
Gaussian Integers

Manuel Eberl

March 17, 2025

Abstract

The Gaussian integers are the subring Z[i] of the complex numbers,
i. e. the ring of all complex numbers with integral real and imaginary
part. This article provides a definition of this ring as well as proofs
of various basic properties, such as that they form a Euclidean ring
and a full classification of their primes. An executable (albeit not very
efficient) factorisation algorithm is also provided.

Lastly, this Gaussian integer formalisation is used in two short ap-
plications:

1. The characterisation of all positive integers that can be written
as sums of two squares

2. Euclid’s formula for primitive Pythagorean triples
While elementary proofs for both of these are already available in the
AFP, the theory of Gaussian integers provides more concise proofs and
a more high-level view.

1

Contents
1 Gaussian Integers 3

1.1 Auxiliary material . 3
1.2 Definition . 9
1.3 Pretty-printing . 14
1.4 Norm . 15
1.5 Division and normalisation 17
1.6 Prime elements . 25

1.6.1 The factorisation of 2 26
1.6.2 Inert primes . 27
1.6.3 Non-inert primes . 28
1.6.4 Full classification of Gaussian primes 34
1.6.5 Multiplicities of primes 37

1.7 Coprimality of an element and its conjugate 40
1.8 Square decompositions of prime numbers congruent 1 mod 4 . 43
1.9 Executable factorisation of Gaussian integers 48
1.10 Sums of two squares . 51
1.11 Primitive Pythagorean triples 54

2

1 Gaussian Integers
theory Gaussian-Integers
imports

HOL−Computational-Algebra.Computational-Algebra
HOL−Number-Theory.Number-Theory

begin

1.1 Auxiliary material
lemma coprime-iff-prime-factors-disjoint:

fixes x y :: ′a :: factorial-semiring
assumes x 6= 0 y 6= 0
shows coprime x y ←→ prime-factors x ∩ prime-factors y = {}

proof
assume coprime x y
have False if p ∈ prime-factors x p ∈ prime-factors y for p
proof −

from that assms have p dvd x p dvd y
by (auto simp: prime-factors-dvd)

with ‹coprime x y› have p dvd 1
using coprime-common-divisor by auto

with that assms show False by (auto simp: prime-factors-dvd)
qed
thus prime-factors x ∩ prime-factors y = {} by auto

next
assume disjoint: prime-factors x ∩ prime-factors y = {}
show coprime x y
proof (rule coprimeI)

fix d assume d: d dvd x d dvd y
show is-unit d
proof (rule ccontr)

assume ¬is-unit d
moreover from this and d assms have d 6= 0 by auto
ultimately obtain p where p: prime p p dvd d

using prime-divisor-exists by auto
with d and assms have p ∈ prime-factors x ∩ prime-factors y

by (auto simp: prime-factors-dvd)
with disjoint show False by auto

qed
qed

qed

lemma product-dvd-irreducibleD:
fixes a b x :: ′a :: algebraic-semidom
assumes irreducible x
assumes a ∗ b dvd x
shows a dvd 1 ∨ b dvd 1

proof −
from assms obtain c where x = a ∗ b ∗ c

3

by auto
hence x = a ∗ (b ∗ c)

by (simp add: mult-ac)
from irreducibleD[OF assms(1) this] show a dvd 1 ∨ b dvd 1

by (auto simp: is-unit-mult-iff)
qed

lemma prime-elem-mult-dvdI :
assumes prime-elem p p dvd c b dvd c ¬p dvd b
shows p ∗ b dvd c

proof −
from assms(3) obtain a where c: c = a ∗ b

using mult.commute by blast
with assms(2) have p dvd a ∗ b

by simp
with assms have p dvd a

by (subst (asm) prime-elem-dvd-mult-iff) auto
with c show ?thesis by (auto intro: mult-dvd-mono)

qed

lemma prime-elem-power-mult-dvdI :
fixes p :: ′a :: algebraic-semidom
assumes prime-elem p p ^ n dvd c b dvd c ¬p dvd b
shows p ^ n ∗ b dvd c

proof (cases n = 0)
case False
from assms(3) obtain a where c: c = a ∗ b

using mult.commute by blast
with assms(2) have p ^ n dvd b ∗ a

by (simp add: mult-ac)
hence p ^ n dvd a

by (rule prime-power-dvd-multD[OF assms(1)]) (use assms False in auto)
with c show ?thesis by (auto intro: mult-dvd-mono)

qed (use assms in auto)

lemma prime-mod-4-cases:
fixes p :: nat
assumes prime p
shows p = 2 ∨ [p = 1] (mod 4) ∨ [p = 3] (mod 4)

proof (cases p = 2)
case False
with prime-gt-1-nat[of p] assms have p > 2 by auto
have ¬4 dvd p

using assms product-dvd-irreducibleD[of p 2 2]
by (auto simp: prime-elem-iff-irreducible simp flip: prime-elem-nat-iff)

hence p mod 4 6= 0
by (auto simp: mod-eq-0-iff-dvd)

moreover have p mod 4 6= 2
proof

4

assume p mod 4 = 2
hence p mod 4 mod 2 = 0

by (simp add: cong-def)
thus False using ‹prime p› ‹p > 2 › prime-odd-nat[of p]

by (auto simp: mod-mod-cancel)
qed
moreover have p mod 4 ∈ {0 ,1 ,2 ,3}

by auto
ultimately show ?thesis by (auto simp: cong-def)

qed auto

lemma of-nat-prod-mset: of-nat (prod-mset A) = prod-mset (image-mset of-nat A)
by (induction A) auto

lemma multiplicity-0-left [simp]: multiplicity 0 x = 0
by (cases x = 0) (auto simp: not-dvd-imp-multiplicity-0)

lemma is-unit-power [intro]: is-unit x =⇒ is-unit (x ^ n)
by (subst is-unit-power-iff) auto

lemma (in factorial-semiring) pow-divides-pow-iff :
assumes n > 0
shows a ^ n dvd b ^ n ←→ a dvd b

proof (cases b = 0)
case False
show ?thesis
proof

assume dvd: a ^ n dvd b ^ n
with ‹b 6= 0 › have a 6= 0

using ‹n > 0 › by (auto simp: power-0-left)
show a dvd b
proof (rule multiplicity-le-imp-dvd)

fix p :: ′a assume p: prime p
from dvd ‹b 6= 0 › have multiplicity p (a ^ n) ≤ multiplicity p (b ^ n)

by (intro dvd-imp-multiplicity-le) auto
thus multiplicity p a ≤ multiplicity p b
using p ‹a 6= 0 › ‹b 6= 0 › ‹n > 0 › by (simp add: prime-elem-multiplicity-power-distrib)

qed fact+
qed (auto intro: dvd-power-same)

qed (use assms in ‹auto simp: power-0-left›)

lemma multiplicity-power-power :
fixes p :: ′a :: {factorial-semiring, algebraic-semidom}
assumes n > 0
shows multiplicity (p ^ n) (x ^ n) = multiplicity p x

proof (cases x = 0 ∨ p = 0 ∨ is-unit p)
case True
thus ?thesis using ‹n > 0 ›

by (auto simp: power-0-left is-unit-power-iff multiplicity-unit-left)

5

next
case False
show ?thesis
proof (intro antisym multiplicity-geI)

have (p ^ multiplicity p x) ^ n dvd x ^ n
by (intro dvd-power-same) (simp add: multiplicity-dvd)

thus (p ^ n) ^ multiplicity p x dvd x ^ n
by (simp add: mult-ac flip: power-mult)

next
have (p ^ n) ^ multiplicity (p ^ n) (x ^ n) dvd x ^ n

by (simp add: multiplicity-dvd)
hence (p ^ multiplicity (p ^ n) (x ^ n)) ^ n dvd x ^ n

by (simp add: mult-ac flip: power-mult)
thus p ^ multiplicity (p ^ n) (x ^ n) dvd x

by (subst (asm) pow-divides-pow-iff) (use assms in auto)
qed (use False ‹n > 0 › in ‹auto simp: is-unit-power-iff ›)

qed

lemma even-square-cong-4-int:
‹[x2 = 0] (mod 4)› if ‹even x› for x :: int

proof −
from that obtain y where ‹x = 2 ∗ y› ..
then show ?thesis by (simp add: cong-def)

qed

lemma even-square-cong-4-nat:
‹[x2 = 0] (mod 4)› if ‹even x› for x :: nat
using that even-square-cong-4-int [of ‹int x›] by (simp flip: cong-int-iff)

lemma odd-square-cong-4-int:
‹[x2 = 1] (mod 4)› if ‹odd x› for x :: int

proof −
from that obtain y where ‹x = 2 ∗ y + 1 › ..
then have ‹x2 = 4 ∗ (y2 + y) + 1 ›

by (simp add: power2-eq-square algebra-simps)
also have ‹. . . mod 4 = ((4 ∗ (y2 + y)) mod 4 + 1 mod 4) mod 4 ›

by (simp only: mod-simps)
also have ‹. . . = 1 mod 4 ›

by simp
finally show ?thesis

by (simp only: cong-def)
qed

lemma odd-square-cong-4-nat:
‹[x2 = 1] (mod 4)› if ‹odd x› for x :: nat
using that odd-square-cong-4-int [of ‹int x›] by (simp flip: cong-int-iff)

Gaussian integers will require a notion of an element being a power up to a
unit, so we introduce this here. This should go in the library eventually.

6

definition is-nth-power-upto-unit where
is-nth-power-upto-unit n x ←→ (∃ u. is-unit u ∧ is-nth-power n (u ∗ x))

lemma is-nth-power-upto-unit-base: is-nth-power n x =⇒ is-nth-power-upto-unit n
x

by (auto simp: is-nth-power-upto-unit-def intro: exI [of - 1])

lemma is-nth-power-upto-unitI :
assumes normalize (x ^ n) = normalize y
shows is-nth-power-upto-unit n y

proof −
from associatedE1 [OF assms] obtain u where is-unit u u ∗ y = x ^ n

by metis
thus ?thesis

by (auto simp: is-nth-power-upto-unit-def intro!: exI [of - u])
qed

lemma is-nth-power-upto-unit-conv-multiplicity:
fixes x :: ′a :: factorial-semiring
assumes n > 0
shows is-nth-power-upto-unit n x ←→ (∀ p. prime p −→ n dvd multiplicity p x)

proof (cases x = 0)
case False
show ?thesis
proof safe

fix p :: ′a assume p: prime p
assume is-nth-power-upto-unit n x
then obtain u y where uy: is-unit u u ∗ x = y ^ n

by (auto simp: is-nth-power-upto-unit-def elim!: is-nth-powerE)
from p uy assms False have [simp]: y 6= 0 by (auto simp: power-0-left)
have multiplicity p (u ∗ x) = multiplicity p (y ^ n)

by (subst uy(2) [symmetric]) simp
also have multiplicity p (u ∗ x) = multiplicity p x

by (simp add: multiplicity-times-unit-right uy(1))
finally show n dvd multiplicity p x

using False and p and uy and assms
by (auto simp: prime-elem-multiplicity-power-distrib)

next
assume ∗: ∀ p. prime p −→ n dvd multiplicity p x
have multiplicity p ((

∏
p∈prime-factors x. p ^ (multiplicity p x div n)) ^ n) =

multiplicity p x if prime p for p
proof −

from that and ∗ have n dvd multiplicity p x by blast
have multiplicity p x = 0 if p /∈ prime-factors x

using that and ‹prime p› by (simp add: prime-factors-multiplicity)
with that and ∗ and assms show ?thesis unfolding prod-power-distrib

power-mult [symmetric]
by (subst multiplicity-prod-prime-powers) (auto simp: in-prime-factors-imp-prime

elim: dvdE)

7

qed
with assms False

have normalize ((
∏

p∈prime-factors x . p ^ (multiplicity p x div n)) ^ n) =
normalize x

by (intro multiplicity-eq-imp-eq) (auto simp: multiplicity-prod-prime-powers)
thus is-nth-power-upto-unit n x

by (auto intro: is-nth-power-upto-unitI)
qed

qed (use assms in ‹auto simp: is-nth-power-upto-unit-def ›)

lemma is-nth-power-upto-unit-0-left [simp, intro]: is-nth-power-upto-unit 0 x ←→
is-unit x
proof

assume is-unit x
thus is-nth-power-upto-unit 0 x

unfolding is-nth-power-upto-unit-def by (intro exI [of - 1 div x]) auto
next

assume is-nth-power-upto-unit 0 x
then obtain u where is-unit u u ∗ x = 1

by (auto simp: is-nth-power-upto-unit-def)
thus is-unit x

by (metis dvd-triv-right)
qed

lemma is-nth-power-upto-unit-unit [simp, intro]:
assumes is-unit x
shows is-nth-power-upto-unit n x
using assms by (auto simp: is-nth-power-upto-unit-def intro!: exI [of - 1 div x])

lemma is-nth-power-upto-unit-1-left [simp, intro]: is-nth-power-upto-unit 1 x
by (auto simp: is-nth-power-upto-unit-def intro: exI [of - 1])

lemma is-nth-power-upto-unit-mult-coprimeD1 :
fixes x y :: ′a :: factorial-semiring
assumes coprime x y is-nth-power-upto-unit n (x ∗ y)
shows is-nth-power-upto-unit n x

proof −
consider n = 0 | x = 0 n > 0 | x 6= 0 y = 0 n > 0 | n > 0 x 6= 0 y 6= 0

by force
thus ?thesis
proof cases

assume [simp]: n = 0
from assms have is-unit (x ∗ y)

by auto
hence is-unit x

using is-unit-mult-iff by blast
thus ?thesis using assms by auto

next
assume x = 0 n > 0

8

thus ?thesis by (auto simp: is-nth-power-upto-unit-def)
next

assume ∗: x 6= 0 y = 0 n > 0
with assms show ?thesis by auto

next
assume ∗: n > 0 and [simp]: x 6= 0 y 6= 0
show ?thesis
proof (subst is-nth-power-upto-unit-conv-multiplicity[OF ‹n > 0 ›]; safe)

fix p :: ′a assume p: prime p
show n dvd multiplicity p x
proof (cases p dvd x)

case False
thus ?thesis

by (simp add: not-dvd-imp-multiplicity-0)
next

case True
have n dvd multiplicity p (x ∗ y)

using assms(2) ‹n > 0 › p by (auto simp: is-nth-power-upto-unit-conv-multiplicity)
also have . . . = multiplicity p x + multiplicity p y

using p by (subst prime-elem-multiplicity-mult-distrib) auto
also have ¬p dvd y

using ‹coprime x y› ‹p dvd x› p not-prime-unit coprime-common-divisor
by blast

hence multiplicity p y = 0
by (rule not-dvd-imp-multiplicity-0)

finally show ?thesis by simp
qed

qed
qed

qed

lemma is-nth-power-upto-unit-mult-coprimeD2 :
fixes x y :: ′a :: factorial-semiring
assumes coprime x y is-nth-power-upto-unit n (x ∗ y)
shows is-nth-power-upto-unit n y
using assms is-nth-power-upto-unit-mult-coprimeD1 [of y x]
by (simp-all add: mult-ac coprime-commute)

1.2 Definition

Gaussian integers are the ring Z[i] which is formed either by formally ad-
joining an element i with i2 = −1 to Z or by taking all the complex numbers
with integer real and imaginary part.
We define them simply by giving an appropriate ring structure to Z2, with
the first component representing the real part and the second component
the imaginary part:
codatatype gauss-int = Gauss-Int (ReZ : int) (ImZ : int)

9

The following is the imaginary unit i in the Gaussian integers, which we will
denote as i�:
primcorec gauss-i where

ReZ gauss-i = 0
| ImZ gauss-i = 1

lemma gauss-int-eq-iff : x = y ←→ ReZ x = ReZ y ∧ ImZ x = ImZ y
by (cases x; cases y) auto

Next, we define the canonical injective homomorphism from the Gaussian
integers into the complex numbers:
primcorec gauss2complex where

Re (gauss2complex z) = of-int (ReZ z)
| Im (gauss2complex z) = of-int (ImZ z)

declare [[coercion gauss2complex]]

lemma gauss2complex-eq-iff [simp]: gauss2complex z = gauss2complex u ←→ z =
u

by (simp add: complex-eq-iff gauss-int-eq-iff)

Gaussian integers also have conjugates, just like complex numbers:
primcorec gauss-cnj where

ReZ (gauss-cnj z) = ReZ z
| ImZ (gauss-cnj z) = −ImZ z

In the remainder of this section, we prove that Gaussian integers are a com-
mutative ring of characteristic 0 and several other trivial algebraic proper-
ties.
instantiation gauss-int :: comm-ring-1
begin

primcorec zero-gauss-int where
ReZ zero-gauss-int = 0
| ImZ zero-gauss-int = 0

primcorec one-gauss-int where
ReZ one-gauss-int = 1
| ImZ one-gauss-int = 0

primcorec uminus-gauss-int where
ReZ (uminus-gauss-int x) = −ReZ x
| ImZ (uminus-gauss-int x) = −ImZ x

primcorec plus-gauss-int where
ReZ (plus-gauss-int x y) = ReZ x + ReZ y

10

| ImZ (plus-gauss-int x y) = ImZ x + ImZ y

primcorec minus-gauss-int where
ReZ (minus-gauss-int x y) = ReZ x − ReZ y
| ImZ (minus-gauss-int x y) = ImZ x − ImZ y

primcorec times-gauss-int where
ReZ (times-gauss-int x y) = ReZ x ∗ ReZ y − ImZ x ∗ ImZ y
| ImZ (times-gauss-int x y) = ReZ x ∗ ImZ y + ImZ x ∗ ReZ y

instance
by intro-classes (auto simp: gauss-int-eq-iff algebra-simps)

end

lemma gauss-i-times-i [simp]: i� ∗ i� = (−1 :: gauss-int)
and gauss-cnj-i [simp]: gauss-cnj i� = −i�
by (simp-all add: gauss-int-eq-iff)

lemma gauss-cnj-eq-0-iff [simp]: gauss-cnj z = 0 ←→ z = 0
by (auto simp: gauss-int-eq-iff)

lemma gauss-cnj-eq-self : Im z = 0 =⇒ gauss-cnj z = z
and gauss-cnj-eq-minus-self : Re z = 0 =⇒ gauss-cnj z = −z
by (auto simp: gauss-int-eq-iff)

lemma ReZ-of-nat [simp]: ReZ (of-nat n) = of-nat n
and ImZ-of-nat [simp]: ImZ (of-nat n) = 0
by (induction n; simp)+

lemma ReZ-of-int [simp]: ReZ (of-int n) = n
and ImZ-of-int [simp]: ImZ (of-int n) = 0
by (induction n; simp)+

lemma ReZ-numeral [simp]: ReZ (numeral n) = numeral n
and ImZ-numeral [simp]: ImZ (numeral n) = 0
by (subst of-nat-numeral [symmetric], subst ReZ-of-nat ImZ-of-nat, simp)+

lemma gauss2complex-0 [simp]: gauss2complex 0 = 0
and gauss2complex-1 [simp]: gauss2complex 1 = 1
and gauss2complex-i [simp]: gauss2complex i� = i
and gauss2complex-add [simp]: gauss2complex (x + y) = gauss2complex x +

gauss2complex y
and gauss2complex-diff [simp]: gauss2complex (x − y) = gauss2complex x −

gauss2complex y
and gauss2complex-mult [simp]: gauss2complex (x ∗ y) = gauss2complex x ∗

gauss2complex y
and gauss2complex-uminus [simp]: gauss2complex (−x) = −gauss2complex x
and gauss2complex-cnj [simp]: gauss2complex (gauss-cnj x) = cnj (gauss2complex

11

x)
by (simp-all add: complex-eq-iff)

lemma gauss2complex-of-nat [simp]: gauss2complex (of-nat n) = of-nat n
by (simp add: complex-eq-iff)

lemma gauss2complex-eq-0-iff [simp]: gauss2complex x = 0 ←→ x = 0
and gauss2complex-eq-1-iff [simp]: gauss2complex x = 1 ←→ x = 1
and zero-eq-gauss2complex-iff [simp]: 0 = gauss2complex x ←→ x = 0
and one-eq-gauss2complex-iff [simp]: 1 = gauss2complex x ←→ x = 1
by (simp-all add: complex-eq-iff gauss-int-eq-iff)

lemma gauss-i-times-gauss-i-times [simp]: i� ∗ (i� ∗ x) = (−x :: gauss-int)
by (subst mult.assoc [symmetric], subst gauss-i-times-i) auto

lemma gauss-i-neq-0 [simp]: i� 6= 0 0 6= i�
and gauss-i-neq-1 [simp]: i� 6= 1 1 6= i�
and gauss-i-neq-of-nat [simp]: i� 6= of-nat n of-nat n 6= i�
and gauss-i-neq-of-int [simp]: i� 6= of-int n of-int n 6= i�
and gauss-i-neq-numeral [simp]: i� 6= numeral m numeral m 6= i�
by (auto simp: gauss-int-eq-iff)

lemma gauss-cnj-0 [simp]: gauss-cnj 0 = 0
and gauss-cnj-1 [simp]: gauss-cnj 1 = 1
and gauss-cnj-cnj [simp]: gauss-cnj (gauss-cnj z) = z
and gauss-cnj-uminus [simp]: gauss-cnj (−a) = −gauss-cnj a
and gauss-cnj-add [simp]: gauss-cnj (a + b) = gauss-cnj a + gauss-cnj b
and gauss-cnj-diff [simp]: gauss-cnj (a − b) = gauss-cnj a − gauss-cnj b
and gauss-cnj-mult [simp]: gauss-cnj (a ∗ b) = gauss-cnj a ∗ gauss-cnj b
and gauss-cnj-of-nat [simp]: gauss-cnj (of-nat n1) = of-nat n1
and gauss-cnj-of-int [simp]: gauss-cnj (of-int n2) = of-int n2
and gauss-cnj-numeral [simp]: gauss-cnj (numeral n3) = numeral n3
by (simp-all add: gauss-int-eq-iff)

lemma gauss-cnj-power [simp]: gauss-cnj (a ^ n) = gauss-cnj a ^ n
by (induction n) auto

lemma gauss-cnj-sum [simp]: gauss-cnj (sum f A) = (
∑

x∈A. gauss-cnj (f x))
by (induction A rule: infinite-finite-induct) auto

lemma gauss-cnj-prod [simp]: gauss-cnj (prod f A) = (
∏

x∈A. gauss-cnj (f x))
by (induction A rule: infinite-finite-induct) auto

lemma of-nat-dvd-of-nat:
assumes a dvd b
shows of-nat a dvd (of-nat b :: ′a :: comm-semiring-1)
using assms by auto

lemma of-int-dvd-imp-dvd-gauss-cnj:

12

fixes z :: gauss-int
assumes of-int n dvd z
shows of-int n dvd gauss-cnj z

proof −
from assms obtain u where z = of-int n ∗ u by blast
hence gauss-cnj z = of-int n ∗ gauss-cnj u

by simp
thus ?thesis by auto

qed

lemma of-nat-dvd-imp-dvd-gauss-cnj:
fixes z :: gauss-int
assumes of-nat n dvd z
shows of-nat n dvd gauss-cnj z
using of-int-dvd-imp-dvd-gauss-cnj[of int n] assms by simp

lemma of-int-dvd-of-int-gauss-int-iff :
(of-int m :: gauss-int) dvd of-int n ←→ m dvd n

proof
assume of-int m dvd (of-int n :: gauss-int)
then obtain a :: gauss-int where of-int n = of-int m ∗ a

by blast
thus m dvd n

by (auto simp: gauss-int-eq-iff)
qed auto

lemma of-nat-dvd-of-nat-gauss-int-iff :
(of-nat m :: gauss-int) dvd of-nat n ←→ m dvd n
using of-int-dvd-of-int-gauss-int-iff [of int m int n] by simp

lemma gauss-cnj-dvd:
assumes a dvd b
shows gauss-cnj a dvd gauss-cnj b

proof −
from assms obtain c where b = a ∗ c

by blast
hence gauss-cnj b = gauss-cnj a ∗ gauss-cnj c

by simp
thus ?thesis by auto

qed

lemma gauss-cnj-dvd-iff : gauss-cnj a dvd gauss-cnj b ←→ a dvd b
using gauss-cnj-dvd[of a b] gauss-cnj-dvd[of gauss-cnj a gauss-cnj b] by auto

lemma gauss-cnj-dvd-left-iff : gauss-cnj a dvd b ←→ a dvd gauss-cnj b
by (subst gauss-cnj-dvd-iff [symmetric]) auto

lemma gauss-cnj-dvd-right-iff : a dvd gauss-cnj b ←→ gauss-cnj a dvd b
by (rule gauss-cnj-dvd-left-iff [symmetric])

13

instance gauss-int :: idom
proof

fix z u :: gauss-int
assume z 6= 0 u 6= 0
hence gauss2complex z ∗ gauss2complex u 6= 0

by simp
also have gauss2complex z ∗ gauss2complex u = gauss2complex (z ∗ u)

by simp
finally show z ∗ u 6= 0

unfolding gauss2complex-eq-0-iff .
qed

instance gauss-int :: ring-char-0
by intro-classes (auto intro!: injI simp: gauss-int-eq-iff)

1.3 Pretty-printing

The following lemma collection provides better pretty-printing of Gaussian
integers so that e.g. evaluation with the ‘value’ command produces nicer
results.
lemma gauss-int-code-post [code-post]:

Gauss-Int 0 0 = 0
Gauss-Int 0 1 = i�
Gauss-Int 0 (−1) = −i�
Gauss-Int 1 0 = 1
Gauss-Int 1 1 = 1 + i�
Gauss-Int 1 (−1) = 1 − i�
Gauss-Int (−1) 0 = −1
Gauss-Int (−1) 1 = −1 + i�
Gauss-Int (−1) (−1) = −1 − i�
Gauss-Int (numeral b) 0 = numeral b
Gauss-Int (−numeral b) 0 = −numeral b
Gauss-Int (numeral b) 1 = numeral b + i�
Gauss-Int (−numeral b) 1 = −numeral b + i�
Gauss-Int (numeral b) (−1) = numeral b − i�
Gauss-Int (−numeral b) (−1) = −numeral b − i�
Gauss-Int 0 (numeral b) = numeral b ∗ i�
Gauss-Int 0 (−numeral b) = −numeral b ∗ i�
Gauss-Int 1 (numeral b) = 1 + numeral b ∗ i�
Gauss-Int 1 (−numeral b) = 1 − numeral b ∗ i�
Gauss-Int (−1) (numeral b) = −1 + numeral b ∗ i�
Gauss-Int (−1) (−numeral b) = −1 − numeral b ∗ i�
Gauss-Int (numeral a) (numeral b) = numeral a + numeral b ∗ i�
Gauss-Int (numeral a) (−numeral b) = numeral a − numeral b ∗ i�
Gauss-Int (−numeral a) (numeral b) = −numeral a + numeral b ∗ i�
Gauss-Int (−numeral a) (−numeral b) = −numeral a − numeral b ∗ i�
by (simp-all add: gauss-int-eq-iff)

14

value i� ^ 3
value 2 ∗ (3 + i�)
value (2 + i�) ∗ (2 − i�)

1.4 Norm

The square of the complex norm (or complex modulus) on the Gaussian
integers gives us a norm that always returns a natural number. We will
later show that this is also a Euclidean norm (in the sense of a Euclidean
ring).
definition gauss-int-norm :: gauss-int ⇒ nat where

gauss-int-norm z = nat (ReZ z ^ 2 + ImZ z ^ 2)

lemma gauss-int-norm-0 [simp]: gauss-int-norm 0 = 0
and gauss-int-norm-1 [simp]: gauss-int-norm 1 = 1
and gauss-int-norm-i [simp]: gauss-int-norm i� = 1
and gauss-int-norm-cnj [simp]: gauss-int-norm (gauss-cnj z) = gauss-int-norm z
and gauss-int-norm-of-nat [simp]: gauss-int-norm (of-nat n) = n ^ 2
and gauss-int-norm-of-int [simp]: gauss-int-norm (of-int m) = nat (m ^ 2)
and gauss-int-norm-of-numeral [simp]: gauss-int-norm (numeral n ′) = numeral

(Num.sqr n ′)
by (simp-all add: gauss-int-norm-def nat-power-eq)

lemma gauss-int-norm-uminus [simp]: gauss-int-norm (−z) = gauss-int-norm z
by (simp add: gauss-int-norm-def)

lemma gauss-int-norm-eq-0-iff [simp]: gauss-int-norm z = 0 ←→ z = 0
proof

assume gauss-int-norm z = 0
hence ReZ z ^ 2 + ImZ z ^ 2 ≤ 0

by (simp add: gauss-int-norm-def)
moreover have ReZ z ^ 2 + ImZ z ^ 2 ≥ 0

by simp
ultimately have ReZ z ^ 2 + ImZ z ^ 2 = 0

by linarith
thus z = 0

by (auto simp: gauss-int-eq-iff)
qed auto

lemma gauss-int-norm-pos-iff [simp]: gauss-int-norm z > 0 ←→ z 6= 0
using gauss-int-norm-eq-0-iff [of z] by (auto intro: Nat.gr0I)

lemma real-gauss-int-norm: real (gauss-int-norm z) = norm (gauss2complex z) ^
2

by (auto simp: cmod-def gauss-int-norm-def)

lemma gauss-int-norm-mult: gauss-int-norm (z ∗ u) = gauss-int-norm z ∗ gauss-int-norm

15

u
proof −

have real (gauss-int-norm (z ∗ u)) = real (gauss-int-norm z ∗ gauss-int-norm u)
unfolding of-nat-mult by (simp add: real-gauss-int-norm norm-power norm-mult

power-mult-distrib)
thus ?thesis by (subst (asm) of-nat-eq-iff)

qed

lemma self-mult-gauss-cnj: z ∗ gauss-cnj z = of-nat (gauss-int-norm z)
by (simp add: gauss-int-norm-def gauss-int-eq-iff algebra-simps power2-eq-square)

lemma gauss-cnj-mult-self : gauss-cnj z ∗ z = of-nat (gauss-int-norm z)
by (subst mult.commute, rule self-mult-gauss-cnj)

lemma self-plus-gauss-cnj: z + gauss-cnj z = of-int (2 ∗ ReZ z)
and self-minus-gauss-cnj: z − gauss-cnj z = of-int (2 ∗ ImZ z) ∗ i�
by (auto simp: gauss-int-eq-iff)

lemma gauss-int-norm-dvd-mono:
assumes a dvd b
shows gauss-int-norm a dvd gauss-int-norm b

proof −
from assms obtain c where b = a ∗ c by blast
hence gauss-int-norm b = gauss-int-norm (a ∗ c)

by metis
thus ?thesis by (simp add: gauss-int-norm-mult)

qed

lemma gauss-int-norm-power : gauss-int-norm (x ^ n) = gauss-int-norm x ^ n
by (metis gauss-cnj-mult-self gauss-cnj-power of-nat-eq-of-nat-power-cancel-iff

power-mult-distrib)

A Gaussian integer is a unit iff its norm is 1, and this is the case precisely
for the four elements ±1 and ±i:
lemma is-unit-gauss-int-iff : x dvd 1 ←→ x ∈ {1 , −1 , i�, −i� :: gauss-int}

and is-unit-gauss-int-iff ′: x dvd 1 ←→ gauss-int-norm x = 1
proof −

have x dvd 1 if x ∈ {1 , −1 , i�, −i�}
proof −

from that have ∗: x ∗ gauss-cnj x = 1
by (auto simp: gauss-int-norm-def)

show x dvd 1 by (subst ∗ [symmetric]) simp
qed
moreover have gauss-int-norm x = 1 if x dvd 1

using gauss-int-norm-dvd-mono[OF that] by simp
moreover have x ∈ {1 , −1 , i�, −i�} if gauss-int-norm x = 1
proof −

from that have ∗: (ReZ x)2 + (ImZ x)2 = 1
by (auto simp: gauss-int-norm-def nat-eq-iff)

16

hence ReZ x ^ 2 ≤ 1 and ImZ x ^ 2 ≤ 1
using zero-le-power2 [of ImZ x] zero-le-power2 [of ReZ x] by linarith+

hence |ReZ x| ≤ 1 and |ImZ x| ≤ 1
by (auto simp: abs-square-le-1)

hence ReZ x ∈ {−1 , 0 , 1} and ImZ x ∈ {−1 , 0 , 1}
by auto

thus x ∈ {1 , −1 , i�, −i� :: gauss-int}
using ∗ by (auto simp: gauss-int-eq-iff)

qed
ultimately show x dvd 1 ←→ x ∈ {1 , −1 , i�, −i� :: gauss-int}

and x dvd 1 ←→ gauss-int-norm x = 1
by blast+

qed

lemma is-unit-gauss-i [simp, intro]: (gauss-i :: gauss-int) dvd 1
by (simp add: is-unit-gauss-int-iff)

lemma gauss-int-norm-eq-Suc-0-iff : gauss-int-norm x = Suc 0 ←→ x dvd 1
by (simp add: is-unit-gauss-int-iff ′)

lemma is-unit-gauss-cnj [intro]: z dvd 1 =⇒ gauss-cnj z dvd 1
by (simp add: is-unit-gauss-int-iff ′)

lemma is-unit-gauss-cnj-iff [simp]: gauss-cnj z dvd 1 ←→ z dvd 1
by (simp add: is-unit-gauss-int-iff ′)

1.5 Division and normalisation

We define a rounding operation that takes a complex number and returns a
Gaussian integer by rounding the real and imaginary parts separately:
primcorec round-complex :: complex ⇒ gauss-int where

ReZ (round-complex z) = round (Re z)
| ImZ (round-complex z) = round (Im z)

The distance between a rounded complex number and the original one is no
more than 1

2

√
2:

lemma norm-round-complex-le: norm (z − gauss2complex (round-complex z)) ^ 2
≤ 1 / 2
proof −

have (Re z − ReZ (round-complex z)) ^ 2 ≤ (1 / 2) ^ 2
using of-int-round-abs-le[of Re z]
by (subst abs-le-square-iff [symmetric]) (auto simp: abs-minus-commute)

moreover have (Im z − ImZ (round-complex z)) ^ 2 ≤ (1 / 2) ^ 2
using of-int-round-abs-le[of Im z]
by (subst abs-le-square-iff [symmetric]) (auto simp: abs-minus-commute)

ultimately have (Re z − ReZ (round-complex z)) ^ 2 + (Im z − ImZ (round-complex
z)) ^ 2 ≤

(1 / 2) ^ 2 + (1 / 2) ^ 2

17

by (rule add-mono)
thus norm (z − gauss2complex (round-complex z)) ^ 2 ≤ 1 / 2

by (simp add: cmod-def power2-eq-square)
qed

lemma dist-round-complex-le: dist z (gauss2complex (round-complex z)) ≤ sqrt 2
/ 2
proof −

have dist z (gauss2complex (round-complex z)) ^ 2 =
norm (z − gauss2complex (round-complex z)) ^ 2

by (simp add: dist-norm)
also have . . . ≤ 1 / 2

by (rule norm-round-complex-le)
also have . . . = (sqrt 2 / 2) ^ 2

by (simp add: power2-eq-square)
finally show ?thesis

by (rule power2-le-imp-le) auto
qed

We can now define division on Gaussian integers simply by performing the
division in the complex numbers and rounding the result. This also gives
us a remainder operation defined accordingly for which the norm of the
remainder is always smaller than the norm of the divisor.
We can also define a normalisation operation that returns a canonical rep-
resentative for each association class. Since the four units of the Gaussian
integers are ±1 and ±i, each association class (other than 0) has four repre-
sentatives, one in each quadrant. We simply define the on in the upper-right
quadrant (i.e. the one with non-negative imaginary part and positive real
part) as the canonical one.
Thus, the Gaussian integers form a Euclidean ring. This gives us many
things, most importantly the existence of GCDs and LCMs and unique fac-
torisation.
instantiation gauss-int :: algebraic-semidom
begin

definition divide-gauss-int :: gauss-int ⇒ gauss-int ⇒ gauss-int where
divide-gauss-int a b = round-complex (gauss2complex a / gauss2complex b)

instance proof
fix a :: gauss-int
show a div 0 = 0

by (auto simp: gauss-int-eq-iff divide-gauss-int-def)
next

fix a b :: gauss-int assume b 6= 0
thus a ∗ b div b = a

by (auto simp: gauss-int-eq-iff divide-gauss-int-def)
qed

18

end

instantiation gauss-int :: semidom-divide-unit-factor
begin

definition unit-factor-gauss-int :: gauss-int ⇒ gauss-int where
unit-factor-gauss-int z =

(if z = 0 then 0 else
if ImZ z ≥ 0 ∧ ReZ z > 0 then 1
else if ReZ z ≤ 0 ∧ ImZ z > 0 then i�
else if ImZ z ≤ 0 ∧ ReZ z < 0 then −1
else −i�)

instance proof
show unit-factor (0 :: gauss-int) = 0

by (simp add: unit-factor-gauss-int-def)
next

fix z :: gauss-int
assume is-unit z
thus unit-factor z = z

by (subst (asm) is-unit-gauss-int-iff) (auto simp: unit-factor-gauss-int-def)
next

fix z :: gauss-int
assume z: z 6= 0
thus is-unit (unit-factor z)

by (subst is-unit-gauss-int-iff) (auto simp: unit-factor-gauss-int-def)
next

fix z u :: gauss-int
assume is-unit z
hence z ∈ {1 , −1 , i�, −i�}

by (subst (asm) is-unit-gauss-int-iff)
thus unit-factor (z ∗ u) = z ∗ unit-factor u

by (safe; auto simp: unit-factor-gauss-int-def gauss-int-eq-iff [of u 0])
qed

end

instantiation gauss-int :: normalization-semidom
begin

definition normalize-gauss-int :: gauss-int ⇒ gauss-int where
normalize-gauss-int z =

(if z = 0 then 0 else
if ImZ z ≥ 0 ∧ ReZ z > 0 then z
else if ReZ z ≤ 0 ∧ ImZ z > 0 then −i� ∗ z
else if ImZ z ≤ 0 ∧ ReZ z < 0 then −z
else i� ∗ z)

19

instance proof
show normalize (0 :: gauss-int) = 0

by (simp add: normalize-gauss-int-def)
next

fix z :: gauss-int
show unit-factor z ∗ normalize z = z

by (auto simp: normalize-gauss-int-def unit-factor-gauss-int-def algebra-simps)
qed

end

lemma normalize-gauss-int-of-nat [simp]: normalize (of-nat n :: gauss-int) = of-nat
n

and normalize-gauss-int-of-int [simp]: normalize (of-int m :: gauss-int) = of-int
|m|

and normalize-gauss-int-of-numeral [simp]: normalize (numeral n ′ :: gauss-int)
= numeral n ′

by (auto simp: normalize-gauss-int-def)

lemma normalize-gauss-i [simp]: normalize i� = 1
by (simp add: normalize-gauss-int-def)

lemma gauss-int-norm-normalize [simp]: gauss-int-norm (normalize x) = gauss-int-norm
x

by (simp add: normalize-gauss-int-def gauss-int-norm-mult)

lemma normalized-gauss-int:
assumes normalize z = z
shows ReZ z ≥ 0 ImZ z ≥ 0
using assms
by (cases ReZ z 0 :: int rule: linorder-cases;

cases ImZ z 0 :: int rule: linorder-cases;
simp add: normalize-gauss-int-def gauss-int-eq-iff)+

lemma normalized-gauss-int ′:
assumes normalize z = z z 6= 0
shows ReZ z > 0 ImZ z ≥ 0
using assms
by (cases ReZ z 0 :: int rule: linorder-cases;

cases ImZ z 0 :: int rule: linorder-cases;
simp add: normalize-gauss-int-def gauss-int-eq-iff)+

lemma normalized-gauss-int-iff :
normalize z = z ←→ z = 0 ∨ ReZ z > 0 ∧ ImZ z ≥ 0
by (cases ReZ z 0 :: int rule: linorder-cases;

cases ImZ z 0 :: int rule: linorder-cases;
simp add: normalize-gauss-int-def gauss-int-eq-iff)+

instantiation gauss-int :: idom-modulo

20

begin

definition modulo-gauss-int :: gauss-int ⇒ gauss-int ⇒ gauss-int where
modulo-gauss-int a b = a − a div b ∗ b

instance proof
fix a b :: gauss-int
show a div b ∗ b + a mod b = a

by (simp add: modulo-gauss-int-def)
qed

end

lemma gauss-int-norm-mod-less-aux:
assumes [simp]: b 6= 0
shows 2 ∗ gauss-int-norm (a mod b) ≤ gauss-int-norm b

proof −
define a ′ b ′ where a ′ = gauss2complex a and b ′ = gauss2complex b
have [simp]: b ′ 6= 0 by (simp add: b ′-def)
have gauss-int-norm (a mod b) =

norm (gauss2complex (a − round-complex (a ′ / b ′) ∗ b)) ^ 2
unfolding modulo-gauss-int-def
by (subst real-gauss-int-norm [symmetric]) (auto simp add: divide-gauss-int-def

a ′-def b ′-def)
also have gauss2complex (a − round-complex (a ′ / b ′) ∗ b) =

a ′ − gauss2complex (round-complex (a ′ / b ′)) ∗ b ′

by (simp add: a ′-def b ′-def)
also have . . . = (a ′ / b ′ − gauss2complex (round-complex (a ′ / b ′))) ∗ b ′

by (simp add: field-simps)
also have norm . . . ^ 2 = norm (a ′ / b ′ − gauss2complex (round-complex (a ′ /

b ′))) ^ 2 ∗ norm b ′ ^ 2
by (simp add: norm-mult power-mult-distrib)

also have . . . ≤ 1 / 2 ∗ norm b ′ ^ 2
by (intro mult-right-mono norm-round-complex-le) auto

also have norm b ′ ^ 2 = gauss-int-norm b
by (simp add: b ′-def real-gauss-int-norm)

finally show ?thesis by linarith
qed

lemma gauss-int-norm-mod-less:
assumes [simp]: b 6= 0
shows gauss-int-norm (a mod b) < gauss-int-norm b

proof −
have gauss-int-norm b > 0 by simp
thus gauss-int-norm (a mod b) < gauss-int-norm b

using gauss-int-norm-mod-less-aux[OF assms, of a] by presburger
qed

lemma gauss-int-norm-dvd-imp-le:

21

assumes b 6= 0
shows gauss-int-norm a ≤ gauss-int-norm (a ∗ b)

proof (cases a = 0)
case False
thus ?thesis using assms by (intro dvd-imp-le gauss-int-norm-dvd-mono) auto

qed auto

instantiation gauss-int :: euclidean-ring
begin

definition euclidean-size-gauss-int :: gauss-int ⇒ nat where
[simp]: euclidean-size-gauss-int = gauss-int-norm

instance proof
show euclidean-size (0 :: gauss-int) = 0

by simp
next

fix a b :: gauss-int assume [simp]: b 6= 0
show euclidean-size (a mod b) < euclidean-size b

using gauss-int-norm-mod-less[of b a] by simp
show euclidean-size a ≤ euclidean-size (a ∗ b)

by (simp add: gauss-int-norm-dvd-imp-le)
qed

end

instance gauss-int :: normalization-euclidean-semiring ..

instantiation gauss-int :: euclidean-ring-gcd
begin

definition gcd-gauss-int :: gauss-int ⇒ gauss-int ⇒ gauss-int where
gcd-gauss-int ≡ normalization-euclidean-semiring-class.gcd

definition lcm-gauss-int :: gauss-int ⇒ gauss-int ⇒ gauss-int where
lcm-gauss-int ≡ normalization-euclidean-semiring-class.lcm

definition Gcd-gauss-int :: gauss-int set ⇒ gauss-int where
Gcd-gauss-int ≡ normalization-euclidean-semiring-class.Gcd

definition Lcm-gauss-int :: gauss-int set ⇒ gauss-int where
Lcm-gauss-int ≡ normalization-euclidean-semiring-class.Lcm

instance
by intro-classes
(simp-all add: gcd-gauss-int-def lcm-gauss-int-def Gcd-gauss-int-def Lcm-gauss-int-def)

end

lemma gcd-gauss-cnj: gcd (gauss-cnj x) (gauss-cnj y) = normalize (gauss-cnj (gcd
x y))
proof (rule sym, rule gcdI)

22

show
∧

d. [[d dvd gauss-cnj x; d dvd gauss-cnj y]] =⇒ d dvd normalize (gauss-cnj
(gcd x y))

by (auto simp: gauss-cnj-dvd-right-iff)
qed (auto simp: gauss-cnj-dvd-left-iff)

lemma gcd-gauss-cnj-left: gcd (gauss-cnj x) y = normalize (gauss-cnj (gcd x (gauss-cnj
y)))

by (metis gauss-cnj-cnj gcd-gauss-cnj)

lemma gcd-gauss-cnj-right: gcd x (gauss-cnj y) = normalize (gauss-cnj (gcd (gauss-cnj
x) y))

by (subst gcd-gauss-cnj [symmetric]) auto

lemma multiplicity-gauss-cnj: multiplicity (gauss-cnj a) (gauss-cnj b) = multiplic-
ity a b

unfolding multiplicity-def gauss-cnj-power [symmetric] gauss-cnj-dvd-iff ..

lemma multiplicity-gauss-int-of-nat:
multiplicity (of-nat a) (of-nat b :: gauss-int) = multiplicity a b
unfolding multiplicity-def of-nat-power [symmetric] of-nat-dvd-of-nat-gauss-int-iff

..

lemma gauss-int-dvd-same-norm-imp-associated:
assumes z1 dvd z2 gauss-int-norm z1 = gauss-int-norm z2
shows normalize z1 = normalize z2

proof (cases z1 = 0)
case [simp]: False
from assms(1) obtain u where u: z2 = z1 ∗ u by blast
from assms have gauss-int-norm u = 1

by (auto simp: gauss-int-norm-mult u)
hence is-unit u

by (simp add: is-unit-gauss-int-iff ′)
with u show ?thesis by simp

qed (use assms in auto)

lemma gcd-of-int-gauss-int: gcd (of-int a :: gauss-int) (of-int b) = of-int (gcd a b)
proof (induction nat |b| arbitrary: a b rule: less-induct)

case (less b a)
show ?case
proof (cases b = 0)

case False
have of-int (gcd a b) = (of-int (gcd b (a mod b)) :: gauss-int)

by (subst gcd-red-int) auto
also have . . . = gcd (of-int b) (of-int (a mod b))

using False by (intro less [symmetric]) (auto intro!: abs-mod-less)
also have a mod b = (a − a div b ∗ b)

by (simp add: minus-div-mult-eq-mod)
also have of-int . . . = of-int (−(a div b)) ∗ of-int b + (of-int a :: gauss-int)

by (simp add: algebra-simps)

23

also have gcd (of-int b) . . . = gcd (of-int b) (of-int a)
by (rule gcd-add-mult)

finally show ?thesis by (simp add: gcd.commute)
qed auto

qed

lemma coprime-of-int-gauss-int: coprime (of-int a :: gauss-int) (of-int b) = co-
prime a b

unfolding coprime-iff-gcd-eq-1 gcd-of-int-gauss-int by auto

lemma gcd-of-nat-gauss-int: gcd (of-nat a :: gauss-int) (of-nat b) = of-nat (gcd a
b)

using gcd-of-int-gauss-int[of int a int b] by simp

lemma coprime-of-nat-gauss-int: coprime (of-nat a :: gauss-int) (of-nat b) = co-
prime a b

unfolding coprime-iff-gcd-eq-1 gcd-of-nat-gauss-int by auto

lemma gauss-cnj-dvd-self-iff : gauss-cnj z dvd z ←→ ReZ z = 0 ∨ ImZ z = 0 ∨
|ReZ z| = |ImZ z|
proof

assume gauss-cnj z dvd z
hence normalize (gauss-cnj z) = normalize z

by (rule gauss-int-dvd-same-norm-imp-associated) auto
then obtain u :: gauss-int where is-unit u and u: gauss-cnj z = u ∗ z

using associatedE1 by blast
hence u ∈ {1 , −1 , i�, −i�}

by (simp add: is-unit-gauss-int-iff)
thus ReZ z = 0 ∨ ImZ z = 0 ∨ |ReZ z| = |ImZ z |
proof (elim insertE emptyE)

assume [simp]: u = i�
have ReZ z = ReZ (gauss-cnj z)

by simp
also have gauss-cnj z = i� ∗ z

using u by simp
also have ReZ . . . = −ImZ z

by simp
finally show ReZ z = 0 ∨ ImZ z = 0 ∨ |ReZ z| = |ImZ z |

by auto
next

assume [simp]: u = −i�
have ReZ z = ReZ (gauss-cnj z)

by simp
also have gauss-cnj z = −i� ∗ z

using u by simp
also have ReZ . . . = ImZ z

by simp
finally show ReZ z = 0 ∨ ImZ z = 0 ∨ |ReZ z| = |ImZ z |

by auto

24

next
assume [simp]: u = 1
have ImZ z = −ImZ (gauss-cnj z)

by simp
also have gauss-cnj z = z

using u by simp
finally show ReZ z = 0 ∨ ImZ z = 0 ∨ |ReZ z| = |ImZ z |

by auto
next

assume [simp]: u = −1
have ReZ z = ReZ (gauss-cnj z)

by simp
also have gauss-cnj z = −z

using u by simp
also have ReZ . . . = −ReZ z

by simp
finally show ReZ z = 0 ∨ ImZ z = 0 ∨ |ReZ z| = |ImZ z |

by auto
qed

next
assume ReZ z = 0 ∨ ImZ z = 0 ∨ |ReZ z| = |ImZ z|
thus gauss-cnj z dvd z
proof safe

assume |ReZ z| = |ImZ z|
then obtain u :: int where is-unit u and u: ImZ z = u ∗ ReZ z

using associatedE2 [of ReZ z ImZ z] by auto
from ‹is-unit u› have u ∈ {1 , −1}

by auto
hence z = gauss-cnj z ∗ (of-int u ∗ i�)

using u by (auto simp: gauss-int-eq-iff)
thus ?thesis

by (metis dvd-triv-left)
qed (auto simp: gauss-cnj-eq-self gauss-cnj-eq-minus-self)

qed

lemma self-dvd-gauss-cnj-iff : z dvd gauss-cnj z ←→ ReZ z = 0 ∨ ImZ z = 0 ∨
|ReZ z| = |ImZ z|

using gauss-cnj-dvd-self-iff [of z] by (subst (asm) gauss-cnj-dvd-left-iff) auto

1.6 Prime elements

Next, we analyse what the prime elements of the Gaussian integers are.
First, note that according to the conventions of Isabelle’s computational
algebra library, a prime element is called a prime iff it is also normalised,
i.e. in our case it lies in the upper right quadrant.
As a first fact, we can show that a Gaussian integer whose norm is �-prime
must be Z[i]-prime:
lemma prime-gauss-int-norm-imp-prime-elem:

25

assumes prime (gauss-int-norm q)
shows prime-elem q

proof −
have irreducible q
proof (rule irreducibleI)

fix a b assume q = a ∗ b
hence gauss-int-norm q = gauss-int-norm a ∗ gauss-int-norm b

by (simp-all add: gauss-int-norm-mult)
thus is-unit a ∨ is-unit b
using assms by (auto dest!: prime-product simp: gauss-int-norm-eq-Suc-0-iff)

qed (use assms in ‹auto simp: is-unit-gauss-int-iff ′›)
thus prime-elem q

using irreducible-imp-prime-elem-gcd by blast
qed

Also, a conjugate is a prime element iff the original element is a prime
element:
lemma prime-elem-gauss-cnj [intro]: prime-elem z =⇒ prime-elem (gauss-cnj z)

by (auto simp: prime-elem-def gauss-cnj-dvd-left-iff)

lemma prime-elem-gauss-cnj-iff [simp]: prime-elem (gauss-cnj z) ←→ prime-elem
z

using prime-elem-gauss-cnj[of z] prime-elem-gauss-cnj[of gauss-cnj z] by auto

1.6.1 The factorisation of 2

2 factors as −i(1+ i)2 in the Gaussian integers, where −i is a unit and 1+ i
is prime.
lemma gauss-int-2-eq: 2 = −i� ∗ (1 + i�) ^ 2

by (simp add: gauss-int-eq-iff power2-eq-square)

lemma prime-elem-one-plus-i-gauss-int: prime-elem (1 + i�)
by (rule prime-gauss-int-norm-imp-prime-elem) (auto simp: gauss-int-norm-def)

lemma prime-one-plus-i-gauss-int: prime (1 + i�)
by (simp add: prime-def prime-elem-one-plus-i-gauss-int

gauss-int-eq-iff normalize-gauss-int-def)

lemma prime-factorization-2-gauss-int:
prime-factorization (2 :: gauss-int) = {#1 + i�, 1 + i�#}

proof −
have prime-factorization (2 :: gauss-int) =

(prime-factorization (prod-mset {#1 + gauss-i, 1 + gauss-i#}))
by (subst prime-factorization-unique) (auto simp: gauss-int-eq-iff normalize-gauss-int-def)

also have prime-factorization (prod-mset {#1 + gauss-i, 1 + gauss-i#}) =
{#1 + gauss-i, 1 + gauss-i#}

using prime-one-plus-i-gauss-int by (subst prime-factorization-prod-mset-primes)
auto

26

finally show ?thesis .
qed

1.6.2 Inert primes

Any �-prime congruent 3 modulo 4 is also a Gaussian prime. These primes
are called inert, because they do not decompose when moving from � to
Z[i].
lemma gauss-int-norm-not-3-mod-4 : [gauss-int-norm z 6= 3] (mod 4)
proof −

have A: ReZ z mod 4 ∈ {0 ..3} ImZ z mod 4 ∈ {0 ..3} by auto
have B: {0 ..3} = {0 , 1 , 2 , 3 :: int} by auto

have [ReZ z ^ 2 + ImZ z ^ 2 = (ReZ z mod 4) ^ 2 + (ImZ z mod 4) ^ 2] (mod
4)

by (intro cong-add cong-pow) (auto simp: cong-def)
moreover have ((ReZ z mod 4) ^ 2 + (ImZ z mod 4) ^ 2) mod 4 6= 3 mod 4

using A unfolding B by auto
ultimately have [ReZ z ^ 2 + ImZ z ^ 2 6= 3] (mod 4)

unfolding cong-def by metis
hence [int (nat (ReZ z ^ 2 + ImZ z ^ 2)) 6= int 3] (mod (int 4))

by simp
thus ?thesis unfolding gauss-int-norm-def

by (subst (asm) cong-int-iff)
qed

lemma prime-elem-gauss-int-of-nat:
fixes n :: nat
assumes prime: prime n and [n = 3] (mod 4)
shows prime-elem (of-nat n :: gauss-int)

proof (intro irreducible-imp-prime-elem irreducibleI)
from assms show of-nat n 6= (0 :: gauss-int)

by (auto simp: gauss-int-eq-iff)
next

show ¬is-unit (of-nat n :: gauss-int)
using assms by (subst is-unit-gauss-int-iff) (auto simp: gauss-int-eq-iff)

next
fix a b :: gauss-int
assume ∗: of-nat n = a ∗ b
hence gauss-int-norm (a ∗ b) = gauss-int-norm (of-nat n)

by metis
hence ∗: gauss-int-norm a ∗ gauss-int-norm b = n ^ 2

by (simp add: gauss-int-norm-mult power2-eq-square flip: nat-mult-distrib)
from prime-power-mult-nat[OF prime this] obtain i j :: nat

where ij: gauss-int-norm a = n ^ i gauss-int-norm b = n ^ j by blast

have i + j = 2
proof −

have n ^ (i + j) = n ^ 2

27

using ij ∗ by (simp add: power-add)
from prime-power-inj[OF prime this] show ?thesis by simp

qed
hence i = 0 ∧ j = 2 ∨ i = 1 ∧ j = 1 ∨ i = 2 ∧ j = 0

by auto
thus is-unit a ∨ is-unit b
proof (elim disjE)

assume i = 1 ∧ j = 1
with ij have gauss-int-norm a = n

by auto
hence [gauss-int-norm a = n] (mod 4)

by simp
also have [n = 3] (mod 4) by fact
finally have [gauss-int-norm a = 3] (mod 4) .
moreover have [gauss-int-norm a 6= 3] (mod 4)

by (rule gauss-int-norm-not-3-mod-4)
ultimately show ?thesis by contradiction

qed (use ij in ‹auto simp: is-unit-gauss-int-iff ′›)
qed

theorem prime-gauss-int-of-nat:
fixes n :: nat
assumes prime: prime n and [n = 3] (mod 4)
shows prime (of-nat n :: gauss-int)
using prime-elem-gauss-int-of-nat[OF assms]
unfolding prime-def by simp

1.6.3 Non-inert primes

Any �-prime congruent 1 modulo 4 factors into two conjugate Gaussian
primes.
lemma minimal-QuadRes-neg1 :

assumes QuadRes n (−1) n > 1 odd n
obtains x :: nat where x ≤ (n − 1) div 2 and [x ^ 2 + 1 = 0] (mod n)

proof −
from ‹QuadRes n (−1)› obtain x where [x ^ 2 = (−1)] (mod (int n))

by (auto simp: QuadRes-def)
hence [x ^ 2 + 1 = −1 + 1] (mod (int n))

by (intro cong-add) auto
also have x ^ 2 + 1 = int (nat |x| ^ 2 + 1)

by simp
finally have [int (nat |x| ^ 2 + 1) = int 0] (mod (int n))

by simp
hence [nat |x| ^ 2 + 1 = 0] (mod n)

by (subst (asm) cong-int-iff)

define x ′ where
x ′ = (if nat |x| mod n ≤ (n − 1) div 2 then nat |x| mod n else n − (nat |x|

mod n))

28

have x ′-quadres: [x ′ ^ 2 + 1 = 0] (mod n)
proof (cases nat |x| mod n ≤ (n − 1) div 2)

case True
hence [x ′ ^ 2 + 1 = (nat |x| mod n) ^ 2 + 1] (mod n)

by (simp add: x ′-def)
also have [(nat |x| mod n) ^ 2 + 1 = nat |x| ^ 2 + 1] (mod n)

by (intro cong-add cong-pow) (auto simp: cong-def)
also have [nat |x| ^ 2 + 1 = 0] (mod n) by fact
finally show ?thesis .

next
case False
hence [int (x ′ ^ 2 + 1) = (int n − int (nat |x| mod n)) ^ 2 + 1] (mod int n)

using ‹n > 1 › by (simp add: x ′-def of-nat-diff add-ac)
also have [(int n − int (nat |x| mod n)) ^ 2 + 1 =

(0 − int (nat |x| mod n)) ^ 2 + 1] (mod int n)
by (intro cong-add cong-pow) (auto simp: cong-def)

also have [(0 − int (nat |x| mod n)) ^ 2 + 1 = int ((nat |x| mod n) ^ 2 +
1)] (mod (int n))

by (simp add: add-ac)
finally have [x ′ ^ 2 + 1 = (nat |x| mod n)2 + 1] (mod n)

by (subst (asm) cong-int-iff)
also have [(nat |x| mod n)2 + 1 = nat |x| ^ 2 + 1] (mod n)

by (intro cong-add cong-pow) (auto simp: cong-def)
also have [nat |x| ^ 2 + 1 = 0] (mod n) by fact
finally show ?thesis .

qed
moreover have x ′-le: x ′ ≤ (n − 1) div 2

using ‹odd n› by (auto elim!: oddE simp: x ′-def)
ultimately show ?thesis by (intro that[of x ′])

qed

Let p be some prime number that is congruent 1 modulo 4.
locale noninert-gauss-int-prime =

fixes p :: nat
assumes prime-p: prime p and cong-1-p: [p = 1] (mod 4)

begin

lemma p-gt-2 : p > 2 and odd-p: odd p
proof −

from prime-p and cong-1-p have p > 1 p 6= 2
by (auto simp: prime-gt-Suc-0-nat cong-def)

thus p > 2 by auto
with prime-p show odd p

using primes-dvd-imp-eq two-is-prime-nat by blast
qed

-1 is a quadratic residue modulo p, so there exists some x such that x2 + 1
is divisible by p. Moreover, we can choose x such that it is positive and no
greater than 1

2(p− 1):

29

lemma minimal-QuadRes-neg1 :
obtains x where x > 0 x ≤ (p − 1) div 2 [x ^ 2 + 1 = 0] (mod p)

proof −
have [Legendre (−1) (int p) = (− 1) ^ ((p − 1) div 2)] (mod (int p))

using prime-p p-gt-2 by (intro euler-criterion) auto
also have [p − 1 = 1 − 1] (mod 4)

using p-gt-2 by (intro cong-diff-nat cong-refl) (use cong-1-p in auto)
hence 2 ∗ 2 dvd p − 1

by (simp add: cong-0-iff)
hence even ((p − 1) div 2)

using dvd-mult-imp-div by blast
hence (−1) ^ ((p − 1) div 2) = (1 :: int)

by simp
finally have Legendre (−1) (int p) mod p = 1

using p-gt-2 by (auto simp: cong-def)
hence Legendre (−1) (int p) = 1

using p-gt-2 by (auto simp: Legendre-def cong-def zmod-minus1 split: if-splits)
hence QuadRes p (−1)

by (simp add: Legendre-def split: if-splits)
from minimal-QuadRes-neg1 [OF this] p-gt-2 odd-p

obtain x where x: x ≤ (p − 1) div 2 [x ^ 2 + 1 = 0] (mod p) by auto
have x > 0

using x p-gt-2 by (auto intro!: Nat.gr0I simp: cong-def)
from x and this show ?thesis by (intro that[of x]) auto

qed

We can show from this that p is not prime as a Gaussian integer.
lemma not-prime: ¬prime-elem (of-nat p :: gauss-int)
proof

assume prime: prime-elem (of-nat p :: gauss-int)
obtain x where x: x > 0 x ≤ (p − 1) div 2 [x ^ 2 + 1 = 0] (mod p)

using minimal-QuadRes-neg1 .

have of-nat p dvd (of-nat (x ^ 2 + 1) :: gauss-int)
using x by (intro of-nat-dvd-of-nat) (auto simp: cong-0-iff)

also have eq: of-nat (x ^ 2 + 1) = ((of-nat x + i�) ∗ (of-nat x − i�) :: gauss-int)
using ‹x > 0 › by (simp add: algebra-simps gauss-int-eq-iff power2-eq-square

of-nat-diff)
finally have of-nat p dvd ((of-nat x + i�) ∗ (of-nat x − i�) :: gauss-int) .

from prime and this
have of-nat p dvd (of-nat x + i� :: gauss-int) ∨ of-nat p dvd (of-nat x − i� ::

gauss-int)
by (rule prime-elem-dvd-multD)

hence dvd: of-nat p dvd (of-nat x + i� :: gauss-int) of-nat p dvd (of-nat x − i�
:: gauss-int)

by (auto dest: of-nat-dvd-imp-dvd-gauss-cnj)

have of-nat (p ^ 2) = (of-nat p ∗ of-nat p :: gauss-int)

30

by (simp add: power2-eq-square)
also from dvd have . . . dvd ((of-nat x + i�) ∗ (of-nat x − i�))

by (intro mult-dvd-mono)
also have . . . = of-nat (x ^ 2 + 1)

by (rule eq [symmetric])
finally have p ^ 2 dvd (x ^ 2 + 1)

by (subst (asm) of-nat-dvd-of-nat-gauss-int-iff)
hence p ^ 2 ≤ x ^ 2 + 1

by (intro dvd-imp-le) auto
moreover have p ^ 2 > x ^ 2 + 1
proof −

have x ^ 2 + 1 ≤ ((p − 1) div 2) ^ 2 + 1
using x by (intro add-mono power-mono) auto

also have . . . ≤ (p − 1) ^ 2 + 1
by auto

also have (p − 1) ∗ (p − 1) < (p − 1) ∗ (p + 1)
using p-gt-2 by (intro mult-strict-left-mono) auto

hence (p − 1) ^ 2 + 1 < p ^ 2
by (simp add: algebra-simps power2-eq-square)

finally show ?thesis .
qed
ultimately show False by linarith

qed

Any prime factor of p in the Gaussian integers must have norm p.
lemma norm-prime-divisor :

fixes q :: gauss-int
assumes q: prime-elem q q dvd of-nat p
shows gauss-int-norm q = p

proof −
from assms obtain r where r : of-nat p = q ∗ r

by auto
have p ^ 2 = gauss-int-norm (of-nat p)

by simp
also have . . . = gauss-int-norm q ∗ gauss-int-norm r

by (auto simp: r gauss-int-norm-mult)
finally have ∗: gauss-int-norm q ∗ gauss-int-norm r = p ^ 2

by simp
hence ∃ i j. gauss-int-norm q = p ^ i ∧ gauss-int-norm r = p ^ j

using prime-p by (intro prime-power-mult-nat)
then obtain i j where ij: gauss-int-norm q = p ^ i gauss-int-norm r = p ^ j

by blast
have ij-eq-2 : i + j = 2
proof −

from ∗ have p ^ (i + j) = p ^ 2
by (simp add: power-add ij)

thus ?thesis
using p-gt-2 by (subst (asm) power-inject-exp) auto

qed

31

hence i = 0 ∧ j = 2 ∨ i = 1 ∧ j = 1 ∨ i = 2 ∧ j = 0 by auto
hence i = 1
proof (elim disjE)

assume i = 2 ∧ j = 0
hence is-unit r

using ij by (simp add: gauss-int-norm-eq-Suc-0-iff)
hence prime-elem (of-nat p :: gauss-int) using ‹prime-elem q›

by (simp add: prime-elem-mult-unit-left r mult.commute[of - r])
with not-prime show i = 1 by contradiction

qed (use q ij in ‹auto simp: gauss-int-norm-eq-Suc-0-iff ›)
thus ?thesis using ij by simp

qed

We now show two lemmas that characterise the two prime factors of p in
the Gaussian integers: they are two conjugates x± iy for positive integers x
and y such that x2 + y2 = p.
lemma prime-divisor-exists:

obtains q where prime q prime-elem (gauss-cnj q) ReZ q > 0 ImZ q > 0
of-nat p = q ∗ gauss-cnj q gauss-int-norm q = p

proof −
have ∃ q::gauss-int. q dvd of-nat p ∧ prime q
by (rule prime-divisor-exists) (use prime-p in ‹auto simp: is-unit-gauss-int-iff ′›)

then obtain q :: gauss-int where q: prime q q dvd of-nat p
by blast

from ‹prime q› have [simp]: q 6= 0 by auto
have normalize q = q

using q by simp
hence q-signs: ReZ q > 0 ImZ q ≥ 0

by (subst (asm) normalized-gauss-int-iff ; simp)+

from q have gauss-int-norm q = p
using norm-prime-divisor [of q] by simp

moreover from this have gauss-int-norm (gauss-cnj q) = p
by simp

hence prime-elem (gauss-cnj q)
using prime-p by (intro prime-gauss-int-norm-imp-prime-elem) auto

moreover have of-nat p = q ∗ gauss-cnj q
using ‹gauss-int-norm q = p› by (simp add: self-mult-gauss-cnj)

moreover have ImZ q 6= 0
proof

assume [simp]: ImZ q = 0
define m where m = nat (ReZ q)
have [simp]: q = of-nat m

using q-signs by (auto simp: gauss-int-eq-iff m-def)
with q have m dvd p

by (simp add: of-nat-dvd-of-nat-gauss-int-iff)
with prime-p have m = 1 ∨ m = p

using prime-nat-iff by blast
with q show False using not-prime by auto

32

qed
with q-signs have ImZ q > 0 by simp
ultimately show ?thesis using q q-signs by (intro that[of q])

qed

theorem prime-factorization:
obtains q1 q2
where prime q1 prime q2 prime-factorization (of-nat p) = {#q1 , q2#}

gauss-int-norm q1 = p gauss-int-norm q2 = p q2 = i� ∗ gauss-cnj q1
ReZ q1 > 0 ImZ q1 > 0 ReZ q1 > 0 ImZ q2 > 0

proof −
obtain q where q: prime q prime-elem (gauss-cnj q) ReZ q > 0 ImZ q > 0

of-nat p = q ∗ gauss-cnj q gauss-int-norm q = p
using prime-divisor-exists by metis

from ‹prime q› have [simp]: q 6= 0 by auto
define q ′ where q ′ = normalize (gauss-cnj q)
have prime-factorization (of-nat p) = prime-factorization (prod-mset {#q, q ′#})

by (subst prime-factorization-unique) (auto simp: q q ′-def)
also have . . . = {#q, q ′#}

using q by (subst prime-factorization-prod-mset-primes) (auto simp: q ′-def)
finally have prime-factorization (of-nat p) = {#q, q ′#} .
moreover have q ′ = i� ∗ gauss-cnj q

using q by (auto simp: normalize-gauss-int-def q ′-def)
moreover have prime q ′

using q by (auto simp: q ′-def)
ultimately show ?thesis using q

by (intro that[of q q ′]) (auto simp: q ′-def gauss-int-norm-mult)
qed

end

In particular, a consequence of this is that any prime congruent 1 modulo 4
can be written as a sum of squares of positive integers.
lemma prime-cong-1-mod-4-gauss-int-norm-exists:

fixes p :: nat
assumes prime p [p = 1] (mod 4)
shows ∃ z. gauss-int-norm z = p ∧ ReZ z > 0 ∧ ImZ z > 0

proof −
from assms interpret noninert-gauss-int-prime p

by unfold-locales
from prime-divisor-exists obtain q

where q: prime q of-nat p = q ∗ gauss-cnj q
ReZ q > 0 ImZ q > 0 gauss-int-norm q = p by metis

have p = gauss-int-norm q
using q by simp

thus ?thesis using q by blast
qed

33

1.6.4 Full classification of Gaussian primes

Any prime in the ring of Gaussian integers is of the form

• 1 + i�

• p where p ∈ � is prime in � and congruent 1 modulo 4

• x+ iy where x, y are positive integers and x2+y2 is a prime congruent
3 modulo 4

or an associated element of one of these.
theorem gauss-int-prime-classification:

fixes x :: gauss-int
assumes prime x
obtains
(one-plus-i) x = 1 + i�
| (cong-3-mod-4) p where x = of-nat p prime p [p = 3] (mod 4)
| (cong-1-mod-4) prime (gauss-int-norm x) [gauss-int-norm x = 1] (mod 4)

ReZ x > 0 ImZ x > 0 ReZ x 6= ImZ x
proof −

define N where N = gauss-int-norm x
have x dvd x ∗ gauss-cnj x

by simp
also have . . . = of-nat (gauss-int-norm x)

by (simp add: self-mult-gauss-cnj)
finally have x ∈ prime-factors (of-nat N)

using assms by (auto simp: in-prime-factors-iff N-def)
also have N = prod-mset (prime-factorization N)

using assms unfolding N-def by (subst prod-mset-prime-factorization-nat)
auto

also have (of-nat . . . :: gauss-int) =
prod-mset (image-mset of-nat (prime-factorization N))

by (subst of-nat-prod-mset) auto
also have prime-factors . . . = (

⋃
p∈prime-factors N . prime-factors (of-nat p))

by (subst prime-factorization-prod-mset) auto
finally obtain p where p: p ∈ prime-factors N x ∈ prime-factors (of-nat p)

by auto

have prime p
using p by auto

hence ¬(2 ∗ 2) dvd p
using product-dvd-irreducibleD[of p 2 2]
by (auto simp flip: prime-elem-iff-irreducible)

hence [p 6= 0] (mod 4)
using p by (auto simp: cong-0-iff in-prime-factors-iff)

hence p mod 4 ∈ {1 ,2 ,3} by (auto simp: cong-def)
thus ?thesis
proof (elim singletonE insertE)

34

assume p mod 4 = 2
hence p mod 4 mod 2 = 0

by simp
hence p mod 2 = 0

by (simp add: mod-mod-cancel)
with ‹prime p› have [simp]: p = 2

using prime-prime-factor two-is-prime-nat by blast
have prime-factors (of-nat p) = {1 + i� :: gauss-int}

by (simp add: prime-factorization-2-gauss-int)
with p show ?thesis using that(1) by auto

next
assume ∗: p mod 4 = 3
hence prime-factors (of-nat p) = {of-nat p :: gauss-int}

using prime-gauss-int-of-nat[of p] ‹prime p›
by (subst prime-factorization-prime) (auto simp: cong-def)

with p show ?thesis using that(2)[of p] ∗
by (auto simp: cong-def)

next
assume ∗: p mod 4 = 1
then interpret noninert-gauss-int-prime p

by unfold-locales (use ‹prime p› in ‹auto simp: cong-def ›)
obtain q1 q2 :: gauss-int where q12 :

prime q1 prime q2 prime-factorization (of-nat p) = {#q1 , q2#}
gauss-int-norm q1 = p gauss-int-norm q2 = p q2 = i� ∗ gauss-cnj q1
ReZ q1 > 0 ImZ q1 > 0 ReZ q1 > 0 ImZ q2 > 0
using prime-factorization by metis

from p q12 have x = q1 ∨ x = q2 by auto
with q12 have ∗∗: gauss-int-norm x = p ReZ x > 0 ImZ x > 0

by auto
have ReZ x 6= ImZ x
proof

assume ReZ x = ImZ x
hence even (gauss-int-norm x)

by (auto simp: gauss-int-norm-def nat-mult-distrib)
hence even p using ‹gauss-int-norm x = p›

by simp
with ‹p mod 4 = 1 › show False

by presburger
qed
thus ?thesis using that(3) ‹prime p› ∗ ∗∗

by (simp add: cong-def)
qed

qed

lemma prime-gauss-int-norm-squareD:
fixes z :: gauss-int
assumes prime z gauss-int-norm z = p ^ 2
shows prime p ∧ z = of-nat p
using assms(1)

35

proof (cases rule: gauss-int-prime-classification)
case one-plus-i
have prime (2 :: nat) by simp
also from one-plus-i have 2 = p ^ 2

using assms(2) by (auto simp: gauss-int-norm-def)
finally show ?thesis by (simp add: prime-power-iff)

next
case (cong-3-mod-4 p)
thus ?thesis using assms by auto

next
case cong-1-mod-4
with assms show ?thesis

by (auto simp: prime-power-iff)
qed

lemma gauss-int-norm-eq-prime-squareD:
assumes prime p and [p = 3] (mod 4) and gauss-int-norm z = p ^ 2
shows normalize z = of-nat p and prime-elem z

proof −
have ∃ q::gauss-int. q dvd z ∧ prime q

by (rule prime-divisor-exists) (use assms in ‹auto simp: is-unit-gauss-int-iff ′›)
then obtain q :: gauss-int where q: q dvd z prime q by blast
have gauss-int-norm q dvd gauss-int-norm z

by (rule gauss-int-norm-dvd-mono) fact
also have . . . = p ^ 2 by fact
finally obtain i where i: i ≤ 2 gauss-int-norm q = p ^ i

by (subst (asm) divides-primepow-nat) (use assms q in auto)
from i assms q have i 6= 0

by (auto intro!: Nat.gr0I simp: gauss-int-norm-eq-Suc-0-iff)
moreover from i assms q have i 6= 1

using gauss-int-norm-not-3-mod-4 [of q] by auto
ultimately have i = 2 using i by auto
with i have gauss-int-norm q = p ^ 2 by auto
hence [simp]: q = of-nat p

using prime-gauss-int-norm-squareD[of q p] q by auto
have normalize (of-nat p) = normalize z

using q assms
by (intro gauss-int-dvd-same-norm-imp-associated) auto

thus ∗: normalize z = of-nat p by simp

have prime (normalize z)
using prime-gauss-int-of-nat[of p] assms by (subst ∗) auto

thus prime-elem z by simp
qed

The following can be used as a primality test for Gaussian integers. It
effectively reduces checking the primality of a Gaussian integer to checking
the primality of an integer.
A Gaussian integer is prime if either its norm is either �-prime or the square

36

of a �-prime that is congruent 3 modulo 4.
lemma prime-elem-gauss-int-iff :

fixes z :: gauss-int
defines n ≡ gauss-int-norm z
shows prime-elem z ←→ prime n ∨ (∃ p. n = p ^ 2 ∧ prime p ∧ [p = 3] (mod

4))
proof

assume prime n ∨ (∃ p. n = p ^ 2 ∧ prime p ∧ [p = 3] (mod 4))
thus prime-elem z

by (auto intro: gauss-int-norm-eq-prime-squareD(2)
prime-gauss-int-norm-imp-prime-elem simp: n-def)

next
assume prime-elem z
hence prime (normalize z) by simp
thus prime n ∨ (∃ p. n = p ^ 2 ∧ prime p ∧ [p = 3] (mod 4))
proof (cases rule: gauss-int-prime-classification)

case one-plus-i
have n = gauss-int-norm (normalize z)

by (simp add: n-def)
also have normalize z = 1 + i�

by fact
also have gauss-int-norm . . . = 2

by (simp add: gauss-int-norm-def)
finally show ?thesis by simp

next
case (cong-3-mod-4 p)
have n = gauss-int-norm (normalize z)

by (simp add: n-def)
also have normalize z = of-nat p

by fact
also have gauss-int-norm . . . = p ^ 2

by simp
finally show ?thesis using cong-3-mod-4 by simp

next
case cong-1-mod-4
thus ?thesis by (simp add: n-def)

qed
qed

1.6.5 Multiplicities of primes

In this section, we will show some results connecting the multiplicity of a
Gaussian prime p in a Gaussian integer z to the �-multiplicity of the norm
of p in the norm of z.

The multiplicity of the Gaussian prime 1 + i� in an integer c is simply twice
the �-multiplicity of 2 in c:
lemma multiplicity-prime-1-plus-i-aux: multiplicity (1 + i�) (of-nat c) = 2 ∗ mul-

37

tiplicity 2 c
proof (cases c = 0)

case [simp]: False
have 2 ∗ multiplicity 2 c = multiplicity 2 (c ^ 2)

by (simp add: prime-elem-multiplicity-power-distrib)
also have multiplicity 2 (c ^ 2) = multiplicity (of-nat 2) (of-nat c ^ 2 ::

gauss-int)
by (simp flip: multiplicity-gauss-int-of-nat)

also have of-nat 2 = (−i�) ∗ (1 + i�) ^ 2
by (simp add: algebra-simps power2-eq-square)

also have multiplicity . . . (of-nat c ^ 2) = multiplicity ((1 + i�) ^ 2) (of-nat c
^ 2)

by (subst multiplicity-times-unit-left) auto
also have . . . = multiplicity (1 + i�) (of-nat c)

by (subst multiplicity-power-power) auto
finally show ?thesis ..

qed auto

Tha multiplicity of an inert Gaussian prime q ∈ Z in a Gaussian integer z
is precisely half the �-multiplicity of q in the norm of z.
lemma multiplicity-prime-cong-3-mod-4 :

assumes prime (of-nat q :: gauss-int)
shows multiplicity q (gauss-int-norm z) = 2 ∗ multiplicity (of-nat q) z

proof (cases z = 0)
case [simp]: False
have multiplicity q (gauss-int-norm z) =

multiplicity (of-nat q) (of-nat (gauss-int-norm z) :: gauss-int)
by (simp add: multiplicity-gauss-int-of-nat)

also have . . . = multiplicity (of-nat q) (z ∗ gauss-cnj z)
by (simp add: self-mult-gauss-cnj)

also have . . . = multiplicity (of-nat q) z + multiplicity (gauss-cnj (of-nat q))
(gauss-cnj z)

using assms by (subst prime-elem-multiplicity-mult-distrib) auto
also have multiplicity (gauss-cnj (of-nat q)) (gauss-cnj z) = multiplicity (of-nat

q) z
by (subst multiplicity-gauss-cnj) auto

also have . . . + . . . = 2 ∗ . . .
by simp

finally show ?thesis .
qed auto

For Gaussian primes p whose norm is congruent 1 modulo 4, the Z[i]-
multiplicity of p in an integer c is just the �-multiplicity of their norm
in c.
lemma multiplicity-prime-cong-1-mod-4-aux:

fixes p :: gauss-int
assumes prime-elem p ReZ p > 0 ImZ p > 0 ImZ p 6= ReZ p
shows multiplicity p (of-nat c) = multiplicity (gauss-int-norm p) c

proof (cases c = 0)

38

case [simp]: False
show ?thesis
proof (intro antisym multiplicity-geI)

define k where k = multiplicity p (of-nat c)
have p ^ k dvd of-nat c

by (simp add: multiplicity-dvd k-def)
moreover have gauss-cnj p ^ k dvd of-nat c

using multiplicity-dvd[of gauss-cnj p of-nat c]
multiplicity-gauss-cnj[of p of-nat c] by (simp add: k-def)

moreover have ¬p dvd gauss-cnj p
using assms by (subst self-dvd-gauss-cnj-iff) auto

hence ¬p dvd gauss-cnj p ^ k
using assms prime-elem-dvd-power by blast

ultimately have p ^ k ∗ gauss-cnj p ^ k dvd of-nat c
using assms by (intro prime-elem-power-mult-dvdI) auto

also have p ^ k ∗ gauss-cnj p ^ k = of-nat (gauss-int-norm p ^ k)
by (simp flip: self-mult-gauss-cnj add: power-mult-distrib)

finally show gauss-int-norm p ^ k dvd c
by (subst (asm) of-nat-dvd-of-nat-gauss-int-iff)

next
define k where k = multiplicity (gauss-int-norm p) c
have p ^ k dvd (p ∗ gauss-cnj p) ^ k

by (intro dvd-power-same) auto
also have . . . = of-nat (gauss-int-norm p ^ k)

by (simp add: self-mult-gauss-cnj)
also have . . . dvd of-nat c
unfolding of-nat-dvd-of-nat-gauss-int-iff by (auto simp: k-def multiplicity-dvd)
finally show p ^ k dvd of-nat c .

qed (use assms in ‹auto simp: gauss-int-norm-eq-Suc-0-iff ›)
qed auto

The multiplicity of a Gaussian prime with norm congruent 1 modulo 4 in
some Gaussian integer z and the multiplicity of its conjugate in z sum to
the the �-multiplicity of their norm in the norm of z:
lemma multiplicity-prime-cong-1-mod-4 :

fixes p :: gauss-int
assumes prime-elem p ReZ p > 0 ImZ p > 0 ImZ p 6= ReZ p
shows multiplicity (gauss-int-norm p) (gauss-int-norm z) =

multiplicity p z + multiplicity (gauss-cnj p) z
proof (cases z = 0)

case [simp]: False
have multiplicity (gauss-int-norm p) (gauss-int-norm z) =

multiplicity p (of-nat (gauss-int-norm z))
using assms by (subst multiplicity-prime-cong-1-mod-4-aux) auto

also have . . . = multiplicity p (z ∗ gauss-cnj z)
by (simp add: self-mult-gauss-cnj)

also have . . . = multiplicity p z + multiplicity p (gauss-cnj z)
using assms by (subst prime-elem-multiplicity-mult-distrib) auto

also have multiplicity p (gauss-cnj z) = multiplicity (gauss-cnj p) z

39

by (subst multiplicity-gauss-cnj [symmetric]) auto
finally show ?thesis .

qed auto

The multiplicity of the Gaussian prime 1 + i� in a Gaussian integer z is
precisely the �-multiplicity of 2 in the norm of z:
lemma multiplicity-prime-1-plus-i: multiplicity (1 + i�) z = multiplicity 2 (gauss-int-norm
z)
proof (cases z = 0)

case [simp]: False
note [simp] = prime-elem-one-plus-i-gauss-int
have 2 ∗ multiplicity 2 (gauss-int-norm z) = multiplicity (1 + i�) (of-nat

(gauss-int-norm z))
by (rule multiplicity-prime-1-plus-i-aux [symmetric])

also have . . . = multiplicity (1 + i�) (z ∗ gauss-cnj z)
by (simp add: self-mult-gauss-cnj)

also have . . . = multiplicity (1 + i�) z + multiplicity (gauss-cnj (1 − i�))
(gauss-cnj z)

by (subst prime-elem-multiplicity-mult-distrib) auto
also have multiplicity (gauss-cnj (1 − i�)) (gauss-cnj z) = multiplicity (1 − i�)

z
by (subst multiplicity-gauss-cnj) auto

also have 1 − i� = (−i�) ∗ (1 + i�)
by (simp add: algebra-simps)

also have multiplicity . . . z = multiplicity (1 + i�) z
by (subst multiplicity-times-unit-left) auto

also have . . . + . . . = 2 ∗ . . .
by simp

finally show ?thesis by simp
qed auto

1.7 Coprimality of an element and its conjugate

Using the classification of the primes, we now show that if the real and
imaginary parts of a Gaussian integer are coprime and its norm is odd, then
it is coprime to its own conjugate.
lemma coprime-self-gauss-cnj:

assumes coprime (ReZ z) (ImZ z) and odd (gauss-int-norm z)
shows coprime z (gauss-cnj z)

proof (rule coprimeI)
fix d assume d dvd z d dvd gauss-cnj z
have ∗: False if p ∈ prime-factors z p ∈ prime-factors (gauss-cnj z) for p
proof −

from that have p: prime p p dvd z p dvd gauss-cnj z
by auto

define p ′ where p ′ = gauss-cnj p
define d where d = gauss-int-norm p

40

have of-nat-d-eq: of-nat d = p ∗ p ′

by (simp add: p ′-def self-mult-gauss-cnj d-def)
have prime-elem p prime-elem p ′ p dvd z p ′ dvd z p dvd gauss-cnj z p ′ dvd

gauss-cnj z
using that by (auto simp: in-prime-factors-iff p ′-def gauss-cnj-dvd-left-iff)

have prime p
using that by auto

then obtain q where q: prime q of-nat q dvd z
proof (cases rule: gauss-int-prime-classification)

case one-plus-i
hence 2 = gauss-int-norm p

by (auto simp: gauss-int-norm-def)
also have gauss-int-norm p dvd gauss-int-norm z

using p by (intro gauss-int-norm-dvd-mono) auto
finally have even (gauss-int-norm z) .
with ‹odd (gauss-int-norm z)› show ?thesis

by contradiction
next

case (cong-3-mod-4 q)
thus ?thesis using that[of q] p by simp

next
case cong-1-mod-4
hence ¬p dvd p ′

unfolding p ′-def by (subst self-dvd-gauss-cnj-iff) auto
hence p ∗ p ′ dvd z using p

by (intro prime-elem-mult-dvdI) (auto simp: p ′-def gauss-cnj-dvd-left-iff)
also have p ∗ p ′ = of-nat (gauss-int-norm p)

by (simp add: p ′-def self-mult-gauss-cnj)
finally show ?thesis using that[of gauss-int-norm p] cong-1-mod-4

by simp
qed

have of-nat q dvd gcd (2 ∗ of-int (ReZ z)) (2 ∗ i� ∗ of-int (ImZ z))
proof (rule gcd-greatest)

have of-nat q dvd (z + gauss-cnj z)
using q by (auto simp: gauss-cnj-dvd-right-iff)

also have . . . = 2 ∗ of-int (ReZ z)
by (simp add: self-plus-gauss-cnj)

finally show of-nat q dvd (2 ∗ of-int (ReZ z) :: gauss-int) .
next

have of-nat q dvd (z − gauss-cnj z)
using q by (auto simp: gauss-cnj-dvd-right-iff)

also have . . . = 2 ∗ i� ∗ of-int (ImZ z)
by (simp add: self-minus-gauss-cnj)

finally show of-nat q dvd (2 ∗ i� ∗ of-int (ImZ z)) .
qed
also have . . . = 2
proof −

41

have odd (ReZ z) ∨ odd (ImZ z)
using assms by (auto simp: gauss-int-norm-def even-nat-iff)

thus ?thesis
proof

assume odd (ReZ z)
hence coprime (of-int (ReZ z)) (of-int 2 :: gauss-int)

unfolding coprime-of-int-gauss-int coprime-right-2-iff-odd .
thus ?thesis

using assms
by (subst gcd-mult-left-right-cancel)
(auto simp: coprime-of-int-gauss-int coprime-commute is-unit-left-imp-coprime

is-unit-right-imp-coprime gcd-proj1-if-dvd gcd-proj2-if-dvd)
next

assume odd (ImZ z)
hence coprime (of-int (ImZ z)) (of-int 2 :: gauss-int)

unfolding coprime-of-int-gauss-int coprime-right-2-iff-odd .
hence gcd (2 ∗ of-int (ReZ z)) (2 ∗ i� ∗ of-int (ImZ z)) = gcd (2 ∗ of-int

(ReZ z)) (2 ∗ i�)
using assms
by (subst gcd-mult-right-right-cancel)
(auto simp: coprime-of-int-gauss-int coprime-commute is-unit-left-imp-coprime

is-unit-right-imp-coprime)
also have . . . = normalize (2 ∗ gcd (of-int (ReZ z)) i�)

by (subst gcd-mult-left) auto
also have gcd (of-int (ReZ z)) i� = 1
by (subst coprime-iff-gcd-eq-1 [symmetric], rule is-unit-right-imp-coprime)

auto
finally show ?thesis by simp

qed
qed
finally have of-nat q dvd (of-nat 2 :: gauss-int)

by simp
hence q dvd 2

by (simp only: of-nat-dvd-of-nat-gauss-int-iff)
with ‹prime q› have q = 2

using primes-dvd-imp-eq two-is-prime-nat by blast
with q have 2 dvd z

by auto

have 2 dvd gauss-int-norm 2
by simp

also have . . . dvd gauss-int-norm z
using ‹2 dvd z› by (intro gauss-int-norm-dvd-mono)

finally show False using ‹odd (gauss-int-norm z)› by contradiction
qed

fix d :: gauss-int
assume d: d dvd z d dvd gauss-cnj z
show is-unit d

42

proof (rule ccontr)
assume ¬is-unit d
moreover from d assms have d 6= 0

by auto
ultimately obtain p where p: prime p p dvd d

using prime-divisorE by blast
with d have p ∈ prime-factors z p ∈ prime-factors (gauss-cnj z)

using assms by (auto simp: in-prime-factors-iff)
with ∗[of p] show False by blast

qed
qed

1.8 Square decompositions of prime numbers congruent 1
mod 4

lemma prime-1-mod-4-sum-of-squares-unique-aux:
fixes p x y :: nat
assumes prime p [p = 1] (mod 4) x ^ 2 + y ^ 2 = p
shows x > 0 ∧ y > 0 ∧ x 6= y

proof safe
from assms show x > 0 y > 0

by (auto intro!: Nat.gr0I simp: prime-power-iff)
next

assume x = y
with assms have p = 2 ∗ x ^ 2

by simp
with ‹prime p› have p = 2

by (auto dest: prime-product)
with ‹[p = 1] (mod 4)› show False

by (simp add: cong-def)
qed

Any prime number congruent 1 modulo 4 can be written uniquely as a sum
of two squares x2 + y2 (up to commutativity of the addition). Additionally,
we have shown above that x and y are both positive and x 6= y.
lemma prime-1-mod-4-sum-of-squares-unique:

fixes p :: nat
assumes prime p [p = 1] (mod 4)
shows ∃ !(x,y). x ≤ y ∧ x ^ 2 + y ^ 2 = p

proof (rule ex-ex1I)
obtain z where z: gauss-int-norm z = p

using prime-cong-1-mod-4-gauss-int-norm-exists[OF assms] by blast
show ∃ z. case z of (x,y) ⇒ x ≤ y ∧ x ^ 2 + y ^ 2 = p
proof (cases |ReZ z| ≤ |ImZ z|)

case True
with z show ?thesis by
(intro exI [of - (nat |ReZ z|, nat |ImZ z|)])
(auto simp: gauss-int-norm-def nat-add-distrib simp flip: nat-power-eq)

next

43

case False
with z show ?thesis by
(intro exI [of - (nat |ImZ z |, nat |ReZ z|)])
(auto simp: gauss-int-norm-def nat-add-distrib simp flip: nat-power-eq)

qed
next

fix z1 z2
assume z1 : case z1 of (x, y) ⇒ x ≤ y ∧ x2 + y2 = p
assume z2 : case z2 of (x, y) ⇒ x ≤ y ∧ x2 + y2 = p
define z1 ′ :: gauss-int where z1 ′ = of-nat (fst z1) + i� ∗ of-nat (snd z1)
define z2 ′ :: gauss-int where z2 ′ = of-nat (fst z2) + i� ∗ of-nat (snd z2)
from assms interpret noninert-gauss-int-prime p

by unfold-locales auto
have norm-z1 ′: gauss-int-norm z1 ′ = p
using z1 by (simp add: z1 ′-def gauss-int-norm-def case-prod-unfold nat-add-distrib

nat-power-eq)
have norm-z2 ′: gauss-int-norm z2 ′ = p
using z2 by (simp add: z2 ′-def gauss-int-norm-def case-prod-unfold nat-add-distrib

nat-power-eq)

have sgns: fst z1 > 0 snd z1 > 0 fst z2 > 0 snd z2 > 0 fst z1 6= snd z1 fst z2
6= snd z2

using prime-1-mod-4-sum-of-squares-unique-aux[OF assms, of fst z1 snd z1] z1
prime-1-mod-4-sum-of-squares-unique-aux[OF assms, of fst z2 snd z2] z2

by auto
have [simp]: normalize z1 ′ = z1 ′ normalize z2 ′ = z2 ′

using sgns by (subst normalized-gauss-int-iff ; simp add: z1 ′-def z2 ′-def)+
have prime z1 ′ prime z2 ′

using norm-z1 ′ norm-z2 ′ assms unfolding prime-def
by (auto simp: prime-gauss-int-norm-imp-prime-elem)

have of-nat p = z1 ′ ∗ gauss-cnj z1 ′

by (simp add: self-mult-gauss-cnj norm-z1 ′)
hence z1 ′ dvd of-nat p

by simp
also have of-nat p = z2 ′ ∗ gauss-cnj z2 ′

by (simp add: self-mult-gauss-cnj norm-z2 ′)
finally have z1 ′ dvd z2 ′ ∨ z1 ′ dvd gauss-cnj z2 ′ using assms

by (subst (asm) prime-elem-dvd-mult-iff)
(simp add: norm-z1 ′ prime-gauss-int-norm-imp-prime-elem)

thus z1 = z2
proof

assume z1 ′ dvd z2 ′

with ‹prime z1 ′› ‹prime z2 ′› have z1 ′ = z2 ′

by (simp add: primes-dvd-imp-eq)
thus ?thesis

by (simp add: z1 ′-def z2 ′-def gauss-int-eq-iff prod-eq-iff)
next

assume dvd: z1 ′ dvd gauss-cnj z2 ′

44

have normalize (i� ∗ gauss-cnj z2 ′) = i� ∗ gauss-cnj z2 ′

using sgns by (subst normalized-gauss-int-iff) (auto simp: z2 ′-def)
moreover have prime-elem (i� ∗ gauss-cnj z2 ′)

by (rule prime-gauss-int-norm-imp-prime-elem)
(simp add: gauss-int-norm-mult norm-z2 ′ ‹prime p›)

ultimately have prime (i� ∗ gauss-cnj z2 ′)
by (simp add: prime-def)

moreover from dvd have z1 ′ dvd i� ∗ gauss-cnj z2 ′

by simp
ultimately have z1 ′ = i� ∗ gauss-cnj z2 ′

using ‹prime z1 ′› by (simp add: primes-dvd-imp-eq)
hence False using z1 z2 sgns

by (auto simp: gauss-int-eq-iff z1 ′-def z2 ′-def)
thus ?thesis ..

qed
qed

lemma two-sum-of-squares-nat-iff : (x :: nat) ^ 2 + y ^ 2 = 2 ←→ x = 1 ∧ y =
1
proof

assume eq: x ^ 2 + y ^ 2 = 2
have square-neq-2 : n ^ 2 6= 2 for n :: nat
proof

assume ∗: n ^ 2 = 2
have prime (2 :: nat)

by simp
thus False by (subst (asm) ∗ [symmetric]) (auto simp: prime-power-iff)

qed

from eq have x ^ 2 < 2 ^ 2 y ^ 2 < 2 ^ 2
by simp-all

hence x < 2 y < 2
using power2-less-imp-less[of x 2] power2-less-imp-less[of y 2] by auto

moreover have x > 0 y > 0
using eq square-neq-2 [of x] square-neq-2 [of y] by (auto intro!: Nat.gr0I)

ultimately show x = 1 ∧ y = 1
by auto

qed auto

lemma prime-sum-of-squares-unique:
fixes p :: nat
assumes prime p p = 2 ∨ [p = 1] (mod 4)
shows ∃ !(x,y). x ≤ y ∧ x ^ 2 + y ^ 2 = p
using assms(2)

proof
assume [simp]: p = 2
have ∗∗: (λ(x,y). x ≤ y ∧ x ^ 2 + y ^ 2 = p) = (λz. z = (1 ,1 :: nat))

using two-sum-of-squares-nat-iff by (auto simp: fun-eq-iff)
thus ?thesis

45

by (subst ∗∗) auto
qed (use prime-1-mod-4-sum-of-squares-unique[of p] assms in auto)

We now give a simple and inefficient algorithm to compute the canonical
decomposition x2 + y2 with x ≤ y.
definition prime-square-sum-nat-decomp :: nat ⇒ nat × nat where

prime-square-sum-nat-decomp p =
(if prime p ∧ (p = 2 ∨ [p = 1] (mod 4))
then THE (x,y). x ≤ y ∧ x ^ 2 + y ^ 2 = p else (0 , 0))

lemma prime-square-sum-nat-decomp-eqI :
assumes prime p x ^ 2 + y ^ 2 = p x ≤ y
shows prime-square-sum-nat-decomp p = (x, y)

proof −
have [gauss-int-norm (of-nat x + i� ∗ of-nat y) 6= 3] (mod 4)

by (rule gauss-int-norm-not-3-mod-4)
also have gauss-int-norm (of-nat x + i� ∗ of-nat y) = p

using assms by (auto simp: gauss-int-norm-def nat-add-distrib nat-power-eq)
finally have [p 6= 3] (mod 4) .
with prime-mod-4-cases[of p] assms have ∗: p = 2 ∨ [p = 1] (mod 4)

by auto

have prime-square-sum-nat-decomp p = (THE (x,y). x ≤ y ∧ x ^ 2 + y ^ 2 =
p)

using ∗ ‹prime p› by (simp add: prime-square-sum-nat-decomp-def)
also have . . . = (x, y)
proof (rule the1-equality)

show ∃ !(x,y). x ≤ y ∧ x ^ 2 + y ^ 2 = p
using ‹prime p› ∗ by (rule prime-sum-of-squares-unique)

qed (use assms in auto)
finally show ?thesis .

qed

lemma prime-square-sum-nat-decomp-correct:
assumes prime p p = 2 ∨ [p = 1] (mod 4)
defines z ≡ prime-square-sum-nat-decomp p
shows fst z ^ 2 + snd z ^ 2 = p fst z ≤ snd z

proof −
define z ′ where z ′ = (THE (x,y). x ≤ y ∧ x ^ 2 + y ^ 2 = p)
have z = z ′

unfolding z-def z ′-def using assms by (simp add: prime-square-sum-nat-decomp-def)
also have∃ !(x,y). x ≤ y ∧ x ^ 2 + y ^ 2 = p

using assms by (intro prime-sum-of-squares-unique)
hence case z ′ of (x, y) ⇒ x ≤ y ∧ x ^ 2 + y ^ 2 = p

unfolding z ′-def by (rule theI ′)
finally show fst z ^ 2 + snd z ^ 2 = p fst z ≤ snd z

by auto
qed

46

lemma sum-of-squares-nat-bound:
fixes x y n :: nat
assumes x ^ 2 + y ^ 2 = n
shows x ≤ n

proof (cases x = 0)
case False
hence x ∗ 1 ≤ x ^ 2

unfolding power2-eq-square by (intro mult-mono) auto
also have . . . ≤ x ^ 2 + y ^ 2

by simp
also have . . . = n

by fact
finally show ?thesis by simp

qed auto

lemma sum-of-squares-nat-bound ′:
fixes x y n :: nat
assumes x ^ 2 + y ^ 2 = n
shows y ≤ n
using sum-of-squares-nat-bound[of y x] assms by (simp add: add.commute)

lemma is-singleton-conv-Ex1 :
is-singleton A ←→ (∃ !x. x ∈ A)

proof
assume is-singleton A
thus ∃ !x. x ∈ A

by (auto elim!: is-singletonE)
next

assume ∃ !x. x ∈ A
thus is-singleton A

by (metis equals0D is-singletonI ′)
qed

lemma the-elemI :
assumes is-singleton A
shows the-elem A ∈ A
using assms by (elim is-singletonE) auto

lemma prime-square-sum-nat-decomp-code-aux:
assumes prime p p = 2 ∨ [p = 1] (mod 4)
defines z ≡ the-elem (Set.filter (λ(x,y). x ^ 2 + y ^ 2 = p) (SIGMA x:{0 ..p}.
{x..p}))

shows prime-square-sum-nat-decomp p = z
proof −

let ?A = Set.filter (λ(x,y). x ^ 2 + y ^ 2 = p) (SIGMA x :{0 ..p}. {x..p})
have eq: ?A = {(x,y). x ≤ y ∧ x ^ 2 + y ^ 2 = p}

using sum-of-squares-nat-bound [of - - p] sum-of-squares-nat-bound ′ [of - - p]
by auto

have z: z ∈ Set.filter (λ(x,y). x ^ 2 + y ^ 2 = p) (SIGMA x :{0 ..p}. {x..p})

47

unfolding z-def eq using prime-sum-of-squares-unique[OF assms(1 ,2)]
by (intro the-elemI) (simp add: is-singleton-conv-Ex1)

have prime-square-sum-nat-decomp p = (fst z, snd z)
using z by (intro prime-square-sum-nat-decomp-eqI [OF assms(1)]) auto

also have . . . = z
by simp

finally show ?thesis .
qed

lemma prime-square-sum-nat-decomp-code [code]:
prime-square-sum-nat-decomp p =

(if prime p ∧ (p = 2 ∨ [p = 1] (mod 4))
then the-elem (Set.filter (λ(x,y). x ^ 2 + y ^ 2 = p) (SIGMA x:{0 ..p}. {x..p}))
else (0 , 0))

using prime-square-sum-nat-decomp-code-aux[of p]
by (auto simp: prime-square-sum-nat-decomp-def)

1.9 Executable factorisation of Gaussian integers

Lastly, we use all of the above to give an executable (albeit not very effi-
cient) factorisation algorithm for Gaussian integers based on factorisation
of regular integers. Note that we will only compute the set of prime factors
without multiplicity, but given that, it would be fairly easy to determine the
multiplicity as well.
First, we need the following function that computes the Gaussian integer
factors of a �-prime p:
definition factor-gauss-int-prime-nat :: nat ⇒ gauss-int list where

factor-gauss-int-prime-nat p =
(if p = 2 then [1 + i�]
else if [p = 3] (mod 4) then [of-nat p]
else case prime-square-sum-nat-decomp p of

(x, y) ⇒ [of-nat x + i� ∗ of-nat y, of-nat y + i� ∗ of-nat x])

lemma factor-gauss-int-prime-nat-correct:
assumes prime p
shows set (factor-gauss-int-prime-nat p) = prime-factors (of-nat p)
using prime-mod-4-cases[OF assms]

proof (elim disjE)
assume p = 2
thus ?thesis

by (auto simp: prime-factorization-2-gauss-int factor-gauss-int-prime-nat-def)
next

assume ∗: [p = 3] (mod 4)
with assms have prime (of-nat p :: gauss-int)

by (intro prime-gauss-int-of-nat)
thus ?thesis using assms ∗
by (auto simp: prime-factorization-prime factor-gauss-int-prime-nat-def cong-def)

next

48

assume ∗: [p = 1] (mod 4)
then interpret noninert-gauss-int-prime p

using ‹prime p› by unfold-locales
define z where z = prime-square-sum-nat-decomp p
define x y where x = fst z and y = snd z
have xy: x ^ 2 + y ^ 2 = p x ≤ y

using prime-square-sum-nat-decomp-correct[of p] ∗ assms
by (auto simp: x-def y-def z-def)

from xy have xy-signs: x > 0 y > 0
using prime-1-mod-4-sum-of-squares-unique-aux[of p x y] assms ∗ by auto

have norms: gauss-int-norm (of-nat x + i� ∗ of-nat y) = p
gauss-int-norm (of-nat y + i� ∗ of-nat x) = p

using xy by (auto simp: gauss-int-norm-def nat-add-distrib nat-power-eq)
have prime: prime (of-nat x + i� ∗ of-nat y) prime (of-nat y + i� ∗ of-nat x)

using norms xy-signs ‹prime p› unfolding prime-def normalized-gauss-int-iff
by (auto intro!: prime-gauss-int-norm-imp-prime-elem)

have normalize ((of-nat x + i� ∗ of-nat y) ∗ (of-nat y + i� ∗ of-nat x)) = of-nat
p

proof −
have (of-nat x + i� ∗ of-nat y) ∗ (of-nat y + i� ∗ of-nat x) = (i� ∗ of-nat p ::

gauss-int)
by (subst xy(1) [symmetric]) (auto simp: gauss-int-eq-iff power2-eq-square)

also have normalize . . . = of-nat p
by simp

finally show ?thesis .
qed
hence prime-factorization (of-nat p) =

prime-factorization (prod-mset {#of-nat x + i� ∗ of-nat y, of-nat y + i� ∗
of-nat x#})

using assms xy by (subst prime-factorization-unique) (auto simp: gauss-int-eq-iff)
also have . . . = {#of-nat x + i� ∗ of-nat y, of-nat y + i� ∗ of-nat x#}

using prime by (subst prime-factorization-prod-mset-primes) auto
finally have prime-factors (of-nat p) = {of-nat x + i� ∗ of-nat y, of-nat y + i�
∗ of-nat x}

by simp
also have . . . = set (factor-gauss-int-prime-nat p)

using ∗ unfolding factor-gauss-int-prime-nat-def case-prod-unfold
by (auto simp: cong-def x-def y-def z-def)

finally show ?thesis ..
qed

Next, we lift this to compute the prime factorisation of any integer in the
Gaussian integers:
definition prime-factors-gauss-int-of-nat :: nat ⇒ gauss-int set where

prime-factors-gauss-int-of-nat n = (if n = 0 then {} else
(
⋃

p∈prime-factors n. set (factor-gauss-int-prime-nat p)))

lemma prime-factors-gauss-int-of-nat-correct:

49

prime-factors-gauss-int-of-nat n = prime-factors (of-nat n)
proof (cases n = 0)

case False
from False have [simp]: n > 0 by auto
have prime-factors (of-nat n :: gauss-int) =

prime-factors (of-nat (prod-mset (prime-factorization n)))
by (subst prod-mset-prime-factorization-nat [symmetric]) auto

also have . . . = prime-factors (prod-mset (image-mset of-nat (prime-factorization
n)))

by (subst of-nat-prod-mset) auto
also have . . . = (

⋃
p∈prime-factors n. prime-factors (of-nat p))

by (subst prime-factorization-prod-mset) auto
also have . . . = (

⋃
p∈prime-factors n. set (factor-gauss-int-prime-nat p))

by (intro SUP-cong refl factor-gauss-int-prime-nat-correct [symmetric]) auto
finally show ?thesis by (simp add: prime-factors-gauss-int-of-nat-def)

qed (auto simp: prime-factors-gauss-int-of-nat-def)

We can now use this to factor any Gaussian integer by computing a factori-
sation of its norm and removing all the prime divisors that do not actually
divide it.
definition prime-factors-gauss-int :: gauss-int ⇒ gauss-int set where

prime-factors-gauss-int z = (if z = 0 then {}
else Set.filter (λp. p dvd z) (prime-factors-gauss-int-of-nat (gauss-int-norm z)))

lemma prime-factors-gauss-int-correct [code-unfold]: prime-factors z = prime-factors-gauss-int
z
proof (cases z = 0)

case [simp]: False
define n where n = gauss-int-norm z
from False have [simp]: n > 0 by (auto simp: n-def)

have prime-factors-gauss-int z = Set.filter (λp. p dvd z) (prime-factors (of-nat
n))

by (simp add: prime-factors-gauss-int-of-nat-correct prime-factors-gauss-int-def
n-def)

also have of-nat n = z ∗ gauss-cnj z
by (simp add: n-def self-mult-gauss-cnj)

also have prime-factors . . . = prime-factors z ∪ prime-factors (gauss-cnj z)
by (subst prime-factors-product) auto

also have Set.filter (λp. p dvd z) . . . = prime-factors z
by (auto simp: in-prime-factors-iff)

finally show ?thesis by simp
qed (auto simp: prime-factors-gauss-int-def)

end

theory Gaussian-Integers-Test
imports

Gaussian-Integers

50

Polynomial-Factorization.Prime-Factorization
HOL−Library.Code-Target-Numeral

begin

Lastly, we apply our factorisation algorithm to some simple examples:

value (1234 + 5678 ∗ i�) mod (321 + 654 ∗ i�)
value prime-factors (1 + 3 ∗ i�)
value prime-factors (4830 + 1610 ∗ i�)

end

1.10 Sums of two squares
theory Gaussian-Integers-Sums-Of-Two-Squares

imports Gaussian-Integers
begin

As an application, we can now easily prove that a positive natural number
is the sum of two squares if and only if all prime factors congruent 3 modulo
4 have even multiplicity.
inductive sum-of-2-squares-nat :: nat ⇒ bool where

sum-of-2-squares-nat (a ^ 2 + b ^ 2)

lemma sum-of-2-squares-nat-altdef : sum-of-2-squares-nat n ←→ n ∈ range gauss-int-norm
proof (safe elim!: sum-of-2-squares-nat.cases)

fix a b :: nat
have a ^ 2 + b ^ 2 = gauss-int-norm (of-nat a + i� ∗ of-nat b)

by (auto simp: gauss-int-norm-def nat-add-distrib nat-power-eq)
thus a ^ 2 + b ^ 2 ∈ range gauss-int-norm by blast

next
fix z :: gauss-int
have gauss-int-norm z = nat |ReZ z| ^ 2 + nat |ImZ z | ^ 2

by (auto simp: gauss-int-norm-def nat-add-distrib simp flip: nat-power-eq)
thus sum-of-2-squares-nat (gauss-int-norm z)

by (auto intro: sum-of-2-squares-nat.intros)
qed

lemma sum-of-2-squares-nat-gauss-int-norm [intro]: sum-of-2-squares-nat (gauss-int-norm
z)

by (auto simp: sum-of-2-squares-nat-altdef)

lemma sum-of-2-squares-nat-0 [simp, intro]: sum-of-2-squares-nat 0
and sum-of-2-squares-nat-1 [simp, intro]: sum-of-2-squares-nat 1
and sum-of-2-squares-nat-Suc-0 [simp, intro]: sum-of-2-squares-nat (Suc 0)
and sum-of-2-squares-nat-2 [simp, intro]: sum-of-2-squares-nat 2
using sum-of-2-squares-nat.intros[of 0 0] sum-of-2-squares-nat.intros[of 0 1]

sum-of-2-squares-nat.intros[of 1 1] by (simp-all add: numeral-2-eq-2)

51

lemma sum-of-2-squares-nat-mult [intro]:
assumes sum-of-2-squares-nat x sum-of-2-squares-nat y
shows sum-of-2-squares-nat (x ∗ y)

proof −
from assms obtain z1 z2 where x = gauss-int-norm z1 y = gauss-int-norm z2

by (auto simp: sum-of-2-squares-nat-altdef)
hence x ∗ y = gauss-int-norm (z1 ∗ z2)

by (simp add: gauss-int-norm-mult)
thus ?thesis by auto

qed

lemma sum-of-2-squares-nat-power [intro]:
assumes sum-of-2-squares-nat m
shows sum-of-2-squares-nat (m ^ n)
using assms by (induction n) auto

lemma sum-of-2-squares-nat-prod [intro]:
assumes

∧
x. x ∈ A =⇒ sum-of-2-squares-nat (f x)

shows sum-of-2-squares-nat (
∏

x∈A. f x)
using assms by (induction A rule: infinite-finite-induct) auto

lemma sum-of-2-squares-nat-prod-mset [intro]:
assumes

∧
x. x ∈# A =⇒ sum-of-2-squares-nat x

shows sum-of-2-squares-nat (prod-mset A)
using assms by (induction A) auto

lemma sum-of-2-squares-nat-necessary:
assumes sum-of-2-squares-nat n n > 0
assumes prime p [p = 3] (mod 4)
shows even (multiplicity p n)

proof −
define k where k = multiplicity p n
from assms obtain z where z: gauss-int-norm z = n

by (auto simp: sum-of-2-squares-nat-altdef)
from assms and z have [simp]: z 6= 0

by auto
have prime ′: prime (of-nat p :: gauss-int)

using assms prime-gauss-int-of-nat by blast
have [simp]: multiplicity (of-nat p) (gauss-cnj z) = multiplicity (of-nat p) z

using multiplicity-gauss-cnj[of of-nat p z] by simp
have multiplicity (of-nat p) (of-nat n :: gauss-int) =

multiplicity (of-nat p) (z ∗ gauss-cnj z)
using z by (simp add: self-mult-gauss-cnj)

also have . . . = 2 ∗ multiplicity (of-nat p) z
using prime ′ by (subst prime-elem-multiplicity-mult-distrib) auto

finally have multiplicity p n = 2 ∗ multiplicity (of-nat p) z
by (subst (asm) multiplicity-gauss-int-of-nat)

thus ?thesis by auto
qed

52

lemma sum-of-2-squares-nat-sufficient:
fixes n :: nat
assumes n > 0
assumes

∧
p. p ∈ prime-factors n =⇒ [p = 3] (mod 4) =⇒ even (multiplicity p

n)
shows sum-of-2-squares-nat n

proof −
define P2 where P2 = {p∈prime-factors n. [p = 1] (mod 4)}
define P3 where P3 = {p∈prime-factors n. [p = 3] (mod 4)}
from ‹n > 0 › have n = (

∏
p∈prime-factors n. p ^ multiplicity p n)

by (subst prime-factorization-nat) auto
also have . . . = (

∏
p∈{2}∪P2∪P3 . p ^ multiplicity p n)

using prime-mod-4-cases
by (intro prod.mono-neutral-left)

(auto simp: P2-def P3-def in-prime-factors-iff not-dvd-imp-multiplicity-0)
also have . . . = (

∏
p∈{2}∪P2 . p ^ multiplicity p n) ∗ (

∏
p∈P3 . p ^ multiplicity

p n)
by (intro prod.union-disjoint) (auto simp: P2-def P3-def cong-def)

also have (
∏

p∈{2}∪P2 . p ^ multiplicity p n) =
2 ^ multiplicity 2 n ∗ (

∏
p∈P2 . p ^ multiplicity p n)

by (subst prod.union-disjoint) (auto simp: P2-def cong-def)
also have (

∏
p∈P3 . p ^ multiplicity p n) = (

∏
p∈P3 . (p ^ 2) ^ (multiplicity p

n div 2))
proof (intro prod.cong refl)

fix p :: nat assume p: p ∈ P3
have (p ^ 2) ^ (multiplicity p n div 2) = p ^ (2 ∗ (multiplicity p n div 2))

by (simp add: power-mult)
also have even (multiplicity p n)

using assms p by (auto simp: P3-def)
hence 2 ∗ (multiplicity p n div 2) = multiplicity p n

by simp
finally show p ^ multiplicity p n = (p ^ 2) ^ (multiplicity p n div 2)

by simp
qed
finally have n = 2 ^ multiplicity 2 n ∗ (

∏
p∈P2 . p ^ multiplicity p n) ∗

(
∏

p∈P3 . p2 ^ (multiplicity p n div 2)) .

also have sum-of-2-squares-nat . . .
proof (intro sum-of-2-squares-nat-mult sum-of-2-squares-nat-prod; rule sum-of-2-squares-nat-power)

fix p :: nat assume p: p ∈ P2
with prime-cong-1-mod-4-gauss-int-norm-exists[of p] show sum-of-2-squares-nat

p
by (auto simp: P2-def)

next
fix p :: nat assume p: p ∈ P3
have sum-of-2-squares-nat (gauss-int-norm (of-nat p)) ..
also have gauss-int-norm (of-nat p) = p ^ 2

by simp

53

finally show sum-of-2-squares-nat (p ^ 2) .
qed auto
finally show ?thesis .

qed

theorem sum-of-2-squares-nat-iff :
sum-of-2-squares-nat n ←→

n = 0 ∨ (∀ p∈prime-factors n. [p = 3] (mod 4) −→ even (multiplicity p n))
using sum-of-2-squares-nat-necessary[of n] sum-of-2-squares-nat-sufficient[of n]

by auto

end

1.11 Primitive Pythagorean triples
theory Gaussian-Integers-Pythagorean-Triples

imports Gaussian-Integers
begin

In this section, we derive Euclid’s formula for primitive Pythagorean triples
using Gaussian integers, following Stillwell [1].
definition prim-pyth-triple :: nat ⇒ nat ⇒ nat ⇒ bool where

prim-pyth-triple x y z ←→ x > 0 ∧ y > 0 ∧ coprime x y ∧ x2 + y2 = z2

lemma prim-pyth-triple-commute: prim-pyth-triple x y z ←→ prim-pyth-triple y x
z

by (simp add: prim-pyth-triple-def coprime-commute add-ac conj-ac)

lemma prim-pyth-triple-aux:
fixes u v :: nat
assumes v ≤ u
shows (2 ∗ u ∗ v) ^ 2 + (u ^ 2 − v ^ 2) ^ 2 = (u ^ 2 + v ^ 2) ^ 2

proof −
have int ((2 ∗ u ∗ v) ^ 2 + (u ^ 2 − v ^ 2) ^ 2) =

(2 ∗ int u ∗ int v) ^ 2 + (int u ^ 2 − int v ^ 2) ^ 2
using assms by (simp add: of-nat-diff)

also have . . . = (int u ^ 2 + int v ^ 2) ^ 2
by (simp add: power2-eq-square algebra-simps)

also have . . . = int ((u ^ 2 + v ^ 2) ^ 2)
by simp

finally show ?thesis
by (simp only: of-nat-eq-iff)

qed

lemma prim-pyth-tripleI1 :
assumes 0 < v v < u coprime u v ¬(odd u ∧ odd v)
shows prim-pyth-triple (2 ∗ u ∗ v) (u2 − v2) (u2 + v2)

proof −
have v ^ 2 < u ^ 2

54

using assms by (intro power-strict-mono) auto
hence ¬u ^ 2 < v ^ 2 by linarith

from assms have coprime (int u) (int v ^ 2)
by auto

hence coprime (int u) (int u ∗ int u + (−(int v ^ 2)))
unfolding coprime-iff-gcd-eq-1 by (subst gcd-add-mult) auto

also have int u ∗ int u + (−(int v ^ 2)) = int (u ^ 2 − v ^ 2)
using ‹v < u› by (simp add: of-nat-diff flip: power2-eq-square)

finally have coprime1 : coprime u (u ^ 2 − v ^ 2)
by auto

from assms have coprime (int v) (int u ^ 2)
by (auto simp: coprime-commute)

hence coprime (int v) ((−int v) ∗ int v + int u ^ 2)
unfolding coprime-iff-gcd-eq-1 by (subst gcd-add-mult) auto

also have (−int v) ∗ int v + int u ^ 2 = int (u ^ 2 − v ^ 2)
using ‹v < u› by (simp add: of-nat-diff flip: power2-eq-square)

finally have coprime2 : coprime v (u ^ 2 − v ^ 2)
by auto

have (2 ∗ u ∗ v) ^ 2 + (u ^ 2 − v ^ 2) ^ 2 = (u ^ 2 + v ^ 2) ^ 2
using ‹v < u› by (intro prim-pyth-triple-aux) auto

moreover have coprime (2 ∗ u ∗ v) (u ^ 2 − v ^ 2)
using assms ‹¬u ^ 2 < v ^ 2 › coprime1 coprime2 by auto

ultimately show ?thesis using assms ‹v ^ 2 < u ^ 2 ›
by (simp add: prim-pyth-triple-def)

qed

lemma prim-pyth-tripleI2 :
assumes 0 < v v < u coprime u v ¬(odd u ∧ odd v)
shows prim-pyth-triple (u2 − v2) (2 ∗ u ∗ v) (u2 + v2)
using prim-pyth-tripleI1 [OF assms] by (simp add: prim-pyth-triple-commute)

lemma primitive-pythagorean-tripleE-int:
assumes z ^ 2 = x ^ 2 + y ^ 2
assumes coprime x y
obtains u v :: int

where coprime u v and ¬(odd u ∧ odd v)
and x = 2 ∗ u ∗ v ∧ y = u2 − v2 ∨ x = u2 − v2 ∧ y = 2 ∗ u ∗ v

proof −
have ¬(even x ∧ even y)

using not-coprimeI [of 2 x y] ‹coprime x y› by auto
moreover have ¬(odd x ∧ odd y)
proof safe

assume odd x odd y
hence [x ^ 2 + y ^ 2 = 1 + 1] (mod 4)

by (intro cong-add odd-square-cong-4-int)
hence [z ^ 2 = 2] (mod 4)

55

by (simp add: assms)
moreover have [z ^ 2 = 0] (mod 4) ∨ [z ^ 2 = 1] (mod 4)

using even-square-cong-4-int[of z] odd-square-cong-4-int[of z]
by (cases even z) auto

ultimately show False
by (auto simp: cong-def)

qed
ultimately have even y ←→ odd x

by blast

have even z ←→ even (z ^ 2)
by auto

also have even (z ^ 2) ←→ even (x ^ 2 + y ^ 2)
by (subst assms(1)) auto

finally have odd z
by (cases even x) (auto simp: ‹even y ←→ ¬even x›)

define t where t = of-int x + i� ∗ of-int y
from assms have t-mult-cnj: t ∗ gauss-cnj t = of-int z ^ 2

by (simp add: t-def power2-eq-square algebra-simps flip: of-int-mult of-int-add)

have gauss-int-norm t = z ^ 2
by (simp add: gauss-int-norm-def t-def assms)

with ‹coprime x y› and ‹odd z› have coprime t (gauss-cnj t)
by (intro coprime-self-gauss-cnj)

(auto simp: t-def gauss-int-norm-def assms(1) [symmetric] even-nat-iff)
moreover have is-square (t ∗ gauss-cnj t)

by (subst t-mult-cnj) auto
hence is-nth-power-upto-unit 2 (t ∗ gauss-cnj t)

by (auto intro: is-nth-power-upto-unit-base)
ultimately have is-nth-power-upto-unit 2 t

by (rule is-nth-power-upto-unit-mult-coprimeD1)
then obtain a b where ab: is-unit a a ∗ t = b ^ 2

by (auto simp: is-nth-power-upto-unit-def is-nth-power-def)
from ab(1) have a ∈ {1 , −1 , i�, −i�}

by (auto simp: is-unit-gauss-int-iff)
then obtain u v :: int where ReZ t = 2 ∗ u ∗ v ∧ ImZ t = u ^ 2 − v ^ 2 ∨

ImZ t = 2 ∗ u ∗ v ∧ ReZ t = u ^ 2 − v ^ 2
proof safe

assume [simp]: a = 1
have ReZ t = ReZ b ^ 2 − ImZ b ^ 2 ImZ t = 2 ∗ ReZ b ∗ ImZ b using ab(2)

by (auto simp: gauss-int-eq-iff power2-eq-square)
thus ?thesis using that by blast

next
assume [simp]: a = −1
have ReZ t = ImZ b ^ 2 − (−ReZ b) ^ 2 ImZ t = 2 ∗ ImZ b ∗ (−ReZ b)

using ab(2)
by (auto simp: gauss-int-eq-iff power2-eq-square algebra-simps)

thus ?thesis using that by blast

56

next
assume [simp]: a = i�
hence ImZ t = ImZ b ^ 2 − ReZ b ^ 2 ReZ t = 2 ∗ ImZ b ∗ ReZ b using

ab(2)
by (auto simp: gauss-int-eq-iff power2-eq-square algebra-simps)

thus ?thesis using that by blast
next

assume [simp]: a = −i�
hence ImZ t = (−ReZ b) ^ 2 − ImZ b ^ 2 ReZ t = 2 ∗ (−ReZ b) ∗ ImZ b

using ab(2)
by (auto simp: gauss-int-eq-iff power2-eq-square algebra-simps)

thus ?thesis using that by blast
qed
also have ReZ t = x

by (simp add: t-def)
also have ImZ t = y

by (simp add: t-def)
finally have xy: x = 2 ∗ u ∗ v ∧ y = u2 − v2 ∨ x = u2 − v2 ∧ y = 2 ∗ u ∗ v

by blast

have not-both-odd: ¬(odd u ∧ odd v)
proof safe

assume odd u odd v
hence even x even y

using xy by auto
with ‹coprime x y› show False

by auto
qed

have coprime u v
proof (rule coprimeI)

fix d assume d dvd u d dvd v
hence d dvd (u2 − v2) d dvd 2 ∗ u ∗ v

by (auto simp: power2-eq-square)
with xy have d dvd x d dvd y

by auto
with ‹coprime x y› show is-unit d

using not-coprimeI by blast
qed
with xy not-both-odd show ?thesis

using that[of u v] by blast
qed

lemma prim-pyth-tripleE :
assumes prim-pyth-triple x y z
obtains u v :: nat
where 0 < v and v < u and coprime u v and ¬(odd u ∧ odd v) and z = u2 +

v2

and x = 2 ∗ u ∗ v ∧ y = u2 − v2 ∨ x = u2 − v2 ∧ y = 2 ∗ u ∗ v

57

proof −
have ∗: (int z) ^ 2 = (int x) ^ 2 + (int y) ^ 2 coprime (int x) (int y)
using assms by (auto simp flip: of-nat-power of-nat-add simp: prim-pyth-triple-def)

obtain u v
where uv: coprime u v ¬(odd u ∧ odd v)

int x = 2 ∗ u ∗ v ∧ int y = u2 − v2 ∨ int x = u2 − v2 ∧ int y = 2
∗ u ∗ v

using primitive-pythagorean-tripleE-int[OF ∗] by metis
define u ′ v ′ where u ′ = nat |u| and v ′ = nat |v|

have ∗∗: a = 2 ∗ u ′ ∗ v ′ if int a = 2 ∗ u ∗ v for a
proof −

from that have nat |int a| = nat |2 ∗ u ∗ v|
by (simp only:)

thus a = 2 ∗ u ′ ∗ v ′

by (simp add: u ′-def v ′-def abs-mult nat-mult-distrib)
qed
have ∗∗∗: a = u ′ ^ 2 − v ′ ^ 2 v ′ ≤ u ′ if int a = u ^ 2 − v ^ 2 for a
proof −

have v ^ 2 ≤ v ^ 2 + int a
by simp

also have . . . = u ^ 2
using that by simp

finally have |v| ≤ |u|
using abs-le-square-iff by blast

thus v ′ ≤ u ′

by (simp add: v ′-def u ′-def)

from that have u ^ 2 = v ^ 2 + int a
by simp

hence nat |u ^ 2 | = nat |v ^ 2 + int a|
by (simp only:)

also have nat |u ^ 2 | = u ′ ^ 2
by (simp add: u ′-def flip: nat-power-eq)

also have nat |v ^ 2 + int a| = v ′ ^ 2 + a
by (simp add: nat-add-distrib v ′-def flip: nat-power-eq)

finally show a = u ′ ^ 2 − v ′ ^ 2
by simp

qed

have eq: x = 2 ∗ u ′ ∗ v ′ ∧ y = u ′2 − v ′2 ∨ x = u ′2 − v ′2 ∧ y = 2 ∗ u ′ ∗ v ′

and v ′ ≤ u ′

using uv(3) ∗∗[of x] ∗∗[of y] ∗∗∗[of x] ∗∗∗[of y] by blast+
moreover have coprime u ′ v ′

using ‹coprime u v›
by (auto simp: u ′-def v ′-def)

moreover have ¬(odd u ′ ∧ odd v ′)
using uv(2) by (auto simp: u ′-def v ′-def)

moreover have v ′ 6= u ′ v ′ > 0

58

using ‹coprime u ′ v ′› eq assms by (auto simp: prim-pyth-triple-def)
moreover from this have v ′ < u ′

using ‹v ′ ≤ u ′› by auto
moreover have z = u ′2 + v ′2

proof −
from assms have z ^ 2 = x ^ 2 + y ^ 2

by (simp add: prim-pyth-triple-def)
also have . . . = (2 ∗ u ′ ∗ v ′) ^ 2 + (u ′ ^ 2 − v ′ ^ 2) ^ 2

using eq by (auto simp: add-ac)
also have . . . = (u ′ ^ 2 + v ′ ^ 2) ^ 2

by (intro prim-pyth-triple-aux) fact
finally show ?thesis by simp

qed
ultimately show ?thesis using that[of v ′ u ′] by metis

qed

theorem prim-pyth-triple-iff :
prim-pyth-triple x y z ←→

(∃ u v. 0 < v ∧ v < u ∧ coprime u v ∧ ¬(odd u ∧ odd v) ∧
(x = 2 ∗ u ∗ v ∧ y = u2 − v2 ∨ x = u2 − v2 ∧ y = 2 ∗ u ∗ v) ∧ z =

u2 + v2)
(is - ←→ ?rhs)

proof
assume prim-pyth-triple x y z
from prim-pyth-tripleE [OF this] show ?rhs by metis

next
assume ?rhs
then obtain u v where uv: 0 < v v < u coprime u v ¬(odd u ∧ odd v) z = u2

+ v2 and
eq: x = 2 ∗ u ∗ v ∧ y = u2 − v2 ∨ x = u2 − v2 ∧ y = 2 ∗ u

∗ v
by metis

thus prim-pyth-triple x y z
using uv prim-pyth-tripleI1 [OF uv(1−4)] prim-pyth-tripleI2 [OF uv(1−4)]

uv(5) eq by auto
qed

end

theory Gaussian-Integers-Everything
imports

Gaussian-Integers
Gaussian-Integers-Test
Gaussian-Integers-Sums-Of-Two-Squares
Gaussian-Integers-Pythagorean-Triples

begin

end

59

References

[1] J. Stillwell. The Gaussian integers, pages 101–116. Springer New York,
New York, NY, 2003.

60

	Gaussian Integers
	Auxiliary material
	Definition
	Pretty-printing
	Norm
	Division and normalisation
	Prime elements
	The factorisation of 2
	Inert primes
	Non-inert primes
	Full classification of Gaussian primes
	Multiplicities of primes

	Coprimality of an element and its conjugate
	Square decompositions of prime numbers congruent 1 mod 4
	Executable factorisation of Gaussian integers
	Sums of two squares
	Primitive Pythagorean triples

