Graph Theory

By Lars Noschinski

September 13, 2023

Abstract

This development provides a formalization of directed graphs, supporting (labelled) multi-edges and infinite graphs. A polymorphic edge type allows edges to be treated as pairs of vertices, if multi-edges are not required. Formalized properties are i.a. walks (and related concepts), connectedness and subgraphs and basic properties of isomorphisms.

This formalization is used to prove characterizations of Euler Trails, Shortest Paths and Kuratowski subgraphs.

Definitions and nomenclature are based on [1].

Contents

1 Reflexive-Transitive Closure on a Domain 3
2 Additional theorems for base libraries 5
2.1 List 6
3 NOMATCH simproc 8
4 Digraphs 8
4.1 Reachability 10
4.2 Degrees of vertices 13
4.3 Graph operations 14
5 Bidirected Graphs 18
6 Arc Walks 21
6.1 Basic Lemmas 21
6.2 Appending awalks 26
6.3 Cycles 31
6.4 Reachability 32
6.5 Paths 34
7 Digraphs without Parallel Arcs 39
7.1 Path reversal for Pair Digraphs 43
7.2 Subdividing Edges 45
7.3 Bidirected Graphs 52
8 Components of (Symmetric) Digraphs 53
8.1 Compatible Graphs 54
8.2 Basic lemmas 55
8.3 The underlying symmetric graph of a digraph 57
8.4 Subgraphs and Induced Subgraphs 58
8.5 Induced subgraphs 61
8.6 Unions of Graphs 66
8.7 Maximal Subgraphs 67
8.8 Connected and Strongly Connected Graphs 68
8.9 Components 80
9 Walks Based on Vertices 82
10 Lemmas for Vertex Walks 97
11 Isomorphisms of Digraphs 98
11.1 Graph Invariants 109
12 Permutation Domains 110
13 Segments 110
14 Lists of Powers 116
15 Subdivision on Digraphs 116
15.1 Subdivision on Pair Digraphs 122
16 Euler Trails in Digraphs 126
16.1 Trails and Euler Trails 126
16.2 Arc Balance of Walks 128
16.3 Closed Euler Trails 129
16.4 Open euler trails 135
17 Kuratowski Subgraphs 140
17.1 Public definitions 140
17.2 Inner vertices of a walk 141
17.3 Progressing Walks 142
17.4 Walks with Restricted Vertices 144
17.5 Properties of subdivisions 145
17.6 Pair Graphs 147
17.7 Slim graphs 151
17.8 Contraction Preserves Kuratowski-Subgraph-Property 159
17.9 Final proof 162
18 Weighted Graphs 172
19 Shortest Paths 173

```
theory Rtrancl-On
imports Main
begin
```


1 Reflexive-Transitive Closure on a Domain

In this section we introduce a variant of the reflexive-transitive closure of a relation which is useful to formalize the reachability relation on digraphs.

```
inductive-set
    rtrancl-on :: 'a set \(\Rightarrow\) 'a rel \(\Rightarrow\) 'a rel
    for \(F::\) 'a set and \(r::{ }^{\prime} a\) rel
where
    rtrancl-on-refl [intro!, Pure.intro!, simp]: \(a \in F \Longrightarrow(a, a) \in\) rtrancl-on \(F r\)
    | rtrancl-on-into-rtrancl-on [Pure.intro]:
            \((a, b) \in\) rtrancl-on \(F r \Longrightarrow(b, c) \in r \Longrightarrow c \in F\)
            \(\Longrightarrow(a, c) \in\) rtrancl-on \(F r\)
definition symcl :: 'a rel \(\Rightarrow{ }^{\prime}\) 'a rel \(\left(\left(-^{s}\right)\right.\) [1000] 999) where
    symcl \(R=R \cup(\lambda(a, b) .(b, a))^{\prime} R\)
lemma in-rtrancl-on-in-F:
    assumes \((a, b) \in\) rtrancl-on \(F r\) shows \(a \in F b \in F\)
    using assms by induct auto
lemma rtrancl-on-induct[consumes 1, case-names base step, induct set: rtrancl-on]:
    assumes \((a, b) \in\) rtrancl-on \(F r\)
        and \(a \in F \Longrightarrow P a\)
            \(\bigwedge y z . \llbracket(a, y) \in\) rtrancl-on \(F r ;(y, z) \in r ; y \in F ; z \in F ; P y \rrbracket \Longrightarrow P z\)
    shows \(P b\)
    using assms by (induct ab) (auto dest: in-rtrancl-on-in-F)
lemma rtrancl-on-trans:
    assumes \((a, b) \in\) rtrancl-on \(F r(b, c) \in\) rtrancl-on \(F r\) shows \((a, c) \in\) rtrancl-on
Fr
    using \(\operatorname{assms}(2,1)\)
    by induct (auto intro: rtrancl-on-into-rtrancl-on)
lemma converse-rtrancl-on-into-rtrancl-on:
    assumes \((a, b) \in r(b, c) \in\) rtrancl-on \(F r a \in F\)
```

```
    shows (a,c)\in rtrancl-on Fr
proof -
    have b\inF using «(b,c)\in -> by (rule in-rtrancl-on-in-F)
    show ?thesis
        apply (rule rtrancl-on-trans)
        apply (rule rtrancl-on-into-rtrancl-on)
        apply (rule rtrancl-on-refl)
        by fact+
qed
lemma rtrancl-on-converseI:
    assumes (y,x)\inrtrancl-on Fr shows (x,y)\inrtrancl-on F (r
    using assms
proof induct
    case (step a b)
    then have (b,b) \in rtrancl-on F (r
    then show ?case using step
    by (metis rtrancl-on-trans rtrancl-on-into-rtrancl-on)
qed auto
theorem rtrancl-on-converseD:
    assumes (y,x)\in rtrancl-on F (r r
    using assms by - (drule rtrancl-on-converseI, simp)
lemma converse-rtrancl-on-induct[consumes 1, case-names base step, induct set:
rtrancl-on]:
    assumes major: (a,b) \in rtrancl-on Fr
    and cases: b\inF\LongrightarrowPb
    \ x y . \llbracket ( x , y ) \in r ; ( y , b ) \in \text { rtrancl-on F r ; x f F; y f F;Py】 >Px}
    shows P a
    using rtrancl-on-converseI[OF major] cases
    by induct (auto intro: rtrancl-on-converseD)
lemma converse-rtrancl-on-cases:
    assumes (a,b)\in rtrancl-on Fr
    obtains (base) a=b b\inF
        | (step) c where (a,c)\inr (c,b) \in rtrancl-on Fr
    using assms by induct auto
lemma rtrancl-on-sym:
    assumes sym r shows sym (rtrancl-on F r )
using assms by (auto simp: sym-conv-converse-eq intro: symI dest: rtrancl-on-converseI)
lemma rtrancl-on-mono:
    assumes s\subseteqrF\subseteqG(a,b)\inrtrancl-on F s shows (a,b)\in rtrancl-on Gr
    using assms(3,1,2)
proof induct
    case (step x y) show ?case
        using step assms by (intro converse-rtrancl-on-into-rtrancl-on[OF - step(5)])
```

```
auto
qed auto
lemma rtrancl-consistent-rtrancl-on:
    assumes (a,b) \in r*
    and }a\inFb\in
    and consistent: \bigwedgeab.\llbracketa\inF;(a,b)\inr\rrbracket\Longrightarrowb\inF
    shows (a,b)\in rtrancl-on Fr
    using assms(1-3)
proof (induction rule: converse-rtrancl-induct)
    case (step y z) then have z\inF by (rule-tac consistent) simp
    with step have (z,b)\in rtrancl-on F r by simp
    with step.prems }\langle(y,z)\inr\rangle\langlez\inF\rangle\mathrm{ show ?case
        using converse-rtrancl-on-into-rtrancl-on
        by metis
qed simp
lemma rtrancl-on-rtranclI:
    (a,b) \in rtrancl-on Fr\Longrightarrow(a,b)\in\mp@subsup{r}{}{*}
    by (induct rule: rtrancl-on-induct) simp-all
lemma rtrancl-on-sub-rtrancl:
    rtrancl-on Fr 
    using rtrancl-on-rtranclI
    by auto
end
```

```
theory Stuff
```

theory Stuff
imports
imports
Main
Main
HOL-Library.Extended-Real
HOL-Library.Extended-Real
begin

```

\section*{2 Additional theorems for base libraries}

This section contains lemmas unrelated to graph theory which might be interesting for the Isabelle distribution
```

lemma ereal-Inf-finite-Min:
fixes }S\mathrm{ :: ereal set
assumes finite S and S\not={}
shows Inf S=Min S
using assms
by (induct S rule: finite-ne-induct) (auto simp: min-absorb1)

```
```

lemma finite-INF-in:
fixes f:: ' }a=>\mathrm{ ereal
assumes finite S
assumes S\not={}
shows (INF s\inS.fs)\inf'S
proof -
from assms
have finite (f'S) f'S\not={} by auto
then show Inf (f'S)\inf'S
using ereal-Inf-finite-Min [of f'S] by simp
qed
lemma not-mem-less-INF:
fixes f :: ' }a>>''b :: complete-lattice
assumes fx< (INF s\inS.fs)
assumes }x\in
shows False
using assms by (metis INF-lower less-le-not-le)
lemma sym-diff:
assumes sym A sym B shows sym (}A-B\mathrm{)
using assms by (auto simp: sym-def)

```

\subsection*{2.1 List}
```

lemmas list-exhaust2 $=$ list.exhaust[case-product list.exhaust]
lemma list-exhaust-NSC:
obtains (Nil) $x s=[] \mid$ (Single) x where $x s=[x] \mid$ (Cons-Cons) $x y$ yhere
$x s=x \# y \# y s$
by (metis list.exhaust)
lemma tl-rev:
$t l($ rev $p)=\operatorname{rev}($ butlast $p)$
by (induct p) auto
lemma butlast-rev:
butlast (rev $p)=\operatorname{rev}(t l p)$
by (induct p) auto
lemma take-drop-take:
take $n x s$ @ drop $n($ take $m x s)=$ take $(\max n m) x s$
proof cases
assume $m<n$ then show ?thesis by (auto simp: max-def)
next
assume $\neg m<n$
then have take $n x s=$ take $n($ take $m x s)$ by (auto simp: min-def)
then show ?thesis by (simp del: take-take add: max-def)

```

\section*{qed}
lemma drop-take-drop:
drop \(n(\) take \(m x s) @ d r o p m x s=d r o p(\min n m) x s\)
proof cases
assume \(A\) : \(\neg m<n\)
then show ?thesis
using drop-append \([\) of \(n\) take \(m\) xs drop \(m\) xs]
by (cases length \(x s<n\) ) (auto simp: not-less min-def)
qed (auto simp: min-def)
lemma not-distinct-decomp-min-prefix:
assumes \(\neg\) distinct ws
shows \(\exists\) xs ys zs \(y . w s=x s @ y \# y s @ y \# z s \wedge\) distinct \(x s \wedge y \notin\) set \(x s \wedge y\)
\(\notin\) set \(y s\)
proof -
obtain \(x s y\) ys where \(y \in\) set \(x s\) distinct \(x s w s=x s\) @ \(y \# y s\)
using assms by (auto simp: not-distinct-conv-prefix)
moreover then obtain \(x s^{\prime} y s^{\prime}\) where \(x s=x s^{\prime}\) @ \(y \# y s^{\prime}\) by (auto simp: in-set-conv-decomp)
ultimately show ?thesis by auto
qed
lemma not-distinct-decomp-min-not-distinct:
assumes \(\neg\) distinct ws
shows \(\exists x s\) y ys zs. ws \(=x s\) @ \(y \# y s @ y \# z s \wedge \operatorname{distinct}(y s @[y])\)
using assms
proof (induct ws)
case (Cons wws)
show ?case
proof (cases distinct ws)
case True
then obtain \(x s\) ys where \(w s=x s\) @ \(w \# y s w \notin\) set \(x s\)
using Cons.prems by (fastforce dest: split-list-first)
then have distinct (xs @ \([w]) w \# w s=[] @ w \# x s @ w \# y s\) using 〈distinct ws〉 by auto
then show ?thesis by blast
next
case False
then obtain \(x s\) y ys zs where \(w s=x s @ y \# y s @ y \# z s \wedge \operatorname{distinct}(y s @\) [ \(y]\) )
using Cons by auto
then have \(w \# w s=(w \# x s) @ y \# y s @ y \# z s \wedge \operatorname{distinct}(y s\) @ \([y])\) by simp
then show ?thesis by blast
qed
qed \(\operatorname{simp}\)
lemma card-Ex-subset:
```

 k\leq card M\Longrightarrow\existsN.N\subseteqM^\operatorname{card}N=k
 by (induct rule: inc-induct) (auto simp: card-Suc-eq)
lemma list-set-tl: }x\in\mathrm{ set (tl xs) }\Longrightarrowx\in set xs
by (cases xs) auto

```

\section*{3 NOMATCH simproc}

The simplification procedure can be used to avoid simplification of terms of a certain form
definition NOMATCH :: ' \(a \Rightarrow\) ' \(a \Rightarrow\) bool where NOMATCH val pat \(\equiv\) True lemma NOMATCH-cong[cong]: NOMATCH val pat \(=\) NOMATCH val pat by (rule refl)
simproc-setup NOMATCH (NOMATCH val pat) \(=\langle f n-=>f n c t x t=>f n c t\) \(=>\)
let
val thy \(=\) Proof-Context.theory-of ctxt
val dest-binop \(=\) Term.dest-comb \#> apfst (Term.dest-comb \#> snd)
val \(m=\) Pattern.matches thy (dest-binop (Thm.term-of ct))
in if \(m\) then NONE else SOME @\{thm NOMATCH-def \(\}\) end
,
This setup ensures that a rewrite rule of the form NOMATCH val pat \(\Longrightarrow\) \(t\) is only applied, if the pattern pat does not match the value val.
end
```

theory Digraph
imports
Main
Rtrancl-On
Stuff
begin

```

\section*{4 Digraphs}
```

record $\left({ }^{\prime} a,{ }^{\prime} b\right)$ pre-digraph $=$
verts :: 'a set
arcs :: 'b set
tail :: ' $b \Rightarrow{ }^{\prime} a$
head $::$ ' $b \Rightarrow{ }^{\prime} a$
definition arc-to-ends :: (' $\left.a,{ }^{\prime} b\right)$ pre-digraph $\Rightarrow{ }^{\prime} b \Rightarrow^{\prime} a \times$ ' a where
arc-to-ends $G e \equiv($ tail $G e$, head $G e)$
locale pre-digraph $=$

```
fixes \(G::\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph (structure)
locale \(w f\)-digraph \(=\) pre-digraph +
assumes tail-in-verts[simp]: \(e \in\) arcs \(G \Longrightarrow\) tail \(G e \in\) verts \(G\)
assumes head-in-verts[simp]: \(e \in \operatorname{arcs} G \Longrightarrow\) head \(G e \in\) verts \(G\)
begin
lemma wf-digraph: wf-digraph \(G\) by intro-locales
lemmas wellformed \(=\) tail-in-verts head-in-verts
end
definition arcs-ends :: ('a,'b) pre-digraph \(\Rightarrow\left({ }^{\prime} a \times\right.\) 'a) set where arcs-ends \(G \equiv\) arc-to-ends \(G\) 'arcs \(G\)
definition symmetric \(::\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow\) bool where symmetric \(G \equiv\) sym (arcs-ends \(G\) )

Matches "pseudo digraphs" from [1], except for allowing the null graph. For a discussion of that topic, see also [3].
```

locale fin-digraph =wf-digraph +
assumes finite-verts[simp]: finite (verts G)
and finite-arcs[simp]: finite (arcs G)
locale loopfree-digraph =wf-digraph +
assumes no-loops: e\in arcs G\Longrightarrow tail Ge\not= head Ge
locale nomulti-digraph = wf-digraph +
assumes no-multi-arcs: \bigwedgee1 e2. \llbrackete1 \in arcs G; e2 \in arcs G;
arc-to-ends Ge1 = arc-to-ends Ge2\rrbracket \Longrightarrowe1=e2
locale sym-digraph =wf-digraph +
assumes sym-arcs[intro]: symmetric G
locale digraph = fin-digraph + loopfree-digraph + nomulti-digraph

```

We model graphs as symmetric digraphs. This is fine for many purposes, but not for all. For example, the path \(a, b, a\) is considered to be a cycle in a digraph (and hence in a symmetric digraph), but not in an undirected graph.
locale pseudo-graph \(=\) fin-digraph + sym-digraph
locale graph \(=\) digraph + pseudo-graph
lemma (in wf-digraph) fin-digraphI[intro]:
assumes finite (verts \(G\) )
assumes finite (arcs \(G\) )
shows fin-digraph \(G\)
using assms by unfold-locales
lemma (in wf-digraph) sym-digraph \([\) intro \(]\) :
assumes symmetric \(G\)
shows sym-digraph \(G\)
using assms by unfold-locales
lemma (in digraph) graphI[intro]:
assumes symmetric \(G\)
shows graph \(G\)
using assms by unfold-locales
definition (in wf-digraph) arc :: ' \(b \Rightarrow^{\prime} a \times{ }^{\prime} a \Rightarrow\) bool where
arc e \(u v \equiv e \in \operatorname{arcs} G \wedge\) tail \(G e=\) fst uv \(\wedge\) head \(G e=\) snd uv
lemma (in fin-digraph) fin-digraph: fin-digraph \(G\)
by unfold-locales
lemma (in nomulti-digraph) nomulti-digraph: nomulti-digraph \(G\) by unfold-locales
lemma arcs-ends-conv: arcs-ends \(G=(\lambda e .(\) tail \(G e\), head \(G e))\) 'arcs \(G\)
by (auto simp: arc-to-ends-def arcs-ends-def)
lemma symmetric-conv: symmetric \(G \longleftrightarrow(\forall\) e1 \(\in\) arcs \(G . \exists\) e2 \(\in\) arcs \(G\). tail \(G\) \(e 1=\) head \(G e 2 \wedge\) head \(G e 1=\) tail \(G e 2)\)
unfolding symmetric-def arcs-ends-conv sym-def by auto
lemma arcs-ends-symmetric:
assumes symmetric \(G\)
shows \((u, v) \in\) arcs-ends \(G \Longrightarrow(v, u) \in\) arcs-ends \(G\)
using assms unfolding symmetric-def sym-def by auto
lemma (in nomulti-digraph) inj-on-arc-to-ends:
inj-on (arc-to-ends G) (arcs G)
by (rule inj-onI) (rule no-multi-arcs)

\subsection*{4.1 Reachability}
abbreviation dominates \(::\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\) bool \((-\rightarrow 1-[100,100]\) 40) where
dominates \(G u v \equiv(u, v) \in\) arcs-ends \(G\)
abbreviation reachable1 \(::\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow^{\prime} a \Rightarrow^{\prime} a \Rightarrow\) bool \(\left(-\rightarrow^{+}{ }^{1}-[100,100]\right.\) 40) where
reachable1 \(G u v \equiv(u, v) \in(\) arcs-ends \(G) \uparrow+\)
```

definition reachable :: ('a,'b) pre-digraph }\mp@subsup{=>}{}{\prime}\mathrm{ ' }a=>\mp@subsup{|}{}{\prime}a=>\mathrm{ bool (- - *'1 - [100,100]
40) where
reachable Guv \equiv(u,v)\inrtrancl-on(verts G)(arcs-ends G)
lemma reachableE[elim]:
assumes u }\mp@subsup{->}{G}{}
obtains e where e\inarcs G tail Ge=u head Ge=v
using assms by (auto simp add: arcs-ends-conv)
lemma (in loopfree-digraph) adj-not-same:
assumes a->a shows False
using assms by (rule reachableE) (auto dest: no-loops)
lemma reachable-in-vertsE:
assumes }u\mp@subsup{->}{}{*}Gv\mathrm{ obtains }u\in\mathrm{ verts }Gv\in\mathrm{ verts }
using assms unfolding reachable-def by induct auto
lemma symmetric-reachable:

```

```

proof -
have sym (rtrancl-on (verts G) (arcs-ends G))
using assms by (auto simp add: symmetric-def dest: rtrancl-on-sym)
then show ?thesis using assms unfolding reachable-def by (blast elim: symE)
qed
lemma reachable-rtranclI:
u 㙁G v\Longrightarrow(u,v)\in(arcs-ends G)*
unfolding reachable-def by (rule rtrancl-on-rtranclI)
context wf-digraph begin
lemma adj-in-verts:
assumes u ->G}v\mathrm{ vhows u}\in\mathrm{ verts }Gv\in\mathrm{ verts }
using assms unfolding arcs-ends-conv by auto
lemma dominatesI: assumes arc-to-ends Ga=(u,v) a \in arcs G shows u 隹
v
using assms by (auto simp: arcs-ends-def intro: rev-image-eqI)
lemma reachable-refl [intro!, Pure.intro!, simp]: v\inverts G\Longrightarrowv 放v
unfolding reachable-def by auto
lemma adj-reachable-trans[trans]:
assumes }a->\mp@subsup{G}{G}{}bb\mp@subsup{->}{}{*}\mp@subsup{G}{G}{c}\mathrm{ shows }a->\mp@subsup{->}{G}{*}\mp@subsup{}{}{c
using assms by (auto simp: reachable-def intro: converse-rtrancl-on-into-rtrancl-on
adj-in-verts)
lemma reachable-adj-trans[trans]:

```
```

 assumes }a\mp@subsup{->}{}{*}\mp@subsup{G}{G}{}bb->\mp@subsup{}{G}{}c\mathrm{ shows }a\mp@subsup{->}{}{*}G\mp@subsup{}{G}{
 using assms by (auto simp: reachable-def intro: rtrancl-on-into-rtrancl-on adj-in-verts)
 lemma reachable-adjI [intro, simp]: }u->v\Longrightarrowu\mp@subsup{->}{}{*}
 by (auto intro: adj-reachable-trans adj-in-verts)
 lemma reachable-trans[trans]:
assumes }u\mp@subsup{->}{}{*}vv\mp@subsup{->}{}{*}w\mathrm{ shows }u\mp@subsup{->}{}{*}
using assms unfolding reachable-def by (rule rtrancl-on-trans)
lemma reachable-induct[consumes 1, case-names base step]:
assumes major: }u\mp@subsup{->}{}{*}G\mp@subsup{}{G}{
and cases: }u\in\mathrm{ verts G}\LongrightarrowP
\xy.\llbracketu ->* }\mp@subsup{G}{}{*}x;x\mp@subsup{->}{G}{}y;Px\rrbracket\LongrightarrowP
shows Pv
using assms unfolding reachable-def by (rule rtrancl-on-induct) auto
lemma converse-reachable-induct[consumes 1, case-names base step, induct pred:
reachable]:
assumes major: }u\mp@subsup{->}{}{*}\mp@subsup{G}{G}{}
and cases: v\in verts G\LongrightarrowPv
\xy.\llbracketx 和 y; y 梠 v;Py\rrbracket\LongrightarrowPx
shows P u
using assms unfolding reachable-def by (rule converse-rtrancl-on-induct) auto
lemma (in pre-digraph) converse-reachable-cases:
assumes }u\mp@subsup{->}{}{*}G\mp@subsup{}{G}{v
obtains (base) u=vu\in verts }
| (step) w where u -> }\mp@subsup{G}{}{w}w\mp@subsup{->}{*}{*}\mp@subsup{G}{}{v
using assms unfolding reachable-def by (cases rule: converse-rtrancl-on-cases)
auto
lemma reachable-in-verts:
assumes }u\mp@subsup{->}{}{*}v\mathrm{ shows }u\in\mathrm{ verts }Gv\in\mathrm{ verts }
using assms by induct (simp-all add:adj-in-verts)
lemma reachable1-in-verts:
assumes }u\mp@subsup{->}{}{+}v\mathrm{ shows }u\in\mathrm{ verts }Gv\in\mathrm{ verts }
using assms
by induct (simp-all add: adj-in-verts)
lemma reachable1-reachable[intro]:
v \rightarrow ^ { + } w \Longrightarrow v \rightarrow ^ { * } w
unfolding reachable-def
by (rule rtrancl-consistent-rtrancl-on) (simp-all add: reachable1-in-verts adj-in-verts)
lemmas reachable1-reachableE[elim] = reachable1-reachable[elim-format]
lemma reachable-neq-reachable1[intro]:

```
```

 assumes reach: v }\mp@subsup{->}{}{*}
 and neq: v}\not=
 shows v}\mp@subsup{->}{}{+}
 proof -
from reach have (v,w) \in(arcs-ends G)`* by (rule reachable-rtranclI)
with neq show ?thesis by (auto dest: rtranclD)
qed
lemmas reachable-neq-reachable1E[elim] = reachable-neq-reachable1 [elim-format]
lemma reachable1-reachable-trans [trans]:
u ->+}v\Longrightarrowv\mp@subsup{->}{}{*}w\Longrightarrowu\mp@subsup{->}{}{+}
by (metis trancl-trans reachable-neq-reachable1)
lemma reachable-reachable1-trans [trans]:

```

```

by (metis trancl-trans reachable-neq-reachable1)
lemma reachable-conv:
u **}v\longleftrightarrow(u,v)\in(\mathrm{ arcs-ends G)^* }\cap(\mathrm{ verts }G\times\mathrm{ verts }G
apply (auto intro: reachable-in-verts)
apply (induct rule: rtrancl-induct)
apply auto
done
lemma reachable-conv':
assumes u\in verts G
shows }u\mp@subsup{->}{}{*}v\longleftrightarrow(u,v)\in(\mathrm{ arcs-ends G)* (is ?L = ?R)
proof
assume ?R then show ?L using assms by induct auto
qed (auto simp: reachable-conv)
end
lemma (in sym-digraph) symmetric-reachable':
assumes v 倹的 shows w ->*}G\mp@subsup{G}{}{v
using sym-arcs assms by (rule symmetric-reachable)

```

\subsection*{4.2 Degrees of vertices}
```

definition in-arcs $::$ (' $\left.a,{ }^{\prime} b\right)$ pre-digraph $\Rightarrow{ }^{\prime} a \Rightarrow$ ' b set where in-arcs $G v \equiv\{e \in$ arcs G. head $G e=v\}$
definition out-arcs :: (' a, ' b) pre-digraph $\Rightarrow{ }^{\prime} a \Rightarrow$ ' b set where out-arcs $G v \equiv\{e \in$ arcs G. tail $G e=v\}$
definition in-degree $::\left({ }^{\prime} a,{ }^{\prime} b\right)$ pre-digraph $\Rightarrow{ }^{\prime} a \Rightarrow$ nat where in-degree $G v \equiv$ card (in-arcs Gv)

```
```

definition out-degree :: (' }a,\mp@code{,}b)\mathrm{ pre-digraph }=>\mp@subsup{}{}{\prime}'a=>\mathrm{ nat where
out-degree Gv\equiv card (out-arcs Gv)
lemma (in fin-digraph) finite-in-arcs[intro]:
finite (in-arcs G v)
unfolding in-arcs-def by auto
lemma (in fin-digraph) finite-out-arcs[intro]:
finite (out-arcs G v)
unfolding out-arcs-def by auto
lemma in-in-arcs-conv[simp]:
e\in in-arcs Gv\longleftrightarrowe\in arcs G}^\mathrm{ head Ge=v
unfolding in-arcs-def by auto
lemma in-out-arcs-conv[simp]:
e\in out-arcs Gv\longleftrightarrowe\in arcs G^ tail Ge=v
unfolding out-arcs-def by auto
lemma inout-arcs-arc-simps[simp]:
assumes e f arcs G
shows tail Ge=u\Longrightarrow out-arcs Gu\cap insert e E = insert e (out-arcs Gu\cap
E)
tail Ge\not=u\Longrightarrow out-arcs Gu\cap insert e E= out-arcs Gu\capE
out-arcs Gu\cap{}={}
head Ge=u\Longrightarrow in-arcs Gu\cap insert e E= insert e (in-arcs Gu\capE)
head Ge\not=u\Longrightarrow in-arcs Gu\cap insert e E= in-arcs Gu\capE
in-arcs Gu\cap{}={}
using assms by auto
lemma in-arcs-int-arcs[simp]: in-arcs Gu\cap arcs G=in-arcs Gu and
out-arcs-int-arcs[simp]:out-arcs Gu\cap arcs G=out-arcs Gu
by auto
lemma in-arcs-in-arcs: x 泣-arcs Gu\Longrightarrowx\inarcs G

```

```

 by (auto simp: in-arcs-def out-arcs-def)
    ```

\subsection*{4.3 Graph operations}
```

context pre-digraph begin
definition add-arc :: ' $b \Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)$ pre-digraph where add-arc $a=0$ verts $=$ verts $G \cup\{$ tail $G a$, head $G a\}$, arcs $=$ insert $a(\operatorname{arcs} G)$, tail $=$ tail G, head $=$ head G D
definition del-arc $::$ ' $b \Rightarrow\left({ }^{\prime} a, ' b\right)$ pre-digraph where

```
del-arc \(a=0\) verts \(=\) verts \(G\), arcs \(=\) arcs \(G-\{a\}\), tail \(=\) tail \(G\), head \(=\) head G )
definition add-vert :: ' \(a \Rightarrow\) ('a,'b) pre-digraph where
add-vert \(v=0\) verts \(=\) insert \(v(\) verts \(G)\), arcs \(=\) arcs \(G\), tail \(=\) tail \(G\), head \(=\) head \(G\) D
definition del-vert :: ' \(a \Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph where
del-vert \(v=\{\) verts \(=\) verts \(G-\{v\}\), arcs \(=\{a \in \operatorname{arcs} G\). tail \(G a \neq v \wedge\) head \(G a \neq v\}\), tail \(=\) tail \(G\), head \(=\) head \(G D\)

\section*{lemma}
verts-add-arc: \(\llbracket\) tail \(G a \in\) verts \(G ;\) head \(G a \in\) verts \(G \rrbracket \Longrightarrow\) verts (add-arc a)
\(=\) verts \(G\) and
verts-add-arc-conv: verts (add-arc a) \(=\) verts \(G \cup\{\) tail \(G a\), head \(G a\}\) and
arcs-add-arc: arcs \((\) add-arc a) \(=\) insert \(a(\operatorname{arcs} G)\) and
tail-add-arc: tail (add-arc a) =tail G and
head-add-arc: head (add-arc a) head \(G\)
by (auto simp: add-arc-def)
lemmas add-arc-simps \([\) simp \(]=\) verts-add-arc arcs-add-arc tail-add-arc head-add-arc

\section*{lemma}
verts-del-arc: verts (del-arc \(a)=\) verts \(G\) and
arcs-del-arc: arcs \((\) del-arc \(a)=\operatorname{arcs} G-\{a\}\) and
tail-del-arc: tail (del-arc a) \(=\) tail \(G\) and
head-del-arc: head (del-arc a) \(=\) head \(G\)
by (auto simp: del-arc-def)
lemmas del-arc-simps \([\) simp \(]=\) verts-del-arc arcs-del-arc tail-del-arc head-del-arc

\section*{lemma}
verts-add-vert: verts (pre-digraph.add-vert \(G u)=\) insert \(u(\) verts \(G)\) and arcs-add-vert: arcs (pre-digraph.add-vert \(G u\) ) \(=\) arcs \(G\) and tail-add-vert: tail (pre-digraph.add-vert \(G u)=\) tail \(G\) and head-add-vert: head (pre-digraph.add-vert \(G u)=\) head \(G\) by (auto simp: pre-digraph.add-vert-def)
lemmas add-vert-simps \(=\) verts-add-vert arcs-add-vert tail-add-vert head-add-vert

\section*{lemma}
verts-del-vert: verts (pre-digraph.del-vert \(G u)=\) verts \(G-\{u\}\) and arcs-del-vert: arcs (pre-digraph.del-vert \(G u)=\{a \in\) arcs \(G\). tail \(G a \neq u \wedge\)
head \(G a \neq u\}\) and
tail-del-vert: tail (pre-digraph.del-vert \(G u)=\) tail \(G\) and
head-del-vert: head (pre-digraph.del-vert \(G u\) ) \(=\) head \(G\) and
ends-del-vert: arc-to-ends (pre-digraph.del-vert \(G u\) ) arc-to-ends \(G\)
by (auto simp: pre-digraph.del-vert-def arc-to-ends-def)
lemmas del-vert-simps \(=\) verts-del-vert arcs-del-vert tail-del-vert head-del-vert
lemma add-add-arc-collapse[simp]: pre-digraph.add-arc (add-arc a) a =add-arc a by (auto simp: pre-digraph.add-arc-def)
lemma add-del-arc-collapse[simp]: pre-digraph.add-arc (del-arc a) a =add-arc a by (auto simp: pre-digraph.verts-add-arc-conv pre-digraph.add-arc-simps)
lemma del-add-arc-collapse[simp]:
\(\llbracket\) tail \(G a \in\) verts \(G\); head \(G a \in\) verts \(G \rrbracket \Longrightarrow\) pre-digraph.del-arc (add-arc a) a \(=\) del-arc a
by (auto simp: pre-digraph.add-arc-simps pre-digraph.del-arc-simps)
lemma del-del-arc-collapse[simp]: pre-digraph.del-arc (del-arc a) \(a=\) del-arc a by (auto simp: pre-digraph.add-arc-simps pre-digraph.del-arc-simps)
lemma add-arc-commute: pre-digraph.add-arc (add-arc b) \(a=\) pre-digraph.add-arc (add-arc a) b
by (auto simp: pre-digraph.add-arc-def)
lemma del-arc-commute: pre-digraph.del-arc (del-arc b) \(a=\) pre-digraph.del-arc (del-arc a) b
by (auto simp: pre-digraph.del-arc-def)
lemma del-arc-in: \(a \notin\) arcs \(G \Longrightarrow\) del-arc \(a=G\)
by (rule pre-digraph.equality) (auto simp: add-arc-def)
lemma in-arcs-add-arc-iff:
in-arcs (add-arc a) \(u=\) (if head \(G a=u\) then insert \(a\) (in-arcs \(G u\) ) else in-arcs Gu)
by auto
lemma out-arcs-add-arc-iff:
out-arcs (add-arc a) \(u=(\) if tail \(G a=u\) then insert a (out-arcs \(G u)\) else out-arcs \(G u\) )
by auto
lemma in-arcs-del-arc-iff:
in-arcs (del-arc a) \(u=(\) if head \(G a=u\) then in-arcs \(G u-\{a\}\) else in-arcs \(G\) u)
by auto
lemma out-arcs-del-arc-iff:
out-arcs (del-arc a) \(u=(\) if tail \(G a=u\) then out-arcs \(G u-\{a\}\) else out-arcs \(G u)\)
by auto
lemma (in wf-digraph) add-arc-in: \(a \in \operatorname{arcs} G \Longrightarrow\) add-arc \(a=G\)
by (rule pre-digraph.equality) (auto simp: add-arc-def)
```

context wf-digraph begin
lemma wf-digraph-add-arc[intro]:
wf-digraph (add-arc a) by unfold-locales (auto simp: verts-add-arc-conv)
lemma wf-digraph-del-arc[intro]:
wf-digraph (del-arc a) by unfold-locales (auto simp: verts-add-arc-conv)
lemma wf-digraph-del-vert: wf-digraph (del-vert u)
by standard (auto simp: del-vert-simps)
lemma wf-digraph-add-vert: wf-digraph (add-vert u)
by standard (auto simp: add-vert-simps)
lemma del-vert-add-vert:
assumes u\not\in verts G
shows pre-digraph.del-vert (add-vert u) u=G
using assms by (intro pre-digraph.equality) (auto simp: pre-digraph.del-vert-def
add-vert-def)
end
context fin-digraph begin
lemma in-degree-add-arc-iff:
in-degree (add-arc a) u=(if head Ga=u\wedgea\not\in arcs G then in-degree Gu+
1 else in-degree Gu)
proof -
have a\not\in arcs G\Longrightarrowa\not\inin-arcs Gu by (auto simp: in-arcs-def)
with finite-in-arcs show ?thesis
unfolding in-degree-def by (auto simp: in-arcs-add-arc-iff intro: arg-cong[where
f=card])
qed
lemma out-degree-add-arc-iff:
out-degree (add-arc a) u=(if tail G a = u^a\not\in arcs G then out-degree Gu+
1 else out-degree G u)
proof -
have }a\not\in\mathrm{ arcs }G\Longrightarrowa\not\in\mathrm{ out-arcs G u by (auto simp:out-arcs-def)
with finite-out-arcs show ?thesis
unfolding out-degree-def by (auto simp: out-arcs-add-arc-iff intro: arg-cong[where
f=card])
qed

```
```

lemma in-degree-del-arc-iff:
in-degree (del-arc a) u=(if head Ga=u^a\inarcs G then in-degree Gu-1
else in-degree Gu)
proof -
have }a\not\in\mathrm{ arcs }G\Longrightarrowa\not=\mathrm{ in-arcs G u by (auto simp: in-arcs-def)
with finite-in-arcs show ?thesis
unfolding in-degree-def by (auto simp: in-arcs-del-arc-iff intro: arg-cong[where
f=card])
qed
lemma out-degree-del-arc-iff:
out-degree (del-arc a) u=(if tail Ga=u\wedgea\inarcs G then out-degree Gu-
1 else out-degree Gu)
proof -
have a\not\in arcs G\Longrightarrowa\not\in out-arcs G u by (auto simp:out-arcs-def)
with finite-out-arcs show ?thesis
unfolding out-degree-def by (auto simp: out-arcs-del-arc-iff intro: arg-cong[where
f=card])
qed
lemma fin-digraph-del-vert: fin-digraph (del-vert u)
by standard (auto simp: del-vert-simps)
lemma fin-digraph-del-arc: fin-digraph (del-arc a)
by standard (auto simp: del-vert-simps)
end
end
theory Bidirected-Digraph
imports
Digraph
HOL-Combinatorics.Permutations
begin

```

\section*{5 Bidirected Graphs}
```

locale bidirected-digraph $=$ wf-digraph G for $G+$
fixes arev :: ' $b \Rightarrow$ ' b
assumes arev-dom: $\bigwedge a . a \in \operatorname{arcs} G \longleftrightarrow$ arev $a \neq a$
assumes arev-arev-raw: $\bigwedge a . a \in \operatorname{arcs} G \Longrightarrow$ arev $($ arev $a)=a$
assumes tail-arev $[\operatorname{simp}]: \bigwedge a . a \in \operatorname{arcs} G \Longrightarrow$ tail $G($ arev $a)=$ head $G a$
lemma (in wf-digraph) bidirected-digraphI:
assumes arev-eq: $\bigwedge a . a \notin \operatorname{arcs} G \Longrightarrow$ arev $a=a$
assumes arev-neq: $\bigwedge a . a \in \operatorname{arcs} G \Longrightarrow$ arev $a \neq a$
assumes arev-arev-raw: $\bigwedge a . a \in \operatorname{arcs} G \Longrightarrow$ arev (arev $a)=a$
assumes tail-arev: $\bigwedge a . a \in \operatorname{arcs} G \Longrightarrow$ tail $G($ arev $a)=$ head $G a$

```
```

shows bidirected-digraph G arev
using assms by unfold-locales (auto simp: permutes-def)
context bidirected-digraph begin
lemma bidirected-digraph[intro!]: bidirected-digraph G arev
by unfold-locales
lemma arev-arev[simp]: arev (arev a)=a
using arev-dom by (cases a \in arcs G) (auto simp: arev-arev-raw)
lemma arev-o-arev[simp]: arev o arev = id
by (simp add: fun-eq-iff)
lemma arev-eq: a \# arcs G\Longrightarrow arev a=a
by (simp add: arev-dom)
lemma arev-neq: a G arcs G\Longrightarrow arev }a\not=
by (simp add: arev-dom)
lemma arev-in-arcs[simp]: a\in\operatorname{arcs G\Longrightarrow arev a }\in\mathrm{ arcs }G
by (metis arev-arev arev-dom)
lemma head-arev[simp]:
assumes a f arcs G shows head G (arev a)= tail Ga
proof -
from assms have head G (arev a) = tail G (arev (arev a))
by (simp only: tail-arev arev-in-arcs)
then show ?thesis by simp
qed
lemma ate-arev[simp]:
assumes a\in arcs G shows arc-to-ends G (arev a) = prod.swap (arc-to-ends
Ga)
using assms by (auto simp: arc-to-ends-def)
lemma bij-arev: bij arev
using arev-arev by (metis bij-betw-imageI inj-on-inverseI surjI)
lemma arev-permutes-arcs:arev permutes arcs G
using arev-dom bij-arev by (auto simp: permutes-def bij-iff)
lemma arev-eq-iff: \x y. arev x = arev y \longleftrightarrowx=y
by (metis arev-arev)
lemma in-arcs-eq: in-arcs G w = arev'out-arcs Gw
by auto (metis arev-arev arev-in-arcs image-eqI in-out-arcs-conv tail-arev)
lemma inj-on-arev[intro!]: inj-on arev S

```
```

 by (metis arev-arev inj-on-inverseI)
 lemma even-card-loops:
 even (card (in-arcs G w \cap out-arcs G w)) (is even (card ?S))
 proof -
{ assume }\neg\mathrm{ finite ?S
then have?thesis by simp
}
moreover
{ assume A:finite ?S
have card ?S = card (\bigcup{{a,arev a}| a. a\in?S}) (is - = card (U ?T))
by (rule arg-cong[where f=card]) (auto intro!: exI[where }x={x\mathrm{ , arev }x
for }x]\mathrm{)
also have ...= sum card ?T
proof (rule card-Union-disjoint)
show }\bigwedgeA.A\in{{a,\mathrm{ arev a} |a. a f ?S} > finite A by auto
show pairwise disjnt {{a, arev a} |a.a\in in-arcs G w\cap out-arcs G w}
unfolding pairwise-def disjnt-def
by safe (simp-all add: arev-eq-iff)
qed
also have ... = sum (\lambdaa. 2) ?T
by (intro sum.cong) (auto simp: card-insert-if dest: arev-neq)
also have ... = 2 * card ?T by simp
finally have ?thesis by simp
}
ultimately
show ?thesis by blast
qed

```
end
sublocale bidirected-digraph \(\subseteq\) sym-digraph
proof (unfold-locales, unfold symmetric-def, intro symI)
    fix \(u v\) assume \(u \rightarrow_{G} v\)
    then obtain \(a\) where \(a \in\) arcs \(G\) arc-to-ends \(G a=(u, v)\) by (auto simp:
arcs-ends-def)
    then have arev \(a \in\) arcs \(G\) arc-to-ends \(G(\) arev \(a)=(v, u)\)
            by (auto simp: arc-to-ends-def)
    then show \(v \rightarrow_{G} u\) by (auto simp: arcs-ends-def intro: rev-image-eqI)
qed
end
```

theory Arc-Walk
imports

```

Digraph
begin

\section*{6 Arc Walks}

We represent a walk in a graph by the list of its arcs.
type-synonym 'b awalk \(=\) 'b list

\section*{context pre-digraph begin}

The list of vertices of a walk. The additional vertex argument is there to deal with the case of empty walks.
primrec awalk-verts :: ' \(a \Rightarrow\) ' \(b\) awalk \(\Rightarrow\) 'a list where
awalk-verts \(u[]=[u]\)
| awalk-verts \(u(e \#\) es \()=\) tail \(G e \#\) awalk-verts (head Ge) es
abbreviation awhd :: ' \(a \Rightarrow\) 'b awalk \(\Rightarrow\) ' \(a\) where
awhd \(u p \equiv h d\) (awalk-verts \(u p\) )
abbreviation awlast:: ' \(a \Rightarrow\) ' \(b\) awalk \(\Rightarrow\) ' \(a\) where awlast u \(p \equiv\) last (awalk-verts u \(p\) )

Tests whether a list of arcs is a consistent arc sequence, i.e. a list of arcs, where the head G node of each arc is the tail G node of the following arc.
```

fun cas :: ' $a \Rightarrow$ ' b awalk $\Rightarrow{ }^{\prime} a \Rightarrow$ bool where
cas $u[] v=(u=v) \mid$
cas $u(e \#$ es $) v=($ tail $G e=u \wedge \operatorname{cas}($ head $G e)$ es $v)$
lemma cas-simp:
assumes es $\neq[]$
shows cas u es $v \longleftrightarrow$ tail $G(h d e s)=u \wedge$ cas (head $G(h d e s))(t l e s) v$
using assms by (cases es) auto
definition awalk :: ' $a \Rightarrow$ 'b awalk $\Rightarrow{ }^{\prime} a \Rightarrow$ bool where
awalk u p $v \equiv u \in$ verts $G \wedge$ set $p \subseteq$ arcs $G \wedge$ cas upv
definition (in pre-digraph) trail $::$ ' $a \Rightarrow$ ' b awalk $\Rightarrow{ }^{\prime} a \Rightarrow$ bool where
trail $u p v \equiv$ awalk u $p v \wedge$ distinct p
definition apath $::$ ' $a \Rightarrow^{\prime} b$ awalk \Rightarrow ' $a \Rightarrow$ bool where
apath $u p v \equiv$ awalk u $p v \wedge$ distinct (awalk-verts $u p$)
end

```

\subsection*{6.1 Basic Lemmas}
lemma (in pre-digraph) awalk-verts-conv:
awalk-verts \(u p=(\) if \(p=[]\) then \([u]\) else map \((\) tail \(G) p @[\) head \(G(\) last \(p)])\) by (induct \(p\) arbitrary: u) auto
lemma (in pre-digraph) awalk-verts-conv': assumes cas \(u p v\) shows awalk-verts \(u p=(\) if \(p=[]\) then \([u]\) else tail \(G(h d p) \# \operatorname{map}(\operatorname{head} G) p)\) using assms by (induct \(u\) p v rule: cas.induct) (auto simp: cas-simp)
lemma (in pre-digraph) length-awalk-verts:
length (awalk-verts \(u p\) ) \(=\) Suc (length \(p\) )
by (simp add: awalk-verts-conv)
lemma (in pre-digraph) awalk-verts-ne-eq: assumes \(p \neq[]\)
shows awalk-verts \(u p=\) awalk-verts \(v p\)
using assms by (auto simp: awalk-verts-conv)
lemma (in pre-digraph) awalk-verts-non-Nil[simp]: awalk-verts \(u p \neq[]\)
by (simp add: awalk-verts-conv)
context wf-digraph begin

\section*{lemma}
assumes cas \(u p v\)
shows awhd-if-cas: awhd \(u p=u\) and awlast-if-cas: awlast \(u p=v\)
using assms by (induct \(p\) arbitrary: \(u\) ) auto
lemma awalk-verts-in-verts:
assumes \(u \in\) verts \(G\) set \(p \subseteq\) arcs \(G v \in\) set (awalk-verts \(u p\) )
shows \(v \in\) verts \(G\)
using assms by (induct \(p\) arbitrary: u) (auto intro: wellformed)

\section*{lemma}
assumes \(u \in\) verts \(G\) set \(p \subseteq\) arcs \(G\)
shows awhd-in-verts: awhd \(u p \in\) verts \(G\)
and awlast-in-verts: awlast \(u p \in\) verts \(G\)
using assms by (auto elim: awalk-verts-in-verts)
lemma awalk-conv:
awalk \(u p v=(\) set (awalk-verts \(u p) \subseteq\) verts \(G\)
\(\wedge\) set \(p \subseteq \operatorname{arcs} G\)
\(\wedge\) awhd \(u p=u \wedge\) awlast \(u p=v \wedge\) cas \(u p v\) )
unfolding awalk-def using hd-in-set[OF awalk-verts-non-Nil, of u p]
by (auto intro: awalk-verts-in-verts awhd-if-cas awlast-if-cas simp del: hd-in-set)
lemma awalkI:
assumes set (awalk-verts up) \(\subseteq\) verts \(G\) set \(p \subseteq\) arcs \(G\) cas upv
shows awalk u \(p v\)
using assms by (auto simp: awalk-conv awhd-if-cas awlast-if-cas)
```

lemma awalkE[elim]:
assumes awalk u pv
obtains set (awalk-verts u p)\subseteq verts G set p\subseteqarcs G cas u p v
awhd u p=u awlast u p=v
using assms by (auto simp add: awalk-conv)
lemma awalk-Nil-iff:
awalk u[] v\longleftrightarrowu=v^u\in verts }
unfolding awalk-def by auto
lemma trail-Nil-iff:
trail u[] v\longleftrightarrowu=v^u\in verts G
by (auto simp: trail-def awalk-Nil-iff)
lemma apath-Nil-iff: apath u[] v\longleftrightarrowu=v^u\in verts G
by (auto simp: apath-def awalk-Nil-iff)
lemma awalk-hd-in-verts: awalk и p v\Longrightarrowu\in verts G
by (cases p) auto
lemma awalk-last-in-verts: awalk u p v\Longrightarrowv\inverts G
unfolding awalk-conv by auto
lemma hd-in-awalk-verts:
awalk upv\Longrightarrowu\in set (awalk-verts u p)
apath u pv\Longrightarrowu\in set (awalk-verts u p)
by (case-tac [!]p) (auto simp: apath-def)
lemma awalk-Cons-iff:
awalk u(e\# es)w\longleftrightarrowe\in arcs G}\wedgeu= tail Ge^ awalk (head G e) es
by (auto simp: awalk-def)
lemma trail-Cons-iff:
trail u(e\# es) w}\longleftrightarrowe\in\operatorname{arcs}G\wedgeu=tail Ge^e\not\in set es \wedge trail (head G
e) es w
by (auto simp: trail-def awalk-Cons-iff)
lemma apath-Cons-iff:
apath u(e\#es) w\longleftrightarrowe\in arcs G}\wedge tail Ge=u\wedge apath (head G e) es w
^ tail Ge\# set (awalk-verts (head G e) es) (is ?L \longleftrightarrow?R)
by (auto simp: apath-def awalk-Cons-iff)
lemmas awalk-simps = awalk-Nil-iff awalk-Cons-iff
lemmas trail-simps = trail-Nil-iff trail-Cons-iff
lemmas apath-simps = apath-Nil-iff apath-Cons-iff
lemma arc-implies-awalk:

```
```

 e\in arcs G\Longrightarrowawalk (tail Ge)[e] (head Ge)
 by (simp add: awalk-simps)
lemma apath-nonempty-ends:
assumes apath u pv
assumes p}\not=[
shows u\not=v
using assms
proof (induct p arbitrary: u)
case (Cons e es)
then have apath (head G e) es v u\not\in set (awalk-verts (head G e) es)
by (auto simp: apath-Cons-iff)
moreover then have v\in set (awalk-verts (head G e) es) by (auto simp: ap-
ath-def)
ultimately show }u\not=v\mathrm{ by auto
qed simp
lemma awalk-ConsI:
assumes awalk v es w
assumes e\inarcs G and arc-to-ends Ge=(u,v)
shows awalk u (e \# es) w
using assms by (cases es) (auto simp: awalk-def arc-to-ends-def)
lemma (in pre-digraph) awalkI-apath:
assumes apath u pv shows awalk u pv
using assms by (simp add: apath-def)
lemma arcE:
assumes arc e (u,v)
assumes \llbrackete\in arcs G; tail Ge=u; head Ge=v\rrbracket\LongrightarrowP
shows P
using assms by (auto simp: arc-def)
lemma in-arcs-imp-in-arcs-ends:
assumes e\in arcs G
shows (tail G e, head G e) \in arcs-ends G
using assms by (auto simp: arcs-ends-conv)
lemma set-awalk-verts-cas:
assumes cas u pv
shows set (awalk-verts up)={u}\cup set (map (tail G) p)\cup set (map (head G)
p)
using assms
proof (induct p arbitrary: u)
case Nil then show ?case by simp
next

```
```

 case (Cons e es)
 then have set (awalk-verts (head Ge) es)
 = {head Ge} \cup set (map (tail G) es)\cup set (map (head G) es)
 by (auto simp: awalk-Cons-iff)
 with Cons.prems show ?case by auto
 qed
lemma set-awalk-verts-not-Nil-cas:
assumes cas u p v p\not=[]
shows set (awalk-verts u p) = set (map (tail G) p) \cup set (map (head G) p)
proof -
have u\in set (map (tail G) p) using assms by (cases p) auto
with assms show ?thesis by (auto simp: set-awalk-verts-cas)
qed
lemma set-awalk-verts:
assumes awalk u pv
shows set (awalk-verts up)={u}\cup set (map (tail G) p)\cup set (map (head G)
p)
using assms by (intro set-awalk-verts-cas) blast
lemma set-awalk-verts-not-Nil:
assumes awalk u p v p\not=[]
shows set (awalk-verts u p) = set (map (tail G) p) \cup set (map (head G) p)
using assms by (intro set-awalk-verts-not-Nil-cas) blast

```

\section*{lemma}
```

 awhd-of-awalk: awalk u p v\Longrightarrow awhd u p=u and
 awlast-of-awalk: awalk upv\Longrightarrow NOMATCH (awlast u p) v\Longrightarrow awlast u p=v
 unfolding NOMATCH-def by auto
 lemmas awends-of-awalk[simp] = awhd-of-awalk awlast-of-awalk
lemma awalk-verts-arc1:
assumes e\in set p
shows tail Ge\in set (awalk-verts u p)
using assms by (auto simp: awalk-verts-conv)
lemma awalk-verts-arc2:
assumes awalk u p ve set p
shows head Ge\in set (awalk-verts u p)
using assms by (simp add: set-awalk-verts)
lemma awalk-induct-raw[case-names Base Cons]:
assumes awalk u pv
assumes \w1.w1 \in verts G\LongrightarrowPw1[] w1
assumes \w1 w2 e es. e e arcs G\Longrightarrow arc-to-ends Ge=(w1, w2)
\LongrightarrowPw2 es v\LongrightarrowPw1 (e\# es)v
shows Pupv
using assms

```
```

proof (induct p arbitrary: u v)
case Nil then show ?case using Nil.prems by auto
next
case (Cons e es)
from Cons.prems(1) show ?case
by (intro Cons) (auto intro:Cons(2-) simp: arc-to-ends-def awalk-Cons-iff)
qed

```

\subsection*{6.2 Appending awalks}
lemma (in pre-digraph) cas-append-iff[simp]: cas \(u(p @ q) v \longleftrightarrow\) cas \(u p(\) awlast \(u p) \wedge\) cas (awlast \(u p) q v\)
by (induct up vule: cas.induct) auto
lemma cas-ends:
assumes cas \(u\) p vas cas \(u^{\prime} p v^{\prime}\)
shows \(\left(p \neq[] \wedge u=u^{\prime} \wedge v=v^{\prime}\right) \vee\left(p=[] \wedge u=v \wedge u^{\prime}=v^{\prime}\right)\)
using assms by (induct \(u p\) varbitrary: \(u u^{\prime}\) rule: cas.induct) auto
lemma awalk-ends:
assumes awalk u p v awalk \(u^{\prime} p v^{\prime}\)
shows \(\left(p \neq[] \wedge u=u^{\prime} \wedge v=v^{\prime}\right) \vee\left(p=[] \wedge u=v \wedge u^{\prime}=v^{\prime}\right)\)
using assms by (simp add: awalk-def cas-ends)
lemma awalk-ends-eqD:
assumes awalk u puawalk vpw
shows \(v=w\)
using awalk-ends \([O F \operatorname{assms}(1,2)]\) by auto
lemma awalk-empty-ends:
assumes awalk \(u\) [] \(v\)
shows \(u=v\)
using assms by (auto simp: awalk-def)
lemma apath-ends:
assumes apath \(u p v\) and apath \(u^{\prime} p v^{\prime}\)
shows \(\left(p \neq[] \wedge u \neq v \wedge u=u^{\prime} \wedge v=v^{\prime}\right) \vee\left(p=[] \wedge u=v \wedge u^{\prime}=v^{\prime}\right)\)
using assms unfolding apath-def by (metis assms(2) apath-nonempty-ends awalk-ends)
lemma awalk-append-iff[simp]:
awalk \(u(p @ q) v \longleftrightarrow\) awalk \(u p(\) awlast \(u p) \wedge\) awalk (awlast \(u p) q v\) (is ? \(L\)
\(\longleftrightarrow\) ? R)
by (auto simp: awalk-def intro: awlast-in-verts)
lemma awlast-append:
awlast \(u(p @ q)=\) awlast (awlast \(u p) q\)
by (simp add: awalk-verts-conv)
lemma awhd-append:
```

 awhd u (p@q)= awhd (awhd u q) p
 by (simp add: awalk-verts-conv)
declare awalkE[rule del]
lemma awalkE'[elim]:
assumes awalk u p v
obtains set (awalk-verts up)\subseteqverts G set p\subseteqarcs G cas u pv
awhd u p=u awlast u p=vu\in verts G v\in verts }
proof -
have u}\in\mathrm{ set (awalk-verts u p) v G set (awalk-verts u p)
using assms by (auto simp: hd-in-awalk-verts elim: awalkE)
then show ?thesis using assms by (auto elim: awalkE intro: that)
qed
lemma awalk-appendI:
assumes awalk u p v
assumes awalk vq w
shows awalku(p@q)w
using assms
proof (induct p arbitrary:u)
case Nil then show ?case by auto
next
case (Cons e es)
from Cons.prems have ee-e: arc-to-ends Ge=(u, head Ge)
unfolding arc-to-ends-def by auto
have awalk (head G e) es v
using ee-e Cons(2) awalk-Cons-iff by auto
then show ?case using Cons ee-e by (auto simp: awalk-Cons-iff)
qed
lemma awalk-verts-append-cas:
assumes cas u(p@q)v
shows awalk-verts u (p@ q)= awalk-verts u p@ tl (awalk-verts (awlast u p) q)
using assms
proof (induct p arbitrary:u)
case Nil then show ?case by (cases q) auto
qed (auto simp: awalk-Cons-iff)
lemma awalk-verts-append:
assumes awalk u(p@q)v
shows awalk-verts u (p@ @) = awalk-verts u p @ tl (awalk-verts (awlast u p) q)
using assms by (intro awalk-verts-append-cas) blast
lemma awalk-verts-append2:
assumes awalk u (p@q)v
shows awalk-verts u(p@ @)= butlast (awalk-verts u p)@ awalk-verts (awlast u
p) q

```
using assms by (auto simp: awalk-verts-conv)

\section*{lemma apath-append-iff:}
apath \(u(p @ q) v \longleftrightarrow\) apath \(u p(\) awlast \(u p) \wedge\) apath (awlast \(u p) q v \wedge\) set (awalk-verts \(u p) \cap\) set \((t l(\) awalk-verts \((\) awlast \(u p) q))=\{ \}(\) is \(? L \longleftrightarrow\)
?R)
proof
assume ? \(L\)
then have distinct (awalk-verts (awlast \(u\) p) q) by (auto simp: apath-def awalk-verts-append2)
with 〈?L〉show ?R by (auto simp: apath-def awalk-verts-append)
next
assume ? \(R\)
then show ?L by (auto simp: apath-def awalk-verts-append dest: distinct-tl)
qed
lemma (in wf-digraph) set-awalk-verts-append-cas:
assumes cas \(u p v\) cas \(v q w\)
shows set (awalk-verts \(u(p\) @ \(q))=\) set (awalk-verts \(u p) \cup\) set (awalk-verts \(v\)
q)
proof -
from assms have cas-pq: cas \(u(p @ q) w\)
by (simp add: awlast-if-cas)
moreover
from assms have \(v \in\) set (awalk-verts \(u p\) )
by (metis awalk-verts-non-Nil awlast-if-cas last-in-set)
ultimately show ?thesis using assms
by (auto simp: set-awalk-verts-cas)
qed
lemma (in wf-digraph) set-awalk-verts-append:
assumes awalk \(u p\) vawalk \(v q w\)
shows set (awalk-verts \(u(p\) @ \(q))=\) set (awalk-verts \(u p) \cup\) set (awalk-verts \(v\)
q)
proof -
from assms have awalk \(u(p @ q) w\) by auto
moreover
with assms have \(v \in \operatorname{set}\) (awalk-verts \(u(p @ q)\) )
by (auto simp: awalk-verts-append)
ultimately show ?thesis using assms
by (auto simp: set-awalk-verts)
qed
lemma cas-takeI:
assumes cas u pvawlast \(u(\) take \(n p)=v^{\prime}\)
shows cas \(u(\) take \(n p) v^{\prime}\)
proof -
from assms have cas \(u\) (take \(n p\) @ drop n \(p\) ) v by simp
with assms show ?thesis unfolding cas-append-iff by simp
qed
```

lemma cas-dropI:
assumes cas u p v awlast u(take n p)= u'
shows cas u' (drop n p)v
proof -
from assms have cas u (take n p @ drop n p) v by simp
with assms show ?thesis unfolding cas-append-iff by simp
qed
lemma awalk-verts-take-conv:
assumes cas u pv
shows awalk-verts u (take n p) = take (Suc n) (awalk-verts u p)
proof -
from assms have cas u (take n p) (awlast u (take n p)) by (auto intro: cas-takeI)
with assms show ?thesis
by (cases n p rule: nat.exhaust[case-product list.exhaust])
(auto simp: awalk-verts-conv' take-map simp del: awalk-verts.simps)
qed
lemma awalk-verts-drop-conv:
assumes cas u pv
shows awalk-verts u'(drop n p) = (if n < length p then drop n (awalk-verts u p)
else [u\)
using assms by (auto simp: awalk-verts-conv drop-map)
lemma awalk-decomp-verts:
assumes cas: cas u p v and ev-decomp: awalk-verts u p=xs @ y \# ys
obtains qr where cas u q y cas yrvp=q@ r awalk-verts u q=xs@ [y]
awalk-verts y r = y \# ys
using assms
proof -
define qr where q= take (length xs) p and r=drop (length xs) p
then have p:p=q@ r by simp
moreover from p have cas u q(awlast uq) cas (awlast u q) rv
using <cas u p v> by auto
moreover have awlast u q=y
using q-def and assms by (auto simp: awalk-verts-take-conv)
moreover have *: awalk-verts u q=xs @ [awlast u q]
using assms q-def by (auto simp: awalk-verts-take-conv)
moreover from * have awalk-verts y r = y \# ys
unfolding q-def r-def using assms by (auto simp: awalk-verts-drop-conv
not-less)
ultimately show ?thesis by (intro that) auto
qed
lemma awalk-decomp:
assumes awalk u p v
assumes w\in set (awalk-verts u p)
shows \existsqr.p=q@r^awalk uqw^awalk wrv

```
```

proof -
from assms have cas u pv by auto
moreover from assms obtain xs ys where
awalk-verts u p=xs @ w \# ys by (auto simp: in-set-conv-decomp)
ultimately
obtain qr where cas u qw cas wrvp=q@ rawalk-verts u q=xs@ [w]
by (auto intro: awalk-decomp-verts)
with assms show ?thesis by auto
qed
lemma awalk-not-distinct-decomp:
assumes awalk u pv
assumes \neg distinct (awalk-verts u p)
shows \existsqr s.p=q@ @ @ s ^ distinct (awalk-verts u q)
\wedge < length r
\wedge(\existsw. awalk u q w^ awalk wrw^ awalk wsv)
proof -
from assms
obtain xs ys zs y where
pv-decomp:awalk-verts u p=xs@ @ \# ys @ y \# zs
and xs-y-props: distinct xs y \& set xs y \& set ys
using not-distinct-decomp-min-prefix by blast
obtain q p' where cas u q y p=q@ p' awalk-verts u q=xs @ [y]
and p'-props: cas y p'v awalk-verts y p'=(y\# ys)@ y \# zs
using assms pv-decomp by - (rule awalk-decomp-verts, auto)
obtain rs where cas y ry cas y sv p}=r@ @
awalk-verts y r=y\# ys @ [y] awalk-verts y s=y\#zs
using }\mp@subsup{p}{}{\prime}\mathrm{ -props by (rule awalk-decomp-verts) auto
have p=q@ @ @ susing <p=q @ p'><\mp@subsup{p}{}{\prime}=r@ @ s> by simp
moreover
have distinct (awalk-verts u q) using <awalk-verts u q = xs @ [y]> and xs-y-props
by simp
moreover
have 0<length r using<awalk-verts y r=y \# ys @ [y]> by auto
moreover
from pv-decomp assms have }y\in\mathrm{ verts }G\mathrm{ by auto
then have awalk u q y awalk y r y awalk y s v
using <awalk u p v\rangle\langlecasuq y\rangle\langlecas y r y <<cas y s v\rangleunfolding<p=q@ @r
@ s>
by (auto simp: awalk-def)
ultimately show ?thesis by blast
qed
lemma apath-decomp-disjoint:
assumes apath u pv
assumes p=q@r

```
```

 assumes \(x \in \operatorname{set}(\) awalk-verts \(u q) x \in \operatorname{set}(t l(\) awalk-verts (awlast \(u q) r))\)
 shows False
 using assms by (auto simp: apath-def awalk-verts-append)

```

\subsection*{6.3 Cycles}
definition closed-w :: 'b awalk \(\Rightarrow\) bool where closed-w \(p \equiv \exists u\). awalk \(u p u \wedge 0<\) length \(p\)

The definitions of cycles in textbooks vary w.r.t to the minimial length of a cycle.
The definition given here matches [2]. [1] excludes loops from being cycles. Volkmann (Lutz Volkmann: Graphen an allen Ecken und Kanten, 2006 (?)) places no restriction on the length in the definition, but later usage assumes cycles to be non-empty.
definition (in pre-digraph) cycle :: 'b awalk \(\Rightarrow\) bool where cycle \(p \equiv \exists u\). awalk \(u p u \wedge\) distinct (tl (awalk-verts \(u p)\) ) \(\wedge p \neq[]\)
lemma cycle-altdef:
cycle \(p \longleftrightarrow\) closed-w \(p \wedge(\exists u\). distinct \((\) tl (awalk-verts \(u p)))\)
by (cases \(p\) ) (auto simp: closed-w-def cycle-def)
lemma (in wf-digraph) distinct-tl-verts-imp-distinct:
assumes awalk u \(p\) v
assumes distinct ( \(t l\) (awalk-verts u \(p\) ))
shows distinct \(p\)
proof (rule ccontr)
assume \(\neg\) distinct \(p\)
then obtain \(e x s\) ys zs where \(p\)-decomp: \(p=x s @ e \# y s @ e \# z s\)
by (blast dest: not-distinct-decomp-min-prefix)
then show False
using assms \(p\)-decomp by (auto simp: awalk-verts-append awalk-Cons-iff set-awalk-verts)
qed
lemma (in wf-digraph) distinct-verts-imp-distinct:
assumes awalk upv
assumes distinct (awalk-verts u p)
shows distinct \(p\)
using assms by (blast intro: distinct-tl-verts-imp-distinct distinct-tl)
lemma (in wf-digraph) cycle-conv:
cycle \(p \longleftrightarrow(\exists u\). awalk \(u p u \wedge\) distinct \((t l(\) awalk-verts \(u p)) \wedge\) distinct \(p \wedge p \neq\) [])
unfolding cycle-def by (auto intro: distinct-tl-verts-imp-distinct)
lemma (in loopfree-digraph) cycle-digraph-conv:
cycle \(p \longleftrightarrow(\exists u\). awalk и \(p\) и \(\wedge\) distinct \((t l(\) awalk-verts \(u p)) \wedge 2 \leq\) length \(p)\) (is ? \(L \longleftrightarrow ? R\) )
proof
```

 assume cycle p
 then obtain }u\mathrm{ where *: awalk u p u distinct (tl (awalk-verts u p)) p}\not=[
 unfolding cycle-def by auto
 have 2\leqlength p
 proof (rule ccontr)
 assume }\neg\mathrm{ ?thesis with * obtain e where p=[e]
 by (cases p) (auto simp: not-le)
 then show False using * by (auto simp: awalk-simps dest: no-loops)
 qed
 then show ?R using * by auto
 qed (auto simp: cycle-def)
lemma (in wf-digraph) closed-w-imp-cycle:
assumes closed-w p shows }\exists\textrm{p}\mathrm{ . cycle p
using assms
proof (induct length p arbitrary: p rule: less-induct)
case less
then obtain }u\mathrm{ where *: awalk u pu p}=[] by (auto simp: closed-w-def
show ?thesis
proof cases
assume distinct (tl (awalk-verts u p))
with less show ?thesis by (auto simp: closed-w-def cycle-altdef)
next
assume A: \negdistinct (tl (awalk-verts u p))
then obtain e es where p=e\# es by (cases p) auto
with A* have **: awalk (head G e) es u \negdistinct (awalk-verts (head G e) es)
by (auto simp: awalk-Cons-iff)
obtain qr s where es=q@ @@ s\existsw. awalk wrw closed-w r
using awalk-not-distinct-decomp[OF **] by (auto simp: closed-w-def)
then have length r< length p using <p= >> by auto
then show ?thesis using <closed-w r> by (rule less)
qed
qed

```

\subsection*{6.4 Reachability}
lemma reachable1-awalk:
\(u \rightarrow^{+} v \longleftrightarrow(\exists\) p. awalk u \(p v \wedge p \neq[])\)
proof
    assume \(u \rightarrow^{+} v\) then show \(\exists p\). awalk \(u p v \wedge p \neq[]\)
    proof (induct rule: converse-trancl-induct)
    case (base y) then obtain \(e\) where \(e \in \operatorname{arcs} G\) tail \(G e=y\) head \(G e=v\) by
auto
    with arc-implies-awalk show ?case by auto
    next
        case (step \(x y\) )
        then obtain \(p\) where awalk y \(p\) v \(p \neq[]\) by auto
        moreover
    from \(\langle x \rightarrow y\rangle\) obtain \(e\) where tail \(G e=x\) head \(G e=y e \in \operatorname{arcs} G\)
```

 by auto
 ultimately
 have awalk x (e#p)v
 by (auto simp: awalk-Cons-iff)
 then show ?case by auto
 qed
 next
assume \existsp.awalk upv\wedgep\not=[] then obtain p where awalk upvp\not=[] by
auto
thus }u\mp@subsup{->}{}{+}
proof (induct p arbitrary:u)
case (Cons a as) then show ?case
by (cases as =[]) (auto simp: awalk-simps trancl-into-trancl2 dest: in-arcs-imp-in-arcs-ends)
qed simp
qed
lemma reachable-awalk:
u \mp@subsup{->}{}{*}v\longleftrightarrow(\existsp. awalk upv)
proof cases
assume u=v
have }u\mp@subsup{->}{}{*}u\longleftrightarrow\mathrm{ awalk }u[] u by (auto simp: awalk-Nil-iff reachable-in-verts
also have ...\longleftrightarrow(\exists p. awalk u pu)
by (metis awalk-Nil-iff awalk-hd-in-verts)
finally show ?thesis using <u = v\rangle by simp
next
assume u\not=v
then have }u\mp@subsup{->}{}{*}v\longleftrightarrowu\mp@subsup{->}{}{+}v\mathrm{ by auto
also have ...\longleftrightarrow(\existsp. awalk upv)
using <u\not=v> unfolding reachable1-awalk by force
finally show ?thesis.
qed
lemma reachable-awalkI[intro?]:
assumes awalk u p v
shows }u->\mp@subsup{->}{}{*}
unfolding reachable-awalk using assms by auto
lemma reachable1-awalkI:
awalk v p w\Longrightarrowp\not=[]\Longrightarrowv 榦w
by (auto simp add: reachable1-awalk)
lemma reachable-arc-trans:
assumes }u\mp@subsup{->}{}{*}v\operatorname{arce}e(v,w
shows }u\mp@subsup{->}{}{*}
proof -
from <u ->* v` obtain p where awalk u pv
by (auto simp: reachable-awalk)
moreover have awalk v[e] w

```
```

 using <arc e (v,w)>
 by (auto simp: arc-def awalk-def)
 ultimately have awalk u(p@ [e])w
 by (rule awalk-appendI)
 then show ?thesis ..
 qed
lemma awalk-verts-reachable-from:
assumes awalk u p v w\in set (awalk-verts u p) shows }u\mp@subsup{->}{}{*}G
proof -
obtain s where awalk u s w using awalk-decomp[OF assms] by blast
then show ?thesis by (metis reachable-awalk)
qed
lemma awalk-verts-reachable-to:
assumes awalk u p v w\in set (awalk-verts u p) shows w ->**G}
proof -
obtain s where awalk ws v using awalk-decomp[OF assms] by blast
then show ?thesis by (metis reachable-awalk)
qed

```

\subsection*{6.5 Paths}
```

lemma (in fin-digraph) length-apath-less:
assumes apath upv
shows length p < card (verts G)
proof -
have length p<length (awalk-verts u p) unfolding awalk-verts-conv
by (auto simp: awalk-verts-conv)
also have length (awalk-verts u p)= card (set (awalk-verts u p))
using <apath u p v> by (auto simp: apath-def distinct-card)
also have .. \leq card (verts G)
using <apath u p v> unfolding apath-def awalk-conv
by (auto intro: card-mono)
finally show ?thesis.
qed
lemma (in fin-digraph) length-apath:
assumes apath upv
shows length p\leqcard (verts G)
using length-apath-less[OF assms] by auto
lemma (in fin-digraph) apaths-finite-triple:
shows finite {(u,p,v). apath u pv}
proof -
have \upv. awalk u pv\Longrightarrow distinct (awalk-verts u p)\Longrightarrowlength p\leqcard (verts
G)
by (rule length-apath) (auto simp: apath-def)
then have {(u,p,v). apath u pv}\subseteqverts G×{es. set es\subseteqarcs G^length es

```
```

\leqcard (verts G)} × verts G
by (auto simp: apath-def)
moreover have finite ...
using finite-verts finite-arcs
by (intro finite-cartesian-product finite-lists-length-le)
ultimately show ?thesis by (rule finite-subset)
qed
lemma (in fin-digraph) apaths-finite:
shows finite {p. apath upv}
proof -
have {p. apath u p v}\subseteq(fst o snd)'{(u,p,v). apath u p v}
by force
with apaths-finite-triple show ?thesis by (rule finite-surj)
qed
fun is-awalk-cyc-decomp :: 'b awalk =>
('b awalk }\times\mathrm{ 'b awalk }\times\mathrm{ 'b awalk) }=>\mathrm{ bool where
is-awalk-cyc-decomp p(q,r,s)\longleftrightarrow \longleftrightarrow =q@r@s
\wedge(\existsuvw. awalk uqv^ awalk v rv^awalk vsw)
\wedge <length r
\wedge(\existsu.distinct (awalk-verts u q))
definition awalk-cyc-decomp :: 'b awalk
=>'b awalk }\times\mathrm{ 'b awalk }\times\mathrm{ 'b awalk where
awalk-cyc-decomp p = (SOME qrs. is-awalk-cyc-decomp p qrs)
function awalk-to-apath :: 'b awalk => 'b awalk where
awalk-to-apath p = (if }\neg(\existsu\mathrm{ . distinct (awalk-verts u p)) ^(}\existsuv. awalk upv
then (let (q,r,s) = awalk-cyc-decomp p in awalk-to-apath (q@ s))
else p)
by auto
lemma awalk-cyc-decomp-has-prop:
assumes awalk u pv and }\neg\mathrm{ distinct (awalk-verts u p)
shows is-awalk-cyc-decomp p (awalk-cyc-decomp p)
proof -
obtain qrs where *: p=q@r@ s \ distinct (awalk-verts uq)
\wedge 0 < l e n g t h ~ r ~
\wedge(\existsw. awalk u q w ^ awalk wrw^ awalk wsv)
by (atomize-elim) (rule awalk-not-distinct-decomp[OF assms])
then have \existsx. is-awalk-cyc-decomp p x
by (intro exI[where }x=(q,r,s)])\mathrm{ auto
then show ?thesis unfolding awalk-cyc-decomp-def ..
qed
lemma awalk-cyc-decompE:
assumes dec:awalk-cyc-decomp p = (q,r,s)
assumes p-props: awalk u p v \negdistinct (awalk-verts u p)

```
obtains \(p=q @ r @ s\) distinct (awalk-verts \(u q\) ) \(\exists\). awalk \(u q w \wedge\) awalk \(w r\) \(w \wedge\) awalk ws v closed-w r

\section*{proof}
show \(p=q\) @ \(r\) @ s distinct (awalk-verts \(u q\) ) closed-w r
using awalk-cyc-decomp-has-prop[OF p-props] and dec
by (auto simp: closed-w-def awalk-verts-conv)
then have \(p \neq[]\) by (auto simp: closed- \(w\)-def)
obtain \(u^{\prime} w^{\prime} v^{\prime}\) where obt-awalk: awalk \(u^{\prime} q w^{\prime}\) awalk \(w^{\prime} r w^{\prime}\) awalk \(w^{\prime} s v^{\prime}\) using awalk-cyc-decomp-has-prop[OF p-props] and dec by auto
then have awalk \(u^{\prime} p v^{\prime}\)
using \(\langle p=q\) @ \(r\) @ \(s\rangle\) by \(\operatorname{simp}\)
then have \(u=u^{\prime}\) and \(v=v^{\prime}\) using \(\langle p \neq[]\rangle\langle\) awalk \(u p v\rangle\) by (metis awalk-ends) +
then have awalk \(u q w^{\prime}\) awalk \(w^{\prime} r w^{\prime}\) awalk \(w^{\prime} s v\)
using obt-awalk by auto
then show \(\exists\). awalk \(u q w \wedge\) awalk \(w r w \wedge\) awalk \(w s v\) by auto
qed
lemma awalk-cyc-decompE':
assumes p-props: awalk u p \(v \neg\) distinct (awalk-verts \(u p\) )
obtains \(q r s\) where \(p=q\) @ \(r\) @ sdistinct (awalk-verts \(u q\) ) \(\exists w\). awalk \(u q w\) \(\wedge\) awalk wrw awalk ws v closed-w \(r\)
proof -
obtain \(q\) r s where awalk-cyc-decomp \(p=(q, r, s)\)
by (cases awalk-cyc-decomp p) auto
then have \(p=q\) @ \(r\) @ s distinct (awalk-verts \(u q\) ) \(\exists\) w. awalk \(u q w \wedge\) awalk \(w\) \(r w \wedge\) awalk \(w s v\) closed-w \(r\)
using assms by (auto elim: awalk-cyc-decompE)
then show ?thesis ..
qed
termination awalk-to-apath
proof (relation measure length)
fix \(G p\) qrs rs \(q r s\)
have \(X: \bigwedge x y\). closed-w \(r \Longrightarrow\) awalk \(x\) r \(y \Longrightarrow x=y\)
unfolding closed-w-def by (blast dest: awalk-ends)
assume \(\neg(\exists u\). distinct (awalk-verts \(u p)) \wedge(\exists u v\). awalk upv)
and \(* *: q r s=\) awalk-cyc-decomp \(p(q, r s)=q r s(r, s)=r s\)
then obtain \(u v\) where \(*\) : awalk upv \(v\) distinct (awalk-verts \(u p\) )
by (cases \(p\) ) auto
then have awalk-cyc-decomp \(p=(q, r, s)\) using \(* *\) by simp
then have is-awalk-cyc-decomp \(p(q, r, s)\)
apply (rule awalk-cyc-decompE[OF - *])
using \(X[\) of awlast \(u q\) awlast (awlast \(u q\) ) \(r] *(1)\)
by (auto simp: closed-w-def)
then show \((q\) @ \(s, p) \in\) measure length
```

 by (auto simp: closed-w-def)
 qed simp
declare awalk-to-apath.simps[simp del]
lemma awalk-to-apath-induct[consumes 1, case-names path decomp]:
assumes awalk: awalk u p v
assumes dist: \p. awalk u pv\Longrightarrowdistinct (awalk-verts u p)\LongrightarrowPp
assumes dec: \bigwedgep qres.\llbracketawalk u p v; awalk-cyc-decomp p=(q,r,s);
\negdistinct (awalk-verts u p); P(q@ s)\rrbracket\LongrightarrowP p
shows P p
using awalk
proof (induct length p arbitrary: p rule:less-induct)
case less
show ?case
proof (cases distinct (awalk-verts u p))
case True then show ?thesis by (auto intro: dist less.prems)
next
case False
obtain qr s where p-cdecomp: awalk-cyc-decomp p = (q,r,s)
by (cases awalk-cyc-decomp p) auto
then have is-awalk-cyc-decomp p(q,r,s) p=q@ r@ @
using awalk-cyc-decomp-has-prop[OF less.prems(1) False] by auto
then have length (q@ s)< length p awalk u(q@ s)v
using less.prems by (auto dest!: awalk-ends-eqD)
then have P(q@s) by (auto intro: less)
with p-cdecomp False show ?thesis by (auto intro: dec less.prems)
qed
qed
lemma step-awalk-to-apath:
assumes awalk: awalk u p v
and decomp: awalk-cyc-decomp p=(q,r,s)
and dist: \neg distinct (awalk-verts u p)
shows awalk-to-apath p=awalk-to-apath (q@ s)
proof -
from dist have }\neg(\existsu\mathrm{ . distinct (awalk-verts u p))
by (auto simp: awalk-verts-conv)
with awalk and decomp show awalk-to-apath p = awalk-to-apath (q@ s)
by (auto simp: awalk-to-apath.simps)
qed
lemma apath-awalk-to-apath:
assumes awalk u p v
shows apath u (awalk-to-apath p)v
using assms
proof (induct rule: awalk-to-apath-induct)
case (path p)
then have awalk-to-apath p=p

```
```

 by (auto simp: awalk-to-apath.simps)
 then show ?case using path by (auto simp: apath-def)
 next
case (decomp p qr r)
then show ?case using step-awalk-to-apath[of-p-qr s] by simp
qed
lemma (in wf-digraph) awalk-to-apath-subset:
assumes awalk u pv
shows set (awalk-to-apath p)\subseteq set p
using assms
proof (induct rule: awalk-to-apath-induct)
case (path p)
then have awalk-to-apath p=p
by (auto simp: awalk-to-apath.simps)
then show ?case by simp
next
case (decomp p qr s)
have }*:\neg(\existsu\mathrm{ . distinct (awalk-verts u p))}\wedge(\existsuv.awalk u pv
using decomp by (cases p) auto
have set (awalk-to-apath (q @ s)) \subseteq set p
using decomp by (auto elim!: awalk-cyc-decompE)
then
show ?case by (subst awalk-to-apath.simps) (simp only: * simp-thms if-True
decomp Let-def prod.simps)
qed
lemma reachable-apath:
u ->*}v\longleftrightarrow(\existsp. apath u pv
by (auto intro: awalkI-apath apath-awalk-to-apath simp: reachable-awalk)
lemma no-loops-in-apath:
assumes apath u p v a set p shows tail G a\not= head G a
proof -
from }\langlea\in\mathrm{ set p〉 obtain p1 p2 where p=p1 @ a \# p2 by (auto simp:
in-set-conv-decomp)
with <apath u pv> have apath (tail Ga) ([a] @ p2) (v)
by (auto simp: apath-append-iff apath-Cons-iff apath-Nil-iff)
then have apath (tail Ga) [a] (head G a) by - (drule apath-append-iff[THEN
iffD1], simp)
then show ?thesis by (auto simp: apath-Cons-iff)
qed
end
end

```
```

theory Pair-Digraph
imports
Digraph
Bidirected-Digraph
Arc-Walk
begin

```

\section*{7 Digraphs without Parallel Arcs}

If no parallel arcs are desired, arcs can be accurately described as pairs of This is the natural representation for Digraphs without multi-arcs. and head \(G\), making it easier to deal with multiple related graphs and to modify a graph by adding edges.
This theory introduces such a specialisation of digraphs.
record 'a pair-pre-digraph \(=\) pverts \(::\) 'a set parcs \(::\) 'a rel
definition with-proj :: 'a pair-pre-digraph \(\Rightarrow\left({ }^{\prime} a,^{\prime} a \times\right.\) 'a) pre-digraph where with-proj \(G=(\) verts \(=\) pverts \(G\), arcs \(=\) parcs \(G\), tail \(=\) fst, head \(=\) snd \()\)
declare [[coercion with-proj]]
primrec pawalk-verts :: ' \(a \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)\) awalk \(\Rightarrow\) 'a list where pawalk-verts \(u[]=[u] \mid\)
pawalk-verts \(u(e \#\) es \()=\) fst \(e \#\) pawalk-verts \((\) snd e) es
fun pcas :: ' \(a \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)\) awalk \(\Rightarrow{ }^{\prime} a \Rightarrow\) bool where
pcas \(u[] v=(u=v) \mid\)
pcas \(u(e \# e s) v=(f s t e=u \wedge p c a s(\) snd e) es \(v)\)
lemma with-proj-simps[simp]:
verts (with-proj \(G)=\) pverts \(G\)
arcs \((\) with-proj \(G)=\) parcs \(G\)
arcs-ends (with-proj \(G\) ) \(=\) parcs \(G\)
tail (with-proj \(G)=f s t\)
head (with-proj \(G\) ) = snd
by (auto simp: with-proj-def arcs-ends-conv)
lemma cas-with-proj-eq: pre-digraph.cas (with-proj \(G\) ) \(=\) pcas
proof (unfold fun-eq-iff, intro allI)
fix \(u\) es \(v\) show pre-digraph.cas (with-proj \(G\) ) u es \(v=\) pcas \(u\) es \(v\) by (induct es arbitrary: u) (auto simp: pre-digraph.cas.simps)
qed
lemma awalk-verts-with-proj-eq: pre-digraph.awalk-verts \((\) with-proj \(G)=\) pawalk-verts proof (unfold fun-eq-iff, intro allI)
fix \(u\) es show pre-digraph.awalk-verts (with-proj \(G\) ) u es = pawalk-verts \(u\) es by (induct es arbitrary: u) (auto simp: pre-digraph.awalk-verts.simps)
locale pair-pre-digraph \(=\) fixes \(G::\) 'a pair-pre-digraph
begin
lemmas \([\) simp \(]=\) cas-with-proj-eq awalk-verts-with-proj-eq
end
locale pair-wf-digraph \(=\) pair-pre-digraph +
assumes arc-fst-in-verts: \(\bigwedge e . e \in\) parcs \(G \Longrightarrow f s t e \in\) pverts \(G\)
assumes arc-snd-in-verts: \(\bigwedge e . e \in\) parcs \(G \Longrightarrow\) snd \(e \in\) pverts \(G\)
begin
lemma in-arcsD1: \((u, v) \in\) parcs \(G \Longrightarrow u \in\) pverts \(G\)
and in-arcsD2: \((u, v) \in\) parcs \(G \Longrightarrow v \in\) pverts \(G\)
by (auto dest: arc-fst-in-verts arc-snd-in-verts)
lemmas wellformed \({ }^{\prime}=\) in-arcsD1 in-arcsD2
end
locale pair-fin-digraph \(=\) pair-wf-digraph +
assumes pair-finite-verts: finite (pverts \(G\) ) and pair-finite-arcs: finite (parcs \(G\) )
locale pair-sym-digraph \(=\) pair-wf-digraph + assumes pair-sym-arcs: symmetric \(G\)
locale pair-loopfree-digraph \(=\) pair-wf-digraph +
assumes pair-no-loops: \(e \in\) parcs \(G \Longrightarrow\) fst \(e \neq\) snd \(e\)
locale pair-bidirected-digraph \(=\) pair-sym-digraph + pair-loopfree-digraph
locale pair-pseudo-graph \(=\) pair-fin-digraph + pair-sym-digraph
locale pair-digraph \(=\) pair-fin-digraph + pair-loopfree-digraph
locale pair-graph \(=\) pair-digraph + pair-pseudo-graph
sublocale pair-pre-digraph \(\subseteq\) pre-digraph with-proj \(G\)
rewrites verts \(G=\) pverts \(G\) and arcs \(G=\) parcs \(G\) and tail \(G=\) fst and head \(G=\) snd
and arcs-ends \(G=\) parcs \(G\)
and pre-digraph.awalk-verts \(G=\) pawalk-verts
and pre-digraph.cas \(G=\) pcas
by unfold-locales auto
sublocale pair-wf-digraph \(\subseteq\) wf-digraph with-proj \(G\)
rewrites verts \(G=\) pverts \(G\) and arcs \(G=\) parcs \(G\) and tail \(G=\) fst and head \(G=\) snd
and arcs-ends \(G=\) parcs \(G\)
and pre-digraph.awalk-verts \(G=\) pawalk-verts
and pre-digraph.cas \(G=\) pcas
by unfold-locales (auto simp: arc-fst-in-verts arc-snd-in-verts)
sublocale pair-fin-digraph \(\subseteq\) fin-digraph with-proj \(G\)
rewrites verts \(G=\) pverts \(G\) and arcs \(G=\) parcs \(G\) and tail \(G=\) fst and head \(G=\) snd
and arcs-ends \(G=\) parcs \(G\)
and pre-digraph.awalk-verts \(G=\) pawalk-verts
and pre-digraph.cas \(G=\) pcas
using pair-finite-verts pair-finite-arcs by unfold-locales auto
sublocale pair-sym-digraph \(\subseteq\) sym-digraph with-proj \(G\)
rewrites verts \(G=\) pverts \(G\) and arcs \(G=\) parcs \(G\) and tail \(G=f s t\) and head \(G=s n d\)
and arcs-ends \(G=\) parcs \(G\)
and pre-digraph.awalk-verts \(G=\) pawalk-verts
and pre-digraph.cas \(G=\) pcas
using pair-sym-arcs by unfold-locales auto
sublocale pair-pseudo-graph \(\subseteq\) pseudo-graph with-proj \(G\)
rewrites verts \(G=\) pverts \(G\) and arcs \(G=\) parcs \(G\) and tail \(G=\) fst and head \(G=s n d\)
and arcs-ends \(G=\) parcs \(G\)
and pre-digraph.awalk-verts \(G=\) pawalk-verts
and pre-digraph.cas \(G=\) pcas
by unfold-locales auto
sublocale pair-loopfree-digraph \(\subseteq\) loopfree-digraph with-proj \(G\)
rewrites verts \(G=\) pverts \(G\) and arcs \(G=\) parcs \(G\) and tail \(G=\) fst and head \(G=\) snd
and arcs-ends \(G=\) parcs \(G\)
and pre-digraph.awalk-verts \(G=\) pawalk-verts
and pre-digraph.cas \(G=\) pcas
using pair-no-loops by unfold-locales auto
sublocale pair-digraph \(\subseteq\) digraph with-proj \(G\)
rewrites verts \(G=\) pverts \(G\) and arcs \(G=\) parcs \(G\) and tail \(G=\) fst and head \(G=s n d\)
and arcs-ends \(G=\) parcs \(G\)
and pre-digraph.awalk-verts \(G=\) pawalk-verts
and pre-digraph.cas \(G=\) pcas
```

 by unfold-locales (auto simp: arc-to-ends-def)
 sublocale pair-graph }\subseteq\mathrm{ graph with-proj G
rewrites verts G= pverts G and arcs G=parcs G and tail G=fst and head
G = snd
and arcs-ends G}=\mathrm{ parcs }
and pre-digraph.awalk-verts }G=\mathrm{ pawalk-verts
and pre-digraph.cas G=pcas
by unfold-locales auto
sublocale pair-graph \subseteq pair-bidirected-digraph by unfold-locales
lemma wf-digraph-wp-iff:wf-digraph (with-proj G) = pair-wf-digraph G (is ?L
\longleftrightarrow?R)
proof
assume ?L then interpret wf-digraph with-proj G .
show ?R using wellformed by unfold-locales auto
next
assume ?R then interpret pair-wf-digraph G .
show ?L by unfold-locales
qed
lemma (in pair-fin-digraph) pair-fin-digraph[intro!]: pair-fin-digraph G ..
context pair-digraph begin
lemma pair-wf-digraph[intro!]: pair-wf-digraph G by intro-locales
lemma pair-digraph[intro!]: pair-digraph G ..
lemma (in pair-loopfree-digraph) no-loops':
(u,v) \in parcs }G\Longrightarrowu\not=
by (auto dest: no-loops)
end
lemma (in pair-wf-digraph) apath-succ-decomp:
assumes apath upv
assumes (x,y) \in set p
assumes }y\not=
shows \existsp1zp2.p=p1@ (x,y)\# (y,z)\#p2\wedge x\not=z\wedge y \# z
proof -
from }\langle(x,y)\in\mathrm{ set p> obtain p1 p2 where p-decomp: p = p1 @ (x,y) \# p2
by (metis (no-types) in-set-conv-decomp-first)
from p-decomp <apath u p v\rangle\langley\not=v> have p2 \# [] awalk y p2v
by (auto simp: apath-def awalk-Cons-iff)
then obtain z p2' where p2-decomp: p2 = (y,z) \# p2'
by atomize-elim (cases p2, auto simp: awalk-Cons-iff)
then have }x\not=z\wedgey\not=z\mathrm{ using p-decomp p2-decomp «apath u p v>

```
```

 by (auto simp: apath-append-iff apath-simps hd-in-awalk-verts)
 with p-decomp p2-decomp have p=p1@ (x,y)# (y,z)# p\mp@subsup{2}{}{\prime}\wedgex\not=z\wedge y =z
 by auto
 then show ?thesis by blast
 qed

```
lemma (in pair-sym-digraph) arcs-symmetric:
    \((a, b) \in\) parcs \(G \Longrightarrow(b, a) \in\) parcs \(G\)
    using sym-arcs by (auto simp: symmetric-def elim: symE)
lemma (in pair-pseudo-graph) pair-pseudo-graph[intro]: pair-pseudo-graph G ..
lemma (in pair-graph) pair-graph[intro]: pair-graph \(G\) by unfold-locales
lemma (in pair-graph) pair-graphD-graph: graph \(G\) by unfold-locales
lemma pair-graphI-graph:
    assumes graph (with-proj \(G\) ) shows pair-graph \(G\)
proof -
    interpret \(G\) : graph with-proj \(G\) by fact
    show ?thesis
        using G.wellformed G.finite-arcs G.finite-verts G.no-loops
        by unfold-locales auto
qed
lemma pair-loopfreeI-loopfree:
    assumes loopfree-digraph (with-proj G) shows pair-loopfree-digraph \(G\)
proof -
    interpret loopfree-digraph with-proj \(G\) by fact
    show ?thesis using wellformed no-loops by unfold-locales auto
qed

\subsection*{7.1 Path reversal for Pair Digraphs}

This definition is only meaningful in Pair-Digraph
```

primrec rev-path :: (' $\left.a \times{ }^{\prime} a\right)$ awalk $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ awalk where
rev-path [] = [] |
rev-path $(e \# e s)=r e v-p a t h ~ e s ~ @ ~[(s n d ~ e, f s t e)]$
lemma rev-path-append $[$ simp $]$: rev-path $(p @ q)=$ rev-path q @ rev-path p
by (induct p) auto
lemma rev-path-rev-path[simp]:
rev-path (rev-path p) $=p$
by (induct p) auto
lemma rev-path-empty[simp]:
rev-path $p=[] \longleftrightarrow p=[]$
by (induct p) auto

```
```

lemma rev-path-eq: rev-path p= rev-path q\longleftrightarrowp=q
by (metis rev-path-rev-path)
lemma (in pair-sym-digraph)
assumes awalk upv
shows awalk-verts-rev-path: awalk-verts v (rev-path p)=rev (awalk-verts u p)
and awalk-rev-path': awalk v(rev-path p)u
using assms
proof (induct p arbitrary: u)
case Nil case 1 then show ?case by auto
next
case Nil case 2 then show ?case by (auto simp: awalk-Nil-iff)
next
case (Cons e es) case 1
with Cons have walks: awalk v (rev-path es) (snd e)
awalk (snd e) [(snd e, fst e)] u
and verts: awalk-verts v (rev-path es)=rev (awalk-verts (snd e) es)
by (auto simp: awalk-simps intro: arcs-symmetric)
from walks have awalk v(rev-path es @ [(snd e, fst e)]) u
by simp
moreover
have tl (awalk-verts (awlast v (rev-path es)) [(snd e, fst e)])=[fst e]
by auto
ultimately
show ?case using 1 verts by (auto simp: awalk-verts-append)
next
case (Cons e es) case 2
with Cons have awalk v (rev-path es) (snd e)
by (auto simp: awalk-Cons-iff)
moreover
have rev-path (e \# es) = rev-path es @ [(snd e, fst e)]
by auto
moreover
from Cons 2 have awalk (snd e) [(snd e, fst e)] u
by (auto simp: awalk-simps intro: arcs-symmetric)
ultimately show awalk v(rev-path (e\# es)) u
by simp
qed
lemma (in pair-sym-digraph) awalk-rev-path[simp]:
awalk v (rev-path p) u= awalk upv(is ?L = ?R)
by (metis awalk-rev-path' rev-path-rev-path)
lemma (in pair-sym-digraph) apath-rev-path[simp]:
apath v(rev-path p) u= apath upv
by (auto simp: awalk-verts-rev-path apath-def)

```

\subsection*{7.2 Subdividing Edges}
subdivide an edge (=two associated arcs) in graph
fun subdivide :: 'a pair-pre-digraph \(\Rightarrow^{\prime} a \times{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) pair-pre-digraph where subdivide \(G(u, v) w=1\)
pverts \(=\) pverts \(G \cup\{w\}\),
parcs \(=(\) parcs \(G-\{(u, v),(v, u)\}) \cup\{(u, w),(w, u),(w, v),(v, w)\})\)
declare subdivide.simps[simp del]
subdivide an arc in a path
```

fun sd-path :: ' $a \times$ ' $a \Rightarrow{ }^{\prime} a \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ awalk $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ awalk where
sd-path - - [] = []
\mid sd-path $(u, v) w(e \#$ es $)=($ if $e=(u, v)$
then $[(u, w),(w, v)]$
else if $e=(v, u)$
then $[(v, w),(w, u)]$
else $[e])$ @ sd-path $(u, v) w e s$

```
contract an arc in a path
```

fun co-path :: ' $a \times{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ awalk $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ awalk where
co-path - - [] = []
|co-path - $[e]=[e]$
\mid co-path $(u, v) w(e 1 \# e 2 \# e s)=($ if e1 $=(u, w) \wedge e 2=(w, v)$
then (u, v) \# co-path $(u, v) w$ es
else if e1 $=(v, w) \wedge e \mathcal{Z}=(w, u)$
then (v, u) \# co-path $(u, v) w$ es
else e1 \# co-path (u, v) w (e2 \# es))
lemma co-path-simps[simp]:
$\llbracket e 1 \neq($ fst $e, w) ;$ e1 $\neq($ snd $e, w) \rrbracket \Longrightarrow$ co-path e $w(e 1 \#$ es $)=e 1 \#$ co-path e
wes
$\llbracket e 1=(f s t e, w) ; e \mathcal{2}=(w$, snd $e) \rrbracket \Longrightarrow$ co-path e $w(e 1 \# e \mathcal{Z} \# e s)=e \#$ co-path
e w es
$\llbracket e 1=($ snd $e, w) ; e 2=(w, f s t e) \rrbracket$
\Longrightarrow co-path e $w(e 1 \#$ e2 \# es $)=($ snd e, fst e) \# co-path e w es
$\llbracket e 1 \neq(f s t e, w) \vee e 2 \neq(w$, snd $e) ; e 1 \neq($ snd $e, w) \vee e \mathcal{2} \neq(w$, fst $e) \rrbracket$
\Longrightarrow co-path e $w(e 1 \#$ e2 \# es) $=$ e1 \# co-path e w (e2 \# es)
apply (cases es; auto)
apply (cases e; auto)
apply (cases e; auto)
apply (cases e; cases fst $e=$ snd e; auto)
apply (cases e; cases fst $e=$ snd e; auto)
done
lemma co-path-nonempty[simp]: co-path e $w p=[] \longleftrightarrow p=[]$
by (cases e) (cases p rule: list-exhaust-NSC, auto)
declare co-path.simps(3)[simp del]

```
```

lemma verts-subdivide[simp]: pverts (subdivide G e w) = pverts G \cup{w}
by (cases e) (auto simp: subdivide.simps)
lemma arcs-subdivide[simp]:
shows parcs (subdivide G (u,v) w) =(parcs G-{(u,v),(v,u)})\cup{(u,w),(w,u),
(w,v),(v,w)}
by (auto simp: subdivide.simps)
lemmas subdivide-simps = verts-subdivide arcs-subdivide
lemma sd-path-induct[case-names empty pass sd sdrev]:
assumes A: Pe[]
and B:\bigwedgeel es. }\mp@subsup{e}{}{\prime}\not=e\Longrightarrow\mp@subsup{e}{}{\prime}\not=(\mathrm{ snd e, fst e) \Pe es \Pe (e'\# es)
\es. P e es \LongrightarrowPe(e\# es)
\ e s . f s t ~ e \neq ~ s n d ~ e \Longrightarrow P e ~ e s ~ \Longrightarrow P e ((s n d ~ e , ~ f s t ~ e) ~ \# ~ e s)
shows Pe es
by (induct es) (rule A, metis B prod.collapse)
lemma co-path-induct[case-names empty single co corev pass]:
fixes e :: 'a > 'a
and w :: 'a
and p::('a\times'a) awalk
assumes Nil: P e w[]
and ConsNil:
e'.P e w[e]
and ConsCons1: \e1 e2 es. e1 = (fst e,w)^e2 = (w, snd e) \LongrightarrowP ew es
\Longrightarrow
Pew(e1 \# e2 \# es)
and ConsCons2: \bigwedgee1 e2 es. }\neg(e1=(fst e,w)\wedgee2 = (w, snd e)) ^
e1 = (snd e,w)^e2 = (w, fste) \LongrightarrowPewes\Longrightarrow
Pew(e1 \# e2 \# es)
and ConsCons3: \e1 e2 es.
\neg(e1 = (fst e,w)^e2 = (w, snd e)) \Longrightarrow
\neg(e1 = (snd e,w)^e\mathcal{L}=(w, fst e)) \LongrightarrowP e w (e2 \# es) \Longrightarrow
Pew(e1\# e2 \# es)
shows P ewp
proof (induct p rule: length-induct)
case (1 p) then show ?case
proof (cases p rule: list-exhaust-NSC)
case (Cons-Cons e1 e2 es)
then have P e w es P ew (e2 \# es)using 1 by auto
then show ?thesis unfolding Cons-Cons by (blast intro:ConsCons1 Con-
sCons2 ConsCons3)
qed (auto intro: Nil ConsNil)
qed
lemma co-sd-id:
assumes (u,w)\not\in set p (v,w)\not\in set p
shows co-path (u,v) w (sd-path (u,v)w p)=p

```
using assms by (induct \(p\) ) auto
lemma sd-path-id:
assumes \((x, y) \notin \operatorname{set} p(y, x) \notin \operatorname{set} p\)
shows sd-path \((x, y) w p=p\)
using assms by (induct \(p\) ) auto
lemma (in pair-wf-digraph) pair-wf-digraph-subdivide:
assumes props: \(e \in\) parcs \(G w \notin\) pverts \(G\)
shows pair-wf-digraph (subdivide Gew) (is pair-wf-digraph ?s \(G\) )
proof
obtain \(u v\) where \([\) simp]: \(e=(u, v)\) by (cases e) auto
fix \(e^{\prime}\) assume \(e^{\prime} \in\) parcs ?s \(G\)
then show fst \(e^{\prime} \in\) pverts ?s \(G\) snd \(e^{\prime} \in\) pverts ?s \(G\)
using props by (auto dest: wellformed)
qed
lemma (in pair-sym-digraph) pair-sym-digraph-subdivide:
assumes props: \(e \in\) parcs \(G w \notin\) pverts \(G\)
shows pair-sym-digraph (subdivide Gew) (is pair-sym-digraph ?sG)
proof -
interpret sdG: pair-wf-digraph subdivide \(G\) e \(w\) using assms by (rule pair-wf-digraph-subdivide)
obtain \(u v\) where \([\operatorname{simp}]: e=(u, v)\) by (cases e) auto
show ?thesis
proof
have \(\bigwedge a b .(a, b) \in\) parcs (subdivide \(G e w) \Longrightarrow(b, a) \in \operatorname{parcs}\) (subdivide \(G e\)
w)
unfolding \(\langle e=-\rangle\) arcs-subdivide
by (elim UnE, rule UnI1, rule-tac [2] UnI2) (blast intro: arcs-symmetric)+
then show symmetric ?s \(G\)
unfolding symmetric-def with-proj-simps by (rule symI)
qed
qed
lemma (in pair-loopfree-digraph) pair-loopfree-digraph-subdivide:
assumes props: \(e \in\) parcs \(G w \notin\) pverts \(G\)
shows pair-loopfree-digraph (subdivide \(G\) e w) (is pair-loopfree-digraph ?sG)
proof -
interpret sdG: pair-wf-digraph subdivide \(G\) e \(w\) using assms by (rule pair-wf-digraph-subdivide)
from assms show ?thesis
by unfold-locales (cases e, auto dest: wellformed no-loops)
qed
lemma (in pair-bidirected-digraph) pair-bidirected-digraph-subdivide:
assumes props: \(e \in\) parcs \(G w \notin\) pverts \(G\)
shows pair-bidirected-digraph (subdivide \(G e w\) ) (is pair-bidirected-digraph ?s \(G\) )
proof -
interpret sdG: pair-sym-digraph subdivide \(G\) e \(w\) using assms by (rule pair-sym-digraph-subdivide)
interpret sdG: pair-loopfree-digraph subdivide \(G\) e w using assms by (rule
```

pair-loopfree-digraph-subdivide)
show ?thesis by unfold-locales
qed
lemma (in pair-pseudo-graph) pair-pseudo-graph-subdivide:
assumes props: e\in parcs G w \& pverts G
shows pair-pseudo-graph (subdivide G e w) (is pair-pseudo-graph ?sG)
proof -
interpret sdG: pair-sym-digraph subdivide G e w using assms by (rule pair-sym-digraph-subdivide)
obtain uv where [simp]: e=(u,v) by (cases e) auto
show ?thesis by unfold-locales (cases e, auto)
qed
lemma (in pair-graph) pair-graph-subdivide:
assumes e\in parcs Gw\not\in pverts G
shows pair-graph (subdivide G e w) (is pair-graph ?sG)
proof -
interpret PPG: pair-pseudo-graph subdivide G e w
using assms by (rule pair-pseudo-graph-subdivide)
interpret PPG: pair-loopfree-digraph subdivide G e w
using assms by (rule pair-loopfree-digraph-subdivide)
from assms show ?thesis by unfold-locales
qed
lemma arcs-subdivideD:
assumes x f parcs(subdivide G e w) fst x\not=w snd x\not=w
shows x\in parcs G
using assms by (cases e) auto
context pair-sym-digraph begin
lemma
assumes path: apath u pv
assumes elems: e\in parcs G w\not\in pverts G
shows apath-sd-path: pre-digraph.apath (subdivide G e w)u(sd-path e w p)v (is
?A)
and set-awalk-verts-sd-path: set (awalk-verts u (sd-path e w p))
\subseteq \mp@code { s e t ~ (a w a l k - v e r t s ~ u ~ p) \cup \{ w \} ~ (i s ~ ? B) }
proof -
obtain xy where e-conv: e=(x,y) by (cases e) auto
define sG where sG= subdivide G e w
interpret S: pair-sym-digraph sG
unfolding sG-def using elems by (rule pair-sym-digraph-subdivide)
have ev-sG: S.awalk-verts = awalk-verts
by (auto simp: fun-eq-iff pre-digraph.awalk-verts-conv)
have w-sG: {(x,w),(y,w),(w,x),(w,y)}\subseteq parcs sG
by (auto simp: sG-def e-conv)

```
from path have S.apath \(u(s d\)-path \((x, y) w p) v\)
and set \((S . a w a l k\)-verts \(u(\) sd-path \((x, y) w p)) \subseteq\) set (awalk-verts \(u p) \cup\{w\}\)
proof (induct \(p\) arbitrary: u rule: sd-path-induct)
case empty case 1
moreover have pverts \(s G=\) pverts \(G \cup\{w\}\) by (simp add: sG-def)
ultimately show ?case by (auto simp: apath-Nil-iff S.apath-Nil-iff)
next
case empty case 2 then show? case by simp
next
case (pass é es)
\{ case 1
then have S.apath (snd \(\left.e^{\prime}\right)(\) sd-path \((x, y) w e s) v u \neq w f s t e^{\prime}=u\) \(u \notin \operatorname{set}(S . a w a l k-v e r t s(s n d ~ e)\) (sd-path ( \(x, y\) ) wes))
using pass elems by (fastforce simp: apath-Cons-iff)+
moreover then have \(e^{\prime} \in\) parcs \(s G\) using 1 pass by (auto simp: e-conv sG-def S.apath-Cons-ifff apath-Cons-iff) ultimately show ?case using pass by (auto simp: S.apath-Cons-iff) \} note case \(1=\) this
\{ case 2 with pass 2 show ?case by (simp add: apath-Cons-iff) blast \} next
\(\{\) fix \(u\) es \(a b\)
assume \(A\) : apath \(u((a, b) \#\) es) \(v\)
and \(a b:(a, b)=(x, y) \vee(a, b)=(y, x)\) and hyps: \(\bigwedge u\). apath \(u\) es \(v \Longrightarrow\) S.apath \(u(\) sd-path \((x, y) w e s) v\)
\(\bigwedge u\). apath \(u\) es \(v \Longrightarrow\) set (awalk-verts \(u(\) sd-path \((x, y) w e s)) \subseteq\) set (awalk-verts \(u\) es) \(\cup\{w\}\)
from \(a b A\) have \((x, y) \notin\) set es \((y, x) \notin\) set es
by (auto simp: apath-Cons-iff dest!: awalkI-apath dest: awalk-verts-arc1 awalk-verts-arc2)
then have ev-sd: set (S.awalk-verts \(b(\operatorname{sd}\)-path \((x, y) w\) es) \()=\operatorname{set}(\) awalk-verts bes)
by (simp add: sd-path-id)
from \(A\) ab have \([\operatorname{simp}]: x \neq y\)
by (simp add: apath-Cons-iff) (metis awalkI-apath awalk-verts-non-Nil awhd-of-awalk hd-in-set)
from \(A\) have \(S\).apath \(b\) (sd-path \((x, y) w e s) v u=a u \neq w\)
using ab hyps elems by (auto simp: apath-Cons-iff wellformed')
moreover
then have S.awalk \(u(\) sd-path \((x, y) w((a, b) \# e s)) v\)
using \(a b w\)-s \(G\) by (auto simp: S.apath-def S.awalk-simps S.wellformed')
then have \(u \notin \operatorname{set}\) (S.awalk-verts \(w((w, b) \#\) sd-path \((x, y) w e s))\)
using \(a b\langle u \neq w\rangle\) ev-sd \(A\) by (auto simp: apath-Cons-iff S.awalk-def)
moreover
have \(w \notin\) set (awalk-verts \(b\) (sd-path \((x, y) w e s)\) )
using ab ev-sd A elems by (auto simp: awalk-Cons-iff apath-def)
ultimately
```

 have path: S.apath u (sd-path (x,y)w ((a,b) # es)) v
 using ab hyps w-sG <u=a` by (auto simp:S.apath-Cons-iff) }
 note path = this
 { case (sd es)
 { case 1 with sd show ?case by (intro path) auto }
 { case 2 show ?case using 2 sd
 by (auto simp: apath-Cons-iff) } }
 { case (sdrev es)
 { case 1 with sdrev show ?case by (intro path) auto }
 { case 2 show ?case using 2 sdrev
 by (auto simp: apath-Cons-iff) } }
 qed
 then show ?A ?B unfolding sG-def e-conv .
 qed
lemma
assumes elems: e\in parcs G w\not\in pverts Gu\in pverts G v\in pverts G
assumes path: pre-digraph.apath (subdivide Gew) upv
shows apath-co-path: apath u (co-path e w p)v (is ?thesis-path)
and set-awalk-verts-co-path: set (awalk-verts u (co-path e wp)) = set (awalk-verts
u p) - {w} (is ?thesis-set)
proof -
obtain x y where e-conv: e=(x,y) by (cases e) auto
interpret S: pair-sym-digraph subdivide G e w
using elems(1,2) by (rule pair-sym-digraph-subdivide)
have e-w: fst e\not=w snd e\not=w using elems by auto
have S.apath u p vu\not=w using elems path by auto
then have co-path: apath u (co-path e w p)v
set (awalk-verts u (co-path e w p)) = set (awalk-verts u p) - {w}
proof (induction p arbitrary: u rule: co-path-induct)
case empty with elems show ?case
by (simp add: apath-Nil-iff S.apath-Nil-iff)
next
case (single e') with elems show ?case
by (auto simp: apath-Cons-iff S.apath-Cons-iff apath-Nil-iff S.apath-Nil-iff
dest: arcs-subdivideD)
next
case (co e1 e2 es)
then have apath u (co-path e w (e1 \# e2 \# es)) v using co e-w elems
by (auto simp: apath-Cons-iff S.apath-Cons-iff)
moreover
have set (awalk-verts u (co-path e w (e1 \# e2 \# es))) = set (awalk-verts u
(e1 \# e2 \# es)) - {w}
using co e-w by (auto simp: apath-Cons-iff S.apath-Cons-iff)
ultimately
show ?case by fast
next

```
```

 case (corev e1 e2 es)
 have apath \(u\) (co-path e \(w(e 1 \# e 2 \# e s)) v\) using \(\operatorname{corev}(1-3) e-w(1) \operatorname{elems}(1)\)
 by (auto simp: apath-Cons-iff S.apath-Cons-iff intro: arcs-symmetric)
 moreover
 have set (awalk-verts \(u\) (co-path e \(w(e 1 \#\) e2 \# es))) \(=\) set (awalk-verts \(u\)
 $(e 1$ \# e2 \# es)) - $\{w\}$
using corev e-w by (auto simp: apath-Cons-iff S.apath-Cons-iff)
ultimately
show ?case by fast
next
case (pass e1 e2 es)
have fst e1 $\neq w$ using elems pass.prems by (auto simp: S.apath-Cons-iff)
have snd e1 $\neq w$
proof
assume snd e1 $=w$
then have e1 \notin parcs G using elems by auto
then have e1 \in parcs (subdivide G e w) - parcs G
using pass by (auto simp: S.apath-Cons-iff)
then have $e 1=(x, w) \vee e 1=(y, w)$
using $\langle f s t$ e $1 \neq w\rangle e-w$ by (auto simp add: e-conv)
moreover
have fst $e 2=w$ using $\langle s n d e 1=w\rangle$ pass.prems by (auto simp: S.apath-Cons-iff)
then have $e 2 \notin$ parcs G using elems by auto
then have $e 2 \in$ parcs (subdivide G e w) - parcs G
using pass by (auto simp: S.apath-Cons-iff)
then have $e \mathcal{Z}=(w, x) \vee e \mathcal{Z}=(w, y)$
using $\langle f s t e 2=w\rangle e-w$ by (cases e2) (auto simp add: e-conv)
ultimately
have $e 1=(x, w) \wedge e \mathcal{Z}=(w, x) \vee e 1=(y, w) \wedge e \mathcal{Z}=(w, y)$
using pass.hyps[simplified e-conv] by auto
then show False
using pass.prems by (cases es) (auto simp: S.apath-Cons-iff)
qed
then have e1 \in parcs G
using \langle fst $e 1 \neq w\rangle$ pass.prems by (auto simp: S.apath-Cons-iff dest: arcs-subdivideD)
have ih: apath (snd e1) (co-path e w (e2 \# es)) v ^ set (awalk-verts (snd e1)
(co-path e $w(e 2 \#$ es $))$) $=$ set (awalk-verts (snd e1) $(e 2 \#$ es $))-\{w\}$
using pass.prems \langle snd e1 $\neq w\rangle$ by (intro pass.IH) (auto simp: apath-Cons-iff
S.apath-Cons-iff)
then have fst e1 \notin set (awalk-verts (snd e1) (co-path e w (e2 \# es))) fst e1
$=u$
using pass.prems by (clarsimp simp: S.apath-Cons-iff)+
then have apath u (co-path e w (e1 \# e2 \# es)) v
using ih pass $\langle e 1 \in$ parcs $G\rangle$ by (auto simp: apath-Cons-iff S.apath-Cons-iff)[]
moreover
have set (awalk-verts u (co-path e $w(e 1 \# e 2 \# e s)))=$ set (awalk-verts u
$(e 1$ \# e2 \# es)) - \{w\}
using pass.hyps ih 〈fst e1 $\neq w$ by auto

```
ultimately show ?case by fast
qed
then show ?thesis-set ?thesis-path by blast+ qed
end

\subsection*{7.3 Bidirected Graphs}
definition (in -) swap-in :: (' \(\left.a \times{ }^{\prime} a\right)\) set \(\Rightarrow{ }^{\prime} a \times{ }^{\prime} a \Rightarrow{ }^{\prime} a \times{ }^{\prime} a\) where swap-in \(S x=(\) if \(x \in S\) then prod.swap \(x\) else \(x)\)
lemma bidirected-digraph-rev-conv-pair:
assumes bidirected-digraph (with-proj \(G\) ) rev- \(G\)
shows rev- \(G=\) swap-in (parcs \(G\) )
proof -
interpret bidirected-digraph \(G\) rev- \(G\) by fact
have \(\bigwedge a b .(a, b) \in\) parcs \(G \Longrightarrow \operatorname{rev}-G(a, b)=(b, a)\)
using tail-arev[simplified with-proj-simps] head-arev[simplified with-proj-simps]
by (metis fst-conv prod.collapse snd-conv)
then show? ?thesis by (auto simp: swap-in-def fun-eq-iff arev-eq)

\section*{qed}
lemma (in pair-bidirected-digraph) bidirected-digraph:
bidirected-digraph (with-proj \(G\) ) (swap-in (parcs \(G\) ))
using no-loops' arcs-symmetric
by unfold-locales (auto simp: swap-in-def)
lemma pair-bidirected-digraphI-bidirected-digraph:
assumes bidirected-digraph (with-proj \(G\) ) (swap-in (parcs \(G\) ))
shows pair-bidirected-digraph G
proof -
interpret bidirected-digraph with-proj \(G\) swap-in (parcs \(G\) ) by fact
\{
fix \(a\) assume \(a \in \operatorname{parcs} G\) then have fst \(a \neq\) snd \(a\)
using arev-neq[of a] bidirected-digraph-rev-conv-pair[OF assms(1)]
by (cases a) (auto simp: swap-in-def)

\section*{\}}
then show ?thesis
using tail-in-verts head-in-verts by unfold-locales auto
qed
end
```

theory Digraph-Component
imports
Digraph
Arc-Walk

```

Pair-Digraph
begin

\section*{8 Components of (Symmetric) Digraphs}
definition compatible :: ('a,'b) pre-digraph \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow\) bool where compatible \(G H \equiv\) tail \(G=\) tail \(H \wedge\) head \(G=\) head \(H\)
definition subgraph \(::\left({ }^{\prime} a, ' b\right)\) pre-digraph \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow\) bool where
subgraph \(H G \equiv\) verts \(H \subseteq\) verts \(G \wedge\) arcs \(H \subseteq\) arcs \(G \wedge\) wf-digraph \(G \wedge\) wf-digraph \(H \wedge\) compatible \(G H\)
definition induced-subgraph :: ('a,'b) pre-digraph \(\Rightarrow\) ('a,'b) pre-digraph \(\Rightarrow\) bool where
induced-subgraph \(H G \equiv\) subgraph \(H G \wedge\) arcs \(H=\{e \in \operatorname{arcs} G\). tail \(G e \in\) verts \(H \wedge\) head \(G e \in\) verts \(H\}\)
definition spanning :: ('a,'b) pre-digraph \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow\) bool where spanning \(H G \equiv\) subgraph \(H G \wedge\) verts \(G=\) verts \(H\)
definition strongly-connected :: ('a,'b) pre-digraph \(\Rightarrow\) bool where strongly-connected \(G \equiv\) verts \(G \neq\{ \} \wedge\left(\forall u \in\right.\) verts \(G . \forall v \in\) verts \(\left.G . u \rightarrow^{*} G v\right)\)

The following function computes underlying symmetric graph of a digraph and removes parallel arcs.
definition \(m k\)-symmetric :: (' \(a,{ }^{\prime} b\) ) pre-digraph \(\Rightarrow{ }^{\prime}\) 'a pair-pre-digraph where \(m k\)-symmetric \(G \equiv 0\) pverts \(=\) verts \(G\), parcs \(=\bigcup e \in \operatorname{arcs} G .\{(\) tail \(G e\), head \(G\) e), (head Ge, tail Ge)\})
definition connected \(::\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow\) bool where connected \(G \equiv\) strongly-connected ( \(m k\)-symmetric \(G\) )
definition forest :: ('a,'b) pre-digraph \(\Rightarrow\) bool where
\[
\text { forest } G \equiv \neg(\exists p . \text { pre-digraph.cycle } G p)
\]
definition tree :: ('a,'b) pre-digraph \(\Rightarrow\) bool where
tree \(G \equiv\) connected \(G \wedge\) forest \(G\)
definition spanning-tree :: ('a,'b) pre-digraph \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow\) bool where spanning-tree \(H G \equiv\) tree \(H \wedge\) spanning \(H G\)
definition (in pre-digraph)
max-subgraph :: (('a,'b) pre-digraph \(\Rightarrow\) bool \() \Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow\) bool where
max-subgraph \(P H \equiv\) subgraph \(H G \wedge P H \wedge\left(\forall H^{\prime} . H^{\prime} \neq H \wedge\right.\) subgraph \(H H^{\prime}\) \(\longrightarrow \neg\left(\right.\) subgraph \(\left.\left.H^{\prime} G \wedge P H^{\prime}\right)\right)\)
definition (in pre-digraph) sccs :: ('a,'b) pre-digraph set where
sccs \(\equiv\left\{H\right.\). induced-subgraph \(H G \wedge\) strongly-connected \(H \wedge \neg\left(\exists H^{\prime}\right.\). induced-subgraph \(H^{\prime} G\)
\(\wedge\) strongly-connected \(H^{\prime} \wedge\) verts \(H \subset\) verts \(\left.\left.H^{\prime}\right)\right\}\)
definition (in pre-digraph) sccs-verts :: ' \(a\) set set where
```

sccs-verts $=\left\{S . S \neq\{ \} \wedge\left(\forall u \in S . \forall v \in S . u \rightarrow^{*} G v\right) \wedge(\forall u \in S . \forall v . v \notin S\right.$
$\left.\left.\longrightarrow \neg u \rightarrow^{*} G v \vee \neg v \rightarrow^{*} G u\right)\right\}$

```
definition (in pre-digraph) scc-of :: ' \(a \Rightarrow\) ' \(a\) set where
\[
\text { scc-of } u \equiv\left\{v . u \rightarrow^{*} v \wedge v \rightarrow^{*} u\right\}
\]
definition union :: ('a,'b) pre-digraph \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph where
union \(G H \equiv 0\) verts \(=\) verts \(G \cup\) verts \(H\), arcs \(=\operatorname{arcs} G \cup\) arcs \(H\), tail \(=\) tail \(G\), head \(=\) head \(G\) D
definition (in pre-digraph) Union :: ('a,'b) pre-digraph set \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph where
Union gs \(=(\) verts \(=(\bigcup G \in\) gs. verts \(G)\), arcs \(=(\bigcup G \in\) gs. arcs \(G)\), tail \(=\) tail \(G\), head \(=\) head \(G D\)

\subsection*{8.1 Compatible Graphs}
```

lemma compatible-tail:
assumes compatible G H shows tail G = tail H
using assms by (simp add: fun-eq-iff compatible-def)
lemma compatible-head:
assumes compatible G H shows head G = head H
using assms by (simp add: fun-eq-iff compatible-def)
lemma compatible-cas:
assumes compatible G H shows pre-digraph.cas G = pre-digraph.cas H
proof (unfold fun-eq-iff, intro allI)
fix u es v show pre-digraph.cas Gu es v = pre-digraph.cas H u es v
using assms
by (induct es arbitrary: u)
(simp-all add: pre-digraph.cas.simps compatible-head compatible-tail)
qed
lemma compatible-awalk-verts:
assumes compatible G H shows pre-digraph.awalk-verts G = pre-digraph.awalk-verts
H
proof (unfold fun-eq-iff, intro allI)
fix u es show pre-digraph.awalk-verts G u es = pre-digraph.awalk-verts H u es
using assms
by (induct es arbitrary: u)
(simp-all add: pre-digraph.awalk-verts.simps compatible-head compatible-tail)

```

\section*{qed}
lemma compatibleI-with-proj[intro]:
shows compatible (with-proj \(G\) ) (with-proj \(H\) )
by (auto simp: compatible-def)

\subsection*{8.2 Basic lemmas}
lemma (in sym-digraph) graph-symmetric:
shows \((u, v) \in\) arcs-ends \(G \Longrightarrow(v, u) \in\) arcs-ends \(G\)
using sym-arcs by (auto simp add: symmetric-def sym-def)
lemma strongly-connectedI[intro]:
assumes verts \(G \neq\{ \} \bigwedge u v . u \in\) verts \(G \Longrightarrow v \in\) verts \(G \Longrightarrow u \rightarrow^{*} G v\)
shows strongly-connected \(G\)
using assms by (simp add: strongly-connected-def)
lemma strongly-connectedE[elim]:
assumes strongly-connected \(G\)
assumes \(\left(\bigwedge u v . u \in\right.\) verts \(G \wedge v \in\) verts \(\left.G \Longrightarrow u \rightarrow^{*} G v\right) \Longrightarrow P\)
shows \(P\)
using assms by (auto simp add: strongly-connected-def)
lemma subgraph-imp-subverts:
assumes subgraph \(H G\)
shows verts \(H \subseteq\) verts \(G\)
using assms by (simp add: subgraph-def)
lemma induced-imp-subgraph:
assumes induced-subgraph \(H G\)
shows subgraph \(H\) G
using assms by (simp add: induced-subgraph-def)
lemma (in pre-digraph) in-sccs-imp-induced:
assumes \(c \in \operatorname{sccs}\)
shows induced-subgraph c \(G\)
using assms by (auto simp: sccs-def)
lemma spanning-tree-imp-tree[dest]:
assumes spanning-tree \(H G\)
shows tree \(H\)
using assms by (simp add: spanning-tree-def)
lemma tree-imp-connected[dest]:
assumes tree \(G\)
shows connected \(G\)
using assms by (simp add: tree-def)
lemma spanning-treeI[intro]:
```

 assumes spanning H G
 assumes tree H
 shows spanning-tree HG
 using assms by (simp add: spanning-tree-def)
lemma spanning-treeE[elim]:
assumes spanning-tree HG
assumes tree H^ spanning HG\LongrightarrowP
shows P
using assms by (simp add: spanning-tree-def)
lemma spanningE[elim]:
assumes spanning HG
assumes subgraph H G^ verts G= verts H\LongrightarrowP
shows P
using assms by (simp add: spanning-def)
lemma (in pre-digraph) in-sccsI[intro]:
assumes induced-subgraph c G
assumes strongly-connected c
assumes }\neg(\exists\mp@subsup{c}{}{\prime}.\mathrm{ . induced-subgraph }\mp@subsup{c}{}{\prime}G\wedge\mathrm{ strongly-connected }\mp@subsup{c}{}{\prime}
verts c \subset verts c')
shows c\in sccs
using assms by (auto simp add: sccs-def)
lemma (in pre-digraph) in-sccsE[elim]:
assumes c\in sccs
assumes induced-subgraph c G\Longrightarrow strongly-connected c \Longrightarrow ᄀ(\existsd.
induced-subgraph d G ^ strongly-connected d ^ verts c \subset verts d)\LongrightarrowP
shows P
using assms by (simp add: sccs-def)
lemma subgraphI:
assumes verts H\subseteqverts G
assumes arcs H\subseteqarcs G
assumes compatible G H
assumes wf-digraph H
assumes wf-digraph G
shows subgraph H G
using assms by (auto simp add: subgraph-def)
lemma subgraphE[elim]:
assumes subgraph H G
obtains verts H\subseteqverts G arcs H\subseteq arcs G compatible G H wf-digraph H
wf-digraph G
using assms by (simp add: subgraph-def)
lemma induced-subgraphI[intro]:
assumes subgraph H G

```
```

assumes arcs H={e\in arcs G. tail Ge\in verts H\wedge head Ge\inverts H}
shows induced-subgraph HG
using assms unfolding induced-subgraph-def by safe
lemma induced-subgraphE[elim]:
assumes induced-subgraph H G
assumes \llbracketsubgraph H G; arcs H}={e\in\mathrm{ arcs G. tail Ge verts H^ head Ge
verts H}\rrbracket\LongrightarrowP
shows P
using assms by (auto simp add: induced-subgraph-def)
lemma pverts-mk-symmetric[simp]: pverts (mk-symmetric G) = verts G
and parcs-mk-symmetric:
parcs (mk-symmetric G)=(\bigcupe\inarcs G.{(tail Ge, head Ge), (head Ge, tail
G e)})
by (auto simp: mk-symmetric-def arcs-ends-conv image-UN)
lemma arcs-ends-mono:
assumes subgraph HG
shows arcs-ends H\subseteqarcs-ends G
using assms by (auto simp add: subgraph-def arcs-ends-conv compatible-tail com-
patible-head)
lemma (in wf-digraph) subgraph-refl: subgraph G G
by (auto simp: subgraph-def compatible-def) unfold-locales
lemma (in wf-digraph) induced-subgraph-refl: induced-subgraph G G
by (rule induced-subgraphI) (auto simp: subgraph-refl)

```

\subsection*{8.3 The underlying symmetric graph of a digraph}
```

lemma (in wf-digraph) wellformed-mk-symmetric[intro]: pair-wf-digraph (mk-symmetric G)
by unfold-locales (auto simp: parcs-mk-symmetric)
lemma (in fin-digraph) pair-fin-digraph-mk-symmetric[intro]: pair-fin-digraph (mk-symmetric
G)
proof -
have finite $((\lambda(a, b) .(b, a))$ 'arcs-ends $G)$ (is finite? $X)$ by (auto simp: arcs-ends-conv)
also have ? $X=\{(a, b) .(b, a) \in$ arcs-ends $G\}$ by auto
finally have X : finite
then show? thesis
by unfold-locales (auto simp: mk-symmetric-def arcs-ends-conv)
qed
lemma (in digraph) digraph-mk-symmetric[intro]: pair-digraph (mk-symmetric G)
proof -
have finite $((\lambda(a, b) .(b, a))$ ' arcs-ends $G)$ (is finite ? X) by (auto simp: arcs-ends-conv)
also have ? $X=\{(a, b) .(b, a) \in$ arcs-ends $G\}$ by auto

```
```

 finally have finite ...
 then show ?thesis
 by unfold-locales (auto simp: mk-symmetric-def arc-to-ends-def dest: no-loops)
 qed
lemma (in wf-digraph) reachable-mk-symmetricI:
assumes u ->*}v\mathrm{ shows }u\mp@subsup{->}{}{*}\mp@subsup{}{mk\mathrm{ -symmetric G v}}{
proof -
have arcs-ends G\subseteq parcs (mk-symmetric G)
(u,v) frtrancl-on (pverts (mk-symmetric G)) (arcs-ends G)
using assms unfolding reachable-def by (auto simp: parcs-mk-symmetric)
then show ?thesis unfolding reachable-def by (auto intro: rtrancl-on-mono)
qed
lemma (in wf-digraph) adj-mk-symmetric-eq:
symmetric G\Longrightarrow parcs (mk-symmetric G) = arcs-ends G
by (auto simp: parcs-mk-symmetric in-arcs-imp-in-arcs-ends arcs-ends-symmetric)
lemma (in wf-digraph) reachable-mk-symmetric-eq:
assumes symmetric G shows }u\mp@subsup{->}{}{*}\mp@subsup{}{mk}{
?R)
using adj-mk-symmetric-eq[OF assms] unfolding reachable-def by auto
lemma (in wf-digraph) mk-symmetric-awalk-imp-awalk:
assumes sym: symmetric G
assumes walk: pre-digraph.awalk (mk-symmetric G) u pv
obtains q}\mathrm{ where awalk uqv
proof -
interpret S: pair-wf-digraph mk-symmetric G ..
from walk have }u->\mp@subsup{}{}{*}\mp@subsup{}{mk\mathrm{ -symmetric G}}{
by (simp only: S.reachable-awalk) rule
then have }u\mp@subsup{->}{}{*}v\mathrm{ by (simp only: reachable-mk-symmetric-eq[OF sym])
then show ?thesis by (auto simp: reachable-awalk intro: that)
qed
lemma symmetric-mk-symmetric:
symmetric (mk-symmetric G)
by (auto simp: symmetric-def parcs-mk-symmetric intro: symI)

```

\subsection*{8.4 Subgraphs and Induced Subgraphs}
lemma subgraph-trans:
assumes subgraph \(G H\) subgraph \(H I\) shows subgraph \(G I\)
using assms by (auto simp: subgraph-def compatible-def)
The digraph and fin-digraph properties are preserved under the (inverse) subgraph relation
lemma (in fin-digraph) fin-digraph-subgraph:
assumes subgraph \(H G\) shows fin-digraph \(H\)
```

proof (intro-locales)
from assms show wf-digraph H by auto
have HG: arcs H\subseteq arcs G verts H\subseteq verts G
using assms by auto
then have finite (verts H) finite (arcs H)
using finite-verts finite-arcs by (blast intro: finite-subset)+
then show fin-digraph-axioms H
by unfold-locales
qed
lemma (in digraph) digraph-subgraph:
assumes subgraph H G shows digraph H
proof
fix e assume e: e\inarcs H
with assms show tail H e\in verts H head H e\in verts H
by (auto simp: subgraph-def intro: wf-digraph.wellformed)
from e and assms have e\in arcs H\cap arcs G by auto
with assms show tail He\not= head He
using no-loops by (auto simp: subgraph-def compatible-def arc-to-ends-def)
next
have arcs H\subseteq arcs G verts H\subseteqverts G using assms by auto
then show finite (arcs H) finite (verts H)
using finite-verts finite-arcs by (blast intro: finite-subset)+
next
fix e1 e2 assume e1 \in arcs H e2 \in arcs H
and eq: arc-to-ends H e1 = arc-to-ends H e2
with assms have e1 \in arcs H\caparcs G e2 \in arcs H\caparcs G
by auto
with eq show e1 = e2
using no-multi-arcs assms
by (auto simp: subgraph-def compatible-def arc-to-ends-def)
qed
lemma (in pre-digraph) adj-mono:
assumes }u\mp@subsup{->}{H}{}v\mathrm{ subgraph HG
shows }u->
using assms by (blast dest: arcs-ends-mono)
lemma (in pre-digraph) reachable-mono:
assumes walk: }u->\mp@subsup{}{}{*}Hv\mathrm{ and sub: subgraph HG
shows }u\mp@subsup{->}{}{*}
proof -
have verts H\subseteq verts G using sub by auto
with assms show ?thesis
unfolding reachable-def by (metis arcs-ends-mono rtrancl-on-mono)
qed

```

Arc walks and paths are preserved under the subgraph relation.
```

lemma (in wf-digraph) subgraph-awalk-imp-awalk:
assumes walk: pre-digraph.awalk H u p v
assumes sub: subgraph H G
shows awalk u pv
using assms by (auto simp: pre-digraph.awalk-def compatible-cas)
lemma (in wf-digraph) subgraph-apath-imp-apath:
assumes path: pre-digraph.apath Hupv
assumes sub: subgraph H G
shows apath u pv
using assms unfolding pre-digraph.apath-def
by (auto intro: subgraph-awalk-imp-awalk simp: compatible-awalk-verts)
lemma subgraph-mk-symmetric:
assumes subgraph H G
shows subgraph (mk-symmetric H) (mk-symmetric G)
proof (rule subgraphI)
let ?wpms = \lambdaG.mk-symmetric G
from assms have compatible GH by auto
with assms
show verts (?wpms H) \subseteqverts (?wpms G)
and arcs (?wpms H)\subseteqarcs (?wpms G)
by (auto simp: parcs-mk-symmetric compatible-head compatible-tail)
show compatible (?wpms G) (?wpms H) by rule
interpret H: pair-wf-digraph mk-symmetric H
using assms by (auto intro: wf-digraph.wellformed-mk-symmetric)
interpret G: pair-wf-digraph mk-symmetric G
using assms by (auto intro: wf-digraph.wellformed-mk-symmetric)
show wf-digraph (?wpms H)
by unfold-locales
show wf-digraph (?wpms G) by unfold-locales
qed
lemma (in fin-digraph) subgraph-in-degree:
assumes subgraph H G
shows in-degree Hv\leqin-degree Gv
proof -
have finite (in-arcs G v) by auto
moreover
have in-arcs Hv\subseteqin-arcs Gv
using assms by (auto simp: subgraph-def in-arcs-def compatible-head compati-
ble-tail)
ultimately
show ?thesis unfolding in-degree-def by (rule card-mono)
qed
lemma (in wf-digraph) subgraph-cycle:
assumes subgraph H G pre-digraph.cycle H p shows cycle p
proof -

```
```

 from assms have compatible G H by auto
 with assms show ?thesis
 by (auto simp: pre-digraph.cycle-def compatible-awalk-verts intro: subgraph-awalk-imp-awalk)
 qed
lemma (in wf-digraph) subgraph-del-vert: subgraph (del-vert u) G
by (auto simp: subgraph-def compatible-def del-vert-simps wf-digraph-del-vert)
intro-locales
lemma (in wf-digraph) subgraph-del-arc: subgraph (del-arc a) G
by (auto simp: subgraph-def compatible-def del-vert-simps wf-digraph-del-vert)
intro-locales

```

\subsection*{8.5 Induced subgraphs}
```

lemma wf-digraphI-induced:
assumes induced-subgraph H G
shows wf-digraph H
proof -
from assms have compatible G H by auto
with assms show ?thesis by unfold-locales (auto simp: compatible-tail compati-
ble-head)
qed
lemma (in digraph) digraphI-induced:
assumes induced-subgraph H G
shows digraph H
proof -
interpret W:wf-digraph H using assms by (rule wf-digraphI-induced)
from assms have compatible GH by auto
from assms have arcs: arcs H}\subseteq\mathrm{ arcs G by blast
show ?thesis
proof
from assms have verts H}\subseteq\mathrm{ verts G by blast
then show finite (verts H) using finite-verts by (rule finite-subset)
next
from arcs show finite (arcs H) using finite-arcs by (rule finite-subset)
next
fix e assume e\inarcs H
with arcs <compatible G H` show tail H e\not= head H e
by (auto dest: no-loops simp: compatible-tail[symmetric] compatible-head[symmetric])
next
fix e1 e2 assume e1 \in arcs H e2 \in arcs H and ate: arc-to-ends H e1 =
arc-to-ends H e2
with arcs <compatible G H show e1 = e2 using ate
by (auto intro: no-multi-arcs simp: compatible-tail[symmetric] compatible-head[symmetric]
arc-to-ends-def)
qed
qed

```

Computes the subgraph of \(G\) induced by vs
definition induce-subgraph :: ('a,'b) pre-digraph \(\Rightarrow{ }^{\prime}\) 'a set \(\Rightarrow\) ('a,'b) pre-digraph (infix \(\mid 67\) ) where
\(G \upharpoonright v s=0\) verts \(=v s\), arcs \(=\{e \in\) arcs \(G\). tail \(G e \in v s \wedge\) head \(G e \in v s\}\), tail \(=\) tail \(G\), head \(=\) head \(G D\)
lemma induce-subgraph-verts[simp]:
verts \((G \upharpoonright v s)=v s\)
by (auto simp add: induce-subgraph-def)
lemma induce-subgraph-arcs[simp]:
\(\operatorname{arcs}(G \upharpoonright v s)=\{e \in \operatorname{arcs} G\). tail \(G e \in v s \wedge\) head \(G e \in v s\}\)
by (auto simp add: induce-subgraph-def)
lemma induce-subgraph-tail[simp]:
tail \((G \upharpoonright v s)=\) tail \(G\)
by (auto simp: induce-subgraph-def)
lemma induce-subgraph-head[simp]:
head \((G \upharpoonright v s)=\) head \(G\)
by (auto simp: induce-subgraph-def)
lemma compatible-induce-subgraph: compatible \((G \upharpoonright S) G\)
by (auto simp: compatible-def)
lemma (in wf-digraph) induced-induce[intro]:
assumes \(v s \subseteq\) verts \(G\)
shows induced-subgraph \((G \upharpoonright v s) G\)
using assms
by (intro subgraphI induced-subgraphI)
(auto simp: arc-to-ends-def induce-subgraph-def wf-digraph-def compatible-def)
lemma (in wf-digraph) wellformed-induce-subgraph[intro]:
wf-digraph ( \(G \upharpoonright v s\) )
by unfold-locales auto
lemma induced-graph-imp-symmetric:
assumes symmetric \(G\)
assumes induced-subgraph \(H G\)
shows symmetric \(H\)
proof (unfold symmetric-conv, safe)
from assms have compatible \(G H\) by auto
fix e1 assume \(e 1 \in \operatorname{arcs} H\)
then obtain \(e 2\) where tail \(G e 1=\) head \(G e 2\) head \(G e 1=\) tail \(G e 2 e 2 \in\) arcs G
using assms by (auto simp add: symmetric-conv)
moreover
then have \(e 2 \in \operatorname{arcs} H\)
```

 using assms and «e1\in arcs H〉 by auto
 ultimately
 show \existse2\inarcs H. tail H e1 = head H e2 ^ head H e1 = tail H e2
 using assms <e1 \in arcs H〉<compatible G H〉
 by (auto simp: compatible-head compatible-tail)
 qed
lemma (in sym-digraph) induced-graph-imp-graph:
assumes induced-subgraph HG
shows sym-digraph H
proof (rule wf-digraph.sym-digraphI)
from assms show wf-digraph H by (rule wf-digraphI-induced)
next
show symmetric H
using assms sym-arcs by (auto intro: induced-graph-imp-symmetric)
qed
lemma (in wf-digraph) induce-reachable-preserves-paths:
assumes u ->*}G\mp@subsup{G}{}{v

```

```

 using assms
 proof induct
case base then show ?case by (auto simp: reachable-def)
next
case (step u w)
interpret iG:wf-digraph }G\upharpoonright{w.u->\mp@subsup{}{}{*}Gw
by (rule wellformed-induce-subgraph)
from }\langleu->w\rangle\mathrm{ have }u->\mp@subsup{}{G}{}\upharpoonright{wa.u->\mp@subsup{}{}{*}\mp@subsup{}{G}{}\mathrm{ wa} w
by (auto simp: arcs-ends-conv reachable-def intro: wellformed rtrancl-on-into-rtrancl-on)
then have }u\mp@subsup{->}{}{*}G\upharpoonright{wa.u->\mp@subsup{}{}{*}G\mathrm{ wa} w
by (rule iG.reachable-adjI)
moreover
from step have {x.w ->* x}\subseteq{x.u 觌 x}
by (auto intro: adj-reachable-trans)

```

```

 by (intro subgraphI) (auto simp: arcs-ends-conv compatible-def)
 then have w ->**}G\upharpoonright{wa.u->**wa}
 by (rule iG.reachable-mono[rotated]) fact
 ultimately show ?case by (rule iG.reachable-trans)
 qed
lemma induce-subgraph-ends[simp]:
arc-to-ends (G\upharpoonrightS)= arc-to-ends G
by (auto simp: arc-to-ends-def)
lemma dominates-induce-subgraphD:
assumes u}\mp@subsup{->}{G}{\}\mp@subsup{\}{S}{}v\mathrm{ shows }u\mp@subsup{->}{G}{}
using assms by (auto simp: arcs-ends-def intro: rev-image-eqI)

```
```

context wf-digraph begin
lemma reachable-induce-subgraphD:

```

```

proof -
interpret GS: wf-digraph G\upharpoonrightS by auto
show ?thesis
using assms by induct (auto dest: dominates-induce-subgraphD intro: adj-reachable-trans)
qed
lemma dominates-induce-ss:
assumes }u\mp@subsup{->}{G}{\}\mp@subsup{\}{}{v}vST\mathrm{ shows }u\mp@subsup{->}{G}{\}\upharpoonright\mp@subsup{T}{}{v
using assms by (auto simp: arcs-ends-def)
lemma reachable-induce-ss:
assumes }u\mp@subsup{->}{}{*}G\upharpoonright\mp@subsup{S}{}{v}vS\subseteqT\mathrm{ shows }u\mp@subsup{->}{}{*}G\upharpoonrightT\mp@subsup{T}{}{v
using assms unfolding reachable-def
by induct (auto intro: dominates-induce-ss converse-rtrancl-on-into-rtrancl-on)
lemma awalk-verts-induce:
pre-digraph.awalk-verts (G\upharpoonrightS)= awalk-verts
proof (intro ext)
fix u p show pre-digraph.awalk-verts (G\upharpoonrightS) u p=awalk-verts u p
by (induct p arbitrary: u) (auto simp: pre-digraph.awalk-verts.simps)
qed
lemma (in -) cas-subset:
assumes pre-digraph.cas G u p v subgraph G H
shows pre-digraph.cas H u pv
using assms
by (induct p arbitrary: u) (auto simp: pre-digraph.cas.simps subgraph-def com-
patible-def)
lemma cas-induce:
assumes cas u p v set (awalk-verts u p)\subseteqS
shows pre-digraph.cas (G\upharpoonrightS)upv
using assms
proof (induct p arbitrary: u S)
case Nil then show ?case by (auto simp: pre-digraph.cas.simps)
next
case (Cons a as)
have pre-digraph.cas (G \ set (awalk-verts (head G a) as)) (head G a) as v
using Cons by auto
then have pre-digraph.cas (G\upharpoonrightS) (head Ga) as v
using <-\subseteqS\rangle by (rule-tac cas-subset) (auto simp: subgraph-def compatible-def)
then show ?case using Cons by (auto simp: pre-digraph.cas.simps)
qed

```
```

 lemma awalk-induce:
 assumes awalk u p v set (awalk-verts u p)\subseteqS
 shows pre-digraph.awalk (G\upharpoonrightS)upv
 proof -
 interpret GS:wf-digraph G\upharpoonrightS by auto
 show ?thesis
 using assms by (auto simp: pre-digraph.awalk-def cas-induce GS.cas-induce
 set-awalk-verts)
qed
lemma subgraph-induce-subgraphI:
assumes V\subseteqverts G shows subgraph (}G\upharpoonrightV)
by (metis assms induced-imp-subgraph induced-induce)
end
lemma induced-subgraphI':
assumes subg:subgraph H G
assumes max: \bigwedgeH' . subgraph H'G\Longrightarrow(verts H'}\mp@subsup{H}{}{\prime
H)
shows induced-subgraph H G
proof -
interpret H:wf-digraph H using <subgraph H G` .. define }\mp@subsup{H}{}{\prime}\mathrm{ where }\mp@subsup{H}{}{\prime}=G\upharpoonright\mathrm{ verts H then have }\mp@subsup{H}{}{\prime}\mathrm{ -props: subgraph }\mp@subsup{H}{}{\prime}G\mathrm{ verts }\mp@subsup{H}{}{\prime}=\mathrm{ verts H using subg by (auto intro:wf-digraph.subgraph-induce-subgraphI) moreover have arcs H' = arcs H proof show arcs H'\subseteq arcs H using max H'-props by auto show arcs H\subseteqarcs H' using subg by (auto simp: H'-def compatible-def) qed then show induced-subgraph H G by (auto simp: induced-subgraph-def H'-def subg) qed lemma (in pre-digraph) induced-subgraph-altdef: induced-subgraph H G\longleftrightarrow subgraph H G^(\forall H'. subgraph H'G}\longrightarrow(verts H' Fverts H\vee arcs H'\subseteqarcs H))(is?L}\longleftrightarrow??R proof - { fix }\mp@subsup{H}{}{\prime}::('a,'b) pre-digraph assume A: verts H' = verts H subgraph H'G interpret }\mp@subsup{H}{}{\prime}:\mathrm{ wf-digraph }\mp@subsup{H}{}{\prime}\mathrm{ using <subgraph H' G` ..
from <subgraph H'G`
have comp: tail G = tail H' head G= head H' by (auto simp: compatible-def)
then have \a.a\in arcs H'\Longrightarrowtail Ga\inverts H \a.a\in arcs H'\Longrightarrowtail
Ga\in verts H
by (auto dest: H'.wellformed simp: A)
then have arcs H'\subseteq{e\in arcs G. tail Ge\inverts H\wedge head Ge\inverts H}

```
using «subgraph \(H^{\prime} G\) by (auto simp: subgraph-def comp \(A(1)[\) symmetric \(]\) ) \}
then show? ?thesis using induced-subgraph \(I^{\prime}[\) of \(H G]\) by (auto simp: induced-subgraph-def) qed

\subsection*{8.6 Unions of Graphs}

\section*{lemma}
verts-union \([\) simp \(]\) : verts \((\) union \(G H)=\) verts \(G \cup\) verts \(H\) and arcs-union \([\) simp \(]\) : arcs (union \(G H)=\) arcs \(G \cup\) arcs \(H\) and tail-union [simp]: tail (union \(G H\) ) \(=\) tail \(G\) and
head-union[simp]: head (union \(G H\) ) head \(G\)
by (auto simp: union-def)
lemma wellformed-union:
assumes wf-digraph \(G\) wf-digraph \(H\) compatible \(G H\)
shows wf-digraph (union \(G H\) )
using assms
by unfold-locales
(auto simp: union-def compatible-tail compatible-head dest: wf-digraph.wellformed)
lemma subgraph-union-iff:
assumes wf-digraph H1 wf-digraph H2 compatible H1 H2
shows subgraph (union H1 H2) \(G \longleftrightarrow\) subgraph H1 \(G \wedge\) subgraph H2 \(G\)
using assms by (fastforce simp: compatible-def intro!: subgraphI wellformed-union)
lemma subgraph-union[intro]:
assumes subgraph H1 \(G\) compatible H1 \(G\)
assumes subgraph H2 \(G\) compatible H2 \(G\)
shows subgraph (union H1 H2) G
proof -
from assms have wf-digraph (union H1 H2)
by (auto intro: wellformed-union simp: compatible-def)
with assms show ?thesis
by (auto simp add: subgraph-def union-def arc-to-ends-def compatible-def)
qed
lemma union-fin-digraph:
assumes fin-digraph \(G\) fin-digraph \(H\) compatible \(G H\)
shows fin-digraph (union \(G H\) )
proof intro-locales
interpret \(G\) : fin-digraph \(G\) by (rule assms)
interpret \(H\) : fin-digraph \(H\) by (rule assms)
show wf-digraph (union \(G H\) ) using assms
by (intro wellformed-union) intro-locales
show fin-digraph-axioms (union \(G H\) )
using assms by unfold-locales (auto simp: union-def)
qed

\section*{lemma subgraphs－of－union：}
assumes wf－digraph \(G\) wf－digraph \(G^{\prime}\) compatible \(G G^{\prime}\)
shows subgraph \(G\)（union \(G G^{\prime}\) ）
and subgraph \(G^{\prime}\left(\right.\) union \(\left.G G^{\prime}\right)\)
using assms by（auto intro！：subgraphI wellformed－union simp：compatible－def）

\section*{8．7 Maximal Subgraphs}
lemma（in pre－digraph）max－subgraph－mp：
assumes max－subgraph \(Q x \wedge x . P x \Longrightarrow Q x P x\) shows max－subgraph \(P x\) using assms by（auto simp：max－subgraph－def）
lemma（in pre－digraph）max－subgraph－prop：max－subgraph \(P x \Longrightarrow P x\)
by（simp add：max－subgraph－def）
lemma（in pre－digraph）max－subgraph－subg－eq：
assumes max－subgraph P H1 max－subgraph P H2 subgraph H1 H2
shows \(H 1=H 2\)
using assms by（auto simp：max－subgraph－def）
lemma subgraph－induce－subgraphI2：
assumes subgraph \(H\) shows subgraph \(H\)（ \(G \upharpoonright\) verts \(H)\)
using assms by（auto simp：subgraph－def compatible－def wf－digraph．wellformed wf－digraph．wellformed－induce－subgraph）
definition arc－mono \(::\left(\left({ }^{\prime} a\right.\right.\), ＇b）pre－digraph \(\Rightarrow\) bool \() \Rightarrow\) bool where
arc－mono \(P \equiv(\forall\) H1 H2．P H1 \(\wedge\) subgraph H1 H2 \(\wedge\) verts H1 \(=\) verts \(H 2 \longrightarrow\) P H2）
lemma（in pre－digraph）induced－subgraphI－arc－mono：
assumes max－subgraph \(P H\)
assumes arc－mono \(P\)
shows induced－subgraph \(H G\)
proof－
interpret wf－digraph \(G\) using assms by（auto simp：max－subgraph－def）
have subgraph \(H(G \upharpoonright\) verts \(H)\) subgraph \((G \upharpoonright\) verts \(H) G\) verts \(H=\) verts \((G \upharpoonright\)
verts \(H\) ）\(P H\)
using assms by（auto simp：max－subgraph－def subgraph－induce－subgraphI2 sub－ graph－induce－subgraphI）
moreover
then have \(P(G \upharpoonright\) verts \(H)\)
using assms by（auto simp：arc－mono－def）
ultimately
have max－subgraph \(P(G \upharpoonright\) verts \(H)\)
using assms by（auto simp：max－subgraph－def）metis
then have \(H=G \upharpoonright\) verts \(H\)
using 〈max－subgraph \(P H\) 〉subgraph \(H\)－〉
by（intro max－subgraph－subg－eq）
show ？thesis using assms by（subst \(\langle H=-\rangle\) ）（auto simp：max－subgraph－def）

\section*{qed}
lemma (in pre-digraph) induced-subgraph-altdef2:
induced-subgraph \(H G \longleftrightarrow\) max-subgraph \(\left(\lambda H^{\prime}\right.\). verts \(H^{\prime}=\) verts \(H\) ) \(H\) (is ? \(L\)
\(\longleftrightarrow ? R)\)
proof
assume ? \(L\)
moreover
\{ fix \(H^{\prime}\) assume induced-subgraph \(H\) subgraph \(H H^{\prime} H \neq H^{\prime}\)
then have \(\neg\) (subgraph \(H^{\prime} G \wedge\) verts \(H^{\prime}=\) verts \(H\) )
by (auto simp: induced-subgraph-altdef compatible-def elim!: allE[where \(x=H^{\dagger}\) ])
\}
ultimately show max-subgraph \(\left(\lambda H^{\prime}\right.\). verts \(H^{\prime}=\) verts \(H\) ) \(H\) by (auto simp: max-subgraph-def)
next
assume ? \(R\)
moreover have arc-mono ( \(\lambda H^{\prime}\). verts \(H^{\prime}=\) verts \(H\) ) by (auto simp: arc-mono-def) ultimately show ?L by (rule induced-subgraphI-arc-mono)
qed
lemma (in pre-digraph) max-subgraphI:
assumes \(P x\) subgraph \(x G \bigwedge y . \llbracket x \neq y\); subgraph \(x y\); subgraph \(y G \rrbracket \Longrightarrow \neg P y\) shows max-subgraph \(P x\)
using assms by (auto simp: max-subgraph-def)
lemma (in pre-digraph) subgraphI-max-subgraph: max-subgraph \(P x \Longrightarrow\) subgraph \(x G\)
by (simp add: max-subgraph-def)

\subsection*{8.8 Connected and Strongly Connected Graphs}

\section*{context wf-digraph begin}
lemma in-sccs-verts-conv-reachable:
\(S \in\) sccs-verts \(\longleftrightarrow S \neq\{ \} \wedge\left(\forall u \in S . \forall v \in S . u \rightarrow^{*} G v\right) \wedge(\forall u \in S . \forall v . v\) \(\left.\notin S \longrightarrow \neg u \rightarrow^{*} G v \vee \neg v \rightarrow^{*} G u\right)\)
by (simp add: sccs-verts-def)
lemma sccs-verts-disjoint:
assumes \(S \in\) sccs-verts \(T \in\) sccs-verts \(S \neq T\) shows \(S \cap T=\{ \}\)
using assms unfolding in-sccs-verts-conv-reachable by safe meson+
lemma strongly-connected-spanning-imp-strongly-connected:
assumes spanning \(H G\)
assumes strongly-connected \(H\)
shows strongly-connected \(G\)
proof (unfold strongly-connected-def, intro ballI conjI)
from assms show verts \(G \neq\{ \}\) unfolding strongly-connected-def spanning-def by auto
next
fix \(u v\) assume \(u \in\) verts \(G\) and \(v \in\) verts \(G\)
then have \(u \rightarrow^{*} H v\) subgraph \(H G\)
using assms by (auto simp add: strongly-connected-def)
then show \(u \rightarrow^{*} v\) by (rule reachable-mono)
qed
lemma strongly-connected-imp-induce-subgraph-strongly-connected:
assumes subg: subgraph \(H G\)
assumes sc: strongly-connected \(H\)
shows strongly-connected \((G \upharpoonright(v e r t s ~ H))\)
proof -
let ?is- \(H=G \upharpoonright(\) verts \(H)\)
interpret \(H\) : wf-digraph \(H\)
using subg by (rule subgraphE)
interpret \(G r H\) : wf-digraph ?is-H
by (rule wellformed-induce-subgraph)
have verts \(H \subseteq\) verts \(G\) using assms by auto
have subgraph \(H\) ( \(G\) 「 verts \(H\) )
using subg by (intro subgraphI) (auto simp: compatible-def)
then show ?thesis
using induced-induce \([O F\) «verts \(H \subseteq\) verts \(G\) 〉]
and sc GrH.strongly-connected-spanning-imp-strongly-connected
unfolding spanning-def by auto
qed
lemma in-sccs-vertsI-sccs:
assumes \(S \in\) verts ' sccs shows \(S \in\) sccs-verts
unfolding sccs-verts-def
proof (intro CollectI conjI allI ballI impI)
show \(S \neq\{ \}\) using assms by (auto simp: sccs-verts-def sccs-def strongly-connected-def)
from assms have sc: strongly-connected \((G \upharpoonright S) S \subseteq\) verts \(G\)
apply (auto simp: sccs-verts-def sccs-def)
by (metis induced-imp-subgraph subgraphE wf-digraph.strongly-connected-imp-induce-subgraph-strongly-con

\section*{\{}
fix \(u v\) assume \(A: u \in S v \in S\)
with \(s c\) have \(u \rightarrow^{*} G \upharpoonright S v\) by auto
then show \(u \rightarrow{ }^{*} G\) using \(\langle S \subseteq\) verts \(G\rangle\) by (rule reachable-induce-subgraph \(D\) )
next
fix \(u v\) assume \(A: u \in S v \notin S\)
\{ assume \(B: u \rightarrow{ }^{*} G v v{ }^{*}{ }_{G} u\)
from \(B\) obtain \(p\)-uv where \(p\)-uv: awalk \(u p\)-uv \(v\) by (metis reachable-awalk)
from \(B\) obtain \(p-v u\) where \(p\)-vu: awalk \(v p-v u u\) by (metis reachable-awalk)
define \(T\) where \(T=S \cup\) set (awalk-verts \(u p\)-uv) \(\cup\) set (awalk-verts \(v\) \(p-v u)\)
have \(S \subseteq T\) by (auto simp: \(T\)-def)
have \(v \in T\) using \(p\)-vu by (auto simp: \(T\)-def set-awalk-verts)
then have \(T \neq S\) using \(\langle v \notin S\rangle\) by auto
interpret \(T\) : wf-digraph \(G \upharpoonright T\) by auto
from \(p\)-uv have T-p-uv: T.awalk \(u p-u v v\)
by (rule awalk-induce) (auto simp: T-def)
from \(p\)-vu have T-p-vu: T.awalk v p-vu u
by (rule awalk-induce) (auto simp: T-def)
have uv-reach: \(u \rightarrow^{*} G \upharpoonright T v v \rightarrow^{*} G \upharpoonright T^{u}\)
using T-p-uv T-p-vu \(A\) by (metis T.reachable-awalk)+
\(\{\) fix \(x y\) assume \(x \in S y \in S\)
then have \(x \rightarrow^{*} G \upharpoonright S y y \rightarrow^{*} G \upharpoonright S^{x}\) using sc by auto
then have \(x \rightarrow^{*} G \upharpoonright T y y \rightarrow^{*} G \upharpoonright T^{x}\) using \(\langle S \subseteq T\rangle\) by (auto intro: reachable-induce-ss)
\(\}\) note \(A 1=\) this
\{ fix \(x\) assume \(x \in T\)
moreover
\{ assume \(x \in S\) then have \(x \rightarrow^{*} G \upharpoonright T^{v}\)
using uv-reach A1 A by (auto intro: T.reachable-trans[rotated])
\} moreover
\{ assume \(x \in\) set (awalk-verts up-uv) then have \(x \rightarrow^{*} G \upharpoonright T^{v}\)
using \(T\) - \(p\)-uv by (auto simp: awalk-verts-induce intro: T.awalk-verts-reachable-to)
\} moreover
\{ assume \(x \in\) set (awalk-verts v p-vu) then have \(x \rightarrow^{*} G \upharpoonright T^{v}\) using \(T-p-v u\) by (rule-tac T.reachable-trans)
(auto simp: uv-reach awalk-verts-induce dest: T.awalk-verts-reachable-to)
\} ultimately
have \(x \rightarrow^{*} G \upharpoonright T^{v}\) by (auto simp: T-def)
\(\}\) note \(x v\)-reach \(=\) this
\{ fix \(x\) assume \(x \in T\)
moreover
\{ assume \(x \in S\) then have \(v \rightarrow^{*} G \upharpoonright T^{x}\) using uv-reach A1 A by (auto intro: T.reachable-trans)
\} moreover
\{ assume \(x \in\) set (awalk-verts \(v p-v u\) ) then have \(v \rightarrow^{*} G \upharpoonright T^{x}\)
using T-p-vu by (auto simp: awalk-verts-induce intro: T.awalk-verts-reachable-from)
\} moreover
\{ assume \(x \in\) set (awalk-verts \(u p\)-uv) then have \(v \rightarrow^{*} G \upharpoonright T^{x}\)

\section*{using T-p-uv by (rule-tac T.reachable-trans[rotated])}
(auto intro: T.awalk-verts-reachable-from uv-reach simp: awalk-verts-induce)
\} ultimately
have \(v \rightarrow^{*} G \upharpoonright T^{x}\) by (auto simp: T-def)
\(\}\) note \(v x\)-reach \(=\) this
\{ fix \(x y\) assume \(x \in T y \in T\) then have \(x \rightarrow^{*}{ }_{G} \upharpoonright T{ }^{T} y\)
using \(x v\)-reach \(v x\)-reach by (blast intro: T.reachable-trans)
\}
then have strongly-connected \((G \upharpoonright T)\)
using \(\langle S \neq\{ \}\rangle\langle S \subseteq T\rangle\) by auto
moreover have induced-subgraph \((G \upharpoonright T) G\)
using \(\langle S \subseteq\) verts \(G\rangle\)
by (auto simp: T-def intro: awalk-verts-reachable-from p-uv p-vu reach-
able-in-verts(2))
ultimately
have \(\exists T\). induced-subgraph \((G \upharpoonright T) G \wedge\) strongly-connected \((G \upharpoonright T) \wedge\) verts
\((G \upharpoonright S) \subset\) verts \((G \upharpoonright T)\)
using \(\langle S \subseteq T\rangle\langle T \neq S\rangle\) by auto
then have \(G \upharpoonright S \notin\) sccs unfolding sccs-def by blast
then have \(S \notin\) verts' sccs
by (metis (erased, opaque-lifting) \(\langle S \subseteq T\rangle\langle T \neq S\rangle\langle\) induced-subgraph \((G\)
\(\upharpoonright T) G\rangle\langle\) strongly-connected \((G \upharpoonright T)\rangle\)
dual-order.order-iff-strict image-iff in-sccsE induce-subgraph-verts)
then have False using assms by metis
\}
then show \(\neg u \rightarrow^{*}{ }_{G} v \vee \neg v \rightarrow^{*}{ }_{G} u\) by metis
\}
qed
end
lemma arc-mono-strongly-connected[intro,simp]: arc-mono strongly-connected
by (auto simp: arc-mono-def) (metis spanning-def subgraphE wf-digraph.strongly-connected-spanning-imp-stro
lemma (in pre-digraph) sccs-altdef2:
sccs \(=\{H\). max-subgraph strongly-connected \(H\}(\) is \(? L=? R)\)
proof -
\{ fix \(H H^{\prime}\) :: ('a, 'b) pre-digraph
assume a1: strongly-connected \(H^{\prime}\)
assume a2: induced-subgraph \(H^{\prime} G\)
assume a3: max-subgraph strongly-connected \(H\)
assume \(a 4\) : verts \(H \subseteq\) verts \(H^{\prime}\)
have sg: subgraph \(H\) and ends- \(G\) : tail \(G=\) tail \(H\) head \(G=\) head \(H\)
using a3 by (auto simp: max-subgraph-def compatible-def)
then interpret \(H\) : wf-digraph \(H\) by blast
have arcs \(H \subseteq \operatorname{arcs} H^{\prime}\) using a2 a4 sg by (fastforce simp: ends- \(G\) )
then have \(H=H^{\prime}\)
using a1 a2 a3 a4
by (metis (no-types) compatible-def induced-imp-subgraph max-subgraph-def subgraph-def)
\(\}\) note \(X=\) this
\{ fix \(H\)
assume a1: induced-subgraph \(H G\)
assume a2: strongly-connected \(H\)
assume \(a 3: \forall H^{\prime}\). strongly-connected \(H^{\prime} \longrightarrow\) induced-subgraph \(H^{\prime} G \longrightarrow \neg\) verts
\(H \subset\) verts \(H^{\prime}\)
interpret \(G\) : wf-digraph \(G\) using a1 by auto
\{ fix \(y\) assume \(H \neq y\) and subg: subgraph \(H\) y subgraph \(y G\)
then have verts \(H \subset\) verts \(y\)
using a1 by (auto simp: induced-subgraph-altdef2 max-subgraph-def)
then have \(\neg\) strongly-connected \(y\)
using subg a1 a2 a3[THEN spec, of \(G \upharpoonright\) verts \(y\) ]
by (auto simp: G.induced-induce G.strongly-connected-imp-induce-subgraph-strongly-connected)
\}
then have max-subgraph strongly-connected \(H\)
using a1 a2 by (auto intro: max-subgraphI)
\} note \(Y=\) this
show ?thesis unfolding sccs-def
by (auto dest: max-subgraph-prop \(X\) intro: induced-subgraphI-arc-mono \(Y\) )
qed
locale max-reachable-set \(=w f\)-digraph +
fixes \(S\) assumes \(S\)-in-sv: \(S \in\) sccs-verts
begin
lemma reach-in: \(\bigwedge u v . \llbracket u \in S ; v \in S \rrbracket \Longrightarrow u \rightarrow^{*}{ }_{G} v\)
and not-reach-out: \(\bigwedge u v . \llbracket u \in S ; v \notin S \rrbracket \Longrightarrow \neg u \rightarrow^{*} G v \vee \neg v \rightarrow{ }^{*}{ }_{G} u\)
and not-empty: \(S \neq\{ \}\)
using \(S\)-in-sv by (auto simp: sccs-verts-def)
lemma reachable-induced:
assumes conn: \(u \in S v \in S u \rightarrow^{*} G v\)
shows \(u \rightarrow^{*} G \upharpoonright S^{v}\)
proof -
let ? \(H=G \upharpoonright S\)
have \(S \subseteq\) verts \(G\) using reach-in by (auto dest: reachable-in-verts)
then have induced-subgraph ? \(H\) G
by (rule induced-induce)
then interpret \(H\) : wf-digraph ?H by (rule wf-digraphI-induced)
from conn obtain \(p\) where \(p\) : awalk \(u p v\) by (metis reachable-awalk)
show ?thesis
proof (cases set \(p \subseteq \operatorname{arcs}(G \upharpoonright S))\)
case True
with \(p\) conn have H.awalk \(u p v\)
by (auto simp: pre-digraph.awalk-def compatible-cas[OF compatible-induce-subgraph]) then show?thesis by (metis H.reachable-awalk)
next
case False
then obtain \(a\) where \(a \in \operatorname{set} p a \notin \operatorname{arcs}(G \upharpoonright S)\) by auto
moreover
then have tail \(G a \notin S \vee\) head \(G a \notin S\) using \(p\) by auto
ultimately
obtain \(w\) where \(w \in\) set (awalk-verts \(u p\) ) \(w \notin S\) using \(p\) by (auto simp: set-awalk-verts)
then have \(u \rightarrow^{*} G w w{ }^{*} G v\)
using \(p\) by (auto intro: awalk-verts-reachable-from awalk-verts-reachable-to)
moreover have \(v \rightarrow^{*} G u\) using conn reach-in by auto
ultimately have \(u \rightarrow^{*} G w \rightarrow^{*} G u\) by (auto intro: reachable-trans)
with \(\langle w \notin S\rangle\) conn not-reach-out have False by blast
then show ?thesis ..
qed
qed
lemma strongly-connected:
shows strongly-connected ( \(G \upharpoonright S\) )
using not-empty by (intro strongly-connectedI) (auto intro: reachable-induced reach-in)
lemma induced-in-sccs: \(G \upharpoonright S \in\) sccs
proof -
let ? \(H=G \upharpoonright S\)
have \(S \subseteq\) verts \(G\) using reach-in by (auto dest: reachable-in-verts)
then have induced-subgraph ?H \(G\)
by (rule induced-induce)
then interpret \(H\) : wf-digraph ?H by (rule wf-digraphI-induced)
\{ fix \(T\) assume \(S \subset T T \subseteq\) verts \(G\) strongly-connected \((G \upharpoonright T)\)
from \(\langle S \subset T\rangle\) obtain \(v\) where \(v \in T v \notin S\) by auto
from not-empty obtain \(u\) where \(u \in S\) by auto
then have \(u \in T\) using \(\langle S \subset T\rangle\) by auto
from \(\langle u \in S\rangle\langle v \notin S\rangle\) have \(\neg u \rightarrow^{*} G v \vee \neg v \rightarrow{ }^{*} G u\) by (rule not-reach-out)
moreover
from 〈strongly-connected -> have \(u \rightarrow^{*} G \upharpoonright T{ }^{v} v \rightarrow^{*} G \upharpoonright T^{u}\)
using \(\langle v \in T\rangle\langle u \in T\rangle\) by (auto simp: strongly-connected-def)
then have \(u \rightarrow^{*} G v v \rightarrow^{*} G u\)
using \(\langle T \subseteq\) verts \(G\rangle\) by (auto dest: reachable-induce-subgraphD)
ultimately have False by blast
\} note psuper-not-sc = this
have \(\neg\left(\exists c^{\prime}\right.\). induced-subgraph \(c^{\prime} G \wedge\) strongly-connected \(c^{\prime} \wedge\) verts \((G \upharpoonright S) \subset\) verts \(c^{\prime}\) )
by (metis induce-subgraph-verts induced-imp-subgraph psuper-not-sc subgraphE
strongly-connected-imp-induce-subgraph-strongly-connected)
with \(\langle S \subseteq->\) not-empty show ?H \(\in\) sccs by (intro in-sccsI induced-induce strongly-connected)
qed
end
context wf-digraph begin
lemma in-verts-sccsD-sccs:
assumes \(S \in\) sccs-verts
shows \(G \upharpoonright S \in \operatorname{sccs}\)
proof -
from assms interpret max-reachable-set by unfold-locales
show ?thesis by (auto simp: sccs-verts-def intro: induced-in-sccs)
qed
lemma sccs-verts-conv: sccs-verts \(=\) verts'sccs
by (auto intro: in-sccs-vertsI-sccs rev-image-eqI dest: in-verts-sccsD-sccs)
lemma induce-eq-iff-induced:
assumes induced-subgraph \(H\) shows \(G \upharpoonright\) verts \(H=H\)
using assms by (auto simp: induced-subgraph-def induce-subgraph-def compati-
\(b l e-d e f)\)
lemma sccs-conv-sccs-verts: sccs \(=\) induce-subgraph \(G\) 'sccs-verts
by (auto intro!: rev-image-eqI in-sccs-vertsI-sccs dest: in-verts-sccsD-sccs simp: sccs-def induce-eq-iff-induced)
end
lemma connected-conv:
shows connected \(G \longleftrightarrow\) verts \(G \neq\{ \} \wedge(\forall u \in\) verts \(G . \forall v \in\) verts \(G .(u, v) \in\)
rtrancl-on (verts \(G\) ) \(\left.\left((\text { arcs-ends } G)^{s}\right)\right)\)
proof -
have symcl (arcs-ends \(G\) ) \(=\) parcs ( \(m k\)-symmetric \(G\) )
by (auto simp: parcs-mk-symmetric symcl-def arcs-ends-conv)
then show ?thesis by (auto simp: connected-def strongly-connected-def reach-
able-def)
qed
lemma (in wf-digraph) symmetric-connected-imp-strongly-connected:
assumes symmetric \(G\) connected \(G\)
shows strongly-connected \(G\)
proof
from \(\langle\) connected \(G\rangle\) show verts \(G \neq\{ \}\) unfolding connected-def strongly-connected-def
by auto
next
from 〈connected \(G\) 〉
```

 have sc-mks: strongly-connected (mk-symmetric G)
 unfolding connected-def by simp
 fix uv assume }u\in\mathrm{ verts }Gv\in\mathrm{ verts }
 with sc-mks have u 吘mk-symmetric G v
 unfolding strongly-connected-def by auto
 then show }u\mp@subsup{->}{}{*}v\mathrm{ using assms by (simp only:reachable-mk-symmetric-eq)
 qed
lemma (in wf-digraph) connected-spanning-imp-connected:
assumes spanning H G
assumes connected H
shows connected G
proof (unfold connected-def strongly-connected-def, intro conjI ballI)
from assms show verts (mk-symmetric G)}={
unfolding spanning-def connected-def strongly-connected-def by auto
next
fix }u
assume u\in verts (mk-symmetric G) and v\inverts (mk-symmetric G)
then have }u\in\mathrm{ pverts (mk-symmetric H) and ve pverts (mk-symmetric H)
using <spanning H G` by (auto simp: mk-symmetric-def) with <connected H`
have }u->\mp@subsup{}{}{*}\mp@subsup{}{\mathrm{ with-proj (mk-symmetric H) v subgraph (mk-symmetric H) (mk-symmetric}}{
G)
using <spanning H G` unfolding connected-def
by (auto simp: spanning-def dest: subgraph-mk-symmetric)
then show }u->\mp@subsup{->}{}{*}\mp@subsup{}{mk\mathrm{ -symmetric }G}{}v\mathrm{ by (rule pre-digraph.reachable-mono)
qed
lemma (in wf-digraph) spanning-tree-imp-connected:
assumes spanning-tree HG
shows connected G
using assms by (auto intro: connected-spanning-imp-connected)
term LEAST x. P x
lemma (in sym-digraph) induce-reachable-is-in-sccs:
assumes u\in verts G
shows (G\upharpoonright{v.u ->* v}) \in sccs
proof -
let ?c}=(G\upharpoonright{v.u\mp@subsup{->}{}{*}v}
have isub-c: induced-subgraph ?c G
by (auto elim: reachable-in-vertsE)
then interpret c:wf-digraph ?c by (rule wf-digraphI-induced)
have sym-c: symmetric (}G\upharpoonright{v.u\mp@subsup{->}{}{*}v}
using sym-arcs isub-c by (rule induced-graph-imp-symmetric)
note〈induced-subgraph ?c G〉

```
```

moreover
have strongly-connected ?c
proof (rule strongly-connectedI)
show verts ?c }\not={}\mathrm{ using assms by auto
next
fix v w assume l-assms: v\in verts ?c w\in verts ?c
have }u\mp@subsup{->}{}{*}G\upharpoonright{v.u\mp@subsup{->}{}{*}v}
using l-assms by (intro induce-reachable-preserves-paths) auto

```

```

 also have }u\mp@subsup{->}{}{*}G\upharpoonright{v.u\mp@subsup{->}{}{*}v}
 using l-assms by (intro induce-reachable-preserves-paths) auto
    ```

```

qed
moreover
have }\neg(\exists\mathrm{ d. induced-subgraph d G}\wedge\mathrm{ strongly-connected d }
verts ?c \subset verts d)
proof
assume \existsd. induced-subgraph d G ^ strongly-connected d }
verts ?c \subset verts d
then obtain d}\mathrm{ where induced-subgraph d G strongly-connected d
verts ?c \subset verts d by auto
then obtain v}\mathrm{ where v}v\mathrm{ verts d and v}\not=\mathrm{ verts ?c
by auto
have u\in verts ?c using <u\inverts G> by auto
then have u\in verts d using <verts ?c \subset verts d> by auto
then have u ->* d
using <strongly-connected d\rangle\langleu\inverts d\rangle\langlev\inverts d\rangle by auto
then have }u->\mp@subsup{->}{}{*}
using «induced-subgraph d G>
by (auto intro: pre-digraph.reachable-mono)
then have v\inverts ?c by (auto simp: reachable-awalk)
then show False using <v\not\inverts ?c> by auto
qed
ultimately show ?thesis unfolding sccs-def by auto
qed
lemma induced-eq-verts-imp-eq:
assumes induced-subgraph G H
assumes induced-subgraph G' H
assumes verts G= verts G'
shows G= G'
using assms by (auto simp: induced-subgraph-def subgraph-def compatible-def)
lemma (in pre-digraph) in-sccs-subset-imp-eq:
assumes c \in sccs
assumes d\in sccs
assumes verts c\subseteqverts d
shows c=d

```
```

using assms by (blast intro: induced-eq-verts-imp-eq)
context wf-digraph begin
lemma connectedI:
assumes verts }G\not={}\uv.u\in\mathrm{ verts }G\Longrightarrowv\in\mathrm{ verts }G\Longrightarrowu->\mp@subsup{}{}{*}\mp@subsup{}{m}{
v
shows connected G
using assms by (auto simp: connected-def)
lemma connected-awalkE:
assumes connected Gu\in verts Gv\in verts G
obtains p where pre-digraph.awalk (mk-symmetric G) upv
proof -
interpret sG: pair-wf-digraph mk-symmetric G ..
from assms have }u\mp@subsup{->}{}{*}\mp@subsup{}{mk}{
then obtain p where sG.awalk u p v by (auto simp: sG.reachable-awalk)
then show ?thesis ..
qed
lemma inj-on-verts-sccs: inj-on verts sccs
by (rule inj-onI) (metis in-sccs-imp-induced induced-eq-verts-imp-eq)
lemma card-sccs-verts: card sccs-verts = card sccs
by (auto simp: sccs-verts-conv intro: inj-on-verts-sccs card-image)
end
lemma strongly-connected-non-disj:
assumes wf:wf-digraph G wf-digraph H compatible G H
assumes sc: strongly-connected G strongly-connected H
assumes not-disj: verts }G\cap\mathrm{ verts H}\not={
shows strongly-connected (union G H)
proof
from sc show verts (union G H)}\not={
unfolding strongly-connected-def by simp
next
let ?x = union G H
fix uvw assume }u\in\mathrm{ verts ?x and v}\in\mathrm{ verts ?x
obtain w where w-in-both: w verts G w}\in\mathrm{ verts }
using not-disj by auto
interpret x:wf-digraph ?x
by (rule wellformed-union) fact+
have subg: subgraph G ?x subgraph H ?x
by (rule subgraphs-of-union[OF --], fact+)+
have reach-uw: }u\mp@subsup{->}{}{*}\mp@subsup{}{?}{
using <u\in verts ?x> subg w-in-both sc

```
```

 by (auto intro: pre-digraph.reachable-mono)
 also have reach-wv: w ->* ?}\mp@subsup{\mp@code{x}}{}{v
 using }\langlev\in\mathrm{ verts ?x> subg w-in-both sc
 by (auto intro: pre-digraph.reachable-mono)
 finally (x.reachable-trans) show }u\mp@subsup{->}{}{*}?xv
 qed
context wf-digraph begin
lemma scc-disj:
assumes scc:c\in sccs d\in sccs
assumes c\not=d
shows verts c \cap verts d={}
proof (rule ccontr)
assume contr: \neg?thesis
let ?x = union c d
have comp1: compatible G c compatible Gd
using scc by (auto simp: sccs-def)
then have comp: compatible c d by (auto simp: compatible-def)
have wf:wf-digraph c wf-digraph d
and sc: strongly-connected c strongly-connected d
using scc by (auto intro: in-sccs-imp-induced)
have compatible c d
using comp by (auto simp: sccs-def compatible-def)
from wf comp sc have union-conn: strongly-connected ?x
using contr by (rule strongly-connected-non-disj)
have sg: subgraph ?x G
using scc comp1 by (intro subgraph-union) (auto simp: compatible-def)
then have v-cd: verts c\subseteqverts G verts d \subseteqverts G by (auto elim!: subgraphE)
have wf-digraph ?x by (rule wellformed-union) fact+
with v-cd sg union-conn
have induce-subgraph-conn: strongly-connected (G\upharpoonrightverts ?x)
induced-subgraph (}G\upharpoonright\mathrm{ verts ?x) G
by - (intro strongly-connected-imp-induce-subgraph-strongly-connected,
auto simp: subgraph-union-iff)
from assms have \negverts c\subseteqverts d and \neg verts d\subseteqverts c
by (metis in-sccs-subset-imp-eq)+
then have psub: verts c \subset verts ?x
by (auto simp: union-def)
then show False using induce-subgraph-conn
by (metis «c \in sccs> in-sccsE induce-subgraph-verts)
qed
lemma in-sccs-verts-conv:

```
```

 S f sccs-verts \longleftrightarrowG\upharpoonrightS\in sccs
 by (auto simp: sccs-verts-conv intro: rev-image-eqI)
 (metis in-sccs-imp-induced induce-subgraph-verts induced-eq-verts-imp-eq in-
 duced-imp-subgraph induced-induce subgraphE)
end
lemma (in wf-digraph) in-scc-of-self: u\in verts G\Longrightarrowu\inscc-of u
by (auto simp: scc-of-def)
lemma (in wf-digraph) scc-of-empty-conv: scc-of }u={}\longleftrightarrowu\not\in\mathrm{ verts }
using in-scc-of-self by (auto simp: scc-of-def reachable-in-verts)
lemma (in wf-digraph) scc-of-in-sccs-verts:
assumes u\in verts G shows scc-of u\in sccs-verts
using assms by (auto simp: in-sccs-verts-conv-reachable scc-of-def intro: reach-
able-trans exI[where }x=u]\mathrm{)
lemma (in wf-digraph) sccs-verts-subsets: S\in sccs-verts \LongrightarrowS\subseteqverts }
by (auto simp: sccs-verts-conv)
lemma (in fin-digraph) finite-sccs-verts: finite sccs-verts
proof -
have finite (Pow (verts G)) by auto
moreover with sccs-verts-subsets have sccs-verts}\subseteqPow (verts G) by aut
ultimately show ?thesis by (rule rev-finite-subset)
qed
lemma (in wf-digraph) sccs-verts-conv-scc-of:
sccs-verts = scc-of'verts G (is ?L = ?R)
proof (intro set-eqI iffI)
fix S assume S\in?R then show S\in?L
by (auto simp: in-sccs-verts-conv-reachable scc-of-empty-conv) (auto simp:
scc-of-def intro: reachable-trans)
next
fix S assume S\in?L
moreover
then obtain u where u\inS by (auto simp: in-sccs-verts-conv-reachable)
moreover
then have }u\in\mathrm{ verts }G\mathrm{ using }\langleS\in?L\rangle by (metis sccs-verts-subsets subsetCE
then have scc-of }u\in\mathrm{ sccs-verts }u\inscc-of
by (auto intro: scc-of-in-sccs-verts in-scc-of-self)
ultimately
have scc-of u=S using sccs-verts-disjoint by blast
then show }S\in?R\mathrm{ using <scc-of u G -><u
qed
lemma (in sym-digraph) scc-ofI-reachable:
assumes u}\mp@subsup{->}{}{*}v\mathrm{ shows }u\inscc-of

```
using assms by (auto simp: scc-of-def symmetric-reachable[OF sym-arcs])
lemma (in sym-digraph) scc-ofI-reachable':
assumes \(v \rightarrow^{*} u\) shows \(u \in s c c-o f v\)
using assms by (auto simp: scc-of-def symmetric-reachable[OF sym-arcs])
lemma (in sym-digraph) scc-ofI-awalk: assumes awalk \(u p\) shows \(u \in s c c\)-of \(v\) using assms by (metis reachable-awalk scc-ofI-reachable)
lemma (in sym-digraph) scc-ofI-apath: assumes apath \(u p v\) shows \(u \in s c c\)-of \(v\) using assms by (metis reachable-apath scc-ofI-reachable)
lemma (in wf-digraph) scc-of-eq: \(u \in s c c\)-of \(v \Longrightarrow s c c\)-of \(u=s c c\)-of \(v\) by (auto simp: scc-of-def intro: reachable-trans)
lemma (in wf-digraph) strongly-connected-eq-iff: strongly-connected \(G \longleftrightarrow\) sccs \(=\{G\}(\) is ? \(L \longleftrightarrow\) ? \(R)\)
proof
assume ? \(L\)
then have \(G \in\) sccs by (auto simp: sccs-def induced-subgraph-refl)
moreover
\{ fix \(H\) assume \(H \in \operatorname{sccs} G \neq H\)
with \(\langle G \in\) sccs〉 have verts \(G \cap\) verts \(H=\{ \}\) by (rule scc-disj)
moreover
from \(\langle H \in s c c s\rangle\) have verts \(H \subseteq\) verts \(G\) by auto
ultimately
have verts \(H=\{ \}\) by auto
with \(\langle H \in\) sccs〉 have False by (auto simp: sccs-def strongly-connected-def)
\} ultimately
show ?R by auto
qed (auto simp: sccs-def)

\subsection*{8.9 Components}
lemma (in sym-digraph) exists-scc:
assumes verts \(G \neq\{ \}\) shows \(\exists c . c \in s c c s\)
proof -
from assms obtain \(u\) where \(u \in\) verts \(G\) by auto
then show ?thesis by (blast dest: induce-reachable-is-in-sccs)
qed
theorem (in sym-digraph) graph-is-union-sccs:
shows Union sccs \(=G\)
proof -
have \((\bigcup c \in\) sccs. verts \(c)=\) verts \(G\)
by (auto intro: induce-reachable-is-in-sccs)
moreover
```

 have \((\bigcup c \in\) sccs. arcs \(c)=\operatorname{arcs} G\)
 proof
 show \((\bigcup c \in\) sccs. arcs \(c) \subseteq\) arcs \(G\)
 by safe (metis in-sccsE induced-imp-subgraph subgraphE subsetD)
 show arcs \(G \subseteq(\bigcup c \in\) sccs. arcs \(c)\)
 proof (safe)
 fix \(e\) assume \(e \in \operatorname{arcs} G\)
 define \(a b\) where \([\) simp \(]: a=\) tail \(G e\) and \([\operatorname{simp}]: b=\) head \(G e\)
 have \(e \in(\bigcup x \in\) sccs. arcs \(x)\)
 proof cases
 assume \(\exists x \in s c c s .\{a, b\} \subseteq\) verts \(x\)
 then obtain \(c\) where \(c \in\) sccs and \(\{a, b\} \subseteq\) verts \(c\)
 by auto
 then have \(e \in\{e \in\) arcs \(G\). tail \(G e \in\) verts \(c\)
 \(\wedge\) head \(G e \in\) verts \(c\}\) using \(\langle e \in\) arcs \(G\rangle\) by auto
 then have \(e \in \operatorname{arcs} c\) using \(\langle c \in s c c s\rangle\) by blast
 then show ?thesis using \(\langle c \in s c c s\rangle\) by auto
 next
 assume l-assm: \(\neg(\exists x \in s c c s .\{a, b\} \subseteq\) verts \(x)\)
 have \(a \rightarrow^{*} b\) using \(\langle e \in \operatorname{arcs} G\rangle\)
 by (metis a-def b-def reachable-adjI in-arcs-imp-in-arcs-ends)
 then have \(\{a, b\} \subseteq\) verts \(\left(G \upharpoonright\left\{v, a \rightarrow^{*} v\right\}\right) a \in\) verts \(G\)
 by (auto elim: reachable-in-vertsE)
 moreover
 have \(\left(G \upharpoonright\left\{v . a \rightarrow^{*} v\right\}\right) \in \operatorname{sccs}\)
 using \(\langle a \in\) verts \(G\rangle\) by (auto intro: induce-reachable-is-in-sccs)
 ultimately
 have False using l-assm by blast
 then show ?thesis by simp
 qed
 then show \(e \in(\bigcup c \in\) sccs. arcs \(c)\) by auto
 qed
 qed
 ultimately show ?thesis
 by (auto simp add: Union-def)
 qed
lemma (in sym-digraph) scc-for-vert-ex:
assumes $u \in$ verts G
shows \exists c. $c \in$ sccs $\wedge u \in$ verts c
using assms by (auto intro: induce-reachable-is-in-sccs)
lemma (in sym-digraph) scc-decomp-unique:
assumes $S \subseteq$ sccs verts $($ Union $S)=$ verts G shows $S=$ sccs
proof (rule ccontr)

```
```

 assume S\not= sccs
 with assms obtain c where c\insccs and c }\not=S\mathrm{ by auto
 with assms have \}\d.d\inS\Longrightarrow\mathrm{ verts c }\cap\mathrm{ verts }d={
 by (intro scc-disj) auto
 then have verts c \cap verts (Union S)={}
by (auto simp: Union-def)
with assms have verts c \cap verts G={} by auto
moreover from <c\in sccs\rangle obtain u}\mathrm{ where }u\in\mathrm{ verts c }\cap\mathrm{ verts }
by (auto simp: sccs-def strongly-connected-def)
ultimately show False by blast
qed

```
end
```

theory Vertex-Walk
imports Arc-Walk
begin

```

\section*{9 Walks Based on Vertices}

These definitions are here mainly for historical purposes, as they do not really work with multigraphs. Consider using Arc Walks instead.
type-synonym 'a vwalk \(=\) 'a list
Computes the list of arcs belonging to a list of nodes
fun vwalk-arcs :: 'a vwalk \(\Rightarrow\left({ }^{\prime} a \times\right.\) ' \(\left.a\right)\) list where vwalk-arcs []\(=[]\)
| vwalk-arcs \([x]=[]\)
\(\mid\) vwalk-arcs \((x \# y \# x s)=(x, y) \#\) vwalk-arcs \((y \# x s)\)
definition vwalk-length :: 'a vwalk \(\Rightarrow\) nat where vwalk-length \(p \equiv\) length (vwalk-arcs \(p\) )
lemma vwalk-length-simp[simp]: shows vwalk-length \(p=\) length \(p-1\)
by (induct \(p\) rule: vwalk-arcs.induct) (auto simp: vwalk-length-def)
definition vwalk :: 'a vwalk \(\Rightarrow\left({ }^{\prime} a\right.\), 'b) pre-digraph \(\Rightarrow\) bool where vwalk \(p G \equiv\) set \(p \subseteq\) verts \(G \wedge\) set (vwalk-arcs \(p) \subseteq\) arcs-ends \(G \wedge p \neq[]\)
definition vpath :: 'a vwalk \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow\) bool where vpath \(p G \equiv\) vwalk \(p G \wedge\) distinct \(p\)

For a given vwalk, compute a vpath with the same tail G and end
function vwalk-to-vpath :: 'a vwalk \(\Rightarrow\) ' \(a\) vwalk where
```

 vwalk-to-vpath [] = []
 | vwalk-to-vpath (x# xs)=(if (x\in set xs)
 then vwalk-to-vpath (dropWhile (}\lambday.y\not=x)xs
 else x # vwalk-to-vpath xs)
 by pat-completeness auto
termination by (lexicographic-order simp add: length-drop While-le)
lemma vwalkI[intro]:
assumes set p\subseteq verts G
assumes set (vwalk-arcs p)\subseteq arcs-ends G
assumes p\not=[]
shows vwalk p G
using assms by (auto simp add: vwalk-def)
lemma vwalkE[elim]:
assumes vwalk p G
assumes set p\subseteqverts G\Longrightarrow
set (vwalk-arcs p)\subseteqarcs-ends G\wedgep\not=[]\LongrightarrowP
shows P
using assms by (simp add:vwalk-def)
lemma vpathI[intro]:
assumes vwalk p G
assumes distinct p
shows vpath p G
using assms by (simp add: vpath-def)
lemma vpathE[elim]:
assumes vpath p G
assumes vwalk p G\Longrightarrow distinct p\LongrightarrowP
shows P
using assms by (simp add: vpath-def)
lemma vwalk-consI:
assumes vwalk p G
assumes a\in verts G
assumes (a,hd p)\in arcs-ends G
shows vwalk (a\#p)G
using assms by (cases p) (auto simp add: vwalk-def)
lemma vwalk-consE:
assumes vwalk (a\# p)G
assumes p\not=[]
assumes (a,hd p)\in arcs-ends G\Longrightarrow vwalk p G\LongrightarrowP
shows P
using assms by (cases p) (auto simp add: vwalk-def)

```
```

lemma vwalk-induct[case-names Base Cons, induct pred: vwalk]:
assumes vwalk p G
assumes $\bigwedge u . u \in$ verts $G \Longrightarrow P[u]$
assumes $\bigwedge u v$ es. $(u, v) \in$ arcs-ends $G \Longrightarrow P(v \# e s) \Longrightarrow P(u \# v \# e s)$
shows P p
using assms
proof (induct p)
case (Cons u es)
then show ?case
proof (cases es)
fix $v e s^{\prime}$ assume $e s=v \# e s^{\prime}$
then have $(u, v) \in$ arcs-ends G and $P(v \# e s ')$
using Cons by (auto elim: vwalk-consE)
then show ?thesis using «es $=v \# e s^{\prime}$ 〉Cons.prems by auto
qed auto
qed auto
lemma vwalk-arcs-Cons[simp]:
assumes $p \neq[]$
shows vwalk-arcs $(u \# p)=(u$, hd $p) \#$ vwalk-arcs p
using assms by (cases p) simp +
lemma vwalk-arcs-append:
assumes $p \neq[]$ and $q \neq[]$
shows vwalk-arcs $(p$ @ $q)=$ vwalk-arcs $p @($ last $p, h d q) \#$ vwalk-arcs q
proof -
from assms obtain $a b p^{\prime} q^{\prime}$ where $p=a \# p^{\prime}$ and $q=b \# q^{\prime}$
by (auto simp add: neq-Nil-conv)
moreover
have vwalk-arcs $\left(\left(a \# p^{\prime}\right) @\left(b \# q^{\prime}\right)\right)$
$=\operatorname{vwalk}$-arcs $\left(a \# p^{\prime}\right) @\left(\operatorname{last}\left(a \# p^{\prime}\right), b\right) \#$ vwalk-arcs $\left(b \# q^{\prime}\right)$
proof (induct p^{\prime})
case Nil show ?case by simp
next
case (Cons a' p^{\prime}) then show ?case by (auto simp add: neq-Nil-conv)
qed
ultimately
show ?thesis by auto
qed
lemma set-vwalk-arcs-append1:
set $($ vwalk-arcs $p) \subseteq \operatorname{set}(v w a l k-\operatorname{arcs}(p @ q))$
proof (cases p)
case (Cons a p^{\prime}) note p-Cons $=$ Cons then show ?thesis
proof (cases q)
case (Cons $b q^{\prime}$)
with p-Cons have $p \neq[]$ and $q \neq[]$ by auto
then show ?thesis by (auto simp add: vwalk-arcs-append)
qed simp

```
```

qed simp
lemma set-vwalk-arcs-append2:
set (vwalk-arcs q)\subseteq set (vwalk-arcs (p@q))
proof (cases p)
case (Cons a p') note p-Cons = Cons then show ?thesis
proof (cases q)
case (Cons b q')
with p-Cons have }p\not=[] and q\not=[] by aut
then show ?thesis by (auto simp add: vwalk-arcs-append)
qed simp
qed simp
lemma set-vwalk-arcs-cons:
set (vwalk-arcs p)\subseteq set (vwalk-arcs (u \# p))
by (cases p) auto
lemma set-vwalk-arcs-snoc:
assumes p\not=[]
shows set (vwalk-arcs (p @ [a]))
= insert (last p,a) (set (vwalk-arcs p))
using assms proof (induct p)
case Nil then show ?case by auto
next
case (Cons x xs)
then show ?case
proof (cases xs = [])
case True then show ?thesis by auto
next
case False
have set (vwalk-arcs ((x \# xs) @ [a]))
= set (vwalk-arcs (x \# (xs @ [a])))
by auto
then show ?thesis using Cons and False
by (auto simp add: set-vwalk-arcs-cons)
qed
qed
lemma (in wf-digraph) vwalk-wf-digraph-consI:
assumes vwalk p G
assumes (a,hd p)\inarcs-ends G
shows vwalk (a \# p)G
proof
show }a\#p\not=[] by sim
from assms have a\inverts G and set p\subseteq verts G by auto
then show set (a\#p)\subseteqverts G by auto
from <vwalk p G` have p}\not=[] by aut

```
```

 then show set (vwalk-arcs (a#p))\subseteqarcs-ends G
 using <vwalk p G` and «(a,hd p) \in arcs-ends G`
 by (auto simp add: set-vwalk-arcs-cons)
 qed
lemma vwalkI-append-l:
assumes p\not=[]
assumes vwalk (p@q)G
shows vwalk p G
proof
from assms show p\not=[] and set p\subseteq verts G
by (auto elim!: vwalkE)
have set (vwalk-arcs p)\subseteq set (vwalk-arcs (p@q))
by (auto simp add: set-vwalk-arcs-append1)
then show set (vwalk-arcs p)\subseteqarcs-ends G
using assms by blast
qed
lemma vwalkI-append-r:
assumes q\not=[]
assumes vwalk (p@q)G
shows vwalk q G
proof
from <vwalk (p@q)G> have set (p@q)\subseteqverts G by blast
then show set q\subseteqverts G by simp
from <vwalk (p@q)G> have set (vwalk-arcs (p@ @))\subseteq arcs-ends G
by blast
then show set (vwalk-arcs q)\subseteq arcs-ends G
by (metis set-vwalk-arcs-append2 subset-trans)
from }<q\not=[]> show q|[] by assumption
qed
lemma vwalk-to-vpath-hd: hd (vwalk-to-vpath xs) = hd xs
proof (induct xs rule: vwalk-to-vpath.induct)
case (2 x xs) then show ?case
proof (cases x set xs)
case True
then have hd (dropWhile (}\lambday.y\not=x)xs)=
using hd-drop While[where P=\lambday. }y\not=x]\mathrm{ by auto
then show ?thesis using True and 2 by auto
qed auto
qed auto
lemma vwalk-to-vpath-induct3[consumes 0, case-names base in-set not-in-set]:
assumes P []
assumes \x xs. x set xs \LongrightarrowP(dropWhile (\lambday. y = x) xs)
CP(x\#xs)

```
```

 assumes }\xxs.x\not\in\mathrm{ set xs CP xs CP(x# xs)
 shows P xs
 using assms by (induct xs rule: vwalk-to-vpath.induct) auto
lemma vwalk-to-vpath-nonempty:
assumes p\not=[]
shows vwalk-to-vpath p\not=[]
using assms by (induct p rule: vwalk-to-vpath-induct3) auto
lemma vwalk-to-vpath-last:
last (vwalk-to-vpath xs) = last xs
by (induct xs rule: vwalk-to-vpath-induct3)
(auto simp add: drop While-last vwalk-to-vpath-nonempty)
lemma vwalk-to-vpath-subset:
assumes }x\in\mathrm{ set (vwalk-to-vpath xs)
shows x\in set xs
using assms proof (induct xs rule: vwalk-to-vpath.induct)
case (2 x xs) then show ?case
by (cases x fet xs) (auto dest: set-dropWhileD)
qed simp-all
lemma vwalk-to-vpath-cons:
assumes }x\not\in\mathrm{ set xs
shows vwalk-to-vpath (x\# xs) = x \# vwalk-to-vpath xs
using assms by auto
lemma vwalk-to-vpath-vpath:
assumes vwalk p G
shows vpath (vwalk-to-vpath p) G
using assms proof (induct p rule: vwalk-to-vpath-induct3)
case base then show ?case by auto
next
case (in-set x xs)
have set-neq: \bigwedgex xs. x\not\in set xs \Longrightarrow \forall\mp@subsup{x}{}{\prime}\in\mathrm{ set xs. }\mp@subsup{x}{}{\prime}\not=x\mathrm{ by metis}
from}\langlex\in\mathrm{ set xs〉 obtain ys zs where xs=ys@ @\#zs and x\& set ys
by (metis in-set-conv-decomp-first)
then have vwalk-dW: vwalk (dropWhile (\lambday. y = x) xs)G
using in-set and «xs = ys @ x \# zs>
by (auto simp add:dropWhile-append3 set-neq intro:vwalkI-append-r[where
p=x \# ys])
then show ?case using in-set
by (auto simp add: vwalk-dW)
next
case (not-in-set x xs)
then have }x\in\mathrm{ verts }G\mathrm{ and x-notin: }x\not\in\mathrm{ set (vwalk-to-vpath xs)
by (auto intro: vwalk-to-vpath-subset)
from not-in-set show ?case

```
```

 proof (cases xs)
 case Nil then show ?thesis using not-in-set.prems by auto
 next
 case (Cons x' xs')
 have vpath (vwalk-to-vpath xs) G
 apply (rule not-in-set)
 apply (rule vwalkI-append-r [where p=[x]])
 using Cons not-in-set by auto
 then have vwalk (x # vwalk-to-vpath xs) G
 apply (auto intro!: vwalk-consI simp add: vwalk-to-vpath-hd)
 using not-in-set
 apply -
 apply (erule vwalk-consE)
 using Cons
 apply (auto intro: <x \in verts G`)
 done
 then have vpath (x # vwalk-to-vpath xs) G
 apply (rule vpathI)
 using <vpath (vwalk-to-vpath xs) G`
 using x-notin
 by auto
 then show ?thesis using not-in-set
 by (auto simp add: vwalk-to-vpath-cons)
 qed
 qed
lemma vwalk-imp-ex-vpath:
assumes vwalk p G
assumes hd p=u
assumes last p=v
shows \exists q. vpath qG}
hd q=u\wedge last q=
by (metis assms vwalk-to-vpath-hd vwalk-to-vpath-last vwalk-to-vpath-vpath)
lemma vwalk-arcs-set-nil:
assumes }x\in\mathrm{ set (vwalk-arcs p)
shows p\not=[]
using assms by fastforce
lemma in-set-vwalk-arcs-append1:
assumes x\in set (vwalk-arcs p)\veex\in set (vwalk-arcs q)
shows x\in set (vwalk-arcs (p @ q))
using assms proof
assume x fet (vwalk-arcs p)
then show }x\in\operatorname{set}(vwalk-arcs(p@q)
by (cases q = [])
(auto simp add:vwalk-arcs-append vwalk-arcs-set-nil)
next
assume x fet (vwalk-arcs q)

```
```

 then show }x\in\operatorname{set}(vwalk-arcs (p@q)
 by (cases p = [])
 (auto simp add:vwalk-arcs-append vwalk-arcs-set-nil)
 qed
lemma in-set-vwalk-arcs-append2:
assumes nonempty: p}\not=[]q\not=[
assumes disj: x f set (vwalk-arcs p) \veex=(last p,hd q)
\veex\in set (vwalk-arcs q)
shows x < set (vwalk-arcs (p@q))
using disj proof (elim disjE)
assume x = (last p,hd q)
then show }x\in\operatorname{set}(vwalk-arcs (p@q)
by (metis nonempty in-set-conv-decomp vwalk-arcs-append)
qed (auto intro: in-set-vwalk-arcs-append1)
lemma arcs-in-vwalk-arcs:
assumes u\in set (vwalk-arcs p)
shows}u\in\operatorname{set}p\times\operatorname{set}
using assms by (induct p rule: vwalk-arcs.induct) auto
lemma set-vwalk-arcs-rev:
set (vwalk-arcs (rev p)) ={(v,u). (u,v) \in set (vwalk-arcs p)}
proof (induct p)
case Nil then show ?case by auto
next
case (Cons x xs)
then show ?case
proof (cases xs = [])
case True then show ?thesis by auto
next
case False
then have set (vwalk-arcs (rev (x \# xs))) ={(hd xs, x)}
\cup \{ a . c a s e ~ a ~ o f ~ (v , u) \Rightarrow (u , v) \in ~ s e t ~ (v w a l k - a r c s ~ x s) \}
by (simp add: set-vwalk-arcs-snoc last-rev Cons)
also have }···={a.case a of (v,u)=>(u,v)\in\operatorname{set (vwalk-arcs (x \# xs))}
using False by (auto simp add: set-vwalk-arcs-cons)
finally show ?thesis by assumption
qed
qed
lemma vpath-self:
assumes u\in verts G
shows vpath [u] G
using assms by (intro vpathI vwalkI, auto)
lemma vwalk-verts-in-verts:
assumes vwalk p G
assumes u\in set p

```
```

 shows u\in verts }
 using assms by auto
lemma vwalk-arcs-tl:
vwalk-arcs (tl xs) = tl (vwalk-arcs xs)
by (induct xs rule: vwalk-arcs.induct) simp-all
lemma vwalk-arcs-butlast:
vwalk-arcs (butlast xs) = butlast (vwalk-arcs xs)
proof (induct xs rule: rev-induct)
case (snoc x xs) thus ?case
proof (cases xs = [])
case True with snoc show ?thesis by simp
next
case False
hence vwalk-arcs (xs @ [x])=vwalk-arcs xs @ [(last xs, x)] using vwalk-arcs-append
by force
with snoc show ?thesis by simp
qed
qed simp
lemma vwalk-arcs-tl-empty:
vwalk-arcs xs = [] \Longrightarrow vwalk-arcs (tl xs) = []
by (induct xs rule:vwalk-arcs.induct) simp-all
lemma vwalk-arcs-butlast-empty:
xs }\not=[]\Longrightarrow\mathrm{ vwalk-arcs xs = [] \# vwalk-arcs (butlast xs) = []
by (induct xs rule: vwalk-arcs.induct) simp-all
definition joinable :: 'a vwalk }=>\mp@subsup{}{}{\prime}\mathrm{ 'a vwalk }=>\mathrm{ bool where
joinable p q \equiv last p=hd q\wedge p\not=[]^q\not=[]
definition vwalk-join :: 'a list }=>\mp@subsup{|}{}{\prime}a\mathrm{ list }=>\mp@subsup{|}{}{\prime}a\mathrm{ list
(infixr }\oplus65) wher
p\oplusq\equivp@tlq
lemma joinable-Nil-l-iff[simp]: joinable [] p = False
and joinable-Nil-r-iff[simp]: joinable q [] = False
by (auto simp: joinable-def)
lemma joinable-Cons-l-iff[simp]: p \# [] \Longrightarrow joinable (v \# p) q = joinable p q
and joinable-Snoc-r-iff[simp]:q\not=[]\Longrightarrow joinable p (q@ [v])= joinable p q
by (auto simp: joinable-def)
lemma joinableI[intro,simp]:
assumes last p=hd q p\not=[]q\not=[]
shows joinable p q
using assms by (simp add: joinable-def)

```
```

lemma vwalk-join-non-Nil[simp]:
assumes p\not=[]
shows }p\oplusq\not=[
unfolding vwalk-join-def using assms by simp
lemma vwalk-join-Cons[simp]:
assumes p\not=[]
shows (}u\#p)\oplusq=u\#p\oplus
unfolding vwalk-join-def using assms by simp
lemma vwalk-join-def2:
assumes joinable p q
shows }p\oplusq=butlast p@
proof -
from assms have p\not=[] and q\not=[] by (simp add: joinable-def)+
then have vwalk-join p q = butlast p @ last p \# tl q
unfolding vwalk-join-def by simp
then show ?thesis using assms by (simp add: joinable-def)
qed
lemma vwalk-join-hd':
assumes p\not=[]
shows hd (p\oplusq)=hd p
using assms by (auto simp add: vwalk-join-def)
lemma vwalk-join-hd:
assumes joinable p q
shows hd (p\oplusq) = hd p
using assms by (auto simp add: vwalk-join-def joinable-def)
lemma vwalk-join-last:
assumes joinable p q
shows last (}p\oplusq)=\mathrm{ last q
using assms by (auto simp add: vwalk-join-def2 joinable-def)
lemma vwalk-join-Nil[simp]:
p\oplus[]=p
by (simp add: vwalk-join-def)
lemma vwalk-joinI-vwalk':
assumes vwalk p G
assumes vwalk q G
assumes last p=hd q
shows vwalk (}p\oplusq)
proof (unfold vwalk-join-def, rule vwalkI)
have set p\subseteqverts }G\mathrm{ and set q}\subseteq\mathrm{ verts }
using <vwalk p G` and <vwalk q G > by blast+
then show set (p@ tl q)\subseteqverts G

```
```

 by (cases q) auto
 next
show p@tl q}\not=[]\mathrm{ using <vwalk p G` by auto next have pe-p: set (vwalk-arcs p)\subseteq arcs-ends G using <vwalk p G` by blast
have pe-q': set (vwalk-arcs (tl q))\subseteqarcs-ends G
proof -
have set (vwalk-arcs (tl q))\subseteq set (vwalk-arcs q)
by (cases q) (simp-all add: set-vwalk-arcs-cons)
then show ?thesis using <vwalk q G` by blast qed show set (vwalk-arcs (p@tl q))\subseteqarcs-ends G proof (cases tl q) case Nil then show ?thesis using pe-p by auto next case (Cons x xs) then have nonempty: p\not=[] tl q}\not=[using <vwalk p G` by auto
moreover
have (hd q, hd (tl q)) \in set (vwalk-arcs q)
using <vwalk q G` Cons by (cases q) auto ultimately show ?thesis using <vwalk q G`
by (auto simp: pe-p pe-q' <last p = hd q` vwalk-arcs-append)
qed
qed
lemma vwalk-joinI-vwalk:
assumes vwalk p G
assumes vwalk q G
assumes joinable p q
shows vwalk (}p\oplusq)
using assms vwalk-joinI-vwalk' by (auto simp: joinable-def)
lemma vwalk-join-split:
assumes u\in set p
shows }\existsqr.p=q\oplus
^last q=u^hdr=u^q\not=[]^r\not=[]
proof -
from }\langleu\in\mathrm{ set p>
obtain pre-p post-p where p = pre-p @ u \# post-p
by atomize-elim (auto simp add: split-list)
then have p=(pre-p@[u])\oplus(u\# post-p)
unfolding vwalk-join-def by simp
then show ?thesis by fastforce
qed

```
```

lemma vwalkI-vwalk-join-l:
assumes p\not=[]
assumes vwalk (}p\oplusq)
shows vwalk p G
using assms unfolding vwalk-join-def
by (auto intro: vwalkI-append-l)
lemma vwalkI-vwalk-join-r:
assumes joinable p q
assumes vwalk (}p\oplusq)
shows vwalk q G
using assms
by (auto simp add: vwalk-join-def2 joinable-def intro: vwalkI-append-r)
lemma vwalk-join-assoc':
assumes p\not=[]q\not= []
shows (p\oplusq)\oplusr=p\oplusq\oplusr
using assms by (simp add: vwalk-join-def)
lemma vwalk-join-assoc:
assumes joinable p q joinable q r
shows (p\oplusq)\oplusr=p\oplusq\oplusr
using assms by (simp add: vwalk-join-def joinable-def)
lemma joinable-vwalk-join-r-iff:
joinable p (q\oplusr)\longleftrightarrow < <inable p q\vee (q=[] ^ joinable p (tl r))
by (cases q) (auto simp add: vwalk-join-def joinable-def)
lemma joinable-vwalk-join-l-iff:
assumes joinable p q
shows joinable (p\oplusq)r\longleftrightarrow joinable q r (is ?L \longleftrightarrow ?R)
using assms by (auto simp: joinable-def vwalk-join-last)
lemmas joinable-simps=
joinable-vwalk-join-l-iff
joinable-vwalk-join-r-iff
lemma joinable-cyclic-omit:
assumes joinable p q joinable q r joinable q q
shows joinable p r
using assms by (metis joinable-def)
lemma joinable-non-Nil:
assumes joinable p q
shows }p\not=[]q\not=[
using assms by (simp-all add: joinable-def)
lemma vwalk-join-vwalk-length[simp]:
assumes joinable p q

```
```

 shows vwalk-length (}p\oplusq)=\mathrm{ vwalk-length }p+\mathrm{ vwalk-length q
 using assms unfolding vwalk-join-def
by (simp add:less-eq-Suc-le[symmetric] joinable-non-Nil)
lemma vwalk-join-arcs:
assumes joinable p q
shows vwalk-arcs (p}\oplusq)=vwalk-arcs p@ vwalk-arcs q
using assms
proof (induct p)
case (Cons vvs) then show ?case
by (cases vs = [])
(auto simp: vwalk-join-hd, simp add: joinable-def vwalk-join-def)
qed simp
lemma vwalk-join-arcs1:
assumes set (vwalk-arcs p)\subseteqE
assumes p=q\oplusr
shows set (vwalk-arcs q)\subseteqE
by (metis assms vwalk-join-def set-vwalk-arcs-append1 subset-trans)
lemma vwalk-join-arcs2:
assumes set (vwalk-arcs p)\subseteqE
assumes joinable q r
assumes p=q\oplusr
shows set (vwalk-arcs r)\subseteqE
using assms by (simp add: vwalk-join-arcs)
definition concat-vpath :: 'a list }=>\mathrm{ 'a list }=>\mathrm{ ' 'a list where
concat-vpath p q \equiv vwalk-to-vpath (}p\oplusq
lemma concat-vpath-is-vpath:
assumes p-props: vwalk p G hd p = u last p =v
assumes q-props: vwalk q G hd q =v last q = w
shows vpath (concat-vpath p q) G^hd (concat-vpath p q)=u
^ last (concat-vpath p q) =w
proof (intro conjI)
have joinable: joinable p q using assms by auto
show vpath (concat-vpath p q) G
unfolding concat-vpath-def using assms and joinable
by (auto intro: vwalk-to-vpath-vpath vwalk-joinI-vwalk)
show hd (concat-vpath p q) = u last (concat-vpath p q) =w
unfolding concat-vpath-def using assms and joinable
by (auto simp: vwalk-to-vpath-hd vwalk-to-vpath-last
vwalk-join-hd vwalk-join-last)
qed

```
```

lemma concat-vpath-exists:
assumes p-props: vwalk p G hd p=u last p =v
assumes q-props: vwalk qGhd q=v last q=w
obtains r where vpath r G hd r=u last r=w
using concat-vpath-is-vpath[OF assms] by blast
lemma (in fin-digraph) vpaths-finite:
shows finite {p. vpath pG}
proof -
have {p. vpath p G}
\subseteq \{ x s . ~ s e t ~ x s \subseteq v e r t s ~ G \wedge ~ l e n g t h ~ x s ~ \leq ~ c a r d ~ (v e r t s ~ G) \}
proof (clarify, rule conjI)
fix p assume vpath pG
then show set p\subseteqverts G by blast
from <vpath p G` have length p = card (set p) by (auto simp add: distinct-card) also have ... \leqcard (verts G) using <vpath p G`
by (auto intro!: card-mono elim!: vpathE)
finally show length p\leqcard (verts G).
qed
moreover
have finite {xs. set xs \subseteq verts G^ length xs \leqcard (verts G)}
by (intro finite-lists-length-le) auto
ultimately show ?thesis by (rule finite-subset)
qed
lemma (in wf-digraph) reachable-vwalk-conv:
u \mp@subsup{*}{}{*}Gv\longleftrightarrow(\existsp.vwalk p G^hd p=u^ last p=v)(is ?L\longleftrightarrow ?R)
proof
assume ?L then show ?R
proof (induct rule: converse-reachable-induct)
case base then show ?case
by (rule-tac x=[v] in exI)
(auto simp: vwalk-def arcs-ends-conv)
next
case (step u w)
then obtain p where vwalk p Ghd p=w last p=v by auto
then have vwalk (u\#p)G\wedgehd (u\#p) =u^ last (u\#p)=v
using step by (auto intro!: vwalk-consI intro: adj-in-verts)
then show ?case ..
qed
next
assume ?R
then obtain p where vwalk pGhd p=u last p=v by auto
with «vwalk p G` show ?L
proof (induct p arbitrary: u rule: vwalk-induct)
case (Base u) then show ?case by auto

```
```

 next
 case (Cons w x es)
 then have }u\mp@subsup{->}{G}{}x\mathrm{ using Cons by auto
 show ?case
 apply (rule adj-reachable-trans)
 apply fact
 apply (rule Cons)
 using Cons by (auto elim: vwalk-consE)
 qed
 qed
lemma (in wf-digraph) reachable-vpath-conv:
u 梠G}v\longleftrightarrow(\existsp.vpath pG\wedgehd p=u^ last p=v)(is ?L\longleftrightarrow ?R
proof
assume ?L then obtain p where vwalk p G hd p=u last p =v
by (auto simp: reachable-vwalk-conv)
then show ?R
by (auto intro: exI[where x=vwalk-to-vpath p]
simp: vwalk-to-vpath-hd vwalk-to-vpath-last vwalk-to-vpath-vpath)
qed (auto simp: reachable-vwalk-conv)
lemma in-set-vwalk-arcsE:
assumes (u,v) \in set (vwalk-arcs p)
obtains u\in set pv\in set p
using assms
by (induct p rule: vwalk-arcs.induct) auto
lemma vwalk-rev-ex:
assumes symmetric G
assumes vwalk p G
shows vwalk (rev p)G
using assms
proof (induct p)
case Nil then show ?case by simp
next
case (Cons x xs)
then show ?case proof (cases xs = [])
case True then show ?thesis using Cons by auto
next
case False
then have vwalk xs G using <vwalk (x\# xs) G`
by (metis vwalk-consE)
then have vwalk (rev xs) G using Cons by blast
have vwalk (rev (x \# xs)) G
proof (rule vwalkI)
have set (x\# xs)\subseteqverts G using <vwalk (x\#xs) G> by blast
then show set (rev (x\#xs))\subseteq verts G by auto
next
have set (vwalk-arcs (x \# xs))\subseteq arcs-ends G

```
```

 using <vwalk (x # xs) G` by auto
 then show set (vwalk-arcs (rev (x# xs)))\subseteqarcs-ends G
 using <symmetric G`
 by (simp only: set-vwalk-arcs-rev)
 (auto intro: arcs-ends-symmetric)
 next
 show rev (}x#\mathrm{ # xs) # [] by auto
 qed
 then show vwalk (rev (x# xs)) G by auto
 qed
 qed
lemma vwalk-singleton[simp]: vwalk [u] G}=(u\in\mathrm{ verts }G
by auto
lemma (in wf-digraph) vwalk-Cons-Cons[simp]:
vwalk (u\#v\# ws)G=((u,v)\inarcs-ends G^vwalk (v\# ws)G)
by (force elim: vwalk-consE intro: vwalk-consI)
lemma (in wf-digraph) awalk-imp-vwalk:
assumes awalk u p v shows vwalk (awalk-verts u p)G
using assms
by (induct p arbitrary: u rule: vwalk-arcs.induct)
(force simp: awalk-simps dest: in-arcs-imp-in-arcs-ends)+
end

```
```

theory Digraph-Component-Vwalk

```
theory Digraph-Component-Vwalk
imports
imports
    Digraph-Component
    Digraph-Component
    Vertex-Walk
    Vertex-Walk
begin
```

begin

```

\section*{10 Lemmas for Vertex Walks}
```

lemma vwalkI-subgraph:
assumes vwalk p H
assumes subgraph $H G$
shows vwalk $p G$
proof
show set $p \subseteq$ verts G and $p \neq[]$
using assms by (auto simp add: subgraph-def vwalk-def)
have set (vwalk-arcs p) \subseteq arcs-ends H
using assms by (simp add: vwalk-def)
also have $\ldots \subseteq$ arcs-ends G
using «subgraph H G〉 by (rule arcs-ends-mono)
finally show set (vwalk-arcs $p) \subseteq$ arcs-ends G.

```

\section*{qed}
lemma vpathI-subgraph:
assumes vpath \(p G\)
assumes subgraph \(G H\)
shows vpath \(p H\)
using assms by (auto intro: vwalkI-subgraph)
lemma (in loopfree-digraph) vpathI-arc:
assumes \((a, b) \in\) arcs-ends \(G\)
shows vpath \([a, b] G\)
using assms
by (intro vpathI vwalkI) (auto intro: adj-in-verts adj-not-same)
end
theory Digraph-Isomorphism imports
Arc-Walk
Digraph
Digraph-Component
begin

\section*{11 Isomorphisms of Digraphs}
```

record ('a,'b,' $a a, ' b b)$ digraph-isomorphism $=$
iso-verts :: ' $a \Rightarrow$ 'aa
iso-arcs :: ' $b \Rightarrow$ 'bb
iso-head :: 'bb \Rightarrow 'aa
iso-tail :: 'bb \Rightarrow 'aa
definition (in pre-digraph) digraph-isomorphism :: ('a,'b,'aa,'bb) digraph-isomorphism
\Rightarrow bool where
digraph-isomorphism hom \equiv
wf-digraph $G \wedge$
inj-on (iso-verts hom) (verts $G) \wedge$
inj-on (iso-arcs hom) (arcs G) \wedge
($\forall a \in$ arcs G.
iso-verts hom $($ tail G a) $=$ iso-tail hom (iso-arcs hom a) \wedge
iso-verts hom (head Ga)=iso-head hom (iso-arcs hom a))
definition (in pre-digraph) inv-iso :: (' $\left.a,{ }^{\prime} b,{ }^{\prime} a a, ' b b\right)$ digraph-isomorphism $\Rightarrow\left({ }^{\prime} a a,{ }^{\prime} b b,{ }^{\prime} a,{ }^{\prime} b\right)$
digraph-isomorphism where
inv-iso hom $\equiv 0$
iso-verts $=$ the-inv-into (verts $G)$ (iso-verts hom),
iso-arcs $=$ the-inv-into $($ arcs $G)($ iso-arcs hom),
iso-head $=$ head G,
iso-tail $=$ tail G
D

```
definition app-iso
\(::\left({ }^{\prime} a,{ }^{\prime} b,{ }^{\prime} a a,{ }^{\prime} b b\right)\) digraph-isomorphism \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow\left({ }^{\prime} a a,{ }^{\prime} b b\right)\) pre-digraph where
app-iso hom \(G \equiv 0\) verts \(=\) iso-verts hom'verts \(G\), arcs \(=\) iso-arcs hom'arcs \(G\),
tail \(=\) iso-tail hom, head \(=\) iso-head hom \()\)
definition digraph-iso :: ('a,'b) pre-digraph \(\Rightarrow\left({ }^{\prime} c,{ }^{\prime} d\right)\) pre-digraph \(\Rightarrow\) bool where digraph-iso \(G H \equiv \exists f\). pre-digraph.digraph-isomorphism \(G f \wedge H=\) app-iso \(f G\)
lemma verts-app-iso: verts (app-iso hom \(G\) ) \(=\) iso-verts hom 'verts \(G\)
and arcs-app-iso: arcs (app-iso hom \(G\) ) \(=\) iso-arcs hom 'arcs \(G\)
and tail-app-iso: tail (app-iso hom \(G\) ) \(=\) iso-tail hom
and head-app-iso: head (app-iso hom \(G\) ) \(=\) iso-head hom
by (auto simp: app-iso-def)
lemmas app-iso-simps \([\) simp \(]=\) verts-app-iso arcs-app-iso tail-app-iso head-app-iso

\section*{context pre-digraph begin}

\section*{lemma}
assumes digraph-isomorphism hom
shows iso-verts-inv-iso: \(\bigwedge u . u \in\) verts \(G \Longrightarrow\) iso-verts (inv-iso hom) (iso-verts hom \(u)=u\)
and iso-arcs-inv-iso: \(\bigwedge a . a \in \operatorname{arcs} G \Longrightarrow\) iso-arcs (inv-iso hom) (iso-arcs hom a) \(=a\)
and iso-verts-iso-inv: \(\bigwedge u . u \in\) verts (app-iso hom \(G) \Longrightarrow\) iso-verts hom (iso-verts (inv-iso hom) u) \(=u\)
and iso-arcs-iso-inv: \(\bigwedge a . a \in \operatorname{arcs}(\) app-iso hom \(G) \Longrightarrow\) iso-arcs hom (iso-arcs \((\) inv-iso hom) \(a)=a\)
and iso-tail-inv-iso: iso-tail (inv-iso hom) \(=\) tail \(G\)
and iso-head-inv-iso: iso-head (inv-iso hom) \(=\) head \(G\)
and verts-app-inv-iso:iso-verts (inv-iso hom)'iso-verts hom'verts \(G=\) verts G
and arcs-app-inv-iso:iso-arcs (inv-iso hom)' iso-arcs hom' arcs \(G=\operatorname{arcs} G\) using assms by (auto simp: inv-iso-def digraph-isomorphism-def the-inv-into-f-f)
lemmas iso-inv-simps \([\operatorname{simp}]=\)
iso-verts-inv-iso iso-verts-iso-inv
iso-arcs-inv-iso iso-arcs-iso-inv
verts-app-inv-iso arcs-app-inv-iso
iso-tail-inv-iso iso-head-inv-iso
lemma app-iso-inv[simp]:
assumes digraph-isomorphism hom
shows app-iso (inv-iso hom) (app-iso hom \(G\) ) \(=G\)
using assms by (intro pre-digraph.equality) (auto intro: rev-image-eqI)
lemma iso-verts-eq-iff [simp]:
assumes digraph-isomorphism hom \(u \in\) verts \(G v \in\) verts \(G\)
```

 shows iso-verts hom u=iso-verts hom v \longleftrightarrowu=v
 using assms by (auto simp: digraph-isomorphism-def dest: inj-onD)
 lemma iso-arcs-eq-iff[simp]:
assumes digraph-isomorphism hom e1 }\in\mathrm{ arcs G e2 }\in\mathrm{ arcs }
shows iso-arcs hom e1 = iso-arcs hom e2 \longleftrightarrowe1 = e2
using assms by (auto simp: digraph-isomorphism-def dest: inj-onD)
lemma
assumes digraph-isomorphism hom e\in arcs G
shows iso-verts-tail: iso-tail hom (iso-arcs hom e) = iso-verts hom (tail G e)
and iso-verts-head: iso-head hom (iso-arcs hom e) = iso-verts hom (head G e)
using assms unfolding digraph-isomorphism-def by auto
lemma digraph-isomorphism-inj-on-arcs:
digraph-isomorphism hom \Longrightarrow inj-on (iso-arcs hom) (arcs G)
by (auto simp: digraph-isomorphism-def)
lemma digraph-isomorphism-inj-on-verts:
digraph-isomorphism hom \Longrightarrow inj-on (iso-verts hom) (verts G)
by (auto simp: digraph-isomorphism-def)
end
lemma (in wf-digraph) wf-digraphI-app-iso[intro?]:
assumes digraph-isomorphism hom
shows wf-digraph (app-iso hom G)
proof unfold-locales
fix e assume e\in\operatorname{arcs (app-iso hom G)}
then obtain }\mp@subsup{e}{}{\prime}\mathrm{ where }\mp@subsup{e}{}{\prime}:\mp@subsup{e}{}{\prime}\in\mathrm{ arcs G iso-arcs hom }\mp@subsup{e}{}{\prime}=
by auto
then have iso-verts hom (head G e') \in verts (app-iso hom G)
iso-verts hom (tail G e') \in verts (app-iso hom G)
by auto
then show tail (app-iso hom G) e\inverts (app-iso hom G)
head (app-iso hom G)e\inverts (app-iso hom G)
using e' assms by (auto simp: iso-verts-tail iso-verts-head)
qed
lemma (in fin-digraph) fin-digraphI-app-iso[intro?]:
assumes digraph-isomorphism hom
shows fin-digraph (app-iso hom G)
proof -
interpret H:wf-digraph app-iso hom G using assms ..
show ?thesis by unfold-locales auto
qed
context wf-digraph begin

```
```

lemma digraph-isomorphism-invI:
assumes digraph-isomorphism hom shows pre-digraph.digraph-isomorphism (app-iso
hom G) (inv-iso hom)
proof (unfold pre-digraph.digraph-isomorphism-def, safe)
show inj-on (iso-verts (inv-iso hom)) (verts (app-iso hom G))
inj-on (iso-arcs (inv-iso hom)) (arcs (app-iso hom G))
using assms unfolding pre-digraph.digraph-isomorphism-def inv-iso-def
by (auto intro: inj-on-the-inv-into)
next
show wf-digraph (app-iso hom G) using assms ..
next
fix a assume a\in arcs (app-iso hom G)
then obtain b where B:a=iso-arcs hom b b Grcs G
by auto
with assms have [simp]:
iso-tail hom (iso-arcs hom b) = iso-verts hom (tail G b)
iso-head hom (iso-arcs hom b) = iso-verts hom (head G b)
inj-on (iso-arcs hom) (arcs G)
inj-on (iso-verts hom) (verts G)
by (auto simp: digraph-isomorphism-def)
from B show iso-verts (inv-iso hom) (tail (app-iso hom G) a)
= iso-tail (inv-iso hom) (iso-arcs (inv-iso hom) a)
by (auto simp: inv-iso-def the-inv-into-f-f)
from B show iso-verts (inv-iso hom) (head (app-iso hom G) a)
= iso-head (inv-iso hom) (iso-arcs (inv-iso hom) a)
by (auto simp: inv-iso-def the-inv-into-f-f)
qed
lemma awalk-app-isoI:
assumes awalk u pv and hom: digraph-isomorphism hom
shows pre-digraph.awalk (app-iso hom G) (iso-verts hom u) (map (iso-arcs hom)
p) (iso-verts hom v)
proof -
interpret H:wf-digraph app-iso hom G using hom ..
from assms show ?thesis
by (induct p arbitrary: u)
(auto simp: awalk-simps H.awalk-simps iso-verts-head iso-verts-tail)
qed
lemma awalk-app-isoD:
assumes w: pre-digraph.awalk (app-iso hom G)upv and hom: digraph-isomorphism
hom
shows awalk (iso-verts (inv-iso hom) u) (map (iso-arcs (inv-iso hom)) p) (iso-verts
(inv-iso hom) v)
proof -
interpret H:wf-digraph app-iso hom G using hom ..

```
```

 from assms show ?thesis
 by (induct p arbitrary: u)
 (force simp: awalk-simps H.awalk-simps iso-verts-head iso-verts-tail)+
 qed
lemma awalk-verts-app-iso-eq:
assumes digraph-isomorphism hom and awalk u pv
shows pre-digraph.awalk-verts (app-iso hom G) (iso-verts hom u) (map (iso-arcs
hom) p)
= map (iso-verts hom) (awalk-verts u p)
using assms
by (induct p arbitrary: u)
(auto simp: pre-digraph.awalk-verts.simps iso-verts-head iso-verts-tail awalk-Cons-iff)
lemma arcs-ends-app-iso-eq:
assumes digraph-isomorphism hom
shows arcs-ends (app-iso hom G)=(\lambda(u,v). (iso-verts hom u, iso-verts hom v))
` arcs-ends G
using assms by (auto simp: arcs-ends-conv image-image iso-verts-head iso-verts-tail
intro!: rev-image-eqI)
lemma in-arcs-app-iso-eq:
assumes digraph-isomorphism hom and }u\in\mathrm{ verts }
shows in-arcs (app-iso hom G) (iso-verts hom u)= iso-arcs hom ' in-arcs G u
using assms unfolding in-arcs-def by (auto simp: iso-verts-head)
lemma out-arcs-app-iso-eq:
assumes digraph-isomorphism hom and }u\in\mathrm{ verts }
shows out-arcs (app-iso hom G) (iso-verts hom u) = iso-arcs hom'out-arcs G
u
using assms unfolding out-arcs-def by (auto simp: iso-verts-tail)
lemma in-degree-app-iso-eq:
assumes digraph-isomorphism hom and u\in verts }
shows in-degree (app-iso hom G) (iso-verts hom u)= in-degree Gu
unfolding in-degree-def in-arcs-app-iso-eq[OF assms]
proof (rule card-image)
from assms show inj-on (iso-arcs hom) (in-arcs Gu)
unfolding digraph-isomorphism-def by - (rule subset-inj-on, auto)
qed
lemma out-degree-app-iso-eq:
assumes digraph-isomorphism hom and }u\in\mathrm{ verts }
shows out-degree (app-iso hom G) (iso-verts hom u)=out-degree Gu
unfolding out-degree-def out-arcs-app-iso-eq[OF assms]
proof (rule card-image)
from assms show inj-on (iso-arcs hom) (out-arcs G u)

```
unfolding digraph-isomorphism-def by - (rule subset-inj-on, auto) qed
lemma in-arcs-app-iso-eq':
assumes digraph-isomorphism hom and \(u \in\) verts (app-iso hom \(G\) )
shows in-arcs (app-iso hom \(G\) ) u \(u\) iso-arcs hom 'in-arcs \(G\) (iso-verts (inv-iso hom) u)
using assms in-arcs-app-iso-eq[of hom iso-verts (inv-iso hom) u] by auto
lemma out-arcs-app-iso-eq':
assumes digraph-isomorphism hom and \(u \in\) verts (app-iso hom \(G\) )
shows out-arcs (app-iso hom \(G\) ) \(u=\) iso-arcs hom'out-arcs \(G\) (iso-verts (inv-iso hom) u)
using assms out-arcs-app-iso-eq[of hom iso-verts (inv-iso hom) u] by auto
lemma in-degree-app-iso-eq':
assumes digraph-isomorphism hom and \(u \in\) verts (app-iso hom \(G\) )
shows in-degree (app-iso hom \(G\) ) \(u=\) in-degree \(G\) (iso-verts (inv-iso hom) u)
using assms in-degree-app-iso-eq[of hom iso-verts (inv-iso hom) u] by auto
lemma out-degree-app-iso-eq':
assumes digraph-isomorphism hom and \(u \in\) verts (app-iso hom \(G\) )
shows out-degree (app-iso hom \(G\) ) u out-degree \(G\) (iso-verts (inv-iso hom) u)
using assms out-degree-app-iso-eq[of hom iso-verts (inv-iso hom) u] by auto
lemmas app-iso-eq =
awalk-verts-app-iso-eq
arcs-ends-app-iso-eq
in-arcs-app-iso-eq \({ }^{\prime}\)
out-arcs-app-iso-eq \({ }^{\prime}\)
in-degree-app-iso-eq'
out-degree-app-iso-eq'
lemma reachableI-app-iso:
assumes \(r: u \rightarrow^{*} v\) and hom: digraph-isomorphism hom
shows (iso-verts hom \(u\) ) \(\rightarrow^{*}{ }_{\text {app-iso hom }} G\) (iso-verts hom \(v\) )
proof -
interpret \(H\) : wf-digraph app-iso hom \(G\) using hom ..
from \(r\) obtain \(p\) where awalk \(u p v\) by (auto simp: reachable-awalk)
then have H.awalk (iso-verts hom u) (map (iso-arcs hom) p) (iso-verts hom v) using hom by (rule awalk-app-isoI)
then show ?thesis by (auto simp: H.reachable-awalk)
qed
lemma awalk-app-iso-eq:
assumes hom: digraph-isomorphism hom
assumes \(u \in\) iso-verts hom' verts \(G v \in\) iso-verts hom'verts \(G\) set \(p \subseteq\) iso-arcs hom' arcs \(G\)
shows pre-digraph.awalk (app-iso hom \(G\) ) upv
```

 \longleftrightarrowawalk (iso-verts (inv-iso hom) u) (map (iso-arcs (inv-iso hom)) p) (iso-verts
 (inv-iso hom) v)
proof -
interpret H:wf-digraph app-iso hom G using hom ..
from assms show ?thesis
by (induct p arbitrary: u)
(auto simp: awalk-simps H.awalk-simps iso-verts-head iso-verts-tail)
qed
lemma reachable-app-iso-eq:
assumes hom: digraph-isomorphism hom
assumes u\in iso-verts hom' verts G v\in iso-verts hom' verts G
shows }u\mp@subsup{->}{}{*}\mp@subsup{}{app-iso hom G}{v}\longleftrightarrow\mathrm{ iso-verts (inv-iso hom) u 㕵 iso-verts (inv-iso
hom)}v(\mathrm{ is ? L }\longleftrightarrow ?R
proof -
interpret H:wf-digraph app-iso hom G using hom ..
show ?thesis
proof
assume ?L
then obtain p where H.awalk u p v by (auto simp: H.reachable-awalk)
moreover
then have set p\subseteqiso-arcs hom ' arcs G by (simp add: H.awalk-def)
ultimately
show ?R using assms by (auto simp: awalk-app-iso-eq reachable-awalk)
next
assume ?R
then obtain p0 where awalk (iso-verts (inv-iso hom) u) p0 (iso-verts (inv-iso
hom) v)
by (auto simp: reachable-awalk)
moreover
then have set p0\subseteq arcs G by (simp add: awalk-def)
define p where p=map (iso-arcs hom) p0
have set p\subseteq iso-arcs hom' arcs G p0 = map (iso-arcs (inv-iso hom)) p
using <set p0\subseteq -> hom by (auto simp: p-def map-idI subsetD)
ultimately
show ?L using assms by (auto simp: awalk-app-iso-eq[symmetric] H.reachable-awalk)
qed
qed
lemma connectedI-app-iso:
assumes c: connected G and hom: digraph-isomorphism hom
shows connected (app-iso hom G)
proof -
have *: symcl (arcs-ends (app-iso hom G)) = (\lambda(u,v). (iso-verts hom u, iso-verts
hom v))' symcl (arcs-ends G)
using hom by (auto simp add: app-iso-eq symcl-def)
{fix uv assume (u,v)\in rtrancl-on (verts G) (symcl (arcs-ends G))
then have (iso-verts hom u, iso-verts hom v)\in rtrancl-on (verts (app-iso hom

```
```

G)) (symcl (arcs-ends (app-iso hom G)))
proof induct
case (step x y)
have (iso-verts hom x, iso-verts hom y)
\inrtrancl-on (verts (app-iso hom G)) (symcl (arcs-ends (app-iso hom G)))
using step by (rule-tac rtrancl-on-into-rtrancl-on[where b=iso-verts hom
x]) (auto simp: *)
then show ?case
by (rule rtrancl-on-trans) (rule step)
qed auto }
with c show ?thesis unfolding connected-conv by auto
qed
end
lemma digraph-iso-swap:
assumes wf-digraph G digraph-iso G H shows digraph-iso H G
proof -
from assms obtain f where pre-digraph.digraph-isomorphism GfH=app-iso
fG
unfolding digraph-iso-def by auto
then have pre-digraph.digraph-isomorphism H (pre-digraph.inv-iso G f) app-iso
(pre-digraph.inv-iso G f) H=G
using assms by (simp-all add: wf-digraph.digraph-isomorphism-invI pre-digraph.app-iso-inv)
then show ?thesis unfolding digraph-iso-def by auto
qed
definition
o-iso :: ('c,'d,'e,'f) digraph-isomorphism }=>('a,'b,'c,'d) digraph-isomorphism => ,
('a,'b,'e,'f) digraph-isomorphism
where
o-iso hom2 hom1 = (
iso-verts = iso-verts hom2 o iso-verts hom1,
iso-arcs = iso-arcs hom2 o iso-arcs hom1,
iso-head = iso-head hom2,
iso-tail = iso-tail hom2
D
lemma digraph-iso-trans[trans]:
assumes digraph-iso G H digraph-iso H I shows digraph-iso G I
proof -
from assms obtain hom1 where pre-digraph.digraph-isomorphism G hom1 H
= app-iso hom1 G
by (auto simp: digraph-iso-def)
moreover
from assms obtain hom2 where pre-digraph.digraph-isomorphism H hom2 I =
app-iso hom2 H
by (auto simp: digraph-iso-def)
ultimately

```
```

 have pre-digraph.digraph-isomorphism G (o-iso hom2 hom1) I =app-iso (o-iso
 hom2 hom1) G
apply (auto simp: o-iso-def app-iso-def pre-digraph.digraph-isomorphism-def)
apply (rule comp-inj-on)
apply auto
apply (rule comp-inj-on)
apply auto
done
then show ?thesis by (auto simp: digraph-iso-def)
qed
lemma (in pre-digraph) digraph-isomorphism-subgraphI:
assumes digraph-isomorphism hom
assumes subgraph H G
shows pre-digraph.digraph-isomorphism H hom
using assms by (auto simp: pre-digraph.digraph-isomorphism-def subgraph-def
compatible-def intro: subset-inj-on)
lemma (in wf-digraph) verts-app-inv-iso-subgraph:
assumes hom: digraph-isomorphism hom and V\subseteqverts G
shows iso-verts (inv-iso hom)'iso-verts hom'V = V
proof -
have }\bigwedgex.x\inV\Longrightarrow\mathrm{ iso-verts (inv-iso hom)(iso-verts hom x)=x
using assms by auto
then show ?thesis by (auto simp: image-image cong: image-cong)
qed
lemma (in wf-digraph) arcs-app-inv-iso-subgraph:
assumes hom: digraph-isomorphism hom and A\subseteq arcs }
shows iso-arcs (inv-iso hom)' iso-arcs hom' }A=
proof -
have }\x.x\inA\Longrightarrow\mathrm{ iso-arcs (inv-iso hom)(iso-arcs hom x)=x
using assms by auto
then show ?thesis by (auto simp: image-image cong: image-cong)
qed
lemma (in pre-digraph) app-iso-inv-subgraph[simp]:
assumes digraph-isomorphism hom subgraph HG
shows app-iso (inv-iso hom) (app-iso hom H)=H
proof -
from assms interpret wf-digraph G by auto
have }\u.u\in\mathrm{ verts }H\Longrightarrowu\in\mathrm{ verts }G\a.a\in\operatorname{arcs}H\Longrightarrowa\in\operatorname{arcs}
using assms by auto
with assms show ?thesis
by (intro pre-digraph.equality) (auto simp: verts-app-inv-iso-subgraph
arcs-app-inv-iso-subgraph compatible-def)

```

\section*{qed}
lemma (in wf-digraph) app-iso-iso-inv-subgraph[simp]:
assumes digraph-isomorphism hom
assumes subg: subgraph \(H\) (app-iso hom \(G\) )
shows app-iso hom (app-iso (inv-iso hom) H) \(=H\)
proof -
have \(\bigwedge u . u \in\) verts \(H \Longrightarrow u \in\) iso-verts hom'verts \(G \bigwedge a . a \in \operatorname{arcs} H \Longrightarrow a \in\) iso-arcs hom' arcs \(G\)
using assms by (auto simp: subgraph-def)
with assms show ?thesis
by (intro pre-digraph.equality) (auto simp: compatible-def image-image cong: image-cong)
qed
lemma (in pre-digraph) subgraph-app-isoI':
assumes hom: digraph-isomorphism hom
assumes subg: subgraph \(H H^{\prime}\) subgraph \(H^{\prime} G\)
shows subgraph (app-iso hom \(H\) ) (app-iso hom \(H^{\prime}\) )
proof -
have subgraph \(H G\) using subg by (rule subgraph-trans)
then have pre-digraph.digraph-isomorphism H hom pre-digraph.digraph-isomorphism \(H^{\prime}\) hom
using assms by (auto intro: digraph-isomorphism-subgraphI)
then show ?thesis
using assms by (auto simp: subgraph-def wf-digraph.wf-digraphI-app-iso com-patible-def
intro: digraph-isomorphism-subgraphI)
qed
lemma (in pre-digraph) subgraph-app-isoI:
assumes digraph-isomorphism hom
assumes subgraph \(H G\)
shows subgraph (app-iso hom H) (app-iso hom G)
using assms by (auto intro: subgraph-app-isoI' wf-digraph.subgraph-refl)
lemma (in pre-digraph) app-iso-eq-conv:
assumes digraph-isomorphism hom
assumes subgraph H1 G subgraph H2 G
shows app-iso hom H1 = app-iso hom H2 \(\longleftrightarrow H 1=H 2(\) is \(? L \longleftrightarrow ? R)\)

\section*{proof}
assume ?L
then have app-iso (inv-iso hom) (app-iso hom H1) = app-iso (inv-iso hom)
(app-iso hom H2)
by \(\operatorname{simp}\)
with assms show ?R by auto
qed \(\operatorname{simp}\)
lemma in-arcs-app-iso-cases:
```

 assumes a \in arcs (app-iso hom G)
 obtains a0 where a =iso-arcs hom a0 a0 \inarcs G
 using assms by auto
 lemma in-verts-app-iso-cases:
assumes v\in verts (app-iso hom G)
obtains v0 where v= iso-verts hom v0v0 \in verts G
using assms by auto
lemma (in wf-digraph) max-subgraph-iso:
assumes hom: digraph-isomorphism hom
assumes subg: subgraph H (app-iso hom G)
shows pre-digraph.max-subgraph (app-iso hom G) PH
\longleftrightarrow ~ m a x - s u b g r a p h ~ (P ~ o ~ a p p - i s o ~ h o m) ~ (a p p - i s o ~ (i n v - i s o ~ h o m) ~ H)
proof -
have hom-inv: pre-digraph.digraph-isomorphism (app-iso hom G) (inv-iso hom)
using hom by (rule digraph-isomorphism-invI)
interpret aG:wf-digraph app-iso hom G using hom ..
have *: subgraph (app-iso (inv-iso hom) H) G
using hom pre-digraph.subgraph-app-isoI'[OF hom-inv subg aG.subgraph-refl]
by simp
define H0 where H0 = app-iso (inv-iso hom) H
then have H0: H = app-iso hom H0 subgraph H0 G
using hom subg «subgraph - G` by auto
show ?thesis (is ?L \longleftrightarrow ?R)
proof
assume ?L then show ?R using assms H0
by (auto simp: max-subgraph-def aG.max-subgraph-def pre-digraph.subgraph-app-isoI'
subgraph-refl pre-digraph.app-iso-eq-conv)
next
assume ?R
then show ?L
using assms hom-inv pre-digraph.subgraph-app-isoI[OF hom-inv]
apply (auto simp: max-subgraph-def aG.max-subgraph-def)
apply (erule allE[of - app-iso (inv-iso hom) H' for H\])

 apply (auto simp: pre-digraph.subgraph-app-isoI' pre-digraph.app-iso-eq-conv)
 done
 qed
 qed
lemma (in pre-digraph) max-subgraph-cong:
assumes H= H'\bigwedgeH''subgraph }\mp@subsup{H}{}{\prime}\mp@subsup{H}{}{\prime\prime}\Longrightarrow\mathrm{ subgraph }\mp@subsup{H}{}{\prime\prime}G\LongrightarrowP\mp@subsup{H}{}{\prime\prime}=\mp@subsup{P}{}{\prime
H'
shows max-subgraph P H = max-subgraph P' H'
using assms by (auto simp: max-subgraph-def intro:wf-digraph.subgraph-refl)
lemma (in pre-digraph) inj-on-app-iso:

```
assumes hom: digraph-isomorphism hom
assumes \(S \subseteq\{H\). subgraph \(H G\}\)
shows inj-on (app-iso hom) \(S\)
using assms by (intro inj-onI) (subst (asm) app-iso-eq-conv, auto)

\subsection*{11.1 Graph Invariants}

\section*{context}
fixes \(G\) hom assumes hom: pre-digraph.digraph-isomorphism G hom
begin
interpretation wf-digraph \(G\) using hom by (auto simp: pre-digraph.digraph-isomorphism-def)
lemma card-verts-iso[simp]: card (iso-verts hom'verts \(G\) ) \(=\) card (verts \(G\) )
using hom by (intro card-image digraph-isomorphism-inj-on-verts)
lemma card-arcs-iso[simp]: card (iso-arcs hom'arcs \(G)=\operatorname{card}(\operatorname{arcs} G)\)
using hom by (intro card-image digraph-isomorphism-inj-on-arcs)
lemma strongly-connected-iso[simp]: strongly-connected (app-iso hom G) \(\longleftrightarrow\) strongly-connected \(G\)
using hom by (auto simp: strongly-connected-def reachable-app-iso-eq)
lemma subgraph-strongly-connected-iso:
assumes subgraph \(H G\)
shows strongly-connected (app-iso hom \(H\) ) \(\longleftrightarrow\) strongly-connected \(H\)
proof -
interpret \(H\) : wf-digraph \(H\) using «subgraph \(H G\)..
have H.digraph-isomorphism hom using hom assms by (rule digraph-isomorphism-subgraphI)
then show ?thesis using assms by (auto simp: strongly-connected-def H.reachable-app-iso-eq)
qed
lemma sccs-iso[simp]: pre-digraph.sccs (app-iso hom \(G\) ) \(=\) app-iso hom'sccs (is \(? L=? R\) )
proof (intro set-eqI iffI)
fix \(x\) assume \(x \in\) ? \(L\)
then have subgraph \(x\) (app-iso hom \(G\) )
by (auto simp: pre-digraph.sccs-def)
then show \(x \in ? R\)
using \(\langle x \in ?\) ? \(\downarrow\) hom by (auto simp: pre-digraph.sccs-altdef2 max-subgraph-iso
subgraph-strongly-connected-iso cong: max-subgraph-cong intro: rev-image-eqI)
next
fix \(x\) assume \(x \in ? R\)
then obtain \(x 0\) where \(x 0 \in\) sccs \(x=\) app-iso hom \(x 0\) by auto
then show \(x \in\) ? \(L\)
using hom by (auto simp: pre-digraph.sccs-altdef2 max-subgraph-iso sub-
graph-app-isoI
subgraphI-max-subgraph subgraph-strongly-connected-iso cong: max-subgraph-cong)

\section*{qed}
```

lemma card-sccs-iso[simp]: card (app-iso hom'sccs) = card sccs
apply (rule card-image)
using hom
apply (rule inj-on-app-iso)
apply auto
done

```
end
end
theory Auxiliary
imports
    HOL-Library.FuncSet
    HOL-Combinatorics.Orbits
begin
lemma funpow-invs:
    assumes \(m \leq n\) and inv: \(\bigwedge x . f(g x)=x\)
    shows \((f \leadsto m)((g \leadsto n) x)=(g \leadsto(n-m)) x\)
    using \(\langle m \leq n\rangle\)
proof (induction \(m\) )
    case (Suc m)
    moreover then have \(n-m=S u c(n-S u c m)\) by auto
    ultimately show ?case by (auto simp: inv)
qed \(\operatorname{simp}\)

\section*{12 Permutation Domains}
definition has-dom :: \(\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow^{\prime}\) 'a set \(\Rightarrow\) bool where has-dom \(f S \equiv \forall s . s \notin S \longrightarrow f s=s\)
lemma has-domD: has-dom \(f S \Longrightarrow x \notin S \Longrightarrow f x=x\)
by (auto simp: has-dom-def)
lemma has-domI: \((\bigwedge x . x \notin S \Longrightarrow f x=x) \Longrightarrow\) has-dom \(f S\)
by (auto simp: has-dom-def)
lemma permutes-conv-has-dom:
\(f\) permutes \(S \longleftrightarrow\) bij \(f \wedge\) has-dom \(f S\)
by (auto simp: permutes-def has-dom-def bij-iff)

\section*{13 Segments}
inductive-set segment :: \(\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) set for \(f a b\) where base: \(f a \neq b \Longrightarrow f a \in\) segment \(f a b\) step: \(x \in\) segment \(f a b \Longrightarrow f x \neq b \Longrightarrow f x \in\) segment \(f a b\)
```

lemma segment-step-2D:
assumes }x\in\mathrm{ segment fa(fb) shows }x\in\mathrm{ segment fab
using assms by induct (auto intro: segment.intros)
lemma not-in-segment2D:
assumes }x\in\mathrm{ segment fab shows }x\not=
using assms by induct auto
lemma segment-altdef:
assumes b \in orbit f a
shows segment fab=(\lambdan. (f~n)a)'{1..<funpow-dist1 fab} (is ?L=? ? R)
proof (intro set-eqI iffI)
fix }x\mathrm{ assume }x\in\mathrm{ ?L
have fa\not=b\Longrightarrowb\in orbit f (f a)
using assms by (simp add: orbit-step)
then have *: fa\not=b\Longrightarrow0< funpow-dist f (fa)b
using assms using grOI funpow-dist-0-eq[OF <- \Longrightarrowb\inorbit f (fa)>] by (simp
add: orbit.intros)
from }\langlex\in?,L\rangle show x\in?
proof induct
case base then show ?case by (intro image-eqI[where x=1]) (auto simp:*)
next
case step then show ?case using assms funpow-dist1-prop less-antisym
by (fastforce intro!: image-eqI[where x=Suc n for n])
qed
next
fix }x\mathrm{ assume }x\in?,
then obtain n where (f~n}~~)a=x0<nn<funpow-dist1 fab by aut
then show }x\in\mathrm{ ?L
proof (induct n arbitrary: x)
case 0 then show ?case by simp
next
case (Suc n)
have (f^^ Suc n) a\not=b using Suc by (meson funpow-dist1-least)
with Suc show ?case by (cases n=0) (auto intro: segment.intros)
qed
qed
lemma segmentD-orbit:
assumes }x\in\mathrm{ segment fyz shows }x\in\mathrm{ orbit f y
using assms by induct (auto intro: orbit.intros)
lemma segment1-empty: segment fx(fx)={}
by (auto simp: segment-altdef orbit.base funpow-dist-0)
lemma segment-subset:
assumes }y\in\mathrm{ segment fxz

```
assumes \(w \in\) segment \(f x y\)
shows \(w \in\) segment \(f x z\)
using assms by (induct arbitrary: w) (auto simp: segment1-empty intro: segment.intros dest: segment-step-2D elim: segment.cases)
lemma not-in-segment1:
assumes \(y \in\) orbit \(f x\) shows \(x \notin\) segment \(f x y\)
proof
assume \(x \in\) segment \(f x y\)
then obtain \(n\) where \(n: 0<n n<\) funpow-dist1 \(f x y(f \wedge n) x=x\)
using assms by (auto simp: segment-altdef Suc-le-eq)
then have neq-y: \((f \sim\) (funpow-dist1 \(f x y-n)) x \neq y\) by (simp add: fun-pow-dist1-least)
have \((f \leadsto(\) funpow-dist1 \(f x y-n)) x=(f \leadsto(\) funpow-dist1 \(f x y-n))((f \leadsto\) n) \(x\) )
using \(n\) by (simp add: funpow-add)
also have \(\ldots=(f\) funpow-dist1 \(f x y) x\)
using \(\langle n<->\) by (simp add: funpow-add)
(metis assms funpow-0 funpow-neq-less-funpow-dist1 \(n(1) n(3)\) nat-neq-iff zero-less-Suc)
also have \(\ldots=y\) using assms by (rule funpow-dist1-prop)
finally show False using neq-y by contradiction
qed
lemma not-in-segment2: \(y \notin\) segment \(f x y\)
using not-in-segment2D by metis
lemma in-segmentE:
assumes \(y \in\) segment \(f x z z \in\) orbit \(f x\)
obtains ( \(f\) ~funpow-dist1 \(f x y\) ) \(x=y\) funpow-dist1 \(f x y<\) funpow-dist1 \(f x z\) proof
from assms show ( \(f\) ~ funpow-dist1 \(f x y\) ) \(x=y\)
by (intro segmentD-orbit funpow-dist1-prop)
moreover
obtain \(n\) where \((f \leadsto n) x=y 0<n n<\) funpow-dist1 \(f x z\)
using assms by (auto simp: segment-altdef)
moreover then have funpow-dist1 \(f x y \leq n\) by (meson funpow-dist1-least not-less)
ultimately show funpow-dist1 \(f x y<\) funpow-dist1 \(f x z\) by linarith
qed
lemma cyclic-split-segment:
assumes \(S\) : cyclic-on f \(S a \in S b \in S\) and \(a \neq b\)
shows \(S=\{a, b\} \cup\) segment \(f a b \cup\) segment \(f b a\) (is ? \(L=? R\) )
proof (intro set-eqI iffI)
```

fix c assume $c \in ? L$
with S have $c \in$ orbit f a unfolding cyclic-on-alldef by auto
then show $c \in ? R$ by induct (auto intro: segment.intros)
next
fix c assume $c \in ? R$
moreover have segment fab orbit fa segment f ba orbit fb by (auto dest: segmentD-orbit)
ultimately show $c \in ? ~$ using S by (auto simp: cyclic-on-alldef)
qed

```
```

lemma segment-split:
assumes y-in-seg: $y \in \operatorname{segment} f x z$
shows segment $f x z=$ segment $f x y \cup\{y\} \cup$ segment $f y z($ is ? $L=? R)$
proof (intro set-eqI iffI)
fix w assume $w \in ? L$ then show $w \in ? R$ by induct (auto intro: segment.intros)
next
fix w assume $w \in ? R$
moreover
$\{$ assume $w \in$ segment $f x y$ then have $w \in$ segment $f x z$
using segment-subset[OF y-in-seg] by auto $\}$
moreover
$\{$ assume $w \in$ segment $f y z$ then have $w \in$ segment $f x z$
using y-in-seg by induct (auto intro: segment.intros) $\}$
ultimately
show $w \in$? L using y-in-seg by (auto intro: segment.intros)
qed
lemma in-segmentD-inv:
assumes $x \in$ segment $f a b x \neq f a$
assumes $\operatorname{inj} f$
shows inv $f x \in$ segment $f a b$
using assms by (auto elim: segment.cases)
lemma in-orbit-invI:
assumes $b \in$ orbit $f a$
assumes $\operatorname{inj} f$
shows $a \in$ orbit (invf) b
using assms(1)
apply induct
apply (simp add: assms(2) orbit-eqI(1))
by (metis assms(2) inv-f-f orbit.base orbit-trans)
lemma segment-step-2:
assumes A : $x \in$ segment $f a b b \neq a$ and $\operatorname{inj} f$
shows $x \in$ segment $f a(f b)$
using A by induct (auto intro: segment.intros dest: not-in-segment2D injD[OF
$\langle i n j f\rangle]$)

```
```

lemma inv-end-in-segment:
assumes b\in orbit fa f a\not=b bijf
shows inv f b \in segment fab
using assms(1,2)
proof induct
case base then show ?case by simp
next
case (step x)
moreover
from «bij f〉 have inj f by (rule bij-is-inj)
moreover
then have }x\not=fx\Longrightarrowfa=x\Longrightarrowx\in segment fa(fx) by (meson seg-
ment.simps)
moreover
have }x\not=f
using step 〈inj f> by (metis in-orbit-invI inv-f-eq not-in-segment1 segment.base)
then have inv fx}\in\mathrm{ segment fa(fx) Cx segment f a (fx)
using 〈bij f\rangle\langleinj f\rangle by (auto dest: segment.step simp: surj-f-inv-f bij-is-surj)
then have inv fx\in segment fax\Longrightarrowx\in segment fa(fx)
using 〈f a\not=fx\rangle\langleinj f〉 by (auto dest: segment-step-2 injD)
ultimately show ?case by (cases f a=x) simp-all
qed
lemma segment-overlapping:

```

```

 shows segment f a x\subseteq segment f b x\vee segment fb x\subseteq segment fax
 using assms(1,2)
 proof induction
case base then show ?case by (simp add: segment1-empty)
next
case (step x)
from \bij f\rangle have inj f by (simp add: bij-is-inj)
have *: \fxy.y segment fx (fx)\Longrightarrow False by (simp add: segment1-empty)
{fix y z
assume A: y \in segment fb (fx) y\not\in segment f a (fx)z\in segment f a (fx)
from }\langlex\in\mathrm{ orbit f a }\langle{x\in\mathrm{ orbit f b }\langle\langley\in\mathrm{ segment f b (fx)>
have }x\in\mathrm{ orbit f b
by (metis * inv-end-in-segment[OF - < <bij f〉] inv-f-eq[OF〈inj f〉] seg-
mentD-orbit)
moreover
with }\langlex\in\mathrm{ orbit f a step.IH
have segment fa}(fx)\subseteq\mathrm{ segment f b (f x) V segment fb f f x) ¢ segment fa
(f x)
apply auto
apply (metis * inv-end-in-segment[OF - 〈bij f>] inv-f-eq[OF〈inj f>] seg-
ment-step-2D segment-subset step.prems subsetCE)
by (metis (no-types, lifting)\langleinjf`*inv-end-in-segment[OF - - <bij f>] inv-f-eq
orbit-eqI(2) segment-step-2D segment-subset subsetCE)
ultimately

```
```

 have segment fa(fx)\subseteq segment f b (f x) using A by auto
 } note C= this
 then show ?case by auto
 qed
lemma segment-disj:
assumes }a\not=bbij
shows segment fab}\cap\mathrm{ segment f b a={}
proof (rule ccontr)
assume \neg?thesis
then obtain x where x:x\in segment f abx segment f b a by blast
then have segment fab= segment f a }x\cup{x}\cup\mathrm{ segment f x b
segment f b a = segment f b x \cup{x}\cup segment f x a
by (auto dest: segment-split)
then have o: x\in orbit f a x orbit f b by (auto dest: segmentD-orbit)
note * = segment-overlapping[OF o <bij f>]
have inj f using 〈bij f\rangle by (simp add: bij-is-inj)
have segment f a x = segment f b x
proof (intro set-eqI iffI)
fix y assume A:y\insegment f b x
then have }y\in\mathrm{ segment fax}\veefa\in segment f b a
using *x(2) by (auto intro: segment.base segment-subset)
then show }y\in\mathrm{ segment f a x
using 〈inj f`A by (metis (no-types) not-in-segment2 segment-step-2)
next
fix y assume A: y \in segment f a }
then have y s segment fbx\veefb\in segment fab
using *x(1) by (auto intro: segment.base segment-subset)
then show }y\in\mathrm{ segment f b }
using <inj f>A by (metis (no-types) not-in-segment2 segment-step-2)
qed
moreover
have segment f ax\not= segment f b x
by (metis assms bij-is-inj not-in-segment2 segment.base segment-step-2 seg-
ment-subset x(1))
ultimately show False by contradiction
qed
lemma segment-x-x-eq:
assumes permutation f
shows segment f x x = orbit f x - {x} (is ?L = ?R)
proof (intro set-eqI iffI)
fix y assume y ? ? then show y \in?R by (auto dest: segmentD-orbit simp:
not-in-segment2)
next
fix y assume y\in?R
then have }y\in\mathrm{ orbit f x y}\not=x\mathrm{ by auto

```
then show \(y \in ? L\) by induct (auto intro: segment.intros)
qed

\section*{14 Lists of Powers}
definition iterate :: nat \(\Rightarrow\) nat \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) list where
iterate \(m n f x=\operatorname{map}(\lambda n .(f \sim n) x)[m . .<n]\)
lemma set-iterate:
```

 set (iterate mnfx)=(\(\lambda k .(f \sim k) x)\) ' \(\{m . .<n\}\)
    ```
by (auto simp: iterate-def)
lemma iterate-empty[simp]: iterate \(n m f x=[] \longleftrightarrow m \leq n\)
by (auto simp: iterate-def)
lemma iterate-length[simp]:
length (iterate \(m n f x)=n-m\)
by (auto simp: iterate-def)
lemma iterate-nth \([\) simp \(]\) :
assumes \(k<n-m\) shows iterate \(m n f x!k=\left(f^{\wedge}(m+k)\right) x\)
using assms
by (induct \(k\) arbitrary: \(m\) ) (auto simp: iterate-def)
lemma iterate-applied:
iterate \(n m f(f x)=\) iterate (Suc n) (Suc m) \(f x\)
by (induct \(m\) arbitrary: \(n\) ) (auto simp: iterate-def funpow-swap1)
end
theory Subdivision
imports
Arc-Walk
Digraph-Component
Pair-Digraph
Bidirected-Digraph
Auxiliary
begin

\section*{15 Subdivision on Digraphs}

\section*{definition}
subdivision-step :: (' \(a\), ' \(b\) ) pre-digraph \(\Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} a,^{\prime} b\right)\) pre-digraph \(\Rightarrow\left({ }^{\prime} b\right.\) \(\left.\Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a \times{ }^{\prime} a \times{ }^{\prime} a \Rightarrow{ }^{\prime} b \times{ }^{\prime} b \times{ }^{\prime} b \Rightarrow\) bool
where
subdivision-step \(G\) rev- \(G\) Hev- \(H \equiv \lambda(u, v, w)(u v, u w, v w)\).
bidirected-digraph \(G\) rev- \(G\)
\(\wedge\) bidirected-digraph \(H\) rev- \(H\)
\(\wedge\) perm-restrict rev- \(H(\operatorname{arcs} G)=\) perm-restrict rev- \(G(\operatorname{arcs} H)\)
```

^ compatible G H

```
\(\wedge\) verts \(H=\) verts \(G \cup\{w\}\)
\(\wedge w \notin\) verts \(G\)
\(\wedge\) arcs \(H=\{u w, r e v-H u w, v w, r e v-H v w\} \cup \operatorname{arcs} G-\{u v, r e v-G u v\}\)
\(\wedge u v \in \operatorname{arcs} G\)
\(\wedge\) distinct [uw, rev-H uw, vw, rev-H vw]
\(\wedge\) arc-to-ends \(G u v=(u, v)\)
\(\wedge\) arc-to-ends \(H u w=(u, w)\)
\(\wedge\) arc-to-ends \(H v w=(v, w)\)
inductive subdivision :: ('a,'b) pre-digraph \(\times\left({ }^{\prime} b \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\times\) ('b \(\Rightarrow{ }^{\prime} b\) ) \(\Rightarrow\) bool

\section*{for \(b i G\) where}
base: bidirected-digraph \((\) fst bi \(G)(\) snd biG) \(\Longrightarrow\) subdivision biG biG
| divide: 【subdivision biG biI; subdivision-step (fst biI) (snd biI) (fst biH) (snd \(b i H)(u, v, w)(u v, u w, v w) \rrbracket \Longrightarrow\) subdivision biG biH
lemma subdivision-induct[case-names base divide, induct pred: subdivision]:
assumes subdivision \((G\), rev- \(G)(H\), rev- \(H)\)
and bidirected-digraph \(G\) rev- \(G \Longrightarrow P G\) rev- \(G\)
and \(\bigwedge I\) rev-I H rev-H \(u v w u v u w v w\).
subdivision \((G\), rev- \(G)(I\), rev- \(I) \Longrightarrow P\) I rev- \(I \Longrightarrow\) subdivision-step \(I\)
rev-I \(H \operatorname{rev}-H(u, v, w)(u v, u w, v w) \Longrightarrow P H \operatorname{rev}-H\)
shows \(P\) H rev- \(H\)
using assms(1) by (induct biH三(H, rev- \(H\) ) arbitrary: \(H\) rev- \(H\) ) (auto intro:
\(\operatorname{assms}(2,3))\)
lemma subdivision-base:
bidirected-digraph \(G\) rev- \(G \Longrightarrow\) subdivision \((G\), rev- \(G)(G\), rev- \(G)\)
by (rule subdivision.base) simp
lemma subdivision-step-rev:
assumes subdivision-step \(G\) rev- \(G H \operatorname{rev}-H(u, v, w)(u v, u w, v w)\) subdivision ( \(H\), rev- \(H\) ) ( \(I\), rev- \(I\) )
shows subdivision \((G\), rev- \(G)(I\), rev- \(I)\)
proof -
have bidirected-digraph \((\) fst \((G\), rev- \(G))(\) snd \((G\), rev- \(G))\) using assms by (auto simp: subdivision-step-def)
with \(\operatorname{assms}(2,1)\) show ?thesis
using assms(2,1) by induct (auto intro: subdivision.intros dest: subdivision-base)
qed
lemma subdivision-trans:
assumes subdivision \((G\), rev- \(G)(H\), rev- \(H)\) subdivision \((H\), rev- \(H)(I\), rev- \(I)\)
shows subdivision ( \(G\), rev- \(G\) ) (I, rev-I)
using assms by induction (auto intro: subdivision-step-rev)
```

locale subdiv-step =
fixes G rev-G H rev-H uv w uv uw vw
assumes subdiv-step: subdivision-step G rev-G H rev-H (u,v,w) (uv,uw,vw)
sublocale subdiv-step \subseteqG: bidirected-digraph G rev-G
using subdiv-step unfolding subdivision-step-def by simp
sublocale subdiv-step \subseteqH: bidirected-digraph H rev-H
using subdiv-step unfolding subdivision-step-def by simp
context subdiv-step begin
abbreviation (input) vu \equiv rev-G uv
abbreviation (input) wu \equiv rev-H uw
abbreviation (input) wv \equiv rev-H vw
lemma subdiv-compat: compatible G H
using subdiv-step by (simp add: subdivision-step-def)
lemma arc-to-ends-eq: arc-to-ends H = arc-to-ends G
using subdiv-compat by (simp add: compatible-def arc-to-ends-def fun-eq-iff)
lemma head-eq: head H = head G
using subdiv-compat by (simp add: compatible-def fun-eq-iff)
lemma tail-eq: tail H = tail G
using subdiv-compat by (simp add: compatible-def fun-eq-iff)
lemma verts-H: verts H= verts G\cup{w}
using subdiv-step by (simp add: subdivision-step-def)
lemma verts-G: verts G = verts H-{w}
using subdiv-step by (auto simp: subdivision-step-def)
lemma arcs-H: arcs H={uw,wu,vw,wv}\cup\operatorname{arcs}G-{uv,vu}
using subdiv-step by (simp add: subdivision-step-def)
lemma not-in-verts-G: w \& verts G
using subdiv-step by (simp add: subdivision-step-def)
lemma in-arcs-G:{uv,vu}\subseteqarcs G
using subdiv-step by (simp add: subdivision-step-def)
lemma not-in-arcs-H:{uv,vu} \cap arcs H={}
using arcs-H by auto
lemma subdiv-ate:
arc-to-ends Guv = (u,v)

```
\[
\begin{aligned}
& \text { arc-to-ends } H u v=(u, v) \\
& \text { arc-to-ends } H u w=(u, w) \\
& \text { arc-to-ends } H v w=(v, w)
\end{aligned}
\]
using subdiv-step subdiv-compat by (auto simp: subdivision-step-def arc-to-ends-def compatible-def)
lemma subdiv-ends[simp]:
tail \(G u v=u\) head \(G u v=v\) tail \(H u v=u\) head \(H u v=v\)
tail \(H u w=u\) head \(H u w=w\) tail \(H v w=v\) head \(H v w=w\)
using subdiv-ate by (auto simp: arc-to-ends-def)
lemma subdiv-ends-G-rev[simp]:
tail \(G(v u)=v\) head \(G(v u)=u\) tail \(H(v u)=v\) head \(H(v u)=u\)
using in-arcs- \(G\) by (auto simp: tail-eq head-eq)
lemma subdiv-distinct-verts0: \(u \neq w v \neq w\)
using in-arcs- \(G\) not-in-verts- \(G\) using subdiv-ate by (auto simp: arc-to-ends-def dest: G.wellformed)
```

lemma in-arcs- $H:\{u w, w u, v w, w v\} \subseteq$ arcs H
proof -
\{ assume $u v=u w$
then have arc-to-ends $H u v=$ arc-to-ends $H u w$ by simp
then have $v=w$ by (simp add: arc-to-ends-def)
\} moreover
\{ assume $u v=v w$
then have arc-to-ends $H u v=$ arc-to-ends H vw by simp
then have $v=w$ by (simp add: arc-to-ends-def)
\} moreover
\{ assume $v u=u w$
then have arc-to-ends $H(v u)=$ arc-to-ends H uw by simp
then have $u=w$ by (simp add: arc-to-ends-def)
\} moreover
\{ assume $v u=v w$
then have arc-to-ends $H(v u)=$ arc-to-ends H vw by simp
then have $u=w$ by (simp add: arc-to-ends-def)
\} ultimately
have $\{u w, v w\} \subseteq$ arcs H unfolding arcs- H using subdiv-distinct-verts0 by
auto
then show ?thesis by auto
qed
lemma subdiv-ends- H-rev[simp]:
tail $H(w u)=w$ tail $H(w v)=w$
head $H(w u)=u$ head $H(w v)=v$
using in-arcs- H subdiv-ate by simp-all
lemma in-verts- $G:\{u, v\} \subseteq$ verts G
using in-arcs- G by (auto dest: G.wellformed)

```
```

lemma not-in-arcs-G: {uw,wu,vw,wv}\cap\operatorname{arcs }G={}
proof -
note X = G.wellformed[simplified tail-eq[symmetric] head-eq[symmetric]]
show ?thesis using not-in-verts-G in-arcs-H by (auto dest: X)
qed
lemma subdiv-distinct-arcs: distinct [uv,vu,uw,wu,vw,wv]
proof -
have distinct [uw, wu,vw,wv]
using subdiv-step by (simp add: subdivision-step-def)
moreover
have distinct [uv,vu] using in-arcs-G G.arev-dom by auto
moreover
have {uv,vu}\cap{uw,wu,vw,wv}={}
using arcs-H in-arcs-H by auto
ultimately show ?thesis by auto
qed
lemma arcs-G: arcs G = arcs H\cup{uv,vu} - {uw,wu,vw,wv}
using in-arcs-G not-in-arcs-G unfolding arcs-H by auto
lemma subdiv-ate-H-rev:
arc-to-ends H (wu) = (w,u)
arc-to-ends H (wv)=(w,v)
using in-arcs-H subdiv-ate by simp-all

```

```

 using in-arcs-H subdiv-ate by (auto intro: H.dominatesI[rotated])
    ```

```

 using adj-with-w by auto
 lemma G-reach: v 倹 u u 吘Gv
using subdiv-ate in-arcs-G by (simp add: G.dominatesI G.symmetric-reachable')+
lemma out-arcs-w: out-arcs H w = {wu,wv}
using subdiv-distinct-verts0 in-arcs-H
by (auto simp: arcs-H) (auto simp: tail-eq verts-G dest: G.tail-in-verts)
lemma out-degree-w: out-degree H w = 2
using subdiv-distinct-arcs by (auto simp: out-degree-def out-arcs-w card-insert-if)
end
lemma subdivision-compatible:
assumes subdivision $(G$, rev- $G)(H$, rev- H) shows compatible $G H$ using assms by induct (auto simp: compatible-def subdivision-step-def)

```
lemma subdivision-bidir:
assumes subdivision \((G\), rev- \(G\) ) \((H\), rev- \(H)\)
shows bidirected-digraph \(H\) rev- \(H\)
using assms by induct (auto simp: subdivision-step-def)
lemma subdivision-choose-rev:
assumes subdivision \((G\), rev- \(G)(H\), rev- \(H)\) bidirected-digraph \(H\) rev- \(H^{\prime}\)
shows \(\exists\) rev- \(G^{\prime}\). subdivision \(\left(G\right.\), rev- \(\left.G^{\prime}\right)\left(H\right.\), rev- \(\left.H^{\prime}\right)\)
using assms
proof (induction arbitrary: rev- \(H^{\prime}\) )
case base
then show ?case by (auto dest: subdivision-base)
next
case (divide I rev-I H rev-H uv wuv uw vw)
interpret subdiv-step I rev-I \(H\) rev- \(H \quad u \quad w\) uv \(u w\) vw using divide by un-fold-locales
interpret \(H^{\prime}\) : bidirected-digraph \(H\) rev- \(H^{\prime}\) by fact
define rev-I' where rev-I' \(x=\)
(if \(x=\) uv then rev-I uv else if \(x=\) rev-I uv then uv else if \(x \in\) arcs \(I\) then rev- \(H^{\prime}\) \(x\) else \(x\) )
for \(x\)
have rev-H-injD: \(\left\lfloor x y z . r e v-H^{\prime} x=z \Longrightarrow\right.\) rev- \(H^{\prime} y=z \Longrightarrow x \neq y \Longrightarrow\) False by (metis \(H^{\prime}\).arev-eq-iff)
have rev- \(H^{\prime}\)-simps: rev- \(H^{\prime} u w=r e v-H u w \wedge r e v-H^{\prime} v w=r e v-H v w\)
\(\vee r e v-H^{\prime} u w=r e v-H v w \wedge r e v-H^{\prime} v w=r e v-H u w\)
proof -
have arc-to-ends \(H\left(\right.\) rev- \(\left.H^{\prime} u w\right)=(w, u)\) arc-to-ends \(H\left(\right.\) rev- \(\left.H^{\prime} v w\right)=(w, v)\) using in-arcs-H by (auto simp: subdiv-ate)
moreover
have \(\bigwedge x . x \in\) arcs \(H \Longrightarrow\) tail \(H x=w \Longrightarrow x \in\{\) rev- \(H\) uw, rev- \(H v w\}\)
using subdiv-distinct-verts0 not-in-verts- \(G\) by (auto simp: arcs-H) (simp add: tail-eq)
ultimately
have rev- \(H^{\prime} u w \in\{\) rev- \(H u w\), rev- \(H v w\}\) rev- \(H^{\prime} v w \in\{\) rev- \(H\) uw, rev- \(H v w\}\) using in-arcs- \(H\) by auto
then show ?thesis using in-arcs-H by (auto dest: rev-H-injD)
qed
have rev-H-uv: rev- \(H^{\prime} u v=u v\) rev- \(H^{\prime}(\) rev-I uv) \(=\) rev-I uv
using not-in-arcs-H by (auto simp: \(H^{\prime}\).arev-eq)
have \(b d-I^{\prime}:\) bidirected-digraph I rev-I'
proof
fix \(a\)
have \(\bigwedge a . a \neq u v \Longrightarrow a \neq \operatorname{rev}-I\) uv \(\Longrightarrow a \in \operatorname{arcs} I \Longrightarrow a \in \operatorname{arcs} H\)
```

 by (auto simp: arcs-H)
 then show (a\in\operatorname{arcs}I)=(rev-I'}a\not=a
 using in-arcs-G by (auto simp: rev-I'-def dest: G.arev-neq H'.arev-neq)
 next
 fix a
 have *: \a.rev-H' }a=rev-I uv \longleftrightarrowa=rev-I uv
 by (metis H'.arev-arev H'.arev-dom insert-disjoint(1) not-in-arcs-H)
 have **: \a. uv=rev-H'}a\longleftrightarrowa=uvusing \mp@subsup{H}{}{\prime}.arev-eq not-in-arcs-H by
 force
have ***: \a. a | arcs I\Longrightarrowrev-H' }a\in\operatorname{arcs}
using rev-H'-simps by (case-tac a\in{uv,vu}) (fastforce simp: rev-H-uv, auto
simp: arcs-G dest: rev-H-injD)
show rev-I'(rev-I' a)=a
by (auto simp: rev-I''def H'.arev-eq rev-H-uv * ** ***)
next
fix a assume a\in arcs I
then show tail I (rev-I' a) = head I a
using in-arcs-G by (auto simp: rev-I'-def tail-eq[symmetric] head-eq[symmetric]
arcs-H)
qed
moreover
have }\x.rev-H' x=uv\longleftrightarrowx=uv \x.rev-H' x=rev-I uv \longleftrightarrowx=rev-I uv
using not-in-arcs-H by (auto dest: H'.arev-eq) (metis H'.arev-arev H'.arev-eq)
then have perm-restrict rev-H'}(\mathrm{ arcs I) = perm-restrict rev-I' (arcs H)
using not-in-arcs-H by (auto simp: rev-I'-def perm-restrict-def H'.arev-eq)
ultimately
have sds-I'H': subdivision-step I rev-I' H rev-H'}(u,v,w)(uv,uw,vw
using divide(2,4) rev-H'-simps unfolding subdivision-step-def
by (fastforce simp: rev-I'-def)
then have subdivision (I, rev-I') (H,rev-H}\mp@subsup{H}{}{\prime})\exists\mathrm{ rev-G'. subdivision (}G\mathrm{ ,rev-G}\mp@subsup{G}{}{\prime}
(I, rev-I')
using bd-I' divide by (auto intro: subdivision.intros dest: subdivision-base)
then show ?case by (blast intro: subdivision-trans)
qed
lemma subdivision-verts-subset:
assumes subdivision (G,rev-G) (H,rev-H) x verts G
shows }x\in\mathrm{ verts H
using assms by induct (auto simp: subdiv-step.verts-H subdiv-step-def)

```

\subsection*{15.1 Subdivision on Pair Digraphs}

In this section, we introduce specialized rules for pair digraphs.
abbreviation subdivision-pair \(G H \equiv\) subdivision (with-proj \(G\), swap-in (parcs \(G)\) ) (with-proj \(H\), swap-in (parcs \(H\) ))
lemma arc-to-ends-with-proj[simp]: arc-to-ends (with-proj \(G\) ) \(=\) id
by (auto simp: arc-to-ends-def)

\section*{context}

\section*{begin}

We use the inductive command to define an inductive definition pair graphs. This is proven to be equivalent to subdivision. This allows us to transfer the rules proven by inductive to subdivision. To spare the user confusion, we hide this new constant.
```

private inductive pair-sd :: 'a pair-pre-digraph }=>\mathrm{ ' 'a pair-pre-digraph = bool
for G}\mathrm{ where
base: pair-bidirected-digraph G\Longrightarrow pair-sd G G
divide: \ewH.\llbrackete\in parcs H;w\not\in pverts H; pair-sd G H\rrbracket
pair-sd G (subdivide H e w)
private lemma bidirected-digraphI-pair-sd:
assumes pair-sd G H shows pair-bidirected-digraph H
using assms
proof induct
case base
then show ?case by auto
next
case (divide e wH)
interpret H: pair-bidirected-digraph H by fact
from divide show ?case by (intro H.pair-bidirected-digraph-subdivide)
qed
private lemma subdivision-with-projI:
assumes pair-sd G H
shows subdivision-pair G H
using assms
proof induct
case base
then show?case by (blast intro: pair-bidirected-digraph.bidirected-digraph sub-
division-base)
next
case (divide e wH)
obtain uv where e=(u,v) by (cases e)
interpret H: pair-bidirected-digraph H
using divide(3) by (rule bidirected-digraphI-pair-sd)
interpret I: pair-bidirected-digraph subdivide H ew
using divide(1,2) by (rule H.pair-bidirected-digraph-subdivide)
have uvw: }u\not=vu\not=wv\not=
using divide by (auto simp:<e= -> dest: H.adj-not-same H.wellformed)
have subdivision (with-proj G, swap-in (parcs G)) (H, swap-in (parcs H))
using divide by auto
moreover

```
have＊：perm－restrict（swap－in（parcs（subdivide Hew））（parcs H）\(=\) perm－restrict （swap－in（parcs H））（parcs（subdivide Hew））
by（auto simp：perm－restrict－def fun－eq－iff swap－in－def）
have subdivision－step（with－proj H）（swap－in（arcs H））（with－proj（subdivide H \(e w))(\operatorname{swap-in}(\operatorname{arcs}(\) subdivide \(H\) e w）））
\((u, v, w)(e,(u, w),(v, w))\)
unfolding subdivision－step－def
unfolding prod．simps with－proj－simps
using divide uvw
by（intro conjI H．bidirected－digraph I．bidirected－digraph＊）
（auto simp add：swap－in－def \(\langle e=-\rangle\) compatibleI－with－proj）
ultimately
show ？case by（auto intro：subdivision．divide）
qed
private lemma subdivision－with－projD：
assumes subdivision－pair \(G H\)
shows pair－sd G H
using assms
proof（induct with－proj H swap－in（parcs H）arbitrary：H rule：subdivision－induct）
case base
interpret bidirected－digraph with－proj \(G\) swap－in（parcs \(G\) ）by fact
from base have \(G=H\) by（simp add：with－proj－def）
with base show ？case
by（auto intro：pair－sd．base pair－bidirected－digraphI－bidirected－digraph）
next
case（divide I rev－I uv w uv uw vw）
define \(I^{\prime}\) where \(I^{\prime}=0\) pverts \(=\) verts \(I\), parcs \(=\) arcs \(I\) ）
have compatible \(G I\) using＜subdivision（with－proj \(G,-)(I,-)\) 〉
by（rule subdivision－compatible）
then have tail \(I=\) fst head \(I=\) snd by（auto simp：compatible－def）
then have \(I: I=I^{\prime}\) by（auto simp：\(I^{\prime}\)－def）
moreover
from \(I\) have rev－\(I=\) swap－in \(\left(\right.\) parcs \(\left.I^{\prime}\right)\)
using 〈subdivision－step－－－－－＞
by（simp add：subdivision－step－def bidirected－digraph－rev－conv－pair）
ultimately
have \(p d\)－sd：pair－sd \(G I^{\prime}\) by（auto intro：divide．hyps）
interpret sd：subdiv－step \(I^{\prime}\) swap－in（parcs \(\left.I^{\prime}\right) H\) swap－in（parcs \(\left.H\right) u v w u v\) \(u w v w\)
using 〈subdivision－step－－－－unfolding \(\langle I=-\rangle\langle r e v-I=-\rangle\) by un－ fold－locales
```

 have ends: \(u v=(u, v) u w=(u, w) v w=(v, w)\)
 using sd.subdiv-ate by simp-all
 then have si-ends: swap-in (parcs \(H)(u, w)=(w, u) \operatorname{swap-in}(\) parcs \(H)(v, w)\)
 $=(w, v)$
swap-in $\left(\right.$ parcs $\left.I^{\prime}\right)(u, v)=(v, u)$

```
using sd.subdiv-ends-H-rev sd.subdiv-ends-G-rev by (auto simp: swap-in-def)
have parcs \(H=\) parcs \(I^{\prime}-\{(u, v),(v, u)\} \cup\{(u, w),(w, u),(w, v),(v, w)\}\) using sd.in-arcs-G sd.not-in-arcs-G sd.arcs-H by (auto simp: si-ends ends)
then have \(H=\) subdivide \(I^{\prime} u v w\) using sd.verts- \(H\) by (simp add: ends subdivide.simps)
then show? case using sd.in-arcs- \(G\) sd.not-in-verts- \(G\) by (auto intro: \(p d\)-sd pair-sd.divide) qed
private lemma subdivision-pair-conv:
pair-sd \(G H=\) subdivision-pair \(G H\)
by (metis subdivision-with-projD subdivision-with-projI)
lemmas subdivision-pair-induct \(=\) pair-sd.induct [
unfolded subdivision-pair-conv, case-names base divide, induct pred: pair-sd]
lemmas subdivision-pair-base \(=\) pair-sd.base[unfolded subdivision-pair-conv]
lemmas subdivision-pair-divide \(=\) pair-sd.divide[unfolded subdivision-pair-conv]
lemmas subdivision-pair-intros \(=\) pair-sd.intros[unfolded subdivision-pair-conv]
lemmas subdivision-pair-cases \(=\) pair-sd.cases[unfolded subdivision-pair-conv]
lemmas subdivision-pair-simps \(=\) pair-sd.simps[unfolded subdivision-pair-conv]
lemmas bidirected-digraphI-subdivision \(=\) bidirected-digraphI-pair-sd[unfolded sub-division-pair-conv]
end
lemma (in pair-graph) pair-graph-subdivision:
assumes subdivision-pair GH
shows pair-graph \(H\)
using assms
by (induct rule: subdivision-pair-induct) (blast intro: pair-graph.pair-graph-subdivide divide)+
end
theory Euler imports
Arc-Walk
Digraph-Component
Digraph-Isomorphism
begin

\section*{16 Euler Trails in Digraphs}

In this section we prove the well-known theorem characterizing the existence of an Euler Trail in an directed graph

\subsection*{16.1 Trails and Euler Trails}
definition (in pre-digraph) euler-trail :: ' \(a \Rightarrow\) ' \(b\) awalk \(\Rightarrow{ }^{\prime} a \Rightarrow\) bool where euler-trail \(u p v \equiv\) trail \(u p v \wedge\) set \(p=\operatorname{arcs} G \wedge\) set (awalk-verts \(u p)=\) verts \(G\)
context wf-digraph begin
```

lemma finite-distinct:
assumes finite A shows finite {p. distinct p}\wedge\mathrm{ set p}\subseteqA
proof -
have {p.distinct p}\wedge\mathrm{ set p}\subseteqA}\subseteq{p. set p\subseteqA\wedge length p\leqcard A
using assms by (auto simp: distinct-card[symmetric] intro: card-mono)
also have finite ...
using assms by (simp add: finite-lists-length-le)
finally (finite-subset) show ?thesis .
qed

```
lemma (in fin-digraph) trails-finite: finite \(\{p . \exists u v\). trail \(u p v\}\)
proof -
    have \(\{p . \exists u v\). trail \(u p v\} \subseteq\{p\). distinct \(p \wedge\) set \(p \subseteq \operatorname{arcs} G\}\)
        by (auto simp: trail-def)
    with finite-arcs finite-distinct show ?thesis by (blast intro: finite-subset)
qed
lemma rotate-awalkE:
    assumes awalk и p u \(w \in\) set (awalk-verts \(u p\) )
    obtains \(q r\) where \(p=q\) @ \(r\) awalk \(w(r @ q) w \operatorname{set}(\) awalk-verts \(w(r @ q))=\)
set (awalk-verts u p)
proof -
    from assms obtain \(q r\) where \(A: p=q\) @ \(r\) and \(A^{\prime}:\) awalk \(u q\) awalk \(w r u\)
            by atomize-elim (rule awalk-decomp)
    then have \(B\) : awalk \(w(r\) @ q) \(w\) by auto
    have \(C\) : set (awalk-verts \(w(r @ q))=\) set (awalk-verts u \(p\) )
            using 〈awalk \(u\) pu〉 \(A A^{\prime}\) by (auto simp: set-awalk-verts-append)
    from \(A B C\) show ?thesis ..
qed
lemma rotate-trailE:
```

 assumes trail u puw\in set (awalk-verts u p)
 obtains qr where p=q@rtrail w (r@ @) w set (awalk-verts w (r@q))=
 set (awalk-verts u p)
using assms by - (rule rotate-awalkE[where }u=u\mathrm{ and }p=p\mathrm{ and w=w], auto
simp: trail-def)
lemma rotate-trailE':
assumes trail u puw\in set (awalk-verts u p)
obtains q}\mathrm{ where trail w q w set q = set p set (awalk-verts w q) = set (awalk-verts
u p)
proof -
from assms obtain qr where p=q@ r trail w(r@ @) w set (awalk-verts w
(r@ @)) = set (awalk-verts u p)
by (rule rotate-trailE)
then have set (r@q) = set p by auto
show ?thesis by (rule that) fact+
qed
lemma sym-reachableI-in-awalk:
assumes walk: awalk u p v and
w1:w1 \in set (awalk-verts u p) and w2:w2 \in set (awalk-verts u p)
shows w1 }\mp@subsup{->}{}{*}\mp@subsup{}{mk}{
proof -
from walk w1 obtain qr where p=q@ r awalk u q w1 awalk w1 rv
by (atomize-elim) (rule awalk-decomp)
then have w2-in: w2 \in set (awalk-verts u q) \cup set (awalk-verts w1 r)
using w2 by (auto simp: set-awalk-verts-append)
show ?thesis
proof cases
assume A: w2 \in set (awalk-verts u q)
obtain s where awalk w2 s w1
using awalk-decomp[OF <awalk u q w1` A] by blast
then have w2 }\mp@subsup{->}{}{*}\mp@subsup{}{mk\mathrm{ -symmetric G}}{}\mp@subsup{w}{}{w
by (intro reachable-awalkI reachable-mk-symmetricI)
with symmetric-mk-symmetric show ?thesis by (rule symmetric-reachable)
next
assume w2 \# set (awalk-verts u q)
then have A:w2 \in set (awalk-verts w1 r)
using w2-in by blast
obtain s}\mathrm{ where awalk w1 s w2
using awalk-decomp[OF <awalk w1 r v〉A] by blast
then show w1 梠mk-symmetric G w2
by (intro reachable-awalkI reachable-mk-symmetricI)
qed
qed
lemma euler-imp-connected:
assumes euler-trail u p v shows connected G

```
```

proof -
{ have verts }G\not={}\mathrm{ using assms unfolding euler-trail-def trail-def by auto }
moreover
{ fix w1 w2 assume w1 \in verts G w2 \in verts G
then have awalk u p v w1 \in set (awalk-verts u p)w2 \in set (awalk-verts u p)
using assms by (auto simp: euler-trail-def trail-def)
then have w1 }\mp@subsup{->}{}{*}\mp@subsup{}{mk}{
ultimately show connected G by (rule connectedI)
qed
end

```

\subsection*{16.2 Arc Balance of Walks}
context pre-digraph begin
definition arc-set-balance \(::\) ' \(a \Rightarrow\) ' \(b\) set \(\Rightarrow\) int where
arc-set-balance \(w A=\operatorname{int}(\operatorname{card}(\) in-arcs \(G w \cap A))-\operatorname{int}\) (card (out-arcs \(G w \cap\) A))
definition arc-set-balanced \(::\) ' \(a \Rightarrow\) ' \(b\) set \(\Rightarrow\) ' \(a \Rightarrow\) bool where
arc-set-balanced \(u A v \equiv\)
if \(u=v\) then \((\forall w \in\) verts \(G\). arc-set-balance \(w A=0)\)
else \((\forall w \in\) verts \(G .(w \neq u \wedge w \neq v) \longrightarrow\) arc-set-balance \(w A=0)\)
\(\wedge\) arc-set-balance \(u A=-1\)
\(\wedge\) arc-set-balance v \(A=1\)
abbreviation arc-balance \(::\) ' \(a \Rightarrow\) ' \(b\) awalk \(\Rightarrow\) int where arc-balance \(w p\) arc-set-balance \(w(\) set \(p\) )
abbreviation arc-balanced \(::\) ' \(a \Rightarrow{ }^{\prime} b\) awalk \(\Rightarrow{ }^{\prime} a \Rightarrow\) bool where arc-balanced \(u\) p \(v \equiv\) arc-set-balanced \(u(\) set \(p) v\)
lemma arc-set-balanced-all:
arc-set-balanced \(u(\operatorname{arcs} G) v=\)
(if \(u=v\) then \((\forall w \in\) verts \(G\). in-degree \(G w=\) out-degree \(G w\) )
else \((\forall w \in\) verts \(G .(w \neq u \wedge w \neq v) \longrightarrow\) in-degree \(G w=\) out-degree \(G w)\)
\(\wedge\) in-degree \(G u+1=\) out-degree \(G u\)
\(\wedge\) out-degree \(G v+1=\) in-degree \(G v\) )
unfolding arc-set-balanced-def arc-set-balance-def in-degree-def out-degree-def by auto
end
context wf-digraph begin
```

lemma arc-balance-Cons:
assumes trail u(e\# es)v
shows arc-set-balance w (insert e (set es)) = arc-set-balance w{e}+arc-balance
w es
proof -
from assms have e\not\in set es e\in arcs G by (auto simp: trail-def)
with <e \not\in set es〉 show ?thesis
apply (cases w = tail Ge)
apply (case-tac [!] w = head G e)
apply (auto simp: arc-set-balance-def)
done
qed
lemma arc-balancedI-trail:
assumes trail u pv shows arc-balanced u pv
using assms
proof (induct p arbitrary:u)
case Nil then show?case by (auto simp: arc-set-balanced-def arc-set-balance-def
trail-def)
next
case (Cons e es)
then have arc-balanced (head G e) es vu= tail G e e farcs G
by (auto simp: awalk-Cons-iff trail-def)
moreover
have \ \w.arc-balance w[e]=(if w= tail Ge^tail Ge\not= head Ge then - 1
else if w= head G e^ tail Ge\not= head G e then 1 else 0)
using <e\in >> by (case-tac w = tail G e) (auto simp: arc-set-balance-def)
ultimately show ?case
by (auto simp: arc-set-balanced-def arc-balance-Cons[OF <trail u-->])
qed
lemma trail-arc-balanceE:
assumes trail u pv
obtains \w.\llbracketu=v\vee (w\not=u\wedgew\not=v);w\inverts G\rrbracket
\Longrightarrow arc-balance w p=0
and \llbracketu\not=v\rrbracket\Longrightarrow arc-balance u p=-1
and \llbracketu\not=v\rrbracket\Longrightarrow arc-balance v p=1
using arc-balancedI-trail[OF assms] unfolding arc-set-balanced-def by (intro
that) (metis,presburger+)
end

```

\subsection*{16.3 Closed Euler Trails}
lemma (in wf-digraph) awalk-vertex-props:
assumes awalk u p v \(p \neq[]\)
assumes \(\bigwedge w . w \in\) set (awalk-verts \(u p) \Longrightarrow P w \vee Q w\)
assumes \(P u Q v\)
```

 shows \existse\in set p. P(tail Ge)}\wedgeQ(\mathrm{ head Ge)
 using assms(2,1,3-)
 proof (induct p arbitrary: u rule: list-nonempty-induct)
case (cons e es)
show ?case
proof (cases P (tail Ge)}\wedge\Q(\mathrm{ head Ge))
case False
then have P(head Ge)\vee Q(head Ge)
using cons.prems(1) cons.prems(2)[of head G e]
by (auto simp: awalk-Cons-iff set-awalk-verts)
then have P(tail Ge)\wedgeP(head Ge)
using False using cons.prems(1,3) by auto
then have }\existse\in set es. P(tail Ge)\wedgeQ(head Ge
using cons by (auto intro: cons simp: awalk-Cons-iff)
then show ?thesis by auto
qed auto
qed (simp add: awalk-simps)
lemma (in wf-digraph) connected-verts:
assumes connected G arcs G}={
shows verts }G=\mathrm{ tail G` arcs }G\cup\mathrm{ head G` arcs }
proof -
{ assume verts G={} then have ?thesis by (auto dest: tail-in-verts) }
moreover
{ assume }\existsv.verts G={v
then obtain v}\mathrm{ where verts G={v} by (auto simp: card-Suc-eq)
moreover
with «arcs G\not={}` obtain e where e\in\operatorname{arcs}G\mathrm{ tail Ge=v head Ge=v} by (auto dest: tail-in-verts head-in-verts) moreover have tail G` arcs G\cup head G'arcs G\subseteqverts G by auto
ultimately have ?thesis by auto }
moreover
{ assume A: \existsuv.u\in verts G^v\in verts G^u\not=v
{ fix u assume u\in verts G
interpret S: pair-wf-digraph mk-symmetric G by rule
from A obtain v where v\inverts Gu\not=v by blast
then obtain p}\mathrm{ where S.awalk upv
using <connected G\rangle\langleu \in verts G> by (auto elim: connected-awalkE)
with }\langleu\not=v\rangle\mathrm{ obtain e where e parcs (mk-symmetric G) fst e=u
by (metis S.awalk-Cons-iff S.awalk-empty-ends list-exhaust2)
then obtain }\mp@subsup{e}{}{\prime}\mathrm{ where tail G e
by (force simp: parcs-mk-symmetric)
then have }u\in\mathrm{ tail G'arcs G \ head G'arcs G by auto }
then have ?thesis by auto }
ultimately show ?thesis by blast
qed

```
```

lemma (in wf-digraph) connected-arcs-empty:
assumes connected G arcs }G={}\mathrm{ verts }G\not={}\mathrm{ obtains v where verts }G
{v}
proof (atomize-elim, rule ccontr)
assume }A:\neg(\existsv.verts G={v}
interpret S: pair-wf-digraph mk-symmetric G by rule
from «verts }G\not={}\rangle\mathrm{ obtain }u\mathrm{ where }u\in\mathrm{ verts }G\mathrm{ by auto
with A obtain v}\mathrm{ where v}\in\mathrm{ verts }Gu\not=v\mathrm{ by auto
from <connected G>\langleu verts G>\langlev\in verts G>
obtain p where S.awalk u pv
using <connected G\rangle\langleu\in verts G\rangle by (auto elim: connected-awalkE)
with }\langleu\not=v\rangle\mathrm{ obtain }e\mathrm{ where e f parcs (mk-symmetric G)
by (metis S.awalk-Cons-iff S.awalk-empty-ends list-exhaust2)
with «arcs G = {}〉 show False
by (auto simp: parcs-mk-symmetric)
qed
lemma (in wf-digraph) euler-trail-conv-connected:
assumes connected G
shows euler-trail upv\longleftrightarrow trail upv\wedge set p=arcs G(is ?L \longleftrightarrow ?R)
proof
assume ?R show ?L
proof cases
assume p=[] with assms \?R> show ?thesis
by (auto simp: euler-trail-def trail-def awalk-def elim: connected-arcs-empty)
next
assume p}\not=[] then have arcs G\not={} using <?R> by aut
with assms <?R〉\langlep\not=[]〉 show ?thesis
by (auto simp: euler-trail-def trail-def set-awalk-verts-not-Nil connected-verts)
qed
qed (simp add: euler-trail-def)
lemma (in wf-digraph) awalk-connected:
assumes connected G awalk u p v set p\not= arcs G
shows \existse. e\in arcs G- set p\wedge(tail Ge set (awalk-verts u p)\vee head Gee\in
set (awalk-verts u p))
proof (rule ccontr)
assume A: \neg?thesis
obtain e where e\inarcs G - set p
using assms by (auto simp: trail-def)
with A have tail Ge\not\inset (awalk-verts u p) tail Ge\inverts G
by auto
interpret S: pair-wf-digraph mk-symmetric G ..

```
```

 have u\in verts G using {awalk u p v> by (auto simp: awalk-hd-in-verts)
 with <tail Ge\in > and <connected G〉
 obtain q}\mathrm{ where q: S.awalk uq(tail Ge)
 by (auto elim: connected-awalkE)
 have u\in set (awalk-verts u p)
 using <awalk u pv> by (auto simp: set-awalk-verts)
 have q}\not=[] using <u\in set -><tail Ge\not\in >>q by aut
 have \existse\in set q. fst e\in set (awalk-verts u p)^ snd e & set (awalk-verts u p)
 by (rule S.awalk-vertex-props[OF}\langleS.awalk --><q\not= []>]) (auto simp: <u \in set
 -> <tail G e \# ->)
then obtain se' where se': se' }\in\mathrm{ set q fst se' }\in\mathrm{ set (awalk-verts u p) snd se' }\not
set (awalk-verts u p)
by auto
from se' have se' \in parcs (mk-symmetric G) using q by auto
then obtain e' where e}\mp@subsup{e}{}{\prime}\in\operatorname{arcs}G(tail G e' = fst se' ^ head G e'= snd se')
\vee (tail G e' = snd se' ^ head G e' = fst se')
by (auto simp: parcs-mk-symmetric)
moreover
then have e}\mp@subsup{e}{}{\prime}\not\in\mathrm{ set p using se' <awalk u p v>
by (auto dest: awalk-verts-arc2 awalk-verts-arc1)
ultimately show False using se'
using A by auto
qed
lemma (in wf-digraph) trail-connected:
assumes connected G trail u p v set p}\not=\operatorname{arcs}
shows \existse.e\in arcs G- set p^(tail Ge\in set (awalk-verts u p)\vee head Gee\in
set (awalk-verts u p))
using assms by (intro awalk-connected) (auto simp: trail-def)
theorem (in fin-digraph) closed-euler1:
assumes con: connected G
assumes deg: \u.u verts G\Longrightarrow in-degree Gu= out-degree Gu
shows \existsu p. euler-trail u pu
proof -
from con obtain u}\mathrm{ where }u\in\mathrm{ verts G by (auto simp: connected-def strongly-connected-def)
then have trail u [] u by (auto simp: trail-def awalk-simps)
moreover
{ fix u p v assume trail u pv
then have \existsu '}\mp@subsup{p}{}{\prime}\mp@subsup{v}{}{\prime}\mathrm{ . euler-trail }\mp@subsup{u}{}{\prime}\mp@subsup{p}{}{\prime}\mp@subsup{v}{}{\prime
proof (induct card (arcs G) - length p arbitrary: u p v)
case 0
then have }u\in\mathrm{ verts G by (auto simp: trail-def)
have set p\subseteqarcs G using <trail u p v> by (auto simp: trail-def)

```
with 0 have set \(p=\operatorname{arcs} G\)
by (auto simp: trail-def distinct-card[symmetric] card-seteq)
then have euler-trail \(u p v\)
using 0 by (simp add: euler-trail-conv-connected[OF con])
then show? case by blast

\section*{next}
case (Suc n)
then have neq: set \(p \neq\) arcs \(G u \in\) verts \(G\)
by (auto simp: trail-def distinct-card[symmetric])
show ?case
proof (cases \(u=v\) )
assume \(u \neq v\)
then have arc-balance \(u p=-1\)
using Suc neq by (auto elim: trail-arc-balanceE)
then have card (in-arcs \(G u \cap\) set \(p\) ) <card (out-arcs \(G u \cap\) set \(p\) )
unfolding arc-set-balance-def by auto
also have \(\ldots \leq\) card (out-arcs Gu)
by (rule card-mono) auto
finally have card (in-arcs \(G u \cap\) set \(p\) ) <card (in-arcs \(G u\) )
using \(\operatorname{deg}[O F\langle u \in-\rangle]\) unfolding out-degree-def in-degree-def by simp
then have in-arcs \(G u-\) set \(p \neq\{ \}\)
by (auto dest: card-psubset[rotated 2])
then obtain \(a\) where \(a \in \operatorname{arcs} G\) head \(G a=u a \notin\) set \(p\)
by (auto simp: in-arcs-def)
then have \(*\) : trail (tail Ga) \((a \# p) v\)
using Suc by (auto simp: trail-def awalk-simps)
then show ?thesis
using Suc by (intro Suc) auto
next
assume \(u=v\)
with neq con Suc
obtain \(a\) where \(a\)-in: \(a \in \operatorname{arcs} G-\operatorname{set} p\)
and a-end: (tail Gaf set (awalk-verts \(u p) \vee\) head \(G a \in\) set (awalk-verts
\(u p)\) )
by (atomize-elim) (rule trail-connected)
have trail \(u\) p using \(S u c\langle u=v\rangle\) by simp
show ? case
proof (cases tail Gatset (awalk-verts up))
case True
with \(\langle\) trail \(u p u\rangle\) obtain \(q\) where \(q\) : set \(p=\operatorname{set} q\) trail (tail Ga) \(q(\) tail
\(G a)\)
by (rule rotate-trailE') blast
with True a-in have *: trail (tail Ga) (q@ [a]) (head Ga)
by (fastforce simp: trail-def awalk-simps )
moreover
from \(q\) Suc have length \(q=\) length \(p\)
by (simp add: trail-def distinct-card[symmetric])
ultimately
```

 show ?thesis using Suc by (intro Suc) auto
 next
 case False
 with a-end have head Ga\in set (awalk-verts u p) by blast
 with <trail u pu> obtain q where q: set p = set q trail (head G a)q
 (head Ga)
by (rule rotate-trailE') blast
with False a-in have *: trail (tail Ga) (a\#q)(head Ga)
by (fastforce simp: trail-def awalk-simps)
moreover
from q Suc have length q = length p
by (simp add: trail-def distinct-card[symmetric])
ultimately
show ?thesis using Suc by (intro Suc) auto
qed
qed
qed }
ultimately obtain u pv where et: euler-trail u p v by blast
moreover
have }u=
proof -
have arc-balanced u pv
using <euler-trail u p v> by (auto simp: euler-trail-def dest: arc-balancedI-trail)
then show ?thesis
using <euler-trail u p v> deg
by (auto simp add: euler-trail-def trail-def arc-set-balanced-all split: if-split-asm)
qed
ultimately show ?thesis by blast
qed
lemma (in wf-digraph) closed-euler-imp-eq-degree:
assumes euler-trail u pu
assumes v\in verts G
shows in-degree Gv=out-degree Gv
proof -
from assms have arc-balanced u pu set p=arcs G
unfolding euler-trail-def by (auto dest: arc-balancedI-trail)
with assms have arc-balance v p=0
unfolding arc-set-balanced-def by auto
moreover
from<set p = -> have in-arcs Gv\cap set p=in-arcs Gv out-arcs Gv\cap set p=
out-arcs Gv
by (auto intro: in-arcs-in-arcs out-arcs-in-arcs)
ultimately
show ?thesis unfolding arc-set-balance-def in-degree-def out-degree-def by auto
qed

```
```

theorem (in fin-digraph) closed-euler2:
assumes euler-trail u pu
shows connected G
and }\bigwedgeu.u\in\mathrm{ verts }G\Longrightarrow\mathrm{ in-degree Gu=out-degree Gu(is }\bigwedgeu.- \Longrightarrow?eq-deg
u)
proof -
from assms show connected G by (rule euler-imp-connected)
next
fix v}\mathrm{ assume A:v}
with assms show ?eq-deg v by (rule closed-euler-imp-eq-degree)
qed
corollary (in fin-digraph) closed-euler:
(\existsu p. euler-trail u pu)\longleftrightarrow connected G\wedge(\forallu\inverts G. in-degree Gu=
out-degree G u)
by (auto dest: closed-euler1 closed-euler2)

```

\subsection*{16.4 Open euler trails}

Intuitively, a graph has an open euler trail if and only if it is possible to add an arc such that the resulting graph has a closed euler trail. However, this is not true in our formalization, as the arc type ' \(b\) might be finite:
Consider for example the graph \(\\) verts \(=\left\{0::^{\prime} a, 1:: ' a\right\}\), arcs \(=\{()\}\), tail \(=\) \(\lambda\)-. \(0::^{\prime} a\), head \(=\lambda\)-. \(1::^{\prime} a \mid\). This graph obviously has an open euler trail, but we cannot add another arc, as we already exhausted the universe.
However, for each fin-digraph \(G\) there exist an isomorphic graph \(H\) with arc type ' \(a \times\) nat \(\times\) ' \(a\). Hence, we first characterize the existence of euler trail for the infinite arc type ' \(a \times n a t \times{ }^{\prime} a\) and transfer that result back to arbitrary arc types
```

lemma open-euler-infinite-label:
fixes $G::\left({ }^{\prime} a,{ }^{\prime} a \times n a t \times{ }^{\prime} a\right)$ pre-digraph
assumes fin-digraph G
assumes $[$ simp $]$: tail $G=$ fst head $G=$ snd o snd
assumes con: connected G
assumes uv: $u \in$ verts $G v \in$ verts G
assumes deg: $\bigwedge w$. $\llbracket w \in$ verts $G ; u \neq w ; v \neq w \rrbracket \Longrightarrow$ in-degree $G w=$ out-degree
$G w$
assumes deg-in: in-degree $G u+1=$ out-degree $G u$
assumes deg-out: out-degree $G v+1=$ in-degree $G v$
shows \exists p. pre-digraph.euler-trail $G u p v$
proof -
define label :: ' $a \times n a t \times{ }^{\prime} a \Rightarrow$ nat where $[$ simp]: label $=$ fst o snd
interpret fin-digraph G by fact
have finite (label' arcs G) by auto
moreover have \neg finite (UNIV :: nat set) by blast

```
ultimately obtain \(l\) where \(l \notin\) label' arcs \(G\) by atomize-elim (rule ex-new-if-finite)
from deg-in deg-out have \(u \neq v\) by auto
let \(? e=(v, l, u)\)
have \(e\)-notin:? \(e \notin\) arcs \(G\)
using \(\langle l \notin->\) by (auto simp: image-def)
let \(? H=a d d-a r c\) ? \(e\)
- We define a graph which has an closed euler trail
have [simp]: verts ? \(H=\) verts \(G\) using \(u v\) by simp
have \([\) intro \(]: \bigwedge a\). compatible (add-arc a) \(G\) by (simp add: compatible-def)
interpret \(H\) : fin-digraph add-arc a
rewrites tail (add-arc a) = tail \(G\) and head (add-arc a) \(=\) head \(G\)
and pre-digraph.cas (add-arc a) = cas
and pre-digraph.awalk-verts (add-arc a) = awalk-verts
for \(a\)
by unfold-locales (auto dest: wellformed intro: compatible-cas compatible-awalk-verts simp: verts-add-arc-conv)
have \(\exists u\) p. H.euler-trail ?e u pu
proof (rule H.closed-euler1)
show connected?H
proof (rule H.connectedI)
interpret sH: pair-fin-digraph mk-symmetric ?H ..
fix \(u v\) assume \(u \in\) verts ?H \(v \in\) verts ?H
with con have \(u \rightarrow^{*}{ }_{m k}\)-symmetric \(G\) by (auto simp: connected-def)
moreover
have subgraph \(G\) ? H by (auto simp: subgraph-def) unfold-locales
ultimately show \(u \rightarrow^{*}\) with-proj (mk-symmetric ?H) \(v\)
by (blast intro: sH.reachable-mono subgraph-mk-symmetric)
qed (simp add: verts-add-arc-conv)
next
fix \(w\) assume \(w \in\) verts ? \(H\)
then show in-degree ?H \(w=\) out-degree ? \(H\) w
using deg deg-in deg-out e-notin
apply (cases \(w=u\) )
apply (case-tac [!] \(w=v\) )
by (auto simp: in-degree-add-arc-iff out-degree-add-arc-iff)
qed
then obtain \(w p\) where Het: H.euler-trail ?e w \(p w\) by blast
then have ?e \(\in\) set \(p\) by (auto simp: pre-digraph.euler-trail-def)
then obtain \(q r\) where \(p\)-decomp: \(p=q\) @ [?e] @ \(r\)
by (auto simp: in-set-conv-decomp)
- We show now that removing the additional arc of \(\operatorname{add}\)-arc ( \(v, l, u\) ) from p
yields an euler trail in G
have euler-trail \(u(r\) @ \(q\) ) v
proof (unfold euler-trail-conv-connected[OF con], intro conjI)
from Het have \(H t^{\prime}\) : H.trail ? e v (?e \#r @ q) v
unfolding \(p\)-decomp H.euler-trail-def H.trail-def
by (auto simp: p-decomp H.awalk-Cons-iff)
then have H.trail ?e \(u(r\) @ q) \(v ? e \notin \operatorname{set}(r @ q)\)
by (auto simp: H.trail-def H.awalk-Cons-iff)
then show \(t^{\prime}:\) trail \(u(r @ q) v\)
by (auto simp: trail-def H.trail-def awalk-def H.awalk-def)
show set \((r @ q)=\operatorname{arcs} G\)
proof -
have arcs \(G=\) arcs ? \(H-\{? e\}\) using e-notin by auto
also have arcs ? \(H=\) set \(p\) using Het
by (auto simp: pre-digraph.euler-trail-def pre-digraph.trail-def)
finally show ?thesis using «? e \(\notin\) set -> by (auto simp: p-decomp)
qed
qed
then show?thesis by blast
qed
context wf-digraph begin
lemma trail-app-isoI:
assumes \(t\) : trail \(u p v\)
and hom: digraph-isomorphism hom
shows pre-digraph.trail (app-iso hom \(G\) ) (iso-verts hom u) (map (iso-arcs hom)
p) (iso-verts hom \(v\) )
proof -
interpret \(H\) : wf-digraph app-iso hom \(G\) using hom ..
from \(t\) hom have \(i\) : inj-on (iso-arcs hom) (set p)
unfolding trail-def digraph-isomorphism-def by (auto dest:subset-inj-on[where \(A=s e t p]\) )
then have distinct (map (iso-arcs hom) \(p\) ) \(=\) distinct \(p\)
by (auto simp: distinct-map dest: inj-onD)
with \(t\) hom show ?thesis
by (auto simp: pre-digraph.trail-def awalk-app-isoI)
qed
lemma euler-trail-app-isoI:
assumes \(t\) : euler-trail \(u p v\)
and hom: digraph-isomorphism hom
shows pre-digraph.euler-trail (app-iso hom \(G\) ) (iso-verts hom u) (map (iso-arcs
hom) p) (iso-verts hom \(v\) )
proof -
from \(t\) have awalk \(u p v\) by (auto simp: euler-trail-def trail-def)
with assms show ?thesis
```

 by (simp add: pre-digraph.euler-trail-def trail-app-isoI awalk-verts-app-iso-eq)
 qed
end

```
context fin-digraph begin
theorem open-euler1:
    assumes connected \(G\)
    assumes \(u \in\) verts \(G v \in\) verts \(G\)
    assumes \(\bigwedge w . \llbracket w \in\) verts \(G ; u \neq w ; v \neq w \rrbracket \Longrightarrow\) in-degree \(G w=\) out-degree \(G w\)
    assumes in-degree \(G u+1=\) out-degree \(G u\)
    assumes out-degree \(G v+1=\) in-degree \(G v\)
    shows \(\exists\) p. euler-trail \(u p v\)
proof -
    obtain \(f\) and \(n::\) nat where \(f\) 'arcs \(G=\{i . i<n\}\)
        and \(i\) : inj-on \(f(\) arcs \(G)\)
    by atomize-elim (rule finite-imp-inj-to-nat-seg, auto)
    define iso- \(f\) where iso- \(f=\)
        \((\) iso-verts \(=i d\), iso-arcs \(=(\lambda a .(\) tail \(G a, f a\), head \(G a))\),
        head \(=\) snd o snd, tail \(=\) fst \()\)
    have \([\) simp \(]\) : iso-verts iso- \(f=\) id iso-head iso-f \(=\) snd o snd iso-tail iso-f \(=f\) st
    unfolding iso-f-def by auto
    have di-iso-f: digraph-isomorphism iso-f unfolding digraph-isomorphism-def
iso-f-def
    by (auto intro: inj-onI wf-digraph dest: inj-onD[OF i])
    let ?iso- \(g=\) inv-iso iso-f
    have \([\) simp \(]: ~ \bigwedge u . u \in\) verts \(G \Longrightarrow\) iso-verts ?iso- \(g u=u\)
    by (auto simp: inv-iso-def fun-eq-iff the-inv-into-f-eq)
    let \(? H=\) app-iso iso-f \(G\)
    interpret \(H\) : fin-digraph ? \(H\) using di-iso-f ..
    have \(\exists p\). H.euler-trail \(u p v\)
    using di-iso-f assms \(i\)
    by (intro open-euler-infinite-label) (auto simp: connectedI-app-iso app-iso-eq)
    then obtain \(p\) where Het: H.euler-trail \(u p v\) by blast
    have pre-digraph.euler-trail (app-iso ?iso-g ?H) (iso-verts ?iso-g u) (map (iso-arcs
?iso-g) p) (iso-verts ?iso-g v)
    using Het by (intro H.euler-trail-app-isoI digraph-isomorphism-invI di-iso-f)
    then show ?thesis using di-iso-f \(\langle u \in \rightarrow\langle v \in \rightarrow\) by simp rule
qed
theorem open-euler2:
```

 assumes et: euler-trail upv and u\not=v
 shows connected G}
 (}\forallw\in\mathrm{ verts }G.u\not=w\longrightarrowv\not=w\longrightarrow\mathrm{ in-degree }Gw=\mathrm{ out-degree }Gw)
 in-degree Gu+1=out-degree Gu^
 out-degree Gv+1=in-degree Gv
 proof -
from et have *: trail u pvu\in verts G v\in verts G
by (auto simp: euler-trail-def trail-def awalk-hd-in-verts)
from et have [simp]: \u.card (in-arcs Gu\cap set p)= in-degree Gu
\u.card (out-arcs G u\cap set p)=out-degree Gu
by (auto simp: in-degree-def out-degree-def euler-trail-def intro: arg-cong[where
f=card])

```

\section*{from assms * show ?thesis}
```

by (auto simp: arc-set-balance-def elim: trail-arc-balanceE intro: euler-imp-connected)
qed
corollary open-euler:
$(\exists u$ p v. euler-trail $u p v \wedge u \neq v) \longleftrightarrow$
connected $G \wedge(\exists u v . u \in$ verts $G \wedge v \in$ verts $G \wedge$
$(\forall w \in$ verts $G . u \neq w \longrightarrow v \neq w \longrightarrow$ in-degree $G w=$ out-degree $G w) \wedge$
in-degree $G u+1=$ out-degree $G u \wedge$
out-degree $G v+1=$ in-degree $G v)($ is $? L \longleftrightarrow ? R)$
proof
assume ? L
then obtain $u p v$ where $*$: euler-trail $u p v u \neq v$
by auto
then have $u \in$ verts $G v \in$ verts G
by (auto simp: euler-trail-def trail-def awalk-hd-in-verts)
then show ?R using open-euler2[OF *] by blast
next
assume ? R
then obtain $u v$ where $*$:
connected $G u \in$ verts $G v \in$ verts G
$\bigwedge w . \llbracket w \in$ verts $G ; u \neq w ; v \neq w \rrbracket \Longrightarrow$ in-degree $G w=$ out-degree $G w$
in-degree $G u+1=$ out-degree $G u$
out-degree $G v+1=$ in-degree $G v$
by blast
then have $u \neq v$ by auto
from $*$ show ? L by (metis open-euler $1\langle u \neq v\rangle$)
qed
end
end

```
```

theory Kuratowski
imports
Arc-Walk
Digraph-Component
Subdivision
HOL-Library.Rewrite
begin

```

\section*{17 Kuratowski Subgraphs}

We consider the underlying undirected graphs. The underlying undirected graph is represented as a symmetric digraph.

\subsection*{17.1 Public definitions}
definition complete-digraph \(::\) nat \(\Rightarrow\) ('a,'b) pre-digraph \(\Rightarrow\) bool ( \(K_{-}\)) where complete-digraph \(n G \equiv\) graph \(G \wedge\) card (verts \(G)=n \wedge\) arcs-ends \(G=\{(u, v)\). \((u, v) \in\) verts \(G \times\) verts \(G \wedge u \neq v\}\)
definition complete-bipartite-digraph \(::\) nat \(\Rightarrow\) nat \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} b\right)\) pre-digraph \(\Rightarrow\) bool ( \(K_{-,-)}\)) where
complete-bipartite-digraph \(m n G \equiv\) graph \(G \wedge(\exists U V\). verts \(G=U \cup V \wedge U\) \(\cap V=\{ \}\)
\(\wedge\) card \(U=m \wedge\) card \(V=n \wedge\) arcs-ends \(G=U \times V \cup V \times U)\)
definition kuratowski-planar :: ('a,'b) pre-digraph \(\Rightarrow\) bool where
kuratowski-planar \(G \equiv \neg(\exists H\). subgraph \(H G \wedge(\exists K\) rev- \(K\) rev- \(H\). subdivision \((K\), rev- \(K)(H\), rev- \(\left.\left.H) \wedge\left(K_{3,3} K \vee K_{5} K\right)\right)\right)\)
lemma complete-digraph-pair-def: \(K_{n}\) (with-proj \(G\) )
\(\longleftrightarrow\) finite (pverts \(G) \wedge\) card (pverts \(G)=n \wedge\) parcs \(G=\{(u, v) .(u, v) \in(\) pverts
\(G \times\) pverts \(G) \wedge u \neq v\}(\) is \(-=? R)\)
proof
assume \(A: K_{n} G\)
then interpret graph with-proj \(G\) by (simp add: complete-digraph-def)
show ?R using \(A\) finite-verts by (auto simp: complete-digraph-def)
next
assume \(A\) : ? \(R\)
moreover
then have finite (pverts \(G \times\) pverts \(G\) ) parcs \(G \subseteq\) pverts \(G \times\) pverts \(G\)
by auto
then have finite (parcs \(G\) ) by (rule rev-finite-subset)
ultimately interpret pair-graph \(G\)
by unfold-locales (auto simp: symmetric-def split: prod.splits intro: symI)
show \(K_{n} G\) using \(A\) finite-verts by (auto simp: complete-digraph-def)
qed
lemma complete-bipartite-digraph-pair-def: \(K_{m, n}\) (with-proj \(\left.G\right) \longleftrightarrow\) finite (pverts G)
\(\wedge(\exists U\) V. pverts \(G=U \cup V \wedge U \cap V=\{ \} \wedge\) card \(U=m \wedge\) card \(V=n \wedge\) parcs \(G=U \times V \cup V \times U)(\) is \(-=? R)\)
proof
assume \(A: K_{m, n} G\)
then interpret graph \(G\) by (simp add: complete-bipartite-digraph-def)
show ? \(R\) using \(A\) finite-verts by (auto simp: complete-bipartite-digraph-def)
next
assume \(A: ? R\)
then interpret pair-graph \(G\)
by unfold-locales (fastforce simp: complete-bipartite-digraph-def symmetric-def split: prod.splits intro: symI)+ show \(K_{m, n} G\) using \(A\) by (auto simp: complete-bipartite-digraph-def)
qed
lemma pair-graphI-complete:
assumes \(K_{n}(\) with-proj \(G)\)
shows pair-graph \(G\)
proof -
from assms interpret graph with-proj \(G\) by (simp add: complete-digraph-def)
show pair-graph \(G\)
using finite-arcs finite-verts sym-arcs wellformed no-loops by unfold-locales simp-all
qed
lemma pair-graphI-complete-bipartite:
assumes \(K_{m, n}\) (with-proj \(G\) )
shows pair-graph \(G\)
proof -
from assms interpret graph with-proj \(G\) by (simp add: complete-bipartite-digraph-def)
show pair-graph \(G\)
using finite-arcs finite-verts sym-arcs wellformed no-loops by unfold-locales simp-all
qed

\subsection*{17.2 Inner vertices of a walk}
context pre-digraph begin
definition (in pre-digraph) inner-verts \(::\) ' \(b\) awalk \(\Rightarrow\) 'a list where inner-verts \(p \equiv t l(\) map \((\) tail \(G) p)\)
lemma inner-verts-Nil[simp]: inner-verts []\(=[]\) by (auto simp: inner-verts-def)
lemma inner-verts-singleton \([\) simp \(]\) : inner-verts \([x]=[]\) by (auto simp: inner-verts-def)
lemma (in wf-digraph) inner-verts-Cons:
assumes awalk \(u(e \# e s) v\)
```

 shows inner-verts (e# es) = (if es \not= [] then head G e # inner-verts es else [])
 using assms by (induct es) (auto simp: inner-verts-def)
 lemma (in -) inner-verts-with-proj-def:
pre-digraph.inner-verts (with-proj G) p=tl (map fst p)
unfolding pre-digraph.inner-verts-def by simp
lemma inner-verts-conv: inner-verts p = butlast (tl (awalk-verts u p))
unfolding inner-verts-def awalk-verts-conv by simp
lemma (in pre-digraph) inner-verts-empty[simp]:
assumes length p<2 shows inner-verts p = []
using assms by (cases p) (auto simp: inner-verts-def)
lemma (in wf-digraph) set-inner-verts:
assumes apath u p v
shows set (inner-verts p)= set (awalk-verts u p) - {u,v}
proof (cases length p<2)
case True with assms show ?thesis
by (cases p) (auto simp: inner-verts-conv[of - u] apath-def)
next
case False
have awalk-verts u p=u \# inner-verts p @ [v]
using assms False length-awalk-verts[of u p] inner-verts-conv[of p u]
by (cases awalk-verts u p) (auto simp: apath-def awalk-conv)
then show ?thesis using assms by (auto simp: apath-def)
qed
lemma in-set-inner-verts-appendI-l:
assumes }u\in\mathrm{ set (inner-verts p)
shows u\in set (inner-verts (p@q))
using assms
by (induct p) (auto simp: inner-verts-def)
lemma in-set-inner-verts-appendI-r:
assumes }u\in\mathrm{ set (inner-verts q)
shows u\in set (inner-verts (p@q))
using assms
by (induct p) (auto simp: inner-verts-def dest: list-set-tl)
end

```

\subsection*{17.3 Progressing Walks}

We call a walk progressing if it does not contain the sequence \([(x, y),(y, x)]\). This concept is relevant in particular for iapaths: If all of the inner vertices have degree at most 2 this implies that such a walk is a trail and even a path.
```

definition progressing :: ('a > 'a) awalk }=>\mathrm{ bool where
progressing p \equiv\forallxs x y ys. p\not=xs@ (x,y) \# (y,x) \# ys
lemma progressing-Nil: progressing []
by (auto simp: progressing-def)
lemma progressing-single: progressing [e]
by (auto simp: progressing-def)
lemma progressing-ConsD:
assumes progressing (e\# es) shows progressing es
using assms unfolding progressing-def by (metis (no-types) append-eq-Cons-conv)
lemma progressing-Cons:
progressing (x \# xs) \longleftrightarrow(xs=[]\vee (xs F []^\neg(fst x = snd (hd xs) ^ snd x =
fst (hd xs))}\wedge progressing xs))(is ?L = ?R
proof
assume ?L
show ?R
proof (cases xs)
case Nil then show ?thesis by auto
next
case (Cons x' xs')
then have \uvv.(x\# \# x'\# xs')\not=[]@ (u,v) \# (v,u) \# x\mp@subsup{s}{}{\prime}}\mathbf{\prime
unfolding progressing-def by metis
then have }\neg(f\mathrm{ ft }x=\mathrm{ snd }\mp@subsup{x}{}{\prime}\wedge snd x= fst x') by (cases x) (cases \mp@subsup{x}{}{\prime},\mathrm{ auto)
with Cons show ?thesis using <?L> by (auto dest: progressing-ConsD)
qed
next
assume ?R then show ?L unfolding progressing-def
by (auto simp add: Cons-eq-append-conv)
qed
lemma progressing-Cons-Cons:
progressing ((u,v)\# (v,w)\# es)\longleftrightarrowu\not=w\wedge progressing ((v,w)\# es) (is ?L
\longleftrightarrow?R)
by (auto simp: progressing-Cons)
lemma progressing-appendD1:
assumes progressing (p@q) shows progressing p
using assms unfolding progressing-def by (metis append-Cons append-assoc)
lemma progressing-appendD2:
assumes progressing (}p\mathrm{ @ q) shows progressing q
using assms unfolding progressing-def by (metis append-assoc)
lemma progressing-rev-path:
progressing (rev-path p)= progressing p (is ?L = ?R)
proof

```
```

 assume ?L
 show ?R unfolding progressing-def
 proof (intro allI notI)
 fix xs x y ys l1 l2 assume p = xs @ (x,y) # (y,x) # ys
 then have rev-path p = rev-path ys @ (x,y) # (y,x) # rev-path xs
 by simp
 then show False using <?L> unfolding progressing-def by auto
 qed
 next
assume ?R
show ?L unfolding progressing-def
proof (intro allI notI)
fix xs x y ys l1 l2 assume rev-path p=xs @ (x,y)\# (y,x)\# ys
then have rev-path (rev-path p)= rev-path ys @ (x,y) \# (y,x) \# rev-path xs
by simp
then show False using <?R> unfolding progressing-def by auto
qed
qed
lemma progressing-append-iff:
shows progressing (xs @ ys) \longleftrightarrow progressing xs ^ progressing ys
\wedge(xs =[]^ys =[]\longrightarrow(fst (last xs) \# snd (hd ys) \vee snd (last xs) }=\mathrm{ fst (hd
ys)))
proof (induct ys arbitrary: xs)
case Nil then show ?case by (auto simp: progressing-Nil)
next
case (Cons y' ys')
let - = ?R = ?case
have *: xs f []\Longrightarrowhd (rev-path xs) = prod.swap (last xs) by (induct xs) auto
have progressing (xs @ y'\# ys')\longleftrightarrow progressing ((xs @ [y])@ ys')
by simp
also have ...\longleftrightarrow progressing (xs@ @ y])^ progressing ys'^ (ys' = [] \longrightarrow (fst
y'}=\mathrm{ snd (hd ys') V snd y'}\mp@subsup{y}{}{\prime}\not=fst (hd ys'))
by (subst Cons) simp
also have ...\longleftrightarrow ?R
by (auto simp: progressing-Cons progressing-Nil progressing-rev-path[where
p=xs@ -,symmetric] * progressing-rev-path prod.swap-def)
finally show ?case.
qed

```

\subsection*{17.4 Walks with Restricted Vertices}
definition verts \(3::\left({ }^{\prime} a, ~ ' b\right)\) pre-digraph \(\Rightarrow\) 'a set where
\[
\text { verts3 } G \equiv\{v \in \text { verts } G .2<\text { in-degree } G v\}
\]

A path were only the end nodes may be in \(V\)
definition (in pre-digraph) gen-iapath \(::\) ' \(a\) set \(\Rightarrow{ }^{\prime} a \Rightarrow\) 'b awalk \(\Rightarrow\) ' \(a \Rightarrow\) bool where
gen-iapath \(V\) upv三u \(\mathcal{V} \wedge v \in V \wedge\) apath \(u p v \wedge\) set (inner-verts \(p) \cap V\) \(=\{ \} \wedge p \neq[]\)
abbreviation (in pre-digraph) (input) iapath :: ' \(a \Rightarrow{ }^{\prime} b\) awalk \(\Rightarrow^{\prime} a \Rightarrow\) bool where iapath \(u p v \equiv\) gen-iapath (verts3 \(G)\) upv
definition gen-contr-graph :: ('a,'b) pre-digraph \(\Rightarrow{ }^{\prime} a\) set \(\Rightarrow{ }^{\prime}\) a pair-pre-digraph where
```

gen-contr-graph G V \equiv\
pverts = V,
parcs ={(u,v). \existsp. pre-digraph.gen-iapath G Vupv}
D

```
abbreviation (input) contr-graph :: 'a pair-pre-digraph \(\Rightarrow{ }^{\prime}\) 'a pair-pre-digraph where contr-graph \(G \equiv\) gen-contr-graph \(G\) (verts3 \(G)\)

\subsection*{17.5 Properties of subdivisions}
lemma (in pair-sym-digraph) verts3-subdivide:
assumes \(e \in\) parcs \(G w \notin\) pverts \(G\)
showsverts3 (subdivide \(G\) e \(w\) ) \(=\) verts3 \(G\)
proof -
let ? \(s G=\) subdivide \(G\) e \(w\)
obtain \(u v\) where \(e\)-conv[simp]: \(e=(u, v)\) by (cases e) auto
from \(\langle w \notin\) pverts \(G\rangle\)
have \(w\)-arcs: \((u, w) \notin \operatorname{parcs} G(v, w) \notin \operatorname{parcs} G(w, u) \notin \operatorname{parcs} G(w, v) \notin \operatorname{parcs} G\)
by (auto dest: wellformed)
have \(G\)-arcs: \((u, v) \in\) parcs \(G(v, u) \in\) parcs \(G\)
using \(\langle e \in\) parcs \(G\rangle\) by (auto simp: arcs-symmetric)
have \(\{v \in\) pverts \(G .2<i n\)-degree \(G v\}=\{v \in\) pverts \(G .2<i n\)-degree ? \(s G v\}\)
proof -
\{ fix \(x\) assume \(x \in\) pverts \(G\)
define card-eq where card-eq \(x \longleftrightarrow\) in-degree ?s \(G x=\) in-degree \(G x\) for \(x\)
have in-arcs ? \(s G u=(\) in-arcs \(G u-\{(v, u)\}) \cup\{(w, u)\}\)
in-arcs ?s \(G v=(\) in-arcs \(G v-\{(u, v)\}) \cup\{(w, v)\}\)
using w-arcs \(G\)-arcs by auto
then have card-eq u card-eq \(v\)
unfolding card-eq-def in-degree-def using w-arcs G-arcs
apply -
apply (cases finite (in-arcs Gu); simp add: card-Suc-Diff1 del: card-Diff-insert)
apply (cases finite (in-arcs \(G\) v); simp add: card-Suc-Diff1 del: card-Diff-insert)
done
moreover
have \(x \notin\{u, v\} \Longrightarrow\) in-arcs ?s \(G x=\) in-arcs \(G x\)
using \(\langle x \in\) pverts \(G\rangle\langle w \notin\) pverts \(G\rangle\) by auto
then have \(x \notin\{u, v\} \Longrightarrow\) card-eq \(x\) by (simp add: in-degree-def card-eq-def)
ultimately have card-eq \(x\) by fast
then have in-degree \(G x=\) in-degree ?s \(G x\)
unfolding card-eq-def by simp \}
then show ?thesis by auto
qed
also have \(\ldots=\{v \in\) pverts ?.. . \(\mathcal{F} .2<i n\)-degree ? \(s G v\}\)
proof -
have in-degree ?s \(G w \leq 2\)
proof -
have in-arcs ?s \(G w=\{(u, w),(v, w)\}\)
using \(\langle w \notin\) pverts \(G\rangle G\)-arcs(1) by (auto simp: wellformed')
then show?thesis
unfolding in-degree-def by (auto simp: card-insert-if)
qed
then show ?thesis using \(G\)-arcs assms by auto
qed
finally show ?thesis by (simp add: verts3-def)
qed
lemma sd-path-Nil-iff:
sd-path e \(w p=[] \longleftrightarrow p=[]\)
by (cases (e,w,p) rule: sd-path.cases) auto
lemma (in pair-sym-digraph) gen-iapath-sd-path:
fixes \(e::{ }^{\prime} a \times{ }^{\prime} a\) and \(w::{ }^{\prime} a\)
assumes elems: \(e \in\) parcs \(G w \notin\) pverts \(G\)
assumes \(V: V \subseteq\) pverts \(G\)
assumes path: gen-iapath \(V u p v\)
shows pre-digraph.gen-iapath (subdivide \(G e w) V u(s d-p a t h ~ e w p) v\)
proof -
obtain \(x y\) where \(e\)-conv: \(e=(x, y)\) by (cases e) auto
interpret \(S\) : pair-sym-digraph subdivide \(G\) e w
using elems by (auto intro: pair-sym-digraph-subdivide)
from path have apath \(u p v\) by (auto simp: gen-iapath-def)
then have apath-sd: S.apath \(u\) (sd-path ewp) vand
set-ev-sd: set \((S . a w a l k-v e r t s ~ u(s d-p a t h ~ e ~ w ~ p)) \subseteq\) set (awalk-verts u \(p) \cup\{w\}\)
using elems by (rule apath-sd-path set-awalk-verts-sd-path)+
have \(w \notin\{u, v\}\) using elems 〈apath \(u p v\rangle\)
by (auto simp: apath-def awalk-hd-in-verts awalk-last-in-verts)
have set (S.inner-verts \((s d\)-path ew \(p))=\operatorname{set}(S . a w a l k\)-verts \(u(s d\)-path e w \(p\) ))
- \(\{u, v\}\)
using apath-sd by (rule S.set-inner-verts)
also have \(\ldots \subseteq \operatorname{set}(\) awalk-verts \(u p) \cup\{w\}-\{u, v\}\)
using set-ev-sd by auto
also have \(\ldots=\operatorname{set}(\) inner-verts \(p) \cup\{w\}\)
using set-inner-verts \([O F\) apath \(u p v\rangle]\langle w \notin\{u, v\}\rangle\) by blast
finally have set (S.inner-verts (sd-path ewp)) \(\cap V \subseteq(\) set (inner-verts \(p) \cup\)
have uv: \(u \in\) pverts \(G v \in\) pverts \(G\) S.apath \(u p v\) using \(V\) path by (auto simp: S.gen-iapath-def)
note co \(=\) apath-co-path \([\) OF elems uv] set-awalk-verts-co-path \([\) OF elems uv]
show ?thesis-set by (fact co)
show ?thesis-path using co path unfolding gen-iapath-def S.gen-iapath-def using elems
by (clarsimp simp add: set-inner-verts[of u] S.set-inner-verts[of u]) blast qed

\subsection*{17.6 Pair Graphs}
context pair-sym-digraph begin
lemma gen-iapath-rev-path:
gen-iapath \(V v(\) rev-path \(p) u=\) gen-iapath \(V u p v(\) is \(? L=? R)\)
proof -
\{ fix \(u p v\) assume gen-iapath \(V u p v\)
then have butlast \((t l(\) awalk-verts \(v(\) rev-path \(p)))=\) rev (butlast \((t l\) (awalk-verts \(u p)\) )
by (auto simp: tl-rev butlast-rev butlast-tl awalk-verts-rev-path gen-iapath-def apath-def)
with \(\langle g e n\)-iapath \(V u p v\rangle\) have gen-iapath \(V v\) (rev-path \(p) u\)
by (auto simp: gen-iapath-def apath-def inner-verts-conv[symmetric] awalk-verts-rev-path)
\}
note \(R L=\) this
show ?thesis by (auto dest: RL intro: RL)
qed
```

lemma inner-verts-rev-path:
assumes awalk u pv
shows inner-verts (rev-path p)=rev (inner-verts p)
by (metis assms butlast-rev butlast-tl awalk-verts-rev-path inner-verts-conv tl-rev)
end
context pair-pseudo-graph begin
lemma apath-imp-progressing:
assumes apath u p v shows progressing p
proof (rule ccontr)
assume \neg?thesis
then obtain xs x y ys where *: p=xs @ (x,y)\# (y,x)\# ys
unfolding progressing-def by auto
then have \negapath u pv
by (simp add: apath-append-iff apath-simps hd-in-awalk-verts)
then show False using assms by auto
qed
lemma awalk-Cons-deg2-unique:
assumes awalk u p v p\not=[]
assumes in-degree Gu\leq2
assumes awalk u1 (e1 \# p) v awalk u2 (e2 \# p) v
assumes progressing (e1 \# p) progressing (e2 \# p)
shows e1 = e2
proof (cases p)
case (Cons e es)
show ?thesis
proof (rule ccontr)
assume e1 f e2
define }x\mathrm{ where }x=\mathrm{ snd e
then have e-unf:e=(u,x) using <awalk u p v>Cons by (auto simp: awalk-simps)
then have ei-unf: e1 = (u1,u) e2 = (u2,u)
using Cons assms by (auto simp: apath-simps prod-eqI)
with Cons assms }<e=(u,x)\rangle\langlee1\not=e2\rangle have u1 = u2 x\not=u1x\not=u2,
by (auto simp: progressing-Cons-Cons)
moreover have {(u1,u),(u2,u),(x,u)}\subseteq parcs G
using e-unf ei-unf Cons assms by (auto simp: awalk-simps intro: arcs-symmetric)
then have finite (in-arcs Gu)
and {(u1,u),(u2,u),(x,u)}\subseteq in-arcs Gu}u\mathrm{ by auto
then have card ({(u1,u),(u2,u),(x,u)})\leqin-degree Gu
unfolding in-degree-def by (rule card-mono)
ultimately show False using <in-degree Gu\leq2` by auto
qed
qed (simp add: <p\not=[]>)
lemma same-awalk-by-same-end:
assumes V: verts3 G\subseteqVV\subseteq pverts }

```
and walk: awalk \(u\) p v awalk \(u q\) whd \(p=h d q p \neq[] q \neq[]\)
and progress: progressing \(p\) progressing \(q\)
and tail: \(v \in V w \in V\)
and inner-verts: set (inner-verts \(p) \cap V=\{ \}\)
set (inner-verts \(q) \cap V=\{ \}\)
shows \(p=q\)
using walk progress inner-verts
proof (induct p q arbitrary: u rule: list-induct2'[case-names Nil-Nil Cons-Nil Nil-Cons Cons-Cons])
case (Cons-Cons a as b bs)
from \(\langle h d(a \#-)=h d \rightarrow\) have \(a=b\) by simp
\(\{\) fix \(a\) as \(v b\) bs \(w\)
assume A: awalk \(u(a \# a s) v\) awalk \(u(b \# b s) w\) set (inner-verts \((b \# b s)) \cap V=\{ \} v \in V a=b\) as \(=[]\)
then have \(b s=[]\) by - (rule ccontr, auto simp: inner-verts-Cons awalk-simps) \(\}\) note Nil-imp-Nil \(=\) this
show ?case
proof (cases as \(=[]\) )
case True
then have \(b s=[]\) using Cons-Cons.prems \(\langle a=b\rangle\) tail by (metis Nil-imp-Nil)
then show? ?thesis using True \(\langle a=b\rangle\) by simp
next
case False
then have \(b s \neq[]\) using Cons-Cons.prems \(\langle a=b\rangle\) tail by (metis Nil-imp-Nil)
obtain \(a^{\prime} a s^{\prime}\) where \(a s=a^{\prime} \#\) as \(s^{\prime}\) using \(\langle a s \neq[]\rangle\) by (cases as) simp
obtain \(b^{\prime} b s^{\prime}\) where \(b s=b^{\prime} \# b s^{\prime}\) using \(\langle b s \neq[]\rangle\) by (cases bs) simp
let ?arcs \(=\left\{(\right.\) fst \(a\), snd \(a),\left(\right.\) snd \(a^{\prime}\), snd \(\left.a\right),\left(\right.\) snd \(b^{\prime}\), snd \(\left.\left.a\right)\right\}\)
have card \(\left\{f\right.\) st \(a\), snd \(a^{\prime}\), snd \(\left.b^{\prime}\right\}=\) card (fst' ? arcs) by auto
also have \(\ldots=\) card ? arcs by (rule card-image) (cases a, auto)
also have \(\ldots \leq\) in-degree \(G(\) snd \(a)\)
proof -
have ?arcs \(\subseteq\) in-arcs \(G(\) snd a)
using \(\langle\) progressing \((a \#\) as \()\rangle\langle p r o g r e s s i n g ~(b \# b s)\rangle\langle a w a l k-(a \# a s)-\rangle\)
〈awalk - (b \# bs) -〉
unfolding \(\langle a=b\rangle\langle a s=-\rangle\langle b s=-\rangle\)
by (cases b; cases \(a^{\prime}\) ) (auto simp: progressing-Cons-Cons awalk-simps intro:
arcs-symmetric)
with -show ?thesis unfolding in-degree-def by (rule card-mono) auto
qed
also have \(\ldots \leq 2\)
proof -
have snd \(a \notin V\) snd \(a \in\) pverts \(G\)
using Cons-Cons.prems \(\langle a s \neq[]\) by (auto simp: inner-verts-Cons)
then show ?thesis using \(V\) by (auto simp: verts3-def)
qed
finally have \(f\) st \(a=s n d a^{\prime} \vee f\) st \(a=s n d b^{\prime} \vee\) snd \(a^{\prime}=\) snd \(b^{\prime}\) by (auto simp: card-insert-if split: if-splits)
then have \(h d\) as \(=h d b s\)
using 〈progressing \((a \#\) as \()\rangle\langle p r o g r e s s i n g ~(b \# b s)\rangle\langle a w a l k-(a \#\) as \()-\rangle\langle a w a l k\) - \((b \# b s)->\)
unfolding \(\langle a=b\rangle\langle a s=-\rangle\langle b s=-\rangle\)
by (cases b, cases \(a^{\prime}\), cases \(b^{\prime}\) ) (auto simp: progressing-Cons-Cons awalk-simps)
then show? thesis
using \(\langle a s \neq[]\rangle\langle b s \neq[]\rangle\) Cons-Cons.prems
by (auto dest: progressing-ConsD simp: awalk-simps inner-verts-Cons intro!:
Cons-Cons)
qed
qed simp-all
lemma same-awalk-by-common-arc:
assumes \(V\) : verts3 \(G \subseteq V V \subseteq\) pverts \(G\)
assumes walk: awalk \(u p v\) awalk \(w q x\)
assumes progress: progressing \(p\) progressing \(q\)
assumes iv-not-in- \(V\) : set (inner-verts \(p) \cap V=\{ \}\) set (inner-verts \(q\) ) \(\cap V=\) \{\}
assumes ends-in- \(V:\{u, v, w, x\} \subseteq V\)
assumes arcs: \(e \in \operatorname{set} p e \in \operatorname{set} q\)
shows \(p=q\)
proof -
from arcs obtain \(p 1\) p2 where \(p\)-decomp: \(p=p 1\) @ \(e \# p 2\) by (metis in-set-conv-decomp-first)
from arcs obtain \(q 1 q 2\) where \(q\)-decomp: \(q=q 1\) @ \(e \# q 2\) by (metis in-set-conv-decomp-first)
\{ define \(p 1^{\prime} q 1^{\prime}\) where \(p 1^{\prime}=\) rev-path \((p 1 @[e])\) and \(q 1^{\prime}=\operatorname{rev}-p a t h ~(q 1 @\) [e])
then have decomp: \(p=\) rev-path \(p 1^{\prime} @ p 2 q=\) rev-path \(q 1^{\prime} @ q 2\)
and awlast \(u\left(\right.\) rev-path \(\left.p 1^{\prime}\right)=\) snd \(e\) awlast \(w\left(\right.\) rev-path \(\left.q 1^{\prime}\right)=\) snd \(e\)
using \(p\)-decomp \(q\)-decomp walk by (auto simp: awlast-append awalk-verts-rev-path)
then have walk': awalk (snd e) p1'u awalk (snd e) q1' \(w\)
using walk by auto
moreover have \(h d p 1^{\prime}=h d q 1^{\prime} p 1^{\prime} \neq[] q 1^{\prime} \neq[]\) by (auto simp: \(p 1^{\prime}\)-def \(\left.q 1^{\prime}-d e f\right)\)
moreover have progressing p1' progressing q1'
using progress unfolding decomp by (auto dest: progressing-appendD1 simp:
progressing-rev-path)

\section*{moreover}
have set (inner-verts (rev-path p1 \()\) ) \(\cap V=\{ \}\) set (inner-verts (rev-path q1 \(\left.{ }^{\prime}\right)\) ) \(\cap V=\{ \}\)
using iv-not-in- \(V\) unfolding decomp
by (auto intro: in-set-inner-verts-appendI-l in-set-inner-verts-appendI-r)
then have \(u \in V w \in V\) set (inner-verts \(p 1^{\prime}\) ) \(\cap V=\{ \}\) set (inner-verts q1 \({ }^{\prime}\) ) П \(V=\{ \}\)
using ends-in-V iv-not-in-V walk unfolding decomp
by (auto simp: inner-verts-rev-path)
ultimately have \(p 1^{\prime}=q 1^{\prime}\) by (rule same-awalk-by-same-end \(\left.\left.[O F V]\right)\right\}\) moreover
\(\left\{\right.\) define \(p 2^{\prime} q 2^{\prime}\) where \(p 2^{\prime}=e \# p 2\) and \(q 2^{\prime}=e \# q 2\)
then have decomp: \(p=p 1 @ p 2^{\prime} q=q 1 @ q 2^{\prime}\)
using \(p\)-decomp \(q\)-decomp by (auto simp: awlast-append)
moreover
have awlast \(u p 1=\) fst \(e\) awlast \(w q 1=f s t e\)
using \(p\)-decomp \(q\)-decomp walk by auto
ultimately
have *: awalk (fst e) p2'vawalk (fst e) q2' \(x\) using walk by auto
moreover have \(h d p 2^{\prime}=h d q 2^{\prime} p 2^{\prime} \neq[] q 2^{\prime} \neq[]\) by (auto simp: \(p 2^{\prime}\) 'def \(\left.q 2^{\prime}-d e f\right)\)
moreover have progressing \(\mathrm{p}^{2}{ }^{\prime}\) progressing \(q\) 2' \(^{\prime}\)
using progress unfolding decomp by (auto dest: progressing-appendD2)

\section*{moreover}
have \(v \in V x \in V\) set (inner-verts p2') \(\cap V=\{ \}\) set (inner-verts q2') \(\cap V=\) \{\}
using ends-in-V iv-not-in- \(V\) unfolding decomp
by (auto intro: in-set-inner-verts-appendI-l in-set-inner-verts-appendI-r)
ultimately have \(p 2^{\prime}=q 2^{\prime}\) by (rule same-awalk-by-same-end \([O F V]\) ) \}
ultimately
show \(p=q\) using \(p\)-decomp \(q\)-decomp by (auto simp: rev-path-eq)
qed
lemma same-gen-iapath-by-common-arc:
assumes \(V\) : verts3 \(G \subseteq V V \subseteq\) pverts \(G\)
assumes path: gen-iapath \(V u p v\) gen-iapath \(V w q x\)
assumes arcs: \(e \in\) set \(p e \in \operatorname{set} q\)
shows \(p=q\)
proof -
from path have awalk: awalk u p vawalk w q x progressing p progressing \(q\) and in-V: set (inner-verts \(p\) ) \(\cap V=\{ \}\) set (inner-verts \(q) \cap V=\{ \}\{u, v, w, x\}\) \(\subseteq V\)
by (auto simp: gen-iapath-def apath-imp-progressing apath-def)
from \(V\) awalk in- \(V\) arcs show ?thesis by (rule same-awalk-by-common-arc) qed
end

\subsection*{17.7 Slim graphs}

We define the notion of a slim graph. The idea is that for a slim graph \(G\), \(G\) is a subdivision of gen-contr-graph (with-proj \(G\) ) (verts3 (with-proj \(G\) )). context pair-pre-digraph begin
definition (in pair-pre-digraph) is-slim \(::\) 'a set \(\Rightarrow\) bool where
is-slim \(V \equiv\)
```

 (\forallv\in pverts G.v\inV\vee
 in-degree Gv\leq2 ^(\existsxpy.gen-iapath V x py^v\in set (awalk-verts x p)))
 ^
(\foralle\in parcs G.fst e\not= snd e^(\existsxpy.gen-iapath Vxpy^e\in set p))}
(\foralluvpq.(gen-iapath Vupv^gen-iapath Vuqv)\longrightarrowp=q)^
V\subseteq pverts G
definition direct-arc :: ' }a\times\mathrm{ ' }a=>\mp@subsup{|}{}{\prime}a\times'a\mathrm{ where
direct-arc uv \equivSOME e. {fst uv, snd uv}={fst e, snd e}
definition choose-iapath :: ' }a>\mp@subsup{}{}{\prime}a=>('a\times'a)\mathrm{ awalk where
choose-iapath uv \equiv (let
chosen-path = (\lambdau v. SOME p. iapath u p v)
in if direct-arc (u,v)=(u,v) then chosen-path uv else rev-path (chosen-path v
u))
definition slim-paths ::('a\times('a\times'a) awalk \times 'a) set where
slim-paths \equiv(\lambdae.(fst e, choose-iapath (fst e) (snd e), snd e))'parcs (contr-graph
G)
definition slim-verts :: 'a set where
slim-verts \equivverts3 G U(\bigcup(u,p,-) \in slim-paths. set (awalk-verts u p))
definition slim-arcs :: 'a rel where
slim-arcs }\equiv\bigcup(-,p,-)\in slim-paths. set
Computes a slim subgraph for an arbitrary pair-digraph
definition slim :: 'a pair-pre-digraph where
slim \equiv (pverts = slim-verts, parcs = slim-arcs \)
end
lemma (in wf-digraph) iapath-dist-ends: \u p v. iapath u p v\Longrightarrowu\not=v
unfolding pre-digraph.gen-iapath-def by (metis apath-ends)
context pair-sym-digraph begin
lemma choose-iapath:
assumes \existsp. iapath u pv
shows iapath u (choose-iapath u v) v
proof (cases direct-arc (u,v)=(u,v))
define chosen where chosen u v = (SOME p. iapath upv) for uv
{ case True
have iapath u (chosen u v)v
unfolding chosen-def by (rule someI-ex) (rule assms)
then show ?thesis using True by (simp add: choose-iapath-def chosen-def) }

```
```

 { case False
 from assms obtain p where iapath u pv by auto
 then have iapath v(rev-path p)u
 by (simp add: gen-iapath-rev-path)
 then have iapath v(chosen vu)u
 unfolding chosen-def by (rule someI)
 then show ?thesis using False
 by (simp add: choose-iapath-def chosen-def gen-iapath-rev-path) }
 qed
lemma slim-simps: pverts slim = slim-verts parcs slim = slim-arcs
by (auto simp: slim-def)
lemma slim-paths-in-G-E:
assumes (u,p,v)\in slim-paths obtains iapath u p vu\not=v
using assms choose-iapath
by (fastforce simp: gen-contr-graph-def slim-paths-def dest: iapath-dist-ends)
lemma verts-slim-in-G: pverts slim \subseteq pverts G
by (auto simp: slim-simps slim-verts-def verts3-def gen-iapath-def apath-def
elim!: slim-paths-in-G-E elim!: awalkE)
lemma verts3-in-slim-G[simp]:
assumes x \in verts3 G shows x f pverts slim
using assms by (auto simp: slim-simps slim-verts-def)
lemma arcs-slim-in-G: parcs slim \subseteq parcs G
by (auto simp: slim-simps slim-arcs-def gen-iapath-def apath-def
elim!: slim-paths-in-G-E elim!: awalkE)
lemma slim-paths-in-slimG:
assumes (u,p,v)\in slim-paths
shows pre-digraph.gen-iapath slim (verts3 G) upv^p\not=[]
proof -
from assms have arcs: \e. e\in set p\Longrightarrowe\in parcs slim
by (auto simp: slim-simps slim-arcs-def)
moreover
from assms have gen-iapath (verts3 G) upv and p\not=[]
by (auto simp: gen-iapath-def elim!: slim-paths-in-G-E)
ultimately show ?thesis
by (auto simp: pre-digraph.gen-iapath-def pre-digraph.apath-def pre-digraph.awalk-def
inner-verts-with-proj-def)
qed
lemma direct-arc-swapped:
direct-arc (}u,v)=\mathrm{ direct-arc (}v,u
by (simp add: direct-arc-def insert-commute)
lemma direct-arc-chooses:

```
```

 fixes uv :: 'a shows direct-arc (u,v)=(u,v)\vee direct-arc (u,v)=(v,u)
 proof -
define f :: 'a set }=>\mp@subsup{}{}{\prime}a\times\mp@subsup{}{}{\prime}
where f X=(SOME e. X={fst e,snd e}) for X
have \existsp::'a > 'a. {u,v}={fst p, snd p} by (rule exI[where x=(u,v)]) auto
then have {u,v}={fst (f{u,v}), snd (f{u,v})}
unfolding f}f\mathrm{ -def by (rule someI-ex)
then have f{u,v}=(u,v)\veef{u,v}=(v,u)
by (auto simp: doubleton-eq-iff prod-eq-iff)
then show ?thesis by (auto simp: direct-arc-def f-def)
qed
lemma rev-path-choose-iapath:
assumes }u\not=
shows rev-path (choose-iapath u v) = choose-iapath vu
using assms direct-arc-chooses[of u v]
by (auto simp: choose-iapath-def direct-arc-swapped)
lemma no-loops-in-iapath: gen-iapath V }
mathrm{ v v \#a set p > fst a\# snd a
by (auto simp: gen-iapath-def no-loops-in-apath)
lemma pair-bidirected-digraph-slim: pair-bidirected-digraph slim
proof
fix e assume A: e\in parcs slim
then obtain upv where (u,p,v)\in slim-paths e\in set p by (auto simp: slim-simps
slim-arcs-def)
with A have iapath u pv by (auto elim: slim-paths-in-G-E)
with }\langlee\in\mathrm{ set p> have fst e fet (awalk-verts u p) snd e e set (awalk-verts u p)
by (auto simp: set-awalk-verts gen-iapath-def apath-def)
moreover
from <- \in slim-paths\rangle have set (awalk-verts u p)\subseteq pverts slim
by (auto simp: slim-simps slim-verts-def)
ultimately
show fst e pverts slim snd e f pverts slim by auto
show fst e\not= snd e
using <iapath u p v\rangle\langlee\in set p> by (auto dest: no-loops-in-iapath)
next
{ fix e assume e\in parcs slim
then obtain upv where (u,p,v)\in slim-paths and e\in set p
by (auto simp: slim-simps slim-arcs-def)
moreover
then have iapath u pv and p\not=[] and u\not=v by (auto elim: slim-paths-in-G-E)
then have iapath v (rev-path p)}u\mathrm{ and rev-path p}\not=[] and v\not=
by (auto simp: gen-iapath-rev-path)
then have (v,u)\in parcs (contr-graph G)
by (auto simp: gen-contr-graph-def)
moreover

```
```

 from〈iapath u pv> have u\not=v
 by (auto simp: gen-iapath-def dest: apath-nonempty-ends)
 ultimately
 have (v, rev-path p,u)\in slim-paths
 by (auto simp: slim-paths-def rev-path-choose-iapath intro: rev-image-eqI)
 moreover
 from }\langlee\in\mathrm{ set p` have (snd e, fst e) G set (rev-path p)
 by (induct p) auto
 ultimately have (snd e, fst e) \in parcs slim
 by (auto simp: slim-simps slim-arcs-def) }
 then show symmetric slim
 unfolding symmetric-conv by simp (metis fst-conv snd-conv)
 qed
lemma (in pair-pseudo-graph) pair-graph-slim: pair-graph slim
proof -
interpret slim: pair-bidirected-digraph slim by (rule pair-bidirected-digraph-slim)
show ?thesis
proof
show finite (pverts slim)
using verts-slim-in-G finite-verts by (rule finite-subset)
show finite (parcs slim)
using arcs-slim-in-G finite-arcs by (rule finite-subset)
qed
qed
lemma subgraph-slim: subgraph slim G
proof (rule subgraphI)
interpret H: pair-bidirected-digraph slim
by (rule pair-bidirected-digraph-slim) intro-locales
show verts slim \subseteqverts G arcs slim \subseteq arcs G
by (auto simp: verts-slim-in-G arcs-slim-in-G)
show compatible G slim ..
show wf-digraph slim wf-digraph G
by unfold-locales
qed
lemma giapath-if-slim-giapath:
assumes pre-digraph.gen-iapath slim (verts3 G)upv
shows gen-iapath (verts3 G) u p v
using assms verts-slim-in-G arcs-slim-in-G
by (auto simp: pre-digraph.gen-iapath-def pre-digraph.apath-def pre-digraph.awalk-def
inner-verts-with-proj-def)
lemma slim-giapath-if-giapath:
assumes gen-iapath (verts3 G) u pv
shows \existsp.pre-digraph.gen-iapath slim (verts3 G)upv(is \existsp. ?P p)

```
```

proof
from assms have choose-arcs: \bigwedgee. e set (choose-iapath u v)\Longrightarrowe\in parcs
slim
by (fastforce simp: slim-simps slim-arcs-def slim-paths-def gen-contr-graph-def)
moreover
from assms have choose: iapath u (choose-iapath u v) v
by (intro choose-iapath) (auto simp: gen-iapath-def)
ultimately show ?P (choose-iapath u v)
by (auto simp: pre-digraph.gen-iapath-def pre-digraph.apath-def pre-digraph.awalk-def
inner-verts-with-proj-def)
qed
lemma contr-graph-slim-eq:
gen-contr-graph slim (verts3 G) = contr-graph G
using giapath-if-slim-giapath slim-giapath-if-giapath by (fastforce simp: gen-contr-graph-def)
end
context pair-pseudo-graph begin
lemma verts3-slim-in-verts3:
assumes v\in verts3 slim shows v\in verts3 G
proof -
from assms have 2 < in-degree slim v by (auto simp: verts3-def)
also have ...\leqin-degree Gv using subgraph-slim by (rule subgraph-in-degree)
finally show ?thesis using assms subgraph-slim by (fastforce simp: verts3-def)
qed
lemma slim-is-slim:
pair-pre-digraph.is-slim slim (verts3 G)
proof (unfold pair-pre-digraph.is-slim-def, safe)
interpret S: pair-graph slim by (rule pair-graph-slim)
{ fix v assume v\in pverts slim v}\not\in\mathrm{ verts3 G
then have in-degree Gv\leq2
using verts-slim-in-G by (auto simp: verts3-def)
then show in-degree slim v\leq2
using subgraph-in-degree[OF subgraph-slim, of v] by fastforce
next
fix w assume w\in pverts slim w}\not\in\mathrm{ verts3 G
then obtain upv where upv: (u,p,v)\in slim-paths w\in set (awalk-verts u p)
by (auto simp: slim-simps slim-verts-def)
moreover
then have S.gen-iapath (verts3 G) u p v
using slim-paths-in-slimG by auto
ultimately
show \existsx q y.S.gen-iapath (verts3 G) xqy
\wedge w\in set (awalk-verts x q)
by auto
next

```
```

 fix uv assume (u,v) \in parcs slim
 then obtain x p y where (x, p,y)\in slim-paths (u,v)\in set p
 by (auto simp: slim-simps slim-arcs-def)
 then have S.gen-iapath (verts3 G) x p y ^(u,v)\in set p
 using slim-paths-in-slimG by auto
 then show \existsx py.S.gen-iapath (verts3 G) x py^(u,v)\in set p
 by blast
 next
 fix }uv\mathrm{ assume (u,v) € parcs slim fst (u,v) =snd (u,v)
 then show False by (auto simp: S.no-loops')
 next
fix uvpq
assume paths: S.gen-iapath (verts3 G) upv
S.gen-iapath (verts3 G) uqv
have V: verts3 slim \subseteqverts3 G verts3 G\subseteq pverts slim
by (auto simp: verts3-slim-in-verts3)
have }p=[]\veeq=[]\Longrightarrowp=q\mathrm{ using paths
by (auto simp: S.gen-iapath-def dest: S.apath-ends)
moreover
{ assume p}\not=[]q\not=[
{ fix upv assume p\not=[] and path:S.gen-iapath (verts3 G) u pv
then obtain e where e\in set p by (metis last-in-set)
then have e\in parcs slim using path by (auto simp: S.gen-iapath-def
S.apath-def)
then obtain xry where (x,r,y) \in slim-paths e e set r
by (auto simp: slim-simps slim-arcs-def)
then have S.gen-iapath (verts3 G) x r y by (metis slim-paths-in-slimG)
with }\langlee\in\mathrm{ set r}\langle<<\in\mathrm{ set p> path have p=r
by (auto intro: S.same-gen-iapath-by-common-arc[OF V])
then have }x=uy=v\mathrm{ using path 〈S.gen-iapath (verts3 G) x r y><p=r>
<p\not= []}
by (auto simp: S.gen-iapath-def S.apath-def dest: S.awalk-ends)
then have (u,p,v)\in slim-paths using <p =r\rangle\langle(x,r,y)\in slim-paths\rangle by
simp }
note obt=this
from <p \not=[]>\langleq\not=[]> paths have (u,p,v)\in slim-paths (u,q,v)\in slim-paths
by (auto intro: obt)
then have p=q by (auto simp: slim-paths-def)
}
ultimately show }p=q\mathrm{ by metis
}
qed auto
end
context pair-sym-digraph begin

```
```

lemma
assumes p:gen-iapath (pverts G) u pv
shows gen-iapath-triv-path: p=[(u,v)]
and gen-iapath-triv-arc: (u,v) \in parcs G
proof -
have set (inner-verts p)={}
proof -
have *: \bigwedgeA B ::'a set. \llbracketA\subseteqB;A\capB={}\rrbracket\Longrightarrow }\LongrightarrowA={}\mathrm{ by blast
have set (inner-verts p) = set (awalk-verts u p) - {u,v}
using p by (simp add: set-inner-verts gen-iapath-def)
also have ...\subseteq pverts G
using p unfolding gen-iapath-def apath-def awalk-conv by auto
finally show ?thesis
using p by (rule-tac *) (auto simp: gen-iapath-def)
qed
then have inner-verts p=[] by simp
then show }p=[(u,v)]\mathrm{ using p
by (cases p) (auto simp: gen-iapath-def apath-def inner-verts-def split: if-split-asm)
then show (u,v) \in parcs G
using p by (auto simp: gen-iapath-def apath-def)
qed
lemma gen-contr-triv:
assumes is-slim V pverts G=V shows gen-contr-graph G V =G
proof -
let ?gcg = gen-contr-graph G V
from assms have pverts ?gcg = pverts G
by (auto simp: gen-contr-graph-def is-slim-def)
moreover
have parcs ?gcg = parcs G
proof (rule set-eqI, safe)
fix u v assume (u,v)\in parcs ?gcg
then obtain p where gen-iapath Vupv
by (auto simp: gen-contr-graph-def)
then show (u,v) \in parcs G
using gen-iapath-triv-arc <pverts G}=V\mathrm{ \ by auto
next
fix uv assume (u,v) \in parcs G
with assms obtain x p y where path: gen-iapath V xpy (u,v)\in set pu\not=v
by (auto simp: is-slim-def)
with <pverts }G=V`\mathrm{ have p=[(x,y)] by (intro gen-iapath-triv-path) auto
then show (u,v) \in parcs ?gcg
using path by (auto simp: gen-contr-graph-def)
qed
ultimately
show ?gcg = G by auto
qed

```

\section*{lemma is-slim-no-loops:}
assumes is-slim \(V a \in \operatorname{arcs} G\) shows fst \(a \neq\) snd \(a\)
using assms by (auto simp: is-slim-def)
end

\subsection*{17.8 Contraction Preserves Kuratowski-Subgraph-Property}
```

lemma (in pair-pseudo-graph) in-degree-contr:
assumes v\inV and V: verts3 G\subseteqVV \subseteq verts G
shows in-degree (gen-contr-graph G V) v}\leqin\mathrm{ -degree Gv
proof -
have fin: finite {(u,p).gen-iapath Vupv}
proof -
have {(u,p).gen-iapath Vupv}\subseteq(\lambda(u,p,-). (u,p))'{(u,p,v). apath u p v}
by (force simp: gen-iapath-def)
with apaths-finite-triple show ?thesis by (rule finite-surj)
qed
have io-snd: inj-on snd {(u,p). gen-iapath V u p v}
by (rule inj-onI) (auto simp: gen-iapath-def apath-def dest: awalk-ends)
have io-last: inj-on last {p.\existsu.gen-iapath V u pv}
proof (rule inj-onI, safe)
fix u1 u2 p1 p2
assume A: last p1 = last p2 and B: gen-iapath V u1 p1 v gen-iapath V u2 p2
v
from B have last p1 \in set p1 last p2 \in set p2 by (auto simp: gen-iapath-def)
with A have last p1\in set p1 last p1\in set p2 by simp-all
with V[simplified] B show p1 = p2 by (rule same-gen-iapath-by-common-arc)
qed

```
have in-degree (gen-contr-graph \(G V) v=\operatorname{card}((\lambda(u,-) .(u, v))\) ' \(\{(u, p)\). gen-iapath
V \(u p v\}\) )
    proof -
    have in-arcs (gen-contr-graph \(G V) v=(\lambda(u,-) .(u, v))\) ' \(\{(u, p)\). gen-iapath \(V\)
\(u p v\}\)
            by (auto simp: gen-contr-graph-def)
    then show ?thesis unfolding in-degree-def by simp
qed
also have \(\ldots \leq \operatorname{card}\{(u, p)\). gen-iapath \(V u p v\}\)
    using fin by (rule card-image-le)
    also have \(\ldots=\operatorname{card}(s n d\) ' \(\{(u, p)\). gen-iapath \(V u p v\})\)
    using io-snd by (rule card-image[symmetric])
also have snd' \(\{(u, p)\). gen-iapath \(V u p v\}=\{p . \exists u\). gen-iapath \(V u p v\}\)
    by (auto intro: rev-image-eqI)
also have card \(\ldots=\operatorname{card}\) (last '...)
    using io-last by (rule card-image[symmetric])
also have \(\ldots \leq\) in-degree \(G v\)
```

 unfolding in-degree-def
 proof (rule card-mono)
 show last' {p. \existsu.gen-iapath Vupv}\subseteqin-arcs Gv
 proof -
 have \u p. awalk u pv\Longrightarrowp\not=[]\Longrightarrow last p\in parcs G
 by (auto simp: awalk-def)
 moreover
 { fix u p assume awalk u pvp\not=[]
 then have snd (last p)=v by (induct p arbitrary: u) (auto simp:
 awalk-simps) }
ultimately
show ?thesis unfolding in-arcs-def by (auto simp: gen-iapath-def apath-def)
qed
qed auto
finally show ?thesis.
qed
lemma (in pair-graph) contracted-no-degree2-simp:
assumes subd: subdivision-pair G H
assumes two-less-deg2: verts3 G = pverts G
shows contr-graph H=G
using subd
proof (induct rule: subdivision-pair-induct)
case base
{ fix e assume e f parcs G
then have gen-iapath (pverts G) (fst e) [(fst e, snd e)] (snd e) e\in set [(fst e,
snd e)]
using no-loops[of (fst e, snd e)] by (auto simp: gen-iapath-def apath-simps)
then have \existsupv.gen-iapath (pverts G)upv\wedgee\in set p by blast }
moreover
{ fix upv assume gen-iapath (pverts G) u pv
from <gen-iapath - u p v> have p=[(u,v)]
unfolding gen-iapath-def apath-def
by safe (cases p, case-tac [2] list, auto simp: awalk-simps inner-verts-def) }
ultimately have is-slim (verts3 G) unfolding is-slim-def two-less-deg2
by (blast dest: no-loops-in-iapath)
then show ?case by (simp add: gen-contr-triv two-less-deg2)
next
case (divide e wH)
let ?sH = subdivide H e w
from〈subdivision-pair G H` interpret H: pair-bidirected-digraph H
by (rule bidirected-digraphI-subdivision)
from divide(1,2) interpret S: pair-sym-digraph ?sH by (rule H.pair-sym-digraph-subdivide)
obtain }uv\mathrm{ where e-conv:e = (u,v) by (cases e) auto
have contr-graph ?sH = contr-graph H
proof -
have V-cond: verts3 H\subseteq pverts H by (auto simp: verts3-def)
have verts3 H = verts3 ?sH

```
```

 using divide by (simp add: H.verts3-subdivide)
 then have v: pverts (contr-graph ?sH)= pverts (contr-graph H)
 by (auto simp: gen-contr-graph-def)
 moreover
 then have parcs (contr-graph ?sH) = parcs (contr-graph H)
 unfolding gen-contr-graph-def
 by (auto dest: H.gen-iapath-co-path[OF divide(1,2) V-cond]
 H.gen-iapath-sd-path[OF divide(1,2) V-cond])
 ultimately show ?thesis by auto
 qed
 then show ?case using divide by simp
 qed
lemma verts3-K33:
assumes K K 3,3 (with-proj G)
shows verts3 G = verts G
proof -
{fix v assume v\in pverts G
from assms obtain U V where cards: card U = 3 card V=3
and UV:U\capV={} pverts G=U\cupV parcs }G=U\timesV\cupV\times
unfolding complete-bipartite-digraph-pair-def by blast
have }2<in-degree G
proof (cases v\inU)
case True
then have in-arcs G v=V }\times{v}\mathrm{ using }UV\mathrm{ by fastforce
then show ?thesis using cards by (auto simp: card-cartesian-product in-degree-def)
next
case False
then have in-arcs G v=U\times{v} using <v\in >}UV\mathrm{ by fastforce
then show ?thesis using cards by (auto simp: card-cartesian-product in-degree-def)
qed }
then show ?thesis by (auto simp: verts3-def)
qed
lemma verts3-K5:
assumes K}\mp@subsup{K}{5}{}(\mathrm{ with-proj G)
shows verts3 G = verts G
proof -
interpret pgG: pair-graph G using assms by (rule pair-graphI-complete)
{ fix v assume v\in pverts G
have 2 < (4 :: nat) by simp
also have 4 = card (pverts G-{v})
using assms «v \in pverts G` unfolding complete-digraph-def by auto
also have pverts }G-{v}={u\in\mathrm{ pverts G. u}=v
by auto
also have card ... = card ({u\inpverts G. u\not=v} }\times{v})(\mathbf{is}-=\operatorname{card ?A)
by auto

```
```

 also have ?A = in-arcs Gv
 using assms }\langlev\in\mathrm{ pverts }G>\mathrm{ unfolding complete-digraph-def by safe auto
 also have card ... = in-degree Gv
 unfolding in-degree-def ..
 finally have 2 < in-degree G v.}
 then show ?thesis unfolding verts3-def by auto
 qed
lemma K33-contractedI:
assumes subd: subdivision-pair G H
assumes k33: K % 3,3}\mp@code{G
shows K}\mp@subsup{\}{3,3}{(contr-graph H)
proof -
interpret pgG: pair-graph G using k33 by (rule pair-graphI-complete-bipartite)
show ?thesis
using assms by (auto simp: pgG.contracted-no-degree2-simp verts3-K33)
qed
lemma K5-contractedI:
assumes subd: subdivision-pair G H
assumes k5: K}\mp@subsup{5}{5}{}
shows K}\mp@subsup{K}{5}{(contr-graph H)
proof -
interpret pgG: pair-graph G using k5 by (rule pair-graphI-complete)
show ?thesis
using assms by (auto simp add: pgG.contracted-no-degree2-simp verts3-K5)
qed

```

\subsection*{17.9 Final proof}
```

context pair-sym-digraph begin
lemma gcg-subdivide-eq:
assumes mem: $e \in$ parcs $G w \notin$ pverts G
assumes $V: V \subseteq$ pverts G
shows gen-contr-graph (subdivide G e w) $V=$ gen-contr-graph $G V$
proof -
interpret sdG: pair-sym-digraph subdivide G e w
using mem by (rule pair-sym-digraph-subdivide)
\{ fix $u p v$ assume sdG.gen-iapath $V u p v$
have gen-iapath $V u($ co-path e wp) v
using mem $V\langle s d G . g e n-i a p a t h ~ V u p v\rangle$ by (rule gen-iapath-co-path)
then have $\exists p$. gen-iapath V upv..
\} note $A=$ this
moreover
\{ fix $u p v$ assume gen-iapath $V u p v$
have sdG.gen-iapath $V u(s d$-path e w p) v
using mem $V<$ gen-iapath $V u p$ v〉 by (rule gen-iapath-sd-path)

```
```

 then have }\exists>.sdG.gen-iapath Vupv.
    ```
    \} note \(B=\) this
    ultimately show ?thesis using assms by (auto simp: gen-contr-graph-def)
qed
lemma co-path-append:
    assumes \([\) last p1, hd p2] \(\notin\{[(f s t e, w),(w, s n d e)],[(s n d e, w),(w, f s t e)]\}\)
    shows co-path ew \((p 1\) @ p2) \(=\) co-path ewp1@co-path ewp2
using assms
proof (induct p1 rule: co-path-induct)
    case single then show ?case by (cases p2) auto
next
    case (co e1 e2 es) then show ?case by (cases es) auto
next
    case (corev e1 e2 es) then show ?case by (cases es) auto
qed auto
lemma exists-co-path-decomp1:
    assumes mem: \(e \in\) parcs \(G w \notin\) pverts \(G\)
    assumes \(p\) : pre-digraph.apath (subdivide \(G\) e w) upv (fst e, w) \(\in\) set \(p w \neq v\)
    shows \(\exists p 1 p 2 . p=p 1\) @ \((f s t e, w) \#(w, s n d e) \# p 2\)
proof -
    let ?sdG \(=\) subdivide \(G\) e \(w\)
    interpret \(s d G\) : pair-sym-digraph ?sd \(G\)
        using mem by (rule pair-sym-digraph-subdivide)
    obtain p1 p2 \(z\) where \(p\)-decomp: \(p=p 1\) @ (fst \(e, w) \#(w, z) \# p 2\) fst \(e \neq z\)
\(w \neq z\)
    by atomize-elim (rule sdG.apath-succ-decomp[OF p])
    then have \(\left(f_{s t} e, w\right) \in\) parcs ? \(s d G(w, z) \in\) parcs ?sd \(G\)
        using \(p\) by (auto simp: sdG.apath-def)
    with \(\langle f s t e \neq z\rangle\) have \(z=\) snd \(e\)
        using mem by (cases e) (auto simp: wellformed')
    with \(p\)-decomp show ?thesis by fast
qed
lemma is-slim-if-subdivide:
    assumes pair-pre-digraph.is-slim (subdivide \(G\) e w) \(V\)
    assumes mem1: \(e \in\) parcs \(G w \notin\) pverts \(G\) and mem2: \(w \notin V\)
    shows is-slim \(V\)
proof -
    let ?sd \(G=\) subdivide \(G\) e \(w\)
    interpret sdG: pair-sym-digraph subdivide \(G\) e w
        using mem1 by (rule pair-sym-digraph-subdivide)
    obtain \(u v\) where \(e=(u, v)\) by (cases e) auto
    with mem1 have \(u \in\) pverts \(G v \in\) pverts \(G\) by (auto simp: wellformed')
    with mem1 have \(u \neq w v \neq w\) by auto
    let ? \(w\)-parcs \(=\{(u, w),(v, w),(w, u),(w, v)\}\)
    have sdg-new-parcs: ? w-parcs \(\subseteq\) parcs ?sdG
using \(\langle e=(u, v)\rangle\) by auto
have sdg-no-parcs: \((u, v) \notin\) parcs ?sd \(G(v, u) \notin\) parcs ?sd \(G\)
using \(\langle e=(u, v)\rangle\langle u \neq w\rangle\langle v \neq w\rangle\) by auto
\{ fix \(z\) assume \(A: z \in\) pverts \(G\) have in-degree ?sd \(G z=\) in-degree \(G z\) proof -
\{ assume \(z \neq u z \neq v\)
then have in-arcs ?sd \(G z=\) in-arcs \(G z\)
using \(\langle e=(u, v)\rangle\) mem1 \(A\) by auto
then have in-degree ?sd \(G z=i n\)-degree \(G z\) by (simp add: in-degree-def) \} moreover
\{ assume \(z=u\)
then have in-arcs \(G z=\) in-arcs ? \(s d G z \cup\{(v, u)\}-\{(w, u)\}\)
using \(\langle e=(u, v)\rangle\) mem 1 by (auto simp: intro: arcs-symmetric wellformed \({ }^{\prime}\) ) moreover
have card (in-arcs ?sdG \(z \cup\{(v, u)\}-\{(w, u)\})=\) card (in-arcs ? sdG z) using \(s d g\)-new-parcs sdg-no-parcs \(\langle z=u\rangle\) by (cases finite (in-arcs ?sdG
z)) (auto simp: in-arcs-def)
ultimately have in-degree ?sd \(G z=\) in-degree \(G z\) by (simp add: in-degree-def)
\}
moreover
\{ assume \(z=v\)
then have in-arcs \(G z=\) in-arcs ? sd \(G z \cup\{(u, v)\}-\{(w, v)\}\)
using \(\langle e=(u, v)\rangle\) mem 1 A by (auto simp: wellformed \({ }^{\prime}\) )
moreover
have card (in-arcs ?sdGz \(\cup\{(u, v)\}-\{(w, v)\})=\operatorname{card}(\) in-arcs ? \(s d G z)\)
using sdg-new-parcs sdg-no-parcs \(\langle z=v\rangle\) by (cases finite (in-arcs ?sdG
z)) (auto simp: in-arcs-def)
ultimately have in-degree ?sd \(G z=\) in-degree \(G z\) by (simp add: in-degree-def)
\}
ultimately show ?thesis by metis
qed \(\}\)
note in-degree-same \(=\) this
have \(V\) - \(G: V \subseteq\) pverts \(G\) verts3 \(G \subseteq V\)
proof -
have \(V \subseteq\) pverts ?sd \(G\) pverts ?sd \(G=\) pverts \(G \cup\{w\}\) verts3 ?sd \(G \subseteq V\) verts3
\(G \subseteq\) verts3 ? \(s d G\)
using \(\langle s d G\).is-slim \(V\rangle\langle e=(u, v)\rangle\) in-degree-same mem 1
unfolding sdG.is-slim-def verts3-def
by (fast, simp, fastforce, force)
then show \(V \subseteq\) pverts \(G\) verts3 \(G \subseteq V\) using \(\langle w \notin V\rangle\) by auto
qed
have pverts: \(\forall v \in\) pverts \(G . v \in V \vee\) in-degree \(G v \leq 2 \wedge(\exists x p y\) gen-iapath \(V\) x p \(y \wedge v \in \operatorname{set}(\) awalk-verts \(x p)\) )
proof -
\{ fix \(z\) assume \(A: z \in\) pverts \(G z \notin V\)
```

 have z f pverts ?sdG using <e= (u,v)\rangle A mem1 by auto
 then have in-degree ?sdGz\leq2
 using <sdG.is-slim V>A by (auto simp: sdG.is-slim-def)
 with in-degree-same[OF <z\in pverts G`] have idg: in-degree Gz\leq2 by auto
 from A have z}\in\mathrm{ pverts ?sdG z}\not\inV\mathrm{ using <e= (u,v)> mem1 by auto
    ```

```

x' q)
using <sdG.is-slim V` unfolding sdG.is-slim-def by metis then have gen-iapath V x'(co-path e w q) y'z\in set (awalk-verts x' (co-path e wq)) using A mem1 V-G by (auto simp: set-awalk-verts-co-path' intro: gen-iapath-co-path) with idg have in-degree Gz\leq2 ^(\existsxpy.gen-iapath V x p y ^z\in set (awalk-verts x p)) by metis } then show ?thesis by auto qed have parcs: }\foralle\in\mathrm{ parcs G. fst e}\not=\mathrm{ snd e}\wedge(\existsxpy.gen-iapath V x p y ^e\in set p) proof (intro ballI conjI) fix }\mp@subsup{e}{}{\prime}\mathrm{ assume }\mp@subsup{e}{}{\prime}\in\mathrm{ parcs } show (}\existsx\mathrm{ p y.gen-iapath V x p y ^ e' }\in\operatorname{set}p proof (cases e'}\in\mathrm{ parcs ?sdG) case True then obtain x py where sdG.gen-iapath V x p y e' \in set p using <sdG.is-slim V> by (auto simp: sdG.is-slim-def) with «e\in parcs }G\rangle\langlew\not\in\mathrm{ pverts }G\rangleV-G\mathrm{ have gen-iapath Vx (co-path e w p) y by (auto intro: gen-iapath-co-path) from 〈e'}\in\mathrm{ parcs G〉 have e}\mp@subsup{e}{}{\prime}\not\in?\mathrm{ ?w-parcs using mem1 by (auto simp: wellformed') with <e' \in set p> have e' \in set (co-path e w p) by (induct p rule: co-path-induct) (force simp: <e = (u,v)>)+ then show }\existsxpy.gen-iapath Vxpy^ ' 的 set using <gen-iapath V x (co-path e w p) y> by fast next assume e' }\not=\mathrm{ parcs ?sdG define ab where a=fst e}\mp@subsup{e}{}{\prime}\mathrm{ and b= snd e' then have }\mp@subsup{e}{}{\prime}=(a,b)\mathrm{ and ab: (a,b)=(u,v) V (a,b)=(v,u) using <e' \in parcs G\rangle\langlee' & parcs ?sdG\rangle\langlee= (u,v)\rangle mem1 by auto obtain x p y where sdG.gen-iapath V x p y (a,w)\in set p using <sdG.is-slim V` sdg-new-parcs ab by (auto simp: sdG.is-slim-def)
with «e\in parcs }G\rangle\langlew\not\in\mathrm{ pverts }G\rangleV-G\mathrm{ have gen-iapath V x (co-path e w p)
y
by (auto intro: gen-iapath-co-path)

```
```

 have (a,b) \in parcs G subdivide G (a,b) w = subdivide G e w
 using mem1 <e= (u,v)\rangle\langlee'=(a,b)>ab
 by (auto intro: arcs-symmetric simp: subdivide.simps)
 then have pre-digraph.apath (subdivide G (a,b) w) x p y w\not=y
 using mem2 <sdG.gen-iapath V x p y` by (auto simp: sdG.gen-iapath-def)
 then obtain p1 p2 where p:p=p1 @ (a,w) # (w,b) # p2
 using exists-co-path-decomp1«(a,b)\in parcs G\rangle\langlew\not\in pverts G\rangle\langle(a,w)\in set
 p\rangle\langlew\not=y\rangle
by atomize-elim auto
moreover
from p have co-path e w ((a,w) \# (w,b) \# p2) = (a,b) \# co-path e w p2
unfolding <e = (u,v)> using ab by auto
ultimately
have (a,b) \in set (co-path e w p)
unfolding }\langlee=(u,v)\rangle\mathrm{ using ab <u}=w>\langlev\not=w
by (induct p rule: co-path-induct) (auto simp: co-path-append)
then show ?thesis
using <gen-iapath V x (co-path e w p) y>\langlee'=(a,b)> by fast
qed
then show fst }\mp@subsup{e}{}{\prime}\not=snd \mp@subsup{e}{}{\prime}\mathrm{ by (blast dest: no-loops-in-iapath)
qed
have unique: }\foralluvpq.(gen-iapath Vupv\wedgegen-iapath Vuqv)\longrightarrowp=
proof safe
fix x y pq assume A: gen-iapath V x p y gen-iapath V x q y
then have set p\subseteq parcs G set q\subseteq parcs G
by (auto simp: gen-iapath-def apath-def)
then have w-p:(u,w)\not\in\operatorname{set p}(v,w)\not\in\operatorname{set}p\mathrm{ and }w-q:(u,w)\not\in\operatorname{set}q(v,w)\not\in\operatorname{set}
q
using mem1 by (auto simp: wellformed')
from A have $s d G$.gen-iapath $V x(s d$-path e w p) y sdG.gen-iapath $V x$ (sd-path $e w q) y$
using mem1 $V-G$ by (auto intro: gen-iapath-sd-path)
then have sd-path e $w p=$ sd-path e $w q$
using $\langle s d G . i s$-slim $V\rangle$ unfolding $s d G$.is-slim-def by metis
then have co-path e w (sd-path e w p) $=$ co-path e $w(s d-p a t h e w q)$ by simp
then show $p=q$ using $w-p w-q\langle e=(u, v)\rangle$ by (simp add: co-sd-id)
qed
from pverts parcs V - G unique show ?thesis by (auto simp: is-slim-def)
qed
end
context pair-pseudo-graph begin
lemma subdivision-gen-contr:
assumes is-slim V

```
```

 shows subdivision-pair (gen-contr-graph G V)G
 using assms using pair-pseudo-graph
proof (induct card (pverts G-V) arbitrary: G)
case 0
interpret G: pair-pseudo-graph G by fact
have pair-bidirected-digraph G
using G.pair-sym-arcs 0 by unfold-locales (auto simp: G.is-slim-def)
with 0 show ?case
by (auto intro: subdivision-pair-intros simp: G.gen-contr-triv G.is-slim-def)
next
case (Suc n)
interpret G: pair-pseudo-graph G by fact
from <Suc n = card (pverts G - V)>
have pverts G-V\not={}
by (metis Nat.diff-le-self Suc-n-not-le-n card-Diff-subset-Int diff-Suc-Suc empty-Diff
finite.emptyI inf-bot-left)
then obtain w where w\in pverts G-V by auto
then obtain xqy where q: G.gen-iapath V x q y w fet (G.awalk-verts x q)
in-degree G w\leq2
using 〈G.is-slim V\rangle by (auto simp: G.is-slim-def)
then have w\not=xw\not=yw\not\inV using <w\in pverts G-V> by (auto simp:
G.gen-iapath-def)
then obtain e where e\in set q snd e=w
using \langlew \in pverts }G-V\rangle
unfolding G.gen-iapath-def G.apath-def G.awalk-conv
by (auto simp: G.awalk-verts-conv')
moreover define u}\mathrm{ where }u=fst
ultimately obtain q1 q2 v where q-decomp: q= q1 @ (u,w)\# (w,v) \# q2 u
\#v w\not=v
using q<w\not=y` unfolding G.gen-iapath-def by atomize-elim (rule G.apath-succ-decomp,
auto)
with q have qi-walks: G.awalk x q1 u G.awalk v q2 y
by (auto simp: G.gen-iapath-def G.apath-def G.awalk-Cons-iff)
from q q-decomp have uvw-arcs1: (u,w) \in parcs }G(w,v)\in\mathrm{ parcs }
by (auto simp: G.gen-iapath-def G.apath-def)
then have uvw-arcs2: (w,u)\in parcs G (v,w) \in parcs G
by (blast intro: G.arcs-symmetric)+
have }u\not=wv\not=w\mathrm{ using q-decomp q
by (auto simp: G.gen-iapath-def G.apath-append-iff G.apath-simps)
have in-arcs: in-arcs G w ={(u,w),(v,w)}
proof -
have {(u,w),(v,w)}\subseteq in-arcs Gw
using uvw-arcs1 uvw-arcs2 by auto
moreover note <in-degree G w\leq2>
moreover have card {(u,w), (v,w)} = 2 using <u\not=v> by auto

```
```

 ultimately
 show ?thesis by - (rule card-seteq[symmetric], auto simp: in-degree-def)
 qed
have out-arcs: out-arcs G w\subseteq{(w,u),(w,v)}(is ?L\subseteq?R)
proof
fix e assume e\in out-arcs G w
then have (snd e, fst e) \in in-arcs Gw
by (auto intro: G.arcs-symmetric)
then show }e\in{(w,u),(w,v)}\mathrm{ using in-arcs by auto
qed

```
```

have $(u, v) \notin$ parcs G

```
have \((u, v) \notin\) parcs \(G\)
proof
proof
    assume \((u, v) \in\) parcs \(G\)
    assume \((u, v) \in\) parcs \(G\)
    have G.gen-iapath \(V x(q 1\) @ \((u, v) \# q 2) y\)
    have G.gen-iapath \(V x(q 1\) @ \((u, v) \# q 2) y\)
    proof -
    proof -
        have awalk': G.awalk x (q1 @ (u,v) \# q2) y
        have awalk': G.awalk x (q1 @ (u,v) \# q2) y
            using qi-walks \(\langle(u, v) \in\) parcs \(G\rangle\)
            using qi-walks \(\langle(u, v) \in\) parcs \(G\rangle\)
            by (auto simp: G.awalk-simps)
```

 by (auto simp: G.awalk-simps)
    ```
    have G.awalk \(x q y\) using \(\langle G\).gen-iapath \(V x q y\rangle\) by (auto simp: G.gen-iapath-def
G.apath-def)
    have distinct (G.awalk-verts \(x\) (q1 @ (u,v) \# q2))
        using awalk \({ }^{\prime}\langle G\).gen-iapath \(V\) x \(q\) y〉unfolding \(q\)-decomp
        by (auto simp: G.gen-iapath-def G.apath-def G.awalk-verts-append)
    moreover
    have set \((G\).inner-verts \((q 1\) @ \((u, v) \# q 2)) \subseteq \operatorname{set}(G . i n n e r-v e r t s ~ q)\)
        using awalk \({ }^{\prime}\langle G\).awalk \(x q\) y unfolding \(q\)-decomp
        by (auto simp: butlast-append G.inner-verts-conv \([\) of - x] G.awalk-verts-append
        intro: in-set-butlast-appendI)
    then have set (G.inner-verts (q1 @ (u,v) \# q2)) \(\cap V=\{ \}\)
        using 〈G.gen-iapath \(V x q y\rangle\) by (auto simp: G.gen-iapath-def)
    ultimately show ?thesis using awalk' 〈G.gen-iapath \(V x q y\rangle\) by (simp add:
G.gen-iapath-def G.apath-def)
    qed
    then have \((q 1\) @ \((u, v) \# q 2)=q\)
    using 〈G.gen-iapath \(V x q y\rangle\langle G . i s-s l i m ~ V\rangle\) unfolding G.is-slim-def by metis
    then show False unfolding \(q\)-decomp by simp
qed
then have \((v, u) \notin\) parcs \(G\) by (auto intro: G.arcs-symmetric)
define \(G^{\prime}\) where \(G^{\prime}=\{\) pverts \(=\) pverts \(G-\{w\}\),
    parcs \(=\{(u, v),(v, u)\} \cup(\) parcs \(G-\{(u, w),(w, u),(v, w),(w, v)\}))\)
have mem- \(G^{\prime}:(u, v) \in\) parcs \(G^{\prime} w \notin\) pverts \(G^{\prime}\) by (auto simp: \(G^{\prime}\)-def)
interpret pd-G': pair-fin-digraph \(G^{\prime}\)
proof
fix \(e\) assume \(A: e \in \operatorname{parcs} G^{\prime}\)
have \(e \in \operatorname{parcs} G \wedge e \neq(u, w) \wedge e \neq(w, u) \wedge e \neq(v, w) \wedge e \neq(w, v) \Longrightarrow\) fst \(e \neq w\)
\(e \in \operatorname{parcs} G \wedge e \neq(u, w) \wedge e \neq(w, u) \wedge e \neq(v, w) \wedge e \neq(w, v) \Longrightarrow\) snd \(e\) \(\neq w\)
using out－arcs in－arcs by auto
with \(A\) uvw－arcs1 show fst \(e \in\) pverts \(G^{\prime}\) snd \(e \in\) pverts \(G^{\prime}\)
using \(\langle u \neq w\rangle\langle v \neq w\rangle\) by（auto simp：\(G^{\prime}\)－def G．wellformed \({ }^{\prime}\) ）
next
qed（auto simp：\(G^{\prime}\)－def arc－to－ends－def）
interpret spd－\(G^{\prime}\) ：pair－pseudo－graph \(G^{\prime}\)
proof（unfold－locales，simp add：symmetric－def）
have sym \(\{(u, v),(v, u)\}\) sym（parcs \(G) \operatorname{sym}\{(u, w),(w, u),(v, w),(w, v)\}\) using G．sym－arcs by（auto simp：symmetric－def sym－def）
then have \(\operatorname{sym}(\{(u, v),(v, u)\} \cup(\) parcs \(G-\{(u, w),(w, u),(v, w),(w, v)\}))\) by（intro sym－Un）（auto simp：sym－diff）
then show sym（parcs \(G^{\prime}\) ）unfolding \(G^{\prime}\)－def by simp
qed
have card－\(G^{\prime}: n=\operatorname{card}\left(\right.\) pverts \(\left.G^{\prime}-V\right)\)
proof－
have pverts \(G-V=\) insert \(w\)（pverts \(\left.G^{\prime}-V\right)\)
using \(\langle w \in\) pverts \(G-V\rangle\) by（auto simp：\(G^{\prime}\)－def）
then show ？thesis using 〈Suc \(n=\) card \((p v e r t s ~ G-V)\) 〉mem－\(G^{\prime}\) by simp qed
have \(G\)－is－sd：\(G=\) subdivide \(G^{\prime}(u, v) w\left(\right.\) is \(-=\) ？sd \(\left.G^{\prime}\right)\)
using \(\langle w \in\) pverts \(G-V\rangle\langle(u, v) \notin\) parcs \(G\rangle\langle(v, u) \notin\) parcs \(G\rangle\) uvw－arcs1 uvw－arcs2
by（intro pair－pre－digraph．equality）（auto simp：\(G^{\prime}\)－def）
have gcg－sd：gen－contr－graph（subdivide \(\left.G^{\prime}(u, v) w\right) V=\) gen－contr－graph \(G^{\prime} V\) proof－
have \(V \subseteq\) pverts \(G\)
using 〈G．is－slim \(V\rangle\) by（auto simp：G．is－slim－def verts3－def）
moreover
have verts3 \(G^{\prime}=\) verts3 \(G\)
by（simp only：\(G\)－is－sd spd－\(G^{\prime} . v e r t s 3-s u b d i v i d e\left[O F\left\langle(u, v) \in\right.\right.\) parcs \(\left.G^{\prime}\right\rangle\langle w \notin\) pverts \(\left.G^{\prime}>\right]\) ）
ultimately
have \(V: V \subseteq\) pverts \(G^{\prime}\)
using \(\langle w \in\) pverts \(G-V\rangle\) by（auto simp：\(G^{\prime}\)－def）
with mem－\(G^{\prime}\) show ？thesis by（rule spd－\(G^{\prime}\) ．gcg－subdivide－eq）
qed
have is－slim－\(G^{\prime}: p d\)－\(G^{\prime}\) ．is－slim \(V\) using \(\langle G . i s\)－slim \(V\rangle m e m-G^{\prime}\langle w \notin V\rangle\) unfolding \(G\)－is－sd by（rule spd－G \({ }^{\prime}\) ．is－slim－if－subdivide）
with mem－\(G^{\prime}\) have subdivision－pair（gen－contr－graph \(\left.G^{\prime} V\right)\left(\right.\) subdivide \(G^{\prime}(u, v)\)
w)
by (intro Suc card- \(G^{\prime}\) subdivision-pair-intros) auto
then show? ?ase by (simp add: gcg-sd G-is-sd) qed
lemma contr-is-subgraph-subdivision:
shows \(\exists H\). subgraph (with-proj \(H\) ) \(G \wedge\) subdivision-pair (contr-graph \(G\) ) \(H\) proof -
interpret \(s G\) : pair-graph slim by (rule pair-graph-slim)
have subdivision-pair (gen-contr-graph slim (verts3 G)) slim
by (rule sG.subdivision-gen-contr) (rule slim-is-slim)
then show?thesis unfolding contr-graph-slim-eq by (blast intro: subgraph-slim) qed
theorem kuratowski-contr:
fixes \(K\) :: 'a pair-pre-digraph
assumes subgraph-K: subgraph \(K G\)
assumes spd-K: pair-pseudo-graph \(K\)
assumes kuratowski: \(K_{3,3}(\) contr-graph \(K) \vee K_{5}\) (contr-graph K)
shows \(\neg\) kuratowski-planar \(G\)
proof -
interpret spd-K: pair-pseudo-graph \(K\) by (fact spd-K)
obtain \(H\) where subgraph- \(H\) : subgraph (with-proj \(H\) ) \(K\) and subdiv-H:subdivision-pair (contr-graph K) H
by atomize-elim (rule spd-K.contr-is-subgraph-subdivision)
have grI: \(\bigwedge K .\left(K_{3,3} K \vee K_{5} K\right) \Longrightarrow\) graph \(K\)
by (auto simp: complete-digraph-def complete-bipartite-digraph-def)
from subdiv- \(H\) and kuratowski
have \(\exists K\). subdivision-pair \(K H \wedge\left(K_{3,3} K \vee K_{5} K\right)\) by blast
then have \(\exists K\) rev- \(K\) rev- \(H\). subdivision \((K\), rev- \(K)(H\), rev- \(H) \wedge\left(K_{3,3} K \vee\right.\) \(K_{5} K\) )
by (auto intro: grI pair-graphI-graph)
then show ?thesis using subgraph-H subgraph-K
unfolding kuratowski-planar-def by (auto intro: subgraph-trans)
qed
theorem certificate-characterization:
defines kuratowski \(\equiv \lambda G::\) 'a pair-pre-digraph. \(K_{3,3} G \vee K_{5} G\)
shows kuratowski (contr-graph \(G\) )
\(\longleftrightarrow(\exists H\). kuratowski \(H \wedge\) subdivision-pair \(H\) slim \(\wedge\) verts3 \(G=\) verts3 slim \()\)
(is ? \(L \longleftrightarrow\) ? \(R\) )
proof
assume ? \(L\)
interpret \(S\) : pair-graph slim by (rule pair-graph-slim)
have subdivision-pair (contr-graph G) slim
proof -
have *: S.is-slim (verts3 \(G\) ) by (rule slim-is-slim)
show ?thesis using contr-graph-slim-eq S.subdivision-gen-contr[OF *] by auto

\section*{qed}

\section*{moreover}
have verts3 slim \(=\) verts3 \(G(\) is \(? l=? r)\)
proof safe
fix \(v\) assume \(v \in ? l\) then show \(v \in ? r\)
using verts-slim-in-G verts3-slim-in-verts3 by auto

\section*{next}
fix \(v\) assume \(v \in\) ? \(r\)
have \(v \in\) verts3 (contr-graph \(G\) )
proof -
have \(v \in\) verts (contr-graph \(G\) )
using \(\langle v \in\) ? \(r\rangle\) by (auto simp: verts3-def gen-contr-graph-def)
then show?thesis
using 〈? L〉 unfolding kuratowski-def by (auto simp: verts3-K33 verts3-K5)
qed
then have \(v \in\) verts3 (gen-contr-graph slim (verts3 \(G\) )) unfolding contr-graph-slim-eq
then have \(2<i n\)-degree (gen-contr-graph slim (verts3 G)) v
unfolding verts3-def by auto
also have \(\ldots \leq i n\)-degree slim \(v\)
using \(\langle v \in\) ? \(r\rangle\) verts3-slim-in-verts3 by (auto intro: S.in-degree-contr)
finally show \(v \in\) verts3 slim
using verts3-in-slim-G \(\langle v \in\) ? \(r\rangle\) unfolding verts3-def by auto
qed
ultimately show ? \(R\) using \(\langle ? L\rangle\) by auto
next
assume ? \(R\)
then have kuratowski (gen-contr-graph slim (verts3 G))
unfolding kuratowski-def
by (auto intro: K33-contractedI K5-contractedI)
then show ?L unfolding contr-graph-slim-eq .
qed
definition (in pair-pre-digraph) certify :: 'a pair-pre-digraph \(\Rightarrow\) bool where
certify cert \(\equiv\) let \(C=\) contr-graph cert in subgraph cert \(G \wedge\left(K_{3,3} C \vee K_{5} C\right)\)
theorem certify-complete:
assumes pair-pseudo-graph cert
assumes subgraph cert \(G\)
assumes \(\exists H\). subdivision-pair \(H\) cert \(\wedge\left(K_{3,3} H \vee K_{5} H\right)\)
shows certify cert
unfolding certify-def
using assms by (auto simp: Let-def intro: K33-contractedI K5-contractedI)
theorem certify-sound:
assumes pair-pseudo-graph cert
assumes certify cert
shows \(\neg\) kuratowski-planar \(G\)
using assms by (intro kuratowski-contr) (auto simp: certify-def Let-def)
```

theorem certify-characterization:
assumes pair-pseudo-graph cert
shows certify cert }\longleftrightarrow\mathrm{ subgraph cert G ^ verts3 cert = verts3 (pair-pre-digraph.slim
cert)
\wedge(\existsH.(K}\mp@subsup{3}{3,3}{}(\mathrm{ with-proj H)}\vee K K H)^ subdivision-pair H (pair-pre-digraph.slim
cert))
(is ?L\longleftrightarrow?R)
by (auto simp only: simp-thms certify-def Let-def pair-pseudo-graph.certificate-characterization[OF
assms])
end
end

```
```

theory Weighted-Graph

```
theory Weighted-Graph
imports
imports
    Digraph
    Digraph
    Arc-Walk
    Arc-Walk
    Complex-Main
    Complex-Main
begin
```

begin

```

\section*{18 Weighted Graphs}
type-synonym 'b weight-fun \(=\) ' \(b \Rightarrow\) real
context wf-digraph begin
definition awalk-cost \(::\) 'b weight-fun \(\Rightarrow\) ' \(b\) awalk \(\Rightarrow\) real where awalk-cost \(f\) es \(=\) sum-list (map fes)
lemma awalk-cost-Nil[ simp]: awalk-cost \(f[]=0\) unfolding awalk-cost-def by simp
lemma awalk-cost-Cons[simp]: awalk-cost \(f(x \# x s)=f x+\) awalk-cost \(f x s\) unfolding awalk-cost-def by simp
lemma awalk-cost-append [simp]:
awalk-cost \(f(x s @ y s)=\) awalk-cost \(f x s+\) awalk-cost \(f\) ys unfolding awalk-cost-def by simp
end
end
theory Shortest-Path imports

\section*{19 Shortest Paths}

\author{
context wf-digraph begin
}
definition \(\mu\) where
\(\mu f u v \equiv I N F p \in\{p\). awalk \(u p v\}\). ereal (awalk-cost \(f p)\)
lemma shortest-path-inf:
assumes \(\neg\left(u \rightarrow^{*} v\right)\)
shows \(\mu f u v=\infty\)
proof -
have \(*:\{p\). awalk \(u\) p \(v\}=\{ \}\)
using assms by (auto simp: reachable-awalk)
show \(\mu f u v=\infty\) unfolding \(\mu\)-def *
by (simp add: top-ereal-def)
qed
lemma min-cost-le-walk-cost:
assumes awalk \(u p v\)
shows \(\mu\) c \(u v \leq\) awalk-cost c \(p\)
using assms unfolding \(\mu\)-def by (auto intro: INF-lower2)
lemma pos-cost-pos-awalk-cost:
assumes awalk u \(p v\)
assumes pos-cost: \(\bigwedge e . e \in \operatorname{arcs} G \Longrightarrow c e \geq 0\)
shows awalk-cost c \(p \geq 0\)
using assms by (induct \(p\) arbitrary: u) (auto simp: awalk-Cons-iff)
fun \(m k\)-cycles-path :: nat
\(\Rightarrow\) 'b awalk \(\Rightarrow\) 'b awalk where
mk-cycles-path \(0 c=[]\)
| mk-cycles-path (Suc n) \(c=c\) @ (mk-cycles-path \(n c\) )
lemma mk-cycles-path-awalk:
assumes awalk ucu
shows awalk \(u\) ( \(m k\)-cycles-path \(n c\) ) u
using assms by (induct \(n\) ) (auto simp: awalk-Nil-iff)
lemma \(m k\)-cycles-awalk-cost:
assumes awalk upu
shows awalk-cost c (mk-cycles-path \(n p)=n *\) awalk-cost \(c p\)
using assms proof (induct rule: mk-cycles-path.induct)
case 1 show ?case by simp
```

next
case (2 n p)
have awalk-cost c (mk-cycles-path (Suc n) p)
= awalk-cost c (p@ (mk-cycles-path n p))
by simp
also have ... = awalk-cost c p + real n * awalk-cost c p
proof (cases n)
case 0 then show ?thesis by simp
next
case (Suc n') then show ?thesis
using 2 by simp
qed
also have ... = real (Suc n)* awalk-cost c p
by (simp add: algebra-simps)
finally show ?case .
qed
lemma inf-over-nats:
fixes a c :: real
assumes c<0
shows (INF (i :: nat). ereal (a+i*c)) = - \infty
proof (rule INF-eqI)
fix i :: nat show - \infty \leqa+ real i* c by simp
next
fix y :: ereal
assume \bigwedge(i :: nat). i\inUNIV \Longrightarrowy\leqa+ real i*c
then have l-assm: \i::nat. y \leqa+ real i*c by simp
show y \leq-\infty
proof (subst ereal-infty-less-eq, rule ereal-bot)
fix B :: real
obtain real-x where a+real-x * c\leqB using <c<0\rangle
by atomize-elim
(rule exI[where x=(-abs B -a)/c], auto simp: field-simps)
obtain x :: nat where }a+x*c\leq
proof (atomize-elim, intro exI[where x=nat(ceiling real-x)] conjI)
have real (nat(ceiling real-x)) *c\leqreal-x * c
using <c< 0\rangle by (simp add: real-nat-ceiling-ge)
then show }a+nat(ceiling real-x)*c\leq
using <a + real-x * c\leqB\rangle by simp
qed
then show }y\leq\mathrm{ ereal }
proof -
have ereal (a+x*c)\leq ereal B
using <a + x* c\leqB\rangle}\mathrm{ by simp
with l-assm show ?thesis by (rule order-trans)
qed
qed
qed

```
```

lemma neg-cycle-imp-inf- }\mu\mathrm{ :
assumes walk-p: awalk u pv
assumes walk-c: awalk w c w
assumes w-in-p:w\in set (awalk-verts u p)
assumes awalk-cost f c < 0
shows }\mufuv=-
proof -
from w-in-p obtain xs ys where pv-decomp: awalk-verts u p=xs @ w\#ys
by (auto simp: in-set-conv-decomp)
define qr where q= take (length xs) p and r=drop (length xs) p
define ext-p where ext-p n=q@ mk-cycles-path nc@ r for n
have ext-p-cost: \n. awalk-cost f (ext-p n)
=(awalk-cost f q + awalk-cost fr) + n* awalk-cost f c
using <awalk w c w`
by (auto simp: ext-p-def intro: mk-cycles-awalk-cost)
from q-def r-def have awlast u q=w
using pv-decomp walk-p by (auto simp: awalk-verts-take-conv elim!: awalkE)
moreover
from q-def r-def have awalk u(q@ @)v
using walk-p by simp
ultimately
have awalk u q w awalk wrv \n. awalk w (mk-cycles-path n c) w
using walk-c
by (auto simp: intro: mk-cycles-path-awalk)
then have \n. awalk u (ext-p n)v
unfolding ext-p-def by (blast intro: awalk-appendI)
then have {ext-p i|i.i\inUNIV}\subseteq{p. awalk upv}
by auto
then have (INF p\in{p. awalk u p v}. ereal (awalk-cost f p))
\leq (INF p\in{ext-p i|i.i i\inUNIV}. ereal (awalk-cost f p))
by (auto intro: INF-superset-mono)
also have ... = (INF i\inUNIV. ereal (awalk-cost f (ext-p i)))
by (rule arg-cong[where f=Inf], auto)
also have ... = - m unfolding ext-p-cost
by (rule inf-over-nats[OF<awalk-cost f c < 0>])
finally show ?thesis unfolding }\mu\mathrm{ -def by simp
qed
lemma walk-cheaper-path-imp-neg-cyc:
assumes p-props: awalk u pv
assumes less-path- }\mu\mathrm{ : awalk-cost f p < (INF p, {p. apath u p v}. ereal (awalk-cost
f p))
shows \existswc. awalk wcw^w\in set (awalk-verts up) ^ awalk-cost f c<0
proof -
define path- }\mu\mathrm{ where path- }\mu=(INF p\in{p. apath u p v}. ereal (awalk-cost f p)

```
```

 then have awalk \(u p v\) and awalk-cost \(f p<p a t h-\mu\)
 using \(p\)-props less-path- \(\mu\) by simp-all
 then show ?thesis
 proof (induct rule: awalk-to-apath-induct)
 case (path \(p\)) then have apath \(u p v\) by (auto simp: apath-def)
 then show ?case using path.prems by (auto simp: path- \(\mu\)-def dest: not-mem-less-INF)
 next
 case (decomp p qrs)
 then obtain \(w\) where \(p\)-props: \(p=q\) @ \(r\) @ sawalk \(u q w\) awalk \(w r w\) awalk
 $w s v$
by (auto elim: awalk-cyc-decompE)
then have awalk $u(q$ @ $s) v$
using 〈awalk $u p$ v〉 by (auto simp: awalk-appendI)
then have verts-ss: set (awalk-verts $u(q$ @ $s)$) \subseteq set (awalk-verts u p)
using $\langle a w a l k u p v\rangle\langle p=q$ @ r @ $s\rangle$ by (auto simp: set-awalk-verts)
show ?case
proof (cases ereal (awalk-cost $f(q$ @ $s))<p a t h-\mu)$
case True then have $\exists w$. awalk $w c w \wedge w \in \operatorname{set}$ (awalk-verts $u(q @ s)$)
\wedge awalk-cost $f c<0$
by (rule decomp)
then show ?thesis using verts-ss by auto
next
case False
note 〈awalk-cost f $p<$ path- μ 〉
also have path- $\mu \leq$ awalk-cost $f(q$ @ $s)$
using False by simp
finally have awalk-cost $f r<0$ using $\langle p=q$ @ r @ $s\rangle$ by simp
moreover
have $w \in$ set (awalk-verts $u q$) using 〈awalk $u q$ 〉 by auto
then have $w \in \operatorname{set}$ (awalk-verts $u p$)
using «awalk upv〉〈awalkuqw〉<p=q@r@s>
by (auto simp: set-awalk-verts)
ultimately
show ?thesis using «awalk $w r$ b by auto
qed
qed
qed
lemma (in fin-digraph) neg-inf-imp-neg-cyc:
assumes inf-mu: $\mu f u v=-\infty$
shows $\exists p$. awalk $u p v \wedge(\exists w c$. awalk $w c w \wedge w \in$ set (awalk-verts $u p) \wedge$
awalk-cost f $c<0$)
proof -
define path- μ where path- $\mu=($ INF $s \in\{$. apath $u p v\}$. ereal (awalk-cost $f s))$
have awalks-ne: $\{p$. awalk u p $v\} \neq\{ \}$
using inf-mu unfolding μ-def by safe (simp add: top-ereal-def)
then have paths-ne: $\left\{\right.$ p. apath upv\} ${ }^{\sim}=\{ \}$

```
by (auto intro: apath-awalk-to-apath)
obtain \(p\) where apath \(u p v\) awalk-cost \(f p=\) path- \(\mu\)
proof -
obtain \(p\) where \(p \in\{p\). apath \(u p v\}\) awalk-cost \(f p=\) path- \(\mu\)
using finite-INF-in[OF apaths-finite paths-ne, of awalk-cost f]
by (auto simp: path- \(\mu\)-def)
then show ?thesis using that by auto
qed
then have path \(-\mu \neq-\infty\) by auto
then have \(\mu f u v<p a t h-\mu\) using inf-mu by simp
then obtain \(p w\) where \(p\)-def: awalk \(u\) pw \(v\) awalk-cost \(f p w<p a t h-\mu\)
by atomize-elim (auto simp: \(\mu\)-def INF-less-iff)
then have \(\exists w c\). awalk \(w c w \wedge w \in\) set (awalk-verts \(u p w) \wedge\) awalk-cost \(f c<0\)
by (intro walk-cheaper-path-imp-neg-cyc) (auto simp: path- \(\mu\)-def)
with «awalk \(u\) pw v〉show ?thesis by auto
qed
lemma (in fin-digraph) no-neg-cyc-imp-no-neg-inf:
assumes no-neg-cyc: \(\bigwedge p\). awalk upv
\(\Longrightarrow \neg(\exists w\) c. awalk \(w c w \wedge w \in \operatorname{set}(\) awalk-verts \(u p) \wedge\) awalk-cost \(f c<0)\)
shows \(-\infty<\mu f u v\)
proof (intro ereal-MInfty-lessI notI)
assume \(\mu f u v=-\infty\)
then obtain \(p\) where \(p\)-props: awalk \(u p v\)
and ex-cyc: \(\exists w\) c. awalk \(w c w \wedge w \in\) set (awalk-verts \(u p) \wedge\) awalk-cost \(f c<\)
0
by atomize-elim (rule neg-inf-imp-neg-cyc)
then show False using no-neg-cyc by blast
qed
lemma \(\mu\)-reach-conv:
\(\mu f u v<\infty \longleftrightarrow u \rightarrow^{*} v\)
proof
assume \(\mu f u v<\infty\)
then have \(\{p\). awalk \(u p v\} \neq\{ \}\)
unfolding \(\mu\)-def by safe (simp add: top-ereal-def)
then show \(u \rightarrow^{*} v\) by (simp add: reachable-awalk)
next
assume \(u \rightarrow^{*} v\)
then obtain \(p\) where \(p\)-props: apath \(u p v\)
by (metis reachable-awalk apath-awalk-to-apath)
then have \(\{p\} \subseteq\{p\). apath upv\} by simp
then have \(\mu f u v \leq(I N F p \in\{p\}\). ereal (awalk-cost \(f p))\)
unfolding \(\mu\)-def by (intro INF-superset-mono) (auto simp: apath-def)
also have \(\ldots<\infty\) by (simp add: min-def)
finally show \(\mu f u v<\infty\).
qed
```

lemma awalk-to-path-no-neg-cyc-cost:
assumes p-props:awalk upv
assumes no-neg-cyc: $\neg(\exists w$ c. awalk $w c w \wedge w \in$ set (awalk-verts u $p) \wedge$
awalk-cost $f c<0$)
shows awalk-cost f (awalk-to-apath $p) \leq$ awalk-cost $f p$
using assms
proof (induct rule: awalk-to-apath-induct)
case path then show ?case by (auto simp: awalk-to-apath.simps)
next
case (decomp p q r s)
from $\operatorname{decomp}(2,3)$ have is-awalk-cyc-decomp $p(q, r, s)$
using awalk-cyc-decomp-has-prop[OF decomp(1)] by auto
then have decomp-props: $p=q$ @ r @ $s \exists$. awalk $w r w$ by auto
have awalk-cost $f($ awalk-to-apath $p)=$ awalk-cost $f($ awalk-to-apath $(q$ @ $s))$
using decomp by (auto simp: step-awalk-to-apath[of-p-qrs])
also have $\ldots \leq$ awalk-cost $f(q$ @ $s)$
proof -
have awalk $u(q$ @ $s) v$
using 〈awalk $u p$ $v>$ decomp-props by (auto dest!: awalk-ends-eqD)
then have set (awalk-verts $u(q$ @ s)) \subseteq set (awalk-verts u p)
using 〈awalk upv>〈p=q@r@s>
by (auto simp add: set-awalk-verts)
then show ?thesis using decomp.prems by (intro decomp.hyps) auto
qed
also have $\ldots \leq$ awalk-cost $f p$
proof -
obtain w where awalk $u q w$ awalk $w r$ awalk $w s v$
using decomp by (auto elim: awalk-cyc-decompE)
then have $w \in \operatorname{set}$ (awalk-verts $u q$) by auto
then have $w \in$ set (awalk-verts $u p$)
using $\langle p=q$ @ r @ $s\rangle\langle a w a l k u p v\rangle\langle a w a l k u q w\rangle$
by (auto simp add: set-awalk-verts)
then have $0 \leq$ awalk-cost fring uawalk $w r$ b 〉
using decomp.prems by (auto simp: not-less)
then show ?thesis using $\langle p=q$ @ r @ $s\rangle$ by simp
qed
finally show ?case .
qed
lemma (in fin-digraph) no-neg-cyc-reach-imp-path:
assumes reach: $u \rightarrow^{*} v$
assumes no-neg-cyc: $\bigwedge p$. awalk u $p v$
$\Longrightarrow \neg(\exists w$ c. awalk $w c w \wedge w \in \operatorname{set}($ awalk-verts $u p) \wedge$ awalk-cost $f c<0)$
shows \exists. apath $u p v \wedge \mu f u v=$ awalk-cost $f p$
proof -
define set-walks where set-walks $=\{p$. awalk upv\}
define set-paths where set-paths $=\left\{\begin{array}{l}\text { p. apath } u p v\}\end{array}\right.$

```
```

have set-paths }\not={
proof -
obtain p where apath upv
using reach by (metis apath-awalk-to-apath reachable-awalk)
then show ?thesis unfolding set-paths-def by blast
qed
have }\mufuv=(INFp\in\mathrm{ set-walks. ereal (awalk-cost f p))
unfolding }\mu\mathrm{ -def set-walks-def by simp
also have ···. = (INF p\in set-paths. ereal (awalk-cost f p))
proof (rule antisym)
have awalk-to-apath' set-walks }\subseteq\mathrm{ set-paths
unfolding set-walks-def set-paths-def
by (intro subsetI) (auto elim: apath-awalk-to-apath)
then have (INF p\in set-paths. ereal (awalk-cost f p))
\leq(INF p\in awalk-to-apath'set-walks. ereal (awalk-cost f p))
by (rule INF-superset-mono) simp
also have ···=(INF p\in set-walks. ereal (awalk-cost f (awalk-to-apath p)))
by (simp add: image-comp)
also have ···. \leq(INF p\in set-walks. ereal (awalk-cost f p))
proof -
{ fix p assume p\in set-walks
then have awalk u p v by (auto simp: set-walks-def)
then have awalk-cost f (awalk-to-apath p) \leqawalk-cost f p
using no-neg-cyc
using no-neg-cyc and awalk-to-path-no-neg-cyc-cost
by auto }
then show ?thesis by (intro INF-mono) auto
qed
finally show
(INF p\in set-paths. ereal (awalk-cost f p))
\leq (INF p\in set-walks. ereal (awalk-cost f p)) by simp
have set-paths \subseteq set-walks
unfolding set-paths-def set-walks-def by (auto simp: apath-def)
then show (INF p\in set-walks. ereal (awalk-cost f p))
\leq (INF p\in set-paths. ereal (awalk-cost f p))
by (rule INF-superset-mono) simp
qed
also have ...\in(}\lambda\mathrm{ p. ereal (awalk-cost f p))' set-paths
using apaths-finite <set-paths }\not={}\mathrm{ >
by (intro finite-INF-in) (auto simp: set-paths-def)
finally show ?thesis
by (simp add: set-paths-def image-def)
qed
lemma (in fin-digraph) min-cost-awalk:
assumes reach: }u\mp@subsup{->}{}{*}
assumes pos-cost: \bigwedgee. e \in arcs G\Longrightarrowce\geq0

```
```

 shows \existsp. apath u pv\wedge с с uv=awalk-cost c p
 proof -
have pc: \bigwedgeu pv. awalk upv\Longrightarrow0\leqawalk-cost c p
using pos-cost-pos-awalk-cost pos-cost by auto
from reach show ?thesis
by (rule no-neg-cyc-reach-imp-path) (auto simp: not-less intro: pc)
qed
lemma (in fin-digraph) pos-cost-mu-triangle:
assumes pos-cost: \bigwedgee.e e arcs G\Longrightarrowce\geq0
assumes e-props: arc-to-ends G e= (u,v) e \in arcs G
shows \mucsv\leq\mucsu+ce
proof cases
assume \mu cs u=\infty then show ?thesis by simp
next
assume \mu csu\not=\infty
then have {p.awalk s pu}}\not={
unfolding }\mu\mathrm{ -def by safe (simp add: top-ereal-def)
then have s }\mp@subsup{->}{}{*}u\mathrm{ by (simp add: reachable-awalk)
with pos-cost
obtain p where p-props: apath s p u
and p-cost: \mu c s u = awalk-cost c p
by (metis min-cost-awalk)
have awalk u[e] v
using e-props by (auto simp: arc-to-ends-def awalk-simps)
with <apath s p u`
have awalk s(p@ [e])v
by (auto simp: apath-def awalk-appendI)
then have }\mucsv\leqawalk-cost c(p@[e]
by (rule min-cost-le-walk-cost)
also have ... \leq awalk-cost c p + c e by simp
also have ... \leq < csu+ce using p-cost by simp
finally show ?thesis.
qed
lemma (in fin-digraph) mu-exact-triangle:
assumes v\not=s
assumes s ->* v
assumes nonneg-arcs: \bigwedgee. e\inarcs G\Longrightarrow0\leqce
obtains ue where \mucsv=\mucsu+ce and arce e(u,v)
proof -
obtain p where p-path: apath s p v
and p-cost: \mu c s v = awalk-cost c p
using assms by (metis min-cost-awalk)
then obtain e p' where p}\mp@subsup{p}{}{\prime}\mathrm{ -props: p= p'@ @ [e] using }\langlev\not=s
by (cases p rule: rev-cases) (auto simp: apath-def)
then obtain u}\mathrm{ where awalk s p' u awalk u[e]v

```
using <apath s p v> by (auto simp: apath-def)
then have \(m u\)-le: \(\mu c s v \leq \mu c s u+c e\) and \(\operatorname{arc}\) : \(\operatorname{arc} e(u, v)\)
using nonneg-arcs by (auto intro!: pos-cost-mu-triangle simp: arc-to-ends-def arc-def)
have \(\mu c s u+c e \leq \operatorname{ereal}\left(\right.\) awalk-cost c \(\left.p^{\prime}\right)+\operatorname{ereal}(c e)\)
using 〈awalk s \(p^{\prime} u\) 〉
by (fast intro: add-right-mono min-cost-le-walk-cost)
also have \(\ldots=\) awalk-cost \(c\) p using \(p^{\prime}\)-props by simp
also have \(\ldots=\mu c s v\) using \(p\)-cost by \(\operatorname{simp}\)
finally
have \(\mu c s v=\mu c s u+c e\) using mu-le by auto
then show ?thesis using arc ..
qed
lemma (in fin-digraph) mu-exact-triangle-Ex:
assumes \(v \neq s\)
assumes \(s \rightarrow^{*} v\)
assumes \(\bigwedge e . e \in \operatorname{arcs} G \Longrightarrow 0 \leq c e\)
shows \(\exists u e . \mu c s v=\mu c s u+c e \wedge \operatorname{arc} e(u, v)\)
using assms by (metis mu-exact-triangle)
lemma (in fin-digraph) mu-Inf-triangle:
assumes \(v \neq s\)
assumes \(\bigwedge e . e \in \operatorname{arcs} G \Longrightarrow 0 \leq c e\)
shows \(\mu c s v=\operatorname{Inf}\{\mu c s u+c e \mid u\) e. \(\operatorname{arc} e(u, v)\}(\) is \(-=\operatorname{Inf} ? S)\)
proof cases
assume \(s \rightarrow^{*} v\)
then obtain \(u e\) where \(\mu c s v=\mu c s u+c e \operatorname{arc} e(u, v)\)
using assms by (metis mu-exact-triangle)
then have Inf ? \(S \leq \mu c s v\) by (auto intro: Complete-Lattices.Inf-lower)
also have \(\ldots \leq\) Inf ? \(S\) using \(\operatorname{assms}\) (2)
by (auto intro!: Complete-Lattices.Inf-greatest pos-cost-mu-triangle
simp: arc-def arc-to-ends-def)
finally show?thesis by simp
next
assume \(\neg s \rightarrow^{*} v\)
then have \(\mu c s\) s \(v=\infty\) by (metis shortest-path-inf)
define \(S\) where \(S=\) ? \(S\)
show \(\mu\) cs \(v=\operatorname{Inf} S\)
proof cases
assume \(S=\{ \}\)
then show ?thesis unfolding \(\langle\mu c s v=\infty\rangle\)
by (simp add: top-ereal-def)
next
assume \(S \neq\{ \}\)
\(\{\) fix \(x\) assume \(x \in S\)
then obtain \(u e\) where arc \(e(u, v)\) and \(x\)-val: \(x=\mu c s u+c e\)
unfolding \(S\)-def by auto
```

 then have }\negs\mp@subsup{->}{}{*}u\mathrm{ using < }\negs\mp@subsup{->}{}{*}v\rangle\mathrm{ by (metis reachable-arc-trans)
 then have }\muc<su+ce=\infty\mathrm{ by (simp add: shortest-path-inf)
 then have }x=\infty\mathrm{ using x-val by simp }
 then have S={\infty} using <S \not={}> by auto
 then show ?thesis using <\mu csv=\infty〉 by (simp add: min-def)
 qed
qed
end
end
theory Graph-Theory
imports
Digraph
Bidirected-Digraph
Arc-Walk
Digraph-Component
Digraph-Component-Vwalk
Digraph-Isomorphism
Pair-Digraph
Vertex-Walk
Subdivision
Euler
Kuratowski
Shortest-Path
begin
end

```

\section*{References}
[1] J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory, Algorithms and Applications. Springer, 2 edition, 2009.
[2] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, 4 edition, 2010. http://diestel-graph-theory.com.
[3] F. Harary and R. Read. Is the null-graph a pointless concept? In R. Bari and F. Harary, editors, Graphs and Combinatorics, volume 406 of Lecture Notes in Mathematics, pages 37-44. Springer Berlin Heidelberg, 1974.```

