
Formalization of a Generalized Protocol for Clock Synchronization
in Isabelle/HOL

Alwen Tiu
LORIA - http://qsl.loria.fr

March 17, 2025

Abstract
We formalize the generalized Byzantine fault-tolerant clock synchronization protocol of

Schneider. This protocol abstracts from particular algorithms or implementations for clock syn-
chronization. This abstraction includes several assumptions on the behaviors of physical clocks
and on general properties of concrete algorithms/implementations. Based on these assumptions
the correctness of the protocol is proved by Schneider. His proof was later verified by Shankar
using the theorem prover EHDM (precursor to PVS). Our formalization in Isabelle/HOL is
based on Shankar’s formalization.

Contents
1 Introduction 1

2 Isar proof scripts 2
2.1 Types and constants definitions . 2
2.2 Clock conditions . 3

2.2.1 Some derived properties of clocks . 5
2.2.2 Bounded-drift for logical clocks (IC) . 5

2.3 Agreement property . 6

1 Introduction

In certain distributed systems, e.g., real-time process-control systems, the existence of a reliable
global time source is critical in ensuring the correct functioning of the systems. This reliable global
time source can be implemented using several physical clocks distributed on different nodes in the
distributed system. Since physical clocks are by nature constantly drifting away from the “real time”
and different clocks can have different drift rates, in such a scheme, it is important that these clocks
are regularly adjusted so that they are closely synchronized within a certain application-specific
safe bound. The design and verification of clock synchronization protocols are often complicated by
the additional requirement that the protocols should work correctly under certain types of errors,
e.g., failure of some clocks, error in communication network or corrupted messages, etc.
There has been a number of fault-tolerant clock synchronization algorithms studied in the literature,
e.g., the Interactive Convergence Algorithm (ICA) by Lamport and Melliar-Smith [1], the Lundelius-
Lynch algorithm [2], etc., each with its own degree of fault tolerance. One important property that

1

http://qsl.loria.fr

must be satisfied by a clock synchronization algorithm is the agreement property, i.e., at any time t,
the difference of the clock readings of any two non-faulty processes must be bounded by a constant
(which is fixed according to the domain of applications). At the core of these algorithms is the
convergence function that calculates the adjustment to a clock of a process, based on the clock
readings of all other processes. Schneider [3] gives an abstract characterization of a wide range
of clock synchronization algorithms (based on the convergence functions used) and proves the
agreement property in this abstract framework. Schneider’s proof was later verified by Shankar [4]
in the theorem prover EHDM (precursor to PVS), where eleven axioms about clocks are explicitly
stated.
We formalize Schneider’s proof in Isabelle/HOL, making use of Shankar’s formulation of the clock
axioms. The particular formulation of axioms on clock conditions and the statements of the main
theorems here are essentially those of Shankar’s [4], with some minor changes in syntax. For the
full description of the protocol, the general structure of the proof and the meaning of the constants
and function symbols used in this formalization, we refer readers to [4].

Acknowledgment I would like to thank Stephan Merz and Pascal Fontaine for useful tips on
using Isabelle and particularly the Isar proof language.

2 Isar proof scripts

theory GenClock imports Complex-Main begin

2.1 Types and constants definitions

Process is represented by natural numbers. The type ’event’ corresponds to synchronization rounds.
type-synonym process = nat
type-synonym event = nat
type-synonym time = real
type-synonym Clocktime = real

axiomatization
δ :: real and
µ :: real and
% :: real and
rmin :: real and
rmax :: real and
β :: real and
Λ :: real and

np :: process and
maxfaults :: process and

PC :: [process, time] ⇒ Clocktime and

VC :: [process, time] ⇒ Clocktime and

te :: [process, event] ⇒ time and

2

ϑ :: [process, event] ⇒ (process ⇒ Clocktime) and

IC :: [process, event, time] ⇒ Clocktime and

correct :: [process, time] ⇒ bool and

cfn :: [process, (process ⇒ Clocktime)] ⇒ Clocktime and

π :: [Clocktime, Clocktime] ⇒ Clocktime and

α :: Clocktime ⇒ Clocktime

definition
count :: [process ⇒ bool, process] ⇒ nat where
count f n = card {p. p < n ∧ f p}

definition

Adj :: [process, event] ⇒ Clocktime where
Adj = (λ p i. if 0 < i then cfn p (ϑ p i) − PC p (te p i)

else 0)

definition

okRead1 :: [process ⇒ Clocktime, Clocktime, process ⇒ bool] ⇒ bool where
okRead1 f x ppred ←→ (∀ l m. ppred l ∧ ppred m −→ |f l − f m| ≤ x)

definition
okRead2 :: [process ⇒ Clocktime, process ⇒ Clocktime, Clocktime,

process ⇒ bool] ⇒ bool where
okRead2 f g x ppred ←→ (∀ p. ppred p −→ |f p − g p| ≤ x)

definition
rho-bound1 :: [[process, time] ⇒ Clocktime] ⇒ bool where
rho-bound1 C ←→ (∀ p s t. correct p t ∧ s ≤ t −→ C p t − C p s ≤ (t − s)∗(1 + %))

definition
rho-bound2 :: [[process, time] ⇒ Clocktime] ⇒ bool where
rho-bound2 C ←→ (∀ p s t. correct p t ∧ s ≤ t −→ (t − s)∗(1 − %) ≤ C p t − C p s)

2.2 Clock conditions

Some general assumptions
axiomatization where

constants-ax: 0 < β ∧ 0 < µ ∧ 0 < rmin
∧ rmin ≤ rmax ∧ 0 < % ∧ 0 < np ∧ maxfaults ≤ np

axiomatization where
PC-monotone: ∀ p s t. correct p t ∧ s ≤ t −→ PC p s ≤ PC p t

axiomatization where
VClock: ∀ p t i. correct p t ∧ te p i ≤ t ∧ t < te p (i + 1) −→ VC p t = IC p i t

3

axiomatization where
IClock: ∀ p t i. correct p t −→ IC p i t = PC p t + Adj p i

Condition 1: initial skew
axiomatization where

init: ∀ p. correct p 0 −→ 0 ≤ PC p 0 ∧ PC p 0 ≤ µ

Condition 2: bounded drift
axiomatization where

rate-1 : ∀ p s t. correct p t ∧ s ≤ t −→ PC p t − PC p s ≤ (t − s)∗(1 + %) and
rate-2 : ∀ p s t. correct p t ∧ s ≤ t −→ (t − s)∗(1 − %) ≤ PC p t − PC p s

Condition 3: bounded interval
axiomatization where

rts0 : ∀ p t i. correct p t ∧ t ≤ te p (i+1) −→ t − te p i ≤ rmax and
rts1 : ∀ p t i. correct p t ∧ te p (i+1) ≤ t −→ rmin ≤ t − te p i

Condition 4 : bounded delay
axiomatization where

rts2a: ∀ p q t i. correct p t ∧ correct q t ∧ te q i + β ≤ t −→ te p i ≤ t and
rts2b: ∀ p q i. correct p (te p i) ∧ correct q (te q i) −→ abs(te p i − te q i) ≤ β

Condition 5: initial synchronization
axiomatization where

synch0 : ∀ p. te p 0 = 0

Condition 6: nonoverlap
axiomatization where

nonoverlap: β ≤ rmin

Condition 7: reading errors
axiomatization where

readerror : ∀ p q i. correct p (te p (i+1)) ∧ correct q (te p (i+1)) −→
abs(ϑ p (i+1) q − IC q i (te p (i+1))) ≤ Λ

Condition 8: bounded faults
axiomatization where

correct-closed: ∀ p s t. s ≤ t ∧ correct p t −→ correct p s and
correct-count: ∀ t. np − maxfaults ≤ count (λ p. correct p t) np

Condition 9: Translation invariance
axiomatization where

trans-inv: ∀ p f x. 0 ≤ x −→ cfn p (λ y. f y + x) = cfn p f + x

Condition 10: precision enhancement
axiomatization where

prec-enh:
∀ ppred p q f g x y.

np − maxfaults ≤ count ppred np ∧
okRead1 f y ppred ∧ okRead1 g y ppred ∧

4

okRead2 f g x ppred ∧ ppred p ∧ ppred q
−→ abs(cfn p f − cfn q g) ≤ π x y

Condition 11: accuracy preservation
axiomatization where

acc-prsv:
∀ ppred p q f x. okRead1 f x ppred ∧ np − maxfaults ≤ count ppred np

∧ ppred p ∧ ppred q −→ abs(cfn p f − f q) ≤ α x

2.2.1 Some derived properties of clocks
lemma rts0d:
assumes cp: correct p (te p (i+1))
shows te p (i+1) − te p i ≤ rmax
〈proof 〉

lemma rts1d:
assumes cp: correct p (te p (i+1))
shows rmin ≤ te p (i+1) − te p i
〈proof 〉

lemma rte:
assumes cp: correct p (te p (i+1))
shows te p i ≤ te p (i+1)
〈proof 〉

lemma beta-bound1 :
assumes corr-p: correct p (te p (i+1))
and corr-q: correct q (te p (i+1))
shows 0 ≤ te p (i+1) − te q i
〈proof 〉

lemma beta-bound2 :
assumes corr-p: correct p (te p (i+1))
and corr-q: correct q (te q i)
shows te p (i+1) − te q i ≤ rmax + β
〈proof 〉

2.2.2 Bounded-drift for logical clocks (IC)
lemma bd:

assumes ie: s ≤ t
and rb1 : rho-bound1 C
and rb2 : rho-bound2 D
and PC-ie: D q t − D q s ≤ C p t − C p s
and corr-p: correct p t
and corr-q: correct q t
shows | C p t − D q t | ≤ | C p s − D q s | + 2∗%∗(t − s)
〈proof 〉

lemma bounded-drift:
assumes ie: s ≤ t
and rb1 : rho-bound1 C

5

and rb2 : rho-bound2 C
and rb3 : rho-bound1 D
and rb4 : rho-bound2 D
and corr-p: correct p t
and corr-q: correct q t
shows |C p t − D q t| ≤ |C p s − D q s| + 2∗%∗(t − s)
〈proof 〉

Drift rate of logical clocks
lemma IC-rate1 :
rho-bound1 (λ p t. IC p i t)
〈proof 〉

lemma IC-rate2 :
rho-bound2 (λ p t. IC p i t)
〈proof 〉

Auxilary function ICf : we introduce this to avoid some unification problem in some tactic of isabelle.
definition

ICf :: nat ⇒ (process ⇒ time ⇒ Clocktime) where
ICf i = (λ p t. IC p i t)

lemma IC-bd:
assumes ie: s ≤ t
and corr-p: correct p t
and corr-q: correct q t
shows |IC p i t − IC q j t| ≤ |IC p i s − IC q j s| + 2∗%∗(t − s)
〈proof 〉

lemma event-bound:
assumes ie1 : 0 ≤ (t::real)
and corr-p: correct p t
and corr-q: correct q t
shows ∃ i. t < max (te p i) (te q i)
〈proof 〉

2.3 Agreement property
definition γ1 x = π (2∗%∗β + 2∗Λ) (2∗Λ + x + 2∗%∗(rmax + β))
definition γ2 x = x + 2∗%∗rmax
definition γ3 x = α (2∗Λ + x + 2∗%∗(rmax + β)) + Λ + 2∗%∗β

definition
okmaxsync :: [nat, Clocktime] ⇒ bool where
okmaxsync i x ←→ (∀ p q. correct p (max (te p i) (te q i))
∧ correct q (max (te p i) (te q i)) −→
|IC p i (max (te p i) (te q i)) − IC q i (max (te p i) (te q i))| ≤ x)

definition
okClocks :: [process, process, nat] ⇒ bool where
okClocks p q i ←→ (∀ t. 0 ≤ t ∧ t < max (te p i) (te q i)

∧ correct p t ∧ correct q t
−→ |VC p t − VC q t| ≤ δ)

6

lemma okClocks-sym:
assumes ok-pq: okClocks p q i
shows okClocks q p i
〈proof 〉

lemma ICp-Suc:
assumes corr-p: correct p (te p (i+1))
shows IC p (i+1) (te p (i+1)) = cfn p (ϑ p (i+1))
〈proof 〉

lemma IC-trans-inv:
assumes ie1 : te q (i+1) ≤ te p (i+1)
and corr-p: correct p (te p (i+1))
and corr-q: correct q (te p (i+1))
shows
IC q (i+1) (te p (i+1)) =

cfn q (λ n. ϑ q (i+1) n + (PC q (te p (i+1)) − PC q (te q (i+1))))
(is ?T1 = ?T2)
〈proof 〉

lemma beta-rho:
assumes ie: te q (i+1) ≤ te p (i+1)
and corr-p: correct p (te p (i+1))
and corr-q: correct q (te p (i+1))
and corr-l: correct l (te p (i+1))
shows |(PC l (te p (i+1)) − PC l (te q (i+1))) − (te p (i+1) − te q (i+1))| ≤ β∗%
〈proof 〉

This lemma (and the next one pe-cond2) proves an assumption used in the precision enhancement.
lemma pe-cond1 :
assumes ie: te q (i+1) ≤ te p (i+1)
and corr-p: correct p (te p (i+1))
and corr-q: correct q (te p (i + 1))
and corr-l: correct l (te p (i+1))
shows |ϑ q (i+1) l + (PC q (te p (i+1)) − PC q (te q (i+1))) −

ϑ p (i+1) l| ≤ 2∗ % ∗ β + 2∗Λ
(is ?M ≤ ?N)
〈proof 〉

lemma pe-cond2 :
assumes ie: te m i ≤ te l i
and corr-k: correct k (te k (i+1))
and corr-l-tk: correct l (te k (i+1))
and corr-m-tk: correct m (te k (i+1))
and ind-hyp: |IC l i (te l i) − IC m i (te l i)| ≤ δS
shows |ϑ k (i+1) l − ϑ k (i+1) m| ≤ 2∗Λ + δS + 2∗%∗(rmax + β)
〈proof 〉

lemma theta-bound:
assumes corr-l: correct l (te p (i+1))
and corr-m: correct m (te p (i+1))
and corr-p: correct p (te p (i+1))

7

and IC-bound:
|IC l i (max (te l i) (te m i)) − IC m i (max (te l i) (te m i))|
≤ δS

shows |ϑ p (i+1) l − ϑ p (i+1) m|
≤ 2∗Λ + δS + 2∗%∗(rmax + β)

〈proof 〉

lemma four-one-ind-half :
assumes ie1 : β ≤ rmin
and ie2 : µ ≤ δS
and ie3 : γ1 δS ≤ δS
and ind-hyp: okmaxsync i δS
and ie4 : te q (i+1) ≤ te p (i+1)
and corr-p: correct p (te p (i+1))
and corr-q: correct q (te p (i+1))

shows |IC p (i+1) (te p (i+1)) − IC q (i+1) (te p (i+1))| ≤ δS
〈proof 〉

Theorem 4.1 in Shankar’s paper.
theorem four-one:

assumes ie1 : β ≤ rmin
and ie2 : µ ≤ δS
and ie3 : γ1 δS ≤ δS

shows okmaxsync i δS
〈proof 〉

lemma VC-cfn:
assumes corr-p: correct p (te p (i+1))
and ie: te p (i+1) < te p (i+2)

shows VC p (te p (i+1)) = cfn p (ϑ p (i+1))
〈proof 〉

Lemma for the inductive case in Theorem 4.2
lemma four-two-ind:

assumes ie1 : β ≤ rmin
and ie2 : µ ≤ δS
and ie3 : γ1 δS ≤ δS
and ie4 : γ2 δS ≤ δ
and ie5 : γ3 δS ≤ δ
and ie6 : te q (i+1) ≤ te p (i+1)
and ind-hyp: okClocks p q i
and t-bound1 : 0 ≤ t
and t-bound2 : t < max (te p (i+1)) (te q (i+1))
and t-bound3 : max (te p i) (te q i) ≤ t
and tpq-bound: max (te p i) (te q i) < max (te p (i+1)) (te q (i+1))
and corr-p: correct p t
and corr-q: correct q t

shows |VC p t − VC q t| ≤ δ
〈proof 〉

Theorem 4.2 in Shankar’s paper.
theorem four-two:

assumes ie1 : β ≤ rmin

8

and ie2 : µ ≤ δS
and ie3 : γ1 δS ≤ δS
and ie4 : γ2 δS ≤ δ
and ie5 : γ3 δS ≤ δ

shows okClocks p q i
〈proof 〉

The main theorem: all correct clocks are synchronized within the bound delta.
theorem agreement:

assumes ie1 : β ≤ rmin
and ie2 : µ ≤ δS
and ie3 : γ1 δS ≤ δS
and ie4 : γ2 δS ≤ δ
and ie5 : γ3 δS ≤ δ
and ie6 : 0 ≤ t
and cpq: correct p t ∧ correct q t

shows |VC p t − VC q t| ≤ δ
〈proof 〉

end

References

[1] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of faults. J. ACM,
32(1):52–78, 1985.

[2] J. Lundelius and N. Lynch. A new fault-tolerant algorithm for clock synchronization. In
Proceedings of PODC ’84, pages 75–88, New York, NY, USA, 1984. ACM Press.

[3] F. B. Schneider. Understanding protocols for byzantine clock synchronization. Technical Report
87-859, Department of Computer Science, Cornell University, August 1987.

[4] N. Shankar. Mechanical verification of a generalized protocol for byzantine fault tolerant clock
synchronization. In J. Vytopil, editor, Formal Techniques in Real-Time and Fault-Tolerant
Systems, volume 571 of LNCS. Springer Verlag, Jan. 1992.

9

	Introduction
	Isar proof scripts
	Types and constants definitions
	Clock conditions
	Some derived properties of clocks
	Bounded-drift for logical clocks (IC)

	Agreement property

