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Abstract

In 1999 Alon et. al. introduced the still active research topic of ap-
proximating the frequency moments of a data stream using randomized
algorithms with minimal space usage. This includes the problem of es-
timating the cardinality of the stream elements—the zeroth frequency
moment. But, also higher-order frequency moments that provide in-
formation about the skew of the data stream. (The k-th frequency
moment of a data stream is the sum of the k-th powers of the occur-
rence counts of each element in the stream.) This entry formalizes
three randomized algorithms for the approximation of Fy, Fy and Fj
for k > 3 based on [1, 2] and verifies their expected accuracy, success
probability and space usage.
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1 Preliminary Results

theory Frequency-Moments-Preliminary-Results
imports
HOL. Transcendental
HOL— Computational-Algebra. Primes
HOL- Library. Extended- Real
HOL- Library. Multiset
HOL— Library.Sublist
Prefiz-Free-Code-Combinators. Prefiz- Free-Code- Combinators
Bertrands-Postulate. Bertrand
Ezxpander-Graphs. Expander- Graphs-Multiset- Extras
begin

This section contains various preliminary results.

lemma card-ordered-pairs:

fixes M :: (‘a :linorder) set

assumes finite M

shows 2 * card {(z,y) € M x M.z < y} = card M * (card M — 1)
(proof)

lemma ereal-mono: x < y = ereal z < ereal y
(proof)

lemma abs-ge-iff: ((z::real) < absy) = (x <y VvV z < —y)
{proof)

lemma count-list-gr-1:
(z € set xs) = (count-list xs v > 1)

{proof)

lemma count-list-append: count-list (xsQys) v = count-list s v + count-list ys v
(proof )

lemma count-list-lt-suffiz:
assumes suffiz a b
assumes z € {b! i i. i < length b — length a}
shows count-list a © < count-list b z

(proof)

lemma suffiz-drop-drop:

assumes ¢ > y

shows suffix (drop z a) (drop y a)
(proof)



lemma count-list-card: count-list xs x = card {k. k < length s A zs | k = z}
(proof)

lemma card-gr-1-iff:
assumes finite S x € S ye S z#y
shows card § > 1

{proof)

lemma count-list-ge-2-iff:
assumes y < 2z
assumes z < length zs
assumes zs ! y = xs ! z
shows count-list zs (xs ! y) > 1

(proof)

Results about multisets and sorting

lemmas disj-induct-mset = disj-induct-mset

lemma prod-mset-conv:

fixes f :: 'a = 'b::{comm-monoid-mult}

shows prod-mset (image-mset f A) = prod (Az. fx (count A x)) (set-mset A)
(proof)

There is a version sum-list-map-eq-sum-count but it doesn’t work if the
function maps into the reals.

lemma sum-list-eval:
fixes f :: 'a = 'b::{ring,semiring-1}
shows sum-list (map f zs) = (3 € set zs. of-nat (count-list zs z) * f x)

(proof)

lemma prod-list-eval:

fixes f :: 'a = 'b::{ring,semiring-1,comm-monoid-mult}

shows prod-list (map fxzs) = ([[z € set zs. (f ) (count-list zs ))
(proof)

lemma sorted-sorted-list-of-multiset: sorted (sorted-list-of-multiset M)
{proof)

lemma count-mset: count (mset xs) a = count-list xs a
{proof)

lemma swap-filter-image: filter-mset g (image-mset f A) = image-mset f (filter-mset
(gof)A)
(proof )

lemma list-eq-iff:
assumes mset s = mset ys
assumes sorted xs



assumes sorted ys
shows zs = ys

{proof)

lemma sorted-list-of-multiset-image-commute:

assumes mono f

shows sorted-list-of-multiset (image-mset f M) = map f (sorted-list-of-multiset
M)
(proof)

Results about rounding and floating point numbers

lemma round-down-ge:
z < round-down prec z + 2 powr (—prec)
(proof)

lemma truncate-down-ge:
z < truncate-down prec x + abs x x 2 powr (—prec)

(proof)

lemma truncate-down-pos:
assumes z > 0
shows = * (I — 2 powr (—prec)) < truncate-down prec x

(proof)

lemma truncate-down-eq:
assumes truncate-down r x = truncate-down r y
shows abs (z—y) < maz (abs z) (abs y) * 2 powr (—real r)

(proof)

definition rat-of-float :: float = rat where
rat-of-float f = of-int (mantissa f) *
(if exponent f > 0 then 2 ~ (nat (exponent f)) else 1 / 2 ~ (nat (—exponent
)

lemma real-of-rat-of-float: real-of-rat (rat-of-float x) = real-of-float =
(proof)

lemma log-est: log 2 (realn + 1) < n

(proof)

lemma truncate-mantissa-bound:
abs (|z * 2 powr (real v — real-of-int |log 2 |z||)]) < 2 ~(r+1) (is ?lhs < -)
(proof)

lemma truncate-float-bit-count:

bit-count (F. (float-of (truncate-down rx))) < 10 + 4 * real r + 2xlog 2 (2 +
|log 2 |x[])

(is ?lhs < %rhs)
(proof)



definition prime-above :: nat = nat
where prime-above n = (SOME z. z € {n..(2xn+2)} A prime z)

The term prime-above n returns a prime between n and 2 * n + 2. Because
of Bertrand’s postulate there always is such a value. In a refinement of the
algorithms, it may make sense to replace this with an algorithm, that finds
such a prime exactly or approximately.

The definition is intentionally inexact, to allow refinement with various al-
gorithms, without modifying the high-level mathematical correctness proof.

lemma ez-subset:
assumes dz € A. Pz
assumes A C B
shows dz € B. Pz

{proof)

lemma
shows prime-above-prime: prime (prime-above n)
and prime-above-range: prime-above n € {n..(2xn+2)}

(proof)

lemma prime-above-min: prime-above n > 2
(proof )

lemma prime-above-lower-bound: prime-above n > n
(proof)

lemma prime-above-upper-bound: prime-above n < 2xn—+2
(proof)

end

2 Frequency Moments

theory Frequency-Moments
imports
Frequency-Moments-Preliminary-Results
Finite-Fields. Finite-Fields-Mod- Ring-Code
Interpolation-Polynomials- HOL-Algebra. Interpolation- Polynomial- Cardinalities
begin

This section contains a definition of the frequency moments of a stream and
a few general results about frequency moments..
definition F where

Fkas= (> z € set zs. (rat-of-nat (count-list zs x) k))

lemma F-ge-0: F kas> 0



{proof)

lemma F-gr-0:
assumes as # [|
shows F k as > 0

(proof)

definition P, :: nat = nat = nat list = bool list option where
Pepnf={(ifp>1ANf € bounded-degree-polynomials (ring-of (mod-ring p)) n
then
([0..<n] —¢ Nb. p) (Ni € {..<n}. ring.coeff (ring-of (mod-ring p)) f i) else
None)

lemma poly-encoding:
is-encoding (Pe p n)
(proof)

lemma bounded-degree-polynomial-bit-count:
assumes p > 1
assumes z € bounded-degree-polynomials (ring-of (mod-ring p)) n
shows bit-count (P, p n x) < ereal (real n % (log 2p + 1))

(proof)

end

3 Ranks, k£ smallest element and elements

theory K-Smallest
imports
Frequency-Moments-Preliminary-Results
Interpolation-Polynomials-HOL-Algebra. Interpolation- Polynomial- Cardinalities
begin

This section contains definitions and results for the selection of the k smallest
elements, the k-th smallest element, rank of an element in an ordered set.

definition rank-of :: 'a :: linorder = 'a set = nat where rank-of x S = card {y
€S y<uz}

The function rank-of returns the rank of an element within a set.

lemma rank-mono:
assumes finite S
shows z < y = rank-of © S < rank-of y S
(proof )

lemma rank-mono-2:
assumes finite S
shows S’ C § = rank-of S’ < rank-of x S
(proof)



lemma rank-mono-commute:

assumes finite S

assumes S C T

assumes strict-mono-on T f

assumes ¢ € T

shows rank-of x S = rank-of (fz) (f ©5)
(proof)

definition least where least kS = {y € S. rank-of y S < k}

The function K-Smallest.least returns the k smallest elements of a finite set.

lemma rank-strict-mono:
assumes finite S
shows strict-mono-on S (Az. rank-of = S)

(proof)

lemma rank-of-image:
assumes finite S
shows (Az. rank-of © S) ¢S = {0..<card S}

(proof)

lemma card-least:
assumes finite S
shows card (least k S) = min k (card S)

(proof)

lemma least-subset: least kS C S
(proof)

lemma least-mono-commute:
assumes finite S
assumes strict-mono-on S f
shows f ‘least k S = least k (f © 5)

(proof)

lemma least-eq-iff:
assumes finite B
assumes A C B
assumes A\z. x € B= rank-oft B< k= z€ A
shows least k A = least k B

(proof)

lemma least-insert:
assumes finite S
shows least k (insert « (least k S)) = least k (insert x S) (is ?lhs = ?rhs)

(proof)



definition count-le where count-le © M = size {#y €# M. y < z#}
definition count-less where count-less x M = size {#y €# M. y < z#}

definition nth-mset :: nat = (‘e :: linorder) multiset = 'a where
nth-mset k M = sorted-list-of-multiset M ! k

lemma nth-mset-bound-left:
assumes k < size M
assumes count-less t M < k
shows z < nth-mset k M

(proof)

lemma nth-mset-bound-left-excl:
assumes k < size M
assumes count-le x M < k
shows = < nth-mset k M

(proof)

lemma nth-mset-bound-right:
assumes k < size M
assumes count-le x M > k
shows nth-mset k M < zx

(proof)

lemma nth-mset-commute-mono:

assumes mono f

assumes k < size M

shows [ (nth-mset k M) = nth-mset k (image-mset f M)
(proof)

lemma nth-mset-mazx:

assumes size A > k

assumes Az. z < nth-mset k A = count A © < 1

shows nth-mset k A = Max (least (k+1) (set-mset A)) and card (least (k+1)
(set-mset A)) = k+1
{proof)

end

4 Landau Symbols

theory Landau-FExt
imports
HOL- Library. Landau-Symbols
HOL. Topological-Spaces
begin

This section contains results about Landau Symbols in addition to "HOL-
Library.Landau".



lemma landau-sum:
assumes eventually (Az. g1 z
assumes eventually (Az. g2 z
assumes fI € O[F|(g1)
assumes f2 € O[F|(g2)
shows (Az. f1 z + f2 z) € O[F](Az. g1 x + ¢2 z)
(proof)

(0::real)) F
0) F

AVAIAY]

lemma landau-sum-1:
assumes eventually (Az. g1 © > (0::real)) F
assumes eventually (Az. g2 x > 0) F
assumes f € O[F|(g1)
shows f € O[F](A\z. g1 z + g2 x)

(proof)

lemma landau-sum-2:
assumes eventually (Az. g1 © > (0::real)) F
assumes eventually (Az. g2 x > 0) F
assumes f € O[F|(¢2)
shows f € O[F](\z. g1 z + g2 x)

(proof)

lemma landau-in-3:
assumes eventually (Az. (1::real) < fz) F
assumes f € O[F|(g)
shows (Az. In (fz)) € O[F](g)

(proof)

lemma landau-In-2:
assumes a > (1::real)
assumes eventually (Az. 1 < fz) F
assumes eventually (Az. a < g z) F
assumes f € O[F|(g)
shows (Az. In (fz)) € O[F](A\z. In (g z))

(proof)

lemma landau-real-nat:
fixes f :: 'a = int
assumes (Az. of-int (f z)) € O[F](g)
shows (Az. real (nat (f z))) € O[F](g)
(proof)

lemma landau-ceil:

assumes (A-. 1) € O[F'|(g)

assumes f € O[F'|(g)

shows (A\z. real-of-int [f z]) € O[F'|(g)
(proof)

lemma landau-rat-ceil:



assumes (A-. 1) € O[F'(g)
assumes (Az. real-of-rat (f x)) € O[F'](g)
shows (Az. real-of-int [f z]) € O[F'|(g)

(proof)

lemma landau-nat-cedl:
assumes (A-. 1) € O[F'|(g)
assumes f € O[F'|(g)
shows (Az. real (nat [fz])) € O[F'(g)

(proof)

lemma cventually-prodl "
assumes B # bot
assumes (Vg zin A. P x)
shows (Vg xin A Xgp B. P (fst z))

(proof)

lemma eventually-prod2":
assumes A # bot
assumes (Vp zin B. P z)
shows (Vg zin A xgp B. P (snd x))

(proof)

lemma sequentially-inf: ¥ g x in sequentially. n < real x
(proof )

instantiation rat :: linorder-topology
begin

definition open-rat :: rat set = bool
where open-rat = generate-topology (range (Aa. {..< a}) U range (Aa. {a <..}))

instance

(proof )
end

lemma inv-at-right-0-inf:
YV xin at-right 0. ¢ < 1 / real-of-rat x
(proof)

end

5 Probability Spaces

Some additional results about probability spaces in addition to "HOL-Probability".

theory Probability-Ext
imports
HOL~— Probability. Stream-Space
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Concentration-Inequalities. Bienaymes-Identity
Universal-Hash-Families. Carter- Wegman-Hash- Family
Frequency-Moments-Preliminary-Results

begin

context prob-space
begin

lemma pmf-mono:
assumes M = measure-pmf p
assumes A\z. 2 € P = z € set-pmfp = z € Q
shows prob P < prob Q

(proof)

lemma pmf-add:
assumes M = measure-pmf p
assumes Az.x € P =z € set-pmfp=—=2€ QV z €R
shows prob P < prob ) + prob R

(proof)

lemma pmf-add-2:

assumes M = measure-pmf p

assumes prob {w. P w} < ri

assumes prob {w. Q w} < r2

shows prob {w. Pw VvV Q w} < 1l + r2 (is ?lhs < 2rhs)
(proof)

end

end

6 Frequency Moment 0

theory Frequency-Moment-0
imports
Frequency-Moments-Preliminary-Results
Median-Method. Median
K-Smallest
Universal-Hash-Families. Carter- Wegman-Hash- Family
Frequency-Moments
Landau-Fxt
Probability-Ext
Universal-Hash-Families. Universal-Hash-Families-More- Product-PMF
begin

This section contains a formalization of a new algorithm for the zero-th
frequency moment inspired by ideas described in [2]. It is a KMV-type (k-
minimum value) algorithm with a rounding method and matches the space
complexity of the best algorithm described in [2].

11



In addition to the Isabelle proof here, there is also an informal hand-written
proof in Appendix A.

type-synonym f0-state = nat X nat x nat X nat x (nat = nat list) X (nat =
float set)

definition hash where hash p = ring.hash (ring-of (mod-ring p))

fun f0-init :: rat = rat = nat = f0-state pmf where
fO-init § e n =
do {

let s = nat [—18 * In (real-of-rat €)];

let t = nat [80 / (real-of-rat §)?7;

let p = prime-above (mazx n 19);

let v = nat (4 * [log 2 (1 / real-of-rat 0)] + 23);

h « prod-pmf {..<s} (A-. pmf-of-set (bounded-degree-polynomials (ring-of

(mod-ring p)) 2));

return-pmf (s, t, p, v, b, (A- € {0..<s}. {}))

}

fun f0-update :: nat = f0-state = f0-state pmf where
fO-update x (s, t, p, v, h, sketch) =
return-pmf (s, t, p, v, hy Xi € {..<s}.
least t (insert (float-of (truncate-down r (hash p z (h 7)))) (sketch i)))

fun f0-result :: fO-state = rat pmf where
fO-result (s, t, p, v, h, sketch) = return-pmf (median s (Ai € {..<s}.
(if card (sketch i) < t then of-nat (card (sketch 1)) else
rat-of-nat tx rat-of-nat p / rat-of-float (Mazx (sketch i)))
)

fun f0-space-usage :: (nat x rat x rat) = real where
f0-space-usage (n, €, 0) = (

let s = nat [—18 * In (real-of-rat )] in
let 7 = nat (4 * [log 2 (1 / real-of-rat §)] + 23) in
let t = nat [80 / (real-of-rat §)? ] in
6 +
2 x log 2
2 x log 2

real s + 1) +

real t + 1) +

2 % log 2 (real n + 21) +

2xlog 2 (real T + 1) +

real s % (5 + 2 % log 2 (21 + real n) +

real t x (13 + 4 x v+ 2 x log 2 (log 2 (real n + 13)))))

Py

definition encode-f0-state :: f0-state = bool list option where
encode-f0-state =
e Me (As.
e Xe (
e Xe (Ap.
(

==2==

exe
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([0.<5] =¢ (Pep 2)) %
([0..<s] =¢ (Se Fe))))))

lemma inj-on encode-f0-state (dom encode-f0-state)

(proof)

context
fixes € § :: rat
fixes n :: nat
fixes as :: nat list
fixes result
assumes e-range: € € {0<..<1}
assumes J-range: 6 € {0<..<1}
assumes as-range: set as C {..<n}
defines result = fold (Aa state. state >= fO-update a) as (f0-init § € n) >=
fO-result
begin

private definition ¢ where ¢t = nat [80 / (real-of-rat §)?]

private lemma t-g¢-0: t > 0 (proof) definition s where s = nat [—(18 * In
(real-of-rat €))]

private lemma s-gt-0: s > 0 (proof) definition p where p = prime-above (maz
n 19)

private lemma p-prime: Factorial-Ring.prime p
(proof) lemma p-ge-18: p > 18
(proof) lemma p-gt-0: p > 0 {proof) lemma p-gt-1: p > 1 {proof) lemma n-le-p:
n<p
(proof) lemma p-le-n: p < 2xn + 40
(proof ) lemma as-lt-p: \z. z € set as = x < p
(proof) lemma as-subset-p: set as C {..<p}
(proof) definition r where r = nat (4 * [log 2 (1 / real-of-rat 8)] + 23)

private lemma r-bound: 4 x log 2 (1 / real-of-rat §) + 23 <r
(proof) lemma r-ge-23: r > 23
(proof ) lemma two-pow-r-le-1: 0 < 1 — 2 powr — real r

(proof)

interpretation carter-wegman-hash-family ring-of (mod-ring p) 2
rewrites ring.hash (ring-of (mod-ring p)) = Frequency-Moment-0.hash p
(proof) definition t¢r-hash where tr-hash x w = truncate-down r (hash x w)

private definition sketch-rv where
sketch-rv w = least t ((Az. float-of (tr-hash x w)) * set as)

private definition estimate
where estimate S = (if card S < t then of-nat (card S) else of-nat t * of-nat p
/ rat-of-float (Maz S))

13
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private definition sketch-rv’ where sketch-rv’ w = least t ((Az. tr-hash z w)
set as)

private definition estimate’ where estimate’ S = (if card S < t then real (card
S) else real t x real p / Maz S)

private definition Qy where Q¢ = prod-pmf {..<s} (A-. pmf-of-set space)

private lemma f0-alg-sketch:

defines sketch = fold (\a state. state >= f0-update a) as (f0-init 6 € n)

shows sketch = map-pmf (Az. (s,t,p,r, z, i € {..<s}. sketch-rv (z i))) Qo

(proof) lemma card-nat-in-ball:

fixes = :: nat

fixes q :: real

assumes ¢q > 0

defines A = {k. abs (real x — real k) < q A k # x}

shows real (card A) < 2 * q and finite A
(proof) lemma prob-degree-lt-1:

prob {w. degree w < 1} < 1 /real p
(proof) lemma collision-prob:

assumes ¢ > 1

shows prob {w. Iz € set as. Jy € set as. © # y A tr-hash x w < ¢ A tr-hash
w = tr-hash y w} <

(5/2) * (real (card (set as)))? * c® x 2 powr —(real v) / (real p)*> + 1/real p

(is prob {w. 7l w} < 2r1 + 9r2)
{(proof) lemma of-bool-square: (of-bool x)* = ((of-bool x)::real)

(proof) definition @ where Q y w = card {z € set as. int (hash z w) < y}

private definition m where m = card (set as)

private lemma
assumes a > 0
assumes a < int p
shows exp-Q: expectation (Aw. real (Q a w)) = real m * (of-int a) / p
and var-Q: variance (Aw. real (Q a w)) < real m * (of-int a) / p
(proof) lemma t-bound: t < 81 / (real-of-rat §)?
(proof) lemma t-r-bound:
18 % 40 * (real t)? x 2 powr (—real r) < 1
(proof) lemma m-eq-F-0: real m = of-rat (F 0 as)
(proof) lemma estimate’-bounds:
prob {w. of-rat & * real-of-rat (F 0 as) < |estimate’ (sketch-rv’ w) — of-rat (F 0
as)|} < 1/3
(proof) lemma median-bounds:
P(w in measure-pmf Qq. |median s (Mi. estimate (sketch-rv (w i))) — F 0 as|] <
§ % F0as) > 1 — real-of-rat €
(proof)

lemma f0-alg-correct’:

P(w in measure-pmf result. |w — F 0 as|] < 6 x F 0 as) > 1 — of-rat €
(proof) lemma f-subset:

14



assumes g
shows (\z.

{proof)

lemma f0-ezact-space-usage':
defines Q2 = fold (\a state. state >= f0-update a) as (f0-init § € n)
shows AE w in Q. bit-count (encode-f0-state w) < f0-space-usage (n, €, 0)
(proof)

end

Main results of this section:

theorem f0-alg-correct:
assumes ¢ € {0<..<1}
assumes 0 € {0<..<1}
assumes set as C {..<n}
defines Q = fold (Aa state. state >= fO-update a) as (f0-init 6 € n) >= fO-result
shows P(w in measure-pmf Q. |w — F 0 as| < § x F 0as) > 1 — of-rat €

{proof)

theorem f0-exact-space-usage:
assumes ¢ € {0<..<1}
assumes § € {0<..<1}
assumes set as C {..<n}
defines Q) = fold (Aa state. state >= f0-update a) as (f0-init § € n)
shows AE w in Q. bit-count (encode-f0-state w) < f0-space-usage (n, €, §)
(proof )

theorem f0-asymptotic-space-complexity:

f0-space-usage € Olat-top X at-right 0 X p at-right 0](A(n, €, §). In (1 / of-rat
g) *

(In (real n) + 1 / (of-rat 8)? * (In (In (real n)) + In (1 / of-rat §))))

(is - € O[?F](?rhs))
(proof)

end

7 Frequency Moment 2

theory Frequency-Moment-2
imports

Universal-Hash-Families. Carter- Wegman-Hash- Family
Equivalence-Relation- Enumeration. Equivalence- Relation- Enumeration
Landau-Ext
Median-Method. Median
Probability-Ext
Universal-Hash-Families. Universal-Hash-Families-More- Product-PMF
Frequency-Moments

begin

15



hide-const (open) Discrete-Topology.discrete
hide-const (open) Isolated.discrete

This section contains a formalization of the algorithm for the second fre-
quency moment. It is based on the algorithm described in [1, §2.2]. The
only difference is that the algorithm is adapted to work with prime field of
odd order, which greatly reduces the implementation complexity.

fun f2-hash where
f2-hash p h k = (if even (ring.hash (ring-of (mod-ring p)) k h) then int p — 1
else — intp — 1)

type-synonym f2-state = nat X nat x nat X (nat X nat = nat list) X (nat x
nat = int)

fun f2-init :: rat = rat = nat = f2-state pmf where
f2-init § e n =
do {
let sy = nat [6 / §%];
let s5 = nat [—(18 * In (real-of-rat €))];
let p = prime-above (mazx n 3);
h + prod-pmf ({..<s1}x{..<s2}) (A-. pmf-of-set (bounded-degree-polynomials
(ring-of (mod-ring p)) 4));
return-pmf (s1, s2, p, b, (A- € {..<s1} x {..<s2}. (0 :: int)))

}

fun f2-update :: nat = f2-state = f2-state pmf where
f2-update x (s1, s2, p, h, sketch) =
return-pmf (s1, s2, p, by Ai € {..<s1} x {..<s2}. f2-hash p (h @) z + sketch i)

fun f2-result :: f2-state = rat pmf where
f2-result (s1, s2, p, h, sketch) =
return-pmf (median s (Mg € {..<s2}.
(>-i1e{..<s1} . (rat-of-int (sketch (i1, i2)))?) / (((rat-of-nat p)®>—1) *
rat-of-nat s1)))

fun f2-space-usage :: (nat x nat x rat x rat) = real where
f2-space-usage (n, m, , 6) = (

let s = nat [6 / 6% ] in
let so = nat [—(18 * In (real-of-rat €))] in
3+
2 x log 2
2 x log 2
2 x log 2
81 * S2 *

n) +1)))

s1+ 1)+

s+ 1)+

9+ 2 % real n) +

5+ 4xlog 2 (8 + 2 x real n) + 2 x log 2 (real m * (18 + 4 = real

Yy

definition encode-f2-state :: f2-state = bool list option where
encode-f2-state =
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N, X, ()\81.
Ne X e ()\52.
N x. (Ap.

€

(List.product [0..<s1] [0..<823] =¢ Pe P 4) Xe
(List.product [0..<s1] [0..<S2] = I¢))))
lemma inj-on encode-f2-state (dom encode-f2-state)
(proof)
context

fixes € § :: rat

fixes n :: nat

fixes as :: nat list

fixes result

assumes e-range: € € {0<..<1}

assumes J0-range: § > 0

assumes as-range: set as C {..<n}

defines result = fold (M\a state. state >= f2-update a) as (f2-init § € n) >=
f2-result
begin

private definition s; where s; = nat [6 / §2]

lemma s1-gt-0: s;1 > 0
(proof) definition s, where sy = nat [—(18% In (real-of-rat €))]

lemma s2-gt-0: so > 0
(proof) definition p where p = prime-above (maz n &)

lemma p-prime: Factorial-Ring.prime p

(proof)

lemma p-ge-3: p > 3
(proof )

lemma p-gt-0: p > 0 (proof)
lemma p-gt-1: p > 1 (proof)
lemma p-ge-n: p > n (proof)

interpretation carter-wegman-hash-family ring-of (mod-ring p) 4
(proof)

definition sketch where sketch = fold (\a state. state >= f2-update a) as (f2-init
den)

private definition Q whereQ) = prod-pmf ({.<s1} x {.<s2}) (A-. pmf-of-set
space)

private definition ), where(), = measure-pmf Q
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private definition sketch-rv where sketch-rv w = of-int (sum-list (map (f2-hash
pw) as)) 2

private definition mean-rv where mean-rv w = (Mia. (3. 41 = 0..<s1. sketch-rv
(w (i1, 2))) / (((of-nat p) — 1) * of-nat 51))

private definition result-rv where result-rv w = median so (Mia€{..<s2}. mean-rv
w iz)

lemma mean-rv-alg-sketch:

sketch = Q >= (Aw. return-pmf (s1, s2, p, w, A\i € {.<s1} x {..<s2}. sum-list
(map (f2-hash p (w 7)) as)))
(proof )

lemma distr: result = map-pmf result-rv €
(proof) lemma f2-hash-pow-exp:
assumes k < p
shows
expectation (Aw. real-of-int (f2-hash p w k) “m) =
((realp — 1) "mx* (realp+ 1) + (— realp — 1) “m * (realp — 1)) / (2 %
real p)
(proof)

lemma

shows var-sketch-rv:variance sketch-rv < 2x(real-of-rat (F 2 as)"2) x ((real
p)*—1)* (is 7A4)

and exp-sketch-rv:expectation sketch-rv = real-of-rat (F 2 as) * ((real p)?—1) (is
?B)
(proof)

lemma space-omega-1 [simp]: Sigma-Algebra.space 0, = UNIV
(proof)

interpretation 2: prob-space Q)

{proof)

lemma integrable-):
fixes f :: ((nat x nat) = (nat list)) = real
shows integrable Q, f

{proof)

lemma sketch-rv-exp:

assumes 15 < So

assumes i; € {0..<s1}

shows Q.expectation (Aw. sketch-rv (w (i1, i2))) = real-of-rat (F 2 as) * ((real
p? - 1)
(proof)

lemma sketch-rv-var:
assumes iy < So
assumes i1 € {0..<s1}
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shows Q.variance (A\w. sketch-rv (w (i1, 42))) < 2 * (real-of-rat (F 2 as))? *
((real p)? — 1)2
(proof)

lemma mean-rv-exp:
assumes 7 < Sy
shows .expectation (Aw. mean-rv w i) = real-of-rat (F 2 as)

(proof)

lemma mean-rv-var:
assumes 7 < S
shows Q.variance (\w. mean-rv w i) < (real-of-rat (6 * F 2 as))? / 3

(proof)

lemma mean-rv-bounds:

assumes 7 < S

shows Q.prob {w. real-of-rat § x real-of-rat (F 2 as) < |mean-rv w i — real-of-rat
(F2as)} < 1/3
{proof)

lemma f2-alg-correct”:
P(w in measure-pmf result. |w — F 2 as| < 6 x F 2 as) > 1—of-rat €
(proof)

lemma f2-exact-space-usage’:

AE w in sketch . bit-count (encode-f2-state w) < f2-space-usage (n, length as, ¢,
9)
(proof)

end

Main results of this section:

theorem f2-alg-correct:
assumes ¢ € {0<..<1}
assumes 6 > 0
assumes set as C {..<n}
defines Q2 = fold (\a state. state >= f2-update a) as (f2-init 0 € n) >= f2-result
shows P(w in measure-pmf Q. |w — F 2as| < § x F 2as) > 1—of-rat €

(proof)

theorem f2-exact-space-usage:

assumes ¢ € {0<..<1}

assumes 6 > 0

assumes set as C {..<n}

defines M = fold (\a state. state >= f2-update a) as (f2-init § € n)

shows AFE w in M. bit-count (encode-f2-state w) < f2-space-usage (n, length as,
g, 0)

(proof)
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theorem f2-asymptotic-space-complexity:
f2-space-usage € Olat-top X g at-top X g at-right 0 X g at-right 0](A (n, m, €, ).
(In (1 / of-rat €)) / (of-rat 6)% x (In (real n) + In (real m)))
(is - € O[?F](?rhs))

(proof )

end

8 Frequency Moment £k

theory Frequency-Moment-k
imports
Frequency-Moments
Landau-FExt
Lp.Lp
Median-Method. Median
Probability-FExt
Universal-Hash-Families. Universal-Hash-Families-More-Product-PMF
begin

This section contains a formalization of the algorithm for the k-th frequency
moment. It is based on the algorithm described in [1, §2.1].

type-synonym fk-state = nat X nat X nat x nat x (nat x nat = (nat x nat))

fun fk-init :: nat = rat = rat = nat = fk-state pmf where
fh-initk d e n =
do {
let s1 = nat [3 x real k x n powr (1—1/real k) / (real-of-rat §)?];
let s5 = nat [—18 * In (real-of-rat €)];
return-pmf (s1, s2, k, 0, (A- € {0..<s1} x {0..<s2}. (0,0)))
}

fun fk-update :: nat = fk-state = fk-state pmf where
fk-update a (s1, s2, k, m, r) =
do {
coins + prod-pmf ({0..<s1} x {0..<s2}) (A-. bernoulli-pmf (1 /(real m+1)));
return-pmf (s1, s2, k, m+1, Ai € {0..<s1} x {0..<s2}.
if coins i then
(a,0)
else (
let (z,l) = riin (z, | + of-bool (z=a))
)
)
}

fun fk-result :: fk-state = rat pmf where
fk-result (s1, s, k, m, r) =
return-pmf (median s (A2 € {0..<s2}.
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(> i1€{0..<s1}. rat-of-nat (let t = snd (r (i1, i2)) + 1 in m * (t7h — (¢t —
I)A)k))) / (rat-of-nat s1))

lemma bernoulli-pmf-1: bernoulli-pmf 1 = return-pmf True
(proof)

fun fk-space-usage :: (nat x nat x nat X rat x rat) = real where
fk-space-usage (k, n, m, €, §) = (
let s1 = nat [3*real kx (real n) powr (1—1/ real k) / (real-of-rat 6)* | in
let so = nat [—(18 * In (real-of-rat €))] in
4+
2xlog?2 (s1+1)+
2 xlog 2 (s2a + 1) +
2 xlog 2 (real k + 1) +
2 x log 2 (realm + 1) +
s1% 83 % (2 + 2 xlog 2 (real n+1) + 2 * log 2 (real m+1)))

definition encode-fk-state :: fk-state = bool list option where
encode-fk-state =
X e ()\81.
e ()\82.
N, X,
N, X,
(List.product [0..<s1] [0..<82] =¢ (Ne Xe N¢))))

lemma inj-on encode-fk-state (dom encode-fk-state)

(proof)

This is an intermediate non-parallel form fk-update used only in the correct-
ness proof.

fun fk-update-2 :: 'a = (nat x 'a x nat) = (nat x ’‘a X nat) pmf where
fk-update-2 a (m,x,l) =
do {
coin < bernoulli-pmf (1/(real m+1));
return-pmf (m-+1,if coin then (a,0) else (z, | + of-bool (z=a)))

definition sketch where sketch as i = (as ! i, count-list (drop (i+1) as) (as ! 7))

lemma fk-update-2-distr:
assumes as # [|
shows fold (Az s. s >= fk-update-2 x) as (return-pmf (0,0,0)) =
pmf-of-set {..<length as} >= (k. return-pmf (length as, sketch as k))
(proof)

context

fixes € 9 :: rat
fixes n k :: nat
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fixes as

assumes k-ge-1: k > 1

assumes c-range: € € {0<..<1}

assumes J0-range: § > 0

assumes as-range: set as C {..<n}
begin

definition s; where s; = nat [3 * real k * (real n) powr (1—1/real k) / (real-of-rat
0)%]

definition s; where sy = nat [—(18 * In (real-of-rat €))]

definition My = {(u, v). v < count-list as u}
definition Qy = measure-pmf (pmf-of-set My)

definition My = prod-pmf ({0..<s1} x {0..<s2}) (A-. pmf-of-set M)
definition Qy = measure-pmf Mo

interpretation prob-space 0y
(proof)

interpretation s:prob-space ()
(proof)

lemma split-space: (3 a€Mi. f (snd a)) = (O u € set as. (> v €{0..<count-list
as u}. fv))
(proof)

lemma
assumes as # ||
shows fin-space: finite M1
and non-empty-space: My # {}
and card-space: card M1 = length as

(proof)

lemma
assumes as # [|
shows integrable-1: integrable Qq (f :: - = real) and
integrable-2: integrable Qo (g :: - = real)
(proof)

lemma sketch-distr:

assumes as # [|

shows pmf-of-set {..<length as} >= (Ak. return-pmf (sketch as k)) = pmf-of-set
M,
(proof)

lemma fk-update-distr:
fold (A\z s. s >= fk-update x) as (fk-init k § € n) =
prod-pmf ({0..<s1} x {0..<s3}) (A-. fold (A\z s. s >= fk-update-2 x) as (return-pmf

22



(0,0,0)))
>= (Az. return-pmf (s1,52,k, length as, Mi€{0..<s1}x{0..<s2}. snd (z 1)))

(proof)

lemma power-diff-sum:

fixes a b :: ‘a :: {comm-ring-1,power}

assumes k > 0

shows a &k — bk = (a=b) * O i=0.<k.a "ixb " (k—1—1) (is %hs =
2rhs)
{proof)

lemma power-diff-est:

assumes k > 0

assumes (a :: real) > b

assumes b > ()

shows a k —b"k < (a—b) x k x a (k—1)
(proof)

Specialization of the Hoelder inquality for sums.

lemma Holder-inequality-sum:

assumes p > (Ozreal) ¢ > 01/p+ 1/q =1

assumes finite A

shows | z€A. fz x ga| < (O x€A. |f x| powr p) powr (1/p) * > z€A. |g x|
powr q) powr (1/q)
(proof)

lemma real-count-list-pos:
assumes r € set as
shows real (count-list as x) > 0

(proof)

lemma fk-estimate:

assumes as # []

shows length as * of-rat (F (2x%k—1) as) < n powr (1 — 1 / real k) * (of-rat (F
k as)) 2

(is ?lhs < %rhs)
(proof)

definition result
where result a = of-nat (length as) x of-nat (Suc (snd a) ~k — snd a " k)

lemma result-exp-1:
assumes as # [|
shows expectation result = real-of-rat (F k as)

(proof)

lemma result-var-1:
assumes as # [|
shows variance result < (of-rat (F k as))? x k * n powr (1 — 1 / real k)
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(proof)

theorem fk-alg-sketch:
assumes as # [|
shows fold (\a state. state >= fk-update a) as (fk-init k 6 € n) =
map-pmf (Az. (s1,82,k,length as, x)) Mo (is ?lhs = ?rhs)
(proof)

definition mean-rv
where mean-rv w is = (3. i1 = 0..<s1. result (w (i1, i2))) / of-nat s

definition median-rv
where median-rv w = median so (Aiz. mean-rv w is)

lemma fk-alg-correct’:
defines M = fold (\a state. state >= fk-update a) as (fk-init k § € n) >= fk-result
shows P(w in measure-pmf M. |w — F kas| < § * Fkas) > 1 — of-rat €
(proof)

lemma fk-exact-space-usage’”:
defines M = fold (\a state. state >= fk-update a) as (fk-init k 0 € n)
shows AE w in M. bit-count (encode-fk-state w) < fk-space-usage (k, n, length
as, €, 9)
(is AF win M. (- < 2rhs))
(proof)

end

Main results of this section:

theorem fk-alg-correct:
assumes k > I
assumes ¢ € {0<..<1}
assumes 6 > (
assumes set as C {..<n}
defines M = fold (\a state. state >= fk-update a) as (fk-init k § € n) >= fk-result
shows P(w in measure-pmf M. |w — F kas| < § * Fkas) > 1 — of-rat €
(proof)

theorem fk-exact-space-usage:

assumes k > 1

assumes ¢ € {0<..<1}

assumes § > 0

assumes set as C {..<n}

defines M = fold (\a state. state >= fk-update a) as (fk-init k 0 € n)

shows AE w in M. bit-count (encode-fk-state w) < fk-space-usage (k, n, length
as, €, 9)

(proof)

theorem fk-asymptotic-space-complexity:
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fk-space-usage €

Olat-top xp at-top xXp at-top Xp at-right (0::rat) xp at-right (0::rat)](X (k, n,
m, €, ).

real k x real n powr (1—1/ real k) / (of-rat §)* * (In (1 / of-rat €)) * (In (real
n) + In (real m)))

(is - € O[?F](%rhs))
(proof)

end

9 Tutorial on the use of Pseudorandom-Objects

theory Tutorial-Pseudorandom-Objects
imports

Universal-Hash-Families. Pseudorandom-Objects- Hash-Families
Ezpander-Graphs. Pseudorandom-Objects- Expander- Walks
Equivalence- Relation- Enumeration. Equivalence- Relation- Enumeration
Median-Method. Median
Concentration-Inequalities. Bienaymes-Identity
Frequency-Moments. Frequency-Moments

begin

This section is a tutorial for the use of pseudorandom objects. Starting from
the approximation algorithm for the second frequency moment by Alon et
al. [1], we will improve the solution until we achieve a space complexity of
O(Inn+e~21In(671)Inm), where n denotes the range of the stream elements,
m denotes the length of the stream, ¢ denotes the desired accuracy and §
denotes the desired failure probability.

The construction relies on a combination of pseudorandom object, in par-
ticular an expander walk and two chained hash families.

hide-const (open) topological-space-class.discrete

hide-const (open) Abstract-Rewriting.restrict

hide-fact (open) Abstract-Rewriting.restrict-def

hide-fact (open) Henstock-Kurzweil-Integration.integral-cong
hide-fact (open) Henstock-Kurzweil-Integration.integral-mult-right
hide-fact (open) Henstock-Kurzweil-Integration.integral-diff

The following lemmas show a one-side and two-sided Chernoff-bound for
{0, 1}-valued independent identically distributed random variables. This to
show the similarity with expander walks, for which similar bounds can be es-
tablished: expander-chernoff-bound-one-sided and expander-chernoff-bound.

lemma classic-chernoff-bound-one-sided:
fixes [ :: nat
assumes AFE z in measure-pmf p. fx € {0,1::real}
assumes ([z. fz Op) <pl>0~>0
shows measure (prod-pmf {0..<I} (A-. p)) {w. O i<l f (w))/l—p>~} < exp
(— 2 xreal l x v72)
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(is 7L < ?R)
(proof)

lemma classic-chernoff-bound:
assumes AFE z in measure-pmf p. fx € {0,1::real} 1 > (0::inat) v > 0
defines p = ([ z. fz dp)
shows measure (prod-pmf {0..<l} (A-. p)) {w. |OSi<l. f (w i))/l—p|>y} <
2xexp (—2xreal lxy"2)
(is 7L < ?R)
(proof )

Definition of the second frequency moment of a stream.

definition F2 :: 'a list = real where
F2xs = (3. x € set zs. (of-nat (count-list xs ) "2))

lemma prime-power-ls: is-prime-power (pro-size (L [— 1, 1]))
(proof)

lemma prime-power-h2: is-prime-power (pro-size (H 4 n (L [— 1, 1::real])))
(proof)

abbreviation ¥ where ¥ = pmf-of-set {—1,1::real}

lemma f2-exp:

assumes finite (set-pmf p)

assumes AI. I C {0..<n} = card I < 4 = map-pmf (Az. (M€l. z 7)) p =
prod-pmf I (A-. V)

assumes set zs C {0..<n:nat}

shows ([ h. 3"z < as. hz)"2 dp) = F2 as (is ?L = 7R)
(proof)

lemma f2-exp-sq:

assumes finite (set-pmf p)

assumes AI. I C {0..<n} = card I < 4 = map-pmf (Az. (Ni€l. z i) p =
prod-pmf I (A-. ¥)

assumes set zs C {0..<n::nat}

shows ([ h. (Y z¢wxs. hz)"2)72 dp) < 3 x F2as"2 (is ?L < ?R)
(proof)

lemma f2-var:

assumes finite (set-pmf p)

assumes A\I. I C {0..<n} = card I < 4 = map-pmf (Az. (Ni€l. 1)) p =
prod-pmf I (A-. )

assumes set zs C {0..<n:nat}

shows measure-pmf.variance p (Ah. (3 zxs. h )" 2) < 2% F2 2572

(is 7L < ?R)

(proof)

lemma
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assumes s € set-pmf (Hp 4 n (L [—1,1]))
assumes set s C {0..<n}
shows f2-exp-hp: ([ h. (3_x < xs. h x) "2 dsample-pro s) = F2 xs (is ?T1)
and f2-exp-sq-hp: ([ h. (3 z < xs. h 2)72) 72 dsample-pro s) < 3% F2 xs™2
(is 7T2)
and f2-var-hp: measure-pmf.variance s (Ah. (3. x + zs. hz)"2) < 2% F2 xs"2
(is 773)
{proof)

lemmas f2-exp-h = f2-exp-hp[OF hash-pro-in-hash-pro-pmf[OF prime-power-Is|]
lemmas f2-var-h = f2-var-hp|OF hash-pro-in-hash-pro-pmf[OF prime-power-Is]|

lemma F2-definite:
assumes s # ||
shows F2 zs > 0

(proof)

The following algorithm uses a completely random function, accordingly it
requires a lot of space: O(n + Inm).

fun example-1 :: nat = nat list = real pmf
where example-1 n xs =
do {
h < prod-pmf {0..<n} (A-. pmf-of-set {—1,1::real});
return-pmf (> x < xs. h x) " 2)

}

lemma example-1-correct:
assumes set zs C {0..<n}
shows
measure-pmf .expectation (example-1 n xs) id = F2 zs (is ?L1 = ?R1)
measure-pmf .variance (example-1 n xs) id < 2 x F2 xs72 (is L2 < ?R2)

(proof)

This version replaces a the use of completely random function with a pseu-
dorandom object, it requires a lot less space: O(Inn + Inm).

fun example-2 :: nat = nat list = real pmf
where example-2 n xs =
do {
h <+ sample-pro (H 4 n (L [-1,1]));
return-pmf (3. < xs. h x) " 2)

lemma example-2-correct:
assumes set s C {0..<n}
shows
measure-pmf . expectation (example-2 n xs) id = F2 zs (is L1 = ?R1)
measure-pmf .variance (example-2 n xs) id < 2 % F2 xs72 (is L2 < ?R2)

{(proof)
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The following version replaces the deterministic construction of the pseudo-
random object with a randomized one. This algorithm is much faster, but
the correctness proof is more difficult.

fun example-3 :: nat = nat list = real pmf
where example-3 n xs =
do {
h < sample-pro =<< Hp 4 n (L [—1,1]);
return-pmf (3 x < xs. h x)"2)

lemma
assumes set s C {0..<n}
shows
measure-pmf .expectation (example-3 n xs) id = F2 zs (is L1 = ?R1)
measure-pmf .variance (example-3 n xs) id < 2 x F2 xs72 (is L2 < ?R2)

(proof)

context
fixes € § :: real
assumes e-gt-0: € > 0
assumes J-range: § € {0<..<1}
begin

By using the mean of many independent parallel estimates the following
algorithm achieves a relative accuracy of ¢, with probability %. It requires
O(e72(Inn + Inm)) bits of space.

fun example-4 :: nat = nat list = real pmf
where example-4 n xs =
do {
let s = nat [8 / e72];
h « prod-pmf {0..<s} (A-. sample-pro (H 4 n (L [—1,1])));
return-pmf (3.7 < s. O x « zs. hjx) " 2)/s)
¥

lemma example-4-correct-aux:

assumes set zs C {0..<n}

defines s = nat [8 / €72]

defines R = (Ah :: nat = nat = real. (3 j<s. (O zwxs. hjx) 2)/real s)

assumes fin: finite (set-pmf p)

assumes indep: prob-space.k-wise-indep-vars (measure-pmf p) 2 (A-. discrete)
Nz zi) {.<s}

assumes comp: N\i. i < s = map-pmf (Az. x i) p = sample-pro (H 4 n (L
—1,1]))

shows measure p {h. |[R h — F2 as| > e * F2uas} < 1/4 (is ?L < ?R)
(proof)

lemma example-4-correct:
assumes set s C {0..<n}
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shows P(w in example-4 n xs. |w — F2 as| > e x F2xs) < 1/4 (is ?L < ?R)
(proof)

Instead of independent samples, we can choose the seeds using a second
pair-wise independent pseudorandom object. This algorithm requires only
O(Inn + e~ 2Inm) bits of space.

fun example-5 :: nat = nat list = real pmf
where example-5 n xs =
do {
let s = nat [8 / £72];
h «+ sample-pro (H 2 s (H 4 n (L [—1,1])));
return-pmf (O < s. Oz < zs. hjz)72)/s)
}

lemma ezample-5-correct-aux:
assumes set zs C {0..<n}
defines s = nat [8 / £72]
defines R = (Ah :: nat = nat = real. (3. j<s. (O x<wxs. hjx) 2)/real s)
shows measure (sample-pro (H 2s (H 4 n (L [-1,1])))) {h. |Rh — F2xs| > ¢
x F2uas} < 1/4
(proof)

lemma example-5-correct:
assumes set zs C {0..<n}
shows P(w in example-5 n xs. |w — F2 azs| > e x F2xs) < 1/4 (is ?L < ?R)

(proof)

The following algorithm improves on the previous one, by achieving a success
probability of §. This works by taking the median of O(In(§71)) parallel
independent samples. It requires O(In(6~!)(Inn + e~21Inm)) bits of space.

fun example-6 :: nat = nat list = real pmf
where ezample-6 n s =
do {
let s =nat [8 [ e72]; let t = nat [8 = In (1/0)];
h « prod-pmf {0..<t} (A-. sample-pro (H 2 s (H 4 n (L [-1,1]))));
return-pmf (median t (Ai. (O_7 < s. Oz« zs. hijz)"2)/ s)))
}

lemma example-6-correct:

assumes set s C {0..<n}

shows P(w in example-6 n zs. |w — F2 xs| > € x F2 xs) < ¢ (is 2L < ?R)
(proof)

The following algorithm uses an expander random walk, instead of indepen-
dent samples. It requires only O(Inn + In(671)e~2Inm) bits of space.

fun example-7 :: nat = nat list = real pmf
where example-7 n xs =
do {
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let s = nat [8 / e72]; let t = nat [32 = In (1/6)];
h < sample-pro (€t (1/8) (H 2s (H 4 n (L [-1,1]))));
}retum—pmf (median t (M. (Ooj <s. Oz zs. hijx)2)/ s)))

lemma example-7-correct:

assumes set zs C {0..<n}

shows P(w in example-7n xs. |w — F2 zs| > ¢ x F2 xs) < § (is 7L < ?R)
(proof)

end

end

A Informal proof of correctness for the F{ algo-
rithm

This appendix contains a detailed informal proof for the new Rounding-
KMYV algorithm that approximates Fj introduced in Section 6 for reference.
It follows the same reasoning as the formalized proof.

Because of the amplification result about medians (see for example [1, §2.1])
it is enough to show that each of the estimates the median is taken from is
within the desired interval with success probability % To verify the latter,
let a1,...,a;, be the stream elements, where we assume that the elements
are a subset of {0,...,n—1} and 0 < 0 < 1 be the desired relative accuracy.
Let p be the smallest prime such that p > max(n, 19) and let i be a random
polynomial over GF(p) with degree strictly less than 2. The algoritm also
introduces the internal parameters ¢, r defined by:

t:= 805 r:=4logy[671] +23
The estimate the algorithm obtains is R, defined using:
tp (ming ()" if |H| > ¢
|H | othewise,

H = {|h(a)] |a € A} f%:{

where A := {ay,...,an}, ming(H) denotes the t-th smallest element of H
and |z], denotes the largest binary floating point number smaller or equal
to « with a mantissa that requires at most r bits to represent.! With these
definitions, it is possible to state the main theorem as:

2
P(|R — Fo| < é|Fol) = 3.

which is shown separately in the following two subsections for the cases
Fy >t and Fy < t.

!This rounding operation is called truncate-down in Isabelle, it is defined in
HOL-Library.Float.
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A.1 Case Fy >t

Let us introduce:
4 -1
H* :={h(a)|a € A}# R* :=tp <mint (H*))

These definitions are modified versions of the definitions for H and R: The
set H* is a multiset, this means that each element also has a multiplicity,
counting the number of distinct elements of A being mapped by h to the
same value. Note that by definition: |H*| = |A|. Similarly the operation
minzéﬁ obtains the ¢-th element of the multiset H (taking multiplicities into
account). Note also that there is no rounding operation |-, in the definition
of H*. The key reason for the introduction of these alternative versions of
H, R is that it is easier to show probabilistic bounds on the distances | R* — Fy|
and |R* — R| as opposed to |R — Fp| directly. In particular the plan is to
show:

P (|R* — Fy| > §'Fp)

IN

and (1)

IN

(2)

O~ Ol N

1)
P <’R* - F()‘ < (5/F0 A ’R — R*‘ > 4F0>

where ¢ := %5. L.e. the probability that R* has not the relative accuracy
of %(5 is less that % and the probability that assuming R* has the relative
accuracy of %5 but that R deviates by more that %5F0 is at most %. Hence,
the probability that neither of these events happen is at least % but in that

case:
0 36
|R—Fo| < [R— R +|R" — Fo| < [ Fo+ - Fo = 0Fp. (3)

Thus we only need to show Equation 1 and 2. For the verification of Equa-
tion 1 let
Q(u) = [{h(a) <u|aec A}

and observe that minffL(H*) < wuif Q(u) >t and min?(H*) >wvif Qv) <
t — 1. To see why this is true note that, if at least ¢ elements of A are
mapped by h below a certain value, then the t-smallest element must also
be within them, and thus also be below that value. And that the opposite
direction of this conclusion is also true. Note that this relies on the fact
that H* is a multiset and that multiplicities are being taken into account,
when computing the ¢-th smallest element. Alternatively, it is also possible
to write Q(u) = Y c4 Lin(a)y<u}’s i-€., Q is a sum of pairwise independent

u u U2

{0,1}-valued random variables, with expectation  and variance ;' — R

2The notation 14 is shorthand for the indicator function of A, i.e., la(z)=1ifze A
and 0 otherwise.
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3 Using lineariy of expectation and Bienaymé’s identity, it follows that
Var Q(u) < EQ(u) = |Alup~! = Fyup~! for u € {0,...,p}.

For v = L(l_%%J it is possible to conclude:

t t Fov Fyv
_1<4 _ - -9 <
t—1< i=0) 3 =) 1< 31/ EQ(v VarQ(v)

and thus using Tchebyshev’s inequality:

P(RRP<(1-0)R)="P <rankf(H*) ~ (1—“(;’)170>

< Prankf (H") > v) = P(Q) <t —1)  (4)

< P Q) < BQ() - 3yVarQ(v)) < 5.

Similarly for u = {(H%%—‘ it is possible to conclude:

t t Fou Fou
> 141> — >E
t_(1+5,)+3 (1+6’)+ + . +3 ) Q(u) + 3y/VarQ(v)

and thus using Tchebyshev’s inequality:

P(R*>(14+0)FR) =P (rankfé(H*) < (1‘52;/)1:‘0)

< P(rankf (H") < u) = P(Q(u) > 1) (5)
< P (Q(u) > EQ(u) + 3/ VarQ(u) <7

Note that Equation 4 and 5 confirm Equation 1. To verfiy Equation 2, note
that
min,(H) = |min}’ (H*)], (6)

if there are no collisions, induced by the application of |h(-)], on the ele-
ments of A. Even more carefully, note that the equation would remain true,
as long as there are no collision within the smallest ¢ elements of H*. Be-
cause Equation 2 needs to be shown only in the case where R* > (1 —¢') Fp,
i.e., when mimzéﬁ (H*) < v, it is enough to bound the probability of a collision
in the range [0;v]. Moreover Equation 6 implies [min;(H) — min} (H*)| <
max(mlnt (H*),miny(H))2~" from which it is possible to derive |R* — R| <
5F0. Another important fact is that h is injective with probability 1 — 1

3A consequence of h being chosen uniformly from a 2-independent hash family.
4The verification of this inequality is a lengthy but straightforward calculcation using
the definition of §’ and t.
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this is because h is chosen uniformly from the polynomials of degree less
than 2. If it is a degree 1 polynomial it is a linear function on GF(p) and
thus injective. Because p > 18 the probability that h is not injective can be
bounded by 1/18. With these in mind, we can conclude:

0
P (‘R* —F()’ < 8Fy A ‘R— R*’ > 4F0)

< P (R* > (1 — ') Fo A min* (H*) # ming(H) A h inj.) + P(=h inj.)
< P(Ga#be Alh(a)]r = [h(0)]r < vAR() £ D) + 1
< ot X P(ha) = [hO)), < v AR(a) £ A(B)
aF#beA
< % + 3 P(Jh(a) = h(B)] < 027" Ah(a) < o(1+277) A h(a) # h(b))
a#beA
< % S 3 P(h(a) = a)P(h(b) = V)
a#beA ' b e{0,...,p—1}Aa’ AV
la’ =V |<v27"Ad' <v(14277)
< 1 5F3022,r 1

18 2p? =9
which shows that Equation 2 is true.

A.2 Case Fy<t

Note that in this case |H| < Fy < t and thus R = |H]|, hence the goal is
to show that: P(|H| # Fy) < 1. The latter can only happen, if there is a
collision induced by the application of |A(-)[,. As before h is not injective
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L
18>

P(|R—Fg| >(5F0) §P(R75F0)
1
~ + P(R# FyAh inj.)

with probability at most hence:

<
- 18
1
< g+t PBa#beAlha), = [hb)], Ahinj)
1
< —+ 3 P(A@] = [AO)] A hla) £ b))
aF#beA
1 T
< gt D P(h(a) = h(b)] < p27" Ah(a) # (D)
a#beA
]- / /
< =+ XY P =d)P(() =)
a#bcA o' b e{0,..,p—1}
a’#Y Na' =V |<p2~T
- 18 0 ~ 18 -9
Which concludes the proof. O
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