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Abstract

This entry formalizes the connection between Gröbner bases and
Macaulay matrices (sometimes also referred to as ‘generalized Sylvester
matrices’). In particular, it contains a method for computing Gröbner
bases, which proceeds by first constructing some Macaulay matrix of
the initial set of polynomials, then row-reducing this matrix, and finally
converting the result back into a set of polynomials. The output is
shown to be a Gröbner basis if the Macaulay matrix constructed in
the first step is sufficiently large. In order to obtain concrete upper
bounds on the size of the matrix (and hence turn the method into an
effectively executable algorithm), Dubé’s degree bounds on Gröbner
bases are utilized; consequently, they are also part of the formalization.
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1 Introduction

The formalization consists of two main parts:

• The connection between Gröbner bases and Macaulay matrices (or
‘generalized Sylvester matrices’), due to Wiesinger-Widi [4]. In partic-
ular, this includes a method for computing Gröbner bases via Macaulay
matrices.

• Dubé’s upper bounds on the degrees of Gröbner bases [1]. These
bounds are not only of theoretical interest, but are also necessary to
turn the above-mentioned method for computing Gröbner bases into
an actual algorithm.

For more information about this formalization, see the accompanying pa-
pers [2] (Dubé’s bound) and [3] (Macaulay matrices).

1.1 Future Work

This formalization could be extended by formalizing improved degree bounds
for special input. For instance, Wiesinger-Widi in [4] obtains much smaller
bounds if the initial set of polynomials only consists of two binomials.

2 Degree Sections of Power-Products
theory Degree-Section

imports Polynomials.MPoly-PM
begin

definition deg-sect :: ′x set ⇒ nat ⇒ ( ′x::countable ⇒0 nat) set
where deg-sect X d = .[X ] ∩ {t. deg-pm t = d}

definition deg-le-sect :: ′x set ⇒ nat ⇒ ( ′x::countable ⇒0 nat) set
where deg-le-sect X d = (

⋃
d0≤d. deg-sect X d0 )

lemma deg-sectI : t ∈ .[X ] =⇒ deg-pm t = d =⇒ t ∈ deg-sect X d
by (simp add: deg-sect-def )

lemma deg-sectD:
assumes t ∈ deg-sect X d
shows t ∈ .[X ] and deg-pm t = d
using assms by (simp-all add: deg-sect-def )

lemma deg-le-sect-alt: deg-le-sect X d = .[X ] ∩ {t. deg-pm t ≤ d}
by (auto simp: deg-le-sect-def deg-sect-def )

lemma deg-le-sectI : t ∈ .[X ] =⇒ deg-pm t ≤ d =⇒ t ∈ deg-le-sect X d
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by (simp add: deg-le-sect-alt)

lemma deg-le-sectD:
assumes t ∈ deg-le-sect X d
shows t ∈ .[X ] and deg-pm t ≤ d
using assms by (simp-all add: deg-le-sect-alt)

lemma deg-sect-zero [simp]: deg-sect X 0 = {0}
by (auto simp: deg-sect-def zero-in-PPs)

lemma deg-sect-empty: deg-sect {} d = (if d = 0 then {0} else {})
by (auto simp: deg-sect-def )

lemma deg-sect-singleton [simp]: deg-sect {x} d = {Poly-Mapping.single x d}
by (auto simp: deg-sect-def deg-pm-single PPs-singleton)

lemma deg-le-sect-zero [simp]: deg-le-sect X 0 = {0}
by (auto simp: deg-le-sect-def )

lemma deg-le-sect-empty [simp]: deg-le-sect {} d = {0}
by (auto simp: deg-le-sect-alt varnum-eq-zero-iff )

lemma deg-le-sect-singleton: deg-le-sect {x} d = Poly-Mapping.single x ‘ {..d}
by (auto simp: deg-le-sect-alt deg-pm-single PPs-singleton)

lemma deg-sect-mono: X ⊆ Y =⇒ deg-sect X d ⊆ deg-sect Y d
by (auto simp: deg-sect-def dest: PPs-mono)

lemma deg-le-sect-mono-1 : X ⊆ Y =⇒ deg-le-sect X d ⊆ deg-le-sect Y d
by (auto simp: deg-le-sect-alt dest: PPs-mono)

lemma deg-le-sect-mono-2 : d1 ≤ d2 =⇒ deg-le-sect X d1 ⊆ deg-le-sect X d2
by (auto simp: deg-le-sect-alt)

lemma zero-in-deg-le-sect: 0 ∈ deg-le-sect n d
by (simp add: deg-le-sect-alt zero-in-PPs)

lemma deg-sect-disjoint: d1 6= d2 =⇒ deg-sect X d1 ∩ deg-sect Y d2 = {}
by (auto simp: deg-sect-def )

lemma deg-le-sect-deg-sect-disjoint: d1 < d2 =⇒ deg-le-sect Y d1 ∩ deg-sect X d2
= {}

by (auto simp: deg-sect-def deg-le-sect-alt)

lemma deg-sect-Suc:
deg-sect X (Suc d) = (

⋃
x∈X . (+) (Poly-Mapping.single x 1 ) ‘ deg-sect X d) (is

?A = ?B)
proof (rule set-eqI )

fix t
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show t ∈ ?A ←→ t ∈ ?B
proof

assume t ∈ ?A
hence t ∈ .[X ] and deg-pm t = Suc d by (rule deg-sectD)+
from this(2 ) have keys t 6= {} by auto
then obtain x where x ∈ keys t by blast
hence 1 ≤ lookup t x by (simp add: in-keys-iff )
from ‹t ∈ .[X ]› have keys t ⊆ X by (rule PPsD)
with ‹x ∈ keys t› have x ∈ X ..
let ?s = Poly-Mapping.single x (1 ::nat)
from ‹1 ≤ lookup t x› have ?s adds t

by (auto simp: lookup-single when-def intro!: adds-poly-mappingI le-funI )
hence t: ?s + (t − ?s) = t by (metis add.commute adds-minus)
have t − ?s ∈ deg-sect X d
proof (rule deg-sectI )

from ‹t ∈ .[X ]› show t − ?s ∈ .[X ] by (rule PPs-closed-minus)
next

from deg-pm-plus[of ?s t − ?s] have deg-pm t = Suc (deg-pm (t − ?s))
by (simp only: t deg-pm-single)

thus deg-pm (t − ?s) = d by (simp add: ‹deg-pm t = Suc d›)
qed
hence ?s + (t − ?s) ∈ (+) ?s ‘ deg-sect X d by (rule imageI )
hence t ∈ (+) ?s ‘ deg-sect X d by (simp only: t)
with ‹x ∈ X› show t ∈ ?B ..

next
assume t ∈ ?B
then obtain x where x ∈ X and t ∈ (+) (Poly-Mapping.single x 1 ) ‘ deg-sect

X d ..
from this(2 ) obtain s where s: s ∈ deg-sect X d

and t: t = Poly-Mapping.single x 1 + s (is t = ?s + s) ..
show t ∈ ?A
proof (rule deg-sectI )

from ‹x ∈ X› have ?s ∈ .[X ] by (rule PPs-closed-single)
moreover from s have s ∈ .[X ] by (rule deg-sectD)
ultimately show t ∈ .[X ] unfolding t by (rule PPs-closed-plus)

next
from s have deg-pm s = d by (rule deg-sectD)
thus deg-pm t = Suc d by (simp add: t deg-pm-single deg-pm-plus)

qed
qed

qed

lemma deg-sect-insert:
deg-sect (insert x X) d = (

⋃
d0≤d. (+) (Poly-Mapping.single x (d − d0 )) ‘

deg-sect X d0 )
(is ?A = ?B)

proof (rule set-eqI )
fix t
show t ∈ ?A ←→ t ∈ ?B
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proof
assume t ∈ ?A
hence t ∈ .[insert x X ] and deg-pm t = d by (rule deg-sectD)+
from this(1 ) obtain e tx where tx ∈ .[X ] and t: t = Poly-Mapping.single x

e + tx
by (rule PPs-insertE)

have e + deg-pm tx = deg-pm t by (simp add: t deg-pm-plus deg-pm-single)
hence e + deg-pm tx = d by (simp only: ‹deg-pm t = d›)
hence deg-pm tx ∈ {..d} and e: e = d − deg-pm tx by simp-all
from ‹tx ∈ .[X ]› refl have tx ∈ deg-sect X (deg-pm tx) by (rule deg-sectI )
hence t ∈ (+) (Poly-Mapping.single x (d − deg-pm tx)) ‘ deg-sect X (deg-pm

tx)
unfolding t e by (rule imageI )

with ‹deg-pm tx ∈ {..d}› show t ∈ ?B ..
next

assume t ∈ ?B
then obtain d0 where d0 ∈ {..d} and t ∈ (+) (Poly-Mapping.single x (d −

d0 )) ‘ deg-sect X d0 ..
from this(2 ) obtain s where s: s ∈ deg-sect X d0

and t: t = Poly-Mapping.single x (d − d0 ) + s (is t = ?s + s) ..
show t ∈ ?A
proof (rule deg-sectI )

have ?s ∈ .[insert x X ] by (rule PPs-closed-single, simp)
from s have s ∈ .[X ] by (rule deg-sectD)
also have ... ⊆ .[insert x X ] by (rule PPs-mono, blast)
finally have s ∈ .[insert x X ] .

with ‹?s ∈ .[insert x X ]› show t ∈ .[insert x X ] unfolding t by (rule
PPs-closed-plus)

next
from s have deg-pm s = d0 by (rule deg-sectD)
moreover from ‹d0 ∈ {..d}› have d0 ≤ d by simp
ultimately show deg-pm t = d by (simp add: t deg-pm-single deg-pm-plus)

qed
qed

qed

lemma deg-le-sect-Suc: deg-le-sect X (Suc d) = deg-le-sect X d ∪ deg-sect X (Suc
d)

by (simp add: deg-le-sect-def atMost-Suc Un-commute)

lemma deg-le-sect-Suc-2 :
deg-le-sect X (Suc d) = insert 0 (

⋃
x∈X . (+) (Poly-Mapping.single x 1 ) ‘

deg-le-sect X d)
(is ?A = ?B)

proof −
have eq1 : {Suc 0 ..Suc d} = Suc ‘ {..d} by (simp add: image-Suc-atMost)
have insert 0 {1 ..Suc d} = {..Suc d} by fastforce
hence ?A = (

⋃
d0∈insert 0 {1 ..Suc d}. deg-sect X d0 ) by (simp add: deg-le-sect-def )

also have ... = insert 0 (
⋃

d0≤d. deg-sect X (Suc d0 )) by (simp add: eq1 )
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also have ... = insert 0 (
⋃

d0≤d. (
⋃

x∈X . (+) (Poly-Mapping.single x 1 ) ‘
deg-sect X d0 ))

by (simp only: deg-sect-Suc)
also have ... = insert 0 (

⋃
x∈X . (+) (Poly-Mapping.single x 1 ) ‘ (

⋃
d0≤d.

deg-sect X d0 ))
by fastforce

also have ... = ?B by (simp only: deg-le-sect-def )
finally show ?thesis .

qed

lemma finite-deg-sect:
assumes finite X
shows finite ((deg-sect X d)::( ′x::countable ⇒0 nat) set)

proof (induct d)
case 0
show ?case by simp

next
case (Suc d)
with assms show ?case by (simp add: deg-sect-Suc)

qed

corollary finite-deg-le-sect: finite X =⇒ finite ((deg-le-sect X d)::( ′x::countable ⇒0

nat) set)
by (simp add: deg-le-sect-def finite-deg-sect)

lemma keys-subset-deg-le-sectI :
assumes p ∈ P[X ] and poly-deg p ≤ d
shows keys p ⊆ deg-le-sect X d

proof
fix t
assume t ∈ keys p
also from assms(1 ) have ... ⊆ .[X ] by (rule PolysD)
finally have t ∈ .[X ] .
from ‹t ∈ keys p› have deg-pm t ≤ poly-deg p by (rule poly-deg-max-keys)
from this assms(2 ) have deg-pm t ≤ d by (rule le-trans)
with ‹t ∈ .[X ]› show t ∈ deg-le-sect X d by (rule deg-le-sectI )

qed

lemma binomial-symmetric-plus: (n + k) choose n = (n + k) choose k
by (metis add-diff-cancel-left ′ binomial-symmetric le-add1 )

lemma card-deg-sect:
assumes finite X and X 6= {}
shows card (deg-sect X d) = (d + (card X − 1 )) choose (card X − 1 )
using assms

proof (induct X arbitrary: d)
case empty
thus ?case by simp

next
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case (insert x X)
from insert(1 , 2 ) have eq1 : card (insert x X) = Suc (card X) by simp
show ?case
proof (cases X = {})

case True
thus ?thesis by simp

next
case False
with insert.hyps(1 ) have 0 < card X by (simp add: card-gt-0-iff )
let ?f = λd0 . Poly-Mapping.single x (d − d0 )
from False have eq2 : card (deg-sect X d0 ) = d0 + (card X − 1 ) choose (card

X − 1 ) for d0
by (rule insert.hyps)

have finite {..d} by simp
moreover from insert.hyps(1 ) have ∀ d0∈{..d}. finite ((+) (?f d0 ) ‘ deg-sect

X d0 )
by (simp add: finite-deg-sect)

moreover have ∀ d0∈{..d}. ∀ d1∈{..d}. d0 6= d1 −→
((+) (?f d0 ) ‘ deg-sect X d0 ) ∩ ((+) (?f d1 ) ‘ deg-sect X d1 )

= {}
proof (intro ballI impI , rule ccontr)

fix d1 d2 :: nat
assume d1 6= d2
assume ((+) (?f d1 ) ‘ deg-sect X d1 ) ∩ ((+) (?f d2 ) ‘ deg-sect X d2 ) 6= {}
then obtain t where t ∈ ((+) (?f d1 ) ‘ deg-sect X d1 ) ∩ ((+) (?f d2 ) ‘

deg-sect X d2 )
by blast

hence t1 : t ∈ (+) (?f d1 ) ‘ deg-sect X d1 and t2 : t ∈ (+) (?f d2 ) ‘ deg-sect
X d2 by simp-all

from t1 obtain s1 where s1 ∈ deg-sect X d1 and s1 : t = ?f d1 + s1 ..
from this(1 ) have s1 ∈ .[X ] by (rule deg-sectD)
hence keys s1 ⊆ X by (rule PPsD)
with insert.hyps(2 ) have eq3 : lookup s1 x = 0 by (auto simp: in-keys-iff )
from t2 obtain s2 where s2 ∈ deg-sect X d2 and s2 : t = ?f d2 + s2 ..
from this(1 ) have s2 ∈ .[X ] by (rule deg-sectD)
hence keys s2 ⊆ X by (rule PPsD)
with insert.hyps(2 ) have eq4 : lookup s2 x = 0 by (auto simp: in-keys-iff )
from s2 have lookup (?f d1 + s1 ) x = lookup (?f d2 + s2 ) x by (simp only:

s1 )
hence d − d1 = d − d2 by (simp add: lookup-add eq3 eq4 )
moreover assume d1 ∈ {..d} and d2 ∈ {..d}
ultimately have d1 = d2 by simp
with ‹d1 6= d2 › show False ..

qed
ultimately have card (deg-sect (insert x X) d) =

(
∑

d0≤d. card ((+) (monomial (d − d0 ) x) ‘ deg-sect X d0 ))
unfolding deg-sect-insert by (rule card-UN-disjoint)

also from refl have ... = (
∑

d0≤d. card (deg-sect X d0 ))
proof (rule sum.cong)
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fix d0
have inj-on ((+) (monomial (d − d0 ) x)) (deg-sect X d0 ) by (rule, rule

add-left-imp-eq)
thus card ((+) (monomial (d − d0 ) x) ‘ deg-sect X d0 ) = card (deg-sect X

d0 )
by (rule card-image)

qed
also have ... = (

∑
d0≤d. (card X − 1 ) + d0 choose (card X − 1 )) by (simp

only: eq2 add.commute)
also have ... = (

∑
d0≤d. (card X − 1 ) + d0 choose d0 ) by (simp only:

binomial-symmetric-plus)
also have ... = Suc ((card X − 1 ) + d) choose d by (rule sum-choose-lower)
also from ‹0 < card X› have ... = d + (card (insert x X) − 1 ) choose d

by (simp add: eq1 add.commute)
also have ... = d + (card (insert x X) − 1 ) choose (card (insert x X) − 1 )

by (fact binomial-symmetric-plus)
finally show ?thesis .

qed
qed

corollary card-deg-sect-Suc:
assumes finite X
shows card (deg-sect X (Suc d)) = (d + card X) choose (Suc d)

proof (cases X = {})
case True
thus ?thesis by (simp add: deg-sect-empty)

next
case False
with assms have 0 < card X by (simp add: card-gt-0-iff )
from assms False have card (deg-sect X (Suc d)) = (Suc d + (card X − 1 ))

choose (card X − 1 )
by (rule card-deg-sect)

also have ... = (Suc d + (card X − 1 )) choose (Suc d) by (rule sym, rule
binomial-symmetric-plus)

also from ‹0 < card X› have ... = (d + card X) choose (Suc d) by simp
finally show ?thesis .

qed

corollary card-deg-le-sect:
assumes finite X
shows card (deg-le-sect X d) = (d + card X) choose card X

proof (induct d)
case 0
show ?case by simp

next
case (Suc d)
from assms have finite (deg-le-sect X d) by (rule finite-deg-le-sect)
moreover from assms have finite (deg-sect X (Suc d)) by (rule finite-deg-sect)
moreover from lessI have deg-le-sect X d ∩ deg-sect X (Suc d) = {}
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by (rule deg-le-sect-deg-sect-disjoint)
ultimately have card (deg-le-sect X (Suc d)) = card (deg-le-sect X d) + card

(deg-sect X (Suc d))
unfolding deg-le-sect-Suc by (rule card-Un-disjoint)

also from assms have ... = (Suc d + card X) choose Suc d
by (simp add: Suc.hyps card-deg-sect-Suc binomial-symmetric-plus[of d])

also have ... = (Suc d + card X) choose card X by (rule binomial-symmetric-plus)
finally show ?case .

qed

end

3 Utility Definitions and Lemmas about Degree
Bounds for Gröbner Bases

theory Degree-Bound-Utils
imports Groebner-Bases.Groebner-PM

begin

context pm-powerprod
begin

definition is-GB-cofactor-bound :: (( ′x ⇒0 nat) ⇒0
′b::field) set ⇒ nat ⇒ bool

where is-GB-cofactor-bound F b ←→
(∃G. punit.is-Groebner-basis G ∧ ideal G = ideal F ∧ (UN g:G. indets g) ⊆

(UN f :F . indets f ) ∧
(∀ g∈G. ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (

∑
f∈F ′. q f ∗ f ) ∧ (∀ f∈F ′. poly-deg

(q f ∗ f ) ≤ b)))

definition is-hom-GB-bound :: (( ′x ⇒0 nat) ⇒0
′b::field) set ⇒ nat ⇒ bool

where is-hom-GB-bound F b←→ ((∀ f∈F . homogeneous f ) −→ (∀ g∈punit.reduced-GB
F . poly-deg g ≤ b))

lemma is-GB-cofactor-boundI :
assumes punit.is-Groebner-basis G and ideal G = ideal F and

⋃
(indets ‘ G)

⊆
⋃
(indets ‘ F)

and
∧

g. g ∈ G =⇒ ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (
∑

f∈F ′. q f ∗ f ) ∧
(∀ f∈F ′. poly-deg (q f ∗ f ) ≤ b)

shows is-GB-cofactor-bound F b
unfolding is-GB-cofactor-bound-def using assms by blast

lemma is-GB-cofactor-boundE :
fixes F :: (( ′x ⇒0 nat) ⇒0

′b::field) set
assumes is-GB-cofactor-bound F b
obtains G where punit.is-Groebner-basis G and ideal G = ideal F and

⋃
(indets

‘ G) ⊆
⋃
(indets ‘ F)

and
∧

g. g ∈ G =⇒ ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (
∑

f∈F ′. q f ∗ f ) ∧
(∀ f . indets (q f ) ⊆

⋃
(indets ‘ F) ∧ poly-deg (q f ∗ f ) ≤ b ∧
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(f /∈ F ′ −→ q f = 0 ))
proof −

let ?X =
⋃
(indets ‘ F)

from assms obtain G where punit.is-Groebner-basis G and ideal G = ideal F
and

⋃
(indets ‘ G) ⊆ ?X

and 1 :
∧

g. g ∈ G =⇒ ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (
∑

f∈F ′. q f ∗ f ) ∧
(∀ f∈F ′. poly-deg (q f ∗ f ) ≤ b)

by (auto simp: is-GB-cofactor-bound-def )
from this(1 , 2 , 3 ) show ?thesis
proof

fix g
assume g ∈ G
show ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (

∑
f∈F ′. q f ∗ f ) ∧

(∀ f . indets (q f ) ⊆ ?X ∧ poly-deg (q f ∗ f ) ≤ b ∧ (f /∈ F ′ −→ q f =
0 ))

proof (cases g = 0 )
case True
define q where q = (λf ::( ′x ⇒0 nat) ⇒0

′b. 0 ::( ′x ⇒0 nat) ⇒0
′b)

show ?thesis
proof (intro exI conjI allI )

show g = (
∑

f∈{}. q f ∗ f ) by (simp add: True q-def )
qed (simp-all add: q-def )

next
case False
let ?X =

⋃
(indets ‘ F)

from ‹g ∈ G› have ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (
∑

f∈F ′. q f ∗ f ) ∧
(∀ f∈F ′. poly-deg (q f ∗ f ) ≤ b)

by (rule 1 )
then obtain F ′ q0 where finite F ′ and F ′ ⊆ F and g: g = (

∑
f∈F ′. q0 f

∗ f )
and q0 :

∧
f . f ∈ F ′ =⇒ poly-deg (q0 f ∗ f ) ≤ b by blast

define sub where sub = (λx:: ′x. if x ∈ ?X then
monomial (1 :: ′b) (Poly-Mapping.single x (1 ::nat))
else 1 )

have 1 : sub x = monomial 1 (monomial 1 x) if x ∈ indets g for x
proof (simp add: sub-def , rule)

from that ‹g ∈ G› have x ∈
⋃

(indets ‘ G) by blast
also have . . . ⊆ ?X by fact
finally obtain f where f ∈ F and x ∈ indets f ..
assume ∀ f∈F . x /∈ indets f
hence x /∈ indets f using ‹f ∈ F› ..
thus monomial 1 (monomial (Suc 0 ) x) = 1 using ‹x ∈ indets f › ..

qed
have 2 : sub x = monomial 1 (monomial 1 x) if f ∈ F ′ and x ∈ indets f for

f x
proof (simp add: sub-def , rule)

assume ∀ f∈F . x /∈ indets f
moreover from that(1 ) ‹F ′ ⊆ F› have f ∈ F ..
ultimately have x /∈ indets f ..
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thus monomial 1 (monomial (Suc 0 ) x) = 1 using that(2 ) ..
qed
have 3 : poly-subst sub f = f if f ∈ F ′ for f by (rule poly-subst-id, rule 2 ,

rule that)
define q where q = (λf . if f ∈ F ′ then poly-subst sub (q0 f ) else 0 )
show ?thesis
proof (intro exI allI conjI impI )

from 1 have g = poly-subst sub g by (rule poly-subst-id[symmetric])
also have . . . = (

∑
f∈F ′. q f ∗ (poly-subst sub f ))

by (simp add: g poly-subst-sum poly-subst-times q-def cong: sum.cong)
also from refl have . . . = (

∑
f∈F ′. q f ∗ f )

proof (rule sum.cong)
fix f
assume f ∈ F ′

hence poly-subst sub f = f by (rule 3 )
thus q f ∗ poly-subst sub f = q f ∗ f by simp

qed
finally show g = (

∑
f∈F ′. q f ∗ f ) .

next
fix f
have indets (q f ) ⊆ ?X ∧ poly-deg (q f ∗ f ) ≤ b
proof (cases f ∈ F ′)

case True
hence qf : q f = poly-subst sub (q0 f ) by (simp add: q-def )
show ?thesis
proof

show indets (q f ) ⊆ ?X
proof

fix x
assume x ∈ indets (q f )

then obtain y where x ∈ indets (sub y) unfolding qf by (rule
in-indets-poly-substE)

hence y: y ∈ ?X and x ∈ indets (monomial (1 :: ′b) (monomial (1 ::nat)
y))

by (simp-all add: sub-def split: if-splits)
from this(2 ) have x = y by (simp add: indets-monomial)
with y show x ∈ ?X by (simp only:)

qed
next

from ‹f ∈ F ′› have poly-subst sub f = f by (rule 3 )
hence poly-deg (q f ∗ f ) = poly-deg (q f ∗ poly-subst sub f ) by (simp

only:)
also have . . . = poly-deg (poly-subst sub (q0 f ∗ f )) by (simp only: qf

poly-subst-times)
also have . . . ≤ poly-deg (q0 f ∗ f )
proof (rule poly-deg-poly-subst-le)

fix x
show poly-deg (sub x) ≤ 1 by (simp add: sub-def poly-deg-monomial

deg-pm-single)
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qed
also from ‹f ∈ F ′› have . . . ≤ b by (rule q0 )
finally show poly-deg (q f ∗ f ) ≤ b .

qed
next

case False
thus ?thesis by (simp add: q-def )

qed
thus indets (q f ) ⊆ ?X and poly-deg (q f ∗ f ) ≤ b by simp-all

assume f /∈ F ′

thus q f = 0 by (simp add: q-def )
qed fact+

qed
qed

qed

lemma is-GB-cofactor-boundE-Polys:
fixes F :: (( ′x ⇒0 nat) ⇒0

′b::field) set
assumes is-GB-cofactor-bound F b and F ⊆ P[X ]
obtains G where punit.is-Groebner-basis G and ideal G = ideal F and G ⊆

P[X ]
and

∧
g. g ∈ G =⇒ ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (

∑
f∈F ′. q f ∗ f ) ∧

(∀ f . q f ∈ P[X ] ∧ poly-deg (q f ∗ f ) ≤ b ∧ (f /∈ F ′ −→ q f
= 0 ))
proof −

let ?X =
⋃
(indets ‘ F)

have ?X ⊆ X
proof

fix x
assume x ∈ ?X
then obtain f where f ∈ F and x ∈ indets f ..
from this(1 ) assms(2 ) have f ∈ P[X ] ..
hence indets f ⊆ X by (rule PolysD)
with ‹x ∈ indets f › show x ∈ X ..

qed
from assms(1 ) obtain G where punit.is-Groebner-basis G and ideal G = ideal

F
and 1 :

⋃
(indets ‘ G) ⊆ ?X

and 2 :
∧

g. g ∈ G =⇒ ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (
∑

f∈F ′. q f ∗ f ) ∧
(∀ f . indets (q f ) ⊆ ?X ∧ poly-deg (q f ∗ f ) ≤ b ∧ (f /∈ F ′

−→ q f = 0 ))
by (rule is-GB-cofactor-boundE) blast

from this(1 , 2 ) show ?thesis
proof

show G ⊆ P[X ]
proof

fix g
assume g ∈ G

14



hence indets g ⊆
⋃
(indets ‘ G) by blast

also have . . . ⊆ ?X by fact
also have . . . ⊆ X by fact
finally show g ∈ P[X ] by (rule PolysI-alt)

qed
next

fix g
assume g ∈ G
hence ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (

∑
f∈F ′. q f ∗ f ) ∧

(∀ f . indets (q f ) ⊆ ?X ∧ poly-deg (q f ∗ f ) ≤ b ∧ (f /∈ F ′ −→ q f
= 0 ))

by (rule 2 )
then obtain F ′ q where finite F ′ and F ′ ⊆ F and g = (

∑
f∈F ′. q f ∗ f )

and
∧

f . indets (q f ) ⊆ ?X and
∧

f . poly-deg (q f ∗ f ) ≤ b and
∧

f . f /∈ F ′

=⇒ q f = 0
by blast

show ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (
∑

f∈F ′. q f ∗ f ) ∧
(∀ f . q f ∈ P[X ] ∧ poly-deg (q f ∗ f ) ≤ b ∧ (f /∈ F ′ −→ q f = 0 ))

proof (intro exI allI conjI impI )
fix f

from ‹indets (q f ) ⊆ ?X› ‹?X ⊆ X› have indets (q f ) ⊆ X by (rule
subset-trans)

thus q f ∈ P[X ] by (rule PolysI-alt)
qed fact+

qed
qed

lemma is-GB-cofactor-boundE-finite-Polys:
fixes F :: (( ′x ⇒0 nat) ⇒0

′b::field) set
assumes is-GB-cofactor-bound F b and finite F and F ⊆ P[X ]
obtains G where punit.is-Groebner-basis G and ideal G = ideal F and G ⊆

P[X ]
and

∧
g. g ∈ G =⇒ ∃ q. g = (

∑
f∈F . q f ∗ f ) ∧ (∀ f . q f ∈ P[X ] ∧ poly-deg

(q f ∗ f ) ≤ b)
proof −

from assms(1 , 3 ) obtain G where punit.is-Groebner-basis G and ideal G =
ideal F and G ⊆ P[X ]

and 1 :
∧

g. g ∈ G =⇒ ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (
∑

f∈F ′. q f ∗ f ) ∧
(∀ f . q f ∈ P[X ] ∧ poly-deg (q f ∗ f ) ≤ b ∧ (f /∈ F ′ −→ q f

= 0 ))
by (rule is-GB-cofactor-boundE-Polys) blast

from this(1 , 2 , 3 ) show ?thesis
proof

fix g
assume g ∈ G
hence ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (

∑
f∈F ′. q f ∗ f ) ∧

(∀ f . q f ∈ P[X ] ∧ poly-deg (q f ∗ f ) ≤ b ∧ (f /∈ F ′ −→ q f
= 0 ))

by (rule 1 )
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then obtain F ′ q where F ′ ⊆ F and g: g = (
∑

f∈F ′. q f ∗ f )
and

∧
f . q f ∈ P[X ] and

∧
f . poly-deg (q f ∗ f ) ≤ b and 2 :

∧
f . f /∈ F ′ =⇒

q f = 0 by blast
show ∃ q. g = (

∑
f∈F . q f ∗ f ) ∧ (∀ f . q f ∈ P[X ] ∧ poly-deg (q f ∗ f ) ≤ b)

proof (intro exI conjI impI allI )
from assms(2 ) ‹F ′ ⊆ F› have (

∑
f∈F ′. q f ∗ f ) = (

∑
f∈F . q f ∗ f )

proof (intro sum.mono-neutral-left ballI )
fix f
assume f ∈ F − F ′

hence f /∈ F ′ by simp
hence q f = 0 by (rule 2 )
thus q f ∗ f = 0 by simp

qed
thus g = (

∑
f∈F . q f ∗ f ) by (simp only: g)

qed fact+
qed

qed

lemma is-GB-cofactor-boundI-subset-zero:
assumes F ⊆ {0}
shows is-GB-cofactor-bound F b
using punit.is-Groebner-basis-empty

proof (rule is-GB-cofactor-boundI )
from assms show ideal {} = ideal F by (metis ideal.span-empty ideal-eq-zero-iff )

qed simp-all

lemma is-hom-GB-boundI :
(
∧

g. (
∧

f . f ∈ F =⇒ homogeneous f ) =⇒ g ∈ punit.reduced-GB F =⇒ poly-deg
g ≤ b) =⇒ is-hom-GB-bound F b

unfolding is-hom-GB-bound-def by blast

lemma is-hom-GB-boundD:
is-hom-GB-bound F b =⇒ (

∧
f . f ∈ F =⇒ homogeneous f ) =⇒ g ∈ punit.reduced-GB

F =⇒ poly-deg g ≤ b
unfolding is-hom-GB-bound-def by blast

The following is the main theorem in this theory. It shows that a bound for
Gröbner bases of homogenized input sets is always also a cofactor bound for
the original input sets.
lemma (in extended-ord-pm-powerprod) hom-GB-bound-is-GB-cofactor-bound:
assumes finite X and F ⊆ P[X ] and extended-ord.is-hom-GB-bound (homogenize

None ‘ extend-indets ‘ F) b
shows is-GB-cofactor-bound F b

proof −
let ?F = homogenize None ‘ extend-indets ‘ F
define Y where Y =

⋃
(indets ‘ F)

define G where G = restrict-indets ‘ (extended-ord.punit.reduced-GB ?F)
have Y ⊆ X
proof
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fix x
assume x ∈ Y
then obtain f where f ∈ F and x ∈ indets f unfolding Y-def ..
from this(1 ) assms(2 ) have f ∈ P[X ] ..
hence indets f ⊆ X by (rule PolysD)
with ‹x ∈ indets f › show x ∈ X ..

qed
hence finite Y using assms(1 ) by (rule finite-subset)
moreover have F ⊆ P[Y ] by (auto simp: Y-def Polys-alt)
ultimately have punit.is-Groebner-basis G and ideal G = ideal F and G ⊆

P[Y ]
unfolding G-def by (rule restrict-indets-reduced-GB)+

from this(1 , 2 ) show ?thesis
proof (rule is-GB-cofactor-boundI )
from ‹G ⊆ P[Y ]› show

⋃
(indets ‘ G) ⊆

⋃
(indets ‘ F) by (auto simp: Y-def

Polys-alt)
next

fix g
assume g ∈ G
then obtain g ′ where g ′: g ′ ∈ extended-ord.punit.reduced-GB ?F

and g: g = restrict-indets g ′ unfolding G-def ..
have f ∈ ?F =⇒ homogeneous f for f by (auto simp: homogeneous-homogenize)
with assms(3 ) have poly-deg g ′≤ b using g ′ by (rule extended-ord.is-hom-GB-boundD)
from g ′ have g ′∈ ideal (extended-ord.punit.reduced-GB ?F) by (rule ideal.span-base)
also have . . . = ideal ?F
proof (rule extended-ord.reduced-GB-ideal-Polys)

from ‹finite Y › show finite (insert None (Some ‘ Y )) by simp
next

show ?F ⊆ P[insert None (Some ‘ Y )]
proof

fix f0
assume f0 ∈ ?F
then obtain f where f ∈ F and f0 : f0 = homogenize None (extend-indets

f ) by blast
from this(1 ) ‹F ⊆ P[Y ]› have f ∈ P[Y ] ..
hence extend-indets f ∈ P[Some ‘ Y ] by (auto simp: indets-extend-indets

Polys-alt)
thus f0 ∈ P[insert None (Some ‘ Y )] unfolding f0 by (rule homoge-

nize-in-Polys)
qed

qed
finally have g ′ ∈ ideal ?F .
with ‹

∧
f . f ∈ ?F =⇒ homogeneous f › obtain F0 q where finite F0 and F0

⊆ ?F
and g ′: g ′ = (

∑
f∈F0 . q f ∗ f ) and deg-le:

∧
f . poly-deg (q f ∗ f ) ≤ poly-deg

g ′

by (rule homogeneous-idealE) blast+
from this(2 ) obtain F ′ where F ′ ⊆ F and F0 : F0 = homogenize None ‘

extend-indets ‘ F ′
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and inj-on: inj-on (homogenize None ◦ extend-indets) F ′

unfolding image-comp by (rule subset-imageE-inj)
show ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (

∑
f∈F ′. q f ∗ f ) ∧ (∀ f∈F ′. poly-deg

(q f ∗ f ) ≤ b)
proof (intro exI conjI ballI )

from inj-on ‹finite F0 › show finite F ′ by (simp only: finite-image-iff F0
image-comp)

next
from inj-on show g = (

∑
f∈F ′. (restrict-indets ◦ q ◦ homogenize None ◦

extend-indets) f ∗ f )
by (simp add: g g ′ F0 restrict-indets-sum restrict-indets-times sum.reindex

image-comp o-def )
next

fix f
assume f ∈ F ′

have poly-deg ((restrict-indets ◦ q ◦ homogenize None ◦ extend-indets) f ∗ f )
=

poly-deg (restrict-indets (q (homogenize None (extend-indets f )) ∗
homogenize None (extend-indets f )))

by (simp add: restrict-indets-times)
also have . . . ≤ poly-deg (q (homogenize None (extend-indets f )) ∗ homogenize

None (extend-indets f ))
by (rule poly-deg-restrict-indets-le)

also have . . . ≤ poly-deg g ′ by (rule deg-le)
also have . . . ≤ b by fact

finally show poly-deg ((restrict-indets ◦ q ◦ homogenize None ◦ extend-indets)
f ∗ f ) ≤ b .

qed fact
qed

qed

end

end

4 Computing Gröbner Bases by Triangularizing
Macaulay Matrices

theory Groebner-Macaulay
imports Groebner-Bases.Macaulay-Matrix Groebner-Bases.Groebner-PM Degree-Section

Degree-Bound-Utils
begin

Relationship between Gröbner bases and Macaulay matrices, following [4].

4.1 Gröbner Bases
lemma (in gd-term) Macaulay-list-is-GB:
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assumes is-Groebner-basis G and pmdl (set ps) = pmdl G and G ⊆ phull (set
ps)

shows is-Groebner-basis (set (Macaulay-list ps))
proof (simp only: GB-alt-3-finite[OF finite-set] pmdl-Macaulay-list, intro ballI
impI )

fix f
assume f ∈ pmdl (set ps)
also from assms(2 ) have . . . = pmdl G .
finally have f ∈ pmdl G .
assume f 6= 0
with assms(1 ) ‹f ∈ pmdl G› obtain g where g ∈ G and g 6= 0 and lt g addst

lt f
by (rule GB-adds-lt)

from assms(3 ) ‹g ∈ G› have g ∈ phull (set ps) ..
from this ‹g 6= 0 › obtain g ′ where g ′ ∈ set (Macaulay-list ps) and g ′ 6= 0 and

lt g = lt g ′

by (rule Macaulay-list-lt)
show ∃ g∈set (Macaulay-list ps). g 6= 0 ∧ lt g addst lt f
proof (rule, rule)

from ‹lt g addst lt f › show lt g ′ addst lt f by (simp only: ‹lt g = lt g ′›)
qed fact+

qed

4.2 Bounds
context pm-powerprod
begin

context
fixes X :: ′x set
assumes fin-X : finite X

begin

definition deg-shifts :: nat ⇒ (( ′x ⇒0 nat) ⇒0
′b) list ⇒ (( ′x ⇒0 nat) ⇒0

′b::semiring-1 ) list
where deg-shifts d fs = concat (map (λf . (map (λt. punit.monom-mult 1 t f )

(punit.pps-to-list (deg-le-sect X (d − poly-deg f )))))
fs)

lemma set-deg-shifts:
set (deg-shifts d fs) = (

⋃
f∈set fs. (λt. punit.monom-mult 1 t f ) ‘ (deg-le-sect X

(d − poly-deg f )))
proof −

from fin-X have finite (deg-le-sect X d0 ) for d0 by (rule finite-deg-le-sect)
thus ?thesis by (simp add: deg-shifts-def punit.set-pps-to-list)

qed

corollary set-deg-shifts-singleton:
set (deg-shifts d [f ]) = (λt. punit.monom-mult 1 t f ) ‘ (deg-le-sect X (d − poly-deg
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f ))
by (simp add: set-deg-shifts)

lemma deg-shifts-superset: set fs ⊆ set (deg-shifts d fs)
proof −

have set fs = (
⋃

f∈set fs. {punit.monom-mult 1 0 f }) by simp
also have . . . ⊆ set (deg-shifts d fs) unfolding set-deg-shifts using subset-refl
proof (rule UN-mono)

fix f
assume f ∈ set fs
have punit.monom-mult 1 0 f ∈ (λt. punit.monom-mult 1 t f ) ‘ deg-le-sect X

(d − poly-deg f )
using zero-in-deg-le-sect by (rule imageI )

thus {punit.monom-mult 1 0 f } ⊆ (λt. punit.monom-mult 1 t f ) ‘ deg-le-sect
X (d − poly-deg f )

by simp
qed
finally show ?thesis .

qed

lemma deg-shifts-mono:
assumes set fs ⊆ set gs
shows set (deg-shifts d fs) ⊆ set (deg-shifts d gs)
using assms by (auto simp add: set-deg-shifts)

lemma ideal-deg-shifts [simp]: ideal (set (deg-shifts d fs)) = ideal (set fs)
proof

show ideal (set (deg-shifts d fs)) ⊆ ideal (set fs)
by (rule ideal.span-subset-spanI , simp add: set-deg-shifts UN-subset-iff ,

intro ballI image-subsetI ) (metis ideal.span-scale times-monomial-left ideal.span-base)
next

from deg-shifts-superset show ideal (set fs) ⊆ ideal (set (deg-shifts d fs))
by (rule ideal.span-mono)

qed

lemma thm-2-3-6 :
assumes set fs ⊆ P[X ] and is-GB-cofactor-bound (set fs) b
shows punit.is-Groebner-basis (set (punit.Macaulay-list (deg-shifts b fs)))

proof −
from assms(2 ) finite-set assms(1 ) obtain G where punit.is-Groebner-basis G

and ideal-G: ideal G = ideal (set fs) and G-sub: G ⊆ P[X ]
and 1 :

∧
g. g ∈ G =⇒ ∃ q. g = (

∑
f∈set fs. q f ∗ f ) ∧ (∀ f . q f ∈ P[X ] ∧

poly-deg (q f ∗ f ) ≤ b)
by (rule is-GB-cofactor-boundE-finite-Polys) blast

from this(1 ) show ?thesis
proof (rule punit.Macaulay-list-is-GB)

show G ⊆ phull (set (deg-shifts b fs)) (is - ⊆ ?H )
proof

fix g
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assume g ∈ G
hence ∃ q. g = (

∑
f∈set fs. q f ∗ f ) ∧ (∀ f . q f ∈ P[X ] ∧ poly-deg (q f ∗ f )

≤ b) by (rule 1 )
then obtain q where g: g = (

∑
f∈set fs. q f ∗ f ) and

∧
f . q f ∈ P[X ]

and
∧

f . poly-deg (q f ∗ f ) ≤ b by blast
show g ∈ ?H unfolding g
proof (rule phull.span-sum)

fix f
assume f ∈ set fs
have 1 6= (0 :: ′a) by simp
show q f ∗ f ∈ ?H
proof (cases f = 0 ∨ q f = 0 )

case True
thus ?thesis by (auto simp add: phull.span-zero)

next
case False
hence q f 6= 0 and f 6= 0 by simp-all
with ‹poly-deg (q f ∗ f ) ≤ b› have poly-deg (q f ) ≤ b − poly-deg f

by (simp add: poly-deg-times)
with ‹q f ∈ P[X ]› have keys (q f ) ⊆ deg-le-sect X (b − poly-deg f )

by (rule keys-subset-deg-le-sectI )
with finite-deg-le-sect[OF fin-X ]
have q f ∗ f = (

∑
t∈deg-le-sect X (b − poly-deg f ). punit.monom-mult

(lookup (q f ) t) t f )
unfolding punit.mult-scalar-sum-monomials[simplified]
by (rule sum.mono-neutral-left) (simp add: in-keys-iff )

also have . . . = (
∑

t∈deg-le-sect X (b − poly-deg f ).
(lookup (q f ) t) · (punit.monom-mult 1 t f ))

by (simp add: punit.monom-mult-assoc punit.map-scale-eq-monom-mult)
also have . . . = (

∑
t∈deg-le-sect X (b − poly-deg f ).

((λf0 . (lookup (q f ) (punit.lp f0 − punit.lp f )) · f0 ) ◦
(λt. punit.monom-mult 1 t f )) t)

using refl by (rule sum.cong) (simp add: punit.lt-monom-mult[OF ‹1 6=
0 › ‹f 6= 0 ›])

also have . . . = (
∑

f0∈set (deg-shifts b [f ]). (lookup (q f ) (punit.lp f0 −
punit.lp f )) · f0 )

unfolding set-deg-shifts-singleton
proof (intro sum.reindex[symmetric] inj-onI )

fix s t
assume punit.monom-mult 1 s f = punit.monom-mult 1 t f
thus s = t using ‹1 6= 0 › ‹f 6= 0 › by (rule punit.monom-mult-inj-2 )

qed
finally have q f ∗ f ∈ phull (set (deg-shifts b [f ]))

by (simp add: phull.sum-in-spanI )
also have . . . ⊆ ?H by (rule phull.span-mono, rule deg-shifts-mono, simp

add: ‹f ∈ set fs›)
finally show ?thesis .

qed
qed
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qed
qed (simp add: ideal-G)

qed

lemma thm-2-3-7 :
assumes set fs ⊆ P[X ] and is-GB-cofactor-bound (set fs) b
shows 1 ∈ ideal (set fs) ←→ 1 ∈ set (punit.Macaulay-list (deg-shifts b fs)) (is

?L ←→ ?R)
proof

assume ?L
let ?G = set (punit.Macaulay-list (deg-shifts b fs))
from assms have punit.is-Groebner-basis ?G by (rule thm-2-3-6 )
moreover from ‹?L› have 1 ∈ ideal ?G by (simp add: punit.pmdl-Macaulay-list[simplified])
moreover have 1 6= (0 ::- ⇒0

′a) by simp
ultimately obtain g where g ∈ ?G and g 6= 0 and punit.lt g adds punit.lt

(1 ::- ⇒0
′a)

by (rule punit.GB-adds-lt[simplified])
from this(3 ) have lp-g: punit.lt g = 0 by (simp add: punit.lt-monomial adds-zero

flip: single-one)
from punit.Macaulay-list-is-monic-set ‹g ∈ ?G› ‹g 6= 0 › have lc-g: punit.lc g =

1
by (rule punit.is-monic-setD)

have g = 1
proof (rule poly-mapping-eqI )

fix t
show lookup g t = lookup 1 t
proof (cases t = 0 )

case True
thus ?thesis using lc-g by (simp add: lookup-one punit.lc-def lp-g)

next
case False
with zero-min[of t] have ¬ t � punit.lt g by (simp add: lp-g)
with punit.lt-max-keys have t /∈ keys g by blast
with False show ?thesis by (simp add: lookup-one in-keys-iff )

qed
qed
with ‹g ∈ ?G› show 1 ∈ ?G by simp

next
assume ?R
also have . . . ⊆ phull (set (punit.Macaulay-list (deg-shifts b fs)))

by (rule phull.span-superset)
also have . . . = phull (set (deg-shifts b fs)) by (fact punit.phull-Macaulay-list)
also have . . . ⊆ ideal (set (deg-shifts b fs)) using punit.phull-subset-module by

force
finally show ?L by simp

qed

end

22



lemma thm-2-3-6-indets:
assumes is-GB-cofactor-bound (set fs) b
shows punit.is-Groebner-basis (set (punit.Macaulay-list (deg-shifts (

⋃
(indets ‘

(set fs))) b fs)))
using - - assms

proof (rule thm-2-3-6 )
from finite-set show finite (

⋃
(indets ‘ (set fs))) by (simp add: finite-indets)

next
show set fs ⊆ P[

⋃
(indets ‘ (set fs))] by (auto simp: Polys-alt)

qed

lemma thm-2-3-7-indets:
assumes is-GB-cofactor-bound (set fs) b
shows 1 ∈ ideal (set fs) ←→ 1 ∈ set (punit.Macaulay-list (deg-shifts (

⋃
(indets

‘ (set fs))) b fs))
using - - assms

proof (rule thm-2-3-7 )
from finite-set show finite (

⋃
(indets ‘ (set fs))) by (simp add: finite-indets)

next
show set fs ⊆ P[

⋃
(indets ‘ (set fs))] by (auto simp: Polys-alt)

qed

end

end

5 Integer Binomial Coefficients
theory Binomial-Int

imports Complex-Main
begin

Restore original sort constraints:
setup ‹Sign.add-const-constraint (@{const-name gbinomial}, SOME @{typ ′a::{semidom-divide,semiring-char-0}
⇒ nat ⇒ ′a})›

5.1 Inequalities
lemma binomial-mono:

assumes m ≤ n
shows m choose k ≤ n choose k
by (simp add: assms binomial-right-mono)

lemma binomial-plus-le:
assumes 0 < k
shows (m choose k) + (n choose k) ≤ (m + n) choose k

proof −
define k0 where k0 = k − 1
with assms have k: k = Suc k0 by simp
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show ?thesis unfolding k
proof (induct n)

case 0
show ?case by simp

next
case (Suc n)
then show ?case

by (simp add: add.left-commute add-le-mono binomial-right-mono)
qed

qed

lemma binomial-ineq-1 : 2 ∗ ((n + i) choose k) ≤ (n choose k) + ((n + 2 ∗ i)
choose k)
proof (cases k)

case 0
thus ?thesis by simp

next
case k: (Suc k0 )
show ?thesis unfolding k
proof (induct i)

case 0
thus ?case by simp

next
case (Suc i)
have 2 ∗ (n + Suc i choose Suc k0 ) = 2 ∗ (n + i choose k0 ) + 2 ∗ (n + i

choose Suc k0 )
by simp

also have . . . ≤ ((n + 2 ∗ i choose k0 ) + (Suc (n + 2 ∗ i) choose k0 )) + ((n
choose Suc k0 ) + (n + 2 ∗ i choose Suc k0 ))

proof (rule add-mono)
have n + i choose k0 ≤ n + 2 ∗ i choose k0

by (rule binomial-mono) simp
moreover have n + 2 ∗ i choose k0 ≤ Suc (n + 2 ∗ i) choose k0

by (rule binomial-mono) simp
ultimately show 2 ∗ (n + i choose k0 ) ≤ (n + 2 ∗ i choose k0 ) + (Suc (n

+ 2 ∗ i) choose k0 )
by simp

qed (fact Suc)
also have . . . = (n choose Suc k0 ) + (n + 2 ∗ Suc i choose Suc k0 ) by simp
finally show ?case .

qed
qed

lemma gbinomial-int-mono:
assumes 0 ≤ x and x ≤ (y::int)
shows x gchoose k ≤ y gchoose k

proof −
from assms have nat x ≤ nat y by simp
hence nat x choose k ≤ nat y choose k by (rule binomial-mono)
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hence int (nat x choose k) ≤ int (nat y choose k) by (simp only: zle-int)
hence int (nat x) gchoose k ≤ int (nat y) gchoose k by (simp only: int-binomial)
with assms show ?thesis by simp

qed

lemma gbinomial-int-plus-le:
assumes 0 < k and 0 ≤ x and 0 ≤ (y::int)
shows (x gchoose k) + (y gchoose k) ≤ (x + y) gchoose k

proof −
from assms(1 ) have (nat x choose k) + (nat y choose k) ≤ nat x + nat y choose

k
by (rule binomial-plus-le)

hence int ((nat x choose k) + (nat y choose k)) ≤ int (nat x + nat y choose k)
by (simp only: zle-int)

hence (int (nat x) gchoose k) + (int (nat y) gchoose k) ≤ int (nat x) + int (nat
y) gchoose k

by (simp only: int-plus int-binomial)
with assms(2 , 3 ) show ?thesis by simp

qed

lemma binomial-int-ineq-1 :
assumes 0 ≤ x and 0 ≤ (y::int)
shows 2 ∗ (x + y gchoose k) ≤ (x gchoose k) + ((x + 2 ∗ y) gchoose k)

proof −
from binomial-ineq-1 [of nat x nat y k]
have int (2 ∗ (nat x + nat y choose k)) ≤ int ((nat x choose k) + (nat x + 2 ∗

nat y choose k))
by (simp only: zle-int)

hence 2 ∗ (int (nat x) + int (nat y) gchoose k) ≤ (int (nat x) gchoose k) + (int
(nat x) + 2 ∗ int (nat y) gchoose k)

by (simp only: int-binomial int-plus int-ops(7 )) simp
with assms show ?thesis by simp

qed

corollary binomial-int-ineq-2 :
assumes 0 ≤ y and y ≤ (x::int)
shows 2 ∗ (x gchoose k) ≤ (x − y gchoose k) + (x + y gchoose k)

proof −
from assms(2 ) have 0 ≤ x − y by simp
hence 2 ∗ ((x − y) + y gchoose k) ≤ (x − y gchoose k) + ((x − y + 2 ∗ y)

gchoose k)
using assms(1 ) by (rule binomial-int-ineq-1 )

thus ?thesis by smt
qed

corollary binomial-int-ineq-3 :
assumes 0 ≤ y and y ≤ 2 ∗ (x::int)
shows 2 ∗ (x gchoose k) ≤ (y gchoose k) + (2 ∗ x − y gchoose k)

proof (cases y ≤ x)
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case True
hence 0 ≤ x − y by simp
moreover from assms(1 ) have x − y ≤ x by simp
ultimately have 2 ∗ (x gchoose k) ≤ (x − (x − y) gchoose k) + (x + (x − y)

gchoose k)
by (rule binomial-int-ineq-2 )

thus ?thesis by simp
next

case False
hence 0 ≤ y − x by simp
moreover from assms(2 ) have y − x ≤ x by simp
ultimately have 2 ∗ (x gchoose k) ≤ (x − (y − x) gchoose k) + (x + (y − x)

gchoose k)
by (rule binomial-int-ineq-2 )

thus ?thesis by simp
qed

5.2 Backward Difference Operator
definition bw-diff :: ( ′a ⇒ ′a) ⇒ ′a ⇒ ′a::{ab-group-add,one}

where bw-diff f x = f x − f (x − 1 )

lemma bw-diff-const [simp]: bw-diff (λ-. c) = (λ-. 0 )
by (rule ext) (simp add: bw-diff-def )

lemma bw-diff-id [simp]: bw-diff (λx. x) = (λ-. 1 )
by (rule ext) (simp add: bw-diff-def )

lemma bw-diff-plus [simp]: bw-diff (λx. f x + g x) = (λx. bw-diff f x + bw-diff g
x)

by (rule ext) (simp add: bw-diff-def )

lemma bw-diff-uminus [simp]: bw-diff (λx. − f x) = (λx. − bw-diff f x)
by (rule ext) (simp add: bw-diff-def )

lemma bw-diff-minus [simp]: bw-diff (λx. f x − g x) = (λx. bw-diff f x − bw-diff
g x)

by (rule ext) (simp add: bw-diff-def )

lemma bw-diff-const-pow: (bw-diff ^^ k) (λ-. c) = (if k = 0 then λ-. c else (λ-.
0 ))

by (induct k, simp-all)

lemma bw-diff-id-pow:
(bw-diff ^^ k) (λx. x) = (if k = 0 then (λx. x) else if k = 1 then (λ-. 1 ) else (λ-.

0 ))
by (induct k, simp-all)

lemma bw-diff-plus-pow [simp]:
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(bw-diff ^^ k) (λx. f x + g x) = (λx. (bw-diff ^^ k) f x + (bw-diff ^^ k) g x)
by (induct k, simp-all)

lemma bw-diff-uminus-pow [simp]: (bw-diff ^^ k) (λx. − f x) = (λx. − (bw-diff
^^ k) f x)

by (induct k, simp-all)

lemma bw-diff-minus-pow [simp]:
(bw-diff ^^ k) (λx. f x − g x) = (λx. (bw-diff ^^ k) f x − (bw-diff ^^ k) g x)
by (induct k, simp-all)

lemma bw-diff-sum-pow [simp]:
(bw-diff ^^ k) (λx. (

∑
i∈I . f i x)) = (λx. (

∑
i∈I . (bw-diff ^^ k) (f i) x))

by (induct I rule: infinite-finite-induct, simp-all add: bw-diff-const-pow)

lemma bw-diff-gbinomial:
assumes 0 < k
shows bw-diff (λx::int. (x + n) gchoose k) = (λx. (x + n − 1 ) gchoose (k −

1 ))
proof (rule ext)

fix x::int
from assms have eq: Suc (k − Suc 0 ) = k by simp
have x + n gchoose k = (x + n − 1 ) + 1 gchoose (Suc (k − 1 )) by (simp add:

eq)
also have . . . = (x + n − 1 gchoose k − 1 ) + ((x + n − 1 ) gchoose (Suc (k −

1 )))
by (fact gbinomial-int-Suc-Suc)

finally show bw-diff (λx. x + n gchoose k) x = x + n − 1 gchoose (k − 1 )
by (simp add: eq bw-diff-def algebra-simps)

qed

lemma bw-diff-gbinomial-pow:
(bw-diff ^^ l) (λx::int. (x + n) gchoose k) =

(if l ≤ k then (λx. (x + n − int l) gchoose (k − l)) else (λ-. 0 ))
proof −

have ∗: l0 ≤ k =⇒ (bw-diff ^^ l0 ) (λx::int. (x + n) gchoose k) = (λx. (x + n
− int l0 ) gchoose (k − l0 ))

for l0
proof (induct l0 )

case 0
show ?case by simp

next
case (Suc l0 )
from Suc.prems have 0 < k − l0 and l0 ≤ k by simp-all
from this(2 ) have eq: (bw-diff ^^ l0 ) (λx. x + n gchoose k) = (λx. x + n −

int l0 gchoose (k − l0 ))
by (rule Suc.hyps)

have (bw-diff ^^ Suc l0 ) (λx. x + n gchoose k) = bw-diff (λx. x + (n − int
l0 ) gchoose (k − l0 ))
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by (simp add: eq algebra-simps)
also from ‹0 < k − l0 › have . . . = (λx. (x + (n − int l0 ) − 1 ) gchoose (k −

l0 − 1 ))
by (rule bw-diff-gbinomial)

also have . . . = (λx. x + n − int (Suc l0 ) gchoose (k − Suc l0 )) by (simp
add: algebra-simps)

finally show ?case .
qed
show ?thesis
proof (simp add: ∗ split: if-split, intro impI )

assume ¬ l ≤ k
hence (l − k) + k = l and l − k 6= 0 by simp-all
hence (bw-diff ^^ l) (λx. x + n gchoose k) = (bw-diff ^^ ((l − k) + k)) (λx.

x + n gchoose k)
by (simp only:)

also have . . . = (bw-diff ^^ (l − k)) (λ-. 1 ) by (simp add: ∗ funpow-add)
also from ‹l − k 6= 0 › have . . . = (λ-. 0 ) by (simp add: bw-diff-const-pow)
finally show (bw-diff ^^ l) (λx. x + n gchoose k) = (λ-. 0 ) .

qed
qed

end

6 Integer Polynomial Functions
theory Poly-Fun

imports Binomial-Int HOL−Computational-Algebra.Polynomial
begin

6.1 Definition and Basic Properties
definition poly-fun :: (int ⇒ int) ⇒ bool

where poly-fun f ←→ (∃ p::rat poly. ∀ a. rat-of-int (f a) = poly p (rat-of-int a))

lemma poly-funI : (
∧

a. rat-of-int (f a) = poly p (rat-of-int a)) =⇒ poly-fun f
by (auto simp: poly-fun-def )

lemma poly-funE :
assumes poly-fun f
obtains p where

∧
a. rat-of-int (f a) = poly p (rat-of-int a)

using assms by (auto simp: poly-fun-def )

lemma poly-fun-eqI :
assumes poly-fun f and poly-fun g and infinite {a. f a = g a}
shows f = g

proof (rule ext)
fix a
from assms(1 ) obtain p where p:

∧
a. rat-of-int (f a) = poly p (rat-of-int a)

by (rule poly-funE , blast)
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from assms(2 ) obtain q where q:
∧

a. rat-of-int (g a) = poly q (rat-of-int a)
by (rule poly-funE , blast)

have p = q
proof (rule ccontr)

let ?A = {a. poly p (rat-of-int a) = poly q (rat-of-int a)}
assume p 6= q
hence p − q 6= 0 by simp
hence fin: finite {x. poly (p − q) x = 0} by (rule poly-roots-finite)

have rat-of-int ‘ ?A ⊆ {x. poly (p − q) x = 0} by (simp add: image-Collect-subsetI )
hence finite (rat-of-int ‘ ?A) using fin by (rule finite-subset)
moreover have inj-on rat-of-int ?A by (simp add: inj-on-def )
ultimately have finite ?A by (simp only: finite-image-iff )
also have ?A = {a. f a = g a} by (simp flip: p q)
finally show False using assms(3 ) by simp

qed
hence rat-of-int (f a) = rat-of-int (g a) by (simp add: p q)
thus f a = g a by simp

qed

corollary poly-fun-eqI-ge:
assumes poly-fun f and poly-fun g and

∧
a. b ≤ a =⇒ f a = g a

shows f = g
using assms(1 , 2 )

proof (rule poly-fun-eqI )
have {b..} ⊆ {a. f a = g a} by (auto intro: assms(3 ))
thus infinite {a. f a = g a} using infinite-Ici by (rule infinite-super)

qed

corollary poly-fun-eqI-gr :
assumes poly-fun f and poly-fun g and

∧
a. b < a =⇒ f a = g a

shows f = g
using assms(1 , 2 )

proof (rule poly-fun-eqI )
have {b<..} ⊆ {a. f a = g a} by (auto intro: assms(3 ))
thus infinite {a. f a = g a} using infinite-Ioi by (rule infinite-super)

qed

6.2 Closure Properties
lemma poly-fun-const [simp]: poly-fun (λ-. c)

by (rule poly-funI [where p=[:rat-of-int c:]]) simp

lemma poly-fun-id [simp]: poly-fun (λx. x) poly-fun id
proof −

show poly-fun (λx. x) by (rule poly-funI [where p=[:0 , 1 :]]) simp
thus poly-fun id by (simp only: id-def )

qed

lemma poly-fun-uminus:
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assumes poly-fun f
shows poly-fun (λx. − f x) and poly-fun (− f )

proof −
from assms obtain p where p:

∧
a. rat-of-int (f a) = poly p (rat-of-int a)

by (rule poly-funE , blast)
show poly-fun (λx. − f x) by (rule poly-funI [where p=− p]) (simp add: p)
thus poly-fun (− f ) by (simp only: fun-Compl-def )

qed

lemma poly-fun-uminus-iff [simp]:
poly-fun (λx. − f x) ←→ poly-fun f poly-fun (− f ) ←→ poly-fun f

proof −
show poly-fun (λx. − f x) ←→ poly-fun f
proof

assume poly-fun (λx. − f x)
hence poly-fun (λx. − (− f x)) by (rule poly-fun-uminus)
thus poly-fun f by simp

qed (rule poly-fun-uminus)
thus poly-fun (− f ) ←→ poly-fun f by (simp only: fun-Compl-def )

qed

lemma poly-fun-plus [simp]:
assumes poly-fun f and poly-fun g
shows poly-fun (λx. f x + g x)

proof −
from assms(1 ) obtain p where p:

∧
a. rat-of-int (f a) = poly p (rat-of-int a)

by (rule poly-funE , blast)
from assms(2 ) obtain q where q:

∧
a. rat-of-int (g a) = poly q (rat-of-int a)

by (rule poly-funE , blast)
show ?thesis by (rule poly-funI [where p=p + q]) (simp add: p q)

qed

lemma poly-fun-minus [simp]:
assumes poly-fun f and poly-fun g
shows poly-fun (λx. f x − g x)

proof −
from assms(1 ) obtain p where p:

∧
a. rat-of-int (f a) = poly p (rat-of-int a)

by (rule poly-funE , blast)
from assms(2 ) obtain q where q:

∧
a. rat-of-int (g a) = poly q (rat-of-int a)

by (rule poly-funE , blast)
show ?thesis by (rule poly-funI [where p=p − q]) (simp add: p q)

qed

lemma poly-fun-times [simp]:
assumes poly-fun f and poly-fun g
shows poly-fun (λx. f x ∗ g x)

proof −
from assms(1 ) obtain p where p:

∧
a. rat-of-int (f a) = poly p (rat-of-int a)

by (rule poly-funE , blast)
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from assms(2 ) obtain q where q:
∧

a. rat-of-int (g a) = poly q (rat-of-int a)
by (rule poly-funE , blast)

show ?thesis by (rule poly-funI [where p=p ∗ q]) (simp add: p q)
qed

lemma poly-fun-divide:
assumes poly-fun f and

∧
a. c dvd f a

shows poly-fun (λx. f x div c)
proof −

from assms(1 ) obtain p where p:
∧

a. rat-of-int (f a) = poly p (rat-of-int a)
by (rule poly-funE , blast)

let ?p = p ∗ [:1 / rat-of-int c:]
show ?thesis
proof (rule poly-funI )

fix a
have c dvd f a by fact
hence rat-of-int (f a div c) = rat-of-int (f a) / rat-of-int c by auto
also have . . . = poly ?p (rat-of-int a) by (simp add: p)
finally show rat-of-int (f a div c) = poly ?p (rat-of-int a) .

qed
qed

lemma poly-fun-pow [simp]:
assumes poly-fun f
shows poly-fun (λx. f x ^ k)

proof −
from assms(1 ) obtain p where p:

∧
a. rat-of-int (f a) = poly p (rat-of-int a)

by (rule poly-funE , blast)
show ?thesis by (rule poly-funI [where p=p ^ k]) (simp add: p)

qed

lemma poly-fun-comp:
assumes poly-fun f and poly-fun g
shows poly-fun (λx. f (g x)) and poly-fun (f ◦ g)

proof −
from assms(1 ) obtain p where p:

∧
a. rat-of-int (f a) = poly p (rat-of-int a)

by (rule poly-funE , blast)
from assms(2 ) obtain q where q:

∧
a. rat-of-int (g a) = poly q (rat-of-int a)

by (rule poly-funE , blast)
show poly-fun (λx. f (g x)) by (rule poly-funI [where p=p ◦p q]) (simp add: p q

poly-pcompose)
thus poly-fun (f ◦ g) by (simp only: comp-def )

qed

lemma poly-fun-sum [simp]: (
∧

i. i ∈ I =⇒ poly-fun (f i)) =⇒ poly-fun (λx.
(
∑

i∈I . f i x))
proof (induct I rule: infinite-finite-induct)

case (infinite I )
from infinite(1 ) show ?case by simp
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next
case empty
show ?case by simp

next
case (insert i I )
have i ∈ insert i I by simp
hence poly-fun (f i) by (rule insert.prems)
moreover have poly-fun (λx.

∑
i∈I . f i x)

proof (rule insert.hyps)
fix j
assume j ∈ I
hence j ∈ insert i I by simp
thus poly-fun (f j) by (rule insert.prems)

qed
ultimately have poly-fun (λx. f i x + (

∑
i∈I . f i x)) by (rule poly-fun-plus)

with insert.hyps(1 , 2 ) show ?case by simp
qed

lemma poly-fun-prod [simp]: (
∧

i. i ∈ I =⇒ poly-fun (f i)) =⇒ poly-fun (λx.
(
∏

i∈I . f i x))
proof (induct I rule: infinite-finite-induct)

case (infinite I )
from infinite(1 ) show ?case by simp

next
case empty
show ?case by simp

next
case (insert i I )
have i ∈ insert i I by simp
hence poly-fun (f i) by (rule insert.prems)
moreover have poly-fun (λx.

∏
i∈I . f i x)

proof (rule insert.hyps)
fix j
assume j ∈ I
hence j ∈ insert i I by simp
thus poly-fun (f j) by (rule insert.prems)

qed
ultimately have poly-fun (λx. f i x ∗ (

∏
i∈I . f i x)) by (rule poly-fun-times)

with insert.hyps(1 , 2 ) show ?case by simp
qed

lemma poly-fun-pochhammer [simp]: poly-fun f =⇒ poly-fun (λx. pochhammer (f
x) k)

by (simp add: pochhammer-prod)

lemma poly-fun-gbinomial [simp]: poly-fun f =⇒ poly-fun (λx. f x gchoose k)
by (simp add: gbinomial-int-pochhammer ′ poly-fun-divide fact-dvd-pochhammer)

end
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7 Monomial Modules
theory Monomial-Module

imports Groebner-Bases.Reduced-GB
begin

Properties of modules generated by sets of monomials, and (reduced) Gröb-
ner bases thereof.

7.1 Sets of Monomials
definition is-monomial-set :: ( ′a ⇒0

′b::zero) set ⇒ bool
where is-monomial-set A ←→ (∀ p∈A. is-monomial p)

lemma is-monomial-setI : (
∧

p. p ∈ A =⇒ is-monomial p) =⇒ is-monomial-set A
by (simp add: is-monomial-set-def )

lemma is-monomial-setD: is-monomial-set A =⇒ p ∈ A =⇒ is-monomial p
by (simp add: is-monomial-set-def )

lemma is-monomial-set-subset: is-monomial-set B =⇒ A ⊆ B =⇒ is-monomial-set
A

by (auto simp: is-monomial-set-def )

lemma is-monomial-set-Un: is-monomial-set (A ∪ B) ←→ (is-monomial-set A ∧
is-monomial-set B)

by (auto simp: is-monomial-set-def )

7.2 Modules
context term-powerprod
begin

lemma monomial-pmdl:
assumes is-monomial-set B and p ∈ pmdl B
shows monomial (lookup p v) v ∈ pmdl B
using assms(2 )

proof (induct p rule: pmdl-induct)
case base: module-0
show ?case by (simp add: pmdl.span-zero)

next
case step: (module-plus p b c t)
have eq: monomial (lookup (p + monom-mult c t b) v) v =

monomial (lookup p v) v + monomial (lookup (monom-mult c t b) v) v
by (simp only: single-add lookup-add)

from assms(1 ) step.hyps(3 ) have is-monomial b by (rule is-monomial-setD)
then obtain d u where b: b = monomial d u by (rule is-monomial-monomial)
have monomial (lookup (monom-mult c t b) v) v ∈ pmdl B
proof (simp add: b monom-mult-monomial lookup-single when-def pmdl.span-zero,

intro impI )
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assume t ⊕ u = v
hence monomial (c ∗ d) v = monom-mult c t b by (simp add: b monom-mult-monomial)
also from step.hyps(3 ) have . . . ∈ pmdl B by (rule monom-mult-in-pmdl)
finally show monomial (c ∗ d) v ∈ pmdl B .

qed
with step.hyps(2 ) show ?case unfolding eq by (rule pmdl.span-add)

qed

lemma monomial-pmdl-field:
assumes is-monomial-set B and p ∈ pmdl B and v ∈ keys (p::- ⇒0

′b::field)
shows monomial c v ∈ pmdl B

proof −
from assms(1 , 2 ) have monomial (lookup p v) v ∈ pmdl B by (rule mono-

mial-pmdl)
hence monom-mult (c / lookup p v) 0 (monomial (lookup p v) v) ∈ pmdl B

by (rule pmdl-closed-monom-mult)
with assms(3 ) show ?thesis by (simp add: monom-mult-monomial splus-zero

in-keys-iff )
qed

end

context ordered-term
begin

lemma keys-monomial-pmdl:
assumes is-monomial-set F and p ∈ pmdl F and t ∈ keys p
obtains f where f ∈ F and f 6= 0 and lt f addst t
using assms(2 ) assms(3 )

proof (induct arbitrary: thesis rule: pmdl-induct)
case module-0
from this(2 ) show ?case by simp

next
case step: (module-plus p f0 c s)
from assms(1 ) step(3 ) have is-monomial f0 unfolding is-monomial-set-def ..
hence keys f0 = {lt f0} and f0 6= 0 by (rule keys-monomial, rule mono-

mial-not-0 )
from Poly-Mapping.keys-add step(6 ) have t ∈ keys p ∪ keys (monom-mult c s

f0 ) ..
thus ?case
proof

assume t ∈ keys p
from step(2 )[OF - this] obtain f where f ∈ F and f 6= 0 and lt f addst t by

blast
thus ?thesis by (rule step(5 ))

next
assume t ∈ keys (monom-mult c s f0 )
with keys-monom-mult-subset have t ∈ (⊕) s ‘ keys f0 ..
hence t = s ⊕ lt f0 by (simp add: ‹keys f0 = {lt f0}›)
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hence lt f0 addst t by (simp add: term-simps)
with ‹f0 ∈ F› ‹f0 6= 0 › show ?thesis by (rule step(5 ))

qed
qed

lemma image-lt-monomial-lt: lt ‘ monomial (1 :: ′b::zero-neq-one) ‘ lt ‘ F = lt ‘ F
by (auto simp: lt-monomial intro!: image-eqI )

7.3 Reduction
lemma red-setE2 :

assumes red B p q
obtains b where b ∈ B and b 6= 0 and red {b} p q

proof −
from assms obtain b t where b ∈ B and red-single p q b t by (rule red-setE)
from this(2 ) have b 6= 0 by (simp add: red-single-def )
have red {b} p q by (rule red-setI , simp, fact)
show ?thesis by (rule, fact+)

qed

lemma red-monomial-keys:
assumes is-monomial r and red {r} p q
shows card (keys p) = Suc (card (keys q))

proof −
from assms(2 ) obtain s where rs: red-single p q r s unfolding red-singleton ..
hence cp0 : lookup p (s ⊕ lt r) 6= 0 and q-def0 : q = p − monom-mult (lookup

p (s ⊕ lt r) / lc r) s r
unfolding red-single-def by simp-all

from assms(1 ) obtain c t where c 6= 0 and r-def : r = monomial c t by (rule
is-monomial-monomial)

have ltr : lt r = t unfolding r-def by (rule lt-monomial, fact)
have lcr : lc r = c unfolding r-def by (rule lc-monomial)
define u where u = s ⊕ t
from q-def0 have q = p − monom-mult (lookup p u / c) s r unfolding u-def

ltr lcr .
also have ... = p − monomial ((lookup p u / c) ∗ c) u unfolding u-def r-def

monom-mult-monomial ..
finally have q-def : q = p − monomial (lookup p u) u using ‹c 6= 0 › by simp
from cp0 have lookup p u 6= 0 unfolding u-def ltr .
hence u ∈ keys p by (simp add: in-keys-iff )

have keys q = keys p − {u} unfolding q-def
proof (rule, rule)

fix x
assume x ∈ keys (p − monomial (lookup p u) u)
hence lookup (p − monomial (lookup p u) u) x 6= 0 by (simp add: in-keys-iff )
hence a: lookup p x − lookup (monomial (lookup p u) u) x 6= 0 unfolding

lookup-minus .
hence x 6= u unfolding lookup-single by auto
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with a have lookup p x 6= 0 unfolding lookup-single by auto
show x ∈ keys p − {u}
proof

from ‹lookup p x 6= 0 › show x ∈ keys p by (simp add: in-keys-iff )
next

from ‹x 6= u› show x /∈ {u} by simp
qed

next
show keys p − {u} ⊆ keys (p − monomial (lookup p u) u)
proof

fix x
assume x ∈ keys p − {u}
hence x ∈ keys p and x 6= u by auto
from ‹x ∈ keys p› have lookup p x 6= 0 by (simp add: in-keys-iff )
with ‹x 6= u› have lookup (p − monomial (lookup p u) u) x 6= 0 by (simp

add: lookup-minus lookup-single)
thus x ∈ keys (p − monomial (lookup p u) u) by (simp add: in-keys-iff )

qed
qed

have Suc (card (keys q)) = card (keys p) unfolding ‹keys q = keys p − {u}›
by (rule card-Suc-Diff1 , rule finite-keys, fact)

thus ?thesis by simp
qed

lemma red-monomial-monomial-setD:
assumes is-monomial p and is-monomial-set B and red B p q
shows q = 0

proof −
from assms(3 ) obtain b where b ∈ B and b 6= 0 and ∗: red {b} p q by (rule

red-setE2 )
from assms(2 ) this(1 ) have is-monomial b by (rule is-monomial-setD)
hence card (keys p) = Suc (card (keys q)) using ∗ by (rule red-monomial-keys)
with assms(1 ) show ?thesis by (simp add: is-monomial-def )

qed

corollary is-red-monomial-monomial-setD:
assumes is-monomial p and is-monomial-set B and is-red B p
shows red B p 0

proof −
from assms(3 ) obtain q where red B p q by (rule is-redE)
moreover from assms(1 , 2 ) this have q = 0 by (rule red-monomial-monomial-setD)
ultimately show ?thesis by simp

qed

corollary is-red-monomial-monomial-set-in-pmdl:
is-monomial p =⇒ is-monomial-set B =⇒ is-red B p =⇒ p ∈ pmdl B
by (intro red-rtranclp-0-in-pmdl r-into-rtranclp is-red-monomial-monomial-setD)
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corollary red-rtrancl-monomial-monomial-set-cases:
assumes is-monomial p and is-monomial-set B and (red B)∗∗ p q
obtains q = p | q = 0
using assms(3 )

proof (induct q arbitrary: thesis rule: rtranclp-induct)
case base
from refl show ?case by (rule base)

next
case (step y z)
show ?case
proof (rule step.hyps)

assume y = p
with step.hyps(2 ) have red B p z by simp
with assms(1 , 2 ) have z = 0 by (rule red-monomial-monomial-setD)
thus ?thesis by (rule step.prems)

next
assume y = 0
from step.hyps(2 ) have is-red B 0 unfolding ‹y = 0 › by (rule is-redI )
with irred-0 show ?thesis ..

qed
qed

lemma is-red-monomial-lt:
assumes 0 /∈ B
shows is-red (monomial (1 :: ′b::field) ‘ lt ‘ B) = is-red B

proof
fix p
let ?B = monomial (1 :: ′b) ‘ lt ‘ B
show is-red ?B p ←→ is-red B p
proof

assume is-red ?B p
then obtain f v where f ∈ ?B and v ∈ keys p and adds: lt f addst v by (rule

is-red-addsE)
from this(1 ) have lt f ∈ lt ‘ ?B by (rule imageI )
also have . . . = lt ‘ B by (fact image-lt-monomial-lt)
finally obtain b where b ∈ B and eq: lt f = lt b ..
note this(1 )
moreover from this assms have b 6= 0 by blast
moreover note ‹v ∈ keys p›
moreover from adds have lt b addst v by (simp only: eq)
ultimately show is-red B p by (rule is-red-addsI )

next
assume is-red B p
then obtain b v where b ∈ B and v ∈ keys p and adds: lt b addst v by (rule

is-red-addsE)
from this(1 ) have lt b ∈ lt ‘ B by (rule imageI )
also from image-lt-monomial-lt have . . . = lt ‘ ?B by (rule sym)
finally obtain f where f ∈ ?B and eq: lt b = lt f ..
note this(1 )
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moreover from this have f 6= 0 by (auto simp: monomial-0-iff )
moreover note ‹v ∈ keys p›
moreover from adds have lt f addst v by (simp only: eq)
ultimately show is-red ?B p by (rule is-red-addsI )

qed
qed

end

7.4 Gröbner Bases
context gd-term
begin

lemma monomial-set-is-GB:
assumes is-monomial-set G
shows is-Groebner-basis G
unfolding GB-alt-1

proof
fix f
assume f ∈ pmdl G
thus (red G)∗∗ f 0
proof (induct f rule: poly-mapping-plus-induct)

case 1
show ?case ..

next
case (2 f c t)
let ?f = monomial c t + f
from 2 (1 ) have t ∈ keys (monomial c t) by simp
from this 2 (2 ) have t ∈ keys ?f by (rule in-keys-plusI1 )
with assms ‹?f ∈ pmdl G› obtain g where g ∈ G and g 6= 0 and lt g addst t

by (rule keys-monomial-pmdl)
from this(1 ) have red G ?f f
proof (rule red-setI )

from ‹lt g addst t› have component-of-term (lt g) = component-of-term t
and lp g adds pp-of-term t

by (simp-all add: adds-term-def )
from this have eq: (pp-of-term t − lp g) ⊕ lt g = t

by (simp add: adds-minus splus-def term-of-pair-pair)
moreover from 2 (2 ) have lookup ?f t = c by (simp add: lookup-add

in-keys-iff )
ultimately show red-single (monomial c t + f ) f g (pp-of-term t − lp g)
proof (simp add: red-single-def ‹g 6= 0 › ‹t ∈ keys ?f › 2 (1 ))

from ‹g 6= 0 › have lc g 6= 0 by (rule lc-not-0 )
hence monomial c t = monom-mult (c / lc g) (pp-of-term t − lp g)

(monomial (lc g) (lt g))
by (simp add: monom-mult-monomial eq)

moreover from assms ‹g ∈ G› have is-monomial g unfolding is-monomial-set-def
..
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ultimately show monomial c t = monom-mult (c / lc g) (pp-of-term t −
lp g) g

by (simp only: monomial-eq-itself )
qed

qed
have f ∈ pmdl G by (rule pmdl-closed-red, fact subset-refl, fact+)
hence (red G)∗∗ f 0 by (rule 2 (3 ))
with ‹red G ?f f › show ?case by simp

qed
qed

context
fixes d
assumes dgrad: dickson-grading (d:: ′a ⇒ nat)

begin

context
fixes F m
assumes fin-comps: finite (component-of-term ‘ Keys F)

and F-sub: F ⊆ dgrad-p-set d m
and F-monom: is-monomial-set (F ::(- ⇒0

′b::field) set)
begin

The proof of the following lemma could be simplified, analogous to homo-
geneous ideals.
lemma reduced-GB-subset-monic-dgrad-p-set: reduced-GB F ⊆ monic ‘ F
proof −

from subset-refl obtain F ′ where F ′ ⊆ F − {0} and lt ‘ (F − {0}) = lt ‘ F ′

and inj-on lt F ′

by (rule subset-imageE-inj)
define G where G = {f ∈ F ′. ∀ f ′∈F ′. lt f ′ addst lt f −→ f ′ = f }
have G ⊆ F ′ by (simp add: G-def )
hence G ⊆ F − {0} using ‹F ′ ⊆ F − {0}› by (rule subset-trans)
also have . . . ⊆ F by blast
finally have G ⊆ F .
have 1 : thesis if f ∈ F and f 6= 0 and

∧
g. g ∈ G =⇒ lt g addst lt f =⇒ thesis

for thesis f
proof −

let ?K = component-of-term ‘ Keys F
let ?A = {t. pp-of-term t ∈ dgrad-set d m ∧ component-of-term t ∈ ?K}
let ?Q = {f ′ ∈ F ′. lt f ′ addst lt f }
from dgrad fin-comps have almost-full-on (addst) ?A by (rule Dickson-term)

moreover have transp-on ?A (addst) by (auto intro: transp-onI dest: adds-term-trans)
ultimately have wfp-on (strict (addst)) ?A by (rule af-trans-imp-wf )
moreover have lt f ∈ lt ‘ ?Q
proof −

from that(1 , 2 ) have f ∈ F − {0} by simp
hence lt f ∈ lt ‘ (F − {0}) by (rule imageI )
also have . . . = lt ‘ F ′ by fact
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finally have lt f ∈ lt ‘ F ′ .
with adds-term-refl show ?thesis by fastforce

qed
moreover have lt ‘ ?Q ⊆ ?A
proof

fix s
assume s ∈ lt ‘ ?Q
then obtain q where q ∈ ?Q and s: s = lt q ..
from this(1 ) have q ∈ F ′ by simp
hence q ∈ F − {0} using ‹F ′ ⊆ F − {0}› ..
hence q ∈ F and q 6= 0 by simp-all
from this(1 ) F-sub have q ∈ dgrad-p-set d m ..
from ‹q 6= 0 › have lt q ∈ keys q by (rule lt-in-keys)
hence pp-of-term (lt q) ∈ pp-of-term ‘ keys q by (rule imageI )
also from ‹q ∈ dgrad-p-set d m› have . . . ⊆ dgrad-set d m by (simp add:

dgrad-p-set-def )
finally have 1 : pp-of-term s ∈ dgrad-set d m by (simp only: s)
from ‹lt q ∈ keys q› ‹q ∈ F› have lt q ∈ Keys F by (rule in-KeysI )
hence component-of-term s ∈ ?K unfolding s by (rule imageI )
with 1 show s ∈ ?A by simp

qed
ultimately obtain t where t ∈ lt ‘ ?Q and t-min:

∧
s. strict (addst) s t =⇒

s /∈ lt ‘ ?Q
by (rule wfp-onE-min) blast

from this(1 ) obtain g where g ∈ ?Q and t: t = lt g ..
from this(1 ) have g ∈ F ′ and adds: lt g addst lt f by simp-all
show ?thesis
proof (rule that)

{
fix f ′

assume f ′ ∈ F ′

assume lt f ′ addst lt g
hence lt f ′ addst lt f using adds by (rule adds-term-trans)
with ‹f ′ ∈ F ′› have f ′ ∈ ?Q by simp
hence lt f ′ ∈ lt ‘ ?Q by (rule imageI )
with t-min have ¬ strict (addst) (lt f ′) (lt g) unfolding t by blast
with ‹lt f ′ addst lt g› have lt g addst lt f ′ by blast
with ‹lt f ′ addst lt g› have lt f ′ = lt g by (rule adds-term-antisym)
with ‹inj-on lt F ′› have f ′ = g using ‹f ′ ∈ F ′› ‹g ∈ F ′› by (rule inj-onD)

}
with ‹g ∈ F ′› show g ∈ G by (simp add: G-def )

qed fact
qed
have 2 : is-red G q if q ∈ pmdl F and q 6= 0 for q
proof −

from that(2 ) have keys q 6= {} by simp
then obtain t where t ∈ keys q by blast
with F-monom that(1 ) obtain f where f ∈ F and f 6= 0 and ∗: lt f addst t

by (rule keys-monomial-pmdl)
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from this(1 , 2 ) obtain g where g ∈ G and lt g addst lt f by (rule 1 )
from this(2 ) have ∗∗: lt g addst t using ∗ by (rule adds-term-trans)
from ‹g ∈ G› ‹G ⊆ F − {0}› have g ∈ F − {0} ..
hence g 6= 0 by simp
with ‹g ∈ G› show ?thesis using ‹t ∈ keys q› ∗∗ by (rule is-red-addsI )

qed
from ‹G ⊆ F − {0}› have G ⊆ F by blast
hence pmdl G ⊆ pmdl F by (rule pmdl.span-mono)
note dgrad fin-comps F-sub
moreover have is-reduced-GB (monic ‘ G) unfolding is-reduced-GB-def GB-image-monic
proof (intro conjI image-monic-is-auto-reduced image-monic-is-monic-set)

from dgrad show is-Groebner-basis G
proof (rule isGB-I-is-red)

from ‹G ⊆ F› F-sub show G ⊆ dgrad-p-set d m by (rule subset-trans)
next

fix f
assume f ∈ pmdl G
hence f ∈ pmdl F using ‹pmdl G ⊆ pmdl F› ..
moreover assume f 6= 0
ultimately show is-red G f by (rule 2 )

qed
next

show is-auto-reduced G unfolding is-auto-reduced-def
proof (intro ballI notI )

fix g
assume g ∈ G
hence g ∈ F using ‹G ⊆ F› ..
with F-monom have is-monomial g by (rule is-monomial-setD)
hence keys-g: keys g = {lt g} by (rule keys-monomial)
assume is-red (G − {g}) g
then obtain g ′ t where g ′ ∈ G − {g} and t ∈ keys g and adds: lt g ′ addst

t by (rule is-red-addsE)
from this(1 ) have g ′ ∈ F ′ and g ′ 6= g by (simp-all add: G-def )
from ‹t ∈ keys g› have t = lt g by (simp add: keys-g)
with ‹g ∈ G› ‹g ′ ∈ F ′› adds have g ′ = g by (simp add: G-def )
with ‹g ′ 6= g› show False ..

qed
next

show 0 /∈ monic ‘ G
proof

assume 0 ∈ monic ‘ G
then obtain g where 0 = monic g and g ∈ G ..
moreover from this(2 ) ‹G ⊆ F − {0}› have g 6= 0 by blast
ultimately show False by (simp add: monic-0-iff )

qed
qed
moreover have pmdl (monic ‘ G) = pmdl F unfolding pmdl-image-monic
proof

show pmdl F ⊆ pmdl G
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proof (rule pmdl.span-subset-spanI , rule)
fix f
assume f ∈ F
hence f ∈ pmdl F by (rule pmdl.span-base)
note dgrad
moreover from ‹G ⊆ F› F-sub have G ⊆ dgrad-p-set d m by (rule sub-

set-trans)
moreover note ‹pmdl G ⊆ pmdl F› 2 ‹f ∈ pmdl F›
moreover from ‹f ∈ F› F-sub have f ∈ dgrad-p-set d m ..
ultimately have (red G)∗∗ f 0 by (rule is-red-implies-0-red-dgrad-p-set)
thus f ∈ pmdl G by (rule red-rtranclp-0-in-pmdl)

qed
qed fact
ultimately have reduced-GB F = monic ‘ G by (rule reduced-GB-unique-dgrad-p-set)
also from ‹G ⊆ F› have . . . ⊆ monic ‘ F by (rule image-mono)
finally show ?thesis .

qed

corollary reduced-GB-is-monomial-set-dgrad-p-set: is-monomial-set (reduced-GB
F)
proof (rule is-monomial-setI )

fix g
assume g ∈ reduced-GB F
also have . . . ⊆ monic ‘ F by (fact reduced-GB-subset-monic-dgrad-p-set)
finally obtain f where f ∈ F and g: g = monic f ..
from F-monom this(1 ) have is-monomial f by (rule is-monomial-setD)
hence card (keys f ) = 1 by (simp only: is-monomial-def )
hence f 6= 0 by auto
hence lc f 6= 0 by (rule lc-not-0 )
hence 1 / lc f 6= 0 by simp
hence keys g = (⊕) 0 ‘ keys f by (simp add: keys-monom-mult monic-def g)
also from refl have . . . = (λx. x) ‘ keys f by (rule image-cong) (simp only:

splus-zero)
finally show is-monomial g using ‹card (keys f ) = 1 › by (simp only: is-monomial-def

image-ident)
qed

end

lemma is-red-reduced-GB-monomial-dgrad-set:
assumes finite (component-of-term ‘ S) and pp-of-term ‘ S ⊆ dgrad-set d m
shows is-red (reduced-GB (monomial 1 ‘ S)) = is-red (monomial (1 :: ′b::field) ‘

S)
proof

fix p
let ?F = monomial (1 :: ′b) ‘ S
from assms(1 ) have 1 : finite (component-of-term ‘ Keys ?F) by (simp add:

Keys-def )
moreover from assms(2 ) have 2 : ?F ⊆ dgrad-p-set d m by (auto simp:
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dgrad-p-set-def )
moreover have is-monomial-set ?F by (auto intro!: is-monomial-setI mono-

mial-is-monomial)
ultimately have reduced-GB ?F ⊆ monic ‘ ?F by (rule reduced-GB-subset-monic-dgrad-p-set)
also have . . . = ?F by (auto simp: monic-def intro!: image-eqI )
finally have 3 : reduced-GB ?F ⊆ ?F .
show is-red (reduced-GB ?F) p ←→ is-red ?F p
proof

assume is-red (reduced-GB ?F) p
thus is-red ?F p using 3 by (rule is-red-subset)

next
assume is-red ?F p
then obtain f v where f ∈ ?F and v ∈ keys p and f 6= 0 and adds1 : lt f

addst v
by (rule is-red-addsE)

from this(1 ) have f ∈ pmdl ?F by (rule pmdl.span-base)
from dgrad 1 2 have is-Groebner-basis (reduced-GB ?F) by (rule reduced-GB-is-GB-dgrad-p-set)
moreover from ‹f ∈ pmdl ?F› dgrad 1 2 have f ∈ pmdl (reduced-GB ?F)

by (simp only: reduced-GB-pmdl-dgrad-p-set)
ultimately obtain g where g ∈ reduced-GB ?F and g 6= 0 and lt g addst lt f

using ‹f 6= 0 › by (rule GB-adds-lt)
from this(3 ) adds1 have lt g addst v by (rule adds-term-trans)
with ‹g ∈ reduced-GB ?F› ‹g 6= 0 › ‹v ∈ keys p› show is-red (reduced-GB ?F)

p
by (rule is-red-addsI )

qed
qed

corollary is-red-reduced-GB-monomial-lt-GB-dgrad-p-set:
assumes finite (component-of-term ‘ Keys G) and G ⊆ dgrad-p-set d m and 0

/∈ G
shows is-red (reduced-GB (monomial (1 :: ′b::field) ‘ lt ‘ G)) = is-red G

proof −
let ?S = lt ‘ G
let ?G = monomial (1 :: ′b) ‘ ?S
from assms(3 ) have ?S ⊆ Keys G by (auto intro: lt-in-keys in-KeysI )
hence component-of-term ‘ ?S ⊆ component-of-term ‘ Keys G

and ∗: pp-of-term ‘ ?S ⊆ pp-of-term ‘ Keys G by (rule image-mono)+
from this(1 ) have finite (component-of-term ‘ ?S) using assms(1 ) by (rule

finite-subset)
moreover from ∗ have pp-of-term ‘ ?S ⊆ dgrad-set d m
proof (rule subset-trans)

from assms(2 ) show pp-of-term ‘ Keys G ⊆ dgrad-set d m by (auto simp:
dgrad-p-set-def Keys-def )

qed
ultimately have is-red (reduced-GB ?G) = is-red ?G by (rule is-red-reduced-GB-monomial-dgrad-set)
also from assms(3 ) have . . . = is-red G by (rule is-red-monomial-lt)
finally show ?thesis .

qed
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lemma reduced-GB-monomial-lt-reduced-GB-dgrad-p-set:
assumes finite (component-of-term ‘ Keys F) and F ⊆ dgrad-p-set d m
shows reduced-GB (monomial 1 ‘ lt ‘ reduced-GB F) = monomial (1 :: ′b::field) ‘

lt ‘ reduced-GB F
proof (rule reduced-GB-unique)

let ?G = reduced-GB F
let ?F = monomial (1 :: ′b) ‘ lt ‘ ?G

from dgrad assms have 0 /∈ ?G and ar : is-auto-reduced ?G and finite ?G
by (rule reduced-GB-nonzero-dgrad-p-set, rule reduced-GB-is-auto-reduced-dgrad-p-set,

rule finite-reduced-GB-dgrad-p-set)
from this(3 ) show finite ?F by (intro finite-imageI )

show is-reduced-GB ?F unfolding is-reduced-GB-def
proof (intro conjI monomial-set-is-GB)
show is-monomial-set ?F by (auto intro!: is-monomial-setI monomial-is-monomial)

next
show is-monic-set ?F by (simp add: is-monic-set-def )

next
show 0 /∈ ?F by (auto simp: monomial-0-iff )

next
show is-auto-reduced ?F unfolding is-auto-reduced-def
proof (intro ballI notI )

fix f
assume f ∈ ?F
then obtain g where g ∈ ?G and f : f = monomial 1 (lt g) by blast
assume is-red (?F − {f }) f
then obtain f ′ v where f ′ ∈ ?F − {f } and v ∈ keys f and f ′ 6= 0 and

adds1 : lt f ′ addst v
by (rule is-red-addsE)

from this(1 ) have f ′ ∈ ?F and f ′ 6= f by simp-all
from this(1 ) obtain g ′ where g ′ ∈ ?G and f ′: f ′ = monomial 1 (lt g ′) by

blast
from ‹v ∈ keys f › have v: v = lt g by (simp add: f )
from ar ‹g ∈ ?G› have ¬ is-red (?G − {g}) g by (rule is-auto-reducedD)
moreover have is-red (?G − {g}) g
proof (rule is-red-addsI )

from ‹g ′ ∈ ?G› ‹f ′ 6= f › show g ′ ∈ ?G − {g} by (auto simp: f f ′)
next

from ‹g ′ ∈ ?G› ‹0 /∈ ?G› show g ′ 6= 0 by blast
next

from ‹g ∈ ?G› ‹0 /∈ ?G› have g 6= 0 by blast
thus lt g ∈ keys g by (rule lt-in-keys)

next
from adds1 show adds2 : lt g ′ addst lt g by (simp add: v f ′ lt-monomial)

qed
ultimately show False ..

qed
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qed
qed (fact refl)

end

end

end

8 Preliminaries
theory Dube-Prelims

imports Groebner-Bases.General
begin

8.1 Sets
lemma card-geq-ex-subset:

assumes card A ≥ n
obtains B where card B = n and B ⊆ A
using assms

proof (induct n arbitrary: thesis)
case base: 0
show ?case
proof (rule base(1 ))

show card {} = 0 by simp
next

show {} ⊆ A ..
qed

next
case ind: (Suc n)
from ind(3 ) have n < card A by simp
obtain B where card: card B = n and B ⊆ A
proof (rule ind(1 ))

from ‹n < card A› show n ≤ card A by simp
qed
from ‹n < card A› have card A 6= 0 by simp
with card.infinite[of A] have finite A by blast
let ?C = A − B
have ?C 6= {}
proof

assume A − B = {}
hence A ⊆ B by simp
from this ‹B ⊆ A› have A = B ..
from ‹n < card A› show False unfolding ‹A = B› card by simp

qed
then obtain c where c ∈ ?C by auto
hence c /∈ B by simp
hence B − {c} = B by simp
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show ?case
proof (rule ind(2 ))

thm card.insert-remove
have card (B ∪ {c}) = card (insert c B) by simp
also have ... = Suc (card (B − {c}))

by (rule card.insert-remove, rule finite-subset, fact ‹B ⊆ A›, fact)
finally show card (B ∪ {c}) = Suc n unfolding ‹B − {c} = B› card .

next
show B ∪ {c} ⊆ A unfolding Un-subset-iff
proof (intro conjI , fact)

from ‹c ∈ ?C › show {c} ⊆ A by auto
qed

qed
qed

lemma card-2-E-1 :
assumes card A = 2 and x ∈ A
obtains y where x 6= y and A = {x, y}

proof −
have A − {x} 6= {}
proof

assume A − {x} = {}
with assms(2 ) have A = {x} by auto
hence card A = 1 by simp
with assms show False by simp

qed
then obtain y where y ∈ A − {x} by auto
hence y ∈ A and x 6= y by auto
show ?thesis
proof

show A = {x, y}
proof (rule sym, rule card-seteq)

from assms(1 ) show finite A using card.infinite by fastforce
next

from ‹x ∈ A› ‹y ∈ A› show {x, y} ⊆ A by simp
next

from ‹x 6= y› show card A ≤ card {x, y} by (simp add: assms(1 ))
qed

qed fact
qed

lemma card-2-E :
assumes card A = 2
obtains x y where x 6= y and A = {x, y}

proof −
from assms have A 6= {} by auto
then obtain x where x ∈ A by blast
with assms obtain y where x 6= y and A = {x, y} by (rule card-2-E-1 )
thus ?thesis ..
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qed

8.2 Sums
lemma sum-tail-nat: 0 < b =⇒ a ≤ (b::nat) =⇒ sum f {a..b} = f b + sum f {a..b
− 1}

by (metis One-nat-def Suc-pred add.commute not-le sum.cl-ivl-Suc)

lemma sum-atLeast-Suc-shift: 0 < b =⇒ a ≤ b =⇒ sum f {Suc a..b} = (
∑

i=a..b
− 1 . f (Suc i))

by (metis Suc-pred ′ sum.shift-bounds-cl-Suc-ivl)

lemma sum-split-nat-ivl:
a ≤ Suc j =⇒ j ≤ b =⇒ sum f {a..j} + sum f {Suc j..b} = sum f {a..b}
by (metis Suc-eq-plus1 le-Suc-ex sum.ub-add-nat)

8.3 count-list
lemma count-list-gr-1-E :

assumes 1 < count-list xs x
obtains i j where i < j and j < length xs and xs ! i = x and xs ! j = x

proof −
from assms have count-list xs x 6= 0 by simp
hence x ∈ set xs by (simp only: count-list-0-iff not-not)
then obtain ys zs where xs: xs = ys @ x # zs and x /∈ set ys by (meson

split-list-first)
hence count-list xs x = Suc (count-list zs x) by (simp)
with assms have count-list zs x 6= 0 by simp
hence x ∈ set zs by (simp only: count-list-0-iff not-not)
then obtain j where j < length zs and x = zs ! j by (metis in-set-conv-nth)
show ?thesis
proof

show length ys < length ys + Suc j by simp
next

from ‹j < length zs› show length ys + Suc j < length xs by (simp add: xs)
next

show xs ! length ys = x by (simp add: xs)
next

show xs ! (length ys + Suc j) = x
by (simp only: xs ‹x = zs ! j› nth-append-length-plus nth-Cons-Suc)

qed
qed

8.4 listset
lemma listset-Cons: listset (x # xs) = (

⋃
y∈x. (#) y ‘ listset xs)

by (auto simp: set-Cons-def )

lemma listset-ConsI : y ∈ x =⇒ ys ′ ∈ listset xs =⇒ ys = y # ys ′ =⇒ ys ∈ listset
(x # xs)
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by (simp add: set-Cons-def )

lemma listset-ConsE :
assumes ys ∈ listset (x# xs)
obtains y ys ′ where y ∈ x and ys ′ ∈ listset xs and ys = y # ys ′

using assms by (auto simp: set-Cons-def )

lemma listsetI :
length ys = length xs =⇒ (

∧
i. i < length xs =⇒ ys ! i ∈ xs ! i) =⇒ ys ∈ listset

xs
by (induct ys xs rule: list-induct2 )
(simp-all, smt Suc-mono list.sel(3 ) mem-Collect-eq nth-Cons-0 nth-tl set-Cons-def

zero-less-Suc)

lemma listsetD:
assumes ys ∈ listset xs
shows length ys = length xs and

∧
i. i < length xs =⇒ ys ! i ∈ xs ! i

proof −
from assms have length ys = length xs ∧ (∀ i<length xs. ys ! i ∈ xs ! i)
proof (induct xs arbitrary: ys)

case Nil
thus ?case by simp

next
case (Cons x xs)
from Cons.prems obtain y ys ′ where y ∈ x and ys ′ ∈ listset xs and ys: ys =

y # ys ′

by (rule listset-ConsE)
from this(2 ) have length ys ′ = length xs ∧ (∀ i<length xs. ys ′ ! i ∈ xs ! i) by

(rule Cons.hyps)
hence 1 : length ys ′ = length xs and 2 :

∧
i. i < length xs =⇒ ys ′ ! i ∈ xs ! i

by simp-all
show ?case
proof (intro conjI allI impI )

fix i
assume i < length (x # xs)
show ys ! i ∈ (x # xs) ! i
proof (cases i)

case 0
with ‹y ∈ x› show ?thesis by (simp add: ys)

next
case (Suc j)
with ‹i < length (x # xs)› have j < length xs by simp
hence ys ′ ! j ∈ xs ! j by (rule 2 )
thus ?thesis by (simp add: ys ‹i = Suc j›)

qed
qed (simp add: ys 1 )

qed
thus length ys = length xs and

∧
i. i < length xs =⇒ ys ! i ∈ xs ! i by simp-all

qed
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lemma listset-singletonI : a ∈ A =⇒ ys = [a] =⇒ ys ∈ listset [A]
by simp

lemma listset-singletonE :
assumes ys ∈ listset [A]
obtains a where a ∈ A and ys = [a]
using assms by auto

lemma listset-doubletonI : a ∈ A =⇒ b ∈ B =⇒ ys = [a, b] =⇒ ys ∈ listset [A,
B]

by (simp add: set-Cons-def )

lemma listset-doubletonE :
assumes ys ∈ listset [A, B]
obtains a b where a ∈ A and b ∈ B and ys = [a, b]
using assms by (auto simp: set-Cons-def )

lemma listset-appendI :
ys1 ∈ listset xs1 =⇒ ys2 ∈ listset xs2 =⇒ ys = ys1 @ ys2 =⇒ ys ∈ listset (xs1

@ xs2 )
by (induct xs1 arbitrary: ys ys1 ys2 )

(simp, auto simp del: listset.simps elim!: listset-ConsE intro!: listset-ConsI )

lemma listset-appendE :
assumes ys ∈ listset (xs1 @ xs2 )
obtains ys1 ys2 where ys1 ∈ listset xs1 and ys2 ∈ listset xs2 and ys = ys1 @

ys2
using assms

proof (induct xs1 arbitrary: thesis ys)
case Nil
have [] ∈ listset [] by simp
moreover from Nil(2 ) have ys ∈ listset xs2 by simp
ultimately show ?case by (rule Nil) simp

next
case (Cons x xs1 )
from Cons.prems(2 ) have ys ∈ listset (x # (xs1 @ xs2 )) by simp
then obtain y ys ′ where y ∈ x and ys ′ ∈ listset (xs1 @ xs2 ) and ys: ys = y

# ys ′

by (rule listset-ConsE)
from - this(2 ) obtain ys1 ys2 where ys1 : ys1 ∈ listset xs1 and ys2 ∈ listset

xs2
and ys ′: ys ′ = ys1 @ ys2 by (rule Cons.hyps)

show ?case
proof (rule Cons.prems)
from ‹y ∈ x› ys1 refl show y # ys1 ∈ listset (x # xs1 ) by (rule listset-ConsI )

next
show ys = (y # ys1 ) @ ys2 by (simp add: ys ys ′)

qed fact
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qed

lemma listset-map-imageI : ys ′ ∈ listset xs =⇒ ys = map f ys ′ =⇒ ys ∈ listset
(map ((‘) f ) xs)

by (induct xs arbitrary: ys ys ′)
(simp, auto simp del: listset.simps elim!: listset-ConsE intro!: listset-ConsI )

lemma listset-map-imageE :
assumes ys ∈ listset (map ((‘) f ) xs)
obtains ys ′ where ys ′ ∈ listset xs and ys = map f ys ′

using assms
proof (induct xs arbitrary: thesis ys)

case Nil
from Nil(2 ) have ys = map f [] by simp
with - show ?case by (rule Nil) simp

next
case (Cons x xs)
from Cons.prems(2 ) have ys ∈ listset (f ‘ x # map ((‘) f ) xs) by simp
then obtain y ys ′ where y ∈ f ‘ x and ys ′ ∈ listset (map ((‘) f ) xs) and ys: ys

= y # ys ′

by (rule listset-ConsE)
from - this(2 ) obtain ys1 where ys1 : ys1 ∈ listset xs and ys ′: ys ′ = map f ys1

by (rule Cons.hyps)
from ‹y ∈ f ‘ x› obtain y1 where y1 ∈ x and y: y = f y1 ..
show ?case
proof (rule Cons.prems)
from ‹y1 ∈ x› ys1 refl show y1 # ys1 ∈ listset (x # xs) by (rule listset-ConsI )

qed (simp add: ys ys ′ y)
qed

lemma listset-permE :
assumes ys ∈ listset xs and bij-betw f {..<length xs} {..<length xs ′}

and
∧

i. i < length xs =⇒ xs ′ ! i = xs ! f i
obtains ys ′ where ys ′ ∈ listset xs ′ and length ys ′ = length ys

and
∧

i. i < length ys =⇒ ys ′ ! i = ys ! f i
proof −

from assms(1 ) have len-ys: length ys = length xs by (rule listsetD)
from assms(2 ) have card {..<length xs} = card {..<length xs ′} by (rule bij-betw-same-card)
hence len-xs: length xs = length xs ′ by simp
define ys ′ where ys ′ = map (λi. ys ! (f i)) [0 ..<length ys]
have 1 : ys ′ ! i = ys ! f i if i < length ys for i using that by (simp add: ys ′-def )
show ?thesis
proof

show ys ′ ∈ listset xs ′

proof (rule listsetI )
show length ys ′ = length xs ′ by (simp add: ys ′-def len-ys len-xs)

fix i
assume i < length xs ′
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hence i < length xs by (simp only: len-xs)
hence i < length ys by (simp only: len-ys)
hence ys ′ ! i = ys ! (f i) by (rule 1 )
also from assms(1 ) have . . . ∈ xs ! (f i)
proof (rule listsetD)

from ‹i < length xs› have i ∈ {..<length xs} by simp
hence f i ∈ f ‘ {..<length xs} by (rule imageI )
also from assms(2 ) have . . . = {..<length xs ′} by (simp add: bij-betw-def )
finally show f i < length xs by (simp add: len-xs)

qed
also have . . . = xs ′ ! i by (rule sym) (rule assms(3 ), fact)
finally show ys ′ ! i ∈ xs ′ ! i .

qed
next

show length ys ′ = length ys by (simp add: ys ′-def )
qed (rule 1 )

qed

lemma listset-closed-map:
assumes ys ∈ listset xs and

∧
x y. x ∈ set xs =⇒ y ∈ x =⇒ f y ∈ x

shows map f ys ∈ listset xs
using assms

proof (induct xs arbitrary: ys)
case Nil
from Nil(1 ) show ?case by simp

next
case (Cons x xs)
from Cons.prems(1 ) obtain y ys ′ where y ∈ x and ys ′ ∈ listset xs and ys: ys

= y # ys ′

by (rule listset-ConsE)
show ?case
proof (rule listset-ConsI )

from - ‹y ∈ x› show f y ∈ x by (rule Cons.prems) simp
next

show map f ys ′ ∈ listset xs
proof (rule Cons.hyps)

fix x0 y0
assume x0 ∈ set xs
hence x0 ∈ set (x # xs) by simp
moreover assume y0 ∈ x0
ultimately show f y0 ∈ x0 by (rule Cons.prems)

qed fact
qed (simp add: ys)

qed

lemma listset-closed-map2 :
assumes ys1 ∈ listset xs and ys2 ∈ listset xs

and
∧

x y1 y2 . x ∈ set xs =⇒ y1 ∈ x =⇒ y2 ∈ x =⇒ f y1 y2 ∈ x
shows map2 f ys1 ys2 ∈ listset xs
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using assms
proof (induct xs arbitrary: ys1 ys2 )

case Nil
from Nil(1 ) show ?case by simp

next
case (Cons x xs)
from Cons.prems(1 ) obtain y1 ys1 ′ where y1 ∈ x and ys1 ′ ∈ listset xs and

ys1 : ys1 = y1 # ys1 ′

by (rule listset-ConsE)
from Cons.prems(2 ) obtain y2 ys2 ′ where y2 ∈ x and ys2 ′ ∈ listset xs and

ys2 : ys2 = y2 # ys2 ′

by (rule listset-ConsE)
show ?case
proof (rule listset-ConsI )

from - ‹y1 ∈ x› ‹y2 ∈ x› show f y1 y2 ∈ x by (rule Cons.prems) simp
next

show map2 f ys1 ′ ys2 ′ ∈ listset xs
proof (rule Cons.hyps)

fix x ′ y1 ′ y2 ′

assume x ′ ∈ set xs
hence x ′ ∈ set (x # xs) by simp
moreover assume y1 ′ ∈ x ′ and y2 ′ ∈ x ′

ultimately show f y1 ′ y2 ′ ∈ x ′ by (rule Cons.prems)
qed fact+

qed (simp add: ys1 ys2 )
qed

lemma listset-empty-iff : listset xs = {} ←→ {} ∈ set xs
by (induct xs) (auto simp: listset-Cons simp del: listset.simps(2 ))

lemma listset-mono:
assumes length xs = length ys and

∧
i. i < length ys =⇒ xs ! i ⊆ ys ! i

shows listset xs ⊆ listset ys
using assms

proof (induct xs ys rule: list-induct2 )
case Nil
show ?case by simp

next
case (Cons x xs y ys)
show ?case
proof

fix zs ′

assume zs ′ ∈ listset (x # xs)
then obtain z zs where z ∈ x and zs: zs ∈ listset xs and zs ′: zs ′ = z # zs

by (rule listset-ConsE)
have 0 < length (y # ys) by simp
hence (x # xs) ! 0 ⊆ (y # ys) ! 0 by (rule Cons.prems)
hence x ⊆ y by simp
with ‹z ∈ x› have z ∈ y ..

52



moreover from zs have zs ∈ listset ys
proof

show listset xs ⊆ listset ys
proof (rule Cons.hyps)

fix i
assume i < length ys
hence Suc i < length (y # ys) by simp
hence (x # xs) ! Suc i ⊆ (y # ys) ! Suc i by (rule Cons.prems)
thus xs ! i ⊆ ys ! i by simp

qed
qed
ultimately show zs ′ ∈ listset (y # ys) using zs ′ by (rule listset-ConsI )

qed
qed

end

9 Direct Decompositions and Hilbert Functions
theory Hilbert-Function
imports

HOL−Combinatorics.Permutations
Dube-Prelims
Degree-Section

begin

9.1 Direct Decompositions

The main reason for defining direct-decomp in terms of lists rather than sets
is that lemma direct-decomp-direct-decomp can be proved easier. At some
point one could invest the time to re-define direct-decomp in terms of sets
(possibly adding a couple of further assumptions to direct-decomp-direct-decomp).
definition direct-decomp :: ′a set ⇒ ′a::comm-monoid-add set list ⇒ bool

where direct-decomp A ss ←→ bij-betw sum-list (listset ss) A

lemma direct-decompI :
inj-on sum-list (listset ss) =⇒ sum-list ‘ listset ss = A =⇒ direct-decomp A ss
by (simp add: direct-decomp-def bij-betw-def )

lemma direct-decompI-alt:
(
∧

qs. qs ∈ listset ss =⇒ sum-list qs ∈ A) =⇒ (
∧

a. a ∈ A =⇒ ∃ !qs∈listset ss. a
= sum-list qs) =⇒

direct-decomp A ss
by (auto simp: direct-decomp-def intro!: bij-betwI ′) blast

lemma direct-decompD:
assumes direct-decomp A ss
shows qs ∈ listset ss =⇒ sum-list qs ∈ A and inj-on sum-list (listset ss)
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and sum-list ‘ listset ss = A
using assms by (auto simp: direct-decomp-def bij-betw-def )

lemma direct-decompE :
assumes direct-decomp A ss and a ∈ A
obtains qs where qs ∈ listset ss and a = sum-list qs
using assms by (auto simp: direct-decomp-def bij-betw-def )

lemma direct-decomp-unique:
direct-decomp A ss =⇒ qs ∈ listset ss =⇒ qs ′ ∈ listset ss =⇒ sum-list qs =

sum-list qs ′ =⇒
qs = qs ′

by (auto dest: direct-decompD simp: inj-on-def )

lemma direct-decomp-singleton: direct-decomp A [A]
proof (rule direct-decompI-alt)

fix qs
assume qs ∈ listset [A]
then obtain q where q ∈ A and qs = [q] by (rule listset-singletonE)
thus sum-list qs ∈ A by simp

next
fix a
assume a ∈ A
show ∃ !qs∈listset [A]. a = sum-list qs
proof (intro ex1I conjI allI impI )

from ‹a ∈ A› refl show [a] ∈ listset [A] by (rule listset-singletonI )
next

fix qs
assume qs ∈ listset [A] ∧ a = sum-list qs
hence a: a = sum-list qs and qs ∈ listset [A] by simp-all
from this(2 ) obtain b where qs: qs = [b] by (rule listset-singletonE)
with a show qs = [a] by simp

qed simp-all
qed

lemma mset-bij:
assumes bij-betw f {..<length xs} {..<length ys} and

∧
i. i < length xs =⇒ xs

! i = ys ! f i
shows mset xs = mset ys

proof −
from assms(1 ) have 1 : inj-on f {0 ..<length xs} and 2 : f ‘ {0 ..<length xs} =
{0 ..<length ys}

by (simp-all add: bij-betw-def lessThan-atLeast0 )
let ?f = (!) ys ◦ f
have xs = map ?f [0 ..<length xs] unfolding list-eq-iff-nth-eq
proof (intro conjI allI impI )

fix i
assume i < length xs
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hence xs ! i = ys ! f i by (rule assms(2 ))
also from ‹i < length xs› have . . . = map ((!) ys ◦ f ) [0 ..<length xs] ! i by

simp
finally show xs ! i = map ((!) ys ◦ f ) [0 ..<length xs] ! i .

qed simp
hence mset xs = mset (map ?f [0 ..<length xs]) by (rule arg-cong)
also have . . . = image-mset ((!) ys) (image-mset f (mset-set {0 ..<length xs}))

by (simp flip: image-mset.comp)
also from 1 have . . . = image-mset ((!) ys) (mset-set {0 ..<length ys})

by (simp add: image-mset-mset-set 2 )
also have . . . = mset (map ((!) ys) [0 ..<length ys]) by simp
finally show mset xs = mset ys by (simp only: map-nth)

qed

lemma direct-decomp-perm:
assumes direct-decomp A ss1 and mset ss1 = mset ss2
shows direct-decomp A ss2

proof −
from assms(2 ) have len-ss1 : length ss1 = length ss2

using mset-eq-length by blast
from assms(2 ) obtain f where ‹f permutes {..<length ss2}›

‹permute-list f ss2 = ss1 ›
by (rule mset-eq-permutation)

then have f-bij: bij-betw f {..<length ss2} {..<length ss1}
and f :

∧
i. i < length ss2 =⇒ ss1 ! i = ss2 ! f i

by (auto simp add: permutes-imp-bij permute-list-nth)
define g where g = inv-into {..<length ss2} f
from f-bij have g-bij: bij-betw g {..<length ss1} {..<length ss2}

unfolding g-def len-ss1 by (rule bij-betw-inv-into)
have f-g: f (g i) = i if i < length ss1 for i
proof −

from that f-bij have i ∈ f ‘ {..<length ss2} by (simp add: bij-betw-def len-ss1 )
thus ?thesis by (simp only: f-inv-into-f g-def )

qed
have g-f : g (f i) = i if i < length ss2 for i
proof −

from f-bij have inj-on f {..<length ss2} by (simp only: bij-betw-def )
moreover from that have i ∈ {..<length ss2} by simp
ultimately show ?thesis by (simp add: g-def )

qed
have g: ss2 ! i = ss1 ! g i if i < length ss1 for i
proof −

from that have i ∈ {..<length ss2} by (simp add: len-ss1 )
hence g i ∈ g ‘ {..<length ss2} by (rule imageI )
also from g-bij have . . . = {..<length ss2} by (simp only: len-ss1 bij-betw-def )
finally have g i < length ss2 by simp
hence ss1 ! g i = ss2 ! f (g i) by (rule f )
with that show ?thesis by (simp only: f-g)

qed
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show ?thesis
proof (rule direct-decompI-alt)

fix qs2
assume qs2 ∈ listset ss2
then obtain qs1 where qs1-in: qs1 ∈ listset ss1 and len-qs1 : length qs1 =

length qs2
and ∗:

∧
i. i < length qs2 =⇒ qs1 ! i = qs2 ! f i using f-bij f by (rule

listset-permE) blast+
from ‹qs2 ∈ listset ss2 › have length qs2 = length ss2 by (rule listsetD)
with f-bij have bij-betw f {..<length qs1} {..<length qs2} by (simp only:

len-qs1 len-ss1 )
hence mset qs1 = mset qs2 using ∗ by (rule mset-bij) (simp only: len-qs1 )
hence sum-list qs2 = sum-list qs1 by (simp flip: sum-mset-sum-list)
also from assms(1 ) qs1-in have . . . ∈ A by (rule direct-decompD)
finally show sum-list qs2 ∈ A .

next
fix a
assume a ∈ A
with assms(1 ) obtain qs where a: a = sum-list qs and qs-in: qs ∈ listset ss1

by (rule direct-decompE)
from qs-in obtain qs2 where qs2-in: qs2 ∈ listset ss2 and len-qs2 : length qs2

= length qs
and 1 :

∧
i. i < length qs =⇒ qs2 ! i = qs ! g i using g-bij g by (rule

listset-permE) blast+
show ∃ !qs∈listset ss2 . a = sum-list qs
proof (intro ex1I conjI allI impI )

from qs-in have len-qs: length qs = length ss1 by (rule listsetD)
with g-bij have g-bij2 : bij-betw g {..<length qs2} {..<length qs} by (simp

only: len-qs2 len-ss1 )
hence mset qs2 = mset qs using 1 by (rule mset-bij) (simp only: len-qs2 )
thus a2 : a = sum-list qs2 by (simp only: a flip: sum-mset-sum-list)

fix qs ′

assume qs ′ ∈ listset ss2 ∧ a = sum-list qs ′

hence qs ′-in: qs ′ ∈ listset ss2 and a ′: a = sum-list qs ′ by simp-all
from this(1 ) obtain qs1 where qs1-in: qs1 ∈ listset ss1 and len-qs1 : length

qs1 = length qs ′

and 2 :
∧

i. i < length qs ′ =⇒ qs1 ! i = qs ′ ! f i using f-bij f by (rule
listset-permE) blast+

from ‹qs ′ ∈ listset ss2 › have length qs ′ = length ss2 by (rule listsetD)
with f-bij have bij-betw f {..<length qs1} {..<length qs ′} by (simp only:

len-qs1 len-ss1 )
hence mset qs1 = mset qs ′ using 2 by (rule mset-bij) (simp only: len-qs1 )
hence sum-list qs1 = sum-list qs ′ by (simp flip: sum-mset-sum-list)
hence sum-list qs1 = sum-list qs by (simp only: a flip: a ′)
with assms(1 ) qs1-in qs-in have qs1 = qs by (rule direct-decomp-unique)
show qs ′ = qs2 unfolding list-eq-iff-nth-eq
proof (intro conjI allI impI )

from qs ′-in have length qs ′ = length ss2 by (rule listsetD)
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thus eq: length qs ′ = length qs2 by (simp only: len-qs2 len-qs len-ss1 )

fix i
assume i < length qs ′

hence i < length qs2 by (simp only: eq)
hence i ∈ {..<length qs2} and i < length qs and i < length ss1

by (simp-all add: len-qs2 len-qs)
from this(1 ) have g i ∈ g ‘ {..<length qs2} by (rule imageI )
also from g-bij2 have . . . = {..<length qs} by (simp only: bij-betw-def )
finally have g i < length qs ′ by (simp add: eq len-qs2 )
from ‹i < length qs› have qs2 ! i = qs ! g i by (rule 1 )
also have . . . = qs1 ! g i by (simp only: ‹qs1 = qs›)
also from ‹g i < length qs ′› have . . . = qs ′ ! f (g i) by (rule 2 )
also from ‹i < length ss1 › have . . . = qs ′ ! i by (simp only: f-g)
finally show qs ′ ! i = qs2 ! i by (rule sym)

qed
qed fact

qed
qed

lemma direct-decomp-split-map:
direct-decomp A (map f ss) =⇒ direct-decomp A (map f (filter P ss) @ map f

(filter (− P) ss))
proof (rule direct-decomp-perm)

show mset (map f ss) = mset (map f (filter P ss) @ map f (filter (− P) ss))
by simp (metis image-mset-union multiset-partition)

qed

lemmas direct-decomp-split = direct-decomp-split-map[where f=id, simplified]

lemma direct-decomp-direct-decomp:
assumes direct-decomp A (s # ss) and direct-decomp s rs
shows direct-decomp A (ss @ rs) (is direct-decomp A ?ss)

proof (rule direct-decompI-alt)
fix qs
assume qs ∈ listset ?ss
then obtain qs1 qs2 where qs1 : qs1 ∈ listset ss and qs2 : qs2 ∈ listset rs and

qs: qs = qs1 @ qs2
by (rule listset-appendE)

have sum-list qs = sum-list ((sum-list qs2 ) # qs1 ) by (simp add: qs add.commute)
also from assms(1 ) have . . . ∈ A
proof (rule direct-decompD)

from assms(2 ) qs2 have sum-list qs2 ∈ s by (rule direct-decompD)
thus sum-list qs2 # qs1 ∈ listset (s # ss) using qs1 refl by (rule listset-ConsI )

qed
finally show sum-list qs ∈ A .

next
fix a
assume a ∈ A
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with assms(1 ) obtain qs1 where qs1-in: qs1 ∈ listset (s # ss) and a: a =
sum-list qs1

by (rule direct-decompE)
from qs1-in obtain qs11 qs12 where qs11 ∈ s and qs12-in: qs12 ∈ listset ss

and qs1 : qs1 = qs11 # qs12 by (rule listset-ConsE)
from assms(2 ) this(1 ) obtain qs2 where qs2-in: qs2 ∈ listset rs and qs11 :

qs11 = sum-list qs2
by (rule direct-decompE)

let ?qs = qs12 @ qs2
show ∃ !qs∈listset ?ss. a = sum-list qs
proof (intro ex1I conjI allI impI )

from qs12-in qs2-in refl show ?qs ∈ listset ?ss by (rule listset-appendI )

show a = sum-list ?qs by (simp add: a qs1 qs11 add.commute)

fix qs0
assume qs0 ∈ listset ?ss ∧ a = sum-list qs0
hence qs0-in: qs0 ∈ listset ?ss and a2 : a = sum-list qs0 by simp-all
from this(1 ) obtain qs01 qs02 where qs01-in: qs01 ∈ listset ss and qs02-in:

qs02 ∈ listset rs
and qs0 : qs0 = qs01 @ qs02 by (rule listset-appendE)

note assms(1 )
moreover from - qs01-in refl have (sum-list qs02 ) # qs01 ∈ listset (s # ss)

(is ?qs ′ ∈ -)
proof (rule listset-ConsI )

from assms(2 ) qs02-in show sum-list qs02 ∈ s by (rule direct-decompD)
qed
moreover note qs1-in
moreover from a2 have sum-list ?qs ′ = sum-list qs1 by (simp add: qs0 a

add.commute)
ultimately have ?qs ′= qs11 # qs12 unfolding qs1 by (rule direct-decomp-unique)
hence qs11 = sum-list qs02 and 1 : qs01 = qs12 by simp-all
from this(1 ) have sum-list qs02 = sum-list qs2 by (simp only: qs11 )
with assms(2 ) qs02-in qs2-in have qs02 = qs2 by (rule direct-decomp-unique)
thus qs0 = qs12 @ qs2 by (simp only: 1 qs0 )

qed
qed

lemma sum-list-map-times: sum-list (map ((∗) x) xs) = (x:: ′a::semiring-0 ) ∗ sum-list
xs

by (induct xs) (simp-all add: algebra-simps)

lemma direct-decomp-image-times:
assumes direct-decomp (A:: ′a::semiring-0 set) ss and

∧
a b. x ∗ a = x ∗ b =⇒

x 6= 0 =⇒ a = b
shows direct-decomp ((∗) x ‘ A) (map ((‘) ((∗) x)) ss) (is direct-decomp ?A ?ss)

proof (rule direct-decompI-alt)
fix qs
assume qs ∈ listset ?ss
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then obtain qs0 where qs0-in: qs0 ∈ listset ss and qs: qs = map ((∗) x) qs0
by (rule listset-map-imageE)

have sum-list qs = x ∗ sum-list qs0 by (simp only: qs sum-list-map-times)
moreover from assms(1 ) qs0-in have sum-list qs0 ∈ A by (rule direct-decompD)
ultimately show sum-list qs ∈ (∗) x ‘ A by (rule image-eqI )

next
fix a
assume a ∈ ?A
then obtain a ′ where a ′ ∈ A and a: a = x ∗ a ′ ..
from assms(1 ) this(1 ) obtain qs ′ where qs ′-in: qs ′ ∈ listset ss and a ′: a ′ =

sum-list qs ′

by (rule direct-decompE)
define qs where qs = map ((∗) x) qs ′

show ∃ !qs∈listset ?ss. a = sum-list qs
proof (intro ex1I conjI allI impI )

from qs ′-in qs-def show qs ∈ listset ?ss by (rule listset-map-imageI )

fix qs0
assume qs0 ∈ listset ?ss ∧ a = sum-list qs0
hence qs0 ∈ listset ?ss and a0 : a = sum-list qs0 by simp-all
from this(1 ) obtain qs1 where qs1-in: qs1 ∈ listset ss and qs0 : qs0 = map

((∗) x) qs1
by (rule listset-map-imageE)

show qs0 = qs
proof (cases x = 0 )

case True
from qs1-in have length qs1 = length ss by (rule listsetD)
moreover from qs ′-in have length qs ′ = length ss by (rule listsetD)
ultimately show ?thesis by (simp add: qs-def qs0 list-eq-iff-nth-eq True)

next
case False
have x ∗ sum-list qs1 = a by (simp only: a0 qs0 sum-list-map-times)
also have . . . = x ∗ sum-list qs ′ by (simp only: a ′ a)
finally have sum-list qs1 = sum-list qs ′ using False by (rule assms(2 ))
with assms(1 ) qs1-in qs ′-in have qs1 = qs ′ by (rule direct-decomp-unique)
thus ?thesis by (simp only: qs0 qs-def )

qed
qed (simp only: a a ′ qs-def sum-list-map-times)

qed

lemma direct-decomp-appendD:
assumes direct-decomp A (ss1 @ ss2 )
shows {} /∈ set ss2 =⇒ direct-decomp (sum-list ‘ listset ss1 ) ss1 (is - =⇒

?thesis1 )
and {} /∈ set ss1 =⇒ direct-decomp (sum-list ‘ listset ss2 ) ss2 (is - =⇒ ?thesis2 )
and direct-decomp A [sum-list ‘ listset ss1 , sum-list ‘ listset ss2 ] (is direct-decomp

- ?ss)
proof −

have rl: direct-decomp (sum-list ‘ listset ts1 ) ts1
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if direct-decomp A (ts1 @ ts2 ) and {} /∈ set ts2 for ts1 ts2
proof (intro direct-decompI inj-onI refl)

fix qs1 qs2
assume qs1 : qs1 ∈ listset ts1 and qs2 : qs2 ∈ listset ts1
assume eq: sum-list qs1 = sum-list qs2
from that(2 ) have listset ts2 6= {} by (simp add: listset-empty-iff )
then obtain qs3 where qs3 : qs3 ∈ listset ts2 by blast
note that(1 )
moreover from qs1 qs3 refl have qs1 @ qs3 ∈ listset (ts1 @ ts2 ) by (rule

listset-appendI )
moreover from qs2 qs3 refl have qs2 @ qs3 ∈ listset (ts1 @ ts2 ) by (rule

listset-appendI )
moreover have sum-list (qs1 @ qs3 ) = sum-list (qs2 @ qs3 ) by (simp add:

eq)
ultimately have qs1 @ qs3 = qs2 @ qs3 by (rule direct-decomp-unique)
thus qs1 = qs2 by simp

qed

{
assume {} /∈ set ss2
with assms show ?thesis1 by (rule rl)

}

{
from assms have direct-decomp A (ss2 @ ss1 )

by (rule direct-decomp-perm) simp
moreover assume {} /∈ set ss1
ultimately show ?thesis2 by (rule rl)

}

show direct-decomp A ?ss
proof (rule direct-decompI-alt)

fix qs
assume qs ∈ listset ?ss
then obtain q1 q2 where q1 : q1 ∈ sum-list ‘ listset ss1 and q2 : q2 ∈ sum-list

‘ listset ss2
and qs: qs = [q1 , q2 ] by (rule listset-doubletonE)

from q1 obtain qs1 where qs1 : qs1 ∈ listset ss1 and q1 : q1 = sum-list qs1
..

from q2 obtain qs2 where qs2 : qs2 ∈ listset ss2 and q2 : q2 = sum-list qs2
..

from qs1 qs2 refl have qs1 @ qs2 ∈ listset (ss1 @ ss2 ) by (rule listset-appendI )
with assms have sum-list (qs1 @ qs2 ) ∈ A by (rule direct-decompD)
thus sum-list qs ∈ A by (simp add: qs q1 q2 )

next
fix a
assume a ∈ A
with assms obtain qs0 where qs0-in: qs0 ∈ listset (ss1 @ ss2 ) and a: a =

sum-list qs0
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by (rule direct-decompE)
from this(1 ) obtain qs1 qs2 where qs1 : qs1 ∈ listset ss1 and qs2 : qs2 ∈

listset ss2
and qs0 : qs0 = qs1 @ qs2 by (rule listset-appendE)

from qs1 have len-qs1 : length qs1 = length ss1 by (rule listsetD)
define qs where qs = [sum-list qs1 , sum-list qs2 ]
show ∃ !qs∈listset ?ss. a = sum-list qs
proof (intro ex1I conjI )

from qs1 have sum-list qs1 ∈ sum-list ‘ listset ss1 by (rule imageI )
moreover from qs2 have sum-list qs2 ∈ sum-list ‘ listset ss2 by (rule

imageI )
ultimately show qs ∈ listset ?ss using qs-def by (rule listset-doubletonI )

fix qs ′

assume qs ′ ∈ listset ?ss ∧ a = sum-list qs ′

hence qs ′ ∈ listset ?ss and a ′: a = sum-list qs ′ by simp-all
from this(1 ) obtain q1 q2 where q1 : q1 ∈ sum-list ‘ listset ss1

and q2 : q2 ∈ sum-list ‘ listset ss2 and qs ′: qs ′ = [q1 , q2 ] by (rule
listset-doubletonE)

from q1 obtain qs1 ′ where qs1 ′: qs1 ′ ∈ listset ss1 and q1 : q1 = sum-list
qs1 ′ ..

from q2 obtain qs2 ′ where qs2 ′: qs2 ′ ∈ listset ss2 and q2 : q2 = sum-list
qs2 ′ ..

from qs1 ′ have len-qs1 ′: length qs1 ′ = length ss1 by (rule listsetD)
note assms
moreover from qs1 ′ qs2 ′ refl have qs1 ′ @ qs2 ′ ∈ listset (ss1 @ ss2 ) by

(rule listset-appendI )
moreover note qs0-in
moreover have sum-list (qs1 ′ @ qs2 ′) = sum-list qs0 by (simp add: a ′ qs ′

flip: a q1 q2 )
ultimately have qs1 ′ @ qs2 ′ = qs0 by (rule direct-decomp-unique)
also have . . . = qs1 @ qs2 by fact
finally show qs ′ = qs by (simp add: qs-def qs ′ q1 q2 len-qs1 len-qs1 ′)

qed (simp add: qs-def a qs0 )
qed

qed

lemma direct-decomp-Cons-zeroI :
assumes direct-decomp A ss
shows direct-decomp A ({0} # ss)

proof (rule direct-decompI-alt)
fix qs
assume qs ∈ listset ({0} # ss)
then obtain q qs ′ where q ∈ {0} and qs ′ ∈ listset ss and qs = q # qs ′

by (rule listset-ConsE)
from this(1 , 3 ) have sum-list qs = sum-list qs ′ by simp
also from assms ‹qs ′ ∈ listset ss› have . . . ∈ A by (rule direct-decompD)
finally show sum-list qs ∈ A .

next
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fix a
assume a ∈ A
with assms obtain qs ′ where qs ′: qs ′ ∈ listset ss and a: a = sum-list qs ′

by (rule direct-decompE)
define qs where qs = 0 # qs ′

show ∃ !qs. qs ∈ listset ({0} # ss) ∧ a = sum-list qs
proof (intro ex1I conjI )

from - qs ′ qs-def show qs ∈ listset ({0} # ss) by (rule listset-ConsI ) simp
next

fix qs0
assume qs0 ∈ listset ({0} # ss) ∧ a = sum-list qs0
hence qs0 ∈ listset ({0} # ss) and a0 : a = sum-list qs0 by simp-all
from this(1 ) obtain q0 qs0 ′ where q0 ∈ {0} and qs0 ′: qs0 ′ ∈ listset ss

and qs0 : qs0 = q0 # qs0 ′ by (rule listset-ConsE)
from this(1 , 3 ) have sum-list qs0 ′ = sum-list qs ′ by (simp add: a0 flip: a)
with assms qs0 ′ qs ′ have qs0 ′ = qs ′ by (rule direct-decomp-unique)
with ‹q0 ∈ {0}› show qs0 = qs by (simp add: qs-def qs0 )

qed (simp add: qs-def a)
qed

lemma direct-decomp-Cons-zeroD:
assumes direct-decomp A ({0} # ss)
shows direct-decomp A ss

proof −
have direct-decomp {0} [] by (simp add: direct-decomp-def bij-betw-def )
with assms have direct-decomp A (ss @ []) by (rule direct-decomp-direct-decomp)
thus ?thesis by simp

qed

lemma direct-decomp-Cons-subsetI :
assumes direct-decomp A (s # ss) and

∧
s0 . s0 ∈ set ss =⇒ 0 ∈ s0

shows s ⊆ A
proof

fix x
assume x ∈ s
moreover from assms(2 ) have map (λ-. 0 ) ss ∈ listset ss

by (induct ss, auto simp del: listset.simps(2 ) intro: listset-ConsI )
ultimately have x # (map (λ-. 0 ) ss) ∈ listset (s # ss) using refl by (rule

listset-ConsI )
with assms(1 ) have sum-list (x # (map (λ-. 0 ) ss)) ∈ A by (rule direct-decompD)
thus x ∈ A by simp

qed

lemma direct-decomp-Int-zero:
assumes direct-decomp A ss and i < j and j < length ss and

∧
s. s ∈ set ss

=⇒ 0 ∈ s
shows ss ! i ∩ ss ! j = {0}

proof −
from assms(2 , 3 ) have i < length ss by (rule less-trans)
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hence i-in: ss ! i ∈ set ss by simp
from assms(3 ) have j-in: ss ! j ∈ set ss by simp
show ?thesis
proof

show ss ! i ∩ ss ! j ⊆ {0}
proof

fix x
assume x ∈ ss ! i ∩ ss ! j
hence x-i: x ∈ ss ! i and x-j: x ∈ ss ! j by simp-all
have 1 : (map (λ-. 0 ) ss)[k := y] ∈ listset ss if k < length ss and y ∈ ss ! k

for k y
using assms(4 ) that

proof (induct ss arbitrary: k)
case Nil
from Nil(2 ) show ?case by simp

next
case (Cons s ss)
have ∗:

∧
s ′. s ′ ∈ set ss =⇒ 0 ∈ s ′ by (rule Cons.prems) simp

show ?case
proof (cases k)

case k: 0
with Cons.prems(3 ) have y ∈ s by simp
moreover from ∗ have map (λ-. 0 ) ss ∈ listset ss

by (induct ss) (auto simp del: listset.simps(2 ) intro: listset-ConsI )
moreover have (map (λ-. 0 ) (s # ss))[k := y] = y # map (λ-. 0 ) ss by

(simp add: k)
ultimately show ?thesis by (rule listset-ConsI )

next
case k: (Suc k ′)
have 0 ∈ s by (rule Cons.prems) simp
moreover from ∗ have (map (λ-. 0 ) ss)[k ′ := y] ∈ listset ss
proof (rule Cons.hyps)

from Cons.prems(2 ) show k ′ < length ss by (simp add: k)
next

from Cons.prems(3 ) show y ∈ ss ! k ′ by (simp add: k)
qed
moreover have (map (λ-. 0 ) (s # ss))[k := y] = 0 # (map (λ-. 0 ) ss)[k ′

:= y]
by (simp add: k)

ultimately show ?thesis by (rule listset-ConsI )
qed

qed
have 2 : sum-list ((map (λ-. 0 ) ss)[k := y]) = y if k < length ss for k and

y:: ′a
using that by (induct ss arbitrary: k) (auto simp: add-ac split: nat.split)

define qs1 where qs1 = (map (λ-. 0 ) ss)[i := x]
define qs2 where qs2 = (map (λ-. 0 ) ss)[j := x]
note assms(1 )
moreover from ‹i < length ss› x-i have qs1 ∈ listset ss unfolding qs1-def
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by (rule 1 )
moreover from assms(3 ) x-j have qs2 ∈ listset ss unfolding qs2-def by

(rule 1 )
thm sum-list-update
moreover from ‹i < length ss› assms(3 ) have sum-list qs1 = sum-list qs2

by (simp add: qs1-def qs2-def 2 )
ultimately have qs1 = qs2 by (rule direct-decomp-unique)
hence qs1 ! i = qs2 ! i by simp

with ‹i < length ss› assms(2 , 3 ) show x ∈ {0} by (simp add: qs1-def qs2-def )
qed

next
from i-in have 0 ∈ ss ! i by (rule assms(4 ))
moreover from j-in have 0 ∈ ss ! j by (rule assms(4 ))
ultimately show {0} ⊆ ss ! i ∩ ss ! j by simp

qed
qed

corollary direct-decomp-pairwise-zero:
assumes direct-decomp A ss and

∧
s. s ∈ set ss =⇒ 0 ∈ s

shows pairwise (λs1 s2 . s1 ∩ s2 = {0}) (set ss)
proof (rule pairwiseI )

fix s1 s2
assume s1 ∈ set ss
then obtain i where i < length ss and s1 : s1 = ss ! i by (metis in-set-conv-nth)
assume s2 ∈ set ss
then obtain j where j < length ss and s2 : s2 = ss ! j by (metis in-set-conv-nth)
assume s1 6= s2
hence i < j ∨ j < i by (auto simp: s1 s2 )
thus s1 ∩ s2 = {0}
proof

assume i < j
with assms(1 ) show ?thesis unfolding s1 s2 using ‹j < length ss› assms(2 )

by (rule direct-decomp-Int-zero)
next

assume j < i
with assms(1 ) have s2 ∩ s1 = {0} unfolding s1 s2 using ‹i < length ss›

assms(2 )
by (rule direct-decomp-Int-zero)

thus ?thesis by (simp only: Int-commute)
qed

qed

corollary direct-decomp-repeated-eq-zero:
assumes direct-decomp A ss and 1 < count-list ss X and

∧
s. s ∈ set ss =⇒ 0

∈ s
shows X = {0}

proof −
from assms(2 ) obtain i j where i < j and j < length ss and 1 : ss ! i = X

and 2 : ss ! j = X
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by (rule count-list-gr-1-E)
from assms(1 ) this(1 , 2 ) assms(3 ) have ss ! i ∩ ss ! j = {0} by (rule di-

rect-decomp-Int-zero)
thus ?thesis by (simp add: 1 2 )

qed

corollary direct-decomp-map-Int-zero:
assumes direct-decomp A (map f ss) and s1 ∈ set ss and s2 ∈ set ss and s1 6=

s2
and

∧
s. s ∈ set ss =⇒ 0 ∈ f s

shows f s1 ∩ f s2 = {0}
proof −

from assms(2 ) obtain i where i < length ss and s1 : s1 = ss ! i by (metis
in-set-conv-nth)

from this(1 ) have i: i < length (map f ss) by simp
from assms(3 ) obtain j where j < length ss and s2 : s2 = ss ! j by (metis

in-set-conv-nth)
from this(1 ) have j: j < length (map f ss) by simp
have ∗: 0 ∈ s if s ∈ set (map f ss) for s
proof −

from that obtain s ′ where s ′ ∈ set ss and s: s = f s ′ unfolding set-map ..
from this(1 ) show 0 ∈ s unfolding s by (rule assms(5 ))

qed
show ?thesis
proof (rule linorder-cases)

assume i < j
with assms(1 ) have (map f ss) ! i ∩ (map f ss) ! j = {0}

using j ∗ by (rule direct-decomp-Int-zero)
with i j show ?thesis by (simp add: s1 s2 )

next
assume j < i
with assms(1 ) have (map f ss) ! j ∩ (map f ss) ! i = {0}

using i ∗ by (rule direct-decomp-Int-zero)
with i j show ?thesis by (simp add: s1 s2 Int-commute)

next
assume i = j
with assms(4 ) show ?thesis by (simp add: s1 s2 )

qed
qed

9.2 Direct Decompositions and Vector Spaces
definition (in vector-space) is-basis :: ′b set ⇒ ′b set ⇒ bool

where is-basis V B ←→ (B ⊆ V ∧ independent B ∧ V ⊆ span B ∧ card B =
dim V )

definition (in vector-space) some-basis :: ′b set ⇒ ′b set
where some-basis V = Eps (local.is-basis V )
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hide-const (open) real-vector .is-basis real-vector .some-basis

context vector-space
begin

lemma dim-empty [simp]: dim {} = 0
using dim-span-eq-card-independent independent-empty by fastforce

lemma dim-zero [simp]: dim {0} = 0
using dim-span-eq-card-independent independent-empty by fastforce

lemma independent-UnI :
assumes independent A and independent B and span A ∩ span B = {0}
shows independent (A ∪ B)

proof
from span-superset have A ∩ B ⊆ span A ∩ span B by blast
hence A ∩ B = {} unfolding assms(3 ) using assms(1 , 2 ) dependent-zero by

blast
assume dependent (A ∪ B)
then obtain T u v where finite T and T ⊆ A ∪ B and eq: (

∑
v∈T . u v ∗s

v) = 0
and v ∈ T and u v 6= 0 unfolding dependent-explicit by blast

define TA where TA = T ∩ A
define TB where TB = T ∩ B
from ‹T ⊆ A ∪ B› have T : T = TA ∪ TB by (auto simp: TA-def TB-def )
from ‹finite T › have finite TA and TA ⊆ A by (simp-all add: TA-def )
from ‹finite T › have finite TB and TB ⊆ B by (simp-all add: TB-def )
from ‹A ∩ B = {}› ‹TA ⊆ A› this(2 ) have TA ∩ TB = {} by blast
have 0 = (

∑
v∈TA ∪ TB. u v ∗s v) by (simp only: eq flip: T )

also have . . . = (
∑

v∈TA. u v ∗s v) + (
∑

v∈TB. u v ∗s v) by (rule sum.union-disjoint)
fact+

finally have (
∑

v∈TA. u v ∗s v) = (
∑

v∈TB. (− u) v ∗s v) (is ?x = ?y)
by (simp add: sum-negf eq-neg-iff-add-eq-0 )

from ‹finite TB› ‹TB ⊆ B› have ?y ∈ span B by (auto simp: span-explicit simp
del: uminus-apply)

moreover from ‹finite TA› ‹TA ⊆ A› have ?x ∈ span A by (auto simp:
span-explicit)

ultimately have ?y ∈ span A ∩ span B by (simp add: ‹?x = ?y›)
hence ?x = 0 and ?y = 0 by (simp-all add: ‹?x = ?y› assms(3 ))
from ‹v ∈ T › have v ∈ TA ∪ TB by (simp only: T )
hence u v = 0
proof

assume v ∈ TA
with assms(1 ) ‹finite TA› ‹TA ⊆ A› ‹?x = 0 › show u v = 0 by (rule

independentD)
next

assume v ∈ TB
with assms(2 ) ‹finite TB› ‹TB ⊆ B› ‹?y = 0 › have (− u) v = 0 by (rule

independentD)
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thus u v = 0 by simp
qed
with ‹u v 6= 0 › show False ..

qed

lemma subspace-direct-decomp:
assumes direct-decomp A ss and

∧
s. s ∈ set ss =⇒ subspace s

shows subspace A
proof (rule subspaceI )

let ?qs = map (λ-. 0 ) ss
from assms(2 ) have ?qs ∈ listset ss

by (induct ss) (auto simp del: listset.simps(2 ) dest: subspace-0 intro: list-
set-ConsI )

with assms(1 ) have sum-list ?qs ∈ A by (rule direct-decompD)
thus 0 ∈ A by simp

next
fix p q
assume p ∈ A
with assms(1 ) obtain ps where ps: ps ∈ listset ss and p: p = sum-list ps by

(rule direct-decompE)
assume q ∈ A
with assms(1 ) obtain qs where qs: qs ∈ listset ss and q: q = sum-list qs by

(rule direct-decompE)
from ps qs have l: length ps = length qs by (simp only: listsetD)
from ps qs have map2 (+) ps qs ∈ listset ss (is ?qs ∈ -)

by (rule listset-closed-map2 ) (auto dest: assms(2 ) subspace-add)
with assms(1 ) have sum-list ?qs ∈ A by (rule direct-decompD)
thus p + q ∈ A using l by (simp only: p q sum-list-map2-plus)

next
fix c p
assume p ∈ A
with assms(1 ) obtain ps where ps ∈ listset ss and p: p = sum-list ps by (rule

direct-decompE)
from this(1 ) have map ((∗s) c) ps ∈ listset ss (is ?qs ∈ -)

by (rule listset-closed-map) (auto dest: assms(2 ) subspace-scale)
with assms(1 ) have sum-list ?qs ∈ A by (rule direct-decompD)
also have sum-list ?qs = c ∗s sum-list ps by (induct ps) (simp-all add: scale-right-distrib)
finally show c ∗s p ∈ A by (simp only: p)

qed

lemma is-basis-alt: subspace V =⇒ is-basis V B ←→ (independent B ∧ span B =
V )

by (metis (full-types) is-basis-def dim-eq-card span-eq span-eq-iff )

lemma is-basis-finite: is-basis V A =⇒ is-basis V B =⇒ finite A ←→ finite B
unfolding is-basis-def using independent-span-bound by auto

lemma some-basis-is-basis: is-basis V (some-basis V )
proof −
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obtain B where B ⊆ V and independent B and V ⊆ span B and card B =
dim V

by (rule basis-exists)
hence is-basis V B by (simp add: is-basis-def )
thus ?thesis unfolding some-basis-def by (rule someI )

qed

corollary
shows some-basis-subset: some-basis V ⊆ V

and independent-some-basis: independent (some-basis V )
and span-some-basis-supset: V ⊆ span (some-basis V )
and card-some-basis: card (some-basis V ) = dim V

using some-basis-is-basis[of V ] by (simp-all add: is-basis-def )

lemma some-basis-not-zero: 0 /∈ some-basis V
using independent-some-basis dependent-zero by blast

lemma span-some-basis: subspace V =⇒ span (some-basis V ) = V
by (simp add: span-subspace some-basis-subset span-some-basis-supset)

lemma direct-decomp-some-basis-pairwise-disjnt:
assumes direct-decomp A ss and

∧
s. s ∈ set ss =⇒ subspace s

shows pairwise (λs1 s2 . disjnt (some-basis s1 ) (some-basis s2 )) (set ss)
proof (rule pairwiseI )

fix s1 s2
assume s1 ∈ set ss and s2 ∈ set ss and s1 6= s2
have some-basis s1 ∩ some-basis s2 ⊆ s1 ∩ s2 using some-basis-subset by blast
also from direct-decomp-pairwise-zero have . . . = {0}
proof (rule pairwiseD)

fix s
assume s ∈ set ss
hence subspace s by (rule assms(2 ))
thus 0 ∈ s by (rule subspace-0 )

qed fact+
finally have some-basis s1 ∩ some-basis s2 ⊆ {0} .
with some-basis-not-zero show disjnt (some-basis s1 ) (some-basis s2 )

unfolding disjnt-def by blast
qed

lemma direct-decomp-span-some-basis:
assumes direct-decomp A ss and

∧
s. s ∈ set ss =⇒ subspace s

shows span (
⋃
(some-basis ‘ set ss)) = A

proof −
from assms(1 ) have eq0 [symmetric]: sum-list ‘ listset ss = A by (rule di-

rect-decompD)
show ?thesis unfolding eq0 using assms(2 )
proof (induct ss)

case Nil
show ?case by simp
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next
case (Cons s ss)
have subspace s by (rule Cons.prems) simp
hence eq1 : span (some-basis s) = s by (rule span-some-basis)
have

∧
s ′. s ′ ∈ set ss =⇒ subspace s ′ by (rule Cons.prems) simp

hence eq2 : span (
⋃

(some-basis ‘ set ss)) = sum-list ‘ listset ss by (rule
Cons.hyps)

have span (
⋃

(some-basis ‘ set (s # ss))) = {x + y |x y. x ∈ s ∧ y ∈ sum-list
‘ listset ss}

by (simp add: span-Un eq1 eq2 )
also have . . . = sum-list ‘ listset (s # ss) (is ?A = ?B)
proof

show ?A ⊆ ?B
proof

fix a
assume a ∈ ?A
then obtain x y where x ∈ s and y ∈ sum-list ‘ listset ss and a: a = x

+ y by blast
from this(2 ) obtain qs where qs ∈ listset ss and y: y = sum-list qs ..

from ‹x ∈ s› this(1 ) refl have x # qs ∈ listset (s # ss) by (rule listset-ConsI )
hence sum-list (x # qs) ∈ ?B by (rule imageI )
also have sum-list (x # qs) = a by (simp add: a y)
finally show a ∈ ?B .

qed
next

show ?B ⊆ ?A
proof

fix a
assume a ∈ ?B
then obtain qs ′ where qs ′ ∈ listset (s # ss) and a: a = sum-list qs ′ ..
from this(1 ) obtain x qs where x ∈ s and qs ∈ listset ss and qs ′: qs ′ = x

# qs
by (rule listset-ConsE)

from this(2 ) have sum-list qs ∈ sum-list ‘ listset ss by (rule imageI )
moreover have a = x + sum-list qs by (simp add: a qs ′)
ultimately show a ∈ ?A using ‹x ∈ s› by blast

qed
qed
finally show ?case .

qed
qed

lemma direct-decomp-independent-some-basis:
assumes direct-decomp A ss and

∧
s. s ∈ set ss =⇒ subspace s

shows independent (
⋃
(some-basis ‘ set ss))

using assms
proof (induct ss arbitrary: A)

case Nil
from independent-empty show ?case by simp
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next
case (Cons s ss)
have 1 :

∧
s ′. s ′ ∈ set ss =⇒ subspace s ′ by (rule Cons.prems) simp

have subspace s by (rule Cons.prems) simp
hence 0 ∈ s and eq1 : span (some-basis s) = s by (rule subspace-0 , rule span-some-basis)
from Cons.prems(1 ) have ∗: direct-decomp A ([s] @ ss) by simp
moreover from ‹0 ∈ s› have {} /∈ set [s] by auto
ultimately have 2 : direct-decomp (sum-list ‘ listset ss) ss by (rule direct-decomp-appendD)
hence eq2 : span (

⋃
(some-basis ‘ set ss)) = sum-list ‘ listset ss using 1

by (rule direct-decomp-span-some-basis)

note independent-some-basis[of s]
moreover from 2 1 have independent (

⋃
(some-basis ‘ set ss)) by (rule

Cons.hyps)
moreover have span (some-basis s) ∩ span (

⋃
(some-basis ‘ set ss)) = {0}

proof −
from ∗ have direct-decomp A [sum-list ‘ listset [s], sum-list ‘ listset ss]

by (rule direct-decomp-appendD)
hence direct-decomp A [s, sum-list ‘ listset ss] by (simp add: image-image)
moreover have 0 < (1 ::nat) by simp
moreover have 1 < length [s, sum-list ‘ listset ss] by simp
ultimately have [s, sum-list ‘ listset ss] ! 0 ∩ [s, sum-list ‘ listset ss] ! 1 =

{0}
by (rule direct-decomp-Int-zero) (auto simp: ‹0 ∈ s› eq2 [symmetric] span-zero)

thus ?thesis by (simp add: eq1 eq2 )
qed
ultimately have independent (some-basis s ∪ (

⋃
(some-basis ‘ set ss)))

by (rule independent-UnI )
thus ?case by simp

qed

corollary direct-decomp-is-basis:
assumes direct-decomp A ss and

∧
s. s ∈ set ss =⇒ subspace s

shows is-basis A (
⋃
(some-basis ‘ set ss))

proof −
from assms have subspace A by (rule subspace-direct-decomp)
moreover from assms have span (

⋃
(some-basis ‘ set ss)) = A

by (rule direct-decomp-span-some-basis)
moreover from assms have independent (

⋃
(some-basis ‘ set ss))

by (rule direct-decomp-independent-some-basis)
ultimately show ?thesis by (simp add: is-basis-alt)

qed

lemma dim-direct-decomp:
assumes direct-decomp A ss and finite B and A ⊆ span B and

∧
s. s ∈ set ss

=⇒ subspace s
shows dim A = (

∑
s∈set ss. dim s)

proof −
from assms(1 , 4 ) have is-basis A (

⋃
(some-basis ‘ set ss))
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(is is-basis A ?B) by (rule direct-decomp-is-basis)
hence dim A = card ?B and independent ?B and ?B ⊆ A by (simp-all add:

is-basis-def )
from this(3 ) assms(3 ) have ?B ⊆ span B by (rule subset-trans)
with assms(2 ) ‹independent ?B› have finite ?B using independent-span-bound

by blast
note ‹dim A = card ?B›
also from finite-set have card ?B = (

∑
s∈set ss. card (some-basis s))

proof (intro card-UN-disjoint ballI impI )
fix s
assume s ∈ set ss
with ‹finite ?B› show finite (some-basis s) by auto

next
fix s1 s2
have pairwise (λs t. disjnt (some-basis s) (some-basis t)) (set ss)

using assms(1 , 4 ) by (rule direct-decomp-some-basis-pairwise-disjnt)
moreover assume s1 ∈ set ss and s2 ∈ set ss and s1 6= s2
thm pairwiseD
ultimately have disjnt (some-basis s1 ) (some-basis s2 ) by (rule pairwiseD)
thus some-basis s1 ∩ some-basis s2 = {} by (simp only: disjnt-def )

qed
also from refl card-some-basis have . . . = (

∑
s∈set ss. dim s) by (rule sum.cong)

finally show ?thesis .
qed

end

9.3 Homogeneous Sets of Polynomials with Fixed Degree
lemma homogeneous-set-direct-decomp:

assumes direct-decomp A ss and
∧

s. s ∈ set ss =⇒ homogeneous-set s
shows homogeneous-set A

proof (rule homogeneous-setI )
fix a n
assume a ∈ A
with assms(1 ) obtain qs where qs ∈ listset ss and a: a = sum-list qs by (rule

direct-decompE)
have hom-component a n = hom-component (sum-list qs) n by (simp only: a)
also have . . . = sum-list (map (λq. hom-component q n) qs)

by (induct qs) (simp-all add: hom-component-plus)
also from assms(1 ) have . . . ∈ A
proof (rule direct-decompD)

show map (λq. hom-component q n) qs ∈ listset ss
proof (rule listset-closed-map)

fix s q
assume s ∈ set ss
hence homogeneous-set s by (rule assms(2 ))
moreover assume q ∈ s
ultimately show hom-component q n ∈ s by (rule homogeneous-setD)
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qed fact
qed
finally show hom-component a n ∈ A .

qed

definition hom-deg-set :: nat ⇒ (( ′x ⇒0 nat) ⇒0
′a) set ⇒ (( ′x ⇒0 nat) ⇒0

′a::zero) set
where hom-deg-set z A = (λa. hom-component a z) ‘ A

lemma hom-deg-setD:
assumes p ∈ hom-deg-set z A
shows homogeneous p and p 6= 0 =⇒ poly-deg p = z

proof −
from assms obtain a where a ∈ A and p: p = hom-component a z unfolding

hom-deg-set-def ..
show ∗: homogeneous p by (simp only: p homogeneous-hom-component)

assume p 6= 0
hence keys p 6= {} by simp
then obtain t where t ∈ keys p by blast
with ∗ have deg-pm t = poly-deg p by (rule homogeneousD-poly-deg)
moreover from ‹t ∈ keys p› have deg-pm t = z unfolding p by (rule keys-hom-componentD)
ultimately show poly-deg p = z by simp

qed

lemma zero-in-hom-deg-set:
assumes 0 ∈ A
shows 0 ∈ hom-deg-set z A

proof −
have 0 = hom-component 0 z by simp
also from assms have . . . ∈ hom-deg-set z A unfolding hom-deg-set-def by

(rule imageI )
finally show ?thesis .

qed

lemma hom-deg-set-closed-uminus:
assumes

∧
a. a ∈ A =⇒ − a ∈ A and p ∈ hom-deg-set z A

shows − p ∈ hom-deg-set z A
proof −
from assms(2 ) obtain a where a ∈ A and p: p = hom-component a z unfolding

hom-deg-set-def ..
from this(1 ) have − a ∈ A by (rule assms(1 ))
moreover have − p = hom-component (− a) z by (simp add: p)
ultimately show ?thesis unfolding hom-deg-set-def by (rule rev-image-eqI )

qed

lemma hom-deg-set-closed-plus:
assumes

∧
a1 a2 . a1 ∈ A =⇒ a2 ∈ A =⇒ a1 + a2 ∈ A

and p ∈ hom-deg-set z A and q ∈ hom-deg-set z A
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shows p + q ∈ hom-deg-set z A
proof −

from assms(2 ) obtain a1 where a1 ∈ A and p: p = hom-component a1 z
unfolding hom-deg-set-def ..

from assms(3 ) obtain a2 where a2 ∈ A and q: q = hom-component a2 z
unfolding hom-deg-set-def ..

from ‹a1 ∈ A› this(1 ) have a1 + a2 ∈ A by (rule assms(1 ))
moreover have p + q = hom-component (a1 + a2 ) z by (simp only: p q

hom-component-plus)
ultimately show ?thesis unfolding hom-deg-set-def by (rule rev-image-eqI )

qed

lemma hom-deg-set-closed-minus:
assumes

∧
a1 a2 . a1 ∈ A =⇒ a2 ∈ A =⇒ a1 − a2 ∈ A

and p ∈ hom-deg-set z A and q ∈ hom-deg-set z A
shows p − q ∈ hom-deg-set z A

proof −
from assms(2 ) obtain a1 where a1 ∈ A and p: p = hom-component a1 z

unfolding hom-deg-set-def ..
from assms(3 ) obtain a2 where a2 ∈ A and q: q = hom-component a2 z

unfolding hom-deg-set-def ..
from ‹a1 ∈ A› this(1 ) have a1 − a2 ∈ A by (rule assms(1 ))
moreover have p − q = hom-component (a1 − a2 ) z by (simp only: p q

hom-component-minus)
ultimately show ?thesis unfolding hom-deg-set-def by (rule rev-image-eqI )

qed

lemma hom-deg-set-closed-scalar :
assumes

∧
a. a ∈ A =⇒ c · a ∈ A and p ∈ hom-deg-set z A

shows (c:: ′a::semiring-0 ) · p ∈ hom-deg-set z A
proof −
from assms(2 ) obtain a where a ∈ A and p: p = hom-component a z unfolding

hom-deg-set-def ..
from this(1 ) have c · a ∈ A by (rule assms(1 ))
moreover have c · p = hom-component (c · a) z
by (simp add: p punit.map-scale-eq-monom-mult hom-component-monom-mult)

ultimately show ?thesis unfolding hom-deg-set-def by (rule rev-image-eqI )
qed

lemma hom-deg-set-closed-sum:
assumes 0 ∈ A and

∧
a1 a2 . a1 ∈ A =⇒ a2 ∈ A =⇒ a1 + a2 ∈ A

and
∧

i. i ∈ I =⇒ f i ∈ hom-deg-set z A
shows sum f I ∈ hom-deg-set z A
using assms(3 )

proof (induct I rule: infinite-finite-induct)
case (infinite I )
with assms(1 ) show ?case by (simp add: zero-in-hom-deg-set)

next
case empty
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with assms(1 ) show ?case by (simp add: zero-in-hom-deg-set)
next

case (insert j I )
from insert.hyps(1 , 2 ) have sum f (insert j I ) = f j + sum f I by simp
also from assms(2 ) have . . . ∈ hom-deg-set z A
proof (intro hom-deg-set-closed-plus insert.hyps)

show f j ∈ hom-deg-set z A by (rule insert.prems) simp
next

fix i
assume i ∈ I
hence i ∈ insert j I by simp
thus f i ∈ hom-deg-set z A by (rule insert.prems)

qed
finally show ?case .

qed

lemma hom-deg-set-subset: homogeneous-set A =⇒ hom-deg-set z A ⊆ A
by (auto dest: homogeneous-setD simp: hom-deg-set-def )

lemma Polys-closed-hom-deg-set:
assumes A ⊆ P[X ]
shows hom-deg-set z A ⊆ P[X ]

proof
fix p
assume p ∈ hom-deg-set z A
then obtain p ′ where p ′ ∈ A and p: p = hom-component p ′ z unfolding

hom-deg-set-def ..
from this(1 ) assms have p ′ ∈ P[X ] ..
have keys p ⊆ keys p ′ by (simp add: p keys-hom-component)
also from ‹p ′ ∈ P[X ]› have . . . ⊆ .[X ] by (rule PolysD)
finally show p ∈ P[X ] by (rule PolysI )

qed

lemma hom-deg-set-alt-homogeneous-set:
assumes homogeneous-set A
shows hom-deg-set z A = {p ∈ A. homogeneous p ∧ (p = 0 ∨ poly-deg p = z)}

(is ?A = ?B)
proof

show ?A ⊆ ?B
proof

fix h
assume h ∈ ?A
also from assms have . . . ⊆ A by (rule hom-deg-set-subset)
finally show h ∈ ?B using ‹h ∈ ?A› by (auto dest: hom-deg-setD)

qed
next

show ?B ⊆ ?A
proof

fix h
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assume h ∈ ?B
hence h ∈ A and homogeneous h and h = 0 ∨ poly-deg h = z by simp-all
from this(3 ) show h ∈ ?A
proof

assume h = 0
with ‹h ∈ A› have 0 ∈ A by simp
thus ?thesis unfolding ‹h = 0 › by (rule zero-in-hom-deg-set)

next
assume poly-deg h = z

with ‹homogeneous h› have h = hom-component h z by (simp add: hom-component-of-homogeneous)
with ‹h ∈ A› show ?thesis unfolding hom-deg-set-def by (rule rev-image-eqI )
qed

qed
qed

lemma hom-deg-set-sum-list-listset:
assumes A = sum-list ‘ listset ss
shows hom-deg-set z A = sum-list ‘ listset (map (hom-deg-set z) ss) (is ?A =

?B)
proof

show ?A ⊆ ?B
proof

fix h
assume h ∈ ?A
then obtain a where a ∈ A and h: h = hom-component a z unfolding

hom-deg-set-def ..
from this(1 ) obtain qs where qs ∈ listset ss and a: a = sum-list qs unfolding

assms ..
have h = hom-component (sum-list qs) z by (simp only: a h)
also have . . . = sum-list (map (λq. hom-component q z) qs)

by (induct qs) (simp-all add: hom-component-plus)
also have . . . ∈ ?B
proof (rule imageI )

show map (λq. hom-component q z) qs ∈ listset (map (hom-deg-set z) ss)
unfolding hom-deg-set-def using ‹qs ∈ listset ss› refl by (rule list-

set-map-imageI )
qed
finally show h ∈ ?B .

qed
next

show ?B ⊆ ?A
proof

fix h
assume h ∈ ?B
then obtain qs where qs ∈ listset (map (hom-deg-set z) ss) and h: h =

sum-list qs ..
from this(1 ) obtain qs ′ where qs ′ ∈ listset ss and qs: qs = map (λq.

hom-component q z) qs ′

unfolding hom-deg-set-def by (rule listset-map-imageE)
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have h = sum-list (map (λq. hom-component q z) qs ′) by (simp only: h qs)
also have . . . = hom-component (sum-list qs ′) z by (induct qs ′) (simp-all add:

hom-component-plus)
finally have h = hom-component (sum-list qs ′) z .
moreover have sum-list qs ′ ∈ A unfolding assms using ‹qs ′ ∈ listset ss› by

(rule imageI )
ultimately show h ∈ ?A unfolding hom-deg-set-def by (rule image-eqI )

qed
qed

lemma direct-decomp-hom-deg-set:
assumes direct-decomp A ss and

∧
s. s ∈ set ss =⇒ homogeneous-set s

shows direct-decomp (hom-deg-set z A) (map (hom-deg-set z) ss)
proof (rule direct-decompI )

from assms(1 ) have sum-list ‘ listset ss = A by (rule direct-decompD)
from this[symmetric] show sum-list ‘ listset (map (hom-deg-set z) ss) = hom-deg-set

z A
by (simp only: hom-deg-set-sum-list-listset)

next
from assms(1 ) have inj-on sum-list (listset ss) by (rule direct-decompD)
moreover have listset (map (hom-deg-set z) ss) ⊆ listset ss
proof (rule listset-mono)

fix i
assume i < length ss
hence map (hom-deg-set z) ss ! i = hom-deg-set z (ss ! i) by simp
also from ‹i < length ss› have . . . ⊆ ss ! i by (intro hom-deg-set-subset

assms(2 ) nth-mem)
finally show map (hom-deg-set z) ss ! i ⊆ ss ! i .

qed simp
ultimately show inj-on sum-list (listset (map (hom-deg-set z) ss)) by (rule

inj-on-subset)
qed

9.4 Interpreting Polynomial Rings as Vector Spaces over the
Coefficient Field

There is no need to set up any further interpretation, since interpretation
phull is exactly what we need.
lemma subspace-ideal: phull.subspace (ideal (F ::( ′b::comm-powerprod ⇒0

′a::field)
set))

using ideal.span-zero ideal.span-add
proof (rule phull.subspaceI )

fix c p
assume p ∈ ideal F
thus c · p ∈ ideal F unfolding map-scale-eq-times by (rule ideal.span-scale)

qed

lemma subspace-Polys: phull.subspace (P[X ]::(( ′x ⇒0 nat) ⇒0
′a::field) set)
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using zero-in-Polys Polys-closed-plus Polys-closed-map-scale by (rule phull.subspaceI )

lemma subspace-hom-deg-set:
assumes phull.subspace A
shows phull.subspace (hom-deg-set z A) (is phull.subspace ?A)

proof (rule phull.subspaceI )
from assms have 0 ∈ A by (rule phull.subspace-0 )
thus 0 ∈ ?A by (rule zero-in-hom-deg-set)

next
fix p q
assume p ∈ ?A and q ∈ ?A
with phull.subspace-add show p + q ∈ ?A by (rule hom-deg-set-closed-plus)

(rule assms)
next

fix c p
assume p ∈ ?A
with phull.subspace-scale show c · p ∈ ?A by (rule hom-deg-set-closed-scalar)

(rule assms)
qed

lemma hom-deg-set-Polys-eq-span:
hom-deg-set z P[X ] = phull.span (monomial (1 :: ′a::field) ‘ deg-sect X z) (is ?A

= ?B)
proof

show ?A ⊆ ?B
proof

fix p
assume p ∈ ?A
also from this have . . . = {p ∈ P[X ]. homogeneous p ∧ (p = 0 ∨ poly-deg p

= z)}
by (simp only: hom-deg-set-alt-homogeneous-set[OF homogeneous-set-Polys])

finally have p ∈ P[X ] and homogeneous p and p 6= 0 =⇒ poly-deg p = z by
simp-all

thus p ∈ ?B
proof (induct p rule: poly-mapping-plus-induct)

case 1
from phull.span-zero show ?case .

next
case (2 p c t)
let ?m = monomial c t
from 2 (1 ) have t ∈ keys ?m by simp
hence t ∈ keys (?m + p) using 2 (2 ) by (rule in-keys-plusI1 )
hence ?m + p 6= 0 by auto
hence poly-deg (monomial c t + p) = z by (rule 2 )
from 2 (4 ) have keys (?m + p) ⊆ .[X ] by (rule PolysD)
with ‹t ∈ keys (?m + p)› have t ∈ .[X ] ..
hence ?m ∈ P[X ] by (rule Polys-closed-monomial)
have t ∈ deg-sect X z
proof (rule deg-sectI )
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from 2 (5 ) ‹t ∈ keys (?m + p)› have deg-pm t = poly-deg (?m + p)
by (rule homogeneousD-poly-deg)

also have . . . = z by fact
finally show deg-pm t = z .

qed fact
hence monomial 1 t ∈ monomial 1 ‘ deg-sect X z by (rule imageI )
hence monomial 1 t ∈ ?B by (rule phull.span-base)
hence c · monomial 1 t ∈ ?B by (rule phull.span-scale)
hence ?m ∈ ?B by simp
moreover have p ∈ ?B
proof (rule 2 )
from 2 (4 ) ‹?m ∈ P[X ]› have (?m + p) − ?m ∈ P[X ] by (rule Polys-closed-minus)

thus p ∈ P[X ] by simp
next

have 1 : deg-pm s = z if s ∈ keys p for s
proof −

from that 2 (2 ) have s 6= t by blast
hence s /∈ keys ?m by simp
with that have s ∈ keys (?m + p) by (rule in-keys-plusI2 )

with 2 (5 ) have deg-pm s = poly-deg (?m + p) by (rule homoge-
neousD-poly-deg)

also have . . . = z by fact
finally show ?thesis .

qed
show homogeneous p by (rule homogeneousI ) (simp add: 1 )

assume p 6= 0
show poly-deg p = z
proof (rule antisym)

show poly-deg p ≤ z by (rule poly-deg-leI ) (simp add: 1 )
next

from ‹p 6= 0 › have keys p 6= {} by simp
then obtain s where s ∈ keys p by blast
hence z = deg-pm s by (simp only: 1 )
also from ‹s ∈ keys p› have . . . ≤ poly-deg p by (rule poly-deg-max-keys)
finally show z ≤ poly-deg p .

qed
qed
ultimately show ?case by (rule phull.span-add)

qed
qed

next
show ?B ⊆ ?A
proof

fix p
assume p ∈ ?B
then obtain M u where M ⊆ monomial 1 ‘ deg-sect X z and finite M and

p: p = (
∑

m∈M . u m · m)
by (auto simp: phull.span-explicit)
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from this(1 ) obtain T where T ⊆ deg-sect X z and M : M = monomial 1 ‘
T

and inj: inj-on (monomial (1 :: ′a)) T by (rule subset-imageE-inj)
define c where c = (λt. u (monomial 1 t))
from inj have p = (

∑
t∈T . monomial (c t) t) by (simp add: p M sum.reindex

c-def )
also have . . . ∈ ?A
proof (intro hom-deg-set-closed-sum zero-in-Polys Polys-closed-plus)

fix t
assume t ∈ T
hence t ∈ deg-sect X z using ‹T ⊆ deg-sect X z› ..
hence t ∈ .[X ] and eq: deg-pm t = z by (rule deg-sectD)+

from this(1 ) have monomial (c t) t ∈ P[X ] (is ?m ∈ -) by (rule Polys-closed-monomial)
thus ?m ∈ ?A

by (simp add: hom-deg-set-alt-homogeneous-set[OF homogeneous-set-Polys]
poly-deg-monomial

monomial-0-iff eq)
qed
finally show p ∈ ?A .

qed
qed

9.5 (Projective) Hilbert Function
interpretation phull: vector-space map-scale

apply standard
subgoal by (fact map-scale-distrib-left)
subgoal by (fact map-scale-distrib-right)
subgoal by (fact map-scale-assoc)
subgoal by (fact map-scale-one-left)
done

definition Hilbert-fun :: (( ′x ⇒0 nat) ⇒0
′a::field) set ⇒ nat ⇒ nat

where Hilbert-fun A z = phull.dim (hom-deg-set z A)

lemma Hilbert-fun-empty [simp]: Hilbert-fun {} = 0
by (rule ext) (simp add: Hilbert-fun-def hom-deg-set-def )

lemma Hilbert-fun-zero [simp]: Hilbert-fun {0} = 0
by (rule ext) (simp add: Hilbert-fun-def hom-deg-set-def )

lemma Hilbert-fun-direct-decomp:
assumes finite X and A ⊆ P[X ] and direct-decomp (A::(( ′x::countable ⇒0 nat)
⇒0

′a::field) set) ps
and

∧
s. s ∈ set ps =⇒ homogeneous-set s and

∧
s. s ∈ set ps =⇒ phull.subspace

s
shows Hilbert-fun A z = (

∑
p∈set ps. Hilbert-fun p z)

proof −
from assms(3 , 4 ) have dd: direct-decomp (hom-deg-set z A) (map (hom-deg-set
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z) ps)
by (rule direct-decomp-hom-deg-set)

have Hilbert-fun A z = phull.dim (hom-deg-set z A) by (fact Hilbert-fun-def )
also from dd have . . . = sum phull.dim (set (map (hom-deg-set z) ps))
proof (rule phull.dim-direct-decomp)

from assms(1 ) have finite (deg-sect X z) by (rule finite-deg-sect)
thus finite (monomial (1 :: ′a) ‘ deg-sect X z) by (rule finite-imageI )

next
from assms(2 ) have hom-deg-set z A ⊆ hom-deg-set z P[X ]

unfolding hom-deg-set-def by (rule image-mono)
thus hom-deg-set z A ⊆ phull.span (monomial 1 ‘ deg-sect X z)

by (simp only: hom-deg-set-Polys-eq-span)
next

fix s
assume s ∈ set (map (hom-deg-set z) ps)
then obtain s ′ where s ′ ∈ set ps and s: s = hom-deg-set z s ′ unfolding

set-map ..
from this(1 ) have phull.subspace s ′ by (rule assms(5 ))
thus phull.subspace s unfolding s by (rule subspace-hom-deg-set)

qed
also have . . . = sum (phull.dim ◦ hom-deg-set z) (set ps) unfolding set-map

using finite-set
proof (rule sum.reindex-nontrivial)

fix s1 s2
note dd
moreover assume s1 ∈ set ps and s2 ∈ set ps and s1 6= s2
moreover have 0 ∈ hom-deg-set z s if s ∈ set ps for s
proof (rule zero-in-hom-deg-set)

from that have phull.subspace s by (rule assms(5 ))
thus 0 ∈ s by (rule phull.subspace-0 )

qed
ultimately have hom-deg-set z s1 ∩ hom-deg-set z s2 = {0} by (rule di-

rect-decomp-map-Int-zero)
moreover assume hom-deg-set z s1 = hom-deg-set z s2
ultimately show phull.dim (hom-deg-set z s1 ) = 0 by simp

qed
also have . . . = (

∑
p∈set ps. Hilbert-fun p z) by (simp only: o-def Hilbert-fun-def )

finally show ?thesis .
qed

context pm-powerprod
begin

lemma image-lt-hom-deg-set:
assumes homogeneous-set A
shows lpp ‘ (hom-deg-set z A − {0}) = {t ∈ lpp ‘ (A − {0}). deg-pm t = z} (is

?B = ?A)
proof (intro set-eqI iffI )

fix t
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assume t ∈ ?A
hence t ∈ lpp ‘ (A − {0}) and deg-t[symmetric]: deg-pm t = z by simp-all
from this(1 ) obtain p where p ∈ A − {0} and t: t = lpp p ..
from this(1 ) have p ∈ A and p 6= 0 by simp-all
from this(1 ) have 1 : hom-component p z ∈ hom-deg-set z A (is ?p ∈ -)

unfolding hom-deg-set-def by (rule imageI )
from ‹p 6= 0 › have ?p 6= 0 and lpp ?p = t unfolding t deg-t by (rule

hom-component-lpp)+
note this(2 )[symmetric]
moreover from 1 ‹?p 6= 0 › have ?p ∈ hom-deg-set z A − {0} by simp
ultimately show t ∈ ?B by (rule image-eqI )

next
fix t
assume t ∈ ?B
then obtain p where p ∈ hom-deg-set z A − {0} and t: t = lpp p ..
from this(1 ) have p ∈ hom-deg-set z A and p 6= 0 by simp-all
with assms have p ∈ A and homogeneous p and poly-deg p = z

by (simp-all add: hom-deg-set-alt-homogeneous-set)
from this(1 ) ‹p 6= 0 › have p ∈ A − {0} by simp
hence 1 : t ∈ lpp ‘ (A − {0}) using t by (rule rev-image-eqI )
from ‹p 6= 0 › have t ∈ keys p unfolding t by (rule punit.lt-in-keys)
with ‹homogeneous p› have deg-pm t = poly-deg p by (rule homogeneousD-poly-deg)
with 1 show t ∈ ?A by (simp add: ‹poly-deg p = z›)

qed

lemma Hilbert-fun-alt:
assumes finite X and A ⊆ P[X ] and phull.subspace A
shows Hilbert-fun A z = card (lpp ‘ (hom-deg-set z A − {0})) (is - = card ?A)

proof −
have ?A ⊆ lpp ‘ (hom-deg-set z A − {0}) by simp
then obtain B where sub: B ⊆ hom-deg-set z A − {0} and eq1 : ?A = lpp ‘ B

and inj: inj-on lpp B by (rule subset-imageE-inj)
have Hilbert-fun A z = phull.dim (hom-deg-set z A) by (fact Hilbert-fun-def )
also have . . . = card B
proof (rule phull.dim-eq-card)

show phull.span B = phull.span (hom-deg-set z A)
proof

from sub have B ⊆ hom-deg-set z A by blast
thus phull.span B ⊆ phull.span (hom-deg-set z A) by (rule phull.span-mono)

next
from assms(3 ) have phull.subspace (hom-deg-set z A) by (rule subspace-hom-deg-set)

hence phull.span (hom-deg-set z A) = hom-deg-set z A by (simp only:
phull.span-eq-iff )

also have . . . ⊆ phull.span B
proof (rule ccontr)

assume ¬ hom-deg-set z A ⊆ phull.span B
then obtain p0 where p0 ∈ hom-deg-set z A − phull.span B (is - ∈ ?B)

by blast
note assms(1 ) this
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moreover have ?B ⊆ P[X ]
proof (rule subset-trans)

from assms(2 ) show hom-deg-set z A ⊆ P[X ] by (rule Polys-closed-hom-deg-set)
qed blast
ultimately obtain p where p ∈ ?B and p-min:

∧
q. punit.ord-strict-p q p

=⇒ q /∈ ?B
by (rule punit.ord-p-minimum-dgrad-p-set[OF dickson-grading-varnum,

where m=0 ,
simplified dgrad-p-set-varnum]) blast

from this(1 ) have p ∈ hom-deg-set z A and p /∈ phull.span B by simp-all
from phull.span-zero this(2 ) have p 6= 0 by blast
with ‹p ∈ hom-deg-set z A› have p ∈ hom-deg-set z A − {0} by simp
hence lpp p ∈ lpp ‘ (hom-deg-set z A − {0}) by (rule imageI )
also have . . . = lpp ‘ B by (simp only: eq1 )
finally obtain b where b ∈ B and eq2 : lpp p = lpp b ..
from this(1 ) sub have b ∈ hom-deg-set z A − {0} ..
hence b ∈ hom-deg-set z A and b 6= 0 by simp-all
from this(2 ) have lcb: punit.lc b 6= 0 by (rule punit.lc-not-0 )
from ‹p 6= 0 › have lcp: punit.lc p 6= 0 by (rule punit.lc-not-0 )
from ‹b ∈ B› have b ∈ phull.span B by (rule phull.span-base)

hence (punit.lc p / punit.lc b) · b ∈ phull.span B (is ?b ∈ -) by (rule
phull.span-scale)

with ‹p /∈ phull.span B› have p − ?b 6= 0 by auto
moreover from lcb lcp ‹b 6= 0 › have lpp ?b = lpp p

by (simp add: punit.map-scale-eq-monom-mult punit.lt-monom-mult eq2 )
moreover from lcb have punit.lc ?b = punit.lc p by (simp add: punit.map-scale-eq-monom-mult)

ultimately have lpp (p − ?b) ≺ lpp p by (rule punit.lt-minus-lessI )
hence punit.ord-strict-p (p − ?b) p by (rule punit.lt-ord-p)
hence p − ?b /∈ ?B by (rule p-min)
hence p − ?b /∈ hom-deg-set z A ∨ p − ?b ∈ phull.span B by simp
thus False
proof

assume ∗: p − ?b /∈ hom-deg-set z A
from phull.subspace-scale have ?b ∈ hom-deg-set z A
proof (rule hom-deg-set-closed-scalar)

show phull.subspace A by fact
next

show b ∈ hom-deg-set z A by fact
qed

with phull.subspace-diff ‹p ∈ hom-deg-set z A› have p − ?b ∈ hom-deg-set
z A

by (rule hom-deg-set-closed-minus) (rule assms(3 ))
with ∗ show ?thesis ..

next
assume p − ?b ∈ phull.span B
hence p − ?b + ?b ∈ phull.span B using ‹?b ∈ phull.span B› by (rule

phull.span-add)
hence p ∈ phull.span B by simp
with ‹p /∈ phull.span B› show ?thesis ..
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qed
qed
finally show phull.span (hom-deg-set z A) ⊆ phull.span B .

qed
next

show phull.independent B
proof

assume phull.dependent B
then obtain B ′ u b ′ where finite B ′ and B ′ ⊆ B and (

∑
b∈B ′. u b · b) = 0

and b ′ ∈ B ′ and u b ′ 6= 0 unfolding phull.dependent-explicit by blast
define B0 where B0 = {b ∈ B ′. u b 6= 0}
have B0 ⊆ B ′ by (simp add: B0-def )
with ‹finite B ′› have (

∑
b∈B0 . u b · b) = (

∑
b∈B ′. u b · b)

by (rule sum.mono-neutral-left) (simp add: B0-def )
also have . . . = 0 by fact
finally have eq: (

∑
b∈B0 . u b · b) = 0 .

define t where t = ordered-powerprod-lin.Max (lpp ‘ B0 )
from ‹b ′ ∈ B ′› ‹u b ′ 6= 0 › have b ′ ∈ B0 by (simp add: B0-def )
hence lpp b ′ ∈ lpp ‘ B0 by (rule imageI )
hence lpp ‘ B0 6= {} by blast
from ‹B0 ⊆ B ′› ‹finite B ′› have finite B0 by (rule finite-subset)
hence finite (lpp ‘ B0 ) by (rule finite-imageI )
hence t ∈ lpp ‘ B0 unfolding t-def using ‹lpp ‘ B0 6= {}›

by (rule ordered-powerprod-lin.Max-in)
then obtain b0 where b0 ∈ B0 and t: t = lpp b0 ..
note this(1 )
moreover from ‹B0 ⊆ B ′› ‹B ′ ⊆ B› have B0 ⊆ B by (rule subset-trans)
also have . . . ⊆ hom-deg-set z A − {0} by fact
finally have b0 ∈ hom-deg-set z A − {0} .
hence b0 6= 0 by simp
hence t ∈ keys b0 unfolding t by (rule punit.lt-in-keys)
have lookup (

∑
b∈B0 . u b · b) t = (

∑
b∈B0 . u b ∗ lookup b t) by (simp add:

lookup-sum)
also from ‹finite B0 › have . . . = (

∑
b∈{b0}. u b ∗ lookup b t)

proof (rule sum.mono-neutral-right)
from ‹b0 ∈ B0 › show {b0} ⊆ B0 by simp

next
show ∀ b∈B0 − {b0}. u b ∗ lookup b t = 0
proof

fix b
assume b ∈ B0 − {b0}
hence b ∈ B0 and b 6= b0 by simp-all
from this(1 ) have lpp b ∈ lpp ‘ B0 by (rule imageI )
with ‹finite (lpp ‘ B0 )› have lpp b � t unfolding t-def

by (rule ordered-powerprod-lin.Max-ge)
have t /∈ keys b
proof

assume t ∈ keys b
hence t � lpp b by (rule punit.lt-max-keys)
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with ‹lpp b � t› have lpp b = lpp b0
unfolding t by simp

from inj ‹B0 ⊆ B› have inj-on lpp B0 by (rule inj-on-subset)
hence b = b0 using ‹lpp b = lpp b0 › ‹b ∈ B0 › ‹b0 ∈ B0 › by (rule

inj-onD)
with ‹b 6= b0 › show False ..

qed
thus u b ∗ lookup b t = 0 by (simp add: in-keys-iff )

qed
qed
also from ‹t ∈ keys b0 › ‹b0 ∈ B0 › have . . . 6= 0 by (simp add: B0-def

in-keys-iff )
finally show False by (simp add: eq)

qed
qed
also have . . . = card ?A unfolding eq1 using inj by (rule card-image[symmetric])
finally show ?thesis .

qed

end

end

10 Cone Decompositions
theory Cone-Decomposition

imports Groebner-Bases.Groebner-PM Monomial-Module Hilbert-Function
begin

10.1 More Properties of Reduced Gröbner Bases
context pm-powerprod
begin

lemmas reduced-GB-subset-monic-Polys =
punit.reduced-GB-subset-monic-dgrad-p-set[simplified, OF dickson-grading-varnum,

where m=0 , simplified dgrad-p-set-varnum]
lemmas reduced-GB-is-monomial-set-Polys =
punit.reduced-GB-is-monomial-set-dgrad-p-set[simplified, OF dickson-grading-varnum,

where m=0 , simplified dgrad-p-set-varnum]
lemmas is-red-reduced-GB-monomial-lt-GB-Polys =
punit.is-red-reduced-GB-monomial-lt-GB-dgrad-p-set[simplified, OF dickson-grading-varnum,

where m=0 , simplified dgrad-p-set-varnum]
lemmas reduced-GB-monomial-lt-reduced-GB-Polys =
punit.reduced-GB-monomial-lt-reduced-GB-dgrad-p-set[simplified, OF dickson-grading-varnum,

where m=0 , simplified dgrad-p-set-varnum]

end
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10.2 Quotient Ideals
definition quot-set :: ′a set ⇒ ′a ⇒ ′a::semigroup-mult set (infixl ‹÷› 55 )

where quot-set A x = (∗) x −‘ A

lemma quot-set-iff : a ∈ A ÷ x ←→ x ∗ a ∈ A
by (simp add: quot-set-def )

lemma quot-setI : x ∗ a ∈ A =⇒ a ∈ A ÷ x
by (simp only: quot-set-iff )

lemma quot-setD: a ∈ A ÷ x =⇒ x ∗ a ∈ A
by (simp only: quot-set-iff )

lemma quot-set-quot-set [simp]: A ÷ x ÷ y = A ÷ x ∗ y
by (rule set-eqI ) (simp add: quot-set-iff mult.assoc)

lemma quot-set-one [simp]: A ÷ (1 ::-::monoid-mult) = A
by (rule set-eqI ) (simp add: quot-set-iff )

lemma ideal-quot-set-ideal [simp]: ideal (ideal B ÷ x) = (ideal B) ÷ (x::-::comm-ring)
proof

show ideal (ideal B ÷ x) ⊆ ideal B ÷ x
proof

fix b
assume b ∈ ideal (ideal B ÷ x)
thus b ∈ ideal B ÷ x
proof (induct b rule: ideal.span-induct ′)

case base
show ?case by (simp add: quot-set-iff ideal.span-zero)

next
case (step b q p)
hence x ∗ b ∈ ideal B and x ∗ p ∈ ideal B by (simp-all add: quot-set-iff )
hence x ∗ b + q ∗ (x ∗ p) ∈ ideal B

by (intro ideal.span-add ideal.span-scale[where c=q])
thus ?case by (simp only: quot-set-iff algebra-simps)

qed
qed

qed (fact ideal.span-superset)

lemma quot-set-image-times: inj ((∗) x) =⇒ ((∗) x ‘ A) ÷ x = A
by (simp add: quot-set-def inj-vimage-image-eq)

10.3 Direct Decompositions of Polynomial Rings
context pm-powerprod
begin

definition normal-form :: (( ′x ⇒0 nat) ⇒0
′a) set ⇒ (( ′x ⇒0 nat) ⇒0

′a::field)
⇒ (( ′x ⇒0 nat) ⇒0

′a::field)
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where normal-form F p = (SOME q. (punit.red (punit.reduced-GB F))∗∗ p q ∧
¬ punit.is-red (punit.reduced-GB F) q)

Of course, normal-form could be defined in a much more general context.
context

fixes X :: ′x set
assumes fin-X : finite X

begin

context
fixes F :: (( ′x ⇒0 nat) ⇒0

′a::field) set
assumes F-sub: F ⊆ P[X ]

begin

lemma normal-form:
shows (punit.red (punit.reduced-GB F))∗∗ p (normal-form F p) (is ?thesis1 )

and ¬ punit.is-red (punit.reduced-GB F) (normal-form F p) (is ?thesis2 )
proof −
from fin-X F-sub have finite (punit.reduced-GB F) by (rule finite-reduced-GB-Polys)
hence wfP (punit.red (punit.reduced-GB F))−1−1 by (rule punit.red-wf-finite)
then obtain q where (punit.red (punit.reduced-GB F))∗∗ p q

and ¬ punit.is-red (punit.reduced-GB F) q unfolding punit.is-red-def not-not
by (rule relation.wf-imp-nf-ex)

hence (punit.red (punit.reduced-GB F))∗∗ p q ∧ ¬ punit.is-red (punit.reduced-GB
F) q ..

hence ?thesis1 ∧ ?thesis2 unfolding normal-form-def by (rule someI )
thus ?thesis1 and ?thesis2 by simp-all

qed

lemma normal-form-unique:
assumes (punit.red (punit.reduced-GB F))∗∗ p q and ¬ punit.is-red (punit.reduced-GB

F) q
shows normal-form F p = q

proof (rule relation.ChurchRosser-unique-final)
from fin-X F-sub have punit.is-Groebner-basis (punit.reduced-GB F) by (rule

reduced-GB-is-GB-Polys)
thus relation.is-ChurchRosser (punit.red (punit.reduced-GB F))

by (simp only: punit.is-Groebner-basis-def )
next

show (punit.red (punit.reduced-GB F))∗∗ p (normal-form F p) by (rule nor-
mal-form)
next

have ¬ punit.is-red (punit.reduced-GB F) (normal-form F p) by (rule nor-
mal-form)

thus relation.is-final (punit.red (punit.reduced-GB F)) (normal-form F p)
by (simp add: punit.is-red-def )

next
from assms(2 ) show relation.is-final (punit.red (punit.reduced-GB F)) q

by (simp add: punit.is-red-def )
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qed fact

lemma normal-form-id-iff : normal-form F p = p←→ (¬ punit.is-red (punit.reduced-GB
F) p)
proof

assume normal-form F p = p
with normal-form(2 )[of p] show ¬ punit.is-red (punit.reduced-GB F) p by simp

next
assume ¬ punit.is-red (punit.reduced-GB F) p
with rtranclp.rtrancl-refl show normal-form F p = p by (rule normal-form-unique)

qed

lemma normal-form-normal-form: normal-form F (normal-form F p) = normal-form
F p

by (simp add: normal-form-id-iff normal-form)

lemma normal-form-zero: normal-form F 0 = 0
by (simp add: normal-form-id-iff punit.irred-0 )

lemma normal-form-map-scale: normal-form F (c · p) = c · (normal-form F p)
by (intro normal-form-unique punit.is-irred-map-scale normal-form)
(simp add: punit.map-scale-eq-monom-mult punit.red-rtrancl-mult normal-form)

lemma normal-form-uminus: normal-form F (− p) = − normal-form F p
by (intro normal-form-unique punit.red-rtrancl-uminus normal-form)

(simp add: punit.is-red-uminus normal-form)

lemma normal-form-plus-normal-form:
normal-form F (normal-form F p + normal-form F q) = normal-form F p +

normal-form F q
by (intro normal-form-unique rtranclp.rtrancl-refl punit.is-irred-plus normal-form)

lemma normal-form-minus-normal-form:
normal-form F (normal-form F p − normal-form F q) = normal-form F p −

normal-form F q
by (intro normal-form-unique rtranclp.rtrancl-refl punit.is-irred-minus normal-form)

lemma normal-form-ideal-Polys: normal-form (ideal F ∩ P[X ]) = normal-form F
proof −

let ?F = ideal F ∩ P[X ]
from fin-X have eq: punit.reduced-GB ?F = punit.reduced-GB F
proof (rule reduced-GB-unique-Polys)

from fin-X F-sub show punit.is-reduced-GB (punit.reduced-GB F)
by (rule reduced-GB-is-reduced-GB-Polys)

next
from fin-X F-sub have ideal (punit.reduced-GB F) = ideal F by (rule re-

duced-GB-ideal-Polys)
also have . . . = ideal (ideal F ∩ P[X ])
proof (intro subset-antisym ideal.span-subset-spanI )

87



from ideal.span-superset[of F ] F-sub have F ⊆ ideal F ∩ P[X ] by simp
thus F ⊆ ideal (ideal F ∩ P[X ]) using ideal.span-superset by (rule sub-

set-trans)
qed blast
finally show ideal (punit.reduced-GB F) = ideal (ideal F ∩ P[X ]) .

qed blast
show ?thesis by (rule ext) (simp only: normal-form-def eq)

qed

lemma normal-form-diff-in-ideal: p − normal-form F p ∈ ideal F
proof −

from normal-form(1 ) have p − normal-form F p ∈ ideal (punit.reduced-GB F)
by (rule punit.red-rtranclp-diff-in-pmdl[simplified])

also from fin-X F-sub have . . . = ideal F by (rule reduced-GB-ideal-Polys)
finally show ?thesis .

qed

lemma normal-form-zero-iff : normal-form F p = 0 ←→ p ∈ ideal F
proof

assume normal-form F p = 0
with normal-form-diff-in-ideal[of p] show p ∈ ideal F by simp

next
assume p ∈ ideal F
hence p − (p − normal-form F p) ∈ ideal F using normal-form-diff-in-ideal

by (rule ideal.span-diff )
also from fin-X F-sub have . . . = ideal (punit.reduced-GB F) by (rule re-

duced-GB-ideal-Polys[symmetric])
finally have ∗: normal-form F p ∈ ideal (punit.reduced-GB F) by simp
show normal-form F p = 0
proof (rule ccontr)

from fin-X F-sub have punit.is-Groebner-basis (punit.reduced-GB F) by (rule
reduced-GB-is-GB-Polys)

moreover note ∗
moreover assume normal-form F p 6= 0
ultimately obtain g where g ∈ punit.reduced-GB F and g 6= 0
and a: lpp g adds lpp (normal-form F p) by (rule punit.GB-adds-lt[simplified])

note this(1 , 2 )
moreover from ‹normal-form F p 6= 0 › have lpp (normal-form F p) ∈ keys

(normal-form F p)
by (rule punit.lt-in-keys)

ultimately have punit.is-red (punit.reduced-GB F) (normal-form F p)
using a by (rule punit.is-red-addsI [simplified])

with normal-form(2 ) show False ..
qed

qed

lemma normal-form-eq-iff : normal-form F p = normal-form F q ←→ p − q ∈
ideal F
proof −
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have p − q − (normal-form F p − normal-form F q) = (p − normal-form F p)
− (q − normal-form F q)

by simp
also from normal-form-diff-in-ideal normal-form-diff-in-ideal have . . . ∈ ideal F

by (rule ideal.span-diff )
finally have ∗: p − q − (normal-form F p − normal-form F q) ∈ ideal F .
show ?thesis
proof

assume normal-form F p = normal-form F q
with ∗ show p − q ∈ ideal F by simp

next
assume p − q ∈ ideal F
hence p − q − (p − q − (normal-form F p − normal-form F q)) ∈ ideal F

using ∗
by (rule ideal.span-diff )

hence normal-form F (normal-form F p − normal-form F q) = 0 by (simp
add: normal-form-zero-iff )

thus normal-form F p = normal-form F q by (simp add: normal-form-minus-normal-form)
qed

qed

lemma Polys-closed-normal-form:
assumes p ∈ P[X ]
shows normal-form F p ∈ P[X ]

proof −
from fin-X F-sub have punit.reduced-GB F ⊆ P[X ] by (rule reduced-GB-Polys)
with fin-X show ?thesis using assms normal-form(1 )
by (rule punit.dgrad-p-set-closed-red-rtrancl[OF dickson-grading-varnum, where

m=0 , simplified dgrad-p-set-varnum])
qed

lemma image-normal-form-iff :
p ∈ normal-form F ‘ P[X ] ←→ (p ∈ P[X ] ∧ ¬ punit.is-red (punit.reduced-GB

F) p)
proof

assume p ∈ normal-form F ‘ P[X ]
then obtain q where q ∈ P[X ] and p: p = normal-form F q ..
from this(1 ) show p ∈ P[X ] ∧ ¬ punit.is-red (punit.reduced-GB F) p unfolding

p
by (intro conjI Polys-closed-normal-form normal-form)

next
assume p ∈ P[X ] ∧ ¬ punit.is-red (punit.reduced-GB F) p
hence p ∈ P[X ] and ¬ punit.is-red (punit.reduced-GB F) p by simp-all
from this(2 ) have normal-form F p = p by (simp add: normal-form-id-iff )
from this[symmetric] ‹p ∈ P[X ]› show p ∈ normal-form F ‘ P[X ] by (rule

image-eqI )
qed

end
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lemma direct-decomp-ideal-insert:
fixes F and f
defines I ≡ ideal (insert f F)
defines L ≡ (ideal F ÷ f ) ∩ P[X ]
assumes F ⊆ P[X ] and f ∈ P[X ]
shows direct-decomp (I ∩ P[X ]) [ideal F ∩ P[X ], (∗) f ‘ normal-form L ‘ P[X ]]
(is direct-decomp - ?ss)

proof (rule direct-decompI-alt)
fix qs
assume qs ∈ listset ?ss
then obtain x y where x: x ∈ ideal F ∩ P[X ] and y: y ∈ (∗) f ‘ normal-form

L ‘ P[X ]
and qs: qs = [x, y] by (rule listset-doubletonE)

have sum-list qs = x + y by (simp add: qs)
also have . . . ∈ I ∩ P[X ] unfolding I-def
proof (intro IntI ideal.span-add Polys-closed-plus)

have ideal F ⊆ ideal (insert f F) by (rule ideal.span-mono) blast
with x show x ∈ ideal (insert f F) and x ∈ P[X ] by blast+

next
from y obtain p where p ∈ P[X ] and y: y = f ∗ normal-form L p by blast
have f ∈ ideal (insert f F) by (rule ideal.span-base) simp
hence normal-form L p ∗ f ∈ ideal (insert f F) by (rule ideal.span-scale)
thus y ∈ ideal (insert f F) by (simp only: mult.commute y)

have L ⊆ P[X ] by (simp add: L-def )
hence normal-form L p ∈ P[X ] using ‹p ∈ P[X ]› by (rule Polys-closed-normal-form)
with assms(4 ) show y ∈ P[X ] unfolding y by (rule Polys-closed-times)

qed
finally show sum-list qs ∈ I ∩ P[X ] .

next
fix a
assume a ∈ I ∩ P[X ]
hence a ∈ I and a ∈ P[X ] by simp-all
from assms(3 , 4 ) have insert f F ⊆ P[X ] by simp
then obtain F0 q0 where F0 ⊆ insert f F and finite F0 and q0 :

∧
f0 . q0 f0

∈ P[X ]
and a: a = (

∑
f0∈F0 . q0 f0 ∗ f0 )

using ‹a ∈ P[X ]› ‹a ∈ I › unfolding I-def by (rule in-idealE-Polys) blast
obtain q a ′ where a ′: a ′ ∈ ideal F and a ′ ∈ P[X ] and q ∈ P[X ] and a: a = q
∗ f + a ′

proof (cases f ∈ F0 )
case True
with ‹F0 ⊆ insert f F› have F0 − {f } ⊆ F by blast
show ?thesis
proof
have (

∑
f0∈F0 − {f }. q0 f0 ∗ f0 ) ∈ ideal (F0 − {f }) by (rule ideal.sum-in-spanI )

also from ‹F0 − {f } ⊆ F› have . . . ⊆ ideal F by (rule ideal.span-mono)
finally show (

∑
f0∈F0 − {f }. q0 f0 ∗ f0 ) ∈ ideal F .
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next
show (

∑
f0∈F0 − {f }. q0 f0 ∗ f0 ) ∈ P[X ]

proof (intro Polys-closed-sum Polys-closed-times q0 )
fix f0
assume f0 ∈ F0 − {f }
also have . . . ⊆ F0 by blast
also have . . . ⊆ insert f F by fact
also have . . . ⊆ P[X ] by fact
finally show f0 ∈ P[X ] .

qed
next

from ‹finite F0 › True show a = q0 f ∗ f + (
∑

f0∈F0 − {f }. q0 f0 ∗ f0 )
by (simp only: a sum.remove)

qed fact
next

case False
with ‹F0 ⊆ insert f F› have F0 ⊆ F by blast
show ?thesis
proof

have a ∈ ideal F0 unfolding a by (rule ideal.sum-in-spanI )
also from ‹F0 ⊆ F› have . . . ⊆ ideal F by (rule ideal.span-mono)
finally show a ∈ ideal F .

next
show a = 0 ∗ f + a by simp

qed (fact ‹a ∈ P[X ]›, fact zero-in-Polys)
qed
let ?a = f ∗ (normal-form L q)
have L ⊆ P[X ] by (simp add: L-def )
hence normal-form L q ∈ P[X ] using ‹q ∈ P[X ]› by (rule Polys-closed-normal-form)
with assms(4 ) have ?a ∈ P[X ] by (rule Polys-closed-times)
from ‹L ⊆ P[X ]› have q − normal-form L q ∈ ideal L by (rule normal-form-diff-in-ideal)
also have . . . ⊆ ideal (ideal F ÷ f ) unfolding L-def by (rule ideal.span-mono)

blast
finally have f ∗ (q − normal-form L q) ∈ ideal F by (simp add: quot-set-iff )
with ‹a ′ ∈ ideal F› have a ′ + f ∗ (q − normal-form L q) ∈ ideal F by (rule

ideal.span-add)
hence a − ?a ∈ ideal F by (simp add: a algebra-simps)

define qs where qs = [a − ?a, ?a]
show ∃ !qs∈listset ?ss. a = sum-list qs
proof (intro ex1I conjI allI impI )

have a − ?a ∈ ideal F ∩ P[X ]
proof

from assms(4 ) ‹a ∈ P[X ]› ‹normal-form L q ∈ P[X ]› show a − ?a ∈ P[X ]
by (intro Polys-closed-minus Polys-closed-times)

qed fact
moreover from ‹q ∈ P[X ]› have ?a ∈ (∗) f ‘ normal-form L ‘ P[X ] by (intro

imageI )
ultimately show qs ∈ listset ?ss using qs-def by (rule listset-doubletonI )
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next
fix qs0
assume qs0 ∈ listset ?ss ∧ a = sum-list qs0
hence qs0 ∈ listset ?ss and a = sum-list qs0 by simp-all

from this(1 ) obtain x y where x ∈ ideal F ∩ P[X ] and y ∈ (∗) f ‘ normal-form
L ‘ P[X ]

and qs0 : qs0 = [x, y] by (rule listset-doubletonE)
from this(2 ) obtain a0 where a0 ∈ P[X ] and y: y = f ∗ normal-form L a0

by blast
from ‹x ∈ ideal F ∩ P[X ]› have x ∈ ideal F by simp
have x: x = a − y by (simp add: ‹a = sum-list qs0 › qs0 )
have f ∗ (normal-form L q − normal-form L a0 ) = x − (a − ?a) by (simp

add: x y a algebra-simps)
also from ‹x ∈ ideal F› ‹a − ?a ∈ ideal F› have . . . ∈ ideal F by (rule

ideal.span-diff )
finally have normal-form L q − normal-form L a0 ∈ ideal F ÷ f by (rule

quot-setI )
moreover from ‹L ⊆ P[X ]› ‹q ∈ P[X ]› ‹a0 ∈ P[X ]› have normal-form L q

− normal-form L a0 ∈ P[X ]
by (intro Polys-closed-minus Polys-closed-normal-form)

ultimately have normal-form L q − normal-form L a0 ∈ L by (simp add:
L-def )

also have . . . ⊆ ideal L by (fact ideal.span-superset)
finally have normal-form L q − normal-form L a0 = 0 using ‹L ⊆ P[X ]›

by (simp only: normal-form-minus-normal-form flip: normal-form-zero-iff )
thus qs0 = qs by (simp add: qs0 qs-def x y)

qed (simp-all add: qs-def )
qed

corollary direct-decomp-ideal-normal-form:
assumes F ⊆ P[X ]
shows direct-decomp P[X ] [ideal F ∩ P[X ], normal-form F ‘ P[X ]]

proof −
from assms one-in-Polys have direct-decomp (ideal (insert 1 F) ∩ P[X ]) [ideal

F ∩ P[X ],
(∗) 1 ‘ normal-form ((ideal F ÷ 1 ) ∩ P[X ])

‘ P[X ]]
by (rule direct-decomp-ideal-insert)

moreover have ideal (insert 1 F) = UNIV
by (simp add: ideal-eq-UNIV-iff-contains-one ideal.span-base)

moreover from refl have ((∗) 1 ◦ normal-form F) ‘ P[X ] = normal-form F ‘
P[X ]

by (rule image-cong) simp
ultimately show ?thesis using assms by (simp add: image-comp normal-form-ideal-Polys)

qed

end
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10.4 Basic Cone Decompositions
definition cone :: ((( ′x ⇒0 nat)⇒0

′a) × ′x set)⇒ (( ′x ⇒0 nat)⇒0
′a::comm-semiring-0 )

set
where cone hU = (∗) (fst hU ) ‘ P[snd hU ]

lemma coneI : p = a ∗ h =⇒ a ∈ P[U ] =⇒ p ∈ cone (h, U )
by (auto simp: cone-def mult.commute[of a])

lemma coneE :
assumes p ∈ cone (h, U )
obtains a where a ∈ P[U ] and p = a ∗ h
using assms by (auto simp: cone-def mult.commute)

lemma cone-empty: cone (h, {}) = range (λc. c · h)
by (auto simp: Polys-empty map-scale-eq-times intro: coneI elim!: coneE)

lemma cone-zero [simp]: cone (0 , U ) = {0}
by (auto simp: cone-def intro: zero-in-Polys)

lemma cone-one [simp]: cone (1 ::- ⇒0
′a::comm-semiring-1 , U ) = P[U ]

by (auto simp: cone-def )

lemma zero-in-cone: 0 ∈ cone hU
by (auto simp: cone-def intro!: image-eqI zero-in-Polys)

corollary empty-not-in-map-cone: {} /∈ set (map cone ps)
using zero-in-cone by fastforce

lemma tip-in-cone: h ∈ cone (h::- ⇒0 -::comm-semiring-1 , U )
using - one-in-Polys by (rule coneI ) simp

lemma cone-closed-plus:
assumes a ∈ cone hU and b ∈ cone hU
shows a + b ∈ cone hU

proof −
obtain h U where hU : hU = (h, U ) using prod.exhaust by blast
with assms have a ∈ cone (h, U ) and b ∈ cone (h, U ) by simp-all
from this(1 ) obtain a ′ where a ′ ∈ P[U ] and a: a = a ′ ∗ h by (rule coneE)
from ‹b ∈ cone (h, U )› obtain b ′ where b ′ ∈ P[U ] and b: b = b ′ ∗ h by (rule

coneE)
have a + b = (a ′ + b ′) ∗ h by (simp only: a b algebra-simps)
moreover from ‹a ′ ∈ P[U ]› ‹b ′ ∈ P[U ]› have a ′ + b ′ ∈ P[U ] by (rule

Polys-closed-plus)
ultimately show ?thesis unfolding hU by (rule coneI )

qed

lemma cone-closed-uminus:
assumes (a::- ⇒0 -::comm-ring) ∈ cone hU
shows − a ∈ cone hU
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proof −
obtain h U where hU : hU = (h, U ) using prod.exhaust by blast
with assms have a ∈ cone (h, U ) by simp
from this(1 ) obtain a ′ where a ′ ∈ P[U ] and a: a = a ′ ∗ h by (rule coneE)
have − a = (− a ′) ∗ h by (simp add: a)
moreover from ‹a ′ ∈ P[U ]› have − a ′ ∈ P[U ] by (rule Polys-closed-uminus)
ultimately show ?thesis unfolding hU by (rule coneI )

qed

lemma cone-closed-minus:
assumes (a::- ⇒0 -::comm-ring) ∈ cone hU and b ∈ cone hU
shows a − b ∈ cone hU

proof −
from assms(2 ) have − b ∈ cone hU by (rule cone-closed-uminus)
with assms(1 ) have a + (− b) ∈ cone hU by (rule cone-closed-plus)
thus ?thesis by simp

qed

lemma cone-closed-times:
assumes a ∈ cone (h, U ) and q ∈ P[U ]
shows q ∗ a ∈ cone (h, U )

proof −
from assms(1 ) obtain a ′ where a ′ ∈ P[U ] and a: a = a ′ ∗ h by (rule coneE)
have q ∗ a = (q ∗ a ′) ∗ h by (simp only: a ac-simps)
moreover from assms(2 ) ‹a ′∈ P[U ]› have q ∗ a ′∈ P[U ] by (rule Polys-closed-times)
ultimately show ?thesis by (rule coneI )

qed

corollary cone-closed-monom-mult:
assumes a ∈ cone (h, U ) and t ∈ .[U ]
shows punit.monom-mult c t a ∈ cone (h, U )

proof −
from assms(2 ) have monomial c t ∈ P[U ] by (rule Polys-closed-monomial)
with assms(1 ) have monomial c t ∗ a ∈ cone (h, U ) by (rule cone-closed-times)
thus ?thesis by (simp only: times-monomial-left)

qed

lemma coneD:
assumes p ∈ cone (h, U ) and p 6= 0
shows lpp h adds lpp (p::- ⇒0 -::{comm-semiring-0 ,semiring-no-zero-divisors})

proof −
from assms(1 ) obtain a where p: p = a ∗ h by (rule coneE)
with assms(2 ) have a 6= 0 and h 6= 0 by auto
hence lpp p = lpp a + lpp h unfolding p by (rule lp-times)
also have . . . = lpp h + lpp a by (rule add.commute)
finally show ?thesis by (rule addsI )

qed

lemma cone-mono-1 :
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assumes h ′ ∈ P[U ]
shows cone (h ′ ∗ h, U ) ⊆ cone (h, U )

proof
fix p
assume p ∈ cone (h ′ ∗ h, U )
then obtain a ′ where a ′ ∈ P[U ] and p = a ′ ∗ (h ′ ∗ h) by (rule coneE)
from this(2 ) have p = a ′ ∗ h ′ ∗ h by (simp only: mult.assoc)
moreover from ‹a ′∈ P[U ]› assms have a ′ ∗ h ′∈ P[U ] by (rule Polys-closed-times)
ultimately show p ∈ cone (h, U ) by (rule coneI )

qed

lemma cone-mono-2 :
assumes U1 ⊆ U2
shows cone (h, U1 ) ⊆ cone (h, U2 )

proof
from assms have P[U1 ] ⊆ P[U2 ] by (rule Polys-mono)
fix p
assume p ∈ cone (h, U1 )
then obtain a where a ∈ P[U1 ] and p = a ∗ h by (rule coneE)
note this(2 )
moreover from ‹a ∈ P[U1 ]› ‹P[U1 ] ⊆ P[U2 ]› have a ∈ P[U2 ] ..
ultimately show p ∈ cone (h, U2 ) by (rule coneI )

qed

lemma cone-subsetD:
assumes cone (h1 , U1 ) ⊆ cone (h2 ::-⇒0

′a::{comm-ring-1 ,ring-no-zero-divisors},
U2 )

shows h2 dvd h1 and h1 6= 0 =⇒ U1 ⊆ U2
proof −

from tip-in-cone assms have h1 ∈ cone (h2 , U2 ) ..
then obtain a1 ′ where a1 ′ ∈ P[U2 ] and h1 : h1 = a1 ′ ∗ h2 by (rule coneE)
from this(2 ) have h1 = h2 ∗ a1 ′ by (simp only: mult.commute)
thus h2 dvd h1 ..

assume h1 6= 0
with h1 have a1 ′ 6= 0 and h2 6= 0 by auto
show U1 ⊆ U2
proof

fix x
assume x ∈ U1
hence monomial (1 :: ′a) (Poly-Mapping.single x 1 ) ∈ P[U1 ] (is ?p ∈ -)

by (intro Polys-closed-monomial PPs-closed-single)
with refl have ?p ∗ h1 ∈ cone (h1 , U1 ) by (rule coneI )
hence ?p ∗ h1 ∈ cone (h2 , U2 ) using assms ..
then obtain a where a ∈ P[U2 ] and ?p ∗ h1 = a ∗ h2 by (rule coneE)
from this(2 ) have (?p ∗ a1 ′) ∗ h2 = a ∗ h2 by (simp only: h1 ac-simps)
hence ?p ∗ a1 ′ = a using ‹h2 6= 0 › by (rule times-canc-right)
with ‹a ∈ P[U2 ]› have a1 ′ ∗ ?p ∈ P[U2 ] by (simp add: mult.commute)
hence ?p ∈ P[U2 ] using ‹a1 ′ ∈ P[U2 ]› ‹a1 ′ 6= 0 › by (rule times-in-PolysD)
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thus x ∈ U2 by (simp add: Polys-def PPs-def )
qed

qed

lemma cone-subset-PolysD:
assumes cone (h::- ⇒0

′a::{comm-semiring-1 ,semiring-no-zero-divisors}, U ) ⊆
P[X ]

shows h ∈ P[X ] and h 6= 0 =⇒ U ⊆ X
proof −

from tip-in-cone assms show h ∈ P[X ] ..

assume h 6= 0
show U ⊆ X
proof

fix x
assume x ∈ U
hence monomial (1 :: ′a) (Poly-Mapping.single x 1 ) ∈ P[U ] (is ?p ∈ -)

by (intro Polys-closed-monomial PPs-closed-single)
with refl have ?p ∗ h ∈ cone (h, U ) by (rule coneI )
hence ?p ∗ h ∈ P[X ] using assms ..
hence h ∗ ?p ∈ P[X ] by (simp only: mult.commute)
hence ?p ∈ P[X ] using ‹h ∈ P[X ]› ‹h 6= 0 › by (rule times-in-PolysD)
thus x ∈ X by (simp add: Polys-def PPs-def )

qed
qed

lemma cone-subset-PolysI :
assumes h ∈ P[X ] and h 6= 0 =⇒ U ⊆ X
shows cone (h, U ) ⊆ P[X ]

proof (cases h = 0 )
case True
thus ?thesis by (simp add: zero-in-Polys)

next
case False
hence U ⊆ X by (rule assms(2 ))
hence P[U ] ⊆ P[X ] by (rule Polys-mono)
show ?thesis
proof

fix a
assume a ∈ cone (h, U )
then obtain q where q ∈ P[U ] and a: a = q ∗ h by (rule coneE)
from this(1 ) ‹P[U ] ⊆ P[X ]› have q ∈ P[X ] ..
from this assms(1 ) show a ∈ P[X ] unfolding a by (rule Polys-closed-times)

qed
qed

lemma cone-image-times: (∗) a ‘ cone (h, U ) = cone (a ∗ h, U )
by (auto simp: ac-simps image-image intro!: image-eqI coneI elim!: coneE)
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lemma cone-image-times ′: (∗) a ‘ cone hU = cone (apfst ((∗) a) hU )
proof −

obtain h U where hU = (h, U ) using prod.exhaust by blast
thus ?thesis by (simp add: cone-image-times)

qed

lemma homogeneous-set-coneI :
assumes homogeneous h
shows homogeneous-set (cone (h, U ))

proof (rule homogeneous-setI )
fix a n
assume a ∈ cone (h, U )
then obtain q where q ∈ P[U ] and a: a = q ∗ h by (rule coneE)
from this(1 ) show hom-component a n ∈ cone (h, U ) unfolding a
proof (induct q rule: poly-mapping-plus-induct)

case 1
show ?case by (simp add: zero-in-cone)

next
case (2 p c t)
have p ∈ P[U ]
proof (intro PolysI subsetI )

fix s
assume s ∈ keys p
moreover from 2 (2 ) this have s /∈ keys (monomial c t) by auto
ultimately have s ∈ keys (monomial c t + p) by (rule in-keys-plusI2 )
also from 2 (4 ) have . . . ⊆ .[U ] by (rule PolysD)
finally show s ∈ .[U ] .

qed
hence ∗: hom-component (p ∗ h) n ∈ cone (h, U ) by (rule 2 (3 ))
from 2 (1 ) have t ∈ keys (monomial c t) by simp
hence t ∈ keys (monomial c t + p) using 2 (2 ) by (rule in-keys-plusI1 )
also from 2 (4 ) have . . . ⊆ .[U ] by (rule PolysD)
finally have monomial c t ∈ P[U ] by (rule Polys-closed-monomial)
with refl have monomial c t ∗ h ∈ cone (h, U ) (is ?h ∈ -) by (rule coneI )
from assms have homogeneous ?h by (simp add: homogeneous-times)

hence hom-component ?h n = (?h when n = poly-deg ?h) by (rule hom-component-of-homogeneous)
with ‹?h ∈ cone (h, U )› have ∗∗: hom-component ?h n ∈ cone (h, U )

by (simp add: when-def zero-in-cone)
have hom-component ((monomial c t + p) ∗ h) n = hom-component ?h n +

hom-component (p ∗ h) n
by (simp only: distrib-right hom-component-plus)

also from ∗∗ ∗ have . . . ∈ cone (h, U ) by (rule cone-closed-plus)
finally show ?case .

qed
qed

lemma subspace-cone: phull.subspace (cone hU )
using zero-in-cone cone-closed-plus

proof (rule phull.subspaceI )
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fix c a
assume a ∈ cone hU
moreover obtain h U where hU : hU = (h, U ) using prod.exhaust by blast
ultimately have a ∈ cone (h, U ) by simp
thus c · a ∈ cone hU unfolding hU punit.map-scale-eq-monom-mult using

zero-in-PPs
by (rule cone-closed-monom-mult)

qed

lemma direct-decomp-cone-insert:
fixes h :: - ⇒0

′a::{comm-ring-1 ,ring-no-zero-divisors}
assumes x /∈ U
shows direct-decomp (cone (h, insert x U ))

[cone (h, U ), cone (monomial 1 (Poly-Mapping.single x (Suc 0 )) ∗
h, insert x U )]
proof −

let ?x = Poly-Mapping.single x (Suc 0 )
define xx where xx = monomial (1 :: ′a) ?x
show direct-decomp (cone (h, insert x U )) [cone (h, U ), cone (xx ∗ h, insert x

U )]
(is direct-decomp - ?ss)

proof (rule direct-decompI-alt)
fix qs
assume qs ∈ listset ?ss
then obtain a b where a ∈ cone (h, U ) and b: b ∈ cone (xx ∗ h, insert x U )

and qs: qs = [a, b] by (rule listset-doubletonE)
note this(1 )
also have cone (h, U ) ⊆ cone (h, insert x U ) by (rule cone-mono-2 ) blast
finally have a: a ∈ cone (h, insert x U ) .
have cone (xx ∗ h, insert x U ) ⊆ cone (h, insert x U )

by (rule cone-mono-1 ) (simp add: xx-def Polys-def PPs-closed-single)
with b have b ∈ cone (h, insert x U ) ..
with a have a + b ∈ cone (h, insert x U ) by (rule cone-closed-plus)
thus sum-list qs ∈ cone (h, insert x U ) by (simp add: qs)

next
fix a
assume a ∈ cone (h, insert x U )
then obtain q where q ∈ P[insert x U ] and a: a = q ∗ h by (rule coneE)
define qU where qU = except q (− .[U ])
define qx where qx = except q .[U ]
have q: q = qU + qx by (simp only: qU-def qx-def add.commute flip: ex-

cept-decomp)
have qU ∈ P[U ] by (rule PolysI ) (simp add: qU-def keys-except)
have x-adds: ?x adds t if t ∈ keys qx for t unfolding adds-poly-mapping

le-fun-def
proof

fix y
show lookup ?x y ≤ lookup t y
proof (cases y = x)
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case True
from that have t ∈ keys q and t /∈ .[U ] by (simp-all add: qx-def keys-except)
from ‹q ∈ P[insert x U ]› have keys q ⊆ .[insert x U ] by (rule PolysD)
with ‹t ∈ keys q› have t ∈ .[insert x U ] ..
hence keys t ⊆ insert x U by (rule PPsD)
moreover from ‹t /∈ .[U ]› have ¬ keys t ⊆ U by (simp add: PPs-def )
ultimately have x ∈ keys t by blast
thus ?thesis by (simp add: lookup-single True in-keys-iff )

next
case False
thus ?thesis by (simp add: lookup-single)

qed
qed
define qx ′ where qx ′ = Poly-Mapping.map-key ((+) ?x) qx
have lookup-qx ′: lookup qx ′ = (λt. lookup qx (?x + t))

by (rule ext) (simp add: qx ′-def map-key.rep-eq)
have qx ′ ∗ xx = punit.monom-mult 1 ?x qx ′

by (simp only: xx-def mult.commute flip: times-monomial-left)
also have . . . = qx

by (auto simp: punit.lookup-monom-mult lookup-qx ′ add.commute[of ?x]
adds-minus

simp flip: not-in-keys-iff-lookup-eq-zero dest: x-adds intro!: poly-mapping-eqI )
finally have qx: qx = qx ′ ∗ xx by (rule sym)
have qx ′ ∈ P[insert x U ]
proof (intro PolysI subsetI )

fix t
assume t ∈ keys qx ′

hence t + ?x ∈ keys qx by (simp only: lookup-qx ′ in-keys-iff not-False-eq-True
add.commute)

also have . . . ⊆ keys q by (auto simp: qx-def keys-except)
also from ‹q ∈ P[insert x U ]› have . . . ⊆ .[insert x U ] by (rule PolysD)
finally have (t + ?x) − ?x ∈ .[insert x U ] by (rule PPs-closed-minus)
thus t ∈ .[insert x U ] by simp

qed
define qs where qs = [qU ∗ h, qx ′ ∗ (xx ∗ h)]
show ∃ !qs∈listset ?ss. a = sum-list qs
proof (intro ex1I conjI allI impI )

from refl ‹qU ∈ P[U ]› have qU ∗ h ∈ cone (h, U ) by (rule coneI )
moreover from refl ‹qx ′ ∈ P[insert x U ]› have qx ′ ∗ (xx ∗ h) ∈ cone (xx ∗

h, insert x U )
by (rule coneI )

ultimately show qs ∈ listset ?ss using qs-def by (rule listset-doubletonI )
next

fix qs0
assume qs0 ∈ listset ?ss ∧ a = sum-list qs0
hence qs0 ∈ listset ?ss and a0 : a = sum-list qs0 by simp-all
from this(1 ) obtain p1 p2 where p1 ∈ cone (h, U ) and p2 : p2 ∈ cone (xx

∗ h, insert x U )
and qs0 : qs0 = [p1 , p2 ] by (rule listset-doubletonE)
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from this(1 ) obtain qU0 where qU0 ∈ P[U ] and p1 : p1 = qU0 ∗ h by
(rule coneE)

from p2 obtain qx0 where p2 : p2 = qx0 ∗ (xx ∗ h) by (rule coneE)
show qs0 = qs
proof (cases h = 0 )

case True
thus ?thesis by (simp add: qs-def qs0 p1 p2 )

next
case False
from a0 have (qU − qU0 ) ∗ h = (qx0 − qx ′) ∗ xx ∗ h

by (simp add: a qs0 p1 p2 q qx algebra-simps)
hence eq: qU − qU0 = (qx0 − qx ′) ∗ xx using False by (rule times-canc-right)

have qx0 = qx ′

proof (rule ccontr)
assume qx0 6= qx ′

hence qx0 − qx ′ 6= 0 by simp
moreover have xx 6= 0 by (simp add: xx-def monomial-0-iff )
ultimately have lpp ((qx0 − qx ′) ∗ xx) = lpp (qx0 − qx ′) + lpp xx

by (rule lp-times)
also have lpp xx = ?x by (simp add: xx-def punit.lt-monomial)
finally have ?x adds lpp (qU − qU0 ) by (simp add: eq)

hence lookup ?x x ≤ lookup (lpp (qU − qU0 )) x by (simp only:
adds-poly-mapping le-fun-def )

hence x ∈ keys (lpp (qU − qU0 )) by (simp add: in-keys-iff lookup-single)
moreover have lpp (qU − qU0 ) ∈ keys (qU − qU0 )
proof (rule punit.lt-in-keys)
from ‹qx0 − qx ′ 6= 0 › ‹xx 6= 0 › show qU − qU0 6= 0 unfolding eq by

(rule times-not-zero)
qed
ultimately have x ∈ indets (qU − qU0 ) by (rule in-indetsI )

from ‹qU ∈ P[U ]› ‹qU0 ∈ P[U ]› have qU − qU0 ∈ P[U ] by (rule
Polys-closed-minus)

hence indets (qU − qU0 ) ⊆ U by (rule PolysD)
with ‹x ∈ indets (qU − qU0 )› have x ∈ U ..
with assms show False ..

qed
moreover from this eq have qU0 = qU by simp
ultimately show ?thesis by (simp only: qs-def qs0 p1 p2 )

qed
qed (simp-all add: qs-def a q qx, simp only: algebra-simps)

qed
qed

definition valid-decomp :: ′x set ⇒ ((( ′x ⇒0 nat) ⇒0
′a::zero) × ′x set) list ⇒

bool
where valid-decomp X ps ←→ ((∀ (h, U )∈set ps. h ∈ P[X ] ∧ h 6= 0 ∧ U ⊆ X))

definition monomial-decomp :: ((( ′x ⇒0 nat) ⇒0
′a::{one,zero}) × ′x set) list ⇒

bool
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where monomial-decomp ps ←→ (∀ hU∈set ps. is-monomial (fst hU ) ∧ punit.lc
(fst hU ) = 1 )

definition hom-decomp :: ((( ′x ⇒0 nat) ⇒0
′a::{one,zero}) × ′x set) list ⇒ bool

where hom-decomp ps ←→ (∀ hU∈set ps. homogeneous (fst hU ))

definition cone-decomp :: (( ′x ⇒0 nat) ⇒0
′a) set ⇒

((( ′x ⇒0 nat) ⇒0
′a::comm-semiring-0 ) × ′x set) list ⇒ bool

where cone-decomp T ps ←→ direct-decomp T (map cone ps)

lemma valid-decompI :
(
∧

h U . (h, U ) ∈ set ps =⇒ h ∈ P[X ]) =⇒ (
∧

h U . (h, U ) ∈ set ps =⇒ h 6= 0 )
=⇒

(
∧

h U . (h, U ) ∈ set ps =⇒ U ⊆ X) =⇒ valid-decomp X ps
unfolding valid-decomp-def by blast

lemma valid-decompD:
assumes valid-decomp X ps and (h, U ) ∈ set ps
shows h ∈ P[X ] and h 6= 0 and U ⊆ X
using assms unfolding valid-decomp-def by blast+

lemma valid-decompD-finite:
assumes finite X and valid-decomp X ps and (h, U ) ∈ set ps
shows finite U

proof −
from assms(2 , 3 ) have U ⊆ X by (rule valid-decompD)
thus ?thesis using assms(1 ) by (rule finite-subset)

qed

lemma valid-decomp-Nil: valid-decomp X []
by (simp add: valid-decomp-def )

lemma valid-decomp-concat:
assumes

∧
ps. ps ∈ set pss =⇒ valid-decomp X ps

shows valid-decomp X (concat pss)
proof (rule valid-decompI )

fix h U
assume (h, U ) ∈ set (concat pss)
then obtain ps where ps ∈ set pss and (h, U ) ∈ set ps unfolding set-concat

..
from this(1 ) have valid-decomp X ps by (rule assms)
thus h ∈ P[X ] and h 6= 0 and U ⊆ X using ‹(h, U ) ∈ set ps› by (rule

valid-decompD)+
qed

corollary valid-decomp-append:
assumes valid-decomp X ps and valid-decomp X qs
shows valid-decomp X (ps @ qs)

proof −
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have valid-decomp X (concat [ps, qs]) by (rule valid-decomp-concat) (auto simp:
assms)

thus ?thesis by simp
qed

lemma valid-decomp-map-times:
assumes valid-decomp X ps and s ∈ P[X ] and s 6= (0 ::-⇒0 -::semiring-no-zero-divisors)
shows valid-decomp X (map (apfst ((∗) s)) ps)

proof (rule valid-decompI )
fix h U
assume (h, U ) ∈ set (map (apfst ((∗) s)) ps)
then obtain x where x ∈ set ps and (h, U ) = apfst ((∗) s) x unfolding set-map

..
moreover obtain a b where x = (a, b) using prod.exhaust by blast
ultimately have h: h = s ∗ a and (a, U ) ∈ set ps by simp-all
from assms(1 ) this(2 ) have a ∈ P[X ] and a 6= 0 and U ⊆ X by (rule

valid-decompD)+
from assms(2 ) this(1 ) show h ∈ P[X ] unfolding h by (rule Polys-closed-times)
from assms(3 ) ‹a 6= 0 › show h 6= 0 unfolding h by (rule times-not-zero)
from ‹U ⊆ X› show U ⊆ X .

qed

lemma monomial-decompI :
(
∧

h U . (h, U ) ∈ set ps =⇒ is-monomial h) =⇒ (
∧

h U . (h, U ) ∈ set ps =⇒
punit.lc h = 1 ) =⇒

monomial-decomp ps
by (auto simp: monomial-decomp-def )

lemma monomial-decompD:
assumes monomial-decomp ps and (h, U ) ∈ set ps
shows is-monomial h and punit.lc h = 1
using assms by (auto simp: monomial-decomp-def )

lemma monomial-decomp-append-iff :
monomial-decomp (ps @ qs) ←→ monomial-decomp ps ∧ monomial-decomp qs
by (auto simp: monomial-decomp-def )

lemma monomial-decomp-concat:
(
∧

ps. ps ∈ set pss =⇒ monomial-decomp ps) =⇒ monomial-decomp (concat pss)
by (induct pss) (auto simp: monomial-decomp-def )

lemma monomial-decomp-map-times:
assumes monomial-decomp ps and is-monomial f and punit.lc f = (1 :: ′a::semiring-1 )
shows monomial-decomp (map (apfst ((∗) f )) ps)

proof (rule monomial-decompI )
fix h U
assume (h, U ) ∈ set (map (apfst ((∗) f )) ps)
then obtain x where x ∈ set ps and (h, U ) = apfst ((∗) f ) x unfolding

set-map ..
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moreover obtain a b where x = (a, b) using prod.exhaust by blast
ultimately have h: h = f ∗ a and (a, U ) ∈ set ps by simp-all
from assms(1 ) this(2 ) have is-monomial a and punit.lc a = 1 by (rule mono-

mial-decompD)+
from this(1 ) have monomial (punit.lc a) (lpp a) = a by (rule punit.monomial-eq-itself )
moreover define t where t = lpp a
ultimately have a: a = monomial 1 t by (simp only: ‹punit.lc a = 1 ›)
from assms(2 ) have monomial (punit.lc f ) (lpp f ) = f by (rule punit.monomial-eq-itself )
moreover define s where s = lpp f
ultimately have f : f = monomial 1 s by (simp only: assms(3 ))
show is-monomial h by (simp add: h a f times-monomial-monomial mono-

mial-is-monomial)
show punit.lc h = 1 by (simp add: h a f times-monomial-monomial)

qed

lemma monomial-decomp-monomial-in-cone:
assumes monomial-decomp ps and hU ∈ set ps and a ∈ cone hU
shows monomial (lookup a t) t ∈ cone hU

proof (cases t ∈ keys a)
case True
obtain h U where hU : hU = (h, U ) using prod.exhaust by blast
with assms(2 ) have (h, U ) ∈ set ps by simp
with assms(1 ) have is-monomial h by (rule monomial-decompD)
then obtain c s where h: h = monomial c s by (rule is-monomial-monomial)
from assms(3 ) obtain q where q ∈ P[U ] and a = q ∗ h unfolding hU by

(rule coneE)
from this(2 ) have a = h ∗ q by (simp only: mult.commute)
also have . . . = punit.monom-mult c s q by (simp only: h times-monomial-left)
finally have a: a = punit.monom-mult c s q .
with True have t ∈ keys (punit.monom-mult c s q) by simp
hence t ∈ (+) s ‘ keys q using punit.keys-monom-mult-subset[simplified] ..
then obtain u where u ∈ keys q and t: t = s + u ..
note this(1 )
also from ‹q ∈ P[U ]› have keys q ⊆ .[U ] by (rule PolysD)
finally have u ∈ .[U ] .
have monomial (lookup a t) t = monomial (lookup q u) u ∗ h
by (simp add: a t punit.lookup-monom-mult h times-monomial-monomial mult.commute)
moreover from ‹u ∈ .[U ]› have monomial (lookup q u) u ∈ P[U ] by (rule

Polys-closed-monomial)
ultimately show ?thesis unfolding hU by (rule coneI )

next
case False
thus ?thesis by (simp add: zero-in-cone in-keys-iff )

qed

lemma monomial-decomp-sum-list-monomial-in-cone:
assumes monomial-decomp ps and a ∈ sum-list ‘ listset (map cone ps) and t ∈

keys a
obtains c h U where (h, U ) ∈ set ps and c 6= 0 and monomial c t ∈ cone (h,
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U )
proof −

from assms(2 ) obtain qs where qs-in: qs ∈ listset (map cone ps) and a: a =
sum-list qs ..

from assms(3 ) keys-sum-list-subset have t ∈ Keys (set qs) unfolding a ..
then obtain q where q ∈ set qs and t ∈ keys q by (rule in-KeysE)
from this(1 ) obtain i where i < length qs and q: q = qs ! i by (metis

in-set-conv-nth)
moreover from qs-in have length qs = length (map cone ps) by (rule listsetD)
ultimately have i < length (map cone ps) by simp
moreover from qs-in this have qs ! i ∈ (map cone ps) ! i by (rule listsetD)
ultimately have ps ! i ∈ set ps and q ∈ cone (ps ! i) by (simp-all add: q)
with assms(1 ) have ∗: monomial (lookup q t) t ∈ cone (ps ! i)

by (rule monomial-decomp-monomial-in-cone)
obtain h U where psi: ps ! i = (h, U ) using prod.exhaust by blast
show ?thesis
proof

from ‹ps ! i ∈ set ps› show (h, U ) ∈ set ps by (simp only: psi)
next

from ‹t ∈ keys q› show lookup q t 6= 0 by (simp add: in-keys-iff )
next

from ∗ show monomial (lookup q t) t ∈ cone (h, U ) by (simp only: psi)
qed

qed

lemma hom-decompI : (
∧

h U . (h, U ) ∈ set ps =⇒ homogeneous h) =⇒ hom-decomp
ps

by (auto simp: hom-decomp-def )

lemma hom-decompD: hom-decomp ps =⇒ (h, U ) ∈ set ps =⇒ homogeneous h
by (auto simp: hom-decomp-def )

lemma hom-decomp-append-iff : hom-decomp (ps @ qs) ←→ hom-decomp ps ∧
hom-decomp qs

by (auto simp: hom-decomp-def )

lemma hom-decomp-concat: (
∧

ps. ps ∈ set pss =⇒ hom-decomp ps) =⇒ hom-decomp
(concat pss)

by (induct pss) (auto simp: hom-decomp-def )

lemma hom-decomp-map-times:
assumes hom-decomp ps and homogeneous f
shows hom-decomp (map (apfst ((∗) f )) ps)

proof (rule hom-decompI )
fix h U
assume (h, U ) ∈ set (map (apfst ((∗) f )) ps)
then obtain x where x ∈ set ps and (h, U ) = apfst ((∗) f ) x unfolding

set-map ..
moreover obtain a b where x = (a, b) using prod.exhaust by blast
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ultimately have h: h = f ∗ a and (a, U ) ∈ set ps by simp-all
from assms(1 ) this(2 ) have homogeneous a by (rule hom-decompD)
with assms(2 ) show homogeneous h unfolding h by (rule homogeneous-times)

qed

lemma monomial-decomp-imp-hom-decomp:
assumes monomial-decomp ps
shows hom-decomp ps

proof (rule hom-decompI )
fix h U
assume (h, U ) ∈ set ps
with assms have is-monomial h by (rule monomial-decompD)
then obtain c t where h: h = monomial c t by (rule is-monomial-monomial)
show homogeneous h unfolding h by (fact homogeneous-monomial)

qed

lemma cone-decompI : direct-decomp T (map cone ps) =⇒ cone-decomp T ps
unfolding cone-decomp-def by blast

lemma cone-decompD: cone-decomp T ps =⇒ direct-decomp T (map cone ps)
unfolding cone-decomp-def by blast

lemma cone-decomp-cone-subset:
assumes cone-decomp T ps and hU ∈ set ps
shows cone hU ⊆ T

proof
fix p
assume p ∈ cone hU
from assms(2 ) obtain i where i < length ps and hU : hU = ps ! i by (metis

in-set-conv-nth)
define qs where qs = (map 0 ps)[i := p]
have sum-list qs ∈ T
proof (intro direct-decompD listsetI )

from assms(1 ) show direct-decomp T (map cone ps) by (rule cone-decompD)
next

fix j
assume j < length (map cone ps)
with ‹i < length ps› ‹p ∈ cone hU › show qs ! j ∈ map cone ps ! j

by (auto simp: qs-def nth-list-update zero-in-cone hU )
qed (simp add: qs-def )
also have sum-list qs = qs ! i by (rule sum-list-eq-nthI ) (simp-all add: qs-def ‹i

< length ps›)
also from ‹i < length ps› have . . . = p by (simp add: qs-def )
finally show p ∈ T .

qed

lemma cone-decomp-indets:
assumes cone-decomp T ps and T ⊆ P[X ] and (h, U ) ∈ set ps
shows h ∈ P[X ] and h 6= (0 ::-⇒0 -::{comm-semiring-1 ,semiring-no-zero-divisors})
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=⇒ U ⊆ X
proof −

from assms(1 , 3 ) have cone (h, U ) ⊆ T by (rule cone-decomp-cone-subset)
hence cone (h, U ) ⊆ P[X ] using assms(2 ) by (rule subset-trans)
thus h ∈ P[X ] and h 6= 0 =⇒ U ⊆ X by (rule cone-subset-PolysD)+

qed

lemma cone-decomp-closed-plus:
assumes cone-decomp T ps and a ∈ T and b ∈ T
shows a + b ∈ T

proof −
from assms(1 ) have dd: direct-decomp T (map cone ps) by (rule cone-decompD)
then obtain qsa where qsa: qsa ∈ listset (map cone ps) and a: a = sum-list

qsa using assms(2 )
by (rule direct-decompE)

from dd assms(3 ) obtain qsb where qsb: qsb ∈ listset (map cone ps) and b: b
= sum-list qsb

by (rule direct-decompE)
from qsa have length qsa = length (map cone ps) by (rule listsetD)
moreover from qsb have length qsb = length (map cone ps) by (rule listsetD)
ultimately have a + b = sum-list (map2 (+) qsa qsb) by (simp only: sum-list-map2-plus

a b)
also from dd have sum-list (map2 (+) qsa qsb) ∈ T
proof (rule direct-decompD)

from qsa qsb show map2 (+) qsa qsb ∈ listset (map cone ps)
proof (rule listset-closed-map2 )

fix c p1 p2
assume c ∈ set (map cone ps)
then obtain hU where c: c = cone hU by auto
assume p1 ∈ c and p2 ∈ c
thus p1 + p2 ∈ c unfolding c by (rule cone-closed-plus)

qed
qed
finally show ?thesis .

qed

lemma cone-decomp-closed-uminus:
assumes cone-decomp T ps and (a::- ⇒0 -::comm-ring) ∈ T
shows − a ∈ T

proof −
from assms(1 ) have dd: direct-decomp T (map cone ps) by (rule cone-decompD)
then obtain qsa where qsa: qsa ∈ listset (map cone ps) and a: a = sum-list

qsa using assms(2 )
by (rule direct-decompE)

from qsa have length qsa = length (map cone ps) by (rule listsetD)
have − a = sum-list (map uminus qsa) unfolding a by (induct qsa, simp-all)
also from dd have . . . ∈ T
proof (rule direct-decompD)

from qsa show map uminus qsa ∈ listset (map cone ps)
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proof (rule listset-closed-map)
fix c p
assume c ∈ set (map cone ps)
then obtain hU where c: c = cone hU by auto
assume p ∈ c
thus − p ∈ c unfolding c by (rule cone-closed-uminus)

qed
qed
finally show ?thesis .

qed

corollary cone-decomp-closed-minus:
assumes cone-decomp T ps and (a::- ⇒0 -::comm-ring) ∈ T and b ∈ T
shows a − b ∈ T

proof −
from assms(1 , 3 ) have − b ∈ T by (rule cone-decomp-closed-uminus)
with assms(1 , 2 ) have a + (− b) ∈ T by (rule cone-decomp-closed-plus)
thus ?thesis by simp

qed

lemma cone-decomp-Nil: cone-decomp {0} []
by (auto simp: cone-decomp-def intro: direct-decompI-alt)

lemma cone-decomp-singleton: cone-decomp (cone (t, U )) [(t, U )]
by (simp add: cone-decomp-def direct-decomp-singleton)

lemma cone-decomp-append:
assumes direct-decomp T [S1 , S2 ] and cone-decomp S1 ps and cone-decomp S2

qs
shows cone-decomp T (ps @ qs)

proof (rule cone-decompI )
from assms(2 ) have direct-decomp S1 (map cone ps) by (rule cone-decompD)
with assms(1 ) have direct-decomp T ([S2 ] @ map cone ps) by (rule direct-decomp-direct-decomp)
hence direct-decomp T (S2 # map cone ps) by simp
moreover from assms(3 ) have direct-decomp S2 (map cone qs) by (rule cone-decompD)
ultimately have direct-decomp T (map cone ps @ map cone qs) by (intro di-

rect-decomp-direct-decomp)
thus direct-decomp T (map cone (ps @ qs)) by simp

qed

lemma cone-decomp-concat:
assumes direct-decomp T ss and length pss = length ss

and
∧

i. i < length ss =⇒ cone-decomp (ss ! i) (pss ! i)
shows cone-decomp T (concat pss)
using assms(2 , 1 , 3 )

proof (induct pss ss arbitrary: T rule: list-induct2 )
case Nil
from Nil(1 ) show ?case by (simp add: cone-decomp-def )

next
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case (Cons ps pss s ss)
have 0 < length (s # ss) by simp
hence cone-decomp ((s # ss) ! 0 ) ((ps # pss) ! 0 ) by (rule Cons.prems)
hence cone-decomp s ps by simp
hence ∗: direct-decomp s (map cone ps) by (rule cone-decompD)
with Cons.prems(1 ) have direct-decomp T (ss @ map cone ps) by (rule di-

rect-decomp-direct-decomp)
hence 1 : direct-decomp T [sum-list ‘ listset ss, sum-list ‘ listset (map cone ps)]

and 2 : direct-decomp (sum-list ‘ listset ss) ss
by (auto dest: direct-decomp-appendD intro!: empty-not-in-map-cone)

note 1
moreover from 2 have cone-decomp (sum-list ‘ listset ss) (concat pss)
proof (rule Cons.hyps)

fix i
assume i < length ss
hence Suc i < length (s # ss) by simp
hence cone-decomp ((s # ss) ! Suc i) ((ps # pss) ! Suc i) by (rule Cons.prems)
thus cone-decomp (ss ! i) (pss ! i) by simp

qed
moreover have cone-decomp (sum-list ‘ listset (map cone ps)) ps
proof (intro cone-decompI direct-decompI refl)

from ∗ show inj-on sum-list (listset (map cone ps))
by (simp only: direct-decomp-def bij-betw-def )

qed
ultimately have cone-decomp T (concat pss @ ps) by (rule cone-decomp-append)
hence direct-decomp T (map cone (concat pss) @ map cone ps) by (simp add:

cone-decomp-def )
hence direct-decomp T (map cone ps @ map cone (concat pss))

by (auto intro: direct-decomp-perm)
thus ?case by (simp add: cone-decomp-def )

qed

lemma cone-decomp-map-times:
assumes cone-decomp T ps
shows cone-decomp ((∗) s ‘ T ) (map (apfst ((∗) (s::-⇒0 -::{comm-ring-1 ,ring-no-zero-divisors})))

ps)
proof (rule cone-decompI )

from assms have direct-decomp T (map cone ps) by (rule cone-decompD)
hence direct-decomp ((∗) s ‘ T ) (map ((‘) ((∗) s)) (map cone ps))

by (rule direct-decomp-image-times) (rule times-canc-left)
also have map ((‘) ((∗) s)) (map cone ps) = map cone (map (apfst ((∗) s)) ps)

by (simp add: cone-image-times ′)
finally show direct-decomp ((∗) s ‘ T ) (map cone (map (apfst ((∗) s)) ps)) .

qed

lemma cone-decomp-perm:
assumes cone-decomp T ps and mset ps = mset qs
shows cone-decomp T qs
using assms(1 ) unfolding cone-decomp-def
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proof (rule direct-decomp-perm)
from ‹mset ps = mset qs› show ‹mset (map cone ps) = mset (map cone qs)›

by simp
qed

lemma valid-cone-decomp-subset-Polys:
assumes valid-decomp X ps and cone-decomp T ps
shows T ⊆ P[X ]

proof
fix p
assume p ∈ T
from assms(2 ) have direct-decomp T (map cone ps) by (rule cone-decompD)
then obtain qs where qs ∈ listset (map cone ps) and p: p = sum-list qs using

‹p ∈ T ›
by (rule direct-decompE)

from assms(1 ) this(1 ) show p ∈ P[X ] unfolding p
proof (induct ps arbitrary: qs)

case Nil
from Nil(2 ) show ?case by (simp add: zero-in-Polys)

next
case (Cons a ps)
obtain h U where a: a = (h, U ) using prod.exhaust by blast
hence (h, U ) ∈ set (a # ps) by simp
with Cons.prems(1 ) have h ∈ P[X ] and U ⊆ X by (rule valid-decompD)+
hence cone a ⊆ P[X ] unfolding a by (rule cone-subset-PolysI )
from Cons.prems(1 ) have valid-decomp X ps by (simp add: valid-decomp-def )
from Cons.prems(2 ) have qs ∈ listset (cone a # map cone ps) by simp
then obtain q qs ′ where q ∈ cone a and qs ′: qs ′ ∈ listset (map cone ps) and

qs: qs = q # qs ′

by (rule listset-ConsE)
from this(1 ) ‹cone a ⊆ P[X ]› have q ∈ P[X ] ..
moreover from ‹valid-decomp X ps› qs ′ have sum-list qs ′ ∈ P[X ] by (rule

Cons.hyps)
ultimately have q + sum-list qs ′ ∈ P[X ] by (rule Polys-closed-plus)
thus ?case by (simp add: qs)

qed
qed

lemma homogeneous-set-cone-decomp:
assumes cone-decomp T ps and hom-decomp ps
shows homogeneous-set T

proof (rule homogeneous-set-direct-decomp)
from assms(1 ) show direct-decomp T (map cone ps) by (rule cone-decompD)

next
fix cn
assume cn ∈ set (map cone ps)
then obtain hU where hU ∈ set ps and cn: cn = cone hU unfolding set-map

..
moreover obtain h U where hU : hU = (h, U ) using prod.exhaust by blast
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ultimately have (h, U ) ∈ set ps by simp
with assms(2 ) have homogeneous h by (rule hom-decompD)
thus homogeneous-set cn unfolding cn hU by (rule homogeneous-set-coneI )

qed

lemma subspace-cone-decomp:
assumes cone-decomp T ps
shows phull.subspace (T ::(- ⇒0 -::field) set)

proof (rule phull.subspace-direct-decomp)
from assms show direct-decomp T (map cone ps) by (rule cone-decompD)

next
fix cn
assume cn ∈ set (map cone ps)
then obtain hU where hU ∈ set ps and cn: cn = cone hU unfolding set-map

..
show phull.subspace cn unfolding cn by (rule subspace-cone)

qed

definition pos-decomp :: ((( ′x ⇒0 nat) ⇒0
′a) × ′x set) list ⇒ ((( ′x ⇒0 nat) ⇒0

′a) × ′x set) list
(‹(-+)› [1000 ] 999 )
where pos-decomp ps = filter (λp. snd p 6= {}) ps

definition standard-decomp :: nat ⇒ ((( ′x ⇒0 nat) ⇒0
′a::zero) × ′x set) list ⇒

bool
where standard-decomp k ps ←→ (∀ (h, U )∈set (ps+). k ≤ poly-deg h ∧

(∀ d. k ≤ d −→ d ≤ poly-deg h −→
(∃ (h ′, U ′)∈set ps. poly-deg h ′ = d ∧ card U ≤

card U ′)))

lemma pos-decomp-Nil [simp]: []+ = []
by (simp add: pos-decomp-def )

lemma pos-decomp-subset: set (ps+) ⊆ set ps
by (simp add: pos-decomp-def )

lemma pos-decomp-append: (ps @ qs)+ = ps+ @ qs+
by (simp add: pos-decomp-def )

lemma pos-decomp-concat: (concat pss)+ = concat (map pos-decomp pss)
by (metis (mono-tags, lifting) filter-concat map-eq-conv pos-decomp-def )

lemma pos-decomp-map: (map (apfst f ) ps)+ = map (apfst f ) (ps+)
by (metis (mono-tags, lifting) pos-decomp-def filter-cong filter-map o-apply snd-apfst)

lemma card-Diff-pos-decomp: card {(h, U ) ∈ set qs − set (qs+). P h} = card {h.
(h, {}) ∈ set qs ∧ P h}
proof −

have {h. (h, {}) ∈ set qs ∧ P h} = fst ‘ {(h, U ) ∈ set qs − set (qs+). P h}
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by (auto simp: pos-decomp-def image-Collect)
also have card . . . = card {(h, U ) ∈ set qs − set (qs+). P h}

by (rule card-image, auto simp: pos-decomp-def intro: inj-onI )
finally show ?thesis by (rule sym)

qed

lemma standard-decompI :
assumes

∧
h U . (h, U ) ∈ set (ps+) =⇒ k ≤ poly-deg h

and
∧

h U d. (h, U ) ∈ set (ps+) =⇒ k ≤ d =⇒ d ≤ poly-deg h =⇒
(∃ h ′ U ′. (h ′, U ′) ∈ set ps ∧ poly-deg h ′ = d ∧ card U ≤ card U ′)

shows standard-decomp k ps
unfolding standard-decomp-def using assms by blast

lemma standard-decompD: standard-decomp k ps =⇒ (h, U ) ∈ set (ps+) =⇒ k ≤
poly-deg h

unfolding standard-decomp-def by blast

lemma standard-decompE :
assumes standard-decomp k ps and (h, U ) ∈ set (ps+) and k ≤ d and d ≤

poly-deg h
obtains h ′ U ′ where (h ′, U ′) ∈ set ps and poly-deg h ′ = d and card U ≤ card

U ′

using assms unfolding standard-decomp-def by blast

lemma standard-decomp-Nil: ps+ = [] =⇒ standard-decomp k ps
by (simp add: standard-decomp-def )

lemma standard-decomp-singleton: standard-decomp (poly-deg h) [(h, U )]
by (simp add: standard-decomp-def pos-decomp-def )

lemma standard-decomp-concat:
assumes

∧
ps. ps ∈ set pss =⇒ standard-decomp k ps

shows standard-decomp k (concat pss)
proof (rule standard-decompI )

fix h U
assume (h, U ) ∈ set ((concat pss)+)
then obtain ps where ps ∈ set pss and ∗: (h, U ) ∈ set (ps+) by (auto simp:

pos-decomp-concat)
from this(1 ) have standard-decomp k ps by (rule assms)
thus k ≤ poly-deg h using ∗ by (rule standard-decompD)

fix d
assume k ≤ d and d ≤ poly-deg h
with ‹standard-decomp k ps› ∗ obtain h ′ U ′ where (h ′, U ′) ∈ set ps and

poly-deg h ′ = d
and card U ≤ card U ′ by (rule standard-decompE)

note this(2 , 3 )
moreover from ‹(h ′, U ′) ∈ set ps› ‹ps ∈ set pss› have (h ′, U ′) ∈ set (concat

pss) by auto
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ultimately show ∃ h ′ U ′. (h ′, U ′) ∈ set (concat pss) ∧ poly-deg h ′ = d ∧ card
U ≤ card U ′

by blast
qed

corollary standard-decomp-append:
assumes standard-decomp k ps and standard-decomp k qs
shows standard-decomp k (ps @ qs)

proof −
have standard-decomp k (concat [ps, qs]) by (rule standard-decomp-concat) (auto

simp: assms)
thus ?thesis by simp

qed

lemma standard-decomp-map-times:
assumes standard-decomp k ps and valid-decomp X ps and s 6= (0 ::-⇒0

′a::semiring-no-zero-divisors)
shows standard-decomp (k + poly-deg s) (map (apfst ((∗) s)) ps)

proof (rule standard-decompI )
fix h U
assume (h, U ) ∈ set ((map (apfst ((∗) s)) ps)+)
then obtain h0 where 1 : (h0 , U ) ∈ set (ps+) and h: h = s ∗ h0 by (fastforce

simp: pos-decomp-map)
from this(1 ) pos-decomp-subset have (h0 , U ) ∈ set ps ..
with assms(2 ) have h0 6= 0 by (rule valid-decompD)
with assms(3 ) have deg-h: poly-deg h = poly-deg s + poly-deg h0 unfolding h

by (rule poly-deg-times)
moreover from assms(1 ) 1 have k ≤ poly-deg h0 by (rule standard-decompD)
ultimately show k + poly-deg s ≤ poly-deg h by simp

fix d
assume k + poly-deg s ≤ d and d ≤ poly-deg h
hence k ≤ d − poly-deg s and d − poly-deg s ≤ poly-deg h0 by (simp-all add:

deg-h)
with assms(1 ) 1 obtain h ′ U ′ where 2 : (h ′, U ′) ∈ set ps and poly-deg h ′ = d
− poly-deg s

and card U ≤ card U ′ by (rule standard-decompE)
from assms(2 ) this(1 ) have h ′ 6= 0 by (rule valid-decompD)
with assms(3 ) have deg-h ′: poly-deg (s ∗ h ′) = poly-deg s + poly-deg h ′ by (rule

poly-deg-times)
from 2 have (s ∗ h ′, U ′) ∈ set (map (apfst ((∗) s)) ps) by force
moreover from ‹k + poly-deg s ≤ d› ‹poly-deg h ′ = d − poly-deg s› have

poly-deg (s ∗ h ′) = d
by (simp add: deg-h ′)

ultimately show ∃ h ′ U ′. (h ′, U ′) ∈ set (map (apfst ((∗) s)) ps) ∧ poly-deg h ′

= d ∧ card U ≤ card U ′

using ‹card U ≤ card U ′› by fastforce
qed

lemma standard-decomp-nonempty-unique:
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assumes finite X and valid-decomp X ps and standard-decomp k ps and ps+ 6=
[]

shows k = Min (poly-deg ‘ fst ‘ set (ps+))
proof −

let ?A = poly-deg ‘ fst ‘ set (ps+)
define m where m = Min ?A
have finite ?A by simp
moreover from assms(4 ) have ?A 6= {} by simp
ultimately have m ∈ ?A unfolding m-def by (rule Min-in)
then obtain h U where (h, U ) ∈ set (ps+) and m: m = poly-deg h by fastforce
have m-min: m ≤ poly-deg h ′ if (h ′, U ′) ∈ set (ps+) for h ′ U ′

proof −
from that have poly-deg (fst (h ′, U ′)) ∈ ?A by (intro imageI )
with ‹finite ?A› have m ≤ poly-deg (fst (h ′, U ′)) unfolding m-def by (rule

Min-le)
thus ?thesis by simp

qed
show ?thesis
proof (rule linorder-cases)

assume k < m
hence k ≤ poly-deg h by (simp add: m)
with assms(3 ) ‹(h, U ) ∈ set (ps+)› le-refl obtain h ′ U ′

where (h ′, U ′) ∈ set ps and poly-deg h ′ = k and card U ≤ card U ′ by (rule
standard-decompE)

from this(2 ) ‹k < m› have ¬ m ≤ poly-deg h ′ by simp
with m-min have (h ′, U ′) /∈ set (ps+) by blast
with ‹(h ′, U ′) ∈ set ps› have U ′ = {} by (simp add: pos-decomp-def )

with ‹card U ≤ card U ′› have U = {} ∨ infinite U by (simp add: card-eq-0-iff )
thus ?thesis
proof

assume U = {}
with ‹(h, U ) ∈ set (ps+)› show ?thesis by (simp add: pos-decomp-def )

next
assume infinite U
moreover from assms(1 , 2 ) have finite U
proof (rule valid-decompD-finite)
from ‹(h, U ) ∈ set (ps+)› show (h, U ) ∈ set ps by (simp add: pos-decomp-def )
qed
ultimately show ?thesis ..

qed
next

assume m < k
hence ¬ k ≤ m by simp
moreover from assms(3 ) ‹(h, U ) ∈ set (ps+)› have k ≤ m unfolding m by

(rule standard-decompD)
ultimately show ?thesis ..

qed (simp only: m-def )
qed
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lemma standard-decomp-SucE :
assumes finite X and U ⊆ X and h ∈ P[X ] and h 6= (0 ::-⇒0

′a::{comm-ring-1 ,ring-no-zero-divisors})
obtains ps where valid-decomp X ps and cone-decomp (cone (h, U )) ps

and standard-decomp (Suc (poly-deg h)) ps
and is-monomial h =⇒ punit.lc h = 1 =⇒ monomial-decomp ps and homoge-

neous h =⇒ hom-decomp ps
proof −

from assms(2 , 1 ) have finite U by (rule finite-subset)
thus ?thesis using assms(2 ) that
proof (induct U arbitrary: thesis rule: finite-induct)

case empty
from assms(3 , 4 ) have valid-decomp X [(h, {})] by (simp add: valid-decomp-def )
moreover note cone-decomp-singleton
moreover have standard-decomp (Suc (poly-deg h)) [(h, {})]

by (rule standard-decomp-Nil) (simp add: pos-decomp-def )
ultimately show ?case by (rule empty) (simp-all add: monomial-decomp-def

hom-decomp-def )
next

case (insert x U )
from insert.prems(1 ) have x ∈ X and U ⊆ X by simp-all
from this(2 ) obtain ps where 0 : valid-decomp X ps and 1 : cone-decomp (cone

(h, U )) ps
and 2 : standard-decomp (Suc (poly-deg h)) ps
and 3 : is-monomial h =⇒ punit.lc h = 1 =⇒ monomial-decomp ps
and 4 : homogeneous h =⇒ hom-decomp ps by (rule insert.hyps) blast

let ?x = monomial (1 :: ′a) (Poly-Mapping.single x (Suc 0 ))
have ?x 6= 0 by (simp add: monomial-0-iff )
with assms(4 ) have deg: poly-deg (?x ∗ h) = Suc (poly-deg h)

by (simp add: poly-deg-times poly-deg-monomial deg-pm-single)
define qs where qs = [(?x ∗ h, insert x U )]
show ?case
proof (rule insert.prems)
from ‹x ∈ X› have ?x ∈ P[X ] by (intro Polys-closed-monomial PPs-closed-single)

hence ?x ∗ h ∈ P[X ] using assms(3 ) by (rule Polys-closed-times)
moreover from ‹?x 6= 0 › assms(4 ) have ?x ∗ h 6= 0 by (rule times-not-zero)
ultimately have valid-decomp X qs using insert.hyps(1 ) ‹x ∈ X› ‹U ⊆ X›

by (simp add: qs-def valid-decomp-def )
with 0 show valid-decomp X (ps @ qs) by (rule valid-decomp-append)

next
show cone-decomp (cone (h, insert x U )) (ps @ qs)
proof (rule cone-decomp-append)
show direct-decomp (cone (h, insert x U )) [cone (h, U ), cone (?x ∗ h, insert

x U )]
using insert.hyps(2 ) by (rule direct-decomp-cone-insert)

next
show cone-decomp (cone (?x ∗ h, insert x U )) qs

by (simp add: qs-def cone-decomp-singleton)
qed (fact 1 )

next
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from standard-decomp-singleton[of ?x ∗ h insert x U ]
have standard-decomp (Suc (poly-deg h)) qs by (simp add: deg qs-def )
with 2 show standard-decomp (Suc (poly-deg h)) (ps @ qs) by (rule stan-

dard-decomp-append)
next

assume is-monomial h and punit.lc h = 1
hence monomial-decomp ps by (rule 3 )
moreover have monomial-decomp qs
proof −

have is-monomial (?x ∗ h)
by (metis ‹is-monomial h› is-monomial-monomial monomial-is-monomial

mult.commute
mult.right-neutral mult-single)

thus ?thesis by (simp add: monomial-decomp-def qs-def lc-times ‹punit.lc h
= 1 ›)

qed
ultimately show monomial-decomp (ps @ qs) by (simp only: monomial-decomp-append-iff )
next

assume homogeneous h
hence hom-decomp ps by (rule 4 )
moreover from ‹homogeneous h› have hom-decomp qs

by (simp add: hom-decomp-def qs-def homogeneous-times)
ultimately show hom-decomp (ps @ qs) by (simp only: hom-decomp-append-iff )
qed

qed
qed

lemma standard-decomp-geE :
assumes finite X and valid-decomp X ps
and cone-decomp (T ::(( ′x ⇒0 nat)⇒0

′a::{comm-ring-1 ,ring-no-zero-divisors})
set) ps

and standard-decomp k ps and k ≤ d
obtains qs where valid-decomp X qs and cone-decomp T qs and standard-decomp

d qs
and monomial-decomp ps =⇒ monomial-decomp qs and hom-decomp ps =⇒

hom-decomp qs
proof −

have ∃ qs. valid-decomp X qs ∧ cone-decomp T qs ∧ standard-decomp (k + i) qs
∧

(monomial-decomp ps −→ monomial-decomp qs) ∧ (hom-decomp ps −→
hom-decomp qs) for i

proof (induct i)
case 0
from assms(2 , 3 , 4 ) show ?case unfolding add-0-right by blast

next
case (Suc i)
then obtain qs where 0 : valid-decomp X qs and 1 : cone-decomp T qs

and 2 : standard-decomp (k + i) qs and 3 : monomial-decomp ps =⇒ mono-
mial-decomp qs
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and 4 : hom-decomp ps =⇒ hom-decomp qs by blast
let ?P = λhU . poly-deg (fst hU ) 6= k + i
define rs where rs = filter (− ?P) qs
define ss where ss = filter ?P qs

have set rs ⊆ set qs by (auto simp: rs-def )
have set ss ⊆ set qs by (auto simp: ss-def )

define f where f = (λhU . SOME ps ′. valid-decomp X ps ′ ∧ cone-decomp (cone
hU ) ps ′ ∧

standard-decomp (Suc (poly-deg ((fst hU )::( ′x ⇒0

-) ⇒0
′a))) ps ′ ∧

(monomial-decomp ps −→ monomial-decomp ps ′) ∧
(hom-decomp ps −→ hom-decomp ps ′))

have valid-decomp X (f hU ) ∧ cone-decomp (cone hU ) (f hU ) ∧ standard-decomp
(Suc (k + i)) (f hU ) ∧

(monomial-decomp ps −→ monomial-decomp (f hU )) ∧ (hom-decomp ps
−→ hom-decomp (f hU ))

if hU ∈ set rs for hU
proof −

obtain h U where hU : hU = (h, U ) using prod.exhaust by blast
with that have eq: poly-deg (fst hU ) = k + i by (simp add: rs-def )
from that ‹set rs ⊆ set qs› have (h, U ) ∈ set qs unfolding hU ..
with 0 have U ⊆ X and h ∈ P[X ] and h 6= 0 by (rule valid-decompD)+
with assms(1 ) obtain ps ′ where valid-decomp X ps ′ and cone-decomp (cone

(h, U )) ps ′

and standard-decomp (Suc (poly-deg h)) ps ′

and md: is-monomial h =⇒ punit.lc h = 1 =⇒ monomial-decomp ps ′

and hd: homogeneous h =⇒ hom-decomp ps ′ by (rule standard-decomp-SucE)
blast

note this(1−3 )
moreover have monomial-decomp ps ′ if monomial-decomp ps
proof −

from that have monomial-decomp qs by (rule 3 )
hence is-monomial h and punit.lc h = 1 using ‹(h, U ) ∈ set qs› by (rule

monomial-decompD)+
thus ?thesis by (rule md)

qed
moreover have hom-decomp ps ′ if hom-decomp ps
proof −

from that have hom-decomp qs by (rule 4 )
hence homogeneous h using ‹(h, U ) ∈ set qs› by (rule hom-decompD)
thus ?thesis by (rule hd)

qed
ultimately have valid-decomp X ps ′ ∧ cone-decomp (cone hU ) ps ′ ∧

standard-decomp (Suc (poly-deg (fst hU ))) ps ′ ∧ (monomial-decomp ps −→
monomial-decomp ps ′) ∧

(hom-decomp ps −→ hom-decomp ps ′) by (simp add: hU )
thus ?thesis unfolding f-def eq by (rule someI )
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qed
hence f1 :

∧
ps. ps ∈ set (map f rs) =⇒ valid-decomp X ps

and f2 :
∧

hU . hU ∈ set rs =⇒ cone-decomp (cone hU ) (f hU )
and f3 :

∧
ps. ps ∈ set (map f rs) =⇒ standard-decomp (Suc (k + i)) ps

and f4 :
∧

ps ′. monomial-decomp ps =⇒ ps ′ ∈ set (map f rs) =⇒ mono-
mial-decomp ps ′

and f5 :
∧

ps ′. hom-decomp ps =⇒ ps ′ ∈ set (map f rs) =⇒ hom-decomp ps ′

by auto

define rs ′ where rs ′ = concat (map f rs)
show ?case unfolding add-Suc-right
proof (intro exI conjI impI )

have valid-decomp X ss
proof (rule valid-decompI )

fix h U
assume (h, U ) ∈ set ss
hence (h, U ) ∈ set qs using ‹set ss ⊆ set qs› ..
with 0 show h ∈ P[X ] and h 6= 0 and U ⊆ X by (rule valid-decompD)+

qed
moreover have valid-decomp X rs ′

unfolding rs ′-def using f1 by (rule valid-decomp-concat)
ultimately show valid-decomp X (ss @ rs ′) by (rule valid-decomp-append)

next
from 1 have direct-decomp T (map cone qs) by (rule cone-decompD)
hence direct-decomp T ((map cone ss) @ (map cone rs)) unfolding ss-def

rs-def
by (rule direct-decomp-split-map)

hence ss: cone-decomp (sum-list ‘ listset (map cone ss)) ss
and cone-decomp (sum-list ‘ listset (map cone rs)) rs
and T : direct-decomp T [sum-list ‘ listset (map cone ss), sum-list ‘ listset

(map cone rs)]
by (auto simp: cone-decomp-def dest: direct-decomp-appendD intro!: empty-not-in-map-cone)
from this(2 ) have direct-decomp (sum-list ‘ listset (map cone rs)) (map cone

rs)
by (rule cone-decompD)

hence cone-decomp (sum-list ‘ listset (map cone rs)) rs ′ unfolding rs ′-def
proof (rule cone-decomp-concat)

fix i
assume ∗: i < length (map cone rs)
hence rs ! i ∈ set rs by simp
hence cone-decomp (cone (rs ! i)) (f (rs ! i)) by (rule f2 )
with ∗ show cone-decomp (map cone rs ! i) (map f rs ! i) by simp

qed simp
with T ss show cone-decomp T (ss @ rs ′) by (rule cone-decomp-append)

next
have standard-decomp (Suc (k + i)) ss
proof (rule standard-decompI )

fix h U
assume (h, U ) ∈ set (ss+)
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hence (h, U ) ∈ set (qs+) and poly-deg h 6= k + i by (simp-all add:
pos-decomp-def ss-def )

from 2 this(1 ) have k + i ≤ poly-deg h by (rule standard-decompD)
with ‹poly-deg h 6= k + i› show Suc (k + i) ≤ poly-deg h by simp

fix d ′

assume Suc (k + i) ≤ d ′ and d ′ ≤ poly-deg h
from this(1 ) have k + i ≤ d ′ and d ′ 6= k + i by simp-all
from 2 ‹(h, U ) ∈ set (qs+)› this(1 ) obtain h ′ U ′

where (h ′, U ′) ∈ set qs and poly-deg h ′ = d ′ and card U ≤ card U ′

using ‹d ′ ≤ poly-deg h› by (rule standard-decompE)
moreover from ‹d ′ 6= k + i› this(1 , 2 ) have (h ′, U ′) ∈ set ss by (simp

add: ss-def )
ultimately show ∃ h ′ U ′. (h ′, U ′) ∈ set ss ∧ poly-deg h ′ = d ′ ∧ card U ≤

card U ′ by blast
qed
moreover have standard-decomp (Suc (k + i)) rs ′

unfolding rs ′-def using f3 by (rule standard-decomp-concat)
ultimately show standard-decomp (Suc (k + i)) (ss @ rs ′) by (rule stan-

dard-decomp-append)
next

assume ∗: monomial-decomp ps
hence monomial-decomp qs by (rule 3 )
hence monomial-decomp ss by (simp add: monomial-decomp-def ss-def )
moreover have monomial-decomp rs ′

unfolding rs ′-def using f4 [OF ∗] by (rule monomial-decomp-concat)
ultimately show monomial-decomp (ss @ rs ′) by (simp only: monomial-decomp-append-iff )
next

assume ∗: hom-decomp ps
hence hom-decomp qs by (rule 4 )
hence hom-decomp ss by (simp add: hom-decomp-def ss-def )
moreover have hom-decomp rs ′ unfolding rs ′-def using f5 [OF ∗] by (rule

hom-decomp-concat)
ultimately show hom-decomp (ss @ rs ′) by (simp only: hom-decomp-append-iff )
qed

qed
then obtain qs where 1 : valid-decomp X qs and 2 : cone-decomp T qs

and standard-decomp (k + (d − k)) qs and 4 : monomial-decomp ps =⇒
monomial-decomp qs

and 5 : hom-decomp ps =⇒ hom-decomp qs by blast
from this(3 ) assms(5 ) have standard-decomp d qs by simp
with 1 2 show ?thesis using 4 5 ..

qed

10.5 Splitting w.r.t. Ideals
context

fixes X :: ′x set
begin
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definition splits-wrt :: (((( ′x ⇒0 nat) ⇒0
′a) × ′x set) list × ((( ′x ⇒0 nat) ⇒0

′a) × ′x set) list) ⇒
(( ′x ⇒0 nat) ⇒0

′a::comm-ring-1 ) set ⇒ (( ′x ⇒0 nat) ⇒0
′a) set ⇒ bool

where splits-wrt pqs T F ←→ cone-decomp T (fst pqs @ snd pqs) ∧
(∀ hU∈set (fst pqs). cone hU ⊆ ideal F ∩ P[X ]) ∧
(∀ (h, U )∈set (snd pqs). cone (h, U ) ⊆ P[X ] ∧ cone (h,

U ) ∩ ideal F = {0})

lemma splits-wrtI :
assumes cone-decomp T (ps @ qs)

and
∧

h U . (h, U ) ∈ set ps =⇒ cone (h, U ) ⊆ P[X ] and
∧

h U . (h, U ) ∈ set
ps =⇒ h ∈ ideal F

and
∧

h U . (h, U ) ∈ set qs =⇒ cone (h, U ) ⊆ P[X ]
and

∧
h U a. (h, U ) ∈ set qs =⇒ a ∈ cone (h, U ) =⇒ a ∈ ideal F =⇒ a = 0

shows splits-wrt (ps, qs) T F
unfolding splits-wrt-def fst-conv snd-conv

proof (intro conjI ballI )
fix hU
assume hU ∈ set ps
moreover obtain h U where hU : hU = (h, U ) using prod.exhaust by blast
ultimately have (h, U ) ∈ set ps by simp
hence cone (h, U ) ⊆ P[X ] and h ∈ ideal F by (rule assms)+
from - this(1 ) show cone hU ⊆ ideal F ∩ P[X ] unfolding hU
proof (rule Int-greatest)

show cone (h, U ) ⊆ ideal F
proof

fix a
assume a ∈ cone (h, U )
then obtain a ′ where a ′ ∈ P[U ] and a: a = a ′ ∗ h by (rule coneE)
from ‹h ∈ ideal F› show a ∈ ideal F unfolding a by (rule ideal.span-scale)

qed
qed

next
fix hU
assume hU ∈ set qs
moreover obtain h U where hU : hU = (h, U ) using prod.exhaust by blast
ultimately have (h, U ) ∈ set qs by simp
hence cone (h, U ) ⊆ P[X ] and

∧
a. a ∈ cone (h, U ) =⇒ a ∈ ideal F =⇒ a =

0 by (rule assms)+
moreover have 0 ∈ cone (h, U ) ∩ ideal F

by (simp add: zero-in-cone ideal.span-zero)
ultimately show case hU of (h, U ) ⇒ cone (h, U ) ⊆ P[X ] ∧ cone (h, U ) ∩

ideal F = {0}
by (fastforce simp: hU )

qed (fact assms)+

lemma splits-wrtI-valid-decomp:
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assumes valid-decomp X ps and valid-decomp X qs and cone-decomp T (ps @
qs)

and
∧

h U . (h, U ) ∈ set ps =⇒ h ∈ ideal F
and

∧
h U a. (h, U ) ∈ set qs =⇒ a ∈ cone (h, U ) =⇒ a ∈ ideal F =⇒ a = 0

shows splits-wrt (ps, qs) T F
using assms(3 ) - - - assms(5 )

proof (rule splits-wrtI )
fix h U
assume (h, U ) ∈ set ps
thus h ∈ ideal F by (rule assms(4 ))
from assms(1 ) ‹(h, U ) ∈ set ps› have h ∈ P[X ] and U ⊆ X by (rule valid-decompD)+
thus cone (h, U ) ⊆ P[X ] by (rule cone-subset-PolysI )

next
fix h U
assume (h, U ) ∈ set qs
with assms(2 ) have h ∈ P[X ] by (rule valid-decompD)
moreover from assms(2 ) ‹(h, U ) ∈ set qs› have U ⊆ X by (rule valid-decompD)
ultimately show cone (h, U ) ⊆ P[X ] by (rule cone-subset-PolysI )

qed

lemma splits-wrtD:
assumes splits-wrt (ps, qs) T F
shows cone-decomp T (ps @ qs) and hU ∈ set ps =⇒ cone hU ⊆ ideal F ∩

P[X ]
and hU ∈ set qs =⇒ cone hU ⊆ P[X ] and hU ∈ set qs =⇒ cone hU ∩ ideal

F = {0}
using assms by (fastforce simp: splits-wrt-def )+

lemma splits-wrt-image-sum-list-fst-subset:
assumes splits-wrt (ps, qs) T F
shows sum-list ‘ listset (map cone ps) ⊆ ideal F ∩ P[X ]

proof
fix x
assume x-in: x ∈ sum-list ‘ listset (map cone ps)
have listset (map cone ps) ⊆ listset (map (λ-. ideal F ∩ P[X ]) ps)
proof (rule listset-mono)

fix i
assume i: i < length (map (λ-. ideal F ∩ P[X ]) ps)
hence ps ! i ∈ set ps by simp
with assms(1 ) have cone (ps ! i) ⊆ ideal F ∩ P[X ] by (rule splits-wrtD)
with i show map cone ps ! i ⊆ map (λ-. ideal F ∩ P[X ]) ps ! i by simp

qed simp
hence sum-list ‘ listset (map cone ps) ⊆ sum-list ‘ listset (map (λ-. ideal F ∩

P[X ]) ps)
by (rule image-mono)

with x-in have x ∈ sum-list ‘ listset (map (λ-. ideal F ∩ P[X ]) ps) ..
then obtain xs where xs: xs ∈ listset (map (λ-. ideal F ∩ P[X ]) ps) and x: x

= sum-list xs ..
have 1 : y ∈ ideal F ∩ P[X ] if y ∈ set xs for y
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proof −
from that obtain i where i < length xs and y: y = xs ! i by (metis

in-set-conv-nth)
moreover from xs have length xs = length (map (λ-. ideal F ∩ P[X ]) ps)

by (rule listsetD)
ultimately have i < length (map (λ-. ideal F ∩ P[X ]) ps) by simp
moreover from xs this have xs ! i ∈ (map (λ-. ideal F ∩ P[X ]) ps) ! i by

(rule listsetD)
ultimately show y ∈ ideal F ∩ P[X ] by (simp add: y)

qed
show x ∈ ideal F ∩ P[X ] unfolding x
proof

show sum-list xs ∈ ideal F
proof (rule ideal.span-closed-sum-list[simplified])

fix y
assume y ∈ set xs
hence y ∈ ideal F ∩ P[X ] by (rule 1 )
thus y ∈ ideal F by simp

qed
next

show sum-list xs ∈ P[X ]
proof (rule Polys-closed-sum-list)

fix y
assume y ∈ set xs
hence y ∈ ideal F ∩ P[X ] by (rule 1 )
thus y ∈ P[X ] by simp

qed
qed

qed

lemma splits-wrt-image-sum-list-snd-subset:
assumes splits-wrt (ps, qs) T F
shows sum-list ‘ listset (map cone qs) ⊆ P[X ]

proof
fix x
assume x-in: x ∈ sum-list ‘ listset (map cone qs)
have listset (map cone qs) ⊆ listset (map (λ-. P[X ]) qs)
proof (rule listset-mono)

fix i
assume i: i < length (map (λ-. P[X ]) qs)
hence qs ! i ∈ set qs by simp
with assms(1 ) have cone (qs ! i) ⊆ P[X ] by (rule splits-wrtD)
with i show map cone qs ! i ⊆ map (λ-. P[X ]) qs ! i by simp

qed simp
hence sum-list ‘ listset (map cone qs) ⊆ sum-list ‘ listset (map (λ-. P[X ]) qs)

by (rule image-mono)
with x-in have x ∈ sum-list ‘ listset (map (λ-. P[X ]) qs) ..
then obtain xs where xs: xs ∈ listset (map (λ-. P[X ]) qs) and x: x = sum-list

xs ..
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show x ∈ P[X ] unfolding x
proof (rule Polys-closed-sum-list)

fix y
assume y ∈ set xs
then obtain i where i < length xs and y: y = xs ! i by (metis in-set-conv-nth)
moreover from xs have length xs = length (map (λ-. P[X ]::(- ⇒0

′a) set) qs)
by (rule listsetD)

ultimately have i < length (map (λ-. P[X ]) qs) by simp
moreover from xs this have xs ! i ∈ (map (λ-. P[X ]) qs) ! i by (rule listsetD)
ultimately show y ∈ P[X ] by (simp add: y)

qed
qed

lemma splits-wrt-cone-decomp-1 :
assumes splits-wrt (ps, qs) T F and monomial-decomp qs and is-monomial-set

(F ::(- ⇒0
′a::field) set)

— The last two assumptions are missing in the paper.
shows cone-decomp (T ∩ ideal F) ps

proof −
from assms(1 ) have ∗: cone-decomp T (ps @ qs) by (rule splits-wrtD)
hence direct-decomp T (map cone ps @ map cone qs) by (simp add: cone-decomp-def )
hence 1 : direct-decomp (sum-list ‘ listset (map cone ps)) (map cone ps)

and 2 : direct-decomp T [sum-list ‘ listset (map cone ps), sum-list ‘ listset (map
cone qs)]

by (auto dest: direct-decomp-appendD intro!: empty-not-in-map-cone)
let ?ss = [sum-list ‘ listset (map cone ps), sum-list ‘ listset (map cone qs)]
show ?thesis
proof (intro cone-decompI direct-decompI )

from 1 show inj-on sum-list (listset (map cone ps)) by (simp only: di-
rect-decomp-def bij-betw-def )

next
from assms(1 ) have sum-list ‘ listset (map cone ps) ⊆ ideal F ∩ P[X ]

by (rule splits-wrt-image-sum-list-fst-subset)
hence sub: sum-list ‘ listset (map cone ps) ⊆ ideal F by simp
show sum-list ‘ listset (map cone ps) = T ∩ ideal F
proof (rule set-eqI )

fix x
show x ∈ sum-list ‘ listset (map cone ps) ←→ x ∈ T ∩ ideal F
proof

assume x-in: x ∈ sum-list ‘ listset (map cone ps)
show x ∈ T ∩ ideal F
proof (intro IntI )

have map (λ-. 0 ) qs ∈ listset (map cone qs) (is ?ys ∈ -)
by (induct qs) (auto intro: listset-ConsI zero-in-cone simp del: list-

set.simps(2 ))
hence sum-list ?ys ∈ sum-list ‘ listset (map cone qs) by (rule imageI )
hence 0 ∈ sum-list ‘ listset (map cone qs) by simp
with x-in have [x, 0 ] ∈ listset ?ss using refl by (rule listset-doubletonI )
with 2 have sum-list [x, 0 ] ∈ T by (rule direct-decompD)
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thus x ∈ T by simp
next

from x-in sub show x ∈ ideal F ..
qed

next
assume x ∈ T ∩ ideal F
hence x ∈ T and x ∈ ideal F by simp-all
from 2 this(1 ) obtain xs where xs ∈ listset ?ss and x: x = sum-list xs

by (rule direct-decompE)
from this(1 ) obtain p q where p: p ∈ sum-list ‘ listset (map cone ps)

and q: q ∈ sum-list ‘ listset (map cone qs) and xs: xs = [p, q]
by (rule listset-doubletonE)

from ‹x ∈ ideal F› have p + q ∈ ideal F by (simp add: x xs)
moreover from p sub have p ∈ ideal F ..
ultimately have p + q − p ∈ ideal F by (rule ideal.span-diff )
hence q ∈ ideal F by simp
have q = 0
proof (rule ccontr)

assume q 6= 0
hence keys q 6= {} by simp
then obtain t where t ∈ keys q by blast
with assms(2 ) q obtain c h U where (h, U ) ∈ set qs and c 6= 0

and monomial c t ∈ cone (h, U ) by (rule monomial-decomp-sum-list-monomial-in-cone)
moreover from assms(3 ) ‹q ∈ ideal F› ‹t ∈ keys q› have monomial c t

∈ ideal F
by (rule punit.monomial-pmdl-field[simplified])

ultimately have monomial c t ∈ cone (h, U ) ∩ ideal F by simp
also from assms(1 ) ‹(h, U ) ∈ set qs› have . . . = {0} by (rule splits-wrtD)
finally have c = 0 by (simp add: monomial-0-iff )
with ‹c 6= 0 › show False ..

qed
with p show x ∈ sum-list ‘ listset (map cone ps) by (simp add: x xs)

qed
qed

qed
qed

Together, Theorems splits-wrt-image-sum-list-fst-subset and splits-wrt-cone-decomp-1
imply that ps is also a cone decomposition of T ∩ ideal F ∩ P[X ].
lemma splits-wrt-cone-decomp-2 :

assumes finite X and splits-wrt (ps, qs) T F and monomial-decomp qs and
is-monomial-set F

and F ⊆ P[X ]
shows cone-decomp (T ∩ normal-form F ‘ P[X ]) qs

proof −
from assms(2 ) have ∗: cone-decomp T (ps @ qs) by (rule splits-wrtD)
hence direct-decomp T (map cone ps @ map cone qs) by (simp add: cone-decomp-def )
hence 1 : direct-decomp (sum-list ‘ listset (map cone qs)) (map cone qs)

and 2 : direct-decomp T [sum-list ‘ listset (map cone ps), sum-list ‘ listset (map
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cone qs)]
by (auto dest: direct-decomp-appendD intro!: empty-not-in-map-cone)

let ?ss = [sum-list ‘ listset (map cone ps), sum-list ‘ listset (map cone qs)]
let ?G = punit.reduced-GB F
from assms(1 , 5 ) have ?G ⊆ P[X ] and G-is-GB: punit.is-Groebner-basis ?G

and ideal-G: ideal ?G = ideal F
by (rule reduced-GB-Polys, rule reduced-GB-is-GB-Polys, rule reduced-GB-ideal-Polys)

show ?thesis
proof (intro cone-decompI direct-decompI )

from 1 show inj-on sum-list (listset (map cone qs)) by (simp only: di-
rect-decomp-def bij-betw-def )

next
from assms(2 ) have sum-list ‘ listset (map cone ps) ⊆ ideal F ∩ P[X ]

by (rule splits-wrt-image-sum-list-fst-subset)
hence sub: sum-list ‘ listset (map cone ps) ⊆ ideal F by simp
show sum-list ‘ listset (map cone qs) = T ∩ normal-form F ‘ P[X ]
proof (rule set-eqI )

fix x
show x ∈ sum-list ‘ listset (map cone qs) ←→ x ∈ T ∩ normal-form F ‘ P[X ]
proof

assume x-in: x ∈ sum-list ‘ listset (map cone qs)
show x ∈ T ∩ normal-form F ‘ P[X ]
proof (intro IntI )

have map (λ-. 0 ) ps ∈ listset (map cone ps) (is ?ys ∈ -)
by (induct ps) (auto intro: listset-ConsI zero-in-cone simp del: list-

set.simps(2 ))
hence sum-list ?ys ∈ sum-list ‘ listset (map cone ps) by (rule imageI )
hence 0 ∈ sum-list ‘ listset (map cone ps) by simp

from this x-in have [0 , x] ∈ listset ?ss using refl by (rule listset-doubletonI )
with 2 have sum-list [0 , x] ∈ T by (rule direct-decompD)
thus x ∈ T by simp

next
from assms(2 ) have sum-list ‘ listset (map cone qs) ⊆ P[X ]

by (rule splits-wrt-image-sum-list-snd-subset)
with x-in have x ∈ P[X ] ..
moreover have ¬ punit.is-red ?G x
proof

assume punit.is-red ?G x
then obtain g t where g ∈ ?G and t ∈ keys x and g 6= 0 and adds:

lpp g adds t
by (rule punit.is-red-addsE [simplified])

from assms(3 ) x-in this(2 ) obtain c h U where (h, U ) ∈ set qs and c
6= 0

and monomial c t ∈ cone (h, U ) by (rule monomial-decomp-sum-list-monomial-in-cone)
note this(3 )
moreover have monomial c t ∈ ideal ?G
proof (rule punit.is-red-monomial-monomial-set-in-pmdl[simplified])

from ‹c 6= 0 › show is-monomial (monomial c t) by (rule mono-
mial-is-monomial)
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next
from assms(1 , 5 , 4 ) show is-monomial-set ?G by (rule re-

duced-GB-is-monomial-set-Polys)
next

from ‹c 6= 0 › have t ∈ keys (monomial c t) by simp
with ‹g ∈ ?G› ‹g 6= 0 › show punit.is-red ?G (monomial c t) using

adds
by (rule punit.is-red-addsI [simplified])

qed
ultimately have monomial c t ∈ cone (h, U ) ∩ ideal F by (simp add:

ideal-G)
also from assms(2 ) ‹(h, U ) ∈ set qs› have . . . = {0} by (rule splits-wrtD)

finally have c = 0 by (simp add: monomial-0-iff )
with ‹c 6= 0 › show False ..

qed
ultimately show x ∈ normal-form F ‘ P[X ]

using assms(1 , 5 ) by (simp add: image-normal-form-iff )
qed

next
assume x ∈ T ∩ normal-form F ‘ P[X ]
hence x ∈ T and x ∈ normal-form F ‘ P[X ] by simp-all
from this(2 ) assms(1 , 5 ) have x ∈ P[X ] and irred: ¬ punit.is-red ?G x

by (simp-all add: image-normal-form-iff )
from 2 ‹x ∈ T › obtain xs where xs ∈ listset ?ss and x: x = sum-list xs

by (rule direct-decompE)
from this(1 ) obtain p q where p: p ∈ sum-list ‘ listset (map cone ps)

and q: q ∈ sum-list ‘ listset (map cone qs) and xs: xs = [p, q]
by (rule listset-doubletonE)

have x = p + q by (simp add: x xs)
from p sub have p ∈ ideal F ..
have p = 0
proof (rule ccontr)

assume p 6= 0
hence keys p 6= {} by simp
then obtain t where t ∈ keys p by blast
from assms(4 ) ‹p ∈ ideal F› ‹t ∈ keys p› have 3 : monomial c t ∈ ideal

F for c
by (rule punit.monomial-pmdl-field[simplified])

have t /∈ keys q
proof

assume t ∈ keys q
with assms(3 ) q obtain c h U where (h, U ) ∈ set qs and c 6= 0

and monomial c t ∈ cone (h, U ) by (rule monomial-decomp-sum-list-monomial-in-cone)
from this(3 ) 3 have monomial c t ∈ cone (h, U ) ∩ ideal F by simp

also from assms(2 ) ‹(h, U ) ∈ set qs› have . . . = {0} by (rule splits-wrtD)
finally have c = 0 by (simp add: monomial-0-iff )
with ‹c 6= 0 › show False ..

qed
with ‹t ∈ keys p› have t ∈ keys x unfolding ‹x = p + q› by (rule
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in-keys-plusI1 )
have punit.is-red ?G x
proof −

note G-is-GB
moreover from 3 have monomial 1 t ∈ ideal ?G by (simp only: ideal-G)
moreover have monomial (1 :: ′a) t 6= 0 by (simp add: monomial-0-iff )
ultimately obtain g where g ∈ ?G and g 6= 0

and lpp g adds lpp (monomial (1 :: ′a) t) by (rule punit.GB-adds-lt[simplified])
from this(3 ) have lpp g adds t by (simp add: punit.lt-monomial)

with ‹g ∈ ?G› ‹g 6= 0 › ‹t ∈ keys x› show ?thesis by (rule punit.is-red-addsI [simplified])
qed
with irred show False ..

qed
with q show x ∈ sum-list ‘ listset (map cone qs) by (simp add: x xs)

qed
qed

qed
qed

lemma quot-monomial-ideal-monomial:
ideal (monomial 1 ‘ S) ÷ monomial 1 (Poly-Mapping.single (x:: ′x) (1 ::nat)) =

ideal (monomial (1 :: ′a::comm-ring-1 ) ‘ (λs. s − Poly-Mapping.single x 1 ) ‘ S)
proof (rule set-eqI )

let ?x = Poly-Mapping.single x (1 ::nat)
fix a
have a ∈ ideal (monomial 1 ‘ S) ÷ monomial 1 ?x ←→ punit.monom-mult 1 ?x

a ∈ ideal (monomial (1 :: ′a) ‘ S)
by (simp only: quot-set-iff times-monomial-left)

also have . . . ←→ a ∈ ideal (monomial 1 ‘ (λs. s − ?x) ‘ S)
proof (induct a rule: poly-mapping-plus-induct)

case 1
show ?case by (simp add: ideal.span-zero)

next
case (2 a c t)
let ?S = monomial (1 :: ′a) ‘ (λs. s − ?x) ‘ S
show ?case
proof

assume 0 : punit.monom-mult 1 ?x (monomial c t + a) ∈ ideal (monomial 1
‘ S)

have is-monomial-set (monomial (1 :: ′a) ‘ S)
by (auto intro!: is-monomial-setI monomial-is-monomial)

moreover from 0 have 1 : monomial c (?x + t) + punit.monom-mult 1 ?x
a ∈ ideal (monomial 1 ‘ S)

by (simp add: punit.monom-mult-monomial punit.monom-mult-dist-right)
moreover have ?x + t ∈ keys (monomial c (?x + t) + punit.monom-mult

1 ?x a)
proof (intro in-keys-plusI1 notI )

from 2 (1 ) show ?x + t ∈ keys (monomial c (?x + t)) by simp
next
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assume ?x + t ∈ keys (punit.monom-mult 1 ?x a)
also have . . . ⊆ (+) ?x ‘ keys a by (rule punit.keys-monom-mult-subset[simplified])

finally obtain s where s ∈ keys a and ?x + t = ?x + s ..
from this(2 ) have t = s by simp
with ‹s ∈ keys a› 2 (2 ) show False by simp

qed
ultimately obtain f where f ∈ monomial (1 :: ′a) ‘ S and adds: lpp f adds

?x + t
by (rule punit.keys-monomial-pmdl[simplified])

from this(1 ) obtain s where s ∈ S and f : f = monomial 1 s ..
from adds have s adds ?x + t by (simp add: f punit.lt-monomial)
hence s − ?x adds t
by (metis (no-types, lifting) add-minus-2 adds-minus adds-triv-right plus-minus-assoc-pm-nat-1 )
then obtain s ′ where t: t = (s − ?x) + s ′ by (rule addsE)
from ‹s ∈ S› have monomial 1 (s − ?x) ∈ ?S by (intro imageI )
also have . . . ⊆ ideal ?S by (rule ideal.span-superset)
finally have monomial c s ′ ∗ monomial 1 (s − ?x) ∈ ideal ?S

by (rule ideal.span-scale)
hence monomial c t ∈ ideal ?S by (simp add: times-monomial-monomial t

add.commute)
moreover have a ∈ ideal ?S
proof −

from ‹f ∈ monomial 1 ‘ S› have f ∈ ideal (monomial 1 ‘ S) by (rule
ideal.span-base)

hence punit.monom-mult c (?x + t − s) f ∈ ideal (monomial 1 ‘ S)
by (rule punit.pmdl-closed-monom-mult[simplified])

with ‹s adds ?x + t› have monomial c (?x + t) ∈ ideal (monomial 1 ‘ S)
by (simp add: f punit.monom-mult-monomial adds-minus)

with 1 have monomial c (?x + t) + punit.monom-mult 1 ?x a − monomial
c (?x + t) ∈ ideal (monomial 1 ‘ S)

by (rule ideal.span-diff )
thus ?thesis by (simp add: 2 (3 ) del: One-nat-def )

qed
ultimately show monomial c t + a ∈ ideal ?S

by (rule ideal.span-add)
next
have is-monomial-set ?S by (auto intro!: is-monomial-setI monomial-is-monomial)

moreover assume 1 : monomial c t + a ∈ ideal ?S
moreover from - 2 (2 ) have t ∈ keys (monomial c t + a)
proof (rule in-keys-plusI1 )

from 2 (1 ) show t ∈ keys (monomial c t) by simp
qed
ultimately obtain f where f ∈ ?S and adds: lpp f adds t

by (rule punit.keys-monomial-pmdl[simplified])
from this(1 ) obtain s where s ∈ S and f : f = monomial 1 (s − ?x) by

blast
from adds have s − ?x adds t by (simp add: f punit.lt-monomial)
hence s adds ?x + t

by (auto simp: adds-poly-mapping le-fun-def lookup-add lookup-minus
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lookup-single when-def
split: if-splits)

then obtain s ′ where t: ?x + t = s + s ′ by (rule addsE)
from ‹s ∈ S› have monomial 1 s ∈ monomial 1 ‘ S by (rule imageI )
also have . . . ⊆ ideal (monomial 1 ‘ S) by (rule ideal.span-superset)
finally have monomial c s ′ ∗ monomial 1 s ∈ ideal (monomial 1 ‘ S)

by (rule ideal.span-scale)
hence monomial c (?x + t) ∈ ideal (monomial 1 ‘ S)

by (simp only: t) (simp add: times-monomial-monomial add.commute)
moreover have punit.monom-mult 1 ?x a ∈ ideal (monomial 1 ‘ S)
proof −

from ‹f ∈ ?S› have f ∈ ideal ?S by (rule ideal.span-base)
hence punit.monom-mult c (t − (s − ?x)) f ∈ ideal ?S

by (rule punit.pmdl-closed-monom-mult[simplified])
with ‹s − ?x adds t› have monomial c t ∈ ideal ?S

by (simp add: f punit.monom-mult-monomial adds-minus)
with 1 have monomial c t + a − monomial c t ∈ ideal ?S

by (rule ideal.span-diff )
thus ?thesis by (simp add: 2 (3 ) del: One-nat-def )

qed
ultimately have monomial c (?x + t) + punit.monom-mult 1 ?x a ∈ ideal

(monomial 1 ‘ S)
by (rule ideal.span-add)

thus punit.monom-mult 1 ?x (monomial c t + a) ∈ ideal (monomial 1 ‘ S)
by (simp add: punit.monom-mult-monomial punit.monom-mult-dist-right)

qed
qed
finally show a ∈ ideal (monomial 1 ‘ S) ÷ monomial 1 ?x ←→ a ∈ ideal

(monomial 1 ‘ (λs. s − ?x) ‘ S) .
qed

lemma lem-4-2-1 :
assumes ideal F ÷ monomial 1 t = ideal (monomial (1 :: ′a::comm-ring-1 ) ‘ S)
shows cone (monomial 1 t, U ) ⊆ ideal F ←→ 0 ∈ S

proof
have monomial 1 t ∈ cone (monomial (1 :: ′a) t, U ) by (rule tip-in-cone)
also assume cone (monomial 1 t, U ) ⊆ ideal F
finally have ∗: monomial 1 t ∗ 1 ∈ ideal F by simp
have is-monomial-set (monomial (1 :: ′a) ‘ S)

by (auto intro!: is-monomial-setI monomial-is-monomial)
moreover from ∗ have 1 ∈ ideal (monomial (1 :: ′a) ‘ S) by (simp only:

quot-set-iff flip: assms)
moreover have 0 ∈ keys (1 ::- ⇒0

′a) by simp
ultimately obtain g where g ∈ monomial (1 :: ′a) ‘ S and adds: lpp g adds 0

by (rule punit.keys-monomial-pmdl[simplified])
from this(1 ) obtain s where s ∈ S and g: g = monomial 1 s ..
from adds have s adds 0 by (simp add: g punit.lt-monomial flip: single-one)
with ‹s ∈ S› show 0 ∈ S by (simp only: adds-zero)

next
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assume 0 ∈ S
hence monomial 1 0 ∈ monomial (1 :: ′a) ‘ S by (rule imageI )
hence 1 ∈ ideal (monomial (1 :: ′a) ‘ S) unfolding single-one by (rule ideal.span-base)
hence eq: ideal F ÷ monomial 1 t = UNIV (is - ÷ ?t = -)

by (simp only: assms ideal-eq-UNIV-iff-contains-one)
show cone (monomial 1 t, U ) ⊆ ideal F
proof

fix a
assume a ∈ cone (?t, U )
then obtain q where a: a = q ∗ ?t by (rule coneE)
have q ∈ ideal F ÷ ?t by (simp add: eq)
thus a ∈ ideal F by (simp only: a quot-set-iff mult.commute)

qed
qed

lemma lem-4-2-2 :
assumes ideal F ÷ monomial 1 t = ideal (monomial (1 :: ′a::comm-ring-1 ) ‘ S)
shows cone (monomial 1 t, U ) ∩ ideal F = {0} ←→ S ∩ .[U ] = {}

proof
let ?t = monomial (1 :: ′a) t
assume eq: cone (?t, U ) ∩ ideal F = {0}
{

fix s
assume s ∈ S
hence monomial 1 s ∈ monomial (1 :: ′a) ‘ S (is ?s ∈ -) by (rule imageI )
hence ?s ∈ ideal (monomial 1 ‘ S) by (rule ideal.span-base)
also have . . . = ideal F ÷ ?t by (simp only: assms)
finally have ∗: ?s ∗ ?t ∈ ideal F by (simp only: quot-set-iff mult.commute)
assume s ∈ .[U ]
hence ?s ∈ P[U ] by (rule Polys-closed-monomial)
with refl have ?s ∗ ?t ∈ cone (?t, U ) by (rule coneI )
with ∗ have ?s ∗ ?t ∈ cone (?t, U ) ∩ ideal F by simp
hence False by (simp add: eq times-monomial-monomial monomial-0-iff )

}
thus S ∩ .[U ] = {} by blast

next
let ?t = monomial (1 :: ′a) t
assume eq: S ∩ .[U ] = {}
{

fix a
assume a ∈ cone (?t, U )
then obtain q where q ∈ P[U ] and a: a = q ∗ ?t by (rule coneE)
assume a ∈ ideal F
have a = 0
proof (rule ccontr)

assume a 6= 0
hence q 6= 0 by (auto simp: a)
from ‹a ∈ ideal F› have ∗: q ∈ ideal F ÷ ?t by (simp only: quot-set-iff a

mult.commute)
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have is-monomial-set (monomial (1 :: ′a) ‘ S)
by (auto intro!: is-monomial-setI monomial-is-monomial)

moreover from ∗ have q-in: q ∈ ideal (monomial 1 ‘ S) by (simp only:
assms)

moreover from ‹q 6= 0 › have lpp q ∈ keys q by (rule punit.lt-in-keys)
ultimately obtain g where g ∈ monomial (1 :: ′a) ‘ S and adds: lpp g adds

lpp q
by (rule punit.keys-monomial-pmdl[simplified])

from this(1 ) obtain s where s ∈ S and g: g = monomial 1 s ..
from ‹q 6= 0 › have lpp q ∈ keys q by (rule punit.lt-in-keys)
also from ‹q ∈ P[U ]› have . . . ⊆ .[U ] by (rule PolysD)
finally have lpp q ∈ .[U ] .
moreover from adds have s adds lpp q by (simp add: g punit.lt-monomial)
ultimately have s ∈ .[U ] by (rule PPs-closed-adds)
with eq ‹s ∈ S› show False by blast

qed
}
thus cone (?t, U ) ∩ ideal F = {0} using zero-in-cone ideal.span-zero by blast

qed

10.6 Function split
definition max-subset :: ′a set ⇒ ( ′a set ⇒ bool) ⇒ ′a set

where max-subset A P = (ARG-MAX card B. B ⊆ A ∧ P B)

lemma max-subset:
assumes finite A and B ⊆ A and P B
shows max-subset A P ⊆ A (is ?thesis1 )

and P (max-subset A P) (is ?thesis2 )
and card B ≤ card (max-subset A P) (is ?thesis3 )

proof −
from assms(2 , 3 ) have B ⊆ A ∧ P B by simp
moreover have ∀C . C ⊆ A ∧ P C −→ card C < Suc (card A)
proof (intro allI impI , elim conjE)

fix C
assume C ⊆ A
with assms(1 ) have card C ≤ card A by (rule card-mono)
thus card C < Suc (card A) by simp

qed
ultimately have ?thesis1 ∧ ?thesis2 and ?thesis3 unfolding max-subset-def

by (rule arg-max-natI , rule arg-max-nat-le)
thus ?thesis1 and ?thesis2 and ?thesis3 by simp-all

qed

function (domintros) split :: ( ′x ⇒0 nat) ⇒ ′x set ⇒ ( ′x ⇒0 nat) set ⇒
((((( ′x ⇒0 nat) ⇒0

′a) × ( ′x set)) list) ×
(((( ′x ⇒0 nat) ⇒0

′a::{zero,one}) × ( ′x set)) list))
where

split t U S =
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(if 0 ∈ S then
([(monomial 1 t, U )], [])

else if S ∩ .[U ] = {} then
([], [(monomial 1 t, U )])

else
let x = SOME x ′. x ′ ∈ U − (max-subset U (λV . S ∩ .[V ] = {}));

(ps0 , qs0 ) = split t (U − {x}) S ;
(ps1 , qs1 ) = split (Poly-Mapping.single x 1 + t) U ((λf . f −

Poly-Mapping.single x 1 ) ‘ S) in
(ps0 @ ps1 , qs0 @ qs1 ))

by auto

Function split is not executable, because this is not necessary. With some
effort, it could be made executable, though.
lemma split-domI ′:

assumes finite X and fst (snd args) ⊆ X and finite (snd (snd args))
shows split-dom TYPE( ′a::{zero,one}) args

proof −
let ?m = λargs ′. card (fst (snd args ′)) + sum deg-pm (snd (snd args ′))
from wf-measure[of ?m] assms(2 , 3 ) show ?thesis
proof (induct args)

case (less args)
obtain t U F where args: args = (t, U , F) using prod.exhaust by metis
from less.prems have U ⊆ X and finite F by (simp-all only: args fst-conv

snd-conv)
from this(1 ) assms(1 ) have finite U by (rule finite-subset)
have IH : split-dom TYPE( ′a) (t ′, U ′, F ′)

if U ′ ⊆ X and finite F ′ and card U ′ + sum deg-pm F ′ < card U + sum
deg-pm F

for t ′ U ′ F ′

using less.hyps that by (simp add: args)

define S where S = max-subset U (λV . F ∩ .[V ] = {})
define x where x = (SOME x ′. x ′ ∈ U ∧ x ′ /∈ S)
show ?case unfolding args
proof (rule split.domintros, simp-all only: x-def [symmetric] S-def [symmetric])

fix f
assume 0 /∈ F and f ∈ F and f ∈ .[U ]
from this(1 ) have F ∩ .[{}] = {} by simp
with ‹finite U › empty-subsetI have S ⊆ U and F ∩ .[S ] = {}

unfolding S-def by (rule max-subset)+
have x ∈ U ∧ x /∈ S unfolding x-def
proof (rule someI-ex)

from ‹f ∈ F› ‹f ∈ .[U ]› ‹F ∩ .[S ] = {}› have S 6= U by blast
with ‹S ⊆ U › show ∃ y. y ∈ U ∧ y /∈ S by blast

qed
hence x ∈ U and x /∈ S by simp-all
{

assume ¬ split-dom TYPE( ′a) (t, U − {x}, F)
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moreover from - ‹finite F› have split-dom TYPE( ′a) (t, U − {x}, F)
proof (rule IH )

from ‹U ⊆ X› show U − {x} ⊆ X by blast
next

from ‹finite U › ‹x ∈ U › have card (U − {x}) < card U by (rule
card-Diff1-less)

thus card (U − {x}) + sum deg-pm F < card U + sum deg-pm F by
simp

qed
ultimately show False ..

}
{
let ?args = (Poly-Mapping.single x (Suc 0 ) + t, U , (λf . f − Poly-Mapping.single

x (Suc 0 )) ‘ F)
assume ¬ split-dom TYPE( ′a) ?args
moreover from ‹U ⊆ X› have split-dom TYPE( ′a) ?args
proof (rule IH )
from ‹finite F› show finite ((λf . f − Poly-Mapping.single x (Suc 0 )) ‘ F)

by (rule finite-imageI )
next

have sum deg-pm ((λf . f − Poly-Mapping.single x (Suc 0 )) ‘ F) ≤
sum (deg-pm ◦ (λf . f − Poly-Mapping.single x (Suc 0 ))) F

using ‹finite F› by (rule sum-image-le) simp
also from ‹finite F› have . . . < sum deg-pm F
proof (rule sum-strict-mono-ex1 )

show ∀ f∈F . (deg-pm ◦ (λf . f − Poly-Mapping.single x (Suc 0 ))) f ≤
deg-pm f

by (simp add: deg-pm-minus-le)
next

show ∃ f∈F . (deg-pm ◦ (λf . f − Poly-Mapping.single x (Suc 0 ))) f <
deg-pm f

proof (rule ccontr)
assume ∗: ¬ (∃ f∈F . (deg-pm ◦ (λf . f − Poly-Mapping.single x (Suc

0 ))) f < deg-pm f )
note ‹finite U ›

moreover from ‹x ∈ U › ‹S ⊆ U › have insert x S ⊆ U by (rule
insert-subsetI )

moreover have F ∩ .[insert x S ] = {}
proof −

{
fix s
assume s ∈ F

with ∗ have ¬ deg-pm (s − Poly-Mapping.single x (Suc 0 )) <
deg-pm s by simp

with deg-pm-minus-le[of s Poly-Mapping.single x (Suc 0 )]
have deg-pm (s − Poly-Mapping.single x (Suc 0 )) = deg-pm s by

simp
hence keys s ∩ keys (Poly-Mapping.single x (Suc 0 )) = {}

by (simp only: deg-pm-minus-id-iff )
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hence x /∈ keys s by simp
moreover assume s ∈ .[insert x S ]
ultimately have s ∈ .[S ] by (fastforce simp: PPs-def )
with ‹s ∈ F› ‹F ∩ .[S ] = {}› have False by blast

}
thus ?thesis by blast

qed
ultimately have card (insert x S) ≤ card S unfolding S-def by (rule

max-subset)
moreover from ‹S ⊆ U › ‹finite U › have finite S by (rule finite-subset)

ultimately show False using ‹x /∈ S› by simp
qed

qed
finally show card U + sum deg-pm ((λf . f − monomial (Suc 0 ) x) ‘ F)

< card U + sum deg-pm F
by simp

qed
ultimately show False ..

}
qed

qed
qed

corollary split-domI : finite X =⇒ U ⊆ X =⇒ finite S =⇒ split-dom TYPE( ′a::{zero,one})
(t, U , S)

using split-domI ′[of (t, U , S)] by simp

lemma split-empty:
assumes finite X and U ⊆ X
shows split t U {} = ([], [(monomial (1 :: ′a::{zero,one}) t, U )])

proof −
have finite {} ..
with assms have split-dom TYPE( ′a) (t, U , {}) by (rule split-domI )
thus ?thesis by (simp add: split.psimps)

qed

lemma split-induct [consumes 3 , case-names base1 base2 step]:
fixes P :: ( ′x ⇒0 nat) ⇒ -
assumes finite X and U ⊆ X and finite S
assumes

∧
t U S . U ⊆ X =⇒ finite S =⇒ 0 ∈ S =⇒ P t U S ([(monomial

(1 :: ′a::{zero,one}) t, U )], [])
assumes

∧
t U S . U ⊆ X =⇒ finite S =⇒ 0 /∈ S =⇒ S ∩ .[U ] = {} =⇒ P t U

S ([], [(monomial 1 t, U )])
assumes

∧
t U S V x ps0 ps1 qs0 qs1 . U ⊆ X =⇒ finite S =⇒ 0 /∈ S =⇒ S ∩

.[U ] 6= {} =⇒ V ⊆ U =⇒
S ∩ .[V ] = {} =⇒ (

∧
V ′. V ′ ⊆ U =⇒ S ∩ .[V ′] = {} =⇒ card V ′ ≤

card V ) =⇒
x ∈ U =⇒ x /∈ V =⇒ V = max-subset U (λV ′. S ∩ .[V ′] = {}) =⇒ x

= (SOME x ′. x ′ ∈ U − V ) =⇒
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(ps0 , qs0 ) = split t (U − {x}) S =⇒
(ps1 , qs1 ) = split (Poly-Mapping.single x 1 + t) U ((λf . f −

Poly-Mapping.single x 1 ) ‘ S) =⇒
split t U S = (ps0 @ ps1 , qs0 @ qs1 ) =⇒
P t (U − {x}) S (ps0 , qs0 ) =⇒

P (Poly-Mapping.single x 1 + t) U ((λf . f − Poly-Mapping.single x 1 )
‘ S) (ps1 , qs1 ) =⇒

P t U S (ps0 @ ps1 , qs0 @ qs1 )
shows P t U S (split t U S)

proof −
from assms(1−3 ) have split-dom TYPE( ′a) (t, U , S) by (rule split-domI )
thus ?thesis using assms(2 ,3 )
proof (induct t U S rule: split.pinduct)

case step: (1 t U F)
from step(4 ) assms(1 ) have finite U by (rule finite-subset)
define S where S = max-subset U (λV . F ∩ .[V ] = {})
define x where x = (SOME x ′. x ′ ∈ U ∧ x ′ /∈ S)
show ?case
proof (simp add: split.psimps[OF step(1 )] S-def [symmetric] x-def [symmetric]

split: prod.split, intro allI conjI impI )
assume 0 ∈ F
with step(4 , 5 ) show P t U F ([(monomial 1 t, U )], []) by (rule assms(4 ))
thus P t U F ([(monomial 1 t, U )], []) .

next
assume 0 /∈ F and F ∩ .[U ] = {}
with step(4 , 5 ) show P t U F ([], [(monomial 1 t, U )]) by (rule assms(5 ))

next
fix ps0 qs0 ps1 qs1 :: ((- ⇒0

′a) × -) list
assume split (Poly-Mapping.single x (Suc 0 ) + t) U ((λf . f − Poly-Mapping.single

x (Suc 0 )) ‘ F) = (ps1 , qs1 )
hence PQ1 [symmetric]: split (Poly-Mapping.single x 1 + t) U ((λf . f −

Poly-Mapping.single x 1 ) ‘ F) = (ps1 , qs1 )
by simp

assume PQ0 [symmetric]: split t (U − {x}) F = (ps0 , qs0 )
assume F ∩ .[U ] 6= {} and 0 /∈ F
from this(2 ) have F ∩ .[{}] = {} by simp
with ‹finite U › empty-subsetI have S ⊆ U and F ∩ .[S ] = {}

unfolding S-def by (rule max-subset)+
have S-max: card S ′ ≤ card S if S ′ ⊆ U and F ∩ .[S ′] = {} for S ′

using ‹finite U › that unfolding S-def by (rule max-subset)
have x ∈ U ∧ x /∈ S unfolding x-def
proof (rule someI-ex)

from ‹F ∩ .[U ] 6= {}› ‹F ∩ .[S ] = {}› have S 6= U by blast
with ‹S ⊆ U › show ∃ y. y ∈ U ∧ y /∈ S by blast

qed
hence x ∈ U and x /∈ S by simp-all
from step(4 , 5 ) ‹0 /∈ F› ‹F ∩ .[U ] 6= {}› ‹S ⊆ U › ‹F ∩ .[S ] = {}› S-max ‹x

∈ U › ‹x /∈ S› S-def - PQ0 PQ1
show P t U F (ps0 @ ps1 , qs0 @ qs1 )
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proof (rule assms(6 ))
show P t (U − {x}) F (ps0 , qs0 )

unfolding PQ0 using ‹0 /∈ F› ‹F ∩ .[U ] 6= {}› - - step(5 )
proof (rule step(2 ))

from ‹U ⊆ X› show U − {x} ⊆ X by fastforce
qed (simp add: x-def S-def )

next
show P (Poly-Mapping.single x 1 + t) U ((λf . f − Poly-Mapping.single x

1 ) ‘ F) (ps1 , qs1 )
unfolding PQ1 using ‹0 /∈ F› ‹F ∩ .[U ] 6= {}› - refl PQ0 ‹U ⊆ X›

proof (rule step(3 ))
from ‹finite F› show finite ((λf . f − Poly-Mapping.single x 1 ) ‘ F) by

(rule finite-imageI )
qed (simp add: x-def S-def )

next
show split t U F = (ps0 @ ps1 , qs0 @ qs1 ) using ‹0 /∈ F› ‹F ∩ .[U ] 6= {}›

by (simp add: split.psimps[OF step(1 )] Let-def flip: S-def x-def PQ0 PQ1
del: One-nat-def )

qed (assumption+, simp add: x-def S-def )
qed

qed
qed

lemma valid-decomp-split:
assumes finite X and U ⊆ X and finite S and t ∈ .[X ]
shows valid-decomp X (fst ((split t U S)::(- × (((- ⇒0

′a::zero-neq-one) × -)
list))))

and valid-decomp X (snd ((split t U S)::(- × (((- ⇒0
′a::zero-neq-one) × -)

list))))
(is valid-decomp - (snd ?s))

proof −
from assms have valid-decomp X (fst ?s) ∧ valid-decomp X (snd ?s)
proof (induct t U S rule: split-induct)

case (base1 t U S)
from base1 (1 , 4 ) show ?case by (simp add: valid-decomp-def monomial-0-iff

Polys-closed-monomial)
next

case (base2 t U S)
from base2 (1 , 5 ) show ?case by (simp add: valid-decomp-def monomial-0-iff

Polys-closed-monomial)
next

case (step t U S V x ps0 ps1 qs0 qs1 )
from step.hyps(8 , 1 ) have x ∈ X ..
hence Poly-Mapping.single x 1 ∈ .[X ] by (rule PPs-closed-single)

hence Poly-Mapping.single x 1 + t ∈ .[X ] using step.prems by (rule PPs-closed-plus)
with step.hyps(15 , 16 ) step.prems show ?case by (simp add: valid-decomp-append)

qed
thus valid-decomp X (fst ?s) and valid-decomp X (snd ?s) by simp-all

qed
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lemma monomial-decomp-split:
assumes finite X and U ⊆ X and finite S
shows monomial-decomp (fst ((split t U S)::(- × (((- ⇒0

′a::zero-neq-one) × -)
list))))

and monomial-decomp (snd ((split t U S)::(- × (((- ⇒0
′a::zero-neq-one) × -)

list))))
(is monomial-decomp (snd ?s))

proof −
from assms have monomial-decomp (fst ?s) ∧ monomial-decomp (snd ?s)
proof (induct t U S rule: split-induct)

case (base1 t U S)
from base1 (1 ) show ?case by (simp add: monomial-decomp-def monomial-is-monomial)

next
case (base2 t U S)

from base2 (1 ) show ?case by (simp add: monomial-decomp-def monomial-is-monomial)
next

case (step t U S V x ps0 ps1 qs0 qs1 )
from step.hyps(15 , 16 ) show ?case by (auto simp: monomial-decomp-def )

qed
thus monomial-decomp (fst ?s) and monomial-decomp (snd ?s) by simp-all

qed

lemma split-splits-wrt:
assumes finite X and U ⊆ X and finite S and t ∈ .[X ]

and ideal F ÷ monomial 1 t = ideal (monomial 1 ‘ S)
shows splits-wrt (split t U S) (cone (monomial (1 :: ′a::{comm-ring-1 ,ring-no-zero-divisors})

t, U )) F
using assms

proof (induct t U S rule: split-induct)
case (base1 t U S)
from base1 (3 ) have cone (monomial 1 t, U ) ⊆ ideal F by (simp only: lem-4-2-1

base1 (5 ))
show ?case
proof (rule splits-wrtI )

fix h0 U0
assume (h0 , U0 ) ∈ set [(monomial (1 :: ′a) t, U )]
hence h0 : h0 = monomial 1 t and U0 = U by simp-all
note this(1 )
also have monomial 1 t ∈ cone (monomial (1 :: ′a) t, U ) by (fact tip-in-cone)
also have . . . ⊆ ideal F by fact
finally show h0 ∈ ideal F .

from base1 (4 ) have h0 ∈ P[X ] unfolding h0 by (rule Polys-closed-monomial)
moreover from base1 (1 ) have U0 ⊆ X by (simp only: ‹U0 = U ›)
ultimately show cone (h0 , U0 ) ⊆ P[X ] by (rule cone-subset-PolysI )

qed (simp-all add: cone-decomp-singleton ‹U ⊆ X›)
next

case (base2 t U S)
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from base2 (4 ) have cone (monomial 1 t, U ) ∩ ideal F = {0} by (simp only:
lem-4-2-2 base2 (6 ))

show ?case
proof (rule splits-wrtI )

fix h0 U0
assume (h0 , U0 ) ∈ set [(monomial (1 :: ′a) t, U )]
hence h0 : h0 = monomial 1 t and U0 = U by simp-all
note this(1 )

also from base2 (5 ) have monomial 1 t ∈ P[X ] by (rule Polys-closed-monomial)
finally have h0 ∈ P[X ] .
moreover from base2 (1 ) have U0 ⊆ X by (simp only: ‹U0 = U ›)
ultimately show cone (h0 , U0 ) ⊆ P[X ] by (rule cone-subset-PolysI )

next
fix h0 U0 a
assume (h0 , U0 ) ∈ set [(monomial (1 :: ′a) t, U )] and a ∈ cone (h0 , U0 )
hence a ∈ cone (monomial 1 t, U ) by simp
moreover assume a ∈ ideal F
ultimately have a ∈ cone (monomial 1 t, U ) ∩ ideal F by (rule IntI )
also have . . . = {0} by fact
finally show a = 0 by simp

qed (simp-all add: cone-decomp-singleton ‹U ⊆ X›)
next

case (step t U S V x ps0 ps1 qs0 qs1 )
let ?x = Poly-Mapping.single x 1
from step.prems have 0 : splits-wrt (ps0 , qs0 ) (cone (monomial 1 t, U − {x}))

F by (rule step.hyps)
have 1 : splits-wrt (ps1 , qs1 ) (cone (monomial 1 (?x + t), U )) F
proof (rule step.hyps)

from step.hyps(8 , 1 ) have x ∈ X ..
hence ?x ∈ .[X ] by (rule PPs-closed-single)
thus ?x + t ∈ .[X ] using step.prems(1 ) by (rule PPs-closed-plus)

next
have ideal F ÷ monomial 1 (?x + t) = ideal F ÷ monomial 1 t ÷ monomial

1 ?x
by (simp add: times-monomial-monomial add.commute)

also have . . . = ideal (monomial 1 ‘ S) ÷ monomial 1 ?x by (simp only:
step.prems)

finally show ideal F ÷ monomial 1 (?x + t) = ideal (monomial 1 ‘ (λs. s −
?x) ‘ S)

by (simp only: quot-monomial-ideal-monomial)
qed

show ?case
proof (rule splits-wrtI )

from step.hyps(8 ) have U : insert x U = U by blast
have direct-decomp (cone (monomial (1 :: ′a) t, insert x (U − {x})))

[cone (monomial 1 t, U − {x}),
cone (monomial 1 (monomial (Suc 0 ) x) ∗ monomial 1 t, insert

x (U − {x}))]
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by (rule direct-decomp-cone-insert) simp
hence direct-decomp (cone (monomial (1 :: ′a) t, U ))

[cone (monomial 1 t, U − {x}), cone (monomial 1 (?x + t), U )]
by (simp add: U times-monomial-monomial)

moreover from 0 have cone-decomp (cone (monomial 1 t, U − {x})) (ps0 @
qs0 )

by (rule splits-wrtD)
moreover from 1 have cone-decomp (cone (monomial 1 (?x + t), U )) (ps1

@ qs1 )
by (rule splits-wrtD)

ultimately have cone-decomp (cone (monomial 1 t, U )) ((ps0 @ qs0 ) @ (ps1
@ qs1 ))

by (rule cone-decomp-append)
thus cone-decomp (cone (monomial 1 t, U )) ((ps0 @ ps1 ) @ qs0 @ qs1 )

by (rule cone-decomp-perm) simp
next

fix h0 U0
assume (h0 , U0 ) ∈ set (ps0 @ ps1 )
hence (h0 , U0 ) ∈ set ps0 ∪ set ps1 by simp
hence cone (h0 , U0 ) ⊆ ideal F ∩ P[X ]
proof

assume (h0 , U0 ) ∈ set ps0
with 0 show ?thesis by (rule splits-wrtD)

next
assume (h0 , U0 ) ∈ set ps1
with 1 show ?thesis by (rule splits-wrtD)

qed
hence ∗: cone (h0 , U0 ) ⊆ ideal F and cone (h0 , U0 ) ⊆ P[X ] by simp-all
from this(2 ) show cone (h0 , U0 ) ⊆ P[X ] .

from tip-in-cone ∗ show h0 ∈ ideal F ..
next

fix h0 U0
assume (h0 , U0 ) ∈ set (qs0 @ qs1 )
hence (h0 , U0 ) ∈ set qs0 ∪ set qs1 by simp
thus cone (h0 , U0 ) ⊆ P[X ]
proof

assume (h0 , U0 ) ∈ set qs0
with 0 show ?thesis by (rule splits-wrtD)

next
assume (h0 , U0 ) ∈ set qs1
with 1 show ?thesis by (rule splits-wrtD)

qed

from ‹(h0 , U0 ) ∈ set qs0 ∪ set qs1 › have cone (h0 , U0 ) ∩ ideal F = {0}
proof

assume (h0 , U0 ) ∈ set qs0
with 0 show ?thesis by (rule splits-wrtD)

next
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assume (h0 , U0 ) ∈ set qs1
with 1 show ?thesis by (rule splits-wrtD)

qed
thus

∧
a. a ∈ cone (h0 , U0 ) =⇒ a ∈ ideal F =⇒ a = 0 by blast

qed
qed

lemma lem-4-5 :
assumes finite X and U ⊆ X and t ∈ .[X ] and F ⊆ P[X ]

and ideal F ÷ monomial 1 t = ideal (monomial (1 :: ′a) ‘ S)
and cone (monomial (1 :: ′a::field) t ′, V ) ⊆ cone (monomial 1 t, U ) ∩ nor-

mal-form F ‘ P[X ]
shows V ⊆ U and S ∩ .[V ] = {}

proof −
let ?t = monomial (1 :: ′a) t
let ?t ′ = monomial (1 :: ′a) t ′

from assms(6 ) have 1 : cone (?t ′, V ) ⊆ cone (?t, U ) and 2 : cone (?t ′, V ) ⊆
normal-form F ‘ P[X ]

by blast+
from this(1 ) show V ⊆ U by (rule cone-subsetD) (simp add: monomial-0-iff )

show S ∩ .[V ] = {}
proof

let ?t = monomial (1 :: ′a) t
let ?t ′ = monomial (1 :: ′a) t ′

show S ∩ .[V ] ⊆ {}
proof

fix s
assume s ∈ S ∩ .[V ]
hence s ∈ S and s ∈ .[V ] by simp-all

from this(2 ) have monomial (1 :: ′a) s ∈ P[V ] (is ?s ∈ -) by (rule Polys-closed-monomial)
with refl have ?s ∗ ?t ∈ cone (?t, V ) by (rule coneI )
from tip-in-cone 1 have ?t ′ ∈ cone (?t, U ) ..
then obtain s ′ where s ′ ∈ P[U ] and t ′: ?t ′ = s ′ ∗ ?t by (rule coneE)
note this(1 )
also from assms(2 ) have P[U ] ⊆ P[X ] by (rule Polys-mono)
finally have s ′ ∈ P[X ] .
have s ′ ∗ ?s ∗ ?t = ?s ∗ ?t ′ by (simp add: t ′)
also from refl ‹?s ∈ P[V ]› have . . . ∈ cone (?t ′, V ) by (rule coneI )
finally have s ′ ∗ ?s ∗ ?t ∈ cone (?t ′, V ) .
hence 1 : s ′ ∗ ?s ∗ ?t ∈ normal-form F ‘ P[X ] using 2 ..
from ‹s ∈ S› have ?s ∈ monomial 1 ‘ S by (rule imageI )
hence ?s ∈ ideal (monomial 1 ‘ S) by (rule ideal.span-base)
hence s ′ ∗ ?s ∈ ideal (monomial 1 ‘ S) by (rule ideal.span-scale)
hence s ′ ∗ ?s ∈ ideal F ÷ ?t by (simp only: assms(5 ))
hence s ′ ∗ ?s ∗ ?t ∈ ideal F by (simp only: quot-set-iff mult.commute)
hence s ′ ∗ ?s ∗ ?t ∈ ideal F ∩ normal-form F ‘ P[X ] using 1 by (rule IntI )
also from assms(1 , 4 ) have . . . ⊆ {0}

by (auto simp: normal-form-normal-form simp flip: normal-form-zero-iff )
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finally have ?s ∗ ?t ′ = 0 by (simp add: t ′ ac-simps)
thus s ∈ {} by (simp add: times-monomial-monomial monomial-0-iff )

qed
qed (fact empty-subsetI )

qed

lemma lem-4-6 :
assumes finite X and U ⊆ X and finite S and t ∈ .[X ] and F ⊆ P[X ]

and ideal F ÷ monomial 1 t = ideal (monomial 1 ‘ S)
assumes cone (monomial 1 t ′, V ) ⊆ cone (monomial 1 t, U ) ∩ normal-form F

‘ P[X ]
obtains V ′ where (monomial 1 t, V ′) ∈ set (snd (split t U S)) and card V ≤

card V ′

proof −
let ?t = monomial (1 :: ′a) t
let ?t ′ = monomial (1 :: ′a) t ′

from assms(7 ) have cone (?t ′, V ) ⊆ cone (?t, U ) and cone (?t ′, V ) ⊆ nor-
mal-form F ‘ P[X ]

by blast+
from assms(1 , 2 , 4 , 5 , 6 , 7 ) have V ⊆ U and S ∩ .[V ] = {} by (rule lem-4-5 )+
with assms(1 , 2 , 3 ) show ?thesis using that
proof (induct t U S arbitrary: V thesis rule: split-induct)

case (base1 t U S)
from base1 .hyps(3 ) have 0 ∈ S ∩ .[V ] using zero-in-PPs by (rule IntI )
thus ?case by (simp add: base1 .prems(2 ))

next
case (base2 t U S)
show ?case
proof (rule base2 .prems)

from base2 .hyps(1 ) assms(1 ) have finite U by (rule finite-subset)
thus card V ≤ card U using base2 .prems(1 ) by (rule card-mono)

qed simp
next

case (step t U S V0 x ps0 ps1 qs0 qs1 )
from step.prems(1 , 2 ) have 0 : card V ≤ card V0 by (rule step.hyps)
from step.hyps(5 , 9 ) have V0 ⊆ U − {x} by blast
then obtain V ′ where 1 : (monomial 1 t, V ′) ∈ set (snd (ps0 , qs0 )) and 2 :

card V0 ≤ card V ′

using step.hyps(6 ) by (rule step.hyps)
show ?case
proof (rule step.prems)

from 1 show (monomial 1 t, V ′) ∈ set (snd (ps0 @ ps1 , qs0 @ qs1 )) by
simp

next
from 0 2 show card V ≤ card V ′ by (rule le-trans)

qed
qed

qed
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lemma lem-4-7 :
assumes finite X and S ⊆ .[X ] and g ∈ punit.reduced-GB (monomial (1 :: ′a) ‘

S)
and cone-decomp (P[X ] ∩ ideal (monomial (1 :: ′a::field) ‘ S)) ps
and monomial-decomp ps

obtains U where (g, U ) ∈ set ps
proof −

let ?S = monomial (1 :: ′a) ‘ S
let ?G = punit.reduced-GB ?S
note assms(1 )
moreover from assms(2 ) have ?S ⊆ P[X ] by (auto intro: Polys-closed-monomial)
moreover have is-monomial-set ?S

by (auto intro!: is-monomial-setI monomial-is-monomial)
ultimately have is-monomial-set ?G by (rule reduced-GB-is-monomial-set-Polys)
hence is-monomial g using assms(3 ) by (rule is-monomial-setD)
hence g 6= 0 by (rule monomial-not-0 )
moreover from assms(1 ) ‹?S ⊆ P[X ]› have punit.is-monic-set ?G

by (rule reduced-GB-is-monic-set-Polys)
ultimately have punit.lc g = 1 using assms(3 ) by (simp add: punit.is-monic-set-def )
moreover define t where t = lpp g
moreover from ‹is-monomial g› have monomial (punit.lc g) (lpp g) = g

by (rule punit.monomial-eq-itself )
ultimately have g: g = monomial 1 t by simp
hence t ∈ keys g by simp
from assms(3 ) have g ∈ ideal ?G by (rule ideal.span-base)
also from assms(1 ) ‹?S ⊆ P[X ]› have ideal-G: . . . = ideal ?S by (rule re-

duced-GB-ideal-Polys)
finally have g ∈ ideal ?S .
moreover from assms(3 ) have g ∈ P[X ] by rule (intro reduced-GB-Polys

assms(1 ) ‹?S ⊆ P[X ]›)
ultimately have g ∈ P[X ] ∩ ideal ?S by simp
with assms(4 ) have g ∈ sum-list ‘ listset (map cone ps)

by (simp only: cone-decomp-def direct-decompD)
with assms(5 ) obtain d h U where ∗: (h, U ) ∈ set ps and d 6= 0 and monomial

d t ∈ cone (h, U )
using ‹t ∈ keys g› by (rule monomial-decomp-sum-list-monomial-in-cone)

from this(3 ) zero-in-PPs have punit.monom-mult (1 / d) 0 (monomial d t) ∈
cone (h, U )

by (rule cone-closed-monom-mult)
with ‹d 6= 0 › have g ∈ cone (h, U ) by (simp add: g punit.monom-mult-monomial)
then obtain q where q ∈ P[U ] and g ′: g = q ∗ h by (rule coneE)
from ‹g 6= 0 › have q 6= 0 and h 6= 0 by (auto simp: g ′)
hence lt-g ′: lpp g = lpp q + lpp h unfolding g ′ by (rule lp-times)
hence adds1 : lpp h adds t by (simp add: t-def )
from assms(5 ) ∗ have is-monomial h and punit.lc h = 1 by (rule mono-

mial-decompD)+
moreover from this(1 ) have monomial (punit.lc h) (lpp h) = h

by (rule punit.monomial-eq-itself )
moreover define s where s = lpp h
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ultimately have h: h = monomial 1 s by simp
have punit.lc q = punit.lc g by (simp add: g ′ lc-times ‹punit.lc h = 1 ›)
hence punit.lc q = 1 by (simp only: ‹punit.lc g = 1 ›)
note tip-in-cone
also from assms(4 ) ∗ have cone (h, U ) ⊆ P[X ] ∩ ideal ?S by (rule cone-decomp-cone-subset)
also have . . . ⊆ ideal ?G by (simp add: ideal-G)
finally have h ∈ ideal ?G .
from assms(1 ) ‹?S ⊆ P[X ]› have punit.is-Groebner-basis ?G by (rule re-

duced-GB-is-GB-Polys)
then obtain g ′ where g ′ ∈ ?G and g ′ 6= 0 and adds2 : lpp g ′ adds lpp h

using ‹h ∈ ideal ?G› ‹h 6= 0 › by (rule punit.GB-adds-lt[simplified])
from this(3 ) adds1 have lpp g ′ adds t by (rule adds-trans)
with - ‹g ′ 6= 0 › ‹t ∈ keys g› have punit.is-red {g ′} g

by (rule punit.is-red-addsI [simplified]) simp
have g ′ = g
proof (rule ccontr)

assume g ′ 6= g
with ‹g ′ ∈ ?G› have {g ′} ⊆ ?G − {g} by simp

with ‹punit.is-red {g ′} g› have red: punit.is-red (?G − {g}) g by (rule
punit.is-red-subset)

from assms(1 ) ‹?S ⊆ P[X ]› have punit.is-auto-reduced ?G by (rule re-
duced-GB-is-auto-reduced-Polys)

hence ¬ punit.is-red (?G − {g}) g using assms(3 ) by (rule punit.is-auto-reducedD)
thus False using red ..

qed
with adds2 have t adds lpp h by (simp only: t-def )
with adds1 have lpp h = t by (rule adds-antisym)
hence lpp q = 0 using lt-g ′ by (simp add: t-def )
hence monomial (punit.lc q) 0 = q by (rule punit.lt-eq-min-term-monomial[simplified])
hence g = h by (simp add: ‹punit.lc q = 1 › g ′)
with ∗ have (g, U ) ∈ set ps by simp
thus ?thesis ..

qed

lemma snd-splitI :
assumes finite X and U ⊆ X and finite S and 0 /∈ S
obtains V where V ⊆ U and (monomial 1 t, V ) ∈ set (snd (split t U S))
using assms

proof (induct t U S arbitrary: thesis rule: split-induct)
case (base1 t U S)
from base1 .prems(2 ) base1 .hyps(3 ) show ?case ..

next
case (base2 t U S)
from subset-refl show ?case by (rule base2 .prems) simp

next
case (step t U S V0 x ps0 ps1 qs0 qs1 )
from step.hyps(3 ) obtain V where 1 : V ⊆ U − {x} and 2 : (monomial 1 t,

V ) ∈ set (snd (ps0 , qs0 ))
using step.hyps(15 ) by blast

142



show ?case
proof (rule step.prems)

from 1 show V ⊆ U by blast
next

from 2 show (monomial 1 t, V ) ∈ set (snd (ps0 @ ps1 , qs0 @ qs1 )) by
fastforce

qed
qed

lemma fst-splitE :
assumes finite X and U ⊆ X and finite S and 0 /∈ S

and (monomial (1 :: ′a) s, V ) ∈ set (fst (split t U S))
obtains t ′ x where t ′ ∈ .[X ] and x ∈ X and V ⊆ U and 0 /∈ (λs. s − t ′) ‘ S

and s = t ′ + t + Poly-Mapping.single x 1
and (monomial (1 :: ′a::zero-neq-one) s, V ) ∈ set (fst (split (t ′ + t) V ((λs. s

− t ′) ‘ S)))
and set (snd (split (t ′ + t) V ((λs. s − t ′) ‘ S))) ⊆ (set (snd (split t U S)) ::

((- ⇒0
′a) × -) set)

using assms
proof (induct t U S arbitrary: thesis rule: split-induct)

case (base1 t U S)
from base1 .prems(2 ) base1 .hyps(3 ) show ?case ..

next
case (base2 t U S)
from base2 .prems(3 ) show ?case by simp

next
case (step t U S V0 x ps0 ps1 qs0 qs1 )
from step.prems(3 ) have (monomial 1 s, V ) ∈ set ps0 ∪ set ps1 by simp
thus ?case
proof

assume (monomial 1 s, V ) ∈ set ps0
hence (monomial (1 :: ′a) s, V ) ∈ set (fst (ps0 , qs0 )) by (simp only: fst-conv)
with step.hyps(3 ) obtain t ′ x ′ where t ′ ∈ .[X ] and x ′ ∈ X and V ⊆ U −

{x}
and 0 /∈ (λs. s − t ′) ‘ S and s = t ′ + t + Poly-Mapping.single x ′ 1
and (monomial (1 :: ′a) s, V ) ∈ set (fst (split (t ′ + t) V ((λs. s − t ′) ‘ S)))
and set (snd (split (t ′ + t) V ((λs. s − t ′) ‘ S))) ⊆ set (snd (ps0 , qs0 ))
using step.hyps(15 ) by blast

note this(7 )
also have set (snd (ps0 , qs0 )) ⊆ set (snd (ps0 @ ps1 , qs0 @ qs1 )) by simp
finally have set (snd (split (t ′ + t) V ((λs. s − t ′) ‘ S))) ⊆ set (snd (ps0 @

ps1 , qs0 @ qs1 )) .
from ‹V ⊆ U − {x}› have V ⊆ U by blast
show ?thesis by (rule step.prems) fact+

next
assume (monomial 1 s, V ) ∈ set ps1
show ?thesis
proof (cases 0 ∈ (λf . f − Poly-Mapping.single x 1 ) ‘ S)

case True
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from step.hyps(2 ) have fin: finite ((λf . f − Poly-Mapping.single x 1 ) ‘ S)
by (rule finite-imageI )

have split (Poly-Mapping.single x 1 + t) U ((λf . f − Poly-Mapping.single x
1 ) ‘ S) =

([(monomial (1 :: ′a) (Poly-Mapping.single x 1 + t), U )], [])
by (simp only: split.psimps[OF split-domI , OF assms(1 ) step.hyps(1 ) fin]

True if-True)
hence ps1 = [(monomial 1 (Poly-Mapping.single x 1 + t), U )]

by (simp only: step.hyps(13 )[symmetric] prod.inject)
with ‹(monomial 1 s, V ) ∈ set ps1 › have s: s = Poly-Mapping.single x 1 +

t and V = U
by (auto dest!: monomial-inj)

show ?thesis
proof (rule step.prems)

show 0 ∈ .[X ] by (fact zero-in-PPs)
next

from step.hyps(8 , 1 ) show x ∈ X ..
next

show V ⊆ U by (simp add: ‹V = U ›)
next

from step.hyps(3 ) show 0 /∈ (λs. s − 0 ) ‘ S by simp
next

show s = 0 + t + Poly-Mapping.single x 1 by (simp add: s add.commute)
next
show (monomial (1 :: ′a) s, V ) ∈ set (fst (split (0 + t) V ((λs. s − 0 ) ‘ S)))

using ‹(monomial 1 s, V ) ∈ set ps1 › by (simp add: step.hyps(14 ) ‹V =
U ›)

next
show set (snd (split (0 + t) V ((λs. s − 0 ) ‘ S))) ⊆ set (snd (ps0 @ ps1 ,

qs0 @ qs1 ))
by (simp add: step.hyps(14 ) ‹V = U ›)

qed
next

case False
moreover from ‹(monomial 1 s, V ) ∈ set ps1 › have (monomial 1 s, V ) ∈

set (fst (ps1 , qs1 ))
by (simp only: fst-conv)

ultimately obtain t ′ x ′ where t ′ ∈ .[X ] and x ′ ∈ X and V ⊆ U
and 1 : 0 /∈ (λs. s − t ′) ‘ (λf . f − Poly-Mapping.single x 1 ) ‘ S
and s: s = t ′ + (Poly-Mapping.single x 1 + t) + Poly-Mapping.single x ′ 1
and 2 : (monomial (1 :: ′a) s, V ) ∈ set (fst (split (t ′ + (Poly-Mapping.single

x 1 + t)) V
((λs. s − t ′) ‘ (λf . f − Poly-Mapping.single x

1 ) ‘ S)))
and 3 : set (snd (split (t ′ + (Poly-Mapping.single x 1 + t)) V ((λs. s − t ′)

‘ (λf . f − monomial 1 x) ‘ S))) ⊆
set (snd (ps1 , qs1 ))

using step.hyps(16 ) by blast
have eq: (λs. s − t ′) ‘ (λf . f − Poly-Mapping.single x 1 ) ‘ S =
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(λs. s − (t ′ + Poly-Mapping.single x 1 )) ‘ S
by (simp add: image-image add.commute diff-diff-eq)

show ?thesis
proof (rule step.prems)

from step.hyps(8 , 1 ) have x ∈ X ..
hence Poly-Mapping.single x 1 ∈ .[X ] by (rule PPs-closed-single)

with ‹t ′ ∈ .[X ]› show t ′ + Poly-Mapping.single x 1 ∈ .[X ] by (rule
PPs-closed-plus)

next
from 1 show 0 /∈ (λs. s − (t ′ + Poly-Mapping.single x 1 )) ‘ S

by (simp only: eq not-False-eq-True)
next
show s = t ′ + Poly-Mapping.single x 1 + t + Poly-Mapping.single x ′ 1 by

(simp only: s ac-simps)
next

show (monomial (1 :: ′a) s, V ) ∈ set (fst (split (t ′ + Poly-Mapping.single x
1 + t) V

((λs. s − (t ′ + Poly-Mapping.single x 1 )) ‘
S)))

using 2 by (simp only: eq add.assoc)
next

have set (snd (split (t ′ + Poly-Mapping.single x 1 + t) V ((λs. s − (t ′ +
Poly-Mapping.single x 1 )) ‘ S))) ⊆

set (snd (ps1 , qs1 )) (is ?x ⊆ -) using 3 by (simp only: eq add.assoc)
also have . . . ⊆ set (snd (ps0 @ ps1 , qs0 @ qs1 )) by simp
finally show ?x ⊆ set (snd (ps0 @ ps1 , qs0 @ qs1 )) .

qed fact+
qed

qed
qed

lemma lem-4-8 :
assumes finite X and finite S and S ⊆ .[X ] and 0 /∈ S

and g ∈ punit.reduced-GB (monomial (1 :: ′a) ‘ S)
obtains t U where U ⊆ X and (monomial (1 :: ′a::field) t, U ) ∈ set (snd (split

0 X S))
and poly-deg g = Suc (deg-pm t)

proof −
let ?S = monomial (1 :: ′a) ‘ S
let ?G = punit.reduced-GB ?S
have md1 : monomial-decomp (fst ((split 0 X S)::(- × (((- ⇒0

′a) × -) list))))
and md2 : monomial-decomp (snd ((split 0 X S)::(- × (((- ⇒0

′a) × -) list))))
using assms(1 ) subset-refl assms(2 ) by (rule monomial-decomp-split)+

from assms(3 ) have 0 : ?S ⊆ P[X ] by (auto intro: Polys-closed-monomial)
with assms(1 ) have punit.is-auto-reduced ?G and punit.is-monic-set ?G

and ideal-G: ideal ?G = ideal ?S and 0 /∈ ?G
by (rule reduced-GB-is-auto-reduced-Polys, rule reduced-GB-is-monic-set-Polys,

rule reduced-GB-ideal-Polys, rule reduced-GB-nonzero-Polys)
from this(2 , 4 ) assms(5 ) have punit.lc g = 1 by (auto simp: punit.is-monic-set-def )
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have is-monomial-set ?S by (auto intro!: is-monomial-setI monomial-is-monomial)
with assms(1 ) 0 have is-monomial-set ?G by (rule reduced-GB-is-monomial-set-Polys)
hence is-monomial g using assms(5 ) by (rule is-monomial-setD)
moreover define s where s = lpp g
ultimately have g: g = monomial 1 s using ‹punit.lc g = 1 › by (metis

punit.monomial-eq-itself )
note assms(1 ) subset-refl assms(2 ) zero-in-PPs
moreover have ideal ?G ÷ monomial 1 0 = ideal ?S by (simp add: ideal-G)
ultimately have splits-wrt (split 0 X S) (cone (monomial (1 :: ′a) 0 , X)) ?G by

(rule split-splits-wrt)
hence splits-wrt (fst (split 0 X S), snd (split 0 X S)) P[X ] ?G by simp
hence cone-decomp (P[X ] ∩ ideal ?G) (fst (split 0 X S))

using md2 ‹is-monomial-set ?G› by (rule splits-wrt-cone-decomp-1 )
hence cone-decomp (P[X ] ∩ ideal ?S) (fst (split 0 X S)) by (simp only: ideal-G)
with assms(1 , 3 , 5 ) obtain U where (g, U ) ∈ set (fst (split 0 X S)) using

md1 by (rule lem-4-7 )
with assms(1 ) subset-refl assms(2 , 4 ) obtain t ′ x where t ′ ∈ .[X ] and x ∈ X

and U ⊆ X
and 0 /∈ (λs. s − t ′) ‘ S and s: s = t ′ + 0 + Poly-Mapping.single x 1
and (g, U ) ∈ set (fst (split (t ′ + 0 ) U ((λs. s − t ′) ‘ S)))
and set (snd (split (t ′ + 0 ) U ((λs. s − t ′) ‘ S))) ⊆ (set (snd (split 0 X S)) ::

((- ⇒0
′a) × -) set)

unfolding g by (rule fst-splitE)
let ?S = (λs. s − t ′) ‘ S
from assms(2 ) have finite ?S by (rule finite-imageI )
with assms(1 ) ‹U ⊆ X› obtain V where V ⊆ U

and (monomial (1 :: ′a) (t ′ + 0 ), V ) ∈ set (snd (split (t ′ + 0 ) U ?S))
using ‹0 /∈ ?S› by (rule snd-splitI )

note this(2 )
also have . . . ⊆ set (snd (split 0 X S)) by fact
finally have (monomial (1 :: ′a) t ′, V ) ∈ set (snd (split 0 X S)) by simp
have poly-deg g = Suc (deg-pm t ′) by (simp add: g s deg-pm-plus deg-pm-single

poly-deg-monomial)
from ‹V ⊆ U › ‹U ⊆ X› have V ⊆ X by (rule subset-trans)
show ?thesis by rule fact+

qed

corollary cor-4-9 :
assumes finite X and finite S and S ⊆ .[X ]

and g ∈ punit.reduced-GB (monomial (1 :: ′a::field) ‘ S)
shows poly-deg g ≤ Suc (Max (poly-deg ‘ fst ‘ (set (snd (split 0 X S)) :: ((- ⇒0

′a) × -) set)))
(is - ≤ Suc (Max (poly-deg ‘ fst ‘ ?S)))

proof (cases 0 ∈ S)
case True
hence 1 ∈ monomial (1 :: ′a) ‘ S by (rule rev-image-eqI ) (simp only: single-one)
hence 1 ∈ ideal (monomial (1 :: ′a) ‘ S) by (rule ideal.span-base)
hence ideal (monomial (1 :: ′a) ‘ S) = UNIV by (simp only: ideal-eq-UNIV-iff-contains-one)
moreover from assms(3 ) have monomial (1 :: ′a) ‘ S ⊆ P[X ] by (auto intro:
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Polys-closed-monomial)
ultimately have punit.reduced-GB (monomial (1 :: ′a) ‘ S) = {1}

using assms(1 ) by (simp only: ideal-eq-UNIV-iff-reduced-GB-eq-one-Polys)
with assms(4 ) show ?thesis by simp

next
case False
from finite-set have fin: finite (poly-deg ‘ fst ‘ ?S) by (intro finite-imageI )
obtain t U where (monomial 1 t, U ) ∈ ?S and g: poly-deg g = Suc (deg-pm t)

using assms(1−3 ) False assms(4 ) by (rule lem-4-8 )
from this(1 ) have poly-deg (fst (monomial (1 :: ′a) t, U )) ∈ poly-deg ‘ fst ‘ ?S

by (intro imageI )
hence deg-pm t ∈ poly-deg ‘ fst ‘ ?S by (simp add: poly-deg-monomial)
with fin have deg-pm t ≤ Max (poly-deg ‘ fst ‘ ?S) by (rule Max-ge)
thus poly-deg g ≤ Suc (Max (poly-deg ‘ fst ‘ ?S)) by (simp add: g)

qed

lemma standard-decomp-snd-split:
assumes finite X and U ⊆ X and finite S and S ⊆ .[X ] and t ∈ .[X ]
shows standard-decomp (deg-pm t) (snd (split t U S) :: ((- ⇒0

′a::field) × -) list)
using assms

proof (induct t U S rule: split-induct)
case (base1 t U S)
show ?case by (simp add: standard-decomp-Nil)

next
case (base2 t U S)
have deg-pm t = poly-deg (monomial (1 :: ′a) t) by (simp add: poly-deg-monomial)
thus ?case by (simp add: standard-decomp-singleton)

next
case (step t U S V x ps0 ps1 qs0 qs1 )
from step.hyps(15 ) step.prems have qs0 : standard-decomp (deg-pm t) qs0 by

(simp only: snd-conv)
have (λs. s − Poly-Mapping.single x 1 ) ‘ S ⊆ .[X ]
proof

fix u
assume u ∈ (λs. s − Poly-Mapping.single x 1 ) ‘ S
then obtain s where s ∈ S and u: u = s − Poly-Mapping.single x 1 ..
from this(1 ) step.prems(1 ) have s ∈ .[X ] ..
thus u ∈ .[X ] unfolding u by (rule PPs-closed-minus)

qed
moreover from - step.prems(2 ) have Poly-Mapping.single x 1 + t ∈ .[X ]
proof (rule PPs-closed-plus)

from step.hyps(8 , 1 ) have x ∈ X ..
thus Poly-Mapping.single x 1 ∈ .[X ] by (rule PPs-closed-single)

qed
ultimately have qs1 : standard-decomp (Suc (deg-pm t)) qs1 using step.hyps(16 )

by (simp add: deg-pm-plus deg-pm-single)
show ?case unfolding snd-conv
proof (rule standard-decompI )

fix h U0
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assume (h, U0 ) ∈ set ((qs0 @ qs1 )+)
hence ∗: (h, U0 ) ∈ set (qs0+) ∪ set (qs1+) by (simp add: pos-decomp-append)
thus deg-pm t ≤ poly-deg h
proof

assume (h, U0 ) ∈ set (qs0+)
with qs0 show ?thesis by (rule standard-decompD)

next
assume (h, U0 ) ∈ set (qs1+)
with qs1 have Suc (deg-pm t) ≤ poly-deg h by (rule standard-decompD)
thus ?thesis by simp

qed

fix d
assume d1 : deg-pm t ≤ d and d2 : d ≤ poly-deg h
from ∗ show ∃ t ′ U ′. (t ′, U ′) ∈ set (qs0 @ qs1 ) ∧ poly-deg t ′ = d ∧ card U0

≤ card U ′

proof
assume (h, U0 ) ∈ set (qs0+)
with qs0 obtain h ′ U ′ where (h ′, U ′) ∈ set qs0 and poly-deg h ′ = d and

card U0 ≤ card U ′

using d1 d2 by (rule standard-decompE)
moreover from this(1 ) have (h ′, U ′) ∈ set (qs0 @ qs1 ) by simp
ultimately show ?thesis by blast

next
assume (h, U0 ) ∈ set (qs1+)
hence (h, U0 ) ∈ set qs1 by (simp add: pos-decomp-def )
from assms(1 ) step.hyps(1 , 2 ) have monomial-decomp (snd (split t U S) ::

((- ⇒0
′a) × -) list)

by (rule monomial-decomp-split)
hence md: monomial-decomp (qs0 @ qs1 ) by (simp add: step.hyps(14 ))
moreover from ‹(h, U0 ) ∈ set qs1 › have (h, U0 ) ∈ set (qs0 @ qs1 ) by

simp
ultimately have is-monomial h and punit.lc h = 1 by (rule monomial-decompD)+

moreover from this(1 ) have monomial (punit.lc h) (lpp h) = h by (rule
punit.monomial-eq-itself )

moreover define s where s = lpp h
ultimately have h: h = monomial 1 s by simp
from d1 have deg-pm t = d ∨ Suc (deg-pm t) ≤ d by auto
thus ?thesis
proof

assume deg-pm t = d
define F where F = (∗) (monomial 1 t) ‘ monomial (1 :: ′a) ‘ S
have F ⊆ P[X ]
proof

fix f
assume f ∈ F
then obtain u where u ∈ S and f : f = monomial 1 (t + u)

by (auto simp: F-def times-monomial-monomial)
from this(1 ) step.prems(1 ) have u ∈ .[X ] ..
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with step.prems(2 ) have t + u ∈ .[X ] by (rule PPs-closed-plus)
thus f ∈ P[X ] unfolding f by (rule Polys-closed-monomial)

qed
have ideal F = (∗) (monomial 1 t) ‘ ideal (monomial 1 ‘ S)

by (simp only: ideal.span-image-scale-eq-image-scale F-def )
moreover have inj ((∗) (monomial (1 :: ′a) t))

by (auto intro!: injI simp: times-monomial-left monomial-0-iff dest!:
punit.monom-mult-inj-3 )

ultimately have eq: ideal F ÷ monomial 1 t = ideal (monomial 1 ‘ S)
by (simp only: quot-set-image-times)

with assms(1 ) step.hyps(1 , 2 ) step.prems(2 )
have splits-wrt (split t U S) (cone (monomial (1 :: ′a) t, U )) F by (rule

split-splits-wrt)
hence splits-wrt (ps0 @ ps1 , qs0 @ qs1 ) (cone (monomial 1 t, U )) F by

(simp only: step.hyps(14 ))
with assms(1 ) have cone-decomp (cone (monomial (1 :: ′a) t, U ) ∩ nor-

mal-form F ‘ P[X ]) (qs0 @ qs1 )
using md - ‹F ⊆ P[X ]›
by (rule splits-wrt-cone-decomp-2 )

(auto intro!: is-monomial-setI monomial-is-monomial simp: F-def
times-monomial-monomial)

hence cone (monomial 1 s, U0 ) ⊆ cone (monomial (1 :: ′a) t, U ) ∩ nor-
mal-form F ‘ P[X ]

using ‹(h, U0 ) ∈ set (qs0 @ qs1 )› unfolding h by (rule cone-decomp-cone-subset)
with assms(1 ) step.hyps(1 , 2 ) step.prems(2 ) ‹F ⊆ P[X ]› eq
obtain U ′ where (monomial (1 :: ′a) t, U ′) ∈ set (snd (split t U S)) and

card U0 ≤ card U ′

by (rule lem-4-6 )
from this(1 ) have (monomial 1 t, U ′) ∈ set (qs0 @ qs1 ) by (simp add:

step.hyps(14 ))
show ?thesis
proof (intro exI conjI )
show poly-deg (monomial (1 :: ′a) t) = d by (simp add: poly-deg-monomial

‹deg-pm t = d›)
qed fact+

next
assume Suc (deg-pm t) ≤ d
with qs1 ‹(h, U0 ) ∈ set (qs1+)› obtain h ′ U ′ where (h ′, U ′) ∈ set qs1

and poly-deg h ′ = d
and card U0 ≤ card U ′ using d2 by (rule standard-decompE)

moreover from this(1 ) have (h ′, U ′) ∈ set (qs0 @ qs1 ) by simp
ultimately show ?thesis by blast

qed
qed

qed
qed

theorem standard-cone-decomp-snd-split:
fixes F
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defines G ≡ punit.reduced-GB F
defines ss ≡ (split 0 X (lpp ‘ G)) :: ((- ⇒0

′a::field) × -) list × -
defines d ≡ Suc (Max (poly-deg ‘ fst ‘ set (snd ss)))
assumes finite X and F ⊆ P[X ]
shows standard-decomp 0 (snd ss) (is ?thesis1 )

and cone-decomp (normal-form F ‘ P[X ]) (snd ss) (is ?thesis2 )
and (

∧
f . f ∈ F =⇒ homogeneous f ) =⇒ g ∈ G =⇒ poly-deg g ≤ d

proof −
have ideal G = ideal F and punit.is-Groebner-basis G and finite G and 0 /∈ G
and G ⊆ P[X ] and punit.is-reduced-GB G using assms(4 , 5 ) unfolding G-def
by (rule reduced-GB-ideal-Polys, rule reduced-GB-is-GB-Polys, rule finite-reduced-GB-Polys,

rule reduced-GB-nonzero-Polys, rule reduced-GB-Polys, rule reduced-GB-is-reduced-GB-Polys)
define S where S = lpp ‘ G
note assms(4 ) subset-refl
moreover from ‹finite G› have finite S unfolding S-def by (rule finite-imageI )
moreover from ‹G ⊆ P[X ]› have S ⊆ .[X ] unfolding S-def by (rule PPs-closed-image-lpp)
ultimately have standard-decomp (deg-pm (0 :: ′x ⇒0 nat)) (snd ss)

using zero-in-PPs unfolding ss-def S-def by (rule standard-decomp-snd-split)
thus ?thesis1 by simp

let ?S = monomial (1 :: ′a) ‘ S
from ‹S ⊆ .[X ]› have ?S ⊆ P[X ] by (auto intro: Polys-closed-monomial)
have splits-wrt ss (cone (monomial 1 0 , X)) ?S

using assms(4 ) subset-refl ‹finite S› zero-in-PPs unfolding ss-def S-def
by (rule split-splits-wrt) simp

hence splits-wrt (fst ss, snd ss) P[X ] ?S by simp
with assms(4 ) have cone-decomp (P[X ] ∩ normal-form ?S ‘ P[X ]) (snd ss)

using - - ‹?S ⊆ P[X ]›
proof (rule splits-wrt-cone-decomp-2 )

from assms(4 ) subset-refl ‹finite S› show monomial-decomp (snd ss)
unfolding ss-def S-def by (rule monomial-decomp-split)

qed (auto intro!: is-monomial-setI monomial-is-monomial)
moreover have normal-form ?S ‘ P[X ] = normal-form F ‘ P[X ]

by (rule set-eqI )
(simp add: image-normal-form-iff [OF assms(4 )] assms(5 ) ‹?S ⊆ P[X ]›,
simp add: S-def is-red-reduced-GB-monomial-lt-GB-Polys[OF assms(4 )] ‹G

⊆ P[X ]› ‹0 /∈ G› flip: G-def )
moreover from assms(4 , 5 ) have normal-form F ‘ P[X ] ⊆ P[X ]

by (auto intro: Polys-closed-normal-form)
ultimately show ?thesis2 by (simp only: Int-absorb1 )

assume
∧

f . f ∈ F =⇒ homogeneous f
moreover note ‹punit.is-reduced-GB G› ‹ideal G = ideal F›
moreover assume g ∈ G
ultimately have homogeneous g by (rule is-reduced-GB-homogeneous)
moreover have lpp g ∈ keys g
proof (rule punit.lt-in-keys)

from ‹g ∈ G› ‹0 /∈ G› show g 6= 0 by blast
qed
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ultimately have deg-lt: deg-pm (lpp g) = poly-deg g by (rule homogeneousD-poly-deg)
from ‹g ∈ G› have monomial 1 (lpp g) ∈ ?S unfolding S-def by (intro imageI )
also have . . . = punit.reduced-GB ?S unfolding S-def G-def using assms(4 , 5 )

by (rule reduced-GB-monomial-lt-reduced-GB-Polys[symmetric])
finally have monomial 1 (lpp g) ∈ punit.reduced-GB ?S .
with assms(4 ) ‹finite S› ‹S ⊆ .[X ]› have poly-deg (monomial (1 :: ′a) (lpp g)) ≤

d
unfolding d-def ss-def S-def [symmetric] by (rule cor-4-9 )

thus poly-deg g ≤ d by (simp add: poly-deg-monomial deg-lt)
qed

10.7 Splitting Ideals
qualified definition ideal-decomp-aux :: (( ′x ⇒0 nat) ⇒0

′a) set ⇒ (( ′x ⇒0 nat)
⇒0

′a) ⇒
((( ′x ⇒0 nat) ⇒0

′a::field) set × ((( ′x ⇒0 nat)
⇒0

′a) × ′x set) list)
where ideal-decomp-aux F f =

(let J = ideal F ; L = (J ÷ f ) ∩ P[X ]; L ′ = lpp ‘ punit.reduced-GB L in
((∗) f ‘ normal-form L ‘ P[X ], map (apfst ((∗) f )) (snd (split 0 X

L ′))))

context
assumes fin-X : finite X

begin

lemma ideal-decomp-aux:
assumes finite F and F ⊆ P[X ] and f ∈ P[X ]
shows fst (ideal-decomp-aux F f ) ⊆ ideal {f } (is ?thesis1 )

and ideal F ∩ fst (ideal-decomp-aux F f ) = {0} (is ?thesis2 )
and direct-decomp (ideal (insert f F) ∩ P[X ]) [fst (ideal-decomp-aux F f ), ideal

F ∩ P[X ]] (is ?thesis3 )
and cone-decomp (fst (ideal-decomp-aux F f )) (snd (ideal-decomp-aux F f )) (is

?thesis4 )
and f 6= 0 =⇒ valid-decomp X (snd (ideal-decomp-aux F f )) (is - =⇒ ?thesis5 )
and f 6= 0 =⇒ standard-decomp (poly-deg f ) (snd (ideal-decomp-aux F f )) (is

- =⇒ ?thesis6 )
and homogeneous f =⇒ hom-decomp (snd (ideal-decomp-aux F f )) (is - =⇒

?thesis7 )
proof −

define J where J = ideal F
define L where L = (J ÷ f ) ∩ P[X ]
define S where S = (∗) f ‘ normal-form L ‘ P[X ]
define L ′ where L ′ = lpp ‘ punit.reduced-GB L

have eq: ideal-decomp-aux F f = (S , map (apfst ((∗) f )) (snd (split 0 X L ′)))
by (simp add: J-def ideal-decomp-aux-def Let-def L-def L ′-def S-def )

have L-sub: L ⊆ P[X ] by (simp add: L-def )
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show ?thesis1 unfolding eq fst-conv
proof

fix s
assume s ∈ S
then obtain q where s = normal-form L q ∗ f unfolding S-def by (elim

imageE) auto
also have . . . ∈ ideal {f } by (intro ideal.span-scale ideal.span-base singletonI )
finally show s ∈ ideal {f } .

qed

show ?thesis2
proof (rule set-eqI )

fix h
show h ∈ ideal F ∩ fst (ideal-decomp-aux F f ) ←→ h ∈ {0}
proof

assume h ∈ ideal F ∩ fst (ideal-decomp-aux F f )
hence h ∈ J and h ∈ S by (simp-all add: J-def S-def eq)
from this(2 ) obtain q where q ∈ P[X ] and h: h = f ∗ normal-form L q by

(auto simp: S-def )
from fin-X L-sub this(1 ) have normal-form L q ∈ P[X ] by (rule Polys-closed-normal-form)

moreover from ‹h ∈ J › have f ∗ normal-form L q ∈ J by (simp add: h)
ultimately have normal-form L q ∈ L by (simp add: L-def quot-set-iff )
hence normal-form L q ∈ ideal L by (rule ideal.span-base)
with normal-form-diff-in-ideal[OF fin-X L-sub] have (q − normal-form L q)

+ normal-form L q ∈ ideal L
by (rule ideal.span-add)

hence normal-form L q = 0 using fin-X L-sub by (simp add: normal-form-zero-iff )
thus h ∈ {0} by (simp add: h)

next
assume h ∈ {0}
moreover have 0 ∈ (∗) f ‘ normal-form L ‘ P[X ]
proof (intro image-eqI )

from fin-X L-sub show 0 = normal-form L 0 by (simp only: nor-
mal-form-zero)

qed (simp-all add: zero-in-Polys)
ultimately show h ∈ ideal F ∩ fst (ideal-decomp-aux F f ) by (simp add:

ideal.span-zero eq S-def )
qed

qed

have direct-decomp (ideal (insert f F) ∩ P[X ]) [ideal F ∩ P[X ], fst (ideal-decomp-aux
F f )]

unfolding eq fst-conv S-def L-def J-def using fin-X assms(2 , 3 ) by (rule
direct-decomp-ideal-insert)

thus ?thesis3 by (rule direct-decomp-perm) simp

have std: standard-decomp 0 (snd (split 0 X L ′) :: ((- ⇒0
′a) × -) list)

and cone-decomp (normal-form L ‘ P[X ]) (snd (split 0 X L ′))

152



unfolding L ′-def using fin-X ‹L ⊆ P[X ]› by (rule standard-cone-decomp-snd-split)+
from this(2 ) show ?thesis4 unfolding eq fst-conv snd-conv S-def by (rule

cone-decomp-map-times)

from fin-X ‹L ⊆ P[X ]› have finite (punit.reduced-GB L) by (rule finite-reduced-GB-Polys)
hence finite L ′ unfolding L ′-def by (rule finite-imageI )
{

have monomial-decomp (snd (split 0 X L ′) :: ((- ⇒0
′a) × -) list)

using fin-X subset-refl ‹finite L ′› by (rule monomial-decomp-split)
hence hom-decomp (snd (split 0 X L ′) :: ((- ⇒0

′a) × -) list)
by (rule monomial-decomp-imp-hom-decomp)

moreover assume homogeneous f
ultimately show ?thesis7 unfolding eq snd-conv by (rule hom-decomp-map-times)

}

have vd: valid-decomp X (snd (split 0 X L ′) :: ((- ⇒0
′a) × -) list)

using fin-X subset-refl ‹finite L ′› zero-in-PPs by (rule valid-decomp-split)
moreover note assms(3 )
moreover assume f 6= 0
ultimately show ?thesis5 unfolding eq snd-conv by (rule valid-decomp-map-times)

from std vd ‹f 6= 0 › have standard-decomp (0 + poly-deg f ) (map (apfst ((∗)
f )) (snd (split 0 X L ′)))

by (rule standard-decomp-map-times)
thus ?thesis6 by (simp add: eq)

qed

lemma ideal-decompE :
fixes f0 :: - ⇒0

′a::field
assumes finite F and F ⊆ P[X ] and f0 ∈ P[X ] and

∧
f . f ∈ F =⇒ poly-deg f

≤ poly-deg f0
obtains T ps where valid-decomp X ps and standard-decomp (poly-deg f0 ) ps

and cone-decomp T ps
and (

∧
f . f ∈ F =⇒ homogeneous f ) =⇒ hom-decomp ps

and direct-decomp (ideal (insert f0 F) ∩ P[X ]) [ideal {f0} ∩ P[X ], T ]
using assms(1 , 2 , 4 )

proof (induct F arbitrary: thesis)
case empty
show ?case
proof (rule empty.prems)

show valid-decomp X [] by (rule valid-decompI ) simp-all
next

show standard-decomp (poly-deg f0 ) [] by (rule standard-decompI ) simp-all
next

show cone-decomp {0} [] by (rule cone-decompI ) (simp add: direct-decomp-def
bij-betw-def )

next
have direct-decomp (ideal {f0} ∩ P[X ]) [ideal {f0} ∩ P[X ]]

by (fact direct-decomp-singleton)
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hence direct-decomp (ideal {f0} ∩ P[X ]) [{0}, ideal {f0} ∩ P[X ]] by (rule
direct-decomp-Cons-zeroI )

thus direct-decomp (ideal {f0} ∩ P[X ]) [ideal {f0} ∩ P[X ], {0}]
by (rule direct-decomp-perm) simp

qed (simp add: hom-decomp-def )
next

case (insert f F)
from insert.prems(2 ) have F ⊆ P[X ] by simp
moreover have poly-deg f ′ ≤ poly-deg f0 if f ′ ∈ F for f ′

proof −
from that have f ′ ∈ insert f F by simp
thus ?thesis by (rule insert.prems)

qed
ultimately obtain T ps where valid-ps: valid-decomp X ps and std-ps: stan-

dard-decomp (poly-deg f0 ) ps
and cn-ps: cone-decomp T ps and dd: direct-decomp (ideal (insert f0 F) ∩

P[X ]) [ideal {f0} ∩ P[X ], T ]
and hom-ps: (

∧
f . f ∈ F =⇒ homogeneous f ) =⇒ hom-decomp ps

using insert.hyps(3 ) by metis
show ?case
proof (cases f = 0 )

case True
show ?thesis
proof (rule insert.prems)

from dd show direct-decomp (ideal (insert f0 (insert f F)) ∩ P[X ]) [ideal
{f0} ∩ P[X ], T ]

by (simp only: insert-commute[of f0 ] True ideal.span-insert-zero)
next

assume
∧

f ′. f ′ ∈ insert f F =⇒ homogeneous f ′

hence
∧

f . f ∈ F =⇒ homogeneous f by blast
thus hom-decomp ps by (rule hom-ps)

qed fact+
next

case False
let ?D = ideal-decomp-aux (insert f0 F) f
from insert.hyps(1 ) have f0F-fin: finite (insert f0 F) by simp
moreover from ‹F ⊆ P[X ]› assms(3 ) have f0F-sub: insert f0 F ⊆ P[X ] by

simp
moreover from insert.prems(2 ) have f ∈ P[X ] by simp
ultimately have eq: ideal (insert f0 F) ∩ fst ?D = {0} and valid-decomp X

(snd ?D)
and cn-D: cone-decomp (fst ?D) (snd ?D)
and standard-decomp (poly-deg f ) (snd ?D)
and dd ′: direct-decomp (ideal (insert f (insert f0 F)) ∩ P[X ])

[fst ?D, ideal (insert f0 F) ∩ P[X ]]
and hom-D: homogeneous f =⇒ hom-decomp (snd ?D)
by (rule ideal-decomp-aux, auto intro: ideal-decomp-aux simp: False)

note fin-X this(2−4 )
moreover have poly-deg f ≤ poly-deg f0 by (rule insert.prems) simp
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ultimately obtain qs where valid-qs: valid-decomp X qs and cn-qs: cone-decomp
(fst ?D) qs

and std-qs: standard-decomp (poly-deg f0 ) qs
and hom-qs: hom-decomp (snd ?D) =⇒ hom-decomp qs by (rule stan-

dard-decomp-geE) blast
let ?T = sum-list ‘ listset [T , fst ?D]
let ?ps = ps @ qs
show ?thesis
proof (rule insert.prems)
from valid-ps valid-qs show valid-decomp X ?ps by (rule valid-decomp-append)
next

from std-ps std-qs show standard-decomp (poly-deg f0 ) ?ps by (rule stan-
dard-decomp-append)

next
from dd have direct-decomp (ideal (insert f0 F) ∩ P[X ]) [T , ideal {f0} ∩

P[X ]]
by (rule direct-decomp-perm) simp

hence T ⊆ ideal (insert f0 F) ∩ P[X ]
by (rule direct-decomp-Cons-subsetI ) (simp add: ideal.span-zero zero-in-Polys)
hence T ∩ fst ?D ⊆ ideal (insert f0 F) ∩ fst ?D by blast
hence T ∩ fst ?D ⊆ {0} by (simp only: eq)
from refl have direct-decomp ?T [T , fst ?D]
proof (intro direct-decompI inj-onI )

fix xs ys
assume xs ∈ listset [T , fst ?D]
then obtain x1 x2 where x1 ∈ T and x2 ∈ fst ?D and xs: xs = [x1 , x2 ]

by (rule listset-doubletonE)
assume ys ∈ listset [T , fst ?D]
then obtain y1 y2 where y1 ∈ T and y2 ∈ fst ?D and ys: ys = [y1 , y2 ]

by (rule listset-doubletonE)
assume sum-list xs = sum-list ys
hence x1 − y1 = y2 − x2 by (simp add: xs ys) (metis add-diff-cancel-left

add-diff-cancel-right)
moreover from cn-ps ‹x1 ∈ T › ‹y1 ∈ T › have x1 − y1 ∈ T by (rule

cone-decomp-closed-minus)
moreover from cn-D ‹y2 ∈ fst ?D› ‹x2 ∈ fst ?D› have y2 − x2 ∈ fst ?D

by (rule cone-decomp-closed-minus)
ultimately have y2 − x2 ∈ T ∩ fst ?D by simp
also have . . . ⊆ {0} by fact
finally have x2 = y2 by simp
with ‹x1 − y1 = y2 − x2 › show xs = ys by (simp add: xs ys)

qed
thus cone-decomp ?T ?ps using cn-ps cn-qs by (rule cone-decomp-append)

next
assume

∧
f ′. f ′ ∈ insert f F =⇒ homogeneous f ′

hence homogeneous f and
∧

f ′. f ′ ∈ F =⇒ homogeneous f ′ by blast+
from this(2 ) have hom-decomp ps by (rule hom-ps)

moreover from ‹homogeneous f › have hom-decomp qs by (intro hom-qs
hom-D)
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ultimately show hom-decomp (ps @ qs) by (simp only: hom-decomp-append-iff )
next

from dd ′ have direct-decomp (ideal (insert f0 (insert f F)) ∩ P[X ])
[ideal (insert f0 F) ∩ P[X ], fst ?D]

by (simp add: insert-commute direct-decomp-perm)
hence direct-decomp (ideal (insert f0 (insert f F)) ∩ P[X ])

([fst ?D] @ [ideal {f0} ∩ P[X ], T ]) using dd by (rule
direct-decomp-direct-decomp)

hence direct-decomp (ideal (insert f0 (insert f F)) ∩ P[X ]) ([ideal {f0} ∩
P[X ]] @ [T , fst ?D])

by (rule direct-decomp-perm) auto
hence direct-decomp (ideal (insert f0 (insert f F)) ∩ P[X ]) [sum-list ‘ listset

[ideal {f0} ∩ P[X ]], ?T ]
by (rule direct-decomp-appendD)

thus direct-decomp (ideal (insert f0 (insert f F)) ∩ P[X ]) [ideal {f0} ∩ P[X ],
?T ]

by (simp add: image-image)
qed

qed
qed

10.8 Exact Cone Decompositions
definition exact-decomp :: nat ⇒ ((( ′x ⇒0 nat) ⇒0

′a::zero) × ′x set) list ⇒ bool
where exact-decomp m ps ←→ (∀ (h, U )∈set ps. h ∈ P[X ] ∧ U ⊆ X) ∧

(∀ (h, U )∈set ps. ∀ (h ′, U ′)∈set ps. poly-deg h = poly-deg
h ′ −→

m < card U −→ m < card U ′ −→ (h, U ) = (h ′,
U ′))

lemma exact-decompI :
(
∧

h U . (h, U ) ∈ set ps =⇒ h ∈ P[X ]) =⇒ (
∧

h U . (h, U ) ∈ set ps =⇒ U ⊆ X)
=⇒

(
∧

h h ′ U U ′. (h, U ) ∈ set ps =⇒ (h ′, U ′) ∈ set ps =⇒ poly-deg h = poly-deg
h ′ =⇒

m < card U =⇒ m < card U ′ =⇒ (h, U ) = (h ′, U ′)) =⇒
exact-decomp m ps

unfolding exact-decomp-def by fastforce

lemma exact-decompD:
assumes exact-decomp m ps and (h, U ) ∈ set ps
shows h ∈ P[X ] and U ⊆ X

and (h ′, U ′) ∈ set ps =⇒ poly-deg h = poly-deg h ′ =⇒ m < card U =⇒ m <
card U ′ =⇒

(h, U ) = (h ′, U ′)
using assms unfolding exact-decomp-def by fastforce+

lemma exact-decompI-zero:
assumes

∧
h U . (h, U ) ∈ set ps =⇒ h ∈ P[X ] and

∧
h U . (h, U ) ∈ set ps =⇒
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U ⊆ X
and

∧
h h ′ U U ′. (h, U ) ∈ set (ps+) =⇒ (h ′, U ′) ∈ set (ps+) =⇒ poly-deg h

= poly-deg h ′ =⇒
(h, U ) = (h ′, U ′)

shows exact-decomp 0 ps
using assms(1 , 2 )

proof (rule exact-decompI )
fix h h ′ and U U ′ :: ′x set
assume 0 < card U
hence U 6= {} by auto
moreover assume (h, U ) ∈ set ps
ultimately have (h, U ) ∈ set (ps+) by (simp add: pos-decomp-def )
assume 0 < card U ′

hence U ′ 6= {} by auto
moreover assume (h ′, U ′) ∈ set ps
ultimately have (h ′, U ′) ∈ set (ps+) by (simp add: pos-decomp-def )
assume poly-deg h = poly-deg h ′

with ‹(h, U ) ∈ set (ps+)› ‹(h ′, U ′) ∈ set (ps+)› show (h, U ) = (h ′, U ′) by
(rule assms(3 ))
qed

lemma exact-decompD-zero:
assumes exact-decomp 0 ps and (h, U ) ∈ set (ps+) and (h ′, U ′) ∈ set (ps+)

and poly-deg h = poly-deg h ′

shows (h, U ) = (h ′, U ′)
proof −
from assms(2 ) have (h, U ) ∈ set ps and U 6= {} by (simp-all add: pos-decomp-def )
from assms(1 ) this(1 ) have U ⊆ X by (rule exact-decompD)
hence finite U using fin-X by (rule finite-subset)
with ‹U 6= {}› have 0 < card U by (simp add: card-gt-0-iff )
from assms(3 ) have (h ′, U ′) ∈ set ps and U ′ 6= {} by (simp-all add: pos-decomp-def )
from assms(1 ) this(1 ) have U ′ ⊆ X by (rule exact-decompD)
hence finite U ′ using fin-X by (rule finite-subset)
with ‹U ′ 6= {}› have 0 < card U ′ by (simp add: card-gt-0-iff )
show ?thesis by (rule exact-decompD) fact+

qed

lemma exact-decomp-imp-valid-decomp:
assumes exact-decomp m ps and

∧
h U . (h, U ) ∈ set ps =⇒ h 6= 0

shows valid-decomp X ps
proof (rule valid-decompI )

fix h U
assume ∗: (h, U ) ∈ set ps
with assms(1 ) show h ∈ P[X ] and U ⊆ X by (rule exact-decompD)+
from ∗ show h 6= 0 by (rule assms(2 ))

qed

lemma exact-decomp-card-X :
assumes valid-decomp X ps and card X ≤ m

157



shows exact-decomp m ps
proof (rule exact-decompI )

fix h U
assume (h, U ) ∈ set ps
with assms(1 ) show h ∈ P[X ] and U ⊆ X by (rule valid-decompD)+

next
fix h1 h2 U1 U2
assume (h1 , U1 ) ∈ set ps
with assms(1 ) have U1 ⊆ X by (rule valid-decompD)
with fin-X have card U1 ≤ card X by (rule card-mono)
also have . . . ≤ m by (fact assms(2 ))
also assume m < card U1
finally show (h1 , U1 ) = (h2 , U2 ) by simp

qed

definition a :: ((( ′x ⇒0 nat) ⇒0
′a::zero) × ′x set) list ⇒ nat

where a ps = (LEAST k. standard-decomp k ps)

definition b :: ((( ′x ⇒0 nat) ⇒0
′a::zero) × ′x set) list ⇒ nat ⇒ nat

where b ps i = (LEAST d. a ps ≤ d ∧ (∀ (h, U )∈set ps. i ≤ card U −→ poly-deg
h < d))

lemma a: standard-decomp k ps =⇒ standard-decomp (a ps) ps
unfolding a-def by (rule LeastI )

lemma a-Nil:
assumes ps+ = []
shows a ps = 0

proof −
from assms have standard-decomp 0 ps by (rule standard-decomp-Nil)
thus ?thesis unfolding a-def by (rule Least-eq-0 )

qed

lemma a-nonempty:
assumes valid-decomp X ps and standard-decomp k ps and ps+ 6= []
shows a ps = Min (poly-deg ‘ fst ‘ set (ps+))
using fin-X assms(1 ) - assms(3 )

proof (rule standard-decomp-nonempty-unique)
from assms(2 ) show standard-decomp (a ps) ps by (rule a)

qed

lemma a-nonempty-unique:
assumes valid-decomp X ps and standard-decomp k ps and ps+ 6= []
shows a ps = k

proof −
from assms have a ps = Min (poly-deg ‘ fst ‘ set (ps+)) by (rule a-nonempty)
moreover from fin-X assms have k = Min (poly-deg ‘ fst ‘ set (ps+))

by (rule standard-decomp-nonempty-unique)
ultimately show ?thesis by simp
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qed

lemma b:
shows a ps ≤ b ps i and (h, U ) ∈ set ps =⇒ i ≤ card U =⇒ poly-deg h < b ps

i
proof −

let ?A = poly-deg ‘ fst ‘ set ps
define A where A = insert (a ps) ?A
define m where m = Suc (Max A)
from finite-set have finite ?A by (intro finite-imageI )
hence finite A by (simp add: A-def )
have a ps ≤ b ps i ∧ (∀ (h ′, U ′)∈set ps. i ≤ card U ′ −→ poly-deg h ′ < b ps i)

unfolding b-def
proof (rule LeastI )

have a ps ∈ A by (simp add: A-def )
with ‹finite A› have a ps ≤ Max A by (rule Max-ge)
hence a ps ≤ m by (simp add: m-def )
moreover {

fix h U
assume (h, U ) ∈ set ps
hence poly-deg (fst (h, U )) ∈ ?A by (intro imageI )
hence poly-deg h ∈ A by (simp add: A-def )
with ‹finite A› have poly-deg h ≤ Max A by (rule Max-ge)
hence poly-deg h < m by (simp add: m-def )

}
ultimately show a ps ≤ m ∧ (∀ (h, U )∈set ps. i ≤ card U −→ poly-deg h <

m) by blast
qed
thus a ps ≤ b ps i and (h, U ) ∈ set ps =⇒ i ≤ card U =⇒ poly-deg h < b ps i

by blast+
qed

lemma b-le:
a ps ≤ d =⇒ (

∧
h ′ U ′. (h ′, U ′) ∈ set ps =⇒ i ≤ card U ′ =⇒ poly-deg h ′ < d)

=⇒ b ps i ≤ d
unfolding b-def by (intro Least-le) blast

lemma b-decreasing:
assumes i ≤ j
shows b ps j ≤ b ps i

proof (rule b-le)
fix h U
assume (h, U ) ∈ set ps
assume j ≤ card U
with assms(1 ) have i ≤ card U by (rule le-trans)
with ‹(h, U ) ∈ set ps› show poly-deg h < b ps i by (rule b)

qed (fact b)

lemma b-Nil:
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assumes ps+ = [] and Suc 0 ≤ i
shows b ps i = 0
unfolding b-def

proof (rule Least-eq-0 )
from assms(1 ) have a ps = 0 by (rule a-Nil)
moreover {

fix h and U :: ′x set
note assms(2 )
also assume i ≤ card U
finally have U 6= {} by auto
moreover assume (h, U ) ∈ set ps
ultimately have (h, U ) ∈ set (ps+) by (simp add: pos-decomp-def )
hence False by (simp add: assms)

}
ultimately show a ps ≤ 0 ∧ (∀ (h, U )∈set ps. i ≤ card U −→ poly-deg h < 0 )

by blast
qed

lemma b-zero:
assumes ps 6= []
shows Suc (Max (poly-deg ‘ fst ‘ set ps)) ≤ b ps 0

proof −
from finite-set have finite (poly-deg ‘ fst ‘ set ps) by (intro finite-imageI )
moreover from assms have poly-deg ‘ fst ‘ set ps 6= {} by simp
moreover have ∀ a∈poly-deg ‘ fst ‘ set ps. a < b ps 0
proof

fix d
assume d ∈ poly-deg ‘ fst ‘ set ps
then obtain p where p ∈ set ps and d = poly-deg (fst p) by blast
moreover obtain h U where p = (h, U ) using prod.exhaust by blast
ultimately have (h, U ) ∈ set ps and d: d = poly-deg h by simp-all
from this(1 ) le0 show d < b ps 0 unfolding d by (rule b)

qed
ultimately have Max (poly-deg ‘ fst ‘ set ps) < b ps 0 by simp
thus ?thesis by simp

qed

corollary b-zero-gr :
assumes (h, U ) ∈ set ps
shows poly-deg h < b ps 0

proof −
have poly-deg h ≤ Max (poly-deg ‘ fst ‘ set ps)
proof (rule Max-ge)

from finite-set show finite (poly-deg ‘ fst ‘ set ps) by (intro finite-imageI )
next
from assms have poly-deg (fst (h, U )) ∈ poly-deg ‘ fst ‘ set ps by (intro imageI )
thus poly-deg h ∈ poly-deg ‘ fst ‘ set ps by simp

qed
also have . . . < Suc . . . by simp
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also have . . . ≤ b ps 0
proof (rule b-zero)

from assms show ps 6= [] by auto
qed
finally show ?thesis .

qed

lemma b-one:
assumes valid-decomp X ps and standard-decomp k ps
shows b ps (Suc 0 ) = (if ps+ = [] then 0 else Suc (Max (poly-deg ‘ fst ‘ set

(ps+))))
proof (cases ps+ = [])

case True
hence b ps (Suc 0 ) = 0 using le-refl by (rule b-Nil)
with True show ?thesis by simp

next
case False
with assms have aP: a ps = Min (poly-deg ‘ fst ‘ set (ps+)) (is - = Min ?A)

by (rule a-nonempty)
from pos-decomp-subset finite-set have finite (set (ps+)) by (rule finite-subset)
hence finite ?A by (intro finite-imageI )
from False have ?A 6= {} by simp
have b ps (Suc 0 ) = Suc (Max ?A) unfolding b-def
proof (rule Least-equality)

from ‹finite ?A› ‹?A 6= {}› have a ps ∈ ?A unfolding aP by (rule Min-in)
with ‹finite ?A› have a ps ≤ Max ?A by (rule Max-ge)
hence a ps ≤ Suc (Max ?A) by simp
moreover {

fix h U
assume (h, U ) ∈ set ps
with fin-X assms(1 ) have finite U by (rule valid-decompD-finite)
moreover assume Suc 0 ≤ card U
ultimately have U 6= {} by auto

with ‹(h, U ) ∈ set ps› have (h, U ) ∈ set (ps+) by (simp add: pos-decomp-def )
hence poly-deg (fst (h, U )) ∈ ?A by (intro imageI )
hence poly-deg h ∈ ?A by (simp only: fst-conv)
with ‹finite ?A› have poly-deg h ≤ Max ?A by (rule Max-ge)
hence poly-deg h < Suc (Max ?A) by simp

}
ultimately show a ps ≤ Suc (Max ?A) ∧ (∀ (h, U )∈set ps. Suc 0 ≤ card U

−→ poly-deg h < Suc (Max ?A))
by blast

next
fix d
assume a ps ≤ d ∧ (∀ (h, U )∈set ps. Suc 0 ≤ card U −→ poly-deg h < d)
hence rl: poly-deg h < d if (h, U ) ∈ set ps and 0 < card U for h U using

that by auto
have Max ?A < d unfolding Max-less-iff [OF ‹finite ?A› ‹?A 6= {}›]
proof
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fix d0
assume d0 ∈ poly-deg ‘ fst ‘ set (ps+)
then obtain h U where (h, U ) ∈ set (ps+) and d0 : d0 = poly-deg h by

auto
from this(1 ) have (h, U ) ∈ set ps and U 6= {} by (simp-all add: pos-decomp-def )

from fin-X assms(1 ) this(1 ) have finite U by (rule valid-decompD-finite)
with ‹U 6= {}› have 0 < card U by (simp add: card-gt-0-iff )
with ‹(h, U ) ∈ set ps› show d0 < d unfolding d0 by (rule rl)

qed
thus Suc (Max ?A) ≤ d by simp

qed
with False show ?thesis by simp

qed

corollary b-one-gr :
assumes valid-decomp X ps and standard-decomp k ps and (h, U ) ∈ set (ps+)
shows poly-deg h < b ps (Suc 0 )

proof −
from assms(3 ) have ps+ 6= [] by auto
with assms(1 , 2 ) have eq: b ps (Suc 0 ) = Suc (Max (poly-deg ‘ fst ‘ set (ps+)))

by (simp add: b-one)
have poly-deg h ≤ Max (poly-deg ‘ fst ‘ set (ps+))
proof (rule Max-ge)

from finite-set show finite (poly-deg ‘ fst ‘ set (ps+)) by (intro finite-imageI )
next

from assms(3 ) have poly-deg (fst (h, U )) ∈ poly-deg ‘ fst ‘ set (ps+) by (intro
imageI )

thus poly-deg h ∈ poly-deg ‘ fst ‘ set (ps+) by simp
qed
also have . . . < b ps (Suc 0 ) by (simp add: eq)
finally show ?thesis .

qed

lemma b-card-X :
assumes exact-decomp m ps and Suc (card X) ≤ i
shows b ps i = a ps
unfolding b-def

proof (rule Least-equality)
{

fix h U
assume (h, U ) ∈ set ps
with assms(1 ) have U ⊆ X by (rule exact-decompD)
note assms(2 )
also assume i ≤ card U
finally have card X < card U by simp
with fin-X have ¬ U ⊆ X by (auto dest: card-mono leD)
hence False using ‹U ⊆ X› ..

}
thus a ps ≤ a ps ∧ (∀ (h, U )∈set ps. i ≤ card U −→ poly-deg h < a ps) by blast
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qed simp

lemma lem-6-1-1 :
assumes standard-decomp k ps and exact-decomp m ps and Suc 0 ≤ i

and i ≤ card X and b ps (Suc i) ≤ d and d < b ps i
obtains h U where (h, U ) ∈ set (ps+) and poly-deg h = d and card U = i

proof −
have ps+ 6= []
proof

assume ps+ = []
hence b ps i = 0 using assms(3 ) by (rule b-Nil)
with assms(6 ) show False by simp

qed
have eq1 : b ps (Suc (card X)) = a ps using assms(2 ) le-refl by (rule b-card-X)
from assms(1 ) have std: standard-decomp (b ps (Suc (card X))) ps unfolding

eq1 by (rule a)
from assms(4 ) have Suc i ≤ Suc (card X) ..
hence b ps (Suc (card X)) ≤ b ps (Suc i) by (rule b-decreasing)
hence a ps ≤ b ps (Suc i) by (simp only: eq1 )
have ∃ h U . (h, U ) ∈ set ps ∧ i ≤ card U ∧ b ps i ≤ Suc (poly-deg h)
proof (rule ccontr)

assume ∗: @ h U . (h, U ) ∈ set ps ∧ i ≤ card U ∧ b ps i ≤ Suc (poly-deg h)
note ‹a ps ≤ b ps (Suc i)›
also from assms(5 , 6 ) have b ps (Suc i) < b ps i by (rule le-less-trans)
finally have a ps < b ps i .
hence a ps ≤ b ps i − 1 by simp
hence b ps i ≤ b ps i − 1
proof (rule b-le)

fix h U
assume (h, U ) ∈ set ps and i ≤ card U
show poly-deg h < b ps i − 1
proof (rule ccontr)

assume ¬ poly-deg h < b ps i − 1
hence b ps i ≤ Suc (poly-deg h) by simp
with ∗ ‹(h, U ) ∈ set ps› ‹i ≤ card U › show False by auto

qed
qed
thus False using ‹a ps < b ps i› by linarith

qed
then obtain h U where (h, U ) ∈ set ps and i ≤ card U and b ps i ≤ Suc

(poly-deg h) by blast
from assms(3 ) this(2 ) have U 6= {} by auto
with ‹(h, U ) ∈ set ps› have (h, U ) ∈ set (ps+) by (simp add: pos-decomp-def )
note std this
moreover have b ps (Suc (card X)) ≤ d unfolding eq1 using ‹a ps ≤ b ps

(Suc i)› assms(5 )
by (rule le-trans)

moreover have d ≤ poly-deg h
proof −
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from assms(6 ) ‹b ps i ≤ Suc (poly-deg h)› have d < Suc (poly-deg h) by (rule
less-le-trans)

thus ?thesis by simp
qed
ultimately obtain h ′ U ′ where (h ′, U ′) ∈ set ps and d: poly-deg h ′ = d and

card U ≤ card U ′

by (rule standard-decompE)
from ‹i ≤ card U › this(3 ) have i ≤ card U ′ by (rule le-trans)
with assms(3 ) have U ′ 6= {} by auto
with ‹(h ′, U ′) ∈ set ps› have (h ′, U ′) ∈ set (ps+) by (simp add: pos-decomp-def )
moreover note ‹poly-deg h ′ = d›
moreover have card U ′ = i
proof (rule ccontr)

assume card U ′ 6= i
with ‹i ≤ card U ′› have Suc i ≤ card U ′ by simp
with ‹(h ′, U ′) ∈ set ps› have poly-deg h ′ < b ps (Suc i) by (rule b)
with assms(5 ) show False by (simp add: d)

qed
ultimately show ?thesis ..

qed

corollary lem-6-1-2 :
assumes standard-decomp k ps and exact-decomp 0 ps and Suc 0 ≤ i

and i ≤ card X and b ps (Suc i) ≤ d and d < b ps i
obtains h U where {(h ′, U ′) ∈ set (ps+). poly-deg h ′ = d} = {(h, U )} and

card U = i
proof −

from assms obtain h U where (h, U ) ∈ set (ps+) and poly-deg h = d and
card U = i

by (rule lem-6-1-1 )
hence {(h, U )} ⊆ {(h ′, U ′) ∈ set (ps+). poly-deg h ′ = d} (is - ⊆ ?A) by simp
moreover have ?A ⊆ {(h, U )}
proof

fix x
assume x ∈ ?A
then obtain h ′ U ′ where (h ′, U ′) ∈ set (ps+) and poly-deg h ′ = d and x: x

= (h ′, U ′)
by blast

note assms(2 ) ‹(h, U ) ∈ set (ps+)› this(1 )
moreover have poly-deg h = poly-deg h ′ by (simp only: ‹poly-deg h = d›

‹poly-deg h ′ = d›)
ultimately have (h, U ) = (h ′, U ′) by (rule exact-decompD-zero)
thus x ∈ {(h, U )} by (simp add: x)

qed
ultimately have {(h, U )} = ?A ..
hence ?A = {(h, U )} by (rule sym)
thus ?thesis using ‹card U = i› ..

qed
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corollary lem-6-1-2 ′:
assumes standard-decomp k ps and exact-decomp 0 ps and Suc 0 ≤ i

and i ≤ card X and b ps (Suc i) ≤ d and d < b ps i
shows card {(h ′, U ′) ∈ set (ps+). poly-deg h ′ = d} = 1 (is card ?A = -)

and {(h ′, U ′) ∈ set (ps+). poly-deg h ′ = d ∧ card U ′ = i} = {(h ′, U ′) ∈ set
(ps+). poly-deg h ′ = d}

(is ?B = -)
and card {(h ′, U ′) ∈ set (ps+). poly-deg h ′ = d ∧ card U ′ = i} = 1

proof −
from assms obtain h U where ?A = {(h, U )} and card U = i by (rule

lem-6-1-2 )
from this(1 ) show card ?A = 1 by simp
moreover show ?B = ?A
proof

have (h, U ) ∈ ?A by (simp add: ‹?A = {(h, U )}›)
have ?A = {(h, U )} by fact
also from ‹(h, U ) ∈ ?A› ‹card U = i› have . . . ⊆ ?B by simp
finally show ?A ⊆ ?B .

qed blast
ultimately show card ?B = 1 by simp

qed

corollary lem-6-1-3 :
assumes standard-decomp k ps and exact-decomp 0 ps and Suc 0 ≤ i

and i ≤ card X and (h, U ) ∈ set (ps+) and card U = i
shows b ps (Suc i) ≤ poly-deg h

proof (rule ccontr)
define j where j = (LEAST j ′. b ps j ′ ≤ poly-deg h)
assume ¬ b ps (Suc i) ≤ poly-deg h
hence poly-deg h < b ps (Suc i) by simp
from assms(2 ) le-refl have b ps (Suc (card X)) = a ps by (rule b-card-X)
also from - assms(5 ) have . . . ≤ poly-deg h
proof (rule standard-decompD)

from assms(1 ) show standard-decomp (a ps) ps by (rule a)
qed
finally have b ps (Suc (card X)) ≤ poly-deg h .
hence 1 : b ps j ≤ poly-deg h unfolding j-def by (rule LeastI )
have Suc i < j
proof (rule ccontr)

assume ¬ Suc i < j
hence j ≤ Suc i by simp
hence b ps (Suc i) ≤ b ps j by (rule b-decreasing)
also have . . . ≤ poly-deg h by fact
finally show False using ‹poly-deg h < b ps (Suc i)› by simp

qed
hence eq: Suc (j − 1 ) = j by simp
note assms(1 , 2 )
moreover from assms(3 ) have Suc 0 ≤ j − 1
proof (rule le-trans)
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from ‹Suc i < j› show i ≤ j − 1 by simp
qed
moreover have j − 1 ≤ card X
proof −

have j ≤ Suc (card X) unfolding j-def by (rule Least-le) fact
thus ?thesis by simp

qed
moreover from 1 have b ps (Suc (j − 1 )) ≤ poly-deg h by (simp only: eq)
moreover have poly-deg h < b ps (j − 1 )
proof (rule ccontr)

assume ¬ poly-deg h < b ps (j − 1 )
hence b ps (j − 1 ) ≤ poly-deg h by simp
hence j ≤ j − 1 unfolding j-def by (rule Least-le)
also have . . . < Suc (j − 1 ) by simp
finally show False by (simp only: eq)

qed
ultimately obtain h0 U0

where eq1 : {(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ poly-deg h ′ = poly-deg h} = {(h0 ,
U0 )}

and card U0 = j − 1 by (rule lem-6-1-2 )
from assms(5 ) have (h, U ) ∈ {(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ poly-deg h ′ =

poly-deg h} by simp
hence (h, U ) ∈ {(h0 , U0 )} by (simp only: eq1 )
hence U = U0 by simp
hence card U = j − 1 by (simp only: ‹card U0 = j − 1 ›)
hence i = j − 1 by (simp only: assms(6 ))
hence Suc i = j by (simp only: eq)
with ‹Suc i < j› show False by simp

qed

qualified fun shift-list :: ((( ′x ⇒0 nat)⇒0
′a::{comm-ring-1 ,ring-no-zero-divisors})

× ′x set) ⇒
′x ⇒ - list ⇒ - list where

shift-list (h, U ) x ps =
((punit.monom-mult 1 (Poly-Mapping.single x 1 ) h, U ) # (h, U − {x}) #

removeAll (h, U ) ps)

declare shift-list.simps[simp del]

lemma monomial-decomp-shift-list:
assumes monomial-decomp ps and hU ∈ set ps
shows monomial-decomp (shift-list hU x ps)

proof −
let ?x = Poly-Mapping.single x (1 ::nat)
obtain h U where hU : hU = (h, U ) using prod.exhaust by blast
with assms(2 ) have (h, U ) ∈ set ps by simp
with assms(1 ) have 1 : is-monomial h and 2 : lcf h = 1 by (rule mono-

mial-decompD)+
from this(1 ) have monomial (lcf h) (lpp h) = h by (rule punit.monomial-eq-itself )
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moreover define t where t = lpp h
ultimately have h = monomial 1 t by (simp only: 2 )
hence is-monomial (punit.monom-mult 1 ?x h) and lcf (punit.monom-mult 1 ?x

h) = 1
by (simp-all add: punit.monom-mult-monomial monomial-is-monomial)

with assms(1 ) 1 2 show ?thesis by (simp add: shift-list.simps monomial-decomp-def
hU )
qed

lemma hom-decomp-shift-list:
assumes hom-decomp ps and hU ∈ set ps
shows hom-decomp (shift-list hU x ps)

proof −
let ?x = Poly-Mapping.single x (1 ::nat)
obtain h U where hU : hU = (h, U ) using prod.exhaust by blast
with assms(2 ) have (h, U ) ∈ set ps by simp
with assms(1 ) have 1 : homogeneous h by (rule hom-decompD)
hence homogeneous (punit.monom-mult 1 ?x h) by (simp only: homogeneous-monom-mult)
with assms(1 ) 1 show ?thesis by (simp add: shift-list.simps hom-decomp-def

hU )
qed

lemma valid-decomp-shift-list:
assumes valid-decomp X ps and (h, U ) ∈ set ps and x ∈ U
shows valid-decomp X (shift-list (h, U ) x ps)

proof −
let ?x = Poly-Mapping.single x (1 ::nat)
from assms(1 , 2 ) have h ∈ P[X ] and h 6= 0 and U ⊆ X by (rule valid-decompD)+
moreover from this(1 ) have punit.monom-mult 1 ?x h ∈ P[X ]
proof (intro Polys-closed-monom-mult PPs-closed-single)

from ‹x ∈ U › ‹U ⊆ X› show x ∈ X ..
qed
moreover from ‹U ⊆ X› have U − {x} ⊆ X by blast
ultimately show ?thesis
using assms(1 ) ‹h 6= 0 › by (simp add: valid-decomp-def punit.monom-mult-eq-zero-iff

shift-list.simps)
qed

lemma standard-decomp-shift-list:
assumes standard-decomp k ps and (h1 , U1 ) ∈ set ps and (h2 , U2 ) ∈ set ps

and poly-deg h1 = poly-deg h2 and card U2 ≤ card U1 and (h1 , U1 ) 6= (h2 ,
U2 ) and x ∈ U2

shows standard-decomp k (shift-list (h2 , U2 ) x ps)
proof (rule standard-decompI )

let ?p1 = (punit.monom-mult 1 (Poly-Mapping.single x 1 ) h2 , U2 )
let ?p2 = (h2 , U2 − {x})
let ?qs = removeAll (h2 , U2 ) ps
fix h U
assume (h, U ) ∈ set ((shift-list (h2 , U2 ) x ps)+)
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hence disj: (h, U ) = ?p1 ∨ ((h, U ) = ?p2 ∧ U2 − {x} 6= {}) ∨ (h, U ) ∈ set
(ps+)

by (auto simp: pos-decomp-def shift-list.simps split: if-split-asm)
from assms(7 ) have U2 6= {} by blast
with assms(3 ) have (h2 , U2 ) ∈ set (ps+) by (simp add: pos-decomp-def )
with assms(1 ) have k-le: k ≤ poly-deg h2 by (rule standard-decompD)

let ?x = Poly-Mapping.single x 1
from disj show k ≤ poly-deg h
proof (elim disjE)

assume (h, U ) = ?p1
hence h: h = punit.monom-mult (1 :: ′a) ?x h2 by simp
note k-le

also have poly-deg h2 ≤ poly-deg h by (cases h2 = 0 ) (simp-all add: h
poly-deg-monom-mult)

finally show ?thesis .
next

assume (h, U ) = ?p2 ∧ U2 − {x} 6= {}
with k-le show ?thesis by simp

next
assume (h, U ) ∈ set (ps+)
with assms(1 ) show ?thesis by (rule standard-decompD)

qed

fix d
assume k ≤ d and d ≤ poly-deg h
from disj obtain h ′ U ′ where 1 : (h ′, U ′) ∈ set (?p1 # ps) and poly-deg h ′ =

d
and card U ≤ card U ′

proof (elim disjE)
assume (h, U ) = ?p1
hence h: h = punit.monom-mult 1 ?x h2 and U = U2 by simp-all
from ‹d ≤ poly-deg h› have d ≤ poly-deg h2 ∨ poly-deg h = d

by (cases h2 = 0 ) (auto simp: h poly-deg-monom-mult deg-pm-single)
thus ?thesis
proof

assume d ≤ poly-deg h2
with assms(1 ) ‹(h2 , U2 ) ∈ set (ps+)› ‹k ≤ d› obtain h ′ U ′

where (h ′, U ′) ∈ set ps and poly-deg h ′ = d and card U2 ≤ card U ′

by (rule standard-decompE)
from this(1 ) have (h ′, U ′) ∈ set (?p1 # ps) by simp
moreover note ‹poly-deg h ′ = d›
moreover from ‹card U2 ≤ card U ′› have card U ≤ card U ′ by (simp only:

‹U = U2 ›)
ultimately show ?thesis ..

next
have (h, U ) ∈ set (?p1 # ps) by (simp add: ‹(h, U ) = ?p1 ›)
moreover assume poly-deg h = d
ultimately show ?thesis using le-refl ..
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qed
next

assume (h, U ) = ?p2 ∧ U2 − {x} 6= {}
hence h = h2 and U : U = U2 − {x} by simp-all
from ‹d ≤ poly-deg h› this(1 ) have d ≤ poly-deg h2 by simp
with assms(1 ) ‹(h2 , U2 ) ∈ set (ps+)› ‹k ≤ d› obtain h ′ U ′

where (h ′, U ′) ∈ set ps and poly-deg h ′ = d and card U2 ≤ card U ′

by (rule standard-decompE)
from this(1 ) have (h ′, U ′) ∈ set (?p1 # ps) by simp
moreover note ‹poly-deg h ′ = d›
moreover from - ‹card U2 ≤ card U ′› have card U ≤ card U ′ unfolding U
by (rule le-trans) (metis Diff-empty card-Diff1-le card.infinite finite-Diff-insert

order-refl)
ultimately show ?thesis ..

next
assume (h, U ) ∈ set (ps+)
from assms(1 ) this ‹k ≤ d› ‹d ≤ poly-deg h› obtain h ′ U ′

where (h ′, U ′) ∈ set ps and poly-deg h ′ = d and card U ≤ card U ′

by (rule standard-decompE)
from this(1 ) have (h ′, U ′) ∈ set (?p1 # ps) by simp
thus ?thesis using ‹poly-deg h ′ = d› ‹card U ≤ card U ′› ..

qed
show ∃ h ′ U ′. (h ′, U ′) ∈ set (shift-list (h2 , U2 ) x ps) ∧ poly-deg h ′ = d ∧ card

U ≤ card U ′

proof (cases (h ′, U ′) = (h2 , U2 ))
case True
hence h ′ = h2 and U ′ = U2 by simp-all
from assms(2 , 6 ) have (h1 , U1 ) ∈ set (shift-list (h2 , U2 ) x ps) by (simp add:

shift-list.simps)
moreover from ‹poly-deg h ′ = d› have poly-deg h1 = d by (simp only: ‹h ′ =

h2 › assms(4 ))
moreover from ‹card U ≤ card U ′› assms(5 ) have card U ≤ card U1 by

(simp add: ‹U ′ = U2 ›)
ultimately show ?thesis by blast

next
case False

with 1 have (h ′, U ′) ∈ set (shift-list (h2 , U2 ) x ps) by (auto simp: shift-list.simps)
thus ?thesis using ‹poly-deg h ′ = d› ‹card U ≤ card U ′› by blast

qed
qed

lemma cone-decomp-shift-list:
assumes valid-decomp X ps and cone-decomp T ps and (h, U ) ∈ set ps and x
∈ U

shows cone-decomp T (shift-list (h, U ) x ps)
proof −

let ?p1 = (punit.monom-mult 1 (Poly-Mapping.single x 1 ) h, U )
let ?p2 = (h, U − {x})
let ?qs = removeAll (h, U ) ps

169



from assms(3 ) obtain ps1 ps2 where ps: ps = ps1 @ (h, U ) # ps2 and ∗: (h,
U ) /∈ set ps1

by (meson split-list-first)
have count-list ps2 (h, U ) = 0
proof (rule ccontr)

from assms(1 , 3 ) have h 6= 0 by (rule valid-decompD)
assume count-list ps2 (h, U ) 6= 0
hence 1 < count-list ps (h, U ) by (simp add: ps)

also have . . . ≤ count-list (map cone ps) (cone (h, U )) by (fact count-list-map-ge)
finally have 1 < count-list (map cone ps) (cone (h, U )) .
with cone-decompD have cone (h, U ) = {0}
proof (rule direct-decomp-repeated-eq-zero)

fix s
assume s ∈ set (map cone ps)
thus 0 ∈ s by (auto intro: zero-in-cone)

qed (fact assms(2 ))
with tip-in-cone[of h U ] have h = 0 by simp
with ‹h 6= 0 › show False ..

qed
hence ∗∗: (h, U ) /∈ set ps2 by (simp add: count-list-0-iff )
have mset ps = mset ((h, U ) # ps1 @ ps2 ) (is mset - = mset ?ps)

by (simp add: ps)
with assms(2 ) have cone-decomp T ?ps by (rule cone-decomp-perm)
hence direct-decomp T (map cone ?ps) by (rule cone-decompD)
hence direct-decomp T (cone (h, U ) # map cone (ps1 @ ps2 )) by simp
hence direct-decomp T ((map cone (ps1 @ ps2 )) @ [cone ?p1 , cone ?p2 ])
proof (rule direct-decomp-direct-decomp)

let ?x = Poly-Mapping.single x (Suc 0 )
have direct-decomp (cone (h, insert x (U − {x})))

[cone (h, U − {x}), cone (monomial (1 :: ′a) ?x ∗ h, insert x (U −
{x}))]

by (rule direct-decomp-cone-insert) simp
with assms(4 ) show direct-decomp (cone (h, U )) [cone ?p1 , cone ?p2 ]

by (simp add: insert-absorb times-monomial-left direct-decomp-perm)
qed
hence direct-decomp T (map cone (ps1 @ ps2 @ [?p1 , ?p2 ])) by simp
hence cone-decomp T (ps1 @ ps2 @ [?p1 , ?p2 ]) by (rule cone-decompI )
moreover have mset (ps1 @ ps2 @ [?p1 , ?p2 ]) = mset (?p1 # ?p2 # (ps1 @

ps2 ))
by simp

ultimately have cone-decomp T (?p1 # ?p2 # (ps1 @ ps2 )) by (rule cone-decomp-perm)
also from ∗ ∗∗ have ps1 @ ps2 = removeAll (h, U ) ps by (simp add: re-

move1-append ps)
finally show ?thesis by (simp only: shift-list.simps)

qed

10.9 Functions shift and exact
context
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fixes k m :: nat
begin

context
fixes d :: nat

begin

definition shift2-inv :: ((( ′x ⇒0 nat) ⇒0
′a::zero) × ′x set) list ⇒ bool where

shift2-inv qs ←→ valid-decomp X qs ∧ standard-decomp k qs ∧ exact-decomp (Suc
m) qs ∧

(∀ d0<d. card {q ∈ set qs. poly-deg (fst q) = d0 ∧ m < card
(snd q)} ≤ 1 )

fun shift1-inv :: (((( ′x ⇒0 nat) ⇒0
′a) × ′x set) list × ((( ′x ⇒0 nat) ⇒0

′a::zero)
× ′x set) set) ⇒ bool

where shift1-inv (qs, B) ←→ B = {q ∈ set qs. poly-deg (fst q) = d ∧ m < card
(snd q)} ∧ shift2-inv qs

lemma shift2-invI :
valid-decomp X qs =⇒ standard-decomp k qs =⇒ exact-decomp (Suc m) qs =⇒
(
∧

d0 . d0 < d =⇒ card {q ∈ set qs. poly-deg (fst q) = d0 ∧ m < card (snd q)}
≤ 1 ) =⇒

shift2-inv qs
by (simp add: shift2-inv-def )

lemma shift2-invD:
assumes shift2-inv qs
shows valid-decomp X qs and standard-decomp k qs and exact-decomp (Suc m)

qs
and d0 < d =⇒ card {q ∈ set qs. poly-deg (fst q) = d0 ∧ m < card (snd q)}

≤ 1
using assms by (simp-all add: shift2-inv-def )

lemma shift1-invI :
B = {q ∈ set qs. poly-deg (fst q) = d ∧ m < card (snd q)} =⇒ shift2-inv qs =⇒

shift1-inv (qs, B)
by simp

lemma shift1-invD:
assumes shift1-inv (qs, B)
shows B = {q ∈ set qs. poly-deg (fst q) = d ∧ m < card (snd q)} and shift2-inv

qs
using assms by simp-all

declare shift1-inv.simps[simp del]

lemma shift1-inv-finite-snd:
assumes shift1-inv (qs, B)
shows finite B
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proof (rule finite-subset)
from assms have B = {q ∈ set qs. poly-deg (fst q) = d ∧ m < card (snd q)} by

(rule shift1-invD)
also have . . . ⊆ set qs by blast
finally show B ⊆ set qs .

qed (fact finite-set)

lemma shift1-inv-some-snd:
assumes shift1-inv (qs, B) and 1 < card B and (h, U ) = (SOME b. b ∈ B ∧

card (snd b) = Suc m)
shows (h, U ) ∈ B and (h, U ) ∈ set qs and poly-deg h = d and card U = Suc

m
proof −

define A where A = {q ∈ B. card (snd q) = Suc m}
define Y where Y = {q ∈ set qs. poly-deg (fst q) = d ∧ Suc m < card (snd q)}
from assms(1 ) have B: B = {q ∈ set qs. poly-deg (fst q) = d ∧ m < card (snd

q)}
and inv2 : shift2-inv qs by (rule shift1-invD)+

have B ′: B = A ∪ Y by (auto simp: B A-def Y-def )
have finite A
proof (rule finite-subset)

show A ⊆ B unfolding A-def by blast
next

from assms(1 ) show finite B by (rule shift1-inv-finite-snd)
qed
moreover have finite Y
proof (rule finite-subset)

show Y ⊆ set qs unfolding Y-def by blast
qed (fact finite-set)
moreover have A ∩ Y = {} by (auto simp: A-def Y-def )
ultimately have card (A ∪ Y ) = card A + card Y by (rule card-Un-disjoint)
with assms(2 ) have 1 < card A + card Y by (simp only: B ′)
thm card-le-Suc0-iff-eq[OF ‹finite Y ›]
moreover have card Y ≤ 1 unfolding One-nat-def card-le-Suc0-iff-eq[OF ‹fi-

nite Y ›]
proof (intro ballI )

fix q1 q2 :: (( ′x ⇒0 nat) ⇒0
′a) × ′x set

obtain h1 U1 where q1 : q1 = (h1 , U1 ) using prod.exhaust by blast
obtain h2 U2 where q2 : q2 = (h2 , U2 ) using prod.exhaust by blast
assume q1 ∈ Y
hence (h1 , U1 ) ∈ set qs and poly-deg h1 = d and Suc m < card U1 by

(simp-all add: q1 Y-def )
assume q2 ∈ Y
hence (h2 , U2 ) ∈ set qs and poly-deg h2 = d and Suc m < card U2 by

(simp-all add: q2 Y-def )
from this(2 ) have poly-deg h1 = poly-deg h2 by (simp only: ‹poly-deg h1 =

d›)
from inv2 have exact-decomp (Suc m) qs by (rule shift2-invD)
thus q1 = q2 unfolding q1 q2 by (rule exact-decompD) fact+
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qed
ultimately have 0 < card A by simp
hence A 6= {} by auto
then obtain a where a ∈ A by blast
have (h, U ) ∈ B ∧ card (snd (h, U )) = Suc m unfolding assms(3 )
proof (rule someI )

from ‹a ∈ A› show a ∈ B ∧ card (snd a) = Suc m by (simp add: A-def )
qed
thus (h, U ) ∈ B and card U = Suc m by simp-all
from this(1 ) show (h, U ) ∈ set qs and poly-deg h = d by (simp-all add: B)

qed

lemma shift1-inv-preserved:
assumes shift1-inv (qs, B) and 1 < card B and (h, U ) = (SOME b. b ∈ B ∧

card (snd b) = Suc m)
and x = (SOME y. y ∈ U )

shows shift1-inv (shift-list (h, U ) x qs, B − {(h, U )})
proof −

let ?p1 = (punit.monom-mult 1 (Poly-Mapping.single x 1 ) h, U )
let ?p2 = (h, U − {x})
let ?qs = removeAll (h, U ) qs
let ?B = B − {(h, U )}
from assms(1 , 2 , 3 ) have (h, U ) ∈ B and (h, U ) ∈ set qs and deg-h: poly-deg

h = d
and card-U : card U = Suc m by (rule shift1-inv-some-snd)+

from card-U have U 6= {} by auto
then obtain y where y ∈ U by blast
hence x ∈ U unfolding assms(4 ) by (rule someI )
with card-U have card-Ux: card (U − {x}) = m

by (metis card-Diff-singleton card.infinite diff-Suc-1 nat.simps(3 ))
from assms(1 ) have B: B = {q ∈ set qs. poly-deg (fst q) = d ∧ m < card (snd

q)}
and inv2 : shift2-inv qs by (rule shift1-invD)+

from inv2 have valid-qs: valid-decomp X qs by (rule shift2-invD)
hence h 6= 0 using ‹(h, U ) ∈ set qs› by (rule valid-decompD)
show ?thesis
proof (intro shift1-invI shift2-invI )

show ?B = {q ∈ set (shift-list (h, U ) x qs). poly-deg (fst q) = d ∧ m < card
(snd q)} (is - = ?C )

proof (rule Set.set-eqI )
fix b
show b ∈ ?B ←→ b ∈ ?C
proof

assume b ∈ ?C
hence b ∈ insert ?p1 (insert ?p2 (set ?qs)) and b1 : poly-deg (fst b) = d

and b2 : m < card (snd b) by (simp-all add: shift-list.simps)
from this(1 ) show b ∈ ?B
proof (elim insertE)

assume b = ?p1
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with ‹h 6= 0 › have poly-deg (fst b) = Suc d
by (simp add: poly-deg-monom-mult deg-pm-single deg-h)

thus ?thesis by (simp add: b1 )
next

assume b = ?p2
hence card (snd b) = m by (simp add: card-Ux)
with b2 show ?thesis by simp

next
assume b ∈ set ?qs
with b1 b2 show ?thesis by (auto simp: B)

qed
qed (auto simp: B shift-list.simps)

qed
next

from valid-qs ‹(h, U ) ∈ set qs› ‹x ∈ U › show valid-decomp X (shift-list (h,
U ) x qs)

by (rule valid-decomp-shift-list)
next

from inv2 have std: standard-decomp k qs by (rule shift2-invD)
have ?B 6= {}
proof

assume ?B = {}
hence B ⊆ {(h, U )} by simp
with - have card B ≤ card {(h, U )} by (rule card-mono) simp
with assms(2 ) show False by simp

qed
then obtain h ′ U ′ where (h ′, U ′) ∈ B and (h ′, U ′) 6= (h, U ) by auto
from this(1 ) have (h ′, U ′) ∈ set qs and poly-deg h ′ = d and Suc m ≤ card

U ′

by (simp-all add: B)
note std this(1 ) ‹(h, U ) ∈ set qs›
moreover from ‹poly-deg h ′ = d› have poly-deg h ′ = poly-deg h by (simp only:

deg-h)
moreover from ‹Suc m ≤ card U ′› have card U ≤ card U ′ by (simp only:

card-U )
ultimately show standard-decomp k (shift-list (h, U ) x qs)

by (rule standard-decomp-shift-list) fact+
next

from inv2 have exct: exact-decomp (Suc m) qs by (rule shift2-invD)
show exact-decomp (Suc m) (shift-list (h, U ) x qs)
proof (rule exact-decompI )

fix h ′ U ′

assume (h ′, U ′) ∈ set (shift-list (h, U ) x qs)
hence ∗: (h ′, U ′) ∈ insert ?p1 (insert ?p2 (set ?qs)) by (simp add: shift-list.simps)

thus h ′ ∈ P[X ]
proof (elim insertE)

assume (h ′, U ′) = ?p1
hence h ′: h ′ = punit.monom-mult 1 (Poly-Mapping.single x 1 ) h by simp
from exct ‹(h, U ) ∈ set qs› have U ⊆ X by (rule exact-decompD)
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with ‹x ∈ U › have x ∈ X ..
hence Poly-Mapping.single x 1 ∈ .[X ] by (rule PPs-closed-single)

moreover from exct ‹(h, U ) ∈ set qs› have h ∈ P[X ] by (rule ex-
act-decompD)

ultimately show ?thesis unfolding h ′ by (rule Polys-closed-monom-mult)
next

assume (h ′, U ′) = ?p2
hence h ′ = h by simp
also from exct ‹(h, U ) ∈ set qs› have . . . ∈ P[X ] by (rule exact-decompD)
finally show ?thesis .

next
assume (h ′, U ′) ∈ set ?qs
hence (h ′, U ′) ∈ set qs by simp
with exct show ?thesis by (rule exact-decompD)

qed

from ∗ show U ′ ⊆ X
proof (elim insertE)

assume (h ′, U ′) = ?p1
hence U ′ = U by simp
also from exct ‹(h, U ) ∈ set qs› have . . . ⊆ X by (rule exact-decompD)
finally show ?thesis .

next
assume (h ′, U ′) = ?p2
hence U ′ = U − {x} by simp
also have . . . ⊆ U by blast
also from exct ‹(h, U ) ∈ set qs› have . . . ⊆ X by (rule exact-decompD)
finally show ?thesis .

next
assume (h ′, U ′) ∈ set ?qs
hence (h ′, U ′) ∈ set qs by simp
with exct show ?thesis by (rule exact-decompD)

qed
next

fix h1 h2 U1 U2
assume (h1 , U1 ) ∈ set (shift-list (h, U ) x qs) and Suc m < card U1

hence (h1 , U1 ) ∈ set qs using card-U card-Ux by (auto simp: shift-list.simps)
assume (h2 , U2 ) ∈ set (shift-list (h, U ) x qs) and Suc m < card U2

hence (h2 , U2 ) ∈ set qs using card-U card-Ux by (auto simp: shift-list.simps)
assume poly-deg h1 = poly-deg h2
from exct show (h1 , U1 ) = (h2 , U2 ) by (rule exact-decompD) fact+

qed
next

fix d0
assume d0 < d
have finite {q ∈ set qs. poly-deg (fst q) = d0 ∧ m < card (snd q)} (is finite

?A)
by auto

moreover have {q ∈ set (shift-list (h, U ) x qs). poly-deg (fst q) = d0 ∧ m <
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card (snd q)} ⊆ ?A
(is ?C ⊆ -)

proof
fix q
assume q ∈ ?C
hence q = ?p1 ∨ q = ?p2 ∨ q ∈ set ?qs and 1 : poly-deg (fst q) = d0 and

2 : m < card (snd q)
by (simp-all add: shift-list.simps)

from this(1 ) show q ∈ ?A
proof (elim disjE)

assume q = ?p1
with ‹h 6= 0 › have d ≤ poly-deg (fst q) by (simp add: poly-deg-monom-mult

deg-h)
with ‹d0 < d› show ?thesis by (simp only: 1 )

next
assume q = ?p2
hence d ≤ poly-deg (fst q) by (simp add: deg-h)
with ‹d0 < d› show ?thesis by (simp only: 1 )

next
assume q ∈ set ?qs
with 1 2 show ?thesis by simp

qed
qed
ultimately have card ?C ≤ card ?A by (rule card-mono)
also from inv2 ‹d0 < d› have . . . ≤ 1 by (rule shift2-invD)
finally show card ?C ≤ 1 .

qed
qed

function (domintros) shift1 :: (((( ′x ⇒0 nat) ⇒0
′a) × ′x set) list × ((( ′x ⇒0

nat) ⇒0
′a) × ′x set) set) ⇒

(((( ′x ⇒0 nat) ⇒0
′a) × ′x set) list ×

((( ′x ⇒0 nat) ⇒0
′a::{comm-ring-1 ,ring-no-zero-divisors})

× ′x set) set)
where
shift1 (qs, B) =

(if 1 < card B then
let (h, U ) = SOME b. b ∈ B ∧ card (snd b) = Suc m; x = SOME y. y ∈ U

in
shift1 (shift-list (h, U ) x qs, B − {(h, U )})

else (qs, B))
by auto

lemma shift1-domI :
assumes shift1-inv args
shows shift1-dom args

proof −
from wf-measure[of card ◦ snd] show ?thesis using assms
proof (induct)

176



case (less args)
obtain qs B where args: args = (qs, B) using prod.exhaust by blast
have IH : shift1-dom (qs0 , B0 ) if card B0 < card B and shift1-inv (qs0 , B0 )

for qs0 and B0 ::((- ⇒0
′a) × -) set

using - that(2 )
proof (rule less)

from that(1 ) show ((qs0 , B0 ), args) ∈ measure (card ◦ snd) by (simp add:
args)

qed
from less(2 ) have inv: shift1-inv (qs, B) by (simp only: args)
show ?case unfolding args
proof (rule shift1 .domintros)

fix h U
assume hU : (h, U ) = (SOME b. b ∈ B ∧ card (snd b) = Suc m)
define x where x = (SOME y. y ∈ U )
assume Suc 0 < card B
hence 1 < card B by simp
have shift1-dom (shift-list (h, U ) x qs, B − {(h, U )})
proof (rule IH )

from inv have finite B by (rule shift1-inv-finite-snd)
moreover from inv ‹1 < card B› hU have (h, U ) ∈ B by (rule

shift1-inv-some-snd)
ultimately show card (B − {(h, U )}) < card B by (rule card-Diff1-less)

next
from inv ‹1 < card B› hU x-def show shift1-inv (shift-list (h, U ) x qs, (B

− {(h, U )}))
by (rule shift1-inv-preserved)

qed
thus shift1-dom (shift-list (SOME b. b ∈ B ∧ card (snd b) = Suc m) (SOME

y. y ∈ U ) qs,
B − {SOME b. b ∈ B ∧ card (snd b) = Suc m}) by (simp add:

hU x-def )
qed

qed
qed

lemma shift1-induct [consumes 1 , case-names base step]:
assumes shift1-inv args
assumes

∧
qs B. shift1-inv (qs, B) =⇒ card B ≤ 1 =⇒ P (qs, B) (qs, B)

assumes
∧

qs B h U x. shift1-inv (qs, B) =⇒ 1 < card B =⇒
(h, U ) = (SOME b. b ∈ B ∧ card (snd b) = Suc m) =⇒ x = (SOME y.

y ∈ U ) =⇒
finite U =⇒ x ∈ U =⇒ card (U − {x}) = m =⇒
P (shift-list (h, U ) x qs, B − {(h, U )}) (shift1 (shift-list (h, U ) x qs, B

− {(h, U )})) =⇒
P (qs, B) (shift1 (shift-list (h, U ) x qs, B − {(h, U )}))

shows P args (shift1 args)
proof −

from assms(1 ) have shift1-dom args by (rule shift1-domI )
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thus ?thesis using assms(1 )
proof (induct args rule: shift1 .pinduct)

case step: (1 qs B)
obtain h U where hU : (h, U ) = (SOME b. b ∈ B ∧ card (snd b) = Suc m)

by (smt prod.exhaust)
define x where x = (SOME y. y ∈ U )
show ?case

proof (simp add: shift1 .psimps[OF step.hyps(1 )] flip: hU x-def del: One-nat-def ,
intro conjI impI )

let ?args = (shift-list (h, U ) x qs, B − {(h, U )})
assume 1 < card B

with step.prems have card-U : card U = Suc m using hU by (rule shift1-inv-some-snd)
from card-U have finite U using card.infinite by fastforce
from card-U have U 6= {} by auto
then obtain y where y ∈ U by blast
hence x ∈ U unfolding x-def by (rule someI )
with step.prems ‹1 < card B› hU x-def ‹finite U › show P (qs, B) (shift1

?args)
proof (rule assms(3 ))
from ‹finite U › ‹x ∈ U › show card (U − {x}) = m by (simp add: card-U )

next
from ‹1 < card B› refl hU x-def show P ?args (shift1 ?args)
proof (rule step.hyps)

from step.prems ‹1 < card B› hU x-def show shift1-inv ?args by (rule
shift1-inv-preserved)

qed
qed

next
assume ¬ 1 < card B
hence card B ≤ 1 by simp
with step.prems show P (qs, B) (qs, B) by (rule assms(2 ))

qed
qed

qed

lemma shift1-1 :
assumes shift1-inv args and d0 ≤ d
shows card {q ∈ set (fst (shift1 args)). poly-deg (fst q) = d0 ∧ m < card (snd

q)} ≤ 1
using assms(1 )

proof (induct args rule: shift1-induct)
case (base qs B)
from assms(2 ) have d0 < d ∨ d0 = d by auto
thus ?case
proof

from base(1 ) have shift2-inv qs by (rule shift1-invD)
moreover assume d0 < d
ultimately show ?thesis unfolding fst-conv by (rule shift2-invD)

next
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assume d0 = d
from base(1 ) have B = {q ∈ set (fst (qs, B)). poly-deg (fst q) = d0 ∧ m <

card (snd q)}
unfolding fst-conv ‹d0 = d› by (rule shift1-invD)

with base(2 ) show ?thesis by simp
qed

qed

lemma shift1-2 :
shift1-inv args =⇒

card {q ∈ set (fst (shift1 args)). m < card (snd q)} ≤ card {q ∈ set (fst args).
m < card (snd q)}
proof (induct args rule: shift1-induct)

case (base qs B)
show ?case ..

next
case (step qs B h U x)
let ?x = Poly-Mapping.single x (1 ::nat)
let ?p1 = (punit.monom-mult 1 ?x h, U )
let ?A = {q ∈ set qs. m < card (snd q)}
from step(1−3 ) have card-U : card U = Suc m and (h, U ) ∈ set qs by (rule

shift1-inv-some-snd)+
from step(1 ) have shift2-inv qs by (rule shift1-invD)
hence valid-decomp X qs by (rule shift2-invD)
hence h 6= 0 using ‹(h, U ) ∈ set qs› by (rule valid-decompD)
have fin1 : finite ?A by auto
hence fin2 : finite (insert ?p1 ?A) by simp
from ‹(h, U ) ∈ set qs› have hU-in: (h, U ) ∈ insert ?p1 ?A by (simp add:

card-U )
have ?p1 6= (h, U )
proof

assume ?p1 = (h, U )
hence lpp (punit.monom-mult 1 ?x h) = lpp h by simp
with ‹h 6= 0 › show False by (simp add: punit.lt-monom-mult monomial-0-iff )

qed
let ?qs = shift-list (h, U ) x qs
have {q ∈ set (fst (?qs, B − {(h, U )})). m < card (snd q)} = (insert ?p1 ?A)
− {(h, U )}

using step(7 ) card-U ‹?p1 6= (h, U )› by (fastforce simp: shift-list.simps)
also from fin2 hU-in have card . . . = card (insert ?p1 ?A) − 1 by (simp add:

card-Diff-singleton-if )
also from fin1 have . . . ≤ Suc (card ?A) − 1 by (simp add: card-insert-if )
also have . . . = card {q ∈ set (fst (qs, B)). m < card (snd q)} by simp
finally have card {q ∈ set (fst (?qs, B − {(h, U )})). m < card (snd q)} ≤

card {q ∈ set (fst (qs, B)). m < card (snd q)} .
with step(8 ) show ?case by (rule le-trans)

qed

lemma shift1-3 : shift1-inv args =⇒ cone-decomp T (fst args) =⇒ cone-decomp T
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(fst (shift1 args))
proof (induct args rule: shift1-induct)

case (base qs B)
from base(3 ) show ?case .

next
case (step qs B h U x)
from step.hyps(1 ) have shift2-inv qs by (rule shift1-invD)
hence valid-decomp X qs by (rule shift2-invD)
moreover from step.prems have cone-decomp T qs by (simp only: fst-conv)
moreover from step.hyps(1−3 ) have (h, U ) ∈ set qs by (rule shift1-inv-some-snd)
ultimately have cone-decomp T (fst (shift-list (h, U ) x qs, B − {(h, U )}))

unfolding fst-conv using step.hyps(6 ) by (rule cone-decomp-shift-list)
thus ?case by (rule step.hyps(8 ))

qed

lemma shift1-4 :
shift1-inv args =⇒
Max (poly-deg ‘ fst ‘ set (fst args)) ≤ Max (poly-deg ‘ fst ‘ set (fst (shift1 args)))

proof (induct args rule: shift1-induct)
case (base qs B)
show ?case ..

next
case (step qs B h U x)
let ?x = Poly-Mapping.single x 1
let ?p1 = (punit.monom-mult 1 ?x h, U )
let ?qs = shift-list (h, U ) x qs
from step(1 ) have B = {q ∈ set qs. poly-deg (fst q) = d ∧ m < card (snd q)}

and inv2 : shift2-inv qs by (rule shift1-invD)+
from this(1 ) have B ⊆ set qs by auto
with step(2 ) have set qs 6= {} by auto
from finite-set have fin: finite (poly-deg ‘ fst ‘ set ?qs) by (intro finite-imageI )
have Max (poly-deg ‘ fst ‘ set (fst (qs, B))) ≤ Max (poly-deg ‘ fst ‘ set (fst (?qs,

B − {(h, U )})))
unfolding fst-conv

proof (rule Max.boundedI )
from finite-set show finite (poly-deg ‘ fst ‘ set qs) by (intro finite-imageI )

next
from ‹set qs 6= {}› show poly-deg ‘ fst ‘ set qs 6= {} by simp

next
fix a
assume a ∈ poly-deg ‘ fst ‘ set qs
then obtain q where q ∈ set qs and a: a = poly-deg (fst q) by blast
show a ≤ Max (poly-deg ‘ fst ‘ set ?qs)
proof (cases q = (h, U ))

case True
hence a ≤ poly-deg (fst ?p1 ) by (cases h = 0 ) (simp-all add: a poly-deg-monom-mult)

also from fin have . . . ≤ Max (poly-deg ‘ fst ‘ set ?qs)
proof (rule Max-ge)

have ?p1 ∈ set ?qs by (simp add: shift-list.simps)
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thus poly-deg (fst ?p1 ) ∈ poly-deg ‘ fst ‘ set ?qs by (intro imageI )
qed
finally show ?thesis .

next
case False
with ‹q ∈ set qs› have q ∈ set ?qs by (simp add: shift-list.simps)
hence a ∈ poly-deg ‘ fst ‘ set ?qs unfolding a by (intro imageI )
with fin show ?thesis by (rule Max-ge)

qed
qed
thus ?case using step(8 ) by (rule le-trans)

qed

lemma shift1-5 : shift1-inv args =⇒ fst (shift1 args) = [] ←→ fst args = []
proof (induct args rule: shift1-induct)

case (base qs B)
show ?case ..

next
case (step qs B h U x)
let ?p1 = (punit.monom-mult 1 (Poly-Mapping.single x 1 ) h, U )
let ?qs = shift-list (h, U ) x qs
from step(1 ) have B = {q ∈ set qs. poly-deg (fst q) = d ∧ m < card (snd q)}

and inv2 : shift2-inv qs by (rule shift1-invD)+
from this(1 ) have B ⊆ set qs by auto
with step(2 ) have qs 6= [] by auto
moreover have fst (shift1 (?qs, B − {(h, U )})) 6= []

by (simp add: step.hyps(8 ) del: One-nat-def ) (simp add: shift-list.simps)
ultimately show ?case by simp

qed

lemma shift1-6 : shift1-inv args =⇒ monomial-decomp (fst args) =⇒ monomial-decomp
(fst (shift1 args))
proof (induct args rule: shift1-induct)

case (base qs B)
from base(3 ) show ?case .

next
case (step qs B h U x)
from step(1−3 ) have (h, U ) ∈ set qs by (rule shift1-inv-some-snd)
with step.prems have monomial-decomp (fst (shift-list (h, U ) x qs, B − {(h,

U )}))
unfolding fst-conv by (rule monomial-decomp-shift-list)

thus ?case by (rule step.hyps)
qed

lemma shift1-7 : shift1-inv args =⇒ hom-decomp (fst args) =⇒ hom-decomp (fst
(shift1 args))
proof (induct args rule: shift1-induct)

case (base qs B)
from base(3 ) show ?case .
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next
case (step qs B h U x)
from step(1−3 ) have (h, U ) ∈ set qs by (rule shift1-inv-some-snd)
with step.prems have hom-decomp (fst (shift-list (h, U ) x qs, B − {(h, U )}))

unfolding fst-conv by (rule hom-decomp-shift-list)
thus ?case by (rule step.hyps)

qed

end

lemma shift2-inv-preserved:
assumes shift2-inv d qs
shows shift2-inv (Suc d) (fst (shift1 (qs, {q ∈ set qs. poly-deg (fst q) = d ∧ m

< card (snd q)})))
proof −

define args where args = (qs, {q ∈ set qs. poly-deg (fst q) = d ∧ m < card (snd
q)})

from refl assms have inv1 : shift1-inv d args unfolding args-def
by (rule shift1-invI )

hence shift1-inv d (shift1 args) by (induct args rule: shift1-induct)
hence shift1-inv d (fst (shift1 args), snd (shift1 args)) by simp
hence shift2-inv d (fst (shift1 args)) by (rule shift1-invD)
hence valid-decomp X (fst (shift1 args)) and standard-decomp k (fst (shift1 args))

and exact-decomp (Suc m) (fst (shift1 args)) by (rule shift2-invD)+
thus shift2-inv (Suc d) (fst (shift1 args))
proof (rule shift2-invI )

fix d0
assume d0 < Suc d
hence d0 ≤ d by simp
with inv1 show card {q ∈ set (fst (shift1 args)). poly-deg (fst q) = d0 ∧ m <

card (snd q)} ≤ 1
by (rule shift1-1 )

qed
qed

function shift2 :: nat ⇒ nat ⇒ ((( ′x ⇒0 nat) ⇒0
′a) × ′x set) list ⇒

((( ′x ⇒0 nat) ⇒0
′a::{comm-ring-1 ,ring-no-zero-divisors}) × ′x

set) list where
shift2 c d qs =

(if c ≤ d then qs
else shift2 c (Suc d) (fst (shift1 (qs, {q ∈ set qs. poly-deg (fst q) = d ∧ m <

card (snd q)}))))
by auto

termination proof
show wf (measure (λ(c, d, -). c − d)) by (fact wf-measure)

qed simp

lemma shift2-1 : shift2-inv d qs =⇒ shift2-inv c (shift2 c d qs)
proof (induct c d qs rule: shift2 .induct)
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case IH : (1 c d qs)
show ?case
proof (subst shift2 .simps, simp del: shift2 .simps, intro conjI impI )

assume c ≤ d
show shift2-inv c qs
proof (rule shift2-invI )

from IH (2 ) show valid-decomp X qs and standard-decomp k qs and ex-
act-decomp (Suc m) qs

by (rule shift2-invD)+
next

fix d0
assume d0 < c
hence d0 < d using ‹c ≤ d› by (rule less-le-trans)
with IH (2 ) show card {q ∈ set qs. poly-deg (fst q) = d0 ∧ m < card (snd

q)} ≤ 1
by (rule shift2-invD)

qed
next

assume ¬ c ≤ d
thus shift2-inv c (shift2 c (Suc d) (fst (shift1 (qs, {q ∈ set qs. poly-deg (fst q)

= d ∧ m < card (snd q)}))))
proof (rule IH )
from IH (2 ) show shift2-inv (Suc d) (fst (shift1 (qs, {q ∈ set qs. poly-deg (fst

q) = d ∧ m < card (snd q)})))
by (rule shift2-inv-preserved)

qed
qed

qed

lemma shift2-2 :
shift2-inv d qs =⇒

card {q ∈ set (shift2 c d qs). m < card (snd q)} ≤ card {q ∈ set qs. m < card
(snd q)}
proof (induct c d qs rule: shift2 .induct)

case IH : (1 c d qs)
let ?A = {q ∈ set (shift2 c (Suc d) (fst (shift1 (qs, {q ∈ set qs. poly-deg (fst q)

= d ∧ m < card (snd q)})))). m < card (snd q)}
show ?case
proof (subst shift2 .simps, simp del: shift2 .simps, intro impI )

assume ¬ c ≤ d
hence card ?A ≤ card {q ∈ set (fst (shift1 (qs, {q ∈ set qs. poly-deg (fst q) =

d ∧ m < card (snd q)}))). m < card (snd q)}
proof (rule IH )

show shift2-inv (Suc d) (fst (shift1 (qs, {q ∈ set qs. poly-deg (fst q) = d ∧ m
< card (snd q)})))

using IH (2 ) by (rule shift2-inv-preserved)
qed
also have . . . ≤ card {q ∈ set (fst (qs, {q ∈ set qs. poly-deg (fst q) = d ∧ m

< card (snd q)})). m < card (snd q)}
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using refl IH (2 ) by (intro shift1-2 shift1-invI )
finally show card ?A ≤ card {q ∈ set qs. m < card (snd q)} by (simp only:

fst-conv)
qed

qed

lemma shift2-3 : shift2-inv d qs =⇒ cone-decomp T qs =⇒ cone-decomp T (shift2
c d qs)
proof (induct c d qs rule: shift2 .induct)

case IH : (1 c d qs)
have inv2 : shift2-inv (Suc d) (fst (shift1 (qs, {q ∈ set qs. poly-deg (fst q) = d ∧

m < card (snd q)})))
using IH (2 ) by (rule shift2-inv-preserved)

show ?case
proof (subst shift2 .simps, simp add: IH .prems del: shift2 .simps, intro impI )

assume ¬ c ≤ d
moreover note inv2
moreover have cone-decomp T (fst (shift1 (qs, {q ∈ set qs. poly-deg (fst q) =

d ∧ m < card (snd q)})))
proof (rule shift1-3 )

from refl IH (2 ) show shift1-inv d (qs, {q ∈ set qs. poly-deg (fst q) = d ∧ m
< card (snd q)})

by (rule shift1-invI )
qed (simp add: IH .prems)
ultimately show cone-decomp T (shift2 c (Suc d) (fst (shift1 (qs, {q ∈ set qs.

poly-deg (fst q) = d ∧ m < card (snd q)}))))
by (rule IH )

qed
qed

lemma shift2-4 :
shift2-inv d qs =⇒ Max (poly-deg ‘ fst ‘ set qs) ≤ Max (poly-deg ‘ fst ‘ set (shift2

c d qs))
proof (induct c d qs rule: shift2 .induct)

case IH : (1 c d qs)
let ?args = (qs, {q ∈ set qs. poly-deg (fst q) = d ∧ m < card (snd q)})
show ?case
proof (subst shift2 .simps, simp del: shift2 .simps, intro impI )

assume ¬ c ≤ d
have Max (poly-deg ‘ fst ‘ set (fst ?args)) ≤ Max (poly-deg ‘ fst ‘ set (fst (shift1

?args)))
using refl IH (2 ) by (intro shift1-4 shift1-invI )

also from ‹¬ c ≤ d› have . . . ≤ Max (poly-deg ‘ fst ‘ set (shift2 c (Suc d) (fst
(shift1 ?args))))

proof (rule IH )
from IH (2 ) show shift2-inv (Suc d) (fst (shift1 ?args))

by (rule shift2-inv-preserved)
qed
finally show Max (poly-deg ‘ fst ‘ set qs) ≤ Max (poly-deg ‘ fst ‘ set (shift2 c

184



(Suc d) (fst (shift1 ?args))))
by (simp only: fst-conv)

qed
qed

lemma shift2-5 :
shift2-inv d qs =⇒ shift2 c d qs = [] ←→ qs = []

proof (induct c d qs rule: shift2 .induct)
case IH : (1 c d qs)
let ?args = (qs, {q ∈ set qs. poly-deg (fst q) = d ∧ m < card (snd q)})
show ?case
proof (subst shift2 .simps, simp del: shift2 .simps, intro impI )

assume ¬ c ≤ d
hence shift2 c (Suc d) (fst (shift1 ?args)) = [] ←→ fst (shift1 ?args) = []
proof (rule IH )

from IH (2 ) show shift2-inv (Suc d) (fst (shift1 ?args))
by (rule shift2-inv-preserved)

qed
also from refl IH (2 ) have . . . ←→ fst ?args = [] by (intro shift1-5 shift1-invI )
finally show shift2 c (Suc d) (fst (shift1 ?args)) = [] ←→ qs = [] by (simp

only: fst-conv)
qed

qed

lemma shift2-6 :
shift2-inv d qs =⇒ monomial-decomp qs =⇒ monomial-decomp (shift2 c d qs)

proof (induct c d qs rule: shift2 .induct)
case IH : (1 c d qs)
let ?args = (qs, {q ∈ set qs. poly-deg (fst q) = d ∧ m < card (snd q)})
show ?case
proof (subst shift2 .simps, simp del: shift2 .simps, intro conjI impI IH )
from IH (2 ) show shift2-inv (Suc d) (fst (shift1 ?args)) by (rule shift2-inv-preserved)

next
from refl IH (2 ) have shift1-inv d ?args by (rule shift1-invI )
moreover from IH (3 ) have monomial-decomp (fst ?args) by simp
ultimately show monomial-decomp (fst (shift1 ?args)) by (rule shift1-6 )

qed
qed

lemma shift2-7 :
shift2-inv d qs =⇒ hom-decomp qs =⇒ hom-decomp (shift2 c d qs)

proof (induct c d qs rule: shift2 .induct)
case IH : (1 c d qs)
let ?args = (qs, {q ∈ set qs. poly-deg (fst q) = d ∧ m < card (snd q)})
show ?case
proof (subst shift2 .simps, simp del: shift2 .simps, intro conjI impI IH )
from IH (2 ) show shift2-inv (Suc d) (fst (shift1 ?args)) by (rule shift2-inv-preserved)

next
from refl IH (2 ) have shift1-inv d ?args by (rule shift1-invI )
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moreover from IH (3 ) have hom-decomp (fst ?args) by simp
ultimately show hom-decomp (fst (shift1 ?args)) by (rule shift1-7 )

qed
qed

definition shift :: ((( ′x ⇒0 nat) ⇒0
′a) × ′x set) list ⇒

((( ′x ⇒0 nat) ⇒0
′a::{comm-ring-1 ,ring-no-zero-divisors}) ×

′x set) list
where shift qs = shift2 (k + card {q ∈ set qs. m < card (snd q)}) k qs

lemma shift2-inv-init:
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp (Suc

m) qs
shows shift2-inv k qs
using assms

proof (rule shift2-invI )
fix d0
assume d0 < k
have {q ∈ set qs. poly-deg (fst q) = d0 ∧ m < card (snd q)} = {}
proof −

{
fix q
assume q ∈ set qs
obtain h U where q: q = (h, U ) using prod.exhaust by blast
assume poly-deg (fst q) = d0 and m < card (snd q)
hence poly-deg h < k and m < card U using ‹d0 < k› by (simp-all add: q)
from this(2 ) have U 6= {} by auto
with ‹q ∈ set qs› have (h, U ) ∈ set (qs+) by (simp add: q pos-decomp-def )
with assms(2 ) have k ≤ poly-deg h by (rule standard-decompD)
with ‹poly-deg h < k› have False by simp

}
thus ?thesis by blast

qed
thus card {q ∈ set qs. poly-deg (fst q) = d0 ∧ m < card (snd q)} ≤ 1 by (simp

only: card.empty)
qed

lemma shift:
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp (Suc

m) qs
shows valid-decomp X (shift qs) and standard-decomp k (shift qs) and ex-

act-decomp m (shift qs)
proof −

define c where c = card {q ∈ set qs. m < card (snd q)}
define A where A = {q ∈ set (shift qs). m < card (snd q)}
from assms have shift2-inv k qs by (rule shift2-inv-init)
hence inv2 : shift2-inv (k + c) (shift qs) and card A ≤ c

unfolding shift-def c-def A-def by (rule shift2-1 , rule shift2-2 )
from inv2 have fin: valid-decomp X (shift qs) and std: standard-decomp k (shift
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qs)
and exct: exact-decomp (Suc m) (shift qs)
by (rule shift2-invD)+

show valid-decomp X (shift qs) and standard-decomp k (shift qs) by fact+
have finite A by (auto simp: A-def )

show exact-decomp m (shift qs)
proof (rule exact-decompI )

fix h U
assume (h, U ) ∈ set (shift qs)
with exct show h ∈ P[X ] and U ⊆ X by (rule exact-decompD)+

next
fix h1 h2 U1 U2
assume 1 : (h1 , U1 ) ∈ set (shift qs) and 2 : (h2 , U2 ) ∈ set (shift qs)
assume 3 : poly-deg h1 = poly-deg h2 and 4 : m < card U1 and 5 : m < card

U2
from 5 have U2 6= {} by auto
with 2 have (h2 , U2 ) ∈ set ((shift qs)+) by (simp add: pos-decomp-def )
let ?C = {q ∈ set (shift qs). poly-deg (fst q) = poly-deg h2 ∧ m < card (snd

q)}
define B where B = {q ∈ A. k ≤ poly-deg (fst q) ∧ poly-deg (fst q) ≤ poly-deg

h2}
have Suc (poly-deg h2 ) − k ≤ card B
proof −

have B = (
⋃

d0∈{k..poly-deg h2}. {q ∈ A. poly-deg (fst q) = d0}) by (auto
simp: B-def )

also have card . . . = (
∑

d0=k..poly-deg h2 . card {q ∈ A. poly-deg (fst q) =
d0})

proof (intro card-UN-disjoint ballI impI )
fix d0

from - ‹finite A› show finite {q ∈ A. poly-deg (fst q) = d0} by (rule
finite-subset) blast

next
fix d0 d1 :: nat
assume d0 6= d1
thus {q ∈ A. poly-deg (fst q) = d0} ∩ {q ∈ A. poly-deg (fst q) = d1} = {}

by blast
qed (fact finite-atLeastAtMost)
also have . . . ≥ (

∑
d0=k..poly-deg h2 . 1 )

proof (rule sum-mono)
fix d0
assume d0 ∈ {k..poly-deg h2}
hence k ≤ d0 and d0 ≤ poly-deg h2 by simp-all
with std ‹(h2 , U2 ) ∈ set ((shift qs)+)› obtain h ′ U ′ where (h ′, U ′) ∈ set

(shift qs)
and poly-deg h ′ = d0 and card U2 ≤ card U ′ by (rule standard-decompE)

from 5 this(3 ) have m < card U ′ by (rule less-le-trans)
with ‹(h ′, U ′) ∈ set (shift qs)› have (h ′, U ′) ∈ {q ∈ A. poly-deg (fst q) =

d0}
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by (simp add: A-def ‹poly-deg h ′ = d0 ›)
hence {q ∈ A. poly-deg (fst q) = d0} 6= {} by blast
moreover from - ‹finite A› have finite {q ∈ A. poly-deg (fst q) = d0}

by (rule finite-subset) blast
ultimately show 1 ≤ card {q ∈ A. poly-deg (fst q) = d0}

by (simp add: card-gt-0-iff Suc-le-eq)
qed
also have (

∑
d0=k..poly-deg h2 . 1 ) = Suc (poly-deg h2 ) − k by auto

finally show ?thesis .
qed
also from ‹finite A› - have . . . ≤ card A by (rule card-mono) (auto simp:

B-def )
also have . . . ≤ c by fact
finally have poly-deg h2 < k + c by simp
with inv2 have card ?C ≤ 1 by (rule shift2-invD)
have finite ?C by auto
moreover note ‹card ?C ≤ 1 ›
moreover from 1 3 4 have (h1 , U1 ) ∈ ?C by simp
moreover from 2 5 have (h2 , U2 ) ∈ ?C by simp
ultimately show (h1 , U1 ) = (h2 , U2 ) by (auto simp: card-le-Suc0-iff-eq)

qed
qed

lemma monomial-decomp-shift:
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp (Suc

m) qs
and monomial-decomp qs

shows monomial-decomp (shift qs)
proof −

from assms(1 , 2 , 3 ) have shift2-inv k qs by (rule shift2-inv-init)
thus ?thesis unfolding shift-def using assms(4 ) by (rule shift2-6 )

qed

lemma hom-decomp-shift:
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp (Suc

m) qs
and hom-decomp qs

shows hom-decomp (shift qs)
proof −

from assms(1 , 2 , 3 ) have shift2-inv k qs by (rule shift2-inv-init)
thus ?thesis unfolding shift-def using assms(4 ) by (rule shift2-7 )

qed

lemma cone-decomp-shift:
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp (Suc

m) qs
and cone-decomp T qs

shows cone-decomp T (shift qs)
proof −
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from assms(1 , 2 , 3 ) have shift2-inv k qs by (rule shift2-inv-init)
thus ?thesis unfolding shift-def using assms(4 ) by (rule shift2-3 )

qed

lemma Max-shift-ge:
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp (Suc

m) qs
shows Max (poly-deg ‘ fst ‘ set qs) ≤ Max (poly-deg ‘ fst ‘ set (shift qs))

proof −
from assms(1−3 ) have shift2-inv k qs by (rule shift2-inv-init)
thus ?thesis unfolding shift-def by (rule shift2-4 )

qed

lemma shift-Nil-iff :
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp (Suc

m) qs
shows shift qs = [] ←→ qs = []

proof −
from assms(1−3 ) have shift2-inv k qs by (rule shift2-inv-init)
thus ?thesis unfolding shift-def by (rule shift2-5 )

qed

end

primrec exact-aux :: nat ⇒ nat ⇒ ((( ′x ⇒0 nat) ⇒0
′a) × ′x set) list ⇒

((( ′x ⇒0 nat) ⇒0
′a::{comm-ring-1 ,ring-no-zero-divisors}) × ′x

set) list where
exact-aux k 0 qs = qs |
exact-aux k (Suc m) qs = exact-aux k m (shift k m qs)

lemma exact-aux:
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp m qs
shows valid-decomp X (exact-aux k m qs) (is ?thesis1 )

and standard-decomp k (exact-aux k m qs) (is ?thesis2 )
and exact-decomp 0 (exact-aux k m qs) (is ?thesis3 )

proof −
from assms have ?thesis1 ∧ ?thesis2 ∧ ?thesis3
proof (induct m arbitrary: qs)

case 0
thus ?case by simp

next
case (Suc m)
let ?qs = shift k m qs
have valid-decomp X (exact-aux k m ?qs) ∧ standard-decomp k (exact-aux k m

?qs) ∧
exact-decomp 0 (exact-aux k m ?qs)

proof (rule Suc)
from Suc.prems show valid-decomp X ?qs and standard-decomp k ?qs and

exact-decomp m ?qs
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by (rule shift)+
qed
thus ?case by simp

qed
thus ?thesis1 and ?thesis2 and ?thesis3 by simp-all

qed

lemma monomial-decomp-exact-aux:
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp m qs

and monomial-decomp qs
shows monomial-decomp (exact-aux k m qs)
using assms

proof (induct m arbitrary: qs)
case 0
thus ?case by simp

next
case (Suc m)
let ?qs = shift k m qs
have monomial-decomp (exact-aux k m ?qs)
proof (rule Suc)

show valid-decomp X ?qs and standard-decomp k ?qs and exact-decomp m ?qs
using Suc.prems(1 , 2 , 3 ) by (rule shift)+

next
from Suc.prems show monomial-decomp ?qs by (rule monomial-decomp-shift)

qed
thus ?case by simp

qed

lemma hom-decomp-exact-aux:
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp m qs

and hom-decomp qs
shows hom-decomp (exact-aux k m qs)
using assms

proof (induct m arbitrary: qs)
case 0
thus ?case by simp

next
case (Suc m)
let ?qs = shift k m qs
have hom-decomp (exact-aux k m ?qs)
proof (rule Suc)

show valid-decomp X ?qs and standard-decomp k ?qs and exact-decomp m ?qs
using Suc.prems(1 , 2 , 3 ) by (rule shift)+

next
from Suc.prems show hom-decomp ?qs by (rule hom-decomp-shift)

qed
thus ?case by simp

qed
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lemma cone-decomp-exact-aux:
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp m qs

and cone-decomp T qs
shows cone-decomp T (exact-aux k m qs)
using assms

proof (induct m arbitrary: qs)
case 0
thus ?case by simp

next
case (Suc m)
let ?qs = shift k m qs
have cone-decomp T (exact-aux k m ?qs)
proof (rule Suc)

show valid-decomp X ?qs and standard-decomp k ?qs and exact-decomp m ?qs
using Suc.prems(1 , 2 , 3 ) by (rule shift)+

next
from Suc.prems show cone-decomp T ?qs by (rule cone-decomp-shift)

qed
thus ?case by simp

qed

lemma Max-exact-aux-ge:
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp m qs
shows Max (poly-deg ‘ fst ‘ set qs) ≤ Max (poly-deg ‘ fst ‘ set (exact-aux k m

qs))
using assms

proof (induct m arbitrary: qs)
case 0
thus ?case by simp

next
case (Suc m)
let ?qs = shift k m qs
from Suc.prems have Max (poly-deg ‘ fst ‘ set qs) ≤ Max (poly-deg ‘ fst ‘ set

?qs)
by (rule Max-shift-ge)

also have . . . ≤ Max (poly-deg ‘ fst ‘ set (exact-aux k m ?qs))
proof (rule Suc)

from Suc.prems show valid-decomp X ?qs and standard-decomp k ?qs and
exact-decomp m ?qs

by (rule shift)+
qed
finally show ?case by simp

qed

lemma exact-aux-Nil-iff :
assumes valid-decomp X qs and standard-decomp k qs and exact-decomp m qs
shows exact-aux k m qs = [] ←→ qs = []
using assms

proof (induct m arbitrary: qs)
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case 0
thus ?case by simp

next
case (Suc m)
let ?qs = shift k m qs
have exact-aux k m ?qs = [] ←→ ?qs = []
proof (rule Suc)

from Suc.prems show valid-decomp X ?qs and standard-decomp k ?qs and
exact-decomp m ?qs

by (rule shift)+
qed
also from Suc.prems have . . . ←→ qs = [] by (rule shift-Nil-iff )
finally show ?case by simp

qed

definition exact :: nat ⇒ ((( ′x ⇒0 nat) ⇒0
′a) × ′x set) list ⇒

((( ′x ⇒0 nat) ⇒0
′a::{comm-ring-1 ,ring-no-zero-divisors}) ×

′x set) list
where exact k qs = exact-aux k (card X) qs

lemma exact:
assumes valid-decomp X qs and standard-decomp k qs
shows valid-decomp X (exact k qs) (is ?thesis1 )

and standard-decomp k (exact k qs) (is ?thesis2 )
and exact-decomp 0 (exact k qs) (is ?thesis3 )

proof −
from assms(1 ) le-refl have exact-decomp (card X) qs by (rule exact-decomp-card-X)
with assms show ?thesis1 and ?thesis2 and ?thesis3 unfolding exact-def by

(rule exact-aux)+
qed

lemma monomial-decomp-exact:
assumes valid-decomp X qs and standard-decomp k qs and monomial-decomp qs
shows monomial-decomp (exact k qs)

proof −
from assms(1 ) le-refl have exact-decomp (card X) qs by (rule exact-decomp-card-X)
with assms(1 , 2 ) show ?thesis unfolding exact-def using assms(3 ) by (rule

monomial-decomp-exact-aux)
qed

lemma hom-decomp-exact:
assumes valid-decomp X qs and standard-decomp k qs and hom-decomp qs
shows hom-decomp (exact k qs)

proof −
from assms(1 ) le-refl have exact-decomp (card X) qs by (rule exact-decomp-card-X)
with assms(1 , 2 ) show ?thesis unfolding exact-def using assms(3 ) by (rule

hom-decomp-exact-aux)
qed
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lemma cone-decomp-exact:
assumes valid-decomp X qs and standard-decomp k qs and cone-decomp T qs
shows cone-decomp T (exact k qs)

proof −
from assms(1 ) le-refl have exact-decomp (card X) qs by (rule exact-decomp-card-X)
with assms(1 , 2 ) show ?thesis unfolding exact-def using assms(3 ) by (rule

cone-decomp-exact-aux)
qed

lemma Max-exact-ge:
assumes valid-decomp X qs and standard-decomp k qs
shows Max (poly-deg ‘ fst ‘ set qs) ≤ Max (poly-deg ‘ fst ‘ set (exact k qs))

proof −
from assms(1 ) le-refl have exact-decomp (card X) qs by (rule exact-decomp-card-X)
with assms(1 , 2 ) show ?thesis unfolding exact-def by (rule Max-exact-aux-ge)

qed

lemma exact-Nil-iff :
assumes valid-decomp X qs and standard-decomp k qs
shows exact k qs = [] ←→ qs = []

proof −
from assms(1 ) le-refl have exact-decomp (card X) qs by (rule exact-decomp-card-X)
with assms(1 , 2 ) show ?thesis unfolding exact-def by (rule exact-aux-Nil-iff )

qed

corollary b-zero-exact:
assumes valid-decomp X qs and standard-decomp k qs and qs 6= []
shows Suc (Max (poly-deg ‘ fst ‘ set qs)) ≤ b (exact k qs) 0

proof −
from assms(1 , 2 ) have Max (poly-deg ‘ fst ‘ set qs) ≤ Max (poly-deg ‘ fst ‘ set

(exact k qs))
by (rule Max-exact-ge)

also have Suc . . . ≤ b (exact k qs) 0
proof (rule b-zero)

from assms show exact k qs 6= [] by (simp add: exact-Nil-iff )
qed
finally show ?thesis by simp

qed

lemma normal-form-exact-decompE :
assumes F ⊆ P[X ]
obtains qs where valid-decomp X qs and standard-decomp 0 qs and mono-

mial-decomp qs
and cone-decomp (normal-form F ‘ P[X ]) qs and exact-decomp 0 qs
and

∧
g. (

∧
f . f ∈ F =⇒ homogeneous f ) =⇒ g ∈ punit.reduced-GB F =⇒

poly-deg g ≤ b qs 0
proof −

let ?G = punit.reduced-GB F
let ?S = lpp ‘ ?G
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let ?N = normal-form F ‘ P[X ]
define qs::((- ⇒0

′a) × -) list where qs = snd (split 0 X ?S)
from fin-X assms have std: standard-decomp 0 qs and cn: cone-decomp ?N qs

unfolding qs-def by (rule standard-cone-decomp-snd-split)+
from fin-X assms have finite ?G by (rule finite-reduced-GB-Polys)
hence finite ?S by (rule finite-imageI )
with fin-X subset-refl have valid: valid-decomp X qs unfolding qs-def using

zero-in-PPs
by (rule valid-decomp-split)

from fin-X subset-refl ‹finite ?S› have md: monomial-decomp qs
unfolding qs-def by (rule monomial-decomp-split)

let ?qs = exact 0 qs
from valid std have valid-decomp X ?qs and standard-decomp 0 ?qs by (rule

exact)+
moreover from valid std md have monomial-decomp ?qs by (rule monomial-decomp-exact)
moreover from valid std cn have cone-decomp ?N ?qs by (rule cone-decomp-exact)
moreover from valid std have exact-decomp 0 ?qs by (rule exact)
moreover have poly-deg g ≤ b ?qs 0 if

∧
f . f ∈ F =⇒ homogeneous f and g ∈

?G for g
proof (cases qs = [])

case True
from one-in-Polys have normal-form F 1 ∈ ?N by (rule imageI )

also from True cn have . . . = {0} by (simp add: cone-decomp-def direct-decomp-def
bij-betw-def )

finally have ?G = {1} using fin-X assms
by (simp add: normal-form-zero-iff ideal-eq-UNIV-iff-reduced-GB-eq-one-Polys

flip: ideal-eq-UNIV-iff-contains-one)
with that(2 ) show ?thesis by simp

next
case False
from fin-X assms that have poly-deg g ≤ Suc (Max (poly-deg ‘ fst ‘ set qs))

unfolding qs-def by (rule standard-cone-decomp-snd-split)
also from valid std False have . . . ≤ b ?qs 0 by (rule b-zero-exact)
finally show ?thesis .

qed
ultimately show ?thesis ..

qed

end

end

end

end
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11 Dubé’s Degree-Bound for Homogeneous Gröb-
ner Bases

theory Dube-Bound
imports Poly-Fun Cone-Decomposition Degree-Bound-Utils

begin

context fixes n d :: nat
begin

function Dube-aux :: nat ⇒ nat where
Dube-aux j = (if j + 2 < n then

2 + ((Dube-aux (j + 1 )) choose 2 ) + (
∑

i=j+3 ..n−1 . (Dube-aux
i) choose (Suc (i − j)))

else if j + 2 = n then d2 + 2 ∗ d else 2 ∗ d)
by pat-completeness auto

termination proof
show wf (measure ((−) n)) by (fact wf-measure)

qed auto

definition Dube :: nat where Dube = (if n ≤ 1 ∨ d = 0 then d else Dube-aux 1 )

lemma Dube-aux-ge-d: d ≤ Dube-aux j
proof (induct j rule: Dube-aux.induct)

case step: (1 j)
have j + 2 < n ∨ j + 2 = n ∨ n < j + 2 by auto
show ?case
proof (rule linorder-cases)

assume ∗: j + 2 < n
hence 1 : d ≤ Dube-aux (j + 1 )

by (rule step.hyps)+
show ?thesis
proof (cases d ≤ 2 )

case True
also from ∗ have 2 ≤ Dube-aux j by simp
finally show ?thesis .

next
case False
hence 2 < d by simp
hence 2 < Dube-aux (j + 1 ) using 1 by (rule less-le-trans)

with - have Dube-aux (j + 1 ) ≤ Dube-aux (j + 1 ) choose 2 by (rule
upper-le-binomial) simp

also from ∗ have . . . ≤ Dube-aux j by simp
finally have Dube-aux (j + 1 ) ≤ Dube-aux j .
with 1 show ?thesis by (rule le-trans)

qed
next

assume j + 2 = n
thus ?thesis by simp
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next
assume n < j + 2
thus ?thesis by simp

qed
qed

corollary Dube-ge-d: d ≤ Dube
by (simp add: Dube-def Dube-aux-ge-d del: Dube-aux.simps)

Dubé in [1] proves the following theorem, to obtain a short closed form for
the degree bound. However, the proof he gives is wrong: In the last-but-one
proof step of Lemma 8.1 the sum on the right-hand-side of the inequality
can be greater than 1/2 (e.g. for n = 7, d = 2 and j = 1 ), rendering
the value inside the big brackets negative. This is also true without the
additional summand 2 we had to introduce in function local.Dube-aux to
correct another mistake found in [1]. Nonetheless, experiments carried out in
Mathematica still suggest that the short closed form is a valid upper bound
for local.Dube, even with the additional summand 2. So, with some effort it
might be possible to prove the theorem below; but in fact function local.Dube
gives typically much better (i.e. smaller) values for concrete values of n and
d, so it is better to stick to local.Dube instead of the closed form anyway.
Asymptotically, as n tends to infinity, local.Dube grows double exponentially,
too.
theorem rat-of-nat Dube ≤ 2 ∗ ((rat-of-nat d)2 / 2 + (rat-of-nat d)) ^ (2 ^ (n −
2 ))

oops

end

11.1 Hilbert Function and Hilbert Polynomial
context pm-powerprod
begin

context
fixes X :: ′x set
assumes fin-X : finite X

begin

lemma Hilbert-fun-cone-aux:
assumes h ∈ P[X ] and h 6= 0 and U ⊆ X and homogeneous (h::- ⇒0

′a::field)
shows Hilbert-fun (cone (h, U )) z = card {t ∈ .[U ]. deg-pm t + poly-deg h = z}

proof −
from assms(2 ) have lpp h ∈ keys h by (rule punit.lt-in-keys)
with assms(4 ) have deg-h[symmetric]: deg-pm (lpp h) = poly-deg h

by (rule homogeneousD-poly-deg)
from assms(1 , 3 ) have cone (h, U ) ⊆ P[X ] by (rule cone-subset-PolysI )
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with fin-X have Hilbert-fun (cone (h, U )) z = card (lpp ‘ (hom-deg-set z (cone
(h, U )) − {0}))

using subspace-cone[of (h, U )] by (simp only: Hilbert-fun-alt)
also from assms(4 ) have lpp ‘ (hom-deg-set z (cone (h, U )) − {0}) =

{t ∈ lpp ‘ (cone (h, U ) − {0}). deg-pm t = z}
by (intro image-lt-hom-deg-set homogeneous-set-coneI )

also have {t ∈ lpp ‘ (cone (h, U ) − {0}). deg-pm t = z} =
(λt. t + lpp h) ‘ {t ∈ .[U ]. deg-pm t + poly-deg h = z} (is ?A = ?B)

proof
show ?A ⊆ ?B
proof

fix t
assume t ∈ ?A
hence t ∈ lpp ‘ (cone (h, U ) − {0}) and deg-pm t = z by simp-all
from this(1 ) obtain a where a ∈ cone (h, U ) − {0} and 2 : t = lpp a ..
from this(1 ) have a ∈ cone (h, U ) and a 6= 0 by simp-all
from this(1 ) obtain q where q ∈ P[U ] and a: a = q ∗ h by (rule coneE)
from ‹a 6= 0 › have q 6= 0 by (auto simp: a)
hence t: t = lpp q + lpp h using assms(2 ) unfolding 2 a by (rule lp-times)
hence deg-pm (lpp q) + poly-deg h = deg-pm t by (simp add: deg-pm-plus

deg-h)
also have . . . = z by fact
finally have deg-pm (lpp q) + poly-deg h = z .
moreover from ‹q ∈ P[U ]› have lpp q ∈ .[U ] by (rule PPs-closed-lpp)
ultimately have lpp q ∈ {t ∈ .[U ]. deg-pm t + poly-deg h = z} by simp
moreover have t = lpp q + lpp h by (simp only: t)
ultimately show t ∈ ?B by (rule rev-image-eqI )

qed
next

show ?B ⊆ ?A
proof

fix t
assume t ∈ ?B
then obtain s where s ∈ {t ∈ .[U ]. deg-pm t + poly-deg h = z}

and t1 : t = s + lpp h ..
from this(1 ) have s ∈ .[U ] and 1 : deg-pm s + poly-deg h = z by simp-all
let ?q = monomial (1 :: ′a) s
have ?q 6= 0 by (simp add: monomial-0-iff )
hence ?q ∗ h 6= 0 and lpp (?q ∗ h) = lpp ?q + lpp h using ‹h 6= 0 ›

by (rule times-not-zero, rule lp-times)
hence t: t = lpp (?q ∗ h) by (simp add: t1 punit.lt-monomial)
from ‹s ∈ .[U ]› have ?q ∈ P[U ] by (rule Polys-closed-monomial)
with refl have ?q ∗ h ∈ cone (h, U ) by (rule coneI )
moreover from - assms(2 ) have ?q ∗ h 6= 0 by (rule times-not-zero) (simp

add: monomial-0-iff )
ultimately have ?q ∗ h ∈ cone (h, U ) − {0} by simp
hence t ∈ lpp ‘ (cone (h, U ) − {0}) unfolding t by (rule imageI )
moreover have deg-pm t = int z by (simp add: t1 ) (simp add: deg-pm-plus

deg-h flip: 1 )

197



ultimately show t ∈ ?A by simp
qed

qed
also have card . . . = card {t ∈ .[U ]. deg-pm t + poly-deg h = z} by (simp add:

card-image)
finally show ?thesis .

qed

lemma Hilbert-fun-cone-empty:
assumes h ∈ P[X ] and h 6= 0 and homogeneous (h::- ⇒0

′a::field)
shows Hilbert-fun (cone (h, {})) z = (if poly-deg h = z then 1 else 0 )

proof −
have Hilbert-fun (cone (h, {})) z = card {t ∈ .[{}:: ′x set]. deg-pm t + poly-deg

h = z}
using assms(1 , 2 ) empty-subsetI assms(3 ) by (rule Hilbert-fun-cone-aux)

also have . . . = (if poly-deg h = z then 1 else 0 ) by simp
finally show ?thesis .

qed

lemma Hilbert-fun-cone-nonempty:
assumes h ∈ P[X ] and h 6= 0 and U ⊆ X and homogeneous (h::- ⇒0

′a::field)
and U 6= {}

shows Hilbert-fun (cone (h, U )) z =
(if poly-deg h ≤ z then ((z − poly-deg h) + (card U − 1 )) choose (card U

− 1 ) else 0 )
proof (cases poly-deg h ≤ z)

case True
from assms(3 ) fin-X have finite U by (rule finite-subset)
from assms(1−4 ) have Hilbert-fun (cone (h, U )) z = card {t ∈ .[U ]. deg-pm t

+ poly-deg h = z}
by (rule Hilbert-fun-cone-aux)

also from True have {t ∈ .[U ]. deg-pm t + poly-deg h = z} = deg-sect U (z −
poly-deg h)

by (auto simp: deg-sect-def )
also from ‹finite U › assms(5 ) have card . . . = (z − poly-deg h) + (card U −

1 ) choose (card U − 1 )
by (rule card-deg-sect)

finally show ?thesis by (simp add: True)
next

case False
from assms(1−4 ) have Hilbert-fun (cone (h, U )) z = card {t ∈ .[U ]. deg-pm t

+ poly-deg h = z}
by (rule Hilbert-fun-cone-aux)

also from False have {t ∈ .[U ]. deg-pm t + poly-deg h = z} = {} by auto
hence card {t ∈ .[U ]. deg-pm t + poly-deg h = z} = card ({}::( ′x ⇒0 nat) set)

by (rule arg-cong)
also have . . . = 0 by simp
finally show ?thesis by (simp add: False)

qed
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corollary Hilbert-fun-Polys:
assumes X 6= {}
shows Hilbert-fun (P[X ]::(- ⇒0

′a::field) set) z = (z + (card X − 1 )) choose
(card X − 1 )
proof −

let ?one = 1 ::( ′x ⇒0 nat) ⇒0
′a

have Hilbert-fun (P[X ]::(- ⇒0
′a) set) z = Hilbert-fun (cone (?one, X)) z by

simp
also have . . . = (if poly-deg ?one ≤ z then ((z − poly-deg ?one) + (card X −

1 )) choose (card X − 1 ) else 0 )
using one-in-Polys - subset-refl - assms by (rule Hilbert-fun-cone-nonempty)

simp-all
also have . . . = (z + (card X − 1 )) choose (card X − 1 ) by simp
finally show ?thesis .

qed

lemma Hilbert-fun-cone-decomp:
assumes cone-decomp T ps and valid-decomp X ps and hom-decomp ps
shows Hilbert-fun T z = (

∑
hU∈set ps. Hilbert-fun (cone hU ) z)

proof −
note fin-X
moreover from assms(2 , 1 ) have T ⊆ P[X ] by (rule valid-cone-decomp-subset-Polys)
moreover from assms(1 ) have dd: direct-decomp T (map cone ps) by (rule

cone-decompD)
ultimately have Hilbert-fun T z = (

∑
s∈set (map cone ps). Hilbert-fun s z)

proof (rule Hilbert-fun-direct-decomp)
fix cn
assume cn ∈ set (map cone ps)
then obtain hU where hU ∈ set ps and cn: cn = cone hU unfolding set-map

..
note this(1 )
moreover obtain h U where hU : hU = (h, U ) using prod.exhaust by blast
ultimately have (h, U ) ∈ set ps by simp
with assms(3 ) have homogeneous h by (rule hom-decompD)
thus homogeneous-set cn unfolding cn hU by (rule homogeneous-set-coneI )
show phull.subspace cn unfolding cn by (fact subspace-cone)

qed
also have . . . = (

∑
hU∈set ps. ((λs. Hilbert-fun s z) ◦ cone) hU ) unfolding

set-map using finite-set
proof (rule sum.reindex-nontrivial)

fix hU1 hU2
assume hU1 ∈ set ps and hU2 ∈ set ps and hU1 6= hU2
with dd have cone hU1 ∩ cone hU2 = {0} using zero-in-cone by (rule

direct-decomp-map-Int-zero)
moreover assume cone hU1 = cone hU2
ultimately show Hilbert-fun (cone hU1 ) z = 0 by simp

qed
finally show ?thesis by simp
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qed

definition Hilbert-poly :: (nat ⇒ nat) ⇒ int ⇒ int
where Hilbert-poly b =

(λz::int. let n = card X in
((z − b (Suc n) + n) gchoose n) − 1 − (

∑
i=1 ..n. (z − b i + i −

1 ) gchoose i))

lemma poly-fun-Hilbert-poly: poly-fun (Hilbert-poly b)
by (simp add: Hilbert-poly-def Let-def )

lemma Hilbert-fun-eq-Hilbert-poly-plus-card:
assumes X 6= {} and valid-decomp X ps and hom-decomp ps and cone-decomp

T ps
and standard-decomp k ps and exact-decomp X 0 ps and b ps (Suc 0 ) ≤ d

shows int (Hilbert-fun T d) = card {h::- ⇒0
′a::field. (h, {}) ∈ set ps ∧ poly-deg

h = d} + Hilbert-poly (b ps) d
proof −

define n where n = card X
with assms(1 ) have 0 < n using fin-X by (simp add: card-gt-0-iff )
hence 1 ≤ n and Suc 0 ≤ n by simp-all
from pos-decomp-subset have eq0 : (set ps − set (ps+)) ∪ set (ps+) = set ps by

blast
have set ps − set (ps+) ⊆ set ps by blast
hence fin2 : finite (set ps − set (ps+)) using finite-set by (rule finite-subset)

have (
∑

hU∈set ps − set (ps+). Hilbert-fun (cone hU ) d) =
(
∑

(h, U )∈set ps − set (ps+). if poly-deg h = d then 1 else 0 )
using refl

proof (rule sum.cong)
fix x
assume x ∈ set ps − set (ps+)
moreover obtain h U where x: x = (h, U ) using prod.exhaust by blast

ultimately have U = {} and (h, U ) ∈ set ps by (simp-all add: pos-decomp-def )
from assms(2 ) this(2 ) have h ∈ P[X ] and h 6= 0 by (rule valid-decompD)+
moreover from assms(3 ) ‹(h, U ) ∈ set ps› have homogeneous h by (rule

hom-decompD)
ultimately show Hilbert-fun (cone x) d = (case x of (h, U ) ⇒ if poly-deg h

= d then 1 else 0 )
by (simp add: x ‹U = {}› Hilbert-fun-cone-empty split del: if-split)

qed
also from fin2 have . . . = (

∑
(h, U )∈{(h ′, U ′) ∈ set ps − set (ps+). poly-deg

h ′ = d}. 1 )
by (rule sum.mono-neutral-cong-right) (auto split: if-splits)

also have . . . = card {(h, U ) ∈ set ps − set (ps+). poly-deg h = d} by auto
also have . . . = card {h. (h, {}) ∈ set ps ∧ poly-deg h = d} by (fact card-Diff-pos-decomp)
finally have eq1 : (

∑
hU∈set ps − set (ps+). Hilbert-fun (cone hU ) d) =

card {h. (h, {}) ∈ set ps ∧ poly-deg h = d} .
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let ?f = λa b. (int d) − a + b gchoose b
have int (

∑
hU∈set (ps+). Hilbert-fun (cone hU ) d) = (

∑
hU∈set (ps+). int

(Hilbert-fun (cone hU ) d))
by (simp add: int-sum prod.case-distrib)

also have . . . = (
∑

(h, U )∈(
⋃

i∈{1 ..n}. {(h, U ) ∈ set (ps+). card U = i}). ?f
(poly-deg h) (card U − 1 ))

proof (rule sum.cong)
show set (ps+) = (

⋃
i∈{1 ..n}. {(h, U ). (h, U ) ∈ set (ps+) ∧ card U = i})

proof (rule Set.set-eqI , rule)
fix x
assume x ∈ set (ps+)
moreover obtain h U where x: x = (h, U ) using prod.exhaust by blast
ultimately have (h, U ) ∈ set (ps+) by simp
hence (h, U ) ∈ set ps and U 6= {} by (simp-all add: pos-decomp-def )
from fin-X assms(6 ) this(1 ) have U ⊆ X by (rule exact-decompD)
hence finite U using fin-X by (rule finite-subset)
with ‹U 6= {}› have 0 < card U by (simp add: card-gt-0-iff )
moreover from fin-X ‹U ⊆ X› have card U ≤ n unfolding n-def by (rule

card-mono)
ultimately have card U ∈ {1 ..n} by simp
moreover from ‹(h, U ) ∈ set (ps+)› have (h, U ) ∈ {(h ′, U ′). (h ′, U ′) ∈

set (ps+) ∧ card U ′ = card U}
by simp

ultimately show x ∈ (
⋃

i∈{1 ..n}. {(h, U ). (h, U ) ∈ set (ps+) ∧ card U =
i}) by (simp add: x)

qed blast
next

fix x
assume x ∈ (

⋃
i∈{1 ..n}. {(h, U ). (h, U ) ∈ set (ps+) ∧ card U = i})

then obtain j where j ∈ {1 ..n} and x ∈ {(h, U ). (h, U ) ∈ set (ps+) ∧ card
U = j} ..

from this(2 ) obtain h U where (h, U ) ∈ set (ps+) and card U = j and x:
x = (h, U ) by blast

from fin-X assms(2 , 5 ) this(1 ) have poly-deg h < b ps (Suc 0 ) by (rule
b-one-gr)

also have . . . ≤ d by fact
finally have poly-deg h < d .
hence int1 : int (d − poly-deg h) = int d − int (poly-deg h) by simp
from ‹card U = j› ‹j ∈ {1 ..n}› have 0 < card U by simp
hence int2 : int (card U − Suc 0 ) = int (card U ) − 1 by simp
from ‹(h, U ) ∈ set (ps+)› have (h, U ) ∈ set ps using pos-decomp-subset ..

with assms(2 ) have h ∈ P[X ] and h 6= 0 and U ⊆ X by (rule valid-decompD)+
moreover from assms(3 ) ‹(h, U ) ∈ set ps› have homogeneous h by (rule

hom-decompD)
moreover from ‹0 < card U › have U 6= {} by auto
ultimately have Hilbert-fun (cone (h, U )) d =

(if poly-deg h ≤ d then (d − poly-deg h + (card U − 1 )) choose (card
U − 1 ) else 0 )

by (rule Hilbert-fun-cone-nonempty)
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also from ‹poly-deg h < d› have . . . = (d − poly-deg h + (card U − 1 )) choose
(card U − 1 ) by simp

finally
have int (Hilbert-fun (cone (h, U )) d) = (int d − int (poly-deg h) + (int (card

U − 1 ))) gchoose (card U − 1 )
by (simp add: int-binomial int1 int2 )

thus int (Hilbert-fun (cone x) d) =
(case x of (h, U ) ⇒ int d − int (poly-deg h) + (int (card U − 1 )) gchoose

(card U − 1 ))
by (simp add: x)

qed
also have . . . = (

∑
j=1 ..n.

∑
(h, U )∈{(h ′, U ′) ∈ set (ps+). card U ′ = j}. ?f

(poly-deg h) (card U − 1 ))
proof (intro sum.UNION-disjoint ballI )

fix j
have {(h, U ). (h, U ) ∈ set (ps+) ∧ card U = j} ⊆ set (ps+) by blast
thus finite {(h, U ). (h, U ) ∈ set (ps+) ∧ card U = j} using finite-set by (rule

finite-subset)
qed blast+
also from refl have . . . = (

∑
j=1 ..n. ?f (b ps (Suc j)) j − ?f (b ps j) j)

proof (rule sum.cong)
fix j
assume j ∈ {1 ..n}
hence Suc 0 ≤ j and 0 < j and j ≤ n by simp-all
from fin-X this(1 ) have b ps j ≤ b ps (Suc 0 ) by (rule b-decreasing)
also have . . . ≤ d by fact
finally have b ps j ≤ d .
from fin-X have b ps (Suc j) ≤ b ps j by (rule b-decreasing) simp
hence b ps (Suc j) ≤ d using ‹b ps j ≤ d› by (rule le-trans)
from ‹0 < j› have int-j: int (j − Suc 0 ) = int j − 1 by simp
have (

∑
(h, U )∈{(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ card U ′ = j}. ?f (poly-deg

h) (card U − 1 )) =
(
∑

(h, U )∈(
⋃

d0∈{b ps (Suc j)..int (b ps j) − 1}. {(h ′, U ′). (h ′, U ′) ∈
set (ps+) ∧ int (poly-deg h ′) = d0 ∧ card U ′ = j}).

?f (poly-deg h) (card U − 1 ))
using - refl

proof (rule sum.cong)
show {(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ card U ′ = j} =

(
⋃

d0∈{b ps (Suc j)..int (b ps j) − 1}. {(h ′, U ′). (h ′, U ′) ∈ set (ps+)
∧ int (poly-deg h ′) = d0 ∧ card U ′ = j})

proof (rule Set.set-eqI , rule)
fix x
assume x ∈ {(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ card U ′ = j}
moreover obtain h U where x: x = (h, U ) using prod.exhaust by blast
ultimately have (h, U ) ∈ set (ps+) and card U = j by simp-all
with fin-X assms(5 , 6 ) ‹Suc 0 ≤ j› ‹j ≤ n› have b ps (Suc j) ≤ poly-deg h

unfolding n-def by (rule lem-6-1-3 )
moreover from fin-X have poly-deg h < b ps j
proof (rule b)
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from ‹(h, U ) ∈ set (ps+)› show (h, U ) ∈ set ps using pos-decomp-subset
..

next
show j ≤ card U by (simp add: ‹card U = j›)

qed
ultimately have poly-deg h ∈ {b ps (Suc j)..int (b ps j) − 1} by simp
moreover have (h, U ) ∈ {(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ poly-deg h ′ =

poly-deg h ∧ card U ′ = card U}
using ‹(h, U ) ∈ set (ps+)› by simp

ultimately show x ∈ (
⋃

d0∈{b ps (Suc j)..int (b ps j) − 1}.
{(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ int (poly-deg h ′) = d0

∧ card U ′ = j})
by (simp add: x ‹card U = j›)

qed blast
qed
also have . . . = (

∑
d0=b ps (Suc j)..int (b ps j) − 1 .∑

(h, U )∈{(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ poly-deg h ′ = d0 ∧
card U ′ = j}.

?f (poly-deg h) (card U − 1 ))
proof (intro sum.UNION-disjoint ballI )

fix d0 ::int
have {(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ poly-deg h ′ = d0 ∧ card U ′ = j} ⊆ set

(ps+) by blast
thus finite {(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ poly-deg h ′ = d0 ∧ card U ′ = j}

using finite-set by (rule finite-subset)
qed blast+
also from refl have . . . = (

∑
d0=b ps (Suc j)..int (b ps j) − 1 . ?f d0 (j −

1 ))
proof (rule sum.cong)

fix d0
assume d0 ∈ {b ps (Suc j)..int (b ps j) − 1}
hence b ps (Suc j) ≤ d0 and d0 < int (b ps j) by simp-all
hence b ps (Suc j) ≤ nat d0 and nat d0 < b ps j by simp-all
have (

∑
(h, U )∈{(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ poly-deg h ′ = d0 ∧ card

U ′ = j}. ?f (poly-deg h) (card U − 1 )) =
(
∑

(h, U )∈{(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ poly-deg h ′ = d0 ∧ card U ′

= j}. ?f d0 (j − 1 ))
using refl by (rule sum.cong) auto

also have . . . = card {(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ poly-deg h ′ = nat d0
∧ card U ′ = j} ∗ ?f d0 (j − 1 )

using ‹b ps (Suc j) ≤ d0 › by (simp add: int-eq-iff )
also have . . . = ?f d0 (j − 1 )

using fin-X assms(5 , 6 ) ‹Suc 0 ≤ j› ‹j ≤ n› ‹b ps (Suc j) ≤ nat d0 › ‹nat
d0 < b ps j›

by (simp only: n-def lem-6-1-2 ′(3 ))
finally show (

∑
(h, U )∈{(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ poly-deg h ′ = d0

∧ card U ′ = j}.
?f (poly-deg h) (card U − 1 )) = ?f d0 (j − 1 ) .

qed

203



also have . . . = (
∑

d0∈(−) (int d) ‘ {b ps (Suc j)..int (b ps j) − 1}. d0 +
int (j − 1 ) gchoose (j − 1 ))

proof −
have inj-on ((−) (int d)) {b ps (Suc j)..int (b ps j) − 1} by (auto simp:

inj-on-def )
thus ?thesis by (simp only: sum.reindex o-def )

qed
also have . . . = (

∑
d0∈{0 ..int d − (b ps (Suc j))}−{0 ..int d − b ps j}. d0 +

int (j − 1 ) gchoose (j − 1 ))
using - refl

proof (rule sum.cong)
have (−) (int d) ‘ {b ps (Suc j)..int (b ps j) − 1} = {int d − (int (b ps j)

− 1 )..int d − int (b ps (Suc j))}
by (simp only: image-diff-atLeastAtMost)

also have . . . = {0 ..int d − int (b ps (Suc j))} − {0 ..int d − int (b ps j)}
proof −

from ‹b ps j ≤ d› have int (b ps j) − 1 ≤ int d by simp
thus ?thesis by auto

qed
finally show (−) (int d) ‘ {b ps (Suc j)..int (b ps j) − 1} =

{0 ..int d − int (b ps (Suc j))} − {0 ..int d − int (b ps j)} .
qed
also have . . . = (

∑
d0=0 ..int d − (b ps (Suc j)). d0 + int (j − 1 ) gchoose (j

− 1 )) −
(
∑

d0=0 ..int d − b ps j. d0 + int (j − 1 ) gchoose (j − 1 ))
by (rule sum-diff ) (auto simp: ‹b ps (Suc j) ≤ b ps j›)

also from ‹b ps (Suc j) ≤ d› ‹b ps j ≤ d› have . . . = ?f (b ps (Suc j)) j −
?f (b ps j) j

by (simp add: gchoose-rising-sum, simp add: int-j ac-simps ‹0 < j›)
finally show (

∑
(h, U )∈{(h ′, U ′). (h ′, U ′) ∈ set (ps+) ∧ card U ′ = j}. ?f

(poly-deg h) (card U − 1 )) =
?f (b ps (Suc j)) j − ?f (b ps j) j .

qed
also have . . . = (

∑
j=1 ..n. ?f (b ps (Suc j)) j) − (

∑
j=1 ..n. ?f (b ps j) j)

by (fact sum-subtractf )
also have . . . = ?f (b ps (Suc n)) n + (

∑
j=1 ..n−1 . ?f (b ps (Suc j)) j) −

(
∑

j=1 ..n. ?f (b ps j) j)
by (simp only: sum-tail-nat[OF ‹0 < n› ‹1 ≤ n›])

also have . . . = ?f (b ps (Suc n)) n − ?f (b ps 1 ) 1 +
((
∑

j=1 ..n−1 . ?f (b ps (Suc j)) j) − (
∑

j=1 ..n−1 . ?f (b ps (Suc
j)) (Suc j)))

by (simp only: sum.atLeast-Suc-atMost[OF ‹1 ≤ n›] sum-atLeast-Suc-shift[OF
‹0 < n› ‹1 ≤ n›])

also have . . . = ?f (b ps (Suc n)) n − ?f (b ps 1 ) 1 −
(
∑

j=1 ..n−1 . ?f (b ps (Suc j)) (Suc j) − ?f (b ps (Suc j)) j)
by (simp only: sum-subtractf )

also have . . . = ?f (b ps (Suc n)) n − 1 − ((int d − b ps (Suc 0 )) gchoose (Suc
0 )) −

(
∑

j=1 ..n−1 . (int d − b ps (Suc j) + j) gchoose (Suc j))
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proof −
have ?f (b ps 1 ) 1 = 1 + ((int d − b ps (Suc 0 )) gchoose (Suc 0 ))

by (simp add: plus-Suc-gbinomial)
moreover from refl have (

∑
j=1 ..n−1 . ?f (b ps (Suc j)) (Suc j) − ?f (b ps

(Suc j)) j) =
(
∑

j=1 ..n−1 . (int d − b ps (Suc j) + j) gchoose (Suc j))
by (rule sum.cong) (simp add: plus-Suc-gbinomial)

ultimately show ?thesis by (simp only:)
qed
also have . . . = ?f (b ps (Suc n)) n − 1 − (

∑
j=0 ..n−1 . (int d − b ps (Suc j)

+ j) gchoose (Suc j))
by (simp only: sum.atLeast-Suc-atMost[OF le0 ], simp)

also have . . . = ?f (b ps (Suc n)) n − 1 − (
∑

j=Suc 0 ..Suc (n−1 ). (int d −
b ps j + j − 1 ) gchoose j)

by (simp only: sum.shift-bounds-cl-Suc-ivl, simp add: ac-simps)
also have . . . = Hilbert-poly (b ps) d using ‹0 < n› by (simp add: Hilbert-poly-def

Let-def n-def )
finally have eq2 : int (

∑
hU∈set (ps+). Hilbert-fun (cone hU ) d) = Hilbert-poly

(b ps) (int d) .

from assms(4 , 2 , 3 ) have Hilbert-fun T d = (
∑

hU∈set ps. Hilbert-fun (cone
hU ) d)

by (rule Hilbert-fun-cone-decomp)
also have . . . = (

∑
hU∈(set ps − set (ps+)) ∪ set (ps+). Hilbert-fun (cone hU )

d) by (simp only: eq0 )
also have . . . = (

∑
hU∈set ps − set (ps+). Hilbert-fun (cone hU ) d) + (

∑
hU∈set

(ps+). Hilbert-fun (cone hU ) d)
using fin2 finite-set by (rule sum.union-disjoint) blast

also have . . . = card {h. (h, {}) ∈ set ps ∧ poly-deg h = d} + (
∑

hU∈set (ps+).
Hilbert-fun (cone hU ) d)

by (simp only: eq1 )
also have int . . . = card {h. (h, {}) ∈ set ps ∧ poly-deg h = d} + Hilbert-poly

(b ps) d
by (simp only: eq2 int-plus)

finally show ?thesis .
qed

corollary Hilbert-fun-eq-Hilbert-poly:
assumes X 6= {} and valid-decomp X ps and hom-decomp ps and cone-decomp

T ps
and standard-decomp k ps and exact-decomp X 0 ps and b ps 0 ≤ d

shows int (Hilbert-fun (T ::(- ⇒0
′a::field) set) d) = Hilbert-poly (b ps) d

proof −
from fin-X have b ps (Suc 0 ) ≤ b ps 0 using le0 by (rule b-decreasing)
also have . . . ≤ d by fact
finally have b ps (Suc 0 ) ≤ d .
with assms(1−6 ) have int (Hilbert-fun T d) =

int (card {h. (h, {}) ∈ set ps ∧ poly-deg h = d}) + Hilbert-poly (b
ps) (int d)
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by (rule Hilbert-fun-eq-Hilbert-poly-plus-card)
also have . . . = Hilbert-poly (b ps) (int d)
proof −

have eq: {h. (h, {}) ∈ set ps ∧ poly-deg h = d} = {}
proof −

{
fix h
assume (h, {}) ∈ set ps and poly-deg h = d
from fin-X this(1 ) le0 have poly-deg h < b ps 0 by (rule b)
with assms(7 ) have False by (simp add: ‹poly-deg h = d›)

}
thus ?thesis by blast

qed
show ?thesis by (simp add: eq)

qed
finally show ?thesis .

qed

11.2 Dubé’s Bound
context

fixes f :: ( ′x ⇒0 nat) ⇒0
′a::field

fixes F
assumes n-gr-1 : 1 < card X and fin-F : finite F and F-sub: F ⊆ P[X ] and

f-in: f ∈ F
and hom-F :

∧
f ′. f ′ ∈ F =⇒ homogeneous f ′ and f-max:

∧
f ′. f ′ ∈ F =⇒

poly-deg f ′ ≤ poly-deg f
and d-gr-0 : 0 < poly-deg f and ideal-f-neq: ideal {f } 6= ideal F

begin

private abbreviation (input) n ≡ card X
private abbreviation (input) d ≡ poly-deg f

lemma f-in-Polys: f ∈ P[X ]
using f-in F-sub ..

lemma hom-f : homogeneous f
using f-in by (rule hom-F)

lemma f-not-0 : f 6= 0
using d-gr-0 by auto

lemma X-not-empty: X 6= {}
using n-gr-1 by auto

lemma n-gr-0 : 0 < n
using ‹1 < n› by simp

corollary int-n-minus-1 [simp]: int (n − Suc 0 ) = int n − 1
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using n-gr-0 by simp

lemma int-n-minus-2 [simp]: int (n − Suc (Suc 0 )) = int n − 2
using n-gr-1 by simp

lemma cone-f-X-sub: cone (f , X) ⊆ P[X ]
proof −

have cone (f , X) = cone (f ∗ 1 , X) by simp
also from f-in-Polys have . . . ⊆ cone (1 , X) by (rule cone-mono-1 )
finally show ?thesis by simp

qed

lemma ideal-Int-Polys-eq-cone: ideal {f } ∩ P[X ] = cone (f , X)
proof (intro subset-antisym subsetI )

fix p
assume p ∈ ideal {f } ∩ P[X ]
hence p ∈ ideal {f } and p ∈ P[X ] by simp-all
have finite {f } by simp
then obtain q where p = (

∑
f ′∈{f }. q f ′ ∗ f ′) using ‹p ∈ ideal {f }›

by (rule ideal.span-finiteE)
hence p: p = q f ∗ f by simp
with ‹p ∈ P[X ]› have f ∗ q f ∈ P[X ] by (simp only: mult.commute)
hence q f ∈ P[X ] using f-in-Polys f-not-0 by (rule times-in-PolysD)
with p show p ∈ cone (f , X) by (rule coneI )

next
fix p
assume p ∈ cone (f , X)
then obtain q where q ∈ P[X ] and p: p = q ∗ f by (rule coneE)
have f ∈ ideal {f } by (rule ideal.span-base) simp
with ‹q ∈ P[X ]› f-in-Polys show p ∈ ideal {f } ∩ P[X ]

unfolding p by (intro IntI ideal.span-scale Polys-closed-times)
qed

private definition P-ps where
P-ps = (SOME x. valid-decomp X (snd x) ∧ standard-decomp d (snd x) ∧

exact-decomp X 0 (snd x) ∧ cone-decomp (fst x) (snd x) ∧
hom-decomp (snd x) ∧

direct-decomp (ideal F ∩ P[X ]) [ideal {f } ∩ P[X ], fst x])

private definition P where P = fst P-ps

private definition ps where ps = snd P-ps

lemma
shows valid-ps: valid-decomp X ps (is ?thesis1 )

and std-ps: standard-decomp d ps (is ?thesis2 )
and ext-ps: exact-decomp X 0 ps (is ?thesis3 )
and cn-ps: cone-decomp P ps (is ?thesis4 )
and hom-ps: hom-decomp ps (is ?thesis5 )

207



and decomp-F : direct-decomp (ideal F ∩ P[X ]) [ideal {f } ∩ P[X ], P] (is
?thesis6 )
proof −

note fin-X
moreover from fin-F have finite (F − {f }) by simp
moreover from F-sub have F − {f } ⊆ P[X ] by blast
ultimately obtain P ′ ps ′ where 1 : valid-decomp X ps ′ and 2 : standard-decomp

d ps ′

and 3 : cone-decomp P ′ ps ′ and 40 : (
∧

f ′. f ′ ∈ F − {f } =⇒ homogeneous f ′)
=⇒ hom-decomp ps ′

and 50 : direct-decomp (ideal (insert f (F − {f })) ∩ P[X ]) [ideal {f } ∩ P[X ],
P ′]

using f-in-Polys f-max by (rule ideal-decompE) blast+
have 4 : hom-decomp ps ′ by (intro 40 hom-F) simp
from 50 f-in have 5 : direct-decomp (ideal F ∩ P[X ]) [ideal {f } ∩ P[X ], P ′]

by (simp add: insert-absorb)
let ?ps = exact X (poly-deg f ) ps ′

from fin-X 1 2 have valid-decomp X ?ps and standard-decomp d ?ps and ex-
act-decomp X 0 ?ps

by (rule exact)+
moreover from fin-X 1 2 3 have cone-decomp P ′ ?ps by (rule cone-decomp-exact)
moreover from fin-X 1 2 4 have hom-decomp ?ps by (rule hom-decomp-exact)
ultimately have valid-decomp X (snd (P ′, ?ps)) ∧ standard-decomp d (snd (P ′,

?ps)) ∧
exact-decomp X 0 (snd (P ′, ?ps)) ∧ cone-decomp (fst (P ′, ?ps))

(snd (P ′, ?ps)) ∧
hom-decomp (snd (P ′, ?ps)) ∧
direct-decomp (ideal F ∩ P[X ]) [ideal {f } ∩ P[X ], fst (P ′, ?ps)]

using 5 by simp
hence ?thesis1 ∧ ?thesis2 ∧ ?thesis3 ∧ ?thesis4 ∧ ?thesis5 ∧ ?thesis6

unfolding P-def ps-def P-ps-def by (rule someI )
thus ?thesis1 and ?thesis2 and ?thesis3 and ?thesis4 and ?thesis5 and ?thesis6

by simp-all
qed

lemma P-sub: P ⊆ P[X ]
using valid-ps cn-ps by (rule valid-cone-decomp-subset-Polys)

lemma ps-not-Nil: ps+ 6= []
proof

assume ps+ = []
have Keys P ⊆ (

⋃
hU∈set ps. keys (fst hU )) (is - ⊆ ?A)

proof
fix t
assume t ∈ Keys P
then obtain p where p ∈ P and t ∈ keys p by (rule in-KeysE)
from cn-ps have direct-decomp P (map cone ps) by (rule cone-decompD)
then obtain qs where qs: qs ∈ listset (map cone ps) and p: p = sum-list qs

using ‹p ∈ P›
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by (rule direct-decompE)
from ‹t ∈ keys p› keys-sum-list-subset have t ∈ Keys (set qs) unfolding p ..
then obtain q where q ∈ set qs and t ∈ keys q by (rule in-KeysE)

from this(1 ) obtain i where i < length qs and q = qs ! i by (metis
in-set-conv-nth)

with qs have i < length ps and q ∈ (map cone ps) ! i by (simp-all add: listsetD
del: nth-map)

hence q ∈ cone (ps ! i) by simp
obtain h U where eq: ps ! i = (h, U ) using prod.exhaust by blast
from ‹i < length ps› this[symmetric] have (h, U ) ∈ set ps by simp
have U = {}
proof (rule ccontr)

assume U 6= {}
with ‹(h, U ) ∈ set ps› have (h, U ) ∈ set (ps+) by (simp add: pos-decomp-def )
with ‹ps+ = []› show False by simp

qed
with ‹q ∈ cone (ps ! i)› have q ∈ range (λc. c · h) by (simp only: eq cone-empty)
then obtain c where q = c · h ..
also have keys . . . ⊆ keys h by (fact keys-map-scale-subset)
finally have t ∈ keys h using ‹t ∈ keys q› ..
hence t ∈ keys (fst (h, U )) by simp
with ‹(h, U ) ∈ set ps› show t ∈ ?A ..

qed
moreover from finite-set finite-keys have finite ?A by (rule finite-UN-I )
ultimately have finite (Keys P) by (rule finite-subset)

have ∃ q∈ideal F . q ∈ P[X ] ∧ q 6= 0 ∧ ¬ lpp f adds lpp q
proof (rule ccontr)

assume ¬ (∃ q∈ideal F . q ∈ P[X ] ∧ q 6= 0 ∧ ¬ lpp f adds lpp q)
hence adds: lpp f adds lpp q if q ∈ ideal F and q ∈ P[X ] and q 6= 0 for q

using that by blast
from fin-X - F-sub have ideal {f } = ideal F

proof (rule punit.pmdl-eqI-adds-lt-dgrad-p-set[simplified, OF dickson-grading-varnum,
where m=0 , simplified dgrad-p-set-varnum])

from f-in-Polys show {f } ⊆ P[X ] by simp
next

from f-in have {f } ⊆ F by simp
thus ideal {f } ⊆ ideal F by (rule ideal.span-mono)

next
fix q
assume q ∈ ideal F and q ∈ P[X ] and q 6= 0
hence lpp f adds lpp q by (rule adds)
with f-not-0 show ∃ g∈{f }. g 6= 0 ∧ lpp g adds lpp q by blast

qed
with ideal-f-neq show False ..

qed
then obtain q0 where q0 ∈ ideal F and q0 ∈ P[X ] and q0 6= 0

and nadds-q0 : ¬ lpp f adds lpp q0 by blast
define q where q = hom-component q0 (deg-pm (lpp q0 ))
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from hom-F ‹q0 ∈ ideal F› have q ∈ ideal F unfolding q-def by (rule homo-
geneous-ideal)

from homogeneous-set-Polys ‹q0 ∈ P[X ]› have q ∈ P[X ] unfolding q-def by
(rule homogeneous-setD)

from ‹q0 6= 0 › have q 6= 0 and lpp q = lpp q0 unfolding q-def by (rule
hom-component-lpp)+

from nadds-q0 this(2 ) have nadds-q: ¬ lpp f adds lpp q by simp
have hom-q: homogeneous q by (simp only: q-def homogeneous-hom-component)
from nadds-q obtain x where x: ¬ lookup (lpp f ) x ≤ lookup (lpp q) x

by (auto simp add: adds-poly-mapping le-fun-def )
obtain y where y ∈ X and y 6= x
proof −

from n-gr-1 have 2 ≤ n by simp
then obtain Y where Y ⊆ X and card Y = 2 by (rule card-geq-ex-subset)
from this(2 ) obtain u v where u 6= v and Y = {u, v} by (rule card-2-E)
from this obtain y where y ∈ Y and y 6= x by blast
from this(1 ) ‹Y ⊆ X› have y ∈ X ..
thus ?thesis using ‹y 6= x› ..

qed
define q ′ where q ′ = (λk. punit.monom-mult 1 (Poly-Mapping.single y k) q)
have inj1 : inj q ′ by (auto intro!: injI simp: q ′-def ‹q 6= 0 › dest: punit.monom-mult-inj-2

monomial-inj)
have q ′-in: q ′ k ∈ ideal F ∩ P[X ] for k unfolding q ′-def using ‹q ∈ ideal F›

‹q ∈ P[X ]› ‹y ∈ X›
by (intro IntI punit.pmdl-closed-monom-mult[simplified] Polys-closed-monom-mult

PPs-closed-single)
have lpp-q ′: lpp (q ′ k) = Poly-Mapping.single y k + lpp q for k

using ‹q 6= 0 › by (simp add: q ′-def punit.lt-monom-mult)
have inj2 : inj-on (deg-pm ◦ lpp) (range q ′)

by (auto intro!: inj-onI simp: lpp-q ′ deg-pm-plus deg-pm-single dest: mono-
mial-inj)

have (deg-pm ◦ lpp) ‘ range q ′ ⊆ deg-pm ‘ Keys P
proof

fix d
assume d ∈ (deg-pm ◦ lpp) ‘ range q ′

then obtain k where d: d = deg-pm (lpp (q ′ k)) (is - = deg-pm ?t) by auto
from hom-q have hom-q ′: homogeneous (q ′ k) by (simp add: q ′-def homoge-

neous-monom-mult)
from ‹q 6= 0 › have q ′ k 6= 0 by (simp add: q ′-def punit.monom-mult-eq-zero-iff )
hence ?t ∈ keys (q ′ k) by (rule punit.lt-in-keys)
with hom-q ′ have deg-q ′: d = poly-deg (q ′ k) unfolding d by (rule homoge-

neousD-poly-deg)
from decomp-F q ′-in obtain qs where qs ∈ listset [ideal {f } ∩ P[X ], P] and

q ′ k = sum-list qs
by (rule direct-decompE)

moreover from this(1 ) obtain f0 p0 where f0 : f0 ∈ ideal {f } ∩ P[X ] and
p0 : p0 ∈ P

and qs = [f0 , p0 ] by (rule listset-doubletonE)
ultimately have q ′: q ′ k = f0 + p0 by simp

210



define f1 where f1 = hom-component f0 d
define p1 where p1 = hom-component p0 d

from hom-q have homogeneous (q ′ k) by (simp add: q ′-def homogeneous-monom-mult)
hence q ′ k = hom-component (q ′ k) d by (simp add: hom-component-of-homogeneous

deg-q ′)
also have . . . = f1 + p1 by (simp only: q ′ hom-component-plus f1-def p1-def )
finally have q ′ k = f1 + p1 .
have keys p1 6= {}
proof

assume keys p1 = {}
with ‹q ′ k = f1 + p1 › ‹q ′ k 6= 0 › have t: ?t = lpp f1 and f1 6= 0 by simp-all
from f0 have f0 ∈ ideal {f } by simp
with - have f1 ∈ ideal {f } unfolding f1-def by (rule homogeneous-ideal)

(simp add: hom-f )
with punit.is-Groebner-basis-singleton obtain g where g ∈ {f } and lpp g

adds lpp f1
using ‹f1 6= 0 › by (rule punit.GB-adds-lt[simplified])

hence lpp f adds ?t by (simp add: t)
hence lookup (lpp f ) x ≤ lookup ?t x by (simp add: adds-poly-mapping

le-fun-def )
also have . . . = lookup (lpp q) x by (simp add: lpp-q ′ lookup-add lookup-single

‹y 6= x›)
finally have lookup (lpp f ) x ≤ lookup (lpp q) x .
with x show False ..

qed
then obtain t where t ∈ keys p1 by blast
hence d = deg-pm t by (simp add: p1-def keys-hom-component)

from cn-ps hom-ps have homogeneous-set P by (intro homogeneous-set-cone-decomp)
hence p1 ∈ P using ‹p0 ∈ P› unfolding p1-def by (rule homogeneous-setD)
with ‹t ∈ keys p1 › have t ∈ Keys P by (rule in-KeysI )
with ‹d = deg-pm t› show d ∈ deg-pm ‘ Keys P by (rule image-eqI )

qed
moreover from inj1 inj2 have infinite ((deg-pm ◦ lpp) ‘ range q ′)

by (simp add: finite-image-iff o-def )
ultimately have infinite (deg-pm ‘ Keys P) by (rule infinite-super)
hence infinite (Keys P) by blast
thus False using ‹finite (Keys P)› ..

qed

private definition N where N = normal-form F ‘ P[X ]

private definition qs where qs = (SOME qs ′. valid-decomp X qs ′∧ standard-decomp
0 qs ′ ∧

monomial-decomp qs ′ ∧ cone-decomp N qs ′ ∧
exact-decomp X 0 qs ′ ∧

(∀ g∈punit.reduced-GB F . poly-deg g ≤ b qs ′ 0 ))

private definition aa ≡ b ps
private definition bb ≡ b qs
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private abbreviation (input) cc ≡ (λi. aa i + bb i)

lemma
shows valid-qs: valid-decomp X qs (is ?thesis1 )

and std-qs: standard-decomp 0 qs (is ?thesis2 )
and mon-qs: monomial-decomp qs (is ?thesis3 )
and hom-qs: hom-decomp qs (is ?thesis6 )
and cn-qs: cone-decomp N qs (is ?thesis4 )
and ext-qs: exact-decomp X 0 qs (is ?thesis5 )
and deg-RGB: g ∈ punit.reduced-GB F =⇒ poly-deg g ≤ bb 0

proof −
from fin-X F-sub obtain qs ′ where 1 : valid-decomp X qs ′ and 2 : standard-decomp

0 qs ′

and 3 : monomial-decomp qs ′ and 4 : cone-decomp (normal-form F ‘ P[X ]) qs ′

and 5 : exact-decomp X 0 qs ′

and 60 :
∧

g. (
∧

f . f ∈ F =⇒ homogeneous f ) =⇒ g ∈ punit.reduced-GB F =⇒
poly-deg g ≤ b qs ′ 0

by (rule normal-form-exact-decompE) blast
from hom-F have

∧
g. g ∈ punit.reduced-GB F =⇒ poly-deg g ≤ b qs ′ 0 by

(rule 60 )
with 1 2 3 4 5 have valid-decomp X qs ′ ∧ standard-decomp 0 qs ′ ∧

monomial-decomp qs ′ ∧ cone-decomp N qs ′ ∧ exact-decomp X 0
qs ′ ∧

(∀ g∈punit.reduced-GB F . poly-deg g ≤ b qs ′ 0 ) by (simp add:
N-def )
hence ?thesis1 ∧ ?thesis2 ∧ ?thesis3 ∧ ?thesis4 ∧ ?thesis5 ∧ (∀ g∈punit.reduced-GB

F . poly-deg g ≤ bb 0 )
unfolding qs-def bb-def by (rule someI )

thus ?thesis1 and ?thesis2 and ?thesis3 and ?thesis4 and ?thesis5
and g ∈ punit.reduced-GB F =⇒ poly-deg g ≤ bb 0 by simp-all

from ‹?thesis3 › show ?thesis6 by (rule monomial-decomp-imp-hom-decomp)
qed

lemma N-sub: N ⊆ P[X ]
using valid-qs cn-qs by (rule valid-cone-decomp-subset-Polys)

lemma decomp-Polys: direct-decomp P[X ] [ideal {f } ∩ P[X ], P, N ]
proof −

from fin-X F-sub have direct-decomp P[X ] [ideal F ∩ P[X ], N ] unfolding N-def
by (rule direct-decomp-ideal-normal-form)

hence direct-decomp P[X ] ([N ] @ [ideal {f } ∩ P[X ], P]) using decomp-F
by (rule direct-decomp-direct-decomp)

hence direct-decomp P[X ] ([ideal {f } ∩ P[X ], P] @ [N ])
by (rule direct-decomp-perm) simp

thus ?thesis by simp
qed

lemma aa-Suc-n [simp]: aa (Suc n) = d
proof −

212



from fin-X ext-ps le-refl have aa (Suc n) = a ps unfolding aa-def by (rule
b-card-X)
also from fin-X valid-ps std-ps ps-not-Nil have . . . = d by (rule a-nonempty-unique)
finally show ?thesis .

qed

lemma bb-Suc-n [simp]: bb (Suc n) = 0
proof −

from fin-X ext-qs le-refl have bb (Suc n) = a qs unfolding bb-def by (rule
b-card-X)

also from std-qs have . . . = 0 unfolding a-def [OF fin-X ] by (rule Least-eq-0 )
finally show ?thesis .

qed

lemma Hilbert-fun-X :
assumes d ≤ z
shows Hilbert-fun (P[X ]::(- ⇒0

′a) set) z =
((z − d) + (n − 1 ) choose n − 1 ) + Hilbert-fun P z + Hilbert-fun N z

proof −
define ss where ss = [ideal {f } ∩ P[X ], P, N ]
have homogeneous-set A ∧ phull.subspace A if A ∈ set ss for A
proof −

from that have A = ideal {f } ∩ P[X ] ∨ A = P ∨ A = N by (simp add:
ss-def )

thus ?thesis
proof (elim disjE)

assume A: A = ideal {f } ∩ P[X ]
show ?thesis unfolding A
by (intro conjI homogeneous-set-IntI phull.subspace-inter homogeneous-set-homogeneous-ideal

homogeneous-set-Polys subspace-ideal subspace-Polys) (simp add: hom-f )
next

assume A: A = P
from cn-ps hom-ps show ?thesis unfolding A

by (intro conjI homogeneous-set-cone-decomp subspace-cone-decomp)
next

assume A: A = N
from cn-qs hom-qs show ?thesis unfolding A

by (intro conjI homogeneous-set-cone-decomp subspace-cone-decomp)
qed

qed
hence 1 :

∧
A. A ∈ set ss =⇒ homogeneous-set A and 2 :

∧
A. A ∈ set ss =⇒

phull.subspace A
by simp-all

have Hilbert-fun (P[X ]::(- ⇒0
′a) set) z = (

∑
p∈set ss. Hilbert-fun p z)

using fin-X subset-refl decomp-Polys unfolding ss-def
proof (rule Hilbert-fun-direct-decomp)

fix A
assume A ∈ set [ideal {f } ∩ P[X ], P, N ]
hence A ∈ set ss by (simp only: ss-def )
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thus homogeneous-set A and phull.subspace A by (rule 1 , rule 2 )
qed
also have . . . = (

∑
p∈set ss. count-list ss p ∗ Hilbert-fun p z)

using refl
proof (rule sum.cong)

fix p
assume p ∈ set ss
hence count-list ss p 6= 0 by (simp only: count-list-0-iff not-not)
hence count-list ss p = 1 ∨ 1 < count-list ss p by auto
thus Hilbert-fun p z = count-list ss p ∗ Hilbert-fun p z
proof

assume 1 < count-list ss p
with decomp-Polys have p = {0} unfolding ss-def [symmetric] using

phull.subspace-0
by (rule direct-decomp-repeated-eq-zero) (rule 2 )

thus ?thesis by simp
qed simp

qed
also have . . . = sum-list (map (λp. Hilbert-fun p z) ss)

by (rule sym) (rule sum-list-map-eq-sum-count)
also have . . . = Hilbert-fun (cone (f , X)) z + Hilbert-fun P z + Hilbert-fun N z

by (simp add: ss-def ideal-Int-Polys-eq-cone)
also have Hilbert-fun (cone (f , X)) z = (z − d + (n − 1 )) choose (n − 1 )
using f-not-0 f-in-Polys fin-X hom-f X-not-empty by (simp add: Hilbert-fun-cone-nonempty

assms)
finally show ?thesis .

qed

lemma dube-eq-0 :
(λz::int. (z + int n − 1 ) gchoose (n − 1 )) =
(λz::int. ((z − d + n − 1 ) gchoose (n − 1 )) + Hilbert-poly aa z + Hilbert-poly

bb z)
(is ?f = ?g)

proof (rule poly-fun-eqI-ge)
fix z::int
let ?z = nat z
assume max (aa 0 ) (bb 0 ) ≤ z
hence aa 0 ≤ nat z and bb 0 ≤ nat z and 0 ≤ z by simp-all
from this(3 ) have int-z: int ?z = z by simp
have d ≤ aa 0 unfolding aa-Suc-n[symmetric] using fin-X le0 unfolding aa-def

by (rule b-decreasing)
hence d ≤ ?z using ‹aa 0 ≤ nat z› by (rule le-trans)
hence int-zd: int (?z − d) = z − int d using int-z by linarith
from ‹d ≤ ?z› have Hilbert-fun (P[X ]::(- ⇒0

′a) set) ?z =
((?z − d) + (n − 1 ) choose n − 1 ) + Hilbert-fun P ?z +

Hilbert-fun N ?z
by (rule Hilbert-fun-X)

also have int . . . = (z − d + (n − 1 ) gchoose n − 1 ) + Hilbert-poly aa z +
Hilbert-poly bb z
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using X-not-empty valid-ps hom-ps cn-ps std-ps ext-ps ‹aa 0 ≤ nat z›
valid-qs hom-qs cn-qs std-qs ext-qs ‹bb 0 ≤ nat z› ‹0 ≤ z›

by (simp add: Hilbert-fun-eq-Hilbert-poly int-z aa-def bb-def int-binomial int-zd)
finally show ?f z = ?g z using fin-X X-not-empty ‹0 ≤ z›

by (simp add: Hilbert-fun-Polys int-binomial) smt
qed (simp-all add: poly-fun-Hilbert-poly)

corollary dube-eq-1 :
(λz::int. (z + int n − 1 ) gchoose (n − 1 )) =
(λz::int. ((z − d + n − 1 ) gchoose (n − 1 )) + ((z − d + n) gchoose n) + ((z

+ n) gchoose n) − 2 −
(
∑

i=1 ..n. ((z − aa i + i − 1 ) gchoose i) + ((z − bb i + i − 1 ) gchoose
i)))

by (simp only: dube-eq-0 ) (auto simp: Hilbert-poly-def Let-def sum.distrib)

lemma dube-eq-2 :
assumes j < n
shows (λz::int. (z + int n − int j − 1 ) gchoose (n − j − 1 )) =

(λz::int. ((z − d + n − int j − 1 ) gchoose (n − j − 1 )) + ((z − d + n
− j) gchoose (n − j)) +

((z + n − j) gchoose (n − j)) − 2 −
(
∑

i=Suc j..n. ((z − aa i + i − j − 1 ) gchoose (i − j)) + ((z −
bb i + i − j − 1 ) gchoose (i − j))))

(is ?f = ?g)
proof −

let ?h = λz i. ((z + (int i − aa i − 1 )) gchoose i) + ((z + (int i − bb i − 1 ))
gchoose i)

let ?hj = λz i. ((z + (int i − aa i − 1 ) − j) gchoose (i − j)) + ((z + (int i −
bb i − 1 ) − j) gchoose (i − j))

from assms have 1 : j ≤ n − Suc 0 and 2 : j ≤ n by simp-all

have eq1 : (bw-diff ^^ j) (λz.
∑

i=1 ..j. ?h z i) = (λ-. if j = 0 then 0 else 2 )
proof (cases j)

case 0
thus ?thesis by simp

next
case (Suc j0 )
hence j 6= 0 by simp
have (λz::int.

∑
i = 1 ..j. ?h z i) = (λz::int. (

∑
i = 1 ..j0 . ?h z i) + ?h z j)

by (simp add: ‹j = Suc j0 ›)
moreover have (bw-diff ^^ j) . . . = (λz::int. (

∑
i = 1 ..j0 . (bw-diff ^^ j) (λz.

?h z i) z) + 2 )
by (simp add: bw-diff-gbinomial-pow)

moreover have (
∑

i = 1 ..j0 . (bw-diff ^^ j) (λz. ?h z i) z) = (
∑

i = 1 ..j0 .
0 ) for z::int

using refl
proof (rule sum.cong)

fix i
assume i ∈ {1 ..j0}
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hence ¬ j ≤ i by (simp add: ‹j = Suc j0 ›)
thus (bw-diff ^^ j) (λz. ?h z i) z = 0 by (simp add: bw-diff-gbinomial-pow)

qed
ultimately show ?thesis by (simp add: ‹j 6= 0 ›)

qed

have eq2 : (bw-diff ^^ j) (λz.
∑

i=Suc j..n. ?h z i) = (λz. (
∑

i=Suc j..n. ?hj z
i))

proof −
have (bw-diff ^^ j) (λz.

∑
i=Suc j..n. ?h z i) = (λz.

∑
i=Suc j..n. (bw-diff

^^ j) (λz. ?h z i) z)
by simp

also have . . . = (λz. (
∑

i=Suc j..n. ?hj z i))
proof (intro ext sum.cong)

fix z i
assume i ∈ {Suc j..n}
hence j ≤ i by simp

thus (bw-diff ^^ j) (λz. ?h z i) z = ?hj z i by (simp add: bw-diff-gbinomial-pow)
qed (fact refl)
finally show ?thesis .

qed

from 1 have ?f = (bw-diff ^^ j) (λz::int. (z + (int n − 1 )) gchoose (n − 1 ))
by (simp add: bw-diff-gbinomial-pow) (simp only: algebra-simps)

also have . . . = (bw-diff ^^ j) (λz::int. (z + int n − 1 ) gchoose (n − 1 ))
by (simp only: algebra-simps)

also have . . . = (bw-diff ^^ j)
(λz::int. ((z − d + n − 1 ) gchoose (n − 1 )) + ((z − d + n) gchoose n)

+ ((z + n) gchoose n) − 2 −
(
∑

i=1 ..n. ((z − aa i + i − 1 ) gchoose i) + ((z − bb i + i − 1 ) gchoose
i)))

by (simp only: dube-eq-1 )
also have . . . = (bw-diff ^^ j)

(λz::int. ((z + (int n − d − 1 )) gchoose (n − 1 )) + ((z + (int n − d))
gchoose n) +

((z + n) gchoose n) − 2 − (
∑

i=1 ..n. ?h z i))
by (simp only: algebra-simps)

also have . . . = (λz::int. ((z + (int n − d − 1 ) − j) gchoose (n − 1 − j)) +
((z + (int n − d) − j) gchoose (n − j)) + ((z + n − j) gchoose (n −

j)) − (if j = 0 then 2 else 0 ) −
(bw-diff ^^ j) (λz.

∑
i=1 ..n. ?h z i) z)

using 1 2 by (simp add: bw-diff-const-pow bw-diff-gbinomial-pow del: bw-diff-sum-pow)
also from ‹j ≤ n› have (λz.

∑
i=1 ..n. ?h z i) = (λz. (

∑
i=1 ..j. ?h z i) +

(
∑

i=Suc j..n. ?h z i))
by (simp add: sum-split-nat-ivl)

also have (bw-diff ^^ j) . . . = (λz. (bw-diff ^^ j) (λz.
∑

i=1 ..j. ?h z i) z +
(bw-diff ^^ j) (λz.

∑
i=Suc j..n. ?h z i) z)

by (simp only: bw-diff-plus-pow)
also have . . . = (λz. (if j = 0 then 0 else 2 ) + (

∑
i=Suc j..n. ?hj z i))
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by (simp only: eq1 eq2 )
finally show ?thesis by (simp add: algebra-simps)

qed

lemma dube-eq-3 :
assumes j < n
shows (1 ::int) = (− 1 )^(n − Suc j) ∗ ((int d − 1 ) gchoose (n − Suc j)) +

(− 1 )^(n − j) ∗ ((int d − 1 ) gchoose (n − j)) − 1 −
(
∑

i=Suc j..n. (− 1 )^(i − j) ∗ ((int (aa i) gchoose (i − j)) +
(int (bb i) gchoose (i − j))))
proof −

from assms have 1 : int (n − Suc j) = int n − j − 1 and 2 : int (n − j) = int
n − j by simp-all

from assms have int n − int j − 1 = int (n − j − 1 ) by simp
hence eq1 : int n − int j − 1 gchoose (n − Suc j) = 1

by (simp del: of-nat-diff )
from assms have int n − int j = int (n − j) by simp
hence eq2 : int n − int j gchoose (n − j) = 1

using gbinomial-int-n-n by presburger
have eq3 : int n − d − j − 1 gchoose (n − Suc j) = (− 1 )^(n − Suc j) ∗ (int d
− 1 gchoose (n − Suc j))

by (simp add: gbinomial-int-negated-upper [of int n − d − j − 1 ] 1 )
have eq4 : int n − d − j gchoose (n − j) = (− 1 )^(n − j) ∗ (int d − 1 gchoose

(n − j))
by (simp add: gbinomial-int-negated-upper [of int n − d − j] 2 )

have eq5 : (
∑

i = Suc j..n. (int i − aa i − j − 1 gchoose i − j) + (int i − bb i
− j − 1 gchoose (i − j))) =

(
∑

i=Suc j..n. (− 1 )^(i − j) ∗ ((int (aa i) gchoose (i − j)) + (int (bb i)
gchoose (i − j))))

using refl
proof (rule sum.cong)

fix i
assume i ∈ {Suc j..n}
hence j ≤ i by simp
hence 3 : int (i − j) = int i − j by simp
show (int i − aa i − j − 1 gchoose i − j) + (int i − bb i − j − 1 gchoose (i

− j)) =
(− 1 )^(i − j) ∗ ((int (aa i) gchoose (i − j)) + (int (bb i) gchoose (i −

j)))
by (simp add: gbinomial-int-negated-upper [of int i − aa i − j − 1 ]

gbinomial-int-negated-upper [of int i − bb i − j − 1 ] 3 distrib-left)
qed
from fun-cong[OF dube-eq-2 , OF assms, of 0 ] show ?thesis by (simp add: eq1

eq2 eq3 eq4 eq5 )
qed

lemma dube-aux-1 :
assumes (h, {}) ∈ set ps ∪ set qs
shows poly-deg h < max (aa 1 ) (bb 1 )
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proof (rule ccontr)
define z where z = poly-deg h
assume ¬ z < max (aa 1 ) (bb 1 )

let ?S = λA. {h. (h, {}) ∈ A ∧ poly-deg h = z}
have fin: finite (?S A) if finite A for A::((( ′x ⇒0 nat) ⇒0

′a) × ′x set) set
proof −

have (λt. (t, {})) ‘ ?S A ⊆ A by blast
hence finite ((λt. (t, {}:: ′x set)) ‘ ?S A) using that by (rule finite-subset)
moreover have inj-on (λt. (t, {}:: ′x set)) (?S A) by (rule inj-onI ) simp
ultimately show ?thesis by (rule finite-imageD)

qed
from finite-set have 1 : finite (?S (set ps)) by (rule fin)
from finite-set have 2 : finite (?S (set qs)) by (rule fin)

from ‹¬ z < max (aa 1 ) (bb 1 )› have aa 1 ≤ z and bb 1 ≤ z by simp-all
have d ≤ aa 1 unfolding aa-Suc-n[symmetric] aa-def using fin-X by (rule

b-decreasing) simp
hence d ≤ z using ‹aa 1 ≤ z› by (rule le-trans)
hence eq: int (z − d) = int z − int d by simp
from ‹d ≤ z› have Hilbert-fun (P[X ]::(- ⇒0

′a) set) z =
((z − d) + (n − 1 ) choose n − 1 ) + Hilbert-fun P z +

Hilbert-fun N z
by (rule Hilbert-fun-X)

also have int . . . = ((int z − d + (n − 1 ) gchoose n − 1 ) + Hilbert-poly aa z
+ Hilbert-poly bb z) +

(int (card (?S (set ps))) + int (card (?S (set qs))))
using X-not-empty valid-ps hom-ps cn-ps std-ps ext-ps ‹aa 1 ≤ z›

valid-qs hom-qs cn-qs std-qs ext-qs ‹bb 1 ≤ z›
by (simp add: Hilbert-fun-eq-Hilbert-poly-plus-card aa-def bb-def int-binomial

eq)
finally have ((int z − d + n − 1 gchoose n − 1 ) + Hilbert-poly aa z + Hilbert-poly

bb z) +
(int (card (?S (set ps))) + int (card (?S (set qs)))) = int z + n −

1 gchoose (n − 1 )
using fin-X X-not-empty by (simp add: Hilbert-fun-Polys int-binomial alge-

bra-simps)
also have . . . = (int z − d + n − 1 gchoose n − 1 ) + Hilbert-poly aa z +

Hilbert-poly bb z
by (fact dube-eq-0 [THEN fun-cong])

finally have int (card (?S (set ps))) + int (card (?S (set qs))) = 0 by simp
hence card (?S (set ps)) = 0 and card (?S (set qs)) = 0 by simp-all
with 1 2 have ?S (set ps ∪ set qs) = {} by auto
moreover from assms have h ∈ ?S (set ps ∪ set qs) by (simp add: z-def )
ultimately have h ∈ {} by (rule subst)
thus False by simp

qed

lemma
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shows aa-n: aa n = d and bb-n: bb n = 0 and bb-0 : bb 0 ≤ max (aa 1 ) (bb 1 )
proof −

let ?j = n − Suc 0
from n-gr-0 have ?j < n and eq1 : Suc ?j = n and eq2 : n − ?j = 1 by simp-all
from this(1 ) have (1 ::int) = (− 1 )^(n − Suc ?j) ∗ ((int d − 1 ) gchoose (n −

Suc ?j)) +
(− 1 )^(n − ?j) ∗ ((int d − 1 ) gchoose (n − ?j)) − 1 −
(
∑

i=Suc ?j..n. (− 1 )^(i − ?j) ∗ ((int (aa i) gchoose (i − ?j)) +
(int (bb i) gchoose (i − ?j))))

by (rule dube-eq-3 )
hence eq: aa n + bb n = d by (simp add: eq1 eq2 )
hence aa n ≤ d by simp
moreover have d ≤ aa n unfolding aa-Suc-n[symmetric] aa-def using fin-X

by (rule b-decreasing) simp
ultimately show aa n = d by (rule antisym)
with eq show bb n = 0 by simp

have bb 0 = b qs 0 by (simp only: bb-def )
also from fin-X have . . . ≤ max (aa 1 ) (bb 1 ) (is - ≤ ?m)
proof (rule b-le)

from fin-X ext-qs have a qs = bb (Suc n) by (simp add: b-card-X bb-def )
also have . . . ≤ bb 1 unfolding bb-def using fin-X by (rule b-decreasing)

simp
also have . . . ≤ ?m by (rule max.cobounded2 )
finally show a qs ≤ ?m .

next
fix h U
assume (h, U ) ∈ set qs
show poly-deg h < ?m
proof (cases card U = 0 )

case True
from fin-X valid-qs ‹(h, U ) ∈ set qs› have finite U by (rule valid-decompD-finite)

with True have U = {} by simp
with ‹(h, U ) ∈ set qs› have (h, {}) ∈ set ps ∪ set qs by simp
thus ?thesis by (rule dube-aux-1 )

next
case False
hence 1 ≤ card U by simp
with fin-X ‹(h, U ) ∈ set qs› have poly-deg h < bb 1 unfolding bb-def by

(rule b)
also have . . . ≤ ?m by (rule max.cobounded2 )
finally show ?thesis .

qed
qed
finally show bb 0 ≤ ?m .

qed

lemma dube-eq-4 :
assumes j < n
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shows (1 ::int) = 2 ∗ (− 1 )^(n − Suc j) ∗ ((int d − 1 ) gchoose (n − Suc j)) −
1 −

(
∑

i=Suc j..n−1 . (− 1 )^(i − j) ∗ ((int (aa i) gchoose (i − j)) +
(int (bb i) gchoose (i − j))))
proof −

from assms have Suc j ≤ n and 0 < n and 1 : Suc (n − Suc j) = n − j by
simp-all

have 2 : (− 1 ) ^ (n − Suc j) = − ((− (1 ::int)) ^ (n − j)) by (simp flip: 1 )
from assms have (1 ::int) = (− 1 )^(n − Suc j) ∗ ((int d − 1 ) gchoose (n − Suc

j)) +
(− 1 )^(n − j) ∗ ((int d − 1 ) gchoose (n − j)) − 1 −
(
∑

i=Suc j..n. (− 1 )^(i − j) ∗ ((int (aa i) gchoose (i − j)) +
(int (bb i) gchoose (i − j))))

by (rule dube-eq-3 )
also have . . . = (− 1 )^(n − Suc j) ∗ ((int d − 1 ) gchoose (n − Suc j)) +

(− 1 )^(n − j) ∗ ((int d − 1 ) gchoose (n − j)) − 1 −
(− 1 )^(n − j) ∗ ((int (aa n) gchoose (n − j)) + (int (bb n) gchoose

(n − j))) −
(
∑

i=Suc j..n−1 . (− 1 )^(i − j) ∗ ((int (aa i) gchoose (i − j)) +
(int (bb i) gchoose (i − j))))

using ‹0 < n› ‹Suc j ≤ n› by (simp only: sum-tail-nat)
also have . . . = (− 1 )^(n − Suc j) ∗ ((int d − 1 ) gchoose (n − Suc j)) +

(− 1 )^(n − j) ∗ (((int d − 1 ) gchoose (n − j)) − (int d gchoose
(n − j))) − 1 −

(
∑

i=Suc j..n−1 . (− 1 )^(i − j) ∗ ((int (aa i) gchoose (i − j)) +
(int (bb i) gchoose (i − j))))

using assms by (simp add: aa-n bb-n gbinomial-0-left right-diff-distrib)
also have (− 1 )^(n − j) ∗ (((int d − 1 ) gchoose (n − j)) − (int d gchoose (n
− j))) =

(− 1 )^(n − Suc j) ∗ (((int d − 1 + 1 ) gchoose (Suc (n − Suc j))) −
((int d − 1 ) gchoose (Suc (n − Suc j))))

by (simp add: 1 2 flip: mult-minus-right)
also have . . . = (− 1 )^(n − Suc j) ∗ ((int d − 1 ) gchoose (n − Suc j))

by (simp only: gbinomial-int-Suc-Suc, simp)
finally show ?thesis by simp

qed

lemma cc-Suc:
assumes j < n − 1
shows int (cc (Suc j)) = 2 + 2 ∗ (− 1 )^(n − j) ∗ ((int d − 1 ) gchoose (n −

Suc j)) +
(
∑

i=j+2 ..n−1 . (− 1 )^(i − j) ∗ ((int (aa i) gchoose (i − j)) +
(int (bb i) gchoose (i − j))))
proof −

from assms have j < n and Suc j ≤ n − 1 by simp-all
hence n − j = Suc (n − Suc j) by simp
hence eq: (− 1 ) ^ (n − Suc j) = − ((− (1 ::int)) ^ (n − j)) by simp
from ‹j < n› have (1 ::int) = 2 ∗ (− 1 )^(n − Suc j) ∗ ((int d − 1 ) gchoose (n
− Suc j)) − 1 −
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(
∑

i=Suc j..n−1 . (− 1 )^(i − j) ∗ ((int (aa i) gchoose (i − j)) + (int
(bb i) gchoose (i − j))))

by (rule dube-eq-4 )
also have . . . = cc (Suc j) − 2 ∗ (− 1 )^(n − j) ∗ ((int d − 1 ) gchoose (n −

Suc j)) − 1 −
(
∑

i=j+2 ..n−1 . (− 1 )^(i − j) ∗ ((int (aa i) gchoose (i − j)) + (int
(bb i) gchoose (i − j))))

using ‹Suc j ≤ n − 1 › by (simp add: sum.atLeast-Suc-atMost eq)
finally show ?thesis by simp

qed

lemma cc-n-minus-1 : cc (n − 1 ) = 2 ∗ d
proof −

let ?j = n − 2
from n-gr-1 have 1 : Suc ?j = n − 1 and ?j < n − 1 and 2 : Suc (n − 1 ) = n

and 3 : n − (n − Suc 0 ) = Suc 0 and 4 : n − ?j = 2
by simp-all

have int (cc (n − 1 )) = int (cc (Suc ?j)) by (simp only: 1 )
also from ‹?j < n − 1 › have . . . = 2 + 2 ∗ (− 1 ) ^ (n − ?j) ∗ (int d − 1

gchoose (n − Suc ?j)) +
(
∑

i = ?j+2 ..n−1 . (− 1 ) ^ (i − ?j) ∗ ((int (aa i) gchoose (i − ?j)) +
(int (bb i) gchoose (i − ?j))))

by (rule cc-Suc)
also have . . . = int (2 ∗ d) by (simp add: 1 2 3 4 )
finally show ?thesis by (simp only: int-int-eq)

qed

Since the case card X = 2 is settled, we can concentrate on 2 < card X
now.
context

assumes n-gr-2 : 2 < n
begin

lemma cc-n-minus-2 : cc (n − 2 ) ≤ d2 + 2 ∗ d
proof −

let ?j = n − 3
from n-gr-2 have 1 : Suc ?j = n − 2 and ?j < n − 1 and 2 : Suc (n − 2 ) =

n − Suc 0
and 3 : n − (n − 2 ) = 2 and 4 : n − ?j = 3
by simp-all

have int (cc (n − 2 )) = int (cc (Suc ?j)) by (simp only: 1 )
also from ‹?j < n − 1 › have . . . = 2 + 2 ∗ (− 1 ) ^ (n − ?j) ∗ (int d − 1

gchoose (n − Suc ?j)) +
(
∑

i = ?j+2 ..n−1 . (− 1 ) ^ (i − ?j) ∗ ((int (aa i) gchoose (i − ?j)) +
(int (bb i) gchoose (i − ?j))))

by (rule cc-Suc)
also have . . . = (2 − 2 ∗ (int d − 1 gchoose 2 )) + ((int (aa (n − 1 )) gchoose

2 ) + (int (bb (n − 1 )) gchoose 2 ))
by (simp add: 1 2 3 4 )

221



also have . . . ≤ (2 − 2 ∗ (int d − 1 gchoose 2 )) + (2 ∗ int d gchoose 2 )
proof (rule add-left-mono)

have (int (aa (n − 1 )) gchoose 2 ) + (int (bb (n − 1 )) gchoose 2 ) ≤ int (aa
(n − 1 )) + int (bb (n − 1 )) gchoose 2

by (rule gbinomial-int-plus-le) simp-all
also have . . . = int (2 ∗ d) gchoose 2 by (simp flip: cc-n-minus-1 )
also have . . . = 2 ∗ int d gchoose 2 by (simp add: int-ops(7 ))
finally show (int (aa (n − 1 )) gchoose 2 ) + (int (bb (n − 1 )) gchoose 2 ) ≤

2 ∗ int d gchoose 2 .
qed
also have . . . = 2 − fact 2 ∗ (int d − 1 gchoose 2 ) + (2 ∗ int d gchoose 2 ) by

(simp only: fact-2 )
also have . . . = 2 − (int d − 1 ) ∗ (int d − 2 ) + (2 ∗ int d gchoose 2 )
by (simp only: gbinomial-int-mult-fact) (simp add: numeral-2-eq-2 prod.atLeast0-lessThan-Suc)

also have . . . = 2 − (int d − 1 ) ∗ (int d − 2 ) + int d ∗ (2 ∗ int d − 1 )
by (simp add: gbinomial-prod-rev numeral-2-eq-2 prod.atLeast0-lessThan-Suc)

also have . . . = int (d2 + 2 ∗ d) by (simp add: power2-eq-square) (simp only:
algebra-simps)

finally show ?thesis by (simp only: int-int-eq)
qed

lemma cc-Suc-le:
assumes j < n − 3
shows int (cc (Suc j)) ≤ 2 + (int (cc (j + 2 )) gchoose 2 ) + (

∑
i=j+4 ..n−1 .

int (cc i) gchoose (i − j))
— Could be proved without coercing to int, because everything is

non-negative.
proof −

let ?f = λi j. (int (aa i) gchoose (i − j)) + (int (bb i) gchoose (i − j))
let ?S = λx y. (

∑
i=j+x..n−y. (− 1 )^(i − j) ∗ ?f i j)

let ?S3 = λx y. (
∑

i=j+x..n−y. (int (cc i) gchoose (i − j)))
have ie1 : (int (aa i) gchoose k) + (int (bb i) gchoose k) ≤ int (cc i) gchoose k

if 0 < k for i k
proof −

from that have (int (aa i) gchoose k) + (int (bb i) gchoose k) ≤ int (aa i) +
int (bb i) gchoose k

by (rule gbinomial-int-plus-le) simp-all
also have . . . = int (cc i) gchoose k by simp
finally show ?thesis .

qed
from d-gr-0 have 0 ≤ int d − 1 by simp
from assms have 0 < n − Suc j by simp
have f-nonneg: 0 ≤ ?f i j for i by (simp add: gbinomial-nneg)

show ?thesis
proof (cases n = j + 4 )

case True
hence j: j = n − 4 by simp
have 1 : n − Suc j = 3 and j < n − 1 and 2 : Suc (n − 3 ) = Suc (Suc j)
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and 3 : n − (n − 3 ) = 3
and 4 : n − j = 4 and 5 : n − Suc 0 = Suc (Suc (Suc j)) and 6 : n − 2 =

Suc (Suc j)
by (simp-all add: True)

from ‹j < n − 1 › have int (cc (Suc j)) = 2 + 2 ∗ (− 1 ) ^ (n − j) ∗ (int d
− 1 gchoose (n − Suc j)) +

(
∑

i = j+2 ..n−1 . (− 1 ) ^ (i − j) ∗ ((int (aa i) gchoose (i − j)) + (int
(bb i) gchoose (i − j))))

by (rule cc-Suc)
also have . . . = (2 + ((int (aa (n − 2 )) gchoose 2 ) + (int (bb (n − 2 )) gchoose

2 ))) +
(2 ∗ (int d − 1 gchoose 3 ) − ((int (aa (n − 1 )) gchoose 3 ) + (int

(bb (n − 1 )) gchoose 3 )))
by (simp add: 1 2 3 4 5 6 )

also have . . . ≤ (2 + ((int (aa (n − 2 )) gchoose 2 ) + (int (bb (n − 2 )) gchoose
2 ))) + 0

proof (rule add-left-mono)
from cc-n-minus-1 have eq1 : int (aa (n − 1 )) + int (bb (n − 1 )) = 2 ∗ int

d by simp
hence ie2 : int (aa (n − 1 )) ≤ 2 ∗ int d by simp
from ‹0 ≤ int d − 1 › have int d − 1 gchoose 3 ≤ int d gchoose 3 by (rule

gbinomial-int-mono) simp
hence 2 ∗ (int d − 1 gchoose 3 ) ≤ 2 ∗ (int d gchoose 3 ) by simp
also from - ie2 have . . . ≤ (int (aa (n − 1 )) gchoose 3 ) + (2 ∗ int d − int

(aa (n − 1 )) gchoose 3 )
by (rule binomial-int-ineq-3 ) simp

also have . . . = (int (aa (n − 1 )) gchoose 3 ) + (int (bb (n − 1 )) gchoose
3 ) by (simp flip: eq1 )

finally show 2 ∗ (int d − 1 gchoose 3 ) − ((int (aa (n − 1 )) gchoose 3 ) +
(int (bb (n − 1 )) gchoose 3 )) ≤ 0

by simp
qed
also have . . . = 2 + ((int (aa (n − 2 )) gchoose 2 ) + (int (bb (n − 2 )) gchoose

2 )) by simp
also from ie1 have . . . ≤ 2 + (int (cc (n − 2 )) gchoose 2 ) by (rule

add-left-mono) simp
also have . . . = 2 + (int (cc (j + 2 )) gchoose 2 ) + ?S3 4 1 by (simp add:

True)
finally show ?thesis .

next
case False
with assms have j + 4 ≤ n − 1 by simp
from n-gr-1 have 0 < n − 1 by simp
from assms have j + 2 ≤ n − 1 and j + 2 ≤ n − 2 by simp-all
hence n − j = Suc (n − Suc j) by simp
hence 1 : (− 1 ) ^ (n − Suc j) = − ((− (1 ::int)) ^ (n − j)) by simp
from assms have j < n − 1 by simp
hence int (cc (Suc j)) = 2 + 2 ∗ (− 1 )^(n − j) ∗ ((int d − 1 ) gchoose (n −

Suc j)) + ?S 2 1
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by (rule cc-Suc)
also have . . . = 2 ∗ (− 1 )^(n − j) ∗ ((int d − 1 ) gchoose (n − Suc j)) +

(− 1 )^(n − Suc j) ∗ ((int (aa (n − 1 )) gchoose (n − Suc j)) +
(int (bb (n − 1 )) gchoose (n − Suc j))) +

(2 + ?S 2 2 )
using ‹0 < n − 1 › ‹j + 2 ≤ n − 1 › by (simp only: sum-tail-nat) (simp flip:

numeral-2-eq-2 )
also have . . . ≤ (int (cc (n − 1 )) gchoose (n − Suc j)) + (2 + ?S 2 2 )
proof (rule add-right-mono)

have rl: x − y ≤ x if 0 ≤ y for x y :: int using that by simp
have 2 ∗ (− 1 )^(n − j) ∗ ((int d − 1 ) gchoose (n − Suc j)) +

(− 1 )^(n − Suc j) ∗ ((int (aa (n − 1 )) gchoose (n − Suc j)) +
(int (bb (n − 1 )) gchoose (n − Suc j))) =

(−1 )^(n − j) ∗ (2 ∗ ((int d − 1 ) gchoose (n − Suc j)) −
(int (aa (n − 1 )) gchoose (n − Suc j)) − (int (bb (n − 1 )) gchoose

(n − Suc j)))
by (simp only: 1 algebra-simps)

also have . . . ≤ (int (cc (n − 1 ))) gchoose (n − Suc j)
proof (cases even (n − j))

case True
hence (− 1 ) ^ (n − j) ∗ (2 ∗ (int d − 1 gchoose (n − Suc j)) − (int (aa

(n − 1 )) gchoose (n − Suc j)) −
(int (bb (n − 1 )) gchoose (n − Suc j))) =

2 ∗ (int d − 1 gchoose (n − Suc j)) − ((int (aa (n − 1 )) gchoose (n
− Suc j)) +

(int (bb (n − 1 )) gchoose (n − Suc j)))
by simp

also have . . . ≤ 2 ∗ (int d − 1 gchoose (n − Suc j)) by (rule rl) (simp
add: gbinomial-nneg)

also have . . . = (int d − 1 gchoose (n − Suc j)) + (int d − 1 gchoose (n
− Suc j)) by simp

also have . . . ≤ (int d − 1 ) + (int d − 1 ) gchoose (n − Suc j)
using ‹0 < n − Suc j› ‹0 ≤ int d − 1 › ‹0 ≤ int d − 1 › by (rule

gbinomial-int-plus-le)
also have . . . ≤ 2 ∗ int d gchoose (n − Suc j)
proof (rule gbinomial-int-mono)

from ‹0 ≤ int d − 1 › show 0 ≤ int d − 1 + (int d − 1 ) by simp
qed simp

also have . . . = int (cc (n − 1 )) gchoose (n − Suc j) by (simp only:
cc-n-minus-1 ) simp

finally show ?thesis .
next

case False
hence (− 1 ) ^ (n − j) ∗ (2 ∗ (int d − 1 gchoose (n − Suc j)) − (int (aa

(n − 1 )) gchoose (n − Suc j)) −
(int (bb (n − 1 )) gchoose (n − Suc j))) =
((int (aa (n − 1 )) gchoose (n − Suc j)) + (int (bb (n − 1 )) gchoose

(n − Suc j))) −
2 ∗ (int d − 1 gchoose (n − Suc j))
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by simp
also have . . . ≤ (int (aa (n − 1 )) gchoose (n − Suc j)) + (int (bb (n −

1 )) gchoose (n − Suc j))
by (rule rl) (simp add: gbinomial-nneg d-gr-0 )

also from ‹0 < n − Suc j› have . . . ≤ int (cc (n − 1 )) gchoose (n − Suc
j) by (rule ie1 )

finally show ?thesis .
qed
finally show 2 ∗ (− 1 )^(n − j) ∗ ((int d − 1 ) gchoose (n − Suc j)) +

(− 1 )^(n − Suc j) ∗ ((int (aa (n − 1 )) gchoose (n − Suc j)) +
(int (bb (n − 1 )) gchoose (n − Suc j))) ≤

(int (cc (n − 1 ))) gchoose (n − Suc j) .
qed
also have . . . = 2 + (int (cc (n − 1 )) gchoose ((n − 1 ) − j)) + ((int (aa (j

+ 2 )) gchoose 2 ) +
(int (bb (j + 2 )) gchoose 2 )) + ?S 3 2

using ‹j + 2 ≤ n − 2 › by (simp add: sum.atLeast-Suc-atMost numeral-3-eq-3 )
also have . . . ≤ 2 + (int (cc (n − 1 )) gchoose ((n − 1 ) − j)) + ((int (aa (j

+ 2 )) gchoose 2 ) +
(int (bb (j + 2 )) gchoose 2 )) + ?S3 4 2

proof (rule add-left-mono)
from ‹j + 4 ≤ n − 1 › have j + 3 ≤ n − 2 by simp
hence ?S 3 2 = ?S 4 2 − ?f (j + 3 ) j by (simp add: sum.atLeast-Suc-atMost

add.commute)
hence ?S 3 2 ≤ ?S 4 2 using f-nonneg[of j + 3 ] by simp
also have . . . ≤ ?S3 4 2
proof (rule sum-mono)

fix i
assume i ∈ {j + 4 ..n − 2}
hence 0 < i − j by simp
from f-nonneg[of i] have (− 1 )^(i − j) ∗ ?f i j ≤ ?f i j

by (smt minus-one-mult-self mult-cancel-right1 pos-zmult-eq-1-iff-lemma
zero-less-mult-iff )

also from ‹0 < i − j› have . . . ≤ int (cc i) gchoose (i − j) by (rule ie1 )
finally show (− 1 )^(i − j) ∗ ?f i j ≤ int (cc i) gchoose (i − j) .

qed
finally show ?S 3 2 ≤ ?S3 4 2 .

qed
also have . . . = ((int (aa (j + 2 )) gchoose 2 ) + (int (bb (j + 2 )) gchoose 2 ))

+ (2 + ?S3 4 1 )
using ‹0 < n − 1 › ‹j + 4 ≤ n − 1 › by (simp only: sum-tail-nat) (simp flip:

numeral-2-eq-2 )
also from ie1 have . . . ≤ (int (cc (j + 2 )) gchoose 2 ) + (2 + ?S3 4 1 )

by (rule add-right-mono) simp
also have . . . = 2 + (int (cc (j + 2 )) gchoose 2 ) + ?S3 4 1 by (simp only:

ac-simps)
finally show ?thesis .

qed
qed
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corollary cc-le:
assumes 0 < j and j < n − 2
shows cc j ≤ 2 + (cc (j + 1 ) choose 2 ) + (

∑
i=j+3 ..n−1 . cc i choose (Suc (i

− j)))
proof −

define j0 where j0 = j − 1
with assms have j: j = Suc j0 and j0 < n − 3 by simp-all
have int (cc j) = int (cc (Suc j0 )) by (simp only: j)
also have . . . ≤ 2 + (int (cc (j0 + 2 )) gchoose 2 ) + (

∑
i=j0+4 ..n−1 . int (cc

i) gchoose (i − j0 ))
using ‹j0 < n − 3 › by (rule cc-Suc-le)

also have . . . = 2 + (int (cc (j + 1 )) gchoose 2 ) + (
∑

i=j0+4 ..n−1 . int (cc
i) gchoose (i − j0 ))

by (simp add: j)
also have (

∑
i=j0+4 ..n−1 . int (cc i) gchoose (i − j0 )) = int (

∑
i=j+3 ..n−1 .

cc i choose (Suc (i − j)))
unfolding int-sum

proof (rule sum.cong)
fix i
assume i ∈ {j + 3 ..n − 1}
hence Suc j0 < i by (simp add: j)
hence i − j0 = Suc (i − j) by (simp add: j)
thus int (cc i) gchoose (i − j0 ) = int (cc i choose (Suc (i − j))) by (simp

add: int-binomial)
qed (simp add: j)
finally have int (cc j) ≤ int (2 + (cc (j + 1 ) choose 2 ) + (

∑
i = j + 3 ..n −

1 . cc i choose (Suc (i − j))))
by (simp only: int-plus int-binomial)

thus ?thesis by (simp only: zle-int)
qed

corollary cc-le-Dube-aux: 0 < j =⇒ j + 1 ≤ n =⇒ cc j ≤ Dube-aux n d j
proof (induct j rule: Dube-aux.induct[where n=n])

case step: (1 j)
from step.prems(2 ) have j + 2 < n ∨ j + 2 = n ∨ j + 1 = n by auto
thus ?case
proof (elim disjE)

assume ∗: j + 2 < n
moreover have 0 < j + 1 by simp
moreover from ∗ have j + 1 + 1 ≤ n by simp
ultimately have cc (j + 1 ) ≤ Dube-aux n d (j + 1 ) by (rule step.hyps)
hence 1 : cc (j + 1 ) choose 2 ≤ Dube-aux n d (j + 1 ) choose 2

by (rule Binomial-Int.binomial-mono)
have 2 : (

∑
i = j + 3 ..n − 1 . cc i choose Suc (i − j)) ≤

(
∑

i = j + 3 ..n − 1 . Dube-aux n d i choose Suc (i − j))
proof (rule sum-mono)

fix i::nat
note ∗
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moreover assume i ∈ {j + 3 ..n − 1}
moreover from this ‹2 < n› have 0 < i and i + 1 ≤ n by auto
ultimately have cc i ≤ Dube-aux n d i by (rule step.hyps)
thus cc i choose Suc (i − j) ≤ Dube-aux n d i choose Suc (i − j)

by (rule Binomial-Int.binomial-mono)
qed
from ∗ have j < n − 2 by simp
with step.prems(1 ) have cc j ≤ 2 + (cc (j + 1 ) choose 2 ) + (

∑
i = j + 3 ..n

− 1 . cc i choose Suc (i − j))
by (rule cc-le)

also from ∗ 1 2 have . . . ≤ Dube-aux n d j by simp
finally show ?thesis .

next
assume j + 2 = n
hence j = n − 2 and Dube-aux n d j = d2 + 2 ∗ d by simp-all
thus ?thesis by (simp only: cc-n-minus-2 )

next
assume j + 1 = n
hence j = n − 1 and Dube-aux n d j = 2 ∗ d by simp-all
thus ?thesis by (simp only: cc-n-minus-1 )

qed
qed

end

lemma Dube-aux:
assumes g ∈ punit.reduced-GB F
shows poly-deg g ≤ Dube-aux n d 1

proof (cases n = 2 )
case True
from assms have poly-deg g ≤ bb 0 by (rule deg-RGB)
also have . . . ≤ max (aa 1 ) (bb 1 ) by (fact bb-0 )
also have . . . ≤ cc (n − 1 ) by (simp add: True)
also have . . . = 2 ∗ d by (fact cc-n-minus-1 )
also have . . . = Dube-aux n d 1 by (simp add: True)
finally show ?thesis .

next
case False
with ‹1 < n› have 2 < n and 1 + 1 ≤ n by simp-all
from assms have poly-deg g ≤ bb 0 by (rule deg-RGB)
also have . . . ≤ max (aa 1 ) (bb 1 ) by (fact bb-0 )
also have . . . ≤ cc 1 by simp
also from ‹2 < n› - ‹1 + 1 ≤ n› have . . . ≤ Dube-aux n d 1 by (rule

cc-le-Dube-aux) simp
finally show ?thesis .

qed

end
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theorem Dube:
assumes finite F and F ⊆ P[X ] and

∧
f . f ∈ F =⇒ homogeneous f and g ∈

punit.reduced-GB F
shows poly-deg g ≤ Dube (card X) (maxdeg F)

proof (cases F ⊆ {0})
case True
hence F = {} ∨ F = {0} by blast
with assms(4 ) show ?thesis by (auto simp: punit.reduced-GB-empty punit.reduced-GB-singleton)

next
case False
hence F − {0} 6= {} by simp
hence F 6= {} by blast
hence poly-deg ‘ F 6= {} by simp
from assms(1 ) have fin1 : finite (poly-deg ‘ F) by (rule finite-imageI )
from assms(1 ) have finite (F − {0}) by simp
hence fin: finite (poly-deg ‘ (F − {0})) by (rule finite-imageI )
moreover from ‹F − {0} 6= {}› have ∗: poly-deg ‘ (F − {0}) 6= {} by simp
ultimately have maxdeg (F − {0}) ∈ poly-deg ‘ (F − {0}) unfolding maxdeg-def

by (rule Max-in)
then obtain f where f ∈ F − {0} and md1 : maxdeg (F − {0}) = poly-deg f

..
note this(2 )
moreover have maxdeg (F − {0}) ≤ maxdeg F

unfolding maxdeg-def using image-mono ∗ fin1 by (rule Max-mono) blast
ultimately have poly-deg f ≤ maxdeg F by simp
from ‹f ∈ F − {0}› have f ∈ F and f 6= 0 by simp-all
from this(1 ) assms(2 ) have f ∈ P[X ] ..
have f-max: poly-deg f ′ ≤ poly-deg f if f ′ ∈ F for f ′

proof (cases f ′ = 0 )
case True
thus ?thesis by simp

next
case False
with that have f ′ ∈ F − {0} by simp
hence poly-deg f ′ ∈ poly-deg ‘ (F − {0}) by (rule imageI )
with fin show poly-deg f ′ ≤ poly-deg f unfolding md1 [symmetric] maxdeg-def

by (rule Max-ge)
qed
have maxdeg F ≤ poly-deg f unfolding maxdeg-def using fin1 ‹poly-deg ‘ F 6=
{}›

proof (rule Max.boundedI )
fix d
assume d ∈ poly-deg ‘ F
then obtain f ′ where f ′ ∈ F and d = poly-deg f ′ ..
note this(2 )
also from ‹f ′ ∈ F› have poly-deg f ′ ≤ poly-deg f by (rule f-max)
finally show d ≤ poly-deg f .

qed
with ‹poly-deg f ≤ maxdeg F› have md: poly-deg f = maxdeg F by (rule antisym)
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show ?thesis
proof (cases ideal {f } = ideal F)

case True
note assms(4 )
also have punit.reduced-GB F = punit.reduced-GB {f }

using punit.finite-reduced-GB-finite punit.reduced-GB-is-reduced-GB-finite
by (rule punit.reduced-GB-unique) (simp-all add: punit.reduced-GB-pmdl-finite[simplified]

True)
also have . . . ⊆ {punit.monic f } by (simp add: punit.reduced-GB-singleton)
finally have g ∈ {punit.monic f } .
hence poly-deg g = poly-deg (punit.monic f ) by simp
also from poly-deg-monom-mult-le[where c=1 / lcf f and t=0 and p=f ]

have . . . ≤ poly-deg f
by (simp add: punit.monic-def )

also have . . . = maxdeg F by (fact md)
also have . . . ≤ Dube (card X) (maxdeg F) by (fact Dube-ge-d)
finally show ?thesis .

next
case False
show ?thesis
proof (cases poly-deg f = 0 )

case True
hence monomial (lookup f 0 ) 0 = f by (rule poly-deg-zero-imp-monomial)
moreover define c where c = lookup f 0
ultimately have f : f = monomial c 0 by simp
with ‹f 6= 0 › have c 6= 0 by (simp add: monomial-0-iff )
from ‹f ∈ F› have f ∈ ideal F by (rule ideal.span-base)

hence punit.monom-mult (1 / c) 0 f ∈ ideal F by (rule punit.pmdl-closed-monom-mult[simplified])
with ‹c 6= 0 › have ideal F = UNIV
by (simp add: f punit.monom-mult-monomial ideal-eq-UNIV-iff-contains-one)
with assms(1 ) have punit.reduced-GB F = {1}

by (simp only: ideal-eq-UNIV-iff-reduced-GB-eq-one-finite)
with assms(4 ) show ?thesis by simp

next
case False
hence 0 < poly-deg f by simp
have card X ≤ 1 ∨ 1 < card X by auto
thus ?thesis
proof

note fin-X
moreover assume card X ≤ 1
moreover note assms(2 )
moreover from ‹f ∈ F› have f ∈ ideal F by (rule ideal.span-base)
ultimately have poly-deg g ≤ poly-deg f

using ‹f 6= 0 › assms(4 ) by (rule deg-reduced-GB-univariate-le)
also have . . . ≤ Dube (card X) (maxdeg F) unfolding md by (fact Dube-ge-d)

finally show ?thesis .
next

assume 1 < card X
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hence poly-deg g ≤ Dube-aux (card X) (poly-deg f ) 1
using assms(1 , 2 ) ‹f ∈ F› assms(3 ) f-max ‹0 < poly-deg f › ‹ideal {f } 6=

ideal F› assms(4 )
by (rule Dube-aux)

also from ‹1 < card X› ‹0 < poly-deg f › have . . . = Dube (card X) (maxdeg
F)

by (simp add: Dube-def md)
finally show ?thesis .

qed
qed

qed
qed

corollary Dube-is-hom-GB-bound:
finite F =⇒ F ⊆ P[X ] =⇒ is-hom-GB-bound F (Dube (card X) (maxdeg F))
by (intro is-hom-GB-boundI Dube)

end

corollary Dube-indets:
assumes finite F and

∧
f . f ∈ F =⇒ homogeneous f and g ∈ punit.reduced-GB

F
shows poly-deg g ≤ Dube (card (

⋃
(indets ‘ F))) (maxdeg F)

using - assms(1 ) - assms(2 , 3 )
proof (rule Dube)

from assms show finite (
⋃
(indets ‘ F)) by (simp add: finite-indets)

next
show F ⊆ P[

⋃
(indets ‘ F)] by (auto simp: Polys-alt)

qed

corollary Dube-is-hom-GB-bound-indets:
finite F =⇒ is-hom-GB-bound F (Dube (card (

⋃
(indets ‘ F))) (maxdeg F))

by (intro is-hom-GB-boundI Dube-indets)

end

hide-const (open) pm-powerprod.a pm-powerprod.b

context extended-ord-pm-powerprod
begin

lemma Dube-is-GB-cofactor-bound:
assumes finite X and finite F and F ⊆ P[X ]
shows is-GB-cofactor-bound F (Dube (Suc (card X)) (maxdeg F))
using assms(1 , 3 )

proof (rule hom-GB-bound-is-GB-cofactor-bound)
let ?F = homogenize None ‘ extend-indets ‘ F
let ?X = insert None (Some ‘ X)
from assms(1 ) have finite ?X by simp
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moreover from assms(2 ) have finite ?F by (intro finite-imageI )
moreover have ?F ⊆ P[?X ]
proof

fix f ′

assume f ′ ∈ ?F
then obtain f where f ∈ F and f ′: f ′ = homogenize None (extend-indets f )

by blast
from this(1 ) assms(3 ) have f ∈ P[X ] ..

hence extend-indets f ∈ P[Some ‘ X ] by (auto simp: Polys-alt indets-extend-indets)
thus f ′ ∈ P[?X ] unfolding f ′ by (rule homogenize-in-Polys)

qed
ultimately have extended-ord.is-hom-GB-bound ?F (Dube (card ?X) (maxdeg

?F))
by (rule extended-ord.Dube-is-hom-GB-bound)

moreover have maxdeg ?F = maxdeg F
proof −

have maxdeg ?F = maxdeg (extend-indets ‘ F)
by (auto simp: indets-extend-indets intro: maxdeg-homogenize)

also have . . . = maxdeg F by (simp add: maxdeg-def image-image)
finally show maxdeg ?F = maxdeg F .

qed
moreover from assms(1 ) have card ?X = card X + 1 by (simp add: card-image)
ultimately show extended-ord.is-hom-GB-bound ?F (Dube (Suc (card X)) (maxdeg

F)) by simp
qed

lemma Dube-is-GB-cofactor-bound-explicit:
assumes finite X and finite F and F ⊆ P[X ]
obtains G where punit.is-Groebner-basis G and ideal G = ideal F and G ⊆

P[X ]
and

∧
g. g ∈ G =⇒ ∃ q. g = (

∑
f∈F . q f ∗ f ) ∧

(∀ f . q f ∈ P[X ] ∧ poly-deg (q f ∗ f ) ≤ Dube (Suc (card X))
(maxdeg F) ∧

(f /∈ F −→ q f = 0 ))
proof −

from assms have is-GB-cofactor-bound F (Dube (Suc (card X)) (maxdeg F))
(is is-GB-cofactor-bound - ?b) by (rule Dube-is-GB-cofactor-bound)

moreover note assms(3 )
ultimately obtain G where punit.is-Groebner-basis G and ideal G = ideal F

and G ⊆ P[X ]
and 1 :

∧
g. g ∈ G =⇒ ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (

∑
f∈F ′. q f ∗ f ) ∧

(∀ f . q f ∈ P[X ] ∧ poly-deg (q f ∗ f ) ≤ ?b ∧ (f /∈ F ′ −→ q
f = 0 ))

by (rule is-GB-cofactor-boundE-Polys) blast
from this(1−3 ) show ?thesis
proof

fix g
assume g ∈ G
hence ∃F ′ q. finite F ′ ∧ F ′ ⊆ F ∧ g = (

∑
f∈F ′. q f ∗ f ) ∧
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(∀ f . q f ∈ P[X ] ∧ poly-deg (q f ∗ f ) ≤ ?b ∧ (f /∈ F ′ −→ q
f = 0 ))

by (rule 1 )
then obtain F ′ q where F ′ ⊆ F and g: g = (

∑
f∈F ′. q f ∗ f ) and

∧
f . q f

∈ P[X ]
and

∧
f . poly-deg (q f ∗ f ) ≤ ?b and 2 :

∧
f . f /∈ F ′ =⇒ q f = 0 by blast

show ∃ q. g = (
∑

f∈F . q f ∗ f ) ∧ (∀ f . q f ∈ P[X ] ∧ poly-deg (q f ∗ f ) ≤ ?b
∧ (f /∈ F −→ q f = 0 ))

proof (intro exI allI conjI impI )
from assms(2 ) ‹F ′ ⊆ F› have (

∑
f∈F ′. q f ∗ f ) = (

∑
f∈F . q f ∗ f )

proof (intro sum.mono-neutral-left ballI )
fix f
assume f ∈ F − F ′

hence f /∈ F ′ by simp
hence q f = 0 by (rule 2 )
thus q f ∗ f = 0 by simp

qed
thus g = (

∑
f∈F . q f ∗ f ) by (simp only: g)

next
fix f
assume f /∈ F
with ‹F ′ ⊆ F› have f /∈ F ′ by blast
thus q f = 0 by (rule 2 )

qed fact+
qed

qed

corollary Dube-is-GB-cofactor-bound-indets:
assumes finite F
shows is-GB-cofactor-bound F (Dube (Suc (card (

⋃
(indets ‘ F)))) (maxdeg F))

using - assms -
proof (rule Dube-is-GB-cofactor-bound)

from assms show finite (
⋃
(indets ‘ F)) by (simp add: finite-indets)

next
show F ⊆ P[

⋃
(indets ‘ F)] by (auto simp: Polys-alt)

qed

end

end

12 Sample Computations of Gröbner Bases via
Macaulay Matrices

theory Groebner-Macaulay-Examples
imports

Groebner-Macaulay
Dube-Bound
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Groebner-Bases.Benchmarks
Jordan-Normal-Form.Gauss-Jordan-IArray-Impl
Groebner-Bases.Code-Target-Rat

begin

12.1 Combining Groebner-Macaulay.Groebner-Macaulay and Groeb-
ner-Macaulay.Dube-Bound

context extended-ord-pm-powerprod
begin

theorem thm-2-3-6-Dube:
assumes finite X and set fs ⊆ P[X ]
shows punit.is-Groebner-basis (set (punit.Macaulay-list

(deg-shifts X (Dube (Suc (card X)) (maxdeg (set
fs))) fs)))
using assms Dube-is-GB-cofactor-bound by (rule thm-2-3-6 ) (simp-all add: assms)

theorem thm-2-3-7-Dube:
assumes finite X and set fs ⊆ P[X ]
shows 1 ∈ ideal (set fs) ←→

1 ∈ set (punit.Macaulay-list (deg-shifts X (Dube (Suc (card X)) (maxdeg
(set fs))) fs))
using assms Dube-is-GB-cofactor-bound by (rule thm-2-3-7 ) (simp-all add: assms)

theorem thm-2-3-6-indets-Dube:
fixes fs
defines X ≡

⋃
(indets ‘ set fs)

shows punit.is-Groebner-basis (set (punit.Macaulay-list
(deg-shifts X (Dube (Suc (card X)) (maxdeg (set

fs))) fs)))
unfolding X-def using Dube-is-GB-cofactor-bound-indets by (rule thm-2-3-6-indets)

(fact finite-set)

theorem thm-2-3-7-indets-Dube:
fixes fs
defines X ≡

⋃
(indets ‘ set fs)

shows 1 ∈ ideal (set fs) ←→
1 ∈ set (punit.Macaulay-list (deg-shifts X (Dube (Suc (card X)) (maxdeg

(set fs))) fs))
unfolding X-def using Dube-is-GB-cofactor-bound-indets by (rule thm-2-3-7-indets)

(fact finite-set)

end

12.2 Preparations
primrec remdups-wrt-rev :: ( ′a ⇒ ′b) ⇒ ′a list ⇒ ′b list ⇒ ′a list where

remdups-wrt-rev f [] vs = [] |
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remdups-wrt-rev f (x # xs) vs =
(let fx = f x in if List.member vs fx then remdups-wrt-rev f xs vs else x #

(remdups-wrt-rev f xs (fx # vs)))

lemma remdups-wrt-rev-notin: v ∈ set vs =⇒ v /∈ f ‘ set (remdups-wrt-rev f xs vs)
proof (induct xs arbitrary: vs)

case Nil
show ?case by simp

next
case (Cons x xs)
from Cons(2 ) have 1 : v /∈ f ‘ set (remdups-wrt-rev f xs vs) by (rule Cons(1 ))
from Cons(2 ) have v ∈ set (f x # vs) by simp
hence 2 : v /∈ f ‘ set (remdups-wrt-rev f xs (f x # vs)) by (rule Cons(1 ))
from Cons(2 ) show ?case by (auto simp: Let-def 1 2 List.member-def )

qed

lemma distinct-remdups-wrt-rev: distinct (map f (remdups-wrt-rev f xs vs))
proof (induct xs arbitrary: vs)

case Nil
show ?case by simp

next
case (Cons x xs)
show ?case by (simp add: Let-def Cons(1 ) remdups-wrt-rev-notin)

qed

lemma map-of-remdups-wrt-rev ′:
map-of (remdups-wrt-rev fst xs vs) k = map-of (filter (λx. fst x /∈ set vs) xs) k

proof (induct xs arbitrary: vs)
case Nil
show ?case by simp

next
case (Cons x xs)
show ?case
proof (simp add: Let-def List.member-def Cons, intro impI )

assume k 6= fst x
have map-of (filter (λy. fst y 6= fst x ∧ fst y /∈ set vs) xs) =

map-of (filter (λy. fst y 6= fst x) (filter (λy. fst y /∈ set vs) xs))
by (simp only: filter-filter conj-commute)

also have ... = map-of (filter (λy. fst y /∈ set vs) xs) |‘ {y. y 6= fst x} by (rule
map-of-filter)

finally show map-of (filter (λy. fst y 6= fst x ∧ fst y /∈ set vs) xs) k =
map-of (filter (λy. fst y /∈ set vs) xs) k

by (simp add: restrict-map-def ‹k 6= fst x›)
qed

qed

corollary map-of-remdups-wrt-rev: map-of (remdups-wrt-rev fst xs []) = map-of
xs

by (rule ext, simp add: map-of-remdups-wrt-rev ′)
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lemma (in term-powerprod) compute-list-to-poly [code]:
list-to-poly ts cs = distr0 DRLEX (remdups-wrt-rev fst (zip ts cs) [])
by (rule poly-mapping-eqI ,

simp add: lookup-list-to-poly list-to-fun-def distr0-def oalist-of-list-ntm-def
oa-ntm.lookup-oalist-of-list distinct-remdups-wrt-rev lookup-dflt-def map-of-remdups-wrt-rev)

lemma (in ordered-term) compute-Macaulay-list [code]:
Macaulay-list ps =

(let ts = Keys-to-list ps in
filter (λp. p 6= 0 ) (mat-to-polys ts (row-echelon (polys-to-mat ts ps)))
)

by (simp add: Macaulay-list-def Macaulay-mat-def Let-def )

declare conversep-iff [code]

derive (eq) ceq poly-mapping
derive (no) ccompare poly-mapping
derive (dlist) set-impl poly-mapping
derive (no) cenum poly-mapping

derive (eq) ceq rat
derive (no) ccompare rat
derive (dlist) set-impl rat
derive (no) cenum rat

12.2.1 Connection between ( ′x ⇒0
′a) ⇒0

′b and ( ′x, ′a) pp ⇒0
′b

definition keys-pp-to-list :: ( ′x::linorder , ′a::zero) pp ⇒ ′x list
where keys-pp-to-list t = sorted-list-of-set (keys-pp t)

lemma inj-PP: inj PP
by (simp add: PP-inject inj-def )

lemma inj-mapping-of : inj mapping-of
by (simp add: mapping-of-inject inj-def )

lemma mapping-of-comp-PP [simp]:
mapping-of ◦ PP = (λx. x)
PP ◦ mapping-of = (λx. x)
by (simp-all add: comp-def PP-inverse mapping-of-inverse)

lemma map-key-PP-mapping-of [simp]: Poly-Mapping.map-key PP (Poly-Mapping.map-key
mapping-of p) = p

by (simp add: map-key-compose[OF inj-PP inj-mapping-of ] comp-def PP-inverse
map-key-id)

lemma map-key-mapping-of-PP [simp]: Poly-Mapping.map-key mapping-of (Poly-Mapping.map-key
PP p) = p
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by (simp add: map-key-compose[OF inj-mapping-of inj-PP] comp-def mapping-of-inverse
map-key-id)

lemmas map-key-PP-plus = map-key-plus[OF inj-PP]
lemmas map-key-PP-zero [simp] = map-key-zero[OF inj-PP]

lemma lookup-map-key-PP: lookup (Poly-Mapping.map-key PP p) t = lookup p
(PP t)

by (simp add: map-key.rep-eq inj-PP)

lemma keys-map-key-PP: keys (Poly-Mapping.map-key PP p) = mapping-of ‘ keys
p

by (simp add: keys-map-key inj-PP)
(smt Collect-cong PP-inverse UNIV-I image-def pp.mapping-of-inverse vim-

age-def )

lemma map-key-PP-zero-iff [iff ]: Poly-Mapping.map-key PP p = 0 ←→ p = 0
by (metis map-key-PP-zero map-key-mapping-of-PP)

lemma map-key-PP-uminus [simp]: Poly-Mapping.map-key PP (− p) = − Poly-Mapping.map-key
PP p

by (rule poly-mapping-eqI ) (simp add: lookup-map-key-PP)

lemma map-key-PP-minus:
Poly-Mapping.map-key PP (p − q) = Poly-Mapping.map-key PP p − Poly-Mapping.map-key

PP q
by (rule poly-mapping-eqI ) (simp add: lookup-map-key-PP lookup-minus)

lemma map-key-PP-monomial [simp]: Poly-Mapping.map-key PP (monomial c t)
= monomial c (mapping-of t)
proof −

have Poly-Mapping.map-key PP (monomial c t) = Poly-Mapping.map-key PP
(monomial c (PP (mapping-of t)))

by (simp only: mapping-of-inverse)
also from inj-PP have . . . = monomial c (mapping-of t) by (fact map-key-single)
finally show ?thesis .

qed

lemma map-key-PP-one [simp]: Poly-Mapping.map-key PP 1 = 1
by (simp add: zero-pp.rep-eq flip: single-one)

lemma map-key-PP-monom-mult-punit:
Poly-Mapping.map-key PP (monom-mult-punit c t p) =

monom-mult-punit c (mapping-of t) (Poly-Mapping.map-key PP p)
by (rule poly-mapping-eqI )
(simp add: punit.lookup-monom-mult monom-mult-punit-def adds-pp-iff PP-inverse

lookup-map-key-PP
mapping-of-inverse flip: minus-pp.abs-eq)
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lemma map-key-PP-times:
Poly-Mapping.map-key PP (p ∗ q) =
Poly-Mapping.map-key PP p ∗ Poly-Mapping.map-key PP (q::(-, -::add-linorder)

pp ⇒0 -)
by (induct p rule: poly-mapping-plus-induct)
(simp-all add: distrib-right map-key-PP-plus times-monomial-left map-key-PP-monom-mult-punit

flip: monom-mult-punit-def )

lemma map-key-PP-sum: Poly-Mapping.map-key PP (sum f A) = (
∑

a∈A. Poly-Mapping.map-key
PP (f a))

by (induct A rule: infinite-finite-induct) (simp-all add: map-key-PP-plus)

lemma map-key-PP-ideal:
Poly-Mapping.map-key PP ‘ ideal F = ideal (Poly-Mapping.map-key PP ‘ (F ::((-,

-::add-linorder) pp ⇒0 -) set))
proof −

from map-key-PP-mapping-of have surj (Poly-Mapping.map-key PP) by (rule
surjI )
with map-key-PP-plus map-key-PP-times show ?thesis by (rule image-ideal-eq-surj)

qed

12.2.2 Locale pp-powerprod

We have to introduce a new locale analogous to pm-powerprod, but this
time for power-products represented by pp rather than poly-mapping. This
apparently leads to some (more-or-less) duplicate definitions and lemmas,
but seems to be the only feasible way to get both

• the convenient representation by poly-mapping for theory develop-
ment, and

• the executable representation by pp for code generation.

locale pp-powerprod =
ordered-powerprod ord ord-strict
for ord::( ′x::{countable,linorder}, nat) pp ⇒ ( ′x, nat) pp ⇒ bool
and ord-strict

begin

sublocale gd-powerprod ..

sublocale pp-pm: extended-ord-pm-powerprod λs t. ord (PP s) (PP t) λs t. ord-strict
(PP s) (PP t)
by standard (auto simp: zero-min plus-monotone simp flip: zero-pp-def plus-pp.abs-eq

PP-inject)

definition poly-deg-pp :: (( ′x, nat) pp ⇒0
′a::zero) ⇒ nat

where poly-deg-pp p = (if p = 0 then 0 else max-list (map deg-pp (punit.keys-to-list
p)))
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primrec deg-le-sect-pp-aux :: ′x list ⇒ nat ⇒ ( ′x, nat) pp ⇒0 nat where
deg-le-sect-pp-aux xs 0 = 1 |
deg-le-sect-pp-aux xs (Suc n) =

(let p = deg-le-sect-pp-aux xs n in p + foldr (λx. (+) (monom-mult-punit 1
(single-pp x 1 ) p)) xs 0 )

definition deg-le-sect-pp :: ′x list ⇒ nat ⇒ ( ′x, nat) pp list
where deg-le-sect-pp xs d = punit.keys-to-list (deg-le-sect-pp-aux xs d)

definition deg-shifts-pp :: ′x list ⇒ nat ⇒
(( ′x, nat) pp ⇒0

′b) list ⇒ (( ′x, nat) pp ⇒0
′b::semiring-1 )

list
where deg-shifts-pp xs d fs = concat (map (λf . (map (λt. monom-mult-punit 1

t f )
(deg-le-sect-pp xs (d − poly-deg-pp f )))) fs)

definition indets-pp :: (( ′x, nat) pp ⇒0
′b::zero) ⇒ ′x list

where indets-pp p = remdups (concat (map keys-pp-to-list (punit.keys-to-list p)))

definition Indets-pp :: (( ′x, nat) pp ⇒0
′b::zero) list ⇒ ′x list

where Indets-pp ps = remdups (concat (map indets-pp ps))

lemma map-PP-insort:
map PP (pp-pm.ordered-powerprod-lin.insort x xs) = ordered-powerprod-lin.insort

(PP x) (map PP xs)
by (induct xs) simp-all

lemma map-PP-sorted-list-of-set:
map PP (pp-pm.ordered-powerprod-lin.sorted-list-of-set T ) =

ordered-powerprod-lin.sorted-list-of-set (PP ‘ T )
proof (induct T rule: infinite-finite-induct)

case (infinite T )
moreover from inj-PP subset-UNIV have inj-on PP T by (rule inj-on-subset)
ultimately show ?case by (simp add: inj-PP finite-image-iff )

next
case empty
show ?case by simp

next
case (insert t T )
moreover from insert(2 ) have PP t /∈ PP ‘ T by (simp add: PP-inject im-

age-iff )
ultimately show ?case by (simp add: map-PP-insort)

qed

lemma map-PP-pps-to-list: map PP (pp-pm.punit.pps-to-list T ) = punit.pps-to-list
(PP ‘ T )
by (simp add: pp-pm.punit.pps-to-list-def punit.pps-to-list-def map-PP-sorted-list-of-set

flip: rev-map)
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lemma map-mapping-of-pps-to-list:
map mapping-of (punit.pps-to-list T ) = pp-pm.punit.pps-to-list (mapping-of ‘ T )

proof −
have map mapping-of (punit.pps-to-list T ) = map mapping-of (punit.pps-to-list

(PP ‘ mapping-of ‘ T ))
by (simp add: image-comp)

also have . . . = map mapping-of (map PP (pp-pm.punit.pps-to-list (mapping-of
‘ T )))

by (simp only: map-PP-pps-to-list)
also have . . . = pp-pm.punit.pps-to-list (mapping-of ‘ T ) by simp
finally show ?thesis .

qed

lemma keys-to-list-map-key-PP:
pp-pm.punit.keys-to-list (Poly-Mapping.map-key PP p) = map mapping-of (punit.keys-to-list

p)
by (simp add: pp-pm.punit.keys-to-list-def punit.keys-to-list-def keys-map-key-PP

map-mapping-of-pps-to-list)

lemma Keys-to-list-map-key-PP:
pp-pm.punit.Keys-to-list (map (Poly-Mapping.map-key PP) fs) = map map-

ping-of (punit.Keys-to-list fs)
by (simp add: punit.Keys-to-list-eq-pps-to-list pp-pm.punit.Keys-to-list-eq-pps-to-list

map-mapping-of-pps-to-list Keys-def image-UN keys-map-key-PP)

lemma poly-deg-map-key-PP: poly-deg (Poly-Mapping.map-key PP p) = poly-deg-pp
p
proof −

{
assume p 6= 0
hence map deg-pp (punit.keys-to-list p) 6= []

by (simp add: punit.keys-to-list-def punit.pps-to-list-def )
hence Max (deg-pp ‘ keys p) = max-list (map deg-pp (punit.keys-to-list p))

by (simp add: max-list-Max punit.set-keys-to-list)
}
thus ?thesis

by (simp add: poly-deg-def poly-deg-pp-def keys-map-key-PP image-image flip:
deg-pp.rep-eq)
qed

lemma deg-le-sect-pp-aux-1 :
assumes t ∈ keys (deg-le-sect-pp-aux xs n)
shows deg-pp t ≤ n and keys-pp t ⊆ set xs

proof −
from assms have deg-pp t ≤ n ∧ keys-pp t ⊆ set xs
proof (induct n arbitrary: t)

case 0
thus ?case by (simp-all add: keys-pp.rep-eq zero-pp.rep-eq)
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next
case (Suc n)
define X where X = set xs
define q where q = deg-le-sect-pp-aux xs n
have 1 : s ∈ keys q =⇒ deg-pp s ≤ n ∧ keys-pp s ⊆ X for s unfolding q-def

X-def by (fact Suc.hyps)
note Suc.prems
also have keys (deg-le-sect-pp-aux xs (Suc n)) ⊆ keys q ∪

keys (foldr (λx. (+) (monom-mult-punit 1 (single-pp x 1 ) q)) xs 0 )
(is - ⊆ - ∪ keys (foldr ?r xs 0 )) by (simp add: Let-def Poly-Mapping.keys-add

flip: q-def )
finally show ?case
proof

assume t ∈ keys q
hence deg-pp t ≤ n ∧ keys-pp t ⊆ set xs unfolding q-def by (rule Suc.hyps)
thus ?thesis by simp

next
assume t ∈ keys (foldr ?r xs 0 )
moreover have set xs ⊆ X by (simp add: X-def )
ultimately have deg-pp t ≤ Suc n ∧ keys-pp t ⊆ X
proof (induct xs arbitrary: t)

case Nil
thus ?case by simp

next
case (Cons x xs)
from Cons.prems(2 ) have x ∈ X and set xs ⊆ X by simp-all
note Cons.prems(1 )
also have keys (foldr ?r (x # xs) 0 ) ⊆ keys (?r x 0 ) ∪ keys (foldr ?r xs 0 )

by (simp add: Poly-Mapping.keys-add)
finally show ?case
proof

assume t ∈ keys (?r x 0 )
also have . . . = (+) (single-pp x 1 ) ‘ keys q

by (simp add: monom-mult-punit-def punit.keys-monom-mult)
finally obtain s where s ∈ keys q and t: t = single-pp x 1 + s ..
from this(1 ) have deg-pp s ≤ n ∧ keys-pp s ⊆ X by (rule 1 )
with ‹x ∈ X› show ?thesis

by (simp add: t deg-pp-plus deg-pp-single keys-pp.rep-eq plus-pp.rep-eq
keys-plus-ninv-comm-monoid-add single-pp.rep-eq)

next
assume t ∈ keys (foldr ?r xs 0 )

thus deg-pp t ≤ Suc n ∧ keys-pp t ⊆ X using ‹set xs ⊆ X› by (rule
Cons.hyps)

qed
qed
thus ?thesis by (simp only: X-def )

qed
qed
thus deg-pp t ≤ n and keys-pp t ⊆ set xs by simp-all
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qed

lemma deg-le-sect-pp-aux-2 :
assumes deg-pp t ≤ n and keys-pp t ⊆ set xs
shows t ∈ keys (deg-le-sect-pp-aux xs n)
using assms

proof (induct n arbitrary: t)
case 0
thus ?case by simp

next
case (Suc n)
have foldr : foldr (λx. (+) (f x)) ys 0 + y = foldr (λx. (+) (f x)) ys y

for f ys and y:: ′z::monoid-add by (induct ys) (simp-all add: ac-simps)
define q where q = deg-le-sect-pp-aux xs n
from Suc.prems(1 ) have deg-pp t ≤ n ∨ deg-pp t = Suc n by auto
thus ?case
proof

assume deg-pp t ≤ n
hence t ∈ keys q unfolding q-def using Suc.prems(2 ) by (rule Suc.hyps)
hence 0 < lookup q t by (simp add: in-keys-iff )
also have . . . ≤ lookup (deg-le-sect-pp-aux xs (Suc n)) t

by (simp add: Let-def lookup-add flip: q-def )
finally show ?thesis by (simp add: in-keys-iff )

next
assume eq: deg-pp t = Suc n
hence keys-pp t 6= {} by (auto simp: keys-pp.rep-eq deg-pp.rep-eq)
then obtain x where x ∈ keys-pp t by blast
with Suc.prems(2 ) have x ∈ set xs ..
then obtain xs1 xs2 where xs: xs = xs1 @ x # xs2 by (meson split-list)
define s where s = t − single-pp x 1
from ‹x ∈ keys-pp t› have single-pp x 1 adds t

by (simp add: adds-pp-iff single-pp.rep-eq keys-pp.rep-eq adds-poly-mapping
le-fun-def

lookup-single when-def in-keys-iff )
hence s + single-pp x 1 = (t + single-pp x 1 ) − single-pp x 1

unfolding s-def by (rule minus-plus)
hence t: t = single-pp x 1 + s by (simp add: add.commute)
with eq have deg-pp s ≤ n by (simp add: deg-pp-plus deg-pp-single)
moreover have keys-pp s ⊆ set xs
proof (rule subset-trans)

from Suc.prems(2 ) ‹x ∈ set xs› show keys-pp t ∪ keys-pp (single-pp x (Suc
0 )) ⊆ set xs

by (simp add: keys-pp.rep-eq single-pp.rep-eq)
qed (simp add: s-def keys-pp.rep-eq minus-pp.rep-eq keys-diff )
ultimately have s ∈ keys q unfolding q-def by (rule Suc.hyps)
hence t ∈ keys (monom-mult-punit 1 (single-pp x 1 ) q)

by (simp add: monom-mult-punit-def punit.keys-monom-mult t)
hence 0 < lookup (monom-mult-punit 1 (single-pp x 1 ) q) t by (simp add:

in-keys-iff )
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also have . . . ≤ lookup (q + (foldr (λx. (+) (monom-mult-punit 1 (single-pp x
1 ) q)) xs1 0 +

(monom-mult-punit 1 (single-pp x 1 ) q +
foldr (λx. (+) (monom-mult-punit 1 (single-pp x 1 ) q)) xs2

0 ))) t
by (simp add: lookup-add)

also have . . . = lookup (deg-le-sect-pp-aux xs (Suc n)) t
by (simp add: Let-def foldr flip: q-def , simp add: xs)

finally show ?thesis by (simp add: in-keys-iff )
qed

qed

lemma keys-deg-le-sect-pp-aux:
keys (deg-le-sect-pp-aux xs n) = {t. deg-pp t ≤ n ∧ keys-pp t ⊆ set xs}
by (auto dest: deg-le-sect-pp-aux-1 deg-le-sect-pp-aux-2 )

lemma deg-le-sect-deg-le-sect-pp:
map PP (pp-pm.punit.pps-to-list (deg-le-sect (set xs) d)) = deg-le-sect-pp xs d

proof −
have PP ‘ {t. deg-pm t ≤ d ∧ keys t ⊆ set xs} = PP ‘ {t. deg-pp (PP t) ≤ d ∧

keys-pp (PP t) ⊆ set xs}
by (simp only: keys-pp.abs-eq deg-pp.abs-eq)

also have . . . = {t. deg-pp t ≤ d ∧ keys-pp t ⊆ set xs}
proof (intro subset-antisym subsetI )

fix t
assume t ∈ {t. deg-pp t ≤ d ∧ keys-pp t ⊆ set xs}
moreover have t = PP (mapping-of t) by (simp only: mapping-of-inverse)
ultimately show t ∈ PP ‘ {t. deg-pp (PP t) ≤ d ∧ keys-pp (PP t) ⊆ set xs}

by auto
qed auto
finally show ?thesis

by (simp add: deg-le-sect-pp-def punit.keys-to-list-def keys-deg-le-sect-pp-aux
deg-le-sect-alt

PPs-def conj-commute map-PP-pps-to-list flip: Collect-conj-eq)
qed

lemma deg-shifts-deg-shifts-pp:
pp-pm.deg-shifts (set xs) d (map (Poly-Mapping.map-key PP) fs) =

map (Poly-Mapping.map-key PP) (deg-shifts-pp xs d fs)
by (simp add: pp-pm.deg-shifts-def deg-shifts-pp-def map-concat comp-def poly-deg-map-key-PP

map-key-PP-monom-mult-punit PP-inverse flip: deg-le-sect-deg-le-sect-pp
monom-mult-punit-def )

lemma ideal-deg-shifts-pp: ideal (set (deg-shifts-pp xs d fs)) = ideal (set fs)
proof −

have ideal (set (deg-shifts-pp xs d fs)) =
Poly-Mapping.map-key mapping-of ‘ Poly-Mapping.map-key PP ‘ ideal (set

(deg-shifts-pp xs d fs))
by (simp add: image-comp)
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also have . . . = Poly-Mapping.map-key mapping-of ‘ ideal
(set (map (Poly-Mapping.map-key PP) (deg-shifts-pp xs d fs)))

by (simp add: map-key-PP-ideal)
also have . . . = Poly-Mapping.map-key mapping-of ‘ ideal (Poly-Mapping.map-key

PP ‘ set fs)
by (simp flip: deg-shifts-deg-shifts-pp)

also have . . . = Poly-Mapping.map-key mapping-of ‘ Poly-Mapping.map-key PP
‘ ideal (set fs)

by (simp only: map-key-PP-ideal)
also have . . . = ideal (set fs) by (simp add: image-comp)
finally show ?thesis .

qed

lemma set-indets-pp: set (indets-pp p) = indets (Poly-Mapping.map-key PP p)
by (simp add: indets-pp-def indets-def keys-pp-to-list-def keys-pp.rep-eq punit.set-keys-to-list

keys-map-key-PP)

lemma poly-to-row-map-key-PP:
poly-to-row (map pp.mapping-of xs) (Poly-Mapping.map-key PP p) = poly-to-row

xs p
by (simp add: poly-to-row-def comp-def lookup-map-key-PP mapping-of-inverse)

lemma Macaulay-mat-map-key-PP:
pp-pm.punit.Macaulay-mat (map (Poly-Mapping.map-key PP) fs) = punit.Macaulay-mat

fs
by (simp add: punit.Macaulay-mat-def pp-pm.punit.Macaulay-mat-def Keys-to-list-map-key-PP

polys-to-mat-def comp-def poly-to-row-map-key-PP)

lemma row-to-poly-mapping-of :
assumes distinct ts and dim-vec r = length ts
shows row-to-poly (map pp.mapping-of ts) r = Poly-Mapping.map-key PP (row-to-poly

ts r)
proof (rule poly-mapping-eqI , simp only: lookup-map-key-PP)

fix t
let ?ts = map mapping-of ts
from inj-mapping-of subset-UNIV have inj-on mapping-of (set ts) by (rule

inj-on-subset)
with assms(1 ) have 1 : distinct ?ts by (simp add: distinct-map)
from assms(2 ) have 2 : dim-vec r = length ?ts by simp
show lookup (row-to-poly ?ts r) t = lookup (row-to-poly ts r) (PP t)
proof (cases t ∈ set ?ts)

case True
then obtain i where i1 : i < length ?ts and t1 : t = ?ts ! i by (metis

in-set-conv-nth)
hence i2 : i < length ts and t2 : PP t = ts ! i by (simp-all add: map-

ping-of-inverse)
have lookup (row-to-poly ?ts r) t = r $ i

unfolding t1 using 1 2 i1 by (rule punit.lookup-row-to-poly)
moreover have lookup (row-to-poly ts r) (PP t) = r $ i
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unfolding t2 using assms i2 by (rule punit.lookup-row-to-poly)
ultimately show ?thesis by simp

next
case False
have PP t /∈ set ts
proof

assume PP t ∈ set ts
hence mapping-of (PP t) ∈ mapping-of ‘ set ts by (rule imageI )
with False show False by (simp add: PP-inverse)

qed
with punit.keys-row-to-poly have lookup (row-to-poly ts r) (PP t) = 0

by (metis in-keys-iff in-mono)
moreover from False punit.keys-row-to-poly have lookup (row-to-poly ?ts r) t

= 0
by (metis in-keys-iff in-mono)

ultimately show ?thesis by simp
qed

qed

lemma mat-to-polys-mapping-of :
assumes distinct ts and dim-col m = length ts
shows mat-to-polys (map pp.mapping-of ts) m = map (Poly-Mapping.map-key

PP) (mat-to-polys ts m)
proof −

{
fix r
assume r ∈ set (rows m)
then obtain i where r = row m i by (auto simp: rows-def )
hence dim-vec r = length ts by (simp add: assms(2 ))

with assms(1 ) have row-to-poly (map pp.mapping-of ts) r = Poly-Mapping.map-key
PP (row-to-poly ts r)

by (rule row-to-poly-mapping-of )
}
thus ?thesis using assms by (simp add: mat-to-polys-def )

qed

lemma map-key-PP-Macaulay-list:
map (Poly-Mapping.map-key PP) (punit.Macaulay-list fs) =

pp-pm.punit.Macaulay-list (map (Poly-Mapping.map-key PP) fs)
by (simp add: punit.Macaulay-list-def pp-pm.punit.Macaulay-list-def Macaulay-mat-map-key-PP

Keys-to-list-map-key-PP mat-to-polys-mapping-of filter-map comp-def
punit.distinct-Keys-to-list punit.length-Keys-to-list)

lemma lpp-map-key-PP: pp-pm.lpp (Poly-Mapping.map-key PP p) = mapping-of
(lpp p)
proof (cases p = 0 )

case True
thus ?thesis by (simp add: zero-pp.rep-eq)

next
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case False
show ?thesis
proof (rule pp-pm.punit.lt-eqI-keys)

show pp.mapping-of (lpp p) ∈ keys (Poly-Mapping.map-key PP p) unfolding
keys-map-key-PP

by (intro imageI punit.lt-in-keys False)
next

fix s
assume s ∈ keys (Poly-Mapping.map-key PP p)

then obtain t where t ∈ keys p and s: s = mapping-of t unfolding keys-map-key-PP
..

thus ord (PP s) (PP (pp.mapping-of (lpp p))) by (simp add: mapping-of-inverse
punit.lt-max-keys)

qed
qed

lemma is-GB-map-key-PP:
finite G =⇒ pp-pm.punit.is-Groebner-basis (Poly-Mapping.map-key PP ‘ G) ←→

punit.is-Groebner-basis G
by (simp add: punit.GB-alt-3-finite pp-pm.punit.GB-alt-3-finite lpp-map-key-PP

adds-pp-iff
flip: map-key-PP-ideal)

lemma thm-2-3-6-pp:
assumes pp-pm.is-GB-cofactor-bound (Poly-Mapping.map-key PP ‘ set fs) b
shows punit.is-Groebner-basis (set (punit.Macaulay-list (deg-shifts-pp (Indets-pp

fs) b fs)))
proof −

let ?fs = map (Poly-Mapping.map-key PP) fs
from assms have pp-pm.is-GB-cofactor-bound (set ?fs) b by simp
hence pp-pm.punit.is-Groebner-basis

(set (pp-pm.punit.Macaulay-list (pp-pm.deg-shifts (
⋃

(indets ‘ set
?fs)) b ?fs)))

by (rule pp-pm.thm-2-3-6-indets)
also have (

⋃
(indets ‘ set ?fs)) = set (Indets-pp fs) by (simp add: Indets-pp-def

set-indets-pp)
finally show ?thesis

by (simp add: deg-shifts-deg-shifts-pp map-key-PP-Macaulay-list flip: set-map
is-GB-map-key-PP)
qed

lemma Dube-is-GB-cofactor-bound-pp:
pp-pm.is-GB-cofactor-bound (Poly-Mapping.map-key PP ‘ set fs)

(Dube (Suc (length (Indets-pp fs))) (max-list (map poly-deg-pp fs)))
proof (cases fs = [])

case True
show ?thesis by (rule pp-pm.is-GB-cofactor-boundI-subset-zero) (simp add: True)

next
case False
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let ?F = Poly-Mapping.map-key PP ‘ set fs
have pp-pm.is-GB-cofactor-bound ?F (Dube (Suc (card (

⋃
(indets ‘ ?F))))

(maxdeg ?F))
by (intro pp-pm.Dube-is-GB-cofactor-bound-indets finite-imageI finite-set)

moreover have card (
⋃

(indets ‘ ?F)) = length (Indets-pp fs)
by (simp add: Indets-pp-def length-remdups-card-conv set-indets-pp)

moreover from False have maxdeg ?F = max-list (map poly-deg-pp fs)
by (simp add: max-list-Max maxdeg-def image-image poly-deg-map-key-PP)

ultimately show ?thesis by simp
qed

definition GB-Macaulay-Dube :: (( ′x, nat) pp ⇒0
′a) list ⇒ (( ′x, nat) pp ⇒0

′a::field) list
where GB-Macaulay-Dube fs = punit.Macaulay-list (deg-shifts-pp (Indets-pp fs)

(Dube (Suc (length (Indets-pp fs))) (max-list (map poly-deg-pp
fs))) fs)

lemma GB-Macaulay-Dube-is-GB: punit.is-Groebner-basis (set (GB-Macaulay-Dube
fs))
unfolding GB-Macaulay-Dube-def using Dube-is-GB-cofactor-bound-pp by (rule

thm-2-3-6-pp)

lemma ideal-GB-Macaulay-Dube: ideal (set (GB-Macaulay-Dube fs)) = ideal (set
fs)
by (simp add: GB-Macaulay-Dube-def punit.pmdl-Macaulay-list[simplified] ideal-deg-shifts-pp)

end

global-interpretation punit ′: pp-powerprod ord-pp-punit cmp-term ord-pp-strict-punit
cmp-term

rewrites punit.adds-term = (adds)
and punit.pp-of-term = (λx. x)
and punit.component-of-term = (λ-. ())
and punit.monom-mult = monom-mult-punit
and punit.mult-scalar = mult-scalar-punit
and punit ′.punit.min-term = min-term-punit
and punit ′.punit.lt = lt-punit cmp-term
and punit ′.punit.lc = lc-punit cmp-term
and punit ′.punit.tail = tail-punit cmp-term
and punit ′.punit.ord-p = ord-p-punit cmp-term
and punit ′.punit.keys-to-list = keys-to-list-punit cmp-term
for cmp-term :: ( ′a::nat, nat) pp nat-term-order

defines max-punit = punit ′.ordered-powerprod-lin.max
and max-list-punit = punit ′.ordered-powerprod-lin.max-list
and Keys-to-list-punit = punit ′.punit.Keys-to-list
and Macaulay-mat-punit = punit ′.punit.Macaulay-mat
and Macaulay-list-punit = punit ′.punit.Macaulay-list
and poly-deg-pp-punit = punit ′.poly-deg-pp
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and deg-le-sect-pp-aux-punit = punit ′.deg-le-sect-pp-aux
and deg-le-sect-pp-punit = punit ′.deg-le-sect-pp
and deg-shifts-pp-punit = punit ′.deg-shifts-pp
and indets-pp-punit = punit ′.indets-pp
and Indets-pp-punit = punit ′.Indets-pp
and GB-Macaulay-Dube-punit = punit ′.GB-Macaulay-Dube

and find-adds-punit = punit ′.punit.find-adds
and trd-aux-punit = punit ′.punit.trd-aux
and trd-punit = punit ′.punit.trd
and comp-min-basis-punit = punit ′.punit.comp-min-basis
and comp-red-basis-aux-punit = punit ′.punit.comp-red-basis-aux
and comp-red-basis-punit = punit ′.punit.comp-red-basis
subgoal unfolding punit0 .ord-pp-def punit0 .ord-pp-strict-def ..
subgoal by (fact punit-adds-term)
subgoal by (simp add: id-def )
subgoal by (fact punit-component-of-term)
subgoal by (simp only: monom-mult-punit-def )
subgoal by (simp only: mult-scalar-punit-def )
subgoal using min-term-punit-def by fastforce
subgoal by (simp only: lt-punit-def ord-pp-punit-alt)
subgoal by (simp only: lc-punit-def ord-pp-punit-alt)
subgoal by (simp only: tail-punit-def ord-pp-punit-alt)
subgoal by (simp only: ord-p-punit-def ord-pp-strict-punit-alt)
subgoal by (simp only: keys-to-list-punit-def ord-pp-punit-alt)
done

12.3 Computations
experiment begin interpretation trivariate0-rat .

lemma
comp-red-basis-punit DRLEX (GB-Macaulay-Dube-punit DRLEX [X ∗ Y 2 + 3
∗ X2 ∗ Y , Y ^ 3 − X ^ 3 ]) =

[X ^ 5 , X ^ 3 ∗ Y − C 0 (1 / 9 ) ∗ X ^ 4 , Y ^ 3 − X ^ 3 , X ∗ Y 2 + 3 ∗ X2

∗ Y ]
by eval

end

end
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