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Abstract

This article provides a full formalisation of Chapter 8 of Apostol’s
Introduction to Analytic Number Theory [1]. Subjects that are covered
are:

• periodic arithmetic functions and their finite Fourier series
• (generalised) Ramanujan sums
• Gauss sums and separable characters
• induced moduli and primitive characters
• the Pólya–Vinogradov inequality
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1 Auxiliary material
theory Gauss-Sums-Auxiliary
imports

Dirichlet-L.Dirichlet-Characters
Dirichlet-Series.Moebius-Mu
Dirichlet-Series.More-Totient

begin

1.1 Various facts
lemma sum-div-reduce:

fixes d :: nat and f :: nat ⇒ complex
assumes d dvd k d > 0
shows (

∑
n | n ∈ {1 ..k} ∧ d dvd n. f n) = (

∑
c ∈ {1 ..k div d}. f (c∗d))

by (rule sum.reindex-bij-witness[of - λk. k ∗ d λk. k div d])
(use assms in ‹fastforce simp: div-le-mono›)+

lemma prod-div-sub:
fixes f :: nat ⇒ complex
assumes finite A B ⊆ A ∀ b ∈ B. f b 6= 0
shows (

∏
i ∈ A − B. f i) = ((

∏
i ∈ A. f i) div (

∏
i ∈ B. f i))

using assms
proof (induction card B arbitrary: B)
case 0

then show ?case
using infinite-super by fastforce

next
case (Suc n)
then show ?case
proof −

obtain B ′ x where decomp: B = B ′ ∪ {x} ∧ x /∈ B ′

using card-eq-SucD[OF Suc(2 )[symmetric]] insert-is-Un by auto
then have B ′card: card B ′ = n using Suc(2 )

using Suc.prems(2 ) assms(1 ) finite-subset by fastforce
have prod f (A − B) = prod f ((A−B ′) − {x})

by (simp add: decomp,subst Diff-insert,simp)
also have . . . = (prod f (A−B ′)) div f x

using prod-diff1 [of A−B ′ f x] Suc decomp by auto
also have . . . = (prod f A div prod f B ′) div f x

using Suc(1 )[of B ′] Suc(3 ) B ′card decomp
Suc.prems(2 ) Suc.prems(3 ) by force

also have . . . = prod f A div (prod f B ′ ∗ f x) by auto
also have . . . = prod f A div prod f B

using decomp Suc.prems(2 ) assms(1 ) finite-subset by fastforce
finally show ?thesis by blast

qed
qed

lemma linear-gcd:
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fixes a b c d :: nat
assumes a > 0 b > 0 c > 0 d > 0
assumes coprime a c coprime b d
shows gcd (a∗b) (c∗d) = (gcd a d) ∗ (gcd b c)
using assms

proof −
define q1 :: nat where q1 = a div gcd a d
define q2 :: nat where q2 = c div gcd b c
define q3 :: nat where q3 = b div gcd b c
define q4 :: nat where q4 = d div gcd a d

have coprime q1 q2 coprime q3 q4
unfolding q1-def q2-def q3-def q4-def

proof −
have coprime (a div gcd a d) c

using ‹coprime a c› coprime-mult-left-iff [of a div gcd a d gcd a d c]
dvd-mult-div-cancel[OF gcd-dvd1 , of a b] by simp

then show coprime (a div gcd a d) (c div gcd b c)
using coprime-mult-right-iff [of a div gcd a d gcd b c c div gcd b c]

dvd-div-mult-self [OF gcd-dvd2 [of b c]] by auto
have coprime (b div gcd b c) d

using ‹coprime b d› coprime-mult-left-iff [of b div gcd b c gcd b c d]
dvd-mult-div-cancel[OF gcd-dvd1 , of a b] by simp

then show coprime (b div gcd b c) (d div gcd a d)
using coprime-mult-right-iff [of b div gcd b c gcd a d d div gcd a d]

dvd-div-mult-self [OF gcd-dvd2 [of b c]] by auto
qed
moreover have coprime q1 q4 coprime q3 q2

unfolding q1-def q2-def q3-def q4-def
using assms div-gcd-coprime by blast+

ultimately have 1 : coprime (q1∗q3 ) (q2∗q4 )
by simp

have gcd (a∗b) (c∗d) = (gcd a d) ∗ (gcd b c) ∗ gcd (q1∗q3 ) (q2∗q4 )
unfolding q1-def q2-def q3-def q4-def
by (subst gcd-mult-distrib-nat[of gcd a d ∗ gcd b c],

simp add: field-simps,
simp add: mult.left-commute semiring-normalization-rules(18 ))

from this 1 show gcd (a∗b) (c∗d) = (gcd a d) ∗ (gcd b c) by auto
qed

lemma reindex-product-bij:
fixes a b m k :: nat
defines S ≡ {(d1 ,d2 ). d1 dvd gcd a m ∧ d2 dvd gcd k b}
defines T ≡ {d. d dvd (gcd a m) ∗ (gcd k b)}
defines f ≡ (λ(d1 ,d2 ). d1 ∗ d2 )
assumes coprime a k
shows bij-betw f S T
unfolding bij-betw-def

proof
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show inj: inj-on f S
unfolding f-def

proof −
{fix d1 d2 d1 ′ d2 ′

assume (d1 ,d2 ) ∈ S (d1 ′,d2 ′) ∈ S
then have dvd: d1 dvd gcd a m d2 dvd gcd k b

d1 ′ dvd gcd a m d2 ′ dvd gcd k b
unfolding S-def by simp+

assume f (d1 ,d2 ) = f (d1 ′,d2 ′)
then have eq: d1 ∗ d2 = d1 ′ ∗ d2 ′

unfolding f-def by simp
from eq dvd have eq1 : d1 = d1 ′

by (simp,meson assms coprime-crossproduct-nat coprime-divisors)
from eq dvd have eq2 : d2 = d2 ′

using assms(4 ) eq1 by auto
from eq1 eq2 have d1 = d1 ′ ∧ d2 = d2 ′ by simp}

then show inj-on (λ(d1 , d2 ). d1 ∗ d2 ) S
using S-def f-def by (intro inj-onI ,blast)

qed
show surj: f ‘ S = T
proof −

{fix d
have d dvd (gcd a m) ∗ (gcd k b)
←→ (∃ d1 d2 . d = d1∗d2 ∧ d1 dvd gcd a m ∧ d2 dvd gcd k b)
using division-decomp mult-dvd-mono by blast}

then show ?thesis
unfolding f-def S-def T-def image-def
by auto

qed
qed

lemma p-div-set:
shows {p. p ∈prime-factors a ∧ ¬ p dvd N} =

({p. p ∈prime-factors (a∗N )} − {p. p ∈prime-factors N})
(is ?A = ?B)

proof
show ?A ⊆ ?B
proof (simp)

{ fix p
assume as: p ∈# prime-factorization a ¬ p dvd N
then have 1 : p ∈ prime-factors (a ∗ N )
proof −

from in-prime-factors-iff [of p a] as
have a 6= 0 p dvd a prime p by simp+
have N 6= 0 using ‹¬ p dvd N › by blast
have a ∗ N 6= 0 using ‹a 6= 0 › ‹N 6= 0 › by auto
have p dvd a∗N using ‹p dvd a› by simp
show ?thesis

using ‹a∗N 6= 0 › ‹p dvd a∗N › ‹prime p› in-prime-factors-iff by blast
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qed
from as have 2 : p /∈ prime-factors N by blast
from 1 2 have p ∈ prime-factors (a ∗ N ) − prime-factors N
by blast

}
then show {p. p ∈# prime-factorization a ∧ ¬ p dvd N}

⊆ prime-factors (a ∗ N ) − prime-factors N by blast
qed

show ?B ⊆ ?A
proof (simp)

{ fix p
assume as: p ∈ prime-factors (a ∗ N ) − prime-factors N
then have 1 : ¬ p dvd N
proof −

from as have p ∈ prime-factors (a ∗ N ) p /∈ prime-factors N
using DiffD1 DiffD2 by blast+

then show ?thesis by (simp add: in-prime-factors-iff )
qed
have 2 : p ∈# prime-factorization a
proof −
have p dvd (a∗N ) prime p a∗N 6= 0 using in-prime-factors-iff as by blast+

have p dvd a using ‹¬ p dvd N › prime-dvd-multD[OF ‹prime p› ‹p dvd
(a∗N )›] by blast

have a 6= 0 using ‹a∗N 6= 0 › by simp
show ?thesis using in-prime-factors-iff ‹a 6= 0 › ‹p dvd a› ‹prime p› by

blast
qed
from 1 2 have p ∈ {p. p ∈# prime-factorization a ∧ ¬ p dvd N} by blast

}
then show prime-factors (a ∗ N ) − prime-factors N

⊆ {p. p ∈# prime-factorization a ∧ ¬ p dvd N} by blast
qed

qed

lemma coprime-iff-prime-factors-disjoint:
fixes x y :: ′a :: factorial-semiring
assumes x 6= 0 y 6= 0
shows coprime x y ←→ prime-factors x ∩ prime-factors y = {}

proof
assume coprime x y
have False if p ∈ prime-factors x p ∈ prime-factors y for p
proof −

from that assms have p dvd x p dvd y
by (auto simp: prime-factors-dvd)

with ‹coprime x y› have p dvd 1
using coprime-common-divisor by auto

with that assms show False by (auto simp: prime-factors-dvd)
qed
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thus prime-factors x ∩ prime-factors y = {} by auto
next

assume disjoint: prime-factors x ∩ prime-factors y = {}
show coprime x y
proof (rule coprimeI )

fix d assume d: d dvd x d dvd y
show is-unit d
proof (rule ccontr)

assume ¬is-unit d
moreover from this and d assms have d 6= 0 by auto
ultimately obtain p where p: prime p p dvd d

using prime-divisor-exists by auto
with d and assms have p ∈ prime-factors x ∩ prime-factors y

by (auto simp: prime-factors-dvd)
with disjoint show False by auto

qed
qed

qed

lemma coprime-cong-prime-factors:
fixes x y :: ′a :: factorial-semiring-gcd
assumes x 6= 0 y 6= 0 x ′ 6= 0 y ′ 6= 0
assumes prime-factors x = prime-factors x ′

assumes prime-factors y = prime-factors y ′

shows coprime x y ←→ coprime x ′ y ′

using assms by (simp add: coprime-iff-prime-factors-disjoint)

lemma moebius-prod-not-coprime:
assumes ¬ coprime N d
shows moebius-mu (N∗d) = 0

proof −
from assms obtain l where l-form: l dvd N ∧ l dvd d ∧ ¬ is-unit l

unfolding coprime-def by blast
then have l ∗ l dvd N ∗ d using mult-dvd-mono by auto
then have l2 dvd N∗d by (subst power2-eq-square,blast)
then have ¬ squarefree (N∗d)

unfolding squarefree-def coprime-def using l-form by blast
then show moebius-mu (N∗d) = 0

using moebius-mu-def by auto
qed

Theorem 2.18
lemma sum-divisors-moebius-mu-times-multiplicative:

fixes f :: nat ⇒ ′a :: {comm-ring-1}
assumes multiplicative-function f and n > 0
shows (

∑
d | d dvd n. moebius-mu d ∗ f d) = (

∏
p∈prime-factors n. 1 − f p)

proof −
define g where g = (λn.

∑
d | d dvd n. moebius-mu d ∗ f d)

define g ′ where g ′ = dirichlet-prod (λn. moebius-mu n ∗ f n) (λn. if n = 0 then
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0 else 1 )
interpret f : multiplicative-function f by fact
have multiplicative-function (λn. if n = 0 then 0 else 1 :: ′a)

by standard auto
interpret multiplicative-function g ′ unfolding g ′-def

by (intro multiplicative-dirichlet-prod multiplicative-function-mult
moebius-mu.multiplicative-function-axioms assms) fact+

have g ′-primepow: g ′ (p ^ k) = 1 − f p if prime p k > 0 for p k
proof −

have g ′ (p ^ k) = (
∑

i≤k. moebius-mu (p ^ i) ∗ f (p ^ i))
using that by (simp add: g ′-def dirichlet-prod-prime-power)

also have . . . = (
∑

i∈{0 , 1}. moebius-mu (p ^ i) ∗ f (p ^ i))
using that by (intro sum.mono-neutral-right) (auto simp: moebius-mu-power ′)

also have . . . = 1 − f p
using that by (simp add: moebius-mu.prime)

finally show ?thesis .
qed

have g ′ n = g n
by (simp add: g-def g ′-def dirichlet-prod-def )

also from assms have g ′ n = (
∏

p∈prime-factors n. g ′ (p ^ multiplicity p n))
by (intro prod-prime-factors) auto

also have . . . = (
∏

p∈prime-factors n. 1 − f p)
by (intro prod.cong) (auto simp: g ′-primepow prime-factors-multiplicity)

finally show ?thesis by (simp add: g-def )
qed

lemma multiplicative-ind-coprime [intro]: multiplicative-function (ind (coprime N ))
by (intro multiplicative-function-ind) auto

lemma sum-divisors-moebius-mu-times-multiplicative-revisited:
fixes f :: nat ⇒ ′a :: {comm-ring-1}
assumes multiplicative-function f n > 0 N > 0
shows (

∑
d | d dvd n ∧ coprime N d. moebius-mu d ∗ f d) =

(
∏

p∈{p. p ∈ prime-factors n ∧ ¬ (p dvd N )}. 1 − f p)
proof −

have (
∑

d | d dvd n ∧ coprime N d. moebius-mu d ∗ f d) =
(
∑

d | d dvd n. moebius-mu d ∗ (ind (coprime N ) d ∗ f d))
using assms by (intro sum.mono-neutral-cong-left) (auto simp: ind-def )

also have . . . = (
∏

p∈prime-factors n. 1 − ind (coprime N ) p ∗ f p)
using assms by (intro sum-divisors-moebius-mu-times-multiplicative)

(auto intro: multiplicative-function-mult)
also from assms have . . . = (

∏
p | p ∈ prime-factors n ∧ ¬(p dvd N ). 1 − f p)

by (intro prod.mono-neutral-cong-right)
(auto simp: ind-def prime-factors-dvd coprime-commute dest: prime-imp-coprime)

finally show ?thesis .
qed
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1.2 Neutral element of the Dirichlet product
definition dirichlet-prod-neutral n = (if n = 1 then 1 else 0 ) for n :: nat

lemma dirichlet-prod-neutral-intro:
fixes S :: nat ⇒ complex and f :: nat ⇒ nat ⇒ complex
defines S ≡ (λ(n::nat). (

∑
k | k ∈ {1 ..n} ∧ coprime k n. (f k n)))

shows S(n) = (
∑

k ∈ {1 ..n}. f k n ∗ dirichlet-prod-neutral (gcd k n))
proof −

let ?g = λk. (f k n)∗ (dirichlet-prod-neutral (gcd k n))
have zeros: ∀ k ∈ {1 ..n} − {k. k ∈ {1 ..n} ∧ coprime k n}. ?g k = 0
proof

fix k
assume k ∈ {1 ..n} − {k ∈ {1 ..n}. coprime k n}
then show (f k n) ∗ dirichlet-prod-neutral (gcd k n) = 0

by (simp add: dirichlet-prod-neutral-def [of gcd k n] split: if-splits,presburger)
qed

have S n = (
∑

k | k ∈ {1 ..n} ∧ coprime k n. (f k n))
by (simp add: S-def )

also have . . . = sum ?g {k. k ∈ {1 ..n} ∧ coprime k n}
by (simp add: dirichlet-prod-neutral-def split: if-splits)

also have . . . = sum ?g {1 ..n}
by (intro sum.mono-neutral-left, auto simp add: zeros)

finally show ?thesis by blast
qed

lemma dirichlet-prod-neutral-right-neutral:
dirichlet-prod f dirichlet-prod-neutral n = f n if n > 0 for f :: nat ⇒ complex

and n
proof −

{fix d :: nat
assume d dvd n
then have eq: n = d ←→ n div d = 1

using div-self that dvd-mult-div-cancel by force
have f (d)∗dirichlet-prod-neutral(n div d) = (if n = d then f (d) else 0 )

by (simp add: dirichlet-prod-neutral-def eq)}
note summand = this

have dirichlet-prod f dirichlet-prod-neutral n =
(
∑

d | d dvd n. f (d)∗dirichlet-prod-neutral(n div d))
unfolding dirichlet-prod-def by blast

also have . . . = (
∑

d | d dvd n. (if n = d then f (d) else 0 ))
using summand by simp

also have . . . = (
∑

d | d = n. (if n = d then f (d) else 0 ))
using that by (intro sum.mono-neutral-right, auto)

also have . . . = f (n) by simp
finally show ?thesis by simp

qed
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lemma dirichlet-prod-neutral-left-neutral:
dirichlet-prod dirichlet-prod-neutral f n = f n
if n > 0 for f :: nat ⇒ complex and n
using dirichlet-prod-neutral-right-neutral[OF that, of f ]

dirichlet-prod-commutes[of f dirichlet-prod-neutral]
by argo

corollary I-right-neutral-0 :
fixes f :: nat ⇒ complex
assumes f 0 = 0
shows dirichlet-prod f dirichlet-prod-neutral n = f n
using assms dirichlet-prod-neutral-right-neutral by (cases n, simp, blast)

1.3 Multiplicative functions
lemma mult-id: multiplicative-function id

by (simp add: multiplicative-function-def )

lemma mult-moebius: multiplicative-function moebius-mu
using Moebius-Mu.moebius-mu.multiplicative-function-axioms
by simp

lemma mult-of-nat: multiplicative-function of-nat
using multiplicative-function-def of-nat-0 of-nat-1 of-nat-mult by blast

lemma mult-of-nat-c: completely-multiplicative-function of-nat
by (simp add: completely-multiplicative-function-def )

lemma completely-multiplicative-nonzero:
fixes f :: nat ⇒ complex
assumes completely-multiplicative-function f

d 6= 0∧
p. prime p =⇒ f (p) 6= 0

shows f (d) 6= 0
using assms(2 )

proof (induction d rule: nat-less-induct)
case (1 n)
then show ?case
proof (cases n = 1 )

case True
then show ?thesis

using assms(1 )
unfolding completely-multiplicative-function-def by simp

next
case False
then obtain p where 2 :prime p ∧ p dvd n

using prime-factor-nat by blast
then obtain a where 3 : n = p ∗ a a 6= 0

using 1 by auto
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then have 4 : f (a) 6= 0 using 1
using 2 prime-nat-iff by fastforce

have 5 : f (p) 6= 0 using assms(3 ) 2 by simp
from 3 4 5 show ?thesis

by (simp add: assms(1 ) completely-multiplicative-function.mult)
qed

qed

lemma multipl-div:
fixes m k d1 d2 :: nat and f :: nat ⇒ complex
assumes multiplicative-function f d1 dvd m d2 dvd k coprime m k
shows f ((m∗k) div (d1∗d2 )) = f (m div d1 ) ∗ f (k div d2 )
using assms
unfolding multiplicative-function-def
using assms(1 ) multiplicative-function.mult-coprime by fastforce

lemma multipl-div-mono:
fixes m k d :: nat and f :: nat ⇒ complex
assumes completely-multiplicative-function f

d dvd k d > 0∧
p. prime p =⇒ f (p) 6= 0

shows f (k div d) = f (k) div f (d)
proof −

have d 6= 0 using assms(2 ,3 ) by auto
then have nz: f (d) 6= 0 using assms(1 ,4 ) completely-multiplicative-nonzero by

simp

from assms(2 ,3 ) obtain a where div: k = a ∗ d by fastforce
have f (k div d) = f ((a∗d) div d) using div by simp
also have . . . = f (a) using assms(3 ) div by simp
also have . . . = f (a)∗f (d) div f (d) using nz by auto
also have . . . = f (a∗d) div f (d)

by (simp add: div assms(1 ) completely-multiplicative-function.mult)
also have . . . = f (k) div f (d) using div by simp
finally show ?thesis by simp

qed

lemma comp-to-mult: completely-multiplicative-function f =⇒
multiplicative-function f

unfolding completely-multiplicative-function-def
multiplicative-function-def by auto

end

2 Periodic arithmetic functions
theory Periodic-Arithmetic
imports

Complex-Main

11



HOL−Number-Theory.Cong
begin

definition
periodic-arithmetic f k = (∀n. f (n+k) = f n)
for n :: int and k :: nat and f :: nat ⇒ complex

lemma const-periodic-arithmetic: periodic-arithmetic (λx. y) k
unfolding periodic-arithmetic-def by blast

lemma add-periodic-arithmetic:
fixes f g :: nat ⇒ complex
assumes periodic-arithmetic f k
assumes periodic-arithmetic g k
shows periodic-arithmetic (λn. f n + g n) k
using assms unfolding periodic-arithmetic-def by simp

lemma mult-periodic-arithmetic:
fixes f g :: nat ⇒ complex
assumes periodic-arithmetic f k
assumes periodic-arithmetic g k
shows periodic-arithmetic (λn. f n ∗ g n) k
using assms unfolding periodic-arithmetic-def by simp

lemma scalar-mult-periodic-arithmetic:
fixes f :: nat ⇒ complex and a :: complex
assumes periodic-arithmetic f k
shows periodic-arithmetic (λn. a ∗ f n) k
using mult-periodic-arithmetic[OF const-periodic-arithmetic[of a k] assms(1 )] by

simp

lemma fin-sum-periodic-arithmetic-set:
fixes f g :: nat ⇒ complex
assumes ∀ i∈A. periodic-arithmetic (h i) k
shows periodic-arithmetic (λn.

∑
i ∈ A. h i n) k

using assms by (simp add: periodic-arithmetic-def )

lemma mult-period:
assumes periodic-arithmetic g k
shows periodic-arithmetic g (k∗q)
using assms

proof (induction q)
case 0 then show ?case unfolding periodic-arithmetic-def by simp

next
case (Suc m)
then show ?case

unfolding periodic-arithmetic-def
proof −
{ fix n
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have g (n + k ∗ Suc m) = g (n + k + k ∗ m)
by (simp add: algebra-simps)

also have . . . = g(n)
using Suc.IH [OF Suc.prems] assms
unfolding periodic-arithmetic-def by simp

finally have g (n + k ∗ Suc m) = g(n) by blast
}
then show ∀n. g (n + k ∗ Suc m) = g n by auto

qed
qed

lemma unique-periodic-arithmetic-extension:
assumes k > 0
assumes ∀ j<k. g j = h j
assumes periodic-arithmetic g k and periodic-arithmetic h k
shows g i = h i

proof (cases i < k)
case True then show ?thesis using assms by simp

next
case False then show ?thesis
proof −

have k ∗ (i div k) + (i mod k) = i ∧ (i mod k) < k
by (simp add: assms(1 ) algebra-simps)

then obtain q r where euclid-div: k∗q + r = i ∧ r < k
using mult.commute by blast

from assms(3 ) assms(4 )
have periodic-arithmetic g (k∗q) periodic-arithmetic h (k∗q)

using mult-period by simp+
have g(k∗q+r) = g(r)

using ‹periodic-arithmetic g (k∗q)› unfolding periodic-arithmetic-def
using add.commute[of k∗q r ] by presburger

also have . . . = h(r)
using euclid-div assms(2 ) by simp

also have . . . = h(k∗q+r)
using ‹periodic-arithmetic h (k∗q)› add.commute[of k∗q r ]
unfolding periodic-arithmetic-def by presburger

also have . . . = h(i) using euclid-div by simp
finally show g(i) = h(i) using euclid-div by simp

qed
qed

lemma periodic-arithmetic-sum-periodic-arithmetic:
assumes periodic-arithmetic f k
shows (

∑
l ∈ {m..n}. f l) = (

∑
l ∈ {m+k..n+k}. f l)

using periodic-arithmetic-def assms
by (intro sum.reindex-bij-witness

[of {m..n} λl. l−k λl. l+k {m+k..n+k} f f ])
auto
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lemma mod-periodic-arithmetic:
fixes n m :: nat
assumes periodic-arithmetic f k
assumes n mod k = m mod k
shows f n = f m

proof −
obtain q where 1 : n = q∗k+(n mod k)

using div-mult-mod-eq[of n k,symmetric] by blast
obtain q ′ where 2 : m = q ′∗k+(m mod k)

using div-mult-mod-eq[of m k,symmetric] by blast
from 1 have f n = f (q∗k+(n mod k)) by auto
also have . . . = f (n mod k)

using mult-period[of f k q] assms(1 ) periodic-arithmetic-def [of f k∗q]
by (simp add: algebra-simps,subst add.commute,blast)

also have . . . = f (m mod k) using assms(2 ) by auto
also have . . . = f (q ′∗k+(m mod k))

using mult-period[of f k q ′] assms(1 ) periodic-arithmetic-def [of f k∗q ′]
by (simp add: algebra-simps,subst add.commute,presburger)

also have . . . = f m using 2 by auto
finally show f n = f m by simp

qed

lemma cong-periodic-arithmetic:
assumes periodic-arithmetic f k [a = b] (mod k)
shows f a = f b
using assms mod-periodic-arithmetic[of f k a b] by (auto simp: cong-def )

lemma cong-nat-imp-eq:
fixes m :: nat
assumes m > 0 x ∈ {a..<a+m} y ∈ {a..<a+m} [x = y] (mod m)
shows x = y
using assms

proof (induction x y rule: linorder-wlog)
case (le x y)
have [y − x = 0 ] (mod m)

using cong-diff-iff-cong-0-nat cong-sym le by blast
thus x = y

using le by (auto simp: cong-def )
qed (auto simp: cong-sym)

lemma inj-on-mod-nat:
fixes m :: nat
assumes m > 0
shows inj-on (λx. x mod m) {a..<a+m}

proof
fix x y assume xy: x ∈ {a..<a+m} y ∈ {a..<a+m} and eq: x mod m = y mod

m
from ‹m > 0 › and xy show x = y

by (rule cong-nat-imp-eq) (use eq in ‹simp-all add: cong-def ›)

14



qed

lemma bij-betw-mod-nat-atLeastLessThan:
fixes k d :: nat
assumes k > 0
defines g ≡ (λi. nat ((int i − int d) mod int k) + d)
shows bij-betw (λi. i mod k) {d..<d+k} {..<k}
unfolding bij-betw-def

proof
show inj: inj-on (λi. i mod k) {d..<d + k}

by (rule inj-on-mod-nat) fact+
have (λi. i mod k) ‘ {d..<d + k} ⊆ {..<k}

by auto
moreover have card ((λi. i mod k) ‘ {d..<d + k}) = card {..<k}

using inj by (subst card-image) auto
ultimately show (λi. i mod k) ‘ {d..<d + k} = {..<k}

by (intro card-subset-eq) auto
qed

lemma periodic-arithmetic-sum-periodic-arithmetic-shift:
fixes k d :: nat
assumes periodic-arithmetic f k k > 0 d > 0
shows (

∑
l ∈ {0 ..k−1}. f l) = (

∑
l ∈ {d..d+k−1}. f l)

proof −
have (

∑
l ∈ {0 ..k−1}. f l) = (

∑
l ∈ {0 ..<k}. f l)

using assms(2 ) by (intro sum.cong) auto
also have . . . = (

∑
l ∈ {d..<d+k}. f (l mod k))

using assms(2 )
by (simp add: sum.reindex-bij-betw[OF bij-betw-mod-nat-atLeastLessThan[of k

d]]
lessThan-atLeast0 )

also have . . . = (
∑

l ∈ {d..<d+k}. f l)
using mod-periodic-arithmetic[of f k] assms(1 ) sum.cong
by (meson mod-mod-trivial)

also have . . . = (
∑

l ∈ {d..d+k−1}. f l)
using assms(2 ,3 ) by (intro sum.cong) auto

finally show ?thesis by auto
qed

lemma self-bij-0-k:
fixes a k :: nat
assumes coprime a k [a∗i = 1 ] (mod k) k > 0
shows bij-betw (λr . r∗a mod k) {0 ..k−1} {0 ..k−1}
unfolding bij-betw-def

proof
show inj-on (λr . r∗a mod k) {0 ..k−1}
proof −

{fix r1 r2
assume in-k: r1 ∈ {0 ..k−1} r2 ∈ {0 ..k−1}
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assume as: [r1∗a = r2∗a] (mod k)
then have [r1∗a∗i = r2∗a∗i] (mod k)

using cong-scalar-right by blast
then have [r1 = r2 ] (mod k)

using cong-mult-rcancel-nat as assms(1 ) by simp
then have r1 = r2 using in-k

using assms(3 ) cong-less-modulus-unique-nat by auto}
note eq = this
show ?thesis unfolding inj-on-def

by (safe, simp add: eq cong-def )
qed
define f where f = (λr . r ∗ a mod k)
show f ‘ {0 ..k − 1} = {0 ..k − 1}

unfolding image-def
proof (standard)

show {y. ∃ x∈{0 ..k − 1}. y = f x} ⊆ {0 ..k − 1}
proof −

{fix y
assume y ∈ {y. ∃ x∈{0 ..k − 1}. y = f x}
then obtain x where y = f x by blast
then have y ∈ {0 ..k−1}

unfolding f-def
using Suc-pred assms(3 ) lessThan-Suc-atMost by fastforce}

then show ?thesis by blast
qed
show {0 ..k − 1} ⊆ {y. ∃ x∈{0 ..k − 1}. y = f x}
proof −

{ fix x
assume ass: x ∈ {0 ..k−1}
then have x ∗ i mod k ∈ {0 ..k−1}
proof −

have x ∗ i mod k ∈ {0 ..<k} by (simp add: assms(3 ))
have {0 ..<k} = {0 ..k−1} using Suc-diff-1 assms(3 ) by auto
show ?thesis using ‹x ∗ i mod k ∈ {0 ..<k}› ‹{0 ..<k} = {0 ..k−1}› by

blast
qed
then have f (x ∗ i mod k) = x
proof −

have f (x ∗ i mod k) = (x ∗ i mod k) ∗ a mod k
unfolding f-def by blast

also have . . . = (x∗i∗a) mod k
by (simp add: mod-mult-left-eq)

also have . . . = (x∗1 ) mod k
using assms(2 )
unfolding cong-def
by (subst mult.assoc, subst (2 ) mult.commute,

subst mod-mult-right-eq[symmetric],simp)
also have . . . = x using ass assms(3 ) by auto
finally show ?thesis .
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qed
then have x ∈ {y. ∃ x∈{0 ..k − 1}. y = f x}

using ‹x ∗ i mod k ∈ {0 ..k−1}› by force
}
then show ?thesis by blast

qed
qed

qed

lemma periodic-arithmetic-homothecy:
assumes periodic-arithmetic f k
shows periodic-arithmetic (λl. f (l∗a)) k
unfolding periodic-arithmetic-def

proof
fix n
have f ((n + k) ∗ a) = f (n∗a+k∗a) by (simp add: algebra-simps)
also have . . . = f (n∗a)

using mult-period[OF assms] unfolding periodic-arithmetic-def by simp
finally show f ((n + k) ∗ a) = f (n ∗ a) by simp

qed

theorem periodic-arithmetic-remove-homothecy:
assumes coprime a k periodic-arithmetic f k k > 0
shows (

∑
l=1 ..k. f l) = (

∑
l=1 ..k. f (l∗a))

proof −
obtain i where inv: [a∗i = 1 ] (mod k)

using assms(1 ) coprime-iff-invertible-nat[of a k] by auto
from this self-bij-0-k assms
have bij: bij-betw (λr . r ∗ a mod k) {0 ..k − 1} {0 ..k − 1} by blast

have (
∑

l = 1 ..k. f (l)) = (
∑

l = 0 ..k−1 . f (l))
using periodic-arithmetic-sum-periodic-arithmetic-shift[of f k 1 ] assms by simp

also have . . . = (
∑

l = 0 ..k−1 . f (l∗a mod k))
using sum.reindex-bij-betw[OF bij,symmetric] by blast

also have . . . = (
∑

l = 0 ..k−1 . f (l∗a))
by (intro sum.cong refl) (use mod-periodic-arithmetic[OF assms(2 )] mod-mod-trivial

in blast)
also have . . . = (

∑
l = 1 ..k. f (l∗a))

using periodic-arithmetic-sum-periodic-arithmetic-shift[of (λl. f (l∗a)) k 1 ]
periodic-arithmetic-homothecy[OF assms(2 )] assms(3 ) by fastforce

finally show ?thesis by blast
qed

end

theory Complex-Roots-Of-Unity
imports

HOL−Analysis.Analysis
Periodic-Arithmetic
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begin

3 Complex roots of unity
definition

unity-root k n = cis (2 ∗ pi ∗ of-int n / of-nat k)

lemma
unity-root-k-0 [simp]: unity-root k 0 = 1 and
unity-root-0-n [simp]: unity-root 0 n = 1
unfolding unity-root-def by simp+

lemma unity-root-conv-exp:
unity-root k n = exp (of-real (2∗pi∗n/k) ∗ i)
unfolding unity-root-def
by (subst cis-conv-exp,subst mult.commute,blast)

lemma unity-root-mod:
unity-root k (n mod int k) = unity-root k n

proof (cases k = 0 )
case True then show ?thesis by simp

next
case False
obtain q :: int where q-def : n = q∗k + (n mod k)

using div-mult-mod-eq[symmetric] by blast
have n / k = q + (n mod k) / k
proof (auto simp add: divide-simps False)

have real-of-int n = real-of-int (q∗k + (n mod k))
using q-def by simp

also have . . . = real-of-int q ∗ real k + real-of-int (n mod k)
using of-int-add of-int-mult by simp

finally show real-of-int n = real-of-int q ∗ real k + real-of-int (n mod k)
by blast

qed
then have (2∗pi∗n/k) = 2∗pi∗q + (2∗pi∗(n mod k)/k)

using False by (auto simp add: field-simps)
then have (2∗pi∗n/k)∗i = 2∗pi∗q∗i + (2∗pi∗(n mod k)/k)∗i (is ?l = ?r1 +

?r2 )
by (auto simp add: algebra-simps)

then have exp ?l = exp ?r2
using exp-plus-2pin by (simp add: exp-add mult.commute)

then show ?thesis
using unity-root-def unity-root-conv-exp by simp

qed

lemma unity-root-cong:
assumes [m = n] (mod int k)
shows unity-root k m = unity-root k n

proof −
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from assms have m mod int k = n mod int k
by (auto simp: cong-def )

hence unity-root k (m mod int k) = unity-root k (n mod int k)
by simp

thus ?thesis by (simp add: unity-root-mod)
qed

lemma unity-root-mod-nat:
unity-root k (nat (n mod int k)) = unity-root k n

proof (cases k)
case (Suc l)
then have n mod int k ≥ 0 by auto
show ?thesis

unfolding int-nat-eq
by (simp add: ‹n mod int k ≥ 0 › unity-root-mod)

qed auto

lemma unity-root-eqD:
assumes gr : k > 0
assumes eq: unity-root k i = unity-root k j
shows i mod k = j mod k

proof −
let ?arg1 = (2∗pi∗i/k)∗ i
let ?arg2 = (2∗pi∗j/k)∗ i
from eq unity-root-conv-exp have exp ?arg1 = exp ?arg2 by simp
from this exp-eq
obtain n :: int where ?arg1 = ?arg2 +(2∗n∗pi)∗i by blast
then have e1 : ?arg1 − ?arg2 = 2∗n∗pi∗i by simp
have e2 : ?arg1 − ?arg2 = 2∗(i−j)∗(1/k)∗pi∗i

by (auto simp add: algebra-simps)
from e1 e2 have 2∗n∗pi∗i = 2∗(i−j)∗(1/k)∗pi∗i by simp
then have 2∗n∗k∗pi∗i = 2∗(i−j)∗pi∗i

by (simp add: divide-simps ‹k > 0 ›)(simp add: field-simps)
then have 2∗n∗k = 2∗(i−j)
by (meson complex-i-not-zero mult-cancel-right of-int-eq-iff of-real-eq-iff pi-neq-zero)

then have n∗k = i−j by auto
then show ?thesis by Groebner-Basis.algebra

qed

lemma unity-root-eq-1-iff :
fixes k n :: nat
assumes k > 0
shows unity-root k n = 1 ←→ k dvd n

proof −
have unity-root k n = exp ((2∗pi∗n/k) ∗ i)

by (simp add: unity-root-conv-exp)
also have exp ((2∗pi∗n/k)∗ i) = 1 ←→ k dvd n

using complex-root-unity-eq-1 [of k n] assms
by (auto simp add: algebra-simps)
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finally show ?thesis by simp
qed

lemma unity-root-pow: unity-root k n ^ m = unity-root k (n ∗ m)
using unity-root-def
by (simp add: Complex.DeMoivre mult.commute algebra-split-simps(6 ))

lemma unity-root-add: unity-root k (m + n) = unity-root k m ∗ unity-root k n
by (simp add: unity-root-conv-exp add-divide-distrib algebra-simps exp-add)

lemma unity-root-uminus: unity-root k (−m) = cnj (unity-root k m)
unfolding unity-root-conv-exp exp-cnj by simp

lemma inverse-unity-root: inverse (unity-root k m) = cnj (unity-root k m)
unfolding unity-root-conv-exp exp-cnj by (simp add: field-simps exp-minus)

lemma unity-root-diff : unity-root k (m − n) = unity-root k m ∗ cnj (unity-root k
n)

using unity-root-add[of k m −n] by (simp add: unity-root-uminus)

lemma unity-root-eq-1-iff-int:
fixes k :: nat and n :: int
assumes k > 0
shows unity-root k n = 1 ←→ k dvd n

proof (cases n ≥ 0 )
case True
obtain n ′ where n = int n ′

using zero-le-imp-eq-int[OF True] by blast
then show ?thesis

using unity-root-eq-1-iff [OF ‹k > 0 ›, of n ′] of-nat-dvd-iff by blast
next

case False
then have −n ≥ 0 by auto
have unity-root k n = inverse (unity-root k (−n))

unfolding inverse-unity-root by (simp add: unity-root-uminus)
then have (unity-root k n = 1 ) = (unity-root k (−n) = 1 )

by simp
also have (unity-root k (−n) = 1 ) = (k dvd (−n))

using unity-root-eq-1-iff [of k nat (−n),OF ‹k > 0 ›] False
int-dvd-int-iff [of k nat (−n)] nat-0-le[OF ‹−n ≥ 0 ›] by auto

finally show ?thesis by simp
qed

lemma unity-root-eq-1 [simp]: int k dvd n =⇒ unity-root k n = 1
by (cases k = 0 ) (auto simp: unity-root-eq-1-iff-int)

lemma unity-periodic-arithmetic:
periodic-arithmetic (unity-root k) k
unfolding periodic-arithmetic-def
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proof
fix n
have unity-root k (n + k) = unity-root k ((n+k) mod k)

using unity-root-mod[of k] zmod-int by presburger
also have unity-root k ((n+k) mod k) = unity-root k n

using unity-root-mod zmod-int by auto
finally show unity-root k (n + k) = unity-root k n by simp

qed

lemma unity-periodic-arithmetic-mult:
periodic-arithmetic (λn. unity-root k (m ∗ int n)) k
unfolding periodic-arithmetic-def

proof
fix n
have unity-root k (m ∗ int (n + k)) =

unity-root k (m∗n + m∗k)
by (simp add: algebra-simps)

also have . . . = unity-root k (m∗n)
using unity-root-mod[of k m ∗ int n] unity-root-mod[of k m ∗ int n + m ∗ int

k]
mod-mult-self3 by presburger

finally show unity-root k (m ∗ int (n + k)) =
unity-root k (m ∗ int n) by simp

qed

lemma unity-root-periodic-arithmetic-mult-minus:
shows periodic-arithmetic (λi. unity-root k (−int i∗int m)) k
unfolding periodic-arithmetic-def

proof
fix n
have unity-root k (−(n + k) ∗ m) = cnj (unity-root k (n∗m+k∗m))

by (simp add: ring-distribs unity-root-diff unity-root-add unity-root-uminus)
also have . . . = cnj (unity-root k (n∗m))

using mult-period[of unity-root k k m] unity-periodic-arithmetic[of k]
unfolding periodic-arithmetic-def by presburger

also have . . . = unity-root k (−n∗m)
by (simp add: unity-root-uminus)

finally show unity-root k (−(n + k) ∗ m) = unity-root k (−n∗m)
by simp

qed

lemma unity-div:
fixes a :: int and d :: nat
assumes d dvd k
shows unity-root k (a∗d) = unity-root (k div d) a

proof −
have 1 : (2∗pi∗(a∗d)/k) = (2∗pi∗a)/(k div d)

using Suc-pred assms by (simp add: divide-simps, fastforce)
have unity-root k (a∗d) = exp ((2∗pi∗(a∗d)/k)∗ i)
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using unity-root-conv-exp by simp
also have . . . = exp (((2∗pi∗a)/(k div d))∗ i)

using 1 by simp
also have . . . = unity-root (k div d) a

using unity-root-conv-exp by simp
finally show ?thesis by simp

qed

lemma unity-div-num:
assumes k > 0 d > 0 d dvd k
shows unity-root k (x ∗ (k div d)) = unity-root d x
using assms dvd-div-mult-self unity-div by auto

4 Geometric sums of roots of unity

Apostol calls these ‘geometric sums’, which is a bit too generic. We therefore
decided to refer to them as ‘sums of roots of unity’.
definition unity-root-sum k n = (

∑
m<k. unity-root k (n ∗ of-nat m))

lemma unity-root-sum-0-left [simp]: unity-root-sum 0 n = 0 and
unity-root-sum-0-right [simp]: k > 0 =⇒ unity-root-sum k 0 = k

unfolding unity-root-sum-def by simp-all

Theorem 8.1
theorem unity-root-sum:

fixes k :: nat and n :: int
assumes gr : k ≥ 1
shows k dvd n =⇒ unity-root-sum k n = k

and ¬k dvd n =⇒ unity-root-sum k n = 0
proof −

assume dvd: k dvd n
let ?x = unity-root k n
have unit: ?x = 1 using dvd gr unity-root-eq-1-iff-int by auto
have exp: ?x^m = unity-root k (n∗m) for m using unity-root-pow by simp
have unity-root-sum k n = (

∑
m<k. unity-root k (n∗m))

using unity-root-sum-def by simp
also have . . . = (

∑
m<k. ?x^m) using exp by auto

also have . . . = (
∑

m<k. 1 ) using unit by simp
also have . . . = k using gr by (induction k, auto)
finally show unity-root-sum k n = k by simp

next
assume dvd: ¬k dvd n
let ?x = unity-root k n
have ?x 6= 1 using dvd gr unity-root-eq-1-iff-int by auto
have (?x^k − 1 )/(?x − 1 ) = (

∑
m<k. ?x^m)

using geometric-sum[of ?x k, OF ‹?x 6= 1 ›] by auto
then have sum: unity-root-sum k n = (?x^k − 1 )/(?x − 1 )

using unity-root-sum-def unity-root-pow by simp
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have ?x^k = 1
using gr unity-root-eq-1-iff-int unity-root-pow by simp

then show unity-root-sum k n = 0 using sum by auto
qed

corollary unity-root-sum-periodic-arithmetic:
periodic-arithmetic (unity-root-sum k) k
unfolding periodic-arithmetic-def

proof
fix n
show unity-root-sum k (n + k) = unity-root-sum k n

by (cases k = 0 ; cases k dvd n) (auto simp add: unity-root-sum)
qed

lemma unity-root-sum-nonzero-iff :
fixes r :: int
assumes k ≥ 1 and r ∈ {−k<..<k}
shows unity-root-sum k r 6= 0 ←→ r = 0

proof
assume unity-root-sum k r 6= 0
then have k dvd r using unity-root-sum assms by blast
then show r = 0 using assms(2 )

using dvd-imp-le-int by force
next

assume r = 0
then have k dvd r by auto
then have unity-root-sum k r = k

using assms(1 ) unity-root-sum by blast
then show unity-root-sum k r 6= 0 using assms(1 ) by simp

qed

end

5 Finite Fourier series
theory Finite-Fourier-Series
imports

Polynomial-Interpolation.Lagrange-Interpolation
Complex-Roots-Of-Unity

begin

5.1 Auxiliary facts
lemma lagrange-exists:

assumes d: distinct (map fst zs-ws)
defines e: (p :: complex poly) ≡ lagrange-interpolation-poly zs-ws
shows degree p ≤ (length zs-ws)−1

(∀ x y. (x,y) ∈ set zs-ws −→ poly p x = y)
proof −
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from e show degree p ≤ (length zs-ws − 1 )
using degree-lagrange-interpolation-poly by auto

from e d have
poly p x = y if (x,y) ∈ set zs-ws for x y
using that lagrange-interpolation-poly by auto

then show (∀ x y. (x,y) ∈ set zs-ws −→ poly p x = y)
by auto

qed

lemma lagrange-unique:
assumes o: length zs-ws > 0
assumes d: distinct (map fst zs-ws)
assumes 1 : degree (p1 :: complex poly) ≤ (length zs-ws)−1 ∧

(∀ x y. (x,y) ∈ set zs-ws −→ poly p1 x = y)
assumes 2 : degree (p2 :: complex poly) ≤ (length zs-ws)−1 ∧

(∀ x y. (x,y) ∈ set zs-ws −→ poly p2 x = y)
shows p1 = p2

proof (cases p1 − p2 = 0 )
case True then show ?thesis by simp

next
case False

have poly (p1−p2 ) x = 0 if x ∈ set (map fst zs-ws) for x
using 1 2 that by (auto simp add: field-simps)

from this d have 3 : card {x. poly (p1−p2 ) x = 0} ≥ length zs-ws
proof (induction zs-ws)

case Nil then show ?case by simp
next

case (Cons z-w zs-ws)
from False poly-roots-finite
have f : finite {x. poly (p1 − p2 ) x = 0} by blast
from Cons have set (map fst (z-w # zs-ws)) ⊆ {x. poly (p1 − p2 ) x = 0}

by auto
then have i: card (set (map fst (z-w # zs-ws))) ≤ card {x. poly (p1 − p2 )

x = 0}
using card-mono f by blast

have length (z-w # zs-ws) ≤ card (set (map fst (z-w # zs-ws)))
using Cons.prems(2 ) distinct-card by fastforce

from this i show ?case by simp
qed
from 1 2 have 4 : degree (p1 − p2 ) ≤ (length zs-ws)−1

using degree-diff-le by blast

have p1 − p2 = 0
proof (rule ccontr)

assume p1 − p2 6= 0
then have card {x. poly (p1−p2 ) x = 0} ≤ degree (p1−p2 )

using poly-roots-degree by blast
then have card {x. poly (p1−p2 ) x = 0} ≤ (length zs-ws)−1

using 4 by auto
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then show False using 3 o by linarith
qed
then show ?thesis by simp

qed

Theorem 8.2
corollary lagrange:

assumes length zs-ws > 0 distinct (map fst zs-ws)
shows (∃ ! (p :: complex poly).

degree p ≤ length zs-ws − 1 ∧
(∀ x y. (x, y) ∈ set zs-ws −→ poly p x = y))

using assms lagrange-exists lagrange-unique by blast

lemma poly-altdef ′:
assumes gr : k ≥ degree p
shows poly p (z::complex) = (

∑
i≤k. coeff p i ∗ z ^ i)

proof −
{fix z
have 1 : poly p z = (

∑
i≤degree p. coeff p i ∗ z ^ i)

using poly-altdef [of p z] by simp
have poly p z = (

∑
i≤k. coeff p i ∗ z ^ i)

using gr
proof (induction k)

case 0 then show ?case by (simp add: poly-altdef )
next

case (Suc k)
then show ?case

using 1 le-degree not-less-eq-eq by fastforce
qed}
then show ?thesis using gr by blast

qed

5.2 Definition and uniqueness
definition finite-fourier-poly :: complex list ⇒ complex poly where

finite-fourier-poly ws =
(let k = length ws
in poly-of-list [1 / k ∗ (

∑
m<k. ws ! m ∗ unity-root k (−n∗m)). n ← [0 ..<k]])

lemma degree-poly-of-list-le: degree (poly-of-list ws) ≤ length ws − 1
by (intro degree-le) (auto simp: nth-default-def )

lemma degree-finite-fourier-poly: degree (finite-fourier-poly ws) ≤ length ws − 1
unfolding finite-fourier-poly-def

proof (subst Let-def )
let ?unrolled-list =

(map (λn. complex-of-real (1 / real (length ws)) ∗
(
∑

m<length ws.
ws ! m ∗
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unity-root (length ws) (− int n ∗ int m)))
[0 ..<length ws])

have degree (poly-of-list ?unrolled-list) ≤ length ?unrolled-list − 1
by (rule degree-poly-of-list-le)

also have . . . = length [0 ..<length ws] − 1
using length-map by auto

also have . . . = length ws − 1 by auto
finally show degree (poly-of-list ?unrolled-list) ≤ length ws − 1 by blast

qed

lemma coeff-finite-fourier-poly:
assumes n < length ws
defines k ≡ length ws
shows coeff (finite-fourier-poly ws) n =

(1/k) ∗ (
∑

m < k. ws ! m ∗ unity-root k (−n∗m))
using assms degree-finite-fourier-poly
by (auto simp: Let-def nth-default-def finite-fourier-poly-def )

lemma poly-finite-fourier-poly:
fixes m :: int and ws
defines k ≡ length ws
assumes m ∈ {0 ..<k}
assumes m < length ws
shows poly (finite-fourier-poly ws) (unity-root k m) = ws ! (nat m)

proof −
have k > 0 using assms by auto

have distr :
(
∑

j<length ws. ws ! j ∗ unity-root k (−i∗j))∗(unity-root k (m∗i)) =
(
∑

j<length ws. ws ! j ∗ unity-root k (−i∗j)∗(unity-root k (m∗i)))
for i

using sum-distrib-right[of λj. ws ! j ∗ unity-root k (−i∗j)
{..<k} (unity-root k (m∗i))]

using k-def by blast

{fix j i :: nat
have unity-root k (−i∗j)∗(unity-root k (m∗i)) = unity-root k (−i∗j+m∗i)

by (simp add: unity-root-diff unity-root-uminus field-simps)
also have . . . = unity-root k (i∗(m−j))

by (simp add: algebra-simps)
finally have unity-root k (−i∗j)∗(unity-root k (m∗i)) = unity-root k (i∗(m−j))

by simp
then have ws ! j ∗ unity-root k (−i∗j)∗(unity-root k (m∗i)) =

ws ! j ∗ unity-root k (i∗(m−j))
by auto

} note prod = this

have zeros:
(unity-root-sum k (m−j) 6= 0 ←→ m = j)
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if j ≥ 0 ∧ j < k for j
using k-def that assms unity-root-sum-nonzero-iff [of - m−j] by simp

then have sum-eq:
(
∑

j≤k−1 . ws ! j ∗ unity-root-sum k (m−j)) =
(
∑

j∈{nat m}. ws ! j ∗ unity-root-sum k (m−j))
using assms(2 ) by (intro sum.mono-neutral-right,auto)

have poly (finite-fourier-poly ws) (unity-root k m) =
(
∑

i≤k−1 . coeff (finite-fourier-poly ws) i ∗ (unity-root k m) ^ i)
using degree-finite-fourier-poly[of ws] k-def

poly-altdef ′[of finite-fourier-poly ws k−1 unity-root k m] by blast
also have . . . = (

∑
i<k. coeff (finite-fourier-poly ws) i ∗ (unity-root k m) ^ i)

using assms(2 ) by (intro sum.cong) auto
also have . . . = (

∑
i<k. 1 / k ∗

(
∑

j<k. ws ! j ∗ unity-root k (−i∗j)) ∗ (unity-root k m) ^ i)
using coeff-finite-fourier-poly[of - ws] k-def by auto

also have . . . = (
∑

i<k. 1 / k ∗
(
∑

j<k. ws ! j ∗ unity-root k (−i∗j))∗(unity-root k (m∗i)))
using unity-root-pow by auto

also have . . . = (
∑

i<k. 1 / k ∗
(
∑

j<k. ws ! j ∗ unity-root k (−i∗j)∗(unity-root k (m∗i))))
using distr k-def by simp

also have . . . = (
∑

i<k. 1 / k ∗
(
∑

j<k. ws ! j ∗ unity-root k (i∗(m−j))))
using prod by presburger

also have . . . = 1 / k ∗ (
∑

i<k.
(
∑

j<k. ws ! j ∗ unity-root k (i∗(m−j))))
by (simp add: sum-distrib-left)

also have . . . = 1 / k ∗ (
∑

j<k.
(
∑

i<k. ws ! j ∗ unity-root k (i∗(m−j))))
using sum.swap by fastforce

also have . . . = 1 / k ∗ (
∑

j<k. ws ! j ∗ (
∑

i<k. unity-root k (i∗(m−j))))
by (simp add: vector-space-over-itself .scale-sum-right)

also have . . . = 1 / k ∗ (
∑

j<k. ws ! j ∗ unity-root-sum k (m−j))
unfolding unity-root-sum-def by (simp add: algebra-simps)

also have (
∑

j<k. ws ! j ∗ unity-root-sum k (m−j)) = (
∑

j≤k−1 . ws ! j ∗
unity-root-sum k (m−j))

using ‹k > 0 › by (intro sum.cong) auto
also have . . . = (

∑
j∈{nat m}. ws ! j ∗ unity-root-sum k (m−j))

using sum-eq .
also have . . . = ws ! (nat m) ∗ k

using assms(2 ) by (auto simp: algebra-simps)
finally have poly (finite-fourier-poly ws) (unity-root k m) = ws ! (nat m)

using assms(2 ) by auto
then show ?thesis by simp

qed

Theorem 8.3
theorem finite-fourier-poly-unique:
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assumes length ws > 0
defines k ≡ length ws
assumes (degree p ≤ k − 1 )
assumes (∀m ≤ k−1 . (ws ! m) = poly p (unity-root k m))
shows p = finite-fourier-poly ws

proof −
let ?z = map (λm. unity-root k m) [0 ..<k]
have k: k > 0 using assms by auto
from k have d1 : distinct ?z

unfolding distinct-conv-nth using unity-root-eqD[OF k] by force
let ?zs-ws = zip ?z ws
from d1 k-def have d2 : distinct (map fst ?zs-ws) by simp
have l2 : length ?zs-ws > 0 using assms(1 ) k-def by auto
have l3 : length ?zs-ws = k by (simp add: k-def )

from degree-finite-fourier-poly have degree: degree (finite-fourier-poly ws) ≤ k −
1

using k-def by simp

have interp: poly (finite-fourier-poly ws) x = y
if (x, y) ∈ set ?zs-ws for x y

proof −
from that obtain n where

x = map (unity-root k ◦ int) [0 ..<k] ! n ∧
y = ws ! n ∧
n < length ws

using in-set-zip[of (x,y) (map (unity-root k) (map int [0 ..<k])) ws]
by auto

then have
x = unity-root k (int n) ∧
y = ws ! n ∧
n < length ws

using nth-map[of n [0 ..<k] unity-root k ◦ int ] k-def by simp
thus poly (finite-fourier-poly ws) x = y

by (simp add: poly-finite-fourier-poly k-def )
qed

have interp-p: poly p x = y if (x,y) ∈ set ?zs-ws for x y
proof −

from that obtain n where
x = map (unity-root k ◦ int) [0 ..<k] ! n ∧
y = ws ! n ∧
n < length ws

using in-set-zip[of (x,y) (map (unity-root k) (map int [0 ..<k])) ws]
by auto

then have rw: x = unity-root k (int n) y = ws ! n n < length ws
using nth-map[of n [0 ..<k] unity-root k ◦ int ] k-def by simp+

show poly p x = y
unfolding rw(1 ,2 ) using assms(4 ) rw(3 ) k-def by simp
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qed

from lagrange-unique[of - p finite-fourier-poly ws] d2 l2
have l:

degree p ≤ k − 1 ∧
(∀ x y. (x, y) ∈ set ?zs-ws −→ poly p x = y) =⇒
degree (finite-fourier-poly ws) ≤ k − 1 ∧
(∀ x y. (x, y) ∈ set ?zs-ws −→ poly (finite-fourier-poly ws) x = y) =⇒
p = (finite-fourier-poly ws)
using l3 by metis

from assms degree interp interp-p l3
show p = (finite-fourier-poly ws) using l by blast

qed

The following alternative formulation returns a coefficient
definition finite-fourier-poly ′ :: (nat ⇒ complex) ⇒ nat ⇒ complex poly where

finite-fourier-poly ′ ws k =
(poly-of-list [1 / k ∗ (

∑
m<k. (ws m) ∗ unity-root k (−n∗m)). n ← [0 ..<k]])

lemma finite-fourier-poly ′-conv-finite-fourier-poly:
finite-fourier-poly ′ ws k = finite-fourier-poly [ws n. n ← [0 ..<k]]
unfolding finite-fourier-poly-def finite-fourier-poly ′-def by simp

lemma coeff-finite-fourier-poly ′:
assumes n < k
shows coeff (finite-fourier-poly ′ ws k) n =

(1/k) ∗ (
∑

m < k. (ws m) ∗ unity-root k (−n∗m))
proof −

let ?ws = [ws n. n ← [0 ..<k]]
have coeff (finite-fourier-poly ′ ws k) n =

coeff (finite-fourier-poly ?ws) n
by (simp add: finite-fourier-poly ′-conv-finite-fourier-poly)

also have coeff (finite-fourier-poly ?ws) n =
1 / k ∗ (

∑
m<k. (?ws ! m) ∗ unity-root k (− n∗m))

using assms by (auto simp: coeff-finite-fourier-poly)
also have . . . = (1/k) ∗ (

∑
m < k. (ws m) ∗ unity-root k (−n∗m))

using assms by simp
finally show ?thesis by simp

qed

lemma degree-finite-fourier-poly ′: degree (finite-fourier-poly ′ ws k) ≤ k − 1
using degree-finite-fourier-poly[of [ws n. n ← [0 ..<k]]]
by (auto simp: finite-fourier-poly ′-conv-finite-fourier-poly)

lemma poly-finite-fourier-poly ′:
fixes m :: int and k
assumes m ∈ {0 ..<k}
shows poly (finite-fourier-poly ′ ws k) (unity-root k m) = ws (nat m)
using assms poly-finite-fourier-poly[of m [ws n. n ← [0 ..<k]]]
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by (auto simp: finite-fourier-poly ′-conv-finite-fourier-poly poly-finite-fourier-poly)

lemma finite-fourier-poly ′-unique:
assumes k > 0
assumes degree p ≤ k − 1
assumes ∀m≤k−1 . ws m = poly p (unity-root k m)
shows p = finite-fourier-poly ′ ws k

proof −
let ?ws = [ws n. n ← [0 ..<k]]
from finite-fourier-poly-unique have p = finite-fourier-poly ?ws using assms by

simp
also have . . . = finite-fourier-poly ′ ws k

using finite-fourier-poly ′-conv-finite-fourier-poly ..
finally show p = finite-fourier-poly ′ ws k by blast

qed

lemma fourier-unity-root:
fixes k :: nat
assumes k > 0
shows poly (finite-fourier-poly ′ f k) (unity-root k m) =
(
∑

n<k.1/k∗(
∑

m<k.(f m)∗unity-root k (−n∗m))∗unity-root k (m∗n))
proof −

have poly (finite-fourier-poly ′ f k) (unity-root k m) =
(
∑

n≤k−1 . coeff (finite-fourier-poly ′ f k) n ∗(unity-root k m)^n)
using poly-altdef ′[of finite-fourier-poly ′ f k k−1 unity-root k m]

degree-finite-fourier-poly ′[of f k] by simp
also have . . . = (

∑
n≤k−1 . coeff (finite-fourier-poly ′ f k) n ∗(unity-root k

(m∗n)))
using unity-root-pow by simp

also have . . . = (
∑

n<k. coeff (finite-fourier-poly ′ f k) n ∗(unity-root k (m∗n)))

using assms by (intro sum.cong) auto
also have . . . = (

∑
n<k.(1/k)∗(

∑
m<k.(f m)∗unity-root k (−n∗m))∗(unity-root

k (m∗n)))
using coeff-finite-fourier-poly ′[of - k f ] by simp

finally show
poly (finite-fourier-poly ′ f k) (unity-root k m) =
(
∑

n<k.1/k∗(
∑

m<k.(f m)∗unity-root k (−n∗m))∗unity-root k (m∗n))
by blast

qed

5.3 Expansion of an arithmetical function

Theorem 8.4
theorem fourier-expansion-periodic-arithmetic:

assumes k > 0
assumes periodic-arithmetic f k
defines g ≡ (λn. (1 / k) ∗ (

∑
m<k. f m ∗ unity-root k (−n ∗ m)))

shows periodic-arithmetic g k
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and f m = (
∑

n<k. g n ∗ unity-root k (m ∗ n))
proof −
{fix l
from unity-periodic-arithmetic mult-period
have period: periodic-arithmetic (λx. unity-root k x) (k∗l) by simp}
note period = this

{fix n l
have unity-root k (−(n+k)∗l) = cnj (unity-root k ((n+k)∗l))

by (simp add: unity-root-uminus unity-root-diff ring-distribs unity-root-add)
also have unity-root k ((n+k)∗l) = unity-root k (n∗l)

by (intro unity-root-cong) (auto simp: cong-def algebra-simps)
also have cnj . . . = unity-root k (−n∗l)

using unity-root-uminus by simp
finally have unity-root k (−(n+k)∗l) = unity-root k (−n∗l) by simp}
note u-period = this

show 1 : periodic-arithmetic g k
unfolding periodic-arithmetic-def

proof
fix n

have g(n+k) = (1 / k) ∗ (
∑

m<k. f (m) ∗ unity-root k (−(n+k)∗m))
using assms(3 ) by fastforce

also have . . . = (1 / k) ∗ (
∑

m<k. f (m) ∗ unity-root k (−n∗m))
proof −

have (
∑

m<k. f (m) ∗ unity-root k (−(n+k)∗m)) =
(
∑

m<k. f (m) ∗ unity-root k (−n∗m))
by (intro sum.cong) (use u-period in auto)

then show ?thesis by argo
qed
also have . . . = g(n)

using assms(3 ) by fastforce
finally show g(n+k) = g(n) by simp

qed

show f (m) = (
∑

n<k. g(n)∗ unity-root k (m ∗ int n))
proof −

{
fix m
assume range: m ∈ {0 ..<k}
have f (m) = (

∑
n<k. g(n)∗ unity-root k (m ∗ int n))

proof −
have f m = poly (finite-fourier-poly ′ f k) (unity-root k m)

using range by (simp add: poly-finite-fourier-poly ′)
also have . . . = (

∑
n<k. (1 / k) ∗ (

∑
m<k. f (m) ∗ unity-root k (−n∗m))∗

unity-root k (m∗n))
using fourier-unity-root assms(1 ) by blast

also have . . . = (
∑

n<k. g(n)∗ unity-root k (m∗n))
using assms by simp
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finally show ?thesis by auto
qed}

note concentrated = this

have periodic-arithmetic (λm. (
∑

n<k. g(n)∗ unity-root k (m ∗ int n))) k
proof −

have periodic-arithmetic (λn. g(n)∗ unity-root k (i ∗ int n)) k for i :: int
using 1 unity-periodic-arithmetic mult-periodic-arithmetic

unity-periodic-arithmetic-mult by auto
then have p-s: ∀ i<k. periodic-arithmetic (λn. g(n)∗ unity-root k (i ∗ int n)) k

by simp
have periodic-arithmetic (λi.

∑
n<k. g(n)∗ unity-root k (i ∗ int n)) k

unfolding periodic-arithmetic-def
proof

fix n
show (

∑
na<k. g na ∗ unity-root k (int (n + k) ∗ int na)) =

(
∑

na<k. g na ∗ unity-root k (int n ∗ int na))
by (intro sum.cong refl, simp add: distrib-right flip: of-nat-mult of-nat-add)

(insert period, unfold periodic-arithmetic-def , blast)
qed
then show ?thesis by simp

qed

from this assms(1−2 ) concentrated
unique-periodic-arithmetic-extension[of k f (λi.

∑
n<k. g(n)∗ unity-root k (i

∗ int n)) m]
show f m = (

∑
n<k. g n ∗ unity-root k (int m ∗ int n)) by simp

qed
qed

theorem fourier-expansion-periodic-arithmetic-unique:
fixes f g :: nat ⇒ complex
assumes k > 0
assumes periodic-arithmetic f k and periodic-arithmetic g k
assumes

∧
m. m < k =⇒ f m = (

∑
n<k. g n ∗ unity-root k (int (m ∗ n)))

shows g n = (1 / k) ∗ (
∑

m<k. f m ∗ unity-root k (−n ∗ m))
proof −

let ?p = poly-of-list [g(n). n ← [0 ..<k]]
have d: degree ?p ≤ k−1
proof −

have degree ?p ≤ length [g(n). n ← [0 ..<k]] − 1
using degree-poly-of-list-le by blast

also have . . . = length [0 ..<k] − 1
using length-map by auto

finally show ?thesis by simp
qed
have c: coeff ?p i = (if i < k then g(i) else 0 ) for i

by (simp add: nth-default-def )
{fix z
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have poly ?p z = (
∑

n≤k−1 . coeff ?p n∗ z^n)
using poly-altdef ′[of ?p k−1 ] d by blast

also have . . . = (
∑

n<k. coeff ?p n∗ z^n)
using ‹k > 0 › by (intro sum.cong) auto

also have . . . = (
∑

n<k. (if n < k then g(n) else 0 )∗ z^n)
using c by simp

also have . . . = (
∑

n<k. g(n)∗ z^n)
by (simp split: if-splits)

finally have poly ?p z = (
∑

n<k. g n ∗ z ^ n) .}
note eval = this
{fix i
have poly ?p (unity-root k i) = (

∑
n<k. g(n)∗ (unity-root k i)^n)

using eval by blast
then have poly ?p (unity-root k i) = (

∑
n<k. g(n)∗ (unity-root k (i∗n)))

using unity-root-pow by auto}
note interpolation = this

{
fix m
assume b: m ≤ k−1
from d assms(1 )
have f m = (

∑
n<k. g(n) ∗ unity-root k (m∗n))

using assms(4 ) b by auto
also have . . . = poly ?p (unity-root k m)

using interpolation by simp
finally have f m = poly ?p (unity-root k m) by auto

}

from this finite-fourier-poly ′-unique[of k - f ]
have p-is-fourier : ?p = finite-fourier-poly ′ f k

using assms(1 ) d by blast

{
fix n
assume b: n ≤ k−1
have f-1 : coeff ?p n = (1 / k) ∗ (

∑
m<k. f (m) ∗ unity-root k (−n∗m))

using p-is-fourier using assms(1 ) b by (auto simp: coeff-finite-fourier-poly ′)
then have g(n) = (1 / k) ∗ (

∑
m<k. f (m) ∗ unity-root k (−n∗m))

using c b assms(1 )
proof −

have 1 : coeff ?p n = (1 / k) ∗ (
∑

m<k. f (m) ∗ unity-root k (−n∗m))
using f-1 by blast

have 2 : coeff ?p n = g n
using c assms(1 ) b by simp

show ?thesis using 1 2 by argo
qed

}
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have periodic-arithmetic (λn. (1 / k) ∗ (
∑

m<k. f (m) ∗ unity-root k (−n∗m)))
k

proof −
have periodic-arithmetic (λi. unity-root k (−int i∗int m)) k for m

using unity-root-periodic-arithmetic-mult-minus by simp
then have periodic-arithmetic (λi. f (m) ∗ unity-root k (−i∗m)) k for m

by (simp add: periodic-arithmetic-def )
then show periodic-arithmetic (λi. (1 / k) ∗ (

∑
m<k. f m ∗ unity-root k

(−i∗m))) k
by (intro scalar-mult-periodic-arithmetic fin-sum-periodic-arithmetic-set) auto

qed
note periodich = this
let ?h = (λi. (1 / k) ∗(

∑
m<k. f m ∗ unity-root k (−i∗m)))

from unique-periodic-arithmetic-extension[of k g ?h n]
assms(3 ) assms(1 ) periodich

have g n = (1/k) ∗ (
∑

m<k. f m ∗ unity-root k (−n∗m))
by (simp add: ‹

∧
na. na ≤ k − 1 =⇒ g na = complex-of-real (1 / real k) ∗

(
∑

m<k. f m ∗ unity-root k (− int na ∗ int m))›)
then show ?thesis by simp

qed

end

6 Ramanujan sums
theory Ramanujan-Sums
imports

Dirichlet-Series.Moebius-Mu
Gauss-Sums-Auxiliary
Finite-Fourier-Series

begin

6.1 Basic sums
definition ramanujan-sum :: nat ⇒ nat ⇒ complex

where ramanujan-sum k n = (
∑

m | m ∈ {1 ..k} ∧ coprime m k. unity-root k
(m∗n))

notation ramanujan-sum (‹c›)

lemma ramanujan-sum-0-n [simp]: c 0 n = 0
unfolding ramanujan-sum-def by simp

lemma sum-coprime-conv-dirichlet-prod-moebius-mu:
fixes F S :: nat ⇒ complex and f :: nat ⇒ nat ⇒ complex
defines F ≡ (λn. (

∑
k ∈ {1 ..n}. f k n))

defines S ≡ (λn. (
∑

k | k ∈ {1 ..n} ∧ coprime k n . f k n))
assumes

∧
a b d. d dvd a =⇒ d dvd b =⇒ f (a div d) (b div d) = f a b

shows S n = dirichlet-prod moebius-mu F n
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proof (cases n = 0 )
case True
then show ?thesis

using assms(2 ) unfolding dirichlet-prod-def by fastforce
next

case False
have S(n) = (

∑
k | k ∈ {1 ..n} ∧ coprime k n . (f k n))

using assms by blast
also have . . . = (

∑
k ∈ {1 ..n}. (f k n)∗ dirichlet-prod-neutral (gcd k n))

using dirichlet-prod-neutral-intro by blast
also have . . . = (

∑
k ∈ {1 ..n}. (f k n)∗ (

∑
d | d dvd (gcd k n). moebius-mu d))

proof −
{

fix k
have dirichlet-prod-neutral (gcd k n) = (if gcd k n = 1 then 1 else 0 )

using dirichlet-prod-neutral-def [of gcd k n] by blast
also have . . . = (

∑
d | d dvd gcd k n. moebius-mu d)

using sum-moebius-mu-divisors ′[of gcd k n] by auto
finally have dirichlet-prod-neutral (gcd k n) = (

∑
d | d dvd gcd k n. moe-

bius-mu d)
by auto

} note summand = this
then show ?thesis by (simp add: summand)

qed
also have . . . = (

∑
k = 1 ..n. (

∑
d | d dvd gcd k n. (f k n) ∗ moebius-mu d))

by (simp add: sum-distrib-left)
also have . . . = (

∑
k = 1 ..n. (

∑
d | d dvd gcd n k. (f k n) ∗ moebius-mu d))

using gcd.commute[of - n] by simp
also have . . . = (

∑
d | d dvd n.

∑
k | k ∈ {1 ..n} ∧ d dvd k. (f k n) ∗ moebius-mu

d)
using sum.swap-restrict[of {1 ..n} {d. d dvd n}

λk d. (f k n)∗moebius-mu d λk d. d dvd k] False by auto
also have . . . = (

∑
d | d dvd n. moebius-mu d ∗ (

∑
k | k ∈ {1 ..n} ∧ d dvd k.

(f k n)))
by (simp add: sum-distrib-left mult.commute)

also have . . . = (
∑

d | d dvd n. moebius-mu d ∗ (
∑

q ∈ {1 ..n div d}. (f q (n
div d))))

proof −
have st:
(
∑

k | k ∈ {1 ..n} ∧ d dvd k. (f k n)) =
(
∑

q ∈ {1 ..n div d}. (f q (n div d)))
if d dvd n d > 0 for d :: nat
by (rule sum.reindex-bij-witness[of - λk. k ∗ d λk. k div d])

(use assms(3 ) that in ‹fastforce simp: div-le-mono›)+
show ?thesis

by (intro sum.cong) (use st False in fastforce)+
qed
also have . . . = (

∑
d | d dvd n. moebius-mu d ∗ F(n div d))

proof −
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have F (n div d) = (
∑

q ∈ {1 ..n div d}. (f q (n div d)))
if d dvd n for d

by (simp add: F-def real-of-nat-div that)
then show ?thesis by auto

qed
also have . . . = dirichlet-prod moebius-mu F n

by (simp add: dirichlet-prod-def )
finally show ?thesis by simp

qed

lemma dirichlet-prod-neutral-sum:
dirichlet-prod-neutral n = (

∑
k = 1 ..n. unity-root n k) for n :: nat

proof (cases n = 0 )
case True then show ?thesis unfolding dirichlet-prod-neutral-def by simp

next
case False
have 1 : unity-root n 0 = 1 by simp
have 2 : unity-root n n = 1

using unity-periodic-arithmetic[of n] add.left-neutral
proof −

have 1 = unity-root n (int 0 )
using 1 by auto

also have unity-root n (int 0 ) = unity-root n (int (0 + n))
using unity-periodic-arithmetic[of n] periodic-arithmetic-def by algebra

also have . . . = unity-root n (int n) by simp
finally show ?thesis by auto

qed
have (

∑
k = 1 ..n. unity-root n k) = (

∑
k = 0 ..n. unity-root n k) − 1

by (simp add: sum.atLeast-Suc-atMost sum.atLeast0-atMost-Suc-shift 1 )
also have . . . = ((

∑
k = 0 ..n−1 . unity-root n k)+1 ) − 1

using sum.atLeast0-atMost-Suc[of (λk. unity-root n k) n−1 ] False
by (simp add: 2 )

also have . . . = (
∑

k = 0 ..n−1 . unity-root n k)
by simp

also have . . . = unity-root-sum n 1
unfolding unity-root-sum-def using ‹n 6= 0 › by (intro sum.cong) auto

also have . . . = dirichlet-prod-neutral n
using unity-root-sum[of n 1 ] False
by (cases n = 1 ,auto simp add: False dirichlet-prod-neutral-def )

finally have 3 : dirichlet-prod-neutral n = (
∑

k = 1 ..n. unity-root n k) by auto
then show ?thesis by blast

qed

lemma moebius-coprime-sum:
moebius-mu n = (

∑
k | k ∈ {1 ..n} ∧ coprime k n . unity-root n (int k))

proof −
let ?f = (λk n. unity-root n k)
from div-dvd-div have

d dvd a =⇒ d dvd b =⇒
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unity-root (a div d) (b div d) =
unity-root a b for a b d :: nat

using unity-root-def real-of-nat-div by fastforce
then have (

∑
k | k ∈ {1 ..n} ∧ coprime k n. ?f k n) =

dirichlet-prod moebius-mu (λn.
∑

k = 1 ..n. ?f k n) n
using sum-coprime-conv-dirichlet-prod-moebius-mu[of ?f n] by blast

also have . . . = dirichlet-prod moebius-mu dirichlet-prod-neutral n
by (simp add: dirichlet-prod-neutral-sum)

also have . . . = moebius-mu n
by (cases n = 0 ) (simp-all add: dirichlet-prod-neutral-right-neutral)

finally have moebius-mu n = (
∑

k | k ∈ {1 ..n} ∧ coprime k n. ?f k n)
by argo

then show ?thesis by blast
qed

corollary ramanujan-sum-1-right [simp]: c k (Suc 0 ) = moebius-mu k
unfolding ramanujan-sum-def using moebius-coprime-sum[of k] by simp

lemma ramanujan-sum-dvd-eq-totient:
assumes k dvd n

shows c k n = totient k
unfolding ramanujan-sum-def

proof −
have unity-root k (m∗n) = 1 for m

using assms by (cases k = 0 ) (auto simp: unity-root-eq-1-iff-int)
then have (

∑
m | m ∈ {1 ..k} ∧ coprime m k. unity-root k (m ∗ n)) =

(
∑

m | m ∈ {1 ..k} ∧ coprime m k. 1 ) by simp
also have . . . = card {m. m ∈ {1 ..k} ∧ coprime m k} by simp
also have . . . = totient k
unfolding totient-def totatives-def

proof −
have {1 ..k} = {0<..k} by auto
then show of-nat (card {m ∈ {1 ..k}. coprime m k}) =

of-nat (card {ka ∈ {0<..k}. coprime ka k}) by auto
qed
finally show (

∑
m | m ∈ {1 ..k} ∧ coprime m k. unity-root k (m ∗ n)) = totient

k
by auto

qed

6.2 Generalised sums
definition gen-ramanujan-sum :: (nat ⇒ complex) ⇒ (nat ⇒ complex) ⇒ nat ⇒
nat ⇒ complex where

gen-ramanujan-sum f g = (λk n.
∑

d | d dvd gcd n k. f d ∗ g (k div d))

notation gen-ramanujan-sum (‹s›)

lemma gen-ramanujan-sum-k-1 : s f g k 1 = f 1 ∗ g k
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unfolding gen-ramanujan-sum-def by auto

lemma gen-ramanujan-sum-1-n: s f g 1 n = f 1 ∗ g 1
unfolding gen-ramanujan-sum-def by simp

lemma gen-ramanujan-sum-periodic: periodic-arithmetic (s f g k) k
unfolding gen-ramanujan-sum-def periodic-arithmetic-def by simp

Theorem 8.5
theorem gen-ramanujan-sum-fourier-expansion:

fixes f g :: nat ⇒ complex and a :: nat ⇒ nat ⇒ complex
assumes k > 0
defines a ≡ (λk m. (1/k) ∗ (

∑
d| d dvd (gcd m k). g d ∗ f (k div d) ∗ d))

shows s f g k n = (
∑

m≤k−1 . a k m ∗ unity-root k (m∗n))
proof −

let ?g = (λx. 1 / of-nat k ∗ (
∑

m<k. s f g k m ∗ unity-root k (−x∗m)))
{fix m :: nat
let ?h = λn d. f d ∗ g (k div d) ∗ unity-root k (− m ∗ int n)
have (

∑
l<k. s f g k l ∗ unity-root k (−m∗l)) =
(
∑

l ∈ {0 ..k−1}. s f g k l ∗ unity-root k (−m∗l))
using ‹k > 0 › by (intro sum.cong) auto

also have . . . = (
∑

l ∈ {1 ..k}. s f g k l ∗ unity-root k (−m∗l))
proof −

have periodic-arithmetic (λl. unity-root k (−m∗l)) k
using unity-periodic-arithmetic-mult by blast

then have periodic-arithmetic (λl. s f g k l ∗ unity-root k (−m∗l)) k
using gen-ramanujan-sum-periodic mult-periodic-arithmetic by blast

from this periodic-arithmetic-sum-periodic-arithmetic-shift[of - k 1 ]
have sum (λl. s f g k l ∗ unity-root k (−m∗l)) {0 ..k − 1} =

sum (λl. s f g k l ∗ unity-root k (−m∗l)) {1 ..k}
using assms(1 ) zero-less-one by simp

then show ?thesis by argo
qed
also have . . . = (

∑
n∈{1 ..k}. (

∑
d | d dvd (gcd n k). f (d) ∗ g(k div d)) ∗

unity-root k (−m∗n))
by (simp add: gen-ramanujan-sum-def )

also have . . . = (
∑

n∈{1 ..k}. (
∑

d | d dvd (gcd n k). f (d) ∗ g(k div d) ∗
unity-root k (−m∗n)))

by (simp add: sum-distrib-right)
also have . . . = (

∑
d | d dvd k.

∑
n | n ∈ {1 ..k} ∧ d dvd n. ?h n d)

proof −
have (

∑
n = 1 ..k.

∑
d | d dvd gcd n k. ?h n d) =

(
∑

n = 1 ..k.
∑

d | d dvd k ∧ d dvd n . ?h n d)
using gcd.commute[of - k] by simp

also have . . . = (
∑

d | d dvd k.
∑

n | n ∈ {1 ..k} ∧ d dvd n. ?h n d)
using sum.swap-restrict[of {1 ..k} {d. d dvd k}

- λn d. d dvd n] assms by fastforce
finally have
(
∑

n = 1 ..k.
∑

d | d dvd gcd n k. ?h n d) =
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(
∑

d | d dvd k.
∑

n | n ∈ {1 ..k} ∧ d dvd n. ?h n d) by blast
then show ?thesis by simp

qed
also have . . . = (

∑
d | d dvd k. f (d)∗g(k div d)∗

(
∑

n | n ∈ {1 ..k} ∧ d dvd n. unity-root k (− m ∗ int n)))
by (simp add: sum-distrib-left)

also have . . . = (
∑

d | d dvd k. f (d)∗g(k div d)∗
(
∑

e ∈ {1 ..k div d}. unity-root k (− m ∗ (e∗d))))
using assms(1 ) sum-div-reduce div-greater-zero-iff dvd-div-gt0 by auto

also have . . . = (
∑

d | d dvd k. f (d)∗g(k div d)∗
(
∑

e ∈ {1 ..k div d}. unity-root (k div d) (− m ∗ e)))
proof −

{
fix d e
assume d dvd k
hence 2 ∗ pi ∗ real-of-int (− int m ∗ int (e ∗ d)) / real k =

2 ∗ pi ∗ real-of-int (− int m ∗ int e) / real (k div d) by auto
hence unity-root k (− m ∗ (e ∗ d)) = unity-root (k div d) (− m ∗ e)

unfolding unity-root-def by simp
}
then show ?thesis by simp

qed
also have . . . = dirichlet-prod (λd. f (d)∗g(k div d))

(λd. (
∑

e ∈ {1 ..d}. unity-root d (− m ∗ e))) k
unfolding dirichlet-prod-def by blast

also have . . . = dirichlet-prod (λd. (
∑

e ∈ {1 ..d}. unity-root d (− m ∗ e)))
(λd. f (d)∗g(k div d)) k

using dirichlet-prod-commutes[of
(λd. f (d)∗g(k div d))
(λd. (

∑
e ∈ {1 ..d}. unity-root d (− m ∗ e)))] by argo

also have . . . = (
∑

d | d dvd k.
(
∑

e ∈ {1 ..(d::nat)}. unity-root d (− m ∗ e))∗(f (k div d)∗g(k div (k div
d))))

unfolding dirichlet-prod-def by blast
also have . . . = (

∑
d | d dvd k. (

∑
e ∈ {1 ..(d::nat)}.

unity-root d (− m ∗ e))∗(f (k div d)∗g(d)))
proof −

{
fix d :: nat
assume d dvd k
then have k div (k div d) = d

by (simp add: assms(1 ) div-div-eq-right)
}
then show ?thesis by simp

qed
also have . . . = (

∑
(d::nat) | d dvd k ∧ d dvd m. d∗(f (k div d)∗g(d)))

proof −
{

fix d
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assume d dvd k
with assms have d > 0 by (intro Nat.gr0I ) auto
have periodic-arithmetic (λx. unity-root d (− m ∗ int x)) d

using unity-periodic-arithmetic-mult by blast
then have (

∑
e ∈ {1 ..d}. unity-root d (− m ∗ e)) =

(
∑

e ∈ {0 ..d−1}. unity-root d (− m ∗ e))
using periodic-arithmetic-sum-periodic-arithmetic-shift[of λe. unity-root d

(− m ∗ e) d 1 ] assms ‹d dvd k›
by fastforce

also have . . . = unity-root-sum d (−m)
unfolding unity-root-sum-def using ‹d > 0 › by (intro sum.cong) auto

finally have
(
∑

e ∈ {1 ..d}. unity-root d (− m ∗ e)) = unity-root-sum d (−m)
by argo

}
then have
(
∑

d | d dvd k. (
∑

e = 1 ..d. unity-root d (− m ∗ int e)) ∗ (f (k div d) ∗ g
d)) =

(
∑

d | d dvd k. unity-root-sum d (−m) ∗ (f (k div d) ∗ g d)) by simp
also have . . . = (

∑
d | d dvd k ∧ d dvd m. unity-root-sum d (−m) ∗ (f (k div

d) ∗ g d))
proof (intro sum.mono-neutral-right,simp add: ‹k > 0 ›,blast,standard)

fix i
assume as: i ∈ {d. d dvd k} − {d. d dvd k ∧ d dvd m}
then have i ≥ 1 using ‹k > 0 › by auto
have k ≥ 1 using ‹k > 0 › by auto
have ¬ i dvd (−m) using as by auto
thus unity-root-sum i (− int m) ∗ (f (k div i) ∗ g i) = 0

using ‹i ≥ 1 › by (subst unity-root-sum(2 )) auto
qed
also have . . . = (

∑
d | d dvd k ∧ d dvd m. d ∗ (f (k div d) ∗ g d))

proof −
{fix d :: nat

assume 1 : d dvd m
assume 2 : d dvd k
then have unity-root-sum d (−m) = d

using unity-root-sum[of d (−m)] assms(1 ) 1 2
by auto}

then show ?thesis by auto
qed
finally show ?thesis by argo

qed
also have . . . = (

∑
d | d dvd gcd m k. of-nat d ∗ (f (k div d) ∗ g d))

by (simp add: gcd.commute)
also have . . . = (

∑
d | d dvd gcd m k. g d ∗ f (k div d) ∗ d)

by (simp add: algebra-simps sum-distrib-left)
also have 1 / k ∗ . . . = a k m using a-def by auto
finally have ?g m = a k m by simp}
note a-eq-g = this
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{
fix m

from fourier-expansion-periodic-arithmetic(2 )[of k s f g k ] gen-ramanujan-sum-periodic
assms(1 )

have s f g k m = (
∑

n<k. ?g n ∗ unity-root k (int m ∗ n))
by blast

also have . . . = (
∑

n<k. a k n ∗ unity-root k (int m ∗ n))
using a-eq-g by simp

also have . . . = (
∑

n≤k−1 . a k n ∗ unity-root k (int m ∗ n))
using ‹k > 0 › by (intro sum.cong) auto

finally have s f g k m =
(
∑

n≤k − 1 . a k n ∗ unity-root k (int n ∗ int m))
by (simp add: algebra-simps)

}
then show ?thesis by blast

qed

Theorem 8.6
theorem ramanujan-sum-dirichlet-form:

fixes k n :: nat
assumes k > 0
shows c k n = (

∑
d | d dvd gcd n k. d ∗ moebius-mu (k div d))

proof −
define a :: nat ⇒ nat ⇒ complex

where a = (λk m.
1 / of-nat k ∗ (

∑
d | d dvd gcd m k. moebius-mu d ∗ of-nat (k div d) ∗ of-nat

d))

{fix m
have a k m = (if gcd m k = 1 then 1 else 0 )
proof −
have a k m = 1 / of-nat k ∗ (

∑
d | d dvd gcd m k. moebius-mu d ∗ of-nat (k

div d) ∗ of-nat d)
unfolding a-def by blast

also have 2 : . . . = 1 / of-nat k ∗ (
∑

d | d dvd gcd m k. moebius-mu d ∗ of-nat
k)

proof −
{fix d :: nat
assume dvd: d dvd gcd m k
have moebius-mu d ∗ of-nat (k div d) ∗ of-nat d = moebius-mu d ∗ of-nat k
proof −

have (k div d) ∗ d = k using dvd by auto
then show moebius-mu d ∗ of-nat (k div d) ∗ of-nat d = moebius-mu d ∗

of-nat k
by (simp add: algebra-simps,subst of-nat-mult[symmetric],simp)

qed} note eq = this
show ?thesis using sum.cong by (simp add: eq)

qed
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also have 3 : . . . = (
∑

d | d dvd gcd m k. moebius-mu d)
by (simp add: sum-distrib-left assms)

also have 4 : . . . = (if gcd m k = 1 then 1 else 0 )
using sum-moebius-mu-divisors ′ by blast

finally show a k m = (if gcd m k = 1 then 1 else 0 )
using coprime-def by blast

qed} note a-expr = this

let ?f = (λm. (if gcd m k = 1 then 1 else 0 ) ∗
unity-root k (int m ∗ n))

from gen-ramanujan-sum-fourier-expansion[of k id moebius-mu n] assms
have s (λx. of-nat (id x)) moebius-mu k n =
(
∑

m≤k − 1 .
1 / of-nat k ∗
(
∑

d | d dvd gcd m k.
moebius-mu d ∗ of-nat (k div d) ∗ of-nat d) ∗

unity-root k (int m ∗ n)) by simp
also have . . . = (

∑
m≤k − 1 .

a k m ∗
unity-root k (int m ∗ n)) using a-def by blast

also have . . . = (
∑

m≤k − 1 .
(if gcd m k = 1 then 1 else 0 ) ∗
unity-root k (int m ∗ n)) using a-expr by auto

also have . . . = (
∑

m ∈ {1 ..k}.
(if gcd m k = 1 then 1 else 0 ) ∗
unity-root k (int m ∗ n))

proof −
have periodic-arithmetic (λm. (if gcd m k = 1 then 1 else 0 ) ∗

unity-root k (int m ∗ n)) k
proof −

have periodic-arithmetic (λm. if gcd m k = 1 then 1 else 0 ) k
by (simp add: periodic-arithmetic-def )

moreover have periodic-arithmetic (λm. unity-root k (int m ∗ n)) k
using unity-periodic-arithmetic-mult[of k n]
by (subst mult.commute,simp)

ultimately show periodic-arithmetic ?f k
using mult-periodic-arithmetic by simp

qed
then have sum ?f {0 ..k − 1} = sum ?f {1 ..k}

using periodic-arithmetic-sum-periodic-arithmetic-shift[of ?f k 1 ] by force
then show ?thesis by (simp add: atMost-atLeast0 )

qed
also have . . . = (

∑
m | m ∈ {1 ..k} ∧ gcd m k = 1 .

(if gcd m k = 1 then 1 else 0 ) ∗
unity-root k (int m ∗ int n))

by (intro sum.mono-neutral-right,auto)
also have . . . = (

∑
m | m ∈ {1 ..k} ∧ gcd m k = 1 .

unity-root k (int m ∗ int n)) by simp
also have . . . = (

∑
m | m ∈ {1 ..k} ∧ coprime m k.
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unity-root k (int m ∗ int n))
using coprime-iff-gcd-eq-1 by presburger

also have . . . = c k n unfolding ramanujan-sum-def by simp
finally show ?thesis unfolding gen-ramanujan-sum-def by auto

qed

corollary ramanujan-sum-conv-gen-ramanujan-sum:
k > 0 =⇒ c k n = s id moebius-mu k n
using ramanujan-sum-dirichlet-form unfolding gen-ramanujan-sum-def by simp

Theorem 8.7
theorem gen-ramanujan-sum-distrib:

fixes f g :: nat ⇒ complex
assumes a > 0 b > 0 m > 0 k > 0
assumes coprime a k coprime b m coprime k m
assumes multiplicative-function f and

multiplicative-function g
shows s f g (m∗k) (a∗b) = s f g m a ∗ s f g k b

proof −
from assms(1−6 ) have eq: gcd (m∗k) (a∗b) = gcd a m ∗ gcd k b
by (simp add: linear-gcd gcd.commute mult.commute)

have s f g (m∗k) (a∗b) =
(
∑

d | d dvd gcd (m∗k) (a∗b). f (d) ∗ g((m∗k) div d))
unfolding gen-ramanujan-sum-def by (rule sum.cong, simp add: gcd.commute,blast)

also have . . . =
(
∑

d | d dvd gcd a m ∗ gcd k b. f (d) ∗ g((m∗k) div d))
using eq by simp

also have . . . =
(
∑

(d1 ,d2 ) | d1 dvd gcd a m ∧ d2 dvd gcd k b.
f (d1∗d2 ) ∗ g((m∗k) div (d1∗d2 )))

proof −
have b: bij-betw (λ(d1 , d2 ). d1 ∗ d2 )
{(d1 , d2 ). d1 dvd gcd a m ∧ d2 dvd gcd k b}
{d. d dvd gcd a m ∗ gcd k b}

using assms(5 ) reindex-product-bij by blast
have (

∑
(d1 , d2 ) | d1 dvd gcd a m ∧ d2 dvd gcd k b.

f (d1 ∗ d2 ) ∗ g (m ∗ k div (d1 ∗ d2 ))) =
(
∑

x∈{(d1 , d2 ). d1 dvd gcd a m ∧ d2 dvd gcd k b}.
f (case x of (d1 , d2 ) ⇒ d1 ∗ d2 )∗

g (m ∗ k div (case x of (d1 , d2 ) ⇒ d1 ∗ d2 )))
by (rule sum.cong,auto)

also have . . . = (
∑

d | d dvd gcd a m ∗ gcd k b. f d ∗ g (m ∗ k div d))
using b by (rule sum.reindex-bij-betw[of λ(d1 ,d2 ). d1∗d2 ])

finally show ?thesis by argo
qed

also have . . . = (
∑

d1 | d1 dvd gcd a m.
∑

d2 | d2 dvd gcd k b.
f (d1∗d2 ) ∗ g ((m∗k) div (d1∗d2 )))

by (simp add: sum.cartesian-product) (rule sum.cong,auto)
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also have . . . = (
∑

d1 | d1 dvd gcd a m.
∑

d2 | d2 dvd gcd k b.
f d1 ∗ f d2 ∗ g ((m∗k) div (d1∗d2 )))

using assms(5 ) assms(8 ) multiplicative-function.mult-coprime
by (intro sum.cong refl) fastforce+

also have . . . = (
∑

d1 | d1 dvd gcd a m.
∑

d2 | d2 dvd gcd k b.
f d1 ∗ f d2∗ g (m div d1 ) ∗ g (k div d2 ))

proof (intro sum.cong refl, clarify, goal-cases)
case (1 d1 d2 )
hence g (m ∗ k div (d1 ∗ d2 )) = g (m div d1 ) ∗ g (k div d2 )

using assms(7 ,9 ) multipl-div
by (meson coprime-commute dvd-gcdD1 dvd-gcdD2 )

thus ?case by simp
qed
also have . . . = (

∑
i∈{d1 . d1 dvd gcd a m}.

∑
j∈{d2 . d2 dvd gcd k b}.

f i ∗ g (m div i) ∗ (f j ∗ g (k div j)))
by (rule sum.cong,blast,rule sum.cong,blast,simp)

also have . . . = (
∑

d1 | d1 dvd gcd a m. f d1 ∗ g (m div d1 )) ∗
(
∑

d2 | d2 dvd gcd k b. f d2 ∗ g (k div d2 ))
by (simp add: sum-product)

also have . . . = s f g m a ∗ s f g k b
unfolding gen-ramanujan-sum-def by (simp add: gcd.commute)

finally show ?thesis by blast
qed

corollary gen-ramanujan-sum-distrib-right:
fixes f g :: nat ⇒ complex
assumes a > 0 and b > 0 and m > 0
assumes coprime b m
assumes multiplicative-function f and

multiplicative-function g
shows s f g m (a ∗ b) = s f g m a

proof −
have s f g m (a∗b) = s f g m a ∗ s f g 1 b

using assms gen-ramanujan-sum-distrib[of a b m 1 f g] by simp
also have . . . = s f g m a ∗ f 1 ∗ g 1

using gen-ramanujan-sum-1-n by auto
also have . . . = s f g m a

using assms(5−6 )
by (simp add: multiplicative-function-def )

finally show s f g m (a∗b) = s f g m a by blast
qed

corollary gen-ramanujan-sum-distrib-left:
fixes f g :: nat ⇒ complex
assumes a > 0 and k > 0 and m > 0
assumes coprime a k and coprime k m
assumes multiplicative-function f and

multiplicative-function g
shows s f g (m∗k) a = s f g m a ∗ g k
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proof −
have s f g (m∗k) a = s f g m a ∗ s f g k 1

using assms gen-ramanujan-sum-distrib[of a 1 m k f g] by simp
also have . . . = s f g m a ∗ f (1 ) ∗ g(k)

using gen-ramanujan-sum-k-1 by auto
also have . . . = s f g m a ∗ g k

using assms(6 )
by (simp add: multiplicative-function-def )

finally show ?thesis by blast
qed

corollary ramanujan-sum-distrib:
assumes a > 0 and k > 0 and m > 0 and b > 0
assumes coprime a k coprime b m coprime m k
shows c (m∗k) (a∗b) = c m a ∗ c k b

proof −
have c (m∗k) (a∗b) = s id moebius-mu (m∗k) (a∗b)

using ramanujan-sum-conv-gen-ramanujan-sum assms(2 ,3 ) by simp

also have . . . = (s id moebius-mu m a) ∗ (s id moebius-mu k b)
using gen-ramanujan-sum-distrib[of a b m k id moebius-mu]

assms mult-id mult-moebius mult-of-nat
coprime-commute[of m k] by auto

also have . . . = c m a ∗ c k b using ramanujan-sum-conv-gen-ramanujan-sum
assms by simp

finally show ?thesis by simp
qed

corollary ramanujan-sum-distrib-right:
assumes a > 0 and k > 0 and m > 0 and b > 0
assumes coprime b m
shows c m (a∗b) = c m a
using assms ramanujan-sum-conv-gen-ramanujan-sum mult-id mult-moebius

mult-of-nat gen-ramanujan-sum-distrib-right by auto

corollary ramanujan-sum-distrib-left:
assumes a > 0 k > 0 m > 0
assumes coprime a k coprime m k
shows c (m∗k) a = c m a ∗ moebius-mu k
using assms
by (simp add: ramanujan-sum-conv-gen-ramanujan-sum, subst gen-ramanujan-sum-distrib-left)

(auto simp: coprime-commute mult-of-nat mult-moebius)

lemma dirichlet-prod-completely-multiplicative-left:
fixes f h :: nat ⇒ complex and k :: nat
defines g ≡ (λk. moebius-mu k ∗ h k)
defines F ≡ dirichlet-prod f g
assumes k > 0
assumes completely-multiplicative-function f

45



multiplicative-function h
assumes

∧
p. prime p =⇒ f (p) 6= 0 ∧ f (p) 6= h(p)

shows F k = f k ∗ (
∏

p∈prime-factors k. 1 − h p / f p)
proof −

have 1 : multiplicative-function (λp. h(p) div f (p))
using multiplicative-function-divide

comp-to-mult assms(4 ,5 ) by blast
have F k = dirichlet-prod g f k

unfolding F-def using dirichlet-prod-commutes[of f g] by auto
also have . . . = (

∑
d | d dvd k. moebius-mu d ∗ h d ∗ f (k div d))

unfolding g-def dirichlet-prod-def by blast
also have . . . = (

∑
d | d dvd k. moebius-mu d ∗ h d ∗ (f (k) div f (d)))

using multipl-div-mono[of f - k] assms(4 ,6 )
by (intro sum.cong,auto,force)

also have . . . = f k ∗ (
∑

d | d dvd k. moebius-mu d ∗ (h d div f (d)))
by (simp add: sum-distrib-left algebra-simps)

also have . . . = f k ∗ (
∏

p∈prime-factors k. 1 − (h p div f p))
using sum-divisors-moebius-mu-times-multiplicative[of λp. h p div f p k] 1

assms(3 ) by simp
finally show F-eq: F k = f k ∗ (

∏
p∈prime-factors k. 1 − (h p div f p))

by blast
qed

Theorem 8.8
theorem gen-ramanujan-sum-dirichlet-expr :

fixes f h :: nat ⇒ complex and n k :: nat
defines g ≡ (λk. moebius-mu k ∗ h k)
defines F ≡ dirichlet-prod f g
defines N ≡ k div gcd n k
assumes completely-multiplicative-function f

multiplicative-function h
assumes

∧
p. prime p =⇒ f (p) 6= 0 ∧ f (p) 6= h(p)

assumes k > 0 n > 0
shows s f g k n = (F(k)∗g(N )) div (F(N ))

proof −
define a where a ≡ gcd n k
have 2 : k = a∗N unfolding a-def N-def by auto
have 3 : a > 0 using a-def assms(7 ,8 ) by simp
have Ngr0 : N > 0 using assms(7 ,8 ) 2 N-def by fastforce
have f-k-not-z: f k 6= 0

using completely-multiplicative-nonzero assms(4 ,6 ,7 ) by blast
have f-N-not-z: f N 6= 0

using completely-multiplicative-nonzero assms(4 ,6 ) Ngr0 by blast
have bij: bij-betw (λd. a div d) {d. d dvd a} {d. d dvd a}

unfolding bij-betw-def
proof

show inj: inj-on (λd. a div d) {d. d dvd a}
using inj-on-def 3 dvd-div-eq-2 by blast

show surj: (λd. a div d) ‘ {d. d dvd a} = {d. d dvd a}
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unfolding image-def
proof

show {y. ∃ x∈{d. d dvd a}. y = a div x} ⊆ {d. d dvd a}
by auto

show {d. d dvd a} ⊆ {y. ∃ x∈{d. d dvd a}. y = a div x}
proof

fix d
assume a: d ∈ {d. d dvd a}
from a have 1 : (a div d) ∈ {d. d dvd a} by auto
from a have 2 : d = a div (a div d) using 3 by auto
from 1 2 show d ∈ {y. ∃ x∈{d. d dvd a}. y = a div x} by blast

qed
qed

qed

have s f g k n = (
∑

d | d dvd a. f (d)∗moebius-mu(k div d)∗h(k div d))
unfolding gen-ramanujan-sum-def g-def a-def by (simp add: mult.assoc)

also have . . . = (
∑

d | d dvd a. f (d) ∗ moebius-mu(a∗N div d)∗h(a∗N div d))
using 2 by blast

also have . . . = (
∑

d | d dvd a. f (a div d) ∗ moebius-mu(N∗d)∗h(N∗d))
(is ?a = ?b)

proof −
define f-aux where f-aux ≡ (λd. f d ∗ moebius-mu (a ∗ N div d) ∗ h (a ∗ N

div d))
have 1 : ?a = (

∑
d | d dvd a. f-aux d) using f-aux-def by blast

{fix d :: nat
assume d dvd a
then have N ∗ a div (a div d) = N ∗ d

using 3 by force}
then have 2 : ?b = (

∑
d | d dvd a. f-aux (a div d))

unfolding f-aux-def by (simp add: algebra-simps)
show ?a = ?b

using bij 1 2
by (simp add: sum.reindex-bij-betw[of ((div) a) {d. d dvd a} {d. d dvd a}])

qed
also have . . . = moebius-mu N ∗ h N ∗ f a ∗ (

∑
d | d dvd a ∧ coprime N d.

moebius-mu d ∗ (h d div f d))
(is ?a = ?b)

proof −
have ?a = (

∑
d | d dvd a ∧ coprime N d. f (a div d) ∗ moebius-mu (N∗d) ∗ h

(N∗d))
by (rule sum.mono-neutral-right)(auto simp add: moebius-prod-not-coprime

3 )
also have . . . = (

∑
d | d dvd a ∧ coprime N d. moebius-mu N ∗ h N ∗ f (a div

d) ∗ moebius-mu d ∗ h d)
proof (rule sum.cong,simp)

fix d
assume a: d ∈ {d. d dvd a ∧ coprime N d}
then have 1 : moebius-mu (N∗d) = moebius-mu N ∗ moebius-mu d
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using mult-moebius unfolding multiplicative-function-def
by (simp add: moebius-mu.mult-coprime)

from a have 2 : h (N∗d) = h N ∗ h d
using assms(5 ) unfolding multiplicative-function-def
by (simp add: assms(5 ) multiplicative-function.mult-coprime)

show f (a div d) ∗ moebius-mu (N ∗ d) ∗ h (N ∗ d) =
moebius-mu N ∗ h N ∗ f (a div d) ∗ moebius-mu d ∗ h d

by (simp add: divide-simps 1 2 )
qed
also have . . . = (

∑
d | d dvd a ∧ coprime N d. moebius-mu N ∗ h N ∗ (f a

div f d) ∗ moebius-mu d ∗ h d)
by (intro sum.cong refl) (use multipl-div-mono[of f - a] assms(4 ,6−8 ) 3 in

force)
also have . . . = moebius-mu N ∗ h N ∗ f a ∗ (

∑
d | d dvd a ∧ coprime N d.

moebius-mu d ∗ (h d div f d))
by (simp add: sum-distrib-left algebra-simps)

finally show ?thesis by blast
qed
also have . . . =

moebius-mu N ∗ h N ∗ f a ∗ (
∏

p∈{p. p ∈ prime-factors a ∧ ¬ (p dvd
N )}. 1 − (h p div f p))

proof −
have multiplicative-function (λd. h d div f d)

using multiplicative-function-divide
comp-to-mult
assms(4 ,5 ) by blast

then have (
∑

d | d dvd a ∧ coprime N d. moebius-mu d ∗ (h d div f d)) =
(
∏

p∈{p. p ∈ prime-factors a ∧ ¬ (p dvd N )}. 1 − (h p div f p))
using sum-divisors-moebius-mu-times-multiplicative-revisited[

of (λd. h d div f d) a N ]
assms(8 ) Ngr0 3 by blast

then show ?thesis by argo
qed
also have . . . = f (a) ∗ moebius-mu(N ) ∗ h(N ) ∗

((
∏

p∈{p. p ∈ prime-factors (a∗N )}. 1 − (h p div f p)) div
(
∏

p∈{p. p ∈ prime-factors N}. 1 − (h p div f p)))
proof −

have {p. p ∈prime-factors a ∧ ¬ p dvd N} =
({p. p ∈prime-factors (a∗N )} − {p. p ∈prime-factors N})

using p-div-set[of a N ] by blast
then have eq2 : (

∏
p∈{p. p ∈prime-factors a ∧ ¬ p dvd N}. 1 − h p / f p) =

prod (λp. 1 − h p / f p) ({p. p ∈prime-factors (a∗N )} − {p. p ∈prime-factors
N})

by auto
also have eq: . . . = prod (λp. 1 − h p / f p) {p. p ∈prime-factors (a∗N )} div

prod (λp. 1 − h p / f p) {p. p ∈prime-factors N}
proof (intro prod-div-sub,simp,simp,simp add: 3 Ngr0 dvd-prime-factors,simp,standard)

fix b
assume b ∈# prime-factorization N
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then have p-b: prime b using in-prime-factors-iff by blast
then show f b = 0 ∨ h b 6= f b using assms(6 )[OF p-b] by auto

qed
also have . . . = (

∏
p∈{p. p ∈ prime-factors (a∗N )}. 1 − (h p div f p)) div

(
∏

p∈{p. p ∈ prime-factors N}. 1 − (h p div f p)) by blast
finally have (

∏
p∈{p. p ∈prime-factors a ∧ ¬ p dvd N}. 1 − h p / f p) =

(
∏

p∈{p. p ∈ prime-factors (a∗N )}. 1 − (h p div f p)) div
(
∏

p∈{p. p ∈ prime-factors N}. 1 − (h p div f p))
using eq eq2 by auto

then show ?thesis by simp
qed
also have . . . = f (a) ∗ moebius-mu(N ) ∗ h(N ) ∗ (F(k) div f (k)) ∗ (f (N ) div

F(N ))
(is ?a = ?b)

proof −
have F(N ) = (f N ) ∗(

∏
p∈ prime-factors N . 1 − (h p div f p))

unfolding F-def g-def
by (intro dirichlet-prod-completely-multiplicative-left) (auto simp add: Ngr0

assms(4−6 ))
then have eq-1 : (

∏
p∈ prime-factors N . 1 − (h p div f p)) =

F N div f N using 2 f-N-not-z by simp
have F(k) = (f k) ∗ (

∏
p∈ prime-factors k. 1 − (h p div f p))

unfolding F-def g-def
by (intro dirichlet-prod-completely-multiplicative-left) (auto simp add: assms(4−7 ))
then have eq-2 : (

∏
p∈ prime-factors k. 1 − (h p div f p)) =

F k div f k using 2 f-k-not-z by simp

have ?a = f a ∗ moebius-mu N ∗ h N ∗
((
∏

p∈ prime-factors k. 1 − (h p div f p)) div
(
∏

p∈ prime-factors N . 1 − (h p div f p)))
using 2 by (simp add: algebra-simps)

also have . . . = f a ∗ moebius-mu N ∗ h N ∗ ((F k div f k) div (F N div f N ))
by (simp add: eq-1 eq-2 )

finally show ?thesis by simp
qed
also have . . . = moebius-mu N ∗ h N ∗ ((F k ∗ f a ∗ f N ) div (F N ∗ f k))

by (simp add: algebra-simps)
also have . . . = moebius-mu N ∗ h N ∗ ((F k ∗ f (a∗N )) div (F N ∗ f k))
proof −

have f a ∗ f N = f (a∗N )
proof (cases a = 1 ∨ N = 1 )

case True
then show ?thesis

using assms(4 ) completely-multiplicative-function-def [of f ]
by auto

next
case False
then show ?thesis

using 2 assms(4 ) completely-multiplicative-function-def [of f ]
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Ngr0 3 by auto
qed
then show ?thesis by simp

qed
also have . . . = moebius-mu N ∗ h N ∗ ((F k ∗ f (k)) div (F N ∗ f k))

using 2 by blast
also have . . . = g(N ) ∗ (F k div F N )

using f-k-not-z g-def by simp
also have . . . = (F(k)∗g(N )) div (F(N )) by auto
finally show ?thesis by simp

qed

lemma totient-conv-moebius-mu-of-nat:
of-nat (totient n) = dirichlet-prod moebius-mu of-nat n

proof (cases n = 0 )
case False
show ?thesis

by (rule moebius-inversion)
(insert False, simp-all add: of-nat-sum [symmetric] totient-divisor-sum del:

of-nat-sum)
qed simp-all

corollary ramanujan-sum-k-n-dirichlet-expr :
fixes k n :: nat
assumes k > 0 n > 0
shows c k n = of-nat (totient k) ∗

moebius-mu (k div gcd n k) div
of-nat (totient (k div gcd n k))

proof −
define f :: nat ⇒ complex

where f ≡ of-nat
define F :: nat ⇒ complex

where F ≡ (λd. dirichlet-prod f moebius-mu d)
define g :: nat ⇒ complex

where g ≡ (λl. moebius-mu l)
define N where N ≡ k div gcd n k
define h :: nat ⇒ complex

where h ≡ (λx. (if x = 0 then 0 else 1 ))

have F-is-totient-k: F k = totient k
by (simp add: F-def f-def dirichlet-prod-commutes totient-conv-moebius-mu-of-nat[of

k])
have F-is-totient-N : F N = totient N
by (simp add: F-def f-def dirichlet-prod-commutes totient-conv-moebius-mu-of-nat[of

N ])

have c k n = s id moebius-mu k n
using ramanujan-sum-conv-gen-ramanujan-sum assms by blast
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also have . . . = s f g k n
unfolding f-def g-def by auto

also have g = (λk. moebius-mu k ∗ h k)
by (simp add: fun-eq-iff h-def g-def )

also have multiplicative-function h
unfolding h-def by standard auto

hence s f (λk. moebius-mu k ∗ h k) k n =
dirichlet-prod of-nat (λk. moebius-mu k ∗ h k) k ∗
(moebius-mu (k div gcd n k) ∗ h (k div gcd n k)) /
dirichlet-prod of-nat (λk. moebius-mu k ∗ h k) (k div gcd n k)

unfolding f-def using assms mult-of-nat-c
by (intro gen-ramanujan-sum-dirichlet-expr) (auto simp: h-def )

also have . . . = of-nat (totient k) ∗ moebius-mu (k div gcd n k) / of-nat (totient
(k div gcd n k))

using F-is-totient-k F-is-totient-N by (auto simp: h-def F-def N-def f-def )
finally show ?thesis .

qed

no-notation ramanujan-sum (‹c›)
no-notation gen-ramanujan-sum (‹s›)

end

theory Gauss-Sums
imports

HOL−Algebra.Coset
HOL−Real-Asymp.Real-Asymp
Ramanujan-Sums

begin

7 Gauss sums
bundle vec-lambda-syntax
begin
notation vec-lambda (binder ‹χ› 10 )
end

unbundle no vec-lambda-syntax

7.1 Definition and basic properties
context dcharacter
begin

lemma dir-periodic-arithmetic: periodic-arithmetic χ n
unfolding periodic-arithmetic-def by (simp add: periodic)

definition gauss-sum k = (
∑

m = 1 ..n . χ(m) ∗ unity-root n (m∗k))
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lemma gauss-sum-periodic:
periodic-arithmetic (λn. gauss-sum n) n

proof −
have periodic-arithmetic χ n using dir-periodic-arithmetic by simp
let ?h = λm k. χ(m) ∗ unity-root n (m∗k)
{fix m :: nat
have periodic-arithmetic (λk. unity-root n (m∗k)) n

using unity-periodic-arithmetic-mult[of n m] by simp
have periodic-arithmetic (?h m) n

using scalar-mult-periodic-arithmetic[OF ‹periodic-arithmetic (λk. unity-root n
(m∗k)) n›]

by blast}
then have per-all: ∀m ∈ {1 ..n}. periodic-arithmetic (?h m) n by blast
have periodic-arithmetic (λk. (

∑
m = 1 ..n . χ(m) ∗ unity-root n (m∗k))) n

using fin-sum-periodic-arithmetic-set[OF per-all] by blast
then show ?thesis

unfolding gauss-sum-def by blast
qed

lemma ramanujan-sum-conv-gauss-sum:
assumes χ = principal-dchar n
shows ramanujan-sum n k = gauss-sum k

proof −
{fix m
from assms

have 1 : coprime m n =⇒ χ(m) = 1 and
2 : ¬ coprime m n =⇒ χ(m) = 0

unfolding principal-dchar-def by auto}
note eq = this

have gauss-sum k = (
∑

m = 1 ..n . χ(m) ∗ unity-root n (m∗k))
unfolding gauss-sum-def by simp

also have . . . = (
∑

m | m ∈ {1 ..n} ∧ coprime m n . χ(m) ∗ unity-root n (m∗k))
by (rule sum.mono-neutral-right,simp,blast,simp add: eq)

also have . . . = (
∑

m | m ∈ {1 ..n} ∧ coprime m n . unity-root n (m∗k))
by (simp add: eq)

also have . . . = ramanujan-sum n k unfolding ramanujan-sum-def by blast
finally show ?thesis ..

qed

lemma cnj-mult-self :
assumes coprime k n
shows cnj (χ k) ∗ χ k = 1

proof −
have cnj (χ k) ∗ χ k = norm (χ k)^2

by (simp add: mult.commute complex-mult-cnj cmod-def )
also have . . . = 1

using norm[of k] assms by simp
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finally show ?thesis .
qed

Theorem 8.9
theorem gauss-sum-reduction:

assumes coprime k n
shows gauss-sum k = cnj (χ k) ∗ gauss-sum 1

proof −
from n have n-pos: n > 0 by simp
have gauss-sum k = (

∑
r = 1 ..n . χ(r) ∗ unity-root n (r∗k))

unfolding gauss-sum-def by simp
also have . . . = (

∑
r = 1 ..n . cnj (χ(k)) ∗ χ k ∗ χ r ∗ unity-root n (r∗k))

using assms by (intro sum.cong) (auto simp: cnj-mult-self )
also have . . . = (

∑
r = 1 ..n . cnj (χ(k)) ∗ χ (k∗r) ∗ unity-root n (r∗k))

by (intro sum.cong) auto
also have . . . = cnj (χ(k)) ∗ (

∑
r = 1 ..n . χ (k∗r) ∗ unity-root n (r∗k))

by (simp add: sum-distrib-left algebra-simps)
also have . . .= cnj (χ(k)) ∗ (

∑
r = 1 ..n . χ r ∗ unity-root n r)

proof −
have 1 : periodic-arithmetic (λr . χ r ∗ unity-root n r) n
using dir-periodic-arithmetic unity-periodic-arithmetic mult-periodic-arithmetic

by blast
have (

∑
r = 1 ..n . χ (k∗r) ∗ unity-root n (r∗k)) =

(
∑

r = 1 ..n . χ (r)∗ unity-root n r)
using periodic-arithmetic-remove-homothecy[OF assms(1 ) 1 n-pos]
by (simp add: algebra-simps n)

then show ?thesis by argo
qed
also have . . . = cnj (χ(k)) ∗ gauss-sum 1

using gauss-sum-def by simp
finally show ?thesis .

qed

The following variant takes an integer argument instead.
definition gauss-sum-int k = (

∑
m=1 ..n. χ m ∗ unity-root n (int m∗k))

sublocale gauss-sum-int: periodic-fun-simple gauss-sum-int int n
proof

fix k
show gauss-sum-int (k + int n) = gauss-sum-int k

by (simp add: gauss-sum-int-def ring-distribs unity-root-add)
qed

lemma gauss-sum-int-cong:
assumes [a = b] (mod int n)
shows gauss-sum-int a = gauss-sum-int b

proof −
from assms obtain k where k: b = a + int n ∗ k

by (subst (asm) cong-iff-lin) auto
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thus ?thesis
using gauss-sum-int.plus-of-int[of a k] by (auto simp: algebra-simps)

qed

lemma gauss-sum-conv-gauss-sum-int:
gauss-sum k = gauss-sum-int (int k)
unfolding gauss-sum-def gauss-sum-int-def by auto

lemma gauss-sum-int-conv-gauss-sum:
gauss-sum-int k = gauss-sum (nat (k mod n))

proof −
have gauss-sum (nat (k mod n)) = gauss-sum-int (int (nat (k mod n)))

by (simp add: gauss-sum-conv-gauss-sum-int)
also have . . . = gauss-sum-int k

using n
by (intro gauss-sum-int-cong) (auto simp: cong-def )

finally show ?thesis ..
qed

lemma gauss-int-periodic: periodic-arithmetic gauss-sum-int n
unfolding periodic-arithmetic-def gauss-sum-int-conv-gauss-sum by simp

proposition dcharacter-fourier-expansion:
χ m = (

∑
k=1 ..n. 1 / n ∗ gauss-sum-int (−k) ∗ unity-root n (m∗k))

proof −
define g where g = (λx. 1 / of-nat n ∗

(
∑

m<n. χ m ∗ unity-root n (− int x ∗ int m)))
have per : periodic-arithmetic χ n using dir-periodic-arithmetic by simp
have χ m = (

∑
k<n. g k ∗ unity-root n (m ∗ int k))

using fourier-expansion-periodic-arithmetic(2 )[OF - per , of m] n by (auto simp:
g-def )

also have . . . = (
∑

k = 1 ..n. g k ∗ unity-root n (m ∗ int k))
proof −

have g-per : periodic-arithmetic g n
using fourier-expansion-periodic-arithmetic(1 )[OF - per ] n by (simp add:

g-def )
have fact-per : periodic-arithmetic (λk. g k ∗ unity-root n (int m ∗ int k)) n

using mult-periodic-arithmetic[OF g-per ] unity-periodic-arithmetic-mult by
auto

show ?thesis
proof −

have (
∑

k<n. g k ∗ unity-root n (int m ∗ int k)) =
(
∑

l = 0 ..n − Suc 0 . g l ∗ unity-root n (int m ∗ int l))
using n by (intro sum.cong) auto

also have . . . = (
∑

l = Suc 0 ..n. g l ∗ unity-root n (int m ∗ int l))
using periodic-arithmetic-sum-periodic-arithmetic-shift[OF fact-per , of 1 ] n

by auto
finally show ?thesis by simp

qed
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qed
also have . . . = (

∑
k = 1 ..n. (1 / of-nat n) ∗ gauss-sum-int (−k) ∗ unity-root

n (m∗k))
proof −

{fix k :: nat
have shift: (

∑
m<n. χ m ∗ unity-root n (− int k ∗ int m)) =

(
∑

m = 1 ..n. χ m ∗ unity-root n (− int k ∗ int m))
proof −

have per-unit: periodic-arithmetic (λm. unity-root n (− int k ∗ int m)) n
using unity-periodic-arithmetic-mult by blast

then have prod-per : periodic-arithmetic (λm. χ m ∗ unity-root n (− int k ∗
int m)) n

using per mult-periodic-arithmetic by blast
show ?thesis
proof −

have (
∑

m<n. χ m ∗ unity-root n (− int k ∗ int m)) =
(
∑

l = 0 ..n − Suc 0 . χ l ∗ unity-root n (− int k ∗ int l))
using n by (intro sum.cong) auto

also have . . . = (
∑

m = 1 ..n. χ m ∗ unity-root n (− int k ∗ int m))
using periodic-arithmetic-sum-periodic-arithmetic-shift[OF prod-per , of 1 ]

n by auto
finally show ?thesis by simp

qed
qed
have g k = 1 / of-nat n ∗
(
∑

m<n. χ m ∗ unity-root n (− int k ∗ int m))
using g-def by auto

also have . . . = 1 / of-nat n ∗
(
∑

m = 1 ..n. χ m ∗ unity-root n (− int k ∗ int m))
using shift by simp

also have . . . = 1 / of-nat n ∗ gauss-sum-int (−k)
unfolding gauss-sum-int-def
by (simp add: algebra-simps)

finally have g k = 1 / of-nat n ∗ gauss-sum-int (−k) by simp}
note g-expr = this

show ?thesis
by (rule sum.cong, simp, simp add: g-expr)

qed
finally show ?thesis by auto

qed

7.2 Separability
definition separable k ←→ gauss-sum k = cnj (χ k) ∗ gauss-sum 1

corollary gauss-coprime-separable:
assumes coprime k n
shows separable k
using gauss-sum-reduction[OF assms] unfolding separable-def by simp
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Theorem 8.10
theorem global-separability-condition:
(∀n>0 . separable n) ←→ (∀ k>0 . ¬coprime k n −→ gauss-sum k = 0 )

proof −
{fix k
assume ¬ coprime k n
then have χ(k) = 0 by (simp add: eq-zero)
then have cnj (χ k) = 0 by blast
then have separable k ←→ gauss-sum k = 0

unfolding separable-def by auto}
note not-case = this

show ?thesis
using gauss-coprime-separable not-case separable-def by blast

qed

lemma of-real-moebius-mu [simp]: of-real (moebius-mu k) = moebius-mu k
by (simp add: moebius-mu-def )

corollary principal-not-totally-separable:
assumes χ = principal-dchar n
shows ¬(∀ k > 0 . separable k)

proof −
have n-pos: n > 0 using n by simp
have tot-0 : totient n 6= 0 by (simp add: n-pos)
have moebius-mu (n div gcd n n) 6= 0 by (simp add: ‹n > 0 ›)
then have moeb-0 : ∃ k. moebius-mu (n div gcd k n) 6= 0 by blast

have lem: gauss-sum k = totient n ∗ moebius-mu (n div gcd k n) / totient (n div
gcd k n)

if k > 0 for k
proof −

have gauss-sum k = ramanujan-sum n k
using ramanujan-sum-conv-gauss-sum[OF assms(1 )] ..

also have . . . = totient n ∗ moebius-mu (n div gcd k n) / (totient (n div gcd k
n))

by (simp add: ramanujan-sum-k-n-dirichlet-expr [OF n-pos that])
finally show ?thesis .

qed
have 2 : ¬ coprime n n using n by auto
have 3 : gauss-sum n 6= 0

using lem[OF n-pos] tot-0 moebius-mu-1 by simp
from n-pos 2 3 have
∃ k>0 . ¬coprime k n ∧ gauss-sum k 6= 0 by blast

then obtain k where k > 0 ∧ ¬ coprime k n ∧ gauss-sum k 6= 0 by blast
note right-not-zero = this

have cnj (χ k) ∗ gauss-sum 1 = 0 if ¬coprime k n for k
using that assms by (simp add: principal-dchar-def )
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then show ?thesis
unfolding separable-def using right-not-zero by auto

qed

Theorem 8.11
theorem gauss-sum-1-mod-square-eq-k:

assumes (∀ k. k > 0 −→ separable k)
shows norm (gauss-sum 1 ) ^ 2 = real n

proof −
have (norm (gauss-sum 1 ))^2 = gauss-sum 1 ∗ cnj (gauss-sum 1 )

using complex-norm-square by blast
also have . . . = gauss-sum 1 ∗ (

∑
m = 1 ..n. cnj (χ(m)) ∗ unity-root n (−m))

proof −
have cnj (gauss-sum 1 ) = (

∑
m = 1 ..n. cnj (χ(m)) ∗ unity-root n (−m))

unfolding gauss-sum-def by (simp add: unity-root-uminus)
then show ?thesis by argo

qed
also have . . . = (

∑
m = 1 ..n. gauss-sum 1 ∗ cnj (χ(m)) ∗ unity-root n (−m))

by (subst sum-distrib-left)(simp add: algebra-simps)
also have . . . = (

∑
m = 1 ..n. gauss-sum m ∗ unity-root n (−m))

proof (rule sum.cong,simp)
fix x
assume as: x ∈ {1 ..n}
show gauss-sum 1 ∗ cnj (χ x) ∗ unity-root n (−x) =

gauss-sum x ∗ unity-root n (−x)
using assms(1 ) unfolding separable-def
by (rule allE [of - x]) (use as in auto)

qed
also have . . . = (

∑
m = 1 ..n. (

∑
r = 1 ..n. χ r ∗ unity-root n (r∗m) ∗ unity-root

n (−m)))
unfolding gauss-sum-def
by (rule sum.cong,simp,rule sum-distrib-right)

also have . . . = (
∑

m = 1 ..n. (
∑

r = 1 ..n. χ r ∗ unity-root n (m∗(r−1 )) ))
by (intro sum.cong refl) (auto simp: unity-root-diff of-nat-diff unity-root-uminus

field-simps)
also have . . . = (

∑
r=1 ..n. (

∑
m=1 ..n. χ(r) ∗unity-root n (m∗(r−1 ))))

by (rule sum.swap)
also have . . . = (

∑
r=1 ..n. χ(r) ∗(

∑
m=1 ..n. unity-root n (m∗(r−1 ))))

by (rule sum.cong, simp, simp add: sum-distrib-left)
also have . . . = (

∑
r=1 ..n. χ(r) ∗ unity-root-sum n (r−1 ))

proof (intro sum.cong refl)
fix x
assume x ∈ {1 ..n}
then have 1 : periodic-arithmetic (λm. unity-root n (int (m ∗ (x − 1 )))) n

using unity-periodic-arithmetic-mult[of n x−1 ]
by (simp add: mult.commute)

have (
∑

m = 1 ..n. unity-root n (int (m ∗ (x − 1 )))) =
(
∑

m = 0 ..n−1 . unity-root n (int (m ∗ (x − 1 ))))
using periodic-arithmetic-sum-periodic-arithmetic-shift[OF 1 -, of 1 ] n by
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simp
also have . . . = unity-root-sum n (x−1 )

using n unfolding unity-root-sum-def by (intro sum.cong) (auto simp:
mult-ac)

finally have (
∑

m = 1 ..n. unity-root n (int (m ∗ (x − 1 )))) =
unity-root-sum n (int (x − 1 )) .

then show χ x ∗ (
∑

m = 1 ..n. unity-root n (int (m ∗ (x − 1 )))) =
χ x ∗ unity-root-sum n (int (x − 1 )) by argo

qed
also have . . . = (

∑
r ∈ {1}. χ r ∗ unity-root-sum n (int (r − 1 )))

using n unity-root-sum-nonzero-iff int-ops(6 )
by (intro sum.mono-neutral-right) auto

also have . . . = χ 1 ∗ n using n by simp
also have . . . = n by simp
finally show ?thesis

using of-real-eq-iff by fastforce
qed

Theorem 8.12
theorem gauss-sum-nonzero-noncoprime-necessary-condition:

assumes gauss-sum k 6= 0 ¬coprime k n k > 0
defines d ≡ n div gcd k n
assumes coprime a n [a = 1 ] (mod d)
shows d dvd n d < n χ a = 1

proof −
show d dvd n

unfolding d-def using n by (subst div-dvd-iff-mult) auto
from assms(2 ) have gcd k n 6= 1 by blast
then have gcd k n > 1 using assms(3 ,4 ) by (simp add: nat-neq-iff )
with n show d < n by (simp add: d-def )

have periodic-arithmetic (λr . χ (r)∗ unity-root n (k∗r)) n
using mult-periodic-arithmetic[OF dir-periodic-arithmetic unity-periodic-arithmetic-mult]

by auto
then have 1 : periodic-arithmetic (λr . χ (r)∗ unity-root n (r∗k)) n

by (simp add: algebra-simps)

have gauss-sum k = (
∑

m = 1 ..n . χ(m) ∗ unity-root n (m∗k))
unfolding gauss-sum-def by blast

also have . . . = (
∑

m = 1 ..n . χ(m∗a) ∗ unity-root n (m∗a∗k))
using periodic-arithmetic-remove-homothecy[OF assms(5 ) 1 ] n by auto

also have . . . = (
∑

m = 1 ..n . χ(m∗a) ∗ unity-root n (m∗k))
proof (intro sum.cong refl)

fix m
from assms(6 ) obtain b where a = 1 + b∗d

using ‹d < n› assms(5 ) cong-to-1 ′-nat by auto
then have m∗a∗k = m∗k+m∗b∗(n div gcd k n)∗k

by (simp add: algebra-simps d-def )
also have . . . = m∗k+m∗b∗n∗(k div gcd k n)
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by (simp add: div-mult-swap dvd-div-mult)
also obtain p where . . . = m∗k+m∗b∗n∗p by blast
finally have m∗a∗k = m∗k+m∗b∗p∗n by simp
then have 1 : m∗a∗k mod n= m∗k mod n

using mod-mult-self1 by simp
then have unity-root n (m ∗ a ∗ k) = unity-root n (m ∗ k)
proof −

have unity-root n (m ∗ a ∗ k) = unity-root n ((m ∗ a ∗ k) mod n)
using unity-root-mod[of n] zmod-int by simp

also have . . . = unity-root n (m ∗ k)
using unity-root-mod[of n] zmod-int 1 by presburger

finally show ?thesis by blast
qed
then show χ (m ∗ a) ∗ unity-root n (int (m ∗ a ∗ k)) =

χ (m ∗ a) ∗ unity-root n (int (m ∗ k)) by auto
qed
also have . . . = (

∑
m = 1 ..n . χ(a) ∗ (χ(m) ∗ unity-root n (m∗k)))

by (rule sum.cong,simp,subst mult,simp)
also have . . . = χ(a) ∗ (

∑
m = 1 ..n . χ(m) ∗ unity-root n (m∗k))

by (simp add: sum-distrib-left[symmetric])
also have . . . = χ(a) ∗ gauss-sum k

unfolding gauss-sum-def by blast
finally have gauss-sum k = χ(a) ∗ gauss-sum k by blast
then show χ a = 1

using assms(1 ) by simp
qed

7.3 Induced moduli and primitive characters
definition induced-modulus d ←→ d dvd n ∧ (∀ a. coprime a n ∧ [a = 1 ] (mod d)
−→ χ a = 1 )

lemma induced-modulus-dvd: induced-modulus d =⇒ d dvd n
unfolding induced-modulus-def by blast

lemma induced-modulusI [intro?]:
d dvd n =⇒ (

∧
a. coprime a n =⇒ [a = 1 ] (mod d) =⇒ χ a = 1 ) =⇒ in-

duced-modulus d
unfolding induced-modulus-def by auto

lemma induced-modulusD: induced-modulus d =⇒ coprime a n =⇒ [a = 1 ] (mod
d) =⇒ χ a = 1

unfolding induced-modulus-def by blast

lemma zero-not-ind-mod: ¬induced-modulus 0
unfolding induced-modulus-def using n by simp

lemma div-gcd-dvd1 : (a :: ′a :: semiring-gcd) div gcd a b dvd a
by (metis dvd-def dvd-div-mult-self gcd-dvd1 )
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lemma div-gcd-dvd2 : (b :: ′a :: semiring-gcd) div gcd a b dvd b
by (metis div-gcd-dvd1 gcd.commute)

lemma g-non-zero-ind-mod:
assumes gauss-sum k 6= 0 ¬coprime k n k > 0
shows induced-modulus (n div gcd k n)

proof
show n div gcd k n dvd n

by (metis dvd-div-mult-self dvd-triv-left gcd.commute gcd-dvd1 )
fix a :: nat
assume coprime a n [a = 1 ] (mod n div gcd k n)
thus χ a = 1

using assms n gauss-sum-nonzero-noncoprime-necessary-condition(3 ) by auto
qed

lemma induced-modulus-modulus: induced-modulus n
unfolding induced-modulus-def
by (metis dvd-refl local.cong mult.one)

Theorem 8.13
theorem one-induced-iff-principal:
induced-modulus 1 ←→ χ = principal-dchar n

proof
assume induced-modulus 1
then have (∀ a. coprime a n −→ χ a = 1 )

unfolding induced-modulus-def by simp
then show χ = principal-dchar n

unfolding principal-dchar-def using eq-zero by auto
next

assume as: χ = principal-dchar n
{fix a
assume coprime a n
then have χ a = 1

using principal-dchar-def as by simp}
then show induced-modulus 1

unfolding induced-modulus-def by auto
qed

end

locale primitive-dchar = dcharacter +
assumes no-induced-modulus: ¬(∃ d<n. induced-modulus d)

locale nonprimitive-dchar = dcharacter +
assumes induced-modulus: ∃ d<n. induced-modulus d

lemma (in nonprimitive-dchar) nonprimitive: ¬primitive-dchar n χ
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proof
assume primitive-dchar n χ
then interpret A: primitive-dchar n residue-mult-group n χ

by auto
from A.no-induced-modulus induced-modulus show False by contradiction

qed

lemma (in dcharacter) primitive-dchar-iff :
primitive-dchar n χ ←→ ¬(∃ d<n. induced-modulus d)
unfolding primitive-dchar-def primitive-dchar-axioms-def
using dcharacter-axioms by metis

lemma (in residues-nat) principal-not-primitive:
¬primitive-dchar n (principal-dchar n)
unfolding principal.primitive-dchar-iff
using principal.one-induced-iff-principal n by auto

lemma (in dcharacter) not-primitive-imp-nonprimitive:
assumes ¬primitive-dchar n χ
shows nonprimitive-dchar n χ
using assms dcharacter-axioms
unfolding nonprimitive-dchar-def primitive-dchar-def

primitive-dchar-axioms-def nonprimitive-dchar-axioms-def by auto

Theorem 8.14
theorem (in dcharacter) prime-nonprincipal-is-primitive:

assumes prime n
assumes χ 6= principal-dchar n
shows primitive-dchar n χ

proof −
{fix m
assume induced-modulus m
then have m = n

using assms prime-nat-iff induced-modulus-def
one-induced-iff-principal by blast}

then show ?thesis using primitive-dchar-iff by blast
qed

Theorem 8.15
corollary (in primitive-dchar) primitive-encoding:
∀ k>0 . ¬coprime k n −→ gauss-sum k = 0
∀ k>0 . separable k
norm (gauss-sum 1 ) ^ 2 = n

proof safe
show 1 : gauss-sum k = 0 if k > 0 and ¬coprime k n for k
proof (rule ccontr)

assume gauss-sum k 6= 0
hence induced-modulus (n div gcd k n)

using that by (intro g-non-zero-ind-mod) auto
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moreover have n div gcd k n < n
using n that
by (meson coprime-iff-gcd-eq-1 div-eq-dividend-iff le-less-trans

linorder-neqE-nat nat-dvd-not-less principal.div-gcd-dvd2 zero-le-one)
ultimately show False using no-induced-modulus by blast

qed

have (∀n>0 . separable n)
unfolding global-separability-condition by (auto intro!: 1 )

thus separable n if n > 0 for n
using that by blast

thus norm (gauss-sum 1 ) ^ 2 = n
using gauss-sum-1-mod-square-eq-k by blast

qed

Theorem 8.16
lemma (in dcharacter) induced-modulus-altdef1 :

induced-modulus d ←→
d dvd n ∧ (∀ a b. coprime a n ∧ coprime b n ∧ [a = b] (mod d) −→ χ a = χ b)

proof
assume 1 : induced-modulus d
with n have d: d dvd n d > 0

by (auto simp: induced-modulus-def intro: Nat.gr0I )
show d dvd n ∧ (∀ a b. coprime a n ∧ coprime b n ∧ [a = b] (mod d) −→ χ(a)

= χ(b))
proof safe

fix a b
assume 2 : coprime a n coprime b n [a = b] (mod d)
show χ(a) = χ(b)
proof −

from 2 (1 ) obtain a ′ where eq: [a∗a ′ = 1 ] (mod n)
using cong-solve by blast

from this d have [a∗a ′ = 1 ] (mod d)
using cong-dvd-modulus-nat by blast

from this 1 have χ(a∗a ′) = 1
unfolding induced-modulus-def
by (meson 2 (2 ) eq cong-imp-coprime cong-sym coprime-divisors gcd-nat.refl

one-dvd)
then have 3 : χ(a)∗χ(a ′) = 1

by simp

from 2 (3 ) have [a∗a ′ = b∗a ′] (mod d)
by (simp add: cong-scalar-right)

moreover have 4 : [b∗a ′ = 1 ] (mod d)
using ‹[a ∗ a ′ = 1 ] (mod d)› calculation cong-sym cong-trans by blast

have χ(b∗a ′) = 1
proof −

have coprime (b∗a ′) n
using 2 (2 ) cong-imp-coprime[OF cong-sym[OF eq]] by simp
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then show ?thesis using 4 induced-modulus-def 1 by blast
qed
then have 4 : χ(b)∗χ(a ′) = 1

by simp
from 3 4 show χ(a) = χ(b)

using mult-cancel-left
by (cases χ(a ′) = 0 ) (fastforce simp add: field-simps)+

qed
qed fact+

next
assume ∗: d dvd n ∧ (∀ a b. coprime a n ∧ coprime b n ∧ [a = b] (mod d) −→

χ a = χ b)
then have ∀ a . coprime a n ∧ coprime 1 n ∧ [a = 1 ] (mod d) −→ χ a = χ 1

by blast
then have ∀ a . coprime a n ∧ [a = 1 ] (mod d) −→ χ a = 1

using coprime-1-left by simp
then show induced-modulus d

unfolding induced-modulus-def using ∗ by blast
qed

Exercise 8.4
lemma induced-modulus-altdef2-lemma:

fixes n a d q :: nat
defines q ≡ (

∏
p | prime p ∧ p dvd n ∧ ¬ (p dvd a). p)

defines m ≡ a + q ∗ d
assumes n > 0 coprime a d
shows [m = a] (mod d) and coprime m n

proof (simp add: assms(2 ) cong-add-lcancel-0-nat cong-mult-self-right)
have fin: finite {p. prime p ∧ p dvd n ∧ ¬ (p dvd a)} by (simp add: assms)
{ fix p

assume 4 : prime p p dvd m p dvd n
have p = 1
proof (cases p dvd a)

case True
from this assms 4 (2 ) have p dvd q∗d
by (simp add: dvd-add-right-iff )

then have a1 : p dvd q ∨ p dvd d
using 4 (1 ) prime-dvd-mult-iff by blast

have a2 : ¬ (p dvd q)
proof (rule ccontr ,simp)
assume p dvd q
then have p dvd (

∏
p | prime p ∧ p dvd n ∧ ¬ (p dvd a). p)

unfolding assms by simp
then have ∃ x∈{p. prime p ∧ p dvd n ∧ ¬ p dvd a}. p dvd x
using prime-dvd-prod-iff [OF fin 4 (1 )] by simp

then obtain x where c: p dvd x ∧ prime x ∧ ¬ x dvd a by blast
then have p = x using 4 (1 ) by (simp add: primes-dvd-imp-eq)
then show False using True c by auto
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qed
have a3 : ¬ (p dvd d)

using True assms 4 (1 ) coprime-def not-prime-unit by auto

from a1 a2 a3 show ?thesis by simp
next

case False
then have p dvd q
proof −
have in-s: p ∈ {p. prime p ∧ p dvd n ∧ ¬ p dvd a}
using False 4 (3 ) 4 (1 ) by simp

show p dvd q
unfolding assms using dvd-prodI [OF fin in-s ] by fast

qed
then have p dvd q∗d by simp
then have p dvd a using 4 (2 ) assms

by (simp add: dvd-add-left-iff )
then show ?thesis using False by auto

qed
}
note lem = this
show coprime m n
proof (subst coprime-iff-gcd-eq-1 )

{fix a
assume a dvd m a dvd n a 6= 1
{fix p
assume prime p p dvd a
then have p dvd m p dvd n
using ‹a dvd m› ‹a dvd n› by auto

from lem have p = a
using not-prime-1 ‹prime p› ‹p dvd m› ‹p dvd n› by blast}

then have prime a
using prime-prime-factor [of a] ‹a 6= 1 › by blast

then have a = 1 using lem ‹a dvd m› ‹a dvd n› by blast
then have False using ‹a = 1 › ‹a 6= 1 › by blast

}
then show gcd m n = 1 by blast

qed
qed

Theorem 8.17

The case d = 1 is exactly the case described in dcharacter ?n ?χ =⇒ dchar-
acter .induced-modulus ?n ?χ 1 = (?χ = principal-dchar ?n).
theorem (in dcharacter) induced-modulus-altdef2 :

assumes d dvd n d 6= 1
defines χ1 ≡ principal-dchar n
shows induced-modulus d ←→ (∃Φ. dcharacter d Φ ∧ (∀ k. χ k = Φ k ∗ χ1 k))

proof
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from n have n-pos: n > 0 by simp
assume as-im: induced-modulus d
define f where

f ≡ (λk. k +
(if k = 1 then

0
else (prod id {p. prime p ∧ p dvd n ∧ ¬ (p dvd k)})∗d)
)

have [simp]: f (Suc 0 ) = 1 unfolding f-def by simp
{

fix k
assume as: coprime k d
hence [f k = k] (mod d) coprime (f k) n

using induced-modulus-altdef2-lemma[OF n-pos as] by (simp-all add: f-def )
}
note m-prop = this

define Φ where
Φ ≡ (λn. (if ¬ coprime n d then 0 else χ(f n)))

have Φ-1 : Φ 1 = 1
unfolding Φ-def by simp

from assms(1 ,2 ) n have d > 0 by (intro Nat.gr0I ) auto
from induced-modulus-altdef1 assms(1 ) ‹d > 0 › as-im

have b: (∀ a b. coprime a n ∧ coprime b n ∧
[a = b] (mod d) −→ χ a = χ b) by blast

have Φ-periodic: ∀ a. Φ (a + d) = Φ a
proof

fix a
have gcd (a+d) d = gcd a d by auto
then have cop: coprime (a+d) d = coprime a d

using coprime-iff-gcd-eq-1 by presburger
show Φ (a + d) = Φ a
proof (cases coprime a d)

case True
from True cop have cop-ad: coprime (a+d) d by blast
have p1 : [f (a+d) = f a] (mod d)

using m-prop(1 )[of a+d, OF cop-ad]
m-prop(1 )[of a,OF True] by (simp add: unique-euclidean-semiring-class.cong-def )

have p2 : coprime (f (a+d)) n coprime (f a) n
using m-prop(2 )[of a+d, OF cop-ad]

m-prop(2 )[of a, OF True] by blast+
from b p1 p2 have eq: χ (f (a + d)) = χ (f a) by blast
show ?thesis

unfolding Φ-def
by (subst cop,simp,safe, simp add: eq)

next
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case False
then show ?thesis unfolding Φ-def by (subst cop,simp)

qed
qed

have Φ-mult: ∀ a b. a ∈ totatives d −→
b ∈ totatives d −→ Φ (a ∗ b) = Φ a ∗ Φ b

proof (safe)
fix a b
assume a ∈ totatives d b ∈ totatives d
consider (ab) coprime a d ∧ coprime b d |

(a) coprime a d ∧ ¬ coprime b d |
(b) coprime b d ∧ ¬ coprime a d |
(n) ¬ coprime a d ∧ ¬ coprime b d by blast

then show Φ (a ∗ b) = Φ a ∗ Φ b
proof cases

case ab
then have c-ab:

coprime (a∗b) d coprime a d coprime b d by simp+
then have p1 : [f (a ∗ b) = a ∗ b] (mod d) coprime (f (a ∗ b)) n

using m-prop[of a∗b, OF c-ab(1 )] by simp+
moreover have p2 : [f a = a] (mod d) coprime (f a) n

[f b = b] (mod d) coprime (f b) n
using m-prop[of a,OF c-ab(2 )]

m-prop[of b,OF c-ab(3 ) ] by simp+
have p1s: [f (a ∗ b) = (f a) ∗ (f b)] (mod d)
proof −

have [f (a ∗ b) = a ∗ b] (mod d)
using p1 (1 ) by blast

moreover have [a ∗ b = f (a) ∗ f (b)] (mod d)
using p2 (1 ) p2 (3 ) by (simp add: cong-mult cong-sym)

ultimately show ?thesis using cong-trans by blast
qed
have p2s: coprime (f a∗f b) n

using p2 (2 ) p2 (4 ) by simp
have χ (f (a ∗ b)) = χ (f a ∗ f b)

using p1s p2s p1 (2 ) b by blast
then show ?thesis

unfolding Φ-def by (simp add: c-ab)
qed (simp-all add: Φ-def )

qed
have d-gr-1 : d > 1 using assms(1 ,2 )

using ‹0 < d› by linarith
show ∃Φ. dcharacter d Φ ∧ (∀n. χ n = Φ n ∗ χ1 n)
proof (standard,rule conjI )

show dcharacter d Φ
unfolding dcharacter-def residues-nat-def dcharacter-axioms-def
using d-gr-1 Φ-def f-def Φ-mult Φ-1 Φ-periodic by simp

show ∀n. χ n = Φ n ∗ χ1 n
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proof
fix k
show χ k = Φ k ∗ χ1 k
proof (cases coprime k n)

case True
then have coprime k d using assms(1 ) by auto
then have Φ(k) = χ(f k) using Φ-def by simp
moreover have [f k = k] (mod d)

using m-prop[OF ‹coprime k d›] by simp
moreover have χ1 k = 1

using assms(3 ) principal-dchar-def ‹coprime k n› by auto
ultimately show χ(k) = Φ(k) ∗ χ1(k)
proof −

assume Φ k = χ (f k) [f k = k] (mod d) χ1 k = 1
then have χ k = χ (f k)

using ‹local.induced-modulus d› induced-modulus-altdef1 assms(1 ) ‹d >
0 ›

True ‹coprime k d› m-prop(2 ) by auto
also have . . . = Φ k by (simp add: ‹Φ k = χ (f k)›)
also have . . . = Φ k ∗ χ1 k by (simp add: ‹χ1 k = 1 ›)
finally show ?thesis by simp

qed
next

case False
hence χ k = 0

using eq-zero-iff by blast
moreover have χ1 k = 0

using False assms(3 ) principal-dchar-def by simp
ultimately show ?thesis by simp

qed
qed

qed
next

assume (∃Φ. dcharacter d Φ ∧ (∀ k. χ k = Φ k ∗ χ1 k))
then obtain Φ where 1 : dcharacter d Φ (∀ k. χ k = Φ k ∗ χ1 k) by blast
show induced-modulus d

unfolding induced-modulus-def
proof (rule conjI ,fact,safe)

fix k
assume 2 : coprime k n [k = 1 ] (mod d)
then have χ1 k = 1

by (simp add: χ1-def )
moreover have Φ k = 1

by (metis 1 (1 ) 2 (2 ) One-nat-def dcharacter .Suc-0 dcharacter .cong)
ultimately show χ k = 1 using 1 (2 ) by simp

qed
qed
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7.4 The conductor of a character
context dcharacter
begin

definition conductor = Min {d. induced-modulus d}

lemma conductor-fin: finite {d. induced-modulus d}
proof −

let ?A = {d. induced-modulus d}
have ?A ⊆ {d. d dvd n}

unfolding induced-modulus-def by blast
moreover have finite {d. d dvd n} using n by simp
ultimately show finite ?A using finite-subset by auto

qed

lemma conductor-induced: induced-modulus conductor
proof −

have {d. induced-modulus d} 6= {} using induced-modulus-modulus by blast
then show induced-modulus conductor

using Min-in[OF conductor-fin ] conductor-def by auto
qed

lemma conductor-le-iff : conductor ≤ a ←→ (∃ d≤a. induced-modulus d)
unfolding conductor-def using conductor-fin induced-modulus-modulus by (subst

Min-le-iff ) auto

lemma conductor-ge-iff : conductor ≥ a ←→ (∀ d. induced-modulus d −→ d ≥ a)
unfolding conductor-def using conductor-fin induced-modulus-modulus by (subst

Min-ge-iff ) auto

lemma conductor-leI : induced-modulus d =⇒ conductor ≤ d
by (subst conductor-le-iff ) auto

lemma conductor-geI : (
∧

d. induced-modulus d =⇒ d ≥ a) =⇒ conductor ≥ a
by (subst conductor-ge-iff ) auto

lemma conductor-dvd: conductor dvd n
using conductor-induced unfolding induced-modulus-def by blast

lemma conductor-le-modulus: conductor ≤ n
using conductor-dvd by (rule dvd-imp-le) (use n in auto)

lemma conductor-gr-0 : conductor > 0
unfolding conductor-def using zero-not-ind-mod
using conductor-def conductor-induced neq0-conv by fastforce

lemma conductor-eq-1-iff-principal: conductor = 1 ←→ χ = principal-dchar n
proof

assume conductor = 1
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then have induced-modulus 1
using conductor-induced by auto

then show χ = principal-dchar n
using one-induced-iff-principal by blast

next
assume χ = principal-dchar n
then have im-1 : induced-modulus 1 using one-induced-iff-principal by auto
show conductor = 1
proof −

have conductor ≤ 1
using conductor-fin Min-le[OF conductor-fin,simplified,OF im-1 ]
by (simp add: conductor-def [symmetric])

then show ?thesis using conductor-gr-0 by auto
qed

qed

lemma conductor-principal [simp]: χ = principal-dchar n =⇒ conductor = 1
by (subst conductor-eq-1-iff-principal)

lemma nonprimitive-imp-conductor-less:
assumes ¬primitive-dchar n χ
shows conductor < n

proof −
obtain d where d: induced-modulus d d < n

using primitive-dchar-iff assms by blast
from d(1 ) have conductor ≤ d

by (rule conductor-leI )
also have . . . < n by fact
finally show ?thesis .

qed

lemma (in nonprimitive-dchar) conductor-less-modulus: conductor < n
using nonprimitive-imp-conductor-less nonprimitive by metis

Theorem 8.18
theorem primitive-principal-form:

defines χ1 ≡ principal-dchar n
assumes χ 6= principal-dchar n
shows ∃Φ. primitive-dchar conductor Φ ∧ (∀n. χ(n) = Φ(n) ∗ χ1(n))

proof −

from n have n-pos: n > 0 by simp
define d where d = conductor
have induced: induced-modulus d

unfolding d-def using conductor-induced by blast
then have d-not-1 : d 6= 1

using one-induced-iff-principal assms by auto
hence d-gt-1 : d > 1 using conductor-gr-0 by (auto simp: d-def )
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from induced obtain Φ where Φ-def : dcharacter d Φ ∧ (∀n. χ n = Φ n ∗ χ1

n)
using d-not-1

by (subst (asm) induced-modulus-altdef2 ) (auto simp: d-def conductor-dvd
χ1-def )

have phi-dchars: Φ ∈ dcharacters d using Φ-def dcharacters-def by auto

interpret Φ: dcharacter d residue-mult-group d Φ
using Φ-def by auto

have Φ-prim: primitive-dchar d Φ
proof (rule ccontr)

assume ¬ primitive-dchar d Φ
then obtain q where

1 : q dvd d ∧ q < d ∧ Φ.induced-modulus q
unfolding Φ.induced-modulus-def Φ.primitive-dchar-iff by blast

then have 2 : induced-modulus q
proof −

{fix k
assume mod-1 : [k = 1 ] (mod q)
assume cop: coprime k n
have χ(k) = Φ(k)∗χ1(k) using Φ-def by auto
also have . . . = Φ(k)

using cop by (simp add: assms principal-dchar-def )
also have . . . = 1

using 1 mod-1 Φ.induced-modulus-def
‹induced-modulus d› cop induced-modulus-def by auto

finally have χ(k) = 1 by blast}

then show ?thesis
using induced-modulus-def 1 ‹induced-modulus d› by auto

qed

from 1 have q < d by simp
moreover have d ≤ q unfolding d-def

by (intro conductor-leI ) fact
ultimately show False by linarith

qed

from Φ-def Φ-prim d-def phi-dchars show ?thesis by blast
qed

definition primitive-extension :: nat ⇒ complex where
primitive-extension =
(SOME Φ. primitive-dchar conductor Φ ∧ (∀ k. χ k = Φ k ∗ principal-dchar n

k))

lemma
assumes nonprincipal: χ 6= principal-dchar n
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shows primitive-primitive-extension: primitive-dchar conductor primitive-extension
and principal-decomposition: χ k = primitive-extension k ∗ principal-dchar

n k
proof −

note ∗ = someI-ex[OF primitive-principal-form[OF nonprincipal], folded primi-
tive-extension-def ]

from ∗ show primitive-dchar conductor primitive-extension by blast
from ∗ show χ k = primitive-extension k ∗ principal-dchar n k by blast

qed

end

7.5 The connection between primitivity and separability
lemma residue-mult-group-coset:

fixes m n m1 m2 :: nat and f :: nat ⇒ nat and G H
defines G ≡ residue-mult-group n
defines H ≡ residue-mult-group m
defines f ≡ (λk. k mod m)
assumes b ∈ (rcosetsG kernel G H f )
assumes m1 ∈ b m2 ∈ b
assumes n > 1 m dvd n
shows m1 mod m = m2 mod m

proof −
have h-1 : 1H = 1

using assms(2 ) unfolding residue-mult-group-def totatives-def by simp

from assms(4 )
obtain a :: nat where cos-expr : b = (kernel G H f ) #>G a ∧ a ∈ carrier G

using RCOSETS-def [of G kernel G H f ] by blast
then have cop: coprime a n

using assms(1 ) unfolding residue-mult-group-def totatives-def by auto

obtain a ′ where [a ∗ a ′ = 1 ] (mod n)
using cong-solve-coprime-nat[OF cop] by auto

then have a-inv: (a∗a ′) mod n = 1
using unique-euclidean-semiring-class.cong-def [of a∗a ′ 1 n] assms(7 ) by simp

have m1 ∈ (
⋃

h∈kernel G H f . {h ⊗G a})
m2 ∈ (

⋃
h∈kernel G H f . {h ⊗G a})

using r-coset-def [of G kernel G H f a] cos-expr assms(5 ,6 ) by blast+
then have m1 ∈ (

⋃
h∈kernel G H f . {(h ∗ a) mod n})

m2 ∈ (
⋃

h∈kernel G H f . {(h ∗ a) mod n})
using assms(1 ) unfolding residue-mult-group-def [of n] by auto

then obtain m1 ′ m2 ′ where
m-expr : m1 = (m1 ′∗ a) mod n ∧ m1 ′ ∈ kernel G H f

m2 = (m2 ′∗ a) mod n ∧ m2 ′ ∈ kernel G H f
by blast
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have eq-1 : m1 mod m = a mod m
proof −

have m1 mod m = ((m1 ′∗ a) mod n) mod m using m-expr by blast
also have . . . = (m1 ′ ∗ a) mod m

using euclidean-semiring-cancel-class.mod-mod-cancel assms(8 ) by blast
also have . . . = (m1 ′ mod m) ∗ (a mod m) mod m

by (simp add: mod-mult-eq)
also have . . . = (a mod m) mod m

using m-expr(1 ) h-1 unfolding kernel-def assms(3 ) by simp
also have . . . = a mod m by auto
finally show ?thesis by simp

qed

have eq-2 : m2 mod m = a mod m
proof −

have m2 mod m = ((m2 ′∗ a) mod n) mod m using m-expr by blast
also have . . . = (m2 ′ ∗ a) mod m

using euclidean-semiring-cancel-class.mod-mod-cancel assms(8 ) by blast
also have . . . = (m2 ′ mod m) ∗ (a mod m) mod m

by (simp add: mod-mult-eq)
also have . . . = (a mod m) mod m

using m-expr(2 ) h-1 unfolding kernel-def assms(3 ) by simp
also have . . . = a mod m by auto
finally show ?thesis by simp

qed

from eq-1 eq-2 show ?thesis by argo
qed

lemma residue-mult-group-kernel-partition:
fixes m n :: nat and f :: nat ⇒ nat and G H
defines G ≡ residue-mult-group n
defines H ≡ residue-mult-group m
defines f ≡ (λk. k mod m)
assumes m > 1 n > 0 m dvd n
shows partition (carrier G) (rcosetsG kernel G H f )

and card (rcosetsG kernel G H f ) = totient m
and card (kernel G H f ) = totient n div totient m
and b ∈(rcosetsG kernel G H f ) =⇒ b 6= {}
and b ∈(rcosetsG kernel G H f ) =⇒ card (kernel G H f ) = card b
and bij-betw (λb. (the-elem (f ‘ b))) (rcosetsG kernel G H f ) (carrier H )

proof −
have 1 < m by fact
also have m ≤ n using ‹n > 0 › ‹m dvd n› by (intro dvd-imp-le) auto
finally have n > 1 .
note mn = ‹m > 1 › ‹n > 1 › ‹m dvd n› ‹m ≤ n›

interpret n: residues-nat n G
using mn by unfold-locales (auto simp: assms)
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interpret m: residues-nat m H
using mn by unfold-locales (auto simp: assms)

from mn have subset: f ‘ carrier G ⊆ carrier H
by (auto simp: assms(1−3 ) residue-mult-group-def totatives-def

dest: coprime-common-divisor-nat intro!: Nat.gr0I )
moreover have super-set: carrier H ⊆ f ‘ carrier G
proof safe

fix k assume k ∈ carrier H
hence k: k > 0 k ≤ m coprime k m

by (auto simp: assms(2 ) residue-mult-group-def totatives-def )
from mn ‹k ∈ carrier H › have k < m

by (simp add: totatives-less assms(2 ) residue-mult-group-def )
define P where P = {p ∈ prime-factors n. ¬(p dvd m)}
define a where a =

∏
P

have [simp]: a 6= 0 by (auto simp: P-def a-def intro!: Nat.gr0I )
have [simp]: prime-factors a = P
proof −

have prime-factors a = set-mset (sum prime-factorization P)
unfolding a-def using mn
by (subst prime-factorization-prod)

(auto simp: P-def prime-factors-dvd prime-gt-0-nat)
also have sum prime-factorization P = (

∑
p∈P. {#p#})

using mn by (intro sum.cong) (auto simp: P-def prime-factorization-prime
prime-factors-dvd)

finally show ?thesis by (simp add: P-def )
qed

from mn have coprime m a
by (subst coprime-iff-prime-factors-disjoint) (auto simp: P-def )

hence ∃ x. [x = k] (mod m) ∧ [x = 1 ] (mod a)
by (intro binary-chinese-remainder-nat)

then obtain x where x: [x = k] (mod m) [x = 1 ] (mod a)
by auto

from x(1 ) mn k have [simp]: x 6= 0
by (meson ‹k < m› cong-0-iff cong-sym-eq nat-dvd-not-less)

from x(2 ) have coprime x a
using cong-imp-coprime cong-sym by force

hence coprime x (a ∗ m)
using k cong-imp-coprime[OF cong-sym[OF x(1 )]] by auto

also have ?this ←→ coprime x n using mn
by (intro coprime-cong-prime-factors)

(auto simp: prime-factors-product P-def in-prime-factors-iff )
finally have x mod n ∈ totatives n

using mn by (auto simp: totatives-def intro!: Nat.gr0I )

moreover have f (x mod n) = k
using x(1 ) k mn ‹k < m› by (auto simp: assms(3 ) unique-euclidean-semiring-class.cong-def
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mod-mod-cancel)
ultimately show k ∈ f ‘ carrier G

by (auto simp: assms(1 ) residue-mult-group-def )
qed

ultimately have image-eq: f ‘ carrier G = carrier H by blast

have [simp]: f (k ⊗G l) = f k ⊗H f l if k ∈ carrier G l ∈ carrier G for k l
using that mn by (auto simp: assms(1−3 ) residue-mult-group-def totatives-def

mod-mod-cancel mod-mult-eq)
interpret f : group-hom G H f

using subset by unfold-locales (auto simp: hom-def )

show bij-betw (λb. (the-elem (f ‘ b))) (rcosetsG kernel G H f ) (carrier H )
unfolding bij-betw-def

proof
show inj-on (λb. (the-elem (f ‘ b))) (rcosetsG kernel G H f )

using f .FactGroup-inj-on unfolding FactGroup-def by auto
have eq: f ‘ carrier G = carrier H

using subset super-set by blast
show (λb. the-elem (f ‘ b)) ‘ (rcosetsG kernel G H f ) = carrier H

using f .FactGroup-onto[OF eq] unfolding FactGroup-def by simp
qed

show partition (carrier G) (rcosetsG kernel G H f )
proof

show
∧

a. a ∈ carrier G =⇒
∃ !b. b ∈ rcosetsG kernel G H f ∧ a ∈ b

proof −
fix a
assume a-in: a ∈ carrier G
show ∃ !b. b ∈ rcosetsG kernel G H f ∧ a ∈ b
proof −

have ∃ b. b ∈ rcosetsG kernel G H f ∧ a ∈ b
using a-in n.rcosets-part-G[OF f .subgroup-kernel]
by blast

then show ?thesis
using group.rcos-disjoint[OF n.is-group f .subgroup-kernel]
by (auto simp: disjoint-def )

qed
qed

next
show

∧
b. b ∈ rcosetsG kernel G H f =⇒ b ⊆ carrier G

using n.rcosets-part-G f .subgroup-kernel by auto
qed

have lagr : card (carrier G) = card (rcosetsG kernel G H f ) ∗ card (kernel G H
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f )
using group.lagrange-finite[OF n.is-group n.fin f .subgroup-kernel] Coset.order-def [of

G] by argo
have k-size: card (kernel G H f ) > 0

using f .subgroup-kernel finite-subset n.subgroupE(1 ) n.subgroupE(2 ) by fast-
force

have G-size: card (carrier G) = totient n
using n.order Coset.order-def [of G] by simp

have H-size: totient m = card (carrier H )
using n.order Coset.order-def [of H ] by simp

also have . . . = card (carrier (G Mod kernel G H f ))
using f .FactGroup-iso[OF image-eq] card-image f .FactGroup-inj-on f .FactGroup-onto

image-eq by fastforce
also have . . . = card (carrier G) div card (kernel G H f )
proof −

have card (carrier (G Mod kernel G H f )) =
card (rcosetsG kernel G H f )

unfolding FactGroup-def by simp
also have . . . = card (carrier G) div card (kernel G H f )

by (simp add: lagr k-size)
finally show ?thesis by blast

qed
also have . . . = totient n div card (kernel G H f )

using G-size by argo
finally have eq: totient m = totient n div card (kernel G H f ) by simp
show card (kernel G H f ) = totient n div totient m
proof −

have totient m 6= 0
using totient-0-iff [of m] assms(4 ) by blast

have card (kernel G H f ) dvd totient n
using lagr ‹card (carrier G) = totient n› by auto

have totient m ∗ card (kernel G H f ) = totient n
unfolding eq using ‹card (kernel G H f ) dvd totient n› by auto

have totient n div totient m = totient m ∗ card (kernel G H f ) div totient m
using ‹totient m ∗ card (kernel G H f ) = totient n› by auto

also have . . . = card (kernel G H f )
using nonzero-mult-div-cancel-left[OF ‹totient m 6= 0 ›] by blast

finally show ?thesis by auto
qed

show card (rcosetsG kernel G H f ) = totient m
proof −

have H-size: totient m = card (carrier H )
using n.order Coset.order-def [of H ] by simp

also have . . . = card (carrier (G Mod kernel G H f ))
using f .FactGroup-iso[OF image-eq] card-image f .FactGroup-inj-on f .FactGroup-onto

image-eq by fastforce
also have card (carrier (G Mod kernel G H f )) =

card (rcosetsG kernel G H f )
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unfolding FactGroup-def by simp
finally show card (rcosetsG kernel G H f ) = totient m

by argo
qed

assume b ∈ rcosetsG kernel G H f
then show b 6= {}
proof −

have card b = card (kernel G H f )
using ‹b ∈ rcosetsG kernel G H f › f .subgroup-kernel n.card-rcosets-equal

n.subgroupE(1 ) by auto
then have card b > 0

by (simp add: k-size)
then show ?thesis by auto

qed

assume b-cos: b ∈ rcosetsG kernel G H f
show card (kernel G H f ) = card b

using group.card-rcosets-equal[OF n.is-group b-cos]
f .subgroup-kernel subgroup.subset by blast

qed

lemma primitive-iff-separable-lemma:
assumes prod: (∀n. χ n = Φ n ∗ χ1 n) ∧ primitive-dchar d Φ
assumes ‹d > 1 › ‹0 < k› ‹d dvd k› ‹k > 1 ›
shows (

∑
m | m ∈ {1 ..k} ∧ coprime m k. Φ(m) ∗ unity-root d m) =

(totient k div totient d) ∗ (
∑

m | m ∈ {1 ..d} ∧ coprime m d. Φ(m) ∗
unity-root d m)
proof −

from assms interpret Φ: primitive-dchar d residue-mult-group d Φ
by auto

define G where G = residue-mult-group k
define H where H = residue-mult-group d
define f where f = (λt. t mod d)

from residue-mult-group-kernel-partition(2 )[OF ‹d > 1 › ‹0 < k› ‹d dvd k›]
have fin-cosets: finite (rcosetsG kernel G H f )
using ‹1 < d› card.infinite by (fastforce simp: G-def H-def f-def )

have fin-G: finite (carrier G)
unfolding G-def residue-mult-group-def by simp

have eq: (
∑

m | m ∈ {1 ..k} ∧ coprime m k. Φ(m) ∗ unity-root d m) =
(
∑

m | m ∈ carrier G . Φ(m) ∗ unity-root d m)
unfolding residue-mult-group-def totatives-def G-def
by (rule sum.cong,auto)

also have . . . = sum (λm. Φ(m) ∗ unity-root d m) (carrier G) by simp
also have eq ′: . . . = sum (sum (λm. Φ m ∗ unity-root d (int m))) (rcosetsG
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kernel G H f )
by (rule disjoint-sum [symmetric])
(use fin-G fin-cosets residue-mult-group-kernel-partition(1 )[OF ‹d > 1 › ‹k >

0 › ‹d dvd k›] in
‹auto simp: G-def H-def f-def ›)

also have . . . =
(
∑

b ∈ (rcosetsG kernel G H f ) . (
∑

m ∈ b. Φ m ∗ unity-root d (int m))) by
simp

finally have 1 : (
∑

m | m ∈ {1 ..k} ∧ coprime m k. Φ(m) ∗ unity-root d m) =
(
∑

b ∈ (rcosetsG kernel G H f ) . (
∑

m ∈ b. Φ m ∗ unity-root d
(int m)))

using eq eq ′ by auto
have eq ′′′: . . . =
(
∑

b ∈ (rcosetsG kernel G H f ) . (totient k div totient d) ∗ (Φ (the-elem (f ‘
b)) ∗ unity-root d (int (the-elem (f ‘ b)))))

proof (rule sum.cong,simp)
fix b
assume b-in: b ∈ (rcosetsG kernel G H f )
note b-not-empty = residue-mult-group-kernel-partition(4 )

[OF ‹d > 1 › ‹0 < k› ‹d dvd k› b-in[unfolded G-def H-def
f-def ]]

{
fix m1 m2
assume m-in: m1 ∈ b m2 ∈ b
have m-mod: m1 mod d = m2 mod d

using residue-mult-group-coset[OF b-in[unfolded G-def H-def f-def ] m-in ‹k
> 1 › ‹d dvd k›]

by blast
} note m-mod = this
{

fix m1 m2
assume m-in: m1 ∈ b m2 ∈ b
have Φ m1 ∗ unity-root d (int m1 ) = Φ m2 ∗ unity-root d (int m2 )
proof −
have Φ-periodic: periodic-arithmetic Φ d using Φ.dir-periodic-arithmetic by

blast
have 1 : Φ m1 = Φ m2

using mod-periodic-arithmetic[OF ‹periodic-arithmetic Φ d› m-mod[OF
m-in]] by simp

have 2 : unity-root d m1 = unity-root d m2
using m-mod[OF m-in] by (intro unity-root-cong) (auto simp: unique-euclidean-semiring-class.cong-def

simp flip: zmod-int)
from 1 2 show ?thesis by simp

qed
} note all-eq-in-coset = this

from all-eq-in-coset b-not-empty
obtain l where l-prop: l ∈ b ∧ (∀ y ∈ b. Φ y ∗ unity-root d (int y) =
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Φ l ∗ unity-root d (int l)) by blast

have (
∑

m ∈ b. Φ m ∗ unity-root d (int m)) =
((totient k div totient d) ∗ (Φ l ∗ unity-root d (int l)))

proof −
have (

∑
m ∈ b. Φ m ∗ unity-root d (int m)) =

(
∑

m ∈ b. Φ l ∗ unity-root d (int l))
by (rule sum.cong,simp) (use all-eq-in-coset l-prop in blast)

also have . . . = card b ∗ Φ l ∗ unity-root d (int l)
by simp

also have . . . = (totient k div totient d) ∗ Φ l ∗ unity-root d (int l)
using residue-mult-group-kernel-partition(3 )[OF ‹d > 1 › ‹0 < k› ‹d dvd k›]

residue-mult-group-kernel-partition(5 )
[OF ‹d > 1 › ‹0 < k› ‹d dvd k› b-in [unfolded G-def H-def f-def ]]

by argo
finally have 2 :
(
∑

m ∈ b. Φ m ∗ unity-root d (int m)) =
(totient k div totient d) ∗ Φ l ∗ unity-root d (int l)

by blast
from b-not-empty 2 show ?thesis by auto

qed
also have . . . = ((totient k div totient d) ∗ (Φ (the-elem (f ‘ b)) ∗ unity-root d

(int (the-elem (f ‘ b)))))
proof −

have foral: (
∧

y. y ∈ b =⇒ f y = f l)
using m-mod l-prop unfolding f-def by blast

have eq: the-elem (f ‘ b) = f l
by (simp add: b-not-empty foral the-elem-image-unique)

have per : periodic-arithmetic Φ d using prod Φ.dir-periodic-arithmetic by
blast

show ?thesis
unfolding eq using mod-periodic-arithmetic[OF per , of l mod d l]
by (auto simp: f-def unity-root-mod zmod-int)

qed
finally show (

∑
m ∈ b. Φ m ∗ unity-root d (int m)) =

((totient k div totient d) ∗ (Φ (the-elem (f ‘ b)) ∗ unity-root d (int
(the-elem (f ‘ b)))))

by blast
qed
have . . . =

(
∑

b ∈ (rcosetsG kernel G H f ) . (totient k div totient d) ∗ (Φ (the-elem
(f ‘ b)) ∗ unity-root d (int (the-elem (f ‘ b)))))

by blast
also have eq ′′:

. . . = (
∑

h ∈ carrier H . (totient k div totient d) ∗ (Φ (h) ∗ unity-root d (int
(h))))

unfolding H-def G-def f-def
by (rule sum.reindex-bij-betw[OF residue-mult-group-kernel-partition(6 )[OF ‹d
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> 1 › ‹0 < k› ‹d dvd k›]])
finally have 2 : (

∑
m | m ∈ {1 ..k} ∧ coprime m k. Φ(m) ∗ unity-root d m) =

(totient k div totient d)∗(
∑

h ∈ carrier H . (Φ (h) ∗ unity-root d
(int (h))))

using 1 by (simp add: eq ′′ eq ′′′ sum-distrib-left)
also have . . . = (totient k div totient d)∗(

∑
m | m ∈ {1 ..d} ∧ coprime m d .

(Φ (m) ∗ unity-root d (int (m))))
unfolding H-def residue-mult-group-def by (simp add: totatives-def Suc-le-eq)

finally show ?thesis by simp
qed

Theorem 8.19
theorem (in dcharacter) primitive-iff-separable:

primitive-dchar n χ ←→ (∀ k>0 . separable k)
proof (cases χ = principal-dchar n)

case True
thus ?thesis

using principal-not-primitive principal-not-totally-separable by auto
next

case False
note nonprincipal = this
show ?thesis
proof

assume primitive-dchar n χ
then interpret A: primitive-dchar n residue-mult-group n χ by auto
show (∀ k. k > 0 −→ separable k)

using n A.primitive-encoding(2 ) by blast
next

assume tot-separable: ∀ k>0 . separable k
{

assume as: ¬ primitive-dchar n χ
have ∃ r . r 6= 0 ∧ ¬ coprime r n ∧ gauss-sum r 6= 0
proof −

from n have n > 0 by simp
define d where d = conductor
have d > 0 unfolding d-def using conductor-gr-0 .
then have d > 1 using nonprincipal d-def conductor-eq-1-iff-principal by

auto
have d < n unfolding d-def using nonprimitive-imp-conductor-less[OF as]

.
have d dvd n unfolding d-def using conductor-dvd by blast
define r where r = n div d
have 0 : r 6= 0 unfolding r-def

using ‹0 < n› ‹d dvd n› dvd-div-gt0 by auto
have gcd r n > 1

unfolding r-def
proof −

have n div d > 1 using ‹1 < n› ‹d < n› ‹d dvd n› by auto
have n div d dvd n using ‹d dvd n› by force
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have gcd (n div d) n = n div d using gcd-nat.absorb1 [OF ‹n div d dvd
n›] by blast

then show 1 < gcd (n div d) n using ‹n div d > 1 › by argo
qed
then have 1 : ¬ coprime r n by auto
define χ1 where χ1 = principal-dchar n
from primitive-principal-form[OF nonprincipal]
obtain Φ where

prod: (∀ k. χ(k) = Φ(k)∗χ1(k)) ∧ primitive-dchar d Φ
using d-def unfolding χ1-def by blast

then have prod1 : (∀ k. χ(k) = Φ(k)∗χ1(k)) primitive-dchar d Φ by blast+
then interpret Φ: primitive-dchar d residue-mult-group d Φ

by auto

have gauss-sum r = (
∑

m = 1 ..n . χ(m) ∗ unity-root n (m∗r))
unfolding gauss-sum-def by blast

also have . . . = (
∑

m = 1 ..n . Φ(m)∗χ1(m) ∗ unity-root n (m∗r))
by (rule sum.cong,auto simp add: prod)

also have . . . = (
∑

m | m ∈ {1 ..n} ∧ coprime m n. Φ(m)∗χ1(m) ∗ unity-root
n (m∗r))

by (intro sum.mono-neutral-right) (auto simp: χ1-def principal-dchar-def )
also have . . . = (

∑
m | m ∈ {1 ..n} ∧ coprime m n. Φ(m)∗χ1(m) ∗ unity-root

d m)
proof (rule sum.cong,simp)

fix x
assume x ∈ {m ∈ {1 ..n}. coprime m n}
have unity-root n (int (x ∗ r)) = unity-root d (int x)

using unity-div-num[OF ‹n > 0 › ‹d > 0 › ‹d dvd n›]
by (simp add: algebra-simps r-def )

then show Φ x ∗ χ1 x ∗ unity-root n (int (x ∗ r)) =
Φ x ∗ χ1 x ∗ unity-root d (int x) by auto

qed
also have . . . = (

∑
m | m ∈ {1 ..n} ∧ coprime m n. Φ(m) ∗ unity-root d

m)
by (rule sum.cong,auto simp add: χ1-def principal-dchar-def )

also have . . . = (totient n div totient d) ∗ (
∑

m | m ∈ {1 ..d} ∧ coprime
m d. Φ(m) ∗ unity-root d m)

using primitive-iff-separable-lemma[OF prod ‹d > 1 › ‹n > 0 › ‹d dvd n›
‹n > 1 ›] by blast

also have . . . = (totient n div totient d) ∗ Φ.gauss-sum 1
proof −

have Φ.gauss-sum 1 = (
∑

m = 1 ..d . Φ m ∗ unity-root d (int (m )))
by (simp add: Φ.gauss-sum-def )

also have . . . = (
∑

m | m ∈ {1 ..d} . Φ m ∗ unity-root d (int m))
by (rule sum.cong,auto)

also have . . . = (
∑

m | m ∈ {1 ..d} ∧ coprime m d. Φ(m) ∗ unity-root d
m)

by (rule sum.mono-neutral-right) (use Φ.eq-zero in auto)
finally have Φ.gauss-sum 1 = (

∑
m | m ∈ {1 ..d} ∧ coprime m d. Φ(m)
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∗ unity-root d m)
by blast

then show ?thesis by metis
qed
finally have g-expr : gauss-sum r = (totient n div totient d) ∗ Φ.gauss-sum

1
by blast

have t-non-0 : totient n div totient d 6= 0
by (simp add: ‹0 < n› ‹d dvd n› dvd-div-gt0 totient-dvd)

have (norm (Φ.gauss-sum 1 ))2 = d
using Φ.primitive-encoding(3 ) by simp

then have Φ.gauss-sum 1 6= 0
using ‹0 < d› by auto

then have 2 : gauss-sum r 6= 0
using g-expr t-non-0 by auto

from 0 1 2 show ∃ r . r 6= 0 ∧ ¬ coprime r n ∧ gauss-sum r 6= 0
by blast

qed
}
note contr = this

show primitive-dchar n χ
proof (rule ccontr)

assume ¬ primitive-dchar n χ
then obtain r where 1 : r 6= 0 ∧ ¬ coprime r n ∧ gauss-sum r 6= 0

using contr by blast
from global-separability-condition tot-separable
have 2 : (∀ k>0 . ¬ coprime k n −→ gauss-sum k = 0 )

by blast
from 1 2 show False by blast

qed
qed

qed

Theorem 8.20
theorem (in primitive-dchar) fourier-primitive:

includes no vec-lambda-syntax
fixes τ :: complex
defines τ ≡ gauss-sum 1 / sqrt n
shows χ m = τ / sqrt n ∗ (

∑
k=1 ..n. cnj (χ k) ∗ unity-root n (−m∗k))

and norm τ = 1
proof −

have chi-not-principal: χ 6= principal-dchar n
using principal-not-totally-separable primitive-encoding(2 ) by blast

then have case-0 : (
∑

k=1 ..n. χ k) = 0
proof −

have sum χ {0 ..n−1} = sum χ {1 ..n}
using periodic-arithmetic-sum-periodic-arithmetic-shift[OF dir-periodic-arithmetic,
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of 1 ] n
by auto

also have {0 ..n−1} = {..<n}
using n by auto

finally show (
∑

n = 1 ..n . χ n) = 0
using sum-dcharacter-block chi-not-principal by simp

qed

have χ m =
(
∑

k = 1 ..n. 1 / of-nat n ∗ gauss-sum-int (− int k) ∗
unity-root n (int (m ∗ k)))

using dcharacter-fourier-expansion[of m] by auto
also have . . . = (

∑
k = 1 ..n. 1 / of-nat n ∗ gauss-sum (nat ((− k) mod n)) ∗

unity-root n (int (m ∗ k)))
by (auto simp: gauss-sum-int-conv-gauss-sum)

also have . . . = (
∑

k = 1 ..n. 1 / of-nat n ∗ cnj (χ (nat ((− k) mod n))) ∗
gauss-sum 1 ∗ unity-root n (int (m ∗ k)))

proof (rule sum.cong,simp)
fix k
assume k ∈ {1 ..n}
have gauss-sum (nat (− int k mod int n)) =

cnj (χ (nat (− int k mod int n))) ∗ gauss-sum 1
proof (cases nat ((− k) mod n) > 0 )

case True
then show ?thesis

using mp[OF spec[OF primitive-encoding(2 )] True]
unfolding separable-def by auto

next
case False
then have nat-0 : nat ((− k) mod n) = 0 by blast
show ?thesis
proof −

have gauss-sum (nat (− int k mod int n)) = gauss-sum 0
using nat-0 by argo

also have . . . = (
∑

m = 1 ..n. χ m)
unfolding gauss-sum-def by (rule sum.cong) auto

also have . . . = 0 using case-0 by blast
finally have 1 : gauss-sum (nat (− int k mod int n)) = 0

by blast

have 2 : cnj (χ (nat (− int k mod int n))) = 0
using nat-0 zero-eq-0 by simp

show ?thesis using 1 2 by simp
qed

qed
then show 1 / of-nat n ∗ gauss-sum (nat (− int k mod int n)) ∗ unity-root n

(int (m ∗ k)) =
1 / of-nat n ∗ cnj (χ (nat (− int k mod int n))) ∗ gauss-sum 1 ∗

unity-root n (int (m ∗ k))
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by auto
qed
also have . . . = (

∑
k = 1 ..n. 1 / of-nat n ∗ cnj (χ (nat (− int k mod int n)))

∗
gauss-sum 1 ∗ unity-root n (int (m ∗ (nat (int k mod int n)))))

proof (rule sum.cong,simp)
fix x
assume x ∈ {1 ..n}
have unity-root n (m ∗ x) = unity-root n (m ∗ x mod n)

using unity-root-mod-nat[of n m∗x] by (simp add: nat-mod-as-int)
also have . . . = unity-root n (m ∗ (x mod n))

by (metis mod-mult-right-eq nat-mod-as-int unity-root-mod-nat)
finally have unity-root n (m ∗ x) = unity-root n (m ∗ (x mod n)) by blast
then show 1 / of-nat n ∗ cnj (χ (nat (− int x mod int n))) ∗

gauss-sum 1 ∗ unity-root n (int (m ∗ x)) =
1 / of-nat n ∗ cnj (χ (nat (− int x mod int n))) ∗ gauss-sum 1 ∗

unity-root n (int (m ∗ nat (int x mod int n)))
by (simp add: nat-mod-as-int)

qed
also have . . . = (

∑
k = 0 ..n−1 . 1 / of-nat n ∗ cnj (χ k) ∗ gauss-sum 1 ∗

unity-root n (− int (m ∗ k)))
proof −

have b: bij-betw (λk. nat((−k) mod n)) {1 ..n} {0 ..n−1}
unfolding bij-betw-def

proof
show inj-on (λk. nat (− int k mod int n)) {1 ..n}

unfolding inj-on-def
proof (safe)

fix x y
assume a1 : x ∈ {1 ..n} y ∈ {1 ..n}
assume a2 : nat (− x mod n) = nat (− y mod n)
then have (− x) mod n = − y mod n

using n eq-nat-nat-iff by auto
then have [−int x = − int y] (mod n)

using unique-euclidean-semiring-class.cong-def by blast
then have [x = y] (mod n)

by (simp add: cong-int-iff cong-minus-minus-iff )
then have cong: x mod n = y mod n using unique-euclidean-semiring-class.cong-def

by blast
then show x = y
proof (cases x = n)

case True then show ?thesis using cong a1 (2 ) by auto
next

case False
then have x mod n = x using a1 (1 ) by auto
then have y 6= n using a1 (1 ) local.cong by fastforce
then have y mod n = y using a1 (2 ) by auto
then show ?thesis using ‹x mod n = x› cong by linarith

qed
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qed
show (λk. nat (− int k mod int n)) ‘ {1 ..n} = {0 ..n − 1}

unfolding image-def
proof

let ?A = {y. ∃ x∈{1 ..n}. y = nat (− int x mod int n)}
let ?B = {0 ..n − 1}
show ?A ⊆ ?B
proof

fix y
assume y ∈ {y. ∃ x∈{1 ..n}. y = nat (− int x mod int n)}
then obtain x where x∈{1 ..n} ∧ y = nat (− int x mod int n) by blast
then show y ∈ {0 ..n − 1} by (simp add: nat-le-iff of-nat-diff )

qed
show ?A ⊇ ?B
proof

fix x
assume 1 : x ∈ {0 ..n−1}
then have n − x ∈ {1 ..n}

using n by auto
have x = nat (− int (n−x) mod int n)
proof −

have nat (− int (n−x) mod int n) = nat (int x) mod int n
apply(simp add: int-ops(6 ),rule conjI )
using ‹n − x ∈ {1 ..n}› by force+

also have . . . = x
using 1 n by auto

finally show ?thesis by presburger
qed
then show x ∈ {y. ∃ x∈{1 ..n}. y = nat (− int x mod int n)}

using ‹n − x ∈ {1 ..n}› by blast
qed

qed
qed
show ?thesis
proof −

have 1 : (
∑

k = 1 ..n. 1 / of-nat n ∗ cnj (χ (nat (− int k mod int n))) ∗
gauss-sum 1 ∗ unity-root n (int (m ∗ nat (int k mod int n)))) =

(
∑

x = 1 ..n. 1 / of-nat n ∗ cnj (χ (nat (− int x mod int n))) ∗
gauss-sum 1 ∗ unity-root n (− int (m ∗ nat (− int x mod int n))))

proof (rule sum.cong,simp)
fix x
have (int m ∗ (int x mod int n)) mod n = (m∗x) mod n

by (simp add: mod-mult-right-eq zmod-int)
also have . . . = (− ((− int (m∗x) mod n))) mod n

by (simp add: mod-minus-eq of-nat-mod)
have (int m ∗ (int x mod int n)) mod n = (− (int m ∗ (− int x mod int

n))) mod n
apply(subst mod-mult-right-eq,subst add.inverse-inverse[symmetric],subst

(5 ) add.inverse-inverse[symmetric])
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by (subst minus-mult-minus,subst mod-mult-right-eq[symmetric],auto)
then have unity-root n (int m ∗ (int x mod int n)) =

unity-root n (− (int m ∗ (− int x mod int n)))
using unity-root-mod[of n int m ∗ (int x mod int n)]

unity-root-mod[of n − (int m ∗ (− int x mod int n))] by argo
then show 1 / of-nat n ∗ cnj (χ (nat (− int x mod int n))) ∗
gauss-sum 1 ∗
unity-root n (int (m ∗ nat (int x mod int n))) =
1 / of-nat n ∗ cnj (χ (nat (− int x mod int n))) ∗
gauss-sum 1 ∗
unity-root n (− int (m ∗ nat (− int x mod int n)))
by clarsimp

qed
also have 2 : (

∑
x = 1 ..n. 1 / of-nat n ∗ cnj (χ (nat (− int x mod int n))) ∗

gauss-sum 1 ∗ unity-root n (− int (m ∗ nat (− int x mod int n)))) =
(
∑

md = 0 ..n − 1 . 1 / of-nat n ∗ cnj (χ md) ∗ gauss-sum 1 ∗
unity-root n (− int (m ∗ md)))

using sum.reindex-bij-betw[OF b, of λmd. 1 / of-nat n ∗ cnj (χ md) ∗
gauss-sum 1 ∗ unity-root n (− int (m ∗ md))]

by blast
also have 3 : . . . = (

∑
k = 0 ..n − 1 .

1 / of-nat n ∗ cnj (χ k) ∗ gauss-sum 1 ∗
unity-root n (− int (m ∗ k))) by blast

finally have (
∑

k = 1 ..n. 1 / of-nat n ∗ cnj (χ (nat (− int k mod int n))) ∗
gauss-sum 1 ∗ unity-root n (int (m ∗ nat (int k mod int n)))) =
(
∑

k = 0 ..n − 1 .
1 / of-nat n ∗ cnj (χ k) ∗ gauss-sum 1 ∗
unity-root n (− int (m ∗ k))) using 1 2 3 by argo

then show ?thesis by blast
qed

qed
also have . . . = (

∑
k = 1 ..n.

1 / of-nat n ∗ cnj (χ k) ∗ gauss-sum 1 ∗
unity-root n (− int (m ∗ k)))

proof −
let ?f = (λk. 1 / of-nat n ∗ cnj (χ k) ∗ gauss-sum 1 ∗ unity-root n (− int (m

∗ k)))
have ?f 0 = 0

using zero-eq-0 by auto
have ?f n = 0

using zero-eq-0 mod-periodic-arithmetic[OF dir-periodic-arithmetic, of n 0 ]
by simp

have (
∑

n = 0 ..n − 1 . ?f n) = (
∑

n = 1 ..n − 1 . ?f n)
using sum-shift-lb-Suc0-0 [of ?f , OF ‹?f 0 = 0 ›]
by auto

also have . . . = (
∑

n = 1 ..n. ?f n)
proof (rule sum.mono-neutral-left,simp,simp,safe)

fix i
assume i ∈ {1 ..n} i /∈ {1 ..n − 1}
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then have i = n using n by auto
then show 1 / of-nat n ∗ cnj (χ i) ∗ gauss-sum 1 ∗ unity-root n (− int (m

∗ i)) = 0
using ‹?f n = 0 › by blast

qed
finally show ?thesis by blast

qed
also have . . . = (

∑
k = 1 ..n. (τ / sqrt n) ∗ cnj (χ k) ∗ unity-root n (− int (m

∗ k)))
proof (rule sum.cong,simp)

fix x
assume x ∈ {1 ..n}
have τ / sqrt (real n) = 1 / of-nat n ∗ gauss-sum 1
proof −

have τ / sqrt (real n) = gauss-sum 1 / sqrt n / sqrt n
using assms by auto

also have . . . = gauss-sum 1 / (sqrt n ∗ sqrt n)
by (subst divide-divide-eq-left,subst of-real-mult,blast)

also have . . . = gauss-sum 1 / n
using real-sqrt-mult-self by simp

finally show ?thesis by simp
qed
then show
1 / of-nat n ∗ cnj (χ x) ∗ gauss-sum 1 ∗ unity-root n (− int (m ∗ x)) =
(τ / sqrt n) ∗ cnj (χ x) ∗ unity-root n (− int (m ∗ x)) by simp

qed
also have . . . = τ / sqrt (real n) ∗

(
∑

k = 1 ..n. cnj (χ k) ∗ unity-root n (− int (m ∗ k)))
proof −

have (
∑

k = 1 ..n. τ / sqrt (real n) ∗ cnj (χ k) ∗ unity-root n (− int (m ∗ k)))
=

(
∑

k = 1 ..n. τ / sqrt (real n) ∗ (cnj (χ k) ∗ unity-root n (− int (m ∗
k))))

by (rule sum.cong,simp, simp add: algebra-simps)
also have . . . = τ / sqrt (real n) ∗ (

∑
k = 1 ..n. cnj (χ k) ∗ unity-root n (−

int (m ∗ k)))
by (rule sum-distrib-left[symmetric])

finally show ?thesis by blast
qed

finally show χ m = (τ / sqrt (real n)) ∗
(
∑

k=1 ..n. cnj (χ k) ∗ unity-root n (− int m ∗ int k)) by simp

have 1 : norm (gauss-sum 1 ) = sqrt n
using gauss-sum-1-mod-square-eq-k[OF primitive-encoding(2 )]
by (simp add: cmod-def )

from assms have 2 : norm τ = norm (gauss-sum 1 ) / |sqrt n|
by (simp add: norm-divide)

show norm τ = 1 using 1 2 n by simp

86



qed

unbundle vec-lambda-syntax

end

8 The Pólya–Vinogradov Inequality
theory Polya-Vinogradov
imports

Gauss-Sums
Dirichlet-Series.Divisor-Count

begin

unbundle no vec-lambda-syntax

8.1 The case of primitive characters

We first prove a stronger variant of the Pólya–Vinogradov inequality for
primitive characters. The fully general variant will then simply be a corollary
of this. First, we need some bounds on logarithms, exponentials, and the
harmonic numbers:
lemma exp-1-less-powr :

assumes x > (0 ::real)
shows exp 1 < (1 + 1 / x) powr (x+1 )

proof −
have 1 < (x + 1 ) ∗ ln ((x + 1 ) / x) (is - < ?f x)
proof (rule DERIV-neg-imp-decreasing-at-top[where ?f = ?f ])

fix t assume t: x ≤ t
have (?f has-field-derivative (ln (1 + 1 / t) − 1 / t)) (at t)

using t assms by (auto intro!: derivative-eq-intros simp:divide-simps)
moreover have ln (1 + 1 / t) − 1 / t < 0

using ln-add-one-self-less-self [of 1 / t] t assms by auto
ultimately show ∃ y. ((λt. (t + 1 ) ∗ ln ((t + 1 ) / t)) has-real-derivative y)

(at t) ∧ y < 0
by blast

qed real-asymp
thus exp 1 < (1 + 1 / x) powr (x + 1 )

using assms by (simp add: powr-def field-simps)
qed

lemma harm-aux-ineq-1 :
fixes k :: real
assumes k > 1
shows 1 / k < ln (1 + 1 / (k − 1 ))

proof −
have k−1 > 0 ‹k > 0 › using assms by simp+
from exp-1-less-powr [OF ‹k−1 > 0 ›]
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have eless: exp 1 < (1 + 1 / (k − 1 )) powr k by simp
then have n-z: (1 + 1 / (k − 1 )) powr k > 0

using assms not-exp-less-zero by auto

have (1 ::real) = ln (exp(1 )) using ln-exp by auto
also have . . . < ln ((1 + 1 / (k − 1 )) powr k)

by (meson eless dual-order .strict-trans exp-gt-zero ln-less-cancel-iff )
also have . . . = k ∗ ln (1 + 1 / (k − 1 ))

using ln-powr n-z by simp
finally have 1 < k ∗ ln (1 + 1 / (k − 1 ))

by blast
then show ?thesis using assms by (simp add: field-simps)

qed

lemma harm-aux-ineq-2-lemma:
assumes x ≥ (0 ::real)
shows 1 < (x + 1 ) ∗ ln (1 + 2 / (2 ∗ x + 1 ))

proof −
have 0 < ln (1+2/(2∗x+1 )) − 1 / (x + 1 ) (is - < ?f x)
proof (rule DERIV-neg-imp-decreasing-at-top[where ?f = ?f ])

fix t assume t: x ≤ t
from assms t have 3 + 8 ∗ t + 4 ∗ t^2 > 0

by (intro add-pos-nonneg) auto
hence ∗: 3 + 8 ∗ t + 4 ∗ t^2 6= 0

by auto
have (?f has-field-derivative (−1 / ((1 + t)^2 ∗ (3 + 8 ∗ t + 4 ∗ t ^ 2 ))))

(at t)
apply (insert assms t ∗, (rule derivative-eq-intros refl | simp add: add-pos-pos)+)

apply (auto simp: divide-simps)
apply (auto simp: algebra-simps power2-eq-square)
done

moreover have −1 / ((1 + t)^2 ∗ (3 + 8 ∗ t + 4 ∗ t^2 )) < 0
using t assms by (intro divide-neg-pos mult-pos-pos add-pos-nonneg) auto

ultimately show ∃ y. (?f has-real-derivative y) (at t) ∧ y < 0
by blast

qed real-asymp
thus 1 < (x + 1 ) ∗ ln (1+2/(2∗x+1 ))

using assms by (simp add: field-simps)
qed

lemma harm-aux-ineq-2 :
fixes k :: real
assumes k ≥ 1
shows 1 / (k + 1 ) < ln (1 + 2 / (2 ∗ k + 1 ))

proof −
have k > 0 using assms by auto
have 1 < (k + 1 ) ∗ ln (1 + 2 / (2 ∗ k + 1 ))

using harm-aux-ineq-2-lemma assms by simp
then show ?thesis
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by (simp add: ‹0 < k› add-pos-pos mult.commute mult-imp-div-pos-less)
qed

lemma nat-0-1-induct [case-names 0 1 step]:
assumes P 0 P 1

∧
n. n ≥ 1 =⇒ P n =⇒ P (Suc n)

shows P n
proof (induction n rule: less-induct)

case (less n)
show ?case

using assms(3 )[OF - less.IH [of n − 1 ]]
by (cases n ≤ 1 )
(insert assms(1−2 ),auto simp: eval-nat-numeral le-Suc-eq)

qed

lemma harm-less-ln:
fixes m :: nat
assumes m > 0
shows harm m < ln (2 ∗ m + 1 )
using assms

proof (induct m rule: nat-0-1-induct)
case 0
then show ?case by blast

next
case 1
have harm 1 = (1 ::real) unfolding harm-def by simp
have harm 1 < ln (3 ::real)

by (subst ‹harm 1 = 1 ›,subst ln3-gt-1 ,simp)
then show ?case by simp

next
case (step n)
have harm (n+1 ) = harm n + 1/(n+1 )
by ((subst Suc-eq-plus1 [symmetric])+,subst harm-Suc,subst inverse-eq-divide,blast)

also have . . . < ln (real (2 ∗ n + 1 )) + 1/(n+1 )
using step(1−2 ) by auto

also have . . . < ln (real (2 ∗ n + 1 )) + ln (1+2/(2∗n+1 ))
proof −

from step(1 ) have real n ≥ 1 by simp
have 1 / real (n + 1 ) < ln (1 + 2 / real (2 ∗ n + 1 ))

using harm-aux-ineq-2 [OF ‹1 ≤ (real n)›] by (simp add: add.commute)
then show ?thesis by auto

qed
also have . . . = ln ((2 ∗ n + 1 ) ∗ (1+2/(2∗n+1 )))

by (auto simp add: ln-div divide-simps)
also have . . . = ln (2∗(n+1 )+1 )
proof −

have (2 ∗ n + 1 ) ∗ (1+2/(2∗n+1 )) = 2∗(n+1 )+1
by (simp add: field-simps)

then show ?thesis by presburger
qed
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finally show ?case by simp
qed

Theorem 8.21
theorem (in primitive-dchar) polya-vinogradov-inequality-primitive:

fixes x :: nat
shows norm (

∑
m=1 ..x. χ m) < sqrt n ∗ ln n

proof −
define τ :: complex where τ = gauss-sum 1 div sqrt n
have τ -mod: norm τ = 1 using fourier-primitive(2 )

by (simp add: τ -def )
{

fix m
have χ m = (τ div sqrt n) ∗ (

∑
k = 1 ..n. (cnj (χ k)) ∗ unity-root n (−m∗k))

using fourier-primitive(1 )[of m] τ -def by blast}
note chi-expr = this
have (

∑
m = 1 ..x. χ(m)) = (

∑
m = 1 ..x. (τ div sqrt n) ∗ (

∑
k = 1 ..n. (cnj

(χ k)) ∗ unity-root n (−m∗k)))
by(rule sum.cong[OF refl]) (use chi-expr in blast)

also have . . . = (
∑

m = 1 ..x. (
∑

k = 1 ..n. (τ div sqrt n) ∗ ((cnj (χ k)) ∗
unity-root n (−m∗k))))

by (rule sum.cong,simp,simp add: sum-distrib-left)
also have . . . = (

∑
k = 1 ..n. (

∑
m = 1 ..x. (τ div sqrt n) ∗ ((cnj (χ k)) ∗

unity-root n (−m∗k))))
by (rule sum.swap)

also have . . . = (
∑

k = 1 ..n. (τ div sqrt n) ∗ (cnj (χ k) ∗ (
∑

m = 1 ..x.
unity-root n (−m∗k))))

by (rule sum.cong,simp,simp add: sum-distrib-left)
also have . . . = (

∑
k = 1 ..<n. (τ div sqrt n) ∗ (cnj (χ k) ∗ (

∑
m = 1 ..x.

unity-root n (−m∗k))))
using n by (intro sum.mono-neutral-right) (auto intro: eq-zero)

also have . . . = (τ div sqrt n) ∗ (
∑

k = 1 ..<n. (cnj (χ k) ∗ (
∑

m = 1 ..x.
unity-root n (−m∗k))))

by (simp add: sum-distrib-left)
finally have (

∑
m = 1 ..x. χ(m)) = (τ div sqrt n) ∗ (

∑
k = 1 ..<n. (cnj (χ k)

∗ (
∑

m = 1 ..x. unity-root n (−m∗k))))
by blast
hence eq: sqrt n ∗ (

∑
m=1 ..x. χ(m)) = τ ∗ (

∑
k=1 ..<n. (cnj (χ k) ∗

(
∑

m=1 ..x. unity-root n (−m∗k))))
by auto

define f where f = (λk. (
∑

m = 1 ..x. unity-root n (−m∗k)))

hence (sqrt n) ∗ norm(
∑

m = 1 ..x. χ(m)) = norm(τ ∗ (
∑

k=1 ..<n. (cnj (χ
k) ∗ (

∑
m = 1 ..x. unity-root n (−m∗k)))))

proof −
have norm(sqrt n ∗ (

∑
m=1 ..x. χ(m))) = norm (sqrt n) ∗ norm((

∑
m =

1 ..x. χ(m)))
by (simp add: norm-mult)

also have . . . = (sqrt n) ∗ norm((
∑

m = 1 ..x. χ(m)))
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by simp
finally have 1 : norm((sqrt n) ∗ (

∑
m = 1 ..x. χ(m))) = (sqrt n) ∗ norm((

∑
m

= 1 ..x. χ(m)))
by blast

then show ?thesis using eq by algebra
qed
also have . . . = norm (

∑
k = 1 ..<n. (cnj (χ k) ∗ (

∑
m = 1 ..x. unity-root n

(−m∗k))))
by (simp add: norm-mult τ -mod)

also have . . . ≤ (
∑

k = 1 ..<n. norm (cnj (χ k) ∗ (
∑

m = 1 ..x. unity-root n
(−m∗k))))

using norm-sum by blast
also have . . . = (

∑
k = 1 ..<n. norm (cnj (χ k)) ∗ norm((

∑
m = 1 ..x.

unity-root n (−m∗k))))
by (rule sum.cong,simp, simp add: norm-mult)

also have . . . ≤ (
∑

k = 1 ..<n. norm((
∑

m = 1 ..x. unity-root n (−m∗k))))
proof −

show ?thesis
proof (rule sum-mono)

fix k
assume k ∈ {1 ..<n}
define sum-aux :: real where sum-aux = norm (

∑
m=1 ..x. unity-root n

(− int m ∗ int k))
have sum-aux ≥ 0 unfolding sum-aux-def by auto
have norm (cnj (χ k)) ≤ 1 using norm-le-1 [of k] by simp
then have norm (cnj (χ k)) ∗ sum-aux ≤ 1 ∗ sum-aux

using ‹sum-aux ≥ 0 › by (simp add: mult-left-le-one-le)
then show norm (cnj (χ k)) ∗

norm (
∑

m = 1 ..x. unity-root n (− int m ∗ int k))
≤ norm (

∑
m = 1 ..x. unity-root n (− int m ∗ int k))

unfolding sum-aux-def by argo
qed

qed
also have . . . = (

∑
k = 1 ..<n. norm(f k))

using f-def by blast
finally have 24 : (sqrt n) ∗ norm(

∑
m = 1 ..x. χ(m)) ≤ (

∑
k = 1 ..<n. norm(f

k))
by blast

{
fix k :: int
have f (n−k) = cnj(f (k))
proof −

have f (n−k) = (
∑

m = 1 ..x. unity-root n (−m∗(n−k)))
unfolding f-def by blast

also have . . . = (
∑

m = 1 ..x. unity-root n (m∗k))
proof (rule sum.cong,simp)

fix xa
assume xa ∈ {1 ..x}
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have (k ∗ int xa − int n ∗ int xa) mod int n = (k ∗ int xa − 0 ) mod int n
by (intro mod-diff-cong) auto

thus unity-root n (−int xa ∗ (int n − k)) = unity-root n (int xa ∗ k)
by (metis left-diff-distrib diff-zero minus-diff-eq mult.commute unity-root-mod)
qed
also have . . . = cnj(f (k))
proof −

have cnj(f (k)) = cnj (
∑

m = 1 ..x. unity-root n (− int m ∗ k))
unfolding f-def by blast

also have cnj (
∑

m = 1 ..x. unity-root n (− int m ∗ k)) =
(
∑

m = 1 ..x. cnj(unity-root n (− int m ∗ k)))
by (rule cnj-sum)

also have . . . = (
∑

m = 1 ..x. unity-root n (int m ∗ k))
by (intro sum.cong) (auto simp: unity-root-uminus)

finally show ?thesis by auto
qed
finally show f (n−k) = cnj(f (k)) by blast

qed
hence norm(f (n−k)) = norm(cnj(f (k))) by simp
hence norm(f (n−k)) = norm(f (k)) by auto

}
note eq = this
have 25 :

odd n =⇒ (
∑

k = 1 ..n − 1 . norm (f (int k))) ≤
2 ∗ (

∑
k = 1 ..(n−1 ) div 2 . norm (f (int k)))

even n =⇒ (
∑

k = 1 ..n − 1 . norm (f (int k))) ≤
2 ∗ (

∑
k = 1 ..(n−2 ) div 2 . norm (f (int k))) + norm(f (n div 2 ))

proof −
assume odd n
define g where g = (λk. norm (f k))
have (n−1 ) div 2 = n div 2 using ‹odd n› n

using div-mult-self1-is-m[OF pos2 ,of n−1 ]
odd-two-times-div-two-nat[OF ‹odd n›] by linarith

have (
∑

i=1 ..n−1 . g i) = (
∑

i∈{1 ..n div 2}∪{n div 2<..n−1}. g i)
using n by (intro sum.cong,auto)

also have . . . = (
∑

i∈{1 ..n div 2}. g i) + (
∑

i∈{n div 2<..n−1}. g i)
by (subst sum.union-disjoint,auto)

also have (
∑

i∈{n div 2<..n−1}. g i) = (
∑

i∈{1 ..n − (n div 2 + 1 )}. g (n
− i))

by (rule sum.reindex-bij-witness[of - λi. n − i λi. n − i],auto)
also have . . . ≤ (

∑
i∈{1 ..n div 2}. g (n − i))

by (intro sum-mono2 ,simp,auto simp add: g-def )
finally have 1 : (

∑
i=1 ..n−1 . g i) ≤ (

∑
i=1 ..n div 2 . g i + g (n − i))

by (simp add: sum.distrib)
have (

∑
i=1 ..n div 2 . g i + g (n − i)) = (

∑
i=1 ..n div 2 . 2 ∗ g i)

unfolding g-def
apply(rule sum.cong,simp)
using eq int-ops(6 ) by force

also have . . . = 2 ∗ (
∑

i=1 ..n div 2 . g i)
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by (rule sum-distrib-left[symmetric])
finally have 2 : (

∑
i=1 ..n div 2 . g i + g (n − i)) = 2 ∗ (

∑
i=1 ..n div 2 . g

i)
by blast

from 1 2 have (
∑

i=1 ..n−1 . g i) ≤ 2 ∗ (
∑

i=1 ..n div 2 . g i) by algebra
then show (

∑
n = 1 ..n − 1 . norm (f (int n))) ≤ 2 ∗ (

∑
n = 1 ..(n−1 ) div

2 . norm (f (int n)))
unfolding g-def ‹(n−1 ) div 2 = n div 2 › by blast

next
assume even n
define g where g = (λn. norm (f (n)))
have (n−2 ) div 2 = n div 2 − 1 using ‹even n› n by simp

have (
∑

i=1 ..n−1 . g i) = (
∑

i∈{1 ..<n div 2}∪ {n div 2} ∪ {n div 2<..n−1}.
g i)

using n by (intro sum.cong,auto)
also have . . . = (

∑
i∈{1 ..<n div 2}. g i) + (

∑
i∈{n div 2<..n−1}. g i) +

g(n div 2 )
by (subst sum.union-disjoint,auto)

also have (
∑

i∈{n div 2<..n−1}. g i) = (
∑

i∈{1 ..n − (n div 2+1 )}. g (n
− i))

by (rule sum.reindex-bij-witness[of - λi. n − i λi. n − i],auto)
also have . . . ≤ (

∑
i∈{1 ..<n div 2}. g (n − i))

proof (intro sum-mono2 ,simp)
have n − n div 2 = n div 2 using ‹even n› n by auto
then have n − (n div 2 + 1 ) < n div 2

using n by (simp add: divide-simps)
then show {1 ..n − (n div 2 + 1 )} ⊆ {1 ..<n div 2} by fastforce

qed auto
finally have 1 : (

∑
i=1 ..n−1 . g i) ≤ (

∑
i=1 ..<n div 2 . g i + g (n − i)) +

g(n div 2 )
by (simp add: sum.distrib)

have (
∑

i=1 ..<n div 2 . g i + g (n − i)) = (
∑

i=1 ..<n div 2 . 2 ∗ g i)
unfolding g-def
apply(rule sum.cong,simp)
using eq int-ops(6 ) by force

also have . . . = 2 ∗ (
∑

i=1 ..<n div 2 . g i)
by (rule sum-distrib-left[symmetric])

finally have 2 : (
∑

i=1 ..<n div 2 . g i + g (n − i)) = 2 ∗ (
∑

i=1 ..<n div
2 . g i)

by blast
from 1 2 have 3 : (

∑
i=1 ..n−1 . g i) ≤ 2 ∗ (

∑
i=1 ..<n div 2 . g i) + g(n

div 2 ) by algebra
then have (

∑
i=1 ..n−1 . g i) ≤ 2 ∗ (

∑
i=1 ..(n−2 ) div 2 . g i) + g(n div

2 )
proof −

have {1 ..<n div 2} = {1 ..(n−2 ) div 2} by auto
then have (

∑
i=1 ..<n div 2 . g i) = (

∑
i=1 ..(n−2 ) div 2 . g i)

by (rule sum.cong,simp)
then show ?thesis using 3 by presburger
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qed
then show (

∑
k = 1 ..n − 1 . norm (f (int k))) ≤ 2 ∗ (

∑
n = 1 ..(n−2 ) div

2 . norm (f (int n))) + g(n div 2 )
unfolding g-def by blast

qed

{fix k :: int
assume 1 ≤ k k ≤ n div 2
have k ≤ n − 1

using ‹k ≤ n div 2 › n by linarith
define y where y = unity-root n (−k)
define z where z = exp (−(pi∗k/n)∗ i)
have z^2 = exp (2∗(−(pi∗k/n)∗ i))

unfolding z-def using exp-double[symmetric] by blast
also have . . . = y

unfolding y-def unity-root-conv-exp by (simp add: algebra-simps)
finally have z-eq: y = z^2 by blast
have z-not-0 : z 6= 0

using z-eq by (simp add: z-def )

then have y 6= 1
using unity-root-eq-1-iff-int ‹1 ≤ k› ‹k ≤ n − 1 › not-less

unity-root-eq-1-iff-int y-def zdvd-not-zless by auto

have f (k) = (
∑

m = 1 ..x . y^m)
unfolding f-def y-def
by (subst unity-root-pow,rule sum.cong,simp,simp add: algebra-simps)

also have sum: . . . = (
∑

m = 1 ..<x+1 . y^m)
by (rule sum.cong,fastforce,simp)

also have . . . = (
∑

m = 0 ..<x+1 . y^m) − 1
by (subst (2 ) sum.atLeast-Suc-lessThan) auto

also have . . . = (y^(x+1 ) − 1 ) div (y − 1 ) − 1
using geometric-sum[OF ‹y 6= 1 ›, of x+1 ] by (simp add: atLeast0LessThan)

also have . . . = (y^(x+1 ) − 1 − (y−1 )) div (y − 1 )
proof −

have y − 1 6= 0 using ‹y 6= 1 › by simp
show ?thesis

using divide-diff-eq-iff [OF ‹y − 1 6= 0 ›, of (y^(x+1 ) − 1 ) 1 ] by auto
qed
also have . . . = (y^(x+1 ) − y) div (y − 1 )

by (simp add: algebra-simps)
also have . . . = y ∗ (y^x − 1 ) div (y − 1 )

by (simp add: algebra-simps)
also have . . . = z^2 ∗ ((z^2 )^x − 1 ) div (z^2 − 1 )

unfolding z-eq by blast
also have . . . = z^2 ∗ (z^(2∗x) − 1 ) div (z^2 − 1 )

by (subst power-mult[symmetric, of z 2 x],blast)
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also have . . . = z^(x+1 )∗((z ^x −inverse(z^x))) / (z − inverse(z))
proof −

have z^x 6= 0 using z-not-0 by auto
have 1 : z ^ (2 ∗ x) − 1 = z^x∗(z ^x −inverse(z^x))

by (simp add: semiring-normalization-rules(36 ) right-inverse[OF ‹z^x 6=
0 ›] right-diff-distrib ′)

have 2 : z2 − 1 = z∗(z − inverse(z))
by (simp add: right-diff-distrib ′ semiring-normalization-rules(29 ) right-inverse[OF

‹z 6= 0 ›])

have 3 : z2 ∗ (z^x / z) = z^(x+1 )
proof −

have z2 ∗ (z^x / z) = z2 ∗ (z^x ∗ inverse z)
by (simp add: inverse-eq-divide)

also have . . . = z^(x+1 )
by (simp add: algebra-simps power2-eq-square right-inverse[OF ‹z 6= 0 ›])

finally show ?thesis by blast
qed
have z2 ∗ (z ^ (2 ∗ x) − 1 ) / (z2 − 1 ) =

z2 ∗ (z^x∗(z ^x −inverse(z^x))) / (z∗(z − inverse(z)))
by (subst 1 , subst 2 ,blast)

also have . . . = (z2 ∗ (z^x / z)) ∗ ((z ^x −inverse(z^x))) / (z − inverse(z))
by simp

also have . . . = z^(x+1 ) ∗((z ^x −inverse(z^x))) / (z − inverse(z))
by (subst 3 ,simp)

finally show ?thesis by simp
qed
finally have f (k) = z^(x+1 ) ∗((z ^x −inverse(z^x))) / (z − inverse(z)) by

blast

then have norm(f (k)) = norm(z^(x+1 ) ∗ (((z ^x −inverse(z^x))) / (z −
inverse(z)))) by auto

also have . . . = norm(z^(x+1 )) ∗ norm(((z ^x −inverse(z^x))) / (z − in-
verse(z)))

using norm-mult by blast
also have . . . = norm(((z ^x −inverse(z^x))) / (z − inverse(z)))
proof −

have norm(z) = 1
unfolding z-def by auto

have norm(z^(x+1 )) = 1
by (subst norm-power ,simp add: ‹norm(z) = 1 ›)

then show ?thesis by simp
qed
also have . . . = norm((exp (−(x∗pi∗k/n)∗ i) − exp ((x∗pi∗k/n)∗ i)) div

(exp (−(pi∗k/n)∗ i) − exp ((pi∗k/n)∗ i)))
proof −

have 1 : z ^ x = exp (−(x∗pi∗k/n)∗ i)
unfolding z-def
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by (subst exp-of-nat-mult[symmetric],simp add: algebra-simps)
have inverse (z ^ x) = inverse (exp (−(x∗pi∗k/n)∗ i))

using ‹z ^ x = exp (−(x∗pi∗k/n)∗ i)› by auto
also have . . . = (exp ((x∗pi∗k/n)∗ i))

by (simp add: exp-minus)
finally have 2 : inverse(z^x) = exp ((x∗pi∗k/n)∗ i) by simp
have 3 : inverse z = exp ((pi∗k/n)∗ i)

by (simp add: exp-minus z-def )
show ?thesis using 1 2 3 z-def by simp

qed
also have . . . = norm((sin (x∗pi∗k/n)) div (sin (pi∗k/n)))
proof −
have num: (exp (−(x∗pi∗k/n)∗ i) − exp ((x∗pi∗k/n)∗ i)) = (−2∗i∗ sin((x∗pi∗k/n)))

proof −
have 1 : exp (−(x∗pi∗k/n)∗ i) = cos(−(x∗pi∗k/n)) + i ∗ sin(−(x∗pi∗k/n))

exp ((x∗pi∗k/n)∗ i) = cos((x∗pi∗k/n)) + i ∗ sin((x∗pi∗k/n))
using Euler Im-complex-of-real Im-divide-of-nat Im-i-times Re-complex-of-real

complex-Re-of-int complex-i-mult-minus exp-zero mult.assoc mult.commute
by force+

have (exp (−(x∗pi∗k/n)∗ i) − exp ((x∗pi∗k/n)∗ i)) =
(cos(−(x∗pi∗k/n)) + i ∗ sin(−(x∗pi∗k/n))) −
(cos((x∗pi∗k/n)) + i ∗ sin((x∗pi∗k/n)))

using 1 by argo
also have . . . = −2∗i∗ sin((x∗pi∗k/n)) by simp
finally show ?thesis by blast

qed

have den: (exp (−(pi∗k/n)∗ i) − exp ((pi∗k/n)∗ i)) = −2∗i∗ sin((pi∗k/n))
proof −

have 1 : exp (−(pi∗k/n)∗ i) = cos(−(pi∗k/n)) + i ∗ sin(−(pi∗k/n))
exp ((pi∗k/n)∗ i) = cos((pi∗k/n)) + i ∗ sin((pi∗k/n))

using Euler Im-complex-of-real Im-divide-of-nat Im-i-times Re-complex-of-real

complex-Re-of-int complex-i-mult-minus exp-zero mult.assoc mult.commute
by force+

have (exp (−(pi∗k/n)∗ i) − exp ((pi∗k/n)∗ i)) =
(cos(−(pi∗k/n)) + i ∗ sin(−(pi∗k/n))) −
(cos((pi∗k/n)) + i ∗ sin((pi∗k/n)))

using 1 by argo
also have . . . = −2∗i∗ sin((pi∗k/n)) by simp
finally show ?thesis by blast

qed

have norm((exp (−(x∗pi∗k/n)∗ i) − exp ((x∗pi∗k/n)∗ i)) div
(exp (−(pi∗k/n)∗ i) − exp ((pi∗k/n)∗ i))) =

norm((−2∗i∗ sin((x∗pi∗k/n))) div (−2∗i∗ sin((pi∗k/n))))
using num den by presburger

also have . . . = norm(sin((x∗pi∗k/n)) div sin((pi∗k/n)))
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by (simp add: norm-divide)
finally show ?thesis by blast

qed
also have . . . = norm((sin (x∗pi∗k/n))) div norm((sin (pi∗k/n)))

by (simp add: norm-divide)
also have . . . ≤ 1 div norm((sin (pi∗k/n)))
proof −

have norm((sin (pi∗k/n))) ≥ 0 by simp
have norm (sin (x∗pi∗k/n)) ≤ 1 by simp
then show ?thesis

using divide-right-mono[OF ‹norm (sin (x∗pi∗k/n)) ≤ 1 › ‹norm((sin
(pi∗k/n))) ≥ 0 ›]

by blast
qed
finally have 26 : norm(f (k)) ≤ 1 div norm((sin (pi∗k/n)))

by blast

{
fix t
assume t ≥ 0 t ≤ pi div 2
then have t ∈ {0 ..pi div 2} by auto
have convex-on {0 ..pi/2} (λx. −sin x)
by (rule convex-on-realI [where f ′ = λx. − cos x])

(auto intro!: derivative-eq-intros simp: cos-monotone-0-pi-le)
from convex-onD-Icc ′[OF this ‹t ∈ {0 ..pi div 2}›] have sin(t) ≥ (2 div pi)∗t

by simp
}
note sin-ineq = this

have sin-ineq-inst: sin ((pi∗k) / n) ≥ (2 ∗ k) / n
proof −

have pi / n ≥ 0 by simp
have 1 : (pi∗k) / n ≥ 0 using ‹1 ≤ k› by auto
have (pi∗k)/n = (pi / n) ∗ k by simp
also have . . . ≤ (pi / n) ∗ (n / 2 )

using mult-left-mono[of k n / 2 pi / n]
‹k ≤ n div 2 › ‹0 ≤ pi / real n› by linarith

also have . . . ≤ pi / 2
by (simp add: divide-simps)

finally have 2 : (pi∗k)/n ≤ pi / 2 by auto

have (2 / pi) ∗ (pi ∗ k / n) ≤ sin((pi ∗ k) / n)
using sin-ineq[OF 1 2 ] by blast

then show sin((pi ∗ k) / n) ≥ (2∗k) / n
by auto

qed

from 26 have norm(f (k)) ≤ 1 div abs((sin (pi∗k/n))) by simp
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also have . . . ≤ 1 / abs((2∗k) / n)
proof −

have sin (pi∗k/n) ≥ (2∗k) / n using sin-ineq-inst by simp
moreover have (2∗k) / n > 0 using n ‹1 ≤ k› by auto
ultimately have abs((sin (pi∗k/n))) ≥ abs((2∗k)/n) by auto
have abs((2∗k)/n) > 0 using ‹(2∗k)/n > 0 › by linarith
then show 1 div abs((sin (pi∗k/n))) ≤ 1 / abs(((2∗k)/n))

using ‹abs((2∗k)/n) > 0 › ‹abs((sin (pi∗k/n))) ≥ abs(((2∗k)/n))›
by (intro frac-le) auto

qed
also have . . . = n / (2∗k) using ‹k ≥ 1 › by simp
finally have norm(f (k)) ≤ n / (2∗k) by blast

}
note ineq = this

have sqrt n ∗ norm (sum χ {1 ..x}) < n ∗ ln n
proof (cases even n)

case True
have norm (f (n div 2 )) ≤ 1
proof −

have int (n div 2 ) ≥ 1 using n ‹even n› by auto
show ?thesis

using ineq[OF ‹int (n div 2 ) ≥ 1 ›] True n by force
qed
from 24 have sqrt n ∗ norm (sum χ {1 ..x})

≤ (
∑

k = 1 ..<n. norm (f (int k))) by blast
also have . . . = (

∑
k = 1 ..n−1 . norm (f (int k)))

by (intro sum.cong) auto
also have . . . ≤ 2 ∗ (

∑
k = 1 ..(n − 2 ) div 2 . norm (f (int k))) + norm(f (n

div 2 ))
using 25 (2 )[OF True] by blast

also have . . . ≤ real n ∗ (
∑

k = 1 ..(n − 2 ) div 2 . 1 / k) + norm(f (n div 2 ))
proof −

have (
∑

k = 1 ..(n − 2 ) div 2 . norm (f (int k))) ≤ (
∑

k = 1 ..(n − 2 ) div
2 . real n div (2∗k))

proof (rule sum-mono)
fix k
assume k ∈ {1 ..(n − 2 ) div 2}
then have 1 ≤ int k int k ≤ n div 2 by auto
show norm (f (int k)) ≤ real n / (2∗k)

using ineq[OF ‹1 ≤ int k› ‹int k ≤ n div 2 ›] by auto
qed
also have . . . = (

∑
k = 1 ..(n − 2 ) div 2 . (real n div 2 ) ∗ (1 / k))

by (rule sum.cong,auto)
also have . . . = (real n div 2 ) ∗ (

∑
k = 1 ..(n − 2 ) div 2 . 1 / k)

using sum-distrib-left[symmetric] by fast
finally have (

∑
k = 1 ..(n − 2 ) div 2 . norm (f (int k))) ≤

(real n div 2 ) ∗ (
∑

k = 1 ..(n − 2 ) div 2 . 1 / k)
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by blast
then show ?thesis by argo

qed
also have . . . = real n ∗ harm ((n − 2 ) div 2 ) + norm(f (n div 2 ))

unfolding harm-def inverse-eq-divide by simp
also have . . . < n ∗ ln n
proof (cases n = 2 )

case True
have real n ∗ harm ((n − 2 ) div 2 ) + norm (f (int (n div 2 ))) ≤ 1

using ‹n = 2 › ‹norm (f (int (n div 2 ))) ≤ 1 ›
unfolding harm-def by simp

moreover have real n ∗ ln (real n) ≥ 4 / 3
using ‹n = 2 › ln2-ge-two-thirds by auto

ultimately show ?thesis by argo
next

case False
have n > 3 using n ‹n 6= 2 › ‹even n› by auto
then have (n−2 ) div 2 > 0 by simp
then have harm ((n − 2 ) div 2 ) < ln (real (2 ∗ ((n − 2 ) div 2 ) + 1 ))

using harm-less-ln by blast
also have . . . = ln (real (n − 1 ))

using ‹even n› ‹n > 3 › by simp
finally have 1 : harm ((n − 2 ) div 2 ) < ln (real (n − 1 ))

by blast
then have real n ∗ harm ((n − 2 ) div 2 ) < real n ∗ ln (real (n − 1 ))

using n by simp
then have real n ∗ harm ((n − 2 ) div 2 ) + norm (f (int (n div 2 )))

< real n ∗ ln (real (n − 1 )) + 1
using ‹norm (f (int (n div 2 ))) ≤ 1 › by argo

also have . . . = real n ∗ ln (real (n − 1 )) + real n ∗ 1 / real n
using n by auto

also have . . . < real n ∗ ln (real (n − 1 )) + real n ∗ ln (1 + 1 / (real n −
1 ))

proof −
have real n > 1 real n > 0 using n by simp+
then have real n ∗ (1 / real n) < real n ∗ ln (1 + 1 / (real n − 1 ))

by (intro mult-strict-left-mono harm-aux-ineq-1 ) auto
then show ?thesis by auto

qed
also have . . . = real n ∗ ( ln (real (n − 1 )) + ln (1 + 1 / (real n − 1 )))

by argo
also have . . . = real n ∗ ( ln (real (n − 1 ) ∗ (1 + 1 / (real n − 1 ))))
proof −

have real (n − 1 ) > 0 1 + 1 / (real n − 1 ) > 0
using n by (auto simp add: add-pos-nonneg)

then show ?thesis
by (simp add: ln-mult)

qed
also have . . . = real n ∗ ln n
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using n by (auto simp add: divide-simps)
finally show ?thesis by blast

qed
finally show ?thesis by blast

next
case False
from 24 have sqrt n ∗ norm (sum χ {1 ..x}) ≤ (

∑
k= 1 ..<n. norm (f (int

k)))
by blast

also have . . . = (
∑

k= 1 ..n−1 . norm (f (int k)))
by (intro sum.cong) auto

also have . . . ≤ 2 ∗ (
∑

k = 1 ..(n − 1 ) div 2 . norm (f (int k)))
using 25 (1 )[OF False] by blast

also have . . . ≤ real n ∗ (
∑

k = 1 ..(n − 1 ) div 2 . 1 / k)
proof −

have (
∑

k = 1 ..(n − 1 ) div 2 . norm (f (int k))) ≤ (
∑

k = 1 ..(n − 1 ) div
2 . real n div (2∗k))

proof (rule sum-mono)
fix k
assume k ∈ {1 ..(n − 1 ) div 2}
then have 1 ≤ int k int k ≤ n div 2 by auto
show norm (f (int k)) ≤ real n / (2∗k)

using ineq[OF ‹1 ≤ int k› ‹int k ≤ n div 2 ›] by auto
qed
also have . . . = (

∑
k = 1 ..(n − 1 ) div 2 . (n / 2 ) ∗ (1 / k))

by (rule sum.cong,auto)
also have . . . = (n / 2 ) ∗ (

∑
k = 1 ..(n − 1 ) div 2 . 1 / k)

using sum-distrib-left[symmetric] by fast
finally have (

∑
k = 1 ..(n − 1 ) div 2 . norm (f (int k))) ≤

(real n div 2 ) ∗ (
∑

k = 1 ..(n − 1 ) div 2 . 1 / k)
by blast

then show ?thesis by argo
qed
also have . . . = real n ∗ harm ((n − 1 ) div 2 )

unfolding harm-def inverse-eq-divide by simp
also have . . . < n ∗ ln n
proof −

have n > 2 using n ‹odd n› by presburger
then have (n−1 ) div 2 > 0 by auto
then have harm ((n − 1 ) div 2 ) < ln (real (2 ∗ ((n − 1 ) div 2 ) + 1 ))

using harm-less-ln by blast
also have . . . = ln (real n) using ‹odd n› by simp
finally show ?thesis using n by simp

qed
finally show ?thesis by blast

qed

then have 1 : sqrt n ∗ norm (sum χ {1 ..x}) < n ∗ ln n
by blast
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show norm (sum χ {1 ..x}) < sqrt n ∗ ln n
proof −

have 2 : norm (sum χ {1 ..x}) ∗ sqrt n < n ∗ ln n
using 1 by argo

have sqrt n > 0 using n by simp
have 3 : (n ∗ ln n) / sqrt n = sqrt n ∗ ln n

using n by (simp add: field-simps)
show norm (sum χ {1 ..x}) < sqrt n ∗ ln n

using mult-imp-less-div-pos[OF ‹sqrt n > 0 › 2 ] 3 by argo
qed

qed

8.2 General case

We now first prove the inequality for the general case in terms of the divisor
function:
theorem (in dcharacter) polya-vinogradov-inequality-explicit:

assumes nonprincipal: χ 6= principal-dchar n
shows norm (sum χ {1 ..x}) < sqrt conductor ∗ ln conductor ∗ divisor-count

(n div conductor)
proof −

write primitive-extension (‹Φ›)
write conductor (‹c›)
interpret Φ: primitive-dchar c residue-mult-group c primitive-extension

using primitive-primitive-extension nonprincipal by metis

have ∗: k ≤ x div b ←→ b ∗ k ≤ x if b > 0 for b k
by (metis that antisym-conv div-le-mono div-mult-self1-is-m

less-imp-le not-less times-div-less-eq-dividend)
have ∗∗: a > 0 if a dvd n for a

using n that by (auto intro!: Nat.gr0I )

from nonprincipal have (
∑

m=1 ..x. χ m) = (
∑

m | m ∈ {1 ..x} ∧ coprime m
n. Φ m)

by (intro sum.mono-neutral-cong-right) (auto simp: eq-zero-iff principal-decomposition)
also have . . . = (

∑
m=1 ..x. Φ m ∗ (

∑
d | d dvd gcd m n. moebius-mu d))

by (subst sum-moebius-mu-divisors ′, intro sum.mono-neutral-cong-left)
(auto simp: coprime-iff-gcd-eq-1 simp del: coprime-imp-gcd-eq-1 )

also have . . . = (
∑

m=1 ..x.
∑

d | d dvd gcd m n. Φ m ∗ moebius-mu d)
by (simp add: sum-distrib-left)

also have . . . = (
∑

m=1 ..x.
∑

d | d dvd m ∧ d dvd n. Φ m ∗ moebius-mu d)
by (intro sum.cong) auto

also have . . . = (
∑

(m, d)∈(SIGMA m:{1 ..x}. {d. d dvd m ∧ d dvd n}). Φ m
∗ moebius-mu d)

using n by (subst sum.Sigma) auto
also have . . . = (

∑
(d, q)∈(SIGMA d:{d. d dvd n}. {1 ..x div d}). moebius-mu

d ∗ Φ (d ∗ q))
by (intro sum.reindex-bij-witness[of - λ(d,q). (d ∗ q, d) λ(m,d). (d, m div d)])

(auto simp: ∗ ∗∗ Suc-le-eq)
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also have . . . = (
∑

d | d dvd n. moebius-mu d ∗ Φ d ∗ (
∑

q=1 ..x div d. Φ q))
using n by (subst sum.Sigma [symmetric]) (auto simp: sum-distrib-left mult.assoc)

finally have eq: (
∑

m=1 ..x. χ m) = . . . .

have norm (
∑

m=1 ..x. χ m) ≤
(
∑

d | d dvd n. norm (moebius-mu d ∗ Φ d) ∗ norm (
∑

q=1 ..x div d. Φ
q))

unfolding eq by (intro sum-norm-le) (simp add: norm-mult)
also have . . . < (

∑
d | d dvd n. norm (moebius-mu d ∗ Φ d) ∗ (sqrt c ∗ ln c))

(is sum ?lhs - < sum ?rhs -)
proof (rule sum-strict-mono-ex1 )

show ∀ d∈{d. d dvd n}. ?lhs d ≤ ?rhs d
by (intro ballI mult-left-mono less-imp-le[OF Φ.polya-vinogradov-inequality-primitive])

auto
show ∃ d∈{d. d dvd n}. ?lhs d < ?rhs d
by (intro bexI [of - 1 ] mult-strict-left-mono Φ.polya-vinogradov-inequality-primitive)

auto
qed (use n in auto)
also have . . . = sqrt c ∗ ln c ∗ (

∑
d | d dvd n. norm (moebius-mu d ∗ Φ d))

by (simp add: sum-distrib-left sum-distrib-right mult-ac)
also have (

∑
d | d dvd n. norm (moebius-mu d ∗ Φ d)) =

(
∑

d | d dvd n ∧ squarefree d ∧ coprime d c. 1 )
using n by (intro sum.mono-neutral-cong-right)

(auto simp: moebius-mu-def Φ.eq-zero-iff norm-mult norm-power
Φ.norm)

also have . . . = card {d. d dvd n ∧ squarefree d ∧ coprime d c}
by simp

also have card {d. d dvd n ∧ squarefree d ∧ coprime d c} ≤ card {d. d dvd (n
div c)}

proof (intro card-mono; safe?)
show finite {d. d dvd (n div c)}

using dvd-div-eq-0-iff [of c n] n conductor-dvd by (intro finite-divisors-nat)
auto

next
fix d assume d: d dvd n squarefree d coprime d c
hence d > 0 by (intro Nat.gr0I ) auto
show d dvd (n div c)
proof (rule multiplicity-le-imp-dvd)

fix p :: nat assume p: prime p
show multiplicity p d ≤ multiplicity p (n div c)
proof (cases p dvd d)

assume p dvd d
with d ‹d > 0 › p have multiplicity p d = 1

by (auto simp: squarefree-factorial-semiring ′ in-prime-factors-iff )
moreover have p dvd (n div c)
proof −

have p dvd c ∗ (n div c)
using ‹p dvd d› ‹d dvd n› conductor-dvd by auto

moreover have ¬(p dvd c)
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using d p ‹p dvd d› coprime-common-divisor not-prime-unit by blast
ultimately show p dvd (n div c)

using p prime-dvd-mult-iff by blast
qed
hence multiplicity p (n div c) ≥ 1

using n p conductor-dvd dvd-div-eq-0-iff [of c n]
by (intro multiplicity-geI ) (auto intro: Nat.gr0I )

ultimately show ?thesis by simp
qed (auto simp: not-dvd-imp-multiplicity-0 )

qed (use ‹d > 0 › in simp-all)
qed
also have card {d. d dvd (n div c)} = divisor-count (n div c)

by (simp add: divisor-count-def )
finally show norm (sum χ {1 ..x}) < sqrt c ∗ ln c ∗ divisor-count (n div c)

using conductor-gr-0 by (simp add: mult-left-mono)
qed

Next, we obtain a suitable upper bound on the number of divisors of n:
lemma divisor-count-upper-bound-aux:

fixes n :: nat
shows divisor-count n ≤ 2 ∗ card {d. d dvd n ∧ d ≤ sqrt n}

proof (cases n = 0 )
case False
hence n: n > 0 by simp
have ∗: x > 0 if x dvd n for x

using that n by (auto intro!: Nat.gr0I )
have ∗∗: real n = sqrt (real n) ∗ sqrt (real n)

by simp
have ∗∗∗: n < x ∗ sqrt n ←→ sqrt n < x x ∗ sqrt n < n ←→ x < sqrt n for x

by (metis ∗∗ n of-nat-0-less-iff mult-less-cancel-right-pos real-sqrt-gt-0-iff )+

have divisor-count n = card {d. d dvd n}
by (simp add: divisor-count-def )

also have {d. d dvd n} = {d. d dvd n ∧ d ≤ sqrt n} ∪ {d. d dvd n ∧ d > sqrt
n}

by auto
also have card . . . = card {d. d dvd n ∧ d ≤ sqrt n} + card {d. d dvd n ∧ d >

sqrt n}
using n by (subst card-Un-disjoint) auto

also have bij-betw (λd. n div d) {d. d dvd n ∧ d > sqrt n} {d. d dvd n ∧ d <
sqrt n}

using n by (intro bij-betwI [of - - - λd. n div d])
(auto simp: Real.real-of-nat-div real-sqrt-divide field-simps ∗ ∗∗∗)

hence card {d. d dvd n ∧ d > sqrt n} = card {d. d dvd n ∧ d < sqrt n}
by (rule bij-betw-same-card)

also have . . . ≤ card {d. d dvd n ∧ d ≤ sqrt n}
using n by (intro card-mono) auto

finally show divisor-count n ≤ 2 ∗ . . . by simp
qed auto
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lemma divisor-count-upper-bound:
fixes n :: nat
shows divisor-count n ≤ 2 ∗ nat bsqrt nc

proof (cases n = 0 )
case False
have divisor-count n ≤ 2 ∗ card {d. d dvd n ∧ d ≤ sqrt n}

by (rule divisor-count-upper-bound-aux)
also have card {d. d dvd n ∧ d ≤ sqrt n} ≤ card {1 ..nat bsqrt nc}

using False by (intro card-mono) (auto simp: le-nat-iff le-floor-iff Suc-le-eq
intro!: Nat.gr0I )

also have . . . = nat bsqrt nc by simp
finally show ?thesis by simp

qed auto

lemma divisor-count-upper-bound ′:
fixes n :: nat
shows real (divisor-count n) ≤ 2 ∗ sqrt n

proof −
have real (divisor-count n) ≤ 2 ∗ real (nat bsqrt nc)

using divisor-count-upper-bound[of n] by linarith
also have . . . ≤ 2 ∗ sqrt n

by simp
finally show ?thesis .

qed

We are now ready to prove the ‘regular’ Pólya–Vinogradov inequality.
Apostol formulates it in the following way (Theorem 13.15, notation adapted):
‘If χ is any nonprincipal character mod n, then for all x ≥ 2 we have∑

m≤x χ(m) = O(
√
n log n).’

The precondition x ≥ 2 here is completely unnecessary. The ‘Big-O’ nota-
tion is somewhat problematic since it does not make explicit in what way
the variables are quantified (in particular the x and the χ). The statement
of the theorem in this way (for a fixed character χ) seems to suggest that
n is fixed here, which would make the use of ‘Big-O’ completely vacuous,
since it is an asymptotic statement about n.
We therefore decided to formulate the inequality in the following more ex-
plicit way, even giving an explicit constant factor:
theorem (in dcharacter) polya-vinogradov-inequality:

assumes nonprincipal: χ 6= principal-dchar n
shows norm (

∑
m=1 ..x. χ m) < 2 ∗ sqrt n ∗ ln n

proof −
have n div conductor > 0

using n conductor-dvd dvd-div-eq-0-iff [of conductor n] by auto
have norm (

∑
m=1 ..x. χ m) < sqrt conductor ∗ ln conductor ∗ divisor-count

(n div conductor)
using nonprincipal by (rule polya-vinogradov-inequality-explicit)
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also have . . . ≤ sqrt conductor ∗ ln conductor ∗ (2 ∗ sqrt (n div conductor))
using conductor-gr-0 ‹n div conductor > 0 ›
by (intro mult-left-mono divisor-count-upper-bound ′) (auto simp: Suc-le-eq)

also have sqrt (n div conductor) = sqrt n / sqrt conductor
using conductor-dvd by (simp add: Real.real-of-nat-div real-sqrt-divide)

also have sqrt conductor ∗ ln conductor ∗ (2 ∗ (sqrt n / sqrt conductor)) =
2 ∗ sqrt n ∗ ln conductor

using conductor-gr-0 n by (simp add: algebra-simps)
also have . . . ≤ 2 ∗ sqrt n ∗ ln n

using conductor-le-modulus conductor-gr-0 by (intro mult-left-mono) auto
finally show ?thesis .

qed

unbundle vec-lambda-syntax

end
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