Greibach Normal Form Alexander Haberl and Tobias Nipkow and Akihisa Yamada September 12, 2025 #### Abstract This theory formalizes Hopcroft and Ullman's algorithm [3] to transform a set of productions into Greibach Normal Form (GNF) [2]. We concentrate on the essential property of the GNF: every production starts with a terminal; the tail of a rhs may contain further terminals. The complexity of the algorithm can be exponential. ``` theory Greibach_Normal_Form imports Context_Free_Grammar.Context_Free_Grammar Fresh_Identifiers.Fresh_Nat begin ``` **declare** relpowp.simps(2)[simp del] # 1 Aux Lemmas ``` \begin{array}{l} \mathbf{lemma} \ Nts_mono: \ G \subseteq H \Longrightarrow Nts \ G \subseteq Nts \ H \\ \langle proof \rangle \\ \\ \mathbf{lemma} \ derivern_prepend: \ R \vdash u \Rightarrow r(n) \ v \Longrightarrow R \vdash p @ u \Rightarrow r(n) \ p @ v \\ \langle proof \rangle \\ \\ \mathbf{lemma} \ Lang_subset_if_Ders_subset: \ Ders \ R \ A \subseteq Ders \ R' \ A \Longrightarrow Lang \ R \ A \subseteq Lang \ R' \ A \\ \langle proof \rangle \\ \\ \mathbf{lemma} \ Eps_free_deriven_Nil: \\ \llbracket \ Eps_free \ R; \ R \vdash l \Rightarrow (n) \ \rrbracket \ \rrbracket \Longrightarrow l = \rrbracket \\ \langle proof \rangle \\ \\ \mathbf{lemma} \ nts_syms_empty_iff: \ nts_syms \ w = \{\} \longleftrightarrow (\exists \ u. \ w = map \ Tm \ u) \\ \langle proof \rangle \\ \\ \end{array} ``` ``` lemma non_word_has_last_Nt: nts_syms w \neq \{\} \Longrightarrow \exists u \ A \ v. \ w = u \ @ [Nt \ A] \ @ map \ Tm \ v \ \langle proof \rangle ``` ``` lemma nts_syms_rev: nts_syms (rev w) = nts_syms w \langle proof \rangle ``` Sentential form that is not a word has a first Nt. ``` lemma non_word_has_first_Nt: nts_syms w \neq \{\} \Longrightarrow \exists u \ A \ v. \ w = map \ Tm \ u \ @ Nt \ A \ \# \ v \ \langle proof \rangle ``` If there exists a derivation from u to v then there exists one which does not use productions of the form $A \to A$. ``` lemma no_self_loops_derivels: P \vdash u \Rightarrow l(n) \ v \Longrightarrow \{p \in P. \ \neg (\exists A. \ p = (A, [Nt \ A]))\} \vdash u \Rightarrow l* \ v \ \langle proof \rangle ``` A decomposition of a derivation from a sentential form to a word into multiple derivations that derive words. ``` lemma derivern_snoc_Nt_Tms_decomp1: R \vdash p @ [Nt \ A] \Rightarrow r(n) \ map \ Tm \ q \\ \Longrightarrow \exists \ pt \ At \ w \ k \ m. \ R \vdash p \Rightarrow (k) \ map \ Tm \ pt \land R \vdash w \Rightarrow (m) \ map \ Tm \ At \land (A, w) \in R \\ \land \ q = pt @ \ At \land n = Suc(k+m) \\ \langle proof \rangle ``` A decomposition of a derivation from a sentential form to a word into multiple derivations that derive words. ``` lemma word_decomp1: ``` ``` \begin{array}{l} R \vdash p @ [Nt \ A] @ \ map \ Tm \ ts \Rightarrow (n) \ map \ Tm \ q \\ \Longrightarrow \exists \ pt \ At \ w \ k \ m. \ R \vdash p \Rightarrow (k) \ map \ Tm \ pt \ \land \ R \vdash w \Rightarrow (m) \ map \ Tm \ At \ \land \ (A, w) \in R \\ & \land \ q = pt \ @ \ At \ @ \ ts \ \land \ n = Suc(k + m) \\ \langle proof \rangle \end{array} ``` Sentential form that derives to terminals and has a Nt in it has a derivation that starts with some rule acting on that Nt. ``` lemma deriven_start_sent: R \vdash u @ Nt \ V \# w \Rightarrow (Suc \ n) \ map \ Tm \ x \Longrightarrow \exists \ v. \ (V, \ v) \in R \land R \vdash u @ v @ w \Rightarrow (n) \ map \ Tm \ x \ \langle proof \rangle ``` ``` definition nts_syms_list :: ('n,'t)syms \Rightarrow 'n \ list \Rightarrow 'n \ list \ \mathbf{where} nts_syms_list \ sys = foldr \ (\lambda sy \ ns. \ case \ sy \ of \ Nt \ A \Rightarrow List.insert \ A \ ns \ | \ Tm \ _ \Rightarrow ns) \ sys ``` ``` definition nts prods list :: ('n,'t) prods \Rightarrow 'n list where nts_prods_list\ ps = foldr\ (\lambda(A,sys)\ ns.\ List.insert\ A\ (nts_syms_list\ sys\ ns))\ ps\ [] lemma set nts syms list: set(nts \ syms \ list sys \ ns) = nts \ syms \ sys \cup set \ ns \langle proof \rangle lemma set_n ts_n prods_n list: set(nts_n prods_n list_n ps) = nts_n ps lemma\ distinct_nts_syms_list:\ distinct(nts_syms_list\ sys\ ns) = distinct\ ns \langle proof \rangle lemma distinct_nts_prods_list: distinct(nts_prods_list ps) \langle proof \rangle fun freshs :: ('a::fresh) set \Rightarrow 'a list \Rightarrow 'a list where freshs X [] = [] | freshs \ X \ (a\#as) = (let \ a' = fresh \ X \ a \ in \ a' \# freshs \ (insert \ a' \ X) \ as) lemma length_freshs: finite X \Longrightarrow length(freshs X as) = length as \langle proof \rangle lemma freshs_disj: finite X \Longrightarrow X \cap set(freshs X \ as) = \{\} \langle proof \rangle lemma freshs_distinct: finite X \Longrightarrow distinct (freshs X as) \langle proof \rangle ``` This theory formalizes a method to transform a set of productions into Greibach Normal Form (GNF) [2]. We concentrate on the essential property of the GNF: every production starts with a Tm; the tail of a rhs can contain further terminals. This is formalized as GNF_hd below. This more liberal definition of GNF is also found elsewhere [1]. The algorithm consists of two phases: - $solve_tri$ converts the productions into a triangular form, where Nt Ai does not depend on Nts Ai, ..., An. This involves the elimination of left-recursion and is the heart of the algorithm. - expand_tri expands the triangular form by substituting in: Due to triangular form, A0 productions satisfy GNF_hd and we can substitute them into the heads of the remaining productions. Now all A1 productions satisfy GNF_hd, and we continue until all productions satisfy GNF_hd. This is essentially the algorithm given by Hopcroft and Ullman [3], except that we can drop the conversion to Chomsky Normal Form because of our more liberal *GNF* hd. # 2 Function Definitions ``` Depend on: A depends on B if there is a rule A \to B w: definition dep_on :: ('n,'t) \ Prods \Rightarrow 'n \Rightarrow 'n \ set \ where dep_on\ R\ A = \{B.\ \exists\ w.\ (A,Nt\ B\ \#\ w) \in R\} GNF property: All productions start with a terminal. definition GNF_hd :: ('n,'t)Prods \Rightarrow bool where GNF_hd\ R = (\forall (A, w) \in R. \ \exists t. \ hd\ w = Tm\ t) GNF property expressed via dep_on: definition GNF hd dep on :: ('n,'t)Prods \Rightarrow bool where GNF_hd_dep_on R = (\forall A \in Nts R. dep_on R A = \{\}) abbreviation lrec_Prods :: ('n,'t)Prods \Rightarrow 'n \Rightarrow 'n \ set \Rightarrow ('n,'t)Prods \ where lrec_Prods\ R\ A\ S \equiv \{(A',Bw) \in R.\ A' = A \land (\exists\ w\ B.\ Bw = Nt\ B \#\ w \land B \in S)\} abbreviation subst_hd :: ('n,'t)Prods \Rightarrow ('n,'t)Prods \Rightarrow 'n \Rightarrow ('n,'t)Prods where subst_hd \ R \ X \ A \equiv \{(A, v@w) \mid v \ w. \ \exists \ B. \ (A, Nt \ B \ \# \ w) \in X \land (B, v) \in R\} Expand head: Replace all rules A \to B w where B \in Ss (Ss = solved Nts in triangular form) by A \to v w where B \to v. Starting from the end of Ss. fun expand_hd :: 'n \Rightarrow 'n \ list \Rightarrow ('n,'t)Prods \Rightarrow ('n,'t)Prods where expand_hd\ A\ []\ R=R\ [] expand_hd\ A\ (S\#Ss)\ R = (let R' = expand hd A Ss R; X = lrec \ Prods \ R' \ A \ \{S\}; Y = subst hd R' X A in R' - X \cup Y) lemma Rhss_code[code]: Rhss\ P\ A = snd\ `\{Aw \in P.\ fst\ Aw = A\} \langle proof \rangle declare expand_hd.simps(1)[code] lemma expand_hd_Cons_code[code]: expand_hd A (S\#S) R = (let R' = expand hd A Ss R; X = \{ w \in Rhss R' A. w \neq [] \land hd w = Nt S \}; Y = (\bigcup (B,v) \in R' \cup \bigcup w \in X \text{ if } hd \ w \neq Nt \ B \ then \ \{\} \ else \ \{(A,v @ tl \ w)\}) in R' - (\{A\} \times X) \cup Y) \langle proof \rangle ``` Remove left-recursions: Remove left-recursive rules $A \to A w$: ``` definition rm_lrec :: 'n \Rightarrow ('n,'t)Prods \Rightarrow ('n,'t)Prods where rm_lrec \ A \ R = R - \{(A,Nt \ A \ \# \ v)|v. \ True\} ``` ``` lemma rm_lrec_code[code]: rm_lrec A R = \{Aw \in R. let (A',w) = Aw in A' \neq A \lor w = [] \lor hd w \neq Nt A\} \langle proof \rangle ``` Make right-recursion of left-recursion: Conversion from left-recursion to right-recursion: Split A-rules into $A \to u$ and $A \to A$ v. Keep $A \to u$ but replace $A \to A$ v by $A \to u$ A', $A' \to v$, $A' \to v$ A'. The then part of the if statement is only an optimisation, so that we do not introduce the $A \to u A'$ rules if we do not introduce any A' rules, but the function also works, if we always enter the else part. ``` \begin{array}{l} \textbf{definition} \ rrec_of_lrec :: \ 'n \Rightarrow 'n \Rightarrow ('n,'t)Prods \Rightarrow ('n,'t)Prods \ \textbf{where} \\ rrec_of_lrec \ A \ A' \ R = \\ (let \ V = \{v. \ (A,Nt \ A \ \# \ v) \in R \land v \neq []\}; \\ U = \{u. \ (A,u) \in R \land \neg (\exists \ v. \ u = Nt \ A \ \# \ v) \ \} \\ in \ if \ V = \{\} \ then \ R \ - \ \{(A, \ [Nt \ A])\} \ else \ (\{A\} \times U) \ \cup \ (\bigcup u \in U. \ \{(A,u@[Nt \ A'])\}) \ \cup \ (\{A'\} \times V) \ \cup \ (\bigcup v \in V. \ \{(A',v \ @ \ [Nt \ A'])\})) \\ \end{array} ``` Solve left-recursions: Solves the left-recursion of Nt A by replacing it with a right-recursion on a fresh Nt A'. The fresh Nt A' is also given as a parameter. ``` definition solve_lrec :: 'n \Rightarrow 'n \Rightarrow ('n,'t)Prods \Rightarrow ('n,'t)Prods where solve_lrec \ A \ A' \ R = rm_lrec \ A \ R \cup rrec_of_lrec \ A \ A' \ R ``` ${\bf lemmas}\ solve_lrec_defs = solve_lrec_def\ rrm_lrec_def\ rrec_of_lrec_def\ Let_def\ Nts_def$ Solve triangular: Put R into triangular form wrt As (using the new Nts As'). In each step A#As, first the remaining Nts in As are solved, then A is solved. This should mean that in the result of the outermost $expand_hd$ A As, A only depends on A. Then the A rules in the result of $solve_lrec$ A A' are already in GNF. More precisely: the result should be in triangular form. ``` fun solve_tri :: 'a \ list \Rightarrow 'a \ list \Rightarrow ('a, 'b) \ Prods \Rightarrow ('a, 'b) \ Prods where <math>solve_tri \ [] \ _R = R \ | solve_tri \ (A\#As) \ (A'\#As') \ R = solve_lrec \ A \ A' \ (expand_hd \ A \ As \ (solve_tri \ As \ As' \ R)) ``` Triangular form wrt [A1,...,An] means that Ai must not depend on Ai, ..., An. In particular: A0 does not depend on any Ai, its rules are already in GNF. Therefore one can convert a *triangular* form into GNF by backwards substitution: The rules for Ai are used to expand the heads of all A(i+1),...,An rules, starting with A0. ``` fun triangular :: 'n list \Rightarrow ('n \times ('n, 't) sym list) set \Rightarrow bool where triangular [] R = True \mid triangular (A\#As) R = (dep_on R A \cap (\{A\} \cup set As) = \{\} \wedge triangular As R) ``` Remove self loops: Removes all productions of the form $A \to A$. ``` definition rm_self_loops :: ('n,'t) \ Prods \Rightarrow ('n,'t) \ Prods where rm_self_loops \ P = P - \{x \in P. \ \exists \ A. \ x = (A, [Nt \ A])\} ``` Expand triangular: Expands all head-Nts of productions with a Lhs in As (triangular (rev As)). In each step A#As first all Nts in As are expanded, then every rule $A \to B$ w is expanded if $B \in set$ As. If the productions were in triangular form wrt rev As then Ai only depends on $A(i+1), \ldots, An$ which have already been expanded in the first part of the step and are in GNF. Then the all A-productions are also is in GNF after expansion. ``` fun expand_tri :: 'n \ list \Rightarrow ('n,'t)Prods \Rightarrow ('n,'t)Prods where expand_tri [] R = R | expand_tri(A\#As)R = (let R' = expand_tri As R; X = lrec_Prods R' A (set As); Y = subst \ hd R' X A in R' - X \cup Y declare expand_tri.simps(1)[code] lemma expand_tri_Cons_code[code]: expand_tri\ (S\#Ss)\ R = (let R' = expand_tri Ss R; X = \{ w \in Rhss \ R' \ S. \ w \neq [] \land hd \ w \in Nt \ `(set \ Ss) \}; Y = (\bigcup (B,v) \in R' \cup w \in X \text{ if } hd \ w \neq Nt \ B \ then \ \{\} \ else \ \{(S,v @ tl \ w)\}) in R' - (\{S\} \times X) \cup Y) \langle proof \rangle The main function gnf_hd converts into GNF_hd: definition gnf_hd :: ('n::fresh,'t)prods \Rightarrow ('n,'t)Prods where gnf_hd ps = (let As = nts_prods_list ps; ``` # 3 Some Basic Lemmas As' = freshs (set As) As #### 3.1 Eps_free preservation ``` \begin{array}{l} \textbf{lemma} \ Eps_free_expand_hd: Eps_free \ R \Longrightarrow Eps_free \ (expand_hd \ A \ Ss \ R) \\ \langle proof \rangle \end{array} ``` in expand_tri (As' @ rev As) (solve_tri As As' (set ps))) ``` \mathbf{lemma} \ \textit{Eps_free_solve_lrec} : \textit{Eps_free} \ R \Longrightarrow \textit{Eps_free} \ (\textit{solve_lrec} \ A \ A' \ R) \langle \textit{proof} \, \rangle ``` $\begin{array}{l} \textbf{lemma} \ \textit{Eps_free_solve_tri:} \ \textit{Eps_free} \ R \Longrightarrow \textit{length} \ \textit{As} \leq \textit{length} \ \textit{As'} \Longrightarrow \textit{Eps_free} \\ (\textit{solve_tri} \ \textit{As} \ \textit{As'} \ R) \\ (\textit{proof}) \\ \end{array}$ $\begin{array}{l} \textbf{lemma} \ Eps_free_expand_tri: \ Eps_free \ R \Longrightarrow Eps_free \ (expand_tri \ As \ R) \\ \langle proof \rangle \end{array}$ # **3.2** Lemmas about Nts and dep_on lemma $dep_on_Un[simp]$: $dep_on~(R \cup S)~A = dep_on~R~A \cup dep_on~S~A \land proof \rangle$ **lemma** $expand_hd_preserves_neq: B \neq A \Longrightarrow (B,w) \in expand_hd A Ss R \longleftrightarrow (B,w) \in R \land proof \rangle$ Let R be epsilon-free and in triangular form wrt Bs. After $expand_hd$ A Bs R, A depends only on what A depended on before or what one of the $B \in Bs$ depends on, but A does not depend on the Bs: $\mathbf{lemma}\ dep_on_expand_hd:$ **lemma** $dep_on_subs_Nts: dep_on R A \subseteq Nts R \langle proof \rangle$ **lemma** $Nts_expand_hd_sub$: Nts ($expand_hd$ A As R) \subseteq Nts R $\langle proof \rangle$ lemma $Nts_solve_lrec_sub$: Nts ($solve_lrec$ A A' R) \subseteq Nts R \cup {A'} $\land proof$ \land lemma $Nts_solve_tri_sub$: length $As \leq length \ As' \Longrightarrow Nts \ (solve_tri \ As \ As' \ R) \subseteq Nts \ R \cup set \ As' \ \langle proof \rangle$ ### 3.3 Lemmas about triangular $\begin{array}{ll} \textbf{lemma} \ tri_Snoc_impl_tri: \ triangular \ (As @ [A]) \ R \Longrightarrow triangular \ As \ R \\ \langle proof \rangle \end{array}$ If two parts of the productions are *triangular* and no Nts from the first part depend on ones of the second they are also *triangular* when put together. lemma triangular_append: # 4 Function solve_tri: Remove Left-Recursion and Convert into Triangular Form #### 4.1 Basic Lemmas Mostly about rule inclusions in solve_lrec. ``` lemma solve_lrec_rule_simp1 \colon A \neq B \Longrightarrow A \neq B' \Longrightarrow (A, w) \in solve_lrec \ B \ B' \ R \longleftrightarrow (A, w) \in R \ \langle proof \rangle ``` lemma $$solve_lrec_rule_simp3: A \neq A' \Longrightarrow A' \notin Nts R \Longrightarrow Eps_free R \Longrightarrow (A, [Nt A']) \notin solve_lrec A A' R \ \langle proof \rangle$$ lemma $solve_lrec_rule_simp7: A' \neq A \Longrightarrow A' \notin Nts \ R \Longrightarrow (A', \ Nt \ A' \# \ w) \notin solve_lrec \ A \ A' \ R \ \langle proof \rangle$ **lemma** $$solve_lrec_rule_simp8: A' \notin Nts R \Longrightarrow B \neq A' \Longrightarrow B \neq A \Longrightarrow (B, Nt A' \# w) \notin solve_lrec A A' R \langle proof \rangle$$ lemma dep_on_expand_hd_simp2: $B \neq A \Longrightarrow$ dep_on (expand_hd A As R) $B = dep_on$ R $B \land \langle proof \rangle$ lemma dep_on_solve_lrec_simp2: $A \neq B \Longrightarrow A' \neq B \Longrightarrow$ dep_on (solve_lrec A A' R) B = dep_on R B \langle proof \rangle #### 4.2 Triangular Form expand_hd preserves triangular, if it does not expand a Nt considered in triangular. lemma triangular_expand_hd: $[A \notin set \ As; \ triangular \ As \ R] \implies triangular \ As \ (expand_hd \ A \ Bs \ R) \ \langle proof \rangle$ Solving a Nt not considered by triangular preserves the triangular property. **lemma** triangular_solve_lrec: $[A \notin set \ As; \ A' \notin set \ As; \ triangular \ As \ R]$ $\implies triangular \ As \ (solve_lrec \ A \ A' \ R)$ $\langle proof \rangle$ Solving more Nts does not remove the *triangular* property of previously solved Nts. $\mathbf{lemma}\ part_triangular_induct_step:$ Couple of small lemmas about dep_on and the solving of left-recursion. lemma $rm_lrec_rem_own_dep$: $A \notin dep_on \ (rm_lrec \ A \ R) \ A \ \langle proof \rangle$ lemma $rrec_of_lrec_has_no_own_dep$: $A \neq A' \Longrightarrow A \notin dep_on$ $(rrec_of_lrec\ A\ A'\ R)\ A \land (proof)$ lemma $solve_lrec_no_own_dep: A \neq A' \Longrightarrow A \notin dep_on \ (solve_lrec \ A \ A' \ R) \ A \ \langle proof \rangle$ lemma $solve_lrec_no_new_own_dep$: $A \neq A' \Longrightarrow A' \notin Nts \ R \Longrightarrow A' \notin dep_on \ (solve_lrec \ A \ A' \ R) \ A' \ \langle proof \rangle$ **lemma** dep_on_rrec_of_lrec_simp: $Eps_free \ R \Longrightarrow A \neq A' \Longrightarrow dep_on \ (rrec_of_lrec \ A \ A' \ R) \ A = dep_on \ R \ A - \{A\}$ $\langle proof \rangle$ lemma dep_on_solve_lrec_simp: $\mathbf{lemma} \ dep_on_solve_tri_simp: \ B \notin set \ As \Longrightarrow B \notin set \ As' \Longrightarrow length \ As \leq length \ As'$ $\implies dep_on \ (solve_tri \ As \ As' \ R) \ B = dep_on \ R \ B \\ \langle proof \rangle$ Induction step for showing that $solve_tri$ removes dependencies of previously solved Nts. **lemma** triangular_dep_on_induct_step: **assumes** Eps_free R length $As \leq length \ As' \ distinct ((A#As)@A'#As') \ triangular \ As (solve_tri \ As \ As' \ R)$ **shows** dep_on $(solve_tri\ (A \# As)\ (A' \# As')\ R)\ A \cap (\{A\} \cup set\ As) = \{\} \langle proof \rangle$ **theorem** $triangular_solve_tri$: [$Eps_free\ R$; $length\ As \leq length\ As'$; $distinct(As\ @\ As')$] ``` \implies triangular As (solve_tri As As' R) \langle proof \rangle ``` lemma $dep_on_solve_tri_Nts_R$: $\llbracket Eps_free\ R;\ B \in set\ As;\ distinct\ (As\ @\ As');\ set\ As'\ \cap\ Nts\ R = \{\};\ length\ As \leq length\ As' \rrbracket$ $\implies dep_on\ (solve_tri\ As\ As'\ R)\ B \subseteq Nts\ R$ $\langle proof \rangle$ **lemma** $triangular_unused_Nts: set As \cap Nts R = \{\} \implies triangular As R \langle proof \rangle$ The newly added Nts in solve_lrec are in triangular form wrt rev As'. ``` lemma triangular_rev_As'_solve_tri: [set As' \cap Nts \ R = \{\}; distinct (As @ As'); length As \leq length \ As'] \implies triangular (rev As') (solve_tri As \ As' \ R) \langle proof \rangle ``` The entire set of productions is in triangular form after $solve_tri$ wrt As@(rev As'). ``` theorem triangular_As_As'_solve_tri: assumes Eps_free\ R\ length\ As \leq length\ As'\ distinct(As\ @\ As')\ Nts\ R \subseteq set\ As shows triangular\ (As@(rev\ As'))\ (solve_tri\ As\ As'\ R) \langle proof \rangle ``` ## 4.3 solve_lrec Preserves Language ## **4.3.1** Lang $R A \subseteq Lang (solve_lrec B B' R) A$ If there exists a derivation from u to v then there exists one which does not use productions of the form $A \to A$. ``` lemma rm_self_loops_derivels: assumes P \vdash u \Rightarrow l(n) \ v \text{ shows } rm_self_loops P \vdash u \Rightarrow l*v \ \langle proof \rangle ``` Restricted to productions with one lhs (A), and no $A \to A$ productions if there is a derivation from u to A # v then u must start with Nt A. ``` lemma lrec_lemma1: assumes S = \{x. (\exists v. x = (A, v) \land x \in R)\} rm_self_loops S \vdash u \Rightarrow l(n) Nt A \# v shows \exists u'. u = Nt A \# u' \langle proof \rangle ``` Restricted to productions with one lhs (A), and no $A \to A$ productions if there is a derivation from u to A # v then u must start with Nt A and there exists a prefix of A # v s.t. a left-derivation from [Nt A] to that prefix exists. ``` lemma lrec_lemma2: assumes S = \{x. (\exists v. x = (A, v) \land x \in R)\} Eps_free R shows rm_self_loops S \vdash u \Rightarrow l(n) \ Nt \ A\#v \Longrightarrow \exists u' \ v'. \ u = \ Nt \ A \# \ u' \land v = v' @ \ u' \land (rm_self_loops \ S) \vdash [Nt \ A] \Rightarrow l(n) \ Nt \ A \# \ v' \land proof \land ``` Restricted to productions with one lhs (A), and no $A \to A$ productions if there is a left-derivation from $[Nt \ A]$ to A # u then there exists a derivation from $[Nt \ A']$ to $u@[Nt \ A]$ and if $u \neq []$ also to u in $solve_lrec \ A \ A' \ R$. lemma lrec lemma3: ``` assumes S = \{x. (\exists v. x = (A, v) \land x \in R)\} Eps_free R shows rm_self_loops S \vdash [Nt A] \Rightarrow l(n) Nt A \# u \implies solve_lrec A A' S \vdash [Nt A'] \Rightarrow (n) u @ [Nt A'] \land (u \neq [] \longrightarrow solve_lrec A A' S \vdash [Nt A'] \Rightarrow (n) u) \langle proof \rangle ``` A left derivation from p (hd p = Nt A) to q (hd $q \neq Nt$ A) can be split into a left-recursive part, only using left-recursive productions $A \to A \# w$, one left derivation step consuming Nt A using some rule $A \to B \# v$ where $B \neq Nt$ A and a left-derivation comprising the rest of the derivation. ``` lemma lrec_decomp: ``` ``` assumes S = \{x. (\exists v. x = (A, v) \land x \in R)\} Eps_free\ R shows \llbracket hd\ p = Nt\ A;\ hd\ q \neq Nt\ A;\ R \vdash p \Rightarrow l(n)\ q\ \rrbracket \Longrightarrow \exists\ u\ w\ m\ k.\ S \vdash p \Rightarrow l(m)\ Nt\ A\ \#\ u \land S \vdash Nt\ A\ \#\ u \Rightarrow l\ w \land hd\ w \neq Nt\ A \land R \vdash w \Rightarrow l(k)\ q \land n = m + k + 1 \langle proof \rangle ``` Every derivation resulting in a word has a derivation in solve_lrec B B' R. ``` \begin{array}{l} \textbf{lemma} \ tm_derive_impl_solve_lrec_derive: \\ \textbf{assumes} \ Eps_free \ R \ B \neq B' \ B' \notin Nts \ R \\ \textbf{shows} \ \llbracket \ p \neq \llbracket \rrbracket; \ R \vdash p \Rightarrow (n) \ map \ Tm \ q \rrbracket \Longrightarrow solve_lrec \ B \ B' \ R \vdash p \Rightarrow * \ map \ Tm \ q \\ \langle proof \rangle \\ \end{array} ``` ``` corollary Lang_incl_Lang_solve_lrec: [\![Eps_free\ R;\ B \neq B';\ B' \notin Nts\ R]\!] \Longrightarrow Lang\ R\ A \subseteq Lang\ (solve_lrec\ B\ B'\ R) A \langle proof \rangle ``` ## **4.3.2** Lang (solve_lrec B B' R) $A \subseteq Lang R A$ Restricted to right-recursive productions of one Nt $(A' \to w \otimes [Nt \ A'])$ if there is a right-derivation from u to $v \otimes [Nt \ A']$ then u ends in Nt A'. ``` lemma rrec_lemma1: ``` ``` assumes S = \{x. \exists v. x = (A', v @ [Nt A']) \land x \in solve_lrec A A' R\} S \vdash u \Rightarrow r(n) v @ [Nt A'] ``` ``` shows \exists u'. u = u' @ [Nt A'] \langle proof \rangle ``` $solve_lrec$ does not add productions of the form $A' \to Nt A'$. lemma solve_lrec_no_self_loop: Eps_free $R \Longrightarrow A' \notin Nts \ R \Longrightarrow (A', [Nt \ A']) \notin solve_lrec \ A \ A' \ R \ \langle proof \rangle$ Restricted to right-recursive productions of one Nt $(A' \to w @ [Nt \ A'])$ if there is a right-derivation from u to $v @ [Nt \ A']$ then u ends in Nt A' and there exists a suffix of $v @ [Nt \ A']$ s.t. there is a right-derivation from $[Nt \ A']$ to that suffix. ``` lemma rrec_lemma2: assumes S = \{x. (\exists v. x = (A', v @ [Nt A']) \land x \in solve_lrec \ A \ A' \ R)\} Eps_free \ R \ A' \notin Nts \ R shows S \vdash u \Rightarrow r(n) \ v @ [Nt \ A'] \Rightarrow \exists \ u' \ v'. \ u = u' @ [Nt \ A'] \land v = u' @ \ v' \land S \vdash [Nt \ A'] \Rightarrow r(n) \ v' @ [Nt \ A'] \land proof \rangle ``` Restricted to right-recursive productions of one Nt $(A' \to w @ [Nt \ A'])$ if there is a restricted right-derivation in $solve_lrec$ from $[Nt \ A']$ to $u @ [Nt \ A']$ then there exists a derivation in R from $[Nt \ A]$ to A # u. ``` lemma rrec_lemma3: assumes S = \{x. (\exists v. x = (A', v @ [Nt A']) \land x \in solve_lrec \ A \ A' \ R)\} Eps_free \ R A' \notin Nts \ R \ A \neq A' shows S \vdash [Nt \ A'] \Rightarrow r(n) \ u @ [Nt \ A'] \Longrightarrow R \vdash [Nt \ A] \Rightarrow (n) \ Nt \ A \ \# \ u \ \langle proof \rangle ``` A right derivation from $p@[Nt\ A']$ to $q\ (last\ q \neq Nt\ A')$ can be split into a right-recursive part, only using right-recursive productions with Nt A', one right derivation step consuming Nt A' using some rule $A' \to as@[Nt\ B]$ where $Nt\ B \neq Nt\ A'$ and a right-derivation comprising the rest of the derivation. ``` \begin{array}{l} \textbf{lemma} \ rrec_decomp: \\ \textbf{assumes} \ S = \{x. \ (\exists \ v. \ x = (A', \ v \ @ \ [Nt \ A']) \land x \in solve_lrec \ A \ A' \ R)\} \ Eps_free \ R \\ A \neq A' \ A' \notin Nts \ R \\ \textbf{shows} \ \llbracket A' \notin nts_syms \ p; \ last \ q \neq Nt \ A'; \ solve_lrec \ A \ A' \ R \vdash p \ @ \ [Nt \ A'] \Rightarrow r(n) \ q \rrbracket \\ \Longrightarrow \exists \ u \ w \ m \ k. \ S \vdash p \ @ \ [Nt \ A'] \Rightarrow r(m) \ u \ @ \ [Nt \ A'] \\ \land \ solve_lrec \ A \ A' \ R \vdash u \ @ \ [Nt \ A'] \Rightarrow r \ w \land A' \notin nts_syms \ w \\ \land \ solve_lrec \ A \ A' \ R \vdash w \ \Rightarrow r(k) \ q \land n = m + k + 1 \ \langle proof \rangle \\ \end{array} ``` Every word derived by $solve_lrec \ B \ B' \ R$ can be derived by R. lemma tm solve lrec derive impl derive: ``` assumes Eps_free\ R\ B \neq B'\ B' \notin Nts\ R shows [\![p \neq [\!]]; B' \notin nts_syms\ p; (solve_lrec\ B\ B'\ R) \vdash p \Rightarrow (n)\ map\ Tm\ q]\!] \Longrightarrow R \vdash p \Rightarrow *\ map\ Tm\ q \langle proof \rangle corollary Lang_solve_lrec_incl_Lang: assumes Eps_free\ R\ B \neq B'\ B' \notin Nts\ R\ A \neq B' shows Lang\ (solve_lrec\ B\ B'\ R)\ A \subseteq Lang\ R\ A \langle proof \rangle corollary solve_lrec_Lang: [\![Eps_free\ R; B \neq B'; B' \notin Nts\ R; A \neq B']\!] \Longrightarrow Lang\ (solve_lrec\ B\ B'\ R)\ A = Lang\ R\ A \langle proof \rangle ``` # 4.4 expand_hd Preserves Language Every rhs of an $expand_hd$ R production is derivable by R. ``` lemma expand_hd_is_deriveable: (A, w) \in expand_hd \ B \ As \ R \Longrightarrow R \vdash [Nt \ A] \Longrightarrow w \ \langle proof \rangle ``` **lemma** expand_hd_incl1: Lang (expand_hd B As R) $A \subseteq Lang R A \langle proof \rangle$ This lemma expects a set of quadruples (A, a1, B, a2). Each quadruple encodes a specific Nt in a specific rule $A \to a1$ @ Nt B # a2 (this encodes Nt B) which should be expanded, by replacing the Nt with every rule for that Nt and then removing the original rule. This expansion contains the original productions Language. ``` lemma exp_includes_Lang: assumes S_props: \forall x \in S. \exists A at B a2. x = (A, a1, B, a2) \land (A, a1 @ Nt B \# a2) \in R shows Lang R A \subseteq Lang (R - \{x. \exists A \ a1 \ B \ a2. \ x = (A, a1 @ Nt \ B \# a2) \land (A, a1, B, a2) \in S \} \cup \{x. \exists A \ v \ a1 \ a2 \ B. \ x = (A, a1 @ v@a2) \land (A, a1, B, a2) \in S \land (B, v) \in R\}) \ A \langle proof \rangle lemma expand_hd_incl2: Lang (expand_hd \ B \ As \ R) \ A \supseteq Lang \ R \ A \langle proof \rangle theorem expand_hd_Lang: Lang (expand_hd \ B \ As \ R) \ A = Lang \ R \ A \langle proof \rangle ``` # 4.5 solve_tri Preserves Language # 5 Function expand_hd: Convert Triangular Form into GNF # 5.1 expand_hd: Result is in GNF_hd ``` lemma dep_on_helper: dep_on R A = {} \Longrightarrow (A, w) \in R \Longrightarrow w = [] \lor (\exists T wt. w = Tm T \# wt) \langle proof \rangle ``` ``` lemma GNF_hd_iff_dep_on: assumes Eps_free\ R shows GNF_hd\ R\longleftrightarrow (\forall\ A\in Nts\ R.\ dep_on\ R\ A=\{\}) (is ?L=?R) \langle proof \rangle ``` ``` lemma helper_expand_tri1: A \notin set As \Longrightarrow (A, w) \in expand_tri As R \Longrightarrow (A, w) \in R \ \langle proof \rangle ``` If none of the expanded Nts depend on A then any rule depending on A in $expand_tri\ As\ R$ must already have been in R. ``` lemma helper_expand_tri2: \llbracket Eps_free\ R;\ A \notin set\ As;\ \forall\ C \in set\ As.\ A \notin (dep_on\ R\ C);\ B \neq A;\ (B,\ Nt\ A \# w) \in expand_tri\ As\ R \rrbracket \Longrightarrow (B,\ Nt\ A \# w) \in R ``` In a triangular form no Nts depend on the last Nt in the list. ``` lemma triangular_snoc_dep_on: triangular (As@[A]) R \Longrightarrow \forall C \in set \ As. \ A \notin (dep_on \ R \ C) \land (proof) ``` lemma triangular_helper1: triangular As $R \Longrightarrow A \in set \ As \Longrightarrow A \notin dep_on \ R$ $A \in set \ As \Longrightarrow A \notin dep_on \ R$ ``` lemma dep_on_expand_tri: [Eps_free\ R;\ triangular\ (rev\ As)\ R;\ distinct\ As;\ A\in set\ As]] \implies dep_on\ (expand_tri\ As\ R)\ A\cap set\ As=\{\} \langle proof \rangle ``` Interlude: Nts of expand tri: $\langle proof \rangle$ ``` \begin{array}{l} \textbf{lemma} \ Lhss_expand_tri : Lhss \ (expand_tri \ As \ R) \subseteq Lhss \ R \\ \langle proof \rangle \end{array} ``` **lemma** $Rhs_Nts_expand_tri: Rhs_Nts (expand_tri As R) \subseteq Rhs_Nts R \langle proof \rangle$ ``` lemma Nts_expand_tri: Nts (expand_tri As R) \subseteq Nts R \langle proof \rangle ``` If the entire *triangular* form is expanded, the result is in GNF: ``` theorem GNF_hd_expand_tri: assumes Eps_free\ R triangular\ (rev\ As)\ R distinct\ As\ Nts\ R\subseteq set\ As shows GNF_hd\ (expand_tri\ As\ R) \langle proof \rangle ``` Any set of productions can be transformed into GNF via expand_tri (solve_tri). ``` theorem GNF_of_R: assumes assms: Eps_free\ R distinct\ (As\ @\ As')\ Nts\ R\subseteq set\ As\ length\ As\le length\ As' shows GNF_hd\ (expand_tri\ (As'\ @\ rev\ As)\ (solve_tri\ As\ As'\ R)) \langle proof \rangle ``` # 5.2 expand_tri Preserves Language Similar to the proof of Language equivalence of *expand_hd*. All productions in $expand_tri\ As\ R$ are derivable by R. ``` lemma expand_tri_prods_deirvable: (B, bs) \in expand_tri As <math>R \Longrightarrow R \vdash [Nt \ B] \Longrightarrow bs \ \langle proof \rangle ``` Language Preservation: ``` lemma expand_tri_Lang: Lang (expand_tri As R) A = Lang R A \langle proof \rangle ``` # 6 Function gnf_hd: Conversion to GNF_hd All epsilon-free grammars can be put into GNF while preserving their language. Putting the productions into GNF via expand_tri (solve_tri) preserves the language. ``` lemma GNF_of_R_Lang: assumes Eps_free\ R length As \le length\ As' distinct (As\ @\ As')\ Nts\ R\cap set\ As' = \{\}\ A \notin set\ As' shows Lang\ (expand_tri\ (As'\ @\ rev\ As)\ (solve_tri\ As\ As'\ R))\ A = Lang\ R\ A \langle proof \rangle ``` ``` Any epsilon-free Grammar can be brought into GNF. ``` ``` theorem GNF_hd_gnf_hd: eps_free\ ps \Longrightarrow GNF_hd\ (gnf_hd\ ps) \ \langle proof \rangle ``` ``` lemma distinct_app_freshs: [As = nts_prods_list\ ps;\ As' = freshs\ (set\ As)\ As] \Longrightarrow distinct (As\ @\ As') \langle proof \rangle ``` qnf hd preserves the language: **theorem** $Lang_gnf_hd$: $\llbracket eps_free\ ps;\ A\in nts\ ps\ \rrbracket \Longrightarrow Lang\ (gnf_hd\ ps)\ A=lang\ ps\ A\ \langle proof\ \rangle$ Two simple examples: 2, Nt 1, Nt 3, Nt 3, Nt 2]), Example 4.10 [3]: P0 is the input; P1 is the result after Step 1; P3 is the result after Step 2 and 3. ``` lemma ``` ``` let [(1::int, [Nt 2, Nt 3]), (2, [Nt 3, Nt 1]), (2, [Tm (1::int)]), (3, [Nt 1, Nt 2]), (3, [Tm \ \theta]); P1 = [(1, [Nt \ 2, Nt \ 3]), (2, [Nt \ 3, Nt \ 1]), (2, [Tm \ 1]), (3, [Tm\ 1, Nt\ 3, Nt\ 2, Nt\ 4]), (3, [Tm\ 0, Nt\ 4]), (3, [Tm\ 1, Nt\ 3, Nt\ 2]), (3, [Tm \ \theta]), (4, [Nt 1, Nt 3, Nt 2]), (4, [Nt 1, Nt 3, Nt 2, Nt 4])]; P2 = [(1, [Tm 1, Nt 3, Nt 2, Nt 4, Nt 1, Nt 3]), (1, [Tm 1, Nt 3, Nt 2, Nt 1, Nt 3]), (1, [Tm 0, Nt 4, Nt 1, Nt 3]), (1, [Tm 0, Nt 1, Nt 3]), (1, [Tm 1, Nt 3]), (2, [Tm 1, Nt 3, Nt 2, Nt 4, Nt 1]), (2, [Tm 1, Nt 3, Nt 2, Nt 1]), (2, [Tm 0, Nt 4, Nt 1]), (2, [Tm 0, Nt 1]), (2, [Tm 1]), (3, [Tm 1, Nt 3, Nt 2, Nt 4]), (3, [Tm 1, Nt 3, Nt 2]), (3, [Tm \ \theta, Nt \ 4]), (3, [Tm \ \theta]), (4, [Tm 1, Nt 3, Nt 2, Nt 4, Nt 1, Nt 3, Nt 3, Nt 2, Nt 4]), (4, [Tm 1, Nt 3, Nt 2, Nt 4, Nt 1, Nt 3, Nt 3, Nt 2]), (4, [Tm 0, Nt 4, Nt 1, Nt 3, Nt 3, Nt 2, Nt 4]), (4, [Tm 0, Nt 4, Nt 1, Nt 3, Nt 3, Nt 2]), (4, [Tm 1, Nt 3, Nt 3, Nt 2, Nt 4]), (4, [Tm 1, Nt 3, Nt 3, Nt 2]), (4, [Tm 1, Nt 3, Nt 2, Nt 1, Nt 3, Nt 3, Nt 2, Nt 4]), (4, [Tm 1, Nt 3, Nt ``` # 7 Complexity Our method has exponential complexity, which we demonstrate below. Alternative polynomial methods are described in the literature [1]. We start with an informal proof that the blowup of the whole method can be as bad as 2^{n^2} , where n is the number of non terminals, and the starting grammar has 4n productions. Consider this grammar, where a and b are terminals and we use nested alternatives in the obvious way: $$A0 \rightarrow A1 \ (a \mid b) \mid A2 \ (a \mid b) \mid \dots \mid An \ (a \mid b) \mid a \mid b$$ $A(i+1) \rightarrow Ai \ (a \mid b)$ Expanding all alternatives makes this a grammar of size 4n. When converting this grammar into triangular form, starting with $A\theta$, we find that $A\theta$ remains the same after $expand_hd$, and $solve_lrec$ introduces a new additional production for every $A\theta$ production, which we will ignore to simplify things: Then every *expand_hd* step yields for *Ai* these number of productions: - (1) 2 (i+1) productions with rhs $Ak(a \mid b) (i+1)$ for every $k \in [i+1, n]$, - (2) 2^{i+1} productions with rhs $(a \mid b)^{i+1}$, - (3) 2 (i+1) productions with rhs $Ai(a \mid b) (i+1)$. Note that $(a \mid b) \hat{\ } (i+1)$ represents all words of length i+1 over $\{a,b\}$. Solving the left recursion again introduces a new additional production for every production of form (1) and (2), which we will again ignore for simplicity. The productions of (3) get removed by $solve_lrec$. We will not consider the productions of the newly introduced nonterminals. In the triangular form, every Ai has at least $2\widehat{}(i+1)$ productions starting with terminals (2) and $2\widehat{}(i+1)$ productions with rhs starting with Ak for every $k \in [i+1, n]$. When expanding the triangular form starting from An, which has at least the $2\widehat{\ \ }(i+1)$ productions from (2), we observe that the number of productions of Ai (denoted by #Ai) is $\#Ai \geq 2\widehat{\ \ }(i+1) * \#A(i+1)$ (Only considering the productions of the form A(i+1) ($a \mid b$) $\widehat{\ \ }(i+1)$). This yields that $\#Ai \geq 2\widehat{\ \ }(i+1) * 2\widehat{\ \ }(i+2) + ... + (n+1) = 2\widehat{\ \ \ }(i+1) + (i+2) + ... + (n+1)$. Thus $\#A0 \geq 2\widehat{\ \ \ }(1+2+...+n+(n+1)) = 2\widehat{\ \ \ }(n+1)*(n+2)/2$). Below we prove formally that *expand_tri* can cause exponential blowup. Bad grammar: Constructs a grammar which leads to a exponential blowup when expanded by *expand_tri*: ``` fun bad grammar :: 'n list \Rightarrow ('n, nat)Prods where bad_grammar [] = \{\} |bad_grammar[A] = \{(A, [Tm \ \theta]), (A, [Tm \ 1])\} |bad_grammar\ (A\#B\#As) = \{(A, Nt\ B\ \#\ [Tm\ 0]), (A, Nt\ B\ \#\ [Tm\ 1])\} \cup (bad_grammar\ (B\#As)) lemma bad_gram_simp1: A \notin set As \Longrightarrow (A, Bs) \notin (bad_grammar As) \langle proof \rangle lemma expand_tri_simp1: A \notin set\ As \Longrightarrow (A,\ Bs) \in R \Longrightarrow (A,\ Bs) \in expand_tri As R \langle proof \rangle lemma expand_tri_iff1: A \notin set \ As \Longrightarrow (A, Bs) \in expand_tri \ As \ R \longleftrightarrow (A, Bs) \in R \langle proof \rangle lemma expand_tri_insert_simp: B \notin set \ As \implies expand_tri \ As \ (insert \ (B, \ Bs) \ R) = insert \ (B, \ Bs) \ (expand_tri As R \langle proof \rangle lemma expand tri bad grammar simp1: distinct (A \# As) \Longrightarrow length As \ge 1 \implies expand_tri\ As\ (bad_grammar\ (A\#As)) = \{(A, Nt \ (hd \ As) \# [Tm \ 0]), (A, Nt \ (hd \ As) \# [Tm \ 1])\} \cup (expand_tri \ As)\} (bad_grammar\ As)) \langle proof \rangle lemma finite_bad_grammar: finite (bad_grammar As) \langle proof \rangle lemma finite_expand_tri: finite\ R \Longrightarrow finite\ (expand_tri\ As\ R) \langle proof \rangle The last Nt expanded by expand tri has an exponential number of produc- tions. lemma bad gram last expanded card: [distinct As; length As = n; n \ge 1] \implies card (\{v. (hd As, v) \in expand_tri As (bad_grammar As)\}) = 2 ^n \langle proof \rangle The productions resulting from expand tri (bad grammar) have at least ``` exponential size. ``` shows card (expand_tri [0..<n] (bad_grammar [0..<n])) \geq 2^n \langle proof \rangle ``` $\quad \text{end} \quad$ # References - [1] N. Blum and R. Koch. Greibach normal form transformation revisited. *Inf. Comput.*, 150(1):112–118, 1999. - [2] S. A. Greibach. A new normal-form theorem for context-free phrase structure grammars. *J. ACM*, 12(1):42–52, 1965. - [3] J. E. Hopcroft and J. D. Ullman. *Introduction to Automata Theory, Languages and Computation*. Addison-Wesley, 1979.