
Greibach Normal Form

Alexander Haberl and Tobias Nipkow and Akihisa Yamada

September 12, 2025

Abstract

This theory formalizes Hopcroft and Ullman’s algorithm [3] to trans-
form a set of productions into Greibach Normal Form (GNF) [2]. We
concentrate on the essential property of the GNF: every production
starts with a terminal; the tail of a rhs may contain further terminals.
The complexity of the algorithm can be exponential.

theory Greibach_Normal_Form
imports

Context_Free_Grammar .Context_Free_Grammar
Fresh_Identifiers.Fresh_Nat

begin

declare relpowp.simps(2)[simp del]

1 Aux Lemmas
lemma Nts_mono: G ⊆ H =⇒ Nts G ⊆ Nts H
〈proof 〉

lemma derivern_prepend: R ` u ⇒r(n) v =⇒ R ` p @ u ⇒r(n) p @ v
〈proof 〉

lemma Lang_subset_if_Ders_subset: Ders R A ⊆ Ders R ′ A =⇒ Lang R A ⊆
Lang R ′ A
〈proof 〉

lemma Eps_free_deriven_Nil:
[[Eps_free R; R ` l ⇒(n) []]] =⇒ l = []
〈proof 〉

lemma nts_syms_empty_iff : nts_syms w = {} ←→ (∃ u. w = map Tm u)
〈proof 〉

1

lemma non_word_has_last_Nt: nts_syms w 6= {} =⇒ ∃ u A v. w = u @ [Nt A]
@ map Tm v
〈proof 〉

lemma nts_syms_rev: nts_syms (rev w) = nts_syms w
〈proof 〉

Sentential form that is not a word has a first Nt.
lemma non_word_has_first_Nt: nts_syms w 6= {} =⇒ ∃ u A v. w = map Tm u
@ Nt A # v
〈proof 〉

If there exists a derivation from u to v then there exists one which does not
use productions of the form A → A.
lemma no_self_loops_derivels: P ` u ⇒l(n) v =⇒ {p∈P. ¬(∃A. p = (A,[Nt
A]))} ` u ⇒l∗ v
〈proof 〉

A decomposition of a derivation from a sentential form to a word into mul-
tiple derivations that derive words.
lemma derivern_snoc_Nt_Tms_decomp1 :

R ` p @ [Nt A] ⇒r(n) map Tm q
=⇒ ∃ pt At w k m. R ` p ⇒(k) map Tm pt ∧ R ` w ⇒(m) map Tm At ∧ (A,

w) ∈ R
∧ q = pt @ At ∧ n = Suc(k + m)

〈proof 〉

A decomposition of a derivation from a sentential form to a word into mul-
tiple derivations that derive words.
lemma word_decomp1 :

R ` p @ [Nt A] @ map Tm ts ⇒(n) map Tm q
=⇒ ∃ pt At w k m. R ` p ⇒(k) map Tm pt ∧ R ` w ⇒(m) map Tm At ∧ (A,

w) ∈ R
∧ q = pt @ At @ ts ∧ n = Suc(k + m)

〈proof 〉

Sentential form that derives to terminals and has a Nt in it has a derivation
that starts with some rule acting on that Nt.
lemma deriven_start_sent:

R ` u @ Nt V # w ⇒(Suc n) map Tm x =⇒ ∃ v. (V , v) ∈ R ∧ R ` u @ v @ w
⇒(n) map Tm x
〈proof 〉

definition nts_syms_list :: (′n, ′t)syms ⇒ ′n list ⇒ ′n list where
nts_syms_list sys = foldr (λsy ns. case sy of Nt A ⇒ List.insert A ns | Tm _ ⇒
ns) sys

2

definition nts_prods_list :: (′n, ′t)prods ⇒ ′n list where
nts_prods_list ps = foldr (λ(A,sys) ns. List.insert A (nts_syms_list sys ns)) ps []

lemma set_nts_syms_list: set(nts_syms_list sys ns) = nts_syms sys ∪ set ns
〈proof 〉

lemma set_nts_prods_list: set(nts_prods_list ps) = nts ps
〈proof 〉

lemma distinct_nts_syms_list: distinct(nts_syms_list sys ns) = distinct ns
〈proof 〉

lemma distinct_nts_prods_list: distinct(nts_prods_list ps)
〈proof 〉

fun freshs :: (′a::fresh) set ⇒ ′a list ⇒ ′a list where
freshs X [] = [] |
freshs X (a#as) = (let a ′ = fresh X a in a ′ # freshs (insert a ′ X) as)

lemma length_freshs: finite X =⇒ length(freshs X as) = length as
〈proof 〉

lemma freshs_disj: finite X =⇒ X ∩ set(freshs X as) = {}
〈proof 〉

lemma freshs_distinct: finite X =⇒ distinct (freshs X as)
〈proof 〉

This theory formalizes a method to transform a set of productions into
Greibach Normal Form (GNF) [2]. We concentrate on the essential property
of the GNF: every production starts with a Tm; the tail of a rhs can contain
further terminals. This is formalized as GNF_hd below. This more liberal
definition of GNF is also found elsewhere [1].
The algorithm consists of two phases:

• solve_tri converts the productions into a triangular form, where Nt
Ai does not depend on Nts Ai, . . ., An. This involves the elimination
of left-recursion and is the heart of the algorithm.

• expand_tri expands the triangular form by substituting in: Due to
triangular form, A0 productions satisfy GNF_hd and we can substi-
tute them into the heads of the remaining productions. Now all A1
productions satisfy GNF_hd, and we continue until all productions
satisfy GNF_hd.

3

This is essentially the algorithm given by Hopcroft and Ullman [3], except
that we can drop the conversion to Chomsky Normal Form because of our
more liberal GNF_hd.

2 Function Definitions

Depend on: A depends on B if there is a rule A → B w:
definition dep_on :: (′n, ′t) Prods ⇒ ′n ⇒ ′n set where
dep_on R A = {B. ∃w. (A,Nt B # w) ∈ R}

GNF property: All productions start with a terminal.
definition GNF_hd :: (′n, ′t)Prods ⇒ bool where
GNF_hd R = (∀ (A, w) ∈ R. ∃ t. hd w = Tm t)

GNF property expressed via dep_on:
definition GNF_hd_dep_on :: (′n, ′t)Prods ⇒ bool where
GNF_hd_dep_on R = (∀A ∈ Nts R. dep_on R A = {})

abbreviation lrec_Prods :: (′n, ′t)Prods ⇒ ′n ⇒ ′n set ⇒ (′n, ′t)Prods where
lrec_Prods R A S ≡ {(A ′,Bw) ∈ R. A ′=A ∧ (∃w B. Bw = Nt B # w ∧ B ∈ S)}

abbreviation subst_hd :: (′n, ′t)Prods ⇒ (′n, ′t)Prods ⇒ ′n ⇒ (′n, ′t)Prods where
subst_hd R X A ≡ {(A,v@w) |v w. ∃B. (A,Nt B # w) ∈ X ∧ (B,v) ∈ R}

Expand head: Replace all rules A → B w where B ∈ Ss (Ss = solved Nts
in triangular form) by A → v w where B → v. Starting from the end of Ss.
fun expand_hd :: ′n ⇒ ′n list ⇒ (′n, ′t)Prods ⇒ (′n, ′t)Prods where
expand_hd A [] R = R |
expand_hd A (S#Ss) R =
(let R ′ = expand_hd A Ss R;

X = lrec_Prods R ′ A {S};
Y = subst_hd R ′ X A

in R ′ − X ∪ Y)

lemma Rhss_code[code]: Rhss P A = snd ‘ {Aw ∈ P. fst Aw = A}
〈proof 〉

declare expand_hd.simps(1)[code]
lemma expand_hd_Cons_code[code]: expand_hd A (S#Ss) R =
(let R ′ = expand_hd A Ss R;

X = {w ∈ Rhss R ′ A. w 6= [] ∧ hd w = Nt S};
Y = (

⋃
(B,v) ∈ R ′.

⋃
w ∈ X . if hd w 6= Nt B then {} else {(A,v @ tl w)})

in R ′ − ({A} × X) ∪ Y)
〈proof 〉

Remove left-recursions: Remove left-recursive rules A → A w:

4

definition rm_lrec :: ′n ⇒ (′n, ′t)Prods ⇒ (′n, ′t)Prods where
rm_lrec A R = R − {(A,Nt A # v)|v. True}

lemma rm_lrec_code[code]:
rm_lrec A R = {Aw ∈ R. let (A ′,w) = Aw in A ′ 6= A ∨ w = [] ∨ hd w 6= Nt A}
〈proof 〉

Make right-recursion of left-recursion: Conversion from left-recursion to right-
recursion: Split A-rules into A → u and A → A v. Keep A → u but replace
A → A v by A → u A ′, A ′→ v, A ′→ v A ′.
The then part of the if statement is only an optimisation, so that we do not
introduce the A → u A ′ rules if we do not introduce any A ′ rules, but the
function also works, if we always enter the else part.
definition rrec_of_lrec :: ′n ⇒ ′n ⇒ (′n, ′t)Prods ⇒ (′n, ′t)Prods where
rrec_of_lrec A A ′ R =
(let V = {v. (A,Nt A # v) ∈ R ∧ v 6= []};

U = {u. (A,u) ∈ R ∧ ¬(∃ v. u = Nt A # v) }
in if V = {} then R − {(A, [Nt A])} else ({A} × U) ∪ (

⋃
u∈U . {(A,u@[Nt

A ′])}) ∪ ({A ′} × V) ∪ (
⋃

v∈V . {(A ′,v @ [Nt A ′])}))

lemma rrec_of_lrec_code[code]: rrec_of_lrec A A ′ R =
(let RA = Rhss R A;

V = tl ‘ {w ∈ RA. w 6= [] ∧ hd w = Nt A ∧ tl w 6= []};
U = {u ∈ RA. u = [] ∨ hd u 6= Nt A }

in if V = {} then R − {(A, [Nt A])} else ({A} × U) ∪ (
⋃

u∈U . {(A,u@[Nt
A ′])}) ∪ ({A ′} × V) ∪ (

⋃
v∈V . {(A ′,v @ [Nt A ′])}))

〈proof 〉

Solve left-recursions: Solves the left-recursion of Nt A by replacing it with a
right-recursion on a fresh Nt A ′. The fresh Nt A ′ is also given as a parameter.
definition solve_lrec :: ′n ⇒ ′n ⇒ (′n, ′t)Prods ⇒ (′n, ′t)Prods where
solve_lrec A A ′ R = rm_lrec A R ∪ rrec_of_lrec A A ′ R

lemmas solve_lrec_defs = solve_lrec_def rm_lrec_def rrec_of_lrec_def Let_def
Nts_def

Solve triangular: Put R into triangular form wrt As (using the new Nts As ′).
In each step A#As, first the remaining Nts in As are solved, then A is solved.
This should mean that in the result of the outermost expand_hd A As, A
only depends on A. Then the A rules in the result of solve_lrec A A ′ are
already in GNF. More precisely: the result should be in triangular form.
fun solve_tri :: ′a list ⇒ ′a list ⇒ (′a, ′b) Prods ⇒ (′a, ′b) Prods where
solve_tri [] _ R = R |
solve_tri (A#As) (A ′#As ′) R = solve_lrec A A ′ (expand_hd A As (solve_tri As
As ′ R))

Triangular form wrt [A1 ,. . .,An] means that Ai must not depend on Ai,
. . ., An. In particular: A0 does not depend on any Ai, its rules are already

5

in GNF. Therefore one can convert a triangular form into GNF by back-
wards substitution: The rules for Ai are used to expand the heads of all
A(i+1),. . .,An rules, starting with A0.
fun triangular :: ′n list ⇒ (′n × (′n, ′t) sym list) set ⇒ bool where
triangular [] R = True |
triangular (A#As) R = (dep_on R A ∩ ({A} ∪ set As) = {} ∧ triangular As R)

Remove self loops: Removes all productions of the form A → A.
definition rm_self_loops :: (′n, ′t) Prods ⇒ (′n, ′t) Prods where

rm_self_loops P = P − {x∈P. ∃A. x = (A, [Nt A])}

Expand triangular: Expands all head-Nts of productions with a Lhs in As
(triangular (rev As)). In each step A#As first all Nts in As are expanded,
then every rule A → B w is expanded if B ∈ set As. If the productions
were in triangular form wrt rev As then Ai only depends on A(i+1), . . .,
An which have already been expanded in the first part of the step and are
in GNF. Then the all A-productions are also is in GNF after expansion.
fun expand_tri :: ′n list ⇒ (′n, ′t)Prods ⇒ (′n, ′t)Prods where
expand_tri [] R = R |
expand_tri (A#As) R =
(let R ′ = expand_tri As R;

X = lrec_Prods R ′ A (set As);
Y = subst_hd R ′ X A

in R ′ − X ∪ Y)

declare expand_tri.simps(1)[code]
lemma expand_tri_Cons_code[code]: expand_tri (S#Ss) R =
(let R ′ = expand_tri Ss R;

X = {w ∈ Rhss R ′ S . w 6= [] ∧ hd w ∈ Nt ‘ (set Ss)};
Y = (

⋃
(B,v) ∈ R ′.

⋃
w ∈ X . if hd w 6= Nt B then {} else {(S ,v @ tl w)})

in R ′ − ({S} × X) ∪ Y)
〈proof 〉

The main function gnf_hd converts into GNF_hd:
definition gnf_hd :: (′n::fresh, ′t)prods ⇒ (′n, ′t)Prods where
gnf_hd ps =
(let As = nts_prods_list ps;

As ′ = freshs (set As) As
in expand_tri (As ′ @ rev As) (solve_tri As As ′ (set ps)))

3 Some Basic Lemmas
3.1 Eps_free preservation
lemma Eps_free_expand_hd: Eps_free R =⇒ Eps_free (expand_hd A Ss R)
〈proof 〉

6

lemma Eps_free_solve_lrec: Eps_free R =⇒ Eps_free (solve_lrec A A ′ R)
〈proof 〉

lemma Eps_free_solve_tri: Eps_free R =⇒ length As ≤ length As ′ =⇒ Eps_free
(solve_tri As As ′ R)
〈proof 〉

lemma Eps_free_expand_tri: Eps_free R =⇒ Eps_free (expand_tri As R)
〈proof 〉

3.2 Lemmas about Nts and dep_on
lemma dep_on_Un[simp]: dep_on (R ∪ S) A = dep_on R A ∪ dep_on S A
〈proof 〉

lemma expand_hd_preserves_neq: B 6= A =⇒ (B,w) ∈ expand_hd A Ss R ←→
(B,w) ∈ R
〈proof 〉

Let R be epsilon-free and in triangular form wrt Bs. After expand_hd A Bs
R, A depends only on what A depended on before or what one of the B ∈
Bs depends on, but A does not depend on the Bs:
lemma dep_on_expand_hd:
[[Eps_free R; triangular Bs R; distinct Bs; A /∈ set Bs]]
=⇒ dep_on (expand_hd A Bs R) A ⊆ (dep_on R A ∪ (

⋃
B∈set Bs. dep_on R

B)) − set Bs
〈proof 〉

lemma dep_on_subs_Nts: dep_on R A ⊆ Nts R
〈proof 〉

lemma Nts_expand_hd_sub: Nts (expand_hd A As R) ⊆ Nts R
〈proof 〉

lemma Nts_solve_lrec_sub: Nts (solve_lrec A A ′ R) ⊆ Nts R ∪ {A ′}
〈proof 〉

lemma Nts_solve_tri_sub: length As ≤ length As ′ =⇒ Nts (solve_tri As As ′ R)
⊆ Nts R ∪ set As ′

〈proof 〉

3.3 Lemmas about triangular
lemma tri_Snoc_impl_tri: triangular (As @ [A]) R =⇒ triangular As R
〈proof 〉

If two parts of the productions are triangular and no Nts from the first part
depend on ones of the second they are also triangular when put together.
lemma triangular_append:

7

[[triangular As R; triangular Bs R; ∀A∈set As. dep_on R A ∩ set Bs = {}]]
=⇒ triangular (As@Bs) R
〈proof 〉

4 Function solve_tri: Remove Left-Recursion and
Convert into Triangular Form

4.1 Basic Lemmas

Mostly about rule inclusions in solve_lrec.
lemma solve_lrec_rule_simp1 : A 6= B =⇒ A 6= B ′ =⇒ (A, w) ∈ solve_lrec B B ′

R ←→ (A, w) ∈ R
〈proof 〉

lemma solve_lrec_rule_simp3 : A 6= A ′ =⇒ A ′ /∈ Nts R =⇒ Eps_free R
=⇒ (A, [Nt A ′]) /∈ solve_lrec A A ′ R
〈proof 〉

lemma solve_lrec_rule_simp7 : A ′ 6= A =⇒ A ′ /∈ Nts R =⇒ (A ′, Nt A ′ # w) /∈
solve_lrec A A ′ R
〈proof 〉

lemma solve_lrec_rule_simp8 : A ′ /∈ Nts R =⇒ B 6= A ′ =⇒ B 6= A
=⇒ (B, Nt A ′ # w) /∈ solve_lrec A A ′ R
〈proof 〉

lemma dep_on_expand_hd_simp2 : B 6= A =⇒ dep_on (expand_hd A As R) B
= dep_on R B
〈proof 〉

lemma dep_on_solve_lrec_simp2 : A 6= B =⇒ A ′ 6= B =⇒ dep_on (solve_lrec
A A ′ R) B = dep_on R B
〈proof 〉

4.2 Triangular Form

expand_hd preserves triangular, if it does not expand a Nt considered in
triangular.
lemma triangular_expand_hd: [[A /∈ set As; triangular As R]] =⇒ triangular As
(expand_hd A Bs R)
〈proof 〉

Solving a Nt not considered by triangular preserves the triangular property.
lemma triangular_solve_lrec: [[A /∈ set As; A ′ /∈ set As; triangular As R]]
=⇒ triangular As (solve_lrec A A ′ R)
〈proof 〉

8

Solving more Nts does not remove the triangular property of previously
solved Nts.
lemma part_triangular_induct_step:
[[Eps_free R; distinct ((A#As)@(A ′#As ′)); triangular As (solve_tri As As ′ R)]]
=⇒ triangular As (solve_tri (A#As) (A ′#As ′) R)
〈proof 〉

Couple of small lemmas about dep_on and the solving of left-recursion.
lemma rm_lrec_rem_own_dep: A /∈ dep_on (rm_lrec A R) A
〈proof 〉

lemma rrec_of_lrec_has_no_own_dep: A 6= A ′ =⇒ A /∈ dep_on (rrec_of_lrec
A A ′ R) A
〈proof 〉

lemma solve_lrec_no_own_dep: A 6= A ′ =⇒ A /∈ dep_on (solve_lrec A A ′ R) A
〈proof 〉

lemma solve_lrec_no_new_own_dep: A 6= A ′ =⇒ A ′ /∈ Nts R =⇒ A ′ /∈ dep_on
(solve_lrec A A ′ R) A ′

〈proof 〉

lemma dep_on_rem_lrec_simp: dep_on (rm_lrec A R) A = dep_on R A − {A}
〈proof 〉

lemma dep_on_rrec_of_lrec_simp:
Eps_free R =⇒ A 6= A ′ =⇒ dep_on (rrec_of_lrec A A ′ R) A = dep_on R A −
{A}
〈proof 〉

lemma dep_on_solve_lrec_simp:
[[Eps_free R; A 6= A ′]] =⇒ dep_on (solve_lrec A A ′ R) A = dep_on R A − {A}
〈proof 〉

lemma dep_on_solve_tri_simp: B /∈ set As =⇒ B /∈ set As ′ =⇒ length As ≤
length As ′

=⇒ dep_on (solve_tri As As ′ R) B = dep_on R B
〈proof 〉

Induction step for showing that solve_tri removes dependencies of previ-
ously solved Nts.
lemma triangular_dep_on_induct_step:

assumes Eps_free R length As ≤ length As ′ distinct ((A#As)@A ′#As ′) trian-
gular As (solve_tri As As ′ R)

shows dep_on (solve_tri (A # As) (A ′ # As ′) R) A ∩ ({A} ∪ set As) = {}
〈proof 〉

theorem triangular_solve_tri: [[Eps_free R; length As ≤ length As ′; distinct(As
@ As ′)]]

9

=⇒ triangular As (solve_tri As As ′ R)
〈proof 〉

lemma dep_on_solve_tri_Nts_R:
[[Eps_free R; B ∈ set As; distinct (As @ As ′); set As ′ ∩ Nts R = {}; length As
≤ length As ′]]

=⇒ dep_on (solve_tri As As ′ R) B ⊆ Nts R
〈proof 〉

lemma triangular_unused_Nts: set As ∩ Nts R = {} =⇒ triangular As R
〈proof 〉

The newly added Nts in solve_lrec are in triangular form wrt rev As ′.
lemma triangular_rev_As ′_solve_tri:
[[set As ′ ∩ Nts R = {}; distinct (As @ As ′); length As ≤ length As ′]]
=⇒ triangular (rev As ′) (solve_tri As As ′ R)

〈proof 〉

The entire set of productions is in triangular form after solve_tri wrt As@(rev
As ′).
theorem triangular_As_As ′_solve_tri:

assumes Eps_free R length As ≤ length As ′ distinct(As @ As ′) Nts R ⊆ set As
shows triangular (As@(rev As ′)) (solve_tri As As ′ R)

〈proof 〉

4.3 solve_lrec Preserves Language
4.3.1 Lang R A ⊆ Lang (solve_lrec B B ′ R) A

If there exists a derivation from u to v then there exists one which does not
use productions of the form A → A.
lemma rm_self_loops_derivels: assumes P ` u ⇒l(n) v shows rm_self_loops
P ` u ⇒l∗ v
〈proof 〉

Restricted to productions with one lhs (A), and no A → A productions if
there is a derivation from u to A # v then u must start with Nt A.
lemma lrec_lemma1 :

assumes S = {x. (∃ v. x = (A, v) ∧ x ∈ R)} rm_self_loops S ` u ⇒l(n) Nt
A#v

shows ∃ u ′. u = Nt A # u ′

〈proof 〉

Restricted to productions with one lhs (A), and no A → A productions if
there is a derivation from u to A # v then u must start with Nt A and
there exists a prefix of A # v s.t. a left-derivation from [Nt A] to that prefix
exists.

10

lemma lrec_lemma2 :
assumes S = {x. (∃ v. x = (A, v) ∧ x ∈ R)} Eps_free R
shows rm_self_loops S ` u ⇒l(n) Nt A#v =⇒
∃ u ′ v ′. u = Nt A # u ′ ∧ v = v ′ @ u ′ ∧ (rm_self_loops S) ` [Nt A] ⇒l(n) Nt

A # v ′

〈proof 〉

Restricted to productions with one lhs (A), and no A → A productions if
there is a left-derivation from [Nt A] to A # u then there exists a derivation
from [Nt A ′] to u@[Nt A] and if u 6= [] also to u in solve_lrec A A ′ R.
lemma lrec_lemma3 :

assumes S = {x. (∃ v. x = (A, v) ∧ x ∈ R)} Eps_free R
shows rm_self_loops S ` [Nt A] ⇒l(n) Nt A # u
=⇒ solve_lrec A A ′ S ` [Nt A ′] ⇒(n) u @ [Nt A ′] ∧

(u 6= [] −→ solve_lrec A A ′ S ` [Nt A ′] ⇒(n) u)
〈proof 〉

A left derivation from p (hd p = Nt A) to q (hd q 6= Nt A) can be split into
a left-recursive part, only using left-recursive productions A → A # w, one
left derivation step consuming Nt A using some rule A → B # v where B
6= Nt A and a left-derivation comprising the rest of the derivation.
lemma lrec_decomp:

assumes S = {x. (∃ v. x = (A, v) ∧ x ∈ R)} Eps_free R
shows [[hd p = Nt A; hd q 6= Nt A; R ` p ⇒l(n) q]]
=⇒ ∃ u w m k. S ` p ⇒l(m) Nt A # u ∧ S ` Nt A # u ⇒l w ∧ hd w 6= Nt A ∧

R ` w ⇒l(k) q ∧ n = m + k + 1
〈proof 〉

Every derivation resulting in a word has a derivation in solve_lrec B B ′ R.
lemma tm_derive_impl_solve_lrec_derive:

assumes Eps_free R B 6= B ′ B ′ /∈ Nts R
shows [[p 6= []; R ` p ⇒(n) map Tm q]] =⇒ solve_lrec B B ′ R ` p ⇒∗ map Tm

q
〈proof 〉

corollary Lang_incl_Lang_solve_lrec:
[[Eps_free R; B 6= B ′; B ′ /∈ Nts R]] =⇒ Lang R A ⊆ Lang (solve_lrec B B ′ R)

A
〈proof 〉

4.3.2 Lang (solve_lrec B B ′ R) A ⊆ Lang R A

Restricted to right-recursive productions of one Nt (A ′ → w @ [Nt A ′]) if
there is a right-derivation from u to v @ [Nt A ′] then u ends in Nt A ′.
lemma rrec_lemma1 :

assumes S = {x. ∃ v. x = (A ′, v @ [Nt A ′]) ∧ x ∈ solve_lrec A A ′ R} S ` u
⇒r(n) v @ [Nt A ′]

11

shows ∃ u ′. u = u ′ @ [Nt A ′]
〈proof 〉

solve_lrec does not add productions of the form A ′→ Nt A ′.
lemma solve_lrec_no_self_loop: Eps_free R =⇒ A ′ /∈ Nts R =⇒ (A ′, [Nt A ′]) /∈
solve_lrec A A ′ R
〈proof 〉

Restricted to right-recursive productions of one Nt (A ′ → w @ [Nt A ′]) if
there is a right-derivation from u to v @ [Nt A ′] then u ends in Nt A ′ and
there exists a suffix of v @ [Nt A ′] s.t. there is a right-derivation from [Nt
A ′] to that suffix.
lemma rrec_lemma2 :
assumes S = {x. (∃ v. x = (A ′, v @ [Nt A ′]) ∧ x ∈ solve_lrec A A ′ R)} Eps_free
R A ′ /∈ Nts R
shows S ` u ⇒r(n) v @ [Nt A ′]
=⇒ ∃ u ′ v ′. u = u ′ @ [Nt A ′] ∧ v = u ′ @ v ′ ∧ S ` [Nt A ′] ⇒r(n) v ′ @ [Nt A ′]
〈proof 〉

Restricted to right-recursive productions of one Nt (A ′ → w @ [Nt A ′]) if
there is a restricted right-derivation in solve_lrec from [Nt A ′] to u @ [Nt
A ′] then there exists a derivation in R from [Nt A] to A # u.
lemma rrec_lemma3 :

assumes S = {x. (∃ v. x = (A ′, v @ [Nt A ′]) ∧ x ∈ solve_lrec A A ′ R)} Eps_free
R

A ′ /∈ Nts R A 6= A ′

shows S ` [Nt A ′] ⇒r(n) u @ [Nt A ′] =⇒ R ` [Nt A] ⇒(n) Nt A # u
〈proof 〉

A right derivation from p@[Nt A ′] to q (last q 6= Nt A ′) can be split into
a right-recursive part, only using right-recursive productions with Nt A ′,
one right derivation step consuming Nt A ′ using some rule A ′ → as@[Nt
B] where Nt B 6= Nt A ′ and a right-derivation comprising the rest of the
derivation.
lemma rrec_decomp:

assumes S = {x. (∃ v. x = (A ′, v @ [Nt A ′]) ∧ x ∈ solve_lrec A A ′ R)} Eps_free
R

A 6= A ′ A ′ /∈ Nts R
shows [[A ′ /∈ nts_syms p; last q 6= Nt A ′; solve_lrec A A ′ R ` p @ [Nt A ′] ⇒r(n)

q]]
=⇒ ∃ u w m k. S ` p @ [Nt A ′] ⇒r(m) u @ [Nt A ′]
∧ solve_lrec A A ′ R ` u @ [Nt A ′] ⇒r w ∧ A ′ /∈ nts_syms w
∧ solve_lrec A A ′ R ` w ⇒r(k) q ∧ n = m + k + 1

〈proof 〉

Every word derived by solve_lrec B B ′ R can be derived by R.
lemma tm_solve_lrec_derive_impl_derive:

12

assumes Eps_free R B 6= B ′ B ′ /∈ Nts R
shows [[p 6= []; B ′ /∈ nts_syms p; (solve_lrec B B ′ R) ` p ⇒(n) map Tm q]] =⇒

R ` p ⇒∗ map Tm q
〈proof 〉

corollary Lang_solve_lrec_incl_Lang:
assumes Eps_free R B 6= B ′ B ′ /∈ Nts R A 6= B ′

shows Lang (solve_lrec B B ′ R) A ⊆ Lang R A
〈proof 〉

corollary solve_lrec_Lang:
[[Eps_free R; B 6= B ′; B ′ /∈ Nts R; A 6= B ′]] =⇒ Lang (solve_lrec B B ′ R) A =

Lang R A
〈proof 〉

4.4 expand_hd Preserves Language

Every rhs of an expand_hd R production is derivable by R.
lemma expand_hd_is_deriveable: (A, w) ∈ expand_hd B As R =⇒ R ` [Nt A]
⇒∗ w
〈proof 〉

lemma expand_hd_incl1 : Lang (expand_hd B As R) A ⊆ Lang R A
〈proof 〉

This lemma expects a set of quadruples (A, a1 , B, a2). Each quadruple
encodes a specific Nt in a specific rule A → a1 @ Nt B # a2 (this encodes
Nt B) which should be expanded, by replacing the Nt with every rule for
that Nt and then removing the original rule. This expansion contains the
original productions Language.
lemma exp_includes_Lang:

assumes S_props: ∀ x ∈ S . ∃A a1 B a2 . x = (A, a1 , B, a2) ∧ (A, a1 @ Nt B
a2) ∈ R

shows Lang R A
⊆ Lang (R − {x. ∃A a1 B a2 . x = (A, a1 @ Nt B # a2) ∧ (A, a1 , B, a2)

∈ S }
∪ {x. ∃A v a1 a2 B. x = (A,a1@v@a2) ∧ (A, a1 , B, a2) ∈ S ∧ (B,v)

∈ R}) A
〈proof 〉

lemma expand_hd_incl2 : Lang (expand_hd B As R) A ⊇ Lang R A
〈proof 〉

theorem expand_hd_Lang: Lang (expand_hd B As R) A = Lang R A
〈proof 〉

13

4.5 solve_tri Preserves Language
lemma solve_tri_Lang:
[[Eps_free R; length As ≤ length As ′; distinct(As @ As ′); Nts R ∩ set As ′ = {};

A /∈ set As ′]]
=⇒ Lang (solve_tri As As ′ R) A = Lang R A

〈proof 〉

5 Function expand_hd: Convert Triangular Form
into GNF

5.1 expand_hd: Result is in GNF_hd
lemma dep_on_helper : dep_on R A = {} =⇒ (A, w) ∈ R =⇒ w = [] ∨ (∃T wt.
w = Tm T # wt)
〈proof 〉

lemma GNF_hd_iff_dep_on:
assumes Eps_free R
shows GNF_hd R ←→ (∀A ∈ Nts R. dep_on R A = {}) (is ?L=?R)
〈proof 〉

lemma helper_expand_tri1 : A /∈ set As =⇒ (A, w) ∈ expand_tri As R =⇒ (A,
w) ∈ R
〈proof 〉

If none of the expanded Nts depend on A then any rule depending on A in
expand_tri As R must already have been in R.
lemma helper_expand_tri2 :
[[Eps_free R; A /∈ set As; ∀C ∈ set As. A /∈ (dep_on R C); B 6= A; (B, Nt A #

w) ∈ expand_tri As R]]
=⇒ (B, Nt A # w) ∈ R

〈proof 〉

In a triangular form no Nts depend on the last Nt in the list.
lemma triangular_snoc_dep_on: triangular (As@[A]) R =⇒ ∀C ∈ set As. A /∈
(dep_on R C)
〈proof 〉

lemma triangular_helper1 : triangular As R =⇒ A ∈ set As =⇒ A /∈ dep_on R
A
〈proof 〉

lemma dep_on_expand_tri:
[[Eps_free R; triangular (rev As) R; distinct As; A ∈ set As]]
=⇒ dep_on (expand_tri As R) A ∩ set As = {}

〈proof 〉

Interlude: Nts of expand_tri:

14

lemma Lhss_expand_tri: Lhss (expand_tri As R) ⊆ Lhss R
〈proof 〉

lemma Rhs_Nts_expand_tri: Rhs_Nts (expand_tri As R) ⊆ Rhs_Nts R
〈proof 〉

lemma Nts_expand_tri: Nts (expand_tri As R) ⊆ Nts R
〈proof 〉

If the entire triangular form is expanded, the result is in GNF:
theorem GNF_hd_expand_tri:

assumes Eps_free R triangular (rev As) R distinct As Nts R ⊆ set As
shows GNF_hd (expand_tri As R)
〈proof 〉

Any set of productions can be transformed into GNF via expand_tri (solve_tri).
theorem GNF_of_R:

assumes assms: Eps_free R distinct (As @ As ′) Nts R ⊆ set As length As ≤
length As ′

shows GNF_hd (expand_tri (As ′ @ rev As) (solve_tri As As ′ R))
〈proof 〉

5.2 expand_tri Preserves Language

Similar to the proof of Language equivalence of expand_hd.

All productions in expand_tri As R are derivable by R.
lemma expand_tri_prods_deirvable: (B, bs) ∈ expand_tri As R =⇒ R ` [Nt B]
⇒∗ bs
〈proof 〉

Language Preservation:
lemma expand_tri_Lang: Lang (expand_tri As R) A = Lang R A
〈proof 〉

6 Function gnf_hd: Conversion to GNF_hd

All epsilon-free grammars can be put into GNF while preserving their lan-
guage.

Putting the productions into GNF via expand_tri (solve_tri) preserves the
language.
lemma GNF_of_R_Lang:

assumes Eps_free R length As ≤ length As ′ distinct (As @ As ′) Nts R ∩ set As ′

= {} A /∈ set As ′

shows Lang (expand_tri (As ′ @ rev As) (solve_tri As As ′ R)) A = Lang R A
〈proof 〉

15

Any epsilon-free Grammar can be brought into GNF.
theorem GNF_hd_gnf_hd: eps_free ps =⇒ GNF_hd (gnf_hd ps)
〈proof 〉

lemma distinct_app_freshs: [[As = nts_prods_list ps; As ′ = freshs (set As) As]]
=⇒

distinct (As @ As ′)
〈proof 〉

gnf_hd preserves the language:
theorem Lang_gnf_hd: [[eps_free ps; A ∈ nts ps]] =⇒ Lang (gnf_hd ps) A =
lang ps A
〈proof 〉

Two simple examples:
lemma gnf_hd [(0 , [Nt(0 ::nat), Tm (1 ::int)])] = {(1 , [Tm 1]), (1 , [Tm 1 , Nt 1])}
〈proof 〉

lemma gnf_hd [(0 , [Nt(0 ::nat), Tm (1 ::int)]), (0 , [Tm 2])] =
{ (0 , [Tm 2 , Nt 1]), (0 , [Tm 2]), (1 , [Tm 1 , Nt 1]), (1 , [Tm 1]) }
〈proof 〉

Example 4.10 [3]: P0 is the input; P1 is the result after Step 1; P3 is the
result after Step 2 and 3.
lemma

let
P0 =
[(1 ::int, [Nt 2 , Nt 3]), (2 ,[Nt 3 , Nt 1]), (2 , [Tm (1 ::int)]), (3 ,[Nt 1 , Nt 2]),

(3 ,[Tm 0])];
P1 =
[(1 , [Nt 2 , Nt 3]), (2 , [Nt 3 , Nt 1]), (2 , [Tm 1]),
(3 , [Tm 1 , Nt 3 , Nt 2 , Nt 4]), (3 , [Tm 0 , Nt 4]), (3 , [Tm 1 , Nt 3 , Nt 2]),

(3 , [Tm 0]),
(4 , [Nt 1 , Nt 3 , Nt 2]), (4 , [Nt 1 , Nt 3 , Nt 2 , Nt 4])];

P2 =
[(1 , [Tm 1 , Nt 3 , Nt 2 , Nt 4 , Nt 1 , Nt 3]), (1 , [Tm 1 , Nt 3 , Nt 2 , Nt 1 , Nt

3]),
(1 , [Tm 0 , Nt 4 , Nt 1 , Nt 3]), (1 , [Tm 0 , Nt 1 , Nt 3]), (1 , [Tm 1 , Nt 3]),
(2 , [Tm 1 , Nt 3 , Nt 2 , Nt 4 , Nt 1]), (2 , [Tm 1 , Nt 3 , Nt 2 , Nt 1]),
(2 , [Tm 0 , Nt 4 , Nt 1]), (2 , [Tm 0 , Nt 1]), (2 , [Tm 1]),
(3 , [Tm 1 , Nt 3 , Nt 2 , Nt 4]), (3 , [Tm 1 , Nt 3 , Nt 2]),
(3 , [Tm 0 , Nt 4]), (3 , [Tm 0]),
(4 , [Tm 1 , Nt 3 , Nt 2 , Nt 4 , Nt 1 , Nt 3 , Nt 3 , Nt 2 , Nt 4]), (4 , [Tm 1 , Nt

3 , Nt 2 , Nt 4 , Nt 1 , Nt 3 , Nt 3 , Nt 2]),
(4 , [Tm 0 , Nt 4 , Nt 1 , Nt 3 , Nt 3 , Nt 2 , Nt 4]), (4 , [Tm 0 , Nt 4 , Nt 1 , Nt

3 , Nt 3 , Nt 2]),
(4 , [Tm 1 , Nt 3 , Nt 3 , Nt 2 , Nt 4]), (4 , [Tm 1 , Nt 3 , Nt 3 , Nt 2]),
(4 , [Tm 1 , Nt 3 , Nt 2 , Nt 1 , Nt 3 , Nt 3 , Nt 2 , Nt 4]), (4 , [Tm 1 , Nt 3 , Nt

2 , Nt 1 , Nt 3 , Nt 3 , Nt 2]),

16

(4 , [Tm 0 , Nt 1 , Nt 3 , Nt 3 , Nt 2 , Nt 4]), (4 , [Tm 0 , Nt 1 , Nt 3 , Nt 3 , Nt
2])]

in
solve_tri [3 ,2 ,1] [4 ,5 ,6] (set P0) = set P1 ∧ expand_tri [4 ,1 ,2 ,3] (set P1)

= set P2
〈proof 〉

7 Complexity

Our method has exponential complexity, which we demonstrate below. Al-
ternative polynomial methods are described in the literature [1].
We start with an informal proof that the blowup of the whole method can
be as bad as 2n

2 , where n is the number of non terminals, and the starting
grammar has 4n productions.
Consider this grammar, where a and b are terminals and we use nested
alternatives in the obvious way:
A0 → A1 (a | b) | A2 (a | b) | ... | An (a | b) | a | b
A(i+1) → Ai (a | b)
Expanding all alternatives makes this a grammar of size 4n.
When converting this grammar into triangular form, starting with A0, we
find that A0 remains the same after expand_hd, and solve_lrec introduces
a new additional production for every A0 production, which we will ignore
to simplify things:
Then every expand_hd step yields for Ai these number of productions:
(1) 2^(i+1) productions with rhs Ak (a | b)^(i+1) for every k ∈ [i+1 , n],
(2) 2^(i+1) productions with rhs (a | b)^(i+1),
(3) 2^(i+1) productions with rhs Ai (a | b)^(i+1).
Note that (a | b)^(i+1) represents all words of length i+1 over {a,b}. Solv-
ing the left recursion again introduces a new additional production for every
production of form (1) and (2), which we will again ignore for simplicity.
The productions of (3) get removed by solve_lrec. We will not consider the
productions of the newly introduced nonterminals.
In the triangular form, every Ai has at least 2^(i+1) productions starting
with terminals (2) and 2^(i+1) productions with rhs starting with Ak for
every k ∈ [i+1 , n].
When expanding the triangular form starting from An, which has at least the
2^(i+1) productions from (2), we observe that the number of productions
of Ai (denoted by #Ai) is #Ai ≥ 2^(i+1) ∗ #A(i+1) (Only considering
the productions of the form A(i+1) (a | b)^(i+1)). This yields that #Ai
≥ 2^(i+1) ∗ 2^((i+2) + ... + (n+1)) = 2^((i+1) + (i+2) + ... (n+1)).
Thus #A0 ≥ 2^(1 + 2 + ... + n + (n+1)) = 2^((n+1)∗(n+2)/2).

17

Below we prove formally that expand_tri can cause exponential blowup.

Bad grammar: Constructs a grammar which leads to a exponential blowup
when expanded by expand_tri:
fun bad_grammar :: ′n list ⇒ (′n, nat)Prods where
bad_grammar [] = {}
|bad_grammar [A] = {(A, [Tm 0]), (A, [Tm 1])}
|bad_grammar (A#B#As) = {(A, Nt B # [Tm 0]), (A, Nt B # [Tm 1])} ∪
(bad_grammar (B#As))

lemma bad_gram_simp1 : A /∈ set As =⇒ (A, Bs) /∈ (bad_grammar As)
〈proof 〉

lemma expand_tri_simp1 : A /∈ set As =⇒ (A, Bs) ∈ R =⇒ (A, Bs) ∈ expand_tri
As R
〈proof 〉

lemma expand_tri_iff1 : A /∈ set As =⇒ (A, Bs) ∈ expand_tri As R ←→ (A, Bs)
∈ R
〈proof 〉

lemma expand_tri_insert_simp:
B /∈ set As =⇒ expand_tri As (insert (B, Bs) R) = insert (B, Bs) (expand_tri

As R)
〈proof 〉

lemma expand_tri_bad_grammar_simp1 :
distinct (A#As) =⇒ length As ≥ 1
=⇒ expand_tri As (bad_grammar (A#As))

= {(A, Nt (hd As) # [Tm 0]), (A, Nt (hd As) # [Tm 1])} ∪ (expand_tri As
(bad_grammar As))
〈proof 〉

lemma finite_bad_grammar : finite (bad_grammar As)
〈proof 〉

lemma finite_expand_tri: finite R =⇒ finite (expand_tri As R)
〈proof 〉

The last Nt expanded by expand_tri has an exponential number of produc-
tions.
lemma bad_gram_last_expanded_card:
[[distinct As; length As = n; n ≥ 1]]
=⇒ card ({v. (hd As, v) ∈ expand_tri As (bad_grammar As)}) = 2 ^ n

〈proof 〉

The productions resulting from expand_tri (bad_grammar) have at least
exponential size.
theorem expand_tri_blowup: assumes n ≥ 1

18

shows card (expand_tri [0 ..<n] (bad_grammar [0 ..<n])) ≥ 2^n
〈proof 〉

end

References

[1] N. Blum and R. Koch. Greibach normal form transformation revisited.
Inf. Comput., 150(1):112–118, 1999.

[2] S. A. Greibach. A new normal-form theorem for context-free phrase
structure grammars. J. ACM, 12(1):42–52, 1965.

[3] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

19

	Aux Lemmas
	Function Definitions
	Some Basic Lemmas
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Eps_free preservation
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Nts and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dep_on
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 triangular

	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solve_tri: Remove Left-Recursion and Convert into Triangular Form
	Basic Lemmas
	Triangular Form
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solve_lrec Preserves Language
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Lang R A Lang (solve_lrec B B2mu'-2mu R) A
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Lang (solve_lrec B B2mu'-2mu R) A Lang R A

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 expand_hd Preserves Language
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solve_tri Preserves Language

	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 expand_hd: Convert Triangular Form into GNF
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 expand_hd: Result is in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 GNF_hd
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 expand_tri Preserves Language

	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 gnf_hd: Conversion to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 GNF_hd
	Complexity

