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Abstract

We provide a generic decision procedure for energy games with energy-bounded at-
tacker and reachability objective, moving beyond vector-valued energies and vector-
addition updates. All we demand is that energies form well-founded bounded join-
semilattices, and that energy updates have upward-closed domains and can be
undone through Galois-connected functions.

Offering a simple framework to construct decidable energy games we introduce
the class of Galois energy games. We establish decidability of the (un)known initial
credit problem for Galois energy games assuming energy-positional determinacy.
For this we show correctness and termination of a simple algorihm relying on an
inductive characterization of winning budgets and properties of Galois connections.
Further, we prove that energy games over vectors of (extended) naturals with
vector-adition and min-updates form a subclass of Galois energy games and are
thus decidable.
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1 Introduction
Building on Benjamin Bisping’s research[1], we study (multi-weighted) energy games
with reachability winning conditions. These are zero-sum two-player games with perfect
information played on directed graphs labelled by (multi-weighted) energy functions.
Bisping [1] introduces a class of energy games, called declining energy games and pro-
vides an algorithm to compute minimal attacker winning budgets (i.e. Pareto fronts).
He claims decidability of this class of energy games if the set of positions is finite. We
substantiate this claim by providing a formal proof using a simplyfied and generalised
version of that algorithm [5].
We abstract the necessary properties used in the proof and introduce a new class of
energy games: Galois energy games. In such games updates can be undone through
Galois connections, yielding a weakened form of inversion sufficient for an algorihm
similar to standard shortest path algorithms. We estabish decidability of the unknown
and known initial credit problem for Galois energy games over well-founded bounded
join-semilattices with a finite set of positions.
Galois energy games can be instantiated to common energy games, declining energy
games [1], multi-weighted reachability games [2] and coverability on vector addition
systems with states [4]. By confirming a subclass relationship (via sublocales) we
conclude decidability of Galois energy games over vectors of (extended) naturals with
the component-wise order. Finally, we show this in the case of vector-addition and
min-updates only, subsuming the case of Bisping’s declining energy games.
For a broader perspective on the formalised results, including motivation, a high-level
proof outline, complexity considerations, and connections to related work, we refer to
the preprint [6].

Theory Structure

We now give an overview of all our theories. In summary, we first formalise energy
games with reachability winning conditions (in Energy_Game.thy), then formalise Ga-
lois energy games (in Galois_Energy_Game.thy) and prove decidability (in Decidabil-
ity.thy). Finally, we formalise a superclass of Bisping’s declining energy games (in
Natural_Galois_Energy_Game.thy) and conclude decidability.
The file strucrture is given by the following excerpt of the session graph, where the
theories above are imported by the ones below.
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Natural_Ga-
lois_Energy_Game

Update

Energy_Order

Decidability

Galois_Energy_Game

Energy_Game List_Lemmas

Energy games are formalised as two-player zero-sum games with perfect information and
reachability winning conditions played on labeled directed graphs in Energy_Game.thy.
In particular, strategies and an inductive characterisation of winning budgets is dis-
cussed. (This corresponds to section 2.1 and 2.2 in the preprint [6].)
Galois energy games over well-founded bounded join-semilattices are formalized in Ga-
lois_Energy_Game.thy. (This corresponds to section 2.3 in the preprint [6].)
In Decidability.thy we formalise one iteration of a simplyfied and generalised version
of Bisping’s algorithm. Using an order on possible Pareto fronts we are able to apply
Kleene’s fixed point theorem. Assuming the game graph to be finite we then prove
correctness of the algorithm. Further, we provide the key argument for termination,
thus proving decidability of Galois energy games. (This corresponds to section 3.2 in
the preprint [6].)
The file List_Lemmas.thy contains a few simple observations about lists, specifically
when using those. This file’s contents can be found in the appendix.
In Energy_Order.thy we introduce the energies, i.e. vectors with entries in the extended
natural numbers, and the component-wise order. There we establish that this order is
a well-founded bounded join-semilattice.
In Update.thy we define a superset of Bisping’s updates. These are partial functions
of energy vectors updating each component by subtracting or adding one, replacing it
with the minimum of some components or not changing it. In particular, we observe
that these functions are monotonic and have upward-closed domains. Further, we
introduce a generalisation of Bisping’s inversion and relate it to the updates using
Galois connections.
In Natural_Galois_Energy_Game.thy we formalise galois energy games over the pre-
viously defined with a fixed dimension. Afterwards, we formalise a subclass of such
games where all edges of the game graph are labeled with a representation of the
previously discussed updates (and thereby formalise Bisping’s declining energy games).
Finally, we establish the subclass-relationships and thereby conclude decidability. (This
corresponds to section 4.2 in the preprint [6].)
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2 Energy Games
theory Energy_Game

imports Coinductive.Coinductive_List Open_Induction.Restricted_Predicates
begin

Energy games are two-player zero-sum games with perfect information played on la-
beled directed graphs. The labels contain information on how each edge affects the
current energy. We call the two players attacker and defender. In this theory we give
fundamental definitions of plays, energy levels and (winning) attacker strategies. (This
corresponds to section 2.1 and 2.2 in the preprint [6].)
locale energy_game =

fixes attacker :: "’position set" and
weight :: "’position ⇒ ’position ⇒ ’label option" and
application :: "’label ⇒ ’energy ⇒ ’energy option"

begin

abbreviation "positions ≡ {g. g ∈ attacker ∨ g /∈ attacker}"
abbreviation "apply_w g g’ ≡ application (the (weight g g’))"

Plays

A play is a possibly infinite walk in the underlying directed graph.
coinductive valid_play :: "’position llist ⇒ bool" where

"valid_play LNil" |
"valid_play (LCons v LNil)" |
"[[weight v (lhd Ps) 6= None; valid_play Ps; ¬lnull Ps]]

=⇒ valid_play (LCons v Ps)"

The following lemmas follow directly from the definition valid_play. In particular, a
play is valid if and only if for each position there is an edge to its successor in the play.
We show this using the coinductive definition by first establishing coinduction.
lemma valid_play_append:

assumes "valid_play (LCons v Ps)" and "lfinite (LCons v Ps)" and
"weight (llast (LCons v Ps)) v’ 6= None" and "valid_play (LCons v’ Ps’)"

shows "valid_play (lappend (LCons v Ps) (LCons v’ Ps’))"
〈proof 〉

lemma valid_play_coinduct:
assumes "Q p" and

"
∧

v Ps. Q (LCons v Ps) =⇒ Ps 6=LNil =⇒ Q Ps ∧ weight v (lhd Ps) 6= None"
shows "valid_play p"
〈proof 〉

lemma valid_play_nth_not_None:
assumes "valid_play p" and "Suc i < llength p"
shows "weight (lnth p i) (lnth p (Suc i)) 6= None"

〈proof 〉

lemma valid_play_nth:
assumes "

∧
i. enat (Suc i) < llength p

−→ weight (lnth p i) (lnth p (Suc i)) 6= None"
shows "valid_play p"
〈proof 〉
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Energy Levels

The energy level of a play is calculated by repeatedly updating the current energy
according to the edges in the play. The final energy level of a finite play is energy_level
e p (the_enat (llength p -1)) where e is the initial energy.
fun energy_level:: "’energy ⇒ ’position llist ⇒ nat ⇒ ’energy option" where
"energy_level e p 0 = (if p = LNil then None else Some e)" |
"energy_level e p (Suc i) =

(if (energy_level e p i) = None ∨ llength p ≤ (Suc i) then None
else apply_w (lnth p i)(lnth p (Suc i)) (the (energy_level e p i)))"

We establish some (in)equalities to simplify later proofs.
lemma energy_level_cons:

assumes "valid_play (LCons v Ps)" and "¬lnull Ps" and
"apply_w v (lhd Ps) e 6= None" and "enat i < (llength Ps)"

shows "energy_level (the (apply_w v (lhd Ps) e)) Ps i
= energy_level e (LCons v Ps) (Suc i)"

〈proof 〉

lemma energy_level_nth:
assumes "energy_level e p m 6= None" and "Suc i ≤ m"
shows "apply_w (lnth p i) (lnth p (Suc i)) (the (energy_level e p i)) 6= None

∧ energy_level e p i 6= None"
〈proof 〉

lemma energy_level_append:
assumes "lfinite p" and "i < the_enat (llength p)" and

"energy_level e p (the_enat (llength p) -1) 6= None"
shows "energy_level e p i = energy_level e (lappend p p’) i"

〈proof 〉

Won Plays

All infinite plays are won by the defender. Further, the attacker is energy-bound and
the defender wins if the energy level becomes None. Finite plays with an energy level
that is not None are won by a player, if the other is stuck.
abbreviation "deadend g ≡ (∀ g’. weight g g’ = None)"
abbreviation "attacker_stuck p ≡ (llast p)∈ attacker ∧ deadend (llast p)"

definition defender_wins_play:: "’energy ⇒ ’position llist ⇒ bool" where
"defender_wins_play e p ≡ lfinite p −→

(energy_level e p (the_enat (llength p)-1) = None ∨ attacker_stuck p)"

2.1 Energy-positional Strategies
Energy-positional strategies map pairs of energies and positions to a next position. Fur-
ther, we focus on attacker strategies, i.e. partial functions mapping attacker positions
to successors.
definition attacker_strategy:: "(’energy ⇒ ’position ⇒ ’position option) ⇒ bool"
where

"attacker_strategy s = (∀ g e. (g ∈ attacker ∧ ¬ deadend g) −→
(s e g 6= None ∧ weight g (the (s e g)) 6= None))"

We now define what it means for a play to be consistent with some strategy.
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coinductive play_consistent_attacker::"(’energy ⇒ ’position ⇒ ’position option)
⇒ ’position llist ⇒ ’energy ⇒ bool" where

"play_consistent_attacker _ LNil _" |
"play_consistent_attacker _ (LCons v LNil) _" |
"[[play_consistent_attacker s Ps (the (apply_w v (lhd Ps) e)); ¬lnull Ps;

v ∈ attacker −→ (s e v) = Some (lhd Ps)]]
=⇒ play_consistent_attacker s (LCons v Ps) e"

The coinductive definition allows for coinduction.
lemma play_consistent_attacker_coinduct:

assumes "Q s p e" and
"
∧

s v Ps e’. Q s (LCons v Ps) e’ ∧ ¬lnull Ps =⇒
Q s Ps (the (apply_w v (lhd Ps) e’)) ∧
(v ∈ attacker −→ s e’ v = Some (lhd Ps))"

shows "play_consistent_attacker s p e"
〈proof 〉

Adding a position to the beginning of a consistent play is simple by definition. It is
harder to see, when a position can be added to the end of a finite play. For this we
introduce the following lemma.
lemma play_consistent_attacker_append_one:

assumes "play_consistent_attacker s p e" and "lfinite p" and
"energy_level e p (the_enat (llength p)-1) 6= None" and
"valid_play (lappend p (LCons g LNil))" and "llast p ∈ attacker −→
Some g = s (the (energy_level e p (the_enat (llength p)-1))) (llast p)"

shows "play_consistent_attacker s (lappend p (LCons g LNil)) e"
〈proof 〉

We now define attacker winning strategies, i.e. attacker strategies where the defender
does not win any consistent plays w.r.t some initial energy and a starting position.
fun attacker_winning_strategy:: "(’energy ⇒ ’position ⇒ ’position option) ⇒ ’energy
⇒ ’position ⇒ bool" where

"attacker_winning_strategy s e g = (attacker_strategy s ∧
(∀ p. (play_consistent_attacker s (LCons g p) e ∧ valid_play (LCons g p))

−→ ¬defender_wins_play e (LCons g p)))"

2.2 Non-positional Strategies
A non-positional strategy maps finite plays to a next position. We now introduce non-
positional strategies to better characterise attacker winning budgets. These definitions
closely resemble the definitions for energy-positional strategies.
definition attacker_nonpos_strategy:: "(’position list ⇒ ’position option) ⇒ bool"
where

"attacker_nonpos_strategy s = (∀ list 6= []. ((last list) ∈ attacker
∧ ¬deadend (last list)) −→ s list 6= None

∧ (weight (last list) (the (s list)))6=None)"

We now define what it means for a play to be consistent with some non-positional
strategy.
coinductive play_consistent_attacker_nonpos::"(’position list ⇒ ’position option)
⇒ (’position llist) ⇒ (’position list) ⇒ bool" where

"play_consistent_attacker_nonpos s LNil _" |
"play_consistent_attacker_nonpos s (LCons v LNil) []" |
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"(last (w#l))/∈attacker
=⇒ play_consistent_attacker_nonpos s (LCons v LNil) (w#l)" |
"[[(last (w#l))∈attacker; the (s (w#l)) = v ]]
=⇒ play_consistent_attacker_nonpos s (LCons v LNil) (w#l)" |
"[[play_consistent_attacker_nonpos s Ps (l@[v]); ¬lnull Ps; v/∈attacker]]
=⇒ play_consistent_attacker_nonpos s (LCons v Ps) l" |

"[[play_consistent_attacker_nonpos s Ps (l@[v]); ¬lnull Ps; v∈attacker;
lhd Ps = the (s (l@[v]))]]
=⇒ play_consistent_attacker_nonpos s (LCons v Ps) l"

inductive_simps play_consistent_attacker_nonpos_cons_simp:
"play_consistent_attacker_nonpos s (LCons x xs) []"

The definition allows for coinduction.
lemma play_consistent_attacker_nonpos_coinduct:

assumes "Q s p l" and
base: "

∧
s v l. Q s (LCons v LNil) l =⇒ (l = [] ∨ (last l) /∈ attacker

∨ ((last l)∈attacker ∧ the (s l) = v))" and
step: "

∧
s v Ps l. Q s (LCons v Ps) l ∧ Ps6=LNil

=⇒ Q s Ps (l@[v]) ∧ (v∈attacker −→ lhd Ps = the (s (l@[v])))"
shows "play_consistent_attacker_nonpos s p l"
〈proof 〉

We now show that a position can be added to the end of a finite consitent play while
remaining consistent.
lemma consistent_nonpos_append_defender:

assumes "play_consistent_attacker_nonpos s (LCons v Ps) l" and
"llast (LCons v Ps) /∈ attacker" and "lfinite (LCons v Ps)"

shows "play_consistent_attacker_nonpos s (lappend (LCons v Ps) (LCons g’ LNil))
l"

〈proof 〉

lemma consistent_nonpos_append_attacker:
assumes "play_consistent_attacker_nonpos s (LCons v Ps) l"

and "llast (LCons v Ps) ∈ attacker" and "lfinite (LCons v Ps)"
shows "play_consistent_attacker_nonpos s (lappend (LCons v Ps) (LCons (the (s

(l@(list_of (LCons v Ps))))) LNil)) l"
〈proof 〉

We now define non-positional attacker winning strategies, i.e. attacker strategies where
the defender does not win any consistent plays w.r.t some initial energy and a starting
position.
fun nonpos_attacker_winning_strategy:: "(’position list ⇒ ’position option) ⇒

’energy ⇒ ’position ⇒ bool" where
"nonpos_attacker_winning_strategy s e g = (attacker_nonpos_strategy s ∧
(∀ p. (play_consistent_attacker_nonpos s (LCons g p) []

∧ valid_play (LCons g p)) −→ ¬defender_wins_play e (LCons g p)))"

2.3 Attacker Winning Budgets
We now define attacker winning budgets utilising strategies.
fun winning_budget:: "’energy ⇒ ’position ⇒ bool" where
"winning_budget e g = (∃ s. attacker_winning_strategy s e g)"
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fun nonpos_winning_budget:: "’energy ⇒ ’position ⇒ bool" where
"nonpos_winning_budget e g = (∃ s. nonpos_attacker_winning_strategy s e g)"

Note that nonpos_winning_budget = winning_budget holds but is not proven in this
theory. Using this fact we can give an inductive characterisation of attacker winning
budgets.
inductive winning_budget_ind:: "’energy ⇒ ’position ⇒ bool" where
defender: "winning_budget_ind e g" if
"g /∈ attacker ∧ (∀ g’. weight g g’ 6= None −→ (apply_w g g’ e 6= None
∧ winning_budget_ind (the (apply_w g g’ e)) g’))" |

attacker: "winning_budget_ind e g" if
"g ∈ attacker ∧ (∃ g’. weight g g’ 6= None ∧ apply_w g g’ e 6= None
∧ winning_budget_ind (the (apply_w g g’ e)) g’)"

Before proving some correspondence of those definitions we first note that attacker
winning budgets in monotonic energy games are upward-closed. We show this for two
of the three definitions.
lemma upward_closure_wb_nonpos:

assumes monotonic: "
∧

g g’ e e’. weight g g’ 6= None
=⇒ apply_w g g’ e 6= None =⇒ leq e e’ =⇒ apply_w g g’ e’ 6= None
∧ leq (the (apply_w g g’ e)) (the (apply_w g g’ e’))"
and "leq e e’" and "nonpos_winning_budget e g"

shows "nonpos_winning_budget e’ g"
〈proof 〉

lemma upward_closure_wb_ind:
assumes monotonic: "

∧
g g’ e e’. weight g g’ 6= None

=⇒ apply_w g g’ e 6= None =⇒ leq e e’ =⇒ apply_w g g’ e’ 6= None
∧ leq (the (apply_w g g’ e)) (the (apply_w g g’ e’))"
and "leq e e’" and "winning_budget_ind e g"

shows "winning_budget_ind e’ g"
〈proof 〉

Now we prepare the proof of the inductive characterisation. For this we define an order
and a set allowing for a well-founded induction.
definition strategy_order:: "(’energy ⇒ ’position ⇒ ’position option) ⇒

’position × ’energy ⇒ ’position × ’energy ⇒ bool" where
"strategy_order s ≡ λ(g1, e1)(g2, e2).Some e1 = apply_w g2 g1 e2 ∧

(if g2 ∈ attacker then Some g1 = s e2 g2 else weight g2 g1 6= None)"

definition reachable_positions:: "(’energy ⇒ ’position ⇒ ’position option) ⇒
’position ⇒ ’energy ⇒ (’position × ’energy) set" where

"reachable_positions s g e = {(g’,e’)| g’ e’.
(∃ p. lfinite p ∧ llast (LCons g p) = g’ ∧ valid_play (LCons g p)

∧ play_consistent_attacker s (LCons g p) e
∧ Some e’ = energy_level e (LCons g p) (the_enat (llength p)))}"

lemma strategy_order_well_founded:
assumes "attacker_winning_strategy s e g"
shows "wfp_on (strategy_order s) (reachable_positions s g e)"
〈proof 〉

We now show that an energy-positional attacker winning strategy w.r.t. some energy e
and position g guarantees that e is in the attacker winning budget of g.
lemma winning_budget_implies_ind:
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assumes "winning_budget e g"
shows "winning_budget_ind e g"

〈proof 〉

We now prepare the proof of winning_budget_ind characterising subsets of winning_budget_nonpos
for all positions. For this we introduce a construction to obtain a non-positional at-
tacker winning strategy from a strategy at a next position.
fun nonpos_strat_from_next:: "’position ⇒ ’position ⇒

(’position list ⇒ ’position option) ⇒ (’position list ⇒ ’position option)"

where
"nonpos_strat_from_next g g’ s [] = s []" |
"nonpos_strat_from_next g g’ s (x#xs) = (if x=g then (if xs=[] then Some g’

else s xs) else s (x#xs))"

lemma play_nonpos_consistent_next:
assumes "play_consistent_attacker_nonpos (nonpos_strat_from_next g g’ s) (LCons

g (LCons g’ xs)) []"
and "g ∈ attacker" and "xs 6= LNil"

shows "play_consistent_attacker_nonpos s (LCons g’ xs) []"
〈proof 〉

We now introduce a construction to obtain a non-positional attacker winning strategy
from a strategy at a previous position.
fun nonpos_strat_from_previous:: "’position ⇒ ’position ⇒

(’position list ⇒ ’position option) ⇒ (’position list ⇒ ’position option)"

where
"nonpos_strat_from_previous g g’ s [] = s []" |
"nonpos_strat_from_previous g g’ s (x#xs) = (if x=g’ then s (g#(g’#xs))

else s (x#xs))"

lemma play_nonpos_consistent_previous:
assumes "play_consistent_attacker_nonpos (nonpos_strat_from_previous g g’ s) p

([g’]@l)"
and "g∈attacker =⇒ g’=the (s [g])"

shows "play_consistent_attacker_nonpos s p ([g,g’]@l)"
〈proof 〉

With these constructions we can show that the winning budgets defined by non-
positional strategies are a fixed point of the inductive characterisation.
lemma nonpos_winning_budget_implies_inductive:

assumes "nonpos_winning_budget e g"
shows "g ∈ attacker =⇒ (∃ g’. (weight g g’ 6= None) ∧ (apply_w g g’ e)6= None

∧ (nonpos_winning_budget (the (apply_w g g’ e)) g’))" and
"g /∈ attacker =⇒ (∀ g’. (weight g g’ 6= None) −→ (apply_w g g’ e)6= None
∧ (nonpos_winning_budget (the (apply_w g g’ e)) g’))"

〈proof 〉

lemma inductive_implies_nonpos_winning_budget:
shows "g ∈ attacker =⇒ (∃ g’. (weight g g’ 6= None) ∧ (apply_w g g’ e)6= None

∧ (nonpos_winning_budget (the (apply_w g g’ e)) g’))
=⇒ nonpos_winning_budget e g"
and "g /∈ attacker =⇒ (∀ g’. (weight g g’ 6= None)
−→ (apply_w g g’ e)6= None
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∧ (nonpos_winning_budget (the (apply_w g g’ e)) g’))
=⇒ nonpos_winning_budget e g"

〈proof 〉

lemma winning_budget_ind_implies_nonpos:
assumes "winning_budget_ind e g"
shows "nonpos_winning_budget e g"

〈proof 〉

Finally, we can state the inductive characterisation of attacker winning budgets assum-
ing energy-positional determinacy.
lemma inductive_winning_budget:

assumes "nonpos_winning_budget = winning_budget"
shows "winning_budget = winning_budget_ind"

〈proof 〉

end
end
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3 Galois Energy Games
theory Galois_Energy_Game

imports Energy_Game Well_Quasi_Orders.Well_Quasi_Orders
begin

We now define Galois energy games over well-founded bounded join-semilattices. We
do this by building on a previously defined energy_game. In particular, we add a
set of energies energies with an order order and a supremum mapping energy_sup.
Then, we assume the set to be partially ordered in energy_order, the order to be
well-founded in energy_wqo, the supremum to map finite sets to the least upper bound
bounded_join_semilattice and the set to be upward-closed w.r.t the order in upward_closed_energies.
Further, we assume the updates to actually map energies (elements of the set enegies)
to energies with upd_well_defined and assume the inversion to map updates to total
functions between the set of energies and the domain of the update in inv_well_defined.
The latter is assumed to be upward-closed in domain_upw_closed. Finally, we assume
the updates to be Galois-connected with their inverse in galois. (This corresponds to
section 2.3 in the preprint [6].)
locale galois_energy_game = energy_game attacker weight application

for attacker :: "’position set" and
weight :: "’position ⇒ ’position ⇒ ’label option" and
application :: "’label ⇒ ’energy ⇒ ’energy option" and
inverse_application :: "’label ⇒ ’energy ⇒ ’energy option"

+
fixes energies :: "’energy set" and

order :: "’energy ⇒ ’energy ⇒ bool" (infix "e≤" 80)and
energy_sup :: "’energy set ⇒ ’energy"

assumes
energy_order: "ordering order (λe e’. order e e’ ∧ e 6= e’)" and
energy_wqo: "wqo_on order energies" and
bounded_join_semilattice: "

∧
set s’. set ⊆ energies =⇒ finite set

=⇒ energy_sup set ∈ energies
∧ (∀ s. s ∈ set −→ order s (energy_sup set))
∧ (s’ ∈ energies ∧ (∀ s. s ∈ set −→ order s s’) −→ order (energy_sup

set) s’)" and
upward_closed_energies: "

∧
e e’. e ∈ energies =⇒ e e≤ e’ =⇒ e’ ∈ energies"

and
upd_well_defined: "

∧
p p’ e. weight p p’ 6= None

=⇒ application (the (weight p p’)) e 6= None =⇒ e ∈ energies
=⇒ (the (application (the (weight p p’)) e)) ∈ energies" and
inv_well_defined: "

∧
p p’ e. weight p p’ 6= None =⇒ e ∈ energies

=⇒ (inverse_application (the (weight p p’)) e) 6= None
∧ (the (inverse_application (the (weight p p’)) e)) ∈ energies
∧ application (the (weight p p’)) (the (inverse_application (the (weight

p p’)) e)) 6= None" and
domain_upw_closed: "

∧
p p’ e e’. weight p p’ 6= None =⇒ order e e’

=⇒ application (the (weight p p’)) e 6= None
=⇒ application (the (weight p p’)) e’ 6= None" and
galois: "

∧
p p’ e e’. weight p p’ 6= None

=⇒ application (the (weight p p’)) e’ 6= None
=⇒ e ∈ energies =⇒ e’ ∈ energies
=⇒ order (the (inverse_application (the (weight p p’)) e)) e’ = order e

(the (application (the (weight p p’)) e’))"
begin
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abbreviation "upd u e ≡ the (application u e)"
abbreviation "inv_upd u e ≡ the (inverse_application u e)"

abbreviation energy_l:: "’energy ⇒ ’energy ⇒ bool" (infix "e<" 80) where
"energy_l e e’ ≡ e e≤ e’ ∧ e 6= e’"

3.1 Properties of Galois connections
The following properties are described by Erné et al. [3].
lemma galois_properties:

shows upd_inv_increasing:
"
∧

p p’ e. weight p p’ 6= None =⇒ e∈energies
=⇒ order e (the (application (the (weight p p’)) (the (inverse_application

(the (weight p p’)) e))))"
and inv_upd_decreasing:

"
∧

p p’ e. weight p p’ 6= None =⇒ e∈energies
=⇒ application (the (weight p p’)) e 6= None
=⇒ the (inverse_application (the (weight p p’)) (the (application (the (weight

p p’)) e))) e≤ e"
and updates_monotonic:
"
∧

p p’ e e’. weight p p’ 6= None =⇒e∈energies =⇒ e e≤ e’
=⇒ application (the (weight p p’)) e 6= None
=⇒ the( application (the (weight p p’)) e) e≤ the (application (the (weight p

p’)) e’)"
and inverse_monotonic:
"
∧

p p’ e e’. weight p p’ 6= None =⇒ e∈energies =⇒ e e≤ e’
=⇒ inverse_application (the (weight p p’)) e 6= None
=⇒ the( inverse_application (the (weight p p’)) e) e≤ the (inverse_application

(the (weight p p’)) e’)"
〈proof 〉

Galois connections compose. In particular, the “inverse” of ug composed with that of
up is the “inverse” of up◦ug. This forms a Galois connection between the set of energies
and the reverse image under ug of the domain of up, i.e. u−1

g (dom(up))

lemma galois_composition:
assumes "weight g g’ 6= None" and "weight p p’ 6= None"
shows "∃ inv. ∀ e ∈ energies. ∀ e’∈ energies. (application (the (weight g g’))

e’ 6= None
∧ application (the (weight p p’)) ((upd (the (weight g g’)) e’)) 6= None)

−→ (order (inv e) e’) = (order e (upd (the (weight p p’)) ((upd (the
(weight g g’)) e’))))"
〈proof 〉

3.2 Properties of the Partial Order
We now establish some properties of the partial order focusing on the set of minimal
elements.
definition energy_Min:: "’energy set ⇒ ’energy set" where

"energy_Min A = {e∈A . ∀ e’∈A. e6=e’ −→ ¬ (e’ e≤ e)}"

fun enumerate_arbitrary :: "’a set ⇒ nat ⇒ ’a" where
"enumerate_arbitrary A 0 = (SOME a. a ∈ A)" |
"enumerate_arbitrary A (Suc n)

= enumerate_arbitrary (A - {enumerate_arbitrary A 0}) n"
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lemma enumerate_arbitrary_in:
shows "infinite A =⇒ enumerate_arbitrary A i ∈ A"

〈proof 〉

lemma enumerate_arbitrary_neq:
shows "infinite A =⇒ i < j

=⇒ enumerate_arbitrary A i 6= enumerate_arbitrary A j"
〈proof 〉

lemma energy_Min_finite:
assumes "A ⊆ energies"
shows "finite (energy_Min A)"

〈proof 〉

fun enumerate_decreasing :: "’energy set ⇒ nat ⇒ ’energy" where
"enumerate_decreasing A 0 = (SOME a. a ∈ A)" |
"enumerate_decreasing A (Suc n)

= (SOME x. (x ∈ A ∧ x e< enumerate_decreasing A n))"

lemma energy_Min_not_empty:
assumes "A 6= {}" and "A ⊆ energies"
shows "energy_Min A 6= {}"

〈proof 〉

lemma energy_Min_contains_smaller:
assumes "a ∈ A" and "A ⊆ energies"
shows "∃ b ∈ energy_Min A. b e≤ a"

〈proof 〉

lemma energy_sup_leq_energy_sup:
assumes "A 6= {}" and "

∧
a. a∈ A =⇒ ∃ b∈ B. order a b" and

"
∧

a. a∈ A =⇒ a∈ energies" and "finite A" and "finite B" and "B ⊆ energies"
shows "order (energy_sup A) (energy_sup B)"

〈proof 〉

3.3 Winning Budgets Revisited
We now redefine attacker winning budgets to only include energies in the set energies.
inductive winning_budget_len::"’energy ⇒ ’position ⇒ bool" where
defender: "winning_budget_len e g" if "e∈energies ∧ g /∈ attacker

∧ (∀ g’. (weight g g’ 6= None) −→
((application (the (weight g g’)) e) 6= None
∧ (winning_budget_len (the (application (the (weight g g’))

e))) g’))" |
attacker: "winning_budget_len e g" if "e∈energies ∧ g ∈ attacker

∧ (∃ g’. (weight g g’ 6= None)
∧ (application (the (weight g g’)) e)6= None
∧ (winning_budget_len (the (application (the (weight g g’))

e)) g’))"

We first restate the upward-closure of winning budgets.
lemma upwards_closure_wb_len:

assumes "winning_budget_len e g" and "e e≤ e’"
shows "winning_budget_len e’ g"

〈proof 〉
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We now show that this definition is consistent with our previous definition of winning
budgets. We show this by well-founded induction.
abbreviation "reachable_positions_len s g e ≡ {(g’,e’) ∈ reachable_positions s
g e . e’∈energies}"

lemma winning_bugget_len_is_wb:
assumes "nonpos_winning_budget = winning_budget"
shows "winning_budget_len e g = (winning_budget e g ∧ e ∈energies)"

〈proof 〉

end
end
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4 Decidability of Galois Energy Games
theory Decidability

imports Galois_Energy_Game Complete_Non_Orders.Kleene_Fixed_Point
begin

In this theory we give a proof of decidability for Galois energy games (over vectors
of naturals). We do this by providing a proof of correctness of the simplifyed version
of Bisping’s Algorithm to calculate minimal attacker winning budgets. We further
formalise the key argument for its termination. (This corresponds to section 3.2 in the
preprint [6].)
locale galois_energy_game_decidable = galois_energy_game attacker weight application
inverse_application energies order energy_sup

for attacker :: "’position set" and
weight :: "’position ⇒ ’position ⇒ ’label option" and
application :: "’label ⇒ ’energy ⇒ ’energy option" and
inverse_application :: "’label ⇒ ’energy ⇒ ’energy option" and
energies :: "’energy set" and
order :: "’energy ⇒ ’energy ⇒ bool" (infix "e≤" 80)and
energy_sup :: "’energy set ⇒ ’energy"

+
assumes nonpos_eq_pos: "nonpos_winning_budget = winning_budget" and

finite_positions: "finite positions"
begin

4.1 Minimal Attacker Winning Budgets as Pareto Fronts
We now prepare the proof of decidability by introducing minimal winning budgets.
abbreviation minimal_winning_budget:: "’energy ⇒ ’position ⇒ bool" where
"minimal_winning_budget e g ≡ e ∈ energy_Min {e. winning_budget_len e g}"
abbreviation "a_win g ≡ {e. winning_budget_len e g}"
abbreviation "a_win_min g ≡ energy_Min (a_win g)"

Since the component-wise order on energies is well-founded, we can conclude that min-
imal winning budgets are finite.
lemma minimal_winning_budget_finite:

shows "
∧

g. finite (a_win_min g)"
〈proof 〉

We now introduce the set of mappings from positions to possible Pareto fronts, i.e.
incomparable sets of energies.
definition possible_pareto:: "(’position ⇒ ’energy set) set" where

"possible_pareto ≡ {F. ∀ g. F g ⊆ {e. e∈energies}
∧ (∀ e e’. (e ∈ F g ∧ e’ ∈ F g ∧ e 6= e’)

−→ (¬ e e≤ e’ ∧ ¬ e’ e≤ e))}"

By definition minimal winning budgets are possible Pareto fronts.
lemma a_win_min_in_pareto:

shows "a_win_min ∈ possible_pareto"
〈proof 〉

We define a partial order on possible Pareto fronts.
definition pareto_order:: "(’position ⇒ ’energy set) ⇒ (’position ⇒ ’energy set)
⇒ bool" (infix "�" 80) where
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"pareto_order F F’ ≡ (∀ g e. e ∈ F(g) −→ (∃ e’. e’ ∈ F’(g) ∧ e’ e≤ e))"

lemma pareto_partial_order_vanilla:
shows reflexivity: "

∧
F. F ∈ possible_pareto =⇒ F � F" and

transitivity: "
∧

F F’ F’’. F ∈ possible_pareto =⇒ F’ ∈ possible_pareto
=⇒ F’’ ∈ possible_pareto =⇒ F � F’ =⇒ F’ � F’’
=⇒ F � F’’ " and

antisymmetry: "
∧

F F’. F ∈ possible_pareto =⇒ F’ ∈ possible_pareto
=⇒ F � F’ =⇒ F’ � F =⇒ F = F’"

〈proof 〉

lemma pareto_partial_order:
shows "reflp_on possible_pareto (�)" and

"transp_on possible_pareto (�)" and
"antisymp_on possible_pareto (�)"

〈proof 〉

By defining a supremum, we show that the order is directed-complete bounded join-
semilattice.
definition pareto_sup:: "(’position ⇒ ’energy set) set ⇒ (’position ⇒ ’energy
set)" where

"pareto_sup P g = energy_Min {e. ∃ F. F∈ P ∧ e ∈ F g}"

lemma pareto_sup_is_sup:
assumes "P ⊆ possible_pareto"
shows "pareto_sup P ∈ possible_pareto" and

"
∧

F. F ∈ P =⇒ F � pareto_sup P" and
"
∧

Fs. Fs ∈ possible_pareto =⇒ (
∧

F. F ∈ P =⇒ F � Fs)
=⇒ pareto_sup P � Fs"

〈proof 〉

lemma pareto_directed_complete:
shows "directed_complete possible_pareto (�)"
〈proof 〉

lemma pareto_minimal_element:
shows "(λg. {}) � F"
〈proof 〉

4.2 Proof of Decidability
Using Kleene’s fixed point theorem we now show, that the minimal attacker winning
budgets are the least fixed point of the algorithm. For this we first formalise one
iteration of the algorithm.
definition iteration:: "(’position ⇒ ’energy set) ⇒ (’position ⇒ ’energy set)"
where

"iteration F g ≡ (if g ∈ attacker
then energy_Min {inv_upd (the (weight g g’)) e’ | e’ g’.

e’ ∈ energies ∧ weight g g’ 6= None ∧ e’ ∈ F g’}
else energy_Min {energy_sup

{inv_upd (the (weight g g’)) (e_index g’) | g’.
weight g g’ 6= None} | e_index. ∀ g’. weight g g’ 6= None
−→(e_index g’)∈energies ∧ e_index g’ ∈ F g’})"

We now show that iteration is a Scott-continuous functor of possible Pareto fronts.
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lemma iteration_pareto_functor:
assumes "F ∈ possible_pareto"
shows "iteration F ∈ possible_pareto"
〈proof 〉

lemma iteration_monotonic:
assumes "F ∈ possible_pareto" and "F’ ∈ possible_pareto" and "F � F’"
shows "iteration F � iteration F’"
〈proof 〉

lemma finite_directed_set_upper_bound:
assumes "

∧
F F’. F ∈ P =⇒ F’ ∈ P =⇒ ∃ F’’. F’’ ∈ P ∧ F � F’’ ∧ F’ � F’’"

and "P 6= {}" and "P’ ⊆ P" and "finite P’" and "P ⊆ possible_pareto"
shows "∃ F’. F’ ∈ P ∧ (∀ F. F ∈ P’ −→ F � F’)"
〈proof 〉

lemma iteration_scott_continuous_vanilla:
assumes "P ⊆ possible_pareto" and

"
∧

F F’. F ∈ P =⇒ F’ ∈ P =⇒ ∃ F’’. F’’ ∈ P ∧ F � F’’ ∧ F’ � F’’" and
"P 6= {}"

shows "iteration (pareto_sup P) = pareto_sup {iteration F | F. F ∈ P}"
〈proof 〉

lemma iteration_scott_continuous:
shows "scott_continuous possible_pareto (�) possible_pareto (�) iteration"

〈proof 〉

We now show that a_win_min is a fixed point of iteration.
lemma a_win_min_is_fp:

shows "iteration a_win_min = a_win_min"
〈proof 〉

With this we can conclude that iteration maps subsets of winning budgets to subsets
of winning budgets.
lemma iteration_stays_winning:

assumes "F ∈ possible_pareto" and "F � a_win_min"
shows "iteration F � a_win_min"

〈proof 〉

We now prepare the proof that a_win_min is the least fixed point of iteration by
introducing S.
inductive S:: "’energy ⇒ ’position ⇒ bool" where

"S e g" if "g /∈ attacker ∧ (∃ index. e = (energy_sup
{inv_upd (the (weight g g’)) (index g’)| g’. weight g g’ 6= None})
∧ (∀ g’. weight g g’ 6= None −→ S (index g’) g’))" |

"S e g" if "g ∈ attacker ∧ (∃ g’.( weight g g’ 6= None
∧ (∃ e’. S e’ g’ ∧ e = inv_upd (the (weight g g’)) e’)))"

lemma length_S:
shows "

∧
e g. S e g =⇒ e ∈ energies"

〈proof 〉

lemma a_win_min_is_minS:
shows "energy_Min {e. S e g} = a_win_min g"

〈proof 〉
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We now conclude that the algorithm indeed returns the minimal attacker winning
budgets.
lemma a_win_min_is_lfp_sup:

shows "pareto_sup {(iteration ^^ i) (λg. {}) |. i} = a_win_min"
〈proof 〉

We can argue that the algorithm always terminates by showing that only finitely many
iterations are needed before a fixed point (the minimal attacker winning budgets) is
reached.
lemma finite_iterations:

shows "∃ i. a_win_min = (iteration ^^ i) (λg. {})"
〈proof 〉

4.3 Applying Kleene’s Fixed Point Theorem
We now establish compatablity with Complete_Non_Orders.thy.
sublocale attractive possible_pareto pareto_order

〈proof 〉

abbreviation pareto_order_dual (infix "�" 80) where
"pareto_order_dual ≡ (λx y. y � x)"

We now conclude, that Kleene’s fixed point theorem is applicable.
lemma kleene_lfp_iteration:

shows "extreme_bound possible_pareto (�) {(iteration ^^ i) (λg. {}) |. i} =
extreme {s ∈ possible_pareto. sympartp (�) (iteration s) s} (�)"

〈proof 〉

We now apply Kleene’s fixed point theorem, showing that minimal attacker winning
budgets are the least fixed point.
lemma a_win_min_is_lfp:

shows "extreme {s ∈ possible_pareto. (iteration s) = s} (�) a_win_min"
〈proof 〉

end
end
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5 Vectors of (extended) Naturals as Energies
theory Energy_Order

imports Main List_Lemmas "HOL-Library.Extended_Nat" Well_Quasi_Orders.Well_Quasi_Orders
begin

We consider vectors with entries in the extended naturals as energies and fix a dimension
later. In this theory we introduce the component-wise order on energies (represented
as lists of enats) as well as a minimum and supremum.
type_synonym energy = "enat list"

definition energy_leq:: "energy ⇒ energy ⇒ bool" (infix "e≤" 80) where
"energy_leq e e’ = ((length e = length e’)

∧ (∀ i < length e. (e ! i) ≤ (e’ ! i)))"

abbreviation energy_l:: "energy ⇒ energy ⇒ bool" (infix "e<" 80) where
"energy_l e e’ ≡ e e≤ e’ ∧ e 6= e’"

We now establish that energy_leg is a partial order.
interpretation energy_leq: ordering "energy_leq" "energy_l"
〈proof 〉

We now show that it is well-founded when considering a fixed dimension n. For the
proof we define the subsequence of a given sequence of energies such that the last entry
is increasing but never equals ∞.
fun subsequence_index::"(nat ⇒ energy) ⇒ nat ⇒ nat" where

"subsequence_index f 0 = (SOME x. (last (f x) 6= ∞))" |
"subsequence_index f (Suc n) = (SOME x. (last (f x) 6= ∞

∧ (subsequence_index f n) < x
∧ (last (f (subsequence_index f n)) ≤ last (f x))))"

lemma energy_leq_wqo:
shows "wqo_on energy_leq {e::energy. length e = n}"

〈proof 〉

Minimum

definition energy_Min:: "energy set ⇒ energy set" where
"energy_Min A = {e∈A . ∀ e’∈A. e6=e’ −→ ¬ (e’ e≤ e)}"

We now observe that the minimum of a non-empty set is not empty. Further, each
element a ∈ A has a lower bound in energy_Min A.
lemma energy_Min_not_empty:

assumes "A 6= {}" and "
∧

e. e∈ A =⇒length e = n"
shows "energy_Min A 6= {}"

〈proof 〉

lemma energy_Min_contains_smaller:
assumes "a ∈ A"
shows "∃ b ∈ energy_Min A. b e≤ a"

〈proof 〉

We now establish how the minimum relates to subsets.
lemma energy_Min_subset:
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assumes "A ⊆ B"
shows "A ∩ (energy_Min B) ⊆ energy_Min A" and

"energy_Min B ⊆ A =⇒ energy_Min B = energy_Min A"
〈proof 〉

We now show that by well-foundedness the minimum is a finite set. For the proof we
first generalise enumerate.
fun enumerate_arbitrary :: "’a set ⇒ nat ⇒ ’a" where

"enumerate_arbitrary A 0 = (SOME a. a ∈ A)" |
"enumerate_arbitrary A (Suc n)

= enumerate_arbitrary (A - {enumerate_arbitrary A 0}) n"

lemma enumerate_arbitrary_in:
shows "infinite A =⇒ enumerate_arbitrary A i ∈ A"

〈proof 〉

lemma enumerate_arbitrary_neq:
shows "infinite A =⇒ i < j

=⇒ enumerate_arbitrary A i 6= enumerate_arbitrary A j"
〈proof 〉

lemma energy_Min_finite:
assumes "

∧
e. e∈ A =⇒ length e = n"

shows "finite (energy_Min A)"
〈proof 〉

Supremum

definition energy_sup :: "nat ⇒ energy set ⇒ energy" where
"energy_sup n A = map (λi. Sup {(e!i)|e. e ∈ A}) [0..<n]"

We now show that we indeed defined a supremum, i.e. a least upper bound, when
considering a fixed dimension n.
lemma energy_sup_is_sup:

shows energy_sup_in: "
∧

a. a ∈ A =⇒ length a = n =⇒ a e≤ (energy_sup n A)" and
energy_sup_leq: "

∧
s. (

∧
a. a∈ A =⇒a e≤ s) =⇒ length s = n

=⇒ (energy_sup n A) e≤ s"
〈proof 〉

We now observe a version of monotonicity. Afterwards we show that the supremum of
the empty set is the zero-vector.
lemma energy_sup_leq_energy_sup:

assumes "A 6= {}" and "
∧

a. a∈ A =⇒ ∃ b∈ B. energy_leq a b" and
"
∧

a. a∈ A =⇒ length a = n"
shows "energy_leq (energy_sup n A) (energy_sup n B)"

〈proof 〉

lemma empty_Sup_is_zero:
assumes "i < n"
shows "(energy_sup n {}) ! i = 0"

〈proof 〉

end
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6 Bisping’s Updates
theory Update

imports Energy_Order
begin

In this theory we define a superset of Bisping’s updates and their application. Further,
we introduce Bisping’s “inversion” of updates and relate the two.

6.1 Bisping’s Updates
Bisping allows three ways of updating a component of an energy: zero does not change
the respective entry, minus_one subtracts one and min_set A for some set A replaces
the entry by the minimum of entries whose index is contained in A. We further add
plus_one to add one and omit the assumption that the a minimum has to consider the
component it replaces. Updates are vectors where each entry contains the information,
how the update changes the respective component of energies. We now introduce a
datatype such that updates can be represented as lists of update_components.
datatype update_component = zero | minus_one | min_set "nat set" | plus_one
type_synonym update = "update_component list"

abbreviation "valid_update u ≡ (∀ i D. u ! i = min_set D
−→ D 6= {} ∧ D ⊆ {x. x < length u})"

Now the application of updates apply_update will be defined.
fun apply_component::"nat ⇒ update_component ⇒ energy ⇒ enat option" where

"apply_component i zero e = Some (e ! i)" |
"apply_component i minus_one e = (if ((e ! i) > 0) then Some ((e ! i) - 1)

else None)" |
"apply_component i (min_set A) e = Some (min_list (nths e A))"|
"apply_component i plus_one e = Some ((e ! i)+1)"

fun apply_update:: "update ⇒ energy ⇒ energy option" where
"apply_update u e = (if (length u = length e)

then (those (map (λi. apply_component i (u ! i) e) [0..<length e]))
else None)"

abbreviation "upd u e ≡ the (apply_update u e)"

We now observe some properties of updates and their application. In particular, the
application of an update preserves the dimension and the domain of an update is upward
closed.
lemma len_appl:

assumes "apply_update u e 6= None"
shows "length (upd u e) = length e"

〈proof 〉

lemma apply_to_comp_n:
assumes "apply_update u e 6= None" and "i < length e"
shows "(upd u e) ! i = the (apply_component i (u ! i) e)"

〈proof 〉

lemma upd_domain_upward_closed:
assumes "apply_update u e 6= None" and "e e≤ e’"
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shows "apply_update u e’ 6= None"
〈proof 〉

Now we show that all valid updates are monotonic. The proof follows directly from the
definition of apply_update and valid_update.
lemma updates_monotonic:

assumes "apply_update u e 6= None" and "e e≤ e’" and "valid_update u"
shows "(upd u e) e≤ (upd u e’)"
〈proof 〉

6.2 Bisping’s Inversion
The “inverse” of an update u is a function mapping energies e to min{e′ | e ≤ u(e′)}
w.r.t the component-wise order. We start by giving a calculation and later show that
we indeed calculate such minima. For an energy e = (e0, ..., en−1) we calculate this
component-wise such that the i-th component is the maximum of ei (plus or minus one
if applicable) and each entry ej where i ∈ uj ⊆ {0, ..., n−1}. Note that this generalises
the inversion proposed by Bisping [1].
fun apply_inv_component::"nat ⇒ update ⇒ energy ⇒ enat" where

"apply_inv_component i u e = Max (set (map (λ(j,up).
(case up of zero ⇒ (if i=j then (e ! i) else 0) |

minus_one ⇒ (if i=j then (e ! i)+1 else 0) |
min_set A ⇒ (if i∈A then (e ! j) else 0) |
plus_one ⇒ (if i=j then (e ! i)-1 else 0)))

(List.enumerate 0 u)))"

fun apply_inv_update:: "update ⇒ energy ⇒ energy option" where
"apply_inv_update u e = (if (length u = length e)

then Some (map (λi. apply_inv_component i u e) [0..<length e])
else None)"

abbreviation "inv_upd u e ≡ the (apply_inv_update u e)"

We now observe the following properties, if an update u and an energy e have the same
dimension:

• apply_inv_update preserves dimension.

• The domain of apply_inv_update u is {e | |e| = |u|}.

• apply_inv_update u e is in the domain of the update u.

The first two proofs follow directly from the definition of apply_inv_update, while the
proof of inv_not_none_then is done by a case analysis of the possible update_components.
lemma len_inv_appl:

assumes "length u = length e"
shows "length (inv_upd u e) = length e"
〈proof 〉

lemma inv_not_none:
assumes "length u = length e"
shows "apply_inv_update u e 6= None"
〈proof 〉

lemma inv_not_none_then:
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assumes "apply_inv_update u e 6= None"
shows "(apply_update u (inv_upd u e)) 6= None"

〈proof 〉

Now we show that apply_inv_update u is monotonic for all updates u. The proof follows
directly from the definition of apply_inv_update and a case analysis of the possible
update components.
lemma inverse_monotonic:

assumes "e e≤ e’" and "length u = length e’"
shows "(inv_upd u e) e≤ (inv_upd u e’)"
〈proof 〉

6.3 Relating Updates and “Inverse” Updates
Since the minimum is not an injective function, for many updates there does not exist an
inverse. The following 2-dimensional examples show, that the function apply_inv_update
does not map an update to its inverse.
lemma not_right_inverse_example:

shows "apply_update [minus_one, (min_set {0,1})] [1,2] = Some [0,1]"
"apply_inv_update [minus_one, (min_set {0,1})] [0,1] = Some [1,1]"

〈proof 〉

lemma not_right_inverse:
shows "∃ u. ∃ e. apply_inv_update u (upd u e) 6= Some e"
〈proof 〉

lemma not_left_inverse_example:
shows "apply_inv_update [zero, (min_set {0,1})] [0,1] = Some [1,1]"

"apply_update [zero, (min_set {0,1})] [1,1] = Some [1,1]"
〈proof 〉

lemma not_left_inverse:
shows "∃ u. ∃ e. apply_update u (inv_upd u e) 6= Some e"
〈proof 〉

We now show that the given calculation apply_inv_update indeed calculates e 7→
min{e′ | e ≤ u(e′)} for all valid updates u. For this we first name this set possible_inv
u e. Then we show that inv_upd u e is an element of that set before showing that it
is minimal. Considering one component at a time, the proofs follow by a case analysis
of the possible update components from the definition of apply_inv_update

abbreviation "possible_inv u e ≡ {e’. apply_update u e’ 6= None
∧ (e e≤ (upd u e’))}"

lemma leq_up_inv:
assumes "length u = length e" and "valid_update u"
shows "e e≤ (upd u (inv_upd u e))"
〈proof 〉

lemma apply_inv_is_min:
assumes "length u = length e" and "valid_update u"
shows "energy_Min (possible_inv u e) = {inv_upd u e}"

〈proof 〉

We now show thatapply_inv_update u is decreasing.
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lemma inv_up_leq:
assumes "apply_update u e 6= None" and "valid_update u"
shows "(inv_upd u (upd u e)) e≤ e"
〈proof 〉

We now conclude that for any valid update the functions e 7→ min{e′ | e ≤ u(e′)} and u
form a Galois connection between the domain of u and the set of energies of the same
length as u w.r.t to the component-wise order.
lemma galois_connection:

assumes "apply_update u e’ 6= None" and "length e = length e’" and
"valid_update u"

shows "(inv_upd u e) e≤ e’ = e e≤ (upd u e’)"
〈proof 〉

end
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7 Galois Energy Games over Naturals
theory Natural_Galois_Energy_Game

imports Energy_Game Energy_Order Decidability Update
begin

We now define Galois energy games over vectors of naturals with the component-wise
order. We formalise this in this theory as an energy_game with a fixed dimension. In par-
ticular, we assume all updates to have an upward-closed domain (as domain_upw_closed)
and be length-preserving (as upd_preserves_length). We assume the latter for the in-
version of updates too (as inv_preserves_length) and assume that the inversion of an
update is a total mapping from energies to the domain of the update (as domain_inv).
(This corresponds to section 4.2 in the preprint [6].)
locale natural_galois_energy_game = energy_game attacker weight application

for attacker :: "’position set" and
weight :: "’position ⇒ ’position ⇒ ’label option" and
application :: "’label ⇒ energy ⇒ energy option" and
inverse_application :: "’label ⇒ energy ⇒ energy option"

+
fixes dimension :: "nat"
assumes

domain_upw_closed: "
∧

p p’ e e’. weight p p’ 6= None =⇒ e e≤ e’ =⇒ application
(the (weight p p’)) e 6= None =⇒ application (the (weight p p’)) e’ 6= None"

and updgalois: "
∧

p p’ e. weight p p’ 6= None =⇒ application (the (weight p
p’)) e 6= None =⇒ length (the (application (the (weight p p’)) e)) = length e"

and inv_preserves_length: "
∧

p p’ e. weight p p’ 6= None =⇒ length e = dimension
=⇒ length (the (inverse_application (the (weight p p’)) e)) = length e"

and domain_inv: "
∧

p p’ e. weight p p’ 6= None =⇒ length e = dimension =⇒ (inverse_application
(the (weight p p’)) e) 6= None ∧ application (the (weight p p’)) (the (inverse_application
(the (weight p p’)) e)) 6= None"

and galois: "
∧

p p’ e e’. weight p p’ 6= None =⇒ application (the (weight p
p’)) e’ 6= None =⇒ length e = dimension =⇒ length e’ = dimension =⇒ (the (inverse_application
(the (weight p p’)) e)) e≤ e’ = e e≤ (the (application (the (weight p p’)) e’))"

sublocale natural_galois_energy_game ⊆ galois_energy_game attacker weight application
inverse_application "{e::energy. length e = dimension}" energy_leq "λs. energy_sup
dimension s"
〈proof 〉

locale natural_galois_energy_game_decidable = natural_galois_energy_game attacker
weight application inverse_application dimension

for attacker :: "’position set" and
weight :: "’position ⇒ ’position ⇒ ’label option" and
application :: "’label ⇒ energy ⇒ energy option" and
inverse_application :: "’label ⇒ energy ⇒ energy option" and
dimension :: "nat"

+
assumes nonpos_eq_pos: "nonpos_winning_budget = winning_budget" and

finite_positions: "finite positions"

sublocale natural_galois_energy_game_decidable ⊆ galois_energy_game_decidable attacker
weight application inverse_application "{e::energy. length e = dimension}" energy_leq
"λs. energy_sup dimension s"
〈proof 〉

Bisping’s only considers declining energy games over vectors of naturals. We generalise
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this by considering all valid updates. We formalise this in this theory as an energy_game
with a fixed dimension and show that such games are Galois energy games.
locale bispings_energy_game = energy_game attacker weight apply_update

for attacker :: "’position set" and
weight :: "’position ⇒ ’position ⇒ update option"

+
fixes dimension :: "nat"
assumes

valid_updates: "∀ p. ∀ p’. ((weight p p’ 6= None )
−→ ((length (the (weight p p’)) = dimension)
∧ valid_update (the (weight p p’))))"

sublocale bispings_energy_game ⊆ natural_galois_energy_game attacker weight apply_update
apply_inv_update dimension
〈proof 〉

locale bispings_energy_game_decidable = bispings_energy_game attacker weight dimension
for attacker :: "’position set" and

weight :: "’position ⇒ ’position ⇒ update option" and
dimension :: "nat"

+
assumes nonpos_eq_pos: "nonpos_winning_budget = winning_budget" and

finite_positions: "finite positions"

sublocale bispings_energy_game_decidable ⊆ natural_galois_energy_game_decidable
attacker weight apply_update apply_inv_update dimension
〈proof 〉

end
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A Appendix
A.1 List Lemmas
theory List_Lemmas

imports Main
begin

In this theory some simple equalities about lists are established.
lemma len_those:

assumes "those l 6= None"
shows "length (the (those l)) = length l"

〈proof 〉

lemma the_those_n:
assumes "those (l:: ’a option list) 6= None" and "(n::nat) < length l"
shows "(the (those l)) ! n = the (l ! n)"
〈proof 〉

lemma those_all_Some:
assumes "those l 6= None" and "n < length l"
shows "(l ! n) 6=None"
〈proof 〉

lemma those_map_not_None:
assumes "∀ n< length xs. f (xs ! n) 6= None"
shows "those (map f xs) 6= None"

〈proof 〉

lemma last_len:
assumes "length xs = Suc n"
shows "last xs = xs ! n"

〈proof 〉

end
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