Implementing the Goodstein Function in A-Calculus

Bertram Felgenhauer

March 17, 2025

Abstract

In this formalization, we develop an implementation of the Good-
stein function G in plain A-calculus, linked to a concise, self-contained
specification. The implementation works on a Church-encoded repre-
sentation of countable ordinals. The initial conversion to hereditary
base 2 is not covered, but the material is sufficient to compute the
particular value G(16), and easily extends to other fixed arguments.

Contents
Introduction 2
Specification 3
2.1 Hereditary base representation 3
2.2 The Goodstein function 4
Ordinals 4
3.1 Evaluation. o 5
3.2 Goodstein function and sequence 5
3.3 Properties of evaluation00 6
3.4 Arithmetic properties L. 6
Cantor normal form 7
4.1 Conversion to and from the ordinal type Ord 7
4.2 Evaluation. 8
4.3 Transfer of the Ord induction principle to C'. 8
4.4 Goodstein function and sequenceon C' 8
4.5 Properties 9
5 Hereditary base b representation 10
5.1 Uniqueness o 10
5.2 Correctness of stepC L. 11
5.3 Surjectivity of evalCo 11
5.4 Monotonicity of hbase 12
5.5 Conversion to and from nat 12

6 The Goodstein function revisited 13

7 Translation to M-calculus 13
7.1 Alternative: free theorems 14

1 Introduction

Given a number n and a base b, we can write n in hereditary base b, which
results from writing n in base b, and then each exponent in hereditary base b
again. For example, 7 in hereditary base 3 is 3' -2+ 1. Given the hereditary
base b representation of n, we can reinterpret it in base b + 1 by replacing
all occurrences of b by b+ 1.

The Goodstein sequence starting at n in base 2 is obtained by iteratively
taking a number in hereditary base b, reinterpreting it in base b + 1, and
subtracting 1. The next step is the same with b incremented by 1, and so
on. So starting for example at 4, we compute

4=2" 5 3% —1=26
26=3%2.2+3.24+2 5 42.24+4'.241.2-1=41
M1 =4%2.2+4+4". 241 552245241 -1=60

and so on. We stop when we reach 0. Goodstein’s theorem states that
this process always terminates [3]. This result is independent of Peano
Arithmetic, and is intimately connected to countable ordinals and the slow
growing hierarchy (e.g., the Hardy function) [2]. The length of the resulting
sequence is the Goodstein function, denoted by G(n). For example, G(3) = 6.

For this formalization, we are interested in implementing the Goodstein
function in A-calculus. More concretely, we want to define the value G(16)
(which is huge; for example, it exceeds Graham’s number), in order to bound
its Kolmogorov complexity. Our concrete measure of Kolmogorov complex-
ity is the program length in the Binary Lambda Calculus [4, 5]. It turns out
that we can define G(16) as follows, giving a complexity bound of 195 bits.

expw = (Azsl.ns(Azz.l (A.nzz)) (A 2.1 (M. fnz))z)
goodstein = (Anc.n
(A\z. x)
(Anm.n(Afz.m f(fx)))
(\fm. f Af wm £ (f (f 2))) m)
c)
Gis = (Ne. goodstein (e (e (e (e (A\z sl. 2))))) (A\x. x)) expw

We rely on a shallow embedding of the A-calculus throughout the formaliza-
tion, so it turns out that we cannot quite prove this claim in Isabelle/HOL;

the expression for Gig cannot be typed. However, we can prove that the
building blocks expw and goodstein work correctly in the sense that

o expwt (A\z sl 2) is the hereditary base 2 representation of 16; and

e goodstein ¢ n computes the length of a Goodstein sequence given that
the hereditary base c+1 representation of the c-th value in the sequence
is equal to n.

The remaining steps are easily verified by a human.

Contributions. Our main contributions are a concise specification of the
Goodstein function, another proof of Goodstein’s theorem, and establishing
the connection to A-calculus as already outlined.

Related work. There is already a formalization of Goodstein’s theorem
in the AFP entry on nested multisets [1], which comes with a formalization
of ordinal arithmetic. Our focus is different, since our goal is to obtain an
implementation of the Goodstein function in A-calculus. Most notably, the
intermediate type Ord that we use to represent ordinal numbers has far
more structure than the ordinals themselves. In particular it can represent
arbitrary trees; if we were to compute w + 1, 1 + w and w on this type, we
would get three different results. However, we will use the operations such
that 1 + w is never computed, keeping the connection to countable ordinals
intact. Proving this is a large, albeit hidden, part of our formalization.

Acknowledgement. John Tromp raised the question of a concise A-calculus
term computing G(16). He also provided feedback on a draft version of this
document.

2 Specification

theory Goodstein-Lambda
imports Main
begin

2.1 Hereditary base representation

We define a data type of trees and an evaluation function that sums siblings
and exponentiates with respect to the given base on nesting.

datatype C = C (unC: C list)
fun evalC where

evalCb (C[)) =0
| evalC b (C (x # xs)) = b evalC b z + evalC b (C zs)

value evalC 2 (C []) — 0

value evalC' 2 (C [C[]]) —2°=1

value evalC 2 (C [C [C []]]) — 2! =

value evalC 2 (C [C [}, C []]) — 2° +2° =2°.2 = 2; not in hereditary base 2

The hereditary base representation is characterized as trees (i.e., nested
lists) whose lists have monotonically increasing evaluations, with fewer than
b repetitions for each value. We will show later that this representation is
unique.

inductive-set hbase for b where
C]| € hbase b

|i# 0 = i< b= n € hbase b =
C ms € hbase b = (Am’. m' € set ms => evalC b n < evalC b m') =
C (replicate i n @ ms) € hbase b

We can convert to and from natural numbers as follows.

definition H2N where
H2N b n = evalC b n

As we will show later, H2N b restricted to hbase n is bijective if 2 < b, so
we can convert from natural numbers by taking the inverse.

definition N2H where
N2H b n = inv-into (hbase b) (H2N b) n

2.2 The Goodstein function

We define a function that computes the length of the Goodstein sequence
whose c-th element is g. = n. Termination will be shown later, thereby
establishing Goodstein’s theorem.

function (sequential) goodstein :: nat = nat = nat where
goodstein 0 n = 0
— we start counting at 1; also note that the initial base is ¢ + 1 and
— hereditary base 1 makes no sense, so we have to avoid this case

| goodstein ¢ 0 = ¢

| goodstein ¢ n = goodstein (c+1) (H2N (c+2) (N2H (c+1) n) — 1)
(proof)

abbreviation ¢ where
G n = goodstein (Suc 0) n

3 Ordinals

The following type contains countable ordinals, by the usual case distinction
into 0, successor ordinal, or limit ordinal; limit ordinals are given by their

fundamental sequence. Hereditary base b representations carry over to such
ordinals by replacing each occurrence of the base by w.

datatype Ord = Z | S Ord | L nat = Ord

Note that the following arithmetic operations are not correct for all ordinals.
However, they will only be used in cases where they actually correspond to
the ordinal arithmetic operations.

primrec addO where
addOn Z =n
| addO n (S m) =S (addO n m)
| addO n (L f) = L (Ai. addO n (f ©))

primrec mulO where

mulOn Z =7
| mulO n (S m) = addO (mulO n m) n
| mulO n (L f) = L (Ai. mulO n (f 7))

definition w where
w=1LAn. (S "n) 2

primrec expw where

expw Z =8 7
| expw (S n) = mulO (expw n) w
| expw (L f) = L (\i. expw (f 7))

3.1 Evaluation

Evaluating an ordinal number at base b is accomplished by taking the b-th
element of all fundamental sequences and interpreting zero and successor
over the natural numbers.

primrec evalO where

evalO b Z = 0
| evalO b (S n) = Suc (evalO b n)
| evalO b (L f) = evalO b (f b)

3.2 Goodstein function and sequence

We can define the Goodstein function very easily, but proving correctness
will take a while.

primrec goodsteinO where
goodsteinO ¢ Z = ¢
| goodsteinO ¢ (S n) = goodsteinO (¢c+1) n
| goodsteinO ¢ (L f) = goodsteinO ¢ (f (c+2))

primrec stepO where
stepO ¢ Z = 7
| stepO ¢ (Sn)=n

| stepO ¢ (L f) = stepO ¢ (f (¢+2))

We can compute a few values of the Goodstein sequence starting at 4.

definition ¢g40 where
940 n = fold stepO [1..<Suc n] ((expw ~ 8) Z)

value map (An. evalO (n+2) (g40 n)) [0..<10]
4, 26, 41, 60, 83, 109, 139, 173, 211, 253]

3.3 Properties of evaluation

lemma evalO-addO [simp]:
evalO b (addO n m) = evalO b n + evalO b m

{proof)

lemma evalO-mulO [simp]:
evalO b (mulO n m) = evalO b n * evalO b m

{proof)

lemma evalO-n [simp]:
evalO b ((S 7" n) Z) =n
{proof)

lemma evalO-w [simp]:
evalO b w = b

(proof)

lemma evalO-expw [simp]:
evalO b (expw n) = b (evalO b n)
{proof)

Note that evaluation is useful for proving that Ord values are distinct:

notepad begin

(proof)
end

3.4 Arithmetic properties

lemma addO-Z [simp]:
addO Zn =n
{proof)

lemma addO-assoc [simp]:
addO n (addO m p) = addO (addO n m) p
{proof)

lemma mul0-distrib [simp]:
mulO n (addO p q) = addO (mulO n p) (mulO n q)
(proof)

lemma mulO-assoc [simp]:
mulO n (mulO m p) = mulO (mulO n m) p

{proof)

lemma expw-addO [simp]:
expw (addO n m) = mulO (expw n) (expw m)
{proof)

4 Cantor normal form

The previously introduced tree type C can be used to represent Cantor
normal forms; they are trees (evaluated at base w) such that siblings are in
non-decreasing order. One can think of this as hereditary base w. The plan
is to mirror selected operations on ordinals in Cantor normal forms.

4.1 Conversion to and from the ordinal type Ord

fun C20 where
C20 (C))=2Z2
| C20 (C (n # ns)) = addO (C20 (C ns)) (expw (C20 n))

definition 02C where
02C = inv C20

We show that C20 is injective, meaning the inverse is unique.

lemma addO-expw-ing:
assumes addO n (expw m) = addO n' (expw m’)
shows n = n’ and m = m’

(proof)

lemma C20-ing:
C20n=C20m = n=m
(proof)

lemma 02C-C20 [simp]:
02C (C20 n) =n

(proof)

lemma 02C-Z [simp]:
0207 = C |
(proof)

lemma C20-replicate:
C20 (C (replicate i n)) = mulO (expw (C20 n)) ((S " 1) Z)
(proof)

lemma C20-app:

C20 (C (zs @ ys)) = addO (C20 (C ys)) (C20 (C xs))
{proof)

4.2 Evaluation

lemma evalC-def":
evalC b n = evalO b (C20 n)

(proof)

lemma evalC-app [simpl:
evalC b (C (ns Q ms)) = evalC b (C ns) + evalC b (C ms)
{proof)

lemma evalC-replicate [simp]:
evalC b (C (replicate ¢ n)) = ¢ x evalC b (C [n])
{proof)

4.3 Transfer of the Ord induction principle to C

fun funC where — funC computes the fundamental sequence on C'
funC (C []) = (Xi. [C[]])

| funC (C (C [] # ns)) = (Ni. replicate i (C ns))

| funC (C (n # ns)) = (Ai. [C (funC n i @ ns)])

lemma C20-cons:
C20 (C (n # ns)) =
(if n = C [] then S (C20 (C ns)) else L (Ai. C20 (C (funC n i Q ns))))
(proof)

lemma C-Ord-induct:
assumes P (C [])
and Ans. P (Cns) = P (C (C [# ns))
and An ns ms. (Ai. P (C (funC (C (n # ns)) ¢ Q ms))) =
P (C (C (n # ns) # ms))
shows P n
(proof)

4.4 Goodstein function and sequence on C

function (domintros) goodsteinC where
goodsteinC ¢ (C'[]) = ¢
| goodsteinC ¢ (C (C [] # ns)) = goodsteinC (c+1) (C ns)
| goodsteinC ¢ (C (C (n # ns) # ms)) =
goodsteinC ¢ (C (funC (C (n # ns)) (c+2) Q ms))
{proof)

termination

(proof)

lemma goodsteinC-def:

goodsteinC ¢ n = goodsteinO ¢ (C20 n)
{proof)

function (d ommtros) stepC where
stepC ¢ (C] C]
| stepC ¢ (C [| # ns)) = C ns
| stepC c (C (n # ns) # ms)) =
stepC ¢ (C (funC (C (n # ns)) (Suc (Suc ¢)) Q ms))
{proof)

) =
(C
(C
C(

termination

(proof)

definition ¢4C where
g4C n = fold stepC [1..<Suc n] (C [C [C [C)

value map (An. evalC (n+2) (g4C n)) [0..<10]
4, 26, 41, 60, 83, 109, 139, 173, 211, 253]

4.5 Properties

lemma stepC-def":
stepC ¢ n = 02C (stepO ¢ (C20 n))
(proof)

lemma funC-ne [simp]:
funC m (Suc n) # ||
{proof)

lemma evalC-funC' [simp]:
evalC b (C (funC n b)) = evalC b (C [n])

{proof)

lemma stepC-app [simp]:
n# C[] = stepC c (C (unC n Q ns)) = C (unC (stepC ¢ n) Q ns)
(proof)

lemma stepC-cons [simp]:
zls 7éf[]> = stepC ¢ (C' (n # ns)) = C (unC (stepC ¢ (C [n])) Q ns)
proo

lemma stepC-dec:

n # C [| = Suc (evalC (Suc (Suc ¢)) (stepC ¢ n)) = evalC (Suc (Suc ¢)) n
{proof)

lemma stepC-dec’:
n# C[| = evalC (c+3) (stepC ¢ n) < evalC (c+3) n
(proof)

5 Hereditary base b representation

We now turn to properties of the hbase b subset of trees.

5.1 Uniqueness

We show uniqueness of the hereditary base representation by showing that
evalC' b restricted to hbase b is injective.

lemma hbasel2:
i< b= n € hbase b = C'm € hbase b =
(Am’. m’ € set m = evalC' b n < evalC b m') =
C (replicate i n @ m) € hbase b

{proof)

lemmas hbase-singletonl =
hbase.intros(2)[of 1 Suc (Suc b) for b, OF - - - hbase.intros(1), simplified]

lemma hbase-hd:
C ns € hbase b => ns # [| = hd ns € hbase b

{proof)

lemmas hbase-hd’ [dest] = hbase-hd[of n # ns for n ns, simplified]

lemma hbase-tl:
C ns € hbase b = ns # [| = C (¢l ns) € hbase b

{proof)

lemmas hbase-tl’ [dest] = hbase-tl[of n # ns for n ns, simplified)

lemma hbase-elt [dest]:
C ns € hbase b = n € set ns =—> n € hbase b

(proof)

lemma evalC-sum-list:
evalC b (C ns) = sum-list (map (An. b evalC b n) ns)

{proof)

lemma sum-list-replicate:
sum-list (replicate n z) = n x x
(proof)

lemma base-red:

fixes b :: nat

assumes n: An’. n' € setns=n<n'i<bi#0

and m: Am’. m' € set ms = m<m’'j<bj#0

and s: ¢ * b n + sum-list (map (An. b"n) ns) = j * b"m + sum-list (map (An.
b7n) ms)

shows i =j A n=m

10

{proof)

lemma evalC-inj-on-hbase:
n € hbase b = m € hbase b = evalC' b n = evalCbm = n=m

(proof)

5.2 Correctness of stepC

We show that stepC' ¢ preserves hereditary base ¢ + 2 representations.
In order to cover intermediate results produced by stepC, we extend the
hereditary base representation to allow the least significant digit to be equal
to b, which essentially means that we may have an extra sibling in front on
every level.

inductive-set hbase-ext for b where
n € hbase b = n € hbase-ext b

| n € hbase-ext b =
Cm € hbase b = (Am’. m’ € set m = evalC b n < evalC b m') =
C (n # m) € hbase-ext b

lemma hbase-ext-hd’ [dest]:
C (n # ns) € hbase-ext b = n € hbase-ext b

{proof)

lemma hbase-ext-tl:
C ns € hbase-ext b = ns # [| = C (tl ns) € hbase b

{proof)
lemmas hbase-ext-tl’ [dest] = hbase-ext-tl[of n # ns for n ns, simplified)

lemma hbase-funC'
c# 0 = C (n # ns) € hbase-ext (Suc ¢) =
C (funC n (Suc ¢) @Q ns) € hbase-ext (Suc c)
(proof)

lemma stepC-sound:
n € hbase-ext (Suc (Suc ¢)) = stepC ¢ n € hbase (Suc (Suc c))

(proof)

5.3 Surjectivity of evalC

Note that the base must be at least 2.

lemma evalC-surjective:
In’ € hbase (Suc (Suc b)). evalC (Suc (Suc b)) n' =n

(proof)

11

5.4 Monotonicity of hbase

Here we show that every hereditary base b number is also a valid hereditary
base b + 1 number. This is not immediate because we have to show that
monotonicity of siblings is preserved.

lemma hbase-evalC-mono:
assumes n € hbase b m € hbase b evalC b n < evalC b m
shows evalC (Suc b) n < evalC (Suc b) m

(proof)

lemma hbase-mono:
n € hbase b => n € hbase (Suc b)

(proof)

5.5 Conversion to and from nat

We have previously defined H2N b = evalC' b and N2H b as its inverse. So
we can use the injectivity and surjectivity of evalC b for simplification.

lemma N2H-inv:
n € hbase b = N2H b (H2N b n) = n

(proof)

lemma H2N-inv:
H2N (Suc (Suc b)) (N2H (Suc (Suc b)) n) = n
{proof)

lemma N2H-eql:
n € hbase (Suc (Suc b)) =
H2N (Suc (Suc b)) n = m = N2H (Suc (Suc b)) m = n
(proof)

lemma N2H-nel:
n € hbase (Suc (Suc b)) =
H2N (Suc (Suc b)) n # m = N2H (Suc (Suc b)) m # n

{proof)

lemma N2H-0 [simp]:
N2H (Suc (Suc ¢)) 0 = C |
{proof)

lemma N2H-nz [simp:
0 < n = N2H (Suc (Suc ¢)) n # C ||
(proof)

12

6 The Goodstein function revisited

We are now ready to prove termination of the Goodstein function goodstein
as well as its relation to goodsteinC and goodsteinO.

lemma goodstein-auz:
goodsteinC' (Suc ¢) (N2H (Suc (Suc ¢)) (Suc n)) =
goodsteinC (c+2) (N2H (c¢+3) (H2N (c+8) (N2H (c+2) (n+1)) — 1))
(proof)

termination goodstein

{(proof)

lemma goodstein-def":
¢ # 0 = goodstein ¢ n = goodsteinC ¢ (N2H (c+1) n)
{proof)

lemma goodstein-impl:
¢ # 0 = goodstein ¢ n = goodsteinO ¢ (C20 (N2H (c¢+1) n))
— but note that N2H is not executable as currently defined

{proof)

lemma goodstein-16:
G 16 = goodsteinO 1 (expw (expw (expw (expw Z))))
(proof)

7 Translation to A-calculus

We define Church encodings for nat and Ord. Note that we are basically in
a Hindley-Milner type system, so we cannot use a proper polymorphic type.
We can still express Church encodings as folds over values of the original
type.

abbreviation Zy where Zny = (s 2. 2)
abbreviation Sy where Sy = (An s z. s (n s 2))

primrec fold-nat («(-)n>) where
(O)n = ZN
| (Suc n)y = Sy (n)n

lemma oney:
(IYy = (Mz.)
(proof)

abbreviation Zp where Zp = (Az s l. 2)
abbreviation Sp where So = (Anzsl. s (nzsl))
abbreviation Lo where Lo = (A\fzsl. 1 (Ai. fizs]l))

primrec fold-Ord («(-)o») where

13

(Z)o = Zo
| (S n)o = So (n)o
| (L fo = Lo (M. (fi)o)
The following abbreviations and lemmas show how to implement the arith-
metic functions and the Goodstein function on a Church-encoded Ord in
lambda calculus.

abbreviation (input) addo where
addo nm=Azsl.m(nzsl) sl

lemma addp:
(addO n m)o = addo (n)o (Mo
{proof)

abbreviation (input) mulo where
mulo nm = Azsl.mz(Am.nmsl)l)

lemma mulp:
(mulO n mYo = mulp (n)o (M)o
(proof)

abbreviation (input) wo where
wo = Azsl. I (An. (n)n s 2))

lemma wp:
<w>o = Wo

(proof)

abbreviation (input) expwo where
expwo n = (Azsl.ns Az z. I (An. (n)y z2) (Afz. 1 (An. fnz))z)

lemma expwo:
(ezpw n)o = ezpwo (n)o
(proof)

abbreviation (input) goodsteino where
goodsteing = (Acn. n (Az. z) Anm.n (m+ 1)) Afm. f(m+ 2) m) ¢

lemma goodsteing:
goodsteinO ¢ n = goodsteino ¢ (n)o

(proof)

Note that modeling Church encodings with folds is still limited. For example,
the meaningful expression (n)x expwo Zo cannot be typed in Isabelle/HOL,
as that would require rank-2 polymorphism.

7.1 Alternative: free theorems

The following is essentially the free theorem for Church-encoded Ord values.

14

lemma freeOrd:
assumes An. h (sn) = s’ (hn)and Af. h (I f) =1 (Ni. h (f1i))
shows h ((n)o zs1) = (n)o (hz) s" I
{proof)

Each of the following proofs first states a naive definition of the correspond-
ing function (which is proved correct by induction), from which we then
derive the optimized version using the free theorem, by (conditional) rewrit-
ing (without induction).

lemma addo”:
(addO n m)o = addp (n)o (Mo
(proof)

lemma mulp”
(mulO n m)o = mulo (n)o (M)o
(proof)

lemma expwo”:
(ezpw n)o = ezpwo (n)o
(proof)

end

References

[1] J. C. Blanchette, M. Fleury, and D. Traytel. Formalization of nested
multisets, hereditary multisets, and syntactic ordinals. Archive of For-
mal Proofs, Nov. 2016. http://isa-afp.org/entries/Nested Multisets
Ordinals.html, Formal proof development.

[2] E. A. Cichon. A short proof of two recently discovered independence
results using recursion theoretic methods. Proceedings of the American
Mathematical Society, 87:704-706, Apr. 1983. doi:10.2307/2043364.

[3] R. L. Goodstein. On the restricted ordinal theorem. Journal of Symbolic
Logic, 9:33-41, 1944. doi:10.2307/2268019.

[4] J. Tromp. Binary lambda calculus. https://tromp.github.io/cl/Binary
lambda_ calculus.html.

[5] J. Tromp. Binary lambda calculus and combinatory logic. In C. S.
Calude, editor, Randomness And Complexity, from Leibniz To Chaitin,
pages 237-260. World Scientific Publishing Company, Oct. 2008.

15

http://isa-afp.org/entries/Nested_Multisets_Ordinals.html
http://isa-afp.org/entries/Nested_Multisets_Ordinals.html
https://dx.doi.org/10.2307/2043364
https://dx.doi.org/10.2307/2268019
https://tromp.github.io/cl/Binary_lambda_calculus.html
https://tromp.github.io/cl/Binary_lambda_calculus.html

	Introduction
	Specification
	Hereditary base representation
	The Goodstein function

	Ordinals
	Evaluation
	Goodstein function and sequence
	Properties of evaluation
	Arithmetic properties

	Cantor normal form
	Conversion to and from the ordinal type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Ord
	Evaluation
	Transfer of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Ord induction principle to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 C
	Goodstein function and sequence on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 C
	Properties

	Hereditary base 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 b representation
	Uniqueness
	Correctness of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 stepC
	Surjectivity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 evalC
	Monotonicity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hbase
	Conversion to and from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat

	The Goodstein function revisited
	Translation to -calculus
	Alternative: free theorems

