From Abstract to Concrete Gödel's Incompleteness Theorems—Part I Andrei Popescu Dmitriy Traytel March 17, 2025 ## Abstract We validate an abstract formulation of Gödel's First and Second Incompleteness Theorems from a separate AFP entry by instantiating them to the case of *finite sound extensions* of the Hereditarily Finite (HF) Set theory, i.e., FOL theories extending the HF Set theory with a finite set of axioms that are sound in the standard model. The concrete results had been previously formalised in an AFP entry by Larry Paulson; our instantiation reuses the infrastructure developed in that entry. ## Contents 1 The Instantiation 1 ## 1 The Instantiation ``` definition Fvars t = \{a :: name. \neg atom \ a \ \sharp \ t\} \mathbf{lemma}\ \mathit{Fvars_tm_simps}[\mathit{simp}] : Fvars\ Zero = \{\} Fvars (Var \ a) = \{a\} Fvars\ (Eats\ x\ y) = Fvars\ x \cup Fvars\ y \langle proof \rangle lemma finite_Fvars_tm[simp]: \mathbf{fixes}\ t::tm shows finite (Fvars t) \langle proof \rangle \mathbf{lemma} \ \mathit{Fvars_fm_simps}[\mathit{simp}] : Fvars (x \ IN \ y) = Fvars \ x \cup Fvars \ y Fvars\ (x\ EQ\ y) = Fvars\ x \cup Fvars\ y Fvars\ (A\ OR\ B) = Fvars\ A \cup Fvars\ B Fvars\ (A\ AND\ B) = Fvars\ A\cup Fvars\ B Fvars\ (A\ IMP\ B) = Fvars\ A \cup Fvars\ B Fvars\ Fls = \{\} Fvars\ (Neg\ A) = Fvars\ A Fvars\ (Ex\ a\ A) = Fvars\ A - \{a\} Fvars\ (All\ a\ A) = Fvars\ A - \{a\} \langle proof \rangle \mathbf{lemma}\ \mathit{finite}_\mathit{Fvars}_\mathit{fm}[\mathit{simp}] \colon fixes A :: fm shows finite (Fvars A) ``` ``` \langle proof \rangle lemma subst_tm_subst_tm[simp]: x \neq y \Longrightarrow atom \ x \sharp u \Longrightarrow subst \ y \ u \ (subst \ x \ t \ v) = subst \ x \ (subst \ y \ u \ t) \ (subst \ y \ u \ v) \langle proof \rangle lemma subst_fm_subst_fm[simp]: x \neq y \Longrightarrow atom \ x \ \sharp \ u \Longrightarrow (A(x:=t))(y:=u) = (A(y:=u))(x:=subst \ y \ u \ t) \langle proof \rangle lemma Fvars_ground_aux: Fvars\ t \subseteq B \Longrightarrow ground_aux\ t\ (atom\ `B) lemma ground_Fvars: ground t \longleftrightarrow Fvars \ t = \{\} \langle proof \rangle lemma Fvars_ground_fm_aux: Fvars\ A \subseteq B \Longrightarrow ground_fm_aux\ A\ (atom\ `B) lemma\ ground_fm_Fvars:\ ground_fm\ A \longleftrightarrow Fvars\ A = \{\} \langle proof \rangle interpretation \ Generic_Syntax \ where var = UNIV :: name set and trm = UNIV :: tm set and fmla = UNIV :: fm \ set and Var = Var and FvarsT = Fvars and substT = \lambda t u x. subst x u t and Fvars = Fvars and subst = \lambda A \ u \ x. \ subst_fm \ A \ x \ u \langle proof \rangle lemma coding_tm_Fvars_empty[simp]: coding_tm \ t \Longrightarrow Fvars \ t = \{\} \langle proof \rangle \mathbf{lemma} \ \mathit{Fvars_empty_ground}[\mathit{simp}] \colon \mathit{Fvars} \ t = \{\} \Longrightarrow \mathit{ground} \ t interpretation \ Syntax_with_Numerals \ where var = UNIV :: name set and trm = UNIV :: tm set and fmla = UNIV :: fm \ set and num = \{t. ground t\} and Var = Var and FvarsT = Fvars and substT = \lambda t u x. subst x u t and Fvars = Fvars and subst = \lambda A \ u \ x. \ subst_fm \ A \ x \ u \langle proof \rangle declare FvarsT_num[simp del] {\bf interpretation}\ \mathit{Deduct2_with_False}\ {\bf where} var = UNIV :: name set and trm = UNIV :: tm set and fmla = UNIV :: fm \ set and num = \{t. ground t\} ``` ``` and Var = Var and FvarsT = Fvars and substT = \lambda t \ u \ x. \ subst \ x \ u \ t and Fvars = Fvars and subst = \lambda A \ u \ x. \ subst \ fm \ A \ x \ u and eql = (EQ) and cnj = (AND) and imp = (IMP) and all = All and exi = Ex and fls = Fls and prv = (\vdash) \{\} and bprv = (\vdash) \{\} \langle proof \rangle interpretation HBL1 where var = UNIV :: name set and trm = UNIV :: tm set and fmla = UNIV :: fm \ set and num = \{t. ground t\} and Var = Var and FvarsT = Fvars and substT = \lambda t \ u \ x. \ subst \ x \ u \ t and Fvars = Fvars and subst = \lambda A \ u \ x. \ subst_fm \ A \ x \ u and eql = (EQ) and cnj = (AND) and imp = (IMP) and all = All and exi = Ex and prv = (\vdash) \{\} and bprv = (\vdash) \{\} \mathbf{and}\ \mathit{enc} = \mathit{quot} and P = PfP (Var xx) \langle proof \rangle interpretation Goedel Form where var = UNIV :: name set and trm = UNIV :: tm set and fmla = UNIV :: fm \ set and num = \{t. ground t\} and Var = Var and FvarsT = Fvars and substT = \lambda t \ u \ x. \ subst \ x \ u \ t and Fvars = Fvars and subst = \lambda A \ u \ x. \ subst_fm \ A \ x \ u and eql = (EQ) and cnj = (AND) and imp = (IMP) and all = All and exi = Ex and fls = Fls and prv = (\vdash) \{\} and bprv = (\vdash) \{\} and enc = quot and S = KRP (quot (Var xx)) (Var xx) (Var yy) and P = PfP (Var xx) \langle proof \rangle ``` ``` interpretation g2: Goedel_Second_Assumptions where var = \mathit{UNIV} :: \mathit{name set} and trm = UNIV :: tm set and fmla = UNIV :: fm set and num = \{t. ground t\} and Var = Var \mathbf{and}\ \mathit{Fvars} T = \mathit{Fvars} and substT = \lambda t \ u \ x. \ subst \ x \ u \ t \mathbf{and}\ \mathit{Fvars} = \mathit{Fvars} \mathbf{and}\ \mathit{subst} = \lambda A\ \mathit{u}\ \mathit{x}.\ \mathit{subst_fm}\ A\ \mathit{x}\ \mathit{u} and eql = (EQ) and cnj = (AND) and imp = (IMP) and all = All and exi = Ex and fls = Fls and prv = (\vdash) \{\} and bprv = (\vdash) \{\} and enc = quot and S = KRP (quot (Var xx)) (Var xx) (Var yy) and P = PfP(Var xx) \langle proof \rangle theorem Goedel_II: \neg \{\} \vdash Fls \Longrightarrow \neg \{\} \vdash neg (PfP «Fls») \langle proof \rangle lemma ground_fm_PrfP[simp]: ground_fm \ (PrfP \ s \ k \ t) \longleftrightarrow ground \ s \land ground \ k \land ground \ t \langle proof \rangle lemma Fvars_HPair[simp]: Fvars\ (HPair\ t\ u) = Fvars\ t\cup Fvars\ u \langle proof \rangle lemma ground_HPair[simp]: ground (HPair t u) \longleftrightarrow ground t \land ground u interpretation dwfd: Deduct2_with_False_Disj where var = UNIV :: name set \mathbf{and}\ trm = \mathit{UNIV} :: tm\ \mathit{set} and fmla = UNIV :: fm \ set and num = \{t. ground t\} and Var = Var and FvarsT = Fvars and substT = \lambda t \ u \ x. \ subst \ x \ u \ t and Fvars = Fvars and subst = \lambda A \ u \ x. \ subst_fm \ A \ x \ u and eql = (EQ) and cnj = (AND) and dsj = (OR) and imp = (IMP) and all = All and exi = Ex and fls = Fls and prv = (\vdash) \{\} and bprv = (\vdash) \{\} \langle proof \rangle ``` ``` interpretation \ Minimal_Truth_Soundness \ where var = \mathit{UNIV} :: \mathit{name set} and trm = UNIV :: tm set and fmla = UNIV :: fm set and num = \{t. ground t\} and Var = Var and FvarsT = Fvars and substT = \lambda t \ u \ x. \ subst \ x \ u \ t \mathbf{and}\ \mathit{Fvars} = \mathit{Fvars} \mathbf{and}\ \mathit{subst} = \lambda A\ \mathit{u}\ \mathit{x}.\ \mathit{subst_fm}\ A\ \mathit{x}\ \mathit{u} and eql = (EQ) and cnj = (AND) and dsj = (OR) and imp = (IMP) and all = All and exi = Ex and fls = Fls and prv = (\vdash) \{\} and isTrue = eval_fm \ e\theta \langle proof \rangle lemma neg_Neg: \{\} \vdash neg \varphi IFF Neg \varphi \langle proof \rangle \mathbf{lemma} \ ground_aux_mono: \ A \subseteq B \Longrightarrow ground_aux \ t \ A \Longrightarrow ground_aux \ t \ B interpretation g1: Goedel_Form_Minimal_Truth_Soundness_HBL1iff_prv_Compl_Pf_Classical where var = \mathit{UNIV} :: \mathit{name set} and trm = UNIV :: tm set and fmla = UNIV :: fm \ set and num = \{t. ground t\} and Var = Var and FvarsT = Fvars and substT = \lambda t u x. subst x u t and Fvars = Fvars and subst = \lambda A \ u \ x. \ subst_fm \ A \ x \ u and eql = (EQ) and cnj = (AND) and dsj = (OR) and imp = (IMP) and all = All and exi = Ex and fls = Fls and prv = (\vdash) \{\} and bprv = (\vdash) \{\} and enc = quot and S = KRP (quot (Var xx)) (Var xx) (Var yy) and P = PfP (Var xx) and isTrue = eval_fm \ e0 and Pf = Ex \ xx' \ (Ex \ yy' \ (Var \ yy \ EQ \ HPair \ (Var \ xx') \ (Var \ yy') \ AND \ PrfP \ (Var \ xx') \ (Var \ yy') \ (Var \ yy') xx))) \langle proof \rangle theorem Goedel_I: \exists \varphi. \neg \{\} \vdash \varphi \land \neg \{\} \vdash Neg \varphi \land eval_fm \ e0 \varphi ``` ``` \langle proof \rangle ``` The following interpretation is redundant, because Goedel_Form_Minimal_Truth_Soundness_HBL1iff_prv_Compl_(interpreted above) is a sublocale of Goedel_Form_Classical_HBL1_rev_prv_Minimal_Truth_Soundness_TIP. However, the latter requires less infrastructure (no Pf formula). The definition of is True prevents Isabelle from noticing that the locale has already been interpreted via the above g1 interpretation of $Goedel_Form_Minimal_Truth_Soundness_HBL1iff_prv_Compl_Pf_Classical.$ ``` \begin{array}{ll} \textbf{definition} \ is True \ \textbf{where} \\ is True = eval_fm \ e\theta \end{array} ``` ``` interpretation q1': Goedel_Form_Classical_HBL1_rev_prv_Minimal_Truth_Soundness_TIP where var = \mathit{UNIV} :: \mathit{name} \; \mathit{set} \mathbf{and}\ trm = \mathit{UNIV} :: \mathit{tm}\ \mathit{set} and fmla = UNIV :: fm \ set and num = \{t. ground t\} and Var = Var and FvarsT = Fvars and substT = \lambda t \ u \ x. \ subst \ x \ u \ t and Fvars = Fvars \mathbf{and}\ \mathit{subst} = \lambda A\ u\ x.\ \mathit{subst_fm}\ A\ x\ u and eql = (EQ) and cnj = (AND) and dsj = (OR) and imp = (IMP) and all = All and exi = Ex and fls = Fls and prv = (\vdash) \{\} and bprv = (\vdash) \{\} and enc = quot and S = KRP (quot (Var xx)) (Var xx) (Var yy) and P = PfP (Var xx) and isTrue = isTrue theorem Goedel_I': \exists \varphi. \neg \{\} \vdash \varphi \land \neg \{\} \vdash Neg \varphi \land isTrue \varphi ```