
Fresh identifiers

Andrei Popescu Thomas Bauereiss

March 17, 2025

Abstract

This entry defines a type class with an operator returning a fresh
identifier, given a set of already used identifiers and a preferred iden-
tifier. The entry provides a default instantiation for any infinite type,
as well as executable instantiations for natural numbers and strings.

Contents
1 The type class fresh 1

2 Fresh identifier generation for natural numbers 2

3 Fresh identifier generation for strings 3
3.1 A partial order on strings . 3
3.2 Incrementing a string . 4
3.3 The fresh-identifier operator 5
3.4 Lifting to string literals . 6

4 Fresh identifier generation for infinite types 8

1 The type class fresh
theory Fresh

imports Main
begin

A type in this class comes with a mechanism to generate fresh items. The
fresh operator takes a list of items to be avoided, xs, and a preferred element
to be generated, x.
It is required that implementations of fresh for specific types produce x if
possible (i.e., if not in xs).
While not required, it is also expected that, if x is not possible, then im-
plementation produces an element that is as close to x as possible, given a
notion of distance.

1

class fresh =
fixes fresh :: ′a set ⇒ ′a ⇒ ′a
assumes fresh-notIn:

∧
xs x. finite xs =⇒ fresh xs x /∈ xs

and fresh-eq:
∧

xs x. x /∈ xs =⇒ fresh xs x = x

The type class fresh is essentially the same as the type class infinite but
with an emphasis on fresh item generation.
class infinite =

assumes infinite-UNIV : ¬ finite (UNIV :: ′a set)

We can subclass fresh to infinite since the latter has no associated operators
(in particular, no additional operators w.r.t. the former).
subclass (in fresh) infinite

apply (standard)
using finite-list local.fresh-notIn by auto

end

2 Fresh identifier generation for natural numbers
theory Fresh-Nat

imports Fresh
begin

Assuming x ≤ y, fresh2 xs x y returns an element outside the interval (x,y)
that is fresh for xs and closest to this interval, favoring smaller elements:
function fresh2 :: nat set ⇒ nat ⇒ nat ⇒ nat where
fresh2 xs x y =
(if x /∈ xs ∨ infinite xs then x else
if y /∈ xs then y else
fresh2 xs (x−1) (y+1))

by auto
termination

apply(relation measure (λ(xs,x,y). (Max xs) + 1 − y))
by (simp-all add: Suc-diff-le)

lemma fresh2-notIn: finite xs =⇒ fresh2 xs x y /∈ xs
by (induct xs x y rule: fresh2 .induct) auto

lemma fresh2-eq: x /∈ xs =⇒ fresh2 xs x y = x
by auto

declare fresh2 .simps[simp del]

instantiation nat :: fresh
begin

fresh xs x y returns an element that is fresh for xs and closest to x, favoring
smaller elements:

2

definition fresh-nat :: nat set ⇒ nat ⇒ nat where
fresh-nat xs x ≡ fresh2 xs x x

instance by standard (use fresh2-notIn fresh2-eq in ‹auto simp add: fresh-nat-def ›)

end

Code generation
lemma fresh2-list[code]:

fresh2 (set xs) x y =
(if x /∈ set xs then x else
if y /∈ set xs then y else
fresh2 (set xs) (x−1) (y+1))

by (auto simp: fresh2 .simps)

Some tests:
value [fresh {} (1 ::nat),

fresh {3 ,5 ,2 ,4} 3]

end

3 Fresh identifier generation for strings
theory Fresh-String

imports Fresh
begin

3.1 A partial order on strings

The first criterion is the length, and the second the encoding of last charac-
ter.
definition ordst :: string ⇒ string ⇒ bool where
ordst X Y ≡
(length X ≤ length Y ∧ X 6= [] ∧ Y 6= [] ∧ of-char (last X) < (of-char(last Y)
:: nat))
∨ (length X < length Y)

definition ordstNS :: string ⇒ string ⇒ bool where
ordstNS X Y ≡ X = Y ∨ ordst X Y

lemma ordst-antirefl: ¬ ordst X X
by(auto simp add: ordst-def)

lemma ordst-trans:
assumes As1 : ordst X Y and As2 : ordst Y Z
shows ordst X Z
proof(cases (length X < length Y) ∨ (length Y < length Z))

assume (length X < length Y) ∨ (length Y < length Z)

3

moreover
{assume length X < length Y
moreover have length Y ≤ length Z
using As2 ordst-def by force
ultimately have length X < length Z by force
hence ?thesis using ordst-def by force}

moreover
{assume length Y < length Z
moreover have length X ≤ length Y
using As1 ordst-def by force
ultimately have length X < length Z by force
hence ?thesis using ordst-def by force}

ultimately show ?thesis by force
next

assume ¬ (length X < length Y ∨ length Y < length Z)
hence Ft: ¬ length X < length Y ∧ ¬ length Y < length Z by force
hence (of-char(last X) :: nat) < of-char(last Y) ∧

(of-char(last Y) :: nat) < of-char(last Z) ∧
length X ≤ length Y ∧ length Y ≤ length Z

using As1 As2 ordst-def by force
hence (of-char(last X) :: nat) < of-char(last Z) ∧

length X ≤ length Z by force
moreover have X 6= [] ∧ Z 6= []
using As1 As2 Ft ordst-def by force
ultimately show ?thesis using ordst-def [of X Z] by force

qed

lemma ordstNS-refl: ordstNS X X
by(simp add: ordstNS-def)

lemma ordstNS-trans:
ordstNS X Y =⇒ ordstNS Y Z =⇒ ordstNS X Z
by (metis ordstNS-def ordst-trans)

lemma ordst-ordstNS-trans:
ordst X Y =⇒ ordstNS Y Z =⇒ ordst X Z
by (metis ordstNS-def ordst-trans)

lemma ordstNS-ordst-trans:
ordstNS X Y =⇒ ordst Y Z =⇒ ordst X Z
by (metis ordstNS-def ordst-trans)

3.2 Incrementing a string

If the last character is ≥ ’a’ and < ’z’, then upChar increments this last
character; otherwise upChar appends an ’a’.
fun upChar :: string ⇒ string where
upChar Y =
(if (Y 6= [] ∧ of-char(last Y) ≥ (97 :: nat) ∧

4

of-char(last Y) < (122 :: nat))
then (butlast Y) @

[char-of (of-char(last Y) + (1 :: nat))]
else Y @ ′′a ′′

)

lemma upChar-ordst: ordst Y (upChar Y)
proof−

{assume ¬(Y 6= [] ∧ of-char(last Y) ≥ (97 :: nat)
∧ of-char(last Y) < (122 :: nat))

hence upChar Y = Y @ ′′a ′′ by force
hence ?thesis using ordst-def by force

}
moreover
{assume As: Y 6= [] ∧ of-char(last Y) ≥ (97 :: nat)

∧ of-char(last Y) < (122 :: nat)
hence Ft: upChar Y = (butlast Y) @

[char-of (of-char(last Y) + (1 :: nat))]
by force
hence Ft ′: last (upChar Y) = char-of (of-char(last Y) + (1 :: nat))
by force
hence of-char(last (upChar Y)) mod (256 :: nat) =

(of-char(last Y) + 1) mod 256
by force
moreover
have of-char(last(upChar Y)) < (256 :: nat) ∧

of-char(last Y) + 1 < (256 :: nat)
using As Ft ′ by force
ultimately
have of-char (last Y) < (of-char (last(upChar Y)) :: nat) by force
moreover
from Ft have length Y ≤ length (upChar Y) by force
ultimately have ?thesis using ordst-def by force}

ultimately show ?thesis by force
qed

3.3 The fresh-identifier operator

fresh Xs Y changes Y as little as possible so that it becomes disjoint from
all strings in Xs.
function fresh-string :: string set ⇒ string ⇒ string
where
Up: Y ∈ Xs =⇒ finite Xs =⇒ fresh-string Xs Y = fresh-string (Xs − {Y }) (upChar
Y)
|
Fresh: Y /∈ Xs ∨ infinite Xs =⇒ fresh-string Xs Y = Y
by auto
termination

apply(relation measure (λ(Xs,Y). card Xs), simp-all)

5

by (metis card-gt-0-iff diff-Suc-less empty-iff)

lemma fresh-string-ordstNS : ordstNS Y (fresh-string Xs Y)
proof (induction Xs Y rule: fresh-string.induct[case-names Up Fresh])

case (Up Y Xs)
hence ordst Y (fresh-string (Xs − {Y }) (upChar Y))

using upChar-ordst[of Y] ordst-ordstNS-trans by force
hence ordstNS Y (fresh-string (Xs − {Y }) (upChar Y))

using ordstNS-def by auto
thus ?case

using Up.hyps by auto
next

case (Fresh Y Xs)
then show ?case

by (auto intro: ordstNS-refl)
qed

lemma fresh-string-set: finite Xs =⇒ fresh-string Xs Y /∈ Xs
proof (induction Xs Y rule: fresh-string.induct[case-names Up Fresh])

case (Up Y Xs)
show ?case
proof

assume fresh-string Xs Y ∈ Xs
then have fresh-string (Xs − {Y }) (upChar Y) ∈ Xs

using Up.hyps by force
then have fresh-string (Xs − {Y }) (upChar Y) = Y

using Up.IH ‹finite Xs› by blast
moreover have ordst Y (fresh-string (Xs − {Y }) (upChar Y))

using upChar-ordst[of Y] fresh-string-ordstNS ordst-ordstNS-trans by auto
ultimately show False

using ordst-antirefl by auto
qed

qed auto

Code generation:
lemma fresh-string-if :

fresh-string Xs Y = (
if Y ∈ Xs ∧ finite Xs then fresh-string (Xs − {Y }) (upChar Y)
else Y)

by simp

lemmas fresh-string-list[code] = fresh-string-if [where Xs = set Xs for Xs, sim-
plified]

Some tests:
value [fresh-string {} ′′Abc ′′,

fresh-string { ′′X ′′, ′′Abc ′′} ′′Abd ′′,
fresh-string { ′′X ′′, ′′Y ′′} ′′Y ′′,
fresh-string { ′′X ′′, ′′Yaa ′′, ′′Ya ′′, ′′Yaa ′′} ′′Ya ′′,

6

fresh-string { ′′X ′′, ′′Yaa ′′, ′′Yz ′′, ′′Yza ′′} ′′Yz ′′,
fresh-string { ′′X ′′, ′′Y ′′, ′′Yab ′′, ′′Y ′′} ′′Y ′′]

Here we do locale interpretation rather than class instantiation, since string
is a type synonym for char list.
interpretation fresh-string: fresh where fresh = fresh-string

by standard (use fresh-string-set in auto)

3.4 Lifting to string literals
abbreviation is-ascii str ≡ (∀ c ∈ set str . ¬digit7 c)

lemma map-ascii-of-idem:
is-ascii str =⇒ map String.ascii-of str = str
by (induction str) (auto simp: String.ascii-of-idem)

lemma is-ascii-butlast:
is-ascii str =⇒ is-ascii (butlast str)
by (auto dest: in-set-butlastD)

lemma ascii-char-of :
fixes c :: nat
assumes c < 128
shows ¬digit7 (char-of c)
using assms
by (auto simp: char-of-def bit-iff-odd)

lemmas ascii-of-char-of-idem = ascii-char-of [THEN String.ascii-of-idem]

lemma is-ascii-upChar :
is-ascii str =⇒ is-ascii (upChar str)
by (auto simp: ascii-char-of is-ascii-butlast)

lemma is-ascii-fresh-string:
is-ascii Y =⇒ is-ascii (fresh-string Xs Y)

proof (induction Xs Y rule: fresh-string.induct[case-names Up Fresh])
case (Up Y Xs)
show ?case

using Up.IH [OF is-ascii-upChar [OF ‹is-ascii Y ›]] Up.hyps
by auto

qed auto

For string literals we can properly instantiate the class.
instantiation String.literal :: fresh
begin

context
includes literal.lifting

begin

7

lift-definition fresh-literal :: String.literal set ⇒ String.literal ⇒ String.literal
is fresh-string
using is-ascii-fresh-string
by blast

instance by (standard; transfer) (use fresh-string-set in auto)

end

end

Code generation:
context

includes literal.lifting
begin

lift-definition upChar-literal :: String.literal ⇒ String.literal is upChar
using is-ascii-upChar
by blast

lemma upChar-literal-upChar [code]:
upChar-literal s = String.implode (upChar (String.explode s))
by transfer (auto simp: map-ascii-of-idem is-ascii-butlast ascii-of-char-of-idem)

lemma fresh-literal-if :
fresh xs y = (if y ∈ xs ∧ finite xs then fresh (xs − {y}) (upChar-literal y) else y)
by transfer (intro fresh-string-if)

lemmas fresh-literal-list[code] = fresh-literal-if [where xs = set xs for xs, simpli-
fied]

end

Some tests:
value [fresh {} (STR ′′Abc ′′),

fresh {STR ′′X ′′, STR ′′Abc ′′} (STR ′′Abd ′′),
fresh {STR ′′X ′′, STR ′′Y ′′} (STR ′′Y ′′),
fresh {STR ′′X ′′, STR ′′Yaa ′′, STR ′′Ya ′′, STR ′′Yaa ′′} (STR ′′Ya ′′),
fresh {STR ′′X ′′, STR ′′Yaa ′′, STR ′′Yz ′′, STR ′′Yza ′′} (STR ′′Yz ′′),
fresh {STR ′′X ′′, STR ′′Y ′′, STR ′′Yab ′′, STR ′′Y ′′} (STR ′′Y ′′)]

end

4 Fresh identifier generation for infinite types
theory Fresh-Infinite

imports Fresh

8

begin

This is a default fresh operator for infinite types for which more specific
(smarter) alternatives are not (yet) available.
definition (in infinite) fresh :: ′a set ⇒ ′a ⇒ ′a where
fresh xs x ≡ if x /∈ xs ∨ infinite xs then x else (SOME y. y /∈ xs)

sublocale infinite < fresh where fresh = fresh
apply standard

subgoal unfolding fresh-def
by (metis ex-new-if-finite local.infinite-UNIV someI-ex)
subgoal unfolding fresh-def by simp .

end

9

	The type class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fresh
	Fresh identifier generation for natural numbers
	Fresh identifier generation for strings
	A partial order on strings
	Incrementing a string
	The fresh-identifier operator
	Lifting to string literals

	Fresh identifier generation for infinite types

