Fun With Functions

Tobias Nipkow
March 17, 2025

Abstract

This is a collection of cute puzzles of the form “Show that if a
function satisfies the following constraints, it must be ...” Please add
further examples to this collection!

Apart from the one about factorial, they all come from the delightful
booklet by Terence Tao [1] but go back to Math Olympiads and similar
events.

Please add further examples of this kind, either directly or by sending
them to me. Let us make this a growing body of fun!

theory FunWithFunctions imports Complex-Main begin

See [1]. Was first brought to our attention by Herbert Ehler who provided
a similar proof.

theorem identityl: fixes f :: nat = nat
assumes [ff: An. f(f(n)) < f(Suc(n))
shows f(n) = n
proof —
{ fix m n have key: n < m = n < f(m)
proof (induct n arbitrary: m)
case () show ?case by simp
next
case (Suc n)
hence m # 0 by simp
then obtain k where [simp]: m = Suc k by (metis notO-implies-Suc)
have n < f(k) using Suc by simp
hence n < f(f(k)) using Suc by simp
also have ... < f(m) using fff by simp
finally show ?case by simp
qed }
hence An. n < f(n) by simp
hence An. f(n) < f(Suc n) by(metis fff order-le-less-trans)
hence f(n) < n+1 by (metis fff lift-Suc-mono-less-iff [of f] Suc-eq-plusl)
with <n < f(n)) show fn = n by arith
qed

See [1]. Possible extension: Should also hold if the range of f is the reals!

lemma identity2: fixes f :: nat = nat
assumes f(k) = kand k > 2
and f-times: Am n. f(mxn) = f(m)*f(n)
and frmono: Am n. m<n = fm < fn
shows f(n) = n
proof —
have 0: f(0) = 0
by (metis f-mono f-times mult-1-right mult-is-0 nat-less-le nat-mult-eq-cancel-disj
not-less-eq)
have 1: f(1) = 1
by (metis f-mono f-times gr-implies-not0 mult-eg-self-implies-10 nat-mult-1-right
zero-less-one)
have 2: f2 = 2
proof —
have 2 + (k — 2) = k using <k > 2> by arith
hence f(2) < 2
using mono-nat-linear-lblof f 2 k — 2,0F f-mono] «f k = k»
by simp
thus f 2 = 2 using I f-mono|of 1 2] by arith
qed
show ?thesis
proof (induct rule:less-induct)
case (less)
show ?case
proof cases
assume i< thus ?case using 0 1 by (auto simp add:le-Suc-eq)
next
assume "~i<]
show ?case
proof cases
assume ¢ mod 2 = 0
hence 3k. i=2xk by arith
then obtain k£ where i = 2xk ..
hence 0 < k and k< using (~i<1» by arith+
hence f(k) = k using less(1) by blast
thus f(i) = ¢ using <i = 2xk> by(simp add:f-times 2)
next
assume 7 mod 2 # 0
hence 3k. i=2xk+1 by arith
then obtain k where i = 2xk+1 ..
hence 0<k and k+1<i using «~i<1) by arith+
have 2xk < f(2%k+1)

proof —
have 2xk = 2xf(k) using less(1) <i=2xk+1> by simp
also have ... = f(2x«k) by(simp add:f-times 2)

also have ... < f(2xk+1) using f-mono[of 2xk 2xk+1] by simp
finally show ?%thesis .
qged

moreover

have f(2xk+1) < 2x(k+1)

proof —
have f(2«k+1) < f(2xk+2) using f-mono|of 2xk+1 2xk+2] by simp
also have ... = f(2«(k+1)) by simp

also have ... = 2x«f(k+1) by(simp only:f-times 2)
also have f(k+1) = k+1 using less(1) «i=2xk+1> <~i<1> by simp
finally show ?thesis .

qed

ultimately show f(i) = i using «i = 2«k+1) by arith

qed
qed
qed
qed

One more from Tao’s booklet. If f is also assumed to be continuous, f
= x + 1 holds for all reals, not only rationals. Extend the proof!

theorem plusi:
fixes f :: real = real
assumes 0: f0 = 1 and f-add: Az y. f(z+y+1)=fz + [y

assumes 7 : Q shows f(r) = r + 1
proof —
{ fix i have f(of-int i) = of-int i + 1
proof (induct i rule: int-induct [where k=0])
case base show ?case using 0 by simp
next
case (stepl i)
have f(of-int (i+1)) = f(of-int i + 0 + 1) by simp

also have ... = f(of-int i) + f 0 by(rule f-add)
also have ... = of-int (i+1) + 1 using step! 0 by simp
finally show ?Zcase .

next

case (step2 i)
have f(of-int i) = f(of-int (i — 1) + 0 + 1) by simp

also have ... = f(of-int (i — 1)) + f 0 by(rule f-add)
also have ... = f(of-int (i — 1)) + 1 using 0 by simp
finally show ?case using step2 by simp

qed }

note f-int = this
{ fix n r have f(of-int (Suc n)*r + of-int n) = of-int (Suc n) = fr
proof (induct n)
case () show ?case by simp
next
case (Suc n)
have of-int (Suc(Suc n))xr + of-int (Suc n) =
r + (of-int (Suc n)xr + of-int n) + 1 (is %a = %b)
by (simp add: field-simps)
hence f %a = f 7b

by presburger

also have ... = fr + f(of-int (Suc n)xr + of-int n) by(rule f-add)
also have ... = fr + of-int (Suc n) = fr by(simp only:Suc)
finally show ?case by(simp add: field-simps)

qed }

note 1 = this
{ fix n::nat and r assume n#0
have f(of-int (n)*r + of-int (n — 1)) = of-int (n) * fr
proof(cases n)
case () thus ?thesis using (n#0> by simp
next
case Suc thus ?thesis using (n#0> using 1 by auto
qed }
note f-mult = this
from «r:Q> obtain i::int and n::nat where r: r = of-int i/of-int n and n#£0
by (fastforce simp:Rats-eq-int-div-nat)
have of-int (n) x f(of-int i / of-int n) = f(of-int i + of-int (n — 1))
using «n#0»
by (metis (no-types, opaque-lifting) f-mult mult.commute nonzero-divide-eg-eq
of-int-of-nat-eq of-nat-0-eq-iff)

also have ... = f(of-int (i + int n — 1)) using n#0>[simplified]

by (metis One-nat-def Suc-lel of-nat-1 add-diff-eq of-int-add of-nat-diff)
also have ... = of-int (i + int n — 1) + 1 by(rule f-int)
also have ... = of-int ¢ + of-int n by arith

finally show ?thesis using «n#0> unfolding r by (simp add:field-simps)
qged

The only total model of a naive recursion equation of factorial on integers
is 0 for all negative arguments. Probably folklore.

theorem ifac-neg0: fixes ifac :: int = int
assumes ifac-rec: Ni. ifac i = (if i=0 then 1 else ixifac(i — 1))
shows i<0 = ifac i = 0
proof (rule ccontr)
assume 0: i<0 ifac i # 0
{ fix j assume j < ¢
have ifac j # 0
apply (rule int-le-induct[OF <j<i)])
apply(rule <ifac i # 0)
apply (metis <i<0» ifac-rec linorder-not-le mult-eq-0-iff)
done
} note below0 = this
{ fix j assume j<i
have 1 < —j using <> <i<0> by arith
have ifac(j — 1) # 0 using j<i» by(simp add: below0)
then have |ifac (j — 1)| < (—j) * |ifac (j — 1)| using <o
mult-le-less-imp-less|OF order-refi[of abs(ifac(j — 1))] <1 < —j]
by (simp add:mult.commute)
hence abs(ifac(j — 1)) < abs(ifac 7)
using <1 < —j» by(simp add: ifac-rec|of j] abs-mult)

} note not-wf = this
let ?f = %j. nat(abs(ifac(i — int(j+1))))
obtain k where — ?f (Suc k) < 2f k
using wf-no-infinite-down-chainE[OF wf-less, of ?f] by blast
moreover have ¢ — int (k+ 1) — 1 =i — int (Suc k + 1) by arith
ultimately show Fulse using not-wf[of i — int(k+1)]
by (simp only:) arith
qed

end

References

[1] Terence Tao. Solving Mathematical Problems. Oxford University Press,
2006.

