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Abstract
We formalize the generalized Byzantine fault-tolerant clock synchronization protocol of

Schneider. This protocol abstracts from particular algorithms or implementations for clock syn-
chronization. This abstraction includes several assumptions on the behaviors of physical clocks
and on general properties of concrete algorithms/implementations. Based on these assumptions
the correctness of the protocol is proved by Schneider. His proof was later verified by Shankar
using the theorem prover EHDM (precursor to PVS). Our formalization in Isabelle/HOL is
based on Shankar’s formalization.
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1 Introduction

In certain distributed systems, e.g., real-time process-control systems, the existence of a reliable
global time source is critical in ensuring the correct functioning of the systems. This reliable global
time source can be implemented using several physical clocks distributed on different nodes in the
distributed system. Since physical clocks are by nature constantly drifting away from the “real time”
and different clocks can have different drift rates, in such a scheme, it is important that these clocks
are regularly adjusted so that they are closely synchronized within a certain application-specific
safe bound. The design and verification of clock synchronization protocols are often complicated by
the additional requirement that the protocols should work correctly under certain types of errors,
e.g., failure of some clocks, error in communication network or corrupted messages, etc.
There has been a number of fault-tolerant clock synchronization algorithms studied in the literature,
e.g., the Interactive Convergence Algorithm (ICA) by Lamport and Melliar-Smith [1], the Lundelius-
Lynch algorithm [2], etc., each with its own degree of fault tolerance. One important property that
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must be satisfied by a clock synchronization algorithm is the agreement property, i.e., at any time t,
the difference of the clock readings of any two non-faulty processes must be bounded by a constant
(which is fixed according to the domain of applications). At the core of these algorithms is the
convergence function that calculates the adjustment to a clock of a process, based on the clock
readings of all other processes. Schneider [3] gives an abstract characterization of a wide range
of clock synchronization algorithms (based on the convergence functions used) and proves the
agreement property in this abstract framework. Schneider’s proof was later verified by Shankar [4]
in the theorem prover EHDM (precursor to PVS), where eleven axioms about clocks are explicitly
stated.
We formalize Schneider’s proof in Isabelle/HOL, making use of Shankar’s formulation of the clock
axioms. The particular formulation of axioms on clock conditions and the statements of the main
theorems here are essentially those of Shankar’s [4], with some minor changes in syntax. For the
full description of the protocol, the general structure of the proof and the meaning of the constants
and function symbols used in this formalization, we refer readers to [4].

Acknowledgment I would like to thank Stephan Merz and Pascal Fontaine for useful tips on
using Isabelle and particularly the Isar proof language.

2 Isar proof scripts

theory GenClock imports Complex-Main begin

2.1 Types and constants definitions

Process is represented by natural numbers. The type ’event’ corresponds to synchronization rounds.
type-synonym process = nat
type-synonym event = nat
type-synonym time = real
type-synonym Clocktime = real

axiomatization
δ :: real and
µ :: real and
% :: real and
rmin :: real and
rmax :: real and
β :: real and
Λ :: real and

np :: process and
maxfaults :: process and

PC :: [process, time] ⇒ Clocktime and

VC :: [process, time] ⇒ Clocktime and

te :: [process, event] ⇒ time and
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ϑ :: [process, event] ⇒ (process ⇒ Clocktime) and

IC :: [process, event, time] ⇒ Clocktime and

correct :: [process, time] ⇒ bool and

cfn :: [process, (process ⇒ Clocktime)] ⇒ Clocktime and

π :: [Clocktime, Clocktime] ⇒ Clocktime and

α :: Clocktime ⇒ Clocktime

definition
count :: [process ⇒ bool, process] ⇒ nat where
count f n = card {p. p < n ∧ f p}

definition

Adj :: [process, event] ⇒ Clocktime where
Adj = (λ p i. if 0 < i then cfn p (ϑ p i) − PC p (te p i)

else 0 )

definition

okRead1 :: [process ⇒ Clocktime, Clocktime, process ⇒ bool] ⇒ bool where
okRead1 f x ppred ←→ (∀ l m. ppred l ∧ ppred m −→ |f l − f m| ≤ x)

definition
okRead2 :: [process ⇒ Clocktime, process ⇒ Clocktime, Clocktime,

process ⇒ bool] ⇒ bool where
okRead2 f g x ppred ←→ (∀ p. ppred p −→ |f p − g p| ≤ x)

definition
rho-bound1 :: [[process, time] ⇒ Clocktime] ⇒ bool where
rho-bound1 C ←→ (∀ p s t. correct p t ∧ s ≤ t −→ C p t − C p s ≤ (t − s)∗(1 + %))

definition
rho-bound2 :: [[process, time] ⇒ Clocktime] ⇒ bool where
rho-bound2 C ←→ (∀ p s t. correct p t ∧ s ≤ t −→ (t − s)∗(1 − %) ≤ C p t − C p s)

2.2 Clock conditions

Some general assumptions
axiomatization where

constants-ax: 0 < β ∧ 0 < µ ∧ 0 < rmin
∧ rmin ≤ rmax ∧ 0 < % ∧ 0 < np ∧ maxfaults ≤ np

axiomatization where
PC-monotone: ∀ p s t. correct p t ∧ s ≤ t −→ PC p s ≤ PC p t

axiomatization where
VClock: ∀ p t i. correct p t ∧ te p i ≤ t ∧ t < te p (i + 1 ) −→ VC p t = IC p i t
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axiomatization where
IClock: ∀ p t i. correct p t −→ IC p i t = PC p t + Adj p i

Condition 1: initial skew
axiomatization where

init: ∀ p. correct p 0 −→ 0 ≤ PC p 0 ∧ PC p 0 ≤ µ

Condition 2: bounded drift
axiomatization where

rate-1 : ∀ p s t. correct p t ∧ s ≤ t −→ PC p t − PC p s ≤ (t − s)∗(1 + %) and
rate-2 : ∀ p s t. correct p t ∧ s ≤ t −→ (t − s)∗(1 − %) ≤ PC p t − PC p s

Condition 3: bounded interval
axiomatization where

rts0 : ∀ p t i. correct p t ∧ t ≤ te p (i+1 ) −→ t − te p i ≤ rmax and
rts1 : ∀ p t i. correct p t ∧ te p (i+1 ) ≤ t −→ rmin ≤ t − te p i

Condition 4 : bounded delay
axiomatization where

rts2a: ∀ p q t i. correct p t ∧ correct q t ∧ te q i + β ≤ t −→ te p i ≤ t and
rts2b: ∀ p q i. correct p (te p i) ∧ correct q (te q i) −→ abs(te p i − te q i) ≤ β

Condition 5: initial synchronization
axiomatization where

synch0 : ∀ p. te p 0 = 0

Condition 6: nonoverlap
axiomatization where

nonoverlap: β ≤ rmin

Condition 7: reading errors
axiomatization where

readerror : ∀ p q i. correct p (te p (i+1 )) ∧ correct q (te p (i+1 )) −→
abs(ϑ p (i+1 ) q − IC q i (te p (i+1 ))) ≤ Λ

Condition 8: bounded faults
axiomatization where

correct-closed: ∀ p s t. s ≤ t ∧ correct p t −→ correct p s and
correct-count: ∀ t. np − maxfaults ≤ count (λ p. correct p t) np

Condition 9: Translation invariance
axiomatization where

trans-inv: ∀ p f x. 0 ≤ x −→ cfn p (λ y. f y + x) = cfn p f + x

Condition 10: precision enhancement
axiomatization where

prec-enh:
∀ ppred p q f g x y.

np − maxfaults ≤ count ppred np ∧
okRead1 f y ppred ∧ okRead1 g y ppred ∧
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okRead2 f g x ppred ∧ ppred p ∧ ppred q
−→ abs(cfn p f − cfn q g) ≤ π x y

Condition 11: accuracy preservation
axiomatization where

acc-prsv:
∀ ppred p q f x. okRead1 f x ppred ∧ np − maxfaults ≤ count ppred np

∧ ppred p ∧ ppred q −→ abs(cfn p f − f q) ≤ α x

2.2.1 Some derived properties of clocks
lemma rts0d:
assumes cp: correct p (te p (i+1 ))
shows te p (i+1 ) − te p i ≤ rmax
using cp rts0 by simp

lemma rts1d:
assumes cp: correct p (te p (i+1 ))
shows rmin ≤ te p (i+1 ) − te p i
using cp rts1 by simp

lemma rte:
assumes cp: correct p (te p (i+1 ))
shows te p i ≤ te p (i+1 )
proof−

from cp rts1d have rmin ≤ te p (i+1 ) − te p i
by simp

from this constants-ax show ?thesis by arith
qed

lemma beta-bound1 :
assumes corr-p: correct p (te p (i+1 ))
and corr-q: correct q (te p (i+1 ))
shows 0 ≤ te p (i+1 ) − te q i
proof−

from corr-p rte have te p i ≤ te p (i+1 )
by simp

from this corr-p correct-closed have corr-pi: correct p (te p i)
by blast

from corr-p rts1d nonoverlap have rmin ≤ te p (i+1 ) − te p i
by simp

from this nonoverlap have β ≤ te p (i+1 ) − te p i by simp
hence te p i + β ≤ te p (i+1 ) by simp

from this corr-p corr-q rts2a
have te q i ≤ te p (i+1 )

by blast
thus ?thesis by simp

qed

lemma beta-bound2 :
assumes corr-p: correct p (te p (i+1 ))
and corr-q: correct q (te q i)
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shows te p (i+1 ) − te q i ≤ rmax + β
proof−

from corr-p rte have te p i ≤ te p (i+1 )
by simp

from this corr-p correct-closed have corr-pi: correct p (te p i)
by blast

have split: te p (i+1 ) − te q i =
(te p (i+1 ) − te p i) + (te p i − te q i)
by (simp)

from corr-q corr-pi rts2b have Eq1 : abs(te p i − te q i) ≤ β
by simp

have Eq2 : te p i − te q i ≤ β
proof cases

assume te q i ≤ te p i
from this Eq1 show ?thesis

by (simp add: abs-if )
next

assume ¬ (te q i ≤ te p i)
from this Eq1 show ?thesis

by (simp add: abs-if )
qed

from corr-p rts0d have te p (i+1 ) − te p i ≤ rmax
by simp

from this split Eq2 show ?thesis by simp
qed

2.2.2 Bounded-drift for logical clocks (IC)
lemma bd:

assumes ie: s ≤ t
and rb1 : rho-bound1 C
and rb2 : rho-bound2 D
and PC-ie: D q t − D q s ≤ C p t − C p s
and corr-p: correct p t
and corr-q: correct q t
shows | C p t − D q t | ≤ | C p s − D q s | + 2∗%∗(t − s)

proof−
let ?Dt = C p t − D q t
let ?Ds = C p s − D q s
let ?Bp = C p t − C p s
let ?Bq = D q t − D q s
let ?I = t − s

have | ?Bp − ?Bq | ≤ 2∗%∗(t − s)
proof−

from PC-ie have Eq1 : | ?Bp − ?Bq | = ?Bp − ?Bq by (simp add: abs-if )
from corr-p ie rb1 have Eq2 : ?Bp − ?Bq ≤ ?I∗(1+%) − ?Bq (is ?E1 ≤ ?E2 )

by(simp add: rho-bound1-def )
from corr-q ie rb2 have ?I∗(1 − %) ≤ ?Bq

by(simp add: rho-bound2-def )
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from this have Eq3 : ?E2 ≤ ?I∗(1+%) − ?I∗(1 − %)
by(simp)

have Eq4 : ?I∗(1+%) − ?I∗(1 − %) = 2∗%∗?I
by(simp add: algebra-simps)

from Eq1 Eq2 Eq3 Eq4 show ?thesis by simp
qed
moreover
have |?Dt| ≤ |?Bp − ?Bq| + |?Ds|

by(simp add: abs-if )
ultimately show ?thesis by simp

qed

lemma bounded-drift:
assumes ie: s ≤ t
and rb1 : rho-bound1 C
and rb2 : rho-bound2 C
and rb3 : rho-bound1 D
and rb4 : rho-bound2 D
and corr-p: correct p t
and corr-q: correct q t
shows |C p t − D q t| ≤ |C p s − D q s| + 2∗%∗(t − s)

proof−
let ?Bp = C p t − C p s
let ?Bq = D q t − D q s

show ?thesis
proof cases

assume ?Bq ≤ ?Bp
from this ie rb1 rb4 corr-p corr-q bd show ?thesis by simp

next
assume ¬ (?Bq ≤ ?Bp)
hence ?Bp ≤ ?Bq by simp
from this ie rb2 rb3 corr-p corr-q bd
have |D q t − C p t| ≤ |D q s − C p s| + 2∗%∗(t − s)

by simp
from this show ?thesis by (simp add: abs-minus-commute)

qed
qed

Drift rate of logical clocks
lemma IC-rate1 :
rho-bound1 (λ p t. IC p i t)
proof−

{
fix p::process
fix s::time
fix t::time
assume cp: correct p t
assume ie: s ≤ t
from cp ie correct-closed have cps: correct p s

by blast
have IC p i t − IC p i s ≤ (t − s)∗(1+%)
proof−
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from cp IClock have IC p i t = PC p t + Adj p i
by simp

moreover
from cps IClock have IC p i s = PC p s + Adj p i

by simp
moreover
from cp ie rate-1 have PC p t − PC p s ≤ (t − s)∗(1+%)

by simp
ultimately show ?thesis by simp

qed
}
thus ?thesis by (simp add: rho-bound1-def )

qed

lemma IC-rate2 :
rho-bound2 (λ p t. IC p i t)
proof−

{
fix p::process
fix s::time
fix t::time
assume cp: correct p t
assume ie: s ≤ t
from cp ie correct-closed have cps: correct p s

by blast
have (t − s)∗(1 − %) ≤ IC p i t − IC p i s
proof−

from cp IClock have IC p i t = PC p t + Adj p i
by simp

moreover
from cps IClock have IC p i s = PC p s + Adj p i

by simp
moreover
from cp ie rate-2 have (t − s)∗(1−%) ≤ PC p t − PC p s

by simp
ultimately show ?thesis by simp

qed
}
thus ?thesis by (simp add: rho-bound2-def )

qed

Auxilary function ICf : we introduce this to avoid some unification problem in some tactic of isabelle.
definition

ICf :: nat ⇒ (process ⇒ time ⇒ Clocktime) where
ICf i = (λ p t. IC p i t)

lemma IC-bd:
assumes ie: s ≤ t
and corr-p: correct p t
and corr-q: correct q t
shows |IC p i t − IC q j t| ≤ |IC p i s − IC q j s| + 2∗%∗(t − s)

proof−
let ?C = ICf i
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let ?D = ICf j
let ?G = |?C p t − ?D q t| ≤ |?C p s − ?D q s| + 2∗%∗(t − s)

from IC-rate1 have rb1 : rho-bound1 (ICf i) ∧ rho-bound1 (ICf j)
by (simp add: ICf-def )

from IC-rate2 have rb2 : rho-bound2 (ICf i) ∧ rho-bound2 (ICf j)
by (simp add: ICf-def )

from ie rb1 rb2 corr-p corr-q bounded-drift
have ?G by simp

from this show ?thesis by (simp add: ICf-def )
qed

lemma event-bound:
assumes ie1 : 0 ≤ (t::real)
and corr-p: correct p t
and corr-q: correct q t
shows ∃ i. t < max (te p i) (te q i)
proof (rule ccontr)

assume A: ¬ (∃ i. t < max (te p i) (te q i))
show False
proof−

have F1 : ∀ i. te p i ≤ t
proof

fix i :: nat
from A have ¬ (t < max (te p i) (te q i))

by simp
hence Eq1 : max (te p i) (te q i) ≤ t by arith
have Eq2 : te p i ≤ max (te p i) (te q i)

by (simp add: max-def )
from Eq1 Eq2 show te p i ≤ t by simp

qed

have F2 : ∀ (i :: nat). correct p (te p i)
proof

fix i :: nat
from F1 have te p i ≤ t by simp
from this corr-p correct-closed
show correct p (te p i) by blast

qed

have F3 : ∀ (i :: nat). real i ∗ rmin ≤ te p i
proof

fix i :: nat
show real i ∗ rmin ≤ te p i
proof (induct i)

from synch0 show real (0 ::nat) ∗ rmin ≤ te p 0 by simp
next

fix i :: nat assume ind-hyp: real i ∗ rmin ≤ te p i

show real (Suc i) ∗ rmin ≤ te p (Suc i)
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proof−

have Eq1 : real i ∗ rmin + rmin = (real i + 1 )∗rmin
by (simp add: distrib-right)

have Eq2 : real i + 1 = real (i+1 ) by simp
from Eq1 Eq2
have Eq3 : real i ∗ rmin + rmin = real (i+1 ) ∗ rmin

by presburger

from F2 have cp1 : correct p (te p (i+1 ))
by simp

from F2 have cp2 : correct p (te p i)
by simp

from cp1 rts1d have rmin ≤ te p (i+1 ) − te p i
by simp

hence Eq4 : te p i + rmin ≤ te p (i+1 ) by simp
from ind-hyp have real i ∗ rmin + rmin ≤ te p i + rmin

by (simp)
from this Eq4 have real i ∗ rmin + rmin ≤ te p (i+1 )

by simp
from this Eq3 show ?thesis by simp

qed
qed

qed

have F4 : ∀ (i::nat). real i ∗ rmin ≤ t
proof

fix i::nat
from F1 have te p i ≤ t by simp
moreover
from F3 have real i ∗ rmin ≤ te p i by simp
ultimately show real i ∗ rmin ≤ t by simp

qed

from constants-ax have 0 < rmin by simp

from this reals-Archimedean3
have Archi: ∃ (k::nat). t < real k ∗ rmin

by blast

from Archi obtain k::nat where C : t < real k ∗ rmin ..

from F4 have real k ∗ rmin ≤ t by simp
hence notC : ¬ (t < real k ∗ rmin) by simp

from C notC show False by simp
qed

qed

2.3 Agreement property
definition γ1 x = π (2∗%∗β + 2∗Λ) (2∗Λ + x + 2∗%∗(rmax + β))
definition γ2 x = x + 2∗%∗rmax
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definition γ3 x = α (2∗Λ + x + 2∗%∗(rmax + β)) + Λ + 2∗%∗β

definition
okmaxsync :: [nat, Clocktime] ⇒ bool where
okmaxsync i x ←→ (∀ p q. correct p (max (te p i) (te q i))
∧ correct q (max (te p i) (te q i)) −→
|IC p i (max (te p i) (te q i)) − IC q i (max (te p i) (te q i))| ≤ x)

definition
okClocks :: [process, process, nat] ⇒ bool where
okClocks p q i ←→ (∀ t. 0 ≤ t ∧ t < max (te p i) (te q i)

∧ correct p t ∧ correct q t
−→ |VC p t − VC q t| ≤ δ)

lemma okClocks-sym:
assumes ok-pq: okClocks p q i
shows okClocks q p i
proof−

{
fix t :: time
assume ie1 : 0 ≤ t
assume ie2 : t < max (te q i) (te p i)
assume corr-q: correct q t
assume corr-p: correct p t

have max (te q i) (te p i) = max (te p i) (te q i)
by (simp add: max-def )

from this ok-pq ie1 ie2 corr-p corr-q
have |VC q t − VC p t| ≤ δ

by(simp add: abs-minus-commute okClocks-def )
}
thus ?thesis by (simp add: okClocks-def )

qed

lemma ICp-Suc:
assumes corr-p: correct p (te p (i+1 ))
shows IC p (i+1 ) (te p (i+1 )) = cfn p (ϑ p (i+1 ))
using corr-p IClock by(simp add: Adj-def )

lemma IC-trans-inv:
assumes ie1 : te q (i+1 ) ≤ te p (i+1 )
and corr-p: correct p (te p (i+1 ))
and corr-q: correct q (te p (i+1 ))
shows
IC q (i+1 ) (te p (i+1 )) =

cfn q (λ n. ϑ q (i+1 ) n + (PC q (te p (i+1 )) − PC q (te q (i+1 ))))
(is ?T1 = ?T2 )
proof−

let ?X = PC q (te p (i+1 )) − PC q (te q (i+1 ))

from corr-q ie1 PC-monotone have posX : 0 ≤ ?X
by (simp add: le-diff-eq)
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from IClock corr-q have ?T1 = cfn q (ϑ q (i+1 )) + ?X
by(simp add: Adj-def )

from this posX trans-inv show ?thesis by simp
qed

lemma beta-rho:
assumes ie: te q (i+1 ) ≤ te p (i+1 )
and corr-p: correct p (te p (i+1 ))
and corr-q: correct q (te p (i+1 ))
and corr-l: correct l (te p (i+1 ))
shows |(PC l (te p (i+1 )) − PC l (te q (i+1 ))) − (te p (i+1 ) − te q (i+1 ))| ≤ β∗%
proof−

let ?X = (PC l (te p (i+1 )) − PC l (te q (i+1 )))
let ?D = te p (i+1 ) − te q (i+1 )

from ie have posD: 0 ≤ ?D by simp

from ie PC-monotone corr-l have posX : 0 ≤ ?X
by (simp add: le-diff-eq)

from ie corr-l rate-1 have bound1 : ?X ≤ ?D ∗ (1 + %) by simp
from ie corr-l correct-closed have corr-l-tq: correct l (te q (i+1 ))

by(blast)
from ie corr-q correct-closed have corr-q-tq: correct q (te q (i+1 ))

by blast
from corr-q-tq corr-p rts2b have |?D| ≤ β

by(simp)
from this constants-ax posD have D-beta: ?D∗% ≤ β∗%

by(simp add: abs-if )

show ?thesis
proof cases

assume A: ?D ≤ ?X
from posX posD A have absEq: |?X − ?D| = ?X − ?D

by(simp add: abs-if )
from bound1 have bound2 : ?X − ?D ≤ ?D∗%

by(simp add: mult.commute distrib-right)
from D-beta absEq bound2 show ?thesis by simp

next
assume notA: ¬ (?D ≤ ?X)
from this have absEq2 : |?X − ?D| = ?D − ?X

by(simp add: abs-if )
from ie corr-l rate-2 have bound3 : ?D∗(1 − %) ≤ ?X by simp
from this have ?D − ?X ≤ ?D∗% by (simp add: algebra-simps)
from this absEq2 D-beta show ?thesis by simp

qed
qed

This lemma (and the next one pe-cond2) proves an assumption used in the precision enhancement.
lemma pe-cond1 :
assumes ie: te q (i+1 ) ≤ te p (i+1 )
and corr-p: correct p (te p (i+1 ))
and corr-q: correct q (te p (i + 1 ))

12



and corr-l: correct l (te p (i+1 ))
shows |ϑ q (i+1 ) l + (PC q (te p (i+1 )) − PC q (te q (i+1 ))) −

ϑ p (i+1 ) l| ≤ 2∗ % ∗ β + 2∗Λ
(is ?M ≤ ?N )
proof−

let ?Xl = (PC l (te p (i+1 )) − PC l (te q (i+1 )))
let ?Xq = (PC q (te p (i+1 )) − PC q (te q (i+1 )))
let ?D = te p (i+1 ) − te q (i+1 )
let ?T = ϑ p (i+1 ) l − ϑ q (i+1 ) l
let ?RE1 = ϑ p (i+1 ) l − IC l i (te p (i+1 ))
let ?RE2 = ϑ q (i+1 ) l − IC l i (te q (i+1 ))
let ?ICT = IC l i (te p (i+1 )) − IC l i (te q (i+1 ))

have ?M = |(?Xq − ?D) − (?T − ?D)|
by(simp add: abs-if )

hence Split: ?M ≤ |?Xq − ?D| + |?T − ?D|
by(simp add: abs-if )

from ie corr-q correct-closed have corr-q-tq: correct q (te q (i+1 ))
by(blast)

from ie corr-l correct-closed have corr-l-tq: correct l (te q (i+1 ))
by blast

from corr-p corr-q corr-l ie beta-rho
have XlD: |?Xl − ?D| ≤ β∗%

by simp

from corr-p corr-q ie beta-rho
have XqD: |?Xq − ?D| ≤ β∗% by simp

have TD: |?T − ?D| ≤ 2∗Λ + β∗%
proof−

have Eq1 : |?T − ?D| = |(?T − ?ICT ) + (?ICT − ?D)| (is ?E1 = ?E2 )
by (simp add: abs-if )

have Eq2 : ?E2 ≤ |?T − ?ICT | + |?ICT − ?D|
by(simp add: abs-if )

have Eq3 : |?T − ?ICT | ≤ |?RE1 | + |?RE2 |
by(simp add: abs-if )

from readerror corr-p corr-l
have Eq4 : |?RE1 | ≤ Λ by simp

from corr-l-tq corr-q-tq this readerror
have Eq5 : |?RE2 | ≤ Λ by simp

from Eq3 Eq4 Eq5 have Eq6 : |?T − ?ICT | ≤ 2∗Λ
by simp

have Eq7 : ?ICT − ?D = ?Xl − ?D
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proof−
from corr-p rte have te p i ≤ te p (i+1 )

by(simp)
from this corr-l correct-closed have corr-l-tpi: correct l (te p i)

by blast
from corr-q-tq rte have te q i ≤ te q (i+1 )

by simp
from this corr-l-tq correct-closed have corr-l-tqi: correct l (te q i)

by blast

from IClock corr-l
have F1 : IC l i (te p (i+1 )) = PC l (te p (i+1 )) + Adj l i

by(simp)
from IClock corr-l-tq
have F2 : IC l i (te q (i+1 )) = PC l (te q (i+1 )) + Adj l i

by simp
from F1 F2 show ?thesis by(simp)

qed

from this XlD have Eq8 : |?ICT − ?D| ≤ β∗%
by arith

from Eq1 Eq2 Eq6 Eq8 show ?thesis
by(simp)

qed

from Split XqD TD have F1 : ?M ≤ 2∗ β ∗ % + 2∗Λ
by(simp)

have F2 : 2 ∗ % ∗ β + 2∗Λ = 2∗ β ∗ % + 2∗Λ
by simp

from F1 show ?thesis by (simp only: F2 )

qed

lemma pe-cond2 :
assumes ie: te m i ≤ te l i
and corr-k: correct k (te k (i+1 ))
and corr-l-tk: correct l (te k (i+1 ))
and corr-m-tk: correct m (te k (i+1 ))
and ind-hyp: |IC l i (te l i) − IC m i (te l i)| ≤ δS
shows |ϑ k (i+1 ) l − ϑ k (i+1 ) m| ≤ 2∗Λ + δS + 2∗%∗(rmax + β)
proof−

let ?X = ϑ k (i+1 ) l − ϑ k (i+1 ) m
let ?N = 2∗Λ + δS + 2∗%∗(rmax + β)
let ?D1 = ϑ k (i+1 ) l − IC l i (te k (i+1 ))
let ?D2 = ϑ k (i+1 ) m − IC m i (te k (i+1 ))
let ?ICS = IC l i (te k (i+1 )) − IC m i (te k (i+1 ))
let ?tlm = te l i
let ?IC = IC l i ?tlm − IC m i ?tlm

have Eq1 : |?X | = |(?D1 − ?D2 ) + ?ICS | (is ?E1 = ?E2 )
by (simp add: abs-if )

have Eq2 : ?E2 ≤ |?D1 − ?D2 | + |?ICS | by (simp add: abs-if )
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from corr-l-tk corr-k beta-bound1 have ie-lk: te l i ≤ te k (i+1 )
by (simp add: le-diff-eq)

from this corr-l-tk correct-closed have corr-l: correct l (te l i)
by blast

from ie-lk corr-l-tk corr-m-tk IC-bd
have Eq3 : |?ICS | ≤ |?IC | + 2∗%∗(te k (i+1 ) − ?tlm)

by simp
from this ind-hyp have Eq4 : |?ICS | ≤ δS + 2∗%∗(te k (i+1 ) − ?tlm)

by simp

from corr-l corr-k beta-bound2 have te k (i+1 ) − ?tlm ≤ rmax + β
by simp

from this constants-ax have 2∗%∗(te k (i+1 ) − ?tlm) ≤ 2∗%∗(rmax + β)
by simp

from this Eq4 have Eq4a: |?ICS | ≤ δS + 2∗%∗(rmax + β)
by simp

from corr-k corr-l-tk readerror
have Eq5 : |?D1 | ≤ Λ by simp
from corr-k corr-m-tk readerror
have Eq6 : |?D2 | ≤ Λ by simp
have |?D1 − ?D2 | ≤ |?D1 | + |?D2 | by (simp add: abs-if )
from this Eq5 Eq6 have Eq7 : |?D1 − ?D2 | ≤ 2∗Λ

by (simp)

from Eq1 Eq2 Eq4a Eq7 split show ?thesis by (simp)
qed

lemma theta-bound:
assumes corr-l: correct l (te p (i+1 ))
and corr-m: correct m (te p (i+1 ))
and corr-p: correct p (te p (i+1 ))
and IC-bound:
|IC l i (max (te l i) (te m i)) − IC m i (max (te l i) (te m i))|
≤ δS

shows |ϑ p (i+1 ) l − ϑ p (i+1 ) m|
≤ 2∗Λ + δS + 2∗%∗(rmax + β)

proof−
from corr-p corr-l beta-bound1 have tli-le-tp: te l i ≤ te p (i+1 )

by (simp add: le-diff-eq)
from corr-p corr-m beta-bound1 have tmi-le-tp: te m i ≤ te p (i+1 )

by (simp add: le-diff-eq)

let ?tml = max (te l i) (te m i)
from tli-le-tp tmi-le-tp have tml-le-tp: ?tml ≤ te p (i+1 )

by simp

from tml-le-tp corr-l correct-closed have corr-l-tml: correct l ?tml
by blast

from tml-le-tp corr-m correct-closed have corr-m-tml: correct m ?tml
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by blast

let ?Y = 2∗Λ + δS + 2∗%∗(rmax + β)
show |ϑ p (i+1 ) l − ϑ p (i+1 ) m| ≤ ?Y
proof cases

assume A: te m i < te l i

from this IC-bound
have |IC l i (te l i) − IC m i (te l i)| ≤ δS

by(simp add: max-def )
from this A corr-p corr-l corr-m pe-cond2
show ?thesis by(simp)

next
assume ¬ (te m i < te l i)
hence Eq1 : te l i ≤ te m i by simp
from this IC-bound
have Eq2 : |IC l i (te m i) − IC m i (te m i)| ≤ δS

by(simp add: max-def )

hence |IC m i (te m i) − IC l i (te m i)| ≤ δS
by (simp add: abs-minus-commute)

from this Eq1 corr-p corr-l corr-m pe-cond2
have |ϑ p (i+1 ) m − ϑ p (i+1 ) l| ≤ ?Y

by(simp)
thus ?thesis by (simp add: abs-minus-commute)

qed
qed

lemma four-one-ind-half :
assumes ie1 : β ≤ rmin
and ie2 : µ ≤ δS
and ie3 : γ1 δS ≤ δS
and ind-hyp: okmaxsync i δS
and ie4 : te q (i+1 ) ≤ te p (i+1 )
and corr-p: correct p (te p (i+1 ))
and corr-q: correct q (te p (i+1 ))

shows |IC p (i+1 ) (te p (i+1 )) − IC q (i+1 ) (te p (i+1 ))| ≤ δS
proof−

let ?tpq = te p (i+1 )

let ?f = λ n. ϑ q (i+1 ) n + (PC q (te p (i+1 )) − PC q (te q (i+1 )))
let ?g = ϑ p (i+1 )

from ie4 corr-q correct-closed have corr-q-tq: correct q (te q (i+1 ))
by blast

have Eq-IC-cfn: |IC p (i+1 ) ?tpq − IC q (i+1 ) ?tpq| =
|cfn q ?f − cfn p ?g|

proof−
from corr-p ICp-Suc have Eq1 : IC p (i+1 ) ?tpq = cfn p ?g by simp

from ie4 corr-p corr-q IC-trans-inv
have Eq2 : IC q (i+1 ) ?tpq = cfn q ?f by simp
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from Eq1 Eq2 show ?thesis by(simp add: abs-if )
qed

let ?ppred = λ l. correct l (te p (i+1 ))

let ?X = 2∗%∗β + 2∗Λ
have ∀ l. ?ppred l −→ |?f l − ?g l| ≤ ?X
proof −

{
fix l
assume ?ppred l
from ie4 corr-p corr-q this pe-cond1
have |?f l − ?g l| ≤ (2∗%∗β + 2∗Λ)

by(auto)
}
thus ?thesis by blast

qed
hence cond1 : okRead2 ?f ?g ?X ?ppred

by(simp add: okRead2-def )

let ?Y = 2∗Λ + δS + 2∗%∗(rmax + β)

have ∀ l m. ?ppred l ∧ ?ppred m −→ |?f l − ?f m| ≤ ?Y
proof−

{
fix l m
assume corr-l: ?ppred l
assume corr-m: ?ppred m

from corr-p corr-l beta-bound1 have tli-le-tp: te l i ≤ te p (i+1 )
by (simp add: le-diff-eq)

from corr-p corr-m beta-bound1 have tmi-le-tp: te m i ≤ te p (i+1 )
by (simp add: le-diff-eq)

let ?tlm = max (te l i) (te m i)

from tli-le-tp tmi-le-tp have tlm-le-tp: ?tlm ≤ te p (i+1 )
by simp

from ie4 corr-l correct-closed have corr-l-tq: correct l (te q (i+1 ))
by blast

from ie4 corr-m correct-closed have corr-m-tq: correct m (te q (i+1 ))
by blast

from tlm-le-tp corr-l correct-closed have corr-l-tlm: correct l ?tlm
by blast

from tlm-le-tp corr-m correct-closed have corr-m-tlm: correct m ?tlm
by blast

from ind-hyp corr-l-tlm corr-m-tlm
have EqAbs1 : |IC l i ?tlm − IC m i ?tlm| ≤ δS

by(auto simp add: okmaxsync-def )
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have EqAbs3 : |?f l − ?f m| = |ϑ q (i+1 ) l − ϑ q (i+1 ) m|
by (simp add: abs-if )

from EqAbs1 corr-q-tq corr-l-tq corr-m-tq theta-bound
have |ϑ q (i+1 ) l − ϑ q (i+1 ) m| ≤ ?Y

by simp
from this EqAbs3 have |?f l − ?f m| ≤ ?Y

by simp
}
thus ?thesis by simp

qed
hence cond2a: okRead1 ?f ?Y ?ppred by (simp add: okRead1-def )

have ∀ l m. ?ppred l ∧ ?ppred m −→ |?g l − ?g m| ≤ ?Y
proof−

{
fix l m
assume corr-l: ?ppred l
assume corr-m: ?ppred m

from corr-p corr-l beta-bound1 have tli-le-tp: te l i ≤ te p (i+1 )
by (simp add: le-diff-eq)

from corr-p corr-m beta-bound1 have tmi-le-tp: te m i ≤ te p (i+1 )
by (simp add: le-diff-eq)

let ?tlm = max (te l i) (te m i)
from tli-le-tp tmi-le-tp have tlm-le-tp: ?tlm ≤ te p (i+1 )

by simp

from tlm-le-tp corr-l correct-closed have corr-l-tlm: correct l ?tlm
by blast

from tlm-le-tp corr-m correct-closed have corr-m-tlm: correct m ?tlm
by blast

from ind-hyp corr-l-tlm corr-m-tlm
have EqAbs1 : |IC l i ?tlm − IC m i ?tlm| ≤ δS

by(auto simp add: okmaxsync-def )

from EqAbs1 corr-p corr-l corr-m theta-bound
have |?g l − ?g m| ≤ ?Y by simp

}
thus ?thesis by simp

qed
hence cond2b: okRead1 ?g ?Y ?ppred by (simp add: okRead1-def )

from correct-count have np − maxfaults ≤ count ?ppred np
by simp

from this corr-p corr-q cond1 cond2a cond2b prec-enh
have |cfn q ?f − cfn p ?g| ≤ π ?X ?Y

by blast

from ie3 this have |cfn q ?f − cfn p ?g| ≤ δS
by (simp add: γ1-def )
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from this Eq-IC-cfn show ?thesis by (simp)
qed

Theorem 4.1 in Shankar’s paper.
theorem four-one:

assumes ie1 : β ≤ rmin
and ie2 : µ ≤ δS
and ie3 : γ1 δS ≤ δS

shows okmaxsync i δS
proof(induct i)

show okmaxsync 0 δS
proof−

{
fix p q
assume corr-p: correct p (max (te p 0 ) (te q 0 ))
assume corr-q: correct q (max (te p 0 ) (te q 0 ))

from corr-p synch0 have cp0 : correct p 0 by simp
from corr-q synch0 have cq0 : correct q 0 by simp

from synch0 cp0 cq0 IClock
have IC-eq-PC :
|IC p 0 (max (te p 0 ) (te q 0 )) − IC q 0 (max (te p 0 ) (te q 0 ))|
= |PC p 0 − PC q 0 | (is ?T1 = ?T2 )

by(simp add: Adj-def )

from ie2 init synch0 cp0 have range1 : 0 ≤ PC p 0 ∧ PC p 0 ≤ δS
by auto

from ie2 init synch0 cq0 have range2 : 0 ≤ PC q 0 ∧ PC q 0 ≤ δS
by auto

have ?T2 ≤ δS
proof cases

assume A:PC p 0 < PC q 0
from A range1 range2 show ?thesis

by(auto simp add: abs-if )
next

assume notA: ¬ (PC p 0 < PC q 0 )
from notA range1 range2 show ?thesis

by(auto simp add: abs-if )
qed
from this IC-eq-PC have ?T1 ≤ δS by simp

}
thus ?thesis by (simp add: okmaxsync-def )

qed
next

fix i assume ind-hyp: okmaxsync i δS
show okmaxsync (Suc i) δS
proof−

{
fix p q
assume corr-p: correct p (max (te p (i + 1 )) (te q (i + 1 )))
assume corr-q: correct q (max (te p (i + 1 )) (te q (i + 1 )))
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let ?tp = te p (i + 1 )
let ?tq = te q (i + 1 )
let ?tpq = max ?tp ?tq

have |IC p (i+1 ) ?tpq − IC q (i+1 ) ?tpq| ≤ δS (is ?E1 ≤ δS)
proof cases

assume A: ?tq < ?tp
from A corr-p have cp1 : correct p (te p (i+1 ))

by (simp add: max-def )
from A corr-q have cq1 : correct q (te p (i+1 ))

by (simp add: max-def )
from A
have Eq1 : ?E1 = |IC p (i+1 ) (te p (i+1 )) − IC q (i+1 ) (te p (i+1 ))|

(is ?E1 = ?E2 )
by (simp add: max-def )

from A cp1 cq1 corr-p corr-q ind-hyp ie1 ie2 ie3
four-one-ind-half

have ?E2 ≤ δS by (simp)
from this Eq1 show ?thesis by simp

next
assume notA: ¬ (?tq < ?tp)
from this corr-p have cp2 : correct p (te q (i+1 ))

by (simp add: max-def )
from notA corr-q have cq2 : correct q (te q (i+1 ))

by (simp add: max-def )
from notA
have Eq2 : ?E1 = |IC q (i+1 ) (te q (i+1 )) − IC p (i+1 ) (te q (i+1 ))|

(is ?E1 = ?E3 )
by (simp add: max-def abs-minus-commute)

from notA have ?tp ≤ ?tq by simp
from this cp2 cq2 ind-hyp ie1 ie2 ie3 four-one-ind-half
have ?E3 ≤ δS

by simp
from this Eq2 show ?thesis by (simp)

qed
}
thus ?thesis by (simp add: okmaxsync-def )

qed
qed

lemma VC-cfn:
assumes corr-p: correct p (te p (i+1 ))
and ie: te p (i+1 ) < te p (i+2 )

shows VC p (te p (i+1 )) = cfn p (ϑ p (i+1 ))
proof−

from ie corr-p VClock have VC p (te p (i+1 )) = IC p (i+1 ) (te p (i+1 ))
by simp

moreover
from corr-p IClock
have IC p (i+1 ) (te p (i+1 )) = PC p (te p (i+1 )) + Adj p (i+1 )

by blast
moreover
have PC p (te p (i+1 )) + Adj p (i+1 ) = cfn p (ϑ p (i+1 ))
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by(simp add: Adj-def )
ultimately show ?thesis by simp

qed

Lemma for the inductive case in Theorem 4.2
lemma four-two-ind:

assumes ie1 : β ≤ rmin
and ie2 : µ ≤ δS
and ie3 : γ1 δS ≤ δS
and ie4 : γ2 δS ≤ δ
and ie5 : γ3 δS ≤ δ
and ie6 : te q (i+1 ) ≤ te p (i+1 )
and ind-hyp: okClocks p q i
and t-bound1 : 0 ≤ t
and t-bound2 : t < max (te p (i+1 )) (te q (i+1 ))
and t-bound3 : max (te p i) (te q i) ≤ t
and tpq-bound: max (te p i) (te q i) < max (te p (i+1 )) (te q (i+1 ))
and corr-p: correct p t
and corr-q: correct q t

shows |VC p t − VC q t| ≤ δ
proof cases

assume A: t < te q (i+1 )

let ?tpq = max (te p i) (te q i)

have Eq1 : te p i ≤ t ∧ te q i ≤ t
proof cases

assume te p i ≤ te q i
from this t-bound3 show ?thesis by (simp add: max-def )

next
assume ¬ (te p i ≤ te q i)
from this t-bound3 show ?thesis by (simp add: max-def )

qed

from ie6 have tp-max: max (te p (i+1 )) (te q (i+1 )) = te p (i+1 )
by(simp add: max-def )

from this t-bound2 have Eq2 : t < te p (i+1 ) by simp

from VClock Eq1 Eq2 corr-p have Eq3 : VC p t = IC p i t by simp

from VClock Eq1 A corr-q have Eq4 : VC q t = IC q i t by simp
from Eq3 Eq4 have Eq5 : |VC p t − VC q t| = |IC p i t − IC q i t|

by simp

from t-bound3 corr-p corr-q correct-closed
have corr-tpq: correct p ?tpq ∧ correct q ?tpq

by(blast)

from t-bound3 IC-bd corr-p corr-q
have Eq6 : |IC p i t − IC q i t| ≤ |IC p i ?tpq − IC q i ?tpq|
+ 2∗%∗(t − ?tpq) (is ?E1 ≤ ?E2 )
by(blast)
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from ie1 ie2 ie3 four-one have okmaxsync i δS by simp

from this corr-tpq have |IC p i ?tpq − IC q i ?tpq| ≤ δS
by(simp add: okmaxsync-def )

from Eq6 this have Eq7 : ?E1 ≤ δS + 2∗%∗(t − ?tpq) by simp

from corr-p Eq2 rts0 have t − te p i ≤ rmax by simp
from this have t − ?tpq ≤ rmax by (simp add: max-def )
from this constants-ax have 2∗%∗(t − ?tpq) ≤ 2∗%∗rmax

by simp
hence δS + 2∗%∗(t − ?tpq) ≤ δS + 2∗%∗rmax

by simp
from this Eq7 have ?E1 ≤ δS + 2∗%∗rmax by simp
from this Eq5 ie4 show ?thesis by(simp add: γ2-def )

next
assume ¬ (t < te q (i+1 ))
hence B: te q (i+1 ) ≤ t by simp

from ie6 t-bound2
have tp-max: max (te p (i+1 )) (te q (i+1 )) = te p (i+1 )

by(simp add: max-def )

have te p i ≤ max (te p i) (te q i)
by(simp add: max-def )

from this t-bound3 have tp-bound1 : te p i ≤ t by simp

from tp-max t-bound2 have tp-bound2 : t < te p (i+1 ) by simp

have tq-bound1 : t < te q (i+2 )
proof (rule ccontr)

assume ¬ (t < te q (i+2 ))
hence C : te q (i+2 ) ≤ t by simp

from C corr-q correct-closed
have corr-q-t2 : correct q (te q (i+2 )) by blast

have te q (i+1 ) + β ≤ t
proof−

from corr-q-t2 rts1d have rmin ≤ te q (i+2 ) − te q (i+1 )
by simp

from this ie1 have β ≤ te q (i+2 ) − te q (i+1 )
by simp

hence te q (i+1 ) + β ≤ te q (i+2 ) by simp
from this C show ?thesis by simp

qed
from this corr-p corr-q rts2a have te p (i+1 ) ≤ t

by blast
hence ¬ (t < te p (i+1 )) by simp
from this tp-bound2 show False by simp

qed

22



from tq-bound1 B have tq-bound2 : te q (i+1 ) < te q (i+2 ) by simp
from B tp-bound2 have tq-bound3 : te q (i+1 ) < te p (i+1 )

by simp
from B corr-p correct-closed
have corr-p-tq1 : correct p (te q (i+1 )) by blast

from B correct-closed corr-q
have corr-q-tq1 : correct q (te q (i+1 )) by blast

from corr-p-tq1 corr-q-tq1 beta-bound1
have tq-bound4 : te p i ≤ te q (i+1 )

by(simp add: le-diff-eq)

from tq-bound1 VClock B corr-q
have Eq1 : VC q t = IC q (i+1 ) t by simp

from VClock tp-bound1 tp-bound2 corr-p
have Eq2 : VC p t = IC p i t by simp

from Eq1 Eq2 have Eq3 : |VC p t − VC q t| = |IC p i t − IC q (i+1 ) t|
by simp

from B corr-p corr-q IC-bd
have |IC p i t − IC q (i+1 ) t| ≤
|IC p i (te q (i+1 )) − IC q (i+1 ) (te q (i+1 ))| + 2∗%∗(t − te q (i+1 ))

by simp

from this Eq3
have VC-split: |VC p t − VC q t| ≤
|IC p i (te q (i+1 )) − IC q (i+1 ) (te q (i+1 ))| + 2∗%∗(t − te q (i+1 ))
by simp

from tq-bound2 VClock corr-q-tq1
have Eq4 : VC q (te q (i+1 )) = IC q (i+1 ) (te q (i+1 )) by simp

from this tq-bound2 VC-cfn corr-q-tq1
have Eq5 : IC q (i+1 ) (te q (i+1 )) = cfn q (ϑ q (i+1 )) by simp

hence IC-eq-cfn: IC p i (te q (i+1 )) − IC q (i+1 ) (te q (i+1 )) =
IC p i (te q (i+1 )) − cfn q (ϑ q (i+1 ))
(is ?E1 = ?E2 )
by simp

let ?f = ϑ q (i+1 )
let ?ppred = λ l. correct l (te q (i+1 ))
let ?X = 2∗Λ + δS + 2∗%∗(rmax + β)

have ∀ l m. ?ppred l ∧ ?ppred m −→ |ϑ q (i+1 ) l − ϑ q (i+1 ) m| ≤ ?X
proof−

{
fix l :: process
fix m :: process
assume corr-l: ?ppred l
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assume corr-m: ?ppred m

let ?tlm = max (te l i) (te m i)
have tlm-bound: ?tlm ≤ te q (i+1 )
proof−

from corr-l corr-q-tq1 beta-bound1 have te l i ≤ te q (i+1 )
by (simp add: le-diff-eq)

moreover
from corr-m corr-q-tq1 beta-bound1 have te m i ≤ te q (i+1 )

by (simp add: le-diff-eq)
ultimately show ?thesis by simp

qed

from tlm-bound corr-l corr-m correct-closed
have corr-tlm: correct l ?tlm ∧ correct m ?tlm

by blast

have |IC l i ?tlm − IC m i ?tlm| ≤ δS
proof−

from ie1 ie2 ie3 four-one have okmaxsync i δS
by simp

from this corr-tlm show ?thesis by(simp add: okmaxsync-def )
qed

from this corr-l corr-m corr-q-tq1 theta-bound
have |ϑ q (i+1 ) l − ϑ q (i+1 ) m| ≤ ?X by simp

}
thus ?thesis by blast

qed
hence readOK : okRead1 (ϑ q (i+1 )) ?X ?ppred

by(simp add: okRead1-def )

let ?E3 = cfn q (ϑ q (i+1 )) − ϑ q (i+1 ) p
let ?E4 = ϑ q (i+1 ) p − IC p i (te q (i+1 ))

have |?E2 | = |?E3 + ?E4 | by (simp add: abs-if )
hence Eq8 : |?E2 | ≤ |?E3 | + |?E4 | by (simp add: abs-if )

from correct-count have ppredOK : np − maxfaults ≤ count ?ppred np
by simp

from readOK ppredOK corr-p-tq1 corr-q-tq1 acc-prsv
have |?E3 | ≤ α ?X

by blast
from this Eq8 have Eq9 : |?E2 | ≤ α ?X + |?E4 | by simp

from corr-p-tq1 corr-q-tq1 readerror
have |?E4 | ≤ Λ by simp

from this Eq9 have Eq10 : |?E2 | ≤ α ?X + Λ by simp

from this VC-split IC-eq-cfn
have almost-right:
|VC p t − VC q t| ≤
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α ?X + Λ + 2∗%∗(t − te q (i+1 ))
by simp

have t − te q (i+1 ) ≤ β
proof (rule ccontr)

assume ¬ (t − te q (i+1 ) ≤ β)
hence te q (i+1 ) + β ≤ t by simp
from this corr-p corr-q rts2a have te p (i+1 ) ≤ t

by auto
hence ¬ (t < te p (i+1 )) by simp
from this tp-bound2 show False

by simp
qed

from this constants-ax
have α ?X + Λ + 2∗%∗(t − te q (i+1 ))

≤ α ?X + Λ + 2∗%∗β
by (simp)

from this almost-right
have |VC p t − VC q t| ≤ α ?X + Λ + 2∗%∗β

by arith

from this ie5 show ?thesis by (simp add: γ3-def )
qed

Theorem 4.2 in Shankar’s paper.
theorem four-two:

assumes ie1 : β ≤ rmin
and ie2 : µ ≤ δS
and ie3 : γ1 δS ≤ δS
and ie4 : γ2 δS ≤ δ
and ie5 : γ3 δS ≤ δ

shows okClocks p q i
proof (induct i)

show okClocks p q 0
proof−

{
fix t :: time
assume t-bound1 : 0 ≤ t
assume t-bound2 : t < max (te p 0 ) (te q 0 )
assume corr-p: correct p t
assume corr-q: correct q t
from t-bound2 synch0 have t < 0

by(simp add: max-def )
from this t-bound1 have False by simp
hence |VC p t − VC q t| ≤ δ by simp

}
thus ?thesis by (simp add: okClocks-def )

qed
next

fix i::nat assume ind-hyp: okClocks p q i
show okClocks p q (Suc i)
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proof −
{

fix t :: time
assume t-bound1 : 0 ≤ t
assume t-bound2 : t < max (te p (i+1 )) (te q (i+1 ))
assume corr-p: correct p t
assume corr-q: correct q t

let ?tpq1 = max (te p i) (te q i)
let ?tpq2 = max (te p (i+1 )) (te q (i+1 ))

have |VC p t − VC q t| ≤ δ
proof cases

assume tpq-bound: ?tpq1 < ?tpq2
show ?thesis
proof cases

assume t < ?tpq1
from t-bound1 this corr-p corr-q ind-hyp
show ?thesis by(simp add: okClocks-def )

next
assume ¬ (t < ?tpq1 )
hence tpq-le-t: ?tpq1 ≤ t by arith

show ?thesis
proof cases

assume A: te q (i+1 ) ≤ te p (i+1 )

from this tpq-le-t tpq-bound ie1 ie2 ie3 ie4 ie5
ind-hyp t-bound1 t-bound2
corr-p corr-q tpq-bound four-two-ind

show ?thesis by(simp)
next

assume ¬ (te q (i+1 ) ≤ te p (i+1 ))
hence B: te p (i+1 ) ≤ te q (i+1 ) by simp

from ind-hyp okClocks-sym have ind-hyp1 : okClocks q p i
by blast

have maxsym1 : max (te p (i+1 )) (te q (i+1 )) = max (te q (i+1 )) (te p (i+1 ))
by (simp add: max-def )

have maxsym2 : max (te p i) (te q i) = max (te q i) (te p i)
by (simp add: max-def )

from maxsym1 t-bound2
have t-bound21 : t < max (te q (i+1 )) (te p (i+1 ))

by simp

from maxsym1 maxsym2 tpq-bound
have tpq-bound1 : max (te q i) (te p i) < max (te q (i+1 )) (te p (i+1 ))

by simp
from maxsym2 tpq-le-t
have tpq-le-t1 : max (te q i) (te p i) ≤ t by simp
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from B tpq-le-t1 tpq-bound1 ie1 ie2 ie3 ie4 ie5
ind-hyp1 t-bound1 t-bound21
corr-p corr-q tpq-bound four-two-ind

have |VC q t − VC p t| ≤ δ by(simp)
thus ?thesis by (simp add: abs-minus-commute)

qed

qed
next

assume ¬ (?tpq1 < ?tpq2 )
hence ?tpq2 ≤ ?tpq1 by arith
from t-bound2 this have t < ?tpq1 by arith
from t-bound1 this corr-p corr-q ind-hyp
show ?thesis by(simp add: okClocks-def )

qed
}
thus ?thesis by (simp add: okClocks-def )

qed
qed

The main theorem: all correct clocks are synchronized within the bound delta.
theorem agreement:

assumes ie1 : β ≤ rmin
and ie2 : µ ≤ δS
and ie3 : γ1 δS ≤ δS
and ie4 : γ2 δS ≤ δ
and ie5 : γ3 δS ≤ δ
and ie6 : 0 ≤ t
and cpq: correct p t ∧ correct q t

shows |VC p t − VC q t| ≤ δ
proof−

from ie6 cpq event-bound have ∃ i :: nat. t < max (te p i) (te q i)
by simp

from this obtain i :: nat where t-bound: t < max (te p i) (te q i) ..

from t-bound ie1 ie2 ie3 ie4 ie5 four-two have okClocks p q i
by simp

from ie6 this t-bound cpq show ?thesis
by (simp add: okClocks-def )

qed

end
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