
Gauss Sums and the Pólya–Vinogradov Inequality

Rodrigo Raya and Manuel Eberl

March 17, 2025

Abstract

This article provides a full formalisation of Chapter 8 of Apostol’s
Introduction to Analytic Number Theory [1]. Subjects that are covered
are:

• periodic arithmetic functions and their finite Fourier series
• (generalised) Ramanujan sums
• Gauss sums and separable characters
• induced moduli and primitive characters
• the Pólya–Vinogradov inequality

Contents
1 Auxiliary material 3

1.1 Various facts . 3
1.2 Neutral element of the Dirichlet product 9
1.3 Multiplicative functions . 10

2 Periodic arithmetic functions 11

3 Complex roots of unity 18

4 Geometric sums of roots of unity 22

5 Finite Fourier series 23
5.1 Auxiliary facts . 23
5.2 Definition and uniqueness . 25
5.3 Expansion of an arithmetical function 30

6 Ramanujan sums 34
6.1 Basic sums . 34
6.2 Generalised sums . 37

1

7 Gauss sums 51
7.1 Definition and basic properties 51
7.2 Separability . 55
7.3 Induced moduli and primitive characters 59
7.4 The conductor of a character 68
7.5 The connection between primitivity and separability 71

8 The Pólya–Vinogradov Inequality 87
8.1 The case of primitive characters 87
8.2 General case . 101

2

1 Auxiliary material
theory Gauss-Sums-Auxiliary
imports

Dirichlet-L.Dirichlet-Characters
Dirichlet-Series.Moebius-Mu
Dirichlet-Series.More-Totient

begin

1.1 Various facts
lemma sum-div-reduce:

fixes d :: nat and f :: nat ⇒ complex
assumes d dvd k d > 0
shows (

∑
n | n ∈ {1 ..k} ∧ d dvd n. f n) = (

∑
c ∈ {1 ..k div d}. f (c∗d))

by (rule sum.reindex-bij-witness[of - λk. k ∗ d λk. k div d])
(use assms in ‹fastforce simp: div-le-mono›)+

lemma prod-div-sub:
fixes f :: nat ⇒ complex
assumes finite A B ⊆ A ∀ b ∈ B. f b 6= 0
shows (

∏
i ∈ A − B. f i) = ((

∏
i ∈ A. f i) div (

∏
i ∈ B. f i))

using assms
proof (induction card B arbitrary: B)
case 0

then show ?case
using infinite-super by fastforce

next
case (Suc n)
then show ?case
proof −

obtain B ′ x where decomp: B = B ′ ∪ {x} ∧ x /∈ B ′

using card-eq-SucD[OF Suc(2)[symmetric]] insert-is-Un by auto
then have B ′card: card B ′ = n using Suc(2)

using Suc.prems(2) assms(1) finite-subset by fastforce
have prod f (A − B) = prod f ((A−B ′) − {x})

by (simp add: decomp,subst Diff-insert,simp)
also have . . . = (prod f (A−B ′)) div f x

using prod-diff1 [of A−B ′ f x] Suc decomp by auto
also have . . . = (prod f A div prod f B ′) div f x

using Suc(1)[of B ′] Suc(3) B ′card decomp
Suc.prems(2) Suc.prems(3) by force

also have . . . = prod f A div (prod f B ′ ∗ f x) by auto
also have . . . = prod f A div prod f B

using decomp Suc.prems(2) assms(1) finite-subset by fastforce
finally show ?thesis by blast

qed
qed

lemma linear-gcd:

3

fixes a b c d :: nat
assumes a > 0 b > 0 c > 0 d > 0
assumes coprime a c coprime b d
shows gcd (a∗b) (c∗d) = (gcd a d) ∗ (gcd b c)
using assms

proof −
define q1 :: nat where q1 = a div gcd a d
define q2 :: nat where q2 = c div gcd b c
define q3 :: nat where q3 = b div gcd b c
define q4 :: nat where q4 = d div gcd a d

have coprime q1 q2 coprime q3 q4
unfolding q1-def q2-def q3-def q4-def

proof −
have coprime (a div gcd a d) c

using ‹coprime a c› coprime-mult-left-iff [of a div gcd a d gcd a d c]
dvd-mult-div-cancel[OF gcd-dvd1 , of a b] by simp

then show coprime (a div gcd a d) (c div gcd b c)
using coprime-mult-right-iff [of a div gcd a d gcd b c c div gcd b c]

dvd-div-mult-self [OF gcd-dvd2 [of b c]] by auto
have coprime (b div gcd b c) d

using ‹coprime b d› coprime-mult-left-iff [of b div gcd b c gcd b c d]
dvd-mult-div-cancel[OF gcd-dvd1 , of a b] by simp

then show coprime (b div gcd b c) (d div gcd a d)
using coprime-mult-right-iff [of b div gcd b c gcd a d d div gcd a d]

dvd-div-mult-self [OF gcd-dvd2 [of b c]] by auto
qed
moreover have coprime q1 q4 coprime q3 q2

unfolding q1-def q2-def q3-def q4-def
using assms div-gcd-coprime by blast+

ultimately have 1 : coprime (q1∗q3) (q2∗q4)
by simp

have gcd (a∗b) (c∗d) = (gcd a d) ∗ (gcd b c) ∗ gcd (q1∗q3) (q2∗q4)
unfolding q1-def q2-def q3-def q4-def
by (subst gcd-mult-distrib-nat[of gcd a d ∗ gcd b c],

simp add: field-simps,
simp add: mult.left-commute semiring-normalization-rules(18))

from this 1 show gcd (a∗b) (c∗d) = (gcd a d) ∗ (gcd b c) by auto
qed

lemma reindex-product-bij:
fixes a b m k :: nat
defines S ≡ {(d1 ,d2). d1 dvd gcd a m ∧ d2 dvd gcd k b}
defines T ≡ {d. d dvd (gcd a m) ∗ (gcd k b)}
defines f ≡ (λ(d1 ,d2). d1 ∗ d2)
assumes coprime a k
shows bij-betw f S T
unfolding bij-betw-def

proof

4

show inj: inj-on f S
unfolding f-def

proof −
{fix d1 d2 d1 ′ d2 ′

assume (d1 ,d2) ∈ S (d1 ′,d2 ′) ∈ S
then have dvd: d1 dvd gcd a m d2 dvd gcd k b

d1 ′ dvd gcd a m d2 ′ dvd gcd k b
unfolding S-def by simp+

assume f (d1 ,d2) = f (d1 ′,d2 ′)
then have eq: d1 ∗ d2 = d1 ′ ∗ d2 ′

unfolding f-def by simp
from eq dvd have eq1 : d1 = d1 ′

by (simp,meson assms coprime-crossproduct-nat coprime-divisors)
from eq dvd have eq2 : d2 = d2 ′

using assms(4) eq1 by auto
from eq1 eq2 have d1 = d1 ′ ∧ d2 = d2 ′ by simp}

then show inj-on (λ(d1 , d2). d1 ∗ d2) S
using S-def f-def by (intro inj-onI ,blast)

qed
show surj: f ‘ S = T
proof −

{fix d
have d dvd (gcd a m) ∗ (gcd k b)
←→ (∃ d1 d2 . d = d1∗d2 ∧ d1 dvd gcd a m ∧ d2 dvd gcd k b)
using division-decomp mult-dvd-mono by blast}

then show ?thesis
unfolding f-def S-def T-def image-def
by auto

qed
qed

lemma p-div-set:
shows {p. p ∈prime-factors a ∧ ¬ p dvd N} =

({p. p ∈prime-factors (a∗N)} − {p. p ∈prime-factors N})
(is ?A = ?B)

proof
show ?A ⊆ ?B
proof (simp)

{ fix p
assume as: p ∈# prime-factorization a ¬ p dvd N
then have 1 : p ∈ prime-factors (a ∗ N)
proof −

from in-prime-factors-iff [of p a] as
have a 6= 0 p dvd a prime p by simp+
have N 6= 0 using ‹¬ p dvd N › by blast
have a ∗ N 6= 0 using ‹a 6= 0 › ‹N 6= 0 › by auto
have p dvd a∗N using ‹p dvd a› by simp
show ?thesis

using ‹a∗N 6= 0 › ‹p dvd a∗N › ‹prime p› in-prime-factors-iff by blast

5

qed
from as have 2 : p /∈ prime-factors N by blast
from 1 2 have p ∈ prime-factors (a ∗ N) − prime-factors N
by blast

}
then show {p. p ∈# prime-factorization a ∧ ¬ p dvd N}

⊆ prime-factors (a ∗ N) − prime-factors N by blast
qed

show ?B ⊆ ?A
proof (simp)

{ fix p
assume as: p ∈ prime-factors (a ∗ N) − prime-factors N
then have 1 : ¬ p dvd N
proof −

from as have p ∈ prime-factors (a ∗ N) p /∈ prime-factors N
using DiffD1 DiffD2 by blast+

then show ?thesis by (simp add: in-prime-factors-iff)
qed
have 2 : p ∈# prime-factorization a
proof −
have p dvd (a∗N) prime p a∗N 6= 0 using in-prime-factors-iff as by blast+

have p dvd a using ‹¬ p dvd N › prime-dvd-multD[OF ‹prime p› ‹p dvd
(a∗N)›] by blast

have a 6= 0 using ‹a∗N 6= 0 › by simp
show ?thesis using in-prime-factors-iff ‹a 6= 0 › ‹p dvd a› ‹prime p› by

blast
qed
from 1 2 have p ∈ {p. p ∈# prime-factorization a ∧ ¬ p dvd N} by blast

}
then show prime-factors (a ∗ N) − prime-factors N

⊆ {p. p ∈# prime-factorization a ∧ ¬ p dvd N} by blast
qed

qed

lemma coprime-iff-prime-factors-disjoint:
fixes x y :: ′a :: factorial-semiring
assumes x 6= 0 y 6= 0
shows coprime x y ←→ prime-factors x ∩ prime-factors y = {}

proof
assume coprime x y
have False if p ∈ prime-factors x p ∈ prime-factors y for p
proof −

from that assms have p dvd x p dvd y
by (auto simp: prime-factors-dvd)

with ‹coprime x y› have p dvd 1
using coprime-common-divisor by auto

with that assms show False by (auto simp: prime-factors-dvd)
qed

6

thus prime-factors x ∩ prime-factors y = {} by auto
next

assume disjoint: prime-factors x ∩ prime-factors y = {}
show coprime x y
proof (rule coprimeI)

fix d assume d: d dvd x d dvd y
show is-unit d
proof (rule ccontr)

assume ¬is-unit d
moreover from this and d assms have d 6= 0 by auto
ultimately obtain p where p: prime p p dvd d

using prime-divisor-exists by auto
with d and assms have p ∈ prime-factors x ∩ prime-factors y

by (auto simp: prime-factors-dvd)
with disjoint show False by auto

qed
qed

qed

lemma coprime-cong-prime-factors:
fixes x y :: ′a :: factorial-semiring-gcd
assumes x 6= 0 y 6= 0 x ′ 6= 0 y ′ 6= 0
assumes prime-factors x = prime-factors x ′

assumes prime-factors y = prime-factors y ′

shows coprime x y ←→ coprime x ′ y ′

using assms by (simp add: coprime-iff-prime-factors-disjoint)

lemma moebius-prod-not-coprime:
assumes ¬ coprime N d
shows moebius-mu (N∗d) = 0

proof −
from assms obtain l where l-form: l dvd N ∧ l dvd d ∧ ¬ is-unit l

unfolding coprime-def by blast
then have l ∗ l dvd N ∗ d using mult-dvd-mono by auto
then have l2 dvd N∗d by (subst power2-eq-square,blast)
then have ¬ squarefree (N∗d)

unfolding squarefree-def coprime-def using l-form by blast
then show moebius-mu (N∗d) = 0

using moebius-mu-def by auto
qed

Theorem 2.18
lemma sum-divisors-moebius-mu-times-multiplicative:

fixes f :: nat ⇒ ′a :: {comm-ring-1}
assumes multiplicative-function f and n > 0
shows (

∑
d | d dvd n. moebius-mu d ∗ f d) = (

∏
p∈prime-factors n. 1 − f p)

proof −
define g where g = (λn.

∑
d | d dvd n. moebius-mu d ∗ f d)

define g ′ where g ′ = dirichlet-prod (λn. moebius-mu n ∗ f n) (λn. if n = 0 then

7

0 else 1)
interpret f : multiplicative-function f by fact
have multiplicative-function (λn. if n = 0 then 0 else 1 :: ′a)

by standard auto
interpret multiplicative-function g ′ unfolding g ′-def

by (intro multiplicative-dirichlet-prod multiplicative-function-mult
moebius-mu.multiplicative-function-axioms assms) fact+

have g ′-primepow: g ′ (p ^ k) = 1 − f p if prime p k > 0 for p k
proof −

have g ′ (p ^ k) = (
∑

i≤k. moebius-mu (p ^ i) ∗ f (p ^ i))
using that by (simp add: g ′-def dirichlet-prod-prime-power)

also have . . . = (
∑

i∈{0 , 1}. moebius-mu (p ^ i) ∗ f (p ^ i))
using that by (intro sum.mono-neutral-right) (auto simp: moebius-mu-power ′)

also have . . . = 1 − f p
using that by (simp add: moebius-mu.prime)

finally show ?thesis .
qed

have g ′ n = g n
by (simp add: g-def g ′-def dirichlet-prod-def)

also from assms have g ′ n = (
∏

p∈prime-factors n. g ′ (p ^ multiplicity p n))
by (intro prod-prime-factors) auto

also have . . . = (
∏

p∈prime-factors n. 1 − f p)
by (intro prod.cong) (auto simp: g ′-primepow prime-factors-multiplicity)

finally show ?thesis by (simp add: g-def)
qed

lemma multiplicative-ind-coprime [intro]: multiplicative-function (ind (coprime N))
by (intro multiplicative-function-ind) auto

lemma sum-divisors-moebius-mu-times-multiplicative-revisited:
fixes f :: nat ⇒ ′a :: {comm-ring-1}
assumes multiplicative-function f n > 0 N > 0
shows (

∑
d | d dvd n ∧ coprime N d. moebius-mu d ∗ f d) =

(
∏

p∈{p. p ∈ prime-factors n ∧ ¬ (p dvd N)}. 1 − f p)
proof −

have (
∑

d | d dvd n ∧ coprime N d. moebius-mu d ∗ f d) =
(
∑

d | d dvd n. moebius-mu d ∗ (ind (coprime N) d ∗ f d))
using assms by (intro sum.mono-neutral-cong-left) (auto simp: ind-def)

also have . . . = (
∏

p∈prime-factors n. 1 − ind (coprime N) p ∗ f p)
using assms by (intro sum-divisors-moebius-mu-times-multiplicative)

(auto intro: multiplicative-function-mult)
also from assms have . . . = (

∏
p | p ∈ prime-factors n ∧ ¬(p dvd N). 1 − f p)

by (intro prod.mono-neutral-cong-right)
(auto simp: ind-def prime-factors-dvd coprime-commute dest: prime-imp-coprime)

finally show ?thesis .
qed

8

1.2 Neutral element of the Dirichlet product
definition dirichlet-prod-neutral n = (if n = 1 then 1 else 0) for n :: nat

lemma dirichlet-prod-neutral-intro:
fixes S :: nat ⇒ complex and f :: nat ⇒ nat ⇒ complex
defines S ≡ (λ(n::nat). (

∑
k | k ∈ {1 ..n} ∧ coprime k n. (f k n)))

shows S(n) = (
∑

k ∈ {1 ..n}. f k n ∗ dirichlet-prod-neutral (gcd k n))
proof −

let ?g = λk. (f k n)∗ (dirichlet-prod-neutral (gcd k n))
have zeros: ∀ k ∈ {1 ..n} − {k. k ∈ {1 ..n} ∧ coprime k n}. ?g k = 0
proof

fix k
assume k ∈ {1 ..n} − {k ∈ {1 ..n}. coprime k n}
then show (f k n) ∗ dirichlet-prod-neutral (gcd k n) = 0

by (simp add: dirichlet-prod-neutral-def [of gcd k n] split: if-splits,presburger)
qed

have S n = (
∑

k | k ∈ {1 ..n} ∧ coprime k n. (f k n))
by (simp add: S-def)

also have . . . = sum ?g {k. k ∈ {1 ..n} ∧ coprime k n}
by (simp add: dirichlet-prod-neutral-def split: if-splits)

also have . . . = sum ?g {1 ..n}
by (intro sum.mono-neutral-left, auto simp add: zeros)

finally show ?thesis by blast
qed

lemma dirichlet-prod-neutral-right-neutral:
dirichlet-prod f dirichlet-prod-neutral n = f n if n > 0 for f :: nat ⇒ complex

and n
proof −

{fix d :: nat
assume d dvd n
then have eq: n = d ←→ n div d = 1

using div-self that dvd-mult-div-cancel by force
have f (d)∗dirichlet-prod-neutral(n div d) = (if n = d then f (d) else 0)

by (simp add: dirichlet-prod-neutral-def eq)}
note summand = this

have dirichlet-prod f dirichlet-prod-neutral n =
(
∑

d | d dvd n. f (d)∗dirichlet-prod-neutral(n div d))
unfolding dirichlet-prod-def by blast

also have . . . = (
∑

d | d dvd n. (if n = d then f (d) else 0))
using summand by simp

also have . . . = (
∑

d | d = n. (if n = d then f (d) else 0))
using that by (intro sum.mono-neutral-right, auto)

also have . . . = f (n) by simp
finally show ?thesis by simp

qed

9

lemma dirichlet-prod-neutral-left-neutral:
dirichlet-prod dirichlet-prod-neutral f n = f n
if n > 0 for f :: nat ⇒ complex and n
using dirichlet-prod-neutral-right-neutral[OF that, of f]

dirichlet-prod-commutes[of f dirichlet-prod-neutral]
by argo

corollary I-right-neutral-0 :
fixes f :: nat ⇒ complex
assumes f 0 = 0
shows dirichlet-prod f dirichlet-prod-neutral n = f n
using assms dirichlet-prod-neutral-right-neutral by (cases n, simp, blast)

1.3 Multiplicative functions
lemma mult-id: multiplicative-function id

by (simp add: multiplicative-function-def)

lemma mult-moebius: multiplicative-function moebius-mu
using Moebius-Mu.moebius-mu.multiplicative-function-axioms
by simp

lemma mult-of-nat: multiplicative-function of-nat
using multiplicative-function-def of-nat-0 of-nat-1 of-nat-mult by blast

lemma mult-of-nat-c: completely-multiplicative-function of-nat
by (simp add: completely-multiplicative-function-def)

lemma completely-multiplicative-nonzero:
fixes f :: nat ⇒ complex
assumes completely-multiplicative-function f

d 6= 0∧
p. prime p =⇒ f (p) 6= 0

shows f (d) 6= 0
using assms(2)

proof (induction d rule: nat-less-induct)
case (1 n)
then show ?case
proof (cases n = 1)

case True
then show ?thesis

using assms(1)
unfolding completely-multiplicative-function-def by simp

next
case False
then obtain p where 2 :prime p ∧ p dvd n

using prime-factor-nat by blast
then obtain a where 3 : n = p ∗ a a 6= 0

using 1 by auto

10

then have 4 : f (a) 6= 0 using 1
using 2 prime-nat-iff by fastforce

have 5 : f (p) 6= 0 using assms(3) 2 by simp
from 3 4 5 show ?thesis

by (simp add: assms(1) completely-multiplicative-function.mult)
qed

qed

lemma multipl-div:
fixes m k d1 d2 :: nat and f :: nat ⇒ complex
assumes multiplicative-function f d1 dvd m d2 dvd k coprime m k
shows f ((m∗k) div (d1∗d2)) = f (m div d1) ∗ f (k div d2)
using assms
unfolding multiplicative-function-def
using assms(1) multiplicative-function.mult-coprime by fastforce

lemma multipl-div-mono:
fixes m k d :: nat and f :: nat ⇒ complex
assumes completely-multiplicative-function f

d dvd k d > 0∧
p. prime p =⇒ f (p) 6= 0

shows f (k div d) = f (k) div f (d)
proof −

have d 6= 0 using assms(2 ,3) by auto
then have nz: f (d) 6= 0 using assms(1 ,4) completely-multiplicative-nonzero by

simp

from assms(2 ,3) obtain a where div: k = a ∗ d by fastforce
have f (k div d) = f ((a∗d) div d) using div by simp
also have . . . = f (a) using assms(3) div by simp
also have . . . = f (a)∗f (d) div f (d) using nz by auto
also have . . . = f (a∗d) div f (d)

by (simp add: div assms(1) completely-multiplicative-function.mult)
also have . . . = f (k) div f (d) using div by simp
finally show ?thesis by simp

qed

lemma comp-to-mult: completely-multiplicative-function f =⇒
multiplicative-function f

unfolding completely-multiplicative-function-def
multiplicative-function-def by auto

end

2 Periodic arithmetic functions
theory Periodic-Arithmetic
imports

Complex-Main

11

HOL−Number-Theory.Cong
begin

definition
periodic-arithmetic f k = (∀n. f (n+k) = f n)
for n :: int and k :: nat and f :: nat ⇒ complex

lemma const-periodic-arithmetic: periodic-arithmetic (λx. y) k
unfolding periodic-arithmetic-def by blast

lemma add-periodic-arithmetic:
fixes f g :: nat ⇒ complex
assumes periodic-arithmetic f k
assumes periodic-arithmetic g k
shows periodic-arithmetic (λn. f n + g n) k
using assms unfolding periodic-arithmetic-def by simp

lemma mult-periodic-arithmetic:
fixes f g :: nat ⇒ complex
assumes periodic-arithmetic f k
assumes periodic-arithmetic g k
shows periodic-arithmetic (λn. f n ∗ g n) k
using assms unfolding periodic-arithmetic-def by simp

lemma scalar-mult-periodic-arithmetic:
fixes f :: nat ⇒ complex and a :: complex
assumes periodic-arithmetic f k
shows periodic-arithmetic (λn. a ∗ f n) k
using mult-periodic-arithmetic[OF const-periodic-arithmetic[of a k] assms(1)] by

simp

lemma fin-sum-periodic-arithmetic-set:
fixes f g :: nat ⇒ complex
assumes ∀ i∈A. periodic-arithmetic (h i) k
shows periodic-arithmetic (λn.

∑
i ∈ A. h i n) k

using assms by (simp add: periodic-arithmetic-def)

lemma mult-period:
assumes periodic-arithmetic g k
shows periodic-arithmetic g (k∗q)
using assms

proof (induction q)
case 0 then show ?case unfolding periodic-arithmetic-def by simp

next
case (Suc m)
then show ?case

unfolding periodic-arithmetic-def
proof −
{ fix n

12

have g (n + k ∗ Suc m) = g (n + k + k ∗ m)
by (simp add: algebra-simps)

also have . . . = g(n)
using Suc.IH [OF Suc.prems] assms
unfolding periodic-arithmetic-def by simp

finally have g (n + k ∗ Suc m) = g(n) by blast
}
then show ∀n. g (n + k ∗ Suc m) = g n by auto

qed
qed

lemma unique-periodic-arithmetic-extension:
assumes k > 0
assumes ∀ j<k. g j = h j
assumes periodic-arithmetic g k and periodic-arithmetic h k
shows g i = h i

proof (cases i < k)
case True then show ?thesis using assms by simp

next
case False then show ?thesis
proof −

have k ∗ (i div k) + (i mod k) = i ∧ (i mod k) < k
by (simp add: assms(1) algebra-simps)

then obtain q r where euclid-div: k∗q + r = i ∧ r < k
using mult.commute by blast

from assms(3) assms(4)
have periodic-arithmetic g (k∗q) periodic-arithmetic h (k∗q)

using mult-period by simp+
have g(k∗q+r) = g(r)

using ‹periodic-arithmetic g (k∗q)› unfolding periodic-arithmetic-def
using add.commute[of k∗q r] by presburger

also have . . . = h(r)
using euclid-div assms(2) by simp

also have . . . = h(k∗q+r)
using ‹periodic-arithmetic h (k∗q)› add.commute[of k∗q r]
unfolding periodic-arithmetic-def by presburger

also have . . . = h(i) using euclid-div by simp
finally show g(i) = h(i) using euclid-div by simp

qed
qed

lemma periodic-arithmetic-sum-periodic-arithmetic:
assumes periodic-arithmetic f k
shows (

∑
l ∈ {m..n}. f l) = (

∑
l ∈ {m+k..n+k}. f l)

using periodic-arithmetic-def assms
by (intro sum.reindex-bij-witness

[of {m..n} λl. l−k λl. l+k {m+k..n+k} f f])
auto

13

lemma mod-periodic-arithmetic:
fixes n m :: nat
assumes periodic-arithmetic f k
assumes n mod k = m mod k
shows f n = f m

proof −
obtain q where 1 : n = q∗k+(n mod k)

using div-mult-mod-eq[of n k,symmetric] by blast
obtain q ′ where 2 : m = q ′∗k+(m mod k)

using div-mult-mod-eq[of m k,symmetric] by blast
from 1 have f n = f (q∗k+(n mod k)) by auto
also have . . . = f (n mod k)

using mult-period[of f k q] assms(1) periodic-arithmetic-def [of f k∗q]
by (simp add: algebra-simps,subst add.commute,blast)

also have . . . = f (m mod k) using assms(2) by auto
also have . . . = f (q ′∗k+(m mod k))

using mult-period[of f k q ′] assms(1) periodic-arithmetic-def [of f k∗q ′]
by (simp add: algebra-simps,subst add.commute,presburger)

also have . . . = f m using 2 by auto
finally show f n = f m by simp

qed

lemma cong-periodic-arithmetic:
assumes periodic-arithmetic f k [a = b] (mod k)
shows f a = f b
using assms mod-periodic-arithmetic[of f k a b] by (auto simp: cong-def)

lemma cong-nat-imp-eq:
fixes m :: nat
assumes m > 0 x ∈ {a..<a+m} y ∈ {a..<a+m} [x = y] (mod m)
shows x = y
using assms

proof (induction x y rule: linorder-wlog)
case (le x y)
have [y − x = 0] (mod m)

using cong-diff-iff-cong-0-nat cong-sym le by blast
thus x = y

using le by (auto simp: cong-def)
qed (auto simp: cong-sym)

lemma inj-on-mod-nat:
fixes m :: nat
assumes m > 0
shows inj-on (λx. x mod m) {a..<a+m}

proof
fix x y assume xy: x ∈ {a..<a+m} y ∈ {a..<a+m} and eq: x mod m = y mod

m
from ‹m > 0 › and xy show x = y

by (rule cong-nat-imp-eq) (use eq in ‹simp-all add: cong-def ›)

14

qed

lemma bij-betw-mod-nat-atLeastLessThan:
fixes k d :: nat
assumes k > 0
defines g ≡ (λi. nat ((int i − int d) mod int k) + d)
shows bij-betw (λi. i mod k) {d..<d+k} {..<k}
unfolding bij-betw-def

proof
show inj: inj-on (λi. i mod k) {d..<d + k}

by (rule inj-on-mod-nat) fact+
have (λi. i mod k) ‘ {d..<d + k} ⊆ {..<k}

by auto
moreover have card ((λi. i mod k) ‘ {d..<d + k}) = card {..<k}

using inj by (subst card-image) auto
ultimately show (λi. i mod k) ‘ {d..<d + k} = {..<k}

by (intro card-subset-eq) auto
qed

lemma periodic-arithmetic-sum-periodic-arithmetic-shift:
fixes k d :: nat
assumes periodic-arithmetic f k k > 0 d > 0
shows (

∑
l ∈ {0 ..k−1}. f l) = (

∑
l ∈ {d..d+k−1}. f l)

proof −
have (

∑
l ∈ {0 ..k−1}. f l) = (

∑
l ∈ {0 ..<k}. f l)

using assms(2) by (intro sum.cong) auto
also have . . . = (

∑
l ∈ {d..<d+k}. f (l mod k))

using assms(2)
by (simp add: sum.reindex-bij-betw[OF bij-betw-mod-nat-atLeastLessThan[of k

d]]
lessThan-atLeast0)

also have . . . = (
∑

l ∈ {d..<d+k}. f l)
using mod-periodic-arithmetic[of f k] assms(1) sum.cong
by (meson mod-mod-trivial)

also have . . . = (
∑

l ∈ {d..d+k−1}. f l)
using assms(2 ,3) by (intro sum.cong) auto

finally show ?thesis by auto
qed

lemma self-bij-0-k:
fixes a k :: nat
assumes coprime a k [a∗i = 1] (mod k) k > 0
shows bij-betw (λr . r∗a mod k) {0 ..k−1} {0 ..k−1}
unfolding bij-betw-def

proof
show inj-on (λr . r∗a mod k) {0 ..k−1}
proof −

{fix r1 r2
assume in-k: r1 ∈ {0 ..k−1} r2 ∈ {0 ..k−1}

15

assume as: [r1∗a = r2∗a] (mod k)
then have [r1∗a∗i = r2∗a∗i] (mod k)

using cong-scalar-right by blast
then have [r1 = r2] (mod k)

using cong-mult-rcancel-nat as assms(1) by simp
then have r1 = r2 using in-k

using assms(3) cong-less-modulus-unique-nat by auto}
note eq = this
show ?thesis unfolding inj-on-def

by (safe, simp add: eq cong-def)
qed
define f where f = (λr . r ∗ a mod k)
show f ‘ {0 ..k − 1} = {0 ..k − 1}

unfolding image-def
proof (standard)

show {y. ∃ x∈{0 ..k − 1}. y = f x} ⊆ {0 ..k − 1}
proof −

{fix y
assume y ∈ {y. ∃ x∈{0 ..k − 1}. y = f x}
then obtain x where y = f x by blast
then have y ∈ {0 ..k−1}

unfolding f-def
using Suc-pred assms(3) lessThan-Suc-atMost by fastforce}

then show ?thesis by blast
qed
show {0 ..k − 1} ⊆ {y. ∃ x∈{0 ..k − 1}. y = f x}
proof −

{ fix x
assume ass: x ∈ {0 ..k−1}
then have x ∗ i mod k ∈ {0 ..k−1}
proof −

have x ∗ i mod k ∈ {0 ..<k} by (simp add: assms(3))
have {0 ..<k} = {0 ..k−1} using Suc-diff-1 assms(3) by auto
show ?thesis using ‹x ∗ i mod k ∈ {0 ..<k}› ‹{0 ..<k} = {0 ..k−1}› by

blast
qed
then have f (x ∗ i mod k) = x
proof −

have f (x ∗ i mod k) = (x ∗ i mod k) ∗ a mod k
unfolding f-def by blast

also have . . . = (x∗i∗a) mod k
by (simp add: mod-mult-left-eq)

also have . . . = (x∗1) mod k
using assms(2)
unfolding cong-def
by (subst mult.assoc, subst (2) mult.commute,

subst mod-mult-right-eq[symmetric],simp)
also have . . . = x using ass assms(3) by auto
finally show ?thesis .

16

qed
then have x ∈ {y. ∃ x∈{0 ..k − 1}. y = f x}

using ‹x ∗ i mod k ∈ {0 ..k−1}› by force
}
then show ?thesis by blast

qed
qed

qed

lemma periodic-arithmetic-homothecy:
assumes periodic-arithmetic f k
shows periodic-arithmetic (λl. f (l∗a)) k
unfolding periodic-arithmetic-def

proof
fix n
have f ((n + k) ∗ a) = f (n∗a+k∗a) by (simp add: algebra-simps)
also have . . . = f (n∗a)

using mult-period[OF assms] unfolding periodic-arithmetic-def by simp
finally show f ((n + k) ∗ a) = f (n ∗ a) by simp

qed

theorem periodic-arithmetic-remove-homothecy:
assumes coprime a k periodic-arithmetic f k k > 0
shows (

∑
l=1 ..k. f l) = (

∑
l=1 ..k. f (l∗a))

proof −
obtain i where inv: [a∗i = 1] (mod k)

using assms(1) coprime-iff-invertible-nat[of a k] by auto
from this self-bij-0-k assms
have bij: bij-betw (λr . r ∗ a mod k) {0 ..k − 1} {0 ..k − 1} by blast

have (
∑

l = 1 ..k. f (l)) = (
∑

l = 0 ..k−1 . f (l))
using periodic-arithmetic-sum-periodic-arithmetic-shift[of f k 1] assms by simp

also have . . . = (
∑

l = 0 ..k−1 . f (l∗a mod k))
using sum.reindex-bij-betw[OF bij,symmetric] by blast

also have . . . = (
∑

l = 0 ..k−1 . f (l∗a))
by (intro sum.cong refl) (use mod-periodic-arithmetic[OF assms(2)] mod-mod-trivial

in blast)
also have . . . = (

∑
l = 1 ..k. f (l∗a))

using periodic-arithmetic-sum-periodic-arithmetic-shift[of (λl. f (l∗a)) k 1]
periodic-arithmetic-homothecy[OF assms(2)] assms(3) by fastforce

finally show ?thesis by blast
qed

end

theory Complex-Roots-Of-Unity
imports

HOL−Analysis.Analysis
Periodic-Arithmetic

17

begin

3 Complex roots of unity
definition

unity-root k n = cis (2 ∗ pi ∗ of-int n / of-nat k)

lemma
unity-root-k-0 [simp]: unity-root k 0 = 1 and
unity-root-0-n [simp]: unity-root 0 n = 1
unfolding unity-root-def by simp+

lemma unity-root-conv-exp:
unity-root k n = exp (of-real (2∗pi∗n/k) ∗ i)
unfolding unity-root-def
by (subst cis-conv-exp,subst mult.commute,blast)

lemma unity-root-mod:
unity-root k (n mod int k) = unity-root k n

proof (cases k = 0)
case True then show ?thesis by simp

next
case False
obtain q :: int where q-def : n = q∗k + (n mod k)

using div-mult-mod-eq[symmetric] by blast
have n / k = q + (n mod k) / k
proof (auto simp add: divide-simps False)

have real-of-int n = real-of-int (q∗k + (n mod k))
using q-def by simp

also have . . . = real-of-int q ∗ real k + real-of-int (n mod k)
using of-int-add of-int-mult by simp

finally show real-of-int n = real-of-int q ∗ real k + real-of-int (n mod k)
by blast

qed
then have (2∗pi∗n/k) = 2∗pi∗q + (2∗pi∗(n mod k)/k)

using False by (auto simp add: field-simps)
then have (2∗pi∗n/k)∗i = 2∗pi∗q∗i + (2∗pi∗(n mod k)/k)∗i (is ?l = ?r1 +

?r2)
by (auto simp add: algebra-simps)

then have exp ?l = exp ?r2
using exp-plus-2pin by (simp add: exp-add mult.commute)

then show ?thesis
using unity-root-def unity-root-conv-exp by simp

qed

lemma unity-root-cong:
assumes [m = n] (mod int k)
shows unity-root k m = unity-root k n

proof −

18

from assms have m mod int k = n mod int k
by (auto simp: cong-def)

hence unity-root k (m mod int k) = unity-root k (n mod int k)
by simp

thus ?thesis by (simp add: unity-root-mod)
qed

lemma unity-root-mod-nat:
unity-root k (nat (n mod int k)) = unity-root k n

proof (cases k)
case (Suc l)
then have n mod int k ≥ 0 by auto
show ?thesis

unfolding int-nat-eq
by (simp add: ‹n mod int k ≥ 0 › unity-root-mod)

qed auto

lemma unity-root-eqD:
assumes gr : k > 0
assumes eq: unity-root k i = unity-root k j
shows i mod k = j mod k

proof −
let ?arg1 = (2∗pi∗i/k)∗ i
let ?arg2 = (2∗pi∗j/k)∗ i
from eq unity-root-conv-exp have exp ?arg1 = exp ?arg2 by simp
from this exp-eq
obtain n :: int where ?arg1 = ?arg2 +(2∗n∗pi)∗i by blast
then have e1 : ?arg1 − ?arg2 = 2∗n∗pi∗i by simp
have e2 : ?arg1 − ?arg2 = 2∗(i−j)∗(1/k)∗pi∗i

by (auto simp add: algebra-simps)
from e1 e2 have 2∗n∗pi∗i = 2∗(i−j)∗(1/k)∗pi∗i by simp
then have 2∗n∗k∗pi∗i = 2∗(i−j)∗pi∗i

by (simp add: divide-simps ‹k > 0 ›)(simp add: field-simps)
then have 2∗n∗k = 2∗(i−j)
by (meson complex-i-not-zero mult-cancel-right of-int-eq-iff of-real-eq-iff pi-neq-zero)

then have n∗k = i−j by auto
then show ?thesis by Groebner-Basis.algebra

qed

lemma unity-root-eq-1-iff :
fixes k n :: nat
assumes k > 0
shows unity-root k n = 1 ←→ k dvd n

proof −
have unity-root k n = exp ((2∗pi∗n/k) ∗ i)

by (simp add: unity-root-conv-exp)
also have exp ((2∗pi∗n/k)∗ i) = 1 ←→ k dvd n

using complex-root-unity-eq-1 [of k n] assms
by (auto simp add: algebra-simps)

19

finally show ?thesis by simp
qed

lemma unity-root-pow: unity-root k n ^ m = unity-root k (n ∗ m)
using unity-root-def
by (simp add: Complex.DeMoivre mult.commute algebra-split-simps(6))

lemma unity-root-add: unity-root k (m + n) = unity-root k m ∗ unity-root k n
by (simp add: unity-root-conv-exp add-divide-distrib algebra-simps exp-add)

lemma unity-root-uminus: unity-root k (−m) = cnj (unity-root k m)
unfolding unity-root-conv-exp exp-cnj by simp

lemma inverse-unity-root: inverse (unity-root k m) = cnj (unity-root k m)
unfolding unity-root-conv-exp exp-cnj by (simp add: field-simps exp-minus)

lemma unity-root-diff : unity-root k (m − n) = unity-root k m ∗ cnj (unity-root k
n)

using unity-root-add[of k m −n] by (simp add: unity-root-uminus)

lemma unity-root-eq-1-iff-int:
fixes k :: nat and n :: int
assumes k > 0
shows unity-root k n = 1 ←→ k dvd n

proof (cases n ≥ 0)
case True
obtain n ′ where n = int n ′

using zero-le-imp-eq-int[OF True] by blast
then show ?thesis

using unity-root-eq-1-iff [OF ‹k > 0 ›, of n ′] of-nat-dvd-iff by blast
next

case False
then have −n ≥ 0 by auto
have unity-root k n = inverse (unity-root k (−n))

unfolding inverse-unity-root by (simp add: unity-root-uminus)
then have (unity-root k n = 1) = (unity-root k (−n) = 1)

by simp
also have (unity-root k (−n) = 1) = (k dvd (−n))

using unity-root-eq-1-iff [of k nat (−n),OF ‹k > 0 ›] False
int-dvd-int-iff [of k nat (−n)] nat-0-le[OF ‹−n ≥ 0 ›] by auto

finally show ?thesis by simp
qed

lemma unity-root-eq-1 [simp]: int k dvd n =⇒ unity-root k n = 1
by (cases k = 0) (auto simp: unity-root-eq-1-iff-int)

lemma unity-periodic-arithmetic:
periodic-arithmetic (unity-root k) k
unfolding periodic-arithmetic-def

20

proof
fix n
have unity-root k (n + k) = unity-root k ((n+k) mod k)

using unity-root-mod[of k] zmod-int by presburger
also have unity-root k ((n+k) mod k) = unity-root k n

using unity-root-mod zmod-int by auto
finally show unity-root k (n + k) = unity-root k n by simp

qed

lemma unity-periodic-arithmetic-mult:
periodic-arithmetic (λn. unity-root k (m ∗ int n)) k
unfolding periodic-arithmetic-def

proof
fix n
have unity-root k (m ∗ int (n + k)) =

unity-root k (m∗n + m∗k)
by (simp add: algebra-simps)

also have . . . = unity-root k (m∗n)
using unity-root-mod[of k m ∗ int n] unity-root-mod[of k m ∗ int n + m ∗ int

k]
mod-mult-self3 by presburger

finally show unity-root k (m ∗ int (n + k)) =
unity-root k (m ∗ int n) by simp

qed

lemma unity-root-periodic-arithmetic-mult-minus:
shows periodic-arithmetic (λi. unity-root k (−int i∗int m)) k
unfolding periodic-arithmetic-def

proof
fix n
have unity-root k (−(n + k) ∗ m) = cnj (unity-root k (n∗m+k∗m))

by (simp add: ring-distribs unity-root-diff unity-root-add unity-root-uminus)
also have . . . = cnj (unity-root k (n∗m))

using mult-period[of unity-root k k m] unity-periodic-arithmetic[of k]
unfolding periodic-arithmetic-def by presburger

also have . . . = unity-root k (−n∗m)
by (simp add: unity-root-uminus)

finally show unity-root k (−(n + k) ∗ m) = unity-root k (−n∗m)
by simp

qed

lemma unity-div:
fixes a :: int and d :: nat
assumes d dvd k
shows unity-root k (a∗d) = unity-root (k div d) a

proof −
have 1 : (2∗pi∗(a∗d)/k) = (2∗pi∗a)/(k div d)

using Suc-pred assms by (simp add: divide-simps, fastforce)
have unity-root k (a∗d) = exp ((2∗pi∗(a∗d)/k)∗ i)

21

using unity-root-conv-exp by simp
also have . . . = exp (((2∗pi∗a)/(k div d))∗ i)

using 1 by simp
also have . . . = unity-root (k div d) a

using unity-root-conv-exp by simp
finally show ?thesis by simp

qed

lemma unity-div-num:
assumes k > 0 d > 0 d dvd k
shows unity-root k (x ∗ (k div d)) = unity-root d x
using assms dvd-div-mult-self unity-div by auto

4 Geometric sums of roots of unity

Apostol calls these ‘geometric sums’, which is a bit too generic. We therefore
decided to refer to them as ‘sums of roots of unity’.
definition unity-root-sum k n = (

∑
m<k. unity-root k (n ∗ of-nat m))

lemma unity-root-sum-0-left [simp]: unity-root-sum 0 n = 0 and
unity-root-sum-0-right [simp]: k > 0 =⇒ unity-root-sum k 0 = k

unfolding unity-root-sum-def by simp-all

Theorem 8.1
theorem unity-root-sum:

fixes k :: nat and n :: int
assumes gr : k ≥ 1
shows k dvd n =⇒ unity-root-sum k n = k

and ¬k dvd n =⇒ unity-root-sum k n = 0
proof −

assume dvd: k dvd n
let ?x = unity-root k n
have unit: ?x = 1 using dvd gr unity-root-eq-1-iff-int by auto
have exp: ?x^m = unity-root k (n∗m) for m using unity-root-pow by simp
have unity-root-sum k n = (

∑
m<k. unity-root k (n∗m))

using unity-root-sum-def by simp
also have . . . = (

∑
m<k. ?x^m) using exp by auto

also have . . . = (
∑

m<k. 1) using unit by simp
also have . . . = k using gr by (induction k, auto)
finally show unity-root-sum k n = k by simp

next
assume dvd: ¬k dvd n
let ?x = unity-root k n
have ?x 6= 1 using dvd gr unity-root-eq-1-iff-int by auto
have (?x^k − 1)/(?x − 1) = (

∑
m<k. ?x^m)

using geometric-sum[of ?x k, OF ‹?x 6= 1 ›] by auto
then have sum: unity-root-sum k n = (?x^k − 1)/(?x − 1)

using unity-root-sum-def unity-root-pow by simp

22

have ?x^k = 1
using gr unity-root-eq-1-iff-int unity-root-pow by simp

then show unity-root-sum k n = 0 using sum by auto
qed

corollary unity-root-sum-periodic-arithmetic:
periodic-arithmetic (unity-root-sum k) k
unfolding periodic-arithmetic-def

proof
fix n
show unity-root-sum k (n + k) = unity-root-sum k n

by (cases k = 0 ; cases k dvd n) (auto simp add: unity-root-sum)
qed

lemma unity-root-sum-nonzero-iff :
fixes r :: int
assumes k ≥ 1 and r ∈ {−k<..<k}
shows unity-root-sum k r 6= 0 ←→ r = 0

proof
assume unity-root-sum k r 6= 0
then have k dvd r using unity-root-sum assms by blast
then show r = 0 using assms(2)

using dvd-imp-le-int by force
next

assume r = 0
then have k dvd r by auto
then have unity-root-sum k r = k

using assms(1) unity-root-sum by blast
then show unity-root-sum k r 6= 0 using assms(1) by simp

qed

end

5 Finite Fourier series
theory Finite-Fourier-Series
imports

Polynomial-Interpolation.Lagrange-Interpolation
Complex-Roots-Of-Unity

begin

5.1 Auxiliary facts
lemma lagrange-exists:

assumes d: distinct (map fst zs-ws)
defines e: (p :: complex poly) ≡ lagrange-interpolation-poly zs-ws
shows degree p ≤ (length zs-ws)−1

(∀ x y. (x,y) ∈ set zs-ws −→ poly p x = y)
proof −

23

from e show degree p ≤ (length zs-ws − 1)
using degree-lagrange-interpolation-poly by auto

from e d have
poly p x = y if (x,y) ∈ set zs-ws for x y
using that lagrange-interpolation-poly by auto

then show (∀ x y. (x,y) ∈ set zs-ws −→ poly p x = y)
by auto

qed

lemma lagrange-unique:
assumes o: length zs-ws > 0
assumes d: distinct (map fst zs-ws)
assumes 1 : degree (p1 :: complex poly) ≤ (length zs-ws)−1 ∧

(∀ x y. (x,y) ∈ set zs-ws −→ poly p1 x = y)
assumes 2 : degree (p2 :: complex poly) ≤ (length zs-ws)−1 ∧

(∀ x y. (x,y) ∈ set zs-ws −→ poly p2 x = y)
shows p1 = p2

proof (cases p1 − p2 = 0)
case True then show ?thesis by simp

next
case False

have poly (p1−p2) x = 0 if x ∈ set (map fst zs-ws) for x
using 1 2 that by (auto simp add: field-simps)

from this d have 3 : card {x. poly (p1−p2) x = 0} ≥ length zs-ws
proof (induction zs-ws)

case Nil then show ?case by simp
next

case (Cons z-w zs-ws)
from False poly-roots-finite
have f : finite {x. poly (p1 − p2) x = 0} by blast
from Cons have set (map fst (z-w # zs-ws)) ⊆ {x. poly (p1 − p2) x = 0}

by auto
then have i: card (set (map fst (z-w # zs-ws))) ≤ card {x. poly (p1 − p2)

x = 0}
using card-mono f by blast

have length (z-w # zs-ws) ≤ card (set (map fst (z-w # zs-ws)))
using Cons.prems(2) distinct-card by fastforce

from this i show ?case by simp
qed
from 1 2 have 4 : degree (p1 − p2) ≤ (length zs-ws)−1

using degree-diff-le by blast

have p1 − p2 = 0
proof (rule ccontr)

assume p1 − p2 6= 0
then have card {x. poly (p1−p2) x = 0} ≤ degree (p1−p2)

using poly-roots-degree by blast
then have card {x. poly (p1−p2) x = 0} ≤ (length zs-ws)−1

using 4 by auto

24

then show False using 3 o by linarith
qed
then show ?thesis by simp

qed

Theorem 8.2
corollary lagrange:

assumes length zs-ws > 0 distinct (map fst zs-ws)
shows (∃ ! (p :: complex poly).

degree p ≤ length zs-ws − 1 ∧
(∀ x y. (x, y) ∈ set zs-ws −→ poly p x = y))

using assms lagrange-exists lagrange-unique by blast

lemma poly-altdef ′:
assumes gr : k ≥ degree p
shows poly p (z::complex) = (

∑
i≤k. coeff p i ∗ z ^ i)

proof −
{fix z
have 1 : poly p z = (

∑
i≤degree p. coeff p i ∗ z ^ i)

using poly-altdef [of p z] by simp
have poly p z = (

∑
i≤k. coeff p i ∗ z ^ i)

using gr
proof (induction k)

case 0 then show ?case by (simp add: poly-altdef)
next

case (Suc k)
then show ?case

using 1 le-degree not-less-eq-eq by fastforce
qed}
then show ?thesis using gr by blast

qed

5.2 Definition and uniqueness
definition finite-fourier-poly :: complex list ⇒ complex poly where

finite-fourier-poly ws =
(let k = length ws
in poly-of-list [1 / k ∗ (

∑
m<k. ws ! m ∗ unity-root k (−n∗m)). n ← [0 ..<k]])

lemma degree-poly-of-list-le: degree (poly-of-list ws) ≤ length ws − 1
by (intro degree-le) (auto simp: nth-default-def)

lemma degree-finite-fourier-poly: degree (finite-fourier-poly ws) ≤ length ws − 1
unfolding finite-fourier-poly-def

proof (subst Let-def)
let ?unrolled-list =

(map (λn. complex-of-real (1 / real (length ws)) ∗
(
∑

m<length ws.
ws ! m ∗

25

unity-root (length ws) (− int n ∗ int m)))
[0 ..<length ws])

have degree (poly-of-list ?unrolled-list) ≤ length ?unrolled-list − 1
by (rule degree-poly-of-list-le)

also have . . . = length [0 ..<length ws] − 1
using length-map by auto

also have . . . = length ws − 1 by auto
finally show degree (poly-of-list ?unrolled-list) ≤ length ws − 1 by blast

qed

lemma coeff-finite-fourier-poly:
assumes n < length ws
defines k ≡ length ws
shows coeff (finite-fourier-poly ws) n =

(1/k) ∗ (
∑

m < k. ws ! m ∗ unity-root k (−n∗m))
using assms degree-finite-fourier-poly
by (auto simp: Let-def nth-default-def finite-fourier-poly-def)

lemma poly-finite-fourier-poly:
fixes m :: int and ws
defines k ≡ length ws
assumes m ∈ {0 ..<k}
assumes m < length ws
shows poly (finite-fourier-poly ws) (unity-root k m) = ws ! (nat m)

proof −
have k > 0 using assms by auto

have distr :
(
∑

j<length ws. ws ! j ∗ unity-root k (−i∗j))∗(unity-root k (m∗i)) =
(
∑

j<length ws. ws ! j ∗ unity-root k (−i∗j)∗(unity-root k (m∗i)))
for i

using sum-distrib-right[of λj. ws ! j ∗ unity-root k (−i∗j)
{..<k} (unity-root k (m∗i))]

using k-def by blast

{fix j i :: nat
have unity-root k (−i∗j)∗(unity-root k (m∗i)) = unity-root k (−i∗j+m∗i)

by (simp add: unity-root-diff unity-root-uminus field-simps)
also have . . . = unity-root k (i∗(m−j))

by (simp add: algebra-simps)
finally have unity-root k (−i∗j)∗(unity-root k (m∗i)) = unity-root k (i∗(m−j))

by simp
then have ws ! j ∗ unity-root k (−i∗j)∗(unity-root k (m∗i)) =

ws ! j ∗ unity-root k (i∗(m−j))
by auto

} note prod = this

have zeros:
(unity-root-sum k (m−j) 6= 0 ←→ m = j)

26

if j ≥ 0 ∧ j < k for j
using k-def that assms unity-root-sum-nonzero-iff [of - m−j] by simp

then have sum-eq:
(
∑

j≤k−1 . ws ! j ∗ unity-root-sum k (m−j)) =
(
∑

j∈{nat m}. ws ! j ∗ unity-root-sum k (m−j))
using assms(2) by (intro sum.mono-neutral-right,auto)

have poly (finite-fourier-poly ws) (unity-root k m) =
(
∑

i≤k−1 . coeff (finite-fourier-poly ws) i ∗ (unity-root k m) ^ i)
using degree-finite-fourier-poly[of ws] k-def

poly-altdef ′[of finite-fourier-poly ws k−1 unity-root k m] by blast
also have . . . = (

∑
i<k. coeff (finite-fourier-poly ws) i ∗ (unity-root k m) ^ i)

using assms(2) by (intro sum.cong) auto
also have . . . = (

∑
i<k. 1 / k ∗

(
∑

j<k. ws ! j ∗ unity-root k (−i∗j)) ∗ (unity-root k m) ^ i)
using coeff-finite-fourier-poly[of - ws] k-def by auto

also have . . . = (
∑

i<k. 1 / k ∗
(
∑

j<k. ws ! j ∗ unity-root k (−i∗j))∗(unity-root k (m∗i)))
using unity-root-pow by auto

also have . . . = (
∑

i<k. 1 / k ∗
(
∑

j<k. ws ! j ∗ unity-root k (−i∗j)∗(unity-root k (m∗i))))
using distr k-def by simp

also have . . . = (
∑

i<k. 1 / k ∗
(
∑

j<k. ws ! j ∗ unity-root k (i∗(m−j))))
using prod by presburger

also have . . . = 1 / k ∗ (
∑

i<k.
(
∑

j<k. ws ! j ∗ unity-root k (i∗(m−j))))
by (simp add: sum-distrib-left)

also have . . . = 1 / k ∗ (
∑

j<k.
(
∑

i<k. ws ! j ∗ unity-root k (i∗(m−j))))
using sum.swap by fastforce

also have . . . = 1 / k ∗ (
∑

j<k. ws ! j ∗ (
∑

i<k. unity-root k (i∗(m−j))))
by (simp add: vector-space-over-itself .scale-sum-right)

also have . . . = 1 / k ∗ (
∑

j<k. ws ! j ∗ unity-root-sum k (m−j))
unfolding unity-root-sum-def by (simp add: algebra-simps)

also have (
∑

j<k. ws ! j ∗ unity-root-sum k (m−j)) = (
∑

j≤k−1 . ws ! j ∗
unity-root-sum k (m−j))

using ‹k > 0 › by (intro sum.cong) auto
also have . . . = (

∑
j∈{nat m}. ws ! j ∗ unity-root-sum k (m−j))

using sum-eq .
also have . . . = ws ! (nat m) ∗ k

using assms(2) by (auto simp: algebra-simps)
finally have poly (finite-fourier-poly ws) (unity-root k m) = ws ! (nat m)

using assms(2) by auto
then show ?thesis by simp

qed

Theorem 8.3
theorem finite-fourier-poly-unique:

27

assumes length ws > 0
defines k ≡ length ws
assumes (degree p ≤ k − 1)
assumes (∀m ≤ k−1 . (ws ! m) = poly p (unity-root k m))
shows p = finite-fourier-poly ws

proof −
let ?z = map (λm. unity-root k m) [0 ..<k]
have k: k > 0 using assms by auto
from k have d1 : distinct ?z

unfolding distinct-conv-nth using unity-root-eqD[OF k] by force
let ?zs-ws = zip ?z ws
from d1 k-def have d2 : distinct (map fst ?zs-ws) by simp
have l2 : length ?zs-ws > 0 using assms(1) k-def by auto
have l3 : length ?zs-ws = k by (simp add: k-def)

from degree-finite-fourier-poly have degree: degree (finite-fourier-poly ws) ≤ k −
1

using k-def by simp

have interp: poly (finite-fourier-poly ws) x = y
if (x, y) ∈ set ?zs-ws for x y

proof −
from that obtain n where

x = map (unity-root k ◦ int) [0 ..<k] ! n ∧
y = ws ! n ∧
n < length ws

using in-set-zip[of (x,y) (map (unity-root k) (map int [0 ..<k])) ws]
by auto

then have
x = unity-root k (int n) ∧
y = ws ! n ∧
n < length ws

using nth-map[of n [0 ..<k] unity-root k ◦ int] k-def by simp
thus poly (finite-fourier-poly ws) x = y

by (simp add: poly-finite-fourier-poly k-def)
qed

have interp-p: poly p x = y if (x,y) ∈ set ?zs-ws for x y
proof −

from that obtain n where
x = map (unity-root k ◦ int) [0 ..<k] ! n ∧
y = ws ! n ∧
n < length ws

using in-set-zip[of (x,y) (map (unity-root k) (map int [0 ..<k])) ws]
by auto

then have rw: x = unity-root k (int n) y = ws ! n n < length ws
using nth-map[of n [0 ..<k] unity-root k ◦ int] k-def by simp+

show poly p x = y
unfolding rw(1 ,2) using assms(4) rw(3) k-def by simp

28

qed

from lagrange-unique[of - p finite-fourier-poly ws] d2 l2
have l:

degree p ≤ k − 1 ∧
(∀ x y. (x, y) ∈ set ?zs-ws −→ poly p x = y) =⇒
degree (finite-fourier-poly ws) ≤ k − 1 ∧
(∀ x y. (x, y) ∈ set ?zs-ws −→ poly (finite-fourier-poly ws) x = y) =⇒
p = (finite-fourier-poly ws)
using l3 by metis

from assms degree interp interp-p l3
show p = (finite-fourier-poly ws) using l by blast

qed

The following alternative formulation returns a coefficient
definition finite-fourier-poly ′ :: (nat ⇒ complex) ⇒ nat ⇒ complex poly where

finite-fourier-poly ′ ws k =
(poly-of-list [1 / k ∗ (

∑
m<k. (ws m) ∗ unity-root k (−n∗m)). n ← [0 ..<k]])

lemma finite-fourier-poly ′-conv-finite-fourier-poly:
finite-fourier-poly ′ ws k = finite-fourier-poly [ws n. n ← [0 ..<k]]
unfolding finite-fourier-poly-def finite-fourier-poly ′-def by simp

lemma coeff-finite-fourier-poly ′:
assumes n < k
shows coeff (finite-fourier-poly ′ ws k) n =

(1/k) ∗ (
∑

m < k. (ws m) ∗ unity-root k (−n∗m))
proof −

let ?ws = [ws n. n ← [0 ..<k]]
have coeff (finite-fourier-poly ′ ws k) n =

coeff (finite-fourier-poly ?ws) n
by (simp add: finite-fourier-poly ′-conv-finite-fourier-poly)

also have coeff (finite-fourier-poly ?ws) n =
1 / k ∗ (

∑
m<k. (?ws ! m) ∗ unity-root k (− n∗m))

using assms by (auto simp: coeff-finite-fourier-poly)
also have . . . = (1/k) ∗ (

∑
m < k. (ws m) ∗ unity-root k (−n∗m))

using assms by simp
finally show ?thesis by simp

qed

lemma degree-finite-fourier-poly ′: degree (finite-fourier-poly ′ ws k) ≤ k − 1
using degree-finite-fourier-poly[of [ws n. n ← [0 ..<k]]]
by (auto simp: finite-fourier-poly ′-conv-finite-fourier-poly)

lemma poly-finite-fourier-poly ′:
fixes m :: int and k
assumes m ∈ {0 ..<k}
shows poly (finite-fourier-poly ′ ws k) (unity-root k m) = ws (nat m)
using assms poly-finite-fourier-poly[of m [ws n. n ← [0 ..<k]]]

29

by (auto simp: finite-fourier-poly ′-conv-finite-fourier-poly poly-finite-fourier-poly)

lemma finite-fourier-poly ′-unique:
assumes k > 0
assumes degree p ≤ k − 1
assumes ∀m≤k−1 . ws m = poly p (unity-root k m)
shows p = finite-fourier-poly ′ ws k

proof −
let ?ws = [ws n. n ← [0 ..<k]]
from finite-fourier-poly-unique have p = finite-fourier-poly ?ws using assms by

simp
also have . . . = finite-fourier-poly ′ ws k

using finite-fourier-poly ′-conv-finite-fourier-poly ..
finally show p = finite-fourier-poly ′ ws k by blast

qed

lemma fourier-unity-root:
fixes k :: nat
assumes k > 0
shows poly (finite-fourier-poly ′ f k) (unity-root k m) =
(
∑

n<k.1/k∗(
∑

m<k.(f m)∗unity-root k (−n∗m))∗unity-root k (m∗n))
proof −

have poly (finite-fourier-poly ′ f k) (unity-root k m) =
(
∑

n≤k−1 . coeff (finite-fourier-poly ′ f k) n ∗(unity-root k m)^n)
using poly-altdef ′[of finite-fourier-poly ′ f k k−1 unity-root k m]

degree-finite-fourier-poly ′[of f k] by simp
also have . . . = (

∑
n≤k−1 . coeff (finite-fourier-poly ′ f k) n ∗(unity-root k

(m∗n)))
using unity-root-pow by simp

also have . . . = (
∑

n<k. coeff (finite-fourier-poly ′ f k) n ∗(unity-root k (m∗n)))

using assms by (intro sum.cong) auto
also have . . . = (

∑
n<k.(1/k)∗(

∑
m<k.(f m)∗unity-root k (−n∗m))∗(unity-root

k (m∗n)))
using coeff-finite-fourier-poly ′[of - k f] by simp

finally show
poly (finite-fourier-poly ′ f k) (unity-root k m) =
(
∑

n<k.1/k∗(
∑

m<k.(f m)∗unity-root k (−n∗m))∗unity-root k (m∗n))
by blast

qed

5.3 Expansion of an arithmetical function

Theorem 8.4
theorem fourier-expansion-periodic-arithmetic:

assumes k > 0
assumes periodic-arithmetic f k
defines g ≡ (λn. (1 / k) ∗ (

∑
m<k. f m ∗ unity-root k (−n ∗ m)))

shows periodic-arithmetic g k

30

and f m = (
∑

n<k. g n ∗ unity-root k (m ∗ n))
proof −
{fix l
from unity-periodic-arithmetic mult-period
have period: periodic-arithmetic (λx. unity-root k x) (k∗l) by simp}
note period = this

{fix n l
have unity-root k (−(n+k)∗l) = cnj (unity-root k ((n+k)∗l))

by (simp add: unity-root-uminus unity-root-diff ring-distribs unity-root-add)
also have unity-root k ((n+k)∗l) = unity-root k (n∗l)

by (intro unity-root-cong) (auto simp: cong-def algebra-simps)
also have cnj . . . = unity-root k (−n∗l)

using unity-root-uminus by simp
finally have unity-root k (−(n+k)∗l) = unity-root k (−n∗l) by simp}
note u-period = this

show 1 : periodic-arithmetic g k
unfolding periodic-arithmetic-def

proof
fix n

have g(n+k) = (1 / k) ∗ (
∑

m<k. f (m) ∗ unity-root k (−(n+k)∗m))
using assms(3) by fastforce

also have . . . = (1 / k) ∗ (
∑

m<k. f (m) ∗ unity-root k (−n∗m))
proof −

have (
∑

m<k. f (m) ∗ unity-root k (−(n+k)∗m)) =
(
∑

m<k. f (m) ∗ unity-root k (−n∗m))
by (intro sum.cong) (use u-period in auto)

then show ?thesis by argo
qed
also have . . . = g(n)

using assms(3) by fastforce
finally show g(n+k) = g(n) by simp

qed

show f (m) = (
∑

n<k. g(n)∗ unity-root k (m ∗ int n))
proof −

{
fix m
assume range: m ∈ {0 ..<k}
have f (m) = (

∑
n<k. g(n)∗ unity-root k (m ∗ int n))

proof −
have f m = poly (finite-fourier-poly ′ f k) (unity-root k m)

using range by (simp add: poly-finite-fourier-poly ′)
also have . . . = (

∑
n<k. (1 / k) ∗ (

∑
m<k. f (m) ∗ unity-root k (−n∗m))∗

unity-root k (m∗n))
using fourier-unity-root assms(1) by blast

also have . . . = (
∑

n<k. g(n)∗ unity-root k (m∗n))
using assms by simp

31

finally show ?thesis by auto
qed}

note concentrated = this

have periodic-arithmetic (λm. (
∑

n<k. g(n)∗ unity-root k (m ∗ int n))) k
proof −

have periodic-arithmetic (λn. g(n)∗ unity-root k (i ∗ int n)) k for i :: int
using 1 unity-periodic-arithmetic mult-periodic-arithmetic

unity-periodic-arithmetic-mult by auto
then have p-s: ∀ i<k. periodic-arithmetic (λn. g(n)∗ unity-root k (i ∗ int n)) k

by simp
have periodic-arithmetic (λi.

∑
n<k. g(n)∗ unity-root k (i ∗ int n)) k

unfolding periodic-arithmetic-def
proof

fix n
show (

∑
na<k. g na ∗ unity-root k (int (n + k) ∗ int na)) =

(
∑

na<k. g na ∗ unity-root k (int n ∗ int na))
by (intro sum.cong refl, simp add: distrib-right flip: of-nat-mult of-nat-add)

(insert period, unfold periodic-arithmetic-def , blast)
qed
then show ?thesis by simp

qed

from this assms(1−2) concentrated
unique-periodic-arithmetic-extension[of k f (λi.

∑
n<k. g(n)∗ unity-root k (i

∗ int n)) m]
show f m = (

∑
n<k. g n ∗ unity-root k (int m ∗ int n)) by simp

qed
qed

theorem fourier-expansion-periodic-arithmetic-unique:
fixes f g :: nat ⇒ complex
assumes k > 0
assumes periodic-arithmetic f k and periodic-arithmetic g k
assumes

∧
m. m < k =⇒ f m = (

∑
n<k. g n ∗ unity-root k (int (m ∗ n)))

shows g n = (1 / k) ∗ (
∑

m<k. f m ∗ unity-root k (−n ∗ m))
proof −

let ?p = poly-of-list [g(n). n ← [0 ..<k]]
have d: degree ?p ≤ k−1
proof −

have degree ?p ≤ length [g(n). n ← [0 ..<k]] − 1
using degree-poly-of-list-le by blast

also have . . . = length [0 ..<k] − 1
using length-map by auto

finally show ?thesis by simp
qed
have c: coeff ?p i = (if i < k then g(i) else 0) for i

by (simp add: nth-default-def)
{fix z

32

have poly ?p z = (
∑

n≤k−1 . coeff ?p n∗ z^n)
using poly-altdef ′[of ?p k−1] d by blast

also have . . . = (
∑

n<k. coeff ?p n∗ z^n)
using ‹k > 0 › by (intro sum.cong) auto

also have . . . = (
∑

n<k. (if n < k then g(n) else 0)∗ z^n)
using c by simp

also have . . . = (
∑

n<k. g(n)∗ z^n)
by (simp split: if-splits)

finally have poly ?p z = (
∑

n<k. g n ∗ z ^ n) .}
note eval = this
{fix i
have poly ?p (unity-root k i) = (

∑
n<k. g(n)∗ (unity-root k i)^n)

using eval by blast
then have poly ?p (unity-root k i) = (

∑
n<k. g(n)∗ (unity-root k (i∗n)))

using unity-root-pow by auto}
note interpolation = this

{
fix m
assume b: m ≤ k−1
from d assms(1)
have f m = (

∑
n<k. g(n) ∗ unity-root k (m∗n))

using assms(4) b by auto
also have . . . = poly ?p (unity-root k m)

using interpolation by simp
finally have f m = poly ?p (unity-root k m) by auto

}

from this finite-fourier-poly ′-unique[of k - f]
have p-is-fourier : ?p = finite-fourier-poly ′ f k

using assms(1) d by blast

{
fix n
assume b: n ≤ k−1
have f-1 : coeff ?p n = (1 / k) ∗ (

∑
m<k. f (m) ∗ unity-root k (−n∗m))

using p-is-fourier using assms(1) b by (auto simp: coeff-finite-fourier-poly ′)
then have g(n) = (1 / k) ∗ (

∑
m<k. f (m) ∗ unity-root k (−n∗m))

using c b assms(1)
proof −

have 1 : coeff ?p n = (1 / k) ∗ (
∑

m<k. f (m) ∗ unity-root k (−n∗m))
using f-1 by blast

have 2 : coeff ?p n = g n
using c assms(1) b by simp

show ?thesis using 1 2 by argo
qed

}

33

have periodic-arithmetic (λn. (1 / k) ∗ (
∑

m<k. f (m) ∗ unity-root k (−n∗m)))
k

proof −
have periodic-arithmetic (λi. unity-root k (−int i∗int m)) k for m

using unity-root-periodic-arithmetic-mult-minus by simp
then have periodic-arithmetic (λi. f (m) ∗ unity-root k (−i∗m)) k for m

by (simp add: periodic-arithmetic-def)
then show periodic-arithmetic (λi. (1 / k) ∗ (

∑
m<k. f m ∗ unity-root k

(−i∗m))) k
by (intro scalar-mult-periodic-arithmetic fin-sum-periodic-arithmetic-set) auto

qed
note periodich = this
let ?h = (λi. (1 / k) ∗(

∑
m<k. f m ∗ unity-root k (−i∗m)))

from unique-periodic-arithmetic-extension[of k g ?h n]
assms(3) assms(1) periodich

have g n = (1/k) ∗ (
∑

m<k. f m ∗ unity-root k (−n∗m))
by (simp add: ‹

∧
na. na ≤ k − 1 =⇒ g na = complex-of-real (1 / real k) ∗

(
∑

m<k. f m ∗ unity-root k (− int na ∗ int m))›)
then show ?thesis by simp

qed

end

6 Ramanujan sums
theory Ramanujan-Sums
imports

Dirichlet-Series.Moebius-Mu
Gauss-Sums-Auxiliary
Finite-Fourier-Series

begin

6.1 Basic sums
definition ramanujan-sum :: nat ⇒ nat ⇒ complex

where ramanujan-sum k n = (
∑

m | m ∈ {1 ..k} ∧ coprime m k. unity-root k
(m∗n))

notation ramanujan-sum (‹c›)

lemma ramanujan-sum-0-n [simp]: c 0 n = 0
unfolding ramanujan-sum-def by simp

lemma sum-coprime-conv-dirichlet-prod-moebius-mu:
fixes F S :: nat ⇒ complex and f :: nat ⇒ nat ⇒ complex
defines F ≡ (λn. (

∑
k ∈ {1 ..n}. f k n))

defines S ≡ (λn. (
∑

k | k ∈ {1 ..n} ∧ coprime k n . f k n))
assumes

∧
a b d. d dvd a =⇒ d dvd b =⇒ f (a div d) (b div d) = f a b

shows S n = dirichlet-prod moebius-mu F n

34

proof (cases n = 0)
case True
then show ?thesis

using assms(2) unfolding dirichlet-prod-def by fastforce
next

case False
have S(n) = (

∑
k | k ∈ {1 ..n} ∧ coprime k n . (f k n))

using assms by blast
also have . . . = (

∑
k ∈ {1 ..n}. (f k n)∗ dirichlet-prod-neutral (gcd k n))

using dirichlet-prod-neutral-intro by blast
also have . . . = (

∑
k ∈ {1 ..n}. (f k n)∗ (

∑
d | d dvd (gcd k n). moebius-mu d))

proof −
{

fix k
have dirichlet-prod-neutral (gcd k n) = (if gcd k n = 1 then 1 else 0)

using dirichlet-prod-neutral-def [of gcd k n] by blast
also have . . . = (

∑
d | d dvd gcd k n. moebius-mu d)

using sum-moebius-mu-divisors ′[of gcd k n] by auto
finally have dirichlet-prod-neutral (gcd k n) = (

∑
d | d dvd gcd k n. moe-

bius-mu d)
by auto

} note summand = this
then show ?thesis by (simp add: summand)

qed
also have . . . = (

∑
k = 1 ..n. (

∑
d | d dvd gcd k n. (f k n) ∗ moebius-mu d))

by (simp add: sum-distrib-left)
also have . . . = (

∑
k = 1 ..n. (

∑
d | d dvd gcd n k. (f k n) ∗ moebius-mu d))

using gcd.commute[of - n] by simp
also have . . . = (

∑
d | d dvd n.

∑
k | k ∈ {1 ..n} ∧ d dvd k. (f k n) ∗ moebius-mu

d)
using sum.swap-restrict[of {1 ..n} {d. d dvd n}

λk d. (f k n)∗moebius-mu d λk d. d dvd k] False by auto
also have . . . = (

∑
d | d dvd n. moebius-mu d ∗ (

∑
k | k ∈ {1 ..n} ∧ d dvd k.

(f k n)))
by (simp add: sum-distrib-left mult.commute)

also have . . . = (
∑

d | d dvd n. moebius-mu d ∗ (
∑

q ∈ {1 ..n div d}. (f q (n
div d))))

proof −
have st:
(
∑

k | k ∈ {1 ..n} ∧ d dvd k. (f k n)) =
(
∑

q ∈ {1 ..n div d}. (f q (n div d)))
if d dvd n d > 0 for d :: nat
by (rule sum.reindex-bij-witness[of - λk. k ∗ d λk. k div d])

(use assms(3) that in ‹fastforce simp: div-le-mono›)+
show ?thesis

by (intro sum.cong) (use st False in fastforce)+
qed
also have . . . = (

∑
d | d dvd n. moebius-mu d ∗ F(n div d))

proof −

35

have F (n div d) = (
∑

q ∈ {1 ..n div d}. (f q (n div d)))
if d dvd n for d

by (simp add: F-def real-of-nat-div that)
then show ?thesis by auto

qed
also have . . . = dirichlet-prod moebius-mu F n

by (simp add: dirichlet-prod-def)
finally show ?thesis by simp

qed

lemma dirichlet-prod-neutral-sum:
dirichlet-prod-neutral n = (

∑
k = 1 ..n. unity-root n k) for n :: nat

proof (cases n = 0)
case True then show ?thesis unfolding dirichlet-prod-neutral-def by simp

next
case False
have 1 : unity-root n 0 = 1 by simp
have 2 : unity-root n n = 1

using unity-periodic-arithmetic[of n] add.left-neutral
proof −

have 1 = unity-root n (int 0)
using 1 by auto

also have unity-root n (int 0) = unity-root n (int (0 + n))
using unity-periodic-arithmetic[of n] periodic-arithmetic-def by algebra

also have . . . = unity-root n (int n) by simp
finally show ?thesis by auto

qed
have (

∑
k = 1 ..n. unity-root n k) = (

∑
k = 0 ..n. unity-root n k) − 1

by (simp add: sum.atLeast-Suc-atMost sum.atLeast0-atMost-Suc-shift 1)
also have . . . = ((

∑
k = 0 ..n−1 . unity-root n k)+1) − 1

using sum.atLeast0-atMost-Suc[of (λk. unity-root n k) n−1] False
by (simp add: 2)

also have . . . = (
∑

k = 0 ..n−1 . unity-root n k)
by simp

also have . . . = unity-root-sum n 1
unfolding unity-root-sum-def using ‹n 6= 0 › by (intro sum.cong) auto

also have . . . = dirichlet-prod-neutral n
using unity-root-sum[of n 1] False
by (cases n = 1 ,auto simp add: False dirichlet-prod-neutral-def)

finally have 3 : dirichlet-prod-neutral n = (
∑

k = 1 ..n. unity-root n k) by auto
then show ?thesis by blast

qed

lemma moebius-coprime-sum:
moebius-mu n = (

∑
k | k ∈ {1 ..n} ∧ coprime k n . unity-root n (int k))

proof −
let ?f = (λk n. unity-root n k)
from div-dvd-div have

d dvd a =⇒ d dvd b =⇒

36

unity-root (a div d) (b div d) =
unity-root a b for a b d :: nat

using unity-root-def real-of-nat-div by fastforce
then have (

∑
k | k ∈ {1 ..n} ∧ coprime k n. ?f k n) =

dirichlet-prod moebius-mu (λn.
∑

k = 1 ..n. ?f k n) n
using sum-coprime-conv-dirichlet-prod-moebius-mu[of ?f n] by blast

also have . . . = dirichlet-prod moebius-mu dirichlet-prod-neutral n
by (simp add: dirichlet-prod-neutral-sum)

also have . . . = moebius-mu n
by (cases n = 0) (simp-all add: dirichlet-prod-neutral-right-neutral)

finally have moebius-mu n = (
∑

k | k ∈ {1 ..n} ∧ coprime k n. ?f k n)
by argo

then show ?thesis by blast
qed

corollary ramanujan-sum-1-right [simp]: c k (Suc 0) = moebius-mu k
unfolding ramanujan-sum-def using moebius-coprime-sum[of k] by simp

lemma ramanujan-sum-dvd-eq-totient:
assumes k dvd n

shows c k n = totient k
unfolding ramanujan-sum-def

proof −
have unity-root k (m∗n) = 1 for m

using assms by (cases k = 0) (auto simp: unity-root-eq-1-iff-int)
then have (

∑
m | m ∈ {1 ..k} ∧ coprime m k. unity-root k (m ∗ n)) =

(
∑

m | m ∈ {1 ..k} ∧ coprime m k. 1) by simp
also have . . . = card {m. m ∈ {1 ..k} ∧ coprime m k} by simp
also have . . . = totient k
unfolding totient-def totatives-def

proof −
have {1 ..k} = {0<..k} by auto
then show of-nat (card {m ∈ {1 ..k}. coprime m k}) =

of-nat (card {ka ∈ {0<..k}. coprime ka k}) by auto
qed
finally show (

∑
m | m ∈ {1 ..k} ∧ coprime m k. unity-root k (m ∗ n)) = totient

k
by auto

qed

6.2 Generalised sums
definition gen-ramanujan-sum :: (nat ⇒ complex) ⇒ (nat ⇒ complex) ⇒ nat ⇒
nat ⇒ complex where

gen-ramanujan-sum f g = (λk n.
∑

d | d dvd gcd n k. f d ∗ g (k div d))

notation gen-ramanujan-sum (‹s›)

lemma gen-ramanujan-sum-k-1 : s f g k 1 = f 1 ∗ g k

37

unfolding gen-ramanujan-sum-def by auto

lemma gen-ramanujan-sum-1-n: s f g 1 n = f 1 ∗ g 1
unfolding gen-ramanujan-sum-def by simp

lemma gen-ramanujan-sum-periodic: periodic-arithmetic (s f g k) k
unfolding gen-ramanujan-sum-def periodic-arithmetic-def by simp

Theorem 8.5
theorem gen-ramanujan-sum-fourier-expansion:

fixes f g :: nat ⇒ complex and a :: nat ⇒ nat ⇒ complex
assumes k > 0
defines a ≡ (λk m. (1/k) ∗ (

∑
d| d dvd (gcd m k). g d ∗ f (k div d) ∗ d))

shows s f g k n = (
∑

m≤k−1 . a k m ∗ unity-root k (m∗n))
proof −

let ?g = (λx. 1 / of-nat k ∗ (
∑

m<k. s f g k m ∗ unity-root k (−x∗m)))
{fix m :: nat
let ?h = λn d. f d ∗ g (k div d) ∗ unity-root k (− m ∗ int n)
have (

∑
l<k. s f g k l ∗ unity-root k (−m∗l)) =
(
∑

l ∈ {0 ..k−1}. s f g k l ∗ unity-root k (−m∗l))
using ‹k > 0 › by (intro sum.cong) auto

also have . . . = (
∑

l ∈ {1 ..k}. s f g k l ∗ unity-root k (−m∗l))
proof −

have periodic-arithmetic (λl. unity-root k (−m∗l)) k
using unity-periodic-arithmetic-mult by blast

then have periodic-arithmetic (λl. s f g k l ∗ unity-root k (−m∗l)) k
using gen-ramanujan-sum-periodic mult-periodic-arithmetic by blast

from this periodic-arithmetic-sum-periodic-arithmetic-shift[of - k 1]
have sum (λl. s f g k l ∗ unity-root k (−m∗l)) {0 ..k − 1} =

sum (λl. s f g k l ∗ unity-root k (−m∗l)) {1 ..k}
using assms(1) zero-less-one by simp

then show ?thesis by argo
qed
also have . . . = (

∑
n∈{1 ..k}. (

∑
d | d dvd (gcd n k). f (d) ∗ g(k div d)) ∗

unity-root k (−m∗n))
by (simp add: gen-ramanujan-sum-def)

also have . . . = (
∑

n∈{1 ..k}. (
∑

d | d dvd (gcd n k). f (d) ∗ g(k div d) ∗
unity-root k (−m∗n)))

by (simp add: sum-distrib-right)
also have . . . = (

∑
d | d dvd k.

∑
n | n ∈ {1 ..k} ∧ d dvd n. ?h n d)

proof −
have (

∑
n = 1 ..k.

∑
d | d dvd gcd n k. ?h n d) =

(
∑

n = 1 ..k.
∑

d | d dvd k ∧ d dvd n . ?h n d)
using gcd.commute[of - k] by simp

also have . . . = (
∑

d | d dvd k.
∑

n | n ∈ {1 ..k} ∧ d dvd n. ?h n d)
using sum.swap-restrict[of {1 ..k} {d. d dvd k}

- λn d. d dvd n] assms by fastforce
finally have
(
∑

n = 1 ..k.
∑

d | d dvd gcd n k. ?h n d) =

38

(
∑

d | d dvd k.
∑

n | n ∈ {1 ..k} ∧ d dvd n. ?h n d) by blast
then show ?thesis by simp

qed
also have . . . = (

∑
d | d dvd k. f (d)∗g(k div d)∗

(
∑

n | n ∈ {1 ..k} ∧ d dvd n. unity-root k (− m ∗ int n)))
by (simp add: sum-distrib-left)

also have . . . = (
∑

d | d dvd k. f (d)∗g(k div d)∗
(
∑

e ∈ {1 ..k div d}. unity-root k (− m ∗ (e∗d))))
using assms(1) sum-div-reduce div-greater-zero-iff dvd-div-gt0 by auto

also have . . . = (
∑

d | d dvd k. f (d)∗g(k div d)∗
(
∑

e ∈ {1 ..k div d}. unity-root (k div d) (− m ∗ e)))
proof −

{
fix d e
assume d dvd k
hence 2 ∗ pi ∗ real-of-int (− int m ∗ int (e ∗ d)) / real k =

2 ∗ pi ∗ real-of-int (− int m ∗ int e) / real (k div d) by auto
hence unity-root k (− m ∗ (e ∗ d)) = unity-root (k div d) (− m ∗ e)

unfolding unity-root-def by simp
}
then show ?thesis by simp

qed
also have . . . = dirichlet-prod (λd. f (d)∗g(k div d))

(λd. (
∑

e ∈ {1 ..d}. unity-root d (− m ∗ e))) k
unfolding dirichlet-prod-def by blast

also have . . . = dirichlet-prod (λd. (
∑

e ∈ {1 ..d}. unity-root d (− m ∗ e)))
(λd. f (d)∗g(k div d)) k

using dirichlet-prod-commutes[of
(λd. f (d)∗g(k div d))
(λd. (

∑
e ∈ {1 ..d}. unity-root d (− m ∗ e)))] by argo

also have . . . = (
∑

d | d dvd k.
(
∑

e ∈ {1 ..(d::nat)}. unity-root d (− m ∗ e))∗(f (k div d)∗g(k div (k div
d))))

unfolding dirichlet-prod-def by blast
also have . . . = (

∑
d | d dvd k. (

∑
e ∈ {1 ..(d::nat)}.

unity-root d (− m ∗ e))∗(f (k div d)∗g(d)))
proof −

{
fix d :: nat
assume d dvd k
then have k div (k div d) = d

by (simp add: assms(1) div-div-eq-right)
}
then show ?thesis by simp

qed
also have . . . = (

∑
(d::nat) | d dvd k ∧ d dvd m. d∗(f (k div d)∗g(d)))

proof −
{

fix d

39

assume d dvd k
with assms have d > 0 by (intro Nat.gr0I) auto
have periodic-arithmetic (λx. unity-root d (− m ∗ int x)) d

using unity-periodic-arithmetic-mult by blast
then have (

∑
e ∈ {1 ..d}. unity-root d (− m ∗ e)) =

(
∑

e ∈ {0 ..d−1}. unity-root d (− m ∗ e))
using periodic-arithmetic-sum-periodic-arithmetic-shift[of λe. unity-root d

(− m ∗ e) d 1] assms ‹d dvd k›
by fastforce

also have . . . = unity-root-sum d (−m)
unfolding unity-root-sum-def using ‹d > 0 › by (intro sum.cong) auto

finally have
(
∑

e ∈ {1 ..d}. unity-root d (− m ∗ e)) = unity-root-sum d (−m)
by argo

}
then have
(
∑

d | d dvd k. (
∑

e = 1 ..d. unity-root d (− m ∗ int e)) ∗ (f (k div d) ∗ g
d)) =

(
∑

d | d dvd k. unity-root-sum d (−m) ∗ (f (k div d) ∗ g d)) by simp
also have . . . = (

∑
d | d dvd k ∧ d dvd m. unity-root-sum d (−m) ∗ (f (k div

d) ∗ g d))
proof (intro sum.mono-neutral-right,simp add: ‹k > 0 ›,blast,standard)

fix i
assume as: i ∈ {d. d dvd k} − {d. d dvd k ∧ d dvd m}
then have i ≥ 1 using ‹k > 0 › by auto
have k ≥ 1 using ‹k > 0 › by auto
have ¬ i dvd (−m) using as by auto
thus unity-root-sum i (− int m) ∗ (f (k div i) ∗ g i) = 0

using ‹i ≥ 1 › by (subst unity-root-sum(2)) auto
qed
also have . . . = (

∑
d | d dvd k ∧ d dvd m. d ∗ (f (k div d) ∗ g d))

proof −
{fix d :: nat

assume 1 : d dvd m
assume 2 : d dvd k
then have unity-root-sum d (−m) = d

using unity-root-sum[of d (−m)] assms(1) 1 2
by auto}

then show ?thesis by auto
qed
finally show ?thesis by argo

qed
also have . . . = (

∑
d | d dvd gcd m k. of-nat d ∗ (f (k div d) ∗ g d))

by (simp add: gcd.commute)
also have . . . = (

∑
d | d dvd gcd m k. g d ∗ f (k div d) ∗ d)

by (simp add: algebra-simps sum-distrib-left)
also have 1 / k ∗ . . . = a k m using a-def by auto
finally have ?g m = a k m by simp}
note a-eq-g = this

40

{
fix m

from fourier-expansion-periodic-arithmetic(2)[of k s f g k] gen-ramanujan-sum-periodic
assms(1)

have s f g k m = (
∑

n<k. ?g n ∗ unity-root k (int m ∗ n))
by blast

also have . . . = (
∑

n<k. a k n ∗ unity-root k (int m ∗ n))
using a-eq-g by simp

also have . . . = (
∑

n≤k−1 . a k n ∗ unity-root k (int m ∗ n))
using ‹k > 0 › by (intro sum.cong) auto

finally have s f g k m =
(
∑

n≤k − 1 . a k n ∗ unity-root k (int n ∗ int m))
by (simp add: algebra-simps)

}
then show ?thesis by blast

qed

Theorem 8.6
theorem ramanujan-sum-dirichlet-form:

fixes k n :: nat
assumes k > 0
shows c k n = (

∑
d | d dvd gcd n k. d ∗ moebius-mu (k div d))

proof −
define a :: nat ⇒ nat ⇒ complex

where a = (λk m.
1 / of-nat k ∗ (

∑
d | d dvd gcd m k. moebius-mu d ∗ of-nat (k div d) ∗ of-nat

d))

{fix m
have a k m = (if gcd m k = 1 then 1 else 0)
proof −
have a k m = 1 / of-nat k ∗ (

∑
d | d dvd gcd m k. moebius-mu d ∗ of-nat (k

div d) ∗ of-nat d)
unfolding a-def by blast

also have 2 : . . . = 1 / of-nat k ∗ (
∑

d | d dvd gcd m k. moebius-mu d ∗ of-nat
k)

proof −
{fix d :: nat
assume dvd: d dvd gcd m k
have moebius-mu d ∗ of-nat (k div d) ∗ of-nat d = moebius-mu d ∗ of-nat k
proof −

have (k div d) ∗ d = k using dvd by auto
then show moebius-mu d ∗ of-nat (k div d) ∗ of-nat d = moebius-mu d ∗

of-nat k
by (simp add: algebra-simps,subst of-nat-mult[symmetric],simp)

qed} note eq = this
show ?thesis using sum.cong by (simp add: eq)

qed

41

also have 3 : . . . = (
∑

d | d dvd gcd m k. moebius-mu d)
by (simp add: sum-distrib-left assms)

also have 4 : . . . = (if gcd m k = 1 then 1 else 0)
using sum-moebius-mu-divisors ′ by blast

finally show a k m = (if gcd m k = 1 then 1 else 0)
using coprime-def by blast

qed} note a-expr = this

let ?f = (λm. (if gcd m k = 1 then 1 else 0) ∗
unity-root k (int m ∗ n))

from gen-ramanujan-sum-fourier-expansion[of k id moebius-mu n] assms
have s (λx. of-nat (id x)) moebius-mu k n =
(
∑

m≤k − 1 .
1 / of-nat k ∗
(
∑

d | d dvd gcd m k.
moebius-mu d ∗ of-nat (k div d) ∗ of-nat d) ∗

unity-root k (int m ∗ n)) by simp
also have . . . = (

∑
m≤k − 1 .

a k m ∗
unity-root k (int m ∗ n)) using a-def by blast

also have . . . = (
∑

m≤k − 1 .
(if gcd m k = 1 then 1 else 0) ∗
unity-root k (int m ∗ n)) using a-expr by auto

also have . . . = (
∑

m ∈ {1 ..k}.
(if gcd m k = 1 then 1 else 0) ∗
unity-root k (int m ∗ n))

proof −
have periodic-arithmetic (λm. (if gcd m k = 1 then 1 else 0) ∗

unity-root k (int m ∗ n)) k
proof −

have periodic-arithmetic (λm. if gcd m k = 1 then 1 else 0) k
by (simp add: periodic-arithmetic-def)

moreover have periodic-arithmetic (λm. unity-root k (int m ∗ n)) k
using unity-periodic-arithmetic-mult[of k n]
by (subst mult.commute,simp)

ultimately show periodic-arithmetic ?f k
using mult-periodic-arithmetic by simp

qed
then have sum ?f {0 ..k − 1} = sum ?f {1 ..k}

using periodic-arithmetic-sum-periodic-arithmetic-shift[of ?f k 1] by force
then show ?thesis by (simp add: atMost-atLeast0)

qed
also have . . . = (

∑
m | m ∈ {1 ..k} ∧ gcd m k = 1 .

(if gcd m k = 1 then 1 else 0) ∗
unity-root k (int m ∗ int n))

by (intro sum.mono-neutral-right,auto)
also have . . . = (

∑
m | m ∈ {1 ..k} ∧ gcd m k = 1 .

unity-root k (int m ∗ int n)) by simp
also have . . . = (

∑
m | m ∈ {1 ..k} ∧ coprime m k.

42

unity-root k (int m ∗ int n))
using coprime-iff-gcd-eq-1 by presburger

also have . . . = c k n unfolding ramanujan-sum-def by simp
finally show ?thesis unfolding gen-ramanujan-sum-def by auto

qed

corollary ramanujan-sum-conv-gen-ramanujan-sum:
k > 0 =⇒ c k n = s id moebius-mu k n
using ramanujan-sum-dirichlet-form unfolding gen-ramanujan-sum-def by simp

Theorem 8.7
theorem gen-ramanujan-sum-distrib:

fixes f g :: nat ⇒ complex
assumes a > 0 b > 0 m > 0 k > 0
assumes coprime a k coprime b m coprime k m
assumes multiplicative-function f and

multiplicative-function g
shows s f g (m∗k) (a∗b) = s f g m a ∗ s f g k b

proof −
from assms(1−6) have eq: gcd (m∗k) (a∗b) = gcd a m ∗ gcd k b
by (simp add: linear-gcd gcd.commute mult.commute)

have s f g (m∗k) (a∗b) =
(
∑

d | d dvd gcd (m∗k) (a∗b). f (d) ∗ g((m∗k) div d))
unfolding gen-ramanujan-sum-def by (rule sum.cong, simp add: gcd.commute,blast)

also have . . . =
(
∑

d | d dvd gcd a m ∗ gcd k b. f (d) ∗ g((m∗k) div d))
using eq by simp

also have . . . =
(
∑

(d1 ,d2) | d1 dvd gcd a m ∧ d2 dvd gcd k b.
f (d1∗d2) ∗ g((m∗k) div (d1∗d2)))

proof −
have b: bij-betw (λ(d1 , d2). d1 ∗ d2)
{(d1 , d2). d1 dvd gcd a m ∧ d2 dvd gcd k b}
{d. d dvd gcd a m ∗ gcd k b}

using assms(5) reindex-product-bij by blast
have (

∑
(d1 , d2) | d1 dvd gcd a m ∧ d2 dvd gcd k b.

f (d1 ∗ d2) ∗ g (m ∗ k div (d1 ∗ d2))) =
(
∑

x∈{(d1 , d2). d1 dvd gcd a m ∧ d2 dvd gcd k b}.
f (case x of (d1 , d2) ⇒ d1 ∗ d2)∗

g (m ∗ k div (case x of (d1 , d2) ⇒ d1 ∗ d2)))
by (rule sum.cong,auto)

also have . . . = (
∑

d | d dvd gcd a m ∗ gcd k b. f d ∗ g (m ∗ k div d))
using b by (rule sum.reindex-bij-betw[of λ(d1 ,d2). d1∗d2])

finally show ?thesis by argo
qed

also have . . . = (
∑

d1 | d1 dvd gcd a m.
∑

d2 | d2 dvd gcd k b.
f (d1∗d2) ∗ g ((m∗k) div (d1∗d2)))

by (simp add: sum.cartesian-product) (rule sum.cong,auto)

43

also have . . . = (
∑

d1 | d1 dvd gcd a m.
∑

d2 | d2 dvd gcd k b.
f d1 ∗ f d2 ∗ g ((m∗k) div (d1∗d2)))

using assms(5) assms(8) multiplicative-function.mult-coprime
by (intro sum.cong refl) fastforce+

also have . . . = (
∑

d1 | d1 dvd gcd a m.
∑

d2 | d2 dvd gcd k b.
f d1 ∗ f d2∗ g (m div d1) ∗ g (k div d2))

proof (intro sum.cong refl, clarify, goal-cases)
case (1 d1 d2)
hence g (m ∗ k div (d1 ∗ d2)) = g (m div d1) ∗ g (k div d2)

using assms(7 ,9) multipl-div
by (meson coprime-commute dvd-gcdD1 dvd-gcdD2)

thus ?case by simp
qed
also have . . . = (

∑
i∈{d1 . d1 dvd gcd a m}.

∑
j∈{d2 . d2 dvd gcd k b}.

f i ∗ g (m div i) ∗ (f j ∗ g (k div j)))
by (rule sum.cong,blast,rule sum.cong,blast,simp)

also have . . . = (
∑

d1 | d1 dvd gcd a m. f d1 ∗ g (m div d1)) ∗
(
∑

d2 | d2 dvd gcd k b. f d2 ∗ g (k div d2))
by (simp add: sum-product)

also have . . . = s f g m a ∗ s f g k b
unfolding gen-ramanujan-sum-def by (simp add: gcd.commute)

finally show ?thesis by blast
qed

corollary gen-ramanujan-sum-distrib-right:
fixes f g :: nat ⇒ complex
assumes a > 0 and b > 0 and m > 0
assumes coprime b m
assumes multiplicative-function f and

multiplicative-function g
shows s f g m (a ∗ b) = s f g m a

proof −
have s f g m (a∗b) = s f g m a ∗ s f g 1 b

using assms gen-ramanujan-sum-distrib[of a b m 1 f g] by simp
also have . . . = s f g m a ∗ f 1 ∗ g 1

using gen-ramanujan-sum-1-n by auto
also have . . . = s f g m a

using assms(5−6)
by (simp add: multiplicative-function-def)

finally show s f g m (a∗b) = s f g m a by blast
qed

corollary gen-ramanujan-sum-distrib-left:
fixes f g :: nat ⇒ complex
assumes a > 0 and k > 0 and m > 0
assumes coprime a k and coprime k m
assumes multiplicative-function f and

multiplicative-function g
shows s f g (m∗k) a = s f g m a ∗ g k

44

proof −
have s f g (m∗k) a = s f g m a ∗ s f g k 1

using assms gen-ramanujan-sum-distrib[of a 1 m k f g] by simp
also have . . . = s f g m a ∗ f (1) ∗ g(k)

using gen-ramanujan-sum-k-1 by auto
also have . . . = s f g m a ∗ g k

using assms(6)
by (simp add: multiplicative-function-def)

finally show ?thesis by blast
qed

corollary ramanujan-sum-distrib:
assumes a > 0 and k > 0 and m > 0 and b > 0
assumes coprime a k coprime b m coprime m k
shows c (m∗k) (a∗b) = c m a ∗ c k b

proof −
have c (m∗k) (a∗b) = s id moebius-mu (m∗k) (a∗b)

using ramanujan-sum-conv-gen-ramanujan-sum assms(2 ,3) by simp

also have . . . = (s id moebius-mu m a) ∗ (s id moebius-mu k b)
using gen-ramanujan-sum-distrib[of a b m k id moebius-mu]

assms mult-id mult-moebius mult-of-nat
coprime-commute[of m k] by auto

also have . . . = c m a ∗ c k b using ramanujan-sum-conv-gen-ramanujan-sum
assms by simp

finally show ?thesis by simp
qed

corollary ramanujan-sum-distrib-right:
assumes a > 0 and k > 0 and m > 0 and b > 0
assumes coprime b m
shows c m (a∗b) = c m a
using assms ramanujan-sum-conv-gen-ramanujan-sum mult-id mult-moebius

mult-of-nat gen-ramanujan-sum-distrib-right by auto

corollary ramanujan-sum-distrib-left:
assumes a > 0 k > 0 m > 0
assumes coprime a k coprime m k
shows c (m∗k) a = c m a ∗ moebius-mu k
using assms
by (simp add: ramanujan-sum-conv-gen-ramanujan-sum, subst gen-ramanujan-sum-distrib-left)

(auto simp: coprime-commute mult-of-nat mult-moebius)

lemma dirichlet-prod-completely-multiplicative-left:
fixes f h :: nat ⇒ complex and k :: nat
defines g ≡ (λk. moebius-mu k ∗ h k)
defines F ≡ dirichlet-prod f g
assumes k > 0
assumes completely-multiplicative-function f

45

multiplicative-function h
assumes

∧
p. prime p =⇒ f (p) 6= 0 ∧ f (p) 6= h(p)

shows F k = f k ∗ (
∏

p∈prime-factors k. 1 − h p / f p)
proof −

have 1 : multiplicative-function (λp. h(p) div f (p))
using multiplicative-function-divide

comp-to-mult assms(4 ,5) by blast
have F k = dirichlet-prod g f k

unfolding F-def using dirichlet-prod-commutes[of f g] by auto
also have . . . = (

∑
d | d dvd k. moebius-mu d ∗ h d ∗ f (k div d))

unfolding g-def dirichlet-prod-def by blast
also have . . . = (

∑
d | d dvd k. moebius-mu d ∗ h d ∗ (f (k) div f (d)))

using multipl-div-mono[of f - k] assms(4 ,6)
by (intro sum.cong,auto,force)

also have . . . = f k ∗ (
∑

d | d dvd k. moebius-mu d ∗ (h d div f (d)))
by (simp add: sum-distrib-left algebra-simps)

also have . . . = f k ∗ (
∏

p∈prime-factors k. 1 − (h p div f p))
using sum-divisors-moebius-mu-times-multiplicative[of λp. h p div f p k] 1

assms(3) by simp
finally show F-eq: F k = f k ∗ (

∏
p∈prime-factors k. 1 − (h p div f p))

by blast
qed

Theorem 8.8
theorem gen-ramanujan-sum-dirichlet-expr :

fixes f h :: nat ⇒ complex and n k :: nat
defines g ≡ (λk. moebius-mu k ∗ h k)
defines F ≡ dirichlet-prod f g
defines N ≡ k div gcd n k
assumes completely-multiplicative-function f

multiplicative-function h
assumes

∧
p. prime p =⇒ f (p) 6= 0 ∧ f (p) 6= h(p)

assumes k > 0 n > 0
shows s f g k n = (F(k)∗g(N)) div (F(N))

proof −
define a where a ≡ gcd n k
have 2 : k = a∗N unfolding a-def N-def by auto
have 3 : a > 0 using a-def assms(7 ,8) by simp
have Ngr0 : N > 0 using assms(7 ,8) 2 N-def by fastforce
have f-k-not-z: f k 6= 0

using completely-multiplicative-nonzero assms(4 ,6 ,7) by blast
have f-N-not-z: f N 6= 0

using completely-multiplicative-nonzero assms(4 ,6) Ngr0 by blast
have bij: bij-betw (λd. a div d) {d. d dvd a} {d. d dvd a}

unfolding bij-betw-def
proof

show inj: inj-on (λd. a div d) {d. d dvd a}
using inj-on-def 3 dvd-div-eq-2 by blast

show surj: (λd. a div d) ‘ {d. d dvd a} = {d. d dvd a}

46

unfolding image-def
proof

show {y. ∃ x∈{d. d dvd a}. y = a div x} ⊆ {d. d dvd a}
by auto

show {d. d dvd a} ⊆ {y. ∃ x∈{d. d dvd a}. y = a div x}
proof

fix d
assume a: d ∈ {d. d dvd a}
from a have 1 : (a div d) ∈ {d. d dvd a} by auto
from a have 2 : d = a div (a div d) using 3 by auto
from 1 2 show d ∈ {y. ∃ x∈{d. d dvd a}. y = a div x} by blast

qed
qed

qed

have s f g k n = (
∑

d | d dvd a. f (d)∗moebius-mu(k div d)∗h(k div d))
unfolding gen-ramanujan-sum-def g-def a-def by (simp add: mult.assoc)

also have . . . = (
∑

d | d dvd a. f (d) ∗ moebius-mu(a∗N div d)∗h(a∗N div d))
using 2 by blast

also have . . . = (
∑

d | d dvd a. f (a div d) ∗ moebius-mu(N∗d)∗h(N∗d))
(is ?a = ?b)

proof −
define f-aux where f-aux ≡ (λd. f d ∗ moebius-mu (a ∗ N div d) ∗ h (a ∗ N

div d))
have 1 : ?a = (

∑
d | d dvd a. f-aux d) using f-aux-def by blast

{fix d :: nat
assume d dvd a
then have N ∗ a div (a div d) = N ∗ d

using 3 by force}
then have 2 : ?b = (

∑
d | d dvd a. f-aux (a div d))

unfolding f-aux-def by (simp add: algebra-simps)
show ?a = ?b

using bij 1 2
by (simp add: sum.reindex-bij-betw[of ((div) a) {d. d dvd a} {d. d dvd a}])

qed
also have . . . = moebius-mu N ∗ h N ∗ f a ∗ (

∑
d | d dvd a ∧ coprime N d.

moebius-mu d ∗ (h d div f d))
(is ?a = ?b)

proof −
have ?a = (

∑
d | d dvd a ∧ coprime N d. f (a div d) ∗ moebius-mu (N∗d) ∗ h

(N∗d))
by (rule sum.mono-neutral-right)(auto simp add: moebius-prod-not-coprime

3)
also have . . . = (

∑
d | d dvd a ∧ coprime N d. moebius-mu N ∗ h N ∗ f (a div

d) ∗ moebius-mu d ∗ h d)
proof (rule sum.cong,simp)

fix d
assume a: d ∈ {d. d dvd a ∧ coprime N d}
then have 1 : moebius-mu (N∗d) = moebius-mu N ∗ moebius-mu d

47

using mult-moebius unfolding multiplicative-function-def
by (simp add: moebius-mu.mult-coprime)

from a have 2 : h (N∗d) = h N ∗ h d
using assms(5) unfolding multiplicative-function-def
by (simp add: assms(5) multiplicative-function.mult-coprime)

show f (a div d) ∗ moebius-mu (N ∗ d) ∗ h (N ∗ d) =
moebius-mu N ∗ h N ∗ f (a div d) ∗ moebius-mu d ∗ h d

by (simp add: divide-simps 1 2)
qed
also have . . . = (

∑
d | d dvd a ∧ coprime N d. moebius-mu N ∗ h N ∗ (f a

div f d) ∗ moebius-mu d ∗ h d)
by (intro sum.cong refl) (use multipl-div-mono[of f - a] assms(4 ,6−8) 3 in

force)
also have . . . = moebius-mu N ∗ h N ∗ f a ∗ (

∑
d | d dvd a ∧ coprime N d.

moebius-mu d ∗ (h d div f d))
by (simp add: sum-distrib-left algebra-simps)

finally show ?thesis by blast
qed
also have . . . =

moebius-mu N ∗ h N ∗ f a ∗ (
∏

p∈{p. p ∈ prime-factors a ∧ ¬ (p dvd
N)}. 1 − (h p div f p))

proof −
have multiplicative-function (λd. h d div f d)

using multiplicative-function-divide
comp-to-mult
assms(4 ,5) by blast

then have (
∑

d | d dvd a ∧ coprime N d. moebius-mu d ∗ (h d div f d)) =
(
∏

p∈{p. p ∈ prime-factors a ∧ ¬ (p dvd N)}. 1 − (h p div f p))
using sum-divisors-moebius-mu-times-multiplicative-revisited[

of (λd. h d div f d) a N]
assms(8) Ngr0 3 by blast

then show ?thesis by argo
qed
also have . . . = f (a) ∗ moebius-mu(N) ∗ h(N) ∗

((
∏

p∈{p. p ∈ prime-factors (a∗N)}. 1 − (h p div f p)) div
(
∏

p∈{p. p ∈ prime-factors N}. 1 − (h p div f p)))
proof −

have {p. p ∈prime-factors a ∧ ¬ p dvd N} =
({p. p ∈prime-factors (a∗N)} − {p. p ∈prime-factors N})

using p-div-set[of a N] by blast
then have eq2 : (

∏
p∈{p. p ∈prime-factors a ∧ ¬ p dvd N}. 1 − h p / f p) =

prod (λp. 1 − h p / f p) ({p. p ∈prime-factors (a∗N)} − {p. p ∈prime-factors
N})

by auto
also have eq: . . . = prod (λp. 1 − h p / f p) {p. p ∈prime-factors (a∗N)} div

prod (λp. 1 − h p / f p) {p. p ∈prime-factors N}
proof (intro prod-div-sub,simp,simp,simp add: 3 Ngr0 dvd-prime-factors,simp,standard)

fix b
assume b ∈# prime-factorization N

48

then have p-b: prime b using in-prime-factors-iff by blast
then show f b = 0 ∨ h b 6= f b using assms(6)[OF p-b] by auto

qed
also have . . . = (

∏
p∈{p. p ∈ prime-factors (a∗N)}. 1 − (h p div f p)) div

(
∏

p∈{p. p ∈ prime-factors N}. 1 − (h p div f p)) by blast
finally have (

∏
p∈{p. p ∈prime-factors a ∧ ¬ p dvd N}. 1 − h p / f p) =

(
∏

p∈{p. p ∈ prime-factors (a∗N)}. 1 − (h p div f p)) div
(
∏

p∈{p. p ∈ prime-factors N}. 1 − (h p div f p))
using eq eq2 by auto

then show ?thesis by simp
qed
also have . . . = f (a) ∗ moebius-mu(N) ∗ h(N) ∗ (F(k) div f (k)) ∗ (f (N) div

F(N))
(is ?a = ?b)

proof −
have F(N) = (f N) ∗(

∏
p∈ prime-factors N . 1 − (h p div f p))

unfolding F-def g-def
by (intro dirichlet-prod-completely-multiplicative-left) (auto simp add: Ngr0

assms(4−6))
then have eq-1 : (

∏
p∈ prime-factors N . 1 − (h p div f p)) =

F N div f N using 2 f-N-not-z by simp
have F(k) = (f k) ∗ (

∏
p∈ prime-factors k. 1 − (h p div f p))

unfolding F-def g-def
by (intro dirichlet-prod-completely-multiplicative-left) (auto simp add: assms(4−7))
then have eq-2 : (

∏
p∈ prime-factors k. 1 − (h p div f p)) =

F k div f k using 2 f-k-not-z by simp

have ?a = f a ∗ moebius-mu N ∗ h N ∗
((
∏

p∈ prime-factors k. 1 − (h p div f p)) div
(
∏

p∈ prime-factors N . 1 − (h p div f p)))
using 2 by (simp add: algebra-simps)

also have . . . = f a ∗ moebius-mu N ∗ h N ∗ ((F k div f k) div (F N div f N))
by (simp add: eq-1 eq-2)

finally show ?thesis by simp
qed
also have . . . = moebius-mu N ∗ h N ∗ ((F k ∗ f a ∗ f N) div (F N ∗ f k))

by (simp add: algebra-simps)
also have . . . = moebius-mu N ∗ h N ∗ ((F k ∗ f (a∗N)) div (F N ∗ f k))
proof −

have f a ∗ f N = f (a∗N)
proof (cases a = 1 ∨ N = 1)

case True
then show ?thesis

using assms(4) completely-multiplicative-function-def [of f]
by auto

next
case False
then show ?thesis

using 2 assms(4) completely-multiplicative-function-def [of f]

49

Ngr0 3 by auto
qed
then show ?thesis by simp

qed
also have . . . = moebius-mu N ∗ h N ∗ ((F k ∗ f (k)) div (F N ∗ f k))

using 2 by blast
also have . . . = g(N) ∗ (F k div F N)

using f-k-not-z g-def by simp
also have . . . = (F(k)∗g(N)) div (F(N)) by auto
finally show ?thesis by simp

qed

lemma totient-conv-moebius-mu-of-nat:
of-nat (totient n) = dirichlet-prod moebius-mu of-nat n

proof (cases n = 0)
case False
show ?thesis

by (rule moebius-inversion)
(insert False, simp-all add: of-nat-sum [symmetric] totient-divisor-sum del:

of-nat-sum)
qed simp-all

corollary ramanujan-sum-k-n-dirichlet-expr :
fixes k n :: nat
assumes k > 0 n > 0
shows c k n = of-nat (totient k) ∗

moebius-mu (k div gcd n k) div
of-nat (totient (k div gcd n k))

proof −
define f :: nat ⇒ complex

where f ≡ of-nat
define F :: nat ⇒ complex

where F ≡ (λd. dirichlet-prod f moebius-mu d)
define g :: nat ⇒ complex

where g ≡ (λl. moebius-mu l)
define N where N ≡ k div gcd n k
define h :: nat ⇒ complex

where h ≡ (λx. (if x = 0 then 0 else 1))

have F-is-totient-k: F k = totient k
by (simp add: F-def f-def dirichlet-prod-commutes totient-conv-moebius-mu-of-nat[of

k])
have F-is-totient-N : F N = totient N
by (simp add: F-def f-def dirichlet-prod-commutes totient-conv-moebius-mu-of-nat[of

N])

have c k n = s id moebius-mu k n
using ramanujan-sum-conv-gen-ramanujan-sum assms by blast

50

also have . . . = s f g k n
unfolding f-def g-def by auto

also have g = (λk. moebius-mu k ∗ h k)
by (simp add: fun-eq-iff h-def g-def)

also have multiplicative-function h
unfolding h-def by standard auto

hence s f (λk. moebius-mu k ∗ h k) k n =
dirichlet-prod of-nat (λk. moebius-mu k ∗ h k) k ∗
(moebius-mu (k div gcd n k) ∗ h (k div gcd n k)) /
dirichlet-prod of-nat (λk. moebius-mu k ∗ h k) (k div gcd n k)

unfolding f-def using assms mult-of-nat-c
by (intro gen-ramanujan-sum-dirichlet-expr) (auto simp: h-def)

also have . . . = of-nat (totient k) ∗ moebius-mu (k div gcd n k) / of-nat (totient
(k div gcd n k))

using F-is-totient-k F-is-totient-N by (auto simp: h-def F-def N-def f-def)
finally show ?thesis .

qed

no-notation ramanujan-sum (‹c›)
no-notation gen-ramanujan-sum (‹s›)

end

theory Gauss-Sums
imports

HOL−Algebra.Coset
HOL−Real-Asymp.Real-Asymp
Ramanujan-Sums

begin

7 Gauss sums
bundle vec-lambda-syntax
begin
notation vec-lambda (binder ‹χ› 10)
end

unbundle no vec-lambda-syntax

7.1 Definition and basic properties
context dcharacter
begin

lemma dir-periodic-arithmetic: periodic-arithmetic χ n
unfolding periodic-arithmetic-def by (simp add: periodic)

definition gauss-sum k = (
∑

m = 1 ..n . χ(m) ∗ unity-root n (m∗k))

51

lemma gauss-sum-periodic:
periodic-arithmetic (λn. gauss-sum n) n

proof −
have periodic-arithmetic χ n using dir-periodic-arithmetic by simp
let ?h = λm k. χ(m) ∗ unity-root n (m∗k)
{fix m :: nat
have periodic-arithmetic (λk. unity-root n (m∗k)) n

using unity-periodic-arithmetic-mult[of n m] by simp
have periodic-arithmetic (?h m) n

using scalar-mult-periodic-arithmetic[OF ‹periodic-arithmetic (λk. unity-root n
(m∗k)) n›]

by blast}
then have per-all: ∀m ∈ {1 ..n}. periodic-arithmetic (?h m) n by blast
have periodic-arithmetic (λk. (

∑
m = 1 ..n . χ(m) ∗ unity-root n (m∗k))) n

using fin-sum-periodic-arithmetic-set[OF per-all] by blast
then show ?thesis

unfolding gauss-sum-def by blast
qed

lemma ramanujan-sum-conv-gauss-sum:
assumes χ = principal-dchar n
shows ramanujan-sum n k = gauss-sum k

proof −
{fix m
from assms

have 1 : coprime m n =⇒ χ(m) = 1 and
2 : ¬ coprime m n =⇒ χ(m) = 0

unfolding principal-dchar-def by auto}
note eq = this

have gauss-sum k = (
∑

m = 1 ..n . χ(m) ∗ unity-root n (m∗k))
unfolding gauss-sum-def by simp

also have . . . = (
∑

m | m ∈ {1 ..n} ∧ coprime m n . χ(m) ∗ unity-root n (m∗k))
by (rule sum.mono-neutral-right,simp,blast,simp add: eq)

also have . . . = (
∑

m | m ∈ {1 ..n} ∧ coprime m n . unity-root n (m∗k))
by (simp add: eq)

also have . . . = ramanujan-sum n k unfolding ramanujan-sum-def by blast
finally show ?thesis ..

qed

lemma cnj-mult-self :
assumes coprime k n
shows cnj (χ k) ∗ χ k = 1

proof −
have cnj (χ k) ∗ χ k = norm (χ k)^2

by (simp add: mult.commute complex-mult-cnj cmod-def)
also have . . . = 1

using norm[of k] assms by simp

52

finally show ?thesis .
qed

Theorem 8.9
theorem gauss-sum-reduction:

assumes coprime k n
shows gauss-sum k = cnj (χ k) ∗ gauss-sum 1

proof −
from n have n-pos: n > 0 by simp
have gauss-sum k = (

∑
r = 1 ..n . χ(r) ∗ unity-root n (r∗k))

unfolding gauss-sum-def by simp
also have . . . = (

∑
r = 1 ..n . cnj (χ(k)) ∗ χ k ∗ χ r ∗ unity-root n (r∗k))

using assms by (intro sum.cong) (auto simp: cnj-mult-self)
also have . . . = (

∑
r = 1 ..n . cnj (χ(k)) ∗ χ (k∗r) ∗ unity-root n (r∗k))

by (intro sum.cong) auto
also have . . . = cnj (χ(k)) ∗ (

∑
r = 1 ..n . χ (k∗r) ∗ unity-root n (r∗k))

by (simp add: sum-distrib-left algebra-simps)
also have . . .= cnj (χ(k)) ∗ (

∑
r = 1 ..n . χ r ∗ unity-root n r)

proof −
have 1 : periodic-arithmetic (λr . χ r ∗ unity-root n r) n
using dir-periodic-arithmetic unity-periodic-arithmetic mult-periodic-arithmetic

by blast
have (

∑
r = 1 ..n . χ (k∗r) ∗ unity-root n (r∗k)) =

(
∑

r = 1 ..n . χ (r)∗ unity-root n r)
using periodic-arithmetic-remove-homothecy[OF assms(1) 1 n-pos]
by (simp add: algebra-simps n)

then show ?thesis by argo
qed
also have . . . = cnj (χ(k)) ∗ gauss-sum 1

using gauss-sum-def by simp
finally show ?thesis .

qed

The following variant takes an integer argument instead.
definition gauss-sum-int k = (

∑
m=1 ..n. χ m ∗ unity-root n (int m∗k))

sublocale gauss-sum-int: periodic-fun-simple gauss-sum-int int n
proof

fix k
show gauss-sum-int (k + int n) = gauss-sum-int k

by (simp add: gauss-sum-int-def ring-distribs unity-root-add)
qed

lemma gauss-sum-int-cong:
assumes [a = b] (mod int n)
shows gauss-sum-int a = gauss-sum-int b

proof −
from assms obtain k where k: b = a + int n ∗ k

by (subst (asm) cong-iff-lin) auto

53

thus ?thesis
using gauss-sum-int.plus-of-int[of a k] by (auto simp: algebra-simps)

qed

lemma gauss-sum-conv-gauss-sum-int:
gauss-sum k = gauss-sum-int (int k)
unfolding gauss-sum-def gauss-sum-int-def by auto

lemma gauss-sum-int-conv-gauss-sum:
gauss-sum-int k = gauss-sum (nat (k mod n))

proof −
have gauss-sum (nat (k mod n)) = gauss-sum-int (int (nat (k mod n)))

by (simp add: gauss-sum-conv-gauss-sum-int)
also have . . . = gauss-sum-int k

using n
by (intro gauss-sum-int-cong) (auto simp: cong-def)

finally show ?thesis ..
qed

lemma gauss-int-periodic: periodic-arithmetic gauss-sum-int n
unfolding periodic-arithmetic-def gauss-sum-int-conv-gauss-sum by simp

proposition dcharacter-fourier-expansion:
χ m = (

∑
k=1 ..n. 1 / n ∗ gauss-sum-int (−k) ∗ unity-root n (m∗k))

proof −
define g where g = (λx. 1 / of-nat n ∗

(
∑

m<n. χ m ∗ unity-root n (− int x ∗ int m)))
have per : periodic-arithmetic χ n using dir-periodic-arithmetic by simp
have χ m = (

∑
k<n. g k ∗ unity-root n (m ∗ int k))

using fourier-expansion-periodic-arithmetic(2)[OF - per , of m] n by (auto simp:
g-def)

also have . . . = (
∑

k = 1 ..n. g k ∗ unity-root n (m ∗ int k))
proof −

have g-per : periodic-arithmetic g n
using fourier-expansion-periodic-arithmetic(1)[OF - per] n by (simp add:

g-def)
have fact-per : periodic-arithmetic (λk. g k ∗ unity-root n (int m ∗ int k)) n

using mult-periodic-arithmetic[OF g-per] unity-periodic-arithmetic-mult by
auto

show ?thesis
proof −

have (
∑

k<n. g k ∗ unity-root n (int m ∗ int k)) =
(
∑

l = 0 ..n − Suc 0 . g l ∗ unity-root n (int m ∗ int l))
using n by (intro sum.cong) auto

also have . . . = (
∑

l = Suc 0 ..n. g l ∗ unity-root n (int m ∗ int l))
using periodic-arithmetic-sum-periodic-arithmetic-shift[OF fact-per , of 1] n

by auto
finally show ?thesis by simp

qed

54

qed
also have . . . = (

∑
k = 1 ..n. (1 / of-nat n) ∗ gauss-sum-int (−k) ∗ unity-root

n (m∗k))
proof −

{fix k :: nat
have shift: (

∑
m<n. χ m ∗ unity-root n (− int k ∗ int m)) =

(
∑

m = 1 ..n. χ m ∗ unity-root n (− int k ∗ int m))
proof −

have per-unit: periodic-arithmetic (λm. unity-root n (− int k ∗ int m)) n
using unity-periodic-arithmetic-mult by blast

then have prod-per : periodic-arithmetic (λm. χ m ∗ unity-root n (− int k ∗
int m)) n

using per mult-periodic-arithmetic by blast
show ?thesis
proof −

have (
∑

m<n. χ m ∗ unity-root n (− int k ∗ int m)) =
(
∑

l = 0 ..n − Suc 0 . χ l ∗ unity-root n (− int k ∗ int l))
using n by (intro sum.cong) auto

also have . . . = (
∑

m = 1 ..n. χ m ∗ unity-root n (− int k ∗ int m))
using periodic-arithmetic-sum-periodic-arithmetic-shift[OF prod-per , of 1]

n by auto
finally show ?thesis by simp

qed
qed
have g k = 1 / of-nat n ∗
(
∑

m<n. χ m ∗ unity-root n (− int k ∗ int m))
using g-def by auto

also have . . . = 1 / of-nat n ∗
(
∑

m = 1 ..n. χ m ∗ unity-root n (− int k ∗ int m))
using shift by simp

also have . . . = 1 / of-nat n ∗ gauss-sum-int (−k)
unfolding gauss-sum-int-def
by (simp add: algebra-simps)

finally have g k = 1 / of-nat n ∗ gauss-sum-int (−k) by simp}
note g-expr = this

show ?thesis
by (rule sum.cong, simp, simp add: g-expr)

qed
finally show ?thesis by auto

qed

7.2 Separability
definition separable k ←→ gauss-sum k = cnj (χ k) ∗ gauss-sum 1

corollary gauss-coprime-separable:
assumes coprime k n
shows separable k
using gauss-sum-reduction[OF assms] unfolding separable-def by simp

55

Theorem 8.10
theorem global-separability-condition:
(∀n>0 . separable n) ←→ (∀ k>0 . ¬coprime k n −→ gauss-sum k = 0)

proof −
{fix k
assume ¬ coprime k n
then have χ(k) = 0 by (simp add: eq-zero)
then have cnj (χ k) = 0 by blast
then have separable k ←→ gauss-sum k = 0

unfolding separable-def by auto}
note not-case = this

show ?thesis
using gauss-coprime-separable not-case separable-def by blast

qed

lemma of-real-moebius-mu [simp]: of-real (moebius-mu k) = moebius-mu k
by (simp add: moebius-mu-def)

corollary principal-not-totally-separable:
assumes χ = principal-dchar n
shows ¬(∀ k > 0 . separable k)

proof −
have n-pos: n > 0 using n by simp
have tot-0 : totient n 6= 0 by (simp add: n-pos)
have moebius-mu (n div gcd n n) 6= 0 by (simp add: ‹n > 0 ›)
then have moeb-0 : ∃ k. moebius-mu (n div gcd k n) 6= 0 by blast

have lem: gauss-sum k = totient n ∗ moebius-mu (n div gcd k n) / totient (n div
gcd k n)

if k > 0 for k
proof −

have gauss-sum k = ramanujan-sum n k
using ramanujan-sum-conv-gauss-sum[OF assms(1)] ..

also have . . . = totient n ∗ moebius-mu (n div gcd k n) / (totient (n div gcd k
n))

by (simp add: ramanujan-sum-k-n-dirichlet-expr [OF n-pos that])
finally show ?thesis .

qed
have 2 : ¬ coprime n n using n by auto
have 3 : gauss-sum n 6= 0

using lem[OF n-pos] tot-0 moebius-mu-1 by simp
from n-pos 2 3 have
∃ k>0 . ¬coprime k n ∧ gauss-sum k 6= 0 by blast

then obtain k where k > 0 ∧ ¬ coprime k n ∧ gauss-sum k 6= 0 by blast
note right-not-zero = this

have cnj (χ k) ∗ gauss-sum 1 = 0 if ¬coprime k n for k
using that assms by (simp add: principal-dchar-def)

56

then show ?thesis
unfolding separable-def using right-not-zero by auto

qed

Theorem 8.11
theorem gauss-sum-1-mod-square-eq-k:

assumes (∀ k. k > 0 −→ separable k)
shows norm (gauss-sum 1) ^ 2 = real n

proof −
have (norm (gauss-sum 1))^2 = gauss-sum 1 ∗ cnj (gauss-sum 1)

using complex-norm-square by blast
also have . . . = gauss-sum 1 ∗ (

∑
m = 1 ..n. cnj (χ(m)) ∗ unity-root n (−m))

proof −
have cnj (gauss-sum 1) = (

∑
m = 1 ..n. cnj (χ(m)) ∗ unity-root n (−m))

unfolding gauss-sum-def by (simp add: unity-root-uminus)
then show ?thesis by argo

qed
also have . . . = (

∑
m = 1 ..n. gauss-sum 1 ∗ cnj (χ(m)) ∗ unity-root n (−m))

by (subst sum-distrib-left)(simp add: algebra-simps)
also have . . . = (

∑
m = 1 ..n. gauss-sum m ∗ unity-root n (−m))

proof (rule sum.cong,simp)
fix x
assume as: x ∈ {1 ..n}
show gauss-sum 1 ∗ cnj (χ x) ∗ unity-root n (−x) =

gauss-sum x ∗ unity-root n (−x)
using assms(1) unfolding separable-def
by (rule allE [of - x]) (use as in auto)

qed
also have . . . = (

∑
m = 1 ..n. (

∑
r = 1 ..n. χ r ∗ unity-root n (r∗m) ∗ unity-root

n (−m)))
unfolding gauss-sum-def
by (rule sum.cong,simp,rule sum-distrib-right)

also have . . . = (
∑

m = 1 ..n. (
∑

r = 1 ..n. χ r ∗ unity-root n (m∗(r−1))))
by (intro sum.cong refl) (auto simp: unity-root-diff of-nat-diff unity-root-uminus

field-simps)
also have . . . = (

∑
r=1 ..n. (

∑
m=1 ..n. χ(r) ∗unity-root n (m∗(r−1))))

by (rule sum.swap)
also have . . . = (

∑
r=1 ..n. χ(r) ∗(

∑
m=1 ..n. unity-root n (m∗(r−1))))

by (rule sum.cong, simp, simp add: sum-distrib-left)
also have . . . = (

∑
r=1 ..n. χ(r) ∗ unity-root-sum n (r−1))

proof (intro sum.cong refl)
fix x
assume x ∈ {1 ..n}
then have 1 : periodic-arithmetic (λm. unity-root n (int (m ∗ (x − 1)))) n

using unity-periodic-arithmetic-mult[of n x−1]
by (simp add: mult.commute)

have (
∑

m = 1 ..n. unity-root n (int (m ∗ (x − 1)))) =
(
∑

m = 0 ..n−1 . unity-root n (int (m ∗ (x − 1))))
using periodic-arithmetic-sum-periodic-arithmetic-shift[OF 1 -, of 1] n by

57

simp
also have . . . = unity-root-sum n (x−1)

using n unfolding unity-root-sum-def by (intro sum.cong) (auto simp:
mult-ac)

finally have (
∑

m = 1 ..n. unity-root n (int (m ∗ (x − 1)))) =
unity-root-sum n (int (x − 1)) .

then show χ x ∗ (
∑

m = 1 ..n. unity-root n (int (m ∗ (x − 1)))) =
χ x ∗ unity-root-sum n (int (x − 1)) by argo

qed
also have . . . = (

∑
r ∈ {1}. χ r ∗ unity-root-sum n (int (r − 1)))

using n unity-root-sum-nonzero-iff int-ops(6)
by (intro sum.mono-neutral-right) auto

also have . . . = χ 1 ∗ n using n by simp
also have . . . = n by simp
finally show ?thesis

using of-real-eq-iff by fastforce
qed

Theorem 8.12
theorem gauss-sum-nonzero-noncoprime-necessary-condition:

assumes gauss-sum k 6= 0 ¬coprime k n k > 0
defines d ≡ n div gcd k n
assumes coprime a n [a = 1] (mod d)
shows d dvd n d < n χ a = 1

proof −
show d dvd n

unfolding d-def using n by (subst div-dvd-iff-mult) auto
from assms(2) have gcd k n 6= 1 by blast
then have gcd k n > 1 using assms(3 ,4) by (simp add: nat-neq-iff)
with n show d < n by (simp add: d-def)

have periodic-arithmetic (λr . χ (r)∗ unity-root n (k∗r)) n
using mult-periodic-arithmetic[OF dir-periodic-arithmetic unity-periodic-arithmetic-mult]

by auto
then have 1 : periodic-arithmetic (λr . χ (r)∗ unity-root n (r∗k)) n

by (simp add: algebra-simps)

have gauss-sum k = (
∑

m = 1 ..n . χ(m) ∗ unity-root n (m∗k))
unfolding gauss-sum-def by blast

also have . . . = (
∑

m = 1 ..n . χ(m∗a) ∗ unity-root n (m∗a∗k))
using periodic-arithmetic-remove-homothecy[OF assms(5) 1] n by auto

also have . . . = (
∑

m = 1 ..n . χ(m∗a) ∗ unity-root n (m∗k))
proof (intro sum.cong refl)

fix m
from assms(6) obtain b where a = 1 + b∗d

using ‹d < n› assms(5) cong-to-1 ′-nat by auto
then have m∗a∗k = m∗k+m∗b∗(n div gcd k n)∗k

by (simp add: algebra-simps d-def)
also have . . . = m∗k+m∗b∗n∗(k div gcd k n)

58

by (simp add: div-mult-swap dvd-div-mult)
also obtain p where . . . = m∗k+m∗b∗n∗p by blast
finally have m∗a∗k = m∗k+m∗b∗p∗n by simp
then have 1 : m∗a∗k mod n= m∗k mod n

using mod-mult-self1 by simp
then have unity-root n (m ∗ a ∗ k) = unity-root n (m ∗ k)
proof −

have unity-root n (m ∗ a ∗ k) = unity-root n ((m ∗ a ∗ k) mod n)
using unity-root-mod[of n] zmod-int by simp

also have . . . = unity-root n (m ∗ k)
using unity-root-mod[of n] zmod-int 1 by presburger

finally show ?thesis by blast
qed
then show χ (m ∗ a) ∗ unity-root n (int (m ∗ a ∗ k)) =

χ (m ∗ a) ∗ unity-root n (int (m ∗ k)) by auto
qed
also have . . . = (

∑
m = 1 ..n . χ(a) ∗ (χ(m) ∗ unity-root n (m∗k)))

by (rule sum.cong,simp,subst mult,simp)
also have . . . = χ(a) ∗ (

∑
m = 1 ..n . χ(m) ∗ unity-root n (m∗k))

by (simp add: sum-distrib-left[symmetric])
also have . . . = χ(a) ∗ gauss-sum k

unfolding gauss-sum-def by blast
finally have gauss-sum k = χ(a) ∗ gauss-sum k by blast
then show χ a = 1

using assms(1) by simp
qed

7.3 Induced moduli and primitive characters
definition induced-modulus d ←→ d dvd n ∧ (∀ a. coprime a n ∧ [a = 1] (mod d)
−→ χ a = 1)

lemma induced-modulus-dvd: induced-modulus d =⇒ d dvd n
unfolding induced-modulus-def by blast

lemma induced-modulusI [intro?]:
d dvd n =⇒ (

∧
a. coprime a n =⇒ [a = 1] (mod d) =⇒ χ a = 1) =⇒ in-

duced-modulus d
unfolding induced-modulus-def by auto

lemma induced-modulusD: induced-modulus d =⇒ coprime a n =⇒ [a = 1] (mod
d) =⇒ χ a = 1

unfolding induced-modulus-def by blast

lemma zero-not-ind-mod: ¬induced-modulus 0
unfolding induced-modulus-def using n by simp

lemma div-gcd-dvd1 : (a :: ′a :: semiring-gcd) div gcd a b dvd a
by (metis dvd-def dvd-div-mult-self gcd-dvd1)

59

lemma div-gcd-dvd2 : (b :: ′a :: semiring-gcd) div gcd a b dvd b
by (metis div-gcd-dvd1 gcd.commute)

lemma g-non-zero-ind-mod:
assumes gauss-sum k 6= 0 ¬coprime k n k > 0
shows induced-modulus (n div gcd k n)

proof
show n div gcd k n dvd n

by (metis dvd-div-mult-self dvd-triv-left gcd.commute gcd-dvd1)
fix a :: nat
assume coprime a n [a = 1] (mod n div gcd k n)
thus χ a = 1

using assms n gauss-sum-nonzero-noncoprime-necessary-condition(3) by auto
qed

lemma induced-modulus-modulus: induced-modulus n
unfolding induced-modulus-def
by (metis dvd-refl local.cong mult.one)

Theorem 8.13
theorem one-induced-iff-principal:
induced-modulus 1 ←→ χ = principal-dchar n

proof
assume induced-modulus 1
then have (∀ a. coprime a n −→ χ a = 1)

unfolding induced-modulus-def by simp
then show χ = principal-dchar n

unfolding principal-dchar-def using eq-zero by auto
next

assume as: χ = principal-dchar n
{fix a
assume coprime a n
then have χ a = 1

using principal-dchar-def as by simp}
then show induced-modulus 1

unfolding induced-modulus-def by auto
qed

end

locale primitive-dchar = dcharacter +
assumes no-induced-modulus: ¬(∃ d<n. induced-modulus d)

locale nonprimitive-dchar = dcharacter +
assumes induced-modulus: ∃ d<n. induced-modulus d

lemma (in nonprimitive-dchar) nonprimitive: ¬primitive-dchar n χ

60

proof
assume primitive-dchar n χ
then interpret A: primitive-dchar n residue-mult-group n χ

by auto
from A.no-induced-modulus induced-modulus show False by contradiction

qed

lemma (in dcharacter) primitive-dchar-iff :
primitive-dchar n χ ←→ ¬(∃ d<n. induced-modulus d)
unfolding primitive-dchar-def primitive-dchar-axioms-def
using dcharacter-axioms by metis

lemma (in residues-nat) principal-not-primitive:
¬primitive-dchar n (principal-dchar n)
unfolding principal.primitive-dchar-iff
using principal.one-induced-iff-principal n by auto

lemma (in dcharacter) not-primitive-imp-nonprimitive:
assumes ¬primitive-dchar n χ
shows nonprimitive-dchar n χ
using assms dcharacter-axioms
unfolding nonprimitive-dchar-def primitive-dchar-def

primitive-dchar-axioms-def nonprimitive-dchar-axioms-def by auto

Theorem 8.14
theorem (in dcharacter) prime-nonprincipal-is-primitive:

assumes prime n
assumes χ 6= principal-dchar n
shows primitive-dchar n χ

proof −
{fix m
assume induced-modulus m
then have m = n

using assms prime-nat-iff induced-modulus-def
one-induced-iff-principal by blast}

then show ?thesis using primitive-dchar-iff by blast
qed

Theorem 8.15
corollary (in primitive-dchar) primitive-encoding:
∀ k>0 . ¬coprime k n −→ gauss-sum k = 0
∀ k>0 . separable k
norm (gauss-sum 1) ^ 2 = n

proof safe
show 1 : gauss-sum k = 0 if k > 0 and ¬coprime k n for k
proof (rule ccontr)

assume gauss-sum k 6= 0
hence induced-modulus (n div gcd k n)

using that by (intro g-non-zero-ind-mod) auto

61

moreover have n div gcd k n < n
using n that
by (meson coprime-iff-gcd-eq-1 div-eq-dividend-iff le-less-trans

linorder-neqE-nat nat-dvd-not-less principal.div-gcd-dvd2 zero-le-one)
ultimately show False using no-induced-modulus by blast

qed

have (∀n>0 . separable n)
unfolding global-separability-condition by (auto intro!: 1)

thus separable n if n > 0 for n
using that by blast

thus norm (gauss-sum 1) ^ 2 = n
using gauss-sum-1-mod-square-eq-k by blast

qed

Theorem 8.16
lemma (in dcharacter) induced-modulus-altdef1 :

induced-modulus d ←→
d dvd n ∧ (∀ a b. coprime a n ∧ coprime b n ∧ [a = b] (mod d) −→ χ a = χ b)

proof
assume 1 : induced-modulus d
with n have d: d dvd n d > 0

by (auto simp: induced-modulus-def intro: Nat.gr0I)
show d dvd n ∧ (∀ a b. coprime a n ∧ coprime b n ∧ [a = b] (mod d) −→ χ(a)

= χ(b))
proof safe

fix a b
assume 2 : coprime a n coprime b n [a = b] (mod d)
show χ(a) = χ(b)
proof −

from 2 (1) obtain a ′ where eq: [a∗a ′ = 1] (mod n)
using cong-solve by blast

from this d have [a∗a ′ = 1] (mod d)
using cong-dvd-modulus-nat by blast

from this 1 have χ(a∗a ′) = 1
unfolding induced-modulus-def
by (meson 2 (2) eq cong-imp-coprime cong-sym coprime-divisors gcd-nat.refl

one-dvd)
then have 3 : χ(a)∗χ(a ′) = 1

by simp

from 2 (3) have [a∗a ′ = b∗a ′] (mod d)
by (simp add: cong-scalar-right)

moreover have 4 : [b∗a ′ = 1] (mod d)
using ‹[a ∗ a ′ = 1] (mod d)› calculation cong-sym cong-trans by blast

have χ(b∗a ′) = 1
proof −

have coprime (b∗a ′) n
using 2 (2) cong-imp-coprime[OF cong-sym[OF eq]] by simp

62

then show ?thesis using 4 induced-modulus-def 1 by blast
qed
then have 4 : χ(b)∗χ(a ′) = 1

by simp
from 3 4 show χ(a) = χ(b)

using mult-cancel-left
by (cases χ(a ′) = 0) (fastforce simp add: field-simps)+

qed
qed fact+

next
assume ∗: d dvd n ∧ (∀ a b. coprime a n ∧ coprime b n ∧ [a = b] (mod d) −→

χ a = χ b)
then have ∀ a . coprime a n ∧ coprime 1 n ∧ [a = 1] (mod d) −→ χ a = χ 1

by blast
then have ∀ a . coprime a n ∧ [a = 1] (mod d) −→ χ a = 1

using coprime-1-left by simp
then show induced-modulus d

unfolding induced-modulus-def using ∗ by blast
qed

Exercise 8.4
lemma induced-modulus-altdef2-lemma:

fixes n a d q :: nat
defines q ≡ (

∏
p | prime p ∧ p dvd n ∧ ¬ (p dvd a). p)

defines m ≡ a + q ∗ d
assumes n > 0 coprime a d
shows [m = a] (mod d) and coprime m n

proof (simp add: assms(2) cong-add-lcancel-0-nat cong-mult-self-right)
have fin: finite {p. prime p ∧ p dvd n ∧ ¬ (p dvd a)} by (simp add: assms)
{ fix p

assume 4 : prime p p dvd m p dvd n
have p = 1
proof (cases p dvd a)

case True
from this assms 4 (2) have p dvd q∗d
by (simp add: dvd-add-right-iff)

then have a1 : p dvd q ∨ p dvd d
using 4 (1) prime-dvd-mult-iff by blast

have a2 : ¬ (p dvd q)
proof (rule ccontr ,simp)
assume p dvd q
then have p dvd (

∏
p | prime p ∧ p dvd n ∧ ¬ (p dvd a). p)

unfolding assms by simp
then have ∃ x∈{p. prime p ∧ p dvd n ∧ ¬ p dvd a}. p dvd x
using prime-dvd-prod-iff [OF fin 4 (1)] by simp

then obtain x where c: p dvd x ∧ prime x ∧ ¬ x dvd a by blast
then have p = x using 4 (1) by (simp add: primes-dvd-imp-eq)
then show False using True c by auto

63

qed
have a3 : ¬ (p dvd d)

using True assms 4 (1) coprime-def not-prime-unit by auto

from a1 a2 a3 show ?thesis by simp
next

case False
then have p dvd q
proof −
have in-s: p ∈ {p. prime p ∧ p dvd n ∧ ¬ p dvd a}
using False 4 (3) 4 (1) by simp

show p dvd q
unfolding assms using dvd-prodI [OF fin in-s] by fast

qed
then have p dvd q∗d by simp
then have p dvd a using 4 (2) assms

by (simp add: dvd-add-left-iff)
then show ?thesis using False by auto

qed
}
note lem = this
show coprime m n
proof (subst coprime-iff-gcd-eq-1)

{fix a
assume a dvd m a dvd n a 6= 1
{fix p
assume prime p p dvd a
then have p dvd m p dvd n
using ‹a dvd m› ‹a dvd n› by auto

from lem have p = a
using not-prime-1 ‹prime p› ‹p dvd m› ‹p dvd n› by blast}

then have prime a
using prime-prime-factor [of a] ‹a 6= 1 › by blast

then have a = 1 using lem ‹a dvd m› ‹a dvd n› by blast
then have False using ‹a = 1 › ‹a 6= 1 › by blast

}
then show gcd m n = 1 by blast

qed
qed

Theorem 8.17

The case d = 1 is exactly the case described in dcharacter ?n ?χ =⇒ dchar-
acter .induced-modulus ?n ?χ 1 = (?χ = principal-dchar ?n).
theorem (in dcharacter) induced-modulus-altdef2 :

assumes d dvd n d 6= 1
defines χ1 ≡ principal-dchar n
shows induced-modulus d ←→ (∃Φ. dcharacter d Φ ∧ (∀ k. χ k = Φ k ∗ χ1 k))

proof

64

from n have n-pos: n > 0 by simp
assume as-im: induced-modulus d
define f where

f ≡ (λk. k +
(if k = 1 then

0
else (prod id {p. prime p ∧ p dvd n ∧ ¬ (p dvd k)})∗d)
)

have [simp]: f (Suc 0) = 1 unfolding f-def by simp
{

fix k
assume as: coprime k d
hence [f k = k] (mod d) coprime (f k) n

using induced-modulus-altdef2-lemma[OF n-pos as] by (simp-all add: f-def)
}
note m-prop = this

define Φ where
Φ ≡ (λn. (if ¬ coprime n d then 0 else χ(f n)))

have Φ-1 : Φ 1 = 1
unfolding Φ-def by simp

from assms(1 ,2) n have d > 0 by (intro Nat.gr0I) auto
from induced-modulus-altdef1 assms(1) ‹d > 0 › as-im

have b: (∀ a b. coprime a n ∧ coprime b n ∧
[a = b] (mod d) −→ χ a = χ b) by blast

have Φ-periodic: ∀ a. Φ (a + d) = Φ a
proof

fix a
have gcd (a+d) d = gcd a d by auto
then have cop: coprime (a+d) d = coprime a d

using coprime-iff-gcd-eq-1 by presburger
show Φ (a + d) = Φ a
proof (cases coprime a d)

case True
from True cop have cop-ad: coprime (a+d) d by blast
have p1 : [f (a+d) = f a] (mod d)

using m-prop(1)[of a+d, OF cop-ad]
m-prop(1)[of a,OF True] by (simp add: unique-euclidean-semiring-class.cong-def)

have p2 : coprime (f (a+d)) n coprime (f a) n
using m-prop(2)[of a+d, OF cop-ad]

m-prop(2)[of a, OF True] by blast+
from b p1 p2 have eq: χ (f (a + d)) = χ (f a) by blast
show ?thesis

unfolding Φ-def
by (subst cop,simp,safe, simp add: eq)

next

65

case False
then show ?thesis unfolding Φ-def by (subst cop,simp)

qed
qed

have Φ-mult: ∀ a b. a ∈ totatives d −→
b ∈ totatives d −→ Φ (a ∗ b) = Φ a ∗ Φ b

proof (safe)
fix a b
assume a ∈ totatives d b ∈ totatives d
consider (ab) coprime a d ∧ coprime b d |

(a) coprime a d ∧ ¬ coprime b d |
(b) coprime b d ∧ ¬ coprime a d |
(n) ¬ coprime a d ∧ ¬ coprime b d by blast

then show Φ (a ∗ b) = Φ a ∗ Φ b
proof cases

case ab
then have c-ab:

coprime (a∗b) d coprime a d coprime b d by simp+
then have p1 : [f (a ∗ b) = a ∗ b] (mod d) coprime (f (a ∗ b)) n

using m-prop[of a∗b, OF c-ab(1)] by simp+
moreover have p2 : [f a = a] (mod d) coprime (f a) n

[f b = b] (mod d) coprime (f b) n
using m-prop[of a,OF c-ab(2)]

m-prop[of b,OF c-ab(3)] by simp+
have p1s: [f (a ∗ b) = (f a) ∗ (f b)] (mod d)
proof −

have [f (a ∗ b) = a ∗ b] (mod d)
using p1 (1) by blast

moreover have [a ∗ b = f (a) ∗ f (b)] (mod d)
using p2 (1) p2 (3) by (simp add: cong-mult cong-sym)

ultimately show ?thesis using cong-trans by blast
qed
have p2s: coprime (f a∗f b) n

using p2 (2) p2 (4) by simp
have χ (f (a ∗ b)) = χ (f a ∗ f b)

using p1s p2s p1 (2) b by blast
then show ?thesis

unfolding Φ-def by (simp add: c-ab)
qed (simp-all add: Φ-def)

qed
have d-gr-1 : d > 1 using assms(1 ,2)

using ‹0 < d› by linarith
show ∃Φ. dcharacter d Φ ∧ (∀n. χ n = Φ n ∗ χ1 n)
proof (standard,rule conjI)

show dcharacter d Φ
unfolding dcharacter-def residues-nat-def dcharacter-axioms-def
using d-gr-1 Φ-def f-def Φ-mult Φ-1 Φ-periodic by simp

show ∀n. χ n = Φ n ∗ χ1 n

66

proof
fix k
show χ k = Φ k ∗ χ1 k
proof (cases coprime k n)

case True
then have coprime k d using assms(1) by auto
then have Φ(k) = χ(f k) using Φ-def by simp
moreover have [f k = k] (mod d)

using m-prop[OF ‹coprime k d›] by simp
moreover have χ1 k = 1

using assms(3) principal-dchar-def ‹coprime k n› by auto
ultimately show χ(k) = Φ(k) ∗ χ1(k)
proof −

assume Φ k = χ (f k) [f k = k] (mod d) χ1 k = 1
then have χ k = χ (f k)

using ‹local.induced-modulus d› induced-modulus-altdef1 assms(1) ‹d >
0 ›

True ‹coprime k d› m-prop(2) by auto
also have . . . = Φ k by (simp add: ‹Φ k = χ (f k)›)
also have . . . = Φ k ∗ χ1 k by (simp add: ‹χ1 k = 1 ›)
finally show ?thesis by simp

qed
next

case False
hence χ k = 0

using eq-zero-iff by blast
moreover have χ1 k = 0

using False assms(3) principal-dchar-def by simp
ultimately show ?thesis by simp

qed
qed

qed
next

assume (∃Φ. dcharacter d Φ ∧ (∀ k. χ k = Φ k ∗ χ1 k))
then obtain Φ where 1 : dcharacter d Φ (∀ k. χ k = Φ k ∗ χ1 k) by blast
show induced-modulus d

unfolding induced-modulus-def
proof (rule conjI ,fact,safe)

fix k
assume 2 : coprime k n [k = 1] (mod d)
then have χ1 k = 1

by (simp add: χ1-def)
moreover have Φ k = 1

by (metis 1 (1) 2 (2) One-nat-def dcharacter .Suc-0 dcharacter .cong)
ultimately show χ k = 1 using 1 (2) by simp

qed
qed

67

7.4 The conductor of a character
context dcharacter
begin

definition conductor = Min {d. induced-modulus d}

lemma conductor-fin: finite {d. induced-modulus d}
proof −

let ?A = {d. induced-modulus d}
have ?A ⊆ {d. d dvd n}

unfolding induced-modulus-def by blast
moreover have finite {d. d dvd n} using n by simp
ultimately show finite ?A using finite-subset by auto

qed

lemma conductor-induced: induced-modulus conductor
proof −

have {d. induced-modulus d} 6= {} using induced-modulus-modulus by blast
then show induced-modulus conductor

using Min-in[OF conductor-fin] conductor-def by auto
qed

lemma conductor-le-iff : conductor ≤ a ←→ (∃ d≤a. induced-modulus d)
unfolding conductor-def using conductor-fin induced-modulus-modulus by (subst

Min-le-iff) auto

lemma conductor-ge-iff : conductor ≥ a ←→ (∀ d. induced-modulus d −→ d ≥ a)
unfolding conductor-def using conductor-fin induced-modulus-modulus by (subst

Min-ge-iff) auto

lemma conductor-leI : induced-modulus d =⇒ conductor ≤ d
by (subst conductor-le-iff) auto

lemma conductor-geI : (
∧

d. induced-modulus d =⇒ d ≥ a) =⇒ conductor ≥ a
by (subst conductor-ge-iff) auto

lemma conductor-dvd: conductor dvd n
using conductor-induced unfolding induced-modulus-def by blast

lemma conductor-le-modulus: conductor ≤ n
using conductor-dvd by (rule dvd-imp-le) (use n in auto)

lemma conductor-gr-0 : conductor > 0
unfolding conductor-def using zero-not-ind-mod
using conductor-def conductor-induced neq0-conv by fastforce

lemma conductor-eq-1-iff-principal: conductor = 1 ←→ χ = principal-dchar n
proof

assume conductor = 1

68

then have induced-modulus 1
using conductor-induced by auto

then show χ = principal-dchar n
using one-induced-iff-principal by blast

next
assume χ = principal-dchar n
then have im-1 : induced-modulus 1 using one-induced-iff-principal by auto
show conductor = 1
proof −

have conductor ≤ 1
using conductor-fin Min-le[OF conductor-fin,simplified,OF im-1]
by (simp add: conductor-def [symmetric])

then show ?thesis using conductor-gr-0 by auto
qed

qed

lemma conductor-principal [simp]: χ = principal-dchar n =⇒ conductor = 1
by (subst conductor-eq-1-iff-principal)

lemma nonprimitive-imp-conductor-less:
assumes ¬primitive-dchar n χ
shows conductor < n

proof −
obtain d where d: induced-modulus d d < n

using primitive-dchar-iff assms by blast
from d(1) have conductor ≤ d

by (rule conductor-leI)
also have . . . < n by fact
finally show ?thesis .

qed

lemma (in nonprimitive-dchar) conductor-less-modulus: conductor < n
using nonprimitive-imp-conductor-less nonprimitive by metis

Theorem 8.18
theorem primitive-principal-form:

defines χ1 ≡ principal-dchar n
assumes χ 6= principal-dchar n
shows ∃Φ. primitive-dchar conductor Φ ∧ (∀n. χ(n) = Φ(n) ∗ χ1(n))

proof −

from n have n-pos: n > 0 by simp
define d where d = conductor
have induced: induced-modulus d

unfolding d-def using conductor-induced by blast
then have d-not-1 : d 6= 1

using one-induced-iff-principal assms by auto
hence d-gt-1 : d > 1 using conductor-gr-0 by (auto simp: d-def)

69

from induced obtain Φ where Φ-def : dcharacter d Φ ∧ (∀n. χ n = Φ n ∗ χ1

n)
using d-not-1

by (subst (asm) induced-modulus-altdef2) (auto simp: d-def conductor-dvd
χ1-def)

have phi-dchars: Φ ∈ dcharacters d using Φ-def dcharacters-def by auto

interpret Φ: dcharacter d residue-mult-group d Φ
using Φ-def by auto

have Φ-prim: primitive-dchar d Φ
proof (rule ccontr)

assume ¬ primitive-dchar d Φ
then obtain q where

1 : q dvd d ∧ q < d ∧ Φ.induced-modulus q
unfolding Φ.induced-modulus-def Φ.primitive-dchar-iff by blast

then have 2 : induced-modulus q
proof −

{fix k
assume mod-1 : [k = 1] (mod q)
assume cop: coprime k n
have χ(k) = Φ(k)∗χ1(k) using Φ-def by auto
also have . . . = Φ(k)

using cop by (simp add: assms principal-dchar-def)
also have . . . = 1

using 1 mod-1 Φ.induced-modulus-def
‹induced-modulus d› cop induced-modulus-def by auto

finally have χ(k) = 1 by blast}

then show ?thesis
using induced-modulus-def 1 ‹induced-modulus d› by auto

qed

from 1 have q < d by simp
moreover have d ≤ q unfolding d-def

by (intro conductor-leI) fact
ultimately show False by linarith

qed

from Φ-def Φ-prim d-def phi-dchars show ?thesis by blast
qed

definition primitive-extension :: nat ⇒ complex where
primitive-extension =
(SOME Φ. primitive-dchar conductor Φ ∧ (∀ k. χ k = Φ k ∗ principal-dchar n

k))

lemma
assumes nonprincipal: χ 6= principal-dchar n

70

shows primitive-primitive-extension: primitive-dchar conductor primitive-extension
and principal-decomposition: χ k = primitive-extension k ∗ principal-dchar

n k
proof −

note ∗ = someI-ex[OF primitive-principal-form[OF nonprincipal], folded primi-
tive-extension-def]

from ∗ show primitive-dchar conductor primitive-extension by blast
from ∗ show χ k = primitive-extension k ∗ principal-dchar n k by blast

qed

end

7.5 The connection between primitivity and separability
lemma residue-mult-group-coset:

fixes m n m1 m2 :: nat and f :: nat ⇒ nat and G H
defines G ≡ residue-mult-group n
defines H ≡ residue-mult-group m
defines f ≡ (λk. k mod m)
assumes b ∈ (rcosetsG kernel G H f)
assumes m1 ∈ b m2 ∈ b
assumes n > 1 m dvd n
shows m1 mod m = m2 mod m

proof −
have h-1 : 1H = 1

using assms(2) unfolding residue-mult-group-def totatives-def by simp

from assms(4)
obtain a :: nat where cos-expr : b = (kernel G H f) #>G a ∧ a ∈ carrier G

using RCOSETS-def [of G kernel G H f] by blast
then have cop: coprime a n

using assms(1) unfolding residue-mult-group-def totatives-def by auto

obtain a ′ where [a ∗ a ′ = 1] (mod n)
using cong-solve-coprime-nat[OF cop] by auto

then have a-inv: (a∗a ′) mod n = 1
using unique-euclidean-semiring-class.cong-def [of a∗a ′ 1 n] assms(7) by simp

have m1 ∈ (
⋃

h∈kernel G H f . {h ⊗G a})
m2 ∈ (

⋃
h∈kernel G H f . {h ⊗G a})

using r-coset-def [of G kernel G H f a] cos-expr assms(5 ,6) by blast+
then have m1 ∈ (

⋃
h∈kernel G H f . {(h ∗ a) mod n})

m2 ∈ (
⋃

h∈kernel G H f . {(h ∗ a) mod n})
using assms(1) unfolding residue-mult-group-def [of n] by auto

then obtain m1 ′ m2 ′ where
m-expr : m1 = (m1 ′∗ a) mod n ∧ m1 ′ ∈ kernel G H f

m2 = (m2 ′∗ a) mod n ∧ m2 ′ ∈ kernel G H f
by blast

71

have eq-1 : m1 mod m = a mod m
proof −

have m1 mod m = ((m1 ′∗ a) mod n) mod m using m-expr by blast
also have . . . = (m1 ′ ∗ a) mod m

using euclidean-semiring-cancel-class.mod-mod-cancel assms(8) by blast
also have . . . = (m1 ′ mod m) ∗ (a mod m) mod m

by (simp add: mod-mult-eq)
also have . . . = (a mod m) mod m

using m-expr(1) h-1 unfolding kernel-def assms(3) by simp
also have . . . = a mod m by auto
finally show ?thesis by simp

qed

have eq-2 : m2 mod m = a mod m
proof −

have m2 mod m = ((m2 ′∗ a) mod n) mod m using m-expr by blast
also have . . . = (m2 ′ ∗ a) mod m

using euclidean-semiring-cancel-class.mod-mod-cancel assms(8) by blast
also have . . . = (m2 ′ mod m) ∗ (a mod m) mod m

by (simp add: mod-mult-eq)
also have . . . = (a mod m) mod m

using m-expr(2) h-1 unfolding kernel-def assms(3) by simp
also have . . . = a mod m by auto
finally show ?thesis by simp

qed

from eq-1 eq-2 show ?thesis by argo
qed

lemma residue-mult-group-kernel-partition:
fixes m n :: nat and f :: nat ⇒ nat and G H
defines G ≡ residue-mult-group n
defines H ≡ residue-mult-group m
defines f ≡ (λk. k mod m)
assumes m > 1 n > 0 m dvd n
shows partition (carrier G) (rcosetsG kernel G H f)

and card (rcosetsG kernel G H f) = totient m
and card (kernel G H f) = totient n div totient m
and b ∈(rcosetsG kernel G H f) =⇒ b 6= {}
and b ∈(rcosetsG kernel G H f) =⇒ card (kernel G H f) = card b
and bij-betw (λb. (the-elem (f ‘ b))) (rcosetsG kernel G H f) (carrier H)

proof −
have 1 < m by fact
also have m ≤ n using ‹n > 0 › ‹m dvd n› by (intro dvd-imp-le) auto
finally have n > 1 .
note mn = ‹m > 1 › ‹n > 1 › ‹m dvd n› ‹m ≤ n›

interpret n: residues-nat n G
using mn by unfold-locales (auto simp: assms)

72

interpret m: residues-nat m H
using mn by unfold-locales (auto simp: assms)

from mn have subset: f ‘ carrier G ⊆ carrier H
by (auto simp: assms(1−3) residue-mult-group-def totatives-def

dest: coprime-common-divisor-nat intro!: Nat.gr0I)
moreover have super-set: carrier H ⊆ f ‘ carrier G
proof safe

fix k assume k ∈ carrier H
hence k: k > 0 k ≤ m coprime k m

by (auto simp: assms(2) residue-mult-group-def totatives-def)
from mn ‹k ∈ carrier H › have k < m

by (simp add: totatives-less assms(2) residue-mult-group-def)
define P where P = {p ∈ prime-factors n. ¬(p dvd m)}
define a where a =

∏
P

have [simp]: a 6= 0 by (auto simp: P-def a-def intro!: Nat.gr0I)
have [simp]: prime-factors a = P
proof −

have prime-factors a = set-mset (sum prime-factorization P)
unfolding a-def using mn
by (subst prime-factorization-prod)

(auto simp: P-def prime-factors-dvd prime-gt-0-nat)
also have sum prime-factorization P = (

∑
p∈P. {#p#})

using mn by (intro sum.cong) (auto simp: P-def prime-factorization-prime
prime-factors-dvd)

finally show ?thesis by (simp add: P-def)
qed

from mn have coprime m a
by (subst coprime-iff-prime-factors-disjoint) (auto simp: P-def)

hence ∃ x. [x = k] (mod m) ∧ [x = 1] (mod a)
by (intro binary-chinese-remainder-nat)

then obtain x where x: [x = k] (mod m) [x = 1] (mod a)
by auto

from x(1) mn k have [simp]: x 6= 0
by (meson ‹k < m› cong-0-iff cong-sym-eq nat-dvd-not-less)

from x(2) have coprime x a
using cong-imp-coprime cong-sym by force

hence coprime x (a ∗ m)
using k cong-imp-coprime[OF cong-sym[OF x(1)]] by auto

also have ?this ←→ coprime x n using mn
by (intro coprime-cong-prime-factors)

(auto simp: prime-factors-product P-def in-prime-factors-iff)
finally have x mod n ∈ totatives n

using mn by (auto simp: totatives-def intro!: Nat.gr0I)

moreover have f (x mod n) = k
using x(1) k mn ‹k < m› by (auto simp: assms(3) unique-euclidean-semiring-class.cong-def

73

mod-mod-cancel)
ultimately show k ∈ f ‘ carrier G

by (auto simp: assms(1) residue-mult-group-def)
qed

ultimately have image-eq: f ‘ carrier G = carrier H by blast

have [simp]: f (k ⊗G l) = f k ⊗H f l if k ∈ carrier G l ∈ carrier G for k l
using that mn by (auto simp: assms(1−3) residue-mult-group-def totatives-def

mod-mod-cancel mod-mult-eq)
interpret f : group-hom G H f

using subset by unfold-locales (auto simp: hom-def)

show bij-betw (λb. (the-elem (f ‘ b))) (rcosetsG kernel G H f) (carrier H)
unfolding bij-betw-def

proof
show inj-on (λb. (the-elem (f ‘ b))) (rcosetsG kernel G H f)

using f .FactGroup-inj-on unfolding FactGroup-def by auto
have eq: f ‘ carrier G = carrier H

using subset super-set by blast
show (λb. the-elem (f ‘ b)) ‘ (rcosetsG kernel G H f) = carrier H

using f .FactGroup-onto[OF eq] unfolding FactGroup-def by simp
qed

show partition (carrier G) (rcosetsG kernel G H f)
proof

show
∧

a. a ∈ carrier G =⇒
∃ !b. b ∈ rcosetsG kernel G H f ∧ a ∈ b

proof −
fix a
assume a-in: a ∈ carrier G
show ∃ !b. b ∈ rcosetsG kernel G H f ∧ a ∈ b
proof −

have ∃ b. b ∈ rcosetsG kernel G H f ∧ a ∈ b
using a-in n.rcosets-part-G[OF f .subgroup-kernel]
by blast

then show ?thesis
using group.rcos-disjoint[OF n.is-group f .subgroup-kernel]
by (auto simp: disjoint-def)

qed
qed

next
show

∧
b. b ∈ rcosetsG kernel G H f =⇒ b ⊆ carrier G

using n.rcosets-part-G f .subgroup-kernel by auto
qed

have lagr : card (carrier G) = card (rcosetsG kernel G H f) ∗ card (kernel G H

74

f)
using group.lagrange-finite[OF n.is-group n.fin f .subgroup-kernel] Coset.order-def [of

G] by argo
have k-size: card (kernel G H f) > 0

using f .subgroup-kernel finite-subset n.subgroupE(1) n.subgroupE(2) by fast-
force

have G-size: card (carrier G) = totient n
using n.order Coset.order-def [of G] by simp

have H-size: totient m = card (carrier H)
using n.order Coset.order-def [of H] by simp

also have . . . = card (carrier (G Mod kernel G H f))
using f .FactGroup-iso[OF image-eq] card-image f .FactGroup-inj-on f .FactGroup-onto

image-eq by fastforce
also have . . . = card (carrier G) div card (kernel G H f)
proof −

have card (carrier (G Mod kernel G H f)) =
card (rcosetsG kernel G H f)

unfolding FactGroup-def by simp
also have . . . = card (carrier G) div card (kernel G H f)

by (simp add: lagr k-size)
finally show ?thesis by blast

qed
also have . . . = totient n div card (kernel G H f)

using G-size by argo
finally have eq: totient m = totient n div card (kernel G H f) by simp
show card (kernel G H f) = totient n div totient m
proof −

have totient m 6= 0
using totient-0-iff [of m] assms(4) by blast

have card (kernel G H f) dvd totient n
using lagr ‹card (carrier G) = totient n› by auto

have totient m ∗ card (kernel G H f) = totient n
unfolding eq using ‹card (kernel G H f) dvd totient n› by auto

have totient n div totient m = totient m ∗ card (kernel G H f) div totient m
using ‹totient m ∗ card (kernel G H f) = totient n› by auto

also have . . . = card (kernel G H f)
using nonzero-mult-div-cancel-left[OF ‹totient m 6= 0 ›] by blast

finally show ?thesis by auto
qed

show card (rcosetsG kernel G H f) = totient m
proof −

have H-size: totient m = card (carrier H)
using n.order Coset.order-def [of H] by simp

also have . . . = card (carrier (G Mod kernel G H f))
using f .FactGroup-iso[OF image-eq] card-image f .FactGroup-inj-on f .FactGroup-onto

image-eq by fastforce
also have card (carrier (G Mod kernel G H f)) =

card (rcosetsG kernel G H f)

75

unfolding FactGroup-def by simp
finally show card (rcosetsG kernel G H f) = totient m

by argo
qed

assume b ∈ rcosetsG kernel G H f
then show b 6= {}
proof −

have card b = card (kernel G H f)
using ‹b ∈ rcosetsG kernel G H f › f .subgroup-kernel n.card-rcosets-equal

n.subgroupE(1) by auto
then have card b > 0

by (simp add: k-size)
then show ?thesis by auto

qed

assume b-cos: b ∈ rcosetsG kernel G H f
show card (kernel G H f) = card b

using group.card-rcosets-equal[OF n.is-group b-cos]
f .subgroup-kernel subgroup.subset by blast

qed

lemma primitive-iff-separable-lemma:
assumes prod: (∀n. χ n = Φ n ∗ χ1 n) ∧ primitive-dchar d Φ
assumes ‹d > 1 › ‹0 < k› ‹d dvd k› ‹k > 1 ›
shows (

∑
m | m ∈ {1 ..k} ∧ coprime m k. Φ(m) ∗ unity-root d m) =

(totient k div totient d) ∗ (
∑

m | m ∈ {1 ..d} ∧ coprime m d. Φ(m) ∗
unity-root d m)
proof −

from assms interpret Φ: primitive-dchar d residue-mult-group d Φ
by auto

define G where G = residue-mult-group k
define H where H = residue-mult-group d
define f where f = (λt. t mod d)

from residue-mult-group-kernel-partition(2)[OF ‹d > 1 › ‹0 < k› ‹d dvd k›]
have fin-cosets: finite (rcosetsG kernel G H f)
using ‹1 < d› card.infinite by (fastforce simp: G-def H-def f-def)

have fin-G: finite (carrier G)
unfolding G-def residue-mult-group-def by simp

have eq: (
∑

m | m ∈ {1 ..k} ∧ coprime m k. Φ(m) ∗ unity-root d m) =
(
∑

m | m ∈ carrier G . Φ(m) ∗ unity-root d m)
unfolding residue-mult-group-def totatives-def G-def
by (rule sum.cong,auto)

also have . . . = sum (λm. Φ(m) ∗ unity-root d m) (carrier G) by simp
also have eq ′: . . . = sum (sum (λm. Φ m ∗ unity-root d (int m))) (rcosetsG

76

kernel G H f)
by (rule disjoint-sum [symmetric])
(use fin-G fin-cosets residue-mult-group-kernel-partition(1)[OF ‹d > 1 › ‹k >

0 › ‹d dvd k›] in
‹auto simp: G-def H-def f-def ›)

also have . . . =
(
∑

b ∈ (rcosetsG kernel G H f) . (
∑

m ∈ b. Φ m ∗ unity-root d (int m))) by
simp

finally have 1 : (
∑

m | m ∈ {1 ..k} ∧ coprime m k. Φ(m) ∗ unity-root d m) =
(
∑

b ∈ (rcosetsG kernel G H f) . (
∑

m ∈ b. Φ m ∗ unity-root d
(int m)))

using eq eq ′ by auto
have eq ′′′: . . . =
(
∑

b ∈ (rcosetsG kernel G H f) . (totient k div totient d) ∗ (Φ (the-elem (f ‘
b)) ∗ unity-root d (int (the-elem (f ‘ b)))))

proof (rule sum.cong,simp)
fix b
assume b-in: b ∈ (rcosetsG kernel G H f)
note b-not-empty = residue-mult-group-kernel-partition(4)

[OF ‹d > 1 › ‹0 < k› ‹d dvd k› b-in[unfolded G-def H-def
f-def]]

{
fix m1 m2
assume m-in: m1 ∈ b m2 ∈ b
have m-mod: m1 mod d = m2 mod d

using residue-mult-group-coset[OF b-in[unfolded G-def H-def f-def] m-in ‹k
> 1 › ‹d dvd k›]

by blast
} note m-mod = this
{

fix m1 m2
assume m-in: m1 ∈ b m2 ∈ b
have Φ m1 ∗ unity-root d (int m1) = Φ m2 ∗ unity-root d (int m2)
proof −
have Φ-periodic: periodic-arithmetic Φ d using Φ.dir-periodic-arithmetic by

blast
have 1 : Φ m1 = Φ m2

using mod-periodic-arithmetic[OF ‹periodic-arithmetic Φ d› m-mod[OF
m-in]] by simp

have 2 : unity-root d m1 = unity-root d m2
using m-mod[OF m-in] by (intro unity-root-cong) (auto simp: unique-euclidean-semiring-class.cong-def

simp flip: zmod-int)
from 1 2 show ?thesis by simp

qed
} note all-eq-in-coset = this

from all-eq-in-coset b-not-empty
obtain l where l-prop: l ∈ b ∧ (∀ y ∈ b. Φ y ∗ unity-root d (int y) =

77

Φ l ∗ unity-root d (int l)) by blast

have (
∑

m ∈ b. Φ m ∗ unity-root d (int m)) =
((totient k div totient d) ∗ (Φ l ∗ unity-root d (int l)))

proof −
have (

∑
m ∈ b. Φ m ∗ unity-root d (int m)) =

(
∑

m ∈ b. Φ l ∗ unity-root d (int l))
by (rule sum.cong,simp) (use all-eq-in-coset l-prop in blast)

also have . . . = card b ∗ Φ l ∗ unity-root d (int l)
by simp

also have . . . = (totient k div totient d) ∗ Φ l ∗ unity-root d (int l)
using residue-mult-group-kernel-partition(3)[OF ‹d > 1 › ‹0 < k› ‹d dvd k›]

residue-mult-group-kernel-partition(5)
[OF ‹d > 1 › ‹0 < k› ‹d dvd k› b-in [unfolded G-def H-def f-def]]

by argo
finally have 2 :
(
∑

m ∈ b. Φ m ∗ unity-root d (int m)) =
(totient k div totient d) ∗ Φ l ∗ unity-root d (int l)

by blast
from b-not-empty 2 show ?thesis by auto

qed
also have . . . = ((totient k div totient d) ∗ (Φ (the-elem (f ‘ b)) ∗ unity-root d

(int (the-elem (f ‘ b)))))
proof −

have foral: (
∧

y. y ∈ b =⇒ f y = f l)
using m-mod l-prop unfolding f-def by blast

have eq: the-elem (f ‘ b) = f l
by (simp add: b-not-empty foral the-elem-image-unique)

have per : periodic-arithmetic Φ d using prod Φ.dir-periodic-arithmetic by
blast

show ?thesis
unfolding eq using mod-periodic-arithmetic[OF per , of l mod d l]
by (auto simp: f-def unity-root-mod zmod-int)

qed
finally show (

∑
m ∈ b. Φ m ∗ unity-root d (int m)) =

((totient k div totient d) ∗ (Φ (the-elem (f ‘ b)) ∗ unity-root d (int
(the-elem (f ‘ b)))))

by blast
qed
have . . . =

(
∑

b ∈ (rcosetsG kernel G H f) . (totient k div totient d) ∗ (Φ (the-elem
(f ‘ b)) ∗ unity-root d (int (the-elem (f ‘ b)))))

by blast
also have eq ′′:

. . . = (
∑

h ∈ carrier H . (totient k div totient d) ∗ (Φ (h) ∗ unity-root d (int
(h))))

unfolding H-def G-def f-def
by (rule sum.reindex-bij-betw[OF residue-mult-group-kernel-partition(6)[OF ‹d

78

> 1 › ‹0 < k› ‹d dvd k›]])
finally have 2 : (

∑
m | m ∈ {1 ..k} ∧ coprime m k. Φ(m) ∗ unity-root d m) =

(totient k div totient d)∗(
∑

h ∈ carrier H . (Φ (h) ∗ unity-root d
(int (h))))

using 1 by (simp add: eq ′′ eq ′′′ sum-distrib-left)
also have . . . = (totient k div totient d)∗(

∑
m | m ∈ {1 ..d} ∧ coprime m d .

(Φ (m) ∗ unity-root d (int (m))))
unfolding H-def residue-mult-group-def by (simp add: totatives-def Suc-le-eq)

finally show ?thesis by simp
qed

Theorem 8.19
theorem (in dcharacter) primitive-iff-separable:

primitive-dchar n χ ←→ (∀ k>0 . separable k)
proof (cases χ = principal-dchar n)

case True
thus ?thesis

using principal-not-primitive principal-not-totally-separable by auto
next

case False
note nonprincipal = this
show ?thesis
proof

assume primitive-dchar n χ
then interpret A: primitive-dchar n residue-mult-group n χ by auto
show (∀ k. k > 0 −→ separable k)

using n A.primitive-encoding(2) by blast
next

assume tot-separable: ∀ k>0 . separable k
{

assume as: ¬ primitive-dchar n χ
have ∃ r . r 6= 0 ∧ ¬ coprime r n ∧ gauss-sum r 6= 0
proof −

from n have n > 0 by simp
define d where d = conductor
have d > 0 unfolding d-def using conductor-gr-0 .
then have d > 1 using nonprincipal d-def conductor-eq-1-iff-principal by

auto
have d < n unfolding d-def using nonprimitive-imp-conductor-less[OF as]

.
have d dvd n unfolding d-def using conductor-dvd by blast
define r where r = n div d
have 0 : r 6= 0 unfolding r-def

using ‹0 < n› ‹d dvd n› dvd-div-gt0 by auto
have gcd r n > 1

unfolding r-def
proof −

have n div d > 1 using ‹1 < n› ‹d < n› ‹d dvd n› by auto
have n div d dvd n using ‹d dvd n› by force

79

have gcd (n div d) n = n div d using gcd-nat.absorb1 [OF ‹n div d dvd
n›] by blast

then show 1 < gcd (n div d) n using ‹n div d > 1 › by argo
qed
then have 1 : ¬ coprime r n by auto
define χ1 where χ1 = principal-dchar n
from primitive-principal-form[OF nonprincipal]
obtain Φ where

prod: (∀ k. χ(k) = Φ(k)∗χ1(k)) ∧ primitive-dchar d Φ
using d-def unfolding χ1-def by blast

then have prod1 : (∀ k. χ(k) = Φ(k)∗χ1(k)) primitive-dchar d Φ by blast+
then interpret Φ: primitive-dchar d residue-mult-group d Φ

by auto

have gauss-sum r = (
∑

m = 1 ..n . χ(m) ∗ unity-root n (m∗r))
unfolding gauss-sum-def by blast

also have . . . = (
∑

m = 1 ..n . Φ(m)∗χ1(m) ∗ unity-root n (m∗r))
by (rule sum.cong,auto simp add: prod)

also have . . . = (
∑

m | m ∈ {1 ..n} ∧ coprime m n. Φ(m)∗χ1(m) ∗ unity-root
n (m∗r))

by (intro sum.mono-neutral-right) (auto simp: χ1-def principal-dchar-def)
also have . . . = (

∑
m | m ∈ {1 ..n} ∧ coprime m n. Φ(m)∗χ1(m) ∗ unity-root

d m)
proof (rule sum.cong,simp)

fix x
assume x ∈ {m ∈ {1 ..n}. coprime m n}
have unity-root n (int (x ∗ r)) = unity-root d (int x)

using unity-div-num[OF ‹n > 0 › ‹d > 0 › ‹d dvd n›]
by (simp add: algebra-simps r-def)

then show Φ x ∗ χ1 x ∗ unity-root n (int (x ∗ r)) =
Φ x ∗ χ1 x ∗ unity-root d (int x) by auto

qed
also have . . . = (

∑
m | m ∈ {1 ..n} ∧ coprime m n. Φ(m) ∗ unity-root d

m)
by (rule sum.cong,auto simp add: χ1-def principal-dchar-def)

also have . . . = (totient n div totient d) ∗ (
∑

m | m ∈ {1 ..d} ∧ coprime
m d. Φ(m) ∗ unity-root d m)

using primitive-iff-separable-lemma[OF prod ‹d > 1 › ‹n > 0 › ‹d dvd n›
‹n > 1 ›] by blast

also have . . . = (totient n div totient d) ∗ Φ.gauss-sum 1
proof −

have Φ.gauss-sum 1 = (
∑

m = 1 ..d . Φ m ∗ unity-root d (int (m)))
by (simp add: Φ.gauss-sum-def)

also have . . . = (
∑

m | m ∈ {1 ..d} . Φ m ∗ unity-root d (int m))
by (rule sum.cong,auto)

also have . . . = (
∑

m | m ∈ {1 ..d} ∧ coprime m d. Φ(m) ∗ unity-root d
m)

by (rule sum.mono-neutral-right) (use Φ.eq-zero in auto)
finally have Φ.gauss-sum 1 = (

∑
m | m ∈ {1 ..d} ∧ coprime m d. Φ(m)

80

∗ unity-root d m)
by blast

then show ?thesis by metis
qed
finally have g-expr : gauss-sum r = (totient n div totient d) ∗ Φ.gauss-sum

1
by blast

have t-non-0 : totient n div totient d 6= 0
by (simp add: ‹0 < n› ‹d dvd n› dvd-div-gt0 totient-dvd)

have (norm (Φ.gauss-sum 1))2 = d
using Φ.primitive-encoding(3) by simp

then have Φ.gauss-sum 1 6= 0
using ‹0 < d› by auto

then have 2 : gauss-sum r 6= 0
using g-expr t-non-0 by auto

from 0 1 2 show ∃ r . r 6= 0 ∧ ¬ coprime r n ∧ gauss-sum r 6= 0
by blast

qed
}
note contr = this

show primitive-dchar n χ
proof (rule ccontr)

assume ¬ primitive-dchar n χ
then obtain r where 1 : r 6= 0 ∧ ¬ coprime r n ∧ gauss-sum r 6= 0

using contr by blast
from global-separability-condition tot-separable
have 2 : (∀ k>0 . ¬ coprime k n −→ gauss-sum k = 0)

by blast
from 1 2 show False by blast

qed
qed

qed

Theorem 8.20
theorem (in primitive-dchar) fourier-primitive:

includes no vec-lambda-syntax
fixes τ :: complex
defines τ ≡ gauss-sum 1 / sqrt n
shows χ m = τ / sqrt n ∗ (

∑
k=1 ..n. cnj (χ k) ∗ unity-root n (−m∗k))

and norm τ = 1
proof −

have chi-not-principal: χ 6= principal-dchar n
using principal-not-totally-separable primitive-encoding(2) by blast

then have case-0 : (
∑

k=1 ..n. χ k) = 0
proof −

have sum χ {0 ..n−1} = sum χ {1 ..n}
using periodic-arithmetic-sum-periodic-arithmetic-shift[OF dir-periodic-arithmetic,

81

of 1] n
by auto

also have {0 ..n−1} = {..<n}
using n by auto

finally show (
∑

n = 1 ..n . χ n) = 0
using sum-dcharacter-block chi-not-principal by simp

qed

have χ m =
(
∑

k = 1 ..n. 1 / of-nat n ∗ gauss-sum-int (− int k) ∗
unity-root n (int (m ∗ k)))

using dcharacter-fourier-expansion[of m] by auto
also have . . . = (

∑
k = 1 ..n. 1 / of-nat n ∗ gauss-sum (nat ((− k) mod n)) ∗

unity-root n (int (m ∗ k)))
by (auto simp: gauss-sum-int-conv-gauss-sum)

also have . . . = (
∑

k = 1 ..n. 1 / of-nat n ∗ cnj (χ (nat ((− k) mod n))) ∗
gauss-sum 1 ∗ unity-root n (int (m ∗ k)))

proof (rule sum.cong,simp)
fix k
assume k ∈ {1 ..n}
have gauss-sum (nat (− int k mod int n)) =

cnj (χ (nat (− int k mod int n))) ∗ gauss-sum 1
proof (cases nat ((− k) mod n) > 0)

case True
then show ?thesis

using mp[OF spec[OF primitive-encoding(2)] True]
unfolding separable-def by auto

next
case False
then have nat-0 : nat ((− k) mod n) = 0 by blast
show ?thesis
proof −

have gauss-sum (nat (− int k mod int n)) = gauss-sum 0
using nat-0 by argo

also have . . . = (
∑

m = 1 ..n. χ m)
unfolding gauss-sum-def by (rule sum.cong) auto

also have . . . = 0 using case-0 by blast
finally have 1 : gauss-sum (nat (− int k mod int n)) = 0

by blast

have 2 : cnj (χ (nat (− int k mod int n))) = 0
using nat-0 zero-eq-0 by simp

show ?thesis using 1 2 by simp
qed

qed
then show 1 / of-nat n ∗ gauss-sum (nat (− int k mod int n)) ∗ unity-root n

(int (m ∗ k)) =
1 / of-nat n ∗ cnj (χ (nat (− int k mod int n))) ∗ gauss-sum 1 ∗

unity-root n (int (m ∗ k))

82

by auto
qed
also have . . . = (

∑
k = 1 ..n. 1 / of-nat n ∗ cnj (χ (nat (− int k mod int n)))

∗
gauss-sum 1 ∗ unity-root n (int (m ∗ (nat (int k mod int n)))))

proof (rule sum.cong,simp)
fix x
assume x ∈ {1 ..n}
have unity-root n (m ∗ x) = unity-root n (m ∗ x mod n)

using unity-root-mod-nat[of n m∗x] by (simp add: nat-mod-as-int)
also have . . . = unity-root n (m ∗ (x mod n))

by (metis mod-mult-right-eq nat-mod-as-int unity-root-mod-nat)
finally have unity-root n (m ∗ x) = unity-root n (m ∗ (x mod n)) by blast
then show 1 / of-nat n ∗ cnj (χ (nat (− int x mod int n))) ∗

gauss-sum 1 ∗ unity-root n (int (m ∗ x)) =
1 / of-nat n ∗ cnj (χ (nat (− int x mod int n))) ∗ gauss-sum 1 ∗

unity-root n (int (m ∗ nat (int x mod int n)))
by (simp add: nat-mod-as-int)

qed
also have . . . = (

∑
k = 0 ..n−1 . 1 / of-nat n ∗ cnj (χ k) ∗ gauss-sum 1 ∗

unity-root n (− int (m ∗ k)))
proof −

have b: bij-betw (λk. nat((−k) mod n)) {1 ..n} {0 ..n−1}
unfolding bij-betw-def

proof
show inj-on (λk. nat (− int k mod int n)) {1 ..n}

unfolding inj-on-def
proof (safe)

fix x y
assume a1 : x ∈ {1 ..n} y ∈ {1 ..n}
assume a2 : nat (− x mod n) = nat (− y mod n)
then have (− x) mod n = − y mod n

using n eq-nat-nat-iff by auto
then have [−int x = − int y] (mod n)

using unique-euclidean-semiring-class.cong-def by blast
then have [x = y] (mod n)

by (simp add: cong-int-iff cong-minus-minus-iff)
then have cong: x mod n = y mod n using unique-euclidean-semiring-class.cong-def

by blast
then show x = y
proof (cases x = n)

case True then show ?thesis using cong a1 (2) by auto
next

case False
then have x mod n = x using a1 (1) by auto
then have y 6= n using a1 (1) local.cong by fastforce
then have y mod n = y using a1 (2) by auto
then show ?thesis using ‹x mod n = x› cong by linarith

qed

83

qed
show (λk. nat (− int k mod int n)) ‘ {1 ..n} = {0 ..n − 1}

unfolding image-def
proof

let ?A = {y. ∃ x∈{1 ..n}. y = nat (− int x mod int n)}
let ?B = {0 ..n − 1}
show ?A ⊆ ?B
proof

fix y
assume y ∈ {y. ∃ x∈{1 ..n}. y = nat (− int x mod int n)}
then obtain x where x∈{1 ..n} ∧ y = nat (− int x mod int n) by blast
then show y ∈ {0 ..n − 1} by (simp add: nat-le-iff of-nat-diff)

qed
show ?A ⊇ ?B
proof

fix x
assume 1 : x ∈ {0 ..n−1}
then have n − x ∈ {1 ..n}

using n by auto
have x = nat (− int (n−x) mod int n)
proof −

have nat (− int (n−x) mod int n) = nat (int x) mod int n
apply(simp add: int-ops(6),rule conjI)
using ‹n − x ∈ {1 ..n}› by force+

also have . . . = x
using 1 n by auto

finally show ?thesis by presburger
qed
then show x ∈ {y. ∃ x∈{1 ..n}. y = nat (− int x mod int n)}

using ‹n − x ∈ {1 ..n}› by blast
qed

qed
qed
show ?thesis
proof −

have 1 : (
∑

k = 1 ..n. 1 / of-nat n ∗ cnj (χ (nat (− int k mod int n))) ∗
gauss-sum 1 ∗ unity-root n (int (m ∗ nat (int k mod int n)))) =

(
∑

x = 1 ..n. 1 / of-nat n ∗ cnj (χ (nat (− int x mod int n))) ∗
gauss-sum 1 ∗ unity-root n (− int (m ∗ nat (− int x mod int n))))

proof (rule sum.cong,simp)
fix x
have (int m ∗ (int x mod int n)) mod n = (m∗x) mod n

by (simp add: mod-mult-right-eq zmod-int)
also have . . . = (− ((− int (m∗x) mod n))) mod n

by (simp add: mod-minus-eq of-nat-mod)
have (int m ∗ (int x mod int n)) mod n = (− (int m ∗ (− int x mod int

n))) mod n
apply(subst mod-mult-right-eq,subst add.inverse-inverse[symmetric],subst

(5) add.inverse-inverse[symmetric])

84

by (subst minus-mult-minus,subst mod-mult-right-eq[symmetric],auto)
then have unity-root n (int m ∗ (int x mod int n)) =

unity-root n (− (int m ∗ (− int x mod int n)))
using unity-root-mod[of n int m ∗ (int x mod int n)]

unity-root-mod[of n − (int m ∗ (− int x mod int n))] by argo
then show 1 / of-nat n ∗ cnj (χ (nat (− int x mod int n))) ∗
gauss-sum 1 ∗
unity-root n (int (m ∗ nat (int x mod int n))) =
1 / of-nat n ∗ cnj (χ (nat (− int x mod int n))) ∗
gauss-sum 1 ∗
unity-root n (− int (m ∗ nat (− int x mod int n)))
by clarsimp

qed
also have 2 : (

∑
x = 1 ..n. 1 / of-nat n ∗ cnj (χ (nat (− int x mod int n))) ∗

gauss-sum 1 ∗ unity-root n (− int (m ∗ nat (− int x mod int n)))) =
(
∑

md = 0 ..n − 1 . 1 / of-nat n ∗ cnj (χ md) ∗ gauss-sum 1 ∗
unity-root n (− int (m ∗ md)))

using sum.reindex-bij-betw[OF b, of λmd. 1 / of-nat n ∗ cnj (χ md) ∗
gauss-sum 1 ∗ unity-root n (− int (m ∗ md))]

by blast
also have 3 : . . . = (

∑
k = 0 ..n − 1 .

1 / of-nat n ∗ cnj (χ k) ∗ gauss-sum 1 ∗
unity-root n (− int (m ∗ k))) by blast

finally have (
∑

k = 1 ..n. 1 / of-nat n ∗ cnj (χ (nat (− int k mod int n))) ∗
gauss-sum 1 ∗ unity-root n (int (m ∗ nat (int k mod int n)))) =
(
∑

k = 0 ..n − 1 .
1 / of-nat n ∗ cnj (χ k) ∗ gauss-sum 1 ∗
unity-root n (− int (m ∗ k))) using 1 2 3 by argo

then show ?thesis by blast
qed

qed
also have . . . = (

∑
k = 1 ..n.

1 / of-nat n ∗ cnj (χ k) ∗ gauss-sum 1 ∗
unity-root n (− int (m ∗ k)))

proof −
let ?f = (λk. 1 / of-nat n ∗ cnj (χ k) ∗ gauss-sum 1 ∗ unity-root n (− int (m

∗ k)))
have ?f 0 = 0

using zero-eq-0 by auto
have ?f n = 0

using zero-eq-0 mod-periodic-arithmetic[OF dir-periodic-arithmetic, of n 0]
by simp

have (
∑

n = 0 ..n − 1 . ?f n) = (
∑

n = 1 ..n − 1 . ?f n)
using sum-shift-lb-Suc0-0 [of ?f , OF ‹?f 0 = 0 ›]
by auto

also have . . . = (
∑

n = 1 ..n. ?f n)
proof (rule sum.mono-neutral-left,simp,simp,safe)

fix i
assume i ∈ {1 ..n} i /∈ {1 ..n − 1}

85

then have i = n using n by auto
then show 1 / of-nat n ∗ cnj (χ i) ∗ gauss-sum 1 ∗ unity-root n (− int (m

∗ i)) = 0
using ‹?f n = 0 › by blast

qed
finally show ?thesis by blast

qed
also have . . . = (

∑
k = 1 ..n. (τ / sqrt n) ∗ cnj (χ k) ∗ unity-root n (− int (m

∗ k)))
proof (rule sum.cong,simp)

fix x
assume x ∈ {1 ..n}
have τ / sqrt (real n) = 1 / of-nat n ∗ gauss-sum 1
proof −

have τ / sqrt (real n) = gauss-sum 1 / sqrt n / sqrt n
using assms by auto

also have . . . = gauss-sum 1 / (sqrt n ∗ sqrt n)
by (subst divide-divide-eq-left,subst of-real-mult,blast)

also have . . . = gauss-sum 1 / n
using real-sqrt-mult-self by simp

finally show ?thesis by simp
qed
then show
1 / of-nat n ∗ cnj (χ x) ∗ gauss-sum 1 ∗ unity-root n (− int (m ∗ x)) =
(τ / sqrt n) ∗ cnj (χ x) ∗ unity-root n (− int (m ∗ x)) by simp

qed
also have . . . = τ / sqrt (real n) ∗

(
∑

k = 1 ..n. cnj (χ k) ∗ unity-root n (− int (m ∗ k)))
proof −

have (
∑

k = 1 ..n. τ / sqrt (real n) ∗ cnj (χ k) ∗ unity-root n (− int (m ∗ k)))
=

(
∑

k = 1 ..n. τ / sqrt (real n) ∗ (cnj (χ k) ∗ unity-root n (− int (m ∗
k))))

by (rule sum.cong,simp, simp add: algebra-simps)
also have . . . = τ / sqrt (real n) ∗ (

∑
k = 1 ..n. cnj (χ k) ∗ unity-root n (−

int (m ∗ k)))
by (rule sum-distrib-left[symmetric])

finally show ?thesis by blast
qed

finally show χ m = (τ / sqrt (real n)) ∗
(
∑

k=1 ..n. cnj (χ k) ∗ unity-root n (− int m ∗ int k)) by simp

have 1 : norm (gauss-sum 1) = sqrt n
using gauss-sum-1-mod-square-eq-k[OF primitive-encoding(2)]
by (simp add: cmod-def)

from assms have 2 : norm τ = norm (gauss-sum 1) / |sqrt n|
by (simp add: norm-divide)

show norm τ = 1 using 1 2 n by simp

86

qed

unbundle vec-lambda-syntax

end

8 The Pólya–Vinogradov Inequality
theory Polya-Vinogradov
imports

Gauss-Sums
Dirichlet-Series.Divisor-Count

begin

unbundle no vec-lambda-syntax

8.1 The case of primitive characters

We first prove a stronger variant of the Pólya–Vinogradov inequality for
primitive characters. The fully general variant will then simply be a corollary
of this. First, we need some bounds on logarithms, exponentials, and the
harmonic numbers:
lemma exp-1-less-powr :

assumes x > (0 ::real)
shows exp 1 < (1 + 1 / x) powr (x+1)

proof −
have 1 < (x + 1) ∗ ln ((x + 1) / x) (is - < ?f x)
proof (rule DERIV-neg-imp-decreasing-at-top[where ?f = ?f])

fix t assume t: x ≤ t
have (?f has-field-derivative (ln (1 + 1 / t) − 1 / t)) (at t)

using t assms by (auto intro!: derivative-eq-intros simp:divide-simps)
moreover have ln (1 + 1 / t) − 1 / t < 0

using ln-add-one-self-less-self [of 1 / t] t assms by auto
ultimately show ∃ y. ((λt. (t + 1) ∗ ln ((t + 1) / t)) has-real-derivative y)

(at t) ∧ y < 0
by blast

qed real-asymp
thus exp 1 < (1 + 1 / x) powr (x + 1)

using assms by (simp add: powr-def field-simps)
qed

lemma harm-aux-ineq-1 :
fixes k :: real
assumes k > 1
shows 1 / k < ln (1 + 1 / (k − 1))

proof −
have k−1 > 0 ‹k > 0 › using assms by simp+
from exp-1-less-powr [OF ‹k−1 > 0 ›]

87

have eless: exp 1 < (1 + 1 / (k − 1)) powr k by simp
then have n-z: (1 + 1 / (k − 1)) powr k > 0

using assms not-exp-less-zero by auto

have (1 ::real) = ln (exp(1)) using ln-exp by auto
also have . . . < ln ((1 + 1 / (k − 1)) powr k)

by (meson eless dual-order .strict-trans exp-gt-zero ln-less-cancel-iff)
also have . . . = k ∗ ln (1 + 1 / (k − 1))

using ln-powr n-z by simp
finally have 1 < k ∗ ln (1 + 1 / (k − 1))

by blast
then show ?thesis using assms by (simp add: field-simps)

qed

lemma harm-aux-ineq-2-lemma:
assumes x ≥ (0 ::real)
shows 1 < (x + 1) ∗ ln (1 + 2 / (2 ∗ x + 1))

proof −
have 0 < ln (1+2/(2∗x+1)) − 1 / (x + 1) (is - < ?f x)
proof (rule DERIV-neg-imp-decreasing-at-top[where ?f = ?f])

fix t assume t: x ≤ t
from assms t have 3 + 8 ∗ t + 4 ∗ t^2 > 0

by (intro add-pos-nonneg) auto
hence ∗: 3 + 8 ∗ t + 4 ∗ t^2 6= 0

by auto
have (?f has-field-derivative (−1 / ((1 + t)^2 ∗ (3 + 8 ∗ t + 4 ∗ t ^ 2))))

(at t)
apply (insert assms t ∗, (rule derivative-eq-intros refl | simp add: add-pos-pos)+)

apply (auto simp: divide-simps)
apply (auto simp: algebra-simps power2-eq-square)
done

moreover have −1 / ((1 + t)^2 ∗ (3 + 8 ∗ t + 4 ∗ t^2)) < 0
using t assms by (intro divide-neg-pos mult-pos-pos add-pos-nonneg) auto

ultimately show ∃ y. (?f has-real-derivative y) (at t) ∧ y < 0
by blast

qed real-asymp
thus 1 < (x + 1) ∗ ln (1+2/(2∗x+1))

using assms by (simp add: field-simps)
qed

lemma harm-aux-ineq-2 :
fixes k :: real
assumes k ≥ 1
shows 1 / (k + 1) < ln (1 + 2 / (2 ∗ k + 1))

proof −
have k > 0 using assms by auto
have 1 < (k + 1) ∗ ln (1 + 2 / (2 ∗ k + 1))

using harm-aux-ineq-2-lemma assms by simp
then show ?thesis

88

by (simp add: ‹0 < k› add-pos-pos mult.commute mult-imp-div-pos-less)
qed

lemma nat-0-1-induct [case-names 0 1 step]:
assumes P 0 P 1

∧
n. n ≥ 1 =⇒ P n =⇒ P (Suc n)

shows P n
proof (induction n rule: less-induct)

case (less n)
show ?case

using assms(3)[OF - less.IH [of n − 1]]
by (cases n ≤ 1)
(insert assms(1−2),auto simp: eval-nat-numeral le-Suc-eq)

qed

lemma harm-less-ln:
fixes m :: nat
assumes m > 0
shows harm m < ln (2 ∗ m + 1)
using assms

proof (induct m rule: nat-0-1-induct)
case 0
then show ?case by blast

next
case 1
have harm 1 = (1 ::real) unfolding harm-def by simp
have harm 1 < ln (3 ::real)

by (subst ‹harm 1 = 1 ›,subst ln3-gt-1 ,simp)
then show ?case by simp

next
case (step n)
have harm (n+1) = harm n + 1/(n+1)
by ((subst Suc-eq-plus1 [symmetric])+,subst harm-Suc,subst inverse-eq-divide,blast)

also have . . . < ln (real (2 ∗ n + 1)) + 1/(n+1)
using step(1−2) by auto

also have . . . < ln (real (2 ∗ n + 1)) + ln (1+2/(2∗n+1))
proof −

from step(1) have real n ≥ 1 by simp
have 1 / real (n + 1) < ln (1 + 2 / real (2 ∗ n + 1))

using harm-aux-ineq-2 [OF ‹1 ≤ (real n)›] by (simp add: add.commute)
then show ?thesis by auto

qed
also have . . . = ln ((2 ∗ n + 1) ∗ (1+2/(2∗n+1)))

by (auto simp add: ln-div divide-simps)
also have . . . = ln (2∗(n+1)+1)
proof −

have (2 ∗ n + 1) ∗ (1+2/(2∗n+1)) = 2∗(n+1)+1
by (simp add: field-simps)

then show ?thesis by presburger
qed

89

finally show ?case by simp
qed

Theorem 8.21
theorem (in primitive-dchar) polya-vinogradov-inequality-primitive:

fixes x :: nat
shows norm (

∑
m=1 ..x. χ m) < sqrt n ∗ ln n

proof −
define τ :: complex where τ = gauss-sum 1 div sqrt n
have τ -mod: norm τ = 1 using fourier-primitive(2)

by (simp add: τ -def)
{

fix m
have χ m = (τ div sqrt n) ∗ (

∑
k = 1 ..n. (cnj (χ k)) ∗ unity-root n (−m∗k))

using fourier-primitive(1)[of m] τ -def by blast}
note chi-expr = this
have (

∑
m = 1 ..x. χ(m)) = (

∑
m = 1 ..x. (τ div sqrt n) ∗ (

∑
k = 1 ..n. (cnj

(χ k)) ∗ unity-root n (−m∗k)))
by(rule sum.cong[OF refl]) (use chi-expr in blast)

also have . . . = (
∑

m = 1 ..x. (
∑

k = 1 ..n. (τ div sqrt n) ∗ ((cnj (χ k)) ∗
unity-root n (−m∗k))))

by (rule sum.cong,simp,simp add: sum-distrib-left)
also have . . . = (

∑
k = 1 ..n. (

∑
m = 1 ..x. (τ div sqrt n) ∗ ((cnj (χ k)) ∗

unity-root n (−m∗k))))
by (rule sum.swap)

also have . . . = (
∑

k = 1 ..n. (τ div sqrt n) ∗ (cnj (χ k) ∗ (
∑

m = 1 ..x.
unity-root n (−m∗k))))

by (rule sum.cong,simp,simp add: sum-distrib-left)
also have . . . = (

∑
k = 1 ..<n. (τ div sqrt n) ∗ (cnj (χ k) ∗ (

∑
m = 1 ..x.

unity-root n (−m∗k))))
using n by (intro sum.mono-neutral-right) (auto intro: eq-zero)

also have . . . = (τ div sqrt n) ∗ (
∑

k = 1 ..<n. (cnj (χ k) ∗ (
∑

m = 1 ..x.
unity-root n (−m∗k))))

by (simp add: sum-distrib-left)
finally have (

∑
m = 1 ..x. χ(m)) = (τ div sqrt n) ∗ (

∑
k = 1 ..<n. (cnj (χ k)

∗ (
∑

m = 1 ..x. unity-root n (−m∗k))))
by blast
hence eq: sqrt n ∗ (

∑
m=1 ..x. χ(m)) = τ ∗ (

∑
k=1 ..<n. (cnj (χ k) ∗

(
∑

m=1 ..x. unity-root n (−m∗k))))
by auto

define f where f = (λk. (
∑

m = 1 ..x. unity-root n (−m∗k)))

hence (sqrt n) ∗ norm(
∑

m = 1 ..x. χ(m)) = norm(τ ∗ (
∑

k=1 ..<n. (cnj (χ
k) ∗ (

∑
m = 1 ..x. unity-root n (−m∗k)))))

proof −
have norm(sqrt n ∗ (

∑
m=1 ..x. χ(m))) = norm (sqrt n) ∗ norm((

∑
m =

1 ..x. χ(m)))
by (simp add: norm-mult)

also have . . . = (sqrt n) ∗ norm((
∑

m = 1 ..x. χ(m)))

90

by simp
finally have 1 : norm((sqrt n) ∗ (

∑
m = 1 ..x. χ(m))) = (sqrt n) ∗ norm((

∑
m

= 1 ..x. χ(m)))
by blast

then show ?thesis using eq by algebra
qed
also have . . . = norm (

∑
k = 1 ..<n. (cnj (χ k) ∗ (

∑
m = 1 ..x. unity-root n

(−m∗k))))
by (simp add: norm-mult τ -mod)

also have . . . ≤ (
∑

k = 1 ..<n. norm (cnj (χ k) ∗ (
∑

m = 1 ..x. unity-root n
(−m∗k))))

using norm-sum by blast
also have . . . = (

∑
k = 1 ..<n. norm (cnj (χ k)) ∗ norm((

∑
m = 1 ..x.

unity-root n (−m∗k))))
by (rule sum.cong,simp, simp add: norm-mult)

also have . . . ≤ (
∑

k = 1 ..<n. norm((
∑

m = 1 ..x. unity-root n (−m∗k))))
proof −

show ?thesis
proof (rule sum-mono)

fix k
assume k ∈ {1 ..<n}
define sum-aux :: real where sum-aux = norm (

∑
m=1 ..x. unity-root n

(− int m ∗ int k))
have sum-aux ≥ 0 unfolding sum-aux-def by auto
have norm (cnj (χ k)) ≤ 1 using norm-le-1 [of k] by simp
then have norm (cnj (χ k)) ∗ sum-aux ≤ 1 ∗ sum-aux

using ‹sum-aux ≥ 0 › by (simp add: mult-left-le-one-le)
then show norm (cnj (χ k)) ∗

norm (
∑

m = 1 ..x. unity-root n (− int m ∗ int k))
≤ norm (

∑
m = 1 ..x. unity-root n (− int m ∗ int k))

unfolding sum-aux-def by argo
qed

qed
also have . . . = (

∑
k = 1 ..<n. norm(f k))

using f-def by blast
finally have 24 : (sqrt n) ∗ norm(

∑
m = 1 ..x. χ(m)) ≤ (

∑
k = 1 ..<n. norm(f

k))
by blast

{
fix k :: int
have f (n−k) = cnj(f (k))
proof −

have f (n−k) = (
∑

m = 1 ..x. unity-root n (−m∗(n−k)))
unfolding f-def by blast

also have . . . = (
∑

m = 1 ..x. unity-root n (m∗k))
proof (rule sum.cong,simp)

fix xa
assume xa ∈ {1 ..x}

91

have (k ∗ int xa − int n ∗ int xa) mod int n = (k ∗ int xa − 0) mod int n
by (intro mod-diff-cong) auto

thus unity-root n (−int xa ∗ (int n − k)) = unity-root n (int xa ∗ k)
by (metis left-diff-distrib diff-zero minus-diff-eq mult.commute unity-root-mod)
qed
also have . . . = cnj(f (k))
proof −

have cnj(f (k)) = cnj (
∑

m = 1 ..x. unity-root n (− int m ∗ k))
unfolding f-def by blast

also have cnj (
∑

m = 1 ..x. unity-root n (− int m ∗ k)) =
(
∑

m = 1 ..x. cnj(unity-root n (− int m ∗ k)))
by (rule cnj-sum)

also have . . . = (
∑

m = 1 ..x. unity-root n (int m ∗ k))
by (intro sum.cong) (auto simp: unity-root-uminus)

finally show ?thesis by auto
qed
finally show f (n−k) = cnj(f (k)) by blast

qed
hence norm(f (n−k)) = norm(cnj(f (k))) by simp
hence norm(f (n−k)) = norm(f (k)) by auto

}
note eq = this
have 25 :

odd n =⇒ (
∑

k = 1 ..n − 1 . norm (f (int k))) ≤
2 ∗ (

∑
k = 1 ..(n−1) div 2 . norm (f (int k)))

even n =⇒ (
∑

k = 1 ..n − 1 . norm (f (int k))) ≤
2 ∗ (

∑
k = 1 ..(n−2) div 2 . norm (f (int k))) + norm(f (n div 2))

proof −
assume odd n
define g where g = (λk. norm (f k))
have (n−1) div 2 = n div 2 using ‹odd n› n

using div-mult-self1-is-m[OF pos2 ,of n−1]
odd-two-times-div-two-nat[OF ‹odd n›] by linarith

have (
∑

i=1 ..n−1 . g i) = (
∑

i∈{1 ..n div 2}∪{n div 2<..n−1}. g i)
using n by (intro sum.cong,auto)

also have . . . = (
∑

i∈{1 ..n div 2}. g i) + (
∑

i∈{n div 2<..n−1}. g i)
by (subst sum.union-disjoint,auto)

also have (
∑

i∈{n div 2<..n−1}. g i) = (
∑

i∈{1 ..n − (n div 2 + 1)}. g (n
− i))

by (rule sum.reindex-bij-witness[of - λi. n − i λi. n − i],auto)
also have . . . ≤ (

∑
i∈{1 ..n div 2}. g (n − i))

by (intro sum-mono2 ,simp,auto simp add: g-def)
finally have 1 : (

∑
i=1 ..n−1 . g i) ≤ (

∑
i=1 ..n div 2 . g i + g (n − i))

by (simp add: sum.distrib)
have (

∑
i=1 ..n div 2 . g i + g (n − i)) = (

∑
i=1 ..n div 2 . 2 ∗ g i)

unfolding g-def
apply(rule sum.cong,simp)
using eq int-ops(6) by force

also have . . . = 2 ∗ (
∑

i=1 ..n div 2 . g i)

92

by (rule sum-distrib-left[symmetric])
finally have 2 : (

∑
i=1 ..n div 2 . g i + g (n − i)) = 2 ∗ (

∑
i=1 ..n div 2 . g

i)
by blast

from 1 2 have (
∑

i=1 ..n−1 . g i) ≤ 2 ∗ (
∑

i=1 ..n div 2 . g i) by algebra
then show (

∑
n = 1 ..n − 1 . norm (f (int n))) ≤ 2 ∗ (

∑
n = 1 ..(n−1) div

2 . norm (f (int n)))
unfolding g-def ‹(n−1) div 2 = n div 2 › by blast

next
assume even n
define g where g = (λn. norm (f (n)))
have (n−2) div 2 = n div 2 − 1 using ‹even n› n by simp

have (
∑

i=1 ..n−1 . g i) = (
∑

i∈{1 ..<n div 2}∪ {n div 2} ∪ {n div 2<..n−1}.
g i)

using n by (intro sum.cong,auto)
also have . . . = (

∑
i∈{1 ..<n div 2}. g i) + (

∑
i∈{n div 2<..n−1}. g i) +

g(n div 2)
by (subst sum.union-disjoint,auto)

also have (
∑

i∈{n div 2<..n−1}. g i) = (
∑

i∈{1 ..n − (n div 2+1)}. g (n
− i))

by (rule sum.reindex-bij-witness[of - λi. n − i λi. n − i],auto)
also have . . . ≤ (

∑
i∈{1 ..<n div 2}. g (n − i))

proof (intro sum-mono2 ,simp)
have n − n div 2 = n div 2 using ‹even n› n by auto
then have n − (n div 2 + 1) < n div 2

using n by (simp add: divide-simps)
then show {1 ..n − (n div 2 + 1)} ⊆ {1 ..<n div 2} by fastforce

qed auto
finally have 1 : (

∑
i=1 ..n−1 . g i) ≤ (

∑
i=1 ..<n div 2 . g i + g (n − i)) +

g(n div 2)
by (simp add: sum.distrib)

have (
∑

i=1 ..<n div 2 . g i + g (n − i)) = (
∑

i=1 ..<n div 2 . 2 ∗ g i)
unfolding g-def
apply(rule sum.cong,simp)
using eq int-ops(6) by force

also have . . . = 2 ∗ (
∑

i=1 ..<n div 2 . g i)
by (rule sum-distrib-left[symmetric])

finally have 2 : (
∑

i=1 ..<n div 2 . g i + g (n − i)) = 2 ∗ (
∑

i=1 ..<n div
2 . g i)

by blast
from 1 2 have 3 : (

∑
i=1 ..n−1 . g i) ≤ 2 ∗ (

∑
i=1 ..<n div 2 . g i) + g(n

div 2) by algebra
then have (

∑
i=1 ..n−1 . g i) ≤ 2 ∗ (

∑
i=1 ..(n−2) div 2 . g i) + g(n div

2)
proof −

have {1 ..<n div 2} = {1 ..(n−2) div 2} by auto
then have (

∑
i=1 ..<n div 2 . g i) = (

∑
i=1 ..(n−2) div 2 . g i)

by (rule sum.cong,simp)
then show ?thesis using 3 by presburger

93

qed
then show (

∑
k = 1 ..n − 1 . norm (f (int k))) ≤ 2 ∗ (

∑
n = 1 ..(n−2) div

2 . norm (f (int n))) + g(n div 2)
unfolding g-def by blast

qed

{fix k :: int
assume 1 ≤ k k ≤ n div 2
have k ≤ n − 1

using ‹k ≤ n div 2 › n by linarith
define y where y = unity-root n (−k)
define z where z = exp (−(pi∗k/n)∗ i)
have z^2 = exp (2∗(−(pi∗k/n)∗ i))

unfolding z-def using exp-double[symmetric] by blast
also have . . . = y

unfolding y-def unity-root-conv-exp by (simp add: algebra-simps)
finally have z-eq: y = z^2 by blast
have z-not-0 : z 6= 0

using z-eq by (simp add: z-def)

then have y 6= 1
using unity-root-eq-1-iff-int ‹1 ≤ k› ‹k ≤ n − 1 › not-less

unity-root-eq-1-iff-int y-def zdvd-not-zless by auto

have f (k) = (
∑

m = 1 ..x . y^m)
unfolding f-def y-def
by (subst unity-root-pow,rule sum.cong,simp,simp add: algebra-simps)

also have sum: . . . = (
∑

m = 1 ..<x+1 . y^m)
by (rule sum.cong,fastforce,simp)

also have . . . = (
∑

m = 0 ..<x+1 . y^m) − 1
by (subst (2) sum.atLeast-Suc-lessThan) auto

also have . . . = (y^(x+1) − 1) div (y − 1) − 1
using geometric-sum[OF ‹y 6= 1 ›, of x+1] by (simp add: atLeast0LessThan)

also have . . . = (y^(x+1) − 1 − (y−1)) div (y − 1)
proof −

have y − 1 6= 0 using ‹y 6= 1 › by simp
show ?thesis

using divide-diff-eq-iff [OF ‹y − 1 6= 0 ›, of (y^(x+1) − 1) 1] by auto
qed
also have . . . = (y^(x+1) − y) div (y − 1)

by (simp add: algebra-simps)
also have . . . = y ∗ (y^x − 1) div (y − 1)

by (simp add: algebra-simps)
also have . . . = z^2 ∗ ((z^2)^x − 1) div (z^2 − 1)

unfolding z-eq by blast
also have . . . = z^2 ∗ (z^(2∗x) − 1) div (z^2 − 1)

by (subst power-mult[symmetric, of z 2 x],blast)

94

also have . . . = z^(x+1)∗((z ^x −inverse(z^x))) / (z − inverse(z))
proof −

have z^x 6= 0 using z-not-0 by auto
have 1 : z ^ (2 ∗ x) − 1 = z^x∗(z ^x −inverse(z^x))

by (simp add: semiring-normalization-rules(36) right-inverse[OF ‹z^x 6=
0 ›] right-diff-distrib ′)

have 2 : z2 − 1 = z∗(z − inverse(z))
by (simp add: right-diff-distrib ′ semiring-normalization-rules(29) right-inverse[OF

‹z 6= 0 ›])

have 3 : z2 ∗ (z^x / z) = z^(x+1)
proof −

have z2 ∗ (z^x / z) = z2 ∗ (z^x ∗ inverse z)
by (simp add: inverse-eq-divide)

also have . . . = z^(x+1)
by (simp add: algebra-simps power2-eq-square right-inverse[OF ‹z 6= 0 ›])

finally show ?thesis by blast
qed
have z2 ∗ (z ^ (2 ∗ x) − 1) / (z2 − 1) =

z2 ∗ (z^x∗(z ^x −inverse(z^x))) / (z∗(z − inverse(z)))
by (subst 1 , subst 2 ,blast)

also have . . . = (z2 ∗ (z^x / z)) ∗ ((z ^x −inverse(z^x))) / (z − inverse(z))
by simp

also have . . . = z^(x+1) ∗((z ^x −inverse(z^x))) / (z − inverse(z))
by (subst 3 ,simp)

finally show ?thesis by simp
qed
finally have f (k) = z^(x+1) ∗((z ^x −inverse(z^x))) / (z − inverse(z)) by

blast

then have norm(f (k)) = norm(z^(x+1) ∗ (((z ^x −inverse(z^x))) / (z −
inverse(z)))) by auto

also have . . . = norm(z^(x+1)) ∗ norm(((z ^x −inverse(z^x))) / (z − in-
verse(z)))

using norm-mult by blast
also have . . . = norm(((z ^x −inverse(z^x))) / (z − inverse(z)))
proof −

have norm(z) = 1
unfolding z-def by auto

have norm(z^(x+1)) = 1
by (subst norm-power ,simp add: ‹norm(z) = 1 ›)

then show ?thesis by simp
qed
also have . . . = norm((exp (−(x∗pi∗k/n)∗ i) − exp ((x∗pi∗k/n)∗ i)) div

(exp (−(pi∗k/n)∗ i) − exp ((pi∗k/n)∗ i)))
proof −

have 1 : z ^ x = exp (−(x∗pi∗k/n)∗ i)
unfolding z-def

95

by (subst exp-of-nat-mult[symmetric],simp add: algebra-simps)
have inverse (z ^ x) = inverse (exp (−(x∗pi∗k/n)∗ i))

using ‹z ^ x = exp (−(x∗pi∗k/n)∗ i)› by auto
also have . . . = (exp ((x∗pi∗k/n)∗ i))

by (simp add: exp-minus)
finally have 2 : inverse(z^x) = exp ((x∗pi∗k/n)∗ i) by simp
have 3 : inverse z = exp ((pi∗k/n)∗ i)

by (simp add: exp-minus z-def)
show ?thesis using 1 2 3 z-def by simp

qed
also have . . . = norm((sin (x∗pi∗k/n)) div (sin (pi∗k/n)))
proof −
have num: (exp (−(x∗pi∗k/n)∗ i) − exp ((x∗pi∗k/n)∗ i)) = (−2∗i∗ sin((x∗pi∗k/n)))

proof −
have 1 : exp (−(x∗pi∗k/n)∗ i) = cos(−(x∗pi∗k/n)) + i ∗ sin(−(x∗pi∗k/n))

exp ((x∗pi∗k/n)∗ i) = cos((x∗pi∗k/n)) + i ∗ sin((x∗pi∗k/n))
using Euler Im-complex-of-real Im-divide-of-nat Im-i-times Re-complex-of-real

complex-Re-of-int complex-i-mult-minus exp-zero mult.assoc mult.commute
by force+

have (exp (−(x∗pi∗k/n)∗ i) − exp ((x∗pi∗k/n)∗ i)) =
(cos(−(x∗pi∗k/n)) + i ∗ sin(−(x∗pi∗k/n))) −
(cos((x∗pi∗k/n)) + i ∗ sin((x∗pi∗k/n)))

using 1 by argo
also have . . . = −2∗i∗ sin((x∗pi∗k/n)) by simp
finally show ?thesis by blast

qed

have den: (exp (−(pi∗k/n)∗ i) − exp ((pi∗k/n)∗ i)) = −2∗i∗ sin((pi∗k/n))
proof −

have 1 : exp (−(pi∗k/n)∗ i) = cos(−(pi∗k/n)) + i ∗ sin(−(pi∗k/n))
exp ((pi∗k/n)∗ i) = cos((pi∗k/n)) + i ∗ sin((pi∗k/n))

using Euler Im-complex-of-real Im-divide-of-nat Im-i-times Re-complex-of-real

complex-Re-of-int complex-i-mult-minus exp-zero mult.assoc mult.commute
by force+

have (exp (−(pi∗k/n)∗ i) − exp ((pi∗k/n)∗ i)) =
(cos(−(pi∗k/n)) + i ∗ sin(−(pi∗k/n))) −
(cos((pi∗k/n)) + i ∗ sin((pi∗k/n)))

using 1 by argo
also have . . . = −2∗i∗ sin((pi∗k/n)) by simp
finally show ?thesis by blast

qed

have norm((exp (−(x∗pi∗k/n)∗ i) − exp ((x∗pi∗k/n)∗ i)) div
(exp (−(pi∗k/n)∗ i) − exp ((pi∗k/n)∗ i))) =

norm((−2∗i∗ sin((x∗pi∗k/n))) div (−2∗i∗ sin((pi∗k/n))))
using num den by presburger

also have . . . = norm(sin((x∗pi∗k/n)) div sin((pi∗k/n)))

96

by (simp add: norm-divide)
finally show ?thesis by blast

qed
also have . . . = norm((sin (x∗pi∗k/n))) div norm((sin (pi∗k/n)))

by (simp add: norm-divide)
also have . . . ≤ 1 div norm((sin (pi∗k/n)))
proof −

have norm((sin (pi∗k/n))) ≥ 0 by simp
have norm (sin (x∗pi∗k/n)) ≤ 1 by simp
then show ?thesis

using divide-right-mono[OF ‹norm (sin (x∗pi∗k/n)) ≤ 1 › ‹norm((sin
(pi∗k/n))) ≥ 0 ›]

by blast
qed
finally have 26 : norm(f (k)) ≤ 1 div norm((sin (pi∗k/n)))

by blast

{
fix t
assume t ≥ 0 t ≤ pi div 2
then have t ∈ {0 ..pi div 2} by auto
have convex-on {0 ..pi/2} (λx. −sin x)
by (rule convex-on-realI [where f ′ = λx. − cos x])

(auto intro!: derivative-eq-intros simp: cos-monotone-0-pi-le)
from convex-onD-Icc ′[OF this ‹t ∈ {0 ..pi div 2}›] have sin(t) ≥ (2 div pi)∗t

by simp
}
note sin-ineq = this

have sin-ineq-inst: sin ((pi∗k) / n) ≥ (2 ∗ k) / n
proof −

have pi / n ≥ 0 by simp
have 1 : (pi∗k) / n ≥ 0 using ‹1 ≤ k› by auto
have (pi∗k)/n = (pi / n) ∗ k by simp
also have . . . ≤ (pi / n) ∗ (n / 2)

using mult-left-mono[of k n / 2 pi / n]
‹k ≤ n div 2 › ‹0 ≤ pi / real n› by linarith

also have . . . ≤ pi / 2
by (simp add: divide-simps)

finally have 2 : (pi∗k)/n ≤ pi / 2 by auto

have (2 / pi) ∗ (pi ∗ k / n) ≤ sin((pi ∗ k) / n)
using sin-ineq[OF 1 2] by blast

then show sin((pi ∗ k) / n) ≥ (2∗k) / n
by auto

qed

from 26 have norm(f (k)) ≤ 1 div abs((sin (pi∗k/n))) by simp

97

also have . . . ≤ 1 / abs((2∗k) / n)
proof −

have sin (pi∗k/n) ≥ (2∗k) / n using sin-ineq-inst by simp
moreover have (2∗k) / n > 0 using n ‹1 ≤ k› by auto
ultimately have abs((sin (pi∗k/n))) ≥ abs((2∗k)/n) by auto
have abs((2∗k)/n) > 0 using ‹(2∗k)/n > 0 › by linarith
then show 1 div abs((sin (pi∗k/n))) ≤ 1 / abs(((2∗k)/n))

using ‹abs((2∗k)/n) > 0 › ‹abs((sin (pi∗k/n))) ≥ abs(((2∗k)/n))›
by (intro frac-le) auto

qed
also have . . . = n / (2∗k) using ‹k ≥ 1 › by simp
finally have norm(f (k)) ≤ n / (2∗k) by blast

}
note ineq = this

have sqrt n ∗ norm (sum χ {1 ..x}) < n ∗ ln n
proof (cases even n)

case True
have norm (f (n div 2)) ≤ 1
proof −

have int (n div 2) ≥ 1 using n ‹even n› by auto
show ?thesis

using ineq[OF ‹int (n div 2) ≥ 1 ›] True n by force
qed
from 24 have sqrt n ∗ norm (sum χ {1 ..x})

≤ (
∑

k = 1 ..<n. norm (f (int k))) by blast
also have . . . = (

∑
k = 1 ..n−1 . norm (f (int k)))

by (intro sum.cong) auto
also have . . . ≤ 2 ∗ (

∑
k = 1 ..(n − 2) div 2 . norm (f (int k))) + norm(f (n

div 2))
using 25 (2)[OF True] by blast

also have . . . ≤ real n ∗ (
∑

k = 1 ..(n − 2) div 2 . 1 / k) + norm(f (n div 2))
proof −

have (
∑

k = 1 ..(n − 2) div 2 . norm (f (int k))) ≤ (
∑

k = 1 ..(n − 2) div
2 . real n div (2∗k))

proof (rule sum-mono)
fix k
assume k ∈ {1 ..(n − 2) div 2}
then have 1 ≤ int k int k ≤ n div 2 by auto
show norm (f (int k)) ≤ real n / (2∗k)

using ineq[OF ‹1 ≤ int k› ‹int k ≤ n div 2 ›] by auto
qed
also have . . . = (

∑
k = 1 ..(n − 2) div 2 . (real n div 2) ∗ (1 / k))

by (rule sum.cong,auto)
also have . . . = (real n div 2) ∗ (

∑
k = 1 ..(n − 2) div 2 . 1 / k)

using sum-distrib-left[symmetric] by fast
finally have (

∑
k = 1 ..(n − 2) div 2 . norm (f (int k))) ≤

(real n div 2) ∗ (
∑

k = 1 ..(n − 2) div 2 . 1 / k)

98

by blast
then show ?thesis by argo

qed
also have . . . = real n ∗ harm ((n − 2) div 2) + norm(f (n div 2))

unfolding harm-def inverse-eq-divide by simp
also have . . . < n ∗ ln n
proof (cases n = 2)

case True
have real n ∗ harm ((n − 2) div 2) + norm (f (int (n div 2))) ≤ 1

using ‹n = 2 › ‹norm (f (int (n div 2))) ≤ 1 ›
unfolding harm-def by simp

moreover have real n ∗ ln (real n) ≥ 4 / 3
using ‹n = 2 › ln2-ge-two-thirds by auto

ultimately show ?thesis by argo
next

case False
have n > 3 using n ‹n 6= 2 › ‹even n› by auto
then have (n−2) div 2 > 0 by simp
then have harm ((n − 2) div 2) < ln (real (2 ∗ ((n − 2) div 2) + 1))

using harm-less-ln by blast
also have . . . = ln (real (n − 1))

using ‹even n› ‹n > 3 › by simp
finally have 1 : harm ((n − 2) div 2) < ln (real (n − 1))

by blast
then have real n ∗ harm ((n − 2) div 2) < real n ∗ ln (real (n − 1))

using n by simp
then have real n ∗ harm ((n − 2) div 2) + norm (f (int (n div 2)))

< real n ∗ ln (real (n − 1)) + 1
using ‹norm (f (int (n div 2))) ≤ 1 › by argo

also have . . . = real n ∗ ln (real (n − 1)) + real n ∗ 1 / real n
using n by auto

also have . . . < real n ∗ ln (real (n − 1)) + real n ∗ ln (1 + 1 / (real n −
1))

proof −
have real n > 1 real n > 0 using n by simp+
then have real n ∗ (1 / real n) < real n ∗ ln (1 + 1 / (real n − 1))

by (intro mult-strict-left-mono harm-aux-ineq-1) auto
then show ?thesis by auto

qed
also have . . . = real n ∗ (ln (real (n − 1)) + ln (1 + 1 / (real n − 1)))

by argo
also have . . . = real n ∗ (ln (real (n − 1) ∗ (1 + 1 / (real n − 1))))
proof −

have real (n − 1) > 0 1 + 1 / (real n − 1) > 0
using n by (auto simp add: add-pos-nonneg)

then show ?thesis
by (simp add: ln-mult)

qed
also have . . . = real n ∗ ln n

99

using n by (auto simp add: divide-simps)
finally show ?thesis by blast

qed
finally show ?thesis by blast

next
case False
from 24 have sqrt n ∗ norm (sum χ {1 ..x}) ≤ (

∑
k= 1 ..<n. norm (f (int

k)))
by blast

also have . . . = (
∑

k= 1 ..n−1 . norm (f (int k)))
by (intro sum.cong) auto

also have . . . ≤ 2 ∗ (
∑

k = 1 ..(n − 1) div 2 . norm (f (int k)))
using 25 (1)[OF False] by blast

also have . . . ≤ real n ∗ (
∑

k = 1 ..(n − 1) div 2 . 1 / k)
proof −

have (
∑

k = 1 ..(n − 1) div 2 . norm (f (int k))) ≤ (
∑

k = 1 ..(n − 1) div
2 . real n div (2∗k))

proof (rule sum-mono)
fix k
assume k ∈ {1 ..(n − 1) div 2}
then have 1 ≤ int k int k ≤ n div 2 by auto
show norm (f (int k)) ≤ real n / (2∗k)

using ineq[OF ‹1 ≤ int k› ‹int k ≤ n div 2 ›] by auto
qed
also have . . . = (

∑
k = 1 ..(n − 1) div 2 . (n / 2) ∗ (1 / k))

by (rule sum.cong,auto)
also have . . . = (n / 2) ∗ (

∑
k = 1 ..(n − 1) div 2 . 1 / k)

using sum-distrib-left[symmetric] by fast
finally have (

∑
k = 1 ..(n − 1) div 2 . norm (f (int k))) ≤

(real n div 2) ∗ (
∑

k = 1 ..(n − 1) div 2 . 1 / k)
by blast

then show ?thesis by argo
qed
also have . . . = real n ∗ harm ((n − 1) div 2)

unfolding harm-def inverse-eq-divide by simp
also have . . . < n ∗ ln n
proof −

have n > 2 using n ‹odd n› by presburger
then have (n−1) div 2 > 0 by auto
then have harm ((n − 1) div 2) < ln (real (2 ∗ ((n − 1) div 2) + 1))

using harm-less-ln by blast
also have . . . = ln (real n) using ‹odd n› by simp
finally show ?thesis using n by simp

qed
finally show ?thesis by blast

qed

then have 1 : sqrt n ∗ norm (sum χ {1 ..x}) < n ∗ ln n
by blast

100

show norm (sum χ {1 ..x}) < sqrt n ∗ ln n
proof −

have 2 : norm (sum χ {1 ..x}) ∗ sqrt n < n ∗ ln n
using 1 by argo

have sqrt n > 0 using n by simp
have 3 : (n ∗ ln n) / sqrt n = sqrt n ∗ ln n

using n by (simp add: field-simps)
show norm (sum χ {1 ..x}) < sqrt n ∗ ln n

using mult-imp-less-div-pos[OF ‹sqrt n > 0 › 2] 3 by argo
qed

qed

8.2 General case

We now first prove the inequality for the general case in terms of the divisor
function:
theorem (in dcharacter) polya-vinogradov-inequality-explicit:

assumes nonprincipal: χ 6= principal-dchar n
shows norm (sum χ {1 ..x}) < sqrt conductor ∗ ln conductor ∗ divisor-count

(n div conductor)
proof −

write primitive-extension (‹Φ›)
write conductor (‹c›)
interpret Φ: primitive-dchar c residue-mult-group c primitive-extension

using primitive-primitive-extension nonprincipal by metis

have ∗: k ≤ x div b ←→ b ∗ k ≤ x if b > 0 for b k
by (metis that antisym-conv div-le-mono div-mult-self1-is-m

less-imp-le not-less times-div-less-eq-dividend)
have ∗∗: a > 0 if a dvd n for a

using n that by (auto intro!: Nat.gr0I)

from nonprincipal have (
∑

m=1 ..x. χ m) = (
∑

m | m ∈ {1 ..x} ∧ coprime m
n. Φ m)

by (intro sum.mono-neutral-cong-right) (auto simp: eq-zero-iff principal-decomposition)
also have . . . = (

∑
m=1 ..x. Φ m ∗ (

∑
d | d dvd gcd m n. moebius-mu d))

by (subst sum-moebius-mu-divisors ′, intro sum.mono-neutral-cong-left)
(auto simp: coprime-iff-gcd-eq-1 simp del: coprime-imp-gcd-eq-1)

also have . . . = (
∑

m=1 ..x.
∑

d | d dvd gcd m n. Φ m ∗ moebius-mu d)
by (simp add: sum-distrib-left)

also have . . . = (
∑

m=1 ..x.
∑

d | d dvd m ∧ d dvd n. Φ m ∗ moebius-mu d)
by (intro sum.cong) auto

also have . . . = (
∑

(m, d)∈(SIGMA m:{1 ..x}. {d. d dvd m ∧ d dvd n}). Φ m
∗ moebius-mu d)

using n by (subst sum.Sigma) auto
also have . . . = (

∑
(d, q)∈(SIGMA d:{d. d dvd n}. {1 ..x div d}). moebius-mu

d ∗ Φ (d ∗ q))
by (intro sum.reindex-bij-witness[of - λ(d,q). (d ∗ q, d) λ(m,d). (d, m div d)])

(auto simp: ∗ ∗∗ Suc-le-eq)

101

also have . . . = (
∑

d | d dvd n. moebius-mu d ∗ Φ d ∗ (
∑

q=1 ..x div d. Φ q))
using n by (subst sum.Sigma [symmetric]) (auto simp: sum-distrib-left mult.assoc)

finally have eq: (
∑

m=1 ..x. χ m) =

have norm (
∑

m=1 ..x. χ m) ≤
(
∑

d | d dvd n. norm (moebius-mu d ∗ Φ d) ∗ norm (
∑

q=1 ..x div d. Φ
q))

unfolding eq by (intro sum-norm-le) (simp add: norm-mult)
also have . . . < (

∑
d | d dvd n. norm (moebius-mu d ∗ Φ d) ∗ (sqrt c ∗ ln c))

(is sum ?lhs - < sum ?rhs -)
proof (rule sum-strict-mono-ex1)

show ∀ d∈{d. d dvd n}. ?lhs d ≤ ?rhs d
by (intro ballI mult-left-mono less-imp-le[OF Φ.polya-vinogradov-inequality-primitive])

auto
show ∃ d∈{d. d dvd n}. ?lhs d < ?rhs d
by (intro bexI [of - 1] mult-strict-left-mono Φ.polya-vinogradov-inequality-primitive)

auto
qed (use n in auto)
also have . . . = sqrt c ∗ ln c ∗ (

∑
d | d dvd n. norm (moebius-mu d ∗ Φ d))

by (simp add: sum-distrib-left sum-distrib-right mult-ac)
also have (

∑
d | d dvd n. norm (moebius-mu d ∗ Φ d)) =

(
∑

d | d dvd n ∧ squarefree d ∧ coprime d c. 1)
using n by (intro sum.mono-neutral-cong-right)

(auto simp: moebius-mu-def Φ.eq-zero-iff norm-mult norm-power
Φ.norm)

also have . . . = card {d. d dvd n ∧ squarefree d ∧ coprime d c}
by simp

also have card {d. d dvd n ∧ squarefree d ∧ coprime d c} ≤ card {d. d dvd (n
div c)}

proof (intro card-mono; safe?)
show finite {d. d dvd (n div c)}

using dvd-div-eq-0-iff [of c n] n conductor-dvd by (intro finite-divisors-nat)
auto

next
fix d assume d: d dvd n squarefree d coprime d c
hence d > 0 by (intro Nat.gr0I) auto
show d dvd (n div c)
proof (rule multiplicity-le-imp-dvd)

fix p :: nat assume p: prime p
show multiplicity p d ≤ multiplicity p (n div c)
proof (cases p dvd d)

assume p dvd d
with d ‹d > 0 › p have multiplicity p d = 1

by (auto simp: squarefree-factorial-semiring ′ in-prime-factors-iff)
moreover have p dvd (n div c)
proof −

have p dvd c ∗ (n div c)
using ‹p dvd d› ‹d dvd n› conductor-dvd by auto

moreover have ¬(p dvd c)

102

using d p ‹p dvd d› coprime-common-divisor not-prime-unit by blast
ultimately show p dvd (n div c)

using p prime-dvd-mult-iff by blast
qed
hence multiplicity p (n div c) ≥ 1

using n p conductor-dvd dvd-div-eq-0-iff [of c n]
by (intro multiplicity-geI) (auto intro: Nat.gr0I)

ultimately show ?thesis by simp
qed (auto simp: not-dvd-imp-multiplicity-0)

qed (use ‹d > 0 › in simp-all)
qed
also have card {d. d dvd (n div c)} = divisor-count (n div c)

by (simp add: divisor-count-def)
finally show norm (sum χ {1 ..x}) < sqrt c ∗ ln c ∗ divisor-count (n div c)

using conductor-gr-0 by (simp add: mult-left-mono)
qed

Next, we obtain a suitable upper bound on the number of divisors of n:
lemma divisor-count-upper-bound-aux:

fixes n :: nat
shows divisor-count n ≤ 2 ∗ card {d. d dvd n ∧ d ≤ sqrt n}

proof (cases n = 0)
case False
hence n: n > 0 by simp
have ∗: x > 0 if x dvd n for x

using that n by (auto intro!: Nat.gr0I)
have ∗∗: real n = sqrt (real n) ∗ sqrt (real n)

by simp
have ∗∗∗: n < x ∗ sqrt n ←→ sqrt n < x x ∗ sqrt n < n ←→ x < sqrt n for x

by (metis ∗∗ n of-nat-0-less-iff mult-less-cancel-right-pos real-sqrt-gt-0-iff)+

have divisor-count n = card {d. d dvd n}
by (simp add: divisor-count-def)

also have {d. d dvd n} = {d. d dvd n ∧ d ≤ sqrt n} ∪ {d. d dvd n ∧ d > sqrt
n}

by auto
also have card . . . = card {d. d dvd n ∧ d ≤ sqrt n} + card {d. d dvd n ∧ d >

sqrt n}
using n by (subst card-Un-disjoint) auto

also have bij-betw (λd. n div d) {d. d dvd n ∧ d > sqrt n} {d. d dvd n ∧ d <
sqrt n}

using n by (intro bij-betwI [of - - - λd. n div d])
(auto simp: Real.real-of-nat-div real-sqrt-divide field-simps ∗ ∗∗∗)

hence card {d. d dvd n ∧ d > sqrt n} = card {d. d dvd n ∧ d < sqrt n}
by (rule bij-betw-same-card)

also have . . . ≤ card {d. d dvd n ∧ d ≤ sqrt n}
using n by (intro card-mono) auto

finally show divisor-count n ≤ 2 ∗ . . . by simp
qed auto

103

lemma divisor-count-upper-bound:
fixes n :: nat
shows divisor-count n ≤ 2 ∗ nat bsqrt nc

proof (cases n = 0)
case False
have divisor-count n ≤ 2 ∗ card {d. d dvd n ∧ d ≤ sqrt n}

by (rule divisor-count-upper-bound-aux)
also have card {d. d dvd n ∧ d ≤ sqrt n} ≤ card {1 ..nat bsqrt nc}

using False by (intro card-mono) (auto simp: le-nat-iff le-floor-iff Suc-le-eq
intro!: Nat.gr0I)

also have . . . = nat bsqrt nc by simp
finally show ?thesis by simp

qed auto

lemma divisor-count-upper-bound ′:
fixes n :: nat
shows real (divisor-count n) ≤ 2 ∗ sqrt n

proof −
have real (divisor-count n) ≤ 2 ∗ real (nat bsqrt nc)

using divisor-count-upper-bound[of n] by linarith
also have . . . ≤ 2 ∗ sqrt n

by simp
finally show ?thesis .

qed

We are now ready to prove the ‘regular’ Pólya–Vinogradov inequality.
Apostol formulates it in the following way (Theorem 13.15, notation adapted):
‘If χ is any nonprincipal character mod n, then for all x ≥ 2 we have∑

m≤x χ(m) = O(
√
n log n).’

The precondition x ≥ 2 here is completely unnecessary. The ‘Big-O’ nota-
tion is somewhat problematic since it does not make explicit in what way
the variables are quantified (in particular the x and the χ). The statement
of the theorem in this way (for a fixed character χ) seems to suggest that
n is fixed here, which would make the use of ‘Big-O’ completely vacuous,
since it is an asymptotic statement about n.
We therefore decided to formulate the inequality in the following more ex-
plicit way, even giving an explicit constant factor:
theorem (in dcharacter) polya-vinogradov-inequality:

assumes nonprincipal: χ 6= principal-dchar n
shows norm (

∑
m=1 ..x. χ m) < 2 ∗ sqrt n ∗ ln n

proof −
have n div conductor > 0

using n conductor-dvd dvd-div-eq-0-iff [of conductor n] by auto
have norm (

∑
m=1 ..x. χ m) < sqrt conductor ∗ ln conductor ∗ divisor-count

(n div conductor)
using nonprincipal by (rule polya-vinogradov-inequality-explicit)

104

also have . . . ≤ sqrt conductor ∗ ln conductor ∗ (2 ∗ sqrt (n div conductor))
using conductor-gr-0 ‹n div conductor > 0 ›
by (intro mult-left-mono divisor-count-upper-bound ′) (auto simp: Suc-le-eq)

also have sqrt (n div conductor) = sqrt n / sqrt conductor
using conductor-dvd by (simp add: Real.real-of-nat-div real-sqrt-divide)

also have sqrt conductor ∗ ln conductor ∗ (2 ∗ (sqrt n / sqrt conductor)) =
2 ∗ sqrt n ∗ ln conductor

using conductor-gr-0 n by (simp add: algebra-simps)
also have . . . ≤ 2 ∗ sqrt n ∗ ln n

using conductor-le-modulus conductor-gr-0 by (intro mult-left-mono) auto
finally show ?thesis .

qed

unbundle vec-lambda-syntax

end

References

[1] T. M. Apostol. Introduction to Analytic Number Theory. Undergraduate
Texts in Mathematics. Springer-Verlag, 1976.

105

	Auxiliary material
	Various facts
	Neutral element of the Dirichlet product
	Multiplicative functions

	Periodic arithmetic functions
	Complex roots of unity
	Geometric sums of roots of unity
	Finite Fourier series
	Auxiliary facts
	Definition and uniqueness
	Expansion of an arithmetical function

	Ramanujan sums
	Basic sums
	Generalised sums

	Gauss sums
	Definition and basic properties
	Separability
	Induced moduli and primitive characters
	The conductor of a character
	The connection between primitivity and separability

	The Pólya–Vinogradov Inequality
	The case of primitive characters
	General case

