b within (S U T)) f
(proof)

We can specialize the previous statement to the common case where one
already knows the sequential continuity of f along sequences in S converging
to a point in 7. This will be the case in most —but not all- applications.
This is a straightforward application of the above criterion.
proposition continuous-at-extension-sequentially:
fixes f :: 'a::{first-countable-topology, t2-space} = 'b::t3-space
assumes a € T
T C closure S
Nvdb. (Vnounel)=—=beT=u—b= (An. f (un)) ——

fo

shows continuous (at a within (S U T)) f

(proof)

We also give global versions. We can only express the continuity on 7', so
this is slightly weaker than the previous statements since we are not saying
anything on inside sequences tending to 7" — but in cases where T' contains
S these statements contain all the information.
lemma continuous-on-extension-sequentially’:

fixes [ :: 'a::{first-countable-topology, t2-space} = 'b::t3-space

assumes Aub. (Vn.une€ S)=be T = u —— b= convergent (An. f

(un))



Nb.be T = Ju. Vn.unecS) Au——>bA ((An. f (un) ——
/o)
shows continuous-on T f

(proof)

lemma continuous-on-extension-sequentially:
fixes [ :: 'a::{first-countable-topology, t2-space} = 'b::t3-space
assumes T C closure S
Aubd. Vnunel)=beT=uv——b= (An.f (un) ——
fo
shows continuous-on T f

(proof)

1.2.1 Homeomorphisms

A variant around the notion of homeomorphism, which is only expressed in
terms of the function and not of its inverse.

definition homeomorphism-on::’a set = (‘a::topological-space = 'b::topological-space)
= bool
where homeomorphism-on S f = (3 g. homeomorphism S (f*S) f g)

lemma homeomorphism-on-continuous:
assumes homeomorphism-on S f
shows continuous-on S f

(proof)

lemma homeomorphism-on-bij:
assumes homeomorphism-on S f
shows bij-betw f S (fS)

(proof)

lemma homeomorphism-on-homeomorphic:
assumes homeomorphism-on S f
shows S homeomorphic (fS)

(proof)

lemma homeomorphism-on-compact:
fixes f::'a::topological-space = 'b::t2-space
assumes continuous-on S f
compact S
inj-on f S
shows homeomorphism-on S f

(proof)

lemma homeomorphism-on-subset:
assumes homeomorphism-on S f
TCS
shows homeomorphism-on T f

(proof)



lemma homeomorphism-on-empty [simp]:
homeomorphism-on {} f

(proof)

lemma homeomorphism-on-cong:
assumes homeomorphism-on X f
X'=XNv.zeX=flza=fz
shows homeomorphism-on X' f’

{(proof)

lemma homeomorphism-on-inverse:
fixes f::'a::topological-space = 'b::topological-space
assumes homeomorphism-on X f
shows homeomorphism-on (f*X) (inv-into X f)

(proof)

Characterization of homeomorphisms in terms of sequences: a map is a
homeomorphism if and only if it respects convergent sequences.

lemma homeomorphism-on-compose:
assumes homeomorphism-on S f
resS
eventually (An. un € S§) F
shows (v —— z) F +— ((An. f (un)) — fz) F
(proof)

lemma homeomorphism-on-sequentially:
fixes f::'a::{ first-countable-topology, t2-space} = 'b::{ first-countable-topology, t2-space}
assumes Az u. 2 € § = (Vn.un € S) = u —— z <— (An. [ (un))
— fx
shows homeomorphism-on S f

(proof)

lemma homeomorphism-on-UNIV-sequentially:
fixes f::'a::{ first-countable-topology, t2-space} = 'b::{ first-countable-topology, t2-space}
assumes Az u. u —— x +— (An. f (un)) —— fx
shows homeomorphism-on UNIV f

(proof)

Now, we give similar characterizations in terms of sequences living in a
dense subset. As in the sequential continuity criteria above, we first give
a very general criterion, where the map does not have to be continuous
on the approximating set .S, only on the limit set 7', without any a priori
identification of the limit. Then, we specialize this statement to a less general
but often more usable version.

lemma homeomorphism-on-extension-sequentially-precise:
fixes f::'a::{ first-countable-topology, t3-space} = 'b::{ first-countable-topology, t3-space}
assumes Aub. (Vn.une ) =be T = v —— b= convergent (An. f



(u n))

Nue Vn.uneS)= ce f'T= (An. f (un)) —— ¢ = convergent
U

No.beT = Ju Vn.uneS)Au——>bA (M. f (un) ——
fb)

An.uneSUTleT
shows u —— [ +— (An. f (un)) —— f1

(proof)

lemma homeomorphism-on-extension-sequentially’:
fixes f::'a::{ first-countable-topology, t3-space} = 'b::{ first-countable-topology, t3-space}
assumes Aub. (Vn.uneS)=be T = v —— b= convergent (An. f

(un))

Nue (Vn.uneS) = ce f'T= (An. f (un)) —— ¢ = convergent

U
Nb.beT = Fu. Vn.une€S)Au——bA((An. f(un) ——
fo)
shows homeomorphism-on T f
(proof)

proposition homeomorphism-on-extension-sequentially:
fixes f::'a::{ first-countable-topology, t3-space} = 'b::{first-countable-topology, t3-space}
assumes Aub. (Vn.une€ S) = u——b+— (An. f(un)) —— fb
T C closure S
shows homeomorphism-on T f

(proof)

lemma homeomorphism-on-UNIV-extension-sequentially:
fixes f::'a::{ first-countable-topology, t3-space} = 'b::{ first-countable-topology, t3-space}
assumes Aub. (Vn.uneS) = u——b+— (M. f(un)) —— fb
closure S = UNIV
shows homeomorphism-on UNIV f

(proof)

1.2.2 Proper spaces

Proper spaces, i.e., spaces in which every closed ball is compact — or, equiv-
alently, any closed bounded set is compact.

definition proper::(‘a::metric-space) set = bool
where proper S = (V¥ z r. compact (cball z r N S))

lemma properl:
assumes Az r. compact (cball x 7 N S)
shows proper S

(proof)

lemma proper-compact-cball:
assumes proper (UNIV::’a::metric-space set)
shows compact (cball (z::'a) 1)

10



(proof)

lemma proper-compact-bounded-closed:
assumes proper (UNIV::'a::metric-space set) closed (S::'a set) bounded S
shows compact S

(proof)

lemma proper-real [simpl:
proper (UNIV ::real set)
{(proof)

lemma complete-of-proper:
assumes proper S
shows complete S

(proof)

lemma proper-of-compact:
assumes compact S
shows proper S

(proof)

lemma proper-Un:
assumes proper A proper B
shows proper (A U B)

(proof)

1.2.3 Miscellaneous topology

When manipulating the triangle inequality, it is very frequent to deal with 4
points (and automation has trouble doing it automatically). Even sometimes
with 5 points...
lemma dist-trianglej [mono-intros|:

dist vt < dist x y + dist y z + dist z t
(proof)

lemma dist-triangle5 [mono-intros|:
dist v u < dist x y + dist y z + dist zt + dist t u

(proof)

A thickening of a compact set is closed.

lemma compact-has-closed-thickening:
assumes compact C

continuous-on C f
shows closed (|Jze€C. cball z (f z))

(proof)

congruence rule for continuity. The assumption that fy = gy is necessary
since at x is the pointed neighborhood at =x.
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lemma continuous-within-cong:
assumes continuous (at y within S) f
eventually (Az. fx = g x) (at y within S)

fyv=y9y
shows continuous (at y within S) g
(proof )

A function which tends to infinity at infinity, on a proper set, realizes its
infimum

lemma continuous-attains-inf-proper:
fixes [ :: 'a::metric-space = 'b::linorder-topology
assumes proper s a € S
continuous-on § f
Neez€s—challar = fz2>fa
shows Jzes. Vyes. fz < fuy

(proof)

1.2.4 Measure of balls

The image of a ball by an affine map is still a ball, with explicit center and
radius. (Now unused)
lemma affine-image-ball [simp]:
(Ay. R*r y + x) “cball 0 1 = cball (z::('a::real-normed-vector)) |R)
(proof)

From the rescaling properties of Lebesgue measure in a euclidean space, it
follows that the measure of any ball can be expressed in terms of the measure
of the unit ball.

lemma lebesque-measure-ball:
assumes R > (0
shows measure lborel (cball (z::(’a::euclidean-space)) R) = R(DIM('a)) * mea-
sure lborel (cball (0::'a) 1)
emeasure borel (cball (z::('a::euclidean-space)) R) = R(DIM('a)) * emeasure
lborel (cball (0::'a) 1)
(proof )

We show that the unit ball has positive measure — this is obvious, but useful.
We could show it by arguing that it contains a box, whose measure can
be computed, but instead we say that if the measure vanished then the
measure of any ball would also vanish, contradicting the fact that the space
has infinite measure. This avoids all computations.

lemma lebesgue-measure-ball-pos:
emeasure lborel (cball (0::'a::euclidean-space) 1) > 0
measure lborel (cball (0::'a::euclidean-space) 1) > 0

(proof)

12



1.2.5 infdist and closest point projection

The distance to a union of two sets is the minimum of the distance to the
two sets.

lemma infdist-union-min [mono-intros):

assumes A # {} B # {}
shows infdist © (A U B) = min (infdist © A) (infdist x B)

(proof)

The distance to a set is non-increasing with the set.

lemma infdist-mono [mono-intros|:
assumes A C B A # {}
shows infdist © B < infdist x A
{proof)

If a set is proper, then the infimum of the distances to this set is attained.

lemma infdist-proper-attained:
assumes proper C C # {}
shows JceC. infdist ¢ C = dist x ¢

(proof)

lemma infdist-almost-attained:
assumes infdist t X < a X # {}
shows JyeX. distzy < a

(proof)

lemma infdist-triangle-abs [mono-intros|:
linfdist © A — infdist y A| < dist z y
(proof)

The next lemma is missing in the library, contrary to its cousin continuous_infdist.

The infimum of the distance to a singleton set is simply the distance to the
unique member of the set.

The closest point projection of z on A. It is not unique, so we choose one
point realizing the minimal distance. And if there is no such point, then we
use x, to make some statements true without any assumption.

definition proj-set::'a::metric-space = 'a set = 'a set
where proj-set x A = {y € A. dist x y = infdist © A}

definition distproj::’a::metric-space = 'a set = 'a

where distproj x A = (if proj-set x A # {} then SOME y. y € proj-set x A else
z)
lemma proj-setD:

assumes y € proj-set © A
shows y € A dist v y = infdist x A

13



(proof)

lemma proj-setl:
assumes y € A dist ¢y < infdist x A
shows y € proj-set A

(proof)

lemma proj-setl’:
assumes y € A N\z. z € A = distx y < dist z 2
shows y € proj-set x A

(proof)

lemma distproj-in-proj-set:
assumes proj-set x A # {}
shows distproj x A € proj-set x A
distproj x A € A
dist z (distproj x A) = infdist x A
(proof)

lemma proj-set-nonempty-of-proper:
assumes proper A A # {}
shows proj-set x A # {}

(proof)

lemma distproj-self [simp]:
assumes z € A
shows proj-set © A = {x}
distproj t A = x
(proof)

lemma distproj-closure [simp]:
assumes z € closure A
shows distproj t A = x
(proof )

lemma distproj-le:

assumes y € A

shows dist x (distproj x A) < dist z y
(proof)

lemma proj-set-dist-le:

assumes y € A p € proj-set x A
shows dist z p < dist v y

{proof)

1.3 Material on ereal and ennreal

We add the simp rules that we needed to make all computations become
more or less automatic.

14



lemma ereal-of-real-of-ereal-iff [simp]:
ereal(real-of-ereal 1) = ¢ +— . # 00 AN T # —
z = ereal(real-of-ereal x) «— ¢ # 00 N T # — 0

(proof)

declare ereal-inverse-eq-0 [simp)
declare ereal-0-gt-inverse [simp]
declare ereal-inverse-le-0-iff [simp]
declare ereal-divide-eq-0-iff [simp)
declare ereal-mult-le-0-iff [simp]
declare ereal-zero-le-0-iff [simp]
declare ereal-mult-less-0-iff [simp]
declare ereal-zero-less-0-iff [simp]
declare ereal-uminus-eg-reorder [simp)
declare ereal-minus-le-iff [simp)

lemma ereal-inverse-noteg-minus-infinity [simp):
1/(z::ereal) # —oo
(proof)

lemma ereal-inverse-positive-iff-nonneg-not-infinity [simp):
0 < 1/(z:zereal) +— (x > 0 N z # 00)
(proof)

lemma ereal-inverse-negative-iff-nonpos-not-infinity’ [simp):
0 > inverse (x::ereal) «+— (x < 0 AN # —00)

(proof)

lemma ereal-divide-pos-iff [simp]:

0 < z/(y:ereal) «— (y#ocoANy# —0)A((z>0ANy>0)V(E<0Ay<
0)V (y=0Az>0))
(proof)

lemma ereal-divide-neg-iff [simp]:

0> z/(yzereal) «— (yF oo ANy# —oc0) AN((z>0ANy<0)V(e<0ANy>
0)V (y=0Az<0))
(proof )

More additions to mono_intros.

lemma ereal-leg-imp-neg-leq [mono-intros]:
fixes x y::ereal
assumes z < gy
shows —y < —z

(proof)

lemma ereal-le-imp-neg-le [mono-intros|:
fixes x y::ereal
assumes z < ¥
shows —y < —z
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(proof)

declare ereal-mult-left-mono [mono-intros]
declare ereal-mult-right-mono [mono-intros]
declare ereal-mult-strict-right-mono [mono-intros]
declare ereal-mult-strict-left-mono [mono-intros|

Monotonicity of basic inclusions.

lemma ennreal-mono”:
mono ennreal

(proof)

lemma enn2ereal-mono”:
mono enn2ereal

(proof)

lemma e2ennreal-mono”:
mono e2ennreal

(proof)

lemma enn2ereal-mono [mono-intros):
assumes z < y
shows ennZ2ereal x < enn2ereal y

(proof)

lemma ereal-mono:
mono ereal

(proof)

lemma ereal-strict-mono:
strict-mono ereal

(proof)

lemma ereal-mono2 [mono-intros|:
assumes r < y
shows ereal x < ereal y

(proof)

lemma ereal-strict-mono2 [mono-intros|:
assumes r < y
shows ereal © < ereal y

(proof)

lemma ennZereal-a-minus-b-plus-b [mono-intros|:
ennZereal a < ennZereal (a — b) + ennZereal b

(proof)

The next lemma follows from the same assertion in ereals.

lemma enn2ereal-strict-mono [mono-intros:
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assumes r < y
shows ennZ2ereal x < enn2ereal y

(proof)

declare ennreal-mult-strict-left-mono [mono-intros]
declare ennreal-mult-strict-right-mono [mono-intros|

lemma ennreal-ge-0 [mono-intros):
assumes 0 < z
shows 0 < ennreal z

(proof)

The next lemma is true and useful in ereal. Note that variants such as
a+b < c+dimplies a —d < ¢ — b are not true — take a = ¢ = oo and
b=d=0...

lemma ereal-minus-le-minus-plus [mono-intros]:
fixes a b c::ereal
assumes a < b + ¢
shows —b < —a + ¢
(proof)

lemma tendsto-ennreal-0 [tendsto-intros:
assumes (u — 0) F
shows ((An. ennreal(u n)) —— 0) F

(proof)

lemma tendsto-ennreal-1 [tendsto-intros:
assumes (u — 1) F'
shows ((An. ennreal(u n)) —— 1) F

(proof)

1.4 Miscellaneous

lemma lim-ceiling-over-n [tendsto-intros|:
assumes (An. un/n) — |
shows (An. ceiling(u n)/n) —— 1

(proof)

1.4.1 Liminfs and Limsups

More facts on liminfs and limsups

lemma Limsup-obtain’:
fixes u::'a = 'b::complete-linorder
assumes Limsup F u > c eventually P F
shows dn. Pn A un > c

(proof)

lemma limsup-obtain:
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fixes u::nat = ’a :: complete-linorder
assumes limsup u > ¢
shows dn > N.un > ¢

(proof)

lemma Liminf-obtain”:
fixes u::'a = 'b::complete-linorder
assumes Liminf F u < ¢ eventually P F
shows 3n. Pn A un < ¢

{(proof)

lemma liminf-obtain:
fixes u:inat = 'a :: complete-linorder
assumes liminf u < ¢
shows dn > N.un < ¢

(proof)

The Liminf of a minimum is the minimum of the Liminfs.

lemma Liminf-min-eq-min-Liminf:

fixes u vinat = 'a::complete-linorder

shows Liminf F (An. min (u n) (v n)) = min (Liminf F u) (Liminf F v)
(proof)

The Limsup of a maximum is the maximum of the Limsups.

lemma Limsup-max-eq-maz-Limsup:
fixes u::'a = 'b::complete-linorder
shows Limsup F (An. maz (u n) (v n)) = maz (Limsup F u) (Limsup F v)

(proof)

1.4.2 Bounding the cardinality of a finite set

A variation with real bounds.

lemma finite-finite-subset-caract”:
fixes C'::real
assumes A\G. G C F = finite G = card G < C
shows finite F A card FF < C

(proof)

To show that a set has cardinality at most one, it suffices to show that any
two of its elements coincide.

lemma finite-at-most-singleton:
assumes Az y. 2 € F—=yec F=2=y
shows finite FF A\ card F < 1

(proof)

Bounded sets of integers are finite.

lemma finite-real-int-interval [simpl:
finite (range real-of-int N {a..b})
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(proof)

Well separated sets of real numbers are finite, with controlled cardinality.

lemma separated-in-real-card-bound:

assumes T C {a..(bureal)} d > 0Nz y.2€ T—=ye T = y>z =y >
z+d

shows finite T card T < nat (floor ((b—a)/d) + 1)
(proof)

1.5 Manipulating finite ordered sets

We will need below to construct finite sets of real numbers with good prop-
erties expressed in terms of consecutive elements of the set. We introduce
tools to manipulate such sets, expressing in particular the next and the pre-
vious element of the set and controlling how they evolve when one inserts
a new element in the set. It works in fact in any linorder, and could also
prove useful to construct sets of integer numbers.

Manipulating the next and previous elements work well, except at the top
(respectively bottom). In our constructions, these will be fixed and called b
and a.

Notations for the next and the previous elements.

definition nezxt-in::’a set = 'a = (‘a::linorder)
where next-in A u = Min (A N {u<..})

definition prev-in::'a set = 'a = (‘a::linorder)
where prev-in A uw = Maz (A N {..<u})

context

fixes A::(‘a::linorder) set and a b::'a

assumes A: finite AAC {a.bfacAbecAda<b
begin

Basic properties of the next element, when one starts from an element dif-
ferent from top.

lemma next-in-basics:
assumes u € {a..<b}
shows next-in A u € A
next-in A u > u
AN {u<..<next-in A u} = {}

(proof)

lemma next-inl:
assumes u € {a..<b}
ve A
v>u
{u<.<v}nAd={}
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shows nezt-in A u = v
(proof)

Basic properties of the previous element, when one starts from an element
different from bottom.

lemma prev-in-basics:
assumes u € {a<..b}
shows prev-in A v € A
prev-in A u < u
A N {prev-in A u<..<u} = {}
(proof )

lemma prev-inl:
assumes u € {a<..b}
veA
v < u
{v<.<u} N A ={}
shows prev-in A v = v
(proof)

The interval [a,b] is covered by the intervals between the consecutive ele-
ments of A.

lemma intervals-decomposition:
(U U € {{u..next-in A u} | u. u € A — {b}}. U) = {a..b}

(proof)
end

If one inserts an additional element, then next and previous elements are
not modified, except at the location of the insertion.

lemma next-in-insert:
assumes A: finite A A C{a.bfac AbecAa<b
and z € {a..b} — 4
shows Au. u € A — {b, prev-in A } = next-in (insert v A) u = next-in A u
next-in (insert © A) © = next-in A
next-in (insert x A) (prev-in A z) = z
(proof)

If consecutive elements are enough separated, this implies a simple bound
on the cardinality of the set.

lemma separated-in-real-card-bound2:
fixes A::real set
assumes A: finite A A C{a.bfac AbecAa<b
and B: Au. u € A — {b} = next-inAu>u+dd>0
shows card A < nat (floor ((b—a)/d) + 1)
(proof)
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1.6 Well-orders

In this subsection, we give additional lemmas on well-orders or cardinals or
whatever, that would well belong to the library, and will be needed below.
lemma (in wo-rel) maz2-underS [simp]:

assumes z € underS z y € underS z
shows max2 x y € underS z

(proof)

lemma (in wo-rel) maz2-underS’ [simp]:
assumes z € underS y
shows maz2 zy =y maz2 yz =y

(proof)

lemma (in wo-rel) maz2-zx [simp]:
marl T T =
(proof )

declare underS-notln [simp)

The abbrevation = o is used both in Set_Algebras and Cardinals. We
disable the one from Set_Algebras.

no-notation elt-set-eq (infix <=o0> 50)

lemma regularCard-ordIso:
assumes Card-order r reqularCard v s =o r
shows regularCard s

(proof)

lemma AboveS-not-empty-in-reqularCard:
assumes |S| <o r S C Field r
assumes r: Card-order r regularCard r —finite (Field r)

shows AboveS r S # {}
(proof)

lemma AboveS-not-empty-in-reqularCard’:
assumes |S| <o r fS C Fieldr T C S
assumes r: Card-order r regularCard r —finite (Field r)
shows AboveS r (f'T) # {}

(proof)

lemma Well-order-extend:
assumes WELL: well-order-on A r and SUB: A C B
shows 3r’. well-order-on Br' N r C r'

(proof)

The next lemma shows that, if the range of a function is endowed with a
wellorder, then one can pull back this wellorder by the function, and then
extend it in the fibers of the function in order to keep the wellorder property.
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The proof is done by taking an arbitrary family of wellorders on each of the
fibers, and using the lexicographic order: one has z < y if fz < fy, or if
fx = fy and, in the corresponding fiber of f, one has = < y.

To formalize it, it is however more efficient to use one single wellorder, and
restrict it to each fiber.

lemma Well-order-pullback:

assumes Well-order r

shows 3. Well-order s A Field s = UNIV AN Vzy. (fz, fy) € (r—Id) — (z,
y) € s)
(proof )

end

2 The exponential on extended real numbers.

theory Fexp-Eln
imports Library-Complements
begin

To define the distance on the Gromov completion of hyperbolic spaces, we
need to use the exponential on extended real numbers. We can not use the
symbol exp, as this symbol is already used in Banach algebras, so we use
ennexp instead. We prove its basic properties (together with properties of
the logarithm) here. We also use it to define the square root on ennreal.
Finally, we also define versions from ereal to ereal.

function ennexp::ereal = ennreal where
ennexp (ereal r) = ennreal (exp r)

| ennexp (00) = 0o

| ennexp (—o0) = 0

(proof)

termination (proof)

lemma ennexp-0 [simpl:
ennexp 0 = 1
(proof )

function eln::ennreal = ereal where

eln (ennreal r) = (if r < 0 then —oco else ereal (In r))
| eln (00) = 00

(proof)

termination (proof)

lemma eln-simps [simpl:

eln 0 = —c0

eln1 =0

eln top = oo
(proof)
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lemma eln-real-pos:
assumes r > 0
shows eln (ennreal ) = ereal (In r)

(proof)

lemma eln-ennexp [simp):
eln (ennexp z) = x
(proof)

lemma ennezp-eln [simp]:
ennexp (eln ) = x

(proof)

lemma ennexp-strict-mono:
strict-mono ennexp

(proof)

lemma ENNETP-MONO:
mono ennexrp

(proof)

lemma ennexp-strict-mono2 [mono-intros):

assumes z < ¥y
shows ennexp v < ennexp y

(proof)

lemma ennexp-mono2 [mono-intros|:
assumes z < ¥y
shows ennexp x < ennexp y

{(proof)

lemma ennexp-lel [simp]:
ennexp x < 1 +— x < 0

(proof)

lemma ennexp-gel [simpl:
ennexpx > 1 «— x> 0
(proof )

lemma eln-strict-mono:
strict-mono eln

(proof)

lemma eln-mono:
mono eln

{(proof)

lemma eln-strict-mono2 [mono-intros|:
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assumes r < y
shows eln z < eln y

(proof)

lemma eln-mono2 [mono-intros):
assumes 7 < y
shows eln z < eln y

(proof)

lemma eln-le0 [simp]:
elnr < 0 +— <1

(proof)

lemma eln-ge0 [simpl:
elnx > 0<+—x>1

(proof)

lemma bij-ennexp:
bij ennexp
(proof)

lemma bij-eln:
bij eln
(proof)

lemma ennexp-continuous:
continuous-on UNIV ennexp

(proof)

lemma ennexp-tendsto [tendsto-intros]:
assumes ((An. un) — ) F
shows ((An. ennexp(u n)) — ennexp 1) F

(proof)

lemma eln-continuous:
continuous-on UNIV eln

(proof)

lemma eln-tendsto [tendsto-intros]:
assumes ((An. un) —— ) F
shows ((An. eln(u n)) —— eln 1) F

(proof)

lemma ennexp-special-values [simp]:
ennexp * = 0 +— = = —0
ennexp x = 1 +— x =0
ennerp T = 00 +— T = 00
ennexp ¥ = top <— T = 00

(proof)
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lemma eln-special-values [simp]:
elnr =—-oc0o+— =10
emzrz=0+—z=1
elnz =00+ =00

(proof)

lemma ennexp-add-mult:
assumes —((a =00 A b= —00) V (a = —o0 A b = 0))
shows ennexp(a+b) = ennexp a * ennexp b

(proof)

lemma eln-mult-add:
assumes ~((a =co Ab=0)V (a=0 A b= ))
shows eln(a x b) = eln a + eln b

(proof)

We can also define the square root on ennreal using the above exponential.

definition ennsqrt::ennreal = ennreal
where ennsqrt © = ennexp(eln z/2)

lemma ennsqri-square [simpl:
(ennsqrt x) * (ennsqrt ) = x

(proof)

lemma ennsqrt-simps [simp]:
ennsqrt 0 = 0
ennsqrt 1 = 1
ennsqrt 0o = oo
ennsqrt top = top
(proof)

lemma ennsqrt-mult:
ennsqrt(a x b) = ennsqrt a * ennsqrt b

(proof)

lemma ennsqri-square2 [simp):
ennsqrt (z * x) =z
(proof )

lemma ennsqrt-eq-iff-square:
ennsqrt x = Yy <—> x =y * y
(proof)
lemma ennsqrt-bij:
bij ennsqrt

(proof)

lemma ennsqrt-strict-mono:
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strict-mono ennsqrt
{proof )

lemma ennsqrt-mono:
mono ennsqrt

(proof)

lemma ennsqrt-mono2 [mono-intros|:
assumes z < y
shows ennsqrt © < ennsqrt y

(proof)

lemma ennsqrt-continuous:
continuous-on UNIV ennsqrt

(proof)

lemma ennsgrt-tendsto [tendsto-intros):
assumes ((An. un) —— ) F
shows ((An. ennsgrt(u n)) —— ennsqrt [) F

(proof)

lemma ennsqrt-ennreal-ennreal-sqrt [simpl:
assumes t > (0::real)
shows ennsgrt (ennreal t) = ennreal (sqrt t)

(proof)

lemma ennreal-sqrt2:
ennreal (sqrt 2) = ennsqrt 2

(proof)

lemma ennsqrt-4 [simp:
ennsqrt 4 = 2

(proof)

lemma ennsqgrt-le [simp]:
ennsqrt * < ennsqrt y <— xr < ¥y

(proof)

We can also define the square root on ereal using the square root on ennreal,
and 0 for negative numbers.
definition esgrt::ereal = ereal

where esqrt x = enn2ereal(ennsqrt (e2ennreal x))

lemma esqrt-square [simp]:
assumes = > ()
shows (esqrt z) * (esqrt z) = x
(proof)

lemma esqrt-of-neg [simp]:
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assumes z < ()
shows esqrt x = 0

{proof)

lemma esqrt-nonneg [simp):
esqrt x > 0
(proof )

lemma esqrt-eq-iff-square [simpl:
assumes z > 0y > 0
shows esqrt z = y+— =y *y

(proof)

lemma esqrt-simps [simpl:
esqrt 0 = 0
esqrt 1 = 1
esqrt oo = 00
esqrt top = top
esqrt (—oo) = 0
(proof)

lemma esqrt-mult:
assumes a > ()
shows esqrt(a x b) = esqrt a * esqrt b

(proof)

lemma esqrt-square2 [simpl:
esqri(z * ) = abs(x)
(proof)

lemma esqrt-mono:
mono esqrt

(proof)

lemma esqrt-mono2 [mono-intros|:
assumes z < y
shows esqrt © < esqrt y

(proof)

lemma esqrt-continuous:
continuous-on UNIV esqrt

(proof)

lemma esqri-tendsto [tendsto-intros]:
assumes ((An. un) —— ) F
shows ((An. esgrt(u n)) — esqrtl) F

{(proof)

lemma esqrt-ereal-ereal-sqrt [simp):
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assumes t > (0::real)
shows esqrt (ereal t) = ereal (sqrt t)

(proof)

lemma ereal-sqrt2:
ereal (sqrt 2) = esqrt 2

(proof )

lemma esqrt-4 [simp):
esqrt 4 = 2

(proof )

lemma esqri-le [simp]:
esqrt x < esqrt y «— (x < 0V z < y)

(proof)

Finally, we define eexp, as the composition of ennexp and the injection of
ennreal in ereal.

definition eexp::ereal = ereal where
eexp © = enn2ereal (ennexp x)

lemma eexp-special-values [simpl:

eexp 0 = 1

eexp (00) = 00

eexp(—o0) = 0
(proof)

lemma eexp-strict-mono:
strict-mono eexp

(proof)

lemma eexp-mono:
mono eexp
(proof)

lemma eexp-strict-mono2 [mono-intros|:
assumes r < Yy
shows eezp < eexp y

(proof)

lemma eexp-mono2 [mono-intros):
assumes z < y
shows eexp z < eexp y

(proof)

lemma eexp-le-eexp-iff-le:
eexpr Sl eexp Yy +— T < ¥y

(proof)
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lemma eexp-lt-eexp-iff-lt:
eexp T < eexp Y — = < Yy
(proof)

lemma eexp-special-values-iff [simp]:
eexp r = 0 <— x = —00
eexpxr =1+—x=10
€eTP T = 00 —> T = 00
eexp T = top <— T = o0

(proof )

lemma eexp-ineg-iff [simp]:
eexpr < 1 +—x<0
eexpr > 1 +— x>0
eexpxr > 1 +— x>0
eexpr < 1 +—x <0
eexp © > 0
eexp x > 0 — T # —
eexp T < 00 ¢ T # 00

(proof )

lemma eexp-ineq [mono-intros):

< 0= eexpx <1

< 0= eexpx <1

x>0 = eexpx > 1

T >0 = eexpx > 1

eexp r > 0

x> —00 = eexp > 0

T <00 = eexpr < 0

(proof)

lemma eexp-continuous:
continuous-on UNIV eexp

(proof)

lemma eexp-tendsto’ [simp]:
((An. eexp(u n)) — eexp ) F +— ((An. un) —— 1) F
(proof )

lemma eexp-tendsto [tendsto-intros):
assumes ((An. un) — [) F
shows ((An. eexp(u n)) — eexp 1) F

(proof)

lemma eexp-add-mult:
assumes ~((a =00 A b= —00) V (a = —o0 A b = 0))
shows eezp(a+b) = eexp a * eexp b

(proof)

29



lemma eexp-ereal [simpl:
eexp(ereal ) = ereal(exp )

(proof)

end

3 Hausdorff distance

theory Hausdorff-Distance
imports Library-Complements
begin

3.1 Preliminaries

3.2 Hausdorff distance

The Hausdorff distance between two subsets of a metric space is the minimal
M such that each set is included in the M-neighborhood of the other. For
nonempty bounded sets, it satisfies the triangular inequality, it is symmetric,
but it vanishes on sets that have the same closure. In particular, it defines a
distance on closed bounded nonempty sets. We establish all these properties
below.

definition hausdorff-distance::('a::metric-space) set = 'a set = real
where hausdorff-distance A B = (if A = {} Vv B = {} V (=(bounded A)) V
(=(bounded B)) then 0

4))

else mazx (SUP z€A. infdist x B) (SUP z€B. infdist x

lemma hausdorff-distance-self [simp]:
hausdorff-distance A A = 0

(proof)

lemma hausdorff-distance-sym:
hausdorff-distance A B = hausdorff-distance B A

(proof)

lemma hausdorff-distance-points [simp):
hausdorff-distance {z} {y} = dist x y

(proof)

The Hausdorff distance is expressed in terms of a supremum. To use it, one
needs again and again to show that this is the supremum of a set which is
bounded from above.

lemma bdd-above-infdist-auz:
assumes bounded A bounded B
shows bdd-above ((Az. infdist x B)‘A)
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(proof)

lemma hausdorff-distance-nonneg [simp, mono-intros|:
hausdorff-distance A B > 0

(proof)

lemma hausdorff-distancel:
assumes A\z. z € A = infdist  B< D
Nz. z € B= infdistz A < D
D >0
shows hausdorff-distance A B < D
{proof)

lemma hausdorff-distancel2:
assumes A\z. 2 € A = JyeB. distxy < D
Nz. v € B= JycA. distzy <D
D>0
shows hausdorff-distance A B < D
(proof)

lemma infdist-le-hausdorff-distance [mono-intros|:
assumes z € A bounded A bounded B
shows infdist x B < hausdorff-distance A B

(proof)

lemma hausdorff-distance-infdist-triangle [mono-intros|:
assumes B # {} bounded B bounded C
shows infdist © C < infdist x B 4+ hausdorff-distance B C

(proof)

lemma hausdorff-distance-triangle [mono-intros|:

assumes B # {} bounded B

shows hausdorff-distance A C < hausdorff-distance A B + hausdorff-distance B
C

(proof)

lemma hausdorff-distance-subset:
assumes A C B A # {} bounded B
shows hausdorff-distance A B = (SUP z€B. infdist x A)

(proof)

lemma hausdorff-distance-closure [simp:
hausdorff-distance A (closure A) = 0

(proof)

lemma hausdorff-distance-closures [simp):
hausdorff-distance (closure A) (closure B) = hausdorff-distance A B

(proof)
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lemma hausdorff-distance-zero:
assumes A # {} bounded A B # {} bounded B
shows hausdorff-distance A B = 0 <— closure A = closure B

(proof)

lemma hausdorff-distance-vimage:
assumes A\z. z € A = dist (fz) (9z) < C
c=>0
shows hausdorff-distance (f‘A) (¢‘A) < C
(proof)

lemma hausdorff-distance-union [mono-intros):

assumes A # {} B# {} C #{} D # {}
shows hausdorff-distance (A U B) (C U D) < maz (hausdorff-distance A C)

(hausdorff-distance B D)
(proof )

end

4 Isometries

theory Isometries
imports Library-Complements Hausdorff-Distance
begin

Isometries, i.e., functions that preserve distances, show up very often in
mathematics. We introduce a dedicated definition, and show its basic prop-
erties.

definition isometry-on::('a::metric-space) set = ('a = ('bu:metric-space)) = bool
where isometry-on X f = (Vz € X. Vy € X. dist (fz) (fy) = dist z y)

definition isometry :: (‘a::metric-space = 'b::metric-space) = bool
where isometry f = isometry-on UNIV f A range f = UNIV

lemma isometry-on-subset:
assumes isometry-on X f
YCX
shows isometry-on Y f
(proof)

lemma isometry-onl [intro?):
assumes Az y. 2 € X = ye€ X = dist (fz) (fy) = distzy
shows isometry-on X f

(proof)
lemma isometry-onD:

assumes isometry-on X f
reXyelX
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shows dist (fz) (fy) = distz y
(proof)

lemma isometryl [intro?):
assumes Az y. dist (fz) (fy) = distzy
range f = UNIV
shows isometry f
(proof)

lemma
assumes isometry-on X f
shows isometry-on-lipschitz: 1—lipschitz-on X f
and isometry-on-uniformly-continuous: uniformly-continuous-on X f
and isometry-on-continuous: continuous-on X f

(proof)

lemma isometryD:

assumes isometry f

shows isometry-on UNIV f
dist (fz) (fy) = distxy
range f = UNIV
1—lipschitz-on UNIV f
uniformly-continuous-on UNIV f
continuous-on UNIV f

(proof)

lemma isometry-on-injective:
assumes isometry-on X f
shows inj-on f X

(proof)

lemma isometry-on-compose:
assumes isometry-on X f
isometry-on (f'X) g
shows isometry-on X (Az. g(f z))
(proof)

lemma isometry-on-cong:
assumes isometry-on X f
Ne.zeX = gz=fz
shows isometry-on X g
{proof )

lemma isometry-on-inverse:
assumes isometry-on X f
shows isometry-on (f'X) (inv-into X f)
Nz. 2 € X = (inv-into X f) (fz) ==z
Ny. y € f X = f (inv-into X fy) =y
bij-betw f X (f'X)
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(proof)

lemma isometry-inverse:
assumes isometry f
shows isometry (inv f)
bij f
(proof)

lemma isometry-on-homeomorphism:
assumes isometry-on X f
shows homeomorphism X (fX) f (inv-into X f)
homeomorphism-on X f
X homeomorphic f‘X

(proof)

lemma isometry-homeomorphism:
fixes f::('a::metric-space) = ('b::metric-space)
assumes isometry f
shows homeomorphism UNIV UNIV f (inv f)
(UNIV::'a set) homeomorphic (UNIV::'b set)

(proof)

lemma isometry-on-closure:
assumes isometry-on X f
continuous-on (closure X) f
shows isometry-on (closure X) f

(proof)

lemma isometry-extend-closure:
fixes f::('a::metric-space) = ('b::complete-space)
assumes isometry-on X f
shows 3 g. isometry-on (closure X) g A (VzeX. gz = f 1)

(proof)

lemma isometry-on-complete-image:
assumes isometry-on X f
complete X
shows complete (f'X)

(proof)

lemma isometry-on-id [simp:
isometry-on A (Az. x)
isometry-on A id

(proof)

lemma isometry-on-add [simp]:
isometry-on A (Az. x + (t::'a::real-normed-vector))

(proof)
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lemma isometry-on-minus [simp]:
isometry-on A (A(x::'a::real-normed-vector). —1)
(proof)

lemma isometry-on-diff [simp]:
isometry-on A (Az. (t::'a::real-normed-vector) — x)
(proof )

lemma isometry-preserves-bounded:
assumes isometry-on X f
ACX
shows bounded (f‘A) +— bounded A
(proof)

lemma isometry-preserves-infdist:
infdist (f z) (f‘A) = infdist © A
if isometry-on X fA C Xz € X
(proof)

lemma isometry-preserves-hausdorff-distance:
hausdorff-distance (f‘A) (f‘B) = hausdorff-distance A B
if isometry-on X fAC X BC X
(proof)

lemma isometry-on-UNIV-iterates:
fixes f::('a::metric-space) = 'a
assumes isometry-on UNIV f
shows isometry-on UNIV (f""n)

(proof)

lemma isometry-iterates:
fixes f::('a::metric-space) = 'a
assumes isometry f
shows isometry (f~ n)

(proof)

5 Geodesic spaces

A geodesic space is a metric space in which any pair of points can be joined
by a geodesic segment, i.e., an isometrically embedded copy of a segment in
the real line. Most spaces in geometry are geodesic. We introduce in this
section the corresponding class of metric spaces. First, we study properties
of general geodesic segments in metric spaces.

5.1 Geodesic segments in general metric spaces

definition geodesic-segment-between::('a::metric-space) set = 'a = 'a = bool
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where geodesic-segment-between G x y = (Fg::(real = 'a). g 0 = x N ¢ (dist z
y) = y A isometry-on {0..dist z y} g N G = ¢{0..dist z y})

definition geodesic-segment::('a::metric-space) set = bool
where geodesic-segment G = (Jz y. geodesic-segment-between G z y)

We also introduce the parametrization of a geodesic segment. It is conve-
nient to use the following definition, which guarantees that the point is on
G even without checking that G is a geodesic segment or that the parameter
is in the reasonable range: this shortens some arguments below.

definition geodesic-segment-param::('a::metric-space) set = 'a = real = 'a
where geodesic-segment-param Gzt = (if Jw. w € G A dist z w = t then SOME
w. w € G A dist zw=telse SOME w. w € G)

lemma geodesic-segment-betweenl :

assumes g 0 = z g (dist z y) = y isometry-on {0..dist z y} ¢ G = g{0..dist x
y}

shows geodesic-segment-between G © y

(proof)

lemma geodesic-segmentl [intro, simpl:
assumes geodesic-segment-between G z y
shows geodesic-segment G

(proof)

lemma geodesic-segmentI2 [intro):
assumes isometry-on {a..b} g a < (b::real)
shows geodesic-segment-between (g9{a..b}) (g a) (g b)
geodesic-segment (g{a..b})
(proof )

lemma geodesic-segmentD:

assumes geodesic-segment-between G x y

shows Jg::(real = -). (gt =z A g (t + dist z y) = y A isometry-on {t..t+dist
zyt g N G = g{t.t+dist z y})
(proof)

lemma geodesic-segment-endpoints [simp):
assumes geodesic-segment-between G x y
showsz € Gye GG #{}

(proof)

lemma geodesic-segment-commute:
assumes geodesic-segment-between G T y
shows geodesic-segment-between G y x

(proof)

lemma geodesic-segment-dist:
assumes geodesic-segment-between G zy a € G
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shows dist z a + dist a y = dist z y
(proof )

lemma geodesic-segment-dist-unique:
assumes geodesic-segment-between Gz y a € Gb € G dist x a = dist © b
shows a = b

(proof)

lemma geodesic-segment-union:
assumes dist © z = dist x y + dist y 2z
geodesic-segment-between G T y geodesic-segment-between H y z
shows geodesic-segment-between (G U H) x z
GnNH={y}
(proof)

lemma geodesic-segment-dist-le:
assumes geodesic-segment-between Gz ya € Gb € G
shows dist a b < dist x y

(proof)

lemma geodesic-segment-param [simp]:
assumes geodesic-segment-between G x y
shows geodesic-segment-param G z 0 = x
geodesic-segment-param G z (dist z y) = y
t € {0..dist x y} = geodesic-segment-param G zt € G
isometry-on {0..dist x y} (geodesic-segment-param G x)
(geodesic-segment-param G x){0..dist x y} = G
t € {0..dist x y} = dist x (geodesic-segment-param G z t) =t
se{0.distxyy = t € {0..dist x y} = dist (geodesic-segment-param G
z 8) (geodesic-segment-param G z t) = abs(s—t)
z € G = z = geodesic-segment-param G x (dist z z)

(proof)

lemma geodesic-segment-param-in-segment:
assumes G # {}

shows geodesic-segment-param G z t € G
(proof)

lemma geodesic-segment-reverse-param:
assumes geodesic-segment-between G = y
t € {0..dist x y}
shows geodesic-segment-param G y (dist ©y — t) = geodesic-segment-param G
Tt

(proof)

lemma dist-along-geodesic-wrt-endpoint:
assumes geodesic-segment-between G z y
ue GveGqG
shows dist u v = abs(dist u x — dist v x)
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(proof)

One often needs to restrict a geodesic segment to a subsegment. We intro-
duce the tools to express this conveniently.

definition geodesic-subsegment::('a::metric-space) set = 'a = real = real = 'a

set
where geodesic-subsegment G x st = G N {z. distx z > s A dist v z < t}

A subsegment is always contained in the original segment.

lemma geodesic-subsegment-subset:
geodesic-subsegment G x st C G

(proof)

A subsegment is indeed a geodesic segment, and its endpoints and parametriza-
tion can be expressed in terms of the original segment.

lemma geodesic-subsegment:

assumes geodesic-segment-between G = y

0<ss<tt<distxy
shows geodesic-subsegment G x s t = (geodesic-segment-param G x){s..t}
geodesic-segment-between (geodesic-subsegment G x s t) (geodesic-segment-param
G z s) (geodesic-segment-param G x t)
Nu. s < u= u < t = geodesic-segment-param (geodesic-subsegment G x

s t) (geodesic-segment-param G x s) (u — s) = geodesic-segment-param G z u

(proof)

The parameterizations of a segment and a subsegment sharing an endpoint
coincide where defined.

lemma geodesic-segment-subparam:

assumes geodesic-segment-between G x z geodesic-segment-between Hx y H C G
t € {0..dist x y}

shows geodesic-segment-param G x t = geodesic-segment-param H x t

(proof)

A segment contains a subsegment between any of its points

lemma geodesic-subsegment-exists:
assumes geodesic-segment G x € Gy € G
shows 3H. H C G N geodesic-segment-between H x y

(proof)

A geodesic segment is homeomorphic to an interval.

lemma geodesic-segment-homeo-interval:
assumes geodesic-segment-between G x y
shows {0..dist © y} homeomorphic G

(proof)

Just like an interval, a geodesic segment is compact, connected, path con-
nected, bounded, closed, nonempty, and proper.
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lemma geodesic-segment-topology:

assumes geodesic-segment G

shows compact G connected G path-connected G bounded G closed G G # {}
proper G
(proof )

lemma geodesic-segment-between-z-x [simp]:
geodesic-segment-between {z} x x
geodesic-segment {x}
geodesic-segment-between G z x +— G = {z}

(proof)

lemma geodesic-segment-disconnection:
assumes geodesic-segment-between Gz y z € G
shows (connected (G — {z})) = (z =2z V z =y)
(proof)

lemma geodesic-segment-unique-endpoints:
assumes geodesic-segment-between G z y
geodesic-segment-between G a b
shows {z, y} = {a, b}
(proof)

lemma geodesic-segment-subsegment:
assumes geodesic-segment G H C G compact H connected H H # {}
shows geodesic-segment H

(proof)

The image under an isometry of a geodesic segment is still obviously a
geodesic segment.

lemma isometry-preserves-geodesic-segment-between:
assumes isometry-on X f
G C X geodesic-segment-between G x y
shows geodesic-segment-between (f'G) (f z) (f y)

(proof)

The sum of distances d(w, x) + d(w,y) can be controlled using the distance
from w to a geodesic segment between x and .

lemma geodesic-segment-distance:
assumes geodesic-segment-between G x y
shows dist wx + dist wy < dist x y + 2 * infdist w G

(proof)

If a point y is on a geodesic segment between x and its closest projection p
on a set A, then p is also a closest projection of y, and the closest projection
set of y is contained in that of x.

lemma proj-set-geodesic-same-basepoint:
assumes p € proj-set © A geodesic-segment-between G p x y € G
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shows p € proj-set y A
(proof )

lemma proj-set-subset:
assumes p € proj-set x A geodesic-segment-between G p zy € G
shows proj-set y A C proj-set © A

(proof)

lemma proj-set-thickening:
assumes p € proj-set r Z
0<D
D < distpzx
geodesic-segment-between G p x
shows geodesic-segment-param G p D € proj-set x (|Jz€Z. cball z D)

(proof)

lemma proj-set-thickening':
assumes p € proj-set © Z
0<D
D<FE
E < distpx
geodesic-segment-between G p x
shows geodesic-segment-param G p D € proj-set (geodesic-segment-param G p
E) (Uz€Z. cball z D)

(proof)

It is often convenient to use one geodesic between x and y, even if it is not
unique. We introduce a notation for such a choice of a geodesic, denoted
{x--S--y} for such a geodesic that moreover remains in the set S. We
also enforce the condition {x--8--y} = {y--S--x}. When there is no such
geodesic, we simply take {x--8--y} = {x, y} for definiteness. It would be
even better to enforce that, if a is on {x--S--y}, then {x--S--y} is the
union of {x--S--a} and {a--S--y}, but I do not know if such a choice is
always possible — such a choice of geodesics is called a geodesic bicombing.
We also write {x--y} for {x--UNIV--y}.

definition some-geodesic-segment-between::’a::metric-space = 'a set = 'a = 'a

set (<(1{-——-——-})»)
where some-geodesic-segment-between = (SOME f. ¥ zy S. fe Sy=fy Sz
A (if (3 G. geodesic-segment-between G xy A G C S) then (geodesic-segment-between

(fzSy)zyn(fzSyCS9)
else fz Sy = {z, y}))

abbreviation some-geodesic-segment-between-UNIV:: a::metric-space = 'a = 'a

set («(1{——-}))

where some-geodesic-segment-between-UNIV z y = {x——UNIV ——y}

We prove that there is such a choice of geodesics, compatible with direction
reversal. What we do is choose arbitrarily a geodesic between z and y if it
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exists, and then use the geodesic between min(z,y) and max(x,y), for any
total order on the space, to ensure that we get the same result from z to y
or from y to x.
lemma some-geodesic-segment-between-erists:

df.VzyS. fzSy=fySx

A (if (3 G. geodesic-segment-between G xy A G C S) then (geodesic-segment-between
(feSy)zy A (fzSyCS))

else fz Sy ={x, y})

(proof)

lemma some-geodesic-commute:
{3——5——y) = {y——5--a}
(proof)

lemma some-geodesic-segment-description:

(3 G. geodesic-segment-between G x y AN G C S) = geodesic-segment-between
{z——5-—y} oy

(=(3 G. geodesic-segment-between G zy N G C §)) = {z——S——y} = {z, y}
(proof)

Basic topological properties of our chosen set of geodesics.
lemma some-geodesic-compact [simpl:

compact {x——S——y}
(proof)

lemma some-geodesic-closed [simpl:
closed {x——S5——y}

(proof)

lemma some-geodesic-bounded [simp]:
bounded {x——S——y}

(proof)

lemma some-geodesic-endpoints [simp]:
z€{os——89——ytyec{e——5——yt {z—=5——y} # {}
(proof)

lemma some-geodesic-subsegment:
assumes H C {z——S——y} compact H connected H H # {}
shows geodesic-segment H

(proof)

lemma some-geodesic-in-subset:
assumes z € Sy € S
shows {z——S——y} C S
(proof)

lemma some-geodesic-same-endpoints [simp):

{a——5-—2} = {a}
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(proof)

5.2 Geodesic subsets

A subset is geodesic if any two of its points can be joined by a geodesic
segment. We prove basic properties of such a subset in this paragraph —
notably connectedness. A basic example is given by convex subsets of vector
spaces, as closed segments are geodesic.

definition geodesic-subset::('a::metric-space) set = bool
where geodesic-subset S = (Vz€S. VyeS. 3 G. geodesic-segment-between G x y
ANGCS)

lemma geodesic-subsetD:
assumes geodesic-subset Sz € Sy e S
shows geodesic-segment-between {t——S——y} = y

(proof)

lemma geodesic-subsetl:

assumes Az y. 2 € S = y € S = I G. geodesic-segment-between G z y N G
cSs

shows geodesic-subset S
(proof)

lemma geodesic-subset-empty:
geodesic-subset {}

(proof)

lemma geodesic-subset-singleton:
geodesic-subset {x}

(proof)

lemma geodesic-subset-path-connected:
assumes geodesic-subset S
shows path-connected S

(proof)

To show that a segment in a normed vector space is geodesic, we will need
to use its length parametrization, which is given in the next lemma.

lemma closed-segment-as-isometric-image:
((At. z + (t/dist z y) xg (y — z)){0..dist x y}) = closed-segment z y
(proof)

proposition closed-segment-is-geodesic:
fixes = y::'a::real-normed-vector
shows isometry-on {0..dist x y} (A\t. z + (t/dist z y) *r (y — z))
geodesic-segment-between (closed-segment x y) x y
geodesic-segment (closed-segment z y)

(proof)
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We deduce that a convex set is geodesic.

proposition convex-is-geodesic:
assumes convez (S::'a::real-normed-vector set)
shows geodesic-subset S

(proof)

5.3 Geodesic spaces

In this subsection, we define geodesic spaces (metric spaces in which there
is a geodesic segment joining any pair of points). We specialize the previous
statements on geodesic segments to these situations.

class geodesic-space = metric-space +
assumes geodesic: geodesic-subset (UNIV::('a::metric-space) set)

The simplest example of a geodesic space is a real normed vector space. Sig-
nificant examples also include graphs (with the graph distance), Riemannian
manifolds, and C AT (k) spaces.

instance real-normed-vector C geodesic-space

(proof)

lemma (in geodesic-space) some-geodesic-is-geodesic-segment [simpl:
geodesic-segment-between {z——y} = (y::'a)
geodesic-segment {z——y}

{(proof)

lemma (in geodesic-space) some-geodesic-connected [simp]:
connected {x——y} path-connected {z——y}
(proof)

In geodesic spaces, we restate as simp rules all properties of the geodesic
segment parametrizations.

lemma (in geodesic-space) geodesic-segment-param-in-geodesic-spaces [simp]:
geodesic-segment-param {z——y} z 0 = z
geodesic-segment-param {x——y} = (dist z y) = y
t € {0..dist x y} = geodesic-segment-param {z——y} z t € {z——y}
isometry-on {0..dist © y} (geodesic-segment-param {x——y} x)
(geodesic-segment-param {x——y} z){0..dist x y} = {z——y}
t € {0..dist x y} = dist x (geodesic-segment-param {z——y} z t) =t
se{0.distxy} = t € {0..dist © y} = dist (geodesic-segment-param {z——y}
z 8) (geodesic-segment-param {x——y} z t) = abs(s—t)
z € {z——y} = z = geodesic-segment-param {x——y} = (dist x z)

{(proof)

5.4 Uniquely geodesic spaces

In this subsection, we define uniquely geodesic spaces, i.e., geodesic spaces
in which, additionally, there is a unique geodesic between any pair of points.
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class uniquely-geodesic-space = geodesic-space +
assumes uniquely-geodesic: Az y G H. geodesic-segment-between G © y —
geodesic-segment-between Hxy — G = H

To prove that a geodesic space is uniquely geodesic, it suffices to show that
there is no loop, i.e., if two geodesic segments intersect only at their end-
points, then they coincide.

Indeed, assume this holds, and consider two geodesics with the same end-
points. If they differ at some time ¢, then consider the last time a before ¢
where they coincide, and the first time b after ¢ where they coincide. Then
the restrictions of the two geodesics to [a, b] give a loop, and a contradiction.

lemma (in geodesic-space) uniquely-geodesic-spacel:
assumes A\ G H z (y::'a). geodesic-segment-between G ©y = geodesic-segment-between
Hry=— GNH={z,y = z=y
geodesic-segment-between G  y geodesic-segment-between H x (y::'a)
shows G = H

(proof)

context uniquely-geodesic-space
begin

lemma geodesic-segment-unique:
geodesic-segment-between G ¢y = (G = {z——(y::'a)})
(proof )

lemma geodesic-segment-dist’:

assumes dist x z = dist x y + dist y 2

shows y € {z——z2} {z——2} = {z——y} U {y——=}
(proof)

lemma geodesic-segment-expression:
{z——2} = {y. dist x z = dist x y + dist y 2}
(proof)

lemma geodesic-segment-split:
assumes (y::'a) € {z——2}
shows {z——z} = {z——y} U {y——=2}
{e——yt N {y——2} ={y}
(proof )

lemma geodesic-segment-subparam:

assumes y € {z——2z} ¢t € {0..dist z y}

shows geodesic-segment-param {x——2z} x t = geodesic-segment-param {x——y}
Tt
(proof)

end
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5.5 A complete metric space with middles is geodesic.

A complete space in which every pair of points has a middle (i.e., a point m
which is half distance of 2 and y) is geodesic: to construct a geodesic between
xo and yp, first choose a middle m, then middles of the pairs (z¢,m) and
(m, o), and so on. This will define the geodesic on dyadic points (and this
is indeed an isometry on these dyadic points. Then, extend it by uniform
continuity to the whole segment [0, distz0y0].

The formal proof will be done in a locale where zy and yg are fixed, for
notational simplicity. We define inductively the sequence of middles, in a
function geod of two natural variables: geodnm corresponds to the image
of the dyadic point m/2". It is defined inductively, by geod(n + 1)(2m) =
geodnm, and geod(n+1)(2m+1) is a middle of geodnm and geodn(m +1).
This is not a completely classical inductive definition, so one has to use
function to define it. Then, one checks inductively that it has all the
properties we want, and use it to define the geodesic segment on dyadic
points. We will not use a canonical representative for a dyadic point, but
any representative (i.e., numerator and denominator will not have to be
coprime) — this will not create problems as geod does not depend on the
choice of the representative, by construction.
locale complete-space-with-middle =

fixes z0 y0::'a::complete-space

assumes middles: Az y::'a. Az. dist x z = (dist z y)/2 A dist zy = (dist z y)/ 2
begin

definition middle::'a = 'a = a
where middle x y = (SOME z. dist x z = (dist z y)/2 A dist zy = (dist z y)/2)

lemma middle:
dist © (middle z y) = (dist x y)/2
dist (middle z y) y = (dist x y)/2
(proof )

function geod::nat = nat = 'a where

geod 0 0 = z0

lgeod 0 (Suc m) = y0

|geod (Suc n) (2 * m) = geod n m

lgeod (Suc n) (Suc (2xm)) = middle (geod n m) (geod n (Suc m))

(proof)
termination (proof)

By induction, the distance between successive points is D/2".

lemma geod-distance-successor:
Va < 27n. dist (geod n a) (geod n (Suc a)) = dist 0 y0 |/ 2™n

(proof)

lemma geod-mult:
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geod n a = geod (n + k) (a x 27k)

(proof)
lemma geod-0:

geod n 0 = x0
(proof)

lemma geod-end:
geod n (27n) = y0
{(proof)

By the triangular inequality, the distance between points separated by (b —
a)/2" is at most D * (b —a)/2".
lemma geod-upper:

assumes a < b b < 2™n
shows dist (geod n a) (geod n b) < (b—a) * dist z0 y0 / 27n

(proof)

In fact, the distance is exactly D * (b — a)/2", otherwise the extremities of
the interval would be closer than D, a contradiction.

lemma geod-dist:

assumes a < b b < 2™

shows dist (geod n a) (geod n b) = (b—a) * dist x0 y0 / 2™n
(proof)

We deduce the same statement but for points that are not on the same level,
by putting them on a common multiple level.
lemma geod-dist2:
assumes ¢ < 2 nb< 2pa/2n<b/2p
shows dist (geod n a) (geod p b) = (b/27p — a/27n) * dist x0 y0
(proof )

Same thing but without a priori ordering of the points.

lemma geod-dist3:

assumes a < 2 nb< 27p

shows dist (geod n a) (geod p b) = abs(b/27p — a/27n) * dist z0 y0
(proof)

Finally, we define a geodesic by extending what we have already defined
on dyadic points, thanks to the result of isometric extension of isometries
taking their values in complete spaces.

lemma geod:
shows 3 g. isometry-on {0..dist x0 y0} g A g 0 = z0 A g (dist 20 y0) = y0
(proof)

end
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We can now complete the proof that a complete space with middles is in fact
geodesic: all the work has been done in the locale complete_space_with_middle,
in Lemma geod.

theorem complete-with-middles-imp-geodesic:

assumes Az y:(‘a::complete-space). Im. dist x m = dist z y /2 A dist m y =
distxy /2

shows OFCLASS('a, geodesic-space-class)
(proof)

6 Quasi-isometries

A (X, C) quasi-isometry is a function which behaves like an isometry, up to
an additive error C' and a multiplicative error A. It can be very different
from an isometry on small scales (for instance, the function integer part is
a quasi-isometry between R and Z), but on large scales it captures many
important features of isometries.

When the space is unbounded, one checks easily that C' > 0 and A > 1. As
this is the only case of interest (any two bounded sets are quasi-isometric),
we incorporate this requirement in the definition.

definition quasi-isometry-on::real = real = (‘a::metric-space) set = ('a = ('b::metric-space))
= bool
(¢- - —quasi’-isometry’-on» 1000, 999))
where lambda C—quasi-isometry-on X f = ((lambda > 1) A (C > 0) A
(Vz e X.Vy € X. (dist (fz) (fy) < lambda = dist z y + C A dist (fz) (fy)
> (1/lambda) * dist z y — C)))

abbreviation quasi-isometry :: real = real = ('a::metric-space = 'b::metric-space)
= bool

(<- - —quasi’-isometrys [1000, 999)])

where quasi-isometry lambda C f = lambda C—quasi-isometry-on UNIV f

6.1 Basic properties of quasi-isometries

lemma quasi-isometry-onD:
assumes lambda C'—quasi-isometry-on X f
shows A\zy. 2 € X = y € X = dist (fz) (fy) < lambda * dist z y + C
Ney. ze X = ye X = dist (fz) (fy) > (I/lambda) * distzy — C
lambda > 1 C > 0
(proof )

lemma quasi-isometry-onl [intro]:
assumes A\zy. 2 € X = y € X = dist (fz) (fy) < lambda * dist z y + C
Ney.ze€ X = ye X = dist (fz) (fy) > (1/lambda) * dist z y — C
lambda > 1 C > 0
shows lambda C—quasi-isometry-on X f

(proof )
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lemma isometry-quasi-isometry-on:
assumes isometry-on X f
shows 1 0—quasi-isometry-on X f

(proof)

lemma quasi-isometry-on-change-params:
assumes lambda C—quasi-isometry-on X f mu > lambda D > C
shows mu D—quasi-isometry-on X f

{(proof)

lemma quasi-isometry-on-subset:
assumes lambda C—quasi-isometry-on X f
YCX
shows lambda C—quasi-isometry-on Y f

(proof)

lemma quasi-isometry-on-perturb:
assumes lambda C—quasi-isometry-on X f
D>0
Ne.z € X = dist (fz) (92) <D
shows lambda (C + 2 x D)—quasi-isometry-on X g

(proof)

lemma quasi-isometry-on-compose:
assumes lambda C—quasi-isometry-on X f
mu D—quasi-isometry-on Y g
fXCY
shows (lambda * mu) (C * mu + D)—quasi-isometry-on X (g o f)
(proof)

lemma quasi-isometry-on-bounded:
assumes lambda C—quasi-isometry-on X f
bounded X
shows bounded (f‘X)

(proof)

lemma quasi-isometry-on-empty:
assumes C > 0 lambda > 1
shows lambda C— quasi-isometry-on {} f

(proof)

Quasi-isometries change the distance to a set by at most A-+C, this follows
readily from the fact that this inequality holds pointwise.

lemma quasi-isometry-on-infdist:
assumes lambda C—quasi-isometry-on X f
we X
SCX
shows infdist (f w) (f*S) < lambda * infdist w S + C
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infdist (f w) (f*S) > (1/lambda) * infdist w S — C
(proof )

6.2 Quasi-isometric isomorphisms

The notion of isomorphism for quasi-isometries is not that it should be a
bijection, as it is a coarse notion, but that it is a bijection up to a bounded
displacement. For instance, the inclusion of Z in R is a quasi-isometric iso-
morphism between these spaces, whose (quasi)-inverse (which is non-unique)
is given by the function integer part. This is formalized in the next defini-
tion.

definition quasi-isometry-between::real = real = ('a::metric-space) set = ('b::metric-space)
set = ('a = 'b) = bool

(¢- - —quasi’-isometry’-betweeny [1000, 999])

where lambda C— quasi-isometry-between X Y f = ((lambda C— quasi-isometry-on
XAHANFXCY)A(VyeY. JzeX. dist (fz) y < C))

definition quasi-isometric::(‘a::metric-space) set = ('b::metric-space) set = bool
where quasi-isometric X Y = (3lambda C f. lambda C— quasi-isometry-between
XY

lemma quasi-isometry-betweenD:
assumes lambda C—quasi-isometry-between X Y f
shows lambda C—quasi-isometry-on X f
fXCvy

Ny.y e Y = JzeX. dist (fz) y< C
Ney.zeX = ye X = dist (fz) (fy) < lambda * dist x y + C
Ney.ze X = ye X = dist (fz) (fy) > (1/lambda) x dist z y — C

lambda > 1 C > 0
(proof)

lemma quasi-isometry-betweenl:
assumes lambda C—quasi-isometry-on X f
fXCY
Ny.y € Y = JzeX. dist (fz) y < C
shows lambda C—quasi-isometry-between X Y f

(proof)

lemma quasi-isometry-on-between:
assumes lambda C'—quasi-isometry-on X f
shows lambda C— quasi-isometry-between X (f'X) f

(proof)

lemma quasi-isometry-between-change-params:
assumes lambda C—quasi-isometry-between X Y f mu > lambda D > C
shows mu D— quasi-isometry-between X Y f

(proof)
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lemma quasi-isometry-subset:
assumes X C Y Ay.ye VY = JzeX. distzy< CC >0
shows 1 C'—quasi-isometry-between X Y (Az. z)

(proof)

lemma isometry-quasi-isometry-between:
assumes isometry f
shows 1 0—quasi-isometry-between UNIV UNIV f

(proof)

proposition quasi-isometry-inverse:
assumes lambda C'—quasi-isometry-between X Y f
shows 3 g. lambda (3 * C * lambda)— quasi-isometry-between Y X g
A VzeX. distx (g (fz)) < 8 % C * lambda)
ANNVyeY. disty (f (gy)) < 3 * C x lambda)
(proof)

proposition quasi-isometry-compose:
assumes lambda C—quasi-isometry-between X Y f
mu D—quasi-isometry-between Y Z g
shows (lambda * mu) (C * mu + 2 * D)—quasi-isometry-between X Z (g o f)
(proof)

theorem quasi-isometric-equiv-rel:
quasi-isometric X X
quasi-isometric X Y = quasi-isometric Y 7 = quasi-isometric X 7
quasi-isometric X Y = quasi-isometric Y X

(proof)

Many interesting properties in geometric group theory are invariant under
quasi-isometry. We prove the most basic ones here.
lemma quasi-isometric-empty:

assumes X = {} quasi-isometric X Y
shows Y = {}

(proof)

lemma quasi-isometric-bounded:
assumes bounded X quasi-isometric X Y
shows bounded Y

(proof)

lemma quasi-isometric-bounded-iff:
assumes bounded X X # {} bounded Y'Y # {}

shows quasi-isometric X Y
(proof)
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6.3 Quasi-isometries of Euclidean spaces.

A less trivial fact is that the dimension of euclidean spaces is invariant
under quasi-isometries. It is proved below using growth argument, as quasi-
isometries preserve the growth rate.

The growth of the space is asymptotic behavior of the number of well-
separated points that fit in a ball of radius R, when R tends to infinity.
Up to a suitable equivalence, it is clearly a quasi-isometry invariance. We
show below that, in a Euclidean space of dimension d, the growth is like R%:
the upper bound is obtained by using the fact that we have disjoint balls
inside a big ball, hence volume controls conclude the argument, while the
lower bound is obtained by considering integer points.

First, we show that the growth rate of a Euclidean space of dimension d is
bounded from above by R%, using the control on measure of disjoint balls
and a volume argument.

proposition growth-rate-euclidean-above:
fixes D::real
assumes D > (0::real)
and H: F C cball (0::'a::euclidean-space) R R > 0
Ney e F—=yecF—=uz#y=— distxy>D
shows finite F A card F < 1 + ((6/D)(DIM('a))) * R(DIM('a))
(proof)

Then, we show that the growth rate of a Euclidean space of dimension d is
bounded from below by R, using integer points.

proposition growth-rate-euclidean-below:
fixes D::real
assumes R > (0
shows 3 F. (F C cball (0::'a::euclidean-space) R
ANNVzeF.YyeF. x =y V distxy > D) A finite F A\ card F > (1/((max
D 1) x DIM(’a))) (DIM('a)) * R(DIM('a)))
(proof)

As the growth is invariant under quasi-isometries, we deduce that it is im-
possible to map quasi-isometrically a Euclidean space in a space of strictly
smaller dimension.
proposition quasi-isometry-on-euclidean:

fixes f::’a::euclidean-space="b::euclidean-space

assumes lambda C—quasi-isometry-on UNIV f
shows DIM('a) < DIM('b)

(proof)

As a particular case, we deduce that two quasi-isometric Euclidean spaces
have the same dimension.

theorem quasi-isometric-euclidean:
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assumes quasi-isometric (UNIV::'a::euclidean-space set) (UNIV::'b::euclidean-space
set)

shows DIM('a) = DIM('b)
(proof)

A different (and important) way to prove the above statement would be to
use asymptotic cones. Here, it can be done in an elementary way: start with
a quasi-isometric map f, and consider a limit (defined with a ultrafilter) of
x — f(nz)/n. This is a map which contracts and expands the distances
by at most A. In particular, it is a homeomorphism on its image. No such
map exists if the dimension of the target is smaller than the dimension of
the source (invariance of domain theorem, already available in the library).

The above argument using growth is more elementary to write, though.

6.4 Quasi-geodesics

A quasi-geodesic is a quasi-isometric embedding of a real segment into a
metric space. As the embedding need not be continuous, a quasi-geodesic
does not have to be compact, nor connected, which can be a problem. How-
ever, in a geodesic space, it is always possible to deform a quasi-geodesic into
a continuous one (at the price of worsening the quasi-isometry constants).
This is the content of the proposition quasi_geodesic_made_lipschitz
below, which is a variation around Lemma III.H.1.11 in [BH99]. The strat-
egy of the proof is simple: assume that the quasi-geodesic ¢ is defined on
[a,b]. Then, on the points a, a + C/\, ---, a+ N - C/\, b, take d equal to
¢, where N is chosen so that the distance between the last point and b is in
[C/X,2C/N). In the intervals, take d to be geodesic.

proposition (in geodesic-space) quasi-geodesic-made-lipschitz:
fixes cireal = 'a
assumes lambda C—quasi-isometry-on {a..b} ¢ dist (c a) (¢ b) > 2 x C
shows 3d. continuous-on {a..b} dANda=caNdb=cbd
A (Vze{a..b}. dist (cz) (dz) < 4 % C)
A lambda (4 * C)—quasi-isometry-on {a..b} d
A (2 x lambda)—lipschitz-on {a..b} d
A hausdorff-distance (c{a..b}) (dqa..b}) < 2 x C
(proof)

end

7 The metric completion of a metric space

theory Metric-Completion
imports Isometries
begin

Any metric space can be completed, by adding the missing limits of Cauchy

52



sequences. Formally, there exists an isometric embedding of the space in
a complete space, with dense image. In this paragraph, we construct this
metric completion. This is exactly the same construction as the way in
which real numbers are constructed from rational numbers.

7.1 Definition of the metric completion

quotient-type (overloaded) ‘a metric-completion =

nat = ('a::metric-space) /| partial: Au v. (Cauchy u) A (Cauchy v) A (An. dist
(un) (vn) —— 0
(proof)

We have to show that the metric completion is indeed a metric space, that
the original space embeds isometrically into it, and that it is complete. Be-
fore we prove these statements, we start with two simple lemmas that will
be needed later on.

lemma convergent-Cauchy-dist:
fixes u viinat = (‘a::metric-space)
assumes Cauchy v Cauchy v
shows convergent (An. dist (u n) (v n))

(proof)

lemma convergent-add-null:
fixes u vinat = ('a::real-normed-vector)
assumes convergent u
(An.vn —un) —— 0
shows convergent v lim v = lim u

(proof)

Let us now prove that the metric completion is a metric space: the distance
between two Cauchy sequences is the limit of the distances of points in the
sequence. The convergence follows from Lemma convergent_Cauchy_dist
above.

instantiation metric-completion :: (metric-space) metric-space
begin

lift-definition dist-metric-completion::('a::metric-space) metric-completion = 'a
metric-completion = real

is Az y. lim (An. dist (z n) (y n))
(proof)

lemma dist-metric-completion-limit:

fixes x y::'a metric-completion

shows (An. dist (rep-metric-completion z n) (rep-metric-completion y n)) ——
dist x y
(proof)

93



lemma dist-metric-completion-limit’:
fixes = y::nat = 'a
assumes Cauchy x Cauchy y
shows (An. dist (zn) (yn)) —— dist (abs-metric-completion x) (abs-metric-completion

y)
(proof )

To define a metric space in the current library of Isabelle/HOL, one should
also introduce a uniformity structure and a topology, as follows (they are
prescribed by the distance):
definition uniformity-metric-completion::(('a metric-completion) x (‘a metric-completion))
filter

where uniformity-metric-completion = (INF ee{0 <..}. principal {(z, y). dist =

y < e})

definition open-metric-completion :: 'a metric-completion set = bool
where open-metric-completion U = (VzeU. eventually (A (z', y). 2’ =z — y
€ U) uniformity)

instance (proof)
end

Let us now show that the distance thus defined on the metric completion is
indeed complete. This is essentially by design.

instance metric-completion :: (metric-space) complete-space

(proof)

7.2 Isometric embedding of a space in its metric completion

The canonical embedding of a space into its metric completion is obtained

by taking the Cauchy sequence which is constant, equal to the given point.

This is indeed an isometric embedding with dense image, as we prove in the

lemmas below.

definition to-metric-completion::('a::metric-space) = 'a metric-completion
where to-metric-completion x = abs-metric-completion (An. x)

lemma to-metric-completion-isometry:
isometry-on UNIV to-metric-completion

(proof)

lemma to-metric-completion-dense:
assumes open U U # {}
shows Jz. to-metric-completion x € U

(proof)

lemma to-metric-completion-dense’:
closure (range to-metric-completion) = UNIV
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(proof)

The main feature of the completion is that a uniformly continuous function
on the original space can be extended to a uniformly continuous function on
the completion, i.e., it can be written as the composition of a new function
and of the inclusion to_metric_completion.

lemma [lift-to-metric-completion:
fixes f::('a::metric-space) = ('b::complete-space)
assumes uniformly-continuous-on UNIV f
shows 3 g. (uniformly-continuous-on UNIV g)
A (f = g o to-metric-completion)
A (Vz € range to-metric-completion. g x = f (inv to-metric-completion

z))
(proof)

When the function is an isometry, the lifted function is also an isometry
(and its range is the closure of the range of the original function). This
shows that the metric completion is unique, up to isometry:

lemma [ift-to-metric-completion-isometry:
fixes f::('a::metric-space) = ('b::complete-space)
assumes isometry-on UNIV f
shows 3 g. isometry-on UNIV g
A range g = closure(range f)
A f = g o to-metric-completion
A (Vz € range to-metric-completion. g v = f (inv to-metric-completion x))

(proof)

7.3 The metric completion of a second countable space is
second countable

We want to show that the metric completion of a second countable space is
still second countable. This is most easily expressed using the fact that a
metric space is second countable if and only if there exists a dense countable
subset. We prove the equivalence in the next lemma, and use it then to
prove that the metric completion is still second countable.

lemma second-countable-iff-dense-countable-subset:
(3 B::'a::metric-space set set. countable B A topological-basis B)
«— (FA:a set. countable A A closure A = UNIV)

(proof)

lemma second-countable-metric-dense-subset:
3 A:'az:{metric-space, second-countable-topology} set. countable A A closure A =
UNIV

(proof)

instance metric-completion::({metric-space, second-countable-topology}) second-countable-topology

(proof)
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instance metric-completion::({metric-space, second-countable-topology}) polish-space
(proof)

end

8 Gromov hyperbolic spaces

theory Gromov-Hyperbolicity
imports Isometries Metric-Completion
begin

8.1 Definition, basic properties

Although we will mainly work with type classes later on, we introduce the
definition of hyperbolicity on subsets of a metric space.

A set is 0-hyperbolic if it satisfies the following inequality. It is very obscure
at first sight, but we will see several equivalent characterizations later on.
For instance, a space is hyperbolic (maybe for a different constant ¢) if all
geodesic triangles are thin, i.e., every side is close to the union of the two
other sides. This definition captures the main features of negative curvature
at a large scale, and has proved extremely fruitful and influential.

Two important references on this topic are [GdIH90] and [BH99]. We will
sometimes follow them, sometimes depart from them.

definition Gromouv-hyperbolic-subset::real = ('a::metric-space) set = bool
where Gromov-hyperbolic-subset delta A = (Vz€A. VycA. Vz2e€A. Vi€A. dist x
y + dist z t < maz (dist z z + dist y t) (dist x t + dist y 2) + 2 * delta)

lemma Gromov-hyperbolic-subsetl [intro]:

assumes \zyzt. 2 € A—=yce A= 2 A=t A= distzy + dist z
t < maz (dist z z + dist y t) (dist © t + dist y 2) + 2 * delta

shows Gromov-hyperbolic-subset delta A

(proof)

When the four points are not all distinct, the above inequality is always
satisfied for § = 0.

lemma Gromov-hyperbolic-ineq-not-distinct:
assumes t = yVz=zVaez=tVy=2zVy=tVz=(t:'a:metric-space)
shows dist x y + dist z t < max (dist x z + dist y t) (dist x t + dist y 2)
(proof)

It readily follows from the definition that hyperbolicity passes to the closure
of the set.

lemma Gromov-hyperbolic-closure:
assumes Gromouv-hyperbolic-subset delta A
shows Gromouv-hyperbolic-subset delta (closure A)
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(proof)

A good formulation of hyperbolicity is in terms of Gromov products. Intu-
itively, the Gromov product of  and y based at e is the distance between
e and the geodesic between x and y. It is also the time after which the
geodesics from e to x and from e to y stop travelling together.

definition Gromov-product-at::(‘a::metric-space) = 'a = 'a = real
where Gromov-product-at e xy = (dist e x + dist e y — dist z y) /| 2

lemma Gromouv-hyperbolic-subsetI2:

fixes delta::real

assumes Nezyz. e€ A—2€ A= y € A = z € A= Gromov-product-at
(e::'a::metric-space) x z > min (Gromov-product-at e x y) (Gromov-product-at e y
z) — delta

shows Gromouv-hyperbolic-subset delta A

(proof)

lemma Gromov-product-nonneg [simp, mono-intros|:
Gromov-product-at e x y > 0

(proof)

lemma Gromov-product-commute:
Gromov-product-at e © y = Gromov-product-at e y x

(proof)

lemma Gromov-product-le-dist [simp, mono-intros]:
Gromov-product-at e © y < dist e x
Gromov-product-at e vy < dist e y

(proof)

lemma Gromov-product-le-infdist [mono-intros:
assumes geodesic-segment-between G z y
shows Gromov-product-at e x y < infdist e G

(proof)

lemma Gromouv-product-add:
Gromov-product-at e x y + Gromov-product-at x e y = dist e x

(proof)

lemma Gromov-product-geodesic-segment:
assumes geodesic-segment-between G z y t € {0..dist = y}
shows Gromouv-product-at © y (geodesic-segment-param G z t) = t

(proof)

lemma Gromov-product-e-z-x [simp]:
Gromov-product-at e v © = dist e ©

(proof)

lemma Gromov-product-at-diff:
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| Gromov-product-at x y z — Gromov-product-at a b ¢| < dist x a + dist y b + dist
zc

(proof)

lemma Gromouv-product-at-diff1:
| Gromov-product-at a © y — Gromov-product-at b x y| < dist a b

(proof)

lemma Gromov-product-at-diff2:
| Gromov-product-at e x z — Gromov-product-at e y z| < dist z y

(proof)

lemma Gromouv-product-at-diff3:
| Gromov-product-at e x y — Gromov-product-at e x z| < dist y z

(proof)

The Gromov product is continuous in its three variables. We formulate it
in terms of sequences, as it is the way it will be used below (and moreover
continuity for functions of several variables is very poor in the library).

lemma Gromouv-product-at-continuous:

assumes (u — z) F (v — y) F (w —— 2) F

shows ((An. Gromouv-product-at (u n) (v n) (wn)) —— Gromov-product-at x y
z) F
(proof )

8.2 Typeclass for Gromov hyperbolic spaces

We could (should?) just derive Gromov_hyperbolic_space from metric_space.
However, in this case, properties of metric spaces are not available when
working in the locale! It is more efficient to ensure that we have a metric
space by putting a type class restriction in the definition. The § in Gromov-
hyperbolicity type class is called deltaG to avoid name clashes.

class metric-space-with-deltaG = metric-space +
fixes deltaG::('a::metric-space) itself = real

class Gromov-hyperbolic-space = metric-space-with-deltaG +
assumes hyperb-quad-ineq0: Gromouv-hyperbolic-subset (deltaG(TYPE('a::metric-space)))
(UNIV:'a set)

class Gromov-hyperbolic-space-geodesic = Gromouv-hyperbolic-space + geodesic-space

lemma (in Gromov-hyperbolic-space) hyperb-quad-ineq [mono-intros:

shows dist © y + dist z t < maz (dist x z + dist y t) (dist x t + dist y z) + 2 %
deltaG(TYPE('a))
(proof)

It readily follows from the definition that the completion of a §-hyperbolic
space is still J-hyperbolic.
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instantiation metric-completion :: (Gromov-hyperbolic-space) Gromov-hyperbolic-space

begin

definition deltaG-metric-completion::('a metric-completion) itself = real where
deltaG-metric-completion - = deltaG(TYPE('a))

instance (proof)
end

context Gromouv-hyperbolic-space
begin

lemma delta-nonneg [simp, mono-intros|:
deltaG(TYPE('a)) > 0

(proof)

lemma hyperb-ineq [mono-intros):

Gromov-product-at (e::'a) z z > min (Gromov-product-at e x y) (Gromov-product-at
ey z) — deltaG(TYPE('a))
(proof)

lemma hyperb-ineq’ [mono-intros]:
Gromov-product-at (e::’a) x z + deltaG(TYPE('a)) > min (Gromov-product-at e
z y) (Gromov-product-at e y z)

(proof)

lemma hyperb-ineg-4-points [mono-intros|:
Min { Gromov-product-at (e::'a) x y, Gromov-product-at e y z, Gromov-product-at
ezt — 2 x deltaG(TYPE('a)) < Gromov-product-at e z t

(proof)

lemma hyperb-ineg-4-points’ [mono-intros:
Min { Gromov-product-at (e::'a) x y, Gromov-product-at e y z, Gromov-product-at
e z t} < Gromov-product-at e x t + 2 * deltaG(TYPE('a))

(proof)

In Gromov-hyperbolic spaces, geodesic triangles are thin, i.e., a point on one
side of a geodesic triangle is close to the union of the two other sides (where
the constant in "close" is 46, independent of the size of the triangle). We
prove this basic property (which, in fact, is a characterization of Gromov-
hyperbolic spaces: a geodesic space in which triangles are thin is hyperbolic).

lemma thin-triangles!:
assumes geodesic-segment-between G x y geodesic-segment-between H x (z2::'a)
t € {0..Gromov-product-at © y z}
shows dist (geodesic-segment-param G z t) (geodesic-segment-param H z t) < /
* deltaG(TYPE('a))

(proof)

theorem thin-triangles:
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assumes geodesic-segment-between Gxy x y
geodesic-segment-between Gxz x 2z
geodesic-segment-between Gyz y z
(w::'a) € Gyz

shows infdist w (Gzy U Gzz) < 4 * deltaG(TYPE('a))

(proof )

A consequence of the thin triangles property is that, although the geodesic
between two points is in general not unique in a Gromov-hyperbolic space,
two such geodesics are within O(d) of each other.

lemma geodesics-nearby:
assumes geodesic-segment-between G = y geodesic-segment-between H z y
(z::7a) € G
shows infdist z H < 4 * deltaG(TYPE('a))
(proof)

A small variant of the property of thin triangles is that triangles are slim,
i.e., there is a point which is close to the three sides of the triangle (a "center"
of the triangle, but only defined up to O(d)). And one can take it on any
side, and its distance to the corresponding vertices is expressed in terms of
a Gromov product.

lemma slim-triangle:
assumes geodesic-segment-between Gxy T y
geodesic-segment-between Grz x z
geodesic-segment-between Gyz y (z::'a)
shows Jw. infdist w Gzy < 4 * deltaG(TYPE('a)) A
infdist w Gxz < 4 * deltaG(TYPE('a)) A
infdist w Gyz < 4 x deltaG(TYPE('a)) A
dist w x = (Gromov-product-at  y z) N w € Gy
(proof )

The distance of a vertex of a triangle to the opposite side is essentially given
by the Gromov product, up to 24.

lemma dist-triangle-side-middle:

assumes geodesic-segment-between G x (y::'a)

shows dist z (geodesic-segment-param G x (Gromov-product-at z z y)) < Gro-
mov-product-at z x y + 2 * deltaG(TYPE('a))

(proof)

lemma infdist-triangle-side [mono-intros|:
assumes geodesic-segment-between G z (y::'a)
shows infdist 2 G < Gromov-product-at z x y + 2 * deltaG(TYPE('a))

(proof)

The distance of a point on a side of triangle to the opposite vertex is con-
trolled by the length of the opposite sides, up to 6.

lemma dist-le-mazx-dist-triangle:
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assumes geodesic-segment-between G = y
me G
shows dist m z < maz (dist x z) (dist y z) + deltaG(TYPE('a))

(proof)

end

A useful variation around the previous properties is that quadrilaterals are
thin, in the following sense: if one has a union of three geodesics from x to t,
then a geodesic from z to ¢ remains within distance 8§ of the union of these
3 geodesics. We formulate the statement in geodesic hyperbolic spaces as
the proof requires the construction of an additional geodesic, but in fact the
statement is true without this assumption, thanks to the Bonk-Schramm
extension theorem.

lemma (in Gromov-hyperbolic-space-geodesic) thin-quadrilaterals:
assumes geodesic-segment-between Gxy x y
geodesic-segment-between Gyz y z
geodesic-segment-between Gzt z t
geodesic-segment-between Gat x t
(w::'a) € Gt
shows infdist w (Gzy U Gyz U Gzt) < 8 * deltaG(TYPE('a))
(proof)

There are converses to the above statements: if triangles are thin, or slim,
then the space is Gromov-hyperbolic, for some §. We prove these criteria
here, following the proofs in Ghys (with a simplification in the case of slim
triangles.

The basic result we will use twice below is the following: if points on sides
of triangles at the same distance of the basepoint are close to each other
up to the Gromov product, then the space is hyperbolic. The proof goes as
follows. One wants to show that (z,2). > min((z,y)e, (y,2)e) — 0 =t — 0.
On [ex], [ey] and [ez], consider points wz, wy and wz at distance ¢ of e.
Then wx and wy are d§-close by assumption, and so are wy and wz. Then
wz and wz are 20-close. One can use these two points to express (z, z)e,
and the result follows readily.
lemma (in geodesic-space) controlled-thin-triangles-implies-hyperbolic:
assumes \(z::'a) y 2z t Gzy Gaz. geodesic-segment-between Gy © y = geodesic-segment-between
Gz ¢ z = t € {0..Gromov-product-at ¢ y z}

= dist (geodesic-segment-param Gzy z t) (geodesic-segment-param Gz x t)

< delta
shows Gromov-hyperbolic-subset delta (UNIV::'a set)

(proof)

We prove that if triangles are thin, i.e., they satisfy the Rips condition,
i.e., every side of a triangle is included in the §-neighborhood of the union
of the other triangles, then the space is hyperbolic. If a point w on [zy]
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satisfies d(x,w) < (y, 2), — d, then its friend on [xz] U [yz] has to be on [zz],
and roughly at the same distance of the origin. Then it follows that the
point on [zz] with d(z,w’) = d(z,w) is close to w, as desired. If d(z,w) €
[(y,2)z — 0, (y,2)z), we argue in the same way but for the point which is
closer to x by an amount §. Finally, the last case d(x,w) = (y, z), follows
by continuity.
proposition (in geodesic-space) thin-triangles-implies-hyperbolic:

assumes A(z::'a) y z w Gry Gyz Gzz. geodesic-segment-between Gy © y —>
geodesic-segment-between Gxz x 2 => geodesic-segment-between Gyz y z

= w € Gry = infdist w (Gzz U Gyz) < delta
shows Gromov-hyperbolic-subset (4 x delta) (UNIV::'a set)

(proof)

Then, we prove that if triangles are slim (i.e., there is a point that is §-close
to all sides), then the space is hyperbolic. Using the previous statement, we
should show that points on [zy] and [zz] at the same distance ¢ of the origin
are close, if t < (y,2),. There are two steps: - for ¢t = (y, ), then the two
points are in fact close to the middle of the triangle (as this point satisfies
d(z,y) = d(z,w)+d(w,y) + O(J), and similarly for the other sides, one gets
readily d(z,w) = (y,2)w + O(J) by expanding the formula for the Gromov
product). Hence, they are close together. - For ¢t < (y, z),, we argue that
there are points 3 € [xy] and 2’ € [zz] for which t = (y/, 2’), by a continuity
argument and the intermediate value theorem. Then the result follows from
the first step in the triangle xy'2’.

The proof we give is simpler than the one in [GAIH90], and gives better
constants.
proposition (in geodesic-space) slim-triangles-implies-hyperbolic:

assumes A(z::'a) y z Gry Gyz Gzz. geodesic-segment-between Gxy z y —>
geodesic-segment-between Gxz x 2 => geodesic-segment-between Gyz y z

= Jw. infdist w Gzy < delta N infdist w Gxz < delta N infdist w Gyz <

delta

shows Gromov-hyperbolic-subset (6 x delta) (UNIV::'a set)

(proof)

9 Metric trees

Metric trees have several equivalent definitions. The simplest one is probably
that it is a geodesic space in which the union of two geodesic segments
intersecting only at one endpoint is still a geodesic segment.

Metric trees are Gromov hyperbolic, with § = 0.

class metric-tree = geodesic-space +
assumes geod-union: geodesic-segment-between G ©y = geodesic-segment-between
Hyz= G N H = {y} = geodesic-segment-between (G U H) = z
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We will now show that the real line is a metric tree, by identifying its geodesic
segments, i.e., the compact intervals.

lemma geodesic-segment-between-real:
assumes z < (y::real)
shows geodesic-segment-between (G::real set) zy = (G = {z..y})

(proof)

lemma geodesic-segment-between-real:
{z——y} = {min = y..maz x (y::real)}
(proof)

lemma geodesic-segment-real:
geodesic-segment (G:real set) = (Fzy. z <y AN G = {z..y})
(proof)

instance real::metric-tree
(proof)

context metric-tree begin

We show that a metric tree is uniquely geodesic.

subclass uniquely-geodesic-space
(proof)

An important property of metric trees is that any geodesic triangle is de-
generate, i.e., the three sides intersect at a unique point, the center of the
triangle, that we introduce now.

definition center::’a = 'a = 'a = 'a
where center © y z = (SOME t. t € {a——y} N {z——2} N {y——=2})

lemma center-as-intersection:
{z——y} N {z——2} N {y——=2} = {center z y z}
(proof)

lemma center-on-geodesic [simpl:
center ¢y z € {z——y}
center x y z € {z——=z}
center x y z € {y——2z}
center © y z € {y——1x}
center t y z € {z——=x}
center ¢y z € {z——y}

(proof)

lemma center-commute:
center T y z = center T 2 y
center Ty z = center y T z
center ¢y z = center y 2 x
center Ty z = center z x y
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center ¢ y z = center 2 Yy x
(proof)

lemma center-dist:
dist x (center x y z) = Gromov-product-at = y z

(proof)

lemma geodesic-intersection:
{z——y} N {z——2} = {x——center z y 2z}
{(proof)

end

We can now prove that a metric tree is Gromov hyperbolic, for § = 0. The
simplest proof goes through the slim triangles property: it suffices to show
that, given a geodesic triangle, there is a point at distance at most 0 of each
of its sides. This is the center we have constructed above.

class metric-tree-with-delta = metric-tree + metric-space-with-deltaG +
assumes delta0: deltaG(TYPE('a::metric-space)) = 0

class Gromov-hyperbolic-space-0 = Gromou-hyperbolic-space +
assumes delta0 [simp]: deltaG(TYPE('a::metric-space)) = 0

class Gromov-hyperbolic-space-0-geodesic = Gromov-hyperbolic-space-0 + geodesic-space

Isabelle does not accept cycles in the class graph. So, we will show that
metric_tree_with_deltaisa subclass of Gromov_hyperbolic_space_0_geodesic,
and conversely that Gromov_hyperbolic_space_0_geodesic is a subclass

of metric_tree.

In a tree, we have already proved that triangles are O-slim (the center is
common to all sides of the triangle). The 0-hyperbolicity follows from one of
the equivalent characterizations of hyperbolicity (the other characterizations
could be used as well, but the proofs would be less immediate.)

subclass (in metric-tree-with-delta) Gromov-hyperbolic-space-0
(proof)

To use the fact that reals are Gromov hyperbolic, given that they are a
metric tree, we need to instantiate them as metric_tree_with_delta.

instantiation real::metric-tree-with-delta

begin

definition deltaG-real::real itself = real
where deltaG-real - = 0

instance (proof)

end

Let us now prove the converse: a geodesic space which is d-hyperbolic for
6 = 0 is a metric tree. For the proof, we consider two geodesic segments
G = [z,y] and H = [y, z] with a common endpoint, and we have to show

64



that their union is still a geodesic segment from z to z. For this, introduce a
geodesic segment L = [z, z]. By the property of thin triangles, G is included
in HU L. In particular, a point Y close to y but different from y on G is on
L, and therefore realizes the equality d(z, z) = d(z,Y) + d(Y, z). Passing to
the limit, y also satisfies this equality. The conclusion readily follows thanks
to Lemma geodesic_segment_union.

subclass (in Gromouv-hyperbolic-space-0-geodesic) metric-tree
(proof)

end

theory Morse-Gromov-Theorem
imports HOL— Decision-Procs. Approzimation Gromouv-Hyperbolicity Hausdorff-Distance
begin

hide-const (open) Approzimation.Min
hide-const (open) Approzimation. Maz

10 Quasiconvexity

In a Gromov-hyperbolic setting, convexity is not a well-defined notion as
everything should be coarse. The good replacement is quasi-convexity: A set
X is C-quasi-convex if any pair of points in X can be joined by a geodesic
that remains within distance C' of X. One could also require this for all
geodesics, up to changing C, as two geodesics between the same endpoints
remain within uniformly bounded distance. We use the first definition to
ensure that a geodesic is 0-quasi-convex.

definition quasiconvex::real = ('a::metric-space) set = bool
where quasiconver C X = (C > 0 A (VzeX.VyeX. 3 G. geodesic-segment-between
Gzy AN (V2eG. infdist z X < (C)))

lemma quasiconvezD:
assumes quasiconver C Xz € Xy e X
shows 3 G. geodesic-segment-between G z y N (Vz€G. infdist z X < C)

(proof)

lemma quasiconvexC"
assumes quasiconver C' X
shows C > 0

(proof)
lemma quasiconvexl:

assumes C' > (
Ny z € X = y e X = (3IG. geodesic-segment-between G = y A
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(Vze@. infdist z X < C))
shows quasiconvex C X

(proof)

lemma quasiconvex-of-geodesic:
assumes geodesic-segment G
shows quasiconvex 0 G

(proof)

lemma quasiconvez-empty:
assumes C' > 0
shows quasiconver C {}

(proof)

lemma quasiconvex-mono:
assumes C < D
quasiconver C G
shows quasiconvex D G

(proof)

The r-neighborhood of a quasi-convex set is still quasi-convex in a hyperbolic
space, for a constant that does not depend on r.

lemma (in Gromov-hyperbolic-space-geodesic) quasiconvez-thickening:
assumes quasiconver C (X::'a set) r > 0
shows quasiconvezx (C + 8 *deltaG(TYPE('a))) (Uz€X. cball z 1)

(proof)

If x has a projection p on a quasi-convex set GG, then all segments from a point
in G to x go close to p, i.e., the triangular inequality d(z,y) < d(z,p)+d(p,y)
is essentially an equality, up to an additive constant.

lemma (in Gromov-hyperbolic-space-geodesic) dist-along-quasiconvex:

assumes quasiconvexr C' G p € proj-set t Gy € G
shows dist z p + dist py < dist x y + 4 * deltaG(TYPE('a)) + 2 % C

(proof)

The next lemma is [CDP90, Proposition 10.2.1] with better constants. It
states that the distance between the projections on a quasi-convex set is
controlled by the distance of the original points, with a gain given by the
distances of the points to the set.
lemma (in Gromouv-hyperbolic-space-geodesic) proj-along-quasiconvez-contraction:
assumes quasiconvex C G px € proj-set x G py € proj-set y G
shows dist pz py < maz (5 * deltaG(TYPE('a)) + 2 = C) (dist x y — dist px x
— dist py y + 10 * deltaG(TYPE('a)) + 4 * C)
(proof)

The projection on a quasi-convex set is 1-Lipschitz up to an additive error.

lemma (in Gromov-hyperbolic-space-geodesic) proj-along-quasiconvez-contraction'”:
assumes quasiconvex C G pz € proj-set x G py € proj-set y G
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shows dist px py < dist x y + 4 * deltaG(TYPE('a)) + 2 x C
(proof)

We can in particular specialize the previous statements to geodesics, which
are 0-quasi-convex.

lemma (in Gromov-hyperbolic-space-geodesic) dist-along-geodesic:
assumes geodesic-segment G p € proj-set t Gy € G
shows dist z p + dist p y < dist z y + 4 * deltaG(TYPE('a))

(proof)

lemma (in Gromov-hyperbolic-space-geodesic) proj-along-geodesic-contraction:
assumes geodesic-segment G px € proj-set ¢ G py € proj-set y G
shows dist px py < max (5 * deltaG(TYPE('a))) (dist vy — dist pz z — dist py
y + 10 % deltaG(TYPE('a)))

(proof)

lemma (in Gromov-hyperbolic-space-geodesic) proj-along-geodesic-contraction’:
assumes geodesic-segment G pr € proj-set x G py € proj-set y G
shows dist pz py < dist z y + 4 x deltaG(TYPE('a))

{proof )

If one projects a continuous curve on a quasi-convex set, the image does
not have to be connected (the projection is discontinuous), but since the
projections of nearby points are within uniformly bounded distance one can
find in the projection a point with almost prescribed distance to the starting
point, say. For further applications, we also pick the first such point, i.e., all
the previous points are also close to the starting point.

lemma (in Gromov-hyperbolic-space-geodesic) quasi-convez-projection-small-gaps:
assumes continuous-on {a..(b::real)} f
a<b
quasiconver C G
Nt. t € {a..b} = p t € proj-set (ft) G
delta > deltaG(TYPE('a))
d € {4 * delta + 2 x C..dist (p a) (p b)}
showsElte{a b}. (dist (p a) (pt) € {d — 4 * delta — 2 x C .. d})
A (Vs € {a..t}. dist (p a) (ps) <d)
(proof)

Same lemma, except that one exchanges the roles of the beginning and the
end point.

lemma (in Gromov-hyperbolic-space-geodesic) quasi-convez-projection-small-gaps’:
assumes continuous-on {a..(b::real)} f
a<b
quasiconvexr C' G
Nz. z € {a..b} = p x € proj-set (fz) G
delta > deltaG(TYPE('a))
d € {4 *x delta + 2 = C..dist (p a) (p b)}
shows 3¢ € {a..b}. dist (p b) (pt) € {d — 4 % delta — 2 x C .. d}
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A (Vs e {t.b}. dist (p b) (ps)<d)
(proof)

11 The Morse-Gromov Theorem

The goal of this section is to prove a central basic result in the theory of
hyperbolic spaces, usually called the Morse Lemma. It is really a theorem,
and we add the name Gromov the avoid the confusion with the other Morse
lemma on the existence of good coordinates for C? functions with non-
vanishing hessian.

It states that a quasi-geodesic remains within bounded distance of a geodesic
with the same endpoints, the error depending only on § and on the param-
eters (A, C) of the quasi-geodesic, but not on its length.

There are several proofs of this result. We will follow the one of Shchur [Shel3],
which gets an optimal dependency in terms of the parameters of the quasi-
isometry, contrary to all previous proofs. The price to pay is that the proof
is more involved (relying in particular on the fact that the closest point
projection on quasi-convex sets is exponentially contracting).

We will also give afterwards for completeness the proof in [BH99], as it
brings up interesting tools, although the dependency it gives is worse.

The next lemma (for C' = 0, Lemma 2 in [Shcl3]) asserts that, if two points
are not too far apart (at distance at most 100), and far enough from a given
geodesic segment, then when one moves towards this geodesic segment by a
fixed amount (here 56), then the two points become closer (the new distance
is at most 50, gaining a factor of 2). Later, we will iterate this lemma to
show that the projection on a geodesic segment is exponentially contracting.
For the application, we give a more general version involving an additional
constant C.

This lemma holds for § the hyperbolicity constant. We will want to apply
it with § > 0, so to avoid problems in the case § = 0 we formulate it not
using the hyperbolicity constant of the given type, but any constant which
is at least the hyperbolicity constant (this is to work around the fact that
one can not say or use easily in Isabelle that a type with hyperbolicity § is
also hyperbolic for any larger constant §’.

lemma (in Gromov-hyperbolic-space-geodesic) geodesic-projection-exp-contracting-aux:
assumes geodesic-segment G

px € proj-set x G

py € proj-set y G

delta > deltaG(TYPE('a))

dist x y < 10 * delta + C

M > 15/2 x delta

dist pr x > M + 5 « delta + C/2

distpyy > M + 5 % delta + C/2
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C>0
shows dist (geodesic-segment-param {pz——=z} px M)
(geodesic-segment-param {py——y} py M) < § * delta

(proof)

The next lemma (Lemma 10 in [Shcl3] for C' = 0) asserts that the projection
on a geodesic segment is an exponential contraction. More precisely, if a path
of length L is at distance at least D of a geodesic segment G, then the pro-
jection of the path on G has diameter at most C'L exp(—cD/d), where C' and
c are universal constants. This is not completely true at one can not go be-
low a fixed size, as always, so the correct bound is K max(d, L exp(—cD/J)).
For the application, we give a slightly more general statement involving an
additional constant C.

This statement follows from the previous lemma: if one moves towards G
by 106, then the distance between points is divided by 2. Then one iterates
this statement as many times as possible, gaining a factor 2 each time and
therefore an exponential factor in the end.

lemma (in Gromov-hyperbolic-space-geodesic) geodesic-projection-exp-contracting:
assumes geodesic-segment G
Az y. z € {a.b} = y € {a..b} = dist (fz) (fy) < lambda * dist z y
+ C
a<b
pa € proj-set (fa) G
pb € proj-set (fb) G
At. t € {a..b} = infdist (ft) G > D
D> 15/2 « delta + C/2
delta > deltaG(TYPE('a))
cC>0
lambda > 0
shows dist pa pb < maz (5 * deltaG(TYPE('a))) ((4 * exp(1/2 * In 2)) =
lambda * (b—a) * exp(—(D—C/2) x In 2 | (5 * delta)))

(proof)

We deduce from the previous result that a projection on a quasiconvex set
is also exponentially contracting. To do this, one uses the contraction of a
projection on a geodesic, and one adds up the additional errors due to the
quasi-convexity. In particular, the projections on the original quasiconvex
set or the geodesic do not have to coincide, but they are within distance at
most C + 86.

lemma (in Gromov-hyperbolic-space-geodesic) quasiconvez-projection-exp-contracting:
assumes quasiconvex K G

Nz y. z € {a.b} = y € {a..b} = dist (fz) (fy) < lambda * dist z y
+C

a<b

pa € proj-set (fa) G

pb € proj-set (fb) G

Nt. t € {a..b} = infdist (ft) G > D
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D> 15/2 « delta + K + C/2
delta > deltaG(TYPE('a))
Cc>0
lambda > 0
shows dist pa pb < 2 %+ K + 8 « delta + maz (5 * deltaG(TYPE('a)))
exp(1/2 * In 2)) * lambda * (b—a) * exp(—(D — K — C/2) xIn 2 / (§ * de
(proof)

((4 =
lta)))

The next statement is the main step in the proof of the Morse-Gromov
theorem given by Shchur in [Shcl3|, asserting that a quasi-geodesic and
a geodesic with the same endpoints are close. We show that a point on
the quasi-geodesic is close to the geodesic — the other inequality will follow
easily later on. We also assume that the quasi-geodesic is parameterized by
a Lipschitz map — the general case will follow as any quasi-geodesic can be
approximated by a Lipschitz map with good controls.

Here is a sketch of the proof. Fix two large constants L < D (that we will
choose carefully to optimize the values of the constants at the end of the
proof). Consider a quasi-geodesic f between two points f(u~) and f(u™),
and a geodesic segment G between the same points. Fix f(z). We want to
find a bound on d(f(z),G). 1 - If this distance is smaller than L, we are
done (and the bound is L). 2 - Assume it is larger. Let 7, be a projection
of f(z) on G (at distance d(f(z),G) of f(z)), and H a geodesic between z
and 7,. The idea will be to project the image of f on H, and record how
much progress is made towards f(z). In this proof, we will construct several
points before and after z. When necessary, we put an exponent — on the
points before z, and + on the points after z. To ease the reading, the points
are ordered following the alphabetical order, i.e., u” <v<w <z <y~ < z.
One can find two points f(y~) and f(y*) on the left and the right of f(z)
that project on H roughly at distance L of 7, (up to some O(d) — recall that
the closest point projection is not uniquely defined, and not continuous, so
we make some choice here). Let d~ be the minimal distance of f([u™,y7])
to H, and let d* be the minimal distance of f([y™,u")] to H.

2.1 If the two distances d~ and d* are less than D, then the distance between
two points realizing the minimum (say f(c™) and f(c")) is at most 2D + L,
hence ¢t —c¢™ is controlled (by A-(2D+ L)+ C') thanks to the quasi-isometry
property. Therefore, f(z) is not far away from f(c™) and f(c") (again by
the quasi-isometry property). Since the distance from these points to 7, is
controlled (by D + L), we get a good control on d(f(z), ), as desired.

2.2 The interesting case is when d~ and d* are both > D. Assume also for
instance d- > dT, as the other case is analogous. We will construct two
points f(v) and f(x) with v~ <v < x <y~ with the following property:

Klesz(f(”):H) <z—w, (1)

where K7 and K3 are some explicit constants (depending on A, §, L and D).
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Let us show how this will conclude the proof. The distance from f(v) to
f(ct) is at most d(f(v),H) + L +d* < 3d(f(v), H). Therefore, ¢t — v is
also controlled by K'd(f(v), H) by the quasi-isometry property. This gives

K < K(z —v)e K0 < (K@) _ 1y, = K(e"-v)

—K(ct-x) —K(ct—v) < efK(chfx) - efK(qufu’).

=e —e
This shows that, when one goes from the original quasi-geodesic f([u~,u"])
to the restricted quasi-geodesic f([x,ct]), the quantity e " decreases by
a fixed amount. In particular, this process can only happen a uniformly
bounded number of times, say n.

Let G’ be a geodesic between f(z) and f(c'). One checks geometrically
that d(f(z),G) <d(f(z),G") + (L + O(9)), as both projections of f(z) and
f(cT) on H are within distance L of 7,. Iterating the process n times, one
gets finally d(f(z),G) < O(1) +n(L + O(6)). This is the desired bound for
A(/(2),G).

To complete the proof, it remains to construct the points f(v) and f(x)
satisfying (1). This will be done through an inductive process.

Assume first that there is a point f(v) whose projection on H is close to
the projection of f(u~), and with d(f(v), H) < 2d~. Then the projections
of f(v) and f(y~) are far away (at distance at least L + O(J)). Since the
portion of f between v and y~ is everywhere at distance at least d~ of H,
the projection on H contracts by a factor e=% . It follows that this portion
of f has length at least e?” - (L + O(6)). Therefore, by the quasi-isometry
property, one gets  — v > Ke? . On the other hand, d(v, H) is bounded
above by 2d~ by assumption. This gives the desired inequality (1) with
=y .

Otherwise, all points f(v) whose projection on H is close to the projection
of f(u™) are such that d(f(v), H) > 2d~. Consider f(w;) a point whose
projection on H is at distance roughly 104 of the projection of f(u™). Let
V1 be the set of points at distance at most d~ of H, i.e., the dj-neighborhood
of H. Then the distance between the projections of f(u~) and f(w;) on V3
is very large (are there is an additional big contraction to go from Vj to H).
And moreover all the intermediate points f(v) are at distance at least 2d~
of H, and therefore at distance at least d~ of H. Then one can play the
same game as in the first case, where y~ replaced by w; and H replaced by
V1. If there is a point f(v) whose projection on Vj is close to the projection
of f(u™), then the pair of points v and = w; works. Otherwise, one lifts
everything to V5, the neighborhood of size 2d~ of V;, and one argues again
in the same way.

The induction goes on like this until one finds a suitable pair of points. The
process has indeed to stop at one time, as it can only go on while f(u™) is
outside of V4, the (2¥ —1)d~ neighborhood of H). This concludes the sketch
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of the proof, modulo the adjustment of constants.

Comments on the formalization below:

e The proof is written as an induction on u*—u~. This makes it possible
to either prove the bound directly (in the cases 1 and 2.1 above), or to
use the bound on d(z,G’) in case 2.2 using the induction assumption,
and conclude the proof. Of course, u™ — u~ is not integer-valued, but
in the reduction to G’ it decays by a fixed amount, so one can easily
write this down as a genuine induction.

o The main difficulty in the proof is to construct the pair (v,z) in case
2.2. This is again written as an induction over k: either the required
bound is true, or one can find a point f(w) whose projection on Vj
is far enough from the projection of f(u~). Then, either one can use
this point to prove the bound, or one can construct a point with the
same property with respect to Vi1, concluding the induction.

o Instead of writing u~ and ut (which are not good variable names in
Isabelle), we write um and uM. Similarly for other variables.

o The proof only works when § > 0 (as one needs to divide by ¢ in the
exponential gain). Hence, we formulate it for some § which is strictly
larger than the hyperbolicity constant. In a subsequent application of
the lemma, we will deduce the same statement for the hyperbolicity
constant by a limiting argument.

e To optimize the value of the constant in the end, there is an additional
important trick with respect to the above sketch: in case 2.2, there is
an exponential gain. One can spare a fraction (1 — «) of this gain to
improve the constants, and spend the remaining fraction « to make
the argument work. This makes it possible to reduce the value of the
constant roughly from 40000 to 100, so we do it in the proof below.
The values of L, D and « can be chosen freely, and have been chosen
to get the best possible constant in the end.

e For another optimization, we do not induce in terms of the distance
from f(z) to the geodesic G, but rather in terms of the Gromov product
(f(u™), f(uh)) () (which is the same up to O(5). And we do not take
for H a geodesic from f(z) to its projection on G, but rather a geodesic
from f(z) to the point m on [f(u™), f(u™)] opposite to f(z) in the
tripod, i.e., at distance (f(2), f(u"))sw-) of f(u™), and at distance
(f(2), f(u™)) pu+) of f(uT). Let 7, denote the point on [f(z),m] at
distance (f(u™), f(u™) ) of f(2). (It is within distance 20 of m). In
both approaches, what we want to control by induction is the distance
from f(z) to m,. However, in the first approach, the points f(u™)
and f(u™) project on H between 7, and f(z), and since the location
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of their projection is only controlled up to 49 one loses essentially a
44-length of L for the forthcoming argument. In the second approach,
the projections on H are on the other side of 7, compared to f(z), so
one does not lose anything, and in the end it gives genuinely better
bounds (making it possible to gain roughly 106 in the final estimate).

lemma (in Gromov-hyperbolic-space-geodesic) Morse-Gromov-theorem-auzl :
fixes f::real = 'a
assumes continuous-on {a..b} f
lambda C— quasi-isometry-on {a..b} f
a<b
geodesic-segment-between G (f a) (f b)
z € {a..b}
delta > deltaG(TYPE('a))
shows infdist (f z) G < lambda™2 x (11/2 x C + 91 * delta)

(proof)

Still assuming that our quasi-isometry is Lipschitz, we will improve slightly
on the previous result, first going down to the hyperbolicity constant of
the space, and also showing that, conversely, the geodesic is contained in a
neighborhood of the quasi-geodesic. The argument for this last point goes
as follows. Consider a point x on the geodesic. Define two sets to be the
D-thickenings of [a, 2] and [z, b] respectively, where D is such that any point
on the quasi-geodesic is within distance D of the geodesic (as given by the
previous theorem). The union of these two sets covers the quasi-geodesic,
and they are both closed and nonempty. By connectedness, there is a point
z in their intersection, D-close both to a point = before x and to a point
T after x. Then z belongs to a geodesic between x~ and z, which is
contained in a 4d-neighborhood of geodesics from zt to z and from x~ to
z by hyperbolicity. It follows that x is at distance at most D + 40 of z,
concluding the proof.

lemma (in Gromov-hyperbolic-space-geodesic) Morse-Gromov-theorem-auz2:
fixes f::real = 'a
assumes continuous-on {a..b} f
lambda C— quasi-isometry-on {a..b} f
geodesic-segment-between G (f a) (f b)
shows hausdorff-distance (f{a..b}) G < lambda"2 * (11/2 * C + 92  deltaG(TYPE('a)))

(proof)

The full statement of the Morse-Gromov Theorem, asserting that a quasi-
geodesic is within controlled distance of a geodesic with the same endpoints.
It is given in the formulation of Shchur [Shcl3], with optimal control in terms
of the parameters of the quasi-isometry. This statement follows readily from
the previous one and from the fact that quasi-geodesics can be approximated
by Lipschitz ones.

theorem (in Gromouv-hyperbolic-space-geodesic) Morse-Gromov-theorem:
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fixes f::real = 'a
assumes lambda C'—quasi-isometry-on {a..b} f
geodesic-segment-between G (f a) (f b)
shows hausdorff-distance (f{a..b}) G < 92 x lambda™2 * (C + deltaG(TYPE('a)))

(proof)

This theorem implies the same statement for two quasi-geodesics sharing
their endpoints.

theorem (in Gromouv-hyperbolic-space-geodesic) Morse-Gromouv-theorem2:
fixes ¢ d::real = 'a
assumes lambda C—quasi-isometry-on {A..B} ¢
lambda C— quasi-isometry-on {A..B} d
cA=dAcB=4dB
shows hausdorff-distance (c¢{A..B}) (d{A..B}) < 184 * lambda™2 x (C +
deltaG(TYPE('a)))

(proof)

We deduce from the Morse lemma that hyperbolicity is invariant under
quasi-isometry.

First, we note that the image of a geodesic segment under a quasi-isometry
is close to a geodesic segment in Hausdorff distance, as it is a quasi-geodesic.
lemma geodesic-quasi-isometric-image:

fixes f::'a::metric-space = 'b:: Gromov-hyperbolic-space-geodesic

assumes lambda C—quasi-isometry-on UNIV f

geodesic-segment-between G x y
shows hausdorff-distance (f‘G) {fx——fy} < 92 * lambda™2 x (C + deltaG(TYPE('b)))

(proof)

We deduce that hyperbolicity is invariant under quasi-isometry. The proof
goes as follows: we want to see that a geodesic triangle is delta-thin, i.e., a
point on a side Gzy is close to the union of the two other sides Gxz and Gyz.
Pull everything back by the quasi-isometry: we obtain three quasi-geodesic,
each of which is close to the corresponding geodesic segment by the Morse
lemma. As the geodesic triangle is thin, it follows that the quasi-geodesic
triangle is also thin, i.e., a point on f~'Gzy is close to f~1Gzz U f~1Gyz
(for some explicit, albeit large, constant). Then push everything forward
by f: as it is a quasi-isometry, it will again distort distances by a bounded
amount.

lemma Gromov-hyperbolic-invariant-under-quasi-isometry-explicit:

fixes f::'a::geodesic-space = 'b:: Gromov-hyperbolic-space-geodesic

assumes lambda C—quasi-isometry f

shows Gromov-hyperbolic-subset (752 x lambda™3 x (C + deltaG(TYPE('b))))
(UNIV::('a set))
(proof)

Most often, the precise value of the constant in the previous theorem is
irrelevant, it is used in the following form.

74



theorem Gromov-hyperbolic-invariant-under-quasi-isometry:

assumes quasi-isometric (UNIV::('a::geodesic-space) set) (UNIV::('b:: Gromov-hyperbolic-space-geodesic)
set)

shows 3 delta. Gromouv-hyperbolic-subset delta (UNIV::'a set)

(proof)

A central feature of hyperbolic spaces is that a path from z to y can not
deviate too much from a geodesic from x to y unless it is extremely long
(exponentially long in terms of the distance from z to y). This is useful
both to ensure that short paths (for instance quasi-geodesics) stay close to
geodesics, see the Morse lemme below, and to ensure that paths that avoid
a given large ball of radius R have to be exponentially long in terms of
R (this is extremely useful for random walks). This proposition is the first
non-trivial result on hyperbolic spaces in [BH99] (Proposition II1.H.1.6). We
follow their proof.

The proof is geometric, and uses the existence of geodesics and the fact
that geodesic triangles are thin. In fact, the result still holds if the space is
not geodesic, as it can be deduced by embedding the hyperbolic space in a
geodesic hyperbolic space and using the result there.

proposition (in Gromouv-hyperbolic-space-geodesic) lipschitz-path-close-to-geodesic:
fixes c::real = 'a
assumes M —lipschitz-on {A..B} ¢
geodesic-segment-between G (¢ A) (¢ B)
e G
shows infdist © (¢{A..B}) < (4/In 2) x deltaG(TYPE(’a)) x maz 0 (In (B—A))
+ M
(proof)

By rescaling coordinates at the origin, one obtains a variation around the
previous statement.
proposition (in Gromouv-hyperbolic-space-geodesic) lipschitz-path-close-to-geodesic':
fixes c:real = 'a
assumes M —lipschitz-on {A..B} ¢
geodesic-segment-between G (¢ A) (¢ B)
ze G
a>0
shows infdist © (c{A..B}) < (4/In 2) % deltaG(TYPE('a)) * maz 0 (In (a *
(B—A))) + M/a
(proof)

We can now give another proof of the Morse-Gromov Theorem, as described
in [BH99]. It is more direct than the one we have given above, but it gives
a worse dependence in terms of the quasi-isometry constants. In particular,
when C' = 6 = 0, it does not recover the fact that a quasi-geodesic has to
coincide with a geodesic.

theorem (in Gromouv-hyperbolic-space-geodesic) Morse-Gromov-theorem-BH-proof:

75



fixes c:real = 'a

assumes lambda C—quasi-isometry-on {A..B} ¢

shows hausdorff-distance (c{A..B}) {¢ A——c B} < 72 x lambda"2 * (C' +
lambda + deltaG(TYPE('a))"2)

(proof)

end

12 The Bonk Schramm extension

theory Bonk-Schramm-FExtension
imports Morse-Gromov-Theorem
begin

We want to show that any metric space is isometrically embedded in a metric
space which is geodesic (i.e., there is an embedded geodesic between any two
points) and complete. There are many such constructions, but a very inter-
esting one has been given by Bonk and Schramm in [BS00], together with an
additional property of the completion: if the space is delta-hyperbolic (in the
sense of Gromov), then its completion also is, with the same constant delta.
It follows in particular that a 0-hyperbolic space embeds in a 0-hyperbolic
geodesic space, i.e., a metric tree (there is an easier direct construction in
this case).

Another embedding of a metric space in a geodesic one is constructed by
Mineyev [Min05], it is more canonical in a sense (isometries of the original
space extend to the new space), but it is not clear if it preserves hyperbolicity.
The argument of Bonk and Schramm goes as follows: - first, if one wants
to add the middle of a pair of points a and b in a space E, there is a nice
formula for the distance on a new space EU{*} (where * will by construction
be a middle of a and b). - by transfinite induction on all the pair of points in
the space, one adds all the missing middles - then one completes the space
- then one adds all the middles - then one goes on like that, transfinitely
many times - at some point, the process stops for cardinality reasons

The resulting space is complete and has middles for all pairs of points. It is
then standard that it is geodesic (this is proved in Geodesic_Spaces.thy).

Implementing this construction in Isabelle is interesting and nontrivial, as
transfinite induction is not that easy, especially when intermingled with
metric completion (i.e., taking the quotient space of all Cauchy sequences).
In particular, taking sequences of metric completions would mean changing
types at each step, along a transfinite number of steps. It does not seem
possible to do it naively in this way.

We avoid taking quotients in the middle of the argument, as this is too
messy. Instead, we define a pseudo-distance (i.e., a function satisyfing the
triangular inequality, but such that d(z,y) can vanish even if = and y are
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different) on an increasing set, which should contain middles and limits of
Cauchy sequences (identified with their defining Cauchy sequence). Thus,
we consider a datatype containing points in the original space and closed
under two operations: taking a pair of points in the datatype (we think of
the resulting pair as the middle of the pair) and taking a sequence with
values in the datatype (we think of the resulting sequence as the limit of the
sequence if it is Cauchy, for a distance yet to be defined, and as something
we discard if the sequence is not Cauchy).

Defining such an object is apparently not trivial. However, it is well de-
fined, for cardinality reasons, as this process will end after the continuum
cardinality iterations (as a sequence taking value in the continuum cardi-
nality is in fact contained in a strictly smaller ordinal, which means that all
sequences in the construction will appear at a step strictly before the con-
tinuum cardinality). The datatype construction in Isabelle/HOL contains
these cardinality considerations as an automatic process, and is thus able to
construct the datatype directly, without the need for any additional proof!

Then, we define a wellorder on the datatype, such that every middle and
every sequence appear after each of its ancestors. This construction of a
wellorder should work for any datatype, but we provide a naive proof in our
use case.

Then, we define, inductively on z, a pseudodistance on the pair of points
in {x : * < z}. In the induction, one should add one point at a time. If
it is a middle, one uses the Bonk-Schramm recipe. If it is a sequence, then
either the sequence is Cauchy and one uses the limit of the distances to the
points in the sequence, or it is not Cauchy and one discards the new point by
setting d(a,a) = 1. (This means that, in the Bonk-Schramm recipe, we only
use the points with d(z,z) = 0, and show the triangular inequality there).
In the end, we obtain a space with a pseudodistance. The desired space is
obtained by quotienting out the space {z : d(x,z) = 0} by the equivalence
relation given by d(z,y) = 0. The triangular inequality for the pseudo-
distance shows that it descends to a genuine distance on the quotient. This
is the desired geodesic complete extension of the original space.

12.1 TUnfolded Bonk Schramm extension

The unfolded Bonk Schramm extension, as explained at the beginning of
this file, is a type made of the initial type, adding all possible middles and
all possible limits of Cauchy sequences, without any quotienting process

datatype ‘a Bonk-Schramm-eztension-unfolded =
basepoint 'a
| middle 'a Bonk-Schramm-extension-unfolded 'a Bonk-Schramm-extension-unfolded
| would-be-Cauchy nat = 'a Bonk-Schramm-extension-unfolded
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context metric-space
begin

The construction of the distance will be done by transfinite induction, with
respect to a well-order for which the basepoints form an initial segment, and
for which middles of would-be Cauchy sequences are larger than the elements
they are made of. We will first prove the existence of such a well-order.

The idea is first to construct a function map_aux to another type, with a
well-order wo_aux, such that the image of middle a b is larger than the
images of a and b (take for instance the successor of the maximum of the
two), and likewise for a Cauchy sequence. A definition by induction works
if the target cardinal is large enough.

Then, pullback the well-order wo_aux by the map map_aux: this gives a re-
lation that satisfies all the required properties, except that two different el-
ements can be equal for the order. Extending it essentially arbitrarily to dis-
tinguish between all elements (this is done in Lemma Well_order_pullback)
gives the desired well-order

definition Bonk-Schramm-eztension-unfolded-wo where
Bonk-Schramm-eztension-unfolded-wo = (SOME (r::'a Bonk-Schramm-extension-unfolded
rel).

well-order-on UNIV r

A (Vz € range basepoint. Vy € — range basepoint. (z, y) € r)

A (VY ab. (a, middle a b) € r)

A (VY ab. (b, middle a b) € 1)

A (VY un. (un, would-be-Cauchy u) € r))

We prove the existence of the well order

definition wo-auzr where
wo-aur = (SOME (r:: (nat + 'a Bonk-Schramm-extension-unfolded set) rel).
Card-order r N\ —finite( Field r) A regularCard r A |UNIV::'a Bonk-Schramm-extension-unfolded
set| <o r)

lemma wo-auz-ezists:
Card-order wo-aux N —finite (Field wo-auz) A regularCard wo-auz N |[UNIV::'a
Bonk-Schramm-extension-unfolded set| <o wo-aux

(proof)

interpretation wo-auzx: wo-rel wo-auz
(proof )

primrec map-auz::’a Bonk-Schramme-extension-unfolded = nat + 'a Bonk-Schramm-extension-unfolded
set where

map-auz (basepoint x) = wo-auzx.zero

| map-auz (middle a b) = wo-auz.suc ({map-auz a} U {map-auz b})

| map-auz (would-be-Cauchy u) = wo-aux.suc ((map-auz o u) ‘UNIV)

lemma map-auz-AboveS-not-empty:
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assumes map-aux‘S C Field wo-aux
shows wo-auz.AboveS (map-auz‘S) # {}

(proof)

lemma map-auz-in-Field:
map-auxr x € Field wo-aux
(proof)

lemma middle-rel-a:
(map-auz a, map-auzr (middle a b)) € wo-aur — Id

(proof)

lemma middle-rel-b:
(map-auz b, map-auz (middle a b)) € wo-auzr — Id

(proof)

lemma cauchy-rel:
(map-auz (u n), map-auz (would-be-Cauchy u)) € wo-aux — Id
(proof)

From the above properties of wo_aux, it follows using Well_order_pullback
that an order satisfying all the properties we want of Bonk_Schramm_extension_unfolded_wo
exists. Hence, we get the following lemma.

lemma Bonk-Schramm-extension-unfolded-wo-props:
well-order-on UNIV Bonk-Schramm-extension-unfolded-wo
Y x € range basepoint. ¥y € — range basepoint. (z, y) € Bonk-Schramm-extension-unfolded-wo
V ab. (a, middle a b) € Bonk-Schramm-extension-unfolded-wo
vV a b. (b, middle a b) € Bonk-Schramm-extension-unfolded-wo
YVu n. (u n, would-be-Cauchy u) € Bonk-Schramm-extension-unfolded-wo

(proof)

interpretation wo: wo-rel Bonk-Schramm-extension-unfolded-wo
(proof )

We reformulate in the interpretation wo the main properties of Bonk_Schramm_extension_unfolded_v
that we established in Lemma Bonk_Schramm_extension_unfolded_wo_props

lemma Bonk-Schramm-extension-unfolded-wo-props’:
a € wo.underS (middle a b)
b € wo.underS (middle a b)
u n € wo.underS (would-be-Cauchy u)

(proof)

We want to define by transfinite induction a distance on >a Bonk_Schramm_extension_unfolded,
adding one point at a time (i.e., if the distance is defined on E, then one

wants to define it on FU{z}, if z is a middle or a potential Cauchy sequence,

by prescribing the distance from x to all the points in F.

Technically, we define a family of distances, indexed by =, on {y : y <
r}2. As all functions should be defined everywhere, this will be a family of

79



functions on X x X, indexed by points in X. They will have a compatibility
condition, making it possible to define a global distance by gluing them
together.

Technically, transfinite induction is implemented in Isabelle/HOL by an up-
dating rule: a function that associates, to a family of distances indexed by
x, a new family of distances indexed by x. The result of the transfinite in-
duction is obtained by starting from an arbitrary object, and then applying
the updating rule infinitely many times. The characteristic property of the
result of this transfinite induction is that it is a fixed point of the updating
rule, as it should.

Below, this is implemented as follows:

e extend_distance is the updating rule.

o Itsfixed point extend_distance_£fp is by definition wo.worec extend_distance
(it only makes sense if the udpating rule satisfies a compatibility condi-
tion wo.adm_wo extend_distance saying that the update of a family,
at x, only depends on the value of the family strictly below .

e Finally, the global distance extended_distance is taken as the value
of the fixed point above, on zyy’ (i.e., using the distance indexed by
x) for any z > max(y,y’). For definiteness, we use max(y,y’), but it
does not matter as everything is compatible.

fun extend-distance::('a Bonk-Schramm-extension-unfolded = ('a Bonk-Schramm-extension-unfolded
= 'a Bonk-Schramm-extension-unfolded = real))
= ('a Bonk-Schramm-extension-unfolded = ('a Bonk-Schramme-eztension-unfolded
= 'a Bonk-Schramm-extension-unfolded = real))
where
extend-distance f (basepoint ) = (A\y z. if y € range basepoint N z € range
basepoint then
dist (SOME y'. y = basepoint y') (SOME z'. z = basepoint z') else 1)
| extend-distance f (middle a b) = (Ay z.
if (v € wo.underS (middle a b)) A (z € wo.underS (middle a b)) then f
(wo.maz2 y z) y z
else if (y € wo.underS (middle a b)) A (z = middle a b) then (f (wo.maz2 a
b) a b)/2 + (SUP we{z € wo.underS (middle a b). fzzz= 0}. f (wo.maz2 y w)
yw — maz (f (wo.maz2 a w) a w) (f (wo.maz2 b w) b w))
else if (y = middle a b) N (z € wo.underS (middle a b)) then (f (wo.maz2 a
b) a b)/2 4+ (SUP we{z € wo.underS (middle a b). fzz 2z = 0}. f (wo.maz?2 z w)
zw — maz (f (wo.maz2 a w) a w) (f (wo.maz2 b w) b w))
else if (y = middle a b) A (z = middle a b)) A (faaa=0)A(fbbb=20)
then 0
else 1)
| extend-distance f (would-be-Cauchy u) = (Ay z.
if (y € wo.underS (would-be-Cauchy u)) A (z € wo.underS (would-be-Cauchy
u)) then f (wo.maz2 vy 2) y z
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else if (=(Veps > (0:real). IN.¥Vn > N.Vm > N. f (wo.maz2 (un) (um))
(un) (um) < eps)) then 1

else if (y € wo.underS (would-be-Cauchy u)) A (z = would-be-Cauchy u) then
lim (An. f (wo.maz2 (u n) y) (un) y)

else if (y = would be Cauchy u) A (z € wo.underS (would-be-Cauchy u)) then
lim (An. f (wo.maz2 (u n) z) (un) z)

else if (y = would-be-Cauchy u) A (z = would-be-Cauchy u) A (Y n. f (u n)
(un) (un)=0) then 0

else 1)

definition extend-distance-fp = wo.worec extend-distance
definition extended-distance x© y = extend-distance-fp (wo.maz2 z y) = y
definition extended-distance-set = {z. extended-distance z z = 0}

lemma wo-adm-extend-distance:
wo.adm-wo extend-distance

(proof)

lemma extend-distance-fp:
extend-distance-fp = extend-distance (extend-distance-fp)
(proof )

lemma extended-distance-symmetric:
ertended-distance © y = extended-distance y

(proof)

lemma extended-distance-basepoint:
extended-distance (basepoint ) (basepoint y) = dist z y

{(proof)

lemma extended-distance-set-basepoint:
basepoint © € extended-distance-set

(proof)

lemma extended-distance-set-middle:
assumes a € extended-distance-set b € extended-distance-set
shows middle a b € extended-distance-set

(proof)

lemma extended-distance-set-middle”:
assumes middle a b € extended-distance-set
shows a € extended-distance-set N wo.underS (middle a b)
b € extended-distance-set N wo.underS (middle a b)

(proof)

lemma extended-distance-middle-formula:
assumes z € wo.underS (middle a b)
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shows extended-distance © (middle a b) = (extended-distance a b)/2
+ (SUP wewo.underS (middle a b) N extended-distance-set.
extended-distance © w — mazx (extended-distance a w) (extended-distance b
w))
(proof)

lemma extended-distance-set-Cauchy:
assumes (would-be-Cauchy u) € extended-distance-set
shows u n € extended-distance-set N wo.underS (would-be-Cauchy )
Veps > (0:real). AN. ¥ n > N.Vm > N. extended-distance (u n) (u m) <
eps

(proof)

lemma extended-distance-triang-ineq:
assumes z € extended-distance-set
y € extended-distance-set
z € extended-distance-set
shows extended-distance x z < extended-distance x y + extended-distance y z

(proof)

We can now show the two main properties of the construction: the middle is
indeed a middle from the metric point of view (in extended_distance_middle),
and Cauchy sequences have a limit (the corresponding would_be_Cauchy
point).

lemma extended-distance-pos:
assumes a € extended-distance-set
b € extended-distance-set
shows extended-distance a b > 0

(proof)

lemma extended-distance-middle:
assumes a € extended-distance-set
b € extended-distance-set
shows extended-distance a (middle a b) = extended-distance a b | 2
extended-distance b (middle a b) = extended-distance a b | 2

(proof)

lemma extended-distance-Cauchy:
assumes A\ (n:nat). u n € extended-distance-set
and Veps > (0::real). AN.Vn > N.Vm > N. extended-distance (u n) (u m)
< eps
shows would-be-Cauchy u € extended-distance-set
(An. extended-distance (u n) (would-be-Cauchy u)) —— 0

(proof)

end
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12.2 The Bonk Schramm extension

quotient-type (overloaded) ‘a Bonk-Schramm-extension =

('a::metric-space) Bonk-Schramm-extension-unfolded

/ partial: Az y. (z € extended-distance-set N\ y € extended-distance-set N ex-
tended-distance z y = 0)

(proof)

instantiation Bonk-Schramm-extension :: (metric-space) metric-space
begin

lift-definition dist- Bonk-Schramm-extension::('a::metric-space) Bonk-Schramm-extension
= 'a Bonk-Schramm-extension = real
is Az y. extended-distance x y

(proof)

To define a metric space in the current library of Isabelle/HOL, one should
also introduce a uniformity structure and a topology, as follows (they are
prescribed by the distance):

definition uniformity-Bonk-Schramm-extension::(('a Bonk-Schramm-extension) x
("a Bonk-Schramm-extension)) filter

where uniformity-Bonk-Schramme-extension = (INF ec{0 <..}. principal {(z,
y). dist z y < e})

definition open-Bonk-Schramm-extension :: 'a Bonk-Schramm-extension set =
bool

where open-Bonk-Schramme-extension U = (VzeU. eventually (A(z’, y). ' =z
— y € U) uniformity)

instance (proof)
end

instance Bonk-Schramm-extension :: (metric-space) complete-space

{(proof)

instance Bonk-Schramm-extension :: (metric-space) geodesic-space
(proof)

definition to-Bonk-Schramm-extension::'a::metric-space = 'a Bonk-Schramm-estension
where to-Bonk-Schramm-extension x = abs-Bonk-Schramme-extension (basepoint

z)

lemma to-Bonk-Schramm-extension-isometry:
isometry-on UNIV to-Bonk-Schramm-extension

(proof)
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13 Bonk-Schramm extension of hyperbolic spaces

13.1 The Bonk-Schramm extension preserves hyperbolicity

A central feature of the Bonk-Schramm extension is that it preserves hyper-
bolicity, with the same hyperbolicity constant J, as we prove now.

lemma (in Gromov-hyperbolic-space) Bonk-Schramm-eztension-unfolded-hyperbolic:
fixes z y z t::("a:metric-space) Bonk-Schramm-extension-unfolded
assumes z € extended-distance-set
y € extended-distance-set
z € extended-distance-set
t € extended-distance-set
shows extended-distance x y + extended-distance z t < maz (extended-distance x
z + extended-distance y t) (extended-distance x t + extended-distance y z) + 2 x*
deltaG(TYPE('a))

(proof)

lemma (in Gromov-hyperbolic-space) Bonk-Schramm-extension-hyperbolic:
Gromouv-hyperbolic-subset (deltaG(TYPE('a))) (UNIV::('a Bonk-Schramm-extension)

set)

(proof)

instantiation Bonk-Schramm-extension :: ( Gromov-hyperbolic-space) Gromouv-hyperbolic-space-geodesic
begin
definition deltaG-Bonk-Schramme-extension::('a Bonk-Schramme-extension) itself

= real where
deltaG-Bonk-Schramm-eztension - = deltaG(TYPE('a))

instance (proof)
end

Finally, it follows that the Bonk Schramm extension of a 0-hyperbolic space
(in which it embeds isometrically) is a metric tree or, equivalently, a geodesic
0-hyperbolic space (the equivalence is proved at the end of Geodesic_Spaces.thy).

instance Bonk-Schramm-extension :: (Gromov-hyperbolic-space-0) Gromov-hyperbolic-space-0-geodesic

(proof)

It then follows that it is also a metric tree, from what we have already
proved. We write explicitly for definiteness.

instance Bonk-Schramme-extension :: (Gromov-hyperbolic-space-0) metric-tree
(proof)

13.2 Applications

We deduce that we can extend results on Gromov-hyperbolic spaces without
the geodesicity assumption, even if it is used in the proofs. These results are
given for illustrative purpose mainly, as one works most often in geodesic
spaces anyway.
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The following results have already been proved in hyperbolic geodesic spaces.
The same results follow in a general hyperbolic space, as everything is invari-
ant under isometries and can thus be pulled from the corresponding result
in the Bonk Schramm extension. The straightforward proofs only express
this invariance under isometries of all the properties under consideration.

proposition (in Gromov-hyperbolic-space) lipschitz-path-close-to-geodesic':
fixes c:real = 'a
assumes lipschitz-on M {A..B} ¢
geodesic-segment-between G (¢ A) (¢ B)
z e @G
shows infdist z (¢{A..B}) < (4/In 2) x deltaG(TYPE('a)) x maz 0 (In (B—A))
+ M
(proof )

theorem (in Gromouv-hyperbolic-space) Morse-Gromov-theorem:
fixes f::real = 'a
assumes lambda C—quasi-isometry-on {a..b} f
geodesic-segment-between G (f a) (f b)
shows hausdorff-distance (f{a..b}) G < 92 * lambda® x (C + deltaG(TYPE('a)))

(proof)

theorem (in Gromouv-hyperbolic-space) Morse-Gromov-theorem2':
fixes ¢ d::real = 'a
assumes lambda C—quasi-isometry-on {A..B} ¢
lambda C— quasi-isometry-on {A..B} d
cA=dAcB=4dB
shows hausdorff-distance (¢c{A..B}) (d{A..B}) < 184 * lambda™2 * (C +
deltaG(TYPE('a)))

(proof)

lemma Gromov-hyperbolic-invariant-under-quasi-isometry-explicit’:

fixes f::'a::geodesic-space = 'b:: Gromov-hyperbolic-space

assumes lambda C—quasi-isometry f

shows Gromov-hyperbolic-subset (752 x lambda™3 x (C + deltaG(TYPE('b))))
(UNIV::(a set))
(proof)

theorem Gromov-hyperbolic-invariant-under-quasi-isometry’:

assumes quasi-isometric (UNIV::('a::geodesic-space) set) (UNIV::('b:: Gromov-hyperbolic-space)

set)
shows 3 delta. Gromouv-hyperbolic-subset delta (UNIV::'a set)

(proof)

end

theory Gromov-Boundary
imports Gromouv-Hyperbolicity Eexp-Eln
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begin

14 Constructing a distance from a quasi-distance

Below, we will construct a distance on the Gromov completion of a hyper-
bolic space. The geometrical object that arises naturally is almost a distance,
but it does not satisfy the triangular inequality. There is a general process to
turn such a quasi-distance into a genuine distance, as follows: define the new
distance d(z,y) to be the infimum of d(z,u;) + d(u1,us) + - - - + d(un_1, )
over all sequences of points (of any length) connecting z to y. It is clear
that it satisfies the triangular inequality, is symmetric, and d(z,y) < d(z, y).
What is not clear, however, is if J(az, y) can be zero if x # y, or more gener-
ally how one can bound d from below. The main point of this contruction
is that, if d satisfies the inequality d(z,z) < v2max(d(z,y),d(y, z)), then
one has d(z,y) > d(x,y)/2 (and in particular d defines the same topology,
the same set of Lipschitz functions, and so on, as d).

This statement can be found in [Bourbaki, topologie generale, chapitre 10]
or in [Ghys-de la Harpe] for instance. We follow their proof.

definition turn-into-distance::('a = 'a = real) = ('a = 'a = real)
where turn-into-distance fz y = Inf {(>_ i € {0..<n}. f (u i) (u (Suc 7)))| u
(ninat). w0 =z A un=y}

locale Turn-into-distance =
fixes f::'a = 'a = real
assumes nonneg: fxy > 0
and sym: fzy=fyzx
and self-zero: fxxz = 0
and weak-triangle: fx z < sqrt 2 x maz (fzy) (fy 2)
begin

The two lemmas below are useful when dealing with Inf results, as they
always require the set under consideration to be non-empty and bounded
from below.

lemma bdd-below [simp]:
bdd-below {(>_ i = 0..<n. f (u i) (u (Suc i)))| u (n:nat). w 0 =z A un =y}
{proof)

lemma nonempty:

HDli=0.<n. f (uwi) (u(Suci)) lun.u0=xANun=y} #{}
{(proof )

We can now prove that turn_into_distance f satisfies all the properties
of a distance. First, it is nonnegative.

lemma TID-nonneg:
turn-into-distance fx y > 0
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(proof)

For the symmetry, we use the symmetry of f, and go backwards along a
chain of points, replacing a sequence from x to y with a sequence from y to
x.

lemma TID-sym:
turn-into-distance f x y = turn-into-distance f y x

{(proof)

There is a trivial upper bound by f, using the single chain z, y.

lemma upper:
turn-into-distance fx y < fx y
(proof)

The new distance vanishes on a pair of equal points, as this is already the
case for f.

lemma TID-self-zero:
turn-into-distance fx © = 0
(proof )

For the triangular inequality, we concatenate a sequence from x to y almost
realizing the infimum, and a sequence from y to z almost realizing the infi-
mum, to obtain a sequence from x to z along which the sums of f is almost
bounded by turn_into_distance f x y + turn_into_distance f y z.

lemma triangle:
turn-into-distance f x z < turn-into-distance f x y + turn-into-distance f y z
(proof)

Now comes the only nontrivial statement of the construction, the fact that
the new distance is bounded from below by f/2.

Here is the mathematical proof. We show by induction that all chains from
x to y satisfy this bound. Assume this is done for all chains of length
< n, we do it for a chain of length n. Write S = Y f(u;, u;y+1) for the
sum along the chain. Introduce p the last index where the sum is < S/2.
Then the sum from 0 to p is < S/2, and the sum from p + 1 to n is also
< §/2 (by maximality of p). The induction assumption gives that f(z,u,)
is bounded by twice the sum from 0 to p, which is at most S. Same thing
for f(up+1,y). With the weird triangle inequality applied two times, we get
f(@,y) < 2max(f(z,up), f(up, upt1), f(up+1,y)) < 25, as claimed.

The formalization presents no difficulty.

lemma lower:
fzry < 2 x turn-into-distance f x y
(proof)

end
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15 The Gromov completion of a hyperbolic space

15.1 The Gromov boundary as a set

A sequence in a Gromov hyperbolic space converges to a point in the bound-
ary if the Gromov product (uy,un,)e tends to infinity when m,n —; nfty.
The point at infinity is defined as the equivalence class of such sequences,
for the relation u ~ v iff (un,v,)e — oo (or, equivalently, (up,vm)e — 00
when m,n — oo, or one could also change basepoints). Hence, the Gromov
boundary is naturally defined as a quotient type. There is a difficulty: it can
be empty in general, hence defining it as a type is not always possible. One
could introduce a new typeclass of Gromov hyperbolic spaces for which the
boundary is not empty (unboundedness is not enough, think of infinitely
many segments [0,n] all joined at 0), and then only define the boundary
of such spaces. However, this is tedious. Rather, we work with the Gro-
mov completion (containing the space and its boundary), this is always not
empty. The price to pay is that, in the definition of the completion, we have
to distinguish between sequences converging to the boundary and sequences
converging inside the space. This is more natural to proceed in this way as
the interesting features of the boundary come from the fact that its sits at
infinity of the initial space, so their relations (and the topology of X U0X)
are central.

definition Gromouv-converging-at-boundary::(nat = (‘a:: Gromov-hyperbolic-space))
= bool

where Gromov-converging-at-boundary v = (Va. ¥V (M::real). AN. ¥Vn > N. V
m > N. Gromov-product-at a (u m) (un) > M)

lemma Gromouv-converging-at-boundaryl:
assumes AM.IN.Vn > N.Vm > N. Gromov-product-at a (v m) (un) > M
shows Gromov-converging-at-boundary u

(proof)

lemma Gromov-converging-at-boundary-imp-unbounded:
assumes Gromov-converging-at-boundary u
shows (An. dist a (un)) —— oo

(proof)

lemma Gromov-converging-at-boundary-imp-not-constant:
—( Gromov-converging-at-boundary (An. x))

{proof)

lemma Gromov-converging-at-boundary-imp-not-constant’:
assumes Gromov-converging-at-boundary u
shows =(Vm n. u m = u n)

{proof)

We introduce a partial equivalence relation, defined over the sequences that

88



converge to infinity, and the constant sequences. Quotienting the space of
admissible sequences by this equivalence relation will give rise to the Gromov
completion.

definition Gromov-completion-rel::(nat = 'a::Gromouv-hyperbolic-space) = (nat
= 'a) = bool
where Gromov-completion-rel v v =
((( Gromov-converging-at-boundary w A Gromov-converging-at-boundary v
A (Y a. (An. Gromov-product-at a (u n) (v n)) — 00)))
ViVem.un=vmAun=umAovn=uvm))

We need some basic lemmas to work separately with sequences tending to
the boundary and with constant sequences, as follows.

lemma Gromov-completion-rel-const [simp]:
Gromov-completion-rel (An. z) (An. x)

(proof)

lemma Gromov-completion-rel-to-const:
assumes Gromov-completion-rel u (An. x)
shows un =z

(proof)

lemma Gromov-completion-rel-to-const”:
assumes Gromov-completion-rel (An. x) u
shows un =z

(proof)

lemma Gromov-product-tendsto-PInf-a-b:
assumes (An. Gromov-product-at a (u n) (v n)) — oo
shows (An. Gromov-product-at b (u n) (v n)) —— o0

(proof)

lemma Gromov-converging-at-boundary-rel:
assumes Gromov-converging-at-boundary u
shows Gromouv-completion-rel u u

(proof)

We can now prove that we indeed have an equivalence relation.

lemma part-equivp- Gromov-completion-rel:
part-equivp Gromov-completion-rel

(proof)

We can now define the Gromov completion of a Gromov hyperbolic space,
considering either sequences converging to a point on the boundary, or se-
quences converging inside the space, and quotienting by the natural equiv-
alence relation.

quotient-type (overloaded) ‘a Gromouv-completion =
nat = ('a:: Gromouv-hyperbolic-space)
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/ partial: Gromov-completion-rel
(proof)

The Gromov completion contains is made of a copy of the original space,
and new points forming the Gromov boundary.

definition to-Gromov-completion::('a:: Gromov-hyperbolic-space) = 'a Gromouv-completion
where to-Gromov-completion © = abs-Gromov-completion (An. x)

definition from-Gromov-completion::('a:: Gromov-hyperbolic-space) Gromov-completion
= 'a
where from-Gromov-completion = inv to-Gromov-completion

definition Gromov-boundary::('a:: Gromov-hyperbolic-space) Gromou-completion set
where Gromov-boundary = UNIV — range to-Gromov-completion

lemma to-Gromov-completion-ing:
inj to-Gromouv-completion

(proof)

lemma from-to-Gromou-completion [simp):
from-Gromov-completion (to-Gromov-completion z) = x

(proof)

lemma to-from-Gromov-completion:
assumes z ¢ Gromov-boundary
shows to-Gromou-completion (from-Gromov-completion z) = x

{(proof)

lemma not-in-Gromov-boundary:
assumes z ¢ Gromov-boundary
shows Ja. © = to-Gromov-completion a

(proof)

lemma not-in-Gromov-boundary’ [simp):
to-Gromov-completion © ¢ Gromov-boundary

(proof)

lemma abs-Gromov-completion-in-Gromouv-boundary [simp]:
assumes Gromov-converging-at-boundary u
shows abs-Gromov-completion u € Gromouv-boundary

(proof)

lemma rep-Gromov-completion-to-Gromov-completion [simp]:
rep-Gromov-completion (to-Gromov-completion y) = (An. y)

(proof)

To distinguish the case of points inside the space or in the boundary, we
introduce the following case distinction.

lemma Gromov-completion-cases [case-names to-Gromov-completion boundary, cases
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type: Gromov-completion]:
(Az. z = to-Gromov-completion x = P) = (z € Gromov-boundary = P)
= P

(proof)

15.2 Extending the original distance and the original Gro-
mov product to the completion

In this subsection, we extend the Gromov product to the boundary, by taking
limits along sequences tending to the point in the boundary. This does not
converge, but it does up to 9, so for definiteness we use a liminf over all
sequences tending to the boundary point — one interest of this definition is
that the extended Gromov product still satisfies the hyperbolicity inequality.
One difficulty is that this extended Gromov product can take infinite values
(it does so exactly on the pair (z,z) where x is in the boundary), so we
should define this product in extended nonnegative reals.

We also extend the original distance, by 400 on the boundary. This is not a
really interesting function, but it will be instrumental below. Again, this ex-
tended Gromov distance (not to be mistaken for the genuine distance we will
construct later on on the completion) takes values in extended nonnegative
reals.

Since the extended Gromov product and the extension of the original dis-
tance both take values in [0, +00], it may seem natural to define them in
ennreal. This is the choice that was made in a previous implementation, but
it turns out that one keeps computing with these numbers, writing down
inequalities and subtractions. ennreal is ill suited for this kind of computa-
tions, as it only works well with additions. Hence, the implementation was
switched to ereal, where proofs are indeed much smoother.

To define the extended Gromov product, one takes a limit of the Gromov
product along any sequence, as it does not depend up to § on the chosen
sequence. However, if one wants to keep the exact inequality that defines
hyperbolicity, but at all points, then using an infimum is the best choice.

definition extended-Gromov-product-at::(’a:: Gromov-hyperbolic-space) = 'a Gro-
mov-completion = 'a Gromov-completion = ereal

where extended-Gromov-product-at e x y = Inf {liminf (An. ereal( Gromov-product-at
e (umn) (vn))) |uv. abs-Gromov-completion u = x A abs-Gromov-completion v =
y A Gromov-completion-rel u u A\ Gromov-completion-rel v v}

definition eztended-Gromov-distance::('a:: Gromov-hyperbolic-space) Gromov-completion
= 'a Gromov-completion = ereal
where eztended-Gromov-distance z y =
(if € Gromov-boundary V y € Gromov-boundary then oo
else ereal (dist (inv to-Gromov-completion x) (inv to-Gromov-completion

v)))

91



The extended distance and the extended Gromov product are invariant un-
der exchange of the points, readily from the definition.

lemma extended-Gromouv-distance-commute:
extended-Gromov-distance x y = extended-Gromov-distance y x

(proof)

lemma extended-Gromov-product-nonneg [mono-intros, simp]:
0 < extended-Gromov-product-at e T y

(proof)

lemma extended-Gromov-distance-nonneg [mono-intros, simp):
0 < extended-Gromov-distance x y

(proof)

lemma extended-Gromov-product-at-commute:
extended-Gromov-product-at e x y = extended-Gromov-product-at e y

{(proof)

Inside the space, the extended distance and the extended Gromov product
coincide with the original ones.

lemma extended-Gromouv-distance-inside [simp):

extended- Gromov-distance (to-Gromov-completion x) (to-Gromov-completion y)
= dist x y
(proof)

lemma extended-Gromov-product-inside [simp] :
extended-Gromov-product-at e (to-Gromov-completion ) (to-Gromov-completion
y) = Gromov-product-at e z y

(proof)

A point in the boundary is at infinite extended distance of everyone, includ-
ing itself: the extended distance is obtained by taking the supremum along
all sequences tending to this point, so even for one single point one can take
two sequences tending to it at different speeds, which results in an infinite
extended distance.

lemma extended-Gromou-distance-PInf-boundary [simp]:
assumes z € Gromov-boundary
shows extended-Gromov-distance x y = oo extended-Gromouv-distance y x = 0o

(proof)

By construction, the extended distance still satisfies the triangle inequality.

lemma extended-Gromov-distance-triangle [mono-intros|:

extended-Gromov-distance © z < extended-Gromov-distance x y + extended- Gromov-distance
Yz
(proof)

The extended Gromov product can be bounded by the extended distance,
just like inside the space.
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lemma extended-Gromov-product-le-dist [mono-intros|:
extended-Gromov-product-at e x y < extended-Gromov-distance (to-Gromov-completion
e) x

(proof)

lemma extended-Gromov-product-le-dist’ [mono-intros]:
extended-Gromov-product-at e x y < extended-Gromov-distance (to-Gromov-completion

e)y
(proof)

The Gromov product inside the space varies by at most the distance when
one varies one of the points. We will need the same statement for the
extended Gromov product. The proof is done using this inequality inside
the space, and passing to the limit.

lemma extended-Gromov-product-at-diff3 [mono-intros):
extended-Gromov-product-at e © y < extended-Gromov-product-at e © z + ex-
tended-Gromov-distance y z

(proof)

lemma extended-Gromov-product-at-diff2 [mono-intros|:
extended-Gromov-product-at e © y < extended-Gromov-product-at e z y + ex-
tended-Gromov-distance x z

(proof)

lemma extended-Gromov-product-at-diff1 [mono-intros]:
extended-Gromouv-product-at e z y < extended-Gromov-product-at f z y + dist e f

(proof)

A point in the Gromov boundary is represented by a sequence tending to
infinity and converging in the Gromov boundary, essentially by definition.

lemma Gromov-boundary-abs-converging:

assumes x € Gromov-boundary abs-Gromov-completion u = x Gromov-completion-rel
U U

shows Gromov-converging-at-boundary u

(proof)

lemma Gromov-boundary-rep-converging:
assumes z € Gromov-boundary
shows Gromouv-converging-at-boundary (rep-Gromouv-completion x)

(proof)

We can characterize the points for which the Gromov product is infinite:
they have to be the same point, at infinity. This is essentially equivalent to
the definition of the Gromov completion, but there is some boilerplate to
get the proof working.

lemma Gromouv-boundary-eztended-product-PInf [simp):
extended-Gromov-product-at e x y = 0o «— (x € Gromov-boundary N y = x)

(proof)
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As for points inside the space, we deduce that the extended Gromov product
between x and x is just the extended distance to the basepoint.

lemma ezxtended-Gromov-product-e-z-z [simp):

extended-Gromov-product-at e x x = extended-Gromov-distance (to-Gromov-completion
e) x
(proof)

The inequality in terms of Gromov products characterizing hyperbolicity
extends in the same form to the Gromov completion, by taking limits of this
inequality in the space.
lemma extended-hyperb-ineq [mono-intros|:

extended- Gromov-product-at (e::'a:: Gromov-hyperbolic-space) x z >

min (extended-Gromov-product-at e = y) (extended-Gromov-product-at e y z)

— deltaG(TYPE('a))
(proof)

lemma extended-hyperb-ineq’ [mono-intros|:
extended-Gromov-product-at (e::’a:: Gromov-hyperbolic-space) © z + deltaG(TYPE('a))
>
min (extended-Gromov-product-at e x y) (extended-Gromov-product-at e y z)
(proof )

lemma zero-le-ereal [mono-intros|:
assumes ( < z
shows 0 < ereal z

(proof)

lemma extended-hyperb-ineq-4-points’ [mono-intros):

Min {extended-Gromov-product-at (e::'a:: Gromov-hyperbolic-space) x y, extended-Gromov-product-at
e y z, extended-Gromov-product-at e z t} < extended-Gromov-product-at e x t + 2
* deltaG(TYPE('a))

(proof)

lemma extended-hyperb-ineq-4-points [mono-intros|:

Min {extended-Gromov-product-at (e::'a:: Gromov-hyperbolic-space) x y, extended-Gromov-product-at
ey z, extended-Gromov-product-at e zt} — 2 % deltaG(TYPE('a)) < extended-Gromov-product-at
ext

(proof)

15.3 Construction of the distance on the Gromov completion

We want now to define the natural topology of the Gromov completion.
Most textbooks first define a topology on 0X, or sometimes on X UJX, and
then much later a distance on X (but they never do the tedious verification
that the distance defines the same topology as the topology defined before).
I have not seen one textbook defining a distance on X U 0X. It turns out
that one can in fact define a distance on X U dX, whose restriction to d.X
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is the usual distance on the Gromov boundary, and define the topology of
X U O0X using it. For formalization purposes, this is very convenient as
topologies defined with distances are automatically nice and tractable (no
need to check separation axioms, for instance). The price to pay is that,
once we have defined the distance, we have to check that it defines the right
notion of convergence one expects.

What we would like to take for the distance is d(z,y) = e~(@¥)e, where o
is some fixed basepoint in the space. However, this does not behave like a
distance at small scales (but it is essentially the right thing at large scales),
and it does not really satisfy the triangle inequality. However, e ¢(*:¥)o
almost satisfies the triangle inequality if € is small enough, i.e., it is equivalent
to a function satisfying the triangle inequality. This gives a genuine distance
on the boundary, but not inside the space as it does not vanish on pairs (z, ).

A third try would be to take d(z,y) = min(d(z,y),e @¥e) where d is the
natural extension of d to the Gromov completion (it is infinite if = or y
belongs to the boundary). However, we can not prove that it is equivalent
to a distance.

Finally, it works with d(z,y) =< min(d(x,y)"/2,e~@¥)o This is what we
will prove below. To construct the distance, we use the results proved in
the locale Turn_into_distance. For this, we need to check that our quasi-
distance satisfies a weird version of the triangular inequality.

All this construction depends on a basepoint, that we fix arbitrarily once
and for all.

definition epsilonG::(’a:: Gromov-hyperbolic-space) itself = real
where epsilonG - = In 2 / (24 2xdeltaG(TYPE('a)))

definition basepoint::'a
where basepoint = (SOME a. True)

lemma constant-in-extended-predist-pos [simp, mono-intros|:
epsilonG(TYPE('a:: Gromov-hyperbolic-space)) > 0
epsilonG(TYPE('a:: Gromov-hyperbolic-space)) > 0
ennreal (epsilonG(TYPE('a))) * top = top

(proof)

definition extended-predist::(‘a:: Gromov-hyperbolic-space) Gromov-completion =
'a Gromov-completion = real
where extended-predist  y = real-of-ereal (min (esqrt (extended-Gromov-distance

T y))
v)))

(eexp (— epsilonG(TYPE('a)) * extended-Gromouv-product-at basepoint x

lemma extended-predist-ereal:
ereal (extended-predist x (y::('a:: Gromov-hyperbolic-space) Gromov-completion))
= min (esqrt (extended-Gromov-distance x y))
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(eexp (— epsilonG(TYPE('a)) * extended-Gromov-product-at basepoint

Y))
(proof)

lemma extended-predist-nonneg [simp, mono-intros|:
extended-predist x y > 0

(proof)

lemma extended-predist-commute:
extended-predist © y = extended-predist y x

(proof)

lemma extended-predist-self0 [simp]:
extended-predist t y = 0 ¢— z =y

(proof)

lemma extended-predist-lel [simp, mono-intros]:
extended-predist x y < 1

(proof)

lemma extended-predist-weak-triangle:
extended-predist © z < sqrt 2 x maz (extended-predist © y) (extended-predist y z)

(proof)

instantiation Gromov-completion :: (Gromouv-hyperbolic-space) metric-space
begin

definition dist-Gromov-completion::('a:: Gromov-hyperbolic-space) Gromov-completion
= 'a Gromov-completion = real
where dist-Gromov-completion = turn-into-distance extended-predist

To define a metric space in the current library of Isabelle/HOL, one should
also introduce a uniformity structure and a topology, as follows (they are
prescribed by the distance):

definition uniformity-Gromouv-completion::(('a Gromov-completion) x (‘a Gromov-completion))
filter
where uniformity-Gromov-completion = (INF ec{0 <..}. principal {(z, y). dist

zy < e})

definition open-Gromov-completion :: 'a Gromov-completion set = bool
where open-Gromov-completion U = (Vz€U. eventually (A(z', y). ' =2 — y
€ U) uniformity)

instance (proof)
end

The only relevant property of the distance on the Gromov completion is
that it is comparable to the minimum of (the square root of) the extended
distance, and the exponential of minus the Gromov product. The precise for-
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mula we use to define it is just an implementation detail, in a sense. We sum-
marize these properties in the next theorem. From this point on, we will only
use this, and never come back to the definition based on extended_predist
and turn_into_distance.

theorem Gromouv-completion-dist-comparison [mono-intros]:
fixes z y::('a:: Gromov-hyperbolic-space) Gromouv-completion
shows ereal(dist z y) < esqrt(extended-Gromov-distance x y)
ereal(dist z y) < eexp (— epsilonG(TYPE('a)) x extended-Gromov-product-at
basepoint x y)
min (esqrt(extended-Gromov-distance x y)) (eexp (— epsilonG(TYPE('a))
extended-Gromov-product-at basepoint x y)) < 2 x ereal(dist x y)

(proof)

lemma Gromov-completion-dist-le-1 [simp, mono-intros):
fixes z y::('a:: Gromov-hyperbolic-space) Gromouv-completion
shows dist x y < 1

(proof)

To avoid computations with exponentials, the following lemma is very con-
venient. It asserts that if x is close enough to infinity, and y is close enough
to x, then the Gromov product between x and y is large.

lemma large-Gromov-product-approx:

assumes (M::ereal) < 0o

shows3eD.e>0AD<ooANVay. distzy < e — extended-Gromov-distance
x (to-Gromov-completion basepoint) > D — extended-Gromov-product-at base-
point x y > M)
(proof)

On the other hand, far away from infinity, it is equivalent to control the
extended Gromov distance or the new distance on the space.

lemma inside- Gromouv-distance-approx:
assumes C < (oo::ereal)
shows Je > 0. Vz y. extended-Gromov-distance (to-Gromov-completion base-
point) z < C — distxzy < e
— esqrt(extended-Gromov-distance x y) < 2 * ereal(dist x y)
(proof)

15.4 Characterizing convergence in the Gromov boundary

The convergence of sequences in the Gromov boundary can be characterized,
essentially by definition: sequences tend to a point at infinity iff the Gromov
product with this point tends to infinity, while sequences tend to a point
inside iff the extended distance tends to 0. In both cases, it is just a matter
of unfolding the definition of the distance, and see which one of the two
terms (exponential of minus the Gromov product, or extended distance)
realizes the minimum. We have constructed the distance essentially so that
this property is satisfied.
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We could also have defined first the topology, satisfying these conditions,
but then we would have had to check that it coincides with the topology
that the distance defines, so it seems more economical to proceed in this
way.
lemma Gromov-completion-boundary-limit:

assumes z € Gromov-boundary

shows (v —— z) F' <— ((An. extended-Gromov-product-at basepoint (u n) x)
—— ) F

(proof)

lemma extended-Gromov-product-tendsto-PInf-a-b:
assumes ((An. estended-Gromov-product-at a (v n) (v n)) — o) F
shows ((An. extended-Gromov-product-at b (u n) (v n)) — o0) F

{(proof)

lemma Gromov-completion-inside-limit:
assumes z ¢ Gromov-boundary
shows (v —— z) F +— ((An. extended-Gromov-distance (u n) ) —— 0) F

(proof)

lemma to-Gromov-completion-lim [simp, tendsto-intros):

((An. to-Gromov-completion (u n)) —— to-Gromov-completion a) F +— (u
—a) F
(proof)

Now, we can also come back to our original definition of the completion,
where points on the boundary correspond to equivalence classes of sequences
whose mutual Gromov product tends to infinity. We show that this is com-
patible with our topology: the sequences that are in the equivalence class of a
point on the boundary are exactly the sequences that converge to this point.
This is also a direct consequence of the definitions, although the proof re-
quires some unfolding (and playing with the hyperbolicity inequality several
times).

First, we show that a sequence in the equivalence class of = converges to x.

lemma Gromouv-completion-converge-to-boundary-aux:
assumes z € Gromov-boundary abs-Gromov-completion v = x Gromov-completion-rel
v
shows (An. extended-Gromov-product-at basepoint (to-Gromov-completion (v n))
) —— 00
(proof)

Then, we prove the converse and therefore the equivalence.

lemma Gromouv-completion-converge-to-boundary:

assumes z € Gromov-boundary

shows ((An. to-Gromov-completion (un)) —— x) +— (Gromov-completion-rel
u u A abs-Gromov-completion u = )
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(proof)

In particular, it follows that a sequence which is Gromov_converging_at_boundary
is indeed converging to a point on the boundary, the equivalence class of this
sequence.

lemma Gromouv-converging-at-boundary-converges:
assumes Gromouv-converging-at-boundary u
shows 3z € Gromov-boundary. (An. to-Gromouv-completion (u n)) —— x

(proof)

lemma Gromov-converging-at-boundary-converges':
assumes Gromov-converging-at-boundary u
shows convergent (An. to-Gromov-completion (u n))

(proof)

lemma lim-imp-Gromouv-converging-at-boundary:
fixes u:inat = 'a:: Gromov-hyperbolic-space
assumes (An. to-Gromov-completion (u n)) —— z & € Gromov-boundary
shows Gromov-converging-at-boundary u

(proof)

If two sequences tend to the same point at infinity, then their Gromov prod-
uct tends to infinity.
lemma same-limit-imp- Gromov-product-tendsto-infinity:
assumes z € Gromov-boundary
(An. to-Gromov-completion (u n)) —— 2
(An. to-Gromov-completion (v n)) —— z
shows IN.Vn > N.Vm > N. Gromov-product-at a (u n) (vm) > C

(proof)

An admissible sequence converges in the Gromov boundary, to the point it
defines. This follows from the definition of the topology in the two cases,
inner and boundary.

lemma abs-Gromov-completion-limit:

assumes Gromov-completion-rel u u
shows (An. to-Gromov-completion (u n)) —— abs-Gromov-completion u

(proof)

In particular, a point in the Gromov boundary is the limit of its represen-
tative sequence in the space.

lemma rep-Gromouv-completion-limit:
(An. to-Gromov-completion (rep-Gromov-completion  n)) —— x

(proof)
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15.5 Continuity properties of the extended Gromov product
and distance

We have defined our extended Gromov product in terms of sequences satisfy-
ing the equivalence relation. However, we would like to avoid this definition
as much as possible, and express things in terms of the topology of the space.
Hence, we reformulate this definition in topological terms, first when one of
the two points is inside and the other one is on the boundary, then for all
cases, and then we come back to the case where one point is inside, removing
the assumption that the other one is on the boundary.

lemma extended-Gromov-product-inside-boundary-aux:
assumes y € Gromov-boundary

shows extended-Gromouv-product-at e (to-Gromouv-completion z) y = Inf {liminf
(An. ereal( Gromov-product-at e z (v n))) |v. (An. to-Gromov-completion (v n))
— y}
(proof)

lemma extended-Gromou-product-boundary-inside-aux:

assumes y € Gromouv-boundary

shows extended-Gromov-product-at e y (to-Gromov-completion x) = Inf {liminf
(An. ereal( Gromov-product-at e (v n) z)) |v. (An. to-Gromov-completion (v n))
— y}
(proof)

lemma extended- Gromov-product-at-topological:
extended-Gromov-product-at e x y = Inf {liminf (An. ereal( Gromov-product-at e
(un) (vn))) |uv. (An. to-Gromouv-completion (un)) —— x A (An. to-Gromov-completion
(vn)) — y}
(proof )

lemma extended-Gromov-product-inside-boundary:
extended-Gromov-product-at e (to-Gromov-completion x) y = Inf {liminf (An.
ereal( Gromov-product-at e © (v n))) |v. (An. to-Gromov-completion (v n)) ——

y}
(proof)

lemma extended-Gromov-product-boundary-inside:
extended-Gromov-product-at e y (to-Gromouv-completion z) = Inf {liminf (An.
ereal( Gromov-product-at e (v n) z)) |v. (An. to-Gromov-completion (v n)) ——

y}
(proof)

Now, we compare the extended Gromov product to a sequence of Gromov
products for converging sequences. As the extended Gromov product is
defined as an Inf of limings, it is clearly smaller than the liminf. More
interestingly, it is also of the order of magnitude of the limsup, for whatever
sequence one uses. In other words, it is canonically defined, up to 26.

lemma extended-Gromov-product-le-liminf:
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assumes (An. to-Gromov-completion (u n)) —— i
(An. to-Gromov-completion (v n)) —— eta
shows liminf (An. Gromov-product-at e (u n) (vn)) > extended-Gromov-product-at
e zi eta

(proof)

lemma limsup-le-extended- Gromov-product-inside:

assumes (An. to-Gromov-completion (vn)) —— (eta::(‘a:: Gromov-hyperbolic-space)
Gromov-completion)

shows limsup (An. Gromov-product-at e x (v n)) < extended-Gromov-product-at
e (to-Gromov-completion z) eta + deltaG(TYPE('a))

(proof)

lemma limsup-le-extended-Gromov-product-inside’:

assumes (An. to-Gromov-completion (v n)) —— (eta::(‘a:: Gromov-hyperbolic-space)
Gromov-completion)

shows limsup (An. Gromov-product-at e (v n) z) < extended-Gromov-product-at
e eta (to-Gromov-completion z) + deltaG(TYPE('a))

(proof)

lemma limsup-le-extended-Gromov-product:
assumes (An. to-Gromouv-completion (un)) —— (zi::("a:: Gromov-hyperbolic-space)
Gromov-completion)
(An. to-Gromov-completion (v n)) —— eta
shows limsup (An. Gromov-product-at e (un) (vn)) < extended-Gromov-product-at
e zi eta + 2 x deltaG(TYPE('a))

(proof)

One can then extend to the boundary the fact that (y, 2), +(z, 2), = d(z,y),
up to a constant §, by taking this identity inside and passing to the limit.

lemma extended-Gromov-product-add-le:
extended-Gromov-product-at x xi (to-Gromov-completion y) + extended-Gromov-product-at
y zi (to-Gromov-completion x) < dist x y

(proof)

lemma extended-Gromouv-product-add-ge:

extended- Gromov-product-at (z::'a:: Gromov-hyperbolic-space) zi (to-Gromouv-completion
y) + extended-Gromov-product-at y xzi (to-Gromov-completion ) > dist x y —
deltaG(TYPE('a))

(proof)

If one perturbs a sequence inside the space by a bounded distance, one does
not change the limit on the boundary.
lemma Gromov-converging-at-boundary-bounded-perturbation:

assumes (An. to-Gromov-completion (u n)) —— «
x € Gromov-boundary
An. dist (un) (vn) < C
shows (An. to-Gromov-completion (v n)) —— «
(proof)
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We prove that the extended Gromov distance is a continuous function of one
variable, by separating the different cases at infinity and inside the space.
Note that it is not a continuous function of both variables: if u,, is inside the
space but tends to a point = in the boundary, then the extended Gromov
distance between u,, and u,, is 0, but for the limit it is oco.

lemma extended-Gromov-distance-continuous:
continuous-on UNIV (\y. extended-Gromov-distance x y)

(proof)

lemma extended-Gromov-distance-continuous':
continuous-on UNIV (Az. extended-Gromov-distance x y)

(proof)

15.6 Topology of the Gromov boundary

We deduce the basic fact that the original space is open in the Gromov
completion from the continuity of the extended distance.

lemma to-Gromov-completion-range-open:
open (range to-Gromouv-completion)

(proof)

lemma Gromov-boundary-closed:
closed Gromov-boundary

(proof)

The original space is also dense in its Gromov completion, as all points at
infinity are by definition limits of some sequence in the space.

lemma to-Gromov-completion-range-dense [simp):
closure (range to-Gromov-completion) = UNIV

(proof)

lemma to-Gromov-completion-homeomorphism:
homeomorphism-on UNIV to-Gromov-completion

(proof)

lemma to-Gromov-completion-continuous:
continuous-on UNIV to-Gromou-completion

{(proof)

lemma from-Gromov-completion-continuous:
homeomorphism-on (range to-Gromov-completion) from-Gromouv-completion
continuous-on (range to-Gromov-completion) from-Gromov-completion
NAz::('a:: Gromov-hyperbolic-space) Gromou-completion. x € range to-Gromov-completion
= continuous (at x) from-Gromouv-completion

(proof)

The Gromov boundary is always complete. Indeed, consider a Cauchy se-
quence u, in the boundary, and approximate well enough wu,, by a point v,
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inside. Then the sequence v,, is Gromov converging at infinity (the respec-
tive Gromov products tend to infinity essentially by definition), and its limit
point is the limit of the original sequence wu.

proposition Gromov-boundary-complete:
complete Gromov-boundary

(proof)

When the initial space is complete, then the whole Gromov completion is
also complete: for Cauchy sequences tending to the Gromov boundary, then
the convergence is proved as in the completeness of the boundary above.
For Cauchy sequences that remain bounded, the convergence is reduced to
the convergence inside the original space, which holds by assumption.

proposition Gromov-completion-complete:
assumes complete (UNIV::'a:: Gromov-hyperbolic-space set)
shows complete (UNIV::'a Gromov-completion set)

(proof)

instance Gromouv-completion::({ Gromov-hyperbolic-space, complete-space}) com-
plete-space
(proof )

When the original space is proper, i.e., closed balls are compact, and geodesic,
then the Gromov completion (and therefore the Gromov boundary) are com-
pact. The idea to extract a convergent subsequence of a sequence u,, in the
boundary is to take the point v, at distance 71" along a geodesic tending to
the point u, on the boundary, where T is fixed and large. The points v,, live
in a bounded subset of the space, hence they have a convergent subsequence
Vj(n)- It follows that u;,) is almost converging, up to an error that tends to
0 when T tends to infinity. By a diagonal argument, we obtain a convergent
subsequence of u,,.

As we have already proved that the space is complete, there is a shortcut
to the above argument, avoiding subsequences and diagonal argument alto-
gether. Indeed, in a complete space it suffices to show that for any € > 0 it
is covered by finitely many balls of radius € to get the compactness. This
is what we do in the following proof, although the argument is precisely
modelled on the first proof we have explained.

theorem Gromouv-completion-compact:
assumes proper (UNIV::’a:: Gromov-hyperbolic-space-geodesic set)
shows compact (UNIV::'a Gromov-completion set)

(proof)

If the inner space is second countable, so is its completion, as the former is
dense in the latter.

instance Gromou-completion::({ Gromov-hyperbolic-space, second-countable-topology})
second-countable-topology

103



(proof)
The same follows readily for the Polish space property.

instance metric-completion::({ Gromouv-hyperbolic-space, polish-space}) polish-space
(proof)

15.7 The Gromov completion of the real line.

We show in the paragraph that the Gromov completion of the real line is
obtained by adding one point at 400 and one point at —oo. In other words,
it coincides with ereal.

To show this, we have to understand which sequences of reals are Gromov-
converging to the boundary. We show in the next lemma that they are
exactly the sequences that converge to —oo or to +oo.

lemma real-Gromov-converging-to-boundary:

fixes u:nat = real
shows Gromouv-converging-at-boundary u +— ((u —— 00) V (4 —— — 0))

(proof)

There is one single point at infinity in the Gromov completion of reals, i.e.,
two sequences tending to infinity are equivalent.

lemma real-Gromov-completion-rel-PInf:
fixes u v::nat = real

assumes u 0o v 00
shows Gromov-completion-rel u v
(proof)

There is one single point at minus infinity in the Gromov completion of
reals, i.e., two sequences tending to minus infinity are equivalent.

lemma real-Gromov-completion-rel-MInf:
fixes u v::nat = real
assumes y ———— —00 ¥ ———— —00
shows Gromov-completion-rel u v

(proof)

It follows from the two lemmas above that the Gromov completion of reals
is obtained by adding one single point at infinity and one single point at
minus infinity. Hence, it is in bijection with the extended reals.
function to-real-Gromov-completion::ereal = real Gromov-completion

where to-real-Gromov-completion (ereal 1) = to-Gromov-completion r

| to-real-Gromov-completion (c0) = abs-Gromov-completion (An. n)

| to-real-Gromouv-completion (—oo) = abs-Gromov-completion (An. —n)

(proof)

termination (proof)

To prove the bijectivity, we prove by hand injectivity and surjectivity using
the above lemmas.
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lemma bij-to-real- Gromov-completion:
bij to-real-Gromov-completion

(proof)

Next, we prove that we have a homeomorphism. By compactness of ereals, it
suffices to show that the inclusion map is continuous everywhere. It would be
a pain to distinguish all the time if points are at infinity or not, we rather use
a criterion saying that it suffices to prove sequential continuity for sequences
taking values in a dense subset of the space, here we take the reals. Hence,
it suffices to show that if a sequence of reals v,, converges to a limit a in the
extended reals, then the image of v, in the Gromov completion (which is an
inner point) converges to the point corresponding to a. We treat separately
the cases a € R, a = 0o and a = —oo. In the first case, everything is trivial.
In the other cases, we have characterized in general sequences inside the
space that converge to a boundary point, as sequences in the equivalence
class defining this boundary point. Since we have described explicitly these
equivalence classes in the case of the Gromov completion of the reals (they
are respectively the sequences tending to oo and to —o0), the result follows
readily without any additional computation.

proposition homeo-to-real-Gromov-completion:
homeomorphism-on UNIV to-real-Gromouv-completion

(proof)

end

theory Boundary-Fxtension
imports Morse-Gromov-Theorem Gromov-Boundary
begin

16 Extension of quasi-isometries to the boundary

In this section, we show that a quasi-isometry between geodesic Gromov
hyperbolic spaces extends to a homeomorphism between their boundaries.

Applying a quasi-isometry on a geodesic triangle essentially sends it to a
geodesic triangle, in hyperbolic spaces. It follows that, up to an additive
constant, the Gromov product, which is the distance to the center of the
triangle, is multiplied by a constant between A\~' and A when one applies
a quasi-isometry. This argument is given in the next lemma. This implies
that two points are close in the Gromov completion if and only if their
images are also close in the Gromov completion of the image. Essentially,
this lemma implies that a quasi-isometry has a continuous extension to the
Gromov boundary, which is a homeomorphism.

lemma Gromouv-product-at-quasi-isometry:
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fixes f::'a:: Gromov-hyperbolic-space-geodesic = 'b:: Gromov-hyperbolic-space-geodesic
assumes lambda C—quasi-isometry f
shows Gromov-product-at (f ) (fy) (f 2) > Gromov-product-at z y z / lambda
— 187 x lambda™2 * (C + deltaG(TYPE('a)) + deltaG(TYPE('b)))
Gromov-product-at (f z) (f y) (f z) < lambda * Gromov-product-at z y z +
187  lambda™2 x (C + deltaG(TYPE('a)) + deltaG(TYPE('b)))

(proof)

lemma Gromov-converging-at-infinity-quasi-isometry:
fixes f::'a:: Gromov-hyperbolic-space-geodesic = 'b:: Gromov-hyperbolic-space-geodesic
assumes lambda C—quasi-isometry f
shows Gromov-converging-at-boundary (An. f (un)) <— Gromov-converging-at-boundary
U

(proof)

We define the extension to the completion of a function f : X — Y where X
and Y are geodesic Gromov-hyperbolic spaces, as a function from X U 0X
to YUOJY, as follows. If z is in the space, we just use f(x) (with the suitable
coercions for the definition). Otherwise, we wish to define f(z) as the limit
of f(uy,) for all sequences tending to x. For the definition, we use one such
sequence chosen arbitrarily (this is the role of rep_Gromov_completion x
below, it is indeed a sequence in the space tending to x), and we use the
limit of f(u,) (if it exists, otherwise the framework will choose some point
for us but it will make no sense whatsoever).

For quasi-isometries, we have indeed that f(u,) converges if u,, converges to
a boundary point, by Gromov_converging at_infinity_quasi_isometry,
so this definition is meaningful. Moreover, continuity of the extension fol-
lows readily from this (modulo a suitable criterion for continuity based on se-
quences convergence, established in continuous_at_extension_sequentially’).

definition Gromov-extension::('a:: Gromov-hyperbolic-space = 'b:: Gromov-hyperbolic-space)
= ('a Gromov-completion = 'b Gromov-completion)
where Gromov-extension fz = (if x € Gromov-boundary then lim (to-Gromov-completion
o f o (rep-Gromov-completion x))
else to-Gromov-completion (f (from-Gromov-completion
z)))

lemma Gromov-extension-inside-space [simp]:
Gromov-extension [ (to-Gromov-completion x) = to-Gromov-completion (f x)

(proof)

lemma Gromouv-extension-id [simp]:
Gromov-extension (id::’a:: Gromov-hyperbolic-space = 'a) = id
Gromov-eztension (Az::'a. z) = (Az. z)

(proof)

The Gromov extension of a quasi-isometric map sends the boundary to the
boundary.

106



lemma Gromov-extension-quasi-isometry-boundary-to-boundary:
fixes f::'a:: Gromov-hyperbolic-space-geodesic = 'b:: Gromov-hyperbolic-space-geodesic
assumes lambda C—quasi-isometry f
x € Gromov-boundary
shows (Gromov-extension f) x € Gromov-boundary

(proof)

If the original function is continuous somewhere inside the space, then its
Gromov extension is continuous at the corresponding point inside the com-
pletion. This is clear as the original space is open in the Gromov completion,
but the proof requires to go back and forth between one space and the other.

lemma Gromov-extension-continuous-inside:

fixes f::’a:: Gromov-hyperbolic-space = 'b:: Gromouv-hyperbolic-space

assumes continuous (at x within S) f

shows continuous (at (to-Gromov-completion ) within (to-Gromov-completion‘S))
(Gromov-extension f)

(proof)

The extension to the boundary of a quasi-isometry is continuous. This is
a nontrivial statement, but it follows readily from the fact we have already
proved that sequences converging at the boundary are mapped to sequences
converging to the boundary. The proof is expressed using a convenient
continuity criterion for which we only need to control what happens for
sequences inside the space.

proposition Gromov-eztension-continuous:
fixes f::'a:: Gromov-hyperbolic-space-geodesic = 'b:: Gromov-hyperbolic-space-geodesic
assumes lambda C—quasi-isometry f
x € Gromov-boundary
shows continuous (at ) (Gromov-extension f)

(proof)

Combining the two previous statements on continuity inside the space and
continuity at the boundary, we deduce that a continuous quasi-isometry
extends to a continuous map everywhere.

proposition Gromov-extension-continuous-everywhere:
fixes f::'a:: Gromov-hyperbolic-space-geodesic = 'b:: Gromov-hyperbolic-space-geodesic
assumes lambda C—quasi-isometry f
continuous-on UNIV f
shows continuous-on UNIV (Gromov-extension f)

(proof)

The extension to the boundary is functorial on the category of quasi-isometries,
i.e., the composition of extensions is the extension of the composition. This
is clear inside the space, and it follows from the continuity at boundary
points.

lemma Gromouv-extension-composition:
fixes f::'a:: Gromov-hyperbolic-space-geodesic = 'b:: Gromov-hyperbolic-space-geodesic
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and g::'b:: Gromov-hyperbolic-space-geodesic = 'c:: Gromov-hyperbolic-space-geodesic
assumes lambda C—quasi-isometry f

mu D—quasi-isometry g
shows Gromov-extension (g o f) = Gromov-extension g o Gromov-extension f

(proof)

Now, we turn to the same kind of statement, but for homeomorphisms. We
claim that if a quasi-isometry f is a homeomorphism on a subset X of the
space, then its extension is a homeomorphism on X union the boundary
of the space. For the proof, we have to show that a sequence u,, tends to
a point z if and only if f(uy) tends to f(x). We separate the cases z in
the boundary, and z inside the space. For x in the boundary, we use a
homeomorphism criterion expressed solely in terms of sequences converging
to the boundary, for which we already know everything. For x in the space,
the proof is straightforward, but tedious. We argue that eventually wu,, is in
the space for the direct implication, or f(u,) is in the space for the second
implication, and then we use that f is a homeomorphism inside the space
to conclude.

lemma Gromouv-extension-homeomorphism:
fixes f::'a:: Gromov-hyperbolic-space-geodesic = 'b:: Gromov-hyperbolic-space-geodesic
assumes lambda C—quasi-isometry f
homeomorphism-on X f
shows homeomorphism-on (to-Gromov-completion‘X U Gromov-boundary) (Gromov-extension

)
(proof)

In particular, it follows that the extension to the boundary of a quasi-
isometry is always a homeomorphism, regardless of the continuity properties
of the original map.

proposition Gromov-extension-boundary-homeomorphism:
fixes f::'a:: Gromov-hyperbolic-space-geodesic = 'b:: Gromov-hyperbolic-space-geodesic
assumes lambda C—quasi-isometry f
shows homeomorphism-on Gromov-boundary (Gromov-extension f)

(proof)

When the quasi-isometric embedding is a quasi-isometric isomorphism, i.e.,
it is onto up to a bounded distance C, then its Gromov extension is onto on
the boundary. Indeed, a point in the image boundary is a limit of a sequence
inside the space. Perturbing by a bounded distance (which does not change
the asymptotic behavior), it is the limit of a sequence inside the image of f.
Then the preimage under f of this sequence does converge, and its limit is
sent by the extension on the original point, proving the surjectivity.
lemma Gromov-extension-onto:

fixes f::'a:: Gromov-hyperbolic-space-geodesic = 'b:: Gromov-hyperbolic-space-geodesic

assumes lambda C—quasi-isometry-between UNIV UNIV f

y € Gromov-boundary
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shows 3z € Gromov-boundary. Gromov-extension fx =y
(proof )

lemma Gromov-extension-onto”:
fixes f::'a:: Gromov-hyperbolic-space-geodesic = 'b:: Gromov-hyperbolic-space-geodesic
assumes lambda C—quasi-isometry-between UNIV UNIV f
shows (Gromov-extension f)‘Gromov-boundary = Gromov-boundary

(proof)

Finally, we obtain that a quasi-isometry between two Gromov hyperbolic
spaces induces a homeomorphism of their boundaries.
theorem Gromov-boundaries-homeomorphic:
fixes f::'a:: Gromov-hyperbolic-space-geodesic = 'b:: Gromov-hyperbolic-space-geodesic
assumes lambda C—quasi-isometry-between UNIV UNIV f
shows (Gromov-boundary::'a Gromouv-completion set) homeomorphic (Gromov-boundary::'b
Gromov-completion set)

(proof)

17 Extensions of isometries to the boundary

The results of the previous section can be improved for isometries, as there
is no need for geodesicity any more. We follow the same proofs as in the
previous section

An isometry preserves the Gromov product.

lemma Gromov-product-isometry:
assumes isometry-on UNIV f
shows Gromouv-product-at (f ) (f y) (f z) = Gromov-product-at x y z

(proof)
An isometry preserves convergence at infinity.
lemma Gromov-converging-at-infinity-isometry:
fixes f::'a:: Gromov-hyperbolic-space = 'b:: Gromouv-hyperbolic-space
assumes isometry-on UNIV f

shows Gromov-converging-at-boundary (An. f (un)) <— Gromov-converging-at-boundary
u

(proof)

The Gromov extension of an isometry sends the boundary to the boundary.
lemma Gromov-extension-isometry-boundary-to-boundary:
fixes f::’a:: Gromov-hyperbolic-space = 'b:: Gromouv-hyperbolic-space
assumes isometry-on UNIV f
x € Gromov-boundary
shows (Gromov-extension f) x € Gromov-boundary

(proof)

The Gromov extension of an isometry is a homeomorphism. (We copy the
proof for quasi-isometries, with some simplifications.)
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lemma Gromov-extension-isometry-homeomorphism:
fixes f::'a:: Gromov-hyperbolic-space = 'b:: Gromov-hyperbolic-space
assumes isometry-on UNIV f
shows homeomorphism-on UNIV (Gromov-extension f)

(proof)

The composition of the Gromov extension of two isometries is the Gromov
extension of the composition.

lemma Gromov-extension-isometry-on-composition:
assumes isometry-on UNIV f
isometry-on UNIV g
shows Gromouv-extension (g o f) = Gromov-extension g o Gromov-extension f

(proof)

We specialize the previous results to bijective isometries, as this is the setting
where they will be used most of the time.

lemma Gromov-extension-isometry:
assumes isometry f
shows homeomorphism-on UNIV (Gromov-ezstension f)
continuous-on UNIV (Gromov-extension f)
continuous (at x) (Gromov-extension f)

(proof)

lemma Gromov-extension-isometry-composition:
assumes isometry f
isometry g
shows Gromov-extension (g o f) = Gromov-extension g o Gromov-extension f

(proof)

lemma Gromouv-extension-isometry-iterates:
fixes f::'a = ('a:: Gromouv-hyperbolic-space)
assumes isometry f
shows Gromov-extension (f~ n) = (Gromov-extension f) " n

(proof)

lemma Gromouv-extension-isometry-inv:
assumes isometry f
shows inv (Gromouv-extension f) = Gromov-extension (inv f)
bij (Gromov-extension f)

(proof)

We will especially use fixed points on the boundary. We note that if a point
is fixed by (the Gromov extension of) a map, then it is fixed by (the Gromov
extension of) its inverse.

lemma Gromov-extension-inv-fixed-point:

assumes isometry (f::'a:: Gromov-hyperbolic-space = 'a) Gromov-extension f i
=i

shows Gromov-extension (inv f) zi = xi
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(proof)

The extended Gromov product is invariant under isometries. This follows
readily from the definition, but still the proof is not fully automatic, unfor-
tunately.

lemma Gromouv-extension-preserves-extended-Gromov-product:

assumes isometry f

shows extended-Gromov-product-at (f z) (Gromov-extension f xi) (Gromov-extension
f eta) = extended-Gromov-product-at © xi eta

(proof)

end

18 Busemann functions

theory Busemann-Function
imports Boundary-Eztension Ergodic- Theory.Fekete
begin

The Busemann function Be¢(x,y) measures the difference d(&,x) — d(&,y),
where £ is a point at infinity and x and y are inside a Gromov hyperbolic
space. This is not well defined in this way, as we are subtracting two infini-
ties, but one can make sense of this difference by considering the behavior
along a sequence tending to £&. The limit may depend on the sequence, but
as usual in Gromov hyperbolic spaces it only depends on the sequence up
to a uniform constant. Thus, we may define the Busemann function using
for instance the supremum of the limsup over all possible sequences — other
choices would give rise to equivalent definitions, up to some multiple of .

definition Busemann-function-at::('a:: Gromov-hyperbolic-space) Gromov-completion
= 'a = 'a = real

where Busemann-function-at zi x y = real-of-ereal (

Sup {limsup (An. ereal(dist z (un) — dist y (un))) |u. (An. to-Gromov-completion

Since limsups are only defined for complete orders currently, the definition
goes through ereals, and we go back to reals afterwards. However, there is
no real difficulty here, as eveything is bounded above and below (by d(z,y)
and —d(z,y) respectively.

lemma Busemann-function-ereal:

ereal( Busemann-function-at xi x y) = Sup {limsup (An. ereal(dist © (u n) — dist
y (un))) |u. (An. to-Gromov-completion (u n)) —— zi}

(proof)

If £ is not at infinity, then the Busemann function is simply the difference
of the distances.

lemma Busemann-function-inner:
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Busemann-function-at (to-Gromov-completion z) xy = dist v z — dist y z
(proof)

The Busemann function measured at the same points vanishes.

lemma Busemann-function-zz [simp]:
Busemann-function-at zi x x = 0

(proof)

Perturbing the points gives rise to a variation of the Busemann function
bounded by the size of the variations. This is obvious for inner Busemann
functions, and everything passes readily to the limit.

lemma Busemann-function-mono [mono-intros|:
Busemann-function-at zi © y < Busemann-function-at xi x’ vy’ + dist z x’ + dist

yy'
(proof )

In particular, it follows that the Busemann function B¢(x,y) is bounded in
absolute value by d(z,y).

lemma Busemann-function-le-dist [mono-intros]:
abs( Busemann-function-at xi x y) < dist z y

(proof)

lemma Busemann-function-Lipschitz [mono-intros|:

abs(Busemann-function-at i x y — Busemann-function-at zi z' y') < dist x x’ +
dist y y'
(proof)

By the very definition of the Busemann function, the difference of distance
functions is bounded above by the Busemann function when one converges
to &.

lemma Busemann-function-limsup:

assumes (An. to-Gromouv-completion (u n)) —— xi
shows limsup (An. dist x (u n) — dist y (u n)) < Busemann-function-at i z y

(proof)

There is also a corresponding bound below, but with the loss of a constant.
This follows from the hyperbolicity of the space and a simple computation.

lemma Busemann-function-liminf:

assumes (An. to-Gromov-completion (u n)) —— i

shows Busemann-function-at zi x y < liminf (An. dist (z::'a:: Gromov-hyperbolic-space)
(un) — disty (un)) + 2 x deltaG(TYPE('a))
(proof )

To avoid formulating things in terms of liminf and limsup on ereal, the
following formulation of the two previous lemmas is useful.

lemma Busemann-function-inside-approz:
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assumes e > (0::real) (An. to-Gromouv-completion (t n::'a:: Gromov-hyperbolic-space))
— T
shows eventually (An. Busemann-function-at (to-Gromov-completion (t n)) = y
< Busemann-function-at xi © y + e
A Busemann-function-at (to-Gromov-completion (t n)) x y > Buse-
mann-function-at zi x y — 2 * deltaG(TYPE('a)) — e) sequentially
(proof)

The Busemann function is essentially a morphism, i.e., it should satisfy
Be¢(z,2) = Be(x,y) + Be(y, 2), as it is defined as a difference of distances.
This is not exactly the case as there is a choice in the definition, but it is
the case up to a uniform constant, as we show in the next few lemmas. One
says that it is a quasi-morphism.
lemma Busemann-function-triangle [mono-intros|:

Busemann-function-at i x z < Busemann-function-at i x y + Busemann-function-at
Iy z

(proof)

lemma Busemann-function-zy-yz [mono-intros|:
Busemann-function-at xi x y + Busemann-function-at zi y (z::'a:: Gromov-hyperbolic-space)
< 2 x deltaG(TYPE('a))

(proof)

theorem Busemann-function-quasi-morphism [mono-intros|:

| Busemann-function-at xi x y + Busemann-function-at i y z — Busemann-function-at
zi z (z::'a:: Gromov-hyperbolic-space)| < 2 x deltaG(TYPE('a))
(proof)

The extended Gromov product can be bounded from below by the Busemann
function.
lemma Busemann-function-le-Gromov-product:
— Busemann-function-at xi y /2 < extended-Gromov-product-at x xi (to-Gromouv-completion

y)
(proof )

It follows that, if the Busemann function tends to minus infinity, i.e., the
distance to £ becomes smaller and smaller in a suitable sense, then the
sequence is converging to £. This is only an implication: one can have
sequences tending to & for which the Busemann function does not tend to
—o0o. This is in fact a stronger notion of convergence, sometimes called radial
convergence.
proposition Busemann-function-minus-infinity-imp-convergent:

assumes ((An. Busemann-function-at zi (u n) ) —— —o0) F

shows ((An. to-Gromov-completion (u n)) —— zi) F

(proof)

Busemann functions are invariant under isometries. This is trivial as ev-
erything is defined in terms of the distance, but the definition in terms of
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supremum and limsups makes the proof tedious.

lemma Busemann-function-isometry:

assumes isometry f

shows Busemann-function-at ( Gromov-extension f zi) (fz) (f y) = Busemann-function-at
Ty

(proof)

lemma dist-le-maz-Busemann-functions [mono-intros|:
assumes zi # eta
shows dist x (y::'a:: Gromov-hyperbolic-space) < 2 * real-of-ereal (extended-Gromov-product-at
y xi eta)
+ mazx (Busemann-function-at zi x y) (Busemann-function-at eta x y) +
2 % deltaG(TYPE('a))

(proof)

lemma dist-minus-Busemann-maz-ineq:

dist (z::'a:: Gromov-hyperbolic-space) z — Busemann-function-at zi z © < max
(dist x y — Busemann-function-at i y x) (dist y z — Busemann-function-at zi z y
— 2 % Busemann-function-at zi y x) + 8 * deltaG(TYPE('a))

(proof)

end

19 Classification of isometries on a Gromov hy-
perbolic space

theory Isometries-Classification
imports Gromov-Boundary Busemann-Function
begin

Isometries of Gromov hyperbolic spaces are of three types:

« Elliptic ones, for which orbits are bounded.

e Parabolic ones, which are not elliptic and have exactly one fixed point
at infinity.

e Loxodromic ones, which are not elliptic and have exactly two fixed
points at infinity.

In this file, we show that all isometries are indeed of this form, and give
further properties for each type.

For the definition, we use another characterization in terms of stable trans-
lation length: for isometries which are not elliptic, then they are parabolic
if the stable translation length is 0, loxodromic if it is positive. This gives
a very efficient definition, and it is clear from this definition that the three
categories of isometries are disjoint. All the work is then to go from this
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general definition to the dynamical properties in terms of fixed points on
the boundary.

19.1 The translation length

The translation length is the minimal translation distance of an isometry.
The stable translation length is the limit of the translation length of f"
divided by n.

definition translation-length::((‘a::metric-space) = 'a) = real
where translation-length f = Inf {dist x (f z)|z. True}

lemma translation-length-nonneg [simp, mono-intros:
translation-length f > 0

(proof)

lemma translation-length-le [mono-intros]:
translation-length f < dist = (f x)
(proof)

definition stable-translation-length::(('a::metric-space) = 'a) = real
where stable-translation-length f = Inf {translation-length (f~n)/n |n. n > 0}

lemma stable-translation-length-nonneg [simp):
stable-translation-length f > 0

(proof)

lemma stable-translation-length-le-translation-length [mono-intros|:
n * stable-translation-length f < translation-length (f~n)

(proof)

lemma semicontraction-iterates:
fixes f:('a::metric-space) = 'a
assumes I —Ilipschitz-on UNIV f
shows 1—lipschitz-on UNIV (f""n)

(proof)

If f is a semicontraction, then its stable translation length is the limit of
d(z, f"x)/n for any n. While it is obvious that the liminf of this quantity
is at least the stable translation length (which is defined as an inf over all
points and all times), the opposite inequality is more interesting. One may
find a point y and a time k for which d(y, f*y)/k is very close to the stable
translation length. By subadditivity of the sequence n — f(y, f"y) and
Fekete’s Lemma, it follows that, for any large n, then d(y, f"y)/n is also
very close to the stable translation length. Since this is equal to d(z, f"z)/n
up to +2d(x,y)/n, the result follows.

proposition stable-translation-length-as-pointwise-limit:
assumes I —Ilipschitz-on UNIV f
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shows (An. dist x ((f~"n) z)/n) —— stable-translation-length f
(proof)

It follows from the previous proposition that the stable translation length is
also the limit of the renormalized translation length of f™.

proposition stable-translation-length-as-limit:
assumes [ —Ilipschitz-on UNIV f
shows (An. translation-length (f~ n) / n) ——— stable-translation-length f

(proof)

lemma stable-translation-length-inv:
assumes isometry f
shows stable-translation-length (inv f) = stable-translation-length f

(proof)

19.2 The strength of an isometry at a fixed point at infinity

The additive strength of an isometry at a fixed point at infinity is the asymp-

totic average every point is moved towards the fixed point at each step. It

is measured using the Busemann function.

definition additive-strength::('a:: Gromouv-hyperbolic-space = 'a) = ('a Gromov-completion)
= real

where additive-strength f xi = lim (An. (Busemann-function-at zi ((f~n) base-
point) basepoint)/n)

For additivity reasons, as the Busemann function is a quasi-morphism, the
additive strength measures the deplacement even at finite times. It is also
uniform in terms of the basepoint. This shows that an isometry sends
horoballs centered at a fixed point to horoballs, up to a uniformly bounded
error depending only on 4.

lemma Busemann-function-eq-additive-strength:

assumes isometry [ Gromov-extension f xi = xi

shows |Busemann-function-at zi ((f~"n) z) (z::'a:: Gromov-hyperbolic-space) —
real n x additive-strength f xi| < 2 x deltaG(TYPE('a))

(proof)

lemma additive-strength-as-limit [tendsto-intros]:

assumes isometry [ Gromov-extension f xi = xi

shows (An. Busemann-function-at zi ((f~ n) z) z/n) —— additive-strength f
Tl

(proof)

The additive strength measures the amount of displacement towards a fixed
point at infinity. Therefore, the distance from x to f™x is at least n times
the additive strength, but one might think that it might be larger, if there
is displacement along the horospheres. It turns out that this is not the case:
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the displacement along the horospheres is at most logarithmic (this is a clas-
sical property of parabolic isometries in hyperbolic spaces), and in fact it is
bounded for loxodromic elements. We prove here that the growth is at most
logarithmic in all cases, using a small computation based on the hyperbolic-
ity inequality, expressed in Lemma dist_minus_Busemann_max_ineq above.
This lemma will be used below to show that the translation length is the
absolute value of the additive strength.

lemma dist-le-additive-strength:

assumes isometry (f::'a:: Gromov-hyperbolic-space = 'a) Gromov-extension f i
= zi additive-strength fzi > 0n > 1

shows dist z ((f~ n) z) < dist z (f ) + real n x additive-strength f xi + ceiling
(log 2 n) x 16 * deltaG(TYPE('a))
{proof)

The strength of the inverse of a map is the opposite of the strength of the
map.
lemma additive-strength-inv:

assumes isometry (f::'a:: Gromov-hyperbolic-space = 'a) Gromov-extension f i
=

shows additive-strength (inv f) zi = — additive-strength f xi

(proof)

We will now prove that the stable translation length of an isometry is given
by the absolute value of its strength at any fixed point. We start with the
case where the strength is nonnegative, and then reduce to this case by
considering the map or its inverse.

lemma stable-translation-length-eq-additive-strength-auz:

assumes isometry (f::'a:: Gromov-hyperbolic-space = 'a) Gromov-extension f i
= zi additive-strength f xzi > 0

shows stable-translation-length f = additive-strength f xi
(proof)

lemma stable-translation-length-eq-additive-strength:

assumes isometry (f::'a:: Gromov-hyperbolic-space = 'a) Gromov-extension f i
= i

shows stable-translation-length f = abs(additive-strength f i)
(proof)

19.3 Elliptic isometries

Elliptic isometries are the simplest ones: they have bounded orbits.

definition elliptic-isometry::('a:: Gromov-hyperbolic-space = 'a) = bool
where elliptic-isometry f = (isometry f A (VY z. bounded {(f~"n) z|n. True}))

lemma elliptic-isometryD:
assumes elliptic-isometry f
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shows bounded {(f~"n) z |n. True}
isometry f

(proof)

lemma elliptic-isometryl [introl:
assumes bounded {(f~n) z |n. True}
isometry f
shows elliptic-isometry f

(proof)
The inverse of an elliptic isometry is an elliptic isometry.

lemma elliptic-isometry-inv:
assumes elliptic-isometry f
shows elliptic-isometry (inv f)

(proof)

The inverse of a bijective map is an elliptic isometry if and only if the original
map is.
lemma elliptic-isometry-inv-iff:

assumes bij f

shows elliptic-isometry (inv f) «— elliptic-isometry f

(proof)

The identity is an elliptic isometry.

lemma elliptic-isometry-id:
elliptic-isometry id

(proof)

The translation length of an elliptic isometry is 0.

lemma elliptic-isometry-stable-translation-length:
assumes elliptic-isometry f
shows stable-translation-length f = 0

{proof)
If an isometry has a fixed point, then it is elliptic.

lemma isometry-with-fixed-point-is-elliptic:
assumes isometry f fx = x
shows elliptic-isometry f

(proof)

19.4 Parabolic and loxodromic isometries
An isometry is parabolic if it is not elliptic and if its translation length
vanishes.

definition parabolic-isometry::('a:: Gromouv-hyperbolic-space = 'a) = bool
where parabolic-isometry f = (isometry f A —elliptic-isometry f A stable-translation-length

f=0)
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An isometry is loxodromic if it is not elliptic and if its translation length is
nonzero.

definition lozodromic-isometry::('a:: Gromov-hyperbolic-space = 'a) = bool
where lozodromic-isometry f = (isometry f N\ —elliptic-isometry f A stable-translation-length

f#0)

The main features of such isometries are expressed in terms of their fixed
points at infinity. We define them now, but proving that the definitions
make sense will take some work.

definition neutral-fized-point::('a:: Gromouv-hyperbolic-space = 'a) = 'a Gromov-completion
where neutral-fized-point f = (SOME zi. xi € Gromov-boundary A Gromov-extension
fzi = xi N additive-strength f zi = 0)

definition attracting-fized-point::('a:: Gromov-hyperbolic-space = 'a) = 'a Gro-
mov-completion

where attracting-fived-point f = (SOME zi. zi € Gromov-boundary N Gro-
mov-extension f xi = xi N\ additive-strength f xi < 0)

definition repelling-fized-point::('a:: Gromov-hyperbolic-space = 'a) = 'a Gromov-completion
where repelling-fized-point f = (SOME zi. zi € Gromov-boundary N Gromov-extension
fai = zi N\ additive-strength f xi > 0)

lemma parabolic-isometryD:
assumes parabolic-isometry f
shows isometry f
—bounded {(f~"n) z|n. True}
stable-translation-length f = 0
—elliptic-isometry f
(proof)

lemma parabolic-isometryl:
assumes isometry f
—bounded {(f~"n) z|n. True}
stable-translation-length f = 0
shows parabolic-isometry f

(proof)

lemma lozodromic-isometryD:
assumes lozodromic-isometry f
shows isometry f
—bounded {(f~"n) z|n. True}
stable-translation-length f > 0
—elliptic-isometry f

(proof)

To have a loxodromic isometry, it suffices to know that the stable translation
length is nonzero, as elliptic isometries have zero translation length.
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lemma lozodromic-isometryl:
assumes isometry f
stable-translation-length f # 0
shows loxodromic-isometry f

(proof)

Any isometry is elliptic, or parabolic, or loxodromic, and these possibilities
are mutually exclusive.

lemma elliptic-or-parabolic-or-loxodromic:
assumes isometry f
shows elliptic-isometry f V parabolic-isometry f V loxodromic-isometry f

(proof)

lemma elliptic-imp-not-parabolic-loxodromic:
assumes elliptic-isometry f
shows —parabolic-isometry f
=lozodromic-isometry f

(proof)

lemma parabolic-imp-not-elliptic-loxodromic:
assumes parabolic-isometry f
shows —elliptic-isometry f
—loxodromic-isometry f

(proof)

lemma lozodromic-imp-not-elliptic-parabolic:
assumes lozodromic-isometry f
shows —elliptic-isometry f
—parabolic-isometry f

(proof)

The inverse of a parabolic isometry is parabolic.

lemma parabolic-isometry-inv:
assumes parabolic-isometry f
shows parabolic-isometry (inv f)

(proof)

The inverse of a loxodromic isometry is loxodromic.

lemma lozodromic-isometry-inv:
assumes lozodromic-isometry f
shows lozodromic-isometry (inv f)

(proof)

We will now prove that an isometry which is not elliptic has a fixed point at
infinity. This is very easy if the space is proper (ensuring that the Gromov
completion is compact), but in fact this holds in general. One constructs it
by considering a sequence r, such that f™0 tends to infinity, and addition-
ally d(f'0,0) < d(f"0,0) for | < r,: this implies the convergence at infinity
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of f™0, by an argument based on a Gromov product computation — and
the limit is a fixed point. Moreover, it has nonpositive additive strength,
essentially by construction.

lemma high-scores:
fixes u::nat = real and i:nat and C::real
assumes —(bdd-above (range u))
shows dn. (Vi<n.ul<un)Aun>CAn>i
(proof)

lemma isometry-not-elliptic-has-attracting-fized-point:
assumes isometry f
—(elliptic-isometry f)
shows Jzi € Gromov-boundary. Gromov-extension f xi = zi A\ additive-strength
fxzi <0
(proof)

Applying the previous result to the inverse map, we deduce that there is
also a fixed point with nonnegative strength.
lemma isometry-not-elliptic-has-repelling-fixed-point:

assumes isometry f

—(elliptic-isometry f)

shows Jzi € Gromov-boundary. Gromov-extension f xi = zi N\ additive-strength
fxi>0
(proof)

19.4.1 Parabolic isometries

We show that a parabolic isometry has (at least) one neutral fixed point at
infinity.
lemma parabolic-fixed-point:
assumes parabolic-isometry f
shows neutral-fized-point f € Gromov-boundary
Gromov-extension [ (neutral-fixed-point f) = neutral-fized-point f
additive-strength [ (neutral-fized-point ) = 0
(proof)

Parabolic isometries have exactly one fixed point, the neutral fixed point at
infinity. The proof goes as follows: if it has another fixed point, then the
orbit of a basepoint would stay on the horospheres centered at both fixed
points. But the intersection of two horospheres based at different points
is a a bounded set. Hence, the map has a bounded orbit, and is therefore
elliptic.

theorem parabolic-unique-fired-point:
assumes parabolic-isometry f
shows Gromov-extension f xi = xi +— xi = neutral-fized-point f

{(proof)
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When one iterates a parabolic isometry, the distance to the starting point
can grow at most logarithmically.

lemma parabolic-logarithmic-growth:
assumes parabolic-isometry (f::'a:: Gromov-hyperbolic-space = 'a) n > 1
shows dist x ((f~n) z) < distx (fz) + ceiling (log 2n) * 16 % deltaG(TYPE('a))
(proof)

It follows that there is no parabolic isometry in trees, since the formula
in the previous lemma shows that there is no orbit growth as § = 0, and
therefore orbits are bounded, contradicting the parabolicity of the isometry.

lemma tree-no-parabolic-isometry:
assumes isometry (f::'a:: Gromov-hyperbolic-space-0 = 'a)
shows elliptic-isometry f V loxodromic-isometry f

(proof)

19.4.2 Loxodromic isometries

A loxodromic isometry has (at least) two fixed points at infinity, one at-
tracting and one repelling. We have already constructed fixed points with
nonnegative and nonpositive strengths. Since the strength is nonzero (its
absolute value is the stable translation length), then these fixed points cor-
respond to what we want.

lemma lozodromic-attracting-fixed-point:
assumes lozodromic-isometry f
shows attracting-fixed-point f € Gromov-boundary
Gromov-extension f (attracting-fized-point ) = attracting-fized-point f
additive-strength [ (attracting-fized-point f) < 0

(proof)

lemma lozodromic-repelling-fixed-point:
assumes lozodromic-isometry f
shows repelling-fized-point f € Gromov-boundary
Gromov-extension [ (repelling-fized-point f) = repelling-fized-point f
additive-strength [ (repelling-fized-point f) > 0
(proof)

The attracting and repelling fixed points of a loxodromic isometry are dis-
tinct — precisely since one is attracting and the other is repelling.
lemma attracting-fived-point-neq-repelling-fized-point:
assumes lozodromic-isometry f
shows attracting-fixed-point f # repelling-fized-point f
(proof)

The attracting fixed point of a loxodromic isometry is indeed attracting.
Moreover, the convergence is uniform away from the repelling fixed point.
This is expressed in the following proposition, where neighborhoods of the
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repelling and attracting fixed points are given by the property that the
Gromov product with the fixed point is large.

The proof goes as follows. First, the Busemann function with respect to the
fixed points at infinity evolves like the strength. Therefore, f™e tends to the
repulsive fixed point in negative time, and to the attracting one in positive
time. Consider now a general point = with (§7,z). < K. This means that
the geodesics from e to z and £~ diverge before time K. For large n, since
f e is close to £, we also get the inequality (f~"e,z). < K. Applying
f™ and using the invariance of the Gromov product under isometries yields
(e, f'x) sne < K. But this Gromov product is equal to d(e, f™e)—(f"e, f"x).
(this is a general property of Gromov products). In particular, (f"e, f"x) >
d(e, f*e) — K, and moreover d(e, f"e) is large. Since f"e is close to £, it
follows that f™z is also close to £, as desired.

The real proof requires some more care as everything should be done in
ereal, and moreover every inequality is only true up to some multiple of 4.
But everything works in the way just described above.

proposition loxodromic-attracting-fized-point-attracts-uniformly:
assumes lozodromic-isometry f
shows I N.Vn > N.Vz. extended-Gromov-product-at basepoint © (repelling-fixed-point
f) < ereal K
— extended-Gromov-product-at basepoint ((( Gromov-extension )™ n) x)
(attracting-fixed-point f) > ereal M
(proof)

We deduce pointwise convergence from the previous result.

lemma lozodromic-attracting-fixed-point-attracts:
assumes lozodromic-isometry f
xi # repelling-fived-point f
shows (An. ((Gromov-extension )™ n) xi) —— attracting-fized-point f

(proof)

Finally, we show that a loxodromic isometry has exactly two fixed points, its
attracting and repelling fixed points defined above. Indeed, we already know
that these points are fixed. It remains to see that there is no other fixed
point. But a fixed point which is not the repelling one is both stationary
and attracted to the attracting fixed point by the previous lemma, hence it
has to coincide with the attracting fixed point.

theorem lozodromic-unique-fized-points:

assumes lozodromic-isometry f

shows Gromov-extension f xi = xi <— i = attracting-fized-point f V xi =
repelling-fized-point f
(proof)

end
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