
Greibach Normal Form

Alexander Haberl and Tobias Nipkow and Akihisa Yamada

September 12, 2025

Abstract

This theory formalizes Hopcroft and Ullman’s algorithm [3] to trans-
form a set of productions into Greibach Normal Form (GNF) [2]. We
concentrate on the essential property of the GNF: every production
starts with a terminal; the tail of a rhs may contain further terminals.
The complexity of the algorithm can be exponential.

theory Greibach_Normal_Form
imports

Context_Free_Grammar .Context_Free_Grammar
Fresh_Identifiers.Fresh_Nat

begin

declare relpowp.simps(2)[simp del]

1 Aux Lemmas
lemma Nts_mono: G ⊆ H =⇒ Nts G ⊆ Nts H
by (auto simp add: Nts_def)

lemma derivern_prepend: R ` u ⇒r(n) v =⇒ R ` p @ u ⇒r(n) p @ v
by (fastforce simp: derivern_iff_rev_deriveln rev_map deriveln_append rev_eq_append_conv)

lemma Lang_subset_if_Ders_subset: Ders R A ⊆ Ders R ′ A =⇒ Lang R A ⊆
Lang R ′ A
by (auto simp add: Lang_def Ders_def)

lemma Eps_free_deriven_Nil:
[[Eps_free R; R ` l ⇒(n) []]] =⇒ l = []

by (metis Eps_free_derives_Nil relpowp_imp_rtranclp)

lemma nts_syms_empty_iff : nts_syms w = {} ←→ (∃ u. w = map Tm u)
by(induction w) (auto simp: ex_map_conv split: sym.split)

1

lemma non_word_has_last_Nt: nts_syms w 6= {} =⇒ ∃ u A v. w = u @ [Nt A]
@ map Tm v
proof (induction w)

case Nil
then show ?case by simp

next
case (Cons a list)
then show ?case using nts_syms_empty_iff [of list]

by(auto simp: Cons_eq_append_conv split: sym.splits)
qed

lemma nts_syms_rev: nts_syms (rev w) = nts_syms w
by(auto simp: nts_syms_def)

Sentential form that is not a word has a first Nt.
lemma non_word_has_first_Nt: nts_syms w 6= {} =⇒ ∃ u A v. w = map Tm u
@ Nt A # v

using nts_syms_rev non_word_has_last_Nt[of rev w]
by (metis append.assoc append_Cons append_Nil rev.simps(2) rev_eq_append_conv

rev_map)

If there exists a derivation from u to v then there exists one which does not
use productions of the form A → A.
lemma no_self_loops_derivels: P ` u ⇒l(n) v =⇒ {p∈P. ¬(∃A. p = (A,[Nt
A]))} ` u ⇒l∗ v
proof(induction n arbitrary: u)

case 0
then show ?case by simp

next
case (Suc n)
then have ∃w. P ` u ⇒l w ∧ P ` w ⇒l(n) v

by (simp add: relpowp_Suc_D2)
then obtain w where W : P ` u ⇒l w ∧ P ` w ⇒l(n) v by blast
then have ∃ (A,x) ∈ P. ∃ u1 u2 . u = map Tm u1 @ Nt A # u2 ∧ w = map

Tm u1 @ x @ u2
by (simp add: derivel_iff)

then obtain A x u1 u2 where prod: u = map Tm u1 @Nt A#u2 ∧ w = map
Tm u1 @x@u2 ∧ (A, x) ∈ P

by blast
then show ?case
proof(cases x = [Nt A])

case True
then have u = w using prod by auto
then show ?thesis using Suc W by auto

next
case False
then have (A, x) ∈ {p∈P. ¬(∃A. p = (A,[Nt A]))} using prod by (auto)
then show ?thesis using Suc W

by (metis (lifting) converse_rtranclp_into_rtranclp derivel.intros prod)

2

qed
qed

A decomposition of a derivation from a sentential form to a word into mul-
tiple derivations that derive words.
lemma derivern_snoc_Nt_Tms_decomp1 :

R ` p @ [Nt A] ⇒r(n) map Tm q
=⇒ ∃ pt At w k m. R ` p ⇒(k) map Tm pt ∧ R ` w ⇒(m) map Tm At ∧ (A,

w) ∈ R
∧ q = pt @ At ∧ n = Suc(k + m)

proof −
assume assm: R ` p @ [Nt A] ⇒r(n) map Tm q
then have R ` p @ [Nt A]⇒(n) map Tm q by (simp add: derivern_iff_deriven)
then have ∃n1 n2 q1 q2 . n = n1 + n2 ∧ map Tm q = q1@q2 ∧ R ` p ⇒(n1)

q1 ∧ R ` [Nt A] ⇒(n2) q2
using deriven_append_decomp by blast

then obtain n1 n2 q1 q2
where decomp1 : n = n1 + n2 ∧ map Tm q = q1 @ q2 ∧ R ` p ⇒(n1) q1 ∧

R ` [Nt A] ⇒(n2) q2
by blast

then have ∃ pt At. q1 = map Tm pt ∧ q2 = map Tm At ∧ q = pt @ At
by (meson map_eq_append_conv)

then obtain pt At where decomp_tms: q1 = map Tm pt ∧ q2 = map Tm At
∧ q = pt @ At by blast

then have ∃w m. n2 = Suc m ∧ R ` w ⇒(m) (map Tm At) ∧ (A,w) ∈ R
using decomp1
by (auto simp add: deriven_start1)

then obtain w m where n2 = Suc m ∧ R ` w ⇒(m) (map Tm At) ∧ (A,w) ∈
R by blast

then have R ` p ⇒(n1) map Tm pt ∧ R ` w ⇒(m) map Tm At ∧ (A, w) ∈ R
∧ q = pt @ At ∧ n = Suc(n1 + m)

using decomp1 decomp_tms by auto
then show ?thesis by blast

qed

A decomposition of a derivation from a sentential form to a word into mul-
tiple derivations that derive words.
lemma word_decomp1 :

R ` p @ [Nt A] @ map Tm ts ⇒(n) map Tm q
=⇒ ∃ pt At w k m. R ` p ⇒(k) map Tm pt ∧ R ` w ⇒(m) map Tm At ∧ (A,

w) ∈ R
∧ q = pt @ At @ ts ∧ n = Suc(k + m)

proof −
assume assm: R ` p @ [Nt A] @ map Tm ts ⇒(n) map Tm q
then have ∃ q1 q2 n1 n2 . R ` p @ [Nt A] ⇒(n1) q1 ∧ R ` map Tm ts ⇒(n2)

q2
∧ map Tm q = q1 @ q2 ∧ n = n1 + n2
using deriven_append_decomp[of n R p @ [Nt A] map Tm ts map Tm q] by

auto

3

then obtain q1 q2 n1 n2
where P: R ` p@[Nt A] ⇒(n1) q1 ∧ R ` map Tm ts ⇒(n2) q2 ∧ map Tm q

= q1 @ q2 ∧ n = n1 + n2
by blast

then have (∃ q1t q2t. q1 = map Tm q1t ∧ q2 = map Tm q2t ∧ q = q1t @ q2t)
using deriven_from_TmsD map_eq_append_conv by blast

then obtain q1t q2t where P1 : q1 = map Tm q1t ∧ q2 = map Tm q2t ∧ q =
q1t @ q2t by blast

then have q2 = map Tm ts using P
using deriven_from_TmsD by blast

then have 1 : ts = q2t using P1
by (metis list.inj_map_strong sym.inject(2))

then have n1 = n using P
by (metis add.right_neutral not_derive_from_Tms relpowp_E2)

then have ∃ pt At w k m. R ` p ⇒(k) map Tm pt ∧ R ` w ⇒(m) map Tm At
∧ (A, w) ∈ R
∧ q1t = pt @ At ∧ n = Suc(k + m)

using P P1 derivern_snoc_Nt_Tms_decomp1 [of n R p A q1t] derivern_iff_deriven
by blast

then obtain pt At w k m where P2 : R ` p ⇒(k) map Tm pt ∧ R ` w ⇒(m)
map Tm At ∧ (A, w) ∈ R
∧ q1t = pt @ At ∧ n = Suc(k + m)

by blast
then have q = pt @ At @ ts using P1 1 by auto
then show ?thesis using P2 by blast

qed

Sentential form that derives to terminals and has a Nt in it has a derivation
that starts with some rule acting on that Nt.
lemma deriven_start_sent:

R ` u @ Nt V # w ⇒(Suc n) map Tm x =⇒ ∃ v. (V , v) ∈ R ∧ R ` u @ v @ w
⇒(n) map Tm x
proof −

assume assm: R ` u @ Nt V # w ⇒(Suc n) map Tm x
then have ∃n1 n2 xu xvw. Suc n = n1 + n2 ∧ map Tm x = xu @ xvw ∧ R `

u ⇒(n1) xu
∧ R ` Nt V # w ⇒(n2) xvw

by (simp add: deriven_append_decomp)
then obtain n1 n2 xu xvw

where P1 : Suc n = n1 + n2 ∧ map Tm x = xu @ xvw ∧ R ` u ⇒(n1) xu ∧
R ` Nt V # w ⇒(n2) xvw

by blast
then have t: @ t. xvw = Nt V # t

by (metis append_eq_map_conv map_eq_Cons_D sym.distinct(1))
then have (∃n3 n4 v xv xw. n2 = Suc (n3 + n4) ∧ xvw = xv @ xw ∧ (V ,v) ∈

R
∧ R ` v ⇒(n3) xv ∧ R ` w ⇒(n4) xw)

using P1 t by (simp add: deriven_Cons_decomp)
then obtain n3 n4 v xv xw

4

where P2 : n2 = Suc (n3 + n4) ∧ xvw = xv @ xw ∧ (V ,v) ∈ R ∧ R ` v
⇒(n3) xv ∧ R ` w ⇒(n4) xw

by blast
then have R ` v @ w ⇒(n3 + n4) xvw using P2

using deriven_append_decomp diff_Suc_1 by blast
then have R ` u @ v @ w ⇒(n1 + n3 + n4) map Tm x using P1 P2 de-

riven_append_decomp
using ab_semigroup_add_class.add_ac(1) by blast

then have R ` u @ v @ w ⇒(n) map Tm x using P1 P2
by (simp add: add.assoc)

then show ?thesis using P2 by blast
qed

definition nts_syms_list :: (′n, ′t)syms ⇒ ′n list ⇒ ′n list where
nts_syms_list sys = foldr (λsy ns. case sy of Nt A ⇒ List.insert A ns | Tm _ ⇒
ns) sys

definition nts_prods_list :: (′n, ′t)prods ⇒ ′n list where
nts_prods_list ps = foldr (λ(A,sys) ns. List.insert A (nts_syms_list sys ns)) ps []

lemma set_nts_syms_list: set(nts_syms_list sys ns) = nts_syms sys ∪ set ns
unfolding nts_syms_list_def
by(induction sys arbitrary: ns) (auto split: sym.split)

lemma set_nts_prods_list: set(nts_prods_list ps) = nts ps
by(induction ps) (auto simp: nts_prods_list_def Nts_def set_nts_syms_list split:
prod.splits)

lemma distinct_nts_syms_list: distinct(nts_syms_list sys ns) = distinct ns
unfolding nts_syms_list_def
by(induction sys arbitrary: ns) (auto split: sym.split)

lemma distinct_nts_prods_list: distinct(nts_prods_list ps)
by(induction ps) (auto simp: nts_prods_list_def distinct_nts_syms_list split: sym.split)

fun freshs :: (′a::fresh) set ⇒ ′a list ⇒ ′a list where
freshs X [] = [] |
freshs X (a#as) = (let a ′ = fresh X a in a ′ # freshs (insert a ′ X) as)

lemma length_freshs: finite X =⇒ length(freshs X as) = length as
by(induction as arbitrary: X)(auto simp: fresh_notIn Let_def)

lemma freshs_disj: finite X =⇒ X ∩ set(freshs X as) = {}
proof(induction as arbitrary: X)

case Cons

5

then show ?case using fresh_notIn by(auto simp add: Let_def)
qed simp

lemma freshs_distinct: finite X =⇒ distinct (freshs X as)
proof(induction as arbitrary: X)

case (Cons a as)
then show ?case

using freshs_disj[of insert (fresh X a) X as] fresh_notIn by(auto simp add:
Let_def)
qed simp

This theory formalizes a method to transform a set of productions into
Greibach Normal Form (GNF) [2]. We concentrate on the essential property
of the GNF: every production starts with a Tm; the tail of a rhs can contain
further terminals. This is formalized as GNF_hd below. This more liberal
definition of GNF is also found elsewhere [1].
The algorithm consists of two phases:

• solve_tri converts the productions into a triangular form, where Nt
Ai does not depend on Nts Ai, . . ., An. This involves the elimination
of left-recursion and is the heart of the algorithm.

• expand_tri expands the triangular form by substituting in: Due to
triangular form, A0 productions satisfy GNF_hd and we can substi-
tute them into the heads of the remaining productions. Now all A1
productions satisfy GNF_hd, and we continue until all productions
satisfy GNF_hd.

This is essentially the algorithm given by Hopcroft and Ullman [3], except
that we can drop the conversion to Chomsky Normal Form because of our
more liberal GNF_hd.

2 Function Definitions

Depend on: A depends on B if there is a rule A → B w:
definition dep_on :: (′n, ′t) Prods ⇒ ′n ⇒ ′n set where
dep_on R A = {B. ∃w. (A,Nt B # w) ∈ R}

GNF property: All productions start with a terminal.
definition GNF_hd :: (′n, ′t)Prods ⇒ bool where
GNF_hd R = (∀ (A, w) ∈ R. ∃ t. hd w = Tm t)

GNF property expressed via dep_on:
definition GNF_hd_dep_on :: (′n, ′t)Prods ⇒ bool where
GNF_hd_dep_on R = (∀A ∈ Nts R. dep_on R A = {})

6

abbreviation lrec_Prods :: (′n, ′t)Prods ⇒ ′n ⇒ ′n set ⇒ (′n, ′t)Prods where
lrec_Prods R A S ≡ {(A ′,Bw) ∈ R. A ′=A ∧ (∃w B. Bw = Nt B # w ∧ B ∈ S)}

abbreviation subst_hd :: (′n, ′t)Prods ⇒ (′n, ′t)Prods ⇒ ′n ⇒ (′n, ′t)Prods where
subst_hd R X A ≡ {(A,v@w) |v w. ∃B. (A,Nt B # w) ∈ X ∧ (B,v) ∈ R}

Expand head: Replace all rules A → B w where B ∈ Ss (Ss = solved Nts
in triangular form) by A → v w where B → v. Starting from the end of Ss.
fun expand_hd :: ′n ⇒ ′n list ⇒ (′n, ′t)Prods ⇒ (′n, ′t)Prods where
expand_hd A [] R = R |
expand_hd A (S#Ss) R =
(let R ′ = expand_hd A Ss R;

X = lrec_Prods R ′ A {S};
Y = subst_hd R ′ X A

in R ′ − X ∪ Y)

lemma Rhss_code[code]: Rhss P A = snd ‘ {Aw ∈ P. fst Aw = A}
by(auto simp add: Rhss_def image_iff)

declare expand_hd.simps(1)[code]
lemma expand_hd_Cons_code[code]: expand_hd A (S#Ss) R =
(let R ′ = expand_hd A Ss R;

X = {w ∈ Rhss R ′ A. w 6= [] ∧ hd w = Nt S};
Y = (

⋃
(B,v) ∈ R ′.

⋃
w ∈ X . if hd w 6= Nt B then {} else {(A,v @ tl w)})

in R ′ − ({A} × X) ∪ Y)
by(simp add: Rhss_def Let_def neq_Nil_conv Ball_def hd_append split: if_splits,
safe, force+)

Remove left-recursions: Remove left-recursive rules A → A w:
definition rm_lrec :: ′n ⇒ (′n, ′t)Prods ⇒ (′n, ′t)Prods where
rm_lrec A R = R − {(A,Nt A # v)|v. True}

lemma rm_lrec_code[code]:
rm_lrec A R = {Aw ∈ R. let (A ′,w) = Aw in A ′ 6= A ∨ w = [] ∨ hd w 6= Nt A}

by(auto simp add: rm_lrec_def neq_Nil_conv)

Make right-recursion of left-recursion: Conversion from left-recursion to right-
recursion: Split A-rules into A → u and A → A v. Keep A → u but replace
A → A v by A → u A ′, A ′→ v, A ′→ v A ′.
The then part of the if statement is only an optimisation, so that we do not
introduce the A → u A ′ rules if we do not introduce any A ′ rules, but the
function also works, if we always enter the else part.
definition rrec_of_lrec :: ′n ⇒ ′n ⇒ (′n, ′t)Prods ⇒ (′n, ′t)Prods where
rrec_of_lrec A A ′ R =
(let V = {v. (A,Nt A # v) ∈ R ∧ v 6= []};

U = {u. (A,u) ∈ R ∧ ¬(∃ v. u = Nt A # v) }

7

in if V = {} then R − {(A, [Nt A])} else ({A} × U) ∪ (
⋃

u∈U . {(A,u@[Nt
A ′])}) ∪ ({A ′} × V) ∪ (

⋃
v∈V . {(A ′,v @ [Nt A ′])}))

lemma rrec_of_lrec_code[code]: rrec_of_lrec A A ′ R =
(let RA = Rhss R A;

V = tl ‘ {w ∈ RA. w 6= [] ∧ hd w = Nt A ∧ tl w 6= []};
U = {u ∈ RA. u = [] ∨ hd u 6= Nt A }

in if V = {} then R − {(A, [Nt A])} else ({A} × U) ∪ (
⋃

u∈U . {(A,u@[Nt
A ′])}) ∪ ({A ′} × V) ∪ (

⋃
v∈V . {(A ′,v @ [Nt A ′])}))

proof −
let ?RA = Rhss R A
let ?Vc = tl ‘ {w ∈ ?RA. w 6= [] ∧ hd w = Nt A ∧ tl w 6= []}
let ?Uc = {u ∈ ?RA. u = [] ∨ hd u 6= Nt A }

let ?V = {v. (A,Nt A # v) ∈ R ∧ v 6= []}
let ?U = {u. (A,u) ∈ R ∧ ¬(∃ v. u = Nt A # v) }

have 1 : ?V = ?Vc by (auto simp add: Rhss_def neq_Nil_conv image_def)
moreover have 2 : ?U = ?Uc by (auto simp add: Rhss_def neq_Nil_conv)

ultimately show ?thesis
unfolding rrec_of_lrec_def Let_def by presburger

qed

Solve left-recursions: Solves the left-recursion of Nt A by replacing it with a
right-recursion on a fresh Nt A ′. The fresh Nt A ′ is also given as a parameter.
definition solve_lrec :: ′n ⇒ ′n ⇒ (′n, ′t)Prods ⇒ (′n, ′t)Prods where
solve_lrec A A ′ R = rm_lrec A R ∪ rrec_of_lrec A A ′ R

lemmas solve_lrec_defs = solve_lrec_def rm_lrec_def rrec_of_lrec_def Let_def
Nts_def

Solve triangular: Put R into triangular form wrt As (using the new Nts As ′).
In each step A#As, first the remaining Nts in As are solved, then A is solved.
This should mean that in the result of the outermost expand_hd A As, A
only depends on A. Then the A rules in the result of solve_lrec A A ′ are
already in GNF. More precisely: the result should be in triangular form.
fun solve_tri :: ′a list ⇒ ′a list ⇒ (′a, ′b) Prods ⇒ (′a, ′b) Prods where
solve_tri [] _ R = R |
solve_tri (A#As) (A ′#As ′) R = solve_lrec A A ′ (expand_hd A As (solve_tri As
As ′ R))

Triangular form wrt [A1 ,. . .,An] means that Ai must not depend on Ai,
. . ., An. In particular: A0 does not depend on any Ai, its rules are already
in GNF. Therefore one can convert a triangular form into GNF by back-
wards substitution: The rules for Ai are used to expand the heads of all
A(i+1),. . .,An rules, starting with A0.
fun triangular :: ′n list ⇒ (′n × (′n, ′t) sym list) set ⇒ bool where

8

triangular [] R = True |
triangular (A#As) R = (dep_on R A ∩ ({A} ∪ set As) = {} ∧ triangular As R)

Remove self loops: Removes all productions of the form A → A.
definition rm_self_loops :: (′n, ′t) Prods ⇒ (′n, ′t) Prods where

rm_self_loops P = P − {x∈P. ∃A. x = (A, [Nt A])}

Expand triangular: Expands all head-Nts of productions with a Lhs in As
(triangular (rev As)). In each step A#As first all Nts in As are expanded,
then every rule A → B w is expanded if B ∈ set As. If the productions
were in triangular form wrt rev As then Ai only depends on A(i+1), . . .,
An which have already been expanded in the first part of the step and are
in GNF. Then the all A-productions are also is in GNF after expansion.
fun expand_tri :: ′n list ⇒ (′n, ′t)Prods ⇒ (′n, ′t)Prods where
expand_tri [] R = R |
expand_tri (A#As) R =
(let R ′ = expand_tri As R;

X = lrec_Prods R ′ A (set As);
Y = subst_hd R ′ X A

in R ′ − X ∪ Y)

declare expand_tri.simps(1)[code]
lemma expand_tri_Cons_code[code]: expand_tri (S#Ss) R =
(let R ′ = expand_tri Ss R;

X = {w ∈ Rhss R ′ S . w 6= [] ∧ hd w ∈ Nt ‘ (set Ss)};
Y = (

⋃
(B,v) ∈ R ′.

⋃
w ∈ X . if hd w 6= Nt B then {} else {(S ,v @ tl w)})

in R ′ − ({S} × X) ∪ Y)
by(simp add: Let_def Rhss_def neq_Nil_conv Ball_def , safe, force+)

The main function gnf_hd converts into GNF_hd:
definition gnf_hd :: (′n::fresh, ′t)prods ⇒ (′n, ′t)Prods where
gnf_hd ps =
(let As = nts_prods_list ps;

As ′ = freshs (set As) As
in expand_tri (As ′ @ rev As) (solve_tri As As ′ (set ps)))

3 Some Basic Lemmas
3.1 Eps_free preservation
lemma Eps_free_expand_hd: Eps_free R =⇒ Eps_free (expand_hd A Ss R)

by (induction A Ss R rule: expand_hd.induct)
(auto simp add: Eps_free_def Let_def)

lemma Eps_free_solve_lrec: Eps_free R =⇒ Eps_free (solve_lrec A A ′ R)
unfolding solve_lrec_defs Eps_free_def by (auto)

9

lemma Eps_free_solve_tri: Eps_free R =⇒ length As ≤ length As ′ =⇒ Eps_free
(solve_tri As As ′ R)

by (induction As As ′ R rule: solve_tri.induct)
(auto simp add: Eps_free_solve_lrec Eps_free_expand_hd)

lemma Eps_free_expand_tri: Eps_free R =⇒ Eps_free (expand_tri As R)
by (induction As R rule: expand_tri.induct) (auto simp add: Let_def Eps_free_def)

3.2 Lemmas about Nts and dep_on
lemma dep_on_Un[simp]: dep_on (R ∪ S) A = dep_on R A ∪ dep_on S A

by(auto simp add: dep_on_def)

lemma expand_hd_preserves_neq: B 6= A =⇒ (B,w) ∈ expand_hd A Ss R ←→
(B,w) ∈ R

by(induction A Ss R rule: expand_hd.induct) (auto simp add: Let_def)

Let R be epsilon-free and in triangular form wrt Bs. After expand_hd A Bs
R, A depends only on what A depended on before or what one of the B ∈
Bs depends on, but A does not depend on the Bs:
lemma dep_on_expand_hd:
[[Eps_free R; triangular Bs R; distinct Bs; A /∈ set Bs]]
=⇒ dep_on (expand_hd A Bs R) A ⊆ (dep_on R A ∪ (

⋃
B∈set Bs. dep_on R

B)) − set Bs
proof(induction A Bs R rule: expand_hd.induct)

case (1 A R)
then show ?case by simp

next
case (2 A B Bs R)
then show ?case
by(fastforce simp add: Let_def dep_on_def Cons_eq_append_conv Eps_free_expand_hd

Eps_free_Nil
expand_hd_preserves_neq set_eq_iff)

qed

lemma dep_on_subs_Nts: dep_on R A ⊆ Nts R
by (auto simp add: Nts_def dep_on_def)

lemma Nts_expand_hd_sub: Nts (expand_hd A As R) ⊆ Nts R
proof (induction A As R rule: expand_hd.induct)

case (1 A R)
then show ?case by simp

next
case (2 A S Ss R)
let ?R ′ = expand_hd A Ss R
let ?X = {(Al, Bw). (Al, Bw) ∈ ?R ′ ∧ Al = A ∧ (∃w. Bw = Nt S # w)}
let ?Y = {(A, v @ w) |v w. (A, Nt S # w) ∈ ?R ′ ∧ (S , v) ∈ ?R ′}

have lhs_sub: Lhss ?Y ⊆ Lhss ?R ′ by (auto simp add: Lhss_def)

10

have B /∈ Rhs_Nts ?R ′ −→ B /∈ Rhs_Nts ?Y for B
by (fastforce simp add: Rhs_Nts_def split: prod.splits)

then have B ∈ Rhs_Nts ?Y −→ B ∈ Rhs_Nts ?R ′ for B by blast
then have rhs_sub: Rhs_Nts ?Y ⊆ Rhs_Nts ?R ′ by auto

have Nts ?Y ⊆ Nts ?R ′ using lhs_sub rhs_sub by (auto simp add: Nts_Lhss_Rhs_Nts)
then have Nts ?Y ⊆ Nts R using 2 by auto
then show ?case using Nts_mono[of ?R ′ − ?X] 2 by (auto simp add: Let_def

Nts_Un)
qed

lemma Nts_solve_lrec_sub: Nts (solve_lrec A A ′ R) ⊆ Nts R ∪ {A ′}
proof −

have 1 : Nts (rm_lrec A R) ⊆ Nts R
by (auto simp add: Nts_mono rm_lrec_def)

have 2 : Lhss (rrec_of_lrec A A ′ R) ⊆ Lhss R ∪ {A ′}
by (auto simp add: rrec_of_lrec_def Let_def Lhss_def)

have 3 : Rhs_Nts (rrec_of_lrec A A ′ R) ⊆ Rhs_Nts R ∪ {A ′}
by (auto simp add: rrec_of_lrec_def Let_def Rhs_Nts_def)

have Nts (rrec_of_lrec A A ′ R) ⊆ Nts R ∪ {A ′} using 2 3 by (auto simp add:
Nts_Lhss_Rhs_Nts)

then show ?thesis using 1 by (auto simp add: solve_lrec_def Nts_Un)
qed

lemma Nts_solve_tri_sub: length As ≤ length As ′ =⇒ Nts (solve_tri As As ′ R)
⊆ Nts R ∪ set As ′

proof (induction As As ′ R rule: solve_tri.induct)
case (1 uu R)
then show ?case by simp

next
case (2 A As A ′ As ′ R)
have Nts (solve_tri (A # As) (A ′ # As ′) R) =

Nts (solve_lrec A A ′ (expand_hd A As (solve_tri As As ′ R))) by simp
also have ... ⊆ Nts (expand_hd A As (solve_tri As As ′ R)) ∪ {A ′}

using Nts_solve_lrec_sub[of A A ′ expand_hd A As (solve_tri As As ′ R)] by
simp

also have ... ⊆ Nts (solve_tri As As ′ R) ∪ {A ′}
using Nts_expand_hd_sub[of A As solve_tri As As ′ R] by auto

finally show ?case using 2 by auto
next

case (3 v va c)
then show ?case by simp

qed

11

3.3 Lemmas about triangular
lemma tri_Snoc_impl_tri: triangular (As @ [A]) R =⇒ triangular As R
proof(induction As R rule: triangular .induct)

case (1 R)
then show ?case by simp

next
case (2 A As R)
then show ?case by simp

qed

If two parts of the productions are triangular and no Nts from the first part
depend on ones of the second they are also triangular when put together.
lemma triangular_append:
[[triangular As R; triangular Bs R; ∀A∈set As. dep_on R A ∩ set Bs = {}]]
=⇒ triangular (As@Bs) R

by (induction As) auto

4 Function solve_tri: Remove Left-Recursion and
Convert into Triangular Form

4.1 Basic Lemmas

Mostly about rule inclusions in solve_lrec.
lemma solve_lrec_rule_simp1 : A 6= B =⇒ A 6= B ′ =⇒ (A, w) ∈ solve_lrec B B ′

R ←→ (A, w) ∈ R
unfolding solve_lrec_defs by (auto)

lemma solve_lrec_rule_simp3 : A 6= A ′ =⇒ A ′ /∈ Nts R =⇒ Eps_free R
=⇒ (A, [Nt A ′]) /∈ solve_lrec A A ′ R
unfolding solve_lrec_defs by (auto simp: Eps_free_def)

lemma solve_lrec_rule_simp7 : A ′ 6= A =⇒ A ′ /∈ Nts R =⇒ (A ′, Nt A ′ # w) /∈
solve_lrec A A ′ R
unfolding solve_lrec_defs by(auto simp: neq_Nil_conv split: prod.splits)

lemma solve_lrec_rule_simp8 : A ′ /∈ Nts R =⇒ B 6= A ′ =⇒ B 6= A
=⇒ (B, Nt A ′ # w) /∈ solve_lrec A A ′ R

unfolding solve_lrec_defs by (auto split: prod.splits)

lemma dep_on_expand_hd_simp2 : B 6= A =⇒ dep_on (expand_hd A As R) B
= dep_on R B

by (auto simp add: dep_on_def expand_hd_preserves_neq)

lemma dep_on_solve_lrec_simp2 : A 6= B =⇒ A ′ 6= B =⇒ dep_on (solve_lrec
A A ′ R) B = dep_on R B
unfolding solve_lrec_defs dep_on_def by (auto)

12

4.2 Triangular Form

expand_hd preserves triangular, if it does not expand a Nt considered in
triangular.
lemma triangular_expand_hd: [[A /∈ set As; triangular As R]] =⇒ triangular As
(expand_hd A Bs R)

by (induction As) (auto simp add: dep_on_expand_hd_simp2)

Solving a Nt not considered by triangular preserves the triangular property.
lemma triangular_solve_lrec: [[A /∈ set As; A ′ /∈ set As; triangular As R]]
=⇒ triangular As (solve_lrec A A ′ R)

proof(induction As)
case Nil
then show ?case by simp

next
case (Cons a As)
have triangular (a # As) (solve_lrec A A ′ R) =
(dep_on (solve_lrec A A ′ R) a ∩ ({a} ∪ set As) = {} ∧ triangular As (solve_lrec

A A ′ R))
by simp

also have ... = (dep_on (solve_lrec A A ′ R) a ∩ ({a} ∪ set As) = {}) using
Cons by auto
also have ... = (dep_on R a ∩ ({a} ∪ set As) = {}) using Cons dep_on_solve_lrec_simp2

by (metis list.set_intros(1))
then show ?case using Cons by auto

qed

Solving more Nts does not remove the triangular property of previously
solved Nts.
lemma part_triangular_induct_step:
[[Eps_free R; distinct ((A#As)@(A ′#As ′)); triangular As (solve_tri As As ′ R)]]
=⇒ triangular As (solve_tri (A#As) (A ′#As ′) R)
by (cases As = [])
(auto simp add: triangular_expand_hd triangular_solve_lrec)

Couple of small lemmas about dep_on and the solving of left-recursion.
lemma rm_lrec_rem_own_dep: A /∈ dep_on (rm_lrec A R) A

by (auto simp add: dep_on_def rm_lrec_def)

lemma rrec_of_lrec_has_no_own_dep: A 6= A ′ =⇒ A /∈ dep_on (rrec_of_lrec
A A ′ R) A
by (auto simp add: dep_on_def rrec_of_lrec_def Let_def Cons_eq_append_conv)

lemma solve_lrec_no_own_dep: A 6= A ′ =⇒ A /∈ dep_on (solve_lrec A A ′ R) A
by (auto simp add: solve_lrec_def rm_lrec_rem_own_dep rrec_of_lrec_has_no_own_dep)

lemma solve_lrec_no_new_own_dep: A 6= A ′ =⇒ A ′ /∈ Nts R =⇒ A ′ /∈ dep_on
(solve_lrec A A ′ R) A ′

13

by (auto simp add: dep_on_def solve_lrec_rule_simp7)

lemma dep_on_rem_lrec_simp: dep_on (rm_lrec A R) A = dep_on R A − {A}
by (auto simp add: dep_on_def rm_lrec_def)

lemma dep_on_rrec_of_lrec_simp:
Eps_free R =⇒ A 6= A ′ =⇒ dep_on (rrec_of_lrec A A ′ R) A = dep_on R A −
{A}

using Eps_freeE_Cons[of R A []]
by (auto simp add: dep_on_def rrec_of_lrec_def Let_def Cons_eq_append_conv)

lemma dep_on_solve_lrec_simp:
[[Eps_free R; A 6= A ′]] =⇒ dep_on (solve_lrec A A ′ R) A = dep_on R A − {A}
by (simp add: dep_on_rem_lrec_simp dep_on_rrec_of_lrec_simp solve_lrec_def)

lemma dep_on_solve_tri_simp: B /∈ set As =⇒ B /∈ set As ′ =⇒ length As ≤
length As ′

=⇒ dep_on (solve_tri As As ′ R) B = dep_on R B
proof (induction As As ′ R rule: solve_tri.induct)

case (1 uu R)
then show ?case by simp

next
case (2 A As A ′ As ′ R)
have dep_on (solve_tri (A#As) (A ′#As ′) R) B = dep_on (expand_hd A As

(solve_tri As As ′ R)) B
using 2 by (auto simp add: dep_on_solve_lrec_simp2)

then show ?case using 2 by (auto simp add: dep_on_expand_hd_simp2)
next

case (3 v va c)
then show ?case by simp

qed

Induction step for showing that solve_tri removes dependencies of previ-
ously solved Nts.
lemma triangular_dep_on_induct_step:

assumes Eps_free R length As ≤ length As ′ distinct ((A#As)@A ′#As ′) trian-
gular As (solve_tri As As ′ R)

shows dep_on (solve_tri (A # As) (A ′ # As ′) R) A ∩ ({A} ∪ set As) = {}
proof(cases As = [])

case True
with assms solve_lrec_no_own_dep show ?thesis by fastforce

next
case False
have Eps_free (solve_tri As As ′ R)

using assms Eps_free_solve_tri by auto
then have test: X ∈ set As =⇒ X /∈ dep_on (expand_hd A As (solve_tri As

As ′ R)) A for X
using assms dep_on_expand_hd
by (metis distinct.simps(2) distinct_append insert_Diff subset_Diff_insert)

14

have A: triangular As (solve_tri (A # As) (A ′ # As ′) R)
using part_triangular_induct_step assms by metis

have dep_on (solve_tri (A # As) (A ′ # As ′) R) A ∩ ({A} ∪ set As)
= (dep_on (expand_hd A As (solve_tri As As ′ R)) A − {A}) ∩ ({A} ∪ set

As)
using assms by (simp add: dep_on_solve_lrec_simp Eps_free_solve_tri Eps_free_expand_hd)

also have ... = dep_on (expand_hd A As (solve_tri As As ′ R)) A ∩ set As
using assms by auto

also have ... = {} using test by fastforce
finally show ?thesis by auto

qed

theorem triangular_solve_tri: [[Eps_free R; length As ≤ length As ′; distinct(As
@ As ′)]]
=⇒ triangular As (solve_tri As As ′ R)

proof(induction As As ′ R rule: solve_tri.induct)
case (1 uu R)
then show ?case by simp

next
case (2 A As A ′ As ′ R)
then have length As ≤ length As ′ ∧ distinct (As @ As ′) by auto
then have A: triangular As (solve_tri (A # As) (A ′ # As ′) R)

using part_triangular_induct_step 2 2 .IH by metis

have (dep_on (solve_tri (A # As) (A ′ # As ′) R) A ∩ ({A} ∪ set As) = {})
using triangular_dep_on_induct_step 2
by (metis ‹length As ≤ length As ′ ∧ distinct (As @ As ′)›)

then show ?case using A by simp
next

case (3 v va c)
then show ?case by simp

qed

lemma dep_on_solve_tri_Nts_R:
[[Eps_free R; B ∈ set As; distinct (As @ As ′); set As ′ ∩ Nts R = {}; length As
≤ length As ′]]

=⇒ dep_on (solve_tri As As ′ R) B ⊆ Nts R
proof (induction As As ′ R arbitrary: B rule: solve_tri.induct)

case (1 uu R)
then show ?case by (simp add: dep_on_subs_Nts)

next
case (2 A As A ′ As ′ R)
then have F1 : dep_on (solve_tri As As ′ R) B ⊆ Nts R

by (cases B = A) (simp_all add: dep_on_solve_tri_simp dep_on_subs_Nts)
then have F2 : dep_on (expand_hd A As (solve_tri As As ′ R)) B ⊆ Nts R
proof (cases B = A)

case True

15

have triangular As (solve_tri As As ′ R) using 2 by (auto simp add: triangu-
lar_solve_tri)

then have dep_on (expand_hd A As (solve_tri As As ′ R)) B ⊆ dep_on
(solve_tri As As ′ R) B

∪
⋃

(dep_on (solve_tri As As ′ R) ‘ set As) − set As
using 2 True by (auto simp add: dep_on_expand_hd Eps_free_solve_tri)

also have ... ⊆ Nts R using 2 .IH 2 F1 by auto
finally show ?thesis.

next
case False
then show ?thesis using F1 by (auto simp add: dep_on_expand_hd_simp2)

qed
then have dep_on (solve_lrec A A ′ (expand_hd A As (solve_tri As As ′ R))) B
⊆ Nts R

proof (cases B = A)
case True
then show ?thesis
using 2 F2 by (auto simp add: dep_on_solve_lrec_simp Eps_free_solve_tri

Eps_free_expand_hd)
next

case False
have B 6= A ′ using 2 by auto

then show ?thesis using 2 F2 False by (simp add: dep_on_solve_lrec_simp2)
qed
then show ?case by simp

next
case (3 v va c)
then show ?case by simp

qed

lemma triangular_unused_Nts: set As ∩ Nts R = {} =⇒ triangular As R
proof (induction As)

case Nil
then show ?case by auto

next
case (Cons a As)
have dep_on R a ⊆ Nts R by (simp add: dep_on_subs_Nts)
then have dep_on R a ∩ (set As ∪ {a}) = {} using Cons by auto
then show ?case using Cons by auto

qed

The newly added Nts in solve_lrec are in triangular form wrt rev As ′.
lemma triangular_rev_As ′_solve_tri:
[[set As ′ ∩ Nts R = {}; distinct (As @ As ′); length As ≤ length As ′]]
=⇒ triangular (rev As ′) (solve_tri As As ′ R)

proof (induction As As ′ R rule: solve_tri.induct)
case (1 uu R)
then show ?case by (auto simp add: triangular_unused_Nts)

next

16

case (2 A As A ′ As ′ R)
then have triangular (rev As ′) (solve_tri As As ′ R) by simp
then have triangular (rev As ′) (expand_hd A As (solve_tri As As ′ R))

using 2 by (auto simp add: triangular_expand_hd)
then have F1 : triangular (rev As ′) (solve_tri (A#As) (A ′#As ′) R)

using 2 by (auto simp add: triangular_solve_lrec)
have Nts (solve_tri As As ′ R) ⊆ Nts R ∪ set As ′ using 2 by (auto simp add:

Nts_solve_tri_sub)
then have F_nts: Nts (expand_hd A As (solve_tri As As ′ R)) ⊆ Nts R ∪ set

As ′

using Nts_expand_hd_sub[of A As (solve_tri As As ′ R)] by auto
then have A ′ /∈ dep_on (solve_lrec A A ′ (expand_hd A As (solve_tri As As ′

R))) A ′

using 2 solve_lrec_no_new_own_dep[of A A ′] by auto
then have F2 : triangular [A ′] (solve_tri (A#As) (A ′#As ′) R) by auto
have ∀ a∈set As ′. dep_on (solve_tri (A#As) (A ′#As ′) R) a ∩ set [A ′] = {}
proof

fix a
assume a ∈ set As ′

then have A ′ /∈ Nts (expand_hd A As (solve_tri As As ′ R)) ∧ a 6= A using
F_nts 2 by auto

then show dep_on (solve_tri (A#As) (A ′#As ′) R) a ∩ set [A ′] = {}
using 2 solve_lrec_rule_simp8 [of A ′ (expand_hd A As (solve_tri As As ′ R))

a A]
solve_lrec_rule_simp7 [of A ′]

by (cases a = A ′) (auto simp add: dep_on_def)
qed

then have triangular (rev (A ′#As ′)) (solve_tri (A#As) (A ′#As ′) R)
using F1 F2 by (auto simp add: triangular_append)

then show ?case by auto
next

case (3 v va c)
then show ?case by auto

qed

The entire set of productions is in triangular form after solve_tri wrt As@(rev
As ′).
theorem triangular_As_As ′_solve_tri:

assumes Eps_free R length As ≤ length As ′ distinct(As @ As ′) Nts R ⊆ set As
shows triangular (As@(rev As ′)) (solve_tri As As ′ R)

proof −
from assms have 1 : triangular As (solve_tri As As ′ R) by (auto simp add:

triangular_solve_tri)
have set As ′ ∩ Nts R = {} using assms by auto
then have 2 : triangular (rev As ′) (solve_tri As As ′ R)

using assms by (auto simp add: triangular_rev_As ′_solve_tri)
have set As ′ ∩ Nts R = {} using assms by auto
then have ∀A∈set As. dep_on (solve_tri As As ′ R) A ⊆ Nts R

17

using assms by (auto simp add: dep_on_solve_tri_Nts_R)
then have ∀A∈set As. dep_on (solve_tri As As ′ R) A ∩ set As ′ = {} using

assms by auto
then show ?thesis using 1 2 by (auto simp add: triangular_append)

qed

4.3 solve_lrec Preserves Language
4.3.1 Lang R A ⊆ Lang (solve_lrec B B ′ R) A

If there exists a derivation from u to v then there exists one which does not
use productions of the form A → A.
lemma rm_self_loops_derivels: assumes P ` u ⇒l(n) v shows rm_self_loops
P ` u ⇒l∗ v
proof −
have rm_self_loops P = {p∈P. ¬(∃A. p = (A,[Nt A]))} unfolding rm_self_loops_def

by auto
with no_self_loops_derivels[of n P u v] assms show ?thesis by simp

qed

Restricted to productions with one lhs (A), and no A → A productions if
there is a derivation from u to A # v then u must start with Nt A.
lemma lrec_lemma1 :

assumes S = {x. (∃ v. x = (A, v) ∧ x ∈ R)} rm_self_loops S ` u ⇒l(n) Nt
A#v

shows ∃ u ′. u = Nt A # u ′

proof (rule ccontr)
assume neg: @ u ′. u = Nt A # u ′

show False
proof (cases u = [])

case True
then show ?thesis using assms by simp

next
case False
then show ?thesis
proof (cases ∃ t. hd u = Tm t)

case True
then show ?thesis using assms neg
by (metis (no_types, lifting) False deriveln_Tm_Cons hd_Cons_tl list.inject)

next
case False
then have ∃B u ′. u = Nt B # u ′ ∧ B 6= A using assms neg

by (metis deriveln_from_empty list.sel(1) neq_Nil_conv sym.exhaust)
then obtain B u ′ where B_not_A: u = Nt B # u ′ ∧ B 6= A by blast
then have ∃w. (B, w) ∈ rm_self_loops S using assms neg

by (metis (no_types, lifting) derivels_Nt_Cons relpowp_imp_rtranclp)
then obtain w where elem: (B, w) ∈ rm_self_loops S by blast
have (B, w) /∈ rm_self_loops S using B_not_A assms by (auto simp add:

rm_self_loops_def)

18

then show ?thesis using elem by simp
qed

qed
qed

Restricted to productions with one lhs (A), and no A → A productions if
there is a derivation from u to A # v then u must start with Nt A and
there exists a prefix of A # v s.t. a left-derivation from [Nt A] to that prefix
exists.
lemma lrec_lemma2 :

assumes S = {x. (∃ v. x = (A, v) ∧ x ∈ R)} Eps_free R
shows rm_self_loops S ` u ⇒l(n) Nt A#v =⇒
∃ u ′ v ′. u = Nt A # u ′ ∧ v = v ′ @ u ′ ∧ (rm_self_loops S) ` [Nt A] ⇒l(n) Nt

A # v ′

proof (induction n arbitrary: u)
case 0
then show ?case by simp

next
case (Suc n)
have ∃ u ′. u = Nt A # u ′ using lrec_lemma1 [of S] Suc assms by auto
then obtain u ′ where u ′_prop: u = Nt A # u ′ by blast
then have ∃w. (A,w) ∈ (rm_self_loops S) ∧ (rm_self_loops S) ` w @ u ′⇒l(n)

Nt A # v
using Suc by (auto simp add: deriveln_Nt_Cons split: prod.split)

then obtain w where w_prop:
(A,w) ∈ (rm_self_loops S) ∧ (rm_self_loops S) ` w @ u ′⇒l(n) Nt A # v
by blast

then have ∃ u ′′ v ′′. w @ u ′ = Nt A # u ′′ ∧ v = v ′′ @ u ′′ ∧
(rm_self_loops S) ` [Nt A] ⇒l(n) Nt A # v ′′

using Suc.IH Suc by auto
then obtain u ′′ v ′′ where u ′′_prop: w @ u ′ = Nt A # u ′′ ∧ v = v ′′ @ u ′′ and

ln_derive: (rm_self_loops S) ` [Nt A] ⇒l(n) Nt A # v ′′

by blast
have w 6= [] ∧ w 6= [Nt A]

using Suc w_prop assms by (auto simp add: Eps_free_Nil rm_self_loops_def
split: prod.splits)

then have ∃ u1 . u1 6= [] ∧ w = Nt A # u1 ∧ u ′′ = u1 @ u ′

using u ′′_prop by (metis Cons_eq_append_conv)
then obtain u1 where u1_prop: u1 6= [] ∧ w = Nt A # u1 ∧ u ′′ = u1 @ u ′

by blast
then have 1 : u = Nt A # u ′ ∧ v = (v ′′ @ u1) @ u ′ using u ′_prop u ′′_prop

by auto

have 2 : (rm_self_loops S) ` [Nt A] @ u1 ⇒l(n) Nt A # v ′′ @ u1
using ln_derive deriveln_append
by fastforce

have (rm_self_loops S) ` [Nt A] ⇒l [Nt A] @ u1
using w_prop u ′′_prop u1_prop
by (simp add: derivel_Nt_Cons)

19

then have (rm_self_loops S) ` [Nt A] ⇒l(Suc n) Nt A # v ′′ @ u1
using ln_derive
by (meson 2 relpowp_Suc_I2)

then show ?case using 1 by blast
qed

Restricted to productions with one lhs (A), and no A → A productions if
there is a left-derivation from [Nt A] to A # u then there exists a derivation
from [Nt A ′] to u@[Nt A] and if u 6= [] also to u in solve_lrec A A ′ R.
lemma lrec_lemma3 :

assumes S = {x. (∃ v. x = (A, v) ∧ x ∈ R)} Eps_free R
shows rm_self_loops S ` [Nt A] ⇒l(n) Nt A # u
=⇒ solve_lrec A A ′ S ` [Nt A ′] ⇒(n) u @ [Nt A ′] ∧

(u 6= [] −→ solve_lrec A A ′ S ` [Nt A ′] ⇒(n) u)
proof(induction n arbitrary: u)

case 0
then show ?case by (simp)

next
case (Suc n)
then have ∃w. (A,w) ∈ rm_self_loops S ∧ rm_self_loops S ` w ⇒l(n) Nt A

u
by (auto simp add: deriveln_Nt_Cons split: prod.splits)

then obtain w where w_prop1 : (A,w) ∈ (rm_self_loops S) ∧ (rm_self_loops
S) ` w ⇒l(n) Nt A#u

by blast
then have ∃w ′ u ′. w = Nt A # w ′ ∧ u = u ′ @ w ′ ∧ (rm_self_loops S) ` [Nt

A] ⇒l(n) Nt A # u ′

using lrec_lemma2 [of S] Suc assms by auto
then obtain w ′ u ′ where w_prop2 : w = Nt A # w ′ ∧ u = u ′ @ w ′ and

ln_derive: rm_self_loops S ` [Nt A] ⇒l(n) Nt A # u ′ by blast
then have w ′ 6= [] using w_prop1 Suc by (auto simp add: rm_self_loops_def)
have (A, w) ∈ S using Suc.prems(1) w_prop1 by (auto simp add: rm_self_loops_def)
then have prod_in_solve_lrec: (A ′, w ′ @ [Nt A ′]) ∈ solve_lrec A A ′ S

using w_prop2 ‹w ′ 6= []› unfolding solve_lrec_defs by (auto)

have 1 : solve_lrec A A ′ S ` [Nt A ′] ⇒(n) u ′ @ [Nt A ′] using Suc.IH Suc
ln_derive by auto

then have 2 : solve_lrec A A ′ S ` [Nt A ′] ⇒(Suc n) u ′ @ w ′ @ [Nt A ′]
using prod_in_solve_lrec by (simp add: derive_prepend derive_singleton

relpowp_Suc_I)

have (A ′, w ′) ∈ solve_lrec A A ′ S using w_prop2 ‹w ′ 6= []› ‹(A, w) ∈ S›
unfolding solve_lrec_defs by (auto)

then have solve_lrec A A ′ S ` [Nt A ′] ⇒(Suc n) u ′ @ w ′

using 1 by (simp add: derive_prepend derive_singleton relpowp_Suc_I)
then show ?case using w_prop2 2 by simp

qed

A left derivation from p (hd p = Nt A) to q (hd q 6= Nt A) can be split into

20

a left-recursive part, only using left-recursive productions A → A # w, one
left derivation step consuming Nt A using some rule A → B # v where B
6= Nt A and a left-derivation comprising the rest of the derivation.
lemma lrec_decomp:

assumes S = {x. (∃ v. x = (A, v) ∧ x ∈ R)} Eps_free R
shows [[hd p = Nt A; hd q 6= Nt A; R ` p ⇒l(n) q]]
=⇒ ∃ u w m k. S ` p ⇒l(m) Nt A # u ∧ S ` Nt A # u ⇒l w ∧ hd w 6= Nt A ∧

R ` w ⇒l(k) q ∧ n = m + k + 1
proof (induction n arbitrary: p)

case 0
then have pq_not_Nil: p 6= [] ∧ q 6= [] using Eps_free_derives_Nil assms

by simp

have p = q using 0 by auto
then show ?case using pq_not_Nil 0 by auto

next
case (Suc n)
then have pq_not_Nil: p 6= [] ∧ q 6= []

using Eps_free_deriveln_Nil assms by fastforce

have ex_p ′: ∃ p ′. p = Nt A # p ′ using pq_not_Nil Suc
by (metis hd_Cons_tl)

then obtain p ′ where P: p = Nt A # p ′ by blast
have @ q ′. q = Nt A # q ′ using pq_not_Nil Suc

by fastforce

then have ∃w. (A,w) ∈ R ∧ R ` w @ p ′ ⇒l(n) q using Suc P by (auto simp
add: deriveln_Nt_Cons)

then obtain w where w_prop: (A,w) ∈ R ∧ R ` w @ p ′⇒l(n) q by blast
then have prod_in_S : (A, w) ∈ S using Suc assms by auto

show ?case
proof (cases ∃w ′. w = Nt A # w ′)

case True
then obtain w ′ where w = Nt A # w ′ by blast
then have ∃ u w ′′ m k. S ` w @ p ′⇒l(m) Nt A # u ∧ S ` Nt A # u ⇒l w ′′

∧
hd w ′′ 6= Nt A ∧ R ` w ′′⇒l(k) q ∧ n = m + k + 1

using Suc.IH Suc.prems w_prop by auto
then obtain u w ′′ m k where propo: S ` w @ p ′⇒l(m) Nt A # u ∧ S ` Nt

A # u ⇒l w ′′ ∧
hd w ′′ 6= Nt A ∧ R ` w ′′⇒l(k) q ∧ n = m + k + 1

by blast
then have S ` Nt A # p ′⇒l(Suc m) Nt A # u

using prod_in_S P by (meson derivel_Nt_Cons relpowp_Suc_I2)

then have S ` p ⇒l(Suc m) Nt A # u ∧ S ` Nt A # u ⇒l w ′′ ∧
hd w ′′ 6= Nt A ∧ R ` w ′′⇒l(k) q ∧ Suc n = Suc m + k + 1

using P propo by auto

21

then show ?thesis by blast
next

case False
then have w 6= [] ∧ hd w 6= Nt A using Suc w_prop assms

by (metis Eps_free_Nil list.collapse)
then have S ` p ⇒l(0) Nt A # p ′ ∧ S ` Nt A # p ′ ⇒l w @ p ′ ∧ hd (w @

p ′) 6= Nt A ∧
R ` w @ p ′⇒l(n) q ∧ Suc n = 0 + n + 1

using P w_prop prod_in_S by (auto simp add: derivel_Nt_Cons)
then show ?thesis by blast

qed
qed

Every derivation resulting in a word has a derivation in solve_lrec B B ′ R.
lemma tm_derive_impl_solve_lrec_derive:

assumes Eps_free R B 6= B ′ B ′ /∈ Nts R
shows [[p 6= []; R ` p ⇒(n) map Tm q]] =⇒ solve_lrec B B ′ R ` p ⇒∗ map Tm

q
proof (induction n arbitrary: p q rule: nat_less_induct)

case (1 n)
then show ?case
proof (cases solve_lrec B B ′ R = R − {(B, [Nt B])})

case True
have 2 : rm_self_loops R ⊆ R − {(B, [Nt B])} by (auto simp add: rm_self_loops_def)
have rm_self_loops R ` p ⇒∗ map Tm q
using rm_self_loops_derivels 1 .prems(2) deriveln_iff_deriven derivels_imp_derives

by blast
then show ?thesis

using 2 by (simp add: True derives_mono)
next

case solve_lrec_not_R: False
then show ?thesis
proof (cases nts_syms p = {})

case True
then obtain pt where p = map Tm pt using nts_syms_empty_iff by blast
then have map Tm q = p

using deriven_from_TmsD 1 .prems(2) by blast
then show ?thesis by simp

next
case False

then have ∃C pt p2 . p = map Tm pt @ Nt C # p2 using non_word_has_first_Nt[of
p] by auto

then obtain C pt p2 where P: p = map Tm pt @ Nt C # p2 by blast
then have R ` map Tm pt @ Nt C # p2 ⇒l(n) map Tm q

using 1 .prems by (simp add: deriveln_iff_deriven)
then have ∃ q2 . map Tm q = map Tm pt @ q2 ∧ R ` Nt C # p2 ⇒l(n) q2
by (simp add: deriveln_map_Tm_append[of n R pt Nt C # p2 map Tm q])

then obtain q2 where P1 : map Tm q = map Tm pt @ q2 ∧ R ` Nt C #

22

p2 ⇒l(n) q2 by blast
then have n 6= 0

by (metis False P nts_syms_map_Tm relpowp_0_E)
then have ∃m. n = Suc m

by (meson old.nat.exhaust)
then obtain m where n_Suc: n = Suc m by blast
have ∃ q2t. q2 = map Tm q2t

by (metis P1 append_eq_map_conv)
then obtain q2t where q2_tms: q2 = map Tm q2t by blast
then show ?thesis
proof (cases C = B)

case True
then have n_derive: R ` Nt B # p2 ⇒(n) q2 using P1

by (simp add: deriveln_imp_deriven)
have @ v2 . q2 = Nt B #v2 ∧ R ` p2 ⇒(n) v2 using q2_tms by auto
then have ∃n1 n2 w v1 v2 . n = Suc (n1 + n2) ∧ q2 = v1 @ v2 ∧

(B,w) ∈ R ∧ R ` w ⇒(n1) v1 ∧ R ` p2 ⇒(n2) v2 using n_derive
deriven_Cons_decomp

by (smt (verit) sym.inject(1))
then obtain n1 n2 w v1 v2 where decomp: n = Suc (n1 + n2) ∧ q2 = v1

@ v2 ∧
(B,w) ∈ R ∧ R ` w ⇒(n1) v1 ∧ R ` p2 ⇒(n2) v2 by blast

then have derive_from_singleton: R ` [Nt B] ⇒(Suc n1) v1
using deriven_Suc_decomp_left by force

have v1 6= []
using assms(1) Eps_free_deriven_Nil derive_from_singleton by auto

then have ∃ v1t. v1 = map Tm v1t
using decomp append_eq_map_conv q2_tms by blast

then obtain v1t where v1_tms: v1 = map Tm v1t by blast
then have v1_hd: hd v1 6= Nt B

by (metis Nil_is_map_conv ‹v1 6= []› hd_map sym.distinct(1))

have deriveln_from_singleton: R ` [Nt B] ⇒l(Suc n1) v1 using v1_tms
derive_from_singleton

by (simp add: deriveln_iff_deriven)

This is the interesting bit where we use other lemmas to prove that we
can replace a specific part of the derivation which is a left-recursion by a
right-recursion in the new productions.

let ?S = {x. (∃ v. x = (B, v) ∧ x ∈ R)}
have ∃ u w m k. ?S ` [Nt B] ⇒l(m) Nt B # u ∧ ?S ` Nt B # u ⇒l w ∧

hd w 6= Nt B ∧ R ` w ⇒l(k) v1 ∧ Suc n1 = m + k + 1
using deriveln_from_singleton v1_hd assms lrec_decomp[of ?S B R [Nt

B] v1 Suc n1] by auto
then obtain u w2 m2 k where l_decomp: ?S ` [Nt B] ⇒l(m2) Nt B # u

∧ ?S ` Nt B # u ⇒l w2
∧ hd w2 6= Nt B ∧ R ` w2 ⇒l(k) v1 ∧ Suc n1 = m2 + k + 1

by blast

23

then have ∃w2 ′. (B,w2 ′) ∈ ?S ∧ w2 = w2 ′ @ u by (simp add: de-
rivel_Nt_Cons)

then obtain w2 ′ where w2 ′_prod: (B,w2 ′) ∈ ?S ∧ w2 = w2 ′ @ u by blast
then have w2 ′_props: w2 ′ 6= [] ∧ hd w2 ′ 6= Nt B

by (metis (mono_tags, lifting) assms(1) Eps_free_Nil l_decomp
hd_append mem_Collect_eq)

have solve_lrec_subset: solve_lrec B B ′ ?S ⊆ solve_lrec B B ′ R
unfolding solve_lrec_defs by (auto)

have solve_lrec B B ′ ?S ` [Nt B] ⇒∗ w2
proof(cases u = [])

case True
have (B, w2 ′) ∈ solve_lrec B B ′ ?S

using w2 ′_props w2 ′_prod unfolding solve_lrec_defs by (auto)
then show ?thesis

by (simp add: True bu_prod derives_if_bu w2 ′_prod)
next

case False
have solved_prod: (B, w2 ′ @ [Nt B ′]) ∈ solve_lrec B B ′ ?S

using w2 ′_props w2 ′_prod solve_lrec_not_R unfolding solve_lrec_defs
by (auto)

have rm_self_loops ?S ` [Nt B] ⇒l∗ Nt B # u
using l_decomp rm_self_loops_derivels by auto

then have ∃ ln. rm_self_loops ?S ` [Nt B] ⇒l(ln) Nt B # u
by (simp add: rtranclp_power)

then obtain ln where rm_self_loops ?S ` [Nt B] ⇒l(ln) Nt B # u by
blast

then have (solve_lrec B B ′ ?S) ` [Nt B ′] ⇒(ln) u
using lrec_lemma3 [of ?S B R ln u] assms False by auto

then have rrec_derive: (solve_lrec B B ′ ?S) ` w2 ′ @ [Nt B ′] ⇒(ln) w2 ′

@ u
by (simp add: deriven_prepend)

have (solve_lrec B B ′ ?S) ` [Nt B] ⇒ w2 ′ @ [Nt B ′]
using solved_prod by (simp add: derive_singleton)

then have (solve_lrec B B ′ ?S) ` [Nt B] ⇒∗ w2 ′ @ u
using rrec_derive by (simp add: converse_rtranclp_into_rtranclp

relpowp_imp_rtranclp)
then show ?thesis using w2 ′_prod by auto

qed
then have 2 : solve_lrec B B ′ R ` [Nt B] ⇒∗ w2

using solve_lrec_subset by (simp add: derives_mono)

From here on all the smaller derivations are concatenated after applying the
IH.

have fact2 : R ` w2 ⇒l(k) v1 ∧ Suc n1 = m2 + k + 1 using l_decomp
by auto

then have k < n
using decomp by linarith

24

then have 3 : solve_lrec B B ′ R ` w2 ⇒∗ v1 using 1 .IH v1_tms fact2
by (metis deriveln_iff_deriven derives_from_empty relpowp_imp_rtranclp)

have 4 : solve_lrec B B ′ R ` [Nt B] ⇒∗ v1 using 2 3
by auto

have ∃ v2t. v2 = map Tm v2t using decomp append_eq_map_conv q2_tms
by blast

then obtain v2t where v2_tms: v2 = map Tm v2t by blast
have n2 < n using decomp by auto
then have 5 : solve_lrec B B ′ R ` p2 ⇒∗ v2 using 1 .IH decomp v2_tms

by (metis derives_from_empty relpowp_imp_rtranclp)

have solve_lrec B B ′ R ` Nt B # p2 ⇒∗ q2 using 4 5 decomp
by (metis append_Cons append_Nil derives_append_decomp)

then show ?thesis
by (simp add: P P1 True derives_prepend)

next
case C_not_B: False
then have ∃w. (C , w) ∈ R ∧ R ` w @ p2 ⇒l(m) q2

by (metis P1 derivel_Nt_Cons relpowp_Suc_D2 n_Suc)
then obtain w where P2 : (C , w) ∈ R ∧ R ` w @ p2 ⇒l(m) q2 by blast
then have rule_in_solve_lrec: (C , w) ∈ (solve_lrec B B ′ R)

using C_not_B by (auto simp add: solve_lrec_def rm_lrec_def)
have derivem: R ` w @ p2 ⇒(m) q2 using q2_tms P2 by (auto simp add:

deriveln_iff_deriven)
have w @ p2 6= []

using assms(1) Eps_free_Nil P2 by fastforce
then have (solve_lrec B B ′ R) ` w @ p2 ⇒∗ q2 using 1 .IH q2_tms n_Suc

derivem
by auto

then have (solve_lrec B B ′ R) ` Nt C # p2 ⇒∗ q2
using rule_in_solve_lrec by (auto simp add: derives_Cons_rule)

then show ?thesis
by (simp add: P P1 derives_prepend)

qed
qed

qed
qed

corollary Lang_incl_Lang_solve_lrec:
[[Eps_free R; B 6= B ′; B ′ /∈ Nts R]] =⇒ Lang R A ⊆ Lang (solve_lrec B B ′ R)

A
by(auto simp: Lang_def intro: tm_derive_impl_solve_lrec_derive dest: rtranclp_imp_relpowp)

4.3.2 Lang (solve_lrec B B ′ R) A ⊆ Lang R A

Restricted to right-recursive productions of one Nt (A ′ → w @ [Nt A ′]) if
there is a right-derivation from u to v @ [Nt A ′] then u ends in Nt A ′.

25

lemma rrec_lemma1 :
assumes S = {x. ∃ v. x = (A ′, v @ [Nt A ′]) ∧ x ∈ solve_lrec A A ′ R} S ` u
⇒r(n) v @ [Nt A ′]

shows ∃ u ′. u = u ′ @ [Nt A ′]
proof (rule ccontr)

assume neg: @ u ′. u = u ′ @ [Nt A ′]
show False
proof (cases u = [])

case True
then show ?thesis using assms derivern_imp_deriven by fastforce

next
case u_not_Nil: False
then show ?thesis
proof (cases ∃ t. last u = Tm t)

case True
then show ?thesis using assms neg

by (metis (lifting) u_not_Nil append_butlast_last_id derivern_snoc_Tm
last_snoc)

next
case False
then have ∃B u ′. u = u ′ @ [Nt B] ∧ B 6= A ′ using assms neg u_not_Nil

by (metis append_butlast_last_id sym.exhaust)
then obtain B u ′ where B_not_A ′: u = u ′ @ [Nt B] ∧ B 6= A ′ by blast
then have ∃w. (B, w) ∈ S using assms neg

by (metis (lifting) derivers_snoc_Nt relpowp_imp_rtranclp)
then obtain w where elem: (B, w) ∈ S by blast
have (B, w) /∈ S using B_not_A ′ assms by auto
then show ?thesis using elem by simp

qed
qed

qed

solve_lrec does not add productions of the form A ′→ Nt A ′.
lemma solve_lrec_no_self_loop: Eps_free R =⇒ A ′ /∈ Nts R =⇒ (A ′, [Nt A ′]) /∈
solve_lrec A A ′ R
unfolding solve_lrec_defs by (auto)

Restricted to right-recursive productions of one Nt (A ′ → w @ [Nt A ′]) if
there is a right-derivation from u to v @ [Nt A ′] then u ends in Nt A ′ and
there exists a suffix of v @ [Nt A ′] s.t. there is a right-derivation from [Nt
A ′] to that suffix.
lemma rrec_lemma2 :
assumes S = {x. (∃ v. x = (A ′, v @ [Nt A ′]) ∧ x ∈ solve_lrec A A ′ R)} Eps_free
R A ′ /∈ Nts R
shows S ` u ⇒r(n) v @ [Nt A ′]
=⇒ ∃ u ′ v ′. u = u ′ @ [Nt A ′] ∧ v = u ′ @ v ′ ∧ S ` [Nt A ′] ⇒r(n) v ′ @ [Nt A ′]

proof (induction n arbitrary: u)
case 0
then show ?case by simp

26

next
case (Suc n)
have ∃ u ′. u = u ′ @ [Nt A ′] using rrec_lemma1 [of S] Suc.prems assms by auto
then obtain u ′ where u ′_prop: u = u ′ @ [Nt A ′] by blast
then have ∃w. (A ′,w) ∈ S ∧ S ` u ′ @ w ⇒r(n) v @ [Nt A ′]

using Suc by (auto simp add: derivern_snoc_Nt)
then obtain w where w_prop: (A ′,w) ∈ S ∧ S ` u ′ @ w ⇒r(n) v @ [Nt A ′]

by blast
then have ∃ u ′′ v ′′. u ′ @ w = u ′′ @ [Nt A ′] ∧ v = u ′′ @ v ′′ ∧ S ` [Nt A ′] ⇒r(n)

v ′′ @ [Nt A ′]
using Suc.IH Suc by auto

then obtain u ′′ v ′′ where u ′′_prop: u ′ @ w = u ′′ @ [Nt A ′] ∧ v = u ′′ @ v ′′ ∧
S ` [Nt A ′] ⇒r(n) v ′′ @ [Nt A ′]

by blast
have w 6= [] ∧ w 6= [Nt A ′]

using Suc.IH assms w_prop solve_lrec_no_self_loop by fastforce
then have ∃ u1 . u1 6= [] ∧ w = u1 @ [Nt A ′] ∧ u ′′ = u ′ @ u1

using u ′′_prop
by (metis (no_types, opaque_lifting) append.left_neutral append1_eq_conv

append_assoc rev_exhaust)
then obtain u1 where u1_prop: u1 6= [] ∧ w = u1 @ [Nt A ′] ∧ u ′′ = u ′ @ u1

by blast
then have 1 : u = u ′ @ [Nt A ′] ∧ v = u ′ @ (u1 @ v ′′) using u ′_prop u ′′_prop

by auto

have 2 : S ` u1 @ [Nt A ′] ⇒r(n) u1 @ v ′′ @ [Nt A ′] using u ′′_prop de-
rivern_prepend

by fastforce
have S ` [Nt A ′] ⇒r u1 @ [Nt A ′] using w_prop u ′′_prop u1_prop

by (simp add: deriver_singleton)
then have S ` [Nt A ′] ⇒r(Suc n) u1 @ v ′′ @ [Nt A ′] using u ′′_prop

by (meson 2 relpowp_Suc_I2)
then show ?case using 1

by auto
qed

Restricted to right-recursive productions of one Nt (A ′ → w @ [Nt A ′]) if
there is a restricted right-derivation in solve_lrec from [Nt A ′] to u @ [Nt
A ′] then there exists a derivation in R from [Nt A] to A # u.
lemma rrec_lemma3 :

assumes S = {x. (∃ v. x = (A ′, v @ [Nt A ′]) ∧ x ∈ solve_lrec A A ′ R)} Eps_free
R

A ′ /∈ Nts R A 6= A ′

shows S ` [Nt A ′] ⇒r(n) u @ [Nt A ′] =⇒ R ` [Nt A] ⇒(n) Nt A # u
proof(induction n arbitrary: u)

case 0
then show ?case by (simp)

next
case (Suc n)

27

then have ∃w. (A ′,w) ∈ S ∧ S ` w ⇒r(n) u @ [Nt A ′]
by (auto simp add: derivern_singleton split: prod.splits)

then obtain w where w_prop1 : (A ′,w) ∈ S ∧ S ` w ⇒r(n) u @ [Nt A ′] by
blast

then have ∃ u ′ v ′. w = u ′ @ [Nt A ′] ∧ u = u ′ @ v ′ ∧ S ` [Nt A ′] ⇒r(n) v ′ @
[Nt A ′]

using rrec_lemma2 [of S] assms by auto
then obtain u ′ v ′ where u ′v ′_prop: w = u ′ @ [Nt A ′] ∧ u = u ′ @ v ′

∧ S ` [Nt A ′] ⇒r(n) v ′ @ [Nt A ′]
by blast

then have 1 : R ` [Nt A] ⇒(n) Nt A # v ′ using Suc.IH by auto

have (A ′, u ′ @ [Nt A ′]) ∈ solve_lrec A A ′ R −→ (A, Nt A # u ′) ∈ R
using assms unfolding solve_lrec_defs by (auto)

then have (A, Nt A # u ′) ∈ R using u ′v ′_prop assms(1) w_prop1 by auto

then have R ` [Nt A] ⇒ Nt A # u ′

by (simp add: derive_singleton)
then have R ` [Nt A] @ v ′⇒ Nt A # u ′ @ v ′

by (metis Cons_eq_appendI derive_append)
then have R ` [Nt A] ⇒(Suc n) Nt A # (u ′ @ v ′) using 1

by (simp add: relpowp_Suc_I)
then show ?case using u ′v ′_prop by simp

qed

A right derivation from p@[Nt A ′] to q (last q 6= Nt A ′) can be split into
a right-recursive part, only using right-recursive productions with Nt A ′,
one right derivation step consuming Nt A ′ using some rule A ′ → as@[Nt
B] where Nt B 6= Nt A ′ and a right-derivation comprising the rest of the
derivation.
lemma rrec_decomp:

assumes S = {x. (∃ v. x = (A ′, v @ [Nt A ′]) ∧ x ∈ solve_lrec A A ′ R)} Eps_free
R

A 6= A ′ A ′ /∈ Nts R
shows [[A ′ /∈ nts_syms p; last q 6= Nt A ′; solve_lrec A A ′ R ` p @ [Nt A ′] ⇒r(n)

q]]
=⇒ ∃ u w m k. S ` p @ [Nt A ′] ⇒r(m) u @ [Nt A ′]
∧ solve_lrec A A ′ R ` u @ [Nt A ′] ⇒r w ∧ A ′ /∈ nts_syms w
∧ solve_lrec A A ′ R ` w ⇒r(k) q ∧ n = m + k + 1

proof (induction n arbitrary: p)
case 0
then have pq_not_Nil: p @ [Nt A ′] 6= [] ∧ q 6= [] using Eps_free_derives_Nil

by auto

have p = q using 0 by auto
then show ?case using pq_not_Nil 0 by auto

next
case (Suc n)
have pq_not_Nil: p @ [Nt A ′] 6= [] ∧ q 6= []

28

using assms Suc.prems Eps_free_deriven_Nil Eps_free_solve_lrec derivern_imp_deriven
by (metis (no_types, lifting) snoc_eq_iff_butlast)

have @ q ′. q = q ′ @ [Nt A ′] using pq_not_Nil Suc.prems
by fastforce

then have ∃w. (A ′,w) ∈ (solve_lrec A A ′ R) ∧ (solve_lrec A A ′ R) ` p @ w
⇒r(n) q

using Suc.prems by (auto simp add: derivern_snoc_Nt)
then obtain w where w_prop: (A ′,w) ∈ (solve_lrec A A ′ R) ∧ solve_lrec A A ′

R ` p @ w ⇒r(n) q
by blast

show ?case
proof (cases (A ′, w) ∈ S)

case True
then have ∃w ′. w = w ′ @ [Nt A ′]

by (simp add: assms(1))
then obtain w ′ where w_decomp: w = w ′ @ [Nt A ′] by blast
then have A ′ /∈ nts_syms (p @ w ′) using assms Suc.prems True

unfolding solve_lrec_defs by (auto split: if_splits)
then have ∃ u w ′′ m k. S ` p @ w ⇒r(m) u @ [Nt A ′] ∧ solve_lrec A A ′ R `

u @ [Nt A ′] ⇒r w ′′

∧ A ′ /∈ nts_syms w ′′ ∧ solve_lrec A A ′ R ` w ′′⇒r(k) q ∧ n = m + k + 1
using Suc.IH Suc.prems w_prop w_decomp by (metis (lifting) append_assoc)

then obtain u w ′′ m k where propo:
S ` p @ w ⇒r(m) u @ [Nt A ′] ∧ solve_lrec A A ′ R ` u @ [Nt A ′] ⇒r w ′′ ∧

A ′ /∈ nts_syms w ′′

∧ solve_lrec A A ′ R ` w ′′⇒r(k) q ∧ n = m + k + 1
by blast

then have S ` p @ [Nt A ′] ⇒r(Suc m) u @ [Nt A ′] using True
by (meson deriver_snoc_Nt relpowp_Suc_I2)

then have S ` p @ [Nt A ′] ⇒r(Suc m) u @ [Nt A ′] ∧ solve_lrec A A ′ R ` u
@ [Nt A ′] ⇒r w ′′

∧ A ′ /∈ nts_syms w ′′ ∧ solve_lrec A A ′ R ` w ′′ ⇒r(k) q ∧ Suc n = Suc m
+ k + 1

using propo by auto
then show ?thesis by blast

next
case False
then have last w 6= Nt A ′ using assms

by (metis (mono_tags, lifting) Eps_freeE_Cons Eps_free_solve_lrec
append_butlast_last_id list.distinct(1) mem_Collect_eq w_prop)

then have A ′ /∈ nts_syms w using assms w_prop
unfolding solve_lrec_defs by (auto split: if_splits)

then have w 6= [] ∧ A ′ /∈ nts_syms w using assms w_prop False
by (metis (mono_tags, lifting) Eps_free_Nil Eps_free_solve_lrec)

then have S ` p @ [Nt A ′] ⇒r(0) p @ [Nt A ′] ∧ solve_lrec A A ′ R ` p @ [Nt

29

A ′] ⇒r p @ w
∧ A ′ /∈ nts_syms (p @ w) ∧ solve_lrec A A ′ R ` p @ w ⇒r(n) q ∧ Suc n

= 0 + n + 1
using w_prop Suc.prems by (auto simp add: deriver_snoc_Nt)

then show ?thesis by blast
qed

qed

Every word derived by solve_lrec B B ′ R can be derived by R.
lemma tm_solve_lrec_derive_impl_derive:

assumes Eps_free R B 6= B ′ B ′ /∈ Nts R
shows [[p 6= []; B ′ /∈ nts_syms p; (solve_lrec B B ′ R) ` p ⇒(n) map Tm q]] =⇒

R ` p ⇒∗ map Tm q
proof (induction arbitrary: p q rule: nat_less_induct)

case (1 n)
let ?R ′ = (solve_lrec B B ′ R)
show ?case
proof (cases nts_syms p = {})

case True
then show ?thesis

using 1 .prems(3) deriven_from_TmsD derives_from_Tms_iff
by (metis nts_syms_empty_iff)

next
case False
from non_word_has_last_Nt[OF this] have ∃C pt p2 . p = p2 @ [Nt C] @

map Tm pt by blast
then obtain C pt p2 where p_decomp: p = p2 @ [Nt C] @ map Tm pt by

blast
then have ∃ pt ′ At w k m. ?R ′ ` p2 ⇒(k) map Tm pt ′ ∧ ?R ′ ` w ⇒(m) map

Tm At ∧ (C , w) ∈ ?R ′

∧ q = pt ′ @ At @ pt ∧ n = Suc(k + m)
using 1 .prems word_decomp1 [of n ?R ′ p2 C pt q] by auto

then obtain pt ′ At w k m
where P: ?R ′ ` p2 ⇒(k) map Tm pt ′ ∧ ?R ′ ` w ⇒(m) map Tm At ∧ (C ,

w) ∈ ?R ′

∧ q = pt ′ @ At @ pt ∧ n = Suc(k + m)
by blast

then have pre1 : m < n by auto

have B ′ /∈ nts_syms p2 ∧ k < n using P 1 .prems p_decomp by auto
then have p2_not_Nil_derive: p2 6= [] −→ R ` p2 ⇒∗ map Tm pt ′ using 1

P by blast

have p2 = [] −→ map Tm pt ′ = [] using P
by auto

then have p2_derive: R ` p2 ⇒∗ map Tm pt ′ using p2_not_Nil_derive by
auto

have R ` [Nt C] ⇒∗ map Tm At

30

proof(cases C = B)
case C_is_B: True
then show ?thesis
proof (cases last w = Nt B ′)

case True
let ?S = {x. (∃ v. x = (B ′, v @ [Nt B ′]) ∧ x ∈ solve_lrec B B ′ R)}

have ∃w1 . w = w1 @ [Nt B ′] using True
by (metis assms(1) Eps_free_Nil Eps_free_solve_lrec P append_butlast_last_id)
then obtain w1 where w_decomp: w = w1 @ [Nt B ′] by blast
then have ∃w1 ′ b k1 m1 . ?R ′ ` w1 ⇒(k1) w1 ′ ∧ ?R ′ ` [Nt B ′] ⇒(m1) b

∧ map Tm At = w1 ′ @ b
∧ m = k1 + m1

using P deriven_append_decomp by blast
then obtain w1 ′ b k1 m1

where w_derive_decomp: ?R ′ ` w1 ⇒(k1) w1 ′ ∧ ?R ′ ` [Nt B ′] ⇒(m1)
b

∧ map Tm At = w1 ′ @ b ∧ m = k1 + m1
by blast

then have ∃w1t bt. w1 ′ = map Tm w1t ∧ b = map Tm bt
by (meson map_eq_append_conv)

then obtain w1t bt where tms: w1 ′ = map Tm w1t ∧ b = map Tm bt by
blast

have pre1 : k1 < n ∧ m1 < n using w_derive_decomp P by auto
have pre2 : w1 6= [] using w_decomp C_is_B P assms by (auto simp add:

solve_lrec_rule_simp3)
have Bw1_in_R: (B, w1) ∈ R

using w_decomp P C_is_B assms
unfolding solve_lrec_defs by (auto split: if_splits)

then have pre3 : B ′ /∈ nts_syms w1 using assms by (auto simp add:
Nts_def)

have R ` w1 ⇒∗ map Tm w1t using pre1 pre2 pre3 w_derive_decomp 1 .IH
tms by blast

then have w1 ′_derive: R ` [Nt B] ⇒∗ w1 ′ using Bw1_in_R tms
by (simp add: derives_Cons_rule)

have last [Nt B ′] = Nt B ′ ∧ last (map Tm bt) 6= Nt B ′

by (metis assms(1) Eps_free_deriven_Nil Eps_free_solve_lrec last_ConsL
last_map

list.map_disc_iff not_Cons_self2 sym.distinct(1) tms w_derive_decomp)
then have ∃ u v m2 k2 . ?S ` [Nt B ′] ⇒r(m2) u @ [Nt B ′] ∧ ?R ′ ` u @

[Nt B ′] ⇒r v
∧ B ′ /∈ nts_syms v ∧ ?R ′ ` v ⇒r(k2) map Tm bt ∧ m1 = m2 + k2 + 1
using rrec_decomp[of ?S B ′ B R [] map Tm bt m1] w_derive_decomp

assms 1 .prems tms
by (simp add: derivern_iff_deriven)

31

then obtain u v m2 k2
where rec_decomp: ?S ` [Nt B ′] ⇒r(m2) u @ [Nt B ′] ∧ ?R ′ ` u @ [Nt

B ′] ⇒r v
∧ B ′ /∈ nts_syms v ∧ ?R ′ ` v ⇒r(k2) map Tm bt ∧ m1 = m2 + k2 + 1
by blast

then have Bu_derive: R ` [Nt B] ⇒(m2) Nt B # u
using assms rrec_lemma3 by fastforce

have ∃ v ′. (B ′, v ′) ∈ ?R ′ ∧ v = u @ v ′ using rec_decomp
by (simp add: deriver_snoc_Nt)

then obtain v ′ where v_decomp: (B ′, v ′) ∈ ?R ′ ∧ v = u @ v ′ by blast
then have (B, Nt B # v ′) ∈ R

using assms rec_decomp unfolding solve_lrec_defs by (auto split:
if_splits)

then have R ` [Nt B] ⇒ Nt B # v ′

by (simp add: derive_singleton)
then have R ` [Nt B] @ v ′⇒∗ Nt B # u @ v ′

by (metis Bu_derive append_Cons derives_append rtranclp_power)
then have Buv ′_derive: R ` [Nt B] ⇒∗ Nt B # u @ v ′

using ‹R ` [Nt B] ⇒ Nt B # v ′› by force

have pre2 : k2 < n using rec_decomp pre1 by auto
have v 6= [] using rec_decomp

by (metis (lifting) assms(1) Eps_free_deriven_Nil Eps_free_solve_lrec
tms

deriven_from_TmsD derivern_imp_deriven list.simps(8) not_Cons_self2
w_derive_decomp)

then have R ` v ⇒∗ map Tm bt
using 1 .IH 1 pre2 rec_decomp
by (auto simp add: derivern_iff_deriven)

then have R ` [Nt B] ⇒∗ Nt B # map Tm bt using Buv ′_derive v_decomp
by (meson derives_Cons rtranclp_trans)

then have R ` [Nt B] ⇒∗ [Nt B] @ map Tm bt by auto
then have R ` [Nt B] ⇒∗ w1 ′ @ map Tm bt using w1 ′_derive de-

rives_append
by (metis rtranclp_trans)

then show ?thesis using tms w_derive_decomp C_is_B by auto
next

case False
have pre2 : w 6= [] using P assms(1)

by (meson Eps_free_Nil Eps_free_solve_lrec)
then have 2 : (C , w) ∈ R

using P False 1 .prems p_decomp C_is_B
unfolding solve_lrec_defs by (auto split: if_splits)

then have pre3 : B ′ /∈ nts_syms w using P assms(3) by (auto simp add:
Nts_def)

have R ` w ⇒∗ map Tm At using 1 .IH assms pre1 pre2 pre3 P by blast

32

then show ?thesis using 2
by (meson bu_prod derives_bu_iff rtranclp_trans)

qed
next

case False
then have 2 : (C , w) ∈ R

using P 1 .prems(2) p_decomp
by (auto simp add: solve_lrec_rule_simp1)

then have pre2 : B ′ /∈ nts_syms w using P assms(3) by (auto simp add:
Nts_def)

have pre3 : w 6= [] using assms(1) 2 by (auto simp add: Eps_free_def)

have R ` w ⇒∗ map Tm At using 1 .IH pre1 pre2 pre3 P by blast
then show ?thesis using 2

by (meson bu_prod derives_bu_iff rtranclp_trans)
qed

then show ?thesis using p2_derive
by (metis P derives_append derives_append_decomp map_append p_decomp)

qed
qed

corollary Lang_solve_lrec_incl_Lang:
assumes Eps_free R B 6= B ′ B ′ /∈ Nts R A 6= B ′

shows Lang (solve_lrec B B ′ R) A ⊆ Lang R A
proof

fix w
assume w ∈ Lang (solve_lrec B B ′ R) A
then have solve_lrec B B ′ R ` [Nt A] ⇒∗ map Tm w by (simp add: Lang_def)
then have ∃n. solve_lrec B B ′ R ` [Nt A] ⇒(n) map Tm w

by (simp add: rtranclp_power)
then obtain n where (solve_lrec B B ′ R) ` [Nt A] ⇒(n) map Tm w by blast
then have R ` [Nt A]⇒∗ map Tm w using tm_solve_lrec_derive_impl_derive[of

R] assms by auto
then show w ∈ Lang R A by (simp add: Lang_def)

qed

corollary solve_lrec_Lang:
[[Eps_free R; B 6= B ′; B ′ /∈ Nts R; A 6= B ′]] =⇒ Lang (solve_lrec B B ′ R) A =

Lang R A
using Lang_solve_lrec_incl_Lang Lang_incl_Lang_solve_lrec by fastforce

4.4 expand_hd Preserves Language

Every rhs of an expand_hd R production is derivable by R.
lemma expand_hd_is_deriveable: (A, w) ∈ expand_hd B As R =⇒ R ` [Nt A]
⇒∗ w
proof (induction B As R arbitrary: A w rule: expand_hd.induct)

case (1 B R)

33

then show ?case
by (simp add: bu_prod derives_if_bu)

next
case (2 B S Ss R)
then show ?case
proof (cases B = A)

case True
then have Aw_or_ACv: (A, w) ∈ expand_hd A Ss R ∨ (∃C v. (A, Nt C #

v) ∈ expand_hd A Ss R)
using 2 by (auto simp add: Let_def)

then show ?thesis
proof (cases (A, w) ∈ expand_hd A Ss R)

case True
then show ?thesis using 2 True by (auto simp add: Let_def)

next
case False
then have ∃ v wv. w = v @ wv ∧ (A, Nt S#wv) ∈ expand_hd A Ss R ∧ (S ,

v) ∈ expand_hd A Ss R
using 2 True by (auto simp add: Let_def)

then obtain v wv
where P: w = v @ wv ∧ (A, Nt S # wv) ∈ expand_hd A Ss R ∧ (S , v) ∈

expand_hd A Ss R
by blast

then have tr : R ` [Nt A] ⇒∗ [Nt S] @ wv using 2 True by simp
have R ` [Nt S] ⇒∗ v using 2 True P by simp
then show ?thesis using P tr derives_append

by (metis rtranclp_trans)
qed

next
case False
then show ?thesis using 2 by (auto simp add: Let_def)

qed
qed

lemma expand_hd_incl1 : Lang (expand_hd B As R) A ⊆ Lang R A
by (meson DersD DersI Lang_subset_if_Ders_subset derives_simul_rules ex-
pand_hd_is_deriveable subsetI)

This lemma expects a set of quadruples (A, a1 , B, a2). Each quadruple
encodes a specific Nt in a specific rule A → a1 @ Nt B # a2 (this encodes
Nt B) which should be expanded, by replacing the Nt with every rule for
that Nt and then removing the original rule. This expansion contains the
original productions Language.
lemma exp_includes_Lang:

assumes S_props: ∀ x ∈ S . ∃A a1 B a2 . x = (A, a1 , B, a2) ∧ (A, a1 @ Nt B
a2) ∈ R

shows Lang R A
⊆ Lang (R − {x. ∃A a1 B a2 . x = (A, a1 @ Nt B # a2) ∧ (A, a1 , B, a2)

34

∈ S }
∪ {x. ∃A v a1 a2 B. x = (A,a1@v@a2) ∧ (A, a1 , B, a2) ∈ S ∧ (B,v)

∈ R}) A
proof

fix x
assume x_Lang: x ∈ Lang R A
let ?S ′ = {x. ∃A a1 B a2 . x = (A, a1 @ Nt B # a2) ∧ (A, a1 , B, a2) ∈ S }
let ?E = {x. ∃A v a1 a2 B. x = (A,a1@v@a2) ∧ (A, a1 , B, a2) ∈ S ∧ (B,v)
∈ R}

let ?subst = R − ?S ′ ∪ ?E
have S ′_sub: ?S ′ ⊆ R using S_props by auto
have (N , ts) ∈ ?S ′ =⇒ ∃B. B ∈ nts_syms ts for N ts by fastforce
then have terminal_prods_stay: (N , ts) ∈ R =⇒ nts_syms ts = {} =⇒ (N , ts)
∈ ?subst for N ts

by auto

have R ` p ⇒(n) map Tm x =⇒ ?subst ` p ⇒∗ map Tm x for p n
proof (induction n arbitrary: p x rule: nat_less_induct)

case (1 n)
then show ?case
proof (cases ∃ pt. p = map Tm pt)

case True
then obtain pt where p = map Tm pt by blast

then show ?thesis using 1 .prems deriven_from_TmsD derives_from_Tms_iff
by blast

next
case False
then have ∃ uu V ww. p = uu @ Nt V # ww

by (smt (verit, best) 1 .prems deriven_Suc_decomp_left relpowp_E)
then obtain uu V ww where p_eq: p = uu @ Nt V # ww by blast
then have ¬ R ` p ⇒(0) map Tm x

using False by auto
then have ∃m. n = Suc m

using 1 .prems old.nat.exhaust by blast
then obtain m where n_Suc: n = Suc m by blast
then have ∃ v. (V , v) ∈ R ∧ R ` uu @ v @ ww ⇒(m) map Tm x

using 1 p_eq by (auto simp add: deriven_start_sent)
then obtain v where start_deriven: (V , v) ∈ R ∧ R ` uu @ v @ ww ⇒(m)

map Tm x by blast
then show ?thesis
proof (cases (V , v) ∈ ?S ′)

case True
then have ∃ a1 B a2 . v = a1 @ Nt B # a2 ∧ (V , a1 , B, a2) ∈ S by blast
then obtain a1 B a2 where v_eq: v = a1 @ Nt B # a2 ∧ (V , a1 , B, a2)

∈ S by blast
then have m_deriven: R ` (uu @ a1) @ Nt B # (a2 @ ww) ⇒(m) map

Tm x
using start_deriven by auto

then have ¬ R ` (uu @ a1) @ Nt B # (a2 @ ww) ⇒(0) map Tm x

35

by (metis (mono_tags, lifting) append.left_neutral append_Cons de-
rive.intros insertI1

not_derive_from_Tms relpowp.simps(1))
then have ∃ k. m = Suc k

using m_deriven 1 .prems old.nat.exhaust by blast
then obtain k where m_Suc: m = Suc k by blast
then have ∃ b. (B, b) ∈ R ∧ R ` (uu @ a1) @ b @ (a2 @ ww) ⇒(k) map

Tm x
using m_deriven deriven_start_sent[where ?u = uu@a1 and ?w = a2

@ ww]
by (auto simp add: m_Suc)

then obtain b
where second_deriven: (B, b) ∈ R ∧ R ` (uu @ a1) @ b @ (a2 @ ww)

⇒(k) map Tm x
by blast

then have expd_rule_subst: (V , a1 @ b @ a2) ∈ ?subst using v_eq by
auto

have k < n using n_Suc m_Suc by auto
then have subst_derives: ?subst ` uu @ a1 @ b @ a2 @ ww ⇒∗ map Tm

x
using 1 second_deriven by (auto)

have ?subst ` [Nt V] ⇒∗ a1 @ b @ a2 using expd_rule_subst
by (meson derive_singleton r_into_rtranclp)

then have ?subst ` [Nt V] @ ww ⇒∗ a1 @ b @ a2 @ ww
using derives_append[of ?subst [Nt V] a1 @ b @ a2]
by simp

then have ?subst ` Nt V # ww ⇒∗ a1 @ b @ a2 @ ww
by simp

then have ?subst ` uu @ Nt V # ww ⇒∗ uu @ a1 @ b @ a2 @ ww
using derives_prepend[of ?subst [Nt V] @ ww]
by simp

then show ?thesis using subst_derives by (auto simp add: p_eq v_eq)
next

case False
then have Vv_subst: (V ,v) ∈ ?subst using S_props start_deriven by auto
then have ?subst ` uu @ v @ ww ⇒∗ map Tm x using 1 start_deriven

n_Suc by auto
then show ?thesis using Vv_subst derives_append_decomp

by (metis (no_types, lifting) derives_Cons_rule p_eq)
qed

qed
qed

then have R ` p ⇒∗ map Tm x =⇒ ?subst ` p ⇒∗ map Tm x for p
by (meson rtranclp_power)

then show x ∈ Lang ?subst A using x_Lang by (auto simp add: Lang_def)
qed

36

lemma expand_hd_incl2 : Lang (expand_hd B As R) A ⊇ Lang R A
proof (induction B As R rule: expand_hd.induct)

case (1 A R)
then show ?case by simp

next
case (2 C H Ss R)
let ?R ′ = expand_hd C Ss R
let ?X = {(Al,Bw) ∈ ?R ′. Al=C ∧ (∃w. Bw = Nt H # w)}
let ?Y = {(C ,v@w) |v w. ∃B. (C ,Nt B # w) ∈ ?X ∧ (B,v) ∈ ?R ′}
have expand_hd C (H # Ss) R = ?R ′ − ?X ∪ ?Y by (simp add: Let_def)

let ?S = {x. ∃A w. x = (A, [], H , w) ∧ (A, Nt H # w) ∈ ?X}
let ?S ′ = {x. ∃A a1 B a2 . x = (A, a1 @ Nt B # a2) ∧ (A, a1 , B, a2) ∈ ?S}
let ?E = {x. ∃A v a1 a2 B. x = (A,a1@v@a2) ∧ (A, a1 , B, a2) ∈ ?S ∧ (B,v)
∈ ?R ′}

have S ′_eq_X : ?S ′ = ?X by fastforce
have E_eq_Y : ?E = ?Y by fastforce

have ∀ x ∈ ?S . ∃A a1 B a2 . x = (A, a1 , B, a2) ∧ (A, a1 @ Nt B # a2) ∈ ?R ′

by fastforce
then have Lang_sub: Lang ?R ′ A ⊆ Lang (?R ′ − ?S ′ ∪ ?E) A

using exp_includes_Lang[of ?S] by auto

have Lang R A ⊆ Lang ?R ′ A using 2 by simp
also have ... ⊆ Lang (?R ′ − ?S ′ ∪ ?E) A using Lang_sub by simp
also have ... ⊆ Lang (?R ′ − ?X ∪ ?Y) A using S ′_eq_X E_eq_Y by simp
finally show ?case by (simp add: Let_def)

qed

theorem expand_hd_Lang: Lang (expand_hd B As R) A = Lang R A
using expand_hd_incl1 [of B As R A] expand_hd_incl2 [of R A B As] by auto

4.5 solve_tri Preserves Language
lemma solve_tri_Lang:
[[Eps_free R; length As ≤ length As ′; distinct(As @ As ′); Nts R ∩ set As ′ = {};

A /∈ set As ′]]
=⇒ Lang (solve_tri As As ′ R) A = Lang R A

proof (induction As As ′ R rule: solve_tri.induct)
case (1 uu R)
then show ?case by simp

next
case (2 Aa As A ′ As ′ R)
then have e_free1 : Eps_free (expand_hd Aa As (solve_tri As As ′ R))

by (simp add: Eps_free_expand_hd Eps_free_solve_tri)
have length As ≤ length As ′ using 2 by simp
then have Nts (expand_hd Aa As (solve_tri As As ′ R)) ⊆ Nts R ∪ set As ′

using 2 Nts_expand_hd_sub Nts_solve_tri_sub

37

by (metis subset_trans)
then have nts1 : A ′ /∈ Nts (expand_hd Aa As (solve_tri As As ′ R))

using 2 Nts_expand_hd_sub Nts_solve_tri_sub by auto

have Lang (solve_tri (Aa # As) (A ′ # As ′) R) A
= Lang (solve_lrec Aa A ′ (expand_hd Aa As (solve_tri As As ′ R))) A

by simp
also have ... = Lang (expand_hd Aa As (solve_tri As As ′ R)) A

using nts1 e_free1 2 solve_lrec_Lang[of expand_hd Aa As (solve_tri As As ′

R) Aa A ′ A]
by (simp)

also have ... = Lang (solve_tri As As ′ R) A by (simp add: expand_hd_Lang)
finally show ?case using 2 by (auto)

next
case (3 v va c)
then show ?case by simp

qed

5 Function expand_hd: Convert Triangular Form
into GNF

5.1 expand_hd: Result is in GNF_hd
lemma dep_on_helper : dep_on R A = {} =⇒ (A, w) ∈ R =⇒ w = [] ∨ (∃T wt.
w = Tm T # wt)

using neq_Nil_conv[of w] by (simp add: dep_on_def) (metis sym.exhaust)

lemma GNF_hd_iff_dep_on:
assumes Eps_free R
shows GNF_hd R ←→ (∀A ∈ Nts R. dep_on R A = {}) (is ?L=?R)

proof
assume ?L
then show ?R by (auto simp add: GNF_hd_def dep_on_def)

next
assume assm: ?R
have 1 : ∀ (B, w) ∈ R. ∃T wt. w = Tm T # wt ∨ w = []
proof

fix x
assume x ∈ R
then have case x of (B, w) ⇒ dep_on R B = {} using assm by (auto simp

add: Nts_def)
then show case x of (B, w) ⇒ ∃T wt. w = Tm T # wt ∨ w = []

using ‹x ∈ R› dep_on_helper by fastforce
qed
have 2 : ∀ (B, w) ∈ R. w 6= [] using assms assm by (auto simp add: Eps_free_def)
have ∀ (B, w) ∈ R. ∃T wt. w = Tm T # wt using 1 2 by auto
then show GNF_hd R by (auto simp add: GNF_hd_def)

qed

38

lemma helper_expand_tri1 : A /∈ set As =⇒ (A, w) ∈ expand_tri As R =⇒ (A,
w) ∈ R

by (induction As R rule: expand_tri.induct) (auto simp add: Let_def)

If none of the expanded Nts depend on A then any rule depending on A in
expand_tri As R must already have been in R.
lemma helper_expand_tri2 :
[[Eps_free R; A /∈ set As; ∀C ∈ set As. A /∈ (dep_on R C); B 6= A; (B, Nt A #

w) ∈ expand_tri As R]]
=⇒ (B, Nt A # w) ∈ R

proof (induction As R arbitrary: B w rule: expand_tri.induct)
case (1 R)
then show ?case by simp

next
case (2 S Ss R)
have (B, Nt A # w) ∈ expand_tri Ss R
proof (cases B = S)

case B_is_S : True
let ?R ′ = expand_tri Ss R
let ?X = {(Al,Bw) ∈ ?R ′. Al=S ∧ (∃w B. Bw = Nt B # w ∧ B ∈ set (Ss))}
let ?Y = {(S ,v@w) |v w. ∃B. (S , Nt B # w) ∈ ?X ∧ (B,v) ∈ ?R ′}
have (B, Nt A # w) /∈ ?X using 2 by auto
then have 3 : (B, Nt A # w) ∈ ?R ′ ∨ (B, Nt A # w) ∈ ?Y using 2 by (auto

simp add: Let_def)
then show ?thesis
proof (cases (B, Nt A # w) ∈ ?R ′)

case True
then show ?thesis by simp

next
case False
then have (B, Nt A # w) ∈ ?Y using 3 by simp
then have ∃ v wa Ba. Nt A # w = v @ wa ∧ (S , Nt Ba # wa) ∈ expand_tri

Ss R ∧ Ba ∈ set Ss
∧ (Ba, v) ∈ expand_tri Ss R

by (auto simp add: Let_def)
then obtain v wa Ba

where P: Nt A # w = v @ wa ∧ (S , Nt Ba # wa) ∈ expand_tri Ss R ∧
Ba ∈ set Ss

∧ (Ba, v) ∈ expand_tri Ss R
by blast

have Eps_free (expand_tri Ss R) using 2 by (auto simp add: Eps_free_expand_tri)
then have v 6= [] using P by (auto simp add: Eps_free_def)
then have v_hd: hd v = Nt A using P by (metis hd_append list.sel(1))
then have ∃ va. v = Nt A # va

by (metis ‹v 6= []› list.collapse)
then obtain va where P2 : v = Nt A # va by blast
then have (Ba, v) ∈ R using 2 P

by (metis list.set_intros(2))
then have A ∈ dep_on R Ba using v_hd P2 by (auto simp add: dep_on_def)

39

then show ?thesis using 2 P by auto
qed

next
case False
then show ?thesis using 2 by (auto simp add: Let_def)

qed

then show ?case using 2 by auto
qed

In a triangular form no Nts depend on the last Nt in the list.
lemma triangular_snoc_dep_on: triangular (As@[A]) R =⇒ ∀C ∈ set As. A /∈
(dep_on R C)

by (induction As) auto

lemma triangular_helper1 : triangular As R =⇒ A ∈ set As =⇒ A /∈ dep_on R
A

by (induction As) auto

lemma dep_on_expand_tri:
[[Eps_free R; triangular (rev As) R; distinct As; A ∈ set As]]
=⇒ dep_on (expand_tri As R) A ∩ set As = {}

proof(induction As R arbitrary: A rule: expand_tri.induct)
case (1 R)
then show ?case by simp

next
case (2 S Ss R)
then have Eps_free_exp_Ss: Eps_free (expand_tri Ss R)

by (simp add: Eps_free_expand_tri)
have dep_on_fact: ∀C ∈ set Ss. S /∈ (dep_on R C)

using 2 by (auto simp add: triangular_snoc_dep_on)
then show ?case
proof (cases A = S)

case True
have F1 : (S , Nt S # w) /∈ expand_tri Ss R for w
proof(rule ccontr)

assume ¬((S , Nt S # w) /∈ expand_tri Ss R)
then have (S , Nt S # w) ∈ R using 2 by (auto simp add: helper_expand_tri1)
then have N : S ∈ dep_on R A using True by (auto simp add: dep_on_def)
have S /∈ dep_on R A using 2 True by (auto simp add: triangular_helper1)
then show False using N by simp

qed

have F2 : (S , Nt S # w) /∈ expand_tri (S#Ss) R for w
proof

assume (S , Nt S # w) ∈ expand_tri (S#Ss) R
then have ∃ v wa B. Nt S # w = v @ wa ∧ B ∈ set Ss ∧ (S , Nt B # wa) ∈

expand_tri Ss R
∧ (B, v) ∈ expand_tri Ss R

40

using 2 F1 by (auto simp add: Let_def)
then obtain v wa B

where v_wa_B_P: Nt S # w = v @ wa ∧ B ∈ set Ss ∧ (S , Nt B # wa)
∈ expand_tri Ss R

∧ (B, v) ∈ expand_tri Ss R
by blast

then have v 6= [] ∧ (∃ va. v = Nt S # va) using Eps_free_exp_Ss
by (metis Eps_free_Nil append_eq_Cons_conv)

then obtain va where vP: v 6= [] ∧ v = Nt S # va by blast
then have (B, v) ∈ R

using v_wa_B_P 2 dep_on_fact helper_expand_tri2 [of R S Ss B] True
by auto

then have S ∈ dep_on R B using vP by (auto simp add: dep_on_def)
then show False using dep_on_fact v_wa_B_P by auto

qed

have (S , Nt x # w) /∈ expand_tri (S#Ss) R if asm: x ∈ set Ss for x w
proof

assume assm: (S , Nt x # w) ∈ expand_tri (S # Ss) R
then have ∃ v wa B. Nt x # w = v @ wa ∧ (S , Nt B # wa) ∈ expand_tri

Ss R ∧ B ∈ set Ss
∧ (B, v) ∈ expand_tri Ss R

using 2 asm by (auto simp add: Let_def)
then obtain v wa B

where v_wa_B_P:Nt x # w = v @ wa ∧ (S , Nt B # wa) ∈ expand_tri
Ss R ∧ B ∈ set Ss

∧ (B, v) ∈ expand_tri Ss R
by blast

then have dep_on_IH : dep_on (expand_tri Ss R) B ∩ set Ss = {}
using 2 by (auto simp add: tri_Snoc_impl_tri)

have v 6= [] ∧ (∃ va. v = Nt x # va) using Eps_free_exp_Ss v_wa_B_P
by (metis Eps_free_Nil append_eq_Cons_conv)

then obtain va where vP: v 6= [] ∧ v = Nt x # va by blast
then have x ∈ dep_on (expand_tri Ss R) B using v_wa_B_P by (auto

simp add: dep_on_def)
then show False using dep_on_IH v_wa_B_P asm assm by auto

qed

then show ?thesis using 2 True F2 by (auto simp add: Let_def dep_on_def)
next

case False
have (A, Nt S # w) /∈ expand_tri Ss R for w
proof

assume (A, Nt S # w) ∈ expand_tri Ss R
then have (A, Nt S # w) ∈ R using 2 helper_expand_tri2 dep_on_fact

by (metis False distinct.simps(2))
then have F : S ∈ dep_on R A by (auto simp add: dep_on_def)
have S /∈ dep_on R A using dep_on_fact False 2 by auto
then show False using F by simp

41

qed
then show ?thesis using 2 False by (auto simp add: tri_Snoc_impl_tri

Let_def dep_on_def)
qed

qed

Interlude: Nts of expand_tri:
lemma Lhss_expand_tri: Lhss (expand_tri As R) ⊆ Lhss R

by (induction As R rule: expand_tri.induct) (auto simp add: Lhss_def Let_def)

lemma Rhs_Nts_expand_tri: Rhs_Nts (expand_tri As R) ⊆ Rhs_Nts R
proof (induction As R rule: expand_tri.induct)

case (1 R)
then show ?case by simp

next
case (2 S Ss R)
let ?X = {(Al, Bw). (Al, Bw) ∈ expand_tri Ss R ∧ Al = S ∧ (∃w B. Bw = Nt

B # w ∧ B ∈ set Ss)}
let ?Y = {(S ,v@w)|v w. ∃B. (S ,Nt B#w) ∈ expand_tri Ss R ∧ B ∈ set Ss ∧

(B,v) ∈ expand_tri Ss R}
have F1 : Rhs_Nts ?X ⊆ Rhs_Nts R using 2 by (auto simp add: Rhs_Nts_def)
have Rhs_Nts ?Y ⊆ Rhs_Nts R
proof

fix x
assume x ∈ Rhs_Nts ?Y

then have ∃ y ys. (y, ys) ∈ ?Y ∧ x ∈ nts_syms ys by (auto simp add:
Rhs_Nts_def)

then obtain y ys where P1 : (y, ys) ∈ ?Y ∧ x ∈ nts_syms ys by blast
then show x ∈ Rhs_Nts R using P1 2 Rhs_Nts_def by fastforce

qed
then show ?case using F1 2 by (auto simp add: Rhs_Nts_def Let_def)

qed

lemma Nts_expand_tri: Nts (expand_tri As R) ⊆ Nts R
by (metis Lhss_expand_tri Nts_Lhss_Rhs_Nts Rhs_Nts_expand_tri Un_mono)

If the entire triangular form is expanded, the result is in GNF:
theorem GNF_hd_expand_tri:

assumes Eps_free R triangular (rev As) R distinct As Nts R ⊆ set As
shows GNF_hd (expand_tri As R)

by (metis Eps_free_expand_tri GNF_hd_iff_dep_on Int_absorb2 Nts_expand_tri
assms dep_on_expand_tri

dep_on_subs_Nts subset_trans subsetD)

Any set of productions can be transformed into GNF via expand_tri (solve_tri).
theorem GNF_of_R:

assumes assms: Eps_free R distinct (As @ As ′) Nts R ⊆ set As length As ≤
length As ′

shows GNF_hd (expand_tri (As ′ @ rev As) (solve_tri As As ′ R))

42

proof −
from assms have tri: triangular (As @ rev As ′) (solve_tri As As ′ R)

by (simp add: Int_commute triangular_As_As ′_solve_tri)
have Nts (solve_tri As As ′ R) ⊆ set As ∪ set As ′ using assms Nts_solve_tri_sub

by fastforce
then show ?thesis

using GNF_hd_expand_tri[of (solve_tri As As ′ R) (As ′ @ rev As)] assms tri
by (auto simp add: Eps_free_solve_tri)

qed

5.2 expand_tri Preserves Language

Similar to the proof of Language equivalence of expand_hd.

All productions in expand_tri As R are derivable by R.
lemma expand_tri_prods_deirvable: (B, bs) ∈ expand_tri As R =⇒ R ` [Nt B]
⇒∗ bs
proof (induction As R arbitrary: B bs rule: expand_tri.induct)

case (1 R)
then show ?case

by (simp add: bu_prod derives_if_bu)
next

case (2 A As R)
then show ?case
proof (cases B ∈ set (A#As))

case True
then show ?thesis
proof (cases B = A)

case True
then have ∃C cw v.(bs = cw@v ∧ (B, Nt C#v) ∈ (expand_tri As R) ∧

(C ,cw) ∈ (expand_tri As R))
∨ (B, bs) ∈ (expand_tri As R)

using 2 by (auto simp add: Let_def)
then obtain C cw v

where (bs = cw @ v ∧ (B, Nt C # v) ∈ (expand_tri As R) ∧ (C , cw) ∈
(expand_tri As R))

∨ (B, bs) ∈ (expand_tri As R)
by blast

then have (bs = cw @ v ∧ R ` [Nt B] ⇒∗ [Nt C] @ v ∧ R ` [Nt C] ⇒∗ cw)
∨ R ` [Nt B] ⇒∗ bs

using 2 .IH by auto
then show ?thesis by (meson derives_append rtranclp_trans)

next
case False

then have (B, bs) ∈ (expand_tri As R) using 2 by (auto simp add: Let_def)
then show ?thesis using 2 .IH by (simp add: bu_prod derives_if_bu)

qed
next

case False

43

then have (B, bs) ∈ R using 2 by (auto simp only: helper_expand_tri1)
then show ?thesis by (simp add: bu_prod derives_if_bu)

qed
qed

Language Preservation:
lemma expand_tri_Lang: Lang (expand_tri As R) A = Lang R A
proof

have (B, bs) ∈ (expand_tri As R) =⇒ R ` [Nt B] ⇒∗ bs for B bs
by (simp add: expand_tri_prods_deirvable)

then have expand_tri As R ` [Nt A] ⇒∗ map Tm x =⇒ R ` [Nt A] ⇒∗ map
Tm x for x

using derives_simul_rules by blast
then show Lang (expand_tri As R) A ⊆ Lang R A by(auto simp add: Lang_def)

next
show Lang R A ⊆ Lang (expand_tri As R) A
proof (induction As R rule: expand_tri.induct)

case (1 R)
then show ?case by simp

next
case (2 D Ds R)
let ?R ′ = expand_tri Ds R
let ?X = {(Al,Bw) ∈ ?R ′. Al=D ∧ (∃w B. Bw = Nt B # w ∧ B ∈ set (Ds))}
let ?Y = {(D,v@w) |v w. ∃B. (D, Nt B # w) ∈ ?X ∧ (B,v) ∈ ?R ′}
have F1 : expand_tri (D#Ds) R = ?R ′ − ?X ∪ ?Y by (simp add: Let_def)

let ?S = {x. ∃A w H . x = (A, [], H , w) ∧ (A, Nt H # w) ∈ ?X}
let ?S ′ = {x. ∃A a1 B a2 . x = (A, a1 @ Nt B # a2) ∧ (A, a1 , B, a2) ∈ ?S}
let ?E = {x. ∃A v a1 a2 B. x = (A,a1@v@a2) ∧ (A, a1 , B, a2) ∈ ?S ∧ (B,v)

∈ ?R ′}

have S ′_eq_X : ?S ′ = ?X by fastforce
have E_eq_Y : ?E = ?Y by fastforce

have ∀ x ∈ ?S . ∃A a1 B a2 . x = (A, a1 , B, a2) ∧ (A, a1 @ Nt B # a2) ∈
?R ′ by fastforce

have Lang R A ⊆ Lang (expand_tri Ds R) A using 2 by simp
also have ... ⊆ Lang (?R ′ − ?S ′ ∪ ?E) A

using exp_includes_Lang[of ?S] by auto
also have ... = Lang (expand_tri (D#Ds) R) A using S ′_eq_X E_eq_Y F1

by fastforce
finally show ?case.

qed
qed

44

6 Function gnf_hd: Conversion to GNF_hd

All epsilon-free grammars can be put into GNF while preserving their lan-
guage.

Putting the productions into GNF via expand_tri (solve_tri) preserves the
language.
lemma GNF_of_R_Lang:

assumes Eps_free R length As ≤ length As ′ distinct (As @ As ′) Nts R ∩ set As ′

= {} A /∈ set As ′

shows Lang (expand_tri (As ′ @ rev As) (solve_tri As As ′ R)) A = Lang R A
using solve_tri_Lang[OF assms] expand_tri_Lang[of (As ′ @ rev As)] by blast

Any epsilon-free Grammar can be brought into GNF.
theorem GNF_hd_gnf_hd: eps_free ps =⇒ GNF_hd (gnf_hd ps)
by(simp add: gnf_hd_def Let_def GNF_of_R[simplified]

distinct_nts_prods_list freshs_distinct finite_nts freshs_disj set_nts_prods_list
length_freshs)

lemma distinct_app_freshs: [[As = nts_prods_list ps; As ′ = freshs (set As) As]]
=⇒

distinct (As @ As ′)
using freshs_disj[of set As As]
by (auto simp: distinct_nts_prods_list freshs_distinct)

gnf_hd preserves the language:
theorem Lang_gnf_hd: [[eps_free ps; A ∈ nts ps]] =⇒ Lang (gnf_hd ps) A =
lang ps A
unfolding gnf_hd_def Let_def
by (metis GNF_of_R_Lang IntI distinct_app_freshs empty_iff finite_nts freshs_disj

length_freshs order_refl set_nts_prods_list)

Two simple examples:
lemma gnf_hd [(0 , [Nt(0 ::nat), Tm (1 ::int)])] = {(1 , [Tm 1]), (1 , [Tm 1 , Nt 1])}

by eval

lemma gnf_hd [(0 , [Nt(0 ::nat), Tm (1 ::int)]), (0 , [Tm 2])] =
{ (0 , [Tm 2 , Nt 1]), (0 , [Tm 2]), (1 , [Tm 1 , Nt 1]), (1 , [Tm 1]) }
by eval

Example 4.10 [3]: P0 is the input; P1 is the result after Step 1; P3 is the
result after Step 2 and 3.
lemma

let
P0 =
[(1 ::int, [Nt 2 , Nt 3]), (2 ,[Nt 3 , Nt 1]), (2 , [Tm (1 ::int)]), (3 ,[Nt 1 , Nt 2]),

(3 ,[Tm 0])];

45

P1 =
[(1 , [Nt 2 , Nt 3]), (2 , [Nt 3 , Nt 1]), (2 , [Tm 1]),
(3 , [Tm 1 , Nt 3 , Nt 2 , Nt 4]), (3 , [Tm 0 , Nt 4]), (3 , [Tm 1 , Nt 3 , Nt 2]),

(3 , [Tm 0]),
(4 , [Nt 1 , Nt 3 , Nt 2]), (4 , [Nt 1 , Nt 3 , Nt 2 , Nt 4])];

P2 =
[(1 , [Tm 1 , Nt 3 , Nt 2 , Nt 4 , Nt 1 , Nt 3]), (1 , [Tm 1 , Nt 3 , Nt 2 , Nt 1 , Nt

3]),
(1 , [Tm 0 , Nt 4 , Nt 1 , Nt 3]), (1 , [Tm 0 , Nt 1 , Nt 3]), (1 , [Tm 1 , Nt 3]),
(2 , [Tm 1 , Nt 3 , Nt 2 , Nt 4 , Nt 1]), (2 , [Tm 1 , Nt 3 , Nt 2 , Nt 1]),
(2 , [Tm 0 , Nt 4 , Nt 1]), (2 , [Tm 0 , Nt 1]), (2 , [Tm 1]),
(3 , [Tm 1 , Nt 3 , Nt 2 , Nt 4]), (3 , [Tm 1 , Nt 3 , Nt 2]),
(3 , [Tm 0 , Nt 4]), (3 , [Tm 0]),
(4 , [Tm 1 , Nt 3 , Nt 2 , Nt 4 , Nt 1 , Nt 3 , Nt 3 , Nt 2 , Nt 4]), (4 , [Tm 1 , Nt

3 , Nt 2 , Nt 4 , Nt 1 , Nt 3 , Nt 3 , Nt 2]),
(4 , [Tm 0 , Nt 4 , Nt 1 , Nt 3 , Nt 3 , Nt 2 , Nt 4]), (4 , [Tm 0 , Nt 4 , Nt 1 , Nt

3 , Nt 3 , Nt 2]),
(4 , [Tm 1 , Nt 3 , Nt 3 , Nt 2 , Nt 4]), (4 , [Tm 1 , Nt 3 , Nt 3 , Nt 2]),
(4 , [Tm 1 , Nt 3 , Nt 2 , Nt 1 , Nt 3 , Nt 3 , Nt 2 , Nt 4]), (4 , [Tm 1 , Nt 3 , Nt

2 , Nt 1 , Nt 3 , Nt 3 , Nt 2]),
(4 , [Tm 0 , Nt 1 , Nt 3 , Nt 3 , Nt 2 , Nt 4]), (4 , [Tm 0 , Nt 1 , Nt 3 , Nt 3 , Nt

2])]
in

solve_tri [3 ,2 ,1] [4 ,5 ,6] (set P0) = set P1 ∧ expand_tri [4 ,1 ,2 ,3] (set P1)
= set P2
by eval

7 Complexity

Our method has exponential complexity, which we demonstrate below. Al-
ternative polynomial methods are described in the literature [1].
We start with an informal proof that the blowup of the whole method can
be as bad as 2n

2 , where n is the number of non terminals, and the starting
grammar has 4n productions.
Consider this grammar, where a and b are terminals and we use nested
alternatives in the obvious way:
A0 → A1 (a | b) | A2 (a | b) | ... | An (a | b) | a | b
A(i+1) → Ai (a | b)
Expanding all alternatives makes this a grammar of size 4n.
When converting this grammar into triangular form, starting with A0, we
find that A0 remains the same after expand_hd, and solve_lrec introduces
a new additional production for every A0 production, which we will ignore
to simplify things:
Then every expand_hd step yields for Ai these number of productions:
(1) 2^(i+1) productions with rhs Ak (a | b)^(i+1) for every k ∈ [i+1 , n],

46

(2) 2^(i+1) productions with rhs (a | b)^(i+1),
(3) 2^(i+1) productions with rhs Ai (a | b)^(i+1).
Note that (a | b)^(i+1) represents all words of length i+1 over {a,b}. Solv-
ing the left recursion again introduces a new additional production for every
production of form (1) and (2), which we will again ignore for simplicity.
The productions of (3) get removed by solve_lrec. We will not consider the
productions of the newly introduced nonterminals.
In the triangular form, every Ai has at least 2^(i+1) productions starting
with terminals (2) and 2^(i+1) productions with rhs starting with Ak for
every k ∈ [i+1 , n].
When expanding the triangular form starting from An, which has at least the
2^(i+1) productions from (2), we observe that the number of productions
of Ai (denoted by #Ai) is #Ai ≥ 2^(i+1) ∗ #A(i+1) (Only considering
the productions of the form A(i+1) (a | b)^(i+1)). This yields that #Ai
≥ 2^(i+1) ∗ 2^((i+2) + ... + (n+1)) = 2^((i+1) + (i+2) + ... (n+1)).
Thus #A0 ≥ 2^(1 + 2 + ... + n + (n+1)) = 2^((n+1)∗(n+2)/2).
Below we prove formally that expand_tri can cause exponential blowup.

Bad grammar: Constructs a grammar which leads to a exponential blowup
when expanded by expand_tri:
fun bad_grammar :: ′n list ⇒ (′n, nat)Prods where
bad_grammar [] = {}
|bad_grammar [A] = {(A, [Tm 0]), (A, [Tm 1])}
|bad_grammar (A#B#As) = {(A, Nt B # [Tm 0]), (A, Nt B # [Tm 1])} ∪
(bad_grammar (B#As))

lemma bad_gram_simp1 : A /∈ set As =⇒ (A, Bs) /∈ (bad_grammar As)
by (induction As rule: bad_grammar .induct) auto

lemma expand_tri_simp1 : A /∈ set As =⇒ (A, Bs) ∈ R =⇒ (A, Bs) ∈ expand_tri
As R

by (induction As R rule: expand_tri.induct) (auto simp add: Let_def)

lemma expand_tri_iff1 : A /∈ set As =⇒ (A, Bs) ∈ expand_tri As R ←→ (A, Bs)
∈ R

using expand_tri_simp1 helper_expand_tri1 by auto

lemma expand_tri_insert_simp:
B /∈ set As =⇒ expand_tri As (insert (B, Bs) R) = insert (B, Bs) (expand_tri

As R)
by (induction As R rule: expand_tri.induct) (auto simp add: Let_def)

lemma expand_tri_bad_grammar_simp1 :
distinct (A#As) =⇒ length As ≥ 1
=⇒ expand_tri As (bad_grammar (A#As))

= {(A, Nt (hd As) # [Tm 0]), (A, Nt (hd As) # [Tm 1])} ∪ (expand_tri As

47

(bad_grammar As))
proof (induction As)

case Nil
then show ?case by simp

next
case Cons1 : (Cons B Bs)
then show ?case
proof (cases Bs)

case Nil
then show ?thesis by auto

next
case Cons2 : (Cons C Cs)
then show ?thesis using Cons1 expand_tri_insert_simp

by (smt (verit) Un_insert_left bad_grammar .elims distinct.simps(2) in-
sert_is_Un

list.distinct(1) list.inject list.sel(1))
qed

qed

lemma finite_bad_grammar : finite (bad_grammar As)
by (induction As rule: bad_grammar .induct) auto

lemma finite_expand_tri: finite R =⇒ finite (expand_tri As R)
proof (induction As R rule: expand_tri.induct)

case (1 R)
then show ?case by simp

next
case (2 S Ss R)
let ?S = {(S ,v@w)|v w. ∃B. (S ,Nt B#w) ∈ expand_tri Ss R ∧ B ∈ set Ss ∧

(B,v) ∈ expand_tri Ss R}
let ?f = λ((A,w),(B,v)). (A, v @ (tl w))
have ?S ⊆ ?f ‘ ((expand_tri Ss R) × (expand_tri Ss R))
proof

fix x
assume x ∈ ?S
then have ∃S v B w. (S ,Nt B # w) ∈ expand_tri Ss R ∧ (B,v) ∈ expand_tri

Ss R ∧ x = (S , v @ w)
by blast

then obtain S v B w
where P: (S , Nt B # w) ∈ expand_tri Ss R ∧ (B, v) ∈ expand_tri Ss R ∧

x = (S , v @ w)
by blast

then have 1 : ((S , Nt B # w), (B ,v)) ∈ ((expand_tri Ss R) × (expand_tri Ss
R)) by auto

have ?f ((S , Nt B # w), (B ,v)) = (S , v @ w) by auto
then have (S , v @ w) ∈ ?f ‘ ((expand_tri Ss R) × (expand_tri Ss R)) using

1 by force
then show x ∈ ?f ‘ ((expand_tri Ss R) × (expand_tri Ss R)) using P by simp

qed

48

then have finite ?S
by (meson 2 .IH 2 .prems finite_SigmaI finite_surj)

then show ?case using 2 by (auto simp add: Let_def)
qed

The last Nt expanded by expand_tri has an exponential number of produc-
tions.
lemma bad_gram_last_expanded_card:
[[distinct As; length As = n; n ≥ 1]]
=⇒ card ({v. (hd As, v) ∈ expand_tri As (bad_grammar As)}) = 2 ^ n

proof(induction As arbitrary: n rule: bad_grammar .induct)
case 1
then show ?case by simp

next
case (2 A)
have 4 : {v. v = [Tm 0] ∨ v = [Tm (Suc 0)]} = {[Tm 0], [Tm 1]} by auto
then show ?case using 2 by (auto simp add: 4)

next
case (3 A C As)
let ?R ′ = expand_tri (C#As) (bad_grammar (A#C#As))
let ?X = {(Al,Bw) ∈ ?R ′. Al=A ∧ (∃w B. Bw = Nt B # w ∧ B ∈ set (C#As))}
let ?Y = {(A,v@w) |v w. ∃B. (A, Nt B # w) ∈ ?X ∧ (B,v) ∈ ?R ′}

let ?S = {v. (hd (A#C#As), v) ∈ expand_tri (A#C#As) (bad_grammar
(A#C#As))}

have 4 : (A,Bw) ∈ ?R ′←→ (A, Bw) ∈ (bad_grammar (A#C#As)) for Bw
using expand_tri_iff1 [of A C#As Bw] 3 by auto

then have ?X = {(Al,Bw) ∈ (bad_grammar (A#C#As)). Al=A ∧ (∃w B. Bw
= Nt B#w ∧ B ∈ set (C#As))}

using expand_tri_iff1 by auto
also have ... = {(A, Nt C # [Tm 0]), (A, Nt C # [Tm 1])}

using 3 by (auto simp add: bad_gram_simp1)
finally have 5 : ?X = {(A, [Nt C , Tm 0]), (A, [Nt C , Tm 1])}.
then have cons5 : ?X = {(A, Nt C # [Tm 0]), (A, Nt C # [Tm 1])} by simp

have 6 : ?R ′ = {(A, [Nt C , Tm 0]), (A, [Nt C , Tm 1])} ∪ expand_tri (C#As)
(bad_grammar (C#As))

using 3 expand_tri_bad_grammar_simp1 [of A C#As] by auto
have 8 : (A, as) /∈ expand_tri (C#As) (bad_grammar (C#As)) for as

using 3 .prems bad_gram_simp1 expand_tri_iff1
by (metis distinct.simps(2))

then have 7 : {(A,[Nt C , Tm 0]), (A,[Nt C , Tm 1])} ∩ expand_tri (C#As)
(bad_grammar (C#As)) = {}

by auto

have ?R ′ − ?X = expand_tri (C#As) (bad_grammar (C#As)) using 7 6 5 by
auto

then have S_from_Y : ?S = {v. (A, v) ∈ ?Y } using 6 8 by auto

49

have Y_decomp: ?Y = {(A, v @ [Tm 0]) | v. (C ,v) ∈ ?R ′} ∪ {(A, v @ [Tm 1])
| v. (C ,v) ∈ ?R ′}

proof
show ?Y ⊆ {(A, v @ [Tm 0]) | v. (C ,v) ∈ ?R ′} ∪ {(A, v @ [Tm 1]) | v. (C ,v)

∈ ?R ′}
proof

fix x
assume assm: x ∈ ?Y
then have ∃ v w. x = (A, v @ w) ∧ (∃B. (A, Nt B # w) ∈ ?X ∧ (B,v) ∈

?R ′) by blast
then obtain v w where P: x = (A, v @ w) ∧ (∃B. (A, Nt B # w) ∈ ?X ∧

(B,v) ∈ ?R ′) by blast
then have cfact:(A, Nt C # w) ∈ ?X ∧ (C ,v) ∈ ?R ′ using cons5

by (metis (no_types, lifting) Pair_inject insert_iff list.inject singletonD
sym.inject(1))

then have w = [Tm 0] ∨ w = [Tm 1] using cons5
by (metis (no_types, lifting) empty_iff insertE list.inject prod.inject)

then show x ∈ {(A, v @ [Tm 0]) | v. (C ,v) ∈ ?R ′} ∪ {(A, v @ [Tm 1]) | v.
(C ,v) ∈ ?R ′}

using P cfact by auto
qed

next
show {(A, v @ [Tm 0]) | v. (C ,v) ∈ ?R ′} ∪ {(A, v @ [Tm 1]) | v. (C ,v) ∈ ?R ′}

⊆ ?Y
using cons5 by auto

qed

from Y_decomp have S_decomp: ?S = {v@[Tm 0] | v. (C , v) ∈ ?R ′} ∪ {v@[Tm
1] | v. (C , v) ∈ ?R ′}

using S_from_Y by auto

have cardCvR: card {v. (C , v) ∈ ?R ′} = 2^(n−1) using 3 6 by auto
have bij_betw (λx. x@[Tm 0]) {v. (C , v) ∈ ?R ′} {v@[Tm 0] | v. (C , v) ∈ ?R ′}

by (auto simp add: bij_betw_def inj_on_def)
then have cardS1 : card {v@[Tm 0] | v. (C , v) ∈ ?R ′} = 2^(n−1)

using cardCvR by (auto simp add: bij_betw_same_card)
have bij_betw (λx. x@[Tm 1]) {v. (C , v) ∈ ?R ′} {v@[Tm 1] | v. (C , v) ∈ ?R ′}

by (auto simp add: bij_betw_def inj_on_def)
then have cardS2 : card {v@[Tm 1] | v. (C , v) ∈ ?R ′} = 2^(n−1)

using cardCvR by (auto simp add: bij_betw_same_card)

have fin_R ′: finite ?R ′ using finite_bad_grammar finite_expand_tri by blast
let ?f1 = λ(C ,v). v@[Tm 0]
have {v@[Tm 0] | v. (C , v) ∈ ?R ′} ⊆ ?f1 ‘ ?R ′ by auto
then have fin1 : finite {v@[Tm 0] | v. (C , v) ∈ ?R ′}

using fin_R ′ by (meson finite_SigmaI finite_surj)
let ?f2 = λ(C ,v). v@[Tm 1]
have {v@[Tm 1] | v. (C , v) ∈ ?R ′} ⊆ ?f2 ‘ ?R ′ by auto

50

then have fin2 : finite {v@[Tm 1] | v. (C , v) ∈ ?R ′}
using fin_R ′ by (meson finite_SigmaI finite_surj)

have fin_sets: finite {v@[Tm 0] | v. (C , v) ∈ ?R ′} ∧ finite {v@[Tm 1] | v. (C ,
v) ∈ ?R ′}

using fin1 fin2 by simp

have {v@[Tm 0] | v. (C , v) ∈ ?R ′} ∩ {v@[Tm 1] | v. (C , v) ∈ ?R ′} = {} by
auto

then have card ?S = 2^(n−1) + 2^(n−1)
using S_decomp cardS1 cardS2 fin_sets
by (auto simp add: card_Un_disjoint)

then show ?case using 3 by auto
qed

The productions resulting from expand_tri (bad_grammar) have at least
exponential size.
theorem expand_tri_blowup: assumes n ≥ 1

shows card (expand_tri [0 ..<n] (bad_grammar [0 ..<n])) ≥ 2^n
proof −

from assms have length [0 ..<n] ≥ 1 ∧ distinct [0 ..<n] ∧ length [0 ..<n] = n by
auto

then have 1 : card ({v. (hd [0 ..<n], v) ∈ expand_tri [0 ..<n] (bad_grammar
[0 ..<n])}) = 2 ^ n

using bad_gram_last_expanded_card assms by blast

let ?S = {v. (hd [0 ..<n], v) ∈ expand_tri [0 ..<n] (bad_grammar [0 ..<n])}
have 2 : card ?S = card ({hd [0 ..<n]} × ?S)

by (simp add: card_cartesian_product_singleton)
have 3 : ({hd [0 ..<n]} × ?S) ⊆ (expand_tri [0 ..<n] (bad_grammar [0 ..<n]))

by fastforce

have finite (expand_tri [0 ..<n] (bad_grammar [0 ..<n]))
using finite_bad_grammar finite_expand_tri by blast

then show ?thesis using 1 2 3
by (metis card_mono)

qed

end

References

[1] N. Blum and R. Koch. Greibach normal form transformation revisited.
Inf. Comput., 150(1):112–118, 1999.

[2] S. A. Greibach. A new normal-form theorem for context-free phrase
structure grammars. J. ACM, 12(1):42–52, 1965.

51

[3] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

52

	Aux Lemmas
	Function Definitions
	Some Basic Lemmas
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Eps_free preservation
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Nts and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dep_on
	Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 triangular

	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solve_tri: Remove Left-Recursion and Convert into Triangular Form
	Basic Lemmas
	Triangular Form
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solve_lrec Preserves Language
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Lang R A Lang (solve_lrec B B2mu'-2mu R) A
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Lang (solve_lrec B B2mu'-2mu R) A Lang R A

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 expand_hd Preserves Language
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solve_tri Preserves Language

	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 expand_hd: Convert Triangular Form into GNF
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 expand_hd: Result is in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 GNF_hd
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 expand_tri Preserves Language

	Function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 gnf_hd: Conversion to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 GNF_hd
	Complexity

