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Abstract

This is a collection of cute puzzles of the form “Show that if a
function satisfies the following constraints, it must be . . . ” Please add
further examples to this collection!

Apart from the one about factorial, they all come from the delightful
booklet by Terence Tao [1] but go back to Math Olympiads and similar
events.

Please add further examples of this kind, either directly or by sending
them to me. Let us make this a growing body of fun!

theory FunWithFunctions imports Complex-Main begin

See [1]. Was first brought to our attention by Herbert Ehler who provided
a similar proof.
theorem identity1 : fixes f :: nat ⇒ nat
assumes fff :

∧
n. f (f (n)) < f (Suc(n))

shows f (n) = n
proof −

{ fix m n have key: n ≤ m =⇒ n ≤ f (m)
proof(induct n arbitrary: m)

case 0 show ?case by simp
next

case (Suc n)
hence m 6= 0 by simp
then obtain k where [simp]: m = Suc k by (metis not0-implies-Suc)
have n ≤ f (k) using Suc by simp
hence n ≤ f (f (k)) using Suc by simp
also have . . . < f (m) using fff by simp
finally show ?case by simp

qed }
hence

∧
n. n ≤ f (n) by simp

hence
∧

n. f (n) < f (Suc n) by(metis fff order-le-less-trans)
hence f (n) < n+1 by (metis fff lift-Suc-mono-less-iff [of f ] Suc-eq-plus1 )
with ‹n ≤ f (n)› show f n = n by arith

qed
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See [1]. Possible extension: Should also hold if the range of f is the reals!
lemma identity2 : fixes f :: nat ⇒ nat
assumes f (k) = k and k ≥ 2
and f-times:

∧
m n. f (m∗n) = f (m)∗f (n)

and f-mono:
∧

m n. m<n =⇒ f m < f n
shows f (n) = n
proof −

have 0 : f (0 ) = 0
by (metis f-mono f-times mult-1-right mult-is-0 nat-less-le nat-mult-eq-cancel-disj

not-less-eq)
have 1 : f (1 ) = 1
by (metis f-mono f-times gr-implies-not0 mult-eq-self-implies-10 nat-mult-1-right

zero-less-one)
have 2 : f 2 = 2
proof −

have 2 + (k − 2 ) = k using ‹k ≥ 2 › by arith
hence f (2 ) ≤ 2

using mono-nat-linear-lb[of f 2 k − 2 ,OF f-mono] ‹f k = k›
by simp

thus f 2 = 2 using 1 f-mono[of 1 2 ] by arith
qed
show ?thesis
proof(induct rule:less-induct)

case (less i)
show ?case
proof cases

assume i≤1 thus ?case using 0 1 by (auto simp add:le-Suc-eq)
next

assume ∼i≤1
show ?case
proof cases

assume i mod 2 = 0
hence ∃ k. i=2∗k by arith
then obtain k where i = 2∗k ..
hence 0 < k and k<i using ‹∼i≤1 › by arith+
hence f (k) = k using less(1 ) by blast
thus f (i) = i using ‹i = 2∗k› by(simp add:f-times 2 )

next
assume i mod 2 6= 0
hence ∃ k. i=2∗k+1 by arith
then obtain k where i = 2∗k+1 ..
hence 0<k and k+1<i using ‹∼i≤1 › by arith+
have 2∗k < f (2∗k+1 )
proof −

have 2∗k = 2∗f (k) using less(1 ) ‹i=2∗k+1 › by simp
also have . . . = f (2∗k) by(simp add:f-times 2 )
also have . . . < f (2∗k+1 ) using f-mono[of 2∗k 2∗k+1 ] by simp
finally show ?thesis .

qed
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moreover
have f (2∗k+1 ) < 2∗(k+1 )
proof −

have f (2∗k+1 ) < f (2∗k+2 ) using f-mono[of 2∗k+1 2∗k+2 ] by simp
also have . . . = f (2∗(k+1 )) by simp
also have . . . = 2∗f (k+1 ) by(simp only:f-times 2 )
also have f (k+1 ) = k+1 using less(1 ) ‹i=2∗k+1 › ‹∼i≤1 › by simp
finally show ?thesis .

qed
ultimately show f (i) = i using ‹i = 2∗k+1 › by arith

qed
qed

qed
qed

One more from Tao’s booklet. If f is also assumed to be continuous, f x
= x + 1 holds for all reals, not only rationals. Extend the proof!
theorem plus1 :
fixes f :: real ⇒ real
assumes 0 : f 0 = 1 and f-add:

∧
x y. f (x+y+1 ) = f x + f y

assumes r : � shows f (r) = r + 1
proof −

{ fix i have f (of-int i) = of-int i + 1
proof (induct i rule: int-induct [where k=0 ])

case base show ?case using 0 by simp
next

case (step1 i)
have f (of-int (i+1 )) = f (of-int i + 0 + 1 ) by simp
also have . . . = f (of-int i) + f 0 by(rule f-add)
also have . . . = of-int (i+1 ) + 1 using step1 0 by simp
finally show ?case .

next
case (step2 i)
have f (of-int i) = f (of-int (i − 1 ) + 0 + 1 ) by simp
also have . . . = f (of-int (i − 1 )) + f 0 by(rule f-add)
also have . . . = f (of-int (i − 1 )) + 1 using 0 by simp
finally show ?case using step2 by simp

qed }
note f-int = this
{ fix n r have f (of-int (Suc n)∗r + of-int n) = of-int (Suc n) ∗ f r

proof(induct n)
case 0 show ?case by simp

next
case (Suc n)
have of-int (Suc(Suc n))∗r + of-int (Suc n) =

r + (of-int (Suc n)∗r + of-int n) + 1 (is ?a = ?b)
by(simp add: field-simps)

hence f ?a = f ?b
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by presburger
also have . . . = f r + f (of-int (Suc n)∗r + of-int n) by(rule f-add)
also have . . . = f r + of-int (Suc n) ∗ f r by(simp only:Suc)
finally show ?case by(simp add: field-simps)

qed }
note 1 = this
{ fix n::nat and r assume n 6=0

have f (of-int (n)∗r + of-int (n − 1 )) = of-int (n) ∗ f r
proof(cases n)

case 0 thus ?thesis using ‹n 6=0 › by simp
next

case Suc thus ?thesis using ‹n 6=0 › using 1 by auto
qed }

note f-mult = this
from ‹r :�› obtain i::int and n::nat where r : r = of-int i/of-int n and n 6=0

by(fastforce simp:Rats-eq-int-div-nat)
have of-int (n) ∗ f (of-int i / of-int n) = f (of-int i + of-int (n − 1 ))

using ‹n 6=0 ›
by (metis (no-types, opaque-lifting) f-mult mult.commute nonzero-divide-eq-eq

of-int-of-nat-eq of-nat-0-eq-iff )
also have . . . = f (of-int (i + int n − 1 )) using ‹n 6=0 ›[simplified]

by (metis One-nat-def Suc-leI of-nat-1 add-diff-eq of-int-add of-nat-diff )
also have . . . = of-int (i + int n − 1 ) + 1 by(rule f-int)
also have . . . = of-int i + of-int n by arith
finally show ?thesis using ‹n 6=0 › unfolding r by (simp add:field-simps)

qed

The only total model of a naive recursion equation of factorial on integers
is 0 for all negative arguments. Probably folklore.
theorem ifac-neg0 : fixes ifac :: int ⇒ int
assumes ifac-rec:

∧
i. ifac i = (if i=0 then 1 else i∗ifac(i − 1 ))

shows i<0 =⇒ ifac i = 0
proof(rule ccontr)

assume 0 : i<0 ifac i 6= 0
{ fix j assume j ≤ i

have ifac j 6= 0
apply(rule int-le-induct[OF ‹j≤i›])
apply(rule ‹ifac i 6= 0 ›)

apply (metis ‹i<0 › ifac-rec linorder-not-le mult-eq-0-iff )
done

} note below0 = this
{ fix j assume j<i

have 1 < −j using ‹j<i› ‹i<0 › by arith
have ifac(j − 1 ) 6= 0 using ‹j<i› by(simp add: below0 )
then have |ifac (j − 1 )| < (−j) ∗ |ifac (j − 1 )| using ‹j<i›

mult-le-less-imp-less[OF order-refl[of abs(ifac(j − 1 ))] ‹1 < −j›]
by(simp add:mult.commute)

hence abs(ifac(j − 1 )) < abs(ifac j)
using ‹1 < −j› by(simp add: ifac-rec[of j] abs-mult)
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} note not-wf = this
let ?f = %j. nat(abs(ifac(i − int(j+1 ))))
obtain k where ¬ ?f (Suc k) < ?f k

using wf-no-infinite-down-chainE [OF wf-less, of ?f ] by blast
moreover have i − int (k + 1 ) − 1 = i − int (Suc k + 1 ) by arith
ultimately show False using not-wf [of i − int(k+1 )]

by (simp only:) arith
qed

end
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