
Gröbner Bases Theory

Fabian Immler and Alexander Maletzky∗

September 13, 2023

Abstract

This formalization is concerned with the theory of Gröbner bases
in (commutative) multivariate polynomial rings over fields, originally
developed by Buchberger in his 1965 PhD thesis. Apart from the
statement and proof of the main theorem of the theory, the formaliza-
tion also implements algorithms for actually computing Gröbner bases,
thus allowing to effectively decide ideal membership in finitely gener-
ated polynomial ideals. Furthermore, all functions can be executed on
a concrete representation of multivariate polynomials as association
lists.

Contents
1 Introduction 6

1.1 Related Work . 6
1.2 Future Work . 7

2 General Utilities 7
2.1 Lists . 7

2.1.1 max-list . 11
2.1.2 insort-wrt . 12
2.1.3 diff-list and insert-list 14
2.1.4 remdups-wrt . 14
2.1.5 map-idx . 16
2.1.6 map-dup . 18
2.1.7 Filtering Minimal Elements 18

3 Properties of Binary Relations 25
3.1 wfp-on . 26
3.2 Relations . 28
3.3 Setup for Connection to Theory Abstract−Rewriting.Abstract-Rewriting 29

∗Supported by the Austrian Science Fund (FWF): grant no. W1214-N15 (project DK1)
and grant no. P 29498-N31

1

3.4 Simple Lemmas . 30
3.5 Advanced Results and the Generalized Newman Lemma . . . 34

4 Polynomial Reduction 42
4.1 Basic Properties of Reduction 42
4.2 Reducibility and Addition & Multiplication 53
4.3 Confluence of Reducibility . 61
4.4 Reducibility and Module Membership 62
4.5 More Properties of red, red-single and is-red 65
4.6 Well-foundedness and Termination 77
4.7 Algorithms . 86

4.7.1 Function find-adds . 86
4.7.2 Function trd . 89

5 Gröbner Bases and Buchberger’s Theorem 93
5.1 Critical Pairs and S-Polynomials 94
5.2 Buchberger’s Theorem . 104
5.3 Buchberger’s Criteria for Avoiding Useless Pairs 110
5.4 Weak and Strong Gröbner Bases 113
5.5 Alternative Characterization of Gröbner Bases via Represen-

tations of S-Polynomials . 120
5.6 Replacing Elements in Gröbner Bases 134
5.7 An Inconstructive Proof of the Existence of Finite Gröbner

Bases . 139
5.8 Relation red-supset . 143
5.9 Context od-term . 147

6 A General Algorithm Schema for Computing Gröbner Bases147
6.1 processed . 148
6.2 Algorithm Schema . 151

6.2.1 const-lt-component . 151
6.2.2 Type synonyms . 152
6.2.3 Specification of the selector parameter 152
6.2.4 Specification of the add-basis parameter 153
6.2.5 Specification of the add-pairs parameter 153
6.2.6 Function args-to-set 159
6.2.7 Functions count-const-lt-components, count-rem-comps

and full-gb . 160
6.2.8 Specification of the completion parameter 163
6.2.9 Function gb-schema-dummy 166
6.2.10 Function gb-schema-aux 203
6.2.11 Functions gb-schema-direct and term gb-schema-incr . 209

6.3 Suitable Instances of the add-pairs Parameter 215
6.3.1 Specification of the crit parameters 215

2

6.3.2 Suitable instances of the crit parameters 218
6.3.3 Creating Initial List of New Pairs 225
6.3.4 Applying Criteria to New Pairs 233
6.3.5 Applying Criteria to Old Pairs 238
6.3.6 Creating Final List of Pairs 239

6.4 Suitable Instances of the completion Parameter 245
6.5 Suitable Instances of the add-basis Parameter 249
6.6 Special Case: Scalar Polynomials 250

7 Buchberger’s Algorithm 251
7.1 Reduction . 252
7.2 Pair Selection . 257
7.3 Buchberger’s Algorithm . 258

7.3.1 Special Case: punit . 258

8 Benchmark Problems for Computing Gröbner Bases 259
8.1 Cyclic . 259
8.2 Katsura . 260
8.3 Eco . 260
8.4 Noon . 260

9 Code Equations Related to the Computation of Gröbner
Bases 261

10 Sample Computations with Buchberger’s Algorithm 263
10.1 Scalar Polynomials . 263
10.2 Vector Polynomials . 266

11 Further Properties of Multivariate Polynomials 270
11.1 Modules and Linear Hulls . 270
11.2 Ordered Polynomials . 271

11.2.1 Sets of Leading Terms and -Coefficients 271
11.2.2 Monicity . 274

12 Auto-reducing Lists of Polynomials 278
12.1 Reduction and Monic Sets . 278
12.2 Minimal Bases and Auto-reduced Bases 279
12.3 Computing Minimal Bases . 284
12.4 Auto-Reduction . 285
12.5 Auto-Reduction and Monicity 294

13 Reduced Gröbner Bases 295
13.1 Definition and Uniqueness of Reduced Gröbner Bases 295
13.2 Computing Reduced Gröbner Bases by Auto-Reduction . . . 299

13.2.1 Minimal Bases . 299

3

13.2.2 Computing Minimal Bases 301
13.2.3 Computing Reduced Bases 301
13.2.4 Computing Reduced Gröbner Bases 302
13.2.5 Properties of the Reduced Gröbner Basis of an Ideal . 308
13.2.6 Context od-term . 309

14 Sample Computations of Reduced Gröbner Bases 310

15 Macaulay Matrices 312
15.1 More about Vectors . 313
15.2 More about Matrices . 314

15.2.1 nzrows . 314
15.2.2 row-space . 314
15.2.3 row-echelon . 316

15.3 Converting Between Polynomials and Macaulay Matrices . . 321
15.4 Properties of Macaulay Matrices 328
15.5 Functions Macaulay-mat and Macaulay-list 335

16 Faugère’s F4 Algorithm 339
16.1 Symbolic Preprocessing . 339
16.2 lin-red . 363
16.3 Reduction . 365
16.4 Pair Selection . 378
16.5 The F4 Algorithm . 379

16.5.1 Special Case: punit . 379

17 Sample Computations with the F4 Algorithm 380
17.1 Preparations . 380
17.2 Computations . 383

18 Syzygies of Multivariate Polynomials 384
18.1 Syzygy Modules Generated by Sets 385
18.2 Polynomial Mappings on List-Indices 392
18.3 POT Orders . 397
18.4 Gröbner Bases of Syzygy Modules 399

18.4.1 lift-poly-syz . 400
18.4.2 proj-poly-syz . 402
18.4.3 cofactor-list-syz . 406
18.4.4 init-syzygy-list . 406
18.4.5 proj-orig-basis . 408
18.4.6 filter-syzygy-basis . 409
18.4.7 syzygy-module-list . 409
18.4.8 Cofactors . 414
18.4.9 Modules . 415

4

18.4.10 Gröbner Bases . 416

19 Sample Computations of Syzygies 418
19.1 Preparations . 418
19.2 Computations . 423
19.3 Univariate Polynomials . 426
19.4 Homogeneity . 430

5

1 Introduction

The theory of Gröbner bases, invented by Buchberger in [2, 3], is ubiquitous
in many areas of computer algebra and beyond, as it allows to effectively
solve a multitude of interesting, non-trivial problems of polynomial ideal
theory. Since its invention in the mid-sixties, the theory has already seen a
whole range of extensions and generalizations, some of which are present in
this formalization:

• Following [11], the theory is formulated for vector-polynomials instead
of ordinary scalar polynomials, thus allowing to compute Gröbner
bases of syzygy modules.

• Besides Buchberger’s original algorithm, the formalization also fea-
tures Faugère’s F4 algorithm [8] for computing Gröbner bases.

• All algorithms for computing Gröbner bases incorporate criteria to
avoid useless pairs; see [4] for details.

• Reduced Gröbner bases have been formalized and can be computed
by a formally verified algorithm, too.

For further information about Gröbner bases theory the interested reader
may consult the introductory paper [5] or literally any book on commuta-
tive/computer algebra, e. g. [1, 11].

1.1 Related Work

The theory of Gröbner bases has already been formalized in a couple of
other proof assistants, listed below in alphabetical order:

• ACL2 [13],

• Coq [16, 10],

• Mizar [15], and

• Theorema [6, 12].

Please note that this formalization must not be confused with the algebra
proof method based on Gröbner bases [7], which is a completely independent
piece of work: our results could in principle be used to formally prove the
correctness and, to some extent, completeness of said proof method.

6

1.2 Future Work

This formalization can be extended in several ways:

• One could formalize signature-based algorithms for computing Gröb-
ner bases, as for instance Faugère’s F5 algorithm [9]. Such algorithms
are typically more efficient than Buchberger’s algorithm.

• One could establish the connection to elimination theory, exploiting
the well-known elimination property of Gröbner bases w. r. t. certain
term-orders (e. g. the purely lexicographic one). This would enable the
effective simplification (and even solution, in some sense) of systems
of algebraic equations.

• One could generalize the theory further to cover also non-commutative
Gröbner bases [14].

2 General Utilities
theory General

imports Polynomials.Utils
begin

A couple of general-purpose functions and lemmas, mainly related to lists.

2.1 Lists
lemma distinct-reorder : distinct (xs @ (y # ys)) = distinct (y # (xs @ ys)) by
auto

lemma set-reorder : set (xs @ (y # ys)) = set (y # (xs @ ys)) by simp

lemma distinctI :
assumes

∧
i j. i < j =⇒ i < length xs =⇒ j < length xs =⇒ xs ! i 6= xs ! j

shows distinct xs
using assms

proof (induct xs)
case Nil
show ?case by simp

next
case (Cons x xs)
show ?case
proof (simp, intro conjI , rule)

assume x ∈ set xs
then obtain j where j < length xs and x = xs ! j by (metis in-set-conv-nth)
hence Suc j < length (x # xs) by simp
have (x # xs) ! 0 6= (x # xs) ! (Suc j) by (rule Cons(2), simp, simp, fact)
thus False by (simp add: ‹x = xs ! j›)

7

next
show distinct xs
proof (rule Cons(1))

fix i j
assume i < j and i < length xs and j < length xs
hence Suc i < Suc j and Suc i < length (x # xs) and Suc j < length (x #

xs) by simp-all
hence (x # xs) ! (Suc i) 6= (x # xs) ! (Suc j) by (rule Cons(2))
thus xs ! i 6= xs ! j by simp

qed
qed

qed

lemma filter-nth-pairE :
assumes i < j and i < length (filter P xs) and j < length (filter P xs)
obtains i ′ j ′ where i ′ < j ′ and i ′ < length xs and j ′ < length xs

and (filter P xs) ! i = xs ! i ′ and (filter P xs) ! j = xs ! j ′
using assms

proof (induct xs arbitrary: i j thesis)
case Nil
from Nil(3) show ?case by simp

next
case (Cons x xs)
let ?ys = filter P (x # xs)
show ?case
proof (cases P x)

case True
hence ∗: ?ys = x # (filter P xs) by simp
from ‹i < j› obtain j0 where j: j = Suc j0 using lessE by blast
have len-ys: length ?ys = Suc (length (filter P xs)) and ys-j: ?ys ! j = (filter

P xs) ! j0
by (simp only: ∗ length-Cons, simp only: j ∗ nth-Cons-Suc)

from Cons(5) have j0 < length (filter P xs) unfolding len-ys j by auto
show ?thesis
proof (cases i = 0)

case True
from ‹j0 < length (filter P xs)› obtain j ′ where j ′ < length xs and ∗∗: (filter

P xs) ! j0 = xs ! j ′
by (metis (no-types, lifting) in-set-conv-nth mem-Collect-eq nth-mem set-filter)
have 0 < Suc j ′ by simp
thus ?thesis

by (rule Cons(2), simp, simp add: ‹j ′ < length xs›, simp only: True ∗
nth-Cons-0 ,

simp only: ys-j nth-Cons-Suc ∗∗)
next

case False
then obtain i0 where i: i = Suc i0 using lessE by blast
have ys-i: ?ys ! i = (filter P xs) ! i0 by (simp only: i ∗ nth-Cons-Suc)
from Cons(3) have i0 < j0 by (simp add: i j)

8

from Cons(4) have i0 < length (filter P xs) unfolding len-ys i by auto
from - ‹i0 < j0 › this ‹j0 < length (filter P xs)› obtain i ′ j ′

where i ′ < j ′ and i ′ < length xs and j ′ < length xs
and i ′: filter P xs ! i0 = xs ! i ′ and j ′: filter P xs ! j0 = xs ! j ′

by (rule Cons(1))
from ‹i ′ < j ′› have Suc i ′ < Suc j ′ by simp
thus ?thesis

by (rule Cons(2), simp add: ‹i ′ < length xs›, simp add: ‹j ′ < length xs›,
simp only: ys-i nth-Cons-Suc i ′, simp only: ys-j nth-Cons-Suc j ′)

qed
next

case False
hence ∗: ?ys = filter P xs by simp
with Cons(4) Cons(5) have i < length (filter P xs) and j < length (filter P

xs) by simp-all
with - ‹i < j› obtain i ′ j ′ where i ′ < j ′ and i ′ < length xs and j ′ < length

xs
and i ′: filter P xs ! i = xs ! i ′ and j ′: filter P xs ! j = xs ! j ′
by (rule Cons(1))

from ‹i ′ < j ′› have Suc i ′ < Suc j ′ by simp
thus ?thesis

by (rule Cons(2), simp add: ‹i ′ < length xs›, simp add: ‹j ′ < length xs›,
simp only: ∗ nth-Cons-Suc i ′, simp only: ∗ nth-Cons-Suc j ′)

qed
qed

lemma distinct-filterI :
assumes

∧
i j. i < j =⇒ i < length xs =⇒ j < length xs =⇒ P (xs ! i) =⇒ P

(xs ! j) =⇒ xs ! i 6= xs ! j
shows distinct (filter P xs)

proof (rule distinctI)
fix i j::nat
assume i < j and i < length (filter P xs) and j < length (filter P xs)
then obtain i ′ j ′ where i ′ < j ′ and i ′ < length xs and j ′ < length xs

and i: (filter P xs) ! i = xs ! i ′ and j: (filter P xs) ! j = xs ! j ′ by (rule
filter-nth-pairE)

from ‹i ′ < j ′› ‹i ′ < length xs› ‹j ′ < length xs› show (filter P xs) ! i 6= (filter P
xs) ! j unfolding i j

proof (rule assms)
from ‹i < length (filter P xs)› show P (xs ! i ′) unfolding i[symmetric] using

nth-mem by force
next

from ‹j < length (filter P xs)› show P (xs ! j ′) unfolding j[symmetric] using
nth-mem by force

qed
qed

lemma set-zip-map: set (zip (map f xs) (map g xs)) = (λx. (f x, g x)) ‘ (set xs)
proof −

9

have {(map f xs ! i, map g xs ! i) |i. i < length xs} = {(f (xs ! i), g (xs ! i)) |i.
i < length xs}

proof (rule Collect-eqI , rule, elim exE conjE , intro exI conjI , simp add: map-nth,
assumption,

elim exE conjE , intro exI)
fix x i
assume x = (f (xs ! i), g (xs ! i)) and i < length xs
thus x = (map f xs ! i, map g xs ! i) ∧ i < length xs by (simp add: map-nth)

qed
also have ... = (λx. (f x, g x)) ‘ {xs ! i | i. i < length xs} by blast
finally show set (zip (map f xs) (map g xs)) = (λx. (f x, g x)) ‘ (set xs)

by (simp add: set-zip set-conv-nth[symmetric])
qed

lemma set-zip-map1 : set (zip (map f xs) xs) = (λx. (f x, x)) ‘ (set xs)
proof −

have set (zip (map f xs) (map id xs)) = (λx. (f x, id x)) ‘ (set xs) by (rule
set-zip-map)

thus ?thesis by simp
qed

lemma set-zip-map2 : set (zip xs (map f xs)) = (λx. (x, f x)) ‘ (set xs)
proof −

have set (zip (map id xs) (map f xs)) = (λx. (id x, f x)) ‘ (set xs) by (rule
set-zip-map)

thus ?thesis by simp
qed

lemma UN-upt: (
⋃

i∈{0 ..<length xs}. f (xs ! i)) = (
⋃

x∈set xs. f x)
by (metis image-image map-nth set-map set-upt)

lemma sum-list-zeroI ′:
assumes

∧
i. i < length xs =⇒ xs ! i = 0

shows sum-list xs = 0
proof (rule sum-list-zeroI , rule, simp)

fix x
assume x ∈ set xs
then obtain i where i < length xs and x = xs ! i by (metis in-set-conv-nth)
from this(1) show x = 0 unfolding ‹x = xs ! i› by (rule assms)

qed

lemma sum-list-map2-plus:
assumes length xs = length ys
shows sum-list (map2 (+) xs ys) = sum-list xs + sum-list (ys:: ′a::comm-monoid-add

list)
using assms

proof (induct rule: list-induct2)
case Nil
show ?case by simp

10

next
case (Cons x xs y ys)
show ?case by (simp add: Cons(2) ac-simps)

qed

lemma sum-list-eq-nthI :
assumes i < length xs and

∧
j. j < length xs =⇒ j 6= i =⇒ xs ! j = 0

shows sum-list xs = xs ! i
using assms

proof (induct xs arbitrary: i)
case Nil
from Nil(1) show ?case by simp

next
case (Cons x xs)
have ∗: xs ! j = 0 if j < length xs and Suc j 6= i for j
proof −

have xs ! j = (x # xs) ! (Suc j) by simp
also have ... = 0 by (rule Cons(3), simp add: ‹j < length xs›, fact)
finally show ?thesis .

qed
show ?case
proof (cases i)

case 0
have sum-list xs = 0 by (rule sum-list-zeroI ′, erule ∗, simp add: 0)
with 0 show ?thesis by simp

next
case (Suc k)
with Cons(2) have k < length xs by simp
hence sum-list xs = xs ! k
proof (rule Cons(1))

fix j
assume j < length xs
assume j 6= k
hence Suc j 6= i by (simp add: Suc)
with ‹j < length xs› show xs ! j = 0 by (rule ∗)

qed
moreover have x = 0
proof −

have x = (x # xs) ! 0 by simp
also have ... = 0 by (rule Cons(3), simp-all add: Suc)
finally show ?thesis .

qed
ultimately show ?thesis by (simp add: Suc)

qed
qed

2.1.1 max-list
fun (in ord) max-list :: ′a list ⇒ ′a where

11

max-list (x # xs) = (case xs of [] ⇒ x | - ⇒ max x (max-list xs))

context linorder
begin

lemma max-list-Max: xs 6= [] =⇒ max-list xs = Max (set xs)
by (induct xs rule: induct-list012 , auto)

lemma max-list-ge:
assumes x ∈ set xs
shows x ≤ max-list xs

proof −
from assms have xs 6= [] by auto
from finite-set assms have x ≤ Max (set xs) by (rule Max-ge)
also from ‹xs 6= []› have Max (set xs) = max-list xs by (rule max-list-Max[symmetric])
finally show ?thesis .

qed

lemma max-list-boundedI :
assumes xs 6= [] and

∧
x. x ∈ set xs =⇒ x ≤ a

shows max-list xs ≤ a
proof −

from assms(1) have set xs 6= {} by simp
from assms(1) have max-list xs = Max (set xs) by (rule max-list-Max)
also from finite-set ‹set xs 6= {}› assms(2) have . . . ≤ a by (rule Max.boundedI)
finally show ?thesis .

qed

end

2.1.2 insort-wrt
primrec insort-wrt :: (′c ⇒ ′c ⇒ bool) ⇒ ′c ⇒ ′c list ⇒ ′c list where

insort-wrt - x [] = [x] |
insort-wrt r x (y # ys) =
(if r x y then (x # y # ys) else y # (insort-wrt r x ys))

lemma insort-wrt-not-Nil [simp]: insort-wrt r x xs 6= []
by (induct xs, simp-all)

lemma length-insort-wrt [simp]: length (insort-wrt r x xs) = Suc (length xs)
by (induct xs, simp-all)

lemma set-insort-wrt [simp]: set (insort-wrt r x xs) = insert x (set xs)
by (induct xs, auto)

lemma sorted-wrt-insort-wrt-imp-sorted-wrt:
assumes sorted-wrt r (insort-wrt s x xs)
shows sorted-wrt r xs

12

using assms
proof (induct xs)

case Nil
show ?case by simp

next
case (Cons a xs)
show ?case
proof (cases s x a)

case True
with Cons.prems have sorted-wrt r (x # a # xs) by simp
thus ?thesis by simp

next
case False
with Cons(2) have sorted-wrt r (a # (insort-wrt s x xs)) by simp
hence ∗: (∀ y∈set xs. r a y) and sorted-wrt r (insort-wrt s x xs)

by (simp-all)
from this(2) have sorted-wrt r xs by (rule Cons(1))
with ∗ show ?thesis by (simp)

qed
qed

lemma sorted-wrt-imp-sorted-wrt-insort-wrt:
assumes transp r and

∧
a. r a x ∨ r x a and sorted-wrt r xs

shows sorted-wrt r (insort-wrt r x xs)
using assms(3)

proof (induct xs)
case Nil
show ?case by simp

next
case (Cons a xs)
show ?case
proof (cases r x a)

case True
with Cons(2) assms(1) show ?thesis by (auto dest: transpD)

next
case False
with assms(2) have r a x by blast
from Cons(2) have ∗: (∀ y∈set xs. r a y) and sorted-wrt r xs

by (simp-all)
from this(2) have sorted-wrt r (insort-wrt r x xs) by (rule Cons(1))
with ‹r a x› ∗ show ?thesis by (simp add: False)

qed
qed

corollary sorted-wrt-insort-wrt:
assumes transp r and

∧
a. r a x ∨ r x a

shows sorted-wrt r (insort-wrt r x xs) ←→ sorted-wrt r xs (is ?l ←→ ?r)
proof

assume ?l

13

then show ?r by (rule sorted-wrt-insort-wrt-imp-sorted-wrt)
next

assume ?r
with assms show ?l by (rule sorted-wrt-imp-sorted-wrt-insort-wrt)

qed

2.1.3 diff-list and insert-list
definition diff-list :: ′a list ⇒ ′a list ⇒ ′a list (infixl −− 65)

where diff-list xs ys = fold removeAll ys xs

lemma set-diff-list: set (xs −− ys) = set xs − set ys
by (simp only: diff-list-def , induct ys arbitrary: xs, auto)

lemma diff-list-disjoint: set ys ∩ set (xs −− ys) = {}
unfolding set-diff-list by (rule Diff-disjoint)

lemma subset-append-diff-cancel:
assumes set ys ⊆ set xs
shows set (ys @ (xs −− ys)) = set xs
by (simp only: set-append set-diff-list Un-Diff-cancel, rule Un-absorb1 , fact)

definition insert-list :: ′a ⇒ ′a list ⇒ ′a list
where insert-list x xs = (if x ∈ set xs then xs else x # xs)

lemma set-insert-list: set (insert-list x xs) = insert x (set xs)
by (auto simp add: insert-list-def)

2.1.4 remdups-wrt
primrec remdups-wrt :: (′a ⇒ ′b) ⇒ ′a list ⇒ ′a list where

remdups-wrt-base: remdups-wrt - [] = [] |
remdups-wrt-rec: remdups-wrt f (x # xs) = (if f x ∈ f ‘ set xs then remdups-wrt

f xs else x # remdups-wrt f xs)

lemma set-remdups-wrt: f ‘ set (remdups-wrt f xs) = f ‘ set xs
proof (induct xs)

case Nil
show ?case unfolding remdups-wrt-base ..

next
case (Cons a xs)
show ?case unfolding remdups-wrt-rec
proof (simp only: split: if-splits, intro conjI , intro impI)

assume f a ∈ f ‘ set xs
have f ‘ set (a # xs) = insert (f a) (f ‘ set xs) by simp

have f ‘ set (remdups-wrt f xs) = f ‘ set xs by fact
also from ‹f a ∈ f ‘ set xs› have ... = insert (f a) (f ‘ set xs) by (simp add:

insert-absorb)
also have ... = f ‘ set (a # xs) by simp
finally show f ‘ set (remdups-wrt f xs) = f ‘ set (a # xs) .

14

qed (simp add: Cons.hyps)
qed

lemma subset-remdups-wrt: set (remdups-wrt f xs) ⊆ set xs
by (induct xs, auto)

lemma remdups-wrt-distinct-wrt:
assumes x ∈ set (remdups-wrt f xs) and y ∈ set (remdups-wrt f xs) and x 6= y
shows f x 6= f y
using assms(1) assms(2)

proof (induct xs)
case Nil
thus ?case unfolding remdups-wrt-base by simp

next
case (Cons a xs)
from Cons(2) Cons(3) show ?case unfolding remdups-wrt-rec
proof (simp only: split: if-splits)

assume x ∈ set (remdups-wrt f xs) and y ∈ set (remdups-wrt f xs)
thus f x 6= f y by (rule Cons.hyps)

next
assume ¬ True
thus f x 6= f y by simp

next
assume f a /∈ f ‘ set xs and xin: x ∈ set (a # remdups-wrt f xs) and yin: y ∈

set (a # remdups-wrt f xs)
from yin have y: y = a ∨ y ∈ set (remdups-wrt f xs) by simp
from xin have x = a ∨ x ∈ set (remdups-wrt f xs) by simp
thus f x 6= f y
proof

assume x = a
from y show ?thesis
proof

assume y = a
with ‹x 6= y› show ?thesis unfolding ‹x = a› by simp

next
assume y ∈ set (remdups-wrt f xs)
have y ∈ set xs by (rule, fact, rule subset-remdups-wrt)
hence f y ∈ f ‘ set xs by simp
with ‹f a /∈ f ‘ set xs› show ?thesis unfolding ‹x = a› by auto

qed
next

assume x ∈ set (remdups-wrt f xs)
from y show ?thesis
proof

assume y = a
have x ∈ set xs by (rule, fact, rule subset-remdups-wrt)
hence f x ∈ f ‘ set xs by simp
with ‹f a /∈ f ‘ set xs› show ?thesis unfolding ‹y = a› by auto

next

15

assume y ∈ set (remdups-wrt f xs)
with ‹x ∈ set (remdups-wrt f xs)› show ?thesis by (rule Cons.hyps)

qed
qed

qed
qed

lemma distinct-remdups-wrt: distinct (remdups-wrt f xs)
proof (induct xs)

case Nil
show ?case unfolding remdups-wrt-base by simp

next
case (Cons a xs)
show ?case unfolding remdups-wrt-rec
proof (split if-split, intro conjI impI , rule Cons.hyps)

assume f a /∈ f ‘ set xs
hence a /∈ set xs by auto
hence a /∈ set (remdups-wrt f xs) using subset-remdups-wrt[of f xs] by auto
with Cons.hyps show distinct (a # remdups-wrt f xs) by simp

qed
qed

lemma map-remdups-wrt: map f (remdups-wrt f xs) = remdups (map f xs)
by (induct xs, auto)

lemma remdups-wrt-append:
remdups-wrt f (xs @ ys) = (filter (λa. f a /∈ f ‘ set ys) (remdups-wrt f xs)) @

(remdups-wrt f ys)
by (induct xs, auto)

2.1.5 map-idx
primrec map-idx :: (′a ⇒ nat ⇒ ′b) ⇒ ′a list ⇒ nat ⇒ ′b list where

map-idx f [] n = []|
map-idx f (x # xs) n = (f x n) # (map-idx f xs (Suc n))

lemma map-idx-eq-map2 : map-idx f xs n = map2 f xs [n..<n + length xs]
proof (induct xs arbitrary: n)

case Nil
show ?case by simp

next
case (Cons x xs)
have eq: [n..<n + length (x # xs)] = n # [Suc n..<Suc (n + length xs)]

by (metis add-Suc-right length-Cons less-add-Suc1 upt-conv-Cons)
show ?case unfolding eq by (simp add: Cons del: upt-Suc)

qed

lemma length-map-idx [simp]: length (map-idx f xs n) = length xs
by (simp add: map-idx-eq-map2)

16

lemma map-idx-append: map-idx f (xs @ ys) n = (map-idx f xs n) @ (map-idx f
ys (n + length xs))

by (simp add: map-idx-eq-map2 ab-semigroup-add-class.add-ac(1) zip-append1)

lemma map-idx-nth:
assumes i < length xs
shows (map-idx f xs n) ! i = f (xs ! i) (n + i)
using assms by (simp add: map-idx-eq-map2)

lemma map-map-idx: map f (map-idx g xs n) = map-idx (λx i. f (g x i)) xs n
by (auto simp add: map-idx-eq-map2)

lemma map-idx-map: map-idx f (map g xs) n = map-idx (f ◦ g) xs n
by (simp add: map-idx-eq-map2 map-zip-map)

lemma map-idx-no-idx: map-idx (λx -. f x) xs n = map f xs
by (induct xs arbitrary: n, simp-all)

lemma map-idx-no-elem: map-idx (λ-. f) xs n = map f [n..<n + length xs]
proof (induct xs arbitrary: n)

case Nil
show ?case by simp

next
case (Cons x xs)
have eq: [n..<n + length (x # xs)] = n # [Suc n..<Suc (n + length xs)]

by (metis add-Suc-right length-Cons less-add-Suc1 upt-conv-Cons)
show ?case unfolding eq by (simp add: Cons del: upt-Suc)

qed

lemma map-idx-eq-map: map-idx f xs n = map (λi. f (xs ! i) (i + n)) [0 ..<length
xs]
proof (induct xs arbitrary: n)

case Nil
show ?case by simp

next
case (Cons x xs)
have eq: [0 ..<length (x # xs)] = 0 # [Suc 0 ..<Suc (length xs)]

by (metis length-Cons upt-conv-Cons zero-less-Suc)
have map (λi. f ((x # xs) ! i) (i + n)) [Suc 0 ..<Suc (length xs)] =

map ((λi. f ((x # xs) ! i) (i + n)) ◦ Suc) [0 ..<length xs]
by (metis map-Suc-upt map-map)

also have ... = map (λi. f (xs ! i) (Suc (i + n))) [0 ..<length xs]
by (rule map-cong, fact refl, simp)

finally show ?case unfolding eq by (simp add: Cons del: upt-Suc)
qed

lemma set-map-idx: set (map-idx f xs n) = (λi. f (xs ! i) (i + n)) ‘ {0 ..<length
xs}

17

by (simp add: map-idx-eq-map)

2.1.6 map-dup
primrec map-dup :: (′a ⇒ ′b) ⇒ (′a ⇒ ′b) ⇒ ′a list ⇒ ′b list where

map-dup - - [] = []|
map-dup f g (x # xs) = (if x ∈ set xs then g x else f x) # (map-dup f g xs)

lemma length-map-dup[simp]: length (map-dup f g xs) = length xs
by (induct xs, simp-all)

lemma map-dup-distinct:
assumes distinct xs
shows map-dup f g xs = map f xs
using assms by (induct xs, simp-all)

lemma filter-map-dup-const:
filter (λx. x 6= c) (map-dup f (λ-. c) xs) = filter (λx. x 6= c) (map f (remdups

xs))
by (induct xs, simp-all)

lemma filter-zip-map-dup-const:
filter (λ(a, b). a 6= c) (zip (map-dup f (λ-. c) xs) xs) =

filter (λ(a, b). a 6= c) (zip (map f (remdups xs)) (remdups xs))
by (induct xs, simp-all)

2.1.7 Filtering Minimal Elements
context

fixes rel :: ′a ⇒ ′a ⇒ bool
begin

primrec filter-min-aux :: ′a list ⇒ ′a list ⇒ ′a list where
filter-min-aux [] ys = ys|
filter-min-aux (x # xs) ys =
(if (∃ y∈(set xs ∪ set ys). rel y x) then (filter-min-aux xs ys)
else (filter-min-aux xs (x # ys)))

definition filter-min :: ′a list ⇒ ′a list
where filter-min xs = filter-min-aux xs []

definition filter-min-append :: ′a list ⇒ ′a list ⇒ ′a list
where filter-min-append xs ys =

(let P = (λzs. λx. ¬ (∃ z∈set zs. rel z x)); ys1 = filter (P xs) ys in
(filter (P ys1) xs) @ ys1)

lemma filter-min-aux-supset: set ys ⊆ set (filter-min-aux xs ys)
proof (induct xs arbitrary: ys)

case Nil
show ?case by simp

18

next
case (Cons x xs)
have set ys ⊆ set (x # ys) by auto
also have set (x # ys) ⊆ set (filter-min-aux xs (x # ys)) by (rule Cons.hyps)
finally have set ys ⊆ set (filter-min-aux xs (x # ys)) .
moreover have set ys ⊆ set (filter-min-aux xs ys) by (rule Cons.hyps)
ultimately show ?case by simp

qed

lemma filter-min-aux-subset: set (filter-min-aux xs ys) ⊆ set xs ∪ set ys
proof (induct xs arbitrary: ys)

case Nil
show ?case by simp

next
case (Cons x xs)
note Cons.hyps
also have set xs ∪ set ys ⊆ set (x # xs) ∪ set ys by fastforce
finally have c1 : set (filter-min-aux xs ys) ⊆ set (x # xs) ∪ set ys .

note Cons.hyps
also have set xs ∪ set (x # ys) = set (x # xs) ∪ set ys by simp
finally have set (filter-min-aux xs (x # ys)) ⊆ set (x # xs) ∪ set ys .
with c1 show ?case by simp

qed

lemma filter-min-aux-relE :
assumes transp rel and x ∈ set xs and x /∈ set (filter-min-aux xs ys)
obtains y where y ∈ set (filter-min-aux xs ys) and rel y x
using assms(2 , 3)

proof (induct xs arbitrary: x ys thesis)
case Nil
from Nil(2) show ?case by simp

next
case (Cons x0 xs)
from Cons(3) have x = x0 ∨ x ∈ set xs by simp
thus ?case
proof

assume x = x0
from Cons(4) have ∗: ∃ y∈set xs ∪ set ys. rel y x0
proof (simp add: ‹x = x0 › split: if-splits)

assume x0 /∈ set (filter-min-aux xs (x0 # ys))
moreover from filter-min-aux-supset have x0 ∈ set (filter-min-aux xs (x0

ys))
by (rule subsetD) simp

ultimately show False ..
qed
hence eq: filter-min-aux (x0 # xs) ys = filter-min-aux xs ys by simp
from ∗ obtain x1 where x1 ∈ set xs ∪ set ys and rel x1 x unfolding ‹x =

x0 › ..

19

from this(1) show ?thesis
proof

assume x1 ∈ set xs
show ?thesis
proof (cases x1 ∈ set (filter-min-aux xs ys))

case True
hence x1 ∈ set (filter-min-aux (x0 # xs) ys) by (simp only: eq)
thus ?thesis using ‹rel x1 x› by (rule Cons(2))

next
case False
with ‹x1 ∈ set xs› obtain y where y ∈ set (filter-min-aux xs ys) and rel

y x1
using Cons.hyps by blast

from this(1) have y ∈ set (filter-min-aux (x0 # xs) ys) by (simp only: eq)
moreover from assms(1) ‹rel y x1 › ‹rel x1 x› have rel y x by (rule transpD)

ultimately show ?thesis by (rule Cons(2))
qed

next
assume x1 ∈ set ys
hence x1 ∈ set (filter-min-aux (x0 # xs) ys) using filter-min-aux-supset ..
thus ?thesis using ‹rel x1 x› by (rule Cons(2))

qed
next

assume x ∈ set xs
show ?thesis
proof (cases ∃ y∈set xs ∪ set ys. rel y x0)

case True
hence eq: filter-min-aux (x0 # xs) ys = filter-min-aux xs ys by simp
with Cons(4) have x /∈ set (filter-min-aux xs ys) by simp
with ‹x ∈ set xs› obtain y where y ∈ set (filter-min-aux xs ys) and rel y x

using Cons.hyps by blast
from this(1) have y ∈ set (filter-min-aux (x0 # xs) ys) by (simp only: eq)
thus ?thesis using ‹rel y x› by (rule Cons(2))

next
case False
hence eq: filter-min-aux (x0 # xs) ys = filter-min-aux xs (x0 # ys) by simp
with Cons(4) have x /∈ set (filter-min-aux xs (x0 # ys)) by simp
with ‹x ∈ set xs› obtain y where y ∈ set (filter-min-aux xs (x0 # ys)) and

rel y x
using Cons.hyps by blast

from this(1) have y ∈ set (filter-min-aux (x0 # xs) ys) by (simp only: eq)
thus ?thesis using ‹rel y x› by (rule Cons(2))

qed
qed

qed

lemma filter-min-aux-minimal:
assumes transp rel and x ∈ set (filter-min-aux xs ys) and y ∈ set (filter-min-aux

xs ys)

20

and rel x y
assumes

∧
a b. a ∈ set xs ∪ set ys =⇒ b ∈ set ys =⇒ rel a b =⇒ a = b

shows x = y
using assms(2−5)

proof (induct xs arbitrary: x y ys)
case Nil
from Nil(1) have x ∈ set [] ∪ set ys by simp
moreover from Nil(2) have y ∈ set ys by simp
ultimately show ?case using Nil(3) by (rule Nil(4))

next
case (Cons x0 xs)
show ?case
proof (cases ∃ y∈set xs ∪ set ys. rel y x0)

case True
hence eq: filter-min-aux (x0 # xs) ys = filter-min-aux xs ys by simp
with Cons(2 , 3) have x ∈ set (filter-min-aux xs ys) and y ∈ set (filter-min-aux

xs ys)
by simp-all

thus ?thesis using Cons(4)
proof (rule Cons.hyps)

fix a b
assume a ∈ set xs ∪ set ys
hence a ∈ set (x0 # xs) ∪ set ys by simp
moreover assume b ∈ set ys and rel a b
ultimately show a = b by (rule Cons(5))

qed
next

case False
hence eq: filter-min-aux (x0 # xs) ys = filter-min-aux xs (x0 # ys) by simp
with Cons(2 , 3) have x ∈ set (filter-min-aux xs (x0 # ys)) and y ∈ set

(filter-min-aux xs (x0 # ys))
by simp-all

thus ?thesis using Cons(4)
proof (rule Cons.hyps)

fix a b
assume a: a ∈ set xs ∪ set (x0 # ys) and b ∈ set (x0 # ys) and rel a b
from this(2) have b = x0 ∨ b ∈ set ys by simp
thus a = b
proof

assume b = x0
from a have a = x0 ∨ a ∈ set xs ∪ set ys by simp
thus ?thesis
proof

assume a = x0
with ‹b = x0 › show ?thesis by simp

next
assume a ∈ set xs ∪ set ys
hence ∃ y∈set xs ∪ set ys. rel y x0 using ‹rel a b› unfolding ‹b = x0 › ..
with False show ?thesis ..

21

qed
next

from a have a ∈ set (x0 # xs) ∪ set ys by simp
moreover assume b ∈ set ys
ultimately show ?thesis using ‹rel a b› by (rule Cons(5))

qed
qed

qed
qed

lemma filter-min-aux-distinct:
assumes reflp rel and distinct ys
shows distinct (filter-min-aux xs ys)
using assms(2)

proof (induct xs arbitrary: ys)
case Nil
thus ?case by simp

next
case (Cons x xs)
show ?case
proof (simp split: if-split, intro conjI impI)

from Cons(2) show distinct (filter-min-aux xs ys) by (rule Cons.hyps)
next

assume a: ∀ y∈set xs ∪ set ys. ¬ rel y x
show distinct (filter-min-aux xs (x # ys))
proof (rule Cons.hyps)

have x /∈ set ys
proof

assume x ∈ set ys
hence x ∈ set xs ∪ set ys by simp
with a have ¬ rel x x ..
moreover from assms(1) have rel x x by (rule reflpD)
ultimately show False ..

qed
with Cons(2) show distinct (x # ys) by simp

qed
qed

qed

lemma filter-min-subset: set (filter-min xs) ⊆ set xs
using filter-min-aux-subset[of xs []] by (simp add: filter-min-def)

lemma filter-min-cases:
assumes transp rel and x ∈ set xs
assumes x ∈ set (filter-min xs) =⇒ thesis
assumes

∧
y. y ∈ set (filter-min xs) =⇒ x /∈ set (filter-min xs) =⇒ rel y x =⇒

thesis
shows thesis

proof (cases x ∈ set (filter-min xs))

22

case True
thus ?thesis by (rule assms(3))

next
case False
with assms(1 , 2) obtain y where y ∈ set (filter-min xs) and rel y x

unfolding filter-min-def by (rule filter-min-aux-relE)
from this(1) False this(2) show ?thesis by (rule assms(4))

qed

corollary filter-min-relE :
assumes transp rel and reflp rel and x ∈ set xs
obtains y where y ∈ set (filter-min xs) and rel y x
using assms(1 , 3)

proof (rule filter-min-cases)
assume x ∈ set (filter-min xs)
moreover from assms(2) have rel x x by (rule reflpD)
ultimately show ?thesis ..

qed

lemma filter-min-minimal:
assumes transp rel and x ∈ set (filter-min xs) and y ∈ set (filter-min xs) and

rel x y
shows x = y
using assms unfolding filter-min-def by (rule filter-min-aux-minimal) simp

lemma filter-min-distinct:
assumes reflp rel
shows distinct (filter-min xs)
unfolding filter-min-def by (rule filter-min-aux-distinct, fact, simp)

lemma filter-min-append-subset: set (filter-min-append xs ys) ⊆ set xs ∪ set ys
by (auto simp: filter-min-append-def)

lemma filter-min-append-cases:
assumes transp rel and x ∈ set xs ∪ set ys
assumes x ∈ set (filter-min-append xs ys) =⇒ thesis
assumes

∧
y. y ∈ set (filter-min-append xs ys) =⇒ x /∈ set (filter-min-append xs

ys) =⇒ rel y x =⇒ thesis
shows thesis

proof (cases x ∈ set (filter-min-append xs ys))
case True
thus ?thesis by (rule assms(3))

next
case False
define P where P = (λzs. λa. ¬ (∃ z∈set zs. rel z a))
from assms(2) obtain y where y ∈ set (filter-min-append xs ys) and rel y x
proof

assume x ∈ set xs
with False obtain y where y ∈ set (filter-min-append xs ys) and rel y x

23

by (auto simp: filter-min-append-def P-def)
thus ?thesis ..

next
assume x ∈ set ys
with False obtain y where y ∈ set xs and rel y x

by (auto simp: filter-min-append-def P-def)
show ?thesis
proof (cases y ∈ set (filter-min-append xs ys))

case True
thus ?thesis using ‹rel y x› ..

next
case False
with ‹y ∈ set xs› obtain y ′ where y ′: y ′ ∈ set (filter-min-append xs ys) and

rel y ′ y
by (auto simp: filter-min-append-def P-def)

from assms(1) this(2) ‹rel y x› have rel y ′ x by (rule transpD)
with y ′ show ?thesis ..

qed
qed
from this(1) False this(2) show ?thesis by (rule assms(4))

qed

corollary filter-min-append-relE :
assumes transp rel and reflp rel and x ∈ set xs ∪ set ys
obtains y where y ∈ set (filter-min-append xs ys) and rel y x
using assms(1 , 3)

proof (rule filter-min-append-cases)
assume x ∈ set (filter-min-append xs ys)
moreover from assms(2) have rel x x by (rule reflpD)
ultimately show ?thesis ..

qed

lemma filter-min-append-minimal:
assumes

∧
x ′ y ′. x ′ ∈ set xs =⇒ y ′ ∈ set xs =⇒ rel x ′ y ′ =⇒ x ′ = y ′

and
∧

x ′ y ′. x ′ ∈ set ys =⇒ y ′ ∈ set ys =⇒ rel x ′ y ′ =⇒ x ′ = y ′

and x ∈ set (filter-min-append xs ys) and y ∈ set (filter-min-append xs ys)
and rel x y

shows x = y
proof −

define P where P = (λzs. λa. ¬ (∃ z∈set zs. rel z a))
define ys1 where ys1 = filter (P xs) ys
from assms(3) have x ∈ set xs ∪ set ys1

by (auto simp: filter-min-append-def P-def ys1-def)
moreover from assms(4) have y ∈ set (filter (P ys1) xs) ∪ set ys1

by (simp add: filter-min-append-def P-def ys1-def)
ultimately show ?thesis
proof (elim UnE)

assume x ∈ set xs
assume y ∈ set (filter (P ys1) xs)

24

hence y ∈ set xs by simp
with ‹x ∈ set xs› show ?thesis using assms(5) by (rule assms(1))

next
assume y ∈ set ys1
hence

∧
z. z ∈ set xs =⇒ ¬ rel z y by (simp add: ys1-def P-def)

moreover assume x ∈ set xs
ultimately have ¬ rel x y by blast
thus ?thesis using ‹rel x y› ..

next
assume y ∈ set (filter (P ys1) xs)
hence

∧
z. z ∈ set ys1 =⇒ ¬ rel z y by (simp add: P-def)

moreover assume x ∈ set ys1
ultimately have ¬ rel x y by blast
thus ?thesis using ‹rel x y› ..

next
assume x ∈ set ys1 and y ∈ set ys1
hence x ∈ set ys and y ∈ set ys by (simp-all add: ys1-def)
thus ?thesis using assms(5) by (rule assms(2))

qed
qed

lemma filter-min-append-distinct:
assumes reflp rel and distinct xs and distinct ys
shows distinct (filter-min-append xs ys)

proof −
define P where P = (λzs. λa. ¬ (∃ z∈set zs. rel z a))
define ys1 where ys1 = filter (P xs) ys
from assms(2) have distinct (filter (P ys1) xs) by simp
moreover from assms(3) have distinct ys1 by (simp add: ys1-def)
moreover have set (filter (P ys1) xs) ∩ set ys1 = {}
proof (simp add: set-eq-iff , intro allI impI notI)

fix x
assume P ys1 x
hence

∧
z. z ∈ set ys1 =⇒ ¬ rel z x by (simp add: P-def)

moreover assume x ∈ set ys1
ultimately have ¬ rel x x by blast
moreover from assms(1) have rel x x by (rule reflpD)
ultimately show False ..

qed
ultimately show ?thesis by (simp add: filter-min-append-def ys1-def P-def)

qed

end

end

3 Properties of Binary Relations
theory Confluence

25

imports Abstract−Rewriting.Abstract-Rewriting Open-Induction.Restricted-Predicates
begin

This theory formalizes some general properties of binary relations, in par-
ticular a very weak sufficient condition for a relation to be Church-Rosser.

3.1 wfp-on
lemma wfp-on-imp-wfP:

assumes wfp-on r A
shows wfP (λx y. r x y ∧ x ∈ A ∧ y ∈ A) (is wfP ?r)

proof (simp add: wfP-def wf-def , intro allI impI)
fix P x
assume ∀ x. (∀ y. r y x ∧ y ∈ A ∧ x ∈ A −→ P y) −→ P x
hence ∗:

∧
x. (

∧
y. x ∈ A =⇒ y ∈ A =⇒ r y x =⇒ P y) =⇒ P x by blast

from assms have ∗∗:
∧

a. a ∈ A =⇒ (
∧

x. x ∈ A =⇒ (
∧

y. y ∈ A =⇒ r y x =⇒
P y) =⇒ P x) =⇒ P a

by (rule wfp-on-induct) blast+
show P x
proof (cases x ∈ A)

case True
from this ∗ show ?thesis by (rule ∗∗)

next
case False
show ?thesis
proof (rule ∗)

fix y
assume x ∈ A
with False show P y ..

qed
qed

qed

lemma wfp-onI-min:
assumes

∧
x Q. x ∈ Q =⇒ Q ⊆ A =⇒ ∃ z∈Q. ∀ y∈A. r y z −→ y /∈ Q

shows wfp-on r A
proof (intro inductive-on-imp-wfp-on minimal-imp-inductive-on allI impI)

fix Q x
assume x ∈ Q ∧ Q ⊆ A
hence x ∈ Q and Q ⊆ A by simp-all
hence ∃ z∈Q. ∀ y∈A. r y z −→ y /∈ Q by (rule assms)
then obtain z where z ∈ Q and 1 :

∧
y. y ∈ A =⇒ r y z =⇒ y /∈ Q by blast

show ∃ z∈Q. ∀ y. r y z −→ y /∈ Q
proof (intro bexI allI impI)

fix y
assume r y z
show y /∈ Q
proof (cases y ∈ A)

case True

26

thus ?thesis using ‹r y z› by (rule 1)
next

case False
with ‹Q ⊆ A› show ?thesis by blast

qed
qed fact

qed

lemma wfp-onE-min:
assumes wfp-on r A and x ∈ Q and Q ⊆ A
obtains z where z ∈ Q and

∧
y. r y z =⇒ y /∈ Q

using wfp-on-imp-minimal[OF assms(1)] assms(2 , 3) by blast

lemma wfp-onI-chain: ¬ (∃ f . ∀ i. f i ∈ A ∧ r (f (Suc i)) (f i)) =⇒ wfp-on r A
by (simp add: wfp-on-def)

lemma finite-minimalE :
assumes finite A and A 6= {} and irreflp rel and transp rel
obtains a where a ∈ A and

∧
b. rel b a =⇒ b /∈ A

using assms(1 , 2)
proof (induct arbitrary: thesis)

case empty
from empty(2) show ?case by simp

next
case (insert a A)
show ?case
proof (cases A = {})

case True
show ?thesis
proof (rule insert(4))

fix b
assume rel b a
with assms(3) show b /∈ insert a A by (auto simp: True irreflp-def)

qed simp
next

case False
with insert(3) obtain z where z ∈ A and ∗:

∧
b. rel b z =⇒ b /∈ A by blast

show ?thesis
proof (cases rel a z)

case True
show ?thesis
proof (rule insert(4))

fix b
assume rel b a
with assms(4) have rel b z using ‹rel a z› by (rule transpD)
hence b /∈ A by (rule ∗)
moreover from ‹rel b a› assms(3) have b 6= a by (auto simp: irreflp-def)
ultimately show b /∈ insert a A by simp

qed simp

27

next
case False
show ?thesis
proof (rule insert(4))

fix b
assume rel b z
hence b /∈ A by (rule ∗)
moreover from ‹rel b z› False have b 6= a by blast
ultimately show b /∈ insert a A by simp

next
from ‹z ∈ A› show z ∈ insert a A by simp

qed
qed

qed
qed

lemma wfp-on-finite:
assumes irreflp rel and transp rel and finite A
shows wfp-on rel A

proof (rule wfp-onI-min)
fix x Q
assume x ∈ Q and Q ⊆ A
from this(2) assms(3) have finite Q by (rule finite-subset)
moreover from ‹x ∈ Q› have Q 6= {} by blast
ultimately obtain z where z ∈ Q and

∧
y. rel y z =⇒ y /∈ Q using assms(1 ,

2)
by (rule finite-minimalE) blast

thus ∃ z∈Q. ∀ y∈A. rel y z −→ y /∈ Q by blast
qed

3.2 Relations
locale relation = fixes r :: ′a ⇒ ′a ⇒ bool (infixl → 50)
begin

abbreviation rtc:: ′a ⇒ ′a ⇒ bool (infixl →∗ 50)
where rtc a b ≡ r∗∗ a b

abbreviation sc:: ′a ⇒ ′a ⇒ bool (infixl ↔ 50)
where sc a b ≡ a → b ∨ b → a

definition is-final:: ′a ⇒ bool where
is-final a ≡ ¬ (∃ b. r a b)

definition srtc:: ′a ⇒ ′a ⇒ bool (infixl ↔∗ 50) where
srtc a b ≡ sc∗∗ a b

definition cs:: ′a ⇒ ′a ⇒ bool (infixl ↓∗ 50) where
cs a b ≡ (∃ s. (a →∗ s) ∧ (b →∗ s))

28

definition is-confluent-on :: ′a set ⇒ bool
where is-confluent-on A ←→ (∀ a∈A. ∀ b1 b2 . (a →∗ b1 ∧ a →∗ b2) −→ b1 ↓∗

b2)

definition is-confluent :: bool
where is-confluent ≡ is-confluent-on UNIV

definition is-loc-confluent :: bool
where is-loc-confluent ≡ (∀ a b1 b2 . (a → b1 ∧ a → b2) −→ b1 ↓∗ b2)

definition is-ChurchRosser :: bool
where is-ChurchRosser ≡ (∀ a b. a ↔∗ b −→ a ↓∗ b)

definition dw-closed :: ′a set ⇒ bool
where dw-closed A ←→ (∀ a∈A. ∀ b. a → b −→ b ∈ A)

lemma dw-closedI [intro]:
assumes

∧
a b. a ∈ A =⇒ a → b =⇒ b ∈ A

shows dw-closed A
unfolding dw-closed-def using assms by auto

lemma dw-closedD:
assumes dw-closed A and a ∈ A and a → b
shows b ∈ A
using assms unfolding dw-closed-def by auto

lemma dw-closed-rtrancl:
assumes dw-closed A and a ∈ A and a →∗ b
shows b ∈ A
using assms(3)

proof (induct b)
case base
from assms(2) show ?case .

next
case (step y z)
from assms(1) step(3) step(2) show ?case by (rule dw-closedD)

qed

lemma dw-closed-empty: dw-closed {}
by (rule, simp)

lemma dw-closed-UNIV : dw-closed UNIV
by (rule, intro UNIV-I)

3.3 Setup for Connection to Theory Abstract−Rewriting.Abstract-Rewriting
abbreviation (input) relset::(′a ∗ ′a) set where

relset ≡ {(x, y). x → y}

29

lemma rtc-rtranclI :
assumes a →∗ b
shows (a, b) ∈ relset∗

using assms by (simp only: Enum.rtranclp-rtrancl-eq)

lemma final-NF : (is-final a) = (a ∈ NF relset)
unfolding is-final-def NF-def by simp

lemma sc-symcl: (a ↔ b) = ((a, b) ∈ relset↔)
by simp

lemma srtc-conversion: (a ↔∗ b) = ((a, b) ∈ relset↔∗)
proof −

have {(a, b). (a, b) ∈ {(x, y). x → y}↔} = {(a, b). a → b}↔ by auto
thus ?thesis unfolding srtc-def conversion-def sc-symcl Enum.rtranclp-rtrancl-eq

by simp
qed

lemma cs-join: (a ↓∗ b) = ((a, b) ∈ relset↓)
unfolding cs-def join-def by (auto simp add: Enum.rtranclp-rtrancl-eq rtrancl-converse)

lemma confluent-CR: is-confluent = CR relset
by (auto simp add: is-confluent-def is-confluent-on-def CR-defs Enum.rtranclp-rtrancl-eq

cs-join)

lemma ChurchRosser-conversion: is-ChurchRosser = (relset↔∗ ⊆ relset↓)
by (auto simp add: is-ChurchRosser-def cs-join srtc-conversion)

lemma loc-confluent-WCR:
shows is-loc-confluent = WCR relset

unfolding is-loc-confluent-def WCR-defs by (auto simp add: cs-join)

lemma wf-converse:
shows (wfP r^−−1) = (wf (relset−1))

unfolding wfP-def converse-def by simp

lemma wf-SN :
shows (wfP r^−−1) = (SN relset)

unfolding wf-converse wf-iff-no-infinite-down-chain SN-on-def by auto

3.4 Simple Lemmas
lemma rtrancl-is-final:

assumes a →∗ b and is-final a
shows a = b

proof −
from rtranclpD[OF ‹a →∗ b›] show ?thesis
proof

assume a 6= b ∧ (→)++ a b

30

hence (→)++ a b by simp
from ‹is-final a› final-NF have a ∈ NF relset by simp
from NF-no-trancl-step[OF this] have (a, b) /∈ {(x, y). x → y}+ ..
thus ?thesis using ‹(→)++ a b› unfolding tranclp-unfold ..

qed
qed

lemma cs-refl:
shows x ↓∗ x

unfolding cs-def
proof

show x →∗ x ∧ x →∗ x by simp
qed

lemma cs-sym:
assumes x ↓∗ y
shows y ↓∗ x

using assms unfolding cs-def
proof

fix z
assume a: x →∗ z ∧ y →∗ z
show ∃ s. y →∗ s ∧ x →∗ s
proof

from a show y →∗ z ∧ x →∗ z by simp
qed

qed

lemma rtc-implies-cs:
assumes x →∗ y
shows x ↓∗ y

proof −
from joinI-left[OF rtc-rtranclI [OF assms]] cs-join show ?thesis by simp

qed

lemma rtc-implies-srtc:
assumes a →∗ b
shows a ↔∗ b

proof −
from conversionI ′[OF rtc-rtranclI [OF assms]] srtc-conversion show ?thesis by

simp
qed

lemma srtc-symmetric:
assumes a ↔∗ b
shows b ↔∗ a

proof −
from symD[OF conversion-sym[of relset], of a b] assms srtc-conversion show

?thesis by simp
qed

31

lemma srtc-transitive:
assumes a ↔∗ b and b ↔∗ c
shows a ↔∗ c

proof −
from rtranclp-trans[of (↔) a b c] assms show a ↔∗ c unfolding srtc-def .

qed

lemma cs-implies-srtc:
assumes a ↓∗ b
shows a ↔∗ b

proof −
from assms cs-join have (a, b) ∈ relset↓ by simp
hence (a, b) ∈ relset↔∗ using join-imp-conversion by auto
thus ?thesis using srtc-conversion by simp

qed

lemma confluence-equiv-ChurchRosser : is-confluent = is-ChurchRosser
by (simp only: ChurchRosser-conversion confluent-CR, fact CR-iff-conversion-imp-join)

corollary confluence-implies-ChurchRosser :
assumes is-confluent
shows is-ChurchRosser
using assms by (simp only: confluence-equiv-ChurchRosser)

lemma ChurchRosser-unique-final:
assumes is-ChurchRosser and a →∗ b1 and a →∗ b2 and is-final b1 and

is-final b2
shows b1 = b2

proof −
from ‹is-ChurchRosser› confluence-equiv-ChurchRosser confluent-CR have CR

relset by simp
from CR-imp-UNF [OF this] assms show ?thesis unfolding UNF-defs normal-

izability-def
by (auto simp add: Enum.rtranclp-rtrancl-eq final-NF)

qed

lemma wf-on-imp-nf-ex:
assumes wfp-on ((→)−1−1) A and dw-closed A and a ∈ A
obtains b where a →∗ b and is-final b

proof −
let ?A = {b∈A. a →∗ b}
note assms(1)
moreover from assms(3) have a ∈ ?A by simp
moreover have ?A ⊆ A by auto
ultimately show ?thesis
proof (rule wfp-onE-min)

fix z
assume z ∈ ?A and

∧
y. (→)−1−1 y z =⇒ y /∈ ?A

32

from this(2) have ∗:
∧

y. z → y =⇒ y /∈ ?A by simp
from ‹z ∈ ?A› have z ∈ A and a →∗ z by simp-all
show thesis
proof (rule, fact)

show is-final z unfolding is-final-def
proof

assume ∃ y. z → y
then obtain y where z → y ..
hence y /∈ ?A by (rule ∗)

moreover from assms(2) ‹z ∈ A› ‹z → y› have y ∈ A by (rule dw-closedD)
ultimately have ¬ (a →∗ y) by simp
with rtranclp-trans[OF ‹a →∗ z›, of y] ‹z → y› show False by auto

qed
qed

qed
qed

lemma unique-nf-imp-confluence-on:
assumes major :

∧
a b1 b2 . a ∈ A =⇒ (a →∗ b1) =⇒ (a →∗ b2) =⇒ is-final b1

=⇒ is-final b2 =⇒ b1 = b2
and wf : wfp-on ((→)−1−1) A and dw: dw-closed A

shows is-confluent-on A
unfolding is-confluent-on-def

proof (intro ballI allI impI)
fix a b1 b2
assume a →∗ b1 ∧ a →∗ b2
hence a →∗ b1 and a →∗ b2 by simp-all
assume a ∈ A
from dw this ‹a →∗ b1 › have b1 ∈ A by (rule dw-closed-rtrancl)
from wf dw this obtain c1 where b1 →∗ c1 and is-final c1 by (rule wf-on-imp-nf-ex)
from dw ‹a ∈ A› ‹a →∗ b2 › have b2 ∈ A by (rule dw-closed-rtrancl)
from wf dw this obtain c2 where b2 →∗ c2 and is-final c2 by (rule wf-on-imp-nf-ex)
have c1 = c2

by (rule major , fact, rule rtranclp-trans[OF ‹a →∗ b1 ›], fact, rule rtran-
clp-trans[OF ‹a →∗ b2 ›], fact+)

show b1 ↓∗ b2 unfolding cs-def
proof (intro exI , intro conjI)

show b1 →∗ c1 by fact
next

show b2 →∗ c1 unfolding ‹c1 = c2 › by fact
qed

qed

corollary wf-imp-nf-ex:
assumes wfP ((→)−1−1)
obtains b where a →∗ b and is-final b

proof −
from assms have wfp-on (r^−−1) UNIV by simp
moreover note dw-closed-UNIV

33

moreover have a ∈ UNIV ..
ultimately obtain b where a →∗ b and is-final b by (rule wf-on-imp-nf-ex)
thus ?thesis ..

qed

corollary unique-nf-imp-confluence:
assumes

∧
a b1 b2 . (a →∗ b1) =⇒ (a →∗ b2) =⇒ is-final b1 =⇒ is-final b2

=⇒ b1 = b2
and wfP ((→)−1−1)

shows is-confluent
unfolding is-confluent-def
by (rule unique-nf-imp-confluence-on, erule assms(1), assumption+, simp add:

assms(2), fact dw-closed-UNIV)

end

3.5 Advanced Results and the Generalized Newman Lemma
definition relbelow-on :: ′a set ⇒ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ (′a ⇒ ′a ⇒ bool) ⇒
(′a ⇒ ′a ⇒ bool)

where relbelow-on A ord z rel a b ≡ (a ∈ A ∧ b ∈ A ∧ rel a b ∧ ord a z ∧ ord b
z)

definition cbelow-on-1 :: ′a set ⇒ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ (′a ⇒ ′a ⇒ bool) ⇒
(′a ⇒ ′a ⇒ bool)

where cbelow-on-1 A ord z rel ≡ (relbelow-on A ord z rel)++

definition cbelow-on :: ′a set ⇒ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ (′a ⇒ ′a ⇒ bool) ⇒
(′a ⇒ ′a ⇒ bool)

where cbelow-on A ord z rel a b ≡ (a = b ∧ b ∈ A ∧ ord b z) ∨ cbelow-on-1 A
ord z rel a b

Note that cbelow-on cannot be defined as the reflexive-transitive closure of
relbelow-on, since it is in general not reflexive!
definition is-loc-connective-on :: ′a set ⇒ (′a ⇒ ′a ⇒ bool) ⇒ (′a ⇒ ′a ⇒ bool)
⇒ bool

where is-loc-connective-on A ord r ←→ (∀ a∈A. ∀ b1 b2 . r a b1 ∧ r a b2 −→
cbelow-on A ord a (relation.sc r) b1 b2)

Note that wfp-on is not the same as SN-on, since in the definition of SN-on
only the first element of the chain must be in the set.
lemma cbelow-on-first-below:

assumes cbelow-on A ord z rel a b
shows ord a z
using assms unfolding cbelow-on-def

proof
assume cbelow-on-1 A ord z rel a b
thus ord a z unfolding cbelow-on-1-def by (induct rule: tranclp-induct, simp

add: relbelow-on-def)

34

qed simp

lemma cbelow-on-second-below:
assumes cbelow-on A ord z rel a b
shows ord b z
using assms unfolding cbelow-on-def

proof
assume cbelow-on-1 A ord z rel a b
thus ord b z unfolding cbelow-on-1-def

by (induct rule: tranclp-induct, simp-all add: relbelow-on-def)
qed simp

lemma cbelow-on-first-in:
assumes cbelow-on A ord z rel a b
shows a ∈ A
using assms unfolding cbelow-on-def

proof
assume cbelow-on-1 A ord z rel a b
thus ?thesis unfolding cbelow-on-1-def by (induct rule: tranclp-induct, simp

add: relbelow-on-def)
qed simp

lemma cbelow-on-second-in:
assumes cbelow-on A ord z rel a b
shows b ∈ A
using assms unfolding cbelow-on-def

proof
assume cbelow-on-1 A ord z rel a b
thus ?thesis unfolding cbelow-on-1-def

by (induct rule: tranclp-induct, simp-all add: relbelow-on-def)
qed simp

lemma cbelow-on-intro [intro]:
assumes main: cbelow-on A ord z rel a b and c ∈ A and rel b c and ord c z
shows cbelow-on A ord z rel a c

proof −
from main have b ∈ A by (rule cbelow-on-second-in)
from main show ?thesis unfolding cbelow-on-def
proof (intro disjI2)

assume cases: (a = b ∧ b ∈ A ∧ ord b z) ∨ cbelow-on-1 A ord z rel a b
from ‹b ∈ A› ‹c ∈ A› ‹rel b c› ‹ord c z› cbelow-on-second-below[OF main]

have bc: relbelow-on A ord z rel b c by (simp add: relbelow-on-def)
from cases show cbelow-on-1 A ord z rel a c
proof

assume a = b ∧ b ∈ A ∧ ord b z
from this bc have relbelow-on A ord z rel a c by simp
thus ?thesis by (simp add: cbelow-on-1-def)

next
assume cbelow-on-1 A ord z rel a b

35

from this bc show ?thesis unfolding cbelow-on-1-def by (rule tranclp.intros(2))
qed

qed
qed

lemma cbelow-on-induct [consumes 1 , case-names base step]:
assumes a: cbelow-on A ord z rel a b

and base: a ∈ A =⇒ ord a z =⇒ P a
and ind:

∧
b c. [| cbelow-on A ord z rel a b; rel b c; c ∈ A; ord c z; P b |] ==>

P c
shows P b
using a unfolding cbelow-on-def

proof
assume a = b ∧ b ∈ A ∧ ord b z
from this base show P b by simp

next
assume cbelow-on-1 A ord z rel a b
thus P b unfolding cbelow-on-1-def
proof (induct x≡a b)

fix b
assume relbelow-on A ord z rel a b
hence rel a b and a ∈ A and b ∈ A and ord a z and ord b z

by (simp-all add: relbelow-on-def)
hence cbelow-on A ord z rel a a by (simp add: cbelow-on-def)
from this ‹rel a b› ‹b ∈ A› ‹ord b z› base[OF ‹a ∈ A› ‹ord a z›] show P b by

(rule ind)
next

fix b c
assume IH : (relbelow-on A ord z rel)++ a b and P b and relbelow-on A ord z

rel b c
hence rel b c and b ∈ A and c ∈ A and ord b z and ord c z

by (simp-all add: relbelow-on-def)
from IH have cbelow-on A ord z rel a b by (simp add: cbelow-on-def cbe-

low-on-1-def)
from this ‹rel b c› ‹c ∈ A› ‹ord c z› ‹P b› show P c by (rule ind)

qed
qed

lemma cbelow-on-symmetric:
assumes main: cbelow-on A ord z rel a b and symp rel
shows cbelow-on A ord z rel b a
using main unfolding cbelow-on-def

proof
assume a1 : a = b ∧ b ∈ A ∧ ord b z
show b = a ∧ a ∈ A ∧ ord a z ∨ cbelow-on-1 A ord z rel b a
proof

from a1 show b = a ∧ a ∈ A ∧ ord a z by simp
qed

next

36

assume a2 : cbelow-on-1 A ord z rel a b
show b = a ∧ a ∈ A ∧ ord a z ∨ cbelow-on-1 A ord z rel b a
proof (rule disjI2)

from ‹symp rel› have symp (relbelow-on A ord z rel) unfolding symp-def
proof (intro allI impI)

fix x y
assume rel-sym: ∀ x y. rel x y −→ rel y x
assume relbelow-on A ord z rel x y
hence rel x y and x ∈ A and y ∈ A and ord x z and ord y z

by (simp-all add: relbelow-on-def)
show relbelow-on A ord z rel y x unfolding relbelow-on-def
proof (intro conjI)

from rel-sym ‹rel x y› show rel y x by simp
qed fact+

qed
from sym-trancl[to-pred, OF this] a2 show cbelow-on-1 A ord z rel b a

by (simp add: symp-def cbelow-on-1-def)
qed

qed

lemma cbelow-on-transitive:
assumes cbelow-on A ord z rel a b and cbelow-on A ord z rel b c
shows cbelow-on A ord z rel a c

proof (induct rule: cbelow-on-induct[OF ‹cbelow-on A ord z rel b c›])
from ‹cbelow-on A ord z rel a b› show cbelow-on A ord z rel a b .

next
fix c0 c
assume cbelow-on A ord z rel b c0 and rel c0 c and c ∈ A and ord c z and

cbelow-on A ord z rel a c0
show cbelow-on A ord z rel a c by (rule, fact+)

qed

lemma cbelow-on-mono:
assumes cbelow-on A ord z rel a b and A ⊆ B
shows cbelow-on B ord z rel a b
using assms(1)

proof (induct rule: cbelow-on-induct)
case base
show ?case by (simp add: cbelow-on-def , intro disjI1 conjI , rule, fact+)

next
case (step b c)
from step(3) assms(2) have c ∈ B ..
from step(5) this step(2) step (4) show ?case ..

qed

locale relation-order = relation +
fixes ord:: ′a ⇒ ′a ⇒ bool
fixes A:: ′a set
assumes trans: ord x y =⇒ ord y z =⇒ ord x z

37

assumes wf : wfp-on ord A
assumes refines: (→) ≤ ord−1−1

begin

lemma relation-refines:
assumes a → b
shows ord b a
using refines assms by auto

lemma relation-wf : wfp-on (→)−1−1 A
using subset-refl - wf

proof (rule wfp-on-mono)
fix x y
assume (→)−1−1 x y
hence y → x by simp
with refines have (ord)−1−1 y x ..
thus ord x y by simp

qed

lemma rtc-implies-cbelow-on:
assumes dw-closed A and main: a →∗ b and a ∈ A and ord a c
shows cbelow-on A ord c (↔) a b
using main

proof (induct rule: rtranclp-induct)
from assms(3) assms(4) show cbelow-on A ord c (↔) a a by (simp add: cbe-

low-on-def)
next

fix b0 b
assume a →∗ b0 and b0 → b and IH : cbelow-on A ord c (↔) a b0
from assms(1) assms(3) ‹a →∗ b0 › have b0 ∈ A by (rule dw-closed-rtrancl)
from assms(1) this ‹b0 → b› have b ∈ A by (rule dw-closedD)
show cbelow-on A ord c (↔) a b
proof

from ‹b0 → b› show b0 ↔ b by simp
next

from relation-refines[OF ‹b0 → b›] cbelow-on-second-below[OF IH] show ord
b c by (rule trans)

qed fact+
qed

lemma cs-implies-cbelow-on:
assumes dw-closed A and a ↓∗ b and a ∈ A and b ∈ A and ord a c and ord b

c
shows cbelow-on A ord c (↔) a b

proof −
from ‹a ↓∗ b› obtain s where a →∗ s and b →∗ s unfolding cs-def by auto
have sym: symp (↔) unfolding symp-def
proof (intro allI , intro impI)

fix x y

38

assume x ↔ y
thus y ↔ x by auto

qed
from assms(1) ‹a →∗ s› assms(3) assms(5) have cbelow-on A ord c (↔) a s

by (rule rtc-implies-cbelow-on)
also have cbelow-on A ord c (↔) s b
proof (rule cbelow-on-symmetric)

from assms(1) ‹b →∗ s› assms(4) assms(6) show cbelow-on A ord c (↔) b s
by (rule rtc-implies-cbelow-on)

qed fact
finally(cbelow-on-transitive) show ?thesis .

qed

The generalized Newman lemma, taken from [17]:
lemma loc-connectivity-implies-confluence:

assumes is-loc-connective-on A ord (→) and dw-closed A
shows is-confluent-on A
using assms(1) unfolding is-loc-connective-on-def is-confluent-on-def

proof (intro ballI allI impI)
fix z x y:: ′a
assume ∀ a∈A. ∀ b1 b2 . a → b1 ∧ a → b2 −→ cbelow-on A ord a (↔) b1 b2
hence A:

∧
a b1 b2 . a ∈ A =⇒ a → b1 =⇒ a → b2 =⇒ cbelow-on A ord a (↔)

b1 b2 by simp
assume z ∈ A and z →∗ x ∧ z →∗ y
with wf show x ↓∗ y
proof (induct z arbitrary: x y rule: wfp-on-induct)

fix z x y:: ′a
assume IH :

∧
z0 x0 y0 . z0 ∈ A =⇒ ord z0 z =⇒ z0 →∗ x0 ∧ z0 →∗ y0 =⇒

x0 ↓∗ y0
and z →∗ x ∧ z →∗ y

hence z →∗ x and z →∗ y by auto
assume z ∈ A
from converse-rtranclpE [OF ‹z →∗ x›] obtain x1 where x = z ∨ (z → x1 ∧

x1 →∗ x) by auto
thus x ↓∗ y
proof

assume x = z
show ?thesis unfolding cs-def
proof

from ‹x = z› ‹z →∗ y› show x →∗ y ∧ y →∗ y by simp
qed

next
assume z → x1 ∧ x1 →∗ x
hence z → x1 and x1 →∗ x by auto
from assms(2) ‹z ∈ A› this(1) have x1 ∈ A by (rule dw-closedD)
from converse-rtranclpE [OF ‹z →∗ y›] obtain y1 where y = z ∨ (z → y1

∧ y1 →∗ y) by auto
thus ?thesis
proof

39

assume y = z
show ?thesis unfolding cs-def
proof

from ‹y = z› ‹z →∗ x› show x →∗ x ∧ y →∗ x by simp
qed

next
assume z → y1 ∧ y1 →∗ y
hence z → y1 and y1 →∗ y by auto
from assms(2) ‹z ∈ A› this(1) have y1 ∈ A by (rule dw-closedD)
have x1 ↓∗ y1

proof (induct rule: cbelow-on-induct[OF A[OF ‹z ∈ A› ‹z → x1 › ‹z →
y1 ›]])

from cs-refl[of x1] show x1 ↓∗ x1 .
next

fix b c
assume cbelow-on A ord z (↔) x1 b and b ↔ c and c ∈ A and ord c z

and x1 ↓∗ b
from this(1) have b ∈ A by (rule cbelow-on-second-in)
from ‹x1 ↓∗ b› obtain w1 where x1 →∗ w1 and b →∗ w1 unfolding

cs-def by auto
from ‹b ↔ c› show x1 ↓∗ c
proof

assume b → c
hence b →∗ c by simp

from ‹cbelow-on A ord z (↔) x1 b› have ord b z by (rule cbe-
low-on-second-below)

from IH [OF ‹b ∈ A› this] ‹b →∗ c› ‹b →∗ w1 › have c ↓∗ w1 by simp
then obtain w2 where c →∗ w2 and w1 →∗ w2 unfolding cs-def by

auto
show ?thesis unfolding cs-def
proof

from rtranclp-trans[OF ‹x1 →∗ w1 › ‹w1 →∗ w2 ›] ‹c →∗ w2 ›
show x1 →∗ w2 ∧ c →∗ w2 by simp

qed
next

assume c → b
hence c →∗ b by simp
show ?thesis unfolding cs-def
proof

from rtranclp-trans[OF ‹c →∗ b› ‹b →∗ w1 ›] ‹x1 →∗ w1 ›
show x1 →∗ w1 ∧ c →∗ w1 by simp

qed
qed

qed
then obtain w1 where x1 →∗ w1 and y1 →∗ w1 unfolding cs-def by

auto
from IH [OF ‹x1 ∈ A› relation-refines[OF ‹z → x1 ›]] ‹x1 →∗ x› ‹x1 →∗

w1 ›
have x ↓∗ w1 by simp

40

then obtain v where x →∗ v and w1 →∗ v unfolding cs-def by auto
from IH [OF ‹y1 ∈ A› relation-refines[OF ‹z → y1 ›]]

rtranclp-trans[OF ‹y1 →∗ w1 › ‹w1 →∗ v›] ‹y1 →∗ y›
have v ↓∗ y by simp

then obtain w where v →∗ w and y →∗ w unfolding cs-def by auto
show ?thesis unfolding cs-def
proof

from rtranclp-trans[OF ‹x →∗ v› ‹v →∗ w›] ‹y →∗ w› show x →∗ w ∧ y
→∗ w by simp

qed
qed

qed
qed

qed

end

theorem loc-connectivity-equiv-ChurchRosser :
assumes relation-order r ord UNIV
shows relation.is-ChurchRosser r = is-loc-connective-on UNIV ord r

proof
assume relation.is-ChurchRosser r
show is-loc-connective-on UNIV ord r unfolding is-loc-connective-on-def
proof (intro ballI allI impI)

fix a b1 b2
assume r a b1 ∧ r a b2
hence r a b1 and r a b2 by simp-all
hence r∗∗ a b1 and r∗∗ a b2 by simp-all
from relation.rtc-implies-srtc[OF ‹r∗∗ a b1 ›] have relation.srtc r b1 a by (rule

relation.srtc-symmetric)
from relation.srtc-transitive[OF this relation.rtc-implies-srtc[OF ‹r∗∗ a b2 ›]]

have relation.srtc r b1 b2 .
with ‹relation.is-ChurchRosser r› have relation.cs r b1 b2 by (simp add:

relation.is-ChurchRosser-def)
from relation-order .cs-implies-cbelow-on[OF assms relation.dw-closed-UNIV

this]
relation-order .relation-refines[OF assms, of a] ‹r a b1 › ‹r a b2 ›
show cbelow-on UNIV ord a (relation.sc r) b1 b2 by simp

qed
next

assume is-loc-connective-on UNIV ord r
from assms this relation.dw-closed-UNIV have relation.is-confluent-on r UNIV

by (rule relation-order .loc-connectivity-implies-confluence)
hence relation.is-confluent r by (simp only: relation.is-confluent-def)
thus relation.is-ChurchRosser r by (simp add: relation.confluence-equiv-ChurchRosser)

qed

end

41

4 Polynomial Reduction
theory Reduction
imports Polynomials.MPoly-Type-Class-Ordered Confluence
begin

This theory formalizes the concept of reduction of polynomials by polyno-
mials.
context ordered-term
begin

definition red-single :: (′t ⇒0
′b::field) ⇒ (′t ⇒0

′b) ⇒ (′t ⇒0
′b) ⇒ ′a ⇒ bool

where red-single p q f t ←→ (f 6= 0 ∧ lookup p (t ⊕ lt f) 6= 0 ∧
q = p − monom-mult ((lookup p (t ⊕ lt f)) / lc f) t f)

definition red :: (′t ⇒0
′b::field) set ⇒ (′t ⇒0

′b) ⇒ (′t ⇒0
′b) ⇒ bool

where red F p q ←→ (∃ f∈F . ∃ t. red-single p q f t)

definition is-red :: (′t ⇒0
′b::field) set ⇒ (′t ⇒0

′b) ⇒ bool
where is-red F a ←→ ¬ relation.is-final (red F) a

4.1 Basic Properties of Reduction
lemma red-setI :

assumes f ∈ F and a: red-single p q f t
shows red F p q
unfolding red-def

proof
from ‹f ∈ F› show f ∈ F .

next
from a show ∃ t. red-single p q f t ..

qed

lemma red-setE :
assumes red F p q
obtains f and t where f ∈ F and red-single p q f t

proof −
from assms obtain f where f ∈ F and t: ∃ t. red-single p q f t unfolding

red-def by auto
from t obtain t where red-single p q f t ..
from ‹f ∈ F› this show ?thesis ..

qed

lemma red-empty: ¬ red {} p q
by (rule, elim red-setE , simp)

lemma red-singleton-zero: ¬ red {0} p q
by (rule, elim red-setE , simp add: red-single-def)

42

lemma red-union: red (F ∪ G) p q = (red F p q ∨ red G p q)
proof

assume red (F ∪ G) p q
from red-setE [OF this] obtain f t where f ∈ F ∪ G and r : red-single p q f t .
from ‹f ∈ F ∪ G› have f ∈ F ∨ f ∈ G by simp
thus red F p q ∨ red G p q
proof

assume f ∈ F
show ?thesis by (intro disjI1 , rule red-setI [OF ‹f ∈ F› r])

next
assume f ∈ G
show ?thesis by (intro disjI2 , rule red-setI [OF ‹f ∈ G› r])

qed
next

assume red F p q ∨ red G p q
thus red (F ∪ G) p q
proof

assume red F p q
from red-setE [OF this] obtain f t where f ∈ F and red-single p q f t .
show ?thesis by (intro red-setI [of f - - - t], rule UnI1 , rule ‹f ∈ F›, fact)

next
assume red G p q
from red-setE [OF this] obtain f t where f ∈ G and red-single p q f t .
show ?thesis by (intro red-setI [of f - - - t], rule UnI2 , rule ‹f ∈ G›, fact)

qed
qed

lemma red-unionI1 :
assumes red F p q
shows red (F ∪ G) p q
unfolding red-union by (rule disjI1 , fact)

lemma red-unionI2 :
assumes red G p q
shows red (F ∪ G) p q
unfolding red-union by (rule disjI2 , fact)

lemma red-subset:
assumes red G p q and G ⊆ F
shows red F p q

proof −
from ‹G ⊆ F› obtain H where F = G ∪ H by auto
show ?thesis unfolding ‹F = G ∪ H › by (rule red-unionI1 , fact)

qed

lemma red-union-singleton-zero: red (F ∪ {0}) = red F
by (intro ext, simp only: red-union red-singleton-zero, simp)

lemma red-minus-singleton-zero: red (F − {0}) = red F

43

by (metis Un-Diff-cancel2 red-union-singleton-zero)

lemma red-rtrancl-subset:
assumes major : (red G)∗∗ p q and G ⊆ F
shows (red F)∗∗ p q
using major

proof (induct rule: rtranclp-induct)
show (red F)∗∗ p p ..

next
fix r q
assume red G r q and (red F)∗∗ p r
show (red F)∗∗ p q
proof

show (red F)∗∗ p r by fact
next

from red-subset[OF ‹red G r q› ‹G ⊆ F›] show red F r q .
qed

qed

lemma red-singleton: red {f } p q ←→ (∃ t. red-single p q f t)
unfolding red-def

proof
assume ∃ f∈{f }. ∃ t. red-single p q f t
from this obtain f0 where f0 ∈ {f } and a: ∃ t. red-single p q f0 t ..
from ‹f0 ∈ {f }› have f0 = f by simp
from this a show ∃ t. red-single p q f t by simp

next
assume a: ∃ t. red-single p q f t
show ∃ f∈{f }. ∃ t. red-single p q f t
proof (rule, simp)

from a show ∃ t. red-single p q f t .
qed

qed

lemma red-single-lookup:
assumes red-single p q f t
shows lookup q (t ⊕ lt f) = 0
using assms unfolding red-single-def

proof
assume f 6= 0 and lookup p (t ⊕ lt f) 6= 0 ∧ q = p − monom-mult (lookup p

(t ⊕ lt f) / lc f) t f
hence lookup p (t ⊕ lt f) 6= 0 and q-def : q = p − monom-mult (lookup p (t ⊕

lt f) / lc f) t f
by auto

from lookup-minus[of p monom-mult (lookup p (t ⊕ lt f) / lc f) t f t ⊕ lt f]
lookup-monom-mult-plus[of lookup p (t ⊕ lt f) / lc f t f lt f]
lc-not-0 [OF ‹f 6= 0 ›]

show ?thesis unfolding q-def lc-def by simp
qed

44

lemma red-single-higher :
assumes red-single p q f t
shows higher q (t ⊕ lt f) = higher p (t ⊕ lt f)
using assms unfolding higher-eq-iff red-single-def

proof (intro allI , intro impI)
fix u
assume a: t ⊕ lt f ≺t u

and f 6= 0 ∧ lookup p (t ⊕ lt f) 6= 0 ∧ q = p − monom-mult (lookup p (t ⊕
lt f) / lc f) t f

hence f 6= 0
and lookup p (t ⊕ lt f) 6= 0
and q-def : q = p − monom-mult (lookup p (t ⊕ lt f) / lc f) t f
by simp-all

from ‹lookup p (t ⊕ lt f) 6= 0 › lc-not-0 [OF ‹f 6= 0 ›] have c-not-0 : lookup p (t
⊕ lt f) / lc f 6= 0

by (simp add: field-simps)
from q-def lookup-minus[of p monom-mult (lookup p (t ⊕ lt f) / lc f) t f]

have q-lookup:
∧

s. lookup q s = lookup p s − lookup (monom-mult (lookup p
(t ⊕ lt f) / lc f) t f) s

by simp
from a lt-monom-mult[OF c-not-0 ‹f 6= 0 ›, of t]

have ¬ u �t lt (monom-mult (lookup p (t ⊕ lt f) / lc f) t f) by simp
with lt-max[of monom-mult (lookup p (t ⊕ lt f) / lc f) t f u]
have lookup (monom-mult (lookup p (t ⊕ lt f) / lc f) t f) u = 0 by auto
thus lookup q u = lookup p u using q-lookup[of u] by simp

qed

lemma red-single-ord:
assumes red-single p q f t
shows q ≺p p
unfolding ord-strict-higher

proof (intro exI , intro conjI)
from red-single-lookup[OF assms] show lookup q (t ⊕ lt f) = 0 .

next
from assms show lookup p (t ⊕ lt f) 6= 0 unfolding red-single-def by simp

next
from red-single-higher [OF assms] show higher q (t ⊕ lt f) = higher p (t ⊕ lt f)

.
qed

lemma red-single-nonzero1 :
assumes red-single p q f t
shows p 6= 0

proof
assume p = 0
from this red-single-ord[OF assms] ord-p-zero-min[of q] show False by simp

qed

45

lemma red-single-nonzero2 :
assumes red-single p q f t
shows f 6= 0

proof
assume f = 0
from assms monom-mult-zero-right have f 6= 0 by (simp add: red-single-def)
from this ‹f = 0 › show False by simp

qed

lemma red-single-self :
assumes p 6= 0
shows red-single p 0 p 0

proof −
from lc-not-0 [OF assms] have lc: lc p 6= 0 .
show ?thesis unfolding red-single-def
proof (intro conjI)

show p 6= 0 by fact
next

from lc show lookup p (0 ⊕ lt p) 6= 0 unfolding lc-def by (simp add:
term-simps)

next
from lc have (lookup p (0 ⊕ lt p)) / lc p = 1 unfolding lc-def by (simp add:

term-simps)
from this monom-mult-one-left[of p] show 0 = p − monom-mult (lookup p (0

⊕ lt p) / lc p) 0 p
by simp

qed
qed

lemma red-single-trans:
assumes red-single p p0 f t and lt g addst lt f and g 6= 0
obtains p1 where red-single p p1 g (t + (lp f − lp g))

proof −
let ?s = t + (lp f − lp g)
let ?p = p − monom-mult (lookup p (?s ⊕ lt g) / lc g) ?s g
have red-single p ?p g ?s unfolding red-single-def
proof (intro conjI)

from assms(2) have eq: ?s ⊕ lt g = t ⊕ lt f using adds-term-alt splus-assoc
by (auto simp: term-simps)

from ‹red-single p p0 f t› have lookup p (t ⊕ lt f) 6= 0 unfolding red-single-def
by simp

thus lookup p (?s ⊕ lt g) 6= 0 by (simp add: eq)
qed (fact, fact refl)
thus ?thesis ..

qed

lemma red-nonzero:
assumes red F p q
shows p 6= 0

46

proof −
from red-setE [OF assms] obtain f t where red-single p q f t .
show ?thesis by (rule red-single-nonzero1 , fact)

qed

lemma red-self :
assumes p 6= 0
shows red {p} p 0

unfolding red-singleton
proof

from red-single-self [OF assms] show red-single p 0 p 0 .
qed

lemma red-ord:
assumes red F p q
shows q ≺p p

proof −
from red-setE [OF assms] obtain f and t where red-single p q f t .
from red-single-ord[OF this] show q ≺p p .

qed

lemma red-indI1 :
assumes f ∈ F and f 6= 0 and p 6= 0 and adds: lt f addst lt p
shows red F p (p − monom-mult (lc p / lc f) (lp p − lp f) f)

proof (intro red-setI [OF ‹f ∈ F›])
let ?s = lp p − lp f
have c: lookup p (?s ⊕ lt f) = lc p unfolding lc-def

by (metis add-diff-cancel-right ′ adds adds-termE pp-of-term-splus)
show red-single p (p − monom-mult (lc p / lc f) ?s f) f ?s unfolding red-single-def
proof (intro conjI , fact)

from c lc-not-0 [OF ‹p 6= 0 ›] show lookup p (?s ⊕ lt f) 6= 0 by simp
next

from c show p − monom-mult (lc p / lc f) ?s f = p − monom-mult (lookup
p (?s ⊕ lt f) / lc f) ?s f

by simp
qed

qed

lemma red-indI2 :
assumes p 6= 0 and r : red F (tail p) q
shows red F p (q + monomial (lc p) (lt p))

proof −
from red-setE [OF r] obtain f t where f ∈ F and rs: red-single (tail p) q f t by

auto
from rs have f 6= 0 and ct: lookup (tail p) (t ⊕ lt f) 6= 0

and q: q = tail p − monom-mult (lookup (tail p) (t ⊕ lt f) / lc f) t f
unfolding red-single-def by simp-all

from ct lookup-tail[of p t ⊕ lt f] have t ⊕ lt f ≺t lt p by (auto split: if-splits)
hence c: lookup (tail p) (t ⊕ lt f) = lookup p (t ⊕ lt f) using lookup-tail[of p]

47

by simp
show ?thesis
proof (intro red-setI [OF ‹f ∈ F›])

show red-single p (q + Poly-Mapping.single (lt p) (lc p)) f t unfolding
red-single-def

proof (intro conjI , fact)
from ct c show lookup p (t ⊕ lt f) 6= 0 by simp

next
from q have q + monomial (lc p) (lt p) =

(monomial (lc p) (lt p) + tail p) − monom-mult (lookup (tail p) (t
⊕ lt f) / lc f) t f

by simp
also have . . . = p − monom-mult (lookup (tail p) (t ⊕ lt f) / lc f) t f

using leading-monomial-tail[of p] by auto
finally show q + monomial (lc p) (lt p) = p − monom-mult (lookup p (t ⊕

lt f) / lc f) t f
by (simp only: c)

qed
qed

qed

lemma red-indE :
assumes red F p q
shows (∃ f∈F . f 6= 0 ∧ lt f addst lt p ∧

(q = p − monom-mult (lc p / lc f) (lp p − lp f) f)) ∨
red F (tail p) (q − monomial (lc p) (lt p))

proof −
from red-nonzero[OF assms] have p 6= 0 .
from red-setE [OF assms] obtain f t where f ∈ F and rs: red-single p q f t by

auto
from rs have f 6= 0

and cn0 : lookup p (t ⊕ lt f) 6= 0
and q: q = p − monom-mult ((lookup p (t ⊕ lt f)) / lc f) t f
unfolding red-single-def by simp-all

show ?thesis
proof (cases lt p = t ⊕ lt f)

case True
hence lt f addst lt p by (simp add: term-simps)
from True have eq1 : lp p − lp f = t by (simp add: term-simps)
from True have eq2 : lc p = lookup p (t ⊕ lt f) unfolding lc-def by simp
show ?thesis
proof (intro disjI1 , rule bexI [of - f], intro conjI , fact+)

from q eq1 eq2 show q = p − monom-mult (lc p / lc f) (lp p − lp f) f
by simp

qed (fact)
next

case False
from this lookup-tail-2 [of p t ⊕ lt f]

have ct: lookup (tail p) (t ⊕ lt f) = lookup p (t ⊕ lt f) by simp

48

show ?thesis
proof (intro disjI2 , intro red-setI [of f], fact)
show red-single (tail p) (q − monomial (lc p) (lt p)) f t unfolding red-single-def

proof (intro conjI , fact)
from cn0 ct show lookup (tail p) (t ⊕ lt f) 6= 0 by simp

next
from leading-monomial-tail[of p]

have p − monomial (lc p) (lt p) = (monomial (lc p) (lt p) + tail p) −
monomial (lc p) (lt p)

by simp
also have . . . = tail p by simp
finally have eq: p − monomial (lc p) (lt p) = tail p .
from q have q − monomial (lc p) (lt p) =

(p − monomial (lc p) (lt p)) − monom-mult ((lookup p (t ⊕ lt f))
/ lc f) t f by simp

also from eq have . . . = tail p − monom-mult ((lookup p (t ⊕ lt f)) / lc
f) t f by simp

finally show q − monomial (lc p) (lt p) = tail p − monom-mult (lookup
(tail p) (t ⊕ lt f) / lc f) t f

using ct by simp
qed

qed
qed

qed

lemma is-redI :
assumes red F a b
shows is-red F a
unfolding is-red-def relation.is-final-def by (simp, intro exI [of - b], fact)

lemma is-redE :
assumes is-red F a
obtains b where red F a b
using assms unfolding is-red-def relation.is-final-def

proof simp
assume r :

∧
b. red F a b =⇒ thesis and b: ∃ x. red F a x

from b obtain b where red F a b ..
show thesis by (rule r [of b], fact)

qed

lemma is-red-alt:
shows is-red F a ←→ (∃ b. red F a b)

proof
assume is-red F a
from is-redE [OF this] obtain b where red F a b .
show ∃ b. red F a b by (intro exI [of - b], fact)

next
assume ∃ b. red F a b
from this obtain b where red F a b ..

49

show is-red F a by (rule is-redI , fact)
qed

lemma is-red-singletonI :
assumes is-red F q
obtains p where p ∈ F and is-red {p} q

proof −
from assms obtain q0 where red F q q0 unfolding is-red-alt ..
from this red-def [of F q q0] obtain p where p ∈ F and t: ∃ t. red-single q q0

p t by auto
have is-red {p} q unfolding is-red-alt
proof

from red-singleton[of p q q0] t show red {p} q q0 by simp
qed
from ‹p ∈ F› this show ?thesis ..

qed

lemma is-red-singletonD:
assumes is-red {p} q and p ∈ F
shows is-red F q

proof −
from assms(1) obtain q0 where red {p} q q0 unfolding is-red-alt ..
from red-singleton[of p q q0] this have ∃ t. red-single q q0 p t ..
from this obtain t where red-single q q0 p t ..
show ?thesis unfolding is-red-alt

by (intro exI [of - q0], intro red-setI [OF assms(2), of q q0 t], fact)
qed

lemma is-red-singleton-trans:
assumes is-red {f } p and lt g addst lt f and g 6= 0
shows is-red {g} p

proof −
from ‹is-red {f } p› obtain q where red {f } p q unfolding is-red-alt ..
from this red-singleton[of f p q] obtain t where red-single p q f t by auto
from red-single-trans[OF this assms(2 , 3)] obtain q0 where

red-single p q0 g (t + (lp f − lp g)) .
show ?thesis
proof (rule is-redI [of {g} p q0])

show red {g} p q0 unfolding red-def
by (intro bexI [of - g], intro exI [of - t + (lp f − lp g)], fact, simp)

qed
qed

lemma is-red-singleton-not-0 :
assumes is-red {f } p
shows f 6= 0

using assms unfolding is-red-alt
proof

fix q

50

assume red {f } p q
from this red-singleton[of f p q] obtain t where red-single p q f t by auto
thus ?thesis unfolding red-single-def ..

qed

lemma irred-0 :
shows ¬ is-red F 0

proof (rule, rule is-redE)
fix b
assume red F 0 b
from ord-p-zero-min[of b] red-ord[OF this] show False by simp

qed

lemma is-red-indI1 :
assumes f ∈ F and f 6= 0 and p 6= 0 and lt f addst lt p
shows is-red F p

by (intro is-redI , rule red-indI1 [OF assms])

lemma is-red-indI2 :
assumes p 6= 0 and is-red F (tail p)
shows is-red F p

proof −
from is-redE [OF ‹is-red F (tail p)›] obtain q where red F (tail p) q .
show ?thesis by (intro is-redI , rule red-indI2 [OF ‹p 6= 0 ›], fact)

qed

lemma is-red-indE :
assumes is-red F p
shows (∃ f∈F . f 6= 0 ∧ lt f addst lt p) ∨ is-red F (tail p)

proof −
from is-redE [OF assms] obtain q where red F p q .
from red-indE [OF this] show ?thesis
proof

assume ∃ f∈F . f 6= 0 ∧ lt f addst lt p ∧ q = p − monom-mult (lc p / lc f) (lp
p − lp f) f

from this obtain f where f ∈ F and f 6= 0 and lt f addst lt p by auto
show ?thesis by (intro disjI1 , rule bexI [of - f], intro conjI , fact+)

next
assume red F (tail p) (q − monomial (lc p) (lt p))
show ?thesis by (intro disjI2 , intro is-redI , fact)

qed
qed

lemma rtrancl-0 :
assumes (red F)∗∗ 0 x
shows x = 0

proof −
from irred-0 [of F] have relation.is-final (red F) 0 unfolding is-red-def by simp
from relation.rtrancl-is-final[OF ‹(red F)∗∗ 0 x› this] show ?thesis by simp

51

qed

lemma red-rtrancl-ord:
assumes (red F)∗∗ p q
shows q �p p
using assms

proof induct
case base
show ?case ..

next
case (step y z)
from step(2) have z ≺p y by (rule red-ord)
hence z �p y by simp
also note step(3)
finally show ?case .

qed

lemma components-red-subset:
assumes red F p q
shows component-of-term ‘ keys q ⊆ component-of-term ‘ keys p ∪ compo-

nent-of-term ‘ Keys F
proof −

from assms obtain f t where f ∈ F and red-single p q f t by (rule red-setE)
from this(2) have q: q = p − monom-mult ((lookup p (t ⊕ lt f)) / lc f) t f

by (simp add: red-single-def)
have component-of-term ‘ keys q ⊆

component-of-term ‘ (keys p ∪ keys (monom-mult ((lookup p (t ⊕ lt f)) / lc
f) t f))

by (rule image-mono, simp add: q keys-minus)
also have ... ⊆ component-of-term ‘ keys p ∪ component-of-term ‘ Keys F
proof (simp add: image-Un, rule)

fix k
assume k ∈ component-of-term ‘ keys (monom-mult (lookup p (t ⊕ lt f) / lc

f) t f)
then obtain v where v ∈ keys (monom-mult (lookup p (t ⊕ lt f) / lc f) t f)

and k = component-of-term v ..
from this(1) keys-monom-mult-subset have v ∈ (⊕) t ‘ keys f ..
then obtain u where u ∈ keys f and v = t ⊕ u ..
have k = component-of-term u by (simp add: ‹k = component-of-term v› ‹v =

t ⊕ u› term-simps)
with ‹u ∈ keys f › have k ∈ component-of-term ‘ keys f by fastforce

also have ... ⊆ component-of-term ‘ Keys F by (rule image-mono, rule keys-subset-Keys,
fact)

finally show k ∈ component-of-term ‘ keys p ∪ component-of-term ‘ Keys F
by simp

qed
finally show ?thesis .

qed

52

corollary components-red-rtrancl-subset:
assumes (red F)∗∗ p q
shows component-of-term ‘ keys q ⊆ component-of-term ‘ keys p ∪ compo-

nent-of-term ‘ Keys F
using assms

proof (induct)
case base
show ?case by simp

next
case (step q r)
from step(2) have component-of-term ‘ keys r ⊆ component-of-term ‘ keys q ∪

component-of-term ‘ Keys F
by (rule components-red-subset)

also from step(3) have ... ⊆ component-of-term ‘ keys p ∪ component-of-term
‘ Keys F by blast

finally show ?case .
qed

4.2 Reducibility and Addition & Multiplication
lemma red-single-monom-mult:

assumes red-single p q f t and c 6= 0
shows red-single (monom-mult c s p) (monom-mult c s q) f (s + t)

proof −
from assms(1) have f 6= 0

and lookup p (t ⊕ lt f) 6= 0
and q-def : q = p − monom-mult ((lookup p (t ⊕ lt f)) / lc f) t f
unfolding red-single-def by auto

have assoc: (s + t) ⊕ lt f = s ⊕ (t ⊕ lt f) by (simp add: ac-simps)
have g2 : lookup (monom-mult c s p) ((s + t) ⊕ lt f) 6= 0
proof

assume lookup (monom-mult c s p) ((s + t) ⊕ lt f) = 0
hence c ∗ lookup p (t ⊕ lt f) = 0 using assoc by (simp add: lookup-monom-mult-plus)
thus False using ‹c 6= 0 › ‹lookup p (t ⊕ lt f) 6= 0 › by simp

qed
have g3 : monom-mult c s q =
(monom-mult c s p) − monom-mult ((lookup (monom-mult c s p) ((s + t) ⊕ lt

f)) / lc f) (s + t) f
proof −

from q-def monom-mult-dist-right-minus[of c s p]
have monom-mult c s q =

monom-mult c s p − monom-mult c s (monom-mult (lookup p (t ⊕ lt f)
/ lc f) t f) by simp

also from monom-mult-assoc[of c s lookup p (t ⊕ lt f) / lc f t f] assoc
have monom-mult c s (monom-mult (lookup p (t ⊕ lt f) / lc f) t f) =

monom-mult ((lookup (monom-mult c s p) ((s + t) ⊕ lt f)) / lc f) (s +
t) f

by (simp add: lookup-monom-mult-plus)
finally show ?thesis .

53

qed
from ‹f 6= 0 › g2 g3 show ?thesis unfolding red-single-def by auto

qed

lemma red-single-plus-1 :
assumes red-single p q f t and t ⊕ lt f /∈ keys (p + r)
shows red-single (q + r) (p + r) f t

proof −
from assms have f 6= 0 and lookup p (t ⊕ lt f) 6= 0

and q: q = p − monom-mult ((lookup p (t ⊕ lt f)) / lc f) t f
by (simp-all add: red-single-def)

from assms(1) have cq-0 : lookup q (t ⊕ lt f) = 0 by (rule red-single-lookup)
from assms(2) have lookup (p + r) (t ⊕ lt f) = 0

by (simp add: in-keys-iff)
with neg-eq-iff-add-eq-0 [of lookup p (t ⊕ lt f) lookup r (t ⊕ lt f)]
have cr : lookup r (t ⊕ lt f) = − (lookup p (t ⊕ lt f)) by (simp add: lookup-add)

hence cr-not-0 : lookup r (t ⊕ lt f) 6= 0 using ‹lookup p (t ⊕ lt f) 6= 0 › by simp
from ‹f 6= 0 › show ?thesis unfolding red-single-def
proof (intro conjI)

from cr-not-0 show lookup (q + r) (t ⊕ lt f) 6= 0 by (simp add: lookup-add
cq-0)

next
from lc-not-0 [OF ‹f 6= 0 ›]

have monom-mult ((lookup (q + r) (t ⊕ lt f)) / lc f) t f =
monom-mult ((lookup r (t ⊕ lt f)) / lc f) t f

by (simp add: field-simps lookup-add cq-0)
thus p + r = q + r − monom-mult (lookup (q + r) (t ⊕ lt f) / lc f) t f

by (simp add: cr q monom-mult-uminus-left)
qed

qed

lemma red-single-plus-2 :
assumes red-single p q f t and t ⊕ lt f /∈ keys (q + r)
shows red-single (p + r) (q + r) f t

proof −
from assms have f 6= 0 and cp: lookup p (t ⊕ lt f) 6= 0

and q: q = p − monom-mult ((lookup p (t ⊕ lt f)) / lc f) t f
by (simp-all add: red-single-def)

from assms(1) have cq-0 : lookup q (t ⊕ lt f) = 0 by (rule red-single-lookup)
with assms(2) have cr-0 : lookup r (t ⊕ lt f) = 0

by (simp add: lookup-add in-keys-iff)
from ‹f 6= 0 › show ?thesis unfolding red-single-def
proof (intro conjI)

from cp show lookup (p + r) (t ⊕ lt f) 6= 0 by (simp add: lookup-add cr-0)
next

show q + r = p + r − monom-mult (lookup (p + r) (t ⊕ lt f) / lc f) t f
by (simp add: cr-0 q lookup-add)

qed
qed

54

lemma red-single-plus-3 :
assumes red-single p q f t and t ⊕ lt f ∈ keys (p + r) and t ⊕ lt f ∈ keys (q

+ r)
shows ∃ s. red-single (p + r) s f t ∧ red-single (q + r) s f t

proof −
let ?t = t ⊕ lt f
from assms have f 6= 0 and lookup p ?t 6= 0

and q: q = p − monom-mult ((lookup p ?t) / lc f) t f
by (simp-all add: red-single-def)

from assms(2) have cpr : lookup (p + r) ?t 6= 0 by (simp add: in-keys-iff)
from assms(3) have cqr : lookup (q + r) ?t 6= 0 by (simp add: in-keys-iff)
from assms(1) have cq-0 : lookup q ?t = 0 by (rule red-single-lookup)
let ?s = (p + r) − monom-mult ((lookup (p + r) ?t) / lc f) t f
from ‹f 6= 0 › cpr have red-single (p + r) ?s f t by (simp add: red-single-def)
moreover from ‹f 6= 0 › have red-single (q + r) ?s f t unfolding red-single-def
proof (intro conjI)

from cqr show lookup (q + r) ?t 6= 0 .
next

from lc-not-0 [OF ‹f 6= 0 ›]
monom-mult-dist-left[of (lookup p ?t) / lc f (lookup r ?t) / lc f t f]
have monom-mult ((lookup (p + r) ?t) / lc f) t f =

(monom-mult ((lookup p ?t) / lc f) t f) +
(monom-mult ((lookup r ?t) / lc f) t f)

by (simp add: field-simps lookup-add)
moreover from lc-not-0 [OF ‹f 6= 0 ›]

monom-mult-dist-left[of (lookup q ?t) / lc f (lookup r ?t) / lc f t f]
have monom-mult ((lookup (q + r) ?t) / lc f) t f =

monom-mult ((lookup r ?t) / lc f) t f
by (simp add: field-simps lookup-add cq-0)

ultimately show p + r − monom-mult (lookup (p + r) ?t / lc f) t f =
q + r − monom-mult (lookup (q + r) ?t / lc f) t f by (simp add:

q)
qed
ultimately show ?thesis by auto

qed

lemma red-single-plus:
assumes red-single p q f t
shows red-single (p + r) (q + r) f t ∨

red-single (q + r) (p + r) f t ∨
(∃ s. red-single (p + r) s f t ∧ red-single (q + r) s f t) (is ?A ∨ ?B ∨ ?C)

proof (cases t ⊕ lt f ∈ keys (p + r))
case True
show ?thesis
proof (cases t ⊕ lt f ∈ keys (q + r))

case True
with assms ‹t ⊕ lt f ∈ keys (p + r)› have ?C by (rule red-single-plus-3)
thus ?thesis by simp

55

next
case False
with assms have ?A by (rule red-single-plus-2)
thus ?thesis ..

qed
next

case False
with assms have ?B by (rule red-single-plus-1)
thus ?thesis by simp

qed

lemma red-single-diff :
assumes red-single (p − q) r f t
shows red-single p (r + q) f t ∨ red-single q (p − r) f t ∨

(∃ p ′ q ′. red-single p p ′ f t ∧ red-single q q ′ f t ∧ r = p ′ − q ′) (is ?A ∨ ?B
∨ ?C)
proof −

let ?s = t ⊕ lt f
from assms have f 6= 0

and lookup (p − q) ?s 6= 0
and r : r = p − q − monom-mult ((lookup (p − q) ?s) / lc f) t f
unfolding red-single-def by auto

from this(2) have diff : lookup p ?s 6= lookup q ?s by (simp add: lookup-minus)
show ?thesis
proof (cases lookup p ?s = 0)

case True
with diff have ?s ∈ keys q by (simp add: in-keys-iff)
moreover have lookup (p − q) ?s = − lookup q ?s by (simp add: lookup-minus

True)
ultimately have ?B using ‹f 6= 0 › by (simp add: in-keys-iff red-single-def r

monom-mult-uminus-left)
thus ?thesis by simp

next
case False
hence ?s ∈ keys p by (simp add: in-keys-iff)
show ?thesis
proof (cases lookup q ?s = 0)

case True
hence lookup (p − q) ?s = lookup p ?s by (simp add: lookup-minus)
hence ?A using ‹f 6= 0 › ‹?s ∈ keys p› by (simp add: in-keys-iff red-single-def

r monom-mult-uminus-left)
thus ?thesis ..

next
case False
hence ?s ∈ keys q by (simp add: in-keys-iff)
let ?p = p − monom-mult ((lookup p ?s) / lc f) t f
let ?q = q − monom-mult ((lookup q ?s) / lc f) t f
have ?C
proof (intro exI conjI)

56

from ‹f 6= 0 › ‹?s ∈ keys p› show red-single p ?p f t by (simp add: in-keys-iff
red-single-def)

next
from ‹f 6= 0 › ‹?s ∈ keys q› show red-single q ?q f t by (simp add: in-keys-iff

red-single-def)
next

from ‹f 6= 0 › have lc f 6= 0 by (rule lc-not-0)
hence eq: (lookup p ?s − lookup q ?s) / lc f =

lookup p ?s / lc f − lookup q ?s / lc f by (simp add: field-simps)
show r = ?p − ?q by (simp add: r lookup-minus eq monom-mult-dist-left-minus)
qed
thus ?thesis by simp

qed
qed

qed

lemma red-monom-mult:
assumes a: red F p q and c 6= 0
shows red F (monom-mult c s p) (monom-mult c s q)

proof −
from red-setE [OF a] obtain f and t where f ∈ F and rs: red-single p q f t by

auto
from red-single-monom-mult[OF rs ‹c 6= 0 ›, of s] show ?thesis by (intro red-setI [OF

‹f ∈ F›])
qed

lemma red-plus-keys-disjoint:
assumes red F p q and keys p ∩ keys r = {}
shows red F (p + r) (q + r)

proof −
from assms(1) obtain f t where f ∈ F and ∗: red-single p q f t by (rule

red-setE)
from this(2) have red-single (p + r) (q + r) f t
proof (rule red-single-plus-2)

from ∗ have lookup q (t ⊕ lt f) = 0
by (simp add: red-single-def lookup-minus lookup-monom-mult lc-def [symmetric]

lc-not-0 term-simps)
hence t ⊕ lt f /∈ keys q by (simp add: in-keys-iff)
moreover have t ⊕ lt f /∈ keys r
proof

assume t ⊕ lt f ∈ keys r
moreover from ∗ have t ⊕ lt f ∈ keys p by (simp add: in-keys-iff red-single-def)

ultimately have t ⊕ lt f ∈ keys p ∩ keys r by simp
with assms(2) show False by simp

qed
ultimately have t ⊕ lt f /∈ keys q ∪ keys r by simp
thus t ⊕ lt f /∈ keys (q + r)

by (meson Poly-Mapping.keys-add subsetD)
qed

57

with ‹f ∈ F› show ?thesis by (rule red-setI)
qed

lemma red-plus:
assumes red F p q
obtains s where (red F)∗∗ (p + r) s and (red F)∗∗ (q + r) s

proof −
from red-setE [OF assms] obtain f and t where f ∈ F and rs: red-single p q f

t by auto
from red-single-plus[OF rs, of r] show ?thesis
proof

assume c1 : red-single (p + r) (q + r) f t
show ?thesis
proof

from c1 show (red F)∗∗ (p + r) (q + r) by (intro r-into-rtranclp, intro
red-setI [OF ‹f ∈ F›])

next
show (red F)∗∗ (q + r) (q + r) ..

qed
next
assume red-single (q + r) (p + r) f t ∨ (∃ s. red-single (p + r) s f t ∧ red-single

(q + r) s f t)
thus ?thesis
proof

assume c2 : red-single (q + r) (p + r) f t
show ?thesis
proof

show (red F)∗∗ (p + r) (p + r) ..
next

from c2 show (red F)∗∗ (q + r) (p + r) by (intro r-into-rtranclp, intro
red-setI [OF ‹f ∈ F›])

qed
next

assume ∃ s. red-single (p + r) s f t ∧ red-single (q + r) s f t
then obtain s where s1 : red-single (p + r) s f t and s2 : red-single (q + r)

s f t by auto
show ?thesis
proof
from s1 show (red F)∗∗ (p + r) s by (intro r-into-rtranclp, intro red-setI [OF

‹f ∈ F›])
next
from s2 show (red F)∗∗ (q + r) s by (intro r-into-rtranclp, intro red-setI [OF

‹f ∈ F›])
qed

qed
qed

qed

corollary red-plus-cs:

58

assumes red F p q
shows relation.cs (red F) (p + r) (q + r)
unfolding relation.cs-def

proof −
from assms obtain s where (red F)∗∗ (p + r) s and (red F)∗∗ (q + r) s by

(rule red-plus)
show ∃ s. (red F)∗∗ (p + r) s ∧ (red F)∗∗ (q + r) s by (intro exI , intro conjI ,

fact, fact)
qed

lemma red-uminus:
assumes red F p q
shows red F (−p) (−q)
using red-monom-mult[OF assms, of −1 0] by (simp add: uminus-monom-mult)

lemma red-diff :
assumes red F (p − q) r
obtains p ′ q ′ where (red F)∗∗ p p ′ and (red F)∗∗ q q ′ and r = p ′ − q ′

proof −
from assms obtain f t where f ∈ F and red-single (p − q) r f t by (rule

red-setE)
from red-single-diff [OF this(2)] show ?thesis
proof (elim disjE)

assume red-single p (r + q) f t
with ‹f ∈ F› have ∗: red F p (r + q) by (rule red-setI)
show ?thesis
proof

from ∗ show (red F)∗∗ p (r + q) ..
next

show (red F)∗∗ q q ..
qed simp

next
assume red-single q (p − r) f t
with ‹f ∈ F› have ∗: red F q (p − r) by (rule red-setI)
show ?thesis
proof

show (red F)∗∗ p p ..
next

from ∗ show (red F)∗∗ q (p − r) ..
qed simp

next
assume ∃ p ′ q ′. red-single p p ′ f t ∧ red-single q q ′ f t ∧ r = p ′ − q ′

then obtain p ′ q ′ where 1 : red-single p p ′ f t and 2 : red-single q q ′ f t and
r = p ′ − q ′

by blast
from ‹f ∈ F› 2 have red F q q ′ by (rule red-setI)
from ‹f ∈ F› 1 have red F p p ′ by (rule red-setI)
hence (red F)∗∗ p p ′ ..
moreover from ‹red F q q ′› have (red F)∗∗ q q ′ ..

59

moreover note ‹r = p ′ − q ′›
ultimately show ?thesis ..

qed
qed

lemma red-diff-rtrancl ′:
assumes (red F)∗∗ (p − q) r
obtains p ′ q ′ where (red F)∗∗ p p ′ and (red F)∗∗ q q ′ and r = p ′ − q ′

using assms
proof (induct arbitrary: thesis rule: rtranclp-induct)

case base
show ?case by (rule base, fact rtrancl-refl[to-pred], fact rtrancl-refl[to-pred], fact

refl)
next

case (step y z)
obtain p1 q1 where p1 : (red F)∗∗ p p1 and q1 : (red F)∗∗ q q1 and y: y = p1
− q1 by (rule step(3))

from step(2) obtain p ′ q ′ where p ′: (red F)∗∗ p1 p ′ and q ′: (red F)∗∗ q1 q ′

and z: z = p ′ − q ′

unfolding y by (rule red-diff)
show ?case
proof (rule step(4))

from p1 p ′ show (red F)∗∗ p p ′ by simp
next

from q1 q ′ show (red F)∗∗ q q ′ by simp
qed fact

qed

lemma red-diff-rtrancl:
assumes (red F)∗∗ (p − q) 0
obtains s where (red F)∗∗ p s and (red F)∗∗ q s

proof −
from assms obtain p ′ q ′ where p ′: (red F)∗∗ p p ′ and q ′: (red F)∗∗ q q ′ and 0

= p ′ − q ′

by (rule red-diff-rtrancl ′)
from this(3) have q ′ = p ′ by simp
from p ′ q ′ show ?thesis unfolding ‹q ′ = p ′› ..

qed

corollary red-diff-rtrancl-cs:
assumes (red F)∗∗ (p − q) 0
shows relation.cs (red F) p q
unfolding relation.cs-def

proof −
from assms obtain s where (red F)∗∗ p s and (red F)∗∗ q s by (rule red-diff-rtrancl)
show ∃ s. (red F)∗∗ p s ∧ (red F)∗∗ q s by (intro exI , intro conjI , fact, fact)

qed

60

4.3 Confluence of Reducibility
lemma confluent-distinct-aux:

assumes r1 : red-single p q1 f1 t1 and r2 : red-single p q2 f2 t2
and t1 ⊕ lt f1 ≺t t2 ⊕ lt f2 and f1 ∈ F and f2 ∈ F

obtains s where (red F)∗∗ q1 s and (red F)∗∗ q2 s
proof −

from r1 have f1 6= 0 and c1 : lookup p (t1 ⊕ lt f1) 6= 0
and q1-def : q1 = p − monom-mult (lookup p (t1 ⊕ lt f1) / lc f1) t1 f1
unfolding red-single-def by auto

from r2 have f2 6= 0 and c2 : lookup p (t2 ⊕ lt f2) 6= 0
and q2-def : q2 = p − monom-mult (lookup p (t2 ⊕ lt f2) / lc f2) t2 f2
unfolding red-single-def by auto

from ‹t1 ⊕ lt f1 ≺t t2 ⊕ lt f2 ›
have lookup (monom-mult (lookup p (t1 ⊕ lt f1) / lc f1) t1 f1) (t2 ⊕ lt f2) = 0

by (simp add: lookup-monom-mult-eq-zero)
from lookup-minus[of p - t2 ⊕ lt f2] this have c: lookup q1 (t2 ⊕ lt f2) = lookup

p (t2 ⊕ lt f2)
unfolding q1-def by simp

define q3 where q3 ≡ q1 − monom-mult ((lookup q1 (t2 ⊕ lt f2)) / lc f2) t2
f2

have red-single q1 q3 f2 t2 unfolding red-single-def
proof (rule, fact, rule)

from c c2 show lookup q1 (t2 ⊕ lt f2) 6= 0 by simp
next

show q3 = q1 − monom-mult (lookup q1 (t2 ⊕ lt f2) / lc f2) t2 f2 unfolding
q3-def ..

qed
hence red F q1 q3 by (intro red-setI [OF ‹f2 ∈ F›])
hence q1q3 : (red F)∗∗ q1 q3 by (intro r-into-rtranclp)
from r1 have red F p q1 by (intro red-setI [OF ‹f1 ∈ F›])
from red-plus[OF this, of − monom-mult ((lookup p (t2 ⊕ lt f2)) / lc f2) t2 f2]

obtain s
where r3 : (red F)∗∗ (p − monom-mult (lookup p (t2 ⊕ lt f2) / lc f2) t2 f2) s
and r4 : (red F)∗∗ (q1 − monom-mult (lookup p (t2 ⊕ lt f2) / lc f2) t2 f2) s

by auto
from r3 have q2s: (red F)∗∗ q2 s unfolding q2-def by simp
from r4 c have q3s: (red F)∗∗ q3 s unfolding q3-def by simp
show ?thesis
proof

from rtranclp-trans[OF q1q3 q3s] show (red F)∗∗ q1 s .
next

from q2s show (red F)∗∗ q2 s .
qed

qed

lemma confluent-distinct:
assumes r1 : red-single p q1 f1 t1 and r2 : red-single p q2 f2 t2

and ne: t1 ⊕ lt f1 6= t2 ⊕ lt f2 and f1 ∈ F and f2 ∈ F
obtains s where (red F)∗∗ q1 s and (red F)∗∗ q2 s

61

proof −
from ne have t1 ⊕ lt f1 ≺t t2 ⊕ lt f2 ∨ t2 ⊕ lt f2 ≺t t1 ⊕ lt f1 by auto
thus ?thesis
proof

assume a1 : t1 ⊕ lt f1 ≺t t2 ⊕ lt f2
from confluent-distinct-aux[OF r1 r2 a1 ‹f1 ∈ F› ‹f2 ∈ F›] obtain s where
(red F)∗∗ q1 s and (red F)∗∗ q2 s .

thus ?thesis ..
next

assume a2 : t2 ⊕ lt f2 ≺t t1 ⊕ lt f1
from confluent-distinct-aux[OF r2 r1 a2 ‹f2 ∈ F› ‹f1 ∈ F›] obtain s where
(red F)∗∗ q1 s and (red F)∗∗ q2 s .

thus ?thesis ..
qed

qed

corollary confluent-same:
assumes r1 : red-single p q1 f t1 and r2 : red-single p q2 f t2 and f ∈ F
obtains s where (red F)∗∗ q1 s and (red F)∗∗ q2 s

proof (cases t1 = t2)
case True
with r1 r2 have q1 = q2 by (simp add: red-single-def)
show ?thesis
proof

show (red F)∗∗ q1 q2 unfolding ‹q1 = q2 › ..
next

show (red F)∗∗ q2 q2 ..
qed

next
case False
hence t1 ⊕ lt f 6= t2 ⊕ lt f by (simp add: term-simps)
from r1 r2 this ‹f ∈ F› ‹f ∈ F› obtain s where (red F)∗∗ q1 s and (red F)∗∗

q2 s
by (rule confluent-distinct)

thus ?thesis ..
qed

4.4 Reducibility and Module Membership
lemma srtc-in-pmdl:

assumes relation.srtc (red F) p q
shows p − q ∈ pmdl F
using assms unfolding relation.srtc-def

proof (induct rule: rtranclp.induct)
fix p
show p − p ∈ pmdl F by (simp add: pmdl.span-zero)

next
fix p r q
assume pr-in: p − r ∈ pmdl F and red: red F r q ∨ red F q r

62

from red obtain f c t where f ∈ F and q = r − monom-mult c t f
proof

assume red F r q
from red-setE [OF this] obtain f t where f ∈ F and red-single r q f t .
hence q = r − monom-mult (lookup r (t ⊕ lt f) / lc f) t f by (simp add:

red-single-def)
show thesis by (rule, fact, fact)

next
assume red F q r
from red-setE [OF this] obtain f t where f ∈ F and red-single q r f t .
hence r = q − monom-mult (lookup q (t ⊕ lt f) / lc f) t f by (simp add:

red-single-def)
hence q = r + monom-mult (lookup q (t ⊕ lt f) / lc f) t f by simp
hence q = r − monom-mult (−(lookup q (t ⊕ lt f) / lc f)) t f

using monom-mult-uminus-left[of - t f] by simp
show thesis by (rule, fact, fact)

qed
hence eq: p − q = (p − r) + monom-mult c t f by simp
show p − q ∈ pmdl F unfolding eq

by (rule pmdl.span-add, fact, rule monom-mult-in-pmdl, fact)
qed

lemma in-pmdl-srtc:
assumes p ∈ pmdl F
shows relation.srtc (red F) p 0
using assms

proof (induct p rule: pmdl-induct)
show relation.srtc (red F) 0 0 unfolding relation.srtc-def ..

next
fix a f c t
assume a-in: a ∈ pmdl F and IH : relation.srtc (red F) a 0 and f ∈ F
show relation.srtc (red F) (a + monom-mult c t f) 0
proof (cases c = 0)

assume c = 0
hence a + monom-mult c t f = a by simp
thus ?thesis using IH by simp

next
assume c 6= 0
show ?thesis
proof (cases f = 0)

assume f = 0
hence a + monom-mult c t f = a by simp
thus ?thesis using IH by simp

next
assume f 6= 0
from lc-not-0 [OF this] have lc f 6= 0 .
have red F (monom-mult c t f) 0
proof (intro red-setI [OF ‹f ∈ F›])

from lookup-monom-mult-plus[of c t f lt f]

63

have eq: lookup (monom-mult c t f) (t ⊕ lt f) = c ∗ lc f unfolding lc-def
.

show red-single (monom-mult c t f) 0 f t unfolding red-single-def eq
proof (intro conjI , fact)

from ‹c 6= 0 › ‹lc f 6= 0 › show c ∗ lc f 6= 0 by simp
next

from ‹lc f 6= 0 › show 0 = monom-mult c t f − monom-mult (c ∗ lc f /
lc f) t f by simp

qed
qed
from red-plus[OF this, of a] obtain s where

s1 : (red F)∗∗ (monom-mult c t f + a) s and s2 : (red F)∗∗ (0 + a) s .
have relation.cs (red F) (a + monom-mult c t f) a unfolding relation.cs-def
proof (intro exI [of - s], intro conjI)

from s1 show (red F)∗∗ (a + monom-mult c t f) s by (simp only:
add.commute)

next
from s2 show (red F)∗∗ a s by simp

qed
from relation.srtc-transitive[OF relation.cs-implies-srtc[OF this] IH] show

?thesis .
qed

qed
qed

lemma red-rtranclp-diff-in-pmdl:
assumes (red F)∗∗ p q
shows p − q ∈ pmdl F

proof −
from assms have relation.srtc (red F) p q

by (simp add: r-into-rtranclp relation.rtc-implies-srtc)
thus ?thesis by (rule srtc-in-pmdl)

qed

corollary red-diff-in-pmdl:
assumes red F p q
shows p − q ∈ pmdl F
by (rule red-rtranclp-diff-in-pmdl, rule r-into-rtranclp, fact)

corollary red-rtranclp-0-in-pmdl:
assumes (red F)∗∗ p 0
shows p ∈ pmdl F
using assms red-rtranclp-diff-in-pmdl by fastforce

lemma pmdl-closed-red:
assumes pmdl B ⊆ pmdl A and p ∈ pmdl A and red B p q
shows q ∈ pmdl A

proof −
have q − p ∈ pmdl A

64

proof
have p − q ∈ pmdl B by (rule red-diff-in-pmdl, fact)
hence − (p − q) ∈ pmdl B by (rule pmdl.span-neg)
thus q − p ∈ pmdl B by simp

qed fact
from pmdl.span-add[OF this ‹p ∈ pmdl A›] show ?thesis by simp

qed

4.5 More Properties of red, red-single and is-red
lemma red-rtrancl-mult:

assumes (red F)∗∗ p q
shows (red F)∗∗ (monom-mult c t p) (monom-mult c t q)

proof (cases c = 0)
case True
have (red F)∗∗ 0 0 by simp
thus ?thesis by (simp only: True monom-mult-zero-left)

next
case False
from assms show ?thesis
proof (induct rule: rtranclp-induct)

show (red F)∗∗ (monom-mult c t p) (monom-mult c t p) by simp
next

fix q0 q
assume (red F)∗∗ p q0 and red F q0 q and (red F)∗∗ (monom-mult c t p)

(monom-mult c t q0)
show (red F)∗∗ (monom-mult c t p) (monom-mult c t q)
proof (rule rtranclp.intros(2)[OF ‹(red F)∗∗ (monom-mult c t p) (monom-mult

c t q0)›])
from red-monom-mult[OF ‹red F q0 q› False, of t] show red F (monom-mult

c t q0) (monom-mult c t q) .
qed

qed
qed

corollary red-rtrancl-uminus:
assumes (red F)∗∗ p q
shows (red F)∗∗ (−p) (−q)
using red-rtrancl-mult[OF assms, of −1 0] by (simp add: uminus-monom-mult)

lemma red-rtrancl-diff-induct [consumes 1 , case-names base step]:
assumes a: (red F)∗∗ (p − q) r

and cases: P p p !!y z. [| (red F)∗∗ (p − q) z; red F z y; P p (q + z)|] ==> P
p (q + y)

shows P p (q + r)
using a

proof (induct rule: rtranclp-induct)
from cases(1) show P p (q + (p − q)) by simp

next

65

fix y z
assume (red F)∗∗ (p − q) z red F z y P p (q + z)
thus P p (q + y) using cases(2) by simp

qed

lemma red-rtrancl-diff-0-induct [consumes 1 , case-names base step]:
assumes a: (red F)∗∗ (p − q) 0

and base: P p p and ind:
∧

y z. [| (red F)∗∗ (p − q) y; red F y z; P p (y + q)|]
==> P p (z + q)

shows P p q
proof −

from ind red-rtrancl-diff-induct[of F p q 0 P, OF a base] have P p (0 + q)
by (simp add: ac-simps)

thus ?thesis by simp
qed

lemma is-red-union: is-red (A ∪ B) p ←→ (is-red A p ∨ is-red B p)
unfolding is-red-alt red-union by auto

lemma red-single-0-lt:
assumes red-single f 0 h t
shows lt f = t ⊕ lt h

proof −
from red-single-nonzero1 [OF assms] have f 6= 0 .
{

assume h 6= 0 and neq: lookup f (t ⊕ lt h) 6= 0 and
eq: f = monom-mult (lookup f (t ⊕ lt h) / lc h) t h

from lc-not-0 [OF ‹h 6= 0 ›] have lc h 6= 0 .
with neq have (lookup f (t ⊕ lt h) / lc h) 6= 0 by simp
from eq lt-monom-mult[OF this ‹h 6= 0 ›, of t] have lt f = t ⊕ lt h by simp
hence lt f = t ⊕ lt h by (simp add: ac-simps)

}
with assms show ?thesis unfolding red-single-def by auto

qed

lemma red-single-lt-distinct-lt:
assumes rs: red-single f g h t and g 6= 0 and lt g 6= lt f
shows lt f = t ⊕ lt h

proof −
from red-single-nonzero1 [OF rs] have f 6= 0 .
from red-single-ord[OF rs] have g �p f by simp
from ord-p-lt[OF this] ‹lt g 6= lt f › have lt g ≺t lt f by simp
{

assume h 6= 0 and neq: lookup f (t ⊕ lt h) 6= 0 and
eq: f = g + monom-mult (lookup f (t ⊕ lt h) / lc h) t h (is f = g + ?R)

from lc-not-0 [OF ‹h 6= 0 ›] have lc h 6= 0 .
with neq have (lookup f (t ⊕ lt h) / lc h) 6= 0 (is ?c 6= 0) by simp
from eq lt-monom-mult[OF this ‹h 6= 0 ›, of t] have ltR: lt ?R = t ⊕ lt h by

simp

66

from monom-mult-eq-zero-iff [of ?c t h] ‹?c 6= 0 › ‹h 6= 0 › have ?R 6= 0 by
auto

from lt-plus-lessE [of g] eq ‹lt g ≺t lt f › have lt g ≺t lt ?R by auto
from lt-plus-eqI [OF this] eq ltR have lt f = t ⊕ lt h by (simp add: ac-simps)

}
with assms show ?thesis unfolding red-single-def by auto

qed

lemma zero-reducibility-implies-lt-divisibility ′:
assumes (red F)∗∗ f 0 and f 6= 0
shows ∃ h∈F . h 6= 0 ∧ (lt h addst lt f)
using assms

proof (induct rule: converse-rtranclp-induct)
case base
then show ?case by simp

next
case (step f g)
show ?case
proof (cases g = 0)

case True
with step.hyps have red F f 0 by simp
from red-setE [OF this] obtain h t where h ∈ F and rs: red-single f 0 h t by

auto
show ?thesis
proof

from red-single-0-lt[OF rs] have lt h addst lt f by (simp add: term-simps)
also from rs have h 6= 0 by (simp add: red-single-def)
ultimately show h 6= 0 ∧ lt h addst lt f by simp

qed (rule ‹h ∈ F›)
next

case False
show ?thesis
proof (cases lt g = lt f)

case True
with False step.hyps show ?thesis by simp

next
case False
from red-setE [OF ‹red F f g›] obtain h t where h ∈ F and rs: red-single f

g h t by auto
show ?thesis
proof

from red-single-lt-distinct-lt[OF rs ‹g 6= 0 › False] have lt h addst lt f
by (simp add: term-simps)

also from rs have h 6= 0 by (simp add: red-single-def)
ultimately show h 6= 0 ∧ lt h addst lt f by simp

qed (rule ‹h ∈ F›)
qed

qed
qed

67

lemma zero-reducibility-implies-lt-divisibility:
assumes (red F)∗∗ f 0 and f 6= 0
obtains h where h ∈ F and h 6= 0 and lt h addst lt f
using zero-reducibility-implies-lt-divisibility ′[OF assms] by auto

lemma is-red-addsI :
assumes f ∈ F and f 6= 0 and v ∈ keys p and lt f addst v
shows is-red F p
using assms

proof (induction p rule: poly-mapping-tail-induct)
case 0
from ‹v ∈ keys 0 › show ?case by auto

next
case (tail p)
from tail.IH [OF ‹f ∈ F› ‹f 6= 0 › - ‹lt f addst v›] have imp: v ∈ keys (tail p)

=⇒ is-red F (tail p) .
show ?case
proof (cases v = lt p)

case True
show ?thesis
proof (rule is-red-indI1 [OF ‹f ∈ F› ‹f 6= 0 › ‹p 6= 0 ›])

from ‹lt f addst v› True show lt f addst lt p by simp
qed

next
case False
with ‹v ∈ keys p› ‹p 6= 0 › have v ∈ keys (tail p)

by (simp add: lookup-tail-2 in-keys-iff)
from is-red-indI2 [OF ‹p 6= 0 › imp[OF this]] show ?thesis .

qed
qed

lemma is-red-addsE ′:
assumes is-red F p
shows ∃ f∈F . ∃ v∈keys p. f 6= 0 ∧ lt f addst v
using assms

proof (induction p rule: poly-mapping-tail-induct)
case 0
with irred-0 [of F] show ?case by simp

next
case (tail p)
from is-red-indE [OF ‹is-red F p›] show ?case
proof

assume ∃ f∈F . f 6= 0 ∧ lt f addst lt p
then obtain f where f ∈ F and f 6= 0 and lt f addst lt p by auto
show ?case
proof

show ∃ v∈keys p. f 6= 0 ∧ lt f addst v
proof (intro bexI , intro conjI)

68

from ‹p 6= 0 › show lt p ∈ keys p by (metis in-keys-iff lc-def lc-not-0)
qed (rule ‹f 6= 0 ›, rule ‹lt f addst lt p›)

qed (rule ‹f ∈ F›)
next

assume is-red F (tail p)
from tail.IH [OF this] obtain f v

where f ∈ F and f 6= 0 and v-in-keys-tail: v ∈ keys (tail p) and lt f addst
v by auto

from tail.hyps v-in-keys-tail have v-in-keys: v ∈ keys p by (metis lookup-tail
in-keys-iff)

show ?case
proof

show ∃ v∈keys p. f 6= 0 ∧ lt f addst v
by (intro bexI , intro conjI , rule ‹f 6= 0 ›, rule ‹lt f addst v›, rule v-in-keys)

qed (rule ‹f ∈ F›)
qed

qed

lemma is-red-addsE :
assumes is-red F p
obtains f v where f ∈ F and v ∈ keys p and f 6= 0 and lt f addst v
using is-red-addsE ′[OF assms] by auto

lemma is-red-adds-iff :
shows (is-red F p) ←→ (∃ f∈F . ∃ v∈keys p. f 6= 0 ∧ lt f addst v)
using is-red-addsE ′ is-red-addsI by auto

lemma is-red-subset:
assumes red: is-red A p and sub: A ⊆ B
shows is-red B p

proof −
from red obtain f v where f ∈ A and v ∈ keys p and f 6= 0 and lt f addst v

by (rule is-red-addsE)
show ?thesis by (rule is-red-addsI , rule, fact+)

qed

lemma not-is-red-empty: ¬ is-red {} f
by (simp add: is-red-adds-iff)

lemma red-single-mult-const:
assumes red-single p q f t and c 6= 0
shows red-single p q (monom-mult c 0 f) t

proof −
let ?s = t ⊕ lt f
let ?f = monom-mult c 0 f
from assms(1) have f 6= 0 and lookup p ?s 6= 0

and q = p − monom-mult ((lookup p ?s) / lc f) t f by (simp-all add:
red-single-def)

from this(1) assms(2) have lt: lt ?f = lt f and lc: lc ?f = c ∗ lc f

69

by (simp add: lt-monom-mult term-simps, simp)
show ?thesis unfolding red-single-def
proof (intro conjI)

from ‹f 6= 0 › assms(2) show ?f 6= 0 by (simp add: monom-mult-eq-zero-iff)
next

from ‹lookup p ?s 6= 0 › show lookup p (t ⊕ lt ?f) 6= 0 by (simp add: lt)
next

show q = p − monom-mult (lookup p (t ⊕ lt ?f) / lc ?f) t ?f
by (simp add: lt monom-mult-assoc lc assms(2), fact)

qed
qed

lemma red-rtrancl-plus-higher :
assumes (red F)∗∗ p q and

∧
u v. u ∈ keys p =⇒ v ∈ keys r =⇒ u ≺t v

shows (red F)∗∗ (p + r) (q + r)
using assms(1)

proof induct
case base
show ?case ..

next
case (step y z)
from step(1) have y �p p by (rule red-rtrancl-ord)
hence lt y �t lt p by (rule ord-p-lt)
from step(2) have red F (y + r) (z + r)
proof (rule red-plus-keys-disjoint)

show keys y ∩ keys r = {}
proof (rule ccontr)

assume keys y ∩ keys r 6= {}
then obtain v where v ∈ keys y and v ∈ keys r by auto

from this(1) have v �t lt y and y 6= 0 using lt-max by (auto simp:
in-keys-iff)

with ‹y �p p› have p 6= 0 using ord-p-zero-min[of y] by auto
hence lt p ∈ keys p by (rule lt-in-keys)
from this ‹v ∈ keys r› have lt p ≺t v by (rule assms(2))
with ‹lt y �t lt p› have lt y ≺t v by simp
with ‹v �t lt y› show False by simp

qed
qed
with step(3) show ?case ..

qed

lemma red-mult-scalar-leading-monomial: (red {f })∗∗ (p � monomial (lc f) (lt f))
(− p � tail f)
proof (cases f = 0)

case True
show ?thesis by (simp add: True lc-def)

next
case False
show ?thesis

70

proof (induct p rule: punit.poly-mapping-tail-induct)
case 0
show ?case by simp

next
case (tail p)
from False have lc f 6= 0 by (rule lc-not-0)
from tail(1) have punit.lc p 6= 0 by (rule punit.lc-not-0)
let ?t = punit.tail p � monomial (lc f) (lt f)
let ?m = monom-mult (punit.lc p) (punit.lt p) (monomial (lc f) (lt f))
from ‹lc f 6= 0 › have kt: keys ?t = (λt. t ⊕ lt f) ‘ keys (punit.tail p)

by (rule keys-mult-scalar-monomial-right)
have km: keys ?m = {punit.lt p ⊕ lt f }

by (simp add: keys-monom-mult[OF ‹punit.lc p 6= 0 ›] ‹lc f 6= 0 ›)
from tail(2) have (red {f })∗∗ (?t + ?m) (− punit.tail p � tail f + ?m)
proof (rule red-rtrancl-plus-higher)

fix u v
assume u ∈ keys ?t and v ∈ keys ?m
from this(1) obtain s where s ∈ keys (punit.tail p) and u: u = s ⊕ lt f

unfolding kt ..
from this(1) have punit.tail p 6= 0 and s � punit.lt (punit.tail p) using

punit.lt-max by (auto simp: in-keys-iff)
moreover from ‹punit.tail p 6= 0 › have punit.lt (punit.tail p) ≺ punit.lt p

by (rule punit.lt-tail)
ultimately have s ≺ punit.lt p by simp
moreover from ‹v ∈ keys ?m› have v = punit.lt p ⊕ lt f by (simp only:

km, simp)
ultimately show u ≺t v by (simp add: u splus-mono-strict-left)

qed
hence ∗: (red {f })∗∗ (p � monomial (lc f) (lt f)) (?m − punit.tail p � tail f)
by (simp add: punit.leading-monomial-tail[symmetric, of p] mult-scalar-monomial[symmetric]

mult-scalar-distrib-right[symmetric] add.commute[of punit.tail p])
have red {f } ?m (− (monomial (punit.lc p) (punit.lt p)) � tail f) unfolding

red-singleton
proof
show red-single ?m (− (monomial (punit.lc p) (punit.lt p)) � tail f) f (punit.lt

p)
proof (simp add: red-single-def ‹f 6= 0 › km lookup-monom-mult ‹lc f 6= 0 ›

‹punit.lc p 6= 0 › term-simps,
simp add: monom-mult-dist-right-minus[symmetric] mult-scalar-monomial)

have monom-mult (punit.lc p) (punit.lt p) (monomial (lc f) (lt f) − f) =
− monom-mult (punit.lc p) (punit.lt p) (f − monomial (lc f) (lt f))

by (metis minus-diff-eq monom-mult-uminus-right)
also have ... = − monom-mult (punit.lc p) (punit.lt p) (tail f) by (simp

only: tail-alt-2)
finally show − monom-mult (punit.lc p) (punit.lt p) (tail f) =

monom-mult (punit.lc p) (punit.lt p) (monomial (lc f) (lt f) −
f) by simp

qed
qed

71

hence red {f } (?m + (− punit.tail p � tail f))
(− (monomial (punit.lc p) (punit.lt p)) � tail f + (− punit.tail p

� tail f))
proof (rule red-plus-keys-disjoint)

show keys ?m ∩ keys (− punit.tail p � tail f) = {}
proof (cases punit.tail p = 0)

case True
show ?thesis by (simp add: True)

next
case False
from tail(2) have − punit.tail p � tail f �p ?t by (rule red-rtrancl-ord)
hence lt (− punit.tail p � tail f) �t lt ?t by (rule ord-p-lt)
also from ‹lc f 6= 0 › False have ... = punit.lt (punit.tail p) ⊕ lt f

by (rule lt-mult-scalar-monomial-right)
also from punit.lt-tail[OF False] have ... ≺t punit.lt p ⊕ lt f by (rule

splus-mono-strict-left)
finally have punit.lt p ⊕ lt f /∈ keys (− punit.tail p � tail f) using lt-gr-keys

by blast
thus ?thesis by (simp add: km)

qed
qed
hence red {f } (?m − punit.tail p � tail f)

(− (monomial (punit.lc p) (punit.lt p)) � tail f − punit.tail p � tail f)
by (simp add: term-simps)

also have ... = − p � tail f using punit.leading-monomial-tail[symmetric, of
p]

by (metis (mono-tags, lifting) add-uminus-conv-diff minus-add-distrib mult-scalar-distrib-right
mult-scalar-minus-mult-left)

finally have red {f } (?m − punit.tail p � tail f) (− p � tail f) .
with ∗ show ?case ..

qed
qed

corollary red-mult-scalar-lt:
assumes f 6= 0
shows (red {f })∗∗ (p � monomial c (lt f)) (monom-mult (− c / lc f) 0 (p �

tail f))
proof −

from assms have lc f 6= 0 by (rule lc-not-0)
hence 1 : p � monomial c (lt f) = punit.monom-mult (c / lc f) 0 p � monomial

(lc f) (lt f)
by (simp add: punit.mult-scalar-monomial[symmetric] mult.commute

mult-scalar-assoc mult-scalar-monomial-monomial term-simps)
have 2 : monom-mult (− c / lc f) 0 (p � tail f) = − punit.monom-mult (c / lc

f) 0 p � tail f
by (simp add: times-monomial-left[symmetric] mult-scalar-assoc

monom-mult-uminus-left mult-scalar-monomial)
show ?thesis unfolding 1 2 by (fact red-mult-scalar-leading-monomial)

qed

72

lemma is-red-monomial-iff : is-red F (monomial c v) ←→ (c 6= 0 ∧ (∃ f∈F . f 6=
0 ∧ lt f addst v))

by (simp add: is-red-adds-iff)

lemma is-red-monomialI :
assumes c 6= 0 and f ∈ F and f 6= 0 and lt f addst v
shows is-red F (monomial c v)
unfolding is-red-monomial-iff using assms by blast

lemma is-red-monomialD:
assumes is-red F (monomial c v)
shows c 6= 0
using assms unfolding is-red-monomial-iff ..

lemma is-red-monomialE :
assumes is-red F (monomial c v)
obtains f where f ∈ F and f 6= 0 and lt f addst v
using assms unfolding is-red-monomial-iff by blast

lemma replace-lt-adds-stable-is-red:
assumes red: is-red F f and q 6= 0 and lt q addst lt p
shows is-red (insert q (F − {p})) f

proof −
from red obtain g v where g ∈ F and g 6= 0 and v ∈ keys f and lt g addst v

by (rule is-red-addsE)
show ?thesis
proof (cases g = p)

case True
show ?thesis
proof (rule is-red-addsI)

show q ∈ insert q (F − {p}) by simp
next

have lt q addst lt p by fact
also have ... addst v using ‹lt g addst v› unfolding True .
finally show lt q addst v .

qed (fact+)
next

case False
with ‹g ∈ F› have g ∈ insert q (F − {p}) by blast
from this ‹g 6= 0 › ‹v ∈ keys f › ‹lt g addst v› show ?thesis by (rule is-red-addsI)

qed
qed

lemma conversion-property:
assumes is-red {p} f and red {r} p q
shows is-red {q} f ∨ is-red {r} f

proof −
let ?s = lp p − lp r

73

from ‹is-red {p} f › obtain v where v ∈ keys f and lt p addst v and p 6= 0
by (rule is-red-addsE , simp)

from red-indE [OF ‹red {r} p q›]
have (r 6= 0 ∧ lt r addst lt p ∧ q = p − monom-mult (lc p / lc r) ?s r) ∨

red {r} (tail p) (q − monomial (lc p) (lt p)) by simp
thus ?thesis
proof

assume r 6= 0 ∧ lt r addst lt p ∧ q = p − monom-mult (lc p / lc r) ?s r
hence r 6= 0 and lt r addst lt p by simp-all
show ?thesis by (intro disjI2 , rule is-red-singleton-trans, rule ‹is-red {p} f ›,

fact+)
next

assume red {r} (tail p) (q − monomial (lc p) (lt p)) (is red - ?p ′ ?q ′)
with red-ord have ?q ′ ≺p ?p ′ .
hence ?p ′ 6= 0

and assm: (?q ′ = 0 ∨ ((lt ?q ′) ≺t (lt ?p ′) ∨ (lt ?q ′) = (lt ?p ′)))
unfolding ord-strict-p-rec[of ?q ′ ?p ′] by (auto simp add: Let-def lc-def)

have lt ?p ′ ≺t lt p by (rule lt-tail, fact)
let ?m = monomial (lc p) (lt p)
from monomial-0D[of lt p lc p] lc-not-0 [OF ‹p 6= 0 ›] have ?m 6= 0 by blast
have lt ?m = lt p by (rule lt-monomial, rule lc-not-0 , fact)
have q 6= 0 ∧ lt q = lt p
proof (cases ?q ′ = 0)

case True
hence q = ?m by simp
with ‹?m 6= 0 › ‹lt ?m = lt p› show ?thesis by simp

next
case False
from assm show ?thesis
proof

assume (lt ?q ′) ≺t (lt ?p ′) ∨ (lt ?q ′) = (lt ?p ′)
hence lt ?q ′ �t lt ?p ′ by auto
also have ... ≺t lt p by fact
finally have lt ?q ′ ≺t lt p .
hence lt ?q ′ ≺t lt ?m unfolding ‹lt ?m = lt p› .
from lt-plus-eqI [OF this] ‹lt ?m = lt p› have lt q = lt p by simp
show ?thesis
proof (intro conjI , rule ccontr)

assume ¬ q 6= 0
hence q = 0 by simp
hence ?q ′ = −?m by simp
hence lt ?q ′ = lt (−?m) by simp
also have ... = lt ?m using lt-uminus .
finally have lt ?q ′ = lt ?m .
with ‹lt ?q ′ ≺t lt ?m› show False by simp

qed (fact)
next

assume ?q ′ = 0
with False show ?thesis ..

74

qed
qed
hence q 6= 0 and lt q addst lt p by (simp-all add: term-simps)
show ?thesis by (intro disjI1 , rule is-red-singleton-trans, rule ‹is-red {p} f ›,

fact+)
qed

qed

lemma replace-red-stable-is-red:
assumes a1 : is-red F f and a2 : red (F − {p}) p q
shows is-red (insert q (F − {p})) f (is is-red ?F ′ f)

proof −
from a1 obtain g where g ∈ F and is-red {g} f by (rule is-red-singletonI)
show ?thesis
proof (cases g = p)

case True
from a2 obtain h where h ∈ F − {p} and red {h} p q unfolding red-def

by auto
from ‹is-red {g} f › have is-red {p} f unfolding True .
have is-red {q} f ∨ is-red {h} f by (rule conversion-property, fact+)
thus ?thesis
proof

assume is-red {q} f
show ?thesis
proof (rule is-red-singletonD)

show q ∈ ?F ′ by auto
qed fact

next
assume is-red {h} f
show ?thesis
proof (rule is-red-singletonD)

from ‹h ∈ F − {p}› show h ∈ ?F ′ by simp
qed fact

qed
next

case False
show ?thesis
proof (rule is-red-singletonD)

from ‹g ∈ F› False show g ∈ ?F ′ by blast
qed fact

qed
qed

lemma is-red-map-scale:
assumes is-red F (c · p)
shows is-red F p

proof −
from assms obtain f u where f ∈ F and u ∈ keys (c · p) and f 6= 0

and a: lt f addst u by (rule is-red-addsE)

75

from this(2) keys-map-scale-subset have u ∈ keys p ..
with ‹f ∈ F› ‹f 6= 0 › show ?thesis using a by (rule is-red-addsI)

qed

corollary is-irred-map-scale: ¬ is-red F p =⇒ ¬ is-red F (c · p)
by (auto dest: is-red-map-scale)

lemma is-red-map-scale-iff : is-red F (c · p) ←→ (c 6= 0 ∧ is-red F p)
proof (intro iffI conjI notI)

assume is-red F (c · p) and c = 0
thus False by (simp add: irred-0)

next
assume is-red F (c · p)
thus is-red F p by (rule is-red-map-scale)

next
assume c 6= 0 ∧ is-red F p
hence is-red F (inverse c · c · p) by (simp add: map-scale-assoc)
thus is-red F (c · p) by (rule is-red-map-scale)

qed

lemma is-red-uminus: is-red F (− p) ←→ is-red F p
by (auto elim!: is-red-addsE simp: keys-uminus intro: is-red-addsI)

lemma is-red-plus:
assumes is-red F (p + q)
shows is-red F p ∨ is-red F q

proof −
from assms obtain f u where f ∈ F and u ∈ keys (p + q) and f 6= 0

and a: lt f addst u by (rule is-red-addsE)
from this(2) have u ∈ keys p ∪ keys q

by (meson Poly-Mapping.keys-add subsetD)
thus ?thesis
proof

assume u ∈ keys p
with ‹f ∈ F› ‹f 6= 0 › have is-red F p using a by (rule is-red-addsI)
thus ?thesis ..

next
assume u ∈ keys q
with ‹f ∈ F› ‹f 6= 0 › have is-red F q using a by (rule is-red-addsI)
thus ?thesis ..

qed
qed

lemma is-irred-plus: ¬ is-red F p =⇒ ¬ is-red F q =⇒ ¬ is-red F (p + q)
by (auto dest: is-red-plus)

lemma is-red-minus:
assumes is-red F (p − q)
shows is-red F p ∨ is-red F q

76

proof −
from assms have is-red F (p + (− q)) by simp
hence is-red F p ∨ is-red F (− q) by (rule is-red-plus)
thus ?thesis by (simp only: is-red-uminus)

qed

lemma is-irred-minus: ¬ is-red F p =⇒ ¬ is-red F q =⇒ ¬ is-red F (p − q)
by (auto dest: is-red-minus)

end

4.6 Well-foundedness and Termination
context gd-term
begin

lemma dgrad-set-le-red-single:
assumes dickson-grading d and red-single p q f t
shows dgrad-set-le d {t} (pp-of-term ‘ keys p)

proof (rule dgrad-set-leI , simp)
have t adds t + lp f by simp
with assms(1) have d t ≤ d (pp-of-term (t ⊕ lt f))

by (simp add: term-simps, rule dickson-grading-adds-imp-le)
moreover from assms(2) have t ⊕ lt f ∈ keys p by (simp add: in-keys-iff

red-single-def)
ultimately show ∃ v∈keys p. d t ≤ d (pp-of-term v) ..

qed

lemma dgrad-p-set-le-red-single:
assumes dickson-grading d and red-single p q f t
shows dgrad-p-set-le d {q} {f , p}

proof −
let ?f = monom-mult ((lookup p (t ⊕ lt f)) / lc f) t f
from assms(2) have t ⊕ lt f ∈ keys p and q: q = p − ?f by (simp-all add:

red-single-def in-keys-iff)
have dgrad-p-set-le d {q} {p, ?f } unfolding q by (fact dgrad-p-set-le-minus)
also have dgrad-p-set-le d ... {f , p}
proof (rule dgrad-p-set-leI-insert)

from assms(1) have dgrad-set-le d (pp-of-term ‘ keys ?f) (insert t (pp-of-term
‘ keys f))

by (rule dgrad-set-le-monom-mult)
also have dgrad-set-le d ... (pp-of-term ‘ (keys f ∪ keys p))
proof (rule dgrad-set-leI , simp)

fix s
assume s = t ∨ s ∈ pp-of-term ‘ keys f
thus ∃ u∈keys f ∪ keys p. d s ≤ d (pp-of-term u)
proof

assume s = t
from assms have dgrad-set-le d {s} (pp-of-term ‘ keys p) unfolding ‹s =

77

t›
by (rule dgrad-set-le-red-single)

moreover have s ∈ {s} ..
ultimately obtain s0 where s0 ∈ pp-of-term ‘ keys p and d s ≤ d s0 by

(rule dgrad-set-leE)
from this(1) obtain u where u ∈ keys p and s0 = pp-of-term u ..
from this(1) have u ∈ keys f ∪ keys p by simp
with ‹d s ≤ d s0 › show ?thesis unfolding ‹s0 = pp-of-term u› ..

next
assume s ∈ pp-of-term ‘ keys f
hence s ∈ pp-of-term ‘ (keys f ∪ keys p) by blast
then obtain u where u ∈ keys f ∪ keys p and s = pp-of-term u ..
note this(1)
moreover have d s ≤ d s ..
ultimately show ?thesis unfolding ‹s = pp-of-term u› ..

qed
qed
finally show dgrad-p-set-le d {?f } {f , p} by (simp add: dgrad-p-set-le-def

Keys-insert)
next

show dgrad-p-set-le d {p} {f , p} by (rule dgrad-p-set-le-subset, simp)
qed
finally show ?thesis .

qed

lemma dgrad-p-set-le-red:
assumes dickson-grading d and red F p q
shows dgrad-p-set-le d {q} (insert p F)

proof −
from assms(2) obtain f t where f ∈ F and red-single p q f t by (rule red-setE)
from assms(1) this(2) have dgrad-p-set-le d {q} {f , p} by (rule dgrad-p-set-le-red-single)
also have dgrad-p-set-le d ... (insert p F) by (rule dgrad-p-set-le-subset, auto

intro: ‹f ∈ F›)
finally show ?thesis .

qed

corollary dgrad-p-set-le-red-rtrancl:
assumes dickson-grading d and (red F)∗∗ p q
shows dgrad-p-set-le d {q} (insert p F)
using assms(2)

proof (induct)
case base
show ?case by (rule dgrad-p-set-le-subset, simp)

next
case (step y z)
from assms(1) step(2) have dgrad-p-set-le d {z} (insert y F) by (rule dgrad-p-set-le-red)
also have dgrad-p-set-le d ... (insert p F)
proof (rule dgrad-p-set-leI-insert)

show dgrad-p-set-le d F (insert p F) by (rule dgrad-p-set-le-subset, blast)

78

qed fact
finally show ?case .

qed

lemma dgrad-p-set-red-single-pp:
assumes dickson-grading d and p ∈ dgrad-p-set d m and red-single p q f t
shows d t ≤ m

proof −
from assms(1) assms(3) have dgrad-set-le d {t} (pp-of-term ‘ keys p) by (rule

dgrad-set-le-red-single)
moreover have t ∈ {t} ..
ultimately obtain s where s ∈ pp-of-term ‘ keys p and d t ≤ d s by (rule

dgrad-set-leE)
from this(1) obtain u where u ∈ keys p and s = pp-of-term u ..
from assms(2) this(1) have d (pp-of-term u) ≤ m by (rule dgrad-p-setD)
with ‹d t ≤ d s› show ?thesis unfolding ‹s = pp-of-term u› by (rule le-trans)

qed

lemma dgrad-p-set-closed-red-single:
assumes dickson-grading d and p ∈ dgrad-p-set d m and f ∈ dgrad-p-set d m

and red-single p q f t
shows q ∈ dgrad-p-set d m

proof −
from dgrad-p-set-le-red-single[OF assms(1 , 4)] have {q} ⊆ dgrad-p-set d m
proof (rule dgrad-p-set-le-dgrad-p-set)

from assms(2 , 3) show {f , p} ⊆ dgrad-p-set d m by simp
qed
thus ?thesis by simp

qed

lemma dgrad-p-set-closed-red:
assumes dickson-grading d and F ⊆ dgrad-p-set d m and p ∈ dgrad-p-set d m

and red F p q
shows q ∈ dgrad-p-set d m

proof −
from assms(4) obtain f t where f ∈ F and ∗: red-single p q f t by (rule

red-setE)
from assms(2) this(1) have f ∈ dgrad-p-set d m ..
from assms(1) assms(3) this ∗ show ?thesis by (rule dgrad-p-set-closed-red-single)

qed

lemma dgrad-p-set-closed-red-rtrancl:
assumes dickson-grading d and F ⊆ dgrad-p-set d m and p ∈ dgrad-p-set d m

and (red F)∗∗ p q
shows q ∈ dgrad-p-set d m
using assms(4)

proof (induct)
case base
from assms(3) show ?case .

79

next
case (step r q)
from assms(1) assms(2) step(3) step(2) show q ∈ dgrad-p-set d m by (rule

dgrad-p-set-closed-red)
qed

lemma red-rtrancl-repE :
assumes dickson-grading d and G ⊆ dgrad-p-set d m and finite G and p ∈

dgrad-p-set d m
and (red G)∗∗ p r

obtains q where p = r + (
∑

g∈G. q g � g) and
∧

g. q g ∈ punit.dgrad-p-set
d m

and
∧

g. lt (q g � g) �t lt p
using assms(5)

proof (induct r arbitrary: thesis)
case base
show ?case
proof (rule base)

show p = p + (
∑

g∈G. 0 � g) by simp
qed (simp-all add: punit.zero-in-dgrad-p-set min-term-min)

next
case (step r ′ r)
from step.hyps(2) obtain g t where g ∈ G and rs: red-single r ′ r g t by (rule

red-setE)
from this(2) have r ′ = r + monomial (lookup r ′ (t ⊕ lt g) / lc g) t � g

by (simp add: red-single-def mult-scalar-monomial)
moreover define q0 where q0 = monomial (lookup r ′ (t ⊕ lt g) / lc g) t
ultimately have r ′: r ′ = r + q0 � g by simp
obtain q ′ where p: p = r ′+ (

∑
g∈G. q ′ g � g) and 1 :

∧
g. q ′ g ∈ punit.dgrad-p-set

d m
and 2 :

∧
g. lt (q ′ g � g) �t lt p by (rule step.hyps) blast

define q where q = q ′(g := q0 + q ′ g)
show ?case
proof (rule step.prems)

from assms(3) ‹g ∈ G› have p = (r + q0 � g) + (q ′ g � g + (
∑

g∈G −
{g}. q ′ g � g))

by (simp add: p r ′ sum.remove)
also have . . . = r + (q g � g + (

∑
g∈G − {g}. q ′ g � g))

by (simp add: q-def mult-scalar-distrib-right)
also from refl have (

∑
g∈G − {g}. q ′ g � g) = (

∑
g∈G − {g}. q g � g)

by (rule sum.cong) (simp add: q-def)
finally show p = r + (

∑
g∈G. q g � g) using assms(3) ‹g ∈ G› by (simp

only: sum.remove)
next

fix g0
have q g0 ∈ punit.dgrad-p-set d m ∧ lt (q g0 � g0) �t lt p
proof (cases g0 = g)

case True
have eq: q g = q0 + q ′ g by (simp add: q-def)

80

show ?thesis unfolding True eq
proof

from assms(1 , 2 , 4) step.hyps(1) have r ′ ∈ dgrad-p-set d m
by (rule dgrad-p-set-closed-red-rtrancl)

with assms(1) have d t ≤ m using rs by (rule dgrad-p-set-red-single-pp)
hence q0 ∈ punit.dgrad-p-set d m by (simp add: q0-def punit.dgrad-p-set-def

dgrad-set-def)
thus q0 + q ′ g ∈ punit.dgrad-p-set d m by (intro punit.dgrad-p-set-closed-plus

1)
next

have lt (q0 � g + q ′ g � g) �t ord-term-lin.max (lt (q0 � g)) (lt (q ′ g �
g))

by (fact lt-plus-le-max)
also have . . . �t lt p
proof (intro ord-term-lin.max.boundedI 2)

have lt (q0 � g) �t t ⊕ lt g by (simp add: q0-def mult-scalar-monomial
lt-monom-mult-le)

also from rs have . . . �t lt r ′ by (intro lt-max) (simp add: red-single-def)
also from step.hyps(1) have . . . �t lt p by (intro ord-p-lt red-rtrancl-ord)
finally show lt (q0 � g) �t lt p .

qed
finally show lt ((q0 + q ′ g) � g) �t lt p by (simp only: mult-scalar-distrib-right)
qed

next
case False
hence q g0 = q ′ g0 by (simp add: q-def)
thus ?thesis by (simp add: 1 2)

qed
thus q g0 ∈ punit.dgrad-p-set d m and lt (q g0 � g0) �t lt p by simp-all

qed
qed

lemma is-relation-order-red:
assumes dickson-grading d
shows Confluence.relation-order (red F) (≺p) (dgrad-p-set d m)

proof
show wfp-on (≺p) (dgrad-p-set d m)
proof (rule wfp-onI-min)

fix x:: ′t ⇒0
′c and Q

assume x ∈ Q and Q ⊆ dgrad-p-set d m
with assms obtain q where q ∈ Q and ∗:

∧
y. y ≺p q =⇒ y /∈ Q

by (rule ord-p-minimum-dgrad-p-set, auto)
from this(1) show ∃ z∈Q. ∀ y∈dgrad-p-set d m. y ≺p z −→ y /∈ Q
proof

from ∗ show ∀ y∈dgrad-p-set d m. y ≺p q −→ y /∈ Q by auto
qed

qed
next

show red F ≤ (≺p)
−1−1 by (simp add: predicate2I red-ord)

81

qed (fact ord-strict-p-transitive)

lemma red-wf-dgrad-p-set-aux:
assumes dickson-grading d and F ⊆ dgrad-p-set d m
shows wfp-on (red F)−1−1 (dgrad-p-set d m)

proof (rule wfp-onI-min)
fix x:: ′t ⇒0

′b and Q
assume x ∈ Q and Q ⊆ dgrad-p-set d m
with assms(1) obtain q where q ∈ Q and ∗:

∧
y. y ≺p q =⇒ y /∈ Q

by (rule ord-p-minimum-dgrad-p-set, auto)
from this(1) show ∃ z∈Q. ∀ y∈dgrad-p-set d m. (red F)−1−1 y z −→ y /∈ Q
proof

show ∀ y∈dgrad-p-set d m. (red F)−1−1 y q −→ y /∈ Q
proof (intro ballI impI , simp)

fix y
assume red F q y
hence y ≺p q by (rule red-ord)
thus y /∈ Q by (rule ∗)

qed
qed

qed

lemma red-wf-dgrad-p-set:
assumes dickson-grading d and F ⊆ dgrad-p-set d m
shows wfP (red F)−1−1

proof (rule wfI-min[to-pred])
fix x:: ′t ⇒0

′b and Q
assume x ∈ Q
from assms(2) obtain n where m ≤ n and x ∈ dgrad-p-set d n and F ⊆

dgrad-p-set d n
by (rule dgrad-p-set-insert)

let ?Q = Q ∩ dgrad-p-set d n
from assms(1) ‹F ⊆ dgrad-p-set d n› have wfp-on (red F)−1−1 (dgrad-p-set d

n)
by (rule red-wf-dgrad-p-set-aux)

moreover from ‹x ∈ Q› ‹x ∈ dgrad-p-set d n› have x ∈ ?Q ..
moreover have ?Q ⊆ dgrad-p-set d n by simp
ultimately obtain z where z ∈ ?Q and ∗:

∧
y. (red F)−1−1 y z =⇒ y /∈ ?Q

by (rule wfp-onE-min) blast
from this(1) have z ∈ Q and z ∈ dgrad-p-set d n by simp-all
from this(1) show ∃ z∈Q. ∀ y. (red F)−1−1 y z −→ y /∈ Q
proof

show ∀ y. (red F)−1−1 y z −→ y /∈ Q
proof (intro allI impI)

fix y
assume (red F)−1−1 y z
hence red F z y by simp

with assms(1) ‹F ⊆ dgrad-p-set d n› ‹z ∈ dgrad-p-set d n› have y ∈ dgrad-p-set
d n

82

by (rule dgrad-p-set-closed-red)
moreover from ‹(red F)−1−1 y z› have y /∈ ?Q by (rule ∗)
ultimately show y /∈ Q by blast

qed
qed

qed

lemmas red-wf-finite = red-wf-dgrad-p-set[OF dickson-grading-dgrad-dummy dgrad-p-set-exhaust-expl]

lemma cbelow-on-monom-mult:
assumes dickson-grading d and F ⊆ dgrad-p-set d m and d t ≤ m and c 6= 0

and cbelow-on (dgrad-p-set d m) (≺p) z (λa b. red F a b ∨ red F b a) p q
shows cbelow-on (dgrad-p-set d m) (≺p) (monom-mult c t z) (λa b. red F a b ∨

red F b a)
(monom-mult c t p) (monom-mult c t q)

using assms(5)
proof (induct rule: cbelow-on-induct)

case base
show ?case unfolding cbelow-on-def
proof (rule disjI1 , intro conjI , fact refl)

from assms(5) have p ∈ dgrad-p-set d m by (rule cbelow-on-first-in)
with assms(1) assms(3) show monom-mult c t p ∈ dgrad-p-set d m by (rule

dgrad-p-set-closed-monom-mult)
next

from assms(5) have p ≺p z by (rule cbelow-on-first-below)
from this assms(4) show monom-mult c t p ≺p monom-mult c t z by (rule

ord-strict-p-monom-mult)
qed

next
case (step q ′ q)
let ?R = λa b. red F a b ∨ red F b a
from step(5) show ?case
proof

from assms(1) assms(3) step(3) show monom-mult c t q ∈ dgrad-p-set d m
by (rule dgrad-p-set-closed-monom-mult)

next
from step(2) red-monom-mult[OF - assms(4)] show ?R (monom-mult c t q ′)

(monom-mult c t q) by auto
next

from step(4) assms(4) show monom-mult c t q ≺p monom-mult c t z by (rule
ord-strict-p-monom-mult)

qed
qed

lemma cbelow-on-monom-mult-monomial:
assumes c 6= 0

and cbelow-on (dgrad-p-set d m) (≺p) (monomial c ′ v) (λa b. red F a b ∨ red
F b a) p q

shows cbelow-on (dgrad-p-set d m) (≺p) (monomial c (t ⊕ v)) (λa b. red F a b

83

∨ red F b a) p q
proof −

have ∗: f ≺p monomial c ′ v =⇒ f ≺p monomial c (t ⊕ v) for f
proof (simp add: ord-strict-p-monomial-iff assms(1), elim conjE disjE , erule

disjI1 , rule disjI2)
assume lt f ≺t v
also have ... �t t ⊕ v using local.zero-min using splus-mono-left splus-zero

by fastforce
finally show lt f ≺t t ⊕ v .

qed
from assms(2) show ?thesis
proof (induct rule: cbelow-on-induct)

case base
show ?case unfolding cbelow-on-def
proof (rule disjI1 , intro conjI , fact refl)

from assms(2) show p ∈ dgrad-p-set d m by (rule cbelow-on-first-in)
next

from assms(2) have p ≺p monomial c ′ v by (rule cbelow-on-first-below)
thus p ≺p monomial c (t ⊕ v) by (rule ∗)

qed
next

case (step q ′ q)
let ?R = λa b. red F a b ∨ red F b a
from step(5) step(3) step(2) show ?case
proof

from step(4) show q ≺p monomial c (t ⊕ v) by (rule ∗)
qed

qed
qed

lemma cbelow-on-plus:
assumes dickson-grading d and F ⊆ dgrad-p-set d m and r ∈ dgrad-p-set d m

and keys r ∩ keys z = {}
and cbelow-on (dgrad-p-set d m) (≺p) z (λa b. red F a b ∨ red F b a) p q

shows cbelow-on (dgrad-p-set d m) (≺p) (z + r) (λa b. red F a b ∨ red F b a)
(p + r) (q + r)

using assms(5)
proof (induct rule: cbelow-on-induct)

case base
show ?case unfolding cbelow-on-def
proof (rule disjI1 , intro conjI , fact refl)

from assms(5) have p ∈ dgrad-p-set d m by (rule cbelow-on-first-in)
from this assms(3) show p + r ∈ dgrad-p-set d m by (rule dgrad-p-set-closed-plus)

next
from assms(5) have p ≺p z by (rule cbelow-on-first-below)
from this assms(4) show p + r ≺p z + r by (rule ord-strict-p-plus)

qed
next

case (step q ′ q)

84

let ?RS = λa b. red F a b ∨ red F b a
let ?A = dgrad-p-set d m
let ?R = red F
let ?ord = (≺p)
from assms(1) have ro: relation-order ?R ?ord ?A

by (rule is-relation-order-red)
have dw: relation.dw-closed ?R ?A

by (rule relation.dw-closedI , rule dgrad-p-set-closed-red, rule assms(1), rule
assms(2))

from step(2) have relation.cs (red F) (q ′ + r) (q + r)
proof

assume red F q q ′

hence relation.cs (red F) (q + r) (q ′ + r) by (rule red-plus-cs)
thus ?thesis by (rule relation.cs-sym)

next
assume red F q ′ q
thus ?thesis by (rule red-plus-cs)

qed
with ro dw have cbelow-on ?A ?ord (z + r) ?RS (q ′ + r) (q + r)
proof (rule relation-order .cs-implies-cbelow-on)

from step(1) have q ′ ∈ ?A by (rule cbelow-on-second-in)
from this assms(3) show q ′ + r ∈ ?A by (rule dgrad-p-set-closed-plus)

next
from step(3) assms(3) show q + r ∈ ?A by (rule dgrad-p-set-closed-plus)

next
from step(1) have q ′ ≺p z by (rule cbelow-on-second-below)
from this assms(4) show q ′ + r ≺p z + r by (rule ord-strict-p-plus)

next
from step(4) assms(4) show q + r ≺p z + r by (rule ord-strict-p-plus)

qed
with step(5) show ?case by (rule cbelow-on-transitive)

qed

lemma is-full-pmdlI-lt-dgrad-p-set:
assumes dickson-grading d and B ⊆ dgrad-p-set d m
assumes

∧
k. k ∈ component-of-term ‘ Keys (B::(′t ⇒0

′b::field) set) =⇒
(∃ b∈B. b 6= 0 ∧ component-of-term (lt b) = k ∧ lp b = 0)

shows is-full-pmdl B
proof (rule is-full-pmdlI)

fix p:: ′t ⇒0
′b

from assms(1 , 2) have wfP (red B)−1−1 by (rule red-wf-dgrad-p-set)
moreover assume component-of-term ‘ keys p ⊆ component-of-term ‘ Keys B
ultimately show p ∈ pmdl B
proof (induct p)

case (less p)
show ?case
proof (cases p = 0)

case True
show ?thesis by (simp add: True pmdl.span-zero)

85

next
case False
hence lt p ∈ keys p by (rule lt-in-keys)
hence component-of-term (lt p) ∈ component-of-term ‘ keys p by simp
also have ... ⊆ component-of-term ‘ Keys B by fact
finally have ∃ b∈B. b 6= 0 ∧ component-of-term (lt b) = component-of-term

(lt p) ∧ lp b = 0
by (rule assms(3))

then obtain b where b ∈ B and b 6= 0 and component-of-term (lt b) =
component-of-term (lt p)

and lp b = 0 by blast
from this(3 , 4) have eq: lp p ⊕ lt b = lt p by (simp add: splus-def

term-of-pair-pair)
define q where q = p − monom-mult (lookup p ((lp p) ⊕ lt b) / lc b) (lp p)

b
have red-single p q b (lp p)

by (auto simp: red-single-def ‹b 6= 0 › q-def eq ‹lt p ∈ keys p›)
with ‹b ∈ B› have red B p q by (rule red-setI)
hence (red B)−1−1 q p ..
moreover have component-of-term ‘ keys q ⊆ component-of-term ‘ Keys B
proof (rule subset-trans)

from ‹red B p q› show component-of-term ‘ keys q ⊆ component-of-term ‘
keys p ∪ component-of-term ‘ Keys B

by (rule components-red-subset)
next

from less(2) show component-of-term ‘ keys p ∪ component-of-term ‘ Keys
B ⊆ component-of-term ‘ Keys B

by blast
qed
ultimately have q ∈ pmdl B by (rule less.hyps)
have q + monom-mult (lookup p ((lp p) ⊕ lt b) / lc b) (lp p) b ∈ pmdl B
by (rule pmdl.span-add, fact, rule pmdl-closed-monom-mult, rule pmdl.span-base,

fact)
thus ?thesis by (simp add: q-def)

qed
qed

qed

lemmas is-full-pmdlI-lt-finite = is-full-pmdlI-lt-dgrad-p-set[OF dickson-grading-dgrad-dummy
dgrad-p-set-exhaust-expl]

end

4.7 Algorithms
4.7.1 Function find-adds
context ordered-term
begin

86

primrec find-adds :: (′t ⇒0
′b) list ⇒ ′t ⇒ (′t ⇒0

′b::zero) option where
find-adds [] - = None|
find-adds (f # fs) u = (if f 6= 0 ∧ lt f addst u then Some f else find-adds fs u)

lemma find-adds-SomeD1 :
assumes find-adds fs u = Some f
shows f ∈ set fs
using assms by (induct fs, simp, simp split: if-splits)

lemma find-adds-SomeD2 :
assumes find-adds fs u = Some f
shows f 6= 0
using assms by (induct fs, simp, simp split: if-splits)

lemma find-adds-SomeD3 :
assumes find-adds fs u = Some f
shows lt f addst u
using assms by (induct fs, simp, simp split: if-splits)

lemma find-adds-NoneE :
assumes find-adds fs u = None and f ∈ set fs
assumes f = 0 =⇒ thesis and f 6= 0 =⇒ ¬ lt f addst u =⇒ thesis
shows thesis
using assms

proof (induct fs arbitrary: thesis)
case Nil
from Nil(2) show ?case by simp

next
case (Cons a fs)
from Cons(2) have 1 : a = 0 ∨ ¬ lt a addst u and 2 : find-adds fs u = None

by (simp-all split: if-splits)
from Cons(3) have f = a ∨ f ∈ set fs by simp
thus ?case
proof

assume f = a
show ?thesis
proof (cases a = 0)

case True
show ?thesis by (rule Cons(4), simp add: ‹f = a› True)

next
case False
with 1 have ∗: ¬ lt a addst u by simp
show ?thesis by (rule Cons(5), simp-all add: ‹f = a› ∗ False)

qed
next

assume f ∈ set fs
with 2 show ?thesis
proof (rule Cons(1))

assume f = 0

87

thus ?thesis by (rule Cons(4))
next

assume f 6= 0 and ¬ lt f addst u
thus ?thesis by (rule Cons(5))

qed
qed

qed

lemma find-adds-SomeD-red-single:
assumes p 6= 0 and find-adds fs (lt p) = Some f
shows red-single p (tail p − monom-mult (lc p / lc f) (lp p − lp f) (tail f)) f (lp

p − lp f)
proof −

let ?f = monom-mult (lc p / lc f) (lp p − lp f) f
from assms(2) have f 6= 0 and lt f addst lt p by (rule find-adds-SomeD2 , rule

find-adds-SomeD3)
from this(2) have eq: (lp p − lp f) ⊕ lt f = lt p

by (simp add: adds-minus-splus adds-term-def term-of-pair-pair)
from assms(1) have lc p 6= 0 by (rule lc-not-0)
moreover from ‹f 6= 0 › have lc f 6= 0 by (rule lc-not-0)
ultimately have lc p / lc f 6= 0 by simp
hence lt ?f = (lp p − lp f) ⊕ lt f by (simp add: lt-monom-mult ‹f 6= 0 ›)
hence lt-f : lt ?f = lt p by (simp only: eq)
have lookup ?f (lt p) = lookup ?f ((lp p − lp f) ⊕ lt f) by (simp only: eq)
also have ... = (lc p / lc f) ∗ lookup f (lt f) by (rule lookup-monom-mult-plus)
also from ‹lc f 6= 0 › have ... = lookup p (lt p) by (simp add: lc-def)
finally have lc-f : lookup ?f (lt p) = lookup p (lt p) .
have red-single p (p − ?f) f (lp p − lp f)

by (auto simp: red-single-def eq lc-def ‹f 6= 0 › lt-in-keys assms(1))
moreover have p − ?f = tail p − monom-mult (lc p / lc f) (lp p − lp f) (tail

f)
by (rule poly-mapping-eqI ,

simp add: tail-monom-mult[symmetric] lookup-minus lookup-tail-2 lt-f lc-f
split: if-split)

ultimately show ?thesis by simp
qed

lemma find-adds-SomeD-red:
assumes p 6= 0 and find-adds fs (lt p) = Some f
shows red (set fs) p (tail p − monom-mult (lc p / lc f) (lp p − lp f) (tail f))

proof (rule red-setI)
from assms(2) show f ∈ set fs by (rule find-adds-SomeD1)

next
from assms show red-single p (tail p − monom-mult (lc p / lc f) (lp p − lp f)

(tail f)) f (lp p − lp f)
by (rule find-adds-SomeD-red-single)

qed

end

88

4.7.2 Function trd
context gd-term
begin

definition trd-term :: (′a ⇒ nat) ⇒ (((′t ⇒0
′b::field) list × (′t ⇒0

′b) × (′t ⇒0
′b)) ×

((′t ⇒0
′b) list × (′t ⇒0

′b) × (′t ⇒0
′b))) set

where trd-term d = {(x, y). dgrad-p-set-le d (set (fst (snd x) # fst x)) (set (fst
(snd y) # fst y)) ∧ fst (snd x) ≺p fst (snd y)}

lemma trd-term-wf :
assumes dickson-grading d
shows wf (trd-term d)

proof (rule wfI-min)
fix x :: (′t ⇒0

′b::field) list × (′t ⇒0
′b) × (′t ⇒0

′b) and Q
assume x ∈ Q
let ?A = set (fst (snd x) # fst x)
have finite ?A ..
then obtain m where A: ?A ⊆ dgrad-p-set d m by (rule dgrad-p-set-exhaust)
let ?B = dgrad-p-set d m
let ?Q = {q ∈ Q. set (fst (snd q) # fst q) ⊆ ?B}
note assms
moreover have fst (snd x) ∈ fst ‘ snd ‘ ?Q

by (rule, fact refl, rule, fact refl, simp only: mem-Collect-eq A ‹x ∈ Q›)
moreover have fst ‘ snd ‘ ?Q ⊆ ?B by auto
ultimately obtain z0 where z0 ∈ fst ‘ snd ‘ ?Q
and ∗:

∧
y. y ≺p z0 =⇒ y /∈ fst ‘ snd ‘ ?Q by (rule ord-p-minimum-dgrad-p-set,

blast)
from this(1) obtain z where z ∈ {q ∈ Q. set (fst (snd q) # fst q) ⊆ ?B} and

z0 : z0 = fst (snd z)
by fastforce

from this(1) have z ∈ Q and a: set (fst (snd z) # fst z) ⊆ ?B by simp-all
from this(1) show ∃ z∈Q. ∀ y. (y, z) ∈ trd-term d −→ y /∈ Q
proof

show ∀ y. (y, z) ∈ trd-term d −→ y /∈ Q
proof (intro allI impI)

fix y
assume (y, z) ∈ trd-term d
hence b: dgrad-p-set-le d (set (fst (snd y) # fst y)) (set (fst (snd z) # fst z))

and fst (snd y) ≺p z0
by (simp-all add: trd-term-def z0)

from this(2) have fst (snd y) /∈ fst ‘ snd ‘ ?Q by (rule ∗)
hence y /∈ Q ∨ ¬ set (fst (snd y) # fst y) ⊆ ?B by auto

moreover from b a have set (fst (snd y) # fst y) ⊆ ?B by (rule dgrad-p-set-le-dgrad-p-set)
ultimately show y /∈ Q by simp

qed
qed

qed

89

function trd-aux :: (′t ⇒0
′b) list ⇒ (′t ⇒0

′b) ⇒ (′t ⇒0
′b) ⇒ (′t ⇒0

′b::field)
where

trd-aux fs p r =
(if p = 0 then

r
else

case find-adds fs (lt p) of
None ⇒ trd-aux fs (tail p) (r + monomial (lc p) (lt p))
| Some f ⇒ trd-aux fs (tail p − monom-mult (lc p / lc f) (lp p − lp f) (tail

f)) r
)

by auto
termination proof −

from ex-dgrad obtain d:: ′a ⇒ nat where dg: dickson-grading d ..
let ?R = trd-term d
show ?thesis
proof (rule, rule trd-term-wf , fact)

fix fs and p r :: ′t ⇒0
′b

assume p 6= 0
show ((fs, tail p, r + monomial (lc p) (lt p)), fs, p, r) ∈ trd-term d
proof (simp add: trd-term-def , rule)

show dgrad-p-set-le d (insert (tail p) (set fs)) (insert p (set fs))
proof (rule dgrad-p-set-leI-insert-keys, rule dgrad-p-set-le-subset, rule sub-

set-insertI ,
rule dgrad-set-le-subset, simp add: Keys-insert image-Un)

have keys (tail p) ⊆ keys p by (auto simp: keys-tail)
hence pp-of-term ‘ keys (tail p) ⊆ pp-of-term ‘ keys p by (rule image-mono)

thus pp-of-term ‘ keys (tail p) ⊆ pp-of-term ‘ keys p ∪ pp-of-term ‘ Keys
(set fs) by blast

qed
next

from ‹p 6= 0 › show tail p ≺p p by (rule tail-ord-p)
qed

next
fix fs::(′t ⇒0

′b) list and p r f :: ′t ⇒0
′b

assume p 6= 0 and find-adds fs (lt p) = Some f
hence red (set fs) p (tail p − monom-mult (lc p / lc f) (lp p − lp f) (tail f))
(is red - p ?q) by (rule find-adds-SomeD-red)

show ((fs, ?q, r), fs, p, r) ∈ trd-term d
by (simp add: trd-term-def , rule, rule dgrad-p-set-leI-insert, rule dgrad-p-set-le-subset,

rule subset-insertI ,
rule dgrad-p-set-le-red, fact dg, fact ‹red (set fs) p ?q›, rule red-ord, fact)

qed
qed

definition trd :: (′t ⇒0
′b::field) list ⇒ (′t ⇒0

′b) ⇒ (′t ⇒0
′b)

where trd fs p = trd-aux fs p 0

lemma trd-aux-red-rtrancl: (red (set fs))∗∗ p (trd-aux fs p r − r)

90

proof (induct fs p r rule: trd-aux.induct)
case (1 fs p r)
show ?case
proof (simp, split option.split, intro conjI impI allI)

assume p 6= 0 and find-adds fs (lt p) = None
hence (red (set fs))∗∗ (tail p) (trd-aux fs (tail p) (r + monomial (lc p) (lt p))

− (r + monomial (lc p) (lt p)))
by (rule 1 (1))

hence (red (set fs))∗∗ (tail p + monomial (lc p) (lt p))
(trd-aux fs (tail p) (r + monomial (lc p) (lt p)) − (r + monomial (lc

p) (lt p)) + monomial (lc p) (lt p))
proof (rule red-rtrancl-plus-higher)

fix u v
assume u ∈ keys (tail p)
assume v ∈ keys (monomial (lc p) (lt p))
also have ... ⊆ {lt p} by (simp add: keys-monomial)
finally have v = lt p by simp

from ‹u ∈ keys (tail p)› show u ≺t v unfolding ‹v = lt p› by (rule
keys-tail-less-lt)

qed
thus (red (set fs))∗∗ p (trd-aux fs (tail p) (r + monomial (lc p) (lt p)) − r)

by (simp only: leading-monomial-tail[symmetric] add.commute[of - monomial
(lc p) (lt p)], simp)

next
fix f
assume p 6= 0 and find-adds fs (lt p) = Some f
hence (red (set fs))∗∗ (tail p − monom-mult (lc p / lc f) (lp p − lp f) (tail f))

(trd-aux fs (tail p − monom-mult (lc p / lc f) (lp p − lp f) (tail
f)) r − r)

and ∗: red (set fs) p (tail p − monom-mult (lc p / lc f) (lp p − lp f) (tail f))
by (rule 1 (2), rule find-adds-SomeD-red)

let ?q = tail p − monom-mult (lc p / lc f) (lp p − lp f) (tail f)
from ∗ have (red (set fs))∗∗ p ?q ..
moreover have (red (set fs))∗∗ ?q (trd-aux fs ?q r − r) by fact

ultimately show (red (set fs))∗∗ p (trd-aux fs ?q r − r) by (rule rtranclp-trans)
qed

qed

corollary trd-red-rtrancl: (red (set fs))∗∗ p (trd fs p)
proof −
have (red (set fs))∗∗ p (trd fs p − 0) unfolding trd-def by (rule trd-aux-red-rtrancl)
thus ?thesis by simp

qed

lemma trd-aux-irred:
assumes ¬ is-red (set fs) r
shows ¬ is-red (set fs) (trd-aux fs p r)
using assms

proof (induct fs p r rule: trd-aux.induct)

91

case (1 fs p r)
show ?case
proof (simp add: 1 (3), split option.split, intro impI conjI allI)

assume p 6= 0 and ∗: find-adds fs (lt p) = None
thus ¬ is-red (set fs) (trd-aux fs (tail p) (r + monomial (lc p) (lt p)))
proof (rule 1 (1))

show ¬ is-red (set fs) (r + monomial (lc p) (lt p))
proof

assume is-red (set fs) (r + monomial (lc p) (lt p))
then obtain f u where f ∈ set fs and f 6= 0 and u ∈ keys (r + monomial

(lc p) (lt p))
and lt f addst u by (rule is-red-addsE)

note this(3)
also have keys (r + monomial (lc p) (lt p)) ⊆ keys r ∪ keys (monomial (lc

p) (lt p))
by (rule Poly-Mapping.keys-add)

also have ... ⊆ insert (lt p) (keys r) by auto
finally show False
proof

assume u = lt p
from ∗ ‹f ∈ set fs› show ?thesis
proof (rule find-adds-NoneE)

assume f = 0
with ‹f 6= 0 › show ?thesis ..

next
assume ¬ lt f addst lt p
from this ‹lt f addst u› show ?thesis unfolding ‹u = lt p› ..

qed
next

assume u ∈ keys r
from ‹f ∈ set fs› ‹f 6= 0 › this ‹lt f addst u› have is-red (set fs) r by (rule

is-red-addsI)
with 1 (3) show ?thesis ..

qed
qed

qed
next

fix f
assume p 6= 0 and find-adds fs (lt p) = Some f
from this 1 (3) show ¬ is-red (set fs) (trd-aux fs (tail p − monom-mult (lc p

/ lc f) (lp p − lp f) (tail f)) r)
by (rule 1 (2))

qed
qed

corollary trd-irred: ¬ is-red (set fs) (trd fs p)
unfolding trd-def using irred-0 by (rule trd-aux-irred)

lemma trd-in-pmdl: p − (trd fs p) ∈ pmdl (set fs)

92

using trd-red-rtrancl by (rule red-rtranclp-diff-in-pmdl)

lemma pmdl-closed-trd:
assumes p ∈ pmdl B and set fs ⊆ pmdl B
shows (trd fs p) ∈ pmdl B

proof −
from assms(2) have pmdl (set fs) ⊆ pmdl B by (rule pmdl.span-subset-spanI)
with trd-in-pmdl have p − trd fs p ∈ pmdl B ..
with assms(1) have p − (p − trd fs p) ∈ pmdl B by (rule pmdl.span-diff)
thus ?thesis by simp

qed

end

end

5 Gröbner Bases and Buchberger’s Theorem
theory Groebner-Bases
imports Reduction
begin

This theory provides the main results about Gröbner bases for modules of
multivariate polynomials.
context gd-term
begin

definition crit-pair :: (′t ⇒0
′b::field) ⇒ (′t ⇒0

′b) ⇒ ((′t ⇒0
′b) × (′t ⇒0

′b))
where crit-pair p q =

(if component-of-term (lt p) = component-of-term (lt q) then
(monom-mult (1 / lc p) ((lcs (lp p) (lp q)) − (lp p)) (tail p),
monom-mult (1 / lc q) ((lcs (lp p) (lp q)) − (lp q)) (tail q))

else (0 , 0))

definition crit-pair-cbelow-on :: (′a ⇒ nat) ⇒ nat ⇒ (′t ⇒0
′b::field) set ⇒ (′t

⇒0
′b) ⇒ (′t ⇒0

′b) ⇒ bool
where crit-pair-cbelow-on d m F p q ←→

cbelow-on (dgrad-p-set d m) (≺p)
(monomial 1 (term-of-pair (lcs (lp p) (lp q), component-of-term

(lt p))))
(λa b. red F a b ∨ red F b a) (fst (crit-pair p q)) (snd (crit-pair

p q))

definition spoly :: (′t ⇒0
′b) ⇒ (′t ⇒0

′b) ⇒ (′t ⇒0
′b::field)

where spoly p q = (let v1 = lt p; v2 = lt q in
if component-of-term v1 = component-of-term v2 then

let t1 = pp-of-term v1 ; t2 = pp-of-term v2 ; l = lcs t1 t2 in
(monom-mult (1 / lookup p v1) (l − t1) p) − (monom-mult (1

/ lookup q v2) (l − t2) q)

93

else 0)

definition (in ordered-term) is-Groebner-basis :: (′t ⇒0
′b::field) set ⇒ bool

where is-Groebner-basis F ≡ relation.is-ChurchRosser (red F)

5.1 Critical Pairs and S-Polynomials
lemma crit-pair-same: fst (crit-pair p p) = snd (crit-pair p p)

by (simp add: crit-pair-def)

lemma crit-pair-swap: crit-pair p q = (snd (crit-pair q p), fst (crit-pair q p))
by (simp add: crit-pair-def lcs-comm)

lemma crit-pair-zero [simp]: fst (crit-pair 0 q) = 0 and snd (crit-pair p 0) = 0
by (simp-all add: crit-pair-def)

lemma dgrad-p-set-le-crit-pair-zero: dgrad-p-set-le d {fst (crit-pair p 0)} {p}
proof (simp add: crit-pair-def lt-def [of 0] lcs-comm lcs-zero dgrad-p-set-le-def Keys-insert

min-term-def term-simps, intro conjI impI dgrad-set-leI)
fix s
assume s ∈ pp-of-term ‘ keys (monom-mult (1 / lc p) 0 (tail p))
then obtain v where v ∈ keys (monom-mult (1 / lc p) 0 (tail p)) and s =

pp-of-term v ..
from this(1) keys-monom-mult-subset have v ∈ (⊕) 0 ‘ keys (tail p) ..
hence v ∈ keys (tail p) by (simp add: image-iff term-simps)
hence v ∈ keys p by (simp add: keys-tail)
hence s ∈ pp-of-term ‘ keys p by (simp add: ‹s = pp-of-term v›)
moreover have d s ≤ d s ..
ultimately show ∃ t∈pp-of-term ‘ keys p. d s ≤ d t ..

qed simp

lemma dgrad-p-set-le-fst-crit-pair :
assumes dickson-grading d
shows dgrad-p-set-le d {fst (crit-pair p q)} {p, q}

proof (cases q = 0)
case True
have dgrad-p-set-le d {fst (crit-pair p q)} {p} unfolding True

by (fact dgrad-p-set-le-crit-pair-zero)
also have dgrad-p-set-le d ... {p, q} by (rule dgrad-p-set-le-subset, simp)
finally show ?thesis .

next
case False
show ?thesis
proof (cases p = 0)

case True
have dgrad-p-set-le d {fst (crit-pair p q)} {q}

by (simp add: True dgrad-p-set-le-def dgrad-set-le-def)
also have dgrad-p-set-le d ... {p, q} by (rule dgrad-p-set-le-subset, simp)
finally show ?thesis .

94

next
case False
show ?thesis
proof (simp add: dgrad-p-set-le-def Keys-insert crit-pair-def , intro conjI impI)

define t where t = lcs (lp p) (lp q) − lp p
let ?m = monom-mult (1 / lc p) t (tail p)
from assms have dgrad-set-le d (pp-of-term ‘ keys ?m) (insert t (pp-of-term

‘ keys (tail p)))
by (rule dgrad-set-le-monom-mult)

also have dgrad-set-le d ... (pp-of-term ‘ (keys p ∪ keys q))
proof (rule dgrad-set-leI , simp)

fix s
assume s = t ∨ s ∈ pp-of-term ‘ keys (tail p)
thus ∃ v∈keys p ∪ keys q. d s ≤ d (pp-of-term v)
proof

assume s = t
from assms have d s ≤ ord-class.max (d (lp p)) (d (lp q))

unfolding ‹s = t› t-def by (rule dickson-grading-lcs-minus)
hence d s ≤ d (lp p) ∨ d s ≤ d (lp q) by auto
thus ?thesis
proof

from ‹p 6= 0 › have lt p ∈ keys p by (rule lt-in-keys)
hence lt p ∈ keys p ∪ keys q by simp
moreover assume d s ≤ d (lp p)
ultimately show ?thesis ..

next
from ‹q 6= 0 › have lt q ∈ keys q by (rule lt-in-keys)
hence lt q ∈ keys p ∪ keys q by simp
moreover assume d s ≤ d (lp q)
ultimately show ?thesis ..

qed
next

assume s ∈ pp-of-term ‘ keys (tail p)
hence s ∈ pp-of-term ‘ (keys p ∪ keys q) by (auto simp: keys-tail)
then obtain v where v ∈ keys p ∪ keys q and s = pp-of-term v ..
note this(1)

moreover have d s ≤ d (pp-of-term v) by (simp add: ‹s = pp-of-term v›)
ultimately show ?thesis ..

qed
qed
finally show dgrad-set-le d (pp-of-term ‘ keys ?m) (pp-of-term ‘ (keys p ∪

keys q)) .
qed (rule dgrad-set-leI , simp)

qed
qed

lemma dgrad-p-set-le-snd-crit-pair :
assumes dickson-grading d
shows dgrad-p-set-le d {snd (crit-pair p q)} {p, q}

95

by (simp add: crit-pair-swap[of p] insert-commute[of p q], rule dgrad-p-set-le-fst-crit-pair ,
fact)

lemma dgrad-p-set-closed-fst-crit-pair :
assumes dickson-grading d and p ∈ dgrad-p-set d m and q ∈ dgrad-p-set d m
shows fst (crit-pair p q) ∈ dgrad-p-set d m

proof −
from dgrad-p-set-le-fst-crit-pair [OF assms(1)] have {fst (crit-pair p q)} ⊆ dgrad-p-set

d m
proof (rule dgrad-p-set-le-dgrad-p-set)

from assms(2 , 3) show {p, q} ⊆ dgrad-p-set d m by simp
qed
thus ?thesis by simp

qed

lemma dgrad-p-set-closed-snd-crit-pair :
assumes dickson-grading d and p ∈ dgrad-p-set d m and q ∈ dgrad-p-set d m
shows snd (crit-pair p q) ∈ dgrad-p-set d m
by (simp add: crit-pair-swap[of p q], rule dgrad-p-set-closed-fst-crit-pair , fact+)

lemma fst-crit-pair-below-lcs:
fst (crit-pair p q) ≺p monomial 1 (term-of-pair (lcs (lp p) (lp q), component-of-term

(lt p)))
proof (cases tail p = 0)

case True
thus ?thesis by (simp add: crit-pair-def ord-strict-p-monomial-iff)

next
case False
let ?t1 = lp p
let ?t2 = lp q
from False have p 6= 0 by auto
hence lc p 6= 0 by (rule lc-not-0)
hence 1 / lc p 6= 0 by simp
from this False have lt (monom-mult (1 / lc p) (lcs ?t1 ?t2 − ?t1) (tail p)) =

(lcs ?t1 ?t2 − ?t1) ⊕ lt (tail p)
by (rule lt-monom-mult)

also from lt-tail[OF False] have ... ≺t (lcs ?t1 ?t2 − ?t1) ⊕ lt p
by (rule splus-mono-strict)

also from adds-lcs have ... = term-of-pair (lcs ?t1 ?t2 , component-of-term (lt
p))

by (simp add: adds-lcs adds-minus splus-def)
finally show ?thesis by (auto simp add: crit-pair-def ord-strict-p-monomial-iff)

qed

lemma snd-crit-pair-below-lcs:
snd (crit-pair p q) ≺p monomial 1 (term-of-pair (lcs (lp p) (lp q), compo-

nent-of-term (lt p)))
proof (cases component-of-term (lt p) = component-of-term (lt q))

case True

96

show ?thesis
by (simp add: True crit-pair-swap[of p] lcs-comm[of lp p], fact fst-crit-pair-below-lcs)

next
case False
show ?thesis by (simp add: crit-pair-def False ord-strict-p-monomial-iff)

qed

lemma crit-pair-cbelow-same:
assumes dickson-grading d and p ∈ dgrad-p-set d m
shows crit-pair-cbelow-on d m F p p

proof (simp add: crit-pair-cbelow-on-def crit-pair-same cbelow-on-def term-simps,
intro disjI1 conjI)

from assms(1) assms(2) assms(2) show snd (crit-pair p p) ∈ dgrad-p-set d m
by (rule dgrad-p-set-closed-snd-crit-pair)

next
from snd-crit-pair-below-lcs[of p p] show snd (crit-pair p p) ≺p monomial 1 (lt

p)
by (simp add: term-simps)

qed

lemma crit-pair-cbelow-distinct-component:
assumes component-of-term (lt p) 6= component-of-term (lt q)
shows crit-pair-cbelow-on d m F p q
by (simp add: crit-pair-cbelow-on-def crit-pair-def assms cbelow-on-def

ord-strict-p-monomial-iff zero-in-dgrad-p-set)

lemma crit-pair-cbelow-sym:
assumes crit-pair-cbelow-on d m F p q
shows crit-pair-cbelow-on d m F q p

proof (cases component-of-term (lt q) = component-of-term (lt p))
case True
from assms show ?thesis
proof (simp add: crit-pair-cbelow-on-def crit-pair-swap[of p q] lcs-comm True,

elim cbelow-on-symmetric)
show symp (λa b. red F a b ∨ red F b a) by (simp add: symp-def)

qed
next

case False
thus ?thesis by (rule crit-pair-cbelow-distinct-component)

qed

lemma crit-pair-cs-imp-crit-pair-cbelow-on:
assumes dickson-grading d and F ⊆ dgrad-p-set d m and p ∈ dgrad-p-set d m

and q ∈ dgrad-p-set d m
and relation.cs (red F) (fst (crit-pair p q)) (snd (crit-pair p q))

shows crit-pair-cbelow-on d m F p q
proof −

from assms(1) have relation-order (red F) (≺p) (dgrad-p-set d m) by (rule
is-relation-order-red)

97

moreover have relation.dw-closed (red F) (dgrad-p-set d m)
by (rule relation.dw-closedI , rule dgrad-p-set-closed-red, rule assms(1), rule

assms(2))
moreover note assms(5)
moreover from assms(1) assms(3) assms(4) have fst (crit-pair p q) ∈ dgrad-p-set

d m
by (rule dgrad-p-set-closed-fst-crit-pair)

moreover from assms(1) assms(3) assms(4) have snd (crit-pair p q) ∈ dgrad-p-set
d m

by (rule dgrad-p-set-closed-snd-crit-pair)
moreover note fst-crit-pair-below-lcs snd-crit-pair-below-lcs
ultimately show ?thesis unfolding crit-pair-cbelow-on-def by (rule relation-order .cs-implies-cbelow-on)

qed

lemma crit-pair-cbelow-mono:
assumes crit-pair-cbelow-on d m F p q and F ⊆ G
shows crit-pair-cbelow-on d m G p q
using assms(1) unfolding crit-pair-cbelow-on-def

proof (induct rule: cbelow-on-induct)
case base
show ?case by (simp add: cbelow-on-def , intro disjI1 conjI , fact+)

next
case (step b c)
from step(2) have red G b c ∨ red G c b using red-subset[OF - assms(2)] by

blast
from step(5) step(3) this step(4) show ?case ..

qed

lemma lcs-red-single-fst-crit-pair :
assumes p 6= 0 and component-of-term (lt p) = component-of-term (lt q)
defines t1 ≡ lp p
defines t2 ≡ lp q
shows red-single (monomial (− 1) (term-of-pair (lcs t1 t2 , component-of-term

(lt p))))
(fst (crit-pair p q)) p (lcs t1 t2 − t1)

proof −
let ?l = term-of-pair (lcs t1 t2 , component-of-term (lt p))
from assms(1) have lc p 6= 0 by (rule lc-not-0)
have lt p addst ?l by (simp add: adds-lcs adds-term-def t1-def term-simps)
hence eq1 : (lcs t1 t2 − t1) ⊕ lt p = ?l

by (simp add: adds-lcs adds-minus splus-def t1-def)
with assms(1) show ?thesis
proof (simp add: crit-pair-def red-single-def assms(2))

have eq2 : monomial (− 1) ?l = monom-mult (− (1 / lc p)) (lcs t1 t2 − t1)
(monomial (lc p) (lt p))

by (simp add: monom-mult-monomial eq1 ‹lc p 6= 0 ›)
show monom-mult (1 / lc p) (lcs (lp p) (lp q) − lp p) (tail p) =

monomial (− 1) (term-of-pair (lcs t1 t2 , component-of-term (lt q))) −
monom-mult (− (1 / lc p)) (lcs t1 t2 − t1) p

98

apply (simp add: t1-def t2-def monom-mult-dist-right-minus tail-alt-2 monom-mult-uminus-left)
by (metis assms(2) eq2 monom-mult-uminus-left t1-def t2-def)

qed
qed

corollary lcs-red-single-snd-crit-pair :
assumes q 6= 0 and component-of-term (lt p) = component-of-term (lt q)
defines t1 ≡ lp p
defines t2 ≡ lp q
shows red-single (monomial (− 1) (term-of-pair (lcs t1 t2 , component-of-term

(lt p))))
(snd (crit-pair p q)) q (lcs t1 t2 − t2)

by (simp add: crit-pair-swap[of p q] lcs-comm[of lp p] assms(2) t1-def t2-def ,
rule lcs-red-single-fst-crit-pair , simp-all add: assms(1 , 2))

lemma GB-imp-crit-pair-cbelow-dgrad-p-set:
assumes dickson-grading d and F ⊆ dgrad-p-set d m and is-Groebner-basis F
assumes p ∈ F and q ∈ F and p 6= 0 and q 6= 0
shows crit-pair-cbelow-on d m F p q

proof (cases component-of-term (lt p) = component-of-term (lt q))
case True
from assms(1 , 2) show ?thesis
proof (rule crit-pair-cs-imp-crit-pair-cbelow-on)

from assms(4 , 2) show p ∈ dgrad-p-set d m ..
next

from assms(5 , 2) show q ∈ dgrad-p-set d m ..
next

let ?cp = crit-pair p q
let ?l = monomial (− 1) (term-of-pair (lcs (lp p) (lp q), component-of-term (lt

p)))
from assms(4) lcs-red-single-fst-crit-pair [OF assms(6) True] have red F ?l (fst

?cp)
by (rule red-setI)

hence 1 : (red F)∗∗ ?l (fst ?cp) ..
from assms(5) lcs-red-single-snd-crit-pair [OF assms(7) True] have red F ?l

(snd ?cp)
by (rule red-setI)

hence 2 : (red F)∗∗ ?l (snd ?cp) ..
from assms(3) have relation.is-confluent-on (red F) UNIV
by (simp only: is-Groebner-basis-def relation.confluence-equiv-ChurchRosser [symmetric]

relation.is-confluent-def)
from this 1 2 show relation.cs (red F) (fst ?cp) (snd ?cp)

by (simp add: relation.is-confluent-on-def)
qed

next
case False
thus ?thesis by (rule crit-pair-cbelow-distinct-component)

qed

99

lemma spoly-alt:
assumes p 6= 0 and q 6= 0
shows spoly p q = fst (crit-pair p q) − snd (crit-pair p q)

proof (cases component-of-term (lt p) = component-of-term (lt q))
case ec: True
show ?thesis
proof (rule poly-mapping-eqI , simp only: lookup-minus)

fix v
define t1 where t1 = lp p
define t2 where t2 = lp q
let ?l = lcs t1 t2
let ?lv = term-of-pair (?l, component-of-term (lt p))
let ?cp = crit-pair p q
let ?a = λx. monom-mult (1 / lc p) (?l − t1) x
let ?b = λx. monom-mult (1 / lc q) (?l − t2) x
have l-1 : (?l − t1) ⊕ lt p = ?lv by (simp add: adds-lcs adds-minus splus-def

t1-def)
have l-2 : (?l − t2) ⊕ lt q = ?lv by (simp add: ec adds-lcs-2 adds-minus splus-def

t2-def)
show lookup (spoly p q) v = lookup (fst ?cp) v − lookup (snd ?cp) v
proof (cases v = ?lv)

case True
have v-1 : v = (?l − t1) ⊕ lt p by (simp add: True l-1)
from ‹p 6= 0 › have lt p ∈ keys p by (rule lt-in-keys)
hence v-2 : v = (?l − t2) ⊕ lt q by (simp add: True l-2)
from ‹q 6= 0 › have lt q ∈ keys q by (rule lt-in-keys)
from ‹lt p ∈ keys p› have lookup (?a p) v = 1

by (simp add: in-keys-iff v-1 lookup-monom-mult lc-def term-simps)
also from ‹lt q ∈ keys q› have ... = lookup (?b q) v

by (simp add: in-keys-iff v-2 lookup-monom-mult lc-def term-simps)
finally have lookup (spoly p q) v = 0

by (simp add: spoly-def ec Let-def t1-def t2-def lookup-minus lc-def)
moreover have lookup (fst ?cp) v = 0
by (simp add: crit-pair-def ec v-1 lookup-monom-mult t1-def t2-def term-simps,

simp only: not-in-keys-iff-lookup-eq-zero[symmetric] keys-tail, simp)
moreover have lookup (snd ?cp) v = 0
by (simp add: crit-pair-def ec v-2 lookup-monom-mult t1-def t2-def term-simps,

simp only: not-in-keys-iff-lookup-eq-zero[symmetric] keys-tail, simp)
ultimately show ?thesis by simp

next
case False
have lookup (?a (tail p)) v = lookup (?a p) v
proof (cases ?l − t1 addsp v)

case True
then obtain u where v: v = (?l − t1) ⊕ u ..
have u 6= lt p
proof

assume u = lt p
hence v = ?lv by (simp add: v l-1)

100

with ‹v 6= ?lv› show False ..
qed
thus ?thesis by (simp add: v lookup-monom-mult lookup-tail-2 term-simps)

next
case False
thus ?thesis by (simp add: lookup-monom-mult)

qed
moreover have lookup (?b (tail q)) v = lookup (?b q) v
proof (cases ?l − t2 addsp v)

case True
then obtain u where v: v = (?l − t2) ⊕ u ..
have u 6= lt q
proof

assume u = lt q
hence v = ?lv by (simp add: v l-2)
with ‹v 6= ?lv› show False ..

qed
thus ?thesis by (simp add: v lookup-monom-mult lookup-tail-2 term-simps)

next
case False
thus ?thesis by (simp add: lookup-monom-mult)

qed
ultimately show ?thesis

by (simp add: ec spoly-def crit-pair-def lookup-minus t1-def t2-def Let-def
lc-def)

qed
qed

next
case False
show ?thesis by (simp add: spoly-def crit-pair-def False)

qed

lemma spoly-same: spoly p p = 0
by (simp add: spoly-def)

lemma spoly-swap: spoly p q = − spoly q p
by (simp add: spoly-def lcs-comm Let-def)

lemma spoly-red-zero-imp-crit-pair-cbelow-on:
assumes dickson-grading d and F ⊆ dgrad-p-set d m and p ∈ dgrad-p-set d m

and q ∈ dgrad-p-set d m and p 6= 0 and q 6= 0 and (red F)∗∗ (spoly p q) 0
shows crit-pair-cbelow-on d m F p q

proof −
from assms(7) have relation.cs (red F) (fst (crit-pair p q)) (snd (crit-pair p q))

unfolding spoly-alt[OF assms(5) assms(6)] by (rule red-diff-rtrancl-cs)
with assms(1) assms(2) assms(3) assms(4) show ?thesis by (rule crit-pair-cs-imp-crit-pair-cbelow-on)

qed

lemma dgrad-p-set-le-spoly-zero: dgrad-p-set-le d {spoly p 0} {p}

101

proof (simp add: term-simps spoly-def lt-def [of 0] lcs-comm lcs-zero dgrad-p-set-le-def
Keys-insert

Let-def min-term-def lc-def [symmetric], intro conjI impI dgrad-set-leI)
fix s
assume s ∈ pp-of-term ‘ keys (monom-mult (1 / lc p) 0 p)
then obtain u where u ∈ keys (monom-mult (1 / lc p) 0 p) and s = pp-of-term

u ..
from this(1) keys-monom-mult-subset have u ∈ (⊕) 0 ‘ keys p ..
hence u ∈ keys p by (simp add: image-iff term-simps)
hence s ∈ pp-of-term ‘ keys p by (simp add: ‹s = pp-of-term u›)
moreover have d s ≤ d s ..
ultimately show ∃ t∈pp-of-term ‘ keys p. d s ≤ d t ..

qed simp

lemma dgrad-p-set-le-spoly:
assumes dickson-grading d
shows dgrad-p-set-le d {spoly p q} {p, q}

proof (cases p = 0)
case True
have dgrad-p-set-le d {spoly p q} {spoly q 0} unfolding True spoly-swap[of 0 q]

by (fact dgrad-p-set-le-uminus)
also have dgrad-p-set-le d ... {q} by (fact dgrad-p-set-le-spoly-zero)
also have dgrad-p-set-le d ... {p, q} by (rule dgrad-p-set-le-subset, simp)
finally show ?thesis .

next
case False
show ?thesis
proof (cases q = 0)

case True
have dgrad-p-set-le d {spoly p q} {p} unfolding True by (fact dgrad-p-set-le-spoly-zero)
also have dgrad-p-set-le d ... {p, q} by (rule dgrad-p-set-le-subset, simp)
finally show ?thesis .

next
case False
have dgrad-p-set-le d {spoly p q} {fst (crit-pair p q), snd (crit-pair p q)}

unfolding spoly-alt[OF ‹p 6= 0 › False] by (rule dgrad-p-set-le-minus)
also have dgrad-p-set-le d ... {p, q}
proof (rule dgrad-p-set-leI-insert)

from assms show dgrad-p-set-le d {fst (crit-pair p q)} {p, q}
by (rule dgrad-p-set-le-fst-crit-pair)

next
from assms show dgrad-p-set-le d {snd (crit-pair p q)} {p, q}

by (rule dgrad-p-set-le-snd-crit-pair)
qed
finally show ?thesis .

qed
qed

lemma dgrad-p-set-closed-spoly:

102

assumes dickson-grading d and p ∈ dgrad-p-set d m and q ∈ dgrad-p-set d m
shows spoly p q ∈ dgrad-p-set d m

proof −
from dgrad-p-set-le-spoly[OF assms(1)] have {spoly p q} ⊆ dgrad-p-set d m
proof (rule dgrad-p-set-le-dgrad-p-set)

from assms(2 , 3) show {p, q} ⊆ dgrad-p-set d m by simp
qed
thus ?thesis by simp

qed

lemma components-spoly-subset: component-of-term ‘ keys (spoly p q) ⊆ compo-
nent-of-term ‘ Keys {p, q}

unfolding spoly-def Let-def
proof (split if-split, intro conjI impI)

define c where c = (1 / lookup p (lt p))
define d where d = (1 / lookup q (lt q))
define s where s = lcs (lp p) (lp q) − lp p
define t where t = lcs (lp p) (lp q) − lp q
show component-of-term ‘ keys (monom-mult c s p − monom-mult d t q) ⊆

component-of-term ‘ Keys {p, q}
proof

fix k
assume k ∈ component-of-term ‘ keys (monom-mult c s p − monom-mult d t

q)
then obtain v where v ∈ keys (monom-mult c s p − monom-mult d t q) and

k: k = component-of-term v ..
from this(1) keys-minus have v ∈ keys (monom-mult c s p) ∪ keys (monom-mult

d t q) ..
thus k ∈ component-of-term ‘ Keys {p, q}
proof

assume v ∈ keys (monom-mult c s p)
from this keys-monom-mult-subset have v ∈ (⊕) s ‘ keys p ..
then obtain u where u ∈ keys p and v: v = s ⊕ u ..
have u ∈ Keys {p, q} by (rule in-KeysI , fact, simp)
moreover have k = component-of-term u by (simp add: v k term-simps)
ultimately show ?thesis by simp

next
assume v ∈ keys (monom-mult d t q)
from this keys-monom-mult-subset have v ∈ (⊕) t ‘ keys q ..
then obtain u where u ∈ keys q and v: v = t ⊕ u ..
have u ∈ Keys {p, q} by (rule in-KeysI , fact, simp)
moreover have k = component-of-term u by (simp add: v k term-simps)
ultimately show ?thesis by simp

qed
qed

qed simp

lemma pmdl-closed-spoly:
assumes p ∈ pmdl F and q ∈ pmdl F

103

shows spoly p q ∈ pmdl F
proof (cases component-of-term (lt p) = component-of-term (lt q))

case True
show ?thesis

by (simp add: spoly-def True Let-def , rule pmdl.span-diff ,
(rule pmdl-closed-monom-mult, fact)+)

next
case False
show ?thesis by (simp add: spoly-def False pmdl.span-zero)

qed

5.2 Buchberger’s Theorem

Before proving the main theorem of Gröbner bases theory for S-polynomials,
as is usually done in textbooks, we first prove it for critical pairs: a set F
yields a confluent reduction relation if the critical pairs of all p ∈ F and q ∈ F
can be connected below the least common sum of the leading power-products
of p and q. The reason why we proceed in this way is that it becomes much
easier to prove the correctness of Buchberger’s second criterion for avoiding
useless pairs.
lemma crit-pair-cbelow-imp-confluent-dgrad-p-set:

assumes dg: dickson-grading d and F ⊆ dgrad-p-set d m
assumes main:

∧
p q. p ∈ F =⇒ q ∈ F =⇒ p 6= 0 =⇒ q 6= 0 =⇒ crit-pair-cbelow-on

d m F p q
shows relation.is-confluent-on (red F) (dgrad-p-set d m)

proof −
let ?A = dgrad-p-set d m
let ?R = red F
let ?RS = λa b. red F a b ∨ red F b a
let ?ord = (≺p)
from dg have ro: Confluence.relation-order ?R ?ord ?A

by (rule is-relation-order-red)
have dw: relation.dw-closed ?R ?A
by (rule relation.dw-closedI , rule dgrad-p-set-closed-red, rule dg, rule assms(2))

show ?thesis
proof (rule relation-order .loc-connectivity-implies-confluence, fact ro)

show is-loc-connective-on ?A ?ord ?R unfolding is-loc-connective-on-def
proof (intro ballI allI impI)

fix a b1 b2 :: ′t ⇒0
′b

assume a ∈ ?A
assume ?R a b1 ∧ ?R a b2
hence ?R a b1 and ?R a b2 by simp-all
hence b1 ∈ ?A and b2 ∈ ?A and ?ord b1 a and ?ord b2 a

using red-ord dgrad-p-set-closed-red[OF dg assms(2) ‹a ∈ ?A›] by blast+
from this(1) this(2) have b1 − b2 ∈ ?A by (rule dgrad-p-set-closed-minus)
from ‹red F a b1 › obtain f1 and t1 where f1 ∈ F and r1 : red-single a b1

f1 t1 by (rule red-setE)
from ‹red F a b2 › obtain f2 and t2 where f2 ∈ F and r2 : red-single a b2

104

f2 t2 by (rule red-setE)
from r1 r2 have f1 6= 0 and f2 6= 0 by (simp-all add: red-single-def)
hence lc1 : lc f1 6= 0 and lc2 : lc f2 6= 0 using lc-not-0 by auto
show cbelow-on ?A ?ord a (λa b. ?R a b ∨ ?R b a) b1 b2
proof (cases t1 ⊕ lt f1 = t2 ⊕ lt f2)

case False
from confluent-distinct[OF r1 r2 False ‹f1 ∈ F› ‹f2 ∈ F›] obtain s

where s1 : (red F)∗∗ b1 s and s2 : (red F)∗∗ b2 s .
have relation.cs ?R b1 b2 unfolding relation.cs-def by (intro exI conjI ,

fact s1 , fact s2)
from ro dw this ‹b1 ∈ ?A› ‹b2 ∈ ?A› ‹?ord b1 a› ‹?ord b2 a› show ?thesis

by (rule relation-order .cs-implies-cbelow-on)
next

case True
hence ec: component-of-term (lt f1) = component-of-term (lt f2)

by (metis component-of-term-splus)
let ?l1 = lp f1
let ?l2 = lp f2
define v where v ≡ t2 ⊕ lt f2
define l where l ≡ lcs ?l1 ?l2
define a ′ where a ′ = except a {v}
define ma where ma = monomial (lookup a v) v
have v-alt: v = t1 ⊕ lt f1 by (simp only: True v-def)
have a = ma + a ′ unfolding ma-def a ′-def by (fact plus-except)
have comp-f1 : component-of-term (lt f1) = component-of-term v by (simp

add: v-alt term-simps)

have ?l1 adds l unfolding l-def by (rule adds-lcs)
have ?l2 adds l unfolding l-def by (rule adds-lcs-2)
have ?l1 addsp (t1 ⊕ lt f1) by (simp add: adds-pp-splus term-simps)
hence ?l1 addsp v by (simp add: v-alt)
have ?l2 addsp v by (simp add: v-def adds-pp-splus term-simps)

from ‹?l1 addsp v› ‹?l2 addsp v› have l addsp v by (simp add: l-def
adds-pp-def lcs-adds)

have pp-of-term (v 	 ?l1) = t1 by (simp add: v-alt term-simps)
with ‹l addsp v› ‹?l1 adds l› have tf1 ′: pp-of-term ((l − ?l1) ⊕ (v 	 l)) =

t1
by (simp add: minus-splus-sminus-cancel)

hence tf1 : ((pp-of-term v) − l) + (l − ?l1) = t1 by (simp add: add.commute
term-simps)

have pp-of-term (v 	 ?l2) = t2 by (simp add: v-def term-simps)
with ‹l addsp v› ‹?l2 adds l› have tf2 ′: pp-of-term ((l − ?l2) ⊕ (v 	 l)) =

t2
by (simp add: minus-splus-sminus-cancel)

hence tf2 : ((pp-of-term v) − l) + (l − ?l2) = t2 by (simp add: add.commute
term-simps)

let ?ca = lookup a v
let ?v = pp-of-term v − l
have ?v + l = pp-of-term v using ‹l addsp v› adds-minus adds-pp-def by

105

blast
from tf1 ′ have ?v adds t1 unfolding pp-of-term-splus add.commute[of l −

?l1] pp-of-term-sminus
using addsI by blast

with dg have d ?v ≤ d t1 by (rule dickson-grading-adds-imp-le)
also from dg ‹a ∈ ?A› r1 have ... ≤ m by (rule dgrad-p-set-red-single-pp)
finally have d ?v ≤ m .
from r2 have ?ca 6= 0 by (simp add: red-single-def v-def)
hence − ?ca 6= 0 by simp

from r1 have b1 = a − monom-mult (?ca / lc f1) t1 f1 by (simp add:
red-single-def v-alt)

also have ... = monom-mult (− ?ca) ?v (fst (crit-pair f1 f2)) + a ′

proof (simp add: a ′-def ec crit-pair-def l-def [symmetric] monom-mult-assoc
tf1 ,

rule poly-mapping-eqI , simp add: lookup-add lookup-minus)
fix u
show lookup a u − lookup (monom-mult (?ca / lc f1) t1 f1) u =

lookup (monom-mult (− (?ca / lc f1)) t1 (tail f1)) u + lookup (except
a {v}) u

proof (cases u = v)
case True
show ?thesis
by (simp add: True lookup-except v-alt lookup-monom-mult lookup-tail-2

lc-def [symmetric] lc1 term-simps)
next

case False
hence u /∈ {v} by simp
moreover
{

assume t1 addsp u
hence t1 ⊕ (u 	 t1) = u by (simp add: adds-pp-sminus)
hence u 	 t1 6= lt f1 using False v-alt by auto
hence lookup f1 (u 	 t1) = lookup (tail f1) (u 	 t1) by (simp add:

lookup-tail-2)
}

ultimately show ?thesis using False by (simp add: lookup-except
lookup-monom-mult)

qed
qed
finally have b1 : b1 = monom-mult (− ?ca) ?v (fst (crit-pair f1 f2)) + a ′ .

from r2 have b2 = a − monom-mult (?ca / lc f2) t2 f2
by (simp add: red-single-def v-def True)

also have ... = monom-mult (− ?ca) ?v (snd (crit-pair f1 f2)) + a ′

proof (simp add: a ′-def ec crit-pair-def l-def [symmetric] monom-mult-assoc
tf2 ,

106

rule poly-mapping-eqI , simp add: lookup-add lookup-minus)
fix u
show lookup a u − lookup (monom-mult (?ca / lc f2) t2 f2) u =

lookup (monom-mult (− (?ca / lc f2)) t2 (tail f2)) u + lookup (except
a {v}) u

proof (cases u = v)
case True
show ?thesis
by (simp add: True lookup-except v-def lookup-monom-mult lookup-tail-2

lc-def [symmetric] lc2 term-simps)
next

case False
hence u /∈ {v} by simp
moreover
{

assume t2 addsp u
hence t2 ⊕ (u 	 t2) = u by (simp add: adds-pp-sminus)
hence u 	 t2 6= lt f2 using False v-def by auto
hence lookup f2 (u 	 t2) = lookup (tail f2) (u 	 t2) by (simp add:

lookup-tail-2)
}

ultimately show ?thesis using False by (simp add: lookup-except
lookup-monom-mult)

qed
qed
finally have b2 : b2 = monom-mult (− ?ca) ?v (snd (crit-pair f1 f2)) + a ′

.

let ?lv = term-of-pair (l, component-of-term (lt f1))
from ‹f1 ∈ F› ‹f2 ∈ F› ‹f1 6= 0 › ‹f2 6= 0 › have crit-pair-cbelow-on d m F

f1 f2 by (rule main)
hence cbelow-on ?A ?ord (monomial 1 ?lv) ?RS (fst (crit-pair f1 f2)) (snd

(crit-pair f1 f2))
by (simp only: crit-pair-cbelow-on-def l-def)

with dg assms (2) ‹d ?v ≤ m› ‹− ?ca 6= 0 ›
have cbelow-on ?A ?ord (monom-mult (− ?ca) ?v (monomial 1 ?lv)) ?RS

(monom-mult (− ?ca) ?v (fst (crit-pair f1 f2)))
(monom-mult (− ?ca) ?v (snd (crit-pair f1 f2)))

by (rule cbelow-on-monom-mult)
hence cbelow-on ?A ?ord (monomial (− ?ca) v) ?RS

(monom-mult (− ?ca) ?v (fst (crit-pair f1 f2)))
(monom-mult (− ?ca) ?v (snd (crit-pair f1 f2)))

by (simp add: monom-mult-monomial ‹(pp-of-term v − l) + l = pp-of-term
v› splus-def comp-f1 term-simps)

with ‹?ca 6= 0 › have cbelow-on ?A ?ord (monomial ?ca (0 ⊕ v)) ?RS
(monom-mult (−?ca) ?v (fst (crit-pair f1 f2))) (monom-mult (−?ca)

?v (snd (crit-pair f1 f2)))
by (rule cbelow-on-monom-mult-monomial)

hence cbelow-on ?A ?ord ma ?RS

107

(monom-mult (−?ca) ?v (fst (crit-pair f1 f2))) (monom-mult (−?ca)
?v (snd (crit-pair f1 f2)))

by (simp add: ma-def term-simps)
with dg assms(2) - -
show cbelow-on ?A ?ord a ?RS b1 b2 unfolding ‹a = ma + a ′› b1 b2
proof (rule cbelow-on-plus)

show a ′ ∈ ?A
by (rule, simp add: a ′-def keys-except, erule conjE , intro dgrad-p-setD,

rule ‹a ∈ dgrad-p-set d m›)
next

show keys a ′ ∩ keys ma = {} by (simp add: ma-def a ′-def keys-except)
qed

qed
qed

qed fact
qed

corollary crit-pair-cbelow-imp-GB-dgrad-p-set:
assumes dickson-grading d and F ⊆ dgrad-p-set d m
assumes

∧
p q. p ∈ F =⇒ q ∈ F =⇒ p 6= 0 =⇒ q 6= 0 =⇒ crit-pair-cbelow-on

d m F p q
shows is-Groebner-basis F
unfolding is-Groebner-basis-def

proof (rule relation.confluence-implies-ChurchRosser ,
simp only: relation.is-confluent-def relation.is-confluent-on-def , intro ballI allI

impI)
fix a b1 b2
assume a: (red F)∗∗ a b1 ∧ (red F)∗∗ a b2
from assms(2) obtain n where m ≤ n and a ∈ dgrad-p-set d n and F ⊆

dgrad-p-set d n
by (rule dgrad-p-set-insert)

{
fix p q
assume p ∈ F and q ∈ F and p 6= 0 and q 6= 0
hence crit-pair-cbelow-on d m F p q by (rule assms(3))
from this dgrad-p-set-subset[OF ‹m ≤ n›] have crit-pair-cbelow-on d n F p q

unfolding crit-pair-cbelow-on-def by (rule cbelow-on-mono)
}
with assms(1) ‹F ⊆ dgrad-p-set d n› have relation.is-confluent-on (red F)

(dgrad-p-set d n)
by (rule crit-pair-cbelow-imp-confluent-dgrad-p-set)

from this ‹a ∈ dgrad-p-set d n› have ∀ b1 b2 . (red F)∗∗ a b1 ∧ (red F)∗∗ a b2
−→ relation.cs (red F) b1 b2

unfolding relation.is-confluent-on-def ..
with a show relation.cs (red F) b1 b2 by blast

qed

corollary Buchberger-criterion-dgrad-p-set:
assumes dickson-grading d and F ⊆ dgrad-p-set d m

108

assumes
∧

p q. p ∈ F =⇒ q ∈ F =⇒ p 6= 0 =⇒ q 6= 0 =⇒ p 6= q =⇒
component-of-term (lt p) = component-of-term (lt q) =⇒ (red

F)∗∗ (spoly p q) 0
shows is-Groebner-basis F
using assms(1) assms(2)

proof (rule crit-pair-cbelow-imp-GB-dgrad-p-set)
fix p q
assume p ∈ F and q ∈ F and p 6= 0 and q 6= 0
from this(1 , 2) assms(2) have p: p ∈ dgrad-p-set d m and q: q ∈ dgrad-p-set d

m by auto
show crit-pair-cbelow-on d m F p q
proof (cases p = q)

case True
from assms(1) q show ?thesis unfolding True by (rule crit-pair-cbelow-same)

next
case False
show ?thesis
proof (cases component-of-term (lt p) = component-of-term (lt q))

case True
from assms(1) assms(2) p q ‹p 6= 0 › ‹q 6= 0 › show crit-pair-cbelow-on d m

F p q
proof (rule spoly-red-zero-imp-crit-pair-cbelow-on)
from ‹p ∈ F› ‹q ∈ F› ‹p 6= 0 › ‹q 6= 0 › ‹p 6= q› True show (red F)∗∗ (spoly

p q) 0
by (rule assms(3))

qed
next

case False
thus ?thesis by (rule crit-pair-cbelow-distinct-component)

qed
qed

qed

lemmas Buchberger-criterion-finite = Buchberger-criterion-dgrad-p-set[OF dick-
son-grading-dgrad-dummy dgrad-p-set-exhaust-expl]

lemma (in ordered-term) GB-imp-zero-reducibility:
assumes is-Groebner-basis G and f ∈ pmdl G
shows (red G)∗∗ f 0

proof −
from in-pmdl-srtc[OF ‹f ∈ pmdl G›] ‹is-Groebner-basis G› have relation.cs (red

G) f 0
unfolding is-Groebner-basis-def relation.is-ChurchRosser-def by simp

then obtain s where rfs: (red G)∗∗ f s and r0s: (red G)∗∗ 0 s unfolding
relation.cs-def by auto

from rtrancl-0 [OF r0s] and rfs show ?thesis by simp
qed

lemma (in ordered-term) GB-imp-reducibility:

109

assumes is-Groebner-basis G and f 6= 0 and f ∈ pmdl G
shows is-red G f
using assms by (meson GB-imp-zero-reducibility is-red-def relation.rtrancl-is-final)

lemma is-Groebner-basis-empty: is-Groebner-basis {}
by (rule Buchberger-criterion-finite, rule, simp)

lemma is-Groebner-basis-singleton: is-Groebner-basis {f }
by (rule Buchberger-criterion-finite, simp, simp add: spoly-same)

5.3 Buchberger’s Criteria for Avoiding Useless Pairs

Unfortunately, the product criterion is only applicable to scalar polynomials.
lemma (in gd-powerprod) product-criterion:

assumes dickson-grading d and F ⊆ punit.dgrad-p-set d m and p ∈ F and q ∈
F

and p 6= 0 and q 6= 0 and gcs (punit.lt p) (punit.lt q) = 0
shows punit.crit-pair-cbelow-on d m F p q

proof −
let ?lt = punit.lt p
let ?lq = punit.lt q
let ?l = lcs ?lt ?lq
define s where s = punit.monom-mult (− 1 / (punit.lc p ∗ punit.lc q)) 0

(punit.tail p ∗ punit.tail q)
from assms(7) have ?l = ?lt + ?lq by (metis add-cancel-left-left gcs-plus-lcs)
hence ?l − ?lt = ?lq and ?l − ?lq = ?lt by simp-all

have (punit.red {q})∗∗ (punit.tail p ∗ (monomial (1 / punit.lc p) (punit.lt q)))
(punit.monom-mult (− (1 / punit.lc p) / punit.lc q) 0 (punit.tail p ∗

punit.tail q))
unfolding punit-mult-scalar [symmetric] using ‹q 6= 0 › by (rule punit.red-mult-scalar-lt)

moreover have punit.monom-mult (1 / punit.lc p) (punit.lt q) (punit.tail p) =
punit.tail p ∗ (monomial (1 / punit.lc p) (punit.lt q))

by (simp add: times-monomial-left[symmetric])
ultimately have (punit.red {q})∗∗ (fst (punit.crit-pair p q)) s

by (simp add: punit.crit-pair-def ‹?l − ?lt = ?lq› s-def)
moreover from ‹q ∈ F› have {q} ⊆ F by simp
ultimately have 1 : (punit.red F)∗∗ (fst (punit.crit-pair p q)) s by (rule punit.red-rtrancl-subset)

have (punit.red {p})∗∗ (punit.tail q ∗ (monomial (1 / punit.lc q) (punit.lt p)))
(punit.monom-mult (− (1 / punit.lc q) / punit.lc p) 0 (punit.tail q ∗

punit.tail p))
unfolding punit-mult-scalar [symmetric] using ‹p 6= 0 › by (rule punit.red-mult-scalar-lt)

hence (punit.red {p})∗∗ (snd (punit.crit-pair p q)) s
by (simp add: punit.crit-pair-def ‹?l − ?lq = ?lt› s-def mult.commute flip:

times-monomial-left)
moreover from ‹p ∈ F› have {p} ⊆ F by simp
ultimately have 2 : (punit.red F)∗∗ (snd (punit.crit-pair p q)) s by (rule punit.red-rtrancl-subset)

110

note assms(1) assms(2)
moreover from ‹p ∈ F› ‹F ⊆ punit.dgrad-p-set d m› have p ∈ punit.dgrad-p-set

d m ..
moreover from ‹q ∈ F› ‹F ⊆ punit.dgrad-p-set d m› have q ∈ punit.dgrad-p-set

d m ..
moreover from 1 2 have relation.cs (punit.red F) (fst (punit.crit-pair p q))

(snd (punit.crit-pair p q))
unfolding relation.cs-def by blast

ultimately show ?thesis by (rule punit.crit-pair-cs-imp-crit-pair-cbelow-on)
qed

lemma chain-criterion:
assumes dickson-grading d and F ⊆ dgrad-p-set d m and p ∈ F and q ∈ F

and p 6= 0 and q 6= 0 and lp r adds lcs (lp p) (lp q)
and component-of-term (lt r) = component-of-term (lt p)
and pr : crit-pair-cbelow-on d m F p r and rq: crit-pair-cbelow-on d m F r q

shows crit-pair-cbelow-on d m F p q
proof (cases component-of-term (lt p) = component-of-term (lt q))

case True
with assms(8) have comp-r : component-of-term (lt r) = component-of-term (lt

q) by simp
let ?A = dgrad-p-set d m
let ?RS = λa b. red F a b ∨ red F b a
let ?lt = lp p
let ?lq = lp q
let ?lr = lp r
let ?ltr = lcs ?lt ?lr
let ?lrq = lcs ?lr ?lq
let ?ltq = lcs ?lt ?lq

from ‹p ∈ F› ‹F ⊆ dgrad-p-set d m› have p ∈ dgrad-p-set d m ..
from this ‹p 6= 0 › have d ?lt ≤ m by (rule dgrad-p-setD-lp)
from ‹q ∈ F› ‹F ⊆ dgrad-p-set d m› have q ∈ dgrad-p-set d m ..
from this ‹q 6= 0 › have d ?lq ≤ m by (rule dgrad-p-setD-lp)
from assms(1) have d ?ltq ≤ ord-class.max (d ?lt) (d ?lq) by (rule dick-

son-grading-lcs)
also from ‹d ?lt ≤ m› ‹d ?lq ≤ m› have ... ≤ m by simp
finally have d ?ltq ≤ m .

from adds-lcs ‹?lr adds ?ltq› have ?ltr adds ?ltq by (rule lcs-adds)
then obtain up where ?ltq = ?ltr + up ..
hence up1 : ?ltq − ?lt = up + (?ltr − ?lt) and up2 : up + (?ltr − ?lr) = ?ltq −

?lr
by (metis add.commute adds-lcs minus-plus, metis add.commute adds-lcs-2

minus-plus)
have fst-pq: fst (crit-pair p q) = monom-mult 1 up (fst (crit-pair p r))

by (simp add: crit-pair-def monom-mult-assoc up1 True comp-r)
from assms(1) assms(2) - - pr
have cbelow-on ?A (≺p) (monom-mult 1 up (monomial 1 (term-of-pair (?ltr ,

111

component-of-term (lt p))))) ?RS
(fst (crit-pair p q)) (monom-mult 1 up (snd (crit-pair p r)))

unfolding fst-pq crit-pair-cbelow-on-def
proof (rule cbelow-on-monom-mult)

from ‹d ?ltq ≤ m› show d up ≤ m by (simp add: ‹?ltq = ?ltr + up› dick-
son-gradingD1 [OF assms(1)])

qed simp
hence 1 : cbelow-on ?A (≺p) (monomial 1 (term-of-pair (?ltq, component-of-term

(lt p)))) ?RS
(fst (crit-pair p q)) (monom-mult 1 up (snd (crit-pair p r)))

by (simp add: monom-mult-monomial ‹?ltq = ?ltr + up› add.commute splus-def
term-simps)

from ‹?lr adds ?ltq› adds-lcs-2 have ?lrq adds ?ltq by (rule lcs-adds)
then obtain uq where ?ltq = ?lrq + uq ..
hence uq1 : ?ltq − ?lq = uq + (?lrq − ?lq) and uq2 : uq + (?lrq − ?lr) = ?ltq
− ?lr

by (metis add.commute adds-lcs-2 minus-plus, metis add.commute adds-lcs mi-
nus-plus)
have eq: monom-mult 1 uq (fst (crit-pair r q)) = monom-mult 1 up (snd (crit-pair

p r))
by (simp add: crit-pair-def monom-mult-assoc up2 uq2 True comp-r)

have snd-pq: snd (crit-pair p q) = monom-mult 1 uq (snd (crit-pair r q))
by (simp add: crit-pair-def monom-mult-assoc uq1 True comp-r)

from assms(1) assms(2) - - rq
have cbelow-on ?A (≺p) (monom-mult 1 uq (monomial 1 (term-of-pair (?lrq,

component-of-term (lt p))))) ?RS
(monom-mult 1 uq (fst (crit-pair r q))) (snd (crit-pair p q))

unfolding snd-pq crit-pair-cbelow-on-def assms(8)
proof (rule cbelow-on-monom-mult)

from ‹d ?ltq ≤ m› show d uq ≤ m by (simp add: ‹?ltq = ?lrq + uq› dick-
son-gradingD1 [OF assms(1)])

qed simp
hence cbelow-on ?A (≺p) (monomial 1 (term-of-pair (?ltq, component-of-term

(lt p)))) ?RS
(monom-mult 1 uq (fst (crit-pair r q))) (snd (crit-pair p q))

by (simp add: monom-mult-monomial ‹?ltq = ?lrq + uq› add.commute splus-def
term-simps)

hence cbelow-on ?A (≺p) (monomial 1 (term-of-pair (?ltq, component-of-term
(lt p)))) ?RS

(monom-mult 1 up (snd (crit-pair p r))) (snd (crit-pair p q))
by (simp only: eq)

with 1 show ?thesis unfolding crit-pair-cbelow-on-def by (rule cbelow-on-transitive)
next

case False
thus ?thesis by (rule crit-pair-cbelow-distinct-component)

qed

112

5.4 Weak and Strong Gröbner Bases
lemma ord-p-wf-on:

assumes dickson-grading d
shows wfp-on (≺p) (dgrad-p-set d m)

proof (rule wfp-onI-min)
fix x:: ′t ⇒0

′b and Q
assume x ∈ Q and Q ⊆ dgrad-p-set d m
with assms obtain z where z ∈ Q and ∗:

∧
y. y ≺p z =⇒ y /∈ Q

by (rule ord-p-minimum-dgrad-p-set, blast)
from this(1) show ∃ z∈Q. ∀ y∈dgrad-p-set d m. y ≺p z −→ y /∈ Q
proof

show ∀ y∈dgrad-p-set d m. y ≺p z −→ y /∈ Q by (intro ballI impI ∗)
qed

qed

lemma is-red-implies-0-red-dgrad-p-set:
assumes dickson-grading d and B ⊆ dgrad-p-set d m
assumes pmdl B ⊆ pmdl A and

∧
q. q ∈ pmdl A =⇒ q ∈ dgrad-p-set d m =⇒

q 6= 0 =⇒ is-red B q
and p ∈ pmdl A and p ∈ dgrad-p-set d m

shows (red B)∗∗ p 0
proof −

from ord-p-wf-on[OF assms(1)] assms(6 , 5) show ?thesis
proof (induction p rule: wfp-on-induct)

case (less p)
show ?case
proof (cases p = 0)

case True
thus ?thesis by simp

next
case False
from assms(4)[OF less(3 , 1) False] obtain q where redpq: red B p q un-

folding is-red-alt ..
with assms(1) assms(2) less(1) have q ∈ dgrad-p-set d m by (rule dgrad-p-set-closed-red)

moreover from redpq have q ≺p p by (rule red-ord)
moreover from ‹pmdl B ⊆ pmdl A› ‹p ∈ pmdl A› ‹red B p q› have q ∈

pmdl A
by (rule pmdl-closed-red)

ultimately have (red B)∗∗ q 0 by (rule less(2))
show ?thesis by (rule converse-rtranclp-into-rtranclp, rule redpq, fact)

qed
qed

qed

lemma is-red-implies-0-red-dgrad-p-set ′:
assumes dickson-grading d and B ⊆ dgrad-p-set d m
assumes pmdl B ⊆ pmdl A and

∧
q. q ∈ pmdl A =⇒ q 6= 0 =⇒ is-red B q

and p ∈ pmdl A

113

shows (red B)∗∗ p 0
proof −

from assms(2) obtain n where m ≤ n and p ∈ dgrad-p-set d n and B: B ⊆
dgrad-p-set d n

by (rule dgrad-p-set-insert)
from ord-p-wf-on[OF assms(1)] this(2) assms(5) show ?thesis
proof (induction p rule: wfp-on-induct)

case (less p)
show ?case
proof (cases p = 0)

case True
thus ?thesis by simp

next
case False
from assms(4)[OF ‹p ∈ (pmdl A)› False] obtain q where redpq: red B p q

unfolding is-red-alt ..
with assms(1) B ‹p ∈ dgrad-p-set d n› have q ∈ dgrad-p-set d n by (rule

dgrad-p-set-closed-red)
moreover from redpq have q ≺p p by (rule red-ord)
moreover from ‹pmdl B ⊆ pmdl A› ‹p ∈ pmdl A› ‹red B p q› have q ∈

pmdl A
by (rule pmdl-closed-red)

ultimately have (red B)∗∗ q 0 by (rule less(2))
show ?thesis by (rule converse-rtranclp-into-rtranclp, rule redpq, fact)

qed
qed

qed

lemma pmdl-eqI-adds-lt-dgrad-p-set:
fixes G::(′t ⇒0

′b::field) set
assumes dickson-grading d and G ⊆ dgrad-p-set d m and B ⊆ dgrad-p-set d m

and pmdl G ⊆ pmdl B
assumes

∧
f . f ∈ pmdl B =⇒ f ∈ dgrad-p-set d m =⇒ f 6= 0 =⇒ (∃ g ∈ G. g

6= 0 ∧ lt g addst lt f)
shows pmdl G = pmdl B

proof
show pmdl B ⊆ pmdl G
proof (rule pmdl.span-subset-spanI , rule)

fix p
assume p ∈ B
hence p ∈ pmdl B and p ∈ dgrad-p-set d m by (rule pmdl.span-base, rule,

intro assms(3))
with assms(1 , 2 , 4) - have (red G)∗∗ p 0
proof (rule is-red-implies-0-red-dgrad-p-set)

fix f
assume f ∈ pmdl B and f ∈ dgrad-p-set d m and f 6= 0
hence (∃ g ∈ G. g 6= 0 ∧ lt g addst lt f) by (rule assms(5))
then obtain g where g ∈ G and g 6= 0 and lt g addst lt f by blast
thus is-red G f using ‹f 6= 0 › is-red-indI1 by blast

114

qed
thus p ∈ pmdl G by (rule red-rtranclp-0-in-pmdl)

qed
qed fact

lemma pmdl-eqI-adds-lt-dgrad-p-set ′:
fixes G::(′t ⇒0

′b::field) set
assumes dickson-grading d and G ⊆ dgrad-p-set d m and pmdl G ⊆ pmdl B
assumes

∧
f . f ∈ pmdl B =⇒ f 6= 0 =⇒ (∃ g ∈ G. g 6= 0 ∧ lt g addst lt f)

shows pmdl G = pmdl B
proof

show pmdl B ⊆ pmdl G
proof

fix p
assume p ∈ pmdl B
with assms(1 , 2 , 3) - have (red G)∗∗ p 0
proof (rule is-red-implies-0-red-dgrad-p-set ′)

fix f
assume f ∈ pmdl B and f 6= 0
hence (∃ g ∈ G. g 6= 0 ∧ lt g addst lt f) by (rule assms(4))
then obtain g where g ∈ G and g 6= 0 and lt g addst lt f by blast
thus is-red G f using ‹f 6= 0 › is-red-indI1 by blast

qed
thus p ∈ pmdl G by (rule red-rtranclp-0-in-pmdl)

qed
qed fact

lemma GB-implies-unique-nf-dgrad-p-set:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
assumes isGB: is-Groebner-basis G
shows ∃ ! h. (red G)∗∗ f h ∧ ¬ is-red G h

proof −
from assms(1) assms(2) have wfP (red G)−1−1 by (rule red-wf-dgrad-p-set)
then obtain h where ftoh: (red G)∗∗ f h and irredh: relation.is-final (red G) h

by (rule relation.wf-imp-nf-ex)
show ?thesis
proof

from ftoh and irredh show (red G)∗∗ f h ∧ ¬ is-red G h by (simp add:
is-red-def)

next
fix h ′

assume (red G)∗∗ f h ′ ∧ ¬ is-red G h ′

hence ftoh ′: (red G)∗∗ f h ′ and irredh ′: relation.is-final (red G) h ′ by (simp-all
add: is-red-def)

show h ′ = h
proof (rule relation.ChurchRosser-unique-final)
from isGB show relation.is-ChurchRosser (red G) by (simp only: is-Groebner-basis-def)
qed fact+

qed

115

qed

lemma translation-property ′:
assumes p 6= 0 and red-p-0 : (red F)∗∗ p 0
shows is-red F (p + q) ∨ is-red F q

proof (rule disjCI)
assume not-red: ¬ is-red F q
from red-p-0 ‹p 6= 0 › obtain f where f ∈ F and f 6= 0 and lt-adds: lt f addst

lt p
by (rule zero-reducibility-implies-lt-divisibility)

show is-red F (p + q)
proof (cases q = 0)

case True
with is-red-indI1 [OF ‹f ∈ F› ‹f 6= 0 › ‹p 6= 0 › lt-adds] show ?thesis by simp

next
case False
from not-red is-red-addsI [OF ‹f ∈ F› ‹f 6= 0 › - lt-adds, of q] have ¬ lt p ∈

(keys q) by blast
hence lookup q (lt p) = 0 by (simp add: in-keys-iff)
with lt-in-keys[OF ‹p 6= 0 ›] have lt p ∈ (keys (p + q)) unfolding in-keys-iff

by (simp add: lookup-add)
from is-red-addsI [OF ‹f ∈ F› ‹f 6= 0 › this lt-adds] show ?thesis .

qed
qed

lemma translation-property:
assumes p 6= q and red-0 : (red F)∗∗ (p − q) 0
shows is-red F p ∨ is-red F q

proof −
from ‹p 6= q› have p − q 6= 0 by simp
from translation-property ′[OF this red-0 , of q] show ?thesis by simp

qed

lemma weak-GB-is-strong-GB-dgrad-p-set:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
assumes

∧
f . f ∈ pmdl G =⇒ f ∈ dgrad-p-set d m =⇒ (red G)∗∗ f 0

shows is-Groebner-basis G
using assms(1 , 2)

proof (rule Buchberger-criterion-dgrad-p-set)
fix p q
assume p ∈ G and q ∈ G
hence p ∈ pmdl G and q ∈ pmdl G by (auto intro: pmdl.span-base)
hence spoly p q ∈ pmdl G by (rule pmdl-closed-spoly)
thus (red G)∗∗ (spoly p q) 0
proof (rule assms(3))

note assms(1)
moreover from ‹p ∈ G› assms(2) have p ∈ dgrad-p-set d m ..
moreover from ‹q ∈ G› assms(2) have q ∈ dgrad-p-set d m ..
ultimately show spoly p q ∈ dgrad-p-set d m by (rule dgrad-p-set-closed-spoly)

116

qed
qed

lemma weak-GB-is-strong-GB:
assumes

∧
f . f ∈ (pmdl G) =⇒ (red G)∗∗ f 0

shows is-Groebner-basis G
unfolding is-Groebner-basis-def

proof (rule relation.confluence-implies-ChurchRosser ,
simp add: relation.is-confluent-def relation.is-confluent-on-def , intro allI impI ,

erule conjE)
fix f p q
assume (red G)∗∗ f p and (red G)∗∗ f q
hence relation.srtc (red G) p q
by (meson relation.rtc-implies-srtc relation.srtc-symmetric relation.srtc-transitive)

hence p − q ∈ pmdl G by (rule srtc-in-pmdl)
hence (red G)∗∗ (p − q) 0 by (rule assms)
thus relation.cs (red G) p q by (rule red-diff-rtrancl-cs)

qed

corollary GB-alt-1-dgrad-p-set:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
shows is-Groebner-basis G ←→ (∀ f ∈ pmdl G. f ∈ dgrad-p-set d m −→ (red

G)∗∗ f 0)
using weak-GB-is-strong-GB-dgrad-p-set[OF assms] GB-imp-zero-reducibility by

blast

corollary GB-alt-1 : is-Groebner-basis G ←→ (∀ f ∈ pmdl G. (red G)∗∗ f 0)
using weak-GB-is-strong-GB GB-imp-zero-reducibility by blast

lemma isGB-I-is-red:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
assumes

∧
f . f ∈ pmdl G =⇒ f ∈ dgrad-p-set d m =⇒ f 6= 0 =⇒ is-red G f

shows is-Groebner-basis G
unfolding GB-alt-1-dgrad-p-set[OF assms(1 , 2)]

proof (intro ballI impI)
fix f
assume f ∈ pmdl G and f ∈ dgrad-p-set d m
with assms(1 , 2) subset-refl assms(3) show (red G)∗∗ f 0

by (rule is-red-implies-0-red-dgrad-p-set)
qed

lemma GB-alt-2-dgrad-p-set:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
shows is-Groebner-basis G ←→ (∀ f ∈ pmdl G. f 6= 0 −→ is-red G f)

proof
assume is-Groebner-basis G
show ∀ f∈pmdl G. f 6= 0 −→ is-red G f
proof (intro ballI , intro impI)

fix f

117

assume f ∈ (pmdl G) and f 6= 0
show is-red G f by (rule GB-imp-reducibility, fact+)

qed
next

assume a2 : ∀ f∈pmdl G. f 6= 0 −→ is-red G f
show is-Groebner-basis G unfolding GB-alt-1
proof

fix f
assume f ∈ pmdl G
from assms show (red G)∗∗ f 0
proof (rule is-red-implies-0-red-dgrad-p-set ′)

fix q
assume q ∈ pmdl G and q 6= 0
thus is-red G q by (rule a2 [rule-format])

qed (fact subset-refl, fact)
qed

qed

lemma GB-adds-lt:
assumes is-Groebner-basis G and f ∈ pmdl G and f 6= 0
obtains g where g ∈ G and g 6= 0 and lt g addst lt f

proof −
from assms(1) assms(2) have (red G)∗∗ f 0 by (rule GB-imp-zero-reducibility)
show ?thesis by (rule zero-reducibility-implies-lt-divisibility, fact+)

qed

lemma isGB-I-adds-lt:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
assumes

∧
f . f ∈ pmdl G =⇒ f ∈ dgrad-p-set d m =⇒ f 6= 0 =⇒ (∃ g ∈ G. g

6= 0 ∧ lt g addst lt f)
shows is-Groebner-basis G
using assms(1 , 2)

proof (rule isGB-I-is-red)
fix f
assume f ∈ pmdl G and f ∈ dgrad-p-set d m and f 6= 0
hence (∃ g ∈ G. g 6= 0 ∧ lt g addst lt f) by (rule assms(3))
then obtain g where g ∈ G and g 6= 0 and lt g addst lt f by blast
thus is-red G f using ‹f 6= 0 › is-red-indI1 by blast

qed

lemma GB-alt-3-dgrad-p-set:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
shows is-Groebner-basis G ←→ (∀ f ∈ pmdl G. f 6= 0 −→ (∃ g ∈ G. g 6= 0 ∧ lt

g addst lt f))
(is ?L ←→ ?R)

proof
assume ?L
show ?R
proof (intro ballI impI)

118

fix f
assume f ∈ pmdl G and f 6= 0
with ‹?L› obtain g where g ∈ G and g 6= 0 and lt g addst lt f by (rule

GB-adds-lt)
thus ∃ g∈G. g 6= 0 ∧ lt g addst lt f by blast

qed
next

assume ?R
show ?L unfolding GB-alt-2-dgrad-p-set[OF assms]
proof (intro ballI impI)

fix f
assume f ∈ pmdl G and f 6= 0
with ‹?R› have (∃ g ∈ G. g 6= 0 ∧ lt g addst lt f) by blast
then obtain g where g ∈ G and g 6= 0 and lt g addst lt f by blast
thus is-red G f using ‹f 6= 0 › is-red-indI1 by blast

qed
qed

lemma GB-insert:
assumes is-Groebner-basis G and f ∈ pmdl G
shows is-Groebner-basis (insert f G)
using assms unfolding GB-alt-1
by (metis insert-subset pmdl.span-insert-idI red-rtrancl-subset subsetI)

lemma GB-subset:
assumes is-Groebner-basis G and G ⊆ G ′ and pmdl G ′ = pmdl G
shows is-Groebner-basis G ′

using assms(1) unfolding GB-alt-1 using assms(2) assms(3) red-rtrancl-subset
by blast

lemma (in ordered-term) GB-remove-0-stable-GB:
assumes is-Groebner-basis G
shows is-Groebner-basis (G − {0})
using assms by (simp only: is-Groebner-basis-def red-minus-singleton-zero)

lemmas is-red-implies-0-red-finite = is-red-implies-0-red-dgrad-p-set ′[OF dickson-grading-dgrad-dummy
dgrad-p-set-exhaust-expl]
lemmas GB-implies-unique-nf-finite = GB-implies-unique-nf-dgrad-p-set[OF dick-
son-grading-dgrad-dummy dgrad-p-set-exhaust-expl]
lemmas GB-alt-2-finite = GB-alt-2-dgrad-p-set[OF dickson-grading-dgrad-dummy
dgrad-p-set-exhaust-expl]
lemmas GB-alt-3-finite = GB-alt-3-dgrad-p-set[OF dickson-grading-dgrad-dummy
dgrad-p-set-exhaust-expl]
lemmas pmdl-eqI-adds-lt-finite = pmdl-eqI-adds-lt-dgrad-p-set ′[OF dickson-grading-dgrad-dummy
dgrad-p-set-exhaust-expl]

119

5.5 Alternative Characterization of Gröbner Bases via Rep-
resentations of S-Polynomials

definition spoly-rep :: (′a ⇒ nat) ⇒ nat ⇒ (′t ⇒0
′b) set ⇒ (′t ⇒0

′b) ⇒ (′t ⇒0
′b::field) ⇒ bool

where spoly-rep d m G g1 g2 ←→ (∃ q. spoly g1 g2 = (
∑

g∈G. q g � g) ∧
(∀ g. q g ∈ punit.dgrad-p-set d m ∧

(q g � g 6= 0 −→ lt (q g � g) ≺t term-of-pair (lcs (lp g1) (lp
g2),

component-of-term (lt g2)))))

lemma spoly-repI :
spoly g1 g2 = (

∑
g∈G. q g � g) =⇒ (

∧
g. q g ∈ punit.dgrad-p-set d m) =⇒

(
∧

g. q g � g 6= 0 =⇒ lt (q g � g) ≺t term-of-pair (lcs (lp g1) (lp g2),
component-of-term (lt g2))) =⇒

spoly-rep d m G g1 g2
by (auto simp: spoly-rep-def)

lemma spoly-repI-zero:
assumes spoly g1 g2 = 0
shows spoly-rep d m G g1 g2

proof (rule spoly-repI)
show spoly g1 g2 = (

∑
g∈G. 0 � g) by (simp add: assms)

qed (simp-all add: punit.zero-in-dgrad-p-set)

lemma spoly-repE :
assumes spoly-rep d m G g1 g2
obtains q where spoly g1 g2 = (

∑
g∈G. q g � g) and

∧
g. q g ∈ punit.dgrad-p-set

d m
and

∧
g. q g � g 6= 0 =⇒ lt (q g � g) ≺t term-of-pair (lcs (lp g1) (lp g2),

component-of-term (lt g2))
using assms by (auto simp: spoly-rep-def)

corollary isGB-D-spoly-rep:
assumes dickson-grading d and is-Groebner-basis G and G ⊆ dgrad-p-set d m

and finite G
and g1 ∈ G and g2 ∈ G and g1 6= 0 and g2 6= 0

shows spoly-rep d m G g1 g2
proof (cases spoly g1 g2 = 0)

case True
thus ?thesis by (rule spoly-repI-zero)

next
case False
let ?v = term-of-pair (lcs (lp g1) (lp g2), component-of-term (lt g1))
let ?h = crit-pair g1 g2
from assms(7 , 8) have eq: spoly g1 g2 = fst ?h + (− snd ?h) by (simp add:

spoly-alt)
have fst ?h ≺p monomial 1 ?v by (fact fst-crit-pair-below-lcs)
hence d1 : fst ?h = 0 ∨ lt (fst ?h) ≺t ?v by (simp only: ord-strict-p-monomial-iff)
have snd ?h ≺p monomial 1 ?v by (fact snd-crit-pair-below-lcs)

120

hence d2 : snd ?h = 0 ∨ lt (− snd ?h) ≺t ?v by (simp only: ord-strict-p-monomial-iff
lt-uminus)

note assms(1)
moreover from assms(5 , 3) have g1 ∈ dgrad-p-set d m ..
moreover from assms(6 , 3) have g2 ∈ dgrad-p-set d m ..
ultimately have spoly g1 g2 ∈ dgrad-p-set d m by (rule dgrad-p-set-closed-spoly)
from assms(5) have g1 ∈ pmdl G by (rule pmdl.span-base)
moreover from assms(6) have g2 ∈ pmdl G by (rule pmdl.span-base)
ultimately have spoly g1 g2 ∈ pmdl G by (rule pmdl-closed-spoly)
with assms(2) have (red G)∗∗ (spoly g1 g2) 0 by (rule GB-imp-zero-reducibility)
with assms(1 , 3 , 4) ‹spoly - - ∈ dgrad-p-set - -› obtain q
where 1 : spoly g1 g2 = 0 + (

∑
g∈G. q g � g) and 2 :

∧
g. q g ∈ punit.dgrad-p-set

d m
and

∧
g. lt (q g � g) �t lt (spoly g1 g2) by (rule red-rtrancl-repE) blast

show ?thesis
proof (rule spoly-repI)

fix g
note ‹lt (q g � g) �t lt (spoly g1 g2)›
also from d1 have lt (spoly g1 g2) ≺t ?v
proof

assume fst ?h = 0
hence eq: spoly g1 g2 = − snd ?h by (simp add: eq)
also from d2 have lt . . . ≺t ?v
proof

assume snd ?h = 0
with False show ?thesis by (simp add: eq)

qed
finally show ?thesis .

next
assume ∗: lt (fst ?h) ≺t ?v
from d2 show ?thesis
proof

assume snd ?h = 0
with ∗ show ?thesis by (simp add: eq)

next
assume ∗∗: lt (− snd ?h) ≺t ?v

have lt (spoly g1 g2) �t ord-term-lin.max (lt (fst ?h)) (lt (− snd ?h))
unfolding eq

by (fact lt-plus-le-max)
also from ∗ ∗∗ have . . . ≺t ?v by (simp only: ord-term-lin.max-less-iff-conj)
finally show ?thesis .

qed
qed

also from False have . . . = term-of-pair (lcs (lp g1) (lp g2), component-of-term
(lt g2))

by (simp add: spoly-def Let-def split: if-split-asm)
finally show lt (q g � g) ≺t term-of-pair (lcs (lp g1) (lp g2), component-of-term

(lt g2)) .
qed (simp-all add: 1 2)

121

qed

The finiteness assumption on G in the following theorem could be dropped,
but it makes the proof a lot easier (although it is still fairly complicated).
lemma isGB-I-spoly-rep:

assumes dickson-grading d and G ⊆ dgrad-p-set d m and finite G
and

∧
g1 g2 . g1 ∈ G =⇒ g2 ∈ G =⇒ g1 6= 0 =⇒ g2 6= 0 =⇒ spoly g1 g2 6=

0 =⇒ spoly-rep d m G g1 g2
shows is-Groebner-basis G

proof (rule ccontr)
assume ¬ is-Groebner-basis G
then obtain p where p ∈ pmdl G and p-in: p ∈ dgrad-p-set d m and ¬ (red

G)∗∗ p 0
by (auto simp: GB-alt-1-dgrad-p-set[OF assms(1 , 2)])

from ‹¬ is-Groebner-basis G› have G 6= {} by (auto simp: is-Groebner-basis-empty)

obtain r where p-red: (red G)∗∗ p r and r-irred: ¬ is-red G r
proof −

define A where A = {q. (red G)∗∗ p q}
from assms(1 , 2) have wfP (red G)−1−1 by (rule red-wf-dgrad-p-set)
moreover have p ∈ A by (simp add: A-def)
ultimately obtain r where r ∈ A and r-min:

∧
z. (red G)−1−1 z r =⇒ z /∈

A
by (rule wfE-min[to-pred]) blast

show ?thesis
proof

from ‹r ∈ A› show ∗: (red G)∗∗ p r by (simp add: A-def)

show ¬ is-red G r
proof

assume is-red G r
then obtain z where (red G) r z by (rule is-redE)
hence (red G)−1−1 z r by simp
hence z /∈ A by (rule r-min)
hence ¬ (red G)∗∗ p z by (simp add: A-def)
moreover from ∗ ‹(red G) r z› have (red G)∗∗ p z ..
ultimately show False ..

qed
qed

qed
from assms(1 , 2) p-in p-red have r-in: r ∈ dgrad-p-set d m by (rule dgrad-p-set-closed-red-rtrancl)
from p-red ‹¬ (red G)∗∗ p 0 › have r 6= 0 by blast
from p-red have p − r ∈ pmdl G by (rule red-rtranclp-diff-in-pmdl)
with ‹p ∈ pmdl G› have p − (p − r) ∈ pmdl G by (rule pmdl.span-diff)
hence r ∈ pmdl G by simp
with assms(3) obtain q0 where r : r = (

∑
g∈G. q0 g � g) by (rule pmdl.span-finiteE)

from assms(3) have finite (q0 ‘ G) by (rule finite-imageI)
then obtain m0 where q0 ‘ G ⊆ punit.dgrad-p-set d m0 by (rule punit.dgrad-p-set-exhaust)
define m ′ where m ′ = ord-class.max m m0

122

have dgrad-p-set d m ⊆ dgrad-p-set d m ′ by (rule dgrad-p-set-subset) (simp add:
m ′-def)

with assms(2) have G-sub: G ⊆ dgrad-p-set d m ′ by (rule subset-trans)
have punit.dgrad-p-set d m0 ⊆ punit.dgrad-p-set d m ′

by (rule punit.dgrad-p-set-subset) (simp add: m ′-def)
with ‹q0 ‘ G ⊆ -› have q0 ‘ G ⊆ punit.dgrad-p-set d m ′ by (rule subset-trans)

define mlt where mlt = (λq. ord-term-lin.Max (lt ‘ {q g � g | g. g ∈ G ∧ q g
� g 6= 0}))

define mnum where mnum = (λq. card {g∈G. q g � g 6= 0 ∧ lt (q g � g) =
mlt q})

define rel where rel = (λq1 q2 . mlt q1 ≺t mlt q2 ∨ (mlt q1 = mlt q2 ∧ mnum
q1 < mnum q2))

define rel-dom where rel-dom = {q. q ‘ G ⊆ punit.dgrad-p-set d m ′ ∧ r =
(
∑

g∈G. q g � g)}

have mlt-in: mlt q ∈ lt ‘ {q g � g | g. g ∈ G ∧ q g � g 6= 0} if q ∈ rel-dom for
q

unfolding mlt-def
proof (rule ord-term-lin.Max-in, simp-all add: assms(3), rule ccontr)

assume @ g. g ∈ G ∧ q g � g 6= 0
hence q g � g = 0 if g ∈ G for g using that by simp
with that have r = 0 by (simp add: rel-dom-def)
with ‹r 6= 0 › show False ..

qed

have rel-dom-dgrad-set: pp-of-term ‘ mlt ‘ rel-dom ⊆ dgrad-set d m ′

proof (rule subsetI , elim imageE)
fix q v t
assume q ∈ rel-dom and v: v = mlt q and t: t = pp-of-term v
from this(1) have v ∈ lt ‘ {q g � g | g. g ∈ G ∧ q g � g 6= 0} unfolding v

by (rule mlt-in)
then obtain g where g ∈ G and q g � g 6= 0 and v: v = lt (q g � g) by

blast
from this(2) have q g 6= 0 and g 6= 0 by auto
hence v = punit.lt (q g) ⊕ lt g unfolding v by (rule lt-mult-scalar)
hence t = punit.lt (q g) + lp g by (simp add: t pp-of-term-splus)
also from assms(1) have d . . . = ord-class.max (d (punit.lt (q g))) (d (lp g))

by (rule dickson-gradingD1)
also have . . . ≤ m ′

proof (rule max.boundedI)
from ‹g ∈ G› ‹q ∈ rel-dom› have q g ∈ punit.dgrad-p-set d m ′ by (auto

simp: rel-dom-def)
moreover from ‹q g 6= 0 › have punit.lt (q g) ∈ keys (q g) by (rule

punit.lt-in-keys)
ultimately show d (punit.lt (q g)) ≤ m ′ by (rule punit.dgrad-p-setD[simplified])
next

from ‹g ∈ G› G-sub have g ∈ dgrad-p-set d m ′ ..
moreover from ‹g 6= 0 › have lt g ∈ keys g by (rule lt-in-keys)

123

ultimately show d (lp g) ≤ m ′ by (rule dgrad-p-setD)
qed
finally show t ∈ dgrad-set d m ′ by (simp add: dgrad-set-def)

qed

obtain q where q ∈ rel-dom and q-min:
∧

q ′. rel q ′ q =⇒ q ′ /∈ rel-dom
proof −

from ‹q0 ‘ G ⊆ punit.dgrad-p-set d m ′› have q0 ∈ rel-dom by (simp add:
rel-dom-def r)

hence mlt q0 ∈ mlt ‘ rel-dom by (rule imageI)
with assms(1) obtain u where u ∈ mlt ‘ rel-dom and u-min:

∧
w. w ≺t u

=⇒ w /∈ mlt ‘ rel-dom
using rel-dom-dgrad-set by (rule ord-term-minimum-dgrad-set) blast

from this(1) obtain q ′ where q ′ ∈ rel-dom and u: u = mlt q ′ ..
hence q ′ ∈ rel-dom ∩ {q. mlt q = u} (is - ∈ ?A) by simp
hence mnum q ′ ∈ mnum ‘ ?A by (rule imageI)
with wf [to-pred] obtain k where k ∈ mnum ‘ ?A and k-min:

∧
l. l < k =⇒ l

/∈ mnum ‘ ?A
by (rule wfE-min[to-pred]) blast

from this(1) obtain q ′′ where q ′′ ∈ rel-dom and mlt ′′: mlt q ′′ = u and k: k
= mnum q ′′

by blast
from this(1) show ?thesis
proof

fix q0
assume rel q0 q ′′

show q0 /∈ rel-dom
proof

assume q0 ∈ rel-dom
from ‹rel q0 q ′′› show False unfolding rel-def
proof (elim disjE conjE)

assume mlt q0 ≺t mlt q ′′

hence mlt q0 /∈ mlt ‘ rel-dom unfolding mlt ′′ by (rule u-min)
moreover from ‹q0 ∈ rel-dom› have mlt q0 ∈ mlt ‘ rel-dom by (rule

imageI)
ultimately show ?thesis ..

next
assume mlt q0 = mlt q ′′

with ‹q0 ∈ rel-dom› have q0 ∈ ?A by (simp add: mlt ′′)
assume mnum q0 < mnum q ′′

hence mnum q0 /∈ mnum ‘ ?A unfolding k[symmetric] by (rule k-min)
with ‹q0 ∈ ?A› show ?thesis by blast

qed
qed

qed
qed
from this(1) have q-in:

∧
g. g ∈ G =⇒ q g ∈ punit.dgrad-p-set d m ′

and r : r = (
∑

g∈G. q g � g) by (auto simp: rel-dom-def)

124

define v where v = mlt q
from ‹q ∈ rel-dom› have v ∈ lt ‘ {q g � g | g. g ∈ G ∧ q g � g 6= 0} unfolding

v-def
by (rule mlt-in)

then obtain g1 where g1 ∈ G and q g1 � g1 6= 0 and v1 : v = lt (q g1 �
g1) by blast

moreover define M where M = {g∈G. q g � g 6= 0 ∧ lt (q g � g) = v}
ultimately have g1 ∈ M by simp
have v-max: lt (q g � g) ≺t v if g ∈ G and g /∈ M and q g � g 6= 0 for g
proof −

from that have lt (q g � g) 6= v by (auto simp: M-def)
moreover have lt (q g � g) �t v unfolding v-def mlt-def

by (rule ord-term-lin.Max-ge) (auto simp: assms(3) ‹q g � g 6= 0 › intro!:
imageI ‹g ∈ G›)

ultimately show ?thesis by simp
qed
from ‹q g1 � g1 6= 0 › have q g1 6= 0 and g1 6= 0 by auto
hence v1 ′: v = punit.lt (q g1) ⊕ lt g1 unfolding v1 by (rule lt-mult-scalar)
have M − {g1} 6= {}
proof

assume M − {g1} = {}
have v ∈ keys (q g1 � g1) unfolding v1 using ‹q g1 � g1 6= 0 › by (rule

lt-in-keys)
moreover have v /∈ keys (

∑
g∈G−{g1}. q g � g)

proof
assume v ∈ keys (

∑
g∈G−{g1}. q g � g)

also have . . . ⊆ (
⋃

g∈G−{g1}. keys (q g � g)) by (fact keys-sum-subset)
finally obtain g where g ∈ G − {g1} and v ∈ keys (q g � g) ..

from this(2) have q g � g 6= 0 and v �t lt (q g � g) by (auto intro:
lt-max-keys)

from ‹g ∈ G − {g1}› ‹M − {g1} = {}› have g ∈ G and g /∈ M by blast+
hence lt (q g � g) ≺t v by (rule v-max) fact
with ‹v �t -› show False by simp

qed
ultimately have v ∈ keys (q g1 � g1 + (

∑
g∈G−{g1}. q g � g)) by (rule

in-keys-plusI1)
also from ‹g1 ∈ G› assms(3) have . . . = keys r by (simp add: r sum.remove)
finally have v ∈ keys r .
with ‹g1 ∈ G› ‹g1 6= 0 › have is-red G r by (rule is-red-addsI) (simp add: v1 ′

term-simps)
with r-irred show False ..

qed
then obtain g2 where g2 ∈ M and g1 6= g2 by blast
from this(1) have g2 ∈ G and q g2 � g2 6= 0 and v2 : v = lt (q g2 � g2) by

(simp-all add: M-def)
from this(2) have q g2 6= 0 and g2 6= 0 by auto
hence v2 ′: v = punit.lt (q g2) ⊕ lt g2 unfolding v2 by (rule lt-mult-scalar)
hence component-of-term (punit.lt (q g1) ⊕ lt g1) = component-of-term (punit.lt

(q g2) ⊕ lt g2)

125

by (simp only: v1 ′ flip: v2 ′)
hence cmp-eq: component-of-term (lt g1) = component-of-term (lt g2) by (simp

add: term-simps)

have M ⊆ G by (simp add: M-def)
have r = q g1 � g1 + (

∑
g∈G − {g1}. q g � g)

using assms(3) ‹g1 ∈ G› by (simp add: r sum.remove)
also have . . . = q g1 � g1 + q g2 � g2 + (

∑
g∈G − {g1} − {g2}. q g � g)

using assms(3) ‹g2 ∈ G› ‹g1 6= g2 ›
by (metis (no-types, lifting) add.assoc finite-Diff insert-Diff insert-Diff-single

insert-iff
sum.insert-remove)

finally have r : r = q g1 � g1 + q g2 � g2 + (
∑

g∈G − {g1 , g2}. q g � g)
by (simp flip: Diff-insert2)

let ?l = lcs (lp g1) (lp g2)
let ?v = term-of-pair (?l, component-of-term (lt g2))
have lp g1 adds lp (q g1 � g1) by (simp add: v1 ′ pp-of-term-splus flip: v1)
moreover have lp g2 adds lp (q g1 � g1) by (simp add: v2 ′ pp-of-term-splus

flip: v1)
ultimately have l-adds: ?l adds lp (q g1 � g1) by (rule lcs-adds)

have spoly-rep d m G g1 g2
proof (cases spoly g1 g2 = 0)

case True
thus ?thesis by (rule spoly-repI-zero)

next
case False
with ‹g1 ∈ G› ‹g2 ∈ G› ‹g1 6= 0 › ‹g2 6= 0 › show ?thesis by (rule assms(4))

qed
then obtain q ′ where spoly: spoly g1 g2 = (

∑
g∈G. q ′ g � g)

and
∧

g. q ′ g ∈ punit.dgrad-p-set d m and
∧

g. q ′ g � g 6= 0 =⇒ lt (q ′ g � g)
≺t ?v

by (rule spoly-repE) blast
note this(2)
also have punit.dgrad-p-set d m ⊆ punit.dgrad-p-set d m ′

by (rule punit.dgrad-p-set-subset) (simp add: m ′-def)
finally have q ′-in:

∧
g. q ′ g ∈ punit.dgrad-p-set d m ′ .

define mu where mu = monomial (lc (q g1 � g1)) (lp (q g1 � g1) − ?l)
define mu1 where mu1 = monomial (1 / lc g1) (?l − lp g1)
define mu2 where mu2 = monomial (1 / lc g2) (?l − lp g2)

define q ′′ where q ′′ = (λg. q g + mu ∗ q ′ g)
(g1 :=punit.tail (q g1) + mu ∗ q ′ g1 , g2 :=q g2 + mu ∗ q ′

g2 + mu ∗ mu2)
from ‹q g1 � g1 6= 0 › have mu 6= 0 by (simp add: mu-def monomial-0-iff

lc-eq-zero-iff)
from ‹g1 6= 0 › l-adds have mu-times-mu1 : mu ∗ mu1 = monomial (punit.lc (q

g1)) (punit.lt (q g1))

126

by (simp add: mu-def mu1-def times-monomial-monomial lc-mult-scalar lc-eq-zero-iff
minus-plus-minus-cancel adds-lcs v1 ′ pp-of-term-splus flip: v1)

from l-adds have mu-times-mu2 : mu ∗ mu2 = monomial (lc (q g1 � g1) / lc
g2) (punit.lt (q g2))

by (simp add: mu-def mu2-def times-monomial-monomial lc-mult-scalar mi-
nus-plus-minus-cancel

adds-lcs-2 v2 ′ pp-of-term-splus flip: v1)
have mu1 � g1 − mu2 � g2 = spoly g1 g2

by (simp add: spoly-def Let-def cmp-eq lc-def mult-scalar-monomial mu1-def
mu2-def)

also have . . . = q ′ g1 � g1 + (
∑

g∈G − {g1}. q ′ g � g)
using assms(3) ‹g1 ∈ G› by (simp add: spoly sum.remove)

also have . . . = q ′ g1 � g1 + q ′ g2 � g2 + (
∑

g∈G − {g1} − {g2}. q ′ g � g)
using assms(3) ‹g2 ∈ G› ‹g1 6= g2 ›
by (metis (no-types, lifting) add.assoc finite-Diff insert-Diff insert-Diff-single

insert-iff
sum.insert-remove)

finally have (q ′ g1 − mu1) � g1 + (q ′ g2 + mu2) � g2 + (
∑

g∈G − {g1 ,
g2}. q ′ g � g) = 0

by (simp add: algebra-simps flip: Diff-insert2)
hence 0 = mu � ((q ′ g1 − mu1) � g1 + (q ′ g2 + mu2) � g2 + (

∑
g∈G −

{g1 , g2}. q ′ g � g)) by simp
also have . . . = (mu ∗ q ′ g1 − mu ∗ mu1) � g1 + (mu ∗ q ′ g2 + mu ∗ mu2)
� g2 +

(
∑

g∈G − {g1 , g2}. (mu ∗ q ′ g) � g)
by (simp add: mult-scalar-distrib-left sum-mult-scalar-distrib-left distrib-left

right-diff-distrib
flip: mult-scalar-assoc)

finally have r = r + (mu ∗ q ′ g1 − mu ∗ mu1) � g1 + (mu ∗ q ′ g2 + mu ∗
mu2) � g2 +

(
∑

g∈G − {g1 , g2}. (mu ∗ q ′ g) � g) by simp
also have . . . = (q g1 − mu ∗ mu1 + mu ∗ q ′ g1) � g1 + (q g2 + mu ∗ q ′ g2

+ mu ∗ mu2) � g2 +
(
∑

g∈G − {g1 , g2}. (q g + mu ∗ q ′ g) � g)
by (simp add: r algebra-simps flip: sum.distrib)

also have q g1 − mu ∗ mu1 = punit.tail (q g1)
by (simp only: mu-times-mu1 punit.leading-monomial-tail diff-eq-eq add.commute[of

punit.tail (q g1)])
finally have r = q ′′ g1 � g1 + q ′′ g2 � g2 + (

∑
g∈G − {g1} − {g2}. q ′′ g

� g)
using ‹g1 6= g2 › by (simp add: q ′′-def flip: Diff-insert2)

also from ‹finite G› ‹g1 6= g2 › ‹g1 ∈ G› ‹g2 ∈ G› have . . . = (
∑

g∈G. q ′′ g
� g)

by (simp add: sum.remove) (metis (no-types, lifting) finite-Diff insert-Diff
insert-iff sum.remove)

finally have r : r = (
∑

g∈G. q ′′ g � g) .

have 1 : lt ((mu ∗ q ′ g) � g) ≺t v if (mu ∗ q ′ g) � g 6= 0 for g
proof −

127

from that have q ′ g � g 6= 0 by (auto simp: mult-scalar-assoc)
hence ∗: lt (q ′ g � g) ≺t ?v by fact
from ‹q ′ g � g 6= 0 › ‹mu 6= 0 › have lt ((mu ∗ q ′ g) � g) = (lp (q g1 � g1)

− ?l) ⊕ lt (q ′ g � g)
by (simp add: mult-scalar-assoc lt-mult-scalar) (simp add: mu-def punit.lt-monomial

monomial-0-iff)
also from ∗ have . . . ≺t (lp (q g1 � g1) − ?l) ⊕ ?v by (rule splus-mono-strict)
also from l-adds have . . . = v by (simp add: splus-def minus-plus term-simps

v1 ′ flip: cmp-eq v1)
finally show ?thesis .

qed

have 2 : lt (q ′′ g1 � g1) ≺t v if q ′′ g1 � g1 6= 0 using that
proof (rule lt-less)

fix u
assume v �t u
have u /∈ keys (q ′′ g1 � g1)
proof

assume u ∈ keys (q ′′ g1 � g1)
also from ‹g1 6= g2 › have . . . = keys ((punit.tail (q g1) + mu ∗ q ′ g1) �

g1)
by (simp add: q ′′-def)

also have . . . ⊆ keys (punit.tail (q g1) � g1) ∪ keys ((mu ∗ q ′ g1) � g1)
unfolding mult-scalar-distrib-right by (fact Poly-Mapping.keys-add)

finally show False
proof

assume u ∈ keys (punit.tail (q g1) � g1)
hence u �t lt (punit.tail (q g1) � g1) by (rule lt-max-keys)
also have . . . �t punit.lt (punit.tail (q g1)) ⊕ lt g1

by (metis in-keys-mult-scalar-le lt-def lt-in-keys min-term-min)
also have . . . ≺t punit.lt (q g1) ⊕ lt g1
proof (intro splus-mono-strict-left punit.lt-tail notI)

assume punit.tail (q g1) = 0
with ‹u ∈ keys (punit.tail (q g1) � g1)› show False by simp

qed
also have . . . = v by (simp only: v1 ′)
finally show ?thesis using ‹v �t u› by simp

next
assume u ∈ keys ((mu ∗ q ′ g1) � g1)
hence (mu ∗ q ′ g1) � g1 6= 0 and u �t lt ((mu ∗ q ′ g1) � g1) by (auto

intro: lt-max-keys)
note this(2)
also from ‹(mu ∗ q ′ g1) � g1 6= 0 › have lt ((mu ∗ q ′ g1) � g1) ≺t v by

(rule 1)
finally show ?thesis using ‹v �t u› by simp

qed
qed
thus lookup (q ′′ g1 � g1) u = 0 by (simp add: in-keys-iff)

qed

128

have 3 : lt (q ′′ g2 � g2) �t v
proof (rule lt-le)

fix u
assume v ≺t u
have u /∈ keys (q ′′ g2 � g2)
proof

assume u ∈ keys (q ′′ g2 � g2)
also have . . . = keys ((q g2 + mu ∗ q ′ g2 + mu ∗ mu2) � g2) by (simp

add: q ′′-def)
also have . . . ⊆ keys (q g2 � g2 + (mu ∗ q ′ g2) � g2) ∪ keys ((mu ∗ mu2)

� g2)
unfolding mult-scalar-distrib-right by (fact Poly-Mapping.keys-add)

finally show False
proof

assume u ∈ keys (q g2 � g2 + (mu ∗ q ′ g2) � g2)
also have . . . ⊆ keys (q g2 � g2) ∪ keys ((mu ∗ q ′ g2) � g2) by (fact

Poly-Mapping.keys-add)
finally show ?thesis
proof

assume u ∈ keys (q g2 � g2)
hence u �t lt (q g2 � g2) by (rule lt-max-keys)
with ‹v ≺t u› show ?thesis by (simp add: v2)

next
assume u ∈ keys ((mu ∗ q ′ g2) � g2)
hence (mu ∗ q ′ g2) � g2 6= 0 and u �t lt ((mu ∗ q ′ g2) � g2) by (auto

intro: lt-max-keys)
note this(2)
also from ‹(mu ∗ q ′ g2) � g2 6= 0 › have lt ((mu ∗ q ′ g2) � g2) ≺t v by

(rule 1)
finally show ?thesis using ‹v ≺t u› by simp

qed
next

assume u ∈ keys ((mu ∗ mu2) � g2)
hence (mu ∗ mu2) � g2 6= 0 and u �t lt ((mu ∗ mu2) � g2) by (auto

intro: lt-max-keys)
from this(1) have (mu ∗ mu2) 6= 0 by auto
note ‹u �t -›

also from ‹mu ∗ mu2 6= 0 › ‹g2 6= 0 › have lt ((mu ∗ mu2) � g2) = punit.lt
(q g2) ⊕ lt g2

by (simp add: lt-mult-scalar) (simp add: mu-times-mu2 punit.lt-monomial
monomial-0-iff)

finally show ?thesis using ‹v ≺t u› by (simp add: v2 ′)
qed

qed
thus lookup (q ′′ g2 � g2) u = 0 by (simp add: in-keys-iff)

qed

have 4 : lt (q ′′ g � g) �t v if g ∈ M for g

129

proof (cases g ∈ {g1 , g2})
case True
hence g = g1 ∨ g = g2 by simp
thus ?thesis
proof

assume g = g1
show ?thesis
proof (cases q ′′ g1 � g1 = 0)

case True
thus ?thesis by (simp add: ‹g = g1 › min-term-min)

next
case False
hence lt (q ′′ g � g) ≺t v unfolding ‹g = g1 › by (rule 2)
thus ?thesis by simp

qed
next

assume g = g2
with 3 show ?thesis by simp

qed
next

case False
hence q ′′: q ′′ g = q g + mu ∗ q ′ g by (simp add: q ′′-def)
show ?thesis
proof (rule lt-le)

fix u
assume v ≺t u
have u /∈ keys (q ′′ g � g)
proof

assume u ∈ keys (q ′′ g � g)
also have . . . ⊆ keys (q g � g) ∪ keys ((mu ∗ q ′ g) � g)

unfolding q ′′ mult-scalar-distrib-right by (fact Poly-Mapping.keys-add)
finally show False
proof

assume u ∈ keys (q g � g)
hence u �t lt (q g � g) by (rule lt-max-keys)
with ‹g ∈ M › ‹v ≺t u› show ?thesis by (simp add: M-def)

next
assume u ∈ keys ((mu ∗ q ′ g) � g)
hence (mu ∗ q ′ g) � g 6= 0 and u �t lt ((mu ∗ q ′ g) � g) by (auto intro:

lt-max-keys)
note this(2)
also from ‹(mu ∗ q ′ g) � g 6= 0 › have lt ((mu ∗ q ′ g) � g) ≺t v by (rule

1)
finally show ?thesis using ‹v ≺t u› by simp

qed
qed
thus lookup (q ′′ g � g) u = 0 by (simp add: in-keys-iff)

qed
qed

130

have 5 : lt (q ′′ g � g) ≺t v if g ∈ G and g /∈ M and q ′′ g � g 6= 0 for g using
that(3)

proof (rule lt-less)
fix u
assume v �t u
from that(2) ‹g1 ∈ M › ‹g2 ∈ M › have g 6= g1 and g 6= g2 by blast+
hence q ′′: q ′′ g = q g + mu ∗ q ′ g by (simp add: q ′′-def)
have u /∈ keys (q ′′ g � g)
proof

assume u ∈ keys (q ′′ g � g)
also have . . . ⊆ keys (q g � g) ∪ keys ((mu ∗ q ′ g) � g)

unfolding q ′′ mult-scalar-distrib-right by (fact Poly-Mapping.keys-add)
finally show False
proof

assume u ∈ keys (q g � g)
hence q g � g 6= 0 and u �t lt (q g � g) by (auto intro: lt-max-keys)
note this(2)
also from that(1 , 2) ‹q g � g 6= 0 › have . . . ≺t v by (rule v-max)
finally show ?thesis using ‹v �t u› by simp

next
assume u ∈ keys ((mu ∗ q ′ g) � g)
hence (mu ∗ q ′ g) � g 6= 0 and u �t lt ((mu ∗ q ′ g) � g) by (auto intro:

lt-max-keys)
note this(2)
also from ‹(mu ∗ q ′ g) � g 6= 0 › have lt ((mu ∗ q ′ g) � g) ≺t v by (rule

1)
finally show ?thesis using ‹v �t u› by simp

qed
qed
thus lookup (q ′′ g � g) u = 0 by (simp add: in-keys-iff)

qed

define u where u = mlt q ′′

have u-in: u ∈ lt ‘ {q ′′ g � g | g. g ∈ G ∧ q ′′ g � g 6= 0} unfolding u-def
mlt-def

proof (rule ord-term-lin.Max-in, simp-all add: assms(3), rule ccontr)
assume @ g. g ∈ G ∧ q ′′ g � g 6= 0
hence q ′′ g � g = 0 if g ∈ G for g using that by simp
hence r = 0 by (simp add: r)
with ‹r 6= 0 › show False ..

qed
have u-max: lt (q ′′ g � g) �t u if g ∈ G for g
proof (cases q ′′ g � g = 0)

case True
thus ?thesis by (simp add: min-term-min)

next
case False
show ?thesis unfolding u-def mlt-def

131

by (rule ord-term-lin.Max-ge) (auto simp: assms(3) False intro!: imageI ‹g ∈
G›)

qed
have q ′′ ∈ rel-dom
proof (simp add: rel-dom-def r , intro subsetI , elim imageE)

fix g
assume g ∈ G
from assms(1) l-adds have d (lp (q g1 � g1) − ?l) ≤ d (lp (q g1 � g1))

by (rule dickson-grading-minus)
also have . . . = d (punit.lt (q g1) + lp g1) by (simp add: v1 ′ term-simps flip:

v1)
also from assms(1) have . . . = ord-class.max (d (punit.lt (q g1))) (d (lp g1))

by (rule dickson-gradingD1)
also have . . . ≤ m ′

proof (rule max.boundedI)
from ‹g1 ∈ G› have q g1 ∈ punit.dgrad-p-set d m ′ by (rule q-in)
moreover from ‹q g1 6= 0 › have punit.lt (q g1) ∈ keys (q g1) by (rule

punit.lt-in-keys)
ultimately show d (punit.lt (q g1)) ≤ m ′ by (rule punit.dgrad-p-setD[simplified])
next

from ‹g1 ∈ G› G-sub have g1 ∈ dgrad-p-set d m ′ ..
moreover from ‹g1 6= 0 › have lt g1 ∈ keys g1 by (rule lt-in-keys)
ultimately show d (lp g1) ≤ m ′ by (rule dgrad-p-setD)

qed
finally have d1 : d (lp (q g1 � g1) − ?l) ≤ m ′ .
have d (?l − lp g2) ≤ ord-class.max (d (lp g2)) (d (lp g1))
unfolding lcs-comm[of lp g1] using assms(1) by (rule dickson-grading-lcs-minus)
also have . . . ≤ m ′

proof (rule max.boundedI)
from ‹g2 ∈ G› G-sub have g2 ∈ dgrad-p-set d m ′ ..
moreover from ‹g2 6= 0 › have lt g2 ∈ keys g2 by (rule lt-in-keys)
ultimately show d (lp g2) ≤ m ′ by (rule dgrad-p-setD)

next
from ‹g1 ∈ G› G-sub have g1 ∈ dgrad-p-set d m ′ ..
moreover from ‹g1 6= 0 › have lt g1 ∈ keys g1 by (rule lt-in-keys)
ultimately show d (lp g1) ≤ m ′ by (rule dgrad-p-setD)

qed
finally have mu2 : mu2 ∈ punit.dgrad-p-set d m ′

by (simp add: mu2-def punit.dgrad-p-set-def dgrad-set-def)
fix z
assume z: z = q ′′ g
have g = g1 ∨ g = g2 ∨ (g 6= g1 ∧ g 6= g2) by blast
thus z ∈ punit.dgrad-p-set d m ′

proof (elim disjE conjE)
assume g = g1
with ‹g1 6= g2 › have q ′′ g = punit.tail (q g1) + mu ∗ q ′ g1 by (simp add:

q ′′-def)
also have . . . ∈ punit.dgrad-p-set d m ′ unfolding mu-def times-monomial-left

by (intro punit.dgrad-p-set-closed-plus punit.dgrad-p-set-closed-tail

132

punit.dgrad-p-set-closed-monom-mult d1 assms(1) q-in q ′-in ‹g1 ∈
G›)

finally show ?thesis by (simp only: z)
next

assume g = g2
hence q ′′ g = q g2 + mu ∗ q ′ g2 + mu ∗ mu2 by (simp add: q ′′-def)

also have . . . ∈ punit.dgrad-p-set d m ′ unfolding mu-def times-monomial-left
by (intro punit.dgrad-p-set-closed-plus punit.dgrad-p-set-closed-monom-mult

d1 mu2 q-in q ′-in assms(1) ‹g2 ∈ G›)
finally show ?thesis by (simp only: z)

next
assume g 6= g1 and g 6= g2
hence q ′′ g = q g + mu ∗ q ′ g by (simp add: q ′′-def)

also have . . . ∈ punit.dgrad-p-set d m ′ unfolding mu-def times-monomial-left
by (intro punit.dgrad-p-set-closed-plus punit.dgrad-p-set-closed-monom-mult

d1 assms(1) q-in q ′-in ‹g ∈ G›)
finally show ?thesis by (simp only: z)

qed
qed
with q-min have ¬ rel q ′′ q by blast
hence v �t u and u 6= v ∨ mnum q ≤ mnum q ′′ by (auto simp: v-def u-def

rel-def)
moreover have u �t v
proof −

from u-in obtain g where g ∈ G and q ′′ g � g 6= 0 and u: u = lt (q ′′ g �
g) by blast

show ?thesis
proof (cases g ∈ M)

case True
thus ?thesis unfolding u by (rule 4)

next
case False
with ‹g ∈ G› have lt (q ′′ g � g) ≺t v using ‹q ′′ g � g 6= 0 › by (rule 5)
thus ?thesis by (simp add: u)

qed
qed
ultimately have u-v: u = v and mnum q ≤ mnum q ′′ by simp-all
note this(2)
also have mnum q ′′ < card M unfolding mnum-def
proof (rule psubset-card-mono)

from ‹M ⊆ G› ‹finite G› show finite M by (rule finite-subset)
next

have {g∈G. q ′′ g � g 6= 0 ∧ lt (q ′′ g � g) = v} ⊆ M − {g1}
proof

fix g
assume g ∈ {g∈G. q ′′ g � g 6= 0 ∧ lt (q ′′ g � g) = v}
hence g ∈ G and q ′′ g � g 6= 0 and lt (q ′′ g � g) = v by simp-all
with 2 5 show g ∈ M − {g1} by blast

qed

133

also from ‹g1 ∈ M › have . . . ⊂ M by blast
finally show {g∈G. q ′′ g � g 6= 0 ∧ lt (q ′′ g � g) = mlt q ′′} ⊂ M

by (simp only: u-v flip: u-def)
qed
also have . . . = mnum q by (simp only: M-def mnum-def v-def)
finally show False ..

qed

5.6 Replacing Elements in Gröbner Bases
lemma replace-in-dgrad-p-set:

assumes G ⊆ dgrad-p-set d m
obtains n where q ∈ dgrad-p-set d n and G ⊆ dgrad-p-set d n

and insert q (G − {p}) ⊆ dgrad-p-set d n
proof −

from assms obtain n where m ≤ n and 1 : q ∈ dgrad-p-set d n and 2 : G ⊆
dgrad-p-set d n

by (rule dgrad-p-set-insert)
from this(2 , 3) have insert q (G − {p}) ⊆ dgrad-p-set d n by auto
with 1 2 show ?thesis ..

qed

lemma GB-replace-lt-adds-stable-GB-dgrad-p-set:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
assumes isGB: is-Groebner-basis G and q 6= 0 and q: q ∈ (pmdl G) and lt q

addst lt p
shows is-Groebner-basis (insert q (G − {p})) (is is-Groebner-basis ?G ′)

proof −
from assms(2) obtain n where 1 : G ⊆ dgrad-p-set d n and 2 : ?G ′⊆ dgrad-p-set

d n
by (rule replace-in-dgrad-p-set)

from isGB show ?thesis unfolding GB-alt-3-dgrad-p-set[OF assms(1) 1] GB-alt-3-dgrad-p-set[OF
assms(1) 2]

proof (intro ballI impI)
fix f
assume f1 : f ∈ (pmdl ?G ′) and f 6= 0

and a1 : ∀ f∈pmdl G. f 6= 0 −→ (∃ g∈G. g 6= 0 ∧ lt g addst lt f)
from f1 pmdl.replace-span[OF q, of p] have f ∈ pmdl G ..
from a1 [rule-format, OF this ‹f 6= 0 ›] obtain g where g ∈ G and g 6= 0 and

lt g addst lt f by auto
show ∃ g∈?G ′. g 6= 0 ∧ lt g addst lt f
proof (cases g = p)

case True
show ?thesis
proof

from ‹lt q addst lt p› have lt q addst lt g unfolding True .
also have ... addst lt f by fact
finally have lt q addst lt f .
with ‹q 6= 0 › show q 6= 0 ∧ lt q addst lt f ..

134

next
show q ∈ ?G ′ by simp

qed
next

case False
show ?thesis
proof

show g 6= 0 ∧ lt g addst lt f by (rule, fact+)
next

from ‹g ∈ G› False show g ∈ ?G ′ by blast
qed

qed
qed

qed

lemma GB-replace-lt-adds-stable-pmdl-dgrad-p-set:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
assumes isGB: is-Groebner-basis G and q 6= 0 and q ∈ pmdl G and lt q addst

lt p
shows pmdl (insert q (G − {p})) = pmdl G (is pmdl ?G ′ = pmdl G)

proof (rule, rule pmdl.replace-span, fact, rule)
fix f
assume f ∈ pmdl G
note assms(1)
moreover from assms(2) obtain n where ?G ′ ⊆ dgrad-p-set d n by (rule

replace-in-dgrad-p-set)
moreover have is-Groebner-basis ?G ′ by (rule GB-replace-lt-adds-stable-GB-dgrad-p-set,

fact+)
ultimately have ∃ ! h. (red ?G ′)∗∗ f h ∧ ¬ is-red ?G ′ h by (rule GB-implies-unique-nf-dgrad-p-set)
then obtain h where ftoh: (red ?G ′)∗∗ f h and irredh: ¬ is-red ?G ′ h by auto
have ¬ is-red G h
proof

assume is-red G h
have is-red ?G ′ h by (rule replace-lt-adds-stable-is-red, fact+)
with irredh show False ..

qed
have f − h ∈ pmdl ?G ′ by (rule red-rtranclp-diff-in-pmdl, rule ftoh)
have f − h ∈ pmdl G by (rule, fact, rule pmdl.replace-span, fact)
from pmdl.span-diff [OF this ‹f ∈ pmdl G›] have −h ∈ pmdl G by simp
from pmdl.span-neg[OF this] have h ∈ pmdl G by simp
with isGB ‹¬ is-red G h› have h = 0 using GB-imp-reducibility by auto
with ftoh have (red ?G ′)∗∗ f 0 by simp
thus f ∈ pmdl ?G ′ by (simp add: red-rtranclp-0-in-pmdl)

qed

lemma GB-replace-red-stable-GB-dgrad-p-set:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
assumes isGB: is-Groebner-basis G and p ∈ G and q: red (G − {p}) p q
shows is-Groebner-basis (insert q (G − {p})) (is is-Groebner-basis ?G ′)

135

proof −
from assms(2) obtain n where 1 : G ⊆ dgrad-p-set d n and 2 : ?G ′⊆ dgrad-p-set

d n
by (rule replace-in-dgrad-p-set)

from isGB show ?thesis unfolding GB-alt-2-dgrad-p-set[OF assms(1) 1] GB-alt-2-dgrad-p-set[OF
assms(1) 2]

proof (intro ballI impI)
fix f
assume f1 : f ∈ (pmdl ?G ′) and f 6= 0

and a1 : ∀ f∈pmdl G. f 6= 0 −→ is-red G f
have q ∈ pmdl G
proof (rule pmdl-closed-red, rule pmdl.span-mono)

from pmdl.span-superset ‹p ∈ G› show p ∈ pmdl G ..
next

show G − {p} ⊆ G by (rule Diff-subset)
qed (rule q)
from f1 pmdl.replace-span[OF this, of p] have f ∈ pmdl G ..
have is-red G f by (rule a1 [rule-format], fact+)
show is-red ?G ′ f by (rule replace-red-stable-is-red, fact+)

qed
qed

lemma GB-replace-red-stable-pmdl-dgrad-p-set:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
assumes isGB: is-Groebner-basis G and p ∈ G and ptoq: red (G − {p}) p q
shows pmdl (insert q (G − {p})) = pmdl G (is pmdl ?G ′ = -)

proof −
from ‹p ∈ G› pmdl.span-superset have p ∈ pmdl G ..
have q ∈ pmdl G
by (rule pmdl-closed-red, rule pmdl.span-mono, rule Diff-subset, rule ‹p ∈ pmdl

G›, rule ptoq)
show ?thesis
proof (rule, rule pmdl.replace-span, fact, rule)

fix f
assume f ∈ pmdl G
note assms(1)
moreover from assms(2) obtain n where ?G ′ ⊆ dgrad-p-set d n by (rule

replace-in-dgrad-p-set)
moreover have is-Groebner-basis ?G ′ by (rule GB-replace-red-stable-GB-dgrad-p-set,

fact+)
ultimately have ∃ ! h. (red ?G ′)∗∗ f h ∧ ¬ is-red ?G ′ h by (rule GB-implies-unique-nf-dgrad-p-set)
then obtain h where ftoh: (red ?G ′)∗∗ f h and irredh: ¬ is-red ?G ′ h by auto
have ¬ is-red G h
proof

assume is-red G h
have is-red ?G ′ h by (rule replace-red-stable-is-red, fact+)
with irredh show False ..

qed
have f − h ∈ pmdl ?G ′ by (rule red-rtranclp-diff-in-pmdl, rule ftoh)

136

have f − h ∈ pmdl G by (rule, fact, rule pmdl.replace-span, fact)
from pmdl.span-diff [OF this ‹f ∈ pmdl G›] have −h ∈ pmdl G by simp
from pmdl.span-neg[OF this] have h ∈ pmdl G by simp
with isGB ‹¬ is-red G h› have h = 0 using GB-imp-reducibility by auto
with ftoh have (red ?G ′)∗∗ f 0 by simp
thus f ∈ pmdl ?G ′ by (simp add: red-rtranclp-0-in-pmdl)

qed
qed

lemma GB-replace-red-rtranclp-stable-GB-dgrad-p-set:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
assumes isGB: is-Groebner-basis G and p ∈ G and ptoq: (red (G − {p}))∗∗ p

q
shows is-Groebner-basis (insert q (G − {p}))
using ptoq

proof (induct q rule: rtranclp-induct)
case base
from isGB ‹p ∈ G› show ?case by (simp add: insert-absorb)

next
case (step y z)
show ?case
proof (cases y = p)

case True
from assms(1) assms(2) isGB ‹p ∈ G› show ?thesis
proof (rule GB-replace-red-stable-GB-dgrad-p-set)

from ‹red (G − {p}) y z› show red (G − {p}) p z unfolding True .
qed

next
case False
show ?thesis

proof (cases y ∈ G)
case True
with ‹y 6= p› have y ∈ G − {p} (is - ∈ ?G ′) by blast
hence insert y (G − {p}) = ?G ′ by auto
with step(3) have is-Groebner-basis ?G ′ by simp
from ‹y ∈ ?G ′› pmdl.span-superset have y ∈ pmdl ?G ′ ..
have z ∈ pmdl ?G ′ by (rule pmdl-closed-red, rule subset-refl, fact+)
show is-Groebner-basis (insert z ?G ′) by (rule GB-insert, fact+)

next
case False
from assms(2) obtain n where insert y (G − {p}) ⊆ dgrad-p-set d n

by (rule replace-in-dgrad-p-set)
from assms(1) this step(3) have is-Groebner-basis (insert z (insert y (G −

{p}) − {y}))
proof (rule GB-replace-red-stable-GB-dgrad-p-set)

from ‹red (G − {p}) y z› False show red ((insert y (G − {p})) − {y})
y z by simp

qed simp
moreover from False have ... = (insert z (G − {p})) by simp

137

ultimately show ?thesis by simp
qed

qed
qed

lemma GB-replace-red-rtranclp-stable-pmdl-dgrad-p-set:
assumes dickson-grading d and G ⊆ dgrad-p-set d m
assumes isGB: is-Groebner-basis G and p ∈ G and ptoq: (red (G − {p}))∗∗ p

q
shows pmdl (insert q (G − {p})) = pmdl G
using ptoq

proof (induct q rule: rtranclp-induct)
case base
from ‹p ∈ G› show ?case by (simp add: insert-absorb)

next
case (step y z)
show ?case
proof (cases y = p)

case True
from assms(1) assms(2) isGB ‹p ∈ G› step(2) show ?thesis unfolding True

by (rule GB-replace-red-stable-pmdl-dgrad-p-set)
next

case False
have gb: is-Groebner-basis (insert y (G − {p}))

by (rule GB-replace-red-rtranclp-stable-GB-dgrad-p-set, fact+)
show ?thesis
proof (cases y ∈ G)

case True
with ‹y 6= p› have y ∈ G − {p} (is - ∈ ?G ′) by blast
hence eq: insert y ?G ′ = ?G ′ by auto
from ‹y ∈ ?G ′› have y ∈ pmdl ?G ′ by (rule pmdl.span-base)
have z ∈ pmdl ?G ′ by (rule pmdl-closed-red, rule subset-refl, fact+)
hence pmdl (insert z ?G ′) = pmdl ?G ′ by (rule pmdl.span-insert-idI)
also from step(3) have ... = pmdl G by (simp only: eq)
finally show ?thesis .

next
case False
from assms(2) obtain n where 1 : insert y (G − {p}) ⊆ dgrad-p-set d n

by (rule replace-in-dgrad-p-set)
from False have pmdl (insert z (G − {p})) = pmdl (insert z (insert y (G −

{p}) − {y}))
by auto

also from assms(1) 1 gb have ... = pmdl (insert y (G − {p}))
proof (rule GB-replace-red-stable-pmdl-dgrad-p-set)

from step(2) False show red ((insert y (G − {p})) − {y}) y z by simp
qed simp
also have ... = pmdl G by fact
finally show ?thesis .

qed

138

qed
qed

lemmas GB-replace-lt-adds-stable-GB-finite =
GB-replace-lt-adds-stable-GB-dgrad-p-set[OF dickson-grading-dgrad-dummy dgrad-p-set-exhaust-expl]

lemmas GB-replace-lt-adds-stable-pmdl-finite =
GB-replace-lt-adds-stable-pmdl-dgrad-p-set[OF dickson-grading-dgrad-dummy dgrad-p-set-exhaust-expl]

lemmas GB-replace-red-stable-GB-finite =
GB-replace-red-stable-GB-dgrad-p-set[OF dickson-grading-dgrad-dummy dgrad-p-set-exhaust-expl]

lemmas GB-replace-red-stable-pmdl-finite =
GB-replace-red-stable-pmdl-dgrad-p-set[OF dickson-grading-dgrad-dummy dgrad-p-set-exhaust-expl]

lemmas GB-replace-red-rtranclp-stable-GB-finite =
GB-replace-red-rtranclp-stable-GB-dgrad-p-set[OF dickson-grading-dgrad-dummy

dgrad-p-set-exhaust-expl]
lemmas GB-replace-red-rtranclp-stable-pmdl-finite =
GB-replace-red-rtranclp-stable-pmdl-dgrad-p-set[OF dickson-grading-dgrad-dummy

dgrad-p-set-exhaust-expl]

5.7 An Inconstructive Proof of the Existence of Finite Gröb-
ner Bases

lemma ex-finite-GB-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
obtains G where G ⊆ dgrad-p-set d m and finite G and is-Groebner-basis G

and pmdl G = pmdl F
proof −

define S where S = {lt f | f . f ∈ pmdl F ∧ f ∈ dgrad-p-set d m ∧ f 6= 0}
note assms(1)
moreover from - assms(2) have finite (component-of-term ‘ S)
proof (rule finite-subset)

have component-of-term ‘ S ⊆ component-of-term ‘ Keys (pmdl F)
by (rule image-mono, rule, auto simp add: S-def intro!: in-KeysI lt-in-keys)

thus component-of-term ‘ S ⊆ component-of-term ‘ Keys F by (simp only:
components-pmdl)

qed
moreover have pp-of-term ‘ S ⊆ dgrad-set d m
proof

fix s
assume s ∈ pp-of-term ‘ S
then obtain u where u ∈ S and s = pp-of-term u ..
from this(1) obtain f where f ∈ pmdl F ∧ f ∈ dgrad-p-set d m ∧ f 6= 0 and

u: u = lt f
unfolding S-def by blast

from this(1) have f ∈ dgrad-p-set d m and f 6= 0 by simp-all
have u ∈ keys f unfolding u by (rule lt-in-keys, fact)
with ‹f ∈ dgrad-p-set d m› have d (pp-of-term u) ≤ m unfolding u by (rule

dgrad-p-setD)
thus s ∈ dgrad-set d m by (simp add: ‹s = pp-of-term u› dgrad-set-def)

139

qed
ultimately obtain T where finite T and T ⊆ S and ∗:

∧
s. s ∈ S =⇒ (∃ t∈T .

t addst s)
by (rule ex-finite-adds-term, blast)

define crit where crit = (λt f . f ∈ pmdl F ∧ f ∈ dgrad-p-set d m ∧ f 6= 0 ∧ t
= lt f)

have ex-crit: t ∈ T =⇒ (∃ f . crit t f) for t
proof −

assume t ∈ T
from this ‹T ⊆ S› have t ∈ S ..
then obtain f where f ∈ pmdl F ∧ f ∈ dgrad-p-set d m ∧ f 6= 0 and t = lt f

unfolding S-def by blast
thus ∃ f . crit t f unfolding crit-def by blast

qed
define G where G = (λt. SOME g. crit t g) ‘ T
have G: g ∈ G =⇒ g ∈ pmdl F ∧ g ∈ dgrad-p-set d m ∧ g 6= 0 for g
proof −

assume g ∈ G
then obtain t where t ∈ T and g: g = (SOME h. crit t h) unfolding G-def

..
have crit t g unfolding g by (rule someI-ex, rule ex-crit, fact)
thus g ∈ pmdl F ∧ g ∈ dgrad-p-set d m ∧ g 6= 0 by (simp add: crit-def)

qed
have ∗∗: t ∈ T =⇒ (∃ g∈G. lt g = t) for t
proof −

assume t ∈ T
define g where g = (SOME h. crit t h)
from ‹t ∈ T › have g ∈ G unfolding g-def G-def by blast
thus ∃ g∈G. lt g = t
proof

have crit t g unfolding g-def by (rule someI-ex, rule ex-crit, fact)
thus lt g = t by (simp add: crit-def)

qed
qed
have adds: f ∈ pmdl F =⇒ f ∈ dgrad-p-set d m =⇒ f 6= 0 =⇒ (∃ g∈G. g 6= 0
∧ lt g addst lt f) for f

proof −
assume f ∈ pmdl F and f ∈ dgrad-p-set d m and f 6= 0
hence lt f ∈ S unfolding S-def by blast
hence ∃ t∈T . t addst (lt f) by (rule ∗)
then obtain t where t ∈ T and t addst (lt f) ..
from this(1) have ∃ g∈G. lt g = t by (rule ∗∗)
then obtain g where g ∈ G and lt g = t ..
show ∃ g∈G. g 6= 0 ∧ lt g addst lt f
proof (intro bexI conjI)

from G[OF ‹g ∈ G›] show g 6= 0 by (elim conjE)
next

from ‹t addst lt f › show lt g addst lt f by (simp only: ‹lt g = t›)
qed fact

140

qed
have sub1 : pmdl G ⊆ pmdl F
proof (rule pmdl.span-subset-spanI , rule)

fix g
assume g ∈ G
from G[OF this] show g ∈ pmdl F ..

qed
have sub2 : G ⊆ dgrad-p-set d m
proof

fix g
assume g ∈ G
from G[OF this] show g ∈ dgrad-p-set d m by (elim conjE)

qed
show ?thesis
proof

from ‹finite T › show finite G unfolding G-def ..
next

from assms(1) sub2 adds show is-Groebner-basis G
proof (rule isGB-I-adds-lt)

fix f
assume f ∈ pmdl G
from this sub1 show f ∈ pmdl F ..

qed
next

show pmdl G = pmdl F
proof

show pmdl F ⊆ pmdl G
proof (rule pmdl.span-subset-spanI , rule)

fix f
assume f ∈ F
hence f ∈ pmdl F by (rule pmdl.span-base)
from ‹f ∈ F› assms(3) have f ∈ dgrad-p-set d m ..
with assms(1) sub2 sub1 - ‹f ∈ pmdl F› have (red G)∗∗ f 0
proof (rule is-red-implies-0-red-dgrad-p-set)

fix q
assume q ∈ pmdl F and q ∈ dgrad-p-set d m and q 6= 0
hence (∃ g ∈ G. g 6= 0 ∧ lt g addst lt q) by (rule adds)
then obtain g where g ∈ G and g 6= 0 and lt g addst lt q by blast
thus is-red G q using ‹q 6= 0 › is-red-indI1 by blast

qed
thus f ∈ pmdl G by (rule red-rtranclp-0-in-pmdl)

qed
qed fact

next
show G ⊆ dgrad-p-set d m
proof

fix g
assume g ∈ G
hence g ∈ pmdl F ∧ g ∈ dgrad-p-set d m ∧ g 6= 0 by (rule G)

141

thus g ∈ dgrad-p-set d m by (elim conjE)
qed

qed
qed

The preceding lemma justifies the following definition.
definition some-GB :: (′t ⇒0

′b) set ⇒ (′t ⇒0
′b::field) set

where some-GB F = (SOME G. finite G ∧ is-Groebner-basis G ∧ pmdl G =
pmdl F)

lemma some-GB-props-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows finite (some-GB F) ∧ is-Groebner-basis (some-GB F) ∧ pmdl (some-GB

F) = pmdl F
proof −

from assms obtain G where finite G and is-Groebner-basis G and pmdl G =
pmdl F

by (rule ex-finite-GB-dgrad-p-set)
hence finite G ∧ is-Groebner-basis G ∧ pmdl G = pmdl F by simp
thus finite (some-GB F) ∧ is-Groebner-basis (some-GB F) ∧ pmdl (some-GB

F) = pmdl F
unfolding some-GB-def by (rule someI)

qed

lemma finite-some-GB-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows finite (some-GB F)
using some-GB-props-dgrad-p-set[OF assms] ..

lemma some-GB-isGB-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows is-Groebner-basis (some-GB F)
using some-GB-props-dgrad-p-set[OF assms] by (elim conjE)

lemma some-GB-pmdl-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows pmdl (some-GB F) = pmdl F
using some-GB-props-dgrad-p-set[OF assms] by (elim conjE)

lemma finite-imp-finite-component-Keys:
assumes finite F
shows finite (component-of-term ‘ Keys F)
by (rule finite-imageI , rule finite-Keys, fact)

lemma finite-some-GB-finite: finite F =⇒ finite (some-GB F)

142

by (rule finite-some-GB-dgrad-p-set, rule dickson-grading-dgrad-dummy,
erule finite-imp-finite-component-Keys, erule dgrad-p-set-exhaust-expl)

lemma some-GB-isGB-finite: finite F =⇒ is-Groebner-basis (some-GB F)
by (rule some-GB-isGB-dgrad-p-set, rule dickson-grading-dgrad-dummy,

erule finite-imp-finite-component-Keys, erule dgrad-p-set-exhaust-expl)

lemma some-GB-pmdl-finite: finite F =⇒ pmdl (some-GB F) = pmdl F
by (rule some-GB-pmdl-dgrad-p-set, rule dickson-grading-dgrad-dummy,

erule finite-imp-finite-component-Keys, erule dgrad-p-set-exhaust-expl)

Theory Buchberger implements an algorithm for effectively computing Gröb-
ner bases.

5.8 Relation red-supset

The following relation is needed for proving the termination of Buchberger’s
algorithm (i. e. function gb-schema-aux).
definition red-supset::(′t ⇒0

′b::field) set ⇒ (′t ⇒0
′b) set ⇒ bool (infixl Ap 50)

where red-supset A B ≡ (∃ p. is-red A p ∧ ¬ is-red B p) ∧ (∀ p. is-red B p −→
is-red A p)

lemma red-supsetE :
assumes A Ap B
obtains p where is-red A p and ¬ is-red B p

proof −
from assms have ∃ p. is-red A p ∧ ¬ is-red B p by (simp add: red-supset-def)
from this obtain p where is-red A p and ¬ is-red B p by auto
thus ?thesis ..

qed

lemma red-supsetD:
assumes a1 : A Ap B and a2 : is-red B p
shows is-red A p

proof −
from assms have ∀ p. is-red B p −→ is-red A p by (simp add: red-supset-def)
hence is-red B p −→ is-red A p ..
from a2 this show ?thesis by simp

qed

lemma red-supsetI [intro]:
assumes

∧
q. is-red B q =⇒ is-red A q and is-red A p and ¬ is-red B p

shows A Ap B
unfolding red-supset-def using assms by auto

lemma red-supset-insertI :
assumes x 6= 0 and ¬ is-red A x
shows (insert x A) Ap A

143

proof
fix q
assume is-red A q
thus is-red (insert x A) q unfolding is-red-alt
proof

fix a
assume red A q a
from red-unionI2 [OF this, of {x}] have red (insert x A) q a by simp
show ∃ qa. red (insert x A) q qa
proof

show red (insert x A) q a by fact
qed

qed
next

show is-red (insert x A) x unfolding is-red-alt
proof

from red-unionI1 [OF red-self [OF ‹x 6= 0 ›], of A] show red (insert x A) x 0
by simp

qed
next

show ¬ is-red A x by fact
qed

lemma red-supset-transitive:
assumes A Ap B and B Ap C
shows A Ap C

proof −
from assms(2) obtain p where is-red B p and ¬ is-red C p by (rule red-supsetE)
show ?thesis
proof

fix q
assume is-red C q
with assms(2) have is-red B q by (rule red-supsetD)
with assms(1) show is-red A q by (rule red-supsetD)

next
from assms(1) ‹is-red B p› show is-red A p by (rule red-supsetD)

qed fact
qed

lemma red-supset-wf-on:
assumes dickson-grading d and finite K
shows wfp-on (Ap) (Pow (dgrad-p-set d m) ∩ {F . component-of-term ‘ Keys F
⊆ K})
proof (rule wfp-onI-chain, rule, erule exE)

let ?A = dgrad-p-set d m
fix f ::nat ⇒ ((′t ⇒0

′b) set)
assume ∀ i. f i ∈ Pow ?A ∩ {F . component-of-term ‘ Keys F ⊆ K} ∧ f (Suc i)

Ap f i
hence a1-subset: f i ⊆ ?A and comp-sub: component-of-term ‘ Keys (f i) ⊆ K

144

and a1 : f (Suc i) Ap f i for i by simp-all

have a1-trans: i < j =⇒ f j Ap f i for i j
proof −

assume i < j
thus f j Ap f i
proof (induct j)

case 0
thus ?case by simp

next
case (Suc j)
from Suc(2) have i = j ∨ i < j by auto
thus ?case
proof

assume i = j
show ?thesis unfolding ‹i = j› by (fact a1)

next
assume i < j
from a1 have f (Suc j) Ap f j .
also from ‹i < j› have ... Ap f i by (rule Suc(1))
finally(red-supset-transitive) show ?thesis .

qed
qed

qed

have a2 : ∃ p ∈ f (Suc i). ∃ q. is-red {p} q ∧ ¬ is-red (f i) q for i
proof −

from a1 have f (Suc i) Ap f i .
then obtain q where red: is-red (f (Suc i)) q and irred: ¬ is-red (f i) q

by (rule red-supsetE)
from red obtain p where p ∈ f (Suc i) and is-red {p} q by (rule is-red-singletonI)
show ∃ p∈f (Suc i). ∃ q. is-red {p} q ∧ ¬ is-red (f i) q
proof

show ∃ q. is-red {p} q ∧ ¬ is-red (f i) q
proof (intro exI , intro conjI)

show is-red {p} q by fact
qed (fact)

next
show p ∈ f (Suc i) by fact

qed
qed

let ?P = λi p. p ∈ (f (Suc i)) ∧ (∃ q. is-red {p} q ∧ ¬ is-red (f i) q)
define g where g ≡ λi::nat. (SOME p. ?P i p)
have a3 : ?P i (g i) for i
proof −

from a2 [of i] obtain gi where gi ∈ f (Suc i) and ∃ q. is-red {gi} q ∧ ¬ is-red
(f i) q ..

show ?thesis unfolding g-def by (rule someI [of - gi], intro conjI , fact+)

145

qed

have a4 : i < j =⇒ ¬ lt (g i) addst (lt (g j)) for i j
proof

assume i < j and adds: lt (g i) addst lt (g j)
from a3 have ∃ q. is-red {g j} q ∧ ¬ is-red (f j) q ..
then obtain q where redj: is-red {g j} q and ¬ is-red (f j) q by auto
have ∗: ¬ is-red (f (Suc i)) q
proof −

from ‹i < j› have i + 1 < j ∨ i + 1 = j by auto
thus ?thesis
proof

assume i + 1 < j
from red-supsetD[OF a1-trans[rule-format, OF this], of q] ‹¬ is-red (f j) q›

show ?thesis by auto
next

assume i + 1 = j
thus ?thesis using ‹¬ is-red (f j) q› by simp

qed
qed
from a3 have g i ∈ f (i + 1) and redi: ∃ q. is-red {g i} q ∧ ¬ is-red (f i) q

by simp-all
have ¬ is-red {g i} q
proof

assume is-red {g i} q
from is-red-singletonD[OF this ‹g i ∈ f (i + 1)›] ∗ show False by simp

qed
have g i 6= 0
proof −

from redi obtain q0 where is-red {g i} q0 by auto
from is-red-singleton-not-0 [OF this] show ?thesis .

qed
from ‹¬ is-red {g i} q› is-red-singleton-trans[OF redj adds ‹g i 6= 0 ›] show

False by simp
qed

from - assms(2) have a5 : finite (component-of-term ‘ range (lt ◦ g))
proof (rule finite-subset)

show component-of-term ‘ range (lt ◦ g) ⊆ K
proof (rule, elim imageE , simp)

fix i
from a3 have g i ∈ f (Suc i) and ∃ q. is-red {g i} q ∧ ¬ is-red (f i) q by

simp-all
from this(2) obtain q where is-red {g i} q by auto
hence g i 6= 0 by (rule is-red-singleton-not-0)
hence lt (g i) ∈ keys (g i) by (rule lt-in-keys)
hence component-of-term (lt (g i)) ∈ component-of-term ‘ keys (g i) by simp
also have ... ⊆ component-of-term ‘ Keys (f (Suc i))

by (rule image-mono, rule keys-subset-Keys, fact)

146

also have ... ⊆ K by (fact comp-sub)
finally show component-of-term (lt (g i)) ∈ K .

qed
qed

have a6 : pp-of-term ‘ range (lt ◦ g) ⊆ dgrad-set d m
proof (rule, elim imageE , simp)

fix i
from a3 have g i ∈ f (Suc i) and ∃ q. is-red {g i} q ∧ ¬ is-red (f i) q by

simp-all
from this(2) obtain q where is-red {g i} q by auto
hence g i 6= 0 by (rule is-red-singleton-not-0)
from a1-subset ‹g i ∈ f (Suc i)› have g i ∈ ?A ..
from this ‹g i 6= 0 › have d (lp (g i)) ≤ m by (rule dgrad-p-setD-lp)
thus lp (g i) ∈ dgrad-set d m by (rule dgrad-setI)

qed

from assms(1) a5 a6 obtain i j where i < j and (lt ◦ g) i addst (lt ◦ g) j by
(rule Dickson-termE)

from this a4 [OF ‹i < j›] show False by simp
qed

end

lemma in-lex-prod-alt:
(x, y) ∈ r <∗lex∗> s ←→ (((fst x), (fst y)) ∈ r ∨ (fst x = fst y ∧ ((snd x), (snd

y)) ∈ s))
by (metis in-lex-prod prod.collapse prod.inject surj-pair)

5.9 Context od-term
context od-term
begin

lemmas red-wf = red-wf-dgrad-p-set[OF dickson-grading-zero subset-dgrad-p-set-zero]
lemmas Buchberger-criterion = Buchberger-criterion-dgrad-p-set[OF dickson-grading-zero
subset-dgrad-p-set-zero]

end

end

6 A General Algorithm Schema for Computing
Gröbner Bases

theory Algorithm-Schema
imports General Groebner-Bases

begin

147

This theory formalizes a general algorithm schema for computing Gröbner
bases, generalizing Buchberger’s original critical-pair/completion algorithm.
The algorithm schema depends on several functional parameters that can
be instantiated by a variety of concrete functions. Possible instances yield
Buchberger’s algorithm, Faugère’s F4 algorithm, and (as far as we can tell)
even his F5 algorithm.

6.1 processed
definition minus-pairs (infixl −p 65) where minus-pairs A B = A − (B ∪
prod.swap ‘ B)
definition Int-pairs (infixl ∩p 65) where Int-pairs A B = A ∩ (B ∪ prod.swap
‘ B)
definition in-pair (infix ∈p 50) where in-pair p A ←→ (p ∈ A ∪ prod.swap ‘ A)
definition subset-pairs (infix ⊆p 50) where subset-pairs A B ←→ (∀ x. x ∈p A
−→ x ∈p B)
abbreviation not-in-pair (infix /∈p 50) where not-in-pair p A ≡ ¬ p ∈p A

lemma in-pair-alt: p ∈p A ←→ (p ∈ A ∨ prod.swap p ∈ A)
by (metis (mono-tags, lifting) UnCI UnE image-iff in-pair-def prod.collapse

swap-simp)

lemma in-pair-iff : (a, b) ∈p A ←→ ((a, b) ∈ A ∨ (b, a) ∈ A)
by (simp add: in-pair-alt)

lemma in-pair-minus-pairs [simp]: p ∈p A −p B ←→ (p ∈p A ∧ p /∈p B)
by (metis Diff-iff in-pair-def in-pair-iff minus-pairs-def prod.collapse)

lemma in-minus-pairs [simp]: p ∈ A −p B ←→ (p ∈ A ∧ p /∈p B)
by (metis Diff-iff in-pair-def minus-pairs-def)

lemma in-pair-Int-pairs [simp]: p ∈p A ∩p B ←→ (p ∈p A ∧ p ∈p B)
by (metis (no-types, opaque-lifting) Int-iff Int-pairs-def in-pair-alt in-pair-def

old.prod.exhaust swap-simp)

lemma in-pair-Un [simp]: p ∈p A ∪ B ←→ (p ∈p A ∨ p ∈p B)
by (metis (mono-tags, lifting) UnE UnI1 UnI2 image-Un in-pair-def)

lemma in-pair-trans [trans]:
assumes p ∈p A and A ⊆ B
shows p ∈p B
using assms by (auto simp: in-pair-def)

lemma in-pair-same [simp]: p ∈p A × A ←→ p ∈ A × A
by (auto simp: in-pair-def)

lemma subset-pairsI [intro]:
assumes

∧
x. x ∈p A =⇒ x ∈p B

148

shows A ⊆p B
unfolding subset-pairs-def using assms by blast

lemma subset-pairsD [trans]:
assumes x ∈p A and A ⊆p B
shows x ∈p B
using assms unfolding subset-pairs-def by blast

definition processed :: (′a × ′a) ⇒ ′a list ⇒ (′a × ′a) list ⇒ bool
where processed p xs ps ←→ p ∈ set xs × set xs ∧ p /∈p set ps

lemma processed-alt:
processed (a, b) xs ps ←→ ((a ∈ set xs) ∧ (b ∈ set xs) ∧ (a, b) /∈p set ps)
unfolding processed-def by auto

lemma processedI :
assumes a ∈ set xs and b ∈ set xs and (a, b) /∈p set ps
shows processed (a, b) xs ps
unfolding processed-alt using assms by simp

lemma processedD1 :
assumes processed (a, b) xs ps
shows a ∈ set xs
using assms by (simp add: processed-alt)

lemma processedD2 :
assumes processed (a, b) xs ps
shows b ∈ set xs
using assms by (simp add: processed-alt)

lemma processedD3 :
assumes processed (a, b) xs ps
shows (a, b) /∈p set ps
using assms by (simp add: processed-alt)

lemma processed-Nil: processed (a, b) xs [] ←→ (a ∈ set xs ∧ b ∈ set xs)
by (simp add: processed-alt in-pair-iff)

lemma processed-Cons:
assumes processed (a, b) xs ps

and a1 : a = p =⇒ b = q =⇒ thesis
and a2 : a = q =⇒ b = p =⇒ thesis
and a3 : processed (a, b) xs ((p, q) # ps) =⇒ thesis

shows thesis
proof −

from assms(1) have a ∈ set xs and b ∈ set xs and (a, b) /∈p set ps
by (simp-all add: processed-alt)

show ?thesis
proof (cases (a, b) = (p, q))

149

case True
hence a = p and b = q by simp-all
thus ?thesis by (rule a1)

next
case False
with ‹(a, b) /∈p set ps› have ∗: (a, b) /∈ set ((p, q) # ps) by (auto simp:

in-pair-iff)
show ?thesis
proof (cases (b, a) = (p, q))

case True
hence a = q and b = p by simp-all
thus ?thesis by (rule a2)

next
case False

with ‹(a, b) /∈p set ps› have (b, a) /∈ set ((p, q) # ps) by (auto simp:
in-pair-iff)

with ∗ have (a, b) /∈p set ((p, q) # ps) by (simp add: in-pair-iff)
with ‹a ∈ set xs› ‹b ∈ set xs› have processed (a, b) xs ((p, q) # ps)

by (rule processedI)
thus ?thesis by (rule a3)

qed
qed

qed

lemma processed-minus:
assumes processed (a, b) xs (ps −− qs)

and a1 : (a, b) ∈p set qs =⇒ thesis
and a2 : processed (a, b) xs ps =⇒ thesis

shows thesis
proof −

from assms(1) have a ∈ set xs and b ∈ set xs and (a, b) /∈p set (ps −− qs)
by (simp-all add: processed-alt)

show ?thesis
proof (cases (a, b) ∈p set qs)

case True
thus ?thesis by (rule a1)

next
case False
with ‹(a, b) /∈p set (ps −− qs)› have (a, b) /∈p set ps

by (auto simp: set-diff-list in-pair-iff)
with ‹a ∈ set xs› ‹b ∈ set xs› have processed (a, b) xs ps

by (rule processedI)
thus ?thesis by (rule a2)

qed
qed

150

6.2 Algorithm Schema
6.2.1 const-lt-component
context ordered-term
begin

definition const-lt-component :: (′t ⇒0
′b::zero) ⇒ ′k option

where const-lt-component p =
(let v = lt p in if pp-of-term v = 0 then Some (component-of-term

v) else None)

lemma const-lt-component-SomeI :
assumes lp p = 0 and component-of-term (lt p) = cmp
shows const-lt-component p = Some cmp
using assms by (simp add: const-lt-component-def)

lemma const-lt-component-SomeD1 :
assumes const-lt-component p = Some cmp
shows lp p = 0
using assms by (simp add: const-lt-component-def Let-def split: if-split-asm)

lemma const-lt-component-SomeD2 :
assumes const-lt-component p = Some cmp
shows component-of-term (lt p) = cmp
using assms by (simp add: const-lt-component-def Let-def split: if-split-asm)

lemma const-lt-component-subset:
const-lt-component ‘ (B − {0}) − {None} ⊆ Some ‘ component-of-term ‘ Keys

B
proof

fix k
assume k ∈ const-lt-component ‘ (B − {0}) − {None}
hence k ∈ const-lt-component ‘ (B − {0}) and k 6= None by simp-all
from this(1) obtain p where p ∈ B − {0} and k = const-lt-component p ..
moreover from ‹k 6= None› obtain k ′ where k = Some k ′ by blast
ultimately have const-lt-component p = Some k ′ and p ∈ B and p 6= 0 by

simp-all
from this(1) have component-of-term (lt p) = k ′ by (rule const-lt-component-SomeD2)
moreover have lt p ∈ Keys B by (rule in-KeysI , rule lt-in-keys, fact+)
ultimately have k ′ ∈ component-of-term ‘ Keys B by fastforce
thus k ∈ Some ‘ component-of-term ‘ Keys B by (simp add: ‹k = Some k ′›)

qed

corollary card-const-lt-component-le:
assumes finite B
shows card (const-lt-component ‘ (B − {0}) − {None}) ≤ card (component-of-term

‘ Keys B)
proof (rule surj-card-le)

show finite (component-of-term ‘ Keys B)

151

by (intro finite-imageI finite-Keys, fact)
next

show const-lt-component ‘ (B − {0}) − {None} ⊆ Some ‘ component-of-term ‘
Keys B

by (fact const-lt-component-subset)
qed

end

6.2.2 Type synonyms
type-synonym (′a, ′b, ′c) pdata ′ = (′a ⇒0

′b) × ′c
type-synonym (′a, ′b, ′c) pdata = (′a ⇒0

′b) × nat × ′c
type-synonym (′a, ′b, ′c) pdata-pair = (′a, ′b, ′c) pdata × (′a, ′b, ′c) pdata
type-synonym (′a, ′b, ′c, ′d) selT = (′a, ′b, ′c) pdata list ⇒ (′a, ′b, ′c) pdata list
⇒

(′a, ′b, ′c) pdata-pair list ⇒ nat × ′d ⇒ (′a, ′b, ′c)
pdata-pair list
type-synonym (′a, ′b, ′c, ′d) complT = (′a, ′b, ′c) pdata list ⇒ (′a, ′b, ′c) pdata
list ⇒

(′a, ′b, ′c) pdata-pair list ⇒ (′a, ′b, ′c) pdata-pair list
⇒

nat × ′d ⇒ ((′a, ′b, ′c) pdata ′ list × ′d)
type-synonym (′a, ′b, ′c, ′d) apT = (′a, ′b, ′c) pdata list ⇒ (′a, ′b, ′c) pdata list
⇒

(′a, ′b, ′c) pdata-pair list ⇒ (′a, ′b, ′c) pdata list ⇒
nat × ′d ⇒

(′a, ′b, ′c) pdata-pair list
type-synonym (′a, ′b, ′c, ′d) abT = (′a, ′b, ′c) pdata list ⇒ (′a, ′b, ′c) pdata list
⇒

(′a, ′b, ′c) pdata list ⇒ nat × ′d ⇒ (′a, ′b, ′c) pdata list

6.2.3 Specification of the selector parameter
definition sel-spec :: (′a, ′b, ′c, ′d) selT ⇒ bool

where sel-spec sel ←→
(∀ gs bs ps data. ps 6= [] −→ (sel gs bs ps data 6= [] ∧ set (sel gs bs ps data)

⊆ set ps))

lemma sel-specI :
assumes

∧
gs bs ps data. ps 6= [] =⇒ (sel gs bs ps data 6= [] ∧ set (sel gs bs ps

data) ⊆ set ps)
shows sel-spec sel
unfolding sel-spec-def using assms by blast

lemma sel-specD1 :
assumes sel-spec sel and ps 6= []
shows sel gs bs ps data 6= []
using assms unfolding sel-spec-def by blast

152

lemma sel-specD2 :
assumes sel-spec sel and ps 6= []
shows set (sel gs bs ps data) ⊆ set ps
using assms unfolding sel-spec-def by blast

6.2.4 Specification of the add-basis parameter
definition ab-spec :: (′a, ′b, ′c, ′d) abT ⇒ bool

where ab-spec ab ←→
(∀ gs bs ns data. ns 6= [] −→ set (ab gs bs ns data) = set bs ∪ set ns) ∧
(∀ gs bs data. ab gs bs [] data = bs)

lemma ab-specI :
assumes

∧
gs bs ns data. ns 6= [] =⇒ set (ab gs bs ns data) = set bs ∪ set ns

and
∧

gs bs data. ab gs bs [] data = bs
shows ab-spec ab
unfolding ab-spec-def using assms by blast

lemma ab-specD1 :
assumes ab-spec ab
shows set (ab gs bs ns data) = set bs ∪ set ns
using assms unfolding ab-spec-def by (metis empty-set sup-bot.right-neutral)

lemma ab-specD2 :
assumes ab-spec ab
shows ab gs bs [] data = bs
using assms unfolding ab-spec-def by blast

6.2.5 Specification of the add-pairs parameter
definition unique-idx :: (′t, ′b, ′c) pdata list ⇒ (nat × ′d) ⇒ bool

where unique-idx bs data ←→
(∀ f∈set bs. ∀ g∈set bs. fst (snd f) = fst (snd g) −→ f = g) ∧
(∀ f∈set bs. fst (snd f) < fst data)

lemma unique-idxI :
assumes

∧
f g. f ∈ set bs =⇒ g ∈ set bs =⇒ fst (snd f) = fst (snd g) =⇒ f = g

and
∧

f . f ∈ set bs =⇒ fst (snd f) < fst data
shows unique-idx bs data
unfolding unique-idx-def using assms by blast

lemma unique-idxD1 :
assumes unique-idx bs data and f ∈ set bs and g ∈ set bs and fst (snd f) = fst

(snd g)
shows f = g
using assms unfolding unique-idx-def by blast

lemma unique-idxD2 :
assumes unique-idx bs data and f ∈ set bs
shows fst (snd f) < fst data

153

using assms unfolding unique-idx-def by blast

lemma unique-idx-Nil: unique-idx [] data
by (simp add: unique-idx-def)

lemma unique-idx-subset:
assumes unique-idx bs data and set bs ′ ⊆ set bs
shows unique-idx bs ′ data

proof (rule unique-idxI)
fix f g
assume f ∈ set bs ′ and g ∈ set bs ′

with assms have unique-idx bs data and f ∈ set bs and g ∈ set bs by auto
moreover assume fst (snd f) = fst (snd g)
ultimately show f = g by (rule unique-idxD1)

next
fix f
assume f ∈ set bs ′

with assms(2) have f ∈ set bs by auto
with assms(1) show fst (snd f) < fst data by (rule unique-idxD2)

qed

context gd-term
begin

definition ap-spec :: (′t, ′b::field, ′c, ′d) apT ⇒ bool
where ap-spec ap ←→ (∀ gs bs ps hs data.

set (ap gs bs ps hs data) ⊆ set ps ∪ (set hs × (set gs ∪ set bs ∪ set hs)) ∧
(∀B d m. ∀ h∈set hs. ∀ g∈set gs ∪ set bs ∪ set hs. dickson-grading d −→

set gs ∪ set bs ∪ set hs ⊆ B −→ fst ‘ B ⊆ dgrad-p-set d m −→
set ps ⊆ set bs × (set gs ∪ set bs) −→ unique-idx (gs @ bs @ hs) data −→
is-Groebner-basis (fst ‘ set gs) −→ h 6= g −→ fst h 6= 0 −→ fst g 6= 0 −→
(∀ a b. (a, b) ∈p set (ap gs bs ps hs data) −→ fst a 6= 0 −→ fst b 6= 0 −→

crit-pair-cbelow-on d m (fst ‘ B) (fst a) (fst b)) −→
(∀ a b. a ∈ set gs ∪ set bs −→ b ∈ set gs ∪ set bs −→ fst a 6= 0 −→ fst b 6=

0 −→
crit-pair-cbelow-on d m (fst ‘ B) (fst a) (fst b)) −→

crit-pair-cbelow-on d m (fst ‘ B) (fst h) (fst g)) ∧
(∀B d m. ∀ h g. dickson-grading d −→

set gs ∪ set bs ∪ set hs ⊆ B −→ fst ‘ B ⊆ dgrad-p-set d m −→
set ps ⊆ set bs × (set gs ∪ set bs) −→ (set gs ∪ set bs) ∩ set hs = {} −→
unique-idx (gs @ bs @ hs) data −→ is-Groebner-basis (fst ‘ set gs) −→
h 6= g −→ fst h 6= 0 −→ fst g 6= 0 −→
(h, g) ∈ set ps −p set (ap gs bs ps hs data) −→
(∀ a b. (a, b) ∈p set (ap gs bs ps hs data) −→ (a, b) ∈p set hs × (set gs ∪

set bs ∪ set hs) −→
fst a 6= 0 −→ fst b 6= 0 −→ crit-pair-cbelow-on d m (fst ‘ B) (fst a)

(fst b)) −→
crit-pair-cbelow-on d m (fst ‘ B) (fst h) (fst g)))

Informally, ap-spec ap means that, for suitable arguments gs, bs, ps and hs,

154

the value of ap gs bs ps hs is a list of pairs ps ′ such that for every element
(a, b) missing in ps ′ there exists a set of pairs C by reference to which (a,
b) can be discarded, i. e. as soon as all critical pairs of the elements in C
can be connected below some set B, the same is true for the critical pair of
(a, b).
lemma ap-specI :

assumes
∧

gs bs ps hs data. set (ap gs bs ps hs data) ⊆ set ps ∪ (set hs × (set
gs ∪ set bs ∪ set hs))

assumes
∧

gs bs ps hs data B d m h g. dickson-grading d =⇒
set gs ∪ set bs ∪ set hs ⊆ B =⇒ fst ‘ B ⊆ dgrad-p-set d m =⇒
h ∈ set hs =⇒ g ∈ set gs ∪ set bs ∪ set hs =⇒
set ps ⊆ set bs × (set gs ∪ set bs) =⇒ unique-idx (gs @ bs @ hs) data

=⇒
is-Groebner-basis (fst ‘ set gs) =⇒ h 6= g =⇒ fst h 6= 0 =⇒ fst g 6= 0

=⇒
(
∧

a b. (a, b) ∈p set (ap gs bs ps hs data) =⇒ fst a 6= 0 =⇒ fst b 6= 0
=⇒

crit-pair-cbelow-on d m (fst ‘ B) (fst a) (fst b)) =⇒
(
∧

a b. a ∈ set gs ∪ set bs =⇒ b ∈ set gs ∪ set bs =⇒ fst a 6= 0 =⇒
fst b 6= 0 =⇒

crit-pair-cbelow-on d m (fst ‘ B) (fst a) (fst b)) =⇒
crit-pair-cbelow-on d m (fst ‘ B) (fst h) (fst g)

assumes
∧

gs bs ps hs data B d m h g. dickson-grading d =⇒
set gs ∪ set bs ∪ set hs ⊆ B =⇒ fst ‘ B ⊆ dgrad-p-set d m =⇒
set ps ⊆ set bs × (set gs ∪ set bs) =⇒ (set gs ∪ set bs) ∩ set hs = {}

=⇒
unique-idx (gs @ bs @ hs) data =⇒ is-Groebner-basis (fst ‘ set gs) =⇒

h 6= g =⇒
fst h 6= 0 =⇒ fst g 6= 0 =⇒ (h, g) ∈ set ps −p set (ap gs bs ps hs data)

=⇒
(
∧

a b. (a, b) ∈p set (ap gs bs ps hs data) =⇒ (a, b) ∈p set hs × (set
gs ∪ set bs ∪ set hs) =⇒

fst a 6= 0 =⇒ fst b 6= 0 =⇒ crit-pair-cbelow-on d m (fst ‘ B) (fst
a) (fst b)) =⇒

crit-pair-cbelow-on d m (fst ‘ B) (fst h) (fst g)
shows ap-spec ap
unfolding ap-spec-def
apply (intro allI conjI impI)

subgoal by (rule assms(1))
subgoal by (intro ballI impI , rule assms(2), blast+)
subgoal by (rule assms(3), blast+)

done

lemma ap-specD1 :
assumes ap-spec ap
shows set (ap gs bs ps hs data) ⊆ set ps ∪ (set hs × (set gs ∪ set bs ∪ set hs))
using assms unfolding ap-spec-def by (elim allE conjE) (assumption)

155

lemma ap-specD2 :
assumes ap-spec ap and dickson-grading d and set gs ∪ set bs ∪ set hs ⊆ B

and fst ‘ B ⊆ dgrad-p-set d m and (h, g) ∈p set hs × (set gs ∪ set bs ∪ set hs)
and set ps ⊆ set bs × (set gs ∪ set bs) and unique-idx (gs @ bs @ hs) data
and is-Groebner-basis (fst ‘ set gs) and h 6= g and fst h 6= 0 and fst g 6= 0
and

∧
a b. (a, b) ∈p set (ap gs bs ps hs data) =⇒ fst a 6= 0 =⇒ fst b 6= 0 =⇒

crit-pair-cbelow-on d m (fst ‘ B) (fst a) (fst b)
and

∧
a b. a ∈ set gs ∪ set bs =⇒ b ∈ set gs ∪ set bs =⇒ fst a 6= 0 =⇒ fst b

6= 0 =⇒
crit-pair-cbelow-on d m (fst ‘ B) (fst a) (fst b)

shows crit-pair-cbelow-on d m (fst ‘ B) (fst h) (fst g)
proof −

from assms(5) have (h, g) ∈ set hs × (set gs ∪ set bs ∪ set hs) ∨ (g, h) ∈ set
hs × (set gs ∪ set bs ∪ set hs)

by (simp only: in-pair-iff)
thus ?thesis
proof

assume (h, g) ∈ set hs × (set gs ∪ set bs ∪ set hs)
hence h ∈ set hs and g ∈ set gs ∪ set bs ∪ set hs by simp-all

from assms(1)[unfolded ap-spec-def , rule-format, of gs bs ps hs data] assms(2−4)
this assms (6−)

show ?thesis by metis
next

assume (g, h) ∈ set hs × (set gs ∪ set bs ∪ set hs)
hence g ∈ set hs and h ∈ set gs ∪ set bs ∪ set hs by simp-all
hence crit-pair-cbelow-on d m (fst ‘ B) (fst g) (fst h)

using assms(1)[unfolded ap-spec-def , rule-format, of gs bs ps hs data]
assms(2 ,3 ,4 ,6 ,7 ,8 ,10 ,11 ,12 ,13) assms(9)[symmetric]

by metis
thus ?thesis by (rule crit-pair-cbelow-sym)

qed
qed

lemma ap-specD3 :
assumes ap-spec ap and dickson-grading d and set gs ∪ set bs ∪ set hs ⊆ B

and fst ‘ B ⊆ dgrad-p-set d m and set ps ⊆ set bs × (set gs ∪ set bs)
and (set gs ∪ set bs) ∩ set hs = {} and unique-idx (gs @ bs @ hs) data
and is-Groebner-basis (fst ‘ set gs) and h 6= g and fst h 6= 0 and fst g 6= 0
and (h, g) ∈p set ps −p set (ap gs bs ps hs data)
and

∧
a b. a ∈ set hs =⇒ b ∈ set gs ∪ set bs ∪ set hs =⇒ (a, b) ∈p set (ap gs

bs ps hs data) =⇒
fst a 6= 0 =⇒ fst b 6= 0 =⇒ crit-pair-cbelow-on d m (fst ‘ B) (fst a)

(fst b)
shows crit-pair-cbelow-on d m (fst ‘ B) (fst h) (fst g)

proof −
have ∗: crit-pair-cbelow-on d m (fst ‘ B) (fst a) (fst b)

if 1 : (a, b) ∈p set (ap gs bs ps hs data) and 2 : (a, b) ∈p set hs × (set gs ∪ set
bs ∪ set hs)

and 3 : fst a 6= 0 and 4 : fst b 6= 0 for a b

156

proof −
from 2 have (a, b) ∈ set hs × (set gs ∪ set bs ∪ set hs) ∨ (b, a) ∈ set hs ×

(set gs ∪ set bs ∪ set hs)
by (simp only: in-pair-iff)

thus ?thesis
proof

assume (a, b) ∈ set hs × (set gs ∪ set bs ∪ set hs)
hence a ∈ set hs and b ∈ set gs ∪ set bs ∪ set hs by simp-all
thus ?thesis using 1 3 4 by (rule assms(13))

next
assume (b, a) ∈ set hs × (set gs ∪ set bs ∪ set hs)
hence b ∈ set hs and a ∈ set gs ∪ set bs ∪ set hs by simp-all
moreover from 1 have (b, a) ∈p set (ap gs bs ps hs data) by (auto simp:

in-pair-iff)
ultimately have crit-pair-cbelow-on d m (fst ‘ B) (fst b) (fst a) using 4 3

by (rule assms(13))
thus ?thesis by (rule crit-pair-cbelow-sym)

qed
qed
from assms(12) have (h, g) ∈ set ps −p set (ap gs bs ps hs data) ∨

(g, h) ∈ set ps −p set (ap gs bs ps hs data) by (simp only:
in-pair-iff)

thus ?thesis
proof

assume (h, g) ∈ set ps −p set (ap gs bs ps hs data)
with assms(1)[unfolded ap-spec-def , rule-format, of gs bs ps hs data] assms(2−11)
show ?thesis using assms(10) ∗ by metis

next
assume (g, h) ∈ set ps −p set (ap gs bs ps hs data)

with assms(1)[unfolded ap-spec-def , rule-format, of gs bs ps hs data] assms(2−11)
have crit-pair-cbelow-on d m (fst ‘ B) (fst g) (fst h) using assms(10) ∗ by

metis
thus ?thesis by (rule crit-pair-cbelow-sym)

qed
qed

lemma ap-spec-Nil-subset:
assumes ap-spec ap
shows set (ap gs bs ps [] data) ⊆ set ps
using ap-specD1 [OF assms] by fastforce

lemma ap-spec-fst-subset:
assumes ap-spec ap
shows fst ‘ set (ap gs bs ps hs data) ⊆ fst ‘ set ps ∪ set hs

proof −
from ap-specD1 [OF assms]
have fst ‘ set (ap gs bs ps hs data) ⊆ fst ‘ (set ps ∪ set hs × (set gs ∪ set bs ∪

set hs))
by (rule image-mono)

157

thus ?thesis by auto
qed

lemma ap-spec-snd-subset:
assumes ap-spec ap
shows snd ‘ set (ap gs bs ps hs data) ⊆ snd ‘ set ps ∪ set gs ∪ set bs ∪ set hs

proof −
from ap-specD1 [OF assms]
have snd ‘ set (ap gs bs ps hs data) ⊆ snd ‘ (set ps ∪ set hs × (set gs ∪ set bs
∪ set hs))

by (rule image-mono)
thus ?thesis by auto

qed

lemma ap-spec-inE :
assumes ap-spec ap and (p, q) ∈ set (ap gs bs ps hs data)
assumes 1 : (p, q) ∈ set ps =⇒ thesis
assumes 2 : p ∈ set hs =⇒ q ∈ set gs ∪ set bs ∪ set hs =⇒ thesis
shows thesis

proof −
from assms(2) ap-specD1 [OF assms(1)] have (p, q) ∈ set ps ∪ set hs × (set gs
∪ set bs ∪ set hs) ..

thus ?thesis
proof

assume (p, q) ∈ set ps
thus ?thesis by (rule 1)

next
assume (p, q) ∈ set hs × (set gs ∪ set bs ∪ set hs)
hence p ∈ set hs and q ∈ set gs ∪ set bs ∪ set hs by blast+
thus ?thesis by (rule 2)

qed
qed

lemma subset-Times-ap:
assumes ap-spec ap and ab-spec ab and set ps ⊆ set bs × (set gs ∪ set bs)
shows set (ap gs bs (ps −− sps) hs data) ⊆ set (ab gs bs hs data) × (set gs ∪

set (ab gs bs hs data))
proof

fix p q
assume (p, q) ∈ set (ap gs bs (ps −− sps) hs data)
with assms(1) show (p, q) ∈ set (ab gs bs hs data) × (set gs ∪ set (ab gs bs hs

data))
proof (rule ap-spec-inE)

assume (p, q) ∈ set (ps −− sps)
hence (p, q) ∈ set ps by (simp add: set-diff-list)
from this assms(3) have (p, q) ∈ set bs × (set gs ∪ set bs) ..
hence p ∈ set bs and q ∈ set gs ∪ set bs by blast+
thus ?thesis by (auto simp add: ab-specD1 [OF assms(2)])

next

158

assume p ∈ set hs and q ∈ set gs ∪ set bs ∪ set hs
thus ?thesis by (simp add: ab-specD1 [OF assms(2)])

qed
qed

6.2.6 Function args-to-set
definition args-to-set :: (′t, ′b::field, ′c) pdata list × (′t, ′b, ′c) pdata list × (′t, ′b,
′c) pdata-pair list ⇒ (′t ⇒0

′b) set
where args-to-set x = fst ‘ (set (fst x) ∪ set (fst (snd x)) ∪ fst ‘ set (snd (snd

x)) ∪ snd ‘ set (snd (snd x)))

lemma args-to-set-alt:
args-to-set (gs, bs, ps) = fst ‘ set gs ∪ fst ‘ set bs ∪ fst ‘ fst ‘ set ps ∪ fst ‘ snd ‘

set ps
by (simp add: args-to-set-def image-Un)

lemma args-to-set-subset-Times:
assumes set ps ⊆ set bs × (set gs ∪ set bs)
shows args-to-set (gs, bs, ps) = fst ‘ set gs ∪ fst ‘ set bs
unfolding args-to-set-alt using assms by auto

lemma args-to-set-subset:
assumes ap-spec ap and ab-spec ab
shows args-to-set (gs, ab gs bs hs data, ap gs bs ps hs data) ⊆

fst ‘ (set gs ∪ set bs ∪ fst ‘ set ps ∪ snd ‘ set ps ∪ set hs) (is ?l ⊆ fst ‘
?r)
proof (simp only: args-to-set-alt Un-subset-iff , intro conjI image-mono)

show set (ab gs bs hs data) ⊆ ?r by (auto simp add: ab-specD1 [OF assms(2)])
next

from assms(1) have fst ‘ set (ap gs bs ps hs data) ⊆ fst ‘ set ps ∪ set hs
by (rule ap-spec-fst-subset)

thus fst ‘ set (ap gs bs ps hs data) ⊆ ?r by blast
next

from assms(1) have snd ‘ set (ap gs bs ps hs data) ⊆ snd ‘ set ps ∪ set gs ∪ set
bs ∪ set hs

by (rule ap-spec-snd-subset)
thus snd ‘ set (ap gs bs ps hs data) ⊆ ?r by blast

qed blast

lemma args-to-set-alt2 :
assumes ap-spec ap and ab-spec ab and set ps ⊆ set bs × (set gs ∪ set bs)
shows args-to-set (gs, ab gs bs hs data, ap gs bs (ps −− sps) hs data) =

fst ‘ (set gs ∪ set bs ∪ set hs) (is ?l = fst ‘ ?r)
proof

from assms(1 , 2) have ?l ⊆ fst ‘ (set gs ∪ set bs ∪ fst ‘ set (ps −− sps) ∪ snd
‘ set (ps −− sps) ∪ set hs)

by (rule args-to-set-subset)
also have ... ⊆ fst ‘ ?r

159

proof (rule image-mono)
have set gs ∪ set bs ∪ fst ‘ set (ps −− sps) ∪ snd ‘ set (ps −− sps) ∪ set hs ⊆

set gs ∪ set bs ∪ fst ‘ set ps ∪ snd ‘ set ps ∪ set hs by (auto simp:
set-diff-list)

also from assms(3) have ... ⊆ ?r by fastforce
finally show set gs ∪ set bs ∪ fst ‘ set (ps −− sps) ∪ snd ‘ set (ps −− sps) ∪

set hs ⊆ ?r .
qed
finally show ?l ⊆ fst ‘ ?r .

next
from assms(2) have eq: set (ab gs bs hs data) = set bs ∪ set hs by (rule

ab-specD1)
have fst ‘ ?r ⊆ fst ‘ set gs ∪ fst ‘ set (ab gs bs hs data) unfolding eq using

assms(3)
by fastforce

also have ... ⊆ ?l unfolding args-to-set-alt by fastforce
finally show fst ‘ ?r ⊆ ?l .

qed

lemma args-to-set-subset1 :
assumes set gs1 ⊆ set gs2
shows args-to-set (gs1 , bs, ps) ⊆ args-to-set (gs2 , bs, ps)
using assms by (auto simp add: args-to-set-alt)

lemma args-to-set-subset2 :
assumes set bs1 ⊆ set bs2
shows args-to-set (gs, bs1 , ps) ⊆ args-to-set (gs, bs2 , ps)
using assms by (auto simp add: args-to-set-alt)

lemma args-to-set-subset3 :
assumes set ps1 ⊆ set ps2
shows args-to-set (gs, bs, ps1) ⊆ args-to-set (gs, bs, ps2)
using assms unfolding args-to-set-alt by blast

6.2.7 Functions count-const-lt-components, count-rem-comps and full-gb
definition rem-comps-spec :: (′t, ′b::zero, ′c) pdata list ⇒ nat × ′d ⇒ bool

where rem-comps-spec bs data ←→ (card (component-of-term ‘ Keys (fst ‘ set
bs)) =

fst data + card (const-lt-component ‘ (fst ‘ set bs −
{0}) − {None}))

definition count-const-lt-components :: (′t, ′b::zero, ′c) pdata ′ list ⇒ nat
where count-const-lt-components hs = length (remdups (filter (λx. x 6= None)

(map (const-lt-component ◦ fst) hs)))

definition count-rem-components :: (′t, ′b::zero, ′c) pdata ′ list ⇒ nat
where count-rem-components bs = length (remdups (map component-of-term

(Keys-to-list (map fst bs)))) −

160

count-const-lt-components [b←bs . fst b 6= 0]

lemma count-const-lt-components-alt:
count-const-lt-components hs = card (const-lt-component ‘ fst ‘ set hs − {None})
by (simp add: count-const-lt-components-def card-set[symmetric] set-diff-eq im-

age-comp del: not-None-eq)

lemma count-rem-components-alt:
count-rem-components bs + card (const-lt-component ‘ (fst ‘ set bs − {0}) −
{None}) =

card (component-of-term ‘ Keys (fst ‘ set bs))
proof −

have eq: fst ‘ {x ∈ set bs. fst x 6= 0} = fst ‘ set bs − {0} by fastforce
have card (const-lt-component ‘ (fst ‘ set bs − {0}) − {None}) ≤ card (component-of-term

‘ Keys (fst ‘ set bs))
by (rule card-const-lt-component-le, rule finite-imageI , fact finite-set)

thus ?thesis
by (simp add: count-rem-components-def card-set[symmetric] set-Keys-to-list

count-const-lt-components-alt eq)
qed

lemma rem-comps-spec-count-rem-components: rem-comps-spec bs (count-rem-components
bs, data)

by (simp only: rem-comps-spec-def fst-conv count-rem-components-alt)

definition full-gb :: (′t, ′b, ′c) pdata list ⇒ (′t, ′b::zero-neq-one, ′c::default) pdata
list

where full-gb bs = map (λk. (monomial 1 (term-of-pair (0 , k)), 0 , default))
(remdups (map component-of-term (Keys-to-list (map fst bs))))

lemma fst-set-full-gb:
fst ‘ set (full-gb bs) = (λv. monomial 1 (term-of-pair (0 , component-of-term v)))

‘ Keys (fst ‘ set bs)
by (simp add: full-gb-def set-Keys-to-list image-comp)

lemma Keys-full-gb:
Keys (fst ‘ set (full-gb bs)) = (λv. term-of-pair (0 , component-of-term v)) ‘ Keys

(fst ‘ set bs)
by (auto simp add: fst-set-full-gb Keys-def image-image)

lemma pps-full-gb: pp-of-term ‘ Keys (fst ‘ set (full-gb bs)) ⊆ {0}
by (simp add: Keys-full-gb image-comp image-subset-iff term-simps)

lemma components-full-gb:
component-of-term ‘ Keys (fst ‘ set (full-gb bs)) = component-of-term ‘ Keys (fst

‘ set bs)
by (simp add: Keys-full-gb image-comp, rule image-cong, fact refl, simp add:

term-simps)

161

lemma full-gb-is-full-pmdl: is-full-pmdl (fst ‘ set (full-gb bs))
for bs::(′t, ′b::field, ′c::default) pdata list

proof (rule is-full-pmdlI-lt-finite)
from finite-set show finite (fst ‘ set (full-gb bs)) by (rule finite-imageI)

next
fix k
assume k ∈ component-of-term ‘ Keys (fst ‘ set (full-gb bs))
then obtain v where v ∈ Keys (fst ‘ set (full-gb bs)) and k: k = compo-

nent-of-term v ..
from this(1) obtain b where b ∈ fst ‘ set (full-gb bs) and v ∈ keys b by (rule

in-KeysE)
from this(1) obtain u where u ∈ Keys (fst ‘ set bs) and b: b = monomial 1

(term-of-pair (0 , component-of-term u))
unfolding fst-set-full-gb ..

have lt: lt b = term-of-pair (0 , component-of-term u) by (simp add: b lt-monomial)
from ‹v ∈ keys b› have v: v = term-of-pair (0 , component-of-term u) by (simp

add: b)
show ∃ b∈fst ‘ set (full-gb bs). b 6= 0 ∧ component-of-term (lt b) = k ∧ lp b = 0
proof (intro bexI conjI)

show b 6= 0 by (simp add: b monomial-0-iff)
next

show component-of-term (lt b) = k by (simp add: lt term-simps k v)
next

show lp b = 0 by (simp add: lt term-simps)
qed fact

qed

In fact, is-full-pmdl (fst ‘ set (full-gb ?bs)) also holds if ′b is no field.
lemma full-gb-isGB: is-Groebner-basis (fst ‘ set (full-gb bs))
proof (rule Buchberger-criterion-finite)

from finite-set show finite (fst ‘ set (full-gb bs)) by (rule finite-imageI)
next

fix p q :: ′t ⇒0
′b

assume p ∈ fst ‘ set (full-gb bs)
then obtain v where p: p = monomial 1 (term-of-pair (0 , component-of-term

v))
unfolding fst-set-full-gb ..

hence lt: component-of-term (lt p) = component-of-term v by (simp add: lt-monomial
term-simps)

assume q ∈ fst ‘ set (full-gb bs)
then obtain u where q: q = monomial 1 (term-of-pair (0 , component-of-term

u))
unfolding fst-set-full-gb ..

hence lq: component-of-term (lt q) = component-of-term u by (simp add: lt-monomial
term-simps)

assume component-of-term (lt p) = component-of-term (lt q)
hence component-of-term v = component-of-term u by (simp only: lt lq)
hence p = q by (simp only: p q)
moreover assume p 6= q

162

ultimately show (red (fst ‘ set (full-gb bs)))∗∗ (spoly p q) 0 by (simp only:)
qed

6.2.8 Specification of the completion parameter
definition compl-struct :: (′t, ′b::field, ′c, ′d) complT ⇒ bool

where compl-struct compl ←→
(∀ gs bs ps sps data. sps 6= [] −→ set sps ⊆ set ps −→

(∀ d. dickson-grading d −→
dgrad-p-set-le d (fst ‘ (set (fst (compl gs bs (ps −− sps) sps data))))

(args-to-set (gs, bs, ps))) ∧
component-of-term ‘ Keys (fst ‘ (set (fst (compl gs bs (ps −− sps) sps

data)))) ⊆
component-of-term ‘ Keys (args-to-set (gs, bs, ps)) ∧

0 /∈ fst ‘ set (fst (compl gs bs (ps −− sps) sps data)) ∧
(∀ h∈set (fst (compl gs bs (ps −− sps) sps data)). ∀ b∈set gs ∪ set bs.

fst b 6= 0 −→ ¬ lt (fst b) addst lt (fst h)))

lemma compl-structI :
assumes

∧
d gs bs ps sps data. dickson-grading d =⇒ sps 6= [] =⇒ set sps ⊆ set

ps =⇒
dgrad-p-set-le d (fst ‘ (set (fst (compl gs bs (ps −− sps) sps data))))

(args-to-set (gs, bs, ps))
assumes

∧
gs bs ps sps data. sps 6= [] =⇒ set sps ⊆ set ps =⇒

component-of-term ‘ Keys (fst ‘ (set (fst (compl gs bs (ps −− sps) sps
data)))) ⊆

component-of-term ‘ Keys (args-to-set (gs, bs, ps))
assumes

∧
gs bs ps sps data. sps 6= [] =⇒ set sps ⊆ set ps =⇒ 0 /∈ fst ‘ set (fst

(compl gs bs (ps −− sps) sps data))
assumes

∧
gs bs ps sps h b data. sps 6= [] =⇒ set sps ⊆ set ps =⇒ h ∈ set (fst

(compl gs bs (ps −− sps) sps data)) =⇒
b ∈ set gs ∪ set bs =⇒ fst b 6= 0 =⇒ ¬ lt (fst b) addst lt (fst h)

shows compl-struct compl
unfolding compl-struct-def using assms by auto

lemma compl-structD1 :
assumes compl-struct compl and dickson-grading d and sps 6= [] and set sps ⊆

set ps
shows dgrad-p-set-le d (fst ‘ (set (fst (compl gs bs (ps −− sps) sps data))))

(args-to-set (gs, bs, ps))
using assms unfolding compl-struct-def by blast

lemma compl-structD2 :
assumes compl-struct compl and sps 6= [] and set sps ⊆ set ps
shows component-of-term ‘ Keys (fst ‘ (set (fst (compl gs bs (ps −− sps) sps

data)))) ⊆
component-of-term ‘ Keys (args-to-set (gs, bs, ps))

using assms unfolding compl-struct-def by blast

163

lemma compl-structD3 :
assumes compl-struct compl and sps 6= [] and set sps ⊆ set ps
shows 0 /∈ fst ‘ set (fst (compl gs bs (ps −− sps) sps data))
using assms unfolding compl-struct-def by blast

lemma compl-structD4 :
assumes compl-struct compl and sps 6= [] and set sps ⊆ set ps

and h ∈ set (fst (compl gs bs (ps −− sps) sps data)) and b ∈ set gs ∪ set bs
and fst b 6= 0

shows ¬ lt (fst b) addst lt (fst h)
using assms unfolding compl-struct-def by blast

definition struct-spec :: (′t, ′b::field, ′c, ′d) selT ⇒ (′t, ′b, ′c, ′d) apT ⇒ (′t, ′b,
′c, ′d) abT ⇒

(′t, ′b, ′c, ′d) complT ⇒ bool
where struct-spec sel ap ab compl ←→ (sel-spec sel ∧ ap-spec ap ∧ ab-spec ab ∧

compl-struct compl)

lemma struct-specI :
assumes sel-spec sel and ap-spec ap and ab-spec ab and compl-struct compl
shows struct-spec sel ap ab compl
unfolding struct-spec-def using assms by (intro conjI)

lemma struct-specD1 :
assumes struct-spec sel ap ab compl
shows sel-spec sel
using assms unfolding struct-spec-def by (elim conjE)

lemma struct-specD2 :
assumes struct-spec sel ap ab compl
shows ap-spec ap
using assms unfolding struct-spec-def by (elim conjE)

lemma struct-specD3 :
assumes struct-spec sel ap ab compl
shows ab-spec ab
using assms unfolding struct-spec-def by (elim conjE)

lemma struct-specD4 :
assumes struct-spec sel ap ab compl
shows compl-struct compl
using assms unfolding struct-spec-def by (elim conjE)

lemmas struct-specD = struct-specD1 struct-specD2 struct-specD3 struct-specD4

definition compl-pmdl :: (′t, ′b::field, ′c, ′d) complT ⇒ bool
where compl-pmdl compl ←→

(∀ gs bs ps sps data. is-Groebner-basis (fst ‘ set gs) −→ sps 6= [] −→ set
sps ⊆ set ps −→

164

unique-idx (gs @ bs) data −→
fst ‘ (set (fst (compl gs bs (ps −− sps) sps data))) ⊆ pmdl (args-to-set

(gs, bs, ps)))

lemma compl-pmdlI :
assumes

∧
gs bs ps sps data. is-Groebner-basis (fst ‘ set gs) =⇒ sps 6= [] =⇒ set

sps ⊆ set ps =⇒
unique-idx (gs @ bs) data =⇒
fst ‘ (set (fst (compl gs bs (ps −− sps) sps data))) ⊆ pmdl (args-to-set

(gs, bs, ps))
shows compl-pmdl compl
unfolding compl-pmdl-def using assms by blast

lemma compl-pmdlD:
assumes compl-pmdl compl and is-Groebner-basis (fst ‘ set gs)

and sps 6= [] and set sps ⊆ set ps and unique-idx (gs @ bs) data
shows fst ‘ (set (fst (compl gs bs (ps −− sps) sps data))) ⊆ pmdl (args-to-set

(gs, bs, ps))
using assms unfolding compl-pmdl-def by blast

definition compl-conn :: (′t, ′b::field, ′c, ′d) complT ⇒ bool
where compl-conn compl ←→

(∀ d m gs bs ps sps p q data. dickson-grading d −→ fst ‘ set gs ⊆ dgrad-p-set
d m −→

is-Groebner-basis (fst ‘ set gs) −→ fst ‘ set bs ⊆ dgrad-p-set d m −→
set ps ⊆ set bs × (set gs ∪ set bs) −→ sps 6= [] −→ set sps ⊆ set ps −→
unique-idx (gs @ bs) data −→ (p, q) ∈ set sps −→ fst p 6= 0 −→ fst q

6= 0 −→
crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set (fst (compl gs

bs (ps −− sps) sps data))) (fst p) (fst q))

Informally, compl-conn compl means that, for suitable arguments gs, bs, ps
and sps, the value of compl gs bs ps sps is a list hs such that the critical
pairs of all elements in sps can be connected modulo set gs ∪ set bs ∪ set
hs.
lemma compl-connI :

assumes
∧

d m gs bs ps sps p q data. dickson-grading d =⇒ fst ‘ set gs ⊆
dgrad-p-set d m =⇒

is-Groebner-basis (fst ‘ set gs) =⇒ fst ‘ set bs ⊆ dgrad-p-set d m =⇒
set ps ⊆ set bs × (set gs ∪ set bs) =⇒ sps 6= [] =⇒ set sps ⊆ set ps =⇒
unique-idx (gs @ bs) data =⇒ (p, q) ∈ set sps =⇒ fst p 6= 0 =⇒ fst q 6=

0 =⇒
crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set (fst (compl gs

bs (ps −− sps) sps data))) (fst p) (fst q)
shows compl-conn compl
unfolding compl-conn-def using assms by presburger

lemma compl-connD:
assumes compl-conn compl and dickson-grading d and fst ‘ set gs ⊆ dgrad-p-set

165

d m
and is-Groebner-basis (fst ‘ set gs) and fst ‘ set bs ⊆ dgrad-p-set d m
and set ps ⊆ set bs × (set gs ∪ set bs) and sps 6= [] and set sps ⊆ set ps
and unique-idx (gs @ bs) data and (p, q) ∈ set sps and fst p 6= 0 and fst q 6=

0
shows crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set (fst (compl gs bs

(ps −− sps) sps data))) (fst p) (fst q)
using assms unfolding compl-conn-def Un-assoc by blast

6.2.9 Function gb-schema-dummy
definition (in −) add-indices :: ((′a, ′b, ′c) pdata ′ list × ′d) ⇒ (nat × ′d) ⇒ ((′a,
′b, ′c) pdata list × nat × ′d)

where [code del]: add-indices ns data =
(map-idx (λh i. (fst h, i, snd h)) (fst ns) (fst data), fst data + length (fst

ns), snd ns)

lemma (in −) add-indices-code [code]:
add-indices (ns, data) (n, data ′) = (map-idx (λ(h, d) i. (h, i, d)) ns n, n + length

ns, data)
by (simp add: add-indices-def case-prod-beta ′)

lemma fst-add-indices: map fst (fst (add-indices ns data ′)) = map fst (fst ns)
by (simp add: add-indices-def map-map-idx map-idx-no-idx)

corollary fst-set-add-indices: fst ‘ set (fst (add-indices ns data ′)) = fst ‘ set (fst
ns)

using fst-add-indices by (metis set-map)

lemma in-set-add-indicesE :
assumes f ∈ set (fst (add-indices aux data))
obtains i where i < length (fst aux) and f = (fst ((fst aux) ! i), fst data + i,

snd ((fst aux) ! i))
proof −

let ?hs = fst (add-indices aux data)
from assms obtain i where i < length ?hs and f = ?hs ! i by (metis in-set-conv-nth)
from this(1) have i < length (fst aux) by (simp add: add-indices-def)
hence ?hs ! i = (fst ((fst aux) ! i), fst data + i, snd ((fst aux) ! i))

unfolding add-indices-def fst-conv by (rule map-idx-nth)
hence f = (fst ((fst aux) ! i), fst data + i, snd ((fst aux) ! i)) by (simp add: ‹f

= ?hs ! i›)
with ‹i < length (fst aux)› show ?thesis ..

qed

definition gb-schema-aux-term1 :: (((′t, ′b::field, ′c) pdata list × (′t, ′b, ′c) pdata-pair
list) ×

((′t, ′b, ′c) pdata list × (′t, ′b, ′c) pdata-pair list)) set
where gb-schema-aux-term1 = {(a, b::(′t, ′b, ′c) pdata list). (fst ‘ set a) Ap (fst

‘ set b)} <∗lex∗>

166

(measure (card ◦ set))

definition gb-schema-aux-term2 ::
(′a ⇒ nat) ⇒ (′t, ′b::field, ′c) pdata list ⇒ (((′t, ′b, ′c) pdata list × (′t, ′b, ′c)

pdata-pair list) ×
((′t, ′b, ′c) pdata list × (′t, ′b, ′c) pdata-pair list)) set

where gb-schema-aux-term2 d gs = {(a, b). dgrad-p-set-le d (args-to-set (gs, a))
(args-to-set (gs, b)) ∧

component-of-term ‘ Keys (args-to-set (gs, a)) ⊆ component-of-term
‘ Keys (args-to-set (gs, b))}

definition gb-schema-aux-term where gb-schema-aux-term d gs = gb-schema-aux-term1
∩ gb-schema-aux-term2 d gs

gb-schema-aux-term is needed for proving termination of function gb-schema-aux.
lemma gb-schema-aux-term1-wf-on:

assumes dickson-grading d and finite K
shows wfp-on (λx y. (x, y) ∈ gb-schema-aux-term1)

{x::((′t, ′b, ′c) pdata list) × (((′t, ′b::field, ′c) pdata-pair list)).
args-to-set (gs, x) ⊆ dgrad-p-set d m ∧ component-of-term ‘ Keys

(args-to-set (gs, x)) ⊆ K}
proof (rule wfp-onI-min)

let ?B = dgrad-p-set d m
let ?A = {x::((′t, ′b, ′c) pdata list) × (((′t, ′b, ′c) pdata-pair list)).

args-to-set (gs, x) ⊆ ?B ∧ component-of-term ‘ Keys (args-to-set (gs,
x)) ⊆ K}

let ?C = Pow ?B ∩ {F . component-of-term ‘ Keys F ⊆ K}
have A-sub-Pow: (image fst) ‘ set ‘ fst ‘ ?A ⊆ ?C
proof

fix x
assume x ∈ (image fst) ‘ set ‘ fst ‘ ?A
then obtain x1 where x1 ∈ set ‘ fst ‘ ?A and x: x = fst ‘ x1 by auto
from this(1) obtain x2 where x2 ∈ fst ‘ ?A and x1 : x1 = set x2 by auto
from this(1) obtain x3 where x3 ∈ ?A and x2 : x2 = fst x3 by auto
from this(1) have args-to-set (gs, x3) ⊆ ?B and component-of-term ‘ Keys

(args-to-set (gs, x3)) ⊆ K
by simp-all

thus x ∈ ?C by (simp add: args-to-set-def x x1 x2 image-Un Keys-Un)
qed

fix x Q
assume x ∈ Q and Q ⊆ ?A
have Q-sub-A: (image fst) ‘ set ‘ fst ‘ Q ⊆ (image fst) ‘ set ‘ fst ‘ ?A

by ((rule image-mono)+, fact)
from assms have wfp-on (Ap) ?C by (rule red-supset-wf-on)
moreover have fst ‘ set (fst x) ∈ (image fst) ‘ set ‘ fst ‘ Q

by (rule, fact refl, rule, fact refl, rule, fact refl, simp add: ‹x ∈ Q›)
moreover from Q-sub-A A-sub-Pow have (image fst) ‘ set ‘ fst ‘ Q ⊆ ?C by

(rule subset-trans)

167

ultimately obtain z1 where z1 ∈ (image fst) ‘ set ‘ fst ‘ Q
and 2 :

∧
y. y Ap z1 =⇒ y /∈ (image fst) ‘ set ‘ fst ‘ Q by (rule wfp-onE-min,

auto)
from this(1) obtain x1 where x1 ∈ Q and z1 : z1 = fst ‘ set (fst x1) by auto

let ?Q2 = {q ∈ Q. fst ‘ set (fst q) = z1}
have snd x1 ∈ snd ‘ ?Q2 by (rule, fact refl, simp add: ‹x1 ∈ Q› z1)
with wf-measure obtain z2 where z2 ∈ snd ‘ ?Q2

and 3 :
∧

y. (y, z2) ∈ measure (card ◦ set) =⇒ y /∈ snd ‘ ?Q2
by (rule wfE-min, blast)

from this(1) obtain z where z ∈ ?Q2 and z2 : z2 = snd z ..
from this(1) have z ∈ Q and eq1 : fst ‘ set (fst z) = z1 by blast+
from this(1) show ∃ z∈Q. ∀ y∈?A. (y, z) ∈ gb-schema-aux-term1 −→ y /∈ Q
proof

show ∀ y∈?A. (y, z) ∈ gb-schema-aux-term1 −→ y /∈ Q
proof (intro ballI impI)

fix y
assume y ∈ ?A
assume (y, z) ∈ gb-schema-aux-term1
hence (fst ‘ set (fst y) Ap z1 ∨ (fst y = fst z ∧ (snd y, z2) ∈ measure (card

◦ set)))
by (simp add: gb-schema-aux-term1-def eq1 [symmetric] z2 in-lex-prod-alt)

thus y /∈ Q
proof (elim disjE conjE)

assume fst ‘ set (fst y) Ap z1
hence fst ‘ set (fst y) /∈ (image fst) ‘ set ‘ fst ‘ Q by (rule 2)
thus ?thesis by auto

next
assume (snd y, z2) ∈ measure (card ◦ set)
hence snd y /∈ snd ‘ ?Q2 by (rule 3)
hence y /∈ ?Q2 by blast
moreover assume fst y = fst z
ultimately show ?thesis by (simp add: eq1)

qed
qed

qed
qed

lemma gb-schema-aux-term-wf :
assumes dickson-grading d
shows wf (gb-schema-aux-term d gs)

proof (rule wfI-min)
fix x::((′t, ′b, ′c) pdata list) × ((′t, ′b, ′c) pdata-pair list) and Q
assume x ∈ Q
let ?A = args-to-set (gs, x)
have finite ?A by (simp add: args-to-set-def)
then obtain m where A: ?A ⊆ dgrad-p-set d m by (rule dgrad-p-set-exhaust)
define K where K = component-of-term ‘ Keys ?A
from ‹finite ?A› have finite K unfolding K-def by (rule finite-imp-finite-component-Keys)

168

let ?B = dgrad-p-set d m
let ?Q = {q ∈ Q. args-to-set (gs, q) ⊆ ?B ∧ component-of-term ‘ Keys (args-to-set

(gs, q)) ⊆ K}
from assms ‹finite K › have wfp-on (λx y. (x, y) ∈ gb-schema-aux-term1)

{x. args-to-set (gs, x) ⊆ ?B ∧ component-of-term ‘ Keys (args-to-set
(gs, x)) ⊆ K}

by (rule gb-schema-aux-term1-wf-on)
moreover from ‹x ∈ Q› A have x ∈ ?Q by (simp add: K-def)
moreover have ?Q ⊆ {x. args-to-set (gs, x) ⊆ ?B ∧ component-of-term ‘ Keys

(args-to-set (gs, x)) ⊆ K} by auto
ultimately obtain z where z ∈ ?Q

and ∗:
∧

y. (y, z) ∈ gb-schema-aux-term1 =⇒ y /∈ ?Q by (rule wfp-onE-min,
blast)

from this(1) have z ∈ Q and a: args-to-set (gs, z) ⊆ ?B and b: compo-
nent-of-term ‘ Keys (args-to-set (gs, z)) ⊆ K

by simp-all
from this(1) show ∃ z∈Q. ∀ y. (y, z) ∈ gb-schema-aux-term d gs −→ y /∈ Q
proof

show ∀ y. (y, z) ∈ gb-schema-aux-term d gs −→ y /∈ Q
proof (intro allI impI)

fix y
assume (y, z) ∈ gb-schema-aux-term d gs
hence (y, z) ∈ gb-schema-aux-term1 and (y, z) ∈ gb-schema-aux-term2 d gs

by (simp-all add: gb-schema-aux-term-def)
from this(2) have dgrad-p-set-le d (args-to-set (gs, y)) (args-to-set (gs, z))

and comp-sub: component-of-term ‘ Keys (args-to-set (gs, y)) ⊆ compo-
nent-of-term ‘ Keys (args-to-set (gs, z))

by (simp-all add: gb-schema-aux-term2-def)
from this(1) ‹args-to-set (gs, z) ⊆ ?B› have args-to-set (gs, y) ⊆ ?B

by (rule dgrad-p-set-le-dgrad-p-set)
moreover from comp-sub b have component-of-term ‘ Keys (args-to-set (gs,

y)) ⊆ K
by (rule subset-trans)

moreover from ‹(y, z) ∈ gb-schema-aux-term1 › have y /∈ ?Q by (rule ∗)
ultimately show y /∈ Q by simp

qed
qed

qed

lemma dgrad-p-set-le-args-to-set-ab:
assumes dickson-grading d and ap-spec ap and ab-spec ab and compl-struct

compl
assumes sps 6= [] and set sps ⊆ set ps and hs = fst (add-indices (compl gs bs

(ps −− sps) sps data) data)
shows dgrad-p-set-le d (args-to-set (gs, ab gs bs hs data ′, ap gs bs (ps −− sps)

hs data ′)) (args-to-set (gs, bs, ps))
(is dgrad-p-set-le - ?l ?r)

proof −
have dgrad-p-set-le d ?l

169

(fst ‘ (set gs ∪ set bs ∪ fst ‘ set (ps −− sps) ∪ snd ‘ set (ps −− sps) ∪ set
hs))

by (rule dgrad-p-set-le-subset, rule args-to-set-subset[OF assms(2 , 3)])
also have dgrad-p-set-le d ... ?r unfolding image-Un
proof (intro dgrad-p-set-leI-Un)

show dgrad-p-set-le d (fst ‘ set gs) (args-to-set (gs, bs, ps))
by (rule dgrad-p-set-le-subset, auto simp add: args-to-set-def)

next
show dgrad-p-set-le d (fst ‘ set bs) (args-to-set (gs, bs, ps))

by (rule dgrad-p-set-le-subset, auto simp add: args-to-set-def)
next

show dgrad-p-set-le d (fst ‘ fst ‘ set (ps −− sps)) (args-to-set (gs, bs, ps))
by (rule dgrad-p-set-le-subset, auto simp add: args-to-set-def set-diff-list)

next
show dgrad-p-set-le d (fst ‘ snd ‘ set (ps −− sps)) (args-to-set (gs, bs, ps))

by (rule dgrad-p-set-le-subset, auto simp add: args-to-set-def set-diff-list)
next

from assms(4 , 1 , 5 , 6) show dgrad-p-set-le d (fst ‘ set hs) (args-to-set (gs, bs,
ps))

unfolding assms(7) fst-set-add-indices by (rule compl-structD1)
qed
finally show ?thesis .

qed

corollary dgrad-p-set-le-args-to-set-struct:
assumes dickson-grading d and struct-spec sel ap ab compl and ps 6= []
assumes sps = sel gs bs ps data and hs = fst (add-indices (compl gs bs (ps −−

sps) sps data) data)
shows dgrad-p-set-le d (args-to-set (gs, ab gs bs hs data ′, ap gs bs (ps −− sps)

hs data ′)) (args-to-set (gs, bs, ps))
proof −

from assms(2) have sel: sel-spec sel and ap: ap-spec ap and ab: ab-spec ab
and compl: compl-struct compl by (rule struct-specD)+

from sel assms(3) have sps 6= [] and set sps ⊆ set ps
unfolding assms(4) by (rule sel-specD1 , rule sel-specD2)

from assms(1) ap ab compl this assms(5) show ?thesis by (rule dgrad-p-set-le-args-to-set-ab)
qed

lemma components-subset-ab:
assumes ap-spec ap and ab-spec ab and compl-struct compl
assumes sps 6= [] and set sps ⊆ set ps and hs = fst (add-indices (compl gs bs

(ps −− sps) sps data) data)
shows component-of-term ‘ Keys (args-to-set (gs, ab gs bs hs data ′, ap gs bs (ps
−− sps) hs data ′)) ⊆

component-of-term ‘ Keys (args-to-set (gs, bs, ps)) (is ?l ⊆ ?r)
proof −

have ?l ⊆ component-of-term ‘ Keys (fst ‘ (set gs ∪ set bs ∪ fst ‘ set (ps −−
sps) ∪ snd ‘ set (ps −− sps) ∪ set hs))

by (rule image-mono, rule Keys-mono, rule args-to-set-subset[OF assms(1 , 2)])

170

also have ... ⊆ ?r unfolding image-Un Keys-Un Un-subset-iff
proof (intro conjI)

show component-of-term ‘ Keys (fst ‘ set gs) ⊆ component-of-term ‘ Keys
(args-to-set (gs, bs, ps))

by (rule image-mono, rule Keys-mono, auto simp add: args-to-set-def)
next

show component-of-term ‘ Keys (fst ‘ set bs) ⊆ component-of-term ‘ Keys
(args-to-set (gs, bs, ps))

by (rule image-mono, rule Keys-mono, auto simp add: args-to-set-def)
next
show component-of-term ‘ Keys (fst ‘ fst ‘ set (ps −− sps)) ⊆ component-of-term

‘ Keys (args-to-set (gs, bs, ps))
by (rule image-mono, rule Keys-mono, auto simp add: set-diff-list args-to-set-def)

next
show component-of-term ‘ Keys (fst ‘ snd ‘ set (ps −− sps)) ⊆ compo-

nent-of-term ‘ Keys (args-to-set (gs, bs, ps))
by (rule image-mono, rule Keys-mono, auto simp add: args-to-set-def set-diff-list)

next
from assms(3 , 4 , 5) show component-of-term ‘ Keys (fst ‘ set hs) ⊆ compo-

nent-of-term ‘ Keys (args-to-set (gs, bs, ps))
unfolding assms(6) fst-set-add-indices by (rule compl-structD2)

qed
finally show ?thesis .

qed

corollary components-subset-struct:
assumes struct-spec sel ap ab compl and ps 6= []
assumes sps = sel gs bs ps data and hs = fst (add-indices (compl gs bs (ps −−

sps) sps data) data)
shows component-of-term ‘ Keys (args-to-set (gs, ab gs bs hs data ′, ap gs bs (ps
−− sps) hs data ′)) ⊆

component-of-term ‘ Keys (args-to-set (gs, bs, ps))
proof −

from assms(1) have sel: sel-spec sel and ap: ap-spec ap and ab: ab-spec ab
and compl: compl-struct compl by (rule struct-specD)+

from sel assms(2) have sps 6= [] and set sps ⊆ set ps
unfolding assms(3) by (rule sel-specD1 , rule sel-specD2)

from ap ab compl this assms(4) show ?thesis by (rule components-subset-ab)
qed

corollary components-struct:
assumes struct-spec sel ap ab compl and ps 6= [] and set ps ⊆ set bs × (set gs
∪ set bs)

assumes sps = sel gs bs ps data and hs = fst (add-indices (compl gs bs (ps −−
sps) sps data) data)

shows component-of-term ‘ Keys (args-to-set (gs, ab gs bs hs data ′, ap gs bs (ps
−− sps) hs data ′)) =

component-of-term ‘ Keys (args-to-set (gs, bs, ps)) (is ?l = ?r)
proof

171

from assms(1 , 2 , 4 , 5) show ?l ⊆ ?r by (rule components-subset-struct)
next

from assms(1) have ap: ap-spec ap and ab: ab-spec ab and compl: compl-struct
compl

by (rule struct-specD)+
from ap ab assms(3)
have sub: set (ap gs bs (ps −− sps) hs data ′) ⊆ set (ab gs bs hs data ′) × (set gs
∪ set (ab gs bs hs data ′))

by (rule subset-Times-ap)
show ?r ⊆ ?l

by (simp add: args-to-set-subset-Times[OF sub] args-to-set-subset-Times[OF
assms(3)] ab-specD1 [OF ab],

rule image-mono, rule Keys-mono, blast)
qed

lemma struct-spec-red-supset:
assumes struct-spec sel ap ab compl and ps 6= [] and sps = sel gs bs ps data

and hs = fst (add-indices (compl gs bs (ps −− sps) sps data) data) and hs 6=
[]

shows (fst ‘ set (ab gs bs hs data ′)) Ap (fst ‘ set bs)
proof −

from assms(5) have set hs 6= {} by simp
then obtain h ′ where h ′ ∈ set hs by fastforce
let ?h = fst h ′

let ?m = monomial (lc ?h) (lt ?h)
from ‹h ′ ∈ set hs› have h-in: ?h ∈ fst ‘ set hs by simp
hence ?h ∈ fst ‘ set (fst (compl gs bs (ps −− sps) sps data))

by (simp only: assms(4) fst-set-add-indices)
then obtain h ′′ where h ′′-in: h ′′ ∈ set (fst (compl gs bs (ps −− sps) sps data))

and ?h = fst h ′′ ..
from assms(1) have sel: sel-spec sel and ap: ap-spec ap and ab: ab-spec ab

and compl: compl-struct compl by (rule struct-specD)+
from sel assms(2) have sps 6= [] and set sps ⊆ set ps unfolding assms(3)

by (rule sel-specD1 , rule sel-specD2)
from h-in compl-structD3 [OF compl this] have ?h 6= 0 unfolding assms(4)

fst-set-add-indices
by metis

show ?thesis
proof (simp add: ab-specD1 [OF ab] image-Un, rule)

fix q
assume is-red (fst ‘ set bs) q
moreover have fst ‘ set bs ⊆ fst ‘ set bs ∪ fst ‘ set hs by simp
ultimately show is-red (fst ‘ set bs ∪ fst ‘ set hs) q by (rule is-red-subset)

next
from ‹?h 6= 0 › have lc ?h 6= 0 by (rule lc-not-0)
moreover have ?h ∈ {?h} ..
ultimately have is-red {?h} ?m using ‹?h 6= 0 › adds-term-refl by (rule

is-red-monomialI)
moreover have {?h} ⊆ fst ‘ set bs ∪ fst ‘ set hs using h-in by simp

172

ultimately show is-red (fst ‘ set bs ∪ fst ‘ set hs) ?m by (rule is-red-subset)
next

show ¬ is-red (fst ‘ set bs) ?m
proof

assume is-red (fst ‘ set bs) ?m
then obtain b ′ where b ′ ∈ fst ‘ set bs and b ′ 6= 0 and lt b ′ addst lt ?h

by (rule is-red-monomialE)
from this(1) obtain b where b ∈ set bs and b ′: b ′ = fst b ..
from this(1) have b ∈ set gs ∪ set bs by simp
from ‹b ′ 6= 0 › have fst b 6= 0 by (simp add: b ′)
with compl ‹sps 6= []› ‹set sps ⊆ set ps› h ′′-in ‹b ∈ set gs ∪ set bs› have ¬

lt (fst b) addst lt ?h
unfolding ‹?h = fst h ′′› by (rule compl-structD4)

from this ‹lt b ′ addst lt ?h› show False by (simp add: b ′)
qed

qed
qed

lemma unique-idx-append:
assumes unique-idx gs data and (hs, data ′) = add-indices aux data
shows unique-idx (gs @ hs) data ′

proof −
from assms(2) have hs: hs = fst (add-indices aux data) and data ′: data ′ = snd

(add-indices aux data)
by (metis fst-conv, metis snd-conv)

have len: length hs = length (fst aux) by (simp add: hs add-indices-def)
have eq: fst data ′ = fst data + length hs by (simp add: data ′ add-indices-def hs)
show ?thesis
proof (rule unique-idxI)

fix f g
assume f ∈ set (gs @ hs) and g ∈ set (gs @ hs)
hence d1 : f ∈ set gs ∪ set hs and d2 : g ∈ set gs ∪ set hs by simp-all
assume id-eq: fst (snd f) = fst (snd g)
from d1 show f = g
proof

assume f ∈ set gs
from d2 show ?thesis
proof

assume g ∈ set gs
from assms(1) ‹f ∈ set gs› this id-eq show ?thesis by (rule unique-idxD1)

next
assume g ∈ set hs
then obtain j where g = (fst (fst aux ! j), fst data + j, snd (fst aux ! j))

unfolding hs
by (rule in-set-add-indicesE)

hence fst (snd g) = fst data + j by simp
moreover from assms(1) ‹f ∈ set gs› have fst (snd f) < fst data

by (rule unique-idxD2)
ultimately show ?thesis by (simp add: id-eq)

173

qed
next

assume f ∈ set hs
then obtain i where f : f = (fst (fst aux ! i), fst data + i, snd (fst aux ! i))

unfolding hs
by (rule in-set-add-indicesE)

hence ∗: fst (snd f) = fst data + i by simp
from d2 show ?thesis
proof

assume g ∈ set gs
with assms(1) have fst (snd g) < fst data by (rule unique-idxD2)
with ∗ show ?thesis by (simp add: id-eq)

next
assume g ∈ set hs
then obtain j where g: g = (fst (fst aux ! j), fst data + j, snd (fst aux !

j)) unfolding hs
by (rule in-set-add-indicesE)

hence fst (snd g) = fst data + j by simp
with ∗ have i = j by (simp add: id-eq)
thus ?thesis by (simp add: f g)

qed
qed

next
fix f
assume f ∈ set (gs @ hs)
hence f ∈ set gs ∪ set hs by simp
thus fst (snd f) < fst data ′

proof
assume f ∈ set gs
with assms(1) have fst (snd f) < fst data by (rule unique-idxD2)
also have ... ≤ fst data ′ by (simp add: eq)
finally show ?thesis .

next
assume f ∈ set hs
then obtain i where i < length (fst aux)

and f = (fst (fst aux ! i), fst data + i, snd (fst aux ! i)) unfolding hs
by (rule in-set-add-indicesE)

from this(2) have fst (snd f) = fst data + i by simp
also from ‹i < length (fst aux)› have ... < fst data + length (fst aux) by

simp
finally show ?thesis by (simp only: eq len)

qed
qed

qed

corollary unique-idx-ab:
assumes ab-spec ab and unique-idx (gs @ bs) data and (hs, data ′) = add-indices

aux data
shows unique-idx (gs @ ab gs bs hs data ′) data ′

174

proof −
from assms(2 , 3) have unique-idx ((gs @ bs) @ hs) data ′ by (rule unique-idx-append)
thus ?thesis by (simp add: unique-idx-def ab-specD1 [OF assms(1)])

qed

lemma rem-comps-spec-struct:
assumes struct-spec sel ap ab compl and rem-comps-spec (gs @ bs) data and ps
6= []

and set ps ⊆ (set bs) × (set gs ∪ set bs) and sps = sel gs bs ps (snd data)
and aux = compl gs bs (ps −− sps) sps (snd data) and (hs, data ′) = add-indices

aux (snd data)
shows rem-comps-spec (gs @ ab gs bs hs data ′) (fst data − count-const-lt-components

(fst aux), data ′)
proof −

from assms(1) have sel: sel-spec sel and ap: ap-spec ap and ab: ab-spec ab and
compl: compl-struct compl

by (rule struct-specD)+
from ap ab assms(4)
have sub: set (ap gs bs (ps −− sps) hs data ′) ⊆ set (ab gs bs hs data ′) × (set gs
∪ set (ab gs bs hs data ′))

by (rule subset-Times-ap)
have hs: hs = fst (add-indices aux (snd data)) by (simp add: assms(7)[symmetric])
from sel assms(3) have sps 6= [] and set sps ⊆ set ps unfolding assms(5)

by (rule sel-specD1 , rule sel-specD2)
have eq0 : fst ‘ set (fst aux) − {0} = fst ‘ set (fst aux)

by (rule Diff-triv, simp add: Int-insert-right assms(6), rule compl-structD3 ,
fact+)

have component-of-term ‘ Keys (fst ‘ set (gs @ ab gs bs hs data ′)) =
component-of-term ‘ Keys (args-to-set (gs, ab gs bs hs data ′, ap gs bs (ps

−− sps) hs data ′))
by (simp add: args-to-set-subset-Times[OF sub] image-Un)

also from assms(1 , 3 , 4 , 5) hs
have ... = component-of-term ‘ Keys (args-to-set (gs, bs, ps)) unfolding assms(6)

by (rule components-struct)
also have ... = component-of-term ‘ Keys (fst ‘ set (gs @ bs))

by (simp add: args-to-set-subset-Times[OF assms(4)] image-Un)
finally have eq: component-of-term ‘ Keys (fst ‘ set (gs @ ab gs bs hs data ′)) =

component-of-term ‘ Keys (fst ‘ set (gs @ bs)) .
from assms(2)
have eq2 : card (component-of-term ‘ Keys (fst ‘ set (gs @ bs))) =

fst data + card (const-lt-component ‘ (fst ‘ set (gs @ bs) − {0}) −
{None}) (is ?a = - + ?b)

by (simp only: rem-comps-spec-def)
have eq3 : card (const-lt-component ‘ (fst ‘ set (gs @ ab gs bs hs data ′) − {0}) −
{None}) =

?b + count-const-lt-components (fst aux) (is ?c = -)
proof (simp add: ab-specD1 [OF ab] image-Un Un-assoc[symmetric] Un-Diff

count-const-lt-components-alt
hs fst-set-add-indices eq0 , rule card-Un-disjoint)

175

show finite (const-lt-component ‘ (fst ‘ set gs − {0}) − {None} ∪ (const-lt-component
‘ (fst ‘ set bs − {0}) − {None}))

by (intro finite-UnI finite-Diff finite-imageI finite-set)
next

show finite (const-lt-component ‘ fst ‘ set (fst aux) − {None})
by (rule finite-Diff , intro finite-imageI , fact finite-set)

next
have (const-lt-component ‘ (fst ‘ (set gs ∪ set bs) − {0}) − {None}) ∩

(const-lt-component ‘ fst ‘ set (fst aux) − {None}) =
(const-lt-component ‘ (fst ‘ (set gs ∪ set bs) − {0}) ∩
const-lt-component ‘ fst ‘ set (fst aux)) − {None} by blast

also have ... = {}
proof (simp, rule, simp, elim conjE)

fix k
assume k ∈ const-lt-component ‘ (fst ‘ (set gs ∪ set bs) − {0})

then obtain b where b ∈ set gs ∪ set bs and fst b 6= 0 and k1 : k =
const-lt-component (fst b)

by blast
assume k ∈ const-lt-component ‘ fst ‘ set (fst aux)
then obtain h where h ∈ set (fst aux) and k2 : k = const-lt-component (fst

h) by blast
show k = None
proof (rule ccontr , simp, elim exE)

fix k ′

assume k = Some k ′

hence lp (fst b) = 0 and component-of-term (lt (fst b)) = k ′ unfolding k1
by (rule const-lt-component-SomeD1 , rule const-lt-component-SomeD2)

moreover from ‹k = Some k ′› have lp (fst h) = 0 and component-of-term
(lt (fst h)) = k ′

unfolding k2 by (rule const-lt-component-SomeD1 , rule const-lt-component-SomeD2)
ultimately have lt (fst b) addst lt (fst h) by (simp add: adds-term-def)
moreover from compl ‹sps 6= []› ‹set sps ⊆ set ps› ‹h ∈ set (fst aux)› ‹b

∈ set gs ∪ set bs› ‹fst b 6= 0 ›
have ¬ lt (fst b) addst lt (fst h) unfolding assms(6) by (rule compl-structD4)

ultimately show False by simp
qed

qed
finally show (const-lt-component ‘ (fst ‘ set gs − {0}) − {None} ∪ (const-lt-component

‘ (fst ‘ set bs − {0}) − {None})) ∩
(const-lt-component ‘ fst ‘ set (fst aux) − {None}) = {} by (simp only:

Un-Diff image-Un)
qed
have ?c ≤ ?a unfolding eq[symmetric]

by (rule card-const-lt-component-le, rule finite-imageI , fact finite-set)
hence le: count-const-lt-components (fst aux) ≤ fst data by (simp only: eq2 eq3)
show ?thesis by (simp only: rem-comps-spec-def eq eq2 eq3 , simp add: le)

qed

lemma pmdl-struct:

176

assumes struct-spec sel ap ab compl and compl-pmdl compl and is-Groebner-basis
(fst ‘ set gs)

and ps 6= [] and set ps ⊆ (set bs) × (set gs ∪ set bs) and unique-idx (gs @ bs)
(snd data)

and sps = sel gs bs ps (snd data) and aux = compl gs bs (ps −− sps) sps (snd
data)

and (hs, data ′) = add-indices aux (snd data)
shows pmdl (fst ‘ set (gs @ ab gs bs hs data ′)) = pmdl (fst ‘ set (gs @ bs))

proof −
have hs: hs = fst (add-indices aux (snd data)) by (simp add: assms(9)[symmetric])
from assms(1) have sel: sel-spec sel and ab: ab-spec ab by (rule struct-specD)+
have eq: fst ‘ (set gs ∪ set (ab gs bs hs data ′)) = fst ‘ (set gs ∪ set bs) ∪ fst ‘ set

hs
by (auto simp add: ab-specD1 [OF ab])

show ?thesis
proof (simp add: eq, rule)

show pmdl (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set hs) ⊆ pmdl (fst ‘ (set gs ∪ set bs))
proof (rule pmdl.span-subset-spanI , simp only: Un-subset-iff , rule)

show fst ‘ (set gs ∪ set bs) ⊆ pmdl (fst ‘ (set gs ∪ set bs))
by (fact pmdl.span-superset)

next
from sel assms(4) have sps 6= [] and set sps ⊆ set ps

unfolding assms(7) by (rule sel-specD1 , rule sel-specD2)
with assms(2 , 3) have fst ‘ set hs ⊆ pmdl (args-to-set (gs, bs, ps))
unfolding hs assms(8) fst-set-add-indices using assms(6) by (rule compl-pmdlD)
thus fst ‘ set hs ⊆ pmdl (fst ‘ (set gs ∪ set bs))

by (simp only: args-to-set-subset-Times[OF assms(5)] image-Un)
qed

next
show pmdl (fst ‘ (set gs ∪ set bs)) ⊆ pmdl (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set hs)

by (rule pmdl.span-mono, blast)
qed

qed

lemma discarded-subset:
assumes ab-spec ab

and D ′ = D ∪ (set hs × (set gs ∪ set bs ∪ set hs) ∪ set (ps −− sps) −p set
(ap gs bs (ps −− sps) hs data ′))

and set ps ⊆ set bs × (set gs ∪ set bs) and D ⊆ (set gs ∪ set bs) × (set gs ∪
set bs)

shows D ′ ⊆ (set gs ∪ set (ab gs bs hs data ′)) × (set gs ∪ set (ab gs bs hs data ′))
proof −

from assms(1) have eq: set (ab gs bs hs data ′) = set bs ∪ set hs by (rule
ab-specD1)

from assms(4) have D ⊆ (set gs ∪ (set bs ∪ set hs)) × (set gs ∪ (set bs ∪ set
hs)) by fastforce

moreover have set hs × (set gs ∪ set bs ∪ set hs) ∪ set (ps −− sps) −p set (ap
gs bs (ps −− sps) hs data ′) ⊆

177

(set gs ∪ (set bs ∪ set hs)) × (set gs ∪ (set bs ∪ set hs)) (is ?l ⊆ ?r)
proof (rule subset-trans)

show ?l ⊆ set hs × (set gs ∪ set bs ∪ set hs) ∪ set (ps −− sps)
by (simp add: minus-pairs-def)

next
have set hs × (set gs ∪ set bs ∪ set hs) ⊆ ?r by fastforce
moreover have set (ps −− sps) ⊆ ?r
proof (rule subset-trans)

show set (ps −− sps) ⊆ set ps by (auto simp: set-diff-list)
next

from assms(3) show set ps ⊆ ?r by fastforce
qed
ultimately show set hs × (set gs ∪ set bs ∪ set hs) ∪ set (ps −− sps) ⊆ ?r

by (rule Un-least)
qed
ultimately show ?thesis unfolding eq assms(2) by (rule Un-least)

qed

lemma compl-struct-disjoint:
assumes compl-struct compl and sps 6= [] and set sps ⊆ set ps
shows fst ‘ set (fst (compl gs bs (ps −− sps) sps data)) ∩ fst ‘ (set gs ∪ set bs)

= {}
proof (rule, rule)

fix x
assume x ∈ fst ‘ set (fst (compl gs bs (ps −− sps) sps data)) ∩ fst ‘ (set gs ∪

set bs)
hence x-in: x ∈ fst ‘ set (fst (compl gs bs (ps −− sps) sps data)) and x ∈ fst ‘

(set gs ∪ set bs)
by simp-all

from x-in obtain h where h-in: h ∈ set (fst (compl gs bs (ps −− sps) sps data))
and x1 : x = fst h ..

from compl-structD3 [OF assms, of gs bs data] x-in have x 6= 0 by auto
from ‹x ∈ fst ‘ (set gs ∪ set bs)› obtain b where b-in: b ∈ set gs ∪ set bs and

x2 : x = fst b ..
from ‹x 6= 0 › have fst b 6= 0 by (simp add: x2)
with assms h-in b-in have ¬ lt (fst b) addst lt (fst h) by (rule compl-structD4)
hence ¬ lt x addst lt x by (simp add: x1 [symmetric] x2)
from this adds-term-refl show x ∈ {} ..

qed simp

context
fixes sel::(′t, ′b::field, ′c::default, ′d) selT and ap::(′t, ′b, ′c, ′d) apT

and ab::(′t, ′b, ′c, ′d) abT and compl::(′t, ′b, ′c, ′d) complT
and gs::(′t, ′b, ′c) pdata list

begin

function (domintros) gb-schema-dummy :: nat × nat × ′d ⇒ (′t, ′b, ′c) pdata-pair
set ⇒

(′t, ′b, ′c) pdata list ⇒ (′t, ′b, ′c) pdata-pair list ⇒

178

((′t, ′b, ′c) pdata list × (′t, ′b, ′c) pdata-pair set)
where

gb-schema-dummy data D bs ps =
(if ps = [] then
(gs @ bs, D)

else
(let sps = sel gs bs ps (snd data); ps0 = ps −− sps; aux = compl gs bs

ps0 sps (snd data);
remcomps = fst (data) − count-const-lt-components (fst aux) in

(if remcomps = 0 then
(full-gb (gs @ bs), D)

else
let (hs, data ′) = add-indices aux (snd data) in

gb-schema-dummy (remcomps, data ′)
(D ∪ ((set hs × (set gs ∪ set bs ∪ set hs) ∪ set (ps −− sps)) −p

set (ap gs bs ps0 hs data ′)))
(ab gs bs hs data ′) (ap gs bs ps0 hs data ′)

)
)

)
by pat-completeness auto

lemma gb-schema-dummy-domI1 : gb-schema-dummy-dom (data, D, bs, [])
by (rule gb-schema-dummy.domintros, simp)

lemma gb-schema-dummy-domI2 :
assumes struct-spec sel ap ab compl
shows gb-schema-dummy-dom (data, D, args)

proof −
from assms have sel: sel-spec sel and ap: ap-spec ap and ab: ab-spec ab by (rule

struct-specD)+
from ex-dgrad obtain d:: ′a ⇒ nat where dg: dickson-grading d ..
let ?R = (gb-schema-aux-term d gs)
from dg have wf ?R by (rule gb-schema-aux-term-wf)
thus ?thesis
proof (induct args arbitrary: data D rule: wf-induct-rule)

fix x data D
assume IH :

∧
y data ′ D ′. (y, x) ∈ ?R =⇒ gb-schema-dummy-dom (data ′, D ′,

y)
obtain bs ps where x: x = (bs, ps) by (meson case-prodE case-prodI2)
show gb-schema-dummy-dom (data, D, x) unfolding x
proof (rule gb-schema-dummy.domintros)

fix rc0 n0 data0 hs n1 data1
assume ps 6= []

and hs-data ′: (hs, n1 , data1) = add-indices (compl gs bs (ps −− sel gs bs
ps (n0 , data0))

(sel gs bs ps (n0 , data0)) (n0 , data0)) (n0 ,
data0)

and data: data = (rc0 , n0 , data0)

179

define sps where sps = sel gs bs ps (n0 , data0)
define data ′ where data ′ = (n1 , data1)
define D ′ where D ′ = D ∪

(set hs × (set gs ∪ set bs ∪ set hs) ∪ set (ps −− sps) −p

set (ap gs bs (ps −− sps) hs data ′))
define rc where rc = rc0 − count-const-lt-components (fst (compl gs bs (ps

−− sel gs bs ps (n0 , data0))
(sel gs bs ps (n0 , data0)) (n0 ,

data0)))
from hs-data ′ have hs: hs = fst (add-indices (compl gs bs (ps −− sps) sps

(snd data)) (snd data))
unfolding sps-def data snd-conv by (metis fstI)

show gb-schema-dummy-dom ((rc, data ′), D ′, ab gs bs hs data ′, ap gs bs (ps
−− sps) hs data ′)

proof (rule IH , simp add: x gb-schema-aux-term-def gb-schema-aux-term1-def
gb-schema-aux-term2-def , intro conjI)

show fst ‘ set (ab gs bs hs data ′) Ap fst ‘ set bs ∨
ab gs bs hs data ′ = bs ∧ card (set (ap gs bs (ps −− sps) hs data ′)) <

card (set ps)
proof (cases hs = [])

case True
have ab gs bs hs data ′ = bs ∧ card (set (ap gs bs (ps −− sps) hs data ′))

< card (set ps)
proof (simp only: True, rule)

from ab show ab gs bs [] data ′ = bs by (rule ab-specD2)
next

from sel ‹ps 6= []› have sps 6= [] and set sps ⊆ set ps
unfolding sps-def by (rule sel-specD1 , rule sel-specD2)

moreover from sel-specD1 [OF sel ‹ps 6= []›] have set sps 6= {} by (simp
add: sps-def)

ultimately have set ps ∩ set sps 6= {} by (simp add: inf .absorb-iff2)
hence set (ps −− sps) ⊂ set ps unfolding set-diff-list by fastforce

hence card (set (ps −− sps)) < card (set ps) by (simp add: psub-
set-card-mono)

moreover have card (set (ap gs bs (ps −− sps) [] data ′)) ≤ card (set
(ps −− sps))

by (rule card-mono, fact finite-set, rule ap-spec-Nil-subset, fact ap)
ultimately show card (set (ap gs bs (ps −− sps) [] data ′)) < card (set

ps) by simp
qed
thus ?thesis ..

next
case False
with assms ‹ps 6= []› sps-def hs have fst ‘ set (ab gs bs hs data ′) Ap fst ‘

set bs
unfolding data snd-conv by (rule struct-spec-red-supset)

thus ?thesis ..
qed

next

180

from dg assms ‹ps 6= []› sps-def hs
show dgrad-p-set-le d (args-to-set (gs, ab gs bs hs data ′, ap gs bs (ps −−

sps) hs data ′)) (args-to-set (gs, bs, ps))
unfolding data snd-conv by (rule dgrad-p-set-le-args-to-set-struct)

next
from assms ‹ps 6= []› sps-def hs
show component-of-term ‘ Keys (args-to-set (gs, ab gs bs hs data ′, ap gs bs

(ps −− sps) hs data ′)) ⊆
component-of-term ‘ Keys (args-to-set (gs, bs, ps))

unfolding data snd-conv by (rule components-subset-struct)
qed

qed
qed

qed

lemmas gb-schema-dummy-simp = gb-schema-dummy.psimps[OF gb-schema-dummy-domI2]

lemma gb-schema-dummy-Nil [simp]: gb-schema-dummy data D bs [] = (gs @ bs,
D)

by (simp add: gb-schema-dummy.psimps[OF gb-schema-dummy-domI1])

lemma gb-schema-dummy-not-Nil:
assumes struct-spec sel ap ab compl and ps 6= []
shows gb-schema-dummy data D bs ps =

(let sps = sel gs bs ps (snd data); ps0 = ps −− sps; aux = compl gs bs
ps0 sps (snd data);

remcomps = fst (data) − count-const-lt-components (fst aux) in
(if remcomps = 0 then
(full-gb (gs @ bs), D)

else
let (hs, data ′) = add-indices aux (snd data) in

gb-schema-dummy (remcomps, data ′)
(D ∪ ((set hs × (set gs ∪ set bs ∪ set hs) ∪ set (ps −− sps)) −p

set (ap gs bs ps0 hs data ′)))
(ab gs bs hs data ′) (ap gs bs ps0 hs data ′)

)
)

by (simp add: gb-schema-dummy-simp[OF assms(1)] assms(2))

lemma gb-schema-dummy-induct [consumes 1 , case-names base rec1 rec2]:
assumes struct-spec sel ap ab compl
assumes base:

∧
bs data D. P data D bs [] (gs @ bs, D)

and rec1 :
∧

bs ps sps data D. ps 6= [] =⇒ sps = sel gs bs ps (snd data) =⇒
fst (data) ≤ count-const-lt-components (fst (compl gs bs (ps −− sps)

sps (snd data))) =⇒
P data D bs ps (full-gb (gs @ bs), D)

and rec2 :
∧

bs ps sps aux hs rc data data ′ D D ′. ps 6= [] =⇒ sps = sel gs bs ps
(snd data) =⇒

aux = compl gs bs (ps −− sps) sps (snd data) =⇒ (hs, data ′) =

181

add-indices aux (snd data) =⇒
rc = fst data − count-const-lt-components (fst aux) =⇒ 0 < rc =⇒
D ′ = (D ∪ ((set hs × (set gs ∪ set bs ∪ set hs) ∪ set (ps −− sps))

−p set (ap gs bs (ps −− sps) hs data ′))) =⇒
P (rc, data ′) D ′ (ab gs bs hs data ′) (ap gs bs (ps −− sps) hs data ′)

(gb-schema-dummy (rc, data ′) D ′ (ab gs bs hs data ′) (ap gs bs (ps
−− sps) hs data ′)) =⇒

P data D bs ps (gb-schema-dummy (rc, data ′) D ′ (ab gs bs hs data ′)
(ap gs bs (ps −− sps) hs data ′))

shows P data D bs ps (gb-schema-dummy data D bs ps)
proof −
from assms(1) have gb-schema-dummy-dom (data, D, bs, ps) by (rule gb-schema-dummy-domI2)
thus ?thesis
proof (induct data D bs ps rule: gb-schema-dummy.pinduct)

case (1 data D bs ps)
show ?case
proof (cases ps = [])

case True
show ?thesis by (simp add: True, rule base)

next
case False
show ?thesis

proof (simp only: gb-schema-dummy-not-Nil[OF assms(1) False] Let-def split:
if-split, intro conjI impI)

define sps where sps = sel gs bs ps (snd data)
assume fst data − count-const-lt-components (fst (compl gs bs (ps −− sps)

sps (snd data))) = 0
hence fst data ≤ count-const-lt-components (fst (compl gs bs (ps −− sps)

sps (snd data)))
by simp
with False sps-def show P data D bs ps (full-gb (gs @ bs), D) by (rule

rec1)
next

define sps where sps = sel gs bs ps (snd data)
define aux where aux = compl gs bs (ps −− sps) sps (snd data)
define hs where hs = fst (add-indices aux (snd data))
define data ′ where data ′ = snd (add-indices aux (snd data))
define rc where rc = fst data − count-const-lt-components (fst aux)
define D ′ where D ′ = (D ∪ ((set hs × (set gs ∪ set bs ∪ set hs) ∪ set (ps

−− sps)) −p set (ap gs bs (ps −− sps) hs data ′)))
have eq: add-indices aux (snd data) = (hs, data ′) by (simp add: hs-def

data ′-def)
assume rc 6= 0
hence 0 < rc by simp
show P data D bs ps

(case add-indices aux (snd data) of
(hs, data ′) ⇒

gb-schema-dummy (rc, data ′)
(D ∪ (set hs × (set gs ∪ set bs ∪ set hs) ∪ set (ps −− sps) −p set (ap

182

gs bs (ps −− sps) hs data ′)))
(ab gs bs hs data ′) (ap gs bs (ps −− sps) hs data ′))

unfolding eq prod.case D ′-def [symmetric] using False sps-def aux-def
eq[symmetric] rc-def ‹0 < rc› D ′-def

proof (rule rec2)
show P (rc, data ′) D ′ (ab gs bs hs data ′) (ap gs bs (ps −− sps) hs data ′)

(gb-schema-dummy (rc, data ′) D ′ (ab gs bs hs data ′) (ap gs bs (ps
−− sps) hs data ′))

unfolding D ′-def using False sps-def refl aux-def rc-def ‹rc 6= 0 ›
eq[symmetric] refl

by (rule 1)
qed

qed
qed

qed
qed

lemma fst-gb-schema-dummy-dgrad-p-set-le:
assumes dickson-grading d and struct-spec sel ap ab compl
shows dgrad-p-set-le d (fst ‘ set (fst (gb-schema-dummy data D bs ps))) (args-to-set

(gs, bs, ps))
using assms(2)

proof (induct rule: gb-schema-dummy-induct)
case (base bs data D)
show ?case by (simp add: args-to-set-def , rule dgrad-p-set-le-subset, fact sub-

set-refl)
next

case (rec1 bs ps sps data D)
show ?case
proof (cases fst ‘ set gs ∪ fst ‘ set bs ⊆ {0})

case True
hence Keys (fst ‘ set (gs @ bs)) = {} by (auto simp add: image-Un Keys-def)
hence component-of-term ‘ Keys (fst ‘ set (full-gb (gs @ bs))) = {}

by (simp add: components-full-gb)
hence Keys (fst ‘ set (full-gb (gs @ bs))) = {} by simp
thus ?thesis by (simp add: dgrad-p-set-le-def dgrad-set-le-def)

next
case False
from pps-full-gb have dgrad-set-le d (pp-of-term ‘ Keys (fst ‘ set (full-gb (gs @

bs)))) {0}
by (rule dgrad-set-le-subset)

also have dgrad-set-le d ... (pp-of-term ‘ Keys (args-to-set (gs, bs, ps)))
proof (rule dgrad-set-leI , simp)

from False have Keys (args-to-set (gs, bs, ps)) 6= {}
by (simp add: args-to-set-alt Keys-Un, metis Keys-not-empty singletonI

subsetI)
then obtain v where v ∈ Keys (args-to-set (gs, bs, ps)) by blast

moreover have d 0 ≤ d (pp-of-term v) by (simp add: assms(1) dick-
son-grading-adds-imp-le)

183

ultimately show ∃ t∈Keys (args-to-set (gs, bs, ps)). d 0 ≤ d (pp-of-term t)
..

qed
finally show ?thesis by (simp add: dgrad-p-set-le-def)

qed
next

case (rec2 bs ps sps aux hs rc data data ′ D D ′)
from rec2 (4) have hs = fst (add-indices (compl gs bs (ps −− sps) sps (snd

data)) (snd data))
unfolding rec2 (3) by (metis fstI)

with assms rec2 (1 , 2)
have dgrad-p-set-le d (args-to-set (gs, ab gs bs hs data ′, ap gs bs (ps −− sps) hs

data ′)) (args-to-set (gs, bs, ps))
by (rule dgrad-p-set-le-args-to-set-struct)

with rec2 (8) show ?case by (rule dgrad-p-set-le-trans)
qed

lemma fst-gb-schema-dummy-components:
assumes struct-spec sel ap ab compl and set ps ⊆ (set bs) × (set gs ∪ set bs)
shows component-of-term ‘ Keys (fst ‘ set (fst (gb-schema-dummy data D bs ps)))

=
component-of-term ‘ Keys (args-to-set (gs, bs, ps))

using assms
proof (induct rule: gb-schema-dummy-induct)

case (base bs data D)
show ?case by (simp add: args-to-set-def)

next
case (rec1 bs ps sps data D)
have component-of-term ‘ Keys (fst ‘ set (full-gb (gs @ bs))) =

component-of-term ‘ Keys (fst ‘ set (gs @ bs)) by (fact components-full-gb)
also have ... = component-of-term ‘ Keys (args-to-set (gs, bs, ps))

by (simp add: args-to-set-subset-Times[OF rec1 .prems] image-Un)
finally show ?case by simp

next
case (rec2 bs ps sps aux hs rc data data ′ D D ′)
from assms(1) have ap: ap-spec ap and ab: ab-spec ab by (rule struct-specD)+
from this rec2 .prems
have sub: set (ap gs bs (ps −− sps) hs data ′) ⊆ set (ab gs bs hs data ′) × (set gs
∪ set (ab gs bs hs data ′))

by (rule subset-Times-ap)
from rec2 (4) have hs: hs = fst (add-indices (compl gs bs (ps −− sps) sps (snd

data)) (snd data))
unfolding rec2 (3) by (metis fstI)

have component-of-term ‘ Keys (args-to-set (gs, ab gs bs hs data ′, ap gs bs (ps
−− sps) hs data ′)) =

component-of-term ‘ Keys (args-to-set (gs, bs, ps)) (is ?l = ?r)
proof
from assms(1) rec2 (1 , 2) hs show ?l ⊆ ?r by (rule components-subset-struct)

next

184

show ?r ⊆ ?l
by (simp add: args-to-set-subset-Times[OF rec2 .prems] args-to-set-alt2 [OF ap

ab rec2 .prems] image-Un,
rule image-mono, rule Keys-mono, blast)

qed
with rec2 .hyps(8)[OF sub] show ?case by (rule trans)

qed

lemma fst-gb-schema-dummy-pmdl:
assumes struct-spec sel ap ab compl and compl-pmdl compl and is-Groebner-basis

(fst ‘ set gs)
and set ps ⊆ set bs × (set gs ∪ set bs) and unique-idx (gs @ bs) (snd data)
and rem-comps-spec (gs @ bs) data

shows pmdl (fst ‘ set (fst (gb-schema-dummy data D bs ps))) = pmdl (fst ‘ set
(gs @ bs))
proof −

from assms(1) have sel: sel-spec sel and ap: ap-spec ap and ab: ab-spec ab and
compl: compl-struct compl

by (rule struct-specD)+
from assms(1 , 4 , 5 , 6) show ?thesis
proof (induct bs ps rule: gb-schema-dummy-induct)

case (base bs data D)
show ?case by simp

next
case (rec1 bs ps sps data D)
define aux where aux = compl gs bs (ps −− sps) sps (snd data)
define data ′ where data ′ = snd (add-indices aux (snd data))
define hs where hs = fst (add-indices aux (snd data))
have hs-data ′: (hs, data ′) = add-indices aux (snd data) by (simp add: hs-def

data ′-def)
have eq: set (gs @ ab gs bs hs data ′) = set (gs @ bs @ hs) by (simp add:

ab-specD1 [OF ab])
from sel rec1 (1) have sps 6= [] and set sps ⊆ set ps unfolding rec1 (2)

by (rule sel-specD1 , rule sel-specD2)
from full-gb-is-full-pmdl have pmdl (fst ‘ set (full-gb (gs @ bs))) = pmdl (fst

‘ set (gs @ ab gs bs hs data ′))
proof (rule is-full-pmdl-eq)

show is-full-pmdl (fst ‘ set (gs @ ab gs bs hs data ′))
proof (rule is-full-pmdlI-lt-finite)

from finite-set show finite (fst ‘ set (gs @ ab gs bs hs data ′)) by (rule
finite-imageI)

next
fix k
assume k ∈ component-of-term ‘ Keys (fst ‘ set (gs @ ab gs bs hs data ′))
hence Some k ∈ Some ‘ component-of-term ‘ Keys (fst ‘ set (gs @ ab gs bs

hs data ′)) by simp
also have ... = const-lt-component ‘ (fst ‘ set (gs @ ab gs bs hs data ′) −

{0}) − {None} (is ?A = ?B)
proof (rule card-seteq[symmetric])

185

show finite ?A by (intro finite-imageI finite-Keys, fact finite-set)
next

have rem-comps-spec (gs @ ab gs bs hs data ′) (fst data − count-const-lt-components
(fst aux), data ′)

using assms(1) rec1 .prems(3) rec1 .hyps(1) rec1 .prems(1) rec1 .hyps(2)
aux-def hs-data ′

by (rule rem-comps-spec-struct)
also have ... = (0 , data ′) by (simp add: aux-def rec1 .hyps(3))
finally have card (const-lt-component ‘ (fst ‘ set (gs @ ab gs bs hs data ′)

− {0}) − {None}) =
card (component-of-term ‘ Keys (fst ‘ set (gs @ ab gs bs hs

data ′)))
by (simp add: rem-comps-spec-def)

also have ... = card (Some ‘ component-of-term ‘ Keys (fst ‘ set (gs @ ab
gs bs hs data ′)))

by (rule card-image[symmetric], simp)
finally show card ?A ≤ card ?B by simp

qed (fact const-lt-component-subset)
finally have Some k ∈ const-lt-component ‘ (fst ‘ set (gs @ ab gs bs hs

data ′) − {0})
by simp

then obtain b where b ∈ fst ‘ set (gs @ ab gs bs hs data ′) and b 6= 0
and ∗: const-lt-component b = Some k by fastforce

show ∃ b∈fst ‘ set (gs @ ab gs bs hs data ′). b 6= 0 ∧ component-of-term (lt
b) = k ∧ lp b = 0

proof (intro bexI conjI)
from ∗ show component-of-term (lt b) = k by (rule const-lt-component-SomeD2)
next

from ∗ show lp b = 0 by (rule const-lt-component-SomeD1)
qed fact+

qed
next

from compl ‹sps 6= []› ‹set sps ⊆ set ps›
have component-of-term ‘ Keys (fst ‘ set hs) ⊆ component-of-term ‘ Keys

(args-to-set (gs, bs, ps))
unfolding hs-def aux-def fst-set-add-indices by (rule compl-structD2)

hence sub: component-of-term ‘ Keys (fst ‘ set hs) ⊆ component-of-term ‘
Keys (fst ‘ set (gs @ bs))

by (simp add: args-to-set-subset-Times[OF rec1 .prems(1)] image-Un)
have component-of-term ‘ Keys (fst ‘ set (full-gb (gs @ bs))) =

component-of-term ‘ Keys (fst ‘ set (gs @ bs)) by (fact components-full-gb)
also have ... = component-of-term ‘ Keys (fst ‘ set ((gs @ bs) @ hs))

by (simp only: set-append[of - hs] image-Un Keys-Un Un-absorb2 sub)
finally show component-of-term ‘ Keys (fst ‘ set (full-gb (gs @ bs))) =

component-of-term ‘ Keys (fst ‘ set (gs @ ab gs bs hs data ′))
by (simp only: eq append-assoc)

qed
also have ... = pmdl (fst ‘ set (gs @ bs))

using assms(1 , 2 , 3) rec1 .hyps(1) rec1 .prems(1 , 2) rec1 .hyps(2) aux-def

186

hs-data ′

by (rule pmdl-struct)
finally show ?case by simp

next
case (rec2 bs ps sps aux hs rc data data ′ D D ′)
from rec2 (4) have hs: hs = fst (add-indices aux (snd data)) by (metis fstI)
have pmdl (fst ‘ set (fst (gb-schema-dummy (rc, data ′) D ′ (ab gs bs hs data ′)

(ap gs bs (ps −− sps) hs data ′)))) =
pmdl (fst ‘ set (gs @ ab gs bs hs data ′))

proof (rule rec2 .hyps(8))
from ap ab rec2 .prems(1)
show set (ap gs bs (ps −− sps) hs data ′) ⊆ set (ab gs bs hs data ′) × (set gs

∪ set (ab gs bs hs data ′))
by (rule subset-Times-ap)

next
from ab rec2 .prems(2) rec2 (4) show unique-idx (gs @ ab gs bs hs data ′) (snd

(rc, data ′))
unfolding snd-conv by (rule unique-idx-ab)

next
show rem-comps-spec (gs @ ab gs bs hs data ′) (rc, data ′) unfolding rec2 .hyps(5)

using assms(1) rec2 .prems(3) rec2 .hyps(1) rec2 .prems(1) rec2 .hyps(2 , 3 ,
4)

by (rule rem-comps-spec-struct)
qed
also have ... = pmdl (fst ‘ set (gs @ bs))

using assms(1 , 2 , 3) rec2 .hyps(1) rec2 .prems(1 , 2) rec2 .hyps(2 , 3 , 4) by
(rule pmdl-struct)

finally show ?case .
qed

qed

lemma snd-gb-schema-dummy-subset:
assumes struct-spec sel ap ab compl and set ps ⊆ set bs × (set gs ∪ set bs)

and D ⊆ (set gs ∪ set bs) × (set gs ∪ set bs) and res = gb-schema-dummy
data D bs ps

shows snd res ⊆ set (fst res) × set (fst res) ∨ (∃ xs. fst (res) = full-gb xs)
using assms

proof (induct data D bs ps rule: gb-schema-dummy-induct)
case (base bs data D)
from base(2) show ?case by (simp add: base(3))

next
case (rec1 bs ps sps data D)
have ∃ xs. fst res = full-gb xs by (auto simp: rec1 (6))
thus ?case ..

next
case (rec2 bs ps sps aux hs rc data data ′ D D ′)
from assms(1) have ab: ab-spec ab and ap: ap-spec ap by (rule struct-specD)+
from - - rec2 .prems(3) show ?case
proof (rule rec2 .hyps(8))

187

from ap ab rec2 .prems(1)
show set (ap gs bs (ps −− sps) hs data ′) ⊆ set (ab gs bs hs data ′) × (set gs ∪

set (ab gs bs hs data ′))
by (rule subset-Times-ap)

next
from ab rec2 .hyps(7) rec2 .prems(1) rec2 .prems(2)
show D ′ ⊆ (set gs ∪ set (ab gs bs hs data ′)) × (set gs ∪ set (ab gs bs hs data ′))

by (rule discarded-subset)
qed

qed

lemma gb-schema-dummy-connectible1 :
assumes struct-spec sel ap ab compl and compl-conn compl and dickson-grading

d
and fst ‘ set gs ⊆ dgrad-p-set d m and is-Groebner-basis (fst ‘ set gs)
and fst ‘ set bs ⊆ dgrad-p-set d m
and set ps ⊆ set bs × (set gs ∪ set bs)
and unique-idx (gs @ bs) (snd data)
and

∧
p q. processed (p, q) (gs @ bs) ps =⇒ (p, q) /∈p D =⇒ fst p 6= 0 =⇒ fst

q 6= 0 =⇒
crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs)) (fst p) (fst q)

and ¬(∃ xs. fst (gb-schema-dummy data D bs ps) = full-gb xs)
assumes f ∈ set (fst (gb-schema-dummy data D bs ps))

and g ∈ set (fst (gb-schema-dummy data D bs ps))
and (f , g) /∈p snd (gb-schema-dummy data D bs ps)
and fst f 6= 0 and fst g 6= 0

shows crit-pair-cbelow-on d m (fst ‘ set (fst (gb-schema-dummy data D bs ps)))
(fst f) (fst g)

using assms(1 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13)
proof (induct data D bs ps rule: gb-schema-dummy-induct)

case (base bs data D)
show ?case
proof (cases f ∈ set gs)

case True
show ?thesis
proof (cases g ∈ set gs)

case True
note assms(3 , 4 , 5)
moreover from ‹f ∈ set gs› have fst f ∈ fst ‘ set gs by simp
moreover from ‹g ∈ set gs› have fst g ∈ fst ‘ set gs by simp
ultimately have crit-pair-cbelow-on d m (fst ‘ set gs) (fst f) (fst g)

using assms(14 , 15) by (rule GB-imp-crit-pair-cbelow-dgrad-p-set)
moreover have fst ‘ set gs ⊆ fst ‘ set (fst (gs @ bs, D)) by auto
ultimately show ?thesis by (rule crit-pair-cbelow-mono)

next
case False

from this base(6 , 7) have processed (g, f) (gs @ bs) [] by (simp add:
processed-Nil)

moreover from base.prems(8) have (g, f) /∈p D by (simp add: in-pair-iff)

188

ultimately have crit-pair-cbelow-on d m (fst ‘ set (gs @ bs)) (fst g) (fst f)
using ‹fst g 6= 0 › ‹fst f 6= 0 › unfolding set-append by (rule base(4))

thus ?thesis unfolding fst-conv by (rule crit-pair-cbelow-sym)
qed

next
case False
from this base(6 , 7) have processed (f , g) (gs @ bs) [] by (simp add: pro-

cessed-Nil)
moreover from base.prems(8) have (f , g) /∈p D by simp
ultimately show ?thesis unfolding fst-conv set-append using ‹fst f 6= 0 › ‹fst

g 6= 0 › by (rule base(4))
qed

next
case (rec1 bs ps sps data D)
from rec1 .prems(5) show ?case by auto

next
case (rec2 bs ps sps aux hs rc data data ′ D D ′)
from rec2 .hyps(4) have hs: hs = fst (add-indices aux (snd data)) by (metis fstI)
from assms(1) have sel: sel-spec sel and ap: ap-spec ap and ab: ab-spec ab

and compl: compl-struct compl
by (rule struct-specD1 , rule struct-specD2 , rule struct-specD3 , rule struct-specD4)

from sel rec2 .hyps(1) have sps 6= [] and set sps ⊆ set ps
unfolding rec2 .hyps(2) by (rule sel-specD1 , rule sel-specD2)

from ap ab rec2 .prems(2) have ap-sub: set (ap gs bs (ps −− sps) hs data ′) ⊆
set (ab gs bs hs data ′) × (set gs ∪ set (ab gs bs hs

data ′))
by (rule subset-Times-ap)

have ns-sub: fst ‘ set hs ⊆ dgrad-p-set d m
proof (rule dgrad-p-set-le-dgrad-p-set)

from compl assms(3) ‹sps 6= []› ‹set sps ⊆ set ps›
show dgrad-p-set-le d (fst ‘ set hs) (args-to-set (gs, bs, ps))

unfolding hs rec2 .hyps(3) fst-set-add-indices by (rule compl-structD1)
next

from assms(4) rec2 .prems(1) show args-to-set (gs, bs, ps) ⊆ dgrad-p-set d m
by (simp add: args-to-set-subset-Times[OF rec2 .prems(2)])

qed
with rec2 .prems(1) have ab-sub: fst ‘ set (ab gs bs hs data ′) ⊆ dgrad-p-set d m

by (auto simp add: ab-specD1 [OF ab])

have cpq: (p, q) ∈p set sps =⇒ fst p 6= 0 =⇒ fst q 6= 0 =⇒
crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set (ab gs bs hs data ′))) (fst p)

(fst q) for p q
proof −

assume (p, q) ∈p set sps and fst p 6= 0 and fst q 6= 0
from this(1) have (p, q) ∈ set sps ∨ (q, p) ∈ set sps by (simp only: in-pair-iff)
hence crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set (fst (compl gs

bs (ps −− sps) sps (snd data))))
(fst p) (fst q)

proof

189

assume (p, q) ∈ set sps
from assms(2 , 3 , 4 , 5) rec2 .prems(1 , 2) ‹sps 6= []› ‹set sps ⊆ set ps›

rec2 .prems(3) this
‹fst p 6= 0 › ‹fst q 6= 0 › show ?thesis by (rule compl-connD)

next
assume (q, p) ∈ set sps

from assms(2 , 3 , 4 , 5) rec2 .prems(1 , 2) ‹sps 6= []› ‹set sps ⊆ set ps›
rec2 .prems(3) this

‹fst q 6= 0 › ‹fst p 6= 0 ›
have crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set (fst (compl gs

bs (ps −− sps) sps (snd data))))
(fst q) (fst p) by (rule compl-connD)

thus ?thesis by (rule crit-pair-cbelow-sym)
qed
thus crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set (ab gs bs hs data ′))) (fst p) (fst

q)
by (simp add: ab-specD1 [OF ab] hs rec2 .hyps(3) fst-set-add-indices image-Un

Un-assoc)
qed

from ab-sub ap-sub - - rec2 .prems(5 , 6 , 7 , 8) show ?case
proof (rule rec2 .hyps(8))

from ab rec2 .prems(3) rec2 (4) show unique-idx (gs @ ab gs bs hs data ′) (snd
(rc, data ′))

unfolding snd-conv by (rule unique-idx-ab)
next

fix p q :: (′t, ′b, ′c) pdata
define ps ′ where ps ′ = ap gs bs (ps −− sps) hs data ′

assume fst p 6= 0 and fst q 6= 0 and (p, q) /∈p D ′

assume processed (p, q) (gs @ ab gs bs hs data ′) ps ′

hence p-in: p ∈ set gs ∪ set bs ∪ set hs and q-in: q ∈ set gs ∪ set bs ∪ set hs
and (p, q) /∈p set ps ′ by (simp-all add: processed-alt ab-specD1 [OF ab])

from this(3) ‹(p, q) /∈p D ′› have (p, q) /∈p D and (p, q) /∈p set (ps −− sps)
and (p, q) /∈p set hs × (set gs ∪ set bs ∪ set hs)
by (auto simp: in-pair-iff rec2 .hyps(7) ps ′-def)

from this(3) p-in q-in have p ∈ set gs ∪ set bs and q ∈ set gs ∪ set bs
by (meson SigmaI UnE in-pair-iff)+

show crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set (ab gs bs hs data ′))) (fst p)
(fst q)

proof (cases component-of-term (lt (fst p)) = component-of-term (lt (fst q)))
case True
show ?thesis
proof (cases (p, q) ∈p set sps)

case True
from this ‹fst p 6= 0 › ‹fst q 6= 0 › show ?thesis by (rule cpq)

next
case False
with ‹(p, q) /∈p set (ps −− sps)› have (p, q) /∈p set ps

by (auto simp: in-pair-iff set-diff-list)

190

with ‹p ∈ set gs ∪ set bs› ‹q ∈ set gs ∪ set bs› have processed (p, q) (gs @
bs) ps

by (simp add: processed-alt)
from this ‹(p, q) /∈p D› ‹fst p 6= 0 › ‹fst q 6= 0 ›
have crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs)) (fst p) (fst q)

by (rule rec2 .prems(4))
moreover have fst ‘ (set gs ∪ set bs) ⊆ fst ‘ (set gs ∪ set (ab gs bs hs

data ′))
by (auto simp: ab-specD1 [OF ab])

ultimately show ?thesis by (rule crit-pair-cbelow-mono)
qed

next
case False
thus ?thesis by (rule crit-pair-cbelow-distinct-component)

qed
qed

qed

lemma gb-schema-dummy-connectible2 :
assumes struct-spec sel ap ab compl and compl-conn compl and dickson-grading

d
and fst ‘ set gs ⊆ dgrad-p-set d m and is-Groebner-basis (fst ‘ set gs)
and fst ‘ set bs ⊆ dgrad-p-set d m
and set ps ⊆ set bs × (set gs ∪ set bs) and D ⊆ (set gs ∪ set bs) × (set gs ∪

set bs)
and set ps ∩p D = {} and unique-idx (gs @ bs) (snd data)
and

∧
B a b. set gs ∪ set bs ⊆ B =⇒ fst ‘ B ⊆ dgrad-p-set d m =⇒ (a, b) ∈p

D =⇒
fst a 6= 0 =⇒ fst b 6= 0 =⇒
(
∧

x y. x ∈ set gs ∪ set bs =⇒ y ∈ set gs ∪ set bs =⇒ ¬ (x, y) ∈p D =⇒
fst x 6= 0 =⇒ fst y 6= 0 =⇒ crit-pair-cbelow-on d m (fst ‘ B) (fst x)

(fst y)) =⇒
crit-pair-cbelow-on d m (fst ‘ B) (fst a) (fst b)

and
∧

x y. x ∈ set (fst (gb-schema-dummy data D bs ps)) =⇒ y ∈ set (fst
(gb-schema-dummy data D bs ps)) =⇒

(x, y) /∈p snd (gb-schema-dummy data D bs ps) =⇒ fst x 6= 0 =⇒ fst y
6= 0 =⇒

crit-pair-cbelow-on d m (fst ‘ set (fst (gb-schema-dummy data D bs ps)))
(fst x) (fst y)

and ¬(∃ xs. fst (gb-schema-dummy data D bs ps) = full-gb xs)
assumes (f , g) ∈p snd (gb-schema-dummy data D bs ps)

and fst f 6= 0 and fst g 6= 0
shows crit-pair-cbelow-on d m (fst ‘ set (fst (gb-schema-dummy data D bs ps)))

(fst f) (fst g)
using assms(1 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16)

proof (induct data D bs ps rule: gb-schema-dummy-induct)
case (base bs data D)
have set gs ∪ set bs ⊆ set (fst (gs @ bs, D)) by simp
moreover from assms(4) base.prems(1) have fst ‘ set (fst (gs @ bs, D)) ⊆

191

dgrad-p-set d m by auto
moreover from base.prems(9) have (f , g) ∈p D by simp
moreover note assms(15 , 16)
ultimately show ?case
proof (rule base.prems(6))

fix x y
assume x ∈ set gs ∪ set bs and y ∈ set gs ∪ set bs and (x, y) /∈p D
hence x ∈ set (fst (gs @ bs, D)) and y ∈ set (fst (gs @ bs, D)) and (x, y) /∈p

snd (gs @ bs, D)
by simp-all

moreover assume fst x 6= 0 and fst y 6= 0
ultimately show crit-pair-cbelow-on d m (fst ‘ set (fst (gs @ bs, D))) (fst x)

(fst y)
by (rule base.prems(7))

qed
next

case (rec1 bs ps sps data D)
from rec1 .prems(8) show ?case by auto

next
case (rec2 bs ps sps aux hs rc data data ′ D D ′)
from rec2 .hyps(4) have hs: hs = fst (add-indices aux (snd data)) by (metis fstI)
from assms(1) have sel: sel-spec sel and ap: ap-spec ap and ab: ab-spec ab

and compl: compl-struct compl by (rule struct-specD)+

let ?X = set (ps −− sps) ∪ set hs × (set gs ∪ set bs ∪ set hs)

from sel rec2 .hyps(1) have sps 6= [] and set sps ⊆ set ps
unfolding rec2 .hyps(2) by (rule sel-specD1 , rule sel-specD2)

have fst ‘ set hs ∩ fst ‘ (set gs ∪ set bs) = {}
unfolding hs fst-set-add-indices rec2 .hyps(3) using compl ‹sps 6= []› ‹set sps

⊆ set ps›
by (rule compl-struct-disjoint)

hence disj1 : (set gs ∪ set bs) ∩ set hs = {} by fastforce

have disj2 : set (ap gs bs (ps −− sps) hs data ′) ∩p D ′ = {}
proof (rule, rule)

fix x y
assume (x, y) ∈ set (ap gs bs (ps −− sps) hs data ′) ∩p D ′

hence (x, y) ∈p set (ap gs bs (ps −− sps) hs data ′) ∩p D ′ by (simp add:
in-pair-alt)

hence 1 : (x, y) ∈p set (ap gs bs (ps −− sps) hs data ′) and (x, y) ∈p D ′ by
simp-all

hence (x, y) ∈p D by (simp add: rec2 .hyps(7))
from this rec2 .prems(3) have x ∈ set gs ∪ set bs and y ∈ set gs ∪ set bs

by (auto simp: in-pair-iff)
from 1 ap-specD1 [OF ap] have (x, y) ∈p ?X by (rule in-pair-trans)
thus (x, y) ∈ {} unfolding in-pair-Un
proof

192

assume (x, y) ∈p set (ps −− sps)
also have ... ⊆ set ps by (auto simp: set-diff-list)
finally have (x, y) ∈p set ps ∩p D using ‹(x, y) ∈p D› by simp
also have ... = {} by (fact rec2 .prems(4))
finally show ?thesis by (simp add: in-pair-iff)

next
assume (x, y) ∈p set hs × (set gs ∪ set bs ∪ set hs)
hence x ∈ set hs ∨ y ∈ set hs by (auto simp: in-pair-iff)
thus ?thesis
proof

assume x ∈ set hs
with ‹x ∈ set gs ∪ set bs› have x ∈ (set gs ∪ set bs) ∩ set hs ..
thus ?thesis by (simp add: disj1)

next
assume y ∈ set hs
with ‹y ∈ set gs ∪ set bs› have y ∈ (set gs ∪ set bs) ∩ set hs ..
thus ?thesis by (simp add: disj1)

qed
qed

qed simp

have hs-sub: fst ‘ set hs ⊆ dgrad-p-set d m
proof (rule dgrad-p-set-le-dgrad-p-set)

from compl assms(3) ‹sps 6= []› ‹set sps ⊆ set ps›
show dgrad-p-set-le d (fst ‘ set hs) (args-to-set (gs, bs, ps))

unfolding hs rec2 .hyps(3) fst-set-add-indices by (rule compl-structD1)
next

from assms(4) rec2 .prems(1) show args-to-set (gs, bs, ps) ⊆ dgrad-p-set d m
by (simp add: args-to-set-subset-Times[OF rec2 .prems(2)])

qed
with rec2 .prems(1) have ab-sub: fst ‘ set (ab gs bs hs data ′) ⊆ dgrad-p-set d m

by (auto simp add: ab-specD1 [OF ab])

moreover from ap ab rec2 .prems(2)
have ap-sub: set (ap gs bs (ps −− sps) hs data ′) ⊆ set (ab gs bs hs data ′) × (set

gs ∪ set (ab gs bs hs data ′))
by (rule subset-Times-ap)

moreover from ab rec2 .hyps(7) rec2 .prems(2) rec2 .prems(3)
have D ′ ⊆ (set gs ∪ set (ab gs bs hs data ′)) × (set gs ∪ set (ab gs bs hs data ′))

by (rule discarded-subset)

moreover note disj2

moreover from ab rec2 .prems(5) rec2 .hyps(4) have uid: unique-idx (gs @ ab
gs bs hs data ′) (snd (rc, data ′))

unfolding snd-conv by (rule unique-idx-ab)

ultimately show ?case using - - rec2 .prems(8 , 9 , 10 , 11)

193

proof (rule rec2 .hyps(8), simp only: ab-specD1 [OF ab] Un-assoc[symmetric])
define ps ′ where ps ′ = ap gs bs (ps −− sps) hs data ′

fix B a b
assume B-sup: set gs ∪ set bs ∪ set hs ⊆ B
hence set gs ∪ set bs ⊆ B and set hs ⊆ B by simp-all
assume (a, b) ∈p D ′

hence ab-cases: (a, b) ∈p D ∨ (a, b) ∈p set hs × (set gs ∪ set bs ∪ set hs) −p

set ps ′ ∨
(a, b) ∈p set (ps −− sps) −p set ps ′ by (auto simp: rec2 .hyps(7)

ps ′-def)
assume B-sub: fst ‘ B ⊆ dgrad-p-set d m and fst a 6= 0 and fst b 6= 0
assume ∗:

∧
x y. x ∈ set gs ∪ set bs ∪ set hs =⇒ y ∈ set gs ∪ set bs ∪ set hs

=⇒
(x, y) /∈p D ′ =⇒ fst x 6= 0 =⇒ fst y 6= 0 =⇒
crit-pair-cbelow-on d m (fst ‘ B) (fst x) (fst y)

from rec2 .prems(2) have ps-sps-sub: set (ps −− sps) ⊆ set bs × (set gs ∪ set
bs)

by (auto simp: set-diff-list)
from uid have uid ′: unique-idx (gs @ bs @ hs) data ′ by (simp add: unique-idx-def

ab-specD1 [OF ab])

have a: crit-pair-cbelow-on d m (fst ‘ B) (fst x) (fst y)
if fst x 6= 0 and fst y 6= 0 and xy-in: (x, y) ∈p set (ps −− sps) −p set ps ′

for x y
proof (cases x = y)

case True
from xy-in rec2 .prems(2) have y ∈ set gs ∪ set bs

unfolding in-pair-minus-pairs unfolding True in-pair-iff set-diff-list by
auto

hence fst y ∈ fst ‘ set gs ∪ fst ‘ set bs by fastforce
from this assms(4) rec2 .prems(1) have fst y ∈ dgrad-p-set d m by blast
with assms(3) show ?thesis unfolding True by (rule crit-pair-cbelow-same)

next
case False
from ap assms(3) B-sup B-sub ps-sps-sub disj1 uid ′ assms(5) False ‹fst x 6=

0 › ‹fst y 6= 0 › xy-in
show ?thesis unfolding ps ′-def
proof (rule ap-specD3)

fix a1 b1 :: (′t, ′b, ′c) pdata
assume fst a1 6= 0 and fst b1 6= 0
assume a1 ∈ set hs and b1-in: b1 ∈ set gs ∪ set bs ∪ set hs
hence a1-in: a1 ∈ set gs ∪ set bs ∪ set hs by fastforce
assume (a1 , b1) ∈p set (ap gs bs (ps −− sps) hs data ′)
hence (a1 , b1) ∈p set ps ′ by (simp only: ps ′-def)
with disj2 have (a1 , b1) /∈p D ′ unfolding ps ′-def

by (metis empty-iff in-pair-Int-pairs in-pair-alt)
with a1-in b1-in show crit-pair-cbelow-on d m (fst ‘ B) (fst a1) (fst b1)

using ‹fst a1 6= 0 › ‹fst b1 6= 0 › by (rule ∗)

194

qed
qed

have b: crit-pair-cbelow-on d m (fst ‘ B) (fst x) (fst y)
if (x, y) ∈p D and fst x 6= 0 and fst y 6= 0 for x y
using ‹set gs ∪ set bs ⊆ B› B-sub that

proof (rule rec2 .prems(6))
fix a1 b1 :: (′t, ′b, ′c) pdata
assume a1 ∈ set gs ∪ set bs and b1 ∈ set gs ∪ set bs
hence a1-in: a1 ∈ set gs ∪ set bs ∪ set hs and b1-in: b1 ∈ set gs ∪ set bs ∪

set hs
by fastforce+

assume (a1 , b1) /∈p D and fst a1 6= 0 and fst b1 6= 0
show crit-pair-cbelow-on d m (fst ‘ B) (fst a1) (fst b1)
proof (cases (a1 , b1) ∈p ?X −p set ps ′)

case True
moreover from ‹a1 ∈ set gs ∪ set bs› ‹b1 ∈ set gs ∪ set bs› disj1
have (a1 , b1) /∈p set hs × (set gs ∪ set bs ∪ set hs)

by (auto simp: in-pair-def)
ultimately have (a1 , b1) ∈p set (ps −− sps) −p set ps ′ by auto
with ‹fst a1 6= 0 › ‹fst b1 6= 0 › show ?thesis by (rule a)

next
case False
with ‹(a1 , b1) /∈p D› have (a1 , b1) /∈p D ′ by (auto simp: rec2 .hyps(7)

ps ′-def)
with a1-in b1-in show ?thesis using ‹fst a1 6= 0 › ‹fst b1 6= 0 › by (rule ∗)

qed
qed

have c: crit-pair-cbelow-on d m (fst ‘ B) (fst x) (fst y)
if x-in: x ∈ set gs ∪ set bs ∪ set hs and y-in: y ∈ set gs ∪ set bs ∪ set hs
and xy: (x, y) /∈p (?X −p set ps ′) and fst x 6= 0 and fst y 6= 0 for x y

proof (cases (x, y) ∈p D)
case True
thus ?thesis using ‹fst x 6= 0 › ‹fst y 6= 0 › by (rule b)

next
case False
with xy have (x, y) /∈p D ′ unfolding rec2 .hyps(7) ps ′-def by auto
with x-in y-in show ?thesis using ‹fst x 6= 0 › ‹fst y 6= 0 › by (rule ∗)

qed

from ab-cases show crit-pair-cbelow-on d m (fst ‘ B) (fst a) (fst b)
proof (elim disjE)

assume (a, b) ∈p D
thus ?thesis using ‹fst a 6= 0 › ‹fst b 6= 0 › by (rule b)

next
assume ab-in: (a, b) ∈p set hs × (set gs ∪ set bs ∪ set hs) −p set ps ′

hence ab-in ′: (a, b) ∈p set hs × (set gs ∪ set bs ∪ set hs) and (a, b) /∈p set
ps ′ by simp-all

195

show ?thesis
proof (cases a = b)

case True
from ab-in ′ rec2 .prems(2) have b ∈ set hs unfolding True in-pair-iff

set-diff-list by auto
hence fst b ∈ fst ‘ set hs by fastforce
from this hs-sub have fst b ∈ dgrad-p-set d m ..

with assms(3) show ?thesis unfolding True by (rule crit-pair-cbelow-same)
next

case False
from ap assms(3) B-sup B-sub ab-in ′ ps-sps-sub uid ′ assms(5) False ‹fst a

6= 0 › ‹fst b 6= 0 ›
show ?thesis
proof (rule ap-specD2)

fix x y :: (′t, ′b, ′c) pdata
assume (x, y) ∈p set (ap gs bs (ps −− sps) hs data ′)
also from ap-sub have ... ⊆ (set bs ∪ set hs) × (set gs ∪ set bs ∪ set hs)

by (simp only: ab-specD1 [OF ab] Un-assoc)
also have ... ⊆ (set gs ∪ set bs ∪ set hs) × (set gs ∪ set bs ∪ set hs) by

fastforce
finally have (x, y) ∈ (set gs ∪ set bs ∪ set hs) × (set gs ∪ set bs ∪ set hs)

unfolding in-pair-same .
hence x ∈ set gs ∪ set bs ∪ set hs and y ∈ set gs ∪ set bs ∪ set hs by

simp-all
moreover from ‹(x, y) ∈p set (ap gs bs (ps −− sps) hs data ′)› have (x,

y) /∈p ?X −p set ps ′

by (simp add: ps ′-def)
moreover assume fst x 6= 0 and fst y 6= 0
ultimately show crit-pair-cbelow-on d m (fst ‘ B) (fst x) (fst y) by (rule

c)
next

fix x y :: (′t, ′b, ′c) pdata
assume fst x 6= 0 and fst y 6= 0
assume 1 : x ∈ set gs ∪ set bs and 2 : y ∈ set gs ∪ set bs
hence x-in: x ∈ set gs ∪ set bs ∪ set hs and y-in: y ∈ set gs ∪ set bs ∪

set hs by simp-all
show crit-pair-cbelow-on d m (fst ‘ B) (fst x) (fst y)
proof (cases (x, y) ∈p set (ps −− sps) −p set ps ′)

case True
with ‹fst x 6= 0 › ‹fst y 6= 0 › show ?thesis by (rule a)

next
case False
have (x, y) /∈p set (ps −− sps) ∪ set hs × (set gs ∪ set bs ∪ set hs) −p

set ps ′

proof
assume (x, y) ∈p set (ps −− sps) ∪ set hs × (set gs ∪ set bs ∪ set hs)

−p set ps ′

hence (x, y) ∈p set hs × (set gs ∪ set bs ∪ set hs) using False
by simp

196

hence x ∈ set hs ∨ y ∈ set hs by (auto simp: in-pair-iff)
with 1 2 disj1 show False by blast

qed
with x-in y-in show ?thesis using ‹fst x 6= 0 › ‹fst y 6= 0 › by (rule c)

qed
qed

qed
next

assume (a, b) ∈p set (ps −− sps) −p set ps ′

with ‹fst a 6= 0 › ‹fst b 6= 0 › show ?thesis by (rule a)
qed

next
fix x y :: (′t, ′b, ′c) pdata
let ?res = gb-schema-dummy (rc, data ′) D ′ (ab gs bs hs data ′) (ap gs bs (ps

−− sps) hs data ′)
assume x ∈ set (fst ?res) and y ∈ set (fst ?res) and (x, y) /∈p snd ?res and

fst x 6= 0 and fst y 6= 0
thus crit-pair-cbelow-on d m (fst ‘ set (fst ?res)) (fst x) (fst y) by (rule

rec2 .prems(7))
qed

qed

corollary gb-schema-dummy-connectible:
assumes struct-spec sel ap ab compl and compl-conn compl and dickson-grading

d
and fst ‘ set gs ⊆ dgrad-p-set d m and is-Groebner-basis (fst ‘ set gs)
and fst ‘ set bs ⊆ dgrad-p-set d m
and set ps ⊆ set bs × (set gs ∪ set bs) and D ⊆ (set gs ∪ set bs) × (set gs ∪

set bs)
and set ps ∩p D = {} and unique-idx (gs @ bs) (snd data)
and

∧
p q. processed (p, q) (gs @ bs) ps =⇒ (p, q) /∈p D =⇒ fst p 6= 0 =⇒ fst

q 6= 0 =⇒
crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs)) (fst p) (fst q)

and
∧

B a b. set gs ∪ set bs ⊆ B =⇒ fst ‘ B ⊆ dgrad-p-set d m =⇒ (a, b) ∈p
D =⇒

fst a 6= 0 =⇒ fst b 6= 0 =⇒
(
∧

x y. x ∈ set gs ∪ set bs =⇒ y ∈ set gs ∪ set bs =⇒ ¬ (x, y) ∈p D =⇒
fst x 6= 0 =⇒ fst y 6= 0 =⇒ crit-pair-cbelow-on d m (fst ‘ B) (fst x)

(fst y)) =⇒
crit-pair-cbelow-on d m (fst ‘ B) (fst a) (fst b)

assumes f ∈ set (fst (gb-schema-dummy data D bs ps))
and g ∈ set (fst (gb-schema-dummy data D bs ps))
and fst f 6= 0 and fst g 6= 0

shows crit-pair-cbelow-on d m (fst ‘ set (fst (gb-schema-dummy data D bs ps)))
(fst f) (fst g)
proof (cases ∃ xs. fst (gb-schema-dummy data D bs ps) = full-gb xs)

case True
then obtain xs where xs: fst (gb-schema-dummy data D bs ps) = full-gb xs ..
note assms(3)

197

moreover have fst ‘ set (full-gb xs) ⊆ dgrad-p-set d m
proof (rule dgrad-p-set-le-dgrad-p-set)

have dgrad-p-set-le d (fst ‘ set (full-gb xs)) (args-to-set (gs, bs, ps))
unfolding xs[symmetric] using assms(3 , 1) by (rule fst-gb-schema-dummy-dgrad-p-set-le)

also from assms(7) have ... = fst ‘ set gs ∪ fst ‘ set bs by (rule args-to-set-subset-Times)
finally show dgrad-p-set-le d (fst ‘ set (full-gb xs)) (fst ‘ set gs ∪ fst ‘ set bs) .

next
from assms(4 , 6) show fst ‘ set gs ∪ fst ‘ set bs ⊆ dgrad-p-set d m by blast

qed
moreover note full-gb-isGB
moreover from assms(13) have fst f ∈ fst ‘ set (full-gb xs) by (simp add: xs)
moreover from assms(14) have fst g ∈ fst ‘ set (full-gb xs) by (simp add: xs)
ultimately show ?thesis using assms(15 , 16) unfolding xs

by (rule GB-imp-crit-pair-cbelow-dgrad-p-set)
next

case not-full: False
show ?thesis
proof (cases (f , g) ∈p snd (gb-schema-dummy data D bs ps))

case True
from assms(1−10 ,12) - not-full True assms(15 ,16) show ?thesis
proof (rule gb-schema-dummy-connectible2)

fix x y
assume x ∈ set (fst (gb-schema-dummy data D bs ps))

and y ∈ set (fst (gb-schema-dummy data D bs ps))
and (x, y) /∈p snd (gb-schema-dummy data D bs ps)
and fst x 6= 0 and fst y 6= 0

with assms(1−7 ,10 ,11) not-full
show crit-pair-cbelow-on d m (fst ‘ set (fst (gb-schema-dummy data D bs ps)))

(fst x) (fst y)
by (rule gb-schema-dummy-connectible1)

qed
next

case False
from assms(1−7 ,10 ,11) not-full assms(13 ,14) False assms(15 ,16) show ?thesis

by (rule gb-schema-dummy-connectible1)
qed

qed

lemma fst-gb-schema-dummy-dgrad-p-set-le-init:
assumes dickson-grading d and struct-spec sel ap ab compl
shows dgrad-p-set-le d (fst ‘ set (fst (gb-schema-dummy data D (ab gs [] bs (snd

data)) (ap gs [] [] bs (snd data)))))
(fst ‘ (set gs ∪ set bs))

proof −
let ?bs = ab gs [] bs (snd data)
from assms(2) have ap: ap-spec ap and ab: ab-spec ab by (rule struct-specD)+
from ap-specD1 [OF ap, of gs [] [] bs]
have ∗: set (ap gs [] [] bs (snd data)) ⊆ set ?bs × (set gs ∪ set ?bs)

by (simp add: ab-specD1 [OF ab])

198

from assms have dgrad-p-set-le d (fst ‘ set (fst (gb-schema-dummy data D ?bs
(ap gs [] [] bs (snd data)))))

(args-to-set (gs, ?bs, (ap gs [] [] bs (snd data))))
by (rule fst-gb-schema-dummy-dgrad-p-set-le)

also have ... = fst ‘ (set gs ∪ set bs)
by (simp add: args-to-set-subset-Times[OF ∗] image-Un ab-specD1 [OF ab])

finally show ?thesis .
qed

corollary fst-gb-schema-dummy-dgrad-p-set-init:
assumes dickson-grading d and struct-spec sel ap ab compl

and fst ‘ (set gs ∪ set bs) ⊆ dgrad-p-set d m
shows fst ‘ set (fst (gb-schema-dummy (rc, data) D (ab gs [] bs data) (ap gs [] []

bs data))) ⊆ dgrad-p-set d m
proof (rule dgrad-p-set-le-dgrad-p-set)

let ?data = (rc, data)
from assms(1 , 2)
have dgrad-p-set-le d (fst ‘ set (fst (gb-schema-dummy ?data D (ab gs [] bs (snd

?data)) (ap gs [] [] bs (snd ?data)))))
(fst ‘ (set gs ∪ set bs))

by (rule fst-gb-schema-dummy-dgrad-p-set-le-init)
thus dgrad-p-set-le d (fst ‘ set (fst (gb-schema-dummy ?data D (ab gs [] bs data)

(ap gs [] [] bs data))))
(fst ‘ (set gs ∪ set bs))

by (simp only: snd-conv)
qed fact

lemma fst-gb-schema-dummy-components-init:
fixes bs data
defines bs0 ≡ ab gs [] bs data
defines ps0 ≡ ap gs [] [] bs data
assumes struct-spec sel ap ab compl
shows component-of-term ‘ Keys (fst ‘ set (fst (gb-schema-dummy (rc, data) D

bs0 ps0))) =
component-of-term ‘ Keys (fst ‘ set (gs @ bs)) (is ?l = ?r)

proof −
from assms(3) have ap: ap-spec ap and ab: ab-spec ab by (rule struct-specD)+
from ap-specD1 [OF ap, of gs [] [] bs]
have ∗: set ps0 ⊆ set bs0 × (set gs ∪ set bs0) by (simp add: ps0-def bs0-def

ab-specD1 [OF ab])
with assms(3) have ?l = component-of-term ‘ Keys (args-to-set (gs, bs0 , ps0))

by (rule fst-gb-schema-dummy-components)
also have ... = ?r

by (simp only: args-to-set-subset-Times[OF ∗], simp add: ab-specD1 [OF ab]
bs0-def image-Un)

finally show ?thesis .
qed

lemma fst-gb-schema-dummy-pmdl-init:

199

fixes bs data
defines bs0 ≡ ab gs [] bs data
defines ps0 ≡ ap gs [] [] bs data
assumes struct-spec sel ap ab compl and compl-pmdl compl and is-Groebner-basis

(fst ‘ set gs)
and unique-idx (gs @ bs0) data and rem-comps-spec (gs @ bs0) (rc, data)

shows pmdl (fst ‘ set (fst (gb-schema-dummy (rc, data) D bs0 ps0))) =
pmdl (fst ‘ (set (gs @ bs))) (is ?l = ?r)

proof −
from assms(3) have ab: ab-spec ab by (rule struct-specD3)
let ?data = (rc, data)
from assms(6) have unique-idx (gs @ bs0) (snd ?data) by (simp only: snd-conv)
from assms(3 , 4 , 5) - this assms(7) have ?l = pmdl (fst ‘ (set (gs @ bs0)))
proof (rule fst-gb-schema-dummy-pmdl)

from assms(3) have ap-spec ap by (rule struct-specD2)
from ap-specD1 [OF this, of gs [] [] bs]
show set ps0 ⊆ set bs0 × (set gs ∪ set bs0) by (simp add: ps0-def bs0-def

ab-specD1 [OF ab])
qed
also have ... = ?r by (simp add: bs0-def ab-specD1 [OF ab])
finally show ?thesis .

qed

lemma fst-gb-schema-dummy-isGB-init:
fixes bs data
defines bs0 ≡ ab gs [] bs data
defines ps0 ≡ ap gs [] [] bs data
defines D0 ≡ set bs × (set gs ∪ set bs) −p set ps0
assumes struct-spec sel ap ab compl and compl-conn compl and is-Groebner-basis

(fst ‘ set gs)
and unique-idx (gs @ bs0) data and rem-comps-spec (gs @ bs0) (rc, data)

shows is-Groebner-basis (fst ‘ set (fst (gb-schema-dummy (rc, data) D0 bs0 ps0)))
proof −

let ?data = (rc, data)
let ?res = gb-schema-dummy ?data D0 bs0 ps0
from assms(4) have ap: ap-spec ap and ab: ab-spec ab by (rule struct-specD2 ,

rule struct-specD3)
have set-bs0 : set bs0 = set bs by (simp add: bs0-def ab-specD1 [OF ab])
from ap-specD1 [OF ap, of gs [] [] bs] have ps0-sub: set ps0 ⊆ set bs0 × (set gs
∪ set bs0)

by (simp add: ps0-def set-bs0)
from ex-dgrad obtain d:: ′a ⇒ nat where dg: dickson-grading d ..
have finite (fst ‘ (set gs ∪ set bs)) by (rule, rule finite-UnI , fact finite-set, fact

finite-set)
then obtain m where gs-bs-sub: fst ‘ (set gs ∪ set bs) ⊆ dgrad-p-set d m by

(rule dgrad-p-set-exhaust)
with dg assms(4) have fst ‘ set (fst ?res) ⊆ dgrad-p-set d m unfolding bs0-def

ps0-def
by (rule fst-gb-schema-dummy-dgrad-p-set-init)

200

with dg show ?thesis
proof (rule crit-pair-cbelow-imp-GB-dgrad-p-set)

fix p0 q0
assume p0-in: p0 ∈ fst ‘ set (fst ?res) and q0-in: q0 ∈ fst ‘ set (fst ?res)
assume p0 6= 0 and q0 6= 0
from ‹fst ‘ (set gs ∪ set bs) ⊆ dgrad-p-set d m›
have fst ‘ set gs ⊆ dgrad-p-set d m and fst ‘ set bs ⊆ dgrad-p-set d m

by (simp-all add: image-Un)
from p0-in obtain p where p-in: p ∈ set (fst ?res) and p0 : p0 = fst p ..
from q0-in obtain q where q-in: q ∈ set (fst ?res) and q0 : q0 = fst q ..

from assms(7) have unique-idx (gs @ bs0) (snd ?data) by (simp only: snd-conv)
from assms(4 , 5) dg ‹fst ‘ set gs ⊆ dgrad-p-set d m› assms(6) - ps0-sub - -

this - - p-in q-in ‹p0 6= 0 › ‹q0 6= 0 ›
show crit-pair-cbelow-on d m (fst ‘ set (fst ?res)) p0 q0 unfolding p0 q0
proof (rule gb-schema-dummy-connectible)

from ‹fst ‘ set bs ⊆ dgrad-p-set d m› show fst ‘ set bs0 ⊆ dgrad-p-set d m
by (simp only: set-bs0)

next
have D0 ⊆ set bs × (set gs ∪ set bs) by (auto simp: assms(3) minus-pairs-def)
also have ... ⊆ (set gs ∪ set bs) × (set gs ∪ set bs) by fastforce
finally show D0 ⊆ (set gs ∪ set bs0) × (set gs ∪ set bs0) by (simp only:

set-bs0)
next

show set ps0 ∩p D0 = {}
proof

show set ps0 ∩p D0 ⊆ {}
proof

fix x
assume x ∈ set ps0 ∩p D0
hence x ∈p set ps0 ∩p D0 by (simp add: in-pair-alt)
thus x ∈ {} by (auto simp: assms(3))

qed
qed simp

next
fix p ′ q ′

assume processed (p ′, q ′) (gs @ bs0) ps0
hence proc: processed (p ′, q ′) (gs @ bs) ps0

by (simp add: set-bs0 processed-alt)
hence p ′ ∈ set gs ∪ set bs and q ′ ∈ set gs ∪ set bs and (p ′, q ′) /∈p set ps0

by (auto dest: processedD1 processedD2 processedD3)
assume (p ′, q ′) /∈p D0 and fst p ′ 6= 0 and fst q ′ 6= 0
have crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs)) (fst p ′) (fst q ′)
proof (cases p ′ = q ′)

case True
from dg show ?thesis unfolding True
proof (rule crit-pair-cbelow-same)

from ‹q ′ ∈ set gs ∪ set bs› have fst q ′ ∈ fst ‘ (set gs ∪ set bs) by simp
from this ‹fst ‘ (set gs ∪ set bs) ⊆ dgrad-p-set d m› show fst q ′ ∈

dgrad-p-set d m ..

201

qed
next

case False
show ?thesis
proof (cases component-of-term (lt (fst p ′)) = component-of-term (lt (fst

q ′)))
case True
show ?thesis
proof (cases p ′ ∈ set gs ∧ q ′ ∈ set gs)

case True
note dg ‹fst ‘ set gs ⊆ dgrad-p-set d m› assms(6)
moreover from True have fst p ′ ∈ fst ‘ set gs and fst q ′ ∈ fst ‘ set gs

by simp-all
ultimately have crit-pair-cbelow-on d m (fst ‘ set gs) (fst p ′) (fst q ′)

using ‹fst p ′ 6= 0 › ‹fst q ′ 6= 0 › by (rule GB-imp-crit-pair-cbelow-dgrad-p-set)
moreover have fst ‘ set gs ⊆ fst ‘ (set gs ∪ set bs) by blast
ultimately show ?thesis by (rule crit-pair-cbelow-mono)

next
case False
with ‹p ′ ∈ set gs ∪ set bs› ‹q ′ ∈ set gs ∪ set bs›
have (p ′, q ′) ∈p set bs × (set gs ∪ set bs) by (auto simp: in-pair-iff)
with ‹(p ′, q ′) /∈p D0 › have (p ′, q ′) ∈p set ps0 by (simp add: assms(3))
with ‹(p ′, q ′) /∈p set ps0 › show ?thesis ..

qed
next

case False
thus ?thesis by (rule crit-pair-cbelow-distinct-component)

qed
qed
thus crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs0)) (fst p ′) (fst q ′)

by (simp only: set-bs0)
next

fix B a b
assume set gs ∪ set bs0 ⊆ B
hence B-sup: set gs ∪ set bs ⊆ B by (simp only: set-bs0)
assume B-sub: fst ‘ B ⊆ dgrad-p-set d m
assume (a, b) ∈p D0
hence ab-in: (a, b) ∈p set bs × (set gs ∪ set bs) and (a, b) /∈p set ps0

by (simp-all add: assms(3))
assume fst a 6= 0 and fst b 6= 0
assume ∗:

∧
x y. x ∈ set gs ∪ set bs0 =⇒ y ∈ set gs ∪ set bs0 =⇒ (x, y) /∈p

D0 =⇒
fst x 6= 0 =⇒ fst y 6= 0 =⇒ crit-pair-cbelow-on d m (fst ‘ B) (fst

x) (fst y)
show crit-pair-cbelow-on d m (fst ‘ B) (fst a) (fst b)
proof (cases a = b)

case True
from ab-in have b ∈ set gs ∪ set bs unfolding True in-pair-iff set-diff-list

by auto

202

hence fst b ∈ fst ‘ (set gs ∪ set bs) by fastforce
from this gs-bs-sub have fst b ∈ dgrad-p-set d m ..
with dg show ?thesis unfolding True by (rule crit-pair-cbelow-same)

next
case False
note ap dg
moreover from B-sup have B-sup ′: set gs ∪ set [] ∪ set bs ⊆ B by simp
moreover note B-sub
moreover from ab-in have (a, b) ∈p set bs × (set gs ∪ set [] ∪ set bs) by

simp
moreover have set [] ⊆ set [] × (set gs ∪ set []) by simp
moreover from assms(7) have unique-idx (gs @ [] @ bs) data by (simp

add: unique-idx-def set-bs0)
ultimately show ?thesis using assms(6) False ‹fst a 6= 0 › ‹fst b 6= 0 ›
proof (rule ap-specD2)

fix x y :: (′t, ′b, ′c) pdata
assume (x, y) ∈p set (ap gs [] [] bs data)
hence (x, y) ∈p set ps0 by (simp only: ps0-def)
also have ... ⊆ set bs0 × (set gs ∪ set bs0) by (fact ps0-sub)
also have ... ⊆ (set gs ∪ set bs0) × (set gs ∪ set bs0) by fastforce
finally have (x, y) ∈ (set gs ∪ set bs0) × (set gs ∪ set bs0) by (simp

only: in-pair-same)
hence x ∈ set gs ∪ set bs0 and y ∈ set gs ∪ set bs0 by simp-all
moreover from ‹(x, y) ∈p set ps0 › have (x, y) /∈p D0 by (simp add:

D0-def)
moreover assume fst x 6= 0 and fst y 6= 0
ultimately show crit-pair-cbelow-on d m (fst ‘ B) (fst x) (fst y) by (rule

∗)
next

fix x y :: (′t, ′b, ′c) pdata
assume x ∈ set gs ∪ set [] and y ∈ set gs ∪ set []
hence fst x ∈ fst ‘ set gs and fst y ∈ fst ‘ set gs by simp-all
assume fst x 6= 0 and fst y 6= 0
with dg ‹fst ‘ set gs ⊆ dgrad-p-set d m› assms(6) ‹fst x ∈ fst ‘ set gs› ‹fst

y ∈ fst ‘ set gs›
have crit-pair-cbelow-on d m (fst ‘ set gs) (fst x) (fst y)

by (rule GB-imp-crit-pair-cbelow-dgrad-p-set)
moreover from B-sup have fst ‘ set gs ⊆ fst ‘ B by fastforce
ultimately show crit-pair-cbelow-on d m (fst ‘ B) (fst x) (fst y)

by (rule crit-pair-cbelow-mono)
qed

qed
qed

qed
qed

6.2.10 Function gb-schema-aux
function (domintros) gb-schema-aux :: nat × nat × ′d ⇒ (′t, ′b, ′c) pdata list ⇒

203

(′t, ′b, ′c) pdata-pair list ⇒ (′t, ′b, ′c) pdata list
where

gb-schema-aux data bs ps =
(if ps = [] then

gs @ bs
else

(let sps = sel gs bs ps (snd data); ps0 = ps −− sps; aux = compl gs bs
ps0 sps (snd data);

remcomps = fst (data) − count-const-lt-components (fst aux) in
(if remcomps = 0 then

full-gb (gs @ bs)
else

let (hs, data ′) = add-indices aux (snd data) in
gb-schema-aux (remcomps, data ′) (ab gs bs hs data ′) (ap gs bs ps0 hs

data ′)
)

)
)

by pat-completeness auto

The data parameter of gb-schema-aux is a triple (c, i, d), where c is the
number of components cmp of the input list for which the current basis gs
@ bs does not yet contain an element whose leading power-product is 0 and
has component cmp. As soon as c gets 0, the function can return a trivial
Gröbner basis, since then the submodule generated by the input list is just
the full module. This idea generalizes the well-known fact that if a set of
scalar polynomials contains a non-zero constant, the ideal generated by that
set is the whole ring. i is the total number of polynomials generated during
the execution of the function so far; it is used to attach unique indices to
the polynomials for fast equality tests. d, finally, is some arbitrary data-
field that may be used by concrete instances of gb-schema-aux for storing
information.
lemma gb-schema-aux-domI1 : gb-schema-aux-dom (data, bs, [])

by (rule gb-schema-aux.domintros, simp)

lemma gb-schema-aux-domI2 :
assumes struct-spec sel ap ab compl
shows gb-schema-aux-dom (data, args)

proof −
from assms have sel: sel-spec sel and ap: ap-spec ap and ab: ab-spec ab by (rule

struct-specD)+
from ex-dgrad obtain d:: ′a ⇒ nat where dg: dickson-grading d ..
let ?R = gb-schema-aux-term d gs
from dg have wf ?R by (rule gb-schema-aux-term-wf)
thus ?thesis
proof (induct args arbitrary: data rule: wf-induct-rule)

fix x data
assume IH :

∧
y data ′. (y, x) ∈ ?R =⇒ gb-schema-aux-dom (data ′, y)

204

obtain bs ps where x: x = (bs, ps) by (meson case-prodE case-prodI2)
show gb-schema-aux-dom (data, x) unfolding x
proof (rule gb-schema-aux.domintros)

fix rc0 n0 data0 hs n1 data1
assume ps 6= []

and hs-data ′: (hs, n1 , data1) = add-indices (compl gs bs (ps −− sel gs bs
ps (n0 , data0))

(sel gs bs ps (n0 , data0)) (n0 , data0)) (n0 ,
data0)

and data: data = (rc0 , n0 , data0)
define sps where sps = sel gs bs ps (n0 , data0)
define data ′ where data ′ = (n1 , data1)
define rc where rc = rc0 − count-const-lt-components (fst (compl gs bs (ps

−− sel gs bs ps (n0 , data0))
(sel gs bs ps (n0 , data0)) (n0 ,

data0)))
from hs-data ′ have hs: hs = fst (add-indices (compl gs bs (ps −− sps) sps

(snd data)) (snd data))
unfolding sps-def data snd-conv by (metis fstI)

show gb-schema-aux-dom ((rc, data ′), ab gs bs hs data ′, ap gs bs (ps −− sps)
hs data ′)

proof (rule IH , simp add: x gb-schema-aux-term-def gb-schema-aux-term1-def
gb-schema-aux-term2-def , intro conjI)

show fst ‘ set (ab gs bs hs data ′) Ap fst ‘ set bs ∨
ab gs bs hs data ′ = bs ∧ card (set (ap gs bs (ps −− sps) hs data ′)) <

card (set ps)
proof (cases hs = [])

case True
have ab gs bs hs data ′ = bs ∧ card (set (ap gs bs (ps −− sps) hs data ′))

< card (set ps)
proof (simp only: True, rule)

from ab show ab gs bs [] data ′ = bs by (rule ab-specD2)
next

from sel ‹ps 6= []› have sps 6= [] and set sps ⊆ set ps
unfolding sps-def by (rule sel-specD1 , rule sel-specD2)

moreover from sel-specD1 [OF sel ‹ps 6= []›] have set sps 6= {} by (simp
add: sps-def)

ultimately have set ps ∩ set sps 6= {} by (simp add: inf .absorb-iff2)
hence set (ps −− sps) ⊂ set ps unfolding set-diff-list by fastforce

hence card (set (ps −− sps)) < card (set ps) by (simp add: psub-
set-card-mono)

moreover have card (set (ap gs bs (ps −− sps) [] data ′)) ≤ card (set
(ps −− sps))

by (rule card-mono, fact finite-set, rule ap-spec-Nil-subset, fact ap)
ultimately show card (set (ap gs bs (ps −− sps) [] data ′)) < card (set

ps) by simp
qed
thus ?thesis ..

next

205

case False
with assms ‹ps 6= []› sps-def hs have fst ‘ set (ab gs bs hs data ′) Ap fst ‘

set bs
unfolding data snd-conv by (rule struct-spec-red-supset)

thus ?thesis ..
qed

next
from dg assms ‹ps 6= []› sps-def hs
show dgrad-p-set-le d (args-to-set (gs, ab gs bs hs data ′, ap gs bs (ps −−

sps) hs data ′)) (args-to-set (gs, bs, ps))
unfolding data snd-conv by (rule dgrad-p-set-le-args-to-set-struct)

next
from assms ‹ps 6= []› sps-def hs
show component-of-term ‘ Keys (args-to-set (gs, ab gs bs hs data ′, ap gs bs

(ps −− sps) hs data ′)) ⊆
component-of-term ‘ Keys (args-to-set (gs, bs, ps))

unfolding data snd-conv by (rule components-subset-struct)
qed

qed
qed

qed

lemma gb-schema-aux-Nil [simp, code]: gb-schema-aux data bs [] = gs @ bs
by (simp add: gb-schema-aux.psimps[OF gb-schema-aux-domI1])

lemmas gb-schema-aux-simps = gb-schema-aux.psimps[OF gb-schema-aux-domI2]

lemma gb-schema-aux-induct [consumes 1 , case-names base rec1 rec2]:
assumes struct-spec sel ap ab compl
assumes base:

∧
bs data. P data bs [] (gs @ bs)

and rec1 :
∧

bs ps sps data. ps 6= [] =⇒ sps = sel gs bs ps (snd data) =⇒
fst (data) ≤ count-const-lt-components (fst (compl gs bs (ps −− sps)

sps (snd data))) =⇒
P data bs ps (full-gb (gs @ bs))

and rec2 :
∧

bs ps sps aux hs rc data data ′. ps 6= [] =⇒ sps = sel gs bs ps (snd
data) =⇒

aux = compl gs bs (ps −− sps) sps (snd data) =⇒ (hs, data ′) =
add-indices aux (snd data) =⇒

rc = fst data − count-const-lt-components (fst aux) =⇒ 0 < rc =⇒
P (rc, data ′) (ab gs bs hs data ′) (ap gs bs (ps −− sps) hs data ′)
(gb-schema-aux (rc, data ′) (ab gs bs hs data ′) (ap gs bs (ps −− sps)

hs data ′)) =⇒
P data bs ps (gb-schema-aux (rc, data ′) (ab gs bs hs data ′) (ap gs bs

(ps −− sps) hs data ′))
shows P data bs ps (gb-schema-aux data bs ps)

proof −
from assms(1) have gb-schema-aux-dom (data, bs, ps) by (rule gb-schema-aux-domI2)
thus ?thesis
proof (induct data bs ps rule: gb-schema-aux.pinduct)

206

case (1 data bs ps)
show ?case
proof (cases ps = [])

case True
show ?thesis by (simp add: True, rule base)

next
case False
show ?thesis
proof (simp add: gb-schema-aux-simps[OF assms(1), of data bs ps] False

Let-def split: if-split,
intro conjI impI)

define sps where sps = sel gs bs ps (snd data)
assume fst data ≤ count-const-lt-components (fst (compl gs bs (ps −− sps)

sps (snd data)))
with False sps-def show P data bs ps (full-gb (gs @ bs)) by (rule rec1)

next
define sps where sps = sel gs bs ps (snd data)
define aux where aux = compl gs bs (ps −− sps) sps (snd data)
define hs where hs = fst (add-indices aux (snd data))
define data ′ where data ′ = snd (add-indices aux (snd data))
define rc where rc = fst data − count-const-lt-components (fst aux)

have eq: add-indices aux (snd data) = (hs, data ′) by (simp add: hs-def
data ′-def)

assume ¬ fst data ≤ count-const-lt-components (fst aux)
hence 0 < rc by (simp add: rc-def)
hence rc 6= 0 by simp
show P data bs ps

(case add-indices aux (snd data) of
(hs, data ′) ⇒ gb-schema-aux (rc, data ′) (ab gs bs hs data ′) (ap gs bs (ps

−− sps) hs data ′))
unfolding eq prod.case using False sps-def aux-def eq[symmetric] rc-def

‹0 < rc›
proof (rule rec2)

show P (rc, data ′) (ab gs bs hs data ′) (ap gs bs (ps −− sps) hs data ′)
(gb-schema-aux (rc, data ′) (ab gs bs hs data ′) (ap gs bs (ps −− sps)

hs data ′))
using False sps-def refl aux-def rc-def ‹rc 6= 0 › eq[symmetric] refl by

(rule 1)
qed

qed
qed

qed
qed

lemma gb-schema-dummy-eq-gb-schema-aux:
assumes struct-spec sel ap ab compl
shows fst (gb-schema-dummy data D bs ps) = gb-schema-aux data bs ps
using assms

proof (induct data D bs ps rule: gb-schema-dummy-induct)

207

case (base bs data D)
show ?case by simp

next
case (rec1 bs ps sps data D)
thus ?case by (simp add: gb-schema-aux.psimps[OF gb-schema-aux-domI2 , OF

assms])
next

case (rec2 bs ps sps aux hs rc data data ′ D D ′)
note rec2 .hyps(8)
also from rec2 .hyps(1 , 2 , 3) rec2 .hyps(4)[symmetric] rec2 .hyps(5 , 6 , 7)
have gb-schema-aux (rc, data ′) (ab gs bs hs data ′) (ap gs bs (ps −− sps) hs data ′)

=
gb-schema-aux data bs ps

by (simp add: gb-schema-aux.psimps[OF gb-schema-aux-domI2 , OF assms, of
data] Let-def)

finally show ?case .
qed

corollary gb-schema-aux-dgrad-p-set-le:
assumes dickson-grading d and struct-spec sel ap ab compl
shows dgrad-p-set-le d (fst ‘ set (gb-schema-aux data bs ps)) (args-to-set (gs, bs,

ps))
using fst-gb-schema-dummy-dgrad-p-set-le[OF assms] unfolding gb-schema-dummy-eq-gb-schema-aux[OF

assms(2)] .

corollary gb-schema-aux-components:
assumes struct-spec sel ap ab compl and set ps ⊆ set bs × (set gs ∪ set bs)
shows component-of-term ‘ Keys (fst ‘ set (gb-schema-aux data bs ps)) =

component-of-term ‘ Keys (args-to-set (gs, bs, ps))
using fst-gb-schema-dummy-components[OF assms] unfolding gb-schema-dummy-eq-gb-schema-aux[OF

assms(1)] .

lemma gb-schema-aux-pmdl:
assumes struct-spec sel ap ab compl and compl-pmdl compl and is-Groebner-basis

(fst ‘ set gs)
and set ps ⊆ set bs × (set gs ∪ set bs) and unique-idx (gs @ bs) (snd data)
and rem-comps-spec (gs @ bs) data

shows pmdl (fst ‘ set (gb-schema-aux data bs ps)) = pmdl (fst ‘ set (gs @ bs))
using fst-gb-schema-dummy-pmdl[OF assms] unfolding gb-schema-dummy-eq-gb-schema-aux[OF

assms(1)] .

corollary gb-schema-aux-dgrad-p-set-le-init:
assumes dickson-grading d and struct-spec sel ap ab compl
shows dgrad-p-set-le d (fst ‘ set (gb-schema-aux data (ab gs [] bs (snd data)) (ap

gs [] [] bs (snd data))))
(fst ‘ (set gs ∪ set bs))

using fst-gb-schema-dummy-dgrad-p-set-le-init[OF assms] unfolding gb-schema-dummy-eq-gb-schema-aux[OF
assms(2)] .

208

corollary gb-schema-aux-dgrad-p-set-init:
assumes dickson-grading d and struct-spec sel ap ab compl

and fst ‘ (set gs ∪ set bs) ⊆ dgrad-p-set d m
shows fst ‘ set (gb-schema-aux (rc, data) (ab gs [] bs data) (ap gs [] [] bs data))
⊆ dgrad-p-set d m
using fst-gb-schema-dummy-dgrad-p-set-init[OF assms] unfolding gb-schema-dummy-eq-gb-schema-aux[OF

assms(2)] .

corollary gb-schema-aux-components-init:
assumes struct-spec sel ap ab compl
shows component-of-term ‘ Keys (fst ‘ set (gb-schema-aux (rc, data) (ab gs [] bs

data) (ap gs [] [] bs data))) =
component-of-term ‘ Keys (fst ‘ set (gs @ bs))

using fst-gb-schema-dummy-components-init[OF assms] unfolding gb-schema-dummy-eq-gb-schema-aux[OF
assms] .

corollary gb-schema-aux-pmdl-init:
assumes struct-spec sel ap ab compl and compl-pmdl compl and is-Groebner-basis

(fst ‘ set gs)
and unique-idx (gs @ ab gs [] bs data) data and rem-comps-spec (gs @ ab gs []

bs data) (rc, data)
shows pmdl (fst ‘ set (gb-schema-aux (rc, data) (ab gs [] bs data) (ap gs [] [] bs

data))) =
pmdl (fst ‘ (set (gs @ bs)))

using fst-gb-schema-dummy-pmdl-init[OF assms] unfolding gb-schema-dummy-eq-gb-schema-aux[OF
assms(1)] .

lemma gb-schema-aux-isGB-init:
assumes struct-spec sel ap ab compl and compl-conn compl and is-Groebner-basis

(fst ‘ set gs)
and unique-idx (gs @ ab gs [] bs data) data and rem-comps-spec (gs @ ab gs []

bs data) (rc, data)
shows is-Groebner-basis (fst ‘ set (gb-schema-aux (rc, data) (ab gs [] bs data)

(ap gs [] [] bs data)))
using fst-gb-schema-dummy-isGB-init[OF assms] unfolding gb-schema-dummy-eq-gb-schema-aux[OF

assms(1)] .

end

6.2.11 Functions gb-schema-direct and term gb-schema-incr
definition gb-schema-direct :: (′t, ′b, ′c, ′d) selT ⇒ (′t, ′b, ′c, ′d) apT ⇒ (′t, ′b,
′c, ′d) abT ⇒

(′t, ′b, ′c, ′d) complT ⇒ (′t, ′b, ′c) pdata ′ list ⇒ ′d ⇒
(′t, ′b::field, ′c::default) pdata ′ list

where gb-schema-direct sel ap ab compl bs0 data0 =
(let data = (length bs0 , data0); bs1 = fst (add-indices (bs0 , data0) (0 ,

data0));
bs = ab [] [] bs1 data in

209

map (λ(f , -, d). (f , d))
(gb-schema-aux sel ap ab compl [] (count-rem-components bs, data)

bs (ap [] [] [] bs1 data))
)

primrec gb-schema-incr :: (′t, ′b, ′c, ′d) selT ⇒ (′t, ′b, ′c, ′d) apT ⇒ (′t, ′b, ′c,
′d) abT ⇒

(′t, ′b, ′c, ′d) complT ⇒
((′t, ′b, ′c) pdata list ⇒ (′t, ′b, ′c) pdata ⇒ ′d ⇒ ′d) ⇒
(′t, ′b, ′c) pdata ′ list ⇒ ′d ⇒ (′t, ′b::field, ′c::default)

pdata ′ list
where

gb-schema-incr - - - - - [] - = []|
gb-schema-incr sel ap ab compl upd (b0 # bs) data =
(let (gs, n, data ′) = add-indices (gb-schema-incr sel ap ab compl upd bs data,

data) (0 , data);
b = (fst b0 , n, snd b0); data ′′ = upd gs b data ′ in

map (λ(f , -, d). (f , d))
(gb-schema-aux sel ap ab compl gs (count-rem-components (b # gs), Suc

n, data ′′)
(ab gs [] [b] (Suc n, data ′′)) (ap gs [] [] [b] (Suc n, data ′′)))

)

lemma (in −) fst-set-drop-indices:
fst ‘ (λ(f , -, d). (f , d)) ‘ A = fst ‘ A for A::(′x × ′y × ′z) set
by (simp add: image-image, rule image-cong, fact refl, simp add: prod.case-eq-if)

lemma fst-gb-schema-direct:
fst ‘ set (gb-schema-direct sel ap ab compl bs0 data0) =
(let data = (length bs0 , data0); bs1 = fst (add-indices (bs0 , data0) (0 , data0));

bs = ab [] [] bs1 data in
fst ‘ set (gb-schema-aux sel ap ab compl [] (count-rem-components bs, data)

bs (ap [] [] [] bs1 data))
)

by (simp add: gb-schema-direct-def Let-def fst-set-drop-indices)

lemma gb-schema-direct-dgrad-p-set:
assumes dickson-grading d and struct-spec sel ap ab compl and fst ‘ set bs ⊆

dgrad-p-set d m
shows fst ‘ set (gb-schema-direct sel ap ab compl bs data) ⊆ dgrad-p-set d m
unfolding fst-gb-schema-direct Let-def using assms(1 , 2)

proof (rule gb-schema-aux-dgrad-p-set-init)
show fst ‘ (set [] ∪ set (fst (add-indices (bs, data) (0 , data)))) ⊆ dgrad-p-set d

m
using assms(3) by (simp add: image-Un fst-set-add-indices)

qed

theorem gb-schema-direct-isGB:
assumes struct-spec sel ap ab compl and compl-conn compl

210

shows is-Groebner-basis (fst ‘ set (gb-schema-direct sel ap ab compl bs data))
unfolding fst-gb-schema-direct Let-def using assms

proof (rule gb-schema-aux-isGB-init)
from is-Groebner-basis-empty show is-Groebner-basis (fst ‘ set []) by simp

next
let ?data = (length bs, data)
from assms(1) have ab-spec ab by (rule struct-specD)
moreover have unique-idx ([] @ []) (0 , data) by (simp add: unique-idx-Nil)
ultimately show unique-idx ([] @ ab [] [] (fst (add-indices (bs, data) (0 , data)))

?data) ?data
proof (rule unique-idx-ab)

show (fst (add-indices (bs, data) (0 , data)), length bs, data) = add-indices (bs,
data) (0 , data)

by (simp add: add-indices-def)
qed

qed (simp add: rem-comps-spec-count-rem-components)

theorem gb-schema-direct-pmdl:
assumes struct-spec sel ap ab compl and compl-pmdl compl
shows pmdl (fst ‘ set (gb-schema-direct sel ap ab compl bs data)) = pmdl (fst ‘

set bs)
proof −

have pmdl (fst ‘ set (gb-schema-direct sel ap ab compl bs data)) =
pmdl (fst ‘ set ([] @ (fst (add-indices (bs, data) (0 , data)))))

unfolding fst-gb-schema-direct Let-def using assms
proof (rule gb-schema-aux-pmdl-init)

from is-Groebner-basis-empty show is-Groebner-basis (fst ‘ set []) by simp
next

let ?data = (length bs, data)
from assms(1) have ab-spec ab by (rule struct-specD)
moreover have unique-idx ([] @ []) (0 , data) by (simp add: unique-idx-Nil)
ultimately show unique-idx ([] @ ab [] [] (fst (add-indices (bs, data) (0 , data)))

?data) ?data
proof (rule unique-idx-ab)

show (fst (add-indices (bs, data) (0 , data)), length bs, data) = add-indices
(bs, data) (0 , data)

by (simp add: add-indices-def)
qed

qed (simp add: rem-comps-spec-count-rem-components)
thus ?thesis by (simp add: fst-set-add-indices)

qed

lemma fst-gb-schema-incr :
fst ‘ set (gb-schema-incr sel ap ab compl upd (b0 # bs) data) =

(let (gs, n, data ′) = add-indices (gb-schema-incr sel ap ab compl upd bs data,
data) (0 , data);

b = (fst b0 , n, snd b0); data ′′ = upd gs b data ′ in
fst ‘ set (gb-schema-aux sel ap ab compl gs (count-rem-components (b # gs),

Suc n, data ′′)

211

(ab gs [] [b] (Suc n, data ′′)) (ap gs [] [] [b] (Suc n, data ′′)))
)

by (simp only: gb-schema-incr .simps Let-def prod.case-distrib[of set]
prod.case-distrib[of image fst] set-map fst-set-drop-indices)

lemma gb-schema-incr-dgrad-p-set:
assumes dickson-grading d and struct-spec sel ap ab compl

and fst ‘ set bs ⊆ dgrad-p-set d m
shows fst ‘ set (gb-schema-incr sel ap ab compl upd bs data) ⊆ dgrad-p-set d m
using assms(3)

proof (induct bs)
case Nil
show ?case by simp

next
case (Cons b0 bs)
from Cons(2) have 1 : fst b0 ∈ dgrad-p-set d m and 2 : fst ‘ set bs ⊆ dgrad-p-set

d m by simp-all
show ?case
proof (simp only: fst-gb-schema-incr Let-def split: prod.splits, simp, intro allI

impI)
fix gs n data ′

assume add-indices (gb-schema-incr sel ap ab compl upd bs data, data) (0 ,
data) = (gs, n, data ′)

hence gs: gs = fst (add-indices (gb-schema-incr sel ap ab compl upd bs data,
data) (0 , data)) by simp

define b where b = (fst b0 , n, snd b0)
define data ′′ where data ′′ = upd gs b data ′

from assms(1 , 2)
show fst ‘ set (gb-schema-aux sel ap ab compl gs (count-rem-components (b #

gs), Suc n, data ′′)
(ab gs [] [b] (Suc n, data ′′)) (ap gs [] [] [b] (Suc n, data ′′))) ⊆ dgrad-p-set

d m
proof (rule gb-schema-aux-dgrad-p-set-init)

from 1 Cons(1)[OF 2] show fst ‘ (set gs ∪ set [b]) ⊆ dgrad-p-set d m
by (simp add: gs fst-set-add-indices b-def)

qed
qed

qed

theorem gb-schema-incr-dgrad-p-set-isGB:
assumes struct-spec sel ap ab compl and compl-conn compl
shows is-Groebner-basis (fst ‘ set (gb-schema-incr sel ap ab compl upd bs data))

proof (induct bs)
case Nil
from is-Groebner-basis-empty show ?case by simp

next
case (Cons b0 bs)
show ?case
proof (simp only: fst-gb-schema-incr Let-def split: prod.splits, simp, intro allI

212

impI)
fix gs n data ′

assume ∗: add-indices (gb-schema-incr sel ap ab compl upd bs data, data) (0 ,
data) = (gs, n, data ′)

hence gs: gs = fst (add-indices (gb-schema-incr sel ap ab compl upd bs data,
data) (0 , data)) by simp

define b where b = (fst b0 , n, snd b0)
define data ′′ where data ′′ = upd gs b data ′

from assms(1) have ab: ab-spec ab by (rule struct-specD3)
from Cons have is-Groebner-basis (fst ‘ set gs) by (simp add: gs fst-set-add-indices)
with assms

show is-Groebner-basis (fst ‘ set (gb-schema-aux sel ap ab compl gs (count-rem-components
(b # gs), Suc n, data ′′)

(ab gs [] [b] (Suc n, data ′′)) (ap gs [] [] [b] (Suc n, data ′′))))
proof (rule gb-schema-aux-isGB-init)

from ab show unique-idx (gs @ ab gs [] [b] (Suc n, data ′′)) (Suc n, data ′′)
proof (rule unique-idx-ab)

from unique-idx-Nil ∗[symmetric] have unique-idx ([] @ gs) (n, data ′)
by (rule unique-idx-append)

thus unique-idx (gs @ []) (n, data ′) by simp
next

show ([b], Suc n, data ′′) = add-indices ([b0], data ′′) (n, data ′)
by (simp add: add-indices-def b-def)

qed
next
have rem-comps-spec (b # gs) (count-rem-components (b # gs), Suc n, data ′′)

by (fact rem-comps-spec-count-rem-components)
moreover have set (b # gs) = set (gs @ ab gs [] [b] (Suc n, data ′′))

by (simp add: ab-specD1 [OF ab])
ultimately show rem-comps-spec (gs @ ab gs [] [b] (Suc n, data ′′))

(count-rem-components (b # gs), Suc n, data ′′)
by (simp only: rem-comps-spec-def)

qed
qed

qed

theorem gb-schema-incr-pmdl:
assumes struct-spec sel ap ab compl and compl-conn compl compl-pmdl compl
shows pmdl (fst ‘ set (gb-schema-incr sel ap ab compl upd bs data)) = pmdl (fst

‘ set bs)
proof (induct bs)

case Nil
show ?case by simp

next
case (Cons b0 bs)
show ?case
proof (simp only: fst-gb-schema-incr Let-def split: prod.splits, simp, intro allI

impI)
fix gs n data ′

213

assume ∗: add-indices (gb-schema-incr sel ap ab compl upd bs data, data) (0 ,
data) = (gs, n, data ′)

hence gs: gs = fst (add-indices (gb-schema-incr sel ap ab compl upd bs data,
data) (0 , data)) by simp

define b where b = (fst b0 , n, snd b0)
define data ′′ where data ′′ = upd gs b data ′

from assms(1) have ab: ab-spec ab by (rule struct-specD3)
from assms(1 , 2) have is-Groebner-basis (fst ‘ set gs) unfolding gs fst-conv

fst-set-add-indices
by (rule gb-schema-incr-dgrad-p-set-isGB)

with assms(1 , 3)
have eq: pmdl (fst ‘ set (gb-schema-aux sel ap ab compl gs (count-rem-components

(b # gs), Suc n, data ′′)
(ab gs [] [b] (Suc n, data ′′)) (ap gs [] [] [b] (Suc n, data ′′)))) =

pmdl (fst ‘ set (gs @ [b]))
proof (rule gb-schema-aux-pmdl-init)

from ab show unique-idx (gs @ ab gs [] [b] (Suc n, data ′′)) (Suc n, data ′′)
proof (rule unique-idx-ab)

from unique-idx-Nil ∗[symmetric] have unique-idx ([] @ gs) (n, data ′)
by (rule unique-idx-append)

thus unique-idx (gs @ []) (n, data ′) by simp
next

show ([b], Suc n, data ′′) = add-indices ([b0], data ′′) (n, data ′)
by (simp add: add-indices-def b-def)

qed
next
have rem-comps-spec (b # gs) (count-rem-components (b # gs), Suc n, data ′′)

by (fact rem-comps-spec-count-rem-components)
moreover have set (b # gs) = set (gs @ ab gs [] [b] (Suc n, data ′′))

by (simp add: ab-specD1 [OF ab])
ultimately show rem-comps-spec (gs @ ab gs [] [b] (Suc n, data ′′))

(count-rem-components (b # gs), Suc n, data ′′)
by (simp only: rem-comps-spec-def)

qed
also have ... = pmdl (insert (fst b) (fst ‘ set gs)) by simp
also from Cons have ... = pmdl (insert (fst b) (fst ‘ set bs))

unfolding gs fst-conv fst-set-add-indices by (rule pmdl.span-insert-cong)
finally show pmdl (fst ‘ set (gb-schema-aux sel ap ab compl gs (count-rem-components

(b # gs), Suc n, data ′′)
(ab gs [] [b] (Suc n, data ′′)) (ap gs [] [] [b] (Suc n, data ′′))))

=
pmdl (insert (fst b0) (fst ‘ set bs)) by (simp add: b-def)

qed
qed

214

6.3 Suitable Instances of the add-pairs Parameter
6.3.1 Specification of the crit parameters
type-synonym (in −) (′t, ′b, ′c, ′d) icritT = nat × ′d ⇒ (′t, ′b, ′c) pdata list ⇒
(′t, ′b, ′c) pdata list ⇒

(′t, ′b, ′c) pdata list ⇒ (′t, ′b, ′c) pdata ⇒ (′t, ′b,
′c) pdata ⇒ bool

type-synonym (in −) (′t, ′b, ′c, ′d) ncritT = nat × ′d ⇒ (′t, ′b, ′c) pdata list
⇒ (′t, ′b, ′c) pdata list ⇒

(′t, ′b, ′c) pdata list ⇒ bool ⇒
(bool × (′t, ′b, ′c) pdata-pair) list ⇒ (′t, ′b, ′c)

pdata ⇒
(′t, ′b, ′c) pdata ⇒ bool

type-synonym (in −) (′t, ′b, ′c, ′d) ocritT = nat × ′d ⇒ (′t, ′b, ′c) pdata list ⇒
(bool × (′t, ′b, ′c) pdata-pair) list ⇒ (′t, ′b, ′c)

pdata ⇒
(′t, ′b, ′c) pdata ⇒ bool

definition icrit-spec :: (′t, ′b::field, ′c, ′d) icritT ⇒ bool
where icrit-spec crit ←→

(∀ d m data gs bs hs p q. dickson-grading d −→
fst ‘ (set gs ∪ set bs ∪ set hs) ⊆ dgrad-p-set d m −→ unique-idx (gs @

bs @ hs) data −→
is-Groebner-basis (fst ‘ set gs) −→ p ∈ set hs −→ q ∈ set gs ∪ set bs ∪

set hs −→
fst p 6= 0 −→ fst q 6= 0 −→ crit data gs bs hs p q −→
crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs ∪ set hs)) (fst p) (fst q))

Criteria satisfying icrit-spec can be used for discarding pairs instantly, with-
out reference to any other pairs. The product criterion for scalar polyno-
mials satisfies icrit-spec, and so does the component criterion (which checks
whether the component-indices of the leading terms of two polynomials are
identical).
definition ncrit-spec :: (′t, ′b::field, ′c, ′d) ncritT ⇒ bool

where ncrit-spec crit ←→
(∀ d m data gs bs hs ps B q-in-bs p q. dickson-grading d −→ set gs ∪ set

bs ∪ set hs ⊆ B −→
fst ‘ B ⊆ dgrad-p-set d m −→ snd ‘ set ps ⊆ set hs × (set gs ∪ set bs

∪ set hs) −→
unique-idx (gs @ bs @ hs) data −→ is-Groebner-basis (fst ‘ set gs) −→
(q-in-bs −→ (q ∈ set gs ∪ set bs)) −→
(∀ p ′ q ′. (p ′, q ′) ∈p snd ‘ set ps −→ fst p ′ 6= 0 −→ fst q ′ 6= 0 −→

crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)) −→
(∀ p ′ q ′. p ′ ∈ set gs ∪ set bs −→ q ′ ∈ set gs ∪ set bs −→ fst p ′ 6= 0 −→

fst q ′ 6= 0 −→
crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)) −→

215

p ∈ set hs −→ q ∈ set gs ∪ set bs ∪ set hs −→ fst p 6= 0 −→ fst q 6= 0
−→

crit data gs bs hs q-in-bs ps p q −→
crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst q))

definition ocrit-spec :: (′t, ′b::field, ′c, ′d) ocritT ⇒ bool
where ocrit-spec crit ←→

(∀ d m data hs ps B p q. dickson-grading d −→ set hs ⊆ B −→ fst ‘ B ⊆
dgrad-p-set d m −→

unique-idx (p # q # hs @ (map (fst ◦ snd) ps) @ (map (snd ◦ snd)
ps)) data −→

(∀ p ′ q ′. (p ′, q ′) ∈p snd ‘ set ps −→ fst p ′ 6= 0 −→ fst q ′ 6= 0 −→
crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)) −→

p ∈ B −→ q ∈ B −→ fst p 6= 0 −→ fst q 6= 0 −→
crit data hs ps p q −→ crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst q))

Criteria satisfying ncrit-spec can be used for discarding new pairs by refer-
ence to new and old elements, whereas criteria satisfying ocrit-spec can be
used for discarding old pairs by reference to new elements only (no existing
ones!). The chain criterion satisfies both ncrit-spec and ocrit-spec.
lemma icrit-specI :

assumes
∧

d m data gs bs hs p q.
dickson-grading d =⇒ fst ‘ (set gs ∪ set bs ∪ set hs) ⊆ dgrad-p-set d m

=⇒
unique-idx (gs @ bs @ hs) data =⇒ is-Groebner-basis (fst ‘ set gs) =⇒
p ∈ set hs =⇒ q ∈ set gs ∪ set bs ∪ set hs =⇒ fst p 6= 0 =⇒ fst q 6= 0

=⇒
crit data gs bs hs p q =⇒
crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs ∪ set hs)) (fst p) (fst q)

shows icrit-spec crit
unfolding icrit-spec-def using assms by auto

lemma icrit-specD:
assumes icrit-spec crit and dickson-grading d

and fst ‘ (set gs ∪ set bs ∪ set hs) ⊆ dgrad-p-set d m and unique-idx (gs @ bs
@ hs) data

and is-Groebner-basis (fst ‘ set gs) and p ∈ set hs and q ∈ set gs ∪ set bs ∪
set hs

and fst p 6= 0 and fst q 6= 0 and crit data gs bs hs p q
shows crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs ∪ set hs)) (fst p) (fst q)
using assms unfolding icrit-spec-def by blast

lemma ncrit-specI :
assumes

∧
d m data gs bs hs ps B q-in-bs p q.

dickson-grading d =⇒ set gs ∪ set bs ∪ set hs ⊆ B =⇒
fst ‘ B ⊆ dgrad-p-set d m =⇒ snd ‘ set ps ⊆ set hs × (set gs ∪ set bs

∪ set hs) =⇒
unique-idx (gs @ bs @ hs) data =⇒ is-Groebner-basis (fst ‘ set gs) =⇒
(q-in-bs −→ q ∈ set gs ∪ set bs) =⇒

216

(
∧

p ′ q ′. (p ′, q ′) ∈p snd ‘ set ps =⇒ fst p ′ 6= 0 =⇒ fst q ′ 6= 0 =⇒
crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)) =⇒

(
∧

p ′ q ′. p ′ ∈ set gs ∪ set bs =⇒ q ′ ∈ set gs ∪ set bs =⇒ fst p ′ 6= 0 =⇒
fst q ′ 6= 0 =⇒

crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)) =⇒
p ∈ set hs =⇒ q ∈ set gs ∪ set bs ∪ set hs =⇒ fst p 6= 0 =⇒ fst q 6= 0

=⇒
crit data gs bs hs q-in-bs ps p q =⇒
crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst q)

shows ncrit-spec crit
unfolding ncrit-spec-def by (intro allI impI , rule assms, assumption+, meson,

meson, assumption+)

lemma ncrit-specD:
assumes ncrit-spec crit and dickson-grading d and set gs ∪ set bs ∪ set hs ⊆ B

and fst ‘ B ⊆ dgrad-p-set d m and snd ‘ set ps ⊆ set hs × (set gs ∪ set bs ∪
set hs)

and unique-idx (gs @ bs @ hs) data and is-Groebner-basis (fst ‘ set gs)
and q-in-bs =⇒ q ∈ set gs ∪ set bs
and

∧
p ′ q ′. (p ′, q ′) ∈p snd ‘ set ps =⇒ fst p ′ 6= 0 =⇒ fst q ′ 6= 0 =⇒

crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)
and

∧
p ′ q ′. p ′ ∈ set gs ∪ set bs =⇒ q ′ ∈ set gs ∪ set bs =⇒ fst p ′ 6= 0 =⇒ fst

q ′ 6= 0 =⇒
crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)

and p ∈ set hs and q ∈ set gs ∪ set bs ∪ set hs and fst p 6= 0 and fst q 6= 0
and crit data gs bs hs q-in-bs ps p q

shows crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst q)
using assms unfolding ncrit-spec-def by blast

lemma ocrit-specI :
assumes

∧
d m data hs ps B p q.

dickson-grading d =⇒ set hs ⊆ B =⇒ fst ‘ B ⊆ dgrad-p-set d m =⇒
unique-idx (p # q # hs @ (map (fst ◦ snd) ps) @ (map (snd ◦ snd)

ps)) data =⇒
(
∧

p ′ q ′. (p ′, q ′) ∈p snd ‘ set ps =⇒ fst p ′ 6= 0 =⇒ fst q ′ 6= 0 =⇒
crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)) =⇒

p ∈ B =⇒ q ∈ B =⇒ fst p 6= 0 =⇒ fst q 6= 0 =⇒
crit data hs ps p q =⇒ crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst q)

shows ocrit-spec crit
unfolding ocrit-spec-def by (intro allI impI , rule assms, assumption+, meson,

assumption+)

lemma ocrit-specD:
assumes ocrit-spec crit and dickson-grading d and set hs ⊆ B and fst ‘ B ⊆

dgrad-p-set d m
and unique-idx (p # q # hs @ (map (fst ◦ snd) ps) @ (map (snd ◦ snd) ps))

data
and

∧
p ′ q ′. (p ′, q ′) ∈p snd ‘ set ps =⇒ fst p ′ 6= 0 =⇒ fst q ′ 6= 0 =⇒

crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)

217

and p ∈ B and q ∈ B and fst p 6= 0 and fst q 6= 0
and crit data hs ps p q

shows crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst q)
using assms unfolding ocrit-spec-def by blast

6.3.2 Suitable instances of the crit parameters
definition component-crit :: (′t, ′b::zero, ′c, ′d) icritT

where component-crit data gs bs hs p q ←→ (component-of-term (lt (fst p)) 6=
component-of-term (lt (fst q)))

lemma icrit-spec-component-crit: icrit-spec (component-crit::(′t, ′b::field, ′c, ′d)
icritT)
proof (rule icrit-specI)

fix d m and data::nat × ′d and gs bs hs and p q::(′t, ′b, ′c) pdata
assume component-crit data gs bs hs p q
hence component-of-term (lt (fst p)) 6= component-of-term (lt (fst q))

by (simp add: component-crit-def)
thus crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs ∪ set hs)) (fst p) (fst q)

by (rule crit-pair-cbelow-distinct-component)
qed

The product criterion is only applicable to scalar polynomials.
definition product-crit :: (′a, ′b::zero, ′c, ′d) icritT

where product-crit data gs bs hs p q ←→ (gcs (punit.lt (fst p)) (punit.lt (fst q))
= 0)

lemma (in gd-term) icrit-spec-product-crit: punit.icrit-spec (product-crit::(′a, ′b::field,
′c, ′d) icritT)
proof (rule punit.icrit-specI)

fix d m and data::nat × ′d and gs bs hs and p q::(′a, ′b, ′c) pdata
assume product-crit data gs bs hs p q
hence ∗: gcs (punit.lt (fst p)) (punit.lt (fst q)) = 0 by (simp only: prod-

uct-crit-def)
assume p ∈ set hs and q-in: q ∈ set gs ∪ set bs ∪ set hs (is - ∈ ?B)
assume dickson-grading d and sub: fst ‘ (set gs ∪ set bs ∪ set hs) ⊆ punit.dgrad-p-set

d m
moreover from ‹p ∈ set hs› have fst p ∈ fst ‘ ?B by simp
moreover from q-in have fst q ∈ fst ‘ ?B by simp
moreover assume fst p 6= 0 and fst q 6= 0
ultimately show punit.crit-pair-cbelow-on d m (fst ‘ ?B) (fst p) (fst q)

using ∗ by (rule product-criterion)
qed

component-crit and product-crit ignore the data parameter.
fun (in −) pair-in-list :: (bool × (′a, ′b, ′c) pdata-pair) list ⇒ nat ⇒ nat ⇒ bool
where
pair-in-list [] - - = False
|pair-in-list ((-, (-, i ′, -), (-, j ′, -)) # ps) i j =

218

((i = i ′ ∧ j = j ′) ∨ (i = j ′ ∧ j = i ′) ∨ pair-in-list ps i j)

lemma (in −) pair-in-listE :
assumes pair-in-list ps i j
obtains p q a b where ((p, i, a), (q, j, b)) ∈p snd ‘ set ps
using assms

proof (induct ps i j arbitrary: thesis rule: pair-in-list.induct)
case (1 i j)
from 1 (2) show ?case by simp

next
case (2 c p i ′ a q j ′ b ps i j)
from 2 (3) have (i = i ′ ∧ j = j ′) ∨ (i = j ′ ∧ j = i ′) ∨ pair-in-list ps i j by simp
thus ?case
proof (elim disjE conjE)

assume i = i ′ and j = j ′
have ((p, i, a), (q, j, b)) ∈p snd ‘ set ((c, (p, i ′, a), q, j ′, b) # ps)

unfolding ‹i = i ′› ‹j = j ′› in-pair-iff by fastforce
thus ?thesis by (rule 2 (2))

next
assume i = j ′ and j = i ′
have ((q, i, b), (p, j, a)) ∈p snd ‘ set ((c, (p, i ′, a), q, j ′, b) # ps)

unfolding ‹i = j ′› ‹j = i ′› in-pair-iff by fastforce
thus ?thesis by (rule 2 (2))

next
assume pair-in-list ps i j
obtain p ′ q ′ a ′ b ′ where ((p ′, i, a ′), (q ′, j, b ′)) ∈p snd ‘ set ps

by (rule 2 (1), assumption, rule ‹pair-in-list ps i j›)
also have ... ⊆ snd ‘ set ((c, (p, i ′, a), q, j ′, b) # ps) by auto
finally show ?thesis by (rule 2 (2))

qed
qed

definition chain-ncrit :: (′t, ′b::zero, ′c, ′d) ncritT
where chain-ncrit data gs bs hs q-in-bs ps p q ←→

(let v = lt (fst p); l = term-of-pair (lcs (pp-of-term v) (lp (fst q)),
component-of-term v);

i = fst (snd p); j = fst (snd q) in
(∃ r∈set gs. let k = fst (snd r) in

k 6= i ∧ k 6= j ∧ lt (fst r) addst l ∧ pair-in-list ps i k ∧ (q-in-bs ∨
pair-in-list ps j k) ∧ fst r 6= 0) ∨

(∃ r∈set bs. let k = fst (snd r) in
k 6= i ∧ k 6= j ∧ lt (fst r) addst l ∧ pair-in-list ps i k ∧ (q-in-bs ∨

pair-in-list ps j k) ∧ fst r 6= 0) ∨
(∃ h∈set hs. let k = fst (snd h) in

k 6= i ∧ k 6= j ∧ lt (fst h) addst l ∧ pair-in-list ps i k ∧ pair-in-list
ps j k ∧ fst h 6= 0))

definition chain-ocrit :: (′t, ′b::zero, ′c, ′d) ocritT
where chain-ocrit data hs ps p q ←→

219

(let v = lt (fst p); l = term-of-pair (lcs (pp-of-term v) (lp (fst q)),
component-of-term v);

i = fst (snd p); j = fst (snd q) in
(∃ h∈set hs. let k = fst (snd h) in

k 6= i ∧ k 6= j ∧ lt (fst h) addst l ∧ pair-in-list ps i k ∧ pair-in-list
ps j k ∧ fst h 6= 0))

chain-ncrit and chain-ocrit ignore the data parameter.
lemma chain-ncritE :

assumes chain-ncrit data gs bs hs q-in-bs ps p q and snd ‘ set ps ⊆ set hs ×
(set gs ∪ set bs ∪ set hs)

and unique-idx (gs @ bs @ hs) data and p ∈ set hs and q ∈ set gs ∪ set bs ∪
set hs

obtains r where r ∈ set gs ∪ set bs ∪ set hs and fst r 6= 0 and r 6= p and r
6= q

and lt (fst r) addst term-of-pair (lcs (lp (fst p)) (lp (fst q)), component-of-term
(lt (fst p)))

and (p, r) ∈p snd ‘ set ps and (r ∈ set gs ∪ set bs ∧ q-in-bs) ∨ (q, r) ∈p snd
‘ set ps
proof −

let ?l = term-of-pair (lcs (lp (fst p)) (lp (fst q)), component-of-term (lt (fst p)))
let ?i = fst (snd p)
let ?j = fst (snd q)
let ?xs = gs @ bs @ hs
have 3 : x ∈ set ?xs if (x, y) ∈p snd ‘ set ps for x y
proof −

note that
also have snd ‘ set ps ⊆ set hs × (set gs ∪ set bs ∪ set hs) by (fact assms(2))
also have ... ⊆ (set gs ∪ set bs ∪ set hs) × (set gs ∪ set bs ∪ set hs) by

fastforce
finally have (x, y) ∈ (set gs ∪ set bs ∪ set hs) × (set gs ∪ set bs ∪ set hs)

by (simp only: in-pair-same)
thus ?thesis by simp

qed
have 4 : x ∈ set ?xs if (y, x) ∈p snd ‘ set ps for x y
proof −

from that have (x, y) ∈p snd ‘ set ps by (simp add: in-pair-iff disj-commute)
thus ?thesis by (rule 3)

qed

from assms(1) have
∃ r ∈ set gs ∪ set bs ∪ set hs. let k = fst (snd r) in

k 6= ?i ∧ k 6= ?j ∧ lt (fst r) addst ?l ∧ pair-in-list ps ?i k ∧
((r ∈ set gs ∪ set bs ∧ q-in-bs) ∨ pair-in-list ps ?j k) ∧ fst r 6= 0

by (smt UnI1 chain-ncrit-def sup-commute)

then obtain r where r-in: r ∈ set gs ∪ set bs ∪ set hs and fst r 6= 0 and rp:
fst (snd r) 6= ?i

and rq: fst (snd r) 6= ?j and lt (fst r) addst ?l

220

and 1 : pair-in-list ps ?i (fst (snd r))
and 2 : (r ∈ set gs ∪ set bs ∧ q-in-bs) ∨ pair-in-list ps ?j (fst (snd r))
unfolding Let-def by blast

let ?k = fst (snd r)
note r-in ‹fst r 6= 0 ›
moreover from rp have r 6= p by auto
moreover from rq have r 6= q by auto
ultimately show ?thesis using ‹lt (fst r) addst ?l›
proof

from 1 obtain p ′ r ′ a b where ∗: ((p ′, ?i, a), (r ′, ?k, b)) ∈p snd ‘ set ps
by (rule pair-in-listE)

note assms(3)
moreover from ∗ have (p ′, ?i, a) ∈ set ?xs by (rule 3)
moreover from assms(4) have p ∈ set ?xs by simp
moreover have fst (snd (p ′, ?i, a)) = ?i by simp
ultimately have p ′: (p ′, ?i, a) = p by (rule unique-idxD1)

note assms(3)
moreover from ∗ have (r ′, ?k, b) ∈ set ?xs by (rule 4)
moreover from r-in have r ∈ set ?xs by simp
moreover have fst (snd (r ′, ?k, b)) = ?k by simp
ultimately have r ′: (r ′, ?k, b) = r by (rule unique-idxD1)

from ∗ show (p, r) ∈p snd ‘ set ps by (simp only: p ′ r ′)
next

from 2 show (r ∈ set gs ∪ set bs ∧ q-in-bs) ∨ (q, r) ∈p snd ‘ set ps
proof

assume r ∈ set gs ∪ set bs ∧ q-in-bs
thus ?thesis ..

next
assume pair-in-list ps ?j ?k
then obtain q ′ r ′ a b where ∗: ((q ′, ?j, a), (r ′, ?k, b)) ∈p snd ‘ set ps

by (rule pair-in-listE)

note assms(3)
moreover from ∗ have (q ′, ?j, a) ∈ set ?xs by (rule 3)
moreover from assms(5) have q ∈ set ?xs by simp
moreover have fst (snd (q ′, ?j, a)) = ?j by simp
ultimately have q ′: (q ′, ?j, a) = q by (rule unique-idxD1)

note assms(3)
moreover from ∗ have (r ′, ?k, b) ∈ set ?xs by (rule 4)
moreover from r-in have r ∈ set ?xs by simp
moreover have fst (snd (r ′, ?k, b)) = ?k by simp
ultimately have r ′: (r ′, ?k, b) = r by (rule unique-idxD1)

from ∗ have (q, r) ∈p snd ‘ set ps by (simp only: q ′ r ′)
thus ?thesis ..

221

qed
qed

qed

lemma chain-ocritE :
assumes chain-ocrit data hs ps p q

and unique-idx (p # q # hs @ (map (fst ◦ snd) ps) @ (map (snd ◦ snd) ps))
data (is unique-idx ?xs -)

obtains h where h ∈ set hs and fst h 6= 0 and h 6= p and h 6= q
and lt (fst h) addst term-of-pair (lcs (lp (fst p)) (lp (fst q)), component-of-term

(lt (fst p)))
and (p, h) ∈p snd ‘ set ps and (q, h) ∈p snd ‘ set ps

proof −
let ?l = term-of-pair (lcs (lp (fst p)) (lp (fst q)), component-of-term (lt (fst p)))
have 3 : x ∈ set ?xs if (x, y) ∈p snd ‘ set ps for x y
proof −

from that have (x, y) ∈ snd ‘ set ps ∨ (y, x) ∈ snd ‘ set ps by (simp only:
in-pair-iff)

thus ?thesis
proof

assume (x, y) ∈ snd ‘ set ps
hence fst (x, y) ∈ fst ‘ snd ‘ set ps by fastforce
thus ?thesis by (simp add: image-comp)

next
assume (y, x) ∈ snd ‘ set ps
hence snd (y, x) ∈ snd ‘ snd ‘ set ps by fastforce
thus ?thesis by (simp add: image-comp)

qed
qed
have 4 : x ∈ set ?xs if (y, x) ∈p snd ‘ set ps for x y
proof −

from that have (x, y) ∈p snd ‘ set ps by (simp add: in-pair-iff disj-commute)
thus ?thesis by (rule 3)

qed

from assms(1) obtain h where h ∈ set hs and fst h 6= 0 and hp: fst (snd h)
6= fst (snd p)

and hq: fst (snd h) 6= fst (snd q) and lt (fst h) addst ?l
and 1 : pair-in-list ps (fst (snd p)) (fst (snd h)) and 2 : pair-in-list ps (fst (snd

q)) (fst (snd h))
unfolding chain-ocrit-def Let-def by blast

let ?i = fst (snd p)
let ?j = fst (snd q)
let ?k = fst (snd h)
note ‹h ∈ set hs› ‹fst h 6= 0 ›
moreover from hp have h 6= p by auto
moreover from hq have h 6= q by auto
ultimately show ?thesis using ‹lt (fst h) addst ?l›
proof

222

from 1 obtain p ′ h ′ a b where ∗: ((p ′, ?i, a), (h ′, ?k, b)) ∈p snd ‘ set ps
by (rule pair-in-listE)

note assms(2)
moreover from ∗ have (p ′, ?i, a) ∈ set ?xs by (rule 3)
moreover have p ∈ set ?xs by simp
moreover have fst (snd (p ′, ?i, a)) = ?i by simp
ultimately have p ′: (p ′, ?i, a) = p by (rule unique-idxD1)

note assms(2)
moreover from ∗ have (h ′, ?k, b) ∈ set ?xs by (rule 4)
moreover from ‹h ∈ set hs› have h ∈ set ?xs by simp
moreover have fst (snd (h ′, ?k, b)) = ?k by simp
ultimately have h ′: (h ′, ?k, b) = h by (rule unique-idxD1)

from ∗ show (p, h) ∈p snd ‘ set ps by (simp only: p ′ h ′)
next

from 2 obtain q ′ h ′ a b where ∗: ((q ′, ?j, a), (h ′, ?k, b)) ∈p snd ‘ set ps
by (rule pair-in-listE)

note assms(2)
moreover from ∗ have (q ′, ?j, a) ∈ set ?xs by (rule 3)
moreover have q ∈ set ?xs by simp
moreover have fst (snd (q ′, ?j, a)) = ?j by simp
ultimately have q ′: (q ′, ?j, a) = q by (rule unique-idxD1)

note assms(2)
moreover from ∗ have (h ′, ?k, b) ∈ set ?xs by (rule 4)
moreover from ‹h ∈ set hs› have h ∈ set ?xs by simp
moreover have fst (snd (h ′, ?k, b)) = ?k by simp
ultimately have h ′: (h ′, ?k, b) = h by (rule unique-idxD1)

from ∗ show (q, h) ∈p snd ‘ set ps by (simp only: q ′ h ′)
qed

qed

lemma ncrit-spec-chain-ncrit: ncrit-spec (chain-ncrit::(′t, ′b::field, ′c, ′d) ncritT)
proof (rule ncrit-specI)

fix d m and data::nat × ′d and gs bs hs and ps::(bool × (′t, ′b, ′c) pdata-pair)
list

and B q-in-bs and p q::(′t, ′b, ′c) pdata
assume dg: dickson-grading d and B-sup: set gs ∪ set bs ∪ set hs ⊆ B

and B-sub: fst ‘ B ⊆ dgrad-p-set d m and q-in-bs: q-in-bs −→ q ∈ set gs ∪ set
bs

and 1 :
∧

p ′ q ′. (p ′, q ′) ∈p snd ‘ set ps =⇒ fst p ′ 6= 0 =⇒ fst q ′ 6= 0 =⇒
crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)

and 2 :
∧

p ′ q ′. p ′ ∈ set gs ∪ set bs =⇒ q ′ ∈ set gs ∪ set bs =⇒ fst p ′ 6= 0 =⇒
fst q ′ 6= 0 =⇒

crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)

223

and fst p 6= 0 and fst q 6= 0
let ?l = term-of-pair (lcs (lp (fst p)) (lp (fst q)), component-of-term (lt (fst p)))
assume chain-ncrit data gs bs hs q-in-bs ps p q and snd ‘ set ps ⊆ set hs × (set

gs ∪ set bs ∪ set hs) and
unique-idx (gs @ bs @ hs) data and p ∈ set hs and q ∈ set gs ∪ set bs ∪ set hs

then obtain r where r ∈ set gs ∪ set bs ∪ set hs and fst r 6= 0 and r 6= p
and r 6= q

and adds: lt (fst r) addst ?l and (p, r) ∈p snd ‘ set ps
and disj: (r ∈ set gs ∪ set bs ∧ q-in-bs) ∨ (q, r) ∈p snd ‘ set ps by (rule

chain-ncritE)
note dg B-sub
moreover from ‹p ∈ set hs› ‹q ∈ set gs ∪ set bs ∪ set hs› B-sup
have fst p ∈ fst ‘ B and fst q ∈ fst ‘ B

by auto
moreover note ‹fst p 6= 0 › ‹fst q 6= 0 ›
moreover from adds have lp (fst r) adds lcs (lp (fst p)) (lp (fst q))

by (simp add: adds-term-def term-simps)
moreover from adds have component-of-term (lt (fst r)) = component-of-term

(lt (fst p))
by (simp add: adds-term-def term-simps)

ultimately show crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst q)
proof (rule chain-criterion)

from ‹(p, r) ∈p snd ‘ set ps› ‹fst p 6= 0 › ‹fst r 6= 0 ›
show crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst r) by (rule 1)

next
from disj show crit-pair-cbelow-on d m (fst ‘ B) (fst r) (fst q)
proof

assume r ∈ set gs ∪ set bs ∧ q-in-bs
hence r ∈ set gs ∪ set bs and q-in-bs by simp-all
from q-in-bs this(2) have q ∈ set gs ∪ set bs ..
with ‹r ∈ set gs ∪ set bs› show ?thesis using ‹fst r 6= 0 › ‹fst q 6= 0 › by

(rule 2)
next

assume (q, r) ∈p snd ‘ set ps
hence (r , q) ∈p snd ‘ set ps by (simp only: in-pair-iff disj-commute)
thus ?thesis using ‹fst r 6= 0 › ‹fst q 6= 0 › by (rule 1)

qed
qed

qed

lemma ocrit-spec-chain-ocrit: ocrit-spec (chain-ocrit::(′t, ′b::field, ′c, ′d) ocritT)
proof (rule ocrit-specI)

fix d m and data::nat × ′d and hs::(′t, ′b, ′c) pdata list and ps::(bool × (′t, ′b,
′c) pdata-pair) list

and B and p q::(′t, ′b, ′c) pdata
assume dg: dickson-grading d and B-sup: set hs ⊆ B

and B-sub: fst ‘ B ⊆ dgrad-p-set d m
and 1 :

∧
p ′ q ′. (p ′, q ′) ∈p snd ‘ set ps =⇒ fst p ′ 6= 0 =⇒ fst q ′ 6= 0 =⇒

crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)

224

and fst p 6= 0 and fst q 6= 0 and p ∈ B and q ∈ B
let ?l = term-of-pair (lcs (lp (fst p)) (lp (fst q)), component-of-term (lt (fst p)))
assume chain-ocrit data hs ps p q and unique-idx (p # q # hs @ map (fst ◦

snd) ps @ map (snd ◦ snd) ps) data
then obtain h where h ∈ set hs and fst h 6= 0 and h 6= p and h 6= q

and adds: lt (fst h) addst ?l and (p, h) ∈p snd ‘ set ps and (q, h) ∈p snd ‘ set
ps

by (rule chain-ocritE)
note dg B-sub
moreover from ‹p ∈ B› ‹q ∈ B› B-sup
have fst p ∈ fst ‘ B and fst q ∈ fst ‘ B by auto
moreover note ‹fst p 6= 0 › ‹fst q 6= 0 ›
moreover from adds have lp (fst h) adds lcs (lp (fst p)) (lp (fst q))

by (simp add: adds-term-def term-simps)
moreover from adds have component-of-term (lt (fst h)) = component-of-term

(lt (fst p))
by (simp add: adds-term-def term-simps)

ultimately show crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst q)
proof (rule chain-criterion)

from ‹(p, h) ∈p snd ‘ set ps› ‹fst p 6= 0 › ‹fst h 6= 0 ›
show crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst h) by (rule 1)

next
from ‹(q, h) ∈p snd ‘ set ps› have (h, q) ∈p snd ‘ set ps by (simp only:

in-pair-iff disj-commute)
thus crit-pair-cbelow-on d m (fst ‘ B) (fst h) (fst q) using ‹fst h 6= 0 › ‹fst q 6=

0 › by (rule 1)
qed

qed

lemma icrit-spec-no-crit: icrit-spec ((λ- - - - - -. False)::(′t, ′b::field, ′c, ′d) icritT)
by (rule icrit-specI , simp)

lemma ncrit-spec-no-crit: ncrit-spec ((λ- - - - - - - -. False)::(′t, ′b::field, ′c, ′d)
ncritT)

by (rule ncrit-specI , simp)

lemma ocrit-spec-no-crit: ocrit-spec ((λ- - - - -. False)::(′t, ′b::field, ′c, ′d) ocritT)
by (rule ocrit-specI , simp)

6.3.3 Creating Initial List of New Pairs
type-synonym (in −) (′t, ′b, ′c) apsT = bool ⇒ (′t, ′b, ′c) pdata list ⇒ (′t, ′b,
′c) pdata list ⇒

(′t, ′b, ′c) pdata ⇒ (bool × (′t, ′b, ′c) pdata-pair) list
⇒

(bool × (′t, ′b, ′c) pdata-pair) list

type-synonym (in −) (′t, ′b, ′c, ′d) npT = (′t, ′b, ′c) pdata list ⇒ (′t, ′b, ′c)
pdata list ⇒

225

(′t, ′b, ′c) pdata list ⇒ nat × ′d ⇒
(bool × (′t, ′b, ′c) pdata-pair) list

definition np-spec :: (′t, ′b, ′c, ′d) npT ⇒ bool
where np-spec np ←→ (∀ gs bs hs data.

snd ‘ set (np gs bs hs data) ⊆ set hs × (set gs ∪ set bs ∪ set
hs) ∧

set hs × (set gs ∪ set bs) ⊆ snd ‘ set (np gs bs hs data) ∧
(∀ a b. a ∈ set hs −→ b ∈ set hs −→ a 6= b −→ (a, b) ∈p

snd ‘ set (np gs bs hs data)) ∧
(∀ p q. (True, p, q) ∈ set (np gs bs hs data) −→ q ∈ set gs

∪ set bs))

lemma np-specI :
assumes

∧
gs bs hs data.

snd ‘ set (np gs bs hs data) ⊆ set hs × (set gs ∪ set bs ∪ set hs) ∧
set hs × (set gs ∪ set bs) ⊆ snd ‘ set (np gs bs hs data) ∧
(∀ a b. a ∈ set hs −→ b ∈ set hs −→ a 6= b −→ (a, b) ∈p snd ‘ set (np

gs bs hs data)) ∧
(∀ p q. (True, p, q) ∈ set (np gs bs hs data) −→ q ∈ set gs ∪ set bs)

shows np-spec np
unfolding np-spec-def using assms by meson

lemma np-specD1 :
assumes np-spec np
shows snd ‘ set (np gs bs hs data) ⊆ set hs × (set gs ∪ set bs ∪ set hs)
using assms[unfolded np-spec-def , rule-format, of gs bs hs data] ..

lemma np-specD2 :
assumes np-spec np
shows set hs × (set gs ∪ set bs) ⊆ snd ‘ set (np gs bs hs data)
using assms[unfolded np-spec-def , rule-format, of gs bs hs data] by auto

lemma np-specD3 :
assumes np-spec np and a ∈ set hs and b ∈ set hs and a 6= b
shows (a, b) ∈p snd ‘ set (np gs bs hs data)
using assms(1)[unfolded np-spec-def , rule-format, of gs bs hs data] assms(2 ,3 ,4)

by blast

lemma np-specD4 :
assumes np-spec np and (True, p, q) ∈ set (np gs bs hs data)
shows q ∈ set gs ∪ set bs
using assms(1)[unfolded np-spec-def , rule-format, of gs bs hs data] assms(2) by

blast

lemma np-specE :
assumes np-spec np and p ∈ set hs and q ∈ set gs ∪ set bs ∪ set hs and p 6= q
assumes 1 :

∧
q-in-bs. (q-in-bs, p, q) ∈ set (np gs bs hs data) =⇒ thesis

assumes 2 :
∧

p-in-bs. (p-in-bs, q, p) ∈ set (np gs bs hs data) =⇒ thesis

226

shows thesis
proof (cases q ∈ set gs ∪ set bs)

case True
with assms(2) have (p, q) ∈ set hs × (set gs ∪ set bs) by simp
also from assms(1) have ... ⊆ snd ‘ set (np gs bs hs data) by (rule np-specD2)
finally obtain q-in-bs where (q-in-bs, p, q) ∈ set (np gs bs hs data) by fastforce
thus ?thesis by (rule 1)

next
case False
with assms(3) have q ∈ set hs by simp
from assms(1 ,2) this assms(4) have (p, q) ∈p snd ‘ set (np gs bs hs data) by

(rule np-specD3)
hence (p, q) ∈ snd ‘ set (np gs bs hs data) ∨ (q, p) ∈ snd ‘ set (np gs bs hs data)

by (simp only: in-pair-iff)
thus ?thesis
proof

assume (p, q) ∈ snd ‘ set (np gs bs hs data)
then obtain q-in-bs where (q-in-bs, p, q) ∈ set (np gs bs hs data) by fastforce
thus ?thesis by (rule 1)

next
assume (q, p) ∈ snd ‘ set (np gs bs hs data)
then obtain p-in-bs where (p-in-bs, q, p) ∈ set (np gs bs hs data) by fastforce
thus ?thesis by (rule 2)

qed
qed

definition add-pairs-single-naive :: ′d ⇒ (′t, ′b::zero, ′c) apsT
where add-pairs-single-naive data flag gs bs h ps = ps @ (map (λg. (flag, h, g))

gs) @ (map (λb. (flag, h, b)) bs)

lemma set-add-pairs-single-naive:
set (add-pairs-single-naive data flag gs bs h ps) = set ps ∪ Pair flag ‘ ({h} × (set

gs ∪ set bs))
by (auto simp add: add-pairs-single-naive-def Let-def)

fun add-pairs-single-sorted :: ((bool × (′t, ′b, ′c) pdata-pair) ⇒ (bool × (′t, ′b, ′c)
pdata-pair) ⇒ bool) ⇒

(′t, ′b::zero, ′c) apsT where
add-pairs-single-sorted - - [] [] - ps = ps|
add-pairs-single-sorted rel flag [] (b # bs) h ps =

add-pairs-single-sorted rel flag [] bs h (insort-wrt rel (flag, h, b) ps)|
add-pairs-single-sorted rel flag (g # gs) bs h ps =

add-pairs-single-sorted rel flag gs bs h (insort-wrt rel (flag, h, g) ps)

lemma set-add-pairs-single-sorted:
set (add-pairs-single-sorted rel flag gs bs h ps) = set ps ∪ Pair flag ‘ ({h} × (set

gs ∪ set bs))
proof (induct gs arbitrary: ps)

case Nil

227

show ?case
proof (induct bs arbitrary: ps)

case Nil
show ?case by simp

next
case (Cons b bs)
show ?case by (simp add: Cons)

qed
next

case (Cons g gs)
show ?case by (simp add: Cons)

qed

primrec (in −) pairs :: (′t, ′b, ′c) apsT ⇒ bool ⇒ (′t, ′b, ′c) pdata list ⇒ (bool
× (′t, ′b, ′c) pdata-pair) list

where
pairs - - [] = []|
pairs aps flag (x # xs) = aps flag [] xs x (pairs aps flag xs)

lemma pairs-subset:
assumes

∧
gs bs h ps. set (aps flag gs bs h ps) = set ps ∪ Pair flag ‘ ({h} × (set

gs ∪ set bs))
shows set (pairs aps flag xs) ⊆ Pair flag ‘ (set xs × set xs)

proof (induct xs)
case Nil
show ?case by simp

next
case (Cons x xs)
from Cons have set (pairs aps flag xs) ⊆ Pair flag ‘ (set (x # xs) × set (x #

xs)) by fastforce
moreover have {x} × set xs ⊆ set (x # xs) × set (x # xs) by fastforce
ultimately show ?case by (auto simp add: assms)

qed

lemma in-pairsI :
assumes

∧
gs bs h ps. set (aps flag gs bs h ps) = set ps ∪ Pair flag ‘ ({h} × (set

gs ∪ set bs))
and a 6= b and a ∈ set xs and b ∈ set xs

shows (flag, a, b) ∈ set (pairs aps flag xs) ∨ (flag, b, a) ∈ set (pairs aps flag xs)
using assms(3 , 4)

proof (induct xs)
case Nil
thus ?case by simp

next
case (Cons x xs)
from Cons(3) have d: b = x ∨ b ∈ set xs by simp
from Cons(2) have a = x ∨ a ∈ set xs by simp
thus ?case
proof

228

assume a = x
with assms(2) have b 6= x by simp
with d have b ∈ set xs by simp
hence (flag, a, b) ∈ set (pairs aps flag (x # xs)) by (simp add: ‹a = x›

assms(1))
thus ?thesis by simp

next
assume a ∈ set xs
from d show ?thesis
proof

assume b = x
from ‹a ∈ set xs› have (flag, b, a) ∈ set (pairs aps flag (x # xs)) by (simp

add: ‹b = x› assms(1))
thus ?thesis by simp

next
assume b ∈ set xs
with ‹a ∈ set xs› have (flag, a, b) ∈ set (pairs aps flag xs) ∨ (flag, b, a) ∈

set (pairs aps flag xs)
by (rule Cons(1))

thus ?thesis by (auto simp: assms(1))
qed

qed
qed

corollary in-pairsI ′:
assumes

∧
gs bs h ps. set (aps flag gs bs h ps) = set ps ∪ Pair flag ‘ ({h} × (set

gs ∪ set bs))
and a ∈ set xs and b ∈ set xs and a 6= b

shows (a, b) ∈p snd ‘ set (pairs aps flag xs)
proof −

from assms(1 ,4 ,2 ,3) have (flag, a, b) ∈ set (pairs aps flag xs) ∨ (flag, b, a) ∈
set (pairs aps flag xs)

by (rule in-pairsI)
thus ?thesis
proof

assume (flag, a, b) ∈ set (pairs aps flag xs)
hence snd (flag, a, b) ∈ snd ‘ set (pairs aps flag xs) by fastforce
thus ?thesis by (simp add: in-pair-iff)

next
assume (flag, b, a) ∈ set (pairs aps flag xs)
hence snd (flag, b, a) ∈ snd ‘ set (pairs aps flag xs) by fastforce
thus ?thesis by (simp add: in-pair-iff)

qed
qed

definition new-pairs-naive :: (′t, ′b::zero, ′c, ′d) npT
where new-pairs-naive gs bs hs data =

fold (add-pairs-single-naive data True gs bs) hs (pairs (add-pairs-single-naive
data) False hs)

229

definition new-pairs-sorted :: (nat × ′d ⇒ (bool × (′t, ′b, ′c) pdata-pair) ⇒ (bool
× (′t, ′b, ′c) pdata-pair) ⇒ bool) ⇒

(′t, ′b::zero, ′c, ′d) npT
where new-pairs-sorted rel gs bs hs data =

fold (add-pairs-single-sorted (rel data) True gs bs) hs (pairs (add-pairs-single-sorted
(rel data)) False hs)

lemma set-fold-aps:
assumes

∧
gs bs h ps. set (aps flag gs bs h ps) = set ps ∪ Pair flag ‘ ({h} × (set

gs ∪ set bs))
shows set (fold (aps flag gs bs) hs ps) = Pair flag ‘ (set hs × (set gs ∪ set bs))
∪ set ps
proof (induct hs arbitrary: ps)

case Nil
show ?case by simp

next
case (Cons h hs)
show ?case by (auto simp add: Cons assms)

qed

lemma set-new-pairs-naive:
set (new-pairs-naive gs bs hs data) =

Pair True ‘ (set hs × (set gs ∪ set bs)) ∪ set (pairs (add-pairs-single-naive
data) False hs)
proof −

have set (new-pairs-naive gs bs hs data) =
Pair True ‘ (set hs × (set gs ∪ set bs)) ∪ set (pairs (add-pairs-single-naive

data) False hs)
unfolding new-pairs-naive-def by (rule set-fold-aps, fact set-add-pairs-single-naive)

thus ?thesis by (simp add: ac-simps)
qed

lemma set-new-pairs-sorted:
set (new-pairs-sorted rel gs bs hs data) =

Pair True ‘ (set hs × (set gs ∪ set bs)) ∪ set (pairs (add-pairs-single-sorted
(rel data)) False hs)
proof −

have set (new-pairs-sorted rel gs bs hs data) =
Pair True ‘ (set hs × (set gs ∪ set bs)) ∪ set (pairs (add-pairs-single-sorted

(rel data)) False hs)
unfolding new-pairs-sorted-def by (rule set-fold-aps, fact set-add-pairs-single-sorted)

thus ?thesis by (simp add: set-merge-wrt ac-simps)
qed

lemma (in −) fst-snd-Pair [simp]:
shows fst ◦ Pair x = (λ-. x) and snd ◦ Pair x = id
by auto

230

lemma np-spec-new-pairs-naive: np-spec new-pairs-naive
proof (rule np-specI)

fix gs bs hs :: (′t, ′b, ′c) pdata list and data::nat × ′d
have 1 : set hs × (set gs ∪ set bs) ⊆ set hs × (set gs ∪ set bs ∪ set hs) by

fastforce
have set (pairs (add-pairs-single-naive data) False hs) ⊆ Pair False ‘ (set hs ×

set hs)
by (rule pairs-subset, simp add: set-add-pairs-single-naive)

hence snd ‘ set (pairs (add-pairs-single-naive data) False hs) ⊆ snd ‘ Pair False
‘ (set hs × set hs)

by (rule image-mono)
also have ... = set hs × set hs by (simp add: image-comp)
finally have 2 : snd ‘ set (pairs (add-pairs-single-naive data) False hs) ⊆ set hs
× (set gs ∪ set bs ∪ set hs)

by fastforce

show snd ‘ set (new-pairs-naive gs bs hs data) ⊆ set hs × (set gs ∪ set bs ∪ set
hs) ∧

set hs × (set gs ∪ set bs) ⊆ snd ‘ set (new-pairs-naive gs bs hs data) ∧
(∀ a b. a ∈ set hs −→ b ∈ set hs −→ a 6= b −→ (a, b) ∈p snd ‘ set

(new-pairs-naive gs bs hs data)) ∧
(∀ p q. (True, p, q) ∈ set (new-pairs-naive gs bs hs data) −→ q ∈ set gs ∪

set bs)
proof (intro conjI allI impI)

show snd ‘ set (new-pairs-naive gs bs hs data) ⊆ set hs × (set gs ∪ set bs ∪
set hs)

by (simp add: set-new-pairs-naive image-Un image-comp 1 2)
next

show set hs × (set gs ∪ set bs) ⊆ snd ‘ set (new-pairs-naive gs bs hs data)
by (simp add: set-new-pairs-naive image-Un image-comp)

next
fix a b
assume a ∈ set hs and b ∈ set hs and a 6= b
with set-add-pairs-single-naive
have (a, b) ∈p snd ‘ set (pairs (add-pairs-single-naive data) False hs)

by (rule in-pairsI ′)
thus (a, b) ∈p snd ‘ set (new-pairs-naive gs bs hs data)

by (simp add: set-new-pairs-naive image-Un)
next

fix p q
assume (True, p, q) ∈ set (new-pairs-naive gs bs hs data)
hence q ∈ set gs ∪ set bs ∨ (True, p, q) ∈ set (pairs (add-pairs-single-naive

data) False hs)
by (auto simp: set-new-pairs-naive)

thus q ∈ set gs ∪ set bs
proof

assume (True, p, q) ∈ set (pairs (add-pairs-single-naive data) False hs)
also from set-add-pairs-single-naive have ... ⊆ Pair False ‘ (set hs × set hs)

by (rule pairs-subset)

231

finally show ?thesis by auto
qed

qed
qed

lemma np-spec-new-pairs-sorted: np-spec (new-pairs-sorted rel)
proof (rule np-specI)

fix gs bs hs :: (′t, ′b, ′c) pdata list and data::nat × ′d
have 1 : set hs × (set gs ∪ set bs) ⊆ set hs × (set gs ∪ set bs ∪ set hs) by

fastforce
have set (pairs (add-pairs-single-sorted (rel data)) False hs) ⊆ Pair False ‘ (set

hs × set hs)
by (rule pairs-subset, simp add: set-add-pairs-single-sorted)

hence snd ‘ set (pairs (add-pairs-single-sorted (rel data)) False hs) ⊆ snd ‘ Pair
False ‘ (set hs × set hs)

by (rule image-mono)
also have ... = set hs × set hs by (simp add: image-comp)
finally have 2 : snd ‘ set (pairs (add-pairs-single-sorted (rel data)) False hs) ⊆

set hs × (set gs ∪ set bs ∪ set hs)
by fastforce

show snd ‘ set (new-pairs-sorted rel gs bs hs data) ⊆ set hs × (set gs ∪ set bs ∪
set hs) ∧

set hs × (set gs ∪ set bs) ⊆ snd ‘ set (new-pairs-sorted rel gs bs hs data) ∧
(∀ a b. a ∈ set hs −→ b ∈ set hs −→ a 6= b −→ (a, b) ∈p snd ‘ set

(new-pairs-sorted rel gs bs hs data)) ∧
(∀ p q. (True, p, q) ∈ set (new-pairs-sorted rel gs bs hs data) −→ q ∈ set gs

∪ set bs)
proof (intro conjI allI impI)

show snd ‘ set (new-pairs-sorted rel gs bs hs data) ⊆ set hs × (set gs ∪ set bs
∪ set hs)

by (simp add: set-new-pairs-sorted image-Un image-comp 1 2)
next

show set hs × (set gs ∪ set bs) ⊆ snd ‘ set (new-pairs-sorted rel gs bs hs data)
by (simp add: set-new-pairs-sorted image-Un image-comp)

next
fix a b
assume a ∈ set hs and b ∈ set hs and a 6= b
with set-add-pairs-single-sorted
have (a, b) ∈p snd ‘ set (pairs (add-pairs-single-sorted (rel data)) False hs)

by (rule in-pairsI ′)
thus (a, b) ∈p snd ‘ set (new-pairs-sorted rel gs bs hs data)

by (simp add: set-new-pairs-sorted image-Un)
next

fix p q
assume (True, p, q) ∈ set (new-pairs-sorted rel gs bs hs data)
hence q ∈ set gs ∪ set bs ∨ (True, p, q) ∈ set (pairs (add-pairs-single-sorted

(rel data)) False hs)
by (auto simp: set-new-pairs-sorted)

232

thus q ∈ set gs ∪ set bs
proof
assume (True, p, q) ∈ set (pairs (add-pairs-single-sorted (rel data)) False hs)
also from set-add-pairs-single-sorted have ... ⊆ Pair False ‘ (set hs × set hs)

by (rule pairs-subset)
finally show ?thesis by auto

qed
qed

qed

new-pairs-naive gs bs hs data and new-pairs-sorted rel gs bs hs data return
lists of triples (q-in-bs, p, q), where q-in-bs indicates whether q is contained
in the list gs @ bs or in the list hs. p is always contained in hs.
definition canon-pair-order-aux :: (′t, ′b::zero, ′c) pdata-pair ⇒ (′t, ′b, ′c) pdata-pair
⇒ bool

where canon-pair-order-aux p q ←→
(lcs (lp (fst (fst p))) (lp (fst (snd p))) � lcs (lp (fst (fst q))) (lp (fst (snd

q))))

abbreviation canon-pair-order data p q ≡ canon-pair-order-aux (snd p) (snd q)

abbreviation canon-pair-comb ≡ merge-wrt canon-pair-order-aux

6.3.4 Applying Criteria to New Pairs
definition apply-icrit :: (′t, ′b, ′c, ′d) icritT ⇒ (nat × ′d) ⇒ (′t, ′b, ′c) pdata list
⇒

(′t, ′b, ′c) pdata list ⇒ (′t, ′b, ′c) pdata list ⇒
(bool × (′t, ′b, ′c) pdata-pair) list ⇒
(bool × bool × (′t, ′b, ′c) pdata-pair) list

where apply-icrit crit data gs bs hs ps = (let c = crit data gs bs hs in map
(λ(q-in-bs, p, q). (c p q, q-in-bs, p, q)) ps)

lemma fst-apply-icrit:
assumes icrit-spec crit and dickson-grading d

and fst ‘ (set gs ∪ set bs ∪ set hs) ⊆ dgrad-p-set d m and unique-idx (gs @ bs
@ hs) data

and is-Groebner-basis (fst ‘ set gs) and p ∈ set hs and q ∈ set gs ∪ set bs ∪
set hs

and fst p 6= 0 and fst q 6= 0 and (True, q-in-bs, p, q) ∈ set (apply-icrit crit
data gs bs hs ps)

shows crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs ∪ set hs)) (fst p) (fst q)
proof −

from assms(10) have crit data gs bs hs p q by (auto simp: apply-icrit-def)
with assms(1−9) show ?thesis by (rule icrit-specD)

qed

lemma snd-apply-icrit [simp]: map snd (apply-icrit crit data gs bs hs ps) = ps
by (auto simp add: apply-icrit-def case-prod-beta ′ intro: nth-equalityI)

233

lemma set-snd-apply-icrit [simp]: snd ‘ set (apply-icrit crit data gs bs hs ps) = set
ps
proof −

have snd ‘ set (apply-icrit crit data gs bs hs ps) = set (map snd (apply-icrit crit
data gs bs hs ps))

by (simp del: snd-apply-icrit)
also have ... = set ps by (simp only: snd-apply-icrit)
finally show ?thesis .

qed

definition apply-ncrit :: (′t, ′b, ′c, ′d) ncritT ⇒ (nat × ′d) ⇒ (′t, ′b, ′c) pdata
list ⇒

(′t, ′b, ′c) pdata list ⇒ (′t, ′b, ′c) pdata list ⇒
(bool × bool × (′t, ′b, ′c) pdata-pair) list ⇒
(bool × (′t, ′b, ′c) pdata-pair) list

where apply-ncrit crit data gs bs hs ps =
(let c = crit data gs bs hs in

rev (fold (λ(ic, q-in-bs, p, q). λps ′. if ¬ ic ∧ c q-in-bs ps ′ p q then ps ′

else (ic, p, q) # ps ′) ps []))

lemma apply-ncrit-append:
apply-ncrit crit data gs bs hs (xs @ ys) =

rev (fold (λ(ic, q-in-bs, p, q). λps ′. if ¬ ic ∧ crit data gs bs hs q-in-bs ps ′ p q
then ps ′ else (ic, p, q) # ps ′) ys

(rev (apply-ncrit crit data gs bs hs xs)))
by (simp add: apply-ncrit-def Let-def)

lemma fold-superset:
set acc ⊆

set (fold (λ(ic, q-in-bs, p, q). λps ′. if ¬ ic ∧ c q-in-bs ps ′ p q then ps ′ else (ic,
p, q) # ps ′) ps acc)
proof (induct ps arbitrary: acc)

case Nil
show ?case by simp

next
case (Cons x ps)
obtain ic ′ q-in-bs ′ p ′ q ′ where x: x = (ic ′, q-in-bs ′, p ′, q ′) using prod-cases4

by blast
have 1 : set acc0 ⊆ set (fold (λ(ic, q-in-bs, p, q) ps ′. if ¬ ic ∧ c q-in-bs ps ′ p q

then ps ′ else (ic, p, q) # ps ′) ps acc0)
for acc0 by (rule Cons)

have set acc ⊆ set ((ic ′, p ′, q ′) # acc) by fastforce
also have ... ⊆ set (fold (λ(ic, q-in-bs, p, q) ps ′. if ¬ ic ∧ c q-in-bs ps ′ p q then

ps ′ else (ic, p, q) # ps ′) ps
((ic ′, p ′, q ′) # acc)) by (fact 1)

finally have 2 : set acc ⊆ set (fold (λ(ic, q-in-bs, p, q) ps ′. if ¬ ic ∧ c q-in-bs
ps ′ p q then ps ′ else (ic, p, q) # ps ′) ps

((ic ′, p ′, q ′) # acc)) .

234

show ?case by (simp add: x 1 2)
qed

lemma apply-ncrit-superset:
set (apply-ncrit crit data gs bs hs ps) ⊆ set (apply-ncrit crit data gs bs hs (ps @

qs)) (is ?l ⊆ ?r)
proof −

have ?l = set (rev (apply-ncrit crit data gs bs hs ps)) by simp
also have ... ⊆ set (fold (λ(ic, q-in-bs, p, q) ps ′.

if ¬ ic ∧ crit data gs bs hs q-in-bs ps ′ p q then ps ′ else (ic, p,
q) # ps ′)

qs (rev (apply-ncrit crit data gs bs hs ps))) by (fact fold-superset)
also have ... = ?r by (simp add: apply-ncrit-append)
finally show ?thesis .

qed

lemma apply-ncrit-subset-aux:
assumes (ic, p, q) ∈ set (fold

(λ(ic, q-in-bs, p, q). λps ′. if ¬ ic ∧ c q-in-bs ps ′ p q then ps ′ else (ic, p,
q) # ps ′) ps acc)

shows (ic, p, q) ∈ set acc ∨ (∃ q-in-bs. (ic, q-in-bs, p, q) ∈ set ps)
using assms

proof (induct ps arbitrary: acc)
case Nil
thus ?case by simp

next
case (Cons x ps)
obtain ic ′ q-in-bs ′ p ′ q ′ where x: x = (ic ′, q-in-bs ′, p ′, q ′) using prod-cases4

by blast
from Cons(2) have (ic, p, q) ∈

set (fold (λ(ic, q-in-bs, p, q) ps ′. if ¬ ic ∧ c q-in-bs ps ′ p q then ps ′ else (ic,
p, q) # ps ′) ps

(if ¬ ic ′ ∧ c q-in-bs ′ acc p ′ q ′ then acc else (ic ′, p ′, q ′) # acc)) by (simp
add: x)

hence (ic, p, q) ∈ set (if ¬ ic ′ ∧ c q-in-bs ′ acc p ′ q ′ then acc else (ic ′, p ′, q ′) #
acc) ∨

(∃ q-in-bs. (ic, q-in-bs, p, q) ∈ set ps) by (rule Cons(1))
hence (ic, p, q) ∈ set acc ∨ (ic, p, q) = (ic ′, p ′, q ′) ∨ (∃ q-in-bs. (ic, q-in-bs, p,

q) ∈ set ps)
by (auto split: if-splits)

thus ?case
proof (elim disjE)

assume (ic, p, q) ∈ set acc
thus ?thesis ..

next
assume (ic, p, q) = (ic ′, p ′, q ′)
hence x = (ic, q-in-bs ′, p, q) by (simp add: x)
thus ?thesis by auto

next

235

assume ∃ q-in-bs. (ic, q-in-bs, p, q) ∈ set ps
then obtain q-in-bs where (ic, q-in-bs, p, q) ∈ set ps ..
thus ?thesis by auto

qed
qed

corollary apply-ncrit-subset:
assumes (ic, p, q) ∈ set (apply-ncrit crit data gs bs hs ps)
obtains q-in-bs where (ic, q-in-bs, p, q) ∈ set ps

proof −
from assms
have (ic, p, q) ∈ set (fold

(λ(ic, q-in-bs, p, q). λps ′. if ¬ ic ∧ crit data gs bs hs q-in-bs ps ′ p q then
ps ′ else (ic, p, q) # ps ′) ps [])

by (simp add: apply-ncrit-def)
hence (ic, p, q) ∈ set [] ∨ (∃ q-in-bs. (ic, q-in-bs, p, q) ∈ set ps)

by (rule apply-ncrit-subset-aux)
hence ∃ q-in-bs. (ic, q-in-bs, p, q) ∈ set ps by simp
then obtain q-in-bs where (ic, q-in-bs, p, q) ∈ set ps ..
thus ?thesis ..

qed

corollary apply-ncrit-subset ′: snd ‘ set (apply-ncrit crit data gs bs hs ps) ⊆ snd ‘
snd ‘ set ps
proof

fix p q
assume (p, q) ∈ snd ‘ set (apply-ncrit crit data gs bs hs ps)
then obtain ic where (ic, p, q) ∈ set (apply-ncrit crit data gs bs hs ps) by

fastforce
then obtain q-in-bs where (ic, q-in-bs, p, q) ∈ set ps by (rule apply-ncrit-subset)
thus (p, q) ∈ snd ‘ snd ‘ set ps by force

qed

lemma not-in-apply-ncrit:
assumes (ic, p, q) /∈ set (apply-ncrit crit data gs bs hs (xs @ ((ic, q-in-bs, p, q)

ys)))
shows crit data gs bs hs q-in-bs (rev (apply-ncrit crit data gs bs hs xs)) p q
using assms

proof (simp add: apply-ncrit-append split: if-splits)
assume (ic, p, q) /∈

set (fold (λ(ic, q-in-bs, p, q) ps ′. if ¬ ic ∧ crit data gs bs hs q-in-bs ps ′

p q then ps ′ else (ic, p, q) # ps ′)
ys ((ic, p, q) # rev (apply-ncrit crit data gs bs hs xs))) (is - /∈ ?A)

have (ic, p, q) ∈ set ((ic, p, q) # rev (apply-ncrit crit data gs bs hs xs)) by simp
also have ... ⊆ ?A by (rule fold-superset)
finally have (ic, p, q) ∈ ?A .
with ‹(ic, p, q) /∈ ?A› show ?thesis ..

qed

236

lemma (in −) setE :
assumes x ∈ set xs
obtains ys zs where xs = ys @ (x # zs)
using assms

proof (induct xs arbitrary: thesis)
case Nil
from Nil(2) show ?case by simp

next
case (Cons a xs)
from Cons(3) have x = a ∨ x ∈ set xs by simp
thus ?case
proof

assume x = a
show ?thesis by (rule Cons(2)[of [] xs], simp add: ‹x = a›)

next
assume x ∈ set xs
then obtain ys zs where xs = ys @ (x # zs) by (meson Cons(1))
show ?thesis by (rule Cons(2)[of a # ys zs], simp add: ‹xs = ys @ (x # zs)›)

qed
qed

lemma apply-ncrit-connectible:
assumes ncrit-spec crit and dickson-grading d

and set gs ∪ set bs ∪ set hs ⊆ B and fst ‘ B ⊆ dgrad-p-set d m
and snd ‘ snd ‘ set ps ⊆ set hs × (set gs ∪ set bs ∪ set hs) and unique-idx (gs

@ bs @ hs) data
and is-Groebner-basis (fst ‘ set gs)
and

∧
p ′ q ′. (p ′, q ′) ∈ snd ‘ set (apply-ncrit crit data gs bs hs ps) =⇒

fst p ′ 6= 0 =⇒ fst q ′ 6= 0 =⇒ crit-pair-cbelow-on d m (fst ‘ B) (fst
p ′) (fst q ′)

and
∧

p ′ q ′. p ′ ∈ set gs ∪ set bs =⇒ q ′ ∈ set gs ∪ set bs =⇒ fst p ′ 6= 0 =⇒ fst
q ′ 6= 0 =⇒

crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)
assumes (ic, q-in-bs, p, q) ∈ set ps and fst p 6= 0 and fst q 6= 0

and q-in-bs =⇒ (q ∈ set gs ∪ set bs)
shows crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst q)

proof (cases (p, q) ∈ snd ‘ set (apply-ncrit crit data gs bs hs ps))
case True
thus ?thesis using assms(11 ,12) by (rule assms(8))

next
case False
from assms(10) have (p, q) ∈ snd ‘ snd ‘ set ps by force
also have ... ⊆ set hs × (set gs ∪ set bs ∪ set hs) by (fact assms(5))
finally have p ∈ set hs and q ∈ set gs ∪ set bs ∪ set hs by simp-all
from ‹(ic, q-in-bs, p, q) ∈ set ps› obtain xs ys where ps: ps = xs @ ((ic, q-in-bs,

p, q) # ys)
by (rule setE)

let ?ps = rev (apply-ncrit crit data gs bs hs xs)

237

have snd ‘ set ?ps ⊆ snd ‘ snd ‘ set xs by (simp add: apply-ncrit-subset ′)
also have ... ⊆ snd ‘ snd ‘ set ps unfolding ps by fastforce
finally have sub: snd ‘ set ?ps ⊆ set hs × (set gs ∪ set bs ∪ set hs)

using assms(5) by (rule subset-trans)
from False have (p, q) /∈ snd ‘ set (apply-ncrit crit data gs bs hs ps) by (simp

add: in-pair-iff)
hence (ic, p, q) /∈ set (apply-ncrit crit data gs bs hs (xs @ ((ic, q-in-bs, p, q) #

ys)))
unfolding ps by force

hence crit data gs bs hs q-in-bs ?ps p q by (rule not-in-apply-ncrit)
with assms(1−4) sub assms(6 ,7 ,13) - - ‹p ∈ set hs› ‹q ∈ set gs ∪ set bs ∪ set

hs› assms(11 ,12)
show ?thesis
proof (rule ncrit-specD)

fix p ′ q ′

assume (p ′, q ′) ∈p snd ‘ set ?ps
also have ... ⊆ snd ‘ set (apply-ncrit crit data gs bs hs ps)

by (rule image-mono, simp add: ps apply-ncrit-superset)
finally have disj: (p ′, q ′) ∈ snd ‘ set (apply-ncrit crit data gs bs hs ps) ∨

(q ′, p ′) ∈ snd ‘ set (apply-ncrit crit data gs bs hs ps) by (simp
only: in-pair-iff)

assume fst p ′ 6= 0 and fst q ′ 6= 0
from disj show crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)
proof

assume (p ′, q ′) ∈ snd ‘ set (apply-ncrit crit data gs bs hs ps)
thus ?thesis using ‹fst p ′ 6= 0 › ‹fst q ′ 6= 0 › by (rule assms(8))

next
assume (q ′, p ′) ∈ snd ‘ set (apply-ncrit crit data gs bs hs ps)
hence crit-pair-cbelow-on d m (fst ‘ B) (fst q ′) (fst p ′)

using ‹fst q ′ 6= 0 › ‹fst p ′ 6= 0 › by (rule assms(8))
thus ?thesis by (rule crit-pair-cbelow-sym)

qed
qed (assumption, fact assms(9))

qed

6.3.5 Applying Criteria to Old Pairs
definition apply-ocrit :: (′t, ′b, ′c, ′d) ocritT ⇒ (nat × ′d) ⇒ (′t, ′b, ′c) pdata list
⇒

(bool × (′t, ′b, ′c) pdata-pair) list ⇒ (′t, ′b, ′c) pdata-pair
list ⇒

(′t, ′b, ′c) pdata-pair list
where apply-ocrit crit data hs ps ′ ps = (let c = crit data hs ps ′ in [(p, q)←ps .
¬ c p q])

lemma set-apply-ocrit:
set (apply-ocrit crit data hs ps ′ ps) = {(p, q) | p q. (p, q) ∈ set ps ∧ ¬ crit data

hs ps ′ p q}
by (auto simp: apply-ocrit-def)

238

corollary set-apply-ocrit-iff :
(p, q) ∈ set (apply-ocrit crit data hs ps ′ ps) ←→ ((p, q) ∈ set ps ∧ ¬ crit data

hs ps ′ p q)
by (auto simp: apply-ocrit-def)

lemma apply-ocrit-connectible:
assumes ocrit-spec crit and dickson-grading d and set hs ⊆ B and fst ‘ B ⊆

dgrad-p-set d m
and unique-idx (p # q # hs @ (map (fst ◦ snd) ps ′) @ (map (snd ◦ snd) ps ′))

data
and

∧
p ′ q ′. (p ′, q ′) ∈ snd ‘ set ps ′ =⇒ fst p ′ 6= 0 =⇒ fst q ′ 6= 0 =⇒

crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)
assumes p ∈ B and q ∈ B and fst p 6= 0 and fst q 6= 0

and (p, q) ∈ set ps and (p, q) /∈ set (apply-ocrit crit data hs ps ′ ps)
shows crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst q)

proof −
from assms(11 ,12) have crit data hs ps ′ p q by (simp add: set-apply-ocrit-iff)
with assms(1−5) - assms(7−10) show ?thesis
proof (rule ocrit-specD)

fix p ′ q ′

assume (p ′, q ′) ∈p snd ‘ set ps ′

hence disj: (p ′, q ′) ∈ snd ‘ set ps ′ ∨ (q ′, p ′) ∈ snd ‘ set ps ′ by (simp only:
in-pair-iff)

assume fst p ′ 6= 0 and fst q ′ 6= 0
from disj show crit-pair-cbelow-on d m (fst ‘ B) (fst p ′) (fst q ′)
proof

assume (p ′, q ′) ∈ snd ‘ set ps ′

thus ?thesis using ‹fst p ′ 6= 0 › ‹fst q ′ 6= 0 › by (rule assms(6))
next

assume (q ′, p ′) ∈ snd ‘ set ps ′

hence crit-pair-cbelow-on d m (fst ‘ B) (fst q ′) (fst p ′) using ‹fst q ′ 6= 0 › ‹fst
p ′ 6= 0 ›

by (rule assms(6))
thus ?thesis by (rule crit-pair-cbelow-sym)

qed
qed

qed

6.3.6 Creating Final List of Pairs
context

fixes np::(′t, ′b::field, ′c, ′d) npT
and icrit::(′t, ′b, ′c, ′d) icritT
and ncrit::(′t, ′b, ′c, ′d) ncritT
and ocrit::(′t, ′b, ′c, ′d) ocritT
and comb::(′t, ′b, ′c) pdata-pair list ⇒ (′t, ′b, ′c) pdata-pair list ⇒ (′t, ′b, ′c)

pdata-pair list
begin

239

definition add-pairs :: (′t, ′b, ′c, ′d) apT
where add-pairs gs bs ps hs data =

(let ps1 = apply-ncrit ncrit data gs bs hs (apply-icrit icrit data gs bs hs
(np gs bs hs data));

ps2 = apply-ocrit ocrit data hs ps1 ps in comb (map snd [x←ps1 . ¬
fst x]) ps2)

lemma set-add-pairs:
assumes

∧
xs ys. set (comb xs ys) = set xs ∪ set ys

assumes ps1 = apply-ncrit ncrit data gs bs hs (apply-icrit icrit data gs bs hs (np
gs bs hs data))

shows set (add-pairs gs bs ps hs data) =
{(p, q) | p q. (False, p, q) ∈ set ps1 ∨ ((p, q) ∈ set ps ∧ ¬ ocrit data

hs ps1 p q)}
proof −

have eq: snd ‘ {x ∈ set ps1 . ¬ fst x} = {(p, q) | p q. (False, p, q) ∈ set ps1} by
force

thus ?thesis by (auto simp: add-pairs-def Let-def assms(1) assms(2)[symmetric]
set-apply-ocrit)
qed

lemma set-add-pairs-iff :
assumes

∧
xs ys. set (comb xs ys) = set xs ∪ set ys

assumes ps1 = apply-ncrit ncrit data gs bs hs (apply-icrit icrit data gs bs hs (np
gs bs hs data))

shows ((p, q) ∈ set (add-pairs gs bs ps hs data)) ←→
((False, p, q) ∈ set ps1 ∨ ((p, q) ∈ set ps ∧ ¬ ocrit data hs ps1 p q))

proof −
from assms have eq: set (add-pairs gs bs ps hs data) =

{(p, q) | p q. (False, p, q) ∈ set ps1 ∨ ((p, q) ∈ set ps ∧ ¬ ocrit data
hs ps1 p q)}

by (rule set-add-pairs)
obtain a aa b where p: p = (a, aa, b) using prod-cases3 by blast
obtain ab ac ba where q: q = (ab, ac, ba) using prod-cases3 by blast
show ?thesis by (simp add: eq p q)

qed

lemma ap-spec-add-pairs:
assumes np-spec np and icrit-spec icrit and ncrit-spec ncrit and ocrit-spec ocrit

and
∧

xs ys. set (comb xs ys) = set xs ∪ set ys
shows ap-spec add-pairs

proof (rule ap-specI)
fix gs bs :: (′t, ′b, ′c) pdata list and ps hs and data::nat × ′d
define ps1 where ps1 = apply-ncrit ncrit data gs bs hs (apply-icrit icrit data gs

bs hs (np gs bs hs data))
show set (add-pairs gs bs ps hs data) ⊆ set ps ∪ set hs × (set gs ∪ set bs ∪ set

hs)
proof

240

fix p q
assume (p, q) ∈ set (add-pairs gs bs ps hs data)
with assms(5) ps1-def have (False, p, q) ∈ set ps1 ∨ ((p, q) ∈ set ps ∧ ¬

ocrit data hs ps1 p q)
by (simp add: set-add-pairs-iff)

thus (p, q) ∈ set ps ∪ set hs × (set gs ∪ set bs ∪ set hs)
proof

assume (False, p, q) ∈ set ps1
hence snd (False, p, q) ∈ snd ‘ set ps1 by fastforce
hence (p, q) ∈ snd ‘ set ps1 by simp
also have ... ⊆ snd ‘ snd ‘ set (apply-icrit icrit data gs bs hs (np gs bs hs

data))
unfolding ps1-def by (fact apply-ncrit-subset ′)

also have ... = snd ‘ set (np gs bs hs data) by simp
also from assms(1) have ... ⊆ set hs × (set gs ∪ set bs ∪ set hs) by (rule

np-specD1)
finally show ?thesis ..

next
assume (p, q) ∈ set ps ∧ ¬ ocrit data hs ps1 p q
thus ?thesis by simp

qed
qed

next
fix gs bs :: (′t, ′b, ′c) pdata list and ps hs and data::nat × ′d and B and d:: ′a
⇒ nat and m h g

assume dg: dickson-grading d and B-sup: set gs ∪ set bs ∪ set hs ⊆ B
and B-sub: fst ‘ B ⊆ dgrad-p-set d m and h-in: h ∈ set hs and g-in: g ∈ set

gs ∪ set bs ∪ set hs
and ps-sub: set ps ⊆ set bs × (set gs ∪ set bs)
and uid: unique-idx (gs @ bs @ hs) data and gb: is-Groebner-basis (fst ‘ set

gs) and h 6= g
and fst h 6= 0 and fst g 6= 0

assume a:
∧

a b. (a, b) ∈p set (add-pairs gs bs ps hs data) =⇒
fst a 6= 0 =⇒ fst b 6= 0 =⇒ crit-pair-cbelow-on d m (fst ‘ B) (fst a)

(fst b)
assume b:

∧
a b. a ∈ set gs ∪ set bs =⇒

b ∈ set gs ∪ set bs =⇒
fst a 6= 0 =⇒ fst b 6= 0 =⇒ crit-pair-cbelow-on d m (fst ‘ B) (fst a)

(fst b)
define ps0 where ps0 = apply-icrit icrit data gs bs hs (np gs bs hs data)
define ps1 where ps1 = apply-ncrit ncrit data gs bs hs ps0

have snd ‘ snd ‘ set ps0 = snd ‘ set (np gs bs hs data) by (simp add: ps0-def)
also from assms(1) have ... ⊆ set hs × (set gs ∪ set bs ∪ set hs) by (rule

np-specD1)
finally have ps0-sub: snd ‘ snd ‘ set ps0 ⊆ set hs × (set gs ∪ set bs ∪ set hs) .

have crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst q)
if (p, q) ∈ snd ‘ set ps1 and fst p 6= 0 and fst q 6= 0 for p q

241

proof −
from ‹(p, q) ∈ snd ‘ set ps1 › obtain ic where (ic, p, q) ∈ set ps1 by fastforce
show ?thesis
proof (cases ic)

case True
from ‹(ic, p, q) ∈ set ps1 › obtain q-in-bs where (ic, q-in-bs, p, q) ∈ set ps0

unfolding ps1-def by (rule apply-ncrit-subset)
with True have (True, q-in-bs, p, q) ∈ set ps0 by simp
hence snd (snd (True, q-in-bs, p, q)) ∈ snd ‘ snd ‘ set ps0 by fastforce
hence (p, q) ∈ snd ‘ snd ‘ set ps0 by simp
also have ... ⊆ set hs × (set gs ∪ set bs ∪ set hs) by (fact ps0-sub)
finally have p ∈ set hs and q ∈ set gs ∪ set bs ∪ set hs by simp-all
from B-sup have B-sup ′: fst ‘ (set gs ∪ set bs ∪ set hs) ⊆ fst ‘ B by (rule

image-mono)
hence fst ‘ (set gs ∪ set bs ∪ set hs) ⊆ dgrad-p-set d m using B-sub by (rule

subset-trans)
from assms(2) dg this uid gb ‹p ∈ set hs› ‹q ∈ set gs ∪ set bs ∪ set hs› ‹fst

p 6= 0 › ‹fst q 6= 0 ›
‹(True, q-in-bs, p, q) ∈ set ps0 ›

have crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs ∪ set hs)) (fst p) (fst q)
unfolding ps0-def by (rule fst-apply-icrit)

thus ?thesis using B-sup ′ by (rule crit-pair-cbelow-mono)
next

case False
with ‹(ic, p, q) ∈ set ps1 › have (False, p, q) ∈ set ps1 by simp
with assms(5) ps1-def have (p, q) ∈ set (add-pairs gs bs ps hs data)

by (simp add: set-add-pairs-iff ps0-def)
hence (p, q) ∈p set (add-pairs gs bs ps hs data) by (simp add: in-pair-iff)
thus ?thesis using ‹fst p 6= 0 › ‹fst q 6= 0 › by (rule a)

qed
qed
with assms(3) dg B-sup B-sub ps0-sub uid gb
have ∗: (ic, q-in-bs, p, q) ∈ set ps0 =⇒ fst p 6= 0 =⇒ fst q 6= 0 =⇒

(q-in-bs =⇒ q ∈ set gs ∪ set bs) =⇒ crit-pair-cbelow-on d m (fst ‘ B)
(fst p) (fst q)

for ic q-in-bs p q using b unfolding ps1-def by (rule apply-ncrit-connectible)

show crit-pair-cbelow-on d m (fst ‘ B) (fst h) (fst g)
proof (cases h = g)

case True
from g-in B-sup have g ∈ B ..
hence fst g ∈ fst ‘ B by simp
hence fst g ∈ dgrad-p-set d m using B-sub ..
with dg show ?thesis unfolding True by (rule crit-pair-cbelow-same)

next
case False
with assms(1) h-in g-in show ?thesis
proof (rule np-specE)

fix g-in-bs

242

assume (g-in-bs, h, g) ∈ set (np gs bs hs data)
also have ... = snd ‘ set ps0 by (simp add: ps0-def)
finally obtain ic where (ic, g-in-bs, h, g) ∈ set ps0 by fastforce
moreover note ‹fst h 6= 0 › ‹fst g 6= 0 ›
moreover from assms(1) have g ∈ set gs ∪ set bs if g-in-bs
proof (rule np-specD4)

from ‹(g-in-bs, h, g) ∈ set (np gs bs hs data)› that show (True, h, g) ∈ set
(np gs bs hs data)

by simp
qed
ultimately show ?thesis by (rule ∗)

next
fix h-in-bs
assume (h-in-bs, g, h) ∈ set (np gs bs hs data)
also have ... = snd ‘ set ps0 by (simp add: ps0-def)
finally obtain ic where (ic, h-in-bs, g, h) ∈ set ps0 by fastforce
moreover note ‹fst g 6= 0 › ‹fst h 6= 0 ›
moreover from assms(1) have h ∈ set gs ∪ set bs if h-in-bs
proof (rule np-specD4)

from ‹(h-in-bs, g, h) ∈ set (np gs bs hs data)› that show (True, g, h) ∈ set
(np gs bs hs data)

by simp
qed
ultimately have crit-pair-cbelow-on d m (fst ‘ B) (fst g) (fst h) by (rule ∗)
thus ?thesis by (rule crit-pair-cbelow-sym)

qed
qed

next
fix gs bs :: (′t, ′b, ′c) pdata list and ps hs and data::nat × ′d and B and d:: ′a
⇒ nat and m h g

define ps1 where ps1 = apply-ncrit ncrit data gs bs hs (apply-icrit icrit data gs
bs hs (np gs bs hs data))

assume (h, g) ∈ set ps −p set (add-pairs gs bs ps hs data)
hence (h, g) ∈ set ps and (h, g) /∈p set (add-pairs gs bs ps hs data) by simp-all
from this(2) have (h, g) /∈ set (add-pairs gs bs ps hs data) by (simp add:

in-pair-iff)
assume dg: dickson-grading d and B-sup: set gs ∪ set bs ∪ set hs ⊆ B and

B-sub: fst ‘ B ⊆ dgrad-p-set d m
and ps-sub: set ps ⊆ set bs × (set gs ∪ set bs)
and (set gs ∪ set bs) ∩ set hs = {} — unused
and uid: unique-idx (gs @ bs @ hs) data and gb: is-Groebner-basis (fst ‘ set gs)
and h 6= g and fst h 6= 0 and fst g 6= 0

assume ∗:
∧

a b. (a, b) ∈p set (add-pairs gs bs ps hs data) =⇒
(a, b) ∈p set hs × (set gs ∪ set bs ∪ set hs) =⇒
fst a 6= 0 =⇒ fst b 6= 0 =⇒ crit-pair-cbelow-on d m (fst ‘ B) (fst a)

(fst b)

have snd ‘ set ps1 ⊆ snd ‘ snd ‘ set (apply-icrit icrit data gs bs hs (np gs bs hs
data))

243

unfolding ps1-def by (rule apply-ncrit-subset ′)
also have ... = snd ‘ set (np gs bs hs data) by simp
also from assms(1) have ... ⊆ set hs × (set gs ∪ set bs ∪ set hs) by (rule

np-specD1)
finally have ps1-sub: snd ‘ set ps1 ⊆ set hs × (set gs ∪ set bs ∪ set hs) .

from ‹(h, g) ∈ set ps› ps-sub have h-in: h ∈ set gs ∪ set bs and g-in: g ∈ set
gs ∪ set bs

by fastforce+
with B-sup have h ∈ B and g ∈ B by auto
with assms(4) dg - B-sub - - show crit-pair-cbelow-on d m (fst ‘ B) (fst h) (fst

g)
using ‹fst h 6= 0 › ‹fst g 6= 0 › ‹(h, g) ∈ set ps›

proof (rule apply-ocrit-connectible)
from B-sup show set hs ⊆ B by simp

next
from ps1-sub h-in g-in
have set (h # g # hs @ map (fst ◦ snd) ps1 @ map (snd ◦ snd) ps1) ⊆ set

(gs @ bs @ hs)
by fastforce

with uid show unique-idx (h # g # hs @ map (fst ◦ snd) ps1 @ map (snd ◦
snd) ps1) data

by (rule unique-idx-subset)
next

fix p q
assume (p, q) ∈ snd ‘ set ps1
hence pq-in: (p, q) ∈ set hs × (set gs ∪ set bs ∪ set hs) using ps1-sub ..
hence p-in: p ∈ set hs and q-in: q ∈ set gs ∪ set bs ∪ set hs by simp-all
assume fst p 6= 0 and fst q 6= 0
from ‹(p, q) ∈ snd ‘ set ps1 › obtain ic where (ic, p, q) ∈ set ps1 by fastforce
show crit-pair-cbelow-on d m (fst ‘ B) (fst p) (fst q)
proof (cases ic)

case True
hence ic = True by simp
from B-sup have B-sup ′: fst ‘ (set gs ∪ set bs ∪ set hs) ⊆ fst ‘ B by (rule

image-mono)
note assms(2) dg

moreover from B-sup ′ B-sub have fst ‘ (set gs ∪ set bs ∪ set hs) ⊆ dgrad-p-set
d m

by (rule subset-trans)
moreover note uid gb p-in q-in ‹fst p 6= 0 › ‹fst q 6= 0 ›
moreover from ‹(ic, p, q) ∈ set ps1 › obtain q-in-bs
where (True, q-in-bs, p, q) ∈ set (apply-icrit icrit data gs bs hs (np gs bs hs

data))
unfolding ps1-def ‹ic = True› by (rule apply-ncrit-subset)

ultimately have crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs ∪ set hs)) (fst
p) (fst q)

by (rule fst-apply-icrit)
thus ?thesis using B-sup ′ by (rule crit-pair-cbelow-mono)

244

next
case False
with ‹(ic, p, q) ∈ set ps1 › have (False, p, q) ∈ set ps1 by simp
with assms(5) ps1-def have (p, q) ∈ set (add-pairs gs bs ps hs data)

by (simp add: set-add-pairs-iff)
hence (p, q) ∈p set (add-pairs gs bs ps hs data) by (simp add: in-pair-iff)
moreover from pq-in have (p, q) ∈p set hs × (set gs ∪ set bs ∪ set hs)

by (simp add: in-pair-iff)
ultimately show ?thesis using ‹fst p 6= 0 › ‹fst q 6= 0 › by (rule ∗)

qed
next

show (h, g) /∈ set (apply-ocrit ocrit data hs ps1 ps)
proof

assume (h, g) ∈ set (apply-ocrit ocrit data hs ps1 ps)
hence (h, g) ∈ set (add-pairs gs bs ps hs data)

by (simp add: add-pairs-def assms(5) Let-def ps1-def)
with ‹(h, g) /∈ set (add-pairs gs bs ps hs data)› show False ..

qed
qed

qed

end

abbreviation add-pairs-canon ≡
add-pairs (new-pairs-sorted canon-pair-order) component-crit chain-ncrit chain-ocrit

canon-pair-comb

lemma ap-spec-add-pairs-canon: ap-spec add-pairs-canon
using np-spec-new-pairs-sorted icrit-spec-component-crit ncrit-spec-chain-ncrit

ocrit-spec-chain-ocrit set-merge-wrt
by (rule ap-spec-add-pairs)

6.4 Suitable Instances of the completion Parameter
definition rcp-spec :: (′t, ′b::field, ′c, ′d) complT ⇒ bool

where rcp-spec rcp ←→
(∀ gs bs ps sps data.

0 /∈ fst ‘ set (fst (rcp gs bs ps sps data)) ∧
(∀ h b. h ∈ set (fst (rcp gs bs ps sps data)) −→ b ∈ set gs ∪ set bs −→

fst b 6= 0 −→
¬ lt (fst b) addst lt (fst h)) ∧

(∀ d. dickson-grading d −→
dgrad-p-set-le d (fst ‘ set (fst (rcp gs bs ps sps data))) (args-to-set

(gs, bs, sps))) ∧
component-of-term ‘ Keys (fst ‘ (set (fst (rcp gs bs ps sps data)))) ⊆

component-of-term ‘ Keys (args-to-set (gs, bs, sps)) ∧
(is-Groebner-basis (fst ‘ set gs) −→ unique-idx (gs @ bs) data −→
(fst ‘ set (fst (rcp gs bs ps sps data)) ⊆ pmdl (args-to-set (gs, bs, sps))

∧

245

(∀ (p, q)∈set sps. set sps ⊆ set bs × (set gs ∪ set bs) −→
(red (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set (fst (rcp gs bs ps sps data))))∗∗

(spoly (fst p) (fst q)) 0))))

Informally, rcp-spec rcp expresses that, for suitable gs, bs and sps, the value
of rcp gs bs ps sps

• is a list consisting exclusively of non-zero polynomials contained in
the module generated by set bs ∪ set gs, whose leading terms are not
divisible by the leading term of any non-zero b ∈ set bs, and

• contains sufficiently many new polynomials such that all S-polynomials
originating from sps can be reduced to 0 modulo the enlarged list of
polynomials.

lemma rcp-specI :
assumes

∧
gs bs ps sps data. 0 /∈ fst ‘ set (fst (rcp gs bs ps sps data))

assumes
∧

gs bs ps sps h b data. h ∈ set (fst (rcp gs bs ps sps data)) =⇒ b ∈ set
gs ∪ set bs =⇒ fst b 6= 0 =⇒

¬ lt (fst b) addst lt (fst h)
assumes

∧
gs bs ps sps d data. dickson-grading d =⇒

dgrad-p-set-le d (fst ‘ set (fst (rcp gs bs ps sps data))) (args-to-set
(gs, bs, sps))

assumes
∧

gs bs ps sps data. component-of-term ‘ Keys (fst ‘ (set (fst (rcp gs bs
ps sps data)))) ⊆

component-of-term ‘ Keys (args-to-set (gs, bs, sps))
assumes

∧
gs bs ps sps data. is-Groebner-basis (fst ‘ set gs) =⇒ unique-idx (gs

@ bs) data =⇒
(fst ‘ set (fst (rcp gs bs ps sps data)) ⊆ pmdl (args-to-set (gs, bs, sps))

∧
(∀ (p, q)∈set sps. set sps ⊆ set bs × (set gs ∪ set bs) −→
(red (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set (fst (rcp gs bs ps sps data))))∗∗

(spoly (fst p) (fst q)) 0))
shows rcp-spec rcp
unfolding rcp-spec-def using assms by auto

lemma rcp-specD1 :
assumes rcp-spec rcp
shows 0 /∈ fst ‘ set (fst (rcp gs bs ps sps data))
using assms unfolding rcp-spec-def by (elim allE conjE)

lemma rcp-specD2 :
assumes rcp-spec rcp

and h ∈ set (fst (rcp gs bs ps sps data)) and b ∈ set gs ∪ set bs and fst b 6= 0
shows ¬ lt (fst b) addst lt (fst h)
using assms unfolding rcp-spec-def by (elim allE conjE , blast)

lemma rcp-specD3 :
assumes rcp-spec rcp and dickson-grading d

246

shows dgrad-p-set-le d (fst ‘ set (fst (rcp gs bs ps sps data))) (args-to-set (gs, bs,
sps))

using assms unfolding rcp-spec-def by (elim allE conjE , blast)

lemma rcp-specD4 :
assumes rcp-spec rcp
shows component-of-term ‘ Keys (fst ‘ (set (fst (rcp gs bs ps sps data)))) ⊆

component-of-term ‘ Keys (args-to-set (gs, bs, sps))
using assms unfolding rcp-spec-def by (elim allE conjE)

lemma rcp-specD5 :
assumes rcp-spec rcp and is-Groebner-basis (fst ‘ set gs) and unique-idx (gs @

bs) data
shows fst ‘ set (fst (rcp gs bs ps sps data)) ⊆ pmdl (args-to-set (gs, bs, sps))
using assms unfolding rcp-spec-def by blast

lemma rcp-specD6 :
assumes rcp-spec rcp and is-Groebner-basis (fst ‘ set gs) and unique-idx (gs @

bs) data
and set sps ⊆ set bs × (set gs ∪ set bs)
and (p, q) ∈ set sps

shows (red (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set (fst (rcp gs bs ps sps data))))∗∗
(spoly (fst p) (fst q)) 0

using assms unfolding rcp-spec-def by blast

lemma compl-struct-rcp:
assumes rcp-spec rcp
shows compl-struct rcp

proof (rule compl-structI)
fix d:: ′a ⇒ nat and gs bs ps and sps::(′t, ′b, ′c) pdata-pair list and data::nat ×

′d
assume dickson-grading d and set sps ⊆ set ps
from assms this(1) have dgrad-p-set-le d (fst ‘ set (fst (rcp gs bs (ps −− sps)

sps data)))
(args-to-set (gs, bs, sps))

by (rule rcp-specD3)
also have dgrad-p-set-le d ... (args-to-set (gs, bs, ps))

by (rule dgrad-p-set-le-subset, rule args-to-set-subset3 , fact ‹set sps ⊆ set ps›)
finally show dgrad-p-set-le d (fst ‘ set (fst (rcp gs bs (ps −− sps) sps data)))

(args-to-set (gs, bs, ps)) .
next

fix gs bs ps and sps::(′t, ′b, ′c) pdata-pair list and data::nat × ′d
from assms show 0 /∈ fst ‘ set (fst (rcp gs bs (ps −− sps) sps data))

by (rule rcp-specD1)
next

fix gs bs ps sps h b data
assume h ∈ set (fst (rcp gs bs (ps −− sps) sps data))

and b ∈ set gs ∪ set bs and fst b 6= 0
with assms show ¬ lt (fst b) addst lt (fst h) by (rule rcp-specD2)

247

next
fix gs bs ps and sps::(′t, ′b, ′c) pdata-pair list and data::nat × ′d
assume set sps ⊆ set ps
from assms
have component-of-term ‘ Keys (fst ‘ set (fst (rcp gs bs (ps −− sps) sps data)))
⊆

component-of-term ‘ Keys (args-to-set (gs, bs, sps))
by (rule rcp-specD4)

also have ... ⊆ component-of-term ‘ Keys (args-to-set (gs, bs, ps))
by (rule image-mono, rule Keys-mono, rule args-to-set-subset3 , fact ‹set sps ⊆

set ps›)
finally show component-of-term ‘ Keys (fst ‘ set (fst (rcp gs bs (ps −− sps) sps

data))) ⊆
component-of-term ‘ Keys (args-to-set (gs, bs, ps)) .

qed

lemma compl-pmdl-rcp:
assumes rcp-spec rcp
shows compl-pmdl rcp

proof (rule compl-pmdlI)
fix gs bs :: (′t, ′b, ′c) pdata list and ps sps :: (′t, ′b, ′c) pdata-pair list and

data::nat × ′d
assume gb: is-Groebner-basis (fst ‘ set gs) and set sps ⊆ set ps

and un: unique-idx (gs @ bs) data
let ?res = fst (rcp gs bs (ps −− sps) sps data)
from assms gb un have fst ‘ set ?res ⊆ pmdl (args-to-set (gs, bs, sps))

by (rule rcp-specD5)
also have ... ⊆ pmdl (args-to-set (gs, bs, ps))

by (rule pmdl.span-mono, rule args-to-set-subset3 , fact ‹set sps ⊆ set ps›)
finally show fst ‘ set ?res ⊆ pmdl (args-to-set (gs, bs, ps)) .

qed

lemma compl-conn-rcp:
assumes rcp-spec rcp
shows compl-conn rcp

proof (rule compl-connI)
fix d:: ′a ⇒ nat and m gs bs ps sps p and q::(′t, ′b, ′c) pdata and data::nat × ′d
assume dg: dickson-grading d and gs-sub: fst ‘ set gs ⊆ dgrad-p-set d m

and gb: is-Groebner-basis (fst ‘ set gs) and bs-sub: fst ‘ set bs ⊆ dgrad-p-set d
m

and ps-sub: set ps ⊆ set bs × (set gs ∪ set bs) and set sps ⊆ set ps
and uid: unique-idx (gs @ bs) data
and (p, q) ∈ set sps and fst p 6= 0 and fst q 6= 0

from ‹set sps ⊆ set ps› ps-sub have sps-sub: set sps ⊆ set bs × (set gs ∪ set bs)
by (rule subset-trans)

let ?res = fst (rcp gs bs (ps −− sps) sps data)
have fst ‘ set ?res ⊆ dgrad-p-set d m

248

proof (rule dgrad-p-set-le-dgrad-p-set, rule rcp-specD3 , fact+)
show args-to-set (gs, bs, sps) ⊆ dgrad-p-set d m

by (simp add: args-to-set-subset-Times[OF sps-sub], rule, fact+)
qed
moreover have gs-bs-sub: fst ‘ (set gs ∪ set bs) ⊆ dgrad-p-set d m by (simp

add: image-Un, rule, fact+)
ultimately have res-sub: fst ‘ (set gs ∪ set bs) ∪ fst ‘ set ?res ⊆ dgrad-p-set d

m by simp

from ‹(p, q) ∈ set sps› ‹set sps ⊆ set ps› ps-sub
have fst p ∈ fst ‘ set bs and fst q ∈ fst ‘ (set gs ∪ set bs) by auto
with ‹fst ‘ set bs ⊆ dgrad-p-set d m› gs-bs-sub
have fst p ∈ dgrad-p-set d m and fst q ∈ dgrad-p-set d m by auto

with dg res-sub show crit-pair-cbelow-on d m (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set
?res) (fst p) (fst q)

using ‹fst p 6= 0 › ‹fst q 6= 0 ›
proof (rule spoly-red-zero-imp-crit-pair-cbelow-on)

from assms gb uid sps-sub ‹(p, q) ∈ set sps›
show (red (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set (fst (rcp gs bs (ps −− sps) sps

data))))∗∗
(spoly (fst p) (fst q)) 0

by (rule rcp-specD6)
qed

qed

end

6.5 Suitable Instances of the add-basis Parameter
definition add-basis-naive :: (′a, ′b, ′c, ′d) abT

where add-basis-naive gs bs ns data = bs @ ns

lemma ab-spec-add-basis-naive: ab-spec add-basis-naive
by (rule ab-specI , simp-all add: add-basis-naive-def)

definition add-basis-sorted :: (nat × ′d ⇒ (′a, ′b, ′c) pdata ⇒ (′a, ′b, ′c) pdata
⇒ bool) ⇒ (′a, ′b, ′c, ′d) abT

where add-basis-sorted rel gs bs ns data = merge-wrt (rel data) bs ns

lemma ab-spec-add-basis-sorted: ab-spec (add-basis-sorted rel)
by (rule ab-specI , simp-all add: add-basis-sorted-def set-merge-wrt)

definition card-keys :: (′a ⇒0
′b::zero) ⇒ nat

where card-keys = card ◦ keys

definition (in ordered-term) canon-basis-order :: ′d ⇒ (′t, ′b::zero, ′c) pdata ⇒
(′t, ′b, ′c) pdata ⇒ bool

where canon-basis-order data p q ←→

249

(let cp = card-keys (fst p); cq = card-keys (fst q) in
cp < cq ∨ (cp = cq ∧ lt (fst p) ≺t lt (fst q)))

abbreviation (in ordered-term) add-basis-canon ≡ add-basis-sorted canon-basis-order

6.6 Special Case: Scalar Polynomials
context gd-powerprod
begin

lemma remdups-map-component-of-term-punit:
remdups (map (λ-. ()) (punit.Keys-to-list (map fst bs))) =
(if (∀ b∈set bs. fst b = 0) then [] else [()])

proof (split if-split, intro conjI impI)
assume ∀ b∈set bs. fst b = 0
hence fst ‘ set bs ⊆ {0} by blast
hence Keys (fst ‘ set bs) = {} by (metis Keys-empty Keys-zero subset-singleton-iff)
hence punit.Keys-to-list (map fst bs) = []

by (simp add: set-empty[symmetric] punit.set-Keys-to-list del: set-empty)
thus remdups (map (λ-. ()) (punit.Keys-to-list (map fst bs))) = [] by simp

next
assume ¬ (∀ b∈set bs. fst b = 0)
hence ∃ b∈set bs. fst b 6= 0 by simp
then obtain b where b ∈ set bs and fst b 6= 0 ..
hence Keys (fst ‘ set bs) 6= {} by (meson Keys-not-empty ‹fst b 6= 0 › imageI)
hence set (punit.Keys-to-list (map fst bs)) 6= {} by (simp add: punit.set-Keys-to-list)
hence punit.Keys-to-list (map fst bs) 6= [] by simp
thus remdups (map (λ-. ()) (punit.Keys-to-list (map fst bs))) = [()]
by (metis (full-types) remdups-adj.cases old.unit.exhaust Nil-is-map-conv ‹punit.Keys-to-list

(map fst bs) 6= []› distinct-length-2-or-more distinct-remdups remdups-eq-nil-right-iff)
qed

lemma count-const-lt-components-punit [code]:
punit.count-const-lt-components hs =
(if (∃ h∈set hs. punit.const-lt-component (fst h) = Some ()) then 1 else 0)

proof (simp add: punit.count-const-lt-components-def cong del: image-cong-simp,
simp add: card-set [symmetric] cong del: image-cong-simp, rule)
assume ∃ h∈set hs. punit.const-lt-component (fst h) = Some ()
then obtain h where h ∈ set hs and punit.const-lt-component (fst h) = Some

() ..
from this(2) have (punit.const-lt-component ◦ fst) h = Some () by simp
with ‹h ∈ set hs› have Some () ∈ (punit.const-lt-component ◦ fst) ‘ set hs

by (metis rev-image-eqI)
hence {x. x = Some () ∧ x ∈ (punit.const-lt-component ◦ fst) ‘ set hs} = {Some

()} by auto
thus card {x. x = Some () ∧ x ∈ (punit.const-lt-component ◦ fst) ‘ set hs} =

Suc 0 by simp
qed

250

lemma count-rem-components-punit [code]:
punit.count-rem-components bs =
(if (∀ b∈set bs. fst b = 0) then 0
else

if (∃ b∈set bs. fst b 6= 0 ∧ punit.const-lt-component (fst b) = Some ()) then
0 else 1)
proof (cases ∀ b∈set bs. fst b = 0)

case True
thus ?thesis by (simp add: punit.count-rem-components-def remdups-map-component-of-term-punit)

next
case False
have eq: (∃ b∈set [b←bs . fst b 6= 0]. punit.const-lt-component (fst b) = Some ())

=
(∃ b∈set bs. fst b 6= 0 ∧ punit.const-lt-component (fst b) = Some ())

by (metis (mono-tags, lifting) filter-set member-filter)
show ?thesis

by (simp only: False punit.count-rem-components-def eq if-False
remdups-map-component-of-term-punit count-const-lt-components-punit punit-component-of-term,

simp)
qed

lemma full-gb-punit [code]:
punit.full-gb bs = (if (∀ b∈set bs. fst b = 0) then [] else [(1 , 0 , default)])
by (simp add: punit.full-gb-def remdups-map-component-of-term-punit)

abbreviation add-pairs-punit-canon ≡
punit.add-pairs (punit.new-pairs-sorted punit.canon-pair-order) punit.product-crit

punit.chain-ncrit
punit.chain-ocrit punit.canon-pair-comb

lemma ap-spec-add-pairs-punit-canon: punit.ap-spec add-pairs-punit-canon
using punit.np-spec-new-pairs-sorted punit.icrit-spec-product-crit punit.ncrit-spec-chain-ncrit

punit.ocrit-spec-chain-ocrit set-merge-wrt
by (rule punit.ap-spec-add-pairs)

end

end

7 Buchberger’s Algorithm
theory Buchberger

imports Algorithm-Schema
begin

context gd-term
begin

251

7.1 Reduction
definition trdsp::(′t ⇒0

′b) list ⇒ (′t, ′b, ′c) pdata-pair ⇒ (′t ⇒0
′b::field)

where trdsp bs p ≡ trd bs (spoly (fst (fst p)) (fst (snd p)))

lemma trdsp-alt: trdsp bs (p, q) = trd bs (spoly (fst p) (fst q))
by (simp add: trdsp-def)

lemma trdsp-in-pmdl: trdsp bs (p, q) ∈ pmdl (insert (fst p) (insert (fst q) (set
bs)))

unfolding trdsp-alt
proof (rule pmdl-closed-trd)

have spoly (fst p) (fst q) ∈ pmdl {fst p, fst q}
proof (rule pmdl-closed-spoly)

show fst p ∈ pmdl {fst p, fst q} by (rule pmdl.span-base, simp)
next

show fst q ∈ pmdl {fst p, fst q} by (rule pmdl.span-base, simp)
qed
also have ... ⊆ pmdl (insert (fst p) (insert (fst q) (set bs)))

by (rule pmdl.span-mono, simp)
finally show spoly (fst p) (fst q) ∈ pmdl (insert (fst p) (insert (fst q) (set bs)))

.
next

have set bs ⊆ insert (fst p) (insert (fst q) (set bs)) by blast
also have ... ⊆ pmdl (insert (fst p) (insert (fst q) (set bs)))

by (fact pmdl.span-superset)
finally show set bs ⊆ pmdl (insert (fst p) (insert (fst q) (set bs))) .

qed

lemma dgrad-p-set-le-trdsp:
assumes dickson-grading d
shows dgrad-p-set-le d {trdsp bs (p, q)} (insert (fst p) (insert (fst q) (set bs)))

proof −
let ?h = trdsp bs (p, q)
have (red (set bs))∗∗ (spoly (fst p) (fst q)) ?h unfolding trdsp-alt by (rule

trd-red-rtrancl)
with assms have dgrad-p-set-le d {?h} (insert (spoly (fst p) (fst q)) (set bs))

by (rule dgrad-p-set-le-red-rtrancl)
also have dgrad-p-set-le d ... ({fst p, fst q} ∪ set bs)
proof (rule dgrad-p-set-leI-insert)
show dgrad-p-set-le d (set bs) ({fst p, fst q} ∪ set bs) by (rule dgrad-p-set-le-subset,

blast)
next

from assms have dgrad-p-set-le d {spoly (fst p) (fst q)} {fst p, fst q}
by (rule dgrad-p-set-le-spoly)

also have dgrad-p-set-le d ... ({fst p, fst q} ∪ set bs)
by (rule dgrad-p-set-le-subset, blast)

finally show dgrad-p-set-le d {spoly (fst p) (fst q)} ({fst p, fst q} ∪ set bs) .
qed
finally show ?thesis by simp

252

qed

lemma components-trdsp-subset:
component-of-term ‘ keys (trdsp bs (p, q)) ⊆ component-of-term ‘ Keys (insert

(fst p) (insert (fst q) (set bs)))
proof −

let ?h = trdsp bs (p, q)
have (red (set bs))∗∗ (spoly (fst p) (fst q)) ?h unfolding trdsp-alt by (rule

trd-red-rtrancl)
hence component-of-term ‘ keys ?h ⊆

component-of-term ‘ keys (spoly (fst p) (fst q)) ∪ component-of-term ‘
Keys (set bs)

by (rule components-red-rtrancl-subset)
also have ... ⊆ component-of-term ‘ Keys {fst p, fst q} ∪ component-of-term ‘

Keys (set bs)
using components-spoly-subset by force

also have ... = component-of-term ‘ Keys (insert (fst p) (insert (fst q) (set bs)))
by (simp add: Keys-insert image-Un Un-assoc)

finally show ?thesis .
qed

definition gb-red-aux :: (′t, ′b::field, ′c) pdata list ⇒ (′t, ′b, ′c) pdata-pair list ⇒
(′t ⇒0

′b) list
where gb-red-aux bs ps =

(let bs ′ = map fst bs in
filter (λh. h 6= 0) (map (trdsp bs ′) ps)

)

Actually, gb-red-aux is only called on singleton lists.
lemma set-gb-red-aux: set (gb-red-aux bs ps) = (trdsp (map fst bs)) ‘ set ps − {0}

by (simp add: gb-red-aux-def , blast)

lemma in-set-gb-red-auxI :
assumes (p, q) ∈ set ps and h = trdsp (map fst bs) (p, q) and h 6= 0
shows h ∈ set (gb-red-aux bs ps)
using assms(1 , 3) unfolding set-gb-red-aux assms(2) by force

lemma in-set-gb-red-auxE :
assumes h ∈ set (gb-red-aux bs ps)
obtains p q where (p, q) ∈ set ps and h = trdsp (map fst bs) (p, q)
using assms unfolding set-gb-red-aux by force

lemma gb-red-aux-not-zero: 0 /∈ set (gb-red-aux bs ps)
by (simp add: set-gb-red-aux)

lemma gb-red-aux-irredudible:
assumes h ∈ set (gb-red-aux bs ps) and b ∈ set bs and fst b 6= 0
shows ¬ lt (fst b) addst lt h

proof

253

assume lt (fst b) addst (lt h)
from assms(1) obtain p q :: (′t, ′b, ′c) pdata where h: h = trdsp (map fst bs)

(p, q)
by (rule in-set-gb-red-auxE)

have ¬ is-red (set (map fst bs)) h unfolding h trdsp-def by (rule trd-irred)
moreover have is-red (set (map fst bs)) h
proof (rule is-red-addsI)

from assms(2) show fst b ∈ set (map fst bs) by (simp)
next

from assms(1) have h 6= 0 by (simp add: set-gb-red-aux)
thus lt h ∈ keys h by (rule lt-in-keys)

qed fact+
ultimately show False ..

qed

lemma gb-red-aux-dgrad-p-set-le:
assumes dickson-grading d
shows dgrad-p-set-le d (set (gb-red-aux bs ps)) (args-to-set ([], bs, ps))

proof (rule dgrad-p-set-leI)
fix h
assume h ∈ set (gb-red-aux bs ps)
then obtain p q where (p, q) ∈ set ps and h: h = trdsp (map fst bs) (p, q)

by (rule in-set-gb-red-auxE)
from assms have dgrad-p-set-le d {h} (insert (fst p) (insert (fst q) (set (map fst

bs))))
unfolding h by (rule dgrad-p-set-le-trdsp)

also have dgrad-p-set-le d ... (args-to-set ([], bs, ps))
proof (rule dgrad-p-set-le-subset, intro insert-subsetI)

from ‹(p, q) ∈ set ps› have fst p ∈ fst ‘ fst ‘ set ps by force
thus fst p ∈ args-to-set ([], bs, ps) by (auto simp add: args-to-set-alt)

next
from ‹(p, q) ∈ set ps› have fst q ∈ fst ‘ snd ‘ set ps by force
thus fst q ∈ args-to-set ([], bs, ps) by (auto simp add: args-to-set-alt)

next
show set (map fst bs) ⊆ args-to-set ([], bs, ps) by (auto simp add: args-to-set-alt)

qed
finally show dgrad-p-set-le d {h} (args-to-set ([], bs, ps)) .

qed

lemma components-gb-red-aux-subset:
component-of-term ‘ Keys (set (gb-red-aux bs ps)) ⊆ component-of-term ‘ Keys

(args-to-set ([], bs, ps))
proof

fix k
assume k ∈ component-of-term ‘ Keys (set (gb-red-aux bs ps))
then obtain v where v ∈ Keys (set (gb-red-aux bs ps)) and k: k = compo-

nent-of-term v ..
from this(1) obtain h where h ∈ set (gb-red-aux bs ps) and v ∈ keys h by

(rule in-KeysE)

254

from this(1) obtain p q where (p, q) ∈ set ps and h: h = trdsp (map fst bs)
(p, q)

by (rule in-set-gb-red-auxE)
from ‹v ∈ keys h› have k ∈ component-of-term ‘ keys h by (simp add: k)
have component-of-term ‘ keys h ⊆ component-of-term ‘ Keys (insert (fst p)

(insert (fst q) (set (map fst bs))))
unfolding h by (rule components-trdsp-subset)

also have ... ⊆ component-of-term ‘ Keys (args-to-set ([], bs, ps))
proof (rule image-mono, rule Keys-mono, intro insert-subsetI)

from ‹(p, q) ∈ set ps› have fst p ∈ fst ‘ fst ‘ set ps by force
thus fst p ∈ args-to-set ([], bs, ps) by (auto simp add: args-to-set-alt)

next
from ‹(p, q) ∈ set ps› have fst q ∈ fst ‘ snd ‘ set ps by force
thus fst q ∈ args-to-set ([], bs, ps) by (auto simp add: args-to-set-alt)

next
show set (map fst bs) ⊆ args-to-set ([], bs, ps) by (auto simp add: args-to-set-alt)

qed
finally have component-of-term ‘ keys h ⊆ component-of-term ‘ Keys (args-to-set

([], bs, ps)) .
with ‹k ∈ component-of-term ‘ keys h› show k ∈ component-of-term ‘ Keys

(args-to-set ([], bs, ps)) ..
qed

lemma pmdl-gb-red-aux: set (gb-red-aux bs ps) ⊆ pmdl (args-to-set ([], bs, ps))
proof

fix h
assume h ∈ set (gb-red-aux bs ps)
then obtain p q where (p, q) ∈ set ps and h: h = trdsp (map fst bs) (p, q)

by (rule in-set-gb-red-auxE)
have h ∈ pmdl (insert (fst p) (insert (fst q) (set (map fst bs)))) unfolding h

by (fact trdsp-in-pmdl)
also have ... ⊆ pmdl (args-to-set ([], bs, ps))
proof (rule pmdl.span-mono, intro insert-subsetI)

from ‹(p, q) ∈ set ps› have fst p ∈ fst ‘ fst ‘ set ps by force
thus fst p ∈ args-to-set ([], bs, ps) by (auto simp add: args-to-set-alt)

next
from ‹(p, q) ∈ set ps› have fst q ∈ fst ‘ snd ‘ set ps by force
thus fst q ∈ args-to-set ([], bs, ps) by (auto simp add: args-to-set-alt)

next
show set (map fst bs) ⊆ args-to-set ([], bs, ps) by (auto simp add: args-to-set-alt)

qed
finally show h ∈ pmdl (args-to-set ([], bs, ps)) .

qed

lemma gb-red-aux-spoly-reducible:
assumes (p, q) ∈ set ps
shows (red (fst ‘ set bs ∪ set (gb-red-aux bs ps)))∗∗ (spoly (fst p) (fst q)) 0

proof −
define h where h = trdsp (map fst bs) (p, q)

255

from trd-red-rtrancl[of map fst bs spoly (fst p) (fst q)]
have (red (set (map fst bs)))∗∗ (spoly (fst p) (fst q)) h

by (simp only: h-def trdsp-alt)
hence (red (fst ‘ set bs ∪ set (gb-red-aux bs ps)))∗∗ (spoly (fst p) (fst q)) h
proof (rule red-rtrancl-subset)

show set (map fst bs) ⊆ fst ‘ set bs ∪ set (gb-red-aux bs ps) by simp
qed
moreover have (red (fst ‘ set bs ∪ set (gb-red-aux bs ps)))∗∗ h 0
proof (cases h = 0)

case True
show ?thesis unfolding True ..

next
case False
hence red {h} h 0 by (rule red-self)
hence red (fst ‘ set bs ∪ set (gb-red-aux bs ps)) h 0
proof (rule red-subset)
from assms h-def False have h ∈ set (gb-red-aux bs ps) by (rule in-set-gb-red-auxI)

thus {h} ⊆ fst ‘ set bs ∪ set (gb-red-aux bs ps) by simp
qed
thus ?thesis ..

qed
ultimately show ?thesis by simp

qed

definition gb-red :: (′t, ′b::field, ′c::default, ′d) complT
where gb-red gs bs ps sps data = (map (λh. (h, default)) (gb-red-aux (gs @ bs)

sps), snd data)

lemma fst-set-fst-gb-red: fst ‘ set (fst (gb-red gs bs ps sps data)) = set (gb-red-aux
(gs @ bs) sps)

by (simp add: gb-red-def , force)

lemma rcp-spec-gb-red: rcp-spec gb-red
proof (rule rcp-specI)

fix gs bs::(′t, ′b, ′c) pdata list and ps sps and data::nat × ′d
from gb-red-aux-not-zero show 0 /∈ fst ‘ set (fst (gb-red gs bs ps sps data))

unfolding fst-set-fst-gb-red .
next

fix gs bs::(′t, ′b, ′c) pdata list and ps sps h b and data::nat × ′d
assume h ∈ set (fst (gb-red gs bs ps sps data)) and b ∈ set gs ∪ set bs
from this(1) have fst h ∈ fst ‘ set (fst (gb-red gs bs ps sps data)) by simp
hence fst h ∈ set (gb-red-aux (gs @ bs) sps) by (simp only: fst-set-fst-gb-red)
moreover from ‹b ∈ set gs ∪ set bs› have b ∈ set (gs @ bs) by simp
moreover assume fst b 6= 0
ultimately show ¬ lt (fst b) addst lt (fst h) by (rule gb-red-aux-irredudible)

next
fix gs bs::(′t, ′b, ′c) pdata list and ps sps and d:: ′a ⇒ nat and data::nat × ′d
assume dickson-grading d
hence dgrad-p-set-le d (set (gb-red-aux (gs @ bs) sps)) (args-to-set ([], gs @ bs,

256

sps))
by (rule gb-red-aux-dgrad-p-set-le)

also have ... = args-to-set (gs, bs, sps) by (simp add: args-to-set-alt image-Un)
finally show dgrad-p-set-le d (fst ‘ set (fst (gb-red gs bs ps sps data))) (args-to-set

(gs, bs, sps))
by (simp only: fst-set-fst-gb-red)

next
fix gs bs::(′t, ′b, ′c) pdata list and ps sps and data::nat × ′d
have component-of-term ‘ Keys (set (gb-red-aux (gs @ bs) sps)) ⊆

component-of-term ‘ Keys (args-to-set ([], gs @ bs, sps))
by (rule components-gb-red-aux-subset)

also have ... = component-of-term ‘ Keys (args-to-set (gs, bs, sps))
by (simp add: args-to-set-alt image-Un)

finally show component-of-term ‘ Keys (fst ‘ set (fst (gb-red gs bs ps sps data)))
⊆

component-of-term ‘ Keys (args-to-set (gs, bs, sps)) by (simp only:
fst-set-fst-gb-red)
next

fix gs bs::(′t, ′b, ′c) pdata list and ps sps and data::nat × ′d
have set (gb-red-aux (gs @ bs) sps) ⊆ pmdl (args-to-set ([], gs @ bs, sps))

by (fact pmdl-gb-red-aux)
also have ... = pmdl (args-to-set (gs, bs, sps)) by (simp add: args-to-set-alt

image-Un)
finally have fst ‘ set (fst (gb-red gs bs ps sps data)) ⊆ pmdl (args-to-set (gs, bs,

sps))
by (simp only: fst-set-fst-gb-red)

moreover {
fix p q :: (′t, ′b, ′c) pdata
assume (p, q) ∈ set sps
hence (red (fst ‘ set (gs @ bs) ∪ set (gb-red-aux (gs @ bs) sps)))∗∗ (spoly (fst

p) (fst q)) 0
by (rule gb-red-aux-spoly-reducible)

}
ultimately show

fst ‘ set (fst (gb-red gs bs ps sps data)) ⊆ pmdl (args-to-set (gs, bs, sps)) ∧
(∀ (p, q)∈set sps.

set sps ⊆ set bs × (set gs ∪ set bs) −→
(red (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set (fst (gb-red gs bs ps sps data))))∗∗

(spoly (fst p) (fst q)) 0)
by (auto simp add: image-Un fst-set-fst-gb-red)

qed

lemmas compl-struct-gb-red = compl-struct-rcp[OF rcp-spec-gb-red]
lemmas compl-pmdl-gb-red = compl-pmdl-rcp[OF rcp-spec-gb-red]
lemmas compl-conn-gb-red = compl-conn-rcp[OF rcp-spec-gb-red]

7.2 Pair Selection
primrec gb-sel :: (′t, ′b::zero, ′c, ′d) selT where

257

gb-sel gs bs [] data = []|
gb-sel gs bs (p # ps) data = [p]

lemma sel-spec-gb-sel: sel-spec gb-sel
proof (rule sel-specI)

fix gs bs :: (′t, ′b, ′c) pdata list and ps::(′t, ′b, ′c) pdata-pair list and data::nat
× ′d

assume ps 6= []
then obtain p ps ′ where ps: ps = p # ps ′ by (meson list.exhaust)
show gb-sel gs bs ps data 6= [] ∧ set (gb-sel gs bs ps data) ⊆ set ps by (simp add:

ps)
qed

7.3 Buchberger’s Algorithm
lemma struct-spec-gb: struct-spec gb-sel add-pairs-canon add-basis-canon gb-red
using sel-spec-gb-sel ap-spec-add-pairs-canon ab-spec-add-basis-sorted compl-struct-gb-red
by (rule struct-specI)

definition gb-aux :: (′t, ′b, ′c) pdata list ⇒ nat × nat × ′d ⇒ (′t, ′b, ′c) pdata
list ⇒

(′t, ′b, ′c) pdata-pair list ⇒ (′t, ′b::field, ′c::default) pdata list
where gb-aux = gb-schema-aux gb-sel add-pairs-canon add-basis-canon gb-red

lemmas gb-aux-simps [code] = gb-schema-aux-simps[OF struct-spec-gb, folded gb-aux-def]

definition gb :: (′t, ′b, ′c) pdata ′ list ⇒ ′d ⇒ (′t, ′b::field, ′c::default) pdata ′ list
where gb = gb-schema-direct gb-sel add-pairs-canon add-basis-canon gb-red

lemmas gb-simps [code] = gb-schema-direct-def [of gb-sel add-pairs-canon add-basis-canon
gb-red, folded gb-def gb-aux-def]

lemmas gb-isGB = gb-schema-direct-isGB[OF struct-spec-gb compl-conn-gb-red,
folded gb-def]

lemmas gb-pmdl = gb-schema-direct-pmdl[OF struct-spec-gb compl-pmdl-gb-red,
folded gb-def]

7.3.1 Special Case: punit
lemma (in gd-term) struct-spec-gb-punit: punit.struct-spec punit.gb-sel add-pairs-punit-canon
punit.add-basis-canon punit.gb-red

using punit.sel-spec-gb-sel ap-spec-add-pairs-punit-canon ab-spec-add-basis-sorted
punit.compl-struct-gb-red

by (rule punit.struct-specI)

definition gb-aux-punit :: (′a, ′b, ′c) pdata list ⇒ nat × nat × ′d ⇒ (′a, ′b, ′c)
pdata list ⇒

(′a, ′b, ′c) pdata-pair list ⇒ (′a, ′b::field, ′c::default) pdata list

258

where gb-aux-punit = punit.gb-schema-aux punit.gb-sel add-pairs-punit-canon
punit.add-basis-canon punit.gb-red

lemmas gb-aux-punit-simps [code] = punit.gb-schema-aux-simps[OF struct-spec-gb-punit,
folded gb-aux-punit-def]

definition gb-punit :: (′a, ′b, ′c) pdata ′ list ⇒ ′d ⇒ (′a, ′b::field, ′c::default) pdata ′

list
where gb-punit = punit.gb-schema-direct punit.gb-sel add-pairs-punit-canon punit.add-basis-canon

punit.gb-red

lemmas gb-punit-simps [code] = punit.gb-schema-direct-def [of punit.gb-sel add-pairs-punit-canon
punit.add-basis-canon punit.gb-red, folded gb-punit-def

gb-aux-punit-def]

lemmas gb-punit-isGB = punit.gb-schema-direct-isGB[OF struct-spec-gb-punit punit.compl-conn-gb-red,
folded gb-punit-def]

lemmas gb-punit-pmdl = punit.gb-schema-direct-pmdl[OF struct-spec-gb-punit punit.compl-pmdl-gb-red,
folded gb-punit-def]

end

end

8 Benchmark Problems for Computing Gröbner
Bases

theory Benchmarks
imports Polynomials.MPoly-Type-Class-OAlist

begin

This theory defines various well-known benchmark problems for comput-
ing Gröbner bases. The actual tests of the different algorithms on these
problems are contained in the theories whose names end with -Examples.

8.1 Cyclic
definition cycl-pp :: nat ⇒ nat ⇒ nat ⇒ (nat, nat) pp

where cycl-pp n d i = sparse0 (map (λk. (modulo (k + i) n, 1)) [0 ..<d])

definition cyclic :: (nat, nat) pp nat-term-order ⇒ nat ⇒ ((nat, nat) pp ⇒0
′a::{zero,one,uminus}) list

where cyclic to n =
(let xs = [0 ..<n] in
(map (λd. distr0 to (map (λi. (cycl-pp n d i, 1)) xs)) [1 ..<n]) @
[distr0 to [(cycl-pp n n 0 , 1), (0 , −1)]]

)

259

cyclic n is a system of n polynomials in n indeterminates, with maximum
degree n.

8.2 Katsura
definition katsura-poly :: (nat, nat) pp nat-term-order ⇒ nat ⇒ nat ⇒ ((nat,
nat) pp ⇒0

′a::comm-ring-1)
where katsura-poly to n i =

change-ord to ((
∑

j::int=−int n..<n + 1 . if abs (i − j) ≤ n then V 0

(nat (abs j)) ∗ V 0 (nat (abs (i − j))) else 0) − V 0 i)

definition katsura :: (nat, nat) pp nat-term-order ⇒ nat ⇒ ((nat, nat) pp ⇒0
′a::comm-ring-1) list

where katsura to n =
(let xs = [0 ..<n] in

(distr0 to ((sparse0 [(0 , 1)], 1) # (map (λi. (sparse0 [(Suc i, 1)], 2))
xs) @ [(0 , −1)])) #

(map (katsura-poly to n) xs)
)

For (1 :: ′a) ≤ n, katsura n is a system of n + 1 polynomials in n + 1
indeterminates, with maximum degree 2.

8.3 Eco
definition eco-poly :: (nat, nat) pp nat-term-order ⇒ nat ⇒ nat ⇒ ((nat, nat)
pp ⇒0

′a::comm-ring-1)
where eco-poly to m i =

distr0 to ((sparse0 [(i, 1), (m, 1)], 1) # map (λj. (sparse0 [(j, 1), (j +
i + 1 , 1), (m, 1)], 1)) [0 ..<m − i − 1])

definition eco :: (nat, nat) pp nat-term-order ⇒ nat ⇒ ((nat, nat) pp⇒0
′a::comm-ring-1)

list
where eco to n =

(let m = n − 1 in
(distr0 to ((map (λj. (sparse0 [(j, 1)], 1)) [0 ..<m]) @ [(0 , 1)])) #
(distr0 to [(sparse0 [(m−1 , 1), (m,1)], 1), (0 , − of-nat m)]) #
(rev (map (eco-poly to m) [0 ..<m−1]))

)

For (2 :: ′a) ≤ n, eco n is a system of n polynomials in n indeterminates, with
maximum degree 3.

8.4 Noon
definition noon-poly :: (nat, nat) pp nat-term-order ⇒ nat ⇒ nat ⇒ ((nat, nat)
pp ⇒0

′a::comm-ring-1)
where noon-poly to n i =

260

(let ten = of-nat 10 ; eleven = − of-nat 11 in
distr0 to ((map (λj. if j = i then (sparse0 [(i, 1)], eleven) else (sparse0

[(j, 2), (i, 1)], ten)) [0 ..<n]) @
[(0 , ten)]))

definition noon :: (nat, nat) pp nat-term-order ⇒ nat ⇒ ((nat, nat) pp ⇒0
′a::comm-ring-1) list

where noon to n = (noon-poly to n 1) # (noon-poly to n 0) # (map (noon-poly
to n) [2 ..<n])

For (2 :: ′a) ≤ n, noon n is a system of n polynomials in n indeterminates,
with maximum degree 3.
end

9 Code Equations Related to the Computation of
Gröbner Bases

theory Algorithm-Schema-Impl
imports Algorithm-Schema Benchmarks

begin

lemma card-keys-MP-oalist [code]: card-keys (MP-oalist xs) = length (fst (list-of-oalist-ntm
xs))
proof −

let ?rel = ko.lt (key-order-of-nat-term-order-inv (snd (list-of-oalist-ntm xs)))
have irreflp ?rel by (simp add: irreflp-def)
moreover have transp ?rel by (simp add: lt-of-nat-term-order-alt)
ultimately have ∗: distinct (map fst (fst (list-of-oalist-ntm xs))) using oa-ntm.list-of-oalist-sorted

by (rule distinct-sorted-wrt-irrefl)
have card-keys (MP-oalist xs) = length (map fst (fst (list-of-oalist-ntm xs)))
by (simp only: card-keys-def keys-MP-oalist image-set o-def oa-ntm.sorted-domain-def [symmetric],

rule distinct-card, fact ∗)
also have ... = length (fst (list-of-oalist-ntm xs)) by simp
finally show ?thesis .

qed

end

theory Code-Target-Rat
imports Complex-Main HOL−Library.Code-Target-Numeral

begin

Mapping type rat to type "Rat.rat" in Isabelle/ML. Serialization for other
target languages will be provided in the future.
context includes integer .lifting begin

lift-definition rat-of-integer :: integer ⇒ rat is Rat.of-int .

261

lift-definition quotient-of ′ :: rat ⇒ integer × integer is quotient-of .

lemma [code]: Rat.of-int (int-of-integer x) = rat-of-integer x
by transfer simp

lemma [code-unfold]: quotient-of = (λx. map-prod int-of-integer int-of-integer (quotient-of ′

x))
by transfer simp

end

code-printing
type-constructor rat ⇀
(SML) Rat.rat |

constant plus :: rat ⇒ - ⇒ - ⇀
(SML) Rat.add |

constant minus :: rat ⇒ - ⇒ - ⇀
(SML) Rat.add ((-)) (Rat.neg ((-))) |

constant times :: rat ⇒ - ⇒ - ⇀
(SML) Rat.mult |

constant inverse :: rat ⇒ - ⇀
(SML) Rat.inv |

constant divide :: rat ⇒ - ⇒ - ⇀
(SML) Rat.mult ((-)) (Rat.inv ((-))) |

constant rat-of-integer :: integer ⇒ rat ⇀
(SML) Rat.of ′-int |

constant abs :: rat ⇒ - ⇀
(SML) Rat.abs |

constant 0 :: rat ⇀
(SML) !(Rat.make (0 , 1)) |

constant 1 :: rat ⇀
(SML) !(Rat.make (1 , 1)) |

constant uminus :: rat ⇒ rat ⇀
(SML) Rat.neg |

constant HOL.equal :: rat ⇒ - ⇀
(SML) !((- : Rat.rat) = -) |

constant quotient-of ′ ⇀
(SML) Rat.dest

end

262

10 Sample Computations with Buchberger’s Al-
gorithm

theory Buchberger-Examples
imports Buchberger Algorithm-Schema-Impl Code-Target-Rat

begin

lemma (in gd-term) compute-trd-aux [code]:
trd-aux fs p r =
(if is-zero p then

r
else

case find-adds fs (lt p) of
None ⇒ trd-aux fs (tail p) (plus-monomial-less r (lc p) (lt p))
| Some f ⇒ trd-aux fs (tail p − monom-mult (lc p / lc f) (lp p − lp f) (tail

f)) r
)

by (simp only: trd-aux.simps[of fs p r] plus-monomial-less-def is-zero-def)

10.1 Scalar Polynomials
global-interpretation punit ′: gd-powerprod ord-pp-punit cmp-term ord-pp-strict-punit
cmp-term

rewrites punit.adds-term = (adds)
and punit.pp-of-term = (λx. x)
and punit.component-of-term = (λ-. ())
and punit.monom-mult = monom-mult-punit
and punit.mult-scalar = mult-scalar-punit
and punit ′.punit.min-term = min-term-punit
and punit ′.punit.lt = lt-punit cmp-term
and punit ′.punit.lc = lc-punit cmp-term
and punit ′.punit.tail = tail-punit cmp-term
and punit ′.punit.ord-p = ord-p-punit cmp-term
and punit ′.punit.ord-strict-p = ord-strict-p-punit cmp-term
for cmp-term :: (′a::nat, ′b::{nat,add-wellorder}) pp nat-term-order

defines find-adds-punit = punit ′.punit.find-adds
and trd-aux-punit = punit ′.punit.trd-aux
and trd-punit = punit ′.punit.trd
and spoly-punit = punit ′.punit.spoly
and count-const-lt-components-punit = punit ′.punit.count-const-lt-components
and count-rem-components-punit = punit ′.punit.count-rem-components
and const-lt-component-punit = punit ′.punit.const-lt-component
and full-gb-punit = punit ′.punit.full-gb
and add-pairs-single-sorted-punit = punit ′.punit.add-pairs-single-sorted
and add-pairs-punit = punit ′.punit.add-pairs
and canon-pair-order-aux-punit = punit ′.punit.canon-pair-order-aux
and canon-basis-order-punit = punit ′.punit.canon-basis-order
and new-pairs-sorted-punit = punit ′.punit.new-pairs-sorted

263

and product-crit-punit = punit ′.punit.product-crit
and chain-ncrit-punit = punit ′.punit.chain-ncrit
and chain-ocrit-punit = punit ′.punit.chain-ocrit
and apply-icrit-punit = punit ′.punit.apply-icrit
and apply-ncrit-punit = punit ′.punit.apply-ncrit
and apply-ocrit-punit = punit ′.punit.apply-ocrit
and trdsp-punit = punit ′.punit.trdsp
and gb-sel-punit = punit ′.punit.gb-sel
and gb-red-aux-punit = punit ′.punit.gb-red-aux
and gb-red-punit = punit ′.punit.gb-red
and gb-aux-punit = punit ′.punit.gb-aux-punit
and gb-punit = punit ′.punit.gb-punit — Faster, because incorporates product

criterion.
subgoal by (fact gd-powerprod-ord-pp-punit)
subgoal by (fact punit-adds-term)
subgoal by (simp add: id-def)
subgoal by (fact punit-component-of-term)
subgoal by (simp only: monom-mult-punit-def)
subgoal by (simp only: mult-scalar-punit-def)
subgoal using min-term-punit-def by fastforce
subgoal by (simp only: lt-punit-def ord-pp-punit-alt)
subgoal by (simp only: lc-punit-def ord-pp-punit-alt)
subgoal by (simp only: tail-punit-def ord-pp-punit-alt)
subgoal by (simp only: ord-p-punit-def ord-pp-strict-punit-alt)
subgoal by (simp only: ord-strict-p-punit-def ord-pp-strict-punit-alt)
done

lemma compute-spoly-punit [code]:
spoly-punit to p q = (let t1 = lt-punit to p; t2 = lt-punit to q; l = lcs t1 t2 in

(monom-mult-punit (1 / lc-punit to p) (l − t1) p) − (monom-mult-punit
(1 / lc-punit to q) (l − t2) q))

by (simp add: punit ′.punit.spoly-def Let-def punit ′.punit.lc-def)

lemma compute-trd-punit [code]: trd-punit to fs p = trd-aux-punit to fs p (change-ord
to 0)

by (simp only: punit ′.punit.trd-def change-ord-def)

experiment begin interpretation trivariate0-rat .

lemma
lt-punit DRLEX (X2 ∗ Z ^ 3 + 3 ∗ X2 ∗ Y) = sparse0 [(0 , 2), (2 , 3)]
by eval

lemma
lc-punit DRLEX (X2 ∗ Z ^ 3 + 3 ∗ X2 ∗ Y) = 1
by eval

lemma
tail-punit DRLEX (X2 ∗ Z ^ 3 + 3 ∗ X2 ∗ Y) = 3 ∗ X2 ∗ Y

264

by eval

lemma
ord-strict-p-punit DRLEX (X2 ∗ Z ^ 4 − 2 ∗ Y ^ 3 ∗ Z2) (X2 ∗ Z ^ 7 + 2 ∗

Y ^ 3 ∗ Z2)
by eval

lemma
trd-punit DRLEX [Y 2 ∗ Z + 2 ∗ Y ∗ Z ^ 3] (X2 ∗ Z ^ 4 − 2 ∗ Y ^ 3 ∗ Z ^

3) =
X2 ∗ Z ^ 4 + Y ^ 4 ∗ Z

by eval

lemma
spoly-punit DRLEX (X2 ∗ Z ^ 4 − 2 ∗ Y ^ 3 ∗ Z2) (Y 2 ∗ Z + 2 ∗ Z ^ 3) =
−2 ∗ Y ^ 3 ∗ Z2 − (C 0 (1 / 2)) ∗ X2 ∗ Y 2 ∗ Z2

by eval

lemma
gb-punit DRLEX
[
(X2 ∗ Z ^ 4 − 2 ∗ Y ^ 3 ∗ Z2, ()),
(Y 2 ∗ Z + 2 ∗ Z ^ 3 , ())
] () =
[
(−2 ∗ Y ^ 3 ∗ Z2 − (C 0 (1 / 2)) ∗ X2 ∗ Y 2 ∗ Z2, ()),
(X2 ∗ Z ^ 4 − 2 ∗ Y ^ 3 ∗ Z2, ()),
(Y 2 ∗ Z + 2 ∗ Z ^ 3 , ()),
(− (C 0 (1 / 2)) ∗ X2 ∗ Y ^ 4 ∗ Z − 2 ∗ Y ^ 5 ∗ Z , ())
]

by eval

lemma
gb-punit DRLEX
[
(X2 ∗ Z2 − Y , ()),
(Y 2 ∗ Z − 1 , ())
] () =
[
(− (Y ^ 3) + X2 ∗ Z , ()),
(X2 ∗ Z2 − Y , ()),
(Y 2 ∗ Z − 1 , ())
]

by eval

lemma
gb-punit DRLEX
[
(X ^ 3 − X ∗ Y ∗ Z2, ()),

265

(Y 2 ∗ Z − 1 , ())
] () =
[
(− (X ^ 3 ∗ Y) + X ∗ Z , ()),
(X ^ 3 − X ∗ Y ∗ Z2, ()),
(Y 2 ∗ Z − 1 , ()),
(− (X ∗ Z ^ 3) + X ^ 5 , ())
]

by eval

lemma
gb-punit DRLEX
[
(X2 + Y 2 + Z2 − 1 , ()),
(X ∗ Y − Z − 1 , ()),
(Y 2 + X , ()),
(Z2 + X , ())
] () =
[
(1 , ())
]

by eval

end

value [code] length (gb-punit DRLEX (map (λp. (p, ())) ((katsura DRLEX 2)::(-
⇒0 rat) list)) ())

value [code] length (gb-punit DRLEX (map (λp. (p, ())) ((cyclic DRLEX 5)::(-
⇒0 rat) list)) ())

10.2 Vector Polynomials

We must define the following four constants outside the global interpretation,
since otherwise their types are too general.
definition splus-pprod :: (′a::nat, ′b::nat) pp ⇒ -

where splus-pprod = pprod.splus

definition monom-mult-pprod :: ′c::semiring-0 ⇒ (′a::nat, ′b::nat) pp ⇒ -
where monom-mult-pprod = pprod.monom-mult

definition mult-scalar-pprod :: ((′a::nat, ′b::nat) pp ⇒0
′c::semiring-0) ⇒ -

where mult-scalar-pprod = pprod.mult-scalar

definition adds-term-pprod :: ((′a::nat, ′b::nat) pp × -) ⇒ -
where adds-term-pprod = pprod.adds-term

global-interpretation pprod ′: gd-nat-term λx::(′a, ′b) pp × ′c. x λx. x cmp-term
rewrites pprod.pp-of-term = fst

266

and pprod.component-of-term = snd
and pprod.splus = splus-pprod
and pprod.monom-mult = monom-mult-pprod
and pprod.mult-scalar = mult-scalar-pprod
and pprod.adds-term = adds-term-pprod
for cmp-term :: ((′a::nat, ′b::nat) pp × ′c::{nat,the-min}) nat-term-order
defines shift-map-keys-pprod = pprod ′.shift-map-keys
and min-term-pprod = pprod ′.min-term
and lt-pprod = pprod ′.lt
and lc-pprod = pprod ′.lc
and tail-pprod = pprod ′.tail
and comp-opt-p-pprod = pprod ′.comp-opt-p
and ord-p-pprod = pprod ′.ord-p
and ord-strict-p-pprod = pprod ′.ord-strict-p
and find-adds-pprod = pprod ′.find-adds
and trd-aux-pprod= pprod ′.trd-aux
and trd-pprod = pprod ′.trd
and spoly-pprod = pprod ′.spoly
and count-const-lt-components-pprod = pprod ′.count-const-lt-components
and count-rem-components-pprod = pprod ′.count-rem-components
and const-lt-component-pprod = pprod ′.const-lt-component
and full-gb-pprod = pprod ′.full-gb
and keys-to-list-pprod = pprod ′.keys-to-list
and Keys-to-list-pprod = pprod ′.Keys-to-list
and add-pairs-single-sorted-pprod = pprod ′.add-pairs-single-sorted
and add-pairs-pprod = pprod ′.add-pairs
and canon-pair-order-aux-pprod = pprod ′.canon-pair-order-aux
and canon-basis-order-pprod = pprod ′.canon-basis-order
and new-pairs-sorted-pprod = pprod ′.new-pairs-sorted
and component-crit-pprod = pprod ′.component-crit
and chain-ncrit-pprod = pprod ′.chain-ncrit
and chain-ocrit-pprod = pprod ′.chain-ocrit
and apply-icrit-pprod = pprod ′.apply-icrit
and apply-ncrit-pprod = pprod ′.apply-ncrit
and apply-ocrit-pprod = pprod ′.apply-ocrit
and trdsp-pprod = pprod ′.trdsp
and gb-sel-pprod = pprod ′.gb-sel
and gb-red-aux-pprod = pprod ′.gb-red-aux
and gb-red-pprod = pprod ′.gb-red
and gb-aux-pprod = pprod ′.gb-aux
and gb-pprod = pprod ′.gb
subgoal by (fact gd-nat-term-id)
subgoal by (fact pprod-pp-of-term)
subgoal by (fact pprod-component-of-term)
subgoal by (simp only: splus-pprod-def)
subgoal by (simp only: monom-mult-pprod-def)
subgoal by (simp only: mult-scalar-pprod-def)
subgoal by (simp only: adds-term-pprod-def)
done

267

lemma compute-adds-term-pprod [code]:
adds-term-pprod u v = (snd u = snd v ∧ adds-pp-add-linorder (fst u) (fst v))
by (simp add: adds-term-pprod-def pprod.adds-term-def adds-pp-add-linorder-def)

lemma compute-splus-pprod [code]: splus-pprod t (s, i) = (t + s, i)
by (simp add: splus-pprod-def pprod.splus-def)

lemma compute-shift-map-keys-pprod [code abstract]:
list-of-oalist-ntm (shift-map-keys-pprod t f xs) = map-raw (λ(k, v). (splus-pprod

t k, f v)) (list-of-oalist-ntm xs)
by (simp add: pprod ′.list-of-oalist-shift-keys case-prod-beta ′)

lemma compute-trd-pprod [code]: trd-pprod to fs p = trd-aux-pprod to fs p (change-ord
to 0)

by (simp only: pprod ′.trd-def change-ord-def)

lemmas [code] = conversep-iff

definition Vec0 :: nat ⇒ ((′a, nat) pp ⇒0
′b) ⇒ ((′a::nat, nat) pp × nat) ⇒0

′b::semiring-1 where
Vec0 i p = mult-scalar-pprod p (Poly-Mapping.single (0 , i) 1)

experiment begin interpretation trivariate0-rat .

lemma
ord-p-pprod (POT DRLEX) (Vec0 1 (X2 ∗ Z) + Vec0 0 (2 ∗ Y ^ 3 ∗ Z2)) (Vec0

1 (X2 ∗ Z2 + 2 ∗ Y ^ 3 ∗ Z2))
by eval

lemma
tail-pprod (POT DRLEX) (Vec0 1 (X2 ∗ Z) + Vec0 0 (2 ∗ Y ^ 3 ∗ Z2)) = Vec0

0 (2 ∗ Y ^ 3 ∗ Z2)
by eval

lemma
lt-pprod (POT DRLEX) (Vec0 1 (X2 ∗ Z) + Vec0 0 (2 ∗ Y ^ 3 ∗ Z2)) = (sparse0

[(0 , 2), (2 , 1)], 1)
by eval

lemma
keys (Vec0 0 (X2 ∗ Z ^ 3) + Vec0 1 (2 ∗ Y ^ 3 ∗ Z2)) =
{(sparse0 [(0 , 2), (2 , 3)], 0), (sparse0 [(1 , 3), (2 , 2)], 1)}

by eval

lemma
keys (Vec0 0 (X2 ∗ Z ^ 3) + Vec0 2 (2 ∗ Y ^ 3 ∗ Z2)) =
{(sparse0 [(0 , 2), (2 , 3)], 0), (sparse0 [(1 , 3), (2 , 2)], 2)}

by eval

268

lemma
Vec0 1 (X2 ∗ Z ^ 7 + 2 ∗ Y ^ 3 ∗ Z2) + Vec0 3 (X2 ∗ Z ^ 4) + Vec0 1 (− 2
∗ Y ^ 3 ∗ Z2) =

Vec0 1 (X2 ∗ Z ^ 7) + Vec0 3 (X2 ∗ Z ^ 4)
by eval

lemma
lookup (Vec0 0 (X2 ∗ Z ^ 7) + Vec0 1 (2 ∗ Y ^ 3 ∗ Z2 + 2)) (sparse0 [(0 , 2),

(2 , 7)], 0) = 1
by eval

lemma
lookup (Vec0 0 (X2 ∗ Z ^ 7) + Vec0 1 (2 ∗ Y ^ 3 ∗ Z2 + 2)) (sparse0 [(0 , 2),

(2 , 7)], 1) = 0
by eval

lemma
Vec0 0 (0 ∗ X^2 ∗ Z^7) + Vec0 1 (0 ∗ Y^3∗Z2) = 0
by eval

lemma
monom-mult-pprod 3 (sparse0 [(1 , 2 ::nat)]) (Vec0 0 (X2 ∗ Z) + Vec0 1 (2 ∗ Y

^ 3 ∗ Z2)) =
Vec0 0 (3 ∗ Y 2 ∗ Z ∗ X2) + Vec0 1 (6 ∗ Y ^ 5 ∗ Z2)

by eval

lemma
trd-pprod DRLEX [Vec0 0 (Y 2 ∗ Z + 2 ∗ Y ∗ Z ^ 3)] (Vec0 0 (X2 ∗ Z ^ 4 −

2 ∗ Y ^ 3 ∗ Z ^ 3)) =
Vec0 0 (X2 ∗ Z ^ 4 + Y ^ 4 ∗ Z)

by eval

lemma
length (gb-pprod (POT DRLEX)
[
(Vec0 0 (X2 ∗ Z ^ 4 − 2 ∗ Y ^ 3 ∗ Z2), ()),
(Vec0 0 (Y 2 ∗ Z + 2 ∗ Z ^ 3), ())
] ()) = 4

by eval

end

end

269

11 Further Properties of Multivariate Polynomi-
als

theory More-MPoly-Type-Class
imports Polynomials.MPoly-Type-Class-Ordered General

begin

Some further general properties of (ordered) multivariate polynomials needed
for Gröbner bases. This theory is an extension of Polynomials.MPoly-Type-Class-Ordered.

11.1 Modules and Linear Hulls
context module
begin

lemma span-listE :
assumes p ∈ span (set bs)
obtains qs where length qs = length bs and p = sum-list (map2 (∗s) qs bs)

proof −
have finite (set bs) ..
from this assms obtain q where p: p = (

∑
b∈set bs. (q b) ∗s b) by (rule

span-finiteE)
let ?qs = map-dup q (λ-. 0) bs
show ?thesis
proof

show length ?qs = length bs by simp
next

let ?zs = zip (map q (remdups bs)) (remdups bs)
have ∗: distinct ?zs by (rule distinct-zipI2 , rule distinct-remdups)
have inj: inj-on (λb. (q b, b)) (set bs) by (rule, simp)
have p = (

∑
(q, b)←?zs. q ∗s b)

by (simp add: sum-list-distinct-conv-sum-set[OF ∗] set-zip-map1 p comm-monoid-add-class.sum.reindex[OF
inj])

also have ... = (
∑

(q, b)←(filter (λ(q, b). q 6= 0) ?zs). q ∗s b)
by (rule monoid-add-class.sum-list-map-filter [symmetric], auto)

also have ... = (
∑

(q, b)←(filter (λ(q, b). q 6= 0) (zip ?qs bs)). q ∗s b)
by (simp only: filter-zip-map-dup-const)

also have ... = (
∑

(q, b)←zip ?qs bs. q ∗s b)
by (rule monoid-add-class.sum-list-map-filter , auto)

finally show p = (
∑

(q, b)←zip ?qs bs. q ∗s b) .
qed

qed

lemma span-listI : sum-list (map2 (∗s) qs bs) ∈ span (set bs)
proof (induct qs arbitrary: bs)

case Nil
show ?case by (simp add: span-zero)

next
case step: (Cons q qs)

270

show ?case
proof (simp add: zip-Cons1 span-zero split: list.split, intro allI impI)

fix a as
have sum-list (map2 (∗s) qs as) ∈ span (insert a (set as)) (is ?x ∈ ?A)

by (rule, fact step, rule span-mono, auto)
moreover have a ∈ ?A by (rule span-base) simp
ultimately show q ∗s a + ?x ∈ ?A by (intro span-add span-scale)

qed
qed

end

lemma (in term-powerprod) monomial-1-in-pmdlI :
assumes (f ::- ⇒0

′b::field) ∈ pmdl F and keys f = {t}
shows monomial 1 t ∈ pmdl F

proof −
define c where c ≡ lookup f t
from assms(2) have f-eq: f = monomial c t unfolding c-def
by (metis (mono-tags, lifting) Diff-insert-absorb cancel-comm-monoid-add-class.add-cancel-right-right

plus-except insert-absorb insert-not-empty keys-eq-empty keys-except)
from assms(2) have c 6= 0

unfolding c-def by auto
hence monomial 1 t = monom-mult (1 / c) 0 f by (simp add: f-eq monom-mult-monomial

term-simps)
also from assms(1) have ... ∈ pmdl F by (rule pmdl-closed-monom-mult)
finally show ?thesis .

qed

11.2 Ordered Polynomials
context ordered-term
begin

11.2.1 Sets of Leading Terms and -Coefficients
definition lt-set :: (′t, ′b::zero) poly-mapping set ⇒ ′t set where

lt-set F = lt ‘ (F − {0})

definition lc-set :: (′t, ′b::zero) poly-mapping set ⇒ ′b set where
lc-set F = lc ‘ (F − {0})

lemma lt-setI :
assumes f ∈ F and f 6= 0
shows lt f ∈ lt-set F
unfolding lt-set-def using assms by simp

lemma lt-setE :
assumes t ∈ lt-set F
obtains f where f ∈ F and f 6= 0 and lt f = t
using assms unfolding lt-set-def by auto

271

lemma lt-set-iff :
shows t ∈ lt-set F ←→ (∃ f∈F . f 6= 0 ∧ lt f = t)
unfolding lt-set-def by auto

lemma lc-setI :
assumes f ∈ F and f 6= 0
shows lc f ∈ lc-set F
unfolding lc-set-def using assms by simp

lemma lc-setE :
assumes c ∈ lc-set F
obtains f where f ∈ F and f 6= 0 and lc f = c
using assms unfolding lc-set-def by auto

lemma lc-set-iff :
shows c ∈ lc-set F ←→ (∃ f∈F . f 6= 0 ∧ lc f = c)
unfolding lc-set-def by auto

lemma lc-set-nonzero:
shows 0 /∈ lc-set F

proof
assume 0 ∈ lc-set F
then obtain f where f ∈ F and f 6= 0 and lc f = 0 by (rule lc-setE)
from ‹f 6= 0 › have lc f 6= 0 by (rule lc-not-0)
from this ‹lc f = 0 › show False ..

qed

lemma lt-sum-distinct-eq-Max:
assumes finite I and sum p I 6= 0

and
∧

i1 i2 . i1 ∈ I =⇒ i2 ∈ I =⇒ p i1 6= 0 =⇒ p i2 6= 0 =⇒ lt (p i1) = lt
(p i2) =⇒ i1 = i2

shows lt (sum p I) = ord-term-lin.Max (lt-set (p ‘ I))
proof −

have ¬ p ‘ I ⊆ {0}
proof

assume p ‘ I ⊆ {0}
hence sum p I = 0 by (rule sum-poly-mapping-eq-zeroI)
with assms(2) show False ..

qed
from assms(1) this assms(3) show ?thesis
proof (induct I)

case empty
from empty(1) show ?case by simp

next
case (insert x I)
show ?case
proof (cases p ‘ I ⊆ {0})

case True

272

hence p ‘ I − {0} = {} by simp
have p x 6= 0
proof

assume p x = 0
with True have p ‘ insert x I ⊆ {0} by simp
with insert(4) show False ..

qed
hence insert (p x) (p ‘ I) − {0} = insert (p x) (p ‘ I − {0}) by auto
hence lt-set (p ‘ insert x I) = {lt (p x)} by (simp add: lt-set-def ‹p ‘ I −

{0} = {}›)
hence eq1 : ord-term-lin.Max (lt-set (p ‘ insert x I)) = lt (p x) by simp
have eq2 : sum p I = 0
proof (rule ccontr)

assume sum p I 6= 0
then obtain y where y ∈ I and p y 6= 0 by (rule sum.not-neutral-contains-not-neutral)

with True show False by auto
qed
show ?thesis by (simp only: eq1 sum.insert[OF insert(1) insert(2)], simp

add: eq2)
next

case False
hence IH : lt (sum p I) = ord-term-lin.Max (lt-set (p ‘ I))
proof (rule insert(3))

fix i1 i2
assume i1 ∈ I and i2 ∈ I
hence i1 ∈ insert x I and i2 ∈ insert x I by simp-all
moreover assume p i1 6= 0 and p i2 6= 0 and lt (p i1) = lt (p i2)
ultimately show i1 = i2 by (rule insert(5))

qed
show ?thesis
proof (cases p x = 0)

case True
hence eq: lt-set (p ‘ insert x I) = lt-set (p ‘ I) by (simp add: lt-set-def)

show ?thesis by (simp only: eq, simp add: sum.insert[OF insert(1) insert(2)]
True, fact IH)

next
case False
hence eq1 : lt-set (p ‘ insert x I) = insert (lt (p x)) (lt-set (p ‘ I))

by (auto simp add: lt-set-def)
from insert(1) have finite (lt-set (p ‘ I)) by (simp add: lt-set-def)
moreover from ‹¬ p ‘ I ⊆ {0}› have lt-set (p ‘ I) 6= {} by (simp add:

lt-set-def)
ultimately have eq2 : ord-term-lin.Max (insert (lt (p x)) (lt-set (p ‘ I))) =

ord-term-lin.max (lt (p x)) (ord-term-lin.Max (lt-set (p ‘ I)))
by (rule ord-term-lin.Max-insert)

show ?thesis
proof (simp only: eq1 , simp add: sum.insert[OF insert(1) insert(2)] eq2

IH [symmetric],
rule lt-plus-distinct-eq-max, rule)

273

assume ∗: lt (p x) = lt (sum p I)
have lt (p x) ∈ lt-set (p ‘ I) by (simp only: ∗ IH , rule ord-term-lin.Max-in,

fact+)
then obtain f where f ∈ p ‘ I and f 6= 0 and ltf : lt f = lt (p x) by

(rule lt-setE)
from this(1) obtain y where y ∈ I and f = p y ..
from this(2) ‹f 6= 0 › ltf have p y 6= 0 and lt-eq: lt (p y) = lt (p x) by

simp-all
from - - this(1) ‹p x 6= 0 › this(2) have y = x
proof (rule insert(5))

from ‹y ∈ I › show y ∈ insert x I by simp
next

show x ∈ insert x I by simp
qed
with ‹y ∈ I › have x ∈ I by simp
with ‹x /∈ I › show False ..

qed
qed

qed
qed

qed

lemma lt-sum-distinct-in-lt-set:
assumes finite I and sum p I 6= 0

and
∧

i1 i2 . i1 ∈ I =⇒ i2 ∈ I =⇒ p i1 6= 0 =⇒ p i2 6= 0 =⇒ lt (p i1) = lt
(p i2) =⇒ i1 = i2

shows lt (sum p I) ∈ lt-set (p ‘ I)
proof −

have ¬ p ‘ I ⊆ {0}
proof

assume p ‘ I ⊆ {0}
hence sum p I = 0 by (rule sum-poly-mapping-eq-zeroI)
with assms(2) show False ..

qed
have lt (sum p I) = ord-term-lin.Max (lt-set (p ‘ I))

by (rule lt-sum-distinct-eq-Max, fact+)
also have ... ∈ lt-set (p ‘ I)
proof (rule ord-term-lin.Max-in)

from assms(1) show finite (lt-set (p ‘ I)) by (simp add: lt-set-def)
next

from ‹¬ p ‘ I ⊆ {0}› show lt-set (p ‘ I) 6= {} by (simp add: lt-set-def)
qed
finally show ?thesis .

qed

11.2.2 Monicity
definition monic :: (′t ⇒0

′b) ⇒ (′t ⇒0
′b::field) where

monic p = monom-mult (1 / lc p) 0 p

274

definition is-monic-set :: (′t ⇒0
′b::field) set ⇒ bool where

is-monic-set B ≡ (∀ b∈B. b 6= 0 −→ lc b = 1)

lemma lookup-monic: lookup (monic p) v = (lookup p v) / lc p
proof −

have lookup (monic p) (0 ⊕ v) = (1 / lc p) ∗ (lookup p v) unfolding monic-def
by (rule lookup-monom-mult-plus)

thus ?thesis by (simp add: term-simps)
qed

lemma lookup-monic-lt:
assumes p 6= 0
shows lookup (monic p) (lt p) = 1
unfolding monic-def

proof −
from assms have lc p 6= 0 by (rule lc-not-0)
hence 1 / lc p 6= 0 by simp
let ?q = monom-mult (1 / lc p) 0 p
have lookup ?q (0 ⊕ lt p) = (1 / lc p) ∗ (lookup p (lt p)) by (rule lookup-monom-mult-plus)
also have ... = (1 / lc p) ∗ lc p unfolding lc-def ..
also have ... = 1 using ‹lc p 6= 0 › by simp
finally have lookup ?q (0 ⊕ lt p) = 1 .
thus lookup ?q (lt p) = 1 by (simp add: term-simps)

qed

lemma monic-0 [simp]: monic 0 = 0
unfolding monic-def by (rule monom-mult-zero-right)

lemma monic-0-iff : (monic p = 0) ←→ (p = 0)
proof

assume monic p = 0
show p = 0
proof (rule ccontr)

assume p 6= 0
hence lookup (monic p) (lt p) = 1 by (rule lookup-monic-lt)
with ‹monic p = 0 › have lookup 0 (lt p) = (1 :: ′b) by simp
thus False by simp

qed
next

assume p0 : p = 0
show monic p = 0 unfolding p0 by (fact monic-0)

qed

lemma keys-monic [simp]: keys (monic p) = keys p
proof (cases p = 0)

case True
show ?thesis unfolding True monic-0 ..

next

275

case False
hence lc p 6= 0 by (rule lc-not-0)
show ?thesis by (rule set-eqI , simp add: in-keys-iff lookup-monic ‹lc p 6= 0 ›)

qed

lemma lt-monic [simp]: lt (monic p) = lt p
proof (cases p = 0)

case True
show ?thesis unfolding True monic-0 ..

next
case False
have lt (monom-mult (1 / lc p) 0 p) = 0 ⊕ lt p
proof (rule lt-monom-mult)

from False have lc p 6= 0 by (rule lc-not-0)
thus 1 / lc p 6= 0 by simp

qed fact
thus ?thesis by (simp add: monic-def term-simps)

qed

lemma lc-monic:
assumes p 6= 0
shows lc (monic p) = 1
using assms by (simp add: lc-def lookup-monic-lt)

lemma mult-lc-monic:
assumes p 6= 0
shows monom-mult (lc p) 0 (monic p) = p (is ?q = p)

proof (rule poly-mapping-eqI)
fix v
from assms have lc p 6= 0 by (rule lc-not-0)
have lookup ?q (0 ⊕ v) = (lc p) ∗ (lookup (monic p) v) by (rule lookup-monom-mult-plus)
also have ... = (lc p) ∗ ((lookup p v) / lc p) by (simp add: lookup-monic)
also have ... = lookup p v using ‹lc p 6= 0 › by simp
finally show lookup ?q v = lookup p v by (simp add: term-simps)

qed

lemma is-monic-setI :
assumes

∧
b. b ∈ B =⇒ b 6= 0 =⇒ lc b = 1

shows is-monic-set B
unfolding is-monic-set-def using assms by auto

lemma is-monic-setD:
assumes is-monic-set B and b ∈ B and b 6= 0
shows lc b = 1
using assms unfolding is-monic-set-def by auto

lemma Keys-image-monic [simp]: Keys (monic ‘ A) = Keys A
by (simp add: Keys-def)

276

lemma image-monic-is-monic-set: is-monic-set (monic ‘ A)
proof (rule is-monic-setI)

fix p
assume pin: p ∈ monic ‘ A and p 6= 0
from pin obtain p ′ where p-def : p = monic p ′ and p ′ ∈ A ..
from ‹p 6= 0 › have p ′ 6= 0 unfolding p-def monic-0-iff .
thus lc p = 1 unfolding p-def by (rule lc-monic)

qed

lemma pmdl-image-monic [simp]: pmdl (monic ‘ B) = pmdl B
proof

show pmdl (monic ‘ B) ⊆ pmdl B
proof

fix p
assume p ∈ pmdl (monic ‘ B)
thus p ∈ pmdl B
proof (induct p rule: pmdl-induct)

case base: module-0
show ?case by (fact pmdl.span-zero)

next
case ind: (module-plus a b c t)
from ind(3) obtain b ′ where b-def : b = monic b ′ and b ′ ∈ B ..
have eq: b = monom-mult (1 / lc b ′) 0 b ′ by (simp only: b-def monic-def)
show ?case unfolding eq monom-mult-assoc

by (rule pmdl.span-add, fact, rule monom-mult-in-pmdl, fact)
qed

qed
next

show pmdl B ⊆ pmdl (monic ‘ B)
proof

fix p
assume p ∈ pmdl B
thus p ∈ pmdl (monic ‘ B)
proof (induct p rule: pmdl-induct)

case base: module-0
show ?case by (fact pmdl.span-zero)

next
case ind: (module-plus a b c t)
show ?case
proof (cases b = 0)

case True
from ind(2) show ?thesis by (simp add: True)

next
case False
let ?b = monic b
from ind(3) have ?b ∈ monic ‘ B by (rule imageI)
have a + monom-mult c t (monom-mult (lc b) 0 ?b) ∈ pmdl (monic ‘ B)

unfolding monom-mult-assoc
by (rule pmdl.span-add, fact, rule monom-mult-in-pmdl, fact)

277

thus ?thesis unfolding mult-lc-monic[OF False] .
qed

qed
qed

qed

end

end

12 Auto-reducing Lists of Polynomials
theory Auto-Reduction

imports Reduction More-MPoly-Type-Class
begin

12.1 Reduction and Monic Sets
context ordered-term
begin

lemma is-red-monic: is-red B (monic p) ←→ is-red B p
unfolding is-red-adds-iff keys-monic ..

lemma red-image-monic [simp]: red (monic ‘ B) = red B
proof (rule, rule)

fix p q
show red (monic ‘ B) p q ←→ red B p q
proof

assume red (monic ‘ B) p q
then obtain f t where f ∈ monic ‘ B and ∗: red-single p q f t by (rule

red-setE)
from this(1) obtain g where g ∈ B and f = monic g ..
from ∗ have f 6= 0 by (simp add: red-single-def)
hence g 6= 0 by (simp add: monic-0-iff ‹f = monic g›)
hence lc g 6= 0 by (rule lc-not-0)

have eq: monom-mult (lc g) 0 f = g by (simp add: ‹f = monic g› mult-lc-monic[OF
‹g 6= 0 ›])

from ‹g ∈ B› show red B p q
proof (rule red-setI)

from ∗ ‹lc g 6= 0 › have red-single p q (monom-mult (lc g) 0 f) t by (rule
red-single-mult-const)

thus red-single p q g t by (simp only: eq)
qed

next
assume red B p q
then obtain f t where f ∈ B and ∗: red-single p q f t by (rule red-setE)
from ∗ have f 6= 0 by (simp add: red-single-def)
hence lc f 6= 0 by (rule lc-not-0)

278

hence 1 / lc f 6= 0 by simp
from ‹f ∈ B› have monic f ∈ monic ‘ B by (rule imageI)
thus red (monic ‘ B) p q
proof (rule red-setI)

from ∗ ‹1 / lc f 6= 0 › show red-single p q (monic f) t unfolding monic-def
by (rule red-single-mult-const)

qed
qed

qed

lemma is-red-image-monic [simp]: is-red (monic ‘ B) p ←→ is-red B p
by (simp add: is-red-def)

12.2 Minimal Bases and Auto-reduced Bases
definition is-auto-reduced :: (′t ⇒0

′b::field) set ⇒ bool where
is-auto-reduced B ≡ (∀ b∈B. ¬ is-red (B − {b}) b)

definition is-minimal-basis :: (′t ⇒0
′b::zero) set ⇒ bool where

is-minimal-basis B ←→ (0 /∈ B ∧ (∀ p q. p ∈ B −→ q ∈ B −→ p 6= q −→ ¬ lt
p addst lt q))

lemma is-auto-reducedD:
assumes is-auto-reduced B and b ∈ B
shows ¬ is-red (B − {b}) b
using assms unfolding is-auto-reduced-def by auto

The converse of the following lemma is only true if B is minimal!
lemma image-monic-is-auto-reduced:

assumes is-auto-reduced B
shows is-auto-reduced (monic ‘ B)
unfolding is-auto-reduced-def

proof
fix b
assume b ∈ monic ‘ B
then obtain b ′ where b-def : b = monic b ′ and b ′ ∈ B ..
from assms ‹b ′ ∈ B› have nred: ¬ is-red (B − {b ′}) b ′ by (rule is-auto-reducedD)
show ¬ is-red ((monic ‘ B) − {b}) b
proof

assume red: is-red ((monic ‘ B) − {b}) b
have (monic ‘ B) − {b} ⊆ monic ‘ (B − {b ′}) unfolding b-def by auto
with red have is-red (monic ‘ (B − {b ′})) b by (rule is-red-subset)
hence is-red (B − {b ′}) b ′ unfolding b-def is-red-monic is-red-image-monic .
with nred show False ..

qed
qed

lemma is-minimal-basisI :
assumes

∧
p. p ∈ B =⇒ p 6= 0 and

∧
p q. p ∈ B =⇒ q ∈ B =⇒ p 6= q =⇒ ¬

279

lt p addst lt q
shows is-minimal-basis B
unfolding is-minimal-basis-def using assms by auto

lemma is-minimal-basisD1 :
assumes is-minimal-basis B and p ∈ B
shows p 6= 0
using assms unfolding is-minimal-basis-def by auto

lemma is-minimal-basisD2 :
assumes is-minimal-basis B and p ∈ B and q ∈ B and p 6= q
shows ¬ lt p addst lt q
using assms unfolding is-minimal-basis-def by auto

lemma is-minimal-basisD3 :
assumes is-minimal-basis B and p ∈ B and q ∈ B and p 6= q
shows ¬ lt q addst lt p
using assms unfolding is-minimal-basis-def by auto

lemma is-minimal-basis-subset:
assumes is-minimal-basis B and A ⊆ B
shows is-minimal-basis A

proof (intro is-minimal-basisI)
fix p
assume p ∈ A
with ‹A ⊆ B› have p ∈ B ..
with ‹is-minimal-basis B› show p 6= 0 by (rule is-minimal-basisD1)

next
fix p q
assume p ∈ A and q ∈ A and p 6= q
from ‹p ∈ A› and ‹q ∈ A› have p ∈ B and q ∈ B using ‹A ⊆ B› by auto
from ‹is-minimal-basis B› this ‹p 6= q› show ¬ lt p addst lt q by (rule

is-minimal-basisD2)
qed

lemma nadds-red:
assumes nadds:

∧
q. q ∈ B =⇒ ¬ lt q addst lt p and red: red B p r

shows r 6= 0 ∧ lt r = lt p
proof −

from red obtain q t where q ∈ B and rs: red-single p r q t by (rule red-setE)
from rs have q 6= 0 and lookup p (t ⊕ lt q) 6= 0

and r-def : r = p − monom-mult (lookup p (t ⊕ lt q) / lc q) t q unfolding
red-single-def by simp-all

have t ⊕ lt q �t lt p by (rule lt-max, fact)
moreover have t ⊕ lt q 6= lt p
proof

assume t ⊕ lt q = lt p
hence lt q addst lt p by (metis adds-term-triv)
with nadds[OF ‹q ∈ B›] show False ..

280

qed
ultimately have t ⊕ lt q ≺t lt p by simp
let ?m = monom-mult (lookup p (t ⊕ lt q) / lc q) t q
from ‹lookup p (t ⊕ lt q) 6= 0 › lc-not-0 [OF ‹q 6= 0 ›] have c0 : lookup p (t ⊕ lt

q) / lc q 6= 0 by simp
from ‹q 6= 0 › c0 have ?m 6= 0 by (simp add: monom-mult-eq-zero-iff)
have lt (−?m) = lt ?m by (fact lt-uminus)
also have lt1 : lt ?m = t ⊕ lt q by (rule lt-monom-mult, fact+)
finally have lt2 : lt (−?m) = t ⊕ lt q .

show ?thesis
proof

show r 6= 0
proof

assume r = 0
hence p = ?m unfolding r-def by simp
with lt1 ‹t ⊕ lt q 6= lt p› show False by simp

qed
next

have lt (−?m + p) = lt p
proof (rule lt-plus-eqI)

show lt (−?m) ≺t lt p unfolding lt2 by fact
qed
thus lt r = lt p unfolding r-def by simp

qed
qed

lemma nadds-red-nonzero:
assumes nadds:

∧
q. q ∈ B =⇒ ¬ lt q addst lt p and red B p r

shows r 6= 0
using nadds-red[OF assms] by simp

lemma nadds-red-lt:
assumes nadds:

∧
q. q ∈ B =⇒ ¬ lt q addst lt p and red B p r

shows lt r = lt p
using nadds-red[OF assms] by simp

lemma nadds-red-rtrancl-lt:
assumes nadds:

∧
q. q ∈ B =⇒ ¬ lt q addst lt p and rtrancl: (red B)∗∗ p r

shows lt r = lt p
using rtrancl

proof (induct rule: rtranclp-induct)
case base
show ?case ..

next
case (step y z)
have lt z = lt y
proof (rule nadds-red-lt)

fix q

281

assume q ∈ B
thus ¬ lt q addst lt y unfolding ‹lt y = lt p› by (rule nadds)

qed fact
with ‹lt y = lt p› show ?case by simp

qed

lemma nadds-red-rtrancl-nonzero:
assumes nadds:

∧
q. q ∈ B =⇒ ¬ lt q addst lt p and p 6= 0 and rtrancl: (red

B)∗∗ p r
shows r 6= 0
using rtrancl

proof (induct rule: rtranclp-induct)
case base
show ?case by fact

next
case (step y z)
from nadds ‹(red B)∗∗ p y› have lt y = lt p by (rule nadds-red-rtrancl-lt)
show z 6= 0
proof (rule nadds-red-nonzero)

fix q
assume q ∈ B
thus ¬ lt q addst lt y unfolding ‹lt y = lt p› by (rule nadds)

qed fact
qed

lemma minimal-basis-red-rtrancl-nonzero:
assumes is-minimal-basis B and p ∈ B and (red (B − {p}))∗∗ p r
shows r 6= 0

proof (rule nadds-red-rtrancl-nonzero)
fix q
assume q ∈ (B − {p})
hence q ∈ B and q 6= p by auto
show ¬ lt q addst lt p by (rule is-minimal-basisD2 , fact+)

next
show p 6= 0 by (rule is-minimal-basisD1 , fact+)

qed fact

lemma minimal-basis-red-rtrancl-lt:
assumes is-minimal-basis B and p ∈ B and (red (B − {p}))∗∗ p r
shows lt r = lt p

proof (rule nadds-red-rtrancl-lt)
fix q
assume q ∈ (B − {p})
hence q ∈ B and q 6= p by auto
show ¬ lt q addst lt p by (rule is-minimal-basisD2 , fact+)

qed fact

lemma is-minimal-basis-replace:
assumes major : is-minimal-basis B and p ∈ B and red: (red (B − {p}))∗∗ p r

282

shows is-minimal-basis (insert r (B − {p}))
proof (rule is-minimal-basisI)

fix q
assume q ∈ insert r (B − {p})
hence q = r ∨ q ∈ B ∧ q 6= p by simp
thus q 6= 0
proof

assume q = r
from assms show ?thesis unfolding ‹q = r› by (rule minimal-basis-red-rtrancl-nonzero)

next
assume q ∈ B ∧ q 6= p
hence q ∈ B ..
with major show ?thesis by (rule is-minimal-basisD1)

qed
next

fix a b
assume a ∈ insert r (B − {p}) and b ∈ insert r (B − {p}) and a 6= b
from assms have ltr : lt r = lt p by (rule minimal-basis-red-rtrancl-lt)
from ‹b ∈ insert r (B − {p})› have b: b = r ∨ b ∈ B ∧ b 6= p by simp
from ‹a ∈ insert r (B − {p})› have a = r ∨ a ∈ B ∧ a 6= p by simp
thus ¬ lt a addst lt b
proof

assume a = r
hence lta: lt a = lt p using ltr by simp
from b show ?thesis
proof

assume b = r
with ‹a 6= b› show ?thesis unfolding ‹a = r› by simp

next
assume b ∈ B ∧ b 6= p
hence b ∈ B and p 6= b by auto
with major ‹p ∈ B› have ¬ lt p addst lt b by (rule is-minimal-basisD2)
thus ?thesis unfolding lta .

qed
next

assume a ∈ B ∧ a 6= p
hence a ∈ B and a 6= p by simp-all
from b show ?thesis
proof

assume b = r
from major ‹a ∈ B› ‹p ∈ B› ‹a 6= p› have ¬ lt a addst lt p by (rule

is-minimal-basisD2)
thus ?thesis unfolding ‹b = r› ltr by simp

next
assume b ∈ B ∧ b 6= p
hence b ∈ B ..

from major ‹a ∈ B› ‹b ∈ B› ‹a 6= b› show ?thesis by (rule is-minimal-basisD2)
qed

qed

283

qed

12.3 Computing Minimal Bases
definition comp-min-basis :: (′t ⇒0

′b) list ⇒ (′t ⇒0
′b::zero) list where

comp-min-basis xs = filter-min (λx y. lt x addst lt y) (filter (λx. x 6= 0) xs)

lemma comp-min-basis-subset ′: set (comp-min-basis xs) ⊆ {x ∈ set xs. x 6= 0}
proof −

have set (comp-min-basis xs) ⊆ set (filter (λx. x 6= 0) xs)
unfolding comp-min-basis-def by (rule filter-min-subset)

also have . . . = {x ∈ set xs. x 6= 0} by simp
finally show ?thesis .

qed

lemma comp-min-basis-subset: set (comp-min-basis xs) ⊆ set xs
proof −
have set (comp-min-basis xs) ⊆ {x ∈ set xs. x 6= 0} by (rule comp-min-basis-subset ′)
also have ... ⊆ set xs by simp
finally show ?thesis .

qed

lemma comp-min-basis-nonzero: p ∈ set (comp-min-basis xs) =⇒ p 6= 0
using comp-min-basis-subset ′ by blast

lemma comp-min-basis-adds:
assumes p ∈ set xs and p 6= 0
obtains q where q ∈ set (comp-min-basis xs) and lt q addst lt p

proof −
let ?rel = (λx y. lt x addst lt y)
have transp ?rel by (auto intro!: transpI dest: adds-term-trans)
moreover have reflp ?rel by (simp add: reflp-def adds-term-refl)
moreover from assms have p ∈ set (filter (λx. x 6= 0) xs) by simp
ultimately obtain q where q ∈ set (comp-min-basis xs) and lt q addst lt p

unfolding comp-min-basis-def by (rule filter-min-relE)
thus ?thesis ..

qed

lemma comp-min-basis-is-red:
assumes is-red (set xs) f
shows is-red (set (comp-min-basis xs)) f

proof −
from assms obtain x t where x ∈ set xs and t ∈ keys f and x 6= 0 and lt x

addst t
by (rule is-red-addsE)

from ‹x ∈ set xs› ‹x 6= 0 › obtain y where yin: y ∈ set (comp-min-basis xs)
and lt y addst lt x

by (rule comp-min-basis-adds)
show ?thesis

284

proof (rule is-red-addsI)
from ‹lt y addst lt x› ‹lt x addst t› show lt y addst t by (rule adds-term-trans)

next
from yin show y 6= 0 by (rule comp-min-basis-nonzero)

qed fact+
qed

lemma comp-min-basis-nadds:
assumes p ∈ set (comp-min-basis xs) and q ∈ set (comp-min-basis xs) and p 6=

q
shows ¬ lt q addst lt p

proof
have transp (λx y. lt x addst lt y) by (auto intro!: transpI dest: adds-term-trans)
moreover note assms(2 , 1)
moreover assume lt q addst lt p
ultimately have q = p unfolding comp-min-basis-def by (rule filter-min-minimal)
with assms(3) show False by simp

qed

lemma comp-min-basis-is-minimal-basis: is-minimal-basis (set (comp-min-basis xs))
by (rule is-minimal-basisI , rule comp-min-basis-nonzero, assumption, rule comp-min-basis-nadds,

assumption+, simp)

lemma comp-min-basis-distinct: distinct (comp-min-basis xs)
unfolding comp-min-basis-def by (rule filter-min-distinct) (simp add: reflp-def

adds-term-refl)

end

12.4 Auto-Reduction
context gd-term
begin

lemma is-minimal-basis-trd-is-minimal-basis:
assumes is-minimal-basis (set (x # xs)) and x /∈ set xs
shows is-minimal-basis (set ((trd xs x) # xs))

proof −
from assms(1) have is-minimal-basis (insert (trd xs x) (set (x # xs) − {x}))
proof (rule is-minimal-basis-replace, simp)

from assms(2) have eq: set (x # xs) − {x} = set xs by simp
show (red (set (x # xs) − {x}))∗∗ x (trd xs x) unfolding eq by (rule

trd-red-rtrancl)
qed
also from assms(2) have ... = set ((trd xs x) # xs) by auto
finally show ?thesis .

qed

lemma is-minimal-basis-trd-distinct:

285

assumes min: is-minimal-basis (set (x # xs)) and dist: distinct (x # xs)
shows distinct ((trd xs x) # xs)

proof −
let ?y = trd xs x
from min have lty: lt ?y = lt x
proof (rule minimal-basis-red-rtrancl-lt, simp)

from dist have x /∈ set xs by simp
hence eq: set (x # xs) − {x} = set xs by simp

show (red (set (x # xs) − {x}))∗∗ x (trd xs x) unfolding eq by (rule
trd-red-rtrancl)

qed
have ?y /∈ set xs
proof

assume ?y ∈ set xs
hence ?y ∈ set (x # xs) by simp
with min have ¬ lt ?y addst lt x
proof (rule is-minimal-basisD2 , simp)

show ?y 6= x
proof

assume ?y = x
from dist have x /∈ set xs by simp
with ‹?y ∈ set xs› show False unfolding ‹?y = x› by simp

qed
qed
thus False unfolding lty by (simp add: adds-term-refl)

qed
moreover from dist have distinct xs by simp
ultimately show ?thesis by simp

qed

primrec comp-red-basis-aux :: (′t ⇒0
′b) list ⇒ (′t ⇒0

′b) list ⇒ (′t ⇒0
′b::field)

list where
comp-red-basis-aux-base: comp-red-basis-aux Nil ys = ys|
comp-red-basis-aux-rec: comp-red-basis-aux (x # xs) ys = comp-red-basis-aux xs

((trd (xs @ ys) x) # ys)

lemma subset-comp-red-basis-aux: set ys ⊆ set (comp-red-basis-aux xs ys)
proof (induct xs arbitrary: ys)

case Nil
show ?case unfolding comp-red-basis-aux-base ..

next
case (Cons a xs)
have set ys ⊆ set ((trd (xs @ ys) a) # ys) by auto
also have ... ⊆ set (comp-red-basis-aux xs ((trd (xs @ ys) a) # ys)) by (rule

Cons.hyps)
finally show ?case unfolding comp-red-basis-aux-rec .

qed

lemma comp-red-basis-aux-nonzero:

286

assumes is-minimal-basis (set (xs @ ys)) and distinct (xs @ ys) and p ∈ set
(comp-red-basis-aux xs ys)

shows p 6= 0
using assms

proof (induct xs arbitrary: ys)
case Nil
show ?case
proof (rule is-minimal-basisD1)

from Nil(1) show is-minimal-basis (set ys) by simp
next

from Nil(3) show p ∈ set ys unfolding comp-red-basis-aux-base .
qed

next
case (Cons a xs)
have eq: (a # xs) @ ys = a # (xs @ ys) by simp
have a ∈ set (a # xs @ ys) by simp
from Cons(3) have a /∈ set (xs @ ys) unfolding eq by simp
let ?ys = trd (xs @ ys) a # ys
show ?case
proof (rule Cons.hyps)

from Cons(3) have a /∈ set (xs @ ys) unfolding eq by simp
with Cons(2) show is-minimal-basis (set (xs @ ?ys)) unfolding set-reorder

eq
by (rule is-minimal-basis-trd-is-minimal-basis)

next
from Cons(2) Cons(3) show distinct (xs @ ?ys) unfolding distinct-reorder eq

by (rule is-minimal-basis-trd-distinct)
next
from Cons(4) show p ∈ set (comp-red-basis-aux xs ?ys) unfolding comp-red-basis-aux-rec

.
qed

qed

lemma comp-red-basis-aux-lt:
assumes is-minimal-basis (set (xs @ ys)) and distinct (xs @ ys)
shows lt ‘ set (xs @ ys) = lt ‘ set (comp-red-basis-aux xs ys)
using assms

proof (induct xs arbitrary: ys)
case Nil
show ?case unfolding comp-red-basis-aux-base by simp

next
case (Cons a xs)
have eq: (a # xs) @ ys = a # (xs @ ys) by simp
from Cons(3) have a: a /∈ set (xs @ ys) unfolding eq by simp
let ?b = trd (xs @ ys) a
let ?ys = ?b # ys
from Cons(2) have lt ?b = lt a unfolding eq
proof (rule minimal-basis-red-rtrancl-lt, simp)

from a have eq2 : set (a # xs @ ys) − {a} = set (xs @ ys) by simp

287

show (red (set (a # xs @ ys) − {a}))∗∗ a ?b unfolding eq2 by (rule
trd-red-rtrancl)

qed
hence lt ‘ set ((a # xs) @ ys) = lt ‘ set ((?b # xs) @ ys) by simp
also have ... = lt ‘ set (xs @ (?b # ys)) by simp
finally have eq2 : lt ‘ set ((a # xs) @ ys) = lt ‘ set (xs @ (?b # ys)) .
show ?case unfolding comp-red-basis-aux-rec eq2
proof (rule Cons.hyps)

from Cons(3) have a /∈ set (xs @ ys) unfolding eq by simp
with Cons(2) show is-minimal-basis (set (xs @ ?ys)) unfolding set-reorder

eq
by (rule is-minimal-basis-trd-is-minimal-basis)

next
from Cons(2) Cons(3) show distinct (xs @ ?ys) unfolding distinct-reorder eq

by (rule is-minimal-basis-trd-distinct)
qed

qed

lemma comp-red-basis-aux-pmdl:
assumes is-minimal-basis (set (xs @ ys)) and distinct (xs @ ys)
shows pmdl (set (comp-red-basis-aux xs ys)) ⊆ pmdl (set (xs @ ys))
using assms

proof (induct xs arbitrary: ys)
case Nil
show ?case unfolding comp-red-basis-aux-base by simp

next
case (Cons a xs)
have eq: (a # xs) @ ys = a # (xs @ ys) by simp
from Cons(3) have a: a /∈ set (xs @ ys) unfolding eq by simp
let ?b = trd (xs @ ys) a
let ?ys = ?b # ys
have pmdl (set (comp-red-basis-aux xs ?ys)) ⊆ pmdl (set (xs @ ?ys))
proof (rule Cons.hyps)

from Cons(3) have a /∈ set (xs @ ys) unfolding eq by simp
with Cons(2) show is-minimal-basis (set (xs @ ?ys)) unfolding set-reorder

eq
by (rule is-minimal-basis-trd-is-minimal-basis)

next
from Cons(2) Cons(3) show distinct (xs @ ?ys) unfolding distinct-reorder eq

by (rule is-minimal-basis-trd-distinct)
qed
also have ... = pmdl (set (?b # xs @ ys)) by simp
also from a have ... = pmdl (insert ?b (set (a # xs @ ys) − {a})) by auto
also have ... ⊆ pmdl (set (a # xs @ ys))
proof (rule pmdl.replace-span)

have a − (trd (xs @ ys) a) ∈ pmdl (set (xs @ ys)) by (rule trd-in-pmdl)
have a − (trd (xs @ ys) a) ∈ pmdl (set (a # xs @ ys))
proof
show pmdl (set (xs @ ys)) ⊆ pmdl (set (a # xs @ ys)) by (rule pmdl.span-mono)

288

auto
qed fact

hence − (a − (trd (xs @ ys) a)) ∈ pmdl (set (a # xs @ ys)) by (rule
pmdl.span-neg)

hence (trd (xs @ ys) a) − a ∈ pmdl (set (a # xs @ ys)) by simp
hence ((trd (xs @ ys) a) − a) + a ∈ pmdl (set (a # xs @ ys))
proof (rule pmdl.span-add)

show a ∈ pmdl (set (a # xs @ ys))
proof

show a ∈ set (a # xs @ ys) by simp
qed (rule pmdl.span-superset)

qed
thus trd (xs @ ys) a ∈ pmdl (set (a # xs @ ys)) by simp

qed
also have ... = pmdl (set ((a # xs) @ ys)) by simp
finally show ?case unfolding comp-red-basis-aux-rec .

qed

lemma comp-red-basis-aux-irred:
assumes is-minimal-basis (set (xs @ ys)) and distinct (xs @ ys)

and
∧

y. y ∈ set ys =⇒ ¬ is-red (set (xs @ ys) − {y}) y
and p ∈ set (comp-red-basis-aux xs ys)

shows ¬ is-red (set (comp-red-basis-aux xs ys) − {p}) p
using assms

proof (induct xs arbitrary: ys)
case Nil
have ¬ is-red (set ([] @ ys) − {p}) p
proof (rule Nil(3))

from Nil(4) show p ∈ set ys unfolding comp-red-basis-aux-base .
qed
thus ?case unfolding comp-red-basis-aux-base by simp

next
case (Cons a xs)
have eq: (a # xs) @ ys = a # (xs @ ys) by simp
from Cons(3) have a-notin: a /∈ set (xs @ ys) unfolding eq by simp
from Cons(2) have is-min: is-minimal-basis (set (a # xs @ ys)) unfolding eq

.
let ?b = trd (xs @ ys) a
let ?ys = ?b # ys
have dist: distinct (?b # (xs @ ys))
proof (rule is-minimal-basis-trd-distinct, fact is-min)

from Cons(3) show distinct (a # xs @ ys) unfolding eq .
qed

show ?case unfolding comp-red-basis-aux-rec
proof (rule Cons.hyps)

from Cons(2) a-notin show is-minimal-basis (set (xs @ ?ys)) unfolding
set-reorder eq

by (rule is-minimal-basis-trd-is-minimal-basis)

289

next
from dist show distinct (xs @ ?ys) unfolding distinct-reorder .

next
fix y
assume y ∈ set ?ys
hence y = ?b ∨ y ∈ set ys by simp
thus ¬ is-red (set (xs @ ?ys) − {y}) y
proof

assume y = ?b
from dist have ?b /∈ set (xs @ ys) by simp
hence eq3 : set (xs @ ?ys) − {?b} = set (xs @ ys) unfolding set-reorder by

simp
have ¬ is-red (set (xs @ ys)) ?b by (rule trd-irred)
thus ?thesis unfolding ‹y = ?b› eq3 .

next
assume y ∈ set ys
hence irred: ¬ is-red (set ((a # xs) @ ys) − {y}) y by (rule Cons(4))
from ‹y ∈ set ys› a-notin have y 6= a by auto
hence eq3 : set ((a # xs) @ ys) − {y} = {a} ∪ (set (xs @ ys) − {y}) by auto
from irred have i1 : ¬ is-red {a} y and i2 : ¬ is-red (set (xs @ ys) − {y}) y

unfolding eq3 is-red-union by simp-all
show ?thesis unfolding set-reorder
proof (cases y = ?b)

case True
from i2 show ¬ is-red (set (?b # xs @ ys) − {y}) y by (simp add: True)

next
case False
hence eq4 : set (?b # xs @ ys) − {y} = {?b} ∪ (set (xs @ ys) − {y}) by

auto
show ¬ is-red (set (?b # xs @ ys) − {y}) y unfolding eq4
proof

assume is-red ({?b} ∪ (set (xs @ ys) − {y})) y
thus False unfolding is-red-union
proof

have ltb: lt ?b = lt a
proof (rule minimal-basis-red-rtrancl-lt, fact is-min)

show a ∈ set (a # xs @ ys) by simp
next

from a-notin have eq: set (a # xs @ ys) − {a} = set (xs @ ys) by
simp

show (red (set (a # xs @ ys) − {a}))∗∗ a ?b unfolding eq by (rule
trd-red-rtrancl)

qed
assume is-red {?b} y

then obtain t where t ∈ keys y and lt ?b addst t unfolding is-red-adds-iff
by auto

with ltb have lt a addst t by simp
have is-red {a} y

by (rule is-red-addsI , rule, rule is-minimal-basisD1 , fact is-min, simp,

290

fact+)
with i1 show False ..

next
assume is-red (set (xs @ ys) − {y}) y
with i2 show False ..

qed
qed

qed
qed

next
from Cons(5) show p ∈ set (comp-red-basis-aux xs ?ys) unfolding comp-red-basis-aux-rec

.
qed

qed

lemma comp-red-basis-aux-dgrad-p-set-le:
assumes dickson-grading d
shows dgrad-p-set-le d (set (comp-red-basis-aux xs ys)) (set xs ∪ set ys)

proof (induct xs arbitrary: ys)
case Nil
show ?case by (simp, rule dgrad-p-set-le-subset, fact subset-refl)

next
case (Cons x xs)
let ?h = trd (xs @ ys) x
have dgrad-p-set-le d (set (comp-red-basis-aux xs (?h # ys))) (set xs ∪ set (?h

ys))
by (fact Cons)

also have ... = insert ?h (set xs ∪ set ys) by simp
also have dgrad-p-set-le d ... (insert x (set xs ∪ set ys))
proof (rule dgrad-p-set-leI-insert)

show dgrad-p-set-le d (set xs ∪ set ys) (insert x (set xs ∪ set ys))
by (rule dgrad-p-set-le-subset, blast)

next
have (red (set (xs @ ys)))∗∗ x ?h by (rule trd-red-rtrancl)
with assms have dgrad-p-set-le d {?h} (insert x (set (xs @ ys)))

by (rule dgrad-p-set-le-red-rtrancl)
thus dgrad-p-set-le d {?h} (insert x (set xs ∪ set ys)) by simp

qed
finally show ?case by simp

qed

definition comp-red-basis :: (′t ⇒0
′b) list ⇒ (′t ⇒0

′b::field) list
where comp-red-basis xs = comp-red-basis-aux (comp-min-basis xs) []

lemma comp-red-basis-nonzero:
assumes p ∈ set (comp-red-basis xs)
shows p 6= 0

proof −
have is-minimal-basis (set ((comp-min-basis xs) @ [])) by (simp add: comp-min-basis-is-minimal-basis)

291

moreover have distinct ((comp-min-basis xs) @ []) by (simp add: comp-min-basis-distinct)
moreover from assms have p ∈ set (comp-red-basis-aux (comp-min-basis xs)

[]) unfolding comp-red-basis-def .
ultimately show ?thesis by (rule comp-red-basis-aux-nonzero)

qed

lemma pmdl-comp-red-basis-subset: pmdl (set (comp-red-basis xs)) ⊆ pmdl (set
xs)
proof

fix f
assume fin: f ∈ pmdl (set (comp-red-basis xs))
have f ∈ pmdl (set (comp-min-basis xs))
proof

from fin show f ∈ pmdl (set (comp-red-basis-aux (comp-min-basis xs) []))
unfolding comp-red-basis-def .

next
have pmdl (set (comp-red-basis-aux (comp-min-basis xs) [])) ⊆ pmdl (set

((comp-min-basis xs) @ []))
by (rule comp-red-basis-aux-pmdl, simp-all, rule comp-min-basis-is-minimal-basis,

rule comp-min-basis-distinct)
thus pmdl (set (comp-red-basis-aux (comp-min-basis xs) [])) ⊆ pmdl (set

(comp-min-basis xs))
by simp

qed
also from comp-min-basis-subset have ... ⊆ pmdl (set xs) by (rule pmdl.span-mono)
finally show f ∈ pmdl (set xs) .

qed

lemma comp-red-basis-adds:
assumes p ∈ set xs and p 6= 0
obtains q where q ∈ set (comp-red-basis xs) and lt q addst lt p

proof −
from assms obtain q1 where q1 ∈ set (comp-min-basis xs) and lt q1 addst lt p

by (rule comp-min-basis-adds)
from ‹q1 ∈ set (comp-min-basis xs)› have lt q1 ∈ lt ‘ set (comp-min-basis xs)

by simp
also have ... = lt ‘ set ((comp-min-basis xs) @ []) by simp
also have ... = lt ‘ set (comp-red-basis-aux (comp-min-basis xs) [])

by (rule comp-red-basis-aux-lt, simp-all, rule comp-min-basis-is-minimal-basis,
rule comp-min-basis-distinct)

finally obtain q where q ∈ set (comp-red-basis-aux (comp-min-basis xs) []) and
lt q = lt q1

by auto
show ?thesis
proof

show q ∈ set (comp-red-basis xs) unfolding comp-red-basis-def by fact
next

from ‹lt q1 addst lt p› show lt q addst lt p unfolding ‹lt q = lt q1 › .
qed

292

qed

lemma comp-red-basis-lt:
assumes p ∈ set (comp-red-basis xs)
obtains q where q ∈ set xs and q 6= 0 and lt q = lt p

proof −
have eq: lt ‘ set ((comp-min-basis xs) @ []) = lt ‘ set (comp-red-basis-aux (comp-min-basis

xs) [])
by (rule comp-red-basis-aux-lt, simp-all, rule comp-min-basis-is-minimal-basis,

rule comp-min-basis-distinct)
from assms have lt p ∈ lt ‘ set (comp-red-basis xs) by simp
also have ... = lt ‘ set (comp-red-basis-aux (comp-min-basis xs) []) unfolding

comp-red-basis-def ..
also have ... = lt ‘ set (comp-min-basis xs) unfolding eq[symmetric] by simp
finally obtain q where q ∈ set (comp-min-basis xs) and lt q = lt p by auto
show ?thesis
proof

show q ∈ set xs by (rule, fact, rule comp-min-basis-subset)
next

show q 6= 0 by (rule comp-min-basis-nonzero, fact)
qed fact

qed

lemma comp-red-basis-is-red: is-red (set (comp-red-basis xs)) f ←→ is-red (set xs)
f
proof

assume is-red (set (comp-red-basis xs)) f
then obtain x t where x ∈ set (comp-red-basis xs) and t ∈ keys f and x 6= 0

and lt x addst t
by (rule is-red-addsE)

from ‹x ∈ set (comp-red-basis xs)› obtain y where yin: y ∈ set xs and y 6= 0
and lt y = lt x

by (rule comp-red-basis-lt)
show is-red (set xs) f
proof (rule is-red-addsI)

from ‹lt x addst t› show lt y addst t unfolding ‹lt y = lt x› .
qed fact+

next
assume is-red (set xs) f
then obtain x t where x ∈ set xs and t ∈ keys f and x 6= 0 and lt x addst t

by (rule is-red-addsE)
from ‹x ∈ set xs› ‹x 6= 0 › obtain y where yin: y ∈ set (comp-red-basis xs) and

lt y addst lt x
by (rule comp-red-basis-adds)

show is-red (set (comp-red-basis xs)) f
proof (rule is-red-addsI)

from ‹lt y addst lt x› ‹lt x addst t› show lt y addst t by (rule adds-term-trans)
next

from yin show y 6= 0 by (rule comp-red-basis-nonzero)

293

qed fact+
qed

lemma comp-red-basis-is-auto-reduced: is-auto-reduced (set (comp-red-basis xs))
unfolding is-auto-reduced-def remove-def

proof (intro ballI)
fix x
assume xin: x ∈ set (comp-red-basis xs)
show ¬ is-red (set (comp-red-basis xs) − {x}) x unfolding comp-red-basis-def
proof (rule comp-red-basis-aux-irred, simp-all, rule comp-min-basis-is-minimal-basis,

rule comp-min-basis-distinct)
from xin show x ∈ set (comp-red-basis-aux (comp-min-basis xs) []) unfolding

comp-red-basis-def .
qed

qed

lemma comp-red-basis-dgrad-p-set-le:
assumes dickson-grading d
shows dgrad-p-set-le d (set (comp-red-basis xs)) (set xs)

proof −
have dgrad-p-set-le d (set (comp-red-basis xs)) (set (comp-min-basis xs) ∪ set [])
unfolding comp-red-basis-def using assms by (rule comp-red-basis-aux-dgrad-p-set-le)

also have ... = set (comp-min-basis xs) by simp
also from comp-min-basis-subset have dgrad-p-set-le d ... (set xs)

by (rule dgrad-p-set-le-subset)
finally show ?thesis .

qed

12.5 Auto-Reduction and Monicity
definition comp-red-monic-basis :: (′t ⇒0

′b) list ⇒ (′t ⇒0
′b::field) list where

comp-red-monic-basis xs = map monic (comp-red-basis xs)

lemma set-comp-red-monic-basis: set (comp-red-monic-basis xs) = monic ‘ (set
(comp-red-basis xs))

by (simp add: comp-red-monic-basis-def)

lemma comp-red-monic-basis-nonzero:
assumes p ∈ set (comp-red-monic-basis xs)
shows p 6= 0

proof −
from assms obtain p ′ where p-def : p = monic p ′ and p ′: p ′∈ set (comp-red-basis

xs)
unfolding set-comp-red-monic-basis ..

from p ′ have p ′ 6= 0 by (rule comp-red-basis-nonzero)
thus ?thesis unfolding p-def monic-0-iff .

qed

lemma comp-red-monic-basis-is-monic-set: is-monic-set (set (comp-red-monic-basis

294

xs))
unfolding set-comp-red-monic-basis by (rule image-monic-is-monic-set)

lemma pmdl-comp-red-monic-basis-subset: pmdl (set (comp-red-monic-basis xs))
⊆ pmdl (set xs)
unfolding set-comp-red-monic-basis pmdl-image-monic by (fact pmdl-comp-red-basis-subset)

lemma comp-red-monic-basis-is-auto-reduced: is-auto-reduced (set (comp-red-monic-basis
xs))

unfolding set-comp-red-monic-basis by (rule image-monic-is-auto-reduced, rule
comp-red-basis-is-auto-reduced)

lemma comp-red-monic-basis-dgrad-p-set-le:
assumes dickson-grading d
shows dgrad-p-set-le d (set (comp-red-monic-basis xs)) (set xs)

proof −
have dgrad-p-set-le d (monic ‘ (set (comp-red-basis xs))) (set (comp-red-basis xs))

by (simp add: dgrad-p-set-le-def , fact dgrad-set-le-refl)
also from assms have dgrad-p-set-le d ... (set xs) by (rule comp-red-basis-dgrad-p-set-le)
finally show ?thesis by (simp add: set-comp-red-monic-basis)

qed

end

end

13 Reduced Gröbner Bases
theory Reduced-GB

imports Groebner-Bases Auto-Reduction
begin

lemma (in gd-term) GB-image-monic: is-Groebner-basis (monic ‘ G)←→ is-Groebner-basis
G

by (simp add: GB-alt-1)

13.1 Definition and Uniqueness of Reduced Gröbner Bases
context ordered-term
begin

definition is-reduced-GB :: (′t ⇒0
′b::field) set ⇒ bool where

is-reduced-GB B ≡ is-Groebner-basis B ∧ is-auto-reduced B ∧ is-monic-set B ∧
0 /∈ B

lemma reduced-GB-D1 :
assumes is-reduced-GB G
shows is-Groebner-basis G
using assms unfolding is-reduced-GB-def by simp

295

lemma reduced-GB-D2 :
assumes is-reduced-GB G
shows is-auto-reduced G
using assms unfolding is-reduced-GB-def by simp

lemma reduced-GB-D3 :
assumes is-reduced-GB G
shows is-monic-set G
using assms unfolding is-reduced-GB-def by simp

lemma reduced-GB-D4 :
assumes is-reduced-GB G and g ∈ G
shows g 6= 0
using assms unfolding is-reduced-GB-def by auto

lemma reduced-GB-lc:
assumes major : is-reduced-GB G and g ∈ G
shows lc g = 1
by (rule is-monic-setD, rule reduced-GB-D3 , fact major , fact ‹g ∈ G›, rule re-

duced-GB-D4 , fact major , fact ‹g ∈ G›)

end

context gd-term
begin

lemma is-reduced-GB-subsetI :
assumes Ared: is-reduced-GB A and BGB: is-Groebner-basis B and Bmon:

is-monic-set B
and ∗:

∧
a b. a ∈ A =⇒ b ∈ B =⇒ a 6= 0 =⇒ b 6= 0 =⇒ a − b 6= 0 =⇒ lt (a

− b) ∈ keys b =⇒ lt (a − b) ≺t lt b =⇒ False
and id-eq: pmdl A = pmdl B

shows A ⊆ B
proof

fix a
assume a ∈ A

have a 6= 0 by (rule reduced-GB-D4 , fact Ared, fact ‹a ∈ A›)
have lca: lc a = 1 by (rule reduced-GB-lc, fact Ared, fact ‹a ∈ A›)
have AGB: is-Groebner-basis A by (rule reduced-GB-D1 , fact Ared)

from ‹a ∈ A› have a ∈ pmdl A by (rule pmdl.span-base)
also have ... = pmdl B using id-eq by simp
finally have a ∈ pmdl B .

from BGB this ‹a 6= 0 › obtain b where b ∈ B and b 6= 0 and baddsa: lt b
addst lt a

by (rule GB-adds-lt)

296

from Bmon this(1) this(2) have lcb: lc b = 1 by (rule is-monic-setD)
from ‹b ∈ B› have b ∈ pmdl B by (rule pmdl.span-base)
also have ... = pmdl A using id-eq by simp
finally have b ∈ pmdl A .

have lt-eq: lt b = lt a
proof (rule ccontr)

assume lt b 6= lt a
from AGB ‹b ∈ pmdl A› ‹b 6= 0 › obtain a ′

where a ′ ∈ A and a ′ 6= 0 and a ′addsb: lt a ′ addst lt b by (rule GB-adds-lt)
have a ′addsa: lt a ′ addst lt a by (rule adds-term-trans, fact a ′addsb, fact baddsa)
have lt a ′ 6= lt a
proof

assume lt a ′ = lt a
hence aaddsa ′: lt a addst lt a ′ by (simp add: adds-term-refl)
have lt a addst lt b by (rule adds-term-trans, fact aaddsa ′, fact a ′addsb)
have lt a = lt b by (rule adds-term-antisym, fact+)
with ‹lt b 6= lt a› show False by simp

qed
hence a ′ 6= a by auto
with ‹a ′ ∈ A› have a ′ ∈ A − {a} by blast
have is-red: is-red (A − {a}) a by (intro is-red-addsI , fact, fact, rule lt-in-keys,

fact+)
have ¬ is-red (A − {a}) a by (rule is-auto-reducedD, rule reduced-GB-D2 , fact

Ared, fact+)
from this is-red show False ..

qed

have a − b = 0
proof (rule ccontr)

let ?c = a − b
assume ?c 6= 0
have ?c ∈ pmdl A by (rule pmdl.span-diff , fact+)
also have ... = pmdl B using id-eq by simp
finally have ?c ∈ pmdl B .

from ‹b 6= 0 › have − b 6= 0 by simp
have lt (−b) = lt a unfolding lt-uminus by fact
have lc (−b) = − lc a unfolding lc-uminus lca lcb ..
from ‹?c 6= 0 › have a + (−b) 6= 0 by simp

have lt ?c ∈ keys ?c by (rule lt-in-keys, fact)
have keys ?c ⊆ (keys a ∪ keys b) by (fact keys-minus)
with ‹lt ?c ∈ keys ?c› have lt ?c ∈ keys a ∨ lt ?c ∈ keys b by auto
thus False
proof

assume lt ?c ∈ keys a

from AGB ‹?c ∈ pmdl A› ‹?c 6= 0 › obtain a ′

297

where a ′ ∈ A and a ′ 6= 0 and a ′addsc: lt a ′ addst lt ?c by (rule GB-adds-lt)

from a ′addsc have lt a ′ �t lt ?c by (rule ord-adds-term)
also have ... = lt (a + (− b)) by simp
also have ... ≺t lt a by (rule lt-plus-lessI , fact+)
finally have lt a ′ ≺t lt a .
hence lt a ′ 6= lt a by simp
hence a ′ 6= a by auto
with ‹a ′ ∈ A› have a ′ ∈ A − {a} by blast

have is-red: is-red (A − {a}) a by (intro is-red-addsI , fact, fact, fact+)
have ¬ is-red (A − {a}) a by (rule is-auto-reducedD, rule reduced-GB-D2 ,

fact Ared, fact+)
from this is-red show False ..

next
assume lt ?c ∈ keys b

with ‹a ∈ A› ‹b ∈ B› ‹a 6= 0 › ‹b 6= 0 › ‹?c 6= 0 › show False
proof (rule ∗)

have lt ?c = lt ((− b) + a) by simp
also have ... ≺t lt (−b)
proof (rule lt-plus-lessI)

from ‹?c 6= 0 › show −b + a 6= 0 by simp
next

from ‹lt (−b) = lt a› show lt a = lt (−b) by simp
next

from ‹lc (−b) = − lc a› show lc a = − lc (−b) by simp
qed
finally show lt ?c ≺t lt b unfolding lt-uminus .

qed
qed

qed

hence a = b by simp
with ‹b ∈ B› show a ∈ B by simp

qed

lemma is-reduced-GB-unique ′:
assumes Ared: is-reduced-GB A and Bred: is-reduced-GB B and id-eq: pmdl A

= pmdl B
shows A ⊆ B

proof −
from Bred have BGB: is-Groebner-basis B by (rule reduced-GB-D1)
with assms(1) show ?thesis
proof (rule is-reduced-GB-subsetI)

from Bred show is-monic-set B by (rule reduced-GB-D3)
next

fix a b :: ′t ⇒0
′b

let ?c = a − b

298

assume a ∈ A and b ∈ B and a 6= 0 and b 6= 0 and ?c 6= 0 and lt ?c ∈
keys b and lt ?c ≺t lt b

from ‹a ∈ A› have a ∈ pmdl B by (simp only: id-eq[symmetric], rule pmdl.span-base)
moreover from ‹b ∈ B› have b ∈ pmdl B by (rule pmdl.span-base)
ultimately have ?c ∈ pmdl B by (rule pmdl.span-diff)
from BGB this ‹?c 6= 0 › obtain b ′

where b ′ ∈ B and b ′ 6= 0 and b ′addsc: lt b ′ addst lt ?c by (rule GB-adds-lt)

from b ′addsc have lt b ′ �t lt ?c by (rule ord-adds-term)
also have ... ≺t lt b by fact
finally have lt b ′ ≺t lt b unfolding lt-uminus .
hence lt b ′ 6= lt b by simp
hence b ′ 6= b by auto
with ‹b ′ ∈ B› have b ′ ∈ B − {b} by blast

have is-red: is-red (B − {b}) b by (intro is-red-addsI , fact, fact, fact+)
have ¬ is-red (B − {b}) b by (rule is-auto-reducedD, rule reduced-GB-D2 , fact

Bred, fact+)
from this is-red show False ..

qed fact
qed

theorem is-reduced-GB-unique:
assumes Ared: is-reduced-GB A and Bred: is-reduced-GB B and id-eq: pmdl A

= pmdl B
shows A = B

proof
from assms show A ⊆ B by (rule is-reduced-GB-unique ′)

next
from Bred Ared id-eq[symmetric] show B ⊆ A by (rule is-reduced-GB-unique ′)

qed

13.2 Computing Reduced Gröbner Bases by Auto-Reduction
13.2.1 Minimal Bases
lemma minimal-basis-is-reduced-GB:

assumes is-minimal-basis B and is-monic-set B and is-reduced-GB G and G
⊆ B

and pmdl B = pmdl G
shows B = G
using - assms(3) assms(5)

proof (rule is-reduced-GB-unique)
from assms(3) have is-Groebner-basis G by (rule reduced-GB-D1)
show is-reduced-GB B unfolding is-reduced-GB-def
proof (intro conjI)

show 0 /∈ B
proof

assume 0 ∈ B

299

with assms(1) have 0 6= (0 :: ′t ⇒0
′b) by (rule is-minimal-basisD1)

thus False by simp
qed

next
from ‹is-Groebner-basis G› assms(4) assms(5) show is-Groebner-basis B by

(rule GB-subset)
next

show is-auto-reduced B unfolding is-auto-reduced-def
proof (intro ballI notI)

fix b
assume b ∈ B
with assms(1) have b 6= 0 by (rule is-minimal-basisD1)
assume is-red (B − {b}) b

then obtain f where f ∈ B − {b} and is-red {f } b by (rule is-red-singletonI)
from this(1) have f ∈ B and f 6= b by simp-all

from assms(1) ‹f ∈ B› have f 6= 0 by (rule is-minimal-basisD1)
from ‹f ∈ B› have f ∈ pmdl B by (rule pmdl.span-base)
hence f ∈ pmdl G by (simp only: assms(5))
from ‹is-Groebner-basis G› this ‹f 6= 0 › obtain g where g ∈ G and g 6= 0

and lt g addst lt f
by (rule GB-adds-lt)

from ‹g ∈ G› ‹G ⊆ B› have g ∈ B ..
have g = f
proof (rule ccontr)

assume g 6= f
with assms(1) ‹g ∈ B› ‹f ∈ B› have ¬ lt g addst lt f by (rule is-minimal-basisD2)

from this ‹lt g addst lt f › show False ..
qed
with ‹g ∈ G› have f ∈ G by simp
with ‹f ∈ B − {b}› ‹is-red {f } b› have red: is-red (G − {b}) b

by (meson Diff-iff is-red-singletonD)

from ‹b ∈ B› have b ∈ pmdl B by (rule pmdl.span-base)
hence b ∈ pmdl G by (simp only: assms(5))
from ‹is-Groebner-basis G› this ‹b 6= 0 › obtain g ′ where g ′ ∈ G and g ′ 6=

0 and lt g ′ addst lt b
by (rule GB-adds-lt)

from ‹g ′ ∈ G› ‹G ⊆ B› have g ′ ∈ B ..
have g ′ = b
proof (rule ccontr)

assume g ′ 6= b
with assms(1) ‹g ′ ∈ B› ‹b ∈ B› have ¬ lt g ′ addst lt b by (rule

is-minimal-basisD2)
from this ‹lt g ′ addst lt b› show False ..

qed
with ‹g ′ ∈ G› have b ∈ G by simp

from assms(3) have is-auto-reduced G by (rule reduced-GB-D2)

300

from this ‹b ∈ G› have ¬ is-red (G − {b}) b by (rule is-auto-reducedD)
from this red show False ..

qed
qed fact

qed

13.2.2 Computing Minimal Bases
lemma comp-min-basis-pmdl:

assumes is-Groebner-basis (set xs)
shows pmdl (set (comp-min-basis xs)) = pmdl (set xs) (is pmdl (set ?ys) = -)
using finite-set

proof (rule pmdl-eqI-adds-lt-finite)
from comp-min-basis-subset show ∗: pmdl (set ?ys) ⊆ pmdl (set xs) by (rule

pmdl.span-mono)
next

fix f
assume f ∈ pmdl (set xs) and f 6= 0
with assms obtain g where g ∈ set xs and g 6= 0 and 1 : lt g addst lt f by

(rule GB-adds-lt)
from this(1 , 2) obtain g ′ where g ′ ∈ set ?ys and 2 : lt g ′ addst lt g

by (rule comp-min-basis-adds)
note this(1)
moreover from this have g ′ 6= 0 by (rule comp-min-basis-nonzero)
moreover from 2 1 have lt g ′ addst lt f by (rule adds-term-trans)
ultimately show ∃ g∈set ?ys. g 6= 0 ∧ lt g addst lt f by blast

qed

lemma comp-min-basis-GB:
assumes is-Groebner-basis (set xs)
shows is-Groebner-basis (set (comp-min-basis xs)) (is is-Groebner-basis (set ?ys))
unfolding GB-alt-2-finite[OF finite-set]

proof (intro ballI impI)
fix f
assume f ∈ pmdl (set ?ys)
also from assms have . . . = pmdl (set xs) by (rule comp-min-basis-pmdl)
finally have f ∈ pmdl (set xs) .
moreover assume f 6= 0
ultimately have is-red (set xs) f using assms unfolding GB-alt-2-finite[OF

finite-set] by blast
thus is-red (set ?ys) f by (rule comp-min-basis-is-red)

qed

13.2.3 Computing Reduced Bases
lemma comp-red-basis-pmdl:

assumes is-Groebner-basis (set xs)
shows pmdl (set (comp-red-basis xs)) = pmdl (set xs)

proof (rule, fact pmdl-comp-red-basis-subset, rule)
fix f

301

assume f ∈ pmdl (set xs)
show f ∈ pmdl (set (comp-red-basis xs))
proof (cases f = 0)

case True
show ?thesis unfolding True by (rule pmdl.span-zero)

next
case False
let ?xs = comp-red-basis xs
have (red (set ?xs))∗∗ f 0

proof (rule is-red-implies-0-red-finite, fact finite-set, fact pmdl-comp-red-basis-subset)
fix q
assume q 6= 0 and q ∈ pmdl (set xs)
with assms have is-red (set xs) q by (rule GB-imp-reducibility)
thus is-red (set (comp-red-basis xs)) q unfolding comp-red-basis-is-red .

qed fact
thus ?thesis by (rule red-rtranclp-0-in-pmdl)

qed
qed

lemma comp-red-basis-GB:
assumes is-Groebner-basis (set xs)
shows is-Groebner-basis (set (comp-red-basis xs))
unfolding GB-alt-2-finite[OF finite-set]

proof (intro ballI impI)
fix f
assume fin: f ∈ pmdl (set (comp-red-basis xs))
hence f ∈ pmdl (set xs) unfolding comp-red-basis-pmdl[OF assms] .
assume f 6= 0
from assms ‹f 6= 0 › ‹f ∈ pmdl (set xs)› show is-red (set (comp-red-basis xs)) f

by (simp add: comp-red-basis-is-red GB-alt-2-finite)
qed

13.2.4 Computing Reduced Gröbner Bases
lemma comp-red-monic-basis-pmdl:

assumes is-Groebner-basis (set xs)
shows pmdl (set (comp-red-monic-basis xs)) = pmdl (set xs)
unfolding set-comp-red-monic-basis pmdl-image-monic comp-red-basis-pmdl[OF

assms] ..

lemma comp-red-monic-basis-GB:
assumes is-Groebner-basis (set xs)
shows is-Groebner-basis (set (comp-red-monic-basis xs))
unfolding set-comp-red-monic-basis GB-image-monic using assms by (rule comp-red-basis-GB)

lemma comp-red-monic-basis-is-reduced-GB:
assumes is-Groebner-basis (set xs)
shows is-reduced-GB (set (comp-red-monic-basis xs))
unfolding is-reduced-GB-def

302

proof (intro conjI , rule comp-red-monic-basis-GB, fact assms,
rule comp-red-monic-basis-is-auto-reduced, rule comp-red-monic-basis-is-monic-set,

intro notI)
assume 0 ∈ set (comp-red-monic-basis xs)
hence 0 6= (0 :: ′t ⇒0

′b) by (rule comp-red-monic-basis-nonzero)
thus False by simp

qed

lemma ex-finite-reduced-GB-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
obtains G where G ⊆ dgrad-p-set d m and finite G and is-reduced-GB G and

pmdl G = pmdl F
proof −

from assms obtain G0 where G0-sub: G0 ⊆ dgrad-p-set d m and fin: finite
G0

and gb: is-Groebner-basis G0 and pid: pmdl G0 = pmdl F
by (rule ex-finite-GB-dgrad-p-set)

from fin obtain xs where set: G0 = set xs using finite-list by blast
let ?G = set (comp-red-monic-basis xs)
show ?thesis
proof

from assms(1) have dgrad-p-set-le d (set (comp-red-monic-basis xs)) G0 un-
folding set

by (rule comp-red-monic-basis-dgrad-p-set-le)
from this G0-sub show set (comp-red-monic-basis xs) ⊆ dgrad-p-set d m

by (rule dgrad-p-set-le-dgrad-p-set)
next

from gb show rgb: is-reduced-GB ?G unfolding set
by (rule comp-red-monic-basis-is-reduced-GB)

next
from gb show pmdl ?G = pmdl F unfolding set pid[symmetric]

by (rule comp-red-monic-basis-pmdl)
qed (fact finite-set)

qed

theorem ex-unique-reduced-GB-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows ∃ !G. G ⊆ dgrad-p-set d m ∧ finite G ∧ is-reduced-GB G ∧ pmdl G =

pmdl F
proof −

from assms obtain G where G ⊆ dgrad-p-set d m and finite G
and is-reduced-GB G and G: pmdl G = pmdl F by (rule ex-finite-reduced-GB-dgrad-p-set)

hence G ⊆ dgrad-p-set d m ∧ finite G ∧ is-reduced-GB G ∧ pmdl G = pmdl F
by simp

thus ?thesis
proof (rule ex1I)

fix G ′

303

assume G ′ ⊆ dgrad-p-set d m ∧ finite G ′ ∧ is-reduced-GB G ′ ∧ pmdl G ′ =
pmdl F

hence is-reduced-GB G ′ and G ′: pmdl G ′ = pmdl F by simp-all
note this(1) ‹is-reduced-GB G›
moreover have pmdl G ′ = pmdl G by (simp only: G G ′)
ultimately show G ′ = G by (rule is-reduced-GB-unique)

qed
qed

corollary ex-unique-reduced-GB-dgrad-p-set ′:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows ∃ !G. finite G ∧ is-reduced-GB G ∧ pmdl G = pmdl F

proof −
from assms obtain G where G ⊆ dgrad-p-set d m and finite G
and is-reduced-GB G and G: pmdl G = pmdl F by (rule ex-finite-reduced-GB-dgrad-p-set)

hence finite G ∧ is-reduced-GB G ∧ pmdl G = pmdl F by simp
thus ?thesis
proof (rule ex1I)

fix G ′

assume finite G ′ ∧ is-reduced-GB G ′ ∧ pmdl G ′ = pmdl F
hence is-reduced-GB G ′ and G ′: pmdl G ′ = pmdl F by simp-all
note this(1) ‹is-reduced-GB G›
moreover have pmdl G ′ = pmdl G by (simp only: G G ′)
ultimately show G ′ = G by (rule is-reduced-GB-unique)

qed
qed

definition reduced-GB :: (′t ⇒0
′b) set ⇒ (′t ⇒0

′b::field) set
where reduced-GB B = (THE G. finite G ∧ is-reduced-GB G ∧ pmdl G = pmdl

B)

reduced-GB returns the unique reduced Gröbner basis of the given set, pro-
vided its Dickson grading is bounded. Combining comp-red-monic-basis with
any function for computing Gröbner bases, e. g. gb from theory "Buch-
berger", makes reduced-GB computable.
lemma finite-reduced-GB-dgrad-p-set:

assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆
dgrad-p-set d m

shows finite (reduced-GB F)
unfolding reduced-GB-def
by (rule the1I2 , rule ex-unique-reduced-GB-dgrad-p-set ′, fact, fact, fact, elim

conjE)

lemma reduced-GB-is-reduced-GB-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows is-reduced-GB (reduced-GB F)
unfolding reduced-GB-def

304

by (rule the1I2 , rule ex-unique-reduced-GB-dgrad-p-set ′, fact, fact, fact, elim
conjE)

lemma reduced-GB-is-GB-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows is-Groebner-basis (reduced-GB F)

proof −
from assms have is-reduced-GB (reduced-GB F) by (rule reduced-GB-is-reduced-GB-dgrad-p-set)
thus ?thesis unfolding is-reduced-GB-def ..

qed

lemma reduced-GB-is-auto-reduced-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows is-auto-reduced (reduced-GB F)

proof −
from assms have is-reduced-GB (reduced-GB F) by (rule reduced-GB-is-reduced-GB-dgrad-p-set)
thus ?thesis unfolding is-reduced-GB-def by simp

qed

lemma reduced-GB-is-monic-set-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows is-monic-set (reduced-GB F)

proof −
from assms have is-reduced-GB (reduced-GB F) by (rule reduced-GB-is-reduced-GB-dgrad-p-set)
thus ?thesis unfolding is-reduced-GB-def by simp

qed

lemma reduced-GB-nonzero-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows 0 /∈ reduced-GB F

proof −
from assms have is-reduced-GB (reduced-GB F) by (rule reduced-GB-is-reduced-GB-dgrad-p-set)
thus ?thesis unfolding is-reduced-GB-def by simp

qed

lemma reduced-GB-pmdl-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows pmdl (reduced-GB F) = pmdl F
unfolding reduced-GB-def
by (rule the1I2 , rule ex-unique-reduced-GB-dgrad-p-set ′, fact, fact, fact, elim

conjE)

lemma reduced-GB-unique-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

305

dgrad-p-set d m
and is-reduced-GB G and pmdl G = pmdl F

shows reduced-GB F = G
by (rule is-reduced-GB-unique, rule reduced-GB-is-reduced-GB-dgrad-p-set, fact+,

simp only: reduced-GB-pmdl-dgrad-p-set[OF assms(1 , 2 , 3)] assms(5))

lemma reduced-GB-dgrad-p-set:
assumes dickson-grading d and finite (component-of-term ‘ Keys F) and F ⊆

dgrad-p-set d m
shows reduced-GB F ⊆ dgrad-p-set d m

proof −
from assms obtain G where G: G ⊆ dgrad-p-set d m and is-reduced-GB G

and pmdl G = pmdl F
by (rule ex-finite-reduced-GB-dgrad-p-set)

from assms this(2 , 3) have reduced-GB F = G by (rule reduced-GB-unique-dgrad-p-set)
with G show ?thesis by simp

qed

lemma reduced-GB-unique:
assumes finite G and is-reduced-GB G and pmdl G = pmdl F
shows reduced-GB F = G

proof −
from assms have finite G ∧ is-reduced-GB G ∧ pmdl G = pmdl F by simp
thus ?thesis unfolding reduced-GB-def
proof (rule the-equality)

fix G ′

assume finite G ′ ∧ is-reduced-GB G ′ ∧ pmdl G ′ = pmdl F
hence is-reduced-GB G ′ and eq: pmdl G ′ = pmdl F by simp-all
note this(1)
moreover note assms(2)
moreover have pmdl G ′ = pmdl G by (simp only: assms(3) eq)
ultimately show G ′ = G by (rule is-reduced-GB-unique)

qed
qed

lemma is-reduced-GB-empty: is-reduced-GB {}
by (simp add: is-reduced-GB-def is-Groebner-basis-empty is-monic-set-def is-auto-reduced-def)

lemma is-reduced-GB-singleton: is-reduced-GB {f } ←→ lc f = 1
proof

assume is-reduced-GB {f }
hence is-monic-set {f } and f 6= 0 by (rule reduced-GB-D3 , rule reduced-GB-D4)

simp
from this(1) - this(2) show lc f = 1 by (rule is-monic-setD) simp

next
assume lc f = 1
moreover from this have f 6= 0 by auto
ultimately show is-reduced-GB {f }

by (simp add: is-reduced-GB-def is-Groebner-basis-singleton is-monic-set-def

306

is-auto-reduced-def
not-is-red-empty)

qed

lemma reduced-GB-empty: reduced-GB {} = {}
using finite.emptyI is-reduced-GB-empty refl by (rule reduced-GB-unique)

lemma reduced-GB-singleton: reduced-GB {f } = (if f = 0 then {} else {monic f })
proof (cases f = 0)

case True
from finite.emptyI is-reduced-GB-empty have reduced-GB {f } = {}
by (rule reduced-GB-unique) (simp add: True flip: pmdl.span-Diff-zero[of {0}])

with True show ?thesis by simp
next

case False
have reduced-GB {f } = {monic f }
proof (rule reduced-GB-unique)

from False have lc f 6= 0 by (rule lc-not-0)
thus is-reduced-GB {monic f } by (simp add: is-reduced-GB-singleton monic-def)

next
have pmdl {monic f } = pmdl (monic ‘ {f }) by simp
also have . . . = pmdl {f } by (fact pmdl-image-monic)
finally show pmdl {monic f } = pmdl {f } .

qed simp
with False show ?thesis by simp

qed

lemma ex-unique-reduced-GB-finite: finite F =⇒ (∃ !G. finite G ∧ is-reduced-GB
G ∧ pmdl G = pmdl F)

by (rule ex-unique-reduced-GB-dgrad-p-set ′, rule dickson-grading-dgrad-dummy,
erule finite-imp-finite-component-Keys, erule dgrad-p-set-exhaust-expl)

lemma finite-reduced-GB-finite: finite F =⇒ finite (reduced-GB F)
by (rule finite-reduced-GB-dgrad-p-set, rule dickson-grading-dgrad-dummy,

erule finite-imp-finite-component-Keys, erule dgrad-p-set-exhaust-expl)

lemma reduced-GB-is-reduced-GB-finite: finite F =⇒ is-reduced-GB (reduced-GB
F)
by (rule reduced-GB-is-reduced-GB-dgrad-p-set, rule dickson-grading-dgrad-dummy,

erule finite-imp-finite-component-Keys, erule dgrad-p-set-exhaust-expl)

lemma reduced-GB-is-GB-finite: finite F =⇒ is-Groebner-basis (reduced-GB F)
by (rule reduced-GB-is-GB-dgrad-p-set, rule dickson-grading-dgrad-dummy,

erule finite-imp-finite-component-Keys, erule dgrad-p-set-exhaust-expl)

lemma reduced-GB-is-auto-reduced-finite: finite F =⇒ is-auto-reduced (reduced-GB
F)
by (rule reduced-GB-is-auto-reduced-dgrad-p-set, rule dickson-grading-dgrad-dummy,

erule finite-imp-finite-component-Keys, erule dgrad-p-set-exhaust-expl)

307

lemma reduced-GB-is-monic-set-finite: finite F =⇒ is-monic-set (reduced-GB F)
by (rule reduced-GB-is-monic-set-dgrad-p-set, rule dickson-grading-dgrad-dummy,

erule finite-imp-finite-component-Keys, erule dgrad-p-set-exhaust-expl)

lemma reduced-GB-nonzero-finite: finite F =⇒ 0 /∈ reduced-GB F
by (rule reduced-GB-nonzero-dgrad-p-set, rule dickson-grading-dgrad-dummy,

erule finite-imp-finite-component-Keys, erule dgrad-p-set-exhaust-expl)

lemma reduced-GB-pmdl-finite: finite F =⇒ pmdl (reduced-GB F) = pmdl F
by (rule reduced-GB-pmdl-dgrad-p-set, rule dickson-grading-dgrad-dummy,

erule finite-imp-finite-component-Keys, erule dgrad-p-set-exhaust-expl)

lemma reduced-GB-unique-finite: finite F =⇒ is-reduced-GB G =⇒ pmdl G =
pmdl F =⇒ reduced-GB F = G

by (rule reduced-GB-unique-dgrad-p-set, rule dickson-grading-dgrad-dummy,
erule finite-imp-finite-component-Keys, erule dgrad-p-set-exhaust-expl)

end

13.2.5 Properties of the Reduced Gröbner Basis of an Ideal
context gd-powerprod
begin

lemma ideal-eq-UNIV-iff-reduced-GB-eq-one-dgrad-p-set:
assumes dickson-grading d and F ⊆ punit.dgrad-p-set d m
shows ideal F = UNIV ←→ punit.reduced-GB F = {1}

proof −
have fin: finite (local.punit.component-of-term ‘ Keys F) by simp
show ?thesis
proof

assume ideal F = UNIV
from assms(1) fin assms(2) show punit.reduced-GB F = {1}
proof (rule punit.reduced-GB-unique-dgrad-p-set)

show punit.is-reduced-GB {1} unfolding punit.is-reduced-GB-def
proof (intro conjI , fact punit.is-Groebner-basis-singleton)

show punit.is-auto-reduced {1} unfolding punit.is-auto-reduced-def
by (rule ballI , simp add: remove-def punit.not-is-red-empty)

next
show punit.is-monic-set {1}

by (rule punit.is-monic-setI , simp del: single-one add: single-one[symmetric])
qed simp

next
have punit.pmdl {1} = ideal {1} by simp
also have ... = ideal F
proof (simp only: ‹ideal F = UNIV › ideal-eq-UNIV-iff-contains-one)

have 1 ∈ {1} ..
with module-times show 1 ∈ ideal {1} by (rule module.span-base)

308

qed
also have ... = punit.pmdl F by simp
finally show punit.pmdl {1} = punit.pmdl F .

qed
next

assume punit.reduced-GB F = {1}
hence 1 ∈ punit.reduced-GB F by simp
hence 1 ∈ punit.pmdl (punit.reduced-GB F) by (rule punit.pmdl.span-base)

also from assms(1) fin assms(2) have ... = punit.pmdl F by (rule punit.reduced-GB-pmdl-dgrad-p-set)
finally show ideal F = UNIV by (simp add: ideal-eq-UNIV-iff-contains-one)

qed
qed

lemmas ideal-eq-UNIV-iff-reduced-GB-eq-one-finite =
ideal-eq-UNIV-iff-reduced-GB-eq-one-dgrad-p-set[OF dickson-grading-dgrad-dummy

punit.dgrad-p-set-exhaust-expl]

end

13.2.6 Context od-term
context od-term
begin

lemmas ex-unique-reduced-GB =
ex-unique-reduced-GB-dgrad-p-set ′[OF dickson-grading-zero - subset-dgrad-p-set-zero]

lemmas finite-reduced-GB =
finite-reduced-GB-dgrad-p-set[OF dickson-grading-zero - subset-dgrad-p-set-zero]

lemmas reduced-GB-is-reduced-GB =
reduced-GB-is-reduced-GB-dgrad-p-set[OF dickson-grading-zero - subset-dgrad-p-set-zero]

lemmas reduced-GB-is-GB =
reduced-GB-is-GB-dgrad-p-set[OF dickson-grading-zero - subset-dgrad-p-set-zero]

lemmas reduced-GB-is-auto-reduced =
reduced-GB-is-auto-reduced-dgrad-p-set[OF dickson-grading-zero - subset-dgrad-p-set-zero]

lemmas reduced-GB-is-monic-set =
reduced-GB-is-monic-set-dgrad-p-set[OF dickson-grading-zero - subset-dgrad-p-set-zero]

lemmas reduced-GB-nonzero =
reduced-GB-nonzero-dgrad-p-set[OF dickson-grading-zero - subset-dgrad-p-set-zero]

lemmas reduced-GB-pmdl =
reduced-GB-pmdl-dgrad-p-set[OF dickson-grading-zero - subset-dgrad-p-set-zero]

lemmas reduced-GB-unique =
reduced-GB-unique-dgrad-p-set[OF dickson-grading-zero - subset-dgrad-p-set-zero]

end

end

309

14 Sample Computations of Reduced Gröbner Bases
theory Reduced-GB-Examples
imports Buchberger Reduced-GB Polynomials.MPoly-Type-Class-OAlist Code-Target-Rat

begin

context gd-term
begin

definition rgb :: (′t ⇒0
′b) list ⇒ (′t ⇒0

′b::field) list
where rgb bs = comp-red-monic-basis (map fst (gb (map (λb. (b, ())) bs) ()))

definition rgb-punit :: (′a ⇒0
′b) list ⇒ (′a ⇒0

′b::field) list
where rgb-punit bs = punit.comp-red-monic-basis (map fst (gb-punit (map (λb.

(b, ())) bs) ()))

lemma compute-trd-aux [code]:
trd-aux fs p r =
(if is-zero p then

r
else

case find-adds fs (lt p) of
None ⇒ trd-aux fs (tail p) (plus-monomial-less r (lc p) (lt p))
| Some f ⇒ trd-aux fs (tail p − monom-mult (lc p / lc f) (lp p − lp f) (tail

f)) r
)

by (simp only: trd-aux.simps[of fs p r] plus-monomial-less-def is-zero-def)

end

We only consider scalar polynomials here, but vector-polynomials could be
handled, too.
global-interpretation punit ′: gd-powerprod ord-pp-punit cmp-term ord-pp-strict-punit
cmp-term

rewrites punit.adds-term = (adds)
and punit.pp-of-term = (λx. x)
and punit.component-of-term = (λ-. ())
and punit.monom-mult = monom-mult-punit
and punit.mult-scalar = mult-scalar-punit
and punit ′.punit.min-term = min-term-punit
and punit ′.punit.lt = lt-punit cmp-term
and punit ′.punit.lc = lc-punit cmp-term
and punit ′.punit.tail = tail-punit cmp-term
and punit ′.punit.ord-p = ord-p-punit cmp-term
and punit ′.punit.ord-strict-p = ord-strict-p-punit cmp-term
for cmp-term :: (′a::nat, ′b::{nat,add-wellorder}) pp nat-term-order

defines find-adds-punit = punit ′.punit.find-adds
and trd-aux-punit = punit ′.punit.trd-aux

310

and trd-punit = punit ′.punit.trd
and spoly-punit = punit ′.punit.spoly
and count-const-lt-components-punit = punit ′.punit.count-const-lt-components
and count-rem-components-punit = punit ′.punit.count-rem-components
and const-lt-component-punit = punit ′.punit.const-lt-component
and full-gb-punit = punit ′.punit.full-gb
and add-pairs-single-sorted-punit = punit ′.punit.add-pairs-single-sorted
and add-pairs-punit = punit ′.punit.add-pairs
and canon-pair-order-aux-punit = punit ′.punit.canon-pair-order-aux
and canon-basis-order-punit = punit ′.punit.canon-basis-order
and new-pairs-sorted-punit = punit ′.punit.new-pairs-sorted
and product-crit-punit = punit ′.punit.product-crit
and chain-ncrit-punit = punit ′.punit.chain-ncrit
and chain-ocrit-punit = punit ′.punit.chain-ocrit
and apply-icrit-punit = punit ′.punit.apply-icrit
and apply-ncrit-punit = punit ′.punit.apply-ncrit
and apply-ocrit-punit = punit ′.punit.apply-ocrit
and trdsp-punit = punit ′.punit.trdsp
and gb-sel-punit = punit ′.punit.gb-sel
and gb-red-aux-punit = punit ′.punit.gb-red-aux
and gb-red-punit = punit ′.punit.gb-red
and gb-aux-punit = punit ′.punit.gb-aux-punit
and gb-punit = punit ′.punit.gb-punit — Faster, because incorporates product

criterion.
and comp-min-basis-punit = punit ′.punit.comp-min-basis
and comp-red-basis-aux-punit = punit ′.punit.comp-red-basis-aux
and comp-red-basis-punit = punit ′.punit.comp-red-basis
and monic-punit = punit ′.punit.monic
and comp-red-monic-basis-punit = punit ′.punit.comp-red-monic-basis
and rgb-punit = punit ′.punit.rgb-punit
subgoal by (fact gd-powerprod-ord-pp-punit)
subgoal by (fact punit-adds-term)
subgoal by (simp add: id-def)
subgoal by (fact punit-component-of-term)
subgoal by (simp only: monom-mult-punit-def)
subgoal by (simp only: mult-scalar-punit-def)
subgoal using min-term-punit-def by fastforce
subgoal by (simp only: lt-punit-def ord-pp-punit-alt)
subgoal by (simp only: lc-punit-def ord-pp-punit-alt)
subgoal by (simp only: tail-punit-def ord-pp-punit-alt)
subgoal by (simp only: ord-p-punit-def ord-pp-strict-punit-alt)
subgoal by (simp only: ord-strict-p-punit-def ord-pp-strict-punit-alt)
done

lemma compute-spoly-punit [code]:
spoly-punit to p q = (let t1 = lt-punit to p; t2 = lt-punit to q; l = lcs t1 t2 in

(monom-mult-punit (1 / lc-punit to p) (l − t1) p) − (monom-mult-punit
(1 / lc-punit to q) (l − t2) q))

by (simp add: punit ′.punit.spoly-def Let-def punit ′.punit.lc-def)

311

lemma compute-trd-punit [code]: trd-punit to fs p = trd-aux-punit to fs p (change-ord
to 0)

by (simp only: punit ′.punit.trd-def change-ord-def)

experiment begin interpretation trivariate0-rat .

lemma
rgb-punit DRLEX
[
X ^ 3 − X ∗ Y ∗ Z2,
Y 2 ∗ Z − 1
] =
[
X ^ 3 ∗ Y − X ∗ Z ,
− (X ^ 3) + X ∗ Y ∗ Z2,
Y 2 ∗ Z − 1 ,
− (X ∗ Z ^ 3) + X ^ 5
]

by eval

lemma
rgb-punit DRLEX
[
X2 + Y 2 + Z2 − 1 ,
X ∗ Y − Z − 1 ,
Y 2 + X ,
Z2 + X
] =
[
1
]

by eval

Note: The above computations have been cross-checked with Mathematica
11.1.
end

end

15 Macaulay Matrices
theory Macaulay-Matrix
imports More-MPoly-Type-Class Jordan-Normal-Form.Gauss-Jordan-Elimination

begin

We build upon vectors and matrices represented by dimension and character-
istic function, because later on we need to quantify the dimensions of certain

312

matrices existentially. This is not possible (at least not easily possible) with
a type-based approach, as in HOL-Multivariate Analysis.

15.1 More about Vectors
lemma vec-of-list-alt: vec-of-list xs = vec (length xs) (nth xs)

by (transfer , rule refl)

lemma vec-cong:
assumes n = m and

∧
i. i < m =⇒ f i = g i

shows vec n f = vec m g
using assms by auto

lemma scalar-prod-comm:
assumes dim-vec v = dim-vec w
shows v · w = w · (v:: ′a::comm-semiring-0 vec)
by (simp add: scalar-prod-def assms, rule sum.cong, rule refl, simp only: ac-simps)

lemma vec-scalar-mult-fun: vec n (λx. c ∗ f x) = c ·v vec n f
by (simp add: smult-vec-def , rule vec-cong, rule refl, simp)

definition mult-vec-mat :: ′a vec ⇒ ′a :: semiring-0 mat ⇒ ′a vec (infixl v∗ 70)
where v v∗ A ≡ vec (dim-col A) (λj. v · col A j)

definition resize-vec :: nat ⇒ ′a vec ⇒ ′a vec
where resize-vec n v = vec n (vec-index v)

lemma dim-resize-vec[simp]: dim-vec (resize-vec n v) = n
by (simp add: resize-vec-def)

lemma resize-vec-carrier : resize-vec n v ∈ carrier-vec n
by (simp add: carrier-dim-vec)

lemma resize-vec-dim[simp]: resize-vec (dim-vec v) v = v
by (simp add: resize-vec-def eq-vecI)

lemma resize-vec-index:
assumes i < n
shows resize-vec n v $ i = v $ i
using assms by (simp add: resize-vec-def)

lemma mult-mat-vec-resize:
v v∗ A = (resize-vec (dim-row A) v) v∗ A
by (simp add: mult-vec-mat-def scalar-prod-def , rule arg-cong2 [of - - - - vec],

rule, rule,
rule sum.cong, rule, simp add: resize-vec-index)

lemma assoc-mult-vec-mat:
assumes v ∈ carrier-vec n1 and A ∈ carrier-mat n1 n2 and B ∈ carrier-mat

313

n2 n3
shows v v∗ (A ∗ B) = (v v∗ A) v∗ B
using assms by (intro eq-vecI , auto simp add: mult-vec-mat-def mult-mat-vec-def

assoc-scalar-prod)

lemma mult-vec-mat-transpose:
assumes dim-vec v = dim-row A
shows v v∗ A = (transpose-mat A) ∗v (v:: ′a::comm-semiring-0 vec)

proof (simp add: mult-vec-mat-def mult-mat-vec-def , rule vec-cong, rule refl, simp)
fix j
show v · col A j = col A j · v by (rule scalar-prod-comm, simp add: assms)

qed

15.2 More about Matrices
definition nzrows :: ′a::zero mat ⇒ ′a vec list

where nzrows A = filter (λr . r 6= 0 v (dim-col A)) (rows A)

definition row-space :: ′a mat ⇒ ′a::semiring-0 vec set
where row-space A = (λv. mult-vec-mat v A) ‘ (carrier-vec (dim-row A))

definition row-echelon :: ′a mat ⇒ ′a::field mat
where row-echelon A = fst (gauss-jordan A (1m (dim-row A)))

15.2.1 nzrows
lemma length-nzrows: length (nzrows A) ≤ dim-row A

by (simp add: nzrows-def length-rows[symmetric] del: length-rows)

lemma set-nzrows: set (nzrows A) = set (rows A) − {0 v (dim-col A)}
by (auto simp add: nzrows-def)

lemma nzrows-nth-not-zero:
assumes i < length (nzrows A)
shows nzrows A ! i 6= 0 v (dim-col A)
using assms unfolding nzrows-def using nth-mem by force

15.2.2 row-space
lemma row-spaceI :

assumes x = v v∗ A
shows x ∈ row-space A
unfolding row-space-def assms by (rule, fact mult-mat-vec-resize, fact resize-vec-carrier)

lemma row-spaceE :
assumes x ∈ row-space A
obtains v where v ∈ carrier-vec (dim-row A) and x = v v∗ A
using assms unfolding row-space-def by auto

lemma row-space-alt: row-space A = range (λv. mult-vec-mat v A)

314

proof
show row-space A ⊆ range (λv. v v∗ A) unfolding row-space-def by auto

next
show range (λv. v v∗ A) ⊆ row-space A
proof

fix x
assume x ∈ range (λv. v v∗ A)
then obtain v where x = v v∗ A ..
thus x ∈ row-space A by (rule row-spaceI)

qed
qed

lemma row-space-mult:
assumes A ∈ carrier-mat nr nc and B ∈ carrier-mat nr nr
shows row-space (B ∗ A) ⊆ row-space A

proof
from assms(2) assms(1) have B ∗ A ∈ carrier-mat nr nc by (rule mult-carrier-mat)
hence nr = dim-row (B ∗ A) by blast
fix x
assume x ∈ row-space (B ∗ A)
then obtain v where v ∈ carrier-vec nr and x: x = v v∗ (B ∗ A)

unfolding ‹nr = dim-row (B ∗ A)› by (rule row-spaceE)
from this(1) assms(2) assms(1) have x = (v v∗ B) v∗ A unfolding x by (rule

assoc-mult-vec-mat)
thus x ∈ row-space A by (rule row-spaceI)

qed

lemma row-space-mult-unit:
assumes P ∈ Units (ring-mat TYPE(′a::semiring-1) (dim-row A) b)
shows row-space (P ∗ A) = row-space A

proof −
have A: A ∈ carrier-mat (dim-row A) (dim-col A) by simp
from assms have P: P ∈ carrier (ring-mat TYPE(′a) (dim-row A) b) and
∗: ∃Q∈(carrier (ring-mat TYPE(′a) (dim-row A) b)).

Q ⊗ring-mat TYPE(′a) (dim-row A) b P = 1ring-mat TYPE(′a) (dim-row A) b
unfolding Units-def by auto

from P have P-in: P ∈ carrier-mat (dim-row A) (dim-row A) by (simp add:
ring-mat-def)

from ∗ obtain Q where Q ∈ carrier (ring-mat TYPE(′a) (dim-row A) b)
and Q ⊗ring-mat TYPE(′a) (dim-row A) b P = 1ring-mat TYPE(′a) (dim-row A) b

..
hence Q-in: Q ∈ carrier-mat (dim-row A) (dim-row A) and QP: Q ∗ P = 1m

(dim-row A)
by (simp-all add: ring-mat-def)

show ?thesis
proof

from A P-in show row-space (P ∗ A) ⊆ row-space A by (rule row-space-mult)
next

from A P-in Q-in have Q ∗ (P ∗ A) = (Q ∗ P) ∗ A by (simp only: as-

315

soc-mult-mat)
also from A have ... = A by (simp add: QP)
finally have eq: row-space A = row-space (Q ∗ (P ∗ A)) by simp
show row-space A ⊆ row-space (P ∗ A) unfolding eq by (rule row-space-mult,

rule mult-carrier-mat, fact+)
qed

qed

15.2.3 row-echelon
lemma row-eq-zero-iff-pivot-fun:

assumes pivot-fun A f (dim-col A) and i < dim-row (A:: ′a::zero-neq-one mat)
shows (row A i = 0 v (dim-col A)) ←→ (f i = dim-col A)

proof −
have ∗: dim-row A = dim-row A ..
show ?thesis
proof

assume a: row A i = 0 v (dim-col A)
show f i = dim-col A
proof (rule ccontr)

assume f i 6= dim-col A
with pivot-funD(1)[OF ∗ assms] have ∗∗: f i < dim-col A by simp
with ∗ assms have A $$ (i, f i) = 1 by (rule pivot-funD)
with ∗∗ assms(2) have row A i $ (f i) = 1 by simp
hence (1 :: ′a) = (0 v (dim-col A)) $ (f i) by (simp only: a)
also have ... = (0 :: ′a) using ∗∗ by simp
finally show False by simp

qed
next

assume a: f i = dim-col A
show row A i = 0 v (dim-col A)
proof (rule, simp-all add: assms(2))

fix j
assume j < dim-col A
hence j < f i by (simp only: a)
with ∗ assms show A $$ (i, j) = 0 by (rule pivot-funD)

qed
qed

qed

lemma row-not-zero-iff-pivot-fun:
assumes pivot-fun A f (dim-col A) and i < dim-row (A:: ′a::zero-neq-one mat)
shows (row A i 6= 0 v (dim-col A)) ←→ (f i < dim-col A)

proof (simp only: row-eq-zero-iff-pivot-fun[OF assms])
have f i ≤ dim-col A by (rule pivot-funD[where ?f = f], rule refl, fact+)
thus (f i 6= dim-col A) = (f i < dim-col A) by auto

qed

lemma pivot-fun-stabilizes:

316

assumes pivot-fun A f nc and i1 ≤ i2 and i2 < dim-row A and nc ≤ f i1
shows f i2 = nc

proof −
from assms(2) have i2 = i1 + (i2 − i1) by simp
then obtain k where i2 = i1 + k ..
from assms(3) assms(4) show ?thesis unfolding ‹i2 = i1 + k›
proof (induct k arbitrary: i1)

case 0
from this(1) have i1 < dim-row A by simp
from - assms(1) this have f i1 ≤ nc by (rule pivot-funD, intro refl)
with ‹nc ≤ f i1 › show ?case by simp

next
case (Suc k)
from Suc(2) have Suc (i1 + k) < dim-row A by simp
hence Suc i1 + k < dim-row A by simp
hence Suc i1 < dim-row A by simp
hence i1 < dim-row A by simp
have nc ≤ f (Suc i1)
proof −

have f i1 < f (Suc i1) ∨ f (Suc i1) = nc by (rule pivot-funD, rule refl,
fact+)

with Suc(3) show ?thesis by auto
qed
with ‹Suc i1 + k < dim-row A› have f (Suc i1 + k) = nc by (rule Suc(1))
thus ?case by simp

qed
qed

lemma pivot-fun-mono-strict:
assumes pivot-fun A f nc and i1 < i2 and i2 < dim-row A and f i1 < nc
shows f i1 < f i2

proof −
from assms(2) have i2 − i1 6= 0 and i2 = i1 + (i2 − i1) by simp-all
then obtain k where k 6= 0 and i2 = i1 + k ..
from this(1) assms(3) assms(4) show ?thesis unfolding ‹i2 = i1 + k›
proof (induct k arbitrary: i1)

case 0
thus ?case by simp

next
case (Suc k)
from Suc(3) have Suc (i1 + k) < dim-row A by simp
hence Suc i1 + k < dim-row A by simp
hence Suc i1 < dim-row A by simp
hence i1 < dim-row A by simp
have ∗: f i1 < f (Suc i1)
proof −

have f i1 < f (Suc i1) ∨ f (Suc i1) = nc by (rule pivot-funD, rule refl,
fact+)

with Suc(4) show ?thesis by auto

317

qed
show ?case
proof (simp, cases k = 0)

case True
show f i1 < f (Suc (i1 + k)) by (simp add: True ∗)

next
case False
have f (Suc i1) ≤ f (Suc i1 + k)
proof (cases f (Suc i1) < nc)

case True
from False ‹Suc i1 + k < dim-row A› True have f (Suc i1) < f (Suc i1

+ k) by (rule Suc(1))
thus ?thesis by simp

next
case False
hence nc ≤ f (Suc i1) by simp
from assms(1) - ‹Suc i1 + k < dim-row A› this have f (Suc i1 + k) = nc

by (rule pivot-fun-stabilizes[where ?f=f], simp)
moreover have f (Suc i1) = nc by (rule pivot-fun-stabilizes[where ?f=f],

fact, rule le-refl, fact+)
ultimately show ?thesis by simp

qed
also have ... = f (i1 + Suc k) by simp
finally have f (Suc i1) ≤ f (i1 + Suc k) .
with ∗ show f i1 < f (Suc (i1 + k)) by simp

qed
qed

qed

lemma pivot-fun-mono:
assumes pivot-fun A f nc and i1 ≤ i2 and i2 < dim-row A
shows f i1 ≤ f i2

proof −
from assms(2) have i1 < i2 ∨ i1 = i2 by auto
thus ?thesis
proof

assume i1 < i2
show ?thesis
proof (cases f i1 < nc)

case True
from assms(1) ‹i1 < i2 › assms(3) this have f i1 < f i2 by (rule pivot-fun-mono-strict)

thus ?thesis by simp
next

case False
hence nc ≤ f i1 by simp
from assms(1) - - this have f i1 = nc
proof (rule pivot-fun-stabilizes[where ?f=f], simp)

from assms(2) assms(3) show i1 < dim-row A by (rule le-less-trans)
qed

318

moreover have f i2 = nc by (rule pivot-fun-stabilizes[where ?f=f], fact+)
ultimately show ?thesis by simp

qed
next

assume i1 = i2
thus ?thesis by simp

qed
qed

lemma row-echelon-carrier :
assumes A ∈ carrier-mat nr nc
shows row-echelon A ∈ carrier-mat nr nc

proof −
from assms have dim-row A = nr by simp
let ?B = 1m (dim-row A)
note assms
moreover have ?B ∈ carrier-mat nr nr by (simp add: ‹dim-row A = nr›)
moreover from surj-pair obtain A ′ B ′ where ∗: gauss-jordan A ?B = (A ′, B ′)

by metis
ultimately have A ′ ∈ carrier-mat nr nc by (rule gauss-jordan-carrier)
thus ?thesis by (simp add: row-echelon-def ∗)

qed

lemma dim-row-echelon[simp]:
shows dim-row (row-echelon A) = dim-row A and dim-col (row-echelon A) =

dim-col A
proof −

have A ∈ carrier-mat (dim-row A) (dim-col A) by simp
hence row-echelon A ∈ carrier-mat (dim-row A) (dim-col A) by (rule row-echelon-carrier)
thus dim-row (row-echelon A) = dim-row A and dim-col (row-echelon A) =

dim-col A by simp-all
qed

lemma row-echelon-transform:
obtains P where P ∈ Units (ring-mat TYPE(′a::field) (dim-row A) b) and

row-echelon A = P ∗ A
proof −

let ?B = 1m (dim-row A)
have A ∈ carrier-mat (dim-row A) (dim-col A) by simp
moreover have ?B ∈ carrier-mat (dim-row A) (dim-row A) by simp
moreover from surj-pair obtain A ′ B ′ where ∗: gauss-jordan A ?B = (A ′, B ′)

by metis
ultimately have ∃P∈Units (ring-mat TYPE(′a) (dim-row A) b). A ′ = P ∗ A
∧ B ′ = P ∗ ?B

by (rule gauss-jordan-transform)
then obtain P where P ∈ Units (ring-mat TYPE(′a) (dim-row A) b) and ∗∗:

A ′ = P ∗ A ∧ B ′ = P ∗ ?B ..
from this(1) show ?thesis
proof

319

from ∗∗ have A ′ = P ∗ A ..
thus row-echelon A = P ∗ A by (simp add: row-echelon-def ∗)

qed
qed

lemma row-space-row-echelon[simp]: row-space (row-echelon A) = row-space A
proof −

obtain P where ∗: P ∈ Units (ring-mat TYPE(′a::field) (dim-row A) Nil) and
∗∗: row-echelon A = P ∗ A

by (rule row-echelon-transform)
from ∗ have row-space (P ∗ A) = row-space A by (rule row-space-mult-unit)
thus ?thesis by (simp only: ∗∗)

qed

lemma row-echelon-pivot-fun:
obtains f where pivot-fun (row-echelon A) f (dim-col (row-echelon A))

proof −
let ?B = 1m (dim-row A)
have A ∈ carrier-mat (dim-row A) (dim-col A) by simp
moreover from surj-pair obtain A ′ B ′ where ∗: gauss-jordan A ?B = (A ′, B ′)

by metis
ultimately have row-echelon-form A ′ by (rule gauss-jordan-row-echelon)
then obtain f where pivot-fun A ′ f (dim-col A ′) unfolding row-echelon-form-def

..
hence pivot-fun (row-echelon A) f (dim-col (row-echelon A)) by (simp add:

row-echelon-def ∗)
thus ?thesis ..

qed

lemma distinct-nzrows-row-echelon: distinct (nzrows (row-echelon A))
unfolding nzrows-def

proof (rule distinct-filterI , simp del: dim-row-echelon)
let ?B = row-echelon A
fix i j::nat
assume i < j and j < dim-row ?B
hence i 6= j and i < dim-row ?B by simp-all
assume ri: row ?B i 6= 0 v (dim-col ?B) and rj: row ?B j 6= 0 v (dim-col ?B)
obtain f where pf : pivot-fun ?B f (dim-col ?B) by (fact row-echelon-pivot-fun)
from rj have f j < dim-col ?B by (simp only: row-not-zero-iff-pivot-fun[OF pf

‹j < dim-row ?B›])
from - pf ‹j < dim-row ?B› this ‹i < dim-row ?B› ‹i 6= j› have ∗: ?B $$ (i, f

j) = 0
by (rule pivot-funD(5), intro refl)

show row ?B i 6= row ?B j
proof

assume row ?B i = row ?B j
hence row ?B i $ (f j) = row ?B j $ (f j) by simp
with ‹i < dim-row ?B› ‹j < dim-row ?B› ‹f j < dim-col ?B› have ?B $$ (i, f

j) = ?B $$ (j, f j) by simp

320

also from - pf ‹j < dim-row ?B› ‹f j < dim-col ?B› have ... = 1 by (rule
pivot-funD, intro refl)

finally show False by (simp add: ∗)
qed

qed

15.3 Converting Between Polynomials and Macaulay Matri-
ces

definition poly-to-row :: ′a list ⇒ (′a ⇒0
′b::zero) ⇒ ′b vec where

poly-to-row ts p = vec-of-list (map (lookup p) ts)

definition polys-to-mat :: ′a list ⇒ (′a ⇒0
′b::zero) list ⇒ ′b mat where

polys-to-mat ts ps = mat-of-rows (length ts) (map (poly-to-row ts) ps)

definition list-to-fun :: ′a list ⇒ (′b::zero) list ⇒ ′a ⇒ ′b where
list-to-fun ts cs t = (case map-of (zip ts cs) t of Some c ⇒ c | None ⇒ 0)

definition list-to-poly :: ′a list ⇒ ′b list ⇒ (′a ⇒0
′b::zero) where

list-to-poly ts cs = Abs-poly-mapping (list-to-fun ts cs)

definition row-to-poly :: ′a list ⇒ ′b vec ⇒ (′a ⇒0
′b::zero) where

row-to-poly ts r = list-to-poly ts (list-of-vec r)

definition mat-to-polys :: ′a list ⇒ ′b mat ⇒ (′a ⇒0
′b::zero) list where

mat-to-polys ts A = map (row-to-poly ts) (rows A)

lemma dim-poly-to-row: dim-vec (poly-to-row ts p) = length ts
by (simp add: poly-to-row-def)

lemma poly-to-row-index:
assumes i < length ts
shows poly-to-row ts p $ i = lookup p (ts ! i)
by (simp add: poly-to-row-def vec-of-list-index assms)

context term-powerprod
begin

lemma poly-to-row-scalar-mult:
assumes keys p ⊆ set ts
shows row-to-poly ts (c ·v (poly-to-row ts p)) = c · p

proof −
have eq: (vec (length ts) (λi. c ∗ poly-to-row ts p $ i)) =

(vec (length ts) (λi. c ∗ lookup p (ts ! i)))
by (rule vec-cong, rule, simp only: poly-to-row-index)

have ∗: list-to-fun ts (list-of-vec (c ·v (poly-to-row ts p))) = (λt. c ∗ lookup p t)
proof (rule, simp add: list-to-fun-def smult-vec-def dim-poly-to-row eq,

simp add: map-upt[of λx. c ∗ lookup p x] map-of-zip-map, rule)
fix t

321

assume t /∈ set ts
with assms(1) have t /∈ keys p by auto
thus c ∗ lookup p t = 0 by (simp add: in-keys-iff)

qed
have ∗∗: lookup (Abs-poly-mapping (list-to-fun ts (list-of-vec (c ·v (poly-to-row ts

p))))) =
(λt. c ∗ lookup p t)

proof (simp only: ∗, rule Abs-poly-mapping-inverse, simp, rule finite-subset, rule,
simp)

fix t
assume c ∗ lookup p t 6= 0
hence lookup p t 6= 0 using mult-not-zero by blast
thus t ∈ keys p by (simp add: in-keys-iff)

qed (fact finite-keys)
show ?thesis unfolding row-to-poly-def

by (rule poly-mapping-eqI) (simp only: list-to-poly-def ∗∗ lookup-map-scale)
qed

lemma poly-to-row-to-poly:
assumes keys p ⊆ set ts
shows row-to-poly ts (poly-to-row ts p) = (p:: ′t ⇒0

′b::semiring-1)
proof −

have 1 ·v (poly-to-row ts p) = poly-to-row ts p by simp
thus ?thesis using poly-to-row-scalar-mult[OF assms, of 1] by simp

qed

lemma lookup-list-to-poly: lookup (list-to-poly ts cs) = list-to-fun ts cs
unfolding list-to-poly-def

proof (rule Abs-poly-mapping-inverse, rule, rule finite-subset)
show {x. list-to-fun ts cs x 6= 0} ⊆ set ts
proof (rule, simp)

fix t
assume list-to-fun ts cs t 6= 0
then obtain c where map-of (zip ts cs) t = Some c unfolding list-to-fun-def

by fastforce
thus t ∈ set ts by (meson in-set-zipE map-of-SomeD)

qed
qed simp

lemma list-to-fun-Nil [simp]: list-to-fun [] cs = 0
by (simp only: zero-fun-def , rule, simp add: list-to-fun-def)

lemma list-to-poly-Nil [simp]: list-to-poly [] cs = 0
by (rule poly-mapping-eqI , simp add: lookup-list-to-poly)

lemma row-to-poly-Nil [simp]: row-to-poly [] r = 0
by (simp only: row-to-poly-def , fact list-to-poly-Nil)

lemma lookup-row-to-poly:

322

assumes distinct ts and dim-vec r = length ts and i < length ts
shows lookup (row-to-poly ts r) (ts ! i) = r $ i

proof (simp only: row-to-poly-def lookup-list-to-poly)
from assms(2) assms(3) have i < dim-vec r by simp
have map-of (zip ts (list-of-vec r)) (ts ! i) = Some ((list-of-vec r) ! i)

by (rule map-of-zip-nth, simp-all only: length-list-of-vec assms(2), fact, fact)
also have ... = Some (r $ i) by (simp only: list-of-vec-index)
finally show list-to-fun ts (list-of-vec r) (ts ! i) = r $ i by (simp add: list-to-fun-def)

qed

lemma keys-row-to-poly: keys (row-to-poly ts r) ⊆ set ts
proof

fix t
assume t ∈ keys (row-to-poly ts r)
hence lookup (row-to-poly ts r) t 6= 0 by (simp add: in-keys-iff)
thus t ∈ set ts
proof (simp add: row-to-poly-def lookup-list-to-poly list-to-fun-def del: lookup-not-eq-zero-eq-in-keys

split: option.splits)
fix c
assume map-of (zip ts (list-of-vec r)) t = Some c
thus t ∈ set ts by (meson in-set-zipE map-of-SomeD)

qed
qed

lemma lookup-row-to-poly-not-zeroE :
assumes lookup (row-to-poly ts r) t 6= 0
obtains i where i < length ts and t = ts ! i

proof −
from assms have t ∈ keys (row-to-poly ts r) by (simp add: in-keys-iff)
have t ∈ set ts by (rule, fact, fact keys-row-to-poly)
then obtain i where i < length ts and t = ts ! i by (metis in-set-conv-nth)
thus ?thesis ..

qed

lemma row-to-poly-zero [simp]: row-to-poly ts (0 v (length ts)) = (0 :: ′t ⇒0
′b::zero)

proof −
have eq: map (λ-. 0 :: ′b) [0 ..<length ts] = map (λ-. 0) ts by (simp add: map-replicate-const)
show ?thesis

by (simp add: row-to-poly-def zero-vec-def , rule poly-mapping-eqI ,
simp add: lookup-list-to-poly list-to-fun-def eq map-of-zip-map)

qed

lemma row-to-poly-zeroD:
assumes distinct ts and dim-vec r = length ts and row-to-poly ts r = 0
shows r = 0 v (length ts)

proof (rule, simp-all add: assms(2))
fix i
assume i < length ts
from assms(3) have 0 = lookup (row-to-poly ts r) (ts ! i) by simp

323

also from assms(1) assms(2) ‹i < length ts› have ... = r $ i by (rule lookup-row-to-poly)
finally show r $ i = 0 by simp

qed

lemma row-to-poly-inj:
assumes distinct ts and dim-vec r1 = length ts and dim-vec r2 = length ts

and row-to-poly ts r1 = row-to-poly ts r2
shows r1 = r2

proof (rule, simp-all add: assms(2) assms(3))
fix i
assume i < length ts
have r1 $ i = lookup (row-to-poly ts r1) (ts ! i)

by (simp only: lookup-row-to-poly[OF assms(1) assms(2) ‹i < length ts›])
also from assms(4) have ... = lookup (row-to-poly ts r2) (ts ! i) by simp
also from assms(1) assms(3) ‹i < length ts› have ... = r2 $ i by (rule

lookup-row-to-poly)
finally show r1 $ i = r2 $ i .

qed

lemma row-to-poly-vec-plus:
assumes distinct ts and length ts = n
shows row-to-poly ts (vec n (f1 + f2)) = row-to-poly ts (vec n f1) + row-to-poly

ts (vec n f2)
proof (rule poly-mapping-eqI)

fix t
show lookup (row-to-poly ts (vec n (f1 + f2))) t =

lookup (row-to-poly ts (vec n f1) + row-to-poly ts (vec n f2)) t
(is lookup ?l t = lookup (?r1 + ?r2) t)

proof (cases t ∈ set ts)
case True

then obtain j where j: j < length ts and t: t = ts ! j by (metis in-set-conv-nth)
have d1 : dim-vec (vec n f1) = length ts and d2 : dim-vec (vec n f2) = length ts

and da: dim-vec (vec n (f1 + f2)) = length ts by (simp-all add: assms(2))
from j have j ′: j < n by (simp only: assms(2))
show ?thesis

by (simp only: t lookup-add lookup-row-to-poly[OF assms(1) d1 j]
lookup-row-to-poly[OF assms(1) d2 j] lookup-row-to-poly[OF assms(1)

da j] index-vec[OF j ′],
simp only: plus-fun-def)

next
case False
with keys-row-to-poly[of ts vec n (f1 + f2)] keys-row-to-poly[of ts vec n f1]

keys-row-to-poly[of ts vec n f2] have t /∈ keys ?l and t /∈ keys ?r1 and t /∈
keys ?r2

by auto
from this(2) this(3) have t /∈ keys (?r1 + ?r2)

by (meson Poly-Mapping.keys-add UnE in-mono)
with ‹t /∈ keys ?l› show ?thesis by (simp add: in-keys-iff)

qed

324

qed

lemma row-to-poly-vec-sum:
assumes distinct ts and length ts = n
shows row-to-poly ts (vec n (λj.

∑
i∈I . f i j)) = ((

∑
i∈I . row-to-poly ts (vec n

(f i))):: ′t ⇒0
′b::comm-monoid-add)

proof (cases finite I)
case True
thus ?thesis
proof (induct I)

case empty
thus ?case by (simp add: zero-vec-def [symmetric] assms(2)[symmetric])

next
case (insert x I)
have row-to-poly ts (vec n (λj.

∑
i∈insert x I . f i j)) = row-to-poly ts (vec n

(λj. f x j + (
∑

i∈I . f i j)))
by (simp add: insert(1) insert(2))

also have ... = row-to-poly ts (vec n (f x + (λj. (
∑

i∈I . f i j)))) by (simp
only: plus-fun-def)

also from assms have ... = row-to-poly ts (vec n (f x)) + row-to-poly ts (vec
n (λj. (

∑
i∈I . f i j)))

by (rule row-to-poly-vec-plus)
also have ... = row-to-poly ts (vec n (f x)) + (

∑
i∈I . row-to-poly ts (vec n (f

i)))
by (simp only: insert(3))

also have ... = (
∑

i∈insert x I . row-to-poly ts (vec n (f i)))
by (simp add: insert(1) insert(2))

finally show ?case .
qed

next
case False
thus ?thesis by (simp add: zero-vec-def [symmetric] assms(2)[symmetric])

qed

lemma row-to-poly-smult:
assumes distinct ts and dim-vec r = length ts
shows row-to-poly ts (c ·v r) = c · (row-to-poly ts r)

proof (rule poly-mapping-eqI , simp only: lookup-map-scale)
fix t
show lookup (row-to-poly ts (c ·v r)) t = c ∗ lookup (row-to-poly ts r) t (is lookup

?l t = c ∗ lookup ?r t)
proof (cases t ∈ set ts)

case True
then obtain j where j: j < length ts and t: t = ts ! j by (metis in-set-conv-nth)
from assms(2) have dm: dim-vec (c ·v r) = length ts by simp
from j have j ′: j < dim-vec r by (simp only: assms(2))
show ?thesis
by (simp add: t lookup-row-to-poly[OF assms j] lookup-row-to-poly[OF assms(1)

dm j] index-smult-vec(1)[OF j ′])

325

next
case False
with keys-row-to-poly[of ts c ·v r] keys-row-to-poly[of ts r] have

t /∈ keys ?l and t /∈ keys ?r by auto
thus ?thesis by (simp add: in-keys-iff)

qed
qed

lemma poly-to-row-Nil [simp]: poly-to-row [] p = vec 0 f
proof −

have dim-vec (poly-to-row [] p) = 0 by (simp add: dim-poly-to-row)
thus ?thesis by auto

qed

lemma polys-to-mat-Nil [simp]: polys-to-mat ts [] = mat 0 (length ts) f
by (simp add: polys-to-mat-def mat-eq-iff)

lemma dim-row-polys-to-mat[simp]: dim-row (polys-to-mat ts ps) = length ps
by (simp add: polys-to-mat-def)

lemma dim-col-polys-to-mat[simp]: dim-col (polys-to-mat ts ps) = length ts
by (simp add: polys-to-mat-def)

lemma polys-to-mat-index:
assumes i < length ps and j < length ts
shows (polys-to-mat ts ps) $$ (i, j) = lookup (ps ! i) (ts ! j)
by (simp add: polys-to-mat-def index-mat(1)[OF assms] mat-of-rows-def nth-map[OF

assms(1)],
rule poly-to-row-index, fact)

lemma row-polys-to-mat:
assumes i < length ps
shows row (polys-to-mat ts ps) i = poly-to-row ts (ps ! i)

proof −
have row (polys-to-mat ts ps) i = (map (poly-to-row ts) ps) ! i unfolding

polys-to-mat-def
proof (rule mat-of-rows-row)

from assms show i < length (map (poly-to-row ts) ps) by simp
next
show map (poly-to-row ts) ps ! i ∈ carrier-vec (length ts) unfolding nth-map[OF

assms]
by (rule carrier-vecI , fact dim-poly-to-row)

qed
also from assms have ... = poly-to-row ts (ps ! i) by (rule nth-map)
finally show ?thesis .

qed

lemma col-polys-to-mat:
assumes j < length ts

326

shows col (polys-to-mat ts ps) j = vec-of-list (map (λp. lookup p (ts ! j)) ps)
by (simp add: vec-of-list-alt col-def , rule vec-cong, rule refl, simp add: polys-to-mat-index

assms)

lemma length-mat-to-polys[simp]: length (mat-to-polys ts A) = dim-row A
by (simp add: mat-to-polys-def mat-to-list-def)

lemma mat-to-polys-nth:
assumes i < dim-row A
shows (mat-to-polys ts A) ! i = row-to-poly ts (row A i)

proof −
from assms have i < length (rows A) by (simp only: length-rows)
thus ?thesis by (simp add: mat-to-polys-def)

qed

lemma Keys-mat-to-polys: Keys (set (mat-to-polys ts A)) ⊆ set ts
proof

fix t
assume t ∈ Keys (set (mat-to-polys ts A))
then obtain p where p ∈ set (mat-to-polys ts A) and t: t ∈ keys p by (rule

in-KeysE)
from this(1) obtain i where i < length (mat-to-polys ts A) and p: p =

(mat-to-polys ts A) ! i
by (metis in-set-conv-nth)

from this(1) have i < dim-row A by simp
with p have p = row-to-poly ts (row A i) by (simp only: mat-to-polys-nth)
with t have t ∈ keys (row-to-poly ts (row A i)) by simp
also have ... ⊆ set ts by (fact keys-row-to-poly)
finally show t ∈ set ts .

qed

lemma polys-to-mat-to-polys:
assumes Keys (set ps) ⊆ set ts
shows mat-to-polys ts (polys-to-mat ts ps) = (ps::(′t ⇒0

′b::semiring-1) list)
unfolding mat-to-polys-def mat-to-list-def

proof (rule nth-equalityI , simp-all)
fix i
assume i < length ps
have ∗: keys (ps ! i) ⊆ set ts

using ‹i < length ps› assms keys-subset-Keys nth-mem by blast
show row-to-poly ts (row (polys-to-mat ts ps) i) = ps ! i

by (simp only: row-polys-to-mat[OF ‹i < length ps›] poly-to-row-to-poly[OF ∗])
qed

lemma mat-to-polys-to-mat:
assumes distinct ts and length ts = dim-col A
shows (polys-to-mat ts (mat-to-polys ts A)) = A

proof
fix i j

327

assume i: i < dim-row A and j: j < dim-col A
hence i ′: i < length (mat-to-polys ts A) and j ′: j < length ts by (simp, simp

only: assms(2))
have r : dim-vec (row A i) = length ts by (simp add: assms(2))
show polys-to-mat ts (mat-to-polys ts A) $$ (i, j) = A $$ (i, j)

by (simp only: polys-to-mat-index[OF i ′ j ′] mat-to-polys-nth[OF ‹i < dim-row
A›]

lookup-row-to-poly[OF assms(1) r j ′] index-row(1)[OF i j])
qed (simp-all add: assms)

15.4 Properties of Macaulay Matrices
lemma row-to-poly-vec-times:

assumes distinct ts and length ts = dim-col A
shows row-to-poly ts (v v∗ A) = ((

∑
i=0 ..<dim-row A. (v $ i) · (row-to-poly ts

(row A i))):: ′t ⇒0
′b::comm-semiring-0)

proof (simp add: mult-vec-mat-def scalar-prod-def row-to-poly-vec-sum[OF assms],
rule sum.cong, rule)

fix i
assume i ∈ {0 ..<dim-row A}
hence i < dim-row A by simp
have dim-vec (row A i) = length ts by (simp add: assms(2))
have ∗: vec (dim-col A) (λj. col A j $ i) = vec (dim-col A) (λj. A $$ (i, j))

by (rule vec-cong, rule refl, simp add: ‹i < dim-row A›)
have vec (dim-col A) (λj. v $ i ∗ col A j $ i) = v $ i ·v vec (dim-col A) (λj. col

A j $ i)
by (simp only: vec-scalar-mult-fun)

also have ... = v $ i ·v (row A i) by (simp only: ∗ row-def [symmetric])
finally show row-to-poly ts (vec (dim-col A) (λj. v $ i ∗ col A j $ i)) =

(v $ i) · (row-to-poly ts (row A i))
by (simp add: row-to-poly-smult[OF assms(1) ‹dim-vec (row A i) = length ts›])

qed

lemma vec-times-polys-to-mat:
assumes Keys (set ps) ⊆ set ts and v ∈ carrier-vec (length ps)
shows row-to-poly ts (v v∗ (polys-to-mat ts ps)) = (

∑
(c, p)←zip (list-of-vec v)

ps. c · p)
(is ?l = ?r)

proof −
from assms have ∗: dim-vec v = length ps by (simp only: carrier-dim-vec)
have eq: map (λi. v · col (polys-to-mat ts ps) i) [0 ..<length ts] =

map (λs. v · (vec-of-list (map (λp. lookup p s) ps))) ts
proof (rule nth-equalityI , simp-all)

fix i
assume i < length ts
hence col (polys-to-mat ts ps) i = vec-of-list (map (λp. lookup p (ts ! i)) ps)

by (rule col-polys-to-mat)
thus v · col (polys-to-mat ts ps) i = v · map-vec (λp. lookup p (ts ! i)) (vec-of-list

ps)

328

by simp
qed
show ?thesis
proof (rule poly-mapping-eqI , simp add: mult-vec-mat-def row-to-poly-def lookup-list-to-poly

eq list-to-fun-def map-of-zip-map lookup-sum-list o-def , intro conjI impI)
fix t
assume t ∈ set ts
have v · vec-of-list (map (λp. lookup p t) ps) =

(
∑

(c, p)←zip (list-of-vec v) ps. lookup (c · p) t)
proof (simp add: scalar-prod-def vec-of-list-index)

have (
∑

i = 0 ..<length ps. v $ i ∗ lookup (ps ! i) t) =
(
∑

i = 0 ..<length ps. (list-of-vec v) ! i ∗ lookup (ps ! i) t)
by (rule sum.cong, rule refl, simp add: ∗)

also have ... = (
∑

(c, p)←zip (list-of-vec v) ps. c ∗ lookup p t)
by (simp only: sum-set-upt-eq-sum-list, rule sum-list-upt-zip, simp only:

length-list-of-vec ∗)
finally show (

∑
i = 0 ..<length ps. v $ i ∗ lookup (ps ! i) t) =

(
∑

(c, p)←zip (list-of-vec v) ps. c ∗ lookup p t) .
qed
thus v · map-vec (λp. lookup p t) (vec-of-list ps) =

(
∑

x←zip (list-of-vec v) ps. lookup (case x of (c, x) ⇒ c · x) t)
by (metis (mono-tags, lifting) case-prod-conv cond-case-prod-eta vec-of-list-map)

next
fix t
assume t /∈ set ts
with assms(1) have t /∈ Keys (set ps) by auto
have (

∑
(c, p)←zip (list-of-vec v) ps. lookup (c · p) t) = 0

proof (rule sum-list-zeroI , rule, simp)
fix x
assume x ∈ (λ(c, p). c ∗ lookup p t) ‘ set (zip (list-of-vec v) ps)
then obtain c p where cp: (c, p) ∈ set (zip (list-of-vec v) ps)

and x: x = c ∗ lookup p t by auto
from cp have p ∈ set ps by (rule set-zip-rightD)
with ‹t /∈ Keys (set ps)› have t /∈ keys p by (auto intro: in-KeysI)
thus x = 0 by (simp add: x in-keys-iff)

qed
thus (

∑
x←zip (list-of-vec v) ps. lookup (case x of (c, x) ⇒ c · x) t) = 0

by (metis (mono-tags, lifting) case-prod-conv cond-case-prod-eta)
qed

qed

lemma row-space-subset-phull:
assumes Keys (set ps) ⊆ set ts
shows row-to-poly ts ‘ row-space (polys-to-mat ts ps) ⊆ phull (set ps)
(is ?r ⊆ ?h)

proof
fix q
assume q ∈ ?r
then obtain x where x1 : x ∈ row-space (polys-to-mat ts ps)

329

and q1 : q = row-to-poly ts x ..
from x1 obtain v where v: v ∈ carrier-vec (dim-row (polys-to-mat ts ps)) and

x: x = v v∗ polys-to-mat ts ps
by (rule row-spaceE)

from v have v ∈ carrier-vec (length ps) by (simp only: dim-row-polys-to-mat)
thm vec-times-polys-to-mat
with x q1 have q: q = (

∑
(c, p)←zip (list-of-vec v) ps. c · p)

by (simp add: vec-times-polys-to-mat[OF assms])
show q ∈ ?h unfolding q by (rule phull.span-listI)

qed

lemma phull-subset-row-space:
assumes Keys (set ps) ⊆ set ts
shows phull (set ps) ⊆ row-to-poly ts ‘ row-space (polys-to-mat ts ps)
(is ?h ⊆ ?r)

proof
fix q
assume q ∈ ?h
then obtain cs where l: length cs = length ps and q: q = (

∑
(c, p)←zip cs ps.

c · p)
by (rule phull.span-listE)

let ?v = vec-of-list cs
from l have ∗: ?v ∈ carrier-vec (length ps) by (simp only: carrier-dim-vec

dim-vec-of-list)
let ?q = ?v v∗ polys-to-mat ts ps
show q ∈ ?r
proof

show q = row-to-poly ts ?q
by (simp add: vec-times-polys-to-mat[OF assms ∗] q list-vec)

next
show ?q ∈ row-space (polys-to-mat ts ps) by (rule row-spaceI , rule)

qed
qed

lemma row-space-eq-phull:
assumes Keys (set ps) ⊆ set ts
shows row-to-poly ts ‘ row-space (polys-to-mat ts ps) = phull (set ps)
by (rule, rule row-space-subset-phull, fact, rule phull-subset-row-space, fact)

lemma row-space-row-echelon-eq-phull:
assumes Keys (set ps) ⊆ set ts
shows row-to-poly ts ‘ row-space (row-echelon (polys-to-mat ts ps)) = phull (set

ps)
by (simp add: row-space-eq-phull[OF assms])

lemma phull-row-echelon:
assumes Keys (set ps) ⊆ set ts and distinct ts
shows phull (set (mat-to-polys ts (row-echelon (polys-to-mat ts ps)))) = phull

(set ps)

330

proof −
have len-ts: length ts = dim-col (row-echelon (polys-to-mat ts ps)) by simp
have ∗: Keys (set (mat-to-polys ts (row-echelon (polys-to-mat ts ps)))) ⊆ set ts

by (fact Keys-mat-to-polys)
show ?thesis

by (simp only: row-space-eq-phull[OF ∗, symmetric] mat-to-polys-to-mat[OF
assms(2) len-ts],

rule row-space-row-echelon-eq-phull, fact)
qed

lemma pmdl-row-echelon:
assumes Keys (set ps) ⊆ set ts and distinct ts
shows pmdl (set (mat-to-polys ts (row-echelon (polys-to-mat ts ps)))) = pmdl

(set ps)
(is ?l = ?r)

proof
show ?l ⊆ ?r

by (rule pmdl.span-subset-spanI , rule subset-trans, rule phull.span-superset,
simp only: phull-row-echelon[OF assms] phull-subset-module)

next
show ?r ⊆ ?l

by (rule pmdl.span-subset-spanI , rule subset-trans, rule phull.span-superset,
simp only: phull-row-echelon[OF assms, symmetric] phull-subset-module)

qed

end

context ordered-term
begin

lemma lt-row-to-poly-pivot-fun:
assumes card S = dim-col (A:: ′b::semiring-1 mat) and pivot-fun A f (dim-col

A)
and i < dim-row A and f i < dim-col A

shows lt ((mat-to-polys (pps-to-list S) A) ! i) = (pps-to-list S) ! (f i)
proof −

let ?ts = pps-to-list S
have len-ts: length ?ts = dim-col A by (simp add: length-pps-to-list assms(1))
show ?thesis
proof (simp add: mat-to-polys-nth[OF assms(3)], rule lt-eqI)

have lookup (row-to-poly ?ts (row A i)) (?ts ! f i) = (row A i) $ (f i)
by (rule lookup-row-to-poly, fact distinct-pps-to-list, simp-all add: len-ts

assms(4))
also have ... = A $$ (i, f i) using assms(3) assms(4) by simp
also have ... = 1 by (rule pivot-funD, rule refl, fact+)
finally show lookup (row-to-poly ?ts (row A i)) (?ts ! f i) 6= 0 by simp

next
fix u
assume a: lookup (row-to-poly ?ts (row A i)) u 6= 0

331

then obtain j where j: j < length ?ts and u: u = ?ts ! j
by (rule lookup-row-to-poly-not-zeroE)

from j have j < card S and j < dim-col A by (simp only: length-pps-to-list,
simp only: len-ts)

from a have 0 6= lookup (row-to-poly ?ts (row A i)) (?ts ! j) by (simp add: u)
also have lookup (row-to-poly ?ts (row A i)) (?ts ! j) = (row A i) $ j

by (rule lookup-row-to-poly, fact distinct-pps-to-list, simp add: len-ts, fact)
finally have A $$ (i, j) 6= 0 using assms(3) ‹j < dim-col A› by simp
from - ‹j < card S› show u �t ?ts ! f i unfolding u
proof (rule pps-to-list-nth-leI)

show f i ≤ j
proof (rule ccontr)

assume ¬ f i ≤ j
hence j < f i by simp
have A $$ (i, j) = 0 by (rule pivot-funD, rule refl, fact+)
with ‹A $$ (i, j) 6= 0 › show False ..

qed
qed

qed
qed

lemma lc-row-to-poly-pivot-fun:
assumes card S = dim-col (A:: ′b::semiring-1 mat) and pivot-fun A f (dim-col

A)
and i < dim-row A and f i < dim-col A

shows lc ((mat-to-polys (pps-to-list S) A) ! i) = 1
proof −

let ?ts = pps-to-list S
have len-ts: length ?ts = dim-col A by (simp only: length-pps-to-list assms(1))
have lookup (row-to-poly ?ts (row A i)) (?ts ! f i) = (row A i) $ (f i)
by (rule lookup-row-to-poly, fact distinct-pps-to-list, simp-all add: len-ts assms(4))

also have ... = A $$ (i, f i) using assms(3) assms(4) by simp
finally have eq: lookup (row-to-poly ?ts (row A i)) (?ts ! f i) = A $$ (i, f i) .
show ?thesis
by (simp only: lc-def lt-row-to-poly-pivot-fun[OF assms], simp only: mat-to-polys-nth[OF

assms(3)] eq,
rule pivot-funD, rule refl, fact+)

qed

lemma lt-row-to-poly-pivot-fun-less:
assumes card S = dim-col (A:: ′b::semiring-1 mat) and pivot-fun A f (dim-col

A)
and i1 < i2 and i2 < dim-row A and f i1 < dim-col A and f i2 < dim-col A

shows (pps-to-list S) ! (f i2) ≺t (pps-to-list S) ! (f i1)
proof −

let ?ts = pps-to-list S
have len-ts: length ?ts = dim-col A by (simp add: length-pps-to-list assms(1))
from assms(3) assms(4) have i1 < dim-row A by simp
show ?thesis

332

by (rule pps-to-list-nth-lessI , rule pivot-fun-mono-strict[where ?f=f], fact, fact,
fact, fact,

simp only: assms(1) assms(6))
qed

lemma lt-row-to-poly-pivot-fun-eqD:
assumes card S = dim-col (A:: ′b::semiring-1 mat) and pivot-fun A f (dim-col

A)
and i1 < dim-row A and i2 < dim-row A and f i1 < dim-col A and f i2 <

dim-col A
and (pps-to-list S) ! (f i1) = (pps-to-list S) ! (f i2)

shows i1 = i2
proof (rule linorder-cases)

assume i1 < i2
from assms(1) assms(2) this assms(4) assms(5) assms(6) have
(pps-to-list S) ! (f i2) ≺t (pps-to-list S) ! (f i1) by (rule lt-row-to-poly-pivot-fun-less)

with assms(7) show ?thesis by auto
next

assume i2 < i1
from assms(1) assms(2) this assms(3) assms(6) assms(5) have
(pps-to-list S) ! (f i1) ≺t (pps-to-list S) ! (f i2) by (rule lt-row-to-poly-pivot-fun-less)

with assms(7) show ?thesis by auto
qed

lemma lt-row-to-poly-pivot-in-keysD:
assumes card S = dim-col (A:: ′b::semiring-1 mat) and pivot-fun A f (dim-col

A)
and i1 < dim-row A and i2 < dim-row A and f i1 < dim-col A
and (pps-to-list S) ! (f i1) ∈ keys ((mat-to-polys (pps-to-list S) A) ! i2)

shows i1 = i2
proof (rule ccontr)

assume i1 6= i2
hence i2 6= i1 by simp
let ?ts = pps-to-list S
have len-ts: length ?ts = dim-col A by (simp only: length-pps-to-list assms(1))
from assms(6) have 0 6= lookup (row-to-poly ?ts (row A i2)) (?ts ! (f i1))

by (auto simp: mat-to-polys-nth[OF assms(4)])
also have lookup (row-to-poly ?ts (row A i2)) (?ts ! (f i1)) = (row A i2) $ (f i1)
by (rule lookup-row-to-poly, fact distinct-pps-to-list, simp-all add: len-ts assms(5))

finally have A $$ (i2 , f i1) 6= 0 using assms(4) assms(5) by simp
moreover have A $$ (i2 , f i1) = 0 by (rule pivot-funD(5), rule refl, fact+)
ultimately show False ..

qed

lemma lt-row-space-pivot-fun:
assumes card S = dim-col (A:: ′b::{comm-semiring-0 ,semiring-1-no-zero-divisors}

mat)
and pivot-fun A f (dim-col A) and p ∈ row-to-poly (pps-to-list S) ‘ row-space

A and p 6= 0

333

shows lt p ∈ lt-set (set (mat-to-polys (pps-to-list S) A))
proof −

let ?ts = pps-to-list S
let ?I = {0 ..<dim-row A}
have len-ts: length ?ts = dim-col A by (simp add: length-pps-to-list assms(1))
from assms(3) obtain x where x ∈ row-space A and p: p = row-to-poly ?ts x

..
from this(1) obtain v where v ∈ carrier-vec (dim-row A) and x: x = v v∗ A

by (rule row-spaceE)

have p ′: p = (
∑

i∈?I . (v $ i) · (row-to-poly ?ts (row A i)))
unfolding p x by (rule row-to-poly-vec-times, fact distinct-pps-to-list, fact

len-ts)

have lt (
∑

i = 0 ..<dim-row A. (v $ i) · (row-to-poly ?ts (row A i)))
∈ lt-set ((λi. (v $ i) · (row-to-poly ?ts (row A i))) ‘ {0 ..<dim-row A})

proof (rule lt-sum-distinct-in-lt-set, rule, simp add: p ′[symmetric] ‹p 6= 0 ›)
fix i1 i2
let ?p1 = (v $ i1) · (row-to-poly ?ts (row A i1))
let ?p2 = (v $ i2) · (row-to-poly ?ts (row A i2))
assume i1 ∈ ?I and i2 ∈ ?I
hence i1 < dim-row A and i2 < dim-row A by simp-all

assume ?p1 6= 0
hence v $ i1 6= 0 and row-to-poly ?ts (row A i1) 6= 0 by auto
hence row A i1 6= 0 v (length ?ts) by auto
hence f i1 < dim-col A

by (simp add: len-ts row-not-zero-iff-pivot-fun[OF assms(2) ‹i1 < dim-row
A›])

have lt ?p1 = lt (row-to-poly ?ts (row A i1)) by (rule lt-map-scale, fact)
also have ... = lt ((mat-to-polys ?ts A) ! i1) by (simp only: mat-to-polys-nth[OF

‹i1 < dim-row A›])
also have ... = ?ts ! (f i1) by (rule lt-row-to-poly-pivot-fun, fact+)
finally have lt1 : lt ?p1 = ?ts ! (f i1) .

assume ?p2 6= 0
hence v $ i2 6= 0 and row-to-poly ?ts (row A i2) 6= 0 by auto
hence row A i2 6= 0 v (length ?ts) by auto
hence f i2 < dim-col A

by (simp add: len-ts row-not-zero-iff-pivot-fun[OF assms(2) ‹i2 < dim-row
A›])

have lt ?p2 = lt (row-to-poly ?ts (row A i2)) by (rule lt-map-scale, fact)
also have ... = lt ((mat-to-polys ?ts A) ! i2) by (simp only: mat-to-polys-nth[OF

‹i2 < dim-row A›])
also have ... = ?ts ! (f i2) by (rule lt-row-to-poly-pivot-fun, fact+)
finally have lt2 : lt ?p2 = ?ts ! (f i2) .

assume lt ?p1 = lt ?p2
with assms(1) assms(2) ‹i1 < dim-row A› ‹i2 < dim-row A› ‹f i1 < dim-col

334

A› ‹f i2 < dim-col A›
show i1 = i2 unfolding lt1 lt2 by (rule lt-row-to-poly-pivot-fun-eqD)

qed
also have ... ⊆ lt-set ((λi. row-to-poly ?ts (row A i)) ‘ {0 ..<dim-row A})
proof

fix s
assume s ∈ lt-set ((λi. (v $ i) · (row-to-poly ?ts (row A i))) ‘ {0 ..<dim-row

A})
then obtain f

where f ∈ (λi. (v $ i) · (row-to-poly ?ts (row A i))) ‘ {0 ..<dim-row A}
and f 6= 0 and lt f = s by (rule lt-setE)

from this(1) obtain i where i ∈ {0 ..<dim-row A}
and f : f = (v $ i) · (row-to-poly ?ts (row A i)) ..

from this(2) ‹f 6= 0 › have v $ i 6= 0 and ∗∗: row-to-poly ?ts (row A i) 6= 0
by auto

from ‹lt f = s› have s = lt ((v $ i) · (row-to-poly ?ts (row A i))) by (simp
only: f)

also from ‹v $ i 6= 0 › have ... = lt (row-to-poly ?ts (row A i)) by (rule
lt-map-scale)

finally have s: s = lt (row-to-poly ?ts (row A i)) .
show s ∈ lt-set ((λi. row-to-poly ?ts (row A i)) ‘ {0 ..<dim-row A})

unfolding s by (rule lt-setI , rule, rule refl, fact+)
qed
also have ... = lt-set ((λr . row-to-poly ?ts r) ‘ (row A ‘ {0 ..<dim-row A}))

by (simp only: image-comp o-def)
also have ... = lt-set (set (map (λr . row-to-poly ?ts r) (map (row A) [0 ..<dim-row

A])))
by (metis image-set set-upt)

also have ... = lt-set (set (mat-to-polys ?ts A)) by (simp only: mat-to-polys-def
rows-def)

finally show ?thesis unfolding p ′ .
qed

15.5 Functions Macaulay-mat and Macaulay-list
definition Macaulay-mat :: (′t ⇒0

′b) list ⇒ ′b::field mat
where Macaulay-mat ps = polys-to-mat (Keys-to-list ps) ps

definition Macaulay-list :: (′t ⇒0
′b) list ⇒ (′t ⇒0

′b::field) list
where Macaulay-list ps =

filter (λp. p 6= 0) (mat-to-polys (Keys-to-list ps) (row-echelon
(Macaulay-mat ps)))

lemma dim-Macaulay-mat[simp]:
dim-row (Macaulay-mat ps) = length ps
dim-col (Macaulay-mat ps) = card (Keys (set ps))
by (simp-all add: Macaulay-mat-def length-Keys-to-list)

lemma Macaulay-list-Nil [simp]: Macaulay-list [] = ([]::(′t ⇒0
′b::field) list) (is ?l

335

= -)
proof −

have length ?l ≤ length (mat-to-polys (Keys-to-list ([]::(′t ⇒0
′b) list))

(row-echelon (Macaulay-mat ([]::(′t ⇒0
′b) list))))

unfolding Macaulay-list-def by (fact length-filter-le)
also have ... = 0 by simp
finally show ?thesis by simp

qed

lemma set-Macaulay-list:
set (Macaulay-list ps) =

set (mat-to-polys (Keys-to-list ps) (row-echelon (Macaulay-mat ps))) − {0}
by (auto simp add: Macaulay-list-def)

lemma Keys-Macaulay-list: Keys (set (Macaulay-list ps)) ⊆ Keys (set ps)
proof −

have Keys (set (Macaulay-list ps)) ⊆ set (Keys-to-list ps)
by (simp only: set-Macaulay-list Keys-minus-zero, fact Keys-mat-to-polys)

also have ... = Keys (set ps) by (fact set-Keys-to-list)
finally show ?thesis .

qed

lemma in-Macaulay-listE :
assumes p ∈ set (Macaulay-list ps)
and pivot-fun (row-echelon (Macaulay-mat ps)) f (dim-col (row-echelon (Macaulay-mat

ps)))
obtains i where i < dim-row (row-echelon (Macaulay-mat ps))

and p = (mat-to-polys (Keys-to-list ps) (row-echelon (Macaulay-mat ps))) ! i
and f i < dim-col (row-echelon (Macaulay-mat ps))

proof −
let ?ts = Keys-to-list ps
let ?A = Macaulay-mat ps
let ?E = row-echelon ?A

from assms(1) have p ∈ set (mat-to-polys ?ts ?E) − {0} by (simp add:
set-Macaulay-list)

hence p ∈ set (mat-to-polys ?ts ?E) and p 6= 0 by auto
from this(1) obtain i where i < length (mat-to-polys ?ts ?E) and p: p =

(mat-to-polys ?ts ?E) ! i
by (metis in-set-conv-nth)

from this(1) have i < dim-row ?E and i < dim-row ?A by simp-all

from this(1) p show ?thesis
proof

from ‹p 6= 0 › have 0 6= (mat-to-polys ?ts ?E) ! i by (simp only: p)
also have (mat-to-polys ?ts ?E) ! i = row-to-poly ?ts (row ?E i)

by (simp only: Macaulay-list-def mat-to-polys-nth[OF ‹i < dim-row ?E›])
finally have ∗: row-to-poly ?ts (row ?E i) 6= 0 by simp
have row ?E i 6= 0 v (length ?ts)

336

proof
assume row ?E i = 0 v (length ?ts)
with ∗ show False by simp

qed
hence row ?E i 6= 0 v (dim-col ?E) by (simp add: length-Keys-to-list)
thus f i < dim-col ?E

by (simp only: row-not-zero-iff-pivot-fun[OF assms(2) ‹i < dim-row ?E›])
qed

qed

lemma phull-Macaulay-list: phull (set (Macaulay-list ps)) = phull (set ps)
proof −

have ∗: Keys (set ps) ⊆ set (Keys-to-list ps)
by (simp add: set-Keys-to-list)

have phull (set (Macaulay-list ps)) =
phull (set (mat-to-polys (Keys-to-list ps) (row-echelon (Macaulay-mat ps))))

by (simp only: set-Macaulay-list phull.span-Diff-zero)
also have ... = phull (set ps)

by (simp only: Macaulay-mat-def phull-row-echelon[OF ∗ distinct-Keys-to-list])
finally show ?thesis .

qed

lemma pmdl-Macaulay-list: pmdl (set (Macaulay-list ps)) = pmdl (set ps)
proof −

have ∗: Keys (set ps) ⊆ set (Keys-to-list ps)
by (simp add: set-Keys-to-list)

have pmdl (set (Macaulay-list ps)) =
pmdl (set (mat-to-polys (Keys-to-list ps) (row-echelon (Macaulay-mat ps))))

by (simp only: set-Macaulay-list pmdl.span-Diff-zero)
also have ... = pmdl (set ps)

by (simp only: Macaulay-mat-def pmdl-row-echelon[OF ∗ distinct-Keys-to-list])
finally show ?thesis .

qed

lemma Macaulay-list-is-monic-set: is-monic-set (set (Macaulay-list ps))
proof (rule is-monic-setI)

let ?ts = Keys-to-list ps
let ?E = row-echelon (Macaulay-mat ps)

fix p
assume p ∈ set (Macaulay-list ps)
obtain h where pivot-fun ?E h (dim-col ?E) by (rule row-echelon-pivot-fun)
with ‹p ∈ set (Macaulay-list ps)› obtain i where i < dim-row ?E

and p: p = (mat-to-polys ?ts ?E) ! i and h i < dim-col ?E
by (rule in-Macaulay-listE)

show lc p = 1 unfolding p Keys-to-list-eq-pps-to-list
by (rule lc-row-to-poly-pivot-fun, simp, fact+)

qed

337

lemma Macaulay-list-not-zero: 0 /∈ set (Macaulay-list ps)
by (simp add: Macaulay-list-def)

lemma Macaulay-list-distinct-lt:
assumes x ∈ set (Macaulay-list ps) and y ∈ set (Macaulay-list ps)

and x 6= y
shows lt x 6= lt y

proof
let ?S = Keys (set ps)
let ?ts = Keys-to-list ps
let ?E = row-echelon (Macaulay-mat ps)

assume lt x = lt y
obtain h where pf : pivot-fun ?E h (dim-col ?E) by (rule row-echelon-pivot-fun)
with assms(1) obtain i1 where i1 < dim-row ?E

and x: x = (mat-to-polys ?ts ?E) ! i1 and h i1 < dim-col ?E
by (rule in-Macaulay-listE)

from assms(2) pf obtain i2 where i2 < dim-row ?E
and y: y = (mat-to-polys ?ts ?E) ! i2 and h i2 < dim-col ?E
by (rule in-Macaulay-listE)

have lt x = ?ts ! (h i1)
by (simp only: x Keys-to-list-eq-pps-to-list, rule lt-row-to-poly-pivot-fun, simp,

fact+)
moreover have lt y = ?ts ! (h i2)

by (simp only: y Keys-to-list-eq-pps-to-list, rule lt-row-to-poly-pivot-fun, simp,
fact+)

ultimately have ?ts ! (h i1) = ?ts ! (h i2) by (simp only: ‹lt x = lt y›)
hence pps-to-list (Keys (set ps)) ! h i1 = pps-to-list (Keys (set ps)) ! h i2

by (simp only: Keys-to-list-eq-pps-to-list)

have i1 = i2
proof (rule lt-row-to-poly-pivot-fun-eqD)

show card ?S = dim-col ?E by simp
qed fact+
hence x = y by (simp only: x y)
with ‹x 6= y› show False ..

qed

lemma Macaulay-list-lt:
assumes p ∈ phull (set ps) and p 6= 0
obtains g where g ∈ set (Macaulay-list ps) and g 6= 0 and lt p = lt g

proof −
let ?S = Keys (set ps)
let ?ts = Keys-to-list ps
let ?E = row-echelon (Macaulay-mat ps)
let ?gs = mat-to-polys ?ts ?E
have finite ?S by (rule finite-Keys, rule)

338

have ?S ⊆ set ?ts by (simp only: set-Keys-to-list)

from assms(1) ‹?S ⊆ set ?ts› have p ∈ row-to-poly ?ts ‘ row-space ?E
by (simp only: Macaulay-mat-def row-space-row-echelon-eq-phull[symmetric])

hence p ∈ row-to-poly (pps-to-list ?S) ‘ row-space ?E
by (simp only: Keys-to-list-eq-pps-to-list)

obtain f where pivot-fun ?E f (dim-col ?E) by (rule row-echelon-pivot-fun)

have lt p ∈ lt-set (set ?gs) unfolding Keys-to-list-eq-pps-to-list
by (rule lt-row-space-pivot-fun, simp, fact+)

then obtain g where g ∈ set ?gs and g 6= 0 and lt g = lt p by (rule lt-setE)

show ?thesis
proof

from ‹g ∈ set ?gs› ‹g 6= 0 › show g ∈ set (Macaulay-list ps) by (simp add:
set-Macaulay-list)

next
from ‹lt g = lt p› show lt p = lt g by simp

qed fact
qed

end

end

16 Faugère’s F4 Algorithm
theory F4

imports Macaulay-Matrix Algorithm-Schema
begin

This theory implements Faugère’s F4 algorithm based on gd-term.gb-schema-direct.

16.1 Symbolic Preprocessing
context gd-term
begin

definition sym-preproc-aux-term1 :: (′a ⇒ nat) ⇒ (((′t ⇒0
′b) list × ′t list × ′t

list × (′t ⇒0
′b) list) ×

((′t ⇒0
′b) list × ′t list × ′t list × (′t ⇒0

′b) list)) set
where sym-preproc-aux-term1 d =

{((gs1 , ks1 , ts1 , fs1), (gs2 ::(′t ⇒0
′b) list, ks2 , ts2 , fs2)). ∃ t2∈set ts2 .

∀ t1∈set ts1 . t1 ≺t t2}

definition sym-preproc-aux-term2 :: (′a ⇒ nat) ⇒ (((′t ⇒0
′b::zero) list × ′t list

× ′t list × (′t ⇒0
′b) list) ×

339

((′t ⇒0
′b) list × ′t list × ′t list × (′t ⇒0

′b) list)) set
where sym-preproc-aux-term2 d =

{((gs1 , ks1 , ts1 , fs1), (gs2 ::(′t ⇒0
′b) list, ks2 , ts2 , fs2)). gs1 = gs2 ∧

dgrad-set-le d (pp-of-term ‘ set ts1) (pp-of-term
‘ (Keys (set gs2) ∪ set ts2))}

definition sym-preproc-aux-term
where sym-preproc-aux-term d = sym-preproc-aux-term1 d ∩ sym-preproc-aux-term2

d

lemma wfp-on-ord-term-strict:
assumes dickson-grading d
shows wfp-on (≺t) (pp-of-term −‘ dgrad-set d m)

proof (rule wfp-onI-min)
fix x Q
assume x ∈ Q and Q ⊆ pp-of-term −‘ dgrad-set d m
from wf-dickson-less-v[OF assms, of m] ‹x ∈ Q› obtain z
where z ∈ Q and ∗:

∧
y. dickson-less-v d m y z =⇒ y /∈ Q by (rule wfE-min[to-pred],

blast)
from this(1) ‹Q ⊆ pp-of-term −‘ dgrad-set d m› have z ∈ pp-of-term −‘ dgrad-set

d m ..
show ∃ z∈Q. ∀ y ∈ pp-of-term −‘ dgrad-set d m. y ≺t z −→ y /∈ Q
proof (intro bexI ballI impI , rule ∗)

fix y
assume y ∈ pp-of-term −‘ dgrad-set d m and y ≺t z
from this(1) ‹z ∈ pp-of-term −‘ dgrad-set d m› have d (pp-of-term y) ≤ m

and d (pp-of-term z) ≤ m
by (simp-all add: dgrad-set-def)

thus dickson-less-v d m y z using ‹y ≺t z› by (rule dickson-less-vI)
qed fact

qed

lemma sym-preproc-aux-term1-wf-on:
assumes dickson-grading d
shows wfp-on (λx y. (x, y) ∈ sym-preproc-aux-term1 d) {x. set (fst (snd (snd

x))) ⊆ pp-of-term −‘ dgrad-set d m}
proof (rule wfp-onI-min)

let ?B = pp-of-term −‘ dgrad-set d m
let ?A = {x::((′t ⇒0

′b) list × ′t list × ′t list × (′t ⇒0
′b) list). set (fst (snd

(snd x))) ⊆ ?B}
have A-sub-Pow: set ‘ fst ‘ snd ‘ snd ‘ ?A ⊆ Pow ?B by auto
fix x Q
assume x ∈ Q and Q ⊆ ?A
let ?Q = {ord-term-lin.Max (set (fst (snd (snd q)))) | q. q ∈ Q ∧ fst (snd (snd

q)) 6= []}
show ∃ z∈Q. ∀ y∈{x. set (fst (snd (snd x))) ⊆ ?B}. (y, z) ∈ sym-preproc-aux-term1

d −→ y /∈ Q
proof (cases ∃ z∈Q. fst (snd (snd z)) = [])

340

case True
then obtain z where z ∈ Q and fst (snd (snd z)) = [] ..
show ?thesis
proof (intro bexI ballI impI)

fix y
assume (y, z) ∈ sym-preproc-aux-term1 d

then obtain t where t ∈ set (fst (snd (snd z))) unfolding sym-preproc-aux-term1-def
by auto

with ‹fst (snd (snd z)) = []› show y /∈ Q by simp
qed fact

next
case False
hence ∗: q ∈ Q =⇒ fst (snd (snd q)) 6= [] for q by blast
with ‹x ∈ Q› have fst (snd (snd x)) 6= [] by simp
from assms have wfp-on (≺t) ?B by (rule wfp-on-ord-term-strict)
moreover from ‹x ∈ Q› ‹fst (snd (snd x)) 6= []›
have ord-term-lin.Max (set (fst (snd (snd x)))) ∈ ?Q by blast
moreover have ?Q ⊆ ?B
proof (rule, simp, elim exE conjE , simp)

fix a b c d0
assume (a, b, c, d0) ∈ Q and c 6= []
from this(1) ‹Q ⊆ ?A› have (a, b, c, d0) ∈ ?A ..
hence pp-of-term ‘ set c ⊆ dgrad-set d m by auto
moreover have pp-of-term (ord-term-lin.Max (set c)) ∈ pp-of-term ‘ set c
proof

from ‹c 6= []› show ord-term-lin.Max (set c) ∈ set c by simp
qed (fact refl)
ultimately show pp-of-term (ord-term-lin.Max (set c)) ∈ dgrad-set d m ..

qed
ultimately obtain t where t ∈ ?Q and min:

∧
s. s ≺t t =⇒ s /∈ ?Q by (rule

wfp-onE-min) blast
from this(1) obtain z where z ∈ Q and fst (snd (snd z)) 6= []

and t: t = ord-term-lin.Max (set (fst (snd (snd z)))) by blast
show ?thesis
proof (intro bexI ballI impI , rule)

fix y
assume y ∈ ?A and (y, z) ∈ sym-preproc-aux-term1 d and y ∈ Q
from this(2) obtain t ′ where t ′ ∈ set (fst (snd (snd z)))

and ∗∗:
∧

s. s ∈ set (fst (snd (snd y))) =⇒ s ≺t t ′

unfolding sym-preproc-aux-term1-def by auto
from ‹y ∈ Q› have fst (snd (snd y)) 6= [] by (rule ∗)
with ‹y ∈ Q› have ord-term-lin.Max (set (fst (snd (snd y)))) ∈ ?Q (is ?s ∈

-)
by blast

from ‹fst (snd (snd y)) 6= []› have ?s ∈ set (fst (snd (snd y))) by simp
hence ?s ≺t t ′ by (rule ∗∗)
also from ‹t ′ ∈ set (fst (snd (snd z)))› have t ′ �t t unfolding t

using ‹fst (snd (snd z)) 6= []› by simp
finally have ?s /∈ ?Q by (rule min)

341

from this ‹?s ∈ ?Q› show False ..
qed fact

qed
qed

lemma sym-preproc-aux-term-wf :
assumes dickson-grading d
shows wf (sym-preproc-aux-term d)

proof (rule wfI-min)
fix x::((′t ⇒0

′b) list × ′t list × ′t list × (′t ⇒0
′b) list) and Q

assume x ∈ Q
let ?A = Keys (set (fst x)) ∪ set (fst (snd (snd x)))
have finite ?A by (simp add: finite-Keys)
hence finite (pp-of-term ‘ ?A) by (rule finite-imageI)
then obtain m where pp-of-term ‘ ?A ⊆ dgrad-set d m by (rule dgrad-set-exhaust)
hence A: ?A ⊆ pp-of-term −‘ dgrad-set d m by blast
let ?B = pp-of-term −‘ dgrad-set d m
let ?Q = {q ∈ Q. Keys (set (fst q)) ∪ set (fst (snd (snd q))) ⊆ ?B}
from assms have wfp-on (λx y. (x, y) ∈ sym-preproc-aux-term1 d) {x. set (fst

(snd (snd x))) ⊆ ?B}
by (rule sym-preproc-aux-term1-wf-on)

moreover from ‹x ∈ Q› A have x ∈ ?Q by simp
moreover have ?Q ⊆ {x. set (fst (snd (snd x))) ⊆ ?B} by auto
ultimately obtain z where z ∈ ?Q
and ∗:

∧
y. (y, z) ∈ sym-preproc-aux-term1 d =⇒ y /∈ ?Q by (rule wfp-onE-min)

blast
from this(1) have z ∈ Q and Keys (set (fst z)) ∪ set (fst (snd (snd z))) ⊆ ?B

by simp-all
from this(2) have a: pp-of-term ‘ (Keys (set (fst z)) ∪ set (fst (snd (snd z))))
⊆ dgrad-set d m

by blast
show ∃ z∈Q. ∀ y. (y, z) ∈ sym-preproc-aux-term d −→ y /∈ Q
proof (intro bexI allI impI)

fix y
assume (y, z) ∈ sym-preproc-aux-term d
hence (y, z) ∈ sym-preproc-aux-term1 d and (y, z) ∈ sym-preproc-aux-term2

d
by (simp-all add: sym-preproc-aux-term-def)

from this(2) have fst y = fst z
and dgrad-set-le d (pp-of-term ‘ set (fst (snd (snd y)))) (pp-of-term ‘ (Keys

(set (fst z)) ∪ set (fst (snd (snd z)))))
by (auto simp add: sym-preproc-aux-term2-def)

from this(2) a have pp-of-term ‘ (set (fst (snd (snd y)))) ⊆ dgrad-set d m
by (rule dgrad-set-le-dgrad-set)

hence Keys (set (fst y)) ∪ set (fst (snd (snd y))) ⊆ ?B
using a by (auto simp add: ‹fst y = fst z›)

moreover from ‹(y, z) ∈ sym-preproc-aux-term1 d› have y /∈ ?Q by (rule ∗)
ultimately show y /∈ Q by simp

qed fact

342

qed

primrec sym-preproc-addnew :: (′t ⇒0
′b::semiring-1) list ⇒ ′t list ⇒ (′t ⇒0

′b)
list ⇒ ′t ⇒

(′t list × (′t ⇒0
′b) list) where

sym-preproc-addnew [] vs fs - = (vs, fs)|
sym-preproc-addnew (g # gs) vs fs v =
(if lt g addst v then
(let f = monom-mult 1 (pp-of-term v − lp g) g in

sym-preproc-addnew gs (merge-wrt (�t) vs (keys-to-list (tail f))) (insert-list
f fs) v

)
else

sym-preproc-addnew gs vs fs v
)

lemma fst-sym-preproc-addnew-less:
assumes

∧
u. u ∈ set vs =⇒ u ≺t v

and u ∈ set (fst (sym-preproc-addnew gs vs fs v))
shows u ≺t v
using assms

proof (induct gs arbitrary: fs vs)
case Nil
from Nil(2) have u ∈ set vs by simp
thus ?case by (rule Nil(1))

next
case (Cons g gs)
from Cons(3) show ?case
proof (simp add: Let-def split: if-splits)

let ?t = pp-of-term v − lp g
assume lt g addst v
assume u ∈ set (fst (sym-preproc-addnew gs

(merge-wrt (�t) vs (keys-to-list (tail (monom-mult 1 ?t
g))))

(insert-list (monom-mult 1 ?t g) fs) v))
with - show ?thesis
proof (rule Cons(1))

fix u
assume u ∈ set (merge-wrt (�t) vs (keys-to-list (tail (monom-mult 1 ?t g))))
hence u ∈ set vs ∨ u ∈ keys (tail (monom-mult 1 ?t g))

by (simp add: set-merge-wrt keys-to-list-def set-pps-to-list)
thus u ≺t v
proof

assume u ∈ set vs
thus ?thesis by (rule Cons(2))

next
assume u ∈ keys (tail (monom-mult 1 ?t g))
hence u ≺t lt (monom-mult 1 ?t g) by (rule keys-tail-less-lt)
also have ... �t ?t ⊕ lt g by (rule lt-monom-mult-le)

343

also from ‹lt g addst v› have ... = v
by (metis add-diff-cancel-right ′ adds-termE pp-of-term-splus)

finally show ?thesis .
qed

qed
next

assume u ∈ set (fst (sym-preproc-addnew gs vs fs v))
with Cons(2) show ?thesis by (rule Cons(1))

qed
qed

lemma fst-sym-preproc-addnew-dgrad-set-le:
assumes dickson-grading d
shows dgrad-set-le d (pp-of-term ‘ set (fst (sym-preproc-addnew gs vs fs v)))

(pp-of-term ‘ (Keys (set gs) ∪ insert v (set vs)))
proof (induct gs arbitrary: fs vs)

case Nil
show ?case by (auto intro: dgrad-set-le-subset)

next
case (Cons g gs)
show ?case
proof (simp add: Let-def , intro conjI impI)

assume lt g addst v
let ?t = pp-of-term v − lp g
let ?vs = merge-wrt (�t) vs (keys-to-list (tail (monom-mult 1 ?t g)))
let ?fs = insert-list (monom-mult 1 ?t g) fs
from Cons have dgrad-set-le d (pp-of-term ‘ set (fst (sym-preproc-addnew gs

?vs ?fs v)))
(pp-of-term ‘ (Keys (insert g (set gs)) ∪ insert v (set

vs)))
proof (rule dgrad-set-le-trans)

show dgrad-set-le d (pp-of-term ‘ (Keys (set gs) ∪ insert v (set ?vs)))
(pp-of-term ‘ (Keys (insert g (set gs)) ∪ insert v (set vs)))

unfolding dgrad-set-le-def set-merge-wrt set-keys-to-list
proof (intro ballI)

fix s
assume s ∈ pp-of-term ‘ (Keys (set gs) ∪ insert v (set vs ∪ keys (tail

(monom-mult 1 ?t g))))
hence s ∈ pp-of-term ‘ (Keys (set gs) ∪ insert v (set vs)) ∪ pp-of-term ‘

keys (tail (monom-mult 1 ?t g))
by auto

thus ∃ t ∈ pp-of-term ‘ (Keys (insert g (set gs)) ∪ insert v (set vs)). d s ≤
d t

proof
assume s ∈ pp-of-term ‘ (Keys (set gs) ∪ insert v (set vs))
thus ?thesis by (auto simp add: Keys-insert)

next
assume s ∈ pp-of-term ‘ keys (tail (monom-mult 1 ?t g))

hence s ∈ pp-of-term ‘ keys (monom-mult 1 ?t g) by (auto simp add:

344

keys-tail)
from this keys-monom-mult-subset have s ∈ pp-of-term ‘ (⊕) ?t ‘ keys g

by blast
then obtain u where u ∈ keys g and s: s = pp-of-term (?t ⊕ u) by blast
have d s = d ?t ∨ d s = d (pp-of-term u) unfolding s pp-of-term-splus

using dickson-gradingD1 [OF assms] by auto
thus ?thesis
proof

from ‹lt g addst v› have lp g adds pp-of-term v by (simp add:
adds-term-def)

assume d s = d ?t
also from assms ‹lp g adds pp-of-term v› have ... ≤ d (pp-of-term v)

by (rule dickson-grading-minus)
finally show ?thesis by blast

next
assume d s = d (pp-of-term u)

moreover from ‹u ∈ keys g› have u ∈ Keys (insert g (set gs)) by (simp
add: Keys-insert)

ultimately show ?thesis by auto
qed

qed
qed

qed
thus dgrad-set-le d (pp-of-term ‘ set (fst (sym-preproc-addnew gs ?vs ?fs v)))

(insert (pp-of-term v) (pp-of-term ‘ (Keys (insert g (set gs)) ∪
set vs)))

by simp
next

from Cons show dgrad-set-le d (pp-of-term ‘ set (fst (sym-preproc-addnew gs
vs fs v)))

(insert (pp-of-term v) (pp-of-term ‘ (Keys (insert g (set gs))
∪ set vs)))

proof (rule dgrad-set-le-trans)
show dgrad-set-le d (pp-of-term ‘ (Keys (set gs) ∪ insert v (set vs)))

(insert (pp-of-term v) (pp-of-term ‘ (Keys (insert g (set gs))
∪ set vs)))

by (rule dgrad-set-le-subset, auto simp add: Keys-def)
qed

qed
qed

lemma components-fst-sym-preproc-addnew-subset:
component-of-term ‘ set (fst (sym-preproc-addnew gs vs fs v)) ⊆ component-of-term

‘ (Keys (set gs) ∪ insert v (set vs))
proof (induct gs arbitrary: fs vs)

case Nil
show ?case by (auto intro: dgrad-set-le-subset)

next
case (Cons g gs)

345

show ?case
proof (simp add: Let-def , intro conjI impI)

assume lt g addst v
let ?t = pp-of-term v − lp g
let ?vs = merge-wrt (�t) vs (keys-to-list (tail (monom-mult 1 ?t g)))
let ?fs = insert-list (monom-mult 1 ?t g) fs
from Cons have component-of-term ‘ set (fst (sym-preproc-addnew gs ?vs ?fs

v)) ⊆
component-of-term ‘ (Keys (insert g (set gs)) ∪ insert v (set vs))

proof (rule subset-trans)
show component-of-term ‘ (Keys (set gs) ∪ insert v (set ?vs)) ⊆

component-of-term ‘ (Keys (insert g (set gs)) ∪ insert v (set vs))
unfolding set-merge-wrt set-keys-to-list

proof
fix k
assume k ∈ component-of-term ‘ (Keys (set gs) ∪ insert v (set vs ∪ keys

(tail (monom-mult 1 ?t g))))
hence k ∈ component-of-term ‘ (Keys (set gs) ∪ insert v (set vs)) ∪

component-of-term ‘ keys (tail (monom-mult 1 ?t g))
by auto

thus k ∈ component-of-term ‘ (Keys (insert g (set gs)) ∪ insert v (set vs))
proof

assume k ∈ component-of-term ‘ (Keys (set gs) ∪ insert v (set vs))
thus ?thesis by (auto simp add: Keys-insert)

next
assume k ∈ component-of-term ‘ keys (tail (monom-mult 1 ?t g))
hence k ∈ component-of-term ‘ keys (monom-mult 1 ?t g) by (auto simp

add: keys-tail)
from this keys-monom-mult-subset have k ∈ component-of-term ‘ (⊕) ?t

‘ keys g by blast
also have ... ⊆ component-of-term ‘ keys g using component-of-term-splus

by fastforce
finally show ?thesis by (simp add: image-Un Keys-insert)

qed
qed

qed
thus component-of-term ‘ set (fst (sym-preproc-addnew gs ?vs ?fs v)) ⊆

insert (component-of-term v) (component-of-term ‘ (Keys (insert g (set
gs)) ∪ set vs))

by simp
next
from Cons show component-of-term ‘ set (fst (sym-preproc-addnew gs vs fs v))

⊆
insert (component-of-term v) (component-of-term ‘ (Keys (insert g

(set gs)) ∪ set vs))
proof (rule subset-trans)

show component-of-term ‘ (Keys (set gs) ∪ insert v (set vs)) ⊆
insert (component-of-term v) (component-of-term ‘ (Keys (insert g (set

gs)) ∪ set vs))

346

by (auto simp add: Keys-def)
qed

qed
qed

lemma fst-sym-preproc-addnew-superset: set vs ⊆ set (fst (sym-preproc-addnew gs
vs fs v))
proof (induct gs arbitrary: vs fs)

case Nil
show ?case by simp

next
case (Cons g gs)
show ?case
proof (simp add: Let-def , intro conjI impI)

let ?t = pp-of-term v − lp g
define f where f = monom-mult 1 ?t g
have set vs ⊆ set (merge-wrt (�t) vs (keys-to-list (tail f))) by (auto simp add:

set-merge-wrt)
thus set vs ⊆ set (fst (sym-preproc-addnew gs

(merge-wrt (�t) vs (keys-to-list (tail f))) (insert-list f fs)
v))

using Cons by (rule subset-trans)
next

show set vs ⊆ set (fst (sym-preproc-addnew gs vs fs v)) by (fact Cons)
qed

qed

lemma snd-sym-preproc-addnew-superset: set fs ⊆ set (snd (sym-preproc-addnew
gs vs fs v))
proof (induct gs arbitrary: vs fs)

case Nil
show ?case by simp

next
case (Cons g gs)
show ?case
proof (simp add: Let-def , intro conjI impI)

let ?t = pp-of-term v − lp g
define f where f = monom-mult 1 ?t g
have set fs ⊆ set (insert-list f fs) by (auto simp add: set-insert-list)
thus set fs ⊆ set (snd (sym-preproc-addnew gs

(merge-wrt (�t) vs (keys-to-list (tail f))) (insert-list f fs)
v))

using Cons by (rule subset-trans)
next

show set fs ⊆ set (snd (sym-preproc-addnew gs vs fs v)) by (fact Cons)
qed

qed

lemma in-snd-sym-preproc-addnewE :

347

assumes p ∈ set (snd (sym-preproc-addnew gs vs fs v))
assumes 1 : p ∈ set fs =⇒ thesis
assumes 2 :

∧
g s. g ∈ set gs =⇒ p = monom-mult 1 s g =⇒ thesis

shows thesis
using assms

proof (induct gs arbitrary: vs fs thesis)
case Nil
from Nil(1) have p ∈ set fs by simp
thus ?case by (rule Nil(2))

next
case (Cons g gs)
from Cons(2) show ?case
proof (simp add: Let-def split: if-splits)

define f where f = monom-mult 1 (pp-of-term v − lp g) g
define ts ′ where ts ′ = merge-wrt (�t) vs (keys-to-list (tail f))
define fs ′ where fs ′ = insert-list f fs
assume p ∈ set (snd (sym-preproc-addnew gs ts ′ fs ′ v))
thus ?thesis
proof (rule Cons(1))

assume p ∈ set fs ′

hence p = f ∨ p ∈ set fs by (simp add: fs ′-def set-insert-list)
thus ?thesis
proof

assume p = f
have g ∈ set (g # gs) by simp
from this ‹p = f › show ?thesis unfolding f-def by (rule Cons(4))

next
assume p ∈ set fs
thus ?thesis by (rule Cons(3))

qed
next

fix h s
assume h ∈ set gs
hence h ∈ set (g # gs) by simp
moreover assume p = monom-mult 1 s h
ultimately show thesis by (rule Cons(4))

qed
next

assume p ∈ set (snd (sym-preproc-addnew gs vs fs v))
moreover note Cons(3)
moreover have h ∈ set gs =⇒ p = monom-mult 1 s h =⇒ thesis for h s
proof −

assume h ∈ set gs
hence h ∈ set (g # gs) by simp
moreover assume p = monom-mult 1 s h
ultimately show thesis by (rule Cons(4))

qed
ultimately show ?thesis by (rule Cons(1))

qed

348

qed

lemma sym-preproc-addnew-pmdl:
pmdl (set gs ∪ set (snd (sym-preproc-addnew gs vs fs v))) = pmdl (set gs ∪ set

fs)
(is pmdl (set gs ∪ ?l) = ?r)

proof
have set gs ⊆ set gs ∪ set fs by simp
also have ... ⊆ ?r by (fact pmdl.span-superset)
finally have set gs ⊆ ?r .
moreover have ?l ⊆ ?r
proof

fix p
assume p ∈ ?l
thus p ∈ ?r
proof (rule in-snd-sym-preproc-addnewE)

assume p ∈ set fs
hence p ∈ set gs ∪ set fs by simp
thus ?thesis by (rule pmdl.span-base)

next
fix g s
assume g ∈ set gs and p: p = monom-mult 1 s g
from this(1) ‹set gs ⊆ ?r› have g ∈ ?r ..
thus ?thesis unfolding p by (rule pmdl-closed-monom-mult)

qed
qed
ultimately have set gs ∪ ?l ⊆ ?r by blast
thus pmdl (set gs ∪ ?l) ⊆ ?r by (rule pmdl.span-subset-spanI)

next
from snd-sym-preproc-addnew-superset have set gs ∪ set fs ⊆ set gs ∪ ?l by

blast
thus ?r ⊆ pmdl (set gs ∪ ?l) by (rule pmdl.span-mono)

qed

lemma Keys-snd-sym-preproc-addnew:
Keys (set (snd (sym-preproc-addnew gs vs fs v))) ∪ insert v (set vs) =
Keys (set fs) ∪ insert v (set (fst (sym-preproc-addnew gs vs (fs::(′t ⇒0

′b::semiring-1-no-zero-divisors)
list) v)))
proof (induct gs arbitrary: vs fs)

case Nil
show ?case by simp

next
case (Cons g gs)
from Cons have eq: insert v (Keys (set (snd (sym-preproc-addnew gs ts ′ fs ′ v)))
∪ set ts ′) =

insert v (Keys (set fs ′) ∪ set (fst (sym-preproc-addnew gs ts ′ fs ′

v)))
for ts ′ fs ′ by simp

show ?case

349

proof (simp add: Let-def eq, rule)
assume lt g addst v
let ?t = pp-of-term v − lp g
define f where f = monom-mult 1 ?t g
define ts ′ where ts ′ = merge-wrt (�t) vs (keys-to-list (tail f))
define fs ′ where fs ′ = insert-list f fs
have keys (tail f) = keys f − {v}
proof (cases g = 0)

case True
hence f = 0 by (simp add: f-def)
thus ?thesis by simp

next
case False
hence lt f = ?t ⊕ lt g by (simp add: f-def lt-monom-mult)
also from ‹lt g addst v› have ... = v

by (metis add-diff-cancel-right ′ adds-termE pp-of-term-splus)
finally show ?thesis by (simp add: keys-tail)

qed
hence ts ′: set ts ′ = set vs ∪ (keys f − {v})

by (simp add: ts ′-def set-merge-wrt set-keys-to-list)
have fs ′: set fs ′ = insert f (set fs) by (simp add: fs ′-def set-insert-list)
hence f ∈ set fs ′ by simp

from this snd-sym-preproc-addnew-superset have f ∈ set (snd (sym-preproc-addnew
gs ts ′ fs ′ v)) ..

hence keys f ⊆ Keys (set (snd (sym-preproc-addnew gs ts ′ fs ′ v))) by (rule
keys-subset-Keys)

hence insert v (Keys (set (snd (sym-preproc-addnew gs ts ′ fs ′ v))) ∪ set vs) =
insert v (Keys (set (snd (sym-preproc-addnew gs ts ′ fs ′ v))) ∪ set ts ′)

by (auto simp add: ts ′)
also have ... = insert v (Keys (set fs ′) ∪ set (fst (sym-preproc-addnew gs ts ′

fs ′ v)))
by (fact eq)

also have ... = insert v (Keys (set fs) ∪ set (fst (sym-preproc-addnew gs ts ′ fs ′

v)))
proof −

{
fix u
assume u 6= v and u ∈ keys f
hence u ∈ set ts ′ by (simp add: ts ′)

from this fst-sym-preproc-addnew-superset have u ∈ set (fst (sym-preproc-addnew
gs ts ′ fs ′ v)) ..

}
thus ?thesis by (auto simp add: fs ′ Keys-insert)

qed
finally show insert v (Keys (set (snd (sym-preproc-addnew gs ts ′ fs ′ v))) ∪ set

vs) =
insert v (Keys (set fs) ∪ set (fst (sym-preproc-addnew gs ts ′ fs ′ v))) .

qed
qed

350

lemma sym-preproc-addnew-complete:
assumes g ∈ set gs and lt g addst v
shows monom-mult 1 (pp-of-term v − lp g) g ∈ set (snd (sym-preproc-addnew

gs vs fs v))
using assms(1)

proof (induct gs arbitrary: vs fs)
case Nil
thus ?case by simp

next
case (Cons h gs)
let ?t = pp-of-term v − lp g
show ?case
proof (cases h = g)

case True
show ?thesis
proof (simp add: True assms(2) Let-def)

define f where f = monom-mult 1 ?t g
define ts ′ where ts ′ = merge-wrt (�t) vs (keys-to-list (tail (monom-mult 1

?t g)))
have f ∈ set (insert-list f fs) by (simp add: set-insert-list)

with snd-sym-preproc-addnew-superset show f ∈ set (snd (sym-preproc-addnew
gs ts ′ (insert-list f fs) v)) ..

qed
next

case False
with Cons(2) have g ∈ set gs by simp
hence ∗: monom-mult 1 ?t g ∈ set (snd (sym-preproc-addnew gs ts ′ fs ′ v)) for

ts ′ fs ′

by (rule Cons(1))
show ?thesis by (simp add: Let-def ∗)

qed
qed

function sym-preproc-aux :: (′t ⇒0
′b::semiring-1) list ⇒ ′t list ⇒ (′t list × (′t

⇒0
′b) list) ⇒

(′t list × (′t ⇒0
′b) list) where

sym-preproc-aux gs ks (vs, fs) =
(if vs = [] then
(ks, fs)

else
let v = ord-term-lin.max-list vs; vs ′ = removeAll v vs in

sym-preproc-aux gs (ks @ [v]) (sym-preproc-addnew gs vs ′ fs v)
)

by pat-completeness auto
termination proof −

from ex-dgrad obtain d:: ′a ⇒ nat where dg: dickson-grading d ..
let ?R = (sym-preproc-aux-term d)::(((′t ⇒0

′b) list × ′t list × ′t list × (′t ⇒0
′b) list) ×

351

(′t ⇒0
′b) list × ′t list × ′t list × (′t ⇒0

′b) list) set
show ?thesis
proof

from dg show wf ?R by (rule sym-preproc-aux-term-wf)
next

fix gs::(′t ⇒0
′b) list and ks vs fs v vs ′

assume vs 6= [] and v = ord-term-lin.max-list vs and vs ′: vs ′ = removeAll v vs
from this(1 , 2) have v: v = ord-term-lin.Max (set vs)

by (simp add: ord-term-lin.max-list-Max)
obtain vs0 fs0 where eq: sym-preproc-addnew gs vs ′ fs v = (vs0 , fs0) by

fastforce
show ((gs, ks @ [v], sym-preproc-addnew gs vs ′ fs v), (gs, ks, vs, fs)) ∈ ?R

proof (simp add: eq sym-preproc-aux-term-def sym-preproc-aux-term1-def sym-preproc-aux-term2-def ,
intro conjI bexI ballI)

fix w
assume w ∈ set vs0
show w ≺t v
proof (rule fst-sym-preproc-addnew-less)

fix u
assume u ∈ set vs ′

thus u ≺t v unfolding vs ′ v set-removeAll using ord-term-lin.antisym-conv1
by fastforce

next
from ‹w ∈ set vs0 › show w ∈ set (fst (sym-preproc-addnew gs vs ′ fs v)) by

(simp add: eq)
qed

next
from ‹vs 6= []› show v ∈ set vs by (simp add: v)

next
from dg have dgrad-set-le d (pp-of-term ‘ set (fst (sym-preproc-addnew gs vs ′

fs v)))
(pp-of-term ‘ (Keys (set gs) ∪ insert v (set vs ′)))

by (rule fst-sym-preproc-addnew-dgrad-set-le)
moreover have insert v (set vs ′) = set vs by (auto simp add: vs ′ v ‹vs 6= []›)
ultimately show dgrad-set-le d (pp-of-term ‘ set vs0) (pp-of-term ‘ (Keys

(set gs) ∪ set vs))
by (simp add: eq)

qed
qed

qed

lemma sym-preproc-aux-Nil: sym-preproc-aux gs ks ([], fs) = (ks, fs)
by simp

lemma sym-preproc-aux-sorted:
assumes sorted-wrt (�t) (v # vs)
shows sym-preproc-aux gs ks (v # vs, fs) = sym-preproc-aux gs (ks @ [v])

(sym-preproc-addnew gs vs fs v)
proof −

352

from assms have ∗: u ∈ set vs =⇒ u ≺t v for u by simp
have ord-term-lin.max-list (v # vs) = ord-term-lin.Max (set (v # vs))

by (simp add: ord-term-lin.max-list-Max del: ord-term-lin.max-list.simps)
also have ... = v
proof (rule ord-term-lin.Max-eqI)

fix s
assume s ∈ set (v # vs)
hence s = v ∨ s ∈ set vs by simp
thus s �t v
proof

assume s = v
thus ?thesis by simp

next
assume s ∈ set vs
hence s ≺t v by (rule ∗)
thus ?thesis by simp

qed
next

show v ∈ set (v # vs) by simp
qed rule
finally have eq1 : ord-term-lin.max-list (v # vs) = v .
have eq2 : removeAll v (v # vs) = vs
proof (simp, rule removeAll-id, rule)

assume v ∈ set vs
hence v ≺t v by (rule ∗)
thus False ..

qed
show ?thesis by (simp only: sym-preproc-aux.simps eq1 eq2 Let-def , simp)

qed

lemma sym-preproc-aux-induct [consumes 0 , case-names base rec]:
assumes base:

∧
ks fs. P ks [] fs (ks, fs)

and rec:
∧

ks vs fs v vs ′. vs 6= [] =⇒ v = ord-term-lin.Max (set vs) =⇒ vs ′ =
removeAll v vs =⇒

P (ks @ [v]) (fst (sym-preproc-addnew gs vs ′ fs v)) (snd (sym-preproc-addnew
gs vs ′ fs v))

(sym-preproc-aux gs (ks @ [v]) (sym-preproc-addnew gs vs ′ fs v))
=⇒

P ks vs fs (sym-preproc-aux gs (ks @ [v]) (sym-preproc-addnew gs vs ′

fs v))
shows P ks vs fs (sym-preproc-aux gs ks (vs, fs))

proof −
from ex-dgrad obtain d:: ′a ⇒ nat where dg: dickson-grading d ..
let ?R = (sym-preproc-aux-term d)::(((′t ⇒0

′b) list × ′t list × ′t list × (′t ⇒0
′b) list) ×

(′t ⇒0
′b) list × ′t list × ′t list × (′t ⇒0

′b) list) set
define args where args = (gs, ks, vs, fs)
from dg have wf ?R by (rule sym-preproc-aux-term-wf)
hence fst args = gs =⇒ P (fst (snd args)) (fst (snd (snd args))) (snd (snd (snd

353

args)))
(sym-preproc-aux gs (fst (snd args)) (snd (snd args)))

proof induct
fix x
assume IH ′:

∧
y. (y, x) ∈ sym-preproc-aux-term d =⇒ fst y = gs =⇒

P (fst (snd y)) (fst (snd (snd y))) (snd (snd (snd y)))
(sym-preproc-aux gs (fst (snd y)) (snd (snd y)))

assume fst x = gs
then obtain x0 where x: x = (gs, x0) by (meson eq-fst-iff)
obtain ks x1 where x0 : x0 = (ks, x1) by (meson case-prodE case-prodI2)
obtain vs fs where x1 : x1 = (vs, fs) by (meson case-prodE case-prodI2)

from IH ′ have IH :
∧

ks ′ n. ((gs, ks ′, n), (gs, ks, vs, fs)) ∈ sym-preproc-aux-term
d =⇒

P ks ′ (fst n) (snd n) (sym-preproc-aux gs ks ′ n)
unfolding x x0 x1 by fastforce

show P (fst (snd x)) (fst (snd (snd x))) (snd (snd (snd x)))
(sym-preproc-aux gs (fst (snd x)) (snd (snd x)))

proof (simp add: x x0 x1 Let-def , intro conjI impI)
show P ks [] fs (ks, fs) by (fact base)

next
assume vs 6= []
define v where v = ord-term-lin.max-list vs
from ‹vs 6= []› have v-alt: v = ord-term-lin.Max (set vs) unfolding v-def

by (rule ord-term-lin.max-list-Max)
define vs ′ where vs ′ = removeAll v vs
show P ks vs fs (sym-preproc-aux gs (ks @ [v]) (sym-preproc-addnew gs vs ′ fs

v))
proof (rule rec, fact ‹vs 6= []›, fact v-alt, fact vs ′-def)

let ?n = sym-preproc-addnew gs vs ′ fs v
obtain vs0 fs0 where eq: ?n = (vs0 , fs0) by fastforce
show P (ks @ [v]) (fst ?n) (snd ?n) (sym-preproc-aux gs (ks @ [v]) ?n)
proof (rule IH ,

simp add: eq sym-preproc-aux-term-def sym-preproc-aux-term1-def
sym-preproc-aux-term2-def ,

intro conjI bexI ballI)
fix s
assume s ∈ set vs0
show s ≺t v
proof (rule fst-sym-preproc-addnew-less)

fix u
assume u ∈ set vs ′

thus u ≺t v unfolding vs ′-def v-alt set-removeAll using ord-term-lin.antisym-conv1
by fastforce

next
from ‹s ∈ set vs0 › show s ∈ set (fst (sym-preproc-addnew gs vs ′ fs v))

by (simp add: eq)
qed

next
from ‹vs 6= []› show v ∈ set vs by (simp add: v-alt)

354

next
from dg have dgrad-set-le d (pp-of-term ‘ set (fst (sym-preproc-addnew gs

vs ′ fs v)))
(pp-of-term ‘ (Keys (set gs) ∪ insert v (set vs ′)))

by (rule fst-sym-preproc-addnew-dgrad-set-le)
moreover have insert v (set vs ′) = set vs by (auto simp add: vs ′-def v-alt

‹vs 6= []›)
ultimately show dgrad-set-le d (pp-of-term ‘ set vs0) (pp-of-term ‘ (Keys

(set gs) ∪ set vs))
by (simp add: eq)

qed
qed

qed
qed
thus ?thesis by (simp add: args-def)

qed

lemma fst-sym-preproc-aux-sorted-wrt:
assumes sorted-wrt (�t) ks and

∧
k v. k ∈ set ks =⇒ v ∈ set vs =⇒ v ≺t k

shows sorted-wrt (�t) (fst (sym-preproc-aux gs ks (vs, fs)))
using assms

proof (induct gs ks vs fs rule: sym-preproc-aux-induct)
case (base ks fs)
from base(1) show ?case by simp

next
case (rec ks vs fs v vs ′)
from rec(1) have v ∈ set vs by (simp add: rec(2))
from rec(1) have ∗:

∧
u. u ∈ set vs ′=⇒ u ≺t v unfolding rec(2 , 3) set-removeAll

using ord-term-lin.antisym-conv3 by force
show ?case
proof (rule rec(4))

show sorted-wrt (�t) (ks @ [v])
proof (simp add: sorted-wrt-append rec(5), rule)

fix k
assume k ∈ set ks
from this ‹v ∈ set vs› show v ≺t k by (rule rec(6))

qed
next

fix k u
assume k ∈ set (ks @ [v]) and u ∈ set (fst (sym-preproc-addnew gs vs ′ fs v))
from ∗ this(2) have u ≺t v by (rule fst-sym-preproc-addnew-less)
from ‹k ∈ set (ks @ [v])› have k ∈ set ks ∨ k = v by auto
thus u ≺t k
proof

assume k ∈ set ks
from this ‹v ∈ set vs› have v ≺t k by (rule rec(6))
with ‹u ≺t v› show ?thesis by simp

next
assume k = v

355

with ‹u ≺t v› show ?thesis by simp
qed

qed
qed

lemma fst-sym-preproc-aux-complete:
assumes Keys (set (fs::(′t ⇒0

′b::semiring-1-no-zero-divisors) list)) = set ks ∪
set vs
shows set (fst (sym-preproc-aux gs ks (vs, fs))) = Keys (set (snd (sym-preproc-aux

gs ks (vs, fs))))
using assms

proof (induct gs ks vs fs rule: sym-preproc-aux-induct)
case (base ks fs)
thus ?case by simp

next
case (rec ks vs fs v vs ′)
from rec(1) have v ∈ set vs by (simp add: rec(2))
hence eq: insert v (set vs ′) = set vs by (auto simp add: rec(3))
also from rec(5) have ... ⊆ Keys (set fs) by simp
also from snd-sym-preproc-addnew-superset have ... ⊆ Keys (set (snd (sym-preproc-addnew

gs vs ′ fs v)))
by (rule Keys-mono)

finally have ... = ... ∪ (insert v (set vs ′)) by blast
also have ... = Keys (set fs) ∪ insert v (set (fst (sym-preproc-addnew gs vs ′ fs

v)))
by (fact Keys-snd-sym-preproc-addnew)

also have ... = (set ks ∪ (insert v (set vs ′))) ∪ (insert v (set (fst (sym-preproc-addnew
gs vs ′ fs v))))

by (simp only: rec(5) eq)
also have ... = set (ks @ [v]) ∪ (set vs ′ ∪ set (fst (sym-preproc-addnew gs vs ′ fs

v))) by auto
also from fst-sym-preproc-addnew-superset have ... = set (ks @ [v]) ∪ set (fst

(sym-preproc-addnew gs vs ′ fs v))
by blast

finally show ?case by (rule rec(4))
qed

lemma snd-sym-preproc-aux-superset: set fs ⊆ set (snd (sym-preproc-aux gs ks (vs,
fs)))
proof (induct fs rule: sym-preproc-aux-induct)

case (base ks fs)
show ?case by simp

next
case (rec ks vs fs v vs ′)
from snd-sym-preproc-addnew-superset rec(4) show ?case by (rule subset-trans)

qed

lemma in-snd-sym-preproc-auxE :
assumes p ∈ set (snd (sym-preproc-aux gs ks (vs, fs)))

356

assumes 1 : p ∈ set fs =⇒ thesis
assumes 2 :

∧
g t. g ∈ set gs =⇒ p = monom-mult 1 t g =⇒ thesis

shows thesis
using assms

proof (induct gs ks vs fs arbitrary: thesis rule: sym-preproc-aux-induct)
case (base ks fs)
from base(1) have p ∈ set fs by simp
thus ?case by (rule base(2))

next
case (rec ks vs fs v vs ′)
from rec(5) show ?case
proof (rule rec(4))

assume p ∈ set (snd (sym-preproc-addnew gs vs ′ fs v))
thus ?thesis
proof (rule in-snd-sym-preproc-addnewE)

assume p ∈ set fs
thus ?thesis by (rule rec(6))

next
fix g s
assume g ∈ set gs and p = monom-mult 1 s g
thus ?thesis by (rule rec(7))

qed
next

fix g t
assume g ∈ set gs and p = monom-mult 1 t g
thus ?thesis by (rule rec(7))

qed
qed

lemma snd-sym-preproc-aux-pmdl:
pmdl (set gs ∪ set (snd (sym-preproc-aux gs ks (ts, fs)))) = pmdl (set gs ∪ set

fs)
proof (induct fs rule: sym-preproc-aux-induct)

case (base ks fs)
show ?case by simp

next
case (rec ks vs fs v vs ′)
from rec(4) sym-preproc-addnew-pmdl show ?case by (rule trans)

qed

lemma snd-sym-preproc-aux-dgrad-set-le:
assumes dickson-grading d and set vs ⊆ Keys (set (fs::(′t ⇒0

′b::semiring-1-no-zero-divisors)
list))

shows dgrad-set-le d (pp-of-term ‘ Keys (set (snd (sym-preproc-aux gs ks (vs,
fs))))) (pp-of-term ‘ Keys (set gs ∪ set fs))

using assms(2)
proof (induct fs rule: sym-preproc-aux-induct)

case (base ks fs)
show ?case by (rule dgrad-set-le-subset, simp add: Keys-Un image-Un)

357

next
case (rec ks vs fs v vs ′)
let ?n = sym-preproc-addnew gs vs ′ fs v
from rec(1) have v ∈ set vs by (simp add: rec(2))
hence set-vs: insert v (set vs ′) = set vs by (auto simp add: rec(3))
from rec(5) have eq: Keys (set fs) ∪ (Keys (set gs) ∪ set vs) = Keys (set gs) ∪

Keys (set fs)
by blast

have dgrad-set-le d (pp-of-term ‘ Keys (set (snd (sym-preproc-aux gs (ks @ [v])
?n))))

(pp-of-term ‘ Keys (set gs ∪ set (snd ?n)))
proof (rule rec(4))

have set (fst ?n) ⊆ Keys (set (snd ?n)) ∪ insert v (set vs ′)
by (simp only: Keys-snd-sym-preproc-addnew, blast)

also have ... = Keys (set (snd ?n)) ∪ (set vs) by (simp only: set-vs)
also have ... ⊆ Keys (set (snd ?n))
proof −

{
fix u
assume u ∈ set vs
with rec(5) have u ∈ Keys (set fs) ..
then obtain f where f ∈ set fs and u ∈ keys f by (rule in-KeysE)
from this(1) snd-sym-preproc-addnew-superset have f ∈ set (snd ?n) ..
with ‹u ∈ keys f › have u ∈ Keys (set (snd ?n)) by (rule in-KeysI)

}
thus ?thesis by auto

qed
finally show set (fst ?n) ⊆ Keys (set (snd ?n)) .

qed
also have dgrad-set-le d ... (pp-of-term ‘ Keys (set gs ∪ set fs))
proof (simp only: image-Un Keys-Un dgrad-set-le-Un, rule)

show dgrad-set-le d (pp-of-term ‘ Keys (set gs)) (pp-of-term ‘ Keys (set gs) ∪
pp-of-term ‘ Keys (set fs))

by (rule dgrad-set-le-subset, simp)
next

have dgrad-set-le d (pp-of-term ‘ Keys (set (snd ?n))) (pp-of-term ‘ (Keys (set
fs) ∪ insert v (set (fst ?n))))

by (rule dgrad-set-le-subset, auto simp only: Keys-snd-sym-preproc-addnew[symmetric])
also have dgrad-set-le d ... (pp-of-term ‘ Keys (set fs) ∪ pp-of-term ‘ (Keys (set

gs) ∪ insert v (set vs ′)))
proof (simp only: dgrad-set-le-Un image-Un, rule)

show dgrad-set-le d (pp-of-term ‘ Keys (set fs))
(pp-of-term ‘ Keys (set fs) ∪ (pp-of-term ‘ Keys (set gs) ∪ pp-of-term ‘

insert v (set vs ′)))
by (rule dgrad-set-le-subset, blast)

next
have dgrad-set-le d (pp-of-term ‘ {v}) (pp-of-term ‘ (Keys (set gs) ∪ insert v

(set vs ′)))
by (rule dgrad-set-le-subset, simp)

358

moreover from assms(1) have dgrad-set-le d (pp-of-term ‘ set (fst ?n))
(pp-of-term ‘ (Keys (set gs) ∪ insert v (set vs ′)))

by (rule fst-sym-preproc-addnew-dgrad-set-le)
ultimately have dgrad-set-le d (pp-of-term ‘ ({v} ∪ set (fst ?n))) (pp-of-term

‘ (Keys (set gs) ∪ insert v (set vs ′)))
by (simp only: dgrad-set-le-Un image-Un)

also have dgrad-set-le d (pp-of-term ‘ (Keys (set gs) ∪ insert v (set vs ′)))
(pp-of-term ‘ (Keys (set fs) ∪ (Keys (set gs) ∪ insert v

(set vs ′))))
by (rule dgrad-set-le-subset, blast)

finally show dgrad-set-le d (pp-of-term ‘ insert v (set (fst ?n)))
(pp-of-term ‘ Keys (set fs) ∪ (pp-of-term ‘ Keys (set

gs) ∪ pp-of-term ‘ insert v (set vs ′)))
by (simp add: image-Un)

qed
finally show dgrad-set-le d (pp-of-term ‘ Keys (set (snd ?n))) (pp-of-term ‘

Keys (set gs) ∪ pp-of-term ‘ Keys (set fs))
by (simp only: set-vs eq, metis eq image-Un)

qed
finally show ?case .

qed

lemma components-snd-sym-preproc-aux-subset:
assumes set vs ⊆ Keys (set (fs::(′t ⇒0

′b::semiring-1-no-zero-divisors) list))
shows component-of-term ‘ Keys (set (snd (sym-preproc-aux gs ks (vs, fs)))) ⊆

component-of-term ‘ Keys (set gs ∪ set fs)
using assms

proof (induct fs rule: sym-preproc-aux-induct)
case (base ks fs)
show ?case by (simp add: Keys-Un image-Un)

next
case (rec ks vs fs v vs ′)
let ?n = sym-preproc-addnew gs vs ′ fs v
from rec(1) have v ∈ set vs by (simp add: rec(2))
hence set-vs: insert v (set vs ′) = set vs by (auto simp add: rec(3))
from rec(5) have eq: Keys (set fs) ∪ (Keys (set gs) ∪ set vs) = Keys (set gs) ∪

Keys (set fs)
by blast

have component-of-term ‘ Keys (set (snd (sym-preproc-aux gs (ks @ [v]) ?n))) ⊆
component-of-term ‘ Keys (set gs ∪ set (snd ?n))

proof (rule rec(4))
have set (fst ?n) ⊆ Keys (set (snd ?n)) ∪ insert v (set vs ′)

by (simp only: Keys-snd-sym-preproc-addnew, blast)
also have ... = Keys (set (snd ?n)) ∪ (set vs) by (simp only: set-vs)
also have ... ⊆ Keys (set (snd ?n))
proof −

{
fix u
assume u ∈ set vs

359

with rec(5) have u ∈ Keys (set fs) ..
then obtain f where f ∈ set fs and u ∈ keys f by (rule in-KeysE)
from this(1) snd-sym-preproc-addnew-superset have f ∈ set (snd ?n) ..
with ‹u ∈ keys f › have u ∈ Keys (set (snd ?n)) by (rule in-KeysI)

}
thus ?thesis by auto

qed
finally show set (fst ?n) ⊆ Keys (set (snd ?n)) .

qed
also have ... ⊆ component-of-term ‘ Keys (set gs ∪ set fs)
proof (simp only: image-Un Keys-Un Un-subset-iff , rule, fact Un-upper1)

have component-of-term ‘ Keys (set (snd ?n)) ⊆ component-of-term ‘ (Keys
(set fs) ∪ insert v (set (fst ?n)))

by (auto simp only: Keys-snd-sym-preproc-addnew[symmetric])
also have ... ⊆ component-of-term ‘ Keys (set fs) ∪ component-of-term ‘ (Keys

(set gs) ∪ insert v (set vs ′))
proof (simp only: Un-subset-iff image-Un, rule, fact Un-upper1)

have component-of-term ‘ {v} ⊆ component-of-term ‘ (Keys (set gs) ∪ insert
v (set vs ′))

by simp
moreover have component-of-term ‘ set (fst ?n) ⊆ component-of-term ‘ (Keys

(set gs) ∪ insert v (set vs ′))
by (rule components-fst-sym-preproc-addnew-subset)

ultimately have component-of-term ‘ ({v} ∪ set (fst ?n)) ⊆ component-of-term
‘ (Keys (set gs) ∪ insert v (set vs ′))

by (simp only: Un-subset-iff image-Un)
also have component-of-term ‘ (Keys (set gs) ∪ insert v (set vs ′)) ⊆

component-of-term ‘ (Keys (set fs) ∪ (Keys (set gs) ∪ insert v
(set vs ′)))

by blast
finally show component-of-term ‘ insert v (set (fst ?n)) ⊆

component-of-term ‘ Keys (set fs) ∪
(component-of-term ‘ Keys (set gs) ∪ component-of-term ‘ insert

v (set vs ′))
by (simp add: image-Un)

qed
finally show component-of-term ‘ Keys (set (snd ?n)) ⊆

component-of-term ‘ Keys (set gs) ∪ component-of-term ‘ Keys (set
fs)

by (simp only: set-vs eq, metis eq image-Un)
qed
finally show ?case .

qed

lemma snd-sym-preproc-aux-complete:
assumes

∧
u ′ g ′. u ′ ∈ Keys (set fs) =⇒ u ′ /∈ set vs =⇒ g ′ ∈ set gs =⇒ lt g ′

addst u ′ =⇒
monom-mult 1 (pp-of-term u ′ − lp g ′) g ′ ∈ set fs

assumes u ∈ Keys (set (snd (sym-preproc-aux gs ks (vs, fs)))) and g ∈ set gs

360

and lt g addst u
shows monom-mult (1 :: ′b::semiring-1-no-zero-divisors) (pp-of-term u − lp g) g
∈

set (snd (sym-preproc-aux gs ks (vs, fs)))
using assms

proof (induct fs rule: sym-preproc-aux-induct)
case (base ks fs)
from base(2) have u ∈ Keys (set fs) by simp
from this - base(3 , 4) have monom-mult 1 (pp-of-term u − lp g) g ∈ set fs
proof (rule base(1))

show u /∈ set [] by simp
qed
thus ?case by simp

next
case (rec ks vs fs v vs ′)
from rec(1) have v ∈ set vs by (simp add: rec(2))
hence set-ts: set vs = insert v (set vs ′) by (auto simp add: rec(3))

let ?n = sym-preproc-addnew gs vs ′ fs v
from - rec(6 , 7 , 8) show ?case
proof (rule rec(4))

fix v ′ g ′

assume v ′ ∈ Keys (set (snd ?n)) and v ′ /∈ set (fst ?n) and g ′ ∈ set gs and lt
g ′ addst v ′

from this(1) Keys-snd-sym-preproc-addnew have v ′ ∈ Keys (set fs) ∪ insert v
(set (fst ?n))

by blast
with ‹v ′ /∈ set (fst ?n)› have disj: v ′ ∈ Keys (set fs) ∨ v ′ = v by blast
show monom-mult 1 (pp-of-term v ′ − lp g ′) g ′ ∈ set (snd ?n)
proof (cases v ′ = v)

case True
from ‹g ′ ∈ set gs› ‹lt g ′ addst v ′› show ?thesis

unfolding True by (rule sym-preproc-addnew-complete)
next

case False
with disj have v ′ ∈ Keys (set fs) by simp
moreover have v ′ /∈ set vs
proof

assume v ′ ∈ set vs
hence v ′ ∈ set vs ′ using False by (simp add: rec(3))
with fst-sym-preproc-addnew-superset have v ′ ∈ set (fst ?n) ..
with ‹v ′ /∈ set (fst ?n)› show False ..

qed
ultimately have monom-mult 1 (pp-of-term v ′ − lp g ′) g ′ ∈ set fs

using ‹g ′ ∈ set gs› ‹lt g ′ addst v ′› by (rule rec(5))
with snd-sym-preproc-addnew-superset show ?thesis ..

qed
qed

qed

361

definition sym-preproc :: (′t ⇒0
′b::semiring-1) list ⇒ (′t ⇒0

′b) list ⇒ (′t list ×
(′t ⇒0

′b) list)
where sym-preproc gs fs = sym-preproc-aux gs [] (Keys-to-list fs, fs)

lemma sym-preproc-Nil [simp]: sym-preproc gs [] = ([], [])
by (simp add: sym-preproc-def)

lemma fst-sym-preproc:
fst (sym-preproc gs fs) = Keys-to-list (snd (sym-preproc gs (fs::(′t ⇒0

′b::semiring-1-no-zero-divisors)
list)))
proof −

let ?a = fst (sym-preproc gs fs)
let ?b = Keys-to-list (snd (sym-preproc gs fs))
have antisymp (�t) unfolding antisymp-def by fastforce
have irreflp (�t) by (simp add: irreflp-def)
moreover have transp (�t) unfolding transp-def by fastforce
moreover have s1 : sorted-wrt (�t) ?a unfolding sym-preproc-def

by (rule fst-sym-preproc-aux-sorted-wrt, simp-all)
ultimately have d1 : distinct ?a by (rule distinct-sorted-wrt-irrefl)
have s2 : sorted-wrt (�t) ?b by (fact Keys-to-list-sorted-wrt)
with ‹irreflp (�t)› ‹transp (�t)› have d2 : distinct ?b by (rule distinct-sorted-wrt-irrefl)
from ‹antisymp (�t)› s1 d1 s2 d2 show ?thesis
proof (rule sorted-wrt-distinct-set-unique)

show set ?a = set ?b unfolding set-Keys-to-list sym-preproc-def
by (rule fst-sym-preproc-aux-complete, simp add: set-Keys-to-list)

qed
qed

lemma snd-sym-preproc-superset: set fs ⊆ set (snd (sym-preproc gs fs))
by (simp only: sym-preproc-def snd-conv, fact snd-sym-preproc-aux-superset)

lemma in-snd-sym-preprocE :
assumes p ∈ set (snd (sym-preproc gs fs))
assumes 1 : p ∈ set fs =⇒ thesis
assumes 2 :

∧
g t. g ∈ set gs =⇒ p = monom-mult 1 t g =⇒ thesis

shows thesis
using assms unfolding sym-preproc-def snd-conv by (rule in-snd-sym-preproc-auxE)

lemma snd-sym-preproc-pmdl: pmdl (set gs ∪ set (snd (sym-preproc gs fs))) =
pmdl (set gs ∪ set fs)

unfolding sym-preproc-def snd-conv by (fact snd-sym-preproc-aux-pmdl)

lemma snd-sym-preproc-dgrad-set-le:
assumes dickson-grading d
shows dgrad-set-le d (pp-of-term ‘ Keys (set (snd (sym-preproc gs fs))))

(pp-of-term ‘ Keys (set gs ∪ set (fs::(′t ⇒0
′b::semiring-1-no-zero-divisors)

list)))
unfolding sym-preproc-def snd-conv using assms

362

proof (rule snd-sym-preproc-aux-dgrad-set-le)
show set (Keys-to-list fs) ⊆ Keys (set fs) by (simp add: set-Keys-to-list)

qed

corollary snd-sym-preproc-dgrad-p-set-le:
assumes dickson-grading d
shows dgrad-p-set-le d (set (snd (sym-preproc gs fs))) (set gs ∪ set (fs::(′t ⇒0

′b::semiring-1-no-zero-divisors) list))
unfolding dgrad-p-set-le-def

proof −
from assms show dgrad-set-le d (pp-of-term ‘ Keys (set (snd (sym-preproc gs

fs)))) (pp-of-term ‘ Keys (set gs ∪ set fs))
by (rule snd-sym-preproc-dgrad-set-le)

qed

lemma components-snd-sym-preproc-subset:
component-of-term ‘ Keys (set (snd (sym-preproc gs fs))) ⊆

component-of-term ‘ Keys (set gs ∪ set (fs::(′t ⇒0
′b::semiring-1-no-zero-divisors)

list))
unfolding sym-preproc-def snd-conv
by (rule components-snd-sym-preproc-aux-subset, simp add: set-Keys-to-list)

lemma snd-sym-preproc-complete:
assumes v ∈ Keys (set (snd (sym-preproc gs fs))) and g ∈ set gs and lt g addst

v
shows monom-mult (1 :: ′b::semiring-1-no-zero-divisors) (pp-of-term v − lp g) g
∈ set (snd (sym-preproc gs fs))

using - assms unfolding sym-preproc-def snd-conv
proof (rule snd-sym-preproc-aux-complete)

fix u ′ and g ′:: ′t ⇒0
′b

assume u ′ ∈ Keys (set fs) and u ′ /∈ set (Keys-to-list fs)
thus monom-mult 1 (pp-of-term u ′− lp g ′) g ′∈ set fs by (simp add: set-Keys-to-list)

qed

end

16.2 lin-red
context ordered-term
begin

definition lin-red :: (′t ⇒0
′b::field) set ⇒ (′t ⇒0

′b) ⇒ (′t ⇒0
′b) ⇒ bool

where lin-red F p q ≡ (∃ f∈F . red-single p q f 0)

lin-red is a restriction of red, where the reductor (f) may only be multiplied
by a constant factor, i. e. where the power-product is 0.
lemma lin-redI :

assumes f ∈ F and red-single p q f 0
shows lin-red F p q

363

unfolding lin-red-def using assms ..

lemma lin-redE :
assumes lin-red F p q
obtains f :: ′t ⇒0

′b::field where f ∈ F and red-single p q f 0
proof −
from assms obtain f where f ∈ F and t: red-single p q f 0 unfolding lin-red-def

by blast
thus ?thesis ..

qed

lemma lin-red-imp-red:
assumes lin-red F p q
shows red F p q

proof −
from assms obtain f where f ∈ F and red-single p q f 0 by (rule lin-redE)
thus ?thesis by (rule red-setI)

qed

lemma lin-red-Un: lin-red (F ∪ G) p q = (lin-red F p q ∨ lin-red G p q)
proof

assume lin-red (F ∪ G) p q
then obtain f where f ∈ F ∪ G and r : red-single p q f 0 by (rule lin-redE)
from this(1) show lin-red F p q ∨ lin-red G p q
proof

assume f ∈ F
from this r have lin-red F p q by (rule lin-redI)
thus ?thesis ..

next
assume f ∈ G
from this r have lin-red G p q by (rule lin-redI)
thus ?thesis ..

qed
next

assume lin-red F p q ∨ lin-red G p q
thus lin-red (F ∪ G) p q
proof

assume lin-red F p q
then obtain f where f ∈ F and r : red-single p q f 0 by (rule lin-redE)
from this(1) have f ∈ F ∪ G by simp
from this r show ?thesis by (rule lin-redI)

next
assume lin-red G p q
then obtain g where g ∈ G and r : red-single p q g 0 by (rule lin-redE)
from this(1) have g ∈ F ∪ G by simp
from this r show ?thesis by (rule lin-redI)

qed
qed

364

lemma lin-red-imp-red-rtrancl:
assumes (lin-red F)∗∗ p q
shows (red F)∗∗ p q
using assms

proof induct
case base
show ?case ..

next
case (step y z)
from step(2) have red F y z by (rule lin-red-imp-red)
with step(3) show ?case ..

qed

lemma phull-closed-lin-red:
assumes phull B ⊆ phull A and p ∈ phull A and lin-red B p q
shows q ∈ phull A

proof −
from assms(3) obtain f where f ∈ B and red-single p q f 0 by (rule lin-redE)
hence q: q = p − (lookup p (lt f) / lc f) · f

by (simp add: red-single-def term-simps map-scale-eq-monom-mult)
have q − p ∈ phull B
by (simp add: q, rule phull.span-neg, rule phull.span-scale, rule phull.span-base,

fact ‹f ∈ B›)
with assms(1) have q − p ∈ phull A ..
from this assms(2) have (q − p) + p ∈ phull A by (rule phull.span-add)
thus ?thesis by simp

qed

16.3 Reduction
definition Macaulay-red :: ′t list ⇒ (′t ⇒0

′b) list ⇒ (′t ⇒0
′b::field) list

where Macaulay-red vs fs =
(let lts = map lt (filter (λp. p 6= 0) fs) in

filter (λp. p 6= 0 ∧ lt p /∈ set lts) (mat-to-polys vs (row-echelon (polys-to-mat
vs fs)))

)

Macaulay-red vs fs auto-reduces (w. r. t. lin-red) the given list fs and returns
those non-zero polynomials whose leading terms are not in lt-set (set fs).
Argument vs is expected to be Keys-to-list fs; this list is passed as an argu-
ment to Macaulay-red, because it can be efficiently computed by symbolic
preprocessing.
lemma Macaulay-red-alt:

Macaulay-red (Keys-to-list fs) fs = filter (λp. lt p /∈ lt-set (set fs)) (Macaulay-list
fs)
proof −

have {x ∈ set fs. x 6= 0} = set fs − {0} by blast
thus ?thesis by (simp add: Macaulay-red-def Macaulay-list-def Macaulay-mat-def

lt-set-def Let-def)

365

qed

lemma set-Macaulay-red:
set (Macaulay-red (Keys-to-list fs) fs) = set (Macaulay-list fs) − {p. lt p ∈ lt-set

(set fs)}
by (auto simp add: Macaulay-red-alt)

lemma Keys-Macaulay-red: Keys (set (Macaulay-red (Keys-to-list fs) fs)) ⊆ Keys
(set fs)
proof −

have Keys (set (Macaulay-red (Keys-to-list fs) fs)) ⊆ Keys (set (Macaulay-list
fs))

unfolding set-Macaulay-red by (fact Keys-minus)
also have ... ⊆ Keys (set fs) by (fact Keys-Macaulay-list)
finally show ?thesis .

qed

end

context gd-term
begin

lemma Macaulay-red-reducible:
assumes f ∈ phull (set fs) and F ⊆ set fs and lt-set F = lt-set (set fs)
shows (lin-red (F ∪ set (Macaulay-red (Keys-to-list fs) fs)))∗∗ f 0

proof −
define A where A = F ∪ set (Macaulay-red (Keys-to-list fs) fs)

have phull-A: phull A ⊆ phull (set fs)
proof (rule phull.span-subset-spanI , simp add: A-def , rule)

have F ⊆ phull F by (rule phull.span-superset)
also from assms(2) have ... ⊆ phull (set fs) by (rule phull.span-mono)
finally show F ⊆ phull (set fs) .

next
have set (Macaulay-red (Keys-to-list fs) fs) ⊆ set (Macaulay-list fs)

by (auto simp add: set-Macaulay-red)
also have ... ⊆ phull (set (Macaulay-list fs)) by (rule phull.span-superset)
also have ... = phull (set fs) by (rule phull-Macaulay-list)
finally show set (Macaulay-red (Keys-to-list fs) fs) ⊆ phull (set fs) .

qed

have lt-A: p ∈ phull (set fs) =⇒ p 6= 0 =⇒ (
∧

g. g ∈ A =⇒ g 6= 0 =⇒ lt g = lt
p =⇒ thesis) =⇒ thesis

for p thesis
proof −

assume p ∈ phull (set fs) and p 6= 0
then obtain g where g-in: g ∈ set (Macaulay-list fs) and g 6= 0 and lt p =

lt g
by (rule Macaulay-list-lt)

366

assume ∗:
∧

g. g ∈ A =⇒ g 6= 0 =⇒ lt g = lt p =⇒ thesis
show ?thesis
proof (cases g ∈ set (Macaulay-red (Keys-to-list fs) fs))

case True
hence g ∈ A by (simp add: A-def)
from this ‹g 6= 0 › ‹lt p = lt g›[symmetric] show ?thesis by (rule ∗)

next
case False
with g-in have lt g ∈ lt-set (set fs) by (simp add: set-Macaulay-red)
also have ... = lt-set F by (simp only: assms(3))
finally obtain g ′ where g ′ ∈ F and g ′ 6= 0 and lt g ′ = lt g by (rule lt-setE)
from this(1) have g ′ ∈ A by (simp add: A-def)
moreover note ‹g ′ 6= 0 ›
moreover have lt g ′ = lt p by (simp only: ‹lt p = lt g› ‹lt g ′ = lt g›)
ultimately show ?thesis by (rule ∗)

qed
qed

from assms(2) finite-set have finite F by (rule finite-subset)
from this finite-set have fin-A: finite A unfolding A-def by (rule finite-UnI)

from ex-dgrad obtain d:: ′a ⇒ nat where dg: dickson-grading d ..
from fin-A have finite (insert f A) ..
then obtain m where insert f A ⊆ dgrad-p-set d m by (rule dgrad-p-set-exhaust)
hence A-sub: A ⊆ dgrad-p-set d m and f ∈ dgrad-p-set d m by simp-all
from dg have wfP (dickson-less-p d m) by (rule wf-dickson-less-p)
from this assms(1) ‹f ∈ dgrad-p-set d m› show (lin-red A)∗∗ f 0
proof (induct f)

fix p
assume IH :

∧
q. dickson-less-p d m q p =⇒ q ∈ phull (set fs) =⇒ q ∈ dgrad-p-set

d m =⇒
(lin-red A)∗∗ q 0

and p ∈ phull (set fs) and p ∈ dgrad-p-set d m
show (lin-red A)∗∗ p 0
proof (cases p = 0)

case True
thus ?thesis by simp

next
case False
with ‹p ∈ phull (set fs)› obtain g where g ∈ A and g 6= 0 and lt g = lt p

by (rule lt-A)
define q where q = p − monom-mult (lc p / lc g) 0 g
from ‹g ∈ A› have lr : lin-red A p q
proof (rule lin-redI)

show red-single p q g 0
by (simp add: red-single-def ‹lt g = lt p› lc-def [symmetric] q-def ‹g 6= 0 ›

lc-not-0 [OF False] term-simps)
qed
moreover have (lin-red A)∗∗ q 0

367

proof −
from lr have red: red A p q by (rule lin-red-imp-red)
with dg A-sub ‹p ∈ dgrad-p-set d m› have q ∈ dgrad-p-set d m by (rule

dgrad-p-set-closed-red)
moreover from red have q ≺p p by (rule red-ord)
ultimately have dickson-less-p d m q p using ‹p ∈ dgrad-p-set d m›

by (simp add: dickson-less-p-def)
moreover from phull-A ‹p ∈ phull (set fs)› lr have q ∈ phull (set fs)

by (rule phull-closed-lin-red)
ultimately show ?thesis using ‹q ∈ dgrad-p-set d m› by (rule IH)

qed
ultimately show ?thesis by fastforce

qed
qed

qed

primrec pdata-pairs-to-list :: (′t, ′b::field, ′c) pdata-pair list ⇒ (′t ⇒0
′b) list

where
pdata-pairs-to-list [] = []|
pdata-pairs-to-list (p # ps) =
(let f = fst (fst p); g = fst (snd p); lf = lp f ; lg = lp g; l = lcs lf lg in
(monom-mult (1 / lc f) (l − lf) f) # (monom-mult (1 / lc g) (l − lg) g) #
(pdata-pairs-to-list ps)

)

lemma in-pdata-pairs-to-listI1 :
assumes (f , g) ∈ set ps
shows monom-mult (1 / lc (fst f)) ((lcs (lp (fst f)) (lp (fst g))) − (lp (fst f)))

(fst f) ∈ set (pdata-pairs-to-list ps) (is ?m ∈ -)
using assms

proof (induct ps)
case Nil
thus ?case by simp

next
case (Cons p ps)
from Cons(2) have p = (f , g) ∨ (f , g) ∈ set ps by auto
thus ?case
proof

assume p = (f , g)
show ?thesis by (simp add: ‹p = (f , g)› Let-def)

next
assume (f , g) ∈ set ps
hence ?m ∈ set (pdata-pairs-to-list ps) by (rule Cons(1))
thus ?thesis by (simp add: Let-def)

qed
qed

lemma in-pdata-pairs-to-listI2 :
assumes (f , g) ∈ set ps

368

shows monom-mult (1 / lc (fst g)) ((lcs (lp (fst f)) (lp (fst g))) − (lp (fst g)))
(fst g) ∈ set (pdata-pairs-to-list ps) (is ?m ∈ -)

using assms
proof (induct ps)

case Nil
thus ?case by simp

next
case (Cons p ps)
from Cons(2) have p = (f , g) ∨ (f , g) ∈ set ps by auto
thus ?case
proof

assume p = (f , g)
show ?thesis by (simp add: ‹p = (f , g)› Let-def)

next
assume (f , g) ∈ set ps
hence ?m ∈ set (pdata-pairs-to-list ps) by (rule Cons(1))
thus ?thesis by (simp add: Let-def)

qed
qed

lemma in-pdata-pairs-to-listE :
assumes h ∈ set (pdata-pairs-to-list ps)
obtains f g where (f , g) ∈ set ps ∨ (g, f) ∈ set ps

and h = monom-mult (1 / lc (fst f)) ((lcs (lp (fst f)) (lp (fst g))) − (lp (fst
f))) (fst f)

using assms
proof (induct ps arbitrary: thesis)

case Nil
from Nil(2) show ?case by simp

next
case (Cons p ps)
let ?f = fst (fst p)
let ?g = fst (snd p)
let ?lf = lp ?f
let ?lg = lp ?g
let ?l = lcs ?lf ?lg
from Cons(3) have h = monom-mult (1 / lc ?f) (?l − ?lf) ?f ∨ h = monom-mult

(1 / lc ?g) (?l − ?lg) ?g ∨
h ∈ set (pdata-pairs-to-list ps)

by (simp add: Let-def)
thus ?case
proof (elim disjE)

assume h: h = monom-mult (1 / lc ?f) (?l − ?lf) ?f
have (fst p, snd p) ∈ set (p # ps) by simp
hence (fst p, snd p) ∈ set (p # ps) ∨ (snd p, fst p) ∈ set (p # ps) ..
from this h show ?thesis by (rule Cons(2))

next
assume h: h = monom-mult (1 / lc ?g) (?l − ?lg) ?g
have (fst p, snd p) ∈ set (p # ps) by simp

369

hence (snd p, fst p) ∈ set (p # ps) ∨ (fst p, snd p) ∈ set (p # ps) ..
moreover from h have h = monom-mult (1 / lc ?g) ((lcs ?lg ?lf) − ?lg) ?g

by (simp only: lcs-comm)
ultimately show ?thesis by (rule Cons(2))

next
assume h-in: h ∈ set (pdata-pairs-to-list ps)
obtain f g where (f , g) ∈ set ps ∨ (g, f) ∈ set ps

and h: h = monom-mult (1 / lc (fst f)) ((lcs (lp (fst f)) (lp (fst g))) − (lp
(fst f))) (fst f)

by (rule Cons(1), assumption, intro h-in)
from this(1) have (f , g) ∈ set (p # ps) ∨ (g, f) ∈ set (p # ps) by auto
from this h show ?thesis by (rule Cons(2))

qed
qed

definition f4-red-aux :: (′t, ′b::field, ′c) pdata list ⇒ (′t, ′b, ′c) pdata-pair list ⇒
(′t ⇒0

′b) list
where f4-red-aux bs ps =

(let aux = sym-preproc (map fst bs) (pdata-pairs-to-list ps) in Macaulay-red
(fst aux) (snd aux))

f4-red-aux only takes two arguments, since it does not distinguish between
those elements of the current basis that are known to be a Gröbner basis
(called gs in Groebner-Bases.Algorithm-Schema) and the remaining ones.
lemma f4-red-aux-not-zero: 0 /∈ set (f4-red-aux bs ps)
by (simp add: f4-red-aux-def Let-def fst-sym-preproc set-Macaulay-red set-Macaulay-list)

lemma f4-red-aux-irredudible:
assumes h ∈ set (f4-red-aux bs ps) and b ∈ set bs and fst b 6= 0
shows ¬ lt (fst b) addst lt h

proof
from assms(1) f4-red-aux-not-zero have h 6= 0 by metis
hence lt h ∈ keys h by (rule lt-in-keys)
also from assms(1) have ... ⊆ Keys (set (f4-red-aux bs ps)) by (rule keys-subset-Keys)
also have ... ⊆ Keys (set (snd (sym-preproc (map fst bs) (pdata-pairs-to-list

ps))))
(is - ⊆ Keys (set ?s)) by (simp only: f4-red-aux-def Let-def fst-sym-preproc

Keys-Macaulay-red)
finally have lt h ∈ Keys (set ?s) .
moreover from assms(2) have fst b ∈ set (map fst bs) by auto
moreover assume a: lt (fst b) addst lt h
ultimately have monom-mult 1 (lp h − lp (fst b)) (fst b) ∈ set ?s (is ?m ∈ -)

by (rule snd-sym-preproc-complete)
from assms(3) have ?m 6= 0 by (simp add: monom-mult-eq-zero-iff)
with ‹?m ∈ set ?s› have lt ?m ∈ lt-set (set ?s) by (rule lt-setI)
moreover from assms(3) a have lt ?m = lt h
by (simp add: lt-monom-mult, metis add-diff-cancel-right ′ adds-termE pp-of-term-splus)

ultimately have lt h ∈ lt-set (set ?s) by simp
moreover from assms(1) have lt h /∈ lt-set (set ?s)

370

by (simp add: f4-red-aux-def Let-def fst-sym-preproc set-Macaulay-red)
ultimately show False by simp

qed

lemma f4-red-aux-dgrad-p-set-le:
assumes dickson-grading d
shows dgrad-p-set-le d (set (f4-red-aux bs ps)) (args-to-set ([], bs, ps))
unfolding dgrad-p-set-le-def dgrad-set-le-def

proof
fix s
assume s ∈ pp-of-term ‘ Keys (set (f4-red-aux bs ps))
also have ... ⊆ pp-of-term ‘ Keys (set (snd (sym-preproc (map fst bs) (pdata-pairs-to-list

ps))))
(is - ⊆ pp-of-term ‘ Keys (set ?s))

by (rule image-mono, simp only: f4-red-aux-def Let-def fst-sym-preproc Keys-Macaulay-red)
finally have s ∈ pp-of-term ‘ Keys (set ?s) .
with snd-sym-preproc-dgrad-set-le[OF assms] obtain t

where t ∈ pp-of-term ‘ Keys (set (map fst bs) ∪ set (pdata-pairs-to-list ps))
and d s ≤ d t

by (rule dgrad-set-leE)
from this(1) have t ∈ pp-of-term ‘ Keys (fst ‘ set bs) ∨ t ∈ pp-of-term ‘ Keys

(set (pdata-pairs-to-list ps))
by (simp add: Keys-Un image-Un)

thus ∃ t ∈ pp-of-term ‘ Keys (args-to-set ([], bs, ps)). d s ≤ d t
proof

assume t ∈ pp-of-term ‘ Keys (fst ‘ set bs)
also have ... ⊆ pp-of-term ‘ Keys (args-to-set ([], bs, ps))

by (rule image-mono, rule Keys-mono, auto simp add: args-to-set-alt)
finally have t ∈ pp-of-term ‘ Keys (args-to-set ([], bs, ps)) .
with ‹d s ≤ d t› show ?thesis ..

next
assume t ∈ pp-of-term ‘ Keys (set (pdata-pairs-to-list ps))
then obtain p where p ∈ set (pdata-pairs-to-list ps) and t ∈ pp-of-term ‘ keys

p
by (auto elim: in-KeysE)

from this(1) obtain f g where disj: (f , g) ∈ set ps ∨ (g, f) ∈ set ps
and p: p = monom-mult (1 / lc (fst f)) ((lcs (lp (fst f)) (lp (fst g))) − (lp

(fst f))) (fst f)
by (rule in-pdata-pairs-to-listE)

from disj have fst f ∈ args-to-set ([], bs, ps) ∧ fst g ∈ args-to-set ([], bs, ps)
proof

assume (f , g) ∈ set ps
hence f ∈ fst ‘ set ps and g ∈ snd ‘ set ps by force+
hence fst f ∈ fst ‘ fst ‘ set ps and fst g ∈ fst ‘ snd ‘ set ps by simp-all
thus ?thesis by (simp add: args-to-set-def image-Un)

next
assume (g, f) ∈ set ps
hence f ∈ snd ‘ set ps and g ∈ fst ‘ set ps by force+
hence fst f ∈ fst ‘ snd ‘ set ps and fst g ∈ fst ‘ fst ‘ set ps by simp-all

371

thus ?thesis by (simp add: args-to-set-def image-Un)
qed
hence fst f ∈ args-to-set ([], bs, ps) and fst g ∈ args-to-set ([], bs, ps) by

simp-all
hence keys-f : keys (fst f) ⊆ Keys (args-to-set ([], bs, ps))

and keys-g: keys (fst g) ⊆ Keys (args-to-set ([], bs, ps))
by (auto intro!: keys-subset-Keys)

let ?lf = lp (fst f)
let ?lg = lp (fst g)
define l where l = lcs ?lf ?lg
have pp-of-term ‘ keys p ⊆ pp-of-term ‘ ((⊕) (lcs ?lf ?lg − ?lf) ‘ keys (fst f))

unfolding p
using keys-monom-mult-subset by (rule image-mono)

with ‹t ∈ pp-of-term ‘ keys p› have t ∈ pp-of-term ‘ ((⊕) (l − ?lf) ‘ keys (fst
f)) unfolding l-def ..

then obtain t ′ where t ′ ∈ pp-of-term ‘ keys (fst f) and t: t = (l − ?lf) + t ′

using pp-of-term-splus by fastforce
from this(1) have fst f 6= 0 by auto
show ?thesis
proof (cases fst g = 0)

case True
hence ?lg = 0 by (simp add: lt-def min-term-def term-simps)
hence l = ?lf by (simp add: l-def lcs-zero lcs-comm)
hence t = t ′ by (simp add: t)
with ‹d s ≤ d t› have d s ≤ d t ′ by simp
moreover from ‹t ′ ∈ pp-of-term ‘ keys (fst f)› keys-f have t ′ ∈ pp-of-term

‘ Keys (args-to-set ([], bs, ps))
by blast

ultimately show ?thesis ..
next

case False
have d t = d (l − ?lf) ∨ d t = d t ′

by (auto simp add: t dickson-gradingD1 [OF assms])
thus ?thesis
proof

assume d t = d (l − ?lf)
also from assms have ... ≤ ord-class.max (d ?lf) (d ?lg)

unfolding l-def by (rule dickson-grading-lcs-minus)
finally have d s ≤ d ?lf ∨ d s ≤ d ?lg using ‹d s ≤ d t› by auto
thus ?thesis
proof

assume d s ≤ d ?lf
moreover have lt (fst f) ∈ Keys (args-to-set ([], bs, ps))

by (rule, rule lt-in-keys, fact+)
ultimately show ?thesis by blast

next
assume d s ≤ d ?lg
moreover have lt (fst g) ∈ Keys (args-to-set ([], bs, ps))

by (rule, rule lt-in-keys, fact+)

372

ultimately show ?thesis by blast
qed

next
assume d t = d t ′

with ‹d s ≤ d t› have d s ≤ d t ′ by simp
moreover from ‹t ′ ∈ pp-of-term ‘ keys (fst f)› keys-f have t ′ ∈ pp-of-term

‘ Keys (args-to-set ([], bs, ps))
by blast

ultimately show ?thesis ..
qed

qed
qed

qed

lemma components-f4-red-aux-subset:
component-of-term ‘ Keys (set (f4-red-aux bs ps)) ⊆ component-of-term ‘ Keys

(args-to-set ([], bs, ps))
proof

fix k
assume k ∈ component-of-term ‘ Keys (set (f4-red-aux bs ps))
also have ... ⊆ component-of-term ‘ Keys (set (snd (sym-preproc (map fst bs)

(pdata-pairs-to-list ps))))
by (rule image-mono, simp only: f4-red-aux-def Let-def fst-sym-preproc Keys-Macaulay-red)

also have ... ⊆ component-of-term ‘ Keys (set (map fst bs) ∪ set (pdata-pairs-to-list
ps))

by (fact components-snd-sym-preproc-subset)
finally have k ∈ component-of-term ‘ Keys (fst ‘ set bs) ∪ component-of-term ‘

Keys (set (pdata-pairs-to-list ps))
by (simp add: image-Un Keys-Un)

thus k ∈ component-of-term ‘ Keys (args-to-set ([], bs, ps))
proof

assume k ∈ component-of-term ‘ Keys (fst ‘ set bs)
also have ... ⊆ component-of-term ‘ Keys (args-to-set ([], bs, ps))

by (rule image-mono, rule Keys-mono, auto simp add: args-to-set-alt)
finally show k ∈ component-of-term ‘ Keys (args-to-set ([], bs, ps)) .

next
assume k ∈ component-of-term ‘ Keys (set (pdata-pairs-to-list ps))

then obtain p where p ∈ set (pdata-pairs-to-list ps) and k ∈ component-of-term
‘ keys p

by (auto elim: in-KeysE)
from this(1) obtain f g where disj: (f , g) ∈ set ps ∨ (g, f) ∈ set ps

and p: p = monom-mult (1 / lc (fst f)) ((lcs (lp (fst f)) (lp (fst g))) − (lp
(fst f))) (fst f)

by (rule in-pdata-pairs-to-listE)
from disj have fst f ∈ args-to-set ([], bs, ps)

by (simp add: args-to-set-alt, metis fst-conv image-eqI snd-conv)
hence fst f ∈ args-to-set ([], bs, ps) by simp
hence keys-f : keys (fst f) ⊆ Keys (args-to-set ([], bs, ps))

by (auto intro!: keys-subset-Keys)

373

let ?lf = lp (fst f)
let ?lg = lp (fst g)
define l where l = lcs ?lf ?lg
have component-of-term ‘ keys p ⊆ component-of-term ‘ ((⊕) (lcs ?lf ?lg − ?lf)

‘ keys (fst f))
unfolding p using keys-monom-mult-subset by (rule image-mono)

with ‹k ∈ component-of-term ‘ keys p› have k ∈ component-of-term ‘ ((⊕) (l
− ?lf) ‘ keys (fst f))

unfolding l-def ..
hence k ∈ component-of-term ‘ keys (fst f) using component-of-term-splus by

fastforce
with keys-f show k ∈ component-of-term ‘ Keys (args-to-set ([], bs, ps)) by

blast
qed

qed

lemma pmdl-f4-red-aux: set (f4-red-aux bs ps) ⊆ pmdl (args-to-set ([], bs, ps))
proof −

have set (f4-red-aux bs ps) ⊆
set (Macaulay-list (snd (sym-preproc (map fst bs) (pdata-pairs-to-list ps))))

by (auto simp add: f4-red-aux-def Let-def fst-sym-preproc set-Macaulay-red)
also have ... ⊆ pmdl (set (Macaulay-list (snd (sym-preproc (map fst bs) (pdata-pairs-to-list

ps)))))
by (fact pmdl.span-superset)

also have ... = pmdl (set (snd (sym-preproc (map fst bs) (pdata-pairs-to-list
ps))))

by (fact pmdl-Macaulay-list)
also have ... ⊆ pmdl (set (map fst bs) ∪

set (snd (sym-preproc (map fst bs) (pdata-pairs-to-list ps))))
by (rule pmdl.span-mono, blast)

also have ... = pmdl (set (map fst bs) ∪ set (pdata-pairs-to-list ps))
by (fact snd-sym-preproc-pmdl)

also have ... ⊆ pmdl (args-to-set ([], bs, ps))
proof (rule pmdl.span-subset-spanI , simp only: Un-subset-iff , rule conjI)
have set (map fst bs) ⊆ args-to-set ([], bs, ps) by (auto simp add: args-to-set-def)
also have ... ⊆ pmdl (args-to-set ([], bs, ps)) by (rule pmdl.span-superset)
finally show set (map fst bs) ⊆ pmdl (args-to-set ([], bs, ps)) .

next
show set (pdata-pairs-to-list ps) ⊆ pmdl (args-to-set ([], bs, ps))
proof

fix p
assume p ∈ set (pdata-pairs-to-list ps)
then obtain f g where (f , g) ∈ set ps ∨ (g, f) ∈ set ps

and p: p = monom-mult (1 / lc (fst f)) ((lcs (lp (fst f)) (lp (fst g))) − (lp
(fst f))) (fst f)

by (rule in-pdata-pairs-to-listE)
from this(1) have f ∈ fst ‘ set ps ∪ snd ‘ set ps by force
hence fst f ∈ args-to-set ([], bs, ps) by (auto simp add: args-to-set-alt)
hence fst f ∈ pmdl (args-to-set ([], bs, ps)) by (rule pmdl.span-base)

374

thus p ∈ pmdl (args-to-set ([], bs, ps)) unfolding p by (rule pmdl-closed-monom-mult)
qed

qed
finally show ?thesis .

qed

lemma f4-red-aux-phull-reducible:
assumes set ps ⊆ set bs × set bs

and f ∈ phull (set (pdata-pairs-to-list ps))
shows (red (fst ‘ set bs ∪ set (f4-red-aux bs ps)))∗∗ f 0

proof −
define fs where fs = snd (sym-preproc (map fst bs) (pdata-pairs-to-list ps))
have set (pdata-pairs-to-list ps) ⊆ set fs unfolding fs-def by (fact snd-sym-preproc-superset)
hence phull (set (pdata-pairs-to-list ps)) ⊆ phull (set fs) by (rule phull.span-mono)
with assms(2) have f-in: f ∈ phull (set fs) ..
have eq: (set fs) ∪ set (f4-red-aux bs ps) = (set fs) ∪ set (Macaulay-red (Keys-to-list

fs) fs)
by (simp add: f4-red-aux-def fs-def Let-def fst-sym-preproc)

have (lin-red ((set fs) ∪ set (f4-red-aux bs ps)))∗∗ f 0
by (simp only: eq, rule Macaulay-red-reducible, fact f-in, fact subset-refl, fact

refl)
thus ?thesis
proof induct

case base
show ?case ..

next
case (step y z)
from step(2) have red (fst ‘ set bs ∪ set (f4-red-aux bs ps)) y z unfolding

lin-red-Un
proof

assume lin-red (set fs) y z
then obtain a where a ∈ set fs and r : red-single y z a 0 by (rule lin-redE)
from this(1) obtain b c t where b ∈ fst ‘ set bs and a: a = monom-mult c

t b unfolding fs-def
proof (rule in-snd-sym-preprocE)

assume ∗:
∧

b c t. b ∈ fst ‘ set bs =⇒ a = monom-mult c t b =⇒ thesis
assume a ∈ set (pdata-pairs-to-list ps)
then obtain f g where (f , g) ∈ set ps ∨ (g, f) ∈ set ps
and a: a = monom-mult (1 / lc (fst f)) ((lcs (lp (fst f)) (lp (fst g))) − (lp

(fst f))) (fst f)
by (rule in-pdata-pairs-to-listE)

from this(1) have f ∈ fst ‘ set ps ∪ snd ‘ set ps by force
with assms(1) have f ∈ set bs by fastforce
hence fst f ∈ fst ‘ set bs by simp
from this a show ?thesis by (rule ∗)

next
fix g s
assume ∗:

∧
b c t. b ∈ fst ‘ set bs =⇒ a = monom-mult c t b =⇒ thesis

375

assume g ∈ set (map fst bs)
hence g ∈ fst ‘ set bs by simp
moreover assume a = monom-mult 1 s g
ultimately show ?thesis by (rule ∗)

qed
from r have c 6= 0 and b 6= 0 by (simp-all add: a red-single-def monom-mult-eq-zero-iff)

from r have red-single y z b t
by (simp add: a red-single-def monom-mult-eq-zero-iff lt-monom-mult[OF ‹c

6= 0 › ‹b 6= 0 ›]
monom-mult-assoc term-simps)

with ‹b ∈ fst ‘ set bs› have red (fst ‘ set bs) y z by (rule red-setI)
thus ?thesis by (rule red-unionI1)

next
assume lin-red (set (f4-red-aux bs ps)) y z
hence red (set (f4-red-aux bs ps)) y z by (rule lin-red-imp-red)
thus ?thesis by (rule red-unionI2)

qed
with step(3) show ?case ..

qed
qed

corollary f4-red-aux-spoly-reducible:
assumes set ps ⊆ set bs × set bs and (p, q) ∈ set ps
shows (red (fst ‘ set bs ∪ set (f4-red-aux bs ps)))∗∗ (spoly (fst p) (fst q)) 0
using assms(1)

proof (rule f4-red-aux-phull-reducible)
let ?lt = lp (fst p)
let ?lq = lp (fst q)
let ?l = lcs ?lt ?lq
let ?p = monom-mult (1 / lc (fst p)) (?l − ?lt) (fst p)
let ?q = monom-mult (1 / lc (fst q)) (?l − ?lq) (fst q)
from assms(2) have ?p ∈ set (pdata-pairs-to-list ps) and ?q ∈ set (pdata-pairs-to-list

ps)
by (rule in-pdata-pairs-to-listI1 , rule in-pdata-pairs-to-listI2)

hence ?p ∈ phull (set (pdata-pairs-to-list ps)) and ?q ∈ phull (set (pdata-pairs-to-list
ps))

by (auto intro: phull.span-base)
hence ?p − ?q ∈ phull (set (pdata-pairs-to-list ps)) by (rule phull.span-diff)
thus spoly (fst p) (fst q) ∈ phull (set (pdata-pairs-to-list ps))

by (simp add: spoly-def Let-def phull.span-zero lc-def split: if-split)
qed

definition f4-red :: (′t, ′b::field, ′c::default, ′d) complT
where f4-red gs bs ps sps data = (map (λh. (h, default)) (f4-red-aux (gs @ bs)

sps), snd data)

lemma fst-set-fst-f4-red: fst ‘ set (fst (f4-red gs bs ps sps data)) = set (f4-red-aux
(gs @ bs) sps)

by (simp add: f4-red-def , force)

376

lemma rcp-spec-f4-red: rcp-spec f4-red
proof (rule rcp-specI)

fix gs bs::(′t, ′b, ′c) pdata list and ps sps and data::nat × ′d
show 0 /∈ fst ‘ set (fst (f4-red gs bs ps sps data))

by (simp add: fst-set-fst-f4-red f4-red-aux-not-zero)
next

fix gs bs::(′t, ′b, ′c) pdata list and ps sps h b and data::nat × ′d
assume h ∈ set (fst (f4-red gs bs ps sps data)) and b ∈ set gs ∪ set bs
from this(1) have fst h ∈ fst ‘ set (fst (f4-red gs bs ps sps data)) by simp
hence fst h ∈ set (f4-red-aux (gs @ bs) sps) by (simp only: fst-set-fst-f4-red)
moreover from ‹b ∈ set gs ∪ set bs› have b ∈ set (gs @ bs) by simp
moreover assume fst b 6= 0
ultimately show ¬ lt (fst b) addst lt (fst h) by (rule f4-red-aux-irredudible)

next
fix gs bs::(′t, ′b, ′c) pdata list and ps sps and d:: ′a ⇒ nat and data::nat × ′d
assume dickson-grading d
hence dgrad-p-set-le d (set (f4-red-aux (gs @ bs) sps)) (args-to-set ([], gs @ bs,

sps))
by (fact f4-red-aux-dgrad-p-set-le)

also have ... = args-to-set (gs, bs, sps) by (simp add: args-to-set-alt image-Un)
finally show dgrad-p-set-le d (fst ‘ set (fst (f4-red gs bs ps sps data))) (args-to-set

(gs, bs, sps))
by (simp only: fst-set-fst-f4-red)

next
fix gs bs::(′t, ′b, ′c) pdata list and ps sps and data::nat × ′d
have component-of-term ‘ Keys (set (f4-red-aux (gs @ bs) sps)) ⊆

component-of-term ‘ Keys (args-to-set ([], gs @ bs, sps))
by (fact components-f4-red-aux-subset)

also have ... = component-of-term ‘ Keys (args-to-set (gs, bs, sps))
by (simp add: args-to-set-alt image-Un)

finally show component-of-term ‘ Keys (fst ‘ set (fst (f4-red gs bs ps sps data)))
⊆

component-of-term ‘ Keys (args-to-set (gs, bs, sps))
by (simp only: fst-set-fst-f4-red)

next
fix gs bs::(′t, ′b, ′c) pdata list and ps sps and data::nat × ′d
have set (f4-red-aux (gs @ bs) sps) ⊆ pmdl (args-to-set ([], gs @ bs, sps))

by (fact pmdl-f4-red-aux)
also have ... = pmdl (args-to-set (gs, bs, sps)) by (simp add: args-to-set-alt

image-Un)
finally have fst ‘ set (fst (f4-red gs bs ps sps data)) ⊆ pmdl (args-to-set (gs, bs,

sps))
by (simp only: fst-set-fst-f4-red)

moreover {
fix p q :: (′t, ′b, ′c) pdata
assume set sps ⊆ set bs × (set gs ∪ set bs)
hence set sps ⊆ set (gs @ bs) × set (gs @ bs) by fastforce
moreover assume (p, q) ∈ set sps

377

ultimately have (red (fst ‘ set (gs @ bs) ∪ set (f4-red-aux (gs @ bs) sps)))∗∗
(spoly (fst p) (fst q)) 0

by (rule f4-red-aux-spoly-reducible)
}
ultimately show

fst ‘ set (fst (f4-red gs bs ps sps data)) ⊆ pmdl (args-to-set (gs, bs, sps)) ∧
(∀ (p, q)∈set sps.

set sps ⊆ set bs × (set gs ∪ set bs) −→
(red (fst ‘ (set gs ∪ set bs) ∪ fst ‘ set (fst (f4-red gs bs ps sps data))))∗∗

(spoly (fst p) (fst q)) 0)
by (auto simp add: image-Un fst-set-fst-f4-red)

qed

lemmas compl-struct-f4-red = compl-struct-rcp[OF rcp-spec-f4-red]
lemmas compl-pmdl-f4-red = compl-pmdl-rcp[OF rcp-spec-f4-red]
lemmas compl-conn-f4-red = compl-conn-rcp[OF rcp-spec-f4-red]

16.4 Pair Selection
primrec f4-sel-aux :: ′a ⇒ (′t, ′b::zero, ′c) pdata-pair list ⇒ (′t, ′b, ′c) pdata-pair
list where

f4-sel-aux - [] = []|
f4-sel-aux t (p # ps) =
(if (lcs (lp (fst (fst p))) (lp (fst (snd p)))) = t then

p # (f4-sel-aux t ps)
else
[]

)

lemma f4-sel-aux-subset: set (f4-sel-aux t ps) ⊆ set ps
by (induct ps, auto)

primrec f4-sel :: (′t, ′b::zero, ′c, ′d) selT where
f4-sel gs bs [] data = []|
f4-sel gs bs (p # ps) data = p # (f4-sel-aux (lcs (lp (fst (fst p))) (lp (fst (snd

p)))) ps)

lemma sel-spec-f4-sel: sel-spec f4-sel
proof (rule sel-specI)

fix gs bs :: (′t, ′b, ′c) pdata list and ps::(′t, ′b, ′c) pdata-pair list and data::nat
× ′d

assume ps 6= []
then obtain p ps ′ where ps: ps = p # ps ′ by (meson list.exhaust)
show f4-sel gs bs ps data 6= [] ∧ set (f4-sel gs bs ps data) ⊆ set ps
proof

show f4-sel gs bs ps data 6= [] by (simp add: ps)
next

from f4-sel-aux-subset show set (f4-sel gs bs ps data) ⊆ set ps by (auto simp
add: ps)

378

qed
qed

16.5 The F4 Algorithm

The F4 algorithm is just gb-schema-direct with parameters instantiated by
suitable functions.
lemma struct-spec-f4 : struct-spec f4-sel add-pairs-canon add-basis-canon f4-red
using sel-spec-f4-sel ap-spec-add-pairs-canon ab-spec-add-basis-sorted compl-struct-f4-red
by (rule struct-specI)

definition f4-aux :: (′t, ′b, ′c) pdata list ⇒ nat × nat × ′d ⇒ (′t, ′b, ′c) pdata list
⇒

(′t, ′b, ′c) pdata-pair list ⇒ (′t, ′b::field, ′c::default) pdata list
where f4-aux = gb-schema-aux f4-sel add-pairs-canon add-basis-canon f4-red

lemmas f4-aux-simps [code] = gb-schema-aux-simps[OF struct-spec-f4 , folded f4-aux-def]

definition f4 :: (′t, ′b, ′c) pdata ′ list ⇒ ′d ⇒ (′t, ′b::field, ′c::default) pdata ′ list
where f4 = gb-schema-direct f4-sel add-pairs-canon add-basis-canon f4-red

lemmas f4-simps [code] = gb-schema-direct-def [of f4-sel add-pairs-canon add-basis-canon
f4-red, folded f4-def f4-aux-def]

lemmas f4-isGB = gb-schema-direct-isGB[OF struct-spec-f4 compl-conn-f4-red,
folded f4-def]

lemmas f4-pmdl = gb-schema-direct-pmdl[OF struct-spec-f4 compl-pmdl-f4-red,
folded f4-def]

16.5.1 Special Case: punit
lemma (in gd-term) struct-spec-f4-punit: punit.struct-spec punit.f4-sel add-pairs-punit-canon
punit.add-basis-canon punit.f4-red

using punit.sel-spec-f4-sel ap-spec-add-pairs-punit-canon ab-spec-add-basis-sorted
punit.compl-struct-f4-red

by (rule punit.struct-specI)

definition f4-aux-punit :: (′a, ′b, ′c) pdata list ⇒ nat × nat × ′d ⇒ (′a, ′b, ′c)
pdata list ⇒

(′a, ′b, ′c) pdata-pair list ⇒ (′a, ′b::field, ′c::default) pdata list
where f4-aux-punit = punit.gb-schema-aux punit.f4-sel add-pairs-punit-canon

punit.add-basis-canon punit.f4-red

lemmas f4-aux-punit-simps [code] = punit.gb-schema-aux-simps[OF struct-spec-f4-punit,
folded f4-aux-punit-def]

definition f4-punit :: (′a, ′b, ′c) pdata ′ list ⇒ ′d ⇒ (′a, ′b::field, ′c::default) pdata ′

list

379

where f4-punit = punit.gb-schema-direct punit.f4-sel add-pairs-punit-canon punit.add-basis-canon
punit.f4-red

lemmas f4-punit-simps [code] = punit.gb-schema-direct-def [of punit.f4-sel add-pairs-punit-canon
punit.add-basis-canon punit.f4-red, folded f4-punit-def

f4-aux-punit-def]

lemmas f4-punit-isGB = punit.gb-schema-direct-isGB[OF struct-spec-f4-punit punit.compl-conn-f4-red,
folded f4-punit-def]

lemmas f4-punit-pmdl = punit.gb-schema-direct-pmdl[OF struct-spec-f4-punit punit.compl-pmdl-f4-red,
folded f4-punit-def]

end

end

17 Sample Computations with the F4 Algorithm
theory F4-Examples
imports F4 Algorithm-Schema-Impl Jordan-Normal-Form.Gauss-Jordan-IArray-Impl

Code-Target-Rat
begin

We only consider scalar polynomials here, but vector-polynomials could be
handled, too.

17.1 Preparations
primrec remdups-wrt-rev :: (′a ⇒ ′b) ⇒ ′a list ⇒ ′b list ⇒ ′a list where

remdups-wrt-rev f [] vs = [] |
remdups-wrt-rev f (x # xs) vs =

(let fx = f x in if List.member vs fx then remdups-wrt-rev f xs vs else x #
(remdups-wrt-rev f xs (fx # vs)))

lemma remdups-wrt-rev-notin: v ∈ set vs =⇒ v /∈ f ‘ set (remdups-wrt-rev f xs vs)
proof (induct xs arbitrary: vs)

case Nil
show ?case by simp

next
case (Cons x xs)
from Cons(2) have 1 : v /∈ f ‘ set (remdups-wrt-rev f xs vs) by (rule Cons(1))
from Cons(2) have v ∈ set (f x # vs) by simp
hence 2 : v /∈ f ‘ set (remdups-wrt-rev f xs (f x # vs)) by (rule Cons(1))
from Cons(2) show ?case by (auto simp: Let-def 1 2 List.member-def)

qed

lemma distinct-remdups-wrt-rev: distinct (map f (remdups-wrt-rev f xs vs))
proof (induct xs arbitrary: vs)

380

case Nil
show ?case by simp

next
case (Cons x xs)
show ?case by (simp add: Let-def Cons(1) remdups-wrt-rev-notin)

qed

lemma map-of-remdups-wrt-rev ′:
map-of (remdups-wrt-rev fst xs vs) k = map-of (filter (λx. fst x /∈ set vs) xs) k

proof (induct xs arbitrary: vs)
case Nil
show ?case by simp

next
case (Cons x xs)
show ?case
proof (simp add: Let-def List.member-def Cons, intro impI)

assume k 6= fst x
have map-of (filter (λy. fst y 6= fst x ∧ fst y /∈ set vs) xs) =

map-of (filter (λy. fst y 6= fst x) (filter (λy. fst y /∈ set vs) xs))
by (simp only: filter-filter conj-commute)

also have ... = map-of (filter (λy. fst y /∈ set vs) xs) |‘ {y. y 6= fst x} by (rule
map-of-filter)

finally show map-of (filter (λy. fst y 6= fst x ∧ fst y /∈ set vs) xs) k =
map-of (filter (λy. fst y /∈ set vs) xs) k

by (simp add: restrict-map-def ‹k 6= fst x›)
qed

qed

corollary map-of-remdups-wrt-rev: map-of (remdups-wrt-rev fst xs []) = map-of
xs

by (rule ext, simp add: map-of-remdups-wrt-rev ′)

lemma (in term-powerprod) compute-list-to-poly [code]:
list-to-poly ts cs = distr0 DRLEX (remdups-wrt-rev fst (zip ts cs) [])
by (rule poly-mapping-eqI ,

simp add: lookup-list-to-poly list-to-fun-def distr0-def oalist-of-list-ntm-def
oa-ntm.lookup-oalist-of-list distinct-remdups-wrt-rev lookup-dflt-def map-of-remdups-wrt-rev)

lemma (in ordered-term) compute-Macaulay-list [code]:
Macaulay-list ps =

(let ts = Keys-to-list ps in
filter (λp. p 6= 0) (mat-to-polys ts (row-echelon (polys-to-mat ts ps)))
)

by (simp add: Macaulay-list-def Macaulay-mat-def Let-def)

declare conversep-iff [code]

derive (eq) ceq poly-mapping
derive (no) ccompare poly-mapping

381

derive (dlist) set-impl poly-mapping
derive (no) cenum poly-mapping

derive (eq) ceq rat
derive (no) ccompare rat
derive (dlist) set-impl rat
derive (no) cenum rat

global-interpretation punit ′: gd-powerprod ord-pp-punit cmp-term ord-pp-strict-punit
cmp-term

rewrites punit.adds-term = (adds)
and punit.pp-of-term = (λx. x)
and punit.component-of-term = (λ-. ())
and punit.monom-mult = monom-mult-punit
and punit.mult-scalar = mult-scalar-punit
and punit ′.punit.min-term = min-term-punit
and punit ′.punit.lt = lt-punit cmp-term
and punit ′.punit.lc = lc-punit cmp-term
and punit ′.punit.tail = tail-punit cmp-term
and punit ′.punit.ord-p = ord-p-punit cmp-term
and punit ′.punit.ord-strict-p = ord-strict-p-punit cmp-term
and punit ′.punit.keys-to-list = keys-to-list-punit cmp-term
for cmp-term :: (′a::nat, ′b::{nat,add-wellorder}) pp nat-term-order

defines max-punit = punit ′.ordered-powerprod-lin.max
and max-list-punit = punit ′.ordered-powerprod-lin.max-list
and find-adds-punit = punit ′.punit.find-adds
and trd-aux-punit = punit ′.punit.trd-aux
and trd-punit = punit ′.punit.trd
and spoly-punit = punit ′.punit.spoly
and count-const-lt-components-punit = punit ′.punit.count-const-lt-components
and count-rem-components-punit = punit ′.punit.count-rem-components
and const-lt-component-punit = punit ′.punit.const-lt-component
and full-gb-punit = punit ′.punit.full-gb
and add-pairs-single-sorted-punit = punit ′.punit.add-pairs-single-sorted
and add-pairs-punit = punit ′.punit.add-pairs
and canon-pair-order-aux-punit = punit ′.punit.canon-pair-order-aux
and canon-basis-order-punit = punit ′.punit.canon-basis-order
and new-pairs-sorted-punit = punit ′.punit.new-pairs-sorted
and product-crit-punit = punit ′.punit.product-crit
and chain-ncrit-punit = punit ′.punit.chain-ncrit
and chain-ocrit-punit = punit ′.punit.chain-ocrit
and apply-icrit-punit = punit ′.punit.apply-icrit
and apply-ncrit-punit = punit ′.punit.apply-ncrit
and apply-ocrit-punit = punit ′.punit.apply-ocrit
and Keys-to-list-punit = punit ′.punit.Keys-to-list
and sym-preproc-addnew-punit = punit ′.punit.sym-preproc-addnew
and sym-preproc-aux-punit = punit ′.punit.sym-preproc-aux
and sym-preproc-punit = punit ′.punit.sym-preproc

382

and Macaulay-mat-punit = punit ′.punit.Macaulay-mat
and Macaulay-list-punit = punit ′.punit.Macaulay-list
and pdata-pairs-to-list-punit = punit ′.punit.pdata-pairs-to-list
and Macaulay-red-punit = punit ′.punit.Macaulay-red
and f4-sel-aux-punit = punit ′.punit.f4-sel-aux
and f4-sel-punit = punit ′.punit.f4-sel
and f4-red-aux-punit = punit ′.punit.f4-red-aux
and f4-red-punit = punit ′.punit.f4-red
and f4-aux-punit = punit ′.punit.f4-aux-punit
and f4-punit = punit ′.punit.f4-punit
subgoal by (fact gd-powerprod-ord-pp-punit)
subgoal by (fact punit-adds-term)
subgoal by (simp add: id-def)
subgoal by (fact punit-component-of-term)
subgoal by (simp only: monom-mult-punit-def)
subgoal by (simp only: mult-scalar-punit-def)
subgoal using min-term-punit-def by fastforce
subgoal by (simp only: lt-punit-def ord-pp-punit-alt)
subgoal by (simp only: lc-punit-def ord-pp-punit-alt)
subgoal by (simp only: tail-punit-def ord-pp-punit-alt)
subgoal by (simp only: ord-p-punit-def ord-pp-strict-punit-alt)
subgoal by (simp only: ord-strict-p-punit-def ord-pp-strict-punit-alt)
subgoal by (simp only: keys-to-list-punit-def ord-pp-punit-alt)
done

17.2 Computations
experiment begin interpretation trivariate0-rat .

lemma
lt-punit DRLEX (X2 ∗ Z ^ 3 + 3 ∗ X2 ∗ Y) = sparse0 [(0 , 2), (2 , 3)]
by eval

lemma
lc-punit DRLEX (X2 ∗ Z ^ 3 + 3 ∗ X2 ∗ Y) = 1
by eval

lemma
tail-punit DRLEX (X2 ∗ Z ^ 3 + 3 ∗ X2 ∗ Y) = 3 ∗ X2 ∗ Y
by eval

lemma
ord-strict-p-punit DRLEX (X2 ∗ Z ^ 4 − 2 ∗ Y ^ 3 ∗ Z2) (X2 ∗ Z ^ 7 + 2 ∗

Y ^ 3 ∗ Z2)
by eval

lemma
f4-punit DRLEX
[

383

(X2 ∗ Z ^ 4 − 2 ∗ Y ^ 3 ∗ Z2, ()),
(Y 2 ∗ Z + 2 ∗ Z ^ 3 , ())
] () =
[
(X2 ∗ Y 2 ∗ Z2 + 4 ∗ Y ^ 3 ∗ Z2, ()),
(X2 ∗ Z ^ 4 − 2 ∗ Y ^ 3 ∗ Z2, ()),
(Y 2 ∗ Z + 2 ∗ Z ^ 3 , ()),
(X2 ∗ Y ^ 4 ∗ Z + 4 ∗ Y ^ 5 ∗ Z , ())
]

by eval

lemma
f4-punit DRLEX
[
(X2 + Y 2 + Z2 − 1 , ()),
(X ∗ Y − Z − 1 , ()),
(Y 2 + X , ()),
(Z2 + X , ())
] () =
[
(1 , ())
]

by eval

end

value [code] length (f4-punit DRLEX (map (λp. (p, ())) ((cyclic DRLEX 4)::(-⇒0

rat) list)) ())

value [code] length (f4-punit DRLEX (map (λp. (p, ())) ((katsura DRLEX 2)::(-
⇒0 rat) list)) ())

end

18 Syzygies of Multivariate Polynomials
theory Syzygy

imports Groebner-Bases More-MPoly-Type-Class
begin

In this theory we first introduce the general concept of syzygies in modules,
and then provide a method for computing Gröbner bases of syzygy modules
of lists of multivariate vector-polynomials. Since syzygies in this context are
themselves represented by vector-polynomials, this method can be applied
repeatedly to compute bases of syzygy modules of syzygies, and so on.
instance nat :: comm-powerprod ..

384

18.1 Syzygy Modules Generated by Sets
context module
begin

definition rep :: (′b ⇒0
′a) ⇒ ′b

where rep r = (
∑

v∈keys r . lookup r v ∗s v)

definition represents :: ′b set ⇒ (′b ⇒0
′a) ⇒ ′b ⇒ bool

where represents B r x ←→ (keys r ⊆ B ∧ local.rep r = x)

definition syzygy-module :: ′b set ⇒ (′b ⇒0
′a) set

where syzygy-module B = {s. local.represents B s 0}

end

hide-const (open) real-vector .rep real-vector .represents real-vector .syzygy-module

context module
begin

lemma rep-monomial [simp]: rep (monomial c x) = c ∗s x
proof −

have sub: keys (monomial c x) ⊆ {x} by simp
have rep (monomial c x) = (

∑
v∈{x}. lookup (monomial c x) v ∗s v) unfolding

rep-def
by (rule sum.mono-neutral-left, simp, fact sub, simp)

also have ... = c ∗s x by simp
finally show ?thesis .

qed

lemma rep-zero [simp]: rep 0 = 0
by (simp add: rep-def)

lemma rep-uminus [simp]: rep (− r) = − rep r
by (simp add: keys-uminus sum-negf rep-def)

lemma rep-plus: rep (r + s) = rep r + rep s
proof −

from finite-keys finite-keys have fin: finite (keys r ∪ keys s) by (rule finite-UnI)
from fin have eq1 : (

∑
v∈keys r ∪ keys s. lookup r v ∗s v) = (

∑
v∈keys r . lookup

r v ∗s v)
proof (rule sum.mono-neutral-right)

show ∀ v∈keys r ∪ keys s − keys r . lookup r v ∗s v = 0 by (simp add:
in-keys-iff)

qed simp
from fin have eq2 : (

∑
v∈keys r ∪ keys s. lookup s v ∗s v) = (

∑
v∈keys s. lookup

s v ∗s v)
proof (rule sum.mono-neutral-right)
show ∀ v∈keys r ∪ keys s − keys s. lookup s v ∗s v = 0 by (simp add: in-keys-iff)

385

qed simp
have rep (r + s) = (

∑
v∈keys (r + s). lookup (r + s) v ∗s v) by (simp only:

rep-def)
also have ... = (

∑
v∈keys r ∪ keys s. lookup (r + s) v ∗s v)

proof (rule sum.mono-neutral-left)
show ∀ i∈keys r ∪ keys s − keys (r + s). lookup (r + s) i ∗s i = 0 by (simp

add: in-keys-iff)
qed (auto simp: Poly-Mapping.keys-add)
also have ... = (

∑
v∈keys r ∪ keys s. lookup r v ∗s v) + (

∑
v∈keys r ∪ keys s.

lookup s v ∗s v)
by (simp add: lookup-add scale-left-distrib sum.distrib)

also have ... = rep r + rep s by (simp only: eq1 eq2 rep-def)
finally show ?thesis .

qed

lemma rep-minus: rep (r − s) = rep r − rep s
proof −

from finite-keys finite-keys have fin: finite (keys r ∪ keys s) by (rule finite-UnI)
from fin have eq1 : (

∑
v∈keys r ∪ keys s. lookup r v ∗s v) = (

∑
v∈keys r . lookup

r v ∗s v)
proof (rule sum.mono-neutral-right)

show ∀ v∈keys r ∪ keys s − keys r . lookup r v ∗s v = 0 by (simp add:
in-keys-iff)

qed simp
from fin have eq2 : (

∑
v∈keys r ∪ keys s. lookup s v ∗s v) = (

∑
v∈keys s. lookup

s v ∗s v)
proof (rule sum.mono-neutral-right)
show ∀ v∈keys r ∪ keys s − keys s. lookup s v ∗s v = 0 by (simp add: in-keys-iff)

qed simp
have rep (r − s) = (

∑
v∈keys (r − s). lookup (r − s) v ∗s v) by (simp only:

rep-def)
also from fin keys-minus have ... = (

∑
v∈keys r ∪ keys s. lookup (r − s) v ∗s

v)
proof (rule sum.mono-neutral-left)

show ∀ i∈keys r ∪ keys s − keys (r − s). lookup (r − s) i ∗s i = 0 by (simp
add: in-keys-iff)

qed
also have ... = (

∑
v∈keys r ∪ keys s. lookup r v ∗s v) − (

∑
v∈keys r ∪ keys s.

lookup s v ∗s v)
by (simp add: lookup-minus scale-left-diff-distrib sum-subtractf)

also have ... = rep r − rep s by (simp only: eq1 eq2 rep-def)
finally show ?thesis .

qed

lemma rep-smult: rep (monomial c 0 ∗ r) = c ∗s rep r
proof −

have l: lookup (monomial c 0 ∗ r) v = c ∗ (lookup r v) for v
unfolding mult-map-scale-conv-mult[symmetric] by (rule map-lookup, simp)

have sub: keys (monomial c 0 ∗ r) ⊆ keys r

386

by (metis l lookup-not-eq-zero-eq-in-keys mult-zero-right subsetI)

have rep (monomial c 0 ∗ r) = (
∑

v∈keys (monomial c 0 ∗ r). lookup (monomial
c 0 ∗ r) v ∗s v)

by (simp only: rep-def)
also from finite-keys sub have ... = (

∑
v∈keys r . lookup (monomial c 0 ∗ r) v

∗s v)
proof (rule sum.mono-neutral-left)

show ∀ v∈keys r − keys (monomial c 0 ∗ r). lookup (monomial c 0 ∗ r) v ∗s
v = 0 by (simp add: in-keys-iff)

qed
also have ... = c ∗s (

∑
v∈keys r . lookup r v ∗s v) by (simp add: l scale-sum-right)

also have ... = c ∗s rep r by (simp add: rep-def)
finally show ?thesis .

qed

lemma rep-in-span: rep r ∈ span (keys r)
unfolding rep-def by (fact sum-in-spanI)

lemma spanE-rep:
assumes x ∈ span B
obtains r where keys r ⊆ B and x = rep r

proof −
from assms obtain A q where finite A and A ⊆ B and x: x = (

∑
a∈A. q a

∗s a) by (rule spanE)
define r where r = Abs-poly-mapping (λk. q k when k ∈ A)
have 1 : lookup r = (λk. q k when k ∈ A) unfolding r-def

by (rule Abs-poly-mapping-inverse, simp add: ‹finite A›)
have 2 : keys r ⊆ A by (auto simp: in-keys-iff 1)
show ?thesis
proof

have x = (
∑

a∈A. lookup r a ∗s a) unfolding x by (rule sum.cong, simp-all
add: 1)

also from ‹finite A› 2 have ... = (
∑

a∈keys r . lookup r a ∗s a)
proof (rule sum.mono-neutral-right)

show ∀ a∈A − keys r . lookup r a ∗s a = 0 by (simp add: in-keys-iff)
qed
finally show x = rep r by (simp only: rep-def)

next
from 2 ‹A ⊆ B› show keys r ⊆ B by (rule subset-trans)

qed
qed

lemma representsI :
assumes keys r ⊆ B and rep r = x
shows represents B r x
unfolding represents-def using assms by blast

lemma representsD1 :

387

assumes represents B r x
shows keys r ⊆ B
using assms unfolding represents-def by blast

lemma representsD2 :
assumes represents B r x
shows x = rep r
using assms unfolding represents-def by blast

lemma represents-mono:
assumes represents B r x and B ⊆ A
shows represents A r x

proof (rule representsI)
from assms(1) have keys r ⊆ B by (rule representsD1)
thus keys r ⊆ A using assms(2) by (rule subset-trans)

next
from assms(1) have x = rep r by (rule representsD2)
thus rep r = x by (rule HOL.sym)

qed

lemma represents-self : represents {x} (monomial 1 x) x
proof −

have sub: keys (monomial (1 :: ′a) x) ⊆ {x} by simp
moreover have rep (monomial (1 :: ′a) x) = x by simp
ultimately show ?thesis by (rule representsI)

qed

lemma represents-zero: represents B 0 0
by (rule representsI , simp-all)

lemma represents-plus:
assumes represents A r x and represents B s y
shows represents (A ∪ B) (r + s) (x + y)

proof −
from assms(1) have r : keys r ⊆ A and x: x = rep r by (rule representsD1 ,

rule representsD2)
from assms(2) have s: keys s ⊆ B and y: y = rep s by (rule representsD1 , rule

representsD2)
show ?thesis
proof (rule representsI)

from r s have keys r ∪ keys s ⊆ A ∪ B by blast
thus keys (r + s) ⊆ A ∪ B

by (meson Poly-Mapping.keys-add subset-trans)
qed (simp add: rep-plus x y)

qed

lemma represents-uminus:
assumes represents B r x
shows represents B (− r) (− x)

388

proof −
from assms have r : keys r ⊆ B and x: x = rep r by (rule representsD1 , rule

representsD2)
show ?thesis
proof (rule representsI)

from r show keys (− r) ⊆ B by (simp only: keys-uminus)
qed (simp add: x)

qed

lemma represents-minus:
assumes represents A r x and represents B s y
shows represents (A ∪ B) (r − s) (x − y)

proof −
from assms(1) have r : keys r ⊆ A and x: x = rep r by (rule representsD1 ,

rule representsD2)
from assms(2) have s: keys s ⊆ B and y: y = rep s by (rule representsD1 , rule

representsD2)
show ?thesis
proof (rule representsI)

from r s have keys r ∪ keys s ⊆ A ∪ B by blast
with keys-minus show keys (r − s) ⊆ A ∪ B by (rule subset-trans)

qed (simp only: rep-minus x y)
qed

lemma represents-scale:
assumes represents B r x
shows represents B (monomial c 0 ∗ r) (c ∗s x)

proof −
from assms have r : keys r ⊆ B and x: x = rep r by (rule representsD1 , rule

representsD2)
show ?thesis
proof (rule representsI)

have l: lookup (monomial c 0 ∗ r) v = c ∗ (lookup r v) for v
unfolding mult-map-scale-conv-mult[symmetric] by (rule map-lookup, simp)

have sub: keys (monomial c 0 ∗ r) ⊆ keys r
by (metis l lookup-not-eq-zero-eq-in-keys mult-zero-right subsetI)

thus keys (monomial c 0 ∗ r) ⊆ B using r by (rule subset-trans)
qed (simp only: rep-smult x)

qed

lemma represents-in-span:
assumes represents B r x
shows x ∈ span B

proof −
from assms have r : keys r ⊆ B and x: x = rep r by (rule representsD1 , rule

representsD2)
have x ∈ span (keys r) unfolding x by (fact rep-in-span)
also from r have ... ⊆ span B by (rule span-mono)
finally show ?thesis .

389

qed

lemma syzygy-module-iff : s ∈ syzygy-module B ←→ represents B s 0
by (simp add: syzygy-module-def)

lemma syzygy-moduleI :
assumes represents B s 0
shows s ∈ syzygy-module B
unfolding syzygy-module-iff using assms .

lemma syzygy-moduleD:
assumes s ∈ syzygy-module B
shows represents B s 0
using assms unfolding syzygy-module-iff .

lemma zero-in-syzygy-module: 0 ∈ syzygy-module B
using represents-zero by (rule syzygy-moduleI)

lemma syzygy-module-closed-plus:
assumes s1 ∈ syzygy-module B and s2 ∈ syzygy-module B
shows s1 + s2 ∈ syzygy-module B

proof −
from assms(1) have represents B s1 0 by (rule syzygy-moduleD)
moreover from assms(2) have represents B s2 0 by (rule syzygy-moduleD)
ultimately have represents (B ∪ B) (s1 + s2) (0 + 0) by (rule represents-plus)
hence represents B (s1 + s2) 0 by simp
thus ?thesis by (rule syzygy-moduleI)

qed

lemma syzygy-module-closed-minus:
assumes s1 ∈ syzygy-module B and s2 ∈ syzygy-module B
shows s1 − s2 ∈ syzygy-module B

proof −
from assms(1) have represents B s1 0 by (rule syzygy-moduleD)
moreover from assms(2) have represents B s2 0 by (rule syzygy-moduleD)
ultimately have represents (B ∪ B) (s1 − s2) (0 − 0) by (rule represents-minus)
hence represents B (s1 − s2) 0 by simp
thus ?thesis by (rule syzygy-moduleI)

qed

lemma syzygy-module-closed-times-monomial:
assumes s ∈ syzygy-module B
shows monomial c 0 ∗ s ∈ syzygy-module B

proof −
from assms(1) have represents B s 0 by (rule syzygy-moduleD)
hence represents B (monomial c 0 ∗ s) (c ∗s 0) by (rule represents-scale)
hence represents B (monomial c 0 ∗ s) 0 by simp
thus ?thesis by (rule syzygy-moduleI)

qed

390

end

context term-powerprod
begin

lemma keys-rep-subset:
assumes u ∈ keys (pmdl.rep r)
obtains t v where t ∈ Keys (Poly-Mapping.range r) and v ∈ Keys (keys r) and

u = t ⊕ v
proof −

note assms
also have keys (pmdl.rep r) ⊆ (

⋃
v∈keys r . keys (lookup r v � v))

by (simp add: pmdl.rep-def keys-sum-subset)
finally obtain v0 where v0 ∈ keys r and u ∈ keys (lookup r v0 � v0) ..
from this(2) obtain t v where t ∈ keys (lookup r v0) and v ∈ keys v0 and u

= t ⊕ v
by (rule in-keys-mult-scalarE)

show ?thesis
proof

from ‹v0 ∈ keys r› have lookup r v0 ∈ Poly-Mapping.range r by (rule
in-keys-lookup-in-range)

with ‹t ∈ keys (lookup r v0)› show t ∈ Keys (Poly-Mapping.range r) by (rule
in-KeysI)

next
from ‹v ∈ keys v0 › ‹v0 ∈ keys r› show v ∈ Keys (keys r) by (rule in-KeysI)

qed fact
qed

lemma rep-mult-scalar : pmdl.rep (punit.monom-mult c 0 r) = c � pmdl.rep r
unfolding punit.mult-scalar-monomial[symmetric] punit-mult-scalar by (fact pmdl.rep-smult)

lemma represents-mult-scalar :
assumes pmdl.represents B r x
shows pmdl.represents B (punit.monom-mult c 0 r) (c � x)
unfolding punit.mult-scalar-monomial[symmetric] punit-mult-scalar using assms
by (rule pmdl.represents-scale)

lemma syzygy-module-closed-map-scale: s ∈ pmdl.syzygy-module B =⇒ c · s ∈
pmdl.syzygy-module B
unfolding map-scale-eq-times by (rule pmdl.syzygy-module-closed-times-monomial)

lemma phull-syzygy-module: phull (pmdl.syzygy-module B) = pmdl.syzygy-module
B

unfolding phull.span-eq-iff
apply (rule phull.subspaceI)
subgoal by (fact pmdl.zero-in-syzygy-module)
subgoal by (fact pmdl.syzygy-module-closed-plus)
subgoal by (fact syzygy-module-closed-map-scale)

391

done

end

18.2 Polynomial Mappings on List-Indices
definition pm-of-idx-pm :: (′a list) ⇒ (nat ⇒0

′b) ⇒ ′a ⇒0
′b::zero

where pm-of-idx-pm xs f = Abs-poly-mapping (λx. lookup f (Min {i. i < length
xs ∧ xs ! i = x}) when x ∈ set xs)

definition idx-pm-of-pm :: (′a list) ⇒ (′a ⇒0
′b) ⇒ nat ⇒0

′b::zero
where idx-pm-of-pm xs f = Abs-poly-mapping (λi. lookup f (xs ! i) when i <

length xs)

lemma lookup-pm-of-idx-pm:
lookup (pm-of-idx-pm xs f) = (λx. lookup f (Min {i. i < length xs ∧ xs ! i = x})

when x ∈ set xs)
unfolding pm-of-idx-pm-def by (rule Abs-poly-mapping-inverse, simp)

lemma lookup-pm-of-idx-pm-distinct:
assumes distinct xs and i < length xs
shows lookup (pm-of-idx-pm xs f) (xs ! i) = lookup f i

proof −
from assms have {j. j < length xs ∧ xs ! j = xs ! i} = {i}

using distinct-Ex1 nth-mem by fastforce
moreover from assms(2) have xs ! i ∈ set xs by (rule nth-mem)
ultimately show ?thesis by (simp add: lookup-pm-of-idx-pm)

qed

lemma keys-pm-of-idx-pm-subset: keys (pm-of-idx-pm xs f) ⊆ set xs
proof

fix t
assume t ∈ keys (pm-of-idx-pm xs f)
hence lookup (pm-of-idx-pm xs f) t 6= 0 by (simp add: in-keys-iff)
thus t ∈ set xs by (simp add: lookup-pm-of-idx-pm)

qed

lemma range-pm-of-idx-pm-subset: Poly-Mapping.range (pm-of-idx-pm xs f) ⊆
lookup f ‘ {0 ..<length xs} − {0}
proof

fix c
assume c ∈ Poly-Mapping.range (pm-of-idx-pm xs f)
then obtain t where t: t ∈ keys (pm-of-idx-pm xs f) and c: c = lookup

(pm-of-idx-pm xs f) t
by (metis DiffE imageE insertCI not-in-keys-iff-lookup-eq-zero range.rep-eq)

from t keys-pm-of-idx-pm-subset have t ∈ set xs ..
hence c1 : c = lookup f (Min {i. i < length xs ∧ xs ! i = t}) by (simp add:

lookup-pm-of-idx-pm c)
show c ∈ lookup f ‘ {0 ..<length xs} − {0}

392

proof (intro DiffI image-eqI)
from ‹t ∈ set xs› obtain i where i < length xs and t = xs ! i by (metis

in-set-conv-nth)
have finite {i. i < length xs ∧ xs ! i = t} by simp
moreover from ‹i < length xs› ‹t = xs ! i› have {i. i < length xs ∧ xs ! i =

t} 6= {} by auto
ultimately have Min {i. i < length xs ∧ xs ! i = t} ∈ {i. i < length xs ∧ xs

! i = t}
by (rule Min-in)

thus Min {i. i < length xs ∧ xs ! i = t} ∈ {0 ..<length xs} by simp
next

from t show c /∈ {0} by (simp add: c in-keys-iff)
qed (fact c1)

qed

corollary range-pm-of-idx-pm-subset ′: Poly-Mapping.range (pm-of-idx-pm xs f) ⊆
Poly-Mapping.range f

using range-pm-of-idx-pm-subset
proof (rule subset-trans)

show lookup f ‘ {0 ..<length xs} − {0} ⊆ Poly-Mapping.range f by (transfer ,
auto)
qed

lemma pm-of-idx-pm-zero [simp]: pm-of-idx-pm xs 0 = 0
by (rule poly-mapping-eqI , simp add: lookup-pm-of-idx-pm)

lemma pm-of-idx-pm-plus: pm-of-idx-pm xs (f + g) = pm-of-idx-pm xs f + pm-of-idx-pm
xs g

by (rule poly-mapping-eqI , simp add: lookup-pm-of-idx-pm lookup-add when-def)

lemma pm-of-idx-pm-uminus: pm-of-idx-pm xs (− f) = − pm-of-idx-pm xs f
by (rule poly-mapping-eqI , simp add: lookup-pm-of-idx-pm when-def)

lemma pm-of-idx-pm-minus: pm-of-idx-pm xs (f − g) = pm-of-idx-pm xs f −
pm-of-idx-pm xs g
by (rule poly-mapping-eqI , simp add: lookup-pm-of-idx-pm lookup-minus when-def)

lemma pm-of-idx-pm-monom-mult: pm-of-idx-pm xs (punit.monom-mult c 0 f) =
punit.monom-mult c 0 (pm-of-idx-pm xs f)
by (rule poly-mapping-eqI , simp add: lookup-pm-of-idx-pm punit.lookup-monom-mult-zero

when-def)

lemma pm-of-idx-pm-monomial:
assumes distinct xs
shows pm-of-idx-pm xs (monomial c i) = (monomial c (xs ! i) when i < length

xs)
proof −

from assms have ∗: {i. i < length xs ∧ xs ! i = xs ! j} = {j} if j < length xs
for j

393

using distinct-Ex1 nth-mem that by fastforce
show ?thesis
proof (cases i < length xs)

case True
have pm-of-idx-pm xs (monomial c i) = monomial c (xs ! i)
proof (rule poly-mapping-eqI)

fix k
show lookup (pm-of-idx-pm xs (monomial c i)) k = lookup (monomial c (xs !

i)) k
proof (cases xs ! i = k)

case True
with ‹i < length xs› have k ∈ set xs by auto
thus ?thesis by (simp add: lookup-pm-of-idx-pm lookup-single ∗[OF ‹i <

length xs›] True[symmetric])
next

case False
have lookup (pm-of-idx-pm xs (monomial c i)) k = 0
proof (cases k ∈ set xs)

case True
then obtain j where j < length xs and k = xs ! j by (metis in-set-conv-nth)

with False have i 6= Min {i. i < length xs ∧ xs ! i = k}
by (auto simp: ‹k = xs ! j› ∗[OF ‹j < length xs›])

thus ?thesis by (simp add: lookup-pm-of-idx-pm True lookup-single)
next

case False
thus ?thesis by (simp add: lookup-pm-of-idx-pm)

qed
with False show ?thesis by (simp add: lookup-single)

qed
qed
with True show ?thesis by simp

next
case False
have pm-of-idx-pm xs (monomial c i) = 0
proof (rule poly-mapping-eqI , simp add: lookup-pm-of-idx-pm when-def , rule)

fix k
assume k ∈ set xs
then obtain j where j < length xs and k = xs ! j by (metis in-set-conv-nth)
with False have i 6= Min {i. i < length xs ∧ xs ! i = k}

by (auto simp: ‹k = xs ! j› ∗[OF ‹j < length xs›])
thus lookup (monomial c i) (Min {i. i < length xs ∧ xs ! i = k}) = 0

by (simp add: lookup-single)
qed
with False show ?thesis by simp

qed
qed

lemma pm-of-idx-pm-take:
assumes keys f ⊆ {0 ..<j}

394

shows pm-of-idx-pm (take j xs) f = pm-of-idx-pm xs f
proof (rule poly-mapping-eqI)

fix i
let ?xs = take j xs
let ?A = {k. k < length xs ∧ xs ! k = i}
let ?B = {k. k < length xs ∧ k < j ∧ xs ! k = i}
have A-fin: finite ?A and B-fin: finite ?B by fastforce+
have A-ne: i ∈ set xs =⇒ ?A 6= {} by (simp add: in-set-conv-nth)
have B-ne: i ∈ set ?xs =⇒ ?B 6= {} by (auto simp add: in-set-conv-nth)
define m1 where m1 = Min ?A
define m2 where m2 = Min ?B
have m1 : m1 ∈ ?A if i ∈ set xs

unfolding m1-def by (rule Min-in, fact A-fin, rule A-ne, fact that)
have m2 : m2 ∈ ?B if i ∈ set ?xs

unfolding m2-def by (rule Min-in, fact B-fin, rule B-ne, fact that)
show lookup (pm-of-idx-pm (take j xs) f) i = lookup (pm-of-idx-pm xs f) i
proof (cases i ∈ set ?xs)

case True
hence i ∈ set xs using set-take-subset ..
hence m1 ∈ ?A by (rule m1)
hence m1 < length xs and xs ! m1 = i by simp-all
from True have m2 ∈ ?B by (rule m2)
hence m2 < length xs and m2 < j and xs ! m2 = i by simp-all
hence m2 ∈ ?A by simp
with A-fin have m1 ≤ m2 unfolding m1-def by (rule Min-le)
with ‹m2 < j› have m1 < j by simp
with ‹m1 < length xs› ‹xs ! m1 = i› have m1 ∈ ?B by simp
with B-fin have m2 ≤ m1 unfolding m2-def by (rule Min-le)
with ‹m1 ≤ m2 › have m1 = m2 by (rule le-antisym)
with True ‹i ∈ set xs› show ?thesis by (simp add: lookup-pm-of-idx-pm m1-def

m2-def cong: conj-cong)
next

case False
thus ?thesis

proof (simp add: lookup-pm-of-idx-pm when-def m1-def [symmetric], intro impI)
assume i ∈ set xs
hence m1 ∈ ?A by (rule m1)
hence m1 < length xs and xs ! m1 = i by simp-all
have m1 /∈ keys f
proof

assume m1 ∈ keys f
hence m1 ∈ {0 ..<j} using assms ..
hence m1 < j by simp
with ‹m1 < length xs› have m1 < length ?xs by simp
hence ?xs ! m1 ∈ set ?xs by (rule nth-mem)
with ‹m1 < j› have i ∈ set ?xs by (simp add: ‹xs ! m1 = i›)
with False show False ..

qed
thus lookup f m1 = 0 by (simp add: in-keys-iff)

395

qed
qed

qed

lemma lookup-idx-pm-of-pm: lookup (idx-pm-of-pm xs f) = (λi. lookup f (xs ! i)
when i < length xs)

unfolding idx-pm-of-pm-def by (rule Abs-poly-mapping-inverse, simp)

lemma keys-idx-pm-of-pm-subset: keys (idx-pm-of-pm xs f) ⊆ {0 ..<length xs}
proof

fix i
assume i ∈ keys (idx-pm-of-pm xs f)
hence lookup (idx-pm-of-pm xs f) i 6= 0 by (simp add: in-keys-iff)
thus i ∈ {0 ..<length xs} by (simp add: lookup-idx-pm-of-pm)

qed

lemma idx-pm-of-pm-zero [simp]: idx-pm-of-pm xs 0 = 0
by (rule poly-mapping-eqI , simp add: lookup-idx-pm-of-pm)

lemma idx-pm-of-pm-plus: idx-pm-of-pm xs (f + g) = idx-pm-of-pm xs f + idx-pm-of-pm
xs g

by (rule poly-mapping-eqI , simp add: lookup-idx-pm-of-pm lookup-add when-def)

lemma idx-pm-of-pm-minus: idx-pm-of-pm xs (f − g) = idx-pm-of-pm xs f −
idx-pm-of-pm xs g
by (rule poly-mapping-eqI , simp add: lookup-idx-pm-of-pm lookup-minus when-def)

lemma pm-of-idx-pm-of-pm:
assumes keys f ⊆ set xs
shows pm-of-idx-pm xs (idx-pm-of-pm xs f) = f

proof (rule poly-mapping-eqI , simp add: lookup-pm-of-idx-pm when-def , intro conjI
impI)

fix k
assume k ∈ set xs
define i where i = Min {i. i < length xs ∧ xs ! i = k}
have finite {i. i < length xs ∧ xs ! i = k} by simp
moreover from ‹k ∈ set xs› have {i. i < length xs ∧ xs ! i = k} 6= {}

by (simp add: in-set-conv-nth)
ultimately have i ∈ {i. i < length xs ∧ xs ! i = k} unfolding i-def by (rule

Min-in)
hence i < length xs and xs ! i = k by simp-all
thus lookup (idx-pm-of-pm xs f) i = lookup f k by (simp add: lookup-idx-pm-of-pm)

next
fix k
assume k /∈ set xs
with assms show lookup f k = 0 by (auto simp: in-keys-iff)

qed

lemma idx-pm-of-pm-of-idx-pm:

396

assumes distinct xs and keys f ⊆ {0 ..<length xs}
shows idx-pm-of-pm xs (pm-of-idx-pm xs f) = f

proof (rule poly-mapping-eqI)
fix i
show lookup (idx-pm-of-pm xs (pm-of-idx-pm xs f)) i = lookup f i
proof (cases i < length xs)

case True
with assms(1) show ?thesis by (simp add: lookup-idx-pm-of-pm lookup-pm-of-idx-pm-distinct)

next
case False
hence i /∈ {0 ..<length xs} by simp
with assms(2) have i /∈ keys f by blast
with False show ?thesis by (simp add: in-keys-iff lookup-idx-pm-of-pm)

qed
qed

18.3 POT Orders
context ordered-term
begin

definition is-pot-ord :: bool
where is-pot-ord ←→ (∀ u v. component-of-term u < component-of-term v −→

u ≺t v)

lemma is-pot-ordI :
assumes

∧
u v. component-of-term u < component-of-term v =⇒ u ≺t v

shows is-pot-ord
unfolding is-pot-ord-def using assms by blast

lemma is-pot-ordD:
assumes is-pot-ord and component-of-term u < component-of-term v
shows u ≺t v
using assms unfolding is-pot-ord-def by blast

lemma is-pot-ordD2 :
assumes is-pot-ord and u �t v
shows component-of-term u ≤ component-of-term v

proof (rule ccontr)
assume ¬ component-of-term u ≤ component-of-term v
hence component-of-term v < component-of-term u by simp
with assms(1) have v ≺t u by (rule is-pot-ordD)
with assms(2) show False by simp

qed

lemma is-pot-ord:
assumes is-pot-ord
shows u �t v ←→ (component-of-term u < component-of-term v ∨

(component-of-term u = component-of-term v ∧ pp-of-term u �

397

pp-of-term v)) (is ?l ←→ ?r)
proof

assume ?l
with assms have component-of-term u ≤ component-of-term v by (rule is-pot-ordD2)
hence component-of-term u < component-of-term v ∨ component-of-term u =

component-of-term v
by (simp add: order-class.le-less)

thus ?r
proof

assume component-of-term u < component-of-term v
thus ?r ..

next
assume 1 : component-of-term u = component-of-term v
moreover have pp-of-term u � pp-of-term v
proof (rule ccontr)

assume ¬ pp-of-term u � pp-of-term v
hence 2 : pp-of-term v � pp-of-term u and 3 : pp-of-term u 6= pp-of-term v

by simp-all
from 1 have component-of-term v ≤ component-of-term u by simp
with 2 have v �t u by (rule ord-termI)
with ‹?l› have u = v by simp
with 3 show False by simp

qed
ultimately show ?r by simp

qed
next

assume ?r
thus ?l
proof

assume component-of-term u < component-of-term v
with assms have u ≺t v by (rule is-pot-ordD)
thus ?l by simp

next
assume component-of-term u = component-of-term v ∧ pp-of-term u � pp-of-term

v
hence pp-of-term u � pp-of-term v and component-of-term u ≤ compo-

nent-of-term v by simp-all
thus ?l by (rule ord-termI)

qed
qed

definition map-component :: (′k ⇒ ′k) ⇒ ′t ⇒ ′t
where map-component f v = term-of-pair (pp-of-term v, f (component-of-term

v))

lemma pair-of-map-component [term-simps]:
pair-of-term (map-component f v) = (pp-of-term v, f (component-of-term v))
by (simp add: map-component-def pair-term)

398

lemma pp-of-map-component [term-simps]: pp-of-term (map-component f v) =
pp-of-term v

by (simp add: pp-of-term-def pair-of-map-component)

lemma component-of-map-component [term-simps]:
component-of-term (map-component f v) = f (component-of-term v)
by (simp add: component-of-term-def pair-of-map-component)

lemma map-component-term-of-pair [term-simps]:
map-component f (term-of-pair (t, k)) = term-of-pair (t, f k)
by (simp add: map-component-def term-simps)

lemma map-component-comp: map-component f (map-component g x) = map-component
(λk. f (g k)) x

by (simp add: map-component-def term-simps)

lemma map-component-id [term-simps]: map-component (λk. k) x = x
by (simp add: map-component-def term-simps)

lemma map-component-inj:
assumes inj f and map-component f u = map-component f v
shows u = v

proof −
from assms(2) have term-of-pair (pp-of-term u, f (component-of-term u)) =

term-of-pair (pp-of-term v, f (component-of-term v))
by (simp only: map-component-def)

hence (pp-of-term u, f (component-of-term u)) = (pp-of-term v, f (component-of-term
v))

by (rule term-of-pair-injective)
hence 1 : pp-of-term u = pp-of-term v and f (component-of-term u) = f (component-of-term

v) by simp-all
from assms(1) this(2) have component-of-term u = component-of-term v by

(rule injD)
with 1 show ?thesis by (metis term-of-pair-pair)

qed

end

18.4 Gröbner Bases of Syzygy Modules
locale gd-inf-term =

gd-term pair-of-term term-of-pair ord ord-strict ord-term ord-term-strict
for pair-of-term:: ′t ⇒ (′a::graded-dickson-powerprod × nat)
and term-of-pair ::(′a × nat) ⇒ ′t
and ord:: ′a ⇒ ′a ⇒ bool (infixl � 50)
and ord-strict (infixl ≺ 50)
and ord-term:: ′t ⇒ ′t ⇒ bool (infixl �t 50)
and ord-term-strict:: ′t ⇒ ′t ⇒ bool (infixl ≺t 50)

begin

399

In order to compute a Gröbner basis of the syzygy module of a list bs of
polynomials, one first needs to “lift” bs to a new list bs ′ by adding further
components, compute a Gröbner basis gs of bs ′, and then filter out those
elements of gs whose only non-zero components are those that were newly
added to bs. Function init-syzygy-list takes care of constructing bs ′, and
function filter-syzygy-basis does the filtering. Function proj-orig-basis, fi-
nally, projects the Gröbner basis gs of bs ′ to a Gröbner basis of the original
list bs.
definition lift-poly-syz :: nat ⇒ (′t ⇒0

′b) ⇒ nat ⇒ (′t ⇒0
′b::semiring-1)

where lift-poly-syz n b i = Abs-poly-mapping
(λx. if pair-of-term x = (0 , i) then 1

else if n ≤ component-of-term x then lookup b (map-component (λk.
k − n) x)

else 0)

definition proj-poly-syz :: nat ⇒ (′t ⇒0
′b) ⇒ (′t ⇒0

′b::semiring-1)
where proj-poly-syz n b = Poly-Mapping.map-key (λx. map-component (λk. k +

n) x) b

definition cofactor-list-syz :: nat ⇒ (′t ⇒0
′b) ⇒ (′a ⇒0

′b::semiring-1) list
where cofactor-list-syz n b = map (λi. proj-poly i b) [0 ..<n]

definition init-syzygy-list :: (′t ⇒0
′b) list ⇒ (′t ⇒0

′b::semiring-1) list
where init-syzygy-list bs = map-idx (lift-poly-syz (length bs)) bs 0

definition proj-orig-basis :: nat ⇒ (′t ⇒0
′b) list ⇒ (′t ⇒0

′b::semiring-1) list
where proj-orig-basis n bs = map (proj-poly-syz n) bs

definition filter-syzygy-basis :: nat ⇒ (′t ⇒0
′b) list ⇒ (′t ⇒0

′b::semiring-1) list
where filter-syzygy-basis n bs = [b←bs. component-of-term ‘ keys b ⊆ {0 ..<n}]

definition syzygy-module-list :: (′t ⇒0
′b) list ⇒ (′t ⇒0

′b::comm-ring-1) set
where syzygy-module-list bs = atomize-poly ‘ idx-pm-of-pm bs ‘ pmdl.syzygy-module

(set bs)

18.4.1 lift-poly-syz
lemma keys-lift-poly-syz-aux:
{x. (if pair-of-term x = (0 , i) then 1

else if n ≤ component-of-term x then lookup b (map-component (λk. k − n)
x)

else 0) 6= 0} ⊆ insert (term-of-pair (0 , i)) (map-component (λk. k + n) ‘
keys b)
(is ?l ⊆ ?r) for b:: ′t ⇒0

′b::semiring-1
proof

fix x:: ′t
assume x ∈ ?l
hence (if pair-of-term x = (0 , i) then 1 else if n ≤ component-of-term x then

400

lookup b (map-component (λk. k − n) x) else 0) 6= 0
by simp

hence pair-of-term x = (0 , i) ∨ (n ≤ component-of-term x ∧ lookup b (map-component
(λk. k − n) x) 6= 0)

by (simp split: if-split-asm)
thus x ∈ ?r
proof

assume pair-of-term x = (0 , i)
hence (0 , i) = pair-of-term x by (rule sym)
hence x = term-of-pair (0 , i) by (simp add: term-pair)
thus ?thesis by simp

next
assume n ≤ component-of-term x ∧ lookup b (map-component (λk. k − n) x)

6= 0
hence n ≤ component-of-term x and 2 : map-component (λk. k − n) x ∈ keys

b
by (auto simp: in-keys-iff)

from this(1) have 3 : map-component (λk. k − n + n) x = x by (simp add:
map-component-def term-simps)

from 2 have map-component (λk. k + n) (map-component (λk. k − n) x) ∈
map-component (λk. k + n) ‘ keys b

by (rule imageI)
with 3 have x ∈ map-component (λk. k + n) ‘ keys b by (simp add: map-component-comp)
thus ?thesis by simp

qed
qed

lemma lookup-lift-poly-syz:
lookup (lift-poly-syz n b i) =

(λx. if pair-of-term x = (0 , i) then 1 else if n ≤ component-of-term x then
lookup b (map-component (λk. k − n) x) else 0)

unfolding lift-poly-syz-def
proof (rule Abs-poly-mapping-inverse)

from finite-keys have finite (map-component (λk. k + n) ‘ keys b) ..
hence finite (insert (term-of-pair (0 , i)) (map-component (λk. k + n) ‘ keys b))

by (rule finite.insertI)
with keys-lift-poly-syz-aux
have finite {x. (if pair-of-term x = (0 , i) then 1

else if n ≤ component-of-term x then lookup b (map-component
(λk. k − n) x)

else 0) 6= 0}
by (rule finite-subset)

thus (λx. if pair-of-term x = (0 , i) then 1
else if n ≤ component-of-term x then lookup b (map-component (λk. k

− n) x)
else 0) ∈

{f . finite {x. f x 6= 0}} by simp
qed

401

corollary lookup-lift-poly-syz-alt:
lookup (lift-poly-syz n b i) (term-of-pair (t, j)) =

(if (t, j) = (0 , i) then 1 else if n ≤ j then lookup b (term-of-pair (t, j −
n)) else 0)

by (simp only: lookup-lift-poly-syz term-simps)

lemma keys-lift-poly-syz:
keys (lift-poly-syz n b i) = insert (term-of-pair (0 , i)) (map-component (λk. k +

n) ‘ keys b)
proof

have keys (lift-poly-syz n b i) ⊆
{x. (if pair-of-term x = (0 , i) then 1

else if n ≤ component-of-term x then lookup b (map-component (λk. k
− n) x)

else 0) 6= 0}
(is - ⊆ ?A)

proof
fix x
assume x ∈ keys (lift-poly-syz n b i)
hence lookup (lift-poly-syz n b i) x 6= 0 by (simp add: in-keys-iff)
thus x ∈ ?A by (simp add: lookup-lift-poly-syz)

qed
also note keys-lift-poly-syz-aux
finally show keys (lift-poly-syz n b i) ⊆ insert (term-of-pair (0 , i)) (map-component

(λk. k + n) ‘ keys b) .
next

show insert (term-of-pair (0 , i)) (map-component (λk. k + n) ‘ keys b) ⊆ keys
(lift-poly-syz n b i)

proof (simp, rule)
have lookup (lift-poly-syz n b i) (term-of-pair (0 , i)) 6= 0 by (simp add:

lookup-lift-poly-syz-alt)
thus term-of-pair (0 , i) ∈ keys (lift-poly-syz n b i) by (simp add: in-keys-iff)

next
show map-component (λk. k + n) ‘ keys b ⊆ keys (lift-poly-syz n b i)
proof (rule, elim imageE , simp)

fix x
assume x ∈ keys b
hence lookup (lift-poly-syz n b i) (map-component (λk. k + n) x) 6= 0
by (simp add: in-keys-iff lookup-lift-poly-syz-alt map-component-def term-simps)
thus map-component (λk. k + n) x ∈ keys (lift-poly-syz n b i) by (simp add:

in-keys-iff)
qed

qed
qed

18.4.2 proj-poly-syz
lemma inj-map-component-plus: inj (map-component (λk. k + n))
proof (rule injI)

402

fix x y
have inj (λk::nat. k + n) by (simp add: inj-def)
moreover assume map-component (λk. k + n) x = map-component (λk. k +

n) y
ultimately show x = y by (rule map-component-inj)

qed

lemma lookup-proj-poly-syz: lookup (proj-poly-syz n p) x = lookup p (map-component
(λk. k + n) x)
by (simp add: proj-poly-syz-def map-key.rep-eq[OF inj-map-component-plus])

lemma lookup-proj-poly-syz-alt:
lookup (proj-poly-syz n p) (term-of-pair (t, i)) = lookup p (term-of-pair (t, i +

n))
by (simp add: lookup-proj-poly-syz map-component-term-of-pair)

lemma keys-proj-poly-syz: keys (proj-poly-syz n p) = map-component (λk. k + n)
−‘ keys p

by (simp add: proj-poly-syz-def keys-map-key[OF inj-map-component-plus])

lemma proj-poly-syz-zero [simp]: proj-poly-syz n 0 = 0
by (rule poly-mapping-eqI , simp add: lookup-proj-poly-syz)

lemma proj-poly-syz-plus: proj-poly-syz n (p + q) = proj-poly-syz n p + proj-poly-syz
n q

by (simp add: proj-poly-syz-def map-key-plus[OF inj-map-component-plus])

lemma proj-poly-syz-sum: proj-poly-syz n (sum f A) = (
∑

a∈A. proj-poly-syz n (f
a))

by (rule fun-sum-commute, simp-all add: proj-poly-syz-plus)

lemma proj-poly-syz-sum-list: proj-poly-syz n (sum-list xs) = sum-list (map (proj-poly-syz
n) xs)

by (rule fun-sum-list-commute, simp-all add: proj-poly-syz-plus)

lemma proj-poly-syz-monom-mult:
proj-poly-syz n (monom-mult c t p) = monom-mult c t (proj-poly-syz n p)
by (rule poly-mapping-eqI ,

simp add: lookup-proj-poly-syz lookup-monom-mult term-simps adds-pp-def
sminus-def)

lemma proj-poly-syz-mult-scalar :
proj-poly-syz n (mult-scalar q p) = mult-scalar q (proj-poly-syz n p)
by (rule fun-mult-scalar-commute, simp-all add: proj-poly-syz-plus proj-poly-syz-monom-mult)

lemma proj-poly-syz-lift-poly-syz:
assumes i < n
shows proj-poly-syz n (lift-poly-syz n p i) = p

proof (rule poly-mapping-eqI , simp add: lookup-proj-poly-syz lookup-lift-poly-syz

403

term-simps map-component-comp,
rule, elim conjE)

fix x:: ′t
assume component-of-term x + n = i
hence n ≤ i by simp
with assms show lookup p x = 1 by simp

qed

lemma proj-poly-syz-eq-zero-iff : proj-poly-syz n p = 0 ←→ (component-of-term ‘
keys p ⊆ {0 ..<n})

unfolding keys-eq-empty[symmetric] keys-proj-poly-syz
proof

assume map-component (λk. k + n) −‘ keys p = {} (is ?A = {})
show component-of-term ‘ keys p ⊆ {0 ..<n}
proof (rule, rule ccontr)

fix i
assume i ∈ component-of-term ‘ keys p
then obtain x where x: x ∈ keys p and i: i = component-of-term x ..
assume i /∈ {0 ..<n}
hence i − n + n = i by simp

hence 1 : map-component (λk. k − n + n) x = x by (simp add: map-component-def
i term-simps)

have map-component (λk. k − n) x ∈ ?A by (rule vimageI2 , simp add:
map-component-comp x 1)

thus False by (simp add: ‹?A = {}›)
qed

next
assume a: component-of-term ‘ keys p ⊆ {0 ..<n}
show map-component (λk. k + n) −‘ keys p = {} (is ?A = {})
proof (rule ccontr)

assume ?A 6= {}
then obtain x where x ∈ ?A by blast
hence map-component (λk. k + n) x ∈ keys p by (rule vimageD)
with a have component-of-term (map-component (λk. k + n) x) ∈ {0 ..<n}

by blast
thus False by (simp add: term-simps)

qed
qed

lemma component-of-lt-ge:
assumes is-pot-ord and proj-poly-syz n p 6= 0
shows n ≤ component-of-term (lt p)

proof −
from assms(2) have ¬ component-of-term ‘ keys p ⊆ {0 ..<n} by (simp add:

proj-poly-syz-eq-zero-iff)
then obtain i where i ∈ component-of-term ‘ keys p and i /∈ {0 ..<n} by

fastforce
from this(1) obtain x where x ∈ keys p and i: i = component-of-term x ..
from this(1) have x �t lt p by (rule lt-max-keys)

404

with assms(1) have component-of-term x ≤ component-of-term (lt p) by (rule
is-pot-ordD2)

with ‹i /∈ {0 ..<n}› show ?thesis by (simp add: i)
qed

lemma lt-proj-poly-syz:
assumes is-pot-ord and proj-poly-syz n p 6= 0
shows lt (proj-poly-syz n p) = map-component (λk. k − n) (lt p) (is - = ?l)

proof −
from component-of-lt-ge[OF assms]
have component-of-term (lt p) − n + n = component-of-term (lt p) by simp
hence eq: map-component (λk. k − n + n) (lt p) = lt p by (simp add: map-component-def

term-simps)
show ?thesis
proof (rule lt-eqI)

have lookup (proj-poly-syz n p) ?l = lc p
by (simp add: lc-def lookup-proj-poly-syz term-simps map-component-comp eq)

also have ... 6= 0
proof (rule lc-not-0 , rule)

assume p = 0
hence proj-poly-syz n p = 0 by simp
with assms(2) show False ..

qed
finally show lookup (proj-poly-syz n p) ?l 6= 0 .

next
fix x
assume lookup (proj-poly-syz n p) x 6= 0

hence map-component (λk. k + n) x ∈ keys p by (simp add: in-keys-iff
lookup-proj-poly-syz)

hence map-component (λk. k + n) x �t lt p by (rule lt-max-keys)
with assms(1) show x �t ?l by (auto simp add: is-pot-ord term-simps)

qed
qed

lemma proj-proj-poly-syz: proj-poly k (proj-poly-syz n p) = proj-poly (k + n) p
by (rule poly-mapping-eqI , simp add: lookup-proj-poly lookup-proj-poly-syz-alt)

lemma poly-mapping-eqI-proj-syz:
assumes proj-poly-syz n p = proj-poly-syz n q

and
∧

k. k < n =⇒ proj-poly k p = proj-poly k q
shows p = q

proof (rule poly-mapping-eqI-proj)
fix k
show proj-poly k p = proj-poly k q
proof (cases k < n)

case True
thus ?thesis by (rule assms(2))

next
case False

405

have proj-poly (k − n + n) p = proj-poly (k − n + n) q
by (simp only: proj-proj-poly-syz[symmetric] assms(1))

with False show ?thesis by simp
qed

qed

18.4.3 cofactor-list-syz
lemma length-cofactor-list-syz [simp]: length (cofactor-list-syz n p) = n

by (simp add: cofactor-list-syz-def)

lemma cofactor-list-syz-nth:
assumes i < n
shows (cofactor-list-syz n p) ! i = proj-poly i p
by (simp add: cofactor-list-syz-def map-idx-nth assms)

lemma cofactor-list-syz-zero [simp]: cofactor-list-syz n 0 = replicate n 0
by (rule nth-equalityI , simp-all add: cofactor-list-syz-nth proj-zero)

lemma cofactor-list-syz-plus:
cofactor-list-syz n (p + q) = map2 (+) (cofactor-list-syz n p) (cofactor-list-syz n

q)
by (rule nth-equalityI , simp-all add: cofactor-list-syz-nth proj-plus)

18.4.4 init-syzygy-list
lemma length-init-syzygy-list [simp]: length (init-syzygy-list bs) = length bs

by (simp add: init-syzygy-list-def)

lemma init-syzygy-list-nth:
assumes i < length bs
shows (init-syzygy-list bs) ! i = lift-poly-syz (length bs) (bs ! i) i
by (simp add: init-syzygy-list-def map-idx-nth[OF assms])

lemma Keys-init-syzygy-list:
Keys (set (init-syzygy-list bs)) =

map-component (λk. k + length bs) ‘ Keys (set bs) ∪ (λi. term-of-pair (0 , i))
‘ {0 ..<length bs}
proof −

have eq1 : (
⋃

b∈set bs. map-component (λk. k + length bs) ‘ keys b) =
(
⋃

i∈{0 ..<length bs}. map-component (λk. k + length bs) ‘ keys (bs !
i))

by (fact UN-upt[symmetric])
have eq2 : (λi. term-of-pair (0 , i)) ‘ {0 ..<length bs} = (

⋃
i∈{0 ..<length bs}.

{term-of-pair (0 , i)})
by auto

show ?thesis
by (simp add: init-syzygy-list-def set-map-idx Keys-def keys-lift-poly-syz im-

age-UN
eq1 eq2 UN-Un-distrib[symmetric])

406

qed

lemma pp-of-Keys-init-syzygy-list-subset:
pp-of-term ‘ Keys (set (init-syzygy-list bs)) ⊆ insert 0 (pp-of-term ‘ Keys (set

bs))
by (auto simp add: Keys-init-syzygy-list image-Un rev-image-eqI term-simps)

lemma pp-of-Keys-init-syzygy-list-superset:
pp-of-term ‘ Keys (set bs) ⊆ pp-of-term ‘ Keys (set (init-syzygy-list bs))
by (simp add: Keys-init-syzygy-list image-Un term-simps image-image)

lemma pp-of-Keys-init-syzygy-list:
assumes bs 6= []
shows pp-of-term ‘ Keys (set (init-syzygy-list bs)) = insert 0 (pp-of-term ‘ Keys

(set bs))
proof
show insert 0 (pp-of-term ‘ Keys (set bs)) ⊆ pp-of-term ‘ Keys (set (init-syzygy-list

bs))
proof (simp add: pp-of-Keys-init-syzygy-list-superset)

from assms have {0 ..<length bs} 6= {} by auto
hence Pair 0 ‘ {0 ..<length bs} 6= {} by blast
then obtain x:: ′t where x: x ∈ (λi. term-of-pair (0 , i)) ‘ {0 ..<length bs} by

blast
hence pp-of-term ‘ (λi. term-of-pair (0 , i)) ‘ {0 ..<length bs} = {pp-of-term x}

using image-subset-iff by (auto simp: term-simps)
also from x have ... = {0} using pp-of-term-of-pair by auto
finally show 0 ∈ pp-of-term ‘ Keys (set (init-syzygy-list bs))

by (simp add: Keys-init-syzygy-list image-Un)
qed

qed (fact pp-of-Keys-init-syzygy-list-subset)

lemma component-of-Keys-init-syzygy-list:
component-of-term ‘ Keys (set (init-syzygy-list bs)) =

(+) (length bs) ‘ component-of-term ‘ Keys (set bs) ∪ {0 ..<length bs}
by (simp add: Keys-init-syzygy-list image-Un image-comp o-def ac-simps term-simps)

lemma proj-lift-poly-syz:
assumes j < n
shows proj-poly j (lift-poly-syz n p i) = (1 when j = i)

proof (simp add: when-def , intro conjI impI)
assume j = i
with assms have ¬ n ≤ i by simp
show proj-poly i (lift-poly-syz n p i) = 1

by (rule poly-mapping-eqI , simp add: lookup-proj-poly lookup-lift-poly-syz-alt ‹¬
n ≤ i› lookup-one)
next

assume j 6= i
from assms have ¬ n ≤ j by simp
show proj-poly j (lift-poly-syz n p i) = 0

407

by (rule poly-mapping-eqI , simp add: lookup-proj-poly lookup-lift-poly-syz-alt ‹¬
n ≤ j› ‹j 6= i›)
qed

18.4.5 proj-orig-basis
lemma length-proj-orig-basis [simp]: length (proj-orig-basis n bs) = length bs

by (simp add: proj-orig-basis-def)

lemma proj-orig-basis-nth:
assumes i < length bs
shows (proj-orig-basis n bs) ! i = proj-poly-syz n (bs ! i)
by (simp add: proj-orig-basis-def assms)

lemma proj-orig-basis-init-syzygy-list [simp]:
proj-orig-basis (length bs) (init-syzygy-list bs) = bs
by (rule nth-equalityI , simp-all add: init-syzygy-list-nth proj-orig-basis-nth proj-poly-syz-lift-poly-syz)

lemma set-proj-orig-basis: set (proj-orig-basis n bs) = proj-poly-syz n ‘ set bs
by (simp add: proj-orig-basis-def)

The following lemma could be generalized from proj-poly-syz to arbitrary
module homomorphisms, i. e. functions respecting 0, addition and scalar
multiplication.
lemma pmdl-proj-orig-basis ′:

pmdl (set (proj-orig-basis n bs)) = proj-poly-syz n ‘ pmdl (set bs) (is ?A = ?B)
proof

show ?A ⊆ ?B
proof

fix p
assume p ∈ pmdl (set (proj-orig-basis n bs))
thus p ∈ proj-poly-syz n ‘ pmdl (set bs)
proof (induct rule: pmdl-induct)

case module-0
have 0 = proj-poly-syz n 0 by simp
also from pmdl.span-zero have ... ∈ proj-poly-syz n ‘ pmdl (set bs) by (rule

imageI)
finally show ?case .

next
case (module-plus p b c t)

from module-plus(2) obtain q where q ∈ pmdl (set bs) and p: p =
proj-poly-syz n q ..

from module-plus(3) obtain a where a ∈ set bs and b: b = proj-poly-syz n
a

unfolding set-proj-orig-basis ..
have p + monom-mult c t b = proj-poly-syz n (q + monom-mult c t a)

by (simp add: p b proj-poly-syz-monom-mult proj-poly-syz-plus)
also have ... ∈ proj-poly-syz n ‘ pmdl (set bs)
proof (rule imageI , rule pmdl.span-add)

408

show monom-mult c t a ∈ pmdl (set bs)
by (rule pmdl-closed-monom-mult, rule pmdl.span-base, fact)

qed fact
finally show ?case .

qed
qed

next
show ?B ⊆ ?A
proof

fix p
assume p ∈ proj-poly-syz n ‘ pmdl (set bs)
then obtain q where q ∈ pmdl (set bs) and p: p = proj-poly-syz n q ..
from this(1) show p ∈ pmdl (set (proj-orig-basis n bs)) unfolding p
proof (induct rule: pmdl-induct)

case module-0
have proj-poly-syz n 0 = 0 by simp
also have ... ∈ pmdl (set (proj-orig-basis n bs)) by (fact pmdl.span-zero)
finally show ?case .

next
case (module-plus q b c t)
have proj-poly-syz n (q + monom-mult c t b) =

proj-poly-syz n q + monom-mult c t (proj-poly-syz n b)
by (simp add: proj-poly-syz-plus proj-poly-syz-monom-mult)

also have ... ∈ pmdl (set (proj-orig-basis n bs))
proof (rule pmdl.span-add)
show monom-mult c t (proj-poly-syz n b) ∈ pmdl (set (proj-orig-basis n bs))
proof (rule pmdl-closed-monom-mult, rule pmdl.span-base)

show proj-poly-syz n b ∈ set (proj-orig-basis n bs)
by (simp add: set-proj-orig-basis, rule imageI , fact)

qed
qed fact
finally show ?case .

qed
qed

qed

18.4.6 filter-syzygy-basis
lemma filter-syzygy-basis-alt: filter-syzygy-basis n bs = [b←bs. proj-poly-syz n b =
0]

by (simp add: filter-syzygy-basis-def proj-poly-syz-eq-zero-iff)

lemma set-filter-syzygy-basis:
set (filter-syzygy-basis n bs) = {b∈set bs. proj-poly-syz n b = 0}
by (simp add: filter-syzygy-basis-alt)

18.4.7 syzygy-module-list
lemma syzygy-module-listI :

409

assumes s ′ ∈ pmdl.syzygy-module (set bs) and s = atomize-poly (idx-pm-of-pm
bs s ′)

shows s ∈ syzygy-module-list bs
unfolding assms(2) syzygy-module-list-def by (intro imageI , fact assms(1))

lemma syzygy-module-listE :
assumes s ∈ syzygy-module-list bs
obtains s ′ where s ′∈ pmdl.syzygy-module (set bs) and s = atomize-poly (idx-pm-of-pm

bs s ′)
using assms unfolding syzygy-module-list-def by (elim imageE , simp)

lemma monom-mult-atomize:
monom-mult c t (atomize-poly p) = atomize-poly (MPoly-Type-Class.punit.monom-mult

(monomial c t) 0 p)
by (rule poly-mapping-eqI-proj, simp add: proj-monom-mult proj-atomize-poly

MPoly-Type-Class.punit.lookup-monom-mult times-monomial-left)

lemma punit-monom-mult-monomial-idx-pm-of-pm:
MPoly-Type-Class.punit.monom-mult (monomial c t) (0 ::nat) (idx-pm-of-pm bs

s) =
idx-pm-of-pm bs (MPoly-Type-Class.punit.monom-mult (monomial c t) (0 :: ′t

⇒0
′b::ring-1) s)

by (rule poly-mapping-eqI , simp add: MPoly-Type-Class.punit.lookup-monom-mult
lookup-idx-pm-of-pm when-def)

lemma syzygy-module-list-closed-monom-mult:
assumes s ∈ syzygy-module-list bs
shows monom-mult c t s ∈ syzygy-module-list bs

proof −
from assms obtain s ′ where s ′: s ′ ∈ pmdl.syzygy-module (set bs)

and s: s = atomize-poly (idx-pm-of-pm bs s ′) by (rule syzygy-module-listE)
show ?thesis unfolding s
proof (rule syzygy-module-listI)

from s ′ show (monomial c t) · s ′ ∈ pmdl.syzygy-module (set bs)
by (rule syzygy-module-closed-map-scale)

next
show monom-mult c t (atomize-poly (idx-pm-of-pm bs s ′)) =

atomize-poly (idx-pm-of-pm bs ((monomial c t) · s ′))
by (simp add: monom-mult-atomize punit-monom-mult-monomial-idx-pm-of-pm

MPoly-Type-Class.punit.map-scale-eq-monom-mult)
qed

qed

lemma pmdl-syzygy-module-list [simp]: pmdl (syzygy-module-list bs) = syzygy-module-list
bs
proof (rule pmdl-idI)

show 0 ∈ syzygy-module-list bs
by (rule syzygy-module-listI , fact pmdl.zero-in-syzygy-module, simp add: atom-

ize-zero)

410

next
fix s1 s2
assume s1 ∈ syzygy-module-list bs
then obtain s1 ′ where s1 ′: s1 ′ ∈ pmdl.syzygy-module (set bs)

and s1 : s1 = atomize-poly (idx-pm-of-pm bs s1 ′) by (rule syzygy-module-listE)
assume s2 ∈ syzygy-module-list bs
then obtain s2 ′ where s2 ′: s2 ′ ∈ pmdl.syzygy-module (set bs)

and s2 : s2 = atomize-poly (idx-pm-of-pm bs s2 ′) by (rule syzygy-module-listE)
show s1 + s2 ∈ syzygy-module-list bs
proof (rule syzygy-module-listI)

from s1 ′ s2 ′ show s1 ′ + s2 ′ ∈ pmdl.syzygy-module (set bs)
by (rule pmdl.syzygy-module-closed-plus)

next
show s1 + s2 = atomize-poly (idx-pm-of-pm bs (s1 ′ + s2 ′))

by (simp add: idx-pm-of-pm-plus atomize-plus s1 s2)
qed

qed (fact syzygy-module-list-closed-monom-mult)

The following lemma also holds without the distinctness constraint on bs,
but then the proof becomes more difficult.
lemma syzygy-module-listI ′:

assumes distinct bs and sum-list (map2 mult-scalar (cofactor-list-syz (length bs)
s) bs) = 0

and component-of-term ‘ keys s ⊆ {0 ..<length bs}
shows s ∈ syzygy-module-list bs

proof (rule syzygy-module-listI)
show pm-of-idx-pm bs (vectorize-poly s) ∈ pmdl.syzygy-module (set bs)
proof (rule pmdl.syzygy-moduleI , rule pmdl.representsI)

have (
∑

v∈keys (pm-of-idx-pm bs (vectorize-poly s)).
mult-scalar (lookup (pm-of-idx-pm bs (vectorize-poly s)) v) v) =

(
∑

b∈set bs. mult-scalar (lookup (pm-of-idx-pm bs (vectorize-poly s)) b) b)
by (rule sum.mono-neutral-left, fact finite-set, fact keys-pm-of-idx-pm-subset,

simp add: in-keys-iff)
also have ... = sum-list (map (λb. mult-scalar (lookup (pm-of-idx-pm bs

(vectorize-poly s)) b) b) bs)
by (simp only: sum-code distinct-remdups-id[OF assms(1)])

also have ... = sum-list (map2 mult-scalar (cofactor-list-syz (length bs) s) bs)
proof (rule arg-cong[of - - sum-list], rule nth-equalityI , simp-all)

fix i
assume i < length bs
with assms(1) have lookup (pm-of-idx-pm bs (vectorize-poly s)) (bs ! i) =

cofactor-list-syz (length bs) s ! i
by (simp add: lookup-pm-of-idx-pm-distinct[OF assms(1)] cofactor-list-syz-nth

lookup-vectorize-poly)
thus mult-scalar (lookup (pm-of-idx-pm bs (vectorize-poly s)) (bs ! i)) (bs ! i)

=
mult-scalar (cofactor-list-syz (length bs) s ! i) (bs ! i) by (simp only:)

qed
also have ... = 0 by (fact assms(2))

411

finally show pmdl.rep (pm-of-idx-pm bs (vectorize-poly s)) = 0 by (simp only:
pmdl.rep-def)

qed (fact keys-pm-of-idx-pm-subset)
next

from assms(3) have keys (vectorize-poly s) ⊆ {0 ..<length bs} by (simp add:
keys-vectorize-poly)

with assms(1) have idx-pm-of-pm bs (pm-of-idx-pm bs (vectorize-poly s)) =
vectorize-poly s

by (rule idx-pm-of-pm-of-idx-pm)
thus s = atomize-poly (idx-pm-of-pm bs (pm-of-idx-pm bs (vectorize-poly s)))

by (simp add: atomize-vectorize-poly)
qed

lemma component-of-syzygy-module-list:
assumes s ∈ syzygy-module-list bs
shows component-of-term ‘ keys s ⊆ {0 ..<length bs}

proof −
from assms obtain s ′ where s: s = atomize-poly (idx-pm-of-pm bs s ′)

by (rule syzygy-module-listE)
have component-of-term ‘ keys s ⊆ (

⋃
x∈{0 ..<length bs}. {x})

by (simp only: s keys-atomize-poly image-UN , rule UN-mono, fact keys-idx-pm-of-pm-subset,
auto simp: term-simps)

also have ... = {0 ..<length bs} by simp
finally show ?thesis .

qed

lemma map2-mult-scalar-proj-poly-syz:
map2 mult-scalar xs (map (proj-poly-syz n) ys) =

map (proj-poly-syz n ◦ (λ(x, y). mult-scalar x y)) (zip xs ys)
by (rule nth-equalityI , simp-all add: proj-poly-syz-mult-scalar)

lemma map2-times-proj:
map2 (∗) xs (map (proj-poly k) ys) = map (proj-poly k ◦ (λ(x, y). x � y)) (zip

xs ys)
by (rule nth-equalityI , simp-all add: proj-mult-scalar)

Probably the following lemma also holds without the distinctness constraint
on bs.
lemma syzygy-module-list-subset:

assumes distinct bs
shows syzygy-module-list bs ⊆ pmdl (set (init-syzygy-list bs))

proof
let ?as = init-syzygy-list bs
fix s
assume s ∈ syzygy-module-list bs
then obtain s ′ where s ′: s ′ ∈ pmdl.syzygy-module (set bs)

and s: s = atomize-poly (idx-pm-of-pm bs s ′) by (rule syzygy-module-listE)
from s ′ have pmdl.represents (set bs) s ′ 0 by (rule pmdl.syzygy-moduleD)
hence keys s ′ ⊆ set bs and 1 : 0 = pmdl.rep s ′

412

by (rule pmdl.representsD1 , rule pmdl.representsD2)
have s = sum-list (map2 mult-scalar (cofactor-list-syz (length bs) s) (init-syzygy-list

bs))
(is - = ?r)

proof (rule poly-mapping-eqI-proj-syz)
have proj-poly-syz (length bs) ?r =

sum-list (map2 mult-scalar (cofactor-list-syz (length bs) s)
(map (proj-poly-syz (length bs)) (init-syzygy-list

bs)))
by (simp add: proj-poly-syz-sum-list map2-mult-scalar-proj-poly-syz)

also have ... = sum-list (map2 mult-scalar (cofactor-list-syz (length bs) s) bs)
by (simp add: proj-orig-basis-def [symmetric])

also have ... = sum-list (map (λb. mult-scalar (lookup s ′ b) b) bs)
proof (rule arg-cong[of - - sum-list], rule nth-equalityI , simp-all)

fix i
assume i < length bs
with assms(1) have lookup s ′ (bs ! i) = cofactor-list-syz (length bs) s ! i
by (simp add: s cofactor-list-syz-nth lookup-idx-pm-of-pm proj-atomize-poly)

thus mult-scalar (cofactor-list-syz (length bs) s ! i) (bs ! i) =
mult-scalar (lookup s ′ (bs ! i)) (bs ! i) by (simp only:)

qed
also have ... = (

∑
b∈set bs. mult-scalar (lookup s ′ b) b)

by (simp only: sum-code distinct-remdups-id[OF assms])
also have ... = (

∑
v∈keys s ′. mult-scalar (lookup s ′ v) v)

by (rule sum.mono-neutral-right, fact finite-set, fact, simp add: in-keys-iff)
also have ... = 0 by (simp add: 1 pmdl.rep-def)
finally have eq: proj-poly-syz (length bs) ?r = 0 .
show proj-poly-syz (length bs) s = proj-poly-syz (length bs) ?r

by (simp add: eq ‹s ∈ syzygy-module-list bs› proj-poly-syz-eq-zero-iff compo-
nent-of-syzygy-module-list)

next
fix k
assume k < length bs
have proj-poly k s = map2 (∗) (cofactor-list-syz (length bs) s) (map (proj-poly

k)
(init-syzygy-list bs)) ! k

by (simp add: ‹k < length bs› init-syzygy-list-nth proj-lift-poly-syz cofac-
tor-list-syz-nth)

also have ... = sum-list (map2 (∗) (cofactor-list-syz (length bs) s)
(map (proj-poly k) (init-syzygy-list bs)))

by (rule sum-list-eq-nthI [symmetric],
simp-all add: ‹k < length bs› init-syzygy-list-nth proj-lift-poly-syz)

also have ... = proj-poly k ?r
by (simp add: proj-sum-list map2-times-proj)

finally show proj-poly k s = proj-poly k ?r .
qed
also have . . . ∈ pmdl (set (init-syzygy-list bs)) by (fact pmdl.span-listI)
finally show s ∈ pmdl (set (init-syzygy-list bs)) .

qed

413

18.4.8 Cofactors
lemma map2-mult-scalar-plus:

map2 (�) (map2 (+) xs ys) zs = map2 (+) (map2 (�) xs zs) (map2 (�) ys zs)
by (rule nth-equalityI , simp-all add: mult-scalar-distrib-right)

lemma syz-cofactors:
assumes p ∈ pmdl (set (init-syzygy-list bs))
shows proj-poly-syz (length bs) p = sum-list (map2 mult-scalar (cofactor-list-syz

(length bs) p) bs)
using assms

proof (induct rule: pmdl-induct)
case module-0
show ?case by (simp, rule sum-list-zeroI ′, simp)

next
case (module-plus p b c t)
from this(3) obtain i where i: i < length bs and b: b = (init-syzygy-list bs) ! i

unfolding length-init-syzygy-list[symmetric, of bs] by (metis in-set-conv-nth)
have proj-poly-syz (length bs) (p + monom-mult c t b) =

proj-poly-syz (length bs) p + monom-mult c t (bs ! i)
by (simp only: proj-poly-syz-plus proj-poly-syz-monom-mult b init-syzygy-list-nth[OF

i]
proj-poly-syz-lift-poly-syz[OF i])

also have ... = sum-list (map2 mult-scalar (cofactor-list-syz (length bs) p) bs) +
monom-mult c t (bs ! i) by (simp only: module-plus(2))

also have ... = sum-list (map2 mult-scalar (cofactor-list-syz (length bs) (p +
monom-mult c t b)) bs)
proof (simp add: cofactor-list-syz-plus map2-mult-scalar-plus sum-list-map2-plus)

have proj-b: j < length bs =⇒ proj-poly j b = (1 when j = i) for j
by (simp add: b init-syzygy-list-nth i proj-lift-poly-syz)
have eq: j < length bs =⇒ (map2 mult-scalar (cofactor-list-syz (length bs)

(monom-mult c t b)) bs) ! j =
(monom-mult c t (bs ! i) when j = i) for j

by (simp add: cofactor-list-syz-nth proj-monom-mult proj-b mult-scalar-monom-mult
when-def)

have sum-list (map2 mult-scalar (cofactor-list-syz (length bs) (monom-mult c t
b)) bs) =

(map2 mult-scalar (cofactor-list-syz (length bs) (monom-mult c t b)) bs) ! i
by (rule sum-list-eq-nthI , simp add: i, simp add: eq del: nth-zip nth-map)

also have ... = mult-scalar (punit.monom-mult c t (proj-poly i b)) (bs ! i)
by (simp add: i cofactor-list-syz-nth proj-monom-mult)

also have ... = monom-mult c t (bs ! i)
by (simp add: proj-b i mult-scalar-monomial times-monomial-left[symmetric])

finally show monom-mult c t (bs ! i) =
sum-list (map2 mult-scalar (cofactor-list-syz (length bs) (monom-mult c t

b)) bs)
by (simp only:)

qed
finally show ?case .

qed

414

18.4.9 Modules
lemma pmdl-proj-orig-basis:

assumes pmdl (set gs) = pmdl (set (init-syzygy-list bs))
shows pmdl (set (proj-orig-basis (length bs) gs)) = pmdl (set bs)
by (simp add: pmdl-proj-orig-basis ′ assms,

simp only: pmdl-proj-orig-basis ′[symmetric] proj-orig-basis-init-syzygy-list)

lemma pmdl-filter-syzygy-basis-subset:
assumes distinct bs and pmdl (set gs) = pmdl (set (init-syzygy-list bs))
shows pmdl (set (filter-syzygy-basis (length bs) gs)) ⊆ pmdl (syzygy-module-list

bs)
proof (rule pmdl.span-mono, rule)

fix s
assume s ∈ set (filter-syzygy-basis (length bs) gs)
hence s ∈ set gs and eq: proj-poly-syz (length bs) s = 0

by (simp-all add: set-filter-syzygy-basis)
from this(1) have s ∈ pmdl (set gs) by (rule pmdl.span-base)
hence s ∈ pmdl (set (init-syzygy-list bs)) by (simp only: assms)
hence proj-poly-syz (length bs) s =

sum-list (map2 mult-scalar (cofactor-list-syz (length bs) s) bs)
by (rule syz-cofactors)

hence distinct bs and sum-list (map2 mult-scalar (cofactor-list-syz (length bs)
s) bs) = 0

by (simp-all only: eq assms(1))
moreover from eq have component-of-term ‘ keys s ⊆ {0 ..<length bs} by (simp

only: proj-poly-syz-eq-zero-iff)
ultimately show s ∈ syzygy-module-list bs by (rule syzygy-module-listI ′)

qed

lemma ex-filter-syzygy-basis-adds-lt:
assumes is-pot-ord and distinct bs and is-Groebner-basis (set gs)

and pmdl (set gs) = pmdl (set (init-syzygy-list bs))
and f ∈ pmdl (syzygy-module-list bs) and f 6= 0

shows ∃ g∈set (filter-syzygy-basis (length bs) gs). g 6= 0 ∧ lt g addst lt f
proof −

from assms(5) have f ∈ syzygy-module-list bs by simp
also from assms(2) have ... ⊆ pmdl (set (init-syzygy-list bs))

by (rule syzygy-module-list-subset)
also have ... = pmdl (set gs) by (simp only: assms(4))
finally have f ∈ pmdl (set gs) .
with assms(3 , 6) obtain g where g ∈ set gs and g 6= 0

and adds: lt g addst lt f unfolding GB-alt-3-finite[OF finite-set] by blast
show ?thesis
proof (intro bexI conjI)

show g ∈ set (filter-syzygy-basis (length bs) gs)
proof (simp add: set-filter-syzygy-basis, rule)

show proj-poly-syz (length bs) g = 0
proof (rule ccontr)

assume proj-poly-syz (length bs) g 6= 0

415

with assms(1) have length bs ≤ component-of-term (lt g) by (rule compo-
nent-of-lt-ge)

also from adds have ... = component-of-term (lt f) by (simp add:
adds-term-def)

also have ... < length bs
proof −

from ‹f 6= 0 › have lt f ∈ keys f by (rule lt-in-keys)
hence component-of-term (lt f) ∈ component-of-term ‘ keys f by (rule

imageI)
also from ‹f ∈ syzygy-module-list bs› have ... ⊆ {0 ..<length bs}

by (rule component-of-syzygy-module-list)
finally show component-of-term (lt f) < length bs by simp

qed
finally show False ..

qed
qed fact

qed fact+
qed

lemma pmdl-filter-syzygy-basis:
fixes bs::(′t ⇒0

′b::field) list
assumes is-pot-ord and distinct bs and is-Groebner-basis (set gs) and

pmdl (set gs) = pmdl (set (init-syzygy-list bs))
shows pmdl (set (filter-syzygy-basis (length bs) gs)) = syzygy-module-list bs

proof −
from finite-set
have pmdl (set (filter-syzygy-basis (length bs) gs)) = pmdl (syzygy-module-list

bs)
proof (rule pmdl-eqI-adds-lt-finite)

from assms(2 , 4)
show pmdl (set (filter-syzygy-basis (length bs) gs)) ⊆ pmdl (syzygy-module-list

bs)
by (rule pmdl-filter-syzygy-basis-subset)

next
fix f
assume f ∈ pmdl (syzygy-module-list bs) and f 6= 0
with assms show ∃ g∈set (filter-syzygy-basis (length bs) gs). g 6= 0 ∧ lt g addst

lt f
by (rule ex-filter-syzygy-basis-adds-lt)

qed
thus ?thesis by simp

qed

18.4.10 Gröbner Bases
lemma proj-orig-basis-isGB:

assumes is-pot-ord and is-Groebner-basis (set gs) and pmdl (set gs) = pmdl
(set (init-syzygy-list bs))

shows is-Groebner-basis (set (proj-orig-basis (length bs) gs))

416

unfolding GB-alt-3-finite[OF finite-set]
proof (intro ballI impI)

fix f
assume f ∈ pmdl (set (proj-orig-basis (length bs) gs))
also have ... = proj-poly-syz (length bs) ‘ pmdl (set gs) by (fact pmdl-proj-orig-basis ′)
finally obtain h where h ∈ pmdl (set gs) and f : f = proj-poly-syz (length bs)

h ..
assume f 6= 0
with assms(1) have ltf : lt f = map-component (λk. k − length bs) (lt h) un-

folding f
by (rule lt-proj-poly-syz)

from ‹f 6= 0 › have h 6= 0 by (auto simp add: f)
with assms(2) ‹h ∈ pmdl (set gs)› obtain g where g ∈ set gs and g 6= 0

and lt g addst lt h unfolding GB-alt-3-finite[OF finite-set] by blast
from this(3) have 1 : component-of-term (lt g) = component-of-term (lt h)
and 2 : pp-of-term (lt g) adds pp-of-term (lt h) by (simp-all add: adds-term-def)

let ?g = proj-poly-syz (length bs) g
have ?g 6= 0
proof (simp add: proj-poly-syz-eq-zero-iff , rule)

assume component-of-term ‘ keys g ⊆ {0 ..<length bs}
from assms(1) ‹f 6= 0 › have length bs ≤ component-of-term (lt h)

unfolding f by (rule component-of-lt-ge)
hence component-of-term (lt g) /∈ {0 ..<length bs} by (simp add: 1)
moreover from ‹g 6= 0 › have lt g ∈ keys g by (rule lt-in-keys)
ultimately show False using ‹component-of-term ‘ keys g ⊆ {0 ..<length bs}›

by blast
qed
with assms(1) have ltg: lt ?g = map-component (λk. k − length bs) (lt g) by

(rule lt-proj-poly-syz)
show ∃ g∈set (proj-orig-basis (length bs) gs). g 6= 0 ∧ lt g addst lt f
proof (intro bexI conjI)

show lt ?g addst lt f by (simp add: ltf ltg adds-term-def 1 2 term-simps)
next

show ?g ∈ set (proj-orig-basis (length bs) gs)
unfolding set-proj-orig-basis using ‹g ∈ set gs› by (rule imageI)

qed fact
qed

lemma filter-syzygy-basis-isGB:
assumes is-pot-ord and distinct bs and is-Groebner-basis (set gs)

and pmdl (set gs) = pmdl (set (init-syzygy-list bs))
shows is-Groebner-basis (set (filter-syzygy-basis (length bs) gs))
unfolding GB-alt-3-finite[OF finite-set]

proof (intro ballI impI)
fix f :: ′t ⇒0

′b
assume f 6= 0
assume f ∈ pmdl (set (filter-syzygy-basis (length bs) gs))
also from assms have ... = syzygy-module-list bs by (rule pmdl-filter-syzygy-basis)
finally have f ∈ pmdl (syzygy-module-list bs) by simp

417

from assms this ‹f 6= 0 ›
show ∃ g∈set (filter-syzygy-basis (length bs) gs). g 6= 0 ∧ lt g addst lt f

by (rule ex-filter-syzygy-basis-adds-lt)
qed

end

end

19 Sample Computations of Syzygies
theory Syzygy-Examples

imports Buchberger Algorithm-Schema-Impl Syzygy Code-Target-Rat
begin

19.1 Preparations

We must define the following four constants outside the global interpretation,
since otherwise their types are too general.
definition splus-pprod :: (′a::nat, ′b::nat) pp ⇒ -

where splus-pprod = pprod.splus

definition monom-mult-pprod :: ′c::semiring-0 ⇒ (′a::nat, ′b::nat) pp ⇒ (((′a, ′b)
pp × nat) ⇒0

′c) ⇒ -
where monom-mult-pprod = pprod.monom-mult

definition mult-scalar-pprod :: ((′a::nat, ′b::nat) pp ⇒0
′c::semiring-0) ⇒ (((′a,

′b) pp × nat) ⇒0
′c) ⇒ -

where mult-scalar-pprod = pprod.mult-scalar

definition adds-term-pprod :: ((′a::nat, ′b::nat) pp × -) ⇒ -
where adds-term-pprod = pprod.adds-term

lemma (in gd-term) compute-trd-aux [code]:
trd-aux fs p r =
(if is-zero p then

r
else

case find-adds fs (lt p) of
None ⇒ trd-aux fs (tail p) (plus-monomial-less r (lc p) (lt p))
| Some f ⇒ trd-aux fs (tail p − monom-mult (lc p / lc f) (lp p − lp f) (tail

f)) r
)

by (simp only: trd-aux.simps[of fs p r] plus-monomial-less-def is-zero-def)

locale gd-nat-inf-term = gd-nat-term pair-of-term term-of-pair cmp-term
for pair-of-term:: ′t::nat-term ⇒ (′a::{nat-term,graded-dickson-powerprod} ×

nat)

418

and term-of-pair ::(′a × nat) ⇒ ′t
and cmp-term

begin

sublocale aux: gd-inf-term pair-of-term term-of-pair
λs t. le-of-nat-term-order cmp-term (term-of-pair (s, the-min)) (term-of-pair

(t, the-min))
λs t. lt-of-nat-term-order cmp-term (term-of-pair (s, the-min)) (term-of-pair

(t, the-min))
le-of-nat-term-order cmp-term
lt-of-nat-term-order cmp-term ..

definition lift-keys :: nat ⇒ (′t, ′b) oalist-ntm ⇒ (′t, ′b::semiring-0) oalist-ntm
where lift-keys i xs = oalist-of-list-ntm (map-raw (λkv. (map-component ((+) i)

(fst kv), snd kv)) (list-of-oalist-ntm xs))

lemma list-of-oalist-lift-keys:
list-of-oalist-ntm (lift-keys i xs) = (map-raw (λkv. (map-component ((+) i) (fst

kv), snd kv)) (list-of-oalist-ntm xs))
unfolding lift-keys-def oops

Regardless of whether the above lemma holds (which might be the case) or
not, we can use lift-keys in computations. Now, however, it is implemented
rather inefficiently, because the list resulting from the application of map-raw
is sorted again. That should not be a big problem though, since lift-keys is
applied only once to every input polynomial before computing syzygies.
lemma lookup-lift-keys-plus:

lookup (MP-oalist (lift-keys i xs)) (term-of-pair (t, i + k)) = lookup (MP-oalist
xs) (term-of-pair (t, k))

(is ?l = ?r)
proof −

let ?f = λkv:: ′t × ′b. (map-component ((+) i) (fst kv), snd kv)
obtain xs ′ ox where xs: list-of-oalist-ntm xs = (xs ′, ox) by fastforce
from oalist-inv-list-of-oalist-ntm[of xs] have inv: ko-ntm.oalist-inv-raw ox xs ′

by (simp add: xs ko-ntm.oalist-inv-def nat-term-compare-inv-conv)
let ?rel = ko.lt (key-order-of-nat-term-order-inv ox)
have irreflp ?rel by (simp add: irreflp-def)
moreover have transp ?rel by (simp add: lt-of-nat-term-order-alt)
moreover from oa-ntm.list-of-oalist-sorted[of xs]
have sorted-wrt (ko.lt (key-order-of-nat-term-order-inv ox)) (map fst xs ′) by

(simp add: xs)
ultimately have dist1 : distinct (map fst xs ′) by (rule distinct-sorted-wrt-irrefl)
have 1 : u = v if map-component ((+) i) u = map-component ((+) i) v for u v
proof −

have inj ((+) i) by (simp add: inj-def)
thus ?thesis using that by (rule map-component-inj)

qed
have dist2 : distinct (map fst (map-pair (λkv. (map-component ((+) i) (fst kv),

snd kv)) xs ′))

419

by (rule ko-ntm.distinct-map-pair , fact dist1 , simp add: 1)
have ?l = lookup-dflt (map-pair ?f xs ′) (term-of-pair (t, i + k))
by (simp add: oa-ntm.lookup-def lift-keys-def xs oalist-of-list-ntm-def list-of-oalist-OAlist-ntm

ko-ntm.lookup-pair-sort-oalist ′[OF dist2])
also have ... = lookup-dflt (map-pair ?f xs ′) (fst (?f (term-of-pair (t, k), b)))

by (simp add: map-component-term-of-pair)
also have ... = snd (?f (term-of-pair (t, k), lookup-dflt xs ′ (term-of-pair (t, k))))

by (rule ko-ntm.lookup-dflt-map-pair , fact dist1 , auto intro: 1)
also have ... = ?r by (simp add: oa-ntm.lookup-def xs ko-ntm.lookup-dflt-eq-lookup-pair [OF

inv])
finally show ?thesis .

qed

lemma keys-lift-keys-subset:
keys (MP-oalist (lift-keys i xs)) ⊆ (map-component ((+) i)) ‘ keys (MP-oalist xs)

(is ?l ⊆ ?r)
proof −

let ?f = λkv:: ′t × ′b. (map-component ((+) i) (fst kv), snd kv)
obtain xs ′ ox where xs: list-of-oalist-ntm xs = (xs ′, ox) by fastforce
let ?rel = ko.lt (key-order-of-nat-term-order-inv ox)
have irreflp ?rel by (simp add: irreflp-def)
moreover have transp ?rel by (simp add: lt-of-nat-term-order-alt)
moreover from oa-ntm.list-of-oalist-sorted[of xs]
have sorted-wrt (ko.lt (key-order-of-nat-term-order-inv ox)) (map fst xs ′) by

(simp add: xs)
ultimately have dist1 : distinct (map fst xs ′) by (rule distinct-sorted-wrt-irrefl)
have 1 : u = v if map-component ((+) i) u = map-component ((+) i) v for u v
proof −

have inj ((+) i) by (simp add: inj-def)
thus ?thesis using that by (rule map-component-inj)

qed
have dist2 : distinct (map fst (map-pair (λkv. (map-component ((+) i) (fst kv),

snd kv)) xs ′))
by (rule ko-ntm.distinct-map-pair , fact dist1 , simp add: 1)

have ?l ⊆ fst ‘ set (fst (map-raw ?f (list-of-oalist-ntm xs)))
by (auto simp: keys-MP-oalist lift-keys-def oalist-of-list-ntm-def list-of-oalist-OAlist-ntm

xs
ko-ntm.set-sort-oalist[OF dist2])

also from ko-ntm.map-raw-subset have ... ⊆ fst ‘ ?f ‘ set (fst (list-of-oalist-ntm
xs))

by (rule image-mono)
also have ... ⊆ ?r by (simp add: keys-MP-oalist image-image)
finally show ?thesis .

qed

end

global-interpretation pprod ′: gd-nat-inf-term λx::(′a, ′b) pp × nat. x λx. x cmp-term
rewrites pprod.pp-of-term = fst

420

and pprod.component-of-term = snd
and pprod.splus = splus-pprod
and pprod.monom-mult = monom-mult-pprod
and pprod.mult-scalar = mult-scalar-pprod
and pprod.adds-term = adds-term-pprod
for cmp-term :: ((′a::nat, ′b::nat) pp × nat) nat-term-order
defines shift-map-keys-pprod = pprod ′.shift-map-keys
and lift-keys-pprod = pprod ′.lift-keys
and min-term-pprod = pprod ′.min-term
and lt-pprod = pprod ′.lt
and lc-pprod = pprod ′.lc
and tail-pprod = pprod ′.tail
and comp-opt-p-pprod = pprod ′.comp-opt-p
and ord-p-pprod = pprod ′.ord-p
and ord-strict-p-pprod = pprod ′.ord-strict-p
and find-adds-pprod = pprod ′.find-adds
and trd-aux-pprod= pprod ′.trd-aux
and trd-pprod = pprod ′.trd
and spoly-pprod = pprod ′.spoly
and count-const-lt-components-pprod = pprod ′.count-const-lt-components
and count-rem-components-pprod = pprod ′.count-rem-components
and const-lt-component-pprod = pprod ′.const-lt-component
and full-gb-pprod = pprod ′.full-gb
and keys-to-list-pprod = pprod ′.keys-to-list
and Keys-to-list-pprod = pprod ′.Keys-to-list
and add-pairs-single-sorted-pprod = pprod ′.add-pairs-single-sorted
and add-pairs-pprod = pprod ′.add-pairs
and canon-pair-order-aux-pprod = pprod ′.canon-pair-order-aux
and canon-basis-order-pprod = pprod ′.canon-basis-order
and new-pairs-sorted-pprod = pprod ′.new-pairs-sorted
and component-crit-pprod = pprod ′.component-crit
and chain-ncrit-pprod = pprod ′.chain-ncrit
and chain-ocrit-pprod = pprod ′.chain-ocrit
and apply-icrit-pprod = pprod ′.apply-icrit
and apply-ncrit-pprod = pprod ′.apply-ncrit
and apply-ocrit-pprod = pprod ′.apply-ocrit
and trdsp-pprod = pprod ′.trdsp
and gb-sel-pprod = pprod ′.gb-sel
and gb-red-aux-pprod = pprod ′.gb-red-aux
and gb-red-pprod = pprod ′.gb-red
and gb-aux-pprod = pprod ′.gb-aux
and gb-pprod = pprod ′.gb
and filter-syzygy-basis-pprod = pprod ′.aux.filter-syzygy-basis
and init-syzygy-list-pprod = pprod ′.aux.init-syzygy-list
and lift-poly-syz-pprod = pprod ′.aux.lift-poly-syz
and map-component-pprod = pprod ′.map-component
subgoal by (rule gd-nat-inf-term.intro, fact gd-nat-term-id)
subgoal by (fact pprod-pp-of-term)
subgoal by (fact pprod-component-of-term)

421

subgoal by (simp only: splus-pprod-def)
subgoal by (simp only: monom-mult-pprod-def)
subgoal by (simp only: mult-scalar-pprod-def)
subgoal by (simp only: adds-term-pprod-def)
done

lemma compute-adds-term-pprod [code]:
adds-term-pprod u v = (snd u = snd v ∧ adds-pp-add-linorder (fst u) (fst v))
by (simp add: adds-term-pprod-def pprod.adds-term-def adds-pp-add-linorder-def)

lemma compute-splus-pprod [code]: splus-pprod t (s, i) = (t + s, i)
by (simp add: splus-pprod-def pprod.splus-def)

lemma compute-shift-map-keys-pprod [code abstract]:
list-of-oalist-ntm (shift-map-keys-pprod t f xs) = map-raw (λ(k, v). (splus-pprod

t k, f v)) (list-of-oalist-ntm xs)
by (simp add: pprod ′.list-of-oalist-shift-keys case-prod-beta ′)

lemma compute-trd-pprod [code]: trd-pprod to fs p = trd-aux-pprod to fs p (change-ord
to 0)

by (simp only: pprod ′.trd-def change-ord-def)

lemmas [code] = conversep-iff

lemma POT-is-pot-ord: pprod ′.is-pot-ord (TYPE(′a::nat)) (TYPE(′b::nat)) (POT
to)
by (rule pprod ′.is-pot-ordI , simp add: lt-of-nat-term-order nat-term-compare-POT

pot-comp rep-nat-term-prod-def ,
simp add: comparator-of-def)

definition Vec0 :: nat ⇒ ((′a, nat) pp ⇒0
′b) ⇒ ((′a::nat, nat) pp × nat) ⇒0

′b::semiring-1 where
Vec0 i p = mult-scalar-pprod p (Poly-Mapping.single (0 , i) 1)

definition syzygy-basis to bs =
filter-syzygy-basis-pprod (length bs) (map fst (gb-pprod (POT to) (map (λp. (p,

())) (init-syzygy-list-pprod bs)) ()))

thm pprod ′.aux.filter-syzygy-basis-isGB[OF POT-is-pot-ord]

lemma lift-poly-syz-MP-oalist [code]:
lift-poly-syz-pprod n (MP-oalist xs) i = MP-oalist (OAlist-insert-ntm ((0 , i), 1)

(lift-keys-pprod n xs))
proof (rule poly-mapping-eqI , simp add: pprod ′.aux.lookup-lift-poly-syz del: MP-oalist.rep-eq,
intro conjI impI)

fix v::(′a, ′b) pp × nat
assume n ≤ snd v
moreover obtain t k where v = (t, k) by fastforce
ultimately have k: n + (k − n) = k by simp

422

hence v: v = (t, n + (k − n)) by (simp only: ‹v = (t, k)›)
assume v 6= (0 , i)
hence lookup (MP-oalist (OAlist-insert-ntm ((0 , i), 1) (lift-keys-pprod n xs))) v

=
lookup (MP-oalist (lift-keys-pprod n xs)) v by (simp add: oa-ntm.lookup-insert)

also have ... = lookup (MP-oalist xs) (t, k − n) by (simp only: v pprod ′.lookup-lift-keys-plus)
also have ... = lookup (MP-oalist xs) (map-component-pprod (λk. k − n) v)

by (simp add: v pprod ′.map-component-term-of-pair)
finally show lookup (MP-oalist xs) (map-component-pprod (λk. k − n) v) =

lookup (MP-oalist (OAlist-insert-ntm ((0 , i), 1) (lift-keys-pprod n
xs))) v by (rule HOL.sym)
next

fix v::(′a, ′b) pp × nat
assume ¬ n ≤ snd v
assume v 6= (0 , i)
hence lookup (MP-oalist (OAlist-insert-ntm ((0 , i), 1) (lift-keys-pprod n xs))) v

=
lookup (MP-oalist (lift-keys-pprod n xs)) v by (simp add: add: oa-ntm.lookup-insert)

also have ... = 0
proof (rule ccontr)

assume lookup (MP-oalist (lift-keys-pprod n xs)) v 6= 0
hence v ∈ keys (MP-oalist (lift-keys-pprod n xs)) by (simp add: in-keys-iff del:

MP-oalist.rep-eq)
also have ... ⊆ map-component-pprod ((+) n) ‘ keys (MP-oalist xs)

by (fact pprod ′.keys-lift-keys-subset)
finally obtain u where v = map-component-pprod ((+) n) u ..
hence snd v = n + snd u by (simp add: pprod ′.component-of-map-component)
with ‹¬ n ≤ snd v› show False by simp

qed
finally show lookup (MP-oalist (OAlist-insert-ntm ((0 , i), 1) (lift-keys-pprod n

xs))) v = 0 .
qed (simp-all add: oa-ntm.lookup-insert)

19.2 Computations
experiment begin interpretation trivariate0-rat .

lemma
syzygy-basis DRLEX [Vec0 0 (X2 ∗ Z ^ 3 + 3 ∗ X2 ∗ Y), Vec0 0 (X ∗ Y ∗ Z

+ 2 ∗ Y 2)] =
[Vec0 0 (C 0 (1 / 3) ∗ X ∗ Y ∗ Z + C 0 (2 / 3) ∗ Y 2) + Vec0 1 (C 0 (− 1 / 3)
∗ X2 ∗ Z ^ 3 − X2 ∗ Y)]

by eval

value [code] syzygy-basis DRLEX [Vec0 0 (X2 ∗ Z ^ 3 + 3 ∗ X2 ∗ Y), Vec0 0 (X
∗ Y ∗ Z + 2 ∗ Y 2), Vec0 0 (X − Y + 3 ∗ Z)]

lemma
map fst (gb-pprod (POT DRLEX) (map (λp. (p, ())) (init-syzygy-list-pprod

423

[Vec0 0 (X ^ 4 + 3 ∗ X2 ∗ Y), Vec0 0 (Y ^ 3 + 2 ∗ X ∗ Z), Vec0 0 (Z2 −
X − Y)])) ()) =
[

Vec0 0 1 + Vec0 3 (X ^ 4 + 3 ∗ X2 ∗ Y),
Vec0 1 1 + Vec0 3 (Y ^ 3 + 2 ∗ X ∗ Z),
Vec0 0 (Y ^ 3 + 2 ∗ X ∗ Z) − Vec0 1 (X ^ 4 + 3 ∗ X2 ∗ Y),
Vec0 2 1 + Vec0 3 (Z2 − X − Y),
Vec0 1 (Z2 − X − Y) − Vec0 2 (Y ^ 3 + 2 ∗ X ∗ Z),
Vec0 0 (Z2 − X − Y) − Vec0 2 (X ^ 4 + 3 ∗ X2 ∗ Y),
Vec0 0 (− (Y ^ 3 ∗ Z2) + Y ^ 4 + X ∗ Y ^ 3 + 2 ∗ X2 ∗ Z + 2 ∗ X ∗ Y ∗

Z − 2 ∗ X ∗ Z ^ 3) +
Vec0 1 (X ^ 4 ∗ Z2 − X ^ 5 − X ^ 4 ∗ Y − 3 ∗ X ^ 3 ∗ Y − 3 ∗ X2 ∗ Y 2

+ 3 ∗ X2 ∗ Y ∗ Z2)
]
by eval

lemma
syzygy-basis DRLEX [Vec0 0 (X ^ 4 + 3 ∗ X2 ∗ Y), Vec0 0 (Y ^ 3 + 2 ∗ X ∗

Z), Vec0 0 (Z2 − X − Y)] =
[

Vec0 0 (Y ^ 3 + 2 ∗ X ∗ Z) − Vec0 1 (X ^ 4 + 3 ∗ X2 ∗ Y),
Vec0 1 (Z2 − X − Y) − Vec0 2 (Y ^ 3 + 2 ∗ X ∗ Z),
Vec0 0 (Z2 − X − Y) − Vec0 2 (X ^ 4 + 3 ∗ X2 ∗ Y),
Vec0 0 (− (Y ^ 3 ∗ Z2) + Y ^ 4 + X ∗ Y ^ 3 + 2 ∗ X2 ∗ Z + 2 ∗ X ∗ Y ∗

Z − 2 ∗ X ∗ Z ^ 3) +
Vec0 1 (X ^ 4 ∗ Z2 − X ^ 5 − X ^ 4 ∗ Y − 3 ∗ X ^ 3 ∗ Y − 3 ∗ X2 ∗ Y 2

+ 3 ∗ X2 ∗ Y ∗ Z2)
]
by eval

value [code] syzygy-basis DRLEX [Vec0 0 (X ∗ Y − Z), Vec0 0 (X ∗ Z − Y),
Vec0 0 (Y ∗ Z − X)]

lemma
map fst (gb-pprod (POT DRLEX) (map (λp. (p, ())) (init-syzygy-list-pprod
[Vec0 0 (X ∗ Y − Z), Vec0 0 (X ∗ Z − Y), Vec0 0 (Y ∗ Z − X)])) ()) =

[
Vec0 0 1 + Vec0 3 (X ∗ Y − Z),
Vec0 1 1 + Vec0 3 (X ∗ Z − Y),
Vec0 2 1 + Vec0 3 (Y ∗ Z − X),
Vec0 0 (− X ∗ Z + Y) + Vec0 1 (X ∗ Y − Z),
Vec0 0 (− Y ∗ Z + X) + Vec0 2 (X ∗ Y − Z),
Vec0 1 (− Y ∗ Z + X) + Vec0 2 (X ∗ Z − Y),
Vec0 1 (−Y) + Vec0 2 (X) + Vec0 3 (Y ^ 2 − X ^ 2),
Vec0 0 (Z) + Vec0 2 (−X) + Vec0 3 (X ^ 2 − Z ^ 2),
Vec0 0 (Y − Y ∗ Z ^ 2) + Vec0 1 (Y ^ 2 ∗ Z − Z) + Vec0 2 (Y ^ 2 − Z ^

2),
Vec0 0 (− Y) + Vec0 1 (− (X ∗ Y)) + Vec0 2 (X ^ 2 − 1) + Vec0 3 (X −

X ^ 3)

424

]
by eval

lemma
syzygy-basis DRLEX [Vec0 0 (X ∗ Y − Z), Vec0 0 (X ∗ Z − Y), Vec0 0 (Y ∗

Z − X)] =
[

Vec0 0 (− X ∗ Z + Y) + Vec0 1 (X ∗ Y − Z),
Vec0 0 (− Y ∗ Z + X) + Vec0 2 (X ∗ Y − Z),
Vec0 1 (− Y ∗ Z + X) + Vec0 2 (X ∗ Z − Y),
Vec0 0 (Y − Y ∗ Z ^ 2) + Vec0 1 (Y ^ 2 ∗ Z − Z) + Vec0 2 (Y ^ 2 − Z ^

2)
]
by eval

end

end

theory Groebner-PM
imports Polynomials.MPoly-PM Reduced-GB

begin

We prove results that hold specifically for Gröbner bases in polynomial rings,
where the polynomials really have indeterminates.
context pm-powerprod
begin

lemmas finite-reduced-GB-Polys =
punit.finite-reduced-GB-dgrad-p-set[simplified, OF dickson-grading-varnum, where

m=0 , simplified dgrad-p-set-varnum]
lemmas reduced-GB-is-reduced-GB-Polys =
punit.reduced-GB-is-reduced-GB-dgrad-p-set[simplified, OF dickson-grading-varnum,

where m=0 , simplified dgrad-p-set-varnum]
lemmas reduced-GB-is-GB-Polys =
punit.reduced-GB-is-GB-dgrad-p-set[simplified, OF dickson-grading-varnum, where

m=0 , simplified dgrad-p-set-varnum]
lemmas reduced-GB-is-auto-reduced-Polys =
punit.reduced-GB-is-auto-reduced-dgrad-p-set[simplified, OF dickson-grading-varnum,

where m=0 , simplified dgrad-p-set-varnum]
lemmas reduced-GB-is-monic-set-Polys =
punit.reduced-GB-is-monic-set-dgrad-p-set[simplified, OF dickson-grading-varnum,

where m=0 , simplified dgrad-p-set-varnum]
lemmas reduced-GB-nonzero-Polys =
punit.reduced-GB-nonzero-dgrad-p-set[simplified, OF dickson-grading-varnum, where

m=0 , simplified dgrad-p-set-varnum]
lemmas reduced-GB-ideal-Polys =
punit.reduced-GB-pmdl-dgrad-p-set[simplified, OF dickson-grading-varnum, where

425

m=0 , simplified dgrad-p-set-varnum]
lemmas reduced-GB-unique-Polys =
punit.reduced-GB-unique-dgrad-p-set[simplified, OF dickson-grading-varnum, where

m=0 , simplified dgrad-p-set-varnum]
lemmas reduced-GB-Polys =
punit.reduced-GB-dgrad-p-set[simplified, OF dickson-grading-varnum, where m=0 ,

simplified dgrad-p-set-varnum]
lemmas ideal-eq-UNIV-iff-reduced-GB-eq-one-Polys =
ideal-eq-UNIV-iff-reduced-GB-eq-one-dgrad-p-set[simplified, OF dickson-grading-varnum,

where m=0 , simplified dgrad-p-set-varnum]

19.3 Univariate Polynomials
lemma (in −) adds-univariate-linear :

assumes finite X and card X ≤ 1 and s ∈ .[X] and t ∈ .[X]
obtains s adds t | t adds s

proof (cases s adds t)
case True
thus ?thesis ..

next
case False
then obtain x where 1 : lookup t x < lookup s x by (auto simp: adds-poly-mapping

le-fun-def not-le)
hence x ∈ keys s by (simp add: in-keys-iff)
also from assms(3) have . . . ⊆ X by (rule PPsD)
finally have x ∈ X .
have t adds s unfolding adds-poly-mapping le-fun-def
proof

fix y
show lookup t y ≤ lookup s y
proof (cases y ∈ keys t)

case True
also from assms(4) have keys t ⊆ X by (rule PPsD)
finally have y ∈ X .
with assms(1 , 2) ‹x ∈ X› have x = y by (simp add: card-le-Suc0-iff-eq)
with 1 show ?thesis by simp

next
case False
thus ?thesis by (simp add: in-keys-iff)

qed
qed
thus ?thesis ..

qed

context
fixes X :: ′x set
assumes fin-X : finite X and card-X : card X ≤ 1

begin

426

lemma ord-iff-adds-univariate:
assumes s ∈ .[X] and t ∈ .[X]
shows s � t ←→ s adds t

proof
assume s � t
from fin-X card-X assms show s adds t
proof (rule adds-univariate-linear)

assume t adds s
hence t � s by (rule ord-adds)
with ‹s � t› have s = t

by simp
thus ?thesis by simp

qed
qed (rule ord-adds)

lemma adds-iff-deg-le-univariate:
assumes s ∈ .[X] and t ∈ .[X]
shows s adds t ←→ deg-pm s ≤ deg-pm t

proof
assume ∗: deg-pm s ≤ deg-pm t
from fin-X card-X assms show s adds t
proof (rule adds-univariate-linear)

assume t adds s
hence t = s using ∗ by (rule adds-deg-pm-antisym)
thus ?thesis by simp

qed
qed (rule deg-pm-mono)

corollary ord-iff-deg-le-univariate: s ∈ .[X] =⇒ t ∈ .[X] =⇒ s � t ←→ deg-pm s
≤ deg-pm t

by (simp only: ord-iff-adds-univariate adds-iff-deg-le-univariate)

lemma poly-deg-univariate:
assumes p ∈ P[X]
shows poly-deg p = deg-pm (lpp p)

proof (cases p = 0)
case True
thus ?thesis by simp

next
case False
hence lp-in: lpp p ∈ keys p by (rule punit.lt-in-keys)
also from assms have . . . ⊆ .[X] by (rule PolysD)
finally have lpp p ∈ .[X] .
show ?thesis
proof (intro antisym poly-deg-leI)

fix t
assume t ∈ keys p
hence t � lpp p by (rule punit.lt-max-keys)
moreover from ‹t ∈ keys p› ‹keys p ⊆ .[X]› have t ∈ .[X] ..

427

ultimately show deg-pm t ≤ deg-pm (lpp p) using ‹lpp p ∈ .[X]›
by (simp only: ord-iff-deg-le-univariate)

next
from lp-in show deg-pm (lpp p) ≤ poly-deg p by (rule poly-deg-max-keys)

qed
qed

lemma reduced-GB-univariate-cases:
assumes F ⊆ P[X]
obtains g where g ∈ P[X] and g 6= 0 and lcf g = 1 and punit.reduced-GB F

= {g} |
punit.reduced-GB F = {}

proof (cases punit.reduced-GB F = {})
case True
thus ?thesis ..

next
case False
let ?G = punit.reduced-GB F
from fin-X assms have ar : punit.is-auto-reduced ?G and 0 /∈ ?G and ?G ⊆

P[X]
and m: punit.is-monic-set ?G
by (rule reduced-GB-is-auto-reduced-Polys, rule reduced-GB-nonzero-Polys, rule

reduced-GB-Polys,
rule reduced-GB-is-monic-set-Polys)

from False obtain g where g ∈ ?G by blast
with ‹0 /∈ ?G› ‹?G ⊆ P[X]› have g 6= 0 and g ∈ P[X] by blast+
from this(1) have lp-g: lpp g ∈ keys g by (rule punit.lt-in-keys)
also from ‹g ∈ P[X]› have . . . ⊆ .[X] by (rule PolysD)
finally have lpp g ∈ .[X] .
note ‹g ∈ P[X]› ‹g 6= 0 ›
moreover from m ‹g ∈ ?G› ‹g 6= 0 › have lcf g = 1 by (rule punit.is-monic-setD)
moreover have ?G = {g}
proof

show ?G ⊆ {g}
proof

fix g ′

assume g ′ ∈ ?G
with ‹0 /∈ ?G› ‹?G ⊆ P[X]› have g ′ 6= 0 and g ′ ∈ P[X] by blast+
from this(1) have lp-g ′: lpp g ′ ∈ keys g ′ by (rule punit.lt-in-keys)
also from ‹g ′ ∈ P[X]› have . . . ⊆ .[X] by (rule PolysD)
finally have lpp g ′ ∈ .[X] .
have g ′ = g
proof (rule ccontr)

assume g ′ 6= g
with ‹g ∈ ?G› ‹g ′ ∈ ?G› have g: g ∈ ?G − {g ′} and g ′: g ′ ∈ ?G − {g}

by blast+
from fin-X card-X ‹lpp g ∈ .[X]› ‹lpp g ′ ∈ .[X]› show False
proof (rule adds-univariate-linear)

assume ∗: lpp g adds lpp g ′

428

from ar ‹g ′ ∈ ?G› have ¬ punit.is-red (?G − {g ′}) g ′ by (rule
punit.is-auto-reducedD)

moreover from g ‹g 6= 0 › lp-g ′ ∗ have punit.is-red (?G − {g ′}) g ′

by (rule punit.is-red-addsI [simplified])
ultimately show ?thesis ..

next
assume ∗: lpp g ′ adds lpp g

from ar ‹g ∈ ?G› have ¬ punit.is-red (?G − {g}) g by (rule punit.is-auto-reducedD)
moreover from g ′ ‹g ′ 6= 0 › lp-g ∗ have punit.is-red (?G − {g}) g

by (rule punit.is-red-addsI [simplified])
ultimately show ?thesis ..

qed
qed
thus g ′ ∈ {g} by simp

qed
next

from ‹g ∈ ?G› show {g} ⊆ ?G by simp
qed
ultimately show ?thesis ..

qed

corollary deg-reduced-GB-univariate-le:
assumes F ⊆ P[X] and f ∈ ideal F and f 6= 0 and g ∈ punit.reduced-GB F
shows poly-deg g ≤ poly-deg f
using assms(1)

proof (rule reduced-GB-univariate-cases)
let ?G = punit.reduced-GB F
fix g ′

assume g ′ ∈ P[X] and g ′ 6= 0 and G: ?G = {g ′}
from fin-X assms(1) have gb: punit.is-Groebner-basis ?G and ideal ?G = ideal

F
and ?G ⊆ P[X]

by (rule reduced-GB-is-GB-Polys, rule reduced-GB-ideal-Polys, rule reduced-GB-Polys)
from assms(2) this(2) have f ∈ ideal ?G by simp
with gb obtain g ′′ where g ′′ ∈ ?G and lpp g ′′ adds lpp f

using assms(3) by (rule punit.GB-adds-lt[simplified])
with assms(4) have lpp g adds lpp f by (simp add: G)
hence deg-pm (lpp g) ≤ deg-pm (lpp f) by (rule deg-pm-mono)
moreover from assms(4) ‹?G ⊆ P[X]› have g ∈ P[X] ..
ultimately have poly-deg g ≤ deg-pm (lpp f) by (simp only: poly-deg-univariate)
also from punit.lt-in-keys have . . . ≤ poly-deg f by (rule poly-deg-max-keys) fact
finally show ?thesis .

next
assume punit.reduced-GB F = {}
with assms(4) show ?thesis by simp

qed

end

429

19.4 Homogeneity
lemma is-reduced-GB-homogeneous:

assumes
∧

f . f ∈ F =⇒ homogeneous f and punit.is-reduced-GB G and ideal
G = ideal F

and g ∈ G
shows homogeneous g

proof (rule homogeneousI)
fix s t
have 1 : deg-pm u = deg-pm (lpp g) if u ∈ keys g for u
proof −

from assms(4) have g ∈ ideal G by (rule ideal.span-base)
hence g ∈ ideal F by (simp only: assms(3))

from that have u ∈ Keys (hom-components g) by (simp only: Keys-hom-components)
then obtain q where q: q ∈ hom-components g and u ∈ keys q by (rule

in-KeysE)
from assms(1) ‹g ∈ ideal F› q have q ∈ ideal F by (rule homogeneous-ideal ′)
from assms(2) have punit.is-Groebner-basis G by (rule punit.reduced-GB-D1)
moreover from ‹q ∈ ideal F› have q ∈ ideal G by (simp only: assms(3))
moreover from q have q 6= 0 by (rule hom-components-nonzero)
ultimately obtain g ′ where g ′ ∈ G and g ′ 6= 0 and adds: lpp g ′ adds lpp q

by (rule punit.GB-adds-lt[simplified])
from ‹q 6= 0 › have lpp q ∈ keys q by (rule punit.lt-in-keys)
also from q have . . . ⊆ Keys (hom-components g) by (rule keys-subset-Keys)
finally have lpp q ∈ keys g by (simp only: Keys-hom-components)
with - ‹g ′ 6= 0 › have red: punit.is-red {g ′} g

using adds by (rule punit.is-red-addsI [simplified]) simp
from assms(2) have punit.is-auto-reduced G by (rule punit.reduced-GB-D2)

hence ¬ punit.is-red (G − {g}) g using assms(4) by (rule punit.is-auto-reducedD)
with red have ¬ {g ′} ⊆ G − {g} using punit.is-red-subset by blast
with ‹g ′ ∈ G› have g ′ = g by simp
from ‹lpp q ∈ keys g› have lpp q � lpp g by (rule punit.lt-max-keys)
moreover from adds have lpp g � lpp q

unfolding ‹g ′ = g› by (rule punit.ord-adds-term[simplified])
ultimately have eq: lpp q = lpp g

by simp
from q have homogeneous q by (rule hom-components-homogeneous)
hence deg-pm u = deg-pm (lpp q)

using ‹u ∈ keys q› ‹lpp q ∈ keys q› by (rule homogeneousD)
thus ?thesis by (simp only: eq)

qed
assume s ∈ keys g
hence 2 : deg-pm s = deg-pm (lpp g) by (rule 1)
assume t ∈ keys g
hence deg-pm t = deg-pm (lpp g) by (rule 1)
with 2 show deg-pm s = deg-pm t by simp

qed

lemma lp-dehomogenize:
assumes is-hom-ord x and homogeneous p

430

shows lpp (dehomogenize x p) = except (lpp p) {x}
proof (cases p = 0)

case True
thus ?thesis by simp

next
case False
hence lpp p ∈ keys p by (rule punit.lt-in-keys)
with assms(2) have except (lpp p) {x} ∈ keys (dehomogenize x p)

by (rule keys-dehomogenizeI)
thus ?thesis
proof (rule punit.lt-eqI-keys)

fix t
assume t ∈ keys (dehomogenize x p)

then obtain s where s ∈ keys p and t: t = except s {x} by (rule keys-dehomogenizeE)
from this(1) have s � lpp p by (rule punit.lt-max-keys)
moreover from assms(2) ‹s ∈ keys p› ‹lpp p ∈ keys p› have deg-pm s =

deg-pm (lpp p)
by (rule homogeneousD)

ultimately show t � except (lpp p) {x} using assms(1) by (simp add: t
is-hom-ordD)

qed
qed

lemma isGB-dehomogenize:
assumes is-hom-ord x and finite X and G ⊆ P[X] and punit.is-Groebner-basis

G
and

∧
g. g ∈ G =⇒ homogeneous g

shows punit.is-Groebner-basis (dehomogenize x ‘ G)
using dickson-grading-varnum

proof (rule punit.isGB-I-adds-lt[simplified])
from assms(2) show finite (X − {x}) by simp

next
have dehomogenize x ‘ G ⊆ P[X − {x}]
proof

fix g
assume g ∈ dehomogenize x ‘ G
then obtain g ′ where g ′ ∈ G and g: g = dehomogenize x g ′ ..
from this(1) assms(3) have g ′ ∈ P[X] ..
hence indets g ′ ⊆ X by (rule PolysD)
have indets g ⊆ indets g ′ − {x} by (simp only: g indets-dehomogenize)
also from ‹indets g ′ ⊆ X› subset-refl have . . . ⊆ X − {x} by (rule Diff-mono)
finally show g ∈ P[X − {x}] by (rule PolysI-alt)

qed
thus dehomogenize x ‘ G ⊆ punit.dgrad-p-set (varnum (X − {x})) 0

by (simp only: dgrad-p-set-varnum)
next

fix p
assume p ∈ ideal (dehomogenize x ‘ G)
then obtain G0 q where G0 ⊆ dehomogenize x ‘ G and finite G0 and p: p =

431

(
∑

g∈G0 . q g ∗ g)
by (rule ideal.spanE)

from this(1) obtain G ′ where G ′ ⊆ G and G0 : G0 = dehomogenize x ‘ G ′

and inj: inj-on (dehomogenize x) G ′ by (rule subset-imageE-inj)
define p ′ where p ′ = (

∑
g∈G ′. q (dehomogenize x g) ∗ g)

have p ′ ∈ ideal G ′ unfolding p ′-def by (rule ideal.sum-in-spanI)
also from ‹G ′ ⊆ G› have . . . ⊆ ideal G by (rule ideal.span-mono)
finally have p ′ ∈ ideal G .
with assms(5) have homogenize x p ′ ∈ ideal G (is ?p ∈ -) by (rule homoge-

neous-ideal-homogenize)

assume p ∈ punit.dgrad-p-set (varnum (X − {x})) 0
hence p ∈ P[X − {x}] by (simp only: dgrad-p-set-varnum)
hence indets p ⊆ X − {x} by (rule PolysD)
hence x /∈ indets p by blast
have p = dehomogenize x p by (rule sym) (simp add: ‹x /∈ indets p›)
also from inj have . . . = dehomogenize x (

∑
g∈G ′. q (dehomogenize x g) ∗

dehomogenize x g)
by (simp add: p G0 sum.reindex)

also have . . . = dehomogenize x ?p
by (simp add: dehomogenize-sum dehomogenize-times p ′-def)

finally have p: p = dehomogenize x ?p .
moreover assume p 6= 0
ultimately have ?p 6= 0 by (auto simp del: dehomogenize-homogenize)
with assms(4) ‹?p ∈ ideal G› obtain g where g ∈ G and g 6= 0 and adds: lpp

g adds lpp ?p
by (rule punit.GB-adds-lt[simplified])

from this(1) have homogeneous g by (rule assms(5))
show ∃ g∈dehomogenize x ‘ G. g 6= 0 ∧ lpp g adds lpp p
proof (intro bexI conjI notI)

assume dehomogenize x g = 0
hence g = 0 using ‹homogeneous g› by (rule dehomogenize-zeroD)
with ‹g 6= 0 › show False ..

next
from assms(1) ‹homogeneous g› have lpp (dehomogenize x g) = except (lpp g)

{x}
by (rule lp-dehomogenize)

also from adds have . . . adds except (lpp ?p) {x}
by (simp add: adds-poly-mapping le-fun-def lookup-except)

also from assms(1) homogeneous-homogenize have . . . = lpp (dehomogenize x
?p)

by (rule lp-dehomogenize[symmetric])
finally show lpp (dehomogenize x g) adds lpp p by (simp only: p)

next
from ‹g ∈ G› show dehomogenize x g ∈ dehomogenize x ‘ G by (rule imageI)

qed
qed

end

432

context extended-ord-pm-powerprod
begin

lemma extended-ord-lp:
assumes None /∈ indets p
shows restrict-indets-pp (extended-ord.lpp p) = lpp (restrict-indets p)

proof (cases p = 0)
case True
thus ?thesis by simp

next
case False
hence extended-ord.lpp p ∈ keys p by (rule extended-ord.punit.lt-in-keys)
hence restrict-indets-pp (extended-ord.lpp p) ∈ restrict-indets-pp ‘ keys p by (rule

imageI)
also from assms have eq: . . . = keys (restrict-indets p) by (rule keys-restrict-indets[symmetric])
finally show ?thesis
proof (rule punit.lt-eqI-keys[symmetric])

fix t
assume t ∈ keys (restrict-indets p)
then obtain s where s ∈ keys p and t: t = restrict-indets-pp s unfolding

eq[symmetric] ..
from this(1) have extended-ord s (extended-ord.lpp p) by (rule extended-ord.punit.lt-max-keys)
thus t � restrict-indets-pp (extended-ord.lpp p) by (auto simp: t extended-ord-def)

qed
qed

lemma restrict-indets-reduced-GB:
assumes finite X and F ⊆ P[X]
shows punit.is-Groebner-basis (restrict-indets ‘ extended-ord.punit.reduced-GB

(homogenize None ‘ extend-indets ‘ F))
(is ?thesis1)

and ideal (restrict-indets ‘ extended-ord.punit.reduced-GB (homogenize None ‘
extend-indets ‘ F)) = ideal F

(is ?thesis2)
and restrict-indets ‘ extended-ord.punit.reduced-GB (homogenize None ‘ ex-

tend-indets ‘ F) ⊆ P[X]
(is ?thesis3)

proof −
let ?F = homogenize None ‘ extend-indets ‘ F
let ?G = extended-ord.punit.reduced-GB ?F
from assms(1) have finite (insert None (Some ‘ X)) by simp
moreover have ?F ⊆ P[insert None (Some ‘ X)]
proof

fix hf
assume hf ∈ ?F
then obtain f where f ∈ F and hf : hf = homogenize None (extend-indets f)

by auto
from this(1) assms(2) have f ∈ P[X] ..

433

hence indets f ⊆ X by (rule PolysD)
hence Some ‘ indets f ⊆ Some ‘ X by (rule image-mono)
with indets-extend-indets[of f] have indets (extend-indets f) ⊆ Some ‘ X by

blast
hence insert None (indets (extend-indets f)) ⊆ insert None (Some ‘ X) by

blast
with indets-homogenize-subset have indets hf ⊆ insert None (Some ‘ X)

unfolding hf by (rule subset-trans)
thus hf ∈ P[insert None (Some ‘ X)] by (rule PolysI-alt)

qed
ultimately have G-sub: ?G ⊆ P[insert None (Some ‘ X)]

and ideal-G: ideal ?G = ideal ?F
and GB-G: extended-ord.punit.is-reduced-GB ?G

by (rule extended-ord.reduced-GB-Polys, rule extended-ord.reduced-GB-ideal-Polys,
rule extended-ord.reduced-GB-is-reduced-GB-Polys)

show ?thesis3
proof

fix g
assume g ∈ restrict-indets ‘ ?G
then obtain g ′ where g ′ ∈ ?G and g: g = restrict-indets g ′ ..
from this(1) G-sub have g ′ ∈ P[insert None (Some ‘ X)] ..
hence indets g ′ ⊆ insert None (Some ‘ X) by (rule PolysD)

have indets g ⊆ the ‘ (indets g ′− {None}) by (simp only: g indets-restrict-indets-subset)
also from ‹indets g ′ ⊆ insert None (Some ‘ X)› have . . . ⊆ X by auto
finally show g ∈ P[X] by (rule PolysI-alt)

qed

from dickson-grading-varnum show ?thesis1
proof (rule punit.isGB-I-adds-lt[simplified])

from ‹?thesis3 › show restrict-indets ‘ ?G ⊆ punit.dgrad-p-set (varnum X) 0
by (simp only: dgrad-p-set-varnum)

next
fix p :: (′a ⇒0 nat) ⇒0

′b
assume p 6= 0
assume p ∈ ideal (restrict-indets ‘ ?G)
hence extend-indets p ∈ extend-indets ‘ ideal (restrict-indets ‘ ?G) by (rule

imageI)
also have . . . ⊆ ideal (extend-indets ‘ restrict-indets ‘ ?G) by (fact ex-

tend-indets-ideal-subset)
also have . . . = ideal (dehomogenize None ‘ ?G)

by (simp only: image-comp extend-indets-comp-restrict-indets)
finally have p-in-ideal: extend-indets p ∈ ideal (dehomogenize None ‘ ?G) .
assume p ∈ punit.dgrad-p-set (varnum X) 0
hence p ∈ P[X] by (simp only: dgrad-p-set-varnum)
have extended-ord.punit.is-Groebner-basis (dehomogenize None ‘ ?G)

using extended-ord-is-hom-ord ‹finite (insert None (Some ‘ X))› G-sub
proof (rule extended-ord.isGB-dehomogenize)

from GB-G show extended-ord.punit.is-Groebner-basis ?G

434

by (rule extended-ord.punit.reduced-GB-D1)
next

fix g
assume g ∈ ?G
with - GB-G ideal-G show homogeneous g
proof (rule extended-ord.is-reduced-GB-homogeneous)

fix hf
assume hf ∈ ?F
then obtain f where hf = homogenize None f ..
thus homogeneous hf by (simp only: homogeneous-homogenize)

qed
qed
moreover note p-in-ideal
moreover from ‹p 6= 0 › have extend-indets p 6= 0 by simp
ultimately obtain g where g-in: g ∈ dehomogenize None ‘ ?G and g 6= 0

and adds: extended-ord.lpp g adds extended-ord.lpp (extend-indets p)
by (rule extended-ord.punit.GB-adds-lt[simplified])

have None /∈ indets g
proof

assume None ∈ indets g
moreover from g-in obtain g0 where g = dehomogenize None g0 ..
ultimately show False using indets-dehomogenize[of None g0] by blast

qed
show ∃ g∈restrict-indets ‘ ?G. g 6= 0 ∧ lpp g adds lpp p
proof (intro bexI conjI notI)

have lpp (restrict-indets g) = restrict-indets-pp (extended-ord.lpp g)
by (rule sym, intro extended-ord-lp ‹None /∈ indets g›)

also from adds have . . . adds restrict-indets-pp (extended-ord.lpp (extend-indets
p))

by (simp add: adds-poly-mapping le-fun-def lookup-restrict-indets-pp)
also have . . . = lpp (restrict-indets (extend-indets p))
proof (intro extended-ord-lp notI)

assume None ∈ indets (extend-indets p)
thus False by (simp add: indets-extend-indets)

qed
also have . . . = lpp p by simp
finally show lpp (restrict-indets g) adds lpp p .

next
from g-in have restrict-indets g ∈ restrict-indets ‘ dehomogenize None ‘ ?G

by (rule imageI)
also have . . . = restrict-indets ‘ ?G by (simp only: image-comp restrict-indets-comp-dehomogenize)

finally show restrict-indets g ∈ restrict-indets ‘ ?G .
next

assume restrict-indets g = 0
with ‹None /∈ indets g› extend-restrict-indets have g = 0 by fastforce
with ‹g 6= 0 › show False ..

qed
qed (fact assms(1))

435

from ideal-G show ?thesis2 by (rule ideal-restrict-indets)
qed

end

end

References

[1] W. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases.
American Mathematical Society, July 1994.

[2] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal (An Al-
gorithm for Finding the Basis Elements in the Residue Class Ring Mod-
ulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical
Institute, University of Innsbruck, Austria, 1965. English translation
in Journal of Symbolic Computation 41(3–4):475–511, Special Issue on
Logic, Mathematics, and Computer Science: Interactions.

[3] B. Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit
eines algebraischen Gleichungssystems (An Algorithmic Criterion for
the Solvability of an Algebraic System of Equations). Aequationes
Mathematicae, pages 374–383, 1970. (English translation in Gröb-
ner Bases and Applications (Proceedings of the International Confer-
ence “33 Years of Gröbner Bases”, 1998), London Mathematical Soci-
ety Lecture Note Series 251, Cambridge Univerity Press, 1998, pages
535–545).

[4] B. Buchberger. A Criterion for Detecting Unnecessary Reductions in
the Construction of Gröbner Bases. In E. W. Ng, editor, Symbolic and
Algebraic Computation (Proceedings of EUROSAM’79, Marseille, June
26-28), volume 72 of Lecture Notes in Computer Science, pages 3–21.
Springer, 1979.

[5] B. Buchberger. Introduction to Gröbner Bases. In B. Buchberger and
F. Winkler, editors, Gröbner Bases and Applications, number 251 in
London Mathematical Society Lectures Notes Series, pages 3 – 31. Cam-
bridge University Press, 1998.

[6] B. Buchberger. Gröbner Rings in Theorema: A Case Study in Functors
and Categories. Technical Report 2003-49, Johannes Kepler University
Linz, Spezialforschungsbereich F013, November 2003.

[7] A. Chaieb and M. Wenzel. Context aware Calculation and Deduction:
Ring Equalities via Gröbner Bases in Isabelle. In M. Kauers, M. Ker-

436

ber, R. Miner, and W. Windsteiger, editors, Towards Mechanized Math-
ematical Assistants (Proceedings of Calculemus’2007, Hagenberg, Aus-
tria, June 27–30), volume 4573 of Lecture Notes in Computer Science,
pages 27–39. Springer, 2007.

[8] J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases
(F4). Journal of Pure and Applied Algebra, 139(1):61–88, 1999.

[9] J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases
without Reduction to Zero (F5). In T. Mora, editor, Proceedings of
ISSAC’02, pages 61–88. ACM Press, 2002.

[10] J. S. Jorge, V. M. Guilas, and J. L. Freire. Certifying properties of an
efficient functional program for computing Gröbner bases. Journal of
Symbolic Computation, 44(5):571–582, 2009.

[11] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 1.
Springer-Verlag, 2000.

[12] A. Maletzky. Computer-Assisted Exploration of Gröbner Bases Theory
in Theorema. PhD thesis, Research Institute for Symbolic Computa-
tion (RISC), Johannes Kepler University Linz, Austria, May 2016. To
appear.

[13] I. Medina-Bulo, F. Palomo-Lozano, and J.-L. Ruiz-Reina. A verified
Common Lisp implementation of Buchberger’s algorithm in ACL2.
Journal of Symbolic Computation, 45(1):96–123, 2010.

[14] T. Mora. An Introduction to Commutative and Non-Commutative
Gröbner Bases. Theoretical Computer Science, 134(1):131–173, 1994.

[15] C. Schwarzweller. Gröbner Bases – Theory Refinement in the Mizar
System. In M. Kohlhase, editor, Mathematical Knowledge Management
(4th International Conference, Bremen, Germany, July 15–17), volume
3863 of Lecture Notes in Artificial Intelligence, pages 299–314. Springer,
2006.

[16] L. Théry. A Machine-Checked Implementation of Buchberger’s Algo-
rithm. Journal of Automated Reasoning, 26(2):107–137, 2001.

[17] F. Winkler and B. Buchberger. A Criterion for Eliminating Unneces-
sary Reductions in the Knuth-Bendix Algorithm. In J. Demetrovics,
G. Katona, and A. Salomaa, editors, Proceedings of Algebra and Logic
in Computer Science, Győr, Hungary, volume 42 of Colloquia Mathe-
matica Societatis Janos Bolyai, pages 849–869. North Holland, 1983.

437

	Introduction
	Related Work
	Future Work

	General Utilities
	Lists
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 max-list
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insort-wrt
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 diff-list and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 insert-list
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 remdups-wrt
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map-idx
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map-dup
	Filtering Minimal Elements

	Properties of Binary Relations
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wfp-on
	Relations
	Setup for Connection to Theory 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Abstract-Rewriting.Abstract-Rewriting
	Simple Lemmas
	Advanced Results and the Generalized Newman Lemma

	Polynomial Reduction
	Basic Properties of Reduction
	Reducibility and Addition & Multiplication
	Confluence of Reducibility
	Reducibility and Module Membership
	More Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 red, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 red-single and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 is-red
	Well-foundedness and Termination
	Algorithms
	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 find-adds
	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 trd

	Gröbner Bases and Buchberger's Theorem
	Critical Pairs and S-Polynomials
	Buchberger's Theorem
	Buchberger's Criteria for Avoiding Useless Pairs
	Weak and Strong Gröbner Bases
	Alternative Characterization of Gröbner Bases via Representations of S-Polynomials
	Replacing Elements in Gröbner Bases
	An Inconstructive Proof of the Existence of Finite Gröbner Bases
	Relation 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 red-supset
	Context 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 od-term

	A General Algorithm Schema for Computing Gröbner Bases
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 processed
	Algorithm Schema
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 const-lt-component
	Type synonyms
	Specification of the selector parameter
	Specification of the add-basis parameter
	Specification of the add-pairs parameter
	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 args-to-set
	Functions 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 count-const-lt-components, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 count-rem-comps and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 full-gb
	Specification of the completion parameter
	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 gb-schema-dummy
	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 gb-schema-aux
	Functions 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 gb-schema-direct and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 term gb-schema-incr

	Suitable Instances of the add-pairs Parameter
	Specification of the crit parameters
	Suitable instances of the crit parameters
	Creating Initial List of New Pairs
	Applying Criteria to New Pairs
	Applying Criteria to Old Pairs
	Creating Final List of Pairs

	Suitable Instances of the completion Parameter
	Suitable Instances of the add-basis Parameter
	Special Case: Scalar Polynomials

	Buchberger's Algorithm
	Reduction
	Pair Selection
	Buchberger's Algorithm
	Special Case: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 punit

	Benchmark Problems for Computing Gröbner Bases
	Cyclic
	Katsura
	Eco
	Noon

	Code Equations Related to the Computation of Gröbner Bases
	Sample Computations with Buchberger's Algorithm
	Scalar Polynomials
	Vector Polynomials

	Further Properties of Multivariate Polynomials
	Modules and Linear Hulls
	Ordered Polynomials
	Sets of Leading Terms and -Coefficients
	Monicity

	Auto-reducing Lists of Polynomials
	Reduction and Monic Sets
	Minimal Bases and Auto-reduced Bases
	Computing Minimal Bases
	Auto-Reduction
	Auto-Reduction and Monicity

	Reduced Gröbner Bases
	Definition and Uniqueness of Reduced Gröbner Bases
	Computing Reduced Gröbner Bases by Auto-Reduction
	Minimal Bases
	Computing Minimal Bases
	Computing Reduced Bases
	Computing Reduced Gröbner Bases
	Properties of the Reduced Gröbner Basis of an Ideal
	Context 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 od-term

	Sample Computations of Reduced Gröbner Bases
	Macaulay Matrices
	More about Vectors
	More about Matrices
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nzrows
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 row-space
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 row-echelon

	Converting Between Polynomials and Macaulay Matrices
	Properties of Macaulay Matrices
	Functions 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Macaulay-mat and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Macaulay-list

	Faugère's F4 Algorithm
	Symbolic Preprocessing
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lin-red
	Reduction
	Pair Selection
	The F4 Algorithm
	Special Case: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 punit

	Sample Computations with the F4 Algorithm
	Preparations
	Computations

	Syzygies of Multivariate Polynomials
	Syzygy Modules Generated by Sets
	Polynomial Mappings on List-Indices
	POT Orders
	Gröbner Bases of Syzygy Modules
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lift-poly-syz
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 proj-poly-syz
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cofactor-list-syz
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 init-syzygy-list
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 proj-orig-basis
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 filter-syzygy-basis
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 syzygy-module-list
	Cofactors
	Modules
	Gröbner Bases

	Sample Computations of Syzygies
	Preparations
	Computations
	Univariate Polynomials
	Homogeneity

