
Furstenberg’s Topology And
His Proof of the Infinitude of Primes

Manuel Eberl

March 17, 2025

Abstract

This article gives a formal version of Furstenberg’s topological proof
of the infinitude of primes. He defines a topology on the integers based
on arithmetic progressions (or, equivalently, residue classes). Using
some fairly obvious properties of this topology, the infinitude of primes
is then easily obtained.

Apart from this, this topology is also fairly ‘nice’ in general: it is
second countable, metrizable, and perfect. All of these (well-known)
facts are formally proven, including an explicit metric for the topology
given by Zulfeqarr.

Contents
1 Furstenberg’s topology and his proof of the infinitude of

primes 2
1.1 Arithmetic progressions of integers 2
1.2 The Furstenberg topology on � 3
1.3 The infinitude of primes . 6
1.4 Additional topological properties 7
1.5 Metrizability . 10

1

1 Furstenberg’s topology and his proof of the in-
finitude of primes

theory Furstenberg-Topology
imports

HOL−Real-Asymp.Real-Asymp
HOL−Analysis.Analysis
HOL−Number-Theory.Number-Theory

begin

This article gives a formal version of Furstenberg’s topological proof of the
infinitude of primes [2]. He defines a topology on the integers based on
arithmetic progressions (or, equivalently, residue classes).
Apart from yielding a short proof of the infinitude of primes, this topology
is also fairly ‘nice’ in general: it is second countable, metrizable, and perfect.
All of these (well-known) facts will be formally proven below.

1.1 Arithmetic progressions of integers

We first define ‘bidirectional infinite arithmetic progressions’ on � in the
sense that to an integer a and a positive integer b, we associate all the
integers x such that x ≡ a (mod b), or, equivalently, {a+ nb | n ∈ Z}.
definition arith-prog :: int ⇒ nat ⇒ int set where

arith-prog a b = {x. [x = a] (mod int b)}

lemma arith-prog-0-right [simp]: arith-prog a 0 = {a}
by (simp add: arith-prog-def)

lemma arith-prog-Suc-0-right [simp]: arith-prog a (Suc 0) = UNIV
by (auto simp: arith-prog-def)

lemma in-arith-progI [intro]: [x = a] (mod b) =⇒ x ∈ arith-prog a b
by (auto simp: arith-prog-def)

Two arithmetic progressions with the same period and noncongruent starting
points are disjoint.
lemma arith-prog-disjoint:

assumes [a 6= a ′] (mod int b) and b > 0
shows arith-prog a b ∩ arith-prog a ′ b = {}
using assms by (auto simp: arith-prog-def cong-def)

Multiplying the period gives us a subset of the original progression.
lemma arith-prog-dvd-mono: b dvd b ′ =⇒ arith-prog a b ′ ⊆ arith-prog a b

by (auto simp: arith-prog-def cong-dvd-modulus)

The following proves the alternative definition mentioned above.

2

lemma bij-betw-arith-prog:
assumes b > 0
shows bij-betw (λn. a + int b ∗ n) UNIV (arith-prog a b)

proof (rule bij-betwI [of - - - λx. (x − a) div int b], goal-cases)
case 1
thus ?case
by (auto simp: arith-prog-def cong-add-lcancel-0 cong-mult-self-right mult-of-nat-commute)

next
case 4
thus ?case

by (auto simp: arith-prog-def cong-iff-lin)
qed (use ‹b > 0 › in ‹auto simp: arith-prog-def ›)

lemma arith-prog-altdef : arith-prog a b = range (λn. a + int b ∗ n)
proof (cases b = 0)

case False
thus ?thesis

using bij-betw-arith-prog[of b] by (auto simp: bij-betw-def)
qed auto

A simple corollary from this is also that any such arithmetic progression is
infinite.
lemma infinite-arith-prog: b > 0 =⇒ infinite (arith-prog a b)

using bij-betw-finite[OF bij-betw-arith-prog[of b]] by simp

1.2 The Furstenberg topology on �

The typeclass-based topology is somewhat nicer to use in Isabelle/HOL,
but the integers, of course, already have a topology associated to them.
We therefore need to introduce a type copy of the integers and furnish them
with the new topology. We can easily convert between them and the ‘proper’
integers using Lifting and Transfer.
typedef fbint = UNIV :: int set

morphisms int-of-fbint fbint ..

setup-lifting type-definition-fbint

lift-definition arith-prog-fb :: int ⇒ nat ⇒ fbint set is arith-prog .

instantiation fbint :: topological-space
begin

Furstenberg defined the topology as the one generated by all arithmetic
progressions. We use a slightly more explicit equivalent formulation that
exploits the fact that the intersection of two arithmetic progressions is again
an arithmetic progression (or empty).
lift-definition open-fbint :: fbint set ⇒ bool is

3

λU . (∀ x∈U . ∃ b>0 . arith-prog x b ⊆ U) .

We now prove that this indeed forms a topology.
instance proof

show open (UNIV :: fbint set)
by transfer auto

next
fix U V :: fbint set
assume open U and open V
show open (U ∩ V)
proof (use ‹open U › ‹open V › in transfer , safe)

fix U V :: int set and x :: int
assume U : ∀ x∈U . ∃ b>0 . arith-prog x b ⊆ U and V : ∀ x∈V . ∃ b>0 . arith-prog

x b ⊆ V
assume x: x ∈ U x ∈ V
from U x obtain b1 where b1 : b1 > 0 arith-prog x b1 ⊆ U by auto
from V x obtain b2 where b2 : b2 > 0 arith-prog x b2 ⊆ V by auto
from b1 b2 have lcm b1 b2 > 0 arith-prog x (lcm b1 b2) ⊆ U ∩ V

using arith-prog-dvd-mono[of b1 lcm b1 b2 x] arith-prog-dvd-mono[of b2 lcm
b1 b2 x]

by (auto simp: lcm-pos-nat)
thus ∃ b>0 . arith-prog x b ⊆ U ∩ V by blast

qed
next

fix F :: fbint set set
assume ∗: ∀U∈F . open U
show open (

⋃
F)

proof (use ∗ in transfer , safe)
fix F :: int set set and U :: int set and x :: int
assume F : ∀U∈F . ∀ x∈U . ∃ b>0 . arith-prog x b ⊆ U
assume x ∈ U U ∈ F
with F obtain b where b: b > 0 arith-prog x b ⊆ U by blast
with ‹U ∈ F› show ∃ b>0 . arith-prog x b ⊆

⋃
F

by blast
qed

qed

end

Since any non-empty open set contains an arithmetic progression and arith-
metic progressions are infinite, we obtain that all nonempty open sets are
infinite.
lemma open-fbint-imp-infinite:

fixes U :: fbint set
assumes open U and U 6= {}
shows infinite U
using assms

proof transfer
fix U :: int set

4

assume ∗: ∀ x∈U . ∃ b>0 . arith-prog x b ⊆ U and U 6= {}
from ‹U 6= {}› obtain x where x ∈ U by auto
with ∗ obtain b where b: b > 0 arith-prog x b ⊆ U by auto
from b have infinite (arith-prog x b)

using infinite-arith-prog by blast
with b show infinite U

using finite-subset by blast
qed

lemma not-open-finite-fbint [simp]:
assumes finite (U :: fbint set) U 6= {}
shows ¬open U
using open-fbint-imp-infinite assms by blast

More or less by definition, any arithmetic progression is open.
lemma open-arith-prog-fb [intro]:

assumes b > 0
shows open (arith-prog-fb a b)
using assms

proof transfer
fix a :: int and b :: nat
assume b > 0
show ∀ x∈arith-prog a b. ∃ b ′>0 . arith-prog x b ′ ⊆ arith-prog a b
proof (intro ballI exI [of - b] conjI)

fix x assume x ∈ arith-prog a b
thus arith-prog x b ⊆ arith-prog a b

using cong-trans by (auto simp: arith-prog-def)
qed (use ‹b > 0 › in auto)

qed

Slightly less obviously, any arithmetic progression is also closed. This can
be seen by realising that for a period b, we can partition the integers into b
congruence classes and then the complement of each congruence class is the
union of the other b − 1 classes, and unions of open sets are open.
lemma closed-arith-prog-fb [intro]:

assumes b > 0
shows closed (arith-prog-fb a b)

proof −
have open (−arith-prog-fb a b)
proof −

have −arith-prog-fb a b = (
⋃

i∈{1 ..<b}. arith-prog-fb (a+i) b)
proof (transfer fixing: b)

fix a :: int
have disjoint: x /∈ arith-prog a b if x ∈ arith-prog (a + int i) b i ∈ {1 ..<b}

for x i
proof −

have [a 6= a + int i] (mod int b)
proof

assume [a = a + int i] (mod int b)

5

hence [a + 0 = a + int i] (mod int b) by simp
hence [0 = int i] (mod int b) by (subst (asm) cong-add-lcancel) auto
with that show False by (auto simp: cong-def)

qed
thus ?thesis using arith-prog-disjoint[of a a + int i b] ‹b > 0 › that by auto

qed

have covering: x ∈ arith-prog a b ∨ x ∈ (
⋃

i∈{1 ..<b}. arith-prog (a + int i)
b) for x

proof −
define i where i = nat ((x − a) mod (int b))
have [a + int i = a + (x − a) mod int b] (mod int b)

unfolding i-def using ‹b > 0 › by simp
also have [a + (x − a) mod int b = a + (x − a)] (mod int b)

by (intro cong-add) auto
finally have [x = a + int i] (mod int b)

by (simp add: cong-sym-eq)
hence x ∈ arith-prog (a + int i) b

using ‹b > 0 › by (auto simp: arith-prog-def)
moreover have i < b using ‹b > 0 ›

by (auto simp: i-def nat-less-iff)
ultimately show ?thesis using ‹b > 0 ›

by (cases i = 0) auto
qed

from disjoint and covering show − arith-prog a b = (
⋃

i∈{1 ..<b}. arith-prog
(a + int i) b)

by blast
qed
also from ‹b > 0 › have open . . .

by auto
finally show ?thesis .

qed
thus ?thesis by (simp add: closed-def)

qed

1.3 The infinitude of primes

The infinite of the primes now follows quite obviously: The multiples of any
prime form a closed set, so if there were only finitely many primes, the union
of all of these would also be open. However, since any number other than
±1 has a prime divisor, the union of all these sets is simply �\{±1}, which
is obviously not closed since the finite set {±1} is not open.
theorem infinite {p::nat. prime p}
proof

assume fin: finite {p::nat. prime p}
define A where A = (

⋃
p∈{p::nat. prime p}. arith-prog-fb 0 p)

have closed A

6

unfolding A-def using fin by (intro closed-Union) (auto simp: prime-gt-0-nat)
hence open (−A)

by (simp add: closed-def)
also have A = −{fbint 1 , fbint (−1)}

unfolding A-def
proof transfer

show (
⋃

p∈{p::nat. prime p}. arith-prog 0 p) = − {1 , − 1}
proof (intro equalityI subsetI)

fix x :: int assume x: x ∈ −{1 , −1}
hence |x| 6= 1 by auto
show x ∈ (

⋃
p∈{p::nat. prime p}. arith-prog 0 p)

proof (cases x = 0)
case True
thus ?thesis

by (auto simp: A-def intro!: exI [of - 2])
next

case [simp]: False
obtain p where p: prime p p dvd x

using prime-divisor-exists[of x] and ‹|x| 6= 1 › by auto
hence x ∈ arith-prog 0 (nat p) using prime-gt-0-int[of p]

by (auto simp: arith-prog-def cong-0-iff)
thus ?thesis using p

by (auto simp: A-def intro!: exI [of - nat p])
qed

qed (auto simp: A-def arith-prog-def cong-0-iff)
qed
also have −(−{fbint 1 , fbint (−1)}) = {fbint 1 , fbint (−1)}

by simp
finally have open {fbint 1 , fbint (−1)} .
thus False by simp

qed

1.4 Additional topological properties

Just for fun, let us also show a few more properties of Furstenberg’s topol-
ogy. First, we show the equivalence to the above to Furstenberg’s original
definition (the topology generated by all arithmetic progressions).
theorem topological-basis-fbint: topological-basis {arith-prog-fb a b |a b. b > 0}

unfolding topological-basis-def
proof safe

fix a :: int and b :: nat
assume b > 0
thus open (arith-prog-fb a b)

by auto
next

fix U :: fbint set assume open U
hence ∀ x∈U . ∃ b. b > 0 ∧ arith-prog-fb (int-of-fbint x) b ⊆ U

by transfer
hence ∃ f . ∀ x∈U . f x > 0 ∧ arith-prog-fb (int-of-fbint x) (f x) ⊆ U

7

by (subst (asm) bchoice-iff)
then obtain f where f : ∀ x∈U . f x > 0 ∧ arith-prog-fb (int-of-fbint x) (f x) ⊆

U ..
define B where B = (λx. arith-prog-fb (int-of-fbint x) (f x)) ‘ U
have B ⊆ {arith-prog-fb a b |a b. b > 0}

using f by (auto simp: B-def)
moreover have

⋃
B = U

proof safe
fix x assume x ∈ U
hence x ∈ arith-prog-fb (int-of-fbint x) (f x)

using f by transfer auto
with ‹x ∈ U › show x ∈

⋃
B by (auto simp: B-def)

qed (use f in ‹auto simp: B-def ›)
ultimately show ∃B ′⊆{arith-prog-fb a b |a b. 0 < b}.

⋃
B ′ = U by auto

qed

lemma open-fbint-altdef : open = generate-topology {arith-prog-fb a b |a b. b > 0}
using topological-basis-imp-subbasis[OF topological-basis-fbint] .

From this, we can immediately see that it is second countable:
instance fbint :: second-countable-topology
proof

have countable ((λ(a,b). arith-prog-fb a b) ‘ (UNIV × {b. b > 0}))
by (intro countable-image) auto

also have . . . = {arith-prog-fb a b |a b. b > 0}
by auto

ultimately show ∃B::fbint set set. countable B ∧ open = generate-topology B
unfolding open-fbint-altdef by auto

qed

A trivial consequence of the fact that nonempty open sets in this topology
are infinite is that it is a perfect space:
instance fbint :: perfect-space

by standard auto

It is also Hausdorff, since given any two distinct integers, we can easily
construct two non-overlapping arithmetic progressions that each contain one
of them. We do not really have to prove this since we will get it for free later
on when we show that it is a metric space, but here is the proof anyway:
instance fbint :: t2-space
proof

fix x y :: fbint
assume x 6= y
define d where d = nat |int-of-fbint x − int-of-fbint y| + 1
from ‹x 6= y› have d > 0

unfolding d-def by transfer auto
define U where U = arith-prog-fb (int-of-fbint x) d
define V where V = arith-prog-fb (int-of-fbint y) d

8

have U ∩ V = {} unfolding U-def V-def d-def
proof (use ‹x 6= y› in transfer , rule arith-prog-disjoint)

fix x y :: int
assume x 6= y
show [x 6= y] (mod int (nat |x − y| + 1))
proof

assume [x = y] (mod int (nat |x − y| + 1))
hence |x − y| + 1 dvd |x − y|

by (auto simp: cong-iff-dvd-diff algebra-simps)
hence |x − y| + 1 ≤ |x − y|

by (rule zdvd-imp-le) (use ‹x 6= y› in auto)
thus False by simp

qed
qed auto
moreover have x ∈ U y ∈ V

unfolding U-def V-def by (use ‹d > 0 › in transfer , fastforce)+
moreover have open U open V

using ‹d > 0 › by (auto simp: U-def V-def)
ultimately show ∃U V . open U ∧ open V ∧ x ∈ U ∧ y ∈ V ∧ U ∩ V = {}

by blast
qed

Next, we need a small lemma: Given an additional assumption, a T2 space
is also T3:
lemma t2-space-t3-spaceI :

assumes
∧
(x :: ′a :: t2-space) U . x ∈ U =⇒ open U =⇒

∃V . x ∈ V ∧ open V ∧ closure V ⊆ U
shows OFCLASS(′a, t3-space-class)

proof
fix X :: ′a set and z :: ′a
assume X : closed X z /∈ X
with assms[of z −X] obtain V where V : z ∈ V open V closure V ⊆ −X

by auto
show ∃U V . open U ∧ open V ∧ z ∈ U ∧ X ⊆ V ∧ U ∩ V = {}

by (rule exI [of - V], rule exI [of - −closure V])
(use X V closure-subset[of V] in auto)

qed

Since the Furstenberg topology is T2 and every arithmetic progression is also
closed, we can now easily show that it is also T3 (i. e. regular). Again, we
do not really need this proof, but here it is:
instance fbint :: t3-space
proof (rule t2-space-t3-spaceI)

fix x :: fbint and U :: fbint set
assume x ∈ U and open U
then obtain b where b: b > 0 arith-prog-fb (int-of-fbint x) b ⊆ U

by transfer blast
define V where V = arith-prog-fb (int-of-fbint x) b

9

have x ∈ V
unfolding V-def by transfer auto

moreover have open V closed V
using ‹b > 0 › by (auto simp: V-def)

ultimately show ∃V . x ∈ V ∧ open V ∧ closure V ⊆ U
using b by (intro exI [of - V]) (auto simp: V-def)

qed

1.5 Metrizability

The metrizability of Furstenberg’s topology (i. e. that it is induced by some
metric) can be shown from the fact that it is second countable and T3 using
Urysohn’s Metrization Theorem, but this is not available in Isabelle yet. Let
us therefore give an explicit metric, as described by Zulfeqarr [3]. We follow
the exposition by Dirmeier [1].
First, we define a kind of norm on the integers. The norm depends on a real
parameter q > 1. The value of q does not matter in the sense that all values
induce the same topology (which we will show). For the final definition, we
then simply pick q = 2.
locale fbnorm =

fixes q :: real
assumes q-gt-1 : q > 1

begin

definition N :: int ⇒ real where
N n = (

∑
k. if k = 0 ∨ int k dvd n then 0 else 1 / q ^ k)

lemma N-summable: summable (λk. if k = 0 ∨ int k dvd n then 0 else 1 / q ^ k)
by (rule summable-comparison-test[OF - summable-geometric[of 1/q]])

(use q-gt-1 in ‹auto intro!: exI [of - 0] simp: power-divide›)

lemma N-sums: (λk. if k = 0 ∨ int k dvd n then 0 else 1 / q ^ k) sums N n
using N-summable unfolding N-def by (rule summable-sums)

lemma N-nonneg: N n ≥ 0
by (rule sums-le[OF - sums-zero N-sums]) (use q-gt-1 in auto)

lemma N-uminus [simp]: N (−n) = N n
by (simp add: N-def)

lemma N-minus-commute: N (x − y) = N (y − x)
using N-uminus[of x − y] by (simp del: N-uminus)

lemma N-zero [simp]: N 0 = 0
by (simp add: N-def)

lemma not-dvd-imp-N-ge:
assumes ¬n dvd a n > 0

10

shows N a ≥ 1 / q ^ n
by (rule sums-le[OF - sums-single[of n] N-sums]) (use q-gt-1 assms in auto)

lemma N-lt-imp-dvd:
assumes N a < 1 / q ^ n and n > 0
shows n dvd a
using not-dvd-imp-N-ge[of n a] assms by auto

lemma N-pos:
assumes n 6= 0
shows N n > 0

proof −
have 0 < 1 / q ^ (nat |n|+1)

using q-gt-1 by simp
also have ¬1 + |n| dvd |n|

using zdvd-imp-le[of 1 + |n| |n|] assms by auto
hence 1 / q ^ (nat |n|+1) ≤ N n

by (intro not-dvd-imp-N-ge) (use assms in auto)
finally show ?thesis .

qed

lemma N-zero-iff [simp]: N n = 0 ←→ n = 0
using N-pos[of n] by (cases n = 0) auto

lemma N-triangle-ineq: N (n + m) ≤ N n + N m
proof (rule sums-le)

let ?I = λn k. if k = 0 ∨ int k dvd n then 0 else 1 / q ^ k
show ?I (n + m) sums N (n + m)

by (rule N-sums)
show (λk. ?I n k + ?I m k) sums (N n + N m)

by (intro sums-add N-sums)
qed (use q-gt-1 in auto)

lemma N-1 : N 1 = 1 / (q ∗ (q − 1))
proof (rule sums-unique2)

have (λk. if k = 0 ∨ int k dvd 1 then 0 else 1 / q ^ k) sums N 1
by (rule N-sums)

also have (λk. if k = 0 ∨ int k dvd 1 then 0 else 1 / q ^ k) =
(λk. if k ∈ {0 , 1} then 0 else (1 / q) ^ k)

by (simp add: power-divide cong: if-cong)
finally show (λk. if k ∈ {0 , 1} then 0 else (1 / q) ^ k) sums N 1 .

have (λk. if k ∈ {0 , 1} then 0 else (1 / q) ^ k) sums
(1 / (1 − 1 / q) + (− (1 / q) − 1))

by (rule sums-If-finite-set ′[OF geometric-sums]) (use q-gt-1 in auto)
also have . . . = 1 / (q ∗ (q − 1))

using q-gt-1 by (simp add: field-simps)
finally show (λk. if k ∈ {0 , 1} then 0 else (1 / q) ^ k) sums

qed

11

It follows directly from the definition that norms fulfil a kind of monotonicity
property with respect to divisibility: the norm of a number is at most as large
as the norm of any of its factors:
lemma N-dvd-mono:

assumes m dvd n
shows N n ≤ N m

proof (rule sums-le[OF - N-sums N-sums])
fix k :: nat
show (if k = 0 ∨ int k dvd n then 0 else 1 / q ^ k) ≤

(if k = 0 ∨ int k dvd m then 0 else 1 / q ^ k)
using q-gt-1 assms by auto

qed

In particular, this means that 1 and -1 have the greatest norm.
lemma N-le-N-1 : N n ≤ N 1

by (rule N-dvd-mono) auto

Primes have relatively large norms, almost reaching the norm of 1:
lemma N-prime:

assumes prime p
shows N p = N 1 − 1 / q ^ nat p

proof (rule sums-unique2)
define p ′ where p ′ = nat p
have p: p = int p ′

using assms by (auto simp: p ′-def prime-ge-0-int)
have prime p ′

using assms by (simp add: p)

have (λk. if k = 0 ∨ int k dvd p then 0 else 1 / q ^ k) sums N p
by (rule N-sums)

also have int k dvd p ←→ k ∈ {1 , p ′} for k
using assms by (auto simp: p prime-nat-iff)

hence (λk. if k = 0 ∨ int k dvd p then 0 else 1 / q ^ k) =
(λk. if k ∈ {0 , 1 , p ′} then 0 else (1 / q) ^ k)

using assms q-gt-1 by (simp add: power-divide cong: if-cong)
finally show . . . sums N p .

have (λk. if k ∈ {0 , 1 , p ′} then 0 else (1 / q) ^ k) sums
(1 / (1 − 1 / q) + (− (1 / q) − (1 / q) ^ p ′ − 1))

by (rule sums-If-finite-set ′[OF geometric-sums])
(use ‹prime p ′› q-gt-1 prime-gt-Suc-0-nat[of p ′] in ‹auto simp: ›)

also have . . . = N 1 − 1 / q ^ p ′

using q-gt-1 by (simp add: field-simps N-1)
finally show (λk. if k ∈ {0 , 1 , p ′} then 0 else (1 / q) ^ k) sums

qed

lemma N-2 : N 2 = 1 / (q ^ 2 ∗ (q − 1))
using q-gt-1 by (auto simp: N-prime N-1 field-simps power2-eq-square)

12

lemma N-less-N-1 :
assumes n 6= 1 n 6= −1
shows N n < N 1

proof (cases n = 0)
case False
then obtain p where p: prime p p dvd n

using prime-divisor-exists[of n] assms by force
hence N n ≤ N p by (intro N-dvd-mono)
also from p have N p < N 1

using q-gt-1 by (simp add: N-prime)
finally show ?thesis .

qed (use q-gt-1 in ‹auto simp: N-1 ›)

Composites, on the other hand, do not achieve this:
lemma nonprime-imp-N-lt:

assumes ¬prime-elem n |n| 6= 1 n 6= 0
shows N n < N 1 − 1 / q ^ nat |n|

proof −
obtain p where p: prime p p dvd n

using prime-divisor-exists[of n] assms by auto
define p ′ where p ′ = nat p
have p ′: p = int p ′

using p by (auto simp: p ′-def prime-ge-0-int)
have prime p ′

using p by (simp add: p ′)

define n ′ where n ′ = nat |n|
have n ′ > 1

using assms by (auto simp: n ′-def)

have N n ≤ 1 / (q ∗ (q − 1)) − 1 / q ^ p ′ − 1 / q ^ n ′

proof (rule sums-le)
show (λk. if k = 0 ∨ int k dvd n then 0 else 1 / q ^ k) sums N n

by (rule N-sums)
next

from assms p have n ′ 6= p ′

by (auto simp: n ′-def p ′-def nat-eq-iff)
hence (λk. if k ∈ {0 , 1 , p ′, n ′} then 0 else (1 / q) ^ k) sums

(1 / (1 − 1 / q) + (− (1 / q) − (1 / q) ^ p ′ − (1 / q) ^ n ′ − 1))
by (intro sums-If-finite-set ′[OF geometric-sums])

(use ‹prime p ′› q-gt-1 prime-gt-Suc-0-nat[of p ′] ‹n ′ > 1 › in ‹auto simp: ›)
also have . . . = 1 / (q ∗ (q − 1)) − 1 / q ^ p ′ − 1 / q ^ n ′

using q-gt-1 by (simp add: field-simps)
finally show (λk. if k ∈ {0 , 1 , p ′, n ′} then 0 else (1 / q) ^ k) sums

next
show

∧
k. (if k = 0 ∨ int k dvd n then 0 else 1 / q ^ k)

≤ (if k ∈ {0 , 1 , p ′, n ′} then 0 else (1 / q) ^ k)
using q-gt-1 p by (auto simp: p ′-def n ′-def power-divide)

13

qed
also have . . . < 1 / (q ∗ (q − 1)) − 1 / q ^ n ′

using q-gt-1 by simp
finally show ?thesis by (simp add: n ′-def N-1)

qed

This implies that one can use the norm as a primality test:
lemma prime-iff-N-eq:

assumes n 6= 0
shows prime-elem n ←→ N n = N 1 − 1 / q ^ nat |n|

proof −
have ∗: prime-elem n ←→ N n = N 1 − 1 / q ^ nat |n| if n > 0 for n
proof −

consider n = 1 | prime n | ¬prime n n > 1
using ‹n > 0 › by force

thus ?thesis
proof cases

assume n = 1
thus ?thesis using q-gt-1

by (auto simp: N-1)
next

assume n: ¬prime n n > 1
with nonprime-imp-N-lt[of n] show ?thesis by simp

qed (auto simp: N-prime prime-ge-0-int)
qed

show ?thesis
proof (cases n > 0)

case True
with ∗ show ?thesis by blast

next
case False
with ∗[of −n] assms show ?thesis by simp

qed
qed

Factorials, on the other hand, have very small norms:
lemma N-fact-le: N (fact m) ≤ 1 / (q − 1) ∗ 1 / q ^ m
proof (rule sums-le[OF - N-sums])

have (λk. 1 / q ^ k / q ^ Suc m) sums (q / (q − 1) / q ^ Suc m)
using geometric-sums[of 1 / q] q-gt-1
by (intro sums-divide) (auto simp: field-simps)

also have (q / (q − 1) / q ^ Suc m) = 1 / (q − 1) ∗ 1 / q ^ m
using q-gt-1 by (simp add: field-simps)

also have (λk. 1 / q ^ k / q ^ Suc m) = (λk. 1 / q ^ (k + Suc m))
using q-gt-1 by (simp add: field-simps power-add)

also have . . . = (λk. if k + Suc m ≤ m then 0 else 1 / q ^ (k + Suc m))
by auto

finally have . . . sums (1 / (q − 1) ∗ 1 / q ^ m) .

14

also have ?this ←→ (λk. if k ≤ m then 0 else 1 / q ^ k) sums (1 / (q − 1) ∗
1 / q ^ m)

by (rule sums-zero-iff-shift) auto
finally show

next
fix k :: nat
have int k dvd fact m if k > 0 k ≤ m
proof −

have int k dvd int (fact m)
unfolding int-dvd-int-iff using that by (simp add: dvd-fact)

thus int k dvd fact m
unfolding of-nat-fact by simp

qed
thus (if k = 0 ∨ int k dvd fact m then 0 else 1 / q ^ k) ≤

(if k ≤ m then 0 else 1 / q ^ k) using q-gt-1 by auto
qed

lemma N-prime-mono:
assumes prime p prime p ′ p ≤ p ′

shows N p ≤ N p ′

using assms q-gt-1 by (auto simp add: N-prime field-simps nat-le-iff prime-ge-0-int)

lemma N-prime-ge:
assumes prime p
shows N p ≥ 1 / (q2 ∗ (q − 1))

proof −
have 1 / (q ^ 2 ∗ (q − 1)) = N 2

using q-gt-1 by (auto simp: N-prime N-1 field-simps power2-eq-square)
also have . . . ≤ N p

using assms by (intro N-prime-mono) (auto simp: prime-ge-2-int)
finally show ?thesis .

qed

lemma N-prime-elem-ge:
assumes prime-elem p
shows N p ≥ 1 / (q2 ∗ (q − 1))

proof (cases p ≥ 0)
case True
with assms N-prime-ge show ?thesis by auto

next
case False
with assms N-prime-ge[of −p] show ?thesis by auto

qed

Next, we use this norm to derive a metric:
lift-definition dist :: fbint ⇒ fbint ⇒ real is
λx y. N (x − y) .

lemma dist-self [simp]: dist x x = 0

15

by transfer simp

lemma dist-sym [simp]: dist x y = dist y x
by transfer (simp add: N-minus-commute)

lemma dist-pos: x 6= y =⇒ dist x y > 0
by transfer (use N-pos in simp)

lemma dist-eq-0-iff [simp]: dist x y = 0 ←→ x = y
using dist-pos[of x y] by (cases x = y) auto

lemma dist-triangle-ineq: dist x z ≤ dist x y + dist y z
proof transfer

fix x y z :: int
show N (x − z) ≤ N (x − y) + N (y − z)

using N-triangle-ineq[of x − y y − z] by simp
qed

Lastly, we show that the metric we defined indeed induces the Furstenberg
topology.
theorem dist-induces-open:

open U ←→ (∀ x∈U . ∃ e>0 . ∀ y. dist x y < e −→ y ∈ U)
proof (transfer , safe)

fix U :: int set and x :: int
assume ∗: ∀ x∈U . ∃ b>0 . arith-prog x b ⊆ U
assume x ∈ U
with ∗ obtain b where b: b > 0 arith-prog x b ⊆ U by blast
define e where e = 1 / q ^ b

show ∃ e>0 . ∀ y. N (x − y) < e −→ y ∈ U
proof (rule exI ; safe?)

show e > 0 using q-gt-1 by (simp add: e-def)
next

fix y assume N (x − y) < e
also have . . . = 1 / q ^ b by fact
finally have b dvd (x − y)

by (rule N-lt-imp-dvd) fact
hence y ∈ arith-prog x b

by (auto simp: arith-prog-def cong-iff-dvd-diff dvd-diff-commute)
with b show y ∈ U by blast

qed

next

fix U :: int set and x :: int
assume ∗: ∀ x∈U . ∃ e>0 . ∀ y. N (x − y) < e −→ y ∈ U
assume x ∈ U
with ∗ obtain e where e: e > 0 ∀ y. N (x − y) < e −→ y ∈ U by blast
have eventually (λN . 1 / (q − 1) ∗ 1 / q ^ N < e) at-top

16

using q-gt-1 ‹e > 0 › by real-asymp
then obtain m where m: 1 / (q − 1) ∗ 1 / q ^ m < e

by (auto simp: eventually-at-top-linorder)
define b :: nat where b = fact m

have arith-prog x b ⊆ U
proof

fix y assume y ∈ arith-prog x b
show y ∈ U
proof (cases y = x)

case False
from ‹y ∈ arith-prog x b› obtain n where y: y = x + int b ∗ n

by (auto simp: arith-prog-altdef)
from y and ‹y 6= x› have [simp]: n 6= 0 by auto
have N (x − y) = N (int b ∗ n) by (simp add: y)
also have . . . ≤ N (int b)

by (rule N-dvd-mono) auto
also have . . . ≤ 1 / (q − 1) ∗ 1 / q ^ m

using N-fact-le by (simp add: b-def)
also have . . . < e by fact
finally show y ∈ U using e by auto

qed (use ‹x ∈ U › in auto)
qed
moreover have b > 0 by (auto simp: b-def)
ultimately show ∃ b>0 . arith-prog x b ⊆ U

by blast
qed

end

We now show that the Furstenberg space is a metric space with this metric
(with q = 2), which essentially only amounts to plugging together all the
results from above.
interpretation fb: fbnorm 2

by standard auto

instantiation fbint :: dist
begin

definition dist-fbint where dist-fbint = fb.dist

instance ..

end

instantiation fbint :: uniformity-dist
begin

17

definition uniformity-fbint :: (fbint × fbint) filter where
uniformity-fbint = (INF e∈{0 <..}. principal {(x, y). dist x y < e})

instance by standard (simp add: uniformity-fbint-def)

end

instance fbint :: open-uniformity
proof

fix U :: fbint set
show open U = (∀ x∈U . eventually (λ(x ′,y). x ′ = x −→ y ∈ U) uniformity)

unfolding eventually-uniformity-metric dist-fbint-def
using fb.dist-induces-open by simp

qed

instance fbint :: metric-space
by standard (use fb.dist-triangle-ineq in ‹auto simp: dist-fbint-def ›)

In particular, we can now show that the sequence n! tends to 0 in the
Furstenberg topology:
lemma tendsto-fbint-fact: (λn. fbint (fact n)) −−−−→ fbint 0
proof −

have (λn. dist (fbint (fact n)) (fbint 0)) −−−−→ 0
proof (rule tendsto-sandwich[OF always-eventually always-eventually]; safe?)

fix n :: nat
show dist (fbint (fact n)) (fbint 0) ≤ 1 / 2 ^ n
unfolding dist-fbint-def by (transfer fixing: n) (use fb.N-fact-le[of n] in simp)

show dist (fbint (fact n)) (fbint 0) ≥ 0
by simp

show (λn. 1 / 2 ^ n :: real) −−−−→ 0
by real-asymp

qed simp-all
thus ?thesis

using tendsto-dist-iff by metis
qed

end

References

[1] A. Dirmeier. On metrics inducing the Fürstenberg topology on the in-
tegers. https://arxiv.org/abs/1912.11663, 2019.

[2] H. Furstenberg. On the infinitude of primes. The American Mathematical
Monthly, 62(5):353, May 1955.

18

https://arxiv.org/abs/1912.11663

[3] F. Zulfeqarr. Some interesting consequences of Furstenberg topology.
Resonance, 24(7):755–765, July 2019.

19

	Furstenberg's topology and his proof of the infinitude of primes
	Arithmetic progressions of integers
	The Furstenberg topology on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	The infinitude of primes
	Additional topological properties
	Metrizability

