
An Efficient Generalization of Counting Sort
for Large, possibly Infinite Key Ranges

Pasquale Noce
Software Engineer at HID Global, Italy

pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at hidglobal dot com

March 17, 2025

Abstract
Counting sort is a well-known algorithm that sorts objects of any

kind mapped to integer keys, or else to keys in one-to-one correspon-
dence with some subset of the integers (e.g. alphabet letters). However,
it is suitable for direct use, viz. not just as a subroutine of another sort-
ing algorithm (e.g. radix sort), only if the key range is not significantly
larger than the number of the objects to be sorted.

This paper describes a tail-recursive generalization of counting sort
making use of a bounded number of counters, suitable for direct use in
case of a large, or even infinite key range of any kind, subject to the
only constraint of being a subset of an arbitrary linear order. After
performing a pen-and-paper analysis of how such algorithm has to be
designed to maximize its efficiency, this paper formalizes the resulting
generalized counting sort (GCsort) algorithm and then formally proves
its correctness properties, namely that (a) the counters’ number is
maximized never exceeding the fixed upper bound, (b) objects are
conserved, (c) objects get sorted, and (d) the algorithm is stable.

Contents
1 Algorithm’s description, analysis, and formalization 2

1.1 Introduction . 2
1.1.1 Counting sort . 2
1.1.2 Buckets’ probability – Proof 4
1.1.3 Buckets’ probability – Implementation 10
1.1.4 Buckets’ number – Proof 17
1.1.5 Buckets’ number – Implementation 20
1.1.6 Generalized counting sort (GCsort) 22

1.2 Formal definitions . 25
1.3 Proof of a preliminary invariant 30
1.4 Proof of counters’ optimization 32

1

2 Proof of objects’ conservation 33

3 Proof of objects’ sorting 43

4 Proof of algorithm’s stability 47

1 Algorithm’s description, analysis, and formal-
ization

theory Algorithm
imports Main

begin

This paper is dedicated to Gaia, my sweet niece, whose arrival has blessed
me and my family with joy and tenderness.

Moreover, I would like to thank my colleague Iacopo Rippa, who patiently
listened to the ideas underlying sections 1.1.2 and 1.1.4, and helped me ex-
pand those ideas into complete proofs by providing me with valuable hints
and test data.

1.1 Introduction
1.1.1 Counting sort

Counting sort is a well-known algorithm that sorts a collection of objects
of any kind, as long as each such object is associated with a signed integer
key, according to their respective keys (cf. [2], [8]). If xs is the input
array containing n objects to be sorted, out is the output, sorted array, and
key is the function mapping objects to keys, counting sort works as follows
(assuming arrays to be zero-based):

1. Search the minimum key mi and the maximum key ma occurring
within xs (which can be done via a single loop over xs).

2. Allocate an array ns of ma −mi + 2 unsigned integers and initialize
all its elements to 0.

3. For each i from 0 to n− 1, increase ns[key(xs[i])−mi+ 1] by 1.

4. For each i from 2 to ma−mi, increase ns[i] by ns[i− 1].

5. For each i from 0 to n − 1, set out[ns[key(xs[i]) − mi]] to xs[i] and
increase ns[key(xs[i])−mi] by 1.

2

Steps 1 and 2 take O(n) and O(ma−mi) time, respectively. Step 3 counts
how many times each possible key occurs within xs, and takes O(n) time.
Step 4 computes the offset within out of the first object in xs, if any, having
each possible key, and takes O(ma−mi) time. Finally, step 5 fills out, taking
O(n) time. Thus, the overall running time is O(n) + O(ma−mi), and the
same is obviously true of memory space.
If the range of all the keys possibly occurring within xs, henceforth briefly
referred to as the key range, is known in advance, the first two steps can
be skipped by using the minimum and maximum keys in the key range as
mi, ma and pre-allocating (possibly statically, rather than dynamically, in
real-world implementations) an array ns of size ma−mi+2. However, this
does not affect the asymptotic running time and memory space required by
the algorithm, since both keep being O(n) + O(ma−mi) independently of
the distribution of the keys actually occurring in xs within the key range.
As a result, counting sort is suitable for direct use, viz. not just as a subrou-
tine of another sorting algorithm such as radix sort, only if the key range is
not significantly larger than n. Indeed, if 100 objects with 100,000 possible
keys have to be sorted, accomplishing this task by allocating, and iterating
over, an array of 100,000 unsigned integers to count keys’ occurrences would
be quite impractical! Whence the question that this paper will try to answer:
how can counting sort be generalized for direct use in case of a large key
range?
Solving this problem clearly requires to renounce having one counter per key,
rather using a bounded number of counters, independent of the key range’s
cardinality, and partitioning the key range into some number of intervals
compatible with the upper bound on the counters’ number. The resulting
key intervals will then form as many buckets, and what will have to be
counted is the number of the objects contained in each bucket.
Counting objects per bucket, rather than per single key, has the following
major consequences, the former good, the latter bad:

• Keys are no longer constrained to be integers, but may rather be ele-
ments of any linear order, even of infinite cardinality.
In fact, in counting sort keys must be integers – or anything else in
one-to-one correspondence with some subset of the integers, such as
alphabet letters – since this ensures that the key range contains finitely
many keys, so that finitely many counters are needed. Thus, the in-
troduction of an upper bound for the number of counters makes this
constraint vanish. As a result, keys of any kind are now allowed and
the key range can even be infinite (mathematically, since any represen-
tation of the key range on a computer will always be finite). Notably,
rational or real numbers may be used as keys, too.
This observation considerably extends the scope of application of the

3

special case where function key matches the identity function. In
counting sort, this option is viable only if the objects to be sorted are
themselves integers, whereas in the generalized algorithm it is viable
whenever they are elements of any linear order, which also happens if
they are rational or real numbers.

• Recursion needs to be introduced, since any bucket containing more
than one object is in turn required to be sorted.
In fact, nothing prevents multiple objects from falling in the same
bucket, and while this happens sorting is not accomplished. Therefore,
the generalized algorithm must provide for recursive rounds, where
each round splits any bucket containing multiple objects into finer-
grained buckets containing fewer objects. Recursion will then go on
until every bucket contains at most one object, viz. until there remains
no counter larger than one.

Of course, the fewer recursive rounds are required to complete sorting, the
more the algorithm will be efficient, whence the following, fundamental ques-
tion: how to minimize the number of the rounds? That is to say, how to
maximize the probability that, as a result of the execution of a round, there
be at most one object in each bucket, so that no more rounds be required?
The intuitive answer is: first, by making the buckets equiprobable – or at
least, by making their probabilities as much uniform as possible –, and sec-
ond, by increasing the number of the buckets as much as possible. Providing
pen-and-paper proofs of both of these statements, and showing how they can
be enforced, is the purpose of the following sections.

1.1.2 Buckets’ probability – Proof

Suppose that k objects be split randomly among n equiprobable buckets,
where k ≤ n. This operation is equivalent to selecting at random a sequence
of k buckets, possibly with repetitions, so that the first object be placed into
the first bucket of the sequence, the second object into the second bucket,
and so on. Thus, the probability P that each bucket will contain at most
one object – which will be called event E in what follows – is equal to the
probability of selecting a sequence without repetitions among all the possible
sequences of k buckets formed with the n given ones.
Since buckets are assumed to be equiprobable, so are all such sequences.
Hence, P is equal to the ratio of the number of the sequences without rep-
etitions to the number of all sequences, namely:

P =
n!

(n− k)!nk
(1)

4

In the special case where k = n, this equation takes the following, simpler
form:

P =
n!

nn
(2)

Now, suppose that the n buckets be no longer equiprobable, viz. that they
no longer have the same, uniform probability 1/n, rather having arbitrary,
nonuniform probabilities p1, ..., pn. The equation for probability P applying
to this case can be obtained through an iterative procedure, as follows.
Let i be an index in the range 1 to n such that pi is larger than 1/n. After
swapping index i for 1, let x1 be the increment in probability p1 with respect
to 1/n, so that p1 = a0/n + x1 with a0 = 1 and 0 < x1 ≤ a0(n − 1)/n (as
p1 = 1 for x1 = a0(n− 1)/n). Then, let P1 be the probability of event E in
case the first bucket has probability p1 and all the other n− 1 buckets have
the same, uniform probability q1 = a0/n− x1/(n− 1).
If k < n, event E occurs just in case either all k objects fall in as many
distinct buckets with probability q1, or k − 1 objects do so whereas the
remaining object falls in the bucket with probability p1. As these events,
say EA and EB, are incompatible, P1 matches the sum of their respective
probabilities.
Since all the possible choices of k distinct buckets are mutually incompatible,
while those of the buckets containing any two distinct objects are mutually
independent, the probability of event EA is equal to the product of the
following factors:

• The number of the sequences without repetitions of k buckets formed
with the n − 1 ones with probability q1, i.e. (n − 1)!/(n − 1 − k)! =
(n− k)(n− 1)!/(n− k)!.

• The probability of any such sequence, i.e. qk1 .

By virtue of similar considerations, the probability of event EB turns out to
match the product of the following factors:

• The number of the sequences without repetitions of k − 1 buckets
formed with the n− 1 ones with probability q1, i.e. (n− 1)!/(n− A1−
k + A1)! = (n− 1)!/(n− k)!.

• The probability of any such sequence, i.e. qk−1
1 .

• The number of the possible choices of the object falling in the first
bucket, i.e. k.

• The probability of the first bucket, i.e. p1.

5

Therefore, P1 is provided by the following equation:

P1 =
(n− k)(n− 1)!

(n− k)!

(
a0
n
− x1

n− 1

)k

+ k
(n− 1)!

(n− k)!

(
a0
n
− x1

n− 1

)k−1 (a0
n

+ x1

) (3)

The correctness of this equation is confirmed by the fact that its right-hand
side matches that of equation (1) for x1 = 0, since P1 must degenerate to P
in this case. In fact, being a0 = 1, it results:

(n− k)(n− 1)!

(n− k)!

(a0
n
− 0
)k

+ k
(n− 1)!

(n− k)!

(a0
n
− 0
)k−1 (a0

n
+ 0
)

= (n−Sk +Sk)
(n− 1)!

(n− k)!

(a0
n

)k
=

n!

(n− k)!nk

If k = n, event EA is impossible, as there is no way to accommodate n
objects within n − 1 buckets without repetitions. Thus, P1 is given by the
following equation, derived by deleting the first addend and replacing k with
n in the right-hand side of equation (3):

P1 = n!

(
a0
n
− x1

n− 1

)n−1 (a0
n

+ x1

)
(4)

Likewise, the right-hand side of this equation matches that of equation (2)
for x1 = 0, which confirms its correctness.
The conclusions reached so far can be given a concise form, suitable for
generalization, through the following definitions, where i and j are any two
natural numbers such that 0 < k − j ≤ n − i and ai is some assigned real
number:

Ai,j ≡
(n− i)!

(n− i− k + j)!

(
ai

n− i

)k−j

Fi,j ≡ (k − j + 1)Ai,jpi

Gi,j ≡ Ai,j−1 + Fi,j

Then, denoting the value of P in the uniform probability case with P0, and
a0(n − 1)/n − x1 with a1, so that q1 = a1/(n − 1), equations (1), (3), and
(4) can be rewritten as follows:

6

P0 = A0,0 (5)

P1 =

{
G1,1 = A1,0 + kA1,1p1 if k < n,
F1,1 = kA1,1p1 if k = n.

(6)

Even more than for their conciseness, these equations are significant insofar
as they show that the right-hand side of equation (6) can be obtained from
the one of equation (5) by replacing A0,0 with either G1,1 or F1,1, depending
on whether k < n or k = n.
If pi matches q1 for any i in the range 2 to n, P = P1, thus P is given by
equation (6). Otherwise, the procedure that has led to equation (6) can be
applied again. For some index i in the range 2 to n such that pi is larger
than q1, swap i for 2, and let x2 = p2−a1/(n−1), a2 = a1(n−2)/(n−1)−x2,
with 0 < x2 ≤ a1(n − 2)/(n − 1). Moreover, let P2 be the probability of
event E if the first two buckets have probabilities p1, p2 and the other n− 2
buckets have the same probability q2 = a2/(n− 2).
Then, reasoning as before, it turns out that the equation for P2 can be
obtained from equation (6) by replacing:

• A1,0 with G2,1 or F2,1, depending on whether k < n− 1 or k = n− 1,
and

• A1,1 with G2,2 or F2,2, depending on whether k−1 < n−1, i.e. k < n,
or k − 1 = n− 1, i.e. k = n.

As a result, P2 is provided by the following equation:

P2 =

G2,1 + kG2,2p1 = A2,0 + kA2,1p2 + k[A2,1 + (k − 1)A2,2p2]p1

if k < n− 1,
F2,1 + kG2,2p1 = kA2,1p2 + k[A2,1 + (k − 1)A2,2p2]p1

if k = n− 1,
kF2,2p1 = k(k − 1)A2,2p2p1

if k = n.

(7)

Since the iterative procedure used to derive equations (6) and (7) can be
further applied as many times as required, it follows that for any nonuniform
probability distribution p1, ..., pn, the equation for P can be obtained from
equation (5) with n − 1 steps at most, where each step consists of replac-
ing terms of the form Ai,j with terms of either form Gi+1,j+1 or Fi+1,j+1,
depending on whether k − j < n− i or k − j = n− i.

7

Let us re-use letters n, k in lieu of n − i and k − j, and use letters a, x
as aliases for ai and xi+1. Then, any aforesaid replacement is equivalent to
the insertion of either of the following expressions, regarded as images of as
many functions G, F of real variable x:

G(x) =
(n− k)(n− 1)!

(n− k)!

(
a

n
− x

n− 1

)k

+ k
(n− 1)!

(n− k)!

(
a

n
− x

n− 1

)k−1 (a
n
+ x
)

for k < n, (8)

F (x) = n!

(
a

n
− x

n− 1

)n−1 (a
n
+ x
)

for k = n (9)

in place of the following expression:

n!

(n− k)!

(a
n

)k
=

{
G(0) if k < n,
F (0) if k = n.

(10)

Equation (10) can be obtained from equations (8) and (9) in the same way
as equations (3) and (4) have previously been shown to match equations (1)
and (2) for x1 = 0.
Since every such replacement takes place within a sum of nonnegative terms,
P can be proven to be increasingly less than P0 for increasingly nonuniform
probability distributions – which implies that the probability of event E is
maximum in case of equiprobable buckets – by proving that functions G and
F are strictly decreasing in [0, b], where b = a(n− 1)/n.
The slopes of the segments joining points (0, G(0)), (b,G(b)) and (0, F (0)),
(b, F (b)) are:

G(b)−G(0)

b− 0
=

0− n!

(n− k)!

(a
n

)k
b

< 0,

F (b)− F (0)

b− 0
=

0− n!
(a
n

)n
b

< 0.

Therefore, by Lagrange’s mean value theorem, there exist c, d ∈ (0, b) such
that G′(c) < 0 and F ′(d) < 0. On the other hand, it is:

8

G′(x) = −k (n− 1)!

(n− k)!

n− k

n− 1

(
a

n
− x

n− 1

)k−1

− k
(n− 1)!

(n− k)!

k − 1

n− 1

(
a

n
− x

n− 1

)k−2 (a
n
+ x
)

+ k
(n− 1)!

(n− k)!

(
a

n
− x

n− 1

)k−1

,

F ′(x) = −n!
(
a

n
− x

n− 1

)n−2 (a
n
+ x
)
+ n!

(
a

n
− x

n− 1

)n−1

.

Thus, solving equations G′(x) = 0 and F ′(x) = 0 for x 6= b, viz. for a/n −
x/(n− 1) 6= 0, it results:

G′(x) = 0

⇒
XXXXXXXXXXXXXX

k
(n− 1)!

(n− k)!

(
a

n
− x

n− 1

)k−2[k − n

n− 1

(
a

n
− x

n− 1

)
+

1− k

n− 1

(a
n
+ x
)
+

a

n
− x

n− 1

]
= 0

⇒ 1
XXXXXn(n− 1)2

{
(k − n)[(n− 1)a− nx] + (1− k)[(n− 1)a+ n(n− 1)x]

+ (n− 1)2a− n(n− 1)x
}
= 0

⇒XXXXXk(n− 1)a− knx− n(n− 1)a+ n2x+ (n− 1)a+
XXXXXn(n− 1)x

−XXXXXk(n− 1)a− kn(n− 1)x+ (n− 1)2a−XXXXXn(n− 1)x = 0

⇒ −HHHknx−HHn2a+HHna+ n2x+HHna− Aa− kn2x+H
HHknx+HHn2a−XX2na+ Aa = 0

⇒XXXXXn2(1− k)x = 0

⇒ x = 0,

F ′(x) = 0

⇒
XXXXXXXXXX
n!

(
a

n
− x

n− 1

)n−2(
−A

AA

a

n
− x+ A

AA

a

n
− x

n− 1

)
= 0

⇒Z
Z
Z

n

1− n
x = 0

⇒ x = 0.

Hence, there is no x ∈ (0, b) such that G′(x) = 0 or F ′(x) = 0. Moreover,
if there existed y, z ∈ (0, b) such that G′(y) > 0 or F ′(z) > 0, by Bolzano’s
theorem there would also exist u, v in the open intervals with endpoints c, y

9

and d, z, both included in (0, b), such that G′(u) = 0 or F ′(v) = 0, which is
not the case. Therefore, G′(x) and F ′(x) are negative for any x ∈ (0, b), so
that functions G and F are strictly decreasing in [0, b], Q.E.D..

1.1.3 Buckets’ probability – Implementation

Given n > 1 buckets, numbered with indices 0 to n− 1, and a finite set A of
objects having minimum key mi and maximum key ma, let E(k), I(mi,ma)
be the following events, defined as subsets of the whole range R of function
key, with k varying over R:

E(k) ≡ {k′ ∈ R. k′ ≤ k}
I(mi,ma) ≡ {k′ ∈ R. mi ≤ k′ ≤ ma}

Furthermore, define functions r, f as follows:

r(k, n,mi,ma) ≡ (n− 1) · P (E(k) | I(mi,ma))

f(k, n,mi,ma) ≡ floor(r(k, n,mi,ma))

where P (E(k) | I(mi,ma)) denotes the conditional probability of event
E(k), viz. for a key not to be larger than k, given event I(mi,ma), viz. if
the key is comprised between mi and ma.
Then, the buckets’ probabilities can be made as much uniform as possible by
placing each object x ∈ A into the bucket whose index matches the following
value:

index(key, x, n,mi,ma) ≡ f(key(x), n,mi,ma)

For example, given n = 5 buckets, suppose that the image of set A under
function key consists of keys k1 = mi, k2, ..., k9 = ma, where the conditional
probabilities for a key comprised between k1 and k9 to match each of these
keys have the following values:

10

P1 = 0.05,

P2 = 0.05,

P3 = 0.15,

P4 = 0.075,

P5 = 0.2,

P6 = 0.025,

P7 = 0.1,

P8 = 0.25,

P9 = 0.1

Evidently, there is no way of partitioning set {k1, ..., k9} into five equiprob-
able subsets comprised of contiguous keys. However, it results:

floor

(
4 ·

n∑
i=1

Pi

)
=

0 for n = 1, 2,
1 for n = 3, 4,
2 for n = 5, 6, 7,
3 for n = 8,
4 for n = 9.

Hence, in spite of the highly nonuniform distribution of the keys’ proba-
bilities – key k8’s probability is 10 times that of key k6 –, function index
manages all the same to split the objects in A so as to make the buckets’
probabilities more uniform – with the maximum one being about 3 times
the minimum one –, as follows:

• Bucket 0 has probability 0.1, as it collects the objects with keys k1,
k2.

• Bucket 1 has probability 0.225, as it collects the objects with keys k3,
k4.

• Bucket 2 has probability 0.325, as it collects the objects with keys k5,
k6, k7.

• Bucket 3 has probability 0.25, as it collects the objects with key k8.

• Bucket 4 has probability 0.1, as it collects the objects with key k9.

Remarkably, function index makes the buckets’ probabilities exactly or al-
most uniform – meaning that the maximum one is at most twice the mini-
mum nonzero one, possibly except for the last bucket alone – in the following
most common, even though special, cases:

11

1. I(mi,ma) is a finite set of equiprobable keys.

2. I(mi,ma) is a closed interval of real numbers, i.e. I(mi,ma) = [mi,ma] ⊂
R, with P ({mi}) = 0, and function r is continuous for k ∈ [mi,ma].

In case 1, let m be the cardinality of I(mi,ma). It is m > 0 since mi ∈
I(mi,ma), so that each key in I(mi,ma) has probability 1/m.
If m ≤ n−1, then (n−1)/m ≥ 1, thus f is nonzero and strictly increasing for
k ∈ I(mi,ma). Thus, in this subcase function index fills exactly m buckets,
one for each single key in I(mi,ma), whereas the remaining n−m buckets,
particularly the first one, are left unused. Therefore, every used bucket has
probability 1/m.
If m > n − 1 and m is divisible by n − 1, let q > 1 be the quotient of the
division, so that m = q(n − 1). Dividing both sides of this equation by
m(n − 1), it turns out that 1/(n − 1) = q/m, and then 1/(n − 1) − 1/m =
(q − 1)/m. Hence, f matches zero for the first q − 1 keys in I(mi,ma),
increases by one for each of the n − 2 subsequent groups of q contiguous
keys, and reaches value n − 1 in correspondence with the last key. Indeed,
q − 1 + q(n− 2) + 1 = q + q(n− 2) = q(n− 1) = m.
Consequently, in this subcase function index places the objects mapped
to the first q − 1 keys into the first bucket – which then has probability
(q−1)/m –, the objects mapped to the i-th subsequent group of q keys, where
1 ≤ i ≤ n−2, into the bucket with index i – which then has probability q/m –
and the objects mapped to the last key into the last bucket – which then has
probability 1/m –. Since 2(q − 1)/m = 2q/m− 2/m ≥ 2q/m− q/m = q/m,
the maximum probability is at most twice the minimum one, excluding the
last bucket if q > 2.
If m > n−1 and m is not divisible by n−1, let q, r be the quotient and the
remainder of the division, where q > 0 and n− 1 > r > 0. For any i > 0, it
is:

m = q(n− 1) + r

⇒ ZZm

ZZm(n− 1)
=

qXXXX(n− 1)

mXXXX(n− 1)
+

r

m(n− 1)

⇒ i

n− 1
=

iq

m
+ i

r

m(n− 1)

⇒ iq

m
=

i

n− 1
−
(
i

r

n− 1

)
1

m
(11)

⇒ iq + 1

m
=

i

n− 1
+

(
1− i

r

n− 1

)
1

m
(12)

Both equations (11) and (12) have something significant to say for i = 1.

12

Equation (11) takes the following form:

q

m
=

1

n− 1
−
(

r

n− 1

)
1

m

where r/(n− 1) > 0, so that q/m < 1/(n− 1). This implies that, if k is the
first key in I(mi,ma) for which f matches any given value, the subsequent
q − 1 keys are never sufficient to increase f by one. Thus, function index
fills every bucket but the last one – which collects the objects mapped to
the last key only – with the objects mapped to 1 + q − 1 = q keys at least.
For its part, equation (12) takes the following form:

q + 1

m
=

1

n− 1
+

(
1− r

n− 1

)
1

m

where 1 − r/(n − 1) > 0, so that (q + 1)/m > 1/(n − 1). Therefore, the
q keys following any aforesaid key k are always sufficient to increase f by
one. Hence, function index fills every bucket with the objects mapped to
1 + q = q + 1 keys at most. A further consequence is that f changes from
zero to one for k matching the (q + 1)-th key in I(mi,ma), which entails
that the first bucket collects the objects mapped to exactly the first q keys.
Which is the first i1, if any, such that the bucket with index i1 collects the
objects mapped to q+1, rather than q, keys? Such bucket, if any, is preceded
by i1 buckets (as indices are zero-based), whose total probability is i1q/m
(as each of those buckets accommodates a group of q keys). So, i1 is the least
index, if any, such that 0 < i1 < n−1 and [(i1+1)q+1]/m < (i1+1)/(n−1).
Rewriting the latter inequality using equation (12), it results:

Z
Z
ZZ

i1 + 1

n− 1
+

[
1− (i1 + 1)

r

n− 1

]
1

m
<

Z
Z
ZZ

i1 + 1

n− 1

⇒
[
1− (i1 + 1)

r

n− 1

]
A
AA

1

m
< 0

⇒ (i1 + 1)
r

n− 1
> 1

⇒ i1 >
n− 1

r
− 1

where (n− 1)/r− 1 > 0 since r < n− 1. Hence, index i1 there exists just in
case:

13

n− 1

r
− 1 < n− 2

⇒
XXXn− 1

r
<XXXn− 1

⇒ r > 1

Likewise, let i2 be the next index, if any, such that the bucket with index
i2 accommodates a group of q + 1 keys. Such bucket, if any, is preceded by
i2 − 1 buckets accommodating q keys and one bucket accommodating q + 1
keys, whose total probability is (i2q + 1)/m. Thus, i2 is the least index, if
any, such that i1 < i2 < n − 1 and [(i2 + 1)q + 2]/m < (i2 + 1)/(n − 1).
Adding term 1/m to both sides of equation (12), the latter inequality can
be rewritten as follows:

Z
Z
ZZ

i2 + 1

n− 1
+

[
2− (i2 + 1)

r

n− 1

]
1

m
<

Z
Z
ZZ

i2 + 1

n− 1

⇒
[
2− (i2 + 1)

r

n− 1

]
A
AA

1

m
< 0

⇒ (i2 + 1)
r

n− 1
> 2

⇒ i2 >
2(n− 1)

r
− 1

where 2(n− 1)/r− 1 > [(n− 1)/r− 1]+ 1 ≥ i1. Hence, index i2 there exists
just in case:

2(n− 1)

r
− 1 < n− 2

⇒ 2XXXX(n− 1)

r
<XXXn− 1

⇒ r > 2

To sum up, in this subcase function index turns out to work as follows:

• The r−1 buckets whose indices ij match the least solutions of inequal-
ities ij > j(n − 1)/r − 1, for 1 ≤ j ≤ r − 1, accommodate a group of
q+1 contiguous keys each, so that each one has probability (q+1)/m.

• The other n − 1 − (r − 1) = n − r buckets excluding the last one,
particularly the first bucket, accommodate a group of q contiguous
keys each, so that each one has probability q/m.

14

• The last bucket accommodates the last key alone, so that its proba-
bility is 1/m.

Indeed, (q+1)(r−1)+q(n−r)+1 =ZZqr−q+r−A1+qn−ZZqr+A1 = q(n−1)+r = m.
Furthermore, being 2q/m ≥ (q+1)/m, the maximum value among buckets’
probabilities is at most twice the minimum one, excluding the last bucket if
q > 2.
Two further observations can be made concerning case 1. First, if m > n−1,
then the larger q gets, the more efficient it becomes to use the buckets’
number n itself instead of n− 1 within function r, placing the objects with
index n, viz. mapped to the last key, into the bucket with index n − 1.
In fact, this ensures that all the buckets have almost uniform probabilities
rather than leaving a bucket, the last one, with a small, or even negligible,
probability.
Second, if keys are integers and I(mi,ma) includes all the integers comprised
between mi and ma, it is m = ma−mi+ 1, whereas the cardinality of set
E(k)∩ I(mi,ma) is k−mi+1 for any k ∈ I(mi,ma). Therefore, it results:

r(k, n,mi,ma) = (n− 1)
k −mi+ 1

ma−mi+ 1
,

so that function r resembles the approximate rank function R described in
[1].
In case 2, let Z be the set of the integers i such that 0 ≤ i ≤ n − 1.
As r(k, n,mi,ma) matches 0 for k = mi and n − 1 for k = ma, by the
intermediate value theorem, for each i ∈ Z there exists a least ki ∈ [mi,ma]
such that r(ki, n,mi,ma) = i, where k0 = mi. Then, let Bi = [ki, ki+1) for
each i ∈ Z − {n− 1} and Bn−1 = [kn−1,ma].
For any i ∈ Z−{n− 1}, k ∈ Bi, it is r(k, n,mi,ma) 6= i+1, since otherwise
there would exist some k < ki+1 in [mi,ma] such that r(k, n,mi,ma) = i+1.
On the other hand, being k < ki+1, it is r(k, n,mi,ma) ≤ i + 1, since
function r is increasing with respect to variable k. Hence, it turns out that
r(k, n,mi,ma) < i + 1. Moreover, the monotonicity of r also implies that
r(k, n,mi,ma) ≥ i. Therefore, it is f(k, n,mi,ma) = i, so that for any
i ∈ Z, function index fills the bucket with index i with the objects mapped
to the keys in Bi.
Consequently, for each i ∈ Z − {n − 1}, the probability of the bucket with
index i is:

15

P (Bi | I(mi,ma))

=
P (Bi ∩ I(mi,ma))

P (I(mi,ma))

=
P ((ki, ki+1] ∩ I(mi,ma))

P (I(mi,ma))

=
P (E(ki+1) ∩ I(mi,ma))− P (E(ki) ∩ I(mi,ma))

P (I(mi,ma))

=
P (E(ki+1) ∩ I(mi,ma))

P (I(mi,ma))
− P (E(ki) ∩ I(mi,ma))

P (I(mi,ma))

= P (E(ki+1) | I(mi,ma))− P (E(ki) | I(mi,ma))

=
(n− 1) · P (E(ki+1) | I(mi,ma))− (n− 1) · P (E(ki) | I(mi,ma))

n− 1

=
r(ki+1, n,mi,ma)− r(ki, n,mi,ma)

n− 1

=
Ci+ 1− Ci

n− 1

=
1

n− 1

Observe that the computation uses:

• The definition of conditional probability.

• The fact that events Bi and (ki, ki+1] differ by singletons {ki} and
{ki+1}, whose probability is zero.
Indeed, it is P ({k0}) = P ({mi}) = 0 by hypothesis, whereas for any
k ∈ (mi,ma], it is P ({k}) = 0 due to the continuity of function r, and
then of function P (E(k)∩ I(mi,ma)), in point k. In fact, for any k′ ∈
(mi, k) it is E(k′) ∩ I(mi,ma) = [mi, k′] ⊂ [mi, k), so that P (E(k′) ∩
I(mi,ma)) ≤ P ([mi, k)). However, it is also E(k) ∩ I(mi,ma) =
[mi, k] = [mi, k) ∪ {k}, so that P (E(k) ∩ I(mi,ma)) = P ([mi, k)) +
P ({k}). Thus, if P ({k}) > 0, then P (E(k)∩ I(mi,ma)) > P ([mi, k)),
in contradiction with the assumption that:

lim
k′→k−

P (E(k′) ∩ I(mi,ma)) = P (E(k) ∩ I(mi,ma))

• The fact that event E(ki+1) ∩ I(mi,ma) is equal to the union of the
disjoint events E(ki)∩I(mi,ma) and (ki, ki+1]∩I(mi,ma), so that the
probability of the former event is equal to the sum of the probabilities
of the latter ones.

16

As a result, all the buckets but the last one are equiprobable, whereas the
last one has probability zero. Thus, in this case it is again more efficient to
replace n − 1 with n within function r, assigning the objects with index n,
viz. mapped to the keys falling in Bn, to the bucket with index n−1, which
ensures that all the buckets have uniform probabilities.
If function r is linear for k ∈ [mi,ma], viz. if interval [mi,ma] is endowed
with a constant probability density, then the function’s graph (with factor
n− 1 replaced by n) is the straight line passing through points (mi, 0) and
(ma, n). Therefore, it results:

r(k, n,mi,ma) = n
k −mi

ma−mi
,

so that function r matches the approximate rank function R described in
[1].

1.1.4 Buckets’ number – Proof

Given n equiprobable buckets and k objects to be partitioned randomly
among such buckets, where 1 < k ≤ n, the probability Pn,k that each bucket
will contain at most one object is given by equation (1), namely:

Pn,k =
n!

(n− k)!nk

Thus, it is:

Pn+1,k − Pn,k

=
(n+ 1)!

(n− k + 1)(n− k)!(n+ 1)k
− n!

(n− k)!nk

=
(n+ 1)!nk − n!(n− k + 1)(n+ 1)k

(n− k + 1)(n− k)!nk(n+ 1)k

Using the binomial theorem and Pascal’s rule, the numerator of the fraction
in the right-hand side of this equation can be expressed as follows:

17

(n+ 1)!nk − (n− k + 1)n!(n+ 1)k

= n!(n+ 1)nk + n!k(n+ 1)k − n!n(n+ 1)k − n!(n+ 1)k

= n!nk+1 + n!nk

+ n!k

[
nk +

(
k

1

)
nk−1 +

(
k

2

)
nk−2 + ...+

(
k

k − 1

)
n+

(
k

k

)]
− n!n

[
nk +

(
k

1

)
nk−1 +

(
k

2

)
nk−2 + ...+

(
k

k − 1

)
n+

(
k

k

)]
− n!

[
nk +

(
k

1

)
nk−1 +

(
k

2

)
nk−2 + ...+

(
k

k − 1

)
n+

(
k

k

)]
=

XXXXn!nk+1 +
HHHn!nk +

XXXn!knk

+ n!k

(
k

1

)
nk−1 + n!k

(
k

2

)
nk−2 + ...+ n!k

(
k

k − 1

)
n+ n!k

−XXXXn!nk+1 −XXXn!knk − n!

(
k

2

)
nk−1 − ...− n!

(
k

k − 1

)
n2 − n!

(
k

k

)
n

−HHHn!nk − n!

(
k

1

)
nk−1 − n!

(
k

2

)
nk−2 − ...− n!

(
k

k − 1

)
n− n!

= n!(k − 1) + n!nk−1

[
k

(
k

1

)
−
(
k

1

)
−
(
k

2

)]
+ ...

+ n!n

[
k

(
k

k − 1

)
−
(

k

k − 1

)
−
(
k

k

)]
= n!(k − 1) + n! ·

k−1∑
i=1

nk−i

{
k

(
k

i

)
−
[(

k

i

)
+

(
k

i+ 1

)]}

= n!(k − 1) + n! ·
k−1∑
i=1

nk−i

[
k

(
k

i

)
−
(
k + 1

i+ 1

)]

= n!(k − 1) + n! ·
k−1∑
i=1

nk−i

[
kk!

i!(k − i)!
− (k + 1)!

(i+ 1)i!(k − i)!

]

= n!(k − 1) + n! ·
k−1∑
i=1

nk−ik!
(i+ 1)k − (k + 1)

(i+ 1)i!(k − i)!

= n!(k − 1) + n! ·
k−1∑
i=1

nk−ik!
ik − 1

(i+ 1)i!(k − i)!
> 0

Therefore, for any fixed k > 1, sequence (Pn,k)n≥k is strictly increasing, viz.
the larger n is, such is also the probability that each of the n equiprobable
buckets will contain at most one of the k given objects.
Moreover, it is Pn,k = [n(n− 1)(n− 2)(n− 3)...(n− k+1)]/nk < nk/nk = 1,

18

as the product enclosed within the square brackets comprises k factors, one
equal to n and the other ones less than n.
On the other hand, it turns out that:

n(n− 1)(n− 2)(n− 3)...(n− k + 1)

= n2[(n− 2)(n− 3)...(n− k + 1)]− n[(n− 2)(n− 3)...(n− k + 1)]

≥ n2[(n− 2)(n− 3)...(n− k + 1)]− n · nk−2

= n[n(n− 2)(n− 3)...(n− k + 1)]− nk−1

= n · n2[(n− 3)...(n− k + 1)]− n · 2n[(n− 3)...(n− k + 1)]− nk−1

≥ n3[(n− 3)...(n− k + 1)]− 2n2 · nk−3 − nk−1

= n2[n(n− 3)...(n− k + 1)]− (1 + 2)nk−1 ...

Hence, applying the same line of reasoning until the product within the
square brackets disappears, it results:

n(n− 1)(n− 2)(n− 3)...(n− k + 1)

≥ nk − [1 + 2 + ...+ (k − 1)]nk−1

= nk − k(k − 1)

2
nk−1,

so that:

Pn,k =
n(n− 1)(n− 2)(n− 3)...(n− k + 1)

nk
≥ 1− k(k − 1)

2n

Therefore, for any fixed k > 1, the terms of sequence (Pn,k)n≥k are comprised
between the corresponding terms of sequence (1 − k(k − 1)/2n)n≥k and
constant sequence (1)n≥k. Since both of these sequences converge to 1, by
the squeeze theorem it is:

lim
n→∞

Pn,k = 1,

viz. the larger n is, the closer to 1 is the probability that each of the n
equiprobable buckets will contain at most one of the k given objects.
As a result, the probability of placing at most one object into each bucket in
any algorithm’s round is maximized by increasing the number of the buckets
as much as possible, Q.E.D..

19

1.1.5 Buckets’ number – Implementation

Let n be the number of the objects to be sorted, and p the upper bound
on the counters’ number – and then on the buckets’ number as well, since
there must be exactly one counter per bucket –. This means that before the
round begins, the objects to be split are located in m buckets B1, ..., Bm,
where 0 < m ≤ p, respectively containing n1, ..., nm objects, where ni > 0
for each i from 1 to m and n1 + ...+ nm = n.
Moreover, let c be the number of the objects known to be the sole elements
of their buckets, viz. to require no partition into finer-grained buckets, at
the beginning of a given algorithm’s round. Then, the number of the objects
requiring to be split into finer-grained buckets in that round is n−c, whereas
the number of the available buckets is p− c, since c counters must be left to
store as many 1s, one for each singleton bucket.
How to compute c? At first glance, the answer seems trivial: by counting,
among the counters input (either by the algorithm’s caller or by the previous
round) to the round under consideration, those that match 1. However,
this value would not take into account the fact that, for each non-singleton
bucket, the algorithm must find the leftmost occurrence of the minimum
key, as well as the rightmost occurrence of the maximum key, and place the
corresponding objects into two new singleton buckets, which shall be the
first and the last finer-grained bucket, respectively.
The most fundamental reason for this is that, as a result of the partition of
such a bucket, nothing prevents all its objects from falling in the same finer-
grained bucket – particularly, this happens whenever all its objects have the
same key –, in which case the algorithm does not terminate unless some
object is removed from the bucket prior to the partition, so as to reduce
its size. Just as clearly, the algorithm must know where to place the finer-
grained buckets containing the removed objects with respect to the finer-
grained buckets resulting from the partition. This is exactly what is ensured
by removing objects with minimum or maximum keys, whereas selecting
the leftmost or the rightmost ones, respectively, preserves the algorithm’s
stability.
Actually, the algorithm’s termination requires the removal of at least one ob-
ject per non-singleton bucket, so the removal of one object only, either with
minimum or maximum key, would be sufficient. Nonetheless, the leftmost
minimum and the rightmost maximum can be searched via a single loop, and
finding both of them enables to pass them as inputs to the function index
described in section 1.1.3, or to whatever other function used to split buckets
into finer-grained ones. Moreover, non-singleton buckets whose objects all
have the same key can be detected as those whose minimum and maximum
keys are equal. This allows to optimize the algorithm by preventing it from
unnecessarily applying multiple recursive rounds to any such bucket; it shall

20

rather be left as is, just replacing its counter with as many 1s as its size to
indicate that it is already sorted.
Therefore, as the round begins, the objects already known to be placed in
singleton buckets are one for each bucket whose counter matches 1, and
two for each bucket whose counter is larger than 1. As a result, c shall be
computed as follows. First, initialize c to zero. Then, for each i from 1 to
m, increase c by one if ni = 1, by two otherwise.
Conversely, for any such i, the number Ni of the objects contained in bucket
Bi having to be partitioned into finer-grained buckets is 0 if ni = 1, ni − 2
otherwise, so that N1 + ... + Nm = n − c. According to the findings of
section 1.1.4, the number N ′

i of the resulting finer-grained buckets should be
maximized, and the most efficient way to do this is to render N ′

i proportional
to Ni, since otherwise, viz. if some buckets were preferred to some other ones,
the unprivileged buckets would form as many bottlenecks.
This can be accomplished by means of the following procedure. First, ini-
tialize integers R and U to 0. Then, for each i from 1 to m, check whether
Ni ≤ 1:

• If so, set N ′
i to Ni.

In fact, no finer-grained bucket is necessary if there are no objects to
be split, while a single finer-grained bucket is sufficient for a lonely
object.

• Otherwise, perform the integer division of Ni · (p − c) + R by n − c,
and set integer Q to the resulting quotient and R to the resulting
remainder. Then, if the minimum and maximum keys occurring in
bucket Bi are equal, increase U by Q−Ni, otherwise set N ′

i to U +Q
and reset U to 0.
In fact, as observed above, if its minimum and maximum keys are
equal, bucket Bi can be split into ni = Ni+2 singleton buckets. Hence,
the difference Q−Ni between the number of the available finer-grained
buckets, i.e. Q + 2 (where 2 is the number of the buckets containing
the leftmost minimum and the rightmost maximum), and the number
of those being used, i.e. Ni+2, can be added to the total number U of
the available finer-grained buckets still unused in the current round.
Such buckets can then be utilized as soon as a bucket Bj with Nj > 1
whose minimum and maximum keys do not match is encountered next,
in addition to those already reserved for Bj .

Of course, for any i from 1 to m such that Ni > 1, it is Ni ≤ Q – viz.
the number of the objects in Bi to be split is not larger than that of the
finer-grained buckets where they are to be placed even if U = 0, so that the
probability of placing at most one object into each bucket is nonzero – just
in case n − c ≤ p − c, i.e. n ≤ p. Indeed, it will be formally proven that

21

for n ≤ p, this procedure is successful in maximizing the buckets’ number
in each round never exceeding the upper bound p.

1.1.6 Generalized counting sort (GCsort)

The conclusions of the efficiency analysis performed so far, put together,
result in the following generalized counting sort (GCsort) algorithm.
Let xs be the input array containing n objects to be sorted, and ns an array
of p integers, where 0 < p and n ≤ p. Moreover, let xs′ and ns′ be two
further arrays of the same type and size of xs and ns, respectively, and let
i, i′, and j be as many integers.
Then, GCsort works as follows (assuming arrays to be zero-based):

1. Initialize the first element of ns to n and any other element to 0.

2. Check whether ns contains any element larger than 1.
If not, terminate the algorithm and output xs as the resulting sorted
array.

3. Initialize i, i′, and j to 0.

4. Check whether ns[i] = 1 or ns[i] > 1:

(a) In the former case, set xs′[j] to xs[j] and ns′[i′] to 1.
Then, increase i′ and j by 1.

(b) In the latter case, partition the bucket comprised of objects xs[j]
to xs[j+ns[i]−1] into finer-grained buckets according to section
1.1.5, storing the resulting n′ buckets in xs′[j] to xs′[j+ns[i]−1]
and their sizes in ns′[i′] to ns′[i′ + n′ − 1].
Then, increase i′ by n′ and j by ns[i].

5. Increase i by 1, and then check whether i < p.
If so, go back to step 4.
Otherwise, perform the following operations:

(a) If i′ < p, set integers ns′[i′] to ns′[p− 1] to 0.
(b) Swap addresses xs and xs′, as well as addresses ns and ns′.
(c) Go back to step 2.

Since the algorithm is tail-recursive, the memory space required for its
execution matches the one required for a single recursive round, which is
O(n) +O(p).
The best-case running time can be computed easily. The running time taken
by step 1 is equal to p. Moreover, the partition of a bucket into finer-grained

22

ones is performed by determining their sizes, computing the cumulative sum
of such sizes, and rearranging the bucket’s objects according to the resulting
offsets. All these operations only involve sequential, non-nested loops, which
iterate through either the objects or the finer-grained counters pertaining
to the processed bucket alone. Hence, the running time taken by a single
recursive round is O(n) +O(p), so that in the best case where at most one
round is executed after step 1, the running time taken by the algorithm is
O(n) +O(p), too.
The asymptotic worst-case running time can be computed as follows. Let
tn,p be the worst-case running time taken by a single round. As tn,p is
O(n) + O(p), there exist three real numbers a > 0, b > 0, and c such that
tn,p ≤ an + bp + c. Moreover, let Un,p be the set of the p-tuples of natural
numbers such that the sum of their elements matches n, and max(u) the
maximum element of a given u ∈ Un,p. Finally, let Tn,p,u be the worst-case
running time taken by the algorithm if it starts from step 2, viz. skipping
step 1, using as initial content of array ns the p-tuple u ∈ Un,p.
Then, it can be proven by induction on max(u) that:

Tn,p,u ≤

a
max(u)

2
n+

[
b
max(u)

2
+ 1

]
p+ c

max(u)

2

if max(u) is even,

a
max(u)− 1

2
n+

[
b
max(u)− 1

2
+ 1

]
p+ c

max(u)− 1

2

if max(u) is odd

(13)

In fact, if max(u) = 0, the initial p-tuple u matches the all-zero one. Hence,
the algorithm executes step 2 just once and then immediately terminates.
Therefore, the running time is p, which matches the right-hand side of in-
equality (13) for max(u) = 0.
If max(u) = 1, u contains no element larger than 1. Thus, again, the
algorithm terminates just after the first execution of step 2. As a result, the
running time is still p, which matches the right-hand side of inequality (13)
for max(u) = 1.
If max(u) = 2, u contains some element larger than 1, so that one round is
executed, taking time tn,p in the worst case. Once this round is over, array
ns will contain a p-tuple u′ ∈ Un,p such that max(u′) = 1. Hence, step 2
is executed again, taking time p, and then the algorithm terminates. As a
result, it is:

Tn,p,u ≤ an+ bp+ c+ p = an+ (b+ 1)p+ c,

23

which matches the right-hand side of inequality (13) for max(u) = 2.
Finally, if max(u) > 2, u has some element larger than 1, so one round
is executed, taking time tn,p in the worst case. Once this round is over,
array ns will contain a p-tuple u′ ∈ Un,p such that max(u′) ≤ max(u) − 2,
because of the removal of the leftmost minimum and the rightmost maximum
from any non-singleton bucket. By the induction hypothesis, the worst-case
time Tn,p,u′ taken by the algorithm from this point onward complies with
inequality (13), whose right-hand side is maximum if such is max(u′), viz.
if max(u′) = max(u)− 2.
As a result, if max(u) is even, it is:

Tn,p,u ≤ an+ bp+ c

+ a
max(u)− 2

2
n+

[
b
max(u)− 2

2
+ 1

]
p+ c

max(u)− 2

2

= a
max(u)

2
n+

[
b
max(u)

2
+ 1

]
p+ c

max(u)

2
,

which matches the right-hand side of inequality (13) for an even max(u).
Similarly, if max(u) is odd, it is:

Tn,p,u ≤ an+ bp+ c

+ a
max(u)− 3

2
n+

[
b
max(u)− 3

2
+ 1

]
p+ c

max(u)− 3

2

= a
max(u)− 1

2
n+

[
b
max(u)− 1

2
+ 1

]
p+ c

max(u)− 1

2
,

which matches the right-hand side of inequality (13) for an odd max(u).
With this, the proof of inequality (13) is complete. Now, let Tn,p be the
worst-case time taken by the algorithm executed in full. Step 1 is executed
first, taking time p. Then, array ns contains a p-tuple u such that max(u) =
n, and by definition, the worst-case time taken by the algorithm from this
point onward is Tn,p,u. Therefore, applying inequality (13), it turns out that:

Tn,p = p+ Tn,p,u

≤

a
n2

2
+
(
b
n

2
+ 2
)
p+ c

n

2
if n is even,

a
n2 − n

2
+

(
b
n− 1

2
+ 2

)
p+ c

n− 1

2
if n is odd

24

As a result, the asymptotic worst-case running time taken by the algorithm
is O(n2) +O(np).

1.2 Formal definitions

Here below, a formal definition of GCsort is provided, which will later enable
to formally prove the correctness of the algorithm. Henceforth, the main
points of the formal definitions and proofs are commented. For further
information, see Isabelle documentation, particularly [6], [5], [4], and [3].
The following formalization of GCsort does not define any specific function
index to be used to split buckets into finer-grained ones. It rather defines
only the type index-sign of such functions, matching the signature of the
function index described in section 1.1.3, along with three predicates that
whatever chosen index function is required to satisfy for GCsort to work
correctly:

• Predicate index-less requires function index to map any object within
a given bucket to an index less than the number of the associated
finer-grained buckets (less than instead of not larger than since type
′a list is zero-based).

• Predicate index-mono requires function index to be monotonic with
respect to the keys of the objects within a given bucket.

• Predicate index-same requires function index to map any two distinct
objects within a given bucket that have the same key to the same index
(premise distinct is added to enable this predicate to be used by the
simplifier).

type-synonym (′a, ′b) index-sign = (′a ⇒ ′b) ⇒ ′a ⇒ nat ⇒ ′b ⇒ ′b ⇒ nat

definition index-less :: (′a, ′b::linorder) index-sign ⇒ (′a ⇒ ′b) ⇒ bool
where
index-less index key ≡
∀ x n mi ma. key x ∈ {mi..ma} −→ 0 < n −→

index key x n mi ma < n

definition index-mono :: (′a, ′b::linorder) index-sign ⇒ (′a ⇒ ′b) ⇒ bool
where
index-mono index key ≡
∀ x y n mi ma. {key x, key y} ⊆ {mi..ma} −→ key x ≤ key y −→

index key x n mi ma ≤ index key y n mi ma

definition index-same :: (′a, ′b::linorder) index-sign ⇒ (′a ⇒ ′b) ⇒ bool
where

25

index-same index key ≡
∀ x y n mi ma. key x ∈ {mi..ma} −→ x 6= y −→ key x = key y −→

index key x n mi ma = index key y n mi ma

Functions bn-count and bn-comp count, respectively, the objects known to
be placed in singleton buckets in a given round, and the finer-grained buck-
ets available to partition a given non-singleton bucket, according to section
1.1.5.

fun bn-count :: nat list ⇒ nat where
bn-count [] = 0 |
bn-count (Suc (Suc (Suc (Suc n))) # ns) = Suc (Suc (bn-count ns)) |
bn-count (n # ns) = n + bn-count ns

fun bn-comp :: nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat × nat where
bn-comp (Suc (Suc n)) p q r =
((Suc (Suc n) ∗ p + r) div q, (Suc (Suc n) ∗ p + r) mod q) |

bn-comp n p q r = (n, r)

fun bn-valid :: nat ⇒ nat ⇒ nat ⇒ bool where
bn-valid (Suc (Suc n)) p q = (q ∈ {0<..p}) |
bn-valid n p q = True

Functions mini and maxi return the indices of the leftmost minimum and
the rightmost maximum within a given non-singleton bucket.

primrec (nonexhaustive) mini :: ′a list ⇒ (′a ⇒ ′b::linorder) ⇒ nat where
mini (x # xs) key =
(let m = mini xs key in if xs = [] ∨ key x ≤ key (xs ! m) then 0 else Suc m)

primrec (nonexhaustive) maxi :: ′a list ⇒ (′a ⇒ ′b::linorder) ⇒ nat where
maxi (x # xs) key =
(let m = maxi xs key in if xs = [] ∨ key (xs ! m) < key x then 0 else Suc m)

Function enum counts the objects contained in each finer-grained bucket
reserved for the partition of a given non-singleton bucket.

primrec enum :: ′a list ⇒ (′a, ′b) index-sign ⇒ (′a ⇒ ′b) ⇒
nat ⇒ ′b ⇒ ′b ⇒ nat list where

enum [] index key n mi ma = replicate n 0 |
enum (x # xs) index key n mi ma =
(let i = index key x n mi ma;

ns = enum xs index key n mi ma
in ns[i := Suc (ns ! i)])

26

Function offs computes the cumulative sum of the resulting finer-grained
buckets’ sizes so as to generate the associated offsets’ list.

primrec offs :: nat list ⇒ nat ⇒ nat list where
offs [] i = [] |
offs (n # ns) i = i # offs ns (i + n)

Function fill fills the finer-grained buckets with their respective objects.

primrec fill :: ′a list ⇒ nat list ⇒ (′a, ′b) index-sign ⇒ (′a ⇒ ′b) ⇒
nat ⇒ ′b ⇒ ′b ⇒ ′a option list where

fill [] ns index key n mi ma = replicate n None |
fill (x # xs) ns index key n mi ma =
(let i = index key x (length ns) mi ma;

ys = fill xs (ns[i := Suc (ns ! i)]) index key n mi ma
in ys[ns ! i := Some x])

Then, function round formalizes a single GCsort’s recursive round.

definition round-suc-suc :: (′a, ′b::linorder) index-sign ⇒ (′a ⇒ ′b) ⇒
′a list ⇒ nat ⇒ nat ⇒ nat ⇒ nat × nat list × ′a list where

round-suc-suc index key ws n n ′ u ≡
let nmi = mini ws key; nma = maxi ws key;

xmi = ws ! nmi; xma = ws ! nma; mi = key xmi; ma = key xma
in if mi = ma

then (u + n ′ − n, replicate (Suc (Suc n)) (Suc 0), ws)
else

let k = case n of Suc (Suc i) ⇒ u + n ′ | - ⇒ n;
zs = nths ws (− {nmi, nma}); ms = enum zs index key k mi ma

in (u + n ′ − k, Suc 0 # ms @ [Suc 0],
xmi # map the (fill zs (offs ms 0) index key n mi ma) @ [xma])

fun round :: (′a, ′b::linorder) index-sign ⇒ (′a ⇒ ′b) ⇒ nat ⇒ nat ⇒ nat ⇒
nat × nat list × ′a list ⇒ nat × nat list × ′a list where

round index key p q r (u, [], xs) = (u, [], xs) |
round index key p q r (u, 0 # ns, xs) = round index key p q r (u, ns, xs) |
round index key p q r (u, Suc 0 # ns, xs) =
(let (u ′, ns ′, xs ′) = round index key p q r (u, ns, tl xs)
in (u ′, Suc 0 # ns ′, hd xs # xs ′)) |

round index key p q r (u, Suc (Suc n) # ns, xs) =
(let ws = take (Suc (Suc n)) xs; (n ′, r ′) = bn-comp n p q r ;

(v, ms ′, ws ′) = round-suc-suc index key ws n n ′ u;
(u ′, ns ′, xs ′) = round index key p q r ′ (v, ns, drop (Suc (Suc n)) xs)

in (u ′, ms ′ @ ns ′, ws ′ @ xs ′))

27

Finally, function gcsort-aux formalizes GCsort. Since the algorithm is tail-
recursive, this function complies with the requirements for an auxiliary tail-
recursive function applying to step 1 of the proof method described in [7] –
henceforth briefly referred to as the proof method –. This feature will later
enable to formally prove the algorithm’s correctness properties by means of
such method.

abbreviation gcsort-round :: (′a, ′b::linorder) index-sign ⇒ (′a ⇒ ′b) ⇒
nat ⇒ nat list ⇒ ′a list ⇒ nat × nat list × ′a list where

gcsort-round index key p ns xs ≡
round index key (p − bn-count ns) (length xs − bn-count ns) 0 (0 , ns, xs)

function gcsort-aux :: (′a, ′b::linorder) index-sign ⇒ (′a ⇒ ′b) ⇒ nat ⇒
nat × nat list × ′a list ⇒ nat × nat list × ′a list where

gcsort-aux index key p (u, ns, xs) = (if find (λn. Suc 0 < n) ns = None
then (u, ns, xs)
else gcsort-aux index key p (gcsort-round index key p ns xs))
〈proof 〉

First of all, even before accomplishing step 2 of the proof method, it is
necessary to prove that function gcsort-aux always terminates by showing
that the maximum bucket’s size decreases in each recursive round.

lemma add-zeros:
foldl (+) (m :: nat) (replicate n 0) = m
〈proof 〉

lemma add-suc:
foldl (+) (Suc m) ns = Suc (foldl (+) m ns)
〈proof 〉

lemma add-update:
i < length ns =⇒ foldl (+) m (ns[i := Suc (ns ! i)]) = Suc (foldl (+) m ns)
〈proof 〉

lemma add-le: (m :: nat) ≤ foldl (+) m ns
〈proof 〉

lemma add-mono: (m :: nat) ≤ n =⇒ foldl (+) m ns ≤ foldl (+) n ns
〈proof 〉

lemma add-max:
ns 6= [] =⇒ Max (set ns) ≤ foldl (+) (0 :: nat) ns
〈proof 〉

28

lemma enum-length: length (enum xs index key n mi ma) = n
〈proof 〉

lemma enum-add-le:
foldl (+) 0 (enum xs index key n mi ma) ≤ length xs
〈proof 〉

lemma enum-max-le:
0 < n =⇒ Max (set (enum xs index key n mi ma)) ≤ length xs
〈proof 〉

lemma mini-less:
0 < length xs =⇒ mini xs key < length xs
〈proof 〉

lemma maxi-less:
0 < length xs =⇒ maxi xs key < length xs
〈proof 〉

lemma mini-lb:
x ∈ set xs =⇒ key (xs ! mini xs key) ≤ key x
〈proof 〉

lemma maxi-ub:
x ∈ set xs =⇒ key x ≤ key (xs ! maxi xs key)
〈proof 〉

lemma mini-maxi-neq:
Suc 0 < length xs =⇒ mini xs key 6= maxi xs key
〈proof 〉

lemma mini-maxi-nths:
length (nths xs (− {mini xs key, maxi xs key})) =
(case length xs of 0 ⇒ 0 | Suc 0 ⇒ 0 | Suc (Suc n) ⇒ n)

〈proof 〉

lemma mini-maxi-nths-le:
length xs ≤ Suc (Suc n) =⇒ length (nths xs (− {mini xs key, maxi xs key})) ≤ n
〈proof 〉

lemma round-nil:
(fst (snd (round index key p q r t)) 6= []) = (∃n ∈ set (fst (snd t)). 0 < n)
〈proof 〉

lemma round-max-eq:
[[fst (snd t) 6= []; Max (set (fst (snd t))) = Suc 0]] =⇒

Max (set (fst (snd (round index key p q r t)))) = Suc 0
〈proof 〉

29

lemma round-max-less [rule-format]:
fst (snd t) 6= [] −→ Suc 0 < Max (set (fst (snd t))) −→

Max (set (fst (snd (round index key p q r t)))) < Max (set (fst (snd t)))
〈proof 〉

termination gcsort-aux
〈proof 〉

Now steps 2, 3, and 4 of the proof method, which are independent of the
properties to be proven, can be accomplished. Particularly, function gcsort
constitutes the complete formal definition of GCsort, as it puts the algo-
rithm’s inputs and outputs into their expected form.
Observe that the conditional expression contained in the definition of func-
tion gcsort-aux need not be reflected in the definition of inductive set gc-
sort-set as just one alternative gives rise to a recursive call, viz. as its only
purpose is to ensure the function’s termination.

definition gcsort-in :: ′a list ⇒ nat × nat list × ′a list where
gcsort-in xs ≡ (0 , [length xs], xs)

definition gcsort-out :: nat × nat list × ′a list ⇒ ′a list where
gcsort-out ≡ snd ◦ snd

definition gcsort :: (′a, ′b::linorder) index-sign ⇒ (′a ⇒ ′b) ⇒ nat ⇒
′a list ⇒ ′a list where
gcsort index key p xs ≡ gcsort-out (gcsort-aux index key p (gcsort-in xs))

inductive-set gcsort-set :: (′a, ′b::linorder) index-sign ⇒ (′a ⇒ ′b) ⇒ nat ⇒
nat × nat list × ′a list ⇒ (nat × nat list × ′a list) set
for index key p t where

R0 : t ∈ gcsort-set index key p t |
R1 : (u, ns, xs) ∈ gcsort-set index key p t =⇒

gcsort-round index key p ns xs ∈ gcsort-set index key p t

lemma gcsort-subset:
assumes A: t ′ ∈ gcsort-set index key p t
shows gcsort-set index key p t ′ ⊆ gcsort-set index key p t
〈proof 〉

lemma gcsort-aux-set:
gcsort-aux index key p t ∈ gcsort-set index key p t
〈proof 〉

1.3 Proof of a preliminary invariant

This section is dedicated to the proof of the invariance of predicate add-inv,
defined here below, over inductive set gcsort-set. This invariant will later be

30

used to prove GCsort’s correctness properties.
Another predicate, bn-inv, is also defined, using predicate bn-valid defined
above.

fun bn-inv :: nat ⇒ nat ⇒ nat × nat list × ′a list ⇒ bool where
bn-inv p q (u, ns, xs) =
(∀n ∈ set ns. case n of Suc (Suc m) ⇒ bn-valid m p q | - ⇒ True)

fun add-inv :: nat ⇒ nat × nat list × ′a list ⇒ bool where
add-inv n (u, ns, xs) = (foldl (+) 0 ns = n ∧ length xs = n)

lemma gcsort-add-input:
add-inv (length xs) (0 , [length xs], xs)
〈proof 〉

lemma add-base:
foldl (+) (k + m) ns = foldl (+) m ns + (k :: nat)
〈proof 〉

lemma add-base-zero:
foldl (+) k ns = foldl (+) 0 ns + (k :: nat)
〈proof 〉

lemma bn-count-le:
bn-count ns ≤ foldl (+) 0 ns
〈proof 〉

Here below is the proof of the main property of predicate bn-inv, which
states that if the objects’ number is not larger than the counters’ upper
bound, then, as long as there are buckets to be split, the arguments p and
q passed by function round to function bn-comp are such that 0 < q ≤ p.

lemma bn-inv-intro [rule-format]:
foldl (+) 0 ns ≤ p −→

bn-inv (p − bn-count ns) (foldl (+) 0 ns − bn-count ns) (u, ns, xs)
〈proof 〉

In what follows, the invariance of predicate add-inv over inductive set gc-
sort-set is then proven as lemma gcsort-add-inv. It holds under the condi-
tions that the objects’ number is not larger than the counters’ upper bound
and function index satisfies predicate index-less, and states that, if the coun-
ters’ sum initially matches the objects’ number, this is still true after any
recursive round.

lemma bn-comp-fst-ge:

31

bn-valid n p q =⇒ n ≤ fst (bn-comp n p q r)
〈proof 〉

lemma bn-comp-fst-nonzero:
bn-valid n p q =⇒ 0 < n =⇒ 0 < fst (bn-comp n p q r)
〈proof 〉

lemma bn-comp-snd-less:
r < q =⇒ snd (bn-comp n p q r) < q
〈proof 〉

lemma add-replicate:
foldl (+) k (replicate m n) = k + m ∗ n
〈proof 〉

lemma fill-length:
length (fill xs ns index key n mi ma) = n
〈proof 〉

lemma enum-add:
assumes A: index-less index key and B: 0 < n
shows (∀ x ∈ set xs. key x ∈ {mi..ma}) =⇒

foldl (+) 0 (enum xs index key n mi ma) = length xs
〈proof 〉

lemma round-add-inv [rule-format]:
index-less index key −→ bn-inv p q t −→ add-inv n t −→

add-inv n (round index key p q r t)
〈proof 〉

lemma gcsort-add-inv:
assumes A: index-less index key
shows [[t ′ ∈ gcsort-set index key p t; add-inv n t; n ≤ p]] =⇒

add-inv n t ′

〈proof 〉

1.4 Proof of counters’ optimization

In this section, it is formally proven that the number of the counters (and
then of the buckets as well) used in each recursive round is maximized never
exceeding the fixed upper bound.
This property is formalized by theorem round-len, which holds under the
condition that the objects’ number is not larger than the counters’ upper
bound and states what follows:

• While there is some bucket with size larger than two, the sum of the
number of the used counters and the number of the unused ones – viz.
those, if any, left unused due to the presence of some bucket with size

32

larger than two and equal minimum and maximum keys (cf. section
1.1.5) – matches the counters’ upper bound.
In addition to ensuring the upper bound’s enforcement, this implies
that the number of the used counters matches the upper bound unless
there is some aforesaid bucket not followed by any other bucket with
size larger than two and distinct minimum and maximum keys.

• Once there is no bucket with size larger than two – in which case a
round is executed just in case there is some bucket with size two –,
the number of the used counters matches the objects’ number.
In fact, the algorithm immediately terminates after such a round since
every resulting bucket has size one, so that increasing the number of
the used counters does not matter in this case.

lemma round-len-less [rule-format]:
bn-inv p q t −→ r < q −→
(r + (foldl (+) 0 (fst (snd t)) − bn-count (fst (snd t))) ∗ p) mod q = 0 −→
(fst (round index key p q r t) +

length (fst (snd (round index key p q r t)))) ∗ q =
(fst t + bn-count (fst (snd t))) ∗ q +
(foldl (+) 0 (fst (snd t)) − bn-count (fst (snd t))) ∗ p + r

〈proof 〉

lemma round-len-eq:
bn-count (fst (snd t)) = foldl (+) 0 (fst (snd t)) =⇒

length (fst (snd (round index key p q r t))) = foldl (+) 0 (fst (snd t))
〈proof 〉

theorem round-len:
assumes

A: length xs = foldl (+) 0 ns and
B: length xs ≤ p

shows if bn-count ns < length xs
then fst (gcsort-round index key p ns xs) +

length (fst (snd (gcsort-round index key p ns xs))) = p
else length (fst (snd (gcsort-round index key p ns xs))) = length xs

(is if - then fst ?t + - = - else -)
〈proof 〉

end

2 Proof of objects’ conservation
theory Conservation

imports
Algorithm

33

HOL−Library.Multiset
begin

In this section, it is formally proven that GCsort conserves objects, viz. that
the objects’ list returned by function gcsort contains as many occurrences
of any given object as the input objects’ list.
Here below, steps 5, 6, and 7 of the proof method are accomplished. Par-
ticularly, count-inv is the predicate that will be shown to be invariant over
inductive set gcsort-set.

fun count-inv :: (′a ⇒ nat) ⇒ nat × nat list × ′a list ⇒ bool where
count-inv f (u, ns, xs) = (∀ x. count (mset xs) x = f x)

lemma gcsort-count-input:
count-inv (count (mset xs)) (0 , [length xs], xs)
〈proof 〉

lemma gcsort-count-intro:
count-inv f t =⇒ count (mset (gcsort-out t)) x = f x
〈proof 〉

The main task to be accomplished to prove that GCsort conserves objects is
to prove that so does function fill in case its input offsets’ list is computed
via the composition of functions offs and enum, as happens within function
round.
To achieve this result, a multi-step strategy will be adopted. The first step,
addressed here below, opens with the definition of predicate offs-pred, sat-
isfied by an offsets’ list ns and an objects’ list xs just in case each bucket
delimited by ns is sufficiently large to accommodate the corresponding ob-
jects in xs. Then, lemma offs-pred-cons shows that this predicate, if satisfied
initially, keeps being true if each object in xs is consumed as happens within
function fill, viz. increasing the corresponding offset in ns by one.

definition offs-num :: nat ⇒ ′a list ⇒ (′a, ′b) index-sign ⇒
(′a ⇒ ′b) ⇒ ′b ⇒ ′b ⇒ nat ⇒ nat where

offs-num n xs index key mi ma i ≡
length [x←xs. index key x n mi ma = i]

abbreviation offs-set-next :: nat list ⇒ ′a list ⇒ (′a, ′b) index-sign ⇒
(′a ⇒ ′b) ⇒ ′b ⇒ ′b ⇒ nat ⇒ nat set where

offs-set-next ns xs index key mi ma i ≡
{k. k < length ns ∧ i < k ∧ 0 < offs-num (length ns) xs index key mi ma k}

abbreviation offs-set-prev :: nat list ⇒ ′a list ⇒ (′a, ′b) index-sign ⇒

34

(′a ⇒ ′b) ⇒ ′b ⇒ ′b ⇒ nat ⇒ nat set where
offs-set-prev ns xs index key mi ma i ≡
{k. i < length ns ∧ k < i ∧ 0 < offs-num (length ns) xs index key mi ma k}

definition offs-next :: nat list ⇒ nat ⇒ ′a list ⇒ (′a, ′b) index-sign ⇒
(′a ⇒ ′b) ⇒ ′b ⇒ ′b ⇒ nat ⇒ nat where

offs-next ns ub xs index key mi ma i ≡
if offs-set-next ns xs index key mi ma i = {}
then ub else ns ! Min (offs-set-next ns xs index key mi ma i)

definition offs-none :: nat list ⇒ nat ⇒ ′a list ⇒ (′a, ′b) index-sign ⇒
(′a ⇒ ′b) ⇒ ′b ⇒ ′b ⇒ nat ⇒ bool where

offs-none ns ub xs index key mi ma i ≡
(∃ j < length ns. 0 < offs-num (length ns) xs index key mi ma j ∧

i ∈ {ns ! j + offs-num (length ns) xs index key mi ma j..<
offs-next ns ub xs index key mi ma j}) ∨

offs-num (length ns) xs index key mi ma 0 = 0 ∧
i < offs-next ns ub xs index key mi ma 0 ∨

0 < offs-num (length ns) xs index key mi ma 0 ∧
i < ns ! 0

definition offs-pred :: nat list ⇒ nat ⇒ ′a list ⇒ (′a, ′b) index-sign ⇒
(′a ⇒ ′b) ⇒ ′b ⇒ ′b ⇒ bool where

offs-pred ns ub xs index key mi ma ≡
∀ i < length ns. offs-num (length ns) xs index key mi ma i ≤

offs-next ns ub xs index key mi ma i − ns ! i

lemma offs-num-cons:
offs-num n (x # xs) index key mi ma i =
(if index key x n mi ma = i then Suc else id) (offs-num n xs index key mi ma i)

〈proof 〉

lemma offs-next-prev:
(0 < offs-num (length ns) xs index key mi ma i ∧

offs-set-next ns xs index key mi ma i 6= {} ∧
Min (offs-set-next ns xs index key mi ma i) = j) =

(0 < offs-num (length ns) xs index key mi ma j ∧
offs-set-prev ns xs index key mi ma j 6= {} ∧
Max (offs-set-prev ns xs index key mi ma j) = i)

(is ?P = ?Q)
〈proof 〉

lemma offs-next-cons-eq:
assumes

A: index key x (length ns) mi ma = i and
B: i < length ns and
C : 0 < offs-num (length ns) (x # xs) index key mi ma j and
D: offs-set-prev ns (x # xs) index key mi ma i = {} ∨

Max (offs-set-prev ns (x # xs) index key mi ma i) 6= j (is ?P ∨ ?Q)

35

shows
offs-next (ns[i := Suc (ns ! i)]) ub xs index key mi ma j =

offs-next ns ub (x # xs) index key mi ma j
〈proof 〉

lemma offs-next-cons-neq:
assumes

A: index key x (length ns) mi ma = i and
B: offs-set-prev ns (x # xs) index key mi ma i 6= {} and
C : Max (offs-set-prev ns (x # xs) index key mi ma i) = j

shows offs-next (ns[i := Suc (ns ! i)]) ub xs index key mi ma j =
(if 0 < offs-num (length ns) xs index key mi ma i
then Suc (ns ! i)
else offs-next ns ub (x # xs) index key mi ma i)

〈proof 〉

lemma offs-pred-ub-aux [rule-format]:
assumes A: offs-pred ns ub xs index key mi ma
shows [[i < length ns; j < length ns; i ≤ j;

0 < offs-num (length ns) xs index key mi ma j]]
=⇒ ns ! j + offs-num (length ns) xs index key mi ma j ≤ ub

〈proof 〉

lemma offs-pred-ub:
[[offs-pred ns ub xs index key mi ma; i < length ns;

0 < offs-num (length ns) xs index key mi ma i]] =⇒
ns ! i + offs-num (length ns) xs index key mi ma i ≤ ub

〈proof 〉

lemma offs-pred-asc-aux [rule-format]:
assumes A: offs-pred ns ub xs index key mi ma
shows [[i < length ns; k < length ns; i ≤ j; j < k;

0 < offs-num (length ns) xs index key mi ma j;
0 < offs-num (length ns) xs index key mi ma k]] =⇒
ns ! j + offs-num (length ns) xs index key mi ma j ≤ ns ! k

〈proof 〉

lemma offs-pred-asc:
[[offs-pred ns ub xs index key mi ma; i < j; j < length ns;

0 < offs-num (length ns) xs index key mi ma i;
0 < offs-num (length ns) xs index key mi ma j]] =⇒

ns ! i + offs-num (length ns) xs index key mi ma i ≤ ns ! j
〈proof 〉

lemma offs-pred-next:
assumes

A: offs-pred ns ub xs index key mi ma and
B: i < length ns and
C : 0 < offs-num (length ns) xs index key mi ma i

36

shows ns ! i < offs-next ns ub xs index key mi ma i
〈proof 〉

lemma offs-pred-next-cons-less:
assumes

A: offs-pred ns ub (x # xs) index key mi ma and
B: index key x (length ns) mi ma = i and
C : offs-set-prev ns (x # xs) index key mi ma i 6= {} and
D: Max (offs-set-prev ns (x # xs) index key mi ma i) = j

shows offs-next ns ub (x # xs) index key mi ma j <
offs-next (ns[i := Suc (ns ! i)]) ub xs index key mi ma j

(is ?M < ?N)
〈proof 〉

lemma offs-pred-next-cons:
assumes

A: offs-pred ns ub (x # xs) index key mi ma and
B: index key x (length ns) mi ma = i and
C : i < length ns and
D: 0 < offs-num (length ns) (x # xs) index key mi ma j

shows offs-next ns ub (x # xs) index key mi ma j ≤
offs-next (ns[i := Suc (ns ! i)]) ub xs index key mi ma j

(is ?M ≤ ?N)
〈proof 〉

lemma offs-pred-cons:
assumes

A: offs-pred ns ub (x # xs) index key mi ma and
B: index key x (length ns) mi ma = i and
C : i < length ns

shows offs-pred (ns[i := Suc (ns ! i)]) ub xs index key mi ma
〈proof 〉

The next step consists of proving, as done in lemma fill-count-item in what
follows, that if certain conditions hold, particularly if offsets’ list ns and
objects’ list xs satisfy predicate offs-pred, then function fill conserves objects
if called using xs and ns as its input arguments.
This lemma is proven by induction on xs. Hence, lemma offs-pred-cons,
proven in the previous step, is used to remove the antecedent containing
predicate offs-pred from the induction hypothesis, which has the form of an
implication.

lemma offs-next-zero:
assumes

A: i < length ns and
B: offs-num (length ns) xs index key mi ma i = 0 and
C : offs-set-prev ns xs index key mi ma i = {}

37

shows offs-next ns ub xs index key mi ma 0 = offs-next ns ub xs index key mi
ma i
〈proof 〉

lemma offs-next-zero-cons-eq:
assumes

A: index key x (length ns) mi ma = i and
B: offs-num (length ns) (x # xs) index key mi ma 0 = 0 and
C : offs-set-prev ns (x # xs) index key mi ma i 6= {}
(is ?A 6= -)

shows offs-next (ns[i := Suc (ns ! i)]) ub xs index key mi ma 0 =
offs-next ns ub (x # xs) index key mi ma 0

〈proof 〉

lemma offs-next-zero-cons-neq:
assumes

A: index key x (length ns) mi ma = i and
B: i < length ns and
C : 0 < i and
D: offs-set-prev ns (x # xs) index key mi ma i = {}

shows offs-next (ns[i := Suc (ns ! i)]) ub xs index key mi ma 0 =
(if 0 < offs-num (length ns) xs index key mi ma i
then Suc (ns ! i)
else offs-next ns ub (x # xs) index key mi ma i)

〈proof 〉

lemma offs-pred-zero-cons-less:
assumes

A: offs-pred ns ub (x # xs) index key mi ma and
B: index key x (length ns) mi ma = i and
C : i < length ns and
D: 0 < i and
E : offs-set-prev ns (x # xs) index key mi ma i = {}

shows offs-next ns ub (x # xs) index key mi ma 0 <
offs-next (ns[i := Suc (ns ! i)]) ub xs index key mi ma 0

(is ?M < ?N)
〈proof 〉

lemma offs-pred-zero-cons:
assumes

A: offs-pred ns ub (x # xs) index key mi ma and
B: index key x (length ns) mi ma = i and
C : i < length ns and
D: offs-num (length ns) (x # xs) index key mi ma 0 = 0

shows offs-next ns ub (x # xs) index key mi ma 0 ≤
offs-next (ns[i := Suc (ns ! i)]) ub xs index key mi ma 0

(is ?M ≤ ?N)
〈proof 〉

38

lemma replicate-count: count (mset (replicate n x)) x = n
〈proof 〉

lemma fill-none:
assumes A: index-less index key
assumes ∗: (∀ x ∈ set xs. key x ∈ {mi..ma})

ns 6= []
offs-pred ns ub xs index key mi ma
offs-none ns ub xs index key mi ma i

shows fill xs ns index key ub mi ma ! i = None
〈proof 〉

lemma fill-index-none [rule-format]:
assumes

A: index-less index key and
B: key x ∈ {mi..ma} and
C : ns 6= [] and
D: offs-pred ns ub (x # xs) index key mi ma

shows ∀ x ∈ set xs. key x ∈ {mi..ma} =⇒
fill xs (ns[(index key x (length ns) mi ma) :=

Suc (ns ! index key x (length ns) mi ma)]) index key ub mi ma !
(ns ! index key x (length ns) mi ma) = None

(is - =⇒ fill - ?ns ′ - - - - - ! (- ! ?i) = -)
〈proof 〉

lemma fill-count-item [rule-format]:
assumes A: index-less index key
shows
(∀ x ∈ set xs. key x ∈ {mi..ma}) −→
ns 6= [] −→
offs-pred ns ub xs index key mi ma −→
length xs ≤ ub −→

count (mset (map the (fill xs ns index key ub mi ma))) x =
count (mset xs) x + (if the None = x then ub − length xs else 0)

〈proof 〉

Finally, lemma offs-enum-pred here below proves that, if ns is the offsets’
list obtained by applying the composition of functions offs and enum to
objects’ list xs, then predicate offs-pred is satisfied by ns and xs.
This result is in turn used, together with lemma fill-count-item, to prove
lemma fill-offs-enum-count-item, which states that function fill conserves
objects if its input offsets’ list is computed via the composition of functions
offs and enum.

lemma enum-offs-num:
i < n =⇒ enum xs index key n mi ma ! i = offs-num n xs index key mi ma i
〈proof 〉

39

lemma offs-length:
length (offs ns i) = length ns
〈proof 〉

lemma offs-add [rule-format]:
i < length ns −→ offs ns k ! i = foldl (+) k (take i ns)
〈proof 〉

lemma offs-mono-aux:
i ≤ j =⇒ j < length ns =⇒ offs ns k ! i ≤ offs ns k ! (i + (j − i))
〈proof 〉

lemma offs-mono:
i ≤ j =⇒ j < length ns =⇒ offs ns k ! i ≤ offs ns k ! j
〈proof 〉

lemma offs-update:
j < length ns =⇒

offs (ns[i := Suc (ns ! i)]) k ! j = (if j ≤ i then id else Suc) (offs ns k ! j)
〈proof 〉

lemma offs-equal-suc:
assumes

A: Suc i < length ns and
B: ns ! i = 0

shows offs ns m ! i = offs ns m ! Suc i
〈proof 〉

lemma offs-equal [rule-format]:
i < j =⇒ j < length ns =⇒

(∀ k ∈ {i..<j}. ns ! k = 0) −→ offs ns m ! i = offs ns m ! j
〈proof 〉

lemma offs-enum-last [rule-format]:
assumes

A: index-less index key and
B: 0 < n and
C : ∀ x ∈ set xs. key x ∈ {mi..ma}

shows offs (enum xs index key n mi ma) k ! (n − Suc 0) +
offs-num n xs index key mi ma (n − Suc 0) = length xs + k

〈proof 〉

lemma offs-enum-ub [rule-format]:
assumes

A: index-less index key and
B: i < n and
C : ∀ x ∈ set xs. key x ∈ {mi..ma}

shows offs (enum xs index key n mi ma) k ! i ≤ length xs + k

40

〈proof 〉

lemma offs-enum-next-ge [rule-format]:
assumes

A: index-less index key and
B: i < n

shows ∀ x ∈ set xs. key x ∈ {mi..ma} =⇒
offs (enum xs index key n mi ma) k ! i ≤

offs-next (offs (enum xs index key n mi ma) k) (length xs + k)
xs index key mi ma i

(is - =⇒ offs ?ns - ! - ≤ -)
〈proof 〉

lemma offs-enum-zero-aux [rule-format]:
[[index-less index key; 0 < n; ∀ x ∈ set xs. key x ∈ {mi..ma};

offs-num n xs index key mi ma (n − Suc 0) = 0]] =⇒
offs (enum xs index key n mi ma) k ! (n − Suc 0) = length xs + k

〈proof 〉

lemma offs-enum-zero [rule-format]:
assumes

A: index-less index key and
B: i < n and
C : ∀ x ∈ set xs. key x ∈ {mi..ma} and
D: offs-num n xs index key mi ma i = 0

shows offs (enum xs index key n mi ma) k ! i =
offs-next (offs (enum xs index key n mi ma) k) (length xs + k)

xs index key mi ma i
〈proof 〉

lemma offs-enum-next-cons [rule-format]:
assumes

A: index-less index key and
B: ∀ x ∈ set xs. key x ∈ {mi..ma}

shows (if i < index key x n mi ma then (≤) else (<))
(offs-next (offs (enum xs index key n mi ma) k)
(length xs + k) xs index key mi ma i)

(offs-next (offs ((enum xs index key n mi ma) [index key x n mi ma :=
Suc (enum xs index key n mi ma ! index key x n mi ma)]) k)
(Suc (length xs + k)) (x # xs) index key mi ma i)

(is (if i < ?i ′ then - else -)
(offs-next (offs ?ns -) - - - - - - -)
(offs-next (offs ?ns ′ -) - - - - - - -))

〈proof 〉

lemma offs-enum-pred [rule-format]:
assumes A: index-less index key
shows (∀ x ∈ set xs. key x ∈ {mi..ma}) −→

offs-pred (offs (enum xs index key n mi ma) k) (length xs + k)

41

xs index key mi ma
〈proof 〉

lemma fill-offs-enum-count-item:
[[index-less index key; ∀ x ∈ set xs. key x ∈ {mi..ma}; 0 < n]] =⇒

count (mset (map the (fill xs (offs (enum xs index key n mi ma) 0)
index key (length xs) mi ma))) x =

count (mset xs) x
〈proof 〉

Using lemma fill-offs-enum-count-item, step 9 of the proof method can now
be dealt with. It is accomplished by proving lemma gcsort-count-inv, which
states that the number of the occurrences of whatever object in the objects’
list is still the same after any recursive round.

lemma nths-count:
count (mset (nths xs A)) x =

count (mset xs) x − card {i. i < length xs ∧ i /∈ A ∧ xs ! i = x}
〈proof 〉

lemma round-count-inv [rule-format]:
index-less index key −→ bn-inv p q t −→ add-inv n t −→ count-inv f t −→

count-inv f (round index key p q r t)
〈proof 〉

lemma gcsort-count-inv:
assumes

index-less index key and
add-inv n t and
n ≤ p

shows [[t ′ ∈ gcsort-set index key p t; count-inv f t]] =⇒
count-inv f t ′

〈proof 〉

The only remaining task is to address step 10 of the proof method, which
is done by proving theorem gcsort-count. It holds under the conditions
that the objects’ number is not larger than the counters’ upper bound and
function index satisfies predicate index-less, and states that for any object,
function gcsort leaves unchanged the number of its occurrences within the
input objects’ list.

theorem gcsort-count:
assumes

A: index-less index key and
B: length xs ≤ p

42

shows count (mset (gcsort index key p xs)) x = count (mset xs) x
〈proof 〉

end

3 Proof of objects’ sorting
theory Sorting

imports Conservation
begin

In this section, it is formally proven that GCsort actually sorts objects.
Here below, steps 5, 6, and 7 of the proof method are accomplished. Predi-
cate sort-inv is satisfied just in case, for any bucket delimited by the input
counters’ list ns, the keys of the corresponding objects within the input ob-
jects’ list xs are not larger than those of the objects, if any, to the right of
that bucket. The underlying idea is that this predicate:

• is trivially satisfied by the output of function gcsort-in, which places
all objects into a single bucket, and

• implies that xs is sorted if every bucket delimited by ns has size one,
as happens when function gcsort-aux terminates.

fun sort-inv :: (′a ⇒ ′b::linorder) ⇒ nat × nat list × ′a list ⇒ bool where
sort-inv key (u, ns, xs) =
(∀ i < length ns. ∀ j < offs ns 0 ! i. ∀ k ∈ {offs ns 0 ! i..<length xs}.

key (xs ! j) ≤ key (xs ! k))

lemma gcsort-sort-input:
sort-inv key (0 , [length xs], xs)
〈proof 〉

lemma offs-nth:
assumes

A: find (λn. Suc 0 < n) ns = None and
B: foldl (+) 0 ns = n and
C : k < n

shows ∃ i < length ns. offs ns 0 ! i = k
〈proof 〉

lemma gcsort-sort-intro:
[[sort-inv key t; add-inv n t; find (λn. Suc 0 < n) (fst (snd t)) = None]] =⇒

sorted (map key (gcsort-out t))
〈proof 〉

43

As lemma gcsort-sort-intro comprises an additional assumption concerning
the form of the fixed points of function gcsort-aux, step 8 of the proof method
is necessary this time to prove that such assumption is satisfied.

lemma gcsort-sort-form:
find (λn. Suc 0 < n) (fst (snd (gcsort-aux index key p t))) = None
〈proof 〉

Here below, step 9 of the proof method is accomplished.
In the most significant case of the proof by recursion induction of lemma
round-sort-inv, namely that of a bucket B with size larger than two and
distinct minimum and maximum keys, the following line of reasoning is
adopted. Let x be an object contained in a finer-grained bucket B′ resulting
from B’s partition, and y an object to the right of B′. Then:

• If y is contained in some other finer-grained bucket resulting from B’s
partition, inequality key x ≤ key y holds because predicate sort-inv
is satisfied by a counters’ list generated by function enum and an
objects’ list generated by function fill in case fill’s input offsets’ list is
computed via the composition of functions offs and enum, as happens
within function round.
This is proven beforehand in lemma fill-sort-inv.

• Otherwise, inequality key x ≤ key y holds as well because object x was
contained in B by lemma fill-offs-enum-count-item, object y occurred
to the right of B by lemma round-count-inv, and by hypothesis, the
key of any object in B was not larger than that of any object to the
right of B.

Using lemma round-sort-inv, the invariance of predicate sort-inv over induc-
tive set gcsort-set is then proven in lemma gcsort-sort-inv.

lemma mini-maxi-keys-le:
x ∈ set xs =⇒ key (xs ! mini xs key) ≤ key (xs ! maxi xs key)
〈proof 〉

lemma mini-maxi-keys-eq [rule-format]:
key (xs ! mini xs key) = key (xs ! maxi xs key) −→ x ∈ set xs −→

key x = key (xs ! maxi xs key)
〈proof 〉

lemma offs-suc:
i < length ns =⇒ offs ns (Suc k) ! i = Suc (offs ns k ! i)

44

〈proof 〉

lemma offs-base-zero:
i < length ns =⇒ offs ns k ! i = offs ns 0 ! i + k
〈proof 〉

lemma offs-append:
offs (ms @ ns) k = offs ms k @ offs ns (foldl (+) k ms)
〈proof 〉

lemma offs-enum-next-le [rule-format]:
assumes

A: index-less index key and
B: i < j and
C : j < n and
D: ∀ x ∈ set xs. key x ∈ {mi..ma}

shows offs-next (offs (enum xs index key n mi ma) k) (length xs + k)
xs index key mi ma i ≤ offs (enum xs index key n mi ma) k ! j

(is - ≤ offs ?ns - ! -)
〈proof 〉

lemma offs-pred-ub-less:
[[offs-pred ns ub xs index key mi ma; i < length ns;

0 < offs-num (length ns) xs index key mi ma i]] =⇒ ns ! i < ub
〈proof 〉

lemma fill-count-none [rule-format]:
assumes A: index-less index key
shows
(∀ x ∈ set xs. key x ∈ {mi..ma}) −→
ns 6= [] −→
offs-pred ns ub xs index key mi ma −→
length xs ≤ ub −→

count (mset (fill xs ns index key ub mi ma)) None = ub − length xs
〈proof 〉

lemma fill-offs-enum-count-none:
[[index-less index key; ∀ x ∈ set xs. key x ∈ {mi..ma}; 0 < n]] =⇒

count (mset (fill xs (offs (enum xs index key n mi ma) 0)
index key (length xs) mi ma)) None = 0

〈proof 〉

lemma fill-index [rule-format]:
assumes A: index-less index key
shows
(∀ x ∈ set xs. key x ∈ {mi..ma}) −→
offs-pred ns ub xs index key mi ma −→
i < length ns −→
0 < offs-num (length ns) xs index key mi ma i −→

45

j ∈ {ns ! i..<offs-next ns ub xs index key mi ma i} −→
fill xs ns index key ub mi ma ! j = Some x −→

index key x (length ns) mi ma = i
〈proof 〉

lemma fill-offs-enum-index [rule-format]:
index-less index key =⇒
∀ x ∈ set xs. key x ∈ {mi..ma} =⇒
i < n =⇒
0 < offs-num n xs index key mi ma i =⇒
j ∈ {offs (enum xs index key n mi ma) 0 ! i..<

offs-next (offs (enum xs index key n mi ma) 0) (length xs)
xs index key mi ma i} =⇒

fill xs (offs (enum xs index key n mi ma) 0) index key (length xs)
mi ma ! j = Some x =⇒
index key x n mi ma = i

〈proof 〉

lemma fill-sort-inv [rule-format]:
assumes

A: index-less index key and
B: index-mono index key and
C : ∀ x ∈ set xs. key x ∈ {mi..ma}

shows sort-inv key (u, enum xs index key n mi ma,
map the (fill xs (offs (enum xs index key n mi ma) 0)

index key (length xs) mi ma))
(is sort-inv - (-, ?ns, -))
〈proof 〉

lemma round-sort-inv [rule-format]:
index-less index key −→ index-mono index key −→ bn-inv p q t −→

add-inv n t −→ sort-inv key t −→ sort-inv key (round index key p q r t)
〈proof 〉

lemma gcsort-sort-inv:
assumes

A: index-less index key and
B: index-mono index key and
C : add-inv n t and
D: n ≤ p

shows [[t ′ ∈ gcsort-set index key p t; sort-inv key t]] =⇒
sort-inv key t ′

〈proof 〉

The only remaining task is to address step 10 of the proof method, which is
done by proving theorem gcsort-sorted. It holds under the conditions that
the objects’ number is not larger than the counters’ upper bound and func-
tion index satisfies both predicates index-less and index-mono, and states

46

that function gcsort is successful in sorting the input objects’ list.

theorem gcsort-sorted:
assumes

A: index-less index key and
B: index-mono index key and
C : length xs ≤ p

shows sorted (map key (gcsort index key p xs))
〈proof 〉

end

4 Proof of algorithm’s stability
theory Stability

imports Sorting
begin

In this section, it is formally proven that GCsort is stable, viz. that the
sublist of the output of function gcsort built by picking out the objects
having a given key matches the sublist of the input objects’ list built in the
same way.
Here below, steps 5, 6, and 7 of the proof method are accomplished. Par-
ticularly, stab-inv is the predicate that will be shown to be invariant over
inductive set gcsort-set.

fun stab-inv :: (′b ⇒ ′a list) ⇒ (′a ⇒ ′b) ⇒ nat × nat list × ′a list ⇒
bool where

stab-inv f key (u, ns, xs) = (∀ k. [x←xs. key x = k] = f k)

lemma gcsort-stab-input:
stab-inv (λk. [x←xs. key x = k]) key (0 , [length xs], xs)
〈proof 〉

lemma gcsort-stab-intro:
stab-inv f key t =⇒ [x←gcsort-out t. key x = k] = f k
〈proof 〉

In what follows, step 9 of the proof method is accomplished.
First, lemma fill-offs-enum-stable proves that function fill, if its input offsets’
list is computed via the composition of functions offs and enum, does not
modify the sublist of its input objects’ list formed by the objects having
a given key. Moreover, lemmas mini-stable and maxi-stable prove that the
extraction of the leftmost minimum and the rightmost maximum from an

47

objects’ list through functions mini and maxi is endowed with the same
property.
These lemmas are then used to prove lemma gcsort-stab-inv, which states
that the sublist of the objects having a given key within the objects’ list is
still the same after any recursive round.

lemma fill-stable [rule-format]:
assumes

A: index-less index key and
B: index-same index key

shows
(∀ x ∈ set xs. key x ∈ {mi..ma}) −→
ns 6= [] −→
offs-pred ns ub xs index key mi ma −→

map the [w←fill xs ns index key ub mi ma. ∃ x. w = Some x ∧ key x = k] =
[x←xs. k = key x]

〈proof 〉

lemma fill-offs-enum-stable [rule-format]:
assumes

A: index-less index key and
B: index-same index key

shows
∀ x ∈ set xs. key x ∈ {mi..ma} =⇒
0 < n =⇒
[x←map the (fill xs (offs (enum xs index key n mi ma) 0)

index key (length xs) mi ma). key x = k] = [x←xs. k = key x]
(is - =⇒ - =⇒ [-←map the ?ys. -] = -
is - =⇒ - =⇒ [-←map the (fill - ?ns - - - - -). -] = -)

〈proof 〉

lemma mini-first [rule-format]:
xs 6= [] −→ i < mini xs key −→

key (xs ! mini xs key) < key (xs ! i)
〈proof 〉

lemma maxi-last [rule-format]:
xs 6= [] −→ maxi xs key < i −→ i < length xs −→

key (xs ! i) < key (xs ! maxi xs key)
〈proof 〉

lemma nths-range:
nths xs A = nths xs (A ∩ {..<length xs})
〈proof 〉

lemma filter-nths-diff :
assumes

A: i < length xs and

48

B: ¬ P (xs ! i)
shows [x←nths xs (A − {i}). P x] = [x←nths xs A. P x]
〈proof 〉

lemma mini-stable:
assumes

A: xs 6= [] and
B: mini xs key ∈ A
(is ?nmi ∈ -)

shows [x←[xs ! ?nmi] @ nths xs (A − {?nmi}). key x = k] =
[x←nths xs A. key x = k]
(is [x←[?xmi] @ -. -] = -)

〈proof 〉

lemma maxi-stable:
assumes

A: xs 6= [] and
B: maxi xs key ∈ A
(is ?nma ∈ -)

shows [x←nths xs (A − {?nma}) @ [xs ! ?nma]. key x = k] =
[x←nths xs A. key x = k]
(is [x←- @ [?xma]. -] = -)

〈proof 〉

lemma round-stab-inv [rule-format]:
index-less index key −→ index-same index key −→ bn-inv p q t −→

add-inv n t −→ stab-inv f key t −→ stab-inv f key (round index key p q r t)
〈proof 〉

lemma gcsort-stab-inv:
assumes

A: index-less index key and
B: index-same index key and
C : add-inv n t and
D: n ≤ p

shows [[t ′ ∈ gcsort-set index key p t; stab-inv f key t]] =⇒
stab-inv f key t ′

〈proof 〉

The only remaining task is to address step 10 of the proof method, which is
done by proving theorem gcsort-stable. It holds under the conditions that the
objects’ number is not larger than the counters’ upper bound and function
index satisfies both predicates index-less and index-same, and states that
function gcsort leaves unchanged the sublist of the objects having a given
key within the input objects’ list.

theorem gcsort-stable:

49

assumes
A: index-less index key and
B: index-same index key and
C : length xs ≤ p

shows [x←gcsort index key p xs. key x = k] = [x←xs. key x = k]
〈proof 〉

end

References

[1] P. E. Black. Histogram sort — Dictionary of Algorithms and Data Struc-
tures, Feb. 2019. https://www.nist.gov/dads/HTML/histogramSort.
html.

[2] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching. Addison-Wesley, 2nd edition, 1998.

[3] A. Krauss. Defining Recursive Functions in Isabelle/HOL.
https://isabelle.in.tum.de/website-Isabelle2019/dist/Isabelle2019/
doc/functions.pdf.

[4] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs.
https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/
isar-overview.pdf.

[5] T. Nipkow. Programming and Proving in Isabelle/HOL, June 2019.
https://isabelle.in.tum.de/website-Isabelle2019/dist/Isabelle2019/doc/
prog-prove.pdf.

[6] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, June 2019. https://isabelle.in.tum.de/
website-Isabelle2019/dist/Isabelle2019/doc/tutorial.pdf.

[7] P. Noce. A General Method for the Proof of Theorems on Tail-recursive
Functions. Archive of Formal Proofs, Dec. 2013. http://isa-afp.org/
entries/Tail_Recursive_Functions.html, Formal proof development.

[8] Wikipedia contributors. Counting sort — Wikipedia, The Free En-
cyclopedia, Sept. 2019. https://en.wikipedia.org/w/index.php?title=
Counting_sort&oldid=915065502.

50

https://www.nist.gov/dads/HTML/histogramSort.html
https://www.nist.gov/dads/HTML/histogramSort.html
https://isabelle.in.tum.de/website-Isabelle2019/dist/Isabelle2019/doc/functions.pdf
https://isabelle.in.tum.de/website-Isabelle2019/dist/Isabelle2019/doc/functions.pdf
https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
https://isabelle.in.tum.de/website-Isabelle2019/dist/Isabelle2019/doc/prog-prove.pdf
https://isabelle.in.tum.de/website-Isabelle2019/dist/Isabelle2019/doc/prog-prove.pdf
https://isabelle.in.tum.de/website-Isabelle2019/dist/Isabelle2019/doc/tutorial.pdf
https://isabelle.in.tum.de/website-Isabelle2019/dist/Isabelle2019/doc/tutorial.pdf
http://isa-afp.org/entries/Tail_Recursive_Functions.html
http://isa-afp.org/entries/Tail_Recursive_Functions.html
https://en.wikipedia.org/w/index.php?title=Counting_sort&oldid=915065502
https://en.wikipedia.org/w/index.php?title=Counting_sort&oldid=915065502

	Algorithm's description, analysis, and formalization
	Introduction
	Counting sort
	Buckets' probability – Proof
	Buckets' probability – Implementation
	Buckets' number – Proof
	Buckets' number – Implementation
	Generalized counting sort (GCsort)

	Formal definitions
	Proof of a preliminary invariant
	Proof of counters' optimization

	Proof of objects' conservation
	Proof of objects' sorting
	Proof of algorithm's stability

