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A1l Either a property or its negation is positive, but not both: Vo[ P(—¢) +> =P ()]
A2 A property necessarily implied

by a positive property is positive: VoV [(P(o) A OVz[p(x) — Y(x)]) — P(¥)]
T1 Positive properties are possibly exemplified: Vo[P(p) — OFzd(x)]
D1 A God-like being possesses all positive properties: G(z) > Yo[P(¢) — ¢(z)]
A3 The property of being God-like is positive: P(G)
C Possibly, God exists: 0JxG(x)
A4 Positive properties are necessarily positive: Vo[P(¢) — O P(¢)]

D2 An essence of an individual is a property possessed by it
and necessarily implying any of its properties:

¢ ess. x < ¢(x) AVP(Y(x) = OVy(o(y) = ¥(y)))

T2 Being God-like is an essence of any God-like being: Vz[G(xz) = G ess. x]
D3 Necessary existence of an individual is

the necessary exemplification of all its essences: NE(z) <> Vé[o ess. x — OFyd(y)]
A5 Necessary existence is a positive property: P(NE)
T3 Necessarily, God exists: O32G(x)

Figure 1: Scott’s version of Godel’s ontological argument [12].

1 Introduction

Dana Scott’s version [12] (cf. Fig. 1) of Godel’s proof of God’s existence [8] is formalized
in quantified modal logic KB (QML KB) within the proof assistant Isabelle/HOL. QML
KB is modeled as a fragment of classical higher-order logic (HOL); thus, the formalization is
essentially a formalization in HOL. The employed embedding of QML KB in HOL is adapting
the work of Benzmiiller and Paulson [2, 1]. Note that the QML KB formalization employs
quantification over individuals and quantification over sets of individuals (properties).

The gaps in Scott’s proof have been automated with Sledgehammer [5], performing remote
calls to the higher-order automated theorem prover LEO-II [3]. Sledgehammer suggests the
Metis [9] calls, which result in proofs that are verified by Isabelle/HOL. For consistency check-
ing, the model finder Nitpick [6] has been employed. The successfull calls to Sledgehammer
are deliberately kept as comments in the file for demonstration purposes (normally, they are
automatically eliminated by Isabelle/HOL).



Isabelle is described in the textbook by Nipkow, Paulson, and Wenzel [10] and in tutorials
available at: http://isabelle.in.tum.de.

1.1 Related Work

The formalization presented here is related to the THF [14] and Coq [4] formalizations at
https://github.com/FormalTheology /GoedelGod/tree/master /Formalizations/ .

An older ontological argument by Anselm was formalized in PVS by John Rushby [11].

2 An Embedding of QML KB in HOL

The types ¢ for possible worlds and p for individuals are introduced.

typedecl i — the type for possible worlds
typedecl p — the type for indiviuals

Possible worlds are connected by an accessibility relation 7.

consts r :: i = ¢ = bool (infixr ¢ 70) — accessibility relation r

QML formulas are translated as HOL terms of type i = bool. This type is abbreviated as o.

type-synonym o = (i = bool)

The classical connectives =, A, —, and V (over individuals and over sets of individuals) and
3 (over individuals) are lifted to type o. The lifted connectives are m—, mA, m—, ¥V, and
3 (the latter two are modeled as constant symbols). Other connectives can be introduced
analogously. We exemplarily do this for mV , m=, and mL= (Leibniz equality on individuals).
Moreover, the modal operators [J and ¢ are introduced. Definitions could be used instead of
abbreviations.

abbreviation mnot :: ¢ = ¢ (¥m—») where m— ¢ = (Aw. = ¢ w)

abbreviation mand :: 0 = ¢ = o (infixr «<mA> 65) where ¢ mA ¢ = (Aw. ¢ w A Y w)
abbreviation mor :: ¢ = ¢ = o (infixr <mV> 70) where p mV ¢ = (Aw. ¢ w V ¥ w)
abbreviation mimplies :: 0 = o0 = o (infixr <m—» 7/) where p m— ¥ = (Aw. ¢ W — Y w)
abbreviation mequiv:: 0 = o = o (infixr <m=) 76) where ¢ m= 1 = (Aw. p W +— ¥ w)
abbreviation mforall :: ('a = 0) = o (\v>) whereV ® = (Aw. Vz. ® z w)

abbreviation mezists :: ('a = o) = o («3») where 3 ® = (Aw. Jz. ¢ z w)

abbreviation mLeibeq :: p = p = o (infixr <mL=) 90) where x mL=y =V (Ap. (p  m— ¢ y))
abbreviation mboz :: 0 = o (\[0») where O ¢ = (Aw. Yv. wrv — ¢ v)

abbreviation mdia :: 0 = o («0») where ¢ ¢ = (Aw. Jv. wr v A @ v)

For grounding lifted formulas, the meta-predicate valid is introduced.
abbreviation valid :: o = bool (¢[-]>) where [p] =V w. p w
3 Godel’s Ontological Argument

Constant symbol P (Godel’s ‘Positive’) is declared.

consts P:: (u=o0)=o0


http://isabelle.in.tum.de
https://github.com/FormalTheology/GoedelGod/tree/master/Formalizations/

The meaning of P is restricted by axioms A1(a/b): Vo[P(—¢) <> =P(¢)] (Either a property
or its negation is positive, but not both.) and A2: VoVy[(P(¢) AOVz[p(x) — ¢ (z)]) = P(v)]
(A property necessarily implied by a positive property is positive).

axiomatization where
Ala: [V (A®. P (Az. m— (@ z)) m— m~ (P ®))] and
A1b: V(A®. m— (P ®) m— P (Az. m— (® z)))] and
A2: VAR.V(AT. (P mA O (V(Az. @ 2 m— VU z))) m— P U))]

We prove theorem T1: Vé[P(¢) — OTx¢(x)] (Positive properties are possibly exemplified). T1
is proved directly by Sledgehammer with command sledgehammer [provers = remote-leo2].
Sledgehammer suggests to call Metis with axioms Ala and A2. Metis sucesfully generates a
proof object that is verified in Isabelle/HOL’s kernel.

theorem T1: [V(A®. P & m— ¢ (3 D))]
— sledgehammer [provers = remote_leo2]

(proof)

Next, the symbol G for ‘God-like’ is introduced and defined as G(z) <> Vo[P(¢) — ¢(z)]
(A God-like being possesses all positive properties).

definition G :: 4 = o0 where G = (Az. V(A®. P ® m— ® z))
Axiom A3 is added: P(G) (The property of being God-like is positive). Sledgehammer and
Metis then prove corollary C: ¢3zG(z) (Possibly, God exists).

axiomatization where A3: [P G]

corollary C: [0 (3 G)]
— sledgehammer [provers = remote_leo2]

(proof)
Axiom A4 is added: V¢[P(¢) — O P(¢)] (Positive properties are necessarily positive).
axiomatization where A4: [V(A®. P & m— O (P ®))]

Symbol ess for ‘Essence’ is introduced and defined as

¢ ess. x < ¢(x) ANVY(P(x) — OVy(d(y) — ¥ (v)))

(An essence of an individual is a property possessed by it and necessarily implying any of its
properties).

definition ess :: (u = o) = p = o (infixr <ess» 85) where
DPessz=PamAVAL. ¥ zm— O V(Ay. &y m— U y)))
Next, Sledgehammer and Metis prove theorem T2: Vz[G(z) — G ess. x|
(Being God-like is an essence of any God-like being).

theorem T2: [V(Az. G 2 m— G ess z)]
— sledgehammer [provers = remote_ leo2]

(proof)

Symbol NE, for ‘Necessary Existence’, is introduced and defined as

NE(x) <> Vo[p ess. x — OFyd(y)]



(Necessary existence of an individual is the necessary exemplification of all its essences).
definition NE :: y = o where NE = (Az. V(A®. ® ess e m— O (3 D))

Moreover, axiom A5 is added: P(NE) (Necessary existence is a positive property).

axiomatization where A5: [P NE]|

The B axiom (symmetry) for relation r is stated. B is needed only for proving theorem T3
and for corollary C2.

axiomatization where sym: x ry — yrz

Finally, Sledgehammer and Metis prove the main theorem 7'3: 032G(x)
(Necessarily, God exists).

theorem T3: [0 (3 G)]
— sledgehammer [provers = remote leo2]

(proof)

Surprisingly, the following corollary can be derived even without the 7" axiom (reflexivity).
corollary C2: [3 G]
— sledgehammer [provers = remote_ leo2]
(proof)

The consistency of the entire theory is confirmed by Nitpick.

lemma True nitpick [satisfy, user-axioms, expect = genuine] {proof)

4 Additional Results on Godel’s God.

Godel’s God is flawless: (s)he does not have non-positive properties.
theorem Flawlessness: [V (A®. ¥V (Az. (G z m— (m— (P ®) m— m— (P z)))))]
— sledgehammer [provers = remote_ leo2]

(proof)

There is only one God: any two God-like beings are equal.

theorem Monotheism: [V (Az.Y (Ay. (G 2 m— (G y m— (z mL= y)))))]
— sledgehammer [provers = remote_leo2]

(proof)

5 Modal Collapse

Godel’s axioms have been criticized for entailing the so-called modal collapse. The prover
Satallax [7] confirms this. However, sledgehammer is not able to determine which axioms,
definitions and previous theorems are used by Satallax; hence it suggests to call Metis using
everything, but this (unsurprinsingly) fails. Attempting to use ‘Sledegehammer min’ to min-
imize Sledgehammer’s suggestion does not work. Calling Metis with T2, T8 and ess-def also
does not work.

lemma MC: [V(A®.(® m— (O 9)))]

— sledgehammer [provers = remote_ satallax]
— by (metis T2 T3 ess_ def)

(proof)
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