
From Abstract to Concrete Gödel’s Incompleteness
Theorems—Part I

Andrei Popescu Dmitriy Traytel

March 17, 2025

Abstract
We validate an abstract formulation of Gödel’s First and Second Incompleteness Theo-

rems from a separate AFP entry by instantiating them to the case of finite sound extensions
of the Hereditarily Finite (HF) Set theory, i.e., FOL theories extending the HF Set theory
with a finite set of axioms that are sound in the standard model. The concrete results had
been previously formalised in an AFP entry by Larry Paulson; our instantiation reuses the
infrastructure developed in that entry.

Contents
1 The Instantiation 1

1 The Instantiation

definition Fvars t = {a :: name. ¬ atom a ] t}

lemma Fvars_tm_simps[simp]:
Fvars Zero = {}
Fvars (Var a) = {a}
Fvars (Eats x y) = Fvars x ∪ Fvars y
by (auto simp: Fvars_def fresh_at_base(2 ))

lemma finite_Fvars_tm[simp]:
fixes t :: tm
shows finite (Fvars t)
by (induct t rule: tm.induct) auto

lemma Fvars_fm_simps[simp]:
Fvars (x IN y) = Fvars x ∪ Fvars y
Fvars (x EQ y) = Fvars x ∪ Fvars y
Fvars (A OR B) = Fvars A ∪ Fvars B
Fvars (A AND B) = Fvars A ∪ Fvars B
Fvars (A IMP B) = Fvars A ∪ Fvars B
Fvars Fls = {}
Fvars (Neg A) = Fvars A
Fvars (Ex a A) = Fvars A − {a}
Fvars (All a A) = Fvars A − {a}
by (auto simp: Fvars_def fresh_at_base(2 ))

lemma finite_Fvars_fm[simp]:
fixes A :: fm
shows finite (Fvars A)

1

https://www.isa-afp.org/entries/Goedel_Incompleteness.html
https://www.isa-afp.org/entries/Incompleteness.html


by (induct A rule: fm.induct) auto

lemma subst_tm_subst_tm[simp]:
x 6= y =⇒ atom x ] u =⇒ subst y u (subst x t v) = subst x (subst y u t) (subst y u v)
by (induct v rule: tm.induct) auto

lemma subst_fm_subst_fm[simp]:
x 6= y =⇒ atom x ] u =⇒ (A(x::=t))(y::=u) = (A(y::=u))(x::=subst y u t)
by (nominal_induct A avoiding: x t y u rule: fm.strong_induct) auto

lemma Fvars_ground_aux: Fvars t ⊆ B =⇒ ground_aux t (atom ‘ B)
by (induct t rule: tm.induct) auto

lemma ground_Fvars: ground t ←→ Fvars t = {}
apply (rule iffI )
apply (auto simp only: Fvars_def ground_fresh) []

apply (auto intro: Fvars_ground_aux[of t {}, simplified])
done

lemma Fvars_ground_fm_aux: Fvars A ⊆ B =⇒ ground_fm_aux A (atom ‘ B)
apply (induct A arbitrary: B rule: fm.induct)

apply (auto simp: Diff_subset_conv Fvars_ground_aux)
apply (drule meta_spec, drule meta_mp, assumption)
apply auto
done

lemma ground_fm_Fvars: ground_fm A ←→ Fvars A = {}
apply (rule iffI )
apply (auto simp only: Fvars_def ground_fresh) []

apply (auto intro: Fvars_ground_fm_aux[of A {}, simplified])
done

interpretation Generic_Syntax where
var = UNIV :: name set

and trm = UNIV :: tm set
and fmla = UNIV :: fm set
and Var = Var
and FvarsT = Fvars
and substT = λt u x. subst x u t
and Fvars = Fvars
and subst = λA u x. subst_fm A x u
apply unfold_locales
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal for t by (induct t rule: tm.induct) auto
subgoal by simp
subgoal by simp
subgoal by simp
subgoal unfolding Fvars_def fresh_subst_fm_if by auto
subgoal unfolding Fvars_def by auto
subgoal unfolding Fvars_def by simp
subgoal by simp

2



subgoal unfolding Fvars_def by simp
done

lemma coding_tm_Fvars_empty[simp]: coding_tm t =⇒ Fvars t = {}
by (induct t rule: coding_tm.induct) (auto simp: Fvars_def )

lemma Fvars_empty_ground[simp]: Fvars t = {} =⇒ ground t
by (induct t rule: tm.induct) auto

interpretation Syntax_with_Numerals where
var = UNIV :: name set

and trm = UNIV :: tm set
and fmla = UNIV :: fm set
and num = {t. ground t}
and Var = Var
and FvarsT = Fvars
and substT = λt u x. subst x u t
and Fvars = Fvars
and subst = λA u x. subst_fm A x u
apply unfold_locales
subgoal by (auto intro!: exI [of _ Zero])
subgoal by simp
subgoal by (simp add: ground_Fvars)
done

declare FvarsT_num[simp del]

interpretation Deduct2_with_False where
var = UNIV :: name set

and trm = UNIV :: tm set
and fmla = UNIV :: fm set
and num = {t. ground t}
and Var = Var
and FvarsT = Fvars
and substT = λt u x. subst x u t
and Fvars = Fvars
and subst = λA u x. subst_fm A x u
and eql = (EQ)
and cnj = (AND)
and imp = (IMP)
and all = All
and exi = Ex
and fls = Fls
and prv = (`) {}
and bprv = (`) {}
apply unfold_locales
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp

3



subgoal unfolding Fvars_def by simp
subgoal unfolding Fvars_def by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by simp
subgoal using MP_null by blast
subgoal by blast
subgoal for A B C

apply (rule Imp_I )+
apply (rule MP_same[of _ B])
apply (rule MP_same[of _ C ])
apply (auto intro: Neg_D)

done
subgoal by blast
subgoal by blast
subgoal by blast
subgoal unfolding Fvars_def by (auto intro: MP_null)
subgoal unfolding Fvars_def by (auto intro: MP_null)
subgoal by (auto intro: All_D)
subgoal by (auto intro: Ex_I )
subgoal by simp
subgoal by (metis Conj_E2 Iff_def Imp_I Var_Eq_subst_Iff )
subgoal by blast
subgoal by simp
done

interpretation HBL1 where
var = UNIV :: name set

and trm = UNIV :: tm set
and fmla = UNIV :: fm set
and num = {t. ground t}
and Var = Var
and FvarsT = Fvars
and substT = λt u x. subst x u t
and Fvars = Fvars
and subst = λA u x. subst_fm A x u
and eql = (EQ)
and cnj = (AND)
and imp = (IMP)
and all = All
and exi = Ex
and prv = (`) {}
and bprv = (`) {}
and enc = quot
and P = PfP (Var xx)
apply unfold_locales
subgoal by (simp add: quot_fm_coding)
subgoal by simp
subgoal unfolding Fvars_def by (auto simp: fresh_at_base(2 ))
subgoal by (auto simp: proved_imp_proved_PfP)
done

interpretation Goedel_Form where
var = UNIV :: name set

and trm = UNIV :: tm set
and fmla = UNIV :: fm set
and num = {t. ground t}

4



and Var = Var
and FvarsT = Fvars
and substT = λt u x. subst x u t
and Fvars = Fvars
and subst = λA u x. subst_fm A x u
and eql = (EQ)
and cnj = (AND)
and imp = (IMP)
and all = All
and exi = Ex
and fls = Fls
and prv = (`) {}
and bprv = (`) {}
and enc = quot
and S = KRP (quot (Var xx)) (Var xx) (Var yy)
and P = PfP (Var xx)
apply unfold_locales
subgoal by simp
subgoal unfolding Fvars_def by (auto simp: fresh_at_base(2 ))
subgoal

unfolding Let_def
by (subst psubst_eq_rawpsubst2 )
(auto simp: quot_fm_coding prove_KRP Fvars_def )

subgoal
unfolding Let_def
by (subst (1 2 ) psubst_eq_rawpsubst2 )
(auto simp: quot_fm_coding KRP_unique[THEN Sym] Fvars_def )

done

interpretation g2 : Goedel_Second_Assumptions where
var = UNIV :: name set

and trm = UNIV :: tm set
and fmla = UNIV :: fm set
and num = {t. ground t}
and Var = Var
and FvarsT = Fvars
and substT = λt u x. subst x u t
and Fvars = Fvars
and subst = λA u x. subst_fm A x u
and eql = (EQ)
and cnj = (AND)
and imp = (IMP)
and all = All
and exi = Ex
and fls = Fls
and prv = (`) {}
and bprv = (`) {}
and enc = quot
and S = KRP (quot (Var xx)) (Var xx) (Var yy)
and P = PfP (Var xx)
apply unfold_locales
subgoal by (auto simp: PP_def intro: PfP_implies_ModPon_PfP_quot)
subgoal by (auto simp: PP_def quot_fm_coding Provability)
done

theorem Goedel_II : ¬ {} ` Fls =⇒ ¬ {} ` neg (PfP «Fls»)
by (rule g2 .goedel_second[unfolded consistent_def PP_def PfP_subst subst.simps simp_thms if_True])

5



lemma ground_fm_PrfP[simp]:
ground_fm (PrfP s k t) ←→ ground s ∧ ground k ∧ ground t
by (auto simp add: ground_aux_def ground_fm_aux_def supp_conv_fresh)

lemma Fvars_HPair [simp]: Fvars (HPair t u) = Fvars t ∪ Fvars u
unfolding Fvars_def
by auto

lemma ground_HPair [simp]: ground (HPair t u) ←→ ground t ∧ ground u
unfolding ground_Fvars
by auto

interpretation dwfd: Deduct2_with_False_Disj where
var = UNIV :: name set

and trm = UNIV :: tm set
and fmla = UNIV :: fm set
and num = {t. ground t}
and Var = Var
and FvarsT = Fvars
and substT = λt u x. subst x u t
and Fvars = Fvars
and subst = λA u x. subst_fm A x u
and eql = (EQ)
and cnj = (AND)
and dsj = (OR)
and imp = (IMP)
and all = All
and exi = Ex
and fls = Fls
and prv = (`) {}
and bprv = (`) {}
apply unfold_locales
subgoal by simp
subgoal by simp
subgoal by simp
subgoal by (auto intro: Disj_I1 )
subgoal by (auto intro: Disj_I2 )
subgoal by (auto intro: ContraAssume)
subgoal by simp
done

interpretation Minimal_Truth_Soundness where
var = UNIV :: name set

and trm = UNIV :: tm set
and fmla = UNIV :: fm set
and num = {t. ground t}
and Var = Var
and FvarsT = Fvars
and substT = λt u x. subst x u t
and Fvars = Fvars
and subst = λA u x. subst_fm A x u
and eql = (EQ)
and cnj = (AND)
and dsj = (OR)
and imp = (IMP)
and all = All
and exi = Ex

6



and fls = Fls
and prv = (`) {}
and isTrue = eval_fm e0
apply unfold_locales
subgoal by (auto simp: Fls_def )
subgoal by simp
subgoal by (auto simp only: ex_eval_fm_iff_exists_tm eval_fm.simps(4 ) subst_fm.simps)
subgoal by (auto simp only: ex_eval_fm_iff_exists_tm)
subgoal by (simp add: neg_def )
subgoal by (auto dest: hfthm_sound)
done

lemma neg_Neg:
{} ` neg ϕ IFF Neg ϕ
unfolding neg_def
by (auto simp: Fls_def intro: ContraAssume)

lemma ground_aux_mono: A ⊆ B =⇒ ground_aux t A =⇒ ground_aux t B
unfolding ground_aux_def by auto

interpretation g1 : Goedel_Form_Minimal_Truth_Soundness_HBL1iff_prv_Compl_Pf_Classical where
var = UNIV :: name set

and trm = UNIV :: tm set
and fmla = UNIV :: fm set
and num = {t. ground t}
and Var = Var
and FvarsT = Fvars
and substT = λt u x. subst x u t
and Fvars = Fvars
and subst = λA u x. subst_fm A x u
and eql = (EQ)
and cnj = (AND)
and dsj = (OR)
and imp = (IMP)
and all = All
and exi = Ex
and fls = Fls
and prv = (`) {}
and bprv = (`) {}
and enc = quot
and S = KRP (quot (Var xx)) (Var xx) (Var yy)
and P = PfP (Var xx)
and isTrue = eval_fm e0
and Pf = Ex xx ′ (Ex yy ′ (Var yy EQ HPair (Var xx ′) (Var yy ′) AND PrfP (Var xx ′) (Var yy ′) (Var

xx)))
apply unfold_locales
subgoal by simp
subgoal unfolding Fvars_def by (auto simp: fresh_at_base(2 ))
subgoal for ϕ

unfolding Let_def
supply PfP.simps[simp del]
apply (subst psubst_eq_rawpsubst2 ) apply (simp_all add: PfP.simps[of yy ′ xx ′ quot ϕ, simplified])
apply (auto simp: eqv_def )
apply (rule Ex_I [of _ _ _ HPair (Var xx ′) (Var yy ′)])
apply (subst subst_fm_Ex_with_renaming[of xx _ xx ′ yy]; (auto simp: Conj_eqvt))

apply (subst subst_fm_Ex_with_renaming[of zz _ yy ′ yy]; (auto simp: Conj_eqvt HPair_eqvt
PrfP.eqvt))

7



apply (rule Ex_I [of _ _ _ (Var xx ′)]; auto)
apply (rule Ex_I [of _ _ _ (Var yy ′)]; auto)
apply (rule Ex_I [of _ _ _ (Var yy ′)]; auto)

apply (rule Ex_I [of _ _ _ (Var xx ′)]; auto)
done

subgoal
by (auto simp: PP_def proved_iff_proved_PfP[symmetric])

subgoal for n ϕ
unfolding Let_def
apply (subst (1 2 ) psubst_eq_rawpsubst2 )

apply (simp_all add: ground_Fvars)
apply (rule impI )
apply (rule Sigma_fm_imp_thm)

apply (auto simp: ground_Fvars[symmetric] elim: ground_aux_mono[OF empty_subsetI ])
apply (auto simp: ground_aux_def ground_fm_aux_def supp_conv_fresh fresh_at_base Fvars_def )
done

subgoal for ϕ
apply (rule NegNeg_D)

apply (auto simp: PP_def dest!: Iff_MP_same[OF neg_Neg] Iff_MP_same[OF Neg_cong[OF neg_Neg]])
done

done

theorem Goedel_I : ∃ϕ. ¬ {} ` ϕ ∧ ¬ {} ` Neg ϕ ∧ eval_fm e0 ϕ
by (meson Iff_MP2_same g1 .recover_proofs.goedel_first_classic_strong[OF consistent] neg_Neg)

The following interpretation is redundant, because Goedel_Form_Minimal_Truth_Soundness_HBL1iff_prv_Compl_Pf_Classical
(interpreted above) is a sublocale of Goedel_Form_Classical_HBL1_rev_prv_Minimal_Truth_Soundness_TIP.
However, the latter requires less infrastructure (no Pf formula).
The definition of isTrue prevents Isabelle from noticing that the locale has already been interpreted
via the above g1 interpretation of Goedel_Form_Minimal_Truth_Soundness_HBL1iff_prv_Compl_Pf_Classical.
definition isTrue where

isTrue = eval_fm e0

interpretation g1 ′: Goedel_Form_Classical_HBL1_rev_prv_Minimal_Truth_Soundness_TIP where
var = UNIV :: name set

and trm = UNIV :: tm set
and fmla = UNIV :: fm set
and num = {t. ground t}
and Var = Var
and FvarsT = Fvars
and substT = λt u x. subst x u t
and Fvars = Fvars
and subst = λA u x. subst_fm A x u
and eql = (EQ)
and cnj = (AND)
and dsj = (OR)
and imp = (IMP)
and all = All
and exi = Ex
and fls = Fls
and prv = (`) {}
and bprv = (`) {}
and enc = quot
and S = KRP (quot (Var xx)) (Var xx) (Var yy)
and P = PfP (Var xx)
and isTrue = isTrue
apply unfold_locales
unfolding isTrue_def

8



subgoal by (auto simp: Fls_def )
subgoal by simp
subgoal by (auto simp only: ex_eval_fm_iff_exists_tm eval_fm.simps(4 ) subst_fm.simps)
subgoal by (auto simp only: ex_eval_fm_iff_exists_tm)
subgoal by (simp add: neg_def )
subgoal by (auto dest: hfthm_sound)
subgoal by (auto simp: proved_iff_proved_PfP[symmetric] PP_def quot_fm_coding

simp del: eval_fm_PfP
dest!: Iff_MP_same[OF neg_Neg] Iff_MP_same[OF Neg_cong[OF neg_Neg]] NegNeg_D
Sigma_fm_imp_thm[rotated 2 ])

done

theorem Goedel_I ′: ∃ϕ. ¬ {} ` ϕ ∧ ¬ {} ` Neg ϕ ∧ isTrue ϕ
by (meson Iff_MP2_same g1 ′.goedel_first_classic_strong[OF consistent] neg_Neg)

9


	The Instantiation

