From Abstract to Concrete Gödel's Incompleteness Theorems—Part I

Andrei Popescu

Dmitriy Traytel

March 17, 2025

Abstract

We validate an abstract formulation of Gödel's First and Second Incompleteness Theorems from a separate AFP entry by instantiating them to the case of *finite sound extensions* of the Hereditarily Finite (HF) Set theory, i.e., FOL theories extending the HF Set theory with a finite set of axioms that are sound in the standard model. The concrete results had been previously formalised in an AFP entry by Larry Paulson; our instantiation reuses the infrastructure developed in that entry.

Contents

1 The Instantiation

1

1 The Instantiation

definition Fvars $t = \{a :: name. \neg atom a \ \sharp \ t\}$

lemma $Fvars_tm_simps[simp]$: $Fvars Zero = \{\}$ $Fvars (Var a) = \{a\}$ $Fvars (Eats x y) = Fvars x \cup Fvars y$ **by** (auto simp: $Fvars_def fresh_at_base(2)$)

lemma finite_Fvars_tm[simp]:
fixes t :: tm
shows finite (Fvars t)
by (induct t rule: tm.induct) auto

lemma $Fvars_fm_simps[simp]$: $Fvars (x \ IN \ y) = Fvars \ x \cup Fvars \ y$ $Fvars (x \ EQ \ y) = Fvars \ x \cup Fvars \ y$ $Fvars (A \ OR \ B) = Fvars \ A \cup Fvars \ B$ $Fvars (A \ AND \ B) = Fvars \ A \cup Fvars \ B$ $Fvars (A \ IMP \ B) = Fvars \ A \cup Fvars \ B$ $Fvars \ Fls = \{\}$ $Fvars (Neg \ A) = Fvars \ A$ $Fvars (All \ a \ A) = Fvars \ A - \{a\}$ $Fvars (All \ a \ A) = Fvars \ A - \{a\}$ $by (auto \ simp: Fvars_def \ fresh_at_base(2))$

lemma finite_Fvars_fm[simp]:
fixes A :: fm
shows finite (Fvars A)

by (induct A rule: fm.induct) auto

lemma *subst_tm_subst_tm[simp*]: $x \neq y \Longrightarrow atom \ x \ \sharp \ u \Longrightarrow subst \ y \ u \ (subst \ x \ t \ v) = subst \ x \ (subst \ y \ u \ t) \ (subst \ y \ u \ v)$ by (induct v rule: tm.induct) auto **lemma** *subst_fm_subst_fm[simp*]: $x \neq y \Longrightarrow atom \ x \ \sharp \ u \Longrightarrow (A(x::=t))(y::=u) = (A(y::=u))(x::=subst \ y \ u \ t)$ $\mathbf{by} \ (nominal_induct \ A \ avoiding: \ x \ t \ y \ u \ rule: \ fm.strong_induct) \ auto$ **lemma** Fvars_ground_aux: Fvars $t \subseteq B \Longrightarrow$ ground_aux t (atom 'B) **by** (*induct t rule: tm.induct*) *auto* **lemma** ground_Fvars: ground $t \leftrightarrow$ Fvars $t = \{\}$ apply (rule iffI) **apply** (auto simp only: Fvars def ground fresh) **apply** (*auto intro: Fvars_ground_aux*[of t {}, *simplified*]) done **lemma** Fvars_ground_fm_aux: Fvars $A \subseteq B \Longrightarrow$ ground_fm_aux A (atom 'B) **apply** (*induct A arbitrary: B rule: fm.induct*) **apply** (auto simp: Diff_subset_conv Fvars_ground_aux) **apply** (*drule meta_spec*, *drule meta_mp*, *assumption*) apply auto done **lemma** ground_fm_Fvars: ground_fm $A \leftrightarrow Fvars A = \{\}$ apply (rule iffI) **apply** (*auto simp only: Fvars_def ground_fresh*) [] **apply** (auto intro: Fvars_ground_fm_aux[of A {}, simplified]) done interpretation Generic_Syntax where var = UNIV :: name setand trm = UNIV :: tm setand $fmla = UNIV :: fm \ set$ and Var = Varand FvarsT = Fvarsand $substT = \lambda t \ u \ x. \ subst x \ u \ t$ and Fvars = Fvarsand $subst = \lambda A \ u \ x. \ subst_fm \ A \ x \ u$ apply unfold locales subgoal by simp subgoal for t by (induct t rule: tm.induct) auto $\mathbf{subgoal}\ \mathbf{by}\ simp$ subgoal by simp subgoal by simp subgoal unfolding Fvars_def fresh_subst_fm_if by auto subgoal unfolding *Fvars_def* by *auto* subgoal unfolding *Fvars* def by simp subgoal by simp

subgoal unfolding Fvars_def by simp done

lemma $coding_tm_Fvars_empty[simp]: coding_tm t \implies Fvars t = \{\}$ **by** $(induct t rule: coding_tm.induct) (auto simp: Fvars_def)$

lemma Fvars_empty_ground[simp]: Fvars $t = \{\} \implies$ ground t by (induct t rule: tm.induct) auto

interpretation Syntax_with_Numerals where var = UNIV :: name setand trm = UNIV :: tm setand fmla = UNIV :: fm setand $num = \{t. ground t\}$ and Var = Varand FvarsT = Fvarsand $substT = \lambda t \ u \ x. subst \ x \ u \ t$ and Fvars = Fvarsand $subst = \lambda A \ u \ x. subst \ fm \ A \ x \ u$ apply $unfold_locales$ subgoal by (auto introl! $exI[of _Zero]$) subgoal by (simp add: ground_Fvars) done

interpretation Deduct2_with_False where $var = UNIV :: name \ set$ and trm = UNIV :: tm setand $fmla = UNIV :: fm \ set$ and $num = \{t. ground t\}$ and Var = Varand FvarsT = Fvarsand $substT = \lambda t \ u \ x. \ subst x \ u \ t$ and Fvars = Fvarsand $subst = \lambda A \ u \ x. \ subst$ fm $A \ x \ u$ and eql = (EQ)and cnj = (AND)and imp = (IMP)and all = Alland exi = Exand fls = Flsand $prv = (\vdash) \{\}$ and $bprv = (\vdash) \{\}$ apply unfold locales subgoal by simp subgoal by simp

declare FvarsT_num[simp del]

subgoal unfolding Fvars_def by simp subgoal unfolding *Fvars_def* by *simp* subgoal by simp subgoal by simp subgoal by simp subgoal by simp subgoal using MP_null by blast subgoal by blast subgoal for A B Capply $(rule Imp_I) +$ **apply** (rule $MP_same[of_B]$) **apply** (rule $MP_same[of _ C]$) **apply** (*auto intro*: Neg_D) done subgoal by blast subgoal by blast subgoal by blast subgoal unfolding *Fvars_def* by (*auto intro: MP_null*) subgoal unfolding Fvars_def by (auto intro: MP_null) subgoal by (auto intro: All_D) subgoal by (auto intro: Ex_I) subgoal by simp subgoal by (metis Conj_E2 Iff_def Imp_I Var_Eq_subst_Iff) subgoal by blast subgoal by simp done interpretation *HBL1* where var = UNIV :: name setand trm = UNIV :: tm setand $fmla = UNIV :: fm \ set$ and $num = \{t. ground t\}$ and Var = Varand FvarsT = Fvarsand $substT = \lambda t \ u \ x. \ subst x \ u \ t$ and Fvars = Fvarsand $subst = \lambda A \ u \ x. \ subst$ fm $A \ x \ u$ and eql = (EQ)and cnj = (AND)and imp = (IMP)and all = Alland exi = Exand $prv = (\vdash) \{\}$ and $bprv = (\vdash) \{\}$ and enc = quotand P = PfP (Var xx) apply unfold locales **subgoal by** (*simp add: quot_fm_coding*) subgoal by simp **subgoal unfolding** *Fvars_def* **by** (*auto simp: fresh_at_base(2)*) subgoal by (auto simp: proved_imp_proved_PfP) done

interpretation Goedel_Form where var = UNIV :: name set and trm = UNIV :: tm set and fmla = UNIV :: fm set and num = {t. ground t}

and Var = Varand FvarsT = Fvarsand $substT = \lambda t \ u \ x. \ subst x \ u \ t$ and Fvars = Fvarsand $subst = \lambda A \ u \ x. \ subst$ fm $A \ x \ u$ and eql = (EQ)and cnj = (AND)and imp = (IMP)and all = Alland exi = Exand fls = Flsand $prv = (\vdash) \{\}$ and $bprv = (\vdash) \{\}$ and enc = quotand S = KRP (quot (Var xx)) (Var xx) (Var yy) and P = PfP (Var xx) apply unfold_locales subgoal by simp **subgoal unfolding** *Fvars_def* **by** (*auto simp: fresh_at_base(2)*) subgoal **unfolding** Let_def **by** (*subst* psubst_eq_rawpsubst2) (auto simp: quot_fm_coding prove_KRP Fvars_def) subgoal **unfolding** Let_def **by** (*subst* (1 2) *psubst_eq_rawpsubst2*) (auto simp: quot_fm_coding KRP_unique[THEN Sym] Fvars_def) done interpretation g2: Goedel_Second_Assumptions where $var = UNIV :: name \ set$ and trm = UNIV :: tm setand $fmla = UNIV :: fm \ set$ and $num = \{t. ground t\}$ and Var = Varand FvarsT = Fvarsand $substT = \lambda t \ u \ x. \ subst x \ u \ t$ and Fvars = Fvarsand $subst = \lambda A \ u \ x. \ subst_fm \ A \ x \ u$ and eql = (EQ)and cnj = (AND)and imp = (IMP)and all = Alland exi = Exand fls = Flsand $prv = (\vdash) \{\}$ and $bprv = (\vdash) \{\}$ and enc = quotand S = KRP (quot (Var xx)) (Var xx) (Var yy) and P = PfP (Var xx) apply unfold_locales **subgoal by** (*auto simp: PP_def intro: PfP_implies_ModPon_PfP_quot*) subgoal by (auto simp: PP_def quot_fm_coding Provability) done

theorem Goedel_II: \neg {} \vdash Fls \Longrightarrow \neg {} \vdash neg (PfP «Fls») by (rule g2.goedel_second[unfolded consistent_def PP_def PfP_subst subst.simps simp_thms if_True]) **lemma** ground_fm_PrfP[simp]: ground_fm (PrfP s k t) \longleftrightarrow ground s \land ground k \land ground t **by** (*auto simp add: ground_aux_def ground_fm_aux_def supp_conv_fresh*) **lemma** Fvars_HPair[simp]: Fvars (HPair t u) = Fvars $t \cup$ Fvars u unfolding *Fvars_def* by *auto* **lemma** ground_HPair[simp]: ground (HPair t u) \longleftrightarrow ground t \land ground u unfolding ground_Fvars by auto interpretation dwfd: Deduct2_with_False_Disj where var = UNIV :: name setand trm = UNIV :: tm setand $fmla = UNIV :: fm \ set$ and $num = \{t. ground t\}$ and Var = Varand FvarsT = Fvarsand $substT = \lambda t \ u \ x. \ subst x \ u \ t$ and Fvars = Fvarsand $subst = \lambda A \ u \ x. \ subst_fm \ A \ x \ u$ and eql = (EQ)and cnj = (AND)and dsj = (OR)and imp = (IMP)and all = Alland exi = Exand fls = Flsand $prv = (\vdash) \{\}$ and $bprv = (\vdash) \{\}$ apply unfold_locales subgoal by simp subgoal by simp subgoal by simp subgoal by (auto intro: Disj I1) subgoal by (auto intro: Disj_I2) subgoal by (auto intro: ContraAssume) $\mathbf{subgoal}\ \mathbf{by}\ simp$ done interpretation *Minimal_Truth_Soundness* where var = UNIV :: name setand trm = UNIV :: tm setand $fmla = UNIV :: fm \ set$ and $num = \{t. ground t\}$ and Var = Varand FvarsT = Fvarsand $substT = \lambda t \ u \ x. \ subst x \ u \ t$ and Fvars = Fvarsand $subst = \lambda A \ u \ x. \ subst_fm \ A \ x \ u$ and eql = (EQ)and cnj = (AND)and dsj = (OR)and imp = (IMP)and all = Alland exi = Ex

and fls = Flsand $prv = (\vdash) \{\}$ and $isTrue = eval_fm \ e0$ apply unfold_locales subgoal by (auto simp: Fls def) subgoal by simp subgoal by (auto simp only: ex_eval_fm_iff_exists_tm_eval_fm.simps(4) subst_fm.simps) **subgoal by** (*auto simp only*: *ex_eval_fm_iff_exists_tm*) subgoal by (simp add: neg_def) subgoal by (auto dest: hfthm_sound) done lemma *neg_Neg*: $\{\} \vdash neg \varphi \ IFF \ Neg \varphi$ unfolding *neq* def **by** (*auto simp*: *Fls def intro*: *ContraAssume*) **lemma** ground_aux_mono: $A \subseteq B \Longrightarrow$ ground_aux t $A \Longrightarrow$ ground_aux t B unfolding ground_aux_def by auto $interpretation \ g1: \ Goedel_Form_Minimal_Truth_Soundness_HBL1iff_prv_Compl_Pf_Classical \ where$ var = UNIV :: name setand trm = UNIV :: tm setand $fmla = UNIV :: fm \ set$ and $num = \{t. ground t\}$ and Var = Varand FvarsT = Fvarsand $substT = \lambda t \ u \ x. \ subst x \ u \ t$ and Fvars = Fvarsand $subst = \lambda A \ u \ x. \ subst_fm \ A \ x \ u$ and eql = (EQ)and cnj = (AND)and dsj = (OR)and imp = (IMP)and all = Alland exi = Exand fls = Flsand $prv = (\vdash) \{\}$ and $bprv = (\vdash) \{\}$ and enc = quotand S = KRP (quot (Var xx)) (Var xx) (Var yy) and P = PfP (Var xx) and isTrue = eval fm e0and Pf = Ex xx' (Ex yy' (Var yy EQ HPair (Var xx') (Var yy') AND PrfP (Var xx') (Var yy') (Var xx)))apply unfold locales subgoal by simp **subgoal unfolding** *Fvars_def* **by** (*auto simp: fresh_at_base(2)*) subgoal for φ **unfolding** Let_def **supply** *PfP.simps*[*simp del*] **apply** (subst psubst_eq_rawpsubst2) **apply** (simp_all add: PfP.simps[of yy' xx' quot φ , simplified]) **apply** (*auto simp: eqv_def*) $\textbf{apply} \ (\textit{rule Ex_I[of__ HPair (Var xx') (Var yy')]})$ **apply** (subst subst_fm_Ex_with_renaming[of xx _ xx' yy]; (auto simp: Conj_eqvt)) apply (subst subst_fm_Ex_with_renaming[of zz _ yy' yy]; (auto simp: Conj_eqvt HPair_eqvt PrfP.eqvt))

apply (rule $Ex_I[of _ _ _ (Var xx')]; auto)$ **apply** (rule $Ex_I[of _ _ (Var yy')]; auto)$ **apply** (rule $Ex_I[of _ _ _ (Var yy')]; auto)$ **apply** (rule $Ex_I[of__ (Var xx')]; auto)$ done subgoal **by** (*auto simp: PP_def proved_iff_proved_PfP[symmetric*]) subgoal for $n \varphi$ **unfolding** Let_def **apply** (subst (1 2) psubst_eq_rawpsubst2) **apply** (*simp_all add: ground_Fvars*) apply (rule impI) **apply** (rule Sigma_fm_imp_thm) **apply** (auto simp: ground_Fvars[symmetric] elim: ground_aux_mono[OF empty subsetI]) apply (auto simp: ground aux def ground fm aux def supp conv fresh fresh at base Fvars def) done subgoal for φ **apply** (*rule* NegNeg_D) **apply** (auto simp: PP_def dest!: Iff_MP_same[OF neq_Neq] Iff_MP_same[OF Neq_cong[OF neq_Neq]]) done done

theorem Goedel_I: $\exists \varphi. \neg \{\} \vdash \varphi \land \neg \{\} \vdash Neg \varphi \land eval_fm \ e0 \ \varphi$ **by** (meson Iff_MP2_same g1.recover_proofs.goedel_first_classic_strong[OF consistent] neg_Neg)

The following interpretation is redundant, because Goedel_Form_Minimal_Truth_Soundness_HBL1iff_prv_Compl_(interpreted above) is a sublocale of Goedel_Form_Classical_HBL1_rev_prv_Minimal_Truth_Soundness_TIP. However, the latter requires less infrastructure (no Pf formula).

The definition of isTrue prevents Isabelle from noticing that the locale has already been interpreted via the above g1 interpretation of $Goedel_Form_Minimal_Truth_Soundness_HBL1iff_prv_Compl_Pf_Classical.$

${\bf definition} \ is True \ {\bf where}$

isTrue = eval_fm e0
interpretation g1': Goedel_Form_Classical_HBL1_rev_prv_Minimal_Truth_Soundness_TIP where
var = UNIV :: name set

```
and trm = UNIV :: tm set
and fmla = UNIV :: fm \ set
and num = \{t. ground t\}
and Var = Var
and FvarsT = Fvars
and substT = \lambda t \ u \ x. \ subst x \ u \ t
and Fvars = Fvars
and subst = \lambda A \ u \ x. \ subst\_fm \ A \ x \ u
and eql = (EQ)
and cnj = (AND)
and dsj = (OR)
and imp = (IMP)
and all = All
and exi = Ex
and fls = Fls
and prv = (\vdash) \{\}
and bprv = (\vdash) \{\}
and enc = quot
and S = KRP (quot (Var xx)) (Var xx) (Var yy)
and P = PfP (Var xx)
and isTrue = isTrue
apply unfold locales
unfolding isTrue_def
```

subgoal by (auto simp: Fls_def)
subgoal by simp
subgoal by (auto simp only: ex_eval_fm_iff_exists_tm eval_fm.simps(4) subst_fm.simps)
subgoal by (auto simp only: ex_eval_fm_iff_exists_tm)
subgoal by (simp add: neg_def)
subgoal by (auto dest: hfthm_sound)
subgoal by (auto simp: proved_iff_proved_PfP[symmetric] PP_def quot_fm_coding
 simp del: eval_fm_PfP
 dest!: Iff_MP_same[OF neg_Neg] Iff_MP_same[OF Neg_cong[OF neg_Neg]] NegNeg_D
 Sigma_fm_imp_thm[rotated 2])
done

theorem Goedel_I': $\exists \varphi$. $\neg \{\} \vdash \varphi \land \neg \{\} \vdash Neg \ \varphi \land isTrue \ \varphi$

by (meson Iff_MP2_same g1'.goedel_first_classic_strong[OF consistent] neg_Neg)