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Abstract

This article gives a formal version of Furstenberg’s topological proof
of the infinitude of primes. He defines a topology on the integers based
on arithmetic progressions (or, equivalently, residue classes). Using
some fairly obvious properties of this topology, the infinitude of primes
is then easily obtained.

Apart from this, this topology is also fairly ‘nice’ in general: it is
second countable, metrizable, and perfect. All of these (well-known)
facts are formally proven, including an explicit metric for the topology
given by Zulfeqarr.
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1 Furstenberg’s topology and his proof of the in-
finitude of primes

theory Furstenberg-Topology
imports

HOL−Real-Asymp.Real-Asymp
HOL−Analysis.Analysis
HOL−Number-Theory.Number-Theory

begin

This article gives a formal version of Furstenberg’s topological proof of the
infinitude of primes [2]. He defines a topology on the integers based on
arithmetic progressions (or, equivalently, residue classes).
Apart from yielding a short proof of the infinitude of primes, this topology
is also fairly ‘nice’ in general: it is second countable, metrizable, and perfect.
All of these (well-known) facts will be formally proven below.

1.1 Arithmetic progressions of integers

We first define ‘bidirectional infinite arithmetic progressions’ on � in the
sense that to an integer a and a positive integer b, we associate all the
integers x such that x ≡ a (mod b), or, equivalently, {a+ nb | n ∈ Z}.
definition arith-prog :: int ⇒ nat ⇒ int set where

arith-prog a b = {x. [x = a] (mod int b)}

lemma arith-prog-0-right [simp]: arith-prog a 0 = {a}
〈proof 〉

lemma arith-prog-Suc-0-right [simp]: arith-prog a (Suc 0 ) = UNIV
〈proof 〉

lemma in-arith-progI [intro]: [x = a] (mod b) =⇒ x ∈ arith-prog a b
〈proof 〉

Two arithmetic progressions with the same period and noncongruent starting
points are disjoint.
lemma arith-prog-disjoint:

assumes [a 6= a ′] (mod int b) and b > 0
shows arith-prog a b ∩ arith-prog a ′ b = {}
〈proof 〉

Multiplying the period gives us a subset of the original progression.
lemma arith-prog-dvd-mono: b dvd b ′ =⇒ arith-prog a b ′ ⊆ arith-prog a b
〈proof 〉

The following proves the alternative definition mentioned above.
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lemma bij-betw-arith-prog:
assumes b > 0
shows bij-betw (λn. a + int b ∗ n) UNIV (arith-prog a b)
〈proof 〉

lemma arith-prog-altdef : arith-prog a b = range (λn. a + int b ∗ n)
〈proof 〉

A simple corollary from this is also that any such arithmetic progression is
infinite.
lemma infinite-arith-prog: b > 0 =⇒ infinite (arith-prog a b)
〈proof 〉

1.2 The Furstenberg topology on �

The typeclass-based topology is somewhat nicer to use in Isabelle/HOL,
but the integers, of course, already have a topology associated to them.
We therefore need to introduce a type copy of the integers and furnish them
with the new topology. We can easily convert between them and the ‘proper’
integers using Lifting and Transfer.
typedef fbint = UNIV :: int set

morphisms int-of-fbint fbint 〈proof 〉

setup-lifting type-definition-fbint

lift-definition arith-prog-fb :: int ⇒ nat ⇒ fbint set is arith-prog 〈proof 〉

instantiation fbint :: topological-space
begin

Furstenberg defined the topology as the one generated by all arithmetic
progressions. We use a slightly more explicit equivalent formulation that
exploits the fact that the intersection of two arithmetic progressions is again
an arithmetic progression (or empty).
lift-definition open-fbint :: fbint set ⇒ bool is
λU . (∀ x∈U . ∃ b>0 . arith-prog x b ⊆ U ) 〈proof 〉

We now prove that this indeed forms a topology.
instance 〈proof 〉

end

Since any non-empty open set contains an arithmetic progression and arith-
metic progressions are infinite, we obtain that all nonempty open sets are
infinite.
lemma open-fbint-imp-infinite:
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fixes U :: fbint set
assumes open U and U 6= {}
shows infinite U
〈proof 〉

lemma not-open-finite-fbint [simp]:
assumes finite (U :: fbint set) U 6= {}
shows ¬open U
〈proof 〉

More or less by definition, any arithmetic progression is open.
lemma open-arith-prog-fb [intro]:

assumes b > 0
shows open (arith-prog-fb a b)
〈proof 〉

Slightly less obviously, any arithmetic progression is also closed. This can
be seen by realising that for a period b, we can partition the integers into b
congruence classes and then the complement of each congruence class is the
union of the other b − 1 classes, and unions of open sets are open.
lemma closed-arith-prog-fb [intro]:

assumes b > 0
shows closed (arith-prog-fb a b)
〈proof 〉

1.3 The infinitude of primes

The infinite of the primes now follows quite obviously: The multiples of any
prime form a closed set, so if there were only finitely many primes, the union
of all of these would also be open. However, since any number other than
±1 has a prime divisor, the union of all these sets is simply �\{±1}, which
is obviously not closed since the finite set {±1} is not open.
theorem infinite {p::nat. prime p}
〈proof 〉

1.4 Additional topological properties

Just for fun, let us also show a few more properties of Furstenberg’s topol-
ogy. First, we show the equivalence to the above to Furstenberg’s original
definition (the topology generated by all arithmetic progressions).
theorem topological-basis-fbint: topological-basis {arith-prog-fb a b |a b. b > 0}
〈proof 〉

lemma open-fbint-altdef : open = generate-topology {arith-prog-fb a b |a b. b > 0}
〈proof 〉

From this, we can immediately see that it is second countable:
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instance fbint :: second-countable-topology
〈proof 〉

A trivial consequence of the fact that nonempty open sets in this topology
are infinite is that it is a perfect space:
instance fbint :: perfect-space
〈proof 〉

It is also Hausdorff, since given any two distinct integers, we can easily
construct two non-overlapping arithmetic progressions that each contain one
of them. We do not really have to prove this since we will get it for free later
on when we show that it is a metric space, but here is the proof anyway:
instance fbint :: t2-space
〈proof 〉

Next, we need a small lemma: Given an additional assumption, a T2 space
is also T3:
lemma t2-space-t3-spaceI :

assumes
∧
(x :: ′a :: t2-space) U . x ∈ U =⇒ open U =⇒

∃V . x ∈ V ∧ open V ∧ closure V ⊆ U
shows OFCLASS( ′a, t3-space-class)
〈proof 〉

Since the Furstenberg topology is T2 and every arithmetic progression is also
closed, we can now easily show that it is also T3 (i. e. regular). Again, we
do not really need this proof, but here it is:
instance fbint :: t3-space
〈proof 〉

1.5 Metrizability

The metrizability of Furstenberg’s topology (i. e. that it is induced by some
metric) can be shown from the fact that it is second countable and T3 using
Urysohn’s Metrization Theorem, but this is not available in Isabelle yet. Let
us therefore give an explicit metric, as described by Zulfeqarr [3]. We follow
the exposition by Dirmeier [1].
First, we define a kind of norm on the integers. The norm depends on a real
parameter q > 1. The value of q does not matter in the sense that all values
induce the same topology (which we will show). For the final definition, we
then simply pick q = 2.
locale fbnorm =

fixes q :: real
assumes q-gt-1 : q > 1

begin
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definition N :: int ⇒ real where
N n = (

∑
k. if k = 0 ∨ int k dvd n then 0 else 1 / q ^ k)

lemma N-summable: summable (λk. if k = 0 ∨ int k dvd n then 0 else 1 / q ^ k)
〈proof 〉

lemma N-sums: (λk. if k = 0 ∨ int k dvd n then 0 else 1 / q ^ k) sums N n
〈proof 〉

lemma N-nonneg: N n ≥ 0
〈proof 〉

lemma N-uminus [simp]: N (−n) = N n
〈proof 〉

lemma N-minus-commute: N (x − y) = N (y − x)
〈proof 〉

lemma N-zero [simp]: N 0 = 0
〈proof 〉

lemma not-dvd-imp-N-ge:
assumes ¬n dvd a n > 0
shows N a ≥ 1 / q ^ n
〈proof 〉

lemma N-lt-imp-dvd:
assumes N a < 1 / q ^ n and n > 0
shows n dvd a
〈proof 〉

lemma N-pos:
assumes n 6= 0
shows N n > 0
〈proof 〉

lemma N-zero-iff [simp]: N n = 0 ←→ n = 0
〈proof 〉

lemma N-triangle-ineq: N (n + m) ≤ N n + N m
〈proof 〉

lemma N-1 : N 1 = 1 / (q ∗ (q − 1 ))
〈proof 〉

It follows directly from the definition that norms fulfil a kind of monotonicity
property with respect to divisibility: the norm of a number is at most as large
as the norm of any of its factors:
lemma N-dvd-mono:
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assumes m dvd n
shows N n ≤ N m
〈proof 〉

In particular, this means that 1 and -1 have the greatest norm.
lemma N-le-N-1 : N n ≤ N 1
〈proof 〉

Primes have relatively large norms, almost reaching the norm of 1:
lemma N-prime:

assumes prime p
shows N p = N 1 − 1 / q ^ nat p
〈proof 〉

lemma N-2 : N 2 = 1 / (q ^ 2 ∗ (q − 1 ))
〈proof 〉

lemma N-less-N-1 :
assumes n 6= 1 n 6= −1
shows N n < N 1
〈proof 〉

Composites, on the other hand, do not achieve this:
lemma nonprime-imp-N-lt:

assumes ¬prime-elem n |n| 6= 1 n 6= 0
shows N n < N 1 − 1 / q ^ nat |n|
〈proof 〉

This implies that one can use the norm as a primality test:
lemma prime-iff-N-eq:

assumes n 6= 0
shows prime-elem n ←→ N n = N 1 − 1 / q ^ nat |n|
〈proof 〉

Factorials, on the other hand, have very small norms:
lemma N-fact-le: N (fact m) ≤ 1 / (q − 1 ) ∗ 1 / q ^ m
〈proof 〉

lemma N-prime-mono:
assumes prime p prime p ′ p ≤ p ′

shows N p ≤ N p ′

〈proof 〉

lemma N-prime-ge:
assumes prime p
shows N p ≥ 1 / (q2 ∗ (q − 1 ))
〈proof 〉
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lemma N-prime-elem-ge:
assumes prime-elem p
shows N p ≥ 1 / (q2 ∗ (q − 1 ))
〈proof 〉

Next, we use this norm to derive a metric:
lift-definition dist :: fbint ⇒ fbint ⇒ real is
λx y. N (x − y) 〈proof 〉

lemma dist-self [simp]: dist x x = 0
〈proof 〉

lemma dist-sym [simp]: dist x y = dist y x
〈proof 〉

lemma dist-pos: x 6= y =⇒ dist x y > 0
〈proof 〉

lemma dist-eq-0-iff [simp]: dist x y = 0 ←→ x = y
〈proof 〉

lemma dist-triangle-ineq: dist x z ≤ dist x y + dist y z
〈proof 〉

Lastly, we show that the metric we defined indeed induces the Furstenberg
topology.
theorem dist-induces-open:

open U ←→ (∀ x∈U . ∃ e>0 . ∀ y. dist x y < e −→ y ∈ U )
〈proof 〉

end

We now show that the Furstenberg space is a metric space with this metric
(with q = 2 ), which essentially only amounts to plugging together all the
results from above.
interpretation fb: fbnorm 2
〈proof 〉

instantiation fbint :: dist
begin

definition dist-fbint where dist-fbint = fb.dist

instance 〈proof 〉

end
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instantiation fbint :: uniformity-dist
begin

definition uniformity-fbint :: (fbint × fbint) filter where
uniformity-fbint = (INF e∈{0 <..}. principal {(x, y). dist x y < e})

instance 〈proof 〉

end

instance fbint :: open-uniformity
〈proof 〉

instance fbint :: metric-space
〈proof 〉

In particular, we can now show that the sequence n! tends to 0 in the
Furstenberg topology:
lemma tendsto-fbint-fact: (λn. fbint (fact n)) −−−−→ fbint 0
〈proof 〉

end

References

[1] A. Dirmeier. On metrics inducing the Fürstenberg topology on the in-
tegers. https://arxiv.org/abs/1912.11663, 2019.

[2] H. Furstenberg. On the infinitude of primes. The American Mathematical
Monthly, 62(5):353, May 1955.

[3] F. Zulfeqarr. Some interesting consequences of Furstenberg topology.
Resonance, 24(7):755–765, July 2019.

9

https://arxiv.org/abs/1912.11663

	Furstenberg's topology and his proof of the infinitude of primes
	Arithmetic progressions of integers
	The Furstenberg topology on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 
	The infinitude of primes
	Additional topological properties
	Metrizability


