Formalization of a Generalized Protocol for Clock Synchronization in Isabelle/HOL

Alwen Tiu
October 11, 2017

Abstract

We formalize the generalized Byzantine fault-tolerant clock synchronization protocol of Schneider. This protocol abstracts from particular algorithms or implementations for clock synchronization. This abstraction includes several assumptions on the behaviors of physical clocks and on general properties of concrete algorithms/implementations. Based on these assumptions the correctness of the protocol is proved by Schneider. His proof was later verified by Shankar using the theorem prover EHDM (precursor to PVS). Our formalization in Isabelle/HOL is based on Shankar’s formalization.

Contents

1 Introduction 1

2 Isar proof scripts 2

2.1 Types and constants definitions .. 2
2.2 Clock conditions .. 3
 2.2.1 Some derived properties of clocks 5
 2.2.2 Bounded-drift for logical clocks (IC) 5
2.3 Agreement property .. 6

1 Introduction

In certain distributed systems, e.g., real-time process-control systems, the existence of a reliable global time source is critical in ensuring the correct functioning of the systems. This reliable global time source can be implemented using several physical clocks distributed on different nodes in the distributed system. Since physical clocks are by nature constantly drifting away from the “real time” and different clocks can have different drift rates, in such a scheme, it is important that these clocks are regularly adjusted so that they are closely synchronized within a certain application-specific safe bound. The design and verification of clock synchronization protocols are often complicated by the additional requirement that the protocols should work correctly under certain types of errors, e.g., failure of some clocks, error in communication network or corrupted messages, etc.

There has been a number of fault-tolerant clock synchronization algorithms studied in the literature, e.g., the Interactive Convergence Algorithm (ICA) by Lamport and Melliar-Smith [1], the Lundelius-Lynch algorithm [2], etc., each with its own degree of fault tolerance. One important property that
must be satisfied by a clock synchronization algorithm is the agreement property, i.e., at any time \(t \), the difference of the clock readings of any two non-faulty processes must be bounded by a constant (which is fixed according to the domain of applications). At the core of these algorithms is the convergence function that calculates the adjustment to a clock of a process, based on the clock readings of all other processes. Schneider [3] gives an abstract characterization of a wide range of clock synchronization algorithms (based on the convergence functions used) and proves the agreement property in this abstract framework. Schneider’s proof was later verified by Shankar [4] in the theorem prover EHDM (precursor to PVS), where eleven axioms about clocks are explicitly stated.

We formalize Schneider’s proof in Isabelle/HOL, making use of Shankar’s formulation of the clock axioms. The particular formulation of axioms on clock conditions and the statements of the main theorems here are essentially those of Shankar’s [4], with some minor changes in syntax. For the full description of the protocol, the general structure of the proof and the meaning of the constants and function symbols used in this formalization, we refer readers to [4].

Acknowledgment I would like to thank Stephan Merz and Pascal Fontaine for useful tips on using Isabelle and particularly the Isar proof language.

2 Isar proof scripts

thory GenClock imports Complex-Main begin

2.1 Types and constants definitions

Process is represented by natural numbers. The type ’event’ corresponds to synchronization rounds.

type-synonym process = nat
type-synonym event = nat
type-synonym time = real
type-synonym Clocktime = real

axiomatization

\(\delta :: real \) and
\(\mu :: real \) and
\(\rho :: real \) and
\(rmin :: real \) and
\(rmax :: real \) and
\(\beta :: real \) and
\(\Lambda :: real \) and

\(np :: process \) and
\(maxfaults :: process \) and

\(PC :: [process, time] \Rightarrow Clocktime \) and

\(VC :: [process, time] \Rightarrow Clocktime \) and

\(te :: [process, event] \Rightarrow time \) and
ϑ :: [process, event] ⇒ (process ⇒ Clocktime) and

IC :: [process, event, time] ⇒ Clocktime and

correct :: [process, time] ⇒ bool and

cfn :: [process, (process ⇒ Clocktime)] ⇒ Clocktime and

π :: [Clocktime, Clocktime] ⇒ Clocktime and

α :: Clocktime ⇒ Clocktime

definition
count :: [process ⇒ bool, process] ⇒ nat where
count f n = card {p. p < n ∧ f p}

definition
Adj :: [process, event] ⇒ Clocktime where
Adj = (λ p i. if 0 < i then cfn p (ϑ p i) − PC p (te p i) else 0)

definition
okRead1 :: [process ⇒ Clocktime, Clocktime, process ⇒ bool] ⇒ bool where
okRead1 f x ppred ←→ (∀ l m. ppred l ∧ ppred m → |f l − f m| ≤ x)

definition
okRead2 :: [process ⇒ Clocktime, process ⇒ Clocktime, Clocktime, process ⇒ bool] ⇒ bool where
okRead2 f g x ppred ←→ (∀ p. ppred p → |f p − g p| ≤ x)

definition
rho-bound1 :: [[process, time] ⇒ Clocktime] ⇒ bool where
rho-bound1 C ←→ (∀ p s t. correct p t ∧ s ≤ t → C p t − C p s ≤ (t − s) ∗ (1 + ϱ))

definition
rho-bound2 :: [[process, time] ⇒ Clocktime] ⇒ bool where
rho-bound2 C ←→ (∀ p s t. correct p t ∧ s ≤ t → (t − s) ∗ (1 − ϱ) ≤ C p t − C p s)

2.2 Clock conditions

Some general assumptions

axiomatization where

constants-ax: 0 < β ∧ 0 < μ ∧ 0 < rmin
∧ rmin ≤ rmax ∧ 0 < ϱ ∧ 0 < np ∧ maxfauls ≤ np

axiomatization where

PC-monotone: ∀ p s t. correct p t ∧ s ≤ t → PC p s ≤ PC p t

axiomatization where

VClock: ∀ p t i. correct p t ∧ te p i ≤ t ∧ t < te p (i + 1) → VC p t = IC p i t
axiomatization where

\(IClock: \forall \ p \ t \ i. \ correct \ p \ t \ \rightarrow \ IC \ p \ i \ t = PC \ p \ t + Adj \ p \ i \)

Condition 1: initial skew

axiomatization where

\(init: \forall \ p. \ correct \ p \ 0 \ \rightarrow \ 0 \leq PC \ p \ 0 \ \land \ PC \ p \ 0 \leq \mu \)

Condition 2: bounded drift

axiomatization where

\(rate-1: \forall \ p \ s \ t. \ correct \ p \ t \ \land \ s \leq t \ \rightarrow \ PC \ p \ t - PC \ p \ s \leq (t - s) \ast (1 + \varrho) \ \text{and} \)
\(rate-2: \forall \ p \ s \ t. \ correct \ p \ t \ \land \ s \leq t \ \rightarrow \ (t - s) \ast (1 - \varrho) \leq PC \ p \ t - PC \ p \ s \)

Condition 3: bounded interval

axiomatization where

\(rts0: \forall \ p \ t \ i. \ correct \ p \ t \ \land \ te \ p \ (i+1) \ \rightarrow \ t - te \ p \ i \leq rmax \ \text{and} \)
\(rts1: \forall \ p \ t \ i. \ correct \ p \ t \ \land \ te \ p \ (i+1) \leq t \ \rightarrow \ rmin \leq t - te \ p \ i \)

Condition 4: bounded delay

axiomatization where

\(rts2a: \forall \ p \ q \ t \ i. \ correct \ p \ t \ \land \ correct \ q \ t \ \land \ te \ q \ i + \beta \leq t \ \rightarrow \ te \ p \ i \leq t \ \text{and} \)
\(rts2b: \forall \ p \ q \ i. \ correct \ p \ (te \ p \ i) \ \land \ correct \ q \ (te \ q \ i) \ \rightarrow \ abs(te \ p \ i - te \ q \ i) \leq \beta \)

Condition 5: initial synchronization

axiomatization where

\(synch0: \forall \ p. \ te \ p \ 0 = 0 \)

Condition 6: nonoverlap

axiomatization where

\(nonoverlap: \beta \leq rmin \)

Condition 7: reading errors

axiomatization where

\(readerror: \forall \ p \ q \ i. \ correct \ p \ (te \ p \ (i+1)) \ \land \ correct \ q \ (te \ p \ (i+1)) \ \rightarrow \)
\(abs(\vartheta \ p \ (i+1) q - IC \ q \ i \ (te \ p \ (i+1))) \leq \Lambda \)

Condition 8: bounded faults

axiomatization where

\(correct-closed: \forall \ p \ s \ t. \ s \leq t \ \land \ correct \ p \ t \ \rightarrow \ correct \ p \ s \ \text{and} \)
\(correct-count: \forall \ t. \ np - maxfaults \leq count (\lambda \ p. \ correct \ p \ t) \ np \)

Condition 9: Translation invariance

axiomatization where

\(trans-inv: \forall \ p \ f \ x. \ 0 \leq x \ \rightarrow \ cfn \ p \ (\lambda \ y. \ f \ y + x) = cfn \ p \ f + x \)

Condition 10: precision enhancement

axiomatization where

\(prec-enh: \forall \ ppred \ p \ q \ f \ g \ x \ y. \)
\(np - maxfaults \leq count ppred \ np \ \land \)
\(okRead1 f y ppred \ \land \ okRead1 g y ppred \ \land \)
\[\text{okRead2} \ f \ g \ x \ p \ p \rightarrow \text{abs}(cfn \ p \ f - cfn \ q \ g) \leq \pi \ x \ y \]

Condition 11: accuracy preservation

axiomatization where

\[\forall \ p \ p \ p \ q \ f \ x. \ \text{okRead1} \ f \ x \ p \ p \rightarrow \text{abs}(cfn \ p \ f - f \ q) \leq \alpha \ x \]

2.2.1 Some derived properties of clocks

\textbf{lemma rts0d}: \\
assumes \(cp \): correct \(p \) \((te \ p \ (i+1))\) \\
shows \(te \ p \ (i+1) - te \ p \ i \leq \text{rmax} \) \\
(proof)

\textbf{lemma rts1d}: \\
assumes \(cp \): correct \(p \) \((te \ p \ (i+1))\) \\
shows \(\text{rmin} \leq te \ p \ (i+1) - te \ p \ i \) \\
(proof)

\textbf{lemma rte}: \\
assumes \(cp \): correct \(p \) \((te \ p \ (i+1))\) \\
shows \(te \ p \ i \leq te \ p \ (i+1) \) \\
(proof)

\textbf{lemma beta-bound1}: \\
assumes \(corr-p \): correct \(p \) \((te \ p \ (i+1))\) \\
and \(corr-q \): correct \(q \) \((te \ p \ (i+1))\) \\
shows \(0 \leq te \ p \ (i+1) - te \ q \ i \) \\
(proof)

\textbf{lemma beta-bound2}: \\
assumes \(corr-p \): correct \(p \) \((te \ p \ (i+1))\) \\
and \(corr-q \): correct \(q \) \((te \ q \ i)\) \\
shows \(te \ p \ (i+1) - te \ q \ i \leq \text{rmax} + \beta \) \\
(proof)

2.2.2 Bounded-drift for logical clocks (IC)

\textbf{lemma bd}: \\
assumes \(ic \): \(s \leq t \) \\
and \(rb1 \): \(\text{rho-bound1} \ C \) \\
and \(rb2 \): \(\text{rho-bound2} \ D \) \\
and \(PC-ic \): \(D \ q \ t - D \ q \ s \leq C \ p \ t - C \ p \ s \) \\
and \(corr-p \): correct \(p \) \\
and \(corr-q \): correct \(q \) \\
shows \(| C \ p \ t - D \ q \ t | \leq | C \ p \ s - D \ q \ s | + 2 * \rho * (t - s) \) \\
(proof)

\textbf{lemma bounded-drift}: \\
assumes \(ic \): \(s \leq t \) \\
and \(rb1 \): \(\text{rho-bound1} \ C \)
and \(\rho_{bound2} \ \ C \) and \(\rho_{bound1} \ \ D \) and \(\rho_{bound2} \ \ D \) and \(corr-p: \ correct \ p \ \ t \) and \(corr-q: \ correct \ q \ \ t \) shows \(|\ C \ p \ t - D \ q \ t| \leq |C \ p \ s - D \ q \ s| + 2*\rho*(t - s)|

\langle \text{proof} \rangle

Drift rate of logical clocks

\textbf{lemma IC-rate1}: rhou-bound1 \((\lambda \ p \ t. \ IC \ p \ i \ t)\)

\langle \text{proof} \rangle

\textbf{lemma IC-rate2}: rhou-bound2 \((\lambda \ p \ t. \ IC \ p \ i \ t)\)

\langle \text{proof} \rangle

Auxiliary function \(ICf \): we introduce this to avoid some unification problem in some tactic of isabelle.

\textbf{definition} \(ICf :: \text{nat} \Rightarrow (\text{process} \Rightarrow \text{time} \Rightarrow \text{Clocktime}) \) where

\(ICf \ i = (\lambda \ p \ t. \ IC \ p \ i \ t) \)

\textbf{lemma IC-bd:}

\textbf{assumes ie}: \(s \leq t \)

\textbf{and corr-p}: \ correct \ p \ t

\textbf{and corr-q}: \ correct \ q \ t

shows \(|IC \ p \ i \ t - IC \ q \ j \ t| \leq |IC \ p \ i \ s - IC \ q \ j \ s| + 2*\rho*(t - s)|

\langle \text{proof} \rangle

\textbf{lemma event-bound:}

\textbf{assumes ie1}: \(0 \leq (t::\text{real}) \)

\textbf{and corr-p}: \ correct \ p \ t

\textbf{and corr-q}: \ correct \ q \ t

shows \(\exists \ i. \ t < \text{max} (te \ p \ i) (te \ q \ i) \)

\langle \text{proof} \rangle

2.3 Agreement property

\textbf{definition} \(\gamma_1 \ x = \pi (2*\rho*r + 2*\Lambda) (2*\Lambda + x + 2*\rho*(rmax + \beta)) \)

\textbf{definition} \(\gamma_2 \ x = x + 2*\rho*r*max \)

\textbf{definition} \(\gamma_3 \ x = \alpha (2*\Lambda + x + 2*\rho*(rmax + \beta)) + \Lambda + 2*\rho*\beta \)

\textbf{definition} \(\text{okmaxsync} :: [\text{nat}, \ \text{Clocktime}] \Rightarrow \text{bool} \) where

\(\text{okmaxsync} \ i \ x \leftarrow \forall \ p \ q. \ \text{correct} \ p \ (\text{max} (te \ p \ i) (te \ q \ i)) \)

\(\land \ \text{correct} \ q \ (\text{max} (te \ p \ i) (te \ q \ i)) \leftarrow |IC \ p \ i \ (\text{max} (te \ p \ i) (te \ q \ i)) - IC \ q \ i \ (\text{max} (te \ p \ i) (te \ q \ i))| \leq x \)

\textbf{definition} \(\text{okClocks} :: [\text{process}, \ \text{process}, \ \text{nat}] \Rightarrow \text{bool} \) where

\(\text{okClocks} \ p \ q \ i \leftarrow (\forall \ t. \ 0 \leq t \land t < \text{max} (te \ p \ i) (te \ q \ i)) \)

\(\land \ \text{correct} \ p \ t \land \text{correct} \ q \ t \leftarrow |VC \ p \ t - VC \ q \ t| \leq \delta \)
lemma \textit{okClocks-sym}:
\begin{align*}
&\text{assumes } \textit{ok-pq}: \text{okClocks } p \ q i \\
&\text{shows } \text{okClocks } q \ p i
\end{align*}
\begin{proof}
\end{proof}

lemma \textit{ICp-Suc}:
\begin{align*}
&\text{assumes } \textit{corr-p}: \text{correct } p (te \ p (i+1)) \\
&\text{shows } IC \ p (i+1) (te \ p (i+1)) = cfn \ p (\vartheta \ p (i+1))
\end{align*}
\begin{proof}
\end{proof}

lemma \textit{IC-trans-inv}:
\begin{align*}
&\text{assumes } \textit{ie1}: te \ q (i+1) \leq te \ p (i+1) \\
&\text{and } \textit{corr-p}: \text{correct } p (te \ p (i+1)) \\
&\text{and } \textit{corr-q}: \text{correct } q (te \ p (i+1)) \\
&\text{shows } IC \ q (i+1) (te \ p (i+1) = cfn \ q (\lambda \ n. \ \vartheta \ q (i+1) n + (PC \ q (te \ p (i+1)) - PC \ q (te \ q (i+1))))
\end{align*}
\begin{proof}
\end{proof}

This lemma (and the next one \textit{pe-cond2}) proves an assumption used in the precision enhancement.

lemma \textit{pe-cond1}:
\begin{align*}
&\text{assumes } \textit{ie}: te \ q (i+1) \leq te \ p (i+1) \\
&\text{and } \textit{corr-p}: \text{correct } p (te \ p (i+1)) \\
&\text{and } \textit{corr-q}: \text{correct } q (te \ p (i+1)) \\
&\text{and } \textit{corr-l}: \text{correct } l (te \ p (i+1)) \\
&\text{shows } |\vartheta \ q (i+1) l + (PC \ q (te \ p (i+1)) - PC \ q (te \ q (i+1))) - \vartheta \ p (i+1) l| \leq 2*q*\beta + 2*\Lambda
\end{align*}
\begin{proof}
\end{proof}

lemma \textit{pe-cond2}:
\begin{align*}
&\text{assumes } \textit{ie}: te \ m \ i \leq te \ l \ i \\
&\text{and } \textit{corr-k}: \text{correct } k (te \ k (i+1)) \\
&\text{and } \textit{corr-ltk}: \text{correct } l (te \ k (i+1)) \\
&\text{and } \textit{corr-mdk}: \text{correct } m (te \ k (i+1)) \\
&\text{and } \textit{ind-hyp}: |IC \ l \ i (te \ l \ i) - IC \ m \ i (te \ l \ i)| \leq \delta \ S \\
&\text{shows } |\vartheta \ k (i+1) l - \vartheta \ k (i+1) m| \leq 2*\Lambda + \delta \ S + 2*q*(rmax + \beta)
\end{align*}
\begin{proof}
\end{proof}

lemma \textit{theta-bound}:
\begin{align*}
&\text{assumes } \textit{corr-l}: \text{correct } l (te \ p (i+1)) \\
&\text{and } \textit{corr-m}: \text{correct } m (te \ p (i+1)) \\
&\text{and } \textit{corr-p}: \text{correct } p (te \ p (i+1))
\end{align*}
and IC-bound:
\[|IC l i (\max (te l i) (te m i)) - IC m i (\max (te l i) (te m i))| \leq \delta S\]
shows
\[|\vartheta p (i+1) l - \vartheta p (i+1) m| \leq 2^*\Lambda + \delta S + 2^*\varrho (r_{max} + \beta)\]
(\textit{proof})

lemma four-one-ind-half:
\begin{itemize}
 \item assumes ie1: $\beta \leq r_{min}$
 \item and ie2: $\mu \leq \delta S$
 \item and ie3: $\gamma 1 \delta S \leq \delta S$
 \item and ind-hyp: okmaxsync i δS
 \item and corr-p: correct p (te p (i+1))
 \item and corr-q: correct q (te p (i+1))
\end{itemize}
shows
\[|IC p (i+1) (te p (i+1)) - IC q (i+1) (te p (i+1))| \leq \delta S\]
(\textit{proof})

Theorem 4.1 in Shankar’s paper.

theorem four-one:
\begin{itemize}
 \item assumes ie1: $\beta \leq r_{min}$
 \item and ie2: $\mu \leq \delta S$
 \item and ie3: $\gamma 1 \delta S \leq \delta S$
\end{itemize}
shows okmaxsync i δS
(\textit{proof})

lemma VC-cfn:
\begin{itemize}
 \item assumes corr-p: correct p (te p (i+1))
 \item and ie: te p (i+1) < te p (i+2)
\end{itemize}
shows
\[VC p (te p (i+1)) = cfn p (\vartheta p (i+1))\]
(\textit{proof})

Lemma for the inductive case in Theorem 4.2

lemma four-two-ind:
\begin{itemize}
 \item assumes ie1: $\beta \leq r_{min}$
 \item and ie2: $\mu \leq \delta S$
 \item and ie3: $\gamma 1 \delta S \leq \delta S$
 \item and ie4: $\gamma 2 \delta S \leq \delta$
 \item and ie5: $\gamma 3 \delta S \leq \delta$
 \item and ie6: te q (i+1) \leq te p (i+1)
 \item and ind-hyp: okClocks p q i
 \item and t-bound1: 0 \leq t
 \item and t-bound2: t < \max (te p (i+1)) (te q (i+1))
 \item and t-bound3: \max (te p i) (te q i) \leq t
 \item and \textit{tpq-bound}: \max (te p i) (te q i) < \max (te p (i+1)) (te q (i+1))
 \item and corr-p: correct p t
 \item and corr-q: correct q t
\end{itemize}
shows
\[|VC p t - VC q t| \leq \delta\]
(\textit{proof})

Theorem 4.2 in Shankar’s paper.

theorem four-two:
\begin{itemize}
 \item assumes ie1: $\beta \leq r_{min}$
\end{itemize}
and \(ie2: \mu \leq \delta S \)
and \(ie3: \gamma_1 \delta S \leq \delta S \)
and \(ie4: \gamma_2 \delta S \leq \delta \)
and \(ie5: \gamma_3 \delta S \leq \delta \)
shows okClocks \(p \ q \ i \)

(\textit{proof})

The main theorem: all correct clocks are synchronized within the bound delta.

\textbf{Theorem agreement:}
assumes \(ie1: \beta \leq r_{min} \)
and \(ie2: \mu \leq \delta S \)
and \(ie3: \gamma_1 \delta S \leq \delta S \)
and \(ie4: \gamma_2 \delta S \leq \delta \)
and \(ie5: \gamma_3 \delta S \leq \delta \)
and \(ie6: 0 \leq t \)
and \(cpq: \text{correct } p \ t \land \text{correct } q \ t \)
shows \(|VC \ p \ t - VC \ q \ t| \leq \delta \)

(\textit{proof})

\textbf{end}

\textbf{References}

