
Graph Theory

By Lars Noschinski

March 19, 2025

Abstract

This development provides a formalization of directed graphs, sup-
porting (labelled) multi-edges and infinite graphs. A polymorphic edge
type allows edges to be treated as pairs of vertices, if multi-edges are
not required. Formalized properties are i.a. walks (and related con-
cepts), connectedness and subgraphs and basic properties of isomor-
phisms.

This formalization is used to prove characterizations of Euler Trails,
Shortest Paths and Kuratowski subgraphs.

Definitions and nomenclature are based on [1].

Contents
1 Reflexive-Transitive Closure on a Domain 3

2 Additional theorems for base libraries 5
2.1 List . 6

3 NOMATCH simproc 8

4 Digraphs 8
4.1 Reachability . 10
4.2 Degrees of vertices . 13
4.3 Graph operations . 14

5 Bidirected Graphs 18

6 Arc Walks 21
6.1 Basic Lemmas . 21
6.2 Appending awalks . 26
6.3 Cycles . 31
6.4 Reachability . 32
6.5 Paths . 34

1

7 Digraphs without Parallel Arcs 39
7.1 Path reversal for Pair Digraphs 43
7.2 Subdividing Edges . 45
7.3 Bidirected Graphs . 52

8 Components of (Symmetric) Digraphs 53
8.1 Compatible Graphs . 54
8.2 Basic lemmas . 55
8.3 The underlying symmetric graph of a digraph 57
8.4 Subgraphs and Induced Subgraphs 58
8.5 Induced subgraphs . 61
8.6 Unions of Graphs . 66
8.7 Maximal Subgraphs . 67
8.8 Connected and Strongly Connected Graphs 68
8.9 Components . 80

9 Walks Based on Vertices 82

10 Lemmas for Vertex Walks 97

11 Isomorphisms of Digraphs 98
11.1 Graph Invariants . 109

12 Permutation Domains 110

13 Segments 110

14 Lists of Powers 116

15 Subdivision on Digraphs 116
15.1 Subdivision on Pair Digraphs 122

16 Euler Trails in Digraphs 126
16.1 Trails and Euler Trails . 126
16.2 Arc Balance of Walks . 128
16.3 Closed Euler Trails . 129
16.4 Open euler trails . 135

17 Kuratowski Subgraphs 140
17.1 Public definitions . 140
17.2 Inner vertices of a walk . 141
17.3 Progressing Walks . 142
17.4 Walks with Restricted Vertices 144
17.5 Properties of subdivisions . 145
17.6 Pair Graphs . 147

2

17.7 Slim graphs . 151
17.8 Contraction Preserves Kuratowski-Subgraph-Property 158
17.9 Final proof . 162

18 Weighted Graphs 172

19 Shortest Paths 172

theory Rtrancl-On
imports Main
begin

1 Reflexive-Transitive Closure on a Domain

In this section we introduce a variant of the reflexive-transitive closure of a
relation which is useful to formalize the reachability relation on digraphs.
inductive-set

rtrancl-on :: ′a set ⇒ ′a rel ⇒ ′a rel
for F :: ′a set and r :: ′a rel

where
rtrancl-on-refl [intro!, Pure.intro!, simp]: a ∈ F =⇒ (a, a) ∈ rtrancl-on F r
| rtrancl-on-into-rtrancl-on [Pure.intro]:

(a, b) ∈ rtrancl-on F r =⇒ (b, c) ∈ r =⇒ c ∈ F
=⇒ (a, c) ∈ rtrancl-on F r

definition symcl :: ′a rel ⇒ ′a rel (‹(-s)› [1000] 999) where
symcl R = R ∪ (λ(a,b). (b,a)) ‘ R

lemma in-rtrancl-on-in-F :
assumes (a,b) ∈ rtrancl-on F r shows a ∈ F b ∈ F
using assms by induct auto

lemma rtrancl-on-induct[consumes 1 , case-names base step, induct set: rtrancl-on]:
assumes (a, b) ∈ rtrancl-on F r

and a ∈ F =⇒ P a∧
y z. [[(a, y) ∈ rtrancl-on F r ; (y,z) ∈ r ; y ∈ F ; z ∈ F ; P y]] =⇒ P z

shows P b
using assms by (induct a b) (auto dest: in-rtrancl-on-in-F)

lemma rtrancl-on-trans:
assumes (a,b) ∈ rtrancl-on F r (b,c) ∈ rtrancl-on F r shows (a,c) ∈ rtrancl-on

F r
using assms(2 ,1)
by induct (auto intro: rtrancl-on-into-rtrancl-on)

lemma converse-rtrancl-on-into-rtrancl-on:
assumes (a,b) ∈ r (b, c) ∈ rtrancl-on F r a ∈ F

3

shows (a, c) ∈ rtrancl-on F r
proof −

have b ∈ F using ‹(b,c) ∈ -› by (rule in-rtrancl-on-in-F)
show ?thesis

apply (rule rtrancl-on-trans)
apply (rule rtrancl-on-into-rtrancl-on)
apply (rule rtrancl-on-refl)
by fact+

qed

lemma rtrancl-on-converseI :
assumes (y, x) ∈ rtrancl-on F r shows (x, y) ∈ rtrancl-on F (r−1)
using assms

proof induct
case (step a b)
then have (b,b) ∈ rtrancl-on F (r−1) (b,a) ∈ r−1 by auto
then show ?case using step

by (metis rtrancl-on-trans rtrancl-on-into-rtrancl-on)
qed auto

theorem rtrancl-on-converseD:
assumes (y, x) ∈ rtrancl-on F (r−1) shows (x, y) ∈ rtrancl-on F r
using assms by − (drule rtrancl-on-converseI , simp)

lemma converse-rtrancl-on-induct[consumes 1 , case-names base step, induct set:
rtrancl-on]:

assumes major : (a, b) ∈ rtrancl-on F r
and cases: b ∈ F =⇒ P b∧

x y. [[(x,y) ∈ r ; (y,b) ∈ rtrancl-on F r ; x ∈ F ; y ∈ F ; P y]] =⇒ P x
shows P a
using rtrancl-on-converseI [OF major] cases
by induct (auto intro: rtrancl-on-converseD)

lemma converse-rtrancl-on-cases:
assumes (a, b) ∈ rtrancl-on F r
obtains (base) a = b b ∈ F
| (step) c where (a,c) ∈ r (c,b) ∈ rtrancl-on F r

using assms by induct auto

lemma rtrancl-on-sym:
assumes sym r shows sym (rtrancl-on F r)

using assms by (auto simp: sym-conv-converse-eq intro: symI dest: rtrancl-on-converseI)

lemma rtrancl-on-mono:
assumes s ⊆ r F ⊆ G (a,b) ∈ rtrancl-on F s shows (a,b) ∈ rtrancl-on G r
using assms(3 ,1 ,2)

proof induct
case (step x y) show ?case

using step assms by (intro converse-rtrancl-on-into-rtrancl-on[OF - step(5)])

4

auto
qed auto

lemma rtrancl-consistent-rtrancl-on:
assumes (a,b) ∈ r∗

and a ∈ F b ∈ F
and consistent:

∧
a b. [[a ∈ F ; (a,b) ∈ r]] =⇒ b ∈ F

shows (a,b) ∈ rtrancl-on F r
using assms(1−3)

proof (induction rule: converse-rtrancl-induct)
case (step y z) then have z ∈ F by (rule-tac consistent) simp
with step have (z,b) ∈ rtrancl-on F r by simp
with step.prems ‹(y,z) ∈ r› ‹z ∈ F› show ?case

using converse-rtrancl-on-into-rtrancl-on
by metis

qed simp

lemma rtrancl-on-rtranclI :
(a,b) ∈ rtrancl-on F r =⇒ (a,b) ∈ r∗

by (induct rule: rtrancl-on-induct) simp-all

lemma rtrancl-on-sub-rtrancl:
rtrancl-on F r ⊆ r^∗
using rtrancl-on-rtranclI
by auto

end

theory Stuff
imports

Main
HOL−Library.Extended-Real

begin

2 Additional theorems for base libraries

This section contains lemmas unrelated to graph theory which might be
interesting for the Isabelle distribution
lemma ereal-Inf-finite-Min:

fixes S :: ereal set
assumes finite S and S 6= {}
shows Inf S = Min S

using assms
by (induct S rule: finite-ne-induct) (auto simp: min-absorb1)

5

lemma finite-INF-in:
fixes f :: ′a ⇒ ereal
assumes finite S
assumes S 6= {}
shows (INF s∈ S . f s) ∈ f ‘ S

proof −
from assms
have finite (f ‘ S) f ‘ S 6= {} by auto
then show Inf (f ‘ S) ∈ f ‘ S

using ereal-Inf-finite-Min [of f ‘ S] by simp
qed

lemma not-mem-less-INF :
fixes f :: ′a ⇒ ′b :: complete-lattice
assumes f x < (INF s∈ S . f s)
assumes x ∈ S
shows False

using assms by (metis INF-lower less-le-not-le)

lemma sym-diff :
assumes sym A sym B shows sym (A − B)

using assms by (auto simp: sym-def)

2.1 List
lemmas list-exhaust2 = list.exhaust[case-product list.exhaust]

lemma list-exhaust-NSC :
obtains (Nil) xs = [] | (Single) x where xs = [x] | (Cons-Cons) x y ys where

xs = x # y # ys
by (metis list.exhaust)

lemma tl-rev:
tl (rev p) = rev (butlast p)

by (induct p) auto

lemma butlast-rev:
butlast (rev p) = rev (tl p)

by (induct p) auto

lemma take-drop-take:
take n xs @ drop n (take m xs) = take (max n m) xs

proof cases
assume m < n then show ?thesis by (auto simp: max-def)

next
assume ¬m < n
then have take n xs = take n (take m xs) by (auto simp: min-def)
then show ?thesis by (simp del: take-take add: max-def)

6

qed

lemma drop-take-drop:
drop n (take m xs) @ drop m xs = drop (min n m) xs

proof cases
assume A: ¬m < n
then show ?thesis

using drop-append[of n take m xs drop m xs]
by (cases length xs < n) (auto simp: not-less min-def)

qed (auto simp: min-def)

lemma not-distinct-decomp-min-prefix:
assumes ¬ distinct ws
shows ∃ xs ys zs y. ws = xs @ y # ys @ y # zs ∧ distinct xs ∧ y /∈ set xs ∧ y

/∈ set ys
proof −

obtain xs y ys where y ∈ set xs distinct xs ws = xs @ y # ys
using assms by (auto simp: not-distinct-conv-prefix)

moreover then obtain xs ′ ys ′ where xs = xs ′ @ y # ys ′ by (auto simp:
in-set-conv-decomp)

ultimately show ?thesis by auto
qed

lemma not-distinct-decomp-min-not-distinct:
assumes ¬ distinct ws
shows ∃ xs y ys zs. ws = xs @ y # ys @ y # zs ∧ distinct (ys @ [y])

using assms
proof (induct ws)

case (Cons w ws)
show ?case
proof (cases distinct ws)

case True
then obtain xs ys where ws = xs @ w # ys w /∈ set xs

using Cons.prems by (fastforce dest: split-list-first)
then have distinct (xs @ [w]) w # ws = [] @ w # xs @ w # ys

using ‹distinct ws› by auto
then show ?thesis by blast

next
case False
then obtain xs y ys zs where ws = xs @ y # ys @ y # zs ∧ distinct (ys @

[y])
using Cons by auto

then have w # ws = (w # xs) @ y # ys @ y # zs ∧ distinct (ys @ [y])
by simp

then show ?thesis by blast
qed

qed simp

lemma card-Ex-subset:

7

k ≤ card M =⇒ ∃N . N ⊆ M ∧ card N = k
by (induct rule: inc-induct) (auto simp: card-Suc-eq)

lemma list-set-tl: x ∈ set (tl xs) =⇒ x ∈ set xs
by (cases xs) auto

3 NOMATCH simproc

The simplification procedure can be used to avoid simplification of terms of
a certain form
definition NOMATCH :: ′a ⇒ ′a ⇒ bool where NOMATCH val pat ≡ True
lemma NOMATCH-cong[cong]: NOMATCH val pat = NOMATCH val pat by
(rule refl)

simproc-setup NOMATCH (NOMATCH val pat) = ‹fn - => fn ctxt => fn ct
=>

let
val thy = Proof-Context.theory-of ctxt
val dest-binop = Term.dest-comb #> apfst (Term.dest-comb #> snd)
val m = Pattern.matches thy (dest-binop (Thm.term-of ct))

in if m then NONE else SOME @{thm NOMATCH-def } end
›

This setup ensures that a rewrite rule of the form NOMATCH val pat =⇒
t is only applied, if the pattern pat does not match the value val.
end

theory Digraph
imports

Main
Rtrancl-On
Stuff

begin

4 Digraphs
record (′a, ′b) pre-digraph =

verts :: ′a set
arcs :: ′b set
tail :: ′b ⇒ ′a
head :: ′b ⇒ ′a

definition arc-to-ends :: (′a, ′b) pre-digraph ⇒ ′b ⇒ ′a × ′a where
arc-to-ends G e ≡ (tail G e, head G e)

locale pre-digraph =

8

fixes G :: (′a, ′b) pre-digraph (structure)

locale wf-digraph = pre-digraph +
assumes tail-in-verts[simp]: e ∈ arcs G =⇒ tail G e ∈ verts G
assumes head-in-verts[simp]: e ∈ arcs G =⇒ head G e ∈ verts G

begin

lemma wf-digraph: wf-digraph G by intro-locales

lemmas wellformed = tail-in-verts head-in-verts

end

definition arcs-ends :: (′a, ′b) pre-digraph ⇒ (′a × ′a) set where
arcs-ends G ≡ arc-to-ends G ‘ arcs G

definition symmetric :: (′a, ′b) pre-digraph ⇒ bool where
symmetric G ≡ sym (arcs-ends G)

Matches "pseudo digraphs" from [1], except for allowing the null graph. For
a discussion of that topic, see also [3].
locale fin-digraph = wf-digraph +

assumes finite-verts[simp]: finite (verts G)
and finite-arcs[simp]: finite (arcs G)

locale loopfree-digraph = wf-digraph +
assumes no-loops: e ∈ arcs G =⇒ tail G e 6= head G e

locale nomulti-digraph = wf-digraph +
assumes no-multi-arcs:

∧
e1 e2 . [[e1 ∈ arcs G; e2 ∈ arcs G;

arc-to-ends G e1 = arc-to-ends G e2]] =⇒ e1 = e2

locale sym-digraph = wf-digraph +
assumes sym-arcs[intro]: symmetric G

locale digraph = fin-digraph + loopfree-digraph + nomulti-digraph

We model graphs as symmetric digraphs. This is fine for many purposes,
but not for all. For example, the path a, b, a is considered to be a cycle in
a digraph (and hence in a symmetric digraph), but not in an undirected
graph.
locale pseudo-graph = fin-digraph + sym-digraph

locale graph = digraph + pseudo-graph

lemma (in wf-digraph) fin-digraphI [intro]:
assumes finite (verts G)
assumes finite (arcs G)
shows fin-digraph G

9

using assms by unfold-locales

lemma (in wf-digraph) sym-digraphI [intro]:
assumes symmetric G
shows sym-digraph G

using assms by unfold-locales

lemma (in digraph) graphI [intro]:
assumes symmetric G
shows graph G

using assms by unfold-locales

definition (in wf-digraph) arc :: ′b ⇒ ′a × ′a ⇒ bool where
arc e uv ≡ e ∈ arcs G ∧ tail G e = fst uv ∧ head G e = snd uv

lemma (in fin-digraph) fin-digraph: fin-digraph G
by unfold-locales

lemma (in nomulti-digraph) nomulti-digraph: nomulti-digraph G by unfold-locales

lemma arcs-ends-conv: arcs-ends G = (λe. (tail G e, head G e)) ‘ arcs G
by (auto simp: arc-to-ends-def arcs-ends-def)

lemma symmetric-conv: symmetric G ←→ (∀ e1 ∈ arcs G. ∃ e2 ∈ arcs G. tail G
e1 = head G e2 ∧ head G e1 = tail G e2)

unfolding symmetric-def arcs-ends-conv sym-def by auto

lemma arcs-ends-symmetric:
assumes symmetric G
shows (u,v) ∈ arcs-ends G =⇒ (v,u) ∈ arcs-ends G
using assms unfolding symmetric-def sym-def by auto

lemma (in nomulti-digraph) inj-on-arc-to-ends:
inj-on (arc-to-ends G) (arcs G)
by (rule inj-onI) (rule no-multi-arcs)

4.1 Reachability
abbreviation dominates :: (′a, ′b) pre-digraph ⇒ ′a⇒ ′a⇒ bool (‹-→ı -› [100 ,100]
40) where

dominates G u v ≡ (u,v) ∈ arcs-ends G

abbreviation reachable1 :: (′a, ′b) pre-digraph ⇒ ′a ⇒ ′a ⇒ bool (‹- →+ı -›
[100 ,100] 40) where

reachable1 G u v ≡ (u,v) ∈ (arcs-ends G)^+

10

definition reachable :: (′a, ′b) pre-digraph ⇒ ′a ⇒ ′a ⇒ bool (‹- →∗ı -› [100 ,100]
40) where

reachable G u v ≡ (u,v) ∈ rtrancl-on (verts G) (arcs-ends G)

lemma reachableE [elim]:
assumes u →G v
obtains e where e ∈ arcs G tail G e = u head G e = v

using assms by (auto simp add: arcs-ends-conv)

lemma (in loopfree-digraph) adj-not-same:
assumes a → a shows False
using assms by (rule reachableE) (auto dest: no-loops)

lemma reachable-in-vertsE :
assumes u →∗

G v obtains u ∈ verts G v ∈ verts G
using assms unfolding reachable-def by induct auto

lemma symmetric-reachable:
assumes symmetric G v →∗

G w shows w →∗
G v

proof −
have sym (rtrancl-on (verts G) (arcs-ends G))

using assms by (auto simp add: symmetric-def dest: rtrancl-on-sym)
then show ?thesis using assms unfolding reachable-def by (blast elim: symE)

qed

lemma reachable-rtranclI :
u →∗

G v =⇒ (u, v) ∈ (arcs-ends G)∗

unfolding reachable-def by (rule rtrancl-on-rtranclI)

context wf-digraph begin

lemma adj-in-verts:
assumes u →G v shows u ∈ verts G v ∈ verts G
using assms unfolding arcs-ends-conv by auto

lemma dominatesI : assumes arc-to-ends G a = (u,v) a ∈ arcs G shows u →G
v

using assms by (auto simp: arcs-ends-def intro: rev-image-eqI)

lemma reachable-refl [intro!, Pure.intro!, simp]: v ∈ verts G =⇒ v →∗ v
unfolding reachable-def by auto

lemma adj-reachable-trans[trans]:
assumes a →G b b →∗

G c shows a →∗
G c

using assms by (auto simp: reachable-def intro: converse-rtrancl-on-into-rtrancl-on
adj-in-verts)

lemma reachable-adj-trans[trans]:

11

assumes a →∗
G b b →G c shows a →∗

G c
using assms by (auto simp: reachable-def intro: rtrancl-on-into-rtrancl-on adj-in-verts)

lemma reachable-adjI [intro, simp]: u → v =⇒ u →∗ v
by (auto intro: adj-reachable-trans adj-in-verts)

lemma reachable-trans[trans]:
assumes u →∗v v →∗ w shows u →∗ w
using assms unfolding reachable-def by (rule rtrancl-on-trans)

lemma reachable-induct[consumes 1 , case-names base step]:
assumes major : u →∗

G v
and cases: u ∈ verts G =⇒ P u∧

x y. [[u →∗
G x; x →G y; P x]] =⇒ P y

shows P v
using assms unfolding reachable-def by (rule rtrancl-on-induct) auto

lemma converse-reachable-induct[consumes 1 , case-names base step, induct pred:
reachable]:

assumes major : u →∗
G v

and cases: v ∈ verts G =⇒ P v∧
x y. [[x →G y; y →∗

G v; P y]] =⇒ P x
shows P u
using assms unfolding reachable-def by (rule converse-rtrancl-on-induct) auto

lemma (in pre-digraph) converse-reachable-cases:
assumes u →∗

G v
obtains (base) u = v u ∈ verts G
| (step) w where u →G w w →∗

G v
using assms unfolding reachable-def by (cases rule: converse-rtrancl-on-cases)

auto

lemma reachable-in-verts:
assumes u →∗ v shows u ∈ verts G v ∈ verts G
using assms by induct (simp-all add: adj-in-verts)

lemma reachable1-in-verts:
assumes u →+ v shows u ∈ verts G v ∈ verts G
using assms
by induct (simp-all add: adj-in-verts)

lemma reachable1-reachable[intro]:
v →+ w =⇒ v →∗ w
unfolding reachable-def
by (rule rtrancl-consistent-rtrancl-on) (simp-all add: reachable1-in-verts adj-in-verts)

lemmas reachable1-reachableE [elim] = reachable1-reachable[elim-format]

lemma reachable-neq-reachable1 [intro]:

12

assumes reach: v →∗ w
and neq: v 6= w
shows v →+ w

proof −
from reach have (v,w) ∈ (arcs-ends G)^∗ by (rule reachable-rtranclI)
with neq show ?thesis by (auto dest: rtranclD)

qed

lemmas reachable-neq-reachable1E [elim] = reachable-neq-reachable1 [elim-format]

lemma reachable1-reachable-trans [trans]:
u →+ v =⇒ v →∗ w =⇒ u →+ w

by (metis trancl-trans reachable-neq-reachable1)

lemma reachable-reachable1-trans [trans]:
u →∗ v =⇒ v →+ w =⇒ u →+ w

by (metis trancl-trans reachable-neq-reachable1)

lemma reachable-conv:
u →∗ v ←→ (u,v) ∈ (arcs-ends G)^∗ ∩ (verts G × verts G)
apply (auto intro: reachable-in-verts)
apply (induct rule: rtrancl-induct)
apply auto

done

lemma reachable-conv ′:
assumes u ∈ verts G
shows u →∗ v ←→ (u,v) ∈ (arcs-ends G)∗ (is ?L = ?R)

proof
assume ?R then show ?L using assms by induct auto

qed (auto simp: reachable-conv)

end

lemma (in sym-digraph) symmetric-reachable ′:
assumes v →∗

G w shows w →∗
G v

using sym-arcs assms by (rule symmetric-reachable)

4.2 Degrees of vertices
definition in-arcs :: (′a, ′b) pre-digraph ⇒ ′a ⇒ ′b set where

in-arcs G v ≡ {e ∈ arcs G. head G e = v}

definition out-arcs :: (′a, ′b) pre-digraph ⇒ ′a ⇒ ′b set where
out-arcs G v ≡ {e ∈ arcs G. tail G e = v}

definition in-degree :: (′a, ′b) pre-digraph ⇒ ′a ⇒ nat where
in-degree G v ≡ card (in-arcs G v)

13

definition out-degree :: (′a, ′b) pre-digraph ⇒ ′a ⇒ nat where
out-degree G v ≡ card (out-arcs G v)

lemma (in fin-digraph) finite-in-arcs[intro]:
finite (in-arcs G v)
unfolding in-arcs-def by auto

lemma (in fin-digraph) finite-out-arcs[intro]:
finite (out-arcs G v)
unfolding out-arcs-def by auto

lemma in-in-arcs-conv[simp]:
e ∈ in-arcs G v ←→ e ∈ arcs G ∧ head G e = v
unfolding in-arcs-def by auto

lemma in-out-arcs-conv[simp]:
e ∈ out-arcs G v ←→ e ∈ arcs G ∧ tail G e = v
unfolding out-arcs-def by auto

lemma inout-arcs-arc-simps[simp]:
assumes e ∈ arcs G
shows tail G e = u =⇒ out-arcs G u ∩ insert e E = insert e (out-arcs G u ∩

E)
tail G e 6= u =⇒ out-arcs G u ∩ insert e E = out-arcs G u ∩ E
out-arcs G u ∩ {} = {}
head G e = u =⇒ in-arcs G u ∩ insert e E = insert e (in-arcs G u ∩ E)
head G e 6= u =⇒ in-arcs G u ∩ insert e E = in-arcs G u ∩ E
in-arcs G u ∩ {} = {}

using assms by auto

lemma in-arcs-int-arcs[simp]: in-arcs G u ∩ arcs G = in-arcs G u and
out-arcs-int-arcs[simp]: out-arcs G u ∩ arcs G = out-arcs G u

by auto

lemma in-arcs-in-arcs: x ∈ in-arcs G u =⇒ x ∈ arcs G
and out-arcs-in-arcs: x ∈ out-arcs G u =⇒ x ∈ arcs G
by (auto simp: in-arcs-def out-arcs-def)

4.3 Graph operations
context pre-digraph begin

definition add-arc :: ′b ⇒ (′a, ′b) pre-digraph where
add-arc a = (| verts = verts G ∪ {tail G a, head G a}, arcs = insert a (arcs G),

tail = tail G, head = head G |)

definition del-arc :: ′b ⇒ (′a, ′b) pre-digraph where

14

del-arc a = (| verts = verts G, arcs = arcs G − {a}, tail = tail G, head = head
G |)

definition add-vert :: ′a ⇒ (′a, ′b) pre-digraph where
add-vert v = (| verts = insert v (verts G), arcs = arcs G, tail = tail G, head =

head G |)

definition del-vert :: ′a ⇒ (′a, ′b) pre-digraph where
del-vert v = (| verts = verts G − {v}, arcs = {a ∈ arcs G. tail G a 6= v ∧ head

G a 6= v}, tail = tail G, head = head G |)

lemma
verts-add-arc: [[tail G a ∈ verts G; head G a ∈ verts G]] =⇒ verts (add-arc a)

= verts G and
verts-add-arc-conv: verts (add-arc a) = verts G ∪ {tail G a, head G a} and
arcs-add-arc: arcs (add-arc a) = insert a (arcs G) and
tail-add-arc: tail (add-arc a) = tail G and
head-add-arc: head (add-arc a) = head G
by (auto simp: add-arc-def)

lemmas add-arc-simps[simp] = verts-add-arc arcs-add-arc tail-add-arc head-add-arc

lemma
verts-del-arc: verts (del-arc a) = verts G and
arcs-del-arc: arcs (del-arc a) = arcs G − {a} and
tail-del-arc: tail (del-arc a) = tail G and
head-del-arc: head (del-arc a) = head G
by (auto simp: del-arc-def)

lemmas del-arc-simps[simp] = verts-del-arc arcs-del-arc tail-del-arc head-del-arc

lemma
verts-add-vert: verts (pre-digraph.add-vert G u) = insert u (verts G) and
arcs-add-vert: arcs (pre-digraph.add-vert G u) = arcs G and
tail-add-vert: tail (pre-digraph.add-vert G u) = tail G and
head-add-vert: head (pre-digraph.add-vert G u) = head G

by (auto simp: pre-digraph.add-vert-def)

lemmas add-vert-simps = verts-add-vert arcs-add-vert tail-add-vert head-add-vert

lemma
verts-del-vert: verts (pre-digraph.del-vert G u) = verts G − {u} and
arcs-del-vert: arcs (pre-digraph.del-vert G u) = {a ∈ arcs G. tail G a 6= u ∧

head G a 6= u} and
tail-del-vert: tail (pre-digraph.del-vert G u) = tail G and
head-del-vert: head (pre-digraph.del-vert G u) = head G and
ends-del-vert: arc-to-ends (pre-digraph.del-vert G u) = arc-to-ends G

by (auto simp: pre-digraph.del-vert-def arc-to-ends-def)

15

lemmas del-vert-simps = verts-del-vert arcs-del-vert tail-del-vert head-del-vert

lemma add-add-arc-collapse[simp]: pre-digraph.add-arc (add-arc a) a = add-arc a
by (auto simp: pre-digraph.add-arc-def)

lemma add-del-arc-collapse[simp]: pre-digraph.add-arc (del-arc a) a = add-arc a
by (auto simp: pre-digraph.verts-add-arc-conv pre-digraph.add-arc-simps)

lemma del-add-arc-collapse[simp]:
[[tail G a ∈ verts G; head G a ∈ verts G]] =⇒ pre-digraph.del-arc (add-arc a) a

= del-arc a
by (auto simp: pre-digraph.add-arc-simps pre-digraph.del-arc-simps)

lemma del-del-arc-collapse[simp]: pre-digraph.del-arc (del-arc a) a = del-arc a
by (auto simp: pre-digraph.add-arc-simps pre-digraph.del-arc-simps)

lemma add-arc-commute: pre-digraph.add-arc (add-arc b) a = pre-digraph.add-arc
(add-arc a) b

by (auto simp: pre-digraph.add-arc-def)

lemma del-arc-commute: pre-digraph.del-arc (del-arc b) a = pre-digraph.del-arc
(del-arc a) b

by (auto simp: pre-digraph.del-arc-def)

lemma del-arc-in: a /∈ arcs G =⇒ del-arc a = G
by (rule pre-digraph.equality) (auto simp: add-arc-def)

lemma in-arcs-add-arc-iff :
in-arcs (add-arc a) u = (if head G a = u then insert a (in-arcs G u) else in-arcs

G u)
by auto

lemma out-arcs-add-arc-iff :
out-arcs (add-arc a) u = (if tail G a = u then insert a (out-arcs G u) else out-arcs

G u)
by auto

lemma in-arcs-del-arc-iff :
in-arcs (del-arc a) u = (if head G a = u then in-arcs G u − {a} else in-arcs G

u)
by auto

lemma out-arcs-del-arc-iff :
out-arcs (del-arc a) u = (if tail G a = u then out-arcs G u − {a} else out-arcs

G u)
by auto

lemma (in wf-digraph) add-arc-in: a ∈ arcs G =⇒ add-arc a = G
by (rule pre-digraph.equality) (auto simp: add-arc-def)

16

end

context wf-digraph begin

lemma wf-digraph-add-arc[intro]:
wf-digraph (add-arc a) by unfold-locales (auto simp: verts-add-arc-conv)

lemma wf-digraph-del-arc[intro]:
wf-digraph (del-arc a) by unfold-locales (auto simp: verts-add-arc-conv)

lemma wf-digraph-del-vert: wf-digraph (del-vert u)
by standard (auto simp: del-vert-simps)

lemma wf-digraph-add-vert: wf-digraph (add-vert u)
by standard (auto simp: add-vert-simps)

lemma del-vert-add-vert:
assumes u /∈ verts G
shows pre-digraph.del-vert (add-vert u) u = G
using assms by (intro pre-digraph.equality) (auto simp: pre-digraph.del-vert-def

add-vert-def)

end

context fin-digraph begin

lemma in-degree-add-arc-iff :
in-degree (add-arc a) u = (if head G a = u ∧ a /∈ arcs G then in-degree G u +

1 else in-degree G u)
proof −

have a /∈ arcs G =⇒ a /∈ in-arcs G u by (auto simp: in-arcs-def)
with finite-in-arcs show ?thesis
unfolding in-degree-def by (auto simp: in-arcs-add-arc-iff intro: arg-cong[where

f=card])
qed

lemma out-degree-add-arc-iff :
out-degree (add-arc a) u = (if tail G a = u ∧ a /∈ arcs G then out-degree G u +

1 else out-degree G u)
proof −

have a /∈ arcs G =⇒ a /∈ out-arcs G u by (auto simp: out-arcs-def)
with finite-out-arcs show ?thesis
unfolding out-degree-def by (auto simp: out-arcs-add-arc-iff intro: arg-cong[where

f=card])
qed

17

lemma in-degree-del-arc-iff :
in-degree (del-arc a) u = (if head G a = u ∧ a ∈ arcs G then in-degree G u − 1

else in-degree G u)
proof −

have a /∈ arcs G =⇒ a /∈ in-arcs G u by (auto simp: in-arcs-def)
with finite-in-arcs show ?thesis
unfolding in-degree-def by (auto simp: in-arcs-del-arc-iff intro: arg-cong[where

f=card])
qed

lemma out-degree-del-arc-iff :
out-degree (del-arc a) u = (if tail G a = u ∧ a ∈ arcs G then out-degree G u −

1 else out-degree G u)
proof −

have a /∈ arcs G =⇒ a /∈ out-arcs G u by (auto simp: out-arcs-def)
with finite-out-arcs show ?thesis
unfolding out-degree-def by (auto simp: out-arcs-del-arc-iff intro: arg-cong[where

f=card])
qed

lemma fin-digraph-del-vert: fin-digraph (del-vert u)
by standard (auto simp: del-vert-simps)

lemma fin-digraph-del-arc: fin-digraph (del-arc a)
by standard (auto simp: del-vert-simps)

end

end
theory Bidirected-Digraph
imports

Digraph
HOL−Combinatorics.Permutations

begin

5 Bidirected Graphs
locale bidirected-digraph = wf-digraph G for G +

fixes arev :: ′b ⇒ ′b
assumes arev-dom:

∧
a. a ∈ arcs G ←→ arev a 6= a

assumes arev-arev-raw:
∧

a. a ∈ arcs G =⇒ arev (arev a) = a
assumes tail-arev[simp]:

∧
a. a ∈ arcs G =⇒ tail G (arev a) = head G a

lemma (in wf-digraph) bidirected-digraphI :
assumes arev-eq:

∧
a. a /∈ arcs G =⇒ arev a = a

assumes arev-neq:
∧

a. a ∈ arcs G =⇒ arev a 6= a
assumes arev-arev-raw:

∧
a. a ∈ arcs G =⇒ arev (arev a) = a

assumes tail-arev:
∧

a. a ∈ arcs G =⇒ tail G (arev a) = head G a

18

shows bidirected-digraph G arev
using assms by unfold-locales (auto simp: permutes-def)

context bidirected-digraph begin

lemma bidirected-digraph[intro!]: bidirected-digraph G arev
by unfold-locales

lemma arev-arev[simp]: arev (arev a) = a
using arev-dom by (cases a ∈ arcs G) (auto simp: arev-arev-raw)

lemma arev-o-arev[simp]: arev o arev = id
by (simp add: fun-eq-iff)

lemma arev-eq: a /∈ arcs G =⇒ arev a = a
by (simp add: arev-dom)

lemma arev-neq: a ∈ arcs G =⇒ arev a 6= a
by (simp add: arev-dom)

lemma arev-in-arcs[simp]: a ∈ arcs G =⇒ arev a ∈ arcs G
by (metis arev-arev arev-dom)

lemma head-arev[simp]:
assumes a ∈ arcs G shows head G (arev a) = tail G a

proof −
from assms have head G (arev a) = tail G (arev (arev a))

by (simp only: tail-arev arev-in-arcs)
then show ?thesis by simp

qed

lemma ate-arev[simp]:
assumes a ∈ arcs G shows arc-to-ends G (arev a) = prod.swap (arc-to-ends

G a)
using assms by (auto simp: arc-to-ends-def)

lemma bij-arev: bij arev
using arev-arev by (metis bij-betw-imageI inj-on-inverseI surjI)

lemma arev-permutes-arcs: arev permutes arcs G
using arev-dom bij-arev by (auto simp: permutes-def bij-iff)

lemma arev-eq-iff :
∧

x y. arev x = arev y ←→ x = y
by (metis arev-arev)

lemma in-arcs-eq: in-arcs G w = arev ‘ out-arcs G w
by auto (metis arev-arev arev-in-arcs image-eqI in-out-arcs-conv tail-arev)

lemma inj-on-arev[intro!]: inj-on arev S

19

by (metis arev-arev inj-on-inverseI)

lemma even-card-loops:
even (card (in-arcs G w ∩ out-arcs G w)) (is even (card ?S))

proof −
{ assume ¬finite ?S

then have ?thesis by simp
}
moreover
{ assume A:finite ?S

have card ?S = card (
⋃
{{a,arev a} | a. a ∈ ?S}) (is - = card (

⋃
?T))

by (rule arg-cong[where f=card]) (auto intro!: exI [where x={x, arev x}
for x])

also have . . .= sum card ?T
proof (rule card-Union-disjoint)

show
∧

A. A∈{{a, arev a} |a. a ∈ ?S} =⇒ finite A by auto
show pairwise disjnt {{a, arev a} |a. a ∈ in-arcs G w ∩ out-arcs G w}

unfolding pairwise-def disjnt-def
by safe (simp-all add: arev-eq-iff)

qed
also have . . . = sum (λa. 2) ?T

by (intro sum.cong) (auto simp: card-insert-if dest: arev-neq)
also have . . . = 2 ∗ card ?T by simp
finally have ?thesis by simp

}
ultimately
show ?thesis by blast

qed

end

sublocale bidirected-digraph ⊆ sym-digraph
proof (unfold-locales, unfold symmetric-def , intro symI)

fix u v assume u →G v
then obtain a where a ∈ arcs G arc-to-ends G a = (u,v) by (auto simp:

arcs-ends-def)
then have arev a ∈ arcs G arc-to-ends G (arev a) = (v,u)

by (auto simp: arc-to-ends-def)
then show v →G u by (auto simp: arcs-ends-def intro: rev-image-eqI)

qed

end

theory Arc-Walk
imports

20

Digraph
begin

6 Arc Walks

We represent a walk in a graph by the list of its arcs.
type-synonym ′b awalk = ′b list

context pre-digraph begin

The list of vertices of a walk. The additional vertex argument is there to
deal with the case of empty walks.
primrec awalk-verts :: ′a ⇒ ′b awalk ⇒ ′a list where

awalk-verts u [] = [u]
| awalk-verts u (e # es) = tail G e # awalk-verts (head G e) es

abbreviation awhd :: ′a ⇒ ′b awalk ⇒ ′a where
awhd u p ≡ hd (awalk-verts u p)

abbreviation awlast:: ′a ⇒ ′b awalk ⇒ ′a where
awlast u p ≡ last (awalk-verts u p)

Tests whether a list of arcs is a consistent arc sequence, i.e. a list of arcs,
where the head G node of each arc is the tail G node of the following arc.
fun cas :: ′a ⇒ ′b awalk ⇒ ′a ⇒ bool where

cas u [] v = (u = v) |
cas u (e # es) v = (tail G e = u ∧ cas (head G e) es v)

lemma cas-simp:
assumes es 6= []
shows cas u es v ←→ tail G (hd es) = u ∧ cas (head G (hd es)) (tl es) v

using assms by (cases es) auto

definition awalk :: ′a ⇒ ′b awalk ⇒ ′a ⇒ bool where
awalk u p v ≡ u ∈ verts G ∧ set p ⊆ arcs G ∧ cas u p v

definition (in pre-digraph) trail :: ′a ⇒ ′b awalk ⇒ ′a ⇒ bool where
trail u p v ≡ awalk u p v ∧ distinct p

definition apath :: ′a ⇒ ′b awalk ⇒ ′a ⇒ bool where
apath u p v ≡ awalk u p v ∧ distinct (awalk-verts u p)

end

6.1 Basic Lemmas
lemma (in pre-digraph) awalk-verts-conv:

21

awalk-verts u p = (if p = [] then [u] else map (tail G) p @ [head G (last p)])
by (induct p arbitrary: u) auto

lemma (in pre-digraph) awalk-verts-conv ′:
assumes cas u p v
shows awalk-verts u p = (if p = [] then [u] else tail G (hd p) # map (head G) p)
using assms by (induct u p v rule: cas.induct) (auto simp: cas-simp)

lemma (in pre-digraph) length-awalk-verts:
length (awalk-verts u p) = Suc (length p)

by (simp add: awalk-verts-conv)

lemma (in pre-digraph) awalk-verts-ne-eq:
assumes p 6= []
shows awalk-verts u p = awalk-verts v p

using assms by (auto simp: awalk-verts-conv)

lemma (in pre-digraph) awalk-verts-non-Nil[simp]:
awalk-verts u p 6= []

by (simp add: awalk-verts-conv)

context wf-digraph begin

lemma
assumes cas u p v
shows awhd-if-cas: awhd u p = u and awlast-if-cas: awlast u p = v
using assms by (induct p arbitrary: u) auto

lemma awalk-verts-in-verts:
assumes u ∈ verts G set p ⊆ arcs G v ∈ set (awalk-verts u p)
shows v ∈ verts G
using assms by (induct p arbitrary: u) (auto intro: wellformed)

lemma
assumes u ∈ verts G set p ⊆ arcs G
shows awhd-in-verts: awhd u p ∈ verts G

and awlast-in-verts: awlast u p ∈ verts G
using assms by (auto elim: awalk-verts-in-verts)

lemma awalk-conv:
awalk u p v = (set (awalk-verts u p) ⊆ verts G
∧ set p ⊆ arcs G
∧ awhd u p = u ∧ awlast u p = v ∧ cas u p v)

unfolding awalk-def using hd-in-set[OF awalk-verts-non-Nil, of u p]
by (auto intro: awalk-verts-in-verts awhd-if-cas awlast-if-cas simp del: hd-in-set)

lemma awalkI :
assumes set (awalk-verts u p) ⊆ verts G set p ⊆ arcs G cas u p v
shows awalk u p v

22

using assms by (auto simp: awalk-conv awhd-if-cas awlast-if-cas)

lemma awalkE [elim]:
assumes awalk u p v
obtains set (awalk-verts u p) ⊆ verts G set p ⊆ arcs G cas u p v

awhd u p = u awlast u p = v
using assms by (auto simp add: awalk-conv)

lemma awalk-Nil-iff :
awalk u [] v ←→ u = v ∧ u ∈ verts G

unfolding awalk-def by auto

lemma trail-Nil-iff :
trail u [] v ←→ u = v ∧ u ∈ verts G
by (auto simp: trail-def awalk-Nil-iff)

lemma apath-Nil-iff : apath u [] v ←→ u = v ∧ u ∈ verts G
by (auto simp: apath-def awalk-Nil-iff)

lemma awalk-hd-in-verts: awalk u p v =⇒ u ∈ verts G
by (cases p) auto

lemma awalk-last-in-verts: awalk u p v =⇒ v ∈ verts G
unfolding awalk-conv by auto

lemma hd-in-awalk-verts:
awalk u p v =⇒ u ∈ set (awalk-verts u p)
apath u p v =⇒ u ∈ set (awalk-verts u p)
by (case-tac [!]p) (auto simp: apath-def)

lemma awalk-Cons-iff :
awalk u (e # es) w ←→ e ∈ arcs G ∧ u = tail G e ∧ awalk (head G e) es w
by (auto simp: awalk-def)

lemma trail-Cons-iff :
trail u (e # es) w ←→ e ∈ arcs G ∧ u = tail G e ∧ e /∈ set es ∧ trail (head G

e) es w
by (auto simp: trail-def awalk-Cons-iff)

lemma apath-Cons-iff :
apath u (e # es) w ←→ e ∈ arcs G ∧ tail G e = u ∧ apath (head G e) es w
∧ tail G e /∈ set (awalk-verts (head G e) es) (is ?L ←→ ?R)

by (auto simp: apath-def awalk-Cons-iff)

lemmas awalk-simps = awalk-Nil-iff awalk-Cons-iff
lemmas trail-simps = trail-Nil-iff trail-Cons-iff
lemmas apath-simps = apath-Nil-iff apath-Cons-iff

lemma arc-implies-awalk:

23

e ∈ arcs G =⇒ awalk (tail G e) [e] (head G e)
by (simp add: awalk-simps)

lemma apath-nonempty-ends:
assumes apath u p v
assumes p 6= []
shows u 6= v

using assms
proof (induct p arbitrary: u)

case (Cons e es)
then have apath (head G e) es v u /∈ set (awalk-verts (head G e) es)

by (auto simp: apath-Cons-iff)
moreover then have v ∈ set (awalk-verts (head G e) es) by (auto simp: ap-

ath-def)
ultimately show u 6= v by auto

qed simp

lemma awalk-ConsI :
assumes awalk v es w
assumes e ∈ arcs G and arc-to-ends G e = (u,v)
shows awalk u (e # es) w
using assms by (cases es) (auto simp: awalk-def arc-to-ends-def)

lemma (in pre-digraph) awalkI-apath:
assumes apath u p v shows awalk u p v

using assms by (simp add: apath-def)

lemma arcE :
assumes arc e (u,v)
assumes [[e ∈ arcs G; tail G e = u; head G e = v]] =⇒ P
shows P
using assms by (auto simp: arc-def)

lemma in-arcs-imp-in-arcs-ends:
assumes e ∈ arcs G
shows (tail G e, head G e) ∈ arcs-ends G

using assms by (auto simp: arcs-ends-conv)

lemma set-awalk-verts-cas:
assumes cas u p v
shows set (awalk-verts u p) = {u} ∪ set (map (tail G) p) ∪ set (map (head G)

p)
using assms
proof (induct p arbitrary: u)

case Nil then show ?case by simp
next

24

case (Cons e es)
then have set (awalk-verts (head G e) es)

= {head G e} ∪ set (map (tail G) es) ∪ set (map (head G) es)
by (auto simp: awalk-Cons-iff)

with Cons.prems show ?case by auto
qed

lemma set-awalk-verts-not-Nil-cas:
assumes cas u p v p 6= []
shows set (awalk-verts u p) = set (map (tail G) p) ∪ set (map (head G) p)

proof −
have u ∈ set (map (tail G) p) using assms by (cases p) auto
with assms show ?thesis by (auto simp: set-awalk-verts-cas)

qed

lemma set-awalk-verts:
assumes awalk u p v
shows set (awalk-verts u p) = {u} ∪ set (map (tail G) p) ∪ set (map (head G)

p)
using assms by (intro set-awalk-verts-cas) blast

lemma set-awalk-verts-not-Nil:
assumes awalk u p v p 6= []
shows set (awalk-verts u p) = set (map (tail G) p) ∪ set (map (head G) p)
using assms by (intro set-awalk-verts-not-Nil-cas) blast

lemma
awhd-of-awalk: awalk u p v =⇒ awhd u p = u and
awlast-of-awalk: awalk u p v =⇒ NOMATCH (awlast u p) v =⇒ awlast u p = v
unfolding NOMATCH-def by auto

lemmas awends-of-awalk[simp] = awhd-of-awalk awlast-of-awalk

lemma awalk-verts-arc1 :
assumes e ∈ set p
shows tail G e ∈ set (awalk-verts u p)

using assms by (auto simp: awalk-verts-conv)

lemma awalk-verts-arc2 :
assumes awalk u p v e ∈ set p
shows head G e ∈ set (awalk-verts u p)

using assms by (simp add: set-awalk-verts)

lemma awalk-induct-raw[case-names Base Cons]:
assumes awalk u p v
assumes

∧
w1 . w1 ∈ verts G =⇒ P w1 [] w1

assumes
∧

w1 w2 e es. e ∈ arcs G =⇒ arc-to-ends G e = (w1 , w2)
=⇒ P w2 es v =⇒ P w1 (e # es) v

shows P u p v
using assms

25

proof (induct p arbitrary: u v)
case Nil then show ?case using Nil.prems by auto

next
case (Cons e es)
from Cons.prems(1) show ?case

by (intro Cons) (auto intro: Cons(2−) simp: arc-to-ends-def awalk-Cons-iff)
qed

6.2 Appending awalks
lemma (in pre-digraph) cas-append-iff [simp]:

cas u (p @ q) v ←→ cas u p (awlast u p) ∧ cas (awlast u p) q v
by (induct u p v rule: cas.induct) auto

lemma cas-ends:
assumes cas u p v cas u ′ p v ′

shows (p 6= [] ∧ u = u ′ ∧ v = v ′) ∨ (p = [] ∧ u = v ∧ u ′ = v ′)
using assms by (induct u p v arbitrary: u u ′ rule: cas.induct) auto

lemma awalk-ends:
assumes awalk u p v awalk u ′ p v ′

shows (p 6= [] ∧ u = u ′ ∧ v = v ′) ∨ (p = [] ∧ u = v ∧ u ′ = v ′)
using assms by (simp add: awalk-def cas-ends)

lemma awalk-ends-eqD:
assumes awalk u p u awalk v p w
shows v = w

using awalk-ends[OF assms(1 ,2)] by auto

lemma awalk-empty-ends:
assumes awalk u [] v
shows u = v

using assms by (auto simp: awalk-def)

lemma apath-ends:
assumes apath u p v and apath u ′ p v ′

shows (p 6= [] ∧ u 6= v ∧ u = u ′ ∧ v = v ′) ∨ (p = [] ∧ u = v ∧ u ′ = v ′)
using assms unfolding apath-def by (metis assms(2) apath-nonempty-ends awalk-ends)

lemma awalk-append-iff [simp]:
awalk u (p @ q) v ←→ awalk u p (awlast u p) ∧ awalk (awlast u p) q v (is ?L
←→ ?R)
by (auto simp: awalk-def intro: awlast-in-verts)

lemma awlast-append:
awlast u (p @ q) = awlast (awlast u p) q

by (simp add: awalk-verts-conv)

lemma awhd-append:

26

awhd u (p @ q) = awhd (awhd u q) p
by (simp add: awalk-verts-conv)

declare awalkE [rule del]

lemma awalkE ′[elim]:
assumes awalk u p v
obtains set (awalk-verts u p) ⊆ verts G set p ⊆ arcs G cas u p v

awhd u p = u awlast u p = v u ∈ verts G v ∈ verts G
proof −

have u ∈ set (awalk-verts u p) v ∈ set (awalk-verts u p)
using assms by (auto simp: hd-in-awalk-verts elim: awalkE)

then show ?thesis using assms by (auto elim: awalkE intro: that)
qed

lemma awalk-appendI :
assumes awalk u p v
assumes awalk v q w
shows awalk u (p @ q) w

using assms
proof (induct p arbitrary: u)

case Nil then show ?case by auto
next

case (Cons e es)
from Cons.prems have ee-e: arc-to-ends G e = (u, head G e)

unfolding arc-to-ends-def by auto

have awalk (head G e) es v
using ee-e Cons(2) awalk-Cons-iff by auto

then show ?case using Cons ee-e by (auto simp: awalk-Cons-iff)
qed

lemma awalk-verts-append-cas:
assumes cas u (p @ q) v
shows awalk-verts u (p @ q) = awalk-verts u p @ tl (awalk-verts (awlast u p) q)
using assms

proof (induct p arbitrary: u)
case Nil then show ?case by (cases q) auto

qed (auto simp: awalk-Cons-iff)

lemma awalk-verts-append:
assumes awalk u (p @ q) v
shows awalk-verts u (p @ q) = awalk-verts u p @ tl (awalk-verts (awlast u p) q)
using assms by (intro awalk-verts-append-cas) blast

lemma awalk-verts-append2 :
assumes awalk u (p @ q) v
shows awalk-verts u (p @ q) = butlast (awalk-verts u p) @ awalk-verts (awlast u

p) q

27

using assms by (auto simp: awalk-verts-conv)

lemma apath-append-iff :
apath u (p @ q) v ←→ apath u p (awlast u p) ∧ apath (awlast u p) q v ∧

set (awalk-verts u p) ∩ set (tl (awalk-verts (awlast u p) q)) = {} (is ?L ←→
?R)
proof

assume ?L
then have distinct (awalk-verts (awlast u p) q) by (auto simp: apath-def awalk-verts-append2)
with ‹?L› show ?R by (auto simp: apath-def awalk-verts-append)

next
assume ?R
then show ?L by (auto simp: apath-def awalk-verts-append dest: distinct-tl)

qed

lemma (in wf-digraph) set-awalk-verts-append-cas:
assumes cas u p v cas v q w
shows set (awalk-verts u (p @ q)) = set (awalk-verts u p) ∪ set (awalk-verts v

q)
proof −

from assms have cas-pq: cas u (p @ q) w
by (simp add: awlast-if-cas)

moreover
from assms have v ∈ set (awalk-verts u p)

by (metis awalk-verts-non-Nil awlast-if-cas last-in-set)
ultimately show ?thesis using assms

by (auto simp: set-awalk-verts-cas)
qed

lemma (in wf-digraph) set-awalk-verts-append:
assumes awalk u p v awalk v q w
shows set (awalk-verts u (p @ q)) = set (awalk-verts u p) ∪ set (awalk-verts v

q)
proof −

from assms have awalk u (p @ q) w by auto
moreover
with assms have v ∈ set (awalk-verts u (p @ q))

by (auto simp: awalk-verts-append)
ultimately show ?thesis using assms

by (auto simp: set-awalk-verts)
qed

lemma cas-takeI :
assumes cas u p v awlast u (take n p) = v ′

shows cas u (take n p) v ′

proof −
from assms have cas u (take n p @ drop n p) v by simp
with assms show ?thesis unfolding cas-append-iff by simp

qed

28

lemma cas-dropI :
assumes cas u p v awlast u (take n p) = u ′

shows cas u ′ (drop n p) v
proof −

from assms have cas u (take n p @ drop n p) v by simp
with assms show ?thesis unfolding cas-append-iff by simp

qed

lemma awalk-verts-take-conv:
assumes cas u p v
shows awalk-verts u (take n p) = take (Suc n) (awalk-verts u p)

proof −
from assms have cas u (take n p) (awlast u (take n p)) by (auto intro: cas-takeI)
with assms show ?thesis

by (cases n p rule: nat.exhaust[case-product list.exhaust])
(auto simp: awalk-verts-conv ′ take-map simp del: awalk-verts.simps)

qed

lemma awalk-verts-drop-conv:
assumes cas u p v
shows awalk-verts u ′ (drop n p) = (if n < length p then drop n (awalk-verts u p)

else [u ′])
using assms by (auto simp: awalk-verts-conv drop-map)

lemma awalk-decomp-verts:
assumes cas: cas u p v and ev-decomp: awalk-verts u p = xs @ y # ys
obtains q r where cas u q y cas y r v p = q @ r awalk-verts u q = xs @ [y]

awalk-verts y r = y # ys
using assms
proof −

define q r where q = take (length xs) p and r = drop (length xs) p
then have p: p = q @ r by simp
moreover from p have cas u q (awlast u q) cas (awlast u q) r v

using ‹cas u p v› by auto
moreover have awlast u q = y

using q-def and assms by (auto simp: awalk-verts-take-conv)
moreover have ∗: awalk-verts u q = xs @ [awlast u q]

using assms q-def by (auto simp: awalk-verts-take-conv)
moreover from ∗ have awalk-verts y r = y # ys

unfolding q-def r-def using assms by (auto simp: awalk-verts-drop-conv
not-less)

ultimately show ?thesis by (intro that) auto
qed

lemma awalk-decomp:
assumes awalk u p v
assumes w ∈ set (awalk-verts u p)
shows ∃ q r . p = q @ r ∧ awalk u q w ∧ awalk w r v

29

proof −
from assms have cas u p v by auto
moreover from assms obtain xs ys where

awalk-verts u p = xs @ w # ys by (auto simp: in-set-conv-decomp)
ultimately
obtain q r where cas u q w cas w r v p = q @ r awalk-verts u q = xs @ [w]

by (auto intro: awalk-decomp-verts)
with assms show ?thesis by auto

qed

lemma awalk-not-distinct-decomp:
assumes awalk u p v
assumes ¬ distinct (awalk-verts u p)
shows ∃ q r s. p = q @ r @ s ∧ distinct (awalk-verts u q)
∧ 0 < length r
∧ (∃w. awalk u q w ∧ awalk w r w ∧ awalk w s v)

proof −
from assms
obtain xs ys zs y where

pv-decomp: awalk-verts u p = xs @ y # ys @ y # zs
and xs-y-props: distinct xs y /∈ set xs y /∈ set ys
using not-distinct-decomp-min-prefix by blast

obtain q p ′ where cas u q y p = q @ p ′ awalk-verts u q = xs @ [y]
and p ′-props: cas y p ′ v awalk-verts y p ′ = (y # ys) @ y # zs
using assms pv-decomp by − (rule awalk-decomp-verts, auto)

obtain r s where cas y r y cas y s v p ′ = r @ s
awalk-verts y r = y # ys @ [y] awalk-verts y s = y # zs
using p ′-props by (rule awalk-decomp-verts) auto

have p = q @ r @ s using ‹p = q @ p ′› ‹p ′ = r @ s› by simp
moreover
have distinct (awalk-verts u q) using ‹awalk-verts u q = xs @ [y]› and xs-y-props

by simp
moreover
have 0 < length r using ‹awalk-verts y r = y # ys @ [y]› by auto
moreover
from pv-decomp assms have y ∈ verts G by auto
then have awalk u q y awalk y r y awalk y s v

using ‹awalk u p v› ‹cas u q y› ‹cas y r y› ‹cas y s v› unfolding ‹p = q @ r
@ s›

by (auto simp: awalk-def)
ultimately show ?thesis by blast

qed

lemma apath-decomp-disjoint:
assumes apath u p v
assumes p = q @ r

30

assumes x ∈ set (awalk-verts u q) x ∈ set (tl (awalk-verts (awlast u q) r))
shows False

using assms by (auto simp: apath-def awalk-verts-append)

6.3 Cycles
definition closed-w :: ′b awalk ⇒ bool where

closed-w p ≡ ∃ u. awalk u p u ∧ 0 < length p

The definitions of cycles in textbooks vary w.r.t to the minimial length of a
cycle.
The definition given here matches [2]. [1] excludes loops from being cycles.
Volkmann (Lutz Volkmann: Graphen an allen Ecken und Kanten, 2006 (?))
places no restriction on the length in the definition, but later usage assumes
cycles to be non-empty.
definition (in pre-digraph) cycle :: ′b awalk ⇒ bool where

cycle p ≡ ∃ u. awalk u p u ∧ distinct (tl (awalk-verts u p)) ∧ p 6= []

lemma cycle-altdef :
cycle p ←→ closed-w p ∧ (∃ u. distinct (tl (awalk-verts u p)))

by (cases p) (auto simp: closed-w-def cycle-def)

lemma (in wf-digraph) distinct-tl-verts-imp-distinct:
assumes awalk u p v
assumes distinct (tl (awalk-verts u p))
shows distinct p

proof (rule ccontr)
assume ¬distinct p
then obtain e xs ys zs where p-decomp: p = xs @ e # ys @ e # zs

by (blast dest: not-distinct-decomp-min-prefix)
then show False
using assms p-decomp by (auto simp: awalk-verts-append awalk-Cons-iff set-awalk-verts)

qed

lemma (in wf-digraph) distinct-verts-imp-distinct:
assumes awalk u p v
assumes distinct (awalk-verts u p)
shows distinct p
using assms by (blast intro: distinct-tl-verts-imp-distinct distinct-tl)

lemma (in wf-digraph) cycle-conv:
cycle p ←→ (∃ u. awalk u p u ∧ distinct (tl (awalk-verts u p)) ∧ distinct p ∧ p 6=

[])
unfolding cycle-def by (auto intro: distinct-tl-verts-imp-distinct)

lemma (in loopfree-digraph) cycle-digraph-conv:
cycle p ←→ (∃ u. awalk u p u ∧ distinct (tl (awalk-verts u p)) ∧ 2 ≤ length p)

(is ?L ←→ ?R)
proof

31

assume cycle p
then obtain u where ∗: awalk u p u distinct (tl (awalk-verts u p)) p 6= []

unfolding cycle-def by auto
have 2 ≤ length p
proof (rule ccontr)

assume ¬?thesis with ∗ obtain e where p=[e]
by (cases p) (auto simp: not-le)

then show False using ∗ by (auto simp: awalk-simps dest: no-loops)
qed
then show ?R using ∗ by auto

qed (auto simp: cycle-def)

lemma (in wf-digraph) closed-w-imp-cycle:
assumes closed-w p shows ∃ p. cycle p
using assms

proof (induct length p arbitrary: p rule: less-induct)
case less
then obtain u where ∗: awalk u p u p 6= [] by (auto simp: closed-w-def)
show ?thesis
proof cases

assume distinct (tl (awalk-verts u p))
with less show ?thesis by (auto simp: closed-w-def cycle-altdef)

next
assume A: ¬distinct (tl (awalk-verts u p))
then obtain e es where p = e # es by (cases p) auto
with A ∗ have ∗∗: awalk (head G e) es u ¬distinct (awalk-verts (head G e) es)

by (auto simp: awalk-Cons-iff)
obtain q r s where es = q @ r @ s ∃w. awalk w r w closed-w r

using awalk-not-distinct-decomp[OF ∗∗] by (auto simp: closed-w-def)
then have length r < length p using ‹p = -› by auto
then show ?thesis using ‹closed-w r› by (rule less)

qed
qed

6.4 Reachability
lemma reachable1-awalk:

u →+ v ←→ (∃ p. awalk u p v ∧ p 6= [])
proof

assume u →+ v then show ∃ p. awalk u p v ∧ p 6= []
proof (induct rule: converse-trancl-induct)

case (base y) then obtain e where e ∈ arcs G tail G e = y head G e = v by
auto

with arc-implies-awalk show ?case by auto
next

case (step x y)
then obtain p where awalk y p v p 6= [] by auto
moreover
from ‹x → y› obtain e where tail G e = x head G e = y e ∈ arcs G

32

by auto
ultimately
have awalk x (e # p) v

by (auto simp: awalk-Cons-iff)
then show ?case by auto

qed
next

assume ∃ p. awalk u p v ∧ p 6= [] then obtain p where awalk u p v p 6= [] by
auto

thus u →+ v
proof (induct p arbitrary: u)

case (Cons a as) then show ?case
by (cases as = []) (auto simp: awalk-simps trancl-into-trancl2 dest: in-arcs-imp-in-arcs-ends)

qed simp
qed

lemma reachable-awalk:
u →∗ v ←→ (∃ p. awalk u p v)

proof cases
assume u = v
have u →∗u ←→ awalk u [] u by (auto simp: awalk-Nil-iff reachable-in-verts)
also have . . . ←→ (∃ p. awalk u p u)

by (metis awalk-Nil-iff awalk-hd-in-verts)
finally show ?thesis using ‹u = v› by simp

next
assume u 6= v
then have u →∗ v ←→ u →+ v by auto
also have . . . ←→ (∃ p. awalk u p v)

using ‹u 6= v› unfolding reachable1-awalk by force
finally show ?thesis .

qed

lemma reachable-awalkI [intro?]:
assumes awalk u p v
shows u →∗ v
unfolding reachable-awalk using assms by auto

lemma reachable1-awalkI :
awalk v p w =⇒ p 6= [] =⇒ v →+ w

by (auto simp add: reachable1-awalk)

lemma reachable-arc-trans:
assumes u →∗ v arc e (v,w)
shows u →∗ w

proof −
from ‹u →∗ v› obtain p where awalk u p v

by (auto simp: reachable-awalk)
moreover have awalk v [e] w

33

using ‹arc e (v,w)›
by (auto simp: arc-def awalk-def)

ultimately have awalk u (p @ [e]) w
by (rule awalk-appendI)

then show ?thesis ..
qed

lemma awalk-verts-reachable-from:
assumes awalk u p v w ∈ set (awalk-verts u p) shows u →∗

G w
proof −

obtain s where awalk u s w using awalk-decomp[OF assms] by blast
then show ?thesis by (metis reachable-awalk)

qed

lemma awalk-verts-reachable-to:
assumes awalk u p v w ∈ set (awalk-verts u p) shows w →∗

G v
proof −

obtain s where awalk w s v using awalk-decomp[OF assms] by blast
then show ?thesis by (metis reachable-awalk)

qed

6.5 Paths
lemma (in fin-digraph) length-apath-less:

assumes apath u p v
shows length p < card (verts G)

proof −
have length p < length (awalk-verts u p) unfolding awalk-verts-conv

by (auto simp: awalk-verts-conv)
also have length (awalk-verts u p) = card (set (awalk-verts u p))

using ‹apath u p v› by (auto simp: apath-def distinct-card)
also have . . . ≤ card (verts G)

using ‹apath u p v› unfolding apath-def awalk-conv
by (auto intro: card-mono)

finally show ?thesis .
qed

lemma (in fin-digraph) length-apath:
assumes apath u p v
shows length p ≤ card (verts G)
using length-apath-less[OF assms] by auto

lemma (in fin-digraph) apaths-finite-triple:
shows finite {(u,p,v). apath u p v}

proof −
have

∧
u p v. awalk u p v =⇒ distinct (awalk-verts u p) =⇒length p ≤ card (verts

G)
by (rule length-apath) (auto simp: apath-def)

then have {(u,p,v). apath u p v} ⊆ verts G × {es. set es ⊆ arcs G ∧ length es

34

≤ card (verts G)} × verts G
by (auto simp: apath-def)

moreover have finite ...
using finite-verts finite-arcs
by (intro finite-cartesian-product finite-lists-length-le)

ultimately show ?thesis by (rule finite-subset)
qed

lemma (in fin-digraph) apaths-finite:
shows finite {p. apath u p v}

proof −
have {p. apath u p v} ⊆ (fst o snd) ‘ {(u,p,v). apath u p v}

by force
with apaths-finite-triple show ?thesis by (rule finite-surj)

qed

fun is-awalk-cyc-decomp :: ′b awalk =>
(′b awalk × ′b awalk × ′b awalk) ⇒ bool where
is-awalk-cyc-decomp p (q,r ,s) ←→ p = q @ r @ s
∧ (∃ u v w. awalk u q v ∧ awalk v r v ∧ awalk v s w)
∧ 0 <length r
∧ (∃ u. distinct (awalk-verts u q))

definition awalk-cyc-decomp :: ′b awalk
⇒ ′b awalk × ′b awalk × ′b awalk where

awalk-cyc-decomp p = (SOME qrs. is-awalk-cyc-decomp p qrs)

function awalk-to-apath :: ′b awalk ⇒ ′b awalk where
awalk-to-apath p = (if ¬(∃ u. distinct (awalk-verts u p)) ∧ (∃ u v. awalk u p v)

then (let (q,r ,s) = awalk-cyc-decomp p in awalk-to-apath (q @ s))
else p)

by auto

lemma awalk-cyc-decomp-has-prop:
assumes awalk u p v and ¬distinct (awalk-verts u p)
shows is-awalk-cyc-decomp p (awalk-cyc-decomp p)

proof −
obtain q r s where ∗: p = q @ r @ s ∧ distinct (awalk-verts u q)
∧ 0 < length r
∧ (∃w. awalk u q w ∧ awalk w r w ∧ awalk w s v)

by (atomize-elim) (rule awalk-not-distinct-decomp[OF assms])
then have ∃ x. is-awalk-cyc-decomp p x

by (intro exI [where x=(q,r ,s)]) auto
then show ?thesis unfolding awalk-cyc-decomp-def ..

qed

lemma awalk-cyc-decompE :
assumes dec: awalk-cyc-decomp p = (q,r ,s)
assumes p-props: awalk u p v ¬distinct (awalk-verts u p)

35

obtains p = q @ r @ s distinct (awalk-verts u q) ∃w. awalk u q w ∧ awalk w r
w ∧ awalk w s v closed-w r
proof

show p = q @ r @ s distinct (awalk-verts u q) closed-w r
using awalk-cyc-decomp-has-prop[OF p-props] and dec
by (auto simp: closed-w-def awalk-verts-conv)

then have p 6= [] by (auto simp: closed-w-def)

obtain u ′ w ′ v ′ where obt-awalk: awalk u ′ q w ′ awalk w ′ r w ′ awalk w ′ s v ′

using awalk-cyc-decomp-has-prop[OF p-props] and dec by auto
then have awalk u ′ p v ′

using ‹p = q @ r @ s› by simp
then have u = u ′ and v = v ′ using ‹p 6= []› ‹awalk u p v› by (metis awalk-ends)+
then have awalk u q w ′ awalk w ′ r w ′ awalk w ′ s v

using obt-awalk by auto
then show ∃w. awalk u q w ∧ awalk w r w ∧ awalk w s v by auto

qed

lemma awalk-cyc-decompE ′:
assumes p-props: awalk u p v ¬distinct (awalk-verts u p)
obtains q r s where p = q @ r @ s distinct (awalk-verts u q) ∃w. awalk u q w
∧ awalk w r w ∧ awalk w s v closed-w r
proof −

obtain q r s where awalk-cyc-decomp p = (q,r ,s)
by (cases awalk-cyc-decomp p) auto

then have p = q @ r @ s distinct (awalk-verts u q) ∃w. awalk u q w ∧ awalk w
r w ∧ awalk w s v closed-w r

using assms by (auto elim: awalk-cyc-decompE)
then show ?thesis ..

qed

termination awalk-to-apath
proof (relation measure length)

fix G p qrs rs q r s

have X :
∧

x y. closed-w r =⇒ awalk x r y =⇒ x = y
unfolding closed-w-def by (blast dest: awalk-ends)

assume ¬(∃ u. distinct (awalk-verts u p)) ∧(∃ u v. awalk u p v)
and ∗∗:qrs = awalk-cyc-decomp p (q, rs) = qrs (r , s) = rs

then obtain u v where ∗: awalk u p v ¬distinct (awalk-verts u p)
by (cases p) auto

then have awalk-cyc-decomp p = (q,r ,s) using ∗∗ by simp
then have is-awalk-cyc-decomp p (q,r ,s)

apply (rule awalk-cyc-decompE [OF - ∗])
using X [of awlast u q awlast (awlast u q) r] ∗(1)
by (auto simp: closed-w-def)

then show (q @ s, p) ∈ measure length

36

by (auto simp: closed-w-def)
qed simp
declare awalk-to-apath.simps[simp del]

lemma awalk-to-apath-induct[consumes 1 , case-names path decomp]:
assumes awalk: awalk u p v
assumes dist:

∧
p. awalk u p v =⇒ distinct (awalk-verts u p) =⇒ P p

assumes dec:
∧

p q r s. [[awalk u p v; awalk-cyc-decomp p = (q,r ,s);
¬distinct (awalk-verts u p); P (q @ s)]] =⇒ P p

shows P p
using awalk
proof (induct length p arbitrary: p rule: less-induct)

case less
show ?case
proof (cases distinct (awalk-verts u p))

case True then show ?thesis by (auto intro: dist less.prems)
next

case False
obtain q r s where p-cdecomp: awalk-cyc-decomp p = (q,r ,s)

by (cases awalk-cyc-decomp p) auto
then have is-awalk-cyc-decomp p (q,r ,s) p = q @ r @ s

using awalk-cyc-decomp-has-prop[OF less.prems(1) False] by auto
then have length (q @ s) < length p awalk u (q @ s) v

using less.prems by (auto dest!: awalk-ends-eqD)
then have P (q @ s) by (auto intro: less)

with p-cdecomp False show ?thesis by (auto intro: dec less.prems)
qed

qed

lemma step-awalk-to-apath:
assumes awalk: awalk u p v

and decomp: awalk-cyc-decomp p = (q, r , s)
and dist: ¬ distinct (awalk-verts u p)

shows awalk-to-apath p = awalk-to-apath (q @ s)
proof −

from dist have ¬(∃ u. distinct (awalk-verts u p))
by (auto simp: awalk-verts-conv)

with awalk and decomp show awalk-to-apath p = awalk-to-apath (q @ s)
by (auto simp: awalk-to-apath.simps)

qed

lemma apath-awalk-to-apath:
assumes awalk u p v
shows apath u (awalk-to-apath p) v

using assms
proof (induct rule: awalk-to-apath-induct)

case (path p)
then have awalk-to-apath p = p

37

by (auto simp: awalk-to-apath.simps)
then show ?case using path by (auto simp: apath-def)

next
case (decomp p q r s)
then show ?case using step-awalk-to-apath[of - p - q r s] by simp

qed

lemma (in wf-digraph) awalk-to-apath-subset:
assumes awalk u p v
shows set (awalk-to-apath p) ⊆ set p

using assms
proof (induct rule: awalk-to-apath-induct)

case (path p)
then have awalk-to-apath p = p

by (auto simp: awalk-to-apath.simps)
then show ?case by simp

next
case (decomp p q r s)
have ∗: ¬(∃ u. distinct (awalk-verts u p)) ∧ (∃ u v. awalk u p v)

using decomp by (cases p) auto
have set (awalk-to-apath (q @ s)) ⊆ set p

using decomp by (auto elim!: awalk-cyc-decompE)
then
show ?case by (subst awalk-to-apath.simps) (simp only: ∗ simp-thms if-True

decomp Let-def prod.simps)
qed

lemma reachable-apath:
u →∗ v ←→ (∃ p. apath u p v)
by (auto intro: awalkI-apath apath-awalk-to-apath simp: reachable-awalk)

lemma no-loops-in-apath:
assumes apath u p v a ∈ set p shows tail G a 6= head G a

proof −
from ‹a ∈ set p› obtain p1 p2 where p = p1 @ a # p2 by (auto simp:

in-set-conv-decomp)
with ‹apath u p v› have apath (tail G a) ([a] @ p2) (v)

by (auto simp: apath-append-iff apath-Cons-iff apath-Nil-iff)
then have apath (tail G a) [a] (head G a) by − (drule apath-append-iff [THEN

iffD1], simp)
then show ?thesis by (auto simp: apath-Cons-iff)

qed

end

end

38

theory Pair-Digraph
imports

Digraph
Bidirected-Digraph
Arc-Walk

begin

7 Digraphs without Parallel Arcs

If no parallel arcs are desired, arcs can be accurately described as pairs of
This is the natural representation for Digraphs without multi-arcs. and head
G, making it easier to deal with multiple related graphs and to modify a
graph by adding edges.
This theory introduces such a specialisation of digraphs.
record ′a pair-pre-digraph = pverts :: ′a set parcs :: ′a rel

definition with-proj :: ′a pair-pre-digraph ⇒ (′a, ′a × ′a) pre-digraph where
with-proj G = (| verts = pverts G, arcs = parcs G, tail = fst, head = snd |)

declare [[coercion with-proj]]

primrec pawalk-verts :: ′a ⇒ (′a × ′a) awalk ⇒ ′a list where
pawalk-verts u [] = [u] |
pawalk-verts u (e # es) = fst e # pawalk-verts (snd e) es

fun pcas :: ′a ⇒ (′a × ′a) awalk ⇒ ′a ⇒ bool where
pcas u [] v = (u = v) |
pcas u (e # es) v = (fst e = u ∧ pcas (snd e) es v)

lemma with-proj-simps[simp]:
verts (with-proj G) = pverts G
arcs (with-proj G) = parcs G
arcs-ends (with-proj G) = parcs G
tail (with-proj G) = fst
head (with-proj G) = snd
by (auto simp: with-proj-def arcs-ends-conv)

lemma cas-with-proj-eq: pre-digraph.cas (with-proj G) = pcas
proof (unfold fun-eq-iff , intro allI)

fix u es v show pre-digraph.cas (with-proj G) u es v = pcas u es v
by (induct es arbitrary: u) (auto simp: pre-digraph.cas.simps)

qed

lemma awalk-verts-with-proj-eq: pre-digraph.awalk-verts (with-proj G) = pawalk-verts
proof (unfold fun-eq-iff , intro allI)

fix u es show pre-digraph.awalk-verts (with-proj G) u es = pawalk-verts u es
by (induct es arbitrary: u) (auto simp: pre-digraph.awalk-verts.simps)

39

qed

locale pair-pre-digraph = fixes G :: ′a pair-pre-digraph
begin

lemmas [simp] = cas-with-proj-eq awalk-verts-with-proj-eq

end

locale pair-wf-digraph = pair-pre-digraph +
assumes arc-fst-in-verts:

∧
e. e ∈ parcs G =⇒ fst e ∈ pverts G

assumes arc-snd-in-verts:
∧

e. e ∈ parcs G =⇒ snd e ∈ pverts G
begin

lemma in-arcsD1 : (u,v) ∈ parcs G =⇒ u ∈ pverts G
and in-arcsD2 : (u,v) ∈ parcs G =⇒ v ∈ pverts G
by (auto dest: arc-fst-in-verts arc-snd-in-verts)

lemmas wellformed ′ = in-arcsD1 in-arcsD2

end

locale pair-fin-digraph = pair-wf-digraph +
assumes pair-finite-verts: finite (pverts G)

and pair-finite-arcs: finite (parcs G)

locale pair-sym-digraph = pair-wf-digraph +
assumes pair-sym-arcs: symmetric G

locale pair-loopfree-digraph = pair-wf-digraph +
assumes pair-no-loops: e ∈ parcs G =⇒ fst e 6= snd e

locale pair-bidirected-digraph = pair-sym-digraph + pair-loopfree-digraph

locale pair-pseudo-graph = pair-fin-digraph + pair-sym-digraph

locale pair-digraph = pair-fin-digraph + pair-loopfree-digraph

locale pair-graph = pair-digraph + pair-pseudo-graph

sublocale pair-pre-digraph ⊆ pre-digraph with-proj G
rewrites verts G = pverts G and arcs G = parcs G and tail G = fst and head

G = snd
and arcs-ends G = parcs G
and pre-digraph.awalk-verts G = pawalk-verts

40

and pre-digraph.cas G = pcas
by unfold-locales auto

sublocale pair-wf-digraph ⊆ wf-digraph with-proj G
rewrites verts G = pverts G and arcs G = parcs G and tail G = fst and head

G = snd
and arcs-ends G = parcs G
and pre-digraph.awalk-verts G = pawalk-verts
and pre-digraph.cas G = pcas

by unfold-locales (auto simp: arc-fst-in-verts arc-snd-in-verts)

sublocale pair-fin-digraph ⊆ fin-digraph with-proj G
rewrites verts G = pverts G and arcs G = parcs G and tail G = fst and head

G = snd
and arcs-ends G = parcs G
and pre-digraph.awalk-verts G = pawalk-verts
and pre-digraph.cas G = pcas

using pair-finite-verts pair-finite-arcs by unfold-locales auto

sublocale pair-sym-digraph ⊆ sym-digraph with-proj G
rewrites verts G = pverts G and arcs G = parcs G and tail G = fst and head

G = snd
and arcs-ends G = parcs G
and pre-digraph.awalk-verts G = pawalk-verts
and pre-digraph.cas G = pcas

using pair-sym-arcs by unfold-locales auto

sublocale pair-pseudo-graph ⊆ pseudo-graph with-proj G
rewrites verts G = pverts G and arcs G = parcs G and tail G = fst and head

G = snd
and arcs-ends G = parcs G
and pre-digraph.awalk-verts G = pawalk-verts
and pre-digraph.cas G = pcas

by unfold-locales auto

sublocale pair-loopfree-digraph ⊆ loopfree-digraph with-proj G
rewrites verts G = pverts G and arcs G = parcs G and tail G = fst and head

G = snd
and arcs-ends G = parcs G
and pre-digraph.awalk-verts G = pawalk-verts
and pre-digraph.cas G = pcas

using pair-no-loops by unfold-locales auto

sublocale pair-digraph ⊆ digraph with-proj G
rewrites verts G = pverts G and arcs G = parcs G and tail G = fst and head

G = snd
and arcs-ends G = parcs G
and pre-digraph.awalk-verts G = pawalk-verts
and pre-digraph.cas G = pcas

41

by unfold-locales (auto simp: arc-to-ends-def)

sublocale pair-graph ⊆ graph with-proj G
rewrites verts G = pverts G and arcs G = parcs G and tail G = fst and head

G = snd
and arcs-ends G = parcs G
and pre-digraph.awalk-verts G = pawalk-verts
and pre-digraph.cas G = pcas

by unfold-locales auto

sublocale pair-graph ⊆ pair-bidirected-digraph by unfold-locales

lemma wf-digraph-wp-iff : wf-digraph (with-proj G) = pair-wf-digraph G (is ?L
←→ ?R)
proof

assume ?L then interpret wf-digraph with-proj G .
show ?R using wellformed by unfold-locales auto

next
assume ?R then interpret pair-wf-digraph G .
show ?L by unfold-locales

qed

lemma (in pair-fin-digraph) pair-fin-digraph[intro!]: pair-fin-digraph G ..

context pair-digraph begin

lemma pair-wf-digraph[intro!]: pair-wf-digraph G by intro-locales

lemma pair-digraph[intro!]: pair-digraph G ..

lemma (in pair-loopfree-digraph) no-loops ′:
(u,v) ∈ parcs G =⇒ u 6= v
by (auto dest: no-loops)

end

lemma (in pair-wf-digraph) apath-succ-decomp:
assumes apath u p v
assumes (x,y) ∈ set p
assumes y 6= v
shows ∃ p1 z p2 . p = p1 @ (x,y) # (y,z) # p2 ∧ x 6= z ∧ y 6= z

proof −
from ‹(x,y) ∈ set p› obtain p1 p2 where p-decomp: p = p1 @ (x,y) # p2

by (metis (no-types) in-set-conv-decomp-first)
from p-decomp ‹apath u p v› ‹y 6= v› have p2 6= [] awalk y p2 v

by (auto simp: apath-def awalk-Cons-iff)
then obtain z p2 ′ where p2-decomp: p2 = (y,z) # p2 ′

by atomize-elim (cases p2 , auto simp: awalk-Cons-iff)
then have x 6= z ∧ y 6= z using p-decomp p2-decomp ‹apath u p v›

42

by (auto simp: apath-append-iff apath-simps hd-in-awalk-verts)
with p-decomp p2-decomp have p = p1 @ (x,y) # (y,z) # p2 ′ ∧ x 6= z ∧ y 6= z

by auto
then show ?thesis by blast

qed

lemma (in pair-sym-digraph) arcs-symmetric:
(a,b) ∈ parcs G =⇒ (b,a) ∈ parcs G
using sym-arcs by (auto simp: symmetric-def elim: symE)

lemma (in pair-pseudo-graph) pair-pseudo-graph[intro]: pair-pseudo-graph G ..

lemma (in pair-graph) pair-graph[intro]: pair-graph G by unfold-locales
lemma (in pair-graph) pair-graphD-graph: graph G by unfold-locales

lemma pair-graphI-graph:
assumes graph (with-proj G) shows pair-graph G

proof −
interpret G: graph with-proj G by fact
show ?thesis

using G.wellformed G.finite-arcs G.finite-verts G.no-loops
by unfold-locales auto

qed

lemma pair-loopfreeI-loopfree:
assumes loopfree-digraph (with-proj G) shows pair-loopfree-digraph G

proof −
interpret loopfree-digraph with-proj G by fact
show ?thesis using wellformed no-loops by unfold-locales auto

qed

7.1 Path reversal for Pair Digraphs

This definition is only meaningful in Pair-Digraph
primrec rev-path :: (′a × ′a) awalk ⇒ (′a × ′a) awalk where

rev-path [] = [] |
rev-path (e # es) = rev-path es @ [(snd e, fst e)]

lemma rev-path-append[simp]: rev-path (p @ q) = rev-path q @ rev-path p
by (induct p) auto

lemma rev-path-rev-path[simp]:
rev-path (rev-path p) = p
by (induct p) auto

lemma rev-path-empty[simp]:
rev-path p = [] ←→ p = []
by (induct p) auto

43

lemma rev-path-eq: rev-path p = rev-path q ←→ p = q
by (metis rev-path-rev-path)

lemma (in pair-sym-digraph)
assumes awalk u p v
shows awalk-verts-rev-path: awalk-verts v (rev-path p) = rev (awalk-verts u p)

and awalk-rev-path ′: awalk v (rev-path p) u
using assms
proof (induct p arbitrary: u)

case Nil case 1 then show ?case by auto
next

case Nil case 2 then show ?case by (auto simp: awalk-Nil-iff)
next

case (Cons e es) case 1
with Cons have walks: awalk v (rev-path es) (snd e)

awalk (snd e) [(snd e, fst e)] u
and verts: awalk-verts v (rev-path es) = rev (awalk-verts (snd e) es)

by (auto simp: awalk-simps intro: arcs-symmetric)

from walks have awalk v (rev-path es @ [(snd e, fst e)]) u
by simp

moreover
have tl (awalk-verts (awlast v (rev-path es)) [(snd e, fst e)]) = [fst e]

by auto
ultimately
show ?case using 1 verts by (auto simp: awalk-verts-append)

next
case (Cons e es) case 2
with Cons have awalk v (rev-path es) (snd e)

by (auto simp: awalk-Cons-iff)
moreover
have rev-path (e # es) = rev-path es @ [(snd e, fst e)]

by auto
moreover
from Cons 2 have awalk (snd e) [(snd e, fst e)] u

by (auto simp: awalk-simps intro: arcs-symmetric)
ultimately show awalk v (rev-path (e # es)) u

by simp
qed

lemma (in pair-sym-digraph) awalk-rev-path[simp]:
awalk v (rev-path p) u = awalk u p v (is ?L = ?R)

by (metis awalk-rev-path ′ rev-path-rev-path)

lemma (in pair-sym-digraph) apath-rev-path[simp]:
apath v (rev-path p) u = apath u p v

by (auto simp: awalk-verts-rev-path apath-def)

44

7.2 Subdividing Edges

subdivide an edge (=two associated arcs) in graph
fun subdivide :: ′a pair-pre-digraph ⇒ ′a × ′a ⇒ ′a ⇒ ′a pair-pre-digraph where

subdivide G (u,v) w = (|
pverts = pverts G ∪ {w},
parcs = (parcs G − {(u,v),(v,u)}) ∪ {(u,w), (w,u), (w, v), (v, w)}|)

declare subdivide.simps[simp del]

subdivide an arc in a path
fun sd-path :: ′a × ′a ⇒ ′a ⇒ (′a × ′a) awalk ⇒ (′a × ′a) awalk where

sd-path - - [] = []
| sd-path (u,v) w (e # es) = (if e = (u,v)

then [(u,w),(w,v)]
else if e = (v,u)
then [(v,w),(w,u)]
else [e]) @ sd-path (u,v) w es

contract an arc in a path
fun co-path :: ′a × ′a ⇒ ′a ⇒ (′a × ′a) awalk ⇒ (′a × ′a) awalk where

co-path - - [] = []
| co-path - - [e] = [e]
| co-path (u,v) w (e1 # e2 # es) = (if e1 = (u,w) ∧ e2 = (w,v)

then (u,v) # co-path (u,v) w es
else if e1 = (v,w) ∧ e2 = (w,u)
then (v,u) # co-path (u,v) w es
else e1 # co-path (u,v) w (e2 # es))

lemma co-path-simps[simp]:
[[e1 6= (fst e, w); e1 6= (snd e,w)]] =⇒ co-path e w (e1 # es) = e1 # co-path e

w es
[[e1 = (fst e, w); e2 = (w, snd e)]] =⇒ co-path e w (e1 # e2 # es) = e # co-path

e w es
[[e1 = (snd e, w); e2 = (w, fst e)]]
=⇒ co-path e w (e1 # e2 # es) = (snd e, fst e) # co-path e w es

[[e1 6= (fst e, w) ∨ e2 6= (w, snd e); e1 6= (snd e, w) ∨ e2 6= (w, fst e)]]
=⇒ co-path e w (e1 # e2 # es) = e1 # co-path e w (e2 # es)

apply (cases es; auto)
apply (cases e; auto)
apply (cases e; auto)
apply (cases e; cases fst e = snd e; auto)
apply (cases e; cases fst e = snd e; auto)
done

lemma co-path-nonempty[simp]: co-path e w p = [] ←→ p = []
by (cases e) (cases p rule: list-exhaust-NSC , auto)

declare co-path.simps(3)[simp del]

45

lemma verts-subdivide[simp]: pverts (subdivide G e w) = pverts G ∪ {w}
by (cases e) (auto simp: subdivide.simps)

lemma arcs-subdivide[simp]:
shows parcs (subdivide G (u,v) w) = (parcs G − {(u,v),(v,u)}) ∪ {(u,w), (w,u),

(w, v), (v, w)}
by (auto simp: subdivide.simps)

lemmas subdivide-simps = verts-subdivide arcs-subdivide

lemma sd-path-induct[case-names empty pass sd sdrev]:
assumes A: P e []

and B:
∧

e ′ es. e ′ 6= e =⇒ e ′ 6= (snd e , fst e) =⇒ P e es =⇒ P e (e ′ # es)∧
es. P e es =⇒ P e (e # es)∧
es. fst e 6= snd e =⇒ P e es =⇒ P e ((snd e, fst e) # es)

shows P e es
by (induct es) (rule A, metis B prod.collapse)

lemma co-path-induct[case-names empty single co corev pass]:
fixes e :: ′a × ′a

and w :: ′a
and p :: (′a × ′a) awalk

assumes Nil: P e w []
and ConsNil:

∧
e ′. P e w [e ′]

and ConsCons1 :
∧

e1 e2 es. e1 = (fst e, w) ∧ e2 = (w, snd e) =⇒ P e w es
=⇒

P e w (e1 # e2 # es)
and ConsCons2 :

∧
e1 e2 es. ¬(e1 = (fst e, w) ∧ e2 = (w, snd e)) ∧

e1 = (snd e, w) ∧ e2 = (w, fst e) =⇒ P e w es =⇒
P e w (e1 # e2 # es)

and ConsCons3 :
∧

e1 e2 es.
¬ (e1 = (fst e, w) ∧ e2 = (w, snd e)) =⇒
¬ (e1 = (snd e, w) ∧ e2 = (w, fst e)) =⇒ P e w (e2 # es) =⇒

P e w (e1 # e2 # es)
shows P e w p

proof (induct p rule: length-induct)
case (1 p) then show ?case
proof (cases p rule: list-exhaust-NSC)

case (Cons-Cons e1 e2 es)
then have P e w es P e w (e2 # es)using 1 by auto
then show ?thesis unfolding Cons-Cons by (blast intro: ConsCons1 Con-

sCons2 ConsCons3)
qed (auto intro: Nil ConsNil)

qed

lemma co-sd-id:
assumes (u,w) /∈ set p (v,w) /∈ set p
shows co-path (u,v) w (sd-path (u,v) w p) = p

46

using assms by (induct p) auto

lemma sd-path-id:
assumes (x,y) /∈ set p (y,x) /∈ set p
shows sd-path (x,y) w p = p

using assms by (induct p) auto

lemma (in pair-wf-digraph) pair-wf-digraph-subdivide:
assumes props: e ∈ parcs G w /∈ pverts G
shows pair-wf-digraph (subdivide G e w) (is pair-wf-digraph ?sG)

proof
obtain u v where [simp]: e = (u,v) by (cases e) auto
fix e ′ assume e ′ ∈ parcs ?sG
then show fst e ′ ∈ pverts ?sG snd e ′ ∈ pverts ?sG

using props by (auto dest: wellformed)
qed

lemma (in pair-sym-digraph) pair-sym-digraph-subdivide:
assumes props: e ∈ parcs G w /∈ pverts G
shows pair-sym-digraph (subdivide G e w) (is pair-sym-digraph ?sG)

proof −
interpret sdG: pair-wf-digraph subdivide G e w using assms by (rule pair-wf-digraph-subdivide)
obtain u v where [simp]: e = (u,v) by (cases e) auto
show ?thesis
proof

have
∧

a b. (a, b) ∈ parcs (subdivide G e w) =⇒ (b, a) ∈ parcs (subdivide G e
w)

unfolding ‹e = -› arcs-subdivide
by (elim UnE , rule UnI1 , rule-tac [2] UnI2) (blast intro: arcs-symmetric)+

then show symmetric ?sG
unfolding symmetric-def with-proj-simps by (rule symI)

qed
qed

lemma (in pair-loopfree-digraph) pair-loopfree-digraph-subdivide:
assumes props: e ∈ parcs G w /∈ pverts G
shows pair-loopfree-digraph (subdivide G e w) (is pair-loopfree-digraph ?sG)

proof −
interpret sdG: pair-wf-digraph subdivide G e w using assms by (rule pair-wf-digraph-subdivide)
from assms show ?thesis

by unfold-locales (cases e, auto dest: wellformed no-loops)
qed

lemma (in pair-bidirected-digraph) pair-bidirected-digraph-subdivide:
assumes props: e ∈ parcs G w /∈ pverts G
shows pair-bidirected-digraph (subdivide G e w) (is pair-bidirected-digraph ?sG)

proof −
interpret sdG: pair-sym-digraph subdivide G e w using assms by (rule pair-sym-digraph-subdivide)
interpret sdG: pair-loopfree-digraph subdivide G e w using assms by (rule

47

pair-loopfree-digraph-subdivide)
show ?thesis by unfold-locales

qed

lemma (in pair-pseudo-graph) pair-pseudo-graph-subdivide:
assumes props: e ∈ parcs G w /∈ pverts G
shows pair-pseudo-graph (subdivide G e w) (is pair-pseudo-graph ?sG)

proof −
interpret sdG: pair-sym-digraph subdivide G e w using assms by (rule pair-sym-digraph-subdivide)
obtain u v where [simp]: e = (u,v) by (cases e) auto
show ?thesis by unfold-locales (cases e, auto)

qed

lemma (in pair-graph) pair-graph-subdivide:
assumes e ∈ parcs G w /∈ pverts G
shows pair-graph (subdivide G e w) (is pair-graph ?sG)

proof −
interpret PPG: pair-pseudo-graph subdivide G e w

using assms by (rule pair-pseudo-graph-subdivide)
interpret PPG: pair-loopfree-digraph subdivide G e w

using assms by (rule pair-loopfree-digraph-subdivide)
from assms show ?thesis by unfold-locales

qed

lemma arcs-subdivideD:
assumes x ∈ parcs (subdivide G e w) fst x 6= w snd x 6= w
shows x ∈ parcs G

using assms by (cases e) auto

context pair-sym-digraph begin

lemma
assumes path: apath u p v
assumes elems: e ∈ parcs G w /∈ pverts G
shows apath-sd-path: pre-digraph.apath (subdivide G e w) u (sd-path e w p) v (is

?A)
and set-awalk-verts-sd-path: set (awalk-verts u (sd-path e w p))
⊆ set (awalk-verts u p) ∪ {w} (is ?B)

proof −
obtain x y where e-conv: e = (x,y) by (cases e) auto
define sG where sG = subdivide G e w
interpret S : pair-sym-digraph sG

unfolding sG-def using elems by (rule pair-sym-digraph-subdivide)

have ev-sG: S .awalk-verts = awalk-verts
by (auto simp: fun-eq-iff pre-digraph.awalk-verts-conv)

have w-sG: {(x,w), (y,w), (w,x), (w,y)} ⊆ parcs sG
by (auto simp: sG-def e-conv)

48

from path have S .apath u (sd-path (x,y) w p) v
and set (S .awalk-verts u (sd-path (x,y) w p)) ⊆ set (awalk-verts u p) ∪ {w}

proof (induct p arbitrary: u rule: sd-path-induct)
case empty case 1
moreover have pverts sG = pverts G ∪ {w} by (simp add: sG-def)
ultimately show ?case by (auto simp: apath-Nil-iff S .apath-Nil-iff)

next
case empty case 2 then show ?case by simp

next
case (pass e ′ es)
{ case 1

then have S .apath (snd e ′) (sd-path (x,y) w es) v u 6= w fst e ′ = u
u /∈ set (S .awalk-verts (snd e ′) (sd-path (x,y) w es))

using pass elems by (fastforce simp: apath-Cons-iff)+
moreover then have e ′ ∈ parcs sG

using 1 pass by (auto simp: e-conv sG-def S .apath-Cons-iff apath-Cons-iff)
ultimately show ?case using pass by (auto simp: S .apath-Cons-iff) }

note case1 = this
{ case 2 with pass 2 show ?case by (simp add: apath-Cons-iff) blast }

next
{ fix u es a b

assume A: apath u ((a,b) # es) v
and ab: (a,b) = (x,y) ∨ (a,b) = (y,x)
and hyps:

∧
u. apath u es v =⇒ S .apath u (sd-path (x, y) w es) v∧

u. apath u es v =⇒ set (awalk-verts u (sd-path (x, y) w es)) ⊆ set
(awalk-verts u es) ∪ {w}

from ab A have (x,y) /∈ set es (y,x) /∈ set es
by (auto simp: apath-Cons-iff dest!: awalkI-apath dest: awalk-verts-arc1

awalk-verts-arc2)
then have ev-sd: set (S .awalk-verts b (sd-path (x,y) w es)) = set (awalk-verts

b es)
by (simp add: sd-path-id)

from A ab have [simp]: x 6= y
by (simp add: apath-Cons-iff) (metis awalkI-apath awalk-verts-non-Nil

awhd-of-awalk hd-in-set)

from A have S .apath b (sd-path (x,y) w es) v u = a u 6= w
using ab hyps elems by (auto simp: apath-Cons-iff wellformed ′)

moreover
then have S .awalk u (sd-path (x, y) w ((a, b) # es)) v

using ab w-sG by (auto simp: S .apath-def S .awalk-simps S .wellformed ′)
then have u /∈ set (S .awalk-verts w ((w,b) # sd-path (x,y) w es))

using ab ‹u 6= w› ev-sd A by (auto simp: apath-Cons-iff S .awalk-def)
moreover
have w /∈ set (awalk-verts b (sd-path (x, y) w es))

using ab ev-sd A elems by (auto simp: awalk-Cons-iff apath-def)
ultimately

49

have path: S .apath u (sd-path (x, y) w ((a, b) # es)) v
using ab hyps w-sG ‹u = a› by (auto simp: S .apath-Cons-iff) }

note path = this
{ case (sd es)

{ case 1 with sd show ?case by (intro path) auto }
{ case 2 show ?case using 2 sd

by (auto simp: apath-Cons-iff) } }
{ case (sdrev es)

{ case 1 with sdrev show ?case by (intro path) auto }
{ case 2 show ?case using 2 sdrev

by (auto simp: apath-Cons-iff) } }
qed
then show ?A ?B unfolding sG-def e-conv .

qed

lemma
assumes elems: e ∈ parcs G w /∈ pverts G u ∈ pverts G v ∈ pverts G
assumes path: pre-digraph.apath (subdivide G e w) u p v
shows apath-co-path: apath u (co-path e w p) v (is ?thesis-path)
and set-awalk-verts-co-path: set (awalk-verts u (co-path e w p)) = set (awalk-verts

u p) − {w} (is ?thesis-set)
proof −

obtain x y where e-conv: e = (x,y) by (cases e) auto
interpret S : pair-sym-digraph subdivide G e w

using elems(1 ,2) by (rule pair-sym-digraph-subdivide)

have e-w: fst e 6= w snd e 6= w using elems by auto

have S .apath u p v u 6= w using elems path by auto
then have co-path: apath u (co-path e w p) v
∧ set (awalk-verts u (co-path e w p)) = set (awalk-verts u p) − {w}

proof (induction p arbitrary: u rule: co-path-induct)
case empty with elems show ?case

by (simp add: apath-Nil-iff S .apath-Nil-iff)
next

case (single e ′) with elems show ?case
by (auto simp: apath-Cons-iff S .apath-Cons-iff apath-Nil-iff S .apath-Nil-iff

dest: arcs-subdivideD)
next

case (co e1 e2 es)
then have apath u (co-path e w (e1 # e2 # es)) v using co e-w elems

by (auto simp: apath-Cons-iff S .apath-Cons-iff)
moreover
have set (awalk-verts u (co-path e w (e1 # e2 # es))) = set (awalk-verts u

(e1 # e2 # es)) − {w}
using co e-w by (auto simp: apath-Cons-iff S .apath-Cons-iff)

ultimately
show ?case by fast

next

50

case (corev e1 e2 es)
have apath u (co-path e w (e1 # e2 # es)) v using corev(1−3) e-w(1) elems(1)

by (auto simp: apath-Cons-iff S .apath-Cons-iff intro: arcs-symmetric)
moreover
have set (awalk-verts u (co-path e w (e1 # e2 # es))) = set (awalk-verts u

(e1 # e2 # es)) − {w}
using corev e-w by (auto simp: apath-Cons-iff S .apath-Cons-iff)

ultimately
show ?case by fast

next
case (pass e1 e2 es)
have fst e1 6= w using elems pass.prems by (auto simp: S .apath-Cons-iff)
have snd e1 6= w
proof

assume snd e1 = w
then have e1 /∈ parcs G using elems by auto
then have e1 ∈ parcs (subdivide G e w) − parcs G

using pass by (auto simp: S .apath-Cons-iff)
then have e1 = (x,w) ∨ e1 = (y,w)

using ‹fst e1 6= w› e-w by (auto simp add: e-conv)
moreover

have fst e2 = w using ‹snd e1 = w› pass.prems by (auto simp: S .apath-Cons-iff)
then have e2 /∈ parcs G using elems by auto
then have e2 ∈ parcs (subdivide G e w) − parcs G

using pass by (auto simp: S .apath-Cons-iff)
then have e2 = (w,x) ∨ e2 = (w,y)

using ‹fst e2 = w› e-w by (cases e2) (auto simp add: e-conv)
ultimately
have e1 = (x,w) ∧ e2 = (w,x) ∨ e1 = (y,w) ∧ e2 = (w,y)

using pass.hyps[simplified e-conv] by auto
then show False

using pass.prems by (cases es) (auto simp: S .apath-Cons-iff)
qed
then have e1 ∈ parcs G
using ‹fst e1 6= w› pass.prems by (auto simp: S .apath-Cons-iff dest: arcs-subdivideD)

have ih: apath (snd e1) (co-path e w (e2 # es)) v ∧ set (awalk-verts (snd e1)
(co-path e w (e2 # es))) = set (awalk-verts (snd e1) (e2 # es)) − {w}

using pass.prems ‹snd e1 6= w› by (intro pass.IH) (auto simp: apath-Cons-iff
S .apath-Cons-iff)

then have fst e1 /∈ set (awalk-verts (snd e1) (co-path e w (e2 # es))) fst e1
= u

using pass.prems by (clarsimp simp: S .apath-Cons-iff)+
then have apath u (co-path e w (e1 # e2 # es)) v
using ih pass ‹e1 ∈ parcs G› by (auto simp: apath-Cons-iff S .apath-Cons-iff)[]

moreover
have set (awalk-verts u (co-path e w (e1 # e2 # es))) = set (awalk-verts u

(e1 # e2 # es)) − {w}
using pass.hyps ih ‹fst e1 6= w› by auto

51

ultimately show ?case by fast
qed
then show ?thesis-set ?thesis-path by blast+

qed

end

7.3 Bidirected Graphs
definition (in −) swap-in :: (′a × ′a) set ⇒ ′a × ′a ⇒ ′a × ′a where

swap-in S x = (if x ∈ S then prod.swap x else x)

lemma bidirected-digraph-rev-conv-pair :
assumes bidirected-digraph (with-proj G) rev-G
shows rev-G = swap-in (parcs G)

proof −
interpret bidirected-digraph G rev-G by fact
have

∧
a b. (a, b) ∈ parcs G =⇒ rev-G (a, b) = (b, a)

using tail-arev[simplified with-proj-simps] head-arev[simplified with-proj-simps]
by (metis fst-conv prod.collapse snd-conv)

then show ?thesis by (auto simp: swap-in-def fun-eq-iff arev-eq)
qed

lemma (in pair-bidirected-digraph) bidirected-digraph:
bidirected-digraph (with-proj G) (swap-in (parcs G))
using no-loops ′ arcs-symmetric
by unfold-locales (auto simp: swap-in-def)

lemma pair-bidirected-digraphI-bidirected-digraph:
assumes bidirected-digraph (with-proj G) (swap-in (parcs G))
shows pair-bidirected-digraph G

proof −
interpret bidirected-digraph with-proj G swap-in (parcs G) by fact
{

fix a assume a ∈ parcs G then have fst a 6= snd a
using arev-neq[of a] bidirected-digraph-rev-conv-pair [OF assms(1)]
by (cases a) (auto simp: swap-in-def)

}
then show ?thesis

using tail-in-verts head-in-verts by unfold-locales auto
qed

end

theory Digraph-Component
imports

Digraph
Arc-Walk

52

Pair-Digraph
begin

8 Components of (Symmetric) Digraphs
definition compatible :: (′a, ′b) pre-digraph ⇒ (′a, ′b) pre-digraph ⇒ bool where

compatible G H ≡ tail G = tail H ∧ head G = head H

definition subgraph :: (′a, ′b) pre-digraph ⇒ (′a, ′b) pre-digraph ⇒ bool where
subgraph H G ≡ verts H ⊆ verts G ∧ arcs H ⊆ arcs G ∧ wf-digraph G ∧

wf-digraph H ∧ compatible G H

definition induced-subgraph :: (′a, ′b) pre-digraph ⇒ (′a, ′b) pre-digraph ⇒ bool
where

induced-subgraph H G ≡ subgraph H G ∧ arcs H = {e ∈ arcs G. tail G e ∈ verts
H ∧ head G e ∈ verts H}

definition spanning :: (′a, ′b) pre-digraph ⇒ (′a, ′b) pre-digraph ⇒ bool where
spanning H G ≡ subgraph H G ∧ verts G = verts H

definition strongly-connected :: (′a, ′b) pre-digraph ⇒ bool where
strongly-connected G ≡ verts G 6= {} ∧ (∀ u ∈ verts G. ∀ v ∈ verts G. u →∗

G v)

The following function computes underlying symmetric graph of a digraph
and removes parallel arcs.
definition mk-symmetric :: (′a, ′b) pre-digraph ⇒ ′a pair-pre-digraph where

mk-symmetric G ≡ (| pverts = verts G, parcs =
⋃

e∈arcs G. {(tail G e, head G
e), (head G e, tail G e)}|)

definition connected :: (′a, ′b) pre-digraph ⇒ bool where
connected G ≡ strongly-connected (mk-symmetric G)

definition forest :: (′a, ′b) pre-digraph ⇒ bool where
forest G ≡ ¬(∃ p. pre-digraph.cycle G p)

definition tree :: (′a, ′b) pre-digraph ⇒ bool where
tree G ≡ connected G ∧ forest G

definition spanning-tree :: (′a, ′b) pre-digraph ⇒ (′a, ′b) pre-digraph ⇒ bool where
spanning-tree H G ≡ tree H ∧ spanning H G

definition (in pre-digraph)
max-subgraph :: ((′a, ′b) pre-digraph ⇒ bool) ⇒ (′a, ′b) pre-digraph ⇒ bool

where
max-subgraph P H ≡ subgraph H G ∧ P H ∧ (∀H ′. H ′ 6= H ∧ subgraph H H ′

−→ ¬(subgraph H ′ G ∧ P H ′))

definition (in pre-digraph) sccs :: (′a, ′b) pre-digraph set where

53

sccs ≡ {H . induced-subgraph H G ∧ strongly-connected H ∧ ¬(∃H ′. induced-subgraph
H ′ G

∧ strongly-connected H ′ ∧ verts H ⊂ verts H ′)}

definition (in pre-digraph) sccs-verts :: ′a set set where
sccs-verts = {S . S 6= {} ∧ (∀ u ∈ S . ∀ v ∈ S . u →∗

G v) ∧ (∀ u ∈ S . ∀ v. v /∈ S
−→ ¬u →∗

G v ∨ ¬v →∗
G u)}

definition (in pre-digraph) scc-of :: ′a ⇒ ′a set where
scc-of u ≡ {v. u →∗ v ∧ v →∗ u}

definition union :: (′a, ′b) pre-digraph ⇒ (′a, ′b) pre-digraph ⇒ (′a, ′b) pre-digraph
where

union G H ≡ (| verts = verts G ∪ verts H , arcs = arcs G ∪ arcs H , tail = tail
G, head = head G|)

definition (in pre-digraph) Union :: (′a, ′b) pre-digraph set ⇒ (′a, ′b) pre-digraph
where

Union gs = (| verts = (
⋃

G ∈ gs. verts G), arcs = (
⋃

G ∈ gs. arcs G),
tail = tail G , head = head G |)

8.1 Compatible Graphs
lemma compatible-tail:

assumes compatible G H shows tail G = tail H
using assms by (simp add: fun-eq-iff compatible-def)

lemma compatible-head:
assumes compatible G H shows head G = head H
using assms by (simp add: fun-eq-iff compatible-def)

lemma compatible-cas:
assumes compatible G H shows pre-digraph.cas G = pre-digraph.cas H

proof (unfold fun-eq-iff , intro allI)
fix u es v show pre-digraph.cas G u es v = pre-digraph.cas H u es v

using assms
by (induct es arbitrary: u)

(simp-all add: pre-digraph.cas.simps compatible-head compatible-tail)
qed

lemma compatible-awalk-verts:
assumes compatible G H shows pre-digraph.awalk-verts G = pre-digraph.awalk-verts

H
proof (unfold fun-eq-iff , intro allI)

fix u es show pre-digraph.awalk-verts G u es = pre-digraph.awalk-verts H u es
using assms
by (induct es arbitrary: u)

(simp-all add: pre-digraph.awalk-verts.simps compatible-head compatible-tail)

54

qed

lemma compatibleI-with-proj[intro]:
shows compatible (with-proj G) (with-proj H)
by (auto simp: compatible-def)

8.2 Basic lemmas
lemma (in sym-digraph) graph-symmetric:

shows (u,v) ∈ arcs-ends G =⇒ (v,u) ∈ arcs-ends G
using sym-arcs by (auto simp add: symmetric-def sym-def)

lemma strongly-connectedI [intro]:
assumes verts G 6= {}

∧
u v. u ∈ verts G =⇒ v ∈ verts G =⇒ u →∗

G v
shows strongly-connected G

using assms by (simp add: strongly-connected-def)

lemma strongly-connectedE [elim]:
assumes strongly-connected G
assumes (

∧
u v. u ∈ verts G ∧ v ∈ verts G =⇒ u →∗

G v) =⇒ P
shows P

using assms by (auto simp add: strongly-connected-def)

lemma subgraph-imp-subverts:
assumes subgraph H G
shows verts H ⊆ verts G

using assms by (simp add: subgraph-def)

lemma induced-imp-subgraph:
assumes induced-subgraph H G
shows subgraph H G

using assms by (simp add: induced-subgraph-def)

lemma (in pre-digraph) in-sccs-imp-induced:
assumes c ∈ sccs
shows induced-subgraph c G

using assms by (auto simp: sccs-def)

lemma spanning-tree-imp-tree[dest]:
assumes spanning-tree H G
shows tree H

using assms by (simp add: spanning-tree-def)

lemma tree-imp-connected[dest]:
assumes tree G
shows connected G

using assms by (simp add: tree-def)

lemma spanning-treeI [intro]:

55

assumes spanning H G
assumes tree H
shows spanning-tree H G

using assms by (simp add: spanning-tree-def)

lemma spanning-treeE [elim]:
assumes spanning-tree H G
assumes tree H ∧ spanning H G =⇒ P
shows P

using assms by (simp add: spanning-tree-def)

lemma spanningE [elim]:
assumes spanning H G
assumes subgraph H G ∧ verts G = verts H =⇒ P
shows P

using assms by (simp add: spanning-def)

lemma (in pre-digraph) in-sccsI [intro]:
assumes induced-subgraph c G
assumes strongly-connected c
assumes ¬(∃ c ′. induced-subgraph c ′ G ∧ strongly-connected c ′ ∧

verts c ⊂ verts c ′)
shows c ∈ sccs

using assms by (auto simp add: sccs-def)

lemma (in pre-digraph) in-sccsE [elim]:
assumes c ∈ sccs
assumes induced-subgraph c G =⇒ strongly-connected c =⇒ ¬ (∃ d.

induced-subgraph d G ∧ strongly-connected d ∧ verts c ⊂ verts d) =⇒ P
shows P

using assms by (simp add: sccs-def)

lemma subgraphI :
assumes verts H ⊆ verts G
assumes arcs H ⊆ arcs G
assumes compatible G H
assumes wf-digraph H
assumes wf-digraph G
shows subgraph H G

using assms by (auto simp add: subgraph-def)

lemma subgraphE [elim]:
assumes subgraph H G
obtains verts H ⊆ verts G arcs H ⊆ arcs G compatible G H wf-digraph H

wf-digraph G
using assms by (simp add: subgraph-def)

lemma induced-subgraphI [intro]:
assumes subgraph H G

56

assumes arcs H = {e ∈ arcs G. tail G e ∈ verts H ∧ head G e ∈ verts H}
shows induced-subgraph H G

using assms unfolding induced-subgraph-def by safe

lemma induced-subgraphE [elim]:
assumes induced-subgraph H G
assumes [[subgraph H G; arcs H = {e ∈ arcs G. tail G e ∈ verts H ∧ head G e
∈ verts H}]] =⇒ P

shows P
using assms by (auto simp add: induced-subgraph-def)

lemma pverts-mk-symmetric[simp]: pverts (mk-symmetric G) = verts G
and parcs-mk-symmetric:

parcs (mk-symmetric G) = (
⋃

e∈arcs G. {(tail G e, head G e), (head G e, tail
G e)})

by (auto simp: mk-symmetric-def arcs-ends-conv image-UN)

lemma arcs-ends-mono:
assumes subgraph H G
shows arcs-ends H ⊆ arcs-ends G
using assms by (auto simp add: subgraph-def arcs-ends-conv compatible-tail com-

patible-head)

lemma (in wf-digraph) subgraph-refl: subgraph G G
by (auto simp: subgraph-def compatible-def) unfold-locales

lemma (in wf-digraph) induced-subgraph-refl: induced-subgraph G G
by (rule induced-subgraphI) (auto simp: subgraph-refl)

8.3 The underlying symmetric graph of a digraph
lemma (in wf-digraph) wellformed-mk-symmetric[intro]: pair-wf-digraph (mk-symmetric
G)

by unfold-locales (auto simp: parcs-mk-symmetric)

lemma (in fin-digraph) pair-fin-digraph-mk-symmetric[intro]: pair-fin-digraph (mk-symmetric
G)
proof −
have finite ((λ(a,b). (b,a)) ‘ arcs-ends G) (is finite ?X) by (auto simp: arcs-ends-conv)
also have ?X = {(a, b). (b, a) ∈ arcs-ends G} by auto
finally have X : finite
then show ?thesis

by unfold-locales (auto simp: mk-symmetric-def arcs-ends-conv)
qed

lemma (in digraph) digraph-mk-symmetric[intro]: pair-digraph (mk-symmetric G)
proof −
have finite ((λ(a,b). (b,a)) ‘ arcs-ends G) (is finite ?X) by (auto simp: arcs-ends-conv)
also have ?X = {(a, b). (b, a) ∈ arcs-ends G} by auto

57

finally have finite
then show ?thesis

by unfold-locales (auto simp: mk-symmetric-def arc-to-ends-def dest: no-loops)
qed

lemma (in wf-digraph) reachable-mk-symmetricI :
assumes u →∗ v shows u →∗

mk-symmetric G v
proof −

have arcs-ends G ⊆ parcs (mk-symmetric G)
(u, v) ∈ rtrancl-on (pverts (mk-symmetric G)) (arcs-ends G)

using assms unfolding reachable-def by (auto simp: parcs-mk-symmetric)
then show ?thesis unfolding reachable-def by (auto intro: rtrancl-on-mono)

qed

lemma (in wf-digraph) adj-mk-symmetric-eq:
symmetric G =⇒ parcs (mk-symmetric G) = arcs-ends G
by (auto simp: parcs-mk-symmetric in-arcs-imp-in-arcs-ends arcs-ends-symmetric)

lemma (in wf-digraph) reachable-mk-symmetric-eq:
assumes symmetric G shows u →∗

mk-symmetric G v ←→ u →∗ v (is ?L ←→
?R)

using adj-mk-symmetric-eq[OF assms] unfolding reachable-def by auto

lemma (in wf-digraph) mk-symmetric-awalk-imp-awalk:
assumes sym: symmetric G
assumes walk: pre-digraph.awalk (mk-symmetric G) u p v
obtains q where awalk u q v

proof −
interpret S : pair-wf-digraph mk-symmetric G ..
from walk have u →∗

mk-symmetric G v
by (simp only: S .reachable-awalk) rule

then have u →∗ v by (simp only: reachable-mk-symmetric-eq[OF sym])
then show ?thesis by (auto simp: reachable-awalk intro: that)

qed

lemma symmetric-mk-symmetric:
symmetric (mk-symmetric G)
by (auto simp: symmetric-def parcs-mk-symmetric intro: symI)

8.4 Subgraphs and Induced Subgraphs
lemma subgraph-trans:

assumes subgraph G H subgraph H I shows subgraph G I
using assms by (auto simp: subgraph-def compatible-def)

The digraph and fin-digraph properties are preserved under the (inverse)
subgraph relation
lemma (in fin-digraph) fin-digraph-subgraph:

assumes subgraph H G shows fin-digraph H

58

proof (intro-locales)
from assms show wf-digraph H by auto

have HG: arcs H ⊆ arcs G verts H ⊆ verts G
using assms by auto

then have finite (verts H) finite (arcs H)
using finite-verts finite-arcs by (blast intro: finite-subset)+

then show fin-digraph-axioms H
by unfold-locales

qed

lemma (in digraph) digraph-subgraph:
assumes subgraph H G shows digraph H

proof
fix e assume e: e ∈ arcs H
with assms show tail H e ∈ verts H head H e ∈ verts H

by (auto simp: subgraph-def intro: wf-digraph.wellformed)
from e and assms have e ∈ arcs H ∩ arcs G by auto
with assms show tail H e 6= head H e

using no-loops by (auto simp: subgraph-def compatible-def arc-to-ends-def)
next

have arcs H ⊆ arcs G verts H ⊆ verts G using assms by auto
then show finite (arcs H) finite (verts H)

using finite-verts finite-arcs by (blast intro: finite-subset)+
next

fix e1 e2 assume e1 ∈ arcs H e2 ∈ arcs H
and eq: arc-to-ends H e1 = arc-to-ends H e2

with assms have e1 ∈ arcs H ∩ arcs G e2 ∈ arcs H ∩ arcs G
by auto

with eq show e1 = e2
using no-multi-arcs assms
by (auto simp: subgraph-def compatible-def arc-to-ends-def)

qed

lemma (in pre-digraph) adj-mono:
assumes u →H v subgraph H G
shows u → v
using assms by (blast dest: arcs-ends-mono)

lemma (in pre-digraph) reachable-mono:
assumes walk: u →∗

H v and sub: subgraph H G
shows u →∗ v

proof −
have verts H ⊆ verts G using sub by auto
with assms show ?thesis

unfolding reachable-def by (metis arcs-ends-mono rtrancl-on-mono)
qed

Arc walks and paths are preserved under the subgraph relation.

59

lemma (in wf-digraph) subgraph-awalk-imp-awalk:
assumes walk: pre-digraph.awalk H u p v
assumes sub: subgraph H G
shows awalk u p v
using assms by (auto simp: pre-digraph.awalk-def compatible-cas)

lemma (in wf-digraph) subgraph-apath-imp-apath:
assumes path: pre-digraph.apath H u p v
assumes sub: subgraph H G
shows apath u p v
using assms unfolding pre-digraph.apath-def
by (auto intro: subgraph-awalk-imp-awalk simp: compatible-awalk-verts)

lemma subgraph-mk-symmetric:
assumes subgraph H G
shows subgraph (mk-symmetric H) (mk-symmetric G)

proof (rule subgraphI)
let ?wpms = λG. mk-symmetric G
from assms have compatible G H by auto
with assms
show verts (?wpms H) ⊆ verts (?wpms G)

and arcs (?wpms H) ⊆ arcs (?wpms G)
by (auto simp: parcs-mk-symmetric compatible-head compatible-tail)

show compatible (?wpms G) (?wpms H) by rule
interpret H : pair-wf-digraph mk-symmetric H

using assms by (auto intro: wf-digraph.wellformed-mk-symmetric)
interpret G: pair-wf-digraph mk-symmetric G

using assms by (auto intro: wf-digraph.wellformed-mk-symmetric)
show wf-digraph (?wpms H)

by unfold-locales
show wf-digraph (?wpms G) by unfold-locales

qed

lemma (in fin-digraph) subgraph-in-degree:
assumes subgraph H G
shows in-degree H v ≤ in-degree G v

proof −
have finite (in-arcs G v) by auto
moreover
have in-arcs H v ⊆ in-arcs G v

using assms by (auto simp: subgraph-def in-arcs-def compatible-head compati-
ble-tail)

ultimately
show ?thesis unfolding in-degree-def by (rule card-mono)

qed

lemma (in wf-digraph) subgraph-cycle:
assumes subgraph H G pre-digraph.cycle H p shows cycle p

proof −

60

from assms have compatible G H by auto
with assms show ?thesis
by (auto simp: pre-digraph.cycle-def compatible-awalk-verts intro: subgraph-awalk-imp-awalk)

qed

lemma (in wf-digraph) subgraph-del-vert: subgraph (del-vert u) G
by (auto simp: subgraph-def compatible-def del-vert-simps wf-digraph-del-vert)

intro-locales

lemma (in wf-digraph) subgraph-del-arc: subgraph (del-arc a) G
by (auto simp: subgraph-def compatible-def del-vert-simps wf-digraph-del-vert)

intro-locales

8.5 Induced subgraphs
lemma wf-digraphI-induced:

assumes induced-subgraph H G
shows wf-digraph H

proof −
from assms have compatible G H by auto
with assms show ?thesis by unfold-locales (auto simp: compatible-tail compati-

ble-head)
qed

lemma (in digraph) digraphI-induced:
assumes induced-subgraph H G
shows digraph H

proof −
interpret W : wf-digraph H using assms by (rule wf-digraphI-induced)
from assms have compatible G H by auto
from assms have arcs: arcs H ⊆ arcs G by blast
show ?thesis
proof

from assms have verts H ⊆ verts G by blast
then show finite (verts H) using finite-verts by (rule finite-subset)

next
from arcs show finite (arcs H) using finite-arcs by (rule finite-subset)

next
fix e assume e ∈ arcs H
with arcs ‹compatible G H › show tail H e 6= head H e
by (auto dest: no-loops simp: compatible-tail[symmetric] compatible-head[symmetric])

next
fix e1 e2 assume e1 ∈ arcs H e2 ∈ arcs H and ate: arc-to-ends H e1 =

arc-to-ends H e2
with arcs ‹compatible G H › show e1 = e2 using ate
by (auto intro: no-multi-arcs simp: compatible-tail[symmetric] compatible-head[symmetric]

arc-to-ends-def)
qed

qed

61

Computes the subgraph of G induced by vs
definition induce-subgraph :: (′a, ′b) pre-digraph ⇒ ′a set ⇒ (′a, ′b) pre-digraph
(infix ‹�› 67) where

G � vs = (| verts = vs, arcs = {e ∈ arcs G. tail G e ∈ vs ∧ head G e ∈ vs},
tail = tail G, head = head G |)

lemma induce-subgraph-verts[simp]:
verts (G � vs) = vs

by (auto simp add: induce-subgraph-def)

lemma induce-subgraph-arcs[simp]:
arcs (G � vs) = {e ∈ arcs G. tail G e ∈ vs ∧ head G e ∈ vs}

by (auto simp add: induce-subgraph-def)

lemma induce-subgraph-tail[simp]:
tail (G � vs) = tail G

by (auto simp: induce-subgraph-def)

lemma induce-subgraph-head[simp]:
head (G � vs) = head G

by (auto simp: induce-subgraph-def)

lemma compatible-induce-subgraph: compatible (G � S) G
by (auto simp: compatible-def)

lemma (in wf-digraph) induced-induce[intro]:
assumes vs ⊆ verts G
shows induced-subgraph (G � vs) G

using assms
by (intro subgraphI induced-subgraphI)

(auto simp: arc-to-ends-def induce-subgraph-def wf-digraph-def compatible-def)

lemma (in wf-digraph) wellformed-induce-subgraph[intro]:
wf-digraph (G � vs)
by unfold-locales auto

lemma induced-graph-imp-symmetric:
assumes symmetric G
assumes induced-subgraph H G
shows symmetric H

proof (unfold symmetric-conv, safe)
from assms have compatible G H by auto

fix e1 assume e1 ∈ arcs H
then obtain e2 where tail G e1 = head G e2 head G e1 = tail G e2 e2 ∈ arcs

G
using assms by (auto simp add: symmetric-conv)

moreover
then have e2 ∈ arcs H

62

using assms and ‹e1 ∈ arcs H › by auto
ultimately
show ∃ e2∈arcs H . tail H e1 = head H e2 ∧ head H e1 = tail H e2

using assms ‹e1 ∈ arcs H › ‹compatible G H ›
by (auto simp: compatible-head compatible-tail)

qed

lemma (in sym-digraph) induced-graph-imp-graph:
assumes induced-subgraph H G
shows sym-digraph H

proof (rule wf-digraph.sym-digraphI)
from assms show wf-digraph H by (rule wf-digraphI-induced)

next
show symmetric H

using assms sym-arcs by (auto intro: induced-graph-imp-symmetric)
qed

lemma (in wf-digraph) induce-reachable-preserves-paths:
assumes u →∗

G v
shows u →∗

G � {w. u →∗
G w} v

using assms
proof induct

case base then show ?case by (auto simp: reachable-def)
next

case (step u w)
interpret iG: wf-digraph G � {w. u →∗

G w}
by (rule wellformed-induce-subgraph)

from ‹u → w› have u →G � {wa. u →∗
G wa} w

by (auto simp: arcs-ends-conv reachable-def intro: wellformed rtrancl-on-into-rtrancl-on)
then have u →∗

G � {wa. u →∗
G wa} w

by (rule iG.reachable-adjI)
moreover
from step have {x. w →∗ x} ⊆ {x. u →∗ x}

by (auto intro: adj-reachable-trans)
then have subgraph (G � {wa. w →∗ wa}) (G � {wa. u →∗ wa})

by (intro subgraphI) (auto simp: arcs-ends-conv compatible-def)
then have w →∗

G � {wa. u →∗ wa} v
by (rule iG.reachable-mono[rotated]) fact

ultimately show ?case by (rule iG.reachable-trans)
qed

lemma induce-subgraph-ends[simp]:
arc-to-ends (G � S) = arc-to-ends G
by (auto simp: arc-to-ends-def)

lemma dominates-induce-subgraphD:
assumes u →G � S v shows u →G v
using assms by (auto simp: arcs-ends-def intro: rev-image-eqI)

63

context wf-digraph begin

lemma reachable-induce-subgraphD:
assumes u →∗

G � S v S ⊆ verts G shows u →∗
G v

proof −
interpret GS : wf-digraph G � S by auto
show ?thesis
using assms by induct (auto dest: dominates-induce-subgraphD intro: adj-reachable-trans)

qed

lemma dominates-induce-ss:
assumes u →G � S v S ⊆ T shows u →G � T v
using assms by (auto simp: arcs-ends-def)

lemma reachable-induce-ss:
assumes u →∗

G � S v S ⊆ T shows u →∗
G � T v

using assms unfolding reachable-def
by induct (auto intro: dominates-induce-ss converse-rtrancl-on-into-rtrancl-on)

lemma awalk-verts-induce:
pre-digraph.awalk-verts (G � S) = awalk-verts

proof (intro ext)
fix u p show pre-digraph.awalk-verts (G � S) u p = awalk-verts u p

by (induct p arbitrary: u) (auto simp: pre-digraph.awalk-verts.simps)
qed

lemma (in −) cas-subset:
assumes pre-digraph.cas G u p v subgraph G H
shows pre-digraph.cas H u p v
using assms
by (induct p arbitrary: u) (auto simp: pre-digraph.cas.simps subgraph-def com-

patible-def)

lemma cas-induce:
assumes cas u p v set (awalk-verts u p) ⊆ S
shows pre-digraph.cas (G � S) u p v
using assms

proof (induct p arbitrary: u S)
case Nil then show ?case by (auto simp: pre-digraph.cas.simps)

next
case (Cons a as)
have pre-digraph.cas (G � set (awalk-verts (head G a) as)) (head G a) as v

using Cons by auto
then have pre-digraph.cas (G � S) (head G a) as v
using ‹- ⊆ S› by (rule-tac cas-subset) (auto simp: subgraph-def compatible-def)
then show ?case using Cons by (auto simp: pre-digraph.cas.simps)

qed

64

lemma awalk-induce:
assumes awalk u p v set (awalk-verts u p) ⊆ S
shows pre-digraph.awalk (G � S) u p v

proof −
interpret GS : wf-digraph G � S by auto
show ?thesis

using assms by (auto simp: pre-digraph.awalk-def cas-induce GS .cas-induce
set-awalk-verts)

qed

lemma subgraph-induce-subgraphI :
assumes V ⊆ verts G shows subgraph (G � V) G
by (metis assms induced-imp-subgraph induced-induce)

end

lemma induced-subgraphI ′:
assumes subg:subgraph H G
assumes max:

∧
H ′. subgraph H ′ G =⇒ (verts H ′ 6= verts H ∨ arcs H ′ ⊆ arcs

H)
shows induced-subgraph H G

proof −
interpret H : wf-digraph H using ‹subgraph H G› ..
define H ′ where H ′ = G � verts H
then have H ′-props: subgraph H ′ G verts H ′ = verts H

using subg by (auto intro: wf-digraph.subgraph-induce-subgraphI)
moreover
have arcs H ′ = arcs H
proof

show arcs H ′ ⊆ arcs H using max H ′-props by auto
show arcs H ⊆ arcs H ′ using subg by (auto simp: H ′-def compatible-def)

qed
then show induced-subgraph H G by (auto simp: induced-subgraph-def H ′-def

subg)
qed

lemma (in pre-digraph) induced-subgraph-altdef :
induced-subgraph H G ←→ subgraph H G ∧ (∀H ′. subgraph H ′ G −→ (verts H ′

6= verts H ∨ arcs H ′ ⊆ arcs H)) (is ?L ←→ ?R)
proof −

{ fix H ′ :: (′a, ′b) pre-digraph
assume A: verts H ′ = verts H subgraph H ′ G
interpret H ′: wf-digraph H ′ using ‹subgraph H ′ G› ..
from ‹subgraph H ′ G›
have comp: tail G = tail H ′ head G = head H ′ by (auto simp: compatible-def)
then have

∧
a. a ∈ arcs H ′ =⇒ tail G a ∈ verts H

∧
a. a ∈ arcs H ′ =⇒ tail

G a ∈ verts H
by (auto dest: H ′.wellformed simp: A)

then have arcs H ′ ⊆ {e ∈ arcs G. tail G e ∈ verts H ∧ head G e ∈ verts H}

65

using ‹subgraph H ′ G› by (auto simp: subgraph-def comp A(1)[symmetric])
}
then show ?thesis using induced-subgraphI ′[of H G] by (auto simp: induced-subgraph-def)

qed

8.6 Unions of Graphs
lemma

verts-union[simp]: verts (union G H) = verts G ∪ verts H and
arcs-union[simp]: arcs (union G H) = arcs G ∪ arcs H and
tail-union[simp]: tail (union G H) = tail G and
head-union[simp]: head (union G H) = head G
by (auto simp: union-def)

lemma wellformed-union:
assumes wf-digraph G wf-digraph H compatible G H
shows wf-digraph (union G H)
using assms
by unfold-locales
(auto simp: union-def compatible-tail compatible-head dest: wf-digraph.wellformed)

lemma subgraph-union-iff :
assumes wf-digraph H1 wf-digraph H2 compatible H1 H2
shows subgraph (union H1 H2) G ←→ subgraph H1 G ∧ subgraph H2 G
using assms by (fastforce simp: compatible-def intro!: subgraphI wellformed-union)

lemma subgraph-union[intro]:
assumes subgraph H1 G compatible H1 G
assumes subgraph H2 G compatible H2 G
shows subgraph (union H1 H2) G

proof −
from assms have wf-digraph (union H1 H2)

by (auto intro: wellformed-union simp: compatible-def)
with assms show ?thesis

by (auto simp add: subgraph-def union-def arc-to-ends-def compatible-def)
qed

lemma union-fin-digraph:
assumes fin-digraph G fin-digraph H compatible G H
shows fin-digraph (union G H)

proof intro-locales
interpret G: fin-digraph G by (rule assms)
interpret H : fin-digraph H by (rule assms)
show wf-digraph (union G H) using assms

by (intro wellformed-union) intro-locales
show fin-digraph-axioms (union G H)

using assms by unfold-locales (auto simp: union-def)
qed

66

lemma subgraphs-of-union:
assumes wf-digraph G wf-digraph G ′ compatible G G ′

shows subgraph G (union G G ′)
and subgraph G ′ (union G G ′)

using assms by (auto intro!: subgraphI wellformed-union simp: compatible-def)

8.7 Maximal Subgraphs
lemma (in pre-digraph) max-subgraph-mp:

assumes max-subgraph Q x
∧

x. P x =⇒ Q x P x shows max-subgraph P x
using assms by (auto simp: max-subgraph-def)

lemma (in pre-digraph) max-subgraph-prop: max-subgraph P x =⇒ P x
by (simp add: max-subgraph-def)

lemma (in pre-digraph) max-subgraph-subg-eq:
assumes max-subgraph P H1 max-subgraph P H2 subgraph H1 H2
shows H1 = H2
using assms by (auto simp: max-subgraph-def)

lemma subgraph-induce-subgraphI2 :
assumes subgraph H G shows subgraph H (G � verts H)
using assms by (auto simp: subgraph-def compatible-def wf-digraph.wellformed

wf-digraph.wellformed-induce-subgraph)

definition arc-mono :: ((′a, ′b) pre-digraph ⇒ bool) ⇒ bool where
arc-mono P ≡ (∀H1 H2 . P H1 ∧ subgraph H1 H2 ∧ verts H1 = verts H2 −→

P H2)

lemma (in pre-digraph) induced-subgraphI-arc-mono:
assumes max-subgraph P H
assumes arc-mono P
shows induced-subgraph H G

proof −
interpret wf-digraph G using assms by (auto simp: max-subgraph-def)
have subgraph H (G � verts H) subgraph (G � verts H) G verts H = verts (G �

verts H) P H
using assms by (auto simp: max-subgraph-def subgraph-induce-subgraphI2 sub-

graph-induce-subgraphI)
moreover
then have P (G � verts H)

using assms by (auto simp: arc-mono-def)
ultimately
have max-subgraph P (G � verts H)

using assms by (auto simp: max-subgraph-def) metis
then have H = G � verts H

using ‹max-subgraph P H › ‹subgraph H -›
by (intro max-subgraph-subg-eq)

show ?thesis using assms by (subst ‹H = -›) (auto simp: max-subgraph-def)

67

qed

lemma (in pre-digraph) induced-subgraph-altdef2 :
induced-subgraph H G ←→ max-subgraph (λH ′. verts H ′ = verts H) H (is ?L
←→ ?R)
proof

assume ?L
moreover
{ fix H ′ assume induced-subgraph H G subgraph H H ′ H 6= H ′

then have ¬(subgraph H ′ G ∧ verts H ′ = verts H)
by (auto simp: induced-subgraph-altdef compatible-def elim!: allE [where

x=H ′])
}
ultimately show max-subgraph (λH ′. verts H ′ = verts H) H by (auto simp:

max-subgraph-def)
next

assume ?R
moreover have arc-mono (λH ′. verts H ′= verts H) by (auto simp: arc-mono-def)
ultimately show ?L by (rule induced-subgraphI-arc-mono)

qed

lemma (in pre-digraph) max-subgraphI :
assumes P x subgraph x G

∧
y. [[x 6= y; subgraph x y; subgraph y G]] =⇒ ¬P y

shows max-subgraph P x
using assms by (auto simp: max-subgraph-def)

lemma (in pre-digraph) subgraphI-max-subgraph: max-subgraph P x =⇒ subgraph
x G

by (simp add: max-subgraph-def)

8.8 Connected and Strongly Connected Graphs
context wf-digraph begin

lemma in-sccs-verts-conv-reachable:
S ∈ sccs-verts ←→ S 6= {} ∧ (∀ u ∈ S . ∀ v ∈ S . u →∗

G v) ∧ (∀ u ∈ S . ∀ v. v
/∈ S −→ ¬u →∗

G v ∨ ¬v →∗
G u)

by (simp add: sccs-verts-def)

lemma sccs-verts-disjoint:
assumes S ∈ sccs-verts T ∈ sccs-verts S 6= T shows S ∩ T = {}
using assms unfolding in-sccs-verts-conv-reachable by safe meson+

lemma strongly-connected-spanning-imp-strongly-connected:
assumes spanning H G
assumes strongly-connected H
shows strongly-connected G

proof (unfold strongly-connected-def , intro ballI conjI)

68

from assms show verts G 6= {} unfolding strongly-connected-def spanning-def
by auto

next
fix u v assume u ∈ verts G and v ∈ verts G
then have u →∗

H v subgraph H G
using assms by (auto simp add: strongly-connected-def)

then show u →∗ v by (rule reachable-mono)
qed

lemma strongly-connected-imp-induce-subgraph-strongly-connected:
assumes subg: subgraph H G
assumes sc: strongly-connected H
shows strongly-connected (G � (verts H))

proof −
let ?is-H = G � (verts H)

interpret H : wf-digraph H
using subg by (rule subgraphE)

interpret GrH : wf-digraph ?is-H
by (rule wellformed-induce-subgraph)

have verts H ⊆ verts G using assms by auto

have subgraph H (G � verts H)
using subg by (intro subgraphI) (auto simp: compatible-def)

then show ?thesis
using induced-induce[OF ‹verts H ⊆ verts G›]

and sc GrH .strongly-connected-spanning-imp-strongly-connected
unfolding spanning-def by auto

qed

lemma in-sccs-vertsI-sccs:
assumes S ∈ verts ‘ sccs shows S ∈ sccs-verts
unfolding sccs-verts-def

proof (intro CollectI conjI allI ballI impI)
show S 6= {} using assms by (auto simp: sccs-verts-def sccs-def strongly-connected-def)

from assms have sc: strongly-connected (G � S) S ⊆ verts G
apply (auto simp: sccs-verts-def sccs-def)

by (metis induced-imp-subgraph subgraphE wf-digraph.strongly-connected-imp-induce-subgraph-strongly-connected)

{
fix u v assume A: u ∈ S v ∈ S
with sc have u →∗

G � S v by auto
then show u →∗

G v using ‹S ⊆ verts G› by (rule reachable-induce-subgraphD)
next

fix u v assume A: u ∈ S v /∈ S
{ assume B: u →∗

G v v →∗
G u

from B obtain p-uv where p-uv: awalk u p-uv v by (metis reachable-awalk)

69

from B obtain p-vu where p-vu: awalk v p-vu u by (metis reachable-awalk)
define T where T = S ∪ set (awalk-verts u p-uv) ∪ set (awalk-verts v

p-vu)
have S ⊆ T by (auto simp: T-def)
have v ∈ T using p-vu by (auto simp: T-def set-awalk-verts)
then have T 6= S using ‹v /∈ S› by auto

interpret T : wf-digraph G � T by auto

from p-uv have T-p-uv: T .awalk u p-uv v
by (rule awalk-induce) (auto simp: T-def)

from p-vu have T-p-vu: T .awalk v p-vu u
by (rule awalk-induce) (auto simp: T-def)

have uv-reach: u →∗
G � T v v →∗

G � T u
using T-p-uv T-p-vu A by (metis T .reachable-awalk)+

{ fix x y assume x ∈ S y ∈ S
then have x →∗

G � S y y →∗
G � S x

using sc by auto
then have x →∗

G � T y y →∗
G � T x

using ‹S ⊆ T › by (auto intro: reachable-induce-ss)
} note A1 = this

{ fix x assume x ∈ T
moreover
{ assume x ∈ S then have x →∗

G � T v
using uv-reach A1 A by (auto intro: T .reachable-trans[rotated])

} moreover
{ assume x ∈ set (awalk-verts u p-uv) then have x →∗

G � T v
using T-p-uv by (auto simp: awalk-verts-induce intro: T .awalk-verts-reachable-to)
} moreover
{ assume x ∈ set (awalk-verts v p-vu) then have x →∗

G � T v
using T-p-vu by (rule-tac T .reachable-trans)

(auto simp: uv-reach awalk-verts-induce dest: T .awalk-verts-reachable-to)
} ultimately
have x →∗

G � T v by (auto simp: T-def)
} note xv-reach = this

{ fix x assume x ∈ T
moreover
{ assume x ∈ S then have v →∗

G � T x
using uv-reach A1 A by (auto intro: T .reachable-trans)

} moreover
{ assume x ∈ set (awalk-verts v p-vu) then have v →∗

G � T x
using T-p-vu by (auto simp: awalk-verts-induce intro: T .awalk-verts-reachable-from)
} moreover
{ assume x ∈ set (awalk-verts u p-uv) then have v →∗

G � T x

70

using T-p-uv by (rule-tac T .reachable-trans[rotated])
(auto intro: T .awalk-verts-reachable-from uv-reach simp: awalk-verts-induce)

} ultimately
have v →∗

G � T x by (auto simp: T-def)
} note vx-reach = this

{ fix x y assume x ∈ T y ∈ T then have x →∗
G � T y

using xv-reach vx-reach by (blast intro: T .reachable-trans)
}
then have strongly-connected (G � T)

using ‹S 6= {}› ‹S ⊆ T › by auto
moreover have induced-subgraph (G � T) G

using ‹S ⊆ verts G›
by (auto simp: T-def intro: awalk-verts-reachable-from p-uv p-vu reach-

able-in-verts(2))
ultimately

have ∃T . induced-subgraph (G � T) G ∧ strongly-connected (G � T) ∧ verts
(G � S) ⊂ verts (G � T)

using ‹S ⊆ T › ‹T 6= S› by auto
then have G � S /∈ sccs unfolding sccs-def by blast
then have S /∈ verts ‘ sccs

by (metis (erased, opaque-lifting) ‹S ⊆ T › ‹T 6= S› ‹induced-subgraph (G
� T) G› ‹strongly-connected (G � T)›

dual-order .order-iff-strict image-iff in-sccsE induce-subgraph-verts)
then have False using assms by metis

}
then show ¬u →∗

G v ∨ ¬v →∗
G u by metis

}
qed

end

lemma arc-mono-strongly-connected[intro,simp]: arc-mono strongly-connected
by (auto simp: arc-mono-def) (metis spanning-def subgraphE wf-digraph.strongly-connected-spanning-imp-strongly-connected)

lemma (in pre-digraph) sccs-altdef2 :
sccs = {H . max-subgraph strongly-connected H} (is ?L = ?R)

proof −
{ fix H H ′ :: (′a, ′b) pre-digraph

assume a1 : strongly-connected H ′

assume a2 : induced-subgraph H ′ G
assume a3 : max-subgraph strongly-connected H
assume a4 : verts H ⊆ verts H ′

have sg: subgraph H G and ends-G: tail G = tail H head G = head H
using a3 by (auto simp: max-subgraph-def compatible-def)

then interpret H : wf-digraph H by blast
have arcs H ⊆ arcs H ′ using a2 a4 sg by (fastforce simp: ends-G)
then have H = H ′

using a1 a2 a3 a4

71

by (metis (no-types) compatible-def induced-imp-subgraph max-subgraph-def
subgraph-def)

} note X = this

{ fix H
assume a1 : induced-subgraph H G
assume a2 : strongly-connected H
assume a3 : ∀H ′. strongly-connected H ′ −→ induced-subgraph H ′ G −→ ¬ verts

H ⊂ verts H ′

interpret G: wf-digraph G using a1 by auto
{ fix y assume H 6= y and subg: subgraph H y subgraph y G

then have verts H ⊂ verts y
using a1 by (auto simp: induced-subgraph-altdef2 max-subgraph-def)

then have ¬strongly-connected y
using subg a1 a2 a3 [THEN spec, of G � verts y]

by (auto simp: G.induced-induce G.strongly-connected-imp-induce-subgraph-strongly-connected)
}
then have max-subgraph strongly-connected H

using a1 a2 by (auto intro: max-subgraphI)
} note Y = this

show ?thesis unfolding sccs-def
by (auto dest: max-subgraph-prop X intro: induced-subgraphI-arc-mono Y)

qed

locale max-reachable-set = wf-digraph +
fixes S assumes S-in-sv: S ∈ sccs-verts

begin

lemma reach-in:
∧

u v. [[u ∈ S ; v ∈ S]] =⇒ u →∗
G v

and not-reach-out:
∧

u v. [[u ∈ S ; v /∈ S]] =⇒ ¬u →∗
G v ∨ ¬v →∗

G u
and not-empty: S 6= {}
using S-in-sv by (auto simp: sccs-verts-def)

lemma reachable-induced:
assumes conn: u ∈ S v ∈ S u →∗

G v
shows u →∗

G � S v
proof −

let ?H = G � S
have S ⊆ verts G using reach-in by (auto dest: reachable-in-verts)
then have induced-subgraph ?H G

by (rule induced-induce)
then interpret H : wf-digraph ?H by (rule wf-digraphI-induced)

from conn obtain p where p: awalk u p v by (metis reachable-awalk)
show ?thesis
proof (cases set p ⊆ arcs (G � S))

case True
with p conn have H .awalk u p v

72

by (auto simp: pre-digraph.awalk-def compatible-cas[OF compatible-induce-subgraph])
then show ?thesis by (metis H .reachable-awalk)

next
case False
then obtain a where a ∈ set p a /∈ arcs (G � S) by auto
moreover
then have tail G a /∈ S ∨ head G a /∈ S using p by auto
ultimately
obtain w where w ∈ set (awalk-verts u p) w /∈ S using p by (auto simp:

set-awalk-verts)
then have u →∗

G w w →∗
G v

using p by (auto intro: awalk-verts-reachable-from awalk-verts-reachable-to)
moreover have v →∗

G u using conn reach-in by auto
ultimately have u →∗

G w w →∗
G u by (auto intro: reachable-trans)

with ‹w /∈ S› conn not-reach-out have False by blast
then show ?thesis ..

qed
qed

lemma strongly-connected:
shows strongly-connected (G � S)
using not-empty by (intro strongly-connectedI) (auto intro: reachable-induced

reach-in)

lemma induced-in-sccs: G � S ∈ sccs
proof −

let ?H = G � S
have S ⊆ verts G using reach-in by (auto dest: reachable-in-verts)
then have induced-subgraph ?H G

by (rule induced-induce)
then interpret H : wf-digraph ?H by (rule wf-digraphI-induced)

{ fix T assume S ⊂ T T ⊆ verts G strongly-connected (G � T)
from ‹S ⊂ T › obtain v where v ∈ T v /∈ S by auto
from not-empty obtain u where u ∈ S by auto
then have u ∈ T using ‹S ⊂ T › by auto

from ‹u ∈ S› ‹v /∈ S› have ¬u →∗
G v ∨ ¬v →∗

G u by (rule not-reach-out)
moreover
from ‹strongly-connected -› have u →∗

G � T v v →∗
G � T u

using ‹v ∈ T › ‹u ∈ T › by (auto simp: strongly-connected-def)
then have u →∗

G v v →∗
G u

using ‹T ⊆ verts G› by (auto dest: reachable-induce-subgraphD)
ultimately have False by blast

} note psuper-not-sc = this

have ¬ (∃ c ′. induced-subgraph c ′ G ∧ strongly-connected c ′ ∧ verts (G � S) ⊂
verts c ′)

by (metis induce-subgraph-verts induced-imp-subgraph psuper-not-sc subgraphE

73

strongly-connected-imp-induce-subgraph-strongly-connected)
with ‹S ⊆ -› not-empty show ?H ∈ sccs by (intro in-sccsI induced-induce

strongly-connected)
qed

end

context wf-digraph begin

lemma in-verts-sccsD-sccs:
assumes S ∈ sccs-verts
shows G � S ∈ sccs

proof −
from assms interpret max-reachable-set by unfold-locales
show ?thesis by (auto simp: sccs-verts-def intro: induced-in-sccs)

qed

lemma sccs-verts-conv: sccs-verts = verts ‘ sccs
by (auto intro: in-sccs-vertsI-sccs rev-image-eqI dest: in-verts-sccsD-sccs)

lemma induce-eq-iff-induced:
assumes induced-subgraph H G shows G � verts H = H
using assms by (auto simp: induced-subgraph-def induce-subgraph-def compati-

ble-def)

lemma sccs-conv-sccs-verts: sccs = induce-subgraph G ‘ sccs-verts
by (auto intro!: rev-image-eqI in-sccs-vertsI-sccs dest: in-verts-sccsD-sccs

simp: sccs-def induce-eq-iff-induced)

end

lemma connected-conv:
shows connected G ←→ verts G 6= {} ∧ (∀ u ∈ verts G. ∀ v ∈ verts G. (u,v) ∈

rtrancl-on (verts G) ((arcs-ends G)s))
proof −

have symcl (arcs-ends G) = parcs (mk-symmetric G)
by (auto simp: parcs-mk-symmetric symcl-def arcs-ends-conv)

then show ?thesis by (auto simp: connected-def strongly-connected-def reach-
able-def)
qed

lemma (in wf-digraph) symmetric-connected-imp-strongly-connected:
assumes symmetric G connected G
shows strongly-connected G

proof
from ‹connected G› show verts G 6= {} unfolding connected-def strongly-connected-def

by auto
next

from ‹connected G›

74

have sc-mks: strongly-connected (mk-symmetric G)
unfolding connected-def by simp

fix u v assume u ∈ verts G v ∈ verts G
with sc-mks have u →∗

mk-symmetric G v
unfolding strongly-connected-def by auto

then show u →∗ v using assms by (simp only: reachable-mk-symmetric-eq)
qed

lemma (in wf-digraph) connected-spanning-imp-connected:
assumes spanning H G
assumes connected H
shows connected G

proof (unfold connected-def strongly-connected-def , intro conjI ballI)
from assms show verts (mk-symmetric G)6= {}

unfolding spanning-def connected-def strongly-connected-def by auto
next

fix u v
assume u ∈ verts (mk-symmetric G) and v ∈ verts (mk-symmetric G)
then have u ∈ pverts (mk-symmetric H) and v ∈ pverts (mk-symmetric H)

using ‹spanning H G› by (auto simp: mk-symmetric-def)
with ‹connected H ›
have u →∗

with-proj (mk-symmetric H) v subgraph (mk-symmetric H) (mk-symmetric
G)

using ‹spanning H G› unfolding connected-def
by (auto simp: spanning-def dest: subgraph-mk-symmetric)

then show u →∗
mk-symmetric G v by (rule pre-digraph.reachable-mono)

qed

lemma (in wf-digraph) spanning-tree-imp-connected:
assumes spanning-tree H G
shows connected G

using assms by (auto intro: connected-spanning-imp-connected)

term LEAST x. P x

lemma (in sym-digraph) induce-reachable-is-in-sccs:
assumes u ∈ verts G
shows (G � {v. u →∗ v}) ∈ sccs

proof −
let ?c = (G � {v. u →∗ v})
have isub-c: induced-subgraph ?c G

by (auto elim: reachable-in-vertsE)
then interpret c: wf-digraph ?c by (rule wf-digraphI-induced)

have sym-c: symmetric (G � {v. u →∗ v})
using sym-arcs isub-c by (rule induced-graph-imp-symmetric)

note ‹induced-subgraph ?c G›

75

moreover
have strongly-connected ?c
proof (rule strongly-connectedI)

show verts ?c 6= {} using assms by auto
next

fix v w assume l-assms: v ∈ verts ?c w ∈ verts ?c
have u →∗

G � {v. u →∗ v} v
using l-assms by (intro induce-reachable-preserves-paths) auto

then have v →∗
G � {v. u →∗ v} u by (rule symmetric-reachable[OF sym-c])

also have u →∗
G � {v. u →∗ v} w

using l-assms by (intro induce-reachable-preserves-paths) auto
finally show v →∗

G � {v. u →∗ v} w .
qed
moreover
have ¬(∃ d. induced-subgraph d G ∧ strongly-connected d ∧

verts ?c ⊂ verts d)
proof

assume ∃ d. induced-subgraph d G ∧ strongly-connected d ∧
verts ?c ⊂ verts d

then obtain d where induced-subgraph d G strongly-connected d
verts ?c ⊂ verts d by auto

then obtain v where v ∈ verts d and v /∈ verts ?c
by auto

have u ∈ verts ?c using ‹u ∈ verts G› by auto
then have u ∈ verts d using ‹verts ?c ⊂ verts d› by auto
then have u →∗

d v
using ‹strongly-connected d› ‹u ∈ verts d› ‹v ∈ verts d› by auto

then have u →∗ v
using ‹induced-subgraph d G›
by (auto intro: pre-digraph.reachable-mono)

then have v ∈ verts ?c by (auto simp: reachable-awalk)
then show False using ‹v /∈ verts ?c› by auto

qed
ultimately show ?thesis unfolding sccs-def by auto

qed

lemma induced-eq-verts-imp-eq:
assumes induced-subgraph G H
assumes induced-subgraph G ′ H
assumes verts G = verts G ′

shows G = G ′

using assms by (auto simp: induced-subgraph-def subgraph-def compatible-def)

lemma (in pre-digraph) in-sccs-subset-imp-eq:
assumes c ∈ sccs
assumes d ∈ sccs
assumes verts c ⊆ verts d
shows c = d

76

using assms by (blast intro: induced-eq-verts-imp-eq)

context wf-digraph begin

lemma connectedI :
assumes verts G 6= {}

∧
u v. u ∈ verts G =⇒ v ∈ verts G =⇒ u →∗

mk-symmetric G
v

shows connected G
using assms by (auto simp: connected-def)

lemma connected-awalkE :
assumes connected G u ∈ verts G v ∈ verts G
obtains p where pre-digraph.awalk (mk-symmetric G) u p v

proof −
interpret sG: pair-wf-digraph mk-symmetric G ..
from assms have u →∗

mk-symmetric G v by (auto simp: connected-def)
then obtain p where sG.awalk u p v by (auto simp: sG.reachable-awalk)
then show ?thesis ..

qed

lemma inj-on-verts-sccs: inj-on verts sccs
by (rule inj-onI) (metis in-sccs-imp-induced induced-eq-verts-imp-eq)

lemma card-sccs-verts: card sccs-verts = card sccs
by (auto simp: sccs-verts-conv intro: inj-on-verts-sccs card-image)

end

lemma strongly-connected-non-disj:
assumes wf : wf-digraph G wf-digraph H compatible G H
assumes sc: strongly-connected G strongly-connected H
assumes not-disj: verts G ∩ verts H 6= {}
shows strongly-connected (union G H)

proof
from sc show verts (union G H) 6= {}

unfolding strongly-connected-def by simp
next

let ?x = union G H
fix u v w assume u ∈ verts ?x and v ∈ verts ?x
obtain w where w-in-both: w ∈ verts G w ∈ verts H

using not-disj by auto

interpret x: wf-digraph ?x
by (rule wellformed-union) fact+

have subg: subgraph G ?x subgraph H ?x
by (rule subgraphs-of-union[OF - -], fact+)+

have reach-uw: u →∗
?x w

using ‹u ∈ verts ?x› subg w-in-both sc

77

by (auto intro: pre-digraph.reachable-mono)
also have reach-wv: w →∗

?x v
using ‹v ∈ verts ?x› subg w-in-both sc
by (auto intro: pre-digraph.reachable-mono)

finally (x.reachable-trans) show u →∗
?x v .

qed

context wf-digraph begin

lemma scc-disj:
assumes scc: c ∈ sccs d ∈ sccs
assumes c 6= d
shows verts c ∩ verts d = {}

proof (rule ccontr)
assume contr : ¬?thesis

let ?x = union c d

have comp1 : compatible G c compatible G d
using scc by (auto simp: sccs-def)

then have comp: compatible c d by (auto simp: compatible-def)

have wf : wf-digraph c wf-digraph d
and sc: strongly-connected c strongly-connected d
using scc by (auto intro: in-sccs-imp-induced)

have compatible c d
using comp by (auto simp: sccs-def compatible-def)

from wf comp sc have union-conn: strongly-connected ?x
using contr by (rule strongly-connected-non-disj)

have sg: subgraph ?x G
using scc comp1 by (intro subgraph-union) (auto simp: compatible-def)

then have v-cd: verts c ⊆ verts G verts d ⊆ verts G by (auto elim!: subgraphE)
have wf-digraph ?x by (rule wellformed-union) fact+
with v-cd sg union-conn
have induce-subgraph-conn: strongly-connected (G � verts ?x)

induced-subgraph (G � verts ?x) G
by − (intro strongly-connected-imp-induce-subgraph-strongly-connected,

auto simp: subgraph-union-iff)

from assms have ¬verts c ⊆ verts d and ¬ verts d ⊆ verts c
by (metis in-sccs-subset-imp-eq)+

then have psub: verts c ⊂ verts ?x
by (auto simp: union-def)

then show False using induce-subgraph-conn
by (metis ‹c ∈ sccs› in-sccsE induce-subgraph-verts)

qed

lemma in-sccs-verts-conv:

78

S ∈ sccs-verts ←→ G � S ∈ sccs
by (auto simp: sccs-verts-conv intro: rev-image-eqI)

(metis in-sccs-imp-induced induce-subgraph-verts induced-eq-verts-imp-eq in-
duced-imp-subgraph induced-induce subgraphE)

end

lemma (in wf-digraph) in-scc-of-self : u ∈ verts G =⇒ u ∈ scc-of u
by (auto simp: scc-of-def)

lemma (in wf-digraph) scc-of-empty-conv: scc-of u = {} ←→ u /∈ verts G
using in-scc-of-self by (auto simp: scc-of-def reachable-in-verts)

lemma (in wf-digraph) scc-of-in-sccs-verts:
assumes u ∈ verts G shows scc-of u ∈ sccs-verts
using assms by (auto simp: in-sccs-verts-conv-reachable scc-of-def intro: reach-

able-trans exI [where x=u])

lemma (in wf-digraph) sccs-verts-subsets: S ∈ sccs-verts =⇒ S ⊆ verts G
by (auto simp: sccs-verts-conv)

lemma (in fin-digraph) finite-sccs-verts: finite sccs-verts
proof −

have finite (Pow (verts G)) by auto
moreover with sccs-verts-subsets have sccs-verts ⊆ Pow (verts G) by auto
ultimately show ?thesis by (rule rev-finite-subset)

qed

lemma (in wf-digraph) sccs-verts-conv-scc-of :
sccs-verts = scc-of ‘ verts G (is ?L = ?R)

proof (intro set-eqI iffI)
fix S assume S ∈ ?R then show S ∈ ?L

by (auto simp: in-sccs-verts-conv-reachable scc-of-empty-conv) (auto simp:
scc-of-def intro: reachable-trans)
next

fix S assume S ∈ ?L
moreover
then obtain u where u ∈ S by (auto simp: in-sccs-verts-conv-reachable)
moreover
then have u ∈ verts G using ‹S ∈ ?L› by (metis sccs-verts-subsets subsetCE)
then have scc-of u ∈ sccs-verts u ∈ scc-of u

by (auto intro: scc-of-in-sccs-verts in-scc-of-self)
ultimately
have scc-of u = S using sccs-verts-disjoint by blast
then show S ∈ ?R using ‹scc-of u ∈ -› ‹u ∈ verts G› by auto

qed

lemma (in sym-digraph) scc-ofI-reachable:
assumes u →∗ v shows u ∈ scc-of v

79

using assms by (auto simp: scc-of-def symmetric-reachable[OF sym-arcs])

lemma (in sym-digraph) scc-ofI-reachable ′:
assumes v →∗ u shows u ∈ scc-of v
using assms by (auto simp: scc-of-def symmetric-reachable[OF sym-arcs])

lemma (in sym-digraph) scc-ofI-awalk:
assumes awalk u p v shows u ∈ scc-of v
using assms by (metis reachable-awalk scc-ofI-reachable)

lemma (in sym-digraph) scc-ofI-apath:
assumes apath u p v shows u ∈ scc-of v
using assms by (metis reachable-apath scc-ofI-reachable)

lemma (in wf-digraph) scc-of-eq: u ∈ scc-of v =⇒ scc-of u = scc-of v
by (auto simp: scc-of-def intro: reachable-trans)

lemma (in wf-digraph) strongly-connected-eq-iff :
strongly-connected G ←→ sccs = {G} (is ?L ←→ ?R)

proof
assume ?L
then have G ∈ sccs by (auto simp: sccs-def induced-subgraph-refl)
moreover
{ fix H assume H ∈ sccs G 6= H

with ‹G ∈ sccs› have verts G ∩ verts H = {} by (rule scc-disj)
moreover
from ‹H ∈ sccs› have verts H ⊆ verts G by auto
ultimately
have verts H = {} by auto
with ‹H ∈ sccs› have False by (auto simp: sccs-def strongly-connected-def)

} ultimately
show ?R by auto

qed (auto simp: sccs-def)

8.9 Components
lemma (in sym-digraph) exists-scc:

assumes verts G 6= {} shows ∃ c. c ∈ sccs
proof −

from assms obtain u where u ∈ verts G by auto
then show ?thesis by (blast dest: induce-reachable-is-in-sccs)

qed

theorem (in sym-digraph) graph-is-union-sccs:
shows Union sccs = G

proof −
have (

⋃
c ∈ sccs. verts c) = verts G

by (auto intro: induce-reachable-is-in-sccs)
moreover

80

have (
⋃

c ∈ sccs. arcs c) = arcs G
proof

show (
⋃

c ∈ sccs. arcs c) ⊆ arcs G
by safe (metis in-sccsE induced-imp-subgraph subgraphE subsetD)

show arcs G ⊆ (
⋃

c ∈ sccs. arcs c)
proof (safe)

fix e assume e ∈ arcs G
define a b where [simp]: a = tail G e and [simp]: b = head G e

have e ∈ (
⋃

x ∈ sccs. arcs x)
proof cases

assume ∃ x∈sccs. {a,b } ⊆ verts x
then obtain c where c ∈ sccs and {a,b} ⊆ verts c

by auto
then have e ∈ {e ∈ arcs G. tail G e ∈ verts c
∧ head G e ∈ verts c} using ‹e ∈ arcs G› by auto

then have e ∈ arcs c using ‹c ∈ sccs› by blast
then show ?thesis using ‹c ∈ sccs› by auto

next
assume l-assm: ¬(∃ x∈sccs. {a,b} ⊆ verts x)

have a →∗ b using ‹e ∈ arcs G›
by (metis a-def b-def reachable-adjI in-arcs-imp-in-arcs-ends)

then have {a,b} ⊆ verts (G � {v. a →∗ v}) a ∈ verts G
by (auto elim: reachable-in-vertsE)

moreover
have (G � {v. a →∗ v}) ∈ sccs

using ‹a ∈ verts G› by (auto intro: induce-reachable-is-in-sccs)
ultimately
have False using l-assm by blast
then show ?thesis by simp

qed
then show e ∈ (

⋃
c ∈ sccs. arcs c) by auto

qed
qed
ultimately show ?thesis

by (auto simp add: Union-def)
qed

lemma (in sym-digraph) scc-for-vert-ex:
assumes u ∈ verts G
shows ∃ c. c∈sccs ∧ u ∈ verts c

using assms by (auto intro: induce-reachable-is-in-sccs)

lemma (in sym-digraph) scc-decomp-unique:
assumes S ⊆ sccs verts (Union S) = verts G shows S = sccs

proof (rule ccontr)

81

assume S 6= sccs
with assms obtain c where c ∈ sccs and c /∈ S by auto
with assms have

∧
d. d ∈ S =⇒ verts c ∩ verts d = {}

by (intro scc-disj) auto
then have verts c ∩ verts (Union S) = {}

by (auto simp: Union-def)
with assms have verts c ∩ verts G = {} by auto
moreover from ‹c ∈ sccs› obtain u where u ∈ verts c ∩ verts G

by (auto simp: sccs-def strongly-connected-def)
ultimately show False by blast

qed

end

theory Vertex-Walk
imports Arc-Walk
begin

9 Walks Based on Vertices

These definitions are here mainly for historical purposes, as they do not
really work with multigraphs. Consider using Arc Walks instead.
type-synonym ′a vwalk = ′a list

Computes the list of arcs belonging to a list of nodes
fun vwalk-arcs :: ′a vwalk ⇒ (′a × ′a) list where

vwalk-arcs [] = []
| vwalk-arcs [x] = []
| vwalk-arcs (x#y#xs) = (x,y) # vwalk-arcs (y#xs)

definition vwalk-length :: ′a vwalk ⇒ nat where
vwalk-length p ≡ length (vwalk-arcs p)

lemma vwalk-length-simp[simp]:
shows vwalk-length p = length p − 1

by (induct p rule: vwalk-arcs.induct) (auto simp: vwalk-length-def)

definition vwalk :: ′a vwalk ⇒ (′a, ′b) pre-digraph ⇒ bool where
vwalk p G ≡ set p ⊆ verts G ∧ set (vwalk-arcs p) ⊆ arcs-ends G ∧ p 6= []

definition vpath :: ′a vwalk ⇒ (′a, ′b) pre-digraph ⇒ bool where
vpath p G ≡ vwalk p G ∧ distinct p

For a given vwalk, compute a vpath with the same tail G and end
function vwalk-to-vpath :: ′a vwalk ⇒ ′a vwalk where

82

vwalk-to-vpath [] = []
| vwalk-to-vpath (x # xs) = (if (x ∈ set xs)

then vwalk-to-vpath (dropWhile (λy. y 6= x) xs)
else x # vwalk-to-vpath xs)

by pat-completeness auto
termination by (lexicographic-order simp add: length-dropWhile-le)

lemma vwalkI [intro]:
assumes set p ⊆ verts G
assumes set (vwalk-arcs p) ⊆ arcs-ends G
assumes p 6= []
shows vwalk p G

using assms by (auto simp add: vwalk-def)

lemma vwalkE [elim]:
assumes vwalk p G
assumes set p ⊆ verts G =⇒

set (vwalk-arcs p) ⊆ arcs-ends G ∧ p 6= [] =⇒ P
shows P

using assms by (simp add: vwalk-def)

lemma vpathI [intro]:
assumes vwalk p G
assumes distinct p
shows vpath p G

using assms by (simp add: vpath-def)

lemma vpathE [elim]:
assumes vpath p G
assumes vwalk p G =⇒ distinct p =⇒ P
shows P

using assms by (simp add: vpath-def)

lemma vwalk-consI :
assumes vwalk p G
assumes a ∈ verts G
assumes (a, hd p) ∈ arcs-ends G
shows vwalk (a # p) G

using assms by (cases p) (auto simp add: vwalk-def)

lemma vwalk-consE :
assumes vwalk (a # p) G
assumes p 6= []
assumes (a, hd p) ∈ arcs-ends G =⇒ vwalk p G =⇒ P
shows P

using assms by (cases p) (auto simp add: vwalk-def)

83

lemma vwalk-induct[case-names Base Cons, induct pred: vwalk]:
assumes vwalk p G
assumes

∧
u. u ∈ verts G =⇒ P [u]

assumes
∧

u v es. (u,v) ∈ arcs-ends G =⇒ P (v # es) =⇒ P (u # v # es)
shows P p
using assms

proof (induct p)
case (Cons u es)
then show ?case
proof (cases es)

fix v es ′ assume es = v # es ′

then have (u,v) ∈ arcs-ends G and P (v # es ′)
using Cons by (auto elim: vwalk-consE)

then show ?thesis using ‹es = v # es ′› Cons.prems by auto
qed auto

qed auto

lemma vwalk-arcs-Cons[simp]:
assumes p 6= []
shows vwalk-arcs (u # p) = (u, hd p) # vwalk-arcs p

using assms by (cases p) simp+

lemma vwalk-arcs-append:
assumes p 6= [] and q 6= []
shows vwalk-arcs (p @ q) = vwalk-arcs p @ (last p, hd q) # vwalk-arcs q

proof −
from assms obtain a b p ′ q ′ where p = a # p ′ and q = b # q ′

by (auto simp add: neq-Nil-conv)
moreover
have vwalk-arcs ((a # p ′) @ (b # q ′))
= vwalk-arcs (a # p ′) @ (last (a # p ′), b) # vwalk-arcs (b # q ′)

proof (induct p ′)
case Nil show ?case by simp

next
case (Cons a ′ p ′) then show ?case by (auto simp add: neq-Nil-conv)

qed
ultimately
show ?thesis by auto

qed

lemma set-vwalk-arcs-append1 :
set (vwalk-arcs p) ⊆ set (vwalk-arcs (p @ q))

proof (cases p)
case (Cons a p ′) note p-Cons = Cons then show ?thesis
proof (cases q)

case (Cons b q ′)
with p-Cons have p 6= [] and q 6= [] by auto
then show ?thesis by (auto simp add: vwalk-arcs-append)

qed simp

84

qed simp

lemma set-vwalk-arcs-append2 :
set (vwalk-arcs q) ⊆ set (vwalk-arcs (p @ q))

proof (cases p)
case (Cons a p ′) note p-Cons = Cons then show ?thesis
proof (cases q)

case (Cons b q ′)
with p-Cons have p 6= [] and q 6= [] by auto
then show ?thesis by (auto simp add: vwalk-arcs-append)

qed simp
qed simp

lemma set-vwalk-arcs-cons:
set (vwalk-arcs p) ⊆ set (vwalk-arcs (u # p))
by (cases p) auto

lemma set-vwalk-arcs-snoc:
assumes p 6= []
shows set (vwalk-arcs (p @ [a]))
= insert (last p, a) (set (vwalk-arcs p))

using assms proof (induct p)
case Nil then show ?case by auto

next
case (Cons x xs)
then show ?case
proof (cases xs = [])

case True then show ?thesis by auto
next

case False
have set (vwalk-arcs ((x # xs) @ [a]))
= set (vwalk-arcs (x # (xs @ [a])))
by auto

then show ?thesis using Cons and False
by (auto simp add: set-vwalk-arcs-cons)

qed
qed

lemma (in wf-digraph) vwalk-wf-digraph-consI :
assumes vwalk p G
assumes (a, hd p) ∈ arcs-ends G
shows vwalk (a # p) G

proof
show a # p 6= [] by simp

from assms have a ∈ verts G and set p ⊆ verts G by auto
then show set (a # p) ⊆ verts G by auto

from ‹vwalk p G› have p 6= [] by auto

85

then show set (vwalk-arcs (a # p)) ⊆ arcs-ends G
using ‹vwalk p G› and ‹(a, hd p) ∈ arcs-ends G›
by (auto simp add: set-vwalk-arcs-cons)

qed

lemma vwalkI-append-l:
assumes p 6= []
assumes vwalk (p @ q) G
shows vwalk p G

proof
from assms show p 6= [] and set p ⊆ verts G

by (auto elim!: vwalkE)
have set (vwalk-arcs p) ⊆ set (vwalk-arcs (p @ q))

by (auto simp add: set-vwalk-arcs-append1)
then show set (vwalk-arcs p) ⊆ arcs-ends G

using assms by blast
qed

lemma vwalkI-append-r :
assumes q 6= []
assumes vwalk (p @ q) G
shows vwalk q G

proof
from ‹vwalk (p @ q) G› have set (p @ q) ⊆ verts G by blast
then show set q ⊆ verts G by simp

from ‹vwalk (p @ q) G› have set (vwalk-arcs (p @ q)) ⊆ arcs-ends G
by blast

then show set (vwalk-arcs q) ⊆ arcs-ends G
by (metis set-vwalk-arcs-append2 subset-trans)

from ‹q 6= []› show q 6= [] by assumption
qed

lemma vwalk-to-vpath-hd: hd (vwalk-to-vpath xs) = hd xs
proof (induct xs rule: vwalk-to-vpath.induct)

case (2 x xs) then show ?case
proof (cases x ∈ set xs)

case True
then have hd (dropWhile (λy. y 6= x) xs) = x

using hd-dropWhile[where P=λy. y 6= x] by auto
then show ?thesis using True and 2 by auto

qed auto
qed auto

lemma vwalk-to-vpath-induct3 [consumes 0 , case-names base in-set not-in-set]:
assumes P []
assumes

∧
x xs. x ∈ set xs =⇒ P (dropWhile (λy. y 6= x) xs)

=⇒ P (x # xs)

86

assumes
∧

x xs. x /∈ set xs =⇒ P xs =⇒ P (x # xs)
shows P xs

using assms by (induct xs rule: vwalk-to-vpath.induct) auto

lemma vwalk-to-vpath-nonempty:
assumes p 6= []
shows vwalk-to-vpath p 6= []

using assms by (induct p rule: vwalk-to-vpath-induct3) auto

lemma vwalk-to-vpath-last:
last (vwalk-to-vpath xs) = last xs

by (induct xs rule: vwalk-to-vpath-induct3)
(auto simp add: dropWhile-last vwalk-to-vpath-nonempty)

lemma vwalk-to-vpath-subset:
assumes x ∈ set (vwalk-to-vpath xs)
shows x ∈ set xs

using assms proof (induct xs rule: vwalk-to-vpath.induct)
case (2 x xs) then show ?case

by (cases x ∈ set xs) (auto dest: set-dropWhileD)
qed simp-all

lemma vwalk-to-vpath-cons:
assumes x /∈ set xs
shows vwalk-to-vpath (x # xs) = x # vwalk-to-vpath xs

using assms by auto

lemma vwalk-to-vpath-vpath:
assumes vwalk p G
shows vpath (vwalk-to-vpath p) G

using assms proof (induct p rule: vwalk-to-vpath-induct3)
case base then show ?case by auto

next
case (in-set x xs)
have set-neq:

∧
x xs. x /∈ set xs =⇒ ∀ x ′ ∈ set xs. x ′ 6= x by metis

from ‹x ∈ set xs› obtain ys zs where xs = ys @ x # zs and x /∈ set ys
by (metis in-set-conv-decomp-first)

then have vwalk-dW : vwalk (dropWhile (λy. y 6= x) xs) G
using in-set and ‹xs = ys @ x # zs›
by (auto simp add: dropWhile-append3 set-neq intro: vwalkI-append-r [where

p=x # ys])
then show ?case using in-set

by (auto simp add: vwalk-dW)
next

case (not-in-set x xs)
then have x ∈ verts G and x-notin: x /∈ set (vwalk-to-vpath xs)

by (auto intro: vwalk-to-vpath-subset)

from not-in-set show ?case

87

proof (cases xs)
case Nil then show ?thesis using not-in-set.prems by auto

next
case (Cons x ′ xs ′)
have vpath (vwalk-to-vpath xs) G

apply (rule not-in-set)
apply (rule vwalkI-append-r [where p=[x]])
using Cons not-in-set by auto

then have vwalk (x # vwalk-to-vpath xs) G
apply (auto intro!: vwalk-consI simp add: vwalk-to-vpath-hd)
using not-in-set
apply −
apply (erule vwalk-consE)
using Cons
apply (auto intro: ‹x ∈ verts G›)

done
then have vpath (x # vwalk-to-vpath xs) G

apply (rule vpathI)
using ‹vpath (vwalk-to-vpath xs) G›
using x-notin
by auto

then show ?thesis using not-in-set
by (auto simp add: vwalk-to-vpath-cons)

qed
qed

lemma vwalk-imp-ex-vpath:
assumes vwalk p G
assumes hd p = u
assumes last p = v
shows ∃ q. vpath q G ∧ hd q = u ∧ last q = v

by (metis assms vwalk-to-vpath-hd vwalk-to-vpath-last vwalk-to-vpath-vpath)

lemma vwalk-arcs-set-nil:
assumes x ∈ set (vwalk-arcs p)
shows p 6= []

using assms by fastforce

lemma in-set-vwalk-arcs-append1 :
assumes x ∈ set (vwalk-arcs p) ∨ x ∈ set (vwalk-arcs q)
shows x ∈ set (vwalk-arcs (p @ q))

using assms proof
assume x ∈ set (vwalk-arcs p)
then show x ∈ set (vwalk-arcs (p @ q))

by (cases q = [])
(auto simp add: vwalk-arcs-append vwalk-arcs-set-nil)

next
assume x ∈ set (vwalk-arcs q)

88

then show x ∈ set (vwalk-arcs (p @ q))
by (cases p = [])

(auto simp add: vwalk-arcs-append vwalk-arcs-set-nil)
qed

lemma in-set-vwalk-arcs-append2 :
assumes nonempty: p 6= [] q 6= []
assumes disj: x ∈ set (vwalk-arcs p) ∨ x = (last p, hd q)
∨ x ∈ set (vwalk-arcs q)

shows x ∈ set (vwalk-arcs (p @ q))
using disj proof (elim disjE)

assume x = (last p, hd q)
then show x ∈ set (vwalk-arcs (p @ q))

by (metis nonempty in-set-conv-decomp vwalk-arcs-append)
qed (auto intro: in-set-vwalk-arcs-append1)

lemma arcs-in-vwalk-arcs:
assumes u ∈ set (vwalk-arcs p)
shows u ∈ set p × set p

using assms by (induct p rule: vwalk-arcs.induct) auto

lemma set-vwalk-arcs-rev:
set (vwalk-arcs (rev p)) = {(v, u). (u,v) ∈ set (vwalk-arcs p)}

proof (induct p)
case Nil then show ?case by auto

next
case (Cons x xs)
then show ?case
proof (cases xs = [])

case True then show ?thesis by auto
next

case False
then have set (vwalk-arcs (rev (x # xs))) = {(hd xs, x)}
∪ {a. case a of (v, u) ⇒ (u, v) ∈ set (vwalk-arcs xs)}
by (simp add: set-vwalk-arcs-snoc last-rev Cons)

also have . . . = {a. case a of (v, u) ⇒ (u, v) ∈ set (vwalk-arcs (x # xs))}
using False by (auto simp add: set-vwalk-arcs-cons)

finally show ?thesis by assumption
qed

qed

lemma vpath-self :
assumes u ∈ verts G
shows vpath [u] G

using assms by (intro vpathI vwalkI , auto)

lemma vwalk-verts-in-verts:
assumes vwalk p G
assumes u ∈ set p

89

shows u ∈ verts G
using assms by auto

lemma vwalk-arcs-tl:
vwalk-arcs (tl xs) = tl (vwalk-arcs xs)

by (induct xs rule: vwalk-arcs.induct) simp-all

lemma vwalk-arcs-butlast:
vwalk-arcs (butlast xs) = butlast (vwalk-arcs xs)

proof (induct xs rule: rev-induct)
case (snoc x xs) thus ?case
proof (cases xs = [])

case True with snoc show ?thesis by simp
next

case False
hence vwalk-arcs (xs @ [x]) = vwalk-arcs xs @ [(last xs, x)] using vwalk-arcs-append

by force
with snoc show ?thesis by simp

qed
qed simp

lemma vwalk-arcs-tl-empty:
vwalk-arcs xs = [] =⇒ vwalk-arcs (tl xs) = []

by (induct xs rule: vwalk-arcs.induct) simp-all

lemma vwalk-arcs-butlast-empty:
xs 6= [] =⇒ vwalk-arcs xs = [] =⇒ vwalk-arcs (butlast xs) = []

by (induct xs rule: vwalk-arcs.induct) simp-all

definition joinable :: ′a vwalk ⇒ ′a vwalk ⇒ bool where
joinable p q ≡ last p = hd q ∧ p 6= [] ∧ q 6= []

definition vwalk-join :: ′a list ⇒ ′a list ⇒ ′a list
(infixr ‹⊕› 65) where
p ⊕ q ≡ p @ tl q

lemma joinable-Nil-l-iff [simp]: joinable [] p = False
and joinable-Nil-r-iff [simp]: joinable q [] = False
by (auto simp: joinable-def)

lemma joinable-Cons-l-iff [simp]: p 6= [] =⇒ joinable (v # p) q = joinable p q
and joinable-Snoc-r-iff [simp]: q 6= [] =⇒ joinable p (q @ [v]) = joinable p q
by (auto simp: joinable-def)

lemma joinableI [intro,simp]:
assumes last p = hd q p 6= [] q 6= []
shows joinable p q

using assms by (simp add: joinable-def)

90

lemma vwalk-join-non-Nil[simp]:
assumes p 6= []
shows p ⊕ q 6= []

unfolding vwalk-join-def using assms by simp

lemma vwalk-join-Cons[simp]:
assumes p 6= []
shows (u # p) ⊕ q = u # p ⊕ q

unfolding vwalk-join-def using assms by simp

lemma vwalk-join-def2 :
assumes joinable p q
shows p ⊕ q = butlast p @ q

proof −
from assms have p 6= [] and q 6= [] by (simp add: joinable-def)+
then have vwalk-join p q = butlast p @ last p # tl q

unfolding vwalk-join-def by simp
then show ?thesis using assms by (simp add: joinable-def)

qed

lemma vwalk-join-hd ′:
assumes p 6= []
shows hd (p ⊕ q) = hd p

using assms by (auto simp add: vwalk-join-def)

lemma vwalk-join-hd:
assumes joinable p q
shows hd (p ⊕ q) = hd p

using assms by (auto simp add: vwalk-join-def joinable-def)

lemma vwalk-join-last:
assumes joinable p q
shows last (p ⊕ q) = last q

using assms by (auto simp add: vwalk-join-def2 joinable-def)

lemma vwalk-join-Nil[simp]:
p ⊕ [] = p

by (simp add: vwalk-join-def)

lemma vwalk-joinI-vwalk ′:
assumes vwalk p G
assumes vwalk q G
assumes last p = hd q
shows vwalk (p ⊕ q) G

proof (unfold vwalk-join-def , rule vwalkI)
have set p ⊆ verts G and set q ⊆ verts G

using ‹vwalk p G› and ‹vwalk q G› by blast+
then show set (p @ tl q) ⊆ verts G

91

by (cases q) auto
next

show p @ tl q 6= [] using ‹vwalk p G› by auto
next

have pe-p: set (vwalk-arcs p) ⊆ arcs-ends G
using ‹vwalk p G› by blast

have pe-q ′: set (vwalk-arcs (tl q)) ⊆ arcs-ends G
proof −

have set (vwalk-arcs (tl q)) ⊆ set (vwalk-arcs q)
by (cases q) (simp-all add: set-vwalk-arcs-cons)

then show ?thesis using ‹vwalk q G› by blast
qed

show set (vwalk-arcs (p @ tl q)) ⊆ arcs-ends G
proof (cases tl q)

case Nil then show ?thesis using pe-p by auto
next

case (Cons x xs)
then have nonempty: p 6= [] tl q 6= []

using ‹vwalk p G› by auto
moreover
have (hd q, hd (tl q)) ∈ set (vwalk-arcs q)

using ‹vwalk q G› Cons by (cases q) auto
ultimately show ?thesis

using ‹vwalk q G›
by (auto simp: pe-p pe-q ′ ‹last p = hd q› vwalk-arcs-append)

qed
qed

lemma vwalk-joinI-vwalk:
assumes vwalk p G
assumes vwalk q G
assumes joinable p q
shows vwalk (p ⊕ q) G

using assms vwalk-joinI-vwalk ′ by (auto simp: joinable-def)

lemma vwalk-join-split:
assumes u ∈ set p
shows ∃ q r . p = q ⊕ r
∧ last q = u ∧ hd r = u ∧ q 6= [] ∧ r 6= []

proof −
from ‹u ∈ set p›
obtain pre-p post-p where p = pre-p @ u # post-p

by atomize-elim (auto simp add: split-list)
then have p = (pre-p @ [u]) ⊕ (u # post-p)

unfolding vwalk-join-def by simp
then show ?thesis by fastforce

qed

92

lemma vwalkI-vwalk-join-l:
assumes p 6= []
assumes vwalk (p ⊕ q) G
shows vwalk p G

using assms unfolding vwalk-join-def
by (auto intro: vwalkI-append-l)

lemma vwalkI-vwalk-join-r :
assumes joinable p q
assumes vwalk (p ⊕ q) G
shows vwalk q G

using assms
by (auto simp add: vwalk-join-def2 joinable-def intro: vwalkI-append-r)

lemma vwalk-join-assoc ′:
assumes p 6= [] q 6= []
shows (p ⊕ q) ⊕ r = p ⊕ q ⊕ r

using assms by (simp add: vwalk-join-def)

lemma vwalk-join-assoc:
assumes joinable p q joinable q r
shows (p ⊕ q) ⊕ r = p ⊕ q ⊕ r

using assms by (simp add: vwalk-join-def joinable-def)

lemma joinable-vwalk-join-r-iff :
joinable p (q ⊕ r) ←→ joinable p q ∨ (q = [] ∧ joinable p (tl r))

by (cases q) (auto simp add: vwalk-join-def joinable-def)

lemma joinable-vwalk-join-l-iff :
assumes joinable p q
shows joinable (p ⊕ q) r ←→ joinable q r (is ?L ←→ ?R)
using assms by (auto simp: joinable-def vwalk-join-last)

lemmas joinable-simps =
joinable-vwalk-join-l-iff
joinable-vwalk-join-r-iff

lemma joinable-cyclic-omit:
assumes joinable p q joinable q r joinable q q
shows joinable p r

using assms by (metis joinable-def)

lemma joinable-non-Nil:
assumes joinable p q
shows p 6= [] q 6= []

using assms by (simp-all add: joinable-def)

lemma vwalk-join-vwalk-length[simp]:
assumes joinable p q

93

shows vwalk-length (p ⊕ q) = vwalk-length p + vwalk-length q
using assms unfolding vwalk-join-def
by (simp add: less-eq-Suc-le[symmetric] joinable-non-Nil)

lemma vwalk-join-arcs:
assumes joinable p q
shows vwalk-arcs (p ⊕ q) = vwalk-arcs p @ vwalk-arcs q
using assms

proof (induct p)
case (Cons v vs) then show ?case

by (cases vs = [])
(auto simp: vwalk-join-hd, simp add: joinable-def vwalk-join-def)

qed simp

lemma vwalk-join-arcs1 :
assumes set (vwalk-arcs p) ⊆ E
assumes p = q ⊕ r
shows set (vwalk-arcs q) ⊆ E

by (metis assms vwalk-join-def set-vwalk-arcs-append1 subset-trans)

lemma vwalk-join-arcs2 :
assumes set (vwalk-arcs p) ⊆ E
assumes joinable q r
assumes p = q ⊕ r
shows set (vwalk-arcs r) ⊆ E

using assms by (simp add: vwalk-join-arcs)

definition concat-vpath :: ′a list ⇒ ′a list ⇒ ′a list where
concat-vpath p q ≡ vwalk-to-vpath (p ⊕ q)

lemma concat-vpath-is-vpath:
assumes p-props: vwalk p G hd p = u last p = v
assumes q-props: vwalk q G hd q = v last q = w
shows vpath (concat-vpath p q) G ∧ hd (concat-vpath p q) = u
∧ last (concat-vpath p q) = w

proof (intro conjI)
have joinable: joinable p q using assms by auto

show vpath (concat-vpath p q) G
unfolding concat-vpath-def using assms and joinable
by (auto intro: vwalk-to-vpath-vpath vwalk-joinI-vwalk)

show hd (concat-vpath p q) = u last (concat-vpath p q) = w
unfolding concat-vpath-def using assms and joinable
by (auto simp: vwalk-to-vpath-hd vwalk-to-vpath-last

vwalk-join-hd vwalk-join-last)
qed

94

lemma concat-vpath-exists:
assumes p-props: vwalk p G hd p = u last p = v
assumes q-props: vwalk q G hd q = v last q = w
obtains r where vpath r G hd r = u last r = w

using concat-vpath-is-vpath[OF assms] by blast

lemma (in fin-digraph) vpaths-finite:
shows finite {p. vpath p G}

proof −
have {p. vpath p G}
⊆ {xs. set xs ⊆ verts G ∧ length xs ≤ card (verts G)}

proof (clarify, rule conjI)
fix p assume vpath p G
then show set p ⊆ verts G by blast

from ‹vpath p G› have length p = card (set p)
by (auto simp add: distinct-card)

also have . . . ≤ card (verts G)
using ‹vpath p G›
by (auto intro!: card-mono elim!: vpathE)

finally show length p ≤ card (verts G) .
qed
moreover
have finite {xs. set xs ⊆ verts G ∧ length xs ≤ card (verts G)}

by (intro finite-lists-length-le) auto
ultimately show ?thesis by (rule finite-subset)

qed

lemma (in wf-digraph) reachable-vwalk-conv:
u →∗

G v ←→ (∃ p. vwalk p G ∧ hd p = u ∧ last p = v) (is ?L ←→ ?R)
proof

assume ?L then show ?R
proof (induct rule: converse-reachable-induct)

case base then show ?case
by (rule-tac x=[v] in exI)

(auto simp: vwalk-def arcs-ends-conv)
next

case (step u w)
then obtain p where vwalk p G hd p = w last p = v by auto
then have vwalk (u#p) G ∧ hd (u#p) = u ∧ last (u#p) = v

using step by (auto intro!: vwalk-consI intro: adj-in-verts)
then show ?case ..

qed
next

assume ?R
then obtain p where vwalk p G hd p = u last p = v by auto
with ‹vwalk p G› show ?L
proof (induct p arbitrary: u rule: vwalk-induct)

case (Base u) then show ?case by auto

95

next
case (Cons w x es)
then have u →G x using Cons by auto
show ?case

apply (rule adj-reachable-trans)
apply fact
apply (rule Cons)
using Cons by (auto elim: vwalk-consE)

qed
qed

lemma (in wf-digraph) reachable-vpath-conv:
u →∗

G v ←→ (∃ p. vpath p G ∧ hd p = u ∧ last p = v) (is ?L ←→ ?R)
proof

assume ?L then obtain p where vwalk p G hd p = u last p = v
by (auto simp: reachable-vwalk-conv)

then show ?R
by (auto intro: exI [where x=vwalk-to-vpath p]

simp: vwalk-to-vpath-hd vwalk-to-vpath-last vwalk-to-vpath-vpath)
qed (auto simp: reachable-vwalk-conv)

lemma in-set-vwalk-arcsE :
assumes (u,v) ∈ set (vwalk-arcs p)
obtains u ∈ set p v ∈ set p

using assms
by (induct p rule: vwalk-arcs.induct) auto

lemma vwalk-rev-ex:
assumes symmetric G
assumes vwalk p G
shows vwalk (rev p) G

using assms
proof (induct p)

case Nil then show ?case by simp
next

case (Cons x xs)
then show ?case proof (cases xs = [])

case True then show ?thesis using Cons by auto
next

case False
then have vwalk xs G using ‹vwalk (x # xs) G›

by (metis vwalk-consE)
then have vwalk (rev xs) G using Cons by blast
have vwalk (rev (x # xs)) G
proof (rule vwalkI)

have set (x # xs) ⊆ verts G using ‹vwalk (x # xs) G› by blast
then show set (rev (x # xs)) ⊆ verts G by auto

next
have set (vwalk-arcs (x # xs)) ⊆ arcs-ends G

96

using ‹vwalk (x # xs) G› by auto
then show set (vwalk-arcs (rev (x # xs))) ⊆ arcs-ends G

using ‹symmetric G›
by (simp only: set-vwalk-arcs-rev)

(auto intro: arcs-ends-symmetric)
next

show rev (x # xs) 6= [] by auto
qed
then show vwalk (rev (x # xs)) G by auto

qed
qed

lemma vwalk-singleton[simp]: vwalk [u] G = (u ∈ verts G)
by auto

lemma (in wf-digraph) vwalk-Cons-Cons[simp]:
vwalk (u # v # ws) G = ((u,v) ∈ arcs-ends G ∧ vwalk (v # ws) G)
by (force elim: vwalk-consE intro: vwalk-consI)

lemma (in wf-digraph) awalk-imp-vwalk:
assumes awalk u p v shows vwalk (awalk-verts u p) G
using assms
by (induct p arbitrary: u rule: vwalk-arcs.induct)

(force simp: awalk-simps dest: in-arcs-imp-in-arcs-ends)+

end

theory Digraph-Component-Vwalk
imports

Digraph-Component
Vertex-Walk

begin

10 Lemmas for Vertex Walks
lemma vwalkI-subgraph:

assumes vwalk p H
assumes subgraph H G
shows vwalk p G

proof
show set p ⊆ verts G and p 6= []

using assms by (auto simp add: subgraph-def vwalk-def)

have set (vwalk-arcs p) ⊆ arcs-ends H
using assms by (simp add: vwalk-def)

also have . . . ⊆ arcs-ends G
using ‹subgraph H G› by (rule arcs-ends-mono)

finally show set (vwalk-arcs p) ⊆ arcs-ends G .

97

qed

lemma vpathI-subgraph:
assumes vpath p G
assumes subgraph G H
shows vpath p H

using assms by (auto intro: vwalkI-subgraph)

lemma (in loopfree-digraph) vpathI-arc:
assumes (a,b) ∈ arcs-ends G
shows vpath [a,b] G

using assms
by (intro vpathI vwalkI) (auto intro: adj-in-verts adj-not-same)

end
theory Digraph-Isomorphism imports

Arc-Walk
Digraph
Digraph-Component

begin

11 Isomorphisms of Digraphs
record (′a, ′b, ′aa, ′bb) digraph-isomorphism =

iso-verts :: ′a ⇒ ′aa
iso-arcs :: ′b ⇒ ′bb
iso-head :: ′bb ⇒ ′aa
iso-tail :: ′bb ⇒ ′aa

definition (in pre-digraph) digraph-isomorphism :: (′a, ′b, ′aa, ′bb) digraph-isomorphism
⇒ bool where

digraph-isomorphism hom ≡
wf-digraph G ∧
inj-on (iso-verts hom) (verts G) ∧
inj-on (iso-arcs hom) (arcs G) ∧
(∀ a ∈ arcs G.
iso-verts hom (tail G a) = iso-tail hom (iso-arcs hom a) ∧
iso-verts hom (head G a) = iso-head hom (iso-arcs hom a))

definition (in pre-digraph) inv-iso :: (′a, ′b, ′aa, ′bb) digraph-isomorphism ⇒ (′aa, ′bb, ′a, ′b)
digraph-isomorphism where

inv-iso hom ≡ (|
iso-verts = the-inv-into (verts G) (iso-verts hom),
iso-arcs = the-inv-into (arcs G) (iso-arcs hom),
iso-head = head G,
iso-tail = tail G
|)

definition app-iso

98

:: (′a, ′b, ′aa, ′bb) digraph-isomorphism ⇒ (′a, ′b) pre-digraph ⇒ (′aa, ′bb) pre-digraph
where

app-iso hom G ≡ (| verts = iso-verts hom ‘ verts G, arcs = iso-arcs hom ‘ arcs
G,

tail = iso-tail hom, head = iso-head hom |)

definition digraph-iso :: (′a, ′b) pre-digraph ⇒ (′c, ′d) pre-digraph ⇒ bool where
digraph-iso G H ≡ ∃ f . pre-digraph.digraph-isomorphism G f ∧ H = app-iso f G

lemma verts-app-iso: verts (app-iso hom G) = iso-verts hom ‘ verts G
and arcs-app-iso: arcs (app-iso hom G) = iso-arcs hom ‘arcs G
and tail-app-iso: tail (app-iso hom G) = iso-tail hom
and head-app-iso: head (app-iso hom G) = iso-head hom
by (auto simp: app-iso-def)

lemmas app-iso-simps[simp] = verts-app-iso arcs-app-iso tail-app-iso head-app-iso

context pre-digraph begin

lemma
assumes digraph-isomorphism hom
shows iso-verts-inv-iso:

∧
u. u ∈ verts G =⇒ iso-verts (inv-iso hom) (iso-verts

hom u) = u
and iso-arcs-inv-iso:

∧
a. a ∈ arcs G =⇒ iso-arcs (inv-iso hom) (iso-arcs hom

a) = a
and iso-verts-iso-inv:

∧
u. u ∈ verts (app-iso hom G) =⇒ iso-verts hom

(iso-verts (inv-iso hom) u) = u
and iso-arcs-iso-inv:

∧
a. a ∈ arcs (app-iso hom G) =⇒ iso-arcs hom (iso-arcs

(inv-iso hom) a) = a
and iso-tail-inv-iso: iso-tail (inv-iso hom) = tail G
and iso-head-inv-iso: iso-head (inv-iso hom) = head G
and verts-app-inv-iso:iso-verts (inv-iso hom) ‘ iso-verts hom ‘ verts G = verts

G
and arcs-app-inv-iso:iso-arcs (inv-iso hom) ‘ iso-arcs hom ‘ arcs G = arcs G

using assms by (auto simp: inv-iso-def digraph-isomorphism-def the-inv-into-f-f)

lemmas iso-inv-simps[simp] =
iso-verts-inv-iso iso-verts-iso-inv
iso-arcs-inv-iso iso-arcs-iso-inv
verts-app-inv-iso arcs-app-inv-iso
iso-tail-inv-iso iso-head-inv-iso

lemma app-iso-inv[simp]:
assumes digraph-isomorphism hom
shows app-iso (inv-iso hom) (app-iso hom G) = G
using assms by (intro pre-digraph.equality) (auto intro: rev-image-eqI)

lemma iso-verts-eq-iff [simp]:
assumes digraph-isomorphism hom u ∈ verts G v ∈ verts G

99

shows iso-verts hom u = iso-verts hom v ←→ u = v
using assms by (auto simp: digraph-isomorphism-def dest: inj-onD)

lemma iso-arcs-eq-iff [simp]:
assumes digraph-isomorphism hom e1 ∈ arcs G e2 ∈ arcs G
shows iso-arcs hom e1 = iso-arcs hom e2 ←→ e1 = e2
using assms by (auto simp: digraph-isomorphism-def dest: inj-onD)

lemma
assumes digraph-isomorphism hom e ∈ arcs G
shows iso-verts-tail: iso-tail hom (iso-arcs hom e) = iso-verts hom (tail G e)

and iso-verts-head: iso-head hom (iso-arcs hom e) = iso-verts hom (head G e)
using assms unfolding digraph-isomorphism-def by auto

lemma digraph-isomorphism-inj-on-arcs:
digraph-isomorphism hom =⇒ inj-on (iso-arcs hom) (arcs G)
by (auto simp: digraph-isomorphism-def)

lemma digraph-isomorphism-inj-on-verts:
digraph-isomorphism hom =⇒ inj-on (iso-verts hom) (verts G)
by (auto simp: digraph-isomorphism-def)

end

lemma (in wf-digraph) wf-digraphI-app-iso[intro?]:
assumes digraph-isomorphism hom
shows wf-digraph (app-iso hom G)

proof unfold-locales
fix e assume e ∈ arcs (app-iso hom G)
then obtain e ′ where e ′: e ′ ∈ arcs G iso-arcs hom e ′ = e

by auto
then have iso-verts hom (head G e ′) ∈ verts (app-iso hom G)

iso-verts hom (tail G e ′) ∈ verts (app-iso hom G)
by auto

then show tail (app-iso hom G) e ∈ verts (app-iso hom G)
head (app-iso hom G) e ∈ verts (app-iso hom G)

using e ′ assms by (auto simp: iso-verts-tail iso-verts-head)
qed

lemma (in fin-digraph) fin-digraphI-app-iso[intro?]:
assumes digraph-isomorphism hom
shows fin-digraph (app-iso hom G)

proof −
interpret H : wf-digraph app-iso hom G using assms ..
show ?thesis by unfold-locales auto

qed

context wf-digraph begin

100

lemma digraph-isomorphism-invI :
assumes digraph-isomorphism hom shows pre-digraph.digraph-isomorphism (app-iso

hom G) (inv-iso hom)
proof (unfold pre-digraph.digraph-isomorphism-def , safe)

show inj-on (iso-verts (inv-iso hom)) (verts (app-iso hom G))
inj-on (iso-arcs (inv-iso hom)) (arcs (app-iso hom G))

using assms unfolding pre-digraph.digraph-isomorphism-def inv-iso-def
by (auto intro: inj-on-the-inv-into)

next
show wf-digraph (app-iso hom G) using assms ..

next
fix a assume a ∈ arcs (app-iso hom G)
then obtain b where B: a = iso-arcs hom b b ∈ arcs G

by auto

with assms have [simp]:
iso-tail hom (iso-arcs hom b) = iso-verts hom (tail G b)
iso-head hom (iso-arcs hom b) = iso-verts hom (head G b)
inj-on (iso-arcs hom) (arcs G)
inj-on (iso-verts hom) (verts G)

by (auto simp: digraph-isomorphism-def)

from B show iso-verts (inv-iso hom) (tail (app-iso hom G) a)
= iso-tail (inv-iso hom) (iso-arcs (inv-iso hom) a)

by (auto simp: inv-iso-def the-inv-into-f-f)
from B show iso-verts (inv-iso hom) (head (app-iso hom G) a)

= iso-head (inv-iso hom) (iso-arcs (inv-iso hom) a)
by (auto simp: inv-iso-def the-inv-into-f-f)

qed

lemma awalk-app-isoI :
assumes awalk u p v and hom: digraph-isomorphism hom
shows pre-digraph.awalk (app-iso hom G) (iso-verts hom u) (map (iso-arcs hom)

p) (iso-verts hom v)
proof −

interpret H : wf-digraph app-iso hom G using hom ..
from assms show ?thesis

by (induct p arbitrary: u)
(auto simp: awalk-simps H .awalk-simps iso-verts-head iso-verts-tail)

qed

lemma awalk-app-isoD:
assumes w: pre-digraph.awalk (app-iso hom G) u p v and hom: digraph-isomorphism

hom
shows awalk (iso-verts (inv-iso hom) u) (map (iso-arcs (inv-iso hom)) p) (iso-verts

(inv-iso hom) v)
proof −

interpret H : wf-digraph app-iso hom G using hom ..

101

from assms show ?thesis
by (induct p arbitrary: u)

(force simp: awalk-simps H .awalk-simps iso-verts-head iso-verts-tail)+
qed

lemma awalk-verts-app-iso-eq:
assumes digraph-isomorphism hom and awalk u p v
shows pre-digraph.awalk-verts (app-iso hom G) (iso-verts hom u) (map (iso-arcs

hom) p)
= map (iso-verts hom) (awalk-verts u p)

using assms
by (induct p arbitrary: u)
(auto simp: pre-digraph.awalk-verts.simps iso-verts-head iso-verts-tail awalk-Cons-iff)

lemma arcs-ends-app-iso-eq:
assumes digraph-isomorphism hom
shows arcs-ends (app-iso hom G) = (λ(u,v). (iso-verts hom u, iso-verts hom v))

‘ arcs-ends G
using assms by (auto simp: arcs-ends-conv image-image iso-verts-head iso-verts-tail

intro!: rev-image-eqI)

lemma in-arcs-app-iso-eq:
assumes digraph-isomorphism hom and u ∈ verts G
shows in-arcs (app-iso hom G) (iso-verts hom u) = iso-arcs hom ‘ in-arcs G u
using assms unfolding in-arcs-def by (auto simp: iso-verts-head)

lemma out-arcs-app-iso-eq:
assumes digraph-isomorphism hom and u ∈ verts G
shows out-arcs (app-iso hom G) (iso-verts hom u) = iso-arcs hom ‘ out-arcs G

u
using assms unfolding out-arcs-def by (auto simp: iso-verts-tail)

lemma in-degree-app-iso-eq:
assumes digraph-isomorphism hom and u ∈ verts G
shows in-degree (app-iso hom G) (iso-verts hom u) = in-degree G u
unfolding in-degree-def in-arcs-app-iso-eq[OF assms]

proof (rule card-image)
from assms show inj-on (iso-arcs hom) (in-arcs G u)

unfolding digraph-isomorphism-def by − (rule subset-inj-on, auto)
qed

lemma out-degree-app-iso-eq:
assumes digraph-isomorphism hom and u ∈ verts G
shows out-degree (app-iso hom G) (iso-verts hom u) = out-degree G u
unfolding out-degree-def out-arcs-app-iso-eq[OF assms]

proof (rule card-image)
from assms show inj-on (iso-arcs hom) (out-arcs G u)

102

unfolding digraph-isomorphism-def by − (rule subset-inj-on, auto)
qed

lemma in-arcs-app-iso-eq ′:
assumes digraph-isomorphism hom and u ∈ verts (app-iso hom G)
shows in-arcs (app-iso hom G) u = iso-arcs hom ‘ in-arcs G (iso-verts (inv-iso

hom) u)
using assms in-arcs-app-iso-eq[of hom iso-verts (inv-iso hom) u] by auto

lemma out-arcs-app-iso-eq ′:
assumes digraph-isomorphism hom and u ∈ verts (app-iso hom G)
shows out-arcs (app-iso hom G) u = iso-arcs hom ‘ out-arcs G (iso-verts (inv-iso

hom) u)
using assms out-arcs-app-iso-eq[of hom iso-verts (inv-iso hom) u] by auto

lemma in-degree-app-iso-eq ′:
assumes digraph-isomorphism hom and u ∈ verts (app-iso hom G)
shows in-degree (app-iso hom G) u = in-degree G (iso-verts (inv-iso hom) u)
using assms in-degree-app-iso-eq[of hom iso-verts (inv-iso hom) u] by auto

lemma out-degree-app-iso-eq ′:
assumes digraph-isomorphism hom and u ∈ verts (app-iso hom G)
shows out-degree (app-iso hom G) u = out-degree G (iso-verts (inv-iso hom) u)
using assms out-degree-app-iso-eq[of hom iso-verts (inv-iso hom) u] by auto

lemmas app-iso-eq =
awalk-verts-app-iso-eq
arcs-ends-app-iso-eq
in-arcs-app-iso-eq ′

out-arcs-app-iso-eq ′

in-degree-app-iso-eq ′

out-degree-app-iso-eq ′

lemma reachableI-app-iso:
assumes r : u →∗ v and hom: digraph-isomorphism hom
shows (iso-verts hom u) →∗

app-iso hom G (iso-verts hom v)
proof −

interpret H : wf-digraph app-iso hom G using hom ..
from r obtain p where awalk u p v by (auto simp: reachable-awalk)
then have H .awalk (iso-verts hom u) (map (iso-arcs hom) p) (iso-verts hom v)

using hom by (rule awalk-app-isoI)
then show ?thesis by (auto simp: H .reachable-awalk)

qed

lemma awalk-app-iso-eq:
assumes hom: digraph-isomorphism hom
assumes u ∈ iso-verts hom ‘ verts G v ∈ iso-verts hom ‘ verts G set p ⊆ iso-arcs

hom ‘ arcs G
shows pre-digraph.awalk (app-iso hom G) u p v

103

←→ awalk (iso-verts (inv-iso hom) u) (map (iso-arcs (inv-iso hom)) p) (iso-verts
(inv-iso hom) v)
proof −

interpret H : wf-digraph app-iso hom G using hom ..
from assms show ?thesis

by (induct p arbitrary: u)
(auto simp: awalk-simps H .awalk-simps iso-verts-head iso-verts-tail)

qed

lemma reachable-app-iso-eq:
assumes hom: digraph-isomorphism hom
assumes u ∈ iso-verts hom ‘ verts G v ∈ iso-verts hom ‘ verts G
shows u →∗

app-iso hom G v ←→ iso-verts (inv-iso hom) u →∗ iso-verts (inv-iso
hom) v (is ?L ←→ ?R)
proof −

interpret H : wf-digraph app-iso hom G using hom ..

show ?thesis
proof

assume ?L
then obtain p where H .awalk u p v by (auto simp: H .reachable-awalk)
moreover
then have set p ⊆ iso-arcs hom ‘ arcs G by (simp add: H .awalk-def)
ultimately
show ?R using assms by (auto simp: awalk-app-iso-eq reachable-awalk)

next
assume ?R
then obtain p0 where awalk (iso-verts (inv-iso hom) u) p0 (iso-verts (inv-iso

hom) v)
by (auto simp: reachable-awalk)

moreover
then have set p0 ⊆ arcs G by (simp add: awalk-def)
define p where p = map (iso-arcs hom) p0
have set p ⊆ iso-arcs hom ‘ arcs G p0 = map (iso-arcs (inv-iso hom)) p

using ‹set p0 ⊆ -› hom by (auto simp: p-def map-idI subsetD)
ultimately

show ?L using assms by (auto simp: awalk-app-iso-eq[symmetric] H .reachable-awalk)
qed

qed

lemma connectedI-app-iso:
assumes c: connected G and hom: digraph-isomorphism hom
shows connected (app-iso hom G)

proof −
have ∗: symcl (arcs-ends (app-iso hom G)) = (λ(u,v). (iso-verts hom u, iso-verts

hom v)) ‘ symcl (arcs-ends G)
using hom by (auto simp add: app-iso-eq symcl-def)

{ fix u v assume (u,v) ∈ rtrancl-on (verts G) (symcl (arcs-ends G))
then have (iso-verts hom u, iso-verts hom v) ∈ rtrancl-on (verts (app-iso hom

104

G)) (symcl (arcs-ends (app-iso hom G)))
proof induct

case (step x y)
have (iso-verts hom x, iso-verts hom y)
∈ rtrancl-on (verts (app-iso hom G)) (symcl (arcs-ends (app-iso hom G)))
using step by (rule-tac rtrancl-on-into-rtrancl-on[where b=iso-verts hom

x]) (auto simp: ∗)
then show ?case

by (rule rtrancl-on-trans) (rule step)
qed auto }

with c show ?thesis unfolding connected-conv by auto
qed

end

lemma digraph-iso-swap:
assumes wf-digraph G digraph-iso G H shows digraph-iso H G

proof −
from assms obtain f where pre-digraph.digraph-isomorphism G f H = app-iso

f G
unfolding digraph-iso-def by auto

then have pre-digraph.digraph-isomorphism H (pre-digraph.inv-iso G f) app-iso
(pre-digraph.inv-iso G f) H = G

using assms by (simp-all add: wf-digraph.digraph-isomorphism-invI pre-digraph.app-iso-inv)
then show ?thesis unfolding digraph-iso-def by auto

qed

definition
o-iso :: (′c, ′d, ′e, ′f) digraph-isomorphism ⇒ (′a, ′b, ′c, ′d) digraph-isomorphism ⇒

(′a, ′b, ′e, ′f) digraph-isomorphism
where

o-iso hom2 hom1 = (|
iso-verts = iso-verts hom2 o iso-verts hom1 ,
iso-arcs = iso-arcs hom2 o iso-arcs hom1 ,
iso-head = iso-head hom2 ,
iso-tail = iso-tail hom2
|)

lemma digraph-iso-trans[trans]:
assumes digraph-iso G H digraph-iso H I shows digraph-iso G I

proof −
from assms obtain hom1 where pre-digraph.digraph-isomorphism G hom1 H

= app-iso hom1 G
by (auto simp: digraph-iso-def)

moreover
from assms obtain hom2 where pre-digraph.digraph-isomorphism H hom2 I =

app-iso hom2 H
by (auto simp: digraph-iso-def)

ultimately

105

have pre-digraph.digraph-isomorphism G (o-iso hom2 hom1) I = app-iso (o-iso
hom2 hom1) G

apply (auto simp: o-iso-def app-iso-def pre-digraph.digraph-isomorphism-def)
apply (rule comp-inj-on)
apply auto
apply (rule comp-inj-on)
apply auto
done

then show ?thesis by (auto simp: digraph-iso-def)
qed

lemma (in pre-digraph) digraph-isomorphism-subgraphI :
assumes digraph-isomorphism hom
assumes subgraph H G
shows pre-digraph.digraph-isomorphism H hom
using assms by (auto simp: pre-digraph.digraph-isomorphism-def subgraph-def

compatible-def intro: subset-inj-on)

lemma (in wf-digraph) verts-app-inv-iso-subgraph:
assumes hom: digraph-isomorphism hom and V ⊆ verts G
shows iso-verts (inv-iso hom) ‘ iso-verts hom ‘ V = V

proof −
have

∧
x. x ∈ V =⇒ iso-verts (inv-iso hom) (iso-verts hom x) = x

using assms by auto
then show ?thesis by (auto simp: image-image cong: image-cong)

qed

lemma (in wf-digraph) arcs-app-inv-iso-subgraph:
assumes hom: digraph-isomorphism hom and A ⊆ arcs G
shows iso-arcs (inv-iso hom) ‘ iso-arcs hom ‘ A = A

proof −
have

∧
x. x ∈ A =⇒ iso-arcs (inv-iso hom) (iso-arcs hom x) = x

using assms by auto
then show ?thesis by (auto simp: image-image cong: image-cong)

qed

lemma (in pre-digraph) app-iso-inv-subgraph[simp]:
assumes digraph-isomorphism hom subgraph H G
shows app-iso (inv-iso hom) (app-iso hom H) = H

proof −
from assms interpret wf-digraph G by auto
have

∧
u. u ∈ verts H =⇒ u ∈ verts G

∧
a. a ∈ arcs H =⇒ a ∈ arcs G

using assms by auto
with assms show ?thesis

by (intro pre-digraph.equality) (auto simp: verts-app-inv-iso-subgraph
arcs-app-inv-iso-subgraph compatible-def)

106

qed

lemma (in wf-digraph) app-iso-iso-inv-subgraph[simp]:
assumes digraph-isomorphism hom
assumes subg: subgraph H (app-iso hom G)
shows app-iso hom (app-iso (inv-iso hom) H) = H

proof −
have

∧
u. u ∈ verts H =⇒ u ∈ iso-verts hom ‘ verts G

∧
a. a ∈ arcs H =⇒ a ∈

iso-arcs hom ‘ arcs G
using assms by (auto simp: subgraph-def)

with assms show ?thesis
by (intro pre-digraph.equality) (auto simp: compatible-def image-image cong:

image-cong)
qed

lemma (in pre-digraph) subgraph-app-isoI ′:
assumes hom: digraph-isomorphism hom
assumes subg: subgraph H H ′ subgraph H ′ G
shows subgraph (app-iso hom H) (app-iso hom H ′)

proof −
have subgraph H G using subg by (rule subgraph-trans)
then have pre-digraph.digraph-isomorphism H hom pre-digraph.digraph-isomorphism

H ′ hom
using assms by (auto intro: digraph-isomorphism-subgraphI)

then show ?thesis
using assms by (auto simp: subgraph-def wf-digraph.wf-digraphI-app-iso com-

patible-def
intro: digraph-isomorphism-subgraphI)

qed

lemma (in pre-digraph) subgraph-app-isoI :
assumes digraph-isomorphism hom
assumes subgraph H G
shows subgraph (app-iso hom H) (app-iso hom G)
using assms by (auto intro: subgraph-app-isoI ′ wf-digraph.subgraph-refl)

lemma (in pre-digraph) app-iso-eq-conv:
assumes digraph-isomorphism hom
assumes subgraph H1 G subgraph H2 G
shows app-iso hom H1 = app-iso hom H2 ←→ H1 = H2 (is ?L ←→ ?R)

proof
assume ?L
then have app-iso (inv-iso hom) (app-iso hom H1) = app-iso (inv-iso hom)

(app-iso hom H2)
by simp

with assms show ?R by auto
qed simp

lemma in-arcs-app-iso-cases:

107

assumes a ∈ arcs (app-iso hom G)
obtains a0 where a = iso-arcs hom a0 a0 ∈ arcs G
using assms by auto

lemma in-verts-app-iso-cases:
assumes v ∈ verts (app-iso hom G)
obtains v0 where v = iso-verts hom v0 v0 ∈ verts G
using assms by auto

lemma (in wf-digraph) max-subgraph-iso:
assumes hom: digraph-isomorphism hom
assumes subg: subgraph H (app-iso hom G)
shows pre-digraph.max-subgraph (app-iso hom G) P H
←→ max-subgraph (P o app-iso hom) (app-iso (inv-iso hom) H)

proof −
have hom-inv: pre-digraph.digraph-isomorphism (app-iso hom G) (inv-iso hom)

using hom by (rule digraph-isomorphism-invI)
interpret aG: wf-digraph app-iso hom G using hom ..

have ∗: subgraph (app-iso (inv-iso hom) H) G
using hom pre-digraph.subgraph-app-isoI ′[OF hom-inv subg aG.subgraph-refl]

by simp
define H0 where H0 = app-iso (inv-iso hom) H
then have H0 : H = app-iso hom H0 subgraph H0 G

using hom subg ‹subgraph - G› by auto

show ?thesis (is ?L ←→ ?R)
proof

assume ?L then show ?R using assms H0
by (auto simp: max-subgraph-def aG.max-subgraph-def pre-digraph.subgraph-app-isoI ′

subgraph-refl pre-digraph.app-iso-eq-conv)
next

assume ?R
then show ?L

using assms hom-inv pre-digraph.subgraph-app-isoI [OF hom-inv]
apply (auto simp: max-subgraph-def aG.max-subgraph-def)
apply (erule allE [of - app-iso (inv-iso hom) H ′ for H ′])

apply (auto simp: pre-digraph.subgraph-app-isoI ′ pre-digraph.app-iso-eq-conv)
done

qed
qed

lemma (in pre-digraph) max-subgraph-cong:
assumes H = H ′ ∧H ′′. subgraph H ′ H ′′ =⇒ subgraph H ′′ G =⇒ P H ′′ = P ′

H ′′

shows max-subgraph P H = max-subgraph P ′ H ′

using assms by (auto simp: max-subgraph-def intro: wf-digraph.subgraph-refl)

lemma (in pre-digraph) inj-on-app-iso:

108

assumes hom: digraph-isomorphism hom
assumes S ⊆ {H . subgraph H G}
shows inj-on (app-iso hom) S
using assms by (intro inj-onI) (subst (asm) app-iso-eq-conv, auto)

11.1 Graph Invariants
context

fixes G hom assumes hom: pre-digraph.digraph-isomorphism G hom
begin

interpretation wf-digraph G using hom by (auto simp: pre-digraph.digraph-isomorphism-def)

lemma card-verts-iso[simp]: card (iso-verts hom ‘ verts G) = card (verts G)
using hom by (intro card-image digraph-isomorphism-inj-on-verts)

lemma card-arcs-iso[simp]: card (iso-arcs hom ‘ arcs G) = card (arcs G)
using hom by (intro card-image digraph-isomorphism-inj-on-arcs)

lemma strongly-connected-iso[simp]: strongly-connected (app-iso hom G) ←→
strongly-connected G

using hom by (auto simp: strongly-connected-def reachable-app-iso-eq)

lemma subgraph-strongly-connected-iso:
assumes subgraph H G
shows strongly-connected (app-iso hom H) ←→ strongly-connected H

proof −
interpret H : wf-digraph H using ‹subgraph H G› ..

have H .digraph-isomorphism hom using hom assms by (rule digraph-isomorphism-subgraphI)
then show ?thesis

using assms by (auto simp: strongly-connected-def H .reachable-app-iso-eq)
qed

lemma sccs-iso[simp]: pre-digraph.sccs (app-iso hom G) = app-iso hom ‘ sccs (is
?L = ?R)

proof (intro set-eqI iffI)
fix x assume x ∈ ?L
then have subgraph x (app-iso hom G)

by (auto simp: pre-digraph.sccs-def)
then show x ∈ ?R
using ‹x ∈ ?L› hom by (auto simp: pre-digraph.sccs-altdef2 max-subgraph-iso
subgraph-strongly-connected-iso cong: max-subgraph-cong intro: rev-image-eqI)

next
fix x assume x ∈ ?R
then obtain x0 where x0 ∈ sccs x = app-iso hom x0 by auto
then show x ∈ ?L

using hom by (auto simp: pre-digraph.sccs-altdef2 max-subgraph-iso sub-
graph-app-isoI

subgraphI-max-subgraph subgraph-strongly-connected-iso cong: max-subgraph-cong)

109

qed

lemma card-sccs-iso[simp]: card (app-iso hom ‘ sccs) = card sccs
apply (rule card-image)
using hom
apply (rule inj-on-app-iso)
apply auto
done

end

end
theory Auxiliary
imports

HOL−Library.FuncSet
HOL−Combinatorics.Orbits

begin

lemma funpow-invs:
assumes m ≤ n and inv:

∧
x. f (g x) = x

shows (f ^^ m) ((g ^^ n) x) = (g ^^ (n − m)) x
using ‹m ≤ n›

proof (induction m)
case (Suc m)
moreover then have n − m = Suc (n − Suc m) by auto
ultimately show ?case by (auto simp: inv)

qed simp

12 Permutation Domains
definition has-dom :: (′a ⇒ ′a) ⇒ ′a set ⇒ bool where

has-dom f S ≡ ∀ s. s /∈ S −→ f s = s

lemma has-domD: has-dom f S =⇒ x /∈ S =⇒ f x = x
by (auto simp: has-dom-def)

lemma has-domI : (
∧

x. x /∈ S =⇒ f x = x) =⇒ has-dom f S
by (auto simp: has-dom-def)

lemma permutes-conv-has-dom:
f permutes S ←→ bij f ∧ has-dom f S
by (auto simp: permutes-def has-dom-def bij-iff)

13 Segments
inductive-set segment :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a ⇒ ′a set for f a b where

base: f a 6= b =⇒ f a ∈ segment f a b |
step: x ∈ segment f a b =⇒ f x 6= b =⇒ f x ∈ segment f a b

110

lemma segment-step-2D:
assumes x ∈ segment f a (f b) shows x ∈ segment f a b ∨ x = b
using assms by induct (auto intro: segment.intros)

lemma not-in-segment2D:
assumes x ∈ segment f a b shows x 6= b
using assms by induct auto

lemma segment-altdef :
assumes b ∈ orbit f a
shows segment f a b = (λn. (f ^^ n) a) ‘ {1 ..<funpow-dist1 f a b} (is ?L = ?R)

proof (intro set-eqI iffI)
fix x assume x ∈ ?L
have f a 6=b =⇒ b ∈ orbit f (f a)

using assms by (simp add: orbit-step)
then have ∗: f a 6= b =⇒ 0 < funpow-dist f (f a) b
using assms using gr0I funpow-dist-0-eq[OF ‹- =⇒ b ∈ orbit f (f a)›] by (simp

add: orbit.intros)
from ‹x ∈ ?L› show x ∈ ?R
proof induct

case base then show ?case by (intro image-eqI [where x=1]) (auto simp: ∗)
next

case step then show ?case using assms funpow-dist1-prop less-antisym
by (fastforce intro!: image-eqI [where x=Suc n for n])

qed
next

fix x assume x ∈ ?R
then obtain n where (f ^^ n) a = x 0 < n n < funpow-dist1 f a b by auto
then show x ∈ ?L
proof (induct n arbitrary: x)

case 0 then show ?case by simp
next

case (Suc n)
have (f ^^ Suc n) a 6= b using Suc by (meson funpow-dist1-least)
with Suc show ?case by (cases n = 0) (auto intro: segment.intros)

qed
qed

lemma segmentD-orbit:
assumes x ∈ segment f y z shows x ∈ orbit f y
using assms by induct (auto intro: orbit.intros)

lemma segment1-empty: segment f x (f x) = {}
by (auto simp: segment-altdef orbit.base funpow-dist-0)

lemma segment-subset:
assumes y ∈ segment f x z

111

assumes w ∈ segment f x y
shows w ∈ segment f x z
using assms by (induct arbitrary: w) (auto simp: segment1-empty intro: seg-

ment.intros dest: segment-step-2D elim: segment.cases)

lemma not-in-segment1 :
assumes y ∈ orbit f x shows x /∈ segment f x y

proof
assume x ∈ segment f x y
then obtain n where n: 0 < n n < funpow-dist1 f x y (f ^^ n) x = x

using assms by (auto simp: segment-altdef Suc-le-eq)
then have neq-y: (f ^^ (funpow-dist1 f x y − n)) x 6= y by (simp add: fun-

pow-dist1-least)

have (f ^^ (funpow-dist1 f x y − n)) x = (f ^^ (funpow-dist1 f x y − n)) ((f ^^
n) x)

using n by (simp add: funpow-add)
also have . . . = (f ^^ funpow-dist1 f x y) x

using ‹n < -› by (simp add: funpow-add)
(metis assms funpow-0 funpow-neq-less-funpow-dist1 n(1) n(3) nat-neq-iff

zero-less-Suc)
also have . . . = y using assms by (rule funpow-dist1-prop)
finally show False using neq-y by contradiction

qed

lemma not-in-segment2 : y /∈ segment f x y
using not-in-segment2D by metis

lemma in-segmentE :
assumes y ∈ segment f x z z ∈ orbit f x
obtains (f ^^ funpow-dist1 f x y) x = y funpow-dist1 f x y < funpow-dist1 f x z

proof
from assms show (f ^^ funpow-dist1 f x y) x = y

by (intro segmentD-orbit funpow-dist1-prop)
moreover
obtain n where (f ^^ n) x = y 0 < n n < funpow-dist1 f x z

using assms by (auto simp: segment-altdef)
moreover then have funpow-dist1 f x y ≤ n by (meson funpow-dist1-least

not-less)
ultimately show funpow-dist1 f x y < funpow-dist1 f x z by linarith

qed

lemma cyclic-split-segment:
assumes S : cyclic-on f S a ∈ S b ∈ S and a 6= b
shows S = {a,b} ∪ segment f a b ∪ segment f b a (is ?L = ?R)

proof (intro set-eqI iffI)

112

fix c assume c ∈ ?L
with S have c ∈ orbit f a unfolding cyclic-on-alldef by auto
then show c ∈ ?R by induct (auto intro: segment.intros)

next
fix c assume c ∈ ?R
moreover have segment f a b ⊆ orbit f a segment f b a ⊆ orbit f b

by (auto dest: segmentD-orbit)
ultimately show c ∈ ?L using S by (auto simp: cyclic-on-alldef)

qed

lemma segment-split:
assumes y-in-seg: y ∈ segment f x z
shows segment f x z = segment f x y ∪ {y} ∪ segment f y z (is ?L = ?R)

proof (intro set-eqI iffI)
fix w assume w ∈ ?L then show w ∈ ?R by induct (auto intro: segment.intros)

next
fix w assume w ∈ ?R
moreover
{ assume w ∈ segment f x y then have w ∈ segment f x z

using segment-subset[OF y-in-seg] by auto }
moreover
{ assume w ∈ segment f y z then have w ∈ segment f x z

using y-in-seg by induct (auto intro: segment.intros) }
ultimately
show w ∈ ?L using y-in-seg by (auto intro: segment.intros)

qed

lemma in-segmentD-inv:
assumes x ∈ segment f a b x 6= f a
assumes inj f
shows inv f x ∈ segment f a b
using assms by (auto elim: segment.cases)

lemma in-orbit-invI :
assumes b ∈ orbit f a
assumes inj f
shows a ∈ orbit (inv f) b
using assms(1)
apply induct
apply (simp add: assms(2) orbit-eqI (1))

by (metis assms(2) inv-f-f orbit.base orbit-trans)

lemma segment-step-2 :
assumes A: x ∈ segment f a b b 6= a and inj f
shows x ∈ segment f a (f b)
using A by induct (auto intro: segment.intros dest: not-in-segment2D injD[OF

‹inj f ›])

113

lemma inv-end-in-segment:
assumes b ∈ orbit f a f a 6= b bij f
shows inv f b ∈ segment f a b
using assms(1 ,2)

proof induct
case base then show ?case by simp

next
case (step x)
moreover
from ‹bij f › have inj f by (rule bij-is-inj)
moreover
then have x 6= f x =⇒ f a = x =⇒ x ∈ segment f a (f x) by (meson seg-

ment.simps)
moreover
have x 6= f x
using step ‹inj f › by (metis in-orbit-invI inv-f-eq not-in-segment1 segment.base)

then have inv f x ∈ segment f a (f x) =⇒ x ∈ segment f a (f x)
using ‹bij f › ‹inj f › by (auto dest: segment.step simp: surj-f-inv-f bij-is-surj)

then have inv f x ∈ segment f a x =⇒ x ∈ segment f a (f x)
using ‹f a 6= f x› ‹inj f › by (auto dest: segment-step-2 injD)

ultimately show ?case by (cases f a = x) simp-all
qed

lemma segment-overlapping:
assumes x ∈ orbit f a x ∈ orbit f b bij f
shows segment f a x ⊆ segment f b x ∨ segment f b x ⊆ segment f a x
using assms(1 ,2)

proof induction
case base then show ?case by (simp add: segment1-empty)

next
case (step x)
from ‹bij f › have inj f by (simp add: bij-is-inj)
have ∗:

∧
f x y. y ∈ segment f x (f x) =⇒ False by (simp add: segment1-empty)

{ fix y z
assume A: y ∈ segment f b (f x) y /∈ segment f a (f x) z ∈ segment f a (f x)
from ‹x ∈ orbit f a› ‹f x ∈ orbit f b› ‹y ∈ segment f b (f x)›
have x ∈ orbit f b

by (metis ∗ inv-end-in-segment[OF - - ‹bij f ›] inv-f-eq[OF ‹inj f ›] seg-
mentD-orbit)

moreover
with ‹x ∈ orbit f a› step.IH
have segment f a (f x) ⊆ segment f b (f x) ∨ segment f b (f x) ⊆ segment f a

(f x)
apply auto

apply (metis ∗ inv-end-in-segment[OF - - ‹bij f ›] inv-f-eq[OF ‹inj f ›] seg-
ment-step-2D segment-subset step.prems subsetCE)

by (metis (no-types, lifting) ‹inj f › ∗ inv-end-in-segment[OF - - ‹bij f ›] inv-f-eq
orbit-eqI (2) segment-step-2D segment-subset subsetCE)

ultimately

114

have segment f a (f x) ⊆ segment f b (f x) using A by auto
} note C = this
then show ?case by auto

qed

lemma segment-disj:
assumes a 6= b bij f
shows segment f a b ∩ segment f b a = {}

proof (rule ccontr)
assume ¬?thesis
then obtain x where x: x ∈ segment f a b x ∈ segment f b a by blast
then have segment f a b = segment f a x ∪ {x} ∪ segment f x b

segment f b a = segment f b x ∪ {x} ∪ segment f x a
by (auto dest: segment-split)

then have o: x ∈ orbit f a x ∈ orbit f b by (auto dest: segmentD-orbit)

note ∗ = segment-overlapping[OF o ‹bij f ›]
have inj f using ‹bij f › by (simp add: bij-is-inj)

have segment f a x = segment f b x
proof (intro set-eqI iffI)

fix y assume A: y ∈ segment f b x
then have y ∈ segment f a x ∨ f a ∈ segment f b a

using ∗ x(2) by (auto intro: segment.base segment-subset)
then show y ∈ segment f a x

using ‹inj f › A by (metis (no-types) not-in-segment2 segment-step-2)
next

fix y assume A: y ∈ segment f a x
then have y ∈ segment f b x ∨ f b ∈ segment f a b

using ∗ x(1) by (auto intro: segment.base segment-subset)
then show y ∈ segment f b x

using ‹inj f › A by (metis (no-types) not-in-segment2 segment-step-2)
qed
moreover
have segment f a x 6= segment f b x

by (metis assms bij-is-inj not-in-segment2 segment.base segment-step-2 seg-
ment-subset x(1))

ultimately show False by contradiction
qed

lemma segment-x-x-eq:
assumes permutation f
shows segment f x x = orbit f x − {x} (is ?L = ?R)

proof (intro set-eqI iffI)
fix y assume y ∈ ?L then show y ∈ ?R by (auto dest: segmentD-orbit simp:

not-in-segment2)
next

fix y assume y ∈ ?R
then have y ∈ orbit f x y 6= x by auto

115

then show y ∈ ?L by induct (auto intro: segment.intros)
qed

14 Lists of Powers
definition iterate :: nat ⇒ nat ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a list where

iterate m n f x = map (λn. (f^^n) x) [m..<n]

lemma set-iterate:
set (iterate m n f x) = (λk. (f ^^ k) x) ‘ {m..<n}
by (auto simp: iterate-def)

lemma iterate-empty[simp]: iterate n m f x = [] ←→ m ≤ n
by (auto simp: iterate-def)

lemma iterate-length[simp]:
length (iterate m n f x) = n − m
by (auto simp: iterate-def)

lemma iterate-nth[simp]:
assumes k < n − m shows iterate m n f x ! k = (f^^(m+k)) x
using assms
by (induct k arbitrary: m) (auto simp: iterate-def)

lemma iterate-applied:
iterate n m f (f x) = iterate (Suc n) (Suc m) f x
by (induct m arbitrary: n) (auto simp: iterate-def funpow-swap1)

end
theory Subdivision
imports

Arc-Walk
Digraph-Component
Pair-Digraph
Bidirected-Digraph
Auxiliary

begin

15 Subdivision on Digraphs
definition

subdivision-step :: (′a, ′b) pre-digraph ⇒ (′b ⇒ ′b) ⇒ (′a, ′b) pre-digraph ⇒ (′b
⇒ ′b) ⇒ ′a × ′a × ′a ⇒ ′b × ′b × ′b ⇒ bool
where

subdivision-step G rev-G H rev-H ≡ λ(u, v, w) (uv, uw, vw).
bidirected-digraph G rev-G
∧ bidirected-digraph H rev-H
∧ perm-restrict rev-H (arcs G) = perm-restrict rev-G (arcs H)

116

∧ compatible G H

∧ verts H = verts G ∪ {w}
∧ w /∈ verts G

∧ arcs H = {uw, rev-H uw, vw, rev-H vw} ∪ arcs G − {uv, rev-G uv}
∧ uv ∈ arcs G
∧ distinct [uw, rev-H uw, vw, rev-H vw]
∧ arc-to-ends G uv = (u,v)
∧ arc-to-ends H uw = (u,w)
∧ arc-to-ends H vw = (v,w)

inductive subdivision :: (′a, ′b) pre-digraph × (′b ⇒ ′b) ⇒ (′a, ′b) pre-digraph ×
(′b ⇒ ′b) ⇒ bool

for biG where
base: bidirected-digraph (fst biG) (snd biG) =⇒ subdivision biG biG
| divide: [[subdivision biG biI ; subdivision-step (fst biI) (snd biI) (fst biH) (snd

biH) (u,v,w) (uv,uw,vw)]] =⇒ subdivision biG biH

lemma subdivision-induct[case-names base divide, induct pred: subdivision]:
assumes subdivision (G, rev-G) (H , rev-H)

and bidirected-digraph G rev-G =⇒ P G rev-G
and

∧
I rev-I H rev-H u v w uv uw vw.
subdivision (G, rev-G) (I , rev-I) =⇒ P I rev-I =⇒ subdivision-step I

rev-I H rev-H (u, v, w) (uv, uw, vw) =⇒ P H rev-H
shows P H rev-H
using assms(1) by (induct biH≡(H , rev-H) arbitrary: H rev-H) (auto intro:

assms(2 ,3))

lemma subdivision-base:
bidirected-digraph G rev-G =⇒ subdivision (G, rev-G) (G, rev-G)
by (rule subdivision.base) simp

lemma subdivision-step-rev:
assumes subdivision-step G rev-G H rev-H (u, v, w) (uv, uw, vw) subdivision

(H , rev-H) (I , rev-I)
shows subdivision (G, rev-G) (I , rev-I)

proof −
have bidirected-digraph (fst (G, rev-G)) (snd (G, rev-G)) using assms by (auto

simp: subdivision-step-def)
with assms(2 ,1) show ?thesis
using assms(2 ,1) by induct (auto intro: subdivision.intros dest: subdivision-base)

qed

lemma subdivision-trans:
assumes subdivision (G, rev-G) (H , rev-H) subdivision (H , rev-H) (I , rev-I)
shows subdivision (G, rev-G) (I , rev-I)
using assms by induction (auto intro: subdivision-step-rev)

117

locale subdiv-step =
fixes G rev-G H rev-H u v w uv uw vw
assumes subdiv-step: subdivision-step G rev-G H rev-H (u, v, w) (uv, uw, vw)

sublocale subdiv-step ⊆ G: bidirected-digraph G rev-G
using subdiv-step unfolding subdivision-step-def by simp

sublocale subdiv-step ⊆ H : bidirected-digraph H rev-H
using subdiv-step unfolding subdivision-step-def by simp

context subdiv-step begin

abbreviation (input) vu ≡ rev-G uv
abbreviation (input) wu ≡ rev-H uw
abbreviation (input) wv ≡ rev-H vw

lemma subdiv-compat: compatible G H
using subdiv-step by (simp add: subdivision-step-def)

lemma arc-to-ends-eq: arc-to-ends H = arc-to-ends G
using subdiv-compat by (simp add: compatible-def arc-to-ends-def fun-eq-iff)

lemma head-eq: head H = head G
using subdiv-compat by (simp add: compatible-def fun-eq-iff)

lemma tail-eq: tail H = tail G
using subdiv-compat by (simp add: compatible-def fun-eq-iff)

lemma verts-H : verts H = verts G ∪ {w}
using subdiv-step by (simp add: subdivision-step-def)

lemma verts-G: verts G = verts H − {w}
using subdiv-step by (auto simp: subdivision-step-def)

lemma arcs-H : arcs H = {uw, wu, vw, wv} ∪ arcs G − {uv, vu}
using subdiv-step by (simp add: subdivision-step-def)

lemma not-in-verts-G: w /∈ verts G
using subdiv-step by (simp add: subdivision-step-def)

lemma in-arcs-G: {uv, vu} ⊆ arcs G
using subdiv-step by (simp add: subdivision-step-def)

lemma not-in-arcs-H : {uv,vu} ∩ arcs H = {}
using arcs-H by auto

lemma subdiv-ate:
arc-to-ends G uv = (u,v)

118

arc-to-ends H uv = (u,v)
arc-to-ends H uw = (u,w)
arc-to-ends H vw = (v,w)

using subdiv-step subdiv-compat by (auto simp: subdivision-step-def arc-to-ends-def
compatible-def)

lemma subdiv-ends[simp]:
tail G uv = u head G uv = v tail H uv = u head H uv = v
tail H uw = u head H uw = w tail H vw = v head H vw = w
using subdiv-ate by (auto simp: arc-to-ends-def)

lemma subdiv-ends-G-rev[simp]:
tail G (vu) = v head G (vu) = u tail H (vu) = v head H (vu) = u
using in-arcs-G by (auto simp: tail-eq head-eq)

lemma subdiv-distinct-verts0 : u 6= w v 6= w
using in-arcs-G not-in-verts-G using subdiv-ate by (auto simp: arc-to-ends-def

dest: G.wellformed)

lemma in-arcs-H : {uw, wu, vw, wv} ⊆ arcs H
proof −

{ assume uv = uw
then have arc-to-ends H uv = arc-to-ends H uw by simp
then have v = w by (simp add: arc-to-ends-def)

} moreover
{ assume uv = vw

then have arc-to-ends H uv = arc-to-ends H vw by simp
then have v = w by (simp add: arc-to-ends-def)

} moreover
{ assume vu = uw

then have arc-to-ends H (vu) = arc-to-ends H uw by simp
then have u = w by (simp add: arc-to-ends-def)

} moreover
{ assume vu = vw

then have arc-to-ends H (vu) = arc-to-ends H vw by simp
then have u = w by (simp add: arc-to-ends-def)

} ultimately
have {uw,vw} ⊆ arcs H unfolding arcs-H using subdiv-distinct-verts0 by

auto
then show ?thesis by auto

qed

lemma subdiv-ends-H-rev[simp]:
tail H (wu) = w tail H (wv) = w
head H (wu) = u head H (wv) = v
using in-arcs-H subdiv-ate by simp-all

lemma in-verts-G: {u,v} ⊆ verts G
using in-arcs-G by (auto dest: G.wellformed)

119

lemma not-in-arcs-G: {uw, wu, vw, wv} ∩ arcs G = {}
proof −

note X = G.wellformed[simplified tail-eq[symmetric] head-eq[symmetric]]
show ?thesis using not-in-verts-G in-arcs-H by (auto dest: X)

qed

lemma subdiv-distinct-arcs: distinct [uv, vu, uw, wu, vw, wv]
proof −

have distinct [uw, wu, vw, wv]
using subdiv-step by (simp add: subdivision-step-def)

moreover
have distinct [uv, vu] using in-arcs-G G.arev-dom by auto
moreover
have {uv, vu} ∩ {uw, wu, vw, wv} = {}

using arcs-H in-arcs-H by auto
ultimately show ?thesis by auto

qed

lemma arcs-G: arcs G = arcs H ∪ {uv, vu} − {uw, wu, vw, wv}
using in-arcs-G not-in-arcs-G unfolding arcs-H by auto

lemma subdiv-ate-H-rev:
arc-to-ends H (wu) = (w,u)
arc-to-ends H (wv) = (w,v)
using in-arcs-H subdiv-ate by simp-all

lemma adj-with-w: u →H w w →H u v →H w w →H v
using in-arcs-H subdiv-ate by (auto intro: H .dominatesI [rotated])

lemma w-reach: u →∗
H w w →∗

H u v →∗
H w w →∗

H v
using adj-with-w by auto

lemma G-reach: v →∗
G u u →∗

G v
using subdiv-ate in-arcs-G by (simp add: G.dominatesI G.symmetric-reachable ′)+

lemma out-arcs-w: out-arcs H w = {wu, wv}
using subdiv-distinct-verts0 in-arcs-H
by (auto simp: arcs-H) (auto simp: tail-eq verts-G dest: G.tail-in-verts)

lemma out-degree-w: out-degree H w = 2
using subdiv-distinct-arcs by (auto simp: out-degree-def out-arcs-w card-insert-if)

end

lemma subdivision-compatible:
assumes subdivision (G, rev-G) (H , rev-H) shows compatible G H
using assms by induct (auto simp: compatible-def subdivision-step-def)

120

lemma subdivision-bidir :
assumes subdivision (G, rev-G) (H , rev-H)
shows bidirected-digraph H rev-H
using assms by induct (auto simp: subdivision-step-def)

lemma subdivision-choose-rev:
assumes subdivision (G, rev-G) (H , rev-H) bidirected-digraph H rev-H ′

shows ∃ rev-G ′. subdivision (G, rev-G ′) (H , rev-H ′)
using assms

proof (induction arbitrary: rev-H ′)
case base
then show ?case by (auto dest: subdivision-base)

next
case (divide I rev-I H rev-H u v w uv uw vw)

interpret subdiv-step I rev-I H rev-H u v w uv uw vw using divide by un-
fold-locales

interpret H ′: bidirected-digraph H rev-H ′ by fact

define rev-I ′ where rev-I ′ x =
(if x = uv then rev-I uv else if x = rev-I uv then uv else if x ∈ arcs I then rev-H ′

x else x)
for x

have rev-H-injD:
∧

x y z. rev-H ′ x = z =⇒ rev-H ′ y = z =⇒ x 6= y =⇒ False
by (metis H ′.arev-eq-iff)

have rev-H ′-simps: rev-H ′ uw = rev-H uw ∧ rev-H ′ vw = rev-H vw
∨ rev-H ′ uw = rev-H vw ∧ rev-H ′ vw = rev-H uw

proof −
have arc-to-ends H (rev-H ′ uw) = (w,u) arc-to-ends H (rev-H ′ vw) = (w,v)

using in-arcs-H by (auto simp: subdiv-ate)
moreover
have

∧
x. x ∈ arcs H =⇒ tail H x = w =⇒ x ∈ {rev-H uw, rev-H vw}

using subdiv-distinct-verts0 not-in-verts-G by (auto simp: arcs-H) (simp add:
tail-eq)

ultimately
have rev-H ′ uw ∈ {rev-H uw, rev-H vw} rev-H ′ vw ∈ {rev-H uw, rev-H vw}

using in-arcs-H by auto
then show ?thesis using in-arcs-H by (auto dest: rev-H-injD)

qed

have rev-H-uv: rev-H ′ uv = uv rev-H ′ (rev-I uv) = rev-I uv
using not-in-arcs-H by (auto simp: H ′.arev-eq)

have bd-I ′: bidirected-digraph I rev-I ′

proof
fix a
have

∧
a. a 6= uv =⇒ a 6= rev-I uv =⇒ a ∈ arcs I =⇒ a ∈ arcs H

121

by (auto simp: arcs-H)
then show (a ∈ arcs I) = (rev-I ′ a 6= a)

using in-arcs-G by (auto simp: rev-I ′-def dest: G.arev-neq H ′.arev-neq)
next

fix a
have ∗:

∧
a. rev-H ′ a = rev-I uv ←→ a = rev-I uv

by (metis H ′.arev-arev H ′.arev-dom insert-disjoint(1) not-in-arcs-H)
have ∗∗:

∧
a. uv = rev-H ′ a ←→ a = uv using H ′.arev-eq not-in-arcs-H by

force
have ∗∗∗:

∧
a. a ∈ arcs I =⇒ rev-H ′ a ∈ arcs I

using rev-H ′-simps by (case-tac a ∈ {uv,vu}) (fastforce simp: rev-H-uv, auto
simp: arcs-G dest: rev-H-injD)

show rev-I ′ (rev-I ′ a) = a
by (auto simp: rev-I ′-def H ′.arev-eq rev-H-uv ∗ ∗∗ ∗∗∗)

next
fix a assume a ∈ arcs I
then show tail I (rev-I ′ a) = head I a
using in-arcs-G by (auto simp: rev-I ′-def tail-eq[symmetric] head-eq[symmetric]

arcs-H)
qed
moreover
have

∧
x. rev-H ′ x = uv ←→ x = uv

∧
x. rev-H ′ x = rev-I uv ←→ x = rev-I uv

using not-in-arcs-H by (auto dest: H ′.arev-eq) (metis H ′.arev-arev H ′.arev-eq)
then have perm-restrict rev-H ′ (arcs I) = perm-restrict rev-I ′ (arcs H)

using not-in-arcs-H by (auto simp: rev-I ′-def perm-restrict-def H ′.arev-eq)
ultimately
have sds-I ′H ′: subdivision-step I rev-I ′ H rev-H ′ (u, v, w) (uv, uw, vw)

using divide(2 ,4) rev-H ′-simps unfolding subdivision-step-def
by (fastforce simp: rev-I ′-def)

then have subdivision (I , rev-I ′) (H , rev-H ′) ∃ rev-G ′. subdivision (G, rev-G ′)
(I , rev-I ′)

using bd-I ′ divide by (auto intro: subdivision.intros dest: subdivision-base)
then show ?case by (blast intro: subdivision-trans)

qed

lemma subdivision-verts-subset:
assumes subdivision (G,rev-G) (H ,rev-H) x ∈ verts G
shows x ∈ verts H
using assms by induct (auto simp: subdiv-step.verts-H subdiv-step-def)

15.1 Subdivision on Pair Digraphs

In this section, we introduce specialized rules for pair digraphs.
abbreviation subdivision-pair G H ≡ subdivision (with-proj G, swap-in (parcs
G)) (with-proj H , swap-in (parcs H))

lemma arc-to-ends-with-proj[simp]: arc-to-ends (with-proj G) = id
by (auto simp: arc-to-ends-def)

122

context
begin

We use the inductive command to define an inductive definition pair
graphs. This is proven to be equivalent to subdivision. This allows us to
transfer the rules proven by inductive to subdivision. To spare the user
confusion, we hide this new constant.

private inductive pair-sd :: ′a pair-pre-digraph ⇒ ′a pair-pre-digraph ⇒ bool
for G where

base: pair-bidirected-digraph G =⇒ pair-sd G G
| divide:

∧
e w H . [[e ∈ parcs H ; w /∈ pverts H ; pair-sd G H]]

=⇒ pair-sd G (subdivide H e w)

private lemma bidirected-digraphI-pair-sd:
assumes pair-sd G H shows pair-bidirected-digraph H
using assms

proof induct
case base
then show ?case by auto

next
case (divide e w H)
interpret H : pair-bidirected-digraph H by fact
from divide show ?case by (intro H .pair-bidirected-digraph-subdivide)

qed

private lemma subdivision-with-projI :
assumes pair-sd G H
shows subdivision-pair G H
using assms

proof induct
case base
then show ?case by (blast intro: pair-bidirected-digraph.bidirected-digraph sub-

division-base)
next

case (divide e w H)

obtain u v where e = (u,v) by (cases e)

interpret H : pair-bidirected-digraph H
using divide(3) by (rule bidirected-digraphI-pair-sd)

interpret I : pair-bidirected-digraph subdivide H e w
using divide(1 ,2) by (rule H .pair-bidirected-digraph-subdivide)

have uvw: u 6= v u 6= w v 6= w
using divide by (auto simp: ‹e = -› dest: H .adj-not-same H .wellformed)

have subdivision (with-proj G, swap-in (parcs G)) (H , swap-in (parcs H))
using divide by auto

moreover

123

have ∗: perm-restrict (swap-in (parcs (subdivide H e w))) (parcs H) = perm-restrict
(swap-in (parcs H)) (parcs (subdivide H e w))

by (auto simp: perm-restrict-def fun-eq-iff swap-in-def)
have subdivision-step (with-proj H) (swap-in (arcs H)) (with-proj (subdivide H

e w)) (swap-in (arcs (subdivide H e w)))
(u, v, w) (e, (u,w), (v,w))

unfolding subdivision-step-def
unfolding prod.simps with-proj-simps
using divide uvw
by (intro conjI H .bidirected-digraph I .bidirected-digraph ∗)

(auto simp add: swap-in-def ‹e = -› compatibleI-with-proj)
ultimately
show ?case by (auto intro: subdivision.divide)

qed

private lemma subdivision-with-projD:
assumes subdivision-pair G H
shows pair-sd G H
using assms

proof (induct with-proj H swap-in (parcs H) arbitrary: H rule: subdivision-induct)
case base
interpret bidirected-digraph with-proj G swap-in (parcs G) by fact
from base have G = H by (simp add: with-proj-def)
with base show ?case

by (auto intro: pair-sd.base pair-bidirected-digraphI-bidirected-digraph)
next

case (divide I rev-I u v w uv uw vw)
define I ′ where I ′ = (| pverts = verts I , parcs = arcs I |)
have compatible G I using ‹subdivision (with-proj G, -) (I , -)›

by (rule subdivision-compatible)
then have tail I = fst head I = snd by (auto simp: compatible-def)
then have I : I = I ′ by (auto simp: I ′-def)
moreover
from I have rev-I = swap-in (parcs I ′)

using ‹subdivision-step - - - - - -›
by (simp add: subdivision-step-def bidirected-digraph-rev-conv-pair)

ultimately
have pd-sd: pair-sd G I ′ by (auto intro: divide.hyps)

interpret sd: subdiv-step I ′ swap-in (parcs I ′) H swap-in (parcs H) u v w uv
uw vw

using ‹subdivision-step - - - - - -› unfolding ‹I = -› ‹rev-I = -› by un-
fold-locales

have ends: uv = (u,v) uw = (u,w) vw = (v,w)
using sd.subdiv-ate by simp-all

then have si-ends: swap-in (parcs H) (u,w) = (w,u) swap-in (parcs H) (v,w)
= (w,v)

swap-in (parcs I ′) (u,v) = (v,u)

124

using sd.subdiv-ends-H-rev sd.subdiv-ends-G-rev by (auto simp: swap-in-def)

have parcs H = parcs I ′ − {(u, v), (v, u)} ∪ {(u, w), (w, u), (w, v), (v, w)}
using sd.in-arcs-G sd.not-in-arcs-G sd.arcs-H by (auto simp: si-ends ends)
then have H = subdivide I ′ uv w using sd.verts-H by (simp add: ends

subdivide.simps)
then show ?case

using sd.in-arcs-G sd.not-in-verts-G by (auto intro: pd-sd pair-sd.divide)
qed

private lemma subdivision-pair-conv:
pair-sd G H = subdivision-pair G H
by (metis subdivision-with-projD subdivision-with-projI)

lemmas subdivision-pair-induct = pair-sd.induct[
unfolded subdivision-pair-conv, case-names base divide, induct pred: pair-sd]

lemmas subdivision-pair-base = pair-sd.base[unfolded subdivision-pair-conv]
lemmas subdivision-pair-divide = pair-sd.divide[unfolded subdivision-pair-conv]

lemmas subdivision-pair-intros = pair-sd.intros[unfolded subdivision-pair-conv]
lemmas subdivision-pair-cases = pair-sd.cases[unfolded subdivision-pair-conv]

lemmas subdivision-pair-simps = pair-sd.simps[unfolded subdivision-pair-conv]

lemmas bidirected-digraphI-subdivision = bidirected-digraphI-pair-sd[unfolded sub-
division-pair-conv]

end

lemma (in pair-graph) pair-graph-subdivision:
assumes subdivision-pair G H
shows pair-graph H
using assms

by (induct rule: subdivision-pair-induct) (blast intro: pair-graph.pair-graph-subdivide
divide)+

end

theory Euler imports
Arc-Walk
Digraph-Component
Digraph-Isomorphism

begin

125

16 Euler Trails in Digraphs

In this section we prove the well-known theorem characterizing the existence
of an Euler Trail in an directed graph

16.1 Trails and Euler Trails
definition (in pre-digraph) euler-trail :: ′a ⇒ ′b awalk ⇒ ′a ⇒ bool where

euler-trail u p v ≡ trail u p v ∧ set p = arcs G ∧ set (awalk-verts u p) = verts G

context wf-digraph begin

lemma (in fin-digraph) trails-finite: finite {p. ∃ u v. trail u p v}
proof −

have {p. ∃ u v. trail u p v} ⊆ {p. set p ⊆ arcs G ∧ distinct p}
by (auto simp: trail-def)

with finite-subset-distinct[OF finite-arcs] show ?thesis
using finite-subset by blast

qed

lemma rotate-awalkE :
assumes awalk u p u w ∈ set (awalk-verts u p)
obtains q r where p = q @ r awalk w (r @ q) w set (awalk-verts w (r @ q)) =

set (awalk-verts u p)
proof −

from assms obtain q r where A: p = q @ r and A ′: awalk u q w awalk w r u
by atomize-elim (rule awalk-decomp)

then have B: awalk w (r @ q) w by auto

have C : set (awalk-verts w (r @ q)) = set (awalk-verts u p)
using ‹awalk u p u› A A ′ by (auto simp: set-awalk-verts-append)

from A B C show ?thesis ..
qed

lemma rotate-trailE :
assumes trail u p u w ∈ set (awalk-verts u p)
obtains q r where p = q @ r trail w (r @ q) w set (awalk-verts w (r @ q)) =

set (awalk-verts u p)
using assms by − (rule rotate-awalkE [where u=u and p=p and w=w], auto

simp: trail-def)

lemma rotate-trailE ′:
assumes trail u p u w ∈ set (awalk-verts u p)
obtains q where trail w q w set q = set p set (awalk-verts w q) = set (awalk-verts

u p)

126

proof −
from assms obtain q r where p = q @ r trail w (r @ q) w set (awalk-verts w

(r @ q)) = set (awalk-verts u p)
by (rule rotate-trailE)

then have set (r @ q) = set p by auto
show ?thesis by (rule that) fact+

qed

lemma sym-reachableI-in-awalk:
assumes walk: awalk u p v and

w1 : w1 ∈ set (awalk-verts u p) and w2 : w2 ∈ set (awalk-verts u p)
shows w1 →∗

mk-symmetric G w2
proof −

from walk w1 obtain q r where p = q @ r awalk u q w1 awalk w1 r v
by (atomize-elim) (rule awalk-decomp)

then have w2-in: w2 ∈ set (awalk-verts u q) ∪ set (awalk-verts w1 r)
using w2 by (auto simp: set-awalk-verts-append)

show ?thesis
proof cases

assume A: w2 ∈ set (awalk-verts u q)
obtain s where awalk w2 s w1

using awalk-decomp[OF ‹awalk u q w1 › A] by blast
then have w2 →∗

mk-symmetric G w1
by (intro reachable-awalkI reachable-mk-symmetricI)

with symmetric-mk-symmetric show ?thesis by (rule symmetric-reachable)
next

assume w2 /∈ set (awalk-verts u q)
then have A: w2 ∈ set (awalk-verts w1 r)

using w2-in by blast
obtain s where awalk w1 s w2

using awalk-decomp[OF ‹awalk w1 r v› A] by blast
then show w1 →∗

mk-symmetric G w2
by (intro reachable-awalkI reachable-mk-symmetricI)

qed
qed

lemma euler-imp-connected:
assumes euler-trail u p v shows connected G

proof −
{ have verts G 6= {} using assms unfolding euler-trail-def trail-def by auto }
moreover
{ fix w1 w2 assume w1 ∈ verts G w2 ∈ verts G

then have awalk u p v w1 ∈ set (awalk-verts u p) w2 ∈ set (awalk-verts u p)
using assms by (auto simp: euler-trail-def trail-def)

then have w1 →∗
mk-symmetric G w2 by (rule sym-reachableI-in-awalk) }

ultimately show connected G by (rule connectedI)
qed

127

end

16.2 Arc Balance of Walks
context pre-digraph begin

definition arc-set-balance :: ′a ⇒ ′b set ⇒ int where
arc-set-balance w A = int (card (in-arcs G w ∩ A)) − int (card (out-arcs G w ∩

A))

definition arc-set-balanced :: ′a ⇒ ′b set ⇒ ′a ⇒ bool where
arc-set-balanced u A v ≡

if u = v then (∀w ∈ verts G. arc-set-balance w A = 0)
else (∀w ∈ verts G. (w 6= u ∧ w 6= v) −→ arc-set-balance w A = 0)
∧ arc-set-balance u A = −1
∧ arc-set-balance v A = 1

abbreviation arc-balance :: ′a ⇒ ′b awalk ⇒ int where
arc-balance w p ≡ arc-set-balance w (set p)

abbreviation arc-balanced :: ′a ⇒ ′b awalk ⇒ ′a ⇒ bool where
arc-balanced u p v ≡ arc-set-balanced u (set p) v

lemma arc-set-balanced-all:
arc-set-balanced u (arcs G) v =

(if u = v then (∀w ∈ verts G. in-degree G w = out-degree G w)
else (∀w ∈ verts G. (w 6= u ∧ w 6= v) −→ in-degree G w = out-degree G w)
∧ in-degree G u + 1 = out-degree G u
∧ out-degree G v + 1 = in-degree G v)

unfolding arc-set-balanced-def arc-set-balance-def in-degree-def out-degree-def by
auto

end

context wf-digraph begin

lemma arc-balance-Cons:
assumes trail u (e # es) v
shows arc-set-balance w (insert e (set es)) = arc-set-balance w {e} + arc-balance

w es
proof −

from assms have e /∈ set es e ∈ arcs G by (auto simp: trail-def)

with ‹e /∈ set es› show ?thesis
apply (cases w = tail G e)
apply (case-tac [!] w = head G e)

128

apply (auto simp: arc-set-balance-def)
done

qed

lemma arc-balancedI-trail:
assumes trail u p v shows arc-balanced u p v
using assms

proof (induct p arbitrary: u)
case Nil then show ?case by (auto simp: arc-set-balanced-def arc-set-balance-def

trail-def)
next

case (Cons e es)
then have arc-balanced (head G e) es v u = tail G e e ∈ arcs G

by (auto simp: awalk-Cons-iff trail-def)
moreover
have

∧
w. arc-balance w [e] = (if w = tail G e ∧ tail G e 6= head G e then −1

else if w = head G e ∧ tail G e 6= head G e then 1 else 0)
using ‹e ∈ -› by (case-tac w = tail G e) (auto simp: arc-set-balance-def)

ultimately show ?case
by (auto simp: arc-set-balanced-def arc-balance-Cons[OF ‹trail u - -›])

qed

lemma trail-arc-balanceE :
assumes trail u p v
obtains

∧
w. [[u = v ∨ (w 6= u ∧ w 6= v); w ∈ verts G]]

=⇒ arc-balance w p = 0
and [[u 6= v]] =⇒ arc-balance u p = − 1
and [[u 6= v]] =⇒ arc-balance v p = 1

using arc-balancedI-trail[OF assms] unfolding arc-set-balanced-def by (intro
that) (metis,presburger+)

end

16.3 Closed Euler Trails
lemma (in wf-digraph) awalk-vertex-props:

assumes awalk u p v p 6= []
assumes

∧
w. w ∈ set (awalk-verts u p) =⇒ P w ∨ Q w

assumes P u Q v
shows ∃ e ∈ set p. P (tail G e) ∧ Q (head G e)
using assms(2 ,1 ,3−)

proof (induct p arbitrary: u rule: list-nonempty-induct)
case (cons e es)
show ?case
proof (cases P (tail G e) ∧ Q (head G e))

case False
then have P (head G e) ∨ Q (head G e)

using cons.prems(1) cons.prems(2)[of head G e]
by (auto simp: awalk-Cons-iff set-awalk-verts)

129

then have P (tail G e) ∧ P (head G e)
using False using cons.prems(1 ,3) by auto

then have ∃ e ∈ set es. P (tail G e) ∧ Q (head G e)
using cons by (auto intro: cons simp: awalk-Cons-iff)

then show ?thesis by auto
qed auto

qed (simp add: awalk-simps)

lemma (in wf-digraph) connected-verts:
assumes connected G arcs G 6= {}
shows verts G = tail G ‘ arcs G ∪ head G ‘ arcs G

proof −
{ assume verts G = {} then have ?thesis by (auto dest: tail-in-verts) }
moreover
{ assume ∃ v. verts G = {v}

then obtain v where verts G = {v} by (auto simp: card-Suc-eq)
moreover
with ‹arcs G 6= {}› obtain e where e ∈ arcs G tail G e = v head G e = v

by (auto dest: tail-in-verts head-in-verts)
moreover have tail G ‘ arcs G ∪ head G ‘ arcs G ⊆ verts G by auto
ultimately have ?thesis by auto }

moreover
{ assume A: ∃ u v. u ∈ verts G ∧ v ∈ verts G ∧ u 6= v

{ fix u assume u ∈ verts G

interpret S : pair-wf-digraph mk-symmetric G by rule
from A obtain v where v ∈ verts G u 6= v by blast
then obtain p where S .awalk u p v

using ‹connected G› ‹u ∈ verts G› by (auto elim: connected-awalkE)
with ‹u 6= v› obtain e where e ∈ parcs (mk-symmetric G) fst e = u

by (metis S .awalk-Cons-iff S .awalk-empty-ends list-exhaust2)
then obtain e ′ where tail G e ′ = u ∨ head G e ′ = u e ′ ∈ arcs G

by (force simp: parcs-mk-symmetric)
then have u ∈ tail G ‘ arcs G ∪ head G ‘arcs G by auto }

then have ?thesis by auto }
ultimately show ?thesis by blast

qed

lemma (in wf-digraph) connected-arcs-empty:
assumes connected G arcs G = {} verts G 6= {} obtains v where verts G =
{v}
proof (atomize-elim, rule ccontr)

assume A: ¬ (∃ v. verts G = {v})

interpret S : pair-wf-digraph mk-symmetric G by rule

from ‹verts G 6= {}› obtain u where u ∈ verts G by auto
with A obtain v where v ∈ verts G u 6= v by auto

130

from ‹connected G› ‹u ∈ verts G› ‹v ∈ verts G›
obtain p where S .awalk u p v

using ‹connected G› ‹u ∈ verts G› by (auto elim: connected-awalkE)
with ‹u 6= v› obtain e where e ∈ parcs (mk-symmetric G)

by (metis S .awalk-Cons-iff S .awalk-empty-ends list-exhaust2)
with ‹arcs G = {}› show False

by (auto simp: parcs-mk-symmetric)
qed

lemma (in wf-digraph) euler-trail-conv-connected:
assumes connected G
shows euler-trail u p v ←→ trail u p v ∧ set p = arcs G (is ?L ←→ ?R)

proof
assume ?R show ?L
proof cases

assume p = [] with assms ‹?R› show ?thesis
by (auto simp: euler-trail-def trail-def awalk-def elim: connected-arcs-empty)

next
assume p 6= [] then have arcs G 6= {} using ‹?R› by auto
with assms ‹?R› ‹p 6= []› show ?thesis
by (auto simp: euler-trail-def trail-def set-awalk-verts-not-Nil connected-verts)

qed
qed (simp add: euler-trail-def)

lemma (in wf-digraph) awalk-connected:
assumes connected G awalk u p v set p 6= arcs G
shows ∃ e. e ∈ arcs G − set p ∧ (tail G e ∈ set (awalk-verts u p) ∨ head G e ∈

set (awalk-verts u p))
proof (rule ccontr)

assume A: ¬?thesis

obtain e where e ∈ arcs G − set p
using assms by (auto simp: trail-def)

with A have tail G e /∈ set (awalk-verts u p) tail G e ∈ verts G
by auto

interpret S : pair-wf-digraph mk-symmetric G ..

have u ∈ verts G using ‹awalk u p v› by (auto simp: awalk-hd-in-verts)
with ‹tail G e ∈ -› and ‹connected G›
obtain q where q: S .awalk u q (tail G e)

by (auto elim: connected-awalkE)

have u ∈ set (awalk-verts u p)
using ‹awalk u p v› by (auto simp: set-awalk-verts)

have q 6= [] using ‹u ∈ set -› ‹tail G e /∈ -› q by auto

131

have ∃ e ∈ set q. fst e ∈ set (awalk-verts u p) ∧ snd e /∈ set (awalk-verts u p)
by (rule S .awalk-vertex-props[OF ‹S .awalk - - -› ‹q 6= []›]) (auto simp: ‹u ∈ set

-› ‹tail G e /∈ -›)
then obtain se ′ where se ′: se ′ ∈ set q fst se ′ ∈ set (awalk-verts u p) snd se ′ /∈

set (awalk-verts u p)
by auto

from se ′ have se ′ ∈ parcs (mk-symmetric G) using q by auto
then obtain e ′ where e ′ ∈ arcs G (tail G e ′ = fst se ′ ∧ head G e ′ = snd se ′)
∨ (tail G e ′ = snd se ′ ∧ head G e ′ = fst se ′)

by (auto simp: parcs-mk-symmetric)
moreover
then have e ′ /∈ set p using se ′ ‹awalk u p v›

by (auto dest: awalk-verts-arc2 awalk-verts-arc1)
ultimately show False using se ′

using A by auto
qed

lemma (in wf-digraph) trail-connected:
assumes connected G trail u p v set p 6= arcs G
shows ∃ e. e ∈ arcs G − set p ∧ (tail G e ∈ set (awalk-verts u p) ∨ head G e ∈

set (awalk-verts u p))
using assms by (intro awalk-connected) (auto simp: trail-def)

theorem (in fin-digraph) closed-euler1 :
assumes con: connected G
assumes deg:

∧
u. u ∈ verts G =⇒ in-degree G u = out-degree G u

shows ∃ u p. euler-trail u p u
proof −
from con obtain u where u ∈ verts G by (auto simp: connected-def strongly-connected-def)
then have trail u [] u by (auto simp: trail-def awalk-simps)
moreover
{ fix u p v assume trail u p v

then have ∃ u ′ p ′ v ′. euler-trail u ′ p ′ v ′

proof (induct card (arcs G) − length p arbitrary: u p v)
case 0
then have u ∈ verts G by (auto simp: trail-def)

have set p ⊆ arcs G using ‹trail u p v› by (auto simp: trail-def)
with 0 have set p = arcs G

by (auto simp: trail-def distinct-card[symmetric] card-seteq)
then have euler-trail u p v

using 0 by (simp add: euler-trail-conv-connected[OF con])
then show ?case by blast

next
case (Suc n)
then have neq: set p 6= arcs G u ∈ verts G

by (auto simp: trail-def distinct-card[symmetric])

132

show ?case
proof (cases u = v)

assume u 6= v
then have arc-balance u p = −1

using Suc neq by (auto elim: trail-arc-balanceE)
then have card (in-arcs G u ∩ set p) < card (out-arcs G u ∩ set p)

unfolding arc-set-balance-def by auto
also have . . . ≤ card (out-arcs G u)

by (rule card-mono) auto
finally have card (in-arcs G u ∩ set p) < card (in-arcs G u)

using deg[OF ‹u ∈ -›] unfolding out-degree-def in-degree-def by simp
then have in-arcs G u − set p 6= {}

by (auto dest: card-psubset[rotated 2])
then obtain a where a ∈ arcs G head G a = u a /∈ set p

by (auto simp: in-arcs-def)
then have ∗: trail (tail G a) (a # p) v

using Suc by (auto simp: trail-def awalk-simps)
then show ?thesis

using Suc by (intro Suc) auto
next

assume u = v
with neq con Suc
obtain a where a-in: a ∈ arcs G − set p

and a-end: (tail G a ∈ set (awalk-verts u p) ∨ head G a ∈ set (awalk-verts
u p))

by (atomize-elim) (rule trail-connected)
have trail u p u using Suc ‹u = v› by simp
show ?case
proof (cases tail G a ∈ set (awalk-verts u p))

case True
with ‹trail u p u› obtain q where q: set p = set q trail (tail G a) q (tail

G a)
by (rule rotate-trailE ′) blast

with True a-in have ∗: trail (tail G a) (q @ [a]) (head G a)
by (fastforce simp: trail-def awalk-simps)

moreover
from q Suc have length q = length p

by (simp add: trail-def distinct-card[symmetric])
ultimately
show ?thesis using Suc by (intro Suc) auto

next
case False
with a-end have head G a ∈ set (awalk-verts u p) by blast
with ‹trail u p u› obtain q where q: set p = set q trail (head G a) q

(head G a)
by (rule rotate-trailE ′) blast

with False a-in have ∗: trail (tail G a) (a # q) (head G a)
by (fastforce simp: trail-def awalk-simps)

moreover

133

from q Suc have length q = length p
by (simp add: trail-def distinct-card[symmetric])

ultimately
show ?thesis using Suc by (intro Suc) auto

qed
qed

qed }
ultimately obtain u p v where et: euler-trail u p v by blast
moreover
have u = v
proof −

have arc-balanced u p v
using ‹euler-trail u p v› by (auto simp: euler-trail-def dest: arc-balancedI-trail)

then show ?thesis
using ‹euler-trail u p v› deg

by (auto simp add: euler-trail-def trail-def arc-set-balanced-all split: if-split-asm)
qed
ultimately show ?thesis by blast

qed

lemma (in wf-digraph) closed-euler-imp-eq-degree:
assumes euler-trail u p u
assumes v ∈ verts G
shows in-degree G v = out-degree G v

proof −
from assms have arc-balanced u p u set p = arcs G

unfolding euler-trail-def by (auto dest: arc-balancedI-trail)
with assms have arc-balance v p = 0

unfolding arc-set-balanced-def by auto
moreover
from ‹set p = -› have in-arcs G v ∩ set p = in-arcs G v out-arcs G v ∩ set p =

out-arcs G v
by (auto intro: in-arcs-in-arcs out-arcs-in-arcs)

ultimately
show ?thesis unfolding arc-set-balance-def in-degree-def out-degree-def by auto

qed

theorem (in fin-digraph) closed-euler2 :
assumes euler-trail u p u
shows connected G

and
∧

u. u ∈ verts G =⇒ in-degree G u = out-degree G u (is
∧

u. - =⇒ ?eq-deg
u)
proof −

from assms show connected G by (rule euler-imp-connected)
next

fix v assume A: v ∈ verts G
with assms show ?eq-deg v by (rule closed-euler-imp-eq-degree)

134

qed

corollary (in fin-digraph) closed-euler :
(∃ u p. euler-trail u p u) ←→ connected G ∧ (∀ u ∈ verts G. in-degree G u =

out-degree G u)
by (auto dest: closed-euler1 closed-euler2)

16.4 Open euler trails

Intuitively, a graph has an open euler trail if and only if it is possible to add
an arc such that the resulting graph has a closed euler trail. However, this
is not true in our formalization, as the arc type ′b might be finite:
Consider for example the graph (|verts = {0 , 1}, arcs = {()}, tail = λ-. 0 ,
head = λ-. 1 |). This graph obviously has an open euler trail, but we cannot
add another arc, as we already exhausted the universe.
However, for each fin-digraph G there exist an isomorphic graph H with
arc type ′a × nat × ′a. Hence, we first characterize the existence of euler
trail for the infinite arc type ′a × nat × ′a and transfer that result back to
arbitrary arc types.
lemma open-euler-infinite-label:

fixes G :: (′a, ′a × nat × ′a) pre-digraph
assumes fin-digraph G
assumes [simp]: tail G = fst head G = snd o snd
assumes con: connected G
assumes uv: u ∈ verts G v ∈ verts G
assumes deg:

∧
w. [[w ∈ verts G; u 6= w; v 6= w]] =⇒ in-degree G w = out-degree

G w
assumes deg-in: in-degree G u + 1 = out-degree G u
assumes deg-out: out-degree G v + 1 = in-degree G v
shows ∃ p. pre-digraph.euler-trail G u p v

proof −
define label :: ′a × nat × ′a ⇒ nat where [simp]: label = fst o snd

interpret fin-digraph G by fact

have finite (label ‘ arcs G) by auto
moreover have ¬finite (UNIV :: nat set) by blast
ultimately obtain l where l /∈ label ‘ arcs G by atomize-elim (rule ex-new-if-finite)

from deg-in deg-out have u 6= v by auto

let ?e = (v,l,u)

have e-notin:?e /∈ arcs G
using ‹l /∈ -› by (auto simp: image-def)

let ?H = add-arc ?e

135

— We define a graph which has an closed euler trail

have [simp]: verts ?H = verts G using uv by simp
have [intro]:

∧
a. compatible (add-arc a) G by (simp add: compatible-def)

interpret H : fin-digraph add-arc a
rewrites tail (add-arc a) = tail G and head (add-arc a) = head G

and pre-digraph.cas (add-arc a) = cas
and pre-digraph.awalk-verts (add-arc a) = awalk-verts

for a
by unfold-locales (auto dest: wellformed intro: compatible-cas compatible-awalk-verts

simp: verts-add-arc-conv)

have ∃ u p. H .euler-trail ?e u p u
proof (rule H .closed-euler1)

show connected ?H
proof (rule H .connectedI)

interpret sH : pair-fin-digraph mk-symmetric ?H ..
fix u v assume u ∈ verts ?H v ∈ verts ?H
with con have u →∗

mk-symmetric G v by (auto simp: connected-def)
moreover
have subgraph G ?H by (auto simp: subgraph-def) unfold-locales
ultimately show u →∗

with-proj (mk-symmetric ?H) v
by (blast intro: sH .reachable-mono subgraph-mk-symmetric)

qed (simp add: verts-add-arc-conv)
next

fix w assume w ∈ verts ?H
then show in-degree ?H w = out-degree ?H w

using deg deg-in deg-out e-notin
apply (cases w = u)
apply (case-tac [!] w = v)

by (auto simp: in-degree-add-arc-iff out-degree-add-arc-iff)
qed

then obtain w p where Het: H .euler-trail ?e w p w by blast
then have ?e ∈ set p by (auto simp: pre-digraph.euler-trail-def)
then obtain q r where p-decomp: p = q @ [?e] @ r

by (auto simp: in-set-conv-decomp)
— We show now that removing the additional arc of add-arc (v, l, u) from p

yields an euler trail in G

have euler-trail u (r @ q) v
proof (unfold euler-trail-conv-connected[OF con], intro conjI)

from Het have Ht ′: H .trail ?e v (?e # r @ q) v
unfolding p-decomp H .euler-trail-def H .trail-def
by (auto simp: p-decomp H .awalk-Cons-iff)

then have H .trail ?e u (r @ q) v ?e /∈ set (r @ q)
by (auto simp: H .trail-def H .awalk-Cons-iff)

then show t ′: trail u (r @ q) v

136

by (auto simp: trail-def H .trail-def awalk-def H .awalk-def)

show set (r @ q) = arcs G
proof −

have arcs G = arcs ?H − {?e} using e-notin by auto
also have arcs ?H = set p using Het

by (auto simp: pre-digraph.euler-trail-def pre-digraph.trail-def)
finally show ?thesis using ‹?e /∈ set -› by (auto simp: p-decomp)

qed
qed
then show ?thesis by blast

qed

context wf-digraph begin

lemma trail-app-isoI :
assumes t: trail u p v

and hom: digraph-isomorphism hom
shows pre-digraph.trail (app-iso hom G) (iso-verts hom u) (map (iso-arcs hom)

p) (iso-verts hom v)
proof −

interpret H : wf-digraph app-iso hom G using hom ..
from t hom have i: inj-on (iso-arcs hom) (set p)

unfolding trail-def digraph-isomorphism-def by (auto dest:subset-inj-on[where
A=set p])

then have distinct (map (iso-arcs hom) p) = distinct p
by (auto simp: distinct-map dest: inj-onD)

with t hom show ?thesis
by (auto simp: pre-digraph.trail-def awalk-app-isoI)

qed

lemma euler-trail-app-isoI :
assumes t: euler-trail u p v

and hom: digraph-isomorphism hom
shows pre-digraph.euler-trail (app-iso hom G) (iso-verts hom u) (map (iso-arcs

hom) p) (iso-verts hom v)
proof −

from t have awalk u p v by (auto simp: euler-trail-def trail-def)
with assms show ?thesis

by (simp add: pre-digraph.euler-trail-def trail-app-isoI awalk-verts-app-iso-eq)
qed

end

context fin-digraph begin

theorem open-euler1 :

137

assumes connected G
assumes u ∈ verts G v ∈ verts G
assumes

∧
w. [[w ∈ verts G; u 6= w; v 6= w]] =⇒ in-degree G w = out-degree G w

assumes in-degree G u + 1 = out-degree G u
assumes out-degree G v + 1 = in-degree G v
shows ∃ p. euler-trail u p v

proof −
obtain f and n :: nat where f ‘ arcs G = {i. i < n}

and i: inj-on f (arcs G)
by atomize-elim (rule finite-imp-inj-to-nat-seg, auto)

define iso-f where iso-f =
(| iso-verts = id, iso-arcs = (λa. (tail G a, f a, head G a)),

head = snd o snd, tail = fst |)
have [simp]: iso-verts iso-f = id iso-head iso-f = snd o snd iso-tail iso-f = fst

unfolding iso-f-def by auto
have di-iso-f : digraph-isomorphism iso-f unfolding digraph-isomorphism-def

iso-f-def
by (auto intro: inj-onI wf-digraph dest: inj-onD[OF i])

let ?iso-g = inv-iso iso-f
have [simp]:

∧
u. u ∈ verts G =⇒ iso-verts ?iso-g u = u

by (auto simp: inv-iso-def fun-eq-iff the-inv-into-f-eq)

let ?H = app-iso iso-f G
interpret H : fin-digraph ?H using di-iso-f ..

have ∃ p. H .euler-trail u p v
using di-iso-f assms i
by (intro open-euler-infinite-label) (auto simp: connectedI-app-iso app-iso-eq)

then obtain p where Het: H .euler-trail u p v by blast

have pre-digraph.euler-trail (app-iso ?iso-g ?H) (iso-verts ?iso-g u) (map (iso-arcs
?iso-g) p) (iso-verts ?iso-g v)

using Het by (intro H .euler-trail-app-isoI digraph-isomorphism-invI di-iso-f)
then show ?thesis using di-iso-f ‹u ∈ -› ‹v ∈ -› by simp rule

qed

theorem open-euler2 :
assumes et: euler-trail u p v and u 6= v
shows connected G ∧
(∀w ∈ verts G. u 6= w −→ v 6= w −→ in-degree G w = out-degree G w) ∧
in-degree G u + 1 = out-degree G u ∧
out-degree G v + 1 = in-degree G v

proof −
from et have ∗: trail u p v u ∈ verts G v ∈ verts G

by (auto simp: euler-trail-def trail-def awalk-hd-in-verts)

from et have [simp]:
∧

u. card (in-arcs G u ∩ set p) = in-degree G u

138

∧
u. card (out-arcs G u ∩ set p) = out-degree G u

by (auto simp: in-degree-def out-degree-def euler-trail-def intro: arg-cong[where
f=card])

from assms ∗ show ?thesis
by (auto simp: arc-set-balance-def elim: trail-arc-balanceE

intro: euler-imp-connected)
qed

corollary open-euler :
(∃ u p v. euler-trail u p v ∧ u 6= v) ←→

connected G ∧ (∃ u v. u ∈ verts G ∧ v ∈ verts G ∧
(∀w ∈ verts G. u 6= w −→ v 6= w −→ in-degree G w = out-degree G w) ∧
in-degree G u + 1 = out-degree G u ∧
out-degree G v + 1 = in-degree G v) (is ?L ←→ ?R)

proof
assume ?L
then obtain u p v where ∗: euler-trail u p v u 6= v

by auto
then have u ∈ verts G v ∈ verts G

by (auto simp: euler-trail-def trail-def awalk-hd-in-verts)
then show ?R using open-euler2 [OF ∗] by blast

next
assume ?R
then obtain u v where ∗:

connected G u ∈ verts G v ∈ verts G∧
w. [[w ∈ verts G; u 6= w; v 6= w]] =⇒ in-degree G w = out-degree G w

in-degree G u + 1 = out-degree G u
out-degree G v + 1 = in-degree G v
by blast

then have u 6= v by auto
from ∗ show ?L by (metis open-euler1 ‹u 6= v›)

qed

end

end

theory Kuratowski
imports

Arc-Walk
Digraph-Component
Subdivision
HOL−Library.Rewrite

begin

139

17 Kuratowski Subgraphs

We consider the underlying undirected graphs. The underlying undirected
graph is represented as a symmetric digraph.

17.1 Public definitions
definition complete-digraph :: nat ⇒ (′a, ′b) pre-digraph ⇒ bool (‹K -›) where

complete-digraph n G ≡ graph G ∧ card (verts G) = n ∧ arcs-ends G = {(u,v).
(u,v) ∈ verts G × verts G ∧ u 6= v}

definition complete-bipartite-digraph :: nat ⇒ nat ⇒ (′a, ′b) pre-digraph ⇒ bool
(‹K -,-›) where

complete-bipartite-digraph m n G ≡ graph G ∧ (∃U V . verts G = U ∪ V ∧ U
∩ V = {}
∧ card U = m ∧ card V = n ∧ arcs-ends G = U × V ∪ V × U)

definition kuratowski-planar :: (′a, ′b) pre-digraph ⇒ bool where
kuratowski-planar G ≡ ¬(∃H . subgraph H G ∧ (∃K rev-K rev-H . subdivision (K ,

rev-K) (H , rev-H) ∧ (K3 ,3 K ∨ K5 K)))

lemma complete-digraph-pair-def : Kn (with-proj G)
←→ finite (pverts G) ∧ card (pverts G) = n ∧ parcs G = {(u,v). (u,v) ∈ (pverts

G × pverts G) ∧ u 6= v} (is - = ?R)
proof

assume A: Kn G
then interpret graph with-proj G by (simp add: complete-digraph-def)
show ?R using A finite-verts by (auto simp: complete-digraph-def)

next
assume A: ?R
moreover
then have finite (pverts G × pverts G) parcs G ⊆ pverts G × pverts G

by auto
then have finite (parcs G) by (rule rev-finite-subset)
ultimately interpret pair-graph G

by unfold-locales (auto simp: symmetric-def split: prod.splits intro: symI)
show Kn G using A finite-verts by (auto simp: complete-digraph-def)

qed

lemma complete-bipartite-digraph-pair-def : Km,n (with-proj G) ←→ finite (pverts
G)
∧ (∃U V . pverts G = U ∪ V ∧ U ∩ V = {} ∧ card U = m ∧ card V = n ∧

parcs G = U × V ∪ V × U) (is - = ?R)
proof

assume A: Km,n G
then interpret graph G by (simp add: complete-bipartite-digraph-def)
show ?R using A finite-verts by (auto simp: complete-bipartite-digraph-def)

next
assume A: ?R

140

then interpret pair-graph G
by unfold-locales (fastforce simp: complete-bipartite-digraph-def symmetric-def

split: prod.splits intro: symI)+
show Km,n G using A by (auto simp: complete-bipartite-digraph-def)

qed

lemma pair-graphI-complete:
assumes Kn (with-proj G)
shows pair-graph G

proof −
from assms interpret graph with-proj G by (simp add: complete-digraph-def)
show pair-graph G

using finite-arcs finite-verts sym-arcs wellformed no-loops by unfold-locales
simp-all
qed

lemma pair-graphI-complete-bipartite:
assumes Km,n (with-proj G)
shows pair-graph G

proof −
from assms interpret graph with-proj G by (simp add: complete-bipartite-digraph-def)
show pair-graph G

using finite-arcs finite-verts sym-arcs wellformed no-loops by unfold-locales
simp-all
qed

17.2 Inner vertices of a walk
context pre-digraph begin

definition (in pre-digraph) inner-verts :: ′b awalk ⇒ ′a list where
inner-verts p ≡ tl (map (tail G) p)

lemma inner-verts-Nil[simp]: inner-verts [] = [] by (auto simp: inner-verts-def)

lemma inner-verts-singleton[simp]: inner-verts [x] = [] by (auto simp: inner-verts-def)

lemma (in wf-digraph) inner-verts-Cons:
assumes awalk u (e # es) v
shows inner-verts (e # es) = (if es 6= [] then head G e # inner-verts es else [])
using assms by (induct es) (auto simp: inner-verts-def)

lemma (in −) inner-verts-with-proj-def :
pre-digraph.inner-verts (with-proj G) p = tl (map fst p)
unfolding pre-digraph.inner-verts-def by simp

lemma inner-verts-conv: inner-verts p = butlast (tl (awalk-verts u p))
unfolding inner-verts-def awalk-verts-conv by simp

141

lemma (in pre-digraph) inner-verts-empty[simp]:
assumes length p < 2 shows inner-verts p = []
using assms by (cases p) (auto simp: inner-verts-def)

lemma (in wf-digraph) set-inner-verts:
assumes apath u p v
shows set (inner-verts p) = set (awalk-verts u p) − {u,v}

proof (cases length p < 2)
case True with assms show ?thesis

by (cases p) (auto simp: inner-verts-conv[of - u] apath-def)
next

case False
have awalk-verts u p = u # inner-verts p @ [v]

using assms False length-awalk-verts[of u p] inner-verts-conv[of p u]
by (cases awalk-verts u p) (auto simp: apath-def awalk-conv)

then show ?thesis using assms by (auto simp: apath-def)
qed

lemma in-set-inner-verts-appendI-l:
assumes u ∈ set (inner-verts p)
shows u ∈ set (inner-verts (p @ q))
using assms

by (induct p) (auto simp: inner-verts-def)

lemma in-set-inner-verts-appendI-r :
assumes u ∈ set (inner-verts q)
shows u ∈ set (inner-verts (p @ q))
using assms

by (induct p) (auto simp: inner-verts-def dest: list-set-tl)

end

17.3 Progressing Walks

We call a walk progressing if it does not contain the sequence [(x, y), (y, x)].
This concept is relevant in particular for iapaths: If all of the inner vertices
have degree at most 2 this implies that such a walk is a trail and even a
path.
definition progressing :: (′a × ′a) awalk ⇒ bool where

progressing p ≡ ∀ xs x y ys. p 6= xs @ (x,y) # (y,x) # ys

lemma progressing-Nil: progressing []
by (auto simp: progressing-def)

lemma progressing-single: progressing [e]
by (auto simp: progressing-def)

lemma progressing-ConsD:

142

assumes progressing (e # es) shows progressing es
using assms unfolding progressing-def by (metis (no-types) append-eq-Cons-conv)

lemma progressing-Cons:
progressing (x # xs) ←→ (xs = [] ∨ (xs 6= [] ∧ ¬(fst x = snd (hd xs) ∧ snd x =

fst (hd xs)) ∧ progressing xs)) (is ?L = ?R)
proof

assume ?L
show ?R
proof (cases xs)

case Nil then show ?thesis by auto
next

case (Cons x ′ xs ′)
then have

∧
u v. (x # x ′ # xs ′) 6= [] @ (u,v) # (v,u) # xs ′ using ‹?L›

unfolding progressing-def by metis
then have ¬(fst x = snd x ′ ∧ snd x = fst x ′) by (cases x) (cases x ′, auto)
with Cons show ?thesis using ‹?L› by (auto dest: progressing-ConsD)

qed
next

assume ?R then show ?L unfolding progressing-def
by (auto simp add: Cons-eq-append-conv)

qed

lemma progressing-Cons-Cons:
progressing ((u,v) # (v,w) # es) ←→ u 6= w ∧ progressing ((v,w) # es) (is ?L
←→ ?R)

by (auto simp: progressing-Cons)

lemma progressing-appendD1 :
assumes progressing (p @ q) shows progressing p
using assms unfolding progressing-def by (metis append-Cons append-assoc)

lemma progressing-appendD2 :
assumes progressing (p @ q) shows progressing q
using assms unfolding progressing-def by (metis append-assoc)

lemma progressing-rev-path:
progressing (rev-path p) = progressing p (is ?L = ?R)

proof
assume ?L
show ?R unfolding progressing-def
proof (intro allI notI)

fix xs x y ys l1 l2 assume p = xs @ (x,y) # (y,x) # ys
then have rev-path p = rev-path ys @ (x,y) # (y,x) # rev-path xs

by simp
then show False using ‹?L› unfolding progressing-def by auto

qed
next

assume ?R

143

show ?L unfolding progressing-def
proof (intro allI notI)

fix xs x y ys l1 l2 assume rev-path p = xs @ (x,y) # (y,x) # ys
then have rev-path (rev-path p) = rev-path ys @ (x,y) # (y,x) # rev-path xs

by simp
then show False using ‹?R› unfolding progressing-def by auto

qed
qed

lemma progressing-append-iff :
shows progressing (xs @ ys) ←→ progressing xs ∧ progressing ys
∧ (xs 6= [] ∧ ys 6= [] −→ (fst (last xs) 6= snd (hd ys) ∨ snd (last xs) 6= fst (hd

ys)))
proof (induct ys arbitrary: xs)

case Nil then show ?case by (auto simp: progressing-Nil)
next

case (Cons y ′ ys ′)
let - = ?R = ?case
have ∗: xs 6= [] =⇒ hd (rev-path xs) = prod.swap (last xs) by (induct xs) auto

have progressing (xs @ y ′ # ys ′) ←→ progressing ((xs @ [y ′]) @ ys ′)
by simp

also have . . . ←→ progressing (xs @ [y ′]) ∧ progressing ys ′ ∧ (ys ′ 6= [] −→ (fst
y ′ 6= snd (hd ys ′) ∨ snd y ′ 6= fst (hd ys ′)))

by (subst Cons) simp
also have . . . ←→ ?R

by (auto simp: progressing-Cons progressing-Nil progressing-rev-path[where
p=xs @ -,symmetric] ∗ progressing-rev-path prod.swap-def)

finally show ?case .
qed

17.4 Walks with Restricted Vertices
definition verts3 :: (′a, ′b) pre-digraph ⇒ ′a set where

verts3 G ≡ {v ∈ verts G. 2 < in-degree G v}

A path were only the end nodes may be in V
definition (in pre-digraph) gen-iapath :: ′a set ⇒ ′a ⇒ ′b awalk ⇒ ′a ⇒ bool
where

gen-iapath V u p v ≡ u ∈ V ∧ v ∈ V ∧ apath u p v ∧ set (inner-verts p) ∩ V
= {} ∧ p 6= []

abbreviation (in pre-digraph) (input) iapath :: ′a ⇒ ′b awalk ⇒ ′a ⇒ bool where
iapath u p v ≡ gen-iapath (verts3 G) u p v

definition gen-contr-graph :: (′a, ′b) pre-digraph ⇒ ′a set ⇒ ′a pair-pre-digraph
where

gen-contr-graph G V ≡ (|
pverts = V ,

144

parcs = {(u,v). ∃ p. pre-digraph.gen-iapath G V u p v}
|)

abbreviation (input) contr-graph :: ′a pair-pre-digraph ⇒ ′a pair-pre-digraph where
contr-graph G ≡ gen-contr-graph G (verts3 G)

17.5 Properties of subdivisions
lemma (in pair-sym-digraph) verts3-subdivide:

assumes e ∈ parcs G w /∈ pverts G
showsverts3 (subdivide G e w) = verts3 G

proof −
let ?sG = subdivide G e w
obtain u v where e-conv[simp]: e = (u,v) by (cases e) auto

from ‹w /∈ pverts G›
have w-arcs: (u,w) /∈ parcs G (v,w) /∈ parcs G (w,u) /∈ parcs G (w,v) /∈ parcs G

by (auto dest: wellformed)
have G-arcs: (u,v) ∈ parcs G (v,u) ∈ parcs G

using ‹e ∈ parcs G› by (auto simp: arcs-symmetric)

have {v ∈ pverts G. 2 < in-degree G v} = {v ∈ pverts G. 2 < in-degree ?sG v}
proof −

{ fix x assume x ∈ pverts G
define card-eq where card-eq x ←→ in-degree ?sG x = in-degree G x for x

have in-arcs ?sG u = (in-arcs G u − {(v,u)}) ∪ {(w,u)}
in-arcs ?sG v = (in-arcs G v − {(u,v)}) ∪ {(w,v)}

using w-arcs G-arcs by auto
then have card-eq u card-eq v

unfolding card-eq-def in-degree-def using w-arcs G-arcs
apply −

apply (cases finite (in-arcs G u); simp add: card-Suc-Diff1 del: card-Diff-insert)
apply (cases finite (in-arcs G v); simp add: card-Suc-Diff1 del: card-Diff-insert)

done
moreover
have x /∈ {u,v} =⇒ in-arcs ?sG x = in-arcs G x

using ‹x ∈ pverts G› ‹w /∈ pverts G› by auto
then have x /∈ {u,v} =⇒ card-eq x by (simp add: in-degree-def card-eq-def)
ultimately have card-eq x by fast
then have in-degree G x = in-degree ?sG x

unfolding card-eq-def by simp }
then show ?thesis by auto

qed
also have . . . = {v∈pverts ?sG. 2 < in-degree ?sG v}
proof −

have in-degree ?sG w ≤ 2
proof −

have in-arcs ?sG w = {(u,w), (v,w)}

145

using ‹w /∈ pverts G› G-arcs(1) by (auto simp: wellformed ′)
then show ?thesis

unfolding in-degree-def by (auto simp: card-insert-if)
qed
then show ?thesis using G-arcs assms by auto

qed
finally show ?thesis by (simp add: verts3-def)

qed

lemma sd-path-Nil-iff :
sd-path e w p = [] ←→ p = []
by (cases (e,w,p) rule: sd-path.cases) auto

lemma (in pair-sym-digraph) gen-iapath-sd-path:
fixes e :: ′a × ′a and w :: ′a
assumes elems: e ∈ parcs G w /∈ pverts G
assumes V : V ⊆ pverts G
assumes path: gen-iapath V u p v
shows pre-digraph.gen-iapath (subdivide G e w) V u (sd-path e w p) v

proof −
obtain x y where e-conv: e = (x,y) by (cases e) auto
interpret S : pair-sym-digraph subdivide G e w

using elems by (auto intro: pair-sym-digraph-subdivide)

from path have apath u p v by (auto simp: gen-iapath-def)
then have apath-sd: S .apath u (sd-path e w p) v and

set-ev-sd: set (S .awalk-verts u (sd-path e w p)) ⊆ set (awalk-verts u p) ∪ {w}
using elems by (rule apath-sd-path set-awalk-verts-sd-path)+

have w /∈ {u,v} using elems ‹apath u p v›
by (auto simp: apath-def awalk-hd-in-verts awalk-last-in-verts)

have set (S .inner-verts (sd-path e w p)) = set (S .awalk-verts u (sd-path e w p))
− {u,v}

using apath-sd by (rule S .set-inner-verts)
also have . . . ⊆ set (awalk-verts u p) ∪ {w} − {u,v}

using set-ev-sd by auto
also have . . . = set (inner-verts p) ∪ {w}

using set-inner-verts[OF ‹apath u p v›] ‹w /∈ {u,v}› by blast
finally have set (S .inner-verts (sd-path e w p)) ∩ V ⊆ (set (inner-verts p) ∪
{w}) ∩ V

using V by blast
also have . . . ⊆ {}

using path elems V unfolding gen-iapath-def by auto
finally show ?thesis

using apath-sd elems path by (auto simp: gen-iapath-def S .gen-iapath-def
sd-path-Nil-iff)
qed

lemma (in pair-sym-digraph)

146

assumes elems: e ∈ parcs G w /∈ pverts G
assumes V : V ⊆ pverts G
assumes path: pre-digraph.gen-iapath (subdivide G e w) V u p v
shows gen-iapath-co-path: gen-iapath V u (co-path e w p) v (is ?thesis-path)
and set-awalk-verts-co-path ′: set (awalk-verts u (co-path e w p)) = set (awalk-verts

u p) − {w} (is ?thesis-set)
proof −

interpret S : pair-sym-digraph subdivide G e w
using elems by (rule pair-sym-digraph-subdivide)

have uv: u ∈ pverts G v ∈ pverts G S .apath u p v using V path by (auto simp:
S .gen-iapath-def)

note co = apath-co-path[OF elems uv] set-awalk-verts-co-path[OF elems uv]

show ?thesis-set by (fact co)
show ?thesis-path using co path unfolding gen-iapath-def S .gen-iapath-def us-

ing elems
by (clarsimp simp add: set-inner-verts[of u] S .set-inner-verts[of u]) blast

qed

17.6 Pair Graphs
context pair-sym-digraph begin

lemma gen-iapath-rev-path:
gen-iapath V v (rev-path p) u = gen-iapath V u p v (is ?L = ?R)

proof −
{ fix u p v assume gen-iapath V u p v
then have butlast (tl (awalk-verts v (rev-path p))) = rev (butlast (tl (awalk-verts

u p)))
by (auto simp: tl-rev butlast-rev butlast-tl awalk-verts-rev-path gen-iapath-def

apath-def)
with ‹gen-iapath V u p v› have gen-iapath V v (rev-path p) u
by (auto simp: gen-iapath-def apath-def inner-verts-conv[symmetric] awalk-verts-rev-path)

}
note RL = this
show ?thesis by (auto dest: RL intro: RL)

qed

lemma inner-verts-rev-path:
assumes awalk u p v
shows inner-verts (rev-path p) = rev (inner-verts p)

by (metis assms butlast-rev butlast-tl awalk-verts-rev-path inner-verts-conv tl-rev)

end

context pair-pseudo-graph begin

lemma apath-imp-progressing:

147

assumes apath u p v shows progressing p
proof (rule ccontr)

assume ¬?thesis
then obtain xs x y ys where ∗: p = xs @ (x,y) # (y,x) # ys

unfolding progressing-def by auto
then have ¬apath u p v

by (simp add: apath-append-iff apath-simps hd-in-awalk-verts)
then show False using assms by auto

qed

lemma awalk-Cons-deg2-unique:
assumes awalk u p v p 6= []
assumes in-degree G u ≤ 2
assumes awalk u1 (e1 # p) v awalk u2 (e2 # p) v
assumes progressing (e1 # p) progressing (e2 # p)
shows e1 = e2

proof (cases p)
case (Cons e es)
show ?thesis
proof (rule ccontr)

assume e1 6= e2
define x where x = snd e

then have e-unf :e = (u,x) using ‹awalk u p v› Cons by (auto simp: awalk-simps)
then have ei-unf : e1 = (u1 , u) e2 = (u2 , u)

using Cons assms by (auto simp: apath-simps prod-eqI)
with Cons assms ‹e = (u,x)› ‹e1 6= e2 › have u1 6= u2 x 6= u1 x 6= u2

by (auto simp: progressing-Cons-Cons)
moreover have {(u1 , u), (u2 , u), (x,u)} ⊆ parcs G
using e-unf ei-unf Cons assms by (auto simp: awalk-simps intro: arcs-symmetric)
then have finite (in-arcs G u)

and {(u1 , u), (u2 , u), (x,u)} ⊆ in-arcs G u by auto
then have card ({(u1 , u), (u2 , u), (x,u)}) ≤ in-degree G u

unfolding in-degree-def by (rule card-mono)
ultimately show False using ‹in-degree G u ≤ 2 › by auto

qed
qed (simp add: ‹p 6= []›)

lemma same-awalk-by-same-end:
assumes V : verts3 G ⊆ V V ⊆ pverts G

and walk: awalk u p v awalk u q w hd p = hd q p 6= [] q 6= []
and progress: progressing p progressing q
and tail: v ∈ V w ∈ V
and inner-verts: set (inner-verts p) ∩ V = {}

set (inner-verts q) ∩ V = {}
shows p = q
using walk progress inner-verts

proof (induct p q arbitrary: u rule: list-induct2 ′[case-names Nil-Nil Cons-Nil Nil-Cons
Cons-Cons])

case (Cons-Cons a as b bs)

148

from ‹hd (a # -) = hd -› have a = b by simp

{ fix a as v b bs w
assume A: awalk u (a # as) v awalk u (b # bs) w

set (inner-verts (b # bs)) ∩ V = {} v ∈ V a = b as = []
then have bs = [] by − (rule ccontr , auto simp: inner-verts-Cons awalk-simps)

} note Nil-imp-Nil = this

show ?case
proof (cases as = [])

case True
then have bs = [] using Cons-Cons.prems ‹a = b› tail by (metis Nil-imp-Nil)
then show ?thesis using True ‹a = b› by simp

next
case False
then have bs 6= [] using Cons-Cons.prems ‹a = b› tail by (metis Nil-imp-Nil)

obtain a ′ as ′ where as = a ′ # as ′ using ‹as 6= []› by (cases as) simp
obtain b ′ bs ′ where bs = b ′ # bs ′ using ‹bs 6= []› by (cases bs) simp

let ?arcs = {(fst a, snd a), (snd a ′, snd a), (snd b ′, snd a)}

have card {fst a, snd a ′, snd b ′} = card (fst ‘ ?arcs) by auto
also have . . . = card ?arcs by (rule card-image) (cases a, auto)
also have . . . ≤ in-degree G (snd a)
proof −

have ?arcs ⊆ in-arcs G (snd a)
using ‹progressing (a # as)› ‹progressing (b # bs)› ‹awalk - (a # as) -›

‹awalk - (b # bs) -›
unfolding ‹a = b› ‹as = -› ‹bs = -›
by (cases b; cases a ′) (auto simp: progressing-Cons-Cons awalk-simps intro:

arcs-symmetric)
with -show ?thesis unfolding in-degree-def by (rule card-mono) auto

qed
also have . . . ≤ 2
proof −

have snd a /∈ V snd a ∈ pverts G
using Cons-Cons.prems ‹as 6= []› by (auto simp: inner-verts-Cons)

then show ?thesis using V by (auto simp: verts3-def)
qed
finally have fst a = snd a ′ ∨ fst a = snd b ′ ∨ snd a ′ = snd b ′

by (auto simp: card-insert-if split: if-splits)
then have hd as = hd bs
using ‹progressing (a # as)› ‹progressing (b # bs)› ‹awalk - (a # as) -› ‹awalk

- (b # bs) -›
unfolding ‹a = b› ‹as = -› ‹bs = -›

by (cases b, cases a ′, cases b ′) (auto simp: progressing-Cons-Cons awalk-simps)
then show ?thesis

using ‹as 6= []› ‹bs 6= []› Cons-Cons.prems

149

by (auto dest: progressing-ConsD simp: awalk-simps inner-verts-Cons intro!:
Cons-Cons)

qed
qed simp-all

lemma same-awalk-by-common-arc:
assumes V : verts3 G ⊆ V V ⊆ pverts G
assumes walk: awalk u p v awalk w q x
assumes progress: progressing p progressing q
assumes iv-not-in-V : set (inner-verts p) ∩ V = {} set (inner-verts q) ∩ V =
{}

assumes ends-in-V : {u,v,w,x} ⊆ V
assumes arcs: e ∈ set p e ∈ set q
shows p = q

proof −
from arcs obtain p1 p2 where p-decomp: p = p1 @ e # p2 by (metis in-set-conv-decomp-first)
from arcs obtain q1 q2 where q-decomp: q = q1 @ e # q2 by (metis in-set-conv-decomp-first)

{ define p1 ′ q1 ′ where p1 ′ = rev-path (p1 @ [e]) and q1 ′ = rev-path (q1 @
[e])

then have decomp: p = rev-path p1 ′ @ p2 q = rev-path q1 ′ @ q2
and awlast u (rev-path p1 ′) = snd e awlast w (rev-path q1 ′) = snd e

using p-decomp q-decomp walk by (auto simp: awlast-append awalk-verts-rev-path)
then have walk ′: awalk (snd e) p1 ′ u awalk (snd e) q1 ′ w

using walk by auto
moreover have hd p1 ′ = hd q1 ′ p1 ′ 6= [] q1 ′ 6= [] by (auto simp: p1 ′-def

q1 ′-def)
moreover have progressing p1 ′ progressing q1 ′

using progress unfolding decomp by (auto dest: progressing-appendD1 simp:
progressing-rev-path)

moreover
have set (inner-verts (rev-path p1 ′)) ∩ V = {} set (inner-verts (rev-path q1 ′))

∩ V = {}
using iv-not-in-V unfolding decomp
by (auto intro: in-set-inner-verts-appendI-l in-set-inner-verts-appendI-r)

then have u ∈ V w ∈ V set (inner-verts p1 ′) ∩ V = {} set (inner-verts q1 ′)
∩ V = {}

using ends-in-V iv-not-in-V walk unfolding decomp
by (auto simp: inner-verts-rev-path)

ultimately have p1 ′ = q1 ′ by (rule same-awalk-by-same-end[OF V]) }
moreover
{ define p2 ′ q2 ′ where p2 ′ = e # p2 and q2 ′ = e # q2

then have decomp: p = p1 @ p2 ′ q = q1 @ q2 ′

using p-decomp q-decomp by (auto simp: awlast-append)
moreover
have awlast u p1 = fst e awlast w q1 = fst e

using p-decomp q-decomp walk by auto
ultimately
have ∗: awalk (fst e) p2 ′ v awalk (fst e) q2 ′ x

150

using walk by auto
moreover have hd p2 ′ = hd q2 ′ p2 ′ 6= [] q2 ′ 6= [] by (auto simp: p2 ′-def

q2 ′-def)
moreover have progressing p2 ′ progressing q2 ′

using progress unfolding decomp by (auto dest: progressing-appendD2)
moreover
have v ∈ V x ∈ V set (inner-verts p2 ′) ∩ V = {} set (inner-verts q2 ′) ∩ V =

{}
using ends-in-V iv-not-in-V unfolding decomp
by (auto intro: in-set-inner-verts-appendI-l in-set-inner-verts-appendI-r)

ultimately have p2 ′ = q2 ′ by (rule same-awalk-by-same-end[OF V]) }
ultimately
show p = q using p-decomp q-decomp by (auto simp: rev-path-eq)

qed

lemma same-gen-iapath-by-common-arc:
assumes V : verts3 G ⊆ V V ⊆ pverts G
assumes path: gen-iapath V u p v gen-iapath V w q x
assumes arcs: e ∈ set p e ∈ set q
shows p = q

proof −
from path have awalk: awalk u p v awalk w q x progressing p progressing q

and in-V : set (inner-verts p) ∩ V = {} set (inner-verts q) ∩ V = {} {u,v,w,x}
⊆ V

by (auto simp: gen-iapath-def apath-imp-progressing apath-def)
from V awalk in-V arcs show ?thesis by (rule same-awalk-by-common-arc)

qed

end

17.7 Slim graphs

We define the notion of a slim graph. The idea is that for a slim graph G,
G is a subdivision of gen-contr-graph (with-proj G) (verts3 (with-proj G)).
context pair-pre-digraph begin

definition (in pair-pre-digraph) is-slim :: ′a set ⇒ bool where
is-slim V ≡
(∀ v ∈ pverts G. v ∈ V ∨
in-degree G v ≤ 2 ∧ (∃ x p y. gen-iapath V x p y ∧ v ∈ set (awalk-verts x p)))

∧
(∀ e ∈ parcs G. fst e 6= snd e ∧ (∃ x p y. gen-iapath V x p y ∧ e ∈ set p)) ∧
(∀ u v p q. (gen-iapath V u p v ∧ gen-iapath V u q v) −→ p = q) ∧
V ⊆ pverts G

definition direct-arc :: ′a × ′a ⇒ ′a × ′a where
direct-arc uv ≡ SOME e. {fst uv , snd uv} = {fst e, snd e}

151

definition choose-iapath :: ′a ⇒ ′a ⇒ (′a × ′a) awalk where
choose-iapath u v ≡ (let

chosen-path = (λu v. SOME p. iapath u p v)
in if direct-arc (u,v) = (u,v) then chosen-path u v else rev-path (chosen-path v

u))

definition slim-paths :: (′a × (′a × ′a) awalk × ′a) set where
slim-paths ≡ (λe. (fst e, choose-iapath (fst e) (snd e), snd e)) ‘ parcs (contr-graph

G)

definition slim-verts :: ′a set where
slim-verts ≡ verts3 G ∪ (

⋃
(u,p,-) ∈ slim-paths. set (awalk-verts u p))

definition slim-arcs :: ′a rel where
slim-arcs ≡

⋃
(-,p,-) ∈ slim-paths. set p

Computes a slim subgraph for an arbitrary pair-digraph
definition slim :: ′a pair-pre-digraph where

slim ≡ (| pverts = slim-verts, parcs = slim-arcs |)

end

lemma (in wf-digraph) iapath-dist-ends:
∧

u p v. iapath u p v =⇒ u 6= v
unfolding pre-digraph.gen-iapath-def by (metis apath-ends)

context pair-sym-digraph begin

lemma choose-iapath:
assumes ∃ p. iapath u p v
shows iapath u (choose-iapath u v) v

proof (cases direct-arc (u,v) = (u,v))
define chosen where chosen u v = (SOME p. iapath u p v) for u v
{ case True

have iapath u (chosen u v) v
unfolding chosen-def by (rule someI-ex) (rule assms)

then show ?thesis using True by (simp add: choose-iapath-def chosen-def) }

{ case False
from assms obtain p where iapath u p v by auto
then have iapath v (rev-path p) u

by (simp add: gen-iapath-rev-path)
then have iapath v (chosen v u) u

unfolding chosen-def by (rule someI)
then show ?thesis using False

by (simp add: choose-iapath-def chosen-def gen-iapath-rev-path) }
qed

152

lemma slim-simps: pverts slim = slim-verts parcs slim = slim-arcs
by (auto simp: slim-def)

lemma slim-paths-in-G-E :
assumes (u,p,v) ∈ slim-paths obtains iapath u p v u 6= v
using assms choose-iapath
by (fastforce simp: gen-contr-graph-def slim-paths-def dest: iapath-dist-ends)

lemma verts-slim-in-G: pverts slim ⊆ pverts G
by (auto simp: slim-simps slim-verts-def verts3-def gen-iapath-def apath-def

elim!: slim-paths-in-G-E elim!: awalkE)

lemma verts3-in-slim-G[simp]:
assumes x ∈ verts3 G shows x ∈ pverts slim

using assms by (auto simp: slim-simps slim-verts-def)

lemma arcs-slim-in-G: parcs slim ⊆ parcs G
by (auto simp: slim-simps slim-arcs-def gen-iapath-def apath-def

elim!: slim-paths-in-G-E elim!: awalkE)

lemma slim-paths-in-slimG:
assumes (u,p,v) ∈ slim-paths
shows pre-digraph.gen-iapath slim (verts3 G) u p v ∧ p 6= []

proof −
from assms have arcs:

∧
e. e ∈ set p =⇒ e ∈ parcs slim

by (auto simp: slim-simps slim-arcs-def)
moreover
from assms have gen-iapath (verts3 G) u p v and p 6= []

by (auto simp: gen-iapath-def elim!: slim-paths-in-G-E)
ultimately show ?thesis
by (auto simp: pre-digraph.gen-iapath-def pre-digraph.apath-def pre-digraph.awalk-def

inner-verts-with-proj-def)
qed

lemma direct-arc-swapped:
direct-arc (u,v) = direct-arc (v,u)

by (simp add: direct-arc-def insert-commute)

lemma direct-arc-chooses:
fixes u v :: ′a shows direct-arc (u,v) = (u,v) ∨ direct-arc (u,v) = (v,u)

proof −
define f :: ′a set ⇒ ′a × ′a

where f X = (SOME e. X = {fst e,snd e}) for X

have ∃ p:: ′a × ′a. {u,v} = {fst p, snd p} by (rule exI [where x=(u,v)]) auto
then have {u,v} = {fst (f {u,v}), snd (f {u,v})}

unfolding f-def by (rule someI-ex)
then have f {u,v} = (u,v) ∨ f {u,v} = (v,u)

by (auto simp: doubleton-eq-iff prod-eq-iff)

153

then show ?thesis by (auto simp: direct-arc-def f-def)
qed

lemma rev-path-choose-iapath:
assumes u 6= v
shows rev-path (choose-iapath u v) = choose-iapath v u
using assms direct-arc-chooses[of u v]
by (auto simp: choose-iapath-def direct-arc-swapped)

lemma no-loops-in-iapath: gen-iapath V u p v =⇒ a ∈ set p =⇒ fst a 6= snd a
by (auto simp: gen-iapath-def no-loops-in-apath)

lemma pair-bidirected-digraph-slim: pair-bidirected-digraph slim
proof

fix e assume A: e ∈ parcs slim
then obtain u p v where (u,p,v) ∈ slim-paths e ∈ set p by (auto simp: slim-simps

slim-arcs-def)
with A have iapath u p v by (auto elim: slim-paths-in-G-E)
with ‹e ∈ set p› have fst e ∈ set (awalk-verts u p) snd e ∈ set (awalk-verts u p)

by (auto simp: set-awalk-verts gen-iapath-def apath-def)
moreover
from ‹- ∈ slim-paths› have set (awalk-verts u p) ⊆ pverts slim

by (auto simp: slim-simps slim-verts-def)
ultimately
show fst e ∈ pverts slim snd e ∈ pverts slim by auto

show fst e 6= snd e
using ‹iapath u p v› ‹e ∈ set p › by (auto dest: no-loops-in-iapath)

next
{ fix e assume e ∈ parcs slim

then obtain u p v where (u,p,v) ∈ slim-paths and e ∈ set p
by (auto simp: slim-simps slim-arcs-def)

moreover
then have iapath u p v and p 6= [] and u 6= v by (auto elim: slim-paths-in-G-E)
then have iapath v (rev-path p) u and rev-path p 6= [] and v 6= u

by (auto simp: gen-iapath-rev-path)
then have (v,u) ∈ parcs (contr-graph G)

by (auto simp: gen-contr-graph-def)
moreover
from ‹iapath u p v› have u 6= v

by (auto simp: gen-iapath-def dest: apath-nonempty-ends)
ultimately
have (v, rev-path p, u) ∈ slim-paths

by (auto simp: slim-paths-def rev-path-choose-iapath intro: rev-image-eqI)
moreover
from ‹e ∈ set p› have (snd e, fst e) ∈ set (rev-path p)

by (induct p) auto
ultimately have (snd e, fst e) ∈ parcs slim
by (auto simp: slim-simps slim-arcs-def) }

154

then show symmetric slim
unfolding symmetric-conv by simp (metis fst-conv snd-conv)

qed

lemma (in pair-pseudo-graph) pair-graph-slim: pair-graph slim
proof −

interpret slim: pair-bidirected-digraph slim by (rule pair-bidirected-digraph-slim)
show ?thesis
proof

show finite (pverts slim)
using verts-slim-in-G finite-verts by (rule finite-subset)

show finite (parcs slim)
using arcs-slim-in-G finite-arcs by (rule finite-subset)

qed
qed

lemma subgraph-slim: subgraph slim G
proof (rule subgraphI)

interpret H : pair-bidirected-digraph slim
by (rule pair-bidirected-digraph-slim) intro-locales

show verts slim ⊆ verts G arcs slim ⊆ arcs G
by (auto simp: verts-slim-in-G arcs-slim-in-G)

show compatible G slim ..
show wf-digraph slim wf-digraph G

by unfold-locales
qed

lemma giapath-if-slim-giapath:
assumes pre-digraph.gen-iapath slim (verts3 G) u p v
shows gen-iapath (verts3 G) u p v

using assms verts-slim-in-G arcs-slim-in-G
by (auto simp: pre-digraph.gen-iapath-def pre-digraph.apath-def pre-digraph.awalk-def

inner-verts-with-proj-def)

lemma slim-giapath-if-giapath:
assumes gen-iapath (verts3 G) u p v

shows ∃ p. pre-digraph.gen-iapath slim (verts3 G) u p v (is ∃ p. ?P p)
proof

from assms have choose-arcs:
∧

e. e ∈ set (choose-iapath u v) =⇒ e ∈ parcs
slim

by (fastforce simp: slim-simps slim-arcs-def slim-paths-def gen-contr-graph-def)
moreover
from assms have choose: iapath u (choose-iapath u v) v

by (intro choose-iapath) (auto simp: gen-iapath-def)
ultimately show ?P (choose-iapath u v)
by (auto simp: pre-digraph.gen-iapath-def pre-digraph.apath-def pre-digraph.awalk-def

inner-verts-with-proj-def)

155

qed

lemma contr-graph-slim-eq:
gen-contr-graph slim (verts3 G) = contr-graph G

using giapath-if-slim-giapath slim-giapath-if-giapath by (fastforce simp: gen-contr-graph-def)

end

context pair-pseudo-graph begin

lemma verts3-slim-in-verts3 :
assumes v ∈ verts3 slim shows v ∈ verts3 G

proof −
from assms have 2 < in-degree slim v by (auto simp: verts3-def)
also have . . . ≤ in-degree G v using subgraph-slim by (rule subgraph-in-degree)
finally show ?thesis using assms subgraph-slim by (fastforce simp: verts3-def)

qed

lemma slim-is-slim:
pair-pre-digraph.is-slim slim (verts3 G)

proof (unfold pair-pre-digraph.is-slim-def , safe)
interpret S : pair-graph slim by (rule pair-graph-slim)
{ fix v assume v ∈ pverts slim v /∈ verts3 G

then have in-degree G v ≤ 2
using verts-slim-in-G by (auto simp: verts3-def)

then show in-degree slim v ≤ 2
using subgraph-in-degree[OF subgraph-slim, of v] by fastforce

next
fix w assume w ∈ pverts slim w /∈ verts3 G
then obtain u p v where upv: (u, p, v) ∈ slim-paths w ∈ set (awalk-verts u p)

by (auto simp: slim-simps slim-verts-def)
moreover
then have S .gen-iapath (verts3 G) u p v

using slim-paths-in-slimG by auto
ultimately
show ∃ x q y. S .gen-iapath (verts3 G) x q y
∧ w ∈ set (awalk-verts x q)
by auto

next
fix u v assume (u,v) ∈ parcs slim
then obtain x p y where (x, p, y) ∈ slim-paths (u,v) ∈ set p

by (auto simp: slim-simps slim-arcs-def)
then have S .gen-iapath (verts3 G) x p y ∧ (u,v) ∈ set p

using slim-paths-in-slimG by auto
then show ∃ x p y. S .gen-iapath (verts3 G) x p y ∧ (u,v) ∈ set p

by blast
next

fix u v assume (u,v) ∈ parcs slim fst (u,v) = snd (u,v)
then show False by (auto simp: S .no-loops ′)

156

next
fix u v p q
assume paths: S .gen-iapath (verts3 G) u p v

S .gen-iapath (verts3 G) u q v

have V : verts3 slim ⊆ verts3 G verts3 G ⊆ pverts slim
by (auto simp: verts3-slim-in-verts3)

have p = [] ∨ q = [] =⇒ p = q using paths
by (auto simp: S .gen-iapath-def dest: S .apath-ends)

moreover
{ assume p 6= [] q 6= []

{ fix u p v assume p 6= [] and path: S .gen-iapath (verts3 G) u p v
then obtain e where e ∈ set p by (metis last-in-set)

then have e ∈ parcs slim using path by (auto simp: S .gen-iapath-def
S .apath-def)

then obtain x r y where (x,r ,y) ∈ slim-paths e ∈ set r
by (auto simp: slim-simps slim-arcs-def)

then have S .gen-iapath (verts3 G) x r y by (metis slim-paths-in-slimG)
with ‹e ∈ set r› ‹e ∈ set p› path have p = r

by (auto intro: S .same-gen-iapath-by-common-arc[OF V])
then have x = u y = v using path ‹S .gen-iapath (verts3 G) x r y› ‹p = r›

‹p 6= []›
by (auto simp: S .gen-iapath-def S .apath-def dest: S .awalk-ends)

then have (u,p,v) ∈ slim-paths using ‹p = r› ‹(x,r ,y) ∈ slim-paths› by
simp }

note obt = this
from ‹p 6= []› ‹q 6= []› paths have (u,p,v) ∈ slim-paths (u,q,v) ∈ slim-paths

by (auto intro: obt)
then have p = q by (auto simp: slim-paths-def)

}
ultimately show p = q by metis

}
qed auto

end

context pair-sym-digraph begin

lemma
assumes p: gen-iapath (pverts G) u p v
shows gen-iapath-triv-path: p = [(u,v)]

and gen-iapath-triv-arc: (u,v) ∈ parcs G
proof −

have set (inner-verts p) = {}
proof −

have ∗:
∧

A B :: ′a set. [[A ⊆ B; A ∩ B = {}]] =⇒ A = {} by blast
have set (inner-verts p) = set (awalk-verts u p) − {u, v}

using p by (simp add: set-inner-verts gen-iapath-def)

157

also have . . . ⊆ pverts G
using p unfolding gen-iapath-def apath-def awalk-conv by auto

finally show ?thesis
using p by (rule-tac ∗) (auto simp: gen-iapath-def)

qed
then have inner-verts p = [] by simp
then show p = [(u,v)] using p
by (cases p) (auto simp: gen-iapath-def apath-def inner-verts-def split: if-split-asm)

then show (u,v) ∈ parcs G
using p by (auto simp: gen-iapath-def apath-def)

qed

lemma gen-contr-triv:
assumes is-slim V pverts G = V shows gen-contr-graph G V = G

proof −
let ?gcg = gen-contr-graph G V

from assms have pverts ?gcg = pverts G
by (auto simp: gen-contr-graph-def is-slim-def)

moreover
have parcs ?gcg = parcs G
proof (rule set-eqI , safe)

fix u v assume (u,v) ∈ parcs ?gcg
then obtain p where gen-iapath V u p v

by (auto simp: gen-contr-graph-def)
then show (u,v) ∈ parcs G

using gen-iapath-triv-arc ‹pverts G = V › by auto
next

fix u v assume (u,v) ∈ parcs G
with assms obtain x p y where path: gen-iapath V x p y (u,v) ∈ set p u 6= v

by (auto simp: is-slim-def)
with ‹pverts G = V › have p = [(x,y)] by (intro gen-iapath-triv-path) auto
then show (u,v) ∈ parcs ?gcg

using path by (auto simp: gen-contr-graph-def)
qed
ultimately
show ?gcg = G by auto

qed

lemma is-slim-no-loops:
assumes is-slim V a ∈ arcs G shows fst a 6= snd a
using assms by (auto simp: is-slim-def)

end

17.8 Contraction Preserves Kuratowski-Subgraph-Property
lemma (in pair-pseudo-graph) in-degree-contr :

assumes v ∈ V and V : verts3 G ⊆ V V ⊆ verts G

158

shows in-degree (gen-contr-graph G V) v ≤ in-degree G v
proof −

have fin: finite {(u, p). gen-iapath V u p v}
proof −

have {(u, p). gen-iapath V u p v} ⊆ (λ(u,p,-). (u,p)) ‘ {(u,p,v). apath u p v}
by (force simp: gen-iapath-def)

with apaths-finite-triple show ?thesis by (rule finite-surj)
qed

have io-snd: inj-on snd {(u,p). gen-iapath V u p v}
by (rule inj-onI) (auto simp: gen-iapath-def apath-def dest: awalk-ends)

have io-last: inj-on last {p. ∃ u. gen-iapath V u p v}
proof (rule inj-onI , safe)

fix u1 u2 p1 p2
assume A: last p1 = last p2 and B: gen-iapath V u1 p1 v gen-iapath V u2 p2

v
from B have last p1 ∈ set p1 last p2 ∈ set p2 by (auto simp: gen-iapath-def)
with A have last p1 ∈ set p1 last p1 ∈ set p2 by simp-all
with V [simplified] B show p1 = p2 by (rule same-gen-iapath-by-common-arc)

qed

have in-degree (gen-contr-graph G V) v = card ((λ(u,-). (u,v)) ‘ {(u,p). gen-iapath
V u p v})

proof −
have in-arcs (gen-contr-graph G V) v = (λ(u,-). (u,v)) ‘ {(u,p). gen-iapath V

u p v}
by (auto simp: gen-contr-graph-def)

then show ?thesis unfolding in-degree-def by simp
qed
also have . . . ≤ card {(u,p). gen-iapath V u p v}

using fin by (rule card-image-le)
also have . . . = card (snd ‘ {(u,p). gen-iapath V u p v})

using io-snd by (rule card-image[symmetric])
also have snd ‘ {(u,p). gen-iapath V u p v} = {p. ∃ u. gen-iapath V u p v}

by (auto intro: rev-image-eqI)
also have card . . . = card (last ‘ ...)

using io-last by (rule card-image[symmetric])
also have . . . ≤ in-degree G v

unfolding in-degree-def
proof (rule card-mono)

show last ‘ {p. ∃ u. gen-iapath V u p v} ⊆ in-arcs G v
proof −

have
∧

u p. awalk u p v =⇒ p 6= [] =⇒ last p ∈ parcs G
by (auto simp: awalk-def)

moreover
{ fix u p assume awalk u p v p 6= []

then have snd (last p) = v by (induct p arbitrary: u) (auto simp:
awalk-simps) }

159

ultimately
show ?thesis unfolding in-arcs-def by (auto simp: gen-iapath-def apath-def)

qed
qed auto
finally show ?thesis .

qed

lemma (in pair-graph) contracted-no-degree2-simp:
assumes subd: subdivision-pair G H
assumes two-less-deg2 : verts3 G = pverts G
shows contr-graph H = G
using subd

proof (induct rule: subdivision-pair-induct)
case base

{ fix e assume e ∈ parcs G
then have gen-iapath (pverts G) (fst e) [(fst e, snd e)] (snd e) e ∈ set [(fst e,

snd e)]
using no-loops[of (fst e, snd e)] by (auto simp: gen-iapath-def apath-simps)

then have ∃ u p v. gen-iapath (pverts G) u p v ∧ e ∈ set p by blast }
moreover
{ fix u p v assume gen-iapath (pverts G) u p v

from ‹gen-iapath - u p v› have p = [(u,v)]
unfolding gen-iapath-def apath-def
by safe (cases p, case-tac [2] list, auto simp: awalk-simps inner-verts-def) }

ultimately have is-slim (verts3 G) unfolding is-slim-def two-less-deg2
by (blast dest: no-loops-in-iapath)

then show ?case by (simp add: gen-contr-triv two-less-deg2)
next

case (divide e w H)
let ?sH = subdivide H e w
from ‹subdivision-pair G H › interpret H : pair-bidirected-digraph H

by (rule bidirected-digraphI-subdivision)
from divide(1 ,2) interpret S : pair-sym-digraph ?sH by (rule H .pair-sym-digraph-subdivide)
obtain u v where e-conv:e = (u,v) by (cases e) auto
have contr-graph ?sH = contr-graph H
proof −

have V-cond: verts3 H ⊆ pverts H by (auto simp: verts3-def)
have verts3 H = verts3 ?sH

using divide by (simp add: H .verts3-subdivide)
then have v: pverts (contr-graph ?sH) = pverts (contr-graph H)

by (auto simp: gen-contr-graph-def)
moreover
then have parcs (contr-graph ?sH) = parcs (contr-graph H)

unfolding gen-contr-graph-def
by (auto dest: H .gen-iapath-co-path[OF divide(1 ,2) V-cond]

H .gen-iapath-sd-path[OF divide(1 ,2) V-cond])
ultimately show ?thesis by auto

qed

160

then show ?case using divide by simp
qed

lemma verts3-K33 :
assumes K3 ,3 (with-proj G)
shows verts3 G = verts G

proof −
{ fix v assume v ∈ pverts G

from assms obtain U V where cards: card U = 3 card V=3
and UV : U ∩ V = {} pverts G = U ∪ V parcs G = U × V ∪ V × U
unfolding complete-bipartite-digraph-pair-def by blast

have 2 < in-degree G v
proof (cases v ∈ U)

case True
then have in-arcs G v = V × {v} using UV by fastforce

then show ?thesis using cards by (auto simp: card-cartesian-product in-degree-def)
next

case False
then have in-arcs G v = U × {v} using ‹v ∈ -› UV by fastforce

then show ?thesis using cards by (auto simp: card-cartesian-product in-degree-def)
qed }

then show ?thesis by (auto simp: verts3-def)
qed

lemma verts3-K5 :
assumes K5 (with-proj G)
shows verts3 G = verts G

proof −
interpret pgG: pair-graph G using assms by (rule pair-graphI-complete)
{ fix v assume v ∈ pverts G

have 2 < (4 :: nat) by simp
also have 4 = card (pverts G − {v})

using assms ‹v ∈ pverts G› unfolding complete-digraph-def by auto
also have pverts G − {v} = {u ∈ pverts G. u 6= v}

by auto
also have card . . . = card ({u ∈ pverts G. u 6= v} × {v}) (is - = card ?A)

by auto
also have ?A = in-arcs G v

using assms ‹v ∈ pverts G› unfolding complete-digraph-def by safe auto
also have card . . . = in-degree G v

unfolding in-degree-def ..
finally have 2 < in-degree G v . }

then show ?thesis unfolding verts3-def by auto
qed

lemma K33-contractedI :
assumes subd: subdivision-pair G H

161

assumes k33 : K3 ,3 G
shows K3 ,3 (contr-graph H)

proof −
interpret pgG: pair-graph G using k33 by (rule pair-graphI-complete-bipartite)
show ?thesis

using assms by (auto simp: pgG.contracted-no-degree2-simp verts3-K33)
qed

lemma K5-contractedI :
assumes subd: subdivision-pair G H
assumes k5 : K5 G
shows K5 (contr-graph H)

proof −
interpret pgG: pair-graph G using k5 by (rule pair-graphI-complete)
show ?thesis

using assms by (auto simp add: pgG.contracted-no-degree2-simp verts3-K5)
qed

17.9 Final proof
context pair-sym-digraph begin

lemma gcg-subdivide-eq:
assumes mem: e ∈ parcs G w /∈ pverts G
assumes V : V ⊆ pverts G
shows gen-contr-graph (subdivide G e w) V = gen-contr-graph G V

proof −
interpret sdG: pair-sym-digraph subdivide G e w

using mem by (rule pair-sym-digraph-subdivide)
{ fix u p v assume sdG.gen-iapath V u p v

have gen-iapath V u (co-path e w p) v
using mem V ‹sdG.gen-iapath V u p v› by (rule gen-iapath-co-path)

then have ∃ p. gen-iapath V u p v ..
} note A = this
moreover
{ fix u p v assume gen-iapath V u p v

have sdG.gen-iapath V u (sd-path e w p) v
using mem V ‹gen-iapath V u p v› by (rule gen-iapath-sd-path)

then have ∃ p. sdG.gen-iapath V u p v ..
} note B = this
ultimately show ?thesis using assms by (auto simp: gen-contr-graph-def)

qed

lemma co-path-append:
assumes [last p1 , hd p2] /∈ {[(fst e,w),(w,snd e)], [(snd e,w),(w,fst e)]}
shows co-path e w (p1 @ p2) = co-path e w p1 @ co-path e w p2

using assms
proof (induct p1 rule: co-path-induct)

162

case single then show ?case by (cases p2) auto
next

case (co e1 e2 es) then show ?case by (cases es) auto
next

case (corev e1 e2 es) then show ?case by (cases es) auto
qed auto

lemma exists-co-path-decomp1 :
assumes mem: e ∈ parcs G w /∈ pverts G
assumes p: pre-digraph.apath (subdivide G e w) u p v (fst e, w) ∈ set p w 6= v
shows ∃ p1 p2 . p = p1 @ (fst e, w) # (w, snd e) # p2

proof −
let ?sdG = subdivide G e w
interpret sdG: pair-sym-digraph ?sdG

using mem by (rule pair-sym-digraph-subdivide)
obtain p1 p2 z where p-decomp: p = p1 @ (fst e, w) # (w, z) # p2 fst e 6= z

w 6= z
by atomize-elim (rule sdG.apath-succ-decomp[OF p])

then have (fst e,w) ∈ parcs ?sdG (w, z) ∈ parcs ?sdG
using p by (auto simp: sdG.apath-def)

with ‹fst e 6= z› have z = snd e
using mem by (cases e) (auto simp: wellformed ′)

with p-decomp show ?thesis by fast
qed

lemma is-slim-if-subdivide:
assumes pair-pre-digraph.is-slim (subdivide G e w) V
assumes mem1 : e ∈ parcs G w /∈ pverts G and mem2 : w /∈ V
shows is-slim V

proof −
let ?sdG = subdivide G e w
interpret sdG: pair-sym-digraph subdivide G e w

using mem1 by (rule pair-sym-digraph-subdivide)
obtain u v where e = (u,v) by (cases e) auto
with mem1 have u ∈ pverts G v ∈ pverts G by (auto simp: wellformed ′)
with mem1 have u 6= w v 6= w by auto

let ?w-parcs = {(u,w), (v,w), (w,u), (w, v)}
have sdg-new-parcs: ?w-parcs ⊆ parcs ?sdG

using ‹e = (u,v)› by auto
have sdg-no-parcs: (u,v) /∈ parcs ?sdG (v,u) /∈ parcs ?sdG

using ‹e = (u,v)› ‹u 6= w› ‹v 6= w› by auto

{ fix z assume A: z ∈ pverts G
have in-degree ?sdG z = in-degree G z
proof −

{ assume z 6= u z 6= v
then have in-arcs ?sdG z = in-arcs G z

using ‹e = (u,v)› mem1 A by auto

163

then have in-degree ?sdG z = in-degree G z by (simp add: in-degree-def) }
moreover
{ assume z = u

then have in-arcs G z = in-arcs ?sdG z ∪ {(v,u)} − {(w,u)}
using ‹e = (u,v)› mem1 by (auto simp: intro: arcs-symmetric wellformed ′)
moreover
have card (in-arcs ?sdG z ∪ {(v,u)} − {(w,u)}) = card (in-arcs ?sdG z)

using sdg-new-parcs sdg-no-parcs ‹z = u› by (cases finite (in-arcs ?sdG
z)) (auto simp: in-arcs-def)

ultimately have in-degree ?sdG z= in-degree G z by (simp add: in-degree-def)
}

moreover
{ assume z = v

then have in-arcs G z = in-arcs ?sdG z ∪ {(u,v)} − {(w,v)}
using ‹e = (u,v)› mem1 A by (auto simp: wellformed ′)

moreover
have card (in-arcs ?sdG z ∪ {(u,v)} − {(w,v)}) = card (in-arcs ?sdG z)

using sdg-new-parcs sdg-no-parcs ‹z = v› by (cases finite (in-arcs ?sdG
z)) (auto simp: in-arcs-def)

ultimately have in-degree ?sdG z= in-degree G z by (simp add: in-degree-def)
}

ultimately show ?thesis by metis
qed }

note in-degree-same = this

have V-G: V ⊆ pverts G verts3 G ⊆ V
proof −

have V ⊆ pverts ?sdG pverts ?sdG = pverts G ∪ {w} verts3 ?sdG ⊆ V verts3
G ⊆ verts3 ?sdG

using ‹sdG.is-slim V › ‹e = (u,v)› in-degree-same mem1
unfolding sdG.is-slim-def verts3-def
by (fast, simp, fastforce, force)

then show V ⊆ pverts G verts3 G ⊆ V using ‹w /∈ V › by auto
qed

have pverts: ∀ v∈pverts G. v ∈ V ∨ in-degree G v ≤ 2 ∧ (∃ x p y. gen-iapath V
x p y ∧ v ∈ set (awalk-verts x p))

proof −
{ fix z assume A: z ∈ pverts G z /∈ V

have z ∈ pverts ?sdG using ‹e = (u,v)› A mem1 by auto
then have in-degree ?sdG z ≤ 2

using ‹sdG.is-slim V › A by (auto simp: sdG.is-slim-def)
with in-degree-same[OF ‹z ∈ pverts G›] have idg: in-degree G z ≤ 2 by auto

from A have z ∈ pverts ?sdG z /∈ V using ‹e = (u,v)› mem1 by auto
then obtain x ′ q y ′ where sdG.gen-iapath V x ′ q y ′ z ∈ set (sdG.awalk-verts

x ′ q)
using ‹sdG.is-slim V › unfolding sdG.is-slim-def by metis

then have gen-iapath V x ′ (co-path e w q) y ′ z ∈ set (awalk-verts x ′ (co-path

164

e w q))
using A mem1 V-G by (auto simp: set-awalk-verts-co-path ′ intro: gen-iapath-co-path)
with idg have in-degree G z ≤ 2 ∧ (∃ x p y. gen-iapath V x p y ∧ z ∈ set

(awalk-verts x p))
by metis }

then show ?thesis by auto
qed

have parcs: ∀ e∈parcs G. fst e 6= snd e ∧ (∃ x p y. gen-iapath V x p y ∧ e ∈ set
p)

proof (intro ballI conjI)
fix e ′ assume e ′ ∈ parcs G

show (∃ x p y. gen-iapath V x p y ∧ e ′ ∈ set p)
proof (cases e ′ ∈ parcs ?sdG)

case True
then obtain x p y where sdG.gen-iapath V x p y e ′ ∈ set p

using ‹sdG.is-slim V › by (auto simp: sdG.is-slim-def)
with ‹e ∈ parcs G› ‹w /∈ pverts G› V-G have gen-iapath V x (co-path e w p)

y
by (auto intro: gen-iapath-co-path)

from ‹e ′ ∈ parcs G› have e ′ /∈ ?w-parcs using mem1 by (auto simp:
wellformed ′)

with ‹e ′ ∈ set p› have e ′ ∈ set (co-path e w p)
by (induct p rule: co-path-induct) (force simp: ‹e = (u,v)›)+

then show ∃ x p y. gen-iapath V x p y ∧ e ′ ∈ set p
using ‹gen-iapath V x (co-path e w p) y› by fast

next
assume e ′ /∈ parcs ?sdG
define a b where a = fst e ′ and b = snd e ′

then have e ′ = (a,b) and ab: (a,b) = (u,v) ∨ (a,b) = (v,u)
using ‹e ′ ∈ parcs G› ‹e ′ /∈ parcs ?sdG› ‹e = (u,v)› mem1 by auto

obtain x p y where sdG.gen-iapath V x p y (a,w) ∈ set p
using ‹sdG.is-slim V › sdg-new-parcs ab by (auto simp: sdG.is-slim-def)

with ‹e ∈ parcs G› ‹w /∈ pverts G› V-G have gen-iapath V x (co-path e w p)
y

by (auto intro: gen-iapath-co-path)

have (a,b) ∈ parcs G subdivide G (a,b) w = subdivide G e w
using mem1 ‹e = (u,v)› ‹e ′ = (a,b)› ab
by (auto intro: arcs-symmetric simp: subdivide.simps)

then have pre-digraph.apath (subdivide G (a,b) w) x p y w 6= y
using mem2 ‹sdG.gen-iapath V x p y› by (auto simp: sdG.gen-iapath-def)

then obtain p1 p2 where p: p = p1 @ (a,w) # (w,b) # p2
using exists-co-path-decomp1 ‹(a,b) ∈ parcs G› ‹w /∈ pverts G› ‹(a,w) ∈ set

p› ‹w 6= y›
by atomize-elim auto

moreover

165

from p have co-path e w ((a,w) # (w,b) # p2) = (a,b) # co-path e w p2
unfolding ‹e = (u,v)› using ab by auto

ultimately
have (a,b) ∈ set (co-path e w p)

unfolding ‹e = (u,v)› using ab ‹u 6= w› ‹v 6= w›
by (induct p rule: co-path-induct) (auto simp: co-path-append)

then show ?thesis
using ‹gen-iapath V x (co-path e w p) y› ‹e ′ = (a,b)› by fast

qed
then show fst e ′ 6= snd e ′ by (blast dest: no-loops-in-iapath)

qed

have unique: ∀ u v p q. (gen-iapath V u p v ∧ gen-iapath V u q v) −→ p = q
proof safe

fix x y p q assume A: gen-iapath V x p y gen-iapath V x q y
then have set p ⊆ parcs G set q ⊆ parcs G

by (auto simp: gen-iapath-def apath-def)
then have w-p: (u,w) /∈ set p (v,w) /∈ set p and w-q: (u,w) /∈ set q (v,w) /∈ set

q
using mem1 by (auto simp: wellformed ′)

from A have sdG.gen-iapath V x (sd-path e w p) y sdG.gen-iapath V x (sd-path
e w q) y

using mem1 V-G by (auto intro: gen-iapath-sd-path)
then have sd-path e w p = sd-path e w q

using ‹sdG.is-slim V › unfolding sdG.is-slim-def by metis
then have co-path e w (sd-path e w p) = co-path e w (sd-path e w q) by simp
then show p = q using w-p w-q ‹e = (u,v)› by (simp add: co-sd-id)

qed

from pverts parcs V-G unique show ?thesis by (auto simp: is-slim-def)
qed

end

context pair-pseudo-graph begin

lemma subdivision-gen-contr :
assumes is-slim V
shows subdivision-pair (gen-contr-graph G V) G

using assms using pair-pseudo-graph
proof (induct card (pverts G − V) arbitrary: G)

case 0
interpret G: pair-pseudo-graph G by fact
have pair-bidirected-digraph G

using G.pair-sym-arcs 0 by unfold-locales (auto simp: G.is-slim-def)
with 0 show ?case

by (auto intro: subdivision-pair-intros simp: G.gen-contr-triv G.is-slim-def)
next

166

case (Suc n)
interpret G: pair-pseudo-graph G by fact

from ‹Suc n = card (pverts G − V)›
have pverts G − V 6= {}
by (metis Nat.diff-le-self Suc-n-not-le-n card-Diff-subset-Int diff-Suc-Suc empty-Diff

finite.emptyI inf-bot-left)
then obtain w where w ∈ pverts G − V by auto
then obtain x q y where q: G.gen-iapath V x q y w ∈ set (G.awalk-verts x q)

in-degree G w ≤ 2
using ‹G.is-slim V › by (auto simp: G.is-slim-def)

then have w 6= x w 6= y w /∈ V using ‹w ∈ pverts G − V › by (auto simp:
G.gen-iapath-def)

then obtain e where e ∈ set q snd e = w
using ‹w ∈ pverts G − V › q
unfolding G.gen-iapath-def G.apath-def G.awalk-conv
by (auto simp: G.awalk-verts-conv ′)

moreover define u where u = fst e
ultimately obtain q1 q2 v where q-decomp: q = q1 @ (u, w) # (w, v) # q2 u
6= v w 6= v

using q ‹w 6= y› unfolding G.gen-iapath-def by atomize-elim (rule G.apath-succ-decomp,
auto)

with q have qi-walks: G.awalk x q1 u G.awalk v q2 y
by (auto simp: G.gen-iapath-def G.apath-def G.awalk-Cons-iff)

from q q-decomp have uvw-arcs1 : (u,w) ∈ parcs G (w,v) ∈ parcs G
by (auto simp: G.gen-iapath-def G.apath-def)

then have uvw-arcs2 : (w,u) ∈ parcs G (v,w) ∈ parcs G
by (blast intro: G.arcs-symmetric)+

have u 6= w v 6= w using q-decomp q
by (auto simp: G.gen-iapath-def G.apath-append-iff G.apath-simps)

have in-arcs: in-arcs G w = {(u,w), (v,w)}
proof −

have {(u,w), (v,w)} ⊆ in-arcs G w
using uvw-arcs1 uvw-arcs2 by auto

moreover note ‹in-degree G w ≤ 2 ›
moreover have card {(u,w), (v,w)} = 2 using ‹u 6= v› by auto
ultimately
show ?thesis by − (rule card-seteq[symmetric], auto simp: in-degree-def)

qed
have out-arcs: out-arcs G w ⊆ {(w,u), (w,v)} (is ?L ⊆ ?R)
proof

fix e assume e ∈ out-arcs G w
then have (snd e, fst e) ∈ in-arcs G w

by (auto intro: G.arcs-symmetric)
then show e ∈ {(w, u), (w, v)} using in-arcs by auto

qed

167

have (u,v) /∈ parcs G
proof

assume (u,v) ∈ parcs G
have G.gen-iapath V x (q1 @ (u,v) # q2) y
proof −

have awalk ′: G.awalk x (q1 @ (u,v) # q2) y
using qi-walks ‹(u,v) ∈ parcs G›
by (auto simp: G.awalk-simps)

have G.awalk x q y using ‹G.gen-iapath V x q y› by (auto simp: G.gen-iapath-def
G.apath-def)

have distinct (G.awalk-verts x (q1 @ (u,v) # q2))
using awalk ′ ‹G.gen-iapath V x q y› unfolding q-decomp
by (auto simp: G.gen-iapath-def G.apath-def G.awalk-verts-append)

moreover
have set (G.inner-verts (q1 @ (u,v) # q2)) ⊆ set (G.inner-verts q)

using awalk ′ ‹G.awalk x q y› unfolding q-decomp
by (auto simp: butlast-append G.inner-verts-conv[of - x] G.awalk-verts-append

intro: in-set-butlast-appendI)
then have set (G.inner-verts (q1 @ (u,v) # q2)) ∩ V = {}

using ‹G.gen-iapath V x q y› by (auto simp: G.gen-iapath-def)
ultimately show ?thesis using awalk ′ ‹G.gen-iapath V x q y› by (simp add:

G.gen-iapath-def G.apath-def)
qed
then have (q1 @ (u,v) # q2) = q
using ‹G.gen-iapath V x q y› ‹G.is-slim V › unfolding G.is-slim-def by metis

then show False unfolding q-decomp by simp
qed
then have (v,u) /∈ parcs G by (auto intro: G.arcs-symmetric)

define G ′ where G ′ = (|pverts = pverts G − {w},
parcs = {(u,v), (v,u)} ∪ (parcs G − {(u,w), (w,u), (v,w), (w,v)})|)

have mem-G ′: (u,v) ∈ parcs G ′ w /∈ pverts G ′ by (auto simp: G ′-def)

interpret pd-G ′: pair-fin-digraph G ′

proof
fix e assume A: e ∈ parcs G ′

have e ∈ parcs G ∧ e 6= (u, w) ∧ e 6= (w, u) ∧ e 6= (v, w) ∧ e 6= (w, v) =⇒
fst e 6= w

e ∈ parcs G ∧ e 6= (u, w) ∧ e 6= (w, u) ∧ e 6= (v, w) ∧ e 6= (w, v) =⇒ snd e
6= w

using out-arcs in-arcs by auto
with A uvw-arcs1 show fst e ∈ pverts G ′ snd e ∈ pverts G ′

using ‹u 6= w› ‹v 6= w› by (auto simp: G ′-def G.wellformed ′)
next
qed (auto simp: G ′-def arc-to-ends-def)

168

interpret spd-G ′: pair-pseudo-graph G ′

proof (unfold-locales, simp add: symmetric-def)
have sym {(u,v), (v,u)} sym (parcs G) sym {(u, w), (w, u), (v, w), (w, v)}

using G.sym-arcs by (auto simp: symmetric-def sym-def)
then have sym ({(u,v), (v,u)} ∪ (parcs G − {(u,w), (w,u), (v,w), (w,v)}))

by (intro sym-Un) (auto simp: sym-diff)
then show sym (parcs G ′) unfolding G ′-def by simp

qed

have card-G ′: n = card (pverts G ′ − V)
proof −

have pverts G − V = insert w (pverts G ′ − V)
using ‹w ∈ pverts G − V › by (auto simp: G ′-def)

then show ?thesis using ‹Suc n = card (pverts G − V)› mem-G ′ by simp
qed

have G-is-sd: G = subdivide G ′ (u,v) w (is - = ?sdG ′)
using ‹w ∈ pverts G − V › ‹(u,v) /∈ parcs G› ‹(v,u) /∈ parcs G› uvw-arcs1

uvw-arcs2
by (intro pair-pre-digraph.equality) (auto simp: G ′-def)

have gcg-sd: gen-contr-graph (subdivide G ′ (u,v) w) V = gen-contr-graph G ′ V
proof −

have V ⊆ pverts G
using ‹G.is-slim V › by (auto simp: G.is-slim-def verts3-def)

moreover
have verts3 G ′ = verts3 G

by (simp only: G-is-sd spd-G ′.verts3-subdivide[OF ‹(u,v) ∈ parcs G ′› ‹w /∈
pverts G ′›])

ultimately
have V : V ⊆ pverts G ′

using ‹w ∈ pverts G − V › by (auto simp: G ′-def)
with mem-G ′ show ?thesis by (rule spd-G ′.gcg-subdivide-eq)

qed

have is-slim-G ′: pd-G ′.is-slim V using ‹G.is-slim V › mem-G ′ ‹w /∈ V ›
unfolding G-is-sd by (rule spd-G ′.is-slim-if-subdivide)

with mem-G ′ have subdivision-pair (gen-contr-graph G ′ V) (subdivide G ′ (u, v)
w)

by (intro Suc card-G ′ subdivision-pair-intros) auto
then show ?case by (simp add: gcg-sd G-is-sd)

qed

lemma contr-is-subgraph-subdivision:
shows ∃H . subgraph (with-proj H) G ∧ subdivision-pair (contr-graph G) H

proof −
interpret sG: pair-graph slim by (rule pair-graph-slim)

169

have subdivision-pair (gen-contr-graph slim (verts3 G)) slim
by (rule sG.subdivision-gen-contr) (rule slim-is-slim)

then show ?thesis unfolding contr-graph-slim-eq by (blast intro: subgraph-slim)
qed

theorem kuratowski-contr :
fixes K :: ′a pair-pre-digraph
assumes subgraph-K : subgraph K G
assumes spd-K : pair-pseudo-graph K
assumes kuratowski: K3 ,3 (contr-graph K) ∨ K5 (contr-graph K)
shows ¬kuratowski-planar G

proof −
interpret spd-K : pair-pseudo-graph K by (fact spd-K)
obtain H where subgraph-H : subgraph (with-proj H) K

and subdiv-H :subdivision-pair (contr-graph K) H
by atomize-elim (rule spd-K .contr-is-subgraph-subdivision)

have grI :
∧

K . (K3 ,3 K ∨ K5 K) =⇒ graph K
by (auto simp: complete-digraph-def complete-bipartite-digraph-def)

from subdiv-H and kuratowski
have ∃K . subdivision-pair K H ∧ (K3 ,3 K ∨ K5 K) by blast
then have ∃K rev-K rev-H . subdivision (K , rev-K) (H , rev-H) ∧ (K3 ,3 K ∨

K5 K)
by (auto intro: grI pair-graphI-graph)

then show ?thesis using subgraph-H subgraph-K
unfolding kuratowski-planar-def by (auto intro: subgraph-trans)

qed

theorem certificate-characterization:
defines kuratowski ≡ λG :: ′a pair-pre-digraph. K3 ,3 G ∨ K5 G
shows kuratowski (contr-graph G)
←→ (∃H . kuratowski H ∧ subdivision-pair H slim ∧ verts3 G = verts3 slim)

(is ?L ←→ ?R)
proof

assume ?L
interpret S : pair-graph slim by (rule pair-graph-slim)
have subdivision-pair (contr-graph G) slim
proof −

have ∗: S .is-slim (verts3 G) by (rule slim-is-slim)
show ?thesis using contr-graph-slim-eq S .subdivision-gen-contr [OF ∗] by auto

qed
moreover
have verts3 slim = verts3 G (is ?l = ?r)
proof safe

fix v assume v ∈ ?l then show v ∈ ?r
using verts-slim-in-G verts3-slim-in-verts3 by auto

next
fix v assume v ∈ ?r
have v ∈ verts3 (contr-graph G)
proof −

170

have v ∈ verts (contr-graph G)
using ‹v ∈ ?r› by (auto simp: verts3-def gen-contr-graph-def)

then show ?thesis
using ‹?L› unfolding kuratowski-def by (auto simp: verts3-K33 verts3-K5)

qed
then have v ∈ verts3 (gen-contr-graph slim (verts3 G)) unfolding contr-graph-slim-eq

.
then have 2 < in-degree (gen-contr-graph slim (verts3 G)) v

unfolding verts3-def by auto
also have . . . ≤ in-degree slim v

using ‹v ∈ ?r› verts3-slim-in-verts3 by (auto intro: S .in-degree-contr)
finally show v ∈ verts3 slim

using verts3-in-slim-G ‹v ∈ ?r› unfolding verts3-def by auto
qed
ultimately show ?R using ‹?L› by auto

next
assume ?R
then have kuratowski (gen-contr-graph slim (verts3 G))

unfolding kuratowski-def
by (auto intro: K33-contractedI K5-contractedI)

then show ?L unfolding contr-graph-slim-eq .
qed

definition (in pair-pre-digraph) certify :: ′a pair-pre-digraph ⇒ bool where
certify cert ≡ let C = contr-graph cert in subgraph cert G ∧ (K3 ,3 C ∨ K5C)

theorem certify-complete:
assumes pair-pseudo-graph cert
assumes subgraph cert G
assumes ∃H . subdivision-pair H cert ∧ (K3 ,3 H ∨ K5 H)
shows certify cert
unfolding certify-def
using assms by (auto simp: Let-def intro: K33-contractedI K5-contractedI)

theorem certify-sound:
assumes pair-pseudo-graph cert
assumes certify cert
shows ¬kuratowski-planar G
using assms by (intro kuratowski-contr) (auto simp: certify-def Let-def)

theorem certify-characterization:
assumes pair-pseudo-graph cert
shows certify cert ←→ subgraph cert G ∧ verts3 cert = verts3 (pair-pre-digraph.slim

cert)
∧(∃H . (K3 ,3 (with-proj H) ∨ K5 H) ∧ subdivision-pair H (pair-pre-digraph.slim

cert))
(is ?L ←→ ?R)

by (auto simp only: simp-thms certify-def Let-def pair-pseudo-graph.certificate-characterization[OF
assms])

171

end

end

theory Weighted-Graph
imports

Digraph
Arc-Walk
Complex-Main

begin

18 Weighted Graphs
type-synonym ′b weight-fun = ′b ⇒ real

context wf-digraph begin

definition awalk-cost :: ′b weight-fun ⇒ ′b awalk ⇒ real where
awalk-cost f es = sum-list (map f es)

lemma awalk-cost-Nil[simp]: awalk-cost f [] = 0
unfolding awalk-cost-def by simp

lemma awalk-cost-Cons[simp]: awalk-cost f (x # xs) = f x + awalk-cost f xs
unfolding awalk-cost-def by simp

lemma awalk-cost-append[simp]:
awalk-cost f (xs @ ys) = awalk-cost f xs + awalk-cost f ys
unfolding awalk-cost-def by simp

end

end

theory Shortest-Path imports
Arc-Walk
Weighted-Graph
HOL−Library.Extended-Real

begin

19 Shortest Paths
context wf-digraph begin

172

definition µ where
µ f u v ≡ INF p∈ {p. awalk u p v}. ereal (awalk-cost f p)

lemma shortest-path-inf :
assumes ¬(u →∗ v)
shows µ f u v = ∞

proof −
have ∗: {p. awalk u p v} = {}

using assms by (auto simp: reachable-awalk)
show µ f u v = ∞ unfolding µ-def ∗

by (simp add: top-ereal-def)
qed

lemma min-cost-le-walk-cost:
assumes awalk u p v
shows µ c u v ≤ awalk-cost c p
using assms unfolding µ-def by (auto intro: INF-lower2)

lemma pos-cost-pos-awalk-cost:
assumes awalk u p v
assumes pos-cost:

∧
e. e ∈ arcs G =⇒ c e ≥ 0

shows awalk-cost c p ≥ 0
using assms by (induct p arbitrary: u) (auto simp: awalk-Cons-iff)

fun mk-cycles-path :: nat
⇒ ′b awalk ⇒ ′b awalk where

mk-cycles-path 0 c = []
| mk-cycles-path (Suc n) c = c @ (mk-cycles-path n c)

lemma mk-cycles-path-awalk:
assumes awalk u c u
shows awalk u (mk-cycles-path n c) u

using assms by (induct n) (auto simp: awalk-Nil-iff)

lemma mk-cycles-awalk-cost:
assumes awalk u p u
shows awalk-cost c (mk-cycles-path n p) = n ∗ awalk-cost c p

using assms proof (induct rule: mk-cycles-path.induct)
case 1 show ?case by simp

next
case (2 n p)
have awalk-cost c (mk-cycles-path (Suc n) p)

= awalk-cost c (p @ (mk-cycles-path n p))
by simp

also have . . . = awalk-cost c p + real n ∗ awalk-cost c p
proof (cases n)

case 0 then show ?thesis by simp
next

173

case (Suc n ′) then show ?thesis
using 2 by simp

qed
also have . . . = real (Suc n) ∗ awalk-cost c p

by (simp add: algebra-simps)
finally show ?case .

qed

lemma inf-over-nats:
fixes a c :: real
assumes c < 0
shows (INF (i :: nat). ereal (a + i ∗ c)) = − ∞

proof (rule INF-eqI)
fix i :: nat show − ∞ ≤ a + real i ∗ c by simp

next
fix y :: ereal
assume

∧
(i :: nat). i ∈ UNIV =⇒ y ≤ a + real i ∗ c

then have l-assm:
∧

i::nat. y ≤ a + real i ∗ c by simp

show y ≤ − ∞
proof (subst ereal-infty-less-eq, rule ereal-bot)

fix B :: real
obtain real-x where a + real-x ∗ c ≤ B using ‹c < 0 ›

by atomize-elim
(rule exI [where x=(− abs B −a)/c], auto simp: field-simps)

obtain x :: nat where a + x ∗ c ≤ B
proof (atomize-elim, intro exI [where x=nat(ceiling real-x)] conjI)

have real (nat(ceiling real-x)) ∗ c ≤ real-x ∗ c
using ‹c < 0 › by (simp add: real-nat-ceiling-ge)

then show a + nat(ceiling real-x) ∗ c ≤ B
using ‹a + real-x ∗ c ≤ B› by simp

qed
then show y ≤ ereal B
proof −

have ereal (a + x ∗ c) ≤ ereal B
using ‹a + x ∗ c ≤ B› by simp

with l-assm show ?thesis by (rule order-trans)
qed

qed
qed

lemma neg-cycle-imp-inf-µ:
assumes walk-p: awalk u p v
assumes walk-c: awalk w c w
assumes w-in-p: w ∈ set (awalk-verts u p)
assumes awalk-cost f c < 0
shows µ f u v = −∞

proof −
from w-in-p obtain xs ys where pv-decomp: awalk-verts u p = xs @ w # ys

174

by (auto simp: in-set-conv-decomp)

define q r where q = take (length xs) p and r = drop (length xs) p
define ext-p where ext-p n = q @ mk-cycles-path n c @ r for n

have ext-p-cost:
∧

n. awalk-cost f (ext-p n)
= (awalk-cost f q + awalk-cost f r) + n ∗ awalk-cost f c

using ‹awalk w c w›
by (auto simp: ext-p-def intro: mk-cycles-awalk-cost)

from q-def r-def have awlast u q = w
using pv-decomp walk-p by (auto simp: awalk-verts-take-conv elim!: awalkE)

moreover
from q-def r-def have awalk u (q @ r) v

using walk-p by simp
ultimately
have awalk u q w awalk w r v

∧
n. awalk w (mk-cycles-path n c) w

using walk-c
by (auto simp: intro: mk-cycles-path-awalk)

then have
∧

n. awalk u (ext-p n) v
unfolding ext-p-def by (blast intro: awalk-appendI)

then have {ext-p i|i. i ∈ UNIV } ⊆ {p. awalk u p v}
by auto

then have (INF p∈{p. awalk u p v}. ereal (awalk-cost f p))
≤ (INF p∈ {ext-p i|i. i ∈ UNIV }. ereal (awalk-cost f p))

by (auto intro: INF-superset-mono)
also have . . . = (INF i∈ UNIV . ereal (awalk-cost f (ext-p i)))

by (rule arg-cong[where f=Inf], auto)
also have . . . = − ∞ unfolding ext-p-cost

by (rule inf-over-nats[OF ‹awalk-cost f c < 0 ›])
finally show ?thesis unfolding µ-def by simp

qed

lemma walk-cheaper-path-imp-neg-cyc:
assumes p-props: awalk u p v
assumes less-path-µ: awalk-cost f p < (INF p∈ {p. apath u p v}. ereal (awalk-cost

f p))
shows ∃w c. awalk w c w ∧ w ∈ set (awalk-verts u p) ∧ awalk-cost f c < 0

proof −
define path-µ where path-µ = (INF p∈ {p. apath u p v}. ereal (awalk-cost f p))
then have awalk u p v and awalk-cost f p < path-µ

using p-props less-path-µ by simp-all
then show ?thesis
proof (induct rule: awalk-to-apath-induct)

case (path p) then have apath u p v by (auto simp: apath-def)
then show ?case using path.prems by (auto simp: path-µ-def dest: not-mem-less-INF)

next
case (decomp p q r s)
then obtain w where p-props: p = q @ r @ s awalk u q w awalk w r w awalk

175

w s v
by (auto elim: awalk-cyc-decompE)

then have awalk u (q @ s) v
using ‹awalk u p v› by (auto simp: awalk-appendI)

then have verts-ss: set (awalk-verts u (q @ s)) ⊆ set (awalk-verts u p)
using ‹awalk u p v› ‹p = q @ r @ s› by (auto simp: set-awalk-verts)

show ?case
proof (cases ereal (awalk-cost f (q @ s)) < path-µ)

case True then have ∃w c. awalk w c w ∧ w ∈ set (awalk-verts u (q @ s))
∧ awalk-cost f c < 0

by (rule decomp)
then show ?thesis using verts-ss by auto

next
case False
note ‹awalk-cost f p < path-µ›
also have path-µ ≤ awalk-cost f (q @ s)

using False by simp
finally have awalk-cost f r < 0 using ‹p = q @ r @ s› by simp
moreover
have w ∈ set (awalk-verts u q) using ‹awalk u q w› by auto
then have w ∈ set (awalk-verts u p)

using ‹awalk u p v› ‹awalk u q w› ‹p = q @ r @ s›
by (auto simp: set-awalk-verts)

ultimately
show ?thesis using ‹awalk w r w› by auto

qed
qed

qed

lemma (in fin-digraph) neg-inf-imp-neg-cyc:
assumes inf-mu: µ f u v = − ∞
shows ∃ p. awalk u p v ∧ (∃w c. awalk w c w ∧ w ∈ set (awalk-verts u p) ∧

awalk-cost f c < 0)
proof −

define path-µ where path-µ = (INF s∈{p. apath u p v}. ereal (awalk-cost f s))

have awalks-ne: {p. awalk u p v} 6= {}
using inf-mu unfolding µ-def by safe (simp add: top-ereal-def)

then have paths-ne: {p. apath u p v} ∼= {}
by (auto intro: apath-awalk-to-apath)

obtain p where apath u p v awalk-cost f p = path-µ
proof −

obtain p where p ∈ {p. apath u p v} awalk-cost f p = path-µ
using finite-INF-in[OF apaths-finite paths-ne, of awalk-cost f]

by (auto simp: path-µ-def)
then show ?thesis using that by auto

qed

176

then have path-µ 6= −∞ by auto
then have µ f u v < path-µ using inf-mu by simp
then obtain pw where p-def : awalk u pw v awalk-cost f pw < path-µ

by atomize-elim (auto simp: µ-def INF-less-iff)
then have ∃w c. awalk w c w ∧ w ∈ set (awalk-verts u pw) ∧ awalk-cost f c < 0

by (intro walk-cheaper-path-imp-neg-cyc) (auto simp: path-µ-def)
with ‹awalk u pw v› show ?thesis by auto

qed

lemma (in fin-digraph) no-neg-cyc-imp-no-neg-inf :
assumes no-neg-cyc:

∧
p. awalk u p v

=⇒ ¬(∃w c. awalk w c w ∧ w ∈ set (awalk-verts u p) ∧ awalk-cost f c < 0)
shows − ∞ < µ f u v

proof (intro ereal-MInfty-lessI notI)
assume µ f u v = − ∞
then obtain p where p-props: awalk u p v

and ex-cyc: ∃w c. awalk w c w ∧ w ∈ set (awalk-verts u p) ∧ awalk-cost f c <
0

by atomize-elim (rule neg-inf-imp-neg-cyc)
then show False using no-neg-cyc by blast

qed

lemma µ-reach-conv:
µ f u v < ∞ ←→ u →∗ v

proof
assume µ f u v < ∞
then have {p. awalk u p v} 6= {}

unfolding µ-def by safe (simp add: top-ereal-def)
then show u →∗ v by (simp add: reachable-awalk)

next
assume u →∗ v
then obtain p where p-props: apath u p v

by (metis reachable-awalk apath-awalk-to-apath)
then have {p} ⊆ {p. apath u p v} by simp
then have µ f u v ≤ (INF p∈ {p}. ereal (awalk-cost f p))

unfolding µ-def by (intro INF-superset-mono) (auto simp: apath-def)
also have . . . < ∞ by (simp add: min-def)
finally show µ f u v < ∞ .

qed

lemma awalk-to-path-no-neg-cyc-cost:
assumes p-props:awalk u p v
assumes no-neg-cyc: ¬ (∃w c. awalk w c w ∧ w ∈ set (awalk-verts u p) ∧

awalk-cost f c < 0)
shows awalk-cost f (awalk-to-apath p) ≤ awalk-cost f p

using assms
proof (induct rule: awalk-to-apath-induct)

case path then show ?case by (auto simp: awalk-to-apath.simps)
next

177

case (decomp p q r s)
from decomp(2 ,3) have is-awalk-cyc-decomp p (q,r ,s)

using awalk-cyc-decomp-has-prop[OF decomp(1)] by auto
then have decomp-props: p = q @ r @ s ∃w. awalk w r w by auto

have awalk-cost f (awalk-to-apath p) = awalk-cost f (awalk-to-apath (q @ s))
using decomp by (auto simp: step-awalk-to-apath[of - p - q r s])

also have . . . ≤ awalk-cost f (q @ s)
proof −

have awalk u (q @ s) v
using ‹awalk u p v› decomp-props by (auto dest!: awalk-ends-eqD)

then have set (awalk-verts u (q @ s)) ⊆ set (awalk-verts u p)
using ‹awalk u p v› ‹p = q @ r @ s›
by (auto simp add: set-awalk-verts)

then show ?thesis using decomp.prems by (intro decomp.hyps) auto
qed
also have . . . ≤ awalk-cost f p
proof −

obtain w where awalk u q w awalk w r w awalk w s v
using decomp by (auto elim: awalk-cyc-decompE)

then have w ∈ set (awalk-verts u q) by auto
then have w ∈ set (awalk-verts u p)

using ‹p = q @ r @ s› ‹awalk u p v› ‹awalk u q w›
by (auto simp add: set-awalk-verts)

then have 0 ≤ awalk-cost f r using ‹awalk w r w›
using decomp.prems by (auto simp: not-less)

then show ?thesis using ‹p = q @ r @ s› by simp
qed
finally show ?case .

qed

lemma (in fin-digraph) no-neg-cyc-reach-imp-path:
assumes reach: u →∗ v
assumes no-neg-cyc:

∧
p. awalk u p v

=⇒ ¬(∃w c. awalk w c w ∧ w ∈ set (awalk-verts u p) ∧ awalk-cost f c < 0)
shows ∃ p. apath u p v ∧ µ f u v = awalk-cost f p

proof −
define set-walks where set-walks = {p. awalk u p v}
define set-paths where set-paths = {p. apath u p v}

have set-paths 6= {}
proof −

obtain p where apath u p v
using reach by (metis apath-awalk-to-apath reachable-awalk)

then show ?thesis unfolding set-paths-def by blast
qed

have µ f u v = (INF p∈ set-walks. ereal (awalk-cost f p))
unfolding µ-def set-walks-def by simp

178

also have . . . = (INF p∈ set-paths. ereal (awalk-cost f p))
proof (rule antisym)

have awalk-to-apath ‘ set-walks ⊆ set-paths
unfolding set-walks-def set-paths-def
by (intro subsetI) (auto elim: apath-awalk-to-apath)

then have (INF p∈ set-paths. ereal (awalk-cost f p))
≤ (INF p∈ awalk-to-apath ‘ set-walks. ereal (awalk-cost f p))
by (rule INF-superset-mono) simp

also have . . . = (INF p∈ set-walks. ereal (awalk-cost f (awalk-to-apath p)))
by (simp add: image-comp)

also have . . . ≤ (INF p∈ set-walks. ereal (awalk-cost f p))
proof −

{ fix p assume p ∈ set-walks
then have awalk u p v by (auto simp: set-walks-def)
then have awalk-cost f (awalk-to-apath p) ≤ awalk-cost f p

using no-neg-cyc
using no-neg-cyc and awalk-to-path-no-neg-cyc-cost
by auto }

then show ?thesis by (intro INF-mono) auto
qed
finally show
(INF p∈ set-paths. ereal (awalk-cost f p))
≤ (INF p∈ set-walks. ereal (awalk-cost f p)) by simp

have set-paths ⊆ set-walks
unfolding set-paths-def set-walks-def by (auto simp: apath-def)

then show (INF p∈ set-walks. ereal (awalk-cost f p))
≤ (INF p∈ set-paths. ereal (awalk-cost f p))
by (rule INF-superset-mono) simp

qed
also have . . . ∈ (λp. ereal (awalk-cost f p)) ‘ set-paths

using apaths-finite ‹set-paths 6= {}›
by (intro finite-INF-in) (auto simp: set-paths-def)

finally show ?thesis
by (simp add: set-paths-def image-def)

qed

lemma (in fin-digraph) min-cost-awalk:
assumes reach: u →∗ v
assumes pos-cost:

∧
e. e ∈ arcs G =⇒ c e ≥ 0

shows ∃ p. apath u p v ∧ µ c u v = awalk-cost c p
proof −

have pc:
∧

u p v. awalk u p v =⇒ 0 ≤ awalk-cost c p
using pos-cost-pos-awalk-cost pos-cost by auto

from reach show ?thesis
by (rule no-neg-cyc-reach-imp-path) (auto simp: not-less intro: pc)

qed

179

lemma (in fin-digraph) pos-cost-mu-triangle:
assumes pos-cost:

∧
e. e ∈ arcs G =⇒ c e ≥ 0

assumes e-props: arc-to-ends G e = (u,v) e ∈ arcs G
shows µ c s v ≤ µ c s u + c e

proof cases
assume µ c s u = ∞ then show ?thesis by simp

next
assume µ c s u 6= ∞
then have {p. awalk s p u} 6= {}

unfolding µ-def by safe (simp add: top-ereal-def)
then have s →∗ u by (simp add: reachable-awalk)
with pos-cost
obtain p where p-props: apath s p u

and p-cost: µ c s u = awalk-cost c p
by (metis min-cost-awalk)

have awalk u [e] v
using e-props by (auto simp: arc-to-ends-def awalk-simps)

with ‹apath s p u›
have awalk s (p @ [e]) v

by (auto simp: apath-def awalk-appendI)
then have µ c s v ≤ awalk-cost c (p @ [e])

by (rule min-cost-le-walk-cost)
also have . . . ≤ awalk-cost c p + c e by simp
also have . . . ≤ µ c s u + c e using p-cost by simp
finally show ?thesis .

qed

lemma (in fin-digraph) mu-exact-triangle:
assumes v 6= s
assumes s →∗ v
assumes nonneg-arcs:

∧
e. e ∈ arcs G =⇒ 0 ≤ c e

obtains u e where µ c s v = µ c s u + c e and arc e (u,v)
proof −

obtain p where p-path: apath s p v
and p-cost: µ c s v = awalk-cost c p
using assms by (metis min-cost-awalk)

then obtain e p ′ where p ′-props: p = p ′ @ [e] using ‹v 6= s›
by (cases p rule: rev-cases) (auto simp: apath-def)

then obtain u where awalk s p ′ u awalk u [e] v
using ‹apath s p v› by (auto simp: apath-def)

then have mu-le: µ c s v ≤ µ c s u + c e and arc: arc e (u,v)
using nonneg-arcs by (auto intro!: pos-cost-mu-triangle simp: arc-to-ends-def

arc-def)

have µ c s u + c e ≤ ereal (awalk-cost c p ′) + ereal (c e)
using ‹awalk s p ′ u›
by (fast intro: add-right-mono min-cost-le-walk-cost)

also have . . . = awalk-cost c p using p ′-props by simp

180

also have . . . = µ c s v using p-cost by simp
finally
have µ c s v = µ c s u + c e using mu-le by auto
then show ?thesis using arc ..

qed

lemma (in fin-digraph) mu-exact-triangle-Ex:
assumes v 6= s
assumes s →∗ v
assumes

∧
e. e ∈ arcs G =⇒ 0 ≤ c e

shows ∃ u e. µ c s v = µ c s u + c e ∧ arc e (u,v)
using assms by (metis mu-exact-triangle)

lemma (in fin-digraph) mu-Inf-triangle:
assumes v 6= s
assumes

∧
e. e ∈ arcs G =⇒ 0 ≤ c e

shows µ c s v = Inf {µ c s u + c e | u e. arc e (u, v)} (is - = Inf ?S)
proof cases

assume s →∗ v
then obtain u e where µ c s v = µ c s u + c e arc e (u,v)

using assms by (metis mu-exact-triangle)
then have Inf ?S ≤ µ c s v by (auto intro: Complete-Lattices.Inf-lower)
also have . . . ≤ Inf ?S using assms(2)

by (auto intro!: Complete-Lattices.Inf-greatest pos-cost-mu-triangle
simp: arc-def arc-to-ends-def)

finally show ?thesis by simp
next

assume ¬s →∗ v
then have µ c s v = ∞ by (metis shortest-path-inf)
define S where S = ?S
show µ c s v = Inf S
proof cases

assume S = {}
then show ?thesis unfolding ‹µ c s v = ∞›

by (simp add: top-ereal-def)
next

assume S 6= {}
{ fix x assume x ∈ S

then obtain u e where arc e (u,v) and x-val: x = µ c s u + c e
unfolding S-def by auto

then have ¬s →∗ u using ‹¬ s →∗ v› by (metis reachable-arc-trans)
then have µ c s u + c e= ∞ by (simp add: shortest-path-inf)
then have x = ∞ using x-val by simp }

then have S = {∞} using ‹S 6= {}› by auto
then show ?thesis using ‹µ c s v = ∞› by (simp add: min-def)

qed
qed

end

181

end

theory Graph-Theory
imports

Digraph
Bidirected-Digraph
Arc-Walk

Digraph-Component
Digraph-Component-Vwalk
Digraph-Isomorphism
Pair-Digraph
Vertex-Walk
Subdivision

Euler
Kuratowski
Shortest-Path

begin

end

References

[1] J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory, Algorithms and
Applications. Springer, 2 edition, 2009.

[2] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer, 4 edition, 2010. http://diestel-graph-theory.com.

[3] F. Harary and R. Read. Is the null-graph a pointless concept? In R. Bari
and F. Harary, editors, Graphs and Combinatorics, volume 406 of Lecture
Notes in Mathematics, pages 37–44. Springer Berlin Heidelberg, 1974.

182

http://diestel-graph-theory.com

	Reflexive-Transitive Closure on a Domain
	Additional theorems for base libraries
	List

	NOMATCH simproc
	Digraphs
	Reachability
	Degrees of vertices
	Graph operations

	Bidirected Graphs
	Arc Walks
	Basic Lemmas
	Appending awalks
	Cycles
	Reachability
	Paths

	Digraphs without Parallel Arcs
	Path reversal for Pair Digraphs
	Subdividing Edges
	Bidirected Graphs

	Components of (Symmetric) Digraphs
	Compatible Graphs
	Basic lemmas
	The underlying symmetric graph of a digraph
	Subgraphs and Induced Subgraphs
	Induced subgraphs
	Unions of Graphs
	Maximal Subgraphs
	Connected and Strongly Connected Graphs
	Components

	Walks Based on Vertices
	Lemmas for Vertex Walks
	Isomorphisms of Digraphs
	Graph Invariants

	Permutation Domains
	Segments
	Lists of Powers
	Subdivision on Digraphs
	Subdivision on Pair Digraphs

	Euler Trails in Digraphs
	Trails and Euler Trails
	Arc Balance of Walks
	Closed Euler Trails
	Open euler trails

	Kuratowski Subgraphs
	Public definitions
	Inner vertices of a walk
	Progressing Walks
	Walks with Restricted Vertices
	Properties of subdivisions
	Pair Graphs
	Slim graphs
	Contraction Preserves Kuratowski-Subgraph-Property
	Final proof

	Weighted Graphs
	Shortest Paths

