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Abstract
A geodesic metric space is Gromov hyperbolic if all its geodesic

triangles are thin, i.e., every side is contained in a fixed thickening
of the two other sides. While this definition looks innocuous, it has
proved extremely important and versatile in modern geometry since
its introduction by Gromov. We formalize the basic classical proper-
ties of Gromov hyperbolic spaces, notably the Morse lemma asserting
that quasigeodesics are close to geodesics, the invariance of hyperbolic-
ity under quasi-isometries, we define and study the Gromov boundary
and its associated distance, and prove that a quasi-isometry between
Gromov hyperbolic spaces extends to a homeomorphism of the bound-
aries. We also classify the isometries of hyperbolic spaces into elliptic,
parabolic and loxodromic ones, both in terms of translation length and
of fixed points at infinity. We also prove a less classical theorem, by
Bonk and Schramm, asserting that a Gromov hyperbolic space embeds
isometrically in a geodesic Gromov-hyperbolic space. As the original
proof uses a transfinite sequence of Cauchy completions, this is an
interesting formalization exercise. Along the way, we introduce basic
material on isometries, quasi-isometries, geodesic spaces, the Hausdorff
distance, the Cauchy completion of a metric space, and the exponential
on extended real numbers.
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1 Additions to the library
theory Library-Complements

imports HOL−Analysis.Analysis HOL−Cardinals.Cardinal-Order-Relation
begin

1.1 Mono intros

We have a lot of (large) inequalities to prove. It is very convenient to have
a set of introduction rules for this purpose (a lot should be added to it, I
have put here all the ones I needed).
The typical use case is when one wants to prove some inequality, say exp(x∗
x) ≤ y+exp(1+ z ∗ z+ y), assuming y ≥ 0 and 0 ≤ x ≤ z. One would write
it has

have "0 + \exp(0 + x * x + 0) < = y + \exp(1 + z * z + y)"
using ‘y > = 0‘ ‘x < = z‘ by (intro mono_intros)

When the left and right hand terms are written in completely analogous ways
as above, then the introduction rules (that contain monotonicity of addition,
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of the exponential, and so on) reduce this to comparison of elementary terms
in the formula. This is a very naive strategy, that fails in many situations,
but that is very efficient when used correctly.
named-theorems mono-intros structural introduction rules to prove inequalities
declare le-imp-neg-le [mono-intros]
declare add-left-mono [mono-intros]
declare add-right-mono [mono-intros]
declare add-strict-left-mono [mono-intros]
declare add-strict-right-mono [mono-intros]
declare add-mono [mono-intros]
declare add-less-le-mono [mono-intros]
declare diff-right-mono [mono-intros]
declare diff-left-mono [mono-intros]
declare diff-mono [mono-intros]
declare mult-left-mono [mono-intros]
declare mult-right-mono [mono-intros]
declare mult-mono [mono-intros]
declare max.mono [mono-intros]
declare min.mono [mono-intros]
declare power-mono [mono-intros]
declare ln-ge-zero [mono-intros]
declare ln-le-minus-one [mono-intros]
declare ennreal-minus-mono [mono-intros]
declare ennreal-leI [mono-intros]
declare e2ennreal-mono [mono-intros]
declare enn2ereal-nonneg [mono-intros]
declare zero-le [mono-intros]
declare top-greatest [mono-intros]
declare bot-least [mono-intros]
declare dist-triangle [mono-intros]
declare dist-triangle2 [mono-intros]
declare dist-triangle3 [mono-intros]
declare exp-ge-add-one-self [mono-intros]
declare exp-gt-one [mono-intros]
declare exp-less-mono [mono-intros]
declare dist-triangle [mono-intros]
declare abs-triangle-ineq [mono-intros]
declare abs-triangle-ineq2 [mono-intros]
declare abs-triangle-ineq2-sym [mono-intros]
declare abs-triangle-ineq3 [mono-intros]
declare abs-triangle-ineq4 [mono-intros]
declare Liminf-le-Limsup [mono-intros]
declare ereal-liminf-add-mono [mono-intros]
declare le-of-int-ceiling [mono-intros]
declare ereal-minus-mono [mono-intros]
declare infdist-triangle [mono-intros]
declare divide-right-mono [mono-intros]
declare self-le-power [mono-intros]
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lemma ln-le-cancelI [mono-intros]:
assumes (0 ::real) < x x ≤ y
shows ln x ≤ ln y

using assms by auto

lemma exp-le-cancelI [mono-intros]:
assumes x ≤ (y::real)
shows exp x ≤ exp y

using assms by simp

lemma mult-ge1-mono [mono-intros]:
assumes a ≥ (0 :: ′a::linordered-idom) b ≥ 1
shows a ≤ a ∗ b a ≤ b ∗ a

using assms mult-le-cancel-left1 mult-le-cancel-right1 by force+

A few convexity inequalities we will need later on.
lemma xy-le-uxx-vyy [mono-intros]:

assumes u > 0 u ∗ v = (1 ::real)
shows x ∗ y ≤ u ∗ x^2/2 + v ∗ y^2/2

proof −
have v > 0 using assms
by (metis (full-types) dual-order .strict-implies-order le-less-linear mult-nonneg-nonpos

not-one-le-zero)
then have ∗: sqrt u ∗ sqrt v = 1

using assms by (metis real-sqrt-mult real-sqrt-one)
have (sqrt u ∗ x − sqrt v ∗ y)^2 ≥ 0 by auto
then have u ∗ x^2 + v ∗ y^2 − 2 ∗ 1 ∗ x ∗ y ≥ 0

unfolding power2-eq-square ∗[symmetric] using ‹u > 0 › ‹v > 0 › by (auto
simp add: algebra-simps)

then show ?thesis by (auto simp add: algebra-simps divide-simps)
qed

lemma xy-le-xx-yy [mono-intros]:
x ∗ y ≤ x^2/2 + y^2/2 for x y::real

using xy-le-uxx-vyy[of 1 1 ] by auto

lemma ln-squared-bound [mono-intros]:
(ln x)^2 ≤ 2 ∗ x − 2 if x ≥ 1 for x::real

proof −
define f where f = (λx::real. 2 ∗ x − 2 − ln x ∗ ln x)
have ∗: DERIV f x :> 2 − 2 ∗ ln x / x if x > 0 for x::real

unfolding f-def using that by (auto intro!: derivative-eq-intros)
have f 1 ≤ f x if x ≥ 1 for x
proof (rule DERIV-nonneg-imp-nondecreasing[OF that])

fix t::real assume t ≥ 1
show ∃ y. (f has-real-derivative y) (at t) ∧ 0 ≤ y

apply (rule exI [of - 2 − 2 ∗ ln t / t])
using ∗[of t] ‹t ≥ 1 › by (auto simp add: divide-simps ln-bound)

qed
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then show ?thesis unfolding f-def power2-eq-square using that by auto
qed

In the next lemma, the assumptions are too strong (negative numbers less
than −1 also work well to have a square larger than 1), but in practice one
proves inequalities with nonnegative numbers, so this version is really the
useful one for mono_intros.
lemma mult-ge1-powers [mono-intros]:

assumes a ≥ (1 :: ′a::linordered-idom)
shows 1 ≤ a ∗ a 1 ≤ a ∗ a ∗ a 1 ≤ a ∗ a ∗ a ∗ a

using assms by (meson assms dual-order .trans mult-ge1-mono(1 ) zero-le-one)+

lemmas [mono-intros] = ln-bound

lemma mono-cSup:
fixes f :: ′a::conditionally-complete-lattice ⇒ ′b::conditionally-complete-lattice
assumes bdd-above A A 6= {} mono f
shows Sup (f‘A) ≤ f (Sup A)

by (metis assms(1 ) assms(2 ) assms(3 ) cSUP-least cSup-upper mono-def )

lemma mono-cSup-bij:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::conditionally-complete-linorder
assumes bdd-above A A 6= {} mono f bij f
shows Sup (f‘A) = f (Sup A)

proof −
have Sup ((inv f )‘(f‘A)) ≤ (inv f ) (Sup (f‘A))

apply (rule mono-cSup)
using mono-inv[OF assms(3 ) assms(4 )] assms(2 ) bdd-above-image-mono[OF

assms(3 ) assms(1 )] by auto
then have f (Sup ((inv f )‘(f‘A))) ≤ Sup (f‘A)
using assms mono-def by (metis (no-types, opaque-lifting) bij-betw-imp-surj-on

surj-f-inv-f )
moreover have f (Sup ((inv f )‘(f‘A))) = f (Sup A)

using assms by (simp add: bij-is-inj)
ultimately show ?thesis using mono-cSup[OF assms(1 ) assms(2 ) assms(3 )]

by auto
qed

1.2 More topology

In situations of interest to us later on, convergence is well controlled only
for sequences living in some dense subset of the space (but the limit can
be anywhere). This is enough to establish continuity of the function, if the
target space is well enough separated.
The statement we give below is very general, as we do not assume that
the function is continuous inside the original set S, it will typically only be
continuous at a set T contained in the closure of S. In many applications,
T will be the closure of S, but we are also thinking of the case where one

6



constructs an extension of a function inside a space, to its boundary, and
the behaviour at the boundary is better than inside the space. The example
we have in mind is the extension of a quasi-isometry to the boundary of a
Gromov hyperbolic space.
In the following criterion, we assume that if un inside S converges to a point
at the boundary T , then f(un) converges (where f is some function inside).
Then, we can extend the function f at the boundary, by picking the limit
value of f(un) for some sequence converging to un. Then the lemma asserts
that f is continuous at every point b on the boundary.
The proof is done in two steps:

1. First, if vn is another inside sequence tending to the same point b on
the boundary, then f(vn) converges to the same value as f(un): this
is proved by considering the sequence w equal to u at even times and
to v at odd times, and saying that f(wn) converges. Its limit is equal
to the limit of f(un) and of f(vn), so they have to coincide.

2. Now, consider a general sequence v (in the space or the boundary) con-
verging to b. We want to show that f(vn) tends to f(b). If vn is inside
S, we have already done it in the first step. If it is on the boundary, on
the other hand, we can approximate it by an inside point wn for which
f(wn) is very close to f(vn). Then wn is an inside sequence converging
to b, hence f(wn) converges to f(b) by the first step, and then f(vn)
also converges to f(b). The precise argument is more conveniently
written by contradiction. It requires good separation properties of the
target space.

First, we introduce the material to interpolate between two sequences, one
at even times and the other one at odd times.
definition even-odd-interpolate::(nat ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a)

where even-odd-interpolate u v n = (if even n then u (n div 2 ) else v (n div 2 ))

lemma even-odd-interpolate-compose:
even-odd-interpolate (f o u) (f o v) = f o (even-odd-interpolate u v)
unfolding even-odd-interpolate-def comp-def by auto

lemma even-odd-interpolate-filterlim:
filterlim u F sequentially ∧ filterlim v F sequentially ←→ filterlim (even-odd-interpolate

u v) F sequentially
proof (auto)

assume H : filterlim (even-odd-interpolate u v) F sequentially
define r ::nat ⇒ nat where r = (λn. 2 ∗ n)
have strict-mono r unfolding r-def strict-mono-def by auto
then have filterlim r sequentially sequentially

by (simp add: filterlim-subseq)
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have filterlim (λn. (even-odd-interpolate u v) (r n)) F sequentially
by (rule filterlim-compose[OF H filterlim-subseq[OF ‹strict-mono r›]])

moreover have even-odd-interpolate u v (r n) = u n for n
unfolding r-def even-odd-interpolate-def by auto

ultimately show filterlim u F sequentially by auto
define r ::nat ⇒ nat where r = (λn. 2 ∗ n + 1 )
have strict-mono r unfolding r-def strict-mono-def by auto
then have filterlim r sequentially sequentially

by (simp add: filterlim-subseq)
have filterlim (λn. (even-odd-interpolate u v) (r n)) F sequentially

by (rule filterlim-compose[OF H filterlim-subseq[OF ‹strict-mono r›]])
moreover have even-odd-interpolate u v (r n) = v n for n

unfolding r-def even-odd-interpolate-def by auto
ultimately show filterlim v F sequentially by auto

next
assume H : filterlim u F sequentially filterlim v F sequentially
show filterlim (even-odd-interpolate u v) F sequentially
unfolding filterlim-iff eventually-sequentially proof (auto)

fix P assume ∗: eventually P F
obtain N1 where N1 :

∧
n. n ≥ N1 =⇒ P (u n)

using H (1 ) unfolding filterlim-iff eventually-sequentially using ∗ by auto
obtain N2 where N2 :

∧
n. n ≥ N2 =⇒ P (v n)

using H (2 ) unfolding filterlim-iff eventually-sequentially using ∗ by auto
have P (even-odd-interpolate u v n) if n ≥ 2 ∗ N1 + 2 ∗ N2 for n
proof (cases even n)

case True
have n div 2 ≥ N1 using that by auto
then show ?thesis unfolding even-odd-interpolate-def using True N1 by

auto
next

case False
have n div 2 ≥ N2 using that by auto
then show ?thesis unfolding even-odd-interpolate-def using False N2 by

auto
qed
then show ∃N . ∀n ≥ N . P (even-odd-interpolate u v n) by auto

qed
qed

Then, we prove the continuity criterion for extensions of functions to the
boundary T of a set S. The first assumption is that f(un) converges when
f converges to the boundary, and the second one that the extension of f to
the boundary has been defined using the limit along some sequence tending
to the point under consideration. The following criterion is the most general
one, but this is not the version that is most commonly applied so we use a
prime in its name.
lemma continuous-at-extension-sequentially ′:

fixes f :: ′a::{first-countable-topology, t2-space} ⇒ ′b::t3-space
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assumes b ∈ T∧
u b. (∀n. u n ∈ S) =⇒ b ∈ T =⇒ u −−−−→ b =⇒ convergent (λn. f (u

n)) ∧
b. b ∈ T =⇒ ∃ u. (∀n. u n ∈ S) ∧ u −−−−→ b ∧ ((λn. f (u n)) −−−−→

f b)
shows continuous (at b within (S ∪ T )) f

proof −
have first-step: (λn. f (u n)) −−−−→ f c if

∧
n. u n ∈ S u −−−−→ c c ∈ T for u

c
proof −

obtain v where v:
∧

n. v n ∈ S v −−−−→ c (λn. f (v n)) −−−−→ f c
using assms(3 )[OF ‹c ∈ T ›] by blast

then have A: even-odd-interpolate u v −−−−→ c
unfolding even-odd-interpolate-filterlim[symmetric] using ‹u −−−−→ c› by

auto
moreover have B: ∀n. even-odd-interpolate u v n ∈ S

using ‹
∧

n. u n ∈ S› ‹
∧

n. v n ∈ S› unfolding even-odd-interpolate-def by
auto

have convergent (λn. f (even-odd-interpolate u v n))
by (rule assms(2 )[OF B ‹c ∈ T › A])

then obtain m where (λn. f (even-odd-interpolate u v n)) −−−−→ m
unfolding convergent-def by auto

then have even-odd-interpolate (f o u) (f o v) −−−−→ m
unfolding even-odd-interpolate-compose unfolding comp-def by auto

then have (f o u) −−−−→ m (f o v) −−−−→ m
unfolding even-odd-interpolate-filterlim[symmetric] by auto

then have m = f c using v(3 ) unfolding comp-def using LIMSEQ-unique
by auto

then show ?thesis using ‹(f o u) −−−−→ m› unfolding comp-def by auto
qed
show continuous (at b within (S ∪ T )) f
proof (rule ccontr)

assume ¬ ?thesis
then obtain U where U : open U f b ∈ U ¬(∀ F x in at b within S ∪ T . f x

∈ U )
unfolding continuous-within tendsto-def [where l = f b] using sequen-

tially-imp-eventually-nhds-within by auto
have ∃V W . open V ∧ open W ∧ f b ∈ V ∧ (UNIV − U ) ⊆ W ∧ V ∩ W =

{}
apply (rule t3-space) using U by auto

then obtain V W where VW : open V open W f b ∈ V UNIV − U ⊆ W V
∩ W = {}

by auto

obtain A :: nat ⇒ ′a set where ∗:∧
i. open (A i)∧
i. b ∈ A i∧
F . ∀n. F n ∈ A n =⇒ F −−−−→ b

by (rule first-countable-topology-class.countable-basis) blast

9



with ∗ U (3 ) have ∃F . ∀n. F n ∈ S ∪ T ∧ F n ∈ A n ∧ ¬ (f (F n) ∈ U )
unfolding at-within-def eventually-inf-principal eventually-nhds
by (intro choice) (meson DiffE)

then obtain F where F :
∧

n. F n ∈ S ∪ T
∧

n. F n ∈ A n
∧

n. f (F n) /∈ U
by auto

have ∃ y. y ∈ S ∧ y ∈ A n ∧ f y ∈ W for n
proof (cases F n ∈ S)

case True
show ?thesis apply (rule exI [of - F n]) using F VW True by auto

next
case False
then have F n ∈ T using ‹F n ∈ S ∪ T › by auto
obtain u where u:

∧
p. u p ∈ S u −−−−→ F n (λp. f (u p)) −−−−→ f (F n)

using assms(3 )[OF ‹F n ∈ T ›] by auto
moreover have f (F n) ∈ W using F VW by auto
ultimately have eventually (λp. f (u p) ∈ W ) sequentially

using ‹open W › by (simp add: tendsto-def )
moreover have eventually (λp. u p ∈ A n) sequentially

using ‹F n ∈ A n› u ‹open (A n)› by (simp add: tendsto-def )
ultimately have ∃ p. f (u p) ∈ W ∧ u p ∈ A n

using eventually-False-sequentially eventually-elim2 by blast
then show ?thesis using u(1 ) by auto

qed
then have ∃ u. ∀n. u n ∈ S ∧ u n ∈ A n ∧ f (u n) ∈ W

by (auto intro: choice)
then obtain u where u:

∧
n. u n ∈ S

∧
n. u n ∈ A n

∧
n. f (u n) ∈ W

by blast
then have u −−−−→ b using ∗(3 ) by auto
then have (λn. f (u n)) −−−−→ f b using first-step assms u by auto
then have eventually (λn. f (u n) ∈ V ) sequentially

using VW by (simp add: tendsto-def )
then have ∃n. f (u n) ∈ V

using eventually-False-sequentially eventually-elim2 by blast
then show False

using u(3 ) ‹V ∩ W = {}› by auto
qed

qed

We can specialize the previous statement to the common case where one
already knows the sequential continuity of f along sequences in S converging
to a point in T . This will be the case in most –but not all– applications.
This is a straightforward application of the above criterion.
proposition continuous-at-extension-sequentially:

fixes f :: ′a::{first-countable-topology, t2-space} ⇒ ′b::t3-space
assumes a ∈ T

T ⊆ closure S∧
u b. (∀n. u n ∈ S) =⇒ b ∈ T =⇒ u −−−−→ b =⇒ (λn. f (u n)) −−−−→

f b
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shows continuous (at a within (S ∪ T )) f
apply (rule continuous-at-extension-sequentially ′[OF ‹a ∈ T ›])
using assms(3 ) convergent-def apply blast
by (metis assms(2 ) assms(3 ) closure-sequential subset-iff )

We also give global versions. We can only express the continuity on T , so
this is slightly weaker than the previous statements since we are not saying
anything on inside sequences tending to T – but in cases where T contains
S these statements contain all the information.
lemma continuous-on-extension-sequentially ′:

fixes f :: ′a::{first-countable-topology, t2-space} ⇒ ′b::t3-space
assumes

∧
u b. (∀n. u n ∈ S) =⇒ b ∈ T =⇒ u −−−−→ b =⇒ convergent (λn. f

(u n)) ∧
b. b ∈ T =⇒ ∃ u. (∀n. u n ∈ S) ∧ u −−−−→ b ∧ ((λn. f (u n)) −−−−→

f b)
shows continuous-on T f

unfolding continuous-on-eq-continuous-within apply (auto intro!: continuous-within-subset[of
- S ∪ T f T ])
by (intro continuous-at-extension-sequentially ′[OF - assms], auto)

lemma continuous-on-extension-sequentially:
fixes f :: ′a::{first-countable-topology, t2-space} ⇒ ′b::t3-space
assumes T ⊆ closure S∧

u b. (∀n. u n ∈ S) =⇒ b ∈ T =⇒ u −−−−→ b =⇒ (λn. f (u n)) −−−−→
f b

shows continuous-on T f
unfolding continuous-on-eq-continuous-within apply (auto intro!: continuous-within-subset[of
- S ∪ T f T ])
by (intro continuous-at-extension-sequentially[OF - assms], auto)

1.2.1 Homeomorphisms

A variant around the notion of homeomorphism, which is only expressed in
terms of the function and not of its inverse.
definition homeomorphism-on:: ′a set ⇒ ( ′a::topological-space⇒ ′b::topological-space)
⇒ bool

where homeomorphism-on S f = (∃ g. homeomorphism S (f‘S) f g)

lemma homeomorphism-on-continuous:
assumes homeomorphism-on S f
shows continuous-on S f

using assms unfolding homeomorphism-on-def homeomorphism-def by auto

lemma homeomorphism-on-bij:
assumes homeomorphism-on S f
shows bij-betw f S (f‘S)

using assms unfolding homeomorphism-on-def homeomorphism-def by auto (metis
inj-on-def inj-on-imp-bij-betw)
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lemma homeomorphism-on-homeomorphic:
assumes homeomorphism-on S f
shows S homeomorphic (f‘S)

using assms unfolding homeomorphism-on-def homeomorphic-def by auto

lemma homeomorphism-on-compact:
fixes f :: ′a::topological-space ⇒ ′b::t2-space
assumes continuous-on S f

compact S
inj-on f S

shows homeomorphism-on S f
unfolding homeomorphism-on-def using homeomorphism-compact[OF assms(2 )
assms(1 ) - assms(3 )] by auto

lemma homeomorphism-on-subset:
assumes homeomorphism-on S f

T ⊆ S
shows homeomorphism-on T f

using assms homeomorphism-of-subsets unfolding homeomorphism-on-def by blast

lemma homeomorphism-on-empty [simp]:
homeomorphism-on {} f

unfolding homeomorphism-on-def using homeomorphism-empty[of f ] by auto

lemma homeomorphism-on-cong:
assumes homeomorphism-on X f

X ′ = X
∧

x. x ∈ X =⇒ f ′ x = f x
shows homeomorphism-on X ′ f ′

proof −
obtain g where g:homeomorphism X (f‘X) f g

using assms unfolding homeomorphism-on-def by auto
have homeomorphism X ′ (f ′‘X ′) f ′ g

apply (rule homeomorphism-cong[OF g]) using assms by (auto simp add:
rev-image-eqI )

then show ?thesis
unfolding homeomorphism-on-def by auto

qed

lemma homeomorphism-on-inverse:
fixes f :: ′a::topological-space ⇒ ′b::topological-space
assumes homeomorphism-on X f
shows homeomorphism-on (f‘X) (inv-into X f )

proof −
obtain g where g: homeomorphism X (f‘X) f g

using assms unfolding homeomorphism-on-def by auto
then have g‘f‘X = X

by (simp add: homeomorphism-def )
then have homeomorphism-on (f‘X) g

12



unfolding homeomorphism-on-def using homeomorphism-symD[OF g] by auto
moreover have g x = inv-into X f x if x ∈ f‘X for x
using g that unfolding homeomorphism-def by (auto, metis f-inv-into-f inv-into-into

that)
ultimately show ?thesis

using homeomorphism-on-cong by force
qed

Characterization of homeomorphisms in terms of sequences: a map is a
homeomorphism if and only if it respects convergent sequences.
lemma homeomorphism-on-compose:

assumes homeomorphism-on S f
x ∈ S
eventually (λn. u n ∈ S) F

shows (u −−−→ x) F ←→ ((λn. f (u n)) −−−→ f x) F
proof

assume (u −−−→ x) F
then show ((λn. f (u n)) −−−→ f x) F

using continuous-on-tendsto-compose[OF homeomorphism-on-continuous[OF
assms(1 )] - assms(2 ) assms(3 )] by simp
next

assume ∗: ((λn. f (u n)) −−−→ f x) F
have I : inv-into S f (f y) = y if y ∈ S for y

using homeomorphism-on-bij[OF assms(1 )] by (meson bij-betw-inv-into-left
that)

then have A: eventually (λn. u n = inv-into S f (f (u n))) F
using assms eventually-mono by force

have ((λn. (inv-into S f ) (f (u n))) −−−→ (inv-into S f ) (f x)) F
apply (rule continuous-on-tendsto-compose[OF homeomorphism-on-continuous[OF

homeomorphism-on-inverse[OF assms(1 )]] ∗])
using assms eventually-mono by (auto) fastforce

then show (u −−−→ x) F
unfolding tendsto-cong[OF A] I [OF ‹x ∈ S›] by simp

qed

lemma homeomorphism-on-sequentially:
fixes f :: ′a::{first-countable-topology, t2-space} ⇒ ′b::{first-countable-topology, t2-space}
assumes

∧
x u. x ∈ S =⇒ (∀n. u n ∈ S) =⇒ u −−−−→ x ←→ (λn. f (u n))

−−−−→ f x
shows homeomorphism-on S f

proof −
have x = y if f x = f y x ∈ S y ∈ S for x y
proof −

have (λn. f x) −−−−→ f y using that by auto
then have (λn. x) −−−−→ y using assms(1 ) that by auto
then show x = y using LIMSEQ-unique by auto

qed
then have inj-on f S by (simp add: inj-on-def )
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have Cf : continuous-on S f
apply (rule continuous-on-sequentiallyI ) using assms by auto

define g where g = inv-into S f
have Cg: continuous-on (f‘S) g
proof (rule continuous-on-sequentiallyI )

fix v b assume H : ∀n. v n ∈ f ‘ S b ∈ f ‘ S v −−−−→ b
define u where u = (λn. g (v n))
define a where a = g b
have u n ∈ S f (u n) = v n for n
unfolding u-def g-def using H (1 ) by (auto simp add: inv-into-into f-inv-into-f )
have a ∈ S f a = b
unfolding a-def g-def using H (2 ) by (auto simp add: inv-into-into f-inv-into-f )
show (λn. g(v n)) −−−−→ g b

unfolding u-def [symmetric] a-def [symmetric] apply (rule iffD2 [OF assms])
using ‹

∧
n. u n ∈ S› ‹a ∈ S› ‹v −−−−→ b›

unfolding ‹
∧

n. f (u n) = v n› ‹f a = b› by auto
qed
have homeomorphism S (f‘S) f g

apply (rule homeomorphismI [OF Cf Cg]) unfolding g-def using ‹inj-on f S›
by auto

then show ?thesis
unfolding homeomorphism-on-def by auto

qed

lemma homeomorphism-on-UNIV-sequentially:
fixes f :: ′a::{first-countable-topology, t2-space} ⇒ ′b::{first-countable-topology, t2-space}
assumes

∧
x u. u −−−−→ x ←→ (λn. f (u n)) −−−−→ f x

shows homeomorphism-on UNIV f
using assms by (auto intro!: homeomorphism-on-sequentially)

Now, we give similar characterizations in terms of sequences living in a
dense subset. As in the sequential continuity criteria above, we first give
a very general criterion, where the map does not have to be continuous
on the approximating set S, only on the limit set T , without any a priori
identification of the limit. Then, we specialize this statement to a less general
but often more usable version.
lemma homeomorphism-on-extension-sequentially-precise:
fixes f :: ′a::{first-countable-topology, t3-space} ⇒ ′b::{first-countable-topology, t3-space}
assumes

∧
u b. (∀n. u n ∈ S) =⇒ b ∈ T =⇒ u −−−−→ b =⇒ convergent (λn. f

(u n)) ∧
u c. (∀n. u n ∈ S) =⇒ c ∈ f‘T =⇒ (λn. f (u n)) −−−−→ c =⇒ convergent

u ∧
b. b ∈ T =⇒ ∃ u. (∀n. u n ∈ S) ∧ u −−−−→ b ∧ ((λn. f (u n)) −−−−→

f b) ∧
n. u n ∈ S ∪ T l ∈ T

shows u −−−−→ l ←→ (λn. f (u n)) −−−−→ f l
proof

assume H : u −−−−→ l
have continuous (at l within (S ∪ T )) f
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apply (rule continuous-at-extension-sequentially ′[OF ‹l ∈ T ›]) using assms(1 )
assms(3 ) by auto

then show (λn. f (u n)) −−−−→ f l
apply (rule continuous-within-tendsto-compose) using H assms(4 ) by auto

next

For the reverse implication, we would like to use the continuity criterion
continuous_at_extension_sequentially’ applied to the inverse of f .

Unfortunately, this inverse is only well defined on T , while our sequence
takes values in S∪T . So, instead, we redo by hand the proof of the continuity
criterion, but in the opposite direction.

assume H : (λn. f (u n)) −−−−→ f l
show u −−−−→ l
proof (rule ccontr)

assume ¬ ?thesis
then obtain U where U : open U l ∈ U ¬(∀ F n in sequentially. u n ∈ U )
unfolding continuous-within tendsto-def [where l = l] using sequentially-imp-eventually-nhds-within

by auto
obtain A :: nat ⇒ ′b set where ∗:∧

i. open (A i)∧
i. f l ∈ A i∧
F . ∀n. F n ∈ A n =⇒ F −−−−→ f l

by (rule first-countable-topology-class.countable-basis) blast
have B: eventually (λn. f (u n) ∈ A i) sequentially for i

using ‹open (A i)› ‹f l ∈ A i› H topological-tendstoD by fastforce
have M : ∃ r . r ≥ N ∧ (u r /∈ U ) ∧ f (u r) ∈ A i for N i
using U (3 ) B[of i] unfolding eventually-sequentially by (meson dual-order .trans

le-cases)
have ∃ r . ∀n. (u (r n) /∈ U ∧ f (u (r n)) ∈ A n) ∧ r (Suc n) ≥ r n + 1

apply (rule dependent-nat-choice) using M by auto
then obtain r where r :

∧
n. u (r n) /∈ U

∧
n. f (u (r n)) ∈ A n

∧
n. r (Suc

n) ≥ r n + 1
by auto

then have strict-mono r
by (metis Suc-eq-plus1 Suc-le-lessD strict-monoI-Suc)

have ∃V W . open V ∧ open W ∧ l ∈ V ∧ (UNIV − U ) ⊆ W ∧ V ∩ W =
{}

apply (rule t3-space) using U by auto
then obtain V W where VW : open V open W l ∈ V UNIV − U ⊆ W V ∩

W = {}
by auto

have ∃ z. z ∈ S ∧ f z ∈ A n ∧ z ∈ W for n
proof −

define z where z = u (r n)
have f z ∈ A n unfolding z-def using r(2 ) by auto
have z ∈ S ∪ T z /∈ U

unfolding z-def using r(1 ) assms(4 ) by auto

15



then have z ∈ W using VW by auto
show ?thesis
proof (cases z ∈ T )

case True
obtain u::nat ⇒ ′a where u:

∧
p. u p ∈ S u −−−−→ z (λp. f (u p)) −−−−→

f z
using assms(3 )[OF ‹z ∈ T ›] by auto

then have eventually (λp. f (u p) ∈ A n) sequentially
using ‹open (A n)› ‹f z ∈ A n› unfolding tendsto-def by simp

moreover have eventually (λp. u p ∈ W ) sequentially
using ‹open W › ‹z ∈ W › u unfolding tendsto-def by simp

ultimately have ∃ p. u p ∈ W ∧ f (u p) ∈ A n
using eventually-False-sequentially eventually-elim2 by blast

then show ?thesis using u(1 ) by auto
next

case False
then have z ∈ S using ‹z ∈ S ∪ T › by auto
then show ?thesis using ‹f z ∈ A n› ‹z ∈ W › by auto

qed
qed
then have ∃ v. ∀n. v n ∈ S ∧ f (v n) ∈ A n ∧ v n ∈ W

by (auto intro: choice)
then obtain v where v:

∧
n. v n ∈ S

∧
n. f (v n) ∈ A n

∧
n. v n ∈ W

by blast
then have I : (λn. f (v n)) −−−−→ f l using ∗(3 ) by auto

obtain w where w:
∧

n. w n ∈ S w −−−−→ l ((λn. f (w n)) −−−−→ f l)
using assms(3 )[OF ‹l ∈ T ›] by auto

have even-odd-interpolate (f o v) (f o w) −−−−→ f l
unfolding even-odd-interpolate-filterlim[symmetric] comp-def using v w I by

auto
then have ∗: (λn. f (even-odd-interpolate v w n)) −−−−→ f l

unfolding even-odd-interpolate-compose unfolding comp-def by auto
have convergent (even-odd-interpolate v w)

apply (rule assms(2 )[OF - - ∗])
unfolding even-odd-interpolate-def using v(1 ) w(1 ) ‹l ∈ T › by auto

then obtain z where even-odd-interpolate v w −−−−→ z
unfolding convergent-def by auto

then have ∗: v −−−−→ z w −−−−→ z unfolding even-odd-interpolate-filterlim[symmetric]
by auto

then have z = l using v(2 ) w(2 ) LIMSEQ-unique by auto
then have v −−−−→ l using ∗ by simp
then have eventually (λn. v n ∈ V ) sequentially

using VW by (simp add: tendsto-def )
then have ∃n. v n ∈ V

using eventually-False-sequentially eventually-elim2 by blast
then show False

using v(3 ) ‹V ∩ W = {}› by auto
qed
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qed

lemma homeomorphism-on-extension-sequentially ′:
fixes f :: ′a::{first-countable-topology, t3-space} ⇒ ′b::{first-countable-topology, t3-space}
assumes

∧
u b. (∀n. u n ∈ S) =⇒ b ∈ T =⇒ u −−−−→ b =⇒ convergent (λn. f

(u n)) ∧
u c. (∀n. u n ∈ S) =⇒ c ∈ f‘T =⇒ (λn. f (u n)) −−−−→ c =⇒ convergent

u ∧
b. b ∈ T =⇒ ∃ u. (∀n. u n ∈ S) ∧ u −−−−→ b ∧ ((λn. f (u n)) −−−−→

f b)
shows homeomorphism-on T f

apply (rule homeomorphism-on-sequentially, rule homeomorphism-on-extension-sequentially-precise[of
S T ])
using assms by auto

proposition homeomorphism-on-extension-sequentially:
fixes f :: ′a::{first-countable-topology, t3-space} ⇒ ′b::{first-countable-topology, t3-space}
assumes

∧
u b. (∀n. u n ∈ S) =⇒ u −−−−→ b ←→ (λn. f (u n)) −−−−→ f b

T ⊆ closure S
shows homeomorphism-on T f

apply (rule homeomorphism-on-extension-sequentially ′[of S ])
using assms(1 ) convergent-def apply fastforce
using assms(1 ) convergent-def apply blast
by (metis assms(1 ) assms(2 ) closure-sequential subsetCE)

lemma homeomorphism-on-UNIV-extension-sequentially:
fixes f :: ′a::{first-countable-topology, t3-space} ⇒ ′b::{first-countable-topology, t3-space}
assumes

∧
u b. (∀n. u n ∈ S) =⇒ u −−−−→ b ←→ (λn. f (u n)) −−−−→ f b

closure S = UNIV
shows homeomorphism-on UNIV f

apply (rule homeomorphism-on-extension-sequentially[of S ]) using assms by auto

1.2.2 Proper spaces

Proper spaces, i.e., spaces in which every closed ball is compact – or, equiv-
alently, any closed bounded set is compact.
definition proper ::( ′a::metric-space) set ⇒ bool

where proper S ≡ (∀ x r . compact (cball x r ∩ S))

lemma properI :
assumes

∧
x r . compact (cball x r ∩ S)

shows proper S
using assms unfolding proper-def by auto

lemma proper-compact-cball:
assumes proper (UNIV :: ′a::metric-space set)
shows compact (cball (x:: ′a) r)

using assms unfolding proper-def by auto
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lemma proper-compact-bounded-closed:
assumes proper (UNIV :: ′a::metric-space set) closed (S :: ′a set) bounded S
shows compact S

proof −
obtain x r where S ⊆ cball x r

using ‹bounded S› bounded-subset-cball by blast
then have ∗: S = S ∩ cball x r

by auto
show ?thesis
apply (subst ∗, rule closed-Int-compact) using assms unfolding proper-def by

auto
qed

lemma proper-real [simp]:
proper (UNIV ::real set)

unfolding proper-def by auto

lemma complete-of-proper :
assumes proper S
shows complete S

proof −
have ∃ l∈S . u −−−−→ l if Cauchy u

∧
n. u n ∈ S for u

proof −
have bounded (range u)

using ‹Cauchy u› cauchy-imp-bounded by auto
then obtain x r where ∗:

∧
n. dist x (u n) ≤ r

unfolding bounded-def by auto
then have u n ∈ (cball x r) ∩ S for n using ‹u n ∈ S› by auto
moreover have complete ((cball x r) ∩ S)

apply (rule compact-imp-complete) using assms unfolding proper-def by
auto

ultimately show ?thesis
unfolding complete-def using ‹Cauchy u› by auto

qed
then show ?thesis

unfolding complete-def by auto
qed

lemma proper-of-compact:
assumes compact S
shows proper S

using assms by (auto intro: properI )

lemma proper-Un:
assumes proper A proper B
shows proper (A ∪ B)

using assms unfolding proper-def by (auto simp add: compact-Un inf-sup-distrib1 )
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1.2.3 Miscellaneous topology

When manipulating the triangle inequality, it is very frequent to deal with 4
points (and automation has trouble doing it automatically). Even sometimes
with 5 points...
lemma dist-triangle4 [mono-intros]:

dist x t ≤ dist x y + dist y z + dist z t
using dist-triangle[of x z y] dist-triangle[of x t z] by auto

lemma dist-triangle5 [mono-intros]:
dist x u ≤ dist x y + dist y z + dist z t + dist t u

using dist-triangle4 [of x u y z] dist-triangle[of z u t] by auto

A thickening of a compact set is closed.
lemma compact-has-closed-thickening:

assumes compact C
continuous-on C f

shows closed (
⋃

x∈C . cball x (f x))
proof (auto simp add: closed-sequential-limits)

fix u l assume ∗: ∀n::nat. ∃ x∈C . dist x (u n) ≤ f x u −−−−→ l
have ∃ x::nat⇒ ′a. ∀n. x n ∈ C ∧ dist (x n) (u n) ≤ f (x n)

apply (rule choice) using ∗ by auto
then obtain x::nat ⇒ ′a where x:

∧
n. x n ∈ C

∧
n. dist (x n) (u n) ≤ f (x n)

by blast
obtain r c where strict-mono r c ∈ C (x o r) −−−−→ c
using x(1 ) ‹compact C › by (meson compact-eq-seq-compact-metric seq-compact-def )

then have c ∈ C using x(1 ) ‹compact C › by auto
have lim: (λn. f (x (r n)) − dist (x (r n)) (u (r n))) −−−−→ f c − dist c l

apply (intro tendsto-intros, rule continuous-on-tendsto-compose[of C f ])
using ∗(2 ) x(1 ) ‹(x o r) −−−−→ c› ‹continuous-on C f › ‹c ∈ C › ‹strict-mono

r› LIMSEQ-subseq-LIMSEQ
unfolding comp-def by auto

have f c − dist c l ≥ 0 apply (rule LIMSEQ-le-const[OF lim]) using x(2 ) by
auto

then show ∃ x∈C . dist x l ≤ f x using ‹c ∈ C › by auto
qed

congruence rule for continuity. The assumption that fy = gy is necessary
since at x is the pointed neighborhood at x.
lemma continuous-within-cong:

assumes continuous (at y within S) f
eventually (λx. f x = g x) (at y within S)
f y = g y

shows continuous (at y within S) g
using assms continuous-within filterlim-cong by fastforce

A function which tends to infinity at infinity, on a proper set, realizes its
infimum
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lemma continuous-attains-inf-proper :
fixes f :: ′a::metric-space ⇒ ′b::linorder-topology
assumes proper s a ∈ s

continuous-on s f∧
z. z ∈ s − cball a r =⇒ f z ≥ f a

shows ∃ x∈s. ∀ y∈s. f x ≤ f y
proof (cases r ≥ 0 )

case True
have ∃ x∈cball a r ∩ s. ∀ y ∈ cball a r ∩ s. f x ≤ f y

apply (rule continuous-attains-inf ) using assms True unfolding proper-def
apply (auto simp add: continuous-on-subset)

using centre-in-cball by blast
then obtain x where x: x ∈ cball a r ∩ s

∧
y. y ∈ cball a r ∩ s =⇒ f x ≤ f y

by auto
have f x ≤ f y if y ∈ s for y
proof (cases y ∈ cball a r)

case True
then show ?thesis using x(2 ) that by auto

next
case False
have f x ≤ f a

apply (rule x(2 )) using assms True by auto
then show ?thesis using assms(4 )[of y] that False by auto

qed
then show ?thesis using x(1 ) by auto

next
case False
show ?thesis

apply (rule bexI [of - a]) using assms False by auto
qed

1.2.4 Measure of balls

The image of a ball by an affine map is still a ball, with explicit center and
radius. (Now unused)
lemma affine-image-ball [simp]:
(λy. R ∗R y + x) ‘ cball 0 1 = cball (x::( ′a::real-normed-vector)) |R|

proof
have dist x (R ∗R y + x) ≤ |R| if dist 0 y ≤ 1 for y
proof −
have dist x (R ∗R y + x) = norm ((R ∗R y + x) − x) by (simp add: dist-norm)
also have ... = |R| ∗ norm y by auto
finally show ?thesis using that by (simp add: mult-left-le)

qed
then show (λy. R ∗R y + x) ‘ cball 0 1 ⊆ cball x |R| by auto

show cball x |R| ⊆ (λy. R ∗R y + x) ‘ cball 0 1
proof (cases |R| = 0 )

case True
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then have cball x |R| = {x} by auto
moreover have x = R ∗R 0 + x ∧ 0 ∈ cball 0 1 by auto
ultimately show ?thesis by auto

next
case False
have z ∈ (λy. R ∗R y + x) ‘ cball 0 1 if z ∈ cball x |R| for z
proof −

define y where y = (z − x) /R R
have R ∗R y + x = z unfolding y-def using False by auto
moreover have y ∈ cball 0 1

using ‹z ∈ cball x |R|› False unfolding y-def by (auto simp add:
dist-norm[symmetric] divide-simps dist-commute)

ultimately show ?thesis by auto
qed
then show ?thesis by auto

qed
qed

From the rescaling properties of Lebesgue measure in a euclidean space, it
follows that the measure of any ball can be expressed in terms of the measure
of the unit ball.
lemma lebesgue-measure-ball:

assumes R ≥ 0
shows measure lborel (cball (x::( ′a::euclidean-space)) R) = R^(DIM ( ′a)) ∗ mea-

sure lborel (cball (0 :: ′a) 1 )
emeasure lborel (cball (x::( ′a::euclidean-space)) R) = R^(DIM ( ′a)) ∗ emeasure

lborel (cball (0 :: ′a) 1 )
apply (simp add: assms content-cball)
by (simp add: assms emeasure-cball ennreal-mult ′ ennreal-power mult.commute)

We show that the unit ball has positive measure – this is obvious, but useful.
We could show it by arguing that it contains a box, whose measure can
be computed, but instead we say that if the measure vanished then the
measure of any ball would also vanish, contradicting the fact that the space
has infinite measure. This avoids all computations.
lemma lebesgue-measure-ball-pos:

emeasure lborel (cball (0 :: ′a::euclidean-space) 1 ) > 0
measure lborel (cball (0 :: ′a::euclidean-space) 1 ) > 0

proof −
show emeasure lborel (cball (0 :: ′a::euclidean-space) 1 ) > 0
proof (rule ccontr)

assume ¬(emeasure lborel (cball (0 :: ′a::euclidean-space) 1 ) > 0 )
then have emeasure lborel (cball (0 :: ′a) 1 ) = 0 by auto
then have emeasure lborel (cball (0 :: ′a) n) = 0 for n::nat
using lebesgue-measure-ball(2 )[of real n 0 ] by (metis mult-zero-right of-nat-0-le-iff )
then have emeasure lborel (

⋃
n. cball (0 :: ′a) (real n)) = 0

by (metis (mono-tags, lifting) borel-closed closed-cball emeasure-UN-eq-0 im-
ageE sets-lborel subsetI )
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moreover have (
⋃

n. cball (0 :: ′a) (real n)) = UNIV by (auto simp add:
real-arch-simple)

ultimately show False
by simp

qed
moreover have emeasure lborel (cball (0 :: ′a::euclidean-space) 1 ) < ∞

by (rule emeasure-bounded-finite, auto)
ultimately show measure lborel (cball (0 :: ′a::euclidean-space) 1 ) > 0
by (metis borel-closed closed-cball ennreal-0 has-integral-iff-emeasure-lborel has-integral-measure-lborel

less-irrefl order-refl zero-less-measure-iff )
qed

1.2.5 infdist and closest point projection

The distance to a union of two sets is the minimum of the distance to the
two sets.
lemma infdist-union-min [mono-intros]:

assumes A 6= {} B 6= {}
shows infdist x (A ∪ B) = min (infdist x A) (infdist x B)

using assms by (simp add: infdist-def cINF-union inf-real-def )

The distance to a set is non-increasing with the set.
lemma infdist-mono [mono-intros]:

assumes A ⊆ B A 6= {}
shows infdist x B ≤ infdist x A
by (simp add: assms infdist-eq-setdist setdist-subset-right)

If a set is proper, then the infimum of the distances to this set is attained.
lemma infdist-proper-attained:

assumes proper C C 6= {}
shows ∃ c∈C . infdist x C = dist x c

proof −
obtain a where a ∈ C using assms by auto
have ∗: dist x a ≤ dist x z if dist a z ≥ 2 ∗ dist a x for z
proof −

have 2 ∗ dist a x ≤ dist a z using that by simp
also have ... ≤ dist a x + dist x z by (intro mono-intros)
finally show ?thesis by (simp add: dist-commute)

qed
have ∃ c∈C . ∀ d∈C . dist x c ≤ dist x d

apply (rule continuous-attains-inf-proper [OF assms(1 ) ‹a ∈ C ›, of - 2 ∗ dist
a x])

using ∗ by (auto intro: continuous-intros)
then show ?thesis unfolding infdist-def using ‹C 6= {}›

by (metis antisym bdd-below-image-dist cINF-lower le-cINF-iff )
qed

lemma infdist-almost-attained:
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assumes infdist x X < a X 6= {}
shows ∃ y∈X . dist x y < a

using assms using cInf-less-iff [of (dist x)‘X ] unfolding infdist-def by auto

lemma infdist-triangle-abs [mono-intros]:
|infdist x A − infdist y A| ≤ dist x y

by (metis (full-types) abs-diff-le-iff diff-le-eq dist-commute infdist-triangle)

The next lemma is missing in the library, contrary to its cousin continuous_infdist.

The infimum of the distance to a singleton set is simply the distance to the
unique member of the set.

The closest point projection of x on A. It is not unique, so we choose one
point realizing the minimal distance. And if there is no such point, then we
use x, to make some statements true without any assumption.
definition proj-set:: ′a::metric-space ⇒ ′a set ⇒ ′a set

where proj-set x A = {y ∈ A. dist x y = infdist x A}

definition distproj:: ′a::metric-space ⇒ ′a set ⇒ ′a
where distproj x A = (if proj-set x A 6= {} then SOME y. y ∈ proj-set x A else

x)

lemma proj-setD:
assumes y ∈ proj-set x A
shows y ∈ A dist x y = infdist x A

using assms unfolding proj-set-def by auto

lemma proj-setI :
assumes y ∈ A dist x y ≤ infdist x A
shows y ∈ proj-set x A

using assms infdist-le[OF ‹y ∈ A›, of x] unfolding proj-set-def by auto

lemma proj-setI ′:
assumes y ∈ A

∧
z. z ∈ A =⇒ dist x y ≤ dist x z

shows y ∈ proj-set x A
proof (rule proj-setI [OF ‹y ∈ A›])

show dist x y ≤ infdist x A
apply (subst infdist-notempty)
using assms by (auto intro!: cInf-greatest)

qed

lemma distproj-in-proj-set:
assumes proj-set x A 6= {}
shows distproj x A ∈ proj-set x A

distproj x A ∈ A
dist x (distproj x A) = infdist x A

proof −
show distproj x A ∈ proj-set x A
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using assms unfolding distproj-def using some-in-eq by auto
then show distproj x A ∈ A dist x (distproj x A) = infdist x A

unfolding proj-set-def by auto
qed

lemma proj-set-nonempty-of-proper :
assumes proper A A 6= {}
shows proj-set x A 6= {}

proof −
have ∃ y. y ∈ A ∧ dist x y = infdist x A

using infdist-proper-attained[OF assms, of x] by auto
then show proj-set x A 6= {} unfolding proj-set-def by auto

qed

lemma distproj-self [simp]:
assumes x ∈ A
shows proj-set x A = {x}

distproj x A = x
proof −

show proj-set x A = {x}
unfolding proj-set-def using assms by auto

then show distproj x A = x
unfolding distproj-def by auto

qed

lemma distproj-closure [simp]:
assumes x ∈ closure A
shows distproj x A = x

proof (cases proj-set x A 6= {})
case True
show ?thesis

using distproj-in-proj-set(3 )[OF True] assms
by (metis closure-empty dist-eq-0-iff distproj-self (2 ) in-closure-iff-infdist-zero)

next
case False
then show ?thesis unfolding distproj-def by auto

qed

lemma distproj-le:
assumes y ∈ A
shows dist x (distproj x A) ≤ dist x y

proof (cases proj-set x A 6= {})
case True
show ?thesis using distproj-in-proj-set(3 )[OF True] infdist-le[OF assms] by auto

next
case False
then show ?thesis unfolding distproj-def by auto

qed
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lemma proj-set-dist-le:
assumes y ∈ A p ∈ proj-set x A
shows dist x p ≤ dist x y
using assms infdist-le unfolding proj-set-def by auto

1.3 Material on ereal and ennreal

We add the simp rules that we needed to make all computations become
more or less automatic.
lemma ereal-of-real-of-ereal-iff [simp]:

ereal(real-of-ereal x) = x ←→ x 6= ∞ ∧ x 6= − ∞
x = ereal(real-of-ereal x) ←→ x 6= ∞ ∧ x 6= − ∞

by (metis MInfty-neq-ereal(1 ) PInfty-neq-ereal(2 ) real-of-ereal.elims)+

declare ereal-inverse-eq-0 [simp]
declare ereal-0-gt-inverse [simp]
declare ereal-inverse-le-0-iff [simp]
declare ereal-divide-eq-0-iff [simp]
declare ereal-mult-le-0-iff [simp]
declare ereal-zero-le-0-iff [simp]
declare ereal-mult-less-0-iff [simp]
declare ereal-zero-less-0-iff [simp]
declare ereal-uminus-eq-reorder [simp]
declare ereal-minus-le-iff [simp]

lemma ereal-inverse-noteq-minus-infinity [simp]:
1/(x::ereal) 6= −∞

by (simp add: divide-ereal-def )

lemma ereal-inverse-positive-iff-nonneg-not-infinity [simp]:
0 < 1/(x::ereal) ←→ (x ≥ 0 ∧ x 6= ∞)

by (cases x, auto simp add: one-ereal-def )

lemma ereal-inverse-negative-iff-nonpos-not-infinity ′ [simp]:
0 > inverse (x::ereal) ←→ (x < 0 ∧ x 6= −∞)

by (cases x, auto simp add: one-ereal-def )

lemma ereal-divide-pos-iff [simp]:
0 < x/(y::ereal) ←→ (y 6= ∞ ∧ y 6= −∞) ∧ ((x > 0 ∧ y > 0 ) ∨ (x < 0 ∧ y <

0 ) ∨ (y = 0 ∧ x > 0 ))
unfolding divide-ereal-def by auto

lemma ereal-divide-neg-iff [simp]:
0 > x/(y::ereal) ←→ (y 6= ∞ ∧ y 6= −∞) ∧ ((x > 0 ∧ y < 0 ) ∨ (x < 0 ∧ y >

0 ) ∨ (y = 0 ∧ x < 0 ))
unfolding divide-ereal-def by auto

More additions to mono_intros.
lemma ereal-leq-imp-neg-leq [mono-intros]:
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fixes x y::ereal
assumes x ≤ y
shows −y ≤ −x

using assms by auto

lemma ereal-le-imp-neg-le [mono-intros]:
fixes x y::ereal
assumes x < y
shows −y < −x

using assms by auto

declare ereal-mult-left-mono [mono-intros]
declare ereal-mult-right-mono [mono-intros]
declare ereal-mult-strict-right-mono [mono-intros]
declare ereal-mult-strict-left-mono [mono-intros]

Monotonicity of basic inclusions.
lemma ennreal-mono ′:

mono ennreal
by (simp add: ennreal-leI monoI )

lemma enn2ereal-mono ′:
mono enn2ereal

by (simp add: less-eq-ennreal.rep-eq mono-def )

lemma e2ennreal-mono ′:
mono e2ennreal

by (simp add: e2ennreal-mono mono-def )

lemma enn2ereal-mono [mono-intros]:
assumes x ≤ y
shows enn2ereal x ≤ enn2ereal y

using assms less-eq-ennreal.rep-eq by auto

lemma ereal-mono:
mono ereal

unfolding mono-def by auto

lemma ereal-strict-mono:
strict-mono ereal

unfolding strict-mono-def by auto

lemma ereal-mono2 [mono-intros]:
assumes x ≤ y
shows ereal x ≤ ereal y

by (simp add: assms)

lemma ereal-strict-mono2 [mono-intros]:
assumes x < y
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shows ereal x < ereal y
using assms by auto

lemma enn2ereal-a-minus-b-plus-b [mono-intros]:
enn2ereal a ≤ enn2ereal (a − b) + enn2ereal b

by (metis diff-add-self-ennreal less-eq-ennreal.rep-eq linear plus-ennreal.rep-eq)

The next lemma follows from the same assertion in ereals.
lemma enn2ereal-strict-mono [mono-intros]:

assumes x < y
shows enn2ereal x < enn2ereal y

using assms less-ennreal.rep-eq by auto

declare ennreal-mult-strict-left-mono [mono-intros]
declare ennreal-mult-strict-right-mono [mono-intros]

lemma ennreal-ge-0 [mono-intros]:
assumes 0 < x
shows 0 < ennreal x

by (simp add: assms)

The next lemma is true and useful in ereal. Note that variants such as
a + b ≤ c + d implies a − d ≤ c − b are not true – take a = c = ∞ and
b = d = 0...
lemma ereal-minus-le-minus-plus [mono-intros]:

fixes a b c::ereal
assumes a ≤ b + c
shows −b ≤ −a + c
using assms apply (cases a, cases b, cases c, auto)
using ereal-infty-less-eq2 (2 ) ereal-plus-1 (4 ) by fastforce

lemma tendsto-ennreal-0 [tendsto-intros]:
assumes (u −−−→ 0 ) F
shows ((λn. ennreal(u n)) −−−→ 0 ) F

unfolding ennreal-0 [symmetric] by (intro tendsto-intros assms)

lemma tendsto-ennreal-1 [tendsto-intros]:
assumes (u −−−→ 1 ) F
shows ((λn. ennreal(u n)) −−−→ 1 ) F

unfolding ennreal-1 [symmetric] by (intro tendsto-intros assms)

1.4 Miscellaneous
lemma lim-ceiling-over-n [tendsto-intros]:

assumes (λn. u n/n) −−−−→ l
shows (λn. ceiling(u n)/n) −−−−→ l

proof (rule tendsto-sandwich[of λn. u n/n - - λn. u n/n + 1/n])
show ∀ F n in sequentially. u n / real n ≤ real-of-int du ne / real n
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unfolding eventually-sequentially by (rule exI [of - 1 ], auto simp add: di-
vide-simps)

show ∀ F n in sequentially. real-of-int du ne / real n ≤ u n / real n + 1 / real n
unfolding eventually-sequentially by (rule exI [of - 1 ], auto simp add: di-

vide-simps)
have (λn. u n / real n + 1 / real n) −−−−→ l + 0

by (intro tendsto-intros assms)
then show (λn. u n / real n + 1 / real n) −−−−→ l by auto

qed (simp add: assms)

1.4.1 Liminfs and Limsups

More facts on liminfs and limsups
lemma Limsup-obtain ′:

fixes u:: ′a ⇒ ′b::complete-linorder
assumes Limsup F u > c eventually P F
shows ∃n. P n ∧ u n > c

proof −
have ∗: (INF P∈{P. eventually P F}. SUP x∈{x. P x}. u x) > c using assms

by (simp add: Limsup-def )
have ∗∗: c < (SUP x∈{x. P x}. u x) using less-INF-D[OF ∗, of P] assms by

auto
then show ?thesis by (simp add: less-SUP-iff )

qed

lemma limsup-obtain:
fixes u::nat ⇒ ′a :: complete-linorder
assumes limsup u > c
shows ∃n ≥ N . u n > c

using Limsup-obtain ′[OF assms, of λn. n ≥ N ] unfolding eventually-sequentially
by auto

lemma Liminf-obtain ′:
fixes u:: ′a ⇒ ′b::complete-linorder
assumes Liminf F u < c eventually P F
shows ∃n. P n ∧ u n < c

proof −
have ∗: (SUP P∈{P. eventually P F}. INF x∈{x. P x}. u x) < c using assms

by (simp add: Liminf-def )
have ∗∗: (INF x∈{x. P x}. u x) < c using SUP-lessD[OF ∗, of P] assms by

auto
then show ?thesis by (simp add: INF-less-iff )

qed

lemma liminf-obtain:
fixes u::nat ⇒ ′a :: complete-linorder
assumes liminf u < c
shows ∃n ≥ N . u n < c

using Liminf-obtain ′[OF assms, of λn. n ≥ N ] unfolding eventually-sequentially
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by auto

The Liminf of a minimum is the minimum of the Liminfs.
lemma Liminf-min-eq-min-Liminf :

fixes u v::nat ⇒ ′a::complete-linorder
shows Liminf F (λn. min (u n) (v n)) = min (Liminf F u) (Liminf F v)

proof (rule order-antisym)
show Liminf F (λn. min (u n) (v n)) ≤ min (Liminf F u) (Liminf F v)

by (auto simp add: Liminf-mono)

have Liminf F (λn. min (u n) (v n)) > w if H : min (Liminf F u) (Liminf F v)
> w for w

proof (cases {w<..<min (Liminf F u) (Liminf F v)} = {})
case True
have eventually (λn. u n > w) F eventually (λn. v n > w) F

using H le-Liminf-iff by fastforce+
then have eventually (λn. min (u n) (v n) > w) F

apply auto using eventually-elim2 by fastforce
moreover have z > w =⇒ z ≥ min (Liminf F u) (Liminf F v) for z

using H True not-le-imp-less by fastforce
ultimately have eventually (λn. min (u n) (v n) ≥ min (Liminf F u) (Liminf

F v)) F
by (simp add: eventually-mono)

then have min (Liminf F u) (Liminf F v) ≤ Liminf F (λn. min (u n) (v n))
by (metis Liminf-bounded)

then show ?thesis using H less-le-trans by blast
next

case False
then obtain z where z ∈ {w<..<min (Liminf F u) (Liminf F v)}

by blast
then have H : w < z z < min (Liminf F u) (Liminf F v)

by auto
then have eventually (λn. u n > z) F eventually (λn. v n > z) F

using le-Liminf-iff by fastforce+
then have eventually (λn. min (u n) (v n) > z) F

apply auto using eventually-elim2 by fastforce
then have Liminf F (λn. min (u n) (v n)) ≥ z

by (simp add: Liminf-bounded eventually-mono less-imp-le)
then show ?thesis using H (1 )

by auto
qed
then show min (Liminf F u) (Liminf F v) ≤ Liminf F (λn. min (u n) (v n))

using not-le-imp-less by blast
qed

The Limsup of a maximum is the maximum of the Limsups.
lemma Limsup-max-eq-max-Limsup:

fixes u:: ′a ⇒ ′b::complete-linorder
shows Limsup F (λn. max (u n) (v n)) = max (Limsup F u) (Limsup F v)
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proof (rule order-antisym)
show max (Limsup F u) (Limsup F v) ≤ Limsup F (λn. max (u n) (v n))

by (auto intro: Limsup-mono)

have Limsup F (λn. max (u n) (v n)) < e if max (Limsup F u) (Limsup F v)
< e for e

proof (cases ∃ t. max (Limsup F u) (Limsup F v) < t ∧ t < e)
case True
then obtain t where t: t < e max (Limsup F u) (Limsup F v) < t by auto
then have Limsup F u < t Limsup F v < t using that max-def by auto
then have ∗: eventually (λn. u n < t) F eventually (λn. v n < t) F

by (auto simp: Limsup-lessD)
have eventually (λn. max (u n) (v n) < t) F

using eventually-mono[OF eventually-conj[OF ∗]] by auto
then have Limsup F (λn. max (u n) (v n)) ≤ t

by (meson Limsup-obtain ′ not-le-imp-less order .asym)
then show ?thesis

using t by auto
next

case False
have Limsup F u < e Limsup F v < e using that max-def by auto
then have ∗: eventually (λn. u n < e) F eventually (λn. v n < e) F

by (auto simp: Limsup-lessD)
have eventually (λn. max (u n) (v n) ≤ max (Limsup F u) (Limsup F v)) F
apply (rule eventually-mono[OF eventually-conj[OF ∗]]) using False not-le-imp-less

by force
then have Limsup F (λn. max (u n) (v n)) ≤ max (Limsup F u) (Limsup F

v)
by (meson Limsup-obtain ′ leD leI )

then show ?thesis using that le-less-trans by blast
qed
then show Limsup F (λn. max (u n) (v n)) ≤ max (Limsup F u) (Limsup F v)

using not-le-imp-less by blast
qed

1.4.2 Bounding the cardinality of a finite set

A variation with real bounds.
lemma finite-finite-subset-caract ′:

fixes C ::real
assumes

∧
G. G ⊆ F =⇒ finite G =⇒ card G ≤ C

shows finite F ∧ card F ≤ C
by (meson assms finite-if-finite-subsets-card-bdd le-nat-floor order-refl)

To show that a set has cardinality at most one, it suffices to show that any
two of its elements coincide.
lemma finite-at-most-singleton:

assumes
∧

x y. x ∈ F =⇒ y ∈ F =⇒ x = y
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shows finite F ∧ card F ≤ 1
proof (cases F = {})

case True
then show ?thesis by auto

next
case False
then obtain x where x ∈ F by auto
then have F = {x} using assms by auto
then show ?thesis by auto

qed

Bounded sets of integers are finite.
lemma finite-real-int-interval [simp]:

finite (range real-of-int ∩ {a..b})
proof −

have range real-of-int ∩ {a..b} ⊆ real-of-int‘{floor a..ceiling b}
by (auto, metis atLeastAtMost-iff ceiling-mono ceiling-of-int floor-mono floor-of-int

image-eqI )
then show ?thesis using finite-subset by blast

qed

Well separated sets of real numbers are finite, with controlled cardinality.
lemma separated-in-real-card-bound:

assumes T ⊆ {a..(b::real)} d > 0
∧

x y. x ∈ T =⇒ y ∈ T =⇒ y > x =⇒ y ≥
x + d

shows finite T card T ≤ nat (floor ((b−a)/d) + 1 )
proof −

define f where f = (λx. floor ((x−a) / d))
have f‘{a..b} ⊆ {0 ..floor ((b−a)/d)}

unfolding f-def using ‹d > 0 › by (auto simp add: floor-mono frac-le)
then have ∗: f‘T ⊆ {0 ..floor ((b−a)/d)} using ‹T ⊆ {a..b}› by auto
then have finite (f‘T ) by (rule finite-subset, auto)
have card (f‘T ) ≤ card {0 ..floor ((b−a)/d)} apply (rule card-mono) using ∗

by auto
then have card-le: card (f‘T ) ≤ nat (floor ((b−a)/d) + 1 ) using card-atLeastAtMost-int

by auto

have ∗: f x 6= f y if y ≥ x + d for x y
proof −

have (y−a)/d ≥ (x−a)/d + 1 using ‹d > 0 › that by (auto simp add: di-
vide-simps)

then show ?thesis unfolding f-def by linarith
qed
have inj-on f T

unfolding inj-on-def using ∗ assms(3 ) by (auto, metis not-less-iff-gr-or-eq)
show finite T

using ‹finite (f‘T )› ‹inj-on f T › finite-image-iff by blast
have card T = card (f‘T )

using ‹inj-on f T › by (simp add: card-image)
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then show card T ≤ nat (floor ((b−a)/d) + 1 )
using card-le by auto

qed

1.5 Manipulating finite ordered sets

We will need below to construct finite sets of real numbers with good prop-
erties expressed in terms of consecutive elements of the set. We introduce
tools to manipulate such sets, expressing in particular the next and the pre-
vious element of the set and controlling how they evolve when one inserts
a new element in the set. It works in fact in any linorder, and could also
prove useful to construct sets of integer numbers.
Manipulating the next and previous elements work well, except at the top
(respectively bottom). In our constructions, these will be fixed and called b
and a.

Notations for the next and the previous elements.
definition next-in:: ′a set ⇒ ′a ⇒ ( ′a::linorder)

where next-in A u = Min (A ∩ {u<..})

definition prev-in:: ′a set ⇒ ′a ⇒ ( ′a::linorder)
where prev-in A u = Max (A ∩ {..<u})

context
fixes A::( ′a::linorder) set and a b:: ′a
assumes A: finite A A ⊆ {a..b} a ∈ A b ∈ A a < b

begin

Basic properties of the next element, when one starts from an element dif-
ferent from top.
lemma next-in-basics:

assumes u ∈ {a..<b}
shows next-in A u ∈ A

next-in A u > u
A ∩ {u<..<next-in A u} = {}

proof −
have next-in-A: next-in A u ∈ A ∩ {u<..}

unfolding next-in-def apply (rule Min-in)
using assms ‹finite A› ‹b ∈ A› by auto

then show next-in A u ∈ A next-in A u > u by auto
show A ∩ {u<..<next-in A u} = {}

unfolding next-in-def using A by (auto simp add: leD)
qed

lemma next-inI :
assumes u ∈ {a..<b}

v ∈ A
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v > u
{u<..<v} ∩ A = {}

shows next-in A u = v
using assms next-in-basics[OF ‹u ∈ {a..<b}›] by fastforce

Basic properties of the previous element, when one starts from an element
different from bottom.
lemma prev-in-basics:

assumes u ∈ {a<..b}
shows prev-in A u ∈ A

prev-in A u < u
A ∩ {prev-in A u<..<u} = {}

proof −
have prev-in-A: prev-in A u ∈ A ∩ {..<u}

unfolding prev-in-def apply (rule Max-in)
using assms ‹finite A› ‹a ∈ A› by auto

then show prev-in A u ∈ A prev-in A u < u by auto
show A ∩ {prev-in A u<..<u} = {}

unfolding prev-in-def using A by (auto simp add: leD)
qed

lemma prev-inI :
assumes u ∈ {a<..b}

v ∈ A
v < u
{v<..<u} ∩ A = {}

shows prev-in A u = v
using assms prev-in-basics[OF ‹u ∈ {a<..b}›]
by (meson disjoint-iff-not-equal greaterThanLessThan-iff less-linear)

The interval [a, b] is covered by the intervals between the consecutive ele-
ments of A.
lemma intervals-decomposition:
(
⋃

U ∈ {{u..next-in A u} | u. u ∈ A − {b}}. U ) = {a..b}
proof

show (
⋃

U∈{{u..next-in A u} |u. u ∈ A − {b}}. U ) ⊆ {a..b}
using ‹A ⊆ {a..b}› next-in-basics(1 ) apply auto apply fastforce

by (metis ‹A ⊆ {a..b}› atLeastAtMost-iff eq-iff le-less-trans less-eq-real-def
not-less subset-eq subset-iff-psubset-eq)

have x ∈ (
⋃

U∈{{u..next-in A u} |u. u ∈ A − {b}}. U ) if x ∈ {a..b} for x
proof −

consider x = b | x ∈ A − {b} | x /∈ A by blast
then show ?thesis
proof(cases)

case 1
define u where u = prev-in A b
have b ∈ {a<..b} using ‹a < b› by simp
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have u ∈ A − {b} unfolding u-def using prev-in-basics[OF ‹b ∈ {a<..b}›]
by simp

then have u ∈ {a..<b} using ‹A ⊆ {a..b}› ‹a < b› by fastforce
have next-in A u = b
using prev-in-basics[OF ‹b ∈ {a<..b}›] next-in-basics[OF ‹u ∈ {a..<b}›] ‹A

⊆ {a..b}› unfolding u-def by force
then have x ∈ {u..next-in A u} unfolding 1 using prev-in-basics[OF ‹b ∈

{a<..b}›] u-def by auto
then show ?thesis using ‹u ∈ A − {b}› by auto

next
case 2
then have x ∈ {a..<b} using ‹A ⊆ {a..b}› ‹a < b› by fastforce
have x ∈ {x.. next-in A x} using next-in-basics[OF ‹x ∈ {a..<b}›] by auto
then show ?thesis using 2 by auto

next
case 3
then have x ∈ {a<..b} using that ‹a ∈ A› leI by fastforce
define u where u = prev-in A x
have u ∈ A − {b} unfolding u-def using prev-in-basics[OF ‹x ∈ {a<..b}›]

that by auto
then have u ∈ {a..<b} using ‹A ⊆ {a..b}› ‹a < b› by fastforce
have x ∈ {u..next-in A u}

using prev-in-basics[OF ‹x ∈ {a<..b}›] next-in-basics[OF ‹u ∈ {a..<b}›]
unfolding u-def by auto

then show ?thesis using ‹u ∈ A − {b}› by auto
qed

qed
then show {a..b} ⊆ (

⋃
U∈{{u..next-in A u} |u. u ∈ A − {b}}. U ) by auto

qed
end

If one inserts an additional element, then next and previous elements are
not modified, except at the location of the insertion.
lemma next-in-insert:

assumes A: finite A A ⊆ {a..b} a ∈ A b ∈ A a < b
and x ∈ {a..b} − A

shows
∧

u. u ∈ A − {b, prev-in A x} =⇒ next-in (insert x A) u = next-in A u
next-in (insert x A) x = next-in A x
next-in (insert x A) (prev-in A x) = x

proof −
define B where B = insert x A
have B: finite B B ⊆ {a..b} a ∈ B b ∈ B a < b

using assms unfolding B-def by auto
have x: x ∈ {a..<b} x ∈ {a<..b} using assms leI by fastforce+
show next-in B x = next-in A x

unfolding B-def by (auto simp add: next-in-def )

show next-in B (prev-in A x) = x
apply (rule next-inI [OF B])
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unfolding B-def using prev-in-basics[OF A ‹x ∈ {a<..b}›] ‹A ⊆ {a..b}› x by
auto

fix u assume u ∈ A − {b, prev-in A x}
then have u ∈ {a..<b} using assms by fastforce
have x /∈ {u<..<next-in A u}
proof (rule ccontr)

assume ¬(x /∈ {u<..<next-in A u})
then have ∗: x ∈ {u<..<next-in A u} by auto
have prev-in A x = u

apply (rule prev-inI [OF A ‹x ∈ {a<..b}›])
using ‹u ∈ A − {b, prev-in A x}› ∗ next-in-basics[OF A ‹u ∈ {a..<b}›] apply

auto
by (meson disjoint-iff-not-equal greaterThanLessThan-iff less-trans)

then show False using ‹u ∈ A − {b, prev-in A x}› by auto
qed
show next-in B u = next-in A u

apply (rule next-inI [OF B ‹u ∈ {a..<b}›]) unfolding B-def
using next-in-basics[OF A ‹u ∈ {a..<b}›] ‹x /∈ {u<..<next-in A u}› by auto

qed

If consecutive elements are enough separated, this implies a simple bound
on the cardinality of the set.
lemma separated-in-real-card-bound2 :

fixes A::real set
assumes A: finite A A ⊆ {a..b} a ∈ A b ∈ A a < b

and B:
∧

u. u ∈ A − {b} =⇒ next-in A u ≥ u + d d > 0
shows card A ≤ nat (floor ((b−a)/d) + 1 )

proof (rule separated-in-real-card-bound[OF ‹A ⊆ {a..b}› ‹d > 0 ›])
fix x y assume x ∈ A y ∈ A y > x
then have x ∈ A − {b} x ∈ {a..<b} using ‹A ⊆ {a..b}› by auto
have y ≥ next-in A x

using next-in-basics[OF A ‹x ∈ {a..<b}›] ‹y ∈ A› ‹y > x› by auto
then show y ≥ x + d using B(1 )[OF ‹x ∈ A − {b}›] by auto

qed

1.6 Well-orders

In this subsection, we give additional lemmas on well-orders or cardinals or
whatever, that would well belong to the library, and will be needed below.
lemma (in wo-rel) max2-underS [simp]:

assumes x ∈ underS z y ∈ underS z
shows max2 x y ∈ underS z

using assms max2-def by auto

lemma (in wo-rel) max2-underS ′ [simp]:
assumes x ∈ underS y
shows max2 x y = y max2 y x = y
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apply (simp add: underS-E assms max2-def )
using assms max2-def ANTISYM antisym-def underS-E by fastforce

lemma (in wo-rel) max2-xx [simp]:
max2 x x = x

using max2-def by auto

declare underS-notIn [simp]

The abbrevation = o is used both in Set_Algebras and Cardinals. We
disable the one from Set_Algebras.
no-notation elt-set-eq (infix ‹=o› 50 )

lemma regularCard-ordIso:
assumes Card-order r regularCard r s =o r
shows regularCard s

unfolding regularCard-def
proof (auto)

fix K assume K : K ⊆ Field s cofinal K s
obtain f where f : bij-betw f (Field s) (Field r) embed s r f using ‹s =o r›

unfolding ordIso-def iso-def by auto
have f‘K ⊆ Field r using K (1 ) f (1 ) bij-betw-imp-surj-on by blast
have cofinal (f‘K ) r unfolding cofinal-def
proof

fix a assume a ∈ Field r
then obtain a ′ where a: a ′ ∈ Field s f a ′ = a using f

by (metis bij-betw-imp-surj-on imageE)
then obtain b ′ where b: b ′ ∈ K a ′ 6= b ′ ∧ (a ′, b ′) ∈ s

using ‹cofinal K s› unfolding cofinal-def by auto
have P1 : f b ′ ∈ f‘K using b(1 ) by auto
have a ′ 6= b ′ a ′ ∈ Field s b ′ ∈ Field s using a(1 ) b K (1 ) by auto
then have P2 : a 6= f b ′ unfolding a(2 )[symmetric] using f (1 ) unfolding

bij-betw-def inj-on-def by auto
have (a ′, b ′) ∈ s using b by auto
then have P3 : (a, f b ′) ∈ r unfolding a(2 )[symmetric] using f
by (meson FieldI1 FieldI2 Card-order-ordIso[OF assms(1 ) assms(3 )] card-order-on-def

iso-defs(1 ) iso-iff2 )
show ∃ b∈f ‘ K . a 6= b ∧ (a, b) ∈ r

using P1 P2 P3 by blast
qed
then have |f‘K | =o r

using ‹regularCard r› ‹f‘K ⊆ Field r› unfolding regularCard-def by auto
moreover have |f‘K | =o |K | using f (1 ) K (1 )

by (meson bij-betw-subset card-of-ordIsoI ordIso-symmetric)
ultimately show |K | =o s

using ‹s =o r› by (meson ordIso-symmetric ordIso-transitive)
qed

lemma AboveS-not-empty-in-regularCard:
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assumes |S | <o r S ⊆ Field r
assumes r : Card-order r regularCard r ¬finite (Field r)
shows AboveS r S 6= {}

proof −
have ¬(cofinal S r)

using assms not-ordLess-ordIso unfolding regularCard-def by auto
then obtain a where a: a ∈ Field r ∀ b∈S . ¬(a 6= b ∧ (a,b) ∈ r)

unfolding cofinal-def by auto
have ∗: a = b ∨ (b, a) ∈ r if b ∈ S for b
proof −

have a = b ∨ (a,b) /∈ r using a that by auto
then show ?thesis

using ‹Card-order r› ‹a ∈ Field r› ‹b ∈ S› ‹S ⊆ Field r› unfolding
card-order-on-def well-order-on-def linear-order-on-def total-on-def

by auto
qed
obtain c where c ∈ Field r c 6= a (a, c) ∈ r

using a(1 ) r infinite-Card-order-limit by fastforce
then have c ∈ AboveS r S
unfolding AboveS-def apply simp using Card-order-trans[OF r(1 )] by (metis

∗)
then show ?thesis by auto

qed

lemma AboveS-not-empty-in-regularCard ′:
assumes |S | <o r f‘S ⊆ Field r T ⊆ S
assumes r : Card-order r regularCard r ¬finite (Field r)
shows AboveS r (f‘T ) 6= {}

proof −
have |f‘T | ≤o |T | by simp
moreover have |T | ≤o |S | using ‹T ⊆ S› by simp
ultimately have ∗: |f‘T | <o r using ‹|S | <o r› by (meson ordLeq-ordLess-trans)
show ?thesis using AboveS-not-empty-in-regularCard[OF ∗ - r ] ‹T ⊆ S› ‹f‘S ⊆

Field r› by auto
qed

lemma Well-order-extend:
assumes WELL: well-order-on A r and SUB: A ⊆ B
shows ∃ r ′. well-order-on B r ′ ∧ r ⊆ r ′

proof−
have r : Well-order r ∧ Field r = A using WELL well-order-on-Well-order by

blast
let ?C = B − A
obtain r ′′ where well-order-on ?C r ′′ using well-order-on by blast
then have r ′′: Well-order r ′′ ∧ Field r ′′ = ?C

using well-order-on-Well-order by blast
let ?r ′ = r Osum r ′′

have Field r Int Field r ′′ = {} using r r ′′ by auto
then have r ≤o ?r ′ using Osum-ordLeq[of r r ′′] r r ′′ by blast
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then have Well-order ?r ′ unfolding ordLeq-def by auto
moreover have Field ?r ′ = B using r r ′′ SUB by (auto simp add: Field-Osum)
ultimately have well-order-on B ?r ′ by auto
moreover have r ⊆ ?r ′ by (simp add: Osum-def subrelI )
ultimately show ?thesis by blast

qed

The next lemma shows that, if the range of a function is endowed with a
wellorder, then one can pull back this wellorder by the function, and then
extend it in the fibers of the function in order to keep the wellorder property.
The proof is done by taking an arbitrary family of wellorders on each of the
fibers, and using the lexicographic order: one has x < y if fx < fy, or if
fx = fy and, in the corresponding fiber of f , one has x < y.
To formalize it, it is however more efficient to use one single wellorder, and
restrict it to each fiber.
lemma Well-order-pullback:

assumes Well-order r
shows ∃ s. Well-order s ∧ Field s = UNIV ∧ (∀ x y. (f x, f y) ∈ (r−Id) −→ (x,

y) ∈ s)
proof −

obtain r2 where r2 : Well-order r2 Field r2 = UNIV r ⊆ r2
using Well-order-extend[OF assms, of UNIV ] well-order-on-Well-order by auto

obtain s2 where s2 : Well-order s2 Field s2 = (UNIV :: ′b set)
by (meson well-ordering)

have r2s2 :∧
x y z. (x, y) ∈ s2 =⇒ (y, z) ∈ s2 =⇒ (x, z) ∈ s2∧
x. (x, x) ∈ s2∧
x y. (x, y) ∈ s2 ∨ (y, x) ∈ s2∧
x y. (x, y) ∈ s2 =⇒ (y, x) ∈ s2 =⇒ x = y∧
x y z. (x, y) ∈ r2 =⇒ (y, z) ∈ r2 =⇒ (x, z) ∈ r2∧
x. (x, x) ∈ r2∧
x y. (x, y) ∈ r2 ∨ (y, x) ∈ r2∧
x y. (x, y) ∈ r2 =⇒ (y, x) ∈ r2 =⇒ x = y

using r2 s2 unfolding well-order-on-def linear-order-on-def partial-order-on-def
total-on-def preorder-on-def antisym-def refl-on-def trans-def

by (metis UNIV-I )+

define s where s = {(x,y). (f x, f y) ∈ r2 ∧ (f x = f y −→ (x, y) ∈ s2 )}
have linear-order s
unfolding linear-order-on-def partial-order-on-def preorder-on-def
proof (auto)

show total-on UNIV s
unfolding s-def apply (rule total-onI , auto) using r2s2 by metis+

show refl-on UNIV s
unfolding s-def apply (rule refl-onI , auto) using r2s2 by blast+

show trans s
unfolding s-def apply (rule transI , auto) using r2s2 by metis+

38



show antisym s
unfolding s-def apply (rule antisymI , auto) using r2s2 by metis+

qed
moreover have wf (s − Id)
proof (rule wfI-min)

fix x:: ′b and Q assume x ∈ Q
obtain z ′ where z ′: z ′ ∈ f‘Q

∧
y. (y, z ′) ∈ r2 − Id −→ y /∈ f‘Q

proof (rule wfE-min[of r2−Id f x f‘Q], auto)
show wf (r2−Id) using ‹Well-order r2 › unfolding well-order-on-def by auto
show f x ∈ f‘Q using ‹x ∈ Q› by auto

qed
define Q2 where Q2 = Q ∩ f−‘{z ′}
obtain z where z: z ∈ Q2

∧
y. (y, z) ∈ s2 − Id −→ y /∈ Q2

proof (rule wfE-min ′[of s2−Id Q2 ], auto)
show wf (s2−Id) using ‹Well-order s2 › unfolding well-order-on-def by auto
assume Q2 = {}
then show False unfolding Q2-def using ‹z ′ ∈ f‘Q› by blast

qed
have (y, z) ∈ (s−Id) =⇒ y /∈ Q for y

unfolding s-def using z ′ z Q2-def by auto
then show ∃ z∈Q. ∀ y. (y, z) ∈ s − Id −→ y /∈ Q

using ‹z ∈ Q2 › Q2-def by auto
qed
ultimately have well-order-on UNIV s unfolding well-order-on-def by simp
moreover have (f x, f y) ∈ (r−Id) −→ (x, y) ∈ s for x y

unfolding s-def using ‹r ⊆ r2 › by auto
ultimately show ?thesis using well-order-on-Well-order by metis

qed

end

2 The exponential on extended real numbers.
theory Eexp-Eln

imports Library-Complements
begin

To define the distance on the Gromov completion of hyperbolic spaces, we
need to use the exponential on extended real numbers. We can not use the
symbol exp, as this symbol is already used in Banach algebras, so we use
ennexp instead. We prove its basic properties (together with properties of
the logarithm) here. We also use it to define the square root on ennreal.
Finally, we also define versions from ereal to ereal.
function ennexp::ereal ⇒ ennreal where
ennexp (ereal r) = ennreal (exp r)
| ennexp (∞) = ∞
| ennexp (−∞) = 0
by (auto intro: ereal-cases)
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termination by standard (rule wf-empty)

lemma ennexp-0 [simp]:
ennexp 0 = 1

by (auto simp add: zero-ereal-def one-ennreal-def )

function eln::ennreal ⇒ ereal where
eln (ennreal r) = (if r ≤ 0 then −∞ else ereal (ln r))
| eln (∞) = ∞
by (auto intro: ennreal-cases, metis ennreal-eq-0-iff , simp add: ennreal-neg)
termination by standard (rule wf-empty)

lemma eln-simps [simp]:
eln 0 = −∞
eln 1 = 0
eln top = ∞

apply (simp only: eln.simps ennreal-0 [symmetric], simp)
apply (simp only: eln.simps ennreal-1 [symmetric], simp)
using eln.simps(2 ) by auto

lemma eln-real-pos:
assumes r > 0
shows eln (ennreal r) = ereal (ln r)

using eln.simps assms by auto

lemma eln-ennexp [simp]:
eln (ennexp x) = x

apply (cases x) using eln.simps by auto

lemma ennexp-eln [simp]:
ennexp (eln x) = x

apply (cases x) using eln.simps by auto

lemma ennexp-strict-mono:
strict-mono ennexp

proof −
have ennexp x < ennexp y if x < y for x y

apply (cases x, cases y)
using that apply (auto simp add: ennreal-less-iff )
by (cases y, auto)

then show ?thesis unfolding strict-mono-def by auto
qed

lemma ennexp-mono:
mono ennexp

using ennexp-strict-mono by (simp add: strict-mono-mono)

lemma ennexp-strict-mono2 [mono-intros]:
assumes x < y
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shows ennexp x < ennexp y
using ennexp-strict-mono assms unfolding strict-mono-def by auto

lemma ennexp-mono2 [mono-intros]:
assumes x ≤ y
shows ennexp x ≤ ennexp y

using ennexp-mono assms unfolding mono-def by auto

lemma ennexp-le1 [simp]:
ennexp x ≤ 1 ←→ x ≤ 0

by (metis ennexp-0 ennexp-mono2 ennexp-strict-mono eq-iff le-cases strict-mono-eq)

lemma ennexp-ge1 [simp]:
ennexp x ≥ 1 ←→ x ≥ 0

by (metis ennexp-0 ennexp-mono2 ennexp-strict-mono eq-iff le-cases strict-mono-eq)

lemma eln-strict-mono:
strict-mono eln

by (metis ennexp-eln strict-monoI ennexp-strict-mono strict-mono-less)

lemma eln-mono:
mono eln

using eln-strict-mono by (simp add: strict-mono-mono)

lemma eln-strict-mono2 [mono-intros]:
assumes x < y
shows eln x < eln y

using eln-strict-mono assms unfolding strict-mono-def by auto

lemma eln-mono2 [mono-intros]:
assumes x ≤ y
shows eln x ≤ eln y

using eln-mono assms unfolding mono-def by auto

lemma eln-le0 [simp]:
eln x ≤ 0 ←→ x ≤ 1

by (metis ennexp-eln ennexp-le1 )

lemma eln-ge0 [simp]:
eln x ≥ 0 ←→ x ≥ 1

by (metis ennexp-eln ennexp-ge1 )

lemma bij-ennexp:
bij ennexp

by (auto intro!: bij-betw-byWitness[of - eln])

lemma bij-eln:
bij eln

by (auto intro!: bij-betw-byWitness[of - ennexp])
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lemma ennexp-continuous:
continuous-on UNIV ennexp

apply (rule continuous-onI-mono)
using ennexp-mono unfolding mono-def by (auto simp add: bij-ennexp bij-is-surj)

lemma ennexp-tendsto [tendsto-intros]:
assumes ((λn. u n) −−−→ l) F
shows ((λn. ennexp(u n)) −−−→ ennexp l) F

using ennexp-continuous assms by (metis UNIV-I continuous-on tendsto-compose)

lemma eln-continuous:
continuous-on UNIV eln

apply (rule continuous-onI-mono)
using eln-mono unfolding mono-def by (auto simp add: bij-eln bij-is-surj)

lemma eln-tendsto [tendsto-intros]:
assumes ((λn. u n) −−−→ l) F
shows ((λn. eln(u n)) −−−→ eln l) F

using eln-continuous assms by (metis UNIV-I continuous-on tendsto-compose)

lemma ennexp-special-values [simp]:
ennexp x = 0 ←→ x = −∞
ennexp x = 1 ←→ x = 0
ennexp x = ∞ ←→ x = ∞
ennexp x = top ←→ x = ∞

by auto (metis eln-ennexp eln-simps)+

lemma eln-special-values [simp]:
eln x = −∞ ←→ x = 0
eln x = 0 ←→ x = 1
eln x = ∞ ←→ x = ∞

apply auto
apply (metis ennexp.simps ennexp-eln ennexp-0 )+
by (metis ennexp.simps(2 ) ennexp-eln infinity-ennreal-def )

lemma ennexp-add-mult:
assumes ¬((a = ∞ ∧ b = −∞) ∨ (a = −∞ ∧ b = ∞))
shows ennexp(a+b) = ennexp a ∗ ennexp b

apply (cases a, cases b)
using assms by (auto simp add: ennreal-mult ′′ exp-add ennreal-top-eq-mult-iff )

lemma eln-mult-add:
assumes ¬((a = ∞ ∧ b = 0 ) ∨ (a = 0 ∧ b = ∞))
shows eln(a ∗ b) = eln a + eln b

by (smt assms ennexp.simps(2 ) ennexp.simps(3 ) ennexp-add-mult ennexp-eln eln-ennexp)

We can also define the square root on ennreal using the above exponential.
definition ennsqrt::ennreal ⇒ ennreal
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where ennsqrt x = ennexp(eln x/2 )

lemma ennsqrt-square [simp]:
(ennsqrt x) ∗ (ennsqrt x) = x

proof −
have y/2 + y/2 = y for y::ereal

by (cases y, auto)
then show ?thesis

unfolding ennsqrt-def by (subst ennexp-add-mult[symmetric], auto)
qed

lemma ennsqrt-simps [simp]:
ennsqrt 0 = 0
ennsqrt 1 = 1
ennsqrt ∞ = ∞
ennsqrt top = top

unfolding ennsqrt-def by auto

lemma ennsqrt-mult:
ennsqrt(a ∗ b) = ennsqrt a ∗ ennsqrt b

proof −
have [simp]: z/ereal 2 = −∞ ←→ z = −∞ for z

by (auto simp add: ereal-divide-eq)

consider a = 0 | b = 0 | a > 0 ∧ b > 0
using zero-less-iff-neq-zero by auto

then show ?thesis
apply (cases, auto)
apply (cases a, cases b, auto simp add: ennreal-mult-top ennreal-top-mult)
unfolding ennsqrt-def apply (subst ennexp-add-mult[symmetric], auto)
apply (subst eln-mult-add, auto)
done

qed

lemma ennsqrt-square2 [simp]:
ennsqrt (x ∗ x) = x
unfolding ennsqrt-mult by auto

lemma ennsqrt-eq-iff-square:
ennsqrt x = y ←→ x = y ∗ y

by auto

lemma ennsqrt-bij:
bij ennsqrt

by (rule bij-betw-byWitness[of - λx. x ∗ x], auto)

lemma ennsqrt-strict-mono:
strict-mono ennsqrt
unfolding ennsqrt-def
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apply (rule strict-mono-compose[OF ennexp-strict-mono])
apply (rule strict-mono-compose[OF - eln-strict-mono])
by (auto simp add: ereal-less-divide-pos ereal-mult-divide strict-mono-def )

lemma ennsqrt-mono:
mono ennsqrt

using ennsqrt-strict-mono by (simp add: strict-mono-mono)

lemma ennsqrt-mono2 [mono-intros]:
assumes x ≤ y
shows ennsqrt x ≤ ennsqrt y

using ennsqrt-mono assms unfolding mono-def by auto

lemma ennsqrt-continuous:
continuous-on UNIV ennsqrt

apply (rule continuous-onI-mono)
using ennsqrt-mono unfolding mono-def by (auto simp add: ennsqrt-bij bij-is-surj)

lemma ennsqrt-tendsto [tendsto-intros]:
assumes ((λn. u n) −−−→ l) F
shows ((λn. ennsqrt(u n)) −−−→ ennsqrt l) F

using ennsqrt-continuous assms by (metis UNIV-I continuous-on tendsto-compose)

lemma ennsqrt-ennreal-ennreal-sqrt [simp]:
assumes t ≥ (0 ::real)
shows ennsqrt (ennreal t) = ennreal (sqrt t)

proof −
have ennreal t = ennreal (sqrt t) ∗ ennreal(sqrt t)

apply (subst ennreal-mult[symmetric]) using assms by auto
then show ?thesis

by auto
qed

lemma ennreal-sqrt2 :
ennreal (sqrt 2 ) = ennsqrt 2

using ennsqrt-ennreal-ennreal-sqrt[of 2 ] by auto

lemma ennsqrt-4 [simp]:
ennsqrt 4 = 2

by (metis ennreal-numeral ennsqrt-ennreal-ennreal-sqrt real-sqrt-four zero-le-numeral)

lemma ennsqrt-le [simp]:
ennsqrt x ≤ ennsqrt y ←→ x ≤ y

proof
assume ennsqrt x ≤ ennsqrt y
then have ennsqrt x ∗ ennsqrt x ≤ ennsqrt y ∗ ennsqrt y

by (intro mult-mono, auto)
then show x ≤ y by auto

qed (auto intro: mono-intros)
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We can also define the square root on ereal using the square root on ennreal,
and 0 for negative numbers.
definition esqrt::ereal ⇒ ereal

where esqrt x = enn2ereal(ennsqrt (e2ennreal x))

lemma esqrt-square [simp]:
assumes x ≥ 0
shows (esqrt x) ∗ (esqrt x) = x

unfolding esqrt-def times-ennreal.rep-eq[symmetric] ennsqrt-square[of e2ennreal x]
using assms enn2ereal-e2ennreal by auto

lemma esqrt-of-neg [simp]:
assumes x ≤ 0
shows esqrt x = 0
unfolding esqrt-def e2ennreal-neg[OF assms] by (auto simp add: zero-ennreal.rep-eq)

lemma esqrt-nonneg [simp]:
esqrt x ≥ 0

unfolding esqrt-def by auto

lemma esqrt-eq-iff-square [simp]:
assumes x ≥ 0 y ≥ 0
shows esqrt x = y ←→ x = y ∗ y

using esqrt-def esqrt-square assms apply auto
by (metis e2ennreal-enn2ereal ennsqrt-square2 eq-onp-same-args ereal-ennreal-cases
leD times-ennreal.abs-eq)

lemma esqrt-simps [simp]:
esqrt 0 = 0
esqrt 1 = 1
esqrt ∞ = ∞
esqrt top = top
esqrt (−∞) = 0

by (auto simp: top-ereal-def )

lemma esqrt-mult:
assumes a ≥ 0
shows esqrt(a ∗ b) = esqrt a ∗ esqrt b

proof (cases b ≥ 0 )
case True
show ?thesis

unfolding esqrt-def apply (subst times-ennreal.rep-eq[symmetric])
apply (subst ennsqrt-mult[of e2ennreal a e2ennreal b, symmetric])
apply (subst times-ennreal.abs-eq)
using assms True by (auto simp add: eq-onp-same-args)

next
case False
then have a ∗ b ≤ 0 using assms ereal-mult-le-0-iff by auto
then have esqrt(a ∗ b) = 0 by auto
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moreover have esqrt b = 0 using False by auto
ultimately show ?thesis by auto

qed

lemma esqrt-square2 [simp]:
esqrt(x ∗ x) = abs(x)

proof −
have esqrt(x ∗ x) = esqrt(abs x ∗ abs x)
by (metis (no-types, opaque-lifting) abs-ereal-ge0 ereal-abs-mult ereal-zero-le-0-iff

linear)
also have ... = abs x

by (auto simp add: esqrt-mult)
finally show ?thesis by auto

qed

lemma esqrt-mono:
mono esqrt

unfolding esqrt-def mono-def by (auto intro: mono-intros)

lemma esqrt-mono2 [mono-intros]:
assumes x ≤ y
shows esqrt x ≤ esqrt y

using esqrt-mono assms unfolding mono-def by auto

lemma esqrt-continuous:
continuous-on UNIV esqrt

unfolding esqrt-def apply (rule continuous-on-compose2 [of UNIV enn2ereal], in-
tro continuous-on-enn2ereal)
by (rule continuous-on-compose2 [of UNIV ennsqrt], auto intro!: ennsqrt-continuous
continuous-on-e2ennreal)

lemma esqrt-tendsto [tendsto-intros]:
assumes ((λn. u n) −−−→ l) F
shows ((λn. esqrt(u n)) −−−→ esqrt l) F

using esqrt-continuous assms by (metis UNIV-I continuous-on tendsto-compose)

lemma esqrt-ereal-ereal-sqrt [simp]:
assumes t ≥ (0 ::real)
shows esqrt (ereal t) = ereal (sqrt t)

proof −
have ereal t = ereal (sqrt t) ∗ ereal(sqrt t)

using assms by auto
then show ?thesis

using assms ereal-less-eq(5 ) esqrt-mult esqrt-square real-sqrt-ge-zero by pres-
burger
qed

lemma ereal-sqrt2 :
ereal (sqrt 2 ) = esqrt 2
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using esqrt-ereal-ereal-sqrt[of 2 ] by auto

lemma esqrt-4 [simp]:
esqrt 4 = 2

by auto

lemma esqrt-le [simp]:
esqrt x ≤ esqrt y ←→ (x ≤ 0 ∨ x ≤ y)

apply (auto simp add: esqrt-mono2 )
by (metis eq-iff ereal-zero-times esqrt-mono2 esqrt-square le-cases)

Finally, we define eexp, as the composition of ennexp and the injection of
ennreal in ereal.
definition eexp::ereal ⇒ ereal where

eexp x = enn2ereal (ennexp x)

lemma eexp-special-values [simp]:
eexp 0 = 1
eexp (∞) = ∞
eexp(−∞) = 0

unfolding eexp-def by (auto simp add: zero-ennreal.rep-eq one-ennreal.rep-eq)

lemma eexp-strict-mono:
strict-mono eexp

unfolding eexp-def using ennexp-strict-mono unfolding strict-mono-def by (auto
intro: mono-intros)

lemma eexp-mono:
mono eexp

using eexp-strict-mono by (simp add: strict-mono-mono)

lemma eexp-strict-mono2 [mono-intros]:
assumes x < y
shows eexp x < eexp y

using eexp-strict-mono assms unfolding strict-mono-def by auto

lemma eexp-mono2 [mono-intros]:
assumes x ≤ y
shows eexp x ≤ eexp y

using eexp-mono assms unfolding mono-def by auto

lemma eexp-le-eexp-iff-le:
eexp x ≤ eexp y ←→ x ≤ y

using eexp-strict-mono2 not-le by (auto intro: mono-intros)

lemma eexp-lt-eexp-iff-lt:
eexp x < eexp y ←→ x < y

using eexp-mono2 not-le by (auto intro: mono-intros)
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lemma eexp-special-values-iff [simp]:
eexp x = 0 ←→ x = −∞
eexp x = 1 ←→ x = 0
eexp x = ∞ ←→ x = ∞
eexp x = top ←→ x = ∞

unfolding eexp-def apply (auto simp add: zero-ennreal.rep-eq one-ennreal.rep-eq
top-ereal-def )
apply (metis e2ennreal-enn2ereal ennexp.simps(3 ) ennexp-strict-mono strict-mono-eq
zero-ennreal-def )
by (metis e2ennreal-enn2ereal eln-ennexp eln-simps(2 ) one-ennreal-def )

lemma eexp-ineq-iff [simp]:
eexp x ≤ 1 ←→ x ≤ 0
eexp x ≥ 1 ←→ x ≥ 0
eexp x > 1 ←→ x > 0
eexp x < 1 ←→ x < 0
eexp x ≥ 0
eexp x > 0 ←→ x 6= − ∞
eexp x < ∞ ←→ x 6= ∞

apply (metis eexp-le-eexp-iff-le eexp-lt-eexp-iff-lt eexp-special-values)+
apply (simp add: eexp-def )
using eexp-strict-mono2 apply (force)
by simp

lemma eexp-ineq [mono-intros]:
x ≤ 0 =⇒ eexp x ≤ 1
x < 0 =⇒ eexp x < 1
x ≥ 0 =⇒ eexp x ≥ 1
x > 0 =⇒ eexp x > 1
eexp x ≥ 0
x > −∞ =⇒ eexp x > 0
x < ∞ =⇒ eexp x < ∞

by auto

lemma eexp-continuous:
continuous-on UNIV eexp

unfolding eexp-def by (rule continuous-on-compose2 [of UNIV enn2ereal], auto
simp: continuous-on-enn2ereal ennexp-continuous)

lemma eexp-tendsto ′ [simp]:
((λn. eexp(u n)) −−−→ eexp l) F ←→ ((λn. u n) −−−→ l) F

proof
assume H : ((λn. eexp (u n)) −−−→ eexp l) F
have ((λn. eln (e2ennreal (eexp (u n)))) −−−→ eln (e2ennreal (eexp l))) F

by (intro tendsto-intros H )
then show (u −−−→ l) F

unfolding eexp-def by auto
next
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assume (u −−−→ l) F
then show ((λn. eexp(u n)) −−−→ eexp l) F

using eexp-continuous by (metis UNIV-I continuous-on tendsto-compose)
qed

lemma eexp-tendsto [tendsto-intros]:
assumes ((λn. u n) −−−→ l) F
shows ((λn. eexp(u n)) −−−→ eexp l) F

using assms by auto

lemma eexp-add-mult:
assumes ¬((a = ∞ ∧ b = −∞) ∨ (a = −∞ ∧ b = ∞))
shows eexp(a+b) = eexp a ∗ eexp b

using ennexp-add-mult[OF assms] unfolding eexp-def by (simp add: times-ennreal.rep-eq)

lemma eexp-ereal [simp]:
eexp(ereal x) = ereal(exp x)

by (simp add: eexp-def )

end

3 Hausdorff distance
theory Hausdorff-Distance

imports Library-Complements
begin

3.1 Preliminaries
3.2 Hausdorff distance

The Hausdorff distance between two subsets of a metric space is the minimal
M such that each set is included in the M -neighborhood of the other. For
nonempty bounded sets, it satisfies the triangular inequality, it is symmetric,
but it vanishes on sets that have the same closure. In particular, it defines a
distance on closed bounded nonempty sets. We establish all these properties
below.
definition hausdorff-distance::( ′a::metric-space) set ⇒ ′a set ⇒ real

where hausdorff-distance A B = (if A = {} ∨ B = {} ∨ (¬(bounded A)) ∨
(¬(bounded B)) then 0

else max (SUP x∈A. infdist x B) (SUP x∈B. infdist x
A))

lemma hausdorff-distance-self [simp]:
hausdorff-distance A A = 0

unfolding hausdorff-distance-def by auto

lemma hausdorff-distance-sym:
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hausdorff-distance A B = hausdorff-distance B A
unfolding hausdorff-distance-def by auto

lemma hausdorff-distance-points [simp]:
hausdorff-distance {x} {y} = dist x y

unfolding hausdorff-distance-def by (auto, metis dist-commute max.idem)

The Hausdorff distance is expressed in terms of a supremum. To use it, one
needs again and again to show that this is the supremum of a set which is
bounded from above.
lemma bdd-above-infdist-aux:

assumes bounded A bounded B
shows bdd-above ((λx. infdist x B)‘A)

proof (cases B = {})
case True
then show ?thesis unfolding infdist-def by auto

next
case False
then obtain y where y ∈ B by auto
then have infdist x B ≤ dist x y if x ∈ A for x

by (simp add: infdist-le)
then show ?thesis unfolding bdd-above-def

by (auto, metis assms(1 ) bounded-any-center dist-commute order-trans)
qed

lemma hausdorff-distance-nonneg [simp, mono-intros]:
hausdorff-distance A B ≥ 0

proof (cases A = {} ∨ B = {} ∨ (¬(bounded A)) ∨ (¬(bounded B)))
case True
then show ?thesis unfolding hausdorff-distance-def by auto

next
case False
then have A 6= {} B 6= {} bounded A bounded B by auto
have (SUP x∈A. infdist x B) ≥ 0

using bdd-above-infdist-aux[OF ‹bounded A› ‹bounded B›] infdist-nonneg
by (metis ‹A 6= {}› all-not-in-conv cSUP-upper2 )

moreover have (SUP x∈B. infdist x A) ≥ 0
using bdd-above-infdist-aux[OF ‹bounded B› ‹bounded A›] infdist-nonneg
by (metis ‹B 6= {}› all-not-in-conv cSUP-upper2 )

ultimately show ?thesis unfolding hausdorff-distance-def by auto
qed

lemma hausdorff-distanceI :
assumes

∧
x. x ∈ A =⇒ infdist x B ≤ D∧

x. x ∈ B =⇒ infdist x A ≤ D
D ≥ 0

shows hausdorff-distance A B ≤ D
proof (cases A = {} ∨ B = {} ∨ (¬(bounded A)) ∨ (¬(bounded B)))

case True
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then show ?thesis unfolding hausdorff-distance-def using ‹D ≥ 0 › by auto
next

case False
then have A 6= {} B 6= {} bounded A bounded B by auto
have (SUP x∈A. infdist x B) ≤ D

apply (rule cSUP-least, simp add: ‹A 6= {}›) using assms(1 ) by blast
moreover have (SUP x∈B. infdist x A) ≤ D

apply (rule cSUP-least, simp add: ‹B 6= {}›) using assms(2 ) by blast
ultimately show ?thesis unfolding hausdorff-distance-def using False by auto

qed

lemma hausdorff-distanceI2 :
assumes

∧
x. x ∈ A =⇒ ∃ y∈B. dist x y ≤ D∧

x. x ∈ B =⇒ ∃ y∈A. dist x y ≤ D
D ≥ 0

shows hausdorff-distance A B ≤ D
proof (rule hausdorff-distanceI [OF - - ‹D ≥ 0 ›])
fix x assume x ∈ A show infdist x B ≤ D using assms(1 )[OF ‹x ∈ A›] infdist-le2

by fastforce
next

fix x assume x ∈ B show infdist x A ≤ D using assms(2 )[OF ‹x ∈ B›]
infdist-le2 by fastforce
qed

lemma infdist-le-hausdorff-distance [mono-intros]:
assumes x ∈ A bounded A bounded B
shows infdist x B ≤ hausdorff-distance A B

proof (cases B = {})
case True
then have infdist x B = 0 unfolding infdist-def by auto
then show ?thesis using hausdorff-distance-nonneg by auto

next
case False
have infdist x B ≤ (SUP y∈A. infdist y B)
using bdd-above-infdist-aux[OF ‹bounded A› ‹bounded B›] by (meson assms(1 )

cSUP-upper)
then show ?thesis unfolding hausdorff-distance-def using assms False by auto

qed

lemma hausdorff-distance-infdist-triangle [mono-intros]:
assumes B 6= {} bounded B bounded C
shows infdist x C ≤ infdist x B + hausdorff-distance B C

proof (cases C = {})
case True
then have infdist x C = 0 unfolding infdist-def by auto
then show ?thesis using infdist-nonneg[of x B] hausdorff-distance-nonneg[of B

C ] by auto
next

case False
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have infdist x C − hausdorff-distance B C ≤ dist x b if b ∈ B for b
proof −

have infdist x C ≤ infdist b C + dist x b by (rule infdist-triangle)
also have ... ≤ dist x b + hausdorff-distance B C

using infdist-le-hausdorff-distance[OF ‹b ∈ B› ‹bounded B› ‹bounded C ›] by
auto

finally show ?thesis by auto
qed
then have infdist x C − hausdorff-distance B C ≤ infdist x B

unfolding infdist-def using ‹B 6= {}› by (simp add: le-cINF-iff )
then show ?thesis by auto

qed

lemma hausdorff-distance-triangle [mono-intros]:
assumes B 6= {} bounded B
shows hausdorff-distance A C ≤ hausdorff-distance A B + hausdorff-distance B

C
proof (cases A = {} ∨ C = {} ∨ (¬(bounded A)) ∨ (¬(bounded C )))

case True
then have hausdorff-distance A C = 0 unfolding hausdorff-distance-def by

auto
then show ?thesis

using hausdorff-distance-nonneg[of A B] hausdorff-distance-nonneg[of B C ] by
auto
next

case False
then have ∗: A 6= {} C 6= {} bounded A bounded C by auto
define M where M = hausdorff-distance A B + hausdorff-distance B C
have infdist x C ≤ M if x ∈ A for x

using hausdorff-distance-infdist-triangle[OF ‹B 6= {}› ‹bounded B › ‹bounded
C ›, of x]

infdist-le-hausdorff-distance[OF ‹x ∈ A› ‹bounded A› ‹bounded B›] by
(auto simp add: M-def )

moreover have infdist x A ≤ M if x ∈ C for x
using hausdorff-distance-infdist-triangle[OF ‹B 6= {}› ‹bounded B › ‹bounded

A›, of x]
infdist-le-hausdorff-distance[OF ‹x ∈ C › ‹bounded C › ‹bounded B›]

by (auto simp add: hausdorff-distance-sym M-def )
ultimately have hausdorff-distance A C ≤ M

unfolding hausdorff-distance-def using ∗ bdd-above-infdist-aux by (auto simp
add: cSUP-least)

then show ?thesis unfolding M-def by auto
qed

lemma hausdorff-distance-subset:
assumes A ⊆ B A 6= {} bounded B
shows hausdorff-distance A B = (SUP x∈B. infdist x A)

proof −
have H : B 6= {} bounded A using assms bounded-subset by auto
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have (SUP x∈A. infdist x B) = 0 using assms by (simp add: subset-eq)
moreover have (SUP x∈B. infdist x A) ≥ 0

using bdd-above-infdist-aux[OF ‹bounded B› ‹bounded A›] infdist-nonneg[of -
A]

by (meson H (1 ) cSUP-upper2 ex-in-conv)
ultimately show ?thesis unfolding hausdorff-distance-def using assms H by

auto
qed

lemma hausdorff-distance-closure [simp]:
hausdorff-distance A (closure A) = 0

proof (cases A = {} ∨ (¬(bounded A)))
case True
then show ?thesis unfolding hausdorff-distance-def by auto

next
case False
then have A 6= {} bounded A by auto
then have closure A 6= {} bounded (closure A) A ⊆ closure A

using closure-subset by auto
have infdist x A = 0 if x ∈ closure A for x

using in-closure-iff-infdist-zero[OF ‹A 6= {}›] that by auto
then have (SUP x∈closure A. infdist x A) = 0

using ‹closure A 6= {}› by auto
then show ?thesis

unfolding hausdorff-distance-subset[OF ‹A ⊆ closure A› ‹A 6= {}› ‹bounded
(closure A)›] by simp
qed

lemma hausdorff-distance-closures [simp]:
hausdorff-distance (closure A) (closure B) = hausdorff-distance A B

proof (cases A = {} ∨ B = {} ∨ (¬(bounded A)) ∨ (¬(bounded B)))
case True
then have ∗: hausdorff-distance A B = 0 unfolding hausdorff-distance-def by

auto
have closure A = {} ∨ (¬(bounded (closure A))) ∨ closure B = {} ∨ (¬(bounded

(closure B)))
using True bounded-subset closure-subset by auto

then have hausdorff-distance (closure A) (closure B) = 0
unfolding hausdorff-distance-def by auto

then show ?thesis using ∗ by simp
next

case False
then have H : A 6= {} B 6= {} bounded A bounded B by auto
then have H2 : closure A 6= {} closure B 6= {} bounded (closure A) bounded

(closure B)
by auto

have hausdorff-distance A B ≤ hausdorff-distance A (closure A) + hausdorff-distance
(closure A) B

apply (rule hausdorff-distance-triangle) using H H2 by auto
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also have ... = hausdorff-distance (closure A) B
using hausdorff-distance-closure by auto

also have ... ≤ hausdorff-distance (closure A) (closure B) + hausdorff-distance
(closure B) B

apply (rule hausdorff-distance-triangle) using H H2 by auto
also have ... = hausdorff-distance (closure A) (closure B)

using hausdorff-distance-closure by (auto simp add: hausdorff-distance-sym)
finally have ∗: hausdorff-distance A B ≤ hausdorff-distance (closure A) (closure

B) by simp

have hausdorff-distance (closure A) (closure B) ≤ hausdorff-distance (closure A)
A + hausdorff-distance A (closure B)

apply (rule hausdorff-distance-triangle) using H H2 by auto
also have ... = hausdorff-distance A (closure B)

using hausdorff-distance-closure by (auto simp add: hausdorff-distance-sym)
also have ... ≤ hausdorff-distance A B + hausdorff-distance B (closure B)

apply (rule hausdorff-distance-triangle) using H H2 by auto
also have ... = hausdorff-distance A B

using hausdorff-distance-closure by (auto simp add: hausdorff-distance-sym)
finally have hausdorff-distance (closure A) (closure B) ≤ hausdorff-distance A

B by simp
then show ?thesis using ∗ by auto

qed

lemma hausdorff-distance-zero:
assumes A 6= {} bounded A B 6= {} bounded B
shows hausdorff-distance A B = 0 ←→ closure A = closure B

proof
assume H : hausdorff-distance A B = 0
have A ⊆ closure B
proof

fix x assume x ∈ A
have infdist x B = 0

using infdist-le-hausdorff-distance[OF ‹x ∈ A› ‹bounded A› ‹bounded B›] H
infdist-nonneg[of x B] by auto

then show x ∈ closure B using in-closure-iff-infdist-zero[OF ‹B 6= {}›] by
auto

qed
then have A: closure A ⊆ closure B by (simp add: closure-minimal)

have B ⊆ closure A
proof

fix x assume x ∈ B
have infdist x A = 0

using infdist-le-hausdorff-distance[OF ‹x ∈ B› ‹bounded B› ‹bounded A›] H
infdist-nonneg[of x A]

by (auto simp add: hausdorff-distance-sym)
then show x ∈ closure A using in-closure-iff-infdist-zero[OF ‹A 6= {}›] by

auto
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qed
then have closure B ⊆ closure A by (simp add: closure-minimal)
then show closure A = closure B using A by auto

next
assume closure A = closure B
then show hausdorff-distance A B = 0

using hausdorff-distance-closures[of A B] by auto
qed

lemma hausdorff-distance-vimage:
assumes

∧
x. x ∈ A =⇒ dist (f x) (g x) ≤ C

C ≥ 0
shows hausdorff-distance (f‘A) (g‘A) ≤ C

apply (rule hausdorff-distanceI2 [OF - - ‹C ≥ 0 ›]) using assms by (auto simp
add: dist-commute, auto)

lemma hausdorff-distance-union [mono-intros]:
assumes A 6= {} B 6= {} C 6= {} D 6= {}
shows hausdorff-distance (A ∪ B) (C ∪ D) ≤ max (hausdorff-distance A C )

(hausdorff-distance B D)
proof (cases bounded A ∧ bounded B ∧ bounded C ∧ bounded D)

case False
then have hausdorff-distance (A ∪ B) (C ∪ D) = 0

unfolding hausdorff-distance-def by auto
then show ?thesis

by (simp add: hausdorff-distance-nonneg le-max-iff-disj)
next

case True
show ?thesis
proof (rule hausdorff-distanceI , auto)

fix x assume H : x ∈ A
have infdist x (C ∪ D) ≤ infdist x C

by (simp add: assms infdist-union-min)
also have ... ≤ hausdorff-distance A C

apply (rule infdist-le-hausdorff-distance) using H True by auto
also have ... ≤ max (hausdorff-distance A C ) (hausdorff-distance B D)

by auto
finally show infdist x (C ∪ D) ≤ max (hausdorff-distance A C ) (hausdorff-distance

B D)
by simp

next
fix x assume H : x ∈ B
have infdist x (C ∪ D) ≤ infdist x D

by (simp add: assms infdist-union-min)
also have ... ≤ hausdorff-distance B D

apply (rule infdist-le-hausdorff-distance) using H True by auto
also have ... ≤ max (hausdorff-distance A C ) (hausdorff-distance B D)

by auto
finally show infdist x (C ∪ D) ≤ max (hausdorff-distance A C ) (hausdorff-distance
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B D)
by simp

next
fix x assume H : x ∈ C
have infdist x (A ∪ B) ≤ infdist x A

by (simp add: assms infdist-union-min)
also have ... ≤ hausdorff-distance C A

apply (rule infdist-le-hausdorff-distance) using H True by auto
also have ... ≤ max (hausdorff-distance A C ) (hausdorff-distance B D)

using hausdorff-distance-sym[of A C ] by auto
finally show infdist x (A ∪ B) ≤ max (hausdorff-distance A C ) (hausdorff-distance

B D)
by simp

next
fix x assume H : x ∈ D
have infdist x (A ∪ B) ≤ infdist x B

by (simp add: assms infdist-union-min)
also have ... ≤ hausdorff-distance D B

apply (rule infdist-le-hausdorff-distance) using H True by auto
also have ... ≤ max (hausdorff-distance A C ) (hausdorff-distance B D)

using hausdorff-distance-sym[of B D] by auto
finally show infdist x (A ∪ B) ≤ max (hausdorff-distance A C ) (hausdorff-distance

B D)
by simp

qed (simp add: le-max-iff-disj)
qed

end

4 Isometries
theory Isometries

imports Library-Complements Hausdorff-Distance
begin

Isometries, i.e., functions that preserve distances, show up very often in
mathematics. We introduce a dedicated definition, and show its basic prop-
erties.
definition isometry-on::( ′a::metric-space) set ⇒ ( ′a ⇒ ( ′b::metric-space)) ⇒ bool

where isometry-on X f = (∀ x ∈ X . ∀ y ∈ X . dist (f x) (f y) = dist x y)

definition isometry :: ( ′a::metric-space ⇒ ′b::metric-space) ⇒ bool
where isometry f ≡ isometry-on UNIV f ∧ range f = UNIV

lemma isometry-on-subset:
assumes isometry-on X f

Y ⊆ X
shows isometry-on Y f
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using assms unfolding isometry-on-def by auto

lemma isometry-onI [intro?]:
assumes

∧
x y. x ∈ X =⇒ y ∈ X =⇒ dist (f x) (f y) = dist x y

shows isometry-on X f
using assms unfolding isometry-on-def by auto

lemma isometry-onD:
assumes isometry-on X f

x ∈ X y ∈ X
shows dist (f x) (f y) = dist x y

using assms unfolding isometry-on-def by auto

lemma isometryI [intro?]:
assumes

∧
x y. dist (f x) (f y) = dist x y

range f = UNIV
shows isometry f

unfolding isometry-def isometry-on-def using assms by auto

lemma
assumes isometry-on X f
shows isometry-on-lipschitz: 1−lipschitz-on X f

and isometry-on-uniformly-continuous: uniformly-continuous-on X f
and isometry-on-continuous: continuous-on X f

proof −
show 1−lipschitz-on X f apply (rule lipschitz-onI ) using isometry-onD[OF

assms] by auto
then show uniformly-continuous-on X f continuous-on X f

using lipschitz-on-uniformly-continuous lipschitz-on-continuous-on by auto
qed

lemma isometryD:
assumes isometry f
shows isometry-on UNIV f

dist (f x) (f y) = dist x y
range f = UNIV
1−lipschitz-on UNIV f
uniformly-continuous-on UNIV f
continuous-on UNIV f

using assms unfolding isometry-def isometry-on-def apply auto
using isometry-on-lipschitz isometry-on-uniformly-continuous isometry-on-continuous
assms unfolding isometry-def by blast+

lemma isometry-on-injective:
assumes isometry-on X f
shows inj-on f X

using assms inj-on-def isometry-on-def by force

lemma isometry-on-compose:
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assumes isometry-on X f
isometry-on (f‘X) g

shows isometry-on X (λx. g(f x))
using assms unfolding isometry-on-def by auto

lemma isometry-on-cong:
assumes isometry-on X f∧

x. x ∈ X =⇒ g x = f x
shows isometry-on X g

using assms unfolding isometry-on-def by auto

lemma isometry-on-inverse:
assumes isometry-on X f
shows isometry-on (f‘X) (inv-into X f )∧

x. x ∈ X =⇒ (inv-into X f ) (f x) = x∧
y. y ∈ f‘X =⇒ f (inv-into X f y) = y

bij-betw f X (f‘X)
proof −

show ∗: bij-betw f X (f‘X)
using assms unfolding bij-betw-def inj-on-def isometry-on-def by force

show isometry-on (f‘X) (inv-into X f )
using assms unfolding isometry-on-def
by (auto) (metis (mono-tags, lifting) dist-eq-0-iff inj-on-def inv-into-f-f )

fix x assume x ∈ X
then show (inv-into X f ) (f x) = x

using ∗ by (simp add: bij-betw-def )
next

fix y assume y ∈ f‘X
then show f (inv-into X f y) = y

by (simp add: f-inv-into-f )
qed

lemma isometry-inverse:
assumes isometry f
shows isometry (inv f )

bij f
using isometry-on-inverse[OF isometryD(1 )[OF assms]] isometryD(3 )[OF assms]
unfolding isometry-def by (auto simp add: bij-imp-bij-inv bij-is-surj)

lemma isometry-on-homeomorphism:
assumes isometry-on X f
shows homeomorphism X (f‘X) f (inv-into X f )

homeomorphism-on X f
X homeomorphic f‘X

proof −
show ∗: homeomorphism X (f‘X) f (inv-into X f )

apply (rule homeomorphismI ) using uniformly-continuous-imp-continuous[OF
isometry-on-uniformly-continuous]

isometry-on-inverse[OF assms] assms by auto
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then show X homeomorphic f‘X
unfolding homeomorphic-def by auto

show homeomorphism-on X f
unfolding homeomorphism-on-def using ∗ by auto

qed

lemma isometry-homeomorphism:
fixes f ::( ′a::metric-space) ⇒ ( ′b::metric-space)
assumes isometry f
shows homeomorphism UNIV UNIV f (inv f )

(UNIV :: ′a set) homeomorphic (UNIV :: ′b set)
using isometry-on-homeomorphism[OF isometryD(1 )[OF assms]] isometryD(3 )[OF
assms] by auto

lemma isometry-on-closure:
assumes isometry-on X f

continuous-on (closure X) f
shows isometry-on (closure X) f

proof (rule isometry-onI )
fix x y assume x ∈ closure X y ∈ closure X
obtain u v::nat ⇒ ′a where ∗:

∧
n. u n ∈ X u −−−−→ x∧

n. v n ∈ X v −−−−→ y
using ‹x ∈ closure X› ‹y ∈ closure X› unfolding closure-sequential by blast

have (λn. f (u n)) −−−−→ f x
using ∗(1 ) ∗(2 ) ‹x ∈ closure X› ‹continuous-on (closure X) f ›
unfolding comp-def continuous-on-closure-sequentially[of X f ] by auto

moreover have (λn. f (v n)) −−−−→ f y
using ∗(3 ) ∗(4 ) ‹y ∈ closure X› ‹continuous-on (closure X) f ›
unfolding comp-def continuous-on-closure-sequentially[of X f ] by auto

ultimately have (λn. dist (f (u n)) (f (v n))) −−−−→ dist (f x) (f y)
by (simp add: tendsto-dist)

then have (λn. dist (u n) (v n)) −−−−→ dist (f x) (f y)
using assms(1 ) ∗(1 ) ∗(3 ) unfolding isometry-on-def by auto

moreover have (λn. dist (u n) (v n)) −−−−→ dist x y
using ∗(2 ) ∗(4 ) by (simp add: tendsto-dist)

ultimately show dist (f x) (f y) = dist x y using LIMSEQ-unique by auto
qed

lemma isometry-extend-closure:
fixes f ::( ′a::metric-space) ⇒ ( ′b::complete-space)
assumes isometry-on X f
shows ∃ g. isometry-on (closure X) g ∧ (∀ x∈X . g x = f x)

proof −
obtain g where g:

∧
x. x ∈ X =⇒ g x = f x uniformly-continuous-on (closure

X) g
using uniformly-continuous-on-extension-on-closure[OF isometry-on-uniformly-continuous[OF

assms]] by metis
have isometry-on (closure X) g

apply (rule isometry-on-closure, rule isometry-on-cong[OF assms])
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using g uniformly-continuous-imp-continuous[OF g(2 )] by auto
then show ?thesis using g(1 ) by auto

qed

lemma isometry-on-complete-image:
assumes isometry-on X f

complete X
shows complete (f‘X)

proof (rule completeI )
fix u :: nat ⇒ ′b assume u: ∀n. u n ∈ f‘X Cauchy u
define v where v = (λn. inv-into X f (u n))
have v n ∈ X for n

unfolding v-def by (simp add: inv-into-into u(1 ))
have dist (v n) (v m) = dist (u n) (u m) for m n

using u(1 ) isometry-on-inverse[OF ‹isometry-on X f ›] unfolding isome-
try-on-def v-def by (auto simp add: inv-into-into)

then have Cauchy v
using u(2 ) unfolding Cauchy-def by auto

obtain l where l ∈ X v −−−−→ l
apply (rule completeE [OF ‹complete X› - ‹Cauchy v›]) using ‹

∧
n. v n ∈ X›

by auto
have (λn. f (v n)) −−−−→ f l
apply (rule continuous-on-tendsto-compose[OF isometry-on-continuous[OF ‹isom-

etry-on X f ›]])
using ‹

∧
n. v n ∈ X› ‹l ∈ X› ‹v −−−−→ l› by auto

moreover have f (v n) = u n for n
unfolding v-def by (simp add: f-inv-into-f u(1 ))

ultimately have u −−−−→ f l by auto
then show ∃m ∈ f‘X . u −−−−→ m using ‹l ∈ X› by auto

qed

lemma isometry-on-id [simp]:
isometry-on A (λx. x)
isometry-on A id

unfolding isometry-on-def by auto

lemma isometry-on-add [simp]:
isometry-on A (λx. x + (t:: ′a::real-normed-vector))

unfolding isometry-on-def by auto

lemma isometry-on-minus [simp]:
isometry-on A (λ(x:: ′a::real-normed-vector). −x)

unfolding isometry-on-def by (auto simp add: dist-minus)

lemma isometry-on-diff [simp]:
isometry-on A (λx. (t:: ′a::real-normed-vector) − x)

unfolding isometry-on-def by (auto, metis add-uminus-conv-diff dist-add-cancel
dist-minus)
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lemma isometry-preserves-bounded:
assumes isometry-on X f

A ⊆ X
shows bounded (f‘A) ←→ bounded A

unfolding bounded-two-points using assms(2 ) isometry-onD[OF assms(1 )] by
auto (metis assms(2 ) rev-subsetD)+

lemma isometry-preserves-infdist:
infdist (f x) (f‘A) = infdist x A
if isometry-on X f A ⊆ X x ∈ X
using that by (simp add: infdist-def image-comp isometry-on-def subset-iff )

lemma isometry-preserves-hausdorff-distance:
hausdorff-distance (f‘A) (f‘B) = hausdorff-distance A B
if isometry-on X f A ⊆ X B ⊆ X
using that isometry-preserves-infdist [OF that(1 ) that(2 )]
isometry-preserves-infdist [OF that(1 ) that(3 )]
isometry-preserves-bounded [OF that(1 ) that(2 )]
isometry-preserves-bounded [OF that(1 ) that(3 )]
by (simp add: hausdorff-distance-def image-comp subset-eq)

lemma isometry-on-UNIV-iterates:
fixes f ::( ′a::metric-space) ⇒ ′a
assumes isometry-on UNIV f
shows isometry-on UNIV (f^^n)

by (induction n, auto, rule isometry-on-compose[of - - f ], auto intro: isometry-on-subset[OF
assms])

lemma isometry-iterates:
fixes f ::( ′a::metric-space) ⇒ ′a
assumes isometry f
shows isometry (f^^n)

using isometry-on-UNIV-iterates[OF isometryD(1 )[OF assms], of n] bij-fn[OF isom-
etry-inverse(2 )[OF assms], of n]
unfolding isometry-def by (simp add: bij-is-surj)

5 Geodesic spaces

A geodesic space is a metric space in which any pair of points can be joined
by a geodesic segment, i.e., an isometrically embedded copy of a segment in
the real line. Most spaces in geometry are geodesic. We introduce in this
section the corresponding class of metric spaces. First, we study properties
of general geodesic segments in metric spaces.

5.1 Geodesic segments in general metric spaces
definition geodesic-segment-between::( ′a::metric-space) set ⇒ ′a ⇒ ′a ⇒ bool
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where geodesic-segment-between G x y = (∃ g::(real ⇒ ′a). g 0 = x ∧ g (dist x
y) = y ∧ isometry-on {0 ..dist x y} g ∧ G = g‘{0 ..dist x y})

definition geodesic-segment::( ′a::metric-space) set ⇒ bool
where geodesic-segment G = (∃ x y. geodesic-segment-between G x y)

We also introduce the parametrization of a geodesic segment. It is conve-
nient to use the following definition, which guarantees that the point is on
G even without checking that G is a geodesic segment or that the parameter
is in the reasonable range: this shortens some arguments below.
definition geodesic-segment-param::( ′a::metric-space) set ⇒ ′a ⇒ real ⇒ ′a

where geodesic-segment-param G x t = (if ∃w. w ∈ G ∧ dist x w = t then SOME
w. w ∈ G ∧ dist x w = t else SOME w. w ∈ G)

lemma geodesic-segment-betweenI :
assumes g 0 = x g (dist x y) = y isometry-on {0 ..dist x y} g G = g‘{0 ..dist x

y}
shows geodesic-segment-between G x y

unfolding geodesic-segment-between-def apply (rule exI [of - g]) using assms by
auto

lemma geodesic-segmentI [intro, simp]:
assumes geodesic-segment-between G x y
shows geodesic-segment G

unfolding geodesic-segment-def using assms by auto

lemma geodesic-segmentI2 [intro]:
assumes isometry-on {a..b} g a ≤ (b::real)
shows geodesic-segment-between (g‘{a..b}) (g a) (g b)

geodesic-segment (g‘{a..b})
proof −

define h where h = (λt. g (t+a))
have ∗: isometry-on {0 ..b−a} h

apply (rule isometry-onI )
using ‹isometry-on {a..b} g› ‹a ≤ b› by (auto simp add: isometry-on-def h-def )

have ∗∗: dist (h 0 ) (h (b−a)) = b−a
using isometry-onD[OF ‹isometry-on {0 ..b−a} h›, of 0 b−a] ‹a ≤ b› unfolding

dist-real-def by auto
have geodesic-segment-between (h‘{0 ..b−a}) (h 0 ) (h (b−a))

unfolding geodesic-segment-between-def apply (rule exI [of - h]) unfolding ∗∗
using ∗ by auto

moreover have g‘{a..b} = h‘{0 ..b−a}
unfolding h-def apply (auto simp add: image-iff )

by (metis add.commute atLeastAtMost-iff diff-ge-0-iff-ge diff-right-mono le-add-diff-inverse)
moreover have h 0 = g a h (b−a) = g b unfolding h-def by auto
ultimately show geodesic-segment-between (g‘{a..b}) (g a) (g b) by auto
then show geodesic-segment (g‘{a..b}) unfolding geodesic-segment-def by auto

qed
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lemma geodesic-segmentD:
assumes geodesic-segment-between G x y
shows ∃ g::(real ⇒ -). (g t = x ∧ g (t + dist x y) = y ∧ isometry-on {t..t+dist

x y} g ∧ G = g‘{t..t+dist x y})
proof −

obtain h where h: h 0 = x h (dist x y) = y isometry-on {0 ..dist x y} h G =
h‘{0 ..dist x y}

by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )
have ∗ [simp]: (λx. x − t) ‘ {t..t + dist x y} = {0 ..dist x y} by auto
define g where g = (λs. h (s − t))
have g t = x g (t + dist x y) = y using h assms(1 ) unfolding g-def by auto
moreover have isometry-on {t..t+dist x y} g

unfolding g-def apply (rule isometry-on-compose[of - - h])
by (simp add: dist-real-def isometry-on-def , simp add: h(3 ))

moreover have g‘ {t..t + dist x y} = G unfolding g-def h(4 ) using ∗ by
(metis image-image)

ultimately show ?thesis by auto
qed

lemma geodesic-segment-endpoints [simp]:
assumes geodesic-segment-between G x y
shows x ∈ G y ∈ G G 6= {}

using assms unfolding geodesic-segment-between-def
by (auto, metis atLeastAtMost-iff image-eqI less-eq-real-def zero-le-dist)

lemma geodesic-segment-commute:
assumes geodesic-segment-between G x y
shows geodesic-segment-between G y x

proof −
obtain g::real⇒ ′a where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y}

g G = g‘{0 ..dist x y}
by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )

define h::real⇒ ′a where h = (λt. g(dist x y−t))
have (λt. dist x y −t)‘{0 ..dist x y} = {0 ..dist x y} by auto
then have h‘{0 ..dist x y} = G unfolding g(4 ) h-def by (metis image-image)
moreover have h 0 = y h (dist x y) = x unfolding h-def using g by auto
moreover have isometry-on {0 ..dist x y} h

unfolding h-def apply (rule isometry-on-compose[of - - g]) using g(3 ) by
auto

ultimately show ?thesis
unfolding geodesic-segment-between-def by (auto simp add: dist-commute)

qed

lemma geodesic-segment-dist:
assumes geodesic-segment-between G x y a ∈ G
shows dist x a + dist a y = dist x y

proof −
obtain g where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y} g G =

g‘{0 ..dist x y}
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by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )
obtain t where t: t ∈ {0 ..dist x y} a = g t

using g(4 ) assms by auto
have dist x a = t using isometry-onD[OF g(3 ) - t(1 ), of 0 ]

unfolding g(1 ) dist-real-def t(2 ) using t(1 ) by auto
moreover have dist a y = dist x y − t using isometry-onD[OF g(3 ) - t(1 ), of

dist x y]
unfolding g(2 ) dist-real-def t(2 ) using t(1 ) by (auto simp add: dist-commute)

ultimately show ?thesis by auto
qed

lemma geodesic-segment-dist-unique:
assumes geodesic-segment-between G x y a ∈ G b ∈ G dist x a = dist x b
shows a = b

proof −
obtain g where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y} g G =

g‘{0 ..dist x y}
by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )

obtain ta where ta: ta ∈ {0 ..dist x y} a = g ta
using g(4 ) assms by auto

have ∗: dist x a = ta
unfolding g(1 )[symmetric] ta(2 ) using isometry-onD[OF g(3 ), of 0 ta]
unfolding dist-real-def using ta(1 ) by auto

obtain tb where tb: tb ∈ {0 ..dist x y} b = g tb
using g(4 ) assms by auto

have dist x b = tb
unfolding g(1 )[symmetric] tb(2 ) using isometry-onD[OF g(3 ), of 0 tb]
unfolding dist-real-def using tb(1 ) by auto

then have ta = tb using ∗ ‹dist x a = dist x b› by auto
then show a = b using ta(2 ) tb(2 ) by auto

qed

lemma geodesic-segment-union:
assumes dist x z = dist x y + dist y z

geodesic-segment-between G x y geodesic-segment-between H y z
shows geodesic-segment-between (G ∪ H ) x z

G ∩ H = {y}
proof −

obtain g where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y} g G =
g‘{0 ..dist x y}

by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )
obtain h where h: h (dist x y) = y h (dist x z) = z isometry-on {dist x y..dist

x z} h H = h‘{dist x y..dist x z}
unfolding ‹dist x z = dist x y + dist y z›
using geodesic-segmentD[OF ‹geodesic-segment-between H y z›, of dist x y] by

auto
define f where f = (λt. if t ≤ dist x y then g t else h t)
have fg: f t = g t if t ≤ dist x y for t

unfolding f-def using that by auto
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have fh: f t = h t if t ≥ dist x y for t
unfolding f-def apply (cases t > dist x y) using that g(2 ) h(1 ) by auto

have f 0 = x f (dist x z) = z using fg fh g(1 ) h(2 ) assms(1 ) by auto

have f‘{0 ..dist x z} = f‘{0 ..dist x y} ∪ f‘{dist x y..dist x z}
unfolding assms(1 ) image-Un[symmetric] by (simp add: ivl-disj-un-two-touch(4 ))

moreover have f‘{0 ..dist x y} = G
unfolding g(4 ) using fg image-cong by force

moreover have f‘{dist x y..dist x z} = H
unfolding h(4 ) using fh image-cong by force

ultimately have f‘{0 ..dist x z} = G ∪ H by simp

have Ifg: dist (f s) (f t) = s−t if 0 ≤ t t ≤ s s ≤ dist x y for s t
using that fg[of s] fg[of t] isometry-onD[OF g(3 ), of s t] unfolding dist-real-def

by auto
have Ifh: dist (f s) (f t) = s−t if dist x y ≤ t t ≤ s s ≤ dist x z for s t
using that fh[of s] fh[of t] isometry-onD[OF h(3 ), of s t] unfolding dist-real-def

by auto

have I : dist (f s) (f t) = s−t if 0 ≤ t t ≤ s s ≤ dist x z for s t
proof −

consider t ≤ dist x y ∧ s ≥ dist x y | s ≤ dist x y | t ≥ dist x y by fastforce
then show ?thesis
proof (cases)

case 1
have dist (f t) (f s) ≤ dist (f t) (f (dist x y)) + dist (f (dist x y)) (f s)

using dist-triangle by auto
also have ... ≤ (dist x y − t) + (s − dist x y)
using that 1 Ifg[of t dist x y] Ifh[of dist x y s] by (auto simp add: dist-commute

intro: mono-intros)
finally have ∗: dist (f t) (f s) ≤ s − t by simp

have dist x z ≤ dist (f 0 ) (f t) + dist (f t) (f s) + dist (f s) (f (dist x z))
unfolding ‹f 0 = x› ‹f (dist x z) = z› using dist-triangle4 by auto

also have ... ≤ t + dist (f t) (f s) + (dist x z − s)
using that 1 Ifg[of 0 t] Ifh[of s dist x z] by (auto simp add: dist-commute

intro: mono-intros)
finally have s − t ≤ dist (f t) (f s) by auto
then show dist (f s) (f t) = s−t using ∗ dist-commute by auto

next
case 2
then show ?thesis using Ifg that by auto

next
case 3
then show ?thesis using Ifh that by auto

qed
qed
have isometry-on {0 ..dist x z} f
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unfolding isometry-on-def dist-real-def using I
by (auto, metis abs-of-nonneg dist-commute dist-real-def le-cases zero-le-dist)

then show geodesic-segment-between (G ∪ H ) x z
unfolding geodesic-segment-between-def
using ‹f 0 = x› ‹f (dist x z) = z› ‹f‘{0 ..dist x z} = G ∪ H › by auto

have G ∩ H ⊆ {y}
proof (auto)

fix a assume a: a ∈ G a ∈ H
obtain s where s: s ∈ {0 ..dist x y} a = g s using a g(4 ) by auto
obtain t where t: t ∈ {dist x y..dist x z} a = h t using a h(4 ) by auto
have a = f s using fg s by auto
moreover have a = f t using fh t by auto
ultimately have s = t using isometry-onD[OF ‹isometry-on {0 ..dist x z} f ›,

of s t] s(1 ) t(1 ) by auto
then have s = dist x y using s t by auto
then show a = y using s(2 ) g by auto

qed
then show G ∩ H = {y} using assms by auto

qed

lemma geodesic-segment-dist-le:
assumes geodesic-segment-between G x y a ∈ G b ∈ G
shows dist a b ≤ dist x y

proof −
obtain g where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y} g G =

g‘{0 ..dist x y}
by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )

obtain s t where st: s ∈ {0 ..dist x y} t ∈ {0 ..dist x y} a = g s b = g t
using g(4 ) assms by auto

have dist a b = abs(s−t) using isometry-onD[OF g(3 ) st(1 ) st(2 )]
unfolding st(3 ) st(4 ) dist-real-def by simp

then show dist a b ≤ dist x y using st(1 ) st(2 ) unfolding dist-real-def by auto
qed

lemma geodesic-segment-param [simp]:
assumes geodesic-segment-between G x y
shows geodesic-segment-param G x 0 = x

geodesic-segment-param G x (dist x y) = y
t ∈ {0 ..dist x y} =⇒ geodesic-segment-param G x t ∈ G
isometry-on {0 ..dist x y} (geodesic-segment-param G x)
(geodesic-segment-param G x)‘{0 ..dist x y} = G
t ∈ {0 ..dist x y} =⇒ dist x (geodesic-segment-param G x t) = t
s ∈ {0 ..dist x y} =⇒ t ∈ {0 ..dist x y} =⇒ dist (geodesic-segment-param G

x s) (geodesic-segment-param G x t) = abs(s−t)
z ∈ G =⇒ z = geodesic-segment-param G x (dist x z)

proof −
obtain g::real⇒ ′a where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y}

g G = g‘{0 ..dist x y}
by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )
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have ∗: g t ∈ G ∧ dist x (g t) = t if t ∈ {0 ..dist x y} for t
using isometry-onD[OF g(3 ), of 0 t] that g(1 ) g(4 ) unfolding dist-real-def by

auto
have G: geodesic-segment-param G x t = g t if t ∈ {0 ..dist x y} for t
proof −

have A: geodesic-segment-param G x t ∈ G ∧ dist x (geodesic-segment-param
G x t) = t

using ∗[OF that] unfolding geodesic-segment-param-def apply auto
using ∗[OF that] by (metis (mono-tags, lifting) someI )+

obtain s where s: geodesic-segment-param G x t = g s s ∈ {0 ..dist x y}
using A g(4 ) by auto

have s = t using ∗[OF ‹s ∈ {0 ..dist x y}›] A unfolding s(1 ) by auto
then show ?thesis using s by auto

qed
show geodesic-segment-param G x 0 = x

geodesic-segment-param G x (dist x y) = y
t ∈ {0 ..dist x y} =⇒ geodesic-segment-param G x t ∈ G
isometry-on {0 ..dist x y} (geodesic-segment-param G x)
(geodesic-segment-param G x)‘{0 ..dist x y} = G
t ∈ {0 ..dist x y} =⇒ dist x (geodesic-segment-param G x t) = t
s ∈ {0 ..dist x y} =⇒ t ∈ {0 ..dist x y} =⇒ dist (geodesic-segment-param G x

s) (geodesic-segment-param G x t) = abs(s−t)
z ∈ G =⇒ z = geodesic-segment-param G x (dist x z)

using G g apply (auto simp add: rev-image-eqI )
using G isometry-on-cong ∗ atLeastAtMost-iff apply blast
using G isometry-on-cong ∗ atLeastAtMost-iff apply blast
by (auto simp add: ∗ dist-real-def isometry-onD)

qed

lemma geodesic-segment-param-in-segment:
assumes G 6= {}
shows geodesic-segment-param G x t ∈ G

unfolding geodesic-segment-param-def
apply (auto, metis (mono-tags, lifting) someI )
using assms some-in-eq by fastforce

lemma geodesic-segment-reverse-param:
assumes geodesic-segment-between G x y

t ∈ {0 ..dist x y}
shows geodesic-segment-param G y (dist x y − t) = geodesic-segment-param G

x t
proof −

have ∗ [simp]: geodesic-segment-between G y x
using geodesic-segment-commute[OF assms(1 )] by simp

have geodesic-segment-param G y (dist x y − t) ∈ G
apply (rule geodesic-segment-param(3 )[of - - x])
using assms(2 ) by (auto simp add: dist-commute)

moreover have dist (geodesic-segment-param G y (dist x y − t)) x = t
using geodesic-segment-param(2 )[OF ∗] geodesic-segment-param(7 )[OF ∗, of
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dist x y −t dist x y] assms(2 ) by (auto simp add: dist-commute)
moreover have geodesic-segment-param G x t ∈ G

apply (rule geodesic-segment-param(3 )[OF assms(1 )])
using assms(2 ) by auto

moreover have dist (geodesic-segment-param G x t) x = t
using geodesic-segment-param(6 )[OF assms] by (simp add: dist-commute)

ultimately show ?thesis
using geodesic-segment-dist-unique[OF assms(1 )] by (simp add: dist-commute)

qed

lemma dist-along-geodesic-wrt-endpoint:
assumes geodesic-segment-between G x y

u ∈ G v ∈ G
shows dist u v = abs(dist u x − dist v x)

proof −
have ∗: u = geodesic-segment-param G x (dist x u) v = geodesic-segment-param

G x (dist x v)
using assms by auto

have dist u v = dist (geodesic-segment-param G x (dist x u)) (geodesic-segment-param
G x (dist x v))

using ∗ by auto
also have ... = abs(dist x u − dist x v)
apply (rule geodesic-segment-param(7 )[OF assms(1 )]) using assms apply auto
using geodesic-segment-dist-le geodesic-segment-endpoints(1 ) by blast+

finally show ?thesis by (simp add: dist-commute)
qed

One often needs to restrict a geodesic segment to a subsegment. We intro-
duce the tools to express this conveniently.
definition geodesic-subsegment::( ′a::metric-space) set ⇒ ′a ⇒ real ⇒ real ⇒ ′a
set

where geodesic-subsegment G x s t = G ∩ {z. dist x z ≥ s ∧ dist x z ≤ t}

A subsegment is always contained in the original segment.
lemma geodesic-subsegment-subset:

geodesic-subsegment G x s t ⊆ G
unfolding geodesic-subsegment-def by simp

A subsegment is indeed a geodesic segment, and its endpoints and parametriza-
tion can be expressed in terms of the original segment.
lemma geodesic-subsegment:

assumes geodesic-segment-between G x y
0 ≤ s s ≤ t t ≤ dist x y

shows geodesic-subsegment G x s t = (geodesic-segment-param G x)‘{s..t}
geodesic-segment-between (geodesic-subsegment G x s t) (geodesic-segment-param

G x s) (geodesic-segment-param G x t)∧
u. s ≤ u =⇒ u ≤ t =⇒ geodesic-segment-param (geodesic-subsegment G x

s t) (geodesic-segment-param G x s) (u − s) = geodesic-segment-param G x u
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proof −
show A: geodesic-subsegment G x s t = (geodesic-segment-param G x)‘{s..t}
proof (auto)

fix y assume y: y ∈ geodesic-subsegment G x s t
have y = geodesic-segment-param G x (dist x y)

apply (rule geodesic-segment-param(8 )[OF assms(1 )])
using y geodesic-subsegment-subset by force

moreover have dist x y ≥ s ∧ dist x y ≤ t
using y unfolding geodesic-subsegment-def by auto

ultimately show y ∈ geodesic-segment-param G x ‘ {s..t} by auto
next

fix u assume H : s ≤ u u ≤ t
have ∗: dist x (geodesic-segment-param G x u) = u

apply (rule geodesic-segment-param(6 )[OF assms(1 )]) using H assms by
auto

show geodesic-segment-param G x u ∈ geodesic-subsegment G x s t
unfolding geodesic-subsegment-def

using geodesic-segment-param-in-segment[OF geodesic-segment-endpoints(3 )[OF
assms(1 )]] by (auto simp add: ∗ H )

qed

have ∗: isometry-on {s..t} (geodesic-segment-param G x)
by (rule isometry-on-subset[of {0 ..dist x y}]) (auto simp add: assms)

show B: geodesic-segment-between (geodesic-subsegment G x s t) (geodesic-segment-param
G x s) (geodesic-segment-param G x t)

unfolding A apply (rule geodesic-segmentI2 ) using ∗ assms by auto

fix u assume u: s ≤ u u ≤ t
show geodesic-segment-param (geodesic-subsegment G x s t) (geodesic-segment-param

G x s) (u − s) = geodesic-segment-param G x u
proof (rule geodesic-segment-dist-unique[OF B])
show geodesic-segment-param (geodesic-subsegment G x s t) (geodesic-segment-param

G x s) (u − s) ∈ geodesic-subsegment G x s t
by (rule geodesic-segment-param-in-segment[OF geodesic-segment-endpoints(3 )[OF

B]])
show geodesic-segment-param G x u ∈ geodesic-subsegment G x s t

unfolding A using u by auto
have dist (geodesic-segment-param G x s) (geodesic-segment-param (geodesic-subsegment

G x s t) (geodesic-segment-param G x s) (u − s)) = u − s
using B assms u by auto

moreover have dist (geodesic-segment-param G x s) (geodesic-segment-param
G x u) = u −s

using assms u by auto
ultimately show dist (geodesic-segment-param G x s) (geodesic-segment-param

(geodesic-subsegment G x s t) (geodesic-segment-param G x s) (u − s)) =
dist (geodesic-segment-param G x s) (geodesic-segment-param G x u)

by simp
qed

qed
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The parameterizations of a segment and a subsegment sharing an endpoint
coincide where defined.
lemma geodesic-segment-subparam:

assumes geodesic-segment-between G x z geodesic-segment-between H x y H ⊆ G
t ∈ {0 ..dist x y}

shows geodesic-segment-param G x t = geodesic-segment-param H x t
proof −

have geodesic-segment-param H x t ∈ G
using assms(3 ) geodesic-segment-param(3 )[OF assms(2 ) assms(4 )] by auto

then have geodesic-segment-param H x t = geodesic-segment-param G x (dist x
(geodesic-segment-param H x t))

using geodesic-segment-param(8 )[OF assms(1 )] by auto
then show ?thesis using geodesic-segment-param(6 )[OF assms(2 ) assms(4 )] by

auto
qed

A segment contains a subsegment between any of its points
lemma geodesic-subsegment-exists:

assumes geodesic-segment G x ∈ G y ∈ G
shows ∃H . H ⊆ G ∧ geodesic-segment-between H x y

proof −
obtain a0 b0 where Ga0b0 : geodesic-segment-between G a0 b0

using assms(1 ) unfolding geodesic-segment-def by auto

Permuting the endpoints if necessary, we can ensure that the first endpoint
a is closer to x than y.

have ∃ a b. geodesic-segment-between G a b ∧ dist x a ≤ dist y a
proof (cases dist x a0 ≤ dist y a0 )

case True
show ?thesis

apply (rule exI [of - a0 ], rule exI [of - b0 ]) using True Ga0b0 by auto
next

case False
show ?thesis

apply (rule exI [of - b0 ], rule exI [of - a0 ])
using Ga0b0 geodesic-segment-commute geodesic-segment-dist[OF Ga0b0 ‹x

∈ G›] geodesic-segment-dist[OF Ga0b0 ‹y ∈ G›] False
by (auto simp add: dist-commute)

qed
then obtain a b where Gab: geodesic-segment-between G a b dist x a ≤ dist y a

by auto
have ∗: 0 ≤ dist x a dist x a ≤ dist y a dist y a ≤ dist a b
using Gab assms by (meson geodesic-segment-dist-le geodesic-segment-endpoints(1 )

zero-le-dist)+
have ∗∗: x = geodesic-segment-param G a (dist x a) y = geodesic-segment-param

G a (dist y a)
using Gab ‹x ∈ G› ‹y ∈ G› by (metis dist-commute geodesic-segment-param(8 ))+

define H where H = geodesic-subsegment G a (dist x a) (dist y a)
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have H ⊆ G
unfolding H-def by (rule geodesic-subsegment-subset)

moreover have geodesic-segment-between H x y
unfolding H-def using geodesic-subsegment(2 )[OF Gab(1 ) ∗] ∗∗ by auto

ultimately show ?thesis by auto
qed

A geodesic segment is homeomorphic to an interval.
lemma geodesic-segment-homeo-interval:

assumes geodesic-segment-between G x y
shows {0 ..dist x y} homeomorphic G

proof −
obtain g where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y} g G =

g‘{0 ..dist x y}
by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )

show ?thesis using isometry-on-homeomorphism(3 )[OF g(3 )] unfolding g(4 )
by simp
qed

Just like an interval, a geodesic segment is compact, connected, path con-
nected, bounded, closed, nonempty, and proper.
lemma geodesic-segment-topology:

assumes geodesic-segment G
shows compact G connected G path-connected G bounded G closed G G 6= {}

proper G
proof −

show compact G
using assms geodesic-segment-homeo-interval homeomorphic-compactness
unfolding geodesic-segment-def by force

show path-connected G
using assms is-interval-path-connected geodesic-segment-homeo-interval home-

omorphic-path-connectedness
unfolding geodesic-segment-def
by (metis is-interval-cc)

then show connected G
using path-connected-imp-connected by auto

show bounded G
by (rule compact-imp-bounded, fact)

show closed G
by (rule compact-imp-closed, fact)

show G 6= {}
using assms geodesic-segment-def geodesic-segment-endpoints(3 ) by auto

show proper G
using proper-of-compact ‹compact G› by auto

qed

lemma geodesic-segment-between-x-x [simp]:
geodesic-segment-between {x} x x
geodesic-segment {x}
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geodesic-segment-between G x x ←→ G = {x}
proof −

show ∗: geodesic-segment-between {x} x x
unfolding geodesic-segment-between-def apply (rule exI [of - λ-. x]) unfolding

isometry-on-def by auto
then show geodesic-segment {x} by auto
show geodesic-segment-between G x x ←→ G = {x}

using geodesic-segment-dist-le geodesic-segment-endpoints(2 ) ∗ by fastforce
qed

lemma geodesic-segment-disconnection:
assumes geodesic-segment-between G x y z ∈ G
shows (connected (G − {z})) = (z = x ∨ z = y)

proof −
obtain g where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y} g G =

g‘{0 ..dist x y}
by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )

obtain t where t: t ∈ {0 ..dist x y} z = g t using ‹z ∈ G› g(4 ) by auto
have ({0 ..dist x y} − {t}) homeomorphic (G − {g t})
proof −

have ∗: isometry-on ({0 ..dist x y} − {t}) g
apply (rule isometry-on-subset[OF g(3 )]) by auto

have ({0 ..dist x y} − {t}) homeomorphic g‘({0 ..dist x y} − {t})
by (rule isometry-on-homeomorphism(3 )[OF ∗])

moreover have g‘({0 ..dist x y} − {t}) = G − {g t}
unfolding g(4 ) using isometry-on-injective[OF g(3 )] t by (auto simp add:

inj-onD)
ultimately show ?thesis by auto

qed
moreover have connected({0 ..dist x y} − {t}) = (t = 0 ∨ t = dist x y)

using t(1 ) by (auto simp add: connected-iff-interval, fastforce)
ultimately have connected (G − {z}) = (t = 0 ∨ t = dist x y)

unfolding ‹z = g t›[symmetric]using homeomorphic-connectedness by blast
moreover have (t = 0 ∨ t = dist x y) = (z = x ∨ z = y)

using t g apply auto
by (metis atLeastAtMost-iff isometry-on-inverse(2 ) order-refl zero-le-dist)+

ultimately show ?thesis by auto
qed

lemma geodesic-segment-unique-endpoints:
assumes geodesic-segment-between G x y

geodesic-segment-between G a b
shows {x, y} = {a, b}

by (metis geodesic-segment-disconnection assms(1 ) assms(2 ) doubleton-eq-iff geodesic-segment-endpoints(1 )
geodesic-segment-endpoints(2 ))

lemma geodesic-segment-subsegment:
assumes geodesic-segment G H ⊆ G compact H connected H H 6= {}
shows geodesic-segment H
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proof −
obtain x y where geodesic-segment-between G x y

using assms unfolding geodesic-segment-def by auto
obtain g where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y} g G =

g‘{0 ..dist x y}
by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )

define L where L = (inv-into {0 ..dist x y} g)‘H
have L ⊆ {0 ..dist x y}

unfolding L-def using isometry-on-inverse[OF ‹isometry-on {0 ..dist x y} g›]
assms(2 ) g(4 ) by auto

have isometry-on G (inv-into {0 ..dist x y} g)
using isometry-on-inverse[OF ‹isometry-on {0 ..dist x y} g›] g(4 ) by auto

then have isometry-on H (inv-into {0 ..dist x y} g)
using ‹H ⊆ G› isometry-on-subset by auto

then have H homeomorphic L unfolding L-def using isometry-on-homeomorphism(3 )
by auto

then have compact L ∧ connected L
using assms homeomorphic-compactness homeomorphic-connectedness by blast

then obtain a b where L = {a..b}
using connected-compact-interval-1 [of L] by auto

have a ≤ b using ‹H 6= {}› ‹L = {a..b}› unfolding L-def by auto
then have 0 ≤ a b ≤ dist x y using ‹L ⊆ {0 ..dist x y}› ‹L = {a..b}› by auto
have ∗: H = g‘{a..b}

by (metis L-def ‹L = {a..b}› assms(2 ) g(4 ) image-inv-into-cancel)
show geodesic-segment H

unfolding ∗ apply (rule geodesic-segmentI2 [OF - ‹a ≤ b›])
apply (rule isometry-on-subset[OF g(3 )]) using ‹0 ≤ a› ‹b ≤ dist x y› by auto

qed

The image under an isometry of a geodesic segment is still obviously a
geodesic segment.
lemma isometry-preserves-geodesic-segment-between:

assumes isometry-on X f
G ⊆ X geodesic-segment-between G x y

shows geodesic-segment-between (f‘G) (f x) (f y)
proof −

obtain g where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y} g G =
g‘{0 ..dist x y}

by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )
then have ∗: f‘G = (f o g) ‘{0 ..dist x y} f x = (f o g) 0 f y = (f o g) (dist x y)

by auto
show ?thesis

unfolding ∗ apply (intro geodesic-segmentI2 (1 ))
unfolding comp-def apply (rule isometry-on-compose[of - g])
using g(3 ) g(4 ) assms by (auto intro: isometry-on-subset)

qed

The sum of distances d(w, x) + d(w, y) can be controlled using the distance
from w to a geodesic segment between x and y.
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lemma geodesic-segment-distance:
assumes geodesic-segment-between G x y
shows dist w x + dist w y ≤ dist x y + 2 ∗ infdist w G

proof −
have ∃ z ∈ G. infdist w G = dist w z
apply (rule infdist-proper-attained) using assms by (auto simp add: geodesic-segment-topology)

then obtain z where z: z ∈ G infdist w G = dist w z by auto
have dist w x + dist w y ≤ (dist w z + dist z x) + (dist w z + dist z y)

by (intro mono-intros)
also have ... = dist x z + dist z y + 2 ∗ dist w z

by (auto simp add: dist-commute)
also have ... = dist x y + 2 ∗ infdist w G

using z(1 ) assms geodesic-segment-dist unfolding z(2 ) by auto
finally show ?thesis by auto

qed

If a point y is on a geodesic segment between x and its closest projection p
on a set A, then p is also a closest projection of y, and the closest projection
set of y is contained in that of x.
lemma proj-set-geodesic-same-basepoint:

assumes p ∈ proj-set x A geodesic-segment-between G p x y ∈ G
shows p ∈ proj-set y A

proof (rule proj-setI )
show p ∈ A

using assms proj-setD by auto
have ∗: dist y p ≤ dist y q if q ∈ A for q
proof −

have dist p y + dist y x = dist p x
using assms geodesic-segment-dist by blast

also have ... ≤ dist q x
using proj-set-dist-le[OF ‹q ∈ A› assms(1 )] by (simp add: dist-commute)

also have ... ≤ dist q y + dist y x
by (intro mono-intros)

finally show ?thesis
by (simp add: dist-commute)

qed
have dist y p ≤ Inf (dist y ‘ A)

apply (rule cINF-greatest) using ‹p ∈ A› ∗ by auto
then show dist y p ≤ infdist y A

unfolding infdist-def using ‹p ∈ A› by auto
qed

lemma proj-set-subset:
assumes p ∈ proj-set x A geodesic-segment-between G p x y ∈ G
shows proj-set y A ⊆ proj-set x A

proof −
have z ∈ proj-set x A if z ∈ proj-set y A for z
proof (rule proj-setI )

show z ∈ A using that proj-setD by auto
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have dist x z ≤ dist x y + dist y z
by (intro mono-intros)

also have ... ≤ dist x y + dist y p
using proj-set-dist-le[OF proj-setD(1 )[OF ‹p ∈ proj-set x A›] that] by auto

also have ... = dist x p
using assms geodesic-segment-commute geodesic-segment-dist by blast

also have ... = infdist x A
using proj-setD(2 )[OF assms(1 )] by simp

finally show dist x z ≤ infdist x A
by simp

qed
then show ?thesis by auto

qed

lemma proj-set-thickening:
assumes p ∈ proj-set x Z

0 ≤ D
D ≤ dist p x
geodesic-segment-between G p x

shows geodesic-segment-param G p D ∈ proj-set x (
⋃

z∈Z . cball z D)
proof (rule proj-setI ′)

have dist p (geodesic-segment-param G p D) = D
using geodesic-segment-param(7 )[OF assms(4 ), of 0 D]
unfolding geodesic-segment-param(1 )[OF assms(4 )] using assms by simp

then show geodesic-segment-param G p D ∈ (
⋃

z∈Z . cball z D)
using proj-setD(1 )[OF ‹p ∈ proj-set x Z ›] by force

show dist x (geodesic-segment-param G p D) ≤ dist x y if y ∈ (
⋃

z∈Z . cball z
D) for y

proof −
obtain z where y: y ∈ cball z D z ∈ Z using ‹y ∈ (

⋃
z∈Z . cball z D)› by

auto
have dist (geodesic-segment-param G p D) x + D = dist p x

using geodesic-segment-param(7 )[OF assms(4 ), of D dist p x]
unfolding geodesic-segment-param(2 )[OF assms(4 )] using assms by simp

also have ... ≤ dist z x
using proj-setD(2 )[OF ‹p ∈ proj-set x Z ›] infdist-le[OF ‹z ∈ Z ›, of x] by

(simp add: dist-commute)
also have ... ≤ dist z y + dist y x

by (intro mono-intros)
also have ... ≤ D + dist y x

using y by simp
finally show ?thesis by (simp add: dist-commute)

qed
qed

lemma proj-set-thickening ′:
assumes p ∈ proj-set x Z

0 ≤ D
D ≤ E
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E ≤ dist p x
geodesic-segment-between G p x

shows geodesic-segment-param G p D ∈ proj-set (geodesic-segment-param G p
E) (

⋃
z∈Z . cball z D)

proof −
define H where H = geodesic-subsegment G p D (dist p x)
have H1 : geodesic-segment-between H (geodesic-segment-param G p D) x

apply (subst geodesic-segment-param(2 )[OF ‹geodesic-segment-between G p x›,
symmetric])

unfolding H-def apply (rule geodesic-subsegment(2 )) using assms by auto
have H2 : geodesic-segment-param G p E ∈ H

unfolding H-def using assms geodesic-subsegment(1 ) by force
have geodesic-segment-param G p D ∈ proj-set x (

⋃
z∈Z . cball z D)

apply (rule proj-set-thickening) using assms by auto
then show ?thesis

by (rule proj-set-geodesic-same-basepoint[OF - H1 H2 ])
qed

It is often convenient to use one geodesic between x and y, even if it is not
unique. We introduce a notation for such a choice of a geodesic, denoted
{x--S--y} for such a geodesic that moreover remains in the set S. We
also enforce the condition {x--S--y} = {y--S--x}. When there is no such
geodesic, we simply take {x--S--y} = {x, y} for definiteness. It would be
even better to enforce that, if a is on {x--S--y}, then {x--S--y} is the
union of {x--S--a} and {a--S--y}, but I do not know if such a choice is
always possible – such a choice of geodesics is called a geodesic bicombing.
We also write {x--y} for {x--UNIV--y}.
definition some-geodesic-segment-between:: ′a::metric-space ⇒ ′a set ⇒ ′a ⇒ ′a
set (‹(1{-−−-−−-})›)

where some-geodesic-segment-between = (SOME f . ∀ x y S . f x S y = f y S x
∧ (if (∃G. geodesic-segment-between G x y ∧ G ⊆ S) then (geodesic-segment-between

(f x S y) x y ∧ (f x S y ⊆ S))
else f x S y = {x, y}))

abbreviation some-geodesic-segment-between-UNIV :: ′a::metric-space ⇒ ′a ⇒ ′a
set (‹(1{-−−-})›)

where some-geodesic-segment-between-UNIV x y ≡ {x−−UNIV−−y}

We prove that there is such a choice of geodesics, compatible with direction
reversal. What we do is choose arbitrarily a geodesic between x and y if it
exists, and then use the geodesic between min(x, y) and max(x, y), for any
total order on the space, to ensure that we get the same result from x to y
or from y to x.
lemma some-geodesic-segment-between-exists:
∃ f . ∀ x y S . f x S y = f y S x
∧ (if (∃G. geodesic-segment-between G x y ∧ G ⊆ S) then (geodesic-segment-between

(f x S y) x y ∧ (f x S y ⊆ S))
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else f x S y = {x, y})
proof −

define g:: ′a ⇒ ′a set ⇒ ′a ⇒ ′a set where
g = (λx S y. if (∃G. geodesic-segment-between G x y ∧ G ⊆ S) then (SOME

G. geodesic-segment-between G x y ∧ G ⊆ S) else {x, y})
have g1 : geodesic-segment-between (g x S y) x y ∧ (g x S y ⊆ S) if ∃G.

geodesic-segment-between G x y ∧ G ⊆ S for x y S
unfolding g-def using someI-ex[OF that] by auto

have g2 : g x S y = {x, y} if ¬(∃G. geodesic-segment-between G x y ∧ G ⊆ S)
for x y S

unfolding g-def using that by auto
obtain r :: ′a rel where r : well-order-on UNIV r

using well-order-on by auto
have A: x = y if (x, y) ∈ r (y, x) ∈ r for x y
using r that unfolding well-order-on-def linear-order-on-def partial-order-on-def

antisym-def by auto
have B: (x, y) ∈ r ∨ (y, x) ∈ r for x y
using r unfolding well-order-on-def linear-order-on-def total-on-def partial-order-on-def

preorder-on-def refl-on-def by force

define f where f = (λx S y. if (x, y) ∈ r then g x S y else g y S x)
have f x S y = f y S x for x y S unfolding f-def using r A B by auto
moreover have geodesic-segment-between (f x S y) x y ∧ (f x S y ⊆ S) if ∃G.

geodesic-segment-between G x y ∧ G ⊆ S for x y S
unfolding f-def using g1 geodesic-segment-commute that by smt

moreover have f x S y = {x, y} if ¬(∃G. geodesic-segment-between G x y ∧ G
⊆ S) for x y S

unfolding f-def using g2 that geodesic-segment-commute doubleton-eq-iff by
metis

ultimately show ?thesis by metis
qed

lemma some-geodesic-commute:
{x−−S−−y} = {y−−S−−x}

unfolding some-geodesic-segment-between-def by (auto simp add: someI-ex[OF
some-geodesic-segment-between-exists])

lemma some-geodesic-segment-description:
(∃G. geodesic-segment-between G x y ∧ G ⊆ S) =⇒ geodesic-segment-between
{x−−S−−y} x y
(¬(∃G. geodesic-segment-between G x y ∧ G ⊆ S)) =⇒ {x−−S−−y} = {x, y}

unfolding some-geodesic-segment-between-def by (simp add: someI-ex[OF some-geodesic-segment-between-exists])+

Basic topological properties of our chosen set of geodesics.
lemma some-geodesic-compact [simp]:

compact {x−−S−−y}
apply (cases ∃G. geodesic-segment-between G x y ∧ G ⊆ S)
using some-geodesic-segment-description[of x y] geodesic-segment-topology[of {x−−S−−y}]
geodesic-segment-def apply auto
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by blast

lemma some-geodesic-closed [simp]:
closed {x−−S−−y}

by (rule compact-imp-closed[OF some-geodesic-compact[of x S y]])

lemma some-geodesic-bounded [simp]:
bounded {x−−S−−y}

by (rule compact-imp-bounded[OF some-geodesic-compact[of x S y]])

lemma some-geodesic-endpoints [simp]:
x ∈ {x−−S−−y} y ∈ {x−−S−−y} {x−−S−−y} 6= {}

apply (cases ∃G. geodesic-segment-between G x y ∧ G ⊆ S) using some-geodesic-segment-description[of
x y S ] apply auto
apply (cases ∃G. geodesic-segment-between G x y ∧ G ⊆ S) using some-geodesic-segment-description[of
x y S ] apply auto
apply (cases ∃G. geodesic-segment-between G x y ∧ G ⊆ S) using geodesic-segment-endpoints(3 )
by (auto, blast)

lemma some-geodesic-subsegment:
assumes H ⊆ {x−−S−−y} compact H connected H H 6= {}
shows geodesic-segment H

apply (cases ∃G. geodesic-segment-between G x y ∧ G ⊆ S)
using some-geodesic-segment-description[of x y] geodesic-segment-subsegment[OF
- assms] geodesic-segment-def apply auto[1 ]
using some-geodesic-segment-description[of x y] assms
by (metis connected-finite-iff-sing finite.emptyI finite.insertI finite-subset geodesic-segment-between-x-x(2 ))

lemma some-geodesic-in-subset:
assumes x ∈ S y ∈ S
shows {x−−S−−y} ⊆ S

apply (cases ∃G. geodesic-segment-between G x y ∧ G ⊆ S)
unfolding some-geodesic-segment-between-def by (simp add: assms someI-ex[OF
some-geodesic-segment-between-exists])+

lemma some-geodesic-same-endpoints [simp]:
{x−−S−−x} = {x}

apply (cases ∃G. geodesic-segment-between G x x ∧ G ⊆ S)
apply (meson geodesic-segment-between-x-x(3 ) some-geodesic-segment-description(1 ))
by (simp add: some-geodesic-segment-description(2 ))

5.2 Geodesic subsets

A subset is geodesic if any two of its points can be joined by a geodesic
segment. We prove basic properties of such a subset in this paragraph –
notably connectedness. A basic example is given by convex subsets of vector
spaces, as closed segments are geodesic.
definition geodesic-subset::( ′a::metric-space) set ⇒ bool
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where geodesic-subset S = (∀ x∈S . ∀ y∈S . ∃G. geodesic-segment-between G x y
∧ G ⊆ S)

lemma geodesic-subsetD:
assumes geodesic-subset S x ∈ S y ∈ S
shows geodesic-segment-between {x−−S−−y} x y

using assms some-geodesic-segment-description(1 ) unfolding geodesic-subset-def
by blast

lemma geodesic-subsetI :
assumes

∧
x y. x ∈ S =⇒ y ∈ S =⇒ ∃G. geodesic-segment-between G x y ∧ G

⊆ S
shows geodesic-subset S

using assms unfolding geodesic-subset-def by auto

lemma geodesic-subset-empty:
geodesic-subset {}

using geodesic-subsetI by auto

lemma geodesic-subset-singleton:
geodesic-subset {x}

by (auto intro!: geodesic-subsetI geodesic-segment-between-x-x(1 ))

lemma geodesic-subset-path-connected:
assumes geodesic-subset S
shows path-connected S

proof −
have ∃ g. path g ∧ path-image g ⊆ S ∧ pathstart g = x ∧ pathfinish g = y if x
∈ S y ∈ S for x y

proof −
define G where G = {x−−S−−y}
have ∗: geodesic-segment-between G x y G ⊆ S x ∈ G y ∈ G
using assms that by (auto simp add: G-def geodesic-subsetD some-geodesic-in-subset

that(1 ) that(2 ))
then have path-connected G

using geodesic-segment-topology(3 ) unfolding geodesic-segment-def by auto
then have ∃ g. path g ∧ path-image g ⊆ G ∧ pathstart g = x ∧ pathfinish g =

y
using ∗ unfolding path-connected-def by auto

then show ?thesis using ‹G ⊆ S› by auto
qed
then show ?thesis

unfolding path-connected-def by auto
qed

To show that a segment in a normed vector space is geodesic, we will need
to use its length parametrization, which is given in the next lemma.
lemma closed-segment-as-isometric-image:
((λt. x + (t/dist x y) ∗R (y − x))‘{0 ..dist x y}) = closed-segment x y
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proof (auto simp add: closed-segment-def image-iff )
fix t assume H : 0 ≤ t t ≤ dist x y
show ∃ u. x + (t / dist x y) ∗R (y − x) = (1 − u) ∗R x + u ∗R y ∧ 0 ≤ u ∧ u
≤ 1

apply (rule exI [of - t/dist x y])
using H apply (auto simp add: algebra-simps divide-simps)

apply (metis add-diff-cancel-left ′ add-diff-eq add-divide-distrib dist-eq-0-iff scaleR-add-left
vector-fraction-eq-iff )

done
next

fix u::real assume H : 0 ≤ u u ≤ 1
show ∃ t∈{0 ..dist x y}. (1 − u) ∗R x + u ∗R y = x + (t / dist x y) ∗R (y − x)

apply (rule bexI [of - u ∗ dist x y])
using H by (auto simp add: algebra-simps mult-left-le-one-le)

qed

proposition closed-segment-is-geodesic:
fixes x y:: ′a::real-normed-vector
shows isometry-on {0 ..dist x y} (λt. x + (t/dist x y) ∗R (y − x))

geodesic-segment-between (closed-segment x y) x y
geodesic-segment (closed-segment x y)

proof −
show ∗: isometry-on {0 ..dist x y} (λt. x + (t/dist x y) ∗R (y − x))

unfolding isometry-on-def dist-norm
apply (cases x = y)

by (auto simp add: scaleR-diff-left[symmetric] diff-divide-distrib[symmetric]
norm-minus-commute)

show geodesic-segment-between (closed-segment x y) x y
unfolding closed-segment-as-isometric-image[symmetric]
apply (rule geodesic-segment-betweenI [OF - - ∗]) by auto

then show geodesic-segment (closed-segment x y)
by auto

qed

We deduce that a convex set is geodesic.
proposition convex-is-geodesic:

assumes convex (S :: ′a::real-normed-vector set)
shows geodesic-subset S

proof (rule geodesic-subsetI )
fix x y assume H : x ∈ S y ∈ S
show ∃G. geodesic-segment-between G x y ∧ G ⊆ S

apply (rule exI [of - closed-segment x y])
apply (auto simp add: closed-segment-is-geodesic)
using H assms convex-contains-segment by blast

qed
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5.3 Geodesic spaces

In this subsection, we define geodesic spaces (metric spaces in which there
is a geodesic segment joining any pair of points). We specialize the previous
statements on geodesic segments to these situations.
class geodesic-space = metric-space +

assumes geodesic: geodesic-subset (UNIV ::( ′a::metric-space) set)

The simplest example of a geodesic space is a real normed vector space. Sig-
nificant examples also include graphs (with the graph distance), Riemannian
manifolds, and CAT (κ) spaces.
instance real-normed-vector ⊆ geodesic-space
by (standard, simp add: convex-is-geodesic)

lemma (in geodesic-space) some-geodesic-is-geodesic-segment [simp]:
geodesic-segment-between {x−−y} x (y:: ′a)
geodesic-segment {x−−y}

using some-geodesic-segment-description(1 )[of x y] geodesic-subsetD[OF geodesic]
by (auto, blast)

lemma (in geodesic-space) some-geodesic-connected [simp]:
connected {x−−y} path-connected {x−−y}

by (auto intro!: geodesic-segment-topology)

In geodesic spaces, we restate as simp rules all properties of the geodesic
segment parametrizations.
lemma (in geodesic-space) geodesic-segment-param-in-geodesic-spaces [simp]:

geodesic-segment-param {x−−y} x 0 = x
geodesic-segment-param {x−−y} x (dist x y) = y
t ∈ {0 ..dist x y} =⇒ geodesic-segment-param {x−−y} x t ∈ {x−−y}
isometry-on {0 ..dist x y} (geodesic-segment-param {x−−y} x)
(geodesic-segment-param {x−−y} x)‘{0 ..dist x y} = {x−−y}
t ∈ {0 ..dist x y} =⇒ dist x (geodesic-segment-param {x−−y} x t) = t
s ∈ {0 ..dist x y} =⇒ t ∈ {0 ..dist x y} =⇒ dist (geodesic-segment-param {x−−y}

x s) (geodesic-segment-param {x−−y} x t) = abs(s−t)
z ∈ {x−−y} =⇒ z = geodesic-segment-param {x−−y} x (dist x z)

using geodesic-segment-param[OF some-geodesic-is-geodesic-segment(1 )[of x y]] by
auto

5.4 Uniquely geodesic spaces

In this subsection, we define uniquely geodesic spaces, i.e., geodesic spaces
in which, additionally, there is a unique geodesic between any pair of points.
class uniquely-geodesic-space = geodesic-space +

assumes uniquely-geodesic:
∧

x y G H . geodesic-segment-between G x y =⇒
geodesic-segment-between H x y =⇒ G = H
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To prove that a geodesic space is uniquely geodesic, it suffices to show that
there is no loop, i.e., if two geodesic segments intersect only at their end-
points, then they coincide.
Indeed, assume this holds, and consider two geodesics with the same end-
points. If they differ at some time t, then consider the last time a before t
where they coincide, and the first time b after t where they coincide. Then
the restrictions of the two geodesics to [a, b] give a loop, and a contradiction.
lemma (in geodesic-space) uniquely-geodesic-spaceI :
assumes

∧
G H x (y:: ′a). geodesic-segment-between G x y =⇒ geodesic-segment-between

H x y =⇒ G ∩ H = {x, y} =⇒ x = y
geodesic-segment-between G x y geodesic-segment-between H x (y:: ′a)

shows G = H
proof −

obtain g where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y} g G =
g‘{0 ..dist x y}

by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )
obtain h where h: h 0 = x h (dist x y) = y isometry-on {0 ..dist x y} h H =

h‘{0 ..dist x y}
by (meson ‹geodesic-segment-between H x y› geodesic-segment-between-def )

have g t = h t if t ∈ {0 ..dist x y} for t
proof (rule ccontr)

assume g t 6= h t
define Z where Z = {s ∈ {0 ..dist x y}. g s = h s}
have 0 ∈ Z dist x y ∈ Z unfolding Z-def using g h by auto
have t /∈ Z unfolding Z-def using ‹g t 6= h t› by auto
have [simp]: closed Z
proof −

have ∗: Z = (λs. dist (g s) (h s))−‘{0} ∩ {0 ..dist x y}
unfolding Z-def by auto

show ?thesis
unfolding ∗ apply (rule closed-vimage-Int)
using isometry-on-continuous[OF g(3 )] isometry-on-continuous[OF h(3 )]

continuous-on-dist by auto
qed
define a where a = Sup (Z ∩ {0 ..t})
have a: a ∈ Z ∩ {0 ..t}

unfolding a-def apply (rule closed-contains-Sup, auto)
using ‹0 ∈ Z › that by auto

then have h a = g a unfolding Z-def by auto
define b where b = Inf (Z ∩ {t..dist x y})
have b: b ∈ Z ∩ {t..dist x y}

unfolding b-def apply (rule closed-contains-Inf , auto)
using ‹dist x y ∈ Z › that by auto

then have h b = g b unfolding Z-def by auto
have notZ : s /∈ Z if s ∈ {a<..<b} for s
proof (rule ccontr , auto, cases s ≤ t)

case True
assume s ∈ Z
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then have ∗: s ∈ Z ∩ {0 ..t} using that a True by auto
have s ≤ a unfolding a-def apply (rule cSup-upper) using ∗ by auto
then show False using that by auto

next
case False
assume s ∈ Z
then have ∗: s ∈ Z ∩ {t..dist x y} using that b False by auto
have s ≥ b unfolding b-def apply (rule cInf-lower) using ∗ by auto
then show False using that by auto

qed
have t ∈ {a<..<b} using a b ‹t /∈ Z › less-eq-real-def by auto
then have a ≤ b by auto
then have dist (h a) (h b) = b−a
using isometry-onD[OF h(3 ), of a b] a b that unfolding dist-real-def by auto

then have dist (h a) (h b) > 0 using ‹t ∈ {a<..<b}› by auto
then have h a 6= h b by auto

define G2 where G2 = g‘{a..b}
define H2 where H2 = h‘{a..b}
have G2 ∩ H2 ⊆ {h a, h b}
proof

fix z assume z: z ∈ G2 ∩ H2
obtain sg where sg: z = g sg sg ∈ {a..b} using z unfolding G2-def by auto

obtain sh where sh: z = h sh sh ∈ {a..b} using z unfolding H2-def by
auto

have sg = dist x z
using isometry-onD[OF g(3 ), of 0 sg] a b sg(2 ) unfolding sg(1 ) g(1 )[symmetric]

dist-real-def by auto
moreover have sh = dist x z
using isometry-onD[OF h(3 ), of 0 sh] a b sh(2 ) unfolding sh(1 ) h(1 )[symmetric]

dist-real-def by auto
ultimately have sg = sh by auto
then have sh ∈ Z using sg(1 ) sh(1 ) a b sh(2 ) unfolding Z-def by auto
then have sh ∈ {a, b} using notZ sh(2 )
by (metis IntD2 atLeastAtMost-iff atLeastAtMost-singleton greaterThanLessThan-iff

inf-bot-left insertI2 insert-inter-insert not-le)
then show z ∈ {h a, h b} using sh(1 ) by auto

qed
then have G2 ∩ H2 = {h a, h b}

using ‹h a = g a› ‹h b = g b› ‹a ≤ b› unfolding H2-def G2-def apply auto
unfolding ‹h a = g a›[symmetric] ‹h b = g b›[symmetric] by auto

moreover have geodesic-segment-between G2 (h a) (h b)
unfolding G2-def ‹h a = g a› ‹h b = g b›
apply (rule geodesic-segmentI2 ) apply (rule isometry-on-subset[OF g(3 )])
using a b that by auto

moreover have geodesic-segment-between H2 (h a) (h b)
unfolding H2-def apply (rule geodesic-segmentI2 ) apply (rule isome-

try-on-subset[OF h(3 )])
using a b that by auto
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ultimately have h a = h b using assms(1 ) by auto
then show False using ‹h a 6= h b› by simp

qed
then show G = H using g(4 ) h(4 ) by (simp add: image-def )

qed

context uniquely-geodesic-space
begin

lemma geodesic-segment-unique:
geodesic-segment-between G x y = (G = {x−−(y:: ′a)})

using uniquely-geodesic[of - x y] by (meson some-geodesic-is-geodesic-segment)

lemma geodesic-segment-dist ′:
assumes dist x z = dist x y + dist y z
shows y ∈ {x−−z} {x−−z} = {x−−y} ∪ {y−−z}

proof −
have geodesic-segment-between ({x−−y} ∪ {y−−z}) x z

using geodesic-segment-union[OF assms] by auto
then show {x−−z} = {x−−y} ∪ {y−−z}

using geodesic-segment-unique by auto
then show y ∈ {x−−z} by auto

qed

lemma geodesic-segment-expression:
{x−−z} = {y. dist x z = dist x y + dist y z}

using geodesic-segment-dist ′(1 ) geodesic-segment-dist[OF some-geodesic-is-geodesic-segment(1 )]
by auto

lemma geodesic-segment-split:
assumes (y:: ′a) ∈ {x−−z}
shows {x−−z} = {x−−y} ∪ {y−−z}

{x−−y} ∩ {y−−z} = {y}
apply (metis assms geodesic-segment-dist geodesic-segment-dist ′(2 ) some-geodesic-is-geodesic-segment(1 ))
apply (rule geodesic-segment-union(2 )[of x z], auto simp add: assms)
using assms geodesic-segment-expression by blast

lemma geodesic-segment-subparam ′:
assumes y ∈ {x−−z} t ∈ {0 ..dist x y}
shows geodesic-segment-param {x−−z} x t = geodesic-segment-param {x−−y}

x t
apply (rule geodesic-segment-subparam[of - - z - y]) using assms apply auto
using geodesic-segment-split(1 )[OF assms(1 )] by auto

end
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5.5 A complete metric space with middles is geodesic.

A complete space in which every pair of points has a middle (i.e., a point m
which is half distance of x and y) is geodesic: to construct a geodesic between
x0 and y0, first choose a middle m, then middles of the pairs (x0,m) and
(m, y0), and so on. This will define the geodesic on dyadic points (and this
is indeed an isometry on these dyadic points. Then, extend it by uniform
continuity to the whole segment [0, distx0y0].
The formal proof will be done in a locale where x0 and y0 are fixed, for
notational simplicity. We define inductively the sequence of middles, in a
function geod of two natural variables: geodnm corresponds to the image
of the dyadic point m/2n. It is defined inductively, by geod(n + 1)(2m) =
geodnm, and geod(n+1)(2m+1) is a middle of geodnm and geodn(m+1).
This is not a completely classical inductive definition, so one has to use
function to define it. Then, one checks inductively that it has all the
properties we want, and use it to define the geodesic segment on dyadic
points. We will not use a canonical representative for a dyadic point, but
any representative (i.e., numerator and denominator will not have to be
coprime) – this will not create problems as geod does not depend on the
choice of the representative, by construction.
locale complete-space-with-middle =

fixes x0 y0 :: ′a::complete-space
assumes middles:

∧
x y:: ′a. ∃ z. dist x z = (dist x y)/2 ∧ dist z y = (dist x y)/2

begin

definition middle:: ′a ⇒ ′a ⇒ ′a
where middle x y = (SOME z. dist x z = (dist x y)/2 ∧ dist z y = (dist x y)/2 )

lemma middle:
dist x (middle x y) = (dist x y)/2
dist (middle x y) y = (dist x y)/2

unfolding middle-def using middles[of x y] by (metis (mono-tags, lifting) someI-ex)+

function geod::nat ⇒ nat ⇒ ′a where
geod 0 0 = x0
|geod 0 (Suc m) = y0
|geod (Suc n) (2 ∗ m) = geod n m
|geod (Suc n) (Suc (2∗m)) = middle (geod n m) (geod n (Suc m))
apply (auto simp add: double-not-eq-Suc-double)
by (metis One-nat-def dvd-mult-div-cancel list-decode.cases odd-Suc-minus-one odd-two-times-div-two-nat)
termination by lexicographic-order

By induction, the distance between successive points is D/2n.
lemma geod-distance-successor :
∀ a < 2^n. dist (geod n a) (geod n (Suc a)) = dist x0 y0 / 2^n

proof (induction n)
case 0
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show ?case by auto
next

case (Suc n)
show ?case
proof (auto)

fix a::nat assume a: a < 2 ∗ 2^n
obtain m where m: a = 2 ∗ m ∨ a = Suc (2 ∗ m) by (metis geod.elims)
then have m < 2^n using a by auto
consider a = 2 ∗ m | a = Suc(2∗m) using m by auto
then show dist (geod (Suc n) a) (geod (Suc n) (Suc a)) = dist x0 y0 / (2 ∗ 2

^ n)
proof (cases)

case 1
show ?thesis

unfolding 1 apply auto
unfolding middle using Suc.IH ‹m < 2^n› by auto

next
case 2
have ∗: Suc (Suc (2 ∗ m)) = 2 ∗ (Suc m) by auto
show ?thesis

unfolding 2 apply auto
unfolding ∗ geod.simps(3 ) middle using Suc.IH ‹m < 2^n› by auto

qed
qed

qed

lemma geod-mult:
geod n a = geod (n + k) (a ∗ 2^k)

apply (induction k, auto) using geod.simps(3 ) by (metis mult.left-commute)

lemma geod-0 :
geod n 0 = x0

by (induction n, auto, metis geod.simps(3 ) semiring-normalization-rules(10 ))

lemma geod-end:
geod n (2^n) = y0

by (induction n, auto)

By the triangular inequality, the distance between points separated by (b−
a)/2n is at most D ∗ (b− a)/2n.
lemma geod-upper :

assumes a ≤ b b ≤ 2^n
shows dist (geod n a) (geod n b) ≤ (b−a) ∗ dist x0 y0 / 2^n

proof −
have ∗: a+k > 2^n ∨ dist (geod n a) (geod n (a+k)) ≤ k ∗ dist x0 y0 / 2^n for

k
proof (induction k)

case 0 then show ?case by auto
next
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case (Suc k)
show ?case
proof (cases 2 ^ n < a + Suc k)

case True then show ?thesis by auto
next

case False
then have ∗: a + k < 2 ^ n by auto
have dist (geod n a) (geod n (a + Suc k)) ≤ dist (geod n a) (geod n (a+k))

+ dist (geod n (a+k)) (geod n (a+Suc k))
using dist-triangle by auto

also have ... ≤ k ∗ dist x0 y0 / 2^n + dist x0 y0 / 2^n
using Suc.IH ∗ geod-distance-successor by auto

finally show ?thesis
by (simp add: add-divide-distrib distrib-left mult.commute)

qed
qed
show ?thesis using ∗[of b−a] assms by (simp add: of-nat-diff )

qed

In fact, the distance is exactly D ∗ (b − a)/2n, otherwise the extremities of
the interval would be closer than D, a contradiction.
lemma geod-dist:

assumes a ≤ b b ≤ 2^n
shows dist (geod n a) (geod n b) = (b−a) ∗ dist x0 y0 / 2^n

proof −
have dist (geod n a) (geod n b) ≤ (real b−a) ∗ dist x0 y0 / 2^n

using geod-upper [of a b n] assms by auto
moreover have ¬ (dist (geod n a) (geod n b) < (real b−a) ∗ dist x0 y0 / 2^n)
proof (rule ccontr , simp)

assume ∗: dist (geod n a) (geod n b) < (real b−a) ∗ dist x0 y0 / 2^n
have dist x0 y0 = dist (geod n 0 ) (geod n (2^n))

using geod-0 geod-end by auto
also have ... ≤ dist (geod n 0 ) (geod n a) + dist (geod n a) (geod n b) + dist

(geod n b) (geod n (2^n))
using dist-triangle4 by auto

also have ... < a ∗ dist x0 y0 / 2^n + (real b−a) ∗ dist x0 y0 / 2^n + (2^n
− real b) ∗ dist x0 y0 / 2^n

using ∗ assms geod-upper [of 0 a n] geod-upper [of b 2^n n] by (auto intro:
mono-intros)

also have ... = dist x0 y0
using assms by (auto simp add: algebra-simps divide-simps)

finally show False by auto
qed
ultimately show ?thesis by auto

qed

We deduce the same statement but for points that are not on the same level,
by putting them on a common multiple level.
lemma geod-dist2 :
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assumes a ≤ 2^n b ≤ 2^p a/2^n ≤ b / 2^p
shows dist (geod n a) (geod p b) = (b/2^p − a/2^n) ∗ dist x0 y0

proof −
define r where r = max n p
define ar where ar = a ∗ 2^(r − n)
have a: ar / 2^r = a / 2^n
unfolding ar-def r-def by (auto simp add: divide-simps semiring-normalization-rules(26 ))

have A: geod r ar = geod n a
unfolding ar-def r-def using geod-mult[of n a max n p − n] by auto

define br where br = b ∗ 2^(r − p)
have b: br / 2^r = b / 2^p
unfolding br-def r-def by (auto simp add: divide-simps semiring-normalization-rules(26 ))

have B: geod r br = geod p b
unfolding br-def r-def using geod-mult[of p b max n p − p] by auto

have dist (geod n a) (geod p b) = dist (geod r ar) (geod r br)
using A B by auto

also have ... = (real br − ar) ∗ dist x0 y0 / 2 ^r
apply (rule geod-dist)
using ‹a/2^n ≤ b / 2^p› unfolding a[symmetric] b[symmetric] apply (auto

simp add: divide-simps)
using ‹b ≤ 2^p› b apply (auto simp add: divide-simps)

by (metis br-def le-add-diff-inverse2 max.cobounded2 mult.commute mult-le-mono2
r-def semiring-normalization-rules(26 ))

also have ... = (real br / 2^r − real ar / 2^r) ∗ dist x0 y0
by (auto simp add: algebra-simps divide-simps)

finally show ?thesis using a b by auto
qed

Same thing but without a priori ordering of the points.
lemma geod-dist3 :

assumes a ≤ 2^n b ≤ 2^p
shows dist (geod n a) (geod p b) = abs(b/2^p − a/2^n) ∗ dist x0 y0

apply (cases a /2^n ≤ b/2^p, auto)
apply (rule geod-dist2 [OF assms], auto)
apply (subst dist-commute, rule geod-dist2 [OF assms(2 ) assms(1 )], auto)
done

Finally, we define a geodesic by extending what we have already defined
on dyadic points, thanks to the result of isometric extension of isometries
taking their values in complete spaces.
lemma geod:

shows ∃ g. isometry-on {0 ..dist x0 y0} g ∧ g 0 = x0 ∧ g (dist x0 y0 ) = y0
proof (cases x0 = y0 )

case True
show ?thesis apply (rule exI [of - λ-. x0 ]) unfolding isometry-on-def using

True by auto
next

case False
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define A where A = {(real k/2^n) ∗ dist x0 y0 |k n. k ≤ 2^n}
have {0 ..dist x0 y0} ⊆ closure A
proof (auto simp add: closure-approachable dist-real-def )

fix t::real assume t: 0 ≤ t t ≤ dist x0 y0
fix e:: real assume e > 0
then obtain n::nat where n: dist x0 y0/e < 2^n

using one-less-numeral-iff real-arch-pow semiring-norm(76 ) by blast
define k where k = floor (2^n ∗ t/ dist x0 y0 )
have k ≤ 2^n ∗ t/ dist x0 y0 unfolding k-def by auto

also have ... ≤ 2^n using t False by (auto simp add: algebra-simps di-
vide-simps)

finally have k ≤ 2^n by auto
have k ≥ 0 using t False unfolding k-def by auto
define l where l = nat k
have k = int l l ≤ 2^n using ‹k ≥ 0 › ‹k ≤ 2^n› nat-le-iff unfolding l-def by

auto

have abs (2^n ∗ t/dist x0 y0 − k) ≤ 1 unfolding k-def by linarith
then have abs(t − k/2^n ∗ dist x0 y0 ) ≤ dist x0 y0 / 2^n

by (auto simp add: algebra-simps divide-simps False)
also have ... < e using n ‹e > 0 › by (auto simp add: algebra-simps di-

vide-simps)
finally have abs(t − k/2^n ∗ dist x0 y0 ) < e by auto
then have abs(t − l/2^n ∗ dist x0 y0 ) < e using ‹k = int l› by auto
moreover have l/2^n ∗ dist x0 y0 ∈ A unfolding A-def using ‹l ≤ 2^n› by

auto
ultimately show ∃ u∈A. abs(u − t) < e by force

qed

For each dyadic point, we choose one representation of the form K/2N , it is
not important for us that it is the minimal one.

define index where index = (λt. SOME i. t = real (fst i)/2^(snd i) ∗ dist x0
y0 ∧ (fst i) ≤ 2^(snd i))

define K where K = (λt. fst (index t))
define N where N = (λt. snd (index t))
have t: t = K t/ 2^(N t) ∗ dist x0 y0 ∧ K t ≤ 2^(N t) if t ∈ A for t
proof −
obtain n k::nat where t = k/2^n ∗ dist x0 y0 k ≤ 2^n using ‹t∈ A› unfolding

A-def by auto
then have ∗: ∃ i. t = real (fst i)/2^(snd i) ∗ dist x0 y0 ∧ (fst i) ≤ 2^(snd i)

by auto
show ?thesis unfolding K-def N-def index-def using someI-ex[OF ∗] by auto

qed

We can now define our function on dyadic points.
define f where f = (λt. geod (N t) (K t))
have 0 ∈ A unfolding A-def by auto
have f 0 = x0
proof −
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have 0 = K 0 /2^(N 0 ) ∗ dist x0 y0 using t ‹0 ∈ A› by auto
then have K 0 = 0 using False by auto
then show ?thesis unfolding f-def using geod-0 by auto

qed
have dist x0 y0 = (real 1/2^0 ) ∗ dist x0 y0 by auto
then have dist x0 y0 ∈ A unfolding A-def by force
have f (dist x0 y0 ) = y0
proof −

have dist x0 y0 = K (dist x0 y0 ) / 2^(N (dist x0 y0 )) ∗ dist x0 y0
using t ‹dist x0 y0 ∈ A› by auto

then have K (dist x0 y0 ) = 2^(N (dist x0 y0 )) using False by (auto simp add:
divide-simps)

then show ?thesis unfolding f-def using geod-end by auto
qed

By construction, it is an isometry on dyadic points.
have isometry-on A f
proof (rule isometry-onI )

fix s t assume inA: s ∈ A t ∈ A
have dist (f s) (f t) = abs (K t/2^(N t) − K s/2^(N s)) ∗ dist x0 y0

unfolding f-def apply (rule geod-dist3 ) using t inA by auto
also have ... = abs(K t/2^(N t) ∗ dist x0 y0 − K s/2^(N s) ∗ dist x0 y0 )

by (auto simp add: abs-mult-pos left-diff-distrib)
also have ... = abs(t − s)

using t inA by auto
finally show dist (f s) (f t) = dist s t unfolding dist-real-def by auto

qed

We can thus extend it to an isometry on the closure of dyadic points. It is
the desired geodesic.

then obtain g where g: isometry-on (closure A) g
∧

t. t ∈ A =⇒ g t = f t
using isometry-extend-closure by metis

have isometry-on {0 ..dist x0 y0} g
by (rule isometry-on-subset[OF ‹isometry-on (closure A) g› ‹{0 ..dist x0 y0} ⊆

closure A›])
moreover have g 0 = x0

using g(2 )[OF ‹0 ∈ A›] ‹f 0 = x0 › by simp
moreover have g (dist x0 y0 ) = y0

using g(2 )[OF ‹dist x0 y0 ∈ A›] ‹f (dist x0 y0 ) = y0 › by simp
ultimately show ?thesis by auto

qed

end

We can now complete the proof that a complete space with middles is in fact
geodesic: all the work has been done in the locale complete_space_with_middle,
in Lemma geod.
theorem complete-with-middles-imp-geodesic:
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assumes
∧

x y::( ′a::complete-space). ∃m. dist x m = dist x y /2 ∧ dist m y =
dist x y /2

shows OFCLASS( ′a, geodesic-space-class)
proof (standard, rule geodesic-subsetI )

fix x0 y0 :: ′a
interpret complete-space-with-middle x0 y0

apply standard using assms by auto
have ∃ g. g 0 = x0 ∧ g (dist x0 y0 ) = y0 ∧ isometry-on {0 ..dist x0 y0} g

using geod by auto
then show ∃G. geodesic-segment-between G x0 y0 ∧ G ⊆ UNIV

unfolding geodesic-segment-between-def by auto
qed

6 Quasi-isometries

A (λ,C) quasi-isometry is a function which behaves like an isometry, up to
an additive error C and a multiplicative error λ. It can be very different
from an isometry on small scales (for instance, the function integer part is
a quasi-isometry between R and Z), but on large scales it captures many
important features of isometries.
When the space is unbounded, one checks easily that C ≥ 0 and λ ≥ 1. As
this is the only case of interest (any two bounded sets are quasi-isometric),
we incorporate this requirement in the definition.
definition quasi-isometry-on::real ⇒ real ⇒ ( ′a::metric-space) set ⇒ ( ′a⇒ ( ′b::metric-space))
⇒ bool
(‹- - −quasi ′-isometry ′-on› [1000 , 999 ])
where lambda C−quasi-isometry-on X f = ((lambda ≥ 1 ) ∧ (C ≥ 0 ) ∧
(∀ x ∈ X . ∀ y ∈ X . (dist (f x) (f y) ≤ lambda ∗ dist x y + C ∧ dist (f x) (f y)

≥ (1/lambda) ∗ dist x y − C )))

abbreviation quasi-isometry :: real ⇒ real ⇒ ( ′a::metric-space⇒ ′b::metric-space)
⇒ bool
(‹- - −quasi ′-isometry› [1000 , 999 ])
where quasi-isometry lambda C f ≡ lambda C−quasi-isometry-on UNIV f

6.1 Basic properties of quasi-isometries
lemma quasi-isometry-onD:

assumes lambda C−quasi-isometry-on X f
shows

∧
x y. x ∈ X =⇒ y ∈ X =⇒ dist (f x) (f y) ≤ lambda ∗ dist x y + C∧

x y. x ∈ X =⇒ y ∈ X =⇒ dist (f x) (f y) ≥ (1/lambda) ∗ dist x y − C
lambda ≥ 1 C ≥ 0

using assms unfolding quasi-isometry-on-def by auto

lemma quasi-isometry-onI [intro]:
assumes

∧
x y. x ∈ X =⇒ y ∈ X =⇒ dist (f x) (f y) ≤ lambda ∗ dist x y + C∧

x y. x ∈ X =⇒ y ∈ X =⇒ dist (f x) (f y) ≥ (1/lambda) ∗ dist x y − C
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lambda ≥ 1 C ≥ 0
shows lambda C−quasi-isometry-on X f

using assms unfolding quasi-isometry-on-def by auto

lemma isometry-quasi-isometry-on:
assumes isometry-on X f
shows 1 0−quasi-isometry-on X f

using assms unfolding isometry-on-def quasi-isometry-on-def by auto

lemma quasi-isometry-on-change-params:
assumes lambda C−quasi-isometry-on X f mu ≥ lambda D ≥ C
shows mu D−quasi-isometry-on X f

proof (rule quasi-isometry-onI )
have P1 : lambda ≥ 1 C ≥ 0 using quasi-isometry-onD[OF assms(1 )] by auto
then show P2 : mu ≥ 1 D ≥ 0 using assms by auto
fix x y assume inX : x ∈ X y ∈ X
have dist (f x) (f y) ≤ lambda ∗ dist x y + C

using quasi-isometry-onD[OF assms(1 )] inX by auto
also have ... ≤ mu ∗ dist x y + D

using assms by (auto intro!: mono-intros)
finally show dist (f x) (f y) ≤ mu ∗ dist x y + D by simp
have dist (f x) (f y) ≥ (1/lambda) ∗ dist x y − C

using quasi-isometry-onD[OF assms(1 )] inX by auto
moreover have (1/lambda) ∗ dist x y + (− C ) ≥ (1/mu) ∗ dist x y + (− D)

apply (intro mono-intros)
using P1 P2 assms by (auto simp add: divide-simps)

ultimately show dist (f x) (f y) ≥ (1/mu) ∗ dist x y − D by simp
qed

lemma quasi-isometry-on-subset:
assumes lambda C−quasi-isometry-on X f

Y ⊆ X
shows lambda C−quasi-isometry-on Y f

using assms unfolding quasi-isometry-on-def by auto

lemma quasi-isometry-on-perturb:
assumes lambda C−quasi-isometry-on X f

D ≥ 0∧
x. x ∈ X =⇒ dist (f x) (g x) ≤ D

shows lambda (C + 2 ∗ D)−quasi-isometry-on X g
proof (rule quasi-isometry-onI )

show lambda ≥ 1 C + 2 ∗ D ≥ 0 using ‹D ≥ 0 › quasi-isometry-onD[OF
assms(1 )] by auto

fix x y assume ∗: x ∈ X y ∈ X
have dist (g x) (g y) ≤ dist (f x) (f y) + 2 ∗ D

using assms(3 )[OF ∗(1 )] assms(3 )[OF ∗(2 )] dist-triangle4 [of g x g y f x f y]
by (simp add: dist-commute)

then show dist (g x) (g y) ≤ lambda ∗ dist x y + (C + 2 ∗ D)
using quasi-isometry-onD(1 )[OF assms(1 ) ∗] by auto
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have dist (g x) (g y) ≥ dist (f x) (f y) − 2 ∗ D
using assms(3 )[OF ∗(1 )] assms(3 )[OF ∗(2 )] dist-triangle4 [of f x f y g x g y]

by (simp add: dist-commute)
then show dist (g x) (g y) ≥ (1/lambda) ∗ dist x y − (C + 2 ∗ D)

using quasi-isometry-onD(2 )[OF assms(1 ) ∗] by auto
qed

lemma quasi-isometry-on-compose:
assumes lambda C−quasi-isometry-on X f

mu D−quasi-isometry-on Y g
f‘X ⊆ Y

shows (lambda ∗ mu) (C ∗ mu + D)−quasi-isometry-on X (g o f )
proof (rule quasi-isometry-onI )

have I : lambda ≥ 1 C ≥ 0 mu ≥ 1 D ≥ 0
using quasi-isometry-onD[OF assms(1 )] quasi-isometry-onD[OF assms(2 )] by

auto
then show lambda ∗ mu ≥ 1 C ∗ mu + D ≥ 0
by (auto, metis dual-order .order-iff-strict le-numeral-extra(2 ) mult-le-cancel-right1

order .strict-trans1 )
fix x y assume inX : x ∈ X y ∈ X
then have inY : f x ∈ Y f y ∈ Y using ‹f‘X ⊆ Y › by auto
have dist ((g o f ) x) ((g o f ) y) ≤ mu ∗ dist (f x) (f y) + D

using quasi-isometry-onD(1 )[OF assms(2 ) inY ] by simp
also have ... ≤ mu ∗ (lambda ∗ dist x y + C ) + D

using ‹mu ≥ 1 › quasi-isometry-onD(1 )[OF assms(1 ) inX ] by auto
finally show dist ((g o f ) x) ((g o f ) y) ≤ (lambda ∗ mu) ∗ dist x y + (C ∗ mu

+ D)
by (auto simp add: algebra-simps)

have (1/(lambda ∗ mu)) ∗ dist x y − (C ∗ mu + D) ≤ (1/(lambda ∗ mu)) ∗
dist x y − (C/mu + D)

using ‹mu ≥ 1 › ‹C ≥ 0 › apply (auto, auto simp add: divide-simps)
by (metis eq-iff less-eq-real-def mult.commute mult-eq-0-iff mult-le-cancel-right1

order .trans)
also have ... = (1/mu) ∗ ((1/lambda) ∗ dist x y − C ) − D

by (auto simp add: algebra-simps)
also have ... ≤ (1/mu) ∗ dist (f x) (f y) − D

using ‹mu ≥ 1 › quasi-isometry-onD(2 )[OF assms(1 ) inX ] by (auto simp add:
divide-simps)

also have ... ≤ dist ((g o f ) x) ((g o f ) y)
using quasi-isometry-onD(2 )[OF assms(2 ) inY ] by auto

finally show 1 / (lambda ∗ mu) ∗ dist x y − (C ∗ mu + D) ≤ dist ((g ◦ f ) x)
((g ◦ f ) y)

by auto
qed

lemma quasi-isometry-on-bounded:
assumes lambda C−quasi-isometry-on X f

bounded X
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shows bounded (f‘X)
proof (cases X = {})

case True
then show ?thesis by auto

next
case False
obtain x where x ∈ X using False by auto
obtain e where e:

∧
z. z ∈ X =⇒ dist x z ≤ e

using bounded-any-center assms(2 ) by metis
have dist (f x) y ≤ C + lambda ∗ e if y ∈ f‘X for y
proof −

obtain z where ∗: z ∈ X y = f z using ‹y ∈ f‘X› by auto
have dist (f x) y ≤ lambda ∗ dist x z + C

unfolding ‹y = f z› using ∗ quasi-isometry-onD(1 )[OF assms(1 ) ‹x ∈ X›
‹z ∈ X›] by (auto simp add: add-mono)

also have ... ≤ C + lambda ∗ e using e[OF ‹z ∈ X›] quasi-isometry-onD(3 )[OF
assms(1 )] by auto

finally show ?thesis by simp
qed
then show ?thesis unfolding bounded-def by auto

qed

lemma quasi-isometry-on-empty:
assumes C ≥ 0 lambda ≥ 1
shows lambda C−quasi-isometry-on {} f

using assms unfolding quasi-isometry-on-def by auto

Quasi-isometries change the distance to a set by at most λ ·+C, this follows
readily from the fact that this inequality holds pointwise.
lemma quasi-isometry-on-infdist:

assumes lambda C−quasi-isometry-on X f
w ∈ X
S ⊆ X

shows infdist (f w) (f‘S) ≤ lambda ∗ infdist w S + C
infdist (f w) (f‘S) ≥ (1/lambda) ∗ infdist w S − C

proof −
have lambda ≥ 1 C ≥ 0 using quasi-isometry-onD[OF assms(1 )] by auto
show infdist (f w) (f‘S) ≤ lambda ∗ infdist w S + C
proof (cases S = {})

case True
then show ?thesis

using ‹C ≥ 0 › unfolding infdist-def by auto
next

case False
then have (INF x∈S . dist (f w) (f x)) ≤ (INF x∈S . lambda ∗ dist w x + C )

apply (rule cINF-superset-mono)
apply (meson bdd-belowI2 zero-le-dist) using assms by (auto intro!:

quasi-isometry-onD(1 )[OF assms(1 )])
also have ... = (INF t∈(dist w)‘S . lambda ∗ t + C )
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by (auto simp add: image-comp)
also have ... = lambda ∗ Inf ((dist w)‘S) + C

apply (rule continuous-at-Inf-mono[symmetric])
unfolding mono-def using ‹lambda ≥ 1 › False by (auto intro!: continu-

ous-intros)
finally show ?thesis unfolding infdist-def using False by (auto simp add:

image-comp)
qed
show 1 / lambda ∗ infdist w S − C ≤ infdist (f w) (f ‘ S)
proof (cases S = {})

case True
then show ?thesis

using ‹C ≥ 0 › unfolding infdist-def by auto
next

case False
then have (1/lambda) ∗ infdist w S − C = (1/lambda) ∗ Inf ((dist w)‘S) −

C
unfolding infdist-def by auto

also have ... = (INF t∈(dist w)‘S . (1/lambda) ∗ t − C )
apply (rule continuous-at-Inf-mono)

unfolding mono-def using ‹lambda ≥ 1 › False by (auto simp add: di-
vide-simps intro!: continuous-intros)

also have ... = (INF x∈S . (1/lambda) ∗ dist w x − C )
by (auto simp add: image-comp)

also have ... ≤ (INF x∈S . dist (f w) (f x))
apply (rule cINF-superset-mono[OF False]) apply (rule bdd-belowI2 [of - −C ])
using assms ‹lambda ≥ 1 › apply simp apply simp apply (rule quasi-isometry-onD(2 )[OF

assms(1 )])
using assms by auto

finally show ?thesis unfolding infdist-def using False by (auto simp add:
image-comp)

qed
qed

6.2 Quasi-isometric isomorphisms

The notion of isomorphism for quasi-isometries is not that it should be a
bijection, as it is a coarse notion, but that it is a bijection up to a bounded
displacement. For instance, the inclusion of Z in R is a quasi-isometric iso-
morphism between these spaces, whose (quasi)-inverse (which is non-unique)
is given by the function integer part. This is formalized in the next defini-
tion.
definition quasi-isometry-between::real ⇒ real ⇒ ( ′a::metric-space) set ⇒ ( ′b::metric-space)
set ⇒ ( ′a ⇒ ′b) ⇒ bool
(‹- - −quasi ′-isometry ′-between› [1000 , 999 ])
where lambda C−quasi-isometry-between X Y f = ((lambda C−quasi-isometry-on

X f ) ∧ (f‘X ⊆ Y ) ∧ (∀ y∈Y . ∃ x∈X . dist (f x) y ≤ C ))
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definition quasi-isometric::( ′a::metric-space) set ⇒ ( ′b::metric-space) set ⇒ bool
where quasi-isometric X Y = (∃ lambda C f . lambda C−quasi-isometry-between

X Y f )

lemma quasi-isometry-betweenD:
assumes lambda C−quasi-isometry-between X Y f
shows lambda C−quasi-isometry-on X f

f‘X ⊆ Y∧
y. y ∈ Y =⇒ ∃ x∈X . dist (f x) y ≤ C∧
x y. x ∈ X =⇒ y ∈ X =⇒ dist (f x) (f y) ≤ lambda ∗ dist x y + C∧
x y. x ∈ X =⇒ y ∈ X =⇒ dist (f x) (f y) ≥ (1/lambda) ∗ dist x y − C

lambda ≥ 1 C ≥ 0
using assms unfolding quasi-isometry-between-def quasi-isometry-on-def by auto

lemma quasi-isometry-betweenI :
assumes lambda C−quasi-isometry-on X f

f‘X ⊆ Y∧
y. y ∈ Y =⇒ ∃ x∈X . dist (f x) y ≤ C

shows lambda C−quasi-isometry-between X Y f
using assms unfolding quasi-isometry-between-def by auto

lemma quasi-isometry-on-between:
assumes lambda C−quasi-isometry-on X f
shows lambda C−quasi-isometry-between X (f‘X) f

using assms unfolding quasi-isometry-between-def quasi-isometry-on-def by force

lemma quasi-isometry-between-change-params:
assumes lambda C−quasi-isometry-between X Y f mu ≥ lambda D ≥ C
shows mu D−quasi-isometry-between X Y f

proof (rule quasi-isometry-betweenI )
show mu D−quasi-isometry-on X f

by (rule quasi-isometry-on-change-params[OF quasi-isometry-betweenD(1 )[OF
assms(1 )] assms(2 ) assms(3 )])

show f‘X ⊆ Y using quasi-isometry-betweenD[OF assms(1 )] by auto
fix y assume y ∈ Y
show ∃ x∈X . dist (f x) y ≤ D using quasi-isometry-betweenD(3 )[OF assms(1 )

‹y ∈ Y ›] ‹D ≥ C › by force
qed

lemma quasi-isometry-subset:
assumes X ⊆ Y

∧
y. y ∈ Y =⇒ ∃ x∈X . dist x y ≤ C C ≥ 0

shows 1 C−quasi-isometry-between X Y (λx. x)
unfolding quasi-isometry-between-def using assms by auto

lemma isometry-quasi-isometry-between:
assumes isometry f
shows 1 0−quasi-isometry-between UNIV UNIV f

using assms unfolding quasi-isometry-between-def quasi-isometry-on-def isome-
try-def isometry-on-def surj-def by (auto) metis
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proposition quasi-isometry-inverse:
assumes lambda C−quasi-isometry-between X Y f
shows ∃ g. lambda (3 ∗ C ∗ lambda)−quasi-isometry-between Y X g

∧ (∀ x∈X . dist x (g (f x)) ≤ 3 ∗ C ∗ lambda)
∧ (∀ y∈Y . dist y (f (g y)) ≤ 3 ∗ C ∗ lambda)

proof −
define g where g = (λy. SOME x. x ∈ X ∧ dist (f x) y ≤ C )
have ∗: g y ∈ X ∧ dist (f (g y)) y ≤ C if y ∈ Y for y

unfolding g-def using quasi-isometry-betweenD(3 )[OF assms that] by (metis
(no-types, lifting) someI-ex)

have lambda ≥ 1 C ≥ 0 using quasi-isometry-betweenD[OF assms] by auto

have C ≤ 3 ∗ C ∗ lambda using ‹lambda ≥ 1 › ‹C ≥ 0 ›
by (simp add: algebra-simps mult-ge1-mono)

then have A: dist y (f (g y)) ≤ 3 ∗ C ∗ lambda if y ∈ Y for y
using ∗[OF that] by (simp add: dist-commute)

have B: dist x (g (f x)) ≤ 3 ∗ C ∗ lambda if x ∈ X for x
proof −

have f x ∈ Y using that quasi-isometry-betweenD(2 )[OF assms] by auto
have (1/lambda) ∗ dist x (g (f x)) − C ≤ dist (f x) (f (g (f x)))

apply (rule quasi-isometry-betweenD(5 )[OF assms]) using that ∗[OF ‹f x ∈
Y ›] by auto

also have ... ≤ C using ∗[OF ‹f x ∈ Y ›] by (simp add: dist-commute)
finally have dist x (g (f x)) ≤ 2 ∗ C ∗ lambda

using ‹lambda ≥ 1 › ‹C ≥ 0 › by (simp add: divide-simps)
also have ... ≤ 3 ∗ C ∗ lambda

using ‹lambda ≥ 1 › ‹C ≥ 0 › by (simp add: divide-simps)
finally show ?thesis by auto

qed

have lambda (3 ∗ C ∗ lambda)−quasi-isometry-on Y g
proof (rule quasi-isometry-onI )

show lambda ≥ 1 3 ∗ C ∗ lambda ≥ 0 using ‹lambda ≥ 1 › ‹C ≥ 0 › by auto
fix y1 y2 assume inY : y1 ∈ Y y2 ∈ Y
then have inX : g y1 ∈ X g y2 ∈ X using ∗ by auto
have dist y1 y2 ≤ dist y1 (f (g y1 )) + dist (f (g y1 )) (f (g y2 )) + dist (f (g

y2 )) y2
using dist-triangle4 by auto

also have ... ≤ C + dist (f (g y1 )) (f (g y2 )) + C
using ∗[OF inY (1 )] ∗[OF inY (2 )] by (auto simp add: dist-commute intro:

add-mono)
also have ... ≤ C + (lambda ∗ dist (g y1 ) (g y2 ) + C ) + C

using quasi-isometry-betweenD(4 )[OF assms inX ] by (auto intro: add-mono)
finally have dist y1 y2 − 3 ∗ C ≤ lambda ∗ dist (g y1 ) (g y2 ) by auto
then have dist (g y1 ) (g y2 ) ≥ (1/lambda) ∗ dist y1 y2 − 3 ∗ C / lambda

using ‹lambda ≥ 1 › by (auto simp add: divide-simps mult.commute)
moreover have 3 ∗ C / lambda ≤ 3 ∗ C ∗ lambda

97



using ‹lambda ≥ 1 › ‹C ≥ 0 › apply (auto simp add: divide-simps mult-le-cancel-left1 )
by (metis dual-order .order-iff-strict less-1-mult mult.left-neutral)

ultimately show dist (g y1 ) (g y2 ) ≥ (1/lambda) ∗ dist y1 y2 − 3 ∗ C ∗
lambda

by auto

have (1/lambda) ∗ dist (g y1 ) (g y2 ) − C ≤ dist (f (g y1 )) (f (g y2 ))
using quasi-isometry-betweenD(5 )[OF assms inX ] by auto

also have ... ≤ dist (f (g y1 )) y1 + dist y1 y2 + dist y2 (f (g y2 ))
using dist-triangle4 by auto

also have ... ≤ C + dist y1 y2 + C
using ∗[OF inY (1 )] ∗[OF inY (2 )] by (auto simp add: dist-commute intro:

add-mono)
finally show dist (g y1 ) (g y2 ) ≤ lambda ∗ dist y1 y2 + 3 ∗ C ∗ lambda

using ‹lambda ≥ 1 › by (auto simp add: divide-simps algebra-simps)
qed
then have lambda (3 ∗ C ∗ lambda)−quasi-isometry-between Y X g
proof (rule quasi-isometry-betweenI )

show g ‘ Y ⊆ X using ∗ by auto
fix x assume x ∈ X
have f x ∈ Y dist (g (f x)) x ≤ 3 ∗ C ∗ lambda

using B[OF ‹x ∈ X›] quasi-isometry-betweenD(2 )[OF assms] ‹x ∈ X› by
(auto simp add: dist-commute)

then show ∃ y∈Y . dist (g y) x ≤ 3 ∗ C ∗ lambda by blast
qed
then show ?thesis using A B by blast

qed

proposition quasi-isometry-compose:
assumes lambda C−quasi-isometry-between X Y f

mu D−quasi-isometry-between Y Z g
shows (lambda ∗ mu) (C ∗ mu + 2 ∗ D)−quasi-isometry-between X Z (g o f )

proof (rule quasi-isometry-betweenI )
have (lambda ∗ mu) (C ∗ mu + D)−quasi-isometry-on X (g ◦ f )
by (rule quasi-isometry-on-compose[OF quasi-isometry-betweenD(1 )[OF assms(1 )]

quasi-isometry-betweenD(1 )[OF assms(2 )] quasi-isometry-betweenD(2 )[OF
assms(1 )]])

then show (lambda ∗ mu) (C ∗ mu + 2 ∗ D)−quasi-isometry-on X (g ◦ f )
apply (rule quasi-isometry-on-change-params) using quasi-isometry-betweenD(7 )[OF

assms(2 )] by auto

show (g ◦ f ) ‘ X ⊆ Z
using quasi-isometry-betweenD(2 )[OF assms(1 )] quasi-isometry-betweenD(2 )[OF

assms(2 )]
by auto

fix z assume z ∈ Z
obtain y where y: y ∈ Y dist (g y) z ≤ D

using quasi-isometry-betweenD(3 )[OF assms(2 ) ‹z ∈ Z ›] by auto
obtain x where x: x ∈ X dist (f x) y ≤ C
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using quasi-isometry-betweenD(3 )[OF assms(1 ) ‹y ∈ Y ›] by auto
have dist ((g o f ) x) z ≤ dist (g (f x)) (g y) + dist (g y) z

using dist-triangle by auto
also have ... ≤ (mu ∗ dist (f x) y + D) + D

apply (rule add-mono, rule quasi-isometry-betweenD(4 )[OF assms(2 )])
using x y quasi-isometry-betweenD(2 )[OF assms(1 )] by auto

also have ... ≤ C ∗ mu + 2 ∗ D
using x(2 ) quasi-isometry-betweenD(6 )[OF assms(2 )] by auto

finally show ∃ x∈X . dist ((g ◦ f ) x) z ≤ C ∗ mu + 2 ∗ D
using x(1 ) by auto

qed

theorem quasi-isometric-equiv-rel:
quasi-isometric X X
quasi-isometric X Y =⇒ quasi-isometric Y Z =⇒ quasi-isometric X Z
quasi-isometric X Y =⇒ quasi-isometric Y X

proof −
show quasi-isometric X X

unfolding quasi-isometric-def using quasi-isometry-subset[of X X 0 ] by auto
assume H : quasi-isometric X Y
then show quasi-isometric Y X

unfolding quasi-isometric-def using quasi-isometry-inverse by blast
assume quasi-isometric Y Z
then show quasi-isometric X Z
using H unfolding quasi-isometric-def using quasi-isometry-compose by blast

qed

Many interesting properties in geometric group theory are invariant under
quasi-isometry. We prove the most basic ones here.
lemma quasi-isometric-empty:

assumes X = {} quasi-isometric X Y
shows Y = {}

using assms unfolding quasi-isometric-def quasi-isometry-between-def quasi-isometry-on-def
by blast

lemma quasi-isometric-bounded:
assumes bounded X quasi-isometric X Y
shows bounded Y

proof (cases X = {})
case True
show ?thesis using quasi-isometric-empty[OF True assms(2 )] by auto

next
case False
obtain lambda C f where QI : lambda C−quasi-isometry-between X Y f

using assms(2 ) unfolding quasi-isometric-def by auto
obtain x where x ∈ X using False by auto
obtain e where e:

∧
z. z ∈ X =⇒ dist x z ≤ e

using bounded-any-center assms(1 ) by metis
have dist (f x) y ≤ 2 ∗ C + lambda ∗ e if y ∈ Y for y
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proof −
obtain z where ∗: z ∈ X dist (f z) y ≤ C

using quasi-isometry-betweenD(3 )[OF QI ‹y ∈ Y ›] by auto
have dist (f x) y ≤ dist (f x) (f z) + dist (f z) y using dist-triangle by auto
also have ... ≤ (lambda ∗ dist x z + C ) + C

using ∗ quasi-isometry-betweenD(4 )[OF QI ‹x ∈ X› ‹z ∈ X›] by (auto simp
add: add-mono)

also have ... ≤ 2 ∗ C + lambda ∗ e
using quasi-isometry-betweenD(6 )[OF QI ] e[OF ‹z ∈ X›] by (auto simp add:

algebra-simps)
finally show ?thesis by simp

qed
then show ?thesis unfolding bounded-def by auto

qed

lemma quasi-isometric-bounded-iff :
assumes bounded X X 6= {} bounded Y Y 6= {}
shows quasi-isometric X Y

proof −
obtain x y where x ∈ X y ∈ Y using assms by auto
obtain C where C :

∧
z. z ∈ Y =⇒ dist y z ≤ C

using ‹bounded Y › bounded-any-center by metis
have C ≥ 0 using C [OF ‹y ∈ Y ›] by auto
obtain D where D:

∧
z. z ∈ X =⇒ dist x z ≤ D

using ‹bounded X› bounded-any-center by metis
have D ≥ 0 using D[OF ‹x ∈ X›] by auto

define f :: ′a ⇒ ′b where f = (λ-. y)
have 1 (C + 2 ∗ D)−quasi-isometry-between X Y f
proof (rule quasi-isometry-betweenI )

show f‘X ⊆ Y unfolding f-def using ‹y ∈ Y › by auto
show 1 (C + 2 ∗ D)−quasi-isometry-on X f
proof (rule quasi-isometry-onI , auto simp add: ‹C ≥ 0 › ‹D ≥ 0 › f-def )

fix a b assume a ∈ X b ∈ X
have dist a b ≤ dist a x + dist x b

using dist-triangle by auto
also have ... ≤ D + D

using D[OF ‹a ∈ X›] D[OF ‹b ∈ X›] by (auto simp add: dist-commute)
finally show dist a b ≤ C + 2 ∗ D using ‹C ≥ 0 › by auto

qed
show ∃ a∈X . dist (f a) z ≤ C + 2 ∗ D if z ∈ Y for z

unfolding f-def using ‹x ∈ X› C [OF ‹z ∈ Y ›] ‹D ≥ 0 › by auto
qed
then show ?thesis unfolding quasi-isometric-def by auto

qed
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6.3 Quasi-isometries of Euclidean spaces.

A less trivial fact is that the dimension of euclidean spaces is invariant
under quasi-isometries. It is proved below using growth argument, as quasi-
isometries preserve the growth rate.
The growth of the space is asymptotic behavior of the number of well-
separated points that fit in a ball of radius R, when R tends to infinity.
Up to a suitable equivalence, it is clearly a quasi-isometry invariance. We
show below that, in a Euclidean space of dimension d, the growth is like Rd:
the upper bound is obtained by using the fact that we have disjoint balls
inside a big ball, hence volume controls conclude the argument, while the
lower bound is obtained by considering integer points.

First, we show that the growth rate of a Euclidean space of dimension d is
bounded from above by Rd, using the control on measure of disjoint balls
and a volume argument.
proposition growth-rate-euclidean-above:

fixes D::real
assumes D > (0 ::real)

and H : F ⊆ cball (0 :: ′a::euclidean-space) R R ≥ 0∧
x y. x ∈ F =⇒ y ∈ F =⇒ x 6= y =⇒ dist x y ≥ D

shows finite F ∧ card F ≤ 1 + ((6/D)^(DIM ( ′a))) ∗ R^(DIM ( ′a))
proof −

define C ::real where C = ((6/D)^(DIM ( ′a)))
have C ≥ 0 unfolding C-def using ‹D > 0 › by auto
have D/3 ≥ 0 using assms by auto
have finite F ∧ card F ≤ 1 + C ∗ R^(DIM ( ′a))
proof (cases R < D/2 )

case True
have x = y if x ∈ F y ∈ F for x y
proof (rule ccontr)

assume ¬(x = y)
then have D ≤ dist x y using H ‹x ∈ F› ‹y ∈ F› by auto
also have ... ≤ dist x 0 + dist 0 y by (rule dist-triangle)
also have ... ≤ R + R

using H (1 ) ‹x ∈ F› ‹y ∈ F› by (intro add-mono, auto)
also have ... < D using ‹R < D/2 › by auto
finally show False by simp

qed
then have finite F ∧ card F ≤ 1 using finite-at-most-singleton by auto
moreover have 1 + 0 ∗ R^(DIM ( ′a)) ≤ 1 + C ∗ R^(DIM ( ′a))

using ‹C ≥ 0 › ‹R ≥ 0 › by (auto intro: mono-intros)
ultimately show ?thesis by auto

next
case False
have card G ≤ 1 + C ∗ R^(DIM ( ′a)) if G ⊆ F finite G for G
proof −

have norm y ≤ 2∗R if y ∈ cball x (D/3 ) x ∈ G for x y

101



proof −
have norm y = dist 0 y by auto
also have ... ≤ dist 0 x + dist x y by (rule dist-triangle)
also have ... ≤ R + D/3

using ‹x ∈ G› ‹G ⊆ F› ‹y ∈ cball x (D/3 )› ‹F ⊆ cball 0 R› by (auto
intro: add-mono)

finally show ?thesis using False ‹D > 0 › by auto
qed
then have I : (

⋃
x∈G. cball x (D/3 )) ⊆ cball 0 (2∗R)

by auto
have disjoint-family-on (λx. cball x (D/3 )) G

unfolding disjoint-family-on-def proof (auto)
fix a b x assume ∗: a ∈ G b ∈ G a 6= b dist a x ∗ 3 ≤ D dist b x ∗ 3 ≤ D
then have D ≤ dist a b using H ‹G ⊆ F› by auto
also have ... ≤ dist a x + dist x b by (rule dist-triangle)
also have ... ≤ D/3 + D/3

using ∗ by (auto simp add: dist-commute intro: mono-intros)
also have ... < D using ‹D > 0 › by auto
finally show False by simp

qed

have 2 ∗ R ≥ 0 using ‹R ≥ 0 › by auto
define A where A = measure lborel (cball (0 :: ′a) 1 )
have A > 0 unfolding A-def using lebesgue-measure-ball-pos by auto
have card G ∗ ((D/3 )^(DIM ( ′a)) ∗ A) = (

∑
x∈G. ((D/3 )^(DIM ( ′a)) ∗ A))

by auto
also have ... = (

∑
x∈G. measure lborel (cball x (D/3 )))

unfolding lebesgue-measure-ball[OF ‹D/3 ≥ 0 ›] A-def by auto
also have ... = measure lborel (

⋃
x∈G. cball x (D/3 ))

apply (rule measure-finite-Union[symmetric, OF ‹finite G› - ‹disjoint-family-on
(λx. cball x (D/3 )) G›])

apply auto using emeasure-bounded-finite less-imp-neq by auto
also have ... ≤ measure lborel (cball (0 :: ′a) (2∗R))
apply (rule measure-mono-fmeasurable) using I ‹finite G› emeasure-bounded-finite

unfolding fmeasurable-def by auto
also have ... = (2∗R)^(DIM ( ′a)) ∗ A

unfolding A-def using lebesgue-measure-ball[OF ‹2∗R ≥ 0 ›] by auto
finally have card G ∗ (D/3 )^(DIM ( ′a)) ≤ (2∗R)^(DIM ( ′a))

using ‹A > 0 › by (auto simp add: divide-simps)
then have card G ≤ C ∗ R^(DIM ( ′a))

unfolding C-def using ‹D > 0 › apply (auto simp add: algebra-simps
divide-simps)

by (metis numeral-times-numeral power-mult-distrib semiring-norm(12 )
semiring-norm(14 ))

then show ?thesis by auto
qed
then show finite F ∧ card F ≤ 1 + C ∗ R^(DIM ( ′a))

by (rule finite-finite-subset-caract ′)
qed
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then show ?thesis unfolding C-def by blast
qed

Then, we show that the growth rate of a Euclidean space of dimension d is
bounded from below by Rd, using integer points.
proposition growth-rate-euclidean-below:

fixes D::real
assumes R ≥ 0
shows ∃F . (F ⊆ cball (0 :: ′a::euclidean-space) R

∧ (∀ x∈F . ∀ y∈F . x = y ∨ dist x y ≥ D) ∧ finite F ∧ card F ≥ (1/((max
D 1 ) ∗ DIM ( ′a)))^(DIM ( ′a)) ∗ R^(DIM ( ′a)))
proof −

define E where E = max D 1
have E > 0 unfolding E-def by auto
define c where c = (1/(E ∗ DIM ( ′a)))^(DIM ( ′a))
have c > 0 unfolding c-def using ‹E > 0 › by auto

define n where n = nat (floor (R/(E ∗ DIM ( ′a)))) + 1
then have n > 0 using ‹R ≥ 0 › by auto

have R/(E ∗ DIM ( ′a)) ≤ n unfolding n-def by linarith
then have c ∗ R^(DIM ( ′a)) ≤ n^(DIM ( ′a))

unfolding c-def power-mult-distrib[symmetric] by (auto simp add: ‹0 < E› ‹0
≤ R› less-imp-le power-mono)

have n−1 ≤ R/(E ∗ DIM ( ′a))
unfolding n-def using ‹R ≥ 0 › ‹E > 0 › by auto

then have E ∗ DIM ( ′a) ∗ (n−1 ) ≤ R
using ‹R ≥ 0 › ‹E > 0 › by (simp add: mult.commute pos-le-divide-eq)

We want to consider the set of linear combinations of basis elements with
integer coefficients bounded by n (multiplied by E to guarantee the D sep-
aration). The formal way to write these elements is to consider all the
functions from the basis to {0, . . . , n− 1}, and associate to such a function
f the point

∑
Ef(i) · i where the sum is over all basis elements i. This is

what the next definition does.
define F :: ′a set where F = (λf . (

∑
i∈Basis. (E ∗ real (f i)) ∗R i))‘((Basis::( ′a

set)) →E {0 ..<n})

have f = g if f ∈ (Basis::( ′a set)) →E {0 ..<n} g ∈ Basis →E {0 ..<n}
(
∑

i∈Basis. (E ∗ real (f i)) ∗R i) = (
∑

i∈Basis. (E ∗ real (g i))
∗R i) for f g

proof (rule ext)
fix i show f i = g i
proof (cases i ∈ Basis)

case True
then have E ∗ real(f i) = E ∗ real(g i)
using inner-sum-left-Basis[OF True, of λi. E ∗ real(f i)] inner-sum-left-Basis[OF

True, of λi. E ∗ real(g i)] that(3 )
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by auto
then show f i = g i using ‹E > 0 › by auto

next
case False
then have f i = undefined g i = undefined using that by auto
then show f i = g i by auto

qed
qed
then have inj-on (λf . (

∑
i∈Basis. (E ∗ real (f i)) ∗R i)) ((Basis::( ′a set)) →E

{0 ..<n})
by (simp add: inj-onI )

then have card F = card ((Basis::( ′a set)) →E {0 ..<n}) unfolding F-def
using card-image by blast

also have ... = n^(DIM ( ′a))
unfolding card-PiE [OF finite-Basis] by (auto simp add: prod-constant)

finally have card F = n^(DIM ( ′a)) by auto
then have finite F using ‹n > 0 ›

using card.infinite by force
have card F ≥ c ∗ R^(DIM ( ′a))

using ‹c ∗ R^(DIM ( ′a)) ≤ n^(DIM ( ′a))› ‹card F = n^(DIM ( ′a))› by auto

have separation: dist x y ≥ D if x ∈ F y ∈ F x 6= y for x y
proof −

obtain f where x: f ∈ (Basis::( ′a set)) →E {0 ..<n} x = (
∑

i∈Basis. (E ∗
real (f i)) ∗R i)

using ‹x ∈ F› unfolding F-def by auto
obtain g where y: g ∈ (Basis::( ′a set)) →E {0 ..<n} y = (

∑
i∈Basis. (E ∗

real (g i)) ∗R i)
using ‹y ∈ F› unfolding F-def by auto

obtain i where f i 6= g i using x y ‹x 6=y› by force
moreover have f j = g j if j /∈ Basis for j

using x(1 ) y(1 ) that by fastforce
ultimately have i ∈ Basis by auto
have D ≤ E unfolding E-def by auto
also have ... ≤ abs(E ∗ (real (f i) − real (g i))) using ‹E > 0 ›

using ‹f i 6= g i› by (auto simp add: divide-simps abs-mult)
also have ... = abs(inner x i − inner y i)

unfolding x(2 ) y(2 ) inner-sum-left-Basis[OF ‹i ∈ Basis›] by (auto simp
add: algebra-simps)

also have ... = abs(inner (x−y) i)
by (simp add: inner-diff-left)

also have ... ≤ norm (x−y) using Basis-le-norm[OF ‹i ∈ Basis›] by blast
finally show dist x y ≥ D by (simp add: dist-norm)

qed

have norm x ≤ R if x ∈ F for x
proof −

obtain f where x: f ∈ (Basis::( ′a set)) →E {0 ..<n} x = (
∑

i∈Basis. (E ∗
real (f i)) ∗R i)
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using ‹x ∈ F› unfolding F-def by auto
then have norm x = norm (

∑
i∈Basis. (E ∗ real (f i)) ∗R i) by simp

also have ... ≤ (
∑

i∈Basis. norm((E ∗ real (f i)) ∗R i))
by (rule norm-sum)

also have ... = (
∑

i∈Basis. abs(E ∗ real (f i))) by auto
also have ... = (

∑
i∈Basis. E ∗ real (f i)) using ‹E > 0 › by auto

also have ... ≤ (
∑

i∈(Basis:: ′a set). E ∗ (n−1 ))
apply (rule sum-mono) using PiE-mem[OF x(1 )] ‹E > 0 › apply (auto simp

add: divide-simps)
using ‹n > 0 › by fastforce

also have ... = DIM ( ′a) ∗ E ∗ (n−1 )
by auto

finally show norm x ≤ R using ‹E ∗ DIM ( ′a) ∗ (n−1 ) ≤ R› by (auto simp
add: algebra-simps)

qed
then have F ⊆ cball 0 R by auto
then show ?thesis using ‹card F ≥ c ∗ R^(DIM ( ′a))› ‹finite F› separation c-def

E-def by blast
qed

As the growth is invariant under quasi-isometries, we deduce that it is im-
possible to map quasi-isometrically a Euclidean space in a space of strictly
smaller dimension.
proposition quasi-isometry-on-euclidean:

fixes f :: ′a::euclidean-space⇒ ′b::euclidean-space
assumes lambda C−quasi-isometry-on UNIV f
shows DIM ( ′a) ≤ DIM ( ′b)

proof −
have C : lambda ≥ 1 C ≥ 0 using quasi-isometry-onD[OF assms] by auto
define D where D = lambda ∗ (C+1 )
define Ca where Ca = (1/((max D 1 ) ∗ DIM ( ′a)))^(DIM ( ′a))
have Ca > 0 unfolding Ca-def by auto
have A:

∧
R::real. R ≥ 0 =⇒ (∃F . (F ⊆ cball (0 :: ′a::euclidean-space) R

∧ (∀ x∈F . ∀ y∈F . x = y ∨ dist x y ≥ D) ∧ finite F ∧ card F ≥ Ca ∗
R^(DIM ( ′a))))

using growth-rate-euclidean-below[of - D] unfolding Ca-def by blast
define Cb::real where Cb = ((6/1 )^(DIM ( ′b)))
have B:

∧
F (R::real). (F ⊆ cball (0 :: ′b::euclidean-space) R =⇒ R ≥ 0 =⇒

(∀ x∈F . ∀ y∈F . x = y ∨ dist x y ≥ 1 ) =⇒ (finite F ∧ card F ≤ 1 + Cb ∗
R^(DIM ( ′b))))

using growth-rate-euclidean-above[of 1 ] unfolding Cb-def by fastforce

have M : Ca ∗ R^(DIM ( ′a)) ≤ 1 + Cb ∗ (lambda ∗ R + C + norm(f 0 ))^(DIM ( ′b))
if R ≥ 0 for R::real

proof −
obtain F :: ′a set where F : F ⊆ cball 0 R ∀ x∈F . ∀ y∈F . x = y ∨ dist x y ≥ D

finite F card F ≥ Ca ∗ R^(DIM ( ′a))
using A[OF ‹R ≥ 0 ›] by auto

define G where G = f‘F
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have ∗: dist (f x) (f y) ≥ 1 if x 6= y x ∈ F y ∈ F for x y
proof −

have dist x y ≥ D using that F(2 ) by auto
have 1 = (1/lambda) ∗ D − C using ‹lambda ≥ 1 › unfolding D-def by

auto
also have ... ≤ (1/lambda) ∗ dist x y − C

using ‹dist x y ≥ D› ‹lambda ≥ 1 › by (auto simp add: divide-simps)
also have ... ≤ dist (f x) (f y)

using quasi-isometry-onD[OF assms] by auto
finally show ?thesis by simp

qed
then have inj-on f F unfolding inj-on-def by force
then have card G = card F unfolding G-def by (simp add: card-image)
then have card G ≥ Ca ∗ R^(DIM ( ′a)) using F by auto

moreover have finite G ∧ card G ≤ 1 + Cb ∗ (lambda ∗ R + C + norm(f
0 ))^(DIM ( ′b))

proof (rule B)
show 0 ≤ lambda ∗ R + C + norm (f 0 ) using ‹R ≥ 0 › ‹C ≥ 0 › ‹lambda

≥ 1 › by auto
show ∀ x∈G. ∀ y∈G. x = y ∨ 1 ≤ dist x y using ∗ unfolding G-def by

(auto, metis)
show G ⊆ cball 0 (lambda ∗ R + C + norm (f 0 ))
unfolding G-def proof (auto)

fix x assume x ∈ F
have norm (f x) ≤ norm (f 0 ) + dist (f x) (f 0 )

by (metis dist-0-norm dist-triangle2 )
also have ... ≤ norm (f 0 ) + (lambda ∗ dist x 0 + C )

by (intro mono-intros quasi-isometry-onD(1 )[OF assms]) auto
also have ... ≤ norm (f 0 ) + lambda ∗ R + C

using ‹x ∈ F› ‹F ⊆ cball 0 R› ‹lambda ≥ 1 › by auto
finally show norm (f x) ≤ lambda ∗ R + C + norm (f 0 ) by auto

qed
qed
ultimately show Ca ∗ R^(DIM ( ′a)) ≤ 1 + Cb ∗ (lambda ∗ R + C + norm(f

0 ))^(DIM ( ′b))
by auto

qed
define CB where CB = max Cb 0
have CB ≥ 0 CB ≥ Cb unfolding CB-def by auto
define D::real where D = (1 + CB ∗ (lambda + C + norm(f 0 ))^(DIM ( ′b)))/Ca
have Rineq: R^(DIM ( ′a)) ≤ D ∗ R^(DIM ( ′b)) if R ≥ 1 for R::real
proof −
have Ca ∗ R^(DIM ( ′a)) ≤ 1 + Cb ∗ (lambda ∗ R + C + norm(f 0 ))^(DIM ( ′b))

using M ‹R ≥ 1 › by auto
also have ... ≤ 1 + CB ∗ (lambda ∗ R + C + norm(f 0 ))^(DIM ( ′b))
using ‹CB ≥ Cb› ‹lambda ≥ 1 › ‹R ≥ 1 › ‹C ≥ 0 › by (auto intro!: mult-right-mono)
also have ... ≤ R^(DIM ( ′b)) + CB ∗ (lambda ∗ R + C ∗ R + norm(f 0 ) ∗

R)^(DIM ( ′b))
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using ‹lambda ≥ 1 › ‹R ≥ 1 › ‹C ≥ 0 › ‹CB ≥ 0 › by (auto intro!: mono-intros)
also have ... = (1 + CB ∗ (lambda + C + norm(f 0 ))^(DIM ( ′b))) ∗ R^(DIM ( ′b))

by (auto simp add: algebra-simps power-mult-distrib[symmetric])
finally show ?thesis

using ‹Ca > 0 › unfolding D-def by (auto simp add: divide-simps alge-
bra-simps)

qed
show DIM ( ′a) ≤ DIM ( ′b)
proof (rule ccontr)

assume ¬(DIM ( ′a) ≤ DIM ( ′b))
then obtain n where DIM ( ′a) = DIM ( ′b) + n n > 0

by (metis less-imp-add-positive not-le)
have D ≥ 1 using Rineq[of 1 ] by auto
define R where R = 2 ∗ D
then have R ≥ 1 using ‹D ≥ 1 › by auto
have R^n ∗ R^(DIM ( ′b)) = R^(DIM ( ′a))

unfolding ‹DIM ( ′a) = DIM ( ′b) + n› by (auto simp add: power-add)
also have ... ≤ D ∗ R^(DIM ( ′b)) using Rineq[OF ‹R ≥ 1 ›] by auto
finally have R^n ≤ D using ‹R ≥ 1 › by auto
moreover have 2 ∗ D ≤ R^n unfolding R-def using ‹D ≥ 1 › ‹n > 0 ›
by (metis One-nat-def Suc-leI ‹1 ≤ R› ‹R ≡ 2 ∗ D› less-eq-real-def power-increasing-iff

power-one power-one-right)
ultimately show False using ‹D ≥ 1 › by auto

qed
qed

As a particular case, we deduce that two quasi-isometric Euclidean spaces
have the same dimension.
theorem quasi-isometric-euclidean:
assumes quasi-isometric (UNIV :: ′a::euclidean-space set) (UNIV :: ′b::euclidean-space

set)
shows DIM ( ′a) = DIM ( ′b)

proof −
obtain lambda C and f :: ′a ⇒ ′b where lambda C−quasi-isometry-on UNIV f
using assms unfolding quasi-isometric-def quasi-isometry-between-def by auto

then have ∗: DIM ( ′a) ≤ DIM ( ′b) using quasi-isometry-on-euclidean by auto

have quasi-isometric (UNIV :: ′b::euclidean-space set) (UNIV :: ′a::euclidean-space
set)

using quasi-isometric-equiv-rel(3 )[OF assms] by auto
then obtain lambda C and f :: ′b⇒ ′a where lambda C−quasi-isometry-on UNIV

f
unfolding quasi-isometric-def quasi-isometry-between-def by auto

then have DIM ( ′b) ≤ DIM ( ′a) using quasi-isometry-on-euclidean by auto
then show ?thesis using ∗ by auto

qed

A different (and important) way to prove the above statement would be to
use asymptotic cones. Here, it can be done in an elementary way: start with
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a quasi-isometric map f , and consider a limit (defined with a ultrafilter) of
x 7→ f(nx)/n. This is a map which contracts and expands the distances
by at most λ. In particular, it is a homeomorphism on its image. No such
map exists if the dimension of the target is smaller than the dimension of
the source (invariance of domain theorem, already available in the library).
The above argument using growth is more elementary to write, though.

6.4 Quasi-geodesics

A quasi-geodesic is a quasi-isometric embedding of a real segment into a
metric space. As the embedding need not be continuous, a quasi-geodesic
does not have to be compact, nor connected, which can be a problem. How-
ever, in a geodesic space, it is always possible to deform a quasi-geodesic into
a continuous one (at the price of worsening the quasi-isometry constants).
This is the content of the proposition quasi_geodesic_made_lipschitz
below, which is a variation around Lemma III.H.1.11 in [BH99]. The strat-
egy of the proof is simple: assume that the quasi-geodesic c is defined on
[a, b]. Then, on the points a, a + C/λ, · · · , a +N · C/λ, b, take d equal to
c, where N is chosen so that the distance between the last point and b is in
[C/λ, 2C/λ). In the intervals, take d to be geodesic.
proposition (in geodesic-space) quasi-geodesic-made-lipschitz:

fixes c::real ⇒ ′a
assumes lambda C−quasi-isometry-on {a..b} c dist (c a) (c b) ≥ 2 ∗ C
shows ∃ d. continuous-on {a..b} d ∧ d a = c a ∧ d b = c b

∧ (∀ x∈{a..b}. dist (c x) (d x) ≤ 4 ∗ C )
∧ lambda (4 ∗ C )−quasi-isometry-on {a..b} d
∧ (2 ∗ lambda)−lipschitz-on {a..b} d
∧ hausdorff-distance (c‘{a..b}) (d‘{a..b}) ≤ 2 ∗ C

proof −
consider C = 0 | C > 0 ∧ b ≤ a | C > 0 ∧ a < b ∧ b ≤ a + 2 ∗ C/lambda |

C > 0 ∧ a +2 ∗ C/lambda < b
using quasi-isometry-onD(4 )[OF assms(1 )] by fastforce

then show ?thesis
proof (cases)

If the original function is Lipschitz, we can use it directly.
case 1
have lambda−lipschitz-on {a..b} c
apply (rule lipschitz-onI ) using 1 quasi-isometry-onD[OF assms(1 )] by auto

then have a: (2 ∗ lambda)−lipschitz-on {a..b} c
apply (rule lipschitz-on-mono) using quasi-isometry-onD[OF assms(1 )] assms

by (auto simp add: divide-simps)
then have b: continuous-on {a..b} c

using lipschitz-on-continuous-on by blast
have continuous-on {a..b} c ∧ c a = c a ∧ c b = c b

∧ (∀ x∈{a..b}. dist (c x) (c x) ≤ 4 ∗ C )
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∧ lambda (4 ∗ C )−quasi-isometry-on {a..b} c
∧ (2 ∗ lambda)−lipschitz-on {a..b} c
∧ hausdorff-distance (c‘{a..b}) (c‘{a..b}) ≤ 2 ∗ C

using 1 a b assms(1 ) by auto
then show ?thesis by blast

next

If the original interval is empty, anything will do.
case 2
then have b < a using assms(2 ) less-eq-real-def by auto
then have ∗: {a..b} = {} by auto
have a: (2 ∗ lambda)−lipschitz-on {a..b} c

unfolding ∗ apply (rule lipschitz-intros) using quasi-isometry-onD[OF
assms(1 )] assms by (auto simp add: divide-simps)

then have b: continuous-on {a..b} c
using lipschitz-on-continuous-on by blast

have continuous-on {a..b} c ∧ c a = c a ∧ c b = c b
∧ (∀ x∈{a..b}. dist (c x) (c x) ≤ 4 ∗ C )
∧ lambda (4 ∗ C )−quasi-isometry-on {a..b} c
∧ (2 ∗ lambda)−lipschitz-on {a..b} c
∧ hausdorff-distance (c‘{a..b}) (c‘{a..b}) ≤ 2 ∗ C

using a b quasi-isometry-on-empty assms(1 ) quasi-isometry-onD[OF assms(1 )]
∗ assms by auto

then show ?thesis by blast
next

If the original interval is short, we can use a direct geodesic interpolation
between its endpoints

case 3
then have C : C > 0 lambda ≥ 1 using quasi-isometry-onD[OF assms(1 )] by

auto
have [mono-intros]: 1/lambda ≤ lambda using C by (simp add: divide-simps

mult-ge1-powers(1 ))
have a < b using 3 by simp
have 2 ∗ C ≤ dist (c a) (c b) using assms by auto
also have ... ≤ lambda ∗ dist a b + C

using quasi-isometry-onD[OF assms(1 )] ‹a < b› by auto
also have ... = lambda ∗ (b−a) + C

using ‹a < b› dist-real-def by auto
finally have ∗: C ≤ (b−a) ∗ lambda by (auto simp add: algebra-simps)
define d where d = (λx. geodesic-segment-param {(c a)−−(c b)} (c a) ((dist

(c a) (c b) /(b−a)) ∗ (x−a)))
have dend: d a = c a d b = c b unfolding d-def using ‹a < b› by auto

have Lip: (2 ∗ lambda)−lipschitz-on {a..b} d
proof −
have (1 ∗ (((2 ∗ lambda)) ∗ (1+0 )))−lipschitz-on {a..b} (λx. geodesic-segment-param

{(c a)−−(c b)} (c a) ((dist (c a) (c b) /(b−a)) ∗ (x−a)))
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proof (rule lipschitz-on-compose2 [of - - λx. ((dist (c a) (c b) /(b−a)) ∗
(x−a))], intro lipschitz-intros)

have (λx. dist (c a) (c b) / (b−a) ∗ (x − a)) ‘ {a..b} ⊆ {0 ..dist (c a) (c b)}
apply auto using ‹a < b› by (auto simp add: algebra-simps divide-simps

intro: mult-right-mono)
moreover have 1−lipschitz-on {0 ..dist (c a) (c b)} (geodesic-segment-param

{c a−−c b} (c a))
by (rule isometry-on-lipschitz, simp)

ultimately show 1−lipschitz-on ((λx. dist (c a) (c b) / (b−a) ∗ (x − a))
‘ {a..b}) (geodesic-segment-param {c a−−c b} (c a))

using lipschitz-on-subset by auto

have dist (c a) (c b) ≤ lambda ∗ dist a b + C
apply (rule quasi-isometry-onD(1 )[OF assms(1 )])
using ‹a < b› by auto

also have ... = lambda ∗ (b − a) + C
unfolding dist-real-def using ‹a < b› by auto

also have ... ≤ 2 ∗ lambda ∗ (b−a)
using ∗ by (auto simp add: algebra-simps)

finally show |dist (c a) (c b) / (b − a)| ≤ 2 ∗ lambda
using ‹a < b› by (auto simp add: divide-simps)

qed
then show ?thesis unfolding d-def by auto

qed
have dist-c-d: dist (c x) (d x) ≤ 4 ∗ C if H : x ∈ {a..b} for x
proof −

have (x−a) + (b − x) ≤ 2 ∗ C/lambda
using that 3 by auto

then consider x−a ≤ C/lambda | b − x ≤ C/lambda by linarith
then have ∃ v∈{a,b}. dist x v ≤ C/lambda
proof (cases)

case 1
show ?thesis

apply (rule bexI [of - a]) using 1 H by (auto simp add: dist-real-def )
next

case 2
show ?thesis

apply (rule bexI [of - b]) using 2 H by (auto simp add: dist-real-def )
qed
then obtain v where v: v ∈ {a,b} dist x v ≤ C/lambda by auto
have dist (c x) (d x) ≤ dist (c x) (c v) + dist (c v) (d v) + dist (d v) (d x)

by (intro mono-intros)
also have ... ≤ (lambda ∗ dist x v + C ) + 0 + ((2 ∗ lambda) ∗ dist v x)

apply (intro mono-intros quasi-isometry-onD(1 )[OF assms(1 )] that lips-
chitz-onD[OF Lip])

using v ‹a < b› dend by auto
also have ... ≤ (lambda ∗ (C/lambda) + C ) + 0 + ((2 ∗ lambda) ∗

(C/lambda))
apply (intro mono-intros) using C v by (auto simp add: metric-space-class.dist-commute)
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finally show ?thesis
using C by (auto simp add: algebra-simps divide-simps)

qed

A similar argument shows that the Hausdorff distance between the images
is bounded by 2C.

have hausdorff-distance (c‘{a..b}) (d‘{a..b}) ≤ 2 ∗ C
proof (rule hausdorff-distanceI2 )

show 0 ≤ 2 ∗ C using C by auto
fix z assume z ∈ c‘{a..b}
then obtain x where x: x ∈ {a..b} z = c x by auto
have (x−a) + (b − x) ≤ 2 ∗ C/lambda

using x 3 by auto
then consider x−a ≤ C/lambda | b − x ≤ C/lambda by linarith
then have ∃ v∈{a,b}. dist x v ≤ C/lambda
proof (cases)

case 1
show ?thesis

apply (rule bexI [of - a]) using 1 x by (auto simp add: dist-real-def )
next

case 2
show ?thesis

apply (rule bexI [of - b]) using 2 x by (auto simp add: dist-real-def )
qed
then obtain v where v: v ∈ {a,b} dist x v ≤ C/lambda by auto
have dist z (d v) = dist (c x) (c v) unfolding x(2 ) using v dend by auto
also have ... ≤ lambda ∗ dist x v + C
apply (rule quasi-isometry-onD(1 )[OF assms(1 )]) using v(1 ) x(1 ) by auto

also have ... ≤ lambda ∗ (C/lambda) + C
apply (intro mono-intros) using C v(2 ) by auto

also have ... = 2 ∗ C
using C by (simp add: divide-simps)

finally have ∗: dist z (d v) ≤ 2 ∗ C by simp
show ∃ y∈d ‘ {a..b}. dist z y ≤ 2 ∗ C

apply (rule bexI [of - d v]) using ∗ v(1 ) ‹a < b› by auto
next

fix z assume z ∈ d‘{a..b}
then obtain x where x: x ∈ {a..b} z = d x by auto
have (x−a) + (b − x) ≤ 2 ∗ C/lambda

using x 3 by auto
then consider x−a ≤ C/lambda | b − x ≤ C/lambda by linarith
then have ∃ v∈{a,b}. dist x v ≤ C/lambda
proof (cases)

case 1
show ?thesis

apply (rule bexI [of - a]) using 1 x by (auto simp add: dist-real-def )
next

case 2
show ?thesis
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apply (rule bexI [of - b]) using 2 x by (auto simp add: dist-real-def )
qed
then obtain v where v: v ∈ {a,b} dist x v ≤ C/lambda by auto
have dist z (c v) = dist (d x) (d v) unfolding x(2 ) using v dend by auto
also have ... ≤ 2 ∗ lambda ∗ dist x v

apply (rule lipschitz-onD(1 )[OF Lip]) using v(1 ) x(1 ) by auto
also have ... ≤ 2 ∗ lambda ∗ (C/lambda)

apply (intro mono-intros) using C v(2 ) by auto
also have ... = 2 ∗ C

using C by (simp add: divide-simps)
finally have ∗: dist z (c v) ≤ 2 ∗ C by simp
show ∃ y∈c‘{a..b}. dist z y ≤ 2 ∗ C

apply (rule bexI [of - c v]) using ∗ v(1 ) ‹a < b› by auto
qed
have lambda (4 ∗ C )−quasi-isometry-on {a..b} d
proof

show 1 ≤ lambda using C by auto
show 0 ≤ 4 ∗ C using C by auto
show dist (d x) (d y) ≤ lambda ∗ dist x y + 4 ∗ C if x ∈ {a..b} y ∈ {a..b}

for x y
proof −

have dist (d x) (d y) ≤ 2 ∗ lambda ∗ dist x y
apply (rule lipschitz-onD[OF Lip]) using that by auto

also have ... = lambda ∗ dist x y + lambda ∗ dist x y
by auto

also have ... ≤ lambda ∗ dist x y + lambda ∗ (2 ∗ C/lambda)
apply (intro mono-intros) using 3 that C unfolding dist-real-def by auto

also have ... = lambda ∗ dist x y + 2 ∗ C
using C by (simp add: algebra-simps divide-simps)

finally show ?thesis using C by auto
qed
show 1 / lambda ∗ dist x y − 4 ∗ C ≤ dist (d x) (d y) if x ∈ {a..b} y ∈

{a..b} for x y
proof −

have 1/lambda ∗ dist x y − 4 ∗ C ≤ lambda ∗ dist x y − 2 ∗ C
apply (intro mono-intros) using C by auto

also have ... ≤ lambda ∗ (2 ∗ C/lambda) − 2 ∗ C
apply (intro mono-intros) using that 3 C unfolding dist-real-def by auto

also have ... = 0
using C by (auto simp add: algebra-simps divide-simps)

also have ... ≤ dist (d x) (d y) by auto
finally show ?thesis by simp

qed
qed

then have continuous-on {a..b} d ∧ d a = c a ∧ d b = c b
∧ lambda (4 ∗ C )−quasi-isometry-on {a..b} d
∧ (∀ x∈{a..b}. dist (c x) (d x) ≤ 4 ∗C )
∧ (2∗lambda)−lipschitz-on {a..b} d
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∧ hausdorff-distance (c‘{a..b}) (d‘{a..b}) ≤ 2 ∗ C
using dist-c-d ‹d a = c a› ‹d b = c b› ‹(2∗lambda)−lipschitz-on {a..b} d›

‹hausdorff-distance (c‘{a..b}) (d‘{a..b}) ≤ 2 ∗ C › lipschitz-on-continuous-on
by auto

then show ?thesis by auto
next

Now, for the only nontrivial case, we use geodesic interpolation between the
points a, a + C/λ, · · · , a + N · C/λ, b′, b where N is chosen so that the
distance between a + NC/λ and b belongs to [2C/λ, 3C/λ), and b′ is the
middle of this interval. This gives a decomposition into intervals of length
at most 3/2 · C/λ.

case 4
then have C : C > 0 lambda ≥ 1 using quasi-isometry-onD[OF assms(1 )] by

auto
have a < b using 4 C by (smt divide-pos-pos)

have [mono-intros]: 1/lambda ≤ lambda using C by (simp add: divide-simps
mult-ge1-powers(1 ))

define N where N = floor((b−a)/(C/lambda)) − 2
have N : N ≤ (b−a)/(C/lambda)−2 (b−a)/(C/lambda) ≤ N + (3 ::real)

unfolding N-def by linarith+

have 2 < (b−a)/(C/lambda)
using C 4 by (auto simp add: divide-simps algebra-simps)

then have N0 : 0 ≤ N unfolding N-def by auto
define p where p = (λt::int. a + (C/lambda) ∗ t)
have pmono: p i ≤ p j if i ≤ j for i j
unfolding p-def using that C by (auto simp add: algebra-simps divide-simps)

have pmono ′: p i < p j if i < j for i j
unfolding p-def using that C by (auto simp add: algebra-simps divide-simps)

have p (N+1 ) ≤ b
unfolding p-def using C N by (auto simp add: algebra-simps divide-simps)

then have pb: p i ≤ b if i ∈ {0 ..N} for i
using that pmono by (meson atLeastAtMost-iff linear not-le order-trans

zle-add1-eq-le)
have bpN : b − p N ∈ {2 ∗ C/lambda .. 3 ∗ C/lambda}

unfolding p-def using C N apply (auto simp add: divide-simps)
by (auto simp add: algebra-simps)

have p N < b using pmono ′[of N N+1 ] ‹p (N+1 ) ≤ b› by auto
define b ′ where b ′ = (b + p N )/2
have b ′: p N < b ′ b ′ < b using ‹p N < b› unfolding b ′-def by auto
have pb ′: p i ≤ b ′ if i ∈ {0 ..N} for i

using pmono[of i N ] b ′ that by auto

Introduce the set A along which one will discretize.
define A where A = p‘{0 ..N} ∪ {b ′, b}
have finite A unfolding A-def by auto
have b ∈ A unfolding A-def by auto
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have p 0 ∈ A unfolding A-def using ‹0 ≤ N › by auto
moreover have pa: p 0 = a unfolding p-def by auto
ultimately have a ∈ A by auto
have A ⊆ {a..b}

unfolding A-def using ‹a < b› b ′ pa pb pmono N0 by fastforce
then have b ′ ∈ {a..<b} unfolding A-def using ‹b ′ < b› by auto

have A : finite A A ⊆ {a..b} a ∈ A b ∈ A a < b by fact+

have nx: next-in A x = x + C/lambda if x ∈ A x 6= b x 6= b ′ x 6= p N for x
proof (rule next-inI [OF A])

show x ∈ {a..<b} using ‹x ∈ A› ‹A ⊆ {a..b}› ‹x 6= b› by auto
obtain i where i: x = p i i ∈ {0 ..N}

using ‹x ∈ A› ‹x 6= b› ‹x 6= b ′› unfolding A-def by auto
have ∗: p (i+1 ) = x + C/lambda unfolding i(1 ) p-def by (auto simp add:

algebra-simps)
have i 6= N using that i by auto
then have i + 1 ∈ {0 ..N} using ‹i ∈ {0 ..N}› by auto
then have p (i+1 ) ∈ A unfolding A-def by fastforce
then show x + C/lambda ∈ A unfolding ∗ by auto
show x < x + C / lambda using C by auto
show {x<..<x + C / lambda} ∩ A = {}
proof (auto)

fix y assume y: y ∈ A x < y y < x + C/lambda
consider y = b | y = b ′ | ∃ j≤i. y = p j | ∃ j>i. y = p j

using ‹y ∈ A› not-less unfolding A-def by auto
then show False
proof (cases)

case 1
have x + C/lambda ≤ b unfolding ∗[symmetric] using ‹i + 1 ∈ {0 ..N}›

pb by auto
then show False using y(3 ) unfolding 1 i(1 ) by auto

next
case 2

have x + C/lambda ≤ b ′ unfolding ∗[symmetric] using ‹i + 1 ∈ {0 ..N}›
pb ′ by auto

then show False using y(3 ) unfolding 2 i(1 ) by auto
next

case 3
then obtain j where j: j ≤ i y = p j by auto
have y ≤ x unfolding j(2 ) i(1 ) using pmono[OF ‹j ≤ i›] by simp
then show False using ‹x < y› by auto

next
case 4
then obtain j where j: j > i y = p j by auto
then have i+1 ≤ j by auto
have x + C/lambda ≤ y unfolding j(2 ) ∗[symmetric] using pmono[OF

‹i+1 ≤ j›] by auto
then show False using ‹y < x + C/lambda› by auto
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qed
qed

qed
have npN : next-in A (p N ) = b ′

proof (rule next-inI [OF A])
show p N ∈ {a..<b} using pa pmono ‹0 ≤ N › ‹p N < b› by auto
show p N < b ′ by fact
show b ′ ∈ A unfolding A-def by auto
show {p N<..<b ′} ∩ A = {}

unfolding A-def using pmono b ′ by force
qed
have nb ′: next-in A (b ′) = b
proof (rule next-inI [OF A])

show b ′ ∈ {a..<b} using A-def A ‹b ′ < b› by auto
show b ′ < b by fact
show b ∈ A by fact
show {b ′<..<b} ∩ A = {}

unfolding A-def using pmono b ′ by force
qed
have gap: next-in A x − x ∈ {C/lambda.. 3/2 ∗ C/lambda} if x ∈ A − {b}

for x
proof (cases x = p N ∨ x = b ′)

case True
then show ?thesis using npN nb ′ bpN b ′-def by force

next
case False
have ∗: next-in A x = x + C/lambda

apply (rule nx) using that False by auto
show ?thesis unfolding ∗ using C by (auto simp add: algebra-simps di-

vide-simps)
qed

We can now define the function d, by geodesic interpolation between points
in A.

define d where d x = (if x ∈ A then c x
else geodesic-segment-param {c (prev-in A x) −− c (next-in A x)} (c (prev-in

A x))
((x − prev-in A x)/(next-in A x − prev-in A x) ∗ dist (c(prev-in A x))

(c(next-in A x)))) for x
have d a = c a d b = c b unfolding d-def using ‹a ∈ A› ‹b ∈ A› by auto

To prove the Lipschitz continuity, we argue that d is Lipschitz on finitely
many intervals, that cover the interval [a, b], the intervals between points in
A. There is a formula for d on them (the nontrivial point is that the above
formulas for d match at the boundaries).

have ∗: d x = geodesic-segment-param {(c u)−−(c v)} (c u) ((dist (c u) (c v)
/(v−u)) ∗ (x−u))

if u ∈ A − {b} v = next-in A u x ∈ {u..v} for x u v
proof −
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have u ∈ {a..<b} using that ‹A ⊆ {a..b}› by fastforce
have H : u ∈ A v ∈ A u < v A ∩ {u<..<v} = {} using that next-in-basics[OF

A ‹u ∈ {a..<b}›] by auto
consider x = u | x = v | x ∈ {u<..<v} using ‹x ∈ {u..v}› by fastforce
then show ?thesis
proof (cases)

case 1
then have d x = c u unfolding d-def using ‹u ∈ A− {b}› ‹A ⊆ {a..b}›

by auto
then show ?thesis unfolding 1 by auto

next
case 2
then have d x = c v unfolding d-def using ‹v ∈ A› ‹A ⊆ {a..b}› by auto
then show ?thesis unfolding 2 using ‹u < v› by auto

next
case 3
have ∗: prev-in A x = u

apply (rule prev-inI [OF A]) using 3 H ‹A ⊆ {a..b}› by auto
have ∗∗: next-in A x = v

apply (rule next-inI [OF A]) using 3 H ‹A ⊆ {a..b}› by auto
show ?thesis unfolding d-def ∗ ∗∗ using 3 H ‹A ∩ {u<..<v} = {}› ‹A ⊆

{a..b}›
by (auto simp add: algebra-simps)

qed
qed

From the above formula, we deduce that d is Lipschitz on those intervals.
have lip0 : (lambda + C / (next-in A u − u))−lipschitz-on {u..next-in A u} d

if u ∈ A − {b} for u
proof −

define v where v = next-in A u
have u ∈ {a..<b} using that ‹A ⊆ {a..b}› by fastforce
have u ∈ A v ∈ A u < v A ∩ {u<..<v} = {}

unfolding v-def using that next-in-basics[OF A ‹u ∈ {a..<b}›] by auto

have (1 ∗ (((lambda + C / (next-in A u − u))) ∗ (1+0 )))−lipschitz-on {u..v}
(λx. geodesic-segment-param {(c u)−−(c v)} (c u) ((dist (c u) (c v) /(v−u)) ∗
(x−u)))

proof (rule lipschitz-on-compose2 [of - - λx. ((dist (c u) (c v) /(v−u)) ∗
(x−u))], intro lipschitz-intros)

have (λx. dist (c u) (c v) / (v − u) ∗ (x − u)) ‘ {u..v} ⊆ {0 ..dist (c u) (c
v)}

apply auto using ‹u < v› by (auto simp add: algebra-simps divide-simps
intro: mult-right-mono)

moreover have 1−lipschitz-on {0 ..dist (c u) (c v)} (geodesic-segment-param
{c u−−c v} (c u))

by (rule isometry-on-lipschitz, simp)
ultimately show 1−lipschitz-on ((λx. dist (c u) (c v) / (v − u) ∗ (x −

u)) ‘ {u..v}) (geodesic-segment-param {c u−−c v} (c u))
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using lipschitz-on-subset by auto

have dist (c u) (c v) ≤ lambda ∗ dist u v + C
apply (rule quasi-isometry-onD(1 )[OF assms(1 )])
using ‹u ∈ A› ‹v ∈ A› ‹A ⊆ {a..b}› by auto

also have ... = lambda ∗ (v − u) + C
unfolding dist-real-def using ‹u < v› by auto

finally show |dist (c u) (c v) / (v − u)| ≤ lambda + C / (next-in A u − u)
using ‹u < v› unfolding v-def by (auto simp add: divide-simps)

qed
then show ?thesis

using ∗[OF ‹u ∈ A −{b}› ‹v = next-in A u›] unfolding v-def
by (auto intro: lipschitz-on-transform)

qed
have lip: (2 ∗ lambda)−lipschitz-on {u..next-in A u} d if u ∈ A − {b} for u
proof (rule lipschitz-on-mono[OF lip0 [OF that]], auto)

define v where v = next-in A u
have u ∈ {a..<b} using that ‹A ⊆ {a..b}› by fastforce
have u ∈ A v ∈ A u < v A ∩ {u<..<v} = {}

unfolding v-def using that next-in-basics[OF A ‹u ∈ {a..<b}›] by auto
have Duv: v − u ∈ {C/lambda .. 2 ∗ C/lambda}

unfolding v-def using gap[OF ‹u ∈ A − {b}›] by simp
then show C / (next-in A u − u) ≤ lambda

using ‹u < v› C unfolding v-def by (auto simp add: algebra-simps
divide-simps)

qed

The Lipschitz continuity of d now follows from its Lipschitz continuity on
each subinterval in I.

have Lip: (2 ∗ lambda)−lipschitz-on {a..b} d
apply (rule lipschitz-on-closed-Union[of {{u..next-in A u} |u. u ∈ A − {b}}

- λx. x])
using lip ‹finite A› C intervals-decomposition[OF A] using assms by auto

then have continuous-on {a..b} d
using lipschitz-on-continuous-on by auto

d has good upper controls on each basic interval.
have QI0 : dist (d x) (d y) ≤ lambda ∗ dist x y + C

if H : u ∈ A − {b} x ∈ {u..next-in A u} y ∈ {u..next-in A u} for u x y
proof −

have u < next-in A u using H (1 ) A next-in-basics(2 )[OF A] by auto
moreover have dist x y ≤ next-in A u − u unfolding dist-real-def using H

by auto
ultimately have ∗: dist x y / (next-in A u − u) ≤ 1 by (simp add: di-

vide-simps)
have dist (d x) (d y) ≤ (lambda + C / (next-in A u − u)) ∗ dist x y

by (rule lipschitz-onD[OF lip0 [OF H (1 )] H (2 ) H (3 )])
also have ... = lambda ∗ dist x y + C ∗ (dist x y / (next-in A u − u))

by (simp add: algebra-simps)
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also have ... ≤ lambda ∗ dist x y + C ∗ 1
apply (intro mono-intros) using C ∗ by auto

finally show ?thesis by simp
qed

We can now show that c and d are pointwise close. This follows from the
fact that they coincide on A and are well controlled in between (for c, this
is a consequence of the choice of A. For d, it follows from the fact that it is
geodesic in the intervals).

have dist-c-d: dist (c x) (d x) ≤ 4 ∗ C if x ∈ {a..b} for x
proof −

obtain u where u: u ∈ A − {b} x ∈ {u..next-in A u}
using ‹x ∈ {a..b}› intervals-decomposition[OF A] by blast

have (x−u) + (next-in A u − x) ≤ 2 ∗ C/lambda
using gap[OF u(1 )] by auto

then consider x−u ≤ C/lambda | next-in A u − x ≤ C/lambda by linarith
then have ∃ v∈A. dist x v ≤ C/lambda
proof (cases)

case 1
show ?thesis

apply (rule bexI [of - u]) using 1 u by (auto simp add: dist-real-def )
next

case 2
show ?thesis

apply (rule bexI [of - next-in A u]) using 2 u A(2 )
by (auto simp add: dist-real-def intro!:next-in-basics[OF A])

qed
then obtain v where v: v ∈ A dist x v ≤ C/lambda by auto
have dist (c x) (d x) ≤ dist (c x) (c v) + dist (c v) (d v) + dist (d v) (d x)

by (intro mono-intros)
also have ... ≤ (lambda ∗ dist x v + C ) + 0 + ((2 ∗ lambda) ∗ dist v x)

apply (intro mono-intros quasi-isometry-onD(1 )[OF assms(1 )] that lips-
chitz-onD[OF Lip])

using A(2 ) ‹v ∈ A› apply blast
using ‹v ∈ A› d-def apply auto[1 ]
using A(2 ) ‹v ∈ A› by blast
also have ... ≤ (lambda ∗ (C/lambda) + C ) + 0 + ((2 ∗ lambda) ∗

(C/lambda))
apply (intro mono-intros) using v(2 ) C by (auto simp add: metric-space-class.dist-commute)
finally show ?thesis

using C by (auto simp add: algebra-simps divide-simps)
qed

A similar argument shows that the Hausdorff distance between the images
is bounded by 2C.

have hausdorff-distance (c‘{a..b}) (d‘{a..b}) ≤ 2 ∗ C
proof (rule hausdorff-distanceI2 )

show 0 ≤ 2 ∗ C using C by auto
fix z assume z ∈ c‘{a..b}
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then obtain x where x: x ∈ {a..b} z = c x by auto
then obtain u where u: u ∈ A − {b} x ∈ {u..next-in A u}

using intervals-decomposition[OF A] by blast
have (x−u) + (next-in A u − x) ≤ 2 ∗ C/lambda

using gap[OF u(1 )] by auto
then consider x−u ≤ C/lambda | next-in A u − x ≤ C/lambda by linarith
then have ∃ v∈A. dist x v ≤ C/lambda
proof (cases)

case 1
show ?thesis

apply (rule bexI [of - u]) using 1 u by (auto simp add: dist-real-def )
next

case 2
show ?thesis

apply (rule bexI [of - next-in A u]) using 2 u A(2 )
by (auto simp add: dist-real-def intro!:next-in-basics[OF A])

qed
then obtain v where v: v ∈ A dist x v ≤ C/lambda by auto
have dist z (d v) = dist (c x) (c v) unfolding x(2 ) d-def using ‹v ∈ A› by

auto
also have ... ≤ lambda ∗ dist x v + C

apply (rule quasi-isometry-onD(1 )[OF assms(1 )]) using v(1 ) A(2 ) x(1 )
by auto

also have ... ≤ lambda ∗ (C/lambda) + C
apply (intro mono-intros) using C v(2 ) by auto

also have ... = 2 ∗ C
using C by (simp add: divide-simps)

finally have ∗: dist z (d v) ≤ 2 ∗ C by simp
show ∃ y∈d ‘ {a..b}. dist z y ≤ 2 ∗ C

apply (rule bexI [of - d v]) using ∗ v(1 ) A(2 ) by auto
next

fix z assume z ∈ d‘{a..b}
then obtain x where x: x ∈ {a..b} z = d x by auto
then obtain u where u: u ∈ A − {b} x ∈ {u..next-in A u}

using intervals-decomposition[OF A] by blast
have (x−u) + (next-in A u − x) ≤ 2 ∗ C/lambda

using gap[OF u(1 )] by auto
then consider x−u ≤ C/lambda | next-in A u − x ≤ C/lambda by linarith
then have ∃ v∈A. dist x v ≤ C/lambda
proof (cases)

case 1
show ?thesis

apply (rule bexI [of - u]) using 1 u by (auto simp add: dist-real-def )
next

case 2
show ?thesis

apply (rule bexI [of - next-in A u]) using 2 u A(2 )
by (auto simp add: dist-real-def intro!:next-in-basics[OF A])

qed
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then obtain v where v: v ∈ A dist x v ≤ C/lambda by auto
have dist z (c v) = dist (d x) (d v) unfolding x(2 ) d-def using ‹v ∈ A› by

auto
also have ... ≤ 2 ∗ lambda ∗ dist x v

apply (rule lipschitz-onD(1 )[OF Lip]) using v(1 ) A(2 ) x(1 ) by auto
also have ... ≤ 2 ∗ lambda ∗ (C/lambda)

apply (intro mono-intros) using C v(2 ) by auto
also have ... = 2 ∗ C

using C by (simp add: divide-simps)
finally have ∗: dist z (c v) ≤ 2 ∗ C by simp
show ∃ y∈c‘{a..b}. dist z y ≤ 2 ∗ C

apply (rule bexI [of - c v]) using ∗ v(1 ) A(2 ) by auto
qed

From the above controls, we check that d is a quasi-isometry, with explicit
constants.

have lambda (4 ∗ C )−quasi-isometry-on {a..b} d
proof

show 1 ≤ lambda using C by auto
show 0 ≤ 4 ∗ C using C by auto
have I : dist (d x) (d y) ≤ lambda ∗ dist x y + 4 ∗ C if H : x ∈ {a..b} y ∈

{a..b} x < y for x y
proof −

obtain u where u: u ∈ A − {b} x ∈ {u..next-in A u}
using intervals-decomposition[OF A] H (1 ) by force

have u ∈ {a..<b} using u(1 ) A by auto
have next-in A u ∈ A using next-in-basics(1 )[OF A ‹u ∈ {a..<b}›] by auto
obtain v where v: v ∈ A − {b} y ∈ {v..next-in A v}

using intervals-decomposition[OF A] H (2 ) by force
have v ∈ {a..<b} using v(1 ) A by auto
have u < next-in A v using H (3 ) u(2 ) v(2 ) by auto
then have u ≤ v

using u(1 ) next-in-basics(3 )[OF A, OF ‹v ∈ {a..<b}›] by auto
show ?thesis
proof (cases u = v)

case True
have dist (d x) (d y) ≤ lambda ∗ dist x y + C

apply (rule QI0 [OF u]) using v(2 ) True by auto
also have ... ≤ lambda ∗ dist x y + 4 ∗ C

using C by auto
finally show ?thesis by simp

next
case False
then have u < v using ‹u ≤ v› by auto
then have next-in A u ≤ v using v(1 ) next-in-basics(3 )[OF A, OF ‹u ∈

{a..<b}›] by auto
have d1 : d (next-in A u) = c (next-in A u)

using ‹next-in A u ∈ A› unfolding d-def by auto
have d2 : d v = c v
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using v(1 ) unfolding d-def by auto
have dist (d x) (d y) ≤ dist (d x) (d (next-in A u)) + dist (d (next-in A

u)) (d v) + dist (d v) (d y)
by (intro mono-intros)
also have ... ≤ (lambda ∗ dist x (next-in A u) + C ) + (lambda ∗ dist

(next-in A u) v + C )
+ (lambda ∗ dist v y + C )

apply (intro mono-intros)
apply (rule QI0 [OF u]) using u(2 ) apply simp

apply (simp add: d1 d2 ) apply (rule quasi-isometry-onD(1 )[OF
assms(1 )])

using ‹next-in A u ∈ A› ‹A ⊆ {a..b}› apply auto[1 ]
using ‹v ∈ A − {b}› ‹A ⊆ {a..b}› apply auto[1 ]
apply (rule QI0 [OF v(1 )]) using v(2 ) by auto

also have ... = lambda ∗ dist x y + 3 ∗ C
unfolding dist-real-def
using ‹x ∈ {u..next-in A u}› ‹y ∈ {v..next-in A v}› ‹x < y› ‹next-in A

u ≤ v›
by (auto simp add: algebra-simps)

finally show ?thesis using C by simp
qed

qed
show dist (d x) (d y) ≤ lambda ∗ dist x y + 4 ∗ C if H : x ∈ {a..b} y ∈

{a..b} for x y
proof −

consider x < y | x = y | x > y by linarith
then show ?thesis
proof (cases)

case 1
then show ?thesis using I [OF H (1 ) H (2 ) 1 ] by simp

next
case 2
show ?thesis unfolding 2 using C by auto

next
case 3

show ?thesis using I [OF H (2 ) H (1 ) 3 ] by (simp add: metric-space-class.dist-commute)
qed

qed

The lower bound is more tricky. We separate the case where x and y are
in the same interval, when they are in different nearby intervals, and when
they are in different separated intervals. The latter case is more difficult. In
this case, one of the intervals has length C/λ and the other one has length at
most 3/2 ·C/λ. There, we approximate dist(dx)(dy) by dist(du′)(dv′) where
u′ and v′ are suitable endpoints of the intervals containing respectively x and
y. We use the inner endpoint (between x and y) if the distance between x
or y and this point is less than 2/5 of the length of the interval, and the
outer endpoint otherwise. The reason is that, with the outer endpoints, we
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get right away an upper bound for the distance between x and y, while this
is not the case with the inner endpoints where there is an additional error.
The equilibrium is reached at proportion 2/5.

have J : dist (d x) (d y) ≥ (1/lambda) ∗ dist x y − 4 ∗ C if H : x ∈ {a..b}
y ∈ {a..b} x < y for x y

proof −
obtain u where u: u ∈ A − {b} x ∈ {u..next-in A u}

using intervals-decomposition[OF A] H (1 ) by force
have u ∈ {a..<b} using u(1 ) A by auto

have next-in A u ∈ A using next-in-basics(1 )[OF A ‹u ∈ {a..<b}›] by auto
obtain v where v: v ∈ A − {b} y ∈ {v..next-in A v}

using intervals-decomposition[OF A] H (2 ) by force
have v ∈ {a..<b} using v(1 ) A by auto
have next-in A v ∈ A using next-in-basics(1 )[OF A ‹v ∈ {a..<b}›] by auto
have u < next-in A v using H (3 ) u(2 ) v(2 ) by auto
then have u ≤ v

using u(1 ) next-in-basics(3 )[OF A, OF ‹v ∈ {a..<b}›] by auto
consider v = u | v = next-in A u | v 6= u ∧ v 6= next-in A u by auto
then show ?thesis
proof (cases)

case 1
have (1/lambda) ∗ dist x y − 4 ∗ C ≤ lambda ∗ dist x y − 4 ∗ C

apply (intro mono-intros) by auto
also have ... ≤ lambda ∗ (3/2 ∗ C/lambda) − 3/2 ∗ C

apply (intro mono-intros)
using u(2 ) v(2 ) unfolding 1 using C gap[OF u(1 )] dist-real-def ‹x <

y› by auto
also have ... = 0

using C by auto
also have ... ≤ dist (d x) (d y)

by auto
finally show ?thesis by simp

next
case 2
have dist x y ≤ dist x (next-in A u) + dist v y

unfolding 2 by (intro mono-intros)
also have ... ≤ 3/2 ∗ C/lambda + 3/2 ∗ C/lambda

apply (intro mono-intros)
unfolding dist-real-def using u(2 ) v(2 ) gap[OF u(1 )] gap[OF v(1 )] by

auto
finally have ∗: dist x y ≤ 3 ∗ C/lambda by auto
have (1/lambda) ∗ dist x y − 4 ∗ C ≤ lambda ∗ dist x y − 4 ∗ C

apply (intro mono-intros) by auto
also have ... ≤ lambda ∗ (3 ∗ C/lambda) − 3 ∗ C

apply (intro mono-intros)
using ∗ C by auto

also have ... = 0
using C by auto

also have ... ≤ dist (d x) (d y)
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by auto
finally show ?thesis by simp

next
case 3
then have u < v using ‹u ≤ v› by auto
then have ∗: next-in A u < v using v(1 ) next-in-basics(3 )[OF A ‹u ∈

{a..<b}›] 3 by auto
have nu: next-in A u = u + C/lambda
proof (rule nx)

show u ∈ A using u(1 ) by auto
show u 6= b using u(1 ) by auto
show u 6= b ′

proof
assume H : u = b ′

have b < v using ∗ unfolding H nb ′ by simp
then show False using ‹v ∈ {a..<b}› by auto

qed
show u 6= p N
proof

assume H : u = p N
have b ′ < v using ∗ unfolding H npN by simp

then have next-in A b ′ ≤ v using next-in-basics(3 )[OF A ‹b ′ ∈
{a..<b}›] v by force

then show False unfolding nb ′ using ‹v ∈ {a..<b}› by auto
qed

qed
have nv: next-in A v ≤ v + 3/2 ∗ C/lambda using gap[OF v(1 )] by auto

have d: d u = c u d (next-in A u) = c (next-in A u) d v = c v d (next-in
A v) = c (next-in A v)

using ‹u ∈ A − {b}› ‹next-in A u ∈ A› ‹v ∈ A − {b}› ‹next-in A v ∈
A› unfolding d-def by auto

The interval containing x has length C/λ, while the interval containing y
has length at most ≤ 3/2C/λ. Therefore, x is at proportion 2/5 of the inner
point if x > u + (3/5)C/λ, and y is at proportion 2/5 of the inner point if
y < v + (2/5) · 3/2 · C/λ = v + (3/5)C/λ.

consider x ≤ u + (3/5 ) ∗ C/lambda ∧ y ≤ v + (3/5 ) ∗ C/lambda
| x ≥ u + (3/5 ) ∗ C/lambda ∧ y ≤ v + (3/5 ) ∗ C/lambda
| x ≤ u + (3/5 ) ∗ C/lambda ∧ y ≥ v + (3/5 ) ∗ C/lambda
| x ≥ u + (3/5 ) ∗ C/lambda ∧ y ≥ v + (3/5 ) ∗ C/lambda

by linarith
then show ?thesis
proof (cases)

case 1
have (1/lambda) ∗ dist u v − C ≤ dist (c u) (c v)

apply (rule quasi-isometry-onD(2 )[OF assms(1 )])
using ‹u ∈ A − {b}› ‹v ∈ A − {b}› ‹A ⊆ {a..b}› by auto

also have ... = dist (d u) (d v)
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using d by auto
also have ... ≤ dist (d u) (d x) + dist (d x) (d y) + dist (d y) (d v)

by (intro mono-intros)
also have ... ≤ (2 ∗ lambda ∗ dist u x) + dist (d x) (d y) + (2 ∗ lambda

∗ dist y v)
apply (intro mono-intros)
apply (rule lipschitz-onD[OF lip[OF u(1 )]]) using u(2 ) apply auto[1 ]

using u(2 ) apply auto[1 ]
apply (rule lipschitz-onD[OF lip[OF v(1 )]]) using v(2 ) by auto

also have ... ≤ (2 ∗ lambda ∗ (3/5 ∗ C/lambda)) + dist (d x) (d y) +
(2 ∗ lambda ∗ (3/5 ∗ C/lambda))

apply (intro mono-intros)
unfolding dist-real-def using 1 u v C by auto

also have ... = 12/5 ∗ C + dist (d x) (d y)
using C by (auto simp add: algebra-simps divide-simps)

finally have ∗: (1/lambda) ∗ dist u v ≤ dist (d x) (d y) + 17/5 ∗ C by
auto

have (1/lambda) ∗ dist x y ≤ (1/lambda) ∗ (dist u v + dist v y)
apply (intro mono-intros)
unfolding dist-real-def using C u(2 ) v(2 ) ‹x < y› by auto

also have ... ≤ (1/lambda) ∗ (dist u v + 3/5 ∗ C/lambda)
apply (intro mono-intros)
unfolding dist-real-def using 1 v(2 ) C by auto

also have ... = (1/lambda) ∗ dist u v + 3/5 ∗ C ∗ (1/(lambda ∗ lambda))
using C by (auto simp add: algebra-simps divide-simps)

also have ... ≤ (1/lambda) ∗ dist u v + 3/5 ∗ C ∗ 1
apply (intro mono-intros)

using C by (auto simp add: divide-simps algebra-simps mult-ge1-powers(1 ))
also have ... ≤ (dist (d x) (d y) + 17/5 ∗ C ) + 3/5 ∗ C ∗ 1

using ∗ by auto
finally show ?thesis by auto

next
case 2
have (1/lambda) ∗ dist (next-in A u) v − C ≤ dist (c (next-in A u)) (c

v)
apply (rule quasi-isometry-onD(2 )[OF assms(1 )])
using ‹next-in A u ∈ A› ‹v ∈ A − {b}› ‹A ⊆ {a..b}› by auto

also have ... = dist (d (next-in A u)) (d v)
using d by auto

also have ... ≤ dist (d (next-in A u)) (d x) + dist (d x) (d y) + dist (d
y) (d v)

by (intro mono-intros)
also have ... ≤ (2 ∗ lambda ∗ dist (next-in A u) x) + dist (d x) (d y) +

(2 ∗ lambda ∗ dist y v)
apply (intro mono-intros)
apply (rule lipschitz-onD[OF lip[OF u(1 )]]) using u(2 ) apply auto[1 ]

using u(2 ) apply auto[1 ]
apply (rule lipschitz-onD[OF lip[OF v(1 )]]) using v(2 ) by auto
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also have ... ≤ (2 ∗ lambda ∗ (2/5 ∗ C/lambda)) + dist (d x) (d y) +
(2 ∗ lambda ∗ (3/5 ∗ C/lambda))

apply (intro mono-intros)
unfolding dist-real-def using 2 u v C nu by auto

also have ... = 2 ∗ C + dist (d x) (d y)
using C by (auto simp add: algebra-simps divide-simps)

finally have ∗: (1/lambda) ∗ dist (next-in A u) v ≤ dist (d x) (d y) +
3 ∗ C by auto

have (1/lambda) ∗ dist x y ≤ (1/lambda) ∗ (dist x (next-in A u) + dist
(next-in A u) v + dist v y)

apply (intro mono-intros)
unfolding dist-real-def using C u(2 ) v(2 ) ‹x < y› by auto

also have ... ≤ (1/lambda) ∗ ((2/5 ∗ C/lambda) + dist (next-in A u) v
+ (3/5 ∗ C/lambda))

apply (intro mono-intros)
unfolding dist-real-def using 2 u(2 ) v(2 ) C nu by auto

also have ... = (1/lambda) ∗ dist (next-in A u) v + C ∗ (1/(lambda ∗
lambda))

using C by (auto simp add: algebra-simps divide-simps)
also have ... ≤ (1/lambda) ∗ dist (next-in A u) v + C ∗ 1

apply (intro mono-intros)
using C by (auto simp add: divide-simps algebra-simps mult-ge1-powers(1 ))

also have ... ≤ (dist (d x) (d y) + 3 ∗ C ) + C ∗ 1
using ∗ by auto

finally show ?thesis by auto
next

case 3
have (1/lambda) ∗ dist u (next-in A v) − C ≤ dist (c u) (c (next-in A

v))
apply (rule quasi-isometry-onD(2 )[OF assms(1 )])
using ‹u ∈ A − {b}› ‹next-in A v ∈ A› ‹A ⊆ {a..b}› by auto

also have ... = dist (d u) (d (next-in A v))
using d by auto

also have ... ≤ dist (d u) (d x) + dist (d x) (d y) + dist (d y) (d (next-in
A v))

by (intro mono-intros)
also have ... ≤ (2 ∗ lambda ∗ dist u x) + dist (d x) (d y) + (2 ∗ lambda

∗ dist y (next-in A v))
apply (intro mono-intros)
apply (rule lipschitz-onD[OF lip[OF u(1 )]]) using u(2 ) apply auto[1 ]

using u(2 ) apply auto[1 ]
apply (rule lipschitz-onD[OF lip[OF v(1 )]]) using v(2 ) by auto

also have ... ≤ (2 ∗ lambda ∗ (3/5 ∗ C/lambda)) + dist (d x) (d y) +
(2 ∗ lambda ∗ (9/10 ∗ C/lambda))

apply (intro mono-intros)
unfolding dist-real-def using 3 u v C nv by auto

also have ... = 3 ∗ C + dist (d x) (d y)
using C by (auto simp add: algebra-simps divide-simps)
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finally have ∗: (1/lambda) ∗ dist u (next-in A v) ≤ dist (d x) (d y) +
4 ∗ C by auto

have (1/lambda) ∗ dist x y ≤ (1/lambda) ∗ dist u (next-in A v)
apply (intro mono-intros)
unfolding dist-real-def using C u(2 ) v(2 ) ‹x < y› by auto

also have ... ≤ dist (d x) (d y) + 4 ∗ C
using ∗ by auto

finally show ?thesis by auto
next

case 4
have (1/lambda) ∗ dist (next-in A u) (next-in A v) − C ≤ dist (c

(next-in A u)) (c (next-in A v))
apply (rule quasi-isometry-onD(2 )[OF assms(1 )])
using ‹next-in A u ∈ A› ‹next-in A v ∈ A› ‹A ⊆ {a..b}› by auto

also have ... = dist (d (next-in A u)) (d (next-in A v))
using d by auto

also have ... ≤ dist (d (next-in A u)) (d x) + dist (d x) (d y) + dist (d
y) (d (next-in A v))

by (intro mono-intros)
also have ... ≤ (2 ∗ lambda ∗ dist (next-in A u) x) + dist (d x) (d y) +

(2 ∗ lambda ∗ dist y (next-in A v))
apply (intro mono-intros)
apply (rule lipschitz-onD[OF lip[OF u(1 )]]) using u(2 ) apply auto[1 ]

using u(2 ) apply auto[1 ]
apply (rule lipschitz-onD[OF lip[OF v(1 )]]) using v(2 ) by auto

also have ... ≤ (2 ∗ lambda ∗ (2/5 ∗ C/lambda)) + dist (d x) (d y) +
(2 ∗ lambda ∗ (9/10 ∗ C/lambda))

apply (intro mono-intros)
unfolding dist-real-def using 4 u v C nu nv by auto

also have ... = 13/5 ∗ C + dist (d x) (d y)
using C by (auto simp add: algebra-simps divide-simps)

finally have ∗: (1/lambda) ∗ dist (next-in A u) (next-in A v) ≤ dist (d
x) (d y) + 18/5 ∗ C by auto

have (1/lambda) ∗ dist x y ≤ (1/lambda) ∗ (dist x (next-in A u) + dist
(next-in A u) (next-in A v))

apply (intro mono-intros)
unfolding dist-real-def using C u(2 ) v(2 ) ‹x < y› by auto

also have ... ≤ (1/lambda) ∗ ((2/5 ∗C/lambda) + dist (next-in A u)
(next-in A v))

apply (intro mono-intros)
unfolding dist-real-def using 4 u(2 ) v(2 ) C nu by auto

also have ... = (1/lambda) ∗ dist (next-in A u) (next-in A v) + 2/5 ∗
C ∗ (1/(lambda ∗ lambda))

using C by (auto simp add: algebra-simps divide-simps)
also have ... ≤ (1/lambda) ∗ dist (next-in A u) (next-in A v) + 2/5 ∗

C ∗ 1
apply (intro mono-intros)
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using C by (auto simp add: divide-simps algebra-simps mult-ge1-powers(1 ))
also have ... ≤ (dist (d x) (d y) + 18/5 ∗ C ) + 2/5 ∗ C ∗ 1

using ∗ by auto
finally show ?thesis by auto

qed
qed

qed
show dist (d x) (d y) ≥ (1/lambda) ∗ dist x y − 4 ∗ C if H : x ∈ {a..b} y ∈

{a..b} for x y
proof −

consider x < y | x = y | x > y by linarith
then show ?thesis
proof (cases)

case 1
then show ?thesis using J [OF H (1 ) H (2 ) 1 ] by simp

next
case 2
show ?thesis unfolding 2 using C by auto

next
case 3

show ?thesis using J [OF H (2 ) H (1 ) 3 ] by (simp add: metric-space-class.dist-commute)
qed

qed
qed

We have proved that d has all the properties we wanted.
then have continuous-on {a..b} d ∧ d a = c a ∧ d b = c b

∧ lambda (4 ∗ C )−quasi-isometry-on {a..b} d
∧ (∀ x∈{a..b}. dist (c x) (d x) ≤ 4 ∗C )
∧ (2∗lambda)−lipschitz-on {a..b} d
∧ hausdorff-distance (c‘{a..b}) (d‘{a..b}) ≤ 2 ∗ C

using dist-c-d ‹continuous-on {a..b} d› ‹d a = c a› ‹d b = c b› ‹(2∗lambda)−lipschitz-on
{a..b} d›

‹hausdorff-distance (c‘{a..b}) (d‘{a..b}) ≤ 2 ∗ C › by auto
then show ?thesis by auto

qed
qed

end

7 The metric completion of a metric space
theory Metric-Completion

imports Isometries
begin

Any metric space can be completed, by adding the missing limits of Cauchy
sequences. Formally, there exists an isometric embedding of the space in
a complete space, with dense image. In this paragraph, we construct this
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metric completion. This is exactly the same construction as the way in
which real numbers are constructed from rational numbers.

7.1 Definition of the metric completion
quotient-type (overloaded) ′a metric-completion =

nat ⇒ ( ′a::metric-space) / partial: λu v. (Cauchy u) ∧ (Cauchy v) ∧ (λn. dist
(u n) (v n)) −−−−→ 0
unfolding part-equivp-def proof(auto intro!: ext)

show ∃ x. Cauchy x
by (rule exI [of - λ-. undefined]) (simp add: convergent-Cauchy convergent-const)

fix x y z::nat ⇒ ′a assume H : (λn. dist (x n) (y n)) −−−−→ 0
(λn. dist (x n) (z n)) −−−−→ 0

have ∗: (λn. dist (x n) (y n) + dist (x n) (z n)) −−−−→ 0 + 0
by (rule tendsto-add) (auto simp add: H )

show (λn. dist (y n) (z n)) −−−−→ 0
apply (rule tendsto-sandwich[of λ-. 0 - - λn. dist (x n) (y n) + dist (x n) (z

n)])
using ∗ by (auto simp add: dist-triangle3 )

next
fix x y z::nat ⇒ ′a assume H : (λn. dist (x n) (y n)) −−−−→ 0

(λn. dist (y n) (z n)) −−−−→ 0
have ∗: (λn. dist (x n) (y n) + dist (y n) (z n)) −−−−→ 0 + 0

by (rule tendsto-add) (auto simp add: H )
show (λn. dist (x n) (z n)) −−−−→ 0

apply (rule tendsto-sandwich[of λ-. 0 - - λn. dist (x n) (y n) + dist (y n) (z
n)])

using ∗ by (auto simp add: dist-triangle)
next

fix x y::nat ⇒ ′a assume H : Cauchy x
(λv. Cauchy v ∧ (λn. dist (x n) (v n)) −−−−→ 0 ) = (λv. Cauchy v ∧ (λn. dist

(y n) (v n)) −−−−→ 0 )
have Cauchy x ∧ (λn. dist (x n) (x n)) −−−−→ 0 using H by auto
then have (λn. dist (y n) (x n))−−−−→ 0 using H by meson
moreover have dist (x n) (y n) = dist (y n) (x n) for n using dist-commute

by auto
ultimately show (λn. dist (x n) (y n)) −−−−→ 0 by auto

qed

We have to show that the metric completion is indeed a metric space, that
the original space embeds isometrically into it, and that it is complete. Be-
fore we prove these statements, we start with two simple lemmas that will
be needed later on.
lemma convergent-Cauchy-dist:

fixes u v::nat ⇒ ( ′a::metric-space)
assumes Cauchy u Cauchy v
shows convergent (λn. dist (u n) (v n))

proof (rule real-Cauchy-convergent, intro CauchyI )
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fix e::real assume e > 0
obtain Nu where Nu: ∀n ≥ Nu. ∀m ≥ Nu. dist (u n) (u m) < e/2 using

assms(1 )
by (metis ‹0 < e› less-divide-eq-numeral1 (1 ) metric-CauchyD mult-zero-left)

obtain Nv where Nv: ∀n ≥ Nv. ∀m ≥ Nv. dist (v n) (v m) < e/2 using
assms(2 )

by (metis ‹0 < e› less-divide-eq-numeral1 (1 ) metric-CauchyD mult-zero-left)
define M where M = max Nu Nv
{

fix n m assume H : n ≥ M m ≥ M
have ∗: dist (u n) (u m) < e/2 dist (v n) (v m) < e/2

using Nu Nv H unfolding M-def by auto
have dist (u m) (v m) − dist (u n) (v n) ≤ dist (u m) (u n) + dist (v n) (v m)
by (simp add: algebra-simps) (metis add-le-cancel-left dist-commute dist-triangle2

dist-triangle-le)
also have ... < e/2 + e/2

using ∗ by (simp add: dist-commute)
finally have A: dist (u m) (v m) − dist (u n) (v n) < e by simp

have dist (u n) (v n) − dist (u m) (v m) ≤ dist (u m) (u n) + dist (v n) (v m)
by (simp add: algebra-simps) (metis add-le-cancel-left dist-commute dist-triangle2

dist-triangle-le)
also have ... < e/2 + e/2

using ∗ by (simp add: dist-commute)
finally have dist (u n) (v n) − dist (u m) (v m) < e by simp
then have norm(dist (u m) (v m) − dist (u n) (v n)) < e using A by auto

}
then show ∃M . ∀m ≥ M . ∀n ≥ M . norm (dist (u m) (v m) − dist (u n) (v

n)) < e
by auto

qed

lemma convergent-add-null:
fixes u v::nat ⇒ ( ′a::real-normed-vector)
assumes convergent u

(λn. v n − u n) −−−−→ 0
shows convergent v lim v = lim u

proof −
have (λn. u n + (v n − u n)) −−−−→ lim u + 0

apply (rule tendsto-add) using assms convergent-LIMSEQ-iff by auto
then have ∗: v −−−−→ lim u by auto
show convergent v using ∗ by (simp add: Lim-def convergentI )
show lim v = lim u using ∗ by (simp add: limI )

qed

Let us now prove that the metric completion is a metric space: the distance
between two Cauchy sequences is the limit of the distances of points in the
sequence. The convergence follows from Lemma convergent_Cauchy_dist
above.
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instantiation metric-completion :: (metric-space) metric-space
begin

lift-definition dist-metric-completion::( ′a::metric-space) metric-completion ⇒ ′a
metric-completion ⇒ real

is λx y. lim (λn. dist (x n) (y n))
proof −

fix x y z t::nat ⇒ ′a assume H : Cauchy x ∧ Cauchy y ∧ (λn. dist (x n) (y n))
−−−−→ 0

Cauchy z ∧ Cauchy t ∧ (λn. dist (z n) (t n)) −−−−→ 0
show lim (λn. dist (x n) (z n)) = lim (λn. dist (y n) (t n))
proof (rule convergent-add-null(2 ))

show convergent (λn. dist (y n) (t n))
apply (rule convergent-Cauchy-dist) using H by auto

have a: (λn. − dist (t n) (z n) − dist (x n) (y n)) −−−−→ −0 −0
apply (intro tendsto-intros) using H by (auto simp add: dist-commute)

have b:(λn. dist (t n) (z n) + dist (x n) (y n)) −−−−→ 0 + 0
apply (rule tendsto-add) using H by (auto simp add: dist-commute)

have I : dist (x n) (z n) ≤ dist (t n) (y n) + (dist (t n) (z n) + dist (x n) (y
n)) for n

using dist-triangle[of x n z n y n] dist-triangle[of y n z n t n]
by (auto simp add: dist-commute add.commute)

show (λn. dist (x n) (z n) − dist (y n) (t n)) −−−−→ 0
apply (rule tendsto-sandwich[of λn. −(dist (x n) (y n) + dist (z n) (t n)) -

- λn. dist (x n) (y n) + dist (z n) (t n)])
apply (auto intro!: always-eventually simp add: algebra-simps dist-commute

I )
apply (meson add-left-mono dist-triangle3 dist-triangle-le)
using a b by auto

qed
qed

lemma dist-metric-completion-limit:
fixes x y:: ′a metric-completion
shows (λn. dist (rep-metric-completion x n) (rep-metric-completion y n)) −−−−→

dist x y
proof −

have C : Cauchy (rep-metric-completion x) Cauchy (rep-metric-completion y)
using Quotient3-metric-completion Quotient3-rep-reflp by fastforce+

show ?thesis
unfolding dist-metric-completion-def using C apply auto
using convergent-Cauchy-dist[OF C ] convergent-LIMSEQ-iff by force

qed

lemma dist-metric-completion-limit ′:
fixes x y::nat ⇒ ′a
assumes Cauchy x Cauchy y
shows (λn. dist (x n) (y n)) −−−−→ dist (abs-metric-completion x) (abs-metric-completion
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y)
apply (subst dist-metric-completion.abs-eq)
using assms convergent-Cauchy-dist[OF assms] by (auto simp add: convergent-LIMSEQ-iff )

To define a metric space in the current library of Isabelle/HOL, one should
also introduce a uniformity structure and a topology, as follows (they are
prescribed by the distance):
definition uniformity-metric-completion::(( ′a metric-completion) × ( ′a metric-completion))
filter

where uniformity-metric-completion = (INF e∈{0 <..}. principal {(x, y). dist x
y < e})

definition open-metric-completion :: ′a metric-completion set ⇒ bool
where open-metric-completion U = (∀ x∈U . eventually (λ(x ′, y). x ′ = x −→ y
∈ U ) uniformity)

instance proof
fix x y:: ′a metric-completion
have C : Cauchy (rep-metric-completion x) Cauchy (rep-metric-completion y)

using Quotient3-metric-completion Quotient3-rep-reflp by fastforce+
show (dist x y = 0 ) = (x = y)

apply (subst Quotient3-rel-rep[OF Quotient3-metric-completion, symmetric])
unfolding dist-metric-completion-def using C apply auto
using convergent-Cauchy-dist[OF C ] convergent-LIMSEQ-iff apply force
by (simp add: limI )

next
fix x y z:: ′a metric-completion
have a: (λn. dist (rep-metric-completion x n) (rep-metric-completion y n)) −−−−→

dist x y
using dist-metric-completion-limit by auto

have b: (λn. dist (rep-metric-completion x n) (rep-metric-completion z n) + dist
(rep-metric-completion y n) (rep-metric-completion z n))

−−−−→ dist x z + dist y z
apply (rule tendsto-add) using dist-metric-completion-limit by auto

show dist x y ≤ dist x z + dist y z
by (rule LIMSEQ-le[OF a b], rule exI [of - 0 ], auto simp add: dist-triangle2 )

qed (auto simp add: uniformity-metric-completion-def open-metric-completion-def )
end

Let us now show that the distance thus defined on the metric completion is
indeed complete. This is essentially by design.
instance metric-completion :: (metric-space) complete-space
proof

fix X ::nat ⇒ ′a metric-completion assume Cauchy X
have ∗: ∃N . ∀n ≥ N . dist (rep-metric-completion (X k) N ) (rep-metric-completion

(X k) n) < (1/Suc k) for k
proof −

have Cauchy (rep-metric-completion (X k))
using Quotient3-metric-completion Quotient3-rep-reflp by fastforce+
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then have ∃N . ∀m ≥ N . ∀n ≥ N . dist (rep-metric-completion (X k) m)
(rep-metric-completion (X k) n) < (1/Suc k)

unfolding Cauchy-def by auto
then show ?thesis by auto

qed
have ∃N . ∀ k. ∀n ≥ N k. dist (rep-metric-completion (X k) (N k)) (rep-metric-completion

(X k) n) < (1/Suc k)
apply (rule choice) using ∗ by auto

then obtain N ::nat ⇒ nat where
N : dist (rep-metric-completion (X k) (N k)) (rep-metric-completion (X k) n) <

(1/Suc k) if n ≥ N k for n k
by auto

define u where u = (λk. rep-metric-completion (X k) (N k))

have Cauchy u
proof (rule metric-CauchyI )

fix e::real assume e > 0
obtain K ::nat where K > 4/e using reals-Archimedean2 by blast
obtain L::nat where L: ∀m ≥ L. ∀n ≥ L. dist (X m) (X n) < e/2

using metric-CauchyD[OF ‹Cauchy X›, of e/2 ] ‹e > 0 › by auto
{

fix m n assume m ≥ max K L n ≥ max K L
then have dist (X m) (X n) < e/2 using L by auto

then have eventually (λp. dist (rep-metric-completion (X m) p) (rep-metric-completion
(X n) p) < e/2 ) sequentially

using dist-metric-completion-limit[of X m X n] by (metis order-tendsto-iff )
then obtain p where p: p ≥ max (N m) (N n) dist (rep-metric-completion

(X m) p) (rep-metric-completion (X n) p) < e/2
using eventually-False-sequentially eventually-elim2 eventually-ge-at-top by

blast
have dist (u m) (rep-metric-completion (X m) p) < 1 / real (Suc m)

unfolding u-def using N [of m p] p(1 ) by auto
also have ... < e/4
using ‹m ≥ max K L› ‹K > 4/e› ‹e > 0 › apply (auto simp add: divide-simps

algebra-simps)
by (metis leD le-less-trans less-add-same-cancel2 linear of-nat-le-iff mult-le-cancel-left-pos)
finally have Im: dist (u m) (rep-metric-completion (X m) p) < e/4 by simp
have dist (u n) (rep-metric-completion (X n) p) < 1 / real (Suc n)

unfolding u-def using N [of n p] p(1 ) by auto
also have ... < e/4
using ‹n ≥ max K L› ‹K > 4/e› ‹e > 0 › apply (auto simp add: divide-simps

algebra-simps)
by (metis leD le-less-trans less-add-same-cancel2 linear of-nat-le-iff mult-le-cancel-left-pos)
finally have In: dist (u n) (rep-metric-completion (X n) p) < e/4 by simp

have dist (u m) (u n) ≤ dist (u m) (rep-metric-completion (X m) p)
+ dist (rep-metric-completion (X m) p) (rep-metric-completion (X n) p)

+ dist (rep-metric-completion (X n) p) (u n)
by (metis add.commute add-left-mono dist-commute dist-triangle-le dist-triangle)
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also have ... < e/4 + e/2 + e/4
using In Im p(2 ) by (simp add: dist-commute)

also have ... = e by auto
finally have dist (u m) (u n) < e by auto

}
then show ∃M . ∀m ≥ M . ∀n ≥ M . dist (u m) (u n) < e by meson

qed
have ∗: (λn. dist (abs-metric-completion u) (X n)) −−−−→ 0
proof (rule order-tendstoI , auto simp add: less-le-trans eventually-sequentially)

fix e::real assume e > 0
obtain K ::nat where K > 4/e using reals-Archimedean2 by blast
obtain L::nat where L: ∀m ≥ L. ∀n ≥ L. dist (u m) (u n) < e/4

using metric-CauchyD[OF ‹Cauchy u›, of e/4 ] ‹e > 0 › by auto
{

fix n assume n: n ≥ max K L
{

fix p assume p: p ≥ max (N n) L
have dist (u n) (rep-metric-completion (X n) p) < 1/(Suc n)

unfolding u-def using N p by simp
also have ... < e/4

using ‹n ≥ max K L› ‹K > 4/e› ‹e > 0 › apply (auto simp add:
divide-simps algebra-simps)

by (metis leD le-less-trans less-add-same-cancel2 linear of-nat-le-iff
mult-le-cancel-left-pos)

finally have ∗: dist (u n) (rep-metric-completion (X n) p) < e/4
by fastforce

have dist (u p) (rep-metric-completion (X n) p) ≤ dist (u p) (u n) + dist
(u n) (rep-metric-completion (X n) p)

using dist-triangle by auto
also have ... < e/4 + e/4 using ∗ L n p by force
finally have dist (u p) (rep-metric-completion (X n) p) ≤ e/2 by auto

}
then have A: eventually (λp. dist (u p) (rep-metric-completion (X n) p) ≤

e/2 ) sequentially
using eventually-at-top-linorder by blast

have B: (λp. dist (u p) (rep-metric-completion (X n) p)) −−−−→ dist (abs-metric-completion
u) (X n)

using dist-metric-completion-limit ′[OF ‹Cauchy u›, of rep-metric-completion
(X n)]

unfolding Quotient3-abs-rep[OF Quotient3-metric-completion, of X n]
using Quotient3-rep-reflp[OF Quotient3-metric-completion] by auto

have dist (abs-metric-completion u) (X n) ≤ e/2
apply (rule LIMSEQ-le-const2 [OF B]) using A unfolding eventually-sequentially

by auto
then have dist (abs-metric-completion u) (X n) < e using ‹e > 0 › by auto

}
then show ∃N . ∀n ≥ N . dist (abs-metric-completion u) (X n) < e

by blast
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qed
have X −−−−→ abs-metric-completion u
apply (rule tendstoI ) using ∗ by (auto simp add: order-tendsto-iff dist-commute)

then show convergent X unfolding convergent-def by auto
qed

7.2 Isometric embedding of a space in its metric completion

The canonical embedding of a space into its metric completion is obtained
by taking the Cauchy sequence which is constant, equal to the given point.
This is indeed an isometric embedding with dense image, as we prove in the
lemmas below.
definition to-metric-completion::( ′a::metric-space) ⇒ ′a metric-completion

where to-metric-completion x = abs-metric-completion (λn. x)

lemma to-metric-completion-isometry:
isometry-on UNIV to-metric-completion

proof (rule isometry-onI )
fix x y:: ′a
have (λn. dist (x) (y)) −−−−→ dist (to-metric-completion x) (to-metric-completion

y)
unfolding to-metric-completion-def apply (rule dist-metric-completion-limit ′)
unfolding Cauchy-def by auto

then show dist (to-metric-completion x) (to-metric-completion y) = dist x y
by (simp add: LIMSEQ-const-iff )

qed

lemma to-metric-completion-dense:
assumes open U U 6= {}
shows ∃ x. to-metric-completion x ∈ U

proof −
obtain y where y ∈ U using ‹U 6= {}› by auto
obtain e::real where e: e > 0

∧
z. dist z y < e =⇒ z ∈ U

using ‹y ∈ U › ‹open U › by (metis open-dist)
have ∗: Cauchy (rep-metric-completion y)

using Quotient3-metric-completion Quotient3-rep-reflp by fastforce
then obtain N where N : ∀n ≥ N . ∀m ≥ N . dist (rep-metric-completion y n)

(rep-metric-completion y m) < e/2
using ‹e > 0 › unfolding Cauchy-def by (meson divide-pos-pos zero-less-numeral)

define x where x = rep-metric-completion y N
have (λn. dist x (rep-metric-completion y n)) −−−−→ dist (to-metric-completion

x) (abs-metric-completion (rep-metric-completion y))
unfolding to-metric-completion-def apply (rule dist-metric-completion-limit ′)
using ∗ unfolding Cauchy-def by auto

then have (λn. dist x (rep-metric-completion y n)) −−−−→ dist (to-metric-completion
x) y

unfolding Quotient3-abs-rep[OF Quotient3-metric-completion] by simp
moreover have eventually (λn. dist x (rep-metric-completion y n) ≤ e/2 ) se-
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quentially
unfolding eventually-sequentially x-def apply (rule exI [of - N ]) using N

less-imp-le by auto
ultimately have dist (to-metric-completion x) y ≤ e/2

using LIMSEQ-le-const2 unfolding eventually-sequentially by metis
then have to-metric-completion x ∈ U

using e by auto
then show ?thesis by auto

qed

lemma to-metric-completion-dense ′:
closure (range to-metric-completion) = UNIV

apply (auto simp add: closure-iff-nhds-not-empty) using to-metric-completion-dense
by fastforce

The main feature of the completion is that a uniformly continuous function
on the original space can be extended to a uniformly continuous function on
the completion, i.e., it can be written as the composition of a new function
and of the inclusion to_metric_completion.
lemma lift-to-metric-completion:

fixes f ::( ′a::metric-space) ⇒ ( ′b::complete-space)
assumes uniformly-continuous-on UNIV f
shows ∃ g. (uniformly-continuous-on UNIV g)

∧ (f = g o to-metric-completion)
∧ (∀ x ∈ range to-metric-completion. g x = f (inv to-metric-completion

x))
proof −

define I :: ′a metric-completion ⇒ ′a where I = inv to-metric-completion
have uniformly-continuous-on (range to-metric-completion) I
using isometry-on-uniformly-continuous[OF isometry-on-inverse(1 )[OF to-metric-completion-isometry]]

I-def
by auto

then have UC : uniformly-continuous-on (range to-metric-completion) (λx. f (I
x))

using assms uniformly-continuous-on-compose
by (metis I-def bij-betw-imp-surj-on bij-betw-inv-into isometry-on-inverse(4 )

to-metric-completion-isometry)
obtain g where g: uniformly-continuous-on (closure(range to-metric-completion))

g ∧
x. x ∈ range to-metric-completion =⇒ f (I x) = g x

using uniformly-continuous-on-extension-on-closure[OF UC ] by metis
have uniformly-continuous-on UNIV g

using to-metric-completion-dense ′ g(1 ) by metis
moreover have f x = g (to-metric-completion x) for x
using g(2 ) by (metis I-def UNIV-I isometry-on-inverse(2 ) range-eqI to-metric-completion-isometry)

moreover have g x = f (inv to-metric-completion x) if x ∈ range to-metric-completion
for x

using I-def g(2 ) that by auto
ultimately show ?thesis unfolding comp-def by auto
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qed

When the function is an isometry, the lifted function is also an isometry
(and its range is the closure of the range of the original function). This
shows that the metric completion is unique, up to isometry:
lemma lift-to-metric-completion-isometry:

fixes f ::( ′a::metric-space) ⇒ ( ′b::complete-space)
assumes isometry-on UNIV f
shows ∃ g. isometry-on UNIV g

∧ range g = closure(range f )
∧ f = g o to-metric-completion
∧ (∀ x ∈ range to-metric-completion. g x = f (inv to-metric-completion x))

proof −
have ∗: uniformly-continuous-on UNIV f using assms isometry-on-uniformly-continuous

by force
obtain g where g: uniformly-continuous-on UNIV g

f = g o to-metric-completion∧
x. x ∈ range to-metric-completion =⇒ g x = f (inv

to-metric-completion x)
using lift-to-metric-completion[OF ∗] by blast

have ∗: isometry-on (range to-metric-completion) g
apply (rule isometry-on-cong[OF - g(3 )], rule isometry-on-compose[of - - f ])

using assms isometry-on-inverse[OF to-metric-completion-isometry] isome-
try-on-subset by (auto) (fastforce)

then have isometry-on UNIV g
unfolding to-metric-completion-dense ′[symmetric] apply (rule isometry-on-closure)
using continuous-on-subset[OF uniformly-continuous-imp-continuous[OF g(1 )]]

by auto

have g‘(range to-metric-completion) ⊆ range f
using g unfolding comp-def by auto

moreover have g‘(closure (range to-metric-completion)) ⊆ closure (g‘(range
to-metric-completion))

using uniformly-continuous-imp-continuous[OF g(1 )]
by (meson closed-closure closure-subset continuous-on-subset image-closure-subset

top-greatest)
ultimately have range g ⊆ closure (range f )

unfolding to-metric-completion-dense ′ by (simp add: g(2 ) image-comp)

have range f ⊆ range g
using g(2 ) by auto

moreover have closed (range g)
using isometry-on-complete-image[OF ‹isometry-on UNIV g›] by (simp add:

complete-eq-closed)
ultimately have closure (range f ) ⊆ range g

by (simp add: closure-minimal)
then have range g = closure (range f )

using ‹range g ⊆ closure (range f )› by auto
then show ?thesis using ‹isometry-on UNIV g› g by metis
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qed

7.3 The metric completion of a second countable space is
second countable

We want to show that the metric completion of a second countable space is
still second countable. This is most easily expressed using the fact that a
metric space is second countable if and only if there exists a dense countable
subset. We prove the equivalence in the next lemma, and use it then to
prove that the metric completion is still second countable.
lemma second-countable-iff-dense-countable-subset:
(∃B:: ′a::metric-space set set. countable B ∧ topological-basis B)
←→ (∃A:: ′a set. countable A ∧ closure A = UNIV )

proof
assume ∃B:: ′a set set. countable B ∧ topological-basis B
then obtain B:: ′a set set where countable B topological-basis B by auto
define A where A = (λU . SOME x. x ∈ U )‘B
have countable A unfolding A-def using ‹countable B› by auto
moreover have closure A = UNIV
proof (auto simp add: closure-approachable)

fix x:: ′a and e::real assume e > 0
obtain U where U ∈ B x ∈ U U ⊆ ball x e

by (rule topological-basisE [OF ‹topological-basis B›, of ball x e x], auto simp
add: ‹e > 0 ›)

define y where y = (λU . SOME x. x ∈ U ) U
have y ∈ U unfolding y-def using ‹x ∈ U › some-in-eq by fastforce
then have dist y x < e

using ‹U ⊆ ball x e› by (metis dist-commute mem-ball subset-iff )
moreover have y ∈ A unfolding A-def y-def using ‹U ∈ B› by auto
ultimately show ∃ y∈A. dist y x < e by auto

qed
ultimately show ∃A:: ′a set. countable A ∧ closure A = UNIV by auto

next
assume ∃A:: ′a set. countable A ∧ closure A = UNIV
then obtain A:: ′a set where countable A closure A = UNIV by auto
define B where B = (λ(x, (n::nat)). ball x (1/n))‘(A × UNIV )
have countable B unfolding B-def using ‹countable A› by auto
moreover have topological-basis B
proof (rule topological-basisI )

fix x:: ′a and U assume x ∈ U open U
then obtain e where e > 0 ball x e ⊆ U

using openE by blast
obtain n::nat where n > 2/e using reals-Archimedean2 by auto
then have n > 0 using ‹e > 0 › not-less by fastforce
then have 1/n > 0 using zero-less-divide-iff by fastforce
then obtain y where y: y ∈ A dist x y < 1/n

by (metis ‹closure A = UNIV › UNIV-I closure-approachable dist-commute)
then have ball y (1/n) ∈ B unfolding B-def by auto
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moreover have x ∈ ball y (1/n) using y(2 ) by (auto simp add: dist-commute)
moreover have ball y (1/n) ⊆ U
proof (auto)

fix z assume z: dist y z < 1/n
have dist z x ≤ dist z y + dist y x using dist-triangle by auto
also have ... < 1/n + 1/n using z y(2 ) by (auto simp add: dist-commute)
also have ... < e

using ‹n > 2/e› ‹e > 0 › ‹n > 0 › by (auto simp add: divide-simps
mult.commute)

finally have z ∈ ball x e by (auto simp add: dist-commute)
then show z ∈ U using ‹ball x e ⊆ U › by auto

qed
ultimately show ∃V∈B. x ∈ V ∧ V ⊆ U by metis

qed (auto simp add: B-def )
ultimately show ∃B:: ′a set set. countable B ∧ topological-basis B by auto

qed

lemma second-countable-metric-dense-subset:
∃A:: ′a::{metric-space, second-countable-topology} set. countable A ∧ closure A =

UNIV
using ex-countable-basis by (auto simp add: second-countable-iff-dense-countable-subset[symmetric])

instance metric-completion::({metric-space, second-countable-topology}) second-countable-topology
proof

obtain A:: ′a set where countable A closure A = UNIV
using second-countable-metric-dense-subset by auto

define Ab where Ab = to-metric-completion‘A
have range to-metric-completion ⊆ closure Ab

unfolding Ab-def
by (metis ‹closure A = UNIV › isometry-on-continuous[OF to-metric-completion-isometry]

closed-closure closure-subset image-closure-subset)
then have closure Ab = UNIV
by (metis (no-types) to-metric-completion-dense ′[symmetric] ‹range to-metric-completion

⊆ closure Ab› closure-closure closure-mono top.extremum-uniqueI )
moreover have countable Ab unfolding Ab-def using ‹countable A› by auto
ultimately have ∃Ab:: ′a metric-completion set. countable Ab ∧ closure Ab =

UNIV
by auto

then show ∃B:: ′a metric-completion set set. countable B ∧ open = gener-
ate-topology B

using second-countable-iff-dense-countable-subset topological-basis-imp-subbasis
by auto
qed

instance metric-completion::({metric-space, second-countable-topology}) polish-space
by standard

end
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8 Gromov hyperbolic spaces
theory Gromov-Hyperbolicity

imports Isometries Metric-Completion
begin

8.1 Definition, basic properties

Although we will mainly work with type classes later on, we introduce the
definition of hyperbolicity on subsets of a metric space.
A set is δ-hyperbolic if it satisfies the following inequality. It is very obscure
at first sight, but we will see several equivalent characterizations later on.
For instance, a space is hyperbolic (maybe for a different constant δ) if all
geodesic triangles are thin, i.e., every side is close to the union of the two
other sides. This definition captures the main features of negative curvature
at a large scale, and has proved extremely fruitful and influential.
Two important references on this topic are [GdlH90] and [BH99]. We will
sometimes follow them, sometimes depart from them.
definition Gromov-hyperbolic-subset::real ⇒ ( ′a::metric-space) set ⇒ bool

where Gromov-hyperbolic-subset delta A = (∀ x∈A. ∀ y∈A. ∀ z∈A. ∀ t∈A. dist x
y + dist z t ≤ max (dist x z + dist y t) (dist x t + dist y z) + 2 ∗ delta)

lemma Gromov-hyperbolic-subsetI [intro]:
assumes

∧
x y z t. x ∈ A =⇒ y ∈ A =⇒ z ∈ A =⇒ t ∈ A =⇒ dist x y + dist z

t ≤ max (dist x z + dist y t) (dist x t + dist y z) + 2 ∗ delta
shows Gromov-hyperbolic-subset delta A

using assms unfolding Gromov-hyperbolic-subset-def by auto

When the four points are not all distinct, the above inequality is always
satisfied for δ = 0.
lemma Gromov-hyperbolic-ineq-not-distinct:

assumes x = y ∨ x = z ∨ x = t ∨ y = z ∨ y = t ∨ z = (t:: ′a::metric-space)
shows dist x y + dist z t ≤ max (dist x z + dist y t) (dist x t + dist y z)

using assms by (auto simp add: dist-commute, simp add: dist-triangle add.commute,
simp add: dist-triangle3 )

It readily follows from the definition that hyperbolicity passes to the closure
of the set.
lemma Gromov-hyperbolic-closure:

assumes Gromov-hyperbolic-subset delta A
shows Gromov-hyperbolic-subset delta (closure A)

unfolding Gromov-hyperbolic-subset-def proof (auto)
fix x y z t assume H : x ∈ closure A y ∈ closure A z ∈ closure A t ∈ closure A
obtain X ::nat ⇒ ′a where X :

∧
n. X n ∈ A X −−−−→ x

using H closure-sequential by blast
obtain Y ::nat ⇒ ′a where Y :

∧
n. Y n ∈ A Y −−−−→ y

using H closure-sequential by blast
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obtain Z ::nat ⇒ ′a where Z :
∧

n. Z n ∈ A Z −−−−→ z
using H closure-sequential by blast

obtain T ::nat ⇒ ′a where T :
∧

n. T n ∈ A T −−−−→ t
using H closure-sequential by blast

have ∗: max (dist (X n) (Z n) + dist (Y n) (T n)) (dist (X n) (T n) + dist (Y
n) (Z n)) + 2 ∗ delta − dist (X n) (Y n) − dist (Z n) (T n) ≥ 0 for n

using assms X(1 )[of n] Y (1 )[of n] Z (1 )[of n] T (1 )[of n] unfolding Gro-
mov-hyperbolic-subset-def

by (auto simp add: algebra-simps)
have ∗∗: (λn. max (dist (X n) (Z n) + dist (Y n) (T n)) (dist (X n) (T n) +

dist (Y n) (Z n)) + 2 ∗ delta − dist (X n) (Y n) − dist (Z n) (T n))
−−−−→ max (dist x z + dist y t) (dist x t + dist y z) + 2 ∗ delta − dist x y −

dist z t
apply (auto intro!: tendsto-intros) using X Y Z T by auto

have max (dist x z + dist y t) (dist x t + dist y z) + 2 ∗ delta − dist x y − dist
z t ≥ 0

apply (rule LIMSEQ-le-const[OF ∗∗]) using ∗ by auto
then show dist x y + dist z t ≤ max (dist x z + dist y t) (dist x t + dist y z)

+ 2 ∗ delta
by auto

qed

A good formulation of hyperbolicity is in terms of Gromov products. Intu-
itively, the Gromov product of x and y based at e is the distance between
e and the geodesic between x and y. It is also the time after which the
geodesics from e to x and from e to y stop travelling together.
definition Gromov-product-at::( ′a::metric-space) ⇒ ′a ⇒ ′a ⇒ real

where Gromov-product-at e x y = (dist e x + dist e y − dist x y) / 2

lemma Gromov-hyperbolic-subsetI2 :
fixes delta::real
assumes

∧
e x y z. e ∈ A =⇒ x ∈ A =⇒ y ∈ A =⇒ z ∈ A =⇒ Gromov-product-at

(e:: ′a::metric-space) x z ≥ min (Gromov-product-at e x y) (Gromov-product-at e y
z) − delta

shows Gromov-hyperbolic-subset delta A
proof (rule Gromov-hyperbolic-subsetI )

fix x y z t assume H : x ∈ A z ∈ A y ∈ A t ∈ A
show dist x y + dist z t ≤ max (dist x z + dist y t) (dist x t + dist y z) + 2 ∗

delta
using assms[OF H ] unfolding Gromov-product-at-def min-def max-def
by (auto simp add: divide-simps algebra-simps dist-commute)

qed

lemma Gromov-product-nonneg [simp, mono-intros]:
Gromov-product-at e x y ≥ 0

unfolding Gromov-product-at-def by (simp add: dist-triangle3 )

lemma Gromov-product-commute:
Gromov-product-at e x y = Gromov-product-at e y x
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unfolding Gromov-product-at-def by (auto simp add: dist-commute)

lemma Gromov-product-le-dist [simp, mono-intros]:
Gromov-product-at e x y ≤ dist e x
Gromov-product-at e x y ≤ dist e y

unfolding Gromov-product-at-def by (auto simp add: diff-le-eq dist-triangle dist-triangle2 )

lemma Gromov-product-le-infdist [mono-intros]:
assumes geodesic-segment-between G x y
shows Gromov-product-at e x y ≤ infdist e G

proof −
have [simp]: G 6= {} using assms by auto
have Gromov-product-at e x y ≤ dist e z if z ∈ G for z
proof −

have dist e x + dist e y ≤ (dist e z + dist z x) + (dist e z + dist z y)
by (intro add-mono dist-triangle)

also have ... = 2 ∗ dist e z + dist x y
apply (auto simp add: dist-commute) using ‹z ∈ G› assms by (metis

dist-commute geodesic-segment-dist)
finally show ?thesis unfolding Gromov-product-at-def by auto

qed
then show ?thesis

apply (subst infdist-notempty) by (auto intro: cINF-greatest)
qed

lemma Gromov-product-add:
Gromov-product-at e x y + Gromov-product-at x e y = dist e x

unfolding Gromov-product-at-def by (auto simp add: algebra-simps divide-simps
dist-commute)

lemma Gromov-product-geodesic-segment:
assumes geodesic-segment-between G x y t ∈ {0 ..dist x y}
shows Gromov-product-at x y (geodesic-segment-param G x t) = t

proof −
have dist x (geodesic-segment-param G x t) = t

using assms(1 ) assms(2 ) geodesic-segment-param(6 ) by auto
moreover have dist y (geodesic-segment-param G x t) = dist x y − t

by (metis ‹dist x (geodesic-segment-param G x t) = t› add-diff-cancel-left ′

assms(1 ) assms(2 ) dist-commute geodesic-segment-dist geodesic-segment-param(3 ))
ultimately show ?thesis unfolding Gromov-product-at-def by auto

qed

lemma Gromov-product-e-x-x [simp]:
Gromov-product-at e x x = dist e x

unfolding Gromov-product-at-def by auto

lemma Gromov-product-at-diff :
|Gromov-product-at x y z − Gromov-product-at a b c| ≤ dist x a + dist y b + dist

z c
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unfolding Gromov-product-at-def abs-le-iff apply (auto simp add: divide-simps)
by (smt dist-commute dist-triangle4 )+

lemma Gromov-product-at-diff1 :
|Gromov-product-at a x y − Gromov-product-at b x y| ≤ dist a b

using Gromov-product-at-diff [of a x y b x y] by auto

lemma Gromov-product-at-diff2 :
|Gromov-product-at e x z − Gromov-product-at e y z | ≤ dist x y

using Gromov-product-at-diff [of e x z e y z] by auto

lemma Gromov-product-at-diff3 :
|Gromov-product-at e x y − Gromov-product-at e x z | ≤ dist y z

using Gromov-product-at-diff [of e x y e x z] by auto

The Gromov product is continuous in its three variables. We formulate it
in terms of sequences, as it is the way it will be used below (and moreover
continuity for functions of several variables is very poor in the library).
lemma Gromov-product-at-continuous:

assumes (u −−−→ x) F (v −−−→ y) F (w −−−→ z) F
shows ((λn. Gromov-product-at (u n) (v n) (w n)) −−−→ Gromov-product-at x y

z) F
proof −

have ((λn. abs(Gromov-product-at (u n) (v n) (w n) − Gromov-product-at x y
z)) −−−→ 0 + 0 + 0 ) F

apply (rule tendsto-sandwich[of λn. 0 - - λn. dist (u n) x + dist (v n) y +
dist (w n) z, OF always-eventually always-eventually])

apply (simp, simp add: Gromov-product-at-diff , simp, intro tendsto-intros)
using assms tendsto-dist-iff by auto

then show ?thesis
apply (subst tendsto-dist-iff ) unfolding dist-real-def by auto

qed

8.2 Typeclass for Gromov hyperbolic spaces

We could (should?) just derive Gromov_hyperbolic_space from metric_space.
However, in this case, properties of metric spaces are not available when
working in the locale! It is more efficient to ensure that we have a metric
space by putting a type class restriction in the definition. The δ in Gromov-
hyperbolicity type class is called deltaG to avoid name clashes.
class metric-space-with-deltaG = metric-space +

fixes deltaG::( ′a::metric-space) itself ⇒ real

class Gromov-hyperbolic-space = metric-space-with-deltaG +
assumes hyperb-quad-ineq0 : Gromov-hyperbolic-subset (deltaG(TYPE( ′a::metric-space)))

(UNIV :: ′a set)

class Gromov-hyperbolic-space-geodesic = Gromov-hyperbolic-space + geodesic-space
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lemma (in Gromov-hyperbolic-space) hyperb-quad-ineq [mono-intros]:
shows dist x y + dist z t ≤ max (dist x z + dist y t) (dist x t + dist y z) + 2 ∗

deltaG(TYPE( ′a))
using hyperb-quad-ineq0 unfolding Gromov-hyperbolic-subset-def by auto

It readily follows from the definition that the completion of a δ-hyperbolic
space is still δ-hyperbolic.
instantiation metric-completion :: (Gromov-hyperbolic-space) Gromov-hyperbolic-space
begin
definition deltaG-metric-completion::( ′a metric-completion) itself ⇒ real where

deltaG-metric-completion - = deltaG(TYPE( ′a))

instance proof (standard, rule Gromov-hyperbolic-subsetI )
have Gromov-hyperbolic-subset (deltaG(TYPE( ′a))) (range (to-metric-completion:: ′a
⇒ -))

unfolding Gromov-hyperbolic-subset-def
apply (auto simp add: isometry-onD[OF to-metric-completion-isometry])
by (metis hyperb-quad-ineq)

then have Gromov-hyperbolic-subset (deltaG TYPE( ′a metric-completion)) (UNIV :: ′a
metric-completion set)

unfolding deltaG-metric-completion-def to-metric-completion-dense ′[symmetric]
using Gromov-hyperbolic-closure by auto

then show dist x y + dist z t ≤ max (dist x z + dist y t) (dist x t + dist y z)
+ 2 ∗ deltaG TYPE( ′a metric-completion)

for x y z t:: ′a metric-completion
unfolding Gromov-hyperbolic-subset-def by auto

qed
end

context Gromov-hyperbolic-space
begin

lemma delta-nonneg [simp, mono-intros]:
deltaG(TYPE( ′a)) ≥ 0

proof −
obtain x:: ′a where True by auto
show ?thesis using hyperb-quad-ineq[of x x x x] by auto

qed

lemma hyperb-ineq [mono-intros]:
Gromov-product-at (e:: ′a) x z ≥ min (Gromov-product-at e x y) (Gromov-product-at

e y z) − deltaG(TYPE( ′a))
using hyperb-quad-ineq[of e y x z] unfolding Gromov-product-at-def min-def max-def
by (auto simp add: divide-simps algebra-simps metric-space-class.dist-commute)

lemma hyperb-ineq ′ [mono-intros]:
Gromov-product-at (e:: ′a) x z + deltaG(TYPE( ′a)) ≥ min (Gromov-product-at e
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x y) (Gromov-product-at e y z)
using hyperb-ineq[of e x y z] by auto

lemma hyperb-ineq-4-points [mono-intros]:
Min {Gromov-product-at (e:: ′a) x y, Gromov-product-at e y z, Gromov-product-at

e z t} − 2 ∗ deltaG(TYPE( ′a)) ≤ Gromov-product-at e x t
using hyperb-ineq[of e x y z] hyperb-ineq[of e x z t] apply auto using delta-nonneg
by linarith

lemma hyperb-ineq-4-points ′ [mono-intros]:
Min {Gromov-product-at (e:: ′a) x y, Gromov-product-at e y z, Gromov-product-at

e z t} ≤ Gromov-product-at e x t + 2 ∗ deltaG(TYPE( ′a))
using hyperb-ineq-4-points[of e x y z t] by auto

In Gromov-hyperbolic spaces, geodesic triangles are thin, i.e., a point on one
side of a geodesic triangle is close to the union of the two other sides (where
the constant in "close" is 4δ, independent of the size of the triangle). We
prove this basic property (which, in fact, is a characterization of Gromov-
hyperbolic spaces: a geodesic space in which triangles are thin is hyperbolic).
lemma thin-triangles1 :

assumes geodesic-segment-between G x y geodesic-segment-between H x (z:: ′a)
t ∈ {0 ..Gromov-product-at x y z}

shows dist (geodesic-segment-param G x t) (geodesic-segment-param H x t) ≤ 4
∗ deltaG(TYPE( ′a))
proof −

have ∗: Gromov-product-at x z (geodesic-segment-param H x t) = t
apply (rule Gromov-product-geodesic-segment[OF assms(2 )]) using assms(3 )

Gromov-product-le-dist(2 )
by (metis atLeastatMost-subset-iff subset-iff )

have Gromov-product-at x y (geodesic-segment-param H x t)
≥ min (Gromov-product-at x y z) (Gromov-product-at x z (geodesic-segment-param

H x t)) − deltaG(TYPE( ′a))
by (rule hyperb-ineq)

then have I : Gromov-product-at x y (geodesic-segment-param H x t) ≥ t −
deltaG(TYPE( ′a))

using assms(3 ) unfolding ∗ by auto

have ∗: Gromov-product-at x (geodesic-segment-param G x t) y = t
apply (subst Gromov-product-commute)
apply (rule Gromov-product-geodesic-segment[OF assms(1 )]) using assms(3 )

Gromov-product-le-dist(1 )
by (metis atLeastatMost-subset-iff subset-iff )

have t − 2 ∗ deltaG(TYPE( ′a)) = min t (t− deltaG(TYPE( ′a))) − deltaG(TYPE( ′a))
unfolding min-def using antisym by fastforce

also have ... ≤ min (Gromov-product-at x (geodesic-segment-param G x t) y)
(Gromov-product-at x y (geodesic-segment-param H x t)) − deltaG(TYPE( ′a))

using I ∗ by (simp add: algebra-simps)
also have ... ≤ Gromov-product-at x (geodesic-segment-param G x t) (geodesic-segment-param

H x t)
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by (rule hyperb-ineq)
finally have I : Gromov-product-at x (geodesic-segment-param G x t) (geodesic-segment-param

H x t) ≥ t − 2 ∗ deltaG(TYPE( ′a))
by simp

have A: dist x (geodesic-segment-param G x t) = t
by (meson assms(1 ) assms(3 ) atLeastatMost-subset-iff geodesic-segment-param(6 )

Gromov-product-le-dist(1 ) subset-eq)
have B: dist x (geodesic-segment-param H x t) = t
by (meson assms(2 ) assms(3 ) atLeastatMost-subset-iff geodesic-segment-param(6 )

Gromov-product-le-dist(2 ) subset-eq)
show ?thesis

using I unfolding Gromov-product-at-def A B by auto
qed

theorem thin-triangles:
assumes geodesic-segment-between Gxy x y

geodesic-segment-between Gxz x z
geodesic-segment-between Gyz y z
(w:: ′a) ∈ Gyz

shows infdist w (Gxy ∪ Gxz) ≤ 4 ∗ deltaG(TYPE( ′a))
proof −

obtain t where w: t ∈ {0 ..dist y z} w = geodesic-segment-param Gyz y t
using geodesic-segment-param[OF assms(3 )] assms(4 ) by (metis imageE)

show ?thesis
proof (cases t ≤ Gromov-product-at y x z)

case True
have ∗: dist w (geodesic-segment-param Gxy y t) ≤ 4 ∗ deltaG(TYPE( ′a))

unfolding w(2 )
apply (rule thin-triangles1 [of - - z - x])

using True assms(1 ) assms(3 ) w(1 ) by (auto simp add: geodesic-segment-commute
Gromov-product-commute)

show ?thesis
apply (rule infdist-le2 [OF - ∗])

by (metis True assms(1 ) box-real(2 ) geodesic-segment-commute geodesic-segment-param(3 )
Gromov-product-le-dist(1 ) mem-box-real(2 ) order-trans subset-eq sup.cobounded1
w(1 ))

next
case False
define s where s = dist y z − t
have s: s ∈ {0 ..Gromov-product-at z y x}

unfolding s-def using Gromov-product-add[of y z x ] w(1 ) False by (auto
simp add: Gromov-product-commute)

have w2 : w = geodesic-segment-param Gyz z s
unfolding s-def w(2 ) apply (rule geodesic-segment-reverse-param[symmetric])

using assms(3 ) w(1 ) by auto
have ∗: dist w (geodesic-segment-param Gxz z s) ≤ 4 ∗ deltaG(TYPE( ′a))

unfolding w2
apply (rule thin-triangles1 [of - - y - x])
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using s assms by (auto simp add: geodesic-segment-commute)
show ?thesis

apply (rule infdist-le2 [OF - ∗])
by (metis Un-iff assms(2 ) atLeastAtMost-iff geodesic-segment-commute geodesic-segment-param(3 )

Gromov-product-commute Gromov-product-le-dist(1 ) order-trans s)
qed

qed

A consequence of the thin triangles property is that, although the geodesic
between two points is in general not unique in a Gromov-hyperbolic space,
two such geodesics are within O(δ) of each other.
lemma geodesics-nearby:

assumes geodesic-segment-between G x y geodesic-segment-between H x y
(z:: ′a) ∈ G

shows infdist z H ≤ 4 ∗ deltaG(TYPE( ′a))
using thin-triangles[OF geodesic-segment-between-x-x(1 ) assms(2 ) assms(1 ) assms(3 )]
geodesic-segment-endpoints(1 )[OF assms(2 )] insert-absorb by fastforce

A small variant of the property of thin triangles is that triangles are slim,
i.e., there is a point which is close to the three sides of the triangle (a "center"
of the triangle, but only defined up to O(δ)). And one can take it on any
side, and its distance to the corresponding vertices is expressed in terms of
a Gromov product.
lemma slim-triangle:

assumes geodesic-segment-between Gxy x y
geodesic-segment-between Gxz x z
geodesic-segment-between Gyz y (z:: ′a)

shows ∃w. infdist w Gxy ≤ 4 ∗ deltaG(TYPE( ′a)) ∧
infdist w Gxz ≤ 4 ∗ deltaG(TYPE( ′a)) ∧
infdist w Gyz ≤ 4 ∗ deltaG(TYPE( ′a)) ∧
dist w x = (Gromov-product-at x y z) ∧ w ∈ Gxy

proof −
define w where w = geodesic-segment-param Gxy x (Gromov-product-at x y z)
have w ∈ Gxy unfolding w-def

by (rule geodesic-segment-param(3 )[OF assms(1 )], auto)
then have xy: infdist w Gxy ≤ 4 ∗ deltaG(TYPE( ′a)) by simp
have ∗: dist w x = (Gromov-product-at x y z)

unfolding w-def using assms(1 )
by (metis Gromov-product-le-dist(1 ) Gromov-product-nonneg atLeastAtMost-iff

geodesic-segment-param(6 ) metric-space-class.dist-commute)

define w2 where w2 = geodesic-segment-param Gxz x (Gromov-product-at x y
z)

have w2 ∈ Gxz unfolding w2-def
by (rule geodesic-segment-param(3 )[OF assms(2 )], auto)

moreover have dist w w2 ≤ 4 ∗ deltaG(TYPE( ′a))
unfolding w-def w2-def by (rule thin-triangles1 [OF assms(1 ) assms(2 )], auto)

ultimately have xz: infdist w Gxz ≤ 4 ∗ deltaG(TYPE( ′a))
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using infdist-le2 by blast

have w = geodesic-segment-param Gxy y (dist x y − Gromov-product-at x y z)
unfolding w-def by (rule geodesic-segment-reverse-param[OF assms(1 ), sym-

metric], auto)
then have w: w = geodesic-segment-param Gxy y (Gromov-product-at y x z)

using Gromov-product-add[of x y z] by (metis add-diff-cancel-left ′)

define w3 where w3 = geodesic-segment-param Gyz y (Gromov-product-at y x
z)

have w3 ∈ Gyz unfolding w3-def
by (rule geodesic-segment-param(3 )[OF assms(3 )], auto)

moreover have dist w w3 ≤ 4 ∗ deltaG(TYPE( ′a))
unfolding w w3-def by (rule thin-triangles1 [OF geodesic-segment-commute[OF

assms(1 )] assms(3 )], auto)
ultimately have yz: infdist w Gyz ≤ 4 ∗ deltaG(TYPE( ′a))

using infdist-le2 by blast

show ?thesis using xy xz yz ∗ ‹w ∈ Gxy› by force
qed

The distance of a vertex of a triangle to the opposite side is essentially given
by the Gromov product, up to 2δ.
lemma dist-triangle-side-middle:

assumes geodesic-segment-between G x (y:: ′a)
shows dist z (geodesic-segment-param G x (Gromov-product-at x z y)) ≤ Gro-

mov-product-at z x y + 2 ∗ deltaG(TYPE( ′a))
proof −

define m where m = geodesic-segment-param G x (Gromov-product-at x z y)
have m ∈ G

unfolding m-def using assms(1 ) by auto
have A: dist x m = Gromov-product-at x z y

unfolding m-def by (rule geodesic-segment-param(6 )[OF assms(1 )], auto)
have B: dist y m = dist x y − dist x m

using geodesic-segment-dist[OF assms ‹m ∈ G›] by (auto simp add: met-
ric-space-class.dist-commute)

have ∗: dist x z + dist y m = Gromov-product-at z x y + dist x y
dist x m + dist y z = Gromov-product-at z x y + dist x y

unfolding B A Gromov-product-at-def by (auto simp add: metric-space-class.dist-commute
divide-simps)

have dist x y + dist z m ≤ max (dist x z + dist y m) (dist x m + dist y z) + 2
∗ deltaG(TYPE( ′a))

by (rule hyperb-quad-ineq)
then have dist z m ≤ Gromov-product-at z x y + 2 ∗ deltaG(TYPE( ′a))

unfolding ∗ by auto
then show ?thesis

unfolding m-def by auto
qed
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lemma infdist-triangle-side [mono-intros]:
assumes geodesic-segment-between G x (y:: ′a)
shows infdist z G ≤ Gromov-product-at z x y + 2 ∗ deltaG(TYPE( ′a))

proof −
have infdist z G ≤ dist z (geodesic-segment-param G x (Gromov-product-at x z

y))
using assms by (auto intro!: infdist-le)

then show ?thesis
using dist-triangle-side-middle[OF assms, of z] by auto

qed

The distance of a point on a side of triangle to the opposite vertex is con-
trolled by the length of the opposite sides, up to δ.
lemma dist-le-max-dist-triangle:

assumes geodesic-segment-between G x y
m ∈ G

shows dist m z ≤ max (dist x z) (dist y z) + deltaG(TYPE( ′a))
proof −

consider dist m x ≤ deltaG(TYPE( ′a)) | dist m y ≤ deltaG(TYPE( ′a)) |
dist m x ≥ deltaG(TYPE( ′a)) ∧ dist m y ≥ deltaG(TYPE( ′a)) ∧

Gromov-product-at z x m ≤ Gromov-product-at z m y |
dist m x ≥ deltaG(TYPE( ′a)) ∧ dist m y ≥ deltaG(TYPE( ′a)) ∧

Gromov-product-at z m y ≤ Gromov-product-at z x m
by linarith

then show ?thesis
proof (cases)

case 1
have dist m z ≤ dist m x + dist x z

by (intro mono-intros)
then show ?thesis using 1 by auto

next
case 2
have dist m z ≤ dist m y + dist y z

by (intro mono-intros)
then show ?thesis using 2 by auto

next
case 3

then have Gromov-product-at z x m = min (Gromov-product-at z x m) (Gromov-product-at
z m y)

by auto
also have ... ≤ Gromov-product-at z x y + deltaG(TYPE( ′a))

by (intro mono-intros)
finally have dist z m ≤ dist z y + dist x m − dist x y + 2 ∗ deltaG(TYPE( ′a))

unfolding Gromov-product-at-def by (auto simp add: divide-simps alge-
bra-simps)

also have ... = dist z y − dist m y + 2 ∗ deltaG(TYPE( ′a))
using geodesic-segment-dist[OF assms] by auto

also have ... ≤ dist z y + deltaG(TYPE( ′a))
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using 3 by auto
finally show ?thesis

by (simp add: metric-space-class.dist-commute)
next

case 4
then have Gromov-product-at z m y = min (Gromov-product-at z x m) (Gromov-product-at

z m y)
by auto

also have ... ≤ Gromov-product-at z x y + deltaG(TYPE( ′a))
by (intro mono-intros)

finally have dist z m ≤ dist z x + dist m y − dist x y + 2 ∗ deltaG(TYPE( ′a))
unfolding Gromov-product-at-def by (auto simp add: divide-simps alge-

bra-simps)
also have ... = dist z x − dist x m + 2 ∗ deltaG(TYPE( ′a))

using geodesic-segment-dist[OF assms] by auto
also have ... ≤ dist z x + deltaG(TYPE( ′a))

using 4 by (simp add: metric-space-class.dist-commute)
finally show ?thesis

by (simp add: metric-space-class.dist-commute)
qed

qed

end

A useful variation around the previous properties is that quadrilaterals are
thin, in the following sense: if one has a union of three geodesics from x to t,
then a geodesic from x to t remains within distance 8δ of the union of these
3 geodesics. We formulate the statement in geodesic hyperbolic spaces as
the proof requires the construction of an additional geodesic, but in fact the
statement is true without this assumption, thanks to the Bonk-Schramm
extension theorem.
lemma (in Gromov-hyperbolic-space-geodesic) thin-quadrilaterals:

assumes geodesic-segment-between Gxy x y
geodesic-segment-between Gyz y z
geodesic-segment-between Gzt z t
geodesic-segment-between Gxt x t
(w:: ′a) ∈ Gxt

shows infdist w (Gxy ∪ Gyz ∪ Gzt) ≤ 8 ∗ deltaG(TYPE( ′a))
proof −

have I : infdist w ({x−−z} ∪ Gzt) ≤ 4 ∗ deltaG(TYPE( ′a))
apply (rule thin-triangles[OF - assms(3 ) assms(4 ) assms(5 )])
by (simp add: geodesic-segment-commute)

have ∃ u ∈ {x−−z} ∪ Gzt. infdist w ({x−−z} ∪ Gzt) = dist w u
apply (rule infdist-proper-attained, auto intro!: proper-Un simp add: geodesic-segment-topology(7 ))
by (meson assms(3 ) geodesic-segmentI geodesic-segment-topology)

then obtain u where u: u ∈ {x−−z} ∪ Gzt infdist w ({x−−z} ∪ Gzt) = dist
w u

by auto
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have infdist u (Gxy ∪ Gyz ∪ Gzt) ≤ 4 ∗ deltaG(TYPE( ′a))
proof (cases u ∈ {x−−z})

case True
have infdist u (Gxy ∪ Gyz ∪ Gzt) ≤ infdist u (Gxy ∪ Gyz)

apply (intro mono-intros) using assms(1 ) by auto
also have ... ≤ 4 ∗ deltaG(TYPE( ′a))

using thin-triangles[OF geodesic-segment-commute[OF assms(1 )] assms(2 ) -
True] by auto

finally show ?thesis
by auto

next
case False
then have ∗: u ∈ Gzt using u(1 ) by auto
have infdist u (Gxy ∪ Gyz ∪ Gzt) ≤ infdist u Gzt

apply (intro mono-intros) using assms(3 ) by auto
also have ... = 0 using ∗ by auto
finally show ?thesis

using local.delta-nonneg by linarith
qed
moreover have infdist w (Gxy ∪ Gyz ∪ Gzt) ≤ infdist u (Gxy ∪ Gyz ∪ Gzt)

+ dist w u
by (intro mono-intros)

ultimately show ?thesis
using I u(2 ) by auto

qed

There are converses to the above statements: if triangles are thin, or slim,
then the space is Gromov-hyperbolic, for some δ. We prove these criteria
here, following the proofs in Ghys (with a simplification in the case of slim
triangles.

The basic result we will use twice below is the following: if points on sides
of triangles at the same distance of the basepoint are close to each other
up to the Gromov product, then the space is hyperbolic. The proof goes as
follows. One wants to show that (x, z)e ≥ min((x, y)e, (y, z)e) − δ = t − δ.
On [ex], [ey] and [ez], consider points wx, wy and wz at distance t of e.
Then wx and wy are δ-close by assumption, and so are wy and wz. Then
wx and wz are 2δ-close. One can use these two points to express (x, z)e,
and the result follows readily.
lemma (in geodesic-space) controlled-thin-triangles-implies-hyperbolic:
assumes

∧
(x:: ′a) y z t Gxy Gxz. geodesic-segment-between Gxy x y =⇒ geodesic-segment-between

Gxz x z =⇒ t ∈ {0 ..Gromov-product-at x y z}
=⇒ dist (geodesic-segment-param Gxy x t) (geodesic-segment-param Gxz x t)

≤ delta
shows Gromov-hyperbolic-subset delta (UNIV :: ′a set)

proof (rule Gromov-hyperbolic-subsetI2 )
fix e x y z:: ′a
define t where t = min (Gromov-product-at e x y) (Gromov-product-at e y z)
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define wx where wx = geodesic-segment-param {e−−x} e t
define wy where wy = geodesic-segment-param {e−−y} e t
define wz where wz = geodesic-segment-param {e−−z} e t
have dist wx wy ≤ delta

unfolding wx-def wy-def t-def by (rule assms[of - - x - y], auto)
have dist wy wz ≤ delta

unfolding wy-def wz-def t-def by (rule assms[of - - y - z], auto)

have t + dist wy x = dist e wx + dist wy x
unfolding wx-def apply (auto intro!: geodesic-segment-param-in-geodesic-spaces(6 )[symmetric])

unfolding t-def by (auto, meson Gromov-product-le-dist(1 ) min.absorb-iff2
min.left-idem order .trans)

also have ... ≤ dist e wx + (dist wy wx + dist wx x)
by (intro mono-intros)

also have ... ≤ dist e wx + (delta + dist wx x)
using ‹dist wx wy ≤ delta› by (auto simp add: metric-space-class.dist-commute)

also have ... = delta + dist e x
apply auto apply (rule geodesic-segment-dist[of {e−−x}])
unfolding wx-def t-def by (auto simp add: geodesic-segment-param-in-segment)

finally have ∗: t + dist wy x − delta ≤ dist e x by simp

have t + dist wy z = dist e wz + dist wy z
unfolding wz-def apply (auto intro!: geodesic-segment-param-in-geodesic-spaces(6 )[symmetric])

unfolding t-def by (auto, meson Gromov-product-le-dist(2 ) min.absorb-iff1
min.right-idem order .trans)

also have ... ≤ dist e wz + (dist wy wz + dist wz z)
by (intro mono-intros)

also have ... ≤ dist e wz + (delta + dist wz z)
using ‹dist wy wz ≤ delta› by (auto simp add: metric-space-class.dist-commute)

also have ... = delta + dist e z
apply auto apply (rule geodesic-segment-dist[of {e−−z}])
unfolding wz-def t-def by (auto simp add: geodesic-segment-param-in-segment)

finally have t + dist wy z − delta ≤ dist e z by simp

then have (t + dist wy x − delta) + (t + dist wy z − delta) ≤ dist e x + dist
e z

using ∗ by simp
also have ... = dist x z + 2 ∗ Gromov-product-at e x z
unfolding Gromov-product-at-def by (auto simp add: algebra-simps divide-simps)

also have ... ≤ dist wy x + dist wy z + 2 ∗ Gromov-product-at e x z
using metric-space-class.dist-triangle[of x z wy] by (auto simp add: met-

ric-space-class.dist-commute)
finally have 2 ∗ t − 2 ∗ delta ≤ 2 ∗ Gromov-product-at e x z

by auto
then show min (Gromov-product-at e x y) (Gromov-product-at e y z) − delta ≤

Gromov-product-at e x z
unfolding t-def by auto

qed

We prove that if triangles are thin, i.e., they satisfy the Rips condition,
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i.e., every side of a triangle is included in the δ-neighborhood of the union
of the other triangles, then the space is hyperbolic. If a point w on [xy]
satisfies d(x,w) < (y, z)x− δ, then its friend on [xz]∪ [yz] has to be on [xz],
and roughly at the same distance of the origin. Then it follows that the
point on [xz] with d(x,w′) = d(x,w) is close to w, as desired. If d(x,w) ∈
[(y, z)x − δ, (y, z)x), we argue in the same way but for the point which is
closer to x by an amount δ. Finally, the last case d(x,w) = (y, z)x follows
by continuity.
proposition (in geodesic-space) thin-triangles-implies-hyperbolic:

assumes
∧
(x:: ′a) y z w Gxy Gyz Gxz. geodesic-segment-between Gxy x y =⇒

geodesic-segment-between Gxz x z =⇒ geodesic-segment-between Gyz y z
=⇒ w ∈ Gxy =⇒ infdist w (Gxz ∪ Gyz) ≤ delta

shows Gromov-hyperbolic-subset (4 ∗ delta) (UNIV :: ′a set)
proof −

obtain x0 :: ′a where True by auto
have infdist x0 ({x0} ∪ {x0}) ≤ delta

by (rule assms[of {x0} x0 x0 {x0} x0 {x0} x0 ], auto)
then have [simp]: delta ≥ 0

using infdist-nonneg by auto

have dist (geodesic-segment-param Gxy x t) (geodesic-segment-param Gxz x t) ≤
4 ∗ delta

if H : geodesic-segment-between Gxy x y geodesic-segment-between Gxz x z t ∈
{0 ..Gromov-product-at x y z}

for x y z t Gxy Gxz
proof −

have Main: dist (geodesic-segment-param Gxy x u) (geodesic-segment-param
Gxz x u) ≤ 4 ∗ delta

if u ∈ {delta..<Gromov-product-at x y z} for u
proof −

define wy where wy = geodesic-segment-param Gxy x (u−delta)
have dist wy (geodesic-segment-param Gxy x u) = abs((u−delta) − u)
unfolding wy-def apply (rule geodesic-segment-param(7 )[OF H (1 )]) using

that apply auto
using Gromov-product-le-dist(1 )[of x y z] ‹delta ≥ 0 › by linarith+

then have I1 : dist wy (geodesic-segment-param Gxy x u) = delta by auto

have infdist wy (Gxz ∪ {y−−z}) ≤ delta
unfolding wy-def apply (rule assms[of Gxy x y - z]) using H by (auto

simp add: geodesic-segment-param-in-segment)
moreover have ∃wz ∈ Gxz ∪ {y−−z}. infdist wy (Gxz ∪ {y−−z}) = dist

wy wz
apply (rule infdist-proper-attained, intro proper-Un)
using H (2 ) by (auto simp add: geodesic-segment-topology)

ultimately obtain wz where wz: wz ∈ Gxz ∪ {y−−z} dist wy wz ≤ delta
by force

have dist wz x ≤ dist wz wy + dist wy x
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by (rule metric-space-class.dist-triangle)
also have ... ≤ delta + (u−delta)

apply (intro add-mono) using wz(2 ) unfolding wy-def apply (auto simp
add: metric-space-class.dist-commute)

apply (intro eq-refl geodesic-segment-param(6 )[OF H (1 )])
using that apply auto
by (metis diff-0-right diff-mono dual-order .trans Gromov-product-le-dist(1 )

less-eq-real-def metric-space-class.dist-commute metric-space-class.zero-le-dist wy-def )
finally have dist wz x ≤ u by auto
also have ... < Gromov-product-at x y z

using that by auto
also have ... ≤ infdist x {y−−z}

by (rule Gromov-product-le-infdist, auto)
finally have dist x wz < infdist x {y−−z}

by (simp add: metric-space-class.dist-commute)
then have wz /∈ {y−−z}

by (metis add.left-neutral infdist-triangle infdist-zero leD)
then have wz ∈ Gxz

using wz by auto

have u − delta = dist x wy
unfolding wy-def apply (rule geodesic-segment-param(6 )[symmetric, OF

H (1 )])
using that apply auto
using Gromov-product-le-dist(1 )[of x y z] ‹delta ≥ 0 › by linarith

also have ... ≤ dist x wz + dist wz wy
by (rule metric-space-class.dist-triangle)

also have ... ≤ dist x wz + delta
using wz(2 ) by (simp add: metric-space-class.dist-commute)

finally have dist x wz ≥ u − 2 ∗ delta by auto

define dz where dz = dist x wz
have ∗: wz = geodesic-segment-param Gxz x dz

unfolding dz-def using ‹wz ∈ Gxz› H (2 ) by auto
have dist wz (geodesic-segment-param Gxz x u) = abs(dz − u)

unfolding ∗ apply (rule geodesic-segment-param(7 )[OF H (2 )])
unfolding dz-def using ‹dist wz x ≤ u› that apply (auto simp add:

metric-space-class.dist-commute)
using Gromov-product-le-dist(2 )[of x y z] ‹delta ≥ 0 › by linarith+

also have ... ≤ 2 ∗ delta
unfolding dz-def using ‹dist wz x ≤ u› ‹dist x wz ≥ u − 2 ∗ delta›
by (auto simp add: metric-space-class.dist-commute)

finally have I3 : dist wz (geodesic-segment-param Gxz x u) ≤ 2 ∗ delta
by simp

have dist (geodesic-segment-param Gxy x u) (geodesic-segment-param Gxz x
u)

≤ dist (geodesic-segment-param Gxy x u) wy + dist wy wz + dist wz
(geodesic-segment-param Gxz x u)
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by (rule dist-triangle4 )
also have ... ≤ delta + delta + (2 ∗ delta)

using I1 wz(2 ) I3 by (auto simp add: metric-space-class.dist-commute)
finally show ?thesis by simp

qed
have t ∈ {0 ..dist x y} t ∈ {0 ..dist x z} t ≥ 0

using ‹t ∈ {0 ..Gromov-product-at x y z}› apply auto
using Gromov-product-le-dist[of x y z] by linarith+
consider t ≤ delta | t ∈ {delta..<Gromov-product-at x y z} | t = Gro-

mov-product-at x y z ∧ t > delta
using ‹t ∈ {0 ..Gromov-product-at x y z}› by (auto, linarith)

then show ?thesis
proof (cases)

case 1
have dist (geodesic-segment-param Gxy x t) (geodesic-segment-param Gxz x t)

≤ dist x (geodesic-segment-param Gxy x t) + dist x (geodesic-segment-param Gxz
x t)

by (rule metric-space-class.dist-triangle3 )
also have ... = t + t
using geodesic-segment-param(6 )[OF H (1 ) ‹t ∈ {0 ..dist x y}›] geodesic-segment-param(6 )[OF

H (2 ) ‹t ∈ {0 ..dist x z}›]
by auto

also have ... ≤ 4 ∗ delta using 1 ‹delta ≥ 0 › by linarith
finally show ?thesis by simp

next
case 2
show ?thesis using Main[OF 2 ] by simp

next
case 3

In this case, we argue by approximating t by a slightly smaller parameter,
for which the result has already been proved above. We need to argue
that all functions are continuous on the sets we are considering, which is
straightforward but tedious.

define u::nat ⇒ real where u = (λn. t−1/n)
have u −−−−→ t − 0

unfolding u-def by (intro tendsto-intros)
then have u −−−−→ t by simp
then have ∗: eventually (λn. u n > delta) sequentially

using 3 by (auto simp add: order-tendsto-iff )
have ∗∗: eventually (λn. u n ≥ 0 ) sequentially

apply (rule eventually-elim2 [OF ∗, of (λn. delta ≥ 0 )]) apply auto
using ‹delta ≥ 0 › by linarith

have ∗∗∗: u n ≤ t for n unfolding u-def by auto
have A: eventually (λn. u n ∈ {delta..<Gromov-product-at x y z}) sequentially

apply (auto intro!: eventually-conj)
apply (rule eventually-mono[OF ∗], simp)
unfolding u-def using 3 by auto

have B: eventually (λn. dist (geodesic-segment-param Gxy x (u n)) (geodesic-segment-param
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Gxz x (u n)) ≤ 4 ∗ delta) sequentially
by (rule eventually-mono[OF A Main], simp)

have C : (λn. dist (geodesic-segment-param Gxy x (u n)) (geodesic-segment-param
Gxz x (u n)))

−−−−→ dist (geodesic-segment-param Gxy x t) (geodesic-segment-param
Gxz x t)

apply (intro tendsto-intros)
apply (rule continuous-on-tendsto-compose[OF - ‹u −−−−→ t› ‹t ∈ {0 ..dist

x y}›])
apply (simp add: isometry-on-continuous H (1 ))
using ∗∗ ∗∗∗ ‹t ∈ {0 ..dist x y}› apply (simp, intro eventually-conj, simp,

meson dual-order .trans eventually-mono)
apply (rule continuous-on-tendsto-compose[OF - ‹u −−−−→ t› ‹t ∈ {0 ..dist

x z}›])
apply (simp add: isometry-on-continuous H (2 ))
using ∗∗ ∗∗∗ ‹t ∈ {0 ..dist x z}› apply (simp, intro eventually-conj, simp,

meson dual-order .trans eventually-mono)
done

show ?thesis
using B unfolding eventually-sequentially using LIMSEQ-le-const2 [OF C ]

by simp
qed

qed
with controlled-thin-triangles-implies-hyperbolic[OF this]
show ?thesis by auto

qed

Then, we prove that if triangles are slim (i.e., there is a point that is δ-close
to all sides), then the space is hyperbolic. Using the previous statement, we
should show that points on [xy] and [xz] at the same distance t of the origin
are close, if t ≤ (y, z)x. There are two steps: - for t = (y, z)x, then the two
points are in fact close to the middle of the triangle (as this point satisfies
d(x, y) = d(x,w)+d(w, y)+O(δ), and similarly for the other sides, one gets
readily d(x,w) = (y, z)w + O(δ) by expanding the formula for the Gromov
product). Hence, they are close together. - For t < (y, z)x, we argue that
there are points y′ ∈ [xy] and z′ ∈ [xz] for which t = (y′, z′)x, by a continuity
argument and the intermediate value theorem. Then the result follows from
the first step in the triangle xy′z′.
The proof we give is simpler than the one in [GdlH90], and gives better
constants.
proposition (in geodesic-space) slim-triangles-implies-hyperbolic:

assumes
∧
(x:: ′a) y z Gxy Gyz Gxz. geodesic-segment-between Gxy x y =⇒

geodesic-segment-between Gxz x z =⇒ geodesic-segment-between Gyz y z
=⇒ ∃w. infdist w Gxy ≤ delta ∧ infdist w Gxz ≤ delta ∧ infdist w Gyz ≤

delta
shows Gromov-hyperbolic-subset (6 ∗ delta) (UNIV :: ′a set)

proof −
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First step: the result is true for t = (y, z)x.
have Main: dist (geodesic-segment-param Gxy x (Gromov-product-at x y z))

(geodesic-segment-param Gxz x (Gromov-product-at x y z)) ≤ 6 ∗ delta
if H : geodesic-segment-between Gxy x y geodesic-segment-between Gxz x z
for x y z Gxy Gxz

proof −
obtain w where w: infdist w Gxy ≤ delta infdist w Gxz ≤ delta infdist w

{y−−z} ≤ delta
using assms[OF H , of {y−−z}] by auto

have ∃wxy ∈ Gxy. infdist w Gxy = dist w wxy
apply (rule infdist-proper-attained) using H (1 ) by (auto simp add: geodesic-segment-topology)
then obtain wxy where wxy: wxy ∈ Gxy dist w wxy ≤ delta

using w by auto
have ∃wxz ∈ Gxz. infdist w Gxz = dist w wxz
apply (rule infdist-proper-attained) using H (2 ) by (auto simp add: geodesic-segment-topology)
then obtain wxz where wxz: wxz ∈ Gxz dist w wxz ≤ delta

using w by auto
have ∃wyz ∈ {y−−z}. infdist w {y−−z} = dist w wyz
apply (rule infdist-proper-attained) by (auto simp add: geodesic-segment-topology)
then obtain wyz where wyz: wyz ∈ {y−−z} dist w wyz ≤ delta

using w by auto

have I : dist wxy wxz ≤ 2 ∗ delta dist wxy wyz ≤ 2 ∗ delta dist wxz wyz ≤ 2 ∗
delta

using metric-space-class.dist-triangle[of wxy wxz w] metric-space-class.dist-triangle[of
wxy wyz w] metric-space-class.dist-triangle[of wxz wyz w]

wxy(2 ) wyz(2 ) wxz(2 ) by (auto simp add: metric-space-class.dist-commute)

We show that d(x,wxy) is close to the Gromov product of y and z seen from
x. This follows from the fact that w is essentially on all geodesics, so that
everything simplifies when one writes down the Gromov products, leaving
only d(x,w) up to O(δ). To get the right O(δ), one has to be a little bit
careful, using the triangular inequality when possible. This means that the
computations for the upper and lower bounds are different, making them a
little bit tedious, although straightforward.

have dist y wxy −4 ∗ delta + dist wxy z ≤ dist y wxy − dist wxy wyz + dist
wxy z − dist wxy wyz

using I by simp
also have ... ≤ dist wyz y + dist wyz z
using metric-space-class.dist-triangle[of y wxy wyz ] metric-space-class.dist-triangle[of

wxy z wyz]
by (auto simp add: metric-space-class.dist-commute)

also have ... = dist y z
using wyz(1 ) by (metis geodesic-segment-dist local.some-geodesic-is-geodesic-segment(1 )

metric-space-class.dist-commute)
finally have ∗: dist y wxy + dist wxy z − 4 ∗ delta ≤ dist y z by simp
have 2 ∗ Gromov-product-at x y z = dist x y + dist x z − dist y z

unfolding Gromov-product-at-def by simp
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also have ... ≤ dist x wxy + dist wxy y + dist x wxy + dist wxy z − (dist y
wxy + dist wxy z − 4 ∗ delta)

using metric-space-class.dist-triangle[of x y wxy] metric-space-class.dist-triangle[of
x z wxy] ∗

by (auto simp add: metric-space-class.dist-commute)
also have ... = 2 ∗ dist x wxy + 4 ∗ delta

by (auto simp add: metric-space-class.dist-commute)
finally have A: Gromov-product-at x y z ≤ dist x wxy + 2 ∗ delta by simp

have dist x wxy −4 ∗ delta + dist wxy z ≤ dist x wxy − dist wxy wxz + dist
wxy z − dist wxy wxz

using I by simp
also have ... ≤ dist wxz x + dist wxz z
using metric-space-class.dist-triangle[of x wxy wxz] metric-space-class.dist-triangle[of

wxy z wxz]
by (auto simp add: metric-space-class.dist-commute)

also have ... = dist x z
using wxz(1 ) H (2 ) by (metis geodesic-segment-dist metric-space-class.dist-commute)
finally have ∗: dist x wxy + dist wxy z − 4 ∗ delta ≤ dist x z by simp
have 2 ∗ dist x wxy − 4 ∗ delta = (dist x wxy + dist wxy y) + (dist x wxy +

dist wxy z − 4 ∗ delta) − (dist y wxy + dist wxy z)
by (auto simp add: metric-space-class.dist-commute)

also have ... ≤ dist x y + dist x z − dist y z
using ∗ metric-space-class.dist-triangle[of y z wxy] geodesic-segment-dist[OF

H (1 ) wxy(1 )] by auto
also have ... = 2 ∗ Gromov-product-at x y z

unfolding Gromov-product-at-def by simp
finally have B: Gromov-product-at x y z ≥ dist x wxy − 2 ∗ delta by simp

define dy where dy = dist x wxy
have ∗: wxy = geodesic-segment-param Gxy x dy

unfolding dy-def using ‹wxy ∈ Gxy› H (1 ) by auto
have dist wxy (geodesic-segment-param Gxy x (Gromov-product-at x y z)) =

abs(dy − Gromov-product-at x y z)
unfolding ∗ apply (rule geodesic-segment-param(7 )[OF H (1 )])
unfolding dy-def using that geodesic-segment-dist-le[OF H (1 ) wxy(1 ), of x]

by (auto simp add: metric-space-class.dist-commute)
also have ... ≤ 2 ∗ delta

using A B unfolding dy-def by auto
finally have Iy: dist wxy (geodesic-segment-param Gxy x (Gromov-product-at

x y z)) ≤ 2 ∗ delta
by simp

We need the same estimate for wxz. The proof is exactly the same, copied
and pasted. It would be better to have a separate statement, but since its
assumptions would be rather cumbersome I decided to keep the two proofs.

have dist z wxz −4 ∗ delta + dist wxz y ≤ dist z wxz − dist wxz wyz + dist
wxz y − dist wxz wyz

using I by simp
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also have ... ≤ dist wyz z + dist wyz y
using metric-space-class.dist-triangle[of z wxz wyz] metric-space-class.dist-triangle[of

wxz y wyz]
by (auto simp add: metric-space-class.dist-commute)

also have ... = dist z y
using ‹dist wyz y + dist wyz z = dist y z› by (auto simp add: met-

ric-space-class.dist-commute)
finally have ∗: dist z wxz + dist wxz y − 4 ∗ delta ≤ dist z y by simp
have 2 ∗ Gromov-product-at x y z = dist x z + dist x y − dist z y
unfolding Gromov-product-at-def by (simp add: metric-space-class.dist-commute)
also have ... ≤ dist x wxz + dist wxz z + dist x wxz + dist wxz y − (dist z wxz

+ dist wxz y − 4 ∗ delta)
using metric-space-class.dist-triangle[of x z wxz] metric-space-class.dist-triangle[of

x y wxz] ∗
by (auto simp add: metric-space-class.dist-commute)

also have ... = 2 ∗ dist x wxz + 4 ∗ delta
by (auto simp add: metric-space-class.dist-commute)

finally have A: Gromov-product-at x y z ≤ dist x wxz + 2 ∗ delta by simp

have dist x wxz −4 ∗ delta + dist wxz y ≤ dist x wxz − dist wxz wxy + dist
wxz y − dist wxz wxy

using I by (simp add: metric-space-class.dist-commute)
also have ... ≤ dist wxy x + dist wxy y
using metric-space-class.dist-triangle[of x wxz wxy] metric-space-class.dist-triangle[of

wxz y wxy]
by (auto simp add: metric-space-class.dist-commute)

also have ... = dist x y
using wxy(1 ) H (1 ) by (metis geodesic-segment-dist metric-space-class.dist-commute)
finally have ∗: dist x wxz + dist wxz y − 4 ∗ delta ≤ dist x y by simp
have 2 ∗ dist x wxz − 4 ∗ delta = (dist x wxz + dist wxz z) + (dist x wxz +

dist wxz y − 4 ∗ delta) − (dist z wxz + dist wxz y)
by (auto simp add: metric-space-class.dist-commute)

also have ... ≤ dist x z + dist x y − dist z y
using ∗ metric-space-class.dist-triangle[of z y wxz] geodesic-segment-dist[OF

H (2 ) wxz(1 )] by auto
also have ... = 2 ∗ Gromov-product-at x y z
unfolding Gromov-product-at-def by (simp add: metric-space-class.dist-commute)
finally have B: Gromov-product-at x y z ≥ dist x wxz − 2 ∗ delta by simp

define dz where dz = dist x wxz
have ∗: wxz = geodesic-segment-param Gxz x dz

unfolding dz-def using ‹wxz ∈ Gxz› H (2 ) by auto
have dist wxz (geodesic-segment-param Gxz x (Gromov-product-at x y z)) =

abs(dz − Gromov-product-at x y z)
unfolding ∗ apply (rule geodesic-segment-param(7 )[OF H (2 )])
unfolding dz-def using that geodesic-segment-dist-le[OF H (2 ) wxz(1 ), of x]

by (auto simp add: metric-space-class.dist-commute)
also have ... ≤ 2 ∗ delta

using A B unfolding dz-def by auto
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finally have Iz: dist wxz (geodesic-segment-param Gxz x (Gromov-product-at x
y z)) ≤ 2 ∗ delta

by simp

have dist (geodesic-segment-param Gxy x (Gromov-product-at x y z)) (geodesic-segment-param
Gxz x (Gromov-product-at x y z))

≤ dist (geodesic-segment-param Gxy x (Gromov-product-at x y z)) wxy + dist
wxy wxz + dist wxz (geodesic-segment-param Gxz x (Gromov-product-at x y z))

by (rule dist-triangle4 )
also have ... ≤ 2 ∗ delta + 2 ∗ delta + 2 ∗ delta

using Iy Iz I by (auto simp add: metric-space-class.dist-commute)
finally show ?thesis by simp

qed

Second step: the result is true for t ≤ (y, z)x, by a continuity argument and
a reduction to the first step.

have dist (geodesic-segment-param Gxy x t) (geodesic-segment-param Gxz x t) ≤
6 ∗ delta

if H : geodesic-segment-between Gxy x y geodesic-segment-between Gxz x z t ∈
{0 ..Gromov-product-at x y z}

for x y z t Gxy Gxz
proof −

define ys where ys = (λs. geodesic-segment-param Gxy x (s ∗ dist x y))
define zs where zs = (λs. geodesic-segment-param Gxz x (s ∗ dist x z))
define F where F = (λs. Gromov-product-at x (ys s) (zs s))
have ∃ s. 0 ≤ s ∧ s ≤ 1 ∧ F s = t
proof (rule IVT ′)

show F 0 ≤ t t ≤ F 1
unfolding F-def using that unfolding ys-def zs-def by (auto simp add:

Gromov-product-e-x-x)
show continuous-on {0 ..1} F

unfolding F-def Gromov-product-at-def ys-def zs-def
apply (intro continuous-intros continuous-on-compose2 [of {0 ..dist x y} - -

λt. t ∗ dist x y] continuous-on-compose2 [of {0 ..dist x z} - - λt. t ∗ dist x z])
apply (auto intro!: isometry-on-continuous geodesic-segment-param(4 ) that)
using metric-space-class.zero-le-dist mult-left-le-one-le by blast+

qed (simp)
then obtain s where s: s ∈ {0 ..1} t = Gromov-product-at x (ys s) (zs s)

unfolding F-def by auto

have a: x = geodesic-segment-param Gxy x 0 using H (1 ) by auto
have b: x = geodesic-segment-param Gxz x 0 using H (2 ) by auto
have dy: dist x (ys s) = s ∗ dist x y
unfolding ys-def apply (rule geodesic-segment-param[OF H (1 )]) using s(1 )

by (auto simp add: mult-left-le-one-le)
have dz: dist x (zs s) = s ∗ dist x z

unfolding zs-def apply (rule geodesic-segment-param[OF H (2 )]) using s(1 )
by (auto simp add: mult-left-le-one-le)
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define Gxy2 where Gxy2 = geodesic-subsegment Gxy x 0 (s ∗ dist x y)
define Gxz2 where Gxz2 = geodesic-subsegment Gxz x 0 (s ∗ dist x z)

have dist (geodesic-segment-param Gxy2 x t) (geodesic-segment-param Gxz2 x
t) ≤ 6 ∗ delta

unfolding s(2 ) proof (rule Main)
show geodesic-segment-between Gxy2 x (ys s)
apply (subst a) unfolding Gxy2-def ys-def apply (rule geodesic-subsegment[OF

H (1 )])
using s(1 ) by (auto simp add: mult-left-le-one-le)

show geodesic-segment-between Gxz2 x (zs s)
apply (subst b) unfolding Gxz2-def zs-def apply (rule geodesic-subsegment[OF

H (2 )])
using s(1 ) by (auto simp add: mult-left-le-one-le)

qed
moreover have geodesic-segment-param Gxy2 x (t−0 ) = geodesic-segment-param

Gxy x t
apply (subst a) unfolding Gxy2-def apply (rule geodesic-subsegment(3 )[OF

H (1 )])
using s(1 ) H (3 ) unfolding s(2 ) apply (auto simp add: mult-left-le-one-le)
unfolding dy[symmetric] by (rule Gromov-product-le-dist)

moreover have geodesic-segment-param Gxz2 x (t−0 ) = geodesic-segment-param
Gxz x t

apply (subst b) unfolding Gxz2-def apply (rule geodesic-subsegment(3 )[OF
H (2 )])

using s(1 ) H (3 ) unfolding s(2 ) apply (auto simp add: mult-left-le-one-le)
unfolding dz[symmetric] by (rule Gromov-product-le-dist)

ultimately show ?thesis by simp
qed
with controlled-thin-triangles-implies-hyperbolic[OF this]
show ?thesis by auto

qed

9 Metric trees

Metric trees have several equivalent definitions. The simplest one is probably
that it is a geodesic space in which the union of two geodesic segments
intersecting only at one endpoint is still a geodesic segment.
Metric trees are Gromov hyperbolic, with δ = 0.
class metric-tree = geodesic-space +
assumes geod-union: geodesic-segment-between G x y =⇒ geodesic-segment-between

H y z =⇒ G ∩ H = {y} =⇒ geodesic-segment-between (G ∪ H ) x z

We will now show that the real line is a metric tree, by identifying its geodesic
segments, i.e., the compact intervals.
lemma geodesic-segment-between-real:

assumes x ≤ (y::real)

160



shows geodesic-segment-between (G::real set) x y = (G = {x..y})
proof

assume H : geodesic-segment-between G x y
then have connected G x ∈ G y ∈ G
using geodesic-segment-topology(2 ) geodesic-segmentI geodesic-segment-endpoints

by auto
then have ∗: {x..y} ⊆ G

by (simp add: connected-contains-Icc)
moreover have G ⊆ {x..y}
proof

fix s assume s ∈ G
have abs(s−x) + abs(s−y) = abs(x−y)

using geodesic-segment-dist[OF H ‹s ∈ G›] unfolding dist-real-def by auto
then show s ∈ {x..y} using ‹x ≤ y› by auto

qed
ultimately show G = {x..y} by auto

next
assume H : G = {x..y}
define g where g = (λt. t + x)
have g 0 = x ∧ g (dist x y) = y ∧ isometry-on {0 ..dist x y} g ∧ G = g ‘ {0 ..dist

x y}
unfolding g-def isometry-on-def H using ‹x ≤ y› by (auto simp add: dist-real-def )

then have ∃ g. g 0 = x ∧ g (dist x y) = y ∧ isometry-on {0 ..dist x y} g ∧ G =
g ‘ {0 ..dist x y}

by auto
then show geodesic-segment-between G x y unfolding geodesic-segment-between-def

by auto
qed

lemma geodesic-segment-between-real ′:
{x−−y} = {min x y..max x (y::real)}

by (metis geodesic-segment-between-real geodesic-segment-commute some-geodesic-is-geodesic-segment(1 )
max-def min.cobounded1 min-def )

lemma geodesic-segment-real:
geodesic-segment (G::real set) = (∃ x y. x ≤ y ∧ G = {x..y})

proof
assume geodesic-segment G
then obtain x y where ∗: geodesic-segment-between G x y unfolding geodesic-segment-def

by auto
have (x ≤ y ∧ G = {x..y}) ∨ (y ≤ x ∧ G = {y..x})

apply (rule le-cases[of x y])
using geodesic-segment-between-real ∗ geodesic-segment-commute apply simp
using geodesic-segment-between-real ∗ geodesic-segment-commute by metis

then show ∃ x y. x ≤ y ∧ G = {x..y} by auto
next

assume ∃ x y. x ≤ y ∧ G = {x..y}
then show geodesic-segment G

unfolding geodesic-segment-def using geodesic-segment-between-real by metis
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qed

instance real::metric-tree
proof

fix G H ::real set and x y z::real assume GH : geodesic-segment-between G x y
geodesic-segment-between H y z G ∩ H = {y}

have G: G = {min x y..max x y} using GH
by (metis geodesic-segment-between-real geodesic-segment-commute inf-real-def

inf-sup-ord(2 ) max.coboundedI2 max-def min-def )
have H : H = {min y z..max y z} using GH

by (metis geodesic-segment-between-real geodesic-segment-commute inf-real-def
inf-sup-ord(2 ) max.coboundedI2 max-def min-def )

have ∗: (x ≤ y ∧ y ≤ z) ∨ (z ≤ y ∧ y ≤ x)
using G H ‹G ∩ H = {y}› unfolding min-def max-def
apply auto
apply (metis (mono-tags, opaque-lifting) min-le-iff-disj order-refl)
by (metis (full-types) less-eq-real-def max-def )

show geodesic-segment-between (G ∪ H ) x z
using ∗ apply rule
using ‹G ∩ H = {y}› unfolding G H apply (metis G GH (1 ) GH (2 ) H

geodesic-segment-between-real ivl-disj-un-two-touch(4 ) order-trans)
using ‹G ∩ H = {y}› unfolding G H

by (metis (full-types) Un-commute geodesic-segment-between-real geodesic-segment-commute
ivl-disj-un-two-touch(4 ) le-max-iff-disj max.absorb-iff2 max.commute min-absorb2 )
qed

context metric-tree begin

We show that a metric tree is uniquely geodesic.
subclass uniquely-geodesic-space
proof

fix x y G H assume H : geodesic-segment-between G x y geodesic-segment-between
H x (y:: ′a)

show G = H
proof (rule uniquely-geodesic-spaceI [OF - H ])

fix G H x y assume geodesic-segment-between G x y geodesic-segment-between
H x y G ∩ H = {x, (y:: ′a)}

show x = y
proof (rule ccontr)

assume x 6= y
then have dist x y > 0 by auto
obtain g where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y} g G =

g‘{0 ..dist x y}
by (meson ‹geodesic-segment-between G x y› geodesic-segment-between-def )

define G2 where G2 = g‘{0 ..dist x y/2}
have G2 ⊆ G unfolding G2-def g(4 ) by auto
define z where z = g(dist x y/2 )
have dist x z = dist x y/2

using isometry-onD[OF g(3 ), of 0 dist x y/2 ] g(1 ) z-def unfolding
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dist-real-def by auto
have dist y z = dist x y/2

using isometry-onD[OF g(3 ), of dist x y dist x y/2 ] g(2 ) z-def unfolding
dist-real-def by auto

have G2 : geodesic-segment-between G2 x z unfolding ‹g 0 = x›[symmetric]
z-def G2-def

apply (rule geodesic-segmentI2 ) by (rule isometry-on-subset[OF g(3 )], auto
simp add: ‹g 0 = x›)

have [simp]: x ∈ G2 z ∈ G2 using geodesic-segment-endpoints G2 by auto
have dist x a ≤ dist x z if a ∈ G2 for a

apply (rule geodesic-segment-dist-le) using G2 that by auto
also have ... < dist x y unfolding ‹dist x z = dist x y/2 › using ‹dist x y >

0 › by auto
finally have y /∈ G2 by auto

then have G2 ∩ H = {x}
using ‹G2 ⊆ G› ‹x ∈ G2 › ‹G ∩ H = {x, y}› by auto

have ∗: geodesic-segment-between (G2 ∪ H ) z y
apply (rule geod-union[of - - x])
using ‹G2 ∩ H = {x}› ‹geodesic-segment-between H x y› G2 by (auto simp

add: geodesic-segment-commute)
have dist x y ≤ dist z x + dist x y by auto
also have ... = dist z y

apply (rule geodesic-segment-dist[OF ∗]) using ‹G ∩ H = {x, y}› by auto
also have ... = dist x y / 2

by (simp add: ‹dist y z = dist x y / 2 › metric-space-class.dist-commute)
finally show False using ‹dist x y > 0 › by auto

qed
qed

qed

An important property of metric trees is that any geodesic triangle is de-
generate, i.e., the three sides intersect at a unique point, the center of the
triangle, that we introduce now.
definition center :: ′a ⇒ ′a ⇒ ′a ⇒ ′a

where center x y z = (SOME t. t ∈ {x−−y} ∩ {x−−z} ∩ {y−−z})

lemma center-as-intersection:
{x−−y} ∩ {x−−z} ∩ {y−−z} = {center x y z}

proof −
obtain g where g: g 0 = x g (dist x y) = y isometry-on {0 ..dist x y} g {x−−y}

= g‘{0 ..dist x y}
by (meson geodesic-segment-between-def some-geodesic-is-geodesic-segment(1 ))

obtain h where h: h 0 = x h (dist x z) = z isometry-on {0 ..dist x z} h {x−−z}
= h‘{0 ..dist x z}

by (meson geodesic-segment-between-def some-geodesic-is-geodesic-segment(1 ))

define Z where Z = {t ∈ {0 ..min (dist x y) (dist x z)}. g t = h t}
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have 0 ∈ Z unfolding Z-def using g(1 ) h(1 ) by auto
have [simp]: closed Z
proof −

have ∗: Z = (λs. dist (g s) (h s))−‘{0} ∩ {0 ..min (dist x y) (dist x z)}
unfolding Z-def by auto

show ?thesis
unfolding ∗ apply (rule closed-vimage-Int)
using continuous-on-subset[OF isometry-on-continuous[OF g(3 )], of {0 ..min

(dist x y) (dist x z)}]
continuous-on-subset[OF isometry-on-continuous[OF h(3 )], of {0 ..min

(dist x y) (dist x z)}]
continuous-on-dist by auto

qed
define a where a = Sup Z
have a ∈ Z

unfolding a-def apply (rule closed-contains-Sup, auto) using ‹0 ∈ Z › Z-def
by auto

define c where c = h a
then have a: g a = c h a = c a ≥ 0 a ≤ dist x y a ≤ dist x z

using ‹a ∈ Z › unfolding Z-def c-def by auto

define G2 where G2 = g‘{a..dist x y}
have G2 : geodesic-segment-between G2 (g a) (g (dist x y))

unfolding G2-def apply (rule geodesic-segmentI2 )
using isometry-on-subset[OF g(3 )] ‹a ∈ Z › unfolding Z-def by auto

define H2 where H2 = h‘{a..dist x z}
have H2 : geodesic-segment-between H2 (h a) (h (dist x z))

unfolding H2-def apply (rule geodesic-segmentI2 )
using isometry-on-subset[OF h(3 )] ‹a ∈ Z › unfolding Z-def by auto

have G2 ∩ H2 ⊆ {c}
proof

fix w assume w: w ∈ G2 ∩ H2
obtain sg where sg: w = g sg sg ∈ {a..dist x y} using w unfolding G2-def

by auto
obtain sh where sh: w = h sh sh ∈ {a..dist x z} using w unfolding H2-def

by auto
have dist w x = sg
unfolding g(1 )[symmetric] sg(1 ) using isometry-onD[OF g(3 ), of 0 sg] sg(2 )
unfolding dist-real-def using a by (auto simp add: metric-space-class.dist-commute)
moreover have dist w x = sh
unfolding h(1 )[symmetric] sh(1 ) using isometry-onD[OF h(3 ), of 0 sh] sh(2 )
unfolding dist-real-def using a by (auto simp add: metric-space-class.dist-commute)
ultimately have sg = sh by simp
have sh ∈ Z unfolding Z-def using sg sh ‹a ≥ 0 › unfolding ‹sg = sh› by

auto
then have sh ≤ a

unfolding a-def apply (rule cSup-upper) unfolding Z-def by auto
then have sh = a using sh(2 ) by auto
then show w ∈ {c} unfolding sh(1 ) using a(2 ) by auto
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qed
then have ∗: G2 ∩ H2 = {c}

unfolding G2-def H2-def using a by (auto simp add: image-iff , force)
have geodesic-segment-between (G2 ∪ H2 ) y z
apply (subst g(2 )[symmetric], subst h(2 )[symmetric]) apply(rule geod-union[of

- - h a])
using geodesic-segment-commute G2 H2 a ∗ by force+

then have G2 ∪ H2 = {y−−z}
using geodesic-segment-unique by auto

then have c ∈ {y−−z} using ∗ by auto
then have ∗: c ∈ {x−−y} ∩ {x−−z} ∩ {y−−z}

using g(4 ) h(4 ) c-def a by force
have center : center x y z ∈ {x−−y} ∩ {x−−z} ∩ {y−−z}

unfolding center-def using someI [of λp. p ∈ {x−−y} ∩ {x−−z} ∩ {y−−z},
OF ∗] by blast

have ∗: dist x d = Gromov-product-at x y z if d ∈ {x−−y} ∩ {x−−z} ∩ {y−−z}
for d

proof −
have dist x y = dist x d + dist d y

dist x z = dist x d + dist d z
dist y z = dist y d + dist d z

using that by (auto simp add: geodesic-segment-dist geodesic-segment-unique)
then show ?thesis unfolding Gromov-product-at-def by (auto simp add: met-

ric-space-class.dist-commute)
qed
have d = center x y z if d ∈ {x−−y} ∩ {x−−z} ∩ {y−−z} for d

apply (rule geodesic-segment-dist-unique[of {x−−y} x y])
using ∗[OF that] ∗[OF center ] that center by auto

then show {x−−y} ∩ {x−−z} ∩ {y−−z} = {center x y z} using center by
blast
qed

lemma center-on-geodesic [simp]:
center x y z ∈ {x−−y}
center x y z ∈ {x−−z}
center x y z ∈ {y−−z}
center x y z ∈ {y−−x}
center x y z ∈ {z−−x}
center x y z ∈ {z−−y}

using center-as-intersection by (auto simp add: some-geodesic-commute)

lemma center-commute:
center x y z = center x z y
center x y z = center y x z
center x y z = center y z x
center x y z = center z x y
center x y z = center z y x

using center-as-intersection some-geodesic-commute by blast+
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lemma center-dist:
dist x (center x y z) = Gromov-product-at x y z

proof −
have dist x y = dist x (center x y z) + dist (center x y z) y

dist x z = dist x (center x y z) + dist (center x y z) z
dist y z = dist y (center x y z) + dist (center x y z) z

by (auto simp add: geodesic-segment-dist geodesic-segment-unique)
then show ?thesis unfolding Gromov-product-at-def by (auto simp add: met-

ric-space-class.dist-commute)
qed

lemma geodesic-intersection:
{x−−y} ∩ {x−−z} = {x−−center x y z}

proof −
have {x−−y} = {x−−center x y z} ∪ {center x y z−−y}

using center-as-intersection geodesic-segment-split by blast
moreover have {x−−z} = {x−−center x y z} ∪ {center x y z−−z}

using center-as-intersection geodesic-segment-split by blast
ultimately have {x−−y} ∩ {x−−z} = {x−−center x y z} ∪ ({center x y z−−y}
∩ {x−−center x y z}) ∪ ({center x y z−−y} ∩ {x−−center x y z}) ∪ ({center x y
z−−y} ∩ {center x y z−−z})

by auto
moreover have {center x y z−−y} ∩ {x−−center x y z} = {center x y z}

using geodesic-segment-split(2 ) center-as-intersection[of x y z] by auto
moreover have {center x y z−−y} ∩ {x−−center x y z} = {center x y z}

using geodesic-segment-split(2 ) center-as-intersection[of x y z] by auto
moreover have {center x y z−−y} ∩ {center x y z−−z} = {center x y z}

using geodesic-segment-split(2 )[of center x y z y z] center-as-intersection[of x
y z ] by (auto simp add: some-geodesic-commute)

ultimately show {x−−y} ∩ {x−−z} = {x−−center x y z} by auto
qed
end

We can now prove that a metric tree is Gromov hyperbolic, for δ = 0. The
simplest proof goes through the slim triangles property: it suffices to show
that, given a geodesic triangle, there is a point at distance at most 0 of each
of its sides. This is the center we have constructed above.
class metric-tree-with-delta = metric-tree + metric-space-with-deltaG +

assumes delta0 : deltaG(TYPE( ′a::metric-space)) = 0

class Gromov-hyperbolic-space-0 = Gromov-hyperbolic-space +
assumes delta0 [simp]: deltaG(TYPE( ′a::metric-space)) = 0

class Gromov-hyperbolic-space-0-geodesic = Gromov-hyperbolic-space-0 + geodesic-space

Isabelle does not accept cycles in the class graph. So, we will show that
metric_tree_with_delta is a subclass of Gromov_hyperbolic_space_0_geodesic,
and conversely that Gromov_hyperbolic_space_0_geodesic is a subclass
of metric_tree.
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In a tree, we have already proved that triangles are 0-slim (the center is
common to all sides of the triangle). The 0-hyperbolicity follows from one of
the equivalent characterizations of hyperbolicity (the other characterizations
could be used as well, but the proofs would be less immediate.)
subclass (in metric-tree-with-delta) Gromov-hyperbolic-space-0
proof (standard)

show deltaG TYPE( ′a) = 0 unfolding delta0 by auto
have Gromov-hyperbolic-subset (6 ∗ 0 ) (UNIV :: ′a set)
proof (rule slim-triangles-implies-hyperbolic)

fix x:: ′a and y z Gxy Gyz Gxz
define w where w = center x y z
assume geodesic-segment-between Gxy x y

geodesic-segment-between Gxz x z geodesic-segment-between Gyz y z
then have Gxy = {x−−y} Gyz = {y−−z} Gxz = {x−−z}

by (auto simp add: local.geodesic-segment-unique)
then have w ∈ Gxy w ∈ Gyz w ∈ Gxz

unfolding w-def by auto
then have infdist w Gxy ≤ 0 ∧ infdist w Gxz ≤ 0 ∧ infdist w Gyz ≤ 0

by auto
then show ∃w. infdist w Gxy ≤ 0 ∧ infdist w Gxz ≤ 0 ∧ infdist w Gyz ≤ 0

by blast
qed
then show Gromov-hyperbolic-subset (deltaG TYPE( ′a)) (UNIV :: ′a set) un-

folding delta0 by auto
qed

To use the fact that reals are Gromov hyperbolic, given that they are a
metric tree, we need to instantiate them as metric_tree_with_delta.
instantiation real::metric-tree-with-delta
begin
definition deltaG-real::real itself ⇒ real

where deltaG-real - = 0
instance apply standard unfolding deltaG-real-def by auto
end

Let us now prove the converse: a geodesic space which is δ-hyperbolic for
δ = 0 is a metric tree. For the proof, we consider two geodesic segments
G = [x, y] and H = [y, z] with a common endpoint, and we have to show
that their union is still a geodesic segment from x to z. For this, introduce a
geodesic segment L = [x, z]. By the property of thin triangles, G is included
in H ∪L. In particular, a point Y close to y but different from y on G is on
L, and therefore realizes the equality d(x, z) = d(x, Y ) + d(Y, z). Passing to
the limit, y also satisfies this equality. The conclusion readily follows thanks
to Lemma geodesic_segment_union.
subclass (in Gromov-hyperbolic-space-0-geodesic) metric-tree
proof
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fix G H x y z assume A: geodesic-segment-between G x y geodesic-segment-between
H y z G ∩ H = {y:: ′a}

show geodesic-segment-between (G ∪ H ) x z
proof (cases x = y)

case True
then show ?thesis
by (metis A Un-commute geodesic-segment-between-x-x(3 ) inf .commute sup-inf-absorb)

next
case False
define D::nat ⇒ real where D = (λn. dist x y − (dist x y) ∗ (1/(real(n+1 ))))
have D: D n ∈ {0 ..< dist x y} D n ∈ {0 ..dist x y} for n

unfolding D-def by (auto simp add: False divide-simps algebra-simps)
have Dlim: D −−−−→ dist x y − dist x y ∗ 0
unfolding D-def by (intro tendsto-intros LIMSEQ-ignore-initial-segment[OF

lim-1-over-n, of 1 ])

define Y ::nat ⇒ ′a where Y = (λn. geodesic-segment-param G x (D n))
have ∗: Y −−−−→ y
unfolding Y-def apply (subst geodesic-segment-param(2 )[OF A(1 ), symmet-

ric])
using isometry-on-continuous[OF geodesic-segment-param(4 )[OF A(1 )]]
unfolding continuous-on-sequentially comp-def using D(2 ) Dlim by auto

have dist x z = dist x (Y n) + dist (Y n) z for n
proof −
obtain L where L: geodesic-segment-between L x z using geodesic-subsetD[OF

geodesic] by blast
have Y n ∈ G unfolding Y-def

apply (rule geodesic-segment-param(3 )[OF A(1 )]) using D[of n] by auto
have dist x (Y n) = D n
unfolding Y-def apply (rule geodesic-segment-param[OF A(1 )]) using D[of

n] by auto
then have Y n 6= y

using D[of n] by auto
then have Y n /∈ H using A(3 ) ‹Y n ∈ G› by auto
have infdist (Y n) (H ∪ L) ≤ 4 ∗ deltaG(TYPE( ′a))
apply (rule thin-triangles[OF geodesic-segment-commute[OF A(2 )] geodesic-segment-commute[OF

L] geodesic-segment-commute[OF A(1 )]])
using ‹Y n ∈ G› by simp

then have infdist (Y n) (H ∪ L) = 0
using infdist-nonneg[of Y n H ∪ L] unfolding delta0 by auto

have Y n ∈ H ∪ L
proof (subst in-closed-iff-infdist-zero)

have closed H
using A(2 ) geodesic-segment-topology geodesic-segment-def by fastforce

moreover have closed L
using L geodesic-segment-topology geodesic-segment-def by fastforce

ultimately show closed (H ∪ L) by auto
show H ∪ L 6= {} using A(2 ) geodesic-segment-endpoints(1 ) by auto
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qed (fact)
then have Y n ∈ L using ‹Y n /∈ H › by simp
show ?thesis using geodesic-segment-dist[OF L ‹Y n ∈ L›] by simp

qed
moreover have (λn. dist x (Y n) + dist (Y n) z) −−−−→ dist x y + dist y z

by (intro tendsto-intros ∗)
ultimately have (λn. dist x z) −−−−→ dist x y + dist y z

using filterlim-cong eventually-sequentially by auto
then have ∗: dist x z = dist x y + dist y z

using LIMSEQ-unique by auto
show geodesic-segment-between (G ∪ H ) x z

by (rule geodesic-segment-union[OF ∗ A(1 ) A(2 )])
qed

qed

end

theory Morse-Gromov-Theorem
imports HOL−Decision-Procs.Approximation Gromov-Hyperbolicity Hausdorff-Distance

begin

hide-const (open) Approximation.Min
hide-const (open) Approximation.Max

10 Quasiconvexity

In a Gromov-hyperbolic setting, convexity is not a well-defined notion as
everything should be coarse. The good replacement is quasi-convexity: A set
X is C-quasi-convex if any pair of points in X can be joined by a geodesic
that remains within distance C of X. One could also require this for all
geodesics, up to changing C, as two geodesics between the same endpoints
remain within uniformly bounded distance. We use the first definition to
ensure that a geodesic is 0-quasi-convex.
definition quasiconvex::real ⇒ ( ′a::metric-space) set ⇒ bool
where quasiconvex C X = (C ≥ 0 ∧ (∀ x∈X . ∀ y∈X . ∃G. geodesic-segment-between

G x y ∧ (∀ z∈G. infdist z X ≤ C )))

lemma quasiconvexD:
assumes quasiconvex C X x ∈ X y ∈ X
shows ∃G. geodesic-segment-between G x y ∧ (∀ z∈G. infdist z X ≤ C )

using assms unfolding quasiconvex-def by auto

lemma quasiconvexC :
assumes quasiconvex C X
shows C ≥ 0
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using assms unfolding quasiconvex-def by auto

lemma quasiconvexI :
assumes C ≥ 0∧

x y. x ∈ X =⇒ y ∈ X =⇒ (∃G. geodesic-segment-between G x y ∧
(∀ z∈G. infdist z X ≤ C ))

shows quasiconvex C X
using assms unfolding quasiconvex-def by auto

lemma quasiconvex-of-geodesic:
assumes geodesic-segment G
shows quasiconvex 0 G

proof (rule quasiconvexI , simp)
fix x y assume ∗: x ∈ G y ∈ G
obtain H where H : H ⊆ G geodesic-segment-between H x y

using geodesic-subsegment-exists[OF assms(1 ) ∗] by auto
have infdist z G ≤ 0 if z ∈ H for z

using H (1 ) that by auto
then show ∃H . geodesic-segment-between H x y ∧ (∀ z∈H . infdist z G ≤ 0 )

using H (2 ) by auto
qed

lemma quasiconvex-empty:
assumes C ≥ 0
shows quasiconvex C {}

unfolding quasiconvex-def using assms by auto

lemma quasiconvex-mono:
assumes C ≤ D

quasiconvex C G
shows quasiconvex D G

using assms unfolding quasiconvex-def by (auto, fastforce)

The r-neighborhood of a quasi-convex set is still quasi-convex in a hyperbolic
space, for a constant that does not depend on r.
lemma (in Gromov-hyperbolic-space-geodesic) quasiconvex-thickening:

assumes quasiconvex C (X :: ′a set) r ≥ 0
shows quasiconvex (C + 8 ∗deltaG(TYPE( ′a))) (

⋃
x∈X . cball x r)

proof (rule quasiconvexI )
show C + 8 ∗deltaG(TYPE( ′a)) ≥ 0 using quasiconvexC [OF assms(1 )] by

simp
next

fix y z assume ∗: y ∈ (
⋃

x∈X . cball x r) z ∈ (
⋃

x∈X . cball x r)
have A: infdist w (

⋃
x∈X . cball x r) ≤ C + 8 ∗ deltaG TYPE( ′a) if w ∈ {y−−z}

for w
proof −

obtain py where py: py ∈ X y ∈ cball py r
using ∗ by auto

obtain pz where pz: pz ∈ X z ∈ cball pz r

170



using ∗ by auto
obtain G where G: geodesic-segment-between G py pz (∀ p∈G. infdist p X ≤

C )
using quasiconvexD[OF assms(1 ) ‹py ∈ X› ‹pz ∈ X›] by auto

have A: infdist w ({y−−py} ∪ G ∪ {pz−−z}) ≤ 8 ∗ deltaG(TYPE( ′a))
by (rule thin-quadrilaterals[OF - G(1 ) - - ‹w ∈ {y−−z}›, where ?x = y and

?t = z], auto)
have ∃ u ∈ {y−−py} ∪ G ∪ {pz−−z}. infdist w ({y−−py} ∪ G ∪ {pz−−z})

= dist w u
apply (rule infdist-proper-attained, auto intro!: proper-Un simp add: geodesic-segment-topology(7 ))

by (meson G(1 ) geodesic-segmentI geodesic-segment-topology(7 ))
then obtain u where u: u ∈ {y−−py} ∪ G ∪ {pz−−z} infdist w ({y−−py}

∪ G ∪ {pz−−z}) = dist w u
by auto

then consider u ∈ {y−−py} | u ∈ G | u ∈ {pz−−z} by auto
then have infdist u (

⋃
x∈X . cball x r) ≤ C

proof (cases)
case 1
then have dist py u ≤ dist py y

using geodesic-segment-dist-le local.some-geodesic-is-geodesic-segment(1 )
some-geodesic-commute some-geodesic-endpoints(1 ) by blast

also have ... ≤ r
using py(2 ) by auto

finally have u ∈ cball py r
by auto

then have u ∈ (
⋃

x∈X . cball x r)
using py(1 ) by auto

then have infdist u (
⋃

x∈X . cball x r) = 0
by auto

then show ?thesis
using quasiconvexC [OF assms(1 )] by auto

next
case 3
then have dist pz u ≤ dist pz z

using geodesic-segment-dist-le local.some-geodesic-is-geodesic-segment(1 )
some-geodesic-commute some-geodesic-endpoints(1 ) by blast

also have ... ≤ r
using pz(2 ) by auto

finally have u ∈ cball pz r
by auto

then have u ∈ (
⋃

x∈X . cball x r)
using pz(1 ) by auto

then have infdist u (
⋃

x∈X . cball x r) = 0
by auto

then show ?thesis
using quasiconvexC [OF assms(1 )] by auto

next
case 2
have infdist u (

⋃
x∈X . cball x r) ≤ infdist u X
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apply (rule infdist-mono) using assms(2 ) py(1 ) by auto
then show ?thesis using 2 G(2 ) by auto

qed
moreover have infdist w (

⋃
x∈X . cball x r) ≤ infdist u (

⋃
x∈X . cball x r) +

dist w u
by (intro mono-intros)

ultimately show ?thesis
using A u(2 ) by auto

qed
show ∃G. geodesic-segment-between G y z ∧ (∀w∈G. infdist w (

⋃
x∈X . cball x

r) ≤ C + 8 ∗ deltaG TYPE( ′a))
apply (rule exI [of - {y−−z}]) using A by auto

qed

If x has a projection p on a quasi-convex set G, then all segments from a point
in G to x go close to p, i.e., the triangular inequality d(x, y) ≤ d(x, p)+d(p, y)
is essentially an equality, up to an additive constant.
lemma (in Gromov-hyperbolic-space-geodesic) dist-along-quasiconvex:

assumes quasiconvex C G p ∈ proj-set x G y ∈ G
shows dist x p + dist p y ≤ dist x y + 4 ∗ deltaG(TYPE( ′a)) + 2 ∗ C

proof −
have ∗: p ∈ G

using assms proj-setD by auto
obtain H where H : geodesic-segment-between H p y

∧
q. q ∈ H =⇒ infdist q G

≤ C
using quasiconvexD[OF assms(1 ) ∗ assms(3 )] by auto

have ∃m∈H . infdist x H = dist x m
apply (rule infdist-proper-attained[of H x]) using geodesic-segment-topology[OF

geodesic-segmentI [OF H (1 )]] by auto
then obtain m where m: m ∈ H infdist x H = dist x m by auto
then have I : dist x m ≤ Gromov-product-at x p y + 2 ∗ deltaG(TYPE( ′a))

using infdist-triangle-side[OF H (1 ), of x] by auto
have dist x p − dist x m − C ≤ e if e > 0 for e
proof −

have ∃ r∈G. dist m r < infdist m G + e
apply (rule infdist-almost-attained) using ‹e > 0 › assms(3 ) by auto

then obtain r where r : r ∈ G dist m r < infdist m G + e
by auto

then have ∗: dist m r ≤ C + e using H (2 )[OF ‹m ∈ H ›] by auto
have dist x p ≤ dist x r

using ‹r ∈ G› assms(2 ) proj-set-dist-le by blast
also have ... ≤ dist x m + dist m r

by (intro mono-intros)
finally show ?thesis using ∗ by (auto simp add: metric-space-class.dist-commute)

qed
then have dist x p − dist x m − C ≤ 0

using dense-ge by blast
then show ?thesis

using I unfolding Gromov-product-at-def by (auto simp add: algebra-simps
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divide-simps)
qed

The next lemma is [CDP90, Proposition 10.2.1] with better constants. It
states that the distance between the projections on a quasi-convex set is
controlled by the distance of the original points, with a gain given by the
distances of the points to the set.
lemma (in Gromov-hyperbolic-space-geodesic) proj-along-quasiconvex-contraction:

assumes quasiconvex C G px ∈ proj-set x G py ∈ proj-set y G
shows dist px py ≤ max (5 ∗ deltaG(TYPE( ′a)) + 2 ∗ C ) (dist x y − dist px x
− dist py y + 10 ∗ deltaG(TYPE( ′a)) + 4 ∗ C )
proof −

have px ∈ G py ∈ G
using assms proj-setD by auto

have (dist x px + dist px py − 4 ∗ deltaG(TYPE( ′a)) − 2 ∗ C ) + (dist y py +
dist py px − 4 ∗deltaG(TYPE( ′a)) − 2 ∗ C )

≤ dist x py + dist y px
apply (intro mono-intros)

using dist-along-quasiconvex[OF assms(1 ) assms(2 ) ‹py ∈ G›] dist-along-quasiconvex[OF
assms(1 ) assms(3 ) ‹px ∈ G›] by auto

also have ... ≤ max (dist x y + dist py px) (dist x px + dist py y) + 2 ∗
deltaG(TYPE( ′a))

by (rule hyperb-quad-ineq)
finally have ∗: dist x px + dist y py + 2 ∗ dist px py
≤ max (dist x y + dist py px) (dist x px + dist py y) + 10 ∗ deltaG(TYPE( ′a))

+ 4 ∗ C
by (auto simp add: metric-space-class.dist-commute)

show ?thesis
proof (cases dist x y + dist py px ≥ dist x px + dist py y)

case True
then have dist x px + dist y py + 2 ∗ dist px py ≤ dist x y + dist py px + 10

∗ deltaG(TYPE( ′a)) + 4 ∗ C
using ∗ by auto

then show ?thesis by (auto simp add: metric-space-class.dist-commute)
next

case False
then have dist x px + dist y py + 2 ∗ dist px py ≤ dist x px + dist py y + 10

∗ deltaG(TYPE( ′a)) + 4 ∗ C
using ∗ by auto

then show ?thesis by (simp add: metric-space-class.dist-commute)
qed

qed

The projection on a quasi-convex set is 1-Lipschitz up to an additive error.
lemma (in Gromov-hyperbolic-space-geodesic) proj-along-quasiconvex-contraction ′:

assumes quasiconvex C G px ∈ proj-set x G py ∈ proj-set y G
shows dist px py ≤ dist x y + 4 ∗ deltaG(TYPE( ′a)) + 2 ∗ C

proof (cases dist y py ≤ dist x px)
case True
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have dist x px + dist px py ≤ dist x py + 4 ∗ deltaG(TYPE( ′a)) + 2 ∗ C
by (rule dist-along-quasiconvex[OF assms(1 ) assms(2 ) proj-setD(1 )[OF assms(3 )]])

also have ... ≤ (dist x y + dist y py) + 4 ∗ deltaG(TYPE( ′a)) + 2 ∗ C
by (intro mono-intros)

finally show ?thesis using True by auto
next

case False
have dist y py + dist py px ≤ dist y px + 4 ∗ deltaG(TYPE( ′a)) + 2 ∗ C
by (rule dist-along-quasiconvex[OF assms(1 ) assms(3 ) proj-setD(1 )[OF assms(2 )]])

also have ... ≤ (dist y x + dist x px) + 4 ∗ deltaG(TYPE( ′a)) + 2 ∗ C
by (intro mono-intros)

finally show ?thesis using False by (auto simp add: metric-space-class.dist-commute)
qed

We can in particular specialize the previous statements to geodesics, which
are 0-quasi-convex.
lemma (in Gromov-hyperbolic-space-geodesic) dist-along-geodesic:

assumes geodesic-segment G p ∈ proj-set x G y ∈ G
shows dist x p + dist p y ≤ dist x y + 4 ∗ deltaG(TYPE( ′a))

using dist-along-quasiconvex[OF quasiconvex-of-geodesic[OF assms(1 )] assms(2 )
assms(3 )] by auto

lemma (in Gromov-hyperbolic-space-geodesic) proj-along-geodesic-contraction:
assumes geodesic-segment G px ∈ proj-set x G py ∈ proj-set y G
shows dist px py ≤ max (5 ∗ deltaG(TYPE( ′a))) (dist x y − dist px x − dist py

y + 10 ∗ deltaG(TYPE( ′a)))
using proj-along-quasiconvex-contraction[OF quasiconvex-of-geodesic[OF assms(1 )]
assms(2 ) assms(3 )] by auto

lemma (in Gromov-hyperbolic-space-geodesic) proj-along-geodesic-contraction ′:
assumes geodesic-segment G px ∈ proj-set x G py ∈ proj-set y G
shows dist px py ≤ dist x y + 4 ∗ deltaG(TYPE( ′a))

using proj-along-quasiconvex-contraction ′[OF quasiconvex-of-geodesic[OF assms(1 )]
assms(2 ) assms(3 )] by auto

If one projects a continuous curve on a quasi-convex set, the image does
not have to be connected (the projection is discontinuous), but since the
projections of nearby points are within uniformly bounded distance one can
find in the projection a point with almost prescribed distance to the starting
point, say. For further applications, we also pick the first such point, i.e., all
the previous points are also close to the starting point.
lemma (in Gromov-hyperbolic-space-geodesic) quasi-convex-projection-small-gaps:

assumes continuous-on {a..(b::real)} f
a ≤ b
quasiconvex C G∧

t. t ∈ {a..b} =⇒ p t ∈ proj-set (f t) G
delta > deltaG(TYPE( ′a))
d ∈ {4 ∗ delta + 2 ∗ C ..dist (p a) (p b)}
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shows ∃ t ∈ {a..b}. (dist (p a) (p t) ∈ {d − 4 ∗ delta − 2 ∗ C .. d})
∧ (∀ s ∈ {a..t}. dist (p a) (p s) ≤ d)

proof −
have delta > 0

using assms(5 ) local.delta-nonneg by linarith
moreover have C ≥ 0

using quasiconvexC [OF assms(3 )] by simp
ultimately have d ≥ 0 using assms by auto

The idea is to define the desired point as the last point u for which there is
a projection at distance at most d of the starting point. Then the projection
can not be much closer to the starting point, or one could point another
such point further away by almost continuity, giving a contradiction. The
technical implementation requires some care, as the "last point" may not
satisfy the property, for lack of continuity. If it does, then fine. Otherwise,
one should go just a little bit to its left to find the desired point.

define I where I = {t ∈ {a..b}. ∀ s ∈ {a..t}. dist (p a) (p s) ≤ d}
have a ∈ I

using ‹a ≤ b› ‹d ≥ 0 › unfolding I-def by auto
have bdd-above I

unfolding I-def by auto
define u where u = Sup I
have a ≤ u

unfolding u-def apply (rule cSup-upper) using ‹a ∈ I › ‹bdd-above I › by auto
have u ≤ b

unfolding u-def apply (rule cSup-least) using ‹a ∈ I › apply auto unfolding
I-def by auto

have A: dist (p a) (p s) ≤ d if s < u a ≤ s for s
proof −

have ∃ t∈I . s < t
unfolding u-def apply (subst less-cSup-iff [symmetric])
using ‹a ∈ I › ‹bdd-above I › using ‹s < u› unfolding u-def by auto

then obtain t where t: t ∈ I s < t by auto
then have s ∈ {a..t} using ‹a ≤ s› by auto
then show ?thesis

using t(1 ) unfolding I-def by auto
qed
have continuous (at u within {a..b}) f
using assms(1 ) by (simp add: ‹a ≤ u› ‹u ≤ b› continuous-on-eq-continuous-within)
then have ∃ i > 0 . ∀ s∈{a..b}. dist u s < i −→ dist (f u) (f s) < (delta −

deltaG(TYPE( ′a)))
unfolding continuous-within-eps-delta using ‹deltaG(TYPE( ′a)) < delta› by

(auto simp add: metric-space-class.dist-commute)
then obtain e0 where e0 : e0 > 0

∧
s. s ∈ {a..b} =⇒ dist u s < e0 =⇒ dist

(f u) (f s) < (delta − deltaG(TYPE( ′a)))
by auto

show ?thesis
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proof (cases dist (p a) (p u) > d)

First, consider the case where u does not satisfy the defining property. Then
the desired point t is taken slightly to its left.

case True
then have u 6= a

using ‹d ≥ 0 › by auto
then have a < u using ‹a ≤ u› by auto

define e::real where e = min (e0/2 ) ((u−a)/2 )
then have e > 0 using ‹a < u› ‹e0 > 0 › by auto
define t where t = u − e
then have t < u using ‹e > 0 › by auto
have u − b ≤ e e ≤ u − a

using ‹e > 0 › ‹u ≤ b› unfolding e-def by (auto simp add: min-def )
then have t ∈ {a..b} t ∈ {a..t}

unfolding t-def by auto
have dist u t < e0

unfolding t-def e-def dist-real-def using ‹e0 > 0 › ‹a ≤ u› by auto
have ∗: ∀ s ∈ {a..t}. dist (p a) (p s) ≤ d

using A ‹t < u› by auto
have dist (p t) (p u) ≤ dist (f t) (f u) + 4 ∗ deltaG(TYPE( ′a)) + 2 ∗ C

apply (rule proj-along-quasiconvex-contraction ′[OF ‹quasiconvex C G›])
using assms (4 ) ‹t ∈ {a..b}› ‹a ≤ u› ‹u ≤ b› by auto

also have ... ≤ (delta − deltaG(TYPE( ′a))) + 4 ∗ deltaG(TYPE( ′a)) + 2 ∗
C

apply (intro mono-intros)
using e0 (2 )[OF ‹t ∈ {a..b}› ‹dist u t < e0 ›] by (auto simp add: met-

ric-space-class.dist-commute)
finally have I : dist (p t) (p u) ≤ 4 ∗ delta + 2 ∗ C

using ‹delta > deltaG(TYPE( ′a))› by simp

have d ≤ dist (p a) (p u)
using True by auto

also have ... ≤ dist (p a) (p t) + dist (p t) (p u)
by (intro mono-intros)

also have ... ≤ dist (p a) (p t) + 4 ∗ delta + 2 ∗ C
using I by simp

finally have ∗∗: d − 4 ∗ delta − 2 ∗ C ≤ dist (p a) (p t)
by simp

show ?thesis
apply (rule bexI [OF - ‹t ∈ {a..b}›]) using ∗ ∗∗ ‹t ∈ {a..b}› by auto

next

Next, consider the case where u satisfies the defining property. Then we will
take t = u. The only nontrivial point to check is that the distance of f(u)
to the starting point is not too small. For this, we need to separate the case
where u = b (in which case one argues directly) and the case where u < b,
where one can use a point slightly to the right of u which has a projection
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at distance > d of the starting point, and use almost continuity.
case False
have B: dist (p a) (p s) ≤ d if s ∈ {a..u} for s
proof (cases s = u)

case True
show ?thesis

unfolding True using False by auto
next

case False
then show ?thesis

using that A by auto
qed
have C : dist (p a) (p u) ≥ d − 4 ∗delta − 2 ∗ C
proof (cases u = b)

case True
have d ≤ dist (p a) (p b)

using assms by auto
also have ... ≤ dist (p a) (p u) + dist (p u) (p b)

by (intro mono-intros)
also have ... ≤ dist (p a) (p u) + (dist (f u) (f b) + 4 ∗ deltaG TYPE( ′a)

+ 2 ∗ C )
apply (intro mono-intros proj-along-quasiconvex-contraction ′[OF ‹quasicon-

vex C G›])
using assms ‹a ≤ u› ‹u ≤ b› by auto

finally show ?thesis
unfolding True using ‹deltaG(TYPE( ′a)) < delta› by auto

next
case False
then have u < b

using ‹u ≤ b› by auto
define e::real where e = min (e0/2 ) ((b−u)/2 )
then have e > 0 using ‹u < b› ‹e0 > 0 › by auto
define v where v = u + e
then have u < v

using ‹e > 0 › by auto
have e ≤ b − u a − u ≤ e

using ‹e > 0 › ‹a ≤ u› unfolding e-def by (auto simp add: min-def )
then have v ∈ {a..b}

unfolding v-def by auto
moreover have v /∈ I

using ‹u < v› ‹bdd-above I › cSup-upper not-le unfolding u-def by auto
ultimately have ∃w ∈ {a..v}. dist (p a) (p w) > d

unfolding I-def by force
then obtain w where w: w ∈ {a..v} dist (p a) (p w) > d

by auto
then have w /∈ {a..u}

using B by force
then have u < w

using w(1 ) by auto
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have w ∈ {a..b}
using w(1 ) ‹v ∈ {a..b}› by auto

have dist u w = w − u
unfolding dist-real-def using ‹u < w› by auto

also have ... ≤ v − u
using w(1 ) by auto

also have ... < e0
unfolding v-def e-def min-def using ‹e0 > 0 › by auto

finally have dist u w < e0 by simp
have dist (p u) (p w) ≤ dist (f u) (f w) + 4 ∗ deltaG(TYPE( ′a)) + 2 ∗ C

apply (rule proj-along-quasiconvex-contraction ′[OF ‹quasiconvex C G›])
using assms ‹a ≤ u› ‹u ≤ b› ‹w ∈ {a..b}› by auto

also have ... ≤ (delta − deltaG(TYPE( ′a))) + 4 ∗ deltaG(TYPE( ′a)) + 2
∗ C

apply (intro mono-intros)
using e0 (2 )[OF ‹w ∈ {a..b}› ‹dist u w < e0 ›] by (auto simp add: met-

ric-space-class.dist-commute)
finally have I : dist (p u) (p w) ≤ 4 ∗ delta + 2 ∗ C

using ‹delta > deltaG(TYPE( ′a))› by simp
have d ≤ dist (p a) (p u) + dist (p u) (p w)

using w(2 ) metric-space-class.dist-triangle[of p a p w p u] by auto
also have ... ≤ dist (p a) (p u) + 4 ∗ delta + 2 ∗ C

using I by auto
finally show ?thesis by simp

qed
show ?thesis

apply (rule bexI [of - u])
using B ‹a ≤ u› ‹u ≤ b› C by auto

qed
qed

Same lemma, except that one exchanges the roles of the beginning and the
end point.
lemma (in Gromov-hyperbolic-space-geodesic) quasi-convex-projection-small-gaps ′:

assumes continuous-on {a..(b::real)} f
a ≤ b
quasiconvex C G∧

x. x ∈ {a..b} =⇒ p x ∈ proj-set (f x) G
delta > deltaG(TYPE( ′a))
d ∈ {4 ∗ delta + 2 ∗ C ..dist (p a) (p b)}

shows ∃ t ∈ {a..b}. dist (p b) (p t) ∈ {d − 4 ∗ delta − 2 ∗ C .. d}
∧ (∀ s ∈ {t..b}. dist (p b) (p s) ≤ d)

proof −
have ∗: continuous-on {−b..−a} (λt. f (−t))

using continuous-on-compose[of {−b..−a} λt. −t f ] using assms(1 ) continu-
ous-on-minus[OF continuous-on-id] by auto

define q where q = (λt. p(−t))
have ∃ t ∈ {−b..−a}. (dist (q (−b)) (q t) ∈ {d − 4 ∗ delta − 2 ∗ C .. d})

∧ (∀ s ∈ {−b..t}. dist (q (−b)) (q s) ≤ d)
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apply (rule quasi-convex-projection-small-gaps[where ?f = λt. f (−t) and ?G
= G])

unfolding q-def using assms ∗ by (auto simp add: metric-space-class.dist-commute)
then obtain t where t: t ∈ {−b..−a} dist (q (−b)) (q t) ∈ {d − 4 ∗ delta − 2
∗ C .. d} ∧

s. s ∈ {−b..t} =⇒ dist (q (−b)) (q s) ≤ d
by blast

have ∗: dist (p b) (p s) ≤ d if s ∈ {−t..b} for s
using t(3 )[of −s] that q-def by auto

show ?thesis
apply (rule bexI [of - −t]) using t ∗ q-def by auto

qed

11 The Morse-Gromov Theorem

The goal of this section is to prove a central basic result in the theory of
hyperbolic spaces, usually called the Morse Lemma. It is really a theorem,
and we add the name Gromov the avoid the confusion with the other Morse
lemma on the existence of good coordinates for C2 functions with non-
vanishing hessian.
It states that a quasi-geodesic remains within bounded distance of a geodesic
with the same endpoints, the error depending only on δ and on the param-
eters (λ,C) of the quasi-geodesic, but not on its length.
There are several proofs of this result. We will follow the one of Shchur [Shc13],
which gets an optimal dependency in terms of the parameters of the quasi-
isometry, contrary to all previous proofs. The price to pay is that the proof
is more involved (relying in particular on the fact that the closest point
projection on quasi-convex sets is exponentially contracting).
We will also give afterwards for completeness the proof in [BH99], as it
brings up interesting tools, although the dependency it gives is worse.

The next lemma (for C = 0, Lemma 2 in [Shc13]) asserts that, if two points
are not too far apart (at distance at most 10δ), and far enough from a given
geodesic segment, then when one moves towards this geodesic segment by a
fixed amount (here 5δ), then the two points become closer (the new distance
is at most 5δ, gaining a factor of 2). Later, we will iterate this lemma to
show that the projection on a geodesic segment is exponentially contracting.
For the application, we give a more general version involving an additional
constant C.
This lemma holds for δ the hyperbolicity constant. We will want to apply
it with δ > 0, so to avoid problems in the case δ = 0 we formulate it not
using the hyperbolicity constant of the given type, but any constant which
is at least the hyperbolicity constant (this is to work around the fact that
one can not say or use easily in Isabelle that a type with hyperbolicity δ is
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also hyperbolic for any larger constant δ′.
lemma (in Gromov-hyperbolic-space-geodesic) geodesic-projection-exp-contracting-aux:

assumes geodesic-segment G
px ∈ proj-set x G
py ∈ proj-set y G
delta ≥ deltaG(TYPE( ′a))
dist x y ≤ 10 ∗ delta + C
M ≥ 15/2 ∗ delta
dist px x ≥ M + 5 ∗ delta + C/2
dist py y ≥ M + 5 ∗ delta + C/2
C ≥ 0

shows dist (geodesic-segment-param {px−−x} px M )
(geodesic-segment-param {py−−y} py M ) ≤ 5 ∗ delta

proof −
have dist px x ≤ dist py x

using proj-setD(2 )[OF assms(2 )] infdist-le[OF proj-setD(1 )[OF assms(3 )], of
x] by (simp add: metric-space-class.dist-commute)

have dist py y ≤ dist px y
using proj-setD(2 )[OF assms(3 )] infdist-le[OF proj-setD(1 )[OF assms(2 )], of

y] by (simp add: metric-space-class.dist-commute)

have delta ≥ 0
using assms local.delta-nonneg by linarith

then have M : M ≥ 0 M ≤ dist px x M ≤ dist px y M ≤ dist py x M ≤ dist py
y

using assms ‹dist px x ≤ dist py x› ‹dist py y ≤ dist px y ›by auto
have px ∈ G py ∈ G

using assms proj-setD by auto

define x ′ where x ′ = geodesic-segment-param {px−−x} px M
define y ′ where y ′ = geodesic-segment-param {py−−y} py M

First step: the distance between px and py is at most 5δ.
have dist px py ≤ max (5 ∗ deltaG(TYPE( ′a))) (dist x y − dist px x − dist py

y + 10 ∗ deltaG(TYPE( ′a)))
by (rule proj-along-geodesic-contraction[OF assms(1 ) assms(2 ) assms(3 )])

also have ... ≤ max (5 ∗ deltaG(TYPE( ′a))) (5 ∗ deltaG(TYPE( ′a)))
apply (intro mono-intros) using assms ‹delta ≥ 0 › by auto

finally have dist px py ≤ 5 ∗ delta
using ‹delta ≥ deltaG(TYPE( ′a))› by auto

Second step: show that all the interesting Gromov products at bounded
below by M .

have ∗: x ′ ∈ {px−−x} unfolding x ′-def
by (simp add: geodesic-segment-param-in-segment)

have px ∈ proj-set x ′ G
by (rule proj-set-geodesic-same-basepoint[OF ‹px ∈ proj-set x G› - ∗], auto)

have dist px x ′ = M
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unfolding x ′-def using M by auto
have dist px x ′ ≤ dist py x ′

using proj-setD(2 )[OF ‹px ∈ proj-set x ′ G›] infdist-le[OF proj-setD(1 )[OF
assms(3 )], of x ′] by (simp add: metric-space-class.dist-commute)

have ∗∗: dist px x = dist px x ′ + dist x ′ x
using geodesic-segment-dist[OF - ∗, of px x] by auto

have Ixx: Gromov-product-at px x ′ x = M
unfolding Gromov-product-at-def ∗∗ x ′-def using M by auto

have 2 ∗ M = dist px x ′ + dist px x − dist x ′ x
unfolding ∗∗ x ′-def using M by auto

also have ... ≤ dist py x ′ + dist py x − dist x ′ x
apply (intro mono-intros, auto) by fact+

also have ... = 2 ∗ Gromov-product-at py x x ′

unfolding Gromov-product-at-def by (auto simp add: metric-space-class.dist-commute)
finally have Iyx: Gromov-product-at py x x ′ ≥ M by auto

have ∗: y ′ ∈ {py−−y} unfolding y ′-def
by (simp add: geodesic-segment-param-in-segment)

have py ∈ proj-set y ′ G
by (rule proj-set-geodesic-same-basepoint[OF ‹py ∈ proj-set y G› - ∗], auto)

have dist py y ′ = M
unfolding y ′-def using M by auto

have dist py y ′ ≤ dist px y ′

using proj-setD(2 )[OF ‹py ∈ proj-set y ′ G›] infdist-le[OF proj-setD(1 )[OF
assms(2 )], of y ′] by (simp add: metric-space-class.dist-commute)

have ∗∗: dist py y = dist py y ′ + dist y ′ y
using geodesic-segment-dist[OF - ∗, of py y] by auto

have Iyy: Gromov-product-at py y ′ y = M
unfolding Gromov-product-at-def ∗∗ y ′-def using M by auto

have 2 ∗ M = dist py y ′ + dist py y − dist y ′ y
unfolding ∗∗ y ′-def using M by auto

also have ... ≤ dist px y ′ + dist px y − dist y ′ y
apply (intro mono-intros, auto) by fact+

also have ... = 2 ∗ Gromov-product-at px y y ′

unfolding Gromov-product-at-def by (auto simp add: metric-space-class.dist-commute)
finally have Ixy: Gromov-product-at px y y ′ ≥ M by auto

have 2 ∗ M ≤ dist px x + dist py y − dist x y
using assms by auto

also have ... ≤ dist px x + dist px y − dist x y
by (intro mono-intros, fact)

also have ... = 2 ∗ Gromov-product-at px x y
unfolding Gromov-product-at-def by auto

finally have Ix: Gromov-product-at px x y ≥ M
by auto

have 2 ∗ M ≤ dist px x + dist py y − dist x y
using assms by auto

also have ... ≤ dist py x + dist py y − dist x y
by (intro mono-intros, fact)
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also have ... = 2 ∗ Gromov-product-at py x y
unfolding Gromov-product-at-def by auto

finally have Iy: Gromov-product-at py x y ≥ M
by auto

Third step: prove the estimate
have M − 2 ∗ delta ≤ Min {Gromov-product-at px x ′ x, Gromov-product-at px

x y, Gromov-product-at px y y ′} − 2 ∗ deltaG(TYPE( ′a))
using Ixx Ixy Ix ‹delta ≥ deltaG(TYPE( ′a))› by auto

also have ... ≤ Gromov-product-at px x ′ y ′

by (intro mono-intros)
finally have A: M − 4 ∗ delta + dist x ′ y ′ ≤ dist px y ′

unfolding Gromov-product-at-def ‹dist px x ′ = M › by auto

have M − 2 ∗ delta ≤ Min {Gromov-product-at py x ′ x, Gromov-product-at py
x y, Gromov-product-at py y y ′} − 2 ∗ deltaG(TYPE( ′a))

using Iyx Iyy Iy ‹delta ≥ deltaG(TYPE( ′a))› by (auto simp add: Gromov-product-commute)
also have ... ≤ Gromov-product-at py x ′ y ′

by (intro mono-intros)
finally have B: M − 4 ∗ delta + dist x ′ y ′ ≤ dist py x ′

unfolding Gromov-product-at-def ‹dist py y ′ = M › by auto

have dist px py ≤ 2 ∗ M − 10 ∗ delta
using assms ‹dist px py ≤ 5 ∗ delta› by auto

have 2 ∗ M − 8 ∗ delta + 2 ∗ dist x ′ y ′ ≤ dist px y ′ + dist py x ′

using A B by auto
also have ... ≤ max (dist px py + dist y ′ x ′) (dist px x ′ + dist y ′ py) + 2 ∗

deltaG TYPE( ′a)
by (rule hyperb-quad-ineq)

also have ... ≤ max (dist px py + dist y ′ x ′) (dist px x ′ + dist y ′ py) + 2 ∗ delta
using ‹deltaG(TYPE( ′a)) ≤ delta› by auto

finally have 2 ∗ M − 10 ∗ delta + 2 ∗ dist x ′ y ′ ≤ max (dist px py + dist y ′

x ′) (dist px x ′ + dist y ′ py)
by auto

then have 2 ∗ M − 10 ∗ delta + 2 ∗ dist x ′ y ′ ≤ dist px x ′ + dist py y ′

apply (auto simp add: metric-space-class.dist-commute)
using ‹0 ≤ delta› ‹dist px py ≤ 2 ∗ M − 10 ∗ delta› ‹dist px x ′ = M › ‹dist

py y ′ = M › by auto
then have dist x ′ y ′ ≤ 5 ∗ delta

unfolding ‹dist px x ′ = M › ‹dist py y ′ = M › by auto
then show ?thesis

unfolding x ′-def y ′-def by auto
qed

The next lemma (Lemma 10 in [Shc13] for C = 0) asserts that the projection
on a geodesic segment is an exponential contraction. More precisely, if a path
of length L is at distance at least D of a geodesic segment G, then the pro-
jection of the path on G has diameter at most CL exp(−cD/δ), where C and
c are universal constants. This is not completely true at one can not go be-
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low a fixed size, as always, so the correct bound is Kmax(δ, L exp(−cD/δ)).
For the application, we give a slightly more general statement involving an
additional constant C.
This statement follows from the previous lemma: if one moves towards G
by 10δ, then the distance between points is divided by 2. Then one iterates
this statement as many times as possible, gaining a factor 2 each time and
therefore an exponential factor in the end.
lemma (in Gromov-hyperbolic-space-geodesic) geodesic-projection-exp-contracting:

assumes geodesic-segment G∧
x y. x ∈ {a..b} =⇒ y ∈ {a..b} =⇒ dist (f x) (f y) ≤ lambda ∗ dist x y

+ C
a ≤ b
pa ∈ proj-set (f a) G
pb ∈ proj-set (f b) G∧

t. t ∈ {a..b} =⇒ infdist (f t) G ≥ D
D ≥ 15/2 ∗ delta + C/2
delta > deltaG(TYPE( ′a))
C ≥ 0
lambda ≥ 0

shows dist pa pb ≤ max (5 ∗ deltaG(TYPE( ′a))) ((4 ∗ exp(1/2 ∗ ln 2 )) ∗
lambda ∗ (b−a) ∗ exp(−(D−C/2 ) ∗ ln 2 / (5 ∗ delta)))
proof −

have delta > 0 using assms
using local.delta-nonneg by linarith

have exp(15/2/5 ∗ ln 2 ) = exp(ln 2 ) ∗ exp(1/2 ∗ ln (2 ::real))
unfolding mult-exp-exp by simp

also have ... = 2 ∗ exp(1/2 ∗ ln 2 )
by auto

finally have exp(15/2/5 ∗ ln 2 ) = 2 ∗ exp(1/2 ∗ ln (2 ::real))
by simp

The idea of the proof is to start with a sequence of points separated by
10δ+C along the original path, and push them by a fixed distance towards
G to bring them at distance at most 5δ, thanks to the previous lemma.
Then, discard half the points, and start again. This is possible while one is
far enough from G. In the first step of the proof, we formalize this in the
case where the process can be iterated long enough that, at the end, the
projections on G are very close together. This is a simple induction, based
on the previous lemma.

have Main:
∧

c g p. (∀ i ∈ {0 ..2^k}. p i ∈ proj-set (g i) G)
=⇒ (∀ i ∈ {0 ..2^k}. dist (p i) (g i) ≥ 5 ∗ delta ∗ k + 15/2 ∗ delta +

c/2 )
=⇒ (∀ i ∈ {0 ..<2^k}. dist (g i) (g (Suc i)) ≤ 10 ∗ delta + c)
=⇒ c ≥ 0
=⇒ dist (p 0 ) (p (2^k)) ≤ 5 ∗ deltaG(TYPE( ′a)) for k

proof (induction k)
case 0
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then have H : p 0 ∈ proj-set (g 0 ) G
p 1 ∈ proj-set (g 1 ) G
dist (g 0 ) (g 1 ) ≤ 10 ∗ delta + c
dist (p 0 ) (g 0 ) ≥ 15/2 ∗ delta + c/2
dist (p 1 ) (g 1 ) ≥ 15/2 ∗ delta + c/2

by auto
have dist (p 0 ) (p 1 ) ≤ max (5 ∗ deltaG(TYPE( ′a))) (dist (g 0 ) (g 1 ) − dist

(p 0 ) (g 0 ) − dist (p 1 ) (g 1 ) + 10 ∗ deltaG(TYPE( ′a)))
by (rule proj-along-geodesic-contraction[OF ‹geodesic-segment G› ‹p 0 ∈

proj-set (g 0 ) G› ‹p 1 ∈ proj-set (g 1 ) G›])
also have ... ≤ max (5 ∗ deltaG(TYPE( ′a))) (5 ∗ deltaG(TYPE( ′a)))

apply (intro mono-intros) using H ‹delta > deltaG(TYPE( ′a))› by auto
finally show dist (p 0 ) (p (2^0 )) ≤ 5 ∗ deltaG(TYPE( ′a))

by auto
next

case (Suc k)
have ∗: 5 ∗ delta ∗ real (k + 1 ) + 5 ∗ delta = 5 ∗ delta ∗ real (Suc k + 1 )

by (simp add: algebra-simps)
define h where h = (λi. geodesic-segment-param {p i−−g i} (p i) (5 ∗ delta

∗ k + 15/2 ∗ delta))
have h-dist: dist (h i) (h (Suc i)) ≤ 5 ∗ delta if i ∈ {0 ..<2^(Suc k)} for i

unfolding h-def apply (rule geodesic-projection-exp-contracting-aux[OF
‹geodesic-segment G› - - less-imp-le[OF ‹delta > deltaG(TYPE( ′a))›]])

unfolding ∗ using Suc.prems that ‹delta > 0 › by (auto simp add: alge-
bra-simps divide-simps)

define g ′ where g ′ = (λi. h (2 ∗ i))
define p ′ where p ′ = (λi. p (2 ∗ i))
have dist (p ′ 0 ) (p ′ (2^k)) ≤ 5 ∗ deltaG(TYPE( ′a))
proof (rule Suc.IH [where ?g = g ′ and ?c = 0 ])

show ∀ i∈{0 ..2 ^ k}. p ′ i ∈ proj-set (g ′ i) G
proof

fix i::nat assume i ∈ {0 ..2^k}
then have ∗: 2 ∗ i ∈ {0 ..2^(Suc k)} by auto
show p ′ i ∈ proj-set (g ′ i) G
unfolding p ′-def g ′-def h-def apply (rule proj-set-geodesic-same-basepoint[of

- g (2 ∗ i) - {p(2 ∗ i)−−g(2 ∗ i)}])
using Suc ∗ by (auto simp add: geodesic-segment-param-in-segment)

qed
show ∀ i∈{0 ..2 ^ k}. 5 ∗ delta ∗ k + 15/2 ∗ delta + 0/2 ≤ dist (p ′ i) (g ′ i)
proof

fix i::nat assume i ∈ {0 ..2^k}
then have ∗: 2 ∗ i ∈ {0 ..2^(Suc k)} by auto
have 5 ∗ delta ∗ k + 15/2 ∗ delta ≤ 5 ∗ delta ∗ Suc k + 15/2 ∗ delta +

c/2
using ‹delta > 0 › ‹c ≥ 0 › by (auto simp add: algebra-simps divide-simps)

also have ... ≤ dist (p (2 ∗ i)) (g (2 ∗ i))
using Suc ∗ by auto

finally have ∗: 5 ∗ delta ∗ k + 15/2 ∗ delta ≤ dist (p (2 ∗ i)) (g (2 ∗ i))
by simp
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have dist (p ′ i) (g ′ i) = 5 ∗ delta ∗ k + 15/2 ∗ delta
unfolding p ′-def g ′-def h-def apply (rule geodesic-segment-param-in-geodesic-spaces(6 ))

using ∗ ‹delta > 0 › by auto
then show 5 ∗ delta ∗ k + 15/2 ∗ delta + 0/2 ≤ dist (p ′ i) (g ′ i) by simp

qed
show ∀ i∈{0 ..<2 ^ k}. dist (g ′ i) (g ′ (Suc i)) ≤ 10 ∗ delta + 0
proof

fix i::nat assume ∗: i ∈ {0 ..<2 ^ k}
have dist (g ′ i) (g ′ (Suc i)) = dist (h (2 ∗ i)) (h (Suc (Suc (2 ∗ i))))

unfolding g ′-def by auto
also have ... ≤ dist (h (2 ∗ i)) (h (Suc (2 ∗ i))) + dist (h (Suc (2 ∗ i)))

(h (Suc (Suc (2 ∗ i))))
by (intro mono-intros)

also have ... ≤ 5 ∗ delta + 5 ∗ delta
apply (intro mono-intros h-dist) using ∗ by auto

finally show dist (g ′ i) (g ′ (Suc i)) ≤ 10 ∗ delta + 0 by simp
qed

qed (simp)
then show dist (p 0 ) (p (2 ^ Suc k)) ≤ 5 ∗ deltaG(TYPE( ′a))

unfolding p ′-def by auto
qed

Now, we will apply the previous basic statement to points along our original
path. We introduce k, the number of steps for which the pushing process
can be done – it only depends on the original distance D to G.

define k where k = nat(floor((D − C/2 − 15/2 ∗ delta)/(5 ∗ delta)))
have int k = floor((D − C/2 − 15/2 ∗ delta)/(5 ∗ delta))
unfolding k-def apply (rule nat-0-le) using ‹D ≥ 15/2 ∗ delta + C/2 › ‹delta

> 0 › by auto
then have k ≤ (D − C/2 − 15/2 ∗ delta)/(5 ∗ delta) (D − C/2 − 15/2 ∗

delta)/(5 ∗ delta) ≤ k + 1
by linarith+

then have k: D ≥ 5 ∗ delta ∗ k + 15/2 ∗ delta + C/2 D ≤ 5 ∗ delta ∗ (k+1 )
+ 15/2 ∗ delta + C/2

using ‹delta > 0 › by (auto simp add: algebra-simps divide-simps)
have exp((D−C/2 )/(5 ∗ delta) ∗ ln 2 ) ∗ exp(−15/2/5 ∗ ln 2 ) = exp(((D−C/2−15/2
∗ delta)/(5 ∗ delta)) ∗ ln 2 )

unfolding mult-exp-exp using ‹delta > 0 › by (simp add: algebra-simps di-
vide-simps)

also have ... ≤ exp((k+1 ) ∗ ln 2 )
apply (intro mono-intros) using k(2 ) ‹delta > 0 › by (auto simp add: di-

vide-simps algebra-simps)
also have ... = 2^(k+1 )

by (subst powr-realpow[symmetric], auto simp add: powr-def )
also have ... = 2 ∗ 2^k

by auto
finally have k ′: 1/2^k ≤ 2 ∗ exp(15/2/5 ∗ ln 2 ) ∗ exp(− ((D−C/2 ) ∗ ln 2 /

(5 ∗ delta)))
by (auto simp add: algebra-simps divide-simps exp-minus)
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We separate the proof into two cases. If the path is not too long, then it can
be covered by 2k points at distance at most 10δ+C. By the basic statement,
it follows that the diameter of the projection is at most 5δ. Otherwise, we
subdivide the path into 2N points at distance at most 10δ+C, with N ≥ k,
and apply the basic statement to blocks of 2k consecutive points. It follows
that the projections of g0, g2k , g2·2k , . . . are at distances at most 5δ. Hence,
the first and last projections are at distance at most 2N−k · 5δ, which is the
desired bound.

show ?thesis
proof (cases lambda ∗ (b−a) ≤ 10 ∗ delta ∗ 2^k)

First, treat the case where the path is rather short.
case True
define g::nat ⇒ ′a where g = (λi. f (a + (b−a) ∗ i/2^k))
have g 0 = f a g(2^k) = f b

unfolding g-def by auto
have ∗: a + (b−a) ∗ i/2^k ∈ {a..b} if i ∈ {0 ..2^k} for i::nat
proof −

have a + (b − a) ∗ (real i / 2 ^ k) ≤ a + (b−a) ∗ (2^k/2^k)
apply (intro mono-intros) using that ‹a ≤ b› by auto

then show ?thesis using ‹a ≤ b› by auto
qed
have A: dist (g i) (g (Suc i)) ≤ 10 ∗ delta + C if i ∈ {0 ..<2^k} for i
proof −

have dist (g i) (g (Suc i)) ≤ lambda ∗ dist (a + (b−a) ∗ i/2^k) (a + (b−a)
∗ (Suc i)/2^k) + C

unfolding g-def apply (intro assms(2 ) ∗) using that by auto
also have ... = lambda ∗ (b−a)/2^k + C

unfolding dist-real-def using ‹a ≤ b› by (auto simp add: algebra-simps
divide-simps)

also have ... ≤ 10 ∗ delta + C
using True by (simp add: divide-simps algebra-simps)

finally show ?thesis by simp
qed
define p where p = (λi. if i = 0 then pa else if i = 2^k then pb else SOME

p. p ∈ proj-set (g i) G)
have B: p i ∈ proj-set (g i) G if i ∈ {0 ..2^k} for i
proof (cases i = 0 ∨ i = 2^k)

case True
then show ?thesis

using ‹pa ∈ proj-set (f a) G› ‹pb ∈ proj-set (f b) G› unfolding p-def g-def
by auto

next
case False
then have p i = (SOME p. p ∈ proj-set (g i) G)

unfolding p-def by auto
moreover have proj-set (g i) G 6= {}
apply (rule proj-set-nonempty-of-proper) using geodesic-segment-topology[OF
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‹geodesic-segment G›] by auto
ultimately show ?thesis

using some-in-eq by auto
qed
have C : dist (p i) (g i) ≥ 5 ∗ delta ∗ k + 15/2 ∗ delta + C/2 if i ∈ {0 ..2^k}

for i
proof −

have 5 ∗ delta ∗ k + 15/2 ∗ delta + C/2 ≤ D
using k(1 ) by simp

also have ... ≤ infdist (g i) G
unfolding g-def apply (rule ‹

∧
t. t ∈ {a..b} =⇒ infdist (f t) G ≥ D›)

using ∗ that by auto
also have ... = dist (p i) (g i)
using that proj-setD(2 )[OF B[OF that]] by (simp add: metric-space-class.dist-commute)
finally show ?thesis by simp

qed
have dist (p 0 ) (p (2^k)) ≤ 5 ∗ deltaG(TYPE( ′a))

apply (rule Main[where ?g = g and ?c = C ]) using A B C ‹C ≥ 0 › by
auto

then show ?thesis
unfolding p-def by auto

next

Now, the case where the path is long. We introduce N such that it is roughly
of length 2N · 10δ.

case False
have ∗: 10 ∗ delta ∗ 2^k ≤ lambda ∗ (b−a) using False by simp
have lambda ∗ (b−a) > 0

using ‹delta > 0 › False ‹0 ≤ lambda› assms(3 ) less-eq-real-def mult-le-0-iff
by auto

then have a < b lambda > 0
using ‹a ≤ b› ‹lambda ≥ 0 › less-eq-real-def by auto

define n where n = nat(floor(log 2 (lambda ∗ (b−a)/(10 ∗ delta))))
have log 2 (lambda ∗ (b−a)/(10 ∗ delta)) ≥ log 2 (2^k)

apply (subst log-le-cancel-iff )
using ∗ ‹delta > 0 › ‹a < b› ‹lambda > 0 › by (auto simp add: divide-simps

algebra-simps)
moreover have log 2 (2^k) = k

by simp
ultimately have A: log 2 (lambda ∗ (b−a)/(10 ∗ delta)) ≥ k by auto
have ∗∗: int n = floor(log 2 (lambda ∗ (b−a)/(10 ∗ delta)))

unfolding n-def apply (rule nat-0-le) using A by auto
then have log 2 (2^n) ≤ log 2 (lambda ∗ (b−a)/(10 ∗ delta))

apply (subst log-nat-power , auto) by linarith
then have I : 2^n ≤ lambda ∗ (b−a)/(10 ∗ delta)

using ‹0 < lambda ∗ (b − a)› ‹0 < delta›
by (simp add: le-log-iff powr-realpow)

have log 2 (lambda ∗ (b−a)/(10 ∗ delta)) ≤ log 2 (2^(n+1 ))
apply (subst log-nat-power , auto) using ∗∗ by linarith
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then have J : lambda ∗ (b−a)/(10 ∗ delta) ≤ 2^(n+1 )
using ‹0 < lambda ∗ (b − a)› ‹0 < delta› by auto

have K : k ≤ n using A ∗∗ by linarith
define N where N = n+1
have N : k+1 ≤ N lambda ∗ (b−a) / 2^N ≤ 10 ∗delta 2 ^ N ≤ lambda ∗ (b −

a) / (5 ∗ delta)
using I J K ‹delta > 0 › unfolding N-def by (auto simp add: divide-simps

algebra-simps)
then have 2 ^ k 6= (0 ::real) k ≤ N

by auto
then have (2^(N−k)::real) = 2^N/2^k
by (metis (no-types) add-diff-cancel-left ′ le-Suc-ex nonzero-mult-div-cancel-left

power-add)

Define 2N points along the path, separated by at most 10δ, and their pro-
jections.

define g::nat ⇒ ′a where g = (λi. f (a + (b−a) ∗ i/2^N ))
have g 0 = f a g(2^N ) = f b

unfolding g-def by auto
have ∗: a + (b−a) ∗ i/2^N ∈ {a..b} if i ∈ {0 ..2^N} for i::nat
proof −

have a + (b − a) ∗ (real i / 2 ^ N ) ≤ a + (b−a) ∗ (2^N/2^N )
apply (intro mono-intros) using that ‹a ≤ b› by auto

then show ?thesis using ‹a ≤ b› by auto
qed
have A: dist (g i) (g (Suc i)) ≤ 10 ∗ delta + C if i ∈ {0 ..<2^N} for i
proof −

have dist (g i) (g (Suc i)) ≤ lambda ∗ dist (a + (b−a) ∗ i/2^N ) (a + (b−a)
∗ (Suc i)/2^N ) + C

unfolding g-def apply (intro assms(2 ) ∗)
using that by auto

also have ... = lambda ∗ (b−a)/2^N + C
unfolding dist-real-def using ‹a ≤ b› by (auto simp add: algebra-simps

divide-simps)
also have ... ≤ 10 ∗ delta + C

using N by simp
finally show ?thesis by simp

qed
define p where p = (λi. if i = 0 then pa else if i = 2^N then pb else SOME

p. p ∈ proj-set (g i) G)
have B: p i ∈ proj-set (g i) G if i ∈ {0 ..2^N} for i
proof (cases i = 0 ∨ i = 2^N )

case True
then show ?thesis

using ‹pa ∈ proj-set (f a) G› ‹pb ∈ proj-set (f b) G› unfolding p-def g-def
by auto

next
case False
then have p i = (SOME p. p ∈ proj-set (g i) G)
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unfolding p-def by auto
moreover have proj-set (g i) G 6= {}
apply (rule proj-set-nonempty-of-proper) using geodesic-segment-topology[OF

‹geodesic-segment G›] by auto
ultimately show ?thesis

using some-in-eq by auto
qed
have C : dist (p i) (g i) ≥ 5 ∗ delta ∗ k + 15/2 ∗ delta + C/2 if i ∈ {0 ..2^N}

for i
proof −

have 5 ∗ delta ∗ k + 15/2 ∗ delta + C/2 ≤ D
using k(1 ) by simp

also have ... ≤ infdist (g i) G
unfolding g-def apply (rule ‹

∧
t. t ∈ {a..b} =⇒ infdist (f t) G ≥ D›)

using ∗ that by auto
also have ... = dist (p i) (g i)
using that proj-setD(2 )[OF B[OF that]] by (simp add: metric-space-class.dist-commute)
finally show ?thesis by simp

qed

Use the basic statement to show that, along packets of size 2k, the projections
are within 5δ of each other.

have I : dist (p (2^k ∗ j)) (p (2^k ∗ (Suc j))) ≤ 5 ∗ delta if j ∈ {0 ..<2^(N−k)}
for j

proof −
have I : i + 2^k ∗ j ∈ {0 ..2^N} if i ∈ {0 ..2^k} for i
proof −

have i + 2 ^ k ∗ j ≤ 2^k + 2^k ∗ (2^(N−k)−1 )
apply (intro mono-intros) using that ‹j ∈ {0 ..<2^(N−k)}› by auto

also have ... = 2^N
using ‹k +1 ≤ N › by (auto simp add: algebra-simps semiring-normalization-rules(26 ))
finally show ?thesis by auto

qed
have I ′: i + 2^k ∗ j ∈ {0 ..<2^N} if i ∈ {0 ..<2^k} for i
proof −

have i + 2 ^ k ∗ j < 2^k + 2^k ∗ (2^(N−k)−1 )
apply (intro mono-intros) using that ‹j ∈ {0 ..<2^(N−k)}› by auto

also have ... = 2^N
using ‹k +1 ≤ N › by (auto simp add: algebra-simps semiring-normalization-rules(26 ))
finally show ?thesis by auto

qed
define g ′ where g ′ = (λi. g (i + 2^k ∗ j))
define p ′ where p ′ = (λi. p (i + 2^k ∗ j))
have dist (p ′ 0 ) (p ′ (2^k)) ≤ 5 ∗ deltaG(TYPE( ′a))

apply (rule Main[where ?g = g ′ and ?c = C ]) unfolding p ′-def g ′-def
using A B C I I ′ ‹C ≥ 0 › by auto

also have ... ≤ 5 ∗ delta
using ‹deltaG(TYPE( ′a)) < delta› by auto

finally show ?thesis
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unfolding p ′-def by auto
qed

Control the total distance by adding the contributions of blocks of size 2k.
have ∗: dist (p 0 ) (p(2^k ∗ j)) ≤ (

∑
i<j. dist (p (2^k ∗ i)) (p (2^k ∗ (Suc

i)))) for j
proof (induction j)

case (Suc j)
have dist (p 0 ) (p(2^k ∗ (Suc j))) ≤ dist (p 0 ) (p(2^k ∗ j)) + dist (p(2^k ∗

j)) (p(2^k ∗ (Suc j)))
by (intro mono-intros)

also have ... ≤ (
∑

i<j. dist (p (2^k ∗ i)) (p (2^k ∗ (Suc i)))) + dist (p(2^k
∗ j)) (p(2^k ∗ (Suc j)))

using Suc.IH by auto
also have ... = (

∑
i<Suc j. dist (p (2^k ∗ i)) (p (2^k ∗ (Suc i))))

by auto
finally show ?case by simp

qed (auto)
have dist pa pb = dist (p 0 ) (p (2^N ))

unfolding p-def by auto
also have ... = dist (p 0 ) (p (2^k ∗ 2^(N−k)))

using ‹k +1 ≤ N › by (auto simp add: semiring-normalization-rules(26 ))
also have ... ≤ (

∑
i<2^(N−k). dist (p (2^k ∗ i)) (p (2^k ∗ (Suc i))))

using ∗ by auto
also have ... ≤ (

∑
(i::nat)<2^(N−k). 5 ∗ delta)

apply (rule sum-mono) using I by auto
also have ... = 5 ∗ delta ∗ 2^(N−k)

by auto
also have ... = 5 ∗ delta ∗ 2^N ∗ (1/ 2^k)

unfolding ‹(2^(N−k)::real) = 2^N/2^k› by simp
also have ... ≤ 5 ∗ delta ∗ (2 ∗ lambda ∗ (b−a)/(10 ∗ delta)) ∗ (2 ∗ exp(15/2/5

∗ ln 2 ) ∗ exp(− ((D−C/2 ) ∗ ln 2 / (5 ∗ delta))))
apply (intro mono-intros) using ‹delta > 0 › ‹lambda > 0 › ‹a < b› k ′ N by

auto
also have ... = (2 ∗ exp(15/2/5 ∗ ln 2 )) ∗ lambda ∗ (b−a) ∗ exp(−(D−C/2 )

∗ ln 2 / (5 ∗ delta))
using ‹delta > 0 › by (auto simp add: algebra-simps divide-simps)

finally show ?thesis
unfolding ‹exp(15/2/5 ∗ ln 2 ) = 2 ∗ exp(1/2 ∗ ln (2 ::real))› by auto

qed
qed

We deduce from the previous result that a projection on a quasiconvex set
is also exponentially contracting. To do this, one uses the contraction of a
projection on a geodesic, and one adds up the additional errors due to the
quasi-convexity. In particular, the projections on the original quasiconvex
set or the geodesic do not have to coincide, but they are within distance at
most C + 8δ.
lemma (in Gromov-hyperbolic-space-geodesic) quasiconvex-projection-exp-contracting:
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assumes quasiconvex K G∧
x y. x ∈ {a..b} =⇒ y ∈ {a..b} =⇒ dist (f x) (f y) ≤ lambda ∗ dist x y

+ C
a ≤ b
pa ∈ proj-set (f a) G
pb ∈ proj-set (f b) G∧

t. t ∈ {a..b} =⇒ infdist (f t) G ≥ D
D ≥ 15/2 ∗ delta + K + C/2
delta > deltaG(TYPE( ′a))
C ≥ 0
lambda ≥ 0

shows dist pa pb ≤ 2 ∗ K + 8 ∗ delta + max (5 ∗ deltaG(TYPE( ′a))) ((4 ∗
exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (b−a) ∗ exp(−(D − K − C/2 ) ∗ ln 2 / (5 ∗ delta)))
proof −

obtain H where H : geodesic-segment-between H pa pb
∧

q. q ∈ H =⇒ infdist q
G ≤ K

using quasiconvexD[OF assms(1 ) proj-setD(1 )[OF ‹pa ∈ proj-set (f a) G›]
proj-setD(1 )[OF ‹pb ∈ proj-set (f b) G›]] by auto

obtain qa where qa: qa ∈ proj-set (f a) H
using proj-set-nonempty-of-proper [of H f a] geodesic-segment-topology[OF geodesic-segmentI [OF

H (1 )]] by auto
obtain qb where qb: qb ∈ proj-set (f b) H
using proj-set-nonempty-of-proper [of H f b] geodesic-segment-topology[OF geodesic-segmentI [OF

H (1 )]] by auto

have I : infdist (f t) H ≥ D − K if t ∈ {a..b} for t
proof −

have ∗: D − K ≤ dist (f t) h if h ∈ H for h
proof −

have D − K − dist (f t) h ≤ e if e > 0 for e
proof −

have ∗: infdist h G < K + e using H (2 )[OF ‹h ∈ H ›] ‹e > 0 › by auto
obtain g where g: g ∈ G dist h g < K + e

using infdist-almost-attained[OF ∗] proj-setD(1 )[OF ‹pa ∈ proj-set (f a)
G›] by auto

have D ≤ dist (f t) g
using ‹

∧
t. t ∈ {a..b} =⇒ infdist (f t) G ≥ D›[OF ‹t ∈ {a..b}›] infdist-le[OF

‹g ∈ G›, of f t] by auto
also have ... ≤ dist (f t) h + dist h g

by (intro mono-intros)
also have ... ≤ dist (f t) h + K + e

using g(2 ) by auto
finally show ?thesis by auto

qed
then have ∗: D − K − dist (f t) h ≤ 0

using dense-ge by blast
then show ?thesis by simp

qed
have D − K ≤ Inf (dist (f t) ‘ H )
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apply (rule cInf-greatest) using ∗ H (1 ) by auto
then show D − K ≤ infdist (f t) H

apply (subst infdist-notempty) using H (1 ) by auto
qed
have Q: dist qa qb ≤ max (5 ∗ deltaG(TYPE( ′a))) ((4 ∗ exp(1/2 ∗ ln 2 )) ∗

lambda ∗ (b−a) ∗ exp(−((D − K )−C/2 ) ∗ ln 2 / (5 ∗ delta)))
apply (rule geodesic-projection-exp-contracting[OF geodesic-segmentI [OF ‹geodesic-segment-between

H pa pb›] assms(2 ) assms(3 )])
using qa qb I assms by auto

have A: dist pa qa ≤ 4 ∗ delta + K
proof −

have dist (f a) pa − dist (f a) qa − K ≤ e if e > 0 for e::real
proof −

have ∗: infdist qa G < K + e using H (2 )[OF proj-setD(1 )[OF qa]] ‹e > 0 ›
by auto

obtain g where g: g ∈ G dist qa g < K + e
using infdist-almost-attained[OF ∗] proj-setD(1 )[OF ‹pa ∈ proj-set (f a)

G›] by auto
have dist (f a) pa ≤ dist (f a) g

unfolding proj-setD(2 )[OF ‹pa ∈ proj-set (f a) G›] using infdist-le[OF ‹g
∈ G›, of f a] by simp

also have ... ≤ dist (f a) qa + dist qa g
by (intro mono-intros)

also have ... ≤ dist (f a) qa + K + e
using g(2 ) by auto

finally show ?thesis by simp
qed
then have I : dist (f a) pa − dist (f a) qa − K ≤ 0

using dense-ge by blast
have dist (f a) qa + dist qa pa ≤ dist (f a) pa + 4 ∗ deltaG(TYPE( ′a))

apply (rule dist-along-geodesic[OF geodesic-segmentI [OF H (1 )]]) using qa
H (1 ) by auto

also have ... ≤ dist (f a) qa + K + 4 ∗ delta
using I assms by auto

finally show ?thesis
by (simp add: metric-space-class.dist-commute)

qed
have B: dist qb pb ≤ 4 ∗ delta + K
proof −

have dist (f b) pb − dist (f b) qb − K ≤ e if e > 0 for e::real
proof −

have ∗: infdist qb G < K + e using H (2 )[OF proj-setD(1 )[OF qb]] ‹e > 0 ›
by auto

obtain g where g: g ∈ G dist qb g < K + e
using infdist-almost-attained[OF ∗] proj-setD(1 )[OF ‹pa ∈ proj-set (f a)

G›] by auto
have dist (f b) pb ≤ dist (f b) g

unfolding proj-setD(2 )[OF ‹pb ∈ proj-set (f b) G›] using infdist-le[OF ‹g
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∈ G›, of f b] by simp
also have ... ≤ dist (f b) qb + dist qb g

by (intro mono-intros)
also have ... ≤ dist (f b) qb + K + e

using g(2 ) by auto
finally show ?thesis by simp

qed
then have I : dist (f b) pb − dist (f b) qb − K ≤ 0

using dense-ge by blast
have dist (f b) qb + dist qb pb ≤ dist (f b) pb + 4 ∗ deltaG(TYPE( ′a))

apply (rule dist-along-geodesic[OF geodesic-segmentI [OF H (1 )]]) using qb
H (1 ) by auto

also have ... ≤ dist (f b) qb + K + 4 ∗ delta
using I assms by auto

finally show ?thesis
by simp

qed
have dist pa pb ≤ dist pa qa + dist qa qb + dist qb pb

by (intro mono-intros)
then show ?thesis

using Q A B by auto
qed

The next statement is the main step in the proof of the Morse-Gromov
theorem given by Shchur in [Shc13], asserting that a quasi-geodesic and
a geodesic with the same endpoints are close. We show that a point on
the quasi-geodesic is close to the geodesic – the other inequality will follow
easily later on. We also assume that the quasi-geodesic is parameterized by
a Lipschitz map – the general case will follow as any quasi-geodesic can be
approximated by a Lipschitz map with good controls.
Here is a sketch of the proof. Fix two large constants L ≤ D (that we will
choose carefully to optimize the values of the constants at the end of the
proof). Consider a quasi-geodesic f between two points f(u−) and f(u+),
and a geodesic segment G between the same points. Fix f(z). We want to
find a bound on d(f(z), G). 1 - If this distance is smaller than L, we are
done (and the bound is L). 2 - Assume it is larger. Let πz be a projection
of f(z) on G (at distance d(f(z), G) of f(z)), and H a geodesic between z
and πz. The idea will be to project the image of f on H, and record how
much progress is made towards f(z). In this proof, we will construct several
points before and after z. When necessary, we put an exponent − on the
points before z, and + on the points after z. To ease the reading, the points
are ordered following the alphabetical order, i.e., u− ≤ v ≤ w ≤ x ≤ y− ≤ z.
One can find two points f(y−) and f(y+) on the left and the right of f(z)
that project on H roughly at distance L of πz (up to some O(δ) – recall that
the closest point projection is not uniquely defined, and not continuous, so
we make some choice here). Let d− be the minimal distance of f([u−, y−])
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to H, and let d+ be the minimal distance of f([y+, u+)] to H.
2.1 If the two distances d− and d+ are less than D, then the distance between
two points realizing the minimum (say f(c−) and f(c+)) is at most 2D+L,
hence c+−c− is controlled (by λ ·(2D+L)+C) thanks to the quasi-isometry
property. Therefore, f(z) is not far away from f(c−) and f(c+) (again by
the quasi-isometry property). Since the distance from these points to πz is
controlled (by D + L), we get a good control on d(f(z), πz), as desired.
2.2 The interesting case is when d− and d+ are both > D. Assume also for
instance d− ≥ d+, as the other case is analogous. We will construct two
points f(v) and f(x) with u− ≤ v ≤ x ≤ y− with the following property:

K1e
K2d(f(v),H) ≤ x− v, (1)

where K1 and K2 are some explicit constants (depending on λ, δ, L and D).
Let us show how this will conclude the proof. The distance from f(v) to
f(c+) is at most d(f(v),H) + L + d+ ≤ 3d(f(v),H). Therefore, c+ − v is
also controlled by K ′d(f(v),H) by the quasi-isometry property. This gives

K ≤ K(x− v)e−K(c+−v) ≤ (eK(x−v) − 1) · e−K(c+−v)

= e−K(c+−x) − e−K(c+−v) ≤ e−K(c+−x) − e−K(u+−u−).

This shows that, when one goes from the original quasi-geodesic f([u−, u+])
to the restricted quasi-geodesic f([x, c+]), the quantity e−K· decreases by
a fixed amount. In particular, this process can only happen a uniformly
bounded number of times, say n.
Let G′ be a geodesic between f(x) and f(c+). One checks geometrically
that d(f(z), G) ≤ d(f(z), G′) + (L+O(δ)), as both projections of f(x) and
f(c+) on H are within distance L of πz. Iterating the process n times, one
gets finally d(f(z), G) ≤ O(1) + n(L+O(δ)). This is the desired bound for
d(f(z), G).
To complete the proof, it remains to construct the points f(v) and f(x)
satisfying (1). This will be done through an inductive process.
Assume first that there is a point f(v) whose projection on H is close to
the projection of f(u−), and with d(f(v),H) ≤ 2d−. Then the projections
of f(v) and f(y−) are far away (at distance at least L + O(δ)). Since the
portion of f between v and y− is everywhere at distance at least d− of H,
the projection on H contracts by a factor e−d− . It follows that this portion
of f has length at least ed

− · (L + O(δ)). Therefore, by the quasi-isometry
property, one gets x − v ≥ Ked

− . On the other hand, d(v,H) is bounded
above by 2d− by assumption. This gives the desired inequality (1) with
x = y−.
Otherwise, all points f(v) whose projection on H is close to the projection
of f(u−) are such that d(f(v),H) ≥ 2d−. Consider f(w1) a point whose
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projection on H is at distance roughly 10δ of the projection of f(u−). Let
V1 be the set of points at distance at most d− of H, i.e., the d1-neighborhood
of H. Then the distance between the projections of f(u−) and f(w1) on V1

is very large (are there is an additional big contraction to go from V1 to H).
And moreover all the intermediate points f(v) are at distance at least 2d−

of H, and therefore at distance at least d− of H. Then one can play the
same game as in the first case, where y− replaced by w1 and H replaced by
V1. If there is a point f(v) whose projection on V1 is close to the projection
of f(u−), then the pair of points v and x = w1 works. Otherwise, one lifts
everything to V2, the neighborhood of size 2d− of V1, and one argues again
in the same way.
The induction goes on like this until one finds a suitable pair of points. The
process has indeed to stop at one time, as it can only go on while f(u−) is
outside of Vk, the (2k−1)d− neighborhood of H). This concludes the sketch
of the proof, modulo the adjustment of constants.
Comments on the formalization below:

• The proof is written as an induction on u+−u−. This makes it possible
to either prove the bound directly (in the cases 1 and 2.1 above), or to
use the bound on d(z,G′) in case 2.2 using the induction assumption,
and conclude the proof. Of course, u+ − u− is not integer-valued, but
in the reduction to G′ it decays by a fixed amount, so one can easily
write this down as a genuine induction.

• The main difficulty in the proof is to construct the pair (v, x) in case
2.2. This is again written as an induction over k: either the required
bound is true, or one can find a point f(w) whose projection on Vk

is far enough from the projection of f(u−). Then, either one can use
this point to prove the bound, or one can construct a point with the
same property with respect to Vk+1, concluding the induction.

• Instead of writing u− and u+ (which are not good variable names in
Isabelle), we write um and uM . Similarly for other variables.

• The proof only works when δ > 0 (as one needs to divide by δ in the
exponential gain). Hence, we formulate it for some δ which is strictly
larger than the hyperbolicity constant. In a subsequent application of
the lemma, we will deduce the same statement for the hyperbolicity
constant by a limiting argument.

• To optimize the value of the constant in the end, there is an additional
important trick with respect to the above sketch: in case 2.2, there is
an exponential gain. One can spare a fraction (1 − α) of this gain to
improve the constants, and spend the remaining fraction α to make
the argument work. This makes it possible to reduce the value of the
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constant roughly from 40000 to 100, so we do it in the proof below.
The values of L, D and α can be chosen freely, and have been chosen
to get the best possible constant in the end.

• For another optimization, we do not induce in terms of the distance
from f(z) to the geodesic G, but rather in terms of the Gromov product
(f(u−), f(u+))f(z) (which is the same up to O(δ). And we do not take
for H a geodesic from f(z) to its projection on G, but rather a geodesic
from f(z) to the point m on [f(u−), f(u+)] opposite to f(z) in the
tripod, i.e., at distance (f(z), f(u+))f(u−) of f(u−), and at distance
(f(z), f(u−))f(u+) of f(u+). Let πz denote the point on [f(z),m] at
distance (f(u−), f(u+)f(z) of f(z). (It is within distance 2δ of m). In
both approaches, what we want to control by induction is the distance
from f(z) to πz. However, in the first approach, the points f(u−)
and f(u+) project on H between πz and f(z), and since the location
of their projection is only controlled up to 4δ one loses essentially a
4δ-length of L for the forthcoming argument. In the second approach,
the projections on H are on the other side of πz compared to f(z), so
one does not lose anything, and in the end it gives genuinely better
bounds (making it possible to gain roughly 10δ in the final estimate).

lemma (in Gromov-hyperbolic-space-geodesic) Morse-Gromov-theorem-aux1 :
fixes f ::real ⇒ ′a
assumes continuous-on {a..b} f

lambda C−quasi-isometry-on {a..b} f
a ≤ b
geodesic-segment-between G (f a) (f b)
z ∈ {a..b}
delta > deltaG(TYPE( ′a))

shows infdist (f z) G ≤ lambda^2 ∗ (11/2 ∗ C + 91 ∗ delta)
proof −

have C ≥ 0 lambda ≥ 1 using quasi-isometry-onD assms by auto
have delta > 0 using assms delta-nonneg order-trans by linarith

We give their values to the parameters L, D and α that we will use in the
proof. We also define two constants K and Kmult that appear in the precise
formulation of the bounds. Their values have no precise meaning, they are
just the outcome of the computation

define alpha::real where alpha = 12/100
have alphaaux:alpha > 0 alpha ≤ 1 unfolding alpha-def by auto
define L::real where L = 18 ∗ delta
define D::real where D = 55 ∗ delta
define K where K = alpha ∗ ln 2 / (5 ∗ (4 + (L + 2 ∗ delta)/D) ∗ delta ∗

lambda)
have K > 0 L > 0 D > 0 unfolding K-def L-def D-def using ‹delta > 0 ›

‹lambda ≥ 1 › alpha-def by auto
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have Laux: L ≥ 18 ∗ delta D ≥ 50 ∗ delta L ≤ D D ≤ 4 ∗ L unfolding L-def
D-def using ‹delta > 0 › by auto

have Daux: 8 ∗ delta ≤ (1 − alpha) ∗ D unfolding alpha-def D-def using ‹delta
> 0 › by auto

define Kmult where Kmult = ((L + 4 ∗ delta)/(L − 13 ∗ delta)) ∗ ((4 ∗
exp(1/2 ∗ ln 2 )) ∗ lambda ∗ exp (− (1 − alpha) ∗ D ∗ ln 2 / (5 ∗ delta)) / K )

have Kmult > 0 unfolding Kmult-def using Laux ‹delta > 0 › ‹K > 0 › ‹lambda
≥ 1 › by (auto simp add: divide-simps)

We prove that, for any pair of points to the left and to the right of f(z),
the distance from f(z) to a geodesic between these points is controlled. We
prove this by reducing to a closer pair of points, i.e., this is an inductive
argument over real numbers. However, we formalize it as an artificial induc-
tion over natural numbers, as this is how induction works best, and since in
our reduction step the new pair of points is always significantly closer than
the initial one, at least by an amount δ/λ.
The main inductive bound that we will prove is the following. In this bound,
the first term is what comes from the trivial cases 1 and 2.1 in the description
of the proof before the statement of the theorem, while the most interesting
term is the second term, corresponding to the induction per se.

have Main:
∧

um uM . um ∈ {a..z} =⇒ uM ∈ {z..b}
=⇒ uM − um ≤ n ∗ (1/4 ) ∗ delta / lambda
=⇒ Gromov-product-at (f z) (f um) (f uM ) ≤ lambda^2 ∗ (D + (3/2 ) ∗

L + delta + 11/2 ∗ C ) − 2 ∗ delta + Kmult ∗ (1 − exp(− K ∗ (uM − um)))
for n::nat

proof (induction n)

Trivial base case of the induction
case 0
then have ∗: z = um z = uM by auto
then have Gromov-product-at (f z) (f um) (f uM ) = 0 by auto
also have ... ≤ 1 ∗ (D + (3/2 ) ∗ L + delta + 11/2 ∗ C ) − 2 ∗ delta + 0 ∗

(1 − exp(− K ∗ (uM − um)))
using Laux ‹C ≥ 0 › ‹delta > 0 › by auto

also have ... ≤ lambda^2 ∗ (D + (3/2 ) ∗ L + delta + 11/2 ∗ C ) − 2 ∗ delta
+ Kmult ∗ (1 − exp(− K ∗ (uM − um)))

apply (intro mono-intros)
using ‹C ≥ 0 › ‹delta > 0 › Laux ‹D > 0 › ‹K > 0 › 0 .prems ‹lambda ≥ 1 ›

‹Kmult > 0 › by auto
finally show ?case by auto

next
case (Suc n)
show ?case
proof (cases Gromov-product-at (f z) (f um) (f uM ) ≤ L)

If f(z) is already close to the geodesic, there is nothing to do, and we do
not need the induction assumption. This is case 1 in the description above.
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case True
have L ≤ 1 ∗ (D + (3/2 ) ∗ L + delta + 11/2 ∗ C ) − 2 ∗ delta + 0 ∗ (1

− exp(− K ∗ (uM − um)))
using Laux ‹C ≥ 0 › ‹delta > 0 › by auto

also have ... ≤ lambda^2 ∗ (D + (3/2 ) ∗ L + delta + 11/2 ∗ C ) − 2 ∗
delta + Kmult ∗ (1 − exp(− K ∗ (uM − um)))

apply (intro mono-intros)
using ‹C ≥ 0 › ‹delta > 0 › Laux ‹D > 0 › Suc.prems ‹K > 0 › ‹lambda ≥

1 › ‹Kmult > 0 › by auto
finally show ?thesis using True by auto

next

We come to the interesting case where f(z) is far away from a geodesic
between f(um) and f(uM). Let m be close to a projection of f(z) on
such a geodesic (we use the opposite point of f(z) on the corresponding tri-
pod). On a geodesic between f(z) and m, consider the point piz at distance
(f(um), f(uM))f(z) of f(z). It is very close to m (within distance 2δ). We
will push the points f(um) and f(uM) towards f(z) by considering points
whose projection on a geodesic H between m and z is roughly at distance
L of piz.

case False
define m where m = geodesic-segment-param {f um−−f uM} (f um)

(Gromov-product-at (f um) (f z) (f uM ))
have dist (f z) m ≤ Gromov-product-at (f z) (f um) (f uM ) + 2 ∗ deltaG(TYPE( ′a))

unfolding m-def by (rule dist-triangle-side-middle, auto)
then have ∗: dist (f z) m ≤ Gromov-product-at (f z) (f um) (f uM ) + 2 ∗

delta
using ‹deltaG(TYPE( ′a)) < delta› by auto

have Gromov-product-at (f z) (f um) (f uM ) ≤ infdist (f z) {f um−−f uM}
by (intro mono-intros, auto)

also have ... ≤ dist (f z) m
apply (rule infdist-le) unfolding m-def by auto

finally have ∗∗: Gromov-product-at (f z) (f um) (f uM ) ≤ dist (f z) m
by auto

define H where H = {f z−−m}
define pi-z where pi-z = geodesic-segment-param H (f z) (Gromov-product-at

(f z) (f um) (f uM ))
have pi-z ∈ H m ∈ H f z ∈ H
unfolding pi-z-def H-def by (auto simp add: geodesic-segment-param-in-segment)
have H : geodesic-segment-between H (f z) m

unfolding H-def by auto
have Dpi-z: dist (f z) pi-z = Gromov-product-at (f z) (f um) (f uM )

unfolding pi-z-def H-def by (rule geodesic-segment-param(6 )[where ?y =
m], auto simp add: ∗∗)

moreover have dist (f z) m = dist (f z) pi-z + dist pi-z m
apply (rule geodesic-segment-dist[of H , symmetric]) using ‹pi-z ∈ H ›

unfolding H-def by auto
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ultimately have dist pi-z m ≤ 2 ∗ delta
using ∗ by auto

Introduce the notation p for some projection on the geodesic H.
define p where p = (λr . SOME x. x ∈ proj-set (f r) H )
have p: p x ∈ proj-set (f x) H for x
unfolding p-def using proj-set-nonempty-of-proper [of H f x] geodesic-segment-topology[OF

geodesic-segmentI [OF H ]]
by (simp add: some-in-eq)

then have pH : p x ∈ H for x
using proj-setD(1 ) by auto

have pz: p z = f z
using p[of z] H by auto

The projection of f(um) on H is close to piz (but it does not have to be
exactly piz). It is between piz and m.

have dist (f um) (f z) ≤ dist (f um) (p um) + dist (p um) (f z)
by (intro mono-intros)

also have ... ≤ dist (f um) m + dist (p um) (f z)
unfolding proj-setD(2 )[OF p[of um]] H-def by (auto intro!: infdist-le)

also have ... = Gromov-product-at (f um) (f z) (f uM ) + dist (p um) (f z)
unfolding m-def by simp

finally have A: Gromov-product-at (f z) (f um) (f uM ) ≤ dist (p um) (f z)
unfolding Gromov-product-at-def by (simp add: metric-space-class.dist-commute

divide-simps)
have dist (p um) pi-z = abs(dist (p um) (f z) − dist pi-z (f z))

apply (rule dist-along-geodesic-wrt-endpoint[of H - m]) using pH ‹pi-z ∈
H › H-def by auto

also have ... = dist (p um) (f z) − dist pi-z (f z)
using A Dpi-z by (simp add: metric-space-class.dist-commute)

finally have Dum: dist (p um) (f z) = dist (p um) pi-z + dist pi-z (f z) by
auto

Choose a point f(ym) whose projection on H is roughly at distance L of
piz.

have ∃ ym ∈ {um..z}. (dist (p um) (p ym) ∈ {(L + dist pi-z (p um)) − 4 ∗
delta − 2 ∗ 0 .. L + dist pi-z (p um)})

∧ (∀ r ∈ {um..ym}. dist (p um) (p r) ≤ L + dist pi-z (p um))
proof (rule quasi-convex-projection-small-gaps[where ?f = f and ?G = H ])

show continuous-on {um..z} f
apply (rule continuous-on-subset[OF ‹continuous-on {a..b} f ›])
using ‹um ∈ {a..z}› ‹z ∈ {a..b}› by auto

show um ≤ z using ‹um ∈ {a..z}› by auto
show quasiconvex 0 H using quasiconvex-of-geodesic geodesic-segmentI H

by auto
show deltaG TYPE( ′a) < delta by fact
have L + dist pi-z (p um) ≤ dist (f z) pi-z + dist pi-z (p um)

using False Dpi-z by (simp add: metric-space-class.dist-commute)
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then have L + dist pi-z (p um) ≤ dist (p um) (f z)
using Dum by (simp add: metric-space-class.dist-commute)

then show L + dist pi-z (p um) ∈ {4 ∗ delta + 2 ∗ 0 ..dist (p um) (p z)}
using ‹delta > 0 › False L-def pz by auto

show p ym ∈ proj-set (f ym) H for ym using p by simp
qed
then obtain ym where ym : ym ∈ {um..z}

dist (p um) (p ym) ∈ {(L + dist pi-z (p um)) − 4 ∗ delta
− 2 ∗ 0 .. L + dist pi-z (p um)}∧

r . r ∈ {um..ym} =⇒ dist (p um) (p r) ≤ L + dist pi-z
(p um)

by blast
have ∗: continuous-on {um..ym} (λr . infdist (f r) H )

using continuous-on-infdist[OF continuous-on-subset[OF ‹continuous-on
{a..b} f ›, of {um..ym}], of H ]

‹ym ∈ {um..z}› ‹um ∈ {a..z}› ‹z ∈ {a..b}› by auto

Choose a point cm between f(um) and f(ym) realizing the minimal distance
to H. Call this distance dm.

have ∃ closestm ∈ {um..ym}. ∀ v ∈ {um..ym}. infdist (f closestm) H ≤ infdist
(f v) H

apply (rule continuous-attains-inf ) using ym(1 ) ∗ by auto
then obtain closestm where closestm: closestm ∈ {um..ym}

∧
v. v ∈

{um..ym} =⇒ infdist (f closestm) H ≤ infdist (f v) H
by auto

define dm where dm = infdist (f closestm) H
have [simp]: dm ≥ 0 unfolding dm-def using infdist-nonneg by auto

Same things but in the interval [z, uM ].
have I : dist m (f uM ) = dist (f um) (f uM ) − dist (f um) m

dist (f um) m = Gromov-product-at (f um) (f z) (f uM )
using geodesic-segment-dist[of {f um−−f uM} f um f uM m] m-def by auto

have dist (f uM ) (f z) ≤ dist (f uM ) (p uM ) + dist (p uM ) (f z)
by (intro mono-intros)

also have ... ≤ dist (f uM ) m + dist (p uM ) (f z)
unfolding proj-setD(2 )[OF p[of uM ]] H-def by (auto intro!: infdist-le)

also have ... = Gromov-product-at (f uM ) (f z) (f um) + dist (p uM ) (f z)
using I unfolding Gromov-product-at-def by (simp add: divide-simps

algebra-simps metric-space-class.dist-commute)
finally have A: Gromov-product-at (f z) (f um) (f uM ) ≤ dist (p uM ) (f z)
unfolding Gromov-product-at-def by (simp add: metric-space-class.dist-commute

divide-simps)
have dist (p uM ) pi-z = abs(dist (p uM ) (f z) − dist pi-z (f z))

apply (rule dist-along-geodesic-wrt-endpoint[of H - m]) using pH ‹pi-z ∈
H › H-def by auto

also have ... = dist (p uM ) (f z) − dist pi-z (f z)
using A Dpi-z by (simp add: metric-space-class.dist-commute)

finally have DuM : dist (p uM ) (f z) = dist (p uM ) pi-z + dist pi-z (f z) by
auto
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Choose a point f(yM) whose projection on H is roughly at distance L of
piz.

have ∃ yM ∈ {z..uM}. dist (p uM ) (p yM ) ∈ {(L + dist pi-z (p uM )) − 4∗
delta − 2 ∗ 0 .. L + dist pi-z (p uM )}

∧ (∀ r ∈ {yM ..uM}. dist (p uM ) (p r) ≤ L + dist pi-z (p uM ))
proof (rule quasi-convex-projection-small-gaps ′[where ?f = f and ?G = H ])

show continuous-on {z..uM} f
apply (rule continuous-on-subset[OF ‹continuous-on {a..b} f ›])
using ‹uM ∈ {z..b}› ‹z ∈ {a..b}› by auto

show z ≤ uM using ‹uM ∈ {z..b}› by auto
show quasiconvex 0 H using quasiconvex-of-geodesic geodesic-segmentI H

by auto
show deltaG TYPE( ′a) < delta by fact
have L + dist pi-z (p uM ) ≤ dist (f z) pi-z + dist pi-z (p uM )

using False Dpi-z by (simp add: metric-space-class.dist-commute)
then have L + dist pi-z (p uM ) ≤ dist (p uM ) (f z)

using DuM by (simp add: metric-space-class.dist-commute)
then show L + dist pi-z (p uM ) ∈ {4 ∗ delta + 2 ∗ 0 ..dist (p z) (p uM )}
using ‹delta > 0 › False L-def pz by (auto simp add: metric-space-class.dist-commute)
show p yM ∈ proj-set (f yM ) H for yM using p by simp

qed
then obtain yM where yM : yM ∈ {z..uM}

dist (p uM ) (p yM ) ∈ {(L + dist pi-z (p uM )) − 4∗ delta
− 2 ∗ 0 .. L + dist pi-z (p uM )}∧

r . r ∈ {yM ..uM} =⇒ dist (p uM ) (p r) ≤ L + dist pi-z
(p uM )

by blast
have ∗: continuous-on {yM ..uM} (λr . infdist (f r) H )

using continuous-on-infdist[OF continuous-on-subset[OF ‹continuous-on
{a..b} f ›, of {yM ..uM}], of H ]

‹yM ∈ {z..uM}› ‹uM ∈ {z..b}› ‹z ∈ {a..b}› by auto
have ∃ closestM ∈ {yM ..uM}. ∀ v ∈ {yM ..uM}. infdist (f closestM ) H ≤

infdist (f v) H
apply (rule continuous-attains-inf ) using yM (1 ) ∗ by auto
then obtain closestM where closestM : closestM ∈ {yM ..uM}

∧
v. v ∈

{yM ..uM} =⇒ infdist (f closestM ) H ≤ infdist (f v) H
by auto

define dM where dM = infdist (f closestM ) H
have [simp]: dM ≥ 0 unfolding dM-def using infdist-nonneg by auto

Points between f(um) and f(ym), or between f(yM) and f(uM), project
within distance at most L of piz by construction.

have P0 : dist m (p x) ≤ dist m pi-z + L if x ∈ {um..ym} ∪ {yM ..uM} for x
proof (cases x ∈ {um..ym})

case True
have dist m (f z) = dist m (p um) + dist (p um) pi-z + dist pi-z (f z)

using geodesic-segment-dist[OF H pH [of um]] Dum by (simp add: met-
ric-space-class.dist-commute)

moreover have dist m (f z) = dist m pi-z + dist pi-z (f z)
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using geodesic-segment-dist[OF H ‹pi-z ∈ H ›] by (simp add: met-
ric-space-class.dist-commute)

ultimately have ∗: dist m pi-z = dist m (p um) + dist (p um) pi-z by auto
have dist (p um) (p x) ≤ L + dist pi-z (p um)

using ym(3 )[OF ‹x ∈ {um..ym}›] by blast
then show ?thesis
using metric-space-class.dist-triangle[of m p x p um] ∗ by (auto simp add:

metric-space-class.dist-commute)
next

case False
then have x ∈ {yM ..uM} using that by auto
have dist m (f z) = dist m (p uM ) + dist (p uM ) pi-z + dist pi-z (f z)

using geodesic-segment-dist[OF H pH [of uM ]] DuM by (simp add:
metric-space-class.dist-commute)

moreover have dist m (f z) = dist m pi-z + dist pi-z (f z)
using geodesic-segment-dist[OF H ‹pi-z ∈ H ›] by (simp add: met-

ric-space-class.dist-commute)
ultimately have ∗: dist m pi-z = dist m (p uM ) + dist (p uM ) pi-z by

auto
have dist (p uM ) (p x) ≤ L + dist pi-z (p uM )

using yM (3 )[OF ‹x ∈ {yM ..uM}›] by blast
then show ?thesis
using metric-space-class.dist-triangle[of m p x p uM ] ∗ by (auto simp add:

metric-space-class.dist-commute)
qed
have P: dist pi-z (p x) ≤ L if x ∈ {um..ym} ∪ {yM ..uM} for x
proof (cases dist m (p x) ≤ dist pi-z m)

case True
have dist pi-z (p x) ≤ dist pi-z m + dist m (p x)

by (intro mono-intros)
also have ... ≤ 2 ∗ delta + 2 ∗ delta

using ‹dist pi-z m ≤ 2 ∗ delta› True by auto
finally show ?thesis

using Laux ‹delta > 0 › by auto
next

case False
have dist pi-z (p x) = abs(dist pi-z m − dist (p x) m)

apply (rule dist-along-geodesic-wrt-endpoint[OF geodesic-segment-commute[OF
H ]])

using pH ‹pi-z ∈ H › by auto
also have ... = dist (p x) m − dist pi-z m

using False by (simp add: metric-space-class.dist-commute)
finally show ?thesis

using P0 [OF that] by (simp add: metric-space-class.dist-commute)
qed

Auxiliary fact for later use: The distance between two points in [um, ym]
and [yM, uM ] can be controlled using the distances of their images under f
to H, thanks to the quasi-isometry property.
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have D: dist rm rM ≤ lambda ∗ (infdist (f rm) H + (L + C + 2 ∗ delta) +
infdist (f rM ) H )

if rm ∈ {um..ym} rM ∈ {yM ..uM} for rm rM
proof −

have ∗: dist m (p rm) ≤ L + dist m pi-z dist m (p rM ) ≤ L + dist m pi-z
using P0 that by force+

have dist (p rm) (p rM ) = abs(dist (p rm) m − dist (p rM ) m)
apply (rule dist-along-geodesic-wrt-endpoint[OF geodesic-segment-commute[OF

H ]])
using pH by auto

also have ... ≤ L + dist m pi-z
unfolding abs-le-iff using ∗ apply (auto simp add: metric-space-class.dist-commute)
by (metis diff-add-cancel le-add-same-cancel1 metric-space-class.zero-le-dist

order-trans)+
finally have ∗: dist (p rm) (p rM ) ≤ L + 2 ∗ delta

using ‹dist pi-z m ≤ 2 ∗ delta› by (simp add: metric-space-class.dist-commute)

have (1/lambda) ∗ dist rm rM − C ≤ dist (f rm) (f rM )
apply (rule quasi-isometry-onD(2 )[OF ‹lambda C−quasi-isometry-on

{a..b} f ›])
using ‹rm ∈ {um..ym}› ‹ym ∈ {um..z}› ‹um ∈ {a..z}› ‹z ∈ {a..b}› ‹rM

∈ {yM ..uM}› ‹yM ∈ {z..uM}› ‹uM ∈ {z..b}› by auto
also have ... ≤ dist (f rm) (p rm) + dist (p rm) (p rM ) + dist (p rM ) (f

rM )
by (intro mono-intros)

also have ... ≤ infdist (f rm) H + L + 2 ∗ delta + infdist (f rM ) H
using ∗ proj-setD(2 )[OF p] by (simp add: metric-space-class.dist-commute)
finally show ?thesis

using ‹lambda ≥ 1 › by (simp add: algebra-simps divide-simps)
qed

Auxiliary fact for later use in the inductive argument: the distance from f(z)
to piz is controlled by the distance from f(z) to any intermediate geodesic
between points in f [um, ym] and f [yM, uM ], up to a constant essentially
given by L. This is a variation around Lemma 5 in [Shc13].

have Rec: Gromov-product-at (f z) (f um) (f uM ) ≤ Gromov-product-at (f z)
(f rm) (f rM ) + (L + 4 ∗ delta) if rm ∈ {um..ym} rM ∈ {yM ..uM} for rm rM

proof −
have ∗: dist (f rm) (p rm) + dist (p rm) (f z) ≤ dist (f rm) (f z) + 4 ∗

deltaG(TYPE( ′a))
apply (rule dist-along-geodesic[of H ]) using p H-def by auto

have dist (f z) pi-z ≤ dist (f z) (p rm) + dist (p rm) pi-z
by (intro mono-intros)

also have ... ≤ (Gromov-product-at (f z) (f rm) (p rm) + 2 ∗ deltaG(TYPE( ′a)))
+ L

apply (intro mono-intros) using ∗ P ‹rm ∈ {um..ym}› unfolding
Gromov-product-at-def

by (auto simp add: metric-space-class.dist-commute algebra-simps di-
vide-simps)
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finally have A: dist (f z) pi-z − L − 2 ∗ deltaG(TYPE( ′a)) ≤ Gro-
mov-product-at (f z) (f rm) (p rm)

by simp
have ∗: dist (f rM ) (p rM ) + dist (p rM ) (f z) ≤ dist (f rM ) (f z) + 4 ∗

deltaG(TYPE( ′a))
apply (rule dist-along-geodesic[of H ]) using p H-def by auto

have dist (f z) pi-z ≤ dist (f z) (p rM ) + dist (p rM ) pi-z
by (intro mono-intros)

also have ... ≤ (Gromov-product-at (f z) (p rM ) (f rM ) + 2 ∗ deltaG(TYPE( ′a)))
+ L

apply (intro mono-intros) using ∗ P ‹rM ∈ {yM ..uM}› unfolding
Gromov-product-at-def

by (auto simp add: metric-space-class.dist-commute algebra-simps di-
vide-simps)

finally have B: dist (f z) pi-z − L − 2 ∗ deltaG(TYPE( ′a)) ≤ Gro-
mov-product-at (f z) (p rM ) (f rM )

by simp
have C : dist (f z) pi-z − L − 2 ∗ deltaG(TYPE( ′a)) ≤ Gromov-product-at

(f z) (p rm) (p rM )
proof (cases dist (f z) (p rm) ≤ dist (f z) (p rM ))

case True
have dist (p rm) (p rM ) = abs(dist (f z) (p rm) − dist (f z) (p rM ))

using proj-setD(1 )[OF p] dist-along-geodesic-wrt-endpoint[OF H , of p
rm p rM ]

by (simp add: metric-space-class.dist-commute)
also have ... = dist (f z) (p rM ) − dist (f z) (p rm)

using True by auto
finally have ∗: dist (f z) (p rm) = Gromov-product-at (f z) (p rm) (p rM )

unfolding Gromov-product-at-def by auto
have dist (f z) pi-z ≤ dist (f z) (p rm) + dist (p rm) pi-z

by (intro mono-intros)
also have ... ≤ Gromov-product-at (f z) (p rm) (p rM ) + L + 2 ∗

deltaG(TYPE( ′a))
using ∗ P[of rm] ‹rm ∈ {um..ym}› apply (simp add: metric-space-class.dist-commute)

using local.delta-nonneg by linarith
finally show ?thesis by simp

next
case False
have dist (p rm) (p rM ) = abs(dist (f z) (p rm) − dist (f z) (p rM ))

using proj-setD(1 )[OF p] dist-along-geodesic-wrt-endpoint[OF H , of p
rm p rM ]

by (simp add: metric-space-class.dist-commute)
also have ... = dist (f z) (p rm) − dist (f z) (p rM )

using False by auto
finally have ∗: dist (f z) (p rM ) = Gromov-product-at (f z) (p rm) (p rM )

unfolding Gromov-product-at-def by auto
have dist (f z) pi-z ≤ dist (f z) (p rM ) + dist (p rM ) pi-z

by (intro mono-intros)
also have ... ≤ Gromov-product-at (f z) (p rm) (p rM ) + L + 2 ∗
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deltaG(TYPE( ′a))
using ∗ P[of rM ] ‹rM ∈ {yM ..uM}› apply (simp add: metric-space-class.dist-commute)

using local.delta-nonneg by linarith
finally show ?thesis by simp

qed

have Gromov-product-at (f z) (f um) (f uM ) − L − 2 ∗ deltaG(TYPE( ′a))
≤ Min {Gromov-product-at (f z) (f rm) (p rm), Gromov-product-at (f z) (p rm) (p
rM ), Gromov-product-at (f z) (p rM ) (f rM )}

using A B C unfolding Dpi-z by auto
also have ... ≤ Gromov-product-at (f z) (f rm) (f rM ) + 2 ∗ deltaG(TYPE( ′a))

by (intro mono-intros)
finally show ?thesis

using ‹deltaG(TYPE( ′a)) < delta› by auto
qed

We have proved the basic facts we will need in the main argument. This
argument starts here. It is divided in several cases.

consider dm ≤ D + 4 ∗ C ∧ dM ≤ D + 4 ∗ C | dm ≥ D + 4 ∗ C ∧ dM
≤ dm | dM ≥ D + 4 ∗ C ∧ dm ≤ dM

by linarith
then show ?thesis
proof (cases)

Case 2.1 of the description before the statement: there are points in f [um, ym]
and in f [yM, uM ] which are close to H. Then one can conclude directly,
without relying on the inductive argument, thanks to the quasi-isometry
property.

case 1
have I : Gromov-product-at (f z) (f closestm) (f closestM ) ≤ lambda^2 ∗ (D

+ L / 2 + delta + 11/2 ∗ C ) − 6 ∗ delta
proof (cases dist (f closestm) (f closestM ) ≤ 12 ∗ delta)

case True
have 1/lambda ∗ dist closestm closestM − C ≤ dist (f closestm) (f

closestM )
using quasi-isometry-onD(2 )[OF assms(2 )] ‹closestm ∈ {um..ym}› ‹um

∈ {a..z}› ‹z ∈ {a..b}› ‹ym ∈ {um..z}›
‹closestM ∈ {yM ..uM}› ‹uM ∈ {z..b}› ‹z ∈ {a..b}› ‹yM ∈ {z..uM}› by

auto
then have dist closestm closestM ≤ lambda ∗ dist (f closestm) (f closestM )

+ lambda ∗ C
using ‹lambda ≥ 1 › by (auto simp add: divide-simps algebra-simps)

also have ... ≤ lambda ∗ (12 ∗ delta) + lambda ∗ C
apply (intro mono-intros True) using ‹lambda ≥ 1 › by auto

finally have M : dist closestm closestM ≤ lambda ∗ (12 ∗ delta + C )
by (auto simp add: algebra-simps)

have 2 ∗ Gromov-product-at (f z) (f closestm) (f closestM ) ≤ dist (f
closestm) (f z) + dist (f z) (f (closestM ))
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unfolding Gromov-product-at-def by (auto simp add: metric-space-class.dist-commute)
also have ... ≤ (lambda ∗ dist closestm z + C ) + (lambda ∗ dist z closestM

+ C )
apply (intro mono-intros quasi-isometry-onD(1 )[OF assms(2 )])

using ‹closestm ∈ {um..ym}› ‹um ∈ {a..z}› ‹z ∈ {a..b}› ‹ym ∈ {um..z}›
‹closestM ∈ {yM ..uM}› ‹uM ∈ {z..b}› ‹z ∈ {a..b}› ‹yM ∈ {z..uM}› by

auto
also have ... = lambda ∗ dist closestm closestM + 1 ∗ 2 ∗ C

unfolding dist-real-def using ‹closestm ∈ {um..ym}› ‹um ∈ {a..z}› ‹z
∈ {a..b}› ‹ym ∈ {um..z}›

‹closestM ∈ {yM ..uM}› ‹uM ∈ {z..b}› ‹z ∈ {a..b}› ‹yM ∈ {z..uM}› by
(auto simp add: algebra-simps)

also have ... ≤ lambda ∗ (lambda ∗ (12 ∗ delta + C )) + lambda^2 ∗ 2 ∗
C

apply (intro mono-intros M ) using ‹lambda ≥ 1 › ‹C ≥ 0 › by auto
also have ... = lambda^2 ∗ (24 ∗ delta + 3 ∗ C ) − lambda^2 ∗ 12 ∗ delta

by (simp add: algebra-simps power2-eq-square)
also have ... ≤ lambda^2 ∗ ((2 ∗ D + L + 2 ∗ delta) + 11 ∗ C ) − 1 ∗

12 ∗ delta
apply (intro mono-intros) using Laux ‹lambda ≥ 1 › ‹C ≥ 0 › ‹delta >

0 › by auto
finally show ?thesis

by (auto simp add: divide-simps algebra-simps)
next

case False
have dist closestm closestM ≤ lambda ∗ (dm + dM + L + 2 ∗ delta + C )

using D[OF ‹closestm ∈ {um..ym}› ‹closestM ∈ {yM ..uM}›] dm-def
dM-def by (auto simp add: algebra-simps)

also have ... ≤ lambda ∗ ((D + 4 ∗ C ) + (D + 4 ∗ C ) + L + 2 ∗ delta
+ C )

apply (intro mono-intros) using 1 ‹lambda ≥ 1 › by auto
also have ... ≤ lambda ∗ (2 ∗ D + L + 2 ∗ delta + 9 ∗ C )

using ‹lambda ≥ 1 › ‹C ≥ 0 › by auto
finally have M : dist closestm closestM ≤ lambda ∗ (2 ∗ D + L + 2 ∗

delta + 9 ∗ C )
by (auto simp add: algebra-simps divide-simps metric-space-class.dist-commute)

have dist (f closestm) (f z) + dist (f z) (f (closestM )) ≤ (lambda ∗ dist
closestm z + C ) + (lambda ∗ dist z closestM + C )

apply (intro mono-intros quasi-isometry-onD(1 )[OF assms(2 )])
using ‹closestm ∈ {um..ym}› ‹um ∈ {a..z}› ‹z ∈ {a..b}› ‹ym ∈ {um..z}›
‹closestM ∈ {yM ..uM}› ‹uM ∈ {z..b}› ‹z ∈ {a..b}› ‹yM ∈ {z..uM}› by

auto
also have ... = lambda ∗ dist closestm closestM + 1 ∗ 2 ∗ C

unfolding dist-real-def using ‹closestm ∈ {um..ym}› ‹um ∈ {a..z}› ‹z
∈ {a..b}› ‹ym ∈ {um..z}›

‹closestM ∈ {yM ..uM}› ‹uM ∈ {z..b}› ‹z ∈ {a..b}› ‹yM ∈ {z..uM}› by
(auto simp add: algebra-simps)

also have ... ≤ lambda ∗ (lambda ∗ (2 ∗ D + L + 2 ∗ delta + 9 ∗ C )) +
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lambda^2 ∗ 2 ∗ C
apply (intro mono-intros M ) using ‹lambda ≥ 1 › ‹C ≥ 0 › by auto

finally have dist (f closestm) (f z) + dist (f z) (f closestM ) ≤ lambda^2
∗ (2 ∗ D + L + 2 ∗ delta + 11 ∗ C )

by (simp add: algebra-simps power2-eq-square)
then show ?thesis

unfolding Gromov-product-at-def using False by (simp add: met-
ric-space-class.dist-commute algebra-simps divide-simps)

qed
have Gromov-product-at (f z) (f um) (f uM ) ≤ Gromov-product-at (f z) (f

closestm) (f closestM ) + 1 ∗ L + 4 ∗ delta + 0 ∗ (1 − exp (− K ∗ (uM − um)))
using Rec[OF ‹closestm ∈ {um..ym}› ‹closestM ∈ {yM ..uM}›] by simp

also have ... ≤ (lambda^2 ∗ (D + L / 2 + delta + 11/2 ∗ C ) − 6 ∗ delta)
+ lambda^2 ∗ L + 4 ∗ delta + Kmult ∗ (1 − exp (− K ∗ (uM − um)))

apply (intro mono-intros I )
using Laux ‹lambda ≥ 1 › ‹delta > 0 › ‹Kmult > 0 › ‹um ∈ {a..z}› ‹uM ∈

{z..b}› ‹K > 0 › by auto
finally show ?thesis

by (simp add: algebra-simps)

End of the easy case 2.1
next

Case 2.2: dm is large, i.e., all points in f [um, ym] are far away from H.
Moreover, assume that dm ≥ dM . Then we will find a pair of points v and
x with um ≤ v ≤ x ≤ ym satisfying the estimate (1). We argue by induction:
while we have not found such a pair, we can find a point xk whose projection
on Vk, the neighborhood of size (2k − 1)dm of H, is far enough from the
projection of um, and such that all points in between are far enough from Vk

so that the corresponding projection will have good contraction properties.
case 2
then have I : D + 4 ∗ C ≤ dm dM ≤ dm by auto
define V where V = (λk::nat. (

⋃
g∈H . cball g ((2^k − 1 ) ∗ dm)))

define QC where QC = (λk::nat. if k = 0 then 0 else 8 ∗ delta)
have QC k ≥ 0 for k unfolding QC-def using ‹delta > 0 › by auto
have Q: quasiconvex (0 + 8 ∗ deltaG(TYPE( ′a))) (V k) for k

unfolding V-def apply (rule quasiconvex-thickening) using geodesic-segmentI [OF
H ]

by (auto simp add: quasiconvex-of-geodesic)
have quasiconvex (QC k) (V k) for k

apply (cases k = 0 )
apply (simp add: V-def QC-def quasiconvex-of-geodesic geodesic-segmentI [OF

H ])
apply (rule quasiconvex-mono[OF - Q[of k]]) using ‹deltaG(TYPE( ′a))

< delta› QC-def by auto

Define q(k, x) to be the projection of f(x) on Vk.
define q::nat ⇒ real ⇒ ′a where q = (λk x. geodesic-segment-param {p
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x−−f x} (p x) ((2^k − 1 ) ∗ dm))

The inductive argument
have Ind-k: (Gromov-product-at (f z) (f um) (f uM ) ≤ lambda^2 ∗ (D +

3/2 ∗ L + delta + 11/2 ∗ C ) − 2 ∗ delta + Kmult ∗ (1 − exp(− K ∗ (uM −
um))))

∨ (∃ x ∈ {um..ym}. (∀w ∈ {um..x}. dist (f w) (p w) ≥ (2^(k+1 )−1 )
∗ dm) ∧ dist (q k um) (q k x) ≥ L − 4 ∗ delta + 7 ∗ QC k) for k

proof (induction k)

Base case: there is a point far enough from q0um on H. This is just the
point ym, by construction.

case 0
have ∗: ∃ x∈ {um..ym}. (∀w ∈ {um..x}. dist (f w) (p w) ≥ (2^(0+1 )−1 )

∗ dm) ∧ dist (q 0 um) (q 0 x) ≥ L − 4 ∗ delta + 7 ∗ QC 0
proof (rule bexI [of - ym], auto simp add: V-def q-def QC-def )

show um ≤ ym using ‹ym ∈ {um..z}› by auto
show L − 4 ∗ delta ≤ dist (p um) (p ym)
using ym(2 ) apply auto using metric-space-class.zero-le-dist[of pi-z p

um] by linarith
show

∧
y. um ≤ y =⇒ y ≤ ym =⇒ dm ≤ dist (f y) (p y)

using dm-def closestm proj-setD(2 )[OF p] by auto
qed
then show ?case

by blast
next

The induction. The inductive assumption claims that, either the desired
inequality holds, or one can construct a point with good properties. If the
desired inequality holds, there is nothing left to prove. Otherwise, we can
start from this point at step k, say x, and either prove the desired inequality
or construct a point with the good properties at step k + 1.

case Suck: (Suc k)
show ?case
proof (cases Gromov-product-at (f z) (f um) (f uM ) ≤ lambda2 ∗ (D +

3/2 ∗ L + delta + 11/2 ∗ C ) − 2 ∗ delta + Kmult ∗ (1 − exp (− K ∗ (uM −
um))))

case True
then show ?thesis by simp

next
case False
then obtain x where x: x ∈ {um..ym} dist (q k um) (q k x) ≥ L − 4

∗ delta + 7 ∗ QC k ∧
w. w ∈ {um..x} =⇒ dist (f w) (p w) ≥ (2^(k+1 )−1 )

∗ dm
using Suck.IH by auto

Some auxiliary technical inequalities to be used later on.
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have aux: (2 ^ k − 1 ) ∗ dm ≤ (2∗2^k−1 ) ∗ dm 0 ≤ 2 ∗ 2 ^ k −
(1 ::real) dm ≤ dm ∗ 2 ^ k

apply (auto simp add: algebra-simps)
apply (metis power .simps(2 ) two-realpow-ge-one)
using ‹0 ≤ dm› less-eq-real-def by fastforce

have L + C = (L/D) ∗ (D + (D/L) ∗ C )
using ‹L > 0 › ‹D > 0 › by (simp add: algebra-simps divide-simps)

also have ... ≤ (L/D) ∗ (D + 4 ∗ C )
apply (intro mono-intros)

using ‹L > 0 › ‹D > 0 › ‹C ≥ 0 › ‹D ≤ 4 ∗ L› by (auto simp add:
algebra-simps divide-simps)

also have ... ≤ (L/D) ∗ dm
apply (intro mono-intros) using I ‹L > 0 › ‹D > 0 › by auto

finally have L + C ≤ (L/D) ∗ dm
by simp

moreover have 2 ∗ delta ≤ (2 ∗ delta)/D ∗ dm
using I ‹C ≥ 0 › ‹delta > 0 › ‹D > 0 › by (auto simp add: algebra-simps

divide-simps)
ultimately have aux2 : L + C + 2 ∗ delta ≤ ((L + 2 ∗ delta)/D) ∗ dm

by (auto simp add: algebra-simps divide-simps)
have aux3 : (1−alpha) ∗ D + alpha ∗ 2^k ∗ dm ≤ dm ∗ 2^k − C/2 −

QC k
proof (cases k = 0 )

case True
show ?thesis

using I ‹C ≥ 0 › unfolding True QC-def alpha-def by auto
next

case False
have C/2 + QC k + (1−alpha) ∗ D ≤ 2 ∗ (1−alpha) ∗ dm

using I ‹C ≥ 0 › unfolding QC-def alpha-def using False Laux by
auto

also have ... ≤ 2^k ∗ (1−alpha) ∗ dm
apply (intro mono-intros) using False alphaaux I ‹D > 0 › ‹C ≥ 0 ›

by auto
finally show ?thesis

by (simp add: algebra-simps)
qed

Construct a point w such that its projection on Vk is close to that of um
and therefore far away from that of x. This is just the intermediate value
theorem (with some care as the closest point projection is not continuous).

have ∃w ∈ {um..x}. (dist (q k um) (q k w) ∈ {(9 ∗ delta + 4 ∗ QC k)
− 4 ∗ delta − 2 ∗ QC k .. 9 ∗ delta + 4 ∗ QC k})

∧ (∀ v ∈ {um..w}. dist (q k um) (q k v) ≤ 9 ∗ delta + 4 ∗ QC k)
proof (rule quasi-convex-projection-small-gaps[where ?f = f and ?G

= V k])
show continuous-on {um..x} f

apply (rule continuous-on-subset[OF ‹continuous-on {a..b} f ›])
using ‹um ∈ {a..z}› ‹z ∈ {a..b}› ‹ym ∈ {um..z}› ‹x ∈ {um..ym}›
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by auto
show um ≤ x using ‹x ∈ {um..ym}› by auto
show quasiconvex (QC k) (V k) by fact
show deltaG TYPE( ′a) < delta by fact
show 9 ∗ delta + 4 ∗ QC k ∈ {4 ∗ delta + 2 ∗ QC k..dist (q k um)

(q k x)}
using x(2 ) ‹delta > 0 › ‹QC k ≥ 0 › Laux by auto

show q k w ∈ proj-set (f w) (V k) if w ∈ {um..x} for w
unfolding V-def q-def apply (rule proj-set-thickening)

using aux p x(3 )[OF that] by (auto simp add: metric-space-class.dist-commute)
qed
then obtain w where w: w ∈ {um..x}

dist (q k um) (q k w) ∈ {(9 ∗ delta + 4 ∗ QC k) − 4
∗ delta − 2 ∗ QC k .. 9 ∗ delta + 4 ∗ QC k}∧

v. v ∈ {um..w} =⇒ dist (q k um) (q k v) ≤ 9 ∗ delta
+ 4 ∗ QC k

by auto

There are now two cases to be considered: either one can find a point v
between um and w which is close enough to H. Then this point will sat-
isfy (1), and we will be able to prove the desired inequality. Or there is no
such point, and then w will have the good properties at step k + 1

show ?thesis
proof (cases ∃ v ∈ {um..w}. dist (f v) (p v) ≤ (2^(k+2 )−1 ) ∗ dm)

case True

First subcase: there is a good point v between um and w. This is the heart
of the argument: we will show that the desired inequality holds.

then obtain v where v: v ∈ {um..w} dist (f v) (p v) ≤ (2^(k+2 )−1 )
∗ dm

by auto

Auxiliary basic fact to be used later on.
have aux4 : dm ∗ 2 ^ k ≤ infdist (f r) (V k) if r ∈ {v..x} for r
proof −

have ∗: q k r ∈ proj-set (f r) (V k)
unfolding q-def V-def apply (rule proj-set-thickening)
using aux p[of r ] x(3 )[of r ] that ‹v ∈ {um..w}› ‹w ∈ {um..x}› by

(auto simp add: metric-space-class.dist-commute)
have infdist (f r) (V k) = dist (geodesic-segment-param {p r−−f r}

(p r) (dist (p r) (f r))) (geodesic-segment-param {p r−−f r} (p r) ((2 ^ k − 1 ) ∗
dm))

using proj-setD(2 )[OF ∗] unfolding q-def by auto
also have ... = abs(dist (p r) (f r) − (2 ^ k − 1 ) ∗ dm)

apply (rule geodesic-segment-param(7 )[where ?y = f r ])
using x(3 )[of r ] ‹r ∈ {v..x}› ‹v ∈ {um..w}› ‹w ∈ {um..x}› aux by

(auto simp add: metric-space-class.dist-commute)
also have ... = dist (f r) (p r) − (2 ^ k − 1 ) ∗ dm
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using x(3 )[of r ] ‹r ∈ {v..x}› ‹v ∈ {um..w}› ‹w ∈ {um..x}› aux by
(auto simp add: metric-space-class.dist-commute)

finally have dist (f r) (p r) = infdist (f r) (V k) + (2 ^ k − 1 ) ∗
dm by simp

moreover have (2^(k+1 ) − 1 ) ∗ dm ≤ dist (f r) (p r)
apply (rule x(3 )) using ‹r ∈ {v..x}› ‹v ∈ {um..w}› ‹w ∈ {um..x}›

by auto
ultimately have (2^(k+1 ) − 1 ) ∗ dm ≤ infdist (f r) (V k) + (2 ^

k − 1 ) ∗ dm
by simp

then show ?thesis by (auto simp add: algebra-simps)
qed

Substep 1: We can control the distance from f(v) to f(closestM) in terms
of the distance of the distance of f(v) to H, i.e., by 2kdm. The same control
follows for closestM − v thanks to the quasi-isometry property. Then, we
massage this inequality to put it in the form we will need, as an upper bound
on (x− v) exp(−2kdm).

have infdist (f v) H ≤ (2^(k+2 )−1 ) ∗ dm
using v proj-setD(2 )[OF p[of v]] by auto
have dist v closestM ≤ lambda ∗ (infdist (f v) H + (L + C + 2 ∗

delta) + infdist (f closestM ) H )
apply (rule D)

using ‹v ∈ {um..w}› ‹w ∈ {um..x}› ‹x ∈ {um..ym}› ‹ym ∈ {um..z}›
‹um ∈ {a..z}› ‹z ∈ {a..b}› ‹closestM ∈ {yM ..uM}› ‹yM ∈ {z..uM}› ‹uM ∈ {z..b}›
by auto

also have ... ≤ lambda ∗ ((2^(k+2 )−1 ) ∗ dm + 1 ∗ (L + C + 2 ∗
delta) + dM )

apply (intro mono-intros ‹infdist (f v) H ≤ (2^(k+2 )−1 ) ∗ dm›)
using dM-def ‹lambda ≥ 1 › ‹L > 0 › ‹C ≥ 0 › ‹delta > 0 › by (auto

simp add: metric-space-class.dist-commute)
also have ... ≤ lambda ∗ ((2^(k+2 )−1 ) ∗ dm + 2^k ∗ (((L + 2 ∗

delta)/D) ∗ dm) + dm)
apply (intro mono-intros) using I ‹lambda ≥ 1 › ‹C ≥ 0 › ‹delta >

0 › ‹L > 0 › aux2 by auto
also have ... = lambda ∗ 2^k ∗ (4 + (L + 2 ∗ delta)/D) ∗ dm

by (simp add: algebra-simps)
finally have ∗: dist v closestM / (lambda ∗ (4 + (L + 2 ∗ delta)/D))

≤ 2^k ∗ dm
using ‹lambda ≥ 1 › ‹L > 0 › ‹D > 0 › ‹delta > 0 › by (simp add:

divide-simps, simp add: algebra-simps)

We reformulate this control inside of an exponential, as this is the form we
will use later on.

have exp(− (alpha ∗ (2^k ∗ dm) ∗ ln 2 / (5 ∗ delta))) ≤ exp(−(alpha
∗ (dist v closestM / (lambda ∗ (4 + (L + 2 ∗ delta)/D))) ∗ ln 2 / (5 ∗ delta)))

apply (intro mono-intros ∗) using alphaaux ‹delta > 0 › by auto
also have ... = exp(−K ∗ dist v closestM )
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unfolding K-def by (simp add: divide-simps)
also have ... = exp(−K ∗ (closestM − v))

unfolding dist-real-def using ‹v ∈ {um..w}› ‹w ∈ {um..x}› ‹x ∈
{um..ym}› ‹ym ∈ {um..z}› ‹yM ∈ {z..uM}› ‹closestM ∈ {yM ..uM}› ‹K > 0 › by
auto

finally have exp(− (alpha ∗ (2^k ∗ dm) ∗ ln 2 / (5 ∗ delta))) ≤
exp(−K ∗ (closestM − v))

by simp

Plug in x− v to get the final form of this inequality.
then have K ∗ (x − v) ∗ exp(− (alpha ∗ (2^k ∗ dm) ∗ ln 2 / (5 ∗

delta))) ≤ K ∗ (x − v) ∗ exp(−K ∗ (closestM − v))
apply (rule mult-left-mono)
using ‹delta > 0 › ‹lambda ≥ 1 › ‹v ∈ {um..w}› ‹w ∈ {um..x}› ‹K >

0 › by auto
also have ... = ((1 + K ∗ (x − v)) − 1 ) ∗ exp(− K ∗ (closestM − v))

by (auto simp add: algebra-simps)
also have ... ≤ (exp (K ∗ (x − v)) − 1 ) ∗ exp(−K ∗ (closestM − v))

by (intro mono-intros, auto)
also have ... = exp(−K ∗ (closestM − x)) − exp(−K ∗ (closestM −

v))
by (simp add: algebra-simps mult-exp-exp)

also have ... ≤ exp(−K ∗ (closestM − x)) − exp(−K ∗ (uM − um))
using ‹K > 0 › ‹v ∈ {um..w}› ‹w ∈ {um..x}› ‹x ∈ {um..ym}› ‹ym ∈

{um..z}› ‹yM ∈ {z..uM}› ‹closestM ∈ {yM ..uM}› by auto
finally have B: (x − v) ∗ exp(− alpha ∗ 2^k ∗ dm ∗ ln 2 / (5 ∗ delta))

≤
(exp(−K ∗ (closestM − x)) − exp(−K ∗ (uM−um)))/K

using ‹K > 0 › by (auto simp add: divide-simps algebra-simps)

End of substep 1

Substep 2: The projections of f(v) and f(x) on the cylinder Vk are well
separated, by construction. This implies that v and x themselves are well
separated, thanks to the exponential contraction property of the projection
on the quasi-convex set Vk. This leads to a uniform lower bound for (x −
v) exp(−2kdm), which has been upper bounded in Substep 1.

have L − 4 ∗ delta + 7 ∗ QC k ≤ dist (q k um) (q k x)
using x by simp

also have ... ≤ dist (q k um) (q k v) + dist (q k v) (q k x)
by (intro mono-intros)

also have ... ≤ (9 ∗ delta + 4 ∗ QC k) + dist (q k v) (q k x)
using w(3 )[of v] ‹v ∈ {um..w}› by auto

finally have L − 13 ∗ delta + 3 ∗ QC k ≤ dist (q k v) (q k x)
by simp
also have ... ≤ 3 ∗ QC k + max (5 ∗ deltaG(TYPE( ′a))) ((4 ∗

exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (x − v) ∗ exp(−(dm ∗ 2^k − C/2 − QC k) ∗ ln 2 /
(5 ∗ delta)))

proof (cases k = 0 )
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We use different statements for the projection in the case k = 0 (projection
on a geodesic) and k > 0 (projection on a quasi-convex set) as the bounds
are better in the first case, which is the most important one for the final
value of the constant.

case True
have dist (q k v) (q k x) ≤ max (5 ∗ deltaG(TYPE( ′a))) ((4 ∗ exp(1/2

∗ ln 2 )) ∗ lambda ∗ (x − v) ∗ exp(−(dm ∗ 2^k − C/2 ) ∗ ln 2 / (5 ∗ delta)))
proof (rule geodesic-projection-exp-contracting[where ?G = V k and

?f = f ])
show geodesic-segment (V k) unfolding True V-def using

geodesic-segmentI [OF H ] by auto
show v ≤ x using ‹v ∈ {um..w}› ‹w ∈ {um..x}› by auto
show q k v ∈ proj-set (f v) (V k)

unfolding q-def V-def apply (rule proj-set-thickening)
using aux p[of v] x(3 )[of v] ‹v ∈ {um..w}› ‹w ∈ {um..x}› by (auto

simp add: metric-space-class.dist-commute)
show q k x ∈ proj-set (f x) (V k)

unfolding q-def V-def apply (rule proj-set-thickening)
using aux p[of x ] x(3 )[of x ] ‹w ∈ {um..x}› by (auto simp add:

metric-space-class.dist-commute)
show 15/2 ∗ delta + C/2 ≤ dm ∗ 2^k

apply (rule order-trans[of - dm])
using I ‹delta > 0 › ‹C ≥ 0 › Laux unfolding QC-def by auto

show deltaG TYPE( ′a) < delta by fact
show

∧
t. t ∈ {v..x} =⇒ dm ∗ 2 ^ k ≤ infdist (f t) (V k)

using aux4 by auto
show 0 ≤ C 0 ≤ lambda using ‹C ≥ 0 › ‹lambda ≥ 1 › by auto
show dist (f x1 ) (f x2 ) ≤ lambda ∗ dist x1 x2 + C if x1 ∈ {v..x}

x2 ∈ {v..x} for x1 x2
using quasi-isometry-onD(1 )[OF assms(2 )] that ‹v ∈ {um..w}› ‹w

∈ {um..x}› ‹x ∈ {um..ym}› ‹ym ∈ {um..z}› ‹um ∈ {a..z}› ‹z ∈ {a..b}› by auto
qed
then show ?thesis unfolding QC-def True by auto

next
case False

have dist (q k v) (q k x) ≤ 2 ∗ QC k + 8 ∗ delta + max (5 ∗
deltaG(TYPE( ′a))) ((4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (x − v) ∗ exp(−(dm ∗ 2^k
− QC k −C/2 ) ∗ ln 2 / (5 ∗ delta)))

proof (rule quasiconvex-projection-exp-contracting[where ?G = V k
and ?f = f ])

show quasiconvex (QC k) (V k) by fact
show v ≤ x using ‹v ∈ {um..w}› ‹w ∈ {um..x}› by auto
show q k v ∈ proj-set (f v) (V k)

unfolding q-def V-def apply (rule proj-set-thickening)
using aux p[of v] x(3 )[of v] ‹v ∈ {um..w}› ‹w ∈ {um..x}› by (auto

simp add: metric-space-class.dist-commute)
show q k x ∈ proj-set (f x) (V k)

unfolding q-def V-def apply (rule proj-set-thickening)
using aux p[of x ] x(3 )[of x ] ‹w ∈ {um..x}› by (auto simp add:
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metric-space-class.dist-commute)
show 15/2 ∗ delta + QC k + C/2 ≤ dm ∗ 2^k

apply (rule order-trans[of - dm])
using I ‹delta > 0 › ‹C ≥ 0 › Laux unfolding QC-def by auto

show deltaG TYPE( ′a) < delta by fact
show

∧
t. t ∈ {v..x} =⇒ dm ∗ 2 ^ k ≤ infdist (f t) (V k)

using aux4 by auto
show 0 ≤ C 0 ≤ lambda using ‹C ≥ 0 › ‹lambda ≥ 1 › by auto
show dist (f x1 ) (f x2 ) ≤ lambda ∗ dist x1 x2 + C if x1 ∈ {v..x}

x2 ∈ {v..x} for x1 x2
using quasi-isometry-onD(1 )[OF assms(2 )] that ‹v ∈ {um..w}› ‹w

∈ {um..x}› ‹x ∈ {um..ym}› ‹ym ∈ {um..z}› ‹um ∈ {a..z}› ‹z ∈ {a..b}› by auto
qed

then show ?thesis unfolding QC-def using False by (auto simp
add: algebra-simps)

qed
finally have L − 13 ∗ delta ≤ max (5 ∗ deltaG(TYPE( ′a))) ((4 ∗

exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (x − v) ∗ exp(−(dm ∗ 2^k − C/2 − QC k) ∗ ln 2 /
(5 ∗ delta)))

by auto
then have L − 13 ∗ delta ≤ (4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (x −

v) ∗ exp(−(dm ∗ 2^k − C/2 − QC k) ∗ ln 2 / (5 ∗ delta))
using ‹delta > deltaG(TYPE( ′a))› Laux by auto

We separate the exponential gain coming from the contraction into two
parts, one to be spent to improve the constant, and one for the inductive
argument.

also have ... ≤ (4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (x − v) ∗
exp(−((1−alpha) ∗ D + alpha ∗ 2^k ∗ dm) ∗ ln 2 / (5 ∗ delta))

apply (intro mono-intros) using aux3 ‹delta > 0 › ‹lambda ≥ 1 › ‹v
∈ {um..w}› ‹w ∈ {um..x}› by auto

also have ... = (4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (x − v) ∗
(exp(−(1−alpha) ∗ D ∗ ln 2 / (5 ∗ delta)) ∗ exp(−alpha ∗ 2^k ∗ dm ∗ ln 2 / (5
∗ delta)))

unfolding mult-exp-exp by (auto simp add: algebra-simps divide-simps)
finally have A: L − 13 ∗ delta ≤ (4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗

exp(−(1−alpha) ∗ D ∗ ln 2 / (5 ∗ delta)) ∗ ((x − v) ∗ exp(−alpha ∗ 2^k ∗ dm ∗
ln 2 / (5 ∗ delta)))

by (simp add: algebra-simps)

This is the end of the second substep.

Use the second substep to show that x− v is bounded below, and therefore
that closestM − x (the endpoints of the new geodesic we want to consider
in the inductive argument) are quantitatively closer than uM − um, which
means that we will be able to use the inductive assumption over this new
geodesic.

also have ... ≤ (4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗ exp 0 ∗ ((x − v) ∗
exp 0 )
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apply (intro mono-intros) using ‹delta > 0 › ‹lambda ≥ 1 › ‹v ∈
{um..w}› ‹w ∈ {um..x}› alphaaux ‹D > 0 › ‹C ≥ 0 › I

by (auto simp add: divide-simps mult-nonpos-nonneg)
also have ... = (4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (x−v)

by simp
also have ... ≤ 20 ∗ lambda ∗ (x − v)

apply (intro mono-intros, approximation 10 )
using ‹delta > 0 › ‹lambda ≥ 1 › ‹v ∈ {um..w}› ‹w ∈ {um..x}› by

auto
finally have x − v ≥ (1/4 ) ∗ delta / lambda

using ‹lambda ≥ 1 › L-def ‹delta > 0 › by (simp add: divide-simps
algebra-simps)

then have closestM − x + (1/4 ) ∗ delta / lambda ≤ closestM − v
by simp

also have ... ≤ uM − um
using ‹closestM ∈ {yM ..uM}› ‹v ∈ {um..w}› by auto

also have ... ≤ Suc n ∗ (1/4 ) ∗ delta / lambda by fact
finally have closestM − x ≤ n ∗ (1/4 ) ∗ delta / lambda

unfolding Suc-eq-plus1 by (auto simp add: algebra-simps add-divide-distrib)

Conclusion of the proof: combine the lower bound of the second substep with
the upper bound of the first substep to get a definite gain when one goes
from the old geodesic to the new one. Then, apply the inductive assumption
to the new one to conclude the desired inequality for the old one.

have L + 4 ∗ delta = ((L + 4 ∗ delta)/(L − 13 ∗ delta)) ∗ (L − 13 ∗
delta)

using Laux ‹delta > 0 › by (simp add: algebra-simps divide-simps)
also have ... ≤ ((L + 4 ∗ delta)/(L − 13 ∗ delta)) ∗ ((4 ∗ exp(1/2 ∗

ln 2 )) ∗ lambda ∗ exp (− (1 − alpha) ∗ D ∗ ln 2 / (5 ∗ delta)) ∗ ((x − v) ∗ exp
(− alpha ∗ 2 ^ k ∗ dm ∗ ln 2 / (5 ∗ delta))))

apply (rule mult-left-mono) using A Laux ‹delta > 0 › by (auto simp
add: divide-simps)

also have ... ≤ ((L + 4 ∗ delta)/(L − 13 ∗ delta)) ∗ ((4 ∗ exp(1/2
∗ ln 2 )) ∗ lambda ∗ exp (− (1 − alpha) ∗ D ∗ ln 2 / (5 ∗ delta)) ∗ ((exp(−K ∗
(closestM − x)) − exp(−K ∗ (uM − um)))/K ))

apply (intro mono-intros B) using Laux ‹delta > 0 › ‹lambda ≥ 1 ›
by (auto simp add: divide-simps)

finally have C : L + 4 ∗ delta ≤ Kmult ∗ (exp(−K ∗ (closestM − x))
− exp(−K ∗ (uM − um)))

unfolding Kmult-def by auto

have Gromov-product-at (f z) (f um) (f uM ) ≤ Gromov-product-at (f
z) (f x) (f closestM ) + (L + 4 ∗ delta)

apply (rule Rec) using ‹closestM ∈ {yM ..uM}› ‹x ∈ {um..ym}› ‹ym
∈ {um..z}› by auto

also have ... ≤ (lambda^2 ∗ (D + 3/2 ∗ L + delta + 11/2 ∗ C ) −
2 ∗ delta + Kmult ∗ (1 − exp(− K ∗ (closestM − x)))) + (Kmult ∗ (exp(−K ∗
(closestM − x)) − exp(−K ∗ (uM−um))))

apply (intro mono-intros C Suc.IH )
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using ‹x ∈ {um..ym}› ‹ym ∈ {um..z}› ‹um ∈ {a..z}› ‹closestM ∈
{yM ..uM}› ‹yM ∈ {z..uM}› ‹uM ∈ {z..b}› ‹closestM − x ≤ n ∗ (1/4 ) ∗ delta /
lambda› by auto

also have ... = (lambda^2 ∗ (D + 3/2 ∗ L + delta + 11/2 ∗ C ) − 2
∗ delta + Kmult ∗ (1 − exp(− K ∗ (uM − um))))

unfolding K-def by (simp add: algebra-simps)
finally show ?thesis by auto

End of the first subcase, when there is a good point v between um and w.
next

case False

Second subcase: between um and w, all points are far away from Vk. We
will show that this implies that w is admissible for the step k + 1.

have ∃w∈{um..ym}. (∀ v∈{um..w}. (2 ^ (Suc k + 1 ) − 1 ) ∗ dm ≤
dist (f v) (p v)) ∧ L − 4 ∗ delta + 7 ∗ QC (Suc k) ≤ dist (q (Suc k) um) (q (Suc
k) w)

proof (rule bexI [of - w], auto)
show um ≤ w w ≤ ym using ‹w ∈ {um..x}› ‹x ∈ {um..ym}› by auto
show (4 ∗ 2 ^ k − 1 ) ∗ dm ≤ dist (f x) (p x) if um ≤ x x ≤ w for x

using False ‹dm ≥ 0 › that by force

have dist (q k um) (q (k+1 ) um) = 2^k ∗ dm
unfolding q-def apply (subst geodesic-segment-param(7 )[where ?y

= f um])
using x(3 )[of um] ‹x ∈ {um..ym}› aux by (auto simp add:

metric-space-class.dist-commute, simp add: algebra-simps)
have dist (q k w) (q (k+1 ) w) = 2^k ∗ dm
unfolding q-def apply (subst geodesic-segment-param(7 )[where ?y

= f w])
using x(3 )[of w] ‹w ∈ {um..x}› ‹x ∈ {um..ym}› aux by (auto simp

add: metric-space-class.dist-commute, simp add: algebra-simps)
have i: q k um ∈ proj-set (q (k+1 ) um) (V k)

unfolding q-def V-def apply (rule proj-set-thickening ′[of - f um])
using p x(3 )[of um] ‹x ∈ {um..ym}› aux by (auto simp add:

algebra-simps metric-space-class.dist-commute)
have j: q k w ∈ proj-set (q (k+1 ) w) (V k)

unfolding q-def V-def apply (rule proj-set-thickening ′[of - f w])
using p x(3 )[of w] ‹x ∈ {um..ym}› ‹w ∈ {um..x}› aux by (auto

simp add: algebra-simps metric-space-class.dist-commute)

have 5 ∗ delta + 2 ∗ QC k ≤ dist (q k um) (q k w) using w(2 ) by
simp

also have ... ≤ max (5 ∗ deltaG(TYPE( ′a)) + 2 ∗ QC k)
(dist (q (k + 1 ) um) (q (k + 1 ) w) − dist (q k

um) (q (k + 1 ) um) − dist (q k w) (q (k + 1 ) w) + 10 ∗ deltaG(TYPE( ′a)) + 4
∗ QC k)

by (rule proj-along-quasiconvex-contraction[OF ‹quasiconvex (QC
k) (V k)› i j])
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finally have 5 ∗ delta + 2 ∗ QC k ≤ dist (q (k + 1 ) um) (q (k
+ 1 ) w) − dist (q k um) (q (k + 1 ) um) − dist (q k w) (q (k + 1 ) w) + 10 ∗
deltaG(TYPE( ′a)) + 4 ∗ QC k

using ‹deltaG(TYPE( ′a)) < delta› by auto
then have 0 ≤ dist (q (k + 1 ) um) (q (k + 1 ) w) + 5 ∗ delta + 2

∗ QC k − dist (q k um) (q (k + 1 ) um) − dist (q k w) (q (k + 1 ) w)
using ‹deltaG(TYPE( ′a)) < delta› by auto

also have ... = dist (q (k + 1 ) um) (q (k + 1 ) w) + 5 ∗ delta + 2
∗ QC k − 2^(k+1 ) ∗ dm

by (simp only: ‹dist (q k w) (q (k+1 ) w) = 2^k ∗ dm› ‹dist (q k
um) (q (k+1 ) um) = 2^k ∗ dm›, auto)

finally have ∗: 2^(k+1 ) ∗ dm − 5 ∗ delta − 2 ∗ QC k ≤ dist (q
(k+1 ) um) (q (k+1 ) w)

using ‹deltaG(TYPE( ′a)) < delta› by auto
have L − 4 ∗ delta + 7 ∗ QC (k+1 ) ≤ 2 ∗ dm − 5 ∗ delta − 2 ∗

QC k
unfolding QC-def L-def using ‹delta > 0 › Laux I ‹C ≥ 0 › by auto
also have ... ≤ 2^(k+1 ) ∗ dm − 5 ∗ delta − 2 ∗ QC k

using aux by (auto simp add: algebra-simps)
finally show L − 4 ∗ delta + 7 ∗ QC (Suc k) ≤ dist (q (Suc k) um)

(q (Suc k) w)
using ∗ by auto

qed
then show ?thesis

by simp
qed

qed
qed

This is the end of the main induction over k. To conclude, choose k large
enough so that the second alternative in this induction is impossible. It
follows that the first alternative holds, i.e., the desired inequality is true.

have dm > 0 using I ‹delta > 0 › ‹C ≥ 0 › Laux by auto
have ∃ k. 2^k > dist (f um) (p um)/dm + 1

by (simp add: real-arch-pow)
then obtain k where 2^k > dist (f um) (p um)/dm + 1

by blast
then have dist (f um) (p um) < (2^k − 1 ) ∗ dm

using ‹dm > 0 › by (auto simp add: divide-simps algebra-simps)
also have ... ≤ (2^(Suc k) − 1 ) ∗ dm

by (intro mono-intros, auto)
finally have ¬((2 ^ (k + 1 ) − 1 ) ∗ dm ≤ dist (f um) (p um))

by simp
then show Gromov-product-at (f z) (f um) (f uM ) ≤ lambda2 ∗ (D + 3/2

∗ L + delta + 11/2 ∗ C ) − 2 ∗ delta + Kmult ∗ (1 − exp (− K ∗ (uM − um)))
using Ind-k[of k] by auto

end of the case where D + 4 ∗ C ≤ dm and dM ≤ dm.
next
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case 3

This is the exact copy of the previous case, except that the roles of the
points before and after z are exchanged. In a perfect world, one would
use a lemma subsuming both cases, but in practice copy-paste seems to
work better here as there are two many details to be changed regarding the
direction of inequalities.

then have I : D + 4 ∗ C ≤ dM dm ≤ dM by auto
define V where V = (λk::nat. (

⋃
g∈H . cball g ((2^k − 1 ) ∗ dM )))

define QC where QC = (λk::nat. if k = 0 then 0 else 8 ∗ delta)
have QC k ≥ 0 for k unfolding QC-def using ‹delta > 0 › by auto
have Q: quasiconvex (0 + 8 ∗ deltaG(TYPE( ′a))) (V k) for k

unfolding V-def apply (rule quasiconvex-thickening) using geodesic-segmentI [OF
H ]

by (auto simp add: quasiconvex-of-geodesic)
have quasiconvex (QC k) (V k) for k

apply (cases k = 0 )
apply (simp add: V-def QC-def quasiconvex-of-geodesic geodesic-segmentI [OF

H ])
apply (rule quasiconvex-mono[OF - Q[of k]]) using ‹deltaG(TYPE( ′a))

< delta› QC-def by auto
define q::nat ⇒ real ⇒ ′a where q = (λk x. geodesic-segment-param {p

x−−f x} (p x) ((2^k − 1 ) ∗ dM ))

have Ind-k: (Gromov-product-at (f z) (f um) (f uM ) ≤ lambda^2 ∗ (D +
3/2 ∗ L + delta + 11/2 ∗ C ) − 2 ∗ delta + Kmult ∗ (1 − exp(− K ∗ (uM −
um))))

∨ (∃ x ∈ {yM ..uM}. (∀ y ∈ {x..uM}. dist (f y) (p y) ≥ (2^(k+1 )−1 )
∗ dM ) ∧ dist (q k uM ) (q k x) ≥ L − 4 ∗ delta + 7 ∗ QC k) for k

proof (induction k)
case 0
have ∗: ∃ x∈ {yM ..uM}. (∀ y ∈ {x..uM}. dist (f y) (p y) ≥ (2^(0+1 )−1 )

∗ dM ) ∧ dist (q 0 uM ) (q 0 x) ≥ L − 4 ∗ delta + 7 ∗ QC 0
proof (rule bexI [of - yM ], auto simp add: V-def q-def QC-def )

show yM ≤ uM using ‹yM ∈ {z..uM}› by auto
show L −4 ∗ delta ≤ dist (p uM ) (p yM )

using yM (2 ) apply auto using metric-space-class.zero-le-dist[of pi-z
p uM ] by linarith

show
∧

y. y ≤ uM =⇒ yM ≤ y =⇒ dM ≤ dist (f y) (p y)
using dM-def closestM proj-setD(2 )[OF p] by auto

qed
then show ?case

by blast
next

case Suck: (Suc k)
show ?case
proof (cases Gromov-product-at (f z) (f um) (f uM ) ≤ lambda2 ∗ (D +

3/2 ∗ L + delta + 11/2 ∗ C ) − 2 ∗ delta + Kmult ∗ (1 − exp (− K ∗ (uM −
um))))
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case True
then show ?thesis by simp

next
case False
then obtain x where x: x ∈ {yM ..uM} dist (q k uM ) (q k x) ≥ L − 4

∗ delta + 7 ∗ QC k ∧
w. w ∈ {x..uM} =⇒ dist (f w) (p w) ≥ (2^(k+1 )−1 )

∗ dM
using Suck.IH by auto
have aux: (2 ^ k − 1 ) ∗ dM ≤ (2∗2^k−1 ) ∗ dM 0 ≤ 2 ∗ 2 ^ k −

(1 ::real) dM ≤ dM ∗ 2 ^ k
apply (auto simp add: algebra-simps)
apply (metis power .simps(2 ) two-realpow-ge-one)
using ‹0 ≤ dM › less-eq-real-def by fastforce

have L + C = (L/D) ∗ (D + (D/L) ∗ C )
using ‹L > 0 › ‹D > 0 › by (simp add: algebra-simps divide-simps)

also have ... ≤ (L/D) ∗ (D + 4 ∗ C )
apply (intro mono-intros)

using ‹L > 0 › ‹D > 0 › ‹C ≥ 0 › ‹D ≤ 4 ∗ L› by (auto simp add:
algebra-simps divide-simps)

also have ... ≤ (L/D) ∗ dM
apply (intro mono-intros) using I ‹L > 0 › ‹D > 0 › by auto

finally have L + C ≤ (L/D) ∗ dM
by simp

moreover have 2 ∗ delta ≤ (2 ∗ delta)/D ∗ dM
using I ‹C ≥ 0 › ‹delta > 0 › ‹D > 0 › by (auto simp add: algebra-simps

divide-simps)
ultimately have aux2 : L + C + 2 ∗ delta ≤ ((L + 2 ∗ delta)/D) ∗ dM

by (auto simp add: algebra-simps divide-simps)
have aux3 : (1−alpha) ∗ D + alpha ∗ 2^k ∗ dM ≤ dM ∗ 2^k − C/2 −

QC k
proof (cases k = 0 )

case True
show ?thesis

using I ‹C ≥ 0 › unfolding True QC-def alpha-def by auto
next

case False
have C/2 + QC k + (1−alpha) ∗ D ≤ 2 ∗ (1−alpha) ∗ dM

using I ‹C ≥ 0 › unfolding QC-def alpha-def using False Laux by
auto

also have ... ≤ 2^k ∗ (1−alpha) ∗ dM
apply (intro mono-intros) using False alphaaux I ‹D > 0 › ‹C ≥ 0 ›

by auto
finally show ?thesis

by (simp add: algebra-simps)
qed

have ∃w ∈ {x..uM}. (dist (q k uM ) (q k w) ∈ {(9 ∗ delta + 4 ∗ QC k)
− 4 ∗ delta − 2 ∗ QC k .. 9 ∗ delta + 4 ∗ QC k})
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∧ (∀ v ∈ {w..uM}. dist (q k uM ) (q k v) ≤ 9 ∗ delta + 4 ∗ QC k)
proof (rule quasi-convex-projection-small-gaps ′[where ?f = f and ?G

= V k])
show continuous-on {x..uM} f

apply (rule continuous-on-subset[OF ‹continuous-on {a..b} f ›])
using ‹uM ∈ {z..b}› ‹z ∈ {a..b}› ‹yM ∈ {z..uM}› ‹x ∈ {yM ..uM}›

by auto
show x ≤ uM using ‹x ∈ {yM ..uM}› by auto
show quasiconvex (QC k) (V k) by fact
show deltaG TYPE( ′a) < delta by fact
show 9 ∗ delta + 4 ∗ QC k ∈ {4 ∗ delta + 2 ∗ QC k..dist (q k x) (q

k uM )}
using x(2 ) ‹delta > 0 › ‹QC k ≥ 0 › Laux by (auto simp add:

metric-space-class.dist-commute)
show q k w ∈ proj-set (f w) (V k) if w ∈ {x..uM} for w

unfolding V-def q-def apply (rule proj-set-thickening)
using aux p x(3 )[OF that] by (auto simp add: metric-space-class.dist-commute)
qed
then obtain w where w: w ∈ {x..uM}

dist (q k uM ) (q k w) ∈ {(9 ∗ delta + 4 ∗ QC k) − 4
∗ delta − 2 ∗ QC k .. 9 ∗ delta + 4 ∗ QC k}∧

v. v ∈ {w..uM} =⇒ dist (q k uM ) (q k v) ≤ 9 ∗
delta + 4 ∗ QC k

by auto
show ?thesis
proof (cases ∃ v ∈ {w..uM}. dist (f v) (p v) ≤ (2^(k+2 )−1 ) ∗ dM )

case True
then obtain v where v: v ∈ {w..uM} dist (f v) (p v) ≤ (2^(k+2 )−1 )

∗ dM
by auto

have aux4 : dM ∗ 2 ^ k ≤ infdist (f r) (V k) if r ∈ {x..v} for r
proof −

have ∗: q k r ∈ proj-set (f r) (V k)
unfolding q-def V-def apply (rule proj-set-thickening)
using aux p[of r ] x(3 )[of r ] that ‹v ∈ {w..uM}› ‹w ∈ {x..uM}› by

(auto simp add: metric-space-class.dist-commute)
have infdist (f r) (V k) = dist (geodesic-segment-param {p r−−f r}

(p r) (dist (p r) (f r))) (geodesic-segment-param {p r−−f r} (p r) ((2 ^ k − 1 ) ∗
dM ))

using proj-setD(2 )[OF ∗] unfolding q-def by auto
also have ... = abs(dist (p r) (f r) − (2 ^ k − 1 ) ∗ dM )

apply (rule geodesic-segment-param(7 )[where ?y = f r ])
using x(3 )[of r ] ‹r ∈ {x..v}› ‹v ∈ {w..uM}› ‹w ∈ {x..uM}› aux by

(auto simp add: metric-space-class.dist-commute)
also have ... = dist (f r) (p r) − (2 ^ k − 1 ) ∗ dM
using x(3 )[of r ] ‹r ∈ {x..v}› ‹v ∈ {w..uM}› ‹w ∈ {x..uM}› aux by

(auto simp add: metric-space-class.dist-commute)
finally have dist (f r) (p r) = infdist (f r) (V k) + (2 ^ k − 1 ) ∗

dM by simp
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moreover have (2^(k+1 ) − 1 ) ∗ dM ≤ dist (f r) (p r)
apply (rule x(3 )) using ‹r ∈ {x..v}› ‹v ∈ {w..uM}› ‹w ∈ {x..uM}›

by auto
ultimately have (2^(k+1 ) − 1 ) ∗ dM ≤ infdist (f r) (V k) + (2 ^

k − 1 ) ∗ dM
by simp

then show ?thesis by (auto simp add: algebra-simps)
qed

have infdist (f v) H ≤ (2^(k+2 )−1 ) ∗ dM
using v proj-setD(2 )[OF p[of v]] by auto

have dist closestm v ≤ lambda ∗ (infdist (f closestm) H + (L + C +
2 ∗ delta) + infdist (f v) H )

apply (rule D)
using ‹v ∈ {w..uM}› ‹w ∈ {x..uM}› ‹x ∈ {yM ..uM}› ‹yM ∈ {z..uM}›

‹uM ∈ {z..b}› ‹z ∈ {a..b}› ‹closestm ∈ {um..ym}› ‹ym ∈ {um..z}› ‹um ∈ {a..z}›
by auto

also have ... ≤ lambda ∗ (dm + 1 ∗ (L + C + 2 ∗ delta) + (2^(k+2 )−1 )
∗ dM )

apply (intro mono-intros ‹infdist (f v) H ≤ (2^(k+2 )−1 ) ∗ dM ›)
using dm-def ‹lambda ≥ 1 › ‹L > 0 › ‹C ≥ 0 › ‹delta > 0 › by (auto

simp add: metric-space-class.dist-commute)
also have ... ≤ lambda ∗ (dM + 2^k ∗ (((L + 2 ∗ delta)/D) ∗ dM ) +

(2^(k+2 )−1 ) ∗ dM )
apply (intro mono-intros) using I ‹lambda ≥ 1 › ‹C ≥ 0 › ‹delta >

0 › ‹L > 0 › aux2 by auto
also have ... = lambda ∗ 2^k ∗ (4 + (L + 2 ∗ delta)/D) ∗ dM

by (simp add: algebra-simps)
finally have ∗: dist closestm v / (lambda ∗ (4 + (L + 2 ∗ delta)/D))

≤ 2^k ∗ dM
using ‹lambda ≥ 1 › ‹L > 0 › ‹D > 0 › ‹delta > 0 › by (simp add:

divide-simps, simp add: algebra-simps)

have exp(− (alpha ∗ (2^k ∗ dM ) ∗ ln 2 / (5 ∗ delta))) ≤ exp(−(alpha
∗ (dist closestm v / (lambda ∗ (4 + (L + 2 ∗ delta)/D))) ∗ ln 2 / (5 ∗ delta)))

apply (intro mono-intros ∗) using alphaaux ‹delta > 0 › by auto
also have ... = exp(−K ∗ dist closestm v)

unfolding K-def by (simp add: divide-simps)
also have ... = exp(−K ∗ (v − closestm))

unfolding dist-real-def using ‹v ∈ {w..uM}› ‹w ∈ {x..uM}› ‹x ∈
{yM ..uM}› ‹yM ∈ {z..uM}› ‹ym ∈ {um..z}› ‹closestm ∈ {um..ym}› ‹K > 0 › by
auto

finally have exp(− (alpha ∗ (2^k ∗ dM ) ∗ ln 2 / (5 ∗ delta))) ≤
exp(−K ∗ (v − closestm))

by simp
then have K ∗ (v − x) ∗ exp(− (alpha ∗ (2^k ∗ dM ) ∗ ln 2 / (5 ∗

delta))) ≤ K ∗ (v − x) ∗ exp(−K ∗ (v − closestm))
apply (rule mult-left-mono)
using ‹delta > 0 › ‹lambda ≥ 1 › ‹v ∈ {w..uM}› ‹w ∈ {x..uM}› ‹K
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> 0 › by auto
also have ... = ((1 + K ∗ (v − x)) − 1 ) ∗ exp(− K ∗ (v − closestm))

by (auto simp add: algebra-simps)
also have ... ≤ (exp (K ∗ (v − x)) − 1 ) ∗ exp(−K ∗ (v − closestm))

by (intro mono-intros, auto)
also have ... = exp(−K ∗ (x − closestm)) − exp(−K ∗ (v − closestm))

by (simp add: algebra-simps mult-exp-exp)
also have ... ≤ exp(−K ∗ (x − closestm)) − exp(−K ∗ (uM − um))

using ‹K > 0 › ‹v ∈ {w..uM}› ‹w ∈ {x..uM}› ‹x ∈ {yM ..uM}› ‹yM
∈ {z..uM}› ‹ym ∈ {um..z}› ‹closestm ∈ {um..ym}› by auto

finally have B: (v − x) ∗ exp(− alpha ∗ 2^k ∗ dM ∗ ln 2 / (5 ∗ delta))
≤

(exp(−K ∗ (x − closestm)) − exp(−K ∗ (uM − um)))/K
using ‹K > 0 › by (auto simp add: divide-simps algebra-simps)

The projections of f(v) and f(x) on the cylinder Vk are well separated, by
construction. This implies that v and x themselves are well separated.

have L − 4 ∗ delta + 7 ∗ QC k ≤ dist (q k uM ) (q k x)
using x by simp

also have ... ≤ dist (q k uM ) (q k v) + dist (q k v) (q k x)
by (intro mono-intros)

also have ... ≤ (9 ∗ delta + 4 ∗ QC k) + dist (q k v) (q k x)
using w(3 )[of v] ‹v ∈ {w..uM}› by auto

finally have L − 13 ∗ delta + 3 ∗ QC k ≤ dist (q k x) (q k v)
by (simp add: metric-space-class.dist-commute)

also have ... ≤ 3 ∗ QC k + max (5 ∗ deltaG(TYPE( ′a))) ((4 ∗ exp(1/2
∗ ln 2 )) ∗ lambda ∗ (v − x) ∗ exp(−(dM ∗ 2^k − C/2 − QC k) ∗ ln 2 / (5 ∗
delta)))

proof (cases k = 0 )
case True

have dist (q k x) (q k v) ≤ max (5 ∗ deltaG(TYPE( ′a))) ((4 ∗ exp(1/2
∗ ln 2 )) ∗ lambda ∗ (v − x) ∗ exp(−(dM ∗ 2^k − C/2 ) ∗ ln 2 / (5 ∗ delta)))

proof (rule geodesic-projection-exp-contracting[where ?G = V k and
?f = f ])

show geodesic-segment (V k) unfolding V-def True using
geodesic-segmentI [OF H ] by auto

show x ≤ v using ‹v ∈ {w..uM}› ‹w ∈ {x..uM}› by auto
show q k v ∈ proj-set (f v) (V k)

unfolding q-def V-def apply (rule proj-set-thickening)
using aux p[of v] x(3 )[of v] ‹v ∈ {w..uM}› ‹w ∈ {x..uM}› by

(auto simp add: metric-space-class.dist-commute)
show q k x ∈ proj-set (f x) (V k)

unfolding q-def V-def apply (rule proj-set-thickening)
using aux p[of x] x(3 )[of x] ‹w ∈ {x..uM}› by (auto simp add:

metric-space-class.dist-commute)
show 15/2 ∗ delta + C/2 ≤ dM ∗ 2^k

using I ‹delta > 0 › ‹C ≥ 0 › Laux unfolding QC-def True by
auto

show deltaG TYPE( ′a) < delta by fact
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show
∧

t. t ∈ {x..v} =⇒ dM ∗ 2 ^ k ≤ infdist (f t) (V k)
using aux4 by auto

show 0 ≤ C 0 ≤ lambda using ‹C ≥ 0 › ‹lambda ≥ 1 › by auto
show dist (f x1 ) (f x2 ) ≤ lambda ∗ dist x1 x2 + C if x1 ∈ {x..v}

x2 ∈ {x..v} for x1 x2
using quasi-isometry-onD(1 )[OF assms(2 )] that ‹v ∈ {w..uM}›

‹w ∈ {x..uM}› ‹x ∈ {yM ..uM}› ‹yM ∈ {z..uM}› ‹uM ∈ {z..b}› ‹z ∈ {a..b}› by
auto

qed
then show ?thesis unfolding QC-def True by auto

next
case False

have dist (q k x) (q k v) ≤ 2 ∗ QC k + 8 ∗ delta + max (5 ∗
deltaG(TYPE( ′a))) ((4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (v − x) ∗ exp(−(dM ∗ 2^k
− QC k − C/2 ) ∗ ln 2 / (5 ∗ delta)))

proof (rule quasiconvex-projection-exp-contracting[where ?G = V k
and ?f = f ])

show quasiconvex (QC k) (V k) by fact
show x ≤ v using ‹v ∈ {w..uM}› ‹w ∈ {x..uM}› by auto
show q k v ∈ proj-set (f v) (V k)

unfolding q-def V-def apply (rule proj-set-thickening)
using aux p[of v] x(3 )[of v] ‹v ∈ {w..uM}› ‹w ∈ {x..uM}› by

(auto simp add: metric-space-class.dist-commute)
show q k x ∈ proj-set (f x) (V k)

unfolding q-def V-def apply (rule proj-set-thickening)
using aux p[of x] x(3 )[of x] ‹w ∈ {x..uM}› by (auto simp add:

metric-space-class.dist-commute)
show 15/2 ∗ delta + QC k + C/2 ≤ dM ∗ 2^k

apply (rule order-trans[of - dM ])
using I ‹delta > 0 › ‹C ≥ 0 › Laux unfolding QC-def by auto

show deltaG TYPE( ′a) < delta by fact
show

∧
t. t ∈ {x..v} =⇒ dM ∗ 2 ^ k ≤ infdist (f t) (V k)

using aux4 by auto
show 0 ≤ C 0 ≤ lambda using ‹C ≥ 0 › ‹lambda ≥ 1 › by auto
show dist (f x1 ) (f x2 ) ≤ lambda ∗ dist x1 x2 + C if x1 ∈ {x..v}

x2 ∈ {x..v} for x1 x2
using quasi-isometry-onD(1 )[OF assms(2 )] that ‹v ∈ {w..uM}›

‹w ∈ {x..uM}› ‹x ∈ {yM ..uM}› ‹yM ∈ {z..uM}› ‹uM ∈ {z..b}› ‹z ∈ {a..b}› by
auto

qed
then show ?thesis unfolding QC-def using False by (auto simp

add: algebra-simps)
qed

finally have L − 13 ∗ delta ≤ max (5 ∗ deltaG(TYPE( ′a))) ((4 ∗
exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (v − x) ∗ exp(−(dM ∗ 2^k − C/2 − QC k) ∗ ln 2
/ (5 ∗ delta)))

by auto
then have L − 13 ∗ delta ≤ (4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (v −

x) ∗ exp(−(dM ∗ 2^k − C/2 − QC k) ∗ ln 2 / (5 ∗ delta))
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using ‹delta > deltaG(TYPE( ′a))› Laux by auto
also have ... ≤ (4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (v − x) ∗

exp(−((1−alpha) ∗ D + alpha ∗ 2^k ∗ dM ) ∗ ln 2 / (5 ∗ delta))
apply (intro mono-intros) using aux3 ‹delta > 0 › ‹lambda ≥ 1 › ‹v

∈ {w..uM}› ‹w ∈ {x..uM}› by auto
also have ... = (4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (v − x) ∗

(exp(−(1−alpha) ∗ D ∗ ln 2 / (5 ∗ delta)) ∗ exp(−alpha ∗ 2^k ∗ dM ∗ ln 2 / (5
∗ delta)))

unfolding mult-exp-exp by (auto simp add: algebra-simps divide-simps)
finally have A: L − 13 ∗ delta ≤ (4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗

exp(−(1−alpha) ∗ D ∗ ln 2 / (5 ∗ delta)) ∗ ((v − x) ∗ exp(−alpha ∗ 2^k ∗ dM ∗
ln 2 / (5 ∗ delta)))

by (simp add: algebra-simps)

also have ... ≤ (4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗ exp 0 ∗ ((v − x) ∗
exp 0 )

apply (intro mono-intros) using ‹delta > 0 › ‹lambda ≥ 1 › ‹v ∈
{w..uM}› ‹w ∈ {x..uM}› alphaaux ‹D > 0 › ‹C ≥ 0 › I

by (auto simp add: divide-simps mult-nonpos-nonneg)
also have ... = (4 ∗ exp(1/2 ∗ ln 2 )) ∗ lambda ∗ (v − x)

by simp
also have ... ≤ 20 ∗ lambda ∗ (v − x)

apply (intro mono-intros, approximation 10 )
using ‹delta > 0 › ‹lambda ≥ 1 › ‹v ∈ {w..uM}› ‹w ∈ {x..uM}› by

auto
finally have v − x ≥ (1/4 ) ∗ delta / lambda

using ‹lambda ≥ 1 › L-def ‹delta > 0 › by (simp add: divide-simps
algebra-simps)

then have x − closestm + (1/4 ) ∗ delta / lambda ≤ v − closestm
by simp

also have ... ≤ uM − um
using ‹closestm ∈ {um..ym}› ‹v ∈ {w..uM}› by auto

also have ... ≤ Suc n ∗ (1/4 ) ∗ delta / lambda by fact
finally have x − closestm ≤ n ∗ (1/4 ) ∗ delta / lambda

unfolding Suc-eq-plus1 by (auto simp add: algebra-simps add-divide-distrib)

have L + 4 ∗ delta = ((L + 4 ∗ delta)/(L − 13 ∗ delta)) ∗ (L − 13 ∗
delta)

using Laux ‹delta > 0 › by (simp add: algebra-simps divide-simps)
also have ... ≤ ((L + 4 ∗ delta)/(L − 13 ∗ delta)) ∗ ((4 ∗ exp(1/2 ∗

ln 2 )) ∗ lambda ∗ exp (− (1 − alpha) ∗ D ∗ ln 2 / (5 ∗ delta)) ∗ ((v − x) ∗ exp
(− alpha ∗ 2 ^ k ∗ dM ∗ ln 2 / (5 ∗ delta))))

apply (rule mult-left-mono) using A Laux ‹delta > 0 › by (auto simp
add: divide-simps)

also have ... ≤ ((L + 4 ∗ delta)/(L − 13 ∗ delta)) ∗ ((4 ∗ exp(1/2 ∗
ln 2 )) ∗ lambda ∗ exp (− (1 − alpha) ∗ D ∗ ln 2 / (5 ∗ delta)) ∗ ((exp(−K ∗ (x
− closestm)) − exp(−K ∗ (uM − um)))/K ))

apply (intro mono-intros B) using Laux ‹delta > 0 › ‹lambda ≥ 1 ›
by (auto simp add: divide-simps)
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finally have C : L + 4 ∗ delta ≤ Kmult ∗ (exp(−K ∗ (x − closestm))
− exp(−K ∗ (uM − um)))

unfolding Kmult-def by argo

have Gromov-product-at (f z) (f um) (f uM ) ≤ Gromov-product-at (f
z) (f closestm) (f x) + (L + 4 ∗ delta)

apply (rule Rec) using ‹closestm ∈ {um..ym}› ‹x ∈ {yM ..uM}› ‹yM
∈ {z..uM}› by auto

also have ... ≤ (lambda^2 ∗ (D + 3/2 ∗ L + delta + 11/2 ∗ C ) − 2
∗ delta + Kmult ∗ (1 − exp(− K ∗ (x − closestm)))) + (Kmult ∗ (exp(−K ∗ (x
− closestm)) − exp(−K ∗ (uM−um))))

apply (intro mono-intros C Suc.IH )
using ‹x ∈ {yM ..uM}› ‹yM ∈ {z..uM}› ‹um ∈ {a..z}› ‹closestm ∈

{um..ym}› ‹ym ∈ {um..z}› ‹uM ∈ {z..b}› ‹x − closestm ≤ n ∗ (1/4 ) ∗ delta /
lambda› by auto

also have ... = (lambda^2 ∗ (D + 3/2 ∗ L + delta + 11/2 ∗ C ) − 2
∗ delta + Kmult ∗ (1 − exp(− K ∗ (uM − um))))

unfolding K-def by (simp add: algebra-simps)
finally show ?thesis by auto

next
case False
have ∃w∈{yM ..uM}. (∀ r∈{w..uM}. (2 ^ (Suc k + 1 ) − 1 ) ∗ dM ≤

dist (f r) (p r)) ∧ L − 4 ∗ delta + 7 ∗ QC (Suc k) ≤ dist (q (Suc k) uM ) (q (Suc
k) w)

proof (rule bexI [of - w], auto)
show w ≤ uM yM ≤ w using ‹w ∈ {x..uM}› ‹x ∈ {yM ..uM}› by

auto
show (4 ∗ 2 ^ k − 1 ) ∗ dM ≤ dist (f x) (p x) if x ≤ uM w ≤ x for x

using False ‹dM ≥ 0 › that by force

have dist (q k uM ) (q (k+1 ) uM ) = 2^k ∗ dM
unfolding q-def apply (subst geodesic-segment-param(7 )[where ?y

= f uM ])
using x(3 )[of uM ] ‹x ∈ {yM ..uM}› aux by (auto simp add:

metric-space-class.dist-commute, simp add: algebra-simps)
have dist (q k w) (q (k+1 ) w) = 2^k ∗ dM
unfolding q-def apply (subst geodesic-segment-param(7 )[where ?y

= f w])
using x(3 )[of w] ‹w ∈ {x..uM}› ‹x ∈ {yM ..uM}› aux by (auto

simp add: metric-space-class.dist-commute, simp add: algebra-simps)
have i: q k uM ∈ proj-set (q (k+1 ) uM ) (V k)

unfolding q-def V-def apply (rule proj-set-thickening ′[of - f uM ])
using p x(3 )[of uM ] ‹x ∈ {yM ..uM}› aux by (auto simp add:

algebra-simps metric-space-class.dist-commute)
have j: q k w ∈ proj-set (q (k+1 ) w) (V k)

unfolding q-def V-def apply (rule proj-set-thickening ′[of - f w])
using p x(3 )[of w] ‹x ∈ {yM ..uM}› ‹w ∈ {x..uM}› aux by (auto

simp add: algebra-simps metric-space-class.dist-commute)
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have 5 ∗ delta + 2 ∗ QC k ≤ dist (q k uM ) (q k w) using w(2 ) by
simp

also have ... ≤ max (5 ∗ deltaG(TYPE( ′a)) + 2 ∗ QC k)
(dist (q (k + 1 ) uM ) (q (k + 1 ) w) − dist (q k

uM ) (q (k + 1 ) uM ) − dist (q k w) (q (k + 1 ) w) + 10 ∗ deltaG(TYPE( ′a)) +
4 ∗ QC k)

by (rule proj-along-quasiconvex-contraction[OF ‹quasiconvex (QC
k) (V k)› i j])

finally have 5 ∗ delta + 2 ∗ QC k ≤ dist (q (k + 1 ) uM ) (q (k
+ 1 ) w) − dist (q k uM ) (q (k + 1 ) uM ) − dist (q k w) (q (k + 1 ) w) + 10 ∗
deltaG(TYPE( ′a)) + 4 ∗ QC k

using ‹deltaG(TYPE( ′a)) < delta› by auto
then have 0 ≤ dist (q (k + 1 ) uM ) (q (k + 1 ) w) + 5 ∗ delta + 2

∗ QC k − dist (q k uM ) (q (k + 1 ) uM ) − dist (q k w) (q (k + 1 ) w)
using ‹deltaG(TYPE( ′a)) < delta› by auto

also have ... = dist (q (k + 1 ) uM ) (q (k + 1 ) w) + 5 ∗ delta + 2
∗ QC k − 2^(k+1 ) ∗ dM

by (simp only: ‹dist (q k w) (q (k+1 ) w) = 2^k ∗ dM › ‹dist (q k
uM ) (q (k+1 ) uM ) = 2^k ∗ dM ›, auto)

finally have ∗: 2^(k+1 ) ∗ dM − 5 ∗ delta − 2 ∗ QC k ≤ dist (q
(k+1 ) uM ) (q (k+1 ) w)

using ‹deltaG(TYPE( ′a)) < delta› by auto
have L − 4 ∗ delta + 7 ∗ QC (k+1 ) ≤ 2 ∗ dM − 5 ∗ delta − 2 ∗

QC k
unfolding QC-def L-def using ‹delta > 0 › Laux I ‹C ≥ 0 › by auto
also have ... ≤ 2^(k+1 ) ∗ dM − 5 ∗ delta − 2 ∗ QC k

using aux by (auto simp add: algebra-simps)
finally show L − 4 ∗ delta + 7 ∗ QC (Suc k) ≤ dist (q (Suc k) uM )

(q (Suc k) w)
using ∗ by auto

qed
then show ?thesis

by simp
qed

qed
qed
have dM > 0 using I ‹delta > 0 › ‹C ≥ 0 › Laux by auto
have ∃ k. 2^k > dist (f uM ) (p uM )/dM + 1

by (simp add: real-arch-pow)
then obtain k where 2^k > dist (f uM ) (p uM )/dM + 1

by blast
then have dist (f uM ) (p uM ) < (2^k − 1 ) ∗ dM

using ‹dM > 0 › by (auto simp add: divide-simps algebra-simps)
also have ... ≤ (2^(Suc k) − 1 ) ∗ dM

by (intro mono-intros, auto)
finally have ¬((2 ^ (k + 1 ) − 1 ) ∗ dM ≤ dist (f uM ) (p uM ))

by simp
then show Gromov-product-at (f z) (f um) (f uM ) ≤ lambda2 ∗ (D + 3/2

∗ L + delta + 11/2 ∗ C ) − 2 ∗ delta + Kmult ∗ (1 − exp (− K ∗ (uM − um)))
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using Ind-k[of k] by auto
qed

qed
qed

The main induction is over. To conclude, one should apply its result to the
original geodesic segment joining the points f(a) and f(b).

obtain n::nat where (b − a)/((1/4 ) ∗ delta / lambda) ≤ n
using real-arch-simple by blast

then have b − a ≤ n ∗ (1/4 ) ∗ delta / lambda
using ‹delta > 0 › ‹lambda ≥ 1 › by (auto simp add: divide-simps)

have infdist (f z) G ≤ Gromov-product-at (f z) (f a) (f b) + 2 ∗ deltaG(TYPE( ′a))
apply (intro mono-intros) using assms by auto

also have ... ≤ (lambda^2 ∗ (D + 3/2 ∗ L + delta + 11/2 ∗ C ) − 2 ∗ delta +
Kmult ∗ (1 − exp(−K ∗ (b − a)))) + 2 ∗ delta

apply (intro mono-intros Main[OF - - ‹b − a ≤ n ∗ (1/4 ) ∗ delta / lambda›])
using assms by auto

also have ... = lambda^2 ∗ (D + 3/2 ∗ L + delta + 11/2 ∗ C ) + Kmult ∗ (1
− exp(−K ∗ (b − a)))

by simp
also have ... ≤ lambda^2 ∗ (D + 3/2 ∗ L + delta + 11/2 ∗ C ) + Kmult ∗ (1
− 0 )

apply (intro mono-intros) using ‹Kmult > 0 › by auto
also have ... = lambda^2 ∗ (11/2 ∗ C + (3200∗exp(−459/50∗ln 2 )/ln 2 + 83 )
∗ delta)

unfolding Kmult-def K-def L-def alpha-def D-def using ‹delta > 0 › ‹lambda
≥ 1 › by (simp add: algebra-simps divide-simps power2-eq-square mult-exp-exp)

also have ... ≤ lambda^2 ∗ (11/2 ∗ C + 91 ∗ delta)
apply (intro mono-intros, simp add: divide-simps, approximation 14 )
using ‹delta > 0 › by auto

finally show ?thesis by (simp add: algebra-simps)
qed

Still assuming that our quasi-isometry is Lipschitz, we will improve slightly
on the previous result, first going down to the hyperbolicity constant of
the space, and also showing that, conversely, the geodesic is contained in a
neighborhood of the quasi-geodesic. The argument for this last point goes
as follows. Consider a point x on the geodesic. Define two sets to be the
D-thickenings of [a, x] and [x, b] respectively, where D is such that any point
on the quasi-geodesic is within distance D of the geodesic (as given by the
previous theorem). The union of these two sets covers the quasi-geodesic,
and they are both closed and nonempty. By connectedness, there is a point
z in their intersection, D-close both to a point x− before x and to a point
x+ after x. Then x belongs to a geodesic between x− and x+, which is
contained in a 4δ-neighborhood of geodesics from x+ to z and from x− to
z by hyperbolicity. It follows that x is at distance at most D + 4δ of z,
concluding the proof.

227



lemma (in Gromov-hyperbolic-space-geodesic) Morse-Gromov-theorem-aux2 :
fixes f ::real ⇒ ′a
assumes continuous-on {a..b} f

lambda C−quasi-isometry-on {a..b} f
geodesic-segment-between G (f a) (f b)

shows hausdorff-distance (f‘{a..b}) G ≤ lambda^2 ∗ (11/2 ∗ C + 92 ∗ deltaG(TYPE( ′a)))
proof (cases a ≤ b)

case True
have lambda ≥ 1 C ≥ 0 using quasi-isometry-onD[OF assms(2 )] by auto
have ∗: infdist (f z) G ≤ lambda^2 ∗ (11/2 ∗ C + 91 ∗ delta) if z ∈ {a..b}

delta > deltaG(TYPE( ′a)) for z delta
by (rule Morse-Gromov-theorem-aux1 [OF assms(1 ) assms(2 ) True assms(3 )

that])
define D where D = lambda^2 ∗ (11/2 ∗ C + 91 ∗ deltaG(TYPE( ′a)))
have D ≥ 0 unfolding D-def using ‹C ≥ 0 › by auto
have I : infdist (f z) G ≤ D if z ∈ {a..b} for z
proof −
have (infdist (f z) G/ lambda^2 − 11/2 ∗ C )/91 ≤ delta if delta > deltaG(TYPE( ′a))

for delta
using ∗[OF ‹z ∈ {a..b}› that] ‹lambda ≥ 1 › by (auto simp add: divide-simps

algebra-simps)
then have (infdist (f z) G/ lambda^2 − 11/2 ∗ C )/91 ≤ deltaG(TYPE( ′a))

using dense-ge by blast
then show ?thesis unfolding D-def using ‹lambda ≥ 1 › by (auto simp add:

divide-simps algebra-simps)
qed
show ?thesis
proof (rule hausdorff-distanceI )

show 0 ≤ lambda2 ∗ (11/2 ∗ C + 92 ∗ deltaG TYPE( ′a)) using ‹C ≥ 0 › by
auto

fix x assume x ∈ f‘{a..b}
then obtain z where z: x = f z z ∈ {a..b} by blast
show infdist x G ≤ lambda2 ∗ (11/2 ∗ C + 92 ∗ deltaG TYPE( ′a))

unfolding z(1 ) by (rule order-trans[OF I [OF ‹z ∈ {a..b}›]], auto simp add:
algebra-simps D-def )

next
fix x assume x ∈ G
have infdist x (f‘{a..b}) ≤ D + 1 ∗ deltaG TYPE( ′a)
proof −

define p where p = geodesic-segment-param G (f a)
then have p: p 0 = f a p (dist (f a) (f b)) = f b

unfolding p-def using assms(3 ) by auto
obtain t where t: x = p t t ∈ {0 ..dist (f a) (f b)}
unfolding p-def using ‹x ∈ G› ‹geodesic-segment-between G (f a) (f b)› by

(metis geodesic-segment-param(5 ) imageE)
define Km where Km = (

⋃
z ∈ p‘{0 ..t}. cball z D)

define KM where KM = (
⋃

z ∈ p‘{t..dist (f a) (f b)}. cball z D)
have f‘{a..b} ⊆ Km ∪ KM
proof
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fix x assume x: x ∈ f‘{a..b}
have ∃ z ∈ G. infdist x G = dist x z

apply (rule infdist-proper-attained)
using geodesic-segment-topology[OF geodesic-segmentI [OF assms(3 )]] by

auto
then obtain z where z: z ∈ G infdist x G = dist x z

by auto
obtain tz where tz: z = p tz tz ∈ {0 ..dist (f a) (f b)}

unfolding p-def using ‹z ∈ G› ‹geodesic-segment-between G (f a) (f b)›
by (metis geodesic-segment-param(5 ) imageE)

have infdist x G ≤ D
using I ‹x ∈ f‘{a..b}› by auto

then have dist z x ≤ D
using z(2 ) by (simp add: metric-space-class.dist-commute)

then show x ∈ Km ∪ KM
unfolding Km-def KM-def using tz by force

qed
then have ∗: f‘{a..b} = (Km ∩ f‘{a..b}) ∪ (KM ∩ f‘{a..b}) by auto
have (Km ∩ f‘{a..b}) ∩ (KM ∩ f‘{a..b}) 6= {}
proof (rule connected-as-closed-union[OF - ∗])

have closed (f ‘ {a..b})
apply (intro compact-imp-closed compact-continuous-image) using assms(1 )

by auto
have closed Km

unfolding Km-def apply (intro compact-has-closed-thickening com-
pact-continuous-image)

apply (rule continuous-on-subset[of {0 ..dist (f a) (f b)} p])
unfolding p-def using assms(3 ) ‹t ∈ {0 ..dist (f a) (f b)}› by (auto simp

add: isometry-on-continuous)
then show closed (Km ∩ f‘{a..b})

by (rule topological-space-class.closed-Int) fact

have closed KM
unfolding KM-def apply (intro compact-has-closed-thickening com-

pact-continuous-image)
apply (rule continuous-on-subset[of {0 ..dist (f a) (f b)} p])
unfolding p-def using assms(3 ) ‹t ∈ {0 ..dist (f a) (f b)}› by (auto simp

add: isometry-on-continuous)
then show closed (KM ∩ f‘{a..b})

by (rule topological-space-class.closed-Int) fact

show connected (f‘{a..b})
apply (rule connected-continuous-image) using assms(1 ) by auto

have f a ∈ Km ∩ f‘{a..b} using True apply auto
unfolding Km-def apply auto apply (rule bexI [of - 0 ])
unfolding p using ‹D ≥ 0 › t(2 ) by auto

then show Km ∩ f‘{a..b} 6= {} by auto
have f b ∈ KM ∩ f‘{a..b} apply auto

unfolding KM-def apply auto apply (rule bexI [of - dist (f a) (f b)])
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unfolding p using ‹D ≥ 0 › t(2 ) True by auto
then show KM ∩ f‘{a..b} 6= {} by auto

qed
then obtain y where y: y ∈ f‘{a..b} y ∈ Km y ∈ KM by auto
obtain tm where tm: tm ∈ {0 ..t} dist (p tm) y ≤ D

using y(2 ) unfolding Km-def by auto
obtain tM where tM : tM ∈ {t..dist (f a) (f b)} dist (p tM ) y ≤ D

using y(3 ) unfolding KM-def by auto
define H where H = p‘{tm..tM}
have ∗: geodesic-segment-between H (p tm) (p tM )

unfolding H-def p-def apply (rule geodesic-segmentI2 )
using assms(3 ) ‹tm ∈ {0 ..t}› ‹tM ∈ {t..dist (f a) (f b)}› isometry-on-subset
using assms(3 ) geodesic-segment-param(4 ) by (auto) fastforce

have x ∈ H
unfolding t(1 ) H-def using ‹tm ∈ {0 ..t}› ‹tM ∈ {t..dist (f a) (f b)}› by

auto
have infdist x (f ‘ {a..b}) ≤ dist x y

by (rule infdist-le[OF y(1 )])
also have ... ≤ max (dist (p tm) y) (dist (p tM ) y) + deltaG(TYPE( ′a))

by (rule dist-le-max-dist-triangle[OF ∗ ‹x ∈ H ›])
finally show ?thesis

using tm(2 ) tM (2 ) by auto
qed
also have ... ≤ D + lambda^2 ∗ deltaG TYPE( ′a)

apply (intro mono-intros) using ‹lambda ≥ 1 › by auto
finally show infdist x (f ‘ {a..b}) ≤ lambda2 ∗ (11/2 ∗ C + 92 ∗ deltaG

TYPE( ′a))
unfolding D-def by (simp add: algebra-simps)

qed
next

case False
then have f‘{a..b} = {}

by auto
then have hausdorff-distance (f ‘ {a..b}) G = 0

unfolding hausdorff-distance-def by auto
then show ?thesis

using quasi-isometry-onD(4 )[OF assms(2 )] by auto
qed

The full statement of the Morse-Gromov Theorem, asserting that a quasi-
geodesic is within controlled distance of a geodesic with the same endpoints.
It is given in the formulation of Shchur [Shc13], with optimal control in terms
of the parameters of the quasi-isometry. This statement follows readily from
the previous one and from the fact that quasi-geodesics can be approximated
by Lipschitz ones.
theorem (in Gromov-hyperbolic-space-geodesic) Morse-Gromov-theorem:

fixes f ::real ⇒ ′a
assumes lambda C−quasi-isometry-on {a..b} f

geodesic-segment-between G (f a) (f b)
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shows hausdorff-distance (f‘{a..b}) G ≤ 92 ∗ lambda^2 ∗ (C + deltaG(TYPE( ′a)))
proof −

have C : C ≥ 0 lambda ≥ 1 using quasi-isometry-onD[OF assms(1 )] by auto
consider dist (f a) (f b) ≥ 2 ∗ C ∧ a ≤ b | dist (f a) (f b) ≤ 2 ∗ C ∧ a ≤ b | b

< a
by linarith

then show ?thesis
proof (cases)

case 1
have ∃ d. continuous-on {a..b} d ∧ d a = f a ∧ d b = f b

∧ (∀ x∈{a..b}. dist (f x) (d x) ≤ 4 ∗ C )
∧ lambda (4 ∗ C )−quasi-isometry-on {a..b} d
∧ (2 ∗ lambda)−lipschitz-on {a..b} d
∧ hausdorff-distance (f‘{a..b}) (d‘{a..b}) ≤ 2 ∗ C

apply (rule quasi-geodesic-made-lipschitz[OF assms(1 )]) using 1 by auto
then obtain d where d: d a = f a d b = f b∧

x. x ∈ {a..b} =⇒ dist (f x) (d x) ≤ 4 ∗ C
lambda (4 ∗ C )−quasi-isometry-on {a..b} d
(2 ∗ lambda)−lipschitz-on {a..b} d
hausdorff-distance (f‘{a..b}) (d‘{a..b}) ≤ 2 ∗ C

by auto
have a: hausdorff-distance (d‘{a..b}) G ≤ lambda^2 ∗ ((11/2 ) ∗ (4 ∗ C ) + 92

∗ deltaG(TYPE( ′a)))
apply (rule Morse-Gromov-theorem-aux2 ) using d assms lipschitz-on-continuous-on

by auto

have hausdorff-distance (f‘{a..b}) G ≤
hausdorff-distance (f‘{a..b}) (d‘{a..b}) + hausdorff-distance (d‘{a..b}) G

apply (rule hausdorff-distance-triangle)
using 1 apply simp
by (rule quasi-isometry-on-bounded[OF d(4 )], auto)

also have ... ≤ lambda^2 ∗ ((11/2 ) ∗ (4 ∗ C ) + 92 ∗ deltaG(TYPE( ′a))) +
1 ∗ 2 ∗ C

using a d by auto
also have ... ≤ lambda^2 ∗ ((11/2 ) ∗ (4 ∗ C ) + 92 ∗ deltaG(TYPE( ′a))) +

lambda^2 ∗ 2 ∗ C
apply (intro mono-intros) using ‹lambda ≥ 1 › ‹C ≥ 0 › by auto

also have ... = lambda^2 ∗ (24 ∗ C + 92 ∗ deltaG(TYPE( ′a)))
by (simp add: algebra-simps divide-simps)

also have ... ≤ lambda^2 ∗ (92 ∗ C + 92 ∗ deltaG(TYPE( ′a)))
apply (intro mono-intros) using ‹lambda ≥ 1 › ‹C ≥ 0 › by auto

finally show ?thesis by (auto simp add: algebra-simps)
next

case 2
have (1/lambda) ∗ dist a b − C ≤ dist (f a) (f b)

apply (rule quasi-isometry-onD[OF assms(1 )]) using 2 by auto
also have ... ≤ 2 ∗ C using 2 by auto
finally have dist a b ≤ 3 ∗ lambda ∗ C

using C by (auto simp add: algebra-simps divide-simps)
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then have ∗: b − a ≤ 3 ∗ lambda ∗ C using 2 unfolding dist-real-def by
auto

show ?thesis
proof (rule hausdorff-distanceI2 )

show 0 ≤ 92 ∗ lambda2 ∗ (C + deltaG TYPE( ′a)) using C by auto
fix x assume x ∈ f‘{a..b}
then obtain t where t: x = f t t ∈ {a..b} by auto
have dist x (f a) ≤ lambda ∗ dist t a + C
unfolding t(1 ) using quasi-isometry-onD(1 )[OF assms(1 ) t(2 )] 2 by auto

also have ... ≤ lambda ∗ (b − a) + 1 ∗ 1 ∗ C + 0 ∗ 0 ∗ deltaG(TYPE( ′a))
using t(2 ) 2 C unfolding dist-real-def by auto

also have ... ≤ lambda ∗ (3 ∗ lambda ∗ C ) + lambda^2 ∗ (92−3 ) ∗ C +
lambda^2 ∗ 92 ∗ deltaG(TYPE( ′a))

apply (intro mono-intros ∗) using C by auto
finally have ∗: dist x (f a) ≤ 92 ∗ lambda2 ∗ (C + deltaG TYPE( ′a))

by (simp add: algebra-simps power2-eq-square)
show ∃ y∈G. dist x y ≤ 92 ∗ lambda2 ∗ (C + deltaG TYPE( ′a))

apply (rule bexI [of - f a]) using ∗ 2 assms(2 ) by auto
next

fix x assume x ∈ G
then have dist x (f a) ≤ dist (f a) (f b)

by (meson assms geodesic-segment-dist-le geodesic-segment-endpoints(1 )
local.some-geodesic-is-geodesic-segment(1 ))

also have ... ≤ 1 ∗ 2 ∗ C + lambda^2 ∗ 0 ∗ deltaG(TYPE( ′a))
using 2 by auto

also have ... ≤ lambda^2 ∗ 92 ∗ C + lambda^2 ∗ 92 ∗ deltaG(TYPE( ′a))
apply (intro mono-intros) using C by auto

finally have ∗: dist x (f a) ≤ 92 ∗ lambda2 ∗ (C + deltaG TYPE( ′a))
by (simp add: algebra-simps)

show ∃ y∈f‘{a..b}. dist x y ≤ 92 ∗ lambda2 ∗ (C + deltaG TYPE( ′a))
apply (rule bexI [of - f a]) using ∗ 2 by auto

qed
next

case 3
then have hausdorff-distance (f ‘ {a..b}) G = 0

unfolding hausdorff-distance-def by auto
then show ?thesis

using C by auto
qed

qed

This theorem implies the same statement for two quasi-geodesics sharing
their endpoints.
theorem (in Gromov-hyperbolic-space-geodesic) Morse-Gromov-theorem2 :

fixes c d::real ⇒ ′a
assumes lambda C−quasi-isometry-on {A..B} c

lambda C−quasi-isometry-on {A..B} d
c A = d A c B = d B

shows hausdorff-distance (c‘{A..B}) (d‘{A..B}) ≤ 184 ∗ lambda^2 ∗ (C +
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deltaG(TYPE( ′a)))
proof (cases A ≤ B)

case False
then have hausdorff-distance (c‘{A..B}) (d‘{A..B}) = 0 by auto
then show ?thesis using quasi-isometry-onD[OF assms(1 )] delta-nonneg by

auto
next

case True
have hausdorff-distance (c‘{A..B}) {c A−−c B} ≤ 92 ∗ lambda^2 ∗ (C +

deltaG(TYPE( ′a)))
by (rule Morse-Gromov-theorem[OF assms(1 )], auto)

moreover have hausdorff-distance {c A−−c B} (d‘{A..B}) ≤ 92 ∗ lambda^2 ∗
(C + deltaG(TYPE( ′a)))

unfolding ‹c A = d A› ‹c B = d B› apply (subst hausdorff-distance-sym)
by (rule Morse-Gromov-theorem[OF assms(2 )], auto)

moreover have hausdorff-distance (c‘{A..B}) (d‘{A..B}) ≤ hausdorff-distance
(c‘{A..B}) {c A−−c B} + hausdorff-distance {c A−−c B} (d‘{A..B})

apply (rule hausdorff-distance-triangle)
using True compact-imp-bounded[OF some-geodesic-compact] by auto

ultimately show ?thesis by auto
qed

We deduce from the Morse lemma that hyperbolicity is invariant under
quasi-isometry.

First, we note that the image of a geodesic segment under a quasi-isometry
is close to a geodesic segment in Hausdorff distance, as it is a quasi-geodesic.
lemma geodesic-quasi-isometric-image:

fixes f :: ′a::metric-space ⇒ ′b::Gromov-hyperbolic-space-geodesic
assumes lambda C−quasi-isometry-on UNIV f

geodesic-segment-between G x y
shows hausdorff-distance (f‘G) {f x−−f y} ≤ 92 ∗ lambda^2 ∗ (C + deltaG(TYPE( ′b)))

proof −
define c where c = f o (geodesic-segment-param G x)
have ∗: (1 ∗ lambda) (0 ∗ lambda + C )−quasi-isometry-on {0 ..dist x y} c

unfolding c-def by (rule quasi-isometry-on-compose[where Y = UNIV ], auto
intro!: isometry-quasi-isometry-on simp add: assms)

have hausdorff-distance (c‘{0 ..dist x y}) {c 0−−c (dist x y)} ≤ 92 ∗ lambda^2
∗ (C + deltaG(TYPE( ′b)))

apply (rule Morse-Gromov-theorem) using ∗ by auto
moreover have c‘{0 ..dist x y} = f‘G

unfolding c-def image-comp[symmetric] using assms(2 ) by auto
moreover have c 0 = f x c (dist x y) = f y

unfolding c-def using assms(2 ) by auto
ultimately show ?thesis by auto

qed

We deduce that hyperbolicity is invariant under quasi-isometry. The proof
goes as follows: we want to see that a geodesic triangle is delta-thin, i.e., a
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point on a side Gxy is close to the union of the two other sides Gxz and Gyz.
Pull everything back by the quasi-isometry: we obtain three quasi-geodesic,
each of which is close to the corresponding geodesic segment by the Morse
lemma. As the geodesic triangle is thin, it follows that the quasi-geodesic
triangle is also thin, i.e., a point on f−1Gxy is close to f−1Gxz ∪ f−1Gyz
(for some explicit, albeit large, constant). Then push everything forward
by f : as it is a quasi-isometry, it will again distort distances by a bounded
amount.
lemma Gromov-hyperbolic-invariant-under-quasi-isometry-explicit:

fixes f :: ′a::geodesic-space ⇒ ′b::Gromov-hyperbolic-space-geodesic
assumes lambda C−quasi-isometry f
shows Gromov-hyperbolic-subset (752 ∗ lambda^3 ∗ (C + deltaG(TYPE( ′b))))

(UNIV ::( ′a set))
proof −

have C : lambda ≥ 1 C ≥ 0
using quasi-isometry-onD[OF assms] by auto

The Morse lemma gives a control bounded by K below. Following the proof,
we deduce a bound on the thinness of triangles by an ugly constant L. We
bound it by a more tractable (albeit still ugly) constant M .

define K where K = 92 ∗ lambda^2 ∗ (C + deltaG(TYPE( ′b)))
have HD: hausdorff-distance (f‘G) {f a−−f b} ≤ K if geodesic-segment-between

G a b for G a b
unfolding K-def by (rule geodesic-quasi-isometric-image[OF assms that])

define L where L = lambda ∗ (4 ∗ 1 ∗ deltaG(TYPE( ′b)) + 1 ∗ 1 ∗ C + 2 ∗
K )

define M where M = 188 ∗ lambda^3 ∗ (C + deltaG(TYPE( ′b)))

have L ≤ lambda ∗ (4 ∗ lambda^2 ∗ deltaG(TYPE( ′b)) + 4 ∗ lambda^2 ∗ C +
2 ∗ K )

unfolding L-def apply (intro mono-intros) using C by auto
also have ... = M

unfolding M-def K-def by (auto simp add: algebra-simps power2-eq-square
power3-eq-cube)

finally have L ≤ M by simp

After these preliminaries, we start the real argument per se, showing that
triangles are thin in the type b.

have Thin: infdist w (Gxz ∪ Gyz) ≤ M if
H : geodesic-segment-between Gxy x y geodesic-segment-between Gxz x z geodesic-segment-between

Gyz y z w ∈ Gxy
for w x y z:: ′a and Gxy Gyz Gxz

proof −
obtain w2 where w2 : w2 ∈ {f x−−f y} infdist (f w) {f x−−f y} = dist (f w)

w2
using infdist-proper-attained[OF proper-of-compact, of {f x−−f y} f w] by

auto
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have dist (f w) w2 = infdist (f w) {f x−− f y}
using w2 by simp

also have ... ≤ hausdorff-distance (f‘Gxy) {f x−− f y}
using geodesic-segment-topology(4 )[OF geodesic-segmentI ] H
by (auto intro!: quasi-isometry-on-bounded[OF quasi-isometry-on-subset[OF

assms]] infdist-le-hausdorff-distance)
also have ... ≤ K using HD[OF H (1 )] by simp
finally have ∗: dist (f w) w2 ≤ K by simp

have infdist w2 (f‘Gxz ∪ f‘Gyz) ≤ infdist w2 ({f x−−f z} ∪ {f y−−f z})
+ hausdorff-distance ({f x−−f z} ∪ {f y−−f z}) (f‘Gxz ∪ f‘Gyz)

apply (rule hausdorff-distance-infdist-triangle)
using geodesic-segment-topology(4 )[OF geodesic-segmentI ] H
by (auto intro!: quasi-isometry-on-bounded[OF quasi-isometry-on-subset[OF

assms]])
also have ... ≤ 4 ∗ deltaG(TYPE( ′b)) + hausdorff-distance ({f x−−f z} ∪ {f

y−−f z}) (f‘Gxz ∪ f‘Gyz)
apply (simp, rule thin-triangles[of {f x−−f z} f z f x {f y−−f z} f y {f x−−f

y} w2 ])
using w2 apply auto

using geodesic-segment-commute some-geodesic-is-geodesic-segment(1 ) by
blast+

also have ... ≤ 4 ∗ deltaG(TYPE( ′b)) + max (hausdorff-distance {f x−−f z}
(f‘Gxz)) (hausdorff-distance {f y−−f z} (f‘Gyz))

apply (intro mono-intros) using H by auto
also have ... ≤ 4 ∗ deltaG(TYPE( ′b)) + K
using HD[OF H (2 )] HD[OF H (3 )] by (auto simp add: hausdorff-distance-sym)
finally have ∗∗: infdist w2 (f‘Gxz ∪ f‘Gyz) ≤ 4 ∗ deltaG(TYPE( ′b)) + K by

simp

have infdist (f w) (f‘Gxz ∪ f‘Gyz) ≤ infdist w2 (f‘Gxz ∪ f‘Gyz) + dist (f w)
w2

by (rule infdist-triangle)
then have A: infdist (f w) (f‘(Gxz ∪ Gyz)) ≤ 4 ∗ deltaG(TYPE( ′b)) + 2 ∗ K

using ∗ ∗∗ by (auto simp add: image-Un)

have infdist w (Gxz ∪ Gyz) ≤ L + epsilon if epsilon > 0 for epsilon
proof −

have ∗: epsilon/lambda > 0 using that C by auto
have ∃ z ∈ f‘(Gxz ∪ Gyz). dist (f w) z < 4 ∗ deltaG(TYPE( ′b)) + 2 ∗ K +

epsilon/lambda
apply (rule infdist-almost-attained)
using A ∗ H (2 ) by auto

then obtain z where z: z ∈ Gxz ∪ Gyz dist (f w) (f z) < 4 ∗ deltaG(TYPE( ′b))
+ 2 ∗ K + epsilon/lambda

by auto

have infdist w (Gxz ∪ Gyz) ≤ dist w z
by (auto intro!: infdist-le z(1 ))
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also have ... ≤ lambda ∗ dist (f w) (f z) + C ∗ lambda
using quasi-isometry-onD[OF assms] by (auto simp add: algebra-simps

divide-simps)
also have ... ≤ lambda ∗ (4 ∗ deltaG(TYPE( ′b)) + 2 ∗ K + epsilon/lambda)

+ C ∗ lambda
apply (intro mono-intros) using z(2 ) C by auto

also have ... = L + epsilon
unfolding K-def L-def using C by (auto simp add: algebra-simps)

finally show ?thesis by simp
qed
then have infdist w (Gxz ∪ Gyz) ≤ L

using field-le-epsilon by blast
then show ?thesis

using ‹L ≤ M › by auto
qed
then have Gromov-hyperbolic-subset (4 ∗ M ) (UNIV :: ′a set)

using thin-triangles-implies-hyperbolic[OF Thin] by auto
then show ?thesis unfolding M-def by (auto simp add: algebra-simps)

qed

Most often, the precise value of the constant in the previous theorem is
irrelevant, it is used in the following form.
theorem Gromov-hyperbolic-invariant-under-quasi-isometry:
assumes quasi-isometric (UNIV ::( ′a::geodesic-space) set) (UNIV ::( ′b::Gromov-hyperbolic-space-geodesic)

set)
shows ∃ delta. Gromov-hyperbolic-subset delta (UNIV :: ′a set)

proof −
obtain C lambda f where f : lambda C−quasi-isometry-between (UNIV :: ′a set)

(UNIV :: ′b set) f
using assms unfolding quasi-isometric-def by auto

show ?thesis
using Gromov-hyperbolic-invariant-under-quasi-isometry-explicit[OF quasi-isometry-betweenD(1 )[OF

f ]] by blast
qed

A central feature of hyperbolic spaces is that a path from x to y can not
deviate too much from a geodesic from x to y unless it is extremely long
(exponentially long in terms of the distance from x to y). This is useful
both to ensure that short paths (for instance quasi-geodesics) stay close to
geodesics, see the Morse lemme below, and to ensure that paths that avoid
a given large ball of radius R have to be exponentially long in terms of
R (this is extremely useful for random walks). This proposition is the first
non-trivial result on hyperbolic spaces in [BH99] (Proposition III.H.1.6). We
follow their proof.
The proof is geometric, and uses the existence of geodesics and the fact
that geodesic triangles are thin. In fact, the result still holds if the space is
not geodesic, as it can be deduced by embedding the hyperbolic space in a
geodesic hyperbolic space and using the result there.
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proposition (in Gromov-hyperbolic-space-geodesic) lipschitz-path-close-to-geodesic:
fixes c::real ⇒ ′a
assumes M−lipschitz-on {A..B} c

geodesic-segment-between G (c A) (c B)
x ∈ G

shows infdist x (c‘{A..B}) ≤ (4/ln 2 ) ∗ deltaG(TYPE( ′a)) ∗ max 0 (ln (B−A))
+ M
proof −

have M ≥ 0 by (rule lipschitz-on-nonneg[OF assms(1 )])
have Main: a ∈ {A..B} =⇒ b ∈ {A..B} =⇒ a ≤ b =⇒ b−a ≤ 2^(n+1 ) =⇒

geodesic-segment-between H (c a) (c b)
=⇒ y ∈ H =⇒ infdist y (c‘{A..B}) ≤ 4 ∗ deltaG(TYPE( ′a)) ∗ n + M for

a b H y n
proof (induction n arbitrary: a b H y)

case 0
have infdist y (c ‘ {A..B}) ≤ dist y (c b)

apply (rule infdist-le) using ‹b ∈ {A..B}› by auto
moreover have infdist y (c ‘ {A..B}) ≤ dist y (c a)

apply (rule infdist-le) using ‹a ∈ {A..B}› by auto
ultimately have 2 ∗ infdist y (c ‘ {A..B}) ≤ dist (c a) y + dist y (c b)

by (auto simp add: metric-space-class.dist-commute)
also have ... = dist (c a) (c b)

by (rule geodesic-segment-dist[OF ‹geodesic-segment-between H (c a) (c b)›
‹y ∈ H ›])

also have ... ≤ M ∗ abs(b − a)
using lipschitz-onD(1 )[OF assms(1 ) ‹a ∈ {A..B}› ‹b ∈ {A..B}›] unfolding

dist-real-def
by (simp add: abs-minus-commute)

also have ... ≤ M ∗ 2
using ‹a ≤ b› ‹b − a ≤ 2^(0 + 1 )› ‹M ≥ 0 › mult-left-mono by auto

finally show ?case by simp
next

case (Suc n)
define m where m = (a + b)/2
have m ∈ {A..B} using ‹a ∈ {A..B}› ‹b ∈ {A..B}› unfolding m-def by auto
define Ha where Ha = {c m−−c a}
define Hb where Hb = {c m−−c b}
have I : geodesic-segment-between Ha (c m) (c a) geodesic-segment-between Hb

(c m) (c b)
unfolding Ha-def Hb-def by auto

then have Ha 6= {} Hb 6= {} compact Ha compact Hb
by (auto intro: geodesic-segment-topology)

have ∗: infdist y (Ha ∪ Hb) ≤ 4 ∗ deltaG(TYPE( ′a))
by (rule thin-triangles[OF I ‹geodesic-segment-between H (c a) (c b)› ‹y ∈

H ›])
then have infdist y Ha ≤ 4 ∗ deltaG(TYPE( ′a)) ∨ infdist y Hb ≤ 4 ∗

deltaG(TYPE( ′a))
unfolding infdist-union-min[OF ‹Ha 6= {}› ‹Hb 6= {}›] by auto
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then show ?case
proof

assume H : infdist y Ha ≤ 4 ∗ deltaG TYPE( ′a)
obtain z where z: z ∈ Ha infdist y Ha = dist y z

using infdist-proper-attained[OF proper-of-compact[OF ‹compact Ha›] ‹Ha
6= {}›] by auto

have Iz: infdist z (c‘{A..B}) ≤ 4 ∗ deltaG(TYPE( ′a)) ∗ n + M
proof (rule Suc.IH [OF ‹a ∈ {A..B}› ‹m ∈ {A..B}›, of Ha])

show a ≤ m unfolding m-def using ‹a ≤ b› by auto
show m − a ≤ 2^(n+1 ) using ‹b − a ≤ 2^(Suc n + 1 )› ‹a ≤ b› unfolding

m-def by auto
show geodesic-segment-between Ha (c a) (c m) by (simp add: I (1 )

geodesic-segment-commute)
show z ∈ Ha using z by auto

qed
have infdist y (c‘{A..B}) ≤ dist y z + infdist z (c‘{A..B})

by (metis add.commute infdist-triangle)
also have ... ≤ 4 ∗ deltaG TYPE( ′a) + (4 ∗ deltaG(TYPE( ′a)) ∗ n + M )

using H z Iz by (auto intro: add-mono)
finally show infdist y (c ‘ {A..B}) ≤ 4 ∗ deltaG TYPE( ′a) ∗ real (Suc n) +

M
by (auto simp add: algebra-simps)

next
assume H : infdist y Hb ≤ 4 ∗ deltaG TYPE( ′a)
obtain z where z: z ∈ Hb infdist y Hb = dist y z

using infdist-proper-attained[OF proper-of-compact[OF ‹compact Hb›] ‹Hb
6= {}›] by auto

have Iz: infdist z (c‘{A..B}) ≤ 4 ∗ deltaG(TYPE( ′a)) ∗ n + M
proof (rule Suc.IH [OF ‹m ∈ {A..B}› ‹b ∈ {A..B}›, of Hb])

show m ≤ b unfolding m-def using ‹a ≤ b› by auto
show b − m ≤ 2^(n+1 ) using ‹b − a ≤ 2^(Suc n + 1 )› ‹a ≤ b›

unfolding m-def by (auto simp add: divide-simps)
show geodesic-segment-between Hb (c m) (c b) by (simp add: I (2 ))
show z ∈ Hb using z by auto

qed
have infdist y (c‘{A..B}) ≤ dist y z + infdist z (c‘{A..B})

by (metis add.commute infdist-triangle)
also have ... ≤ 4 ∗ deltaG TYPE( ′a) + (4 ∗ deltaG(TYPE( ′a)) ∗ n + M )

using H z Iz by (auto intro: add-mono)
finally show infdist y (c ‘ {A..B}) ≤ 4 ∗ deltaG TYPE( ′a) ∗ real (Suc n) +

M
by (auto simp add: algebra-simps)

qed
qed
consider B−A <0 | B−A ≥ 0 ∧ B−A ≤ 2 | B−A > 2 by linarith
then show ?thesis
proof (cases)

case 1
then have c‘{A..B} = {} by auto
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then show ?thesis unfolding infdist-def using ‹M ≥ 0 › by auto
next

case 2
have infdist x (c‘{A..B}) ≤ 4 ∗ deltaG(TYPE( ′a)) ∗ real 0 + M

apply (rule Main[OF - - - - ‹geodesic-segment-between G (c A) (c B)› ‹x ∈
G›])

using 2 by auto
also have ... ≤ (4/ln 2 ) ∗ deltaG(TYPE( ′a)) ∗ max 0 (ln (B−A)) + M

using delta-nonneg by auto
finally show ?thesis by auto

next
case 3
define n::nat where n = nat(floor (log 2 (B−A)))
have log 2 (B−A) > 0 using 3 by auto
then have n: n ≤ log 2 (B−A) log 2 (B−A) < n+1

unfolding n-def by (auto simp add: floor-less-cancel)
then have ∗: B−A ≤ 2^(n+1 )
by (meson le-log-of-power linear not-less one-less-numeral-iff semiring-norm(76 ))
have n ≤ ln (B−A) ∗ (1/ln 2 ) using n unfolding log-def by auto
then have n ≤ (1/ln 2 ) ∗ max 0 (ln (B−A))

using 3 by (auto simp add: algebra-simps divide-simps)
have infdist x (c‘{A..B}) ≤ 4 ∗ deltaG(TYPE( ′a)) ∗ n + M

apply (rule Main[OF - - - - ‹geodesic-segment-between G (c A) (c B)› ‹x ∈
G›])

using ∗ 3 by auto
also have ... ≤ 4 ∗ deltaG(TYPE( ′a)) ∗ ((1/ln 2 ) ∗ max 0 (ln (B−A))) + M

apply (intro mono-intros) using ‹n ≤ (1/ln 2 ) ∗ max 0 (ln (B−A))›
delta-nonneg by auto

finally show ?thesis by auto
qed

qed

By rescaling coordinates at the origin, one obtains a variation around the
previous statement.
proposition (in Gromov-hyperbolic-space-geodesic) lipschitz-path-close-to-geodesic ′:

fixes c::real ⇒ ′a
assumes M−lipschitz-on {A..B} c

geodesic-segment-between G (c A) (c B)
x ∈ G
a > 0

shows infdist x (c‘{A..B}) ≤ (4/ln 2 ) ∗ deltaG(TYPE( ′a)) ∗ max 0 (ln (a ∗
(B−A))) + M/a
proof −

define d where d = c o (λt. (1/a) ∗ t)
have ∗: (M ∗ ((1/a)∗ 1 ))−lipschitz-on {a ∗ A..a ∗ B} d
unfolding d-def apply (rule lipschitz-on-compose, intro lipschitz-intros) using

assms by auto
have d‘{a ∗ A..a ∗ B} = c‘{A..B}

unfolding d-def image-comp[symmetric]
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apply (rule arg-cong[where ?f = image c]) using ‹a > 0 › by auto
then have infdist x (c‘{A..B}) = infdist x (d‘{a ∗ A..a ∗ B}) by auto
also have ... ≤ (4/ln 2 ) ∗ deltaG(TYPE( ′a)) ∗ max 0 (ln ((a ∗ B)− (a ∗ A)))

+ M/a
apply (rule lipschitz-path-close-to-geodesic[OF - - ‹x ∈ G›])
using ∗ assms unfolding d-def by auto

finally show ?thesis by (auto simp add: algebra-simps)
qed

We can now give another proof of the Morse-Gromov Theorem, as described
in [BH99]. It is more direct than the one we have given above, but it gives
a worse dependence in terms of the quasi-isometry constants. In particular,
when C = δ = 0, it does not recover the fact that a quasi-geodesic has to
coincide with a geodesic.
theorem (in Gromov-hyperbolic-space-geodesic) Morse-Gromov-theorem-BH-proof :

fixes c::real ⇒ ′a
assumes lambda C−quasi-isometry-on {A..B} c
shows hausdorff-distance (c‘{A..B}) {c A−−c B} ≤ 72 ∗ lambda^2 ∗ (C +

lambda + deltaG(TYPE( ′a))^2 )
proof −

have C : C ≥ 0 lambda ≥ 1 using quasi-isometry-onD[OF assms] by auto
consider B−A < 0 | B−A ≥ 0 ∧ dist (c A) (c B) ≤ 2 ∗ C | B−A ≥ 0 ∧ dist

(c A) (c B) > 2 ∗ C by linarith
then show ?thesis
proof (cases)

case 1
then have c‘{A..B} = {} by auto
then show ?thesis unfolding hausdorff-distance-def using delta-nonneg C by

auto
next

case 2
have (1/lambda) ∗ dist A B − C ≤ dist (c A) (c B)

apply (rule quasi-isometry-onD[OF assms]) using 2 by auto
also have ... ≤ 2 ∗ C using 2 by auto
finally have dist A B ≤ 3 ∗ lambda ∗ C

using C by (auto simp add: algebra-simps divide-simps)
then have ∗: B − A ≤ 3 ∗ lambda ∗ C using 2 unfolding dist-real-def by

auto
show ?thesis
proof (rule hausdorff-distanceI2 )

show 0 ≤ 72 ∗ lambda^2 ∗ (C + lambda + deltaG(TYPE( ′a))^2 ) using C
by auto

fix x assume x ∈ c‘{A..B}
then obtain t where t: x = c t t ∈ {A..B} by auto
have dist x (c A) ≤ lambda ∗ dist t A + C

unfolding t(1 ) using quasi-isometry-onD(1 )[OF assms t(2 ), of A] 2 by
auto

also have ... ≤ lambda ∗ (B−A) + C using t(2 ) 2 C unfolding dist-real-def
by auto
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also have ... ≤ 3 ∗ lambda ∗ lambda ∗ C + 1 ∗ 1 ∗ C using ∗ C by auto
also have ... ≤ 3 ∗ lambda ∗ lambda ∗ C + lambda ∗ lambda ∗ C

apply (intro mono-intros) using C by auto
also have ... = 4 ∗ lambda ∗ lambda ∗ (C + 0 + 0^2 )

by auto
also have ... ≤ 72 ∗ lambda ∗ lambda ∗ (C + lambda + deltaG(TYPE( ′a))^2 )

apply (intro mono-intros) using C delta-nonneg by auto
finally have ∗: dist x (c A) ≤ 72 ∗ lambda^2 ∗ (C + lambda + deltaG(TYPE( ′a))^2 )

unfolding power2-eq-square by simp
show ∃ y∈{c A−−c B}. dist x y ≤ 72 ∗ lambda^2 ∗ (C + lambda +

deltaG(TYPE( ′a))^2 )
apply (rule bexI [of - c A]) using ∗ by auto

next
fix x assume x ∈ {c A−− c B}
then have dist x (c A) ≤ dist (c A) (c B)
by (meson geodesic-segment-dist-le geodesic-segment-endpoints(1 ) local.some-geodesic-is-geodesic-segment(1 ))
also have ... ≤ 2 ∗ C

using 2 by auto
also have ... ≤ 2 ∗ 1 ∗ 1 ∗ (C + lambda + 0 ) using 2 C unfolding

dist-real-def by auto
also have ... ≤ 72 ∗ lambda ∗ lambda ∗ (C + lambda + deltaG(TYPE( ′a))

∗ deltaG(TYPE( ′a)))
apply (intro mono-intros) using C delta-nonneg by auto
finally have ∗: dist x (c A) ≤ 72 ∗ lambda ∗ lambda ∗ (C + lambda +

deltaG(TYPE( ′a)) ∗ deltaG(TYPE( ′a)))
by simp

show ∃ y∈c‘{A..B}. dist x y ≤ 72 ∗ lambda^2 ∗ (C + lambda + deltaG(TYPE( ′a))^2 )
apply (rule bexI [of - c A]) unfolding power2-eq-square using ∗ 2 by auto

qed
next

case 3
then obtain d where d: continuous-on {A..B} d d A = c A d B = c B∧

x. x ∈ {A..B} =⇒ dist (c x) (d x) ≤ 4 ∗C
lambda (4 ∗ C )−quasi-isometry-on {A..B} d
(2 ∗ lambda)−lipschitz-on {A..B} d
hausdorff-distance (c‘{A..B}) (d‘{A..B}) ≤ 2 ∗ C

using quasi-geodesic-made-lipschitz[OF assms] C (1 ) by fastforce

have A ∈ {A..B} B ∈ {A..B} using 3 by auto

We show that the distance of any point in the geodesic from c(A) to c(B) is
a bounded distance away from the quasi-geodesic d, by considering a point
x where the distance D is maximal and arguing around this point.
Consider the point xm on the geodesic [c(A), c(B)] at distance 2D from x,
and the closest point ym on the image of d. Then the distance between
xm and ym is at most D. Hence a point on [xm, ym] is at distance at least
2D − D = D of x. In the same way, define xM and yM on the other side
of x. Then the excursion from xm to ym, then to yM along d, then to xM ,
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has length at most D + (λ · 6D + C) +D and is always at distance at least
D from x. It follows from the previous lemma that D ≤ log(length), which
implies a bound on D.
This argument has to be amended if x is at distance < 2D from c(A) or
c(B). In this case, simply use xm = ym = c(A) or xM = yM = c(B), then
everything goes through.

have ∃ x ∈ {c A−−c B}. ∀ y ∈ {c A−−c B}. infdist y (d‘{A..B}) ≤ infdist x
(d‘{A..B})

by (rule continuous-attains-sup, auto intro: continuous-intros)
then obtain x where x: x ∈ {c A−−c B}

∧
y. y ∈ {c A−−c B} =⇒ infdist

y (d‘{A..B}) ≤ infdist x (d‘{A..B})
by auto

define D where D = infdist x (d‘{A..B})
have D ≥ 0 unfolding D-def by (rule infdist-nonneg)
have D-bound: D ≤ 24 ∗ lambda + 12 ∗ C + 24 ∗ deltaG(TYPE( ′a))^2
proof (cases D ≤ 1 )

case True
have 1 ∗ 1 + 1 ∗ 0 + 0 ∗ 0 ≤ 24 ∗ lambda + 12 ∗ C + 24 ∗ deltaG(TYPE( ′a))^2

apply (intro mono-intros) using C delta-nonneg by auto
then show ?thesis using True by auto

next
case False
then have D ≥ 1 by auto
have ln2mult: 2 ∗ ln t = ln (t ∗ t) if t > 0 for t::real by (simp add: that

ln-mult)
have infdist (c A) (d‘{A..B}) = 0 using ‹d A = c A› by (metis ‹A ∈ {A..B}›

image-eqI infdist-zero)
then have x 6= c A using ‹D ≥ 1 › D-def by auto

define tx where tx = dist (c A) x
then have tx ∈ {0 ..dist (c A) (c B)}

using ‹x ∈ {c A−−c B}›
by (meson atLeastAtMost-iff geodesic-segment-dist-le some-geodesic-is-geodesic-segment(1 )

metric-space-class.zero-le-dist some-geodesic-endpoints(1 ))
have tx > 0 using ‹x 6= c A› tx-def by auto
have x-param: x = geodesic-segment-param {c A−−c B} (c A) tx
using ‹x ∈ {c A−−c B}› geodesic-segment-param[OF some-geodesic-is-geodesic-segment(1 )]

tx-def by auto

define tm where tm = max (tx − 2 ∗ D) 0
have tm ∈ {0 ..dist (c A) (c B)} unfolding tm-def using ‹tx ∈ {0 ..dist (c

A) (c B)}› ‹D ≥ 0 › by auto
define xm where xm = geodesic-segment-param {c A−−c B} (c A) tm
have xm ∈ {c A−−c B} using ‹tm ∈ {0 ..dist (c A) (c B)}›
by (metis geodesic-segment-param(3 ) local.some-geodesic-is-geodesic-segment(1 )

xm-def )
have dist xm x = abs((max (tx − 2 ∗ D) 0 ) − tx)

unfolding xm-def tm-def x-param apply (rule geodesic-segment-param[of -
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- c B], auto)
using ‹tx ∈ {0 ..dist (c A) (c B)}› ‹D ≥ 0 › by auto

also have ... ≤ 2 ∗ D by (simp add: ‹0 ≤ D› tx-def )
finally have dist xm x ≤ 2 ∗ D by auto
have ∃ ym∈d‘{A..B}. infdist xm (d‘{A..B}) = dist xm ym

apply (rule infdist-proper-attained) using 3 d(1 ) proper-of-compact com-
pact-continuous-image by auto

then obtain ym where ym: ym ∈ d‘{A..B} dist xm ym = infdist xm
(d‘{A..B})

by metis
then obtain um where um: um ∈ {A..B} ym = d um by auto
have dist xm ym ≤ D

unfolding D-def using x ym by (simp add: ‹xm ∈ {c A−−c B}›)
have D1 : dist x z ≥ D if z ∈ {xm−−ym} for z
proof (cases tx − 2 ∗ D < 0 )

case True
then have tm = 0 unfolding tm-def by auto
then have xm = c A unfolding xm-def

by (meson geodesic-segment-param(1 ) local.some-geodesic-is-geodesic-segment(1 ))
then have infdist xm (d‘{A..B}) = 0

using ‹d A = c A› ‹A ∈ {A..B}› by (metis image-eqI infdist-zero)
then have ym = xm using ym(2 ) by auto

then have z = xm using ‹z ∈ {xm−−ym}› geodesic-segment-between-x-x(3 )
by (metis empty-iff insert-iff some-geodesic-is-geodesic-segment(1 ))

then have z ∈ d‘{A..B} using ‹ym = xm› ym(1 ) by blast
then show dist x z ≥ D unfolding D-def by (simp add: infdist-le)

next
case False
then have ∗: tm = tx − 2 ∗ D unfolding tm-def by auto
have dist xm x = abs((tx − 2 ∗ D) − tx)

unfolding xm-def x-param ∗ apply (rule geodesic-segment-param[of - - c
B], auto)

using False ‹tx ∈ {0 ..dist (c A) (c B)}› ‹D ≥ 0 › by auto
then have 2 ∗ D = dist xm x using ‹D ≥ 0 › by auto
also have ... ≤ dist xm z + dist x z using metric-space-class.dist-triangle2

by auto
also have ... ≤ dist xm ym + dist x z

using ‹z ∈ {xm−−ym}› by (auto, meson geodesic-segment-dist-le
some-geodesic-is-geodesic-segment(1 ) some-geodesic-endpoints(1 ))

also have ... ≤ D + dist x z
using ‹dist xm ym ≤ D› by simp

finally show dist x z ≥ D by auto
qed

define tM where tM = min (tx + 2 ∗ D) (dist (c A) (c B))
have tM ∈ {0 ..dist (c A) (c B)} unfolding tM-def using ‹tx ∈ {0 ..dist (c

A) (c B)}› ‹D ≥ 0 › by auto
have tm ≤ tM

unfolding tM-def using ‹D ≥ 0 › ‹tm ∈ {0 ..dist (c A) (c B)}› ‹tx ≡ dist
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(c A) x› tm-def by auto
define xM where xM = geodesic-segment-param {c A−−c B} (c A) tM
have xM ∈ {c A−−c B} using ‹tM ∈ {0 ..dist (c A) (c B)}›
by (metis geodesic-segment-param(3 ) local.some-geodesic-is-geodesic-segment(1 )

xM-def )
have dist xM x = abs((min (tx + 2 ∗ D) (dist (c A) (c B))) − tx)

unfolding xM-def tM-def x-param apply (rule geodesic-segment-param[of -
- c B], auto)

using ‹tx ∈ {0 ..dist (c A) (c B)}› ‹D ≥ 0 › by auto
also have ... ≤ 2 ∗ D using ‹0 ≤ D› ‹tx ∈ {0 ..dist (c A) (c B)}› by auto
finally have dist xM x ≤ 2 ∗ D by auto
have ∃ yM∈d‘{A..B}. infdist xM (d‘{A..B}) = dist xM yM

apply (rule infdist-proper-attained) using 3 d(1 ) proper-of-compact com-
pact-continuous-image by auto

then obtain yM where yM : yM ∈ d‘{A..B} dist xM yM = infdist xM
(d‘{A..B})

by metis
then obtain uM where uM : uM ∈ {A..B} yM = d uM by auto
have dist xM yM ≤ D

unfolding D-def using x yM by (simp add: ‹xM ∈ {c A−−c B}›)
have D3 : dist x z ≥ D if z ∈ {xM−−yM} for z
proof (cases tx + 2 ∗ D > dist (c A) (c B))

case True
then have tM = dist (c A) (c B) unfolding tM-def by auto
then have xM = c B unfolding xM-def

by (meson geodesic-segment-param(2 ) local.some-geodesic-is-geodesic-segment(1 ))
then have infdist xM (d‘{A..B}) = 0

using ‹d B = c B› ‹B ∈ {A..B}› by (metis image-eqI infdist-zero)
then have yM = xM using yM (2 ) by auto

then have z = xM using ‹z ∈ {xM−−yM}› geodesic-segment-between-x-x(3 )
by (metis empty-iff insert-iff some-geodesic-is-geodesic-segment(1 ))

then have z ∈ d‘{A..B} using ‹yM = xM › yM (1 ) by blast
then show dist x z ≥ D unfolding D-def by (simp add: infdist-le)

next
case False
then have ∗: tM = tx + 2 ∗ D unfolding tM-def by auto
have dist xM x = abs((tx + 2 ∗ D) − tx)

unfolding xM-def x-param ∗ apply (rule geodesic-segment-param[of - - c
B], auto)

using False ‹tx ∈ {0 ..dist (c A) (c B)}› ‹D ≥ 0 › by auto
then have 2 ∗ D = dist xM x using ‹D ≥ 0 › by auto
also have ... ≤ dist xM z + dist x z using metric-space-class.dist-triangle2

by auto
also have ... ≤ dist xM yM + dist x z

using ‹z ∈ {xM−−yM}› by (auto, meson geodesic-segment-dist-le lo-
cal.some-geodesic-is-geodesic-segment(1 ) some-geodesic-endpoints(1 ))

also have ... ≤ D + dist x z
using ‹dist xM yM ≤ D› by simp

finally show dist x z ≥ D by auto
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qed

define excursion:: real⇒ ′a where excursion = (λt.
if t ∈ {0 ..dist xm ym} then (geodesic-segment-param {xm−−ym} xm t)

else if t ∈ {dist xm ym..dist xm ym + abs(uM − um)} then d (um +
sgn(uM−um) ∗ (t − dist xm ym))

else geodesic-segment-param {yM−−xM} yM (t − dist xm ym − abs (uM
−um)))

define L where L = dist xm ym + abs(uM − um) + dist yM xM
have E1 : excursion t = geodesic-segment-param {xm−−ym} xm t if t ∈

{0 ..dist xm ym} for t
unfolding excursion-def using that by auto

have E2 : excursion t = d (um + sgn(uM−um) ∗ (t − dist xm ym)) if t ∈
{dist xm ym..dist xm ym + abs(uM − um)} for t

unfolding excursion-def using that by (auto simp add: ‹ym = d um›)
have E3 : excursion t = geodesic-segment-param {yM−−xM} yM (t − dist

xm ym − abs (uM −um))
if t ∈ {dist xm ym + |uM − um|..dist xm ym + |uM − um| + dist yM xM}

for t
unfolding excursion-def using that ‹yM = d uM › ‹ym = d um› by (auto

simp add: sgn-mult-abs)
have E0 : excursion 0 = xm

unfolding excursion-def by auto
have EL: excursion L = xM

unfolding excursion-def L-def apply (auto simp add: uM (2 ) um(2 )
sgn-mult-abs)

by (metis (mono-tags, opaque-lifting) add.left-neutral add-increasing2 add-le-same-cancel1
dist-real-def

Gromov-product-e-x-x Gromov-product-nonneg metric-space-class.dist-le-zero-iff )
have [simp]: L ≥ 0 unfolding L-def by auto
have L > 0
proof (rule ccontr)

assume ¬(L > 0 )
then have L = 0 using ‹L ≥ 0 › by simp
then have xm = xM using E0 EL by auto
then have tM = tm unfolding xm-def xM-def

using ‹tM ∈ {0 ..dist (c A) (c B)}› ‹tm ∈ {0 ..dist (c A) (c B)}› lo-
cal.geodesic-segment-param-in-geodesic-spaces(6 ) by fastforce

also have ... < tx unfolding tm-def using ‹tx > 0 › ‹D ≥ 1 › by auto
also have ... ≤ tM unfolding tM-def using ‹D ≥ 0 › ‹tx ∈ {0 ..dist (c A)

(c B)}› by auto
finally show False by simp

qed

have (1/lambda) ∗ dist um uM − (4 ∗ C ) ≤ dist (d um) (d uM )
by (rule quasi-isometry-onD(2 )[OF ‹lambda (4 ∗ C )−quasi-isometry-on

{A..B} d› ‹um ∈ {A..B}› ‹uM ∈ {A..B}›])
also have ... ≤ dist ym xm + dist xm x + dist x xM + dist xM yM

unfolding um(2 )[symmetric] uM (2 )[symmetric] by (rule dist-triangle5 )
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also have ... ≤ D + (2∗D) + (2∗D) + D
using ‹dist xm ym ≤ D› ‹dist xm x ≤ 2∗D› ‹dist xM x ≤ 2∗D› ‹dist xM

yM ≤ D›
by (auto simp add: metric-space-class.dist-commute intro: add-mono)

finally have (1/lambda) ∗ dist um uM ≤ 6∗D + 4∗C by auto
then have dist um uM ≤ 6∗D∗lambda + 4∗C∗lambda

using C by (auto simp add: divide-simps algebra-simps)
then have L ≤ D + (6∗D∗lambda + 4∗C∗lambda) + D

unfolding L-def dist-real-def using ‹dist xm ym ≤ D› ‹dist xM yM ≤ D›
by (auto simp add: metric-space-class.dist-commute intro: add-mono)

also have ... ≤ 8 ∗ D ∗ lambda + 4∗C∗lambda
using C ‹D ≥ 0 › by (auto intro: mono-intros)

finally have L-bound: L ≤ lambda ∗ (8 ∗ D + 4 ∗ C )
by (auto simp add: algebra-simps)

have 1 ∗ (1 ∗ 1 + 0 ) ≤ lambda ∗ (8 ∗ D + 4 ∗ C )
using C ‹D ≥ 1 › by (intro mono-intros, auto)

consider um < uM | um = uM | um > uM by linarith
then have ((λt. um + sgn (uM − um) ∗ (t − dist xm ym)) ‘ {dist xm ym..dist

xm ym + |uM − um|}) ⊆ {min um uM ..max um uM}
by (cases, auto)

also have ... ⊆ {A..B} using ‹um ∈ {A..B}› ‹uM ∈ {A..B}› by auto
finally have middle: ((λt. um + sgn (uM − um) ∗ (t − dist xm ym)) ‘ {dist

xm ym..dist xm ym + |uM − um|}) ⊆ {A..B}
by simp

have (2 ∗ lambda)−lipschitz-on {0 ..L} excursion
proof (unfold L-def , rule lipschitz-on-closed-Union[of {{0 ..dist xm ym}, {dist

xm ym..dist xm ym + abs(uM − um)}, {dist xm ym + abs(uM − um)..dist xm
ym + abs(uM − um) + dist yM xM}} - λ i. i], auto)

show lambda ≥ 0 using C by auto

have ∗: 1−lipschitz-on {0 ..dist xm ym} (geodesic-segment-param {xm−−ym}
xm)

by (rule isometry-on-lipschitz, simp)
have ∗∗: 1−lipschitz-on {0 ..dist xm ym} excursion

using lipschitz-on-transform[OF ∗ E1 ] by simp
show (2 ∗ lambda)−lipschitz-on {0 ..dist xm ym} excursion

apply (rule lipschitz-on-mono[OF ∗∗]) using C by auto

have ∗: (1∗(1+0 ))−lipschitz-on {dist xm ym + |uM − um|..dist xm ym +
|uM − um| + dist yM xM}

((geodesic-segment-param {yM−−xM} yM ) o (λt. t − (dist xm ym
+ abs (uM −um))))

by (intro lipschitz-intros, rule isometry-on-lipschitz, auto)
have ∗∗: (1∗(1+0 ))−lipschitz-on {dist xm ym + |uM − um|..dist xm ym

+ |uM − um| + dist yM xM} excursion
apply (rule lipschitz-on-transform[OF ∗]) using E3 unfolding comp-def

246



by (auto simp add: algebra-simps)
show (2 ∗ lambda)−lipschitz-on {dist xm ym + |uM − um|..dist xm ym +

|uM − um| + dist yM xM} excursion
apply (rule lipschitz-on-mono[OF ∗∗]) using C by auto

have ∗∗: ((2 ∗ lambda) ∗ (0 + abs(sgn (uM − um)) ∗ (1 + 0 )))−lipschitz-on
{dist xm ym..dist xm ym + abs(uM − um)} (d o (λt. um + sgn(uM−um) ∗ (t −
dist xm ym)))

apply (intro lipschitz-intros, rule lipschitz-on-subset[OF - middle])
using ‹(2 ∗ lambda)−lipschitz-on {A..B} d› by simp

have ∗∗∗: (2 ∗ lambda)−lipschitz-on {dist xm ym..dist xm ym + abs(uM −
um)} (d o (λt. um + sgn(uM−um) ∗ (t − dist xm ym)))

apply (rule lipschitz-on-mono[OF ∗∗]) using C by auto
show (2 ∗ lambda)−lipschitz-on {dist xm ym..dist xm ym + abs(uM − um)}

excursion
apply (rule lipschitz-on-transform[OF ∗∗∗]) using E2 by auto

qed

have ∗: dist x z ≥ D if z: z ∈ excursion‘{0 ..L} for z
proof −

obtain tz where tz: z = excursion tz tz ∈ {0 ..dist xm ym + abs(uM −
um) + dist yM xM}

using z L-def by auto
consider tz ∈ {0 ..dist xm ym} | tz ∈ {dist xm ym<..dist xm ym + abs(uM

− um)} | tz ∈ {dist xm ym + abs(uM − um)<..dist xm ym + abs(uM − um) +
dist yM xM}

using tz by force
then show ?thesis
proof (cases)

case 1
then have z ∈ {xm−−ym} unfolding tz(1 ) excursion-def by auto
then show ?thesis using D1 by auto

next
case 3
then have z ∈ {yM−−xM} unfolding tz(1 ) excursion-def using tz(2 )

by auto
then show ?thesis using D3 by (simp add: some-geodesic-commute)

next
case 2
then have z ∈ d‘{A..B} unfolding tz(1 ) excursion-def using middle by

force
then show ?thesis unfolding D-def by (simp add: infdist-le)

qed
qed

Now comes the main point: the excursion is always at distance at least D of
x, but this distance is also bounded by the log of its length, i.e., essentially
logD. To have an efficient estimate, we use a rescaled version, to get rid of
one term on the right hand side.
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have 1 ∗ 1 ∗ 1 ∗ (1 + 0/1 ) ≤ 512 ∗ lambda ∗ lambda ∗ (1+C/D)
apply (intro mono-intros) using ‹lambda ≥ 1 › ‹D ≥ 1 › ‹C ≥ 0 › by auto

then have ln (512 ∗ lambda ∗ lambda ∗ (1+C/D)) ≥ 0
apply (subst ln-ge-zero-iff ) by auto

define a where a = 64 ∗ lambda/D
have a > 0 unfolding a-def using ‹D ≥ 1 › ‹lambda ≥ 1 › by auto

have D ≤ infdist x (excursion‘{0 ..L})
unfolding infdist-def apply auto apply (rule cInf-greatest) using ∗ by

auto
also have ... ≤ (4/ln 2 ) ∗ deltaG(TYPE( ′a)) ∗ max 0 (ln (a ∗ (L−0 ))) +

(2 ∗ lambda) / a
proof (rule lipschitz-path-close-to-geodesic ′[of - - - - geodesic-subsegment {c

A−−c B} (c A) tm tM ])
show (2 ∗ lambda)−lipschitz-on {0 ..L} excursion by fact

have ∗: geodesic-subsegment {c A−−c B} (c A) tm tM = geodesic-segment-param
{c A−−c B} (c A) ‘ {tm..tM}

apply (rule geodesic-subsegment(1 )[of - - c B])
using ‹tm ∈ {0 ..dist (c A) (c B)}› ‹tM ∈ {0 ..dist (c A) (c B)}› ‹tm ≤

tM › by auto
show x ∈ geodesic-subsegment {c A−−c B} (c A) tm tM
unfolding ∗ unfolding x-param tm-def tM-def using ‹tx ∈ {0 ..dist (c A)

(c B)}› ‹0 ≤ D› by simp
show geodesic-segment-between (geodesic-subsegment {c A−−c B} (c A) tm

tM ) (excursion 0 ) (excursion L)
unfolding E0 EL xm-def xM-def apply (rule geodesic-subsegment[of - - c

B])
using ‹tm ∈ {0 ..dist (c A) (c B)}› ‹tM ∈ {0 ..dist (c A) (c B)}› ‹tm ≤

tM › by auto
qed (fact)
also have ... = (4/ln 2 ) ∗ deltaG(TYPE( ′a)) ∗ max 0 (ln (a ∗L)) + D/32
unfolding a-def using ‹D ≥ 1 › ‹lambda ≥ 1 › by (simp add: algebra-simps)
finally have (31 ∗ ln 2 / 128 ) ∗ D ≤ deltaG(TYPE( ′a)) ∗ max 0 (ln (a ∗

L))
by (auto simp add: algebra-simps divide-simps)

also have ... ≤ deltaG(TYPE( ′a)) ∗ max 0 (ln ((64 ∗ lambda/D) ∗ (lambda
∗ (8 ∗ D + 4 ∗ C ))))

unfolding a-def apply (intro mono-intros)
using L-bound ‹L > 0 › ‹lambda ≥ 1 › ‹D ≥ 1 › by auto

also have ... ≤ deltaG(TYPE( ′a)) ∗ max 0 (ln ((64 ∗ lambda/D) ∗ (lambda
∗ (8 ∗ D + 8 ∗ C ))))

apply (intro mono-intros)
using L-bound ‹L > 0 › ‹lambda ≥ 1 › ‹D ≥ 1 › ‹C ≥ 0 › by auto

also have ... = deltaG(TYPE( ′a)) ∗ max 0 (ln (512 ∗ lambda ∗ lambda ∗
(1+C/D)))

using ‹D ≥ 1 › by (auto simp add: algebra-simps)
also have ... = deltaG(TYPE( ′a)) ∗ ln (512 ∗ lambda ∗ lambda ∗ (1+C/D))

using ‹ln (512 ∗ lambda ∗ lambda ∗ (1+C/D)) ≥ 0 › by auto
also have ... ≤ deltaG(TYPE( ′a)) ∗ ln (512 ∗ lambda ∗ lambda ∗ (1+C/1 ))
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apply (intro mono-intros) using ‹lambda ≥ 1 › ‹C ≥ 0 › ‹D ≥ 1 ›
by (auto simp add: divide-simps mult-ge1-mono(1 ))

We have obtained a bound on D, of the form D ≤ Mδ ln(Mλ2(1 + C)).
This is a nice bound, but we tweak it a little bit to obtain something more
manageable, without the logarithm.

also have ... = deltaG(TYPE( ′a)) ∗ (ln 512 + 2 ∗ ln lambda + ln (1+C ))
apply (subst ln2mult) using ‹C ≥ 0 › ‹lambda ≥ 1 › apply simp
using ‹C ≥ 0 › ‹lambda ≥ 1 › by (simp add:ln-mult)

also have ... = (deltaG(TYPE( ′a)) ∗ 1 ) ∗ ln 512 + 2 ∗ (deltaG(TYPE( ′a))
∗ ln lambda) + (deltaG(TYPE( ′a)) ∗ ln (1+C ))

by (auto simp add: algebra-simps)

For each term, of the form δ ln c, we bound it by (δ2 + (ln c)2)/2, and then
bound (ln c)2 by 2c − 2. In fact, to get coefficients of the same order of
magnitude on δ2 and λ, we tweak a little bit the inequality for the last two
terms, using rather uv ≤ (u2/2 + 2v2)/2. We also bound ln(32) by a good
approximation 16/3.

also have ... ≤ (deltaG(TYPE( ′a))^2/2 + 1^2/2 ) ∗ (25/4 )
+ 2 ∗ ((1/2 ) ∗ deltaG(TYPE( ′a))^2/2 + 2 ∗ (ln lambda)^2 / 2 ) +

((1/2 ) ∗ deltaG(TYPE( ′a))^2/2 + 2 ∗ (ln (1+C ))^2 / 2 )
by (intro mono-intros, auto, approximation 10 )

also have ... = (31/8 ) ∗ deltaG(TYPE( ′a))^2 + 25/8 + 2 ∗ (ln lambda)^2
+ (ln (1+C ))^2

by (auto simp add: algebra-simps)
also have ... ≤ 4 ∗ deltaG(TYPE( ′a))^2 + 4 + 2 ∗ (2 ∗ lambda − 2 ) + (2

∗ (1+C ) − 2 )
apply (intro mono-intros) using ‹C ≥ 0 › ‹lambda ≥ 1 › by auto

also have ... ≤ 4 ∗ deltaG(TYPE( ′a))^2 + 4 ∗ lambda + 2 ∗ C
by auto

finally have D ≤ (128 / (31 ∗ ln 2 )) ∗ (4 ∗ deltaG(TYPE( ′a))^2 + 4 ∗
lambda + 2 ∗ C )

by (auto simp add: divide-simps algebra-simps)
also have ... ≤ 6 ∗ (4 ∗ deltaG(TYPE( ′a))^2 + 4 ∗ lambda + 2 ∗ C )

apply (intro mono-intros, approximation 10 ) using ‹lambda ≥ 1 › ‹C ≥ 0 ›
by auto

also have ... ≤ 24 ∗ deltaG(TYPE( ′a))^2 + 24 ∗ lambda + 12 ∗ C
using ‹lambda ≥ 1 › ‹C ≥ 0 › by auto

finally show ?thesis by simp
qed
define D0 where D0 = 24 ∗ lambda + 12 ∗ C + 24 ∗ deltaG(TYPE( ′a))^2
have first-step: infdist y (d‘{A..B}) ≤ D0 if y ∈ {c A−−c B} for y

using x(2 )[OF that] D-bound unfolding D0-def D-def by auto
have 1 ∗ 1 + 4 ∗ 0 + 24 ∗ 0 ≤ D0

unfolding D0-def apply (intro mono-intros) using C delta-nonneg by auto
then have D0 > 0 by simp

This is the end of the first step, i.e., showing that [c(A), c(B)] is included in
the neighborhood of size D0 of the quasi-geodesic.
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Now, we start the second step: we show that the quasi-geodesic is included in
the neighborhood of size D1 of the geodesic, where D1 ≥ D0 is the constant
defined below. The argument goes as follows. Assume that a point y on the
quasi-geodesic is at distance > D0 of the geodesic. Consider the last point
ym before y which is at distance D0 of the geodesic, and the first point yM
after y likewise. On (ym, yM ), one is always at distance > D0 of the geodesic.
However, by the first step, the geodesic is covered by the balls of radius D0
centered at points on the quasi-geodesic – and only the points before ym or
after yM can be used. Let Km be the points on the geodesics that are at
distance ≤ D0 of a point on the quasi-geodesic before ym, and likewise define
KM . These are two closed subsets of the geodesic. By connectedness, they
have to intersect. This implies that some points before ym and after yM are
at distance at most 2D0. Since we are dealing with a quasi-geodesic, this
gives a bound on the distance between ym and yM , and therefore a bound
between y and the geodesic, as desired.

define D1 where D1 = lambda ∗ lambda ∗ (72 ∗ lambda + 44 ∗ C + 72 ∗
deltaG(TYPE( ′a))^2 )

have 1 ∗ 1 ∗ (24 ∗ lambda + 12 ∗ C + 24 ∗ deltaG(TYPE( ′a))^2 )
≤ lambda ∗ lambda ∗ (72 ∗ lambda + 44 ∗ C + 72 ∗ deltaG(TYPE( ′a))^2 )

apply (intro mono-intros) using C by auto
then have D0 ≤ D1 unfolding D0-def D1-def by auto
have second-step: infdist y {c A−−c B} ≤ D1 if y ∈ d‘{A..B} for y
proof (cases infdist y {c A−−c B} ≤ D0 )

case True
then show ?thesis using ‹D0 ≤ D1 › by auto

next
case False
obtain ty where ty ∈ {A..B} y = d ty using ‹y ∈ d‘{A..B}› by auto

define tm where tm = Sup ((λt. infdist (d t) {c A−−c B})−‘{..D0} ∩
{A..ty})

have tm: tm ∈ (λt. infdist (d t) {c A−−c B})−‘{..D0} ∩ {A..ty}
unfolding tm-def proof (rule closed-contains-Sup)

show closed ((λt. infdist (d t) {c A−−c B})−‘{..D0} ∩ {A..ty})
apply (rule closed-vimage-Int, auto, intro continuous-intros)
apply (rule continuous-on-subset[OF d(1 )]) using ‹ty ∈ {A..B}› by auto

have A ∈ (λt. infdist (d t) {c A−−c B})−‘{..D0} ∩ {A..ty}
using ‹D0 > 0 › ‹ty ∈ {A..B}› by (auto simp add: ‹d A = c A›)

then show (λt. infdist (d t) {c A−−c B})−‘{..D0} ∩ {A..ty} 6= {} by auto
show bdd-above ((λt. infdist (d t) {c A−−c B}) −‘ {..D0} ∩ {A..ty}) by

auto
qed
have ∗: infdist (d t) {c A−−c B} > D0 if t ∈ {tm<..ty} for t
proof (rule ccontr)

assume ¬(infdist (d t) {c A−−c B} > D0 )
then have ∗: t ∈ (λt. infdist (d t) {c A−−c B})−‘{..D0} ∩ {A..ty}

using that tm by auto
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have t ≤ tm unfolding tm-def apply (rule cSup-upper) using ∗ by auto
then show False using that by auto

qed

define tM where tM = Inf ((λt. infdist (d t) {c A−−c B})−‘{..D0} ∩
{ty..B})

have tM : tM ∈ (λt. infdist (d t) {c A−−c B})−‘{..D0} ∩ {ty..B}
unfolding tM-def proof (rule closed-contains-Inf )

show closed ((λt. infdist (d t) {c A−−c B})−‘{..D0} ∩ {ty..B})
apply (rule closed-vimage-Int, auto, intro continuous-intros)
apply (rule continuous-on-subset[OF d(1 )]) using ‹ty ∈ {A..B}› by auto

have B ∈ (λt. infdist (d t) {c A−−c B})−‘{..D0} ∩ {ty..B}
using ‹D0 > 0 › ‹ty ∈ {A..B}› by (auto simp add: ‹d B = c B›)

then show (λt. infdist (d t) {c A−−c B})−‘{..D0} ∩ {ty..B} 6= {} by auto
show bdd-below ((λt. infdist (d t) {c A−−c B}) −‘ {..D0} ∩ {ty..B}) by

auto
qed
have infdist (d t) {c A−−c B} > D0 if t ∈ {ty..<tM} for t
proof (rule ccontr)

assume ¬(infdist (d t) {c A−−c B} > D0 )
then have ∗: t ∈ (λt. infdist (d t) {c A−−c B})−‘{..D0} ∩ {ty..B}

using that tM by auto
have t ≥ tM unfolding tM-def apply (rule cInf-lower) using ∗ by auto
then show False using that by auto

qed
then have lower-tm-tM : infdist (d t) {c A−−c B} > D0 if t ∈ {tm<..<tM}

for t
using ∗ that by (cases t ≥ ty, auto)

define Km where Km = (
⋃

z ∈ d‘{A..tm}. cball z D0 )
define KM where KM = (

⋃
z ∈ d‘{tM ..B}. cball z D0 )

have {c A−−c B} ⊆ Km ∪ KM
proof

fix x assume x ∈ {c A−−c B}
have ∃ z ∈ d‘{A..B}. infdist x (d‘{A..B}) = dist x z

apply (rule infdist-proper-attained[OF proper-of-compact], rule com-
pact-continuous-image[OF ‹continuous-on {A..B} d›])

using that by auto
then obtain tx where tx ∈ {A..B} infdist x (d‘{A..B}) = dist x (d tx) by

blast
then have dist x (d tx) ≤ D0

using first-step[OF ‹x ∈ {c A−−c B}›] by auto
then have x ∈ cball (d tx) D0 by (auto simp add: metric-space-class.dist-commute)

consider tx ∈ {A..tm} | tx ∈ {tm<..<tM} | tx ∈ {tM ..B}
using ‹tx ∈ {A..B}› by fastforce

then show x ∈ Km ∪ KM
proof (cases)

case 1
then have x ∈ Km unfolding Km-def using ‹x ∈ cball (d tx) D0 › by

251



auto
then show ?thesis by simp

next
case 3
then have x ∈ KM unfolding KM-def using ‹x ∈ cball (d tx) D0 › by

auto
then show ?thesis by simp

next
case 2
have infdist (d tx) {c A−−c B} ≤ dist (d tx) x using ‹x ∈ {c A−−c B}›

by (rule infdist-le)
also have ... ≤ D0 using ‹x ∈ cball (d tx) D0 › by auto
finally have False using lower-tm-tM [OF 2 ] by simp
then show ?thesis by simp

qed
qed
then have ∗: {c A−−c B} = (Km ∩ {c A−−c B}) ∪ (KM ∩ {c A−−c B})

by auto
have (Km ∩ {c A−−c B}) ∩ (KM ∩ {c A−−c B}) 6= {}
proof (rule connected-as-closed-union[OF - ∗])

have closed Km
unfolding Km-def apply (rule compact-has-closed-thickening)
apply (rule compact-continuous-image)
apply (rule continuous-on-subset[OF ‹continuous-on {A..B} d›])
using tm ‹ty ∈ {A..B}› by auto

then show closed (Km ∩ {c A−−c B}) by (rule topological-space-class.closed-Int,
auto)

have closed KM
unfolding KM-def apply (rule compact-has-closed-thickening)
apply (rule compact-continuous-image)
apply (rule continuous-on-subset[OF ‹continuous-on {A..B} d›])
using tM ‹ty ∈ {A..B}› by auto

then show closed (KM ∩ {c A−−c B}) by (rule topological-space-class.closed-Int,
auto)

show connected {c A−−c B} by simp
have c A ∈ Km ∩ {c A−−c B} apply auto
unfolding Km-def using tm ‹d A = c A› ‹D0 > 0 › by (auto) (rule bexI [of

- A], auto)
then show Km ∩ {c A−−c B} 6= {} by auto
have c B ∈ KM ∩ {c A−−c B} apply auto

unfolding KM-def using tM ‹d B = c B› ‹D0 > 0 › by (auto) (rule
bexI [of - B], auto)

then show KM ∩ {c A−−c B} 6= {} by auto
qed
then obtain w where w ∈ {c A−−c B} w ∈ Km w ∈ KM by auto
then obtain twm twM where tw: twm ∈ {A..tm} w ∈ cball (d twm) D0 twM

∈ {tM ..B} w ∈ cball (d twM ) D0
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unfolding Km-def KM-def by auto
have (1/lambda) ∗ dist twm twM − (4∗C ) ≤ dist (d twm) (d twM )

apply (rule quasi-isometry-onD(2 )[OF d(5 )]) using tw tm tM by auto
also have ... ≤ dist (d twm) w + dist w (d twM )

by (rule metric-space-class.dist-triangle)
also have ... ≤ 2 ∗ D0 using tw by (auto simp add: metric-space-class.dist-commute)

finally have dist twm twM ≤ lambda ∗ (4∗C + 2∗D0 )
using C by (auto simp add: divide-simps algebra-simps)

then have ∗: dist twm ty ≤ lambda ∗ (4∗C + 2∗D0 )
using tw tm tM dist-real-def by auto

have dist (d ty) w ≤ dist (d ty) (d twm) + dist (d twm) w
by (rule metric-space-class.dist-triangle)

also have ... ≤ (lambda ∗ dist ty twm + (4∗C )) + D0
apply (intro add-mono, rule quasi-isometry-onD(1 )[OF d(5 )]) using tw tm

tM by auto
also have ... ≤ (lambda ∗ (lambda ∗ (4∗C + 2∗D0 ))) + (4∗C ) + D0
apply (intro mono-intros) using C ∗ by (auto simp add: metric-space-class.dist-commute)
also have ... = lambda ∗ lambda ∗ (4∗C + 2∗D0 ) + 1 ∗ 1 ∗ (4 ∗ C ) + 1 ∗

1 ∗ D0
by simp

also have ... ≤ lambda ∗ lambda ∗ (4∗C + 2∗D0 ) + lambda ∗ lambda ∗ (4
∗ C ) + lambda ∗ lambda ∗ D0

apply (intro mono-intros) using C ∗ ‹D0 > 0 › by auto
also have ... = lambda ∗ lambda ∗ (8 ∗ C + 3 ∗ D0 )

by (auto simp add: algebra-simps)
also have ... = lambda ∗ lambda ∗ (44 ∗ C + 72 ∗ lambda + 72 ∗

deltaG(TYPE( ′a))^2 )
unfolding D0-def by auto

finally have dist y w ≤ D1 unfolding D1-def ‹y = d ty› by (auto simp add:
algebra-simps)

then show infdist y {c A−−c B} ≤ D1 using infdist-le[OF ‹w ∈ {c A−−c
B}›, of y] by auto

qed

This concludes the second step.

Putting the two steps together, we deduce that the Hausdorff distance be-
tween the geodesic and the quasi-geodesic is bounded by D1. A bound
between the geodesic and the original (untamed) quasi-geodesic follows.

have a: hausdorff-distance (d‘{A..B}) {c A−−c B} ≤ D1
proof (rule hausdorff-distanceI )

show D1 ≥ 0 unfolding D1-def using C delta-nonneg by auto
fix x assume x ∈ d ‘ {A..B}
then show infdist x {c A−−c B} ≤ D1 using second-step by auto

next
fix x assume x ∈ {c A−−c B}
then show infdist x (d‘{A..B}) ≤ D1 using first-step ‹D0 ≤ D1 › by force

qed
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have hausdorff-distance (c‘{A..B}) {c A−−c B} ≤
hausdorff-distance (c‘{A..B}) (d‘{A..B}) + hausdorff-distance (d‘{A..B}) {c

A−−c B}
apply (rule hausdorff-distance-triangle)
using ‹A ∈ {A..B}› apply blast
by (rule quasi-isometry-on-bounded[OF d(5 )], auto)

also have ... ≤ D1 + 2∗C using a d by auto
also have ... = lambda ∗ lambda ∗ (72 ∗ lambda + 44 ∗ C + 72 ∗ deltaG(TYPE( ′a))^2 )

+ 1 ∗ 1 ∗ (2 ∗ C )
unfolding D1-def by auto

also have ... ≤ lambda ∗ lambda ∗ (72 ∗ lambda + 44 ∗ C + 72 ∗ deltaG(TYPE( ′a))^2 )
+ lambda ∗ lambda ∗ (28 ∗ C )

apply (intro mono-intros) using C delta-nonneg by auto
also have ... = 72 ∗ lambda^2 ∗ (lambda + C + deltaG(TYPE( ′a))^2 )

by (auto simp add: algebra-simps power2-eq-square)
finally show ?thesis by (auto simp add: algebra-simps)

qed
qed

end

12 The Bonk Schramm extension
theory Bonk-Schramm-Extension

imports Morse-Gromov-Theorem
begin

We want to show that any metric space is isometrically embedded in a metric
space which is geodesic (i.e., there is an embedded geodesic between any two
points) and complete. There are many such constructions, but a very inter-
esting one has been given by Bonk and Schramm in [BS00], together with an
additional property of the completion: if the space is delta-hyperbolic (in the
sense of Gromov), then its completion also is, with the same constant delta.
It follows in particular that a 0-hyperbolic space embeds in a 0-hyperbolic
geodesic space, i.e., a metric tree (there is an easier direct construction in
this case).
Another embedding of a metric space in a geodesic one is constructed by
Mineyev [Min05], it is more canonical in a sense (isometries of the original
space extend to the new space), but it is not clear if it preserves hyperbolicity.
The argument of Bonk and Schramm goes as follows: - first, if one wants
to add the middle of a pair of points a and b in a space E, there is a nice
formula for the distance on a new space E∪{∗} (where ∗ will by construction
be a middle of a and b). - by transfinite induction on all the pair of points in
the space, one adds all the missing middles - then one completes the space
- then one adds all the middles - then one goes on like that, transfinitely
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many times - at some point, the process stops for cardinality reasons
The resulting space is complete and has middles for all pairs of points. It is
then standard that it is geodesic (this is proved in Geodesic_Spaces.thy).
Implementing this construction in Isabelle is interesting and nontrivial, as
transfinite induction is not that easy, especially when intermingled with
metric completion (i.e., taking the quotient space of all Cauchy sequences).
In particular, taking sequences of metric completions would mean changing
types at each step, along a transfinite number of steps. It does not seem
possible to do it naively in this way.
We avoid taking quotients in the middle of the argument, as this is too
messy. Instead, we define a pseudo-distance (i.e., a function satisyfing the
triangular inequality, but such that d(x, y) can vanish even if x and y are
different) on an increasing set, which should contain middles and limits of
Cauchy sequences (identified with their defining Cauchy sequence). Thus,
we consider a datatype containing points in the original space and closed
under two operations: taking a pair of points in the datatype (we think of
the resulting pair as the middle of the pair) and taking a sequence with
values in the datatype (we think of the resulting sequence as the limit of the
sequence if it is Cauchy, for a distance yet to be defined, and as something
we discard if the sequence is not Cauchy).
Defining such an object is apparently not trivial. However, it is well de-
fined, for cardinality reasons, as this process will end after the continuum
cardinality iterations (as a sequence taking value in the continuum cardi-
nality is in fact contained in a strictly smaller ordinal, which means that all
sequences in the construction will appear at a step strictly before the con-
tinuum cardinality). The datatype construction in Isabelle/HOL contains
these cardinality considerations as an automatic process, and is thus able to
construct the datatype directly, without the need for any additional proof!
Then, we define a wellorder on the datatype, such that every middle and
every sequence appear after each of its ancestors. This construction of a
wellorder should work for any datatype, but we provide a naive proof in our
use case.
Then, we define, inductively on z, a pseudodistance on the pair of points
in {x : x ≤ z}. In the induction, one should add one point at a time. If
it is a middle, one uses the Bonk-Schramm recipe. If it is a sequence, then
either the sequence is Cauchy and one uses the limit of the distances to the
points in the sequence, or it is not Cauchy and one discards the new point by
setting d(a, a) = 1. (This means that, in the Bonk-Schramm recipe, we only
use the points with d(x, x) = 0, and show the triangular inequality there).
In the end, we obtain a space with a pseudodistance. The desired space is
obtained by quotienting out the space {x : d(x, x) = 0} by the equivalence
relation given by d(x, y) = 0. The triangular inequality for the pseudo-
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distance shows that it descends to a genuine distance on the quotient. This
is the desired geodesic complete extension of the original space.

12.1 Unfolded Bonk Schramm extension

The unfolded Bonk Schramm extension, as explained at the beginning of
this file, is a type made of the initial type, adding all possible middles and
all possible limits of Cauchy sequences, without any quotienting process
datatype ′a Bonk-Schramm-extension-unfolded =

basepoint ′a
| middle ′a Bonk-Schramm-extension-unfolded ′a Bonk-Schramm-extension-unfolded
| would-be-Cauchy nat ⇒ ′a Bonk-Schramm-extension-unfolded

context metric-space
begin

The construction of the distance will be done by transfinite induction, with
respect to a well-order for which the basepoints form an initial segment, and
for which middles of would-be Cauchy sequences are larger than the elements
they are made of. We will first prove the existence of such a well-order.
The idea is first to construct a function map_aux to another type, with a
well-order wo_aux, such that the image of middle a b is larger than the
images of a and b (take for instance the successor of the maximum of the
two), and likewise for a Cauchy sequence. A definition by induction works
if the target cardinal is large enough.
Then, pullback the well-order wo_aux by the map map_aux: this gives a re-
lation that satisfies all the required properties, except that two different el-
ements can be equal for the order. Extending it essentially arbitrarily to dis-
tinguish between all elements (this is done in Lemma Well_order_pullback)
gives the desired well-order
definition Bonk-Schramm-extension-unfolded-wo where
Bonk-Schramm-extension-unfolded-wo = (SOME (r :: ′a Bonk-Schramm-extension-unfolded

rel).
well-order-on UNIV r
∧ (∀ x ∈ range basepoint. ∀ y ∈ − range basepoint. (x, y) ∈ r)
∧ (∀ a b. (a, middle a b) ∈ r)
∧ (∀ a b. (b, middle a b) ∈ r)
∧ (∀ u n. (u n, would-be-Cauchy u) ∈ r))

We prove the existence of the well order
definition wo-aux where

wo-aux = (SOME (r :: (nat + ′a Bonk-Schramm-extension-unfolded set) rel).
Card-order r ∧ ¬finite(Field r) ∧ regularCard r ∧ |UNIV :: ′a Bonk-Schramm-extension-unfolded

set| <o r)
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lemma wo-aux-exists:
Card-order wo-aux ∧ ¬finite (Field wo-aux) ∧ regularCard wo-aux ∧ |UNIV :: ′a

Bonk-Schramm-extension-unfolded set| <o wo-aux
proof −

have ∗: ∀ r ∈ {|UNIV :: ′a Bonk-Schramm-extension-unfolded set|}. Card-order r
by auto

have ∗∗: ∃ (r ::(nat + ′a Bonk-Schramm-extension-unfolded set) rel).
Card-order r ∧ ¬finite(Field r) ∧ regularCard r ∧ ( |UNIV :: ′a Bonk-Schramm-extension-unfolded

set| <o r)
by (metis card-of-card-order-on Field-card-of singletonI infinite-regularCard-exists[OF

∗])
then show ?thesis unfolding wo-aux-def using someI-ex[OF ∗∗] by auto

qed

interpretation wo-aux: wo-rel wo-aux
using wo-aux-exists Card-order-wo-rel by auto

primrec map-aux:: ′a Bonk-Schramm-extension-unfolded ⇒ nat + ′a Bonk-Schramm-extension-unfolded
set where

map-aux (basepoint x) = wo-aux.zero
| map-aux (middle a b) = wo-aux.suc ({map-aux a} ∪ {map-aux b})
| map-aux (would-be-Cauchy u) = wo-aux.suc ((map-aux o u)‘UNIV )

lemma map-aux-AboveS-not-empty:
assumes map-aux‘S ⊆ Field wo-aux
shows wo-aux.AboveS (map-aux‘S) 6= {}

apply (rule AboveS-not-empty-in-regularCard ′[of S ])
using wo-aux-exists assms apply auto
using card-of-UNIV ordLeq-ordLess-trans by blast

lemma map-aux-in-Field:
map-aux x ∈ Field wo-aux

proof (induction)
case (basepoint x)
have wo-aux.zero ∈ Field wo-aux
using Card-order-infinite-not-under wo-aux-exists under-empty wo-aux.zero-in-Field

by fastforce
then show ?case by auto

next
case mid: (middle a b)
have ({map-aux a} ∪ {map-aux b}) ⊆ Field wo-aux using mid.IH by auto
then have wo-aux.AboveS ({map-aux a} ∪ {map-aux b}) 6= {}

using map-aux-AboveS-not-empty[of {a} ∪ {b}] by auto
then show ?case

by (simp add: AboveS-Field wo-aux.suc-def )
next

case cauchy: (would-be-Cauchy u)
have (map-aux o u)‘UNIV ⊆ Field wo-aux using cauchy.IH by auto
then have wo-aux.AboveS ((map-aux o u)‘UNIV ) 6= {}
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using map-aux-AboveS-not-empty[of u‘(UNIV )] by (simp add: image-image)
then show ?case

by (simp add: AboveS-Field wo-aux.suc-def )
qed

lemma middle-rel-a:
(map-aux a, map-aux (middle a b)) ∈ wo-aux − Id

proof −
have ∗: ({map-aux a} ∪ {map-aux b}) ⊆ Field wo-aux using map-aux-in-Field

by auto
then have wo-aux.AboveS ({map-aux a} ∪ {map-aux b}) 6= {}

using map-aux-AboveS-not-empty[of {a} ∪ {b}] by auto
then show ?thesis

using ∗ by (simp add: wo-aux.suc-greater Id-def )
qed

lemma middle-rel-b:
(map-aux b, map-aux (middle a b)) ∈ wo-aux − Id

proof −
have ∗: ({map-aux a} ∪ {map-aux b}) ⊆ Field wo-aux using map-aux-in-Field

by auto
then have wo-aux.AboveS ({map-aux a} ∪ {map-aux b}) 6= {}

using map-aux-AboveS-not-empty[of {a} ∪ {b}] by auto
then show ?thesis

using ∗ by (simp add: wo-aux.suc-greater Id-def )
qed

lemma cauchy-rel:
(map-aux (u n), map-aux (would-be-Cauchy u)) ∈ wo-aux − Id

proof −
have ∗: (map-aux o u)‘UNIV ⊆ Field wo-aux using map-aux-in-Field by auto
then have wo-aux.AboveS ((map-aux o u)‘UNIV ) 6= {}

using map-aux-AboveS-not-empty[of u‘(UNIV )] by (simp add: image-image)
then show ?thesis

using ∗ by (simp add: wo-aux.suc-greater Id-def )
qed

From the above properties of wo_aux, it follows using Well_order_pullback
that an order satisfying all the properties we want of Bonk_Schramm_extension_unfolded_wo
exists. Hence, we get the following lemma.
lemma Bonk-Schramm-extension-unfolded-wo-props:

well-order-on UNIV Bonk-Schramm-extension-unfolded-wo
∀ x ∈ range basepoint. ∀ y ∈ − range basepoint. (x, y) ∈ Bonk-Schramm-extension-unfolded-wo
∀ a b. (a, middle a b) ∈ Bonk-Schramm-extension-unfolded-wo
∀ a b. (b, middle a b) ∈ Bonk-Schramm-extension-unfolded-wo
∀ u n. (u n, would-be-Cauchy u) ∈ Bonk-Schramm-extension-unfolded-wo

proof −
obtain r :: ′a Bonk-Schramm-extension-unfolded rel where r :

Well-order r
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Field r = UNIV∧
x y. (map-aux x, map-aux y) ∈ wo-aux − Id =⇒ (x, y) ∈ r

using Well-order-pullback[of wo-aux map-aux] by (metis wo-aux.WELL)

have (x, y) ∈ r if x ∈ range basepoint y ∈ − range basepoint for x y
apply (rule r(3 )) using that
apply (cases y)

apply (auto cong del: image-cong-simp)
apply (metis insert-is-Un map-aux.simps(2 ) map-aux-in-Field wo-aux.zero-smallest)
apply (metis Diff-iff insert-is-Un wo-aux.leq-zero-imp map-aux.simps(2 ) mid-

dle-rel-a pair-in-Id-conv)
apply (metis map-aux.simps(3 ) map-aux-in-Field wo-aux.zero-smallest)

apply (metis Diff-iff cauchy-rel wo-aux.leq-zero-imp map-aux.simps(3 ) pair-in-Id-conv)
done

moreover have (a, middle a b) ∈ r for a b
apply (rule r(3 )) using middle-rel-a by auto

moreover have (b, middle a b) ∈ r for a b
apply (rule r(3 )) using middle-rel-b by auto

moreover have (u n, would-be-Cauchy u) ∈ r for u n
apply (rule r(3 )) using cauchy-rel by auto

moreover have well-order-on UNIV r
using r(1 ) r(2 ) by auto

ultimately have ∗: ∃ (r :: ′a Bonk-Schramm-extension-unfolded rel).
well-order-on UNIV r
∧ (∀ x ∈ range basepoint. ∀ y ∈ − range basepoint. (x, y) ∈ r)
∧ (∀ a b. (a, middle a b) ∈ r)
∧ (∀ a b. (b, middle a b) ∈ r)
∧ (∀ u n. (u n, would-be-Cauchy u) ∈ r)

by blast

show
well-order-on UNIV Bonk-Schramm-extension-unfolded-wo
∀ x ∈ range basepoint. ∀ y ∈ − range basepoint. (x, y) ∈ Bonk-Schramm-extension-unfolded-wo
∀ a b. (a, middle a b) ∈ Bonk-Schramm-extension-unfolded-wo
∀ a b. (b, middle a b) ∈ Bonk-Schramm-extension-unfolded-wo
∀ u n. (u n, would-be-Cauchy u) ∈ Bonk-Schramm-extension-unfolded-wo

unfolding Bonk-Schramm-extension-unfolded-wo-def using someI-ex[OF ∗] by
auto
qed

interpretation wo: wo-rel Bonk-Schramm-extension-unfolded-wo
using well-order-on-Well-order wo-rel-def wfrec-def Bonk-Schramm-extension-unfolded-wo-props(1 )

by blast

We reformulate in the interpretation wo the main properties of Bonk_Schramm_extension_unfolded_wo
that we established in Lemma Bonk_Schramm_extension_unfolded_wo_props

lemma Bonk-Schramm-extension-unfolded-wo-props ′:
a ∈ wo.underS (middle a b)
b ∈ wo.underS (middle a b)
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u n ∈ wo.underS (would-be-Cauchy u)
proof −

have (a, middle a b) ∈ Bonk-Schramm-extension-unfolded-wo
using Bonk-Schramm-extension-unfolded-wo-props(3 ) by auto

then show a ∈ wo.underS (middle a b)
by (metis Diff-iff middle-rel-a pair-in-Id-conv underS-I )

have (b, middle a b) ∈ Bonk-Schramm-extension-unfolded-wo
using Bonk-Schramm-extension-unfolded-wo-props(4 ) by auto

then show b ∈ wo.underS (middle a b)
by (metis Diff-iff middle-rel-b pair-in-Id-conv underS-I )

have (u n, would-be-Cauchy u) ∈ Bonk-Schramm-extension-unfolded-wo
using Bonk-Schramm-extension-unfolded-wo-props(5 ) by auto

then show u n ∈ wo.underS (would-be-Cauchy u)
by (metis Diff-iff cauchy-rel pair-in-Id-conv underS-I )

qed

We want to define by transfinite induction a distance on ’a Bonk_Schramm_extension_unfolded,
adding one point at a time (i.e., if the distance is defined on E, then one
wants to define it on E∪{x}, if x is a middle or a potential Cauchy sequence,
by prescribing the distance from x to all the points in E.
Technically, we define a family of distances, indexed by x, on {y : y ≤
x}2. As all functions should be defined everywhere, this will be a family of
functions on X×X, indexed by points in X. They will have a compatibility
condition, making it possible to define a global distance by gluing them
together.
Technically, transfinite induction is implemented in Isabelle/HOL by an up-
dating rule: a function that associates, to a family of distances indexed by
x, a new family of distances indexed by x. The result of the transfinite in-
duction is obtained by starting from an arbitrary object, and then applying
the updating rule infinitely many times. The characteristic property of the
result of this transfinite induction is that it is a fixed point of the updating
rule, as it should.
Below, this is implemented as follows:

• extend_distance is the updating rule.

• Its fixed point extend_distance_fp is by definition wo.worec extend_distance
(it only makes sense if the udpating rule satisfies a compatibility condi-
tion wo.adm_wo extend_distance saying that the update of a family,
at x, only depends on the value of the family strictly below x.

• Finally, the global distance extended_distance is taken as the value
of the fixed point above, on xyy′ (i.e., using the distance indexed by
x) for any x ≥ max(y, y′). For definiteness, we use max(y, y′), but it
does not matter as everything is compatible.
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fun extend-distance::( ′a Bonk-Schramm-extension-unfolded ⇒ ( ′a Bonk-Schramm-extension-unfolded
⇒ ′a Bonk-Schramm-extension-unfolded ⇒ real))

⇒ ( ′a Bonk-Schramm-extension-unfolded ⇒ ( ′a Bonk-Schramm-extension-unfolded
⇒ ′a Bonk-Schramm-extension-unfolded ⇒ real))

where
extend-distance f (basepoint x) = (λy z. if y ∈ range basepoint ∧ z ∈ range

basepoint then
dist (SOME y ′. y = basepoint y ′) (SOME z ′. z = basepoint z ′) else 1 )

| extend-distance f (middle a b) = (λy z.
if (y ∈ wo.underS (middle a b)) ∧ (z ∈ wo.underS (middle a b)) then f

(wo.max2 y z) y z
else if (y ∈ wo.underS (middle a b)) ∧ (z = middle a b) then (f (wo.max2 a

b) a b)/2 + (SUP w∈{z ∈ wo.underS (middle a b). f z z z = 0}. f (wo.max2 y w)
y w − max (f (wo.max2 a w) a w) (f (wo.max2 b w) b w))

else if (y = middle a b) ∧ (z ∈ wo.underS (middle a b)) then (f (wo.max2 a
b) a b)/2 + (SUP w∈{z ∈ wo.underS (middle a b). f z z z = 0}. f (wo.max2 z w)
z w − max (f (wo.max2 a w) a w) (f (wo.max2 b w) b w))

else if (y = middle a b) ∧ (z = middle a b) ∧ (f a a a = 0 ) ∧ (f b b b = 0 )
then 0

else 1 )
| extend-distance f (would-be-Cauchy u) = (λy z.

if (y ∈ wo.underS (would-be-Cauchy u)) ∧ (z ∈ wo.underS (would-be-Cauchy
u)) then f (wo.max2 y z) y z

else if (¬(∀ eps > (0 ::real). ∃N . ∀n ≥ N . ∀m ≥ N . f (wo.max2 (u n) (u m))
(u n) (u m) < eps)) then 1

else if (y ∈ wo.underS (would-be-Cauchy u)) ∧ (z = would-be-Cauchy u) then
lim (λn. f (wo.max2 (u n) y) (u n) y)

else if (y = would-be-Cauchy u) ∧ (z ∈ wo.underS (would-be-Cauchy u)) then
lim (λn. f (wo.max2 (u n) z) (u n) z)

else if (y = would-be-Cauchy u) ∧ (z = would-be-Cauchy u) ∧ (∀n. f (u n)
(u n) (u n) = 0 ) then 0

else 1 )

definition extend-distance-fp = wo.worec extend-distance

definition extended-distance x y = extend-distance-fp (wo.max2 x y) x y

definition extended-distance-set = {z. extended-distance z z = 0}

lemma wo-adm-extend-distance:
wo.adm-wo extend-distance

unfolding wo.adm-wo-def proof (auto)
fix f g:: ′a Bonk-Schramm-extension-unfolded ⇒ ′a Bonk-Schramm-extension-unfolded
⇒ ′a Bonk-Schramm-extension-unfolded ⇒ real

fix x:: ′a Bonk-Schramm-extension-unfolded
assume ∀ y∈wo.underS x. f y = g y
then have ∗: f y = g y if y ∈ wo.underS x for y using that by auto
show extend-distance f x = extend-distance g x

apply (cases x)
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apply (insert Bonk-Schramm-extension-unfolded-wo-props ′ ∗)
apply auto

apply (rule ext)+
apply (rule if-cong, simp, simp)+ apply (rule SUP-cong, fastforce, blast)
apply (rule if-cong, simp, simp)+ apply (rule SUP-cong, fastforce, blast)
apply (rule if-cong, simp, simp)+ apply simp

apply (rule ext)+
apply (rule if-cong, simp, simp)+
apply simp
done

qed

lemma extend-distance-fp:
extend-distance-fp = extend-distance (extend-distance-fp)

using wo.worec-fixpoint[OF wo-adm-extend-distance] unfolding extend-distance-fp-def .

lemma extended-distance-symmetric:
extended-distance x y = extended-distance y x

proof −
have ∗: extend-distance (extend-distance-fp) x x y = extend-distance (extend-distance-fp)

x y x if y ∈ wo.underS x for x y
apply (cases x)
apply (simp add: that dist-commute)+
by blast

have ∗∗: extended-distance x y = extended-distance y x if y ∈ wo.underS x for
x y

unfolding extended-distance-def using that ∗[OF that] extend-distance-fp by
simp

consider y ∈ wo.underS x|x ∈ wo.underS y|x = y
by (metis UNIV-I Bonk-Schramm-extension-unfolded-wo-props(1 ) that(1 ) un-

derS-I well-order-on-Well-order wo.TOTALS)
then show ?thesis

apply (cases) using ∗∗ by auto
qed

lemma extended-distance-basepoint:
extended-distance (basepoint x) (basepoint y) = dist x y

proof −
consider wo.max2 (basepoint x) (basepoint y) = basepoint x | wo.max2 (basepoint

x) (basepoint y) = basepoint y
by (meson wo.max2-def )

then show ?thesis
apply cases
unfolding extended-distance-def by (subst extend-distance-fp, simp)+

qed
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lemma extended-distance-set-basepoint:
basepoint x ∈ extended-distance-set

unfolding extended-distance-set-def using extended-distance-basepoint by auto

lemma extended-distance-set-middle:
assumes a ∈ extended-distance-set b ∈ extended-distance-set
shows middle a b ∈ extended-distance-set

using assms unfolding extended-distance-set-def extended-distance-def apply auto
by (metis (no-types, lifting) extend-distance-fp extend-distance.simps(2 ) underS-E)

lemma extended-distance-set-middle ′:
assumes middle a b ∈ extended-distance-set
shows a ∈ extended-distance-set ∩ wo.underS (middle a b)

b ∈ extended-distance-set ∩ wo.underS (middle a b)
proof −

have extend-distance (extend-distance-fp) (middle a b) (middle a b) (middle a b)
= 0

apply (subst extend-distance-fp[symmetric])
using assms unfolding extended-distance-set-def extended-distance-def by simp

then have a ∈ extended-distance-set b ∈ extended-distance-set
unfolding extended-distance-set-def extended-distance-def apply auto
by (metis zero-neq-one)+

moreover have a ∈ wo.underS (middle a b) b ∈ wo.underS (middle a b)
by (auto simp add: Bonk-Schramm-extension-unfolded-wo-props ′)

ultimately show a ∈ extended-distance-set ∩ wo.underS (middle a b)
b ∈ extended-distance-set ∩ wo.underS (middle a b)

by auto
qed

lemma extended-distance-middle-formula:
assumes x ∈ wo.underS (middle a b)
shows extended-distance x (middle a b) = (extended-distance a b)/2
+ (SUP w∈wo.underS (middle a b) ∩ extended-distance-set.

extended-distance x w − max (extended-distance a w) (extended-distance b
w))
unfolding extended-distance-set-def extended-distance-def
apply (subst extend-distance-fp)
apply (simp add: assms)
apply (rule SUP-cong)
apply (auto simp add: wo.max2-def )
done

lemma extended-distance-set-Cauchy:
assumes (would-be-Cauchy u) ∈ extended-distance-set
shows u n ∈ extended-distance-set ∩ wo.underS (would-be-Cauchy u)

∀ eps > (0 ::real). ∃N . ∀n ≥ N . ∀m ≥ N . extended-distance (u n) (u m) <
eps
proof −
have ∗: extend-distance (extend-distance-fp) (would-be-Cauchy u) (would-be-Cauchy
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u) (would-be-Cauchy u) = 0
apply (subst extend-distance-fp[symmetric])

using assms unfolding extended-distance-set-def extended-distance-def by simp
then have u n ∈ extended-distance-set

unfolding extended-distance-set-def extended-distance-def apply auto
by (metis (no-types, opaque-lifting) underS-notIn zero-neq-one)

moreover have u n ∈ wo.underS (would-be-Cauchy u)
by (auto simp add: Bonk-Schramm-extension-unfolded-wo-props ′)

ultimately show u n ∈ extended-distance-set ∩ wo.underS (would-be-Cauchy u)
by auto

show ∀ eps > (0 ::real). ∃N . ∀n ≥ N . ∀m ≥ N . extended-distance (u n) (u m)
< eps

using ∗ unfolding extended-distance-set-def extended-distance-def apply auto
by (metis (no-types, opaque-lifting) zero-neq-one)

qed

lemma extended-distance-triang-ineq:
assumes x ∈ extended-distance-set

y ∈ extended-distance-set
z ∈ extended-distance-set

shows extended-distance x z ≤ extended-distance x y + extended-distance y z
proof −

have ineq-rec: ∀ x y z. x ∈ wo.under t ∩ extended-distance-set −→ y ∈ wo.under
t ∩ extended-distance-set −→ z ∈ wo.under t ∩ extended-distance-set
−→ extended-distance x z ≤ extended-distance x y + extended-distance y z for

t
proof (rule wo.well-order-induct[of - t])

fix t
assume IH-orig: ∀ t2 . t2 6= t ∧ (t2 , t) ∈ Bonk-Schramm-extension-unfolded-wo

−→
(∀ x y z. x ∈ wo.under t2 ∩ extended-distance-set −→

y ∈ wo.under t2 ∩ extended-distance-set −→
z ∈ wo.under t2 ∩ extended-distance-set −→

extended-distance x z ≤ extended-distance x y + extended-distance
y z)

then have IH : extended-distance x z ≤ extended-distance x y + extended-distance
y z

if x ∈ wo.underS t ∩ extended-distance-set
y ∈ wo.underS t ∩ extended-distance-set
z ∈ wo.underS t ∩ extended-distance-set

for x y z
proof −

define t2 where t2 = wo.max2 (wo.max2 x y) z
have t2 ∈ wo.underS t using that t2-def by auto
have x ∈ wo.under t2 y ∈ wo.under t2 z ∈ wo.under t2 unfolding t2-def
by (metis UNIV-I Bonk-Schramm-extension-unfolded-wo-props(1 ) mem-Collect-eq

under-def well-order-on-Well-order wo.TOTALS wo.max2-iff )+
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then show ?thesis using that IH-orig ‹t2 ∈ wo.underS t› underS-E by
fastforce

qed

have pos: extended-distance x y ≥ 0 if x ∈ wo.underS t ∩ extended-distance-set
y ∈ wo.underS t ∩ extended-distance-set for x y

proof −
have 0 = extended-distance x x using that(1 ) extended-distance-set-def by

auto
also have ... ≤ extended-distance x y + extended-distance y x

using IH that by auto
also have ... = 2 ∗ extended-distance x y

using extended-distance-symmetric by auto
finally show ?thesis by auto

qed

consider t /∈ extended-distance-set | t ∈ extended-distance-set by auto
then show ∀ x y z. x ∈ wo.under t ∩ extended-distance-set −→

y ∈ wo.under t ∩ extended-distance-set −→
z ∈ wo.under t ∩ extended-distance-set −→

extended-distance x z ≤ extended-distance x y + extended-distance y z
proof (cases)

case 1
then have wo.under t ∩ extended-distance-set = wo.underS t ∩ extended-distance-set

apply auto
apply (metis mem-Collect-eq underS-I under-def )
by (simp add: underS-E under-def )

then show ?thesis using IH by auto
next

case 2

have main-ineq: extended-distance x z ≤ extended-distance x t + extended-distance
t z

∧ extended-distance x t ≤ extended-distance x z + extended-distance
z t

if x ∈ wo.underS t ∩ extended-distance-set
z ∈ wo.underS t ∩ extended-distance-set

for x z
proof (cases t)

case A: (basepoint t ′)
then have x ∈ range basepoint using Bonk-Schramm-extension-unfolded-wo-props(2 )
by (metis that(1 ) Compl-iff Int-iff range-eqI wo.max2-def wo.max2-underS ′(2 ))
then obtain x ′ where x: x = basepoint x ′ by auto

have z ∈ range basepoint using Bonk-Schramm-extension-unfolded-wo-props(2 )
A

by (metis that(2 ) Compl-iff Int-iff range-eqI wo.max2-def wo.max2-underS ′(2 ))
then obtain z ′ where z: z = basepoint z ′ by auto
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show extended-distance x z ≤ extended-distance x t + extended-distance t z
∧ extended-distance x t ≤ extended-distance x z + extended-distance z t

unfolding x z A extended-distance-basepoint by (simp add: dist-triangle)
next

case M : (middle a b)
then have ab: a ∈ extended-distance-set ∩ wo.underS (middle a b)

b ∈ extended-distance-set ∩ wo.underS (middle a b)
using 2 extended-distance-set-middle ′[of a b] by auto

have dxt: extended-distance x t = (extended-distance a b)/2
+ (SUP w∈wo.underS (middle a b) ∩ extended-distance-set.

extended-distance x w − max (extended-distance a w) (extended-distance
b w))

using that(1 ) unfolding M using extended-distance-middle-formula by
auto

have dzt: extended-distance z t = (extended-distance a b)/2
+ (SUP w∈wo.underS (middle a b) ∩ extended-distance-set.
extended-distance z w − max (extended-distance a w) (extended-distance

b w))
using that(2 ) unfolding M using extended-distance-middle-formula by

auto

have bdd: bdd-above ((λw. extended-distance x w − max (extended-distance
a w) (extended-distance b w))‘ (wo.underS (middle a b) ∩ extended-distance-set))

if x ∈ wo.underS t ∩ extended-distance-set for x
proof (rule bdd-aboveI2 )

fix w assume w: w ∈ wo.underS (middle a b) ∩ extended-distance-set
have extended-distance x w ≤ extended-distance x a + extended-distance

a w
apply (rule IH ) using ab w M that(1 ) by auto
also have ... ≤ extended-distance x a + max (extended-distance a w)

(extended-distance b w)
by auto

finally show extended-distance x w − max (extended-distance a w)
(extended-distance b w)

≤ extended-distance x a
by auto

qed

have (λw. extended-distance x z + extended-distance z w − max (extended-distance
a w) (extended-distance b w)) ‘ (underS Bonk-Schramm-extension-unfolded-wo (middle
a b) ∩ extended-distance-set)

= (λs. s + extended-distance x z)‘ (λw. extended-distance z w − max
(extended-distance a w) (extended-distance b w)) ‘ (underS Bonk-Schramm-extension-unfolded-wo
(middle a b) ∩ extended-distance-set)

by auto
moreover have bdd-above ((λs. s + extended-distance x z)‘ (λw. ex-

tended-distance z w − max (extended-distance a w) (extended-distance b w)) ‘
(underS Bonk-Schramm-extension-unfolded-wo (middle a b) ∩ extended-distance-set))
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apply (rule bdd-above-image-mono) using bdd that by (auto simp add:
mono-def )

ultimately have bdd-3 : bdd-above ((λw. extended-distance x z + ex-
tended-distance z w − max (extended-distance a w) (extended-distance b w)) ‘
(underS Bonk-Schramm-extension-unfolded-wo (middle a b) ∩ extended-distance-set))

by simp

have ∗∗: max (extended-distance a a) (extended-distance b a) = ex-
tended-distance b a

apply (rule max-absorb2 ) using pos ab extended-distance-set-def M by
auto

then have −extended-distance a b / 2 + extended-distance x a
= (extended-distance a b)/2 + extended-distance x a − max (extended-distance

a a) (extended-distance b a)
unfolding extended-distance-symmetric[of a b] by auto

also have ... ≤ extended-distance x t
unfolding dxt apply (simp, rule cSUP-upper , simp) using bdd that M ab

by auto
finally have D1 : −extended-distance a b / 2 + extended-distance x a ≤

extended-distance x t
by simp

have ∗∗: max (extended-distance a b) (extended-distance b b) = ex-
tended-distance a b

apply (rule max-absorb1 ) using pos ab extended-distance-set-def M by
auto

then have −extended-distance a b / 2 + extended-distance x b
= (extended-distance a b)/2 + extended-distance x b − max (extended-distance

a b) (extended-distance b b)
unfolding extended-distance-symmetric[of a b] by auto

also have ... ≤ extended-distance x t
unfolding dxt apply (simp, rule cSUP-upper , simp) using bdd that ab

by auto
finally have −extended-distance a b / 2 + extended-distance x b ≤ ex-

tended-distance x t
by simp

then have D2 : −extended-distance a b / 2 + max (extended-distance x a)
(extended-distance x b) ≤ extended-distance x t

using D1 by auto

have extended-distance x z = (−extended-distance a b / 2 + max (extended-distance
x a) (extended-distance x b)) +

(extended-distance a b / 2 + extended-distance x z − max
(extended-distance x a) (extended-distance x b))

by auto
also have ... ≤ extended-distance x t +

(extended-distance a b / 2 + extended-distance z x − max
(extended-distance a x) (extended-distance b x))

using D2 extended-distance-symmetric by auto
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also have ... ≤ extended-distance x t + extended-distance z t
unfolding dzt apply (simp, rule cSUP-upper) using bdd that M ab by

auto
finally have I : extended-distance x z ≤ extended-distance x t + ex-

tended-distance z t
using extended-distance-symmetric by auto

have T : underS Bonk-Schramm-extension-unfolded-wo (middle a b) ∩
extended-distance-set 6= {}

mono ((+) (extended-distance x z))
bij ((+) (extended-distance x z))

using ab(1 ) apply blast
by (simp add: monoI , rule bij-betw-byWitness[of - λs. s − (extended-distance

x z)], auto)
have extended-distance x t ≤ (extended-distance a b)/2
+ (SUP w∈wo.underS (middle a b) ∩ extended-distance-set.

extended-distance x z + extended-distance z w − max (extended-distance
a w) (extended-distance b w))

unfolding dxt apply (simp, rule cSUP-subset-mono)
using M that IH bdd-3 by (auto)

also have ... = extended-distance x z + extended-distance z t
unfolding dzt apply simp

using mono-cSup-bij[of (λw. extended-distance z w − max (extended-distance
a w) (extended-distance b w))‘(wo.underS (middle a b) ∩ extended-distance-set) λs.
extended-distance x z + s, OF - - T (2 ) T (3 )]

by (auto simp add: bdd [OF that(2 )] ab(1 ) T (1 ) add-diff-eq image-comp)
finally have extended-distance x t ≤ extended-distance x z + extended-distance

z t by simp
then show extended-distance x z ≤ extended-distance x t + extended-distance

t z
∧ extended-distance x t ≤ extended-distance x z + extended-distance

z t
using I extended-distance-symmetric by auto

next

case C : (would-be-Cauchy u)
then have un: u n ∈ extended-distance-set ∩ wo.underS (would-be-Cauchy

u) for n
using extended-distance-set-Cauchy 2 by auto
have lim: (λn. extended-distance y (u n)) −−−−→ (extended-distance y

(would-be-Cauchy u))
if y: y ∈ extended-distance-set ∩ wo.underS (would-be-Cauchy u) for y

proof −
have extend-distance extend-distance-fp (wo.max2 (would-be-Cauchy u)

(would-be-Cauchy u)) (would-be-Cauchy u) (would-be-Cauchy u) = 0
using 2 unfolding C extended-distance-set-def extended-distance-def
using extend-distance-fp by auto

then have cauch: ∃N . ∀n ≥ N . ∀m ≥ N . extend-distance-fp (wo.max2
(u n) (u m)) (u n) (u m) < e if e > 0 for e
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apply auto using ‹e > 0 › by (metis (no-types, opaque-lifting)
zero-neq-one)

have ∃N . ∀n ≥ N . ∀m ≥ N . abs(extended-distance y (u n) − ex-
tended-distance y (u m)) < e if e > 0 for e

proof −
obtain N where ∗: extend-distance-fp (wo.max2 (u n) (u m)) (u n) (u

m) < e if n ≥ N m ≥ N for m n
using cauch by (meson ‹0 < e›)

{
fix m n assume m ≥ N n ≥ N
then have e: extended-distance (u n) (u m) < e using ∗ unfolding

extended-distance-def by auto
have extended-distance y (u n) ≤ extended-distance y (u m) +

extended-distance (u m) (u n)
using IH y un C by blast

then have 1 : extended-distance y (u n) − extended-distance y (u m)
< e

using e extended-distance-symmetric by auto
have extended-distance y (u m) ≤ extended-distance y (u n) +

extended-distance (u n) (u m)
using IH y un C by blast

then have extended-distance y (u m) − extended-distance y (u n) < e
using e extended-distance-symmetric by auto

then have abs(extended-distance y (u n) − extended-distance y (u m))
< e

using 1 by auto
}
then show ?thesis by auto

qed
then have convergent (λn. extended-distance y (u n))

by (simp add: Cauchy-iff real-Cauchy-convergent)
then have lim: (λn. extended-distance y (u n)) −−−−→ lim (λn. ex-

tended-distance y (u n))
using convergent-LIMSEQ-iff by auto

have ∗: wo.max2 y (would-be-Cauchy u) = would-be-Cauchy u y 6=
would-be-Cauchy u using y by auto

have extended-distance y (would-be-Cauchy u) = lim (λn. extended-distance
(u n) y)

unfolding extended-distance-def apply (subst extend-distance-fp) un-
folding ∗

using ∗(2 ) y cauch by auto
then show (λn. extended-distance y (u n)) −−−−→ extended-distance y

(would-be-Cauchy u)
using lim extended-distance-symmetric by auto

qed
have extended-distance x z ≤ extended-distance x (u n) + extended-distance

(u n) z for n
using IH un that C by auto

moreover have (λn. extended-distance x (u n) + extended-distance (u n)
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z) −−−−→ extended-distance x t + extended-distance t z
apply (auto intro!: tendsto-add)
using lim that extended-distance-symmetric unfolding C by auto
ultimately have I : extended-distance x z ≤ extended-distance x t + ex-

tended-distance t z
using LIMSEQ-le-const by blast

have extended-distance x (u n) ≤ extended-distance x z + extended-distance
z (u n) for n

using IH un that C by auto
moreover have (λn. extended-distance x (u n)) −−−−→ extended-distance x

t
using lim that extended-distance-symmetric unfolding C by auto
moreover have (λn. extended-distance x z + extended-distance z (u n))

−−−−→ extended-distance x z + extended-distance z t
apply (auto intro!: tendsto-add)
using lim that extended-distance-symmetric unfolding C by auto
ultimately have extended-distance x t ≤ extended-distance x z + ex-

tended-distance z t
using LIMSEQ-le by blast

then show extended-distance x z ≤ extended-distance x t + extended-distance
t z

∧ extended-distance x t ≤ extended-distance x z + extended-distance
z t

using I by auto
qed

{
fix x y z assume H : x ∈ wo.under t ∩ extended-distance-set

y ∈ wo.under t ∩ extended-distance-set
z ∈ wo.under t ∩ extended-distance-set

have t: extended-distance t t = 0 extended-distance t t ≥ 0 using 2
extended-distance-set-def by auto

have ∗: ((x ∈ wo.underS t ∩ extended-distance-set) ∨ (x = t))
∧ ((y ∈ wo.underS t ∩ extended-distance-set) ∨ (y = t))
∧ ((z ∈ wo.underS t ∩ extended-distance-set) ∨ (z = t))

using H by (simp add: underS-def under-def )
have extended-distance x z ≤ extended-distance x y + extended-distance y z

using ∗ apply auto
using t main-ineq extended-distance-symmetric IH pos apply blast
using t main-ineq extended-distance-symmetric IH pos apply blast
using t main-ineq extended-distance-symmetric IH pos apply blast
using t main-ineq extended-distance-symmetric IH pos apply blast

using t main-ineq extended-distance-symmetric IH pos apply (metis ∗
Int-commute add.commute underS-notIn)

using t main-ineq extended-distance-symmetric IH pos apply (metis
(mono-tags, lifting) ∗ extended-distance-set-def mem-Collect-eq underS-notIn)

using t by auto
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}
then show ?thesis by auto

qed
qed

define t where t = wo.max2 (wo.max2 x y) z
have x ∈ wo.under t y ∈ wo.under t z ∈ wo.under t

unfolding t-def
by (metis UNIV-I Bonk-Schramm-extension-unfolded-wo-props(1 ) mem-Collect-eq

under-def well-order-on-Well-order wo.max2-equals1 wo.max2-iff wo.max2-xx)+
then show ?thesis using assms ineq-rec by auto

qed

We can now show the two main properties of the construction: the middle is
indeed a middle from the metric point of view (in extended_distance_middle),
and Cauchy sequences have a limit (the corresponding would_be_Cauchy
point).
lemma extended-distance-pos:

assumes a ∈ extended-distance-set
b ∈ extended-distance-set

shows extended-distance a b ≥ 0
using assms extended-distance-set-def extended-distance-triang-ineq[of a b a]
unfolding extended-distance-symmetric[of b a] by auto

lemma extended-distance-middle:
assumes a ∈ extended-distance-set

b ∈ extended-distance-set
shows extended-distance a (middle a b) = extended-distance a b / 2

extended-distance b (middle a b) = extended-distance a b / 2
proof −

have 0 = extended-distance a b − max (extended-distance a b) (extended-distance
b b)

using extended-distance-pos[OF assms] assms(2 ) extended-distance-set-def by
auto

also have ... ≤ (SUP w∈wo.underS (middle a b) ∩ extended-distance-set.
extended-distance a w − max (extended-distance a w) (extended-distance b

w))
apply (rule cSUP-upper)
apply (simp add: assms(2 ) Bonk-Schramm-extension-unfolded-wo-props ′(2 ))
by (rule bdd-aboveI2 [of - - 0 ], auto)

ultimately have 0 ≤ (SUP w∈wo.underS (middle a b) ∩ extended-distance-set.
extended-distance a w − max (extended-distance a w) (extended-distance b

w))
by auto

moreover have (SUP w∈wo.underS (middle a b) ∩ extended-distance-set.
extended-distance a w − max (extended-distance a w) (extended-distance b

w)) ≤ 0
apply (rule cSUP-least)
using assms(1 ) Bonk-Schramm-extension-unfolded-wo-props ′(1 ) by (fastforce,
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auto)
moreover have extended-distance a (middle a b) = (extended-distance a b)/2
+ (SUP w∈wo.underS (middle a b) ∩ extended-distance-set.

extended-distance a w − max (extended-distance a w) (extended-distance b
w))

by (rule extended-distance-middle-formula, simp add: Bonk-Schramm-extension-unfolded-wo-props ′(1 ))
ultimately show extended-distance a (middle a b) = (extended-distance a b)/2

by auto

have 0 = extended-distance b a − max (extended-distance a a) (extended-distance
b a)

using extended-distance-pos[OF assms] assms(1 ) extended-distance-set-def ex-
tended-distance-symmetric by auto

also have ... ≤ (SUP w∈wo.underS (middle a b) ∩ extended-distance-set.
extended-distance b w − max (extended-distance a w) (extended-distance b

w))
apply (rule cSUP-upper)
apply (simp add: assms(1 ) Bonk-Schramm-extension-unfolded-wo-props ′(1 ))
by (rule bdd-aboveI2 [of - - 0 ], auto)

ultimately have 0 ≤ (SUP w∈wo.underS (middle a b) ∩ extended-distance-set.
extended-distance b w − max (extended-distance a w) (extended-distance b

w))
by auto

moreover have (SUP w∈wo.underS (middle a b) ∩ extended-distance-set.
extended-distance b w − max (extended-distance a w) (extended-distance b

w)) ≤ 0
apply (rule cSUP-least)
using assms(1 ) Bonk-Schramm-extension-unfolded-wo-props ′(1 ) by (fastforce,

auto)
moreover have extended-distance b (middle a b) = (extended-distance a b)/2
+ (SUP w∈wo.underS (middle a b) ∩ extended-distance-set.

extended-distance b w − max (extended-distance a w) (extended-distance b
w))

by (rule extended-distance-middle-formula, simp add: Bonk-Schramm-extension-unfolded-wo-props ′(2 ))
ultimately show extended-distance b (middle a b) = (extended-distance a b)/2

by auto
qed

lemma extended-distance-Cauchy:
assumes

∧
(n::nat). u n ∈ extended-distance-set

and ∀ eps > (0 ::real). ∃N . ∀n ≥ N . ∀m ≥ N . extended-distance (u n) (u m)
< eps

shows would-be-Cauchy u ∈ extended-distance-set
(λn. extended-distance (u n) (would-be-Cauchy u)) −−−−→ 0

proof −
show 2 : would-be-Cauchy u ∈ extended-distance-set

unfolding extended-distance-set-def extended-distance-def apply (simp, subst
extend-distance-fp)

using assms unfolding extended-distance-set-def extended-distance-def by simp
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have lim: (λn. extended-distance y (u n)) −−−−→ (extended-distance y (would-be-Cauchy
u))

if y: y ∈ extended-distance-set ∩ wo.underS (would-be-Cauchy u) for y
proof −
have ∃N . ∀n ≥ N . ∀m ≥ N . abs(extended-distance y (u n) − extended-distance

y (u m)) < e if e > 0 for e
proof −

obtain N where ∗: extended-distance (u n) (u m) < e if n ≥ N m ≥ N for
m n

using assms(2 ) that ‹e > 0 › by meson
{

fix m n assume m ≥ N n ≥ N
then have e: extended-distance (u n) (u m) < e using ∗ by auto

have extended-distance y (u n) ≤ extended-distance y (u m) + extended-distance
(u m) (u n)

using extended-distance-triang-ineq y assms(1 ) by blast
then have 1 : extended-distance y (u n) − extended-distance y (u m) < e

using e extended-distance-symmetric by auto
have extended-distance y (u m) ≤ extended-distance y (u n) + extended-distance

(u n) (u m)
using extended-distance-triang-ineq y assms(1 ) by blast

then have extended-distance y (u m) − extended-distance y (u n) < e
using e extended-distance-symmetric by auto

then have abs(extended-distance y (u n) − extended-distance y (u m)) < e
using 1 by auto

}
then show ?thesis by auto

qed
then have convergent (λn. extended-distance y (u n))

by (simp add: Cauchy-iff real-Cauchy-convergent)
then have lim: (λn. extended-distance y (u n)) −−−−→ lim (λn. extended-distance

y (u n))
using convergent-LIMSEQ-iff by auto

have ∗: wo.max2 y (would-be-Cauchy u) = would-be-Cauchy u y 6= would-be-Cauchy
u using y by auto

have extended-distance y (would-be-Cauchy u) = lim (λn. extended-distance (u
n) y)

unfolding extended-distance-def apply (subst extend-distance-fp) unfolding
∗

using ∗(2 ) y assms(2 ) extended-distance-def by auto
then show (λn. extended-distance y (u n)) −−−−→ extended-distance y (would-be-Cauchy

u)
using lim extended-distance-symmetric by auto

qed

have ∃N . ∀n ≥ N . abs(extended-distance (u n) (would-be-Cauchy u)) < e if e
> 0 for e

proof −
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obtain N where ∗: extended-distance (u n) (u m) < e/2 if n ≥ N m ≥ N for
m n

using assms(2 ) that ‹e > 0 › by (meson half-gt-zero)
have abs(extended-distance (u n) (would-be-Cauchy u)) ≤ e/2 if n ≥ N for n
proof −

have eventually (λm. extended-distance (u n) (u m) ≤ e/2 ) sequentially
apply (rule eventually-sequentiallyI [of N ]) using ∗[OF ‹n ≥ N ›] less-imp-le

by auto
moreover have (λm. extended-distance (u n) (u m)) −−−−→ extended-distance

(u n) (would-be-Cauchy u)
apply (rule lim) using 2 extended-distance-set-Cauchy by auto

ultimately have extended-distance (u n) (would-be-Cauchy u) ≤ e/2
by (meson ∗ LIMSEQ-le-const2 less-imp-le that)

then show ?thesis using extended-distance-pos[OF assms(1 )[of n] 2 ] by auto
qed
then show ?thesis using ‹e > 0 › by force

qed
then show (λn. extended-distance (u n) (would-be-Cauchy u)) −−−−→ 0

using LIMSEQ-iff by force
qed

end

12.2 The Bonk Schramm extension
quotient-type (overloaded) ′a Bonk-Schramm-extension =
( ′a::metric-space) Bonk-Schramm-extension-unfolded
/ partial: λx y. (x ∈ extended-distance-set ∧ y ∈ extended-distance-set ∧ ex-

tended-distance x y = 0 )
unfolding part-equivp-def proof(auto intro!: ext simp: extended-distance-set-def )

show ∃ x. extended-distance x x = 0
using extended-distance-set-basepoint extended-distance-set-def by auto

next
fix x y z:: ′a Bonk-Schramm-extension-unfolded
assume H : extended-distance x x = 0 extended-distance y y = 0 extended-distance

z z = 0
extended-distance x y = 0 extended-distance x z = 0

have extended-distance y z ≤ extended-distance y x + extended-distance x z
apply (rule extended-distance-triang-ineq)
using H unfolding extended-distance-set-def by auto

also have ... ≤ 0
by (auto simp add: extended-distance-symmetric H )

finally show extended-distance y z = 0
using extended-distance-pos[of y z ] H unfolding extended-distance-set-def by

auto
next

fix x y z:: ′a Bonk-Schramm-extension-unfolded
assume H : extended-distance x x = 0 extended-distance y y = 0 extended-distance

z z = 0
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extended-distance x y = 0 extended-distance y z = 0
have extended-distance x z ≤ extended-distance x y + extended-distance y z

apply (rule extended-distance-triang-ineq)
using H unfolding extended-distance-set-def by auto

also have ... ≤ 0
by (auto simp add: extended-distance-symmetric H )

finally show extended-distance x z = 0
using extended-distance-pos[of x z] H unfolding extended-distance-set-def by

auto
qed (metis)

instantiation Bonk-Schramm-extension :: (metric-space) metric-space
begin

lift-definition dist-Bonk-Schramm-extension::( ′a::metric-space) Bonk-Schramm-extension
⇒ ′a Bonk-Schramm-extension ⇒ real

is λx y. extended-distance x y
proof −

fix x y z t:: ′a Bonk-Schramm-extension-unfolded
assume H : x ∈ extended-distance-set ∧ y ∈ extended-distance-set ∧ extended-distance

x y = 0
z ∈ extended-distance-set ∧ t ∈ extended-distance-set ∧ extended-distance

z t = 0
have extended-distance x z ≤ extended-distance x y + extended-distance y t +

extended-distance t z
using extended-distance-triang-ineq[of x y z] extended-distance-triang-ineq[of y

t z] H
by auto

also have ... = extended-distance y t
using H by (auto simp add: extended-distance-symmetric)

finally have ∗: extended-distance x z ≤ extended-distance y t by simp
have extended-distance y t ≤ extended-distance y x + extended-distance x z +

extended-distance z t
using extended-distance-triang-ineq[of y x t] extended-distance-triang-ineq[of x

z t] H
by auto

also have ... = extended-distance x z
using H by (auto simp add: extended-distance-symmetric)

finally show extended-distance x z = extended-distance y t using ∗ by simp
qed

To define a metric space in the current library of Isabelle/HOL, one should
also introduce a uniformity structure and a topology, as follows (they are
prescribed by the distance):
definition uniformity-Bonk-Schramm-extension::(( ′a Bonk-Schramm-extension) ×
( ′a Bonk-Schramm-extension)) filter

where uniformity-Bonk-Schramm-extension = (INF e∈{0 <..}. principal {(x,
y). dist x y < e})
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definition open-Bonk-Schramm-extension :: ′a Bonk-Schramm-extension set ⇒
bool

where open-Bonk-Schramm-extension U = (∀ x∈U . eventually (λ(x ′, y). x ′ = x
−→ y ∈ U ) uniformity)

instance proof
fix x y:: ′a Bonk-Schramm-extension
have C : rep-Bonk-Schramm-extension x ∈ extended-distance-set

rep-Bonk-Schramm-extension y ∈ extended-distance-set
using Quotient3-Bonk-Schramm-extension Quotient3-rep-reflp by fastforce+

show (dist x y = 0 ) = (x = y)
apply (subst Quotient3-rel-rep[OF Quotient3-Bonk-Schramm-extension, sym-

metric])
unfolding dist-Bonk-Schramm-extension-def using C by auto

next
fix x y z:: ′a Bonk-Schramm-extension
have C : rep-Bonk-Schramm-extension x ∈ extended-distance-set

rep-Bonk-Schramm-extension y ∈ extended-distance-set
rep-Bonk-Schramm-extension z ∈ extended-distance-set

using Quotient3-Bonk-Schramm-extension Quotient3-rep-reflp by fastforce+
show dist x y ≤ dist x z + dist y z

unfolding dist-Bonk-Schramm-extension-def apply auto
by (metis C extended-distance-symmetric extended-distance-triang-ineq)

qed (auto simp add: uniformity-Bonk-Schramm-extension-def open-Bonk-Schramm-extension-def )
end

instance Bonk-Schramm-extension :: (metric-space) complete-space
proof

fix X ::nat ⇒ ′a Bonk-Schramm-extension assume Cauchy X
have ∗:

∧
n. rep-Bonk-Schramm-extension (X n) ∈ extended-distance-set

using Quotient3-Bonk-Schramm-extension Quotient3-rep-reflp by fastforce
have ∗∗: extended-distance (rep-Bonk-Schramm-extension (X n)) (rep-Bonk-Schramm-extension

(X m)) = dist (X n) (X m) for m n
unfolding dist-Bonk-Schramm-extension-def by auto

define y where y = would-be-Cauchy (λn. rep-Bonk-Schramm-extension (X n))
have y ∈ extended-distance-set

unfolding y-def apply (rule extended-distance-Cauchy)
using ∗ ‹Cauchy X› unfolding Cauchy-def ∗∗[symmetric] by auto

define x where x = abs-Bonk-Schramm-extension y
have dist (X n) x = extended-distance (rep-Bonk-Schramm-extension (X n)) y

for n
unfolding x-def apply (subst Quotient3-abs-rep[OF Quotient3-Bonk-Schramm-extension,

symmetric])
apply (rule dist-Bonk-Schramm-extension.abs-eq) using ∗ ‹y ∈ extended-distance-set›
by (auto simp add: extended-distance-set-def )

moreover have (λn. extended-distance (rep-Bonk-Schramm-extension (X n)) y)
−−−−→ 0

unfolding y-def apply (rule extended-distance-Cauchy)
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using ∗ ‹Cauchy X› unfolding Cauchy-def ∗∗[symmetric] by auto
ultimately have ∗: (λn. dist (X n) x) −−−−→ 0 by simp
have X −−−−→ x

apply (rule tendstoI ) using ∗ by (auto simp add: order-tendsto-iff )
then show convergent X unfolding convergent-def by auto

qed

instance Bonk-Schramm-extension :: (metric-space) geodesic-space
proof (rule complete-with-middles-imp-geodesic)

fix x y:: ′a Bonk-Schramm-extension
have H : rep-Bonk-Schramm-extension x ∈ extended-distance-set

rep-Bonk-Schramm-extension y ∈ extended-distance-set
using Quotient3-Bonk-Schramm-extension Quotient3-rep-reflp by fastforce+

define M where M = middle (rep-Bonk-Schramm-extension x) (rep-Bonk-Schramm-extension
y)

then have M : M ∈ extended-distance-set
using extended-distance-set-middle[OF H ] by simp

define m where m = abs-Bonk-Schramm-extension M

have dist x m = extended-distance (rep-Bonk-Schramm-extension x) M
apply (subst Quotient3-abs-rep[OF Quotient3-Bonk-Schramm-extension, sym-

metric]) unfolding m-def
apply (rule dist-Bonk-Schramm-extension.abs-eq)
using H M extended-distance-set-def by auto

also have ... = extended-distance (rep-Bonk-Schramm-extension x) (rep-Bonk-Schramm-extension
y) / 2

unfolding M-def by (rule extended-distance-middle[OF H ])
also have ... = dist x y / 2

unfolding dist-Bonk-Schramm-extension-def by auto
finally have ∗: dist x m = dist x y / 2 by simp

have dist m y = extended-distance M (rep-Bonk-Schramm-extension y)
apply (subst Quotient3-abs-rep[OF Quotient3-Bonk-Schramm-extension, of y,

symmetric]) unfolding m-def
apply (rule dist-Bonk-Schramm-extension.abs-eq)
using H M extended-distance-set-def by auto

also have ... = extended-distance (rep-Bonk-Schramm-extension x) (rep-Bonk-Schramm-extension
y) / 2

unfolding M-def using extended-distance-middle(2 )[OF H ] by (simp add:
extended-distance-symmetric)

also have ... = dist x y / 2
unfolding dist-Bonk-Schramm-extension-def by auto

finally have dist m y = dist x y / 2 by simp
then show ∃m. dist x m = dist x y / 2 ∧ dist m y = dist x y / 2

using ∗ by auto
qed

definition to-Bonk-Schramm-extension:: ′a::metric-space⇒ ′a Bonk-Schramm-extension
where to-Bonk-Schramm-extension x = abs-Bonk-Schramm-extension (basepoint
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x)

lemma to-Bonk-Schramm-extension-isometry:
isometry-on UNIV to-Bonk-Schramm-extension

proof (rule isometry-onI )
fix x y:: ′a
show dist (to-Bonk-Schramm-extension x) (to-Bonk-Schramm-extension y) =

dist x y
unfolding to-Bonk-Schramm-extension-def apply (subst dist-Bonk-Schramm-extension.abs-eq)
unfolding extended-distance-set-def by (auto simp add: extended-distance-basepoint)

qed

13 Bonk-Schramm extension of hyperbolic spaces
13.1 The Bonk-Schramm extension preserves hyperbolicity

A central feature of the Bonk-Schramm extension is that it preserves hyper-
bolicity, with the same hyperbolicity constant δ, as we prove now.
lemma (in Gromov-hyperbolic-space) Bonk-Schramm-extension-unfolded-hyperbolic:

fixes x y z t::( ′a::metric-space) Bonk-Schramm-extension-unfolded
assumes x ∈ extended-distance-set

y ∈ extended-distance-set
z ∈ extended-distance-set
t ∈ extended-distance-set

shows extended-distance x y + extended-distance z t ≤ max (extended-distance x
z + extended-distance y t) (extended-distance x t + extended-distance y z) + 2 ∗
deltaG(TYPE( ′a))
proof −

interpret wo: wo-rel Bonk-Schramm-extension-unfolded-wo
using well-order-on-Well-order wo-rel-def wfrec-def metric-space-class.Bonk-Schramm-extension-unfolded-wo-props(1 )

by blast

have ineq-rec: ∀ x y z t. x ∈ wo.under a ∩ extended-distance-set −→ y ∈ wo.under
a ∩ extended-distance-set −→ z ∈ wo.under a ∩ extended-distance-set −→ t ∈
wo.under a ∩ extended-distance-set

−→ extended-distance x y + extended-distance z t ≤ max (extended-distance
x z + extended-distance y t) (extended-distance x t + extended-distance y z) + 2 ∗
deltaG(TYPE( ′a))

for a:: ′a Bonk-Schramm-extension-unfolded
proof (rule wo.well-order-induct[of - a])

fix a:: ′a Bonk-Schramm-extension-unfolded
assume IH-orig: ∀ b. b 6= a ∧ (b, a) ∈ Bonk-Schramm-extension-unfolded-wo

−→
(∀ x y z t. x ∈ wo.under b ∩ extended-distance-set −→

y ∈ wo.under b ∩ extended-distance-set −→
z ∈ wo.under b ∩ extended-distance-set −→
t ∈ wo.under b ∩ extended-distance-set −→
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extended-distance x y + extended-distance z t ≤ max (extended-distance x
z + extended-distance y t) (extended-distance x t + extended-distance y z) + 2 ∗
deltaG(TYPE( ′a)))

then have IH : extended-distance x y + extended-distance z t ≤ max (extended-distance
x z + extended-distance y t) (extended-distance x t + extended-distance y z) + 2 ∗
deltaG(TYPE( ′a))

if x ∈ wo.underS a ∩ extended-distance-set
y ∈ wo.underS a ∩ extended-distance-set
z ∈ wo.underS a ∩ extended-distance-set
t ∈ wo.underS a ∩ extended-distance-set

for x y z t
proof −

define b where b = wo.max2 (wo.max2 x y) (wo.max2 z t)
have b ∈ wo.underS a using that b-def by auto

have x ∈ wo.under b y ∈ wo.under b z ∈ wo.under b t ∈ wo.under b unfolding
b-def

apply (auto simp add: under-def )
by (metis UNIV-I metric-space-class.Bonk-Schramm-extension-unfolded-wo-props(1 )

mem-Collect-eq under-def well-order-on-Well-order wo.TOTALS wo.max2-iff )+
then show ?thesis using that IH-orig ‹b ∈ wo.underS a› underS-E by

fastforce
qed

consider a /∈ extended-distance-set | a ∈ extended-distance-set by auto
then show ∀ x y z t. x ∈ wo.under a ∩ extended-distance-set −→

y ∈ wo.under a ∩ extended-distance-set −→
z ∈ wo.under a ∩ extended-distance-set −→
t ∈ wo.under a ∩ extended-distance-set −→

extended-distance x y + extended-distance z t ≤ max (extended-distance x
z + extended-distance y t) (extended-distance x t + extended-distance y z) + 2 ∗
deltaG(TYPE( ′a))

proof (cases)

case 1
then have wo.under a ∩ extended-distance-set = wo.underS a ∩ extended-distance-set

apply auto
apply (metis mem-Collect-eq underS-I under-def )
by (simp add: underS-E under-def )

then show ?thesis using IH by auto
next

case 2
then have a: extended-distance a a = 0 unfolding metric-space-class.extended-distance-set-def

by auto
have main-ineq: extended-distance a y + extended-distance z t ≤ max

(extended-distance a z + extended-distance y t) (extended-distance a t + extended-distance
y z) + 2 ∗ deltaG(TYPE( ′a))

if yzt: y ∈ wo.underS a ∩ extended-distance-set
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z ∈ wo.underS a ∩ extended-distance-set
t ∈ wo.underS a ∩ extended-distance-set

for y z t
proof (cases a)

case A: (basepoint a ′)
then have y ∈ range basepoint using metric-space-class.Bonk-Schramm-extension-unfolded-wo-props(2 )
by (metis yzt(1 ) Compl-iff Int-iff range-eqI wo.max2-def wo.max2-underS ′(2 ))
then obtain y ′ where y: y = basepoint y ′ by auto

have z ∈ range basepoint using metric-space-class.Bonk-Schramm-extension-unfolded-wo-props(2 )
A

by (metis yzt(2 ) Compl-iff Int-iff range-eqI wo.max2-def wo.max2-underS ′(2 ))
then obtain z ′ where z: z = basepoint z ′ by auto

have t ∈ range basepoint using metric-space-class.Bonk-Schramm-extension-unfolded-wo-props(2 )
A

by (metis yzt(3 ) Compl-iff Int-iff range-eqI wo.max2-def wo.max2-underS ′(2 ))
then obtain t ′ where t: t = basepoint t ′ by auto
show ?thesis

unfolding y z t A metric-space-class.extended-distance-basepoint
using hyperb-quad-ineq UNIV-I unfolding Gromov-hyperbolic-subset-def

by auto
next

case C : (would-be-Cauchy u)
then have u: would-be-Cauchy u ∈ extended-distance-set

u n ∈ extended-distance-set ∩ wo.underS (would-be-Cauchy u) for
n

using metric-space-class.extended-distance-set-Cauchy 2 by auto
have lim: (λn. extended-distance y (u n)) −−−−→ (extended-distance y

(would-be-Cauchy u))
if y: y ∈ extended-distance-set for y

proof −
have a: abs(extended-distance y (u n) − extended-distance y (would-be-Cauchy

u)) ≤ extended-distance (u n) (would-be-Cauchy u) for n
using u(2 )[of n] 2 y metric-space-class.extended-distance-triang-ineq

unfolding C
apply (subst abs-le-iff ) apply (auto simp add: algebra-simps)
by (metis metric-space-class.extended-distance-symmetric)

have b: (λn. extended-distance (u n) (would-be-Cauchy u)) −−−−→ 0
unfolding C apply (rule metric-space-class.extended-distance-Cauchy(2 ))

using metric-space-class.extended-distance-set-Cauchy[of u] C 2 by auto
have (λn. abs(extended-distance y (u n) − extended-distance y (would-be-Cauchy

u))) −−−−→ 0
apply (rule tendsto-sandwich[of λ-. 0 , OF - - - b]) using a by auto
then show (λn. extended-distance y (u n)) −−−−→ extended-distance y

(would-be-Cauchy u)
using Lim-null tendsto-rabs-zero-cancel by blast

qed
have max (extended-distance (u n) z + extended-distance y t) (extended-distance
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(u n) t + extended-distance y z) + 2 ∗ deltaG(TYPE( ′a)) − extended-distance (u
n) y − extended-distance z t ≥ 0 for n

using IH [of u n y z t] u yzt C by auto
moreover have (λn. max (extended-distance (u n) z + extended-distance

y t) (extended-distance (u n) t + extended-distance y z) + 2 ∗ deltaG(TYPE( ′a))
− extended-distance (u n) y − extended-distance z t)

−−−−→ max (extended-distance (would-be-Cauchy u) z + extended-distance
y t) (extended-distance (would-be-Cauchy u) t + extended-distance y z) + 2 ∗
deltaG(TYPE( ′a)) − extended-distance (would-be-Cauchy u) y − extended-distance
z t

apply (auto intro!: tendsto-intros)
using lim that u by (auto simp add: metric-space-class.extended-distance-symmetric)

ultimately have I : max (extended-distance (would-be-Cauchy u) z + ex-
tended-distance y t) (extended-distance (would-be-Cauchy u) t + extended-distance
y z) + 2 ∗ deltaG(TYPE( ′a)) − extended-distance (would-be-Cauchy u) y − ex-
tended-distance z t ≥ 0

using LIMSEQ-le-const by blast
then show ?thesis unfolding C by auto

next

case M : (middle c d)
then have cd: c ∈ extended-distance-set ∩ wo.underS (middle c d)

d ∈ extended-distance-set ∩ wo.underS (middle c d)
using 2 metric-space-class.extended-distance-set-middle ′[of c d] by auto

have bdd: bdd-above ((λw. extended-distance s w − max (extended-distance
c w) (extended-distance d w))‘ (wo.underS (middle c d) ∩ extended-distance-set))

if s ∈ extended-distance-set for s
proof (rule bdd-aboveI2 )

fix w assume w: w ∈ wo.underS (middle c d) ∩ extended-distance-set
have extended-distance s w ≤ extended-distance s c + extended-distance c

w
using w that metric-space-class.extended-distance-triang-ineq cd by auto
also have ... ≤ extended-distance s c + max (extended-distance c w)

(extended-distance d w)
by auto

finally show extended-distance s w − max (extended-distance c w)
(extended-distance d w)

≤ extended-distance s c
by auto

qed

have I : extended-distance y w − max (extended-distance c w) (extended-distance
d w)

≤ max (extended-distance y z + extended-distance t (middle c d))
(extended-distance y t + extended-distance z (middle c d)) + 2 ∗ deltaG(TYPE( ′a))

− (extended-distance c d)/2 − extended-distance z t
if w: w ∈ wo.underS (middle c d) ∩ extended-distance-set for w

proof −
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have J : (extended-distance c d)/2 + extended-distance s w − max
(extended-distance c w) (extended-distance d w) ≤ extended-distance s (middle c
d)

if s ∈ wo.underS a ∩ extended-distance-set for s
proof −

have (extended-distance c d)/2 + extended-distance s w − max
(extended-distance c w) (extended-distance d w)

≤ (extended-distance c d)/2
+ (SUP w∈wo.underS (middle c d) ∩ extended-distance-set.

extended-distance s w − max (extended-distance c w) (extended-distance d w))
apply auto apply (rule cSUP-upper) using w bdd that by auto

also have ... = extended-distance s (middle c d)
apply (rule metric-space-class.extended-distance-middle-formula[symmetric])

using that M by auto
finally show ?thesis by simp

qed
have (extended-distance c d)/2 + extended-distance y w − max (extended-distance

c w) (extended-distance d w) + extended-distance z t
≤ (extended-distance c d)/2 + max (extended-distance y z + ex-

tended-distance t w) (extended-distance y t + extended-distance z w) + 2 ∗ deltaG(TYPE( ′a))
− max (extended-distance c w) (extended-distance d w)

using IH [of y w z t] w yzt M by (auto simp add: metric-space-class.extended-distance-symmetric)
also have ... = max (extended-distance y z + (extended-distance c d)/2

+ extended-distance t w − max (extended-distance c w) (extended-distance d w))
(extended-distance y t + (extended-distance c d)/2 +

extended-distance z w − max (extended-distance c w) (extended-distance d w))
+ 2 ∗ deltaG(TYPE( ′a))

by auto
also have ... ≤ max (extended-distance y z + extended-distance t

(middle c d)) (extended-distance y t + extended-distance z (middle c d)) + 2 ∗
deltaG(TYPE( ′a))

using J [OF yzt(3 )] J [OF yzt(2 )] by auto
finally show ?thesis by simp

qed
have ∗: (SUP w∈wo.underS (middle c d) ∩ extended-distance-set. ex-

tended-distance y w − max (extended-distance c w) (extended-distance d w)) ≤
max (extended-distance y z + extended-distance t (middle c d))

(extended-distance y t + extended-distance z (middle c d)) + 2 ∗ deltaG(TYPE( ′a))
− (extended-distance c d)/2 − extended-distance z t

apply (rule cSUP-least) using yzt(1 ) M I by auto
have extended-distance y (middle c d) + extended-distance z t

= (extended-distance c d)/2 + (SUP w∈wo.underS (middle c d) ∩ ex-
tended-distance-set. extended-distance y w − max (extended-distance c w) (extended-distance
d w)) + extended-distance z t

apply simp apply (rule metric-space-class.extended-distance-middle-formula)
using yzt(1 ) M by auto

also have ... ≤ max (extended-distance y z + extended-distance t (middle c d))
(extended-distance y t + extended-distance z (middle c d)) + 2 ∗ deltaG(TYPE( ′a))

using ∗ by simp
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finally show extended-distance a y + extended-distance z t
≤ max (extended-distance a z + extended-distance y t) (extended-distance

a t + extended-distance y z) + 2 ∗ deltaG(TYPE( ′a))
unfolding M by (auto simp add: metric-space-class.extended-distance-symmetric)

qed

show ?thesis
proof (auto)

fix x y z t assume H : x ∈ wo.under a x ∈ extended-distance-set
y ∈ wo.under a y ∈ extended-distance-set
z ∈ wo.under a z ∈ extended-distance-set
t ∈ wo.under a t ∈ extended-distance-set

have ∗: ((x ∈ wo.underS a ∩ extended-distance-set) ∨ (x = a))
∧ ((y ∈ wo.underS a ∩ extended-distance-set) ∨ (y = a))
∧ ((z ∈ wo.underS a ∩ extended-distance-set) ∨ (z = a))
∧ ((t ∈ wo.underS a ∩ extended-distance-set) ∨ (t = a))

using H by (simp add: underS-def under-def )
have d: 2 ∗ deltaG(TYPE( ′a)) ≥ 0 by auto

show extended-distance x y + extended-distance z t ≤ max (extended-distance
x z + extended-distance y t) (extended-distance x t + extended-distance y z) + 2 ∗
deltaG(TYPE( ′a))

using ∗ apply (auto simp add: metric-space-class.extended-distance-symmetric
a)

using IH [of x y z t] apply (simp add: metric-space-class.extended-distance-symmetric)
using main-ineq[of z x y] apply (simp add: metric-space-class.extended-distance-symmetric)
using main-ineq[of t x y] apply (simp add: metric-space-class.extended-distance-symmetric)

using 2 metric-space-class.extended-distance-triang-ineq[of x a y] H apply
(simp add: metric-space-class.extended-distance-symmetric) using d apply linar-
ith

using main-ineq[of x z t] apply (simp add: metric-space-class.extended-distance-symmetric)
using d apply linarith
using d apply linarith

using main-ineq[of y z t] apply (simp add: metric-space-class.extended-distance-symmetric)
using d apply linarith
using d apply linarith
using 2 metric-space-class.extended-distance-triang-ineq[of t a z] H apply

(simp add: metric-space-class.extended-distance-symmetric) using d apply linar-
ith

done
qed

qed
qed
define b where b = wo.max2 (wo.max2 x y) (wo.max2 z t)
have x ∈ wo.under b y ∈ wo.under b z ∈ wo.under b t ∈ wo.under b unfolding

b-def
apply (auto simp add: under-def )

by (metis UNIV-I metric-space-class.Bonk-Schramm-extension-unfolded-wo-props(1 )
mem-Collect-eq under-def well-order-on-Well-order wo.TOTALS wo.max2-iff )+
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then show ?thesis using ineq-rec[of b] assms by auto
qed

lemma (in Gromov-hyperbolic-space) Bonk-Schramm-extension-hyperbolic:
Gromov-hyperbolic-subset (deltaG(TYPE( ′a))) (UNIV ::( ′a Bonk-Schramm-extension)

set)
apply (rule Gromov-hyperbolic-subsetI , simp, transfer fixing: deltaG)
using metric-space-class.extended-distance-set-def Bonk-Schramm-extension-unfolded-hyperbolic
by auto

instantiation Bonk-Schramm-extension :: (Gromov-hyperbolic-space) Gromov-hyperbolic-space-geodesic
begin
definition deltaG-Bonk-Schramm-extension::( ′a Bonk-Schramm-extension) itself
⇒ real where

deltaG-Bonk-Schramm-extension - = deltaG(TYPE( ′a))

instance apply standard
unfolding deltaG-Bonk-Schramm-extension-def using Bonk-Schramm-extension-hyperbolic
by auto
end

Finally, it follows that the Bonk Schramm extension of a 0-hyperbolic space
(in which it embeds isometrically) is a metric tree or, equivalently, a geodesic
0-hyperbolic space (the equivalence is proved at the end of Geodesic_Spaces.thy).
instance Bonk-Schramm-extension :: (Gromov-hyperbolic-space-0 ) Gromov-hyperbolic-space-0-geodesic
by (standard, simp add: deltaG-Bonk-Schramm-extension-def delta0 )

It then follows that it is also a metric tree, from what we have already
proved. We write explicitly for definiteness.
instance Bonk-Schramm-extension :: (Gromov-hyperbolic-space-0 ) metric-tree

by standard

13.2 Applications

We deduce that we can extend results on Gromov-hyperbolic spaces without
the geodesicity assumption, even if it is used in the proofs. These results are
given for illustrative purpose mainly, as one works most often in geodesic
spaces anyway.
The following results have already been proved in hyperbolic geodesic spaces.
The same results follow in a general hyperbolic space, as everything is invari-
ant under isometries and can thus be pulled from the corresponding result
in the Bonk Schramm extension. The straightforward proofs only express
this invariance under isometries of all the properties under consideration.
proposition (in Gromov-hyperbolic-space) lipschitz-path-close-to-geodesic ′:

fixes c::real ⇒ ′a
assumes lipschitz-on M {A..B} c

geodesic-segment-between G (c A) (c B)
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x ∈ G
shows infdist x (c‘{A..B}) ≤ (4/ln 2 ) ∗ deltaG(TYPE( ′a)) ∗ max 0 (ln (B−A))

+ M
proof −
interpret BS : Gromov-hyperbolic-space-geodesic dist::( ′a Bonk-Schramm-extension
⇒ ′a Bonk-Schramm-extension ⇒ real) uniformity open (λ-. deltaG(TYPE( ′a)))

apply standard using Bonk-Schramm-extension-hyperbolic by auto

have infdist x (c‘{A..B}) = infdist (to-Bonk-Schramm-extension x) ((to-Bonk-Schramm-extension
o c)‘{A..B})

unfolding image-comp[symmetric] apply (rule isometry-preserves-infdist[symmetric,
of UNIV ])

using to-Bonk-Schramm-extension-isometry by auto
also have ... ≤ (4/ln 2 ) ∗ deltaG(TYPE(( ′a))) ∗ max 0 (ln (B−A)) + (1∗M )
apply (rule BS .lipschitz-path-close-to-geodesic[of - - - - to-Bonk-Schramm-extension‘G])
apply (rule lipschitz-on-compose)
using assms apply simp

apply (meson UNIV-I isometry-on-lipschitz lipschitz-on-def to-Bonk-Schramm-extension-isometry)
unfolding comp-def apply (rule isometry-preserves-geodesic-segment-between[of

UNIV ])
using assms to-Bonk-Schramm-extension-isometry by auto

finally show ?thesis by auto
qed

theorem (in Gromov-hyperbolic-space) Morse-Gromov-theorem ′:
fixes f ::real ⇒ ′a
assumes lambda C−quasi-isometry-on {a..b} f

geodesic-segment-between G (f a) (f b)
shows hausdorff-distance (f‘{a..b}) G ≤ 92 ∗ lambda2 ∗ (C + deltaG(TYPE( ′a)))

proof −
interpret BS : Gromov-hyperbolic-space-geodesic dist::( ′a Bonk-Schramm-extension
⇒ ′a Bonk-Schramm-extension ⇒ real) uniformity open (λ-. deltaG(TYPE( ′a)))

apply standard using Bonk-Schramm-extension-hyperbolic by auto
have hausdorff-distance (f‘{a..b}) (G) = hausdorff-distance ((to-Bonk-Schramm-extension

o f )‘{a..b}) ((to-Bonk-Schramm-extension)‘G)
unfolding image-comp[symmetric] apply (rule isometry-preserves-hausdorff-distance[symmetric,

of UNIV ])
using to-Bonk-Schramm-extension-isometry by auto

also have ... ≤ 92 ∗ (lambda∗1 )^2 ∗ ((C∗1+0 ) + deltaG(TYPE( ′a)))
apply (intro BS .Morse-Gromov-theorem quasi-isometry-on-compose[where Y

= UNIV ])
using assms isometry-quasi-isometry-on to-Bonk-Schramm-extension-isometry

apply auto
using isometry-preserves-geodesic-segment-between by blast

finally show ?thesis by simp
qed

theorem (in Gromov-hyperbolic-space) Morse-Gromov-theorem2 ′:
fixes c d::real ⇒ ′a
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assumes lambda C−quasi-isometry-on {A..B} c
lambda C−quasi-isometry-on {A..B} d
c A = d A c B = d B

shows hausdorff-distance (c‘{A..B}) (d‘{A..B}) ≤ 184 ∗ lambda^2 ∗ (C +
deltaG(TYPE( ′a)))
proof −
interpret BS : Gromov-hyperbolic-space-geodesic dist::( ′a Bonk-Schramm-extension
⇒ ′a Bonk-Schramm-extension ⇒ real) uniformity open (λ-. deltaG(TYPE( ′a)))

apply standard using Bonk-Schramm-extension-hyperbolic by auto
have hausdorff-distance (c‘{A..B}) (d‘{A..B}) = hausdorff-distance ((to-Bonk-Schramm-extension

o c)‘{A..B}) ((to-Bonk-Schramm-extension o d)‘{A..B})
unfolding image-comp[symmetric] apply (rule isometry-preserves-hausdorff-distance[symmetric,

of UNIV ])
using to-Bonk-Schramm-extension-isometry by auto

also have ... ≤ 184 ∗ (lambda∗1 )^2 ∗ ((C∗1+0 ) + deltaG(TYPE( ′a)))
apply (intro BS .Morse-Gromov-theorem2 quasi-isometry-on-compose[where Y

= UNIV ])
using assms isometry-quasi-isometry-on to-Bonk-Schramm-extension-isometry

by auto
finally show ?thesis by simp

qed

lemma Gromov-hyperbolic-invariant-under-quasi-isometry-explicit ′:
fixes f :: ′a::geodesic-space ⇒ ′b::Gromov-hyperbolic-space
assumes lambda C−quasi-isometry f
shows Gromov-hyperbolic-subset (752 ∗ lambda^3 ∗ (C + deltaG(TYPE( ′b))))

(UNIV ::( ′a set))
proof −
interpret BS : Gromov-hyperbolic-space-geodesic dist::( ′b Bonk-Schramm-extension
⇒ ′b Bonk-Schramm-extension ⇒ real) uniformity open (λ-. deltaG(TYPE( ′b)))

apply standard using Bonk-Schramm-extension-hyperbolic by auto
have A: (lambda ∗ 1 ) (C ∗ 1 + 0 )−quasi-isometry-on UNIV (to-Bonk-Schramm-extension

o f )
by (rule quasi-isometry-on-compose[OF assms, of - - UNIV ])
(auto simp add: isometry-quasi-isometry-on[OF to-Bonk-Schramm-extension-isometry])

have ∗: deltaG(TYPE( ′b)) = deltaG(TYPE( ′b Bonk-Schramm-extension))
by (simp add: deltaG-Bonk-Schramm-extension-def )

show ?thesis
unfolding ∗
apply (rule Gromov-hyperbolic-invariant-under-quasi-isometry-explicit[of - -

to-Bonk-Schramm-extension o f ])
using A by auto

qed

theorem Gromov-hyperbolic-invariant-under-quasi-isometry ′:
assumes quasi-isometric (UNIV ::( ′a::geodesic-space) set) (UNIV ::( ′b::Gromov-hyperbolic-space)

set)
shows ∃ delta. Gromov-hyperbolic-subset delta (UNIV :: ′a set)

proof −
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obtain C lambda f where f : lambda C−quasi-isometry-between (UNIV :: ′a set)
(UNIV :: ′b set) f

using assms unfolding quasi-isometric-def by auto
show ?thesis using Gromov-hyperbolic-invariant-under-quasi-isometry-explicit ′[OF

quasi-isometry-betweenD(1 )[OF f ]] by blast
qed

end

theory Gromov-Boundary
imports Gromov-Hyperbolicity Eexp-Eln

begin

14 Constructing a distance from a quasi-distance

Below, we will construct a distance on the Gromov completion of a hyper-
bolic space. The geometrical object that arises naturally is almost a distance,
but it does not satisfy the triangular inequality. There is a general process to
turn such a quasi-distance into a genuine distance, as follows: define the new
distance d̃(x, y) to be the infimum of d(x, u1) + d(u1, u2) + · · ·+ d(un−1, x)
over all sequences of points (of any length) connecting x to y. It is clear
that it satisfies the triangular inequality, is symmetric, and d̃(x, y) ≤ d(x, y).
What is not clear, however, is if d̃(x, y) can be zero if x 6= y, or more gener-
ally how one can bound d̃ from below. The main point of this contruction
is that, if d satisfies the inequality d(x, z) ≤

√
2max(d(x, y), d(y, z)), then

one has d̃(x, y) ≥ d(x, y)/2 (and in particular d̃ defines the same topology,
the same set of Lipschitz functions, and so on, as d).
This statement can be found in [Bourbaki, topologie generale, chapitre 10]
or in [Ghys-de la Harpe] for instance. We follow their proof.
definition turn-into-distance::( ′a ⇒ ′a ⇒ real) ⇒ ( ′a ⇒ ′a ⇒ real)

where turn-into-distance f x y = Inf {(
∑

i ∈ {0 ..<n}. f (u i) (u (Suc i)))| u
(n::nat). u 0 = x ∧ u n = y}

locale Turn-into-distance =
fixes f :: ′a ⇒ ′a ⇒ real
assumes nonneg: f x y ≥ 0

and sym: f x y = f y x
and self-zero: f x x = 0
and weak-triangle: f x z ≤ sqrt 2 ∗ max (f x y) (f y z)

begin

The two lemmas below are useful when dealing with Inf results, as they
always require the set under consideration to be non-empty and bounded
from below.
lemma bdd-below [simp]:
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bdd-below {(
∑

i = 0 ..<n. f (u i) (u (Suc i)))| u (n::nat). u 0 = x ∧ u n = y}
apply (rule bdd-belowI [of - 0 ]) using nonneg by (auto simp add: sum-nonneg)

lemma nonempty:
{
∑

i = 0 ..<n. f (u i) (u (Suc i)) |u n. u 0 = x ∧ u n = y} 6= {}
proof −

define u::nat ⇒ ′a where u = (λn. if n = 0 then x else y)
define n::nat where n = 1
have u 0 = x ∧ u n = y unfolding u-def n-def by auto
then have (

∑
i = 0 ..<n. f (u i) (u (Suc i))) ∈ {

∑
i = 0 ..<n. f (u i) (u (Suc

i)) |u n. u 0 = x ∧ u n = y}
by auto

then show ?thesis by auto
qed

We can now prove that turn_into_distance f satisfies all the properties
of a distance. First, it is nonnegative.
lemma TID-nonneg:

turn-into-distance f x y ≥ 0
unfolding turn-into-distance-def apply (rule cInf-greatest[OF nonempty])
using nonneg by (auto simp add: sum-nonneg)

For the symmetry, we use the symmetry of f , and go backwards along a
chain of points, replacing a sequence from x to y with a sequence from y to
x.
lemma TID-sym:

turn-into-distance f x y = turn-into-distance f y x
proof −

have turn-into-distance f x y ≤ Inf {(
∑

i ∈ {0 ..<n}. f (u i) (u (Suc i)))| u
(n::nat). u 0 = y ∧ u n = x} for x y

proof (rule cInf-greatest[OF nonempty], auto)
fix u::nat ⇒ ′a and n assume U : y = u 0 x = u n
define v::nat ⇒ ′a where v = (λi. u (n−i))
have V : v 0 = x v n = y unfolding v-def using U by auto

have (
∑

i = 0 ..<n. f (u i) (u (Suc i))) = (
∑

i = 0 ..<n. (λi. f (u i) (u (Suc
i))) (n−1−i))

apply (rule sum.reindex-bij-betw[symmetric])
by (rule bij-betw-byWitness[of - λi. n−1−i], auto)

also have ... = (
∑

i = 0 ..<n. f (v (Suc i)) (v i))
apply (rule sum.cong) unfolding v-def by (auto simp add: Suc-diff-Suc)

also have ... = (
∑

i = 0 ..<n. f (v i) (v (Suc i)))
using sym by auto

finally have (
∑

i = 0 ..<n. f (u i) (u (Suc i))) = (
∑

i = 0 ..<n. f (v i) (v
(Suc i)))

by simp

moreover have turn-into-distance f x y ≤ (
∑

i = 0 ..<n. f (v i) (v (Suc i)))
unfolding turn-into-distance-def apply (rule cInf-lower)
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using V by auto
finally show turn-into-distance f (u n) (u 0 ) ≤ (

∑
i = 0 ..<n. f (u i) (u (Suc

i)))
using U by auto

qed
then have ∗: turn-into-distance f x y ≤ turn-into-distance f y x for x y

unfolding turn-into-distance-def by auto
show ?thesis using ∗[of x y] ∗[of y x] by simp

qed

There is a trivial upper bound by f , using the single chain x, y.
lemma upper :

turn-into-distance f x y ≤ f x y
unfolding turn-into-distance-def proof (rule cInf-lower , auto)

define u::nat ⇒ ′a where u = (λn. if n = 0 then x else y)
define n::nat where n = 1
have u 0 = x ∧ u n = y ∧ f x y = (

∑
i = 0 ..<n. f (u i) (u (Suc i))) unfolding

u-def n-def by auto
then show ∃ u n. f x y = (

∑
i = 0 ..<n. f (u i) (u (Suc i))) ∧ u 0 = x ∧ u n

= y
by auto

qed

The new distance vanishes on a pair of equal points, as this is already the
case for f .
lemma TID-self-zero:

turn-into-distance f x x = 0
using upper [of x x] TID-nonneg[of x x] self-zero[of x] by auto

For the triangular inequality, we concatenate a sequence from x to y almost
realizing the infimum, and a sequence from y to z almost realizing the infi-
mum, to obtain a sequence from x to z along which the sums of f is almost
bounded by turn_into_distance f x y + turn_into_distance f y z.
lemma triangle:

turn-into-distance f x z ≤ turn-into-distance f x y + turn-into-distance f y z
proof −

have turn-into-distance f x z ≤ turn-into-distance f x y + turn-into-distance f y
z + e if e > 0 for e

proof −
have Inf {(

∑
i ∈ {0 ..<n}. f (u i) (u (Suc i)))| u (n::nat). u 0 = x ∧ u n =

y} < turn-into-distance f x y + e/2
unfolding turn-into-distance-def using ‹e > 0 › by auto

then have ∃ a ∈ {(
∑

i ∈ {0 ..<n}. f (u i) (u (Suc i)))| u (n::nat). u 0 = x ∧
u n = y}. a < turn-into-distance f x y + e/2

by (rule cInf-lessD[OF nonempty])
then obtain u n where U : u 0 = x u n = y (

∑
i ∈ {0 ..<n}. f (u i) (u (Suc

i))) < turn-into-distance f x y + e/2
by auto
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have Inf {(
∑

i ∈ {0 ..<m}. f (v i) (v (Suc i)))| v (m::nat). v 0 = y ∧ v m =
z} < turn-into-distance f y z + e/2

unfolding turn-into-distance-def using ‹e > 0 › by auto
then have ∃ a ∈ {(

∑
i ∈ {0 ..<m}. f (v i) (v (Suc i)))| v (m::nat). v 0 = y

∧ v m = z}. a < turn-into-distance f y z + e/2
by (rule cInf-lessD[OF nonempty])

then obtain v m where V : v 0 = y v m = z (
∑

i ∈ {0 ..<m}. f (v i) (v (Suc
i))) < turn-into-distance f y z + e/2

by auto

define w where w = (λi. if i < n then u i else v (i−n))
have ∗: w 0 = x w (n+m) = z

unfolding w-def using U V by auto
have turn-into-distance f x z ≤ (

∑
i = 0 ..<n+m. f (w i) (w (Suc i)))

unfolding turn-into-distance-def apply (rule cInf-lower) using ∗ by auto
also have ... = (

∑
i = 0 ..<n. f (w i) (w (Suc i))) + (

∑
i = n..<n+m. f (w

i) (w (Suc i)))
by (simp add: sum.atLeastLessThan-concat)

also have ... = (
∑

i = 0 ..<n. f (w i) (w (Suc i))) + (
∑

i = 0 ..<m. f (w
(i+n)) (w (Suc (i+n))))

by (auto intro!: sum.reindex-bij-betw[symmetric] bij-betw-byWitness[of - λi.
i−n])

also have ... = (
∑

i = 0 ..<n. f (u i) (u (Suc i))) + (
∑

i = 0 ..<m. f (v i) (v
(Suc i)))

unfolding w-def apply (auto intro!: sum.cong)
using U (2 ) V (1 ) Suc-lessI by fastforce

also have ... < turn-into-distance f x y + e/2 + turn-into-distance f y z + e/2
using U (3 ) V (3 ) by auto

finally show ?thesis by auto
qed
then show ?thesis

using field-le-epsilon by blast
qed

Now comes the only nontrivial statement of the construction, the fact that
the new distance is bounded from below by f/2.
Here is the mathematical proof. We show by induction that all chains from
x to y satisfy this bound. Assume this is done for all chains of length
< n, we do it for a chain of length n. Write S =

∑
f(ui, ui+1) for the

sum along the chain. Introduce p the last index where the sum is ≤ S/2.
Then the sum from 0 to p is ≤ S/2, and the sum from p + 1 to n is also
≤ S/2 (by maximality of p). The induction assumption gives that f(x, up)
is bounded by twice the sum from 0 to p, which is at most S. Same thing
for f(up+1, y). With the weird triangle inequality applied two times, we get
f(x, y) ≤ 2max(f(x, up), f(up, up+1), f(up+1, y)) ≤ 2S, as claimed.
The formalization presents no difficulty.
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lemma lower :
f x y ≤ 2 ∗ turn-into-distance f x y

proof −
have I : f (u 0 ) (u n) ≤ (

∑
i ∈ {0 ..<n}. f (u i) (u (Suc i))) ∗ 2 for n u

proof (induction n arbitrary: u rule: less-induct)
case (less n)
show f (u 0 ) (u n) ≤ (

∑
i = 0 ..<n. f (u i) (u (Suc i))) ∗ 2

proof (cases n = 0 )
case True
then have f (u 0 ) (u n) = 0 using self-zero by auto
then show ?thesis using True by auto

next
case False
then have n > 0 by auto
define S where S = (

∑
i = 0 ..<n. f (u i) (u (Suc i)))

have S ≥ 0 unfolding S-def using nonneg by (auto simp add: sum-nonneg)
have ∃ p. p < n ∧ (

∑
i = 0 ..<p. f (u i) (u (Suc i))) ≤ S/2 ∧ (

∑
i = Suc

p..<n. f (u i) (u (Suc i))) ≤ S/2
proof (cases S = 0 )

case True
have (

∑
i = Suc 0 ..<n. f (u i) (u (Suc i))) = (

∑
i = 0 ..<n. f (u i) (u

(Suc i))) − f (u 0 ) (u (Suc 0 ))
using sum.atLeast-Suc-lessThan[OF ‹n > 0 ›, of λi. f (u i) (u (Suc i))]

by simp
also have ... ≤ S/2 using True S-def nonneg by auto
finally have 0 < n ∧ (

∑
i = 0 ..<0 . f (u i) (u (Suc i))) ≤ S/2 ∧ (

∑
i =

Suc 0 ..<n. f (u i) (u (Suc i))) ≤ S/2
using ‹n > 0 › ‹S = 0 › by auto

then show ?thesis by auto
next

case False
then have S > 0 using ‹S ≥ 0 › by simp
define A where A = {q. q ≤ n ∧ (

∑
i = 0 ..<q. f (u i) (u (Suc i))) ≤

S/2}
have 0 ∈ A unfolding A-def using ‹S > 0 › ‹n > 0 › by auto
have n /∈ A unfolding A-def using ‹S > 0 › unfolding S-def by auto
define p where p = Max A

have p ∈ A unfolding p-def apply (rule Max-in) using ‹0 ∈ A› unfolding
A-def by auto

then have L: p ≤ n (
∑

i = 0 ..<p. f (u i) (u (Suc i))) ≤ S/2 unfolding
A-def by auto

then have p < n using ‹n /∈ A› ‹p ∈ A› le-neq-trans by blast
have Suc p /∈ A unfolding p-def

by (metis (no-types, lifting) A-def Max-ge Suc-n-not-le-n infinite-nat-iff-unbounded
mem-Collect-eq not-le p-def )

then have ∗: (
∑

i = 0 ..<Suc p. f (u i) (u (Suc i))) > S/2
unfolding A-def using ‹p < n› by auto

have (
∑

i = Suc p..<n. f (u i) (u (Suc i))) = S − (
∑

i = 0 ..<Suc p. f
(u i) (u (Suc i)))
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unfolding S-def using ‹p < n› by (metis (full-types) Suc-le-eq sum-diff-nat-ivl
zero-le)

also have ... ≤ S/2 using ∗ by auto
finally have p < n ∧ (

∑
i = 0 ..<p. f (u i) (u (Suc i))) ≤ S/2 ∧ (

∑
i =

Suc p..<n. f (u i) (u (Suc i))) ≤ S/2
using ‹p < n› L(2 ) by auto

then show ?thesis by auto
qed
then obtain p where P: p < n (

∑
i = 0 ..<p. f (u i) (u (Suc i))) ≤ S/2

(
∑

i = Suc p..<n. f (u i) (u (Suc i))) ≤ S/2
by auto

have f (u 0 ) (u p) ≤ (
∑

i = 0 ..<p. f (u i) (u (Suc i))) ∗ 2
apply (rule less.IH ) using ‹p < n› by auto

then have A: f (u 0 ) (u p) ≤ S using P(2 ) by auto
have B: f (u p) (u (Suc p)) ≤ S

apply (rule sum-nonneg-leq-bound[of {0 ..<n} λi. f (u i) (u (Suc i))])
using nonneg S-def ‹p < n› by auto

have f (u (0 + Suc p)) (u ((n−Suc p) + Suc p)) ≤ (
∑

i = 0 ..<n−Suc p. f
(u (i + Suc p)) (u (Suc i + Suc p))) ∗ 2

apply (rule less.IH ) using ‹n > 0 › by auto
also have ... = 2 ∗ (

∑
i = Suc p..<n. f (u i) (u (Suc i)))

by (auto intro!: sum.reindex-bij-betw bij-betw-byWitness[of - λi. i − Suc p])
also have ... ≤ S using P(3 ) by simp
finally have C : f (u (Suc p)) (u n) ≤ S

using ‹p < n› by auto

have f (u 0 ) (u n) ≤ sqrt 2 ∗ max (f (u 0 ) (u p)) (f (u p) (u n))
using weak-triangle by simp

also have ... ≤ sqrt 2∗ max (f (u 0 ) (u p)) (sqrt 2 ∗ max (f (u p) (u (Suc
p))) (f (u (Suc p)) (u n)))

using weak-triangle by simp (meson max.cobounded2 order-trans)
also have ... ≤ sqrt 2 ∗ max S (sqrt 2 ∗ max S S)

using A B C by auto (simp add: le-max-iff-disj)
also have ... ≤ sqrt 2 ∗ max (sqrt 2 ∗ S) (sqrt 2 ∗ max S S)

apply (intro mult-left-mono max.mono) using ‹S ≥ 0 › less-eq-real-def by
auto

also have ... = 2 ∗ S
by auto

finally show ?thesis
unfolding S-def by simp

qed
qed
have f x y/2 ≤ turn-into-distance f x y

unfolding turn-into-distance-def by (rule cInf-greatest[OF nonempty], auto
simp add: I )

then show ?thesis by simp
qed

end
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15 The Gromov completion of a hyperbolic space
15.1 The Gromov boundary as a set

A sequence in a Gromov hyperbolic space converges to a point in the bound-
ary if the Gromov product (un, um)e tends to infinity when m,n →i nfty.
The point at infinity is defined as the equivalence class of such sequences,
for the relation u ∼ v iff (un, vn)e → ∞ (or, equivalently, (un, vm)e → ∞
when m,n→∞, or one could also change basepoints). Hence, the Gromov
boundary is naturally defined as a quotient type. There is a difficulty: it can
be empty in general, hence defining it as a type is not always possible. One
could introduce a new typeclass of Gromov hyperbolic spaces for which the
boundary is not empty (unboundedness is not enough, think of infinitely
many segments [0, n] all joined at 0), and then only define the boundary
of such spaces. However, this is tedious. Rather, we work with the Gro-
mov completion (containing the space and its boundary), this is always not
empty. The price to pay is that, in the definition of the completion, we have
to distinguish between sequences converging to the boundary and sequences
converging inside the space. This is more natural to proceed in this way as
the interesting features of the boundary come from the fact that its sits at
infinity of the initial space, so their relations (and the topology of X ∪ ∂X)
are central.
definition Gromov-converging-at-boundary::(nat ⇒ ( ′a::Gromov-hyperbolic-space))
⇒ bool

where Gromov-converging-at-boundary u = (∀ a. ∀ (M ::real). ∃N . ∀n ≥ N . ∀
m ≥ N . Gromov-product-at a (u m) (u n) ≥ M )

lemma Gromov-converging-at-boundaryI :
assumes

∧
M . ∃N . ∀n ≥ N . ∀m ≥ N . Gromov-product-at a (u m) (u n) ≥ M

shows Gromov-converging-at-boundary u
unfolding Gromov-converging-at-boundary-def proof (auto)

fix b:: ′a and M ::real
obtain N where ∗:

∧
m n. n ≥ N =⇒ m ≥ N =⇒ Gromov-product-at a (u m)

(u n) ≥ M + dist a b
using assms[of M + dist a b] by auto

have Gromov-product-at b (u m) (u n) ≥ M if m ≥ N n ≥ N for m n
using ∗[OF that] Gromov-product-at-diff1 [of a u m u n b] by (smt Gro-

mov-product-commute)
then show ∃N . ∀n ≥ N . ∀m ≥ N . M ≤ Gromov-product-at b (u m) (u n) by

auto
qed

lemma Gromov-converging-at-boundary-imp-unbounded:
assumes Gromov-converging-at-boundary u
shows (λn. dist a (u n)) −−−−→ ∞

proof −
have ∃N . ∀n ≥ N . dist a (u n) ≥ M for M ::real
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using assms unfolding Gromov-converging-at-boundary-def Gromov-product-e-x-x[symmetric]
by meson

then show ?thesis
unfolding tendsto-PInfty eventually-sequentially by (meson dual-order .strict-trans1

gt-ex less-ereal.simps(1 ))
qed

lemma Gromov-converging-at-boundary-imp-not-constant:
¬(Gromov-converging-at-boundary (λn. x))
using Gromov-converging-at-boundary-imp-unbounded[of (λn. x) x] Lim-bounded-PInfty

by auto

lemma Gromov-converging-at-boundary-imp-not-constant ′:
assumes Gromov-converging-at-boundary u
shows ¬(∀m n. u m = u n)
using Gromov-converging-at-boundary-imp-not-constant
by (metis (no-types) Gromov-converging-at-boundary-def assms order-refl)

We introduce a partial equivalence relation, defined over the sequences that
converge to infinity, and the constant sequences. Quotienting the space of
admissible sequences by this equivalence relation will give rise to the Gromov
completion.
definition Gromov-completion-rel::(nat ⇒ ′a::Gromov-hyperbolic-space) ⇒ (nat
⇒ ′a) ⇒ bool

where Gromov-completion-rel u v =
(((Gromov-converging-at-boundary u ∧ Gromov-converging-at-boundary v

∧ (∀ a. (λn. Gromov-product-at a (u n) (v n)) −−−−→ ∞)))
∨ (∀n m. u n = v m ∧ u n = u m ∧ v n = v m))

We need some basic lemmas to work separately with sequences tending to
the boundary and with constant sequences, as follows.
lemma Gromov-completion-rel-const [simp]:

Gromov-completion-rel (λn. x) (λn. x)
unfolding Gromov-completion-rel-def by auto

lemma Gromov-completion-rel-to-const:
assumes Gromov-completion-rel u (λn. x)
shows u n = x

using assms unfolding Gromov-completion-rel-def using Gromov-converging-at-boundary-imp-not-constant[of
x] by auto

lemma Gromov-completion-rel-to-const ′:
assumes Gromov-completion-rel (λn. x) u
shows u n = x

using assms unfolding Gromov-completion-rel-def using Gromov-converging-at-boundary-imp-not-constant[of
x] by auto

lemma Gromov-product-tendsto-PInf-a-b:
assumes (λn. Gromov-product-at a (u n) (v n)) −−−−→ ∞
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shows (λn. Gromov-product-at b (u n) (v n)) −−−−→ ∞
proof (rule tendsto-sandwich[of λn. ereal(Gromov-product-at a (u n) (v n)) + (−
dist a b) - - λn. ∞])

have ereal(Gromov-product-at b (u n) (v n)) ≥ ereal(Gromov-product-at a (u n)
(v n)) + (− dist a b) for n

using Gromov-product-at-diff1 [of a u n v n b] by auto
then show ∀ F n in sequentially. ereal (Gromov-product-at a (u n) (v n)) + ereal

(− dist a b) ≤ ereal (Gromov-product-at b (u n) (v n))
by auto

have (λn. ereal(Gromov-product-at a (u n) (v n)) + (− dist a b)) −−−−→ ∞ +
(− dist a b)

apply (intro tendsto-intros) using assms by auto
then show (λn. ereal (Gromov-product-at a (u n) (v n)) + ereal (− dist a b))
−−−−→ ∞ by simp
qed (auto)

lemma Gromov-converging-at-boundary-rel:
assumes Gromov-converging-at-boundary u
shows Gromov-completion-rel u u

unfolding Gromov-completion-rel-def using Gromov-converging-at-boundary-imp-unbounded[OF
assms] assms by auto

We can now prove that we indeed have an equivalence relation.
lemma part-equivp-Gromov-completion-rel:

part-equivp Gromov-completion-rel
proof (rule part-equivpI )

show ∃ x::(nat ⇒ ′a). Gromov-completion-rel x x
apply (rule exI [of - λn. (SOME a:: ′a. True)]) unfolding Gromov-completion-rel-def

by (auto simp add: convergent-const)

show symp Gromov-completion-rel
unfolding symp-def Gromov-completion-rel-def by (auto simp add: Gromov-product-commute)

metis+

show transp (Gromov-completion-rel::(nat ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ bool)
unfolding transp-def proof (intro allI impI )

fix u v w::nat⇒ ′a
assume UV : Gromov-completion-rel u v

and VW : Gromov-completion-rel v w
show Gromov-completion-rel u w
proof (cases ∀n m. v n = v m)

case True
define a where a = v 0
have ∗: v = (λn. a) unfolding a-def using True by auto
then have u n = v 0 w n = v 0 for n

using Gromov-completion-rel-to-const ′ Gromov-completion-rel-to-const UV
VW unfolding ∗ by auto force

then show ?thesis
using UV VW unfolding Gromov-completion-rel-def by auto
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next
case False
have (λn. Gromov-product-at a (u n) (w n)) −−−−→ ∞ for a
proof (rule tendsto-sandwich[of λn. min (ereal (Gromov-product-at a (u n)

(v n))) (ereal (Gromov-product-at a (v n) (w n))) + (− deltaG(TYPE( ′a))) - - λn.
∞])

have min (Gromov-product-at a (u n) (v n)) (Gromov-product-at a (v n) (w
n)) − deltaG(TYPE( ′a)) ≤ Gromov-product-at a (u n) (w n) for n

by (rule hyperb-ineq)
then have min (ereal (Gromov-product-at a (u n) (v n))) (ereal (Gromov-product-at

a (v n) (w n))) + ereal (− deltaG TYPE( ′a)) ≤ ereal (Gromov-product-at a (u n)
(w n)) for n

by (auto simp del: ereal-min simp add: ereal-min[symmetric])
then show ∀ F n in sequentially. min (ereal (Gromov-product-at a (u n) (v

n))) (ereal (Gromov-product-at a (v n) (w n)))
+ ereal (− deltaG TYPE( ′a)) ≤ ereal (Gromov-product-at a (u n)

(w n))
unfolding eventually-sequentially by auto

have (λn. min (ereal (Gromov-product-at a (u n) (v n))) (ereal (Gromov-product-at
a (v n) (w n))) + (− deltaG(TYPE( ′a)))) −−−−→ min ∞∞ + (− deltaG(TYPE( ′a)))

apply (intro tendsto-intros) using UV VW False unfolding Gro-
mov-completion-rel-def by auto

then show (λn. min (ereal (Gromov-product-at a (u n) (v n))) (ereal
(Gromov-product-at a (v n) (w n))) + (− deltaG(TYPE( ′a)))) −−−−→ ∞ by auto

qed (auto)
then show ?thesis

using False UV VW unfolding Gromov-completion-rel-def by auto
qed

qed
qed

We can now define the Gromov completion of a Gromov hyperbolic space,
considering either sequences converging to a point on the boundary, or se-
quences converging inside the space, and quotienting by the natural equiv-
alence relation.
quotient-type (overloaded) ′a Gromov-completion =

nat ⇒ ( ′a::Gromov-hyperbolic-space)
/ partial: Gromov-completion-rel

by (rule part-equivp-Gromov-completion-rel)

The Gromov completion contains is made of a copy of the original space,
and new points forming the Gromov boundary.
definition to-Gromov-completion::( ′a::Gromov-hyperbolic-space)⇒ ′a Gromov-completion

where to-Gromov-completion x = abs-Gromov-completion (λn. x)

definition from-Gromov-completion::( ′a::Gromov-hyperbolic-space) Gromov-completion
⇒ ′a

where from-Gromov-completion = inv to-Gromov-completion
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definition Gromov-boundary::( ′a::Gromov-hyperbolic-space) Gromov-completion set
where Gromov-boundary = UNIV − range to-Gromov-completion

lemma to-Gromov-completion-inj:
inj to-Gromov-completion

proof (rule injI )
fix x y:: ′a assume H : to-Gromov-completion x = to-Gromov-completion y
have Gromov-completion-rel (λn. x) (λn. y)

apply (subst Quotient3-rel[OF Quotient3-Gromov-completion, symmetric])
using H unfolding to-Gromov-completion-def by auto

then show x = y
using Gromov-completion-rel-to-const by auto

qed

lemma from-to-Gromov-completion [simp]:
from-Gromov-completion (to-Gromov-completion x) = x

unfolding from-Gromov-completion-def by (simp add: to-Gromov-completion-inj)

lemma to-from-Gromov-completion:
assumes x /∈ Gromov-boundary
shows to-Gromov-completion (from-Gromov-completion x) = x

using assms to-Gromov-completion-inj unfolding Gromov-boundary-def from-Gromov-completion-def
by (simp add: f-inv-into-f )

lemma not-in-Gromov-boundary:
assumes x /∈ Gromov-boundary
shows ∃ a. x = to-Gromov-completion a

using assms unfolding Gromov-boundary-def by auto

lemma not-in-Gromov-boundary ′ [simp]:
to-Gromov-completion x /∈ Gromov-boundary

unfolding Gromov-boundary-def by auto

lemma abs-Gromov-completion-in-Gromov-boundary [simp]:
assumes Gromov-converging-at-boundary u
shows abs-Gromov-completion u ∈ Gromov-boundary

using Gromov-completion-rel-to-const Gromov-converging-at-boundary-imp-not-constant ′

Gromov-converging-at-boundary-rel[OF assms]
Quotient3-rel[OF Quotient3-Gromov-completion] assms not-in-Gromov-boundary

to-Gromov-completion-def
by fastforce

lemma rep-Gromov-completion-to-Gromov-completion [simp]:
rep-Gromov-completion (to-Gromov-completion y) = (λn. y)

proof −
have Gromov-completion-rel (λn. y) (rep-Gromov-completion (abs-Gromov-completion

(λn. y)))
by (metis Gromov-completion-rel-const Quotient3-Gromov-completion rep-abs-rsp)
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then show ?thesis
unfolding to-Gromov-completion-def using Gromov-completion-rel-to-const ′

by blast
qed

To distinguish the case of points inside the space or in the boundary, we
introduce the following case distinction.
lemma Gromov-completion-cases [case-names to-Gromov-completion boundary, cases
type: Gromov-completion]:
(
∧

x. z = to-Gromov-completion x =⇒ P) =⇒ (z ∈ Gromov-boundary =⇒ P)
=⇒ P
apply (cases z ∈ Gromov-boundary) using not-in-Gromov-boundary by auto

15.2 Extending the original distance and the original Gro-
mov product to the completion

In this subsection, we extend the Gromov product to the boundary, by taking
limits along sequences tending to the point in the boundary. This does not
converge, but it does up to δ, so for definiteness we use a lim inf over all
sequences tending to the boundary point – one interest of this definition is
that the extended Gromov product still satisfies the hyperbolicity inequality.
One difficulty is that this extended Gromov product can take infinite values
(it does so exactly on the pair (x, x) where x is in the boundary), so we
should define this product in extended nonnegative reals.
We also extend the original distance, by +∞ on the boundary. This is not a
really interesting function, but it will be instrumental below. Again, this ex-
tended Gromov distance (not to be mistaken for the genuine distance we will
construct later on on the completion) takes values in extended nonnegative
reals.
Since the extended Gromov product and the extension of the original dis-
tance both take values in [0,+∞], it may seem natural to define them in
ennreal. This is the choice that was made in a previous implementation, but
it turns out that one keeps computing with these numbers, writing down
inequalities and subtractions. ennreal is ill suited for this kind of computa-
tions, as it only works well with additions. Hence, the implementation was
switched to ereal, where proofs are indeed much smoother.
To define the extended Gromov product, one takes a limit of the Gromov
product along any sequence, as it does not depend up to δ on the chosen
sequence. However, if one wants to keep the exact inequality that defines
hyperbolicity, but at all points, then using an infimum is the best choice.
definition extended-Gromov-product-at::( ′a::Gromov-hyperbolic-space) ⇒ ′a Gro-
mov-completion ⇒ ′a Gromov-completion ⇒ ereal
where extended-Gromov-product-at e x y = Inf {liminf (λn. ereal(Gromov-product-at

e (u n) (v n))) |u v. abs-Gromov-completion u = x ∧ abs-Gromov-completion v =
y ∧ Gromov-completion-rel u u ∧ Gromov-completion-rel v v}

298



definition extended-Gromov-distance::( ′a::Gromov-hyperbolic-space) Gromov-completion
⇒ ′a Gromov-completion ⇒ ereal

where extended-Gromov-distance x y =
(if x ∈ Gromov-boundary ∨ y ∈ Gromov-boundary then ∞

else ereal (dist (inv to-Gromov-completion x) (inv to-Gromov-completion
y)))

The extended distance and the extended Gromov product are invariant un-
der exchange of the points, readily from the definition.
lemma extended-Gromov-distance-commute:

extended-Gromov-distance x y = extended-Gromov-distance y x
unfolding extended-Gromov-distance-def by (simp add: dist-commute)

lemma extended-Gromov-product-nonneg [mono-intros, simp]:
0 ≤ extended-Gromov-product-at e x y

unfolding extended-Gromov-product-at-def by (rule Inf-greatest, auto intro: Lim-
inf-bounded always-eventually)

lemma extended-Gromov-distance-nonneg [mono-intros, simp]:
0 ≤ extended-Gromov-distance x y

unfolding extended-Gromov-distance-def by auto

lemma extended-Gromov-product-at-commute:
extended-Gromov-product-at e x y = extended-Gromov-product-at e y x

unfolding extended-Gromov-product-at-def
proof (rule arg-cong[of - - Inf ])

have {liminf (λn. ereal (Gromov-product-at e (u n) (v n))) |u v.
abs-Gromov-completion u = x ∧ abs-Gromov-completion v = y ∧ Gro-

mov-completion-rel u u ∧ Gromov-completion-rel v v} =
{liminf (λn. ereal (Gromov-product-at e (v n) (u n))) |u v.

abs-Gromov-completion v = y ∧ abs-Gromov-completion u = x ∧ Gro-
mov-completion-rel v v ∧ Gromov-completion-rel u u}

by (auto simp add: Gromov-product-commute)
then show {liminf (λn. ereal (Gromov-product-at e (u n) (v n))) |u v.

abs-Gromov-completion u = x ∧ abs-Gromov-completion v = y ∧ Gro-
mov-completion-rel u u ∧ Gromov-completion-rel v v} =

{liminf (λn. ereal (Gromov-product-at e (u n) (v n))) |u v.
abs-Gromov-completion u = y ∧ abs-Gromov-completion v = x ∧ Gro-

mov-completion-rel u u ∧ Gromov-completion-rel v v}
by auto

qed

Inside the space, the extended distance and the extended Gromov product
coincide with the original ones.
lemma extended-Gromov-distance-inside [simp]:

extended-Gromov-distance (to-Gromov-completion x) (to-Gromov-completion y)
= dist x y
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unfolding extended-Gromov-distance-def Gromov-boundary-def by (auto simp add:
to-Gromov-completion-inj)

lemma extended-Gromov-product-inside [simp] :
extended-Gromov-product-at e (to-Gromov-completion x) (to-Gromov-completion

y) = Gromov-product-at e x y
proof −

have A: u = (λn. z) if H : abs-Gromov-completion u = abs-Gromov-completion
(λn. z) Gromov-completion-rel u u for u and z:: ′a

proof −
have Gromov-completion-rel u (λn. z)

apply (subst Quotient3-rel[OF Quotient3-Gromov-completion, symmetric])
using H uniformity-dist-class-def by auto

then show ?thesis using Gromov-completion-rel-to-const by auto
qed
then have ∗: {u. abs-Gromov-completion u = to-Gromov-completion z ∧ Gro-

mov-completion-rel u u} = {(λn. z)} for z:: ′a
unfolding to-Gromov-completion-def by auto

have ∗∗: {F u v |u v. abs-Gromov-completion u = to-Gromov-completion x ∧
abs-Gromov-completion v = to-Gromov-completion y ∧ Gromov-completion-rel u u
∧ Gromov-completion-rel v v}

= {F (λn. x) (λn. y)} for F ::(nat ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ ereal
using ∗[of x] ∗[of y] unfolding extended-Gromov-product-at-def by (auto, smt

mem-Collect-eq singletonD)

have extended-Gromov-product-at e (to-Gromov-completion x) (to-Gromov-completion
y) = Inf {liminf (λn. ereal(Gromov-product-at e ((λn. x) n) ((λn. y) n)))}

unfolding extended-Gromov-product-at-def ∗∗ by simp
also have ... = ereal(Gromov-product-at e x y)

by (auto simp add: Liminf-const)
finally show extended-Gromov-product-at e (to-Gromov-completion x) (to-Gromov-completion

y) = Gromov-product-at e x y
by simp

qed

A point in the boundary is at infinite extended distance of everyone, includ-
ing itself: the extended distance is obtained by taking the supremum along
all sequences tending to this point, so even for one single point one can take
two sequences tending to it at different speeds, which results in an infinite
extended distance.
lemma extended-Gromov-distance-PInf-boundary [simp]:

assumes x ∈ Gromov-boundary
shows extended-Gromov-distance x y = ∞ extended-Gromov-distance y x = ∞

unfolding extended-Gromov-distance-def using assms by auto

By construction, the extended distance still satisfies the triangle inequality.
lemma extended-Gromov-distance-triangle [mono-intros]:
extended-Gromov-distance x z ≤ extended-Gromov-distance x y + extended-Gromov-distance

y z
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proof (cases x ∈ Gromov-boundary ∨ y ∈ Gromov-boundary ∨ z ∈ Gromov-boundary)
case True
then have ∗: extended-Gromov-distance x y + extended-Gromov-distance y z =
∞ by auto

show ?thesis by (simp add: ∗)
next

case False
then obtain a b c where abc: x = to-Gromov-completion a y = to-Gromov-completion

b z = to-Gromov-completion c
unfolding Gromov-boundary-def by auto

show ?thesis
unfolding abc using dist-triangle[of a c b] ennreal-leI by fastforce

qed

The extended Gromov product can be bounded by the extended distance,
just like inside the space.
lemma extended-Gromov-product-le-dist [mono-intros]:
extended-Gromov-product-at e x y ≤ extended-Gromov-distance (to-Gromov-completion

e) x
proof (cases x)

case boundary
then show ?thesis by simp

next
case (to-Gromov-completion a)
define v where v = rep-Gromov-completion y
have ∗: abs-Gromov-completion (λn. a) = x ∧ abs-Gromov-completion v = y ∧

Gromov-completion-rel (λn. a) (λn. a) ∧ Gromov-completion-rel v v
unfolding v-def to-Gromov-completion to-Gromov-completion-def
by (auto simp add: Quotient3-rep-reflp[OF Quotient3-Gromov-completion] Quo-

tient3-abs-rep[OF Quotient3-Gromov-completion])
have extended-Gromov-product-at e x y ≤ liminf (λn. ereal(Gromov-product-at

e a (v n)))
unfolding extended-Gromov-product-at-def apply (rule Inf-lower) using ∗ by

force
also have ... ≤ liminf (λn. ereal(dist e a))

using Gromov-product-le-dist(1 )[of e a] by (auto intro!: Liminf-mono)
also have ... = ereal(dist e a)

by (simp add: Liminf-const)
also have ... = extended-Gromov-distance (to-Gromov-completion e) x

unfolding to-Gromov-completion by auto
finally show ?thesis by auto

qed

lemma extended-Gromov-product-le-dist ′ [mono-intros]:
extended-Gromov-product-at e x y ≤ extended-Gromov-distance (to-Gromov-completion

e) y
using extended-Gromov-product-le-dist[of e y x] by (simp add: extended-Gromov-product-at-commute)

The Gromov product inside the space varies by at most the distance when
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one varies one of the points. We will need the same statement for the
extended Gromov product. The proof is done using this inequality inside
the space, and passing to the limit.
lemma extended-Gromov-product-at-diff3 [mono-intros]:

extended-Gromov-product-at e x y ≤ extended-Gromov-product-at e x z + ex-
tended-Gromov-distance y z
proof (cases (extended-Gromov-distance y z = ∞) ∨ (extended-Gromov-product-at
e x z = ∞))

case False
then have y /∈ Gromov-boundary z /∈ Gromov-boundary

using extended-Gromov-distance-PInf-boundary by auto
then obtain b c where b: y = to-Gromov-completion b and c: z = to-Gromov-completion

c
unfolding Gromov-boundary-def by auto

have extended-Gromov-distance y z = ereal(dist b c)
unfolding b c by auto

have extended-Gromov-product-at e x y ≤ (extended-Gromov-product-at e x z +
extended-Gromov-distance y z) + h if h>0 for h

proof −
have ∃ t∈{liminf (λn. ereal(Gromov-product-at e (u n) (w n))) |u w. abs-Gromov-completion

u = x
∧ abs-Gromov-completion w = z ∧ Gromov-completion-rel u u ∧

Gromov-completion-rel w w}.
t < extended-Gromov-product-at e x z + h

apply (subst Inf-less-iff [symmetric]) using False ‹h > 0 › extended-Gromov-product-nonneg[of
e x z] unfolding extended-Gromov-product-at-def [symmetric]

by (metis add.right-neutral ereal-add-left-cancel-less order-refl)
then obtain u w where H : abs-Gromov-completion u = x abs-Gromov-completion

w = z
Gromov-completion-rel u u Gromov-completion-rel w w

liminf (λn. ereal(Gromov-product-at e (u n) (w n))) <
extended-Gromov-product-at e x z + h

by auto
then have w: w n = c for n

using c Gromov-completion-rel-to-const Quotient3-Gromov-completion Quo-
tient3-rel to-Gromov-completion-def by fastforce

define v where v: v = (λn::nat. b)
have abs-Gromov-completion v = y Gromov-completion-rel v v

unfolding v by (auto simp add: b to-Gromov-completion-def )

have Gromov-product-at e (u n) (v n) ≤ Gromov-product-at e (u n) (w n) +
dist b c for n

unfolding v w using Gromov-product-at-diff3 [of e u n b c] by auto
then have ∗: ereal(Gromov-product-at e (u n) (v n)) ≤ ereal(Gromov-product-at

e (u n) (w n)) + extended-Gromov-distance y z for n
unfolding ‹extended-Gromov-distance y z = ereal(dist b c)› by fastforce

have extended-Gromov-product-at e x y ≤ liminf (λn. ereal(Gromov-product-at
e (u n) (v n)))

unfolding extended-Gromov-product-at-def by (rule Inf-lower , auto, rule
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exI [of - u], rule exI [of - v], auto, fact+)
also have ... ≤ liminf (λn. ereal(Gromov-product-at e (u n) (w n)) + ex-

tended-Gromov-distance y z)
apply (rule Liminf-mono) using ∗ unfolding eventually-sequentially by auto
also have ... = liminf (λn. ereal(Gromov-product-at e (u n) (w n))) + ex-

tended-Gromov-distance y z
apply (rule Liminf-add-ereal-right) using False by auto

also have ... ≤ extended-Gromov-product-at e x z + h + extended-Gromov-distance
y z

using less-imp-le[OF H (5 )] by (auto intro: mono-intros)
finally show ?thesis

by (simp add: algebra-simps)
qed
then show ?thesis

using ereal-le-epsilon by blast
next

case True
then show ?thesis by auto

qed

lemma extended-Gromov-product-at-diff2 [mono-intros]:
extended-Gromov-product-at e x y ≤ extended-Gromov-product-at e z y + ex-

tended-Gromov-distance x z
using extended-Gromov-product-at-diff3 [of e y x z] by (simp add: extended-Gromov-product-at-commute)

lemma extended-Gromov-product-at-diff1 [mono-intros]:
extended-Gromov-product-at e x y ≤ extended-Gromov-product-at f x y + dist e f

proof (cases extended-Gromov-product-at f x y = ∞)
case False
have extended-Gromov-product-at e x y ≤ (extended-Gromov-product-at f x y +

dist e f ) + h if h > 0 for h
proof −
have ∃ t∈{liminf (λn. ereal(Gromov-product-at f (u n) (v n))) |u v. abs-Gromov-completion

u = x
∧ abs-Gromov-completion v = y ∧ Gromov-completion-rel u u ∧

Gromov-completion-rel v v}.
t < extended-Gromov-product-at f x y + h

apply (subst Inf-less-iff [symmetric]) using False ‹h > 0 › extended-Gromov-product-nonneg[of
f x y] unfolding extended-Gromov-product-at-def [symmetric]

by (metis add.right-neutral ereal-add-left-cancel-less order-refl)
then obtain u v where H : abs-Gromov-completion u = x abs-Gromov-completion

v = y
Gromov-completion-rel u u Gromov-completion-rel v v

liminf (λn. ereal(Gromov-product-at f (u n) (v n))) <
extended-Gromov-product-at f x y + h

by auto

have Gromov-product-at e (u n) (v n) ≤ Gromov-product-at f (u n) (v n) +
dist e f for n

303



using Gromov-product-at-diff1 [of e u n v n f ] by auto
then have ∗: ereal(Gromov-product-at e (u n) (v n)) ≤ ereal(Gromov-product-at

f (u n) (v n)) + dist e f for n
by fastforce

have extended-Gromov-product-at e x y ≤ liminf (λn. ereal(Gromov-product-at
e (u n) (v n)))

unfolding extended-Gromov-product-at-def by (rule Inf-lower , auto, rule
exI [of - u], rule exI [of - v], auto, fact+)

also have ... ≤ liminf (λn. ereal(Gromov-product-at f (u n) (v n)) + dist e f )
apply (rule Liminf-mono) using ∗ unfolding eventually-sequentially by auto

also have ... = liminf (λn. ereal(Gromov-product-at f (u n) (v n))) + dist e f
apply (rule Liminf-add-ereal-right) using False by auto

also have ... ≤ extended-Gromov-product-at f x y + h + dist e f
using less-imp-le[OF H (5 )] by (auto intro: mono-intros)

finally show ?thesis
by (simp add: algebra-simps)

qed
then show ?thesis

using ereal-le-epsilon by blast
next

case True
then show ?thesis by auto

qed

A point in the Gromov boundary is represented by a sequence tending to
infinity and converging in the Gromov boundary, essentially by definition.
lemma Gromov-boundary-abs-converging:
assumes x ∈ Gromov-boundary abs-Gromov-completion u = x Gromov-completion-rel

u u
shows Gromov-converging-at-boundary u

proof −
have Gromov-converging-at-boundary u ∨ (∀m n. u n = u m)

using assms unfolding Gromov-completion-rel-def by auto
moreover have ¬(∀m n. u n = u m)
proof (rule ccontr , simp)

assume ∗: ∀m n. u n = u m
define z where z = u 0
then have z: u = (λn. z)

using ∗ by auto
then have x = to-Gromov-completion z

using assms unfolding z to-Gromov-completion-def by auto
then show False using ‹x ∈ Gromov-boundary› unfolding Gromov-boundary-def

by auto
qed
ultimately show ?thesis by auto

qed

lemma Gromov-boundary-rep-converging:
assumes x ∈ Gromov-boundary
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shows Gromov-converging-at-boundary (rep-Gromov-completion x)
apply (rule Gromov-boundary-abs-converging[OF assms])
using Quotient3-Gromov-completion Quotient3-abs-rep Quotient3-rep-reflp by fast-
force+

We can characterize the points for which the Gromov product is infinite:
they have to be the same point, at infinity. This is essentially equivalent to
the definition of the Gromov completion, but there is some boilerplate to
get the proof working.
lemma Gromov-boundary-extended-product-PInf [simp]:

extended-Gromov-product-at e x y = ∞ ←→ (x ∈ Gromov-boundary ∧ y = x)
proof

fix x y:: ′a Gromov-completion assume x ∈ Gromov-boundary ∧ y = x
then have H : y = x x ∈ Gromov-boundary by auto
have ∗: liminf (λn. ereal (Gromov-product-at e (u n) (v n))) = ∞ if

abs-Gromov-completion u = x abs-Gromov-completion v = y
Gromov-completion-rel u u Gromov-completion-rel v v for u v

proof −
have Gromov-converging-at-boundary u Gromov-converging-at-boundary v

using Gromov-boundary-abs-converging that H by auto
have Gromov-completion-rel u v using that ‹y = x›

using Quotient3-rel[OF Quotient3-Gromov-completion] by fastforce
then have (λn. Gromov-product-at e (u n) (v n)) −−−−→ ∞
unfolding Gromov-completion-rel-def using Gromov-converging-at-boundary-imp-not-constant ′[OF

‹Gromov-converging-at-boundary u›] by auto
then show ?thesis

by (simp add: tendsto-iff-Liminf-eq-Limsup)
qed
then show extended-Gromov-product-at e x y = ∞

unfolding extended-Gromov-product-at-def by (auto intro: Inf-eqI )
next

fix x y:: ′a Gromov-completion assume H : extended-Gromov-product-at e x y =
∞

then have extended-Gromov-distance (to-Gromov-completion e) x = ∞
using extended-Gromov-product-le-dist[of e x y] neq-top-trans by auto

then have x ∈ Gromov-boundary
by (metis ereal.distinct(1 ) extended-Gromov-distance-def infinity-ereal-def not-in-Gromov-boundary ′)

have extended-Gromov-distance (to-Gromov-completion e) y = ∞
using extended-Gromov-product-le-dist[of e y x ] neq-top-trans H by (auto simp

add: extended-Gromov-product-at-commute)
then have y ∈ Gromov-boundary
by (metis ereal.distinct(1 ) extended-Gromov-distance-def infinity-ereal-def not-in-Gromov-boundary ′)

define u where u = rep-Gromov-completion x
define v where v = rep-Gromov-completion y
have A: Gromov-converging-at-boundary u Gromov-converging-at-boundary v

unfolding u-def v-def using ‹x ∈ Gromov-boundary› ‹y ∈ Gromov-boundary›
by (auto simp add: Gromov-boundary-rep-converging)

have abs-Gromov-completion u = x ∧ abs-Gromov-completion v = y ∧ Gro-
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mov-completion-rel u u ∧ Gromov-completion-rel v v
unfolding u-def v-def

using Quotient3-abs-rep[OF Quotient3-Gromov-completion] Quotient3-rep-reflp[OF
Quotient3-Gromov-completion] by auto
then have extended-Gromov-product-at e x y ≤ liminf (λn. ereal(Gromov-product-at

e (u n) (v n)))
unfolding extended-Gromov-product-at-def by (auto intro!: Inf-lower)

then have (λn. ereal(Gromov-product-at e (u n) (v n))) −−−−→ ∞
unfolding H by (simp add: liminf-PInfty)

then have (λn. ereal(Gromov-product-at a (u n) (v n))) −−−−→ ∞ for a
using Gromov-product-tendsto-PInf-a-b by auto

then have Gromov-completion-rel u v
unfolding Gromov-completion-rel-def using A by auto

then have abs-Gromov-completion u = abs-Gromov-completion v
using Quotient3-rel-abs[OF Quotient3-Gromov-completion] by auto

then have x = y
unfolding u-def v-def Quotient3-abs-rep[OF Quotient3-Gromov-completion] by

auto
then show x ∈ Gromov-boundary ∧ y = x

using ‹x ∈ Gromov-boundary› by auto
qed

As for points inside the space, we deduce that the extended Gromov product
between x and x is just the extended distance to the basepoint.
lemma extended-Gromov-product-e-x-x [simp]:
extended-Gromov-product-at e x x = extended-Gromov-distance (to-Gromov-completion

e) x
proof (cases x)

case boundary
then show ?thesis using Gromov-boundary-extended-product-PInf by auto

next
case (to-Gromov-completion a)
then show ?thesis by auto

qed

The inequality in terms of Gromov products characterizing hyperbolicity
extends in the same form to the Gromov completion, by taking limits of this
inequality in the space.
lemma extended-hyperb-ineq [mono-intros]:

extended-Gromov-product-at (e:: ′a::Gromov-hyperbolic-space) x z ≥
min (extended-Gromov-product-at e x y) (extended-Gromov-product-at e y z)

− deltaG(TYPE( ′a))
proof −

have min (extended-Gromov-product-at e x y) (extended-Gromov-product-at e y
z) − deltaG(TYPE( ′a)) ≤

Inf {liminf (λn. ereal (Gromov-product-at e (u n) (v n))) |u v.
abs-Gromov-completion u = x ∧ abs-Gromov-completion v = z ∧

Gromov-completion-rel u u ∧ Gromov-completion-rel v v}
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proof (rule cInf-greatest, auto)
define u where u = rep-Gromov-completion x
define w where w = rep-Gromov-completion z
have abs-Gromov-completion u = x ∧ abs-Gromov-completion w = z ∧ Gro-

mov-completion-rel u u ∧ Gromov-completion-rel w w
unfolding u-def w-def

using Quotient3-abs-rep[OF Quotient3-Gromov-completion] Quotient3-rep-reflp[OF
Quotient3-Gromov-completion] by auto

then show ∃ t u. Gromov-completion-rel u u ∧
(∃ v. abs-Gromov-completion v = z ∧ abs-Gromov-completion u = x ∧ t

= liminf (λn. ereal (Gromov-product-at e (u n) (v n))) ∧ Gromov-completion-rel
v v)

by auto
next

fix u w assume H : x = abs-Gromov-completion u z = abs-Gromov-completion
w

Gromov-completion-rel u u Gromov-completion-rel w w
define v where v = rep-Gromov-completion y
have Y : y = abs-Gromov-completion v Gromov-completion-rel v v

unfolding v-def
by (auto simp add: Quotient3-abs-rep[OF Quotient3-Gromov-completion]

Quotient3-rep-reflp[OF Quotient3-Gromov-completion])

have ∗: min (ereal(Gromov-product-at e (u n) (v n))) (ereal(Gromov-product-at
e (v n) (w n))) ≤ ereal(Gromov-product-at e (u n) (w n)) + deltaG(TYPE( ′a))
for n

by (subst ereal-min[symmetric], subst plus-ereal.simps(1 ), intro mono-intros)

have extended-Gromov-product-at e (abs-Gromov-completion u) y ≤ liminf (λn.
ereal(Gromov-product-at e (u n) (v n)))

unfolding extended-Gromov-product-at-def using Y H by (auto intro!:
Inf-lower)

moreover have extended-Gromov-product-at e y (abs-Gromov-completion w)
≤ liminf (λn. ereal(Gromov-product-at e (v n) (w n)))

unfolding extended-Gromov-product-at-def using Y H by (auto intro!:
Inf-lower)

ultimately have min (extended-Gromov-product-at e (abs-Gromov-completion
u) y) (extended-Gromov-product-at e y (abs-Gromov-completion w))

≤ min (liminf (λn. ereal(Gromov-product-at e (u n) (v n)))) (liminf (λn.
ereal(Gromov-product-at e (v n) (w n))))

by (intro mono-intros, auto)
also have ... = liminf (λn. min (ereal(Gromov-product-at e (u n) (v n)))

(ereal(Gromov-product-at e (v n) (w n))))
by (rule Liminf-min-eq-min-Liminf [symmetric])

also have ... ≤ liminf (λn. ereal(Gromov-product-at e (u n) (w n)) + deltaG(TYPE( ′a)))
using ∗ by (auto intro!: Liminf-mono)

also have ... = liminf (λn. ereal(Gromov-product-at e (u n) (w n))) + deltaG(TYPE( ′a))
by (intro Liminf-add-ereal-right, auto)

finally show min (extended-Gromov-product-at e (abs-Gromov-completion u)
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y) (extended-Gromov-product-at e y (abs-Gromov-completion w))
≤ liminf (λn. ereal (Gromov-product-at e (u n) (w n))) + ereal

(deltaG TYPE( ′a))
by simp

qed
then show ?thesis unfolding extended-Gromov-product-at-def by auto

qed

lemma extended-hyperb-ineq ′ [mono-intros]:
extended-Gromov-product-at (e:: ′a::Gromov-hyperbolic-space) x z + deltaG(TYPE( ′a))
≥

min (extended-Gromov-product-at e x y) (extended-Gromov-product-at e y z)
using extended-hyperb-ineq[of e x y z] unfolding ereal-minus-le-iff by (simp add:
add.commute)

lemma zero-le-ereal [mono-intros]:
assumes 0 ≤ z
shows 0 ≤ ereal z

using assms by auto

lemma extended-hyperb-ineq-4-points ′ [mono-intros]:
Min {extended-Gromov-product-at (e:: ′a::Gromov-hyperbolic-space) x y, extended-Gromov-product-at

e y z , extended-Gromov-product-at e z t} ≤ extended-Gromov-product-at e x t + 2
∗ deltaG(TYPE( ′a))
proof −
have min (extended-Gromov-product-at e x y + 0 ) (min (extended-Gromov-product-at

e y z) (extended-Gromov-product-at e z t))
≤ min (extended-Gromov-product-at e x y + deltaG(TYPE( ′a))) (extended-Gromov-product-at

e y t + deltaG(TYPE( ′a)))
by (intro mono-intros)

also have ... = min (extended-Gromov-product-at e x y) (extended-Gromov-product-at
e y t) + deltaG(TYPE( ′a))

by (simp add: add-mono-thms-linordered-semiring(3 ) dual-order .antisym min-def )
also have ... ≤ (extended-Gromov-product-at e x t + deltaG(TYPE( ′a))) +

deltaG(TYPE( ′a))
by (intro mono-intros)

finally show ?thesis apply (auto simp add: algebra-simps)
by (metis (no-types, opaque-lifting) add.commute add.left-commute mult-2-right

plus-ereal.simps(1 ))
qed

lemma extended-hyperb-ineq-4-points [mono-intros]:
Min {extended-Gromov-product-at (e:: ′a::Gromov-hyperbolic-space) x y, extended-Gromov-product-at

e y z, extended-Gromov-product-at e z t} − 2 ∗ deltaG(TYPE( ′a)) ≤ extended-Gromov-product-at
e x t
using extended-hyperb-ineq-4-points ′[of e x y z] unfolding ereal-minus-le-iff by
(simp add: add.commute)
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15.3 Construction of the distance on the Gromov completion

We want now to define the natural topology of the Gromov completion.
Most textbooks first define a topology on ∂X, or sometimes on X∪∂X, and
then much later a distance on ∂X (but they never do the tedious verification
that the distance defines the same topology as the topology defined before).
I have not seen one textbook defining a distance on X ∪ ∂X. It turns out
that one can in fact define a distance on X ∪ ∂X, whose restriction to ∂X
is the usual distance on the Gromov boundary, and define the topology of
X ∪ ∂X using it. For formalization purposes, this is very convenient as
topologies defined with distances are automatically nice and tractable (no
need to check separation axioms, for instance). The price to pay is that,
once we have defined the distance, we have to check that it defines the right
notion of convergence one expects.
What we would like to take for the distance is d(x, y) = e−(x,y)o , where o
is some fixed basepoint in the space. However, this does not behave like a
distance at small scales (but it is essentially the right thing at large scales),
and it does not really satisfy the triangle inequality. However, e−ε(x,y)o

almost satisfies the triangle inequality if ε is small enough, i.e., it is equivalent
to a function satisfying the triangle inequality. This gives a genuine distance
on the boundary, but not inside the space as it does not vanish on pairs (x, x).
A third try would be to take d(x, y) = min(d̃(x, y), e−ε(x,y)o) where d̃ is the
natural extension of d to the Gromov completion (it is infinite if x or y
belongs to the boundary). However, we can not prove that it is equivalent
to a distance.
Finally, it works with d(x, y) � min(d̃(x, y)1/2, e−ε(x,y)o . This is what we
will prove below. To construct the distance, we use the results proved in
the locale Turn_into_distance. For this, we need to check that our quasi-
distance satisfies a weird version of the triangular inequality.
All this construction depends on a basepoint, that we fix arbitrarily once
and for all.
definition epsilonG::( ′a::Gromov-hyperbolic-space) itself ⇒ real

where epsilonG - = ln 2 / (2+2∗deltaG(TYPE( ′a)))

definition basepoint:: ′a
where basepoint = (SOME a. True)

lemma constant-in-extended-predist-pos [simp, mono-intros]:
epsilonG(TYPE( ′a::Gromov-hyperbolic-space)) > 0
epsilonG(TYPE( ′a::Gromov-hyperbolic-space)) ≥ 0
ennreal (epsilonG(TYPE( ′a))) ∗ top = top

proof −
have ∗: 2+2∗deltaG(TYPE( ′a)) ≥ 2 + 2 ∗ 0

by (intro mono-intros, auto)
show ∗∗: epsilonG(TYPE( ′a)) > 0
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unfolding epsilonG-def apply (auto simp add: divide-simps) using ∗ by auto
then show ennreal (epsilonG(TYPE( ′a))) ∗ top = top

using ennreal-mult-top by auto
show epsilonG(TYPE( ′a::Gromov-hyperbolic-space)) ≥ 0

using ∗∗ by simp
qed

definition extended-predist::( ′a::Gromov-hyperbolic-space) Gromov-completion ⇒
′a Gromov-completion ⇒ real
where extended-predist x y = real-of-ereal (min (esqrt (extended-Gromov-distance

x y))
(eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at basepoint x

y)))

lemma extended-predist-ereal:
ereal (extended-predist x (y::( ′a::Gromov-hyperbolic-space) Gromov-completion))

= min (esqrt (extended-Gromov-distance x y))
(eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at basepoint x

y))
proof −

have eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at basepoint x y)
≤ eexp (0 )

by (intro mono-intros, simp add: ereal-mult-le-0-iff )
then have A: min (esqrt (extended-Gromov-distance x y)) (eexp (− epsilonG(TYPE( ′a))
∗ extended-Gromov-product-at basepoint x y)) ≤ 1

unfolding min-def using order-trans by fastforce
show ?thesis

unfolding extended-predist-def apply (rule ereal-real ′) using A by auto
qed

lemma extended-predist-nonneg [simp, mono-intros]:
extended-predist x y ≥ 0

unfolding extended-predist-def min-def by (auto intro: real-of-ereal-pos)

lemma extended-predist-commute:
extended-predist x y = extended-predist y x

unfolding extended-predist-def by (simp add: extended-Gromov-distance-commute
extended-Gromov-product-at-commute)

lemma extended-predist-self0 [simp]:
extended-predist x y = 0 ←→ x = y

proof (auto)
show extended-predist y y = 0
proof (cases y)

case boundary
then have ∗: extended-Gromov-product-at basepoint y y = ∞

using Gromov-boundary-extended-product-PInf by auto
show ?thesis unfolding extended-predist-def ∗ apply (auto simp add: min-def )

using constant-in-extended-predist-pos(1 )[where ? ′a = ′a] boundary by auto
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next
case (to-Gromov-completion a)

then show ?thesis unfolding extended-predist-def by (auto simp add: min-def )
qed
assume extended-predist x y = 0
then have esqrt (extended-Gromov-distance x y) = 0 ∨ eexp (− epsilonG(TYPE( ′a))
∗ extended-Gromov-product-at basepoint x y) = 0

by (metis extended-predist-ereal min-def zero-ereal-def )
then show x = y

proof
assume esqrt (extended-Gromov-distance x y) = 0
then have ∗: extended-Gromov-distance x y = 0
using extended-Gromov-distance-nonneg by (metis ereal-zero-mult esqrt-square)
then have ¬(x ∈ Gromov-boundary) ¬(y ∈ Gromov-boundary) by auto

then obtain a b where ab: x = to-Gromov-completion a y = to-Gromov-completion
b

unfolding Gromov-boundary-def by auto
have a = b using ∗ unfolding ab by auto
then show x = y using ab by auto

next
assume eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at basepoint

x y) = 0
then have extended-Gromov-product-at basepoint x y = ∞

by auto
then show x = y

using Gromov-boundary-extended-product-PInf [of basepoint x y] by auto
qed

qed

lemma extended-predist-le1 [simp, mono-intros]:
extended-predist x y ≤ 1

proof −
have eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at basepoint x y)
≤ eexp (0 )

by (intro mono-intros, simp add: ereal-mult-le-0-iff )
then have min (esqrt (extended-Gromov-distance x y)) (eexp (− epsilonG(TYPE( ′a))
∗ extended-Gromov-product-at basepoint x y)) ≤ 1

unfolding min-def using order-trans by fastforce
then show ?thesis

unfolding extended-predist-def by (simp add: real-of-ereal-le-1 )
qed

lemma extended-predist-weak-triangle:
extended-predist x z ≤ sqrt 2 ∗ max (extended-predist x y) (extended-predist y z)

proof −
have Z : esqrt 2 = eexp (ereal(ln 2/2 ))

by (subst esqrt-eq-iff-square, auto simp add: exp-add[symmetric])

have A: eexp(ereal(epsilonG TYPE( ′a)) ∗ 1 ) ≤ esqrt 2
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unfolding Z epsilonG-def apply auto
apply (auto simp add: algebra-simps divide-simps intro!: mono-intros)
using delta-nonneg[where ? ′a = ′a] by auto

We have to show an inequality d(x, z) ≤
√
2max(d(x, y), d(y, z)). Each

of d(x, y) and d(y, z) is either the extended distance, or the exponential
of minus the Gromov product, depending on which is smaller. We split
according to the four cases.

have (esqrt (extended-Gromov-distance x y) ≤ eexp (− epsilonG(TYPE( ′a)) ∗
extended-Gromov-product-at basepoint x y)

∨ esqrt (extended-Gromov-distance x y) ≥ eexp (− epsilonG(TYPE( ′a)) ∗
extended-Gromov-product-at basepoint x y))

∧
((esqrt (extended-Gromov-distance y z) ≤ eexp (− epsilonG(TYPE( ′a)) ∗

extended-Gromov-product-at basepoint y z)
∨ esqrt (extended-Gromov-distance y z) ≥ eexp (− epsilonG(TYPE( ′a)) ∗

extended-Gromov-product-at basepoint y z)))
by auto

then have ereal(extended-predist x z) ≤ ereal (sqrt 2 ) ∗ max (ereal(extended-predist
x y)) (ereal (extended-predist y z))

proof (auto)

First, consider the case where the minimum is the extended distance for
both cases. Then ed(x, z) ≤ ed(x, y) + ed(y, z) ≤ 2max(ed(x, y), ed(y, z)).
Therefore, ed(x, z)1/2 ≤

√
2max(ed(x, y)1/2, ed(y, z)1/2). As predist is de-

fined using the square root of ed, this readily gives the result.
assume H : esqrt (extended-Gromov-distance x y) ≤ eexp (ereal (− epsilonG

TYPE( ′a)) ∗ extended-Gromov-product-at basepoint x y)
esqrt (extended-Gromov-distance y z) ≤ eexp (ereal (− epsilonG

TYPE( ′a)) ∗ extended-Gromov-product-at basepoint y z)
have extended-Gromov-distance x z ≤ extended-Gromov-distance x y + ex-

tended-Gromov-distance y z
by (rule extended-Gromov-distance-triangle)

also have ... ≤ 2 ∗ max (extended-Gromov-distance x y) (extended-Gromov-distance
y z)

by (simp add: add-mono add-mono-thms-linordered-semiring(1 ) mult-2-ereal)
finally have esqrt (extended-Gromov-distance x z) ≤ esqrt (2 ∗ max (extended-Gromov-distance

x y) (extended-Gromov-distance y z))
by (intro mono-intros)

also have ... = esqrt 2 ∗ max (esqrt (extended-Gromov-distance x y)) (esqrt
(extended-Gromov-distance y z))

by (auto simp add: esqrt-mult max-of-mono[OF esqrt-mono])
finally show ?thesis unfolding extended-predist-ereal min-def using H by

auto

next

Next, consider the case where the minimum comes from the Gromov prod-
uct for both cases. Then, the conclusion will come for the hyperbolicity
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inequality (which is valid in the Gromov completion as well). There is an
additive loss of δ in this inequality, which is converted to a multiplicative
loss after taking the exponential to get the distance. Since, in the formula
for the distance, the Gromov product is multiplied by a constant ε by design,
the loss we get in the end is exp(δε). The precise value of ε we have taken
is designed so that this is at most

√
2, giving the desired conclusion.

assume H : eexp (ereal (− epsilonG TYPE( ′a)) ∗ extended-Gromov-product-at
basepoint x y) ≤ esqrt (extended-Gromov-distance x y)

eexp (ereal (− epsilonG TYPE( ′a)) ∗ extended-Gromov-product-at
basepoint y z) ≤ esqrt (extended-Gromov-distance y z)

First, check that ε and δ satisfy the required inequality exp(εδ) ≤
√
2 (but

in the extended reals as this is what we will use.
have B: eexp (epsilonG(TYPE( ′a)) ∗ deltaG(TYPE( ′a))) ≤ esqrt 2

unfolding epsilonG-def ‹esqrt 2 = eexp (ereal(ln 2/2 ))›
apply (auto simp add: algebra-simps divide-simps intro!: mono-intros)
using delta-nonneg[where ? ′a = ′a] by auto

We start the computation. First, use the hyperbolicity inequality.
have eexp (− epsilonG TYPE( ′a) ∗ extended-Gromov-product-at basepoint x z)
≤ eexp (− epsilonG TYPE( ′a) ∗ ((min (extended-Gromov-product-at basepoint

x y) (extended-Gromov-product-at basepoint y z) − deltaG(TYPE( ′a)))))
apply (subst uminus-ereal.simps(1 )[symmetric], subst ereal-mult-minus-left)+

by (intro mono-intros)

Use distributivity to isolate the term εδ. This requires some care as multi-
plication is not distributive in general in ereal.

also have ... = eexp (− epsilonG TYPE( ′a) ∗ min (extended-Gromov-product-at
basepoint x y) (extended-Gromov-product-at basepoint y z)

+ epsilonG TYPE( ′a) ∗ deltaG TYPE( ′a))
apply (rule cong[of eexp], auto)
apply (subst times-ereal.simps(1 )[symmetric])
apply (subst ereal-distrib-minus-left, auto)
apply (subst uminus-ereal.simps(1 )[symmetric])+
apply (subst ereal-minus(6 ))
by simp

Use multiplicativity of exponential to extract the multiplicative error factor.
also have ... = eexp(− epsilonG TYPE( ′a) ∗ (min (extended-Gromov-product-at

basepoint x y) (extended-Gromov-product-at basepoint y z)))
∗ eexp(epsilonG(TYPE( ′a))∗ deltaG(TYPE( ′a)))

by (rule eexp-add-mult, auto)

Extract the min outside of the exponential, using that all functions are
monotonic.

also have ... = eexp(epsilonG(TYPE( ′a))∗ deltaG(TYPE( ′a)))
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∗ (max (eexp(− epsilonG TYPE( ′a) ∗ extended-Gromov-product-at
basepoint x y))

(eexp(− epsilonG TYPE( ′a) ∗ extended-Gromov-product-at
basepoint y z)))

apply (subst max-of-antimono[of λ (t::ereal). −epsilonG TYPE( ′a) ∗ t,
symmetric])

apply (metis antimonoI constant-in-extended-predist-pos(2 ) enn2ereal-ennreal
enn2ereal-nonneg ereal-minus-le-minus ereal-mult-left-mono ereal-mult-minus-left
uminus-ereal.simps(1 ))

apply (subst max-of-mono[OF eexp-mono])
apply (simp add: mult.commute)
done

We recognize the distance of x to y and the distance from y to z on the
right.

also have ... = eexp(epsilonG(TYPE( ′a)) ∗ deltaG(TYPE( ′a))) ∗ (max (ereal
(extended-predist x y)) (extended-predist y z))

unfolding extended-predist-ereal min-def using H by auto
also have ... ≤ esqrt 2 ∗ max (ereal(extended-predist x y)) (ereal(extended-predist

y z))
apply (intro mono-intros B) using extended-predist-nonneg[of x y] by (simp

add: max-def )
finally show ?thesis unfolding extended-predist-ereal min-def by auto

next

Next consider the case where d(x, y) comes from the exponential of minus
the Gromov product, but d(y, z) comes from their extended distance. Then
d(y, z) ≤ 1 (as d(y, z) is smaller then the exponential of minus the Gromov
distance, which is at most 1), and this is all we use: the Gromov product
between x and y or x and z differ by at most the distance from y to z, i.e.,
1. Then the result follows directly as exp(ε) ≤

√
2, by the choice of ε.

assume H : eexp (− epsilonG TYPE( ′a) ∗ extended-Gromov-product-at basepoint
x y) ≤ esqrt (extended-Gromov-distance x y)

esqrt (extended-Gromov-distance y z) ≤ eexp (− epsilonG TYPE( ′a) ∗
extended-Gromov-product-at basepoint y z)

then have esqrt(extended-Gromov-distance y z) ≤ 1
by (auto intro!: order-trans[OF H (2 )] simp add: ereal-mult-le-0-iff )

then have extended-Gromov-distance y z ≤ 1
by (metis eq-iff esqrt-mono2 esqrt-simps(2 ) esqrt-square extended-Gromov-distance-nonneg

le-cases zero-less-one-ereal)

have ereal(extended-predist x z) ≤ eexp(− epsilonG TYPE( ′a) ∗ extended-Gromov-product-at
basepoint x z)

unfolding extended-predist-ereal min-def by auto
also have ... ≤ eexp(− epsilonG TYPE( ′a) ∗ extended-Gromov-product-at

basepoint x y
+ epsilonG TYPE( ′a) ∗ extended-Gromov-distance y z)
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apply (intro mono-intros) apply (subst uminus-ereal.simps(1 )[symmetric])+
apply (subst ereal-mult-minus-left)+

apply (intro mono-intros)
using extended-Gromov-product-at-diff3 [of basepoint x y z ]

by (meson constant-in-extended-predist-pos(2 ) ereal-le-distrib ereal-mult-left-mono
order-trans zero-le-ereal)

also have ... ≤ eexp(−epsilonG TYPE( ′a) ∗ extended-Gromov-product-at base-
point x y + ereal(epsilonG TYPE( ′a)) ∗ 1 )

by (intro mono-intros, fact)
also have ... = eexp(−epsilonG TYPE( ′a) ∗ extended-Gromov-product-at base-

point x y) ∗ eexp(ereal(epsilonG TYPE( ′a)) ∗ 1 )
by (rule eexp-add-mult, auto)

also have ... ≤ eexp(−epsilonG TYPE( ′a) ∗ extended-Gromov-product-at base-
point x y) ∗ esqrt 2

by (intro mono-intros A)
also have ... = esqrt 2 ∗ ereal(extended-predist x y)

unfolding extended-predist-ereal min-def using H by (auto simp add:
mult.commute)

also have ... ≤ esqrt 2 ∗ max (ereal(extended-predist x y)) (ereal(extended-predist
y z))

unfolding max-def by (auto intro!: mono-intros)
finally show ?thesis by auto

next

The last case is the symmetric of the previous one, and is proved similarly.
assume H : eexp (− epsilonG TYPE( ′a) ∗ extended-Gromov-product-at basepoint

y z) ≤ esqrt (extended-Gromov-distance y z)
esqrt (extended-Gromov-distance x y) ≤ eexp (− epsilonG TYPE( ′a) ∗

extended-Gromov-product-at basepoint x y)
then have esqrt(extended-Gromov-distance x y) ≤ 1

by (auto intro!: order-trans[OF H (2 )] simp add: ereal-mult-le-0-iff )
then have extended-Gromov-distance x y ≤ 1
by (metis eq-iff esqrt-mono2 esqrt-simps(2 ) esqrt-square extended-Gromov-distance-nonneg

le-cases zero-less-one-ereal)

have ereal(extended-predist x z) ≤ eexp(− epsilonG TYPE( ′a) ∗ extended-Gromov-product-at
basepoint x z)

unfolding extended-predist-ereal min-def by auto
also have ... ≤ eexp(− epsilonG TYPE( ′a) ∗ extended-Gromov-product-at

basepoint y z
+ epsilonG TYPE( ′a) ∗ extended-Gromov-distance x y)

apply (intro mono-intros) apply (subst uminus-ereal.simps(1 )[symmetric])+
apply (subst ereal-mult-minus-left)+

apply (intro mono-intros)
using extended-Gromov-product-at-diff3 [of basepoint z y x ]

apply (simp add: extended-Gromov-product-at-commute extended-Gromov-distance-commute)
by (meson constant-in-extended-predist-pos(2 ) ereal-le-distrib ereal-mult-left-mono

order-trans zero-le-ereal)
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also have ... ≤ eexp(−epsilonG TYPE( ′a) ∗ extended-Gromov-product-at base-
point y z + ereal(epsilonG TYPE( ′a)) ∗ 1 )

by (intro mono-intros, fact)
also have ... = eexp(−epsilonG TYPE( ′a) ∗ extended-Gromov-product-at base-

point y z) ∗ eexp(ereal(epsilonG TYPE( ′a)) ∗ 1 )
by (rule eexp-add-mult, auto)

also have ... ≤ eexp(−epsilonG TYPE( ′a) ∗ extended-Gromov-product-at base-
point y z) ∗ esqrt 2

by (intro mono-intros A)
also have ... = esqrt 2 ∗ ereal(extended-predist y z)

unfolding extended-predist-ereal min-def using H by (auto simp add:
mult.commute)

also have ... ≤ esqrt 2 ∗ max (ereal(extended-predist x y)) (ereal(extended-predist
y z))

unfolding max-def by (auto intro!: mono-intros)
finally show ?thesis by auto

qed
then show extended-predist x z ≤ sqrt 2 ∗ max (extended-predist x y) (extended-predist

y z)
unfolding ereal-sqrt2 [symmetric] max-of-mono[OF ereal-mono] times-ereal.simps(1 )

by auto
qed

instantiation Gromov-completion :: (Gromov-hyperbolic-space) metric-space
begin

definition dist-Gromov-completion::( ′a::Gromov-hyperbolic-space) Gromov-completion
⇒ ′a Gromov-completion ⇒ real

where dist-Gromov-completion = turn-into-distance extended-predist

To define a metric space in the current library of Isabelle/HOL, one should
also introduce a uniformity structure and a topology, as follows (they are
prescribed by the distance):
definition uniformity-Gromov-completion::(( ′a Gromov-completion) × ( ′a Gromov-completion))
filter

where uniformity-Gromov-completion = (INF e∈{0 <..}. principal {(x, y). dist
x y < e})

definition open-Gromov-completion :: ′a Gromov-completion set ⇒ bool
where open-Gromov-completion U = (∀ x∈U . eventually (λ(x ′, y). x ′ = x −→ y
∈ U ) uniformity)

instance proof
interpret Turn-into-distance extended-predist
by (standard, auto intro: extended-predist-weak-triangle extended-predist-commute)

fix x y z:: ′a Gromov-completion
show (dist x y = 0 ) = (x = y)
using TID-nonneg[of x y] lower [of x y] TID-self-zero upper [of x y] extended-predist-self0 [of

x y] unfolding dist-Gromov-completion-def

316



by (auto, linarith)
show dist x y ≤ dist x z + dist y z
unfolding dist-Gromov-completion-def using triangle by (simp add: TID-sym)

qed (auto simp add: uniformity-Gromov-completion-def open-Gromov-completion-def )
end

The only relevant property of the distance on the Gromov completion is
that it is comparable to the minimum of (the square root of) the extended
distance, and the exponential of minus the Gromov product. The precise for-
mula we use to define it is just an implementation detail, in a sense. We sum-
marize these properties in the next theorem. From this point on, we will only
use this, and never come back to the definition based on extended_predist
and turn_into_distance.
theorem Gromov-completion-dist-comparison [mono-intros]:

fixes x y::( ′a::Gromov-hyperbolic-space) Gromov-completion
shows ereal(dist x y) ≤ esqrt(extended-Gromov-distance x y)

ereal(dist x y) ≤ eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at
basepoint x y)

min (esqrt(extended-Gromov-distance x y)) (eexp (− epsilonG(TYPE( ′a)) ∗
extended-Gromov-product-at basepoint x y)) ≤ 2 ∗ ereal(dist x y)
proof −

interpret Turn-into-distance extended-predist
by (standard, auto intro: extended-predist-weak-triangle extended-predist-commute)

have ereal(dist x y) ≤ ereal(extended-predist x y)
unfolding dist-Gromov-completion-def by (auto intro!: upper mono-intros)

then show ereal(dist x y) ≤ esqrt(extended-Gromov-distance x y)
ereal(dist x y) ≤ eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at

basepoint x y)
unfolding extended-predist-ereal by auto

have ereal(extended-predist x y) ≤ ereal(2 ∗ dist x y)
unfolding dist-Gromov-completion-def by (auto intro!: lower mono-intros)

also have ... = 2 ∗ ereal (dist x y)
by simp

finally show min (esqrt(extended-Gromov-distance x y)) (eexp (− epsilonG(TYPE( ′a))
∗ extended-Gromov-product-at basepoint x y)) ≤ 2 ∗ ereal(dist x y)

unfolding extended-predist-ereal by auto
qed

lemma Gromov-completion-dist-le-1 [simp, mono-intros]:
fixes x y::( ′a::Gromov-hyperbolic-space) Gromov-completion
shows dist x y ≤ 1

proof −
have ereal(dist x y) ≤ eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at

basepoint x y)
using Gromov-completion-dist-comparison(2 )[of x y] by simp

also have ... ≤ eexp(−0 )
by (intro mono-intros) (simp add: ereal-mult-le-0-iff )

finally show ?thesis
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by auto
qed

To avoid computations with exponentials, the following lemma is very con-
venient. It asserts that if x is close enough to infinity, and y is close enough
to x, then the Gromov product between x and y is large.
lemma large-Gromov-product-approx:

assumes (M ::ereal) < ∞
shows ∃ e D. e > 0 ∧ D <∞ ∧ (∀ x y. dist x y ≤ e −→ extended-Gromov-distance

x (to-Gromov-completion basepoint) ≥ D −→ extended-Gromov-product-at base-
point x y ≥ M )
proof −

obtain M0 ::real where M ≤ ereal M0 using assms by (cases M , auto)
define e::real where e = exp(−epsilonG(TYPE( ′a)) ∗ M0 )/2
define D::ereal where D = ereal M0 + 4
have e > 0

unfolding e-def by auto
moreover have D < ∞

unfolding D-def by auto
moreover have extended-Gromov-product-at basepoint x y ≥ M0

if dist x y ≤ e extended-Gromov-distance x (to-Gromov-completion basepoint)
≥ D for x y:: ′a Gromov-completion
proof (cases esqrt(extended-Gromov-distance x y) ≤ eexp (− epsilonG(TYPE( ′a))
∗ extended-Gromov-product-at basepoint x y))

case False
then have eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at base-

point x y) ≤ 2 ∗ ereal(dist x y)
using Gromov-completion-dist-comparison(3 )[of x y] unfolding min-def by

auto
also have ... ≤ exp(−epsilonG(TYPE( ′a)) ∗ M0 )
using ‹dist x y ≤ e› unfolding e-def by (auto simp add: numeral-mult-ennreal)
finally have ereal M0 ≤ extended-Gromov-product-at basepoint x y

unfolding eexp-ereal[symmetric] apply (simp only: eexp-le-eexp-iff-le)
unfolding times-ereal.simps(1 )[symmetric] uminus-ereal.simps(1 )[symmetric]

ereal-mult-minus-left ereal-minus-le-minus
using ereal-mult-le-mult-iff [of ereal (epsilonG TYPE( ′a))] apply auto
by (metis ‹

∧
r p. ereal (r ∗ p) = ereal r ∗ ereal p›)

then show M0 ≤ extended-Gromov-product-at basepoint x y
by auto

next
case True
then have esqrt(extended-Gromov-distance x y) ≤ 2 ∗ ereal(dist x y)

using Gromov-completion-dist-comparison(3 )[of x y] unfolding min-def by
auto

also have ... ≤ esqrt 4
by simp

finally have ∗: extended-Gromov-distance x y ≤ 4
unfolding esqrt-le using antisym by fastforce

have ereal M0+4 ≤ D
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unfolding D-def by auto
also have ... ≤ extended-Gromov-product-at basepoint x x

using that by (auto simp add: extended-Gromov-distance-commute)
also have ... ≤ extended-Gromov-product-at basepoint x y + extended-Gromov-distance

x y
by (rule extended-Gromov-product-at-diff3 [of basepoint x x y])

also have ... ≤ extended-Gromov-product-at basepoint x y + 4
by (intro mono-intros ∗)

finally show M0 ≤ extended-Gromov-product-at basepoint x y
by (metis (no-types, lifting) PInfty-neq-ereal(1 ) add.commute add-nonneg-nonneg

ereal-add-strict-mono ereal-le-distrib mult-2-ereal not-le numeral-Bit0 numeral-eq-ereal
one-add-one zero-less-one-ereal)

qed
ultimately show ?thesis using order-trans[OF ‹M ≤ ereal M0 ›] by force

qed

On the other hand, far away from infinity, it is equivalent to control the
extended Gromov distance or the new distance on the space.
lemma inside-Gromov-distance-approx:

assumes C < (∞::ereal)
shows ∃ e > 0 . ∀ x y. extended-Gromov-distance (to-Gromov-completion base-

point) x ≤ C −→ dist x y ≤ e
−→ esqrt(extended-Gromov-distance x y) ≤ 2 ∗ ereal(dist x y)

proof −
obtain C0 where C ≤ ereal C0 using assms by (cases C , auto)
define e0 where e0 = exp(−epsilonG(TYPE( ′a)) ∗ C0 )
have e0 > 0

unfolding e0-def using assms by auto
define e where e = e0/4
have e > 0

unfolding e-def using ‹e0 > 0 › by auto
moreover have esqrt(extended-Gromov-distance x y) ≤ 2 ∗ ereal(dist x y)

if extended-Gromov-distance (to-Gromov-completion basepoint) x ≤ C0 dist x y
≤ e for x y:: ′a Gromov-completion

proof −
have R: min a b ≤ c =⇒ a ≤ c ∨ b ≤ c for a b c::ereal unfolding min-def

by presburger
have 2 ∗ ereal (dist x y) ≤ 2 ∗ ereal e

using that by (intro mono-intros, auto)
also have ... = ereal(e0/2 )

unfolding e-def by auto
also have ... < ereal e0

apply (intro mono-intros) using ‹e0 > 0 › by auto
also have ... ≤ eexp(−epsilonG(TYPE( ′a)) ∗ extended-Gromov-distance (to-Gromov-completion

basepoint) x)
unfolding e0-def eexp-ereal[symmetric] ereal-mult-minus-left mult-minus-left

uminus-ereal.simps(1 )[symmetric] times-ereal.simps(1 )[symmetric]
by (intro mono-intros that)

also have ... ≤ eexp(−epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at base-
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point x y)
unfolding ereal-mult-minus-left mult-minus-left uminus-ereal.simps(1 )[symmetric]

times-ereal.simps(1 )[symmetric]
by (intro mono-intros)

finally show ?thesis
using R[OF Gromov-completion-dist-comparison(3 )[of x y]] by auto

qed
ultimately show ?thesis using order-trans[OF - ‹C ≤ ereal C0 ›] by auto

qed

15.4 Characterizing convergence in the Gromov boundary

The convergence of sequences in the Gromov boundary can be characterized,
essentially by definition: sequences tend to a point at infinity iff the Gromov
product with this point tends to infinity, while sequences tend to a point
inside iff the extended distance tends to 0. In both cases, it is just a matter
of unfolding the definition of the distance, and see which one of the two
terms (exponential of minus the Gromov product, or extended distance)
realizes the minimum. We have constructed the distance essentially so that
this property is satisfied.
We could also have defined first the topology, satisfying these conditions,
but then we would have had to check that it coincides with the topology
that the distance defines, so it seems more economical to proceed in this
way.
lemma Gromov-completion-boundary-limit:

assumes x ∈ Gromov-boundary
shows (u −−−→ x) F ←→ ((λn. extended-Gromov-product-at basepoint (u n) x)
−−−→ ∞) F
proof

assume ∗: ((λn. extended-Gromov-product-at basepoint (u n) x) −−−→ ∞) F
have ((λn. ereal(dist (u n) x)) −−−→ 0 ) F
proof (rule tendsto-sandwich[of λ-. 0 - - (λn. eexp (−epsilonG(TYPE( ′a)) ∗

extended-Gromov-product-at basepoint (u n) x))])
have ((λn. eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at base-

point (u n) x)) −−−→ eexp (− epsilonG(TYPE( ′a)) ∗ (∞::ereal))) F
apply (intro tendsto-intros ∗) by auto

then show ((λn. eexp (−epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at
basepoint (u n) x)) −−−→ 0 ) F

using constant-in-extended-predist-pos(1 )[where ? ′a = ′a] by auto
qed (auto simp add: Gromov-completion-dist-comparison)
then have ((λn. real-of-ereal(ereal(dist (u n) x))) −−−→ 0 ) F

by (simp add: zero-ereal-def )
then show (u −−−→ x) F

by (subst tendsto-dist-iff , auto)
next

assume ∗: (u −−−→ x) F
have A: 1 / ereal (− epsilonG TYPE( ′a)) ∗ (ereal (− epsilonG TYPE( ′a))) =
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1
apply auto using constant-in-extended-predist-pos(1 )[where ? ′a = ′a] by auto

have a: esqrt(extended-Gromov-distance (u n) x) = ∞ for n
unfolding extended-Gromov-distance-PInf-boundary(2 )[OF assms, of u n] by

auto
have min (esqrt(extended-Gromov-distance (u n) x)) (eexp (− epsilonG(TYPE( ′a))
∗ extended-Gromov-product-at basepoint (u n) x))

= eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at basepoint (u
n) x) for n

unfolding a min-def using neq-top-trans by force
moreover have ((λn. min (esqrt(extended-Gromov-distance (u n) x)) (eexp (−

epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at basepoint (u n) x))) −−−→ 0 )
F

proof (rule tendsto-sandwich[of λ-. 0 - - λn. 2 ∗ ereal(dist (u n) x)])
have ((λn. 2 ∗ ereal (dist (u n) x)) −−−→ 2 ∗ ereal 0 ) F

apply (intro tendsto-intros) using ∗ tendsto-dist-iff by auto
then show ((λn. 2 ∗ ereal (dist (u n) x)) −−−→ 0 ) F by (simp add: zero-ereal-def )
show ∀ F n in F . 0 ≤ min (esqrt (extended-Gromov-distance (u n) x)) (eexp

(ereal (− epsilonG TYPE( ′a)) ∗ extended-Gromov-product-at basepoint (u n) x))
by (rule always-eventually, auto)

show ∀ F n in F .
min (esqrt (extended-Gromov-distance (u n) x)) (eexp (ereal (− epsilonG

TYPE( ′a)) ∗ extended-Gromov-product-at basepoint (u n) x)) ≤ 2 ∗ ereal (dist (u
n) x)

apply (rule always-eventually) using Gromov-completion-dist-comparison(3 )
by auto

qed (auto)
ultimately have ((λn. eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at

basepoint (u n) x)) −−−→ 0 ) F
by auto

then have ((λn. − epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at basepoint
(u n) x) −−−→ −∞) F

unfolding eexp-special-values(3 )[symmetric] eexp-tendsto ′ by auto
then have ((λn. 1/ereal(−epsilonG(TYPE( ′a))) ∗ (− epsilonG(TYPE( ′a)) ∗ ex-

tended-Gromov-product-at basepoint (u n) x)) −−−→ 1/ereal(−epsilonG(TYPE( ′a)))
∗ (−∞)) F

by (intro tendsto-intros, auto)
moreover have 1/ereal(−epsilonG(TYPE( ′a))) ∗ (−∞) = ∞
apply auto using constant-in-extended-predist-pos(1 )[where ? ′a = ′a] by auto

ultimately show ((λn. extended-Gromov-product-at basepoint (u n) x) −−−→
∞) F

unfolding ab-semigroup-mult-class.mult-ac(1 )[symmetric] A by auto
qed

lemma extended-Gromov-product-tendsto-PInf-a-b:
assumes ((λn. extended-Gromov-product-at a (u n) (v n)) −−−→ ∞) F
shows ((λn. extended-Gromov-product-at b (u n) (v n)) −−−→ ∞) F

proof (rule tendsto-sandwich[of λn. extended-Gromov-product-at a (u n) (v n) −
dist a b - - λ-. ∞])
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have extended-Gromov-product-at a (u n) (v n) − ereal (dist a b) ≤ extended-Gromov-product-at
b (u n) (v n) for n

using extended-Gromov-product-at-diff1 [of a u n v n b] by (simp add: add.commute
ereal-minus-le-iff )

then show ∀ F n in F . extended-Gromov-product-at a (u n) (v n) − ereal (dist
a b) ≤ extended-Gromov-product-at b (u n) (v n)

by auto
have ((λn. extended-Gromov-product-at a (u n) (v n) − ereal (dist a b)) −−−→
∞ − ereal (dist a b)) F

by (intro tendsto-intros assms) auto
then show ((λn. extended-Gromov-product-at a (u n) (v n) − ereal (dist a b))
−−−→ ∞) F

by auto
qed (auto)

lemma Gromov-completion-inside-limit:
assumes x /∈ Gromov-boundary
shows (u −−−→ x) F ←→ ((λn. extended-Gromov-distance (u n) x) −−−→ 0 ) F

proof
assume ∗: ((λn. extended-Gromov-distance (u n) x) −−−→ 0 ) F
have ((λn. ereal(dist (u n) x)) −−−→ ereal 0 ) F
proof (rule tendsto-sandwich[of λ-. 0 - - λn. esqrt (extended-Gromov-distance

(u n) x)])
have ((λn. esqrt (extended-Gromov-distance (u n) x)) −−−→ esqrt 0 ) F

by (intro tendsto-intros ∗)
then show ((λn. esqrt (extended-Gromov-distance (u n) x)) −−−→ ereal 0 ) F

by (simp add: zero-ereal-def )
qed (auto simp add: Gromov-completion-dist-comparison zero-ereal-def )
then have ((λn. real-of-ereal(ereal(dist (u n) x))) −−−→ 0 ) F

by (intro lim-real-of-ereal)
then show (u −−−→ x) F

by (subst tendsto-dist-iff , auto)
next

assume ∗: (u −−−→ x) F
have x ∈ range to-Gromov-completion using assms unfolding Gromov-boundary-def

by auto
have ((λn. esqrt(extended-Gromov-distance (u n) x)) −−−→ 0 ) F
proof (rule tendsto-sandwich[of λ-. 0 - - λn. 2 ∗ ereal(dist (u n) x)])

have A: extended-Gromov-distance (to-Gromov-completion basepoint) x < ∞
by (simp add: assms extended-Gromov-distance-def )

obtain e where e: e > 0
∧

y. dist x y ≤ e =⇒ esqrt(extended-Gromov-distance
x y) ≤ 2 ∗ ereal (dist x y)

using inside-Gromov-distance-approx[OF A] by auto
have B: eventually (λn. dist x (u n) < e) F

using order-tendstoD(2 )[OF iffD1 [OF tendsto-dist-iff ∗] ‹e > 0 ›] by (simp
add: dist-commute)

then have eventually (λn. esqrt(extended-Gromov-distance x (u n)) ≤ 2 ∗ ereal
(dist x (u n))) F

using eventually-mono[OF - e(2 )] less-imp-le by (metis (mono-tags, lifting))
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then show eventually (λn. esqrt(extended-Gromov-distance (u n) x) ≤ 2 ∗
ereal (dist (u n) x)) F

by (simp add: dist-commute extended-Gromov-distance-commute)
have ((λn. 2 ∗ ereal(dist (u n) x)) −−−→ 2 ∗ ereal 0 ) F

apply (intro tendsto-intros) using tendsto-dist-iff ∗ by auto
then show ((λn. 2 ∗ ereal(dist (u n) x)) −−−→ 0 ) F

by (simp add: zero-ereal-def )
qed (auto)
then have ((λn. esqrt(extended-Gromov-distance (u n) x) ∗ esqrt(extended-Gromov-distance

(u n) x)) −−−→ 0 ∗ 0 ) F
by (intro tendsto-intros, auto)

then show ((λn. extended-Gromov-distance (u n) x) −−−→ 0 ) F
by auto

qed

lemma to-Gromov-completion-lim [simp, tendsto-intros]:
((λn. to-Gromov-completion (u n)) −−−→ to-Gromov-completion a) F ←→ (u
−−−→ a) F
proof (subst Gromov-completion-inside-limit, auto)

assume ((λn. ereal (dist (u n) a)) −−−→ 0 ) F
then have ((λn. real-of-ereal(ereal (dist (u n) a))) −−−→ 0 ) F

unfolding zero-ereal-def by (rule lim-real-of-ereal)
then show (u −−−→ a) F

by (subst tendsto-dist-iff , auto)
next

assume (u −−−→ a) F
then have ((λn. dist (u n) a) −−−→ 0 ) F

using tendsto-dist-iff by auto
then show ((λn. ereal (dist (u n) a)) −−−→ 0 ) F

unfolding zero-ereal-def by (intro tendsto-intros)
qed

Now, we can also come back to our original definition of the completion,
where points on the boundary correspond to equivalence classes of sequences
whose mutual Gromov product tends to infinity. We show that this is com-
patible with our topology: the sequences that are in the equivalence class of a
point on the boundary are exactly the sequences that converge to this point.
This is also a direct consequence of the definitions, although the proof re-
quires some unfolding (and playing with the hyperbolicity inequality several
times).

First, we show that a sequence in the equivalence class of x converges to x.
lemma Gromov-completion-converge-to-boundary-aux:
assumes x ∈ Gromov-boundary abs-Gromov-completion v = x Gromov-completion-rel

v v
shows (λn. extended-Gromov-product-at basepoint (to-Gromov-completion (v n))

x) −−−−→ ∞
proof −
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have A: eventually (λn. extended-Gromov-product-at basepoint (to-Gromov-completion
(v n)) x ≥ ereal M ) sequentially for M

proof −
have Gromov-converging-at-boundary v

using Gromov-boundary-abs-converging assms by blast
then obtain N where N :

∧
m n. m ≥ N =⇒ n ≥ N =⇒ Gromov-product-at

basepoint (v m) (v n) ≥ M + deltaG(TYPE( ′a))
unfolding Gromov-converging-at-boundary-def by metis

have extended-Gromov-product-at basepoint (to-Gromov-completion (v n)) x ≥
ereal M if n ≥ N for n

unfolding extended-Gromov-product-at-def proof (rule Inf-greatest, auto)
fix wv wx assume H : abs-Gromov-completion wv = to-Gromov-completion (v

n)
x = abs-Gromov-completion wx
Gromov-completion-rel wv wv Gromov-completion-rel wx wx

then have wv: wv p = v n for p
using Gromov-completion-rel-to-const Quotient3-Gromov-completion Quo-

tient3-rel to-Gromov-completion-def by fastforce
have Gromov-completion-rel v wx

using assms H Quotient3-rel[OF Quotient3-Gromov-completion] by auto
then have ∗: (λp. Gromov-product-at basepoint (v p) (wx p)) −−−−→ ∞
unfolding Gromov-completion-rel-def using Gromov-converging-at-boundary-imp-not-constant ′

‹Gromov-converging-at-boundary v› by auto
have eventually (λp. ereal(Gromov-product-at basepoint (v p) (wx p)) > M +

deltaG(TYPE( ′a))) sequentially
using order-tendstoD[OF ∗, of ereal (M + deltaG TYPE( ′a))] by auto

then obtain P where P:
∧

p. p ≥ P =⇒ ereal(Gromov-product-at basepoint
(v p) (wx p)) > M + deltaG(TYPE( ′a))

unfolding eventually-sequentially by auto
have ∗: ereal (Gromov-product-at basepoint (v n) (wx p)) ≥ ereal M if p ≥

max P N for p
proof (intro mono-intros)

have M ≤ min (M + deltaG(TYPE( ′a))) (M + deltaG(TYPE( ′a))) −
deltaG(TYPE( ′a))

by auto
also have ... ≤ min (Gromov-product-at basepoint (v n) (v p)) (Gromov-product-at

basepoint (v p) (wx p)) − deltaG(TYPE( ′a))
apply (intro mono-intros)
using N [OF ‹n ≥ N ›, of p] ‹p ≥ max P N › P[of p] ‹p ≥ max P N › by

auto
also have ... ≤ Gromov-product-at basepoint (v n) (wx p)

by (rule hyperb-ineq)
finally show M ≤ Gromov-product-at basepoint (v n) (wx p)

by simp
qed
then have eventually (λp. ereal (Gromov-product-at basepoint (v n) (wx p))

≥ ereal M ) sequentially
unfolding eventually-sequentially by metis

then show ereal M ≤ liminf (λp. ereal (Gromov-product-at basepoint (wv p)
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(wx p)))
unfolding wv by (simp add: Liminf-bounded)

qed
then show ?thesis unfolding eventually-sequentially by auto

qed
have B: eventually (λn. extended-Gromov-product-at basepoint (to-Gromov-completion

(v n)) x > M ) sequentially if M < ∞ for M
proof −

obtain N where ereal N > M using ‹M < ∞› ereal-dense2 by blast
then have a ≥ ereal N =⇒ a > M for a by auto
then show ?thesis using A[of N ] eventually-elim2 by force

qed
then show ?thesis

by (rule order-tendstoI , auto)
qed

Then, we prove the converse and therefore the equivalence.
lemma Gromov-completion-converge-to-boundary:

assumes x ∈ Gromov-boundary
shows ((λn. to-Gromov-completion (u n)) −−−−→ x)←→ (Gromov-completion-rel

u u ∧ abs-Gromov-completion u = x)
proof

assume Gromov-completion-rel u u ∧ abs-Gromov-completion u = x
then show ((λn. to-Gromov-completion(u n)) −−−−→ x)
using Gromov-completion-converge-to-boundary-aux[OF assms, of u] unfolding

Gromov-completion-boundary-limit[OF assms] by auto
next

assume H : (λn. to-Gromov-completion (u n)) −−−−→ x
have Lu: (λn. extended-Gromov-product-at basepoint (to-Gromov-completion (u

n)) x) −−−−→ ∞
using iffD1 [OF Gromov-completion-boundary-limit[OF assms] H ] by simp

have A: ∃N . ∀n ≥ N . ∀ m ≥ N . Gromov-product-at basepoint (u m) (u n) ≥
M for M

proof −
have eventually (λn. extended-Gromov-product-at basepoint (to-Gromov-completion

(u n)) x > M + deltaG(TYPE( ′a))) sequentially
by (rule order-tendstoD[OF Lu], auto)

then obtain N where N :
∧

n. n ≥ N =⇒ extended-Gromov-product-at base-
point (to-Gromov-completion (u n)) x > M + deltaG(TYPE( ′a))

unfolding eventually-sequentially by auto
have Gromov-product-at basepoint (u m) (u n) ≥ M if n ≥ N m ≥ N for m n
proof −
have ereal M ≤ min (ereal (M + deltaG(TYPE( ′a)))) (ereal (M + deltaG(TYPE( ′a))))

− ereal(deltaG(TYPE( ′a)))
by simp

also have ... ≤ min (extended-Gromov-product-at basepoint (to-Gromov-completion
(u m)) x) (extended-Gromov-product-at basepoint x (to-Gromov-completion (u n)))
− deltaG(TYPE( ′a))

apply (intro mono-intros) using N [OF ‹n ≥ N ›] N [OF ‹m ≥ N ›]
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by (auto simp add: extended-Gromov-product-at-commute)
also have ... ≤ extended-Gromov-product-at basepoint (to-Gromov-completion

(u m)) (to-Gromov-completion (u n))
by (rule extended-hyperb-ineq)

finally show ?thesis by auto
qed
then show ?thesis by auto

qed
have ∃N . ∀n ≥ N . ∀ m ≥ N . Gromov-product-at a (u m) (u n) ≥ M for M a
proof −
obtain N where N :

∧
m n. m ≥ N =⇒ n ≥ N =⇒ Gromov-product-at basepoint

(u m) (u n) ≥ M + dist a basepoint
using A[of M + dist a basepoint] by auto

have Gromov-product-at a (u m) (u n) ≥ M if m ≥ N n ≥ N for m n
using N [OF that] Gromov-product-at-diff1 [of a u m u n basepoint] by auto

then show ?thesis by auto
qed
then have Gromov-converging-at-boundary u

unfolding Gromov-converging-at-boundary-def by auto
then have Gromov-completion-rel u u using Gromov-converging-at-boundary-rel

by auto

define v where v = rep-Gromov-completion x
then have Gromov-converging-at-boundary v

using Gromov-boundary-rep-converging[OF assms] by auto
have v: abs-Gromov-completion v = x Gromov-completion-rel v v
using Quotient3-abs-rep[OF Quotient3-Gromov-completion] Quotient3-rep-reflp[OF

Quotient3-Gromov-completion]
unfolding v-def by auto

then have Lv: (λn. extended-Gromov-product-at basepoint (to-Gromov-completion
(v n)) x) −−−−→ ∞

using Gromov-completion-converge-to-boundary-aux[OF assms] by auto

have ∗: (λn. min (extended-Gromov-product-at basepoint (to-Gromov-completion
(u n)) x) (extended-Gromov-product-at basepoint x (to-Gromov-completion (v n)))
−

ereal (deltaG TYPE( ′a))) −−−−→ min ∞ ∞ − ereal (deltaG TYPE( ′a))
apply (intro tendsto-intros) using Lu Lv by (auto simp add: extended-Gromov-product-at-commute)
have (λn. extended-Gromov-product-at basepoint (to-Gromov-completion (u n))

(to-Gromov-completion (v n))) −−−−→ ∞
apply (rule tendsto-sandwich[of λn. min (extended-Gromov-product-at basepoint

(to-Gromov-completion (u n)) x)
(extended-Gromov-product-at basepoint x

(to-Gromov-completion (v n))) − deltaG(TYPE( ′a)) - - λ-. ∞])
using extended-hyperb-ineq not-eventuallyD apply blast using ∗ by auto

then have (λn. Gromov-product-at basepoint (u n) (v n)) −−−−→ ∞
by auto

then have (λn. Gromov-product-at a (u n) (v n)) −−−−→ ∞ for a
using Gromov-product-tendsto-PInf-a-b by auto
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then have Gromov-completion-rel u v
unfolding Gromov-completion-rel-def
using ‹Gromov-converging-at-boundary u› ‹Gromov-converging-at-boundary v›

by auto
then have abs-Gromov-completion u = abs-Gromov-completion v
using Quotient3-rel[OF Quotient3-Gromov-completion] v(2 ) ‹Gromov-completion-rel

u u› by auto
then have abs-Gromov-completion u = x

using v(1 ) by auto
then show Gromov-completion-rel u u ∧ abs-Gromov-completion u = x

using ‹Gromov-completion-rel u u› by auto
qed

In particular, it follows that a sequence which is Gromov_converging_at_boundary
is indeed converging to a point on the boundary, the equivalence class of this
sequence.
lemma Gromov-converging-at-boundary-converges:

assumes Gromov-converging-at-boundary u
shows ∃ x ∈ Gromov-boundary. (λn. to-Gromov-completion (u n)) −−−−→ x

apply (rule bexI [of - abs-Gromov-completion u])
apply (subst Gromov-completion-converge-to-boundary)
using assms by (auto simp add: Gromov-converging-at-boundary-rel)

lemma Gromov-converging-at-boundary-converges ′:
assumes Gromov-converging-at-boundary u
shows convergent (λn. to-Gromov-completion (u n))

unfolding convergent-def using Gromov-converging-at-boundary-converges[OF assms]
by auto

lemma lim-imp-Gromov-converging-at-boundary:
fixes u::nat ⇒ ′a::Gromov-hyperbolic-space
assumes (λn. to-Gromov-completion (u n)) −−−−→ x x ∈ Gromov-boundary
shows Gromov-converging-at-boundary u

using Gromov-boundary-abs-converging Gromov-completion-converge-to-boundary
assms by blast

If two sequences tend to the same point at infinity, then their Gromov prod-
uct tends to infinity.
lemma same-limit-imp-Gromov-product-tendsto-infinity:

assumes z ∈ Gromov-boundary
(λn. to-Gromov-completion (u n)) −−−−→ z
(λn. to-Gromov-completion (v n)) −−−−→ z

shows ∃N . ∀n ≥ N . ∀m ≥ N . Gromov-product-at a (u n) (v m) ≥ C
proof −
have Gromov-completion-rel u u Gromov-completion-rel v v abs-Gromov-completion

u = abs-Gromov-completion v
using iffD1 [OF Gromov-completion-converge-to-boundary[OF assms(1 )]] assms

by auto
then have ∗: Gromov-completion-rel u v
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using Quotient3-Gromov-completion Quotient3-rel by fastforce
have ∗∗: Gromov-converging-at-boundary u

using assms lim-imp-Gromov-converging-at-boundary by blast
then obtain M where M :

∧
m n. m ≥ M =⇒ n ≥ M =⇒ Gromov-product-at

a (u m) (u n) ≥ C + deltaG(TYPE( ′a))
unfolding Gromov-converging-at-boundary-def by blast

have (λn. Gromov-product-at a (u n) (v n)) −−−−→ ∞
using ∗ Gromov-converging-at-boundary-imp-not-constant ′[OF ∗∗] unfolding

Gromov-completion-rel-def by auto
then have eventually (λn. Gromov-product-at a (u n) (v n) ≥ C + deltaG(TYPE( ′a)))

sequentially
by (meson Lim-PInfty ereal-less-eq(3 ) eventually-sequentiallyI )

then obtain N where N :
∧

n. n ≥ N =⇒ Gromov-product-at a (u n) (v n) ≥
C + deltaG(TYPE( ′a))

unfolding eventually-sequentially by auto
have Gromov-product-at a (u n) (v m) ≥ C if n ≥ max M N m ≥ max M N for

m n
proof −

have C + deltaG(TYPE( ′a)) ≤ min (Gromov-product-at a (u n) (u m))
(Gromov-product-at a (u m) (v m))

using M N that by auto
also have ... ≤ Gromov-product-at a (u n) (v m) + deltaG(TYPE( ′a))

by (intro mono-intros)
finally show ?thesis by simp

qed
then show ?thesis

by blast
qed

An admissible sequence converges in the Gromov boundary, to the point it
defines. This follows from the definition of the topology in the two cases,
inner and boundary.
lemma abs-Gromov-completion-limit:

assumes Gromov-completion-rel u u
shows (λn. to-Gromov-completion (u n)) −−−−→ abs-Gromov-completion u

proof (cases abs-Gromov-completion u)
case (to-Gromov-completion x)
then show ?thesis
using Gromov-completion-rel-to-const Quotient3-Gromov-completion Quotient3-rel

assms to-Gromov-completion-def by fastforce
next

case boundary
show ?thesis

unfolding Gromov-completion-converge-to-boundary[OF boundary]
using assms Gromov-boundary-rep-converging Gromov-converging-at-boundary-rel

Quotient3-Gromov-completion Quotient3-abs-rep boundary by fastforce
qed
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In particular, a point in the Gromov boundary is the limit of its represen-
tative sequence in the space.
lemma rep-Gromov-completion-limit:
(λn. to-Gromov-completion (rep-Gromov-completion x n)) −−−−→ x

using abs-Gromov-completion-limit[of rep-Gromov-completion x] Quotient3-Gromov-completion
Quotient3-abs-rep Quotient3-rep-reflp by fastforce

15.5 Continuity properties of the extended Gromov product
and distance

We have defined our extended Gromov product in terms of sequences satisfy-
ing the equivalence relation. However, we would like to avoid this definition
as much as possible, and express things in terms of the topology of the space.
Hence, we reformulate this definition in topological terms, first when one of
the two points is inside and the other one is on the boundary, then for all
cases, and then we come back to the case where one point is inside, removing
the assumption that the other one is on the boundary.
lemma extended-Gromov-product-inside-boundary-aux:

assumes y ∈ Gromov-boundary
shows extended-Gromov-product-at e (to-Gromov-completion x) y = Inf {liminf

(λn. ereal(Gromov-product-at e x (v n))) |v. (λn. to-Gromov-completion (v n))
−−−−→ y}
proof −
have A: abs-Gromov-completion v = to-Gromov-completion x ∧ Gromov-completion-rel

v v ←→ (v = (λn. x)) for v
apply (auto simp add: to-Gromov-completion-def )

by (metis (mono-tags) Gromov-completion-rel-def Quotient3-Gromov-completion
abs-Gromov-completion-in-Gromov-boundary not-in-Gromov-boundary ′ rep-Gromov-completion-to-Gromov-completion
rep-abs-rsp to-Gromov-completion-def )

have ∗: {F u v |u v. abs-Gromov-completion u = to-Gromov-completion x ∧
abs-Gromov-completion v = y ∧ Gromov-completion-rel u u ∧ Gromov-completion-rel
v v}

= {F (λn. x) v |v. (λn. to-Gromov-completion (v n)) −−−−→ y} for F ::(nat
⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ ereal

unfolding Gromov-completion-converge-to-boundary[OF ‹y ∈ Gromov-boundary›]
using A by force

show ?thesis
unfolding extended-Gromov-product-at-def ∗ by simp

qed

lemma extended-Gromov-product-boundary-inside-aux:
assumes y ∈ Gromov-boundary
shows extended-Gromov-product-at e y (to-Gromov-completion x) = Inf {liminf

(λn. ereal(Gromov-product-at e (v n) x)) |v. (λn. to-Gromov-completion (v n))
−−−−→ y}
using extended-Gromov-product-inside-boundary-aux[OF assms] by (simp add: ex-
tended-Gromov-product-at-commute Gromov-product-commute)
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lemma extended-Gromov-product-at-topological:
extended-Gromov-product-at e x y = Inf {liminf (λn. ereal(Gromov-product-at e

(u n) (v n))) |u v. (λn. to-Gromov-completion (u n)) −−−−→ x ∧ (λn. to-Gromov-completion
(v n)) −−−−→ y}
proof (cases x)

case boundary
show ?thesis
proof (cases y)

case boundary
then show ?thesis
unfolding extended-Gromov-product-at-def Gromov-completion-converge-to-boundary[OF

‹x ∈ Gromov-boundary›] Gromov-completion-converge-to-boundary[OF ‹y ∈ Gro-
mov-boundary›]

by meson
next

case (to-Gromov-completion yi)
have A: liminf (λn. ereal (Gromov-product-at e (u n) (v n))) = liminf (λn.

ereal (Gromov-product-at e (u n) yi)) if v −−−−→ yi for u v
proof −
define h where h = (λn. Gromov-product-at e (u n) (v n) − Gromov-product-at

e (u n) yi)
have h: h −−−−→ 0

apply (rule tendsto-rabs-zero-cancel, rule tendsto-sandwich[of λn. 0 - - λn.
dist (v n) yi])

unfolding h-def using Gromov-product-at-diff3 [of e - - yi] that apply auto
using tendsto-dist-iff by blast

have ∗: ereal (Gromov-product-at e (u n) (v n)) = h n + ereal (Gromov-product-at
e (u n) yi) for n

unfolding h-def by auto
have liminf (λn. ereal (Gromov-product-at e (u n) (v n))) = 0 + liminf (λn.

ereal (Gromov-product-at e (u n) yi))
unfolding ∗ apply (rule ereal-liminf-lim-add) using h by (auto simp add:

zero-ereal-def )
then show ?thesis by simp

qed
show ?thesis
unfolding to-Gromov-completion extended-Gromov-product-boundary-inside-aux[OF

‹x ∈ Gromov-boundary›] apply (rule cong[of Inf Inf ], auto)
using A by fast+

qed
next

case (to-Gromov-completion xi)
show ?thesis
proof (cases y)

case boundary
have A: liminf (λn. ereal (Gromov-product-at e (u n) (v n))) = liminf (λn.

ereal (Gromov-product-at e xi (v n))) if u −−−−→ xi for u v
proof −
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define h where h = (λn. Gromov-product-at e (u n) (v n) − Gromov-product-at
e xi (v n))

have h: h −−−−→ 0
apply (rule tendsto-rabs-zero-cancel, rule tendsto-sandwich[of λn. 0 - - λn.

dist (u n) xi])
unfolding h-def using Gromov-product-at-diff2 [of e - - xi] that apply auto
using tendsto-dist-iff by blast

have ∗: ereal (Gromov-product-at e (u n) (v n)) = h n + ereal (Gromov-product-at
e xi (v n)) for n

unfolding h-def by auto
have liminf (λn. ereal (Gromov-product-at e (u n) (v n))) = 0 + liminf (λn.

ereal (Gromov-product-at e xi (v n)))
unfolding ∗ apply (rule ereal-liminf-lim-add) using h by (auto simp add:

zero-ereal-def )
then show ?thesis by simp

qed
show ?thesis
unfolding to-Gromov-completion extended-Gromov-product-inside-boundary-aux[OF

‹y ∈ Gromov-boundary›] apply (rule cong[of Inf Inf ], auto)
using A by fast+

next
case (to-Gromov-completion yi)
have B: liminf (λn. Gromov-product-at e (u n) (v n)) = Gromov-product-at e

xi yi if u −−−−→ xi v −−−−→ yi for u v
proof −

have (λn. Gromov-product-at e (u n) (v n)) −−−−→ Gromov-product-at e xi
yi

apply (rule Gromov-product-at-continuous) using that by auto
then show liminf (λn. Gromov-product-at e (u n) (v n)) = Gromov-product-at

e xi yi
by (simp add: lim-imp-Liminf )

qed
have ∗: {liminf (λn. ereal (Gromov-product-at e (u n) (v n))) |u v. u −−−−→

xi ∧ v −−−−→ yi} = {ereal (Gromov-product-at e xi yi)}
using B apply auto by (rule exI [of - λn. xi], rule exI [of - λn. yi], auto)

show ?thesis
unfolding ‹x = to-Gromov-completion xi› ‹y = to-Gromov-completion yi› by

(auto simp add: ∗)
qed

qed

lemma extended-Gromov-product-inside-boundary:
extended-Gromov-product-at e (to-Gromov-completion x) y = Inf {liminf (λn.

ereal(Gromov-product-at e x (v n))) |v. (λn. to-Gromov-completion (v n)) −−−−→
y}
proof −

have A: liminf (λn. ereal (Gromov-product-at e (u n) (v n))) = liminf (λn. ereal
(Gromov-product-at e x (v n))) if u −−−−→ x for u v

proof −
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define h where h = (λn. Gromov-product-at e (u n) (v n) − Gromov-product-at
e x (v n))

have h: h −−−−→ 0
apply (rule tendsto-rabs-zero-cancel, rule tendsto-sandwich[of λn. 0 - - λn.

dist (u n) x])
unfolding h-def using Gromov-product-at-diff2 [of e - - x] that apply auto
using tendsto-dist-iff by blast

have ∗: ereal (Gromov-product-at e (u n) (v n)) = h n + ereal (Gromov-product-at
e x (v n)) for n

unfolding h-def by auto
have liminf (λn. ereal (Gromov-product-at e (u n) (v n))) = 0 + liminf (λn.

ereal (Gromov-product-at e x (v n)))
unfolding ∗ apply (rule ereal-liminf-lim-add) using h by (auto simp add:

zero-ereal-def )
then show ?thesis by simp

qed
show ?thesis
unfolding extended-Gromov-product-at-topological apply (rule cong[of Inf Inf ],

auto)
using A by fast+

qed

lemma extended-Gromov-product-boundary-inside:
extended-Gromov-product-at e y (to-Gromov-completion x) = Inf {liminf (λn.

ereal(Gromov-product-at e (v n) x)) |v. (λn. to-Gromov-completion (v n)) −−−−→
y}
using extended-Gromov-product-inside-boundary by (simp add: extended-Gromov-product-at-commute
Gromov-product-commute)

Now, we compare the extended Gromov product to a sequence of Gromov
products for converging sequences. As the extended Gromov product is
defined as an Inf of limings, it is clearly smaller than the liminf. More
interestingly, it is also of the order of magnitude of the limsup, for whatever
sequence one uses. In other words, it is canonically defined, up to 2δ.
lemma extended-Gromov-product-le-liminf :

assumes (λn. to-Gromov-completion (u n)) −−−−→ xi
(λn. to-Gromov-completion (v n)) −−−−→ eta

shows liminf (λn. Gromov-product-at e (u n) (v n)) ≥ extended-Gromov-product-at
e xi eta
unfolding extended-Gromov-product-at-topological using assms by (auto intro!:
Inf-lower)

lemma limsup-le-extended-Gromov-product-inside:
assumes (λn. to-Gromov-completion (v n)) −−−−→ (eta::( ′a::Gromov-hyperbolic-space)

Gromov-completion)
shows limsup (λn. Gromov-product-at e x (v n)) ≤ extended-Gromov-product-at

e (to-Gromov-completion x) eta + deltaG(TYPE( ′a))
proof (cases eta)

case boundary
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have A: limsup (λn. Gromov-product-at e x (v n)) ≤ liminf (λn. Gromov-product-at
e x (v ′ n)) + deltaG(TYPE( ′a))

if H : (λn. to-Gromov-completion (v ′ n)) −−−−→ eta for v ′

proof −
have ereal a ≤ liminf (λn. Gromov-product-at e x (v ′ n)) + deltaG(TYPE( ′a))

if L: ereal a < limsup (λn. Gromov-product-at e x (v n)) for a
proof −

obtain Nv where Nv:
∧

m n. m ≥ Nv =⇒ n ≥ Nv =⇒ Gromov-product-at
e (v m) (v ′ n) ≥ a

using same-limit-imp-Gromov-product-tendsto-infinity[OF ‹eta ∈ Gro-
mov-boundary› assms H ] by blast

obtain N where N : ereal a < Gromov-product-at e x (v N ) N ≥ Nv
using limsup-obtain[OF L] by blast

have ∗: a − deltaG(TYPE( ′a)) ≤ Gromov-product-at e x (v ′ n) if n ≥ Nv
for n

proof −
have a ≤ min (Gromov-product-at e x (v N )) (Gromov-product-at e (v N )

(v ′ n))
apply auto using N (1 ) Nv[OF ‹N ≥ Nv› ‹n ≥ Nv›] by auto

also have ... ≤ Gromov-product-at e x (v ′ n) + deltaG(TYPE( ′a))
by (intro mono-intros)

finally show ?thesis by auto
qed
have a − deltaG(TYPE( ′a)) ≤ liminf (λn. Gromov-product-at e x (v ′ n))
apply (rule Liminf-bounded) unfolding eventually-sequentially using ∗ by

fastforce
then show ?thesis

unfolding ereal-minus(1 )[symmetric] by (subst ereal-minus-le[symmetric],
auto)

qed
then show ?thesis

using ereal-dense2 not-less by blast
qed
have limsup (λn. Gromov-product-at e x (v n)) − deltaG(TYPE( ′a)) ≤ ex-

tended-Gromov-product-at e (to-Gromov-completion x) eta
unfolding extended-Gromov-product-inside-boundary by (rule Inf-greatest, auto

simp add: A)
then show ?thesis by auto

next
case (to-Gromov-completion y)
then have v −−−−→ y using assms by auto
have L: (λn. Gromov-product-at e x (v n)) −−−−→ ereal(Gromov-product-at e x

y)
using Gromov-product-at-continuous[OF - - ‹v −−−−→ y›, of λn. e e λn. x x]

by auto
show ?thesis

unfolding to-Gromov-completion using lim-imp-Limsup[OF - L] by auto
qed
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lemma limsup-le-extended-Gromov-product-inside ′:
assumes (λn. to-Gromov-completion (v n)) −−−−→ (eta::( ′a::Gromov-hyperbolic-space)

Gromov-completion)
shows limsup (λn. Gromov-product-at e (v n) x) ≤ extended-Gromov-product-at

e eta (to-Gromov-completion x) + deltaG(TYPE( ′a))
using limsup-le-extended-Gromov-product-inside[OF assms] by (simp add: Gro-
mov-product-commute extended-Gromov-product-at-commute)

lemma limsup-le-extended-Gromov-product:
assumes (λn. to-Gromov-completion (u n)) −−−−→ (xi::( ′a::Gromov-hyperbolic-space)

Gromov-completion)
(λn. to-Gromov-completion (v n)) −−−−→ eta

shows limsup (λn. Gromov-product-at e (u n) (v n)) ≤ extended-Gromov-product-at
e xi eta + 2 ∗ deltaG(TYPE( ′a))
proof −
consider xi ∈ Gromov-boundary ∧ eta ∈ Gromov-boundary | xi /∈ Gromov-boundary
| eta /∈ Gromov-boundary

by blast
then show ?thesis
proof (cases)

case 1
then have B: xi ∈ Gromov-boundary eta ∈ Gromov-boundary by auto
have A: limsup (λn. Gromov-product-at e (u n) (v n)) ≤ liminf (λn. Gro-

mov-product-at e (u ′ n) (v ′ n)) + 2 ∗ deltaG(TYPE( ′a))
if H : (λn. to-Gromov-completion (u ′ n)) −−−−→ xi (λn. to-Gromov-completion

(v ′ n)) −−−−→ eta for u ′ v ′

proof −
have ereal a ≤ liminf (λn. Gromov-product-at e (u ′ n) (v ′ n)) + 2 ∗

deltaG(TYPE( ′a)) if L: ereal a < limsup (λn. Gromov-product-at e (u n) (v n))
for a

proof −
obtain Nu where Nu:

∧
m n. m ≥ Nu =⇒ n ≥ Nu =⇒ Gromov-product-at

e (u ′ m) (u n) ≥ a
using same-limit-imp-Gromov-product-tendsto-infinity[OF ‹xi ∈ Gro-

mov-boundary› H (1 ) assms(1 )] by blast
obtain Nv where Nv:

∧
m n. m ≥ Nv =⇒ n ≥ Nv =⇒ Gromov-product-at

e (v m) (v ′ n) ≥ a
using same-limit-imp-Gromov-product-tendsto-infinity[OF ‹eta ∈ Gro-

mov-boundary› assms(2 ) H (2 )] by blast
obtain N where N : ereal a < Gromov-product-at e (u N ) (v N ) N ≥ max

Nu Nv
using limsup-obtain[OF L] by blast

then have N ≥ Nu N ≥ Nv by auto
have ∗: a − 2 ∗ deltaG(TYPE( ′a)) ≤ Gromov-product-at e (u ′ n) (v ′ n) if

n ≥ max Nu Nv for n
proof −

have n: n ≥ Nu n ≥ Nv using that by auto
have a ≤ Min {Gromov-product-at e (u ′ n) (u N ), Gromov-product-at e

(u N ) (v N ), Gromov-product-at e (v N ) (v ′ n)}
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apply auto using N (1 ) Nu[OF n(1 ) ‹N ≥ Nu›] Nv[OF ‹N ≥ Nv› n(2 )]
by auto

also have ... ≤ Gromov-product-at e (u ′ n) (v ′ n) + 2 ∗ deltaG(TYPE( ′a))
by (intro mono-intros)

finally show ?thesis by auto
qed
have a − 2 ∗ deltaG(TYPE( ′a)) ≤ liminf (λn. Gromov-product-at e (u ′ n)

(v ′ n))
apply (rule Liminf-bounded) unfolding eventually-sequentially using ∗

by fastforce
then show ?thesis
unfolding ereal-minus(1 )[symmetric] by (subst ereal-minus-le[symmetric],

auto)
qed
then show ?thesis

using ereal-dense2 not-less by blast
qed
have limsup (λn. Gromov-product-at e (u n) (v n)) − 2 ∗ deltaG(TYPE( ′a))

≤ extended-Gromov-product-at e xi eta
unfolding extended-Gromov-product-at-topological by (rule Inf-greatest, auto

simp add: A)
then show ?thesis by auto

next
case 2
then obtain x where x: xi = to-Gromov-completion x by (cases xi, auto)
have A: limsup (λn. ereal (Gromov-product-at e (u n) (v n))) = limsup (λn.

ereal (Gromov-product-at e x (v n)))
proof −
define h where h = (λn. Gromov-product-at e (u n) (v n) − Gromov-product-at

e x (v n))
have h: h −−−−→ 0

apply (rule tendsto-rabs-zero-cancel, rule tendsto-sandwich[of λn. 0 - - λn.
dist (u n) x])

unfolding h-def using Gromov-product-at-diff2 [of e - - x] assms(1 ) un-
folding x apply auto

using tendsto-dist-iff by blast
have ∗: ereal (Gromov-product-at e (u n) (v n)) = h n + ereal (Gromov-product-at

e x (v n)) for n
unfolding h-def by auto

have limsup (λn. ereal (Gromov-product-at e (u n) (v n))) = 0 + limsup (λn.
ereal (Gromov-product-at e x (v n)))

unfolding ∗ apply (rule ereal-limsup-lim-add) using h by (auto simp add:
zero-ereal-def )

then show ?thesis by simp
qed
have ∗: ereal (deltaG TYPE( ′a)) ≤ ereal (2 ∗ deltaG TYPE( ′a))

by auto
show ?thesis
unfolding A x using limsup-le-extended-Gromov-product-inside[OF assms(2 ),
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of e x] ∗
by (meson add-left-mono order .trans)

next
case 3
then obtain y where y: eta = to-Gromov-completion y by (cases eta, auto)
have A: limsup (λn. ereal (Gromov-product-at e (u n) (v n))) = limsup (λn.

ereal (Gromov-product-at e (u n) y))
proof −
define h where h = (λn. Gromov-product-at e (u n) (v n) − Gromov-product-at

e (u n) y)
have h: h −−−−→ 0

apply (rule tendsto-rabs-zero-cancel, rule tendsto-sandwich[of λn. 0 - - λn.
dist (v n) y])

unfolding h-def using Gromov-product-at-diff3 [of e - - y] assms(2 ) un-
folding y apply auto

using tendsto-dist-iff by blast
have ∗: ereal (Gromov-product-at e (u n) (v n)) = h n + ereal (Gromov-product-at

e (u n) y) for n
unfolding h-def by auto

have limsup (λn. ereal (Gromov-product-at e (u n) (v n))) = 0 + limsup (λn.
ereal (Gromov-product-at e (u n) y))

unfolding ∗ apply (rule ereal-limsup-lim-add) using h by (auto simp add:
zero-ereal-def )

then show ?thesis by simp
qed
have ∗: ereal (deltaG TYPE( ′a)) ≤ ereal (2 ∗ deltaG TYPE( ′a))

by auto
show ?thesis
unfolding A y using limsup-le-extended-Gromov-product-inside ′[OF assms(1 ),

of e y] ∗
by (meson add-left-mono order .trans)

qed
qed

One can then extend to the boundary the fact that (y, z)x+(x, z)y = d(x, y),
up to a constant δ, by taking this identity inside and passing to the limit.
lemma extended-Gromov-product-add-le:
extended-Gromov-product-at x xi (to-Gromov-completion y) + extended-Gromov-product-at

y xi (to-Gromov-completion x) ≤ dist x y
proof −

obtain u where u: (λn. to-Gromov-completion (u n)) −−−−→ xi
using rep-Gromov-completion-limit by blast

have liminf (λn. ereal (Gromov-product-at a b (u n))) ≥ 0 for a b
by (rule Liminf-bounded[OF always-eventually], auto)

then have ∗: liminf (λn. ereal (Gromov-product-at a b (u n))) 6= −∞ for a b
by auto

have extended-Gromov-product-at x xi (to-Gromov-completion y) + extended-Gromov-product-at
y xi (to-Gromov-completion x)

≤ liminf (λn. ereal (Gromov-product-at x y (u n))) + liminf (λn. Gro-
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mov-product-at y x (u n))
apply (intro mono-intros)

using extended-Gromov-product-le-liminf [OF u, of λn. y to-Gromov-completion
y x]

extended-Gromov-product-le-liminf [OF u, of λn. x to-Gromov-completion x
y] by (auto simp add: Gromov-product-commute)
also have ... ≤ liminf (λn. ereal (Gromov-product-at x y (u n)) + Gromov-product-at

y x (u n))
by (rule ereal-liminf-add-mono, auto simp add: ∗)

also have ... = dist x y
apply (simp add: Gromov-product-add)
by (metis lim-imp-Liminf sequentially-bot tendsto-const)

finally show ?thesis by auto
qed

lemma extended-Gromov-product-add-ge:
extended-Gromov-product-at (x:: ′a::Gromov-hyperbolic-space) xi (to-Gromov-completion

y) + extended-Gromov-product-at y xi (to-Gromov-completion x) ≥ dist x y −
deltaG(TYPE( ′a))
proof −

have A: dist x y − extended-Gromov-product-at y (to-Gromov-completion x) xi
− deltaG(TYPE( ′a)) ≤ liminf (λn. ereal (Gromov-product-at x y (u n)))

if (λn. to-Gromov-completion (u n)) −−−−→ xi for u
proof −

have dist x y = liminf (λn. ereal (Gromov-product-at x y (u n)) + Gro-
mov-product-at y x (u n))

apply (simp add: Gromov-product-add)
by (metis lim-imp-Liminf sequentially-bot tendsto-const)

also have ... ≤ liminf (λn. ereal (Gromov-product-at x y (u n))) + limsup (λn.
Gromov-product-at y x (u n))

by (rule ereal-liminf-limsup-add)
also have ... ≤ liminf (λn. ereal (Gromov-product-at x y (u n))) + (extended-Gromov-product-at

y (to-Gromov-completion x) xi + deltaG(TYPE( ′a)))
by (intro mono-intros limsup-le-extended-Gromov-product-inside[OF that])

finally show ?thesis by (auto simp add: algebra-simps)
qed
have dist x y − extended-Gromov-product-at y (to-Gromov-completion x) xi −

deltaG(TYPE( ′a)) ≤ extended-Gromov-product-at x (to-Gromov-completion y) xi
unfolding extended-Gromov-product-inside-boundary[of x] apply (rule Inf-greatest)

using A by auto
then show ?thesis

apply (auto simp add: algebra-simps extended-Gromov-product-at-commute)
unfolding ereal-minus(1 )[symmetric] by (subst ereal-minus-le, auto simp add:

algebra-simps)
qed

If one perturbs a sequence inside the space by a bounded distance, one does
not change the limit on the boundary.
lemma Gromov-converging-at-boundary-bounded-perturbation:
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assumes (λn. to-Gromov-completion (u n)) −−−−→ x
x ∈ Gromov-boundary∧

n. dist (u n) (v n) ≤ C
shows (λn. to-Gromov-completion (v n)) −−−−→ x

proof −
have (λn. extended-Gromov-product-at basepoint (to-Gromov-completion (v n))

x) −−−−→ ∞
proof (rule tendsto-sandwich[of λn. extended-Gromov-product-at basepoint (to-Gromov-completion

(u n)) x − C - - λn. ∞])
show ∀ F n in sequentially. extended-Gromov-product-at basepoint (to-Gromov-completion

(u n)) x − ereal C ≤ extended-Gromov-product-at basepoint (to-Gromov-completion
(v n)) x

proof (rule always-eventually, auto)
fix n::nat
have extended-Gromov-product-at basepoint (to-Gromov-completion (u n)) x

≤ extended-Gromov-product-at basepoint (to-Gromov-completion (v n)) x
+ extended-Gromov-distance (to-Gromov-completion (u n))

(to-Gromov-completion (v n))
by (intro mono-intros)

also have ... ≤ extended-Gromov-product-at basepoint (to-Gromov-completion
(v n)) x + C

using assms(3 )[of n] by (intro mono-intros, auto)
finally show extended-Gromov-product-at basepoint (to-Gromov-completion

(u n)) x ≤ extended-Gromov-product-at basepoint (to-Gromov-completion (v n)) x
+ ereal C

by auto
qed
have (λn. extended-Gromov-product-at basepoint (to-Gromov-completion (u n))

x − ereal C ) −−−−→ ∞ − ereal C
apply (intro tendsto-intros)
unfolding Gromov-completion-boundary-limit[OF ‹x ∈ Gromov-boundary›,

symmetric] using assms(1 ) by auto
then show (λn. extended-Gromov-product-at basepoint (to-Gromov-completion

(u n)) x − ereal C ) −−−−→ ∞
by auto

qed (auto)
then show ?thesis

unfolding Gromov-completion-boundary-limit[OF ‹x ∈ Gromov-boundary›] by
simp
qed

We prove that the extended Gromov distance is a continuous function of one
variable, by separating the different cases at infinity and inside the space.
Note that it is not a continuous function of both variables: if un is inside the
space but tends to a point x in the boundary, then the extended Gromov
distance between un and un is 0, but for the limit it is ∞.
lemma extended-Gromov-distance-continuous:

continuous-on UNIV (λy. extended-Gromov-distance x y)
proof (cases x)
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First, if x is in the boundary, then all distances to x are infinite, and the
statement is trivial.

case boundary
then have ∗: extended-Gromov-distance x y = ∞ for y

by auto
show ?thesis

unfolding ∗ using continuous-on-topological by blast
next

Next, consider the case where x is inside the space. We split according to
whether y is inside the space or at infinity.

case (to-Gromov-completion a)
have (λn. extended-Gromov-distance x (u n)) −−−−→ extended-Gromov-distance

x y if u −−−−→ y for u y
proof (cases y)

If y is at infinity, then we know that the Gromov product of un and y tends
to infinity. Therefore, the extended distance from un to any fixed point
also tends to infinity (as the Gromov product is bounded from below by the
extended distance).

case boundary
have ∗: (λn. extended-Gromov-product-at a (u n) y) −−−−→ ∞
by (rule extended-Gromov-product-tendsto-PInf-a-b[OF iffD1 [OF Gromov-completion-boundary-limit,

OF boundary ‹u −−−−→ y›]])
have (λn. extended-Gromov-distance x (u n)) −−−−→ ∞

apply (rule tendsto-sandwich[of λn. extended-Gromov-product-at a (u n) y -
- λ-. ∞])

unfolding to-Gromov-completion using extended-Gromov-product-le-dist[of a
u - y] ∗ by auto

then show ?thesis using boundary by auto
next

If y is inside the space, then we use the triangular inequality for the extended
Gromov distance to conclure.

case (to-Gromov-completion b)
then have F : y /∈ Gromov-boundary by auto
have ∗: (λn. extended-Gromov-distance (u n) y) −−−−→ 0

by (rule iffD1 [OF Gromov-completion-inside-limit[OF F ] ‹u −−−−→ y›])
show (λn. extended-Gromov-distance x (u n)) −−−−→ extended-Gromov-distance

x y
proof (rule tendsto-sandwich[of λn. extended-Gromov-distance x y − ex-

tended-Gromov-distance (u n) y - -
λn. extended-Gromov-distance x y + ex-

tended-Gromov-distance (u n) y])
have extended-Gromov-distance x y − extended-Gromov-distance (u n) y ≤

extended-Gromov-distance x (u n) for n
using extended-Gromov-distance-triangle[of y x u n]
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by (auto simp add: extended-Gromov-distance-commute F ennreal-minus-le-iff
extended-Gromov-distance-def )

then show ∀ F n in sequentially. extended-Gromov-distance x y − ex-
tended-Gromov-distance (u n) y ≤ extended-Gromov-distance x (u n)

by auto
have extended-Gromov-distance x (u n) ≤ extended-Gromov-distance x y +

extended-Gromov-distance (u n) y for n
using extended-Gromov-distance-triangle[of x u n y] by (auto simp add:

extended-Gromov-distance-commute)
then show ∀ F n in sequentially. extended-Gromov-distance x (u n) ≤ ex-

tended-Gromov-distance x y + extended-Gromov-distance (u n) y
by auto

have (λn. extended-Gromov-distance x y − extended-Gromov-distance (u n)
y) −−−−→ extended-Gromov-distance x y − 0

by (intro tendsto-intros ∗, auto)
then show (λn. extended-Gromov-distance x y − extended-Gromov-distance

(u n) y) −−−−→ extended-Gromov-distance x y
by simp

have (λn. extended-Gromov-distance x y + extended-Gromov-distance (u n)
y) −−−−→ extended-Gromov-distance x y + 0

by (intro tendsto-intros ∗, auto)
then show (λn. extended-Gromov-distance x y + extended-Gromov-distance

(u n) y) −−−−→ extended-Gromov-distance x y
by simp

qed
qed
then show ?thesis

unfolding continuous-on-sequentially comp-def by auto
qed

lemma extended-Gromov-distance-continuous ′:
continuous-on UNIV (λx. extended-Gromov-distance x y)

using extended-Gromov-distance-continuous[of y] extended-Gromov-distance-commute[of
- y] by auto

15.6 Topology of the Gromov boundary

We deduce the basic fact that the original space is open in the Gromov
completion from the continuity of the extended distance.
lemma to-Gromov-completion-range-open:

open (range to-Gromov-completion)
proof −
have ∗: range to-Gromov-completion = (λx. extended-Gromov-distance (to-Gromov-completion

basepoint) x)−‘{..<∞}
using Gromov-boundary-def extended-Gromov-distance-PInf-boundary(2 ) by

fastforce
show ?thesis
unfolding ∗ using extended-Gromov-distance-continuous open-lessThan open-vimage

by blast
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qed

lemma Gromov-boundary-closed:
closed Gromov-boundary

unfolding Gromov-boundary-def using to-Gromov-completion-range-open by auto

The original space is also dense in its Gromov completion, as all points at
infinity are by definition limits of some sequence in the space.
lemma to-Gromov-completion-range-dense [simp]:

closure (range to-Gromov-completion) = UNIV
apply (auto simp add: closure-sequential) using rep-Gromov-completion-limit by
force

lemma to-Gromov-completion-homeomorphism:
homeomorphism-on UNIV to-Gromov-completion

by (rule homeomorphism-on-sequentially, auto)

lemma to-Gromov-completion-continuous:
continuous-on UNIV to-Gromov-completion

by (rule homeomorphism-on-continuous[OF to-Gromov-completion-homeomorphism])

lemma from-Gromov-completion-continuous:
homeomorphism-on (range to-Gromov-completion) from-Gromov-completion
continuous-on (range to-Gromov-completion) from-Gromov-completion∧

x::( ′a::Gromov-hyperbolic-space) Gromov-completion. x ∈ range to-Gromov-completion
=⇒ continuous (at x) from-Gromov-completion
proof −
show ∗: homeomorphism-on (range to-Gromov-completion) from-Gromov-completion

using homeomorphism-on-inverse[OF to-Gromov-completion-homeomorphism]
unfolding from-Gromov-completion-def [symmetric] by simp

show continuous-on (range to-Gromov-completion) from-Gromov-completion
by (simp add: ∗ homeomorphism-on-continuous)

then show continuous (at x) from-Gromov-completion if x ∈ range to-Gromov-completion
for x:: ′a Gromov-completion

using continuous-on-eq-continuous-at that to-Gromov-completion-range-open
by auto
qed

The Gromov boundary is always complete. Indeed, consider a Cauchy se-
quence un in the boundary, and approximate well enough un by a point vn
inside. Then the sequence vn is Gromov converging at infinity (the respec-
tive Gromov products tend to infinity essentially by definition), and its limit
point is the limit of the original sequence u.
proposition Gromov-boundary-complete:

complete Gromov-boundary
proof (rule completeI )

fix u::nat ⇒ ′a Gromov-completion assume ∀n. u n ∈ Gromov-boundary Cauchy
u
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then have u:
∧

n. u n ∈ Gromov-boundary by auto
have ∗: ∃ x ∈ range to-Gromov-completion. dist (u n) x < 1/real(n+1 ) for n
by (rule closure-approachableD, auto simp add: to-Gromov-completion-range-dense)

have ∃ v. ∀n. dist (to-Gromov-completion (v n)) (u n) < 1/real(n+1 )
using of-nat-less-top apply (intro choice) using ∗ by (auto simp add: dist-commute)

then obtain v where v:
∧

n. dist (to-Gromov-completion (v n)) (u n) < 1/real(n+1 )
by blast

have (λn. dist (to-Gromov-completion (v n)) (u n)) −−−−→ 0
apply (rule tendsto-sandwich[of λ-. 0 - - λn. 1/real(n+1 )])

using v LIMSEQ-ignore-initial-segment[OF lim-1-over-n, of 1 ] unfolding even-
tually-sequentially

by (auto simp add: less-imp-le)

have Gromov-converging-at-boundary v
proof (rule Gromov-converging-at-boundaryI [of basepoint])

fix M ::real
obtain D1 e1 where D1 : e1 > 0 D1 < ∞

∧
x y:: ′a Gromov-completion. dist x

y ≤ e1 =⇒ extended-Gromov-distance x (to-Gromov-completion basepoint) ≥ D1
=⇒ extended-Gromov-product-at basepoint x y ≥ ereal M

using large-Gromov-product-approx[of ereal M ] by auto
obtain D2 e2 where D2 : e2 > 0 D2 < ∞

∧
x y:: ′a Gromov-completion. dist x

y ≤ e2 =⇒ extended-Gromov-distance x (to-Gromov-completion basepoint) ≥ D2
=⇒ extended-Gromov-product-at basepoint x y ≥ D1

using large-Gromov-product-approx[OF ‹D1 < ∞›] by auto
define e where e = (min e1 e2 )/3
have e > 0 unfolding e-def using ‹e1 > 0 › ‹e2 > 0 › by auto
then obtain N1 where N1 :

∧
n m. n ≥ N1 =⇒ m ≥ N1 =⇒ dist (u n) (u

m) < e
using ‹Cauchy u› unfolding Cauchy-def by blast

have eventually (λn. dist (to-Gromov-completion (v n)) (u n) < e) sequentially
by (rule order-tendstoD[OF ‹(λn. dist (to-Gromov-completion (v n)) (u n))

−−−−→ 0 ›], fact)
then obtain N2 where N2 :

∧
n. n ≥ N2 =⇒ dist (to-Gromov-completion (v

n)) (u n) < e
unfolding eventually-sequentially by auto

have ereal M ≤ extended-Gromov-product-at basepoint (to-Gromov-completion
(v m)) (to-Gromov-completion (v n))

if n ≥ max N1 N2 m ≥ max N1 N2 for m n
proof (rule D1 (3 ))

have dist (to-Gromov-completion (v m)) (to-Gromov-completion (v n))
≤ dist (to-Gromov-completion (v m)) (u m) + dist (u m) (u n) + dist (u

n) (to-Gromov-completion (v n))
by (intro mono-intros)

also have ... ≤ e + e + e
apply (intro mono-intros)

using N1 [of m n] N2 [of n] N2 [of m] that by (auto simp add: dist-commute)
also have ... ≤ e1 unfolding e-def by auto
finally show dist (to-Gromov-completion (v m)) (to-Gromov-completion (v

n)) ≤ e1 by simp
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have e ≤ e2 unfolding e-def using ‹e2 > 0 › by auto
have D1 ≤ extended-Gromov-product-at basepoint (u m) (to-Gromov-completion

(v m))
apply (rule D2 (3 )) using N2 [of m] that ‹e ≤ e2 › u[of m] by (auto simp

add: dist-commute)
also have ... ≤ extended-Gromov-distance (to-Gromov-completion basepoint)

(to-Gromov-completion (v m))
using extended-Gromov-product-le-dist[of basepoint to-Gromov-completion

(v m) u m]
by (simp add: extended-Gromov-product-at-commute)

finally show D1 ≤ extended-Gromov-distance (to-Gromov-completion (v m))
(to-Gromov-completion basepoint)

by (simp add: extended-Gromov-distance-commute)
qed
then have M ≤ Gromov-product-at basepoint (v m) (v n) if n ≥ max N1 N2

m ≥ max N1 N2 for m n
using that by auto

then show ∃N . ∀n ≥ N . ∀m ≥ N . M ≤ Gromov-product-at basepoint (v m)
(v n)

by blast
qed
then obtain l where l: l ∈ Gromov-boundary (λn. to-Gromov-completion (v n))
−−−−→ l

using Gromov-converging-at-boundary-converges by blast
have (λn. dist (u n) l) −−−−→ 0+0
proof (rule tendsto-sandwich[of λ-. 0 - - λn. dist (u n) (to-Gromov-completion

(v n)) + dist (to-Gromov-completion (v n)) l])
show (λn. dist (u n) (to-Gromov-completion (v n)) + dist (to-Gromov-completion

(v n)) l) −−−−→ 0 + 0
apply (intro tendsto-intros)
using iffD1 [OF tendsto-dist-iff l(2 )] ‹(λn. dist (to-Gromov-completion (v n))

(u n)) −−−−→ 0 ›
by (auto simp add: dist-commute)

qed (auto simp add: dist-triangle)
then have u −−−−→ l

using iffD2 [OF tendsto-dist-iff ] by auto
then show ∃ l∈Gromov-boundary. u −−−−→ l

using l(1 ) by auto
qed

When the initial space is complete, then the whole Gromov completion is
also complete: for Cauchy sequences tending to the Gromov boundary, then
the convergence is proved as in the completeness of the boundary above.
For Cauchy sequences that remain bounded, the convergence is reduced to
the convergence inside the original space, which holds by assumption.
proposition Gromov-completion-complete:

assumes complete (UNIV :: ′a::Gromov-hyperbolic-space set)
shows complete (UNIV :: ′a Gromov-completion set)
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proof (rule completeI , auto)
fix u0 ::nat ⇒ ′a Gromov-completion assume Cauchy u0
show ∃ l. u0 −−−−→ l
proof (cases limsup (λn. extended-Gromov-distance (to-Gromov-completion base-

point) (u0 n)) = ∞)
case True

then obtain r where r : strict-mono r (λn. extended-Gromov-distance (to-Gromov-completion
basepoint) (u0 (r n))) −−−−→ ∞

using limsup-subseq-lim[of (λn. extended-Gromov-distance (to-Gromov-completion
basepoint) (u0 n))] unfolding comp-def

by auto
define u where u = u0 o r
then have (λn. extended-Gromov-distance (to-Gromov-completion basepoint)

(u n)) −−−−→ ∞
unfolding comp-def using r(2 ) by simp

have Cauchy u
using ‹Cauchy u0 › r(1 ) u-def by (simp add: Cauchy-subseq-Cauchy)

have ∗: ∃ x ∈ range to-Gromov-completion. dist (u n) x < 1/real(n+1 ) for n
by (rule closure-approachableD, auto)

have ∃ v. ∀n. dist (to-Gromov-completion (v n)) (u n) < 1/real(n+1 )
using of-nat-less-top apply (intro choice) using ∗ by (auto simp add:

dist-commute)
then obtain v where v:

∧
n. dist (to-Gromov-completion (v n)) (u n) <

1/real(n+1 )
by blast

have (λn. dist (to-Gromov-completion (v n)) (u n)) −−−−→ 0
apply (rule tendsto-sandwich[of λ-. 0 - - λn. 1/real(n+1 )])
using v LIMSEQ-ignore-initial-segment[OF lim-1-over-n, of 1 ] unfolding

eventually-sequentially
by (auto simp add: less-imp-le)

have Gromov-converging-at-boundary v
proof (rule Gromov-converging-at-boundaryI [of basepoint])

fix M ::real
obtain D1 e1 where D1 : e1 > 0 D1 < ∞

∧
x y:: ′a Gromov-completion.

dist x y ≤ e1 =⇒ extended-Gromov-distance x (to-Gromov-completion basepoint)
≥ D1 =⇒ extended-Gromov-product-at basepoint x y ≥ ereal M

using large-Gromov-product-approx[of ereal M ] by auto
obtain D2 e2 where D2 : e2 > 0 D2 < ∞

∧
x y:: ′a Gromov-completion.

dist x y ≤ e2 =⇒ extended-Gromov-distance x (to-Gromov-completion basepoint)
≥ D2 =⇒ extended-Gromov-product-at basepoint x y ≥ D1

using large-Gromov-product-approx[OF ‹D1 < ∞›] by auto
define e where e = (min e1 e2 )/3
have e > 0 unfolding e-def using ‹e1 > 0 › ‹e2 > 0 › by auto
then obtain N1 where N1 :

∧
n m. n ≥ N1 =⇒ m ≥ N1 =⇒ dist (u n) (u

m) < e
using ‹Cauchy u› unfolding Cauchy-def by blast

have eventually (λn. dist (to-Gromov-completion (v n)) (u n) < e) sequentially
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by (rule order-tendstoD[OF ‹(λn. dist (to-Gromov-completion (v n)) (u n))
−−−−→ 0 ›], fact)

then obtain N2 where N2 :
∧

n. n ≥ N2 =⇒ dist (to-Gromov-completion
(v n)) (u n) < e

unfolding eventually-sequentially by auto
have eventually (λn. extended-Gromov-distance (to-Gromov-completion base-

point) (u n) > D2 ) sequentially
by (rule order-tendstoD[OF ‹(λn. extended-Gromov-distance (to-Gromov-completion

basepoint) (u n)) −−−−→ ∞›], fact)
then obtain N3 where N3 :

∧
n. n ≥ N3 =⇒ extended-Gromov-distance

(to-Gromov-completion basepoint) (u n) > D2
unfolding eventually-sequentially by auto

define N where N = N1+N2+N3
have N : N ≥ N1 N ≥ N2 N ≥ N3 unfolding N-def by auto

have ereal M ≤ extended-Gromov-product-at basepoint (to-Gromov-completion
(v m)) (to-Gromov-completion (v n))

if n ≥ N m ≥ N for m n
proof (rule D1 (3 ))

have dist (to-Gromov-completion (v m)) (to-Gromov-completion (v n))
≤ dist (to-Gromov-completion (v m)) (u m) + dist (u m) (u n) + dist (u

n) (to-Gromov-completion (v n))
by (intro mono-intros)

also have ... ≤ e + e + e
apply (intro mono-intros)

using N1 [of m n] N2 [of n] N2 [of m] that N by (auto simp add:
dist-commute)

also have ... ≤ e1 unfolding e-def by auto
finally show dist (to-Gromov-completion (v m)) (to-Gromov-completion (v

n)) ≤ e1 by simp

have e ≤ e2 unfolding e-def using ‹e2 > 0 › by auto
have D1 ≤ extended-Gromov-product-at basepoint (u m) (to-Gromov-completion

(v m))
apply (rule D2 (3 )) using N2 [of m] N3 [of m] that N ‹e ≤ e2 ›
by (auto simp add: dist-commute extended-Gromov-distance-commute)

also have ... ≤ extended-Gromov-distance (to-Gromov-completion basepoint)
(to-Gromov-completion (v m))

using extended-Gromov-product-le-dist[of basepoint to-Gromov-completion
(v m) u m]

by (simp add: extended-Gromov-product-at-commute)
finally show D1 ≤ extended-Gromov-distance (to-Gromov-completion (v

m)) (to-Gromov-completion basepoint)
by (simp add: extended-Gromov-distance-commute)

qed
then have M ≤ Gromov-product-at basepoint (v m) (v n) if n ≥ N m ≥ N

for m n
using that by auto

then show ∃N . ∀n ≥ N . ∀m ≥ N . M ≤ Gromov-product-at basepoint (v
m) (v n)
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by blast
qed
then obtain l where l: l ∈ Gromov-boundary (λn. to-Gromov-completion (v

n)) −−−−→ l
using Gromov-converging-at-boundary-converges by blast

have (λn. dist (u n) l) −−−−→ 0+0
proof (rule tendsto-sandwich[of λ-. 0 - - λn. dist (u n) (to-Gromov-completion

(v n)) + dist (to-Gromov-completion (v n)) l])
show (λn. dist (u n) (to-Gromov-completion (v n)) + dist (to-Gromov-completion

(v n)) l) −−−−→ 0 + 0
apply (intro tendsto-intros)
using iffD1 [OF tendsto-dist-iff l(2 )] ‹(λn. dist (to-Gromov-completion (v

n)) (u n)) −−−−→ 0 ›
by (auto simp add: dist-commute)

qed (auto simp add: dist-triangle)
then have u −−−−→ l

using iffD2 [OF tendsto-dist-iff ] by auto
then have u0 −−−−→ l

unfolding u-def using r(1 ) ‹Cauchy u0 › Cauchy-converges-subseq by auto
then show ∃ l. u0 −−−−→ l

by auto
next

case False
define C where C = limsup (λn. extended-Gromov-distance (to-Gromov-completion

basepoint) (u0 n)) + 1
have C < ∞ unfolding C-def using False less-top by fastforce
have ∗: limsup (λn. extended-Gromov-distance (to-Gromov-completion base-

point) (u0 n)) ≥ 0
by (intro le-Limsup always-eventually, auto)

have limsup (λn. extended-Gromov-distance (to-Gromov-completion basepoint)
(u0 n)) < C

unfolding C-def using False ∗ ereal-add-left-cancel-less by force
then have eventually (λn. extended-Gromov-distance (to-Gromov-completion

basepoint) (u0 n) < C ) sequentially
using Limsup-lessD by blast

then obtain N where N :
∧

n. n ≥ N =⇒ extended-Gromov-distance (to-Gromov-completion
basepoint) (u0 n) < C

unfolding eventually-sequentially by auto
define r where r = (λn. n + N )
have r : strict-mono r unfolding r-def strict-mono-def by auto
define u where u = (u0 o r)
have Cauchy u

using ‹Cauchy u0 › r(1 ) u-def by (simp add: Cauchy-subseq-Cauchy)
have u: extended-Gromov-distance (to-Gromov-completion basepoint) (u n) ≤

C for n
unfolding u-def comp-def r-def using N by (auto simp add: less-imp-le)

define v where v = (λn. from-Gromov-completion (u n))
have uv: u n = to-Gromov-completion (v n) for n

unfolding v-def apply (rule to-from-Gromov-completion[symmetric]) using
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u[of n] ‹C < ∞› by auto
have Cauchy v
proof (rule metric-CauchyI )
obtain a::real where a: a > 0

∧
x y:: ′a Gromov-completion. extended-Gromov-distance

(to-Gromov-completion basepoint) x ≤ C =⇒ dist x y ≤ a
=⇒ esqrt(extended-Gromov-distance x y) ≤ 2 ∗ ereal(dist x y)

using inside-Gromov-distance-approx[OF ‹C < ∞›] by auto
fix e::real assume e > 0
define e2 where e2 = min (sqrt (e/2 ) /2 ) a
have e2 > 0 unfolding e2-def using ‹e > 0 › ‹a > 0 › by auto
then obtain N where N :

∧
m n. m ≥ N =⇒ n ≥ N =⇒ dist (u m) (u n)

< e2
using ‹Cauchy u› unfolding Cauchy-def by blast

have dist (v m) (v n) < e if n ≥ N m ≥ N for m n
proof −

have ereal(sqrt(dist (v m) (v n))) = esqrt(extended-Gromov-distance (u m)
(u n))

unfolding uv by (auto simp add: esqrt-ereal-ereal-sqrt)
also have ... ≤ 2 ∗ ereal(dist (u m) (u n))

apply (rule a(2 )) using u[of m] N [OF ‹m ≥ N › ‹n ≥ N ›] unfolding
e2-def by auto

also have ... = ereal(2 ∗ dist (u m) (u n))
by simp

also have ... ≤ ereal(2 ∗ e2 )
apply (intro mono-intros) using N [OF ‹m ≥ N › ‹n ≥ N ›] less-imp-le by

auto
finally have sqrt(dist (v m) (v n)) ≤ 2 ∗ e2

using ‹e2 > 0 › by auto
also have ... ≤ sqrt (e/2 )

unfolding e2-def by auto
finally have dist (v m) (v n) ≤ e/2

by auto
then show ?thesis

using ‹e > 0 › by auto
qed
then show ∃M . ∀m ≥ M . ∀n ≥ M . dist (v m) (v n) < e by auto

qed
then obtain l where v −−−−→ l

using ‹complete (UNIV :: ′a set)› complete-def by blast
then have u −−−−→ (to-Gromov-completion l)

unfolding uv by auto
then have u0 −−−−→ (to-Gromov-completion l)

unfolding u-def using r(1 ) ‹Cauchy u0 › Cauchy-converges-subseq by auto
then show ∃ l. u0 −−−−→ l

by auto
qed

qed

instance Gromov-completion::({Gromov-hyperbolic-space, complete-space}) com-
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plete-space
apply standard
using Gromov-completion-complete complete-def convergent-def complete-UNIV

by auto

When the original space is proper, i.e., closed balls are compact, and geodesic,
then the Gromov completion (and therefore the Gromov boundary) are com-
pact. The idea to extract a convergent subsequence of a sequence un in the
boundary is to take the point vn at distance T along a geodesic tending to
the point un on the boundary, where T is fixed and large. The points vn live
in a bounded subset of the space, hence they have a convergent subsequence
vj(n). It follows that uj(n) is almost converging, up to an error that tends to
0 when T tends to infinity. By a diagonal argument, we obtain a convergent
subsequence of un.
As we have already proved that the space is complete, there is a shortcut
to the above argument, avoiding subsequences and diagonal argument alto-
gether. Indeed, in a complete space it suffices to show that for any ε > 0 it
is covered by finitely many balls of radius ε to get the compactness. This
is what we do in the following proof, although the argument is precisely
modelled on the first proof we have explained.
theorem Gromov-completion-compact:

assumes proper (UNIV :: ′a::Gromov-hyperbolic-space-geodesic set)
shows compact (UNIV :: ′a Gromov-completion set)

proof −
have ∃ k. finite k ∧ (UNIV :: ′a Gromov-completion set) ⊆ (

⋃
x∈k. ball x e) if e

> 0 for e
proof −

define D::real where D = max 0 (−ln(e/4 )/epsilonG(TYPE( ′a)))
have D ≥ 0 unfolding D-def by auto
have exp(−epsilonG(TYPE( ′a)) ∗ D) ≤ exp(ln (e / 4 ))

unfolding D-def apply (intro mono-intros) unfolding max-def
apply auto

using constant-in-extended-predist-pos(1 )[where ? ′a = ′a] by (auto simp add:
divide-simps)

then have exp(−epsilonG(TYPE( ′a)) ∗ D) ≤ e/4 using ‹e > 0 › by auto
define e0 ::real where e0 = e ∗ e / 16
have e0 > 0 using ‹e > 0 › unfolding e0-def by auto
obtain k:: ′a set where k: finite k cball basepoint D ⊆ (

⋃
x∈k. ball x e0 )

using compact-eq-totally-bounded[of cball (basepoint:: ′a) D] assms ‹e0 > 0 ›
unfolding proper-def by auto

have A: ∃ y ∈ k. dist (to-Gromov-completion y) (to-Gromov-completion x) ≤
e/4 if dist basepoint x ≤ D for x:: ′a

proof −
obtain z where z: z ∈ k dist z x < e0 using ‹dist basepoint x ≤ D› k(2 ) by

auto
have ereal(dist (to-Gromov-completion z) (to-Gromov-completion x)) ≤

esqrt(extended-Gromov-distance (to-Gromov-completion z) (to-Gromov-completion
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x))
by (intro mono-intros)

also have ... = ereal(sqrt (dist z x))
by auto

finally have dist (to-Gromov-completion z) (to-Gromov-completion x) ≤ sqrt
(dist z x)

by auto
also have ... ≤ sqrt e0

using z(2 ) by auto
also have ... ≤ e/4
unfolding e0-def using ‹e > 0 › by (auto simp add: less-imp-le real-sqrt-divide)
finally have dist (to-Gromov-completion z) (to-Gromov-completion x) ≤ e/4

by auto
then show ?thesis

using ‹z ∈ k› by auto
qed
have B: ∃ y ∈ k. dist (to-Gromov-completion y) (to-Gromov-completion x) ≤

e/2 for x
proof (cases dist basepoint x ≤ D)

case True
have e/4 ≤ e/2 using ‹e > 0 › by auto
then show ?thesis using A[OF True] by force

next
case False
define x2 where x2 = geodesic-segment-param {basepoint−−x} basepoint D
have ∗: Gromov-product-at basepoint x x2 = D

unfolding x2-def apply (rule Gromov-product-geodesic-segment) using
False ‹D ≥ 0 › by auto

have ereal(dist (to-Gromov-completion x) (to-Gromov-completion x2 ))
≤ eexp (− epsilonG(TYPE( ′a)) ∗ extended-Gromov-product-at basepoint

(to-Gromov-completion x) (to-Gromov-completion x2 ))
by (intro mono-intros)

also have ... = eexp (− epsilonG(TYPE( ′a)) ∗ ereal D)
using ∗ by auto

also have ... = ereal(exp(−epsilonG(TYPE( ′a)) ∗ D))
by auto

also have ... ≤ ereal(e/4 )
by (intro mono-intros, fact)
finally have dist (to-Gromov-completion x) (to-Gromov-completion x2 ) ≤

e/4
using ‹e > 0 › by auto

have dist basepoint x2 ≤ D
unfolding x2-def using False ‹0 ≤ D› by auto

then obtain y where y ∈ k dist (to-Gromov-completion y) (to-Gromov-completion
x2 ) ≤ e/4

using A by auto
have dist (to-Gromov-completion y) (to-Gromov-completion x)

≤ dist (to-Gromov-completion y) (to-Gromov-completion x2 ) + dist
(to-Gromov-completion x) (to-Gromov-completion x2 )
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by (intro mono-intros)
also have ... ≤ e/4 + e/4

by (intro mono-intros, fact, fact)
also have ... = e/2 by simp
finally show ?thesis using ‹y ∈ k› by auto

qed
have C : ∃ y ∈ k. dist (to-Gromov-completion y) x < e for x
proof −

obtain x1 where x1 : dist x x1 < e/2 x1 ∈ range to-Gromov-completion
using to-Gromov-completion-range-dense ‹e > 0 ›

by (metis (no-types, opaque-lifting) UNIV-I closure-approachableD di-
vide-pos-pos zero-less-numeral)

then obtain z where z: x1 = to-Gromov-completion z by auto
then obtain y where y: y ∈ k dist (to-Gromov-completion y) (to-Gromov-completion

z) ≤ e/2
using B by auto

have dist (to-Gromov-completion y) x ≤
dist (to-Gromov-completion y) (to-Gromov-completion z) + dist x x1

unfolding z by (intro mono-intros)
also have ... < e/2 + e/2

using x1 (1 ) y(2 ) by auto
also have ... = e

by auto
finally show ?thesis using ‹y ∈ k› by auto

qed
show ?thesis

apply (rule exI [of - to-Gromov-completion‘k])
using C ‹finite k› by auto

qed
then show ?thesis

unfolding compact-eq-totally-bounded
using Gromov-completion-complete[OF complete-of-proper [OF assms]] by auto

qed

If the inner space is second countable, so is its completion, as the former is
dense in the latter.
instance Gromov-completion::({Gromov-hyperbolic-space, second-countable-topology})
second-countable-topology
proof

obtain A:: ′a set where countable A closure A = UNIV
using second-countable-metric-dense-subset by auto

define Ab where Ab = to-Gromov-completion‘A
have range to-Gromov-completion ⊆ closure Ab

unfolding Ab-def
by (metis ‹closure A = UNIV › closed-closure closure-subset image-closure-subset

to-Gromov-completion-continuous)
then have closure Ab = UNIV
by (metis closed-closure closure-minimal dual-order .antisym to-Gromov-completion-range-dense

top-greatest)
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moreover have countable Ab unfolding Ab-def using ‹countable A› by auto
ultimately have ∃Ab:: ′a Gromov-completion set. countable Ab ∧ closure Ab =

UNIV
by auto

then show ∃B:: ′a Gromov-completion set set. countable B ∧ open = gener-
ate-topology B

using second-countable-iff-dense-countable-subset topological-basis-imp-subbasis
by auto
qed

The same follows readily for the Polish space property.
instance metric-completion::({Gromov-hyperbolic-space, polish-space}) polish-space
by standard

15.7 The Gromov completion of the real line.

We show in the paragraph that the Gromov completion of the real line is
obtained by adding one point at +∞ and one point at −∞. In other words,
it coincides with ereal.
To show this, we have to understand which sequences of reals are Gromov-
converging to the boundary. We show in the next lemma that they are
exactly the sequences that converge to −∞ or to +∞.
lemma real-Gromov-converging-to-boundary:

fixes u::nat ⇒ real
shows Gromov-converging-at-boundary u ←→ ((u −−−−→ ∞) ∨ (u −−−−→ − ∞))

proof −
have ∗: Gromov-product-at 0 m n ≥ min m n for m n::real

unfolding Gromov-product-at-def dist-real-def by auto
have A: Gromov-converging-at-boundary u if u −−−−→ ∞ for u::nat ⇒ real
proof (rule Gromov-converging-at-boundaryI [of 0 ])

fix M ::real
have eventually (λn. ereal (u n) > M ) sequentially

by (rule order-tendstoD(1 )[OF ‹u −−−−→ ∞›, of ereal M ], auto)
then obtain N where

∧
n. n ≥ N =⇒ ereal (u n) > M

unfolding eventually-sequentially by auto
then have A: u n ≥ M if n ≥ N for n

by (simp add: less-imp-le that)
have M ≤ Gromov-product-at 0 (u m) (u n) if n ≥ N m ≥ N for m n

using A[OF ‹m ≥ N ›] A[OF ‹n ≥ N ›] ∗[of u m u n] by auto
then show ∃N . ∀n ≥ N . ∀m ≥ N . M ≤ Gromov-product-at 0 (u m) (u n)

by auto
qed
have ∗: Gromov-product-at 0 m n ≥ − max m n for m n::real

unfolding Gromov-product-at-def dist-real-def by auto
have B: Gromov-converging-at-boundary u if u −−−−→ −∞ for u::nat ⇒ real
proof (rule Gromov-converging-at-boundaryI [of 0 ])

fix M ::real
have eventually (λn. ereal (u n) < − M ) sequentially
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by (rule order-tendstoD(2 )[OF ‹u −−−−→ −∞›, of ereal (−M )], auto)
then obtain N where

∧
n. n ≥ N =⇒ ereal (u n) < − M

unfolding eventually-sequentially by auto
then have A: u n ≤ − M if n ≥ N for n

by (simp add: less-imp-le that)
have M ≤ Gromov-product-at 0 (u m) (u n) if n ≥ N m ≥ N for m n

using A[OF ‹m ≥ N ›] A[OF ‹n ≥ N ›] ∗[of u m u n] by auto
then show ∃N . ∀n ≥ N . ∀m ≥ N . M ≤ Gromov-product-at 0 (u m) (u n)

by auto
qed
have L: (u −−−−→ ∞) ∨ (u −−−−→ − ∞) if Gromov-converging-at-boundary u

for u::nat ⇒ real
proof −

have (λn. abs(u n)) −−−−→ ∞
using Gromov-converging-at-boundary-imp-unbounded[OF that, of 0 ] unfold-

ing dist-real-def by auto

obtain r where r : strict-mono r (λn. ereal (u (r n))) −−−−→ liminf (λn.
ereal(u n))

using liminf-subseq-lim[of λn. ereal(u n)] unfolding comp-def by auto
have (λn. abs(ereal (u (r n)))) −−−−→ abs(liminf (λn. ereal(u n)))

apply (intro tendsto-intros) using r(2 ) by auto
moreover have (λn. abs(ereal (u (r n)))) −−−−→ ∞

using ‹(λn. abs(u n)) −−−−→ ∞› apply auto
using filterlim-compose filterlim-subseq[OF r(1 )] by blast

ultimately have A: abs(liminf (λn. ereal(u n))) = ∞
using LIMSEQ-unique by auto

obtain r where r : strict-mono r (λn. ereal (u (r n))) −−−−→ limsup (λn.
ereal(u n))

using limsup-subseq-lim[of λn. ereal(u n)] unfolding comp-def by auto
have (λn. abs(ereal (u (r n)))) −−−−→ abs(limsup (λn. ereal(u n)))

apply (intro tendsto-intros) using r(2 ) by auto
moreover have (λn. abs(ereal (u (r n)))) −−−−→ ∞

using ‹(λn. abs(u n)) −−−−→ ∞› apply auto
using filterlim-compose filterlim-subseq[OF r(1 )] by blast

ultimately have B: abs(limsup (λn. ereal(u n))) = ∞
using LIMSEQ-unique by auto

have ¬(liminf u = − ∞ ∧ limsup u = ∞)
proof (rule ccontr , auto)

assume liminf u = −∞ limsup u = ∞
have ∃N . ∀n ≥ N . ∀m ≥ N . Gromov-product-at 0 (u m) (u n) ≥ 1

using that unfolding Gromov-converging-at-boundary-def by blast
then obtain N where N :

∧
m n. m ≥ N =⇒ n ≥ N =⇒ Gromov-product-at

0 (u m) (u n) ≥ 1
by auto

have ∃n ≥ N . ereal(u n) > ereal 0
apply (rule limsup-obtain) unfolding ‹limsup u = ∞› by auto
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then obtain n where n: n ≥ N u n > 0 by auto

have ∃n ≥ N . ereal(u n) < ereal 0
apply (rule liminf-obtain) unfolding ‹liminf u = −∞› by auto

then obtain m where m: m ≥ N u m < 0 by auto

have Gromov-product-at 0 (u m) (u n) = 0
unfolding Gromov-product-at-def dist-real-def using m n by auto

then show False using N [OF m(1 ) n(1 )] by auto
qed
then have liminf u = ∞ ∨ limsup u = − ∞

using A B by auto
then show ?thesis

by (simp add: Liminf-PInfty Limsup-MInfty)
qed
show ?thesis using L A B by auto

qed

There is one single point at infinity in the Gromov completion of reals, i.e.,
two sequences tending to infinity are equivalent.
lemma real-Gromov-completion-rel-PInf :

fixes u v::nat ⇒ real
assumes u −−−−→ ∞ v −−−−→ ∞
shows Gromov-completion-rel u v

proof −
have ∗: Gromov-product-at 0 m n ≥ min m n for m n::real

unfolding Gromov-product-at-def dist-real-def by auto
have ∗∗: Gromov-product-at a m n ≥ min m n − abs a for m n a::real

using Gromov-product-at-diff1 [of 0 m n a] ∗[of m n] by auto
have (λn. Gromov-product-at a (u n) (v n)) −−−−→ ∞ for a
proof (rule tendsto-sandwich[of λn. min (u n) (v n) − abs a - - λn. ∞])

have ereal (min (u n) (v n) − |a|) ≤ ereal (Gromov-product-at a (u n) (v n))
for n

using ∗∗[of u n v n a] by auto
then show ∀ F n in sequentially. ereal (min (u n) (v n) − |a|) ≤ ereal

(Gromov-product-at a (u n) (v n))
by auto

have (λx. min (ereal(u x)) (ereal (v x)) − ereal |a|) −−−−→ min ∞ ∞ − ereal
|a|

apply (intro tendsto-intros) using assms by auto
then show (λx. ereal (min (u x) (v x) − |a|)) −−−−→ ∞

apply auto unfolding ereal-minus(1 )[symmetric] by auto
qed (auto)
moreover have Gromov-converging-at-boundary u Gromov-converging-at-boundary

v
using real-Gromov-converging-to-boundary assms by auto

ultimately show ?thesis unfolding Gromov-completion-rel-def by auto
qed
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There is one single point at minus infinity in the Gromov completion of
reals, i.e., two sequences tending to minus infinity are equivalent.
lemma real-Gromov-completion-rel-MInf :

fixes u v::nat ⇒ real
assumes u −−−−→ −∞ v −−−−→ −∞
shows Gromov-completion-rel u v

proof −
have ∗: Gromov-product-at 0 m n ≥ − max m n for m n::real

unfolding Gromov-product-at-def dist-real-def by auto
have ∗∗: Gromov-product-at a m n ≥ − max m n − abs a for m n a::real

using Gromov-product-at-diff1 [of 0 m n a] ∗[of m n] by auto
have (λn. Gromov-product-at a (u n) (v n)) −−−−→ ∞ for a
proof (rule tendsto-sandwich[of λn. min (−u n) (−v n) − abs a - - λn. ∞])

have ereal (min (−u n) (−v n) − |a|) ≤ ereal (Gromov-product-at a (u n) (v
n)) for n

using ∗∗[of u n v n a] by auto
then show ∀ F n in sequentially. ereal (min (−u n) (−v n) − |a|) ≤ ereal

(Gromov-product-at a (u n) (v n))
by auto

have (λx. min (−ereal(u x)) (−ereal (v x)) − ereal |a|) −−−−→ min (−(−∞))
(−(−∞)) − ereal |a|

apply (intro tendsto-intros) using assms by auto
then show (λx. ereal (min (−u x) (−v x) − |a|)) −−−−→ ∞

apply auto unfolding ereal-minus(1 )[symmetric] by auto
qed (auto)
moreover have Gromov-converging-at-boundary u Gromov-converging-at-boundary

v
using real-Gromov-converging-to-boundary assms by auto

ultimately show ?thesis unfolding Gromov-completion-rel-def by auto
qed

It follows from the two lemmas above that the Gromov completion of reals
is obtained by adding one single point at infinity and one single point at
minus infinity. Hence, it is in bijection with the extended reals.
function to-real-Gromov-completion::ereal ⇒ real Gromov-completion

where to-real-Gromov-completion (ereal r) = to-Gromov-completion r
| to-real-Gromov-completion (∞) = abs-Gromov-completion (λn. n)
| to-real-Gromov-completion (−∞) = abs-Gromov-completion (λn. −n)

by (auto intro: ereal-cases)
termination by standard (rule wf-empty)

To prove the bijectivity, we prove by hand injectivity and surjectivity using
the above lemmas.
lemma bij-to-real-Gromov-completion:

bij to-real-Gromov-completion
proof −

have [simp]: Gromov-completion-rel (λn. n) (λn. n)
by (intro real-Gromov-completion-rel-PInf tendsto-intros)
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have [simp]: Gromov-completion-rel (λn. −real n) (λn. −real n)
by (intro real-Gromov-completion-rel-MInf tendsto-intros)

have ∃ x. to-real-Gromov-completion x = y for y
proof (cases y)

case (to-Gromov-completion x)
then have y = to-real-Gromov-completion x by auto
then show ?thesis by blast

next
case boundary
define u where u: u = rep-Gromov-completion y
have y: abs-Gromov-completion u = y Gromov-completion-rel u u

unfolding u using Quotient3-abs-rep[OF Quotient3-Gromov-completion]
Quotient3-rep-reflp[OF Quotient3-Gromov-completion] by auto

have Gromov-converging-at-boundary u
using u boundary by (simp add: Gromov-boundary-rep-converging)

then have (u −−−−→∞) ∨ (u −−−−→ −∞) using real-Gromov-converging-to-boundary
by auto

then show ?thesis
proof

assume u −−−−→ ∞
have abs-Gromov-completion (λn. n) = abs-Gromov-completion u

apply (rule Quotient3-rel-abs[OF Quotient3-Gromov-completion])
by (intro real-Gromov-completion-rel-PInf [OF - ‹u −−−−→∞›] tendsto-intros)
then have to-real-Gromov-completion ∞ = y

unfolding y by auto
then show ?thesis by blast

next
assume u −−−−→ −∞
have abs-Gromov-completion (λn. −real n) = abs-Gromov-completion u

apply (rule Quotient3-rel-abs[OF Quotient3-Gromov-completion])
by (intro real-Gromov-completion-rel-MInf [OF - ‹u −−−−→ −∞›] tend-

sto-intros)
then have to-real-Gromov-completion (−∞) = y

unfolding y by auto
then show ?thesis by blast

qed
qed
then have surj to-real-Gromov-completion

unfolding surj-def by metis

have to-real-Gromov-completion ∞ ∈ Gromov-boundary
to-real-Gromov-completion (−∞) ∈ Gromov-boundary

by (auto intro!: abs-Gromov-completion-in-Gromov-boundary tendsto-intros
simp add: real-Gromov-converging-to-boundary)
moreover have to-real-Gromov-completion ∞ 6= to-real-Gromov-completion (−∞)
proof −

have Gromov-product-at 0 (real n) (−real n) = 0 for n::nat
unfolding Gromov-product-at-def dist-real-def by auto
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then have ∗: (λn. ereal(Gromov-product-at 0 (real n) (−real n))) −−−−→ ereal
0 by auto

have ¬((λn. Gromov-product-at 0 (real n) (−real n)) −−−−→ ∞)
using LIMSEQ-unique[OF ∗] by fastforce

then have ¬(Gromov-completion-rel (λn. n) (λn. −n))
unfolding Gromov-completion-rel-def by auto (metis nat.simps(3 ) of-nat-0

of-nat-eq-0-iff )
then show ?thesis
using Quotient3-rel[OF Quotient3-Gromov-completion, of λn. n λn. −real n]

by auto
qed
ultimately have x = y if to-real-Gromov-completion x = to-real-Gromov-completion

y for x y
using that injD[OF to-Gromov-completion-inj] apply (cases x y rule: ereal2-cases)
by (auto) (metis not-in-Gromov-boundary ′)+

then have inj to-real-Gromov-completion
unfolding inj-def by auto

then show bij to-real-Gromov-completion
using ‹surj to-real-Gromov-completion› by (simp add: bijI )

qed

Next, we prove that we have a homeomorphism. By compactness of ereals, it
suffices to show that the inclusion map is continuous everywhere. It would be
a pain to distinguish all the time if points are at infinity or not, we rather use
a criterion saying that it suffices to prove sequential continuity for sequences
taking values in a dense subset of the space, here we take the reals. Hence,
it suffices to show that if a sequence of reals vn converges to a limit a in the
extended reals, then the image of vn in the Gromov completion (which is an
inner point) converges to the point corresponding to a. We treat separately
the cases a ∈ R, a =∞ and a = −∞. In the first case, everything is trivial.
In the other cases, we have characterized in general sequences inside the
space that converge to a boundary point, as sequences in the equivalence
class defining this boundary point. Since we have described explicitly these
equivalence classes in the case of the Gromov completion of the reals (they
are respectively the sequences tending to ∞ and to −∞), the result follows
readily without any additional computation.
proposition homeo-to-real-Gromov-completion:

homeomorphism-on UNIV to-real-Gromov-completion
proof (rule homeomorphism-on-compact)

show inj to-real-Gromov-completion
using bij-to-real-Gromov-completion by (simp add: bij-betw-def )

show compact (UNIV ::ereal set)
by (simp add: compact-UNIV )

show continuous-on UNIV to-real-Gromov-completion
proof (rule continuous-on-extension-sequentially[of - {−∞<..<∞}], auto)

fix u::nat ⇒ ereal and b::ereal assume u: ∀n. u n 6= − ∞ ∧ u n 6= ∞ u
−−−−→ b
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define v where v = (λn. real-of-ereal (u n))
have uv: u n = ereal (v n) for n

using u unfolding v-def by (simp add: ereal-infinity-cases ereal-real)
show (λn. to-real-Gromov-completion (u n)) −−−−→ to-real-Gromov-completion

b
proof (cases b)

case (real r)
then show ?thesis using ‹u −−−−→ b› unfolding uv by auto

next
case PInf
then have ∗: (λn. ereal (v n)) −−−−→ ∞ using ‹u −−−−→ b› unfolding uv

by auto
have A: Gromov-completion-rel real v Gromov-completion-rel real real Gro-

mov-completion-rel v v
by (auto intro!: real-Gromov-completion-rel-PInf ∗ tendsto-intros)

then have B: abs-Gromov-completion v = abs-Gromov-completion real
using Quotient3-rel-abs[OF Quotient3-Gromov-completion] by force

then show ?thesis using ‹u −−−−→ b› PInf
unfolding uv apply auto
apply (subst Gromov-completion-converge-to-boundary)

using id-nat-ereal-tendsto-PInf real-Gromov-converging-to-boundary A B by
auto

next
case MInf
then have ∗: (λn. ereal (v n)) −−−−→ −∞ using ‹u −−−−→ b› unfolding

uv by auto
have A: Gromov-completion-rel (λn. −real n) v Gromov-completion-rel (λn.

−real n) (λn. −real n) Gromov-completion-rel v v
by (auto intro!: real-Gromov-completion-rel-MInf ∗ tendsto-intros)

then have B: abs-Gromov-completion v = abs-Gromov-completion (λn. −real
n)

using Quotient3-rel-abs[OF Quotient3-Gromov-completion] by force
then show ?thesis using ‹u −−−−→ b› MInf

unfolding uv apply auto
apply (subst Gromov-completion-converge-to-boundary)
using id-nat-ereal-tendsto-PInf real-Gromov-converging-to-boundary A B
by (auto simp add: ereal-minus-real-tendsto-MInf )

qed
qed

qed

end

theory Boundary-Extension
imports Morse-Gromov-Theorem Gromov-Boundary

begin
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16 Extension of quasi-isometries to the boundary

In this section, we show that a quasi-isometry between geodesic Gromov
hyperbolic spaces extends to a homeomorphism between their boundaries.

Applying a quasi-isometry on a geodesic triangle essentially sends it to a
geodesic triangle, in hyperbolic spaces. It follows that, up to an additive
constant, the Gromov product, which is the distance to the center of the
triangle, is multiplied by a constant between λ−1 and λ when one applies
a quasi-isometry. This argument is given in the next lemma. This implies
that two points are close in the Gromov completion if and only if their
images are also close in the Gromov completion of the image. Essentially,
this lemma implies that a quasi-isometry has a continuous extension to the
Gromov boundary, which is a homeomorphism.
lemma Gromov-product-at-quasi-isometry:
fixes f :: ′a::Gromov-hyperbolic-space-geodesic⇒ ′b::Gromov-hyperbolic-space-geodesic
assumes lambda C−quasi-isometry f
shows Gromov-product-at (f x) (f y) (f z) ≥ Gromov-product-at x y z / lambda
− 187 ∗ lambda^2 ∗ (C + deltaG(TYPE( ′a)) + deltaG(TYPE( ′b)))

Gromov-product-at (f x) (f y) (f z) ≤ lambda ∗ Gromov-product-at x y z +
187 ∗ lambda^2 ∗ (C + deltaG(TYPE( ′a)) + deltaG(TYPE( ′b)))
proof −

have lambda ≥ 1 C ≥ 0 using quasi-isometry-onD[OF assms(1 )] by auto
define D where D = 92 ∗ lambda^2 ∗ (C + deltaG(TYPE( ′b)))
have Dxy: hausdorff-distance (f‘{x−−y}) {f x−−f y} ≤ D
unfolding D-def apply (rule geodesic-quasi-isometric-image[OF assms(1 )]) by

auto
have Dyz: hausdorff-distance (f‘{y−−z}) {f y−−f z} ≤ D
unfolding D-def apply (rule geodesic-quasi-isometric-image[OF assms(1 )]) by

auto
have Dxz: hausdorff-distance (f‘{x−−z}) {f x−−f z} ≤ D
unfolding D-def apply (rule geodesic-quasi-isometric-image[OF assms(1 )]) by

auto

define E where E = (lambda ∗ (4 ∗ deltaG(TYPE( ′a))) + C ) + D
have E ≥ 0 unfolding E-def D-def using ‹lambda ≥ 1 › ‹C ≥ 0 › by auto
obtain w where w: infdist w {x−−y} ≤ 4 ∗ deltaG(TYPE( ′a))

infdist w {x−−z} ≤ 4 ∗ deltaG(TYPE( ′a))
infdist w {y−−z} ≤ 4 ∗ deltaG(TYPE( ′a))
dist w x = Gromov-product-at x y z

using slim-triangle[of {x−−y} x y {x−−z} z {y−−z}] by auto
have infdist (f w) {f x−−f y} ≤ infdist (f w) (f‘{x−−y}) + hausdorff-distance

(f‘{x−−y}) {f x−−f y}
by (intro mono-intros quasi-isometry-on-bounded[OF quasi-isometry-on-subset[OF

assms(1 )], of {x−−y}], auto)
also have ... ≤ (lambda ∗ infdist w {x−−y} + C ) + D

apply (intro mono-intros) using quasi-isometry-on-infdist[OF assms(1 )] Dxy
by auto
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also have ... ≤ (lambda ∗ (4 ∗ deltaG(TYPE( ′a))) + C ) + D
apply (intro mono-intros) using w ‹lambda ≥ 1 › by auto

finally have Exy: infdist (f w) {f x−−f y} ≤ E unfolding E-def by auto

have infdist (f w) {f y−−f z} ≤ infdist (f w) (f‘{y−−z}) + hausdorff-distance
(f‘{y−−z}) {f y−−f z}

by (intro mono-intros quasi-isometry-on-bounded[OF quasi-isometry-on-subset[OF
assms(1 )], of {y−−z}], auto)

also have ... ≤ (lambda ∗ infdist w {y−−z} + C ) + D
apply (intro mono-intros) using quasi-isometry-on-infdist[OF assms(1 )] Dyz

by auto
also have ... ≤ (lambda ∗ (4 ∗ deltaG(TYPE( ′a))) + C ) + D

apply (intro mono-intros) using w ‹lambda ≥ 1 › by auto
finally have Eyz: infdist (f w) {f y−−f z} ≤ E unfolding E-def by auto

have infdist (f w) {f x−−f z} ≤ infdist (f w) (f‘{x−−z}) + hausdorff-distance
(f‘{x−−z}) {f x−−f z}

by (intro mono-intros quasi-isometry-on-bounded[OF quasi-isometry-on-subset[OF
assms(1 )], of {x−−z}], auto)

also have ... ≤ (lambda ∗ infdist w {x−−z} + C ) + D
apply (intro mono-intros) using quasi-isometry-on-infdist[OF assms(1 )] Dxz

by auto
also have ... ≤ (lambda ∗ (4 ∗ deltaG(TYPE( ′a))) + C ) + D

apply (intro mono-intros) using w ‹lambda ≥ 1 › by auto
finally have Exz: infdist (f w) {f x−−f z} ≤ E unfolding E-def by auto

have 2 ∗ ((1/lambda ∗ dist w x − C )) ≤ 2 ∗ dist (f w) (f x)
using quasi-isometry-onD(2 )[OF assms(1 ), of w x] by auto

also have ... = (dist (f w) (f x) + dist (f w) (f y)) + (dist (f w) (f x) + dist (f
w) (f z)) − (dist (f w) (f y) + dist (f w) (f z))

by auto
also have ... ≤ (dist (f x) (f y) + 2 ∗ infdist (f w) {f x−−f y}) + (dist (f x) (f

z) + 2 ∗ infdist (f w) {f x−−f z}) − dist (f y) (f z)
by (intro geodesic-segment-distance mono-intros, auto)

also have ... ≤ 2 ∗ Gromov-product-at (f x) (f y) (f z) + 4 ∗ E
unfolding Gromov-product-at-def using Exy Exz by (auto simp add: alge-

bra-simps divide-simps)
finally have ∗: Gromov-product-at x y z / lambda − C − 2 ∗ E ≤ Gro-

mov-product-at (f x) (f y) (f z)
unfolding w(4 ) by simp

have 2 ∗ Gromov-product-at (f x) (f y) (f z) − 2 ∗ E ≤ 2 ∗ Gromov-product-at
(f x) (f y) (f z) − 2 ∗ infdist (f w) {f y−−f z}

using Eyz by auto
also have ... = dist (f x) (f y) + dist (f x) (f z) − (dist (f y) (f z) + 2 ∗ infdist

(f w) {f y−−f z})
unfolding Gromov-product-at-def by (auto simp add: algebra-simps divide-simps)

also have ... ≤ (dist (f w) (f x) + dist (f w) (f y)) + (dist (f w) (f x) + dist (f
w) (f z)) − (dist (f w) (f y) + dist (f w) (f z))
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by (intro geodesic-segment-distance mono-intros, auto)
also have ... = 2 ∗ dist (f w) (f x)

by auto
also have ... ≤ 2 ∗ (lambda ∗ dist w x + C )

using quasi-isometry-onD(1 )[OF assms(1 ), of w x] by auto
finally have Gromov-product-at (f x) (f y) (f z) ≤ lambda ∗ dist w x + C + E

by auto
then have ∗∗: Gromov-product-at (f x) (f y) (f z) ≤ lambda ∗ Gromov-product-at

x y z + C + 2 ∗ E
unfolding w(4 ) using ‹E ≥ 0 › by auto

have C + 2 ∗ E = 3 ∗ 1 ∗ C + 8 ∗ lambda ∗ deltaG(TYPE( ′a)) + 184 ∗
lambda^2 ∗ C + 184 ∗ lambda^2 ∗ deltaG(TYPE( ′b))

unfolding E-def D-def by (auto simp add: algebra-simps)
also have ... ≤ 3 ∗ lambda^2 ∗ C + 187 ∗ lambda^2 ∗ deltaG(TYPE( ′a)) +

184 ∗ lambda^2 ∗ C + 187 ∗ lambda^2 ∗ deltaG(TYPE( ′b))
apply (intro mono-intros) using ‹lambda ≥ 1 › ‹C ≥ 0 › by auto

finally have I : C + 2 ∗ E ≤ 187 ∗ lambda^2 ∗ (C + deltaG(TYPE( ′a)) +
deltaG(TYPE( ′b)))

by (auto simp add: algebra-simps)

show Gromov-product-at (f x) (f y) (f z) ≥ Gromov-product-at x y z / lambda −
187 ∗ lambda^2 ∗ (C + deltaG(TYPE( ′a)) + deltaG(TYPE( ′b)))

using ∗ I by auto
show Gromov-product-at (f x) (f y) (f z) ≤ lambda ∗ Gromov-product-at x y z +

187 ∗ lambda^2 ∗ (C + deltaG(TYPE( ′a)) + deltaG(TYPE( ′b)))
using ∗∗ I by auto

qed

lemma Gromov-converging-at-infinity-quasi-isometry:
fixes f :: ′a::Gromov-hyperbolic-space-geodesic⇒ ′b::Gromov-hyperbolic-space-geodesic
assumes lambda C−quasi-isometry f
shows Gromov-converging-at-boundary (λn. f (u n))←→ Gromov-converging-at-boundary

u
proof

assume Gromov-converging-at-boundary u
show Gromov-converging-at-boundary (λn. f (u n))
proof (rule Gromov-converging-at-boundaryI [of f (basepoint)])

have lambda ≥ 1 C ≥ 0 using quasi-isometry-onD[OF assms(1 )] by auto
define D where D = 187 ∗ lambda^2 ∗ (C + deltaG(TYPE( ′a)) + deltaG(TYPE( ′b)))
fix M ::real
obtain M2 ::real where M2 : M = M2/lambda − D

using ‹lambda ≥ 1 › by (auto simp add: algebra-simps divide-simps)
obtain N where N :

∧
m n. m ≥ N =⇒ n ≥ N =⇒ Gromov-product-at basepoint

(u m) (u n) ≥ M2
using ‹Gromov-converging-at-boundary u› unfolding Gromov-converging-at-boundary-def

by blast
have Gromov-product-at (f basepoint) (f (u m)) (f (u n)) ≥ M if m ≥ N n ≥

N for m n
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proof −
have M ≤ Gromov-product-at basepoint (u m) (u n)/lambda − D

unfolding M2 using N [OF that] ‹lambda ≥ 1 › by (auto simp add: di-
vide-simps)

also have ... ≤ Gromov-product-at (f basepoint) (f (u m)) (f (u n))
unfolding D-def by (rule Gromov-product-at-quasi-isometry[OF assms(1 )])

finally show ?thesis by simp
qed
then show ∃N . ∀n ≥ N . ∀m ≥ N . M ≤ Gromov-product-at (f basepoint) (f

(u m)) (f (u n))
unfolding comp-def by auto

qed
next

assume Gromov-converging-at-boundary (λn. f (u n))
show Gromov-converging-at-boundary u
proof (rule Gromov-converging-at-boundaryI [of basepoint])

have lambda ≥ 1 C ≥ 0 using quasi-isometry-onD[OF assms(1 )] by auto
define D where D = 187 ∗ lambda^2 ∗ (C + deltaG(TYPE( ′a)) + deltaG(TYPE( ′b)))
fix M ::real
define M2 where M2 = lambda ∗ M + D
have M2 : M = (M2 − D)/lambda unfolding M2-def using ‹lambda ≥ 1 › by

(auto simp add: algebra-simps divide-simps)
obtain N where N :

∧
m n. m ≥ N =⇒ n ≥ N =⇒ Gromov-product-at (f

basepoint) (f (u m)) (f (u n)) ≥ M2
using ‹Gromov-converging-at-boundary (λn. f (u n))› unfolding Gromov-converging-at-boundary-def

by blast
have Gromov-product-at basepoint (u m) (u n) ≥ M if m ≥ N n ≥ N for m n
proof −

have M2 ≤ Gromov-product-at (f basepoint) (f (u m)) (f (u n))
using N [OF that] by auto

also have ... ≤ lambda ∗ Gromov-product-at basepoint (u m) (u n) + D
unfolding D-def by (rule Gromov-product-at-quasi-isometry[OF assms(1 )])

finally show M ≤ Gromov-product-at basepoint (u m) (u n)
unfolding M2 using ‹lambda ≥ 1 › by (auto simp add: algebra-simps

divide-simps)
qed
then show ∃N . ∀n ≥ N . ∀m ≥ N . Gromov-product-at basepoint (u m) (u n)

≥ M
by auto

qed
qed

We define the extension to the completion of a function f : X → Y where X
and Y are geodesic Gromov-hyperbolic spaces, as a function from X ∪ ∂X
to Y ∪∂Y , as follows. If x is in the space, we just use f(x) (with the suitable
coercions for the definition). Otherwise, we wish to define f(x) as the limit
of f(un) for all sequences tending to x. For the definition, we use one such
sequence chosen arbitrarily (this is the role of rep_Gromov_completion x
below, it is indeed a sequence in the space tending to x), and we use the
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limit of f(un) (if it exists, otherwise the framework will choose some point
for us but it will make no sense whatsoever).
For quasi-isometries, we have indeed that f(un) converges if un converges to
a boundary point, by Gromov_converging_at_infinity_quasi_isometry,
so this definition is meaningful. Moreover, continuity of the extension fol-
lows readily from this (modulo a suitable criterion for continuity based on se-
quences convergence, established in continuous_at_extension_sequentially’).
definition Gromov-extension::( ′a::Gromov-hyperbolic-space⇒ ′b::Gromov-hyperbolic-space)
⇒ ( ′a Gromov-completion ⇒ ′b Gromov-completion)
where Gromov-extension f x = (if x ∈ Gromov-boundary then lim (to-Gromov-completion

o f o (rep-Gromov-completion x))
else to-Gromov-completion (f (from-Gromov-completion

x)))

lemma Gromov-extension-inside-space [simp]:
Gromov-extension f (to-Gromov-completion x) = to-Gromov-completion (f x)

unfolding Gromov-extension-def by auto

lemma Gromov-extension-id [simp]:
Gromov-extension (id:: ′a::Gromov-hyperbolic-space ⇒ ′a) = id
Gromov-extension (λx:: ′a. x) = (λx. x)

proof −
have Gromov-extension id x = id x for x:: ′a Gromov-completion

unfolding Gromov-extension-def comp-def
using limI rep-Gromov-completion-limit by (auto simp add: to-from-Gromov-completion)

then show Gromov-extension (id:: ′a ⇒ ′a) = id
by auto

then show Gromov-extension (λx:: ′a. x) = (λx. x)
unfolding id-def by auto

qed

The Gromov extension of a quasi-isometric map sends the boundary to the
boundary.
lemma Gromov-extension-quasi-isometry-boundary-to-boundary:
fixes f :: ′a::Gromov-hyperbolic-space-geodesic⇒ ′b::Gromov-hyperbolic-space-geodesic
assumes lambda C−quasi-isometry f

x ∈ Gromov-boundary
shows (Gromov-extension f ) x ∈ Gromov-boundary

proof −
have ∗: Gromov-converging-at-boundary (λn. f (rep-Gromov-completion x n))
by (simp add: Gromov-converging-at-infinity-quasi-isometry[OF assms(1 )] Gro-

mov-boundary-rep-converging assms(2 ))
show ?thesis

unfolding Gromov-extension-def using assms(2 ) unfolding comp-def apply
auto

by (metis Gromov-converging-at-boundary-converges ∗ limI )
qed
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If the original function is continuous somewhere inside the space, then its
Gromov extension is continuous at the corresponding point inside the com-
pletion. This is clear as the original space is open in the Gromov completion,
but the proof requires to go back and forth between one space and the other.
lemma Gromov-extension-continuous-inside:

fixes f :: ′a::Gromov-hyperbolic-space ⇒ ′b::Gromov-hyperbolic-space
assumes continuous (at x within S) f
shows continuous (at (to-Gromov-completion x) within (to-Gromov-completion‘S))

(Gromov-extension f )
proof −
have ∗: continuous (at (to-Gromov-completion x) within (to-Gromov-completion‘S))

(to-Gromov-completion o f o from-Gromov-completion)
apply (intro continuous-within-compose, auto)

using from-Gromov-completion-continuous(3 ) continuous-at-imp-continuous-within
apply blast

using assms apply (simp add: continuous-within-topological)
using continuous-at-imp-continuous-within continuous-on-eq-continuous-within

to-Gromov-completion-continuous by blast
have (to-Gromov-completion o f o from-Gromov-completion) y = Gromov-extension

f y
if y ∈ range to-Gromov-completion for y
unfolding comp-def using that by auto

moreover have eventually (λy. y ∈ range to-Gromov-completion) (at (to-Gromov-completion
x) within (to-Gromov-completion‘S))

using to-Gromov-completion-range-open eventually-at-topological by blast
ultimately have ∗∗: eventually (λy. (to-Gromov-completion o f o from-Gromov-completion)

y = Gromov-extension f y)
(at (to-Gromov-completion x) within (to-Gromov-completion‘S))

by (rule eventually-mono[rotated])
show ?thesis

by (rule continuous-within-cong[OF ∗ ∗∗], auto)
qed

The extension to the boundary of a quasi-isometry is continuous. This is
a nontrivial statement, but it follows readily from the fact we have already
proved that sequences converging at the boundary are mapped to sequences
converging to the boundary. The proof is expressed using a convenient
continuity criterion for which we only need to control what happens for
sequences inside the space.
proposition Gromov-extension-continuous:
fixes f :: ′a::Gromov-hyperbolic-space-geodesic⇒ ′b::Gromov-hyperbolic-space-geodesic
assumes lambda C−quasi-isometry f

x ∈ Gromov-boundary
shows continuous (at x) (Gromov-extension f )

proof −
have continuous (at x within (range to-Gromov-completion ∪ Gromov-boundary))

(Gromov-extension f )
proof (rule continuous-at-extension-sequentially ′[OF ‹x ∈ Gromov-boundary›])
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fix b:: ′a Gromov-completion assume b ∈ Gromov-boundary
show ∃ u. (∀n. u n ∈ range to-Gromov-completion) ∧ u −−−−→ b ∧ (λn.

Gromov-extension f (u n)) −−−−→ Gromov-extension f b
apply (rule exI [of - to-Gromov-completion o (rep-Gromov-completion b)], auto

simp add: comp-def )
unfolding Gromov-completion-converge-to-boundary[OF ‹b ∈ Gromov-boundary›]
using Quotient3-abs-rep[OF Quotient3-Gromov-completion] Quotient3-rep-reflp[OF

Quotient3-Gromov-completion] apply auto[1 ]
unfolding Gromov-extension-def using ‹b ∈ Gromov-boundary› unfolding

comp-def
by (auto simp add: convergent-LIMSEQ-iff [symmetric] Gromov-boundary-rep-converging

Gromov-converging-at-infinity-quasi-isometry[OF assms(1 )]
intro!: Gromov-converging-at-boundary-converges ′)

next
fix u and b:: ′a Gromov-completion
assume u: ∀n. u n ∈ range to-Gromov-completion b ∈ Gromov-boundary u

−−−−→ b
define v where v = (λn. from-Gromov-completion (u n))
have v: u n = to-Gromov-completion (v n) for n
using u(1 ) unfolding v-def by (simp add: f-inv-into-f from-Gromov-completion-def )

show convergent (λn. Gromov-extension f (u n))
using u unfolding v

apply (auto intro!: Gromov-converging-at-boundary-converges ′ simp add: Gro-
mov-converging-at-infinity-quasi-isometry[OF assms(1 )])

using Gromov-boundary-abs-converging Gromov-completion-converge-to-boundary
by blast

qed
then show ?thesis by (simp add: Gromov-boundary-def )

qed

Combining the two previous statements on continuity inside the space and
continuity at the boundary, we deduce that a continuous quasi-isometry
extends to a continuous map everywhere.
proposition Gromov-extension-continuous-everywhere:
fixes f :: ′a::Gromov-hyperbolic-space-geodesic⇒ ′b::Gromov-hyperbolic-space-geodesic
assumes lambda C−quasi-isometry f

continuous-on UNIV f
shows continuous-on UNIV (Gromov-extension f )

using Gromov-extension-continuous-inside Gromov-extension-continuous[OF assms(1 )]
by (metis UNIV-I assms(2 ) continuous-on-eq-continuous-within continuous-within-open
not-in-Gromov-boundary rangeI to-Gromov-completion-range-open)

The extension to the boundary is functorial on the category of quasi-isometries,
i.e., the composition of extensions is the extension of the composition. This
is clear inside the space, and it follows from the continuity at boundary
points.
lemma Gromov-extension-composition:
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fixes f :: ′a::Gromov-hyperbolic-space-geodesic⇒ ′b::Gromov-hyperbolic-space-geodesic
and g:: ′b::Gromov-hyperbolic-space-geodesic⇒ ′c::Gromov-hyperbolic-space-geodesic

assumes lambda C−quasi-isometry f
mu D−quasi-isometry g

shows Gromov-extension (g o f ) = Gromov-extension g o Gromov-extension f
proof −

have In: Gromov-extension (g o f ) x = (Gromov-extension g o Gromov-extension
f ) x if H : x ∈ range to-Gromov-completion for x

proof −
obtain y where ∗: x = to-Gromov-completion y

using H by auto
show ?thesis

unfolding ∗ comp-def by auto
qed
moreover have Gromov-extension (g o f ) x = (Gromov-extension g o Gro-

mov-extension f ) x if H : x ∈ Gromov-boundary for x
proof −

obtain u where u:
∧

n. u n ∈ range to-Gromov-completion u −−−−→ x
using closure-sequential to-Gromov-completion-range-dense by blast

have (λn. Gromov-extension (g o f ) (u n)) −−−−→ Gromov-extension (g o f ) x
using continuous-within-tendsto-compose[OF Gromov-extension-continuous[OF

quasi-isometry-on-compose[OF assms(1 ) assms(2 ), simplified] H ] - u(2 )] by simp
then have A: (λn. (Gromov-extension g) ((Gromov-extension f ) (u n))) −−−−→

Gromov-extension (g o f ) x
unfolding In[OF u(1 )] unfolding comp-def by auto

have ∗: (λn. (Gromov-extension f ) (u n)) −−−−→ (Gromov-extension f ) x
using continuous-within-tendsto-compose[OF Gromov-extension-continuous[OF

assms(1 ) H ] - u(2 )] by simp
have (λn. (Gromov-extension g) ((Gromov-extension f ) (u n))) −−−−→ Gro-

mov-extension g ((Gromov-extension f ) x)
using continuous-within-tendsto-compose[OF Gromov-extension-continuous[OF

assms(2 )] - ∗]
H Gromov-extension-quasi-isometry-boundary-to-boundary assms(1 ) by auto

then show ?thesis using LIMSEQ-unique A comp-def by auto
qed
ultimately have Gromov-extension (g o f ) x = (Gromov-extension g o Gro-

mov-extension f ) x for x
using not-in-Gromov-boundary by force

then show ?thesis by auto
qed

Now, we turn to the same kind of statement, but for homeomorphisms. We
claim that if a quasi-isometry f is a homeomorphism on a subset X of the
space, then its extension is a homeomorphism on X union the boundary
of the space. For the proof, we have to show that a sequence un tends to
a point x if and only if f(un) tends to f(x). We separate the cases x in
the boundary, and x inside the space. For x in the boundary, we use a
homeomorphism criterion expressed solely in terms of sequences converging
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to the boundary, for which we already know everything. For x in the space,
the proof is straightforward, but tedious. We argue that eventually un is in
the space for the direct implication, or f(un) is in the space for the second
implication, and then we use that f is a homeomorphism inside the space
to conclude.
lemma Gromov-extension-homeomorphism:
fixes f :: ′a::Gromov-hyperbolic-space-geodesic⇒ ′b::Gromov-hyperbolic-space-geodesic
assumes lambda C−quasi-isometry f

homeomorphism-on X f
shows homeomorphism-on (to-Gromov-completion‘X ∪ Gromov-boundary) (Gromov-extension

f )
proof (rule homeomorphism-on-sequentially)

fix x u assume H0 : x ∈ to-Gromov-completion ‘ X ∪ Gromov-boundary
∀n::nat. u n ∈ to-Gromov-completion ‘ X ∪ Gromov-boundary

then consider x ∈ Gromov-boundary | x ∈ to-Gromov-completion‘X by auto
then show u −−−−→ x = (λn. Gromov-extension f (u n)) −−−−→ Gromov-extension

f x
proof (cases)

First, consider the case where the limit point x is in the boundary. We use a
good criterion expressing everything in terms of sequences inside the space.

case 1
show ?thesis

proof (rule homeomorphism-on-extension-sequentially-precise[of range to-Gromov-completion
Gromov-boundary])

show x ∈ Gromov-boundary by fact
fix n::nat show u n ∈ range to-Gromov-completion ∪ Gromov-boundary

unfolding Gromov-boundary-def by auto
next

fix u and b:: ′a Gromov-completion
assume u: ∀n. u n ∈ range to-Gromov-completion b ∈ Gromov-boundary u

−−−−→ b
define v where v = (λn. from-Gromov-completion (u n))
have v: u n = to-Gromov-completion (v n) for n
using u(1 ) unfolding v-def by (simp add: f-inv-into-f from-Gromov-completion-def )
show convergent (λn. Gromov-extension f (u n))

using u unfolding v apply auto
apply (rule Gromov-converging-at-boundary-converges ′)

by (auto simp add: Gromov-converging-at-infinity-quasi-isometry[OF assms(1 )]
lim-imp-Gromov-converging-at-boundary)

next
fix u c
assume u: ∀n. u n ∈ range to-Gromov-completion c ∈ Gromov-extension f ‘

Gromov-boundary (λn. Gromov-extension f (u n)) −−−−→ c
then have c ∈ Gromov-boundary using Gromov-extension-quasi-isometry-boundary-to-boundary[OF

assms(1 )] by auto
define v where v = (λn. from-Gromov-completion (u n))
have v: u n = to-Gromov-completion (v n) for n
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using u(1 ) unfolding v-def by (simp add: f-inv-into-f from-Gromov-completion-def )
have Gromov-converging-at-boundary (λn. f (v n))
apply (rule lim-imp-Gromov-converging-at-boundary[OF - ‹c ∈ Gromov-boundary›])

using u(3 ) unfolding v by auto
then show convergent u

using u unfolding v
by (auto intro!: Gromov-converging-at-boundary-converges ′ simp add: Gro-

mov-converging-at-infinity-quasi-isometry[OF assms(1 ), symmetric])
next

fix b:: ′a Gromov-completion assume b ∈ Gromov-boundary
show ∃ u. (∀n. u n ∈ range to-Gromov-completion) ∧ u −−−−→ b ∧ (λn.

Gromov-extension f (u n)) −−−−→ Gromov-extension f b
apply (rule exI [of - to-Gromov-completion o (rep-Gromov-completion b)],

auto simp add: comp-def )
unfolding Gromov-completion-converge-to-boundary[OF ‹b ∈ Gromov-boundary›]
using Quotient3-abs-rep[OF Quotient3-Gromov-completion] Quotient3-rep-reflp[OF

Quotient3-Gromov-completion] apply auto[1 ]
unfolding Gromov-extension-def using ‹b ∈ Gromov-boundary› unfolding

comp-def
by (auto simp add: convergent-LIMSEQ-iff [symmetric] Gromov-boundary-rep-converging

Gromov-converging-at-infinity-quasi-isometry[OF assms(1 )]
intro!: Gromov-converging-at-boundary-converges ′)

qed
next

Next, consider the case where x is inside the space. Then we show everything
by going back and forth between the original space and its copy in the
completion, and arguing that f is a homeomorphism on the original space.

case 2
then have fx: Gromov-extension f x ∈ range to-Gromov-completion

using Gromov-extension-inside-space by blast
have x: x ∈ range to-Gromov-completion

using 2 by blast
show ?thesis
proof

assume H : (λn. Gromov-extension f (u n)) −−−−→ Gromov-extension f x
then have fu-in: eventually (λn. Gromov-extension f (u n) ∈ range to-Gromov-completion)

sequentially
using fx to-Gromov-completion-range-open H topological-tendstoD by fast-

force
have u-in: eventually (λn. u n ∈ range to-Gromov-completion) sequentially
using Gromov-extension-quasi-isometry-boundary-to-boundary[OF assms(1 )]

eventually-mono[OF fu-in]
by (metis DiffE DiffI Gromov-boundary-def iso-tuple-UNIV-I )

have B: from-Gromov-completion (Gromov-extension f y) = f (from-Gromov-completion
y) if Gromov-extension f y ∈ range to-Gromov-completion for y

by (metis Gromov-extension-quasi-isometry-boundary-to-boundary Gro-
mov-extension-def assms(1 ) from-to-Gromov-completion not-in-Gromov-boundary ′
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rangeE that)
have (λn. from-Gromov-completion (Gromov-extension f (u n))) −−−−→

from-Gromov-completion (Gromov-extension f x)
by (rule continuous-on-tendsto-compose[OF from-Gromov-completion-continuous(2 )

H fx fu-in])
then have C : (λn. f (from-Gromov-completion (u n))) −−−−→ f (from-Gromov-completion

x)
unfolding B[OF fx, symmetric]
by (force intro: Lim-transform-eventually eventually-mono[OF fu-in B])

have (λn. from-Gromov-completion (u n)) −−−−→ from-Gromov-completion x
apply (rule iffD2 [OF homeomorphism-on-compose[OF assms(2 )] C ])
using 2 apply auto

by (metis (no-types, lifting) eventually-mono[OF u-in] H0 (2 ) Un-iff f-inv-into-f
from-to-Gromov-completion inv-into-into not-in-Gromov-boundary ′)

then have L: (λn. to-Gromov-completion (from-Gromov-completion (u n)))
−−−−→ to-Gromov-completion (from-Gromov-completion x)

using continuous-on-tendsto-compose[OF to-Gromov-completion-continuous]
by auto

have ∗∗: to-Gromov-completion (from-Gromov-completion y) = y if y ∈ range
to-Gromov-completion for y:: ′a Gromov-completion

using Gromov-extension-quasi-isometry-boundary-to-boundary assms(1 ) that
to-from-Gromov-completion by fastforce

then have eventually (λn. to-Gromov-completion (from-Gromov-completion
(u n)) = u n) sequentially

using u-in eventually-mono by force
then have u −−−−→ to-Gromov-completion (from-Gromov-completion x)

by (rule Lim-transform-eventually[OF L])
then show u −−−−→ x

using ∗∗ by (simp add: x)
next

assume u −−−−→ x
then have u-in: eventually (λn. u n ∈ range to-Gromov-completion) sequen-

tially
using x to-Gromov-completion-range-open topological-tendstoD by fastforce

define y where y = from-Gromov-completion x
have y ∈ X unfolding y-def using 2 by auto
then have ∗: continuous (at y within X) f
using homeomorphism-on-continuous[OF assms(2 )] continuous-on-eq-continuous-within

by blast
have ∗∗: continuous (at x within to-Gromov-completion‘X) (Gromov-extension

f )
using Gromov-extension-continuous-inside[OF ∗] y-def 2 by auto

show (λn. Gromov-extension f (u n)) −−−−→ Gromov-extension f x
apply (rule continuous-within-tendsto-compose[OF ∗∗ - ‹u −−−−→ x›])

using u-in H0 (2 ) by (metis (mono-tags, lifting) UnE eventually-mono
f-inv-into-f not-in-Gromov-boundary ′)

qed
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qed
qed

In particular, it follows that the extension to the boundary of a quasi-
isometry is always a homeomorphism, regardless of the continuity properties
of the original map.
proposition Gromov-extension-boundary-homeomorphism:
fixes f :: ′a::Gromov-hyperbolic-space-geodesic⇒ ′b::Gromov-hyperbolic-space-geodesic
assumes lambda C−quasi-isometry f
shows homeomorphism-on Gromov-boundary (Gromov-extension f )

using Gromov-extension-homeomorphism[OF assms, of {}] by auto

When the quasi-isometric embedding is a quasi-isometric isomorphism, i.e.,
it is onto up to a bounded distance C, then its Gromov extension is onto on
the boundary. Indeed, a point in the image boundary is a limit of a sequence
inside the space. Perturbing by a bounded distance (which does not change
the asymptotic behavior), it is the limit of a sequence inside the image of f .
Then the preimage under f of this sequence does converge, and its limit is
sent by the extension on the original point, proving the surjectivity.
lemma Gromov-extension-onto:
fixes f :: ′a::Gromov-hyperbolic-space-geodesic⇒ ′b::Gromov-hyperbolic-space-geodesic
assumes lambda C−quasi-isometry-between UNIV UNIV f

y ∈ Gromov-boundary
shows ∃ x ∈ Gromov-boundary. Gromov-extension f x = y

proof −
define u where u = rep-Gromov-completion y
have ∗: (λn. to-Gromov-completion (u n)) −−−−→ y

unfolding u-def using rep-Gromov-completion-limit by fastforce
have ∃ v. ∀n. dist (f (v n)) (u n) ≤ C

apply (intro choice) using quasi-isometry-betweenD(3 )[OF assms(1 )] by auto
then obtain v where v:

∧
n. dist (f (v n)) (u n) ≤ C by auto

have ∗: (λn. to-Gromov-completion (f (v n))) −−−−→ y
apply (rule Gromov-converging-at-boundary-bounded-perturbation[OF ∗ ‹y ∈

Gromov-boundary›])
using v by (simp add: dist-commute)

then have Gromov-converging-at-boundary (λn. f (v n))
using assms(2 ) lim-imp-Gromov-converging-at-boundary by force

then have Gromov-converging-at-boundary v
using Gromov-converging-at-infinity-quasi-isometry[OF quasi-isometry-betweenD(1 )[OF

assms(1 )]] by auto
then obtain x where x ∈ Gromov-boundary (λn. to-Gromov-completion (v n))
−−−−→ x

using Gromov-converging-at-boundary-converges by blast
then have (λn. (Gromov-extension f ) (to-Gromov-completion (v n))) −−−−→

Gromov-extension f x
using isCont-tendsto-compose[OF Gromov-extension-continuous[OF quasi-isometry-betweenD(1 )[OF

assms(1 )] ‹x ∈ Gromov-boundary›]] by fastforce
then have y = Gromov-extension f x
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using ∗ LIMSEQ-unique by auto
then show ?thesis using ‹x ∈ Gromov-boundary› by auto

qed

lemma Gromov-extension-onto ′:
fixes f :: ′a::Gromov-hyperbolic-space-geodesic⇒ ′b::Gromov-hyperbolic-space-geodesic
assumes lambda C−quasi-isometry-between UNIV UNIV f
shows (Gromov-extension f )‘Gromov-boundary = Gromov-boundary

using Gromov-extension-onto[OF assms] Gromov-extension-quasi-isometry-boundary-to-boundary[OF
quasi-isometry-betweenD(1 )[OF assms]] by auto

Finally, we obtain that a quasi-isometry between two Gromov hyperbolic
spaces induces a homeomorphism of their boundaries.
theorem Gromov-boundaries-homeomorphic:
fixes f :: ′a::Gromov-hyperbolic-space-geodesic⇒ ′b::Gromov-hyperbolic-space-geodesic
assumes lambda C−quasi-isometry-between UNIV UNIV f
shows (Gromov-boundary:: ′a Gromov-completion set) homeomorphic (Gromov-boundary:: ′b

Gromov-completion set)
using Gromov-extension-boundary-homeomorphism[OF quasi-isometry-betweenD(1 )[OF
assms]] Gromov-extension-onto ′[OF assms]
unfolding homeomorphic-def homeomorphism-on-def by auto

17 Extensions of isometries to the boundary

The results of the previous section can be improved for isometries, as there
is no need for geodesicity any more. We follow the same proofs as in the
previous section

An isometry preserves the Gromov product.
lemma Gromov-product-isometry:

assumes isometry-on UNIV f
shows Gromov-product-at (f x) (f y) (f z) = Gromov-product-at x y z

unfolding Gromov-product-at-def by (simp add: isometry-onD[OF assms])

An isometry preserves convergence at infinity.
lemma Gromov-converging-at-infinity-isometry:

fixes f :: ′a::Gromov-hyperbolic-space ⇒ ′b::Gromov-hyperbolic-space
assumes isometry-on UNIV f
shows Gromov-converging-at-boundary (λn. f (u n))←→ Gromov-converging-at-boundary

u
proof

assume ∗: Gromov-converging-at-boundary u
show Gromov-converging-at-boundary (λn. f (u n))

apply (rule Gromov-converging-at-boundaryI [of f (basepoint)])
using ∗ unfolding Gromov-converging-at-boundary-def Gromov-product-isometry[OF

assms] by auto
next

370



assume ∗: Gromov-converging-at-boundary (λn. f (u n))
have ∗∗: ∃N . ∀n ≥ N . ∀m ≥ N . M ≤ Gromov-product-at (f basepoint) (f (u

m)) (f (u n)) for M
using ∗ unfolding Gromov-converging-at-boundary-def by auto

show Gromov-converging-at-boundary u
apply (rule Gromov-converging-at-boundaryI [of basepoint])

using ∗∗ unfolding Gromov-converging-at-boundary-def Gromov-product-isometry[OF
assms] by auto
qed

The Gromov extension of an isometry sends the boundary to the boundary.
lemma Gromov-extension-isometry-boundary-to-boundary:

fixes f :: ′a::Gromov-hyperbolic-space ⇒ ′b::Gromov-hyperbolic-space
assumes isometry-on UNIV f

x ∈ Gromov-boundary
shows (Gromov-extension f ) x ∈ Gromov-boundary

proof −
have ∗: Gromov-converging-at-boundary (λn. f (rep-Gromov-completion x n))
by (simp add: Gromov-converging-at-infinity-isometry[OF assms(1 )] Gromov-boundary-rep-converging

assms(2 ))
show ?thesis

unfolding Gromov-extension-def using assms(2 ) unfolding comp-def apply
auto

by (metis Gromov-converging-at-boundary-converges ∗ limI )
qed

The Gromov extension of an isometry is a homeomorphism. (We copy the
proof for quasi-isometries, with some simplifications.)
lemma Gromov-extension-isometry-homeomorphism:

fixes f :: ′a::Gromov-hyperbolic-space ⇒ ′b::Gromov-hyperbolic-space
assumes isometry-on UNIV f
shows homeomorphism-on UNIV (Gromov-extension f )

proof (rule homeomorphism-on-sequentially)
fix x u
show u −−−−→ x = (λn. Gromov-extension f (u n)) −−−−→ Gromov-extension f

x
proof (cases x)

First, consider the case where the limit point x is in the boundary. We use a
good criterion expressing everything in terms of sequences inside the space.

case boundary
show ?thesis

proof (rule homeomorphism-on-extension-sequentially-precise[of range to-Gromov-completion
Gromov-boundary])

show x ∈ Gromov-boundary by fact
fix n::nat show u n ∈ range to-Gromov-completion ∪ Gromov-boundary

unfolding Gromov-boundary-def by auto
next
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fix u and b:: ′a Gromov-completion
assume u: ∀n. u n ∈ range to-Gromov-completion b ∈ Gromov-boundary u

−−−−→ b
define v where v = (λn. from-Gromov-completion (u n))
have v: u n = to-Gromov-completion (v n) for n
using u(1 ) unfolding v-def by (simp add: f-inv-into-f from-Gromov-completion-def )
show convergent (λn. Gromov-extension f (u n))

using u unfolding v apply auto
apply (rule Gromov-converging-at-boundary-converges ′)
by (auto simp add: Gromov-converging-at-infinity-isometry[OF assms(1 )]

lim-imp-Gromov-converging-at-boundary)
next

fix u c
assume u: ∀n. u n ∈ range to-Gromov-completion c ∈ Gromov-extension f ‘

Gromov-boundary (λn. Gromov-extension f (u n)) −−−−→ c
then have c ∈ Gromov-boundary using Gromov-extension-isometry-boundary-to-boundary[OF

assms(1 )] by auto
define v where v = (λn. from-Gromov-completion (u n))
have v: u n = to-Gromov-completion (v n) for n
using u(1 ) unfolding v-def by (simp add: f-inv-into-f from-Gromov-completion-def )
have Gromov-converging-at-boundary (λn. f (v n))
apply (rule lim-imp-Gromov-converging-at-boundary[OF - ‹c ∈ Gromov-boundary›])

using u(3 ) unfolding v by auto
then show convergent u

using u unfolding v
by (auto intro!: Gromov-converging-at-boundary-converges ′ simp add: Gro-

mov-converging-at-infinity-isometry[OF assms(1 ), symmetric])
next

fix b:: ′a Gromov-completion assume b ∈ Gromov-boundary
show ∃ u. (∀n. u n ∈ range to-Gromov-completion) ∧ u −−−−→ b ∧ (λn.

Gromov-extension f (u n)) −−−−→ Gromov-extension f b
apply (rule exI [of - to-Gromov-completion o (rep-Gromov-completion b)],

auto simp add: comp-def )
unfolding Gromov-completion-converge-to-boundary[OF ‹b ∈ Gromov-boundary›]
using Quotient3-abs-rep[OF Quotient3-Gromov-completion] Quotient3-rep-reflp[OF

Quotient3-Gromov-completion] apply auto[1 ]
unfolding Gromov-extension-def using ‹b ∈ Gromov-boundary› unfolding

comp-def
by (auto simp add: convergent-LIMSEQ-iff [symmetric] Gromov-boundary-rep-converging

Gromov-converging-at-infinity-isometry[OF assms(1 )]
intro!: Gromov-converging-at-boundary-converges ′)

qed
next

Next, consider the case where x is inside the space. Then we show everything
by going back and forth between the original space and its copy in the
completion, and arguing that f is a homeomorphism on the original space.

case (to-Gromov-completion xin)
then have fx: Gromov-extension f x ∈ range to-Gromov-completion
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using Gromov-extension-inside-space by blast
have x: x ∈ range to-Gromov-completion

using to-Gromov-completion by blast
show ?thesis
proof

assume H : (λn. Gromov-extension f (u n)) −−−−→ Gromov-extension f x
then have fu-in: eventually (λn. Gromov-extension f (u n) ∈ range to-Gromov-completion)

sequentially
using fx to-Gromov-completion-range-open H topological-tendstoD by fast-

force
have u-in: eventually (λn. u n ∈ range to-Gromov-completion) sequentially
using Gromov-extension-isometry-boundary-to-boundary[OF assms(1 )] even-

tually-mono[OF fu-in]
by (metis DiffE DiffI Gromov-boundary-def iso-tuple-UNIV-I )

have B: from-Gromov-completion (Gromov-extension f y) = f (from-Gromov-completion
y) if Gromov-extension f y ∈ range to-Gromov-completion for y

by (metis Gromov-extension-isometry-boundary-to-boundary Gromov-extension-def
assms(1 ) from-to-Gromov-completion not-in-Gromov-boundary ′ rangeE that)

have (λn. from-Gromov-completion (Gromov-extension f (u n))) −−−−→
from-Gromov-completion (Gromov-extension f x)

by (rule continuous-on-tendsto-compose[OF from-Gromov-completion-continuous(2 )
H fx fu-in])

then have C : (λn. f (from-Gromov-completion (u n))) −−−−→ f (from-Gromov-completion
x)

unfolding B[OF fx, symmetric]
by (force intro: Lim-transform-eventually eventually-mono[OF fu-in B])

have (λn. from-Gromov-completion (u n)) −−−−→ from-Gromov-completion x
apply (rule iffD2 [OF homeomorphism-on-compose[OF isometry-on-homeomorphism(2 )[OF

assms]] C ])
using to-Gromov-completion by auto

then have L: (λn. to-Gromov-completion (from-Gromov-completion (u n)))
−−−−→ to-Gromov-completion (from-Gromov-completion x)

using continuous-on-tendsto-compose[OF to-Gromov-completion-continuous]
by auto

have ∗∗: to-Gromov-completion (from-Gromov-completion y) = y if y ∈ range
to-Gromov-completion for y:: ′a Gromov-completion

using Gromov-extension-isometry-boundary-to-boundary assms(1 ) that
to-from-Gromov-completion by fastforce

then have eventually (λn. to-Gromov-completion (from-Gromov-completion
(u n)) = u n) sequentially

using u-in eventually-mono by force
then have u −−−−→ to-Gromov-completion (from-Gromov-completion x)

by (rule Lim-transform-eventually[OF L])
then show u −−−−→ x

using ∗∗ by (simp add: x)
next

assume u −−−−→ x
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then have u-in: eventually (λn. u n ∈ range to-Gromov-completion) sequen-
tially

using x to-Gromov-completion-range-open topological-tendstoD by fastforce
define y where y = from-Gromov-completion x
then have ∗: continuous (at y) f
using homeomorphism-on-continuous[OF isometry-on-homeomorphism(2 )[OF

assms]] continuous-on-eq-continuous-within by blast
have ∗∗: continuous (at x within to-Gromov-completion‘UNIV ) (Gromov-extension

f )
using Gromov-extension-continuous-inside[OF ∗] y-def to-Gromov-completion

by auto

show (λn. Gromov-extension f (u n)) −−−−→ Gromov-extension f x
apply (rule continuous-within-tendsto-compose[OF ∗∗ - ‹u −−−−→ x›])
using u-in by auto

qed
qed

qed

The composition of the Gromov extension of two isometries is the Gromov
extension of the composition.
lemma Gromov-extension-isometry-on-composition:

assumes isometry-on UNIV f
isometry-on UNIV g

shows Gromov-extension (g o f ) = Gromov-extension g o Gromov-extension f
proof −

have In: Gromov-extension (g o f ) x = (Gromov-extension g o Gromov-extension
f ) x if H : x ∈ range to-Gromov-completion for x

proof −
obtain y where ∗: x = to-Gromov-completion y

using H by auto
show ?thesis

unfolding ∗ comp-def by auto
qed
moreover have Gromov-extension (g o f ) x = (Gromov-extension g o Gro-

mov-extension f ) x if H : x ∈ Gromov-boundary for x
proof −

obtain u where u:
∧

n. u n ∈ range to-Gromov-completion u −−−−→ x
using closure-sequential to-Gromov-completion-range-dense by blast

have (λn. Gromov-extension (g o f ) (u n)) −−−−→ Gromov-extension (g o f ) x
apply (rule continuous-within-tendsto-compose[OF - - u(2 ), of UNIV ])

using homeomorphism-on-continuous[OF Gromov-extension-isometry-homeomorphism[OF
isometry-on-compose[OF assms(1 ) isometry-on-subset[OF assms(2 )]]]] unfolding
comp-def

by (auto simp add: continuous-on-eq-continuous-within)
then have A: (λn. (Gromov-extension g) ((Gromov-extension f ) (u n))) −−−−→

Gromov-extension (g o f ) x
unfolding In[OF u(1 )] unfolding comp-def by auto
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have ∗: (λn. (Gromov-extension f ) (u n)) −−−−→ (Gromov-extension f ) x
apply (rule continuous-within-tendsto-compose[OF - - u(2 ), of UNIV ])

using homeomorphism-on-continuous[OF Gromov-extension-isometry-homeomorphism[OF
assms(1 )]] unfolding comp-def

by (auto simp add: continuous-on-eq-continuous-within)
have (λn. (Gromov-extension g) ((Gromov-extension f ) (u n))) −−−−→ Gro-

mov-extension g ((Gromov-extension f ) x)
apply (rule continuous-within-tendsto-compose[OF - - ∗, of UNIV ])

using homeomorphism-on-continuous[OF Gromov-extension-isometry-homeomorphism[OF
assms(2 )]] unfolding comp-def

by (auto simp add: continuous-on-eq-continuous-within)
then show ?thesis using LIMSEQ-unique A comp-def by auto

qed
ultimately have Gromov-extension (g o f ) x = (Gromov-extension g o Gro-

mov-extension f ) x for x
using not-in-Gromov-boundary by force

then show ?thesis by auto
qed

We specialize the previous results to bijective isometries, as this is the setting
where they will be used most of the time.
lemma Gromov-extension-isometry:

assumes isometry f
shows homeomorphism-on UNIV (Gromov-extension f )

continuous-on UNIV (Gromov-extension f )
continuous (at x) (Gromov-extension f )

using Gromov-extension-isometry-homeomorphism[OF isometryD(1 )[OF assms]]
homeomorphism-on-continuous apply auto
using ‹homeomorphism-on UNIV (Gromov-extension f )› continuous-on-eq-continuous-within
homeomorphism-on-continuous by blast

lemma Gromov-extension-isometry-composition:
assumes isometry f

isometry g
shows Gromov-extension (g o f ) = Gromov-extension g o Gromov-extension f

using Gromov-extension-isometry-on-composition[OF isometryD(1 )[OF assms(1 )]
isometryD(1 )[OF assms(2 )]] by simp

lemma Gromov-extension-isometry-iterates:
fixes f :: ′a ⇒ ( ′a::Gromov-hyperbolic-space)
assumes isometry f
shows Gromov-extension (f^^n) = (Gromov-extension f )^^n

apply (induction n) using Gromov-extension-isometry-composition[OF isometry-iterates[OF
assms] assms] unfolding comp-def by auto

lemma Gromov-extension-isometry-inv:
assumes isometry f
shows inv (Gromov-extension f ) = Gromov-extension (inv f )

bij (Gromov-extension f )
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proof −
have ∗: (inv f ) o f = id

using isometry-inverse(2 )[OF assms] by (simp add: bij-is-inj)
have Gromov-extension ((inv f ) o f ) = Gromov-extension (inv f ) o Gromov-extension

f
by (rule Gromov-extension-isometry-composition[OF assms isometry-inverse(1 )[OF

assms]])
then have A: Gromov-extension (inv f ) o Gromov-extension f = id

unfolding ∗ by auto
have ∗: f o (inv f ) = id

using isometry-inverse(2 )[OF assms] by (meson bij-is-surj surj-iff )
have Gromov-extension (f o (inv f )) = Gromov-extension f o Gromov-extension

(inv f )
by (rule Gromov-extension-isometry-composition[OF isometry-inverse(1 )[OF

assms] assms])
then have B: Gromov-extension f o Gromov-extension (inv f ) = id

unfolding ∗ by auto
show bij (Gromov-extension f )

using A B unfolding bij-def apply auto
by (metis inj-on-id inj-on-imageI2 , metis B comp-apply id-def rangeI )

show inv (Gromov-extension f ) = Gromov-extension (inv f )
using B ‹bij (Gromov-extension f )› bij-is-inj inv-o-cancel left-right-inverse-eq

by blast
qed

We will especially use fixed points on the boundary. We note that if a point
is fixed by (the Gromov extension of) a map, then it is fixed by (the Gromov
extension of) its inverse.
lemma Gromov-extension-inv-fixed-point:

assumes isometry (f :: ′a::Gromov-hyperbolic-space ⇒ ′a) Gromov-extension f xi
= xi

shows Gromov-extension (inv f ) xi = xi
by (metis Gromov-extension-isometry-inv(1 ) Gromov-extension-isometry-inv(2 ) assms(1 )
assms(2 ) bij-betw-def inv-f-f )

The extended Gromov product is invariant under isometries. This follows
readily from the definition, but still the proof is not fully automatic, unfor-
tunately.
lemma Gromov-extension-preserves-extended-Gromov-product:

assumes isometry f
shows extended-Gromov-product-at (f x) (Gromov-extension f xi) (Gromov-extension

f eta) = extended-Gromov-product-at x xi eta
proof −

have {liminf (λn. ereal (Gromov-product-at (f x) (u n) (v n))) |u v.
(λn. to-Gromov-completion (u n)) −−−−→ Gromov-extension f xi ∧ (λn.

to-Gromov-completion (v n)) −−−−→ Gromov-extension f eta} =
{liminf (λn. ereal (Gromov-product-at x (u n) (v n))) |u v.
(λn. to-Gromov-completion (u n)) −−−−→ xi ∧ (λn. to-Gromov-completion

(v n)) −−−−→ eta}
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proof (auto)
fix u v assume H : (λn. to-Gromov-completion (u n)) −−−−→ Gromov-extension

f xi
(λn. to-Gromov-completion (v n)) −−−−→ Gromov-extension f eta

define u ′ where u ′ = (λn. (inv f ) (u n))
define v ′ where v ′ = (λn. (inv f ) (v n))
have (λn. to-Gromov-completion (u ′ n)) −−−−→ Gromov-extension (inv f )

(Gromov-extension f xi)
unfolding u ′-def Gromov-extension-inside-space[symmetric]

apply (rule iffD1 [OF homeomorphism-on-compose[OF Gromov-extension-isometry-homeomorphism[OF
isometryD(1 )[OF isometry-inverse(1 )[OF assms]]]]])

using H (1 ) by auto
moreover have Gromov-extension (inv f ) (Gromov-extension f xi) = xi
using Gromov-extension-isometry-composition[OF assms isometry-inverse(1 )[OF

assms], symmetric] unfolding comp-def
using bij-is-inj[OF isometry-inverse(2 )[OF assms]]

by (simp add: ‹Gromov-extension (inv f ) ◦ Gromov-extension f = Gro-
mov-extension (inv f ◦ f )› pointfree-idE)

ultimately have U : (λn. to-Gromov-completion (u ′ n)) −−−−→ xi by simp
have (λn. to-Gromov-completion (v ′ n)) −−−−→ Gromov-extension (inv f )

(Gromov-extension f eta)
unfolding v ′-def Gromov-extension-inside-space[symmetric]

apply (rule iffD1 [OF homeomorphism-on-compose[OF Gromov-extension-isometry-homeomorphism[OF
isometryD(1 )[OF isometry-inverse(1 )[OF assms]]]]])

using H (2 ) by auto
moreover have Gromov-extension (inv f ) (Gromov-extension f eta) = eta
using Gromov-extension-isometry-composition[OF assms isometry-inverse(1 )[OF

assms], symmetric] unfolding comp-def
using bij-is-inj[OF isometry-inverse(2 )[OF assms]]

by (simp add: ‹Gromov-extension (inv f ) ◦ Gromov-extension f = Gro-
mov-extension (inv f ◦ f )› pointfree-idE)

ultimately have V : (λn. to-Gromov-completion (v ′ n)) −−−−→ eta by simp
have uv: u n = f (u ′ n) v n = f (v ′ n) for n

unfolding u ′-def v ′-def by (auto simp add: assms isometryD(3 ) surj-f-inv-f )
have Gromov-product-at (f x) (u n) (v n) = Gromov-product-at x (u ′ n) (v ′ n)

for n
unfolding uv using assms by (simp add: Gromov-product-isometry isome-

try-def )
then have liminf (λn. ereal (Gromov-product-at (f x) (u n) (v n))) = liminf

(λn. ereal (Gromov-product-at x (u ′ n) (v ′ n)))
by auto

then show ∃ u ′ v ′.
liminf (λn. ereal (Gromov-product-at (f x) (u n) (v n))) = liminf (λn.

ereal (Gromov-product-at x (u ′ n) (v ′ n))) ∧
(λn. to-Gromov-completion (u ′ n)) −−−−→ xi ∧ (λn. to-Gromov-completion

(v ′ n)) −−−−→ eta
using U V by blast

next
fix u v assume H : (λn. to-Gromov-completion (u n)) −−−−→ xi
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(λn. to-Gromov-completion (v n)) −−−−→ eta
define u ′ where u ′ = (λn. f (u n))
define v ′ where v ′ = (λn. f (v n))
have U : (λn. to-Gromov-completion (u ′ n)) −−−−→ Gromov-extension f xi

unfolding u ′-def Gromov-extension-inside-space[symmetric]
apply (rule iffD1 [OF homeomorphism-on-compose[OF Gromov-extension-isometry-homeomorphism[OF

isometryD(1 )[OF assms]]]])
using H (1 ) by auto

have V : (λn. to-Gromov-completion (v ′ n)) −−−−→ Gromov-extension f eta
unfolding v ′-def Gromov-extension-inside-space[symmetric]

apply (rule iffD1 [OF homeomorphism-on-compose[OF Gromov-extension-isometry-homeomorphism[OF
isometryD(1 )[OF assms]]]])

using H (2 ) by auto
have Gromov-product-at (f x) (u ′ n) (v ′ n) = Gromov-product-at x (u n) (v n)

for n
unfolding u ′-def v ′-def using assms by (simp add: Gromov-product-isometry

isometry-def )
then have liminf (λn. ereal (Gromov-product-at x (u n) (v n))) = liminf (λn.

ereal (Gromov-product-at (f x) (u ′ n) (v ′ n)))
by auto

then show ∃ u ′ v ′.
liminf (λn. ereal (Gromov-product-at x (u n) (v n))) = liminf (λn.

ereal (Gromov-product-at (f x) (u ′ n) (v ′ n))) ∧
(λn. to-Gromov-completion (u ′ n)) −−−−→ Gromov-extension f xi ∧

(λn. to-Gromov-completion (v ′ n)) −−−−→ Gromov-extension f eta
using U V by auto

qed
then show ?thesis

unfolding extended-Gromov-product-at-topological by auto
qed

end

18 Busemann functions
theory Busemann-Function

imports Boundary-Extension Ergodic-Theory.Fekete
begin

The Busemann function Bξ(x, y) measures the difference d(ξ, x) − d(ξ, y),
where ξ is a point at infinity and x and y are inside a Gromov hyperbolic
space. This is not well defined in this way, as we are subtracting two infini-
ties, but one can make sense of this difference by considering the behavior
along a sequence tending to ξ. The limit may depend on the sequence, but
as usual in Gromov hyperbolic spaces it only depends on the sequence up
to a uniform constant. Thus, we may define the Busemann function using
for instance the supremum of the limsup over all possible sequences – other
choices would give rise to equivalent definitions, up to some multiple of δ.
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definition Busemann-function-at::( ′a::Gromov-hyperbolic-space) Gromov-completion
⇒ ′a ⇒ ′a ⇒ real

where Busemann-function-at xi x y = real-of-ereal (
Sup {limsup (λn. ereal(dist x (u n) − dist y (u n))) |u. (λn. to-Gromov-completion

(u n)) −−−−→ xi})

Since limsups are only defined for complete orders currently, the definition
goes through ereals, and we go back to reals afterwards. However, there is
no real difficulty here, as eveything is bounded above and below (by d(x, y)
and −d(x, y) respectively.
lemma Busemann-function-ereal:

ereal(Busemann-function-at xi x y) = Sup {limsup (λn. ereal(dist x (u n) − dist
y (u n))) |u. (λn. to-Gromov-completion (u n)) −−−−→ xi}
proof −
have A: Sup {limsup (λn. ereal(dist x (u n) − dist y (u n))) |u. (λn. to-Gromov-completion

(u n)) −−−−→ xi} ≤ dist x y
by (rule Sup-least, auto intro!: Limsup-bounded always-eventually mono-intros

simp add: algebra-simps)
have B: Sup {limsup (λn. ereal(dist x (u n) − dist y (u n))) |u. (λn. to-Gromov-completion

(u n)) −−−−→ xi} ≥ −dist x y
proof −

obtain u where ∗: (λn. to-Gromov-completion (u n)) −−−−→ xi
using rep-Gromov-completion-limit[of xi] by blast

have ereal(−dist x y) ≤ limsup (λn. ereal(dist x (u n) − dist y (u n)))
by (rule le-Limsup, auto intro!: always-eventually mono-intros simp add:

algebra-simps)
also have ... ≤ Sup {limsup (λn. ereal(dist x (u n) − dist y (u n))) |u. (λn.

to-Gromov-completion (u n)) −−−−→ xi}
apply (rule Sup-upper) using ∗ by auto

finally show ?thesis by simp
qed
show ?thesis

unfolding Busemann-function-at-def apply (rule ereal-real ′) using A B by
auto
qed

If ξ is not at infinity, then the Busemann function is simply the difference
of the distances.
lemma Busemann-function-inner :

Busemann-function-at (to-Gromov-completion z) x y = dist x z − dist y z
proof −

have L: limsup (λn. ereal(dist x (u n) − dist y (u n))) = dist x z − dist y z if u
−−−−→ z for u

by (rule lim-imp-Limsup, simp, intro tendsto-intros that)
have Sup {limsup (λn. ereal(dist x (u n) − dist y (u n))) |u. u −−−−→ z}

= dist x z − dist y z
proof −

obtain u where u: u −−−−→ z
by auto
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show ?thesis
apply (rule order .antisym)
apply (subst Sup-le-iff ) using L apply auto[1 ]
apply (subst L[OF u, symmetric]) apply (rule Sup-upper) using u by auto

qed
then have ereal (Busemann-function-at (to-Gromov-completion z) x y) = dist x

z − dist y z
unfolding Busemann-function-ereal by auto

then show ?thesis by auto
qed

The Busemann function measured at the same points vanishes.
lemma Busemann-function-xx [simp]:

Busemann-function-at xi x x = 0
proof −
have ∗: {limsup (λn. ereal(dist x (u n) − dist x (u n))) |u. (λn. to-Gromov-completion

(u n)) −−−−→ xi} = {0}
by (auto simp add: zero-ereal-def [symmetric] intro!: lim-imp-Limsup rep-Gromov-completion-limit[of

xi])
have ereal (Busemann-function-at xi x x) = ereal 0

unfolding Busemann-function-ereal ∗ by auto
then show ?thesis

by auto
qed

Perturbing the points gives rise to a variation of the Busemann function
bounded by the size of the variations. This is obvious for inner Busemann
functions, and everything passes readily to the limit.
lemma Busemann-function-mono [mono-intros]:

Busemann-function-at xi x y ≤ Busemann-function-at xi x ′ y ′ + dist x x ′ + dist
y y ′

proof −
have A: limsup (λn. ereal (dist x (u n) − dist y (u n)))

≤ ereal(Busemann-function-at xi x ′ y ′) + ereal (dist x x ′ + dist y y ′)
if (λn. to-Gromov-completion (u n)) −−−−→ xi for u

proof −
have ∗: dist x z + dist y ′ z ≤ dist x x ′ + (dist y y ′ + (dist x ′ z + dist y z))

for z
using add-mono[OF dist-triangle[of x z x ′] dist-triangle[of y ′ z y]] dist-commute[of

y y ′] by auto
have limsup (λn. ereal (dist x (u n) − dist y (u n))) + (− ereal (dist x x ′ +

dist y y ′))
= limsup (λn. ereal (dist x (u n) − dist y (u n)) + (− ereal (dist x x ′ + dist

y y ′)))
by (rule Limsup-add-ereal-right[symmetric], auto)

also have ... ≤ limsup (λn. ereal (dist x ′ (u n) − dist y ′ (u n)))
by (auto intro!: Limsup-mono always-eventually simp: algebra-simps ∗)

also have ... ≤ Sup {limsup (λn. ereal (dist x ′ (u n) − dist y ′ (u n))) |u. (λn.
to-Gromov-completion (u n)) −−−−→ xi}
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apply (rule Sup-upper) using that by auto
finally have limsup (λn. ereal (dist x (u n) − dist y (u n))) + (− ereal (dist

x x ′ + dist y y ′))
≤ ereal(Busemann-function-at xi x ′ y ′)

unfolding Busemann-function-ereal by auto
then show ?thesis

unfolding minus-ereal-def [symmetric] by (subst ereal-minus-le[symmetric],
auto)

qed
have ereal (Busemann-function-at xi x y) ≤ ereal(Busemann-function-at xi x ′

y ′) + dist x x ′ + dist y y ′

unfolding Busemann-function-ereal[of xi x y] using A by (auto intro!: Sup-least
simp: algebra-simps)

then show ?thesis by simp
qed

In particular, it follows that the Busemann function Bξ(x, y) is bounded in
absolute value by d(x, y).
lemma Busemann-function-le-dist [mono-intros]:

abs(Busemann-function-at xi x y) ≤ dist x y
using Busemann-function-mono[of xi x y y y] Busemann-function-mono[of xi x x
x y] by auto

lemma Busemann-function-Lipschitz [mono-intros]:
abs(Busemann-function-at xi x y − Busemann-function-at xi x ′ y ′) ≤ dist x x ′ +

dist y y ′

using Busemann-function-mono[of xi x y x ′ y ′] Busemann-function-mono[of xi x ′

y ′ x y] by (simp add: dist-commute)

By the very definition of the Busemann function, the difference of distance
functions is bounded above by the Busemann function when one converges
to ξ.
lemma Busemann-function-limsup:

assumes (λn. to-Gromov-completion (u n)) −−−−→ xi
shows limsup (λn. dist x (u n) − dist y (u n)) ≤ Busemann-function-at xi x y

unfolding Busemann-function-ereal apply (rule Sup-upper) using assms by auto

There is also a corresponding bound below, but with the loss of a constant.
This follows from the hyperbolicity of the space and a simple computation.
lemma Busemann-function-liminf :

assumes (λn. to-Gromov-completion (u n)) −−−−→ xi
shows Busemann-function-at xi x y ≤ liminf (λn. dist (x:: ′a::Gromov-hyperbolic-space)

(u n) − dist y (u n)) + 2 ∗ deltaG(TYPE( ′a))
proof (cases xi)

case (to-Gromov-completion z)
have ∗: liminf (λn. dist x (u n) − dist y (u n)) = dist x z − dist y z

apply (rule lim-imp-Liminf , simp, intro tendsto-intros)
using assms unfolding to-Gromov-completion by auto
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show ?thesis
unfolding to-Gromov-completion plus-ereal.simps(1 )[symmetric] Busemann-function-inner

∗ by auto
next

case boundary
have I : limsup (λn. ereal(dist x (v n) − dist y (v n))) ≤ liminf (λn. ereal(dist

x (u n) − dist y (u n))) + 2 ∗ deltaG(TYPE( ′a))
if v: (λn. to-Gromov-completion (v n)) −−−−→ xi for v

proof −
obtain N where N :

∧
m n. m ≥ N =⇒ n ≥ N =⇒ Gromov-product-at x (u

m) (v n) ≥ dist x y
using same-limit-imp-Gromov-product-tendsto-infinity[OF boundary assms v]

by blast
have A: dist x (v n) − dist y (v n) − 2 ∗ deltaG(TYPE( ′a)) ≤ dist x (u m)

− dist y (u m) if m ≥ N n ≥ N for m n
proof −

have Gromov-product-at x (v n) y ≤ dist x y
by (intro mono-intros)

then have min (Gromov-product-at x (u m) (v n)) (Gromov-product-at x (v
n) y) = Gromov-product-at x (v n) y

using N [OF ‹m ≥ N › ‹n ≥ N ›] by linarith
moreover have Gromov-product-at x (u m) y ≥ min (Gromov-product-at x

(u m) (v n)) (Gromov-product-at x (v n) y) − deltaG(TYPE( ′a))
by (intro mono-intros)

ultimately have Gromov-product-at x (u m) y ≥ Gromov-product-at x (v n)
y − deltaG(TYPE( ′a))

by auto
then show ?thesis

unfolding Gromov-product-at-def by (auto simp add: algebra-simps di-
vide-simps dist-commute)

qed
have B: dist x (v n) − dist y (v n) − 2 ∗ deltaG(TYPE( ′a)) ≤ liminf (λm.

dist x (u m) − dist y (u m)) if n ≥ N for n
apply (rule Liminf-bounded) using A[OF - that] unfolding eventually-sequentially

by auto
have C : dist x (v n) − dist y (v n) ≤ liminf (λm. dist x (u m) − dist y (u m))

+ 2 ∗ deltaG(TYPE( ′a)) if n ≥ N for n
using B[OF that] by (subst ereal-minus-le[symmetric], auto)

show ?thesis
apply (rule Limsup-bounded) unfolding eventually-sequentially apply (rule

exI [of - N ]) using C by auto
qed
show ?thesis

unfolding Busemann-function-ereal apply (rule Sup-least) using I by auto
qed

To avoid formulating things in terms of liminf and limsup on ereal, the
following formulation of the two previous lemmas is useful.
lemma Busemann-function-inside-approx:
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assumes e > (0 ::real) (λn. to-Gromov-completion (t n:: ′a::Gromov-hyperbolic-space))
−−−−→ xi

shows eventually (λn. Busemann-function-at (to-Gromov-completion (t n)) x y
≤ Busemann-function-at xi x y + e

∧ Busemann-function-at (to-Gromov-completion (t n)) x y ≥ Buse-
mann-function-at xi x y − 2 ∗ deltaG(TYPE( ′a)) − e) sequentially
proof −

have A: eventually (λn. Busemann-function-at (to-Gromov-completion (t n)) x
y < Busemann-function-at xi x y + ereal e) sequentially

apply (rule Limsup-lessD)
unfolding Busemann-function-inner using le-less-trans[OF Busemann-function-limsup[OF

assms(2 )]] ‹e > 0 › by auto
have B: eventually (λn. Busemann-function-at (to-Gromov-completion (t n)) x

y > Busemann-function-at xi x y −2 ∗ deltaG(TYPE( ′a)) − ereal e) sequentially
apply (rule less-LiminfD)

unfolding Busemann-function-inner using less-le-trans[OF - Busemann-function-liminf [OF
assms(2 )], of ereal(Busemann-function-at xi x y) − ereal e x y] ‹e > 0 › apply auto

apply (unfold ereal-minus(1 )[symmetric], subst ereal-minus-less-iff , simp)+
unfolding ereal-minus(1 )[symmetric] by (simp only: ereal-minus-less-iff , auto

simp add: algebra-simps)
show ?thesis

by (rule eventually-mono[OF eventually-conj[OF A B]], auto)
qed

The Busemann function is essentially a morphism, i.e., it should satisfy
Bξ(x, z) = Bξ(x, y) + Bξ(y, z), as it is defined as a difference of distances.
This is not exactly the case as there is a choice in the definition, but it is
the case up to a uniform constant, as we show in the next few lemmas. One
says that it is a quasi-morphism.
lemma Busemann-function-triangle [mono-intros]:
Busemann-function-at xi x z ≤ Busemann-function-at xi x y + Busemann-function-at

xi y z
proof −

have limsup (λn. dist x (u n) − dist z (u n)) ≤ Busemann-function-at xi x y +
Busemann-function-at xi y z

if (λn. to-Gromov-completion (u n)) −−−−→ xi for u
proof −

have limsup (λn. dist x (u n) − dist z (u n)) = limsup (λn. ereal (dist x (u n)
− dist y (u n)) + (dist y (u n) − dist z (u n)))

by auto
also have ... ≤ limsup (λn. dist x (u n) − dist y (u n)) + limsup (λn. dist y

(u n) − dist z (u n))
by (rule ereal-limsup-add-mono)

also have ... ≤ ereal(Busemann-function-at xi x y) + Busemann-function-at xi
y z

unfolding Busemann-function-ereal using that by (auto intro!: add-mono
Sup-upper)

finally show ?thesis by auto
qed
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then have ereal (Busemann-function-at xi x z) ≤ Busemann-function-at xi x y
+ Busemann-function-at xi y z

unfolding Busemann-function-ereal[of xi x z] by (auto intro!: Sup-least)
then show ?thesis

by auto
qed

lemma Busemann-function-xy-yx [mono-intros]:
Busemann-function-at xi x y + Busemann-function-at xi y (x:: ′a::Gromov-hyperbolic-space)
≤ 2 ∗ deltaG(TYPE( ′a))
proof −

have ∗: − liminf (λn. ereal (dist y (u n) − dist x (u n))) ≤ ereal (2 ∗ deltaG
TYPE( ′a) − Busemann-function-at xi y x)

if (λn. to-Gromov-completion (u n)) −−−−→ xi for u
using Busemann-function-liminf [of - xi y x, OF that] ereal-minus-le-minus-plus

unfolding ereal-minus(1 )[symmetric]
by fastforce

have ereal (Busemann-function-at xi x y) = Sup {limsup (λn. ereal(dist x (u n)
− dist y (u n))) |u. (λn. to-Gromov-completion (u n)) −−−−→ xi}

unfolding Busemann-function-ereal by auto
also have ... = Sup {limsup (λn. − ereal(dist y (u n) − dist x (u n))) |u. (λn.

to-Gromov-completion (u n)) −−−−→ xi}
by auto

also have ... = Sup {− liminf (λn. ereal(dist y (u n) − dist x (u n))) |u. (λn.
to-Gromov-completion (u n)) −−−−→ xi}

unfolding ereal-Limsup-uminus by auto
also have ... ≤ 2 ∗ deltaG(TYPE( ′a)) − ereal(Busemann-function-at xi y x)

by (auto intro!: Sup-least ∗)
finally show ?thesis

by simp
qed

theorem Busemann-function-quasi-morphism [mono-intros]:
|Busemann-function-at xi x y + Busemann-function-at xi y z − Busemann-function-at

xi x (z:: ′a::Gromov-hyperbolic-space)| ≤ 2 ∗ deltaG(TYPE( ′a))
using Busemann-function-triangle[of xi x z y] Busemann-function-triangle[of xi x
y z ] Busemann-function-xy-yx[of xi y z] by auto

The extended Gromov product can be bounded from below by the Busemann
function.
lemma Busemann-function-le-Gromov-product:
− Busemann-function-at xi y x/2 ≤ extended-Gromov-product-at x xi (to-Gromov-completion

y)
proof −
have A: −ereal(Busemann-function-at xi y x/2 ) ≤ liminf (λn. Gromov-product-at

x (u n) y)
if (λn. to-Gromov-completion (u n)) −−−−→ xi for u

proof −
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have ∗: limsup (λn. − ereal (Gromov-product-at x (u n) y) ∗ 2 ) ≤ limsup (λn.
ereal (dist y (u n) − dist x (u n)))

by (auto intro!: Limsup-mono always-eventually simp: algebra-simps Gro-
mov-product-at-def divide-simps dist-commute)

also have ... ≤ ereal(Busemann-function-at xi y x)
unfolding Busemann-function-ereal using that by (auto intro!: Sup-upper)

finally have −ereal(Busemann-function-at xi y x) ≤ liminf (λn. Gromov-product-at
x (u n) y) ∗ ereal 2

apply (subst ereal-uminus-le-reorder , subst ereal-mult-minus-left[symmetric],
subst ereal-Limsup-uminus[symmetric])

by (subst limsup-ereal-mult-right[symmetric], auto)
moreover have −ereal(z/2 ) ≤ t if −ereal z ≤ t ∗ ereal 2 for z t
proof −

have ∗: −ereal(z/2 ) = −ereal z / ereal 2
unfolding ereal-divide by auto

have 0 < ereal 2
by auto

then show ?thesis unfolding ∗ using that
by (metis (no-types) PInfty-neq-ereal(2 ) ereal-divide-le-posI ereal-uminus-eq-iff

mult.commute that)
qed
ultimately show ?thesis by auto

qed
show ?thesis
unfolding extended-Gromov-product-at-def proof (rule Inf-greatest, auto)

fix u v assume uv: xi = abs-Gromov-completion u abs-Gromov-completion v =
to-Gromov-completion y Gromov-completion-rel u u Gromov-completion-rel v v

then have L: (λn. to-Gromov-completion (u n)) −−−−→ xi
using abs-Gromov-completion-limit by auto

have ∗: v n = y for n
using uv by (metis (mono-tags, opaque-lifting) Gromov-completion-rel-def

Quotient3-Gromov-completion Quotient3-rep-abs abs-Gromov-completion-in-Gromov-boundary
not-in-Gromov-boundary ′ rep-Gromov-completion-to-Gromov-completion)

show ereal (− (Busemann-function-at (abs-Gromov-completion u) y x / 2 )) ≤
liminf (λn. ereal (Gromov-product-at x (u n) (v n)))

unfolding uv(1 )[symmetric] ∗ using A[OF L] by simp
qed

qed

It follows that, if the Busemann function tends to minus infinity, i.e., the
distance to ξ becomes smaller and smaller in a suitable sense, then the
sequence is converging to ξ. This is only an implication: one can have
sequences tending to ξ for which the Busemann function does not tend to
−∞. This is in fact a stronger notion of convergence, sometimes called radial
convergence.
proposition Busemann-function-minus-infinity-imp-convergent:

assumes ((λn. Busemann-function-at xi (u n) x) −−−→ −∞) F
shows ((λn. to-Gromov-completion (u n)) −−−→ xi) F

proof (cases trivial-limit F)
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case True
then show ?thesis by auto

next
case False
have xi ∈ Gromov-boundary
proof (cases xi)

case (to-Gromov-completion z)
then have ereal(Busemann-function-at xi (u n) x) ≥ − dist x z for n

unfolding to-Gromov-completion Busemann-function-inner by auto
then have −∞ ≥ −dist x z

using tendsto-lowerbound[OF assms always-eventually False] by metis
then have False

by auto
then show ?thesis by auto

qed
have ((λn. − ereal (Busemann-function-at xi (u n) x) / 2 ) −−−→ (− (−∞)/2 ))

F
apply (intro tendsto-intros) using assms by auto

then have ∗: ((λn. − ereal (Busemann-function-at xi (u n) x) / 2 ) −−−→ ∞) F
by auto

have ∗∗: ((λn. extended-Gromov-product-at x xi (to-Gromov-completion (u n)))
−−−→ ∞) F

apply (rule tendsto-sandwich[of λn. − ereal (Busemann-function-at xi (u n)
x) / 2 - - λn. ∞, OF always-eventually always-eventually])

using Busemann-function-le-Gromov-product[of xi - x] ∗ by auto
show ?thesis

using extended-Gromov-product-tendsto-PInf-a-b[OF ∗∗, of basepoint]
by (auto simp add: Gromov-completion-boundary-limit[OF ‹xi ∈ Gromov-boundary›]

extended-Gromov-product-at-commute)
qed

Busemann functions are invariant under isometries. This is trivial as ev-
erything is defined in terms of the distance, but the definition in terms of
supremum and limsups makes the proof tedious.
lemma Busemann-function-isometry:

assumes isometry f
shows Busemann-function-at (Gromov-extension f xi) (f x) (f y) = Busemann-function-at

xi x y
proof −
have {limsup (λn. ereal(dist x (u n) − dist y (u n))) |u. (λn. to-Gromov-completion

(u n)) −−−−→ xi}
= {limsup (λn. ereal(dist (f x) (v n) − dist (f y) (v n))) |v. (λn. to-Gromov-completion

(v n)) −−−−→ Gromov-extension f xi}
proof (auto)

fix u assume u: (λn. to-Gromov-completion (u n)) −−−−→ xi
define v where v = f o u
have (λn. to-Gromov-completion (v n)) −−−−→ Gromov-extension f xi
unfolding v-def comp-def Gromov-extension-inside-space[symmetric] using u

Gromov-extension-isometry(2 )[OF ‹isometry f ›]
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by (metis continuous-on filterlim-compose iso-tuple-UNIV-I tendsto-at-iff-tendsto-nhds)
moreover have limsup (λn. ereal (dist x (u n) − dist y (u n))) = limsup (λn.

ereal (dist (f x) (v n) − dist (f y) (v n)))
unfolding v-def comp-def isometryD(2 )[OF ‹isometry f ›] by simp

ultimately show ∃ v. limsup (λn. ereal (dist x (u n) − dist y (u n))) = limsup
(λn. ereal (dist (f x) (v n) − dist (f y) (v n))) ∧

(λn. to-Gromov-completion (v n)) −−−−→ Gromov-extension f xi
by blast

next
fix v assume v: (λn. to-Gromov-completion (v n)) −−−−→ Gromov-extension f

xi
define u where u = (inv f ) o v
have isometry (inv f )

using isometry-inverse(1 )[OF ‹isometry f ›] by simp
have ∗: inv f (f z) = z for z

using isometry-inverse(2 )[OF ‹isometry f ›] by (simp add: bij-betw-def )
have ∗∗: (Gromov-extension (inv f ) (Gromov-extension f xi)) = xi
using Gromov-extension-isometry-composition[OF ‹isometry f › ‹isometry (inv

f )›]
unfolding comp-def using isometry-inverse(2 )[OF ‹isometry f ›] by (auto

simp: ∗, metis)
have (λn. to-Gromov-completion (u n)) −−−−→ Gromov-extension (inv f )

(Gromov-extension f xi)
unfolding u-def comp-def Gromov-extension-inside-space[symmetric] using v

Gromov-extension-isometry(2 )[OF ‹isometry (inv f )›]
by (metis continuous-on filterlim-compose iso-tuple-UNIV-I tendsto-at-iff-tendsto-nhds)
then have (λn. to-Gromov-completion (u n)) −−−−→ xi

using ∗∗ by auto
moreover have limsup (λn. ereal (dist ((inv f ) (f x)) (u n) − dist ((inv f ) (f

y)) (u n))) = limsup (λn. ereal (dist (f x) (v n) − dist (f y) (v n)))
unfolding u-def comp-def isometryD(2 )[OF ‹isometry (inv f )›] by simp

ultimately show ∃ u. limsup (λn. ereal (dist (f x) (v n) − dist (f y) (v n))) =
limsup (λn. ereal (dist x (u n) − dist y (u n))) ∧ (λn. to-Gromov-completion (u
n)) −−−−→ xi

by (simp add: ∗, force)
qed
then have ereal (Busemann-function-at xi x y) = ereal (Busemann-function-at

(Gromov-extension f xi) (f x) (f y))
unfolding Busemann-function-ereal by auto

then show ?thesis by auto
qed

lemma dist-le-max-Busemann-functions [mono-intros]:
assumes xi 6= eta
shows dist x (y:: ′a::Gromov-hyperbolic-space) ≤ 2 ∗ real-of-ereal (extended-Gromov-product-at

y xi eta)
+ max (Busemann-function-at xi x y) (Busemann-function-at eta x y) +

2 ∗ deltaG(TYPE( ′a))
proof −
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have A: ereal(dist x y − 2 ∗ deltaG(TYPE( ′a)) − max (Busemann-function-at
xi x y) (Busemann-function-at eta x y)) / ereal 2 ≤

liminf (λn. ereal(Gromov-product-at y (u n) (v n)))
if uv: abs-Gromov-completion u = xi abs-Gromov-completion v = eta Gro-

mov-completion-rel u u Gromov-completion-rel v v for u v
proof −
have C : (λn. to-Gromov-completion (u n)) −−−−→ xi (λn. to-Gromov-completion

(v n)) −−−−→ eta
using uv abs-Gromov-completion-limit by auto
have ereal(dist x y) ≤ ereal(2 ∗ Gromov-product-at y (u n) (v n)) + 2 ∗

deltaG(TYPE( ′a)) + max (ereal(dist x (u n) − dist y (u n))) (ereal(dist x (v n)
− dist y (v n))) for n

proof −
have min (Gromov-product-at y (u n) x) (Gromov-product-at y x (v n)) ≤

Gromov-product-at y (u n) (v n) + deltaG(TYPE( ′a))
by (intro mono-intros)

then consider Gromov-product-at y (u n) x ≤ Gromov-product-at y (u n) (v
n) + deltaG(TYPE( ′a))|Gromov-product-at y x (v n) ≤ Gromov-product-at y (u
n) (v n) + deltaG(TYPE( ′a))

by linarith
then have dist x y ≤ 2 ∗ Gromov-product-at y (u n) (v n) + 2 ∗ deltaG(TYPE( ′a))

+ max (dist x (u n) − dist y (u n)) (dist x (v n) − dist y (v n))
unfolding Gromov-product-at-def [of - x] Gromov-product-at-def [of - - x]

apply (cases)
by (auto simp add: algebra-simps divide-simps dist-commute)

then show ?thesis
unfolding ereal-max[symmetric] plus-ereal.simps(1 ) by auto

qed
then have ereal (dist x y) ≤ liminf (λn. ereal(2 ∗ Gromov-product-at y (u

n) (v n)) + 2 ∗ deltaG(TYPE( ′a)) + max (ereal(dist x (u n) − dist y (u n)))
(ereal(dist x (v n) − dist y (v n))))

by (intro Liminf-bounded always-eventually, auto)
also have ... ≤ liminf (λn. ereal(2 ∗ Gromov-product-at y (u n) (v n)) +

2 ∗ deltaG(TYPE( ′a))) + limsup (λn. max (ereal(dist x (u n) − dist y (u n)))
(ereal(dist x (v n) − dist y (v n))))

by (rule ereal-liminf-limsup-add)
also have ... = liminf (λn. ereal(2 ∗ Gromov-product-at y (u n) (v n))) + 2 ∗

deltaG(TYPE( ′a)) + max (limsup (λn. ereal(dist x (u n) − dist y (u n)))) (limsup
(λn. ereal(dist x (v n) − dist y (v n))))

apply (subst Liminf-add-ereal-right) by (auto simp add: Limsup-max-eq-max-Limsup)
also have ... ≤ liminf (λn. ereal(2 ∗ Gromov-product-at y (u n) (v n))) + 2 ∗

deltaG(TYPE( ′a)) + max (ereal(Busemann-function-at xi x y)) (Busemann-function-at
eta x y)

unfolding Busemann-function-ereal apply (intro mono-intros Sup-upper)
using C by auto

finally have ereal(dist x y) − ereal(2 ∗ deltaG(TYPE( ′a)) + max (Busemann-function-at
xi x y) (Busemann-function-at eta x y)) ≤

liminf (λn. ereal(2 ∗ Gromov-product-at y (u n) (v n)))
unfolding ereal-max[symmetric] add.assoc plus-ereal.simps(1 ) by (subst
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ereal-minus-le, auto)
then have ereal(dist x y − 2 ∗ deltaG(TYPE( ′a)) − max (Busemann-function-at

xi x y) (Busemann-function-at eta x y)) ≤
liminf (λn. ereal(2 ∗ Gromov-product-at y (u n) (v n)))

unfolding ereal-minus(1 ) by (auto simp add: algebra-simps)
also have ... = ereal 2 ∗ liminf (λn. ereal(Gromov-product-at y (u n) (v n)))

unfolding times-ereal.simps(1 )[symmetric] by (subst Liminf-ereal-mult-left,
auto)

finally show ?thesis
by (subst ereal-divide-le-pos, auto)

qed
have ereal(dist x y − 2 ∗ deltaG(TYPE( ′a)) − max (Busemann-function-at xi

x y) (Busemann-function-at eta x y)) / ereal 2 ≤
extended-Gromov-product-at y xi eta

unfolding extended-Gromov-product-at-def apply (rule Inf-greatest) using A
by auto

also have ... = ereal(real-of-ereal(extended-Gromov-product-at y xi eta))
using assms by simp

finally show ?thesis
by simp

qed

lemma dist-minus-Busemann-max-ineq:
dist (x:: ′a::Gromov-hyperbolic-space) z − Busemann-function-at xi z x ≤ max

(dist x y − Busemann-function-at xi y x) (dist y z − Busemann-function-at xi z y
− 2 ∗ Busemann-function-at xi y x) + 8 ∗ deltaG(TYPE( ′a))
proof −

have I : dist x z − Busemann-function-at (to-Gromov-completion t) z x ≤ max
(dist x y − Busemann-function-at (to-Gromov-completion t) y x)

(dist y z − Busemann-function-at (to-Gromov-completion t) z y
− 2 ∗ Busemann-function-at (to-Gromov-completion t) y x)

+ 2 ∗ deltaG(TYPE( ′a)) for t
proof −
have 2 ∗ dist x t + − max (dist x y − Busemann-function-at (to-Gromov-completion

t) y x) (dist y z − Busemann-function-at (to-Gromov-completion t) z y − 2 ∗ Buse-
mann-function-at (to-Gromov-completion t) y x)

= min (2 ∗ dist x t − (dist x y − Busemann-function-at (to-Gromov-completion
t) y x)) (2 ∗ dist x t − (dist y z − Busemann-function-at (to-Gromov-completion
t) z y − 2 ∗ Busemann-function-at (to-Gromov-completion t) y x))

unfolding minus-max-eq-min min-add-distrib-right by auto
also have ... = min (2 ∗ Gromov-product-at t x y) (2 ∗ Gromov-product-at t y

z)
apply (rule cong[of min - min -], rule cong [of min min])
unfolding Gromov-product-at-def Busemann-function-inner by (auto simp

add: algebra-simps dist-commute divide-simps)
also have ... = 2 ∗ (min (Gromov-product-at t x y) (Gromov-product-at t y z))

by auto
also have ... ≤ 2 ∗ (Gromov-product-at t x z + deltaG(TYPE( ′a)))

by (intro mono-intros, auto)
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also have ... = 2 ∗ dist x t − (dist x z − Busemann-function-at (to-Gromov-completion
t) z x) + 2 ∗ deltaG(TYPE( ′a))

unfolding Gromov-product-at-def Busemann-function-inner by (auto simp
add: algebra-simps dist-commute divide-simps)

finally show ?thesis
by auto

qed
have dist x z − Busemann-function-at xi z x ≤ max (dist x y − Busemann-function-at

xi y x) (dist y z − Busemann-function-at xi z y − 2 ∗ Busemann-function-at xi y
x) + 8 ∗ deltaG(TYPE( ′a)) + d

if d > 0 for d
proof −

define e where e = d/4
have e > 0 unfolding e-def using that by auto
obtain t where t: (λn. to-Gromov-completion (t n)) −−−−→ xi

using rep-Gromov-completion-limit by auto
have A: eventually (λn. Busemann-function-at xi y x ≤ Busemann-function-at

(to-Gromov-completion (t n)) y x + 2 ∗ deltaG(TYPE( ′a)) + e) sequentially
by (rule eventually-mono[OF Busemann-function-inside-approx[OF ‹e > 0 ›

t, of y x]], auto)
have B: eventually (λn. Busemann-function-at xi z y ≤ Busemann-function-at

(to-Gromov-completion (t n)) z y + 2 ∗ deltaG(TYPE( ′a)) + e) sequentially
by (rule eventually-mono[OF Busemann-function-inside-approx[OF ‹e > 0 ›

t, of z y]], auto)
have C : eventually (λn. Busemann-function-at xi z x ≥ Busemann-function-at

(to-Gromov-completion (t n)) z x − e) sequentially
by (rule eventually-mono[OF Busemann-function-inside-approx[OF ‹e > 0 ›

t, of z x]], auto)
obtain n where H : Busemann-function-at xi y x ≤ Busemann-function-at

(to-Gromov-completion (t n)) y x + 2 ∗ deltaG(TYPE( ′a)) + e
Busemann-function-at xi z y ≤ Busemann-function-at

(to-Gromov-completion (t n)) z y + 2 ∗ deltaG(TYPE( ′a)) + e
Busemann-function-at xi z x ≥ Busemann-function-at

(to-Gromov-completion (t n)) z x − e
using eventually-conj[OF A eventually-conj[OF B C ]] eventually-sequentially

by auto
have dist x z − Busemann-function-at xi z x − e ≤ dist x z − Busemann-function-at

(to-Gromov-completion (t n)) z x
using H by auto

also have ... ≤ max (dist x y − Busemann-function-at (to-Gromov-completion
(t n)) y x)

(dist y z − Busemann-function-at (to-Gromov-completion (t n))
z y − 2 ∗ Busemann-function-at (to-Gromov-completion (t n)) y x)

+ 2 ∗ deltaG(TYPE( ′a))
using I by auto

also have ... ≤ max (dist x y − (Busemann-function-at xi y x − 2 ∗ deltaG(TYPE( ′a))
− e))

(dist y z − (Busemann-function-at xi z y − 2 ∗ deltaG(TYPE( ′a))
− e) − 2 ∗ (Busemann-function-at xi y x − 2 ∗ deltaG(TYPE( ′a)) − e))
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+ 2 ∗ deltaG(TYPE( ′a))
apply (intro mono-intros) using H by auto

also have ... ≤ max (dist x y − Busemann-function-at xi y x + 6 ∗ deltaG(TYPE( ′a))
+ 3 ∗ e)

(dist y z − Busemann-function-at xi z y − 2 ∗ Busemann-function-at
xi y x + 6 ∗ deltaG(TYPE( ′a)) + 3 ∗ e)

+ 2 ∗ deltaG(TYPE( ′a))
apply (intro add-mono max.mono) using ‹e > 0 › by auto

also have ... = max (dist x y − Busemann-function-at xi y x) (dist y z − Buse-
mann-function-at xi z y − 2 ∗ Busemann-function-at xi y x) + 8 ∗ deltaG(TYPE( ′a))
+ 3 ∗ e

by auto
finally show ?thesis unfolding e-def by auto

qed
then show ?thesis by (rule field-le-epsilon)

qed

end

19 Classification of isometries on a Gromov hy-
perbolic space

theory Isometries-Classification
imports Gromov-Boundary Busemann-Function

begin

Isometries of Gromov hyperbolic spaces are of three types:

• Elliptic ones, for which orbits are bounded.

• Parabolic ones, which are not elliptic and have exactly one fixed point
at infinity.

• Loxodromic ones, which are not elliptic and have exactly two fixed
points at infinity.

In this file, we show that all isometries are indeed of this form, and give
further properties for each type.
For the definition, we use another characterization in terms of stable trans-
lation length: for isometries which are not elliptic, then they are parabolic
if the stable translation length is 0, loxodromic if it is positive. This gives
a very efficient definition, and it is clear from this definition that the three
categories of isometries are disjoint. All the work is then to go from this
general definition to the dynamical properties in terms of fixed points on
the boundary.
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19.1 The translation length

The translation length is the minimal translation distance of an isometry.
The stable translation length is the limit of the translation length of fn

divided by n.
definition translation-length::(( ′a::metric-space) ⇒ ′a) ⇒ real

where translation-length f = Inf {dist x (f x)|x. True}

lemma translation-length-nonneg [simp, mono-intros]:
translation-length f ≥ 0

unfolding translation-length-def by (rule cInf-greatest, auto)

lemma translation-length-le [mono-intros]:
translation-length f ≤ dist x (f x)

unfolding translation-length-def apply (rule cInf-lower) by (auto intro: bdd-belowI [of
- 0 ])

definition stable-translation-length::(( ′a::metric-space) ⇒ ′a) ⇒ real
where stable-translation-length f = Inf {translation-length (f^^n)/n |n. n > 0}

lemma stable-translation-length-nonneg [simp]:
stable-translation-length f ≥ 0

unfolding stable-translation-length-def by (rule cInf-greatest, auto)

lemma stable-translation-length-le-translation-length [mono-intros]:
n ∗ stable-translation-length f ≤ translation-length (f^^n)

proof −
have ∗: stable-translation-length f ≤ translation-length (f^^n)/n if n > 0 for n

unfolding stable-translation-length-def apply (rule cInf-lower) using that by
(auto intro: bdd-belowI [of - 0 ])

show ?thesis
apply (cases n = 0 ) using ∗ by (auto simp add: divide-simps algebra-simps)

qed

lemma semicontraction-iterates:
fixes f ::( ′a::metric-space) ⇒ ′a
assumes 1−lipschitz-on UNIV f
shows 1−lipschitz-on UNIV (f^^n)

by (induction n, auto intro!: lipschitz-onI lipschitz-on-compose2 [of 1 UNIV - 1 f ,
simplified] lipschitz-on-subset[OF assms])

If f is a semicontraction, then its stable translation length is the limit of
d(x, fnx)/n for any n. While it is obvious that the liminf of this quantity
is at least the stable translation length (which is defined as an inf over all
points and all times), the opposite inequality is more interesting. One may
find a point y and a time k for which d(y, fky)/k is very close to the stable
translation length. By subadditivity of the sequence n 7→ f(y, fny) and
Fekete’s Lemma, it follows that, for any large n, then d(y, fny)/n is also

392



very close to the stable translation length. Since this is equal to d(x, fnx)/n
up to ±2d(x, y)/n, the result follows.
proposition stable-translation-length-as-pointwise-limit:

assumes 1−lipschitz-on UNIV f
shows (λn. dist x ((f^^n) x)/n) −−−−→ stable-translation-length f

proof −
have ∗: subadditive (λn. dist y ((f^^n) y)) for y
proof (rule subadditiveI )

fix m n::nat
have dist y ((f ^^ (m + n)) y) ≤ dist y ((f^^m) y) + dist ((f^^m) y)

((f^^(m+n)) y)
by (rule dist-triangle)

also have ... = dist y ((f^^m) y) + dist ((f^^m) y) ((f^^m) ((f^^n) y))
by (auto simp add: funpow-add)

also have ... ≤ dist y ((f^^m) y) + dist y ((f^^n) y)
using semicontraction-iterates[OF assms, of m] unfolding lipschitz-on-def

by auto
finally show dist y ((f ^^ (m + n)) y) ≤ dist y ((f ^^ m) y) + dist y ((f ^^

n) y)
by simp

qed
have Ly: (λn. dist y ((f^^n) y) / n) −−−−→ Inf {dist y ((f^^n) y) / n |n. n >

0} for y
by (auto intro!: bdd-belowI [of - 0 ] subadditive-converges-bounded ′[OF subaddi-

tive-imp-eventually-subadditive[OF ∗]])
have eventually (λn. dist x ((f^^n) x)/n < l) sequentially if stable-translation-length

f < l for l
proof −

obtain m where m: stable-translation-length f < m m < l
using ‹stable-translation-length f < l› dense by auto

have ∃ t ∈ {translation-length (f^^n)/n |n. n > 0}. t < m
apply (subst cInf-less-iff [symmetric])

using m unfolding stable-translation-length-def by (auto intro!: bdd-belowI [of
- 0 ])

then obtain k where k: k > 0 translation-length (f^^k)/k < m
by auto

have translation-length (f^^k) < k ∗ m
using k by (simp add: divide-simps algebra-simps)

then have ∃ t ∈ {dist y ((f^^k) y) |y. True}. t < k ∗ m
apply (subst cInf-less-iff [symmetric])
unfolding translation-length-def by (auto intro!: bdd-belowI [of - 0 ])

then obtain y where y: dist y ((f^^k) y) < k ∗ m
by auto

have A: eventually (λn. dist y ((f^^n) y)/n < m) sequentially
apply (auto intro!: order-tendstoD[OF Ly] iffD2 [OF cInf-less-iff ] bdd-belowI [of

- 0 ] exI [of - dist y ((f^^k) y)/k])
using y k by (auto simp add: algebra-simps divide-simps)

have B: eventually (λn. dist x y ∗ (1/n) < (l−m)/2 ) sequentially
apply (intro order-tendstoD[of - dist x y ∗ 0 ] tendsto-intros)
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using ‹m < l› by simp
have C : dist x ((f^^n) x)/n < l if n > 0 dist y ((f^^n) y)/n < m dist x y ∗

(1/n) < (l−m)/2 for n
proof −
have dist x ((f^^n) x) ≤ dist x y + dist y ((f^^n) y) + dist ((f^^n) y) ((f^^n)

x)
by (intro mono-intros)

also have ... ≤ dist x y + dist y ((f^^n) y) + dist y x
using semicontraction-iterates[OF assms, of n] unfolding lipschitz-on-def

by auto
also have ... = 2 ∗ dist x y + dist y ((f^^n) y)

by (simp add: dist-commute)
also have ... < 2 ∗ real n ∗ (l−m)/2 + n ∗ m

apply (intro mono-intros) using that by (auto simp add: algebra-simps
divide-simps)

also have ... = n ∗ l
by (simp add: algebra-simps divide-simps)

finally show ?thesis
using that by (simp add: algebra-simps divide-simps)

qed
show eventually (λn. dist x ((f^^n) x)/n < l) sequentially

by (rule eventually-mono[OF eventually-conj[OF eventually-conj[OF A B]
eventually-gt-at-top[of 0 ]] C ], auto)

qed
moreover have eventually (λn. dist x ((f^^n) x)/n > l) sequentially if sta-

ble-translation-length f > l for l
proof −

have ∗: dist x ((f^^n) x)/n > l if n > 0 for n
proof −

have n ∗ l < n ∗ stable-translation-length f
using ‹stable-translation-length f > l› ‹n > 0 › by auto

also have ... ≤ translation-length (f^^n)
by (intro mono-intros)

also have ... ≤ dist x ((f^^n) x)
by (intro mono-intros)

finally show ?thesis
using ‹n > 0 › by (auto simp add: algebra-simps divide-simps)

qed
then show ?thesis

by (rule eventually-mono[rotated], auto)
qed
ultimately show ?thesis

by (rule order-tendstoI [rotated])
qed

It follows from the previous proposition that the stable translation length is
also the limit of the renormalized translation length of fn.
proposition stable-translation-length-as-limit:

assumes 1−lipschitz-on UNIV f
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shows (λn. translation-length (f^^n) / n) −−−−→ stable-translation-length f
proof −

obtain x:: ′a where True by auto
show ?thesis
proof (rule tendsto-sandwich[of λn. stable-translation-length f - - λn. dist x

((f^^n) x)/n])
have stable-translation-length f ≤ translation-length (f ^^ n) / real n if n > 0

for n
using stable-translation-length-le-translation-length[of n f ] that by (simp add:

divide-simps algebra-simps)
then show eventually (λn. stable-translation-length f ≤ translation-length (f

^^ n) / real n) sequentially
by (rule eventually-mono[rotated], auto)

have translation-length (f ^^ n) / real n ≤ dist x ((f ^^ n) x) / real n for n
using translation-length-le[of f^^n x] by (auto simp add: divide-simps)

then show eventually (λn. translation-length (f ^^ n) / real n ≤ dist x ((f ^^
n) x) / real n) sequentially

by auto
qed (auto simp add: stable-translation-length-as-pointwise-limit[OF assms])

qed

lemma stable-translation-length-inv:
assumes isometry f
shows stable-translation-length (inv f ) = stable-translation-length f

proof −
have ∗: dist basepoint (((inv f )^^n) basepoint) = dist basepoint ((f^^n) basepoint)

for n
proof −

have basepoint = (f^^n) (((inv f )^^n) basepoint)
by (metis assms comp-apply fn-o-inv-fn-is-id isometry-inverse(2 ))

then have dist basepoint ((f^^n) basepoint) = dist ((f^^n) (((inv f )^^n) base-
point)) ((f^^n) basepoint)

by auto
also have ... = dist (((inv f )^^n) basepoint) basepoint

unfolding isometryD(2 )[OF isometry-iterates[OF assms]] by simp
finally show ?thesis by (simp add: dist-commute)

qed

have (λn. dist basepoint ((f^^n) basepoint)/n) −−−−→ stable-translation-length f
using stable-translation-length-as-pointwise-limit[OF isometryD(4 )[OF assms]]

by simp
moreover have (λn. dist basepoint ((f^^n) basepoint)/n) −−−−→ stable-translation-length

(inv f )
unfolding ∗[symmetric]
using stable-translation-length-as-pointwise-limit[OF isometryD(4 )[OF isome-

try-inverse(1 )[OF assms]]] by simp
ultimately show ?thesis

using LIMSEQ-unique by auto
qed
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19.2 The strength of an isometry at a fixed point at infinity

The additive strength of an isometry at a fixed point at infinity is the asymp-
totic average every point is moved towards the fixed point at each step. It
is measured using the Busemann function.
definition additive-strength::( ′a::Gromov-hyperbolic-space⇒ ′a)⇒ ( ′a Gromov-completion)
⇒ real

where additive-strength f xi = lim (λn. (Busemann-function-at xi ((f^^n) base-
point) basepoint)/n)

For additivity reasons, as the Busemann function is a quasi-morphism, the
additive strength measures the deplacement even at finite times. It is also
uniform in terms of the basepoint. This shows that an isometry sends
horoballs centered at a fixed point to horoballs, up to a uniformly bounded
error depending only on δ.
lemma Busemann-function-eq-additive-strength:

assumes isometry f Gromov-extension f xi = xi
shows |Busemann-function-at xi ((f^^n) x) (x:: ′a::Gromov-hyperbolic-space) −

real n ∗ additive-strength f xi| ≤ 2 ∗ deltaG(TYPE( ′a))
proof −

define u where u = (λy n. Busemann-function-at xi ((f^^n) y) y)
have ∗: abs(u y (m+n) − u y m − u y n) ≤ 2 ∗ deltaG(TYPE( ′a)) for n m y
proof −

have P: Gromov-extension (f^^m) xi = xi
unfolding Gromov-extension-isometry-iterates[OF assms(1 )] apply (induction

m) using assms by auto
have ∗: u y n = Busemann-function-at xi ((f^^m) ((f^^n) y)) ((f^^m) y)
apply (subst P[symmetric]) unfolding Busemann-function-isometry[OF isom-

etry-iterates[OF ‹isometry f ›]] u-def by auto
show ?thesis

unfolding ∗ unfolding u-def using Busemann-function-quasi-morphism[of
xi (f^^(m+n)) y (f^^m) y y]

unfolding funpow-add comp-def by auto
qed
define l where l = (λy. lim (λn. u y n/n))
have A: abs(u y k − k ∗ l y) ≤ 2 ∗ deltaG(TYPE( ′a)) for y k

unfolding l-def using almost-additive-converges(2 ) ∗ by auto
then have ∗: abs(Busemann-function-at xi ((f^^k) y) y − k ∗ l y) ≤ 2 ∗

deltaG(TYPE( ′a)) for y k
unfolding u-def by auto

have l basepoint = additive-strength f xi
unfolding l-def u-def additive-strength-def by auto

have abs(k ∗ l basepoint − k ∗ l x) ≤ 4 ∗ deltaG(TYPE( ′a)) + 2 ∗ dist basepoint
x for k::nat

proof −
have abs(k ∗ l basepoint − k ∗ l x) = abs((Busemann-function-at xi ((f^^k)

x) x − k ∗ l x) − (Busemann-function-at xi ((f^^k) basepoint) basepoint − k ∗ l
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basepoint)
+ (Busemann-function-at xi ((f^^k) basepoint)

basepoint − Busemann-function-at xi ((f^^k) x) x))
by auto

also have ... ≤ abs (Busemann-function-at xi ((f^^k) x) x − k ∗ l x) + abs
(Busemann-function-at xi ((f^^k) basepoint) basepoint − k ∗ l basepoint)

+ abs (Busemann-function-at xi ((f^^k) basepoint) basepoint −
Busemann-function-at xi ((f^^k) x) x)

by auto
also have ... ≤ 2 ∗ deltaG(TYPE( ′a)) + 2 ∗ deltaG(TYPE( ′a)) + (dist ((f^^k)

basepoint) ((f^^k) x) + dist basepoint x)
by (intro mono-intros ∗)

also have ... = 4 ∗ deltaG(TYPE( ′a)) + 2 ∗ dist basepoint x
unfolding isometryD[OF isometry-iterates[OF assms(1 )]] by auto

finally show ?thesis by auto
qed
moreover have u = v if H :

∧
k::nat. abs(k ∗ u − k ∗ v) ≤ C for u v C ::real

proof −
have (λn. abs(u − v)) −−−−→ 0
proof (rule tendsto-sandwich[of λn. 0 - - λn::nat. C/n], auto)

have (λn. C∗(1/n)) −−−−→ C ∗ 0 by (intro tendsto-intros)
then show (λn. C/n) −−−−→ 0 by auto
have |u − v| ≤ C / real n if n ≥ 1 for n

using H [of n] that apply (simp add: divide-simps algebra-simps)
by (metis H abs-mult abs-of-nat right-diff-distrib ′)

then show ∀ F n in sequentially. |u − v| ≤ C / real n
unfolding eventually-sequentially by auto

qed
then show ?thesis

by (metis LIMSEQ-const-iff abs-0-eq eq-iff-diff-eq-0 )
qed
ultimately have l basepoint = l x by auto
show ?thesis

using A[of x n] unfolding u-def ‹l basepoint = l x›[symmetric] ‹l basepoint =
additive-strength f xi› by auto
qed

lemma additive-strength-as-limit [tendsto-intros]:
assumes isometry f Gromov-extension f xi = xi
shows (λn. Busemann-function-at xi ((f^^n) x) x/n) −−−−→ additive-strength f

xi
proof −

have (λn. abs(Busemann-function-at xi ((f^^n) x) x/n − additive-strength f xi))
−−−−→ 0

apply (rule tendsto-sandwich[of λn. 0 - - λn. (2 ∗ deltaG(TYPE( ′a))) ∗ (1/real
n)], auto)

unfolding eventually-sequentially apply (rule exI [of - 1 ])
using Busemann-function-eq-additive-strength[OF assms] apply (simp add:

divide-simps algebra-simps)
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using tendsto-mult[OF - lim-1-over-n] by auto
then show ?thesis

using LIM-zero-iff tendsto-rabs-zero-cancel by blast
qed

The additive strength measures the amount of displacement towards a fixed
point at infinity. Therefore, the distance from x to fnx is at least n times
the additive strength, but one might think that it might be larger, if there
is displacement along the horospheres. It turns out that this is not the case:
the displacement along the horospheres is at most logarithmic (this is a clas-
sical property of parabolic isometries in hyperbolic spaces), and in fact it is
bounded for loxodromic elements. We prove here that the growth is at most
logarithmic in all cases, using a small computation based on the hyperbolic-
ity inequality, expressed in Lemma dist_minus_Busemann_max_ineq above.
This lemma will be used below to show that the translation length is the
absolute value of the additive strength.
lemma dist-le-additive-strength:

assumes isometry (f :: ′a::Gromov-hyperbolic-space ⇒ ′a) Gromov-extension f xi
= xi additive-strength f xi ≥ 0 n ≥ 1

shows dist x ((f^^n) x) ≤ dist x (f x) + real n ∗ additive-strength f xi + ceiling
(log 2 n) ∗ 16 ∗ deltaG(TYPE( ′a))
proof −

have A:
∧

n. n ∈ {1 ..2^k} =⇒ dist x ((f^^n) x) − real n ∗ additive-strength f xi
≤ dist x (f x) + k ∗ 16 ∗ deltaG(TYPE( ′a)) for k

proof (induction k)
case 0
fix n::nat assume n ∈ {1 ..2^0}
then have n = 1 by auto
then show dist x ((f^^n) x) − real n ∗ additive-strength f xi ≤ dist x (f x) +

real 0 ∗ 16 ∗ deltaG(TYPE( ′a))
using assms(3 ) by auto

next
case (Suc k)
fix N ::nat assume N ∈ {1 ..2^(Suc k)}
then consider N ∈ {1 ..2^k} | N ∈ {2^k<..2^(Suc k)} using not-le by auto
then show dist x ((f ^^ N ) x) − real N ∗ additive-strength f xi ≤ dist x (f x)

+ real (Suc k) ∗ 16 ∗ deltaG TYPE( ′a)
proof (cases)

case 1
show ?thesis by (rule order-trans[OF Suc.IH [OF 1 ]], auto simp add: alge-

bra-simps)
next

case 2
define m::nat where m = N − 2^k
define n::nat where n = 2^k

have nm: N = n+m m ∈ {1 ..2^k} n ∈ {1 ..2^k}unfolding m-def n-def using
2 by auto

have ∗: (f^^(n+m)) x = (f^^n) ((f^^m) x)
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unfolding funpow-add comp-def by auto
have ∗∗: (f^^(n+m)) x = (f^^m) ((f^^n) x)

apply (subst add.commute) unfolding funpow-add comp-def by auto

have dist x ((f^^N ) x) − N ∗ additive-strength f xi − 2 ∗ deltaG(TYPE( ′a))
≤ dist x ((f^^(n+m)) x) − Busemann-function-at xi ((f^^(n+m)) x) x

unfolding nm(1 ) using Busemann-function-eq-additive-strength[OF assms(1 )
assms(2 ), of n+m x] by auto

also have ... ≤ max (dist x ((f^^n) x) − Busemann-function-at xi ((f^^n)
x) x) (dist ((f^^n) x) ((f^^(n+m)) x) − Busemann-function-at xi ((f^^(n+m)) x)
((f^^n) x) − 2 ∗ Busemann-function-at xi ((f^^n) x) x) + 8 ∗ deltaG(TYPE( ′a))

using dist-minus-Busemann-max-ineq by auto
also have ... ≤ max (dist x ((f^^n) x) − (n ∗ additive-strength f xi − 2 ∗

deltaG(TYPE( ′a)))) (dist ((f^^n) x) ((f^^(n+m)) x) − (m ∗ additive-strength f xi
− 2 ∗ deltaG(TYPE( ′a))) − 2 ∗ (n ∗ additive-strength f xi − 2 ∗ deltaG(TYPE( ′a))))
+ 8 ∗ deltaG(TYPE( ′a))

unfolding ∗∗ apply (intro mono-intros)
using Busemann-function-eq-additive-strength[OF assms(1 ) assms(2 ), of n

x] Busemann-function-eq-additive-strength[OF assms(1 ) assms(2 ), of m (f^^n) x]
by auto

also have ... ≤ max (dist x ((f^^n) x) − n ∗ additive-strength f xi +
6 ∗ deltaG(TYPE( ′a))) (dist x ((f^^m) x) − m ∗ additive-strength f xi + 6 ∗
deltaG(TYPE( ′a))) + 8 ∗ deltaG(TYPE( ′a))

unfolding ∗ isometryD(2 )[OF isometry-iterates[OF assms(1 )], of n] using
assms(3 ) by (intro mono-intros, auto)

also have ... = max (dist x ((f^^n) x) − n ∗ additive-strength f xi) (dist x
((f^^m) x) − m ∗ additive-strength f xi) + 14 ∗ deltaG(TYPE( ′a))

unfolding max-add-distrib-left[symmetric] by auto
also have ... ≤ dist x (f x) + k ∗ 16 ∗ deltaG(TYPE( ′a)) + 14 ∗ deltaG(TYPE( ′a))

using nm by (auto intro!: Suc.IH )
finally show ?thesis by (auto simp add: algebra-simps)

qed
qed
define k::nat where k = nat(ceiling (log 2 n))
have n ≤ 2^k unfolding k-def

by (meson less-log2-of-power not-le real-nat-ceiling-ge)
then have dist x ((f^^n) x) − real n ∗ additive-strength f xi ≤ dist x (f x) + k
∗ 16 ∗ deltaG(TYPE( ′a))

using A[of n k] ‹n ≥ 1 › by auto
moreover have real (nat dlog 2 (real n)e) = real-of-int dlog 2 (real n)e

by (metis Transcendental.log-one ‹n ≤ 2 ^ k› assms(4 ) ceiling-zero int-ops(2 )
k-def le-antisym nat-eq-iff2 of-int-1 of-int-of-nat-eq order-refl power-0 )

ultimately show ?thesis unfolding k-def by (auto simp add: algebra-simps)
qed

The strength of the inverse of a map is the opposite of the strength of the
map.
lemma additive-strength-inv:

assumes isometry (f :: ′a::Gromov-hyperbolic-space ⇒ ′a) Gromov-extension f xi
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= xi
shows additive-strength (inv f ) xi = − additive-strength f xi

proof −
have ∗: (inv f ^^ n) ((f ^^ n) x) = x for n x

by (metis assms(1 ) comp-apply inv-fn-o-fn-is-id isometry-inverse(2 ))
have A: abs(real n ∗ additive-strength f xi + real n ∗ additive-strength (inv f )

xi) ≤ 6 ∗ deltaG (TYPE( ′a)) for n::nat and x:: ′a
using Busemann-function-quasi-morphism[of xi x (f^^n) x x] Busemann-function-eq-additive-strength[OF

assms, of n x] Busemann-function-eq-additive-strength[OF isometry-inverse(1 )[OF
assms(1 )]

Gromov-extension-inv-fixed-point[OF assms], of n (f^^n) x] unfolding ∗ by
auto
have B: abs(additive-strength f xi + additive-strength (inv f ) xi) ≤ 6 ∗ deltaG(TYPE( ′a))
∗ (1/n) if n ≥ 1 for n::nat

using that A[of n] apply (simp add: divide-simps algebra-simps) unfolding
distrib-left[symmetric] by auto

have (λn. abs(additive-strength f xi + additive-strength (inv f ) xi)) −−−−→ 6 ∗
deltaG(TYPE( ′a)) ∗ 0

apply (rule tendsto-sandwich[of λn. 0 - - λn. 6 ∗ deltaG(TYPE( ′a)) ∗ (1/real
n)], simp)

unfolding eventually-sequentially apply (rule exI [of - 1 ]) using B apply simp
by (simp, intro tendsto-intros)

then show ?thesis
using LIMSEQ-unique mult-zero-right tendsto-const by fastforce

qed

We will now prove that the stable translation length of an isometry is given
by the absolute value of its strength at any fixed point. We start with the
case where the strength is nonnegative, and then reduce to this case by
considering the map or its inverse.
lemma stable-translation-length-eq-additive-strength-aux:

assumes isometry (f :: ′a::Gromov-hyperbolic-space ⇒ ′a) Gromov-extension f xi
= xi additive-strength f xi ≥ 0

shows stable-translation-length f = additive-strength f xi
proof −

have (λn. dist x ((f^^n) x)/n) −−−−→ additive-strength f xi for x
proof (rule tendsto-sandwich[of λn. (n ∗ additive-strength f xi − 2 ∗ deltaG(TYPE( ′a)))/real

n - - λn. (dist x (f x) + n ∗ additive-strength f xi + ceiling (log 2 n) ∗ 16 ∗
deltaG(TYPE( ′a)))/ n])

have n ∗ additive-strength f xi − 2 ∗ deltaG TYPE( ′a) ≤ dist x ((f ^^ n) x)
for n

using Busemann-function-eq-additive-strength[OF assms(1 ) assms(2 ), of n x]
Busemann-function-le-dist[of xi (f^^n) x x]

by (simp add: dist-commute)
then have (n ∗ additive-strength f xi − 2 ∗ deltaG TYPE( ′a)) / n ≤ dist x

((f ^^ n) x) / n if n ≥ 1 for n
using that by (simp add: divide-simps)

then show ∀ F n in sequentially. (real n ∗ additive-strength f xi − 2 ∗ deltaG
TYPE( ′a)) / real n ≤ dist x ((f ^^ n) x) / real n

400



unfolding eventually-sequentially by auto

have B: (λn. additive-strength f xi − (2 ∗ deltaG(TYPE( ′a))) ∗ (1/n)) −−−−→
additive-strength f xi − (2 ∗ deltaG(TYPE( ′a))) ∗ 0

by (intro tendsto-intros)
show (λn. (real n ∗ additive-strength f xi − 2 ∗ deltaG TYPE( ′a)) / real n)

−−−−→ additive-strength f xi
proof (rule Lim-transform-eventually)
show eventually (λn. additive-strength f xi − (2 ∗ deltaG(TYPE( ′a))) ∗ (1/n)

= (real n ∗ additive-strength f xi − 2 ∗ deltaG TYPE( ′a)) / real n) sequentially
unfolding eventually-sequentially apply (rule exI [of - 1 ]) by (simp add:

divide-simps)
qed (use B in auto)

have dist x ((f^^n) x) ≤ dist x (f x) + n ∗ additive-strength f xi + ceiling (log
2 n) ∗ 16 ∗ deltaG(TYPE( ′a)) if n ≥ 1 for n

using dist-le-additive-strength[OF assms that] by simp
then have (dist x ((f^^n) x))/n ≤ (dist x (f x) + n ∗ additive-strength f xi +

ceiling (log 2 n) ∗ 16 ∗ deltaG(TYPE( ′a)))/n if n ≥ 1 for n
using that by (simp add: divide-simps)

then show ∀ F n in sequentially. dist x ((f ^^ n) x) / real n ≤ (dist x (f
x) + real n ∗ additive-strength f xi + real-of-int (dlog 2 (real n)e ∗ 16 ) ∗ deltaG
TYPE( ′a)) / real n

unfolding eventually-sequentially by auto

have B: (λn. dist x (f x) ∗ (1/n) + additive-strength f xi + 16 ∗ deltaG
TYPE( ′a) ∗ (dlog 2 ne / n)) −−−−→ dist x (f x) ∗ 0 + additive-strength f xi + 16
∗ deltaG TYPE( ′a) ∗ 0

by (intro tendsto-intros)
show (λn. (dist x (f x) + n ∗ additive-strength f xi + real-of-int (dlog 2 ne ∗

16 ) ∗ deltaG TYPE( ′a)) / real n) −−−−→ additive-strength f xi
proof (rule Lim-transform-eventually)

show eventually (λn. dist x (f x) ∗ (1/n) + additive-strength f xi + 16 ∗
deltaG TYPE( ′a) ∗ (dlog 2 ne / n) = (dist x (f x) + real n ∗ additive-strength f xi
+ real-of-int (dlog 2 (real n)e ∗ 16 ) ∗ deltaG TYPE( ′a)) / real n) sequentially

unfolding eventually-sequentially apply (rule exI [of - 1 ]) by (simp add:
algebra-simps divide-simps)

qed (use B in auto)
qed
then show ?thesis

using LIMSEQ-unique stable-translation-length-as-pointwise-limit[OF isome-
tryD(4 )[OF assms(1 )]] by blast
qed

lemma stable-translation-length-eq-additive-strength:
assumes isometry (f :: ′a::Gromov-hyperbolic-space ⇒ ′a) Gromov-extension f xi

= xi
shows stable-translation-length f = abs(additive-strength f xi)

proof (cases additive-strength f xi ≥ 0 )
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case True
then show ?thesis using stable-translation-length-eq-additive-strength-aux[OF

assms] by auto
next

case False
then have ∗: abs(additive-strength f xi) = additive-strength (inv f ) xi

unfolding additive-strength-inv[OF assms] by auto
show ?thesis

unfolding ∗ stable-translation-length-inv[OF assms(1 ), symmetric]
using stable-translation-length-eq-additive-strength-aux[OF isometry-inverse(1 )[OF

assms(1 )] Gromov-extension-inv-fixed-point[OF assms]] ∗ by auto
qed

19.3 Elliptic isometries

Elliptic isometries are the simplest ones: they have bounded orbits.
definition elliptic-isometry::( ′a::Gromov-hyperbolic-space ⇒ ′a) ⇒ bool

where elliptic-isometry f = (isometry f ∧ (∀ x. bounded {(f^^n) x|n. True}))

lemma elliptic-isometryD:
assumes elliptic-isometry f
shows bounded {(f^^n) x |n. True}

isometry f
using assms unfolding elliptic-isometry-def by auto

lemma elliptic-isometryI [intro]:
assumes bounded {(f^^n) x |n. True}

isometry f
shows elliptic-isometry f

proof −
have bounded {(f^^n) y |n. True} for y
proof −

obtain c e where c:
∧

n. dist c ((f^^n) x) ≤ e
using assms(1 ) unfolding bounded-def by auto

have dist c ((f^^n) y) ≤ e + dist x y for n
proof −

have dist c ((f^^n) y) ≤ dist c ((f^^n) x) + dist ((f^^n) x) ((f^^n) y)
by (intro mono-intros)

also have ... ≤ e + dist x y
using c[of n] isometry-iterates[OF assms(2 ), of n] by (intro mono-intros,

auto simp add: isometryD)
finally show ?thesis by simp

qed
then show ?thesis

unfolding bounded-def by auto
qed
then show ?thesis unfolding elliptic-isometry-def using assms by auto

qed

402



The inverse of an elliptic isometry is an elliptic isometry.
lemma elliptic-isometry-inv:

assumes elliptic-isometry f
shows elliptic-isometry (inv f )

proof −
obtain c e where A:

∧
n. dist c ((f^^n) basepoint) ≤ e

using elliptic-isometryD(1 )[OF assms, of basepoint] unfolding bounded-def by
auto

have c = (f^^n) (((inv f )^^n) c) for n
using fn-o-inv-fn-is-id[OF isometry-inverse(2 )[OF elliptic-isometryD(2 )[OF

assms]], of n]
unfolding comp-def by metis

then have dist ((f^^n) (((inv f )^^n) c)) ((f^^n) basepoint) ≤ e for n
using A by auto

then have B: dist basepoint (((inv f )^^n) c) ≤ e for n
unfolding isometryD(2 )[OF isometry-iterates[OF elliptic-isometryD(2 )[OF

assms]]] by (auto simp add: dist-commute)
show ?thesis

apply (rule elliptic-isometryI [of - c])
using isometry-inverse(1 )[OF elliptic-isometryD(2 )[OF assms]] B unfolding

bounded-def by auto
qed

The inverse of a bijective map is an elliptic isometry if and only if the original
map is.
lemma elliptic-isometry-inv-iff :

assumes bij f
shows elliptic-isometry (inv f ) ←→ elliptic-isometry f

using elliptic-isometry-inv[of f ] elliptic-isometry-inv[of inv f ] inv-inv-eq[OF assms]
by auto

The identity is an elliptic isometry.
lemma elliptic-isometry-id:

elliptic-isometry id
by (intro elliptic-isometryI isometryI , auto)

The translation length of an elliptic isometry is 0.
lemma elliptic-isometry-stable-translation-length:

assumes elliptic-isometry f
shows stable-translation-length f = 0

proof −
obtain x:: ′a where True by auto
have bounded {(f^^n) x|n. True}

using elliptic-isometryD[OF assms] by auto
then obtain c C where cC :

∧
n. dist c ((f^^n) x) ≤ C

unfolding bounded-def by auto
have (λn. dist x ((f^^n) x)/n) −−−−→ 0
proof (rule tendsto-sandwich[of λ-. 0 - sequentially λn. 2 ∗ C / n])
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have (λn. 2 ∗ C ∗ (1 / real n)) −−−−→ 2 ∗ C ∗ 0 by (intro tendsto-intros)
then show (λn. 2 ∗ C / real n) −−−−→ 0 by auto
have dist x ((f ^^ n) x) / real n ≤ 2 ∗ C / real n for n

using cC [of 0 ] cC [of n] dist-triangle[of x (f^^n) x c] by (auto simp add:
algebra-simps divide-simps dist-commute)

then show eventually (λn. dist x ((f ^^ n) x) / real n ≤ 2 ∗ C / real n)
sequentially

by auto
qed (auto)
moreover have (λn. dist x ((f^^n) x)/n) −−−−→ stable-translation-length f
by (rule stable-translation-length-as-pointwise-limit[OF isometry-on-lipschitz[OF

isometryD(1 )[OF elliptic-isometryD(2 )[OF assms]]]])
ultimately show ?thesis

using LIMSEQ-unique by auto
qed

If an isometry has a fixed point, then it is elliptic.
lemma isometry-with-fixed-point-is-elliptic:

assumes isometry f f x = x
shows elliptic-isometry f

proof −
have ∗: (f^^n) x = x for n

apply (induction n) using assms(2 ) by auto
show ?thesis

apply (rule elliptic-isometryI [of - x, OF - assms(1 )]) unfolding ∗ by auto
qed

19.4 Parabolic and loxodromic isometries

An isometry is parabolic if it is not elliptic and if its translation length
vanishes.
definition parabolic-isometry::( ′a::Gromov-hyperbolic-space ⇒ ′a) ⇒ bool
where parabolic-isometry f = (isometry f ∧ ¬elliptic-isometry f ∧ stable-translation-length

f = 0 )

An isometry is loxodromic if it is not elliptic and if its translation length is
nonzero.
definition loxodromic-isometry::( ′a::Gromov-hyperbolic-space ⇒ ′a) ⇒ bool
where loxodromic-isometry f = (isometry f ∧ ¬elliptic-isometry f ∧ stable-translation-length

f 6= 0 )

The main features of such isometries are expressed in terms of their fixed
points at infinity. We define them now, but proving that the definitions
make sense will take some work.
definition neutral-fixed-point::( ′a::Gromov-hyperbolic-space⇒ ′a)⇒ ′a Gromov-completion
where neutral-fixed-point f = (SOME xi. xi ∈ Gromov-boundary ∧ Gromov-extension

f xi = xi ∧ additive-strength f xi = 0 )
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definition attracting-fixed-point::( ′a::Gromov-hyperbolic-space ⇒ ′a) ⇒ ′a Gro-
mov-completion

where attracting-fixed-point f = (SOME xi. xi ∈ Gromov-boundary ∧ Gro-
mov-extension f xi = xi ∧ additive-strength f xi < 0 )

definition repelling-fixed-point::( ′a::Gromov-hyperbolic-space⇒ ′a)⇒ ′a Gromov-completion
where repelling-fixed-point f = (SOME xi. xi ∈ Gromov-boundary ∧ Gromov-extension

f xi = xi ∧ additive-strength f xi > 0 )

lemma parabolic-isometryD:
assumes parabolic-isometry f
shows isometry f

¬bounded {(f^^n) x|n. True}
stable-translation-length f = 0
¬elliptic-isometry f

using assms unfolding parabolic-isometry-def by auto

lemma parabolic-isometryI :
assumes isometry f

¬bounded {(f^^n) x|n. True}
stable-translation-length f = 0

shows parabolic-isometry f
using assms unfolding parabolic-isometry-def elliptic-isometry-def by auto

lemma loxodromic-isometryD:
assumes loxodromic-isometry f
shows isometry f

¬bounded {(f^^n) x|n. True}
stable-translation-length f > 0
¬elliptic-isometry f

using assms unfolding loxodromic-isometry-def
by (auto, meson dual-order .antisym not-le stable-translation-length-nonneg)

To have a loxodromic isometry, it suffices to know that the stable translation
length is nonzero, as elliptic isometries have zero translation length.
lemma loxodromic-isometryI :

assumes isometry f
stable-translation-length f 6= 0

shows loxodromic-isometry f
using assms elliptic-isometry-stable-translation-length unfolding loxodromic-isometry-def
by auto

Any isometry is elliptic, or parabolic, or loxodromic, and these possibilities
are mutually exclusive.
lemma elliptic-or-parabolic-or-loxodromic:

assumes isometry f
shows elliptic-isometry f ∨ parabolic-isometry f ∨ loxodromic-isometry f
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using assms unfolding parabolic-isometry-def loxodromic-isometry-def by auto

lemma elliptic-imp-not-parabolic-loxodromic:
assumes elliptic-isometry f
shows ¬parabolic-isometry f

¬loxodromic-isometry f
using assms unfolding parabolic-isometry-def loxodromic-isometry-def by auto

lemma parabolic-imp-not-elliptic-loxodromic:
assumes parabolic-isometry f
shows ¬elliptic-isometry f

¬loxodromic-isometry f
using assms unfolding parabolic-isometry-def loxodromic-isometry-def by auto

lemma loxodromic-imp-not-elliptic-parabolic:
assumes loxodromic-isometry f
shows ¬elliptic-isometry f

¬parabolic-isometry f
using assms unfolding parabolic-isometry-def loxodromic-isometry-def by auto

The inverse of a parabolic isometry is parabolic.
lemma parabolic-isometry-inv:

assumes parabolic-isometry f
shows parabolic-isometry (inv f )

unfolding parabolic-isometry-def using isometry-inverse[of f ] elliptic-isometry-inv-iff [of
f ]
parabolic-isometryD[OF assms] stable-translation-length-inv[of f ] by auto

The inverse of a loxodromic isometry is loxodromic.
lemma loxodromic-isometry-inv:

assumes loxodromic-isometry f
shows loxodromic-isometry (inv f )

unfolding loxodromic-isometry-def using isometry-inverse[of f ] elliptic-isometry-inv-iff [of
f ]
loxodromic-isometryD[OF assms] stable-translation-length-inv[of f ] by auto

We will now prove that an isometry which is not elliptic has a fixed point at
infinity. This is very easy if the space is proper (ensuring that the Gromov
completion is compact), but in fact this holds in general. One constructs it
by considering a sequence rn such that f rn0 tends to infinity, and addition-
ally d(f l0, 0) < d(f rn0, 0) for l < rn: this implies the convergence at infinity
of f rn0, by an argument based on a Gromov product computation – and
the limit is a fixed point. Moreover, it has nonpositive additive strength,
essentially by construction.
lemma high-scores:

fixes u::nat ⇒ real and i::nat and C ::real
assumes ¬(bdd-above (range u))
shows ∃n. (∀ l ≤ n. u l ≤ u n) ∧ u n ≥ C ∧ n ≥ i
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proof −
define M where M = max C (Max {u l|l. l < i})
define n where n = Inf {m. u m > M}
have ¬(range u ⊆ {..M})

using assms by (meson bdd-above-Iic bdd-above-mono)
then have {m. u m > M} 6= {}

using assms by (simp add: image-subset-iff not-less)
then have n ∈ {m. u m > M} unfolding n-def using Inf-nat-def1 by metis
then have u n > M by simp
have n ≥ i
proof (rule ccontr)

assume ¬ i ≤ n
then have ∗: n < i by simp
have u n ≤ Max {u l|l. l < i} apply (rule Max-ge) using ∗ by auto
then show False using ‹u n > M › M-def by auto

qed
moreover have u l ≤ u n if l ≤ n for l
proof (cases l = n)

case True
then show ?thesis by simp

next
case False
then have l < n using ‹l ≤ n› by auto
then have l /∈ {m. u m > M}

unfolding n-def by (meson bdd-below-def cInf-lower not-le zero-le)
then show ?thesis using ‹u n > M › by auto

qed
ultimately show ?thesis

using ‹u n > M › M-def less-eq-real-def by auto
qed

lemma isometry-not-elliptic-has-attracting-fixed-point:
assumes isometry f

¬(elliptic-isometry f )
shows ∃ xi ∈ Gromov-boundary. Gromov-extension f xi = xi ∧ additive-strength

f xi ≤ 0
proof −

define u where u = (λn. dist basepoint ((f^^n) basepoint))
have NB: ¬(bdd-above (range u))
proof

assume bdd-above (range u)
then obtain C where ∗:

∧
n. u n ≤ C unfolding bdd-above-def by auto

have bounded {(f^^n) basepoint|n. True}
unfolding bounded-def apply (rule exI [of - basepoint], rule exI [of - C ])
using ∗ unfolding u-def by auto

then show False
using elliptic-isometryI assms by auto

qed
have ∃ r . ∀n. ((∀ l ≤ r n. u l ≤ u (r n)) ∧ u (r n) ≥ 2 ∗ n) ∧ r (Suc n) ≥ r n
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+ 1
apply (rule dependent-nat-choice) using high-scores[OF NB] by (auto) blast

then obtain r ::nat ⇒ nat where r :
∧

n l. l ≤ r n =⇒ u l ≤ u (r n)∧
n. u (r n) ≥ 2 ∗ n

∧
n. r (Suc n) ≥ r n + 1

by auto
then have strict-mono r

by (metis Suc-eq-plus1 Suc-le-lessD strict-monoI-Suc)
then have r n ≥ n for n

by (simp add: seq-suble)

have A: dist ((f^^(r p)) basepoint) ((f^^(r n)) basepoint) ≤ dist basepoint ((f^^(r
n)) basepoint) if n ≥ p for n p

proof −
have r n ≥ r p using ‹n ≥ p› ‹strict-mono r› by (simp add: strict-mono-less-eq)
then have ∗: f^^((r n)) = (f^^(r p)) o (f^^(r n − r p))

unfolding funpow-add[symmetric] by auto
have dist ((f^^(r p)) basepoint) ((f^^(r n)) basepoint) = dist ((f^^(r p)) base-

point) ((f^^(r p)) ((f^^(r n − r p)) basepoint))
unfolding ∗ comp-def by auto

also have ... = dist basepoint ((f^^(r n − r p)) basepoint)
using isometry-iterates[OF assms(1 ), of r p] isometryD by auto

also have ... ≤ dist basepoint ((f^^(r n)) basepoint)
using r(1 )[of r n − r p n] unfolding u-def by auto

finally show ?thesis
by simp

qed

have ∗: Gromov-product-at basepoint ((f^^(r p)) basepoint) ((f^^(r n)) basepoint)
≥ p if n ≥ p for n p

proof −
have 2 ∗ Gromov-product-at basepoint ((f^^(r p)) basepoint) ((f^^(r n)) base-

point)
= dist basepoint ((f^^(r p)) basepoint) + dist basepoint ((f^^(r n))

basepoint)
− dist ((f^^(r p)) basepoint) ((f^^(r n)) basepoint)

unfolding Gromov-product-at-def by auto
also have ... ≥ dist basepoint ((f^^(r p)) basepoint)

using A[OF that] by auto
finally show Gromov-product-at basepoint ((f^^(r p)) basepoint) ((f^^(r n))

basepoint) ≥ p
using r(2 )[of p] unfolding u-def by auto

qed
have ∗: Gromov-product-at basepoint ((f^^(r p)) basepoint) ((f^^(r n)) basepoint)
≥ N if n ≥ N p ≥ N for n p N

using ∗[of n p] ∗[of p n] that by (auto simp add: Gromov-product-commute
intro: le-cases[of n p])

have Gromov-converging-at-boundary (λn. (f^^(r n)) basepoint)
apply (rule Gromov-converging-at-boundaryI [of basepoint]) using ∗ by (meson

dual-order .trans real-arch-simple)
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with Gromov-converging-at-boundary-converges[OF this]
obtain xi where xi: (λn. to-Gromov-completion ((f^^(r n)) basepoint)) −−−−→

xi xi ∈ Gromov-boundary
by auto

then have ∗: (λn. Gromov-extension f (to-Gromov-completion ((f^^(r n)) base-
point))) −−−−→ xi

apply (simp, rule Gromov-converging-at-boundary-bounded-perturbation[of - - -
dist basepoint (f basepoint)])

by (simp add: assms(1 ) funpow-swap1 isometryD(2 ) isometry-iterates)
moreover have (λn. Gromov-extension f (to-Gromov-completion ((f^^(r n))

basepoint))) −−−−→ Gromov-extension f xi
using continuous-on-tendsto-compose[OF Gromov-extension-isometry(2 )[OF

assms(1 )] xi(1 )] by auto
ultimately have fxi: Gromov-extension f xi = xi

using LIMSEQ-unique by auto

have Busemann-function-at (to-Gromov-completion ((f^^(r n)) basepoint)) ((f^^(r
p)) basepoint) basepoint ≤ 0 if n ≥ p for n p

unfolding Busemann-function-inner using A[OF that] by auto
then have A: eventually (λn. Busemann-function-at (to-Gromov-completion

((f^^(r n)) basepoint)) ((f^^(r p)) basepoint) basepoint ≤ 0 ) sequentially for p
unfolding eventually-sequentially by auto

have B: eventually (λn. Busemann-function-at (to-Gromov-completion ((f^^(r
n)) basepoint)) ((f^^(r p)) basepoint) basepoint ≥ Busemann-function-at xi ((f^^(r
p)) basepoint) basepoint − 2 ∗ deltaG(TYPE( ′a)) − 1 ) sequentially for p

by (rule eventually-mono[OF Busemann-function-inside-approx[OF - xi(1 ), of
1 ((f^^(r p)) basepoint) basepoint, simplified]], simp)

have eventually (λn. Busemann-function-at xi ((f^^(r p)) basepoint) basepoint
− 2 ∗ deltaG(TYPE( ′a)) − 1 ≤ 0 ) sequentially for p

by (rule eventually-mono[OF eventually-conj[OF A[of p] B[of p]]], simp)
then have ∗: Busemann-function-at xi ((f^^(r p)) basepoint) basepoint − 2 ∗

deltaG(TYPE( ′a)) − 1 ≤ 0 for p
by auto

then have A: Busemann-function-at xi ((f^^(r p)) basepoint) basepoint / (r p)
− (2 ∗ deltaG(TYPE( ′a)) + 1 ) ∗ (1/r p) ≤ 0 if p ≥ 1 for p

using order-trans[OF that ‹p ≤ r p›] by (auto simp add: algebra-simps di-
vide-simps)

have B: (λp. Busemann-function-at xi ((f^^(p)) basepoint) basepoint / p − (2 ∗
deltaG(TYPE( ′a)) + 1 ) ∗ (1/p)) −−−−→ additive-strength f xi − (2 ∗ deltaG(TYPE( ′a))
+ 1 ) ∗ 0

by (intro tendsto-intros assms fxi)
have additive-strength f xi − (2 ∗ deltaG TYPE( ′a) + 1 ) ∗ 0 ≤ 0
apply (rule LIMSEQ-le-const2 [OF LIMSEQ-subseq-LIMSEQ[OF B ‹strict-mono

r›]]) using A unfolding comp-def by auto
then show ?thesis using xi fxi by auto

qed

Applying the previous result to the inverse map, we deduce that there is
also a fixed point with nonnegative strength.
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lemma isometry-not-elliptic-has-repelling-fixed-point:
assumes isometry f

¬(elliptic-isometry f )
shows ∃ xi ∈ Gromov-boundary. Gromov-extension f xi = xi ∧ additive-strength

f xi ≥ 0
proof −

have ∗: ¬elliptic-isometry (inv f )
using elliptic-isometry-inv-iff isometry-inverse(2 )[OF assms(1 )] assms(2 ) by

auto
obtain xi where xi: xi ∈ Gromov-boundary Gromov-extension (inv f ) xi = xi

additive-strength (inv f ) xi ≤ 0
using isometry-not-elliptic-has-attracting-fixed-point[OF isometry-inverse(1 )[OF

assms(1 )] ∗] by auto
have ∗: Gromov-extension f xi = xi

using Gromov-extension-inv-fixed-point[OF isometry-inverse(1 )[OF assms(1 )]
xi(2 )] inv-inv-eq[OF isometry-inverse(2 )[OF assms(1 )]] by auto

moreover have additive-strength f xi ≥ 0
using additive-strength-inv[OF assms(1 ) ∗] xi(3 ) by auto

ultimately show ?thesis
using xi(1 ) by auto

qed

19.4.1 Parabolic isometries

We show that a parabolic isometry has (at least) one neutral fixed point at
infinity.
lemma parabolic-fixed-point:

assumes parabolic-isometry f
shows neutral-fixed-point f ∈ Gromov-boundary

Gromov-extension f (neutral-fixed-point f ) = neutral-fixed-point f
additive-strength f (neutral-fixed-point f ) = 0

proof −
obtain xi where xi: xi ∈ Gromov-boundary Gromov-extension f xi = xi

using isometry-not-elliptic-has-attracting-fixed-point parabolic-isometryD[OF
assms] by blast

moreover have additive-strength f xi = 0
using stable-translation-length-eq-additive-strength[OF parabolic-isometryD(1 )[OF

assms] xi(2 )]
parabolic-isometryD(3 )[OF assms] by auto

ultimately have A: ∃ xi. xi ∈ Gromov-boundary ∧ Gromov-extension f xi = xi
∧ additive-strength f xi = 0

by auto
show neutral-fixed-point f ∈ Gromov-boundary

Gromov-extension f (neutral-fixed-point f ) = neutral-fixed-point f
additive-strength f (neutral-fixed-point f ) = 0

unfolding neutral-fixed-point-def using someI-ex[OF A] by auto
qed

Parabolic isometries have exactly one fixed point, the neutral fixed point at
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infinity. The proof goes as follows: if it has another fixed point, then the
orbit of a basepoint would stay on the horospheres centered at both fixed
points. But the intersection of two horospheres based at different points
is a a bounded set. Hence, the map has a bounded orbit, and is therefore
elliptic.
theorem parabolic-unique-fixed-point:

assumes parabolic-isometry f
shows Gromov-extension f xi = xi ←→ xi = neutral-fixed-point f

proof (auto simp add: parabolic-fixed-point[OF assms])
assume H : Gromov-extension f xi = xi
have ∗: additive-strength f xi = 0
using stable-translation-length-eq-additive-strength[OF parabolic-isometryD(1 )[OF

assms] H ]
parabolic-isometryD(3 )[OF assms] by auto

show xi = neutral-fixed-point f
proof (rule ccontr)

assume N : xi 6= neutral-fixed-point f
define C where C = 2 ∗ real-of-ereal (extended-Gromov-product-at basepoint

xi (neutral-fixed-point f )) + 4 ∗ deltaG(TYPE( ′a))
have A: dist basepoint ((f^^n) basepoint) ≤ C for n
proof −
have dist ((f^^n) basepoint) basepoint − 2 ∗ real-of-ereal (extended-Gromov-product-at

basepoint xi (neutral-fixed-point f )) − 2 ∗ deltaG(TYPE( ′a))
≤ max (Busemann-function-at xi ((f^^n) basepoint) basepoint) (Busemann-function-at

(neutral-fixed-point f ) ((f^^n) basepoint) basepoint)
using dist-le-max-Busemann-functions[OF N ] by (simp add: algebra-simps)

also have ... ≤ max (n ∗ additive-strength f xi + 2 ∗ deltaG(TYPE( ′a))) (n
∗ additive-strength f (neutral-fixed-point f ) + 2 ∗ deltaG(TYPE( ′a)))

apply (intro mono-intros)
using Busemann-function-eq-additive-strength[OF parabolic-isometryD(1 )[OF

assms] H , of n basepoint]
Busemann-function-eq-additive-strength[OF parabolic-isometryD(1 )[OF assms]

parabolic-fixed-point(2 )[OF assms], of n basepoint]
by auto

also have ... = 2 ∗ deltaG(TYPE( ′a))
unfolding ∗ parabolic-fixed-point[OF assms] by auto

finally show ?thesis
unfolding C-def by (simp add: algebra-simps dist-commute)

qed
have elliptic-isometry f

apply (rule elliptic-isometryI [of - basepoint])
using parabolic-isometryD(1 )[OF assms] A unfolding bounded-def by auto

then show False
using elliptic-imp-not-parabolic-loxodromic assms by auto

qed
qed

When one iterates a parabolic isometry, the distance to the starting point
can grow at most logarithmically.
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lemma parabolic-logarithmic-growth:
assumes parabolic-isometry (f :: ′a::Gromov-hyperbolic-space ⇒ ′a) n ≥ 1
shows dist x ((f^^n) x) ≤ dist x (f x) + ceiling (log 2 n) ∗ 16 ∗ deltaG(TYPE( ′a))

using dist-le-additive-strength[OF parabolic-isometryD(1 )[OF assms(1 )] parabolic-fixed-point(2 )[OF
assms(1 )] - assms(2 )]
parabolic-isometryD(3 )[OF assms(1 )] stable-translation-length-eq-additive-strength[OF
parabolic-isometryD(1 )[OF assms(1 )] parabolic-fixed-point(2 )[OF assms(1 )]]
by auto

It follows that there is no parabolic isometry in trees, since the formula
in the previous lemma shows that there is no orbit growth as δ = 0, and
therefore orbits are bounded, contradicting the parabolicity of the isometry.
lemma tree-no-parabolic-isometry:

assumes isometry (f :: ′a::Gromov-hyperbolic-space-0 ⇒ ′a)
shows elliptic-isometry f ∨ loxodromic-isometry f

proof −
have ¬parabolic-isometry f
proof

assume P: parabolic-isometry f
have dist basepoint ((f^^n) basepoint) ≤ dist basepoint (f basepoint) if n ≥ 1

for n
using parabolic-logarithmic-growth[OF P that, of basepoint] by auto

then have ∗: dist basepoint ((f^^n) basepoint) ≤ dist basepoint (f basepoint)
for n

by (cases n ≥ 1 , auto simp add: not-less-eq-eq)
have elliptic-isometry f

apply (rule elliptic-isometryI [OF - assms, of basepoint]) using ∗ unfolding
bounded-def by auto

then show False
using elliptic-imp-not-parabolic-loxodromic P by auto

qed
then show ?thesis

using elliptic-or-parabolic-or-loxodromic[OF assms] by auto
qed

19.4.2 Loxodromic isometries

A loxodromic isometry has (at least) two fixed points at infinity, one at-
tracting and one repelling. We have already constructed fixed points with
nonnegative and nonpositive strengths. Since the strength is nonzero (its
absolute value is the stable translation length), then these fixed points cor-
respond to what we want.
lemma loxodromic-attracting-fixed-point:

assumes loxodromic-isometry f
shows attracting-fixed-point f ∈ Gromov-boundary

Gromov-extension f (attracting-fixed-point f ) = attracting-fixed-point f
additive-strength f (attracting-fixed-point f ) < 0

proof −
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obtain xi where xi: xi ∈ Gromov-boundary Gromov-extension f xi = xi addi-
tive-strength f xi ≤ 0

using isometry-not-elliptic-has-attracting-fixed-point loxodromic-isometryD[OF
assms] by blast

moreover have additive-strength f xi < 0
using stable-translation-length-eq-additive-strength[OF loxodromic-isometryD(1 )[OF

assms] xi(2 )]
loxodromic-isometryD(3 )[OF assms] xi(3 ) by auto

ultimately have A: ∃ xi. xi ∈ Gromov-boundary ∧ Gromov-extension f xi = xi
∧ additive-strength f xi < 0

by auto
show attracting-fixed-point f ∈ Gromov-boundary

Gromov-extension f (attracting-fixed-point f ) = attracting-fixed-point f
additive-strength f (attracting-fixed-point f ) < 0

unfolding attracting-fixed-point-def using someI-ex[OF A] by auto
qed

lemma loxodromic-repelling-fixed-point:
assumes loxodromic-isometry f
shows repelling-fixed-point f ∈ Gromov-boundary

Gromov-extension f (repelling-fixed-point f ) = repelling-fixed-point f
additive-strength f (repelling-fixed-point f ) > 0

proof −
obtain xi where xi: xi ∈ Gromov-boundary Gromov-extension f xi = xi addi-

tive-strength f xi ≥ 0
using isometry-not-elliptic-has-repelling-fixed-point loxodromic-isometryD[OF

assms] by blast
moreover have additive-strength f xi > 0
using stable-translation-length-eq-additive-strength[OF loxodromic-isometryD(1 )[OF

assms] xi(2 )]
loxodromic-isometryD(3 )[OF assms] xi(3 ) by auto

ultimately have A: ∃ xi. xi ∈ Gromov-boundary ∧ Gromov-extension f xi = xi
∧ additive-strength f xi > 0

by auto
show repelling-fixed-point f ∈ Gromov-boundary

Gromov-extension f (repelling-fixed-point f ) = repelling-fixed-point f
additive-strength f (repelling-fixed-point f ) > 0

unfolding repelling-fixed-point-def using someI-ex[OF A] by auto
qed

The attracting and repelling fixed points of a loxodromic isometry are dis-
tinct – precisely since one is attracting and the other is repelling.
lemma attracting-fixed-point-neq-repelling-fixed-point:

assumes loxodromic-isometry f
shows attracting-fixed-point f 6= repelling-fixed-point f

using loxodromic-repelling-fixed-point[OF assms] loxodromic-attracting-fixed-point[OF
assms] by auto

The attracting fixed point of a loxodromic isometry is indeed attracting.
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Moreover, the convergence is uniform away from the repelling fixed point.
This is expressed in the following proposition, where neighborhoods of the
repelling and attracting fixed points are given by the property that the
Gromov product with the fixed point is large.
The proof goes as follows. First, the Busemann function with respect to the
fixed points at infinity evolves like the strength. Therefore, fne tends to the
repulsive fixed point in negative time, and to the attracting one in positive
time. Consider now a general point x with (ξ−, x)e ≤ K. This means that
the geodesics from e to x and ξ− diverge before time K. For large n, since
f−ne is close to ξ−, we also get the inequality (f−ne, x)e ≤ K. Applying
fn and using the invariance of the Gromov product under isometries yields
(e, fnx)fne ≤ K. But this Gromov product is equal to d(e, fne)−(fne, fnx)e
(this is a general property of Gromov products). In particular, (fne, fnx) ≥
d(e, fne) −K, and moreover d(e, fne) is large. Since fne is close to ξ+, it
follows that fnx is also close to ξ+, as desired.
The real proof requires some more care as everything should be done in
ereal, and moreover every inequality is only true up to some multiple of δ.
But everything works in the way just described above.
proposition loxodromic-attracting-fixed-point-attracts-uniformly:

assumes loxodromic-isometry f
shows ∃N . ∀n ≥ N . ∀ x. extended-Gromov-product-at basepoint x (repelling-fixed-point

f ) ≤ ereal K
−→ extended-Gromov-product-at basepoint (((Gromov-extension f )^^n) x)

(attracting-fixed-point f ) ≥ ereal M
proof −

have I : isometry f
using loxodromic-isometryD(1 )[OF assms] by simp

have J : |ereal r | 6= ∞ for r by auto

We show that fne tends to the repelling fixed point in negative time.
have (λn. ereal (Busemann-function-at (repelling-fixed-point f ) ((inv f ^^ n)

basepoint) basepoint)) −−−−→ − ∞
proof (rule tendsto-sandwich[of λn. −∞ - - λn. ereal(− real n ∗ additive-strength

f (repelling-fixed-point f ) + 2 ∗ deltaG(TYPE( ′a))), OF - always-eventually], auto)
fix n
have Busemann-function-at (repelling-fixed-point f ) ((inv f ^^ n) basepoint)

basepoint ≤ real n ∗ additive-strength (inv f ) (repelling-fixed-point f ) + 2 ∗ deltaG(TYPE( ′a))
using Busemann-function-eq-additive-strength[OF isometry-inverse(1 )[OF I ]
Gromov-extension-inv-fixed-point[OF I loxodromic-repelling-fixed-point(2 )[OF

assms]], of n basepoint] by auto
then show Busemann-function-at (repelling-fixed-point f ) ((inv f ^^ n) base-

point) basepoint ≤ 2 ∗ deltaG(TYPE( ′a)) − real n ∗ additive-strength f (repelling-fixed-point
f )

by (simp add: I additive-strength-inv assms loxodromic-repelling-fixed-point(2 ))
next

have (λn. ereal (2 ∗ deltaG TYPE( ′a)) + ereal (− real n) ∗ additive-strength
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f (repelling-fixed-point f )) −−−−→ ereal (2 ∗ deltaG (TYPE( ′a))) + (− ∞) ∗ ad-
ditive-strength f (repelling-fixed-point f )

apply (intro tendsto-intros) using loxodromic-repelling-fixed-point(3 )[OF
assms] by auto

then show (λn. ereal (2 ∗ deltaG TYPE( ′a) − real n ∗ additive-strength f
(repelling-fixed-point f ))) −−−−→ − ∞

using loxodromic-repelling-fixed-point(3 )[OF assms] by auto
qed
then have (λn. to-Gromov-completion (((inv f )^^n) basepoint)) −−−−→ re-

pelling-fixed-point f
by (rule Busemann-function-minus-infinity-imp-convergent[of - - basepoint])

then have (λn. extended-Gromov-product-at basepoint (to-Gromov-completion
(((inv f )^^n) basepoint)) (repelling-fixed-point f )) −−−−→ ∞

unfolding Gromov-completion-boundary-limit[OF loxodromic-repelling-fixed-point(1 )[OF
assms]] by simp

then obtain Nr where Nr :
∧

n. n ≥ Nr =⇒ extended-Gromov-product-at base-
point (to-Gromov-completion (((inv f )^^n) basepoint)) (repelling-fixed-point f ) ≥
ereal (K + deltaG(TYPE( ′a)) + 1 )

unfolding Lim-PInfty by auto

We show that fne tends to the attracting fixed point in positive time.
have (λn. ereal (Busemann-function-at (attracting-fixed-point f ) ((f ^^ n) base-

point) basepoint)) −−−−→ − ∞
proof (rule tendsto-sandwich[of λn. −∞ - - λn. ereal(real n ∗ additive-strength f

(attracting-fixed-point f ) + 2 ∗ deltaG(TYPE( ′a))), OF - always-eventually], auto)
fix n
show Busemann-function-at (attracting-fixed-point f ) ((f ^^ n) basepoint) base-

point ≤ real n ∗ additive-strength f (attracting-fixed-point f ) + 2 ∗ deltaG(TYPE( ′a))
using Busemann-function-eq-additive-strength[OF I loxodromic-attracting-fixed-point(2 )[OF

assms], of n basepoint] by auto
next

have (λn. ereal (2 ∗ deltaG TYPE( ′a)) + ereal (real n) ∗ additive-strength
f (attracting-fixed-point f )) −−−−→ ereal (2 ∗ deltaG (TYPE( ′a))) + (∞) ∗ addi-
tive-strength f (attracting-fixed-point f )

apply (intro tendsto-intros) using loxodromic-attracting-fixed-point(3 )[OF
assms] by auto

then show (λn. ereal (real n ∗ additive-strength f (attracting-fixed-point f ) +
2 ∗ deltaG TYPE( ′a))) −−−−→ − ∞

using loxodromic-attracting-fixed-point(3 )[OF assms] by (auto simp add:
algebra-simps)

qed
then have ∗: (λn. to-Gromov-completion (((f )^^n) basepoint)) −−−−→ attract-

ing-fixed-point f
by (rule Busemann-function-minus-infinity-imp-convergent[of - - basepoint])

then have (λn. extended-Gromov-product-at basepoint (to-Gromov-completion
(((f )^^n) basepoint)) (attracting-fixed-point f )) −−−−→ ∞

unfolding Gromov-completion-boundary-limit[OF loxodromic-attracting-fixed-point(1 )[OF
assms]] by simp

then obtain Na where Na:
∧

n. n ≥ Na =⇒ extended-Gromov-product-at
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basepoint (to-Gromov-completion (((f )^^n) basepoint)) (attracting-fixed-point f ) ≥
ereal (M + deltaG(TYPE( ′a)))

unfolding Lim-PInfty by auto

We show that the distance between e and fne tends to infinity.
have (λn. extended-Gromov-distance (to-Gromov-completion basepoint) (to-Gromov-completion

((f^^n) basepoint))) −−−−→
extended-Gromov-distance (to-Gromov-completion basepoint) (attracting-fixed-point

f )
using ∗ extended-Gromov-distance-continuous[of to-Gromov-completion base-

point]
by (metis UNIV-I continuous-on filterlim-compose tendsto-at-iff-tendsto-nhds)

then have (λn. extended-Gromov-distance (to-Gromov-completion basepoint)
(to-Gromov-completion ((f^^n) basepoint))) −−−−→ ∞

using loxodromic-attracting-fixed-point(1 )[OF assms] by simp
then obtain Nd where Nd:

∧
n. n ≥ Nd =⇒ dist basepoint ((f^^n) basepoint)

≥ M + K + 3 ∗ deltaG(TYPE( ′a))
unfolding Lim-PInfty by auto

Now, if n is large enough so that all the convergences to infinity above are
almost realized, we show that a point x which is not too close to ξ− is sent
by fn to a point close to ξ+, uniformly.

define N where N = Nr + Na + Nd
have extended-Gromov-product-at basepoint (((Gromov-extension f )^^n) x) (attracting-fixed-point

f ) ≥ ereal M if H : extended-Gromov-product-at basepoint x (repelling-fixed-point
f ) ≤ K n ≥ N for n x

proof −
have n: n ≥ Nr n ≥ Na n ≥ Nd using that unfolding N-def by auto

have min (extended-Gromov-product-at basepoint x (to-Gromov-completion
(((inv f )^^n) basepoint)))

(extended-Gromov-product-at basepoint (to-Gromov-completion (((inv
f )^^n) basepoint)) (repelling-fixed-point f ))

≤ extended-Gromov-product-at basepoint x (repelling-fixed-point f ) +
deltaG(TYPE( ′a))

by (intro mono-intros)
also have ... ≤ ereal K + deltaG(TYPE( ′a))

apply (intro mono-intros) using H by auto
finally have min (extended-Gromov-product-at basepoint x (to-Gromov-completion

(((inv f )^^n) basepoint)))
(extended-Gromov-product-at basepoint (to-Gromov-completion (((inv

f )^^n) basepoint)) (repelling-fixed-point f ))
≤ ereal K + deltaG(TYPE( ′a))

by simp
moreover have extended-Gromov-product-at basepoint (to-Gromov-completion

(((inv f )^^n) basepoint)) (repelling-fixed-point f ) > ereal K + deltaG(TYPE( ′a))
using Nr [OF n(1 )] ereal-le-less by auto

ultimately have A: extended-Gromov-product-at basepoint x (to-Gromov-completion
(((inv f )^^n) basepoint)) ≤ ereal K + deltaG(TYPE( ′a))

using not-le by fastforce
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have ∗: ((inv f )^^n) ((f^^n) z) = z for z
by (metis I bij-is-inj inj-fn inv-f-f inv-fn isometry-inverse(2 ))

have ∗∗: x = Gromov-extension ((inv f )^^n) (Gromov-extension (f^^n) x)
using Gromov-extension-isometry-composition[OF isometry-iterates[OF I ]

isometry-iterates[OF isometry-inverse(1 )[OF I ]], of n n]
unfolding comp-def ∗ apply auto by meson

have extended-Gromov-product-at (((inv f )^^n) ((f^^n) basepoint)) (Gromov-extension
((inv f )^^n) (Gromov-extension (f^^n) x)) (Gromov-extension (((inv f )^^n)) (to-Gromov-completion
basepoint)) ≤ ereal K + deltaG(TYPE( ′a))

using A by (simp add: ∗ ∗∗[symmetric])
then have B: extended-Gromov-product-at ((f^^n) basepoint) (Gromov-extension

(f^^n) x) (to-Gromov-completion basepoint) ≤ ereal K + deltaG(TYPE( ′a))
unfolding Gromov-extension-preserves-extended-Gromov-product[OF isome-

try-iterates[OF isometry-inverse(1 )[OF I ]]] by simp

have dist basepoint ((f^^n) basepoint) − deltaG(TYPE( ′a)) ≤
extended-Gromov-product-at ((f^^n) basepoint) (Gromov-extension (f^^n) x)

(to-Gromov-completion basepoint) + extended-Gromov-product-at basepoint (Gromov-extension
(f^^n) x) (to-Gromov-completion ((f^^n) basepoint))

using extended-Gromov-product-add-ge[of basepoint (f^^n) basepoint Gro-
mov-extension (f^^n) x] by (auto simp add: algebra-simps)

also have ... ≤ (ereal K + deltaG(TYPE( ′a))) + extended-Gromov-product-at
basepoint (Gromov-extension (f^^n) x) (to-Gromov-completion ((f^^n) basepoint))

by (intro mono-intros B)
finally have extended-Gromov-product-at basepoint (Gromov-extension (f^^n)

x) (to-Gromov-completion ((f^^n) basepoint)) ≥ dist basepoint ((f^^n) basepoint)
− (2 ∗ deltaG(TYPE( ′a)) + K )

apply (simp only: ereal-minus-le [OF J ] ereal-minus(1 ) [symmetric])
apply (auto simp add: algebra-simps)

apply (metis (no-types, opaque-lifting) add.assoc add.left-commute mult-2-right
plus-ereal.simps(1 ))

done
moreover have dist basepoint ((f ^^ n) basepoint) − (2 ∗ deltaG TYPE( ′a)

+ K ) ≥ M + deltaG(TYPE( ′a))
using Nd[OF n(3 )] by auto
ultimately have extended-Gromov-product-at basepoint (Gromov-extension

(f^^n) x) (to-Gromov-completion ((f^^n) basepoint)) ≥ ereal (M + deltaG(TYPE( ′a)))
using order-trans ereal-le-le by auto

then have ereal (M + deltaG(TYPE( ′a))) ≤ min (extended-Gromov-product-at
basepoint (Gromov-extension (f^^n) x) (to-Gromov-completion ((f^^n) basepoint)))

(extended-Gromov-product-at basepoint
(to-Gromov-completion ((f^^n) basepoint)) (attracting-fixed-point f ))

using Na[OF n(2 )] by (simp add: extended-Gromov-product-at-commute)
also have ... ≤ extended-Gromov-product-at basepoint (Gromov-extension (f^^n)

x) (attracting-fixed-point f ) + deltaG(TYPE( ′a))
by (intro mono-intros)

finally have ereal M ≤ extended-Gromov-product-at basepoint (Gromov-extension
(f^^n) x) (attracting-fixed-point f )

unfolding plus-ereal.simps(1 )[symmetric] ereal-add-le-add-iff2 by auto
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then show ?thesis
by (simp add: Gromov-extension-isometry-iterates I )

qed
then show ?thesis

by auto
qed

We deduce pointwise convergence from the previous result.
lemma loxodromic-attracting-fixed-point-attracts:

assumes loxodromic-isometry f
xi 6= repelling-fixed-point f

shows (λn. ((Gromov-extension f )^^n) xi) −−−−→ attracting-fixed-point f
proof −

have (λn. extended-Gromov-product-at basepoint (((Gromov-extension f )^^n) xi)
(attracting-fixed-point f )) −−−−→ ∞

unfolding Lim-PInfty using loxodromic-attracting-fixed-point-attracts-uniformly[OF
assms(1 )]

by auto (metis Gromov-boundary-extended-product-PInf assms(2 ) dual-order .refl
real-le-ereal-iff real-of-ereal-le-0 zero-ereal-def )

then show ?thesis
unfolding Gromov-completion-boundary-limit[OF loxodromic-attracting-fixed-point(1 )[OF

assms(1 )]] by simp
qed

Finally, we show that a loxodromic isometry has exactly two fixed points, its
attracting and repelling fixed points defined above. Indeed, we already know
that these points are fixed. It remains to see that there is no other fixed
point. But a fixed point which is not the repelling one is both stationary
and attracted to the attracting fixed point by the previous lemma, hence it
has to coincide with the attracting fixed point.
theorem loxodromic-unique-fixed-points:

assumes loxodromic-isometry f
shows Gromov-extension f xi = xi ←→ xi = attracting-fixed-point f ∨ xi =

repelling-fixed-point f
proof −

have xi = attracting-fixed-point f if H : Gromov-extension f xi = xi xi 6= re-
pelling-fixed-point f for xi

proof −
have ((Gromov-extension f )^^n) xi = xi for n

apply (induction n) using H (1 ) by auto
then have (λn. ((Gromov-extension f )^^n) xi) −−−−→ xi

by auto
then show ?thesis
using loxodromic-attracting-fixed-point-attracts[OF assms H (2 )] LIMSEQ-unique

by auto
qed
then show ?thesis
using loxodromic-attracting-fixed-point(2 )[OF assms] loxodromic-repelling-fixed-point(2 )[OF

assms] by auto
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qed

end
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