
Free Groups

Joachim Breitner

March 17, 2025

Abstract

Free Groups are, in a sense, the most generic kind of group. They
are defined over a set of generators with no additional relations in
between them. They play an important role in the definition of group
presentations and in other fields.

This theory provides the definition of Free Group as the set of fully
canceled words in the generators. The universal property is proven, as
well as some isomorphisms results about Free Groups.

Contents
1 Cancelation of words of generators and their inverses 1

1.1 Auxiliary results . 1
1.1.1 Auxiliary results about relations 1

1.2 Definition of the canceling relation 2
1.2.1 Simple results about canceling 2

1.3 Definition of the cancels-to relation 2
1.3.1 Existence of the normal form 4
1.3.2 Some properties of cancelation 8

1.4 Definition of normalization 10
1.5 Normalization preserves generators 12
1.6 Normalization and renaming generators 13

2 Generators 15
2.1 The subgroup generated by a set 16
2.2 Generators and homomorphisms 17
2.3 Sets of generators . 17
2.4 Product of a list of group elements 19
2.5 Isomorphisms . 20

3 The Free Group 21
3.1 Inversion . 21
3.2 The definition . 24
3.3 The universal property . 25

1

4 The Unit Group 30

5 The group C2 31

6 Isomorphisms of Free Groups 32
6.1 The Free Group over the empty set 32
6.2 The Free Group over one generator 32
6.3 Free Groups over isomorphic sets of generators 36
6.4 Bases of isomorphic free groups 39

7 The Ping Pong lemma 43

1 Cancelation of words of generators and their in-
verses

theory Cancelation
imports

HOL−Proofs−Lambda.Commutation
begin

This theory defines cancelation via relations. The one-step relation can-
cels-to-1 a b describes that b is obtained from a by removing exactly one
pair of generators, while cancels-to is the reflexive transitive hull of that
relation. Due to confluence, this relation has a normal form, allowing for
the definition of normalize.

1.1 Auxiliary results
Some lemmas that would be useful in a more general setting are collected
beforehand.

1.1.1 Auxiliary results about relations

These were helpfully provided by Andreas Lochbihler.
theorem lconfluent-confluent:
[[wfP (R^−−1);

∧
a b c. R a b =⇒ R a c =⇒ ∃ d. R^∗∗ b d ∧ R^∗∗ c d]] =⇒

confluent R
by(auto simp add: diamond-def commute-def square-def intro: newman)

lemma confluentD:
[[confluent R; R^∗∗ a b; R^∗∗ a c]] =⇒ ∃ d. R^∗∗ b d ∧ R^∗∗ c d

by(auto simp add: commute-def diamond-def square-def)

lemma tranclp-DomainP: R^++ a b =⇒ Domainp R a
by(auto elim: converse-tranclpE)

2

lemma confluent-unique-normal-form:
[[confluent R; R^∗∗ a b; R^∗∗ a c; ¬ Domainp R b; ¬ Domainp R c]] =⇒ b = c

by(fastforce dest!: confluentD[of R a b c] dest: tranclp-DomainP rtranclpD[where
a=b] rtranclpD[where a=c])

1.2 Definition of the canceling relation
type-synonym ′a g-i = (bool × ′a)
type-synonym ′a word-g-i = ′a g-i list

These type aliases encode the notion of a “generator or its inverse” (′a
g-i) and the notion of a “word in generators and their inverses” (′a word-g-i),
which form the building blocks of Free Groups.
definition canceling :: ′a g-i ⇒ ′a g-i ⇒ bool
where canceling a b = ((snd a = snd b) ∧ (fst a 6= fst b))

1.2.1 Simple results about canceling

A generators cancels with its inverse, either way. The relation is symmetic.
lemma cancel-cancel: [[canceling a b; canceling b c]] =⇒ a = c
by (auto intro: prod-eqI simp add:canceling-def)

lemma cancel-sym: canceling a b =⇒ canceling b a
by (simp add:canceling-def)

lemma cancel-sym-neg: ¬canceling a b =⇒ ¬canceling b a
by (rule classical, simp add:canceling-def)

1.3 Definition of the cancels-to relation
First, we define the function that removes the ith and (i+1)st element from
a word of generators, together with basic properties.
definition cancel-at :: nat ⇒ ′a word-g-i ⇒ ′a word-g-i
where cancel-at i l = take i l @ drop (2+i) l

lemma cancel-at-length[simp]:
1+i < length l =⇒ length (cancel-at i l) = length l − 2

by(auto simp add: cancel-at-def)

lemma cancel-at-nth1 [simp]:
[[n < i; 1+i < length l]] =⇒ (cancel-at i l) ! n = l ! n

by(auto simp add: cancel-at-def nth-append)

lemma cancel-at-nth2 [simp]:
assumes n ≥ i and n < length l − 2
shows (cancel-at i l) ! n = l ! (n + 2)

proof−
from ‹n ≥ i› and ‹n < length l − 2 ›

3

have i = min (length l) i
by auto

with ‹n ≥ i› and ‹n < length l − 2 ›
show (cancel-at i l) ! n = l ! (n + 2)

by(auto simp add: cancel-at-def nth-append nth-via-drop)
qed

Then we can define the relation cancels-to-1-at i a b which specifies that
b can be obtained by a by canceling the ith and (i+1)st position.

Based on that, we existentially quantify over the position i to obtain
the relation cancels-to-1, of which cancels-to is the reflexive and transitive
closure.

A word is canceled if it can not be canceled any futher.
definition cancels-to-1-at :: nat ⇒ ′a word-g-i ⇒ ′a word-g-i ⇒ bool
where cancels-to-1-at i l1 l2 = (0≤i ∧ (1+i) < length l1

∧ canceling (l1 ! i) (l1 ! (1+i))
∧ (l2 = cancel-at i l1))

definition cancels-to-1 :: ′a word-g-i ⇒ ′a word-g-i ⇒ bool
where cancels-to-1 l1 l2 = (∃ i. cancels-to-1-at i l1 l2)

definition cancels-to :: ′a word-g-i ⇒ ′a word-g-i ⇒ bool
where cancels-to = cancels-to-1^∗∗

lemma cancels-to-trans [trans]:
[[cancels-to a b; cancels-to b c]] =⇒ cancels-to a c

by (auto simp add:cancels-to-def)

definition canceled :: ′a word-g-i ⇒ bool
where canceled l = (¬ Domainp cancels-to-1 l)

lemma cancels-to-1-unfold:
assumes cancels-to-1 x y
obtains xs1 x1 x2 xs2
where x = xs1 @ x1 # x2 # xs2

and y = xs1 @ xs2
and canceling x1 x2

proof−
assume a: (

∧
xs1 x1 x2 xs2 . [[x = xs1 @ x1 # x2 # xs2 ; y = xs1 @ xs2 ; canceling

x1 x2]] =⇒ thesis)
from ‹cancels-to-1 x y›
obtain i where cancels-to-1-at i x y

unfolding cancels-to-1-def by auto
hence canceling (x ! i) (x ! Suc i)

and y = (take i x) @ (drop (Suc (Suc i)) x)
and x = (take i x) @ x ! i # x ! Suc i # (drop (Suc (Suc i)) x)

unfolding cancel-at-def and cancels-to-1-at-def by (auto simp add: Cons-nth-drop-Suc)
with a show thesis by blast

4

qed

lemma cancels-to-1-fold:
canceling x1 x2 =⇒ cancels-to-1 (xs1 @ x1 # x2 # xs2) (xs1 @ xs2)

unfolding cancels-to-1-def and cancels-to-1-at-def and cancel-at-def
by (rule-tac x=length xs1 in exI , auto simp add:nth-append)

1.3.1 Existence of the normal form

One of two steps to show that we have a normal form is the following lemma,
guaranteeing that by canceling, we always end up at a fully canceled word.
lemma canceling-terminates: wfP (cancels-to-1^−−1)
proof−

have wf (measure length) by auto
moreover
have {(x, y). cancels-to-1 y x} ⊆ measure length

by (auto simp add: cancels-to-1-def cancel-at-def cancels-to-1-at-def)
ultimately
have wf {(x, y). cancels-to-1 y x}

by(rule wf-subset)
thus ?thesis by (simp add:wfp-def)

qed

The next two lemmas prepare for the proof of confluence. It does not
matter in which order we cancel, we can obtain the same result.
lemma canceling-neighbor :

assumes cancels-to-1-at i l a and cancels-to-1-at (Suc i) l b
shows a = b

proof−
from ‹cancels-to-1-at i l a›

have canceling (l ! i) (l ! Suc i) and i < length l
by (auto simp add: cancels-to-1-at-def)

from ‹cancels-to-1-at (Suc i) l b›
have canceling (l ! Suc i) (l ! Suc (Suc i)) and Suc (Suc i) < length l
by (auto simp add: cancels-to-1-at-def)

from ‹canceling (l ! i) (l ! Suc i)› and ‹canceling (l ! Suc i) (l ! Suc (Suc i))›
have l ! i = l ! Suc (Suc i) by (rule cancel-cancel)

from ‹cancels-to-1-at (Suc i) l b›
have b = take (Suc i) l @ drop (Suc (Suc (Suc i))) l
by (simp add: cancels-to-1-at-def cancel-at-def)

also from ‹i < length l›
have . . . = take i l @ [l ! i] @ drop (Suc (Suc (Suc i))) l

by(auto simp add: take-Suc-conv-app-nth)
also from ‹l ! i = l ! Suc (Suc i)›
have . . . = take i l @ [l ! Suc (Suc i)] @ drop (Suc (Suc (Suc i))) l

5

by simp
also from ‹Suc (Suc i) < length l›
have . . . = take i l @ drop (Suc (Suc i)) l

by (simp add: Cons-nth-drop-Suc)
also from ‹cancels-to-1-at i l a› have . . . = a

by (simp add: cancels-to-1-at-def cancel-at-def)
finally show a = b by(rule sym)

qed

lemma canceling-indep:
assumes cancels-to-1-at i l a and cancels-to-1-at j l b and j > Suc i
obtains c where cancels-to-1-at (j − 2) a c and cancels-to-1-at i b c

proof(atomize-elim)
from ‹cancels-to-1-at i l a›

have Suc i < length l
and canceling (l ! i) (l ! Suc i)
and a = cancel-at i l
and length a = length l − 2
and min (length l) i = i

by (auto simp add:cancels-to-1-at-def)
from ‹cancels-to-1-at j l b›

have Suc j < length l
and canceling (l ! j) (l ! Suc j)
and b = cancel-at j l
and length b = length l − 2

by (auto simp add:cancels-to-1-at-def)

let ?c = cancel-at (j − 2) a
from ‹j > Suc i›
have Suc (Suc (j − 2)) = j

and Suc (Suc (Suc j − 2)) = Suc j
by auto

with ‹min (length l) i = i› and ‹j > Suc i› and ‹Suc j < length l›
have (l ! j) = (cancel-at i l ! (j − 2))

and (l ! (Suc j)) = (cancel-at i l ! Suc (j − 2))
by(auto simp add:cancel-at-def simp add:nth-append)

with ‹cancels-to-1-at i l a›
and ‹cancels-to-1-at j l b›

have canceling (a ! (j − 2)) (a ! Suc (j − 2))
by(auto simp add:cancels-to-1-at-def)

with ‹j > Suc i› and ‹Suc j < length l› and ‹length a = length l − 2 ›
have cancels-to-1-at (j − 2) a ?c by (auto simp add: cancels-to-1-at-def)

from ‹length b = length l − 2 › and ‹j > Suc i› and ‹Suc j < length l›
have Suc i < length b by auto

moreover from ‹b = cancel-at j l› and ‹j > Suc i› and ‹Suc i < length l›

6

have (b ! i) = (l ! i) and (b ! Suc i) = (l ! Suc i)
by (auto simp add:cancel-at-def nth-append)

with ‹canceling (l ! i) (l ! Suc i)›
have canceling (b ! i) (b ! Suc i) by simp

moreover from ‹j > Suc i› and ‹Suc j < length l›
have min i j = i

and min (j − 2) i = i
and min (length l) j = j
and min (length l) i = i
and Suc (Suc (j − 2)) = j
by auto

with ‹a = cancel-at i l› and ‹b = cancel-at j l› and ‹Suc (Suc (j − 2)) = j›
have cancel-at (j − 2) a = cancel-at i b

by (auto simp add:cancel-at-def take-drop)

ultimately have cancels-to-1-at i b (cancel-at (j − 2) a)
by (auto simp add:cancels-to-1-at-def)

with ‹cancels-to-1-at (j − 2) a ?c›
show ∃ c. cancels-to-1-at (j − 2) a c ∧ cancels-to-1-at i b c by blast

qed

This is the confluence lemma
lemma confluent-cancels-to-1 : confluent cancels-to-1
proof(rule lconfluent-confluent)

show wfP cancels-to-1−1−1 by (rule canceling-terminates)
next

fix a b c
assume cancels-to-1 a b
then obtain i where cancels-to-1-at i a b

by(simp add: cancels-to-1-def)(erule exE)
assume cancels-to-1 a c
then obtain j where cancels-to-1-at j a c

by(simp add: cancels-to-1-def)(erule exE)

show ∃ d. cancels-to-1 ∗∗ b d ∧ cancels-to-1 ∗∗ c d
proof (cases i=j)

assume i=j
from ‹cancels-to-1-at i a b›

have b = cancel-at i a by (simp add:cancels-to-1-at-def)
moreover from ‹i=j›

have . . . = cancel-at j a by (clarify)
moreover from ‹cancels-to-1-at j a c›

have . . . = c by (simp add:cancels-to-1-at-def)
ultimately have b = c by (simp)
hence cancels-to-1 ∗∗ b b

and cancels-to-1 ∗∗ c b by auto
thus ∃ d. cancels-to-1 ∗∗ b d ∧ cancels-to-1 ∗∗ c d by blast

7

next
assume i 6= j
show ?thesis
proof (cases j = Suc i)

assume j = Suc i
with ‹cancels-to-1-at i a b› and ‹cancels-to-1-at j a c›
have b = c by (auto elim: canceling-neighbor)

hence cancels-to-1 ∗∗ b b
and cancels-to-1 ∗∗ c b by auto

thus ∃ d. cancels-to-1 ∗∗ b d ∧ cancels-to-1 ∗∗ c d by blast
next

assume j 6= Suc i
show ?thesis
proof (cases i = Suc j)

assume i = Suc j
with ‹cancels-to-1-at i a b› and ‹cancels-to-1-at j a c›
have c = b by (auto elim: canceling-neighbor)

hence cancels-to-1 ∗∗ b b
and cancels-to-1 ∗∗ c b by auto

thus ∃ d. cancels-to-1 ∗∗ b d ∧ cancels-to-1 ∗∗ c d by blast
next

assume i 6= Suc j
show ?thesis
proof (cases i < j)

assume i < j
with ‹j 6= Suc i› have Suc i < j by auto

with ‹cancels-to-1-at i a b› and ‹cancels-to-1-at j a c›
obtain d where cancels-to-1-at (j − 2) b d and cancels-to-1-at i c d

by(erule canceling-indep)
hence cancels-to-1 b d and cancels-to-1 c d

by (auto simp add:cancels-to-1-def)
thus ∃ d. cancels-to-1 ∗∗ b d ∧ cancels-to-1 ∗∗ c d by (auto)

next
assume ¬ i < j
with ‹j 6= Suc i› and ‹i 6= j› and ‹i 6= Suc j› have Suc j < i by auto
with ‹cancels-to-1-at i a b› and ‹cancels-to-1-at j a c›
obtain d where cancels-to-1-at (i − 2) c d and cancels-to-1-at j b d

by −(erule canceling-indep)
hence cancels-to-1 b d and cancels-to-1 c d

by (auto simp add:cancels-to-1-def)
thus ∃ d. cancels-to-1 ∗∗ b d ∧ cancels-to-1 ∗∗ c d by (auto)

qed
qed

qed
qed

qed

And finally, we show that there exists a unique normal form for each
word.

8

lemma norm-form-uniq:
assumes cancels-to a b

and cancels-to a c
and canceled b
and canceled c

shows b = c
proof−

have confluent cancels-to-1 by (rule confluent-cancels-to-1)
moreover
from ‹cancels-to a b› have cancels-to-1^∗∗ a b by (simp add: cancels-to-def)
moreover
from ‹cancels-to a c› have cancels-to-1^∗∗ a c by (simp add: cancels-to-def)
moreover
from ‹canceled b› have ¬ Domainp cancels-to-1 b by (simp add: canceled-def)
moreover
from ‹canceled c› have ¬ Domainp cancels-to-1 c by (simp add: canceled-def)
ultimately
show b = c

by (rule confluent-unique-normal-form)
qed

1.3.2 Some properties of cancelation

Distributivity rules of cancelation and append.
lemma cancel-to-1-append:

assumes cancels-to-1 a b
shows cancels-to-1 (l@a@l ′) (l@b@l ′)

proof−
from ‹cancels-to-1 a b› obtain i where cancels-to-1-at i a b

by(simp add: cancels-to-1-def)(erule exE)
hence cancels-to-1-at (length l + i) (l@a@l ′) (l@b@l ′)

by (auto simp add:cancels-to-1-at-def nth-append cancel-at-def)
thus cancels-to-1 (l@a@l ′) (l@b@l ′)

by (auto simp add: cancels-to-1-def)
qed

lemma cancel-to-append:
assumes cancels-to a b
shows cancels-to (l@a@l ′) (l@b@l ′)

using assms
unfolding cancels-to-def
proof(induct)

case base show ?case by (simp add:cancels-to-def)
next

case (step b c)
from ‹cancels-to-1 b c›
have cancels-to-1 (l @ b @ l ′) (l @ c @ l ′) by (rule cancel-to-1-append)
with ‹cancels-to-1^∗∗ (l @ a @ l ′) (l @ b @ l ′)› show ?case

by (auto simp add:cancels-to-def)

9

qed

lemma cancels-to-append2 :
assumes cancels-to a a ′

and cancels-to b b ′

shows cancels-to (a@b) (a ′@b ′)
using ‹cancels-to a a ′›
unfolding cancels-to-def
proof(induct)

case base
from ‹cancels-to b b ′› have cancels-to (a@b@[]) (a@b ′@[])

by (rule cancel-to-append)
thus ?case unfolding cancels-to-def by simp

next
case (step ba c)
from ‹cancels-to-1 ba c› have cancels-to-1 ([]@ba@b ′) ([]@c@b ′)

by(rule cancel-to-1-append)
with ‹cancels-to-1^∗∗ (a @ b) (ba @ b ′)›
show ?case unfolding cancels-to-def by simp

qed

The empty list is canceled, a one letter word is canceled and a word is
trivially cancled from itself.
lemma empty-canceled[simp]: canceled []
by(auto simp add: canceled-def cancels-to-1-def cancels-to-1-at-def)

lemma singleton-canceled[simp]: canceled [a]
by(auto simp add: canceled-def cancels-to-1-def cancels-to-1-at-def)

lemma cons-canceled:
assumes canceled (a#x)
shows canceled x

proof(rule ccontr)
assume ¬ canceled x
hence Domainp cancels-to-1 x by (simp add:canceled-def)
then obtain x ′ where cancels-to-1 x x ′ by auto
then obtain xs1 x1 x2 xs2

where x: x = xs1 @ x1 # x2 # xs2
and canceling x1 x2 by (rule cancels-to-1-unfold)

hence cancels-to-1 ((a#xs1) @ x1 # x2 # xs2) ((a#xs1) @ xs2)
by (auto intro:cancels-to-1-fold simp del:append-Cons)

with x
have cancels-to-1 (a#x) (a#xs1 @ xs2)

by simp
hence ¬ canceled (a#x) by (auto simp add:canceled-def)
thus False using ‹canceled (a#x)› by contradiction

qed

lemma cancels-to-self [simp]: cancels-to l l

10

by (simp add:cancels-to-def)

1.4 Definition of normalization
Using the THE construct, we can define the normalization function normal-
ize as the unique fully cancled word that the argument cancels to.
definition normalize :: ′a word-g-i ⇒ ′a word-g-i
where normalize l = (THE l ′. cancels-to l l ′ ∧ canceled l ′)

Some obvious properties of the normalize function, and other useful lem-
mas.
lemma

shows normalized-canceled[simp]: canceled (normalize l)
and normalized-cancels-to[simp]: cancels-to l (normalize l)

proof−
let ?Q = {l ′. cancels-to-1^∗∗ l l ′}
have l ∈ ?Q by (auto) hence ∃ x. x ∈ ?Q by (rule exI)

have wfP cancels-to-1^−−1
by (rule canceling-terminates)

hence ∀Q. (∃ x. x ∈ Q) −→ (∃ z∈Q. ∀ y. cancels-to-1 z y −→ y /∈ Q)
by (simp add:wfp-eq-minimal)

hence (∃ x. x ∈ ?Q) −→ (∃ z∈?Q. ∀ y. cancels-to-1 z y −→ y /∈ ?Q)
by (erule-tac x=?Q in allE)

then obtain l ′ where l ′ ∈ ?Q and minimal:
∧

y. cancels-to-1 l ′ y =⇒ y /∈ ?Q
by auto

from ‹l ′ ∈ ?Q› have cancels-to l l ′ by (auto simp add: cancels-to-def)

have canceled l ′
proof(rule ccontr)

assume ¬ canceled l ′ hence Domainp cancels-to-1 l ′ by (simp add: can-
celed-def)

then obtain y where cancels-to-1 l ′ y by auto
with ‹cancels-to l l ′› have cancels-to l y by (auto simp add: cancels-to-def)
from ‹cancels-to-1 l ′ y› have y /∈ ?Q by(rule minimal)
hence ¬ cancels-to-1^∗∗ l y by auto
hence ¬ cancels-to l y by (simp add: cancels-to-def)
with ‹cancels-to l y› show False by contradiction

qed

from ‹cancels-to l l ′› and ‹canceled l ′›
have cancels-to l l ′ ∧ canceled l ′ by simp
hence cancels-to l (normalize l) ∧ canceled (normalize l)

unfolding normalize-def
proof (rule theI)

fix l ′a
assume cancels-to l l ′a ∧ canceled l ′a
thus l ′a = l ′ using ‹cancels-to l l ′ ∧ canceled l ′› by (auto elim:norm-form-uniq)

11

qed
thus canceled (normalize l) and cancels-to l (normalize l) by auto

qed

lemma normalize-discover :
assumes canceled l ′

and cancels-to l l ′
shows normalize l = l ′

proof−
from ‹canceled l ′› and ‹cancels-to l l ′›
have cancels-to l l ′ ∧ canceled l ′ by auto
thus ?thesis unfolding normalize-def by (auto elim:norm-form-uniq)

qed

Words, related by cancelation, have the same normal form.
lemma normalize-canceled[simp]:

assumes cancels-to l l ′
shows normalize l = normalize l ′

proof(rule normalize-discover)
show canceled (normalize l ′) by (rule normalized-canceled)

next
have cancels-to l ′ (normalize l ′) by (rule normalized-cancels-to)
with ‹cancels-to l l ′›
show cancels-to l (normalize l ′) by (rule cancels-to-trans)

qed

Normalization is idempotent.
lemma normalize-idemp[simp]:

assumes canceled l
shows normalize l = l

using assms
by(rule normalize-discover)(rule cancels-to-self)

This lemma lifts the distributivity results from above to the normalize
function.
lemma normalize-append-cancel-to:

assumes cancels-to l1 l1 ′

and cancels-to l2 l2 ′

shows normalize (l1 @ l2) = normalize (l1 ′ @ l2 ′)
proof(rule normalize-discover)

show canceled (normalize (l1 ′ @ l2 ′)) by (rule normalized-canceled)
next

from ‹cancels-to l1 l1 ′› and ‹cancels-to l2 l2 ′›
have cancels-to (l1 @ l2) (l1 ′ @ l2 ′) by (rule cancels-to-append2)
also
have cancels-to (l1 ′ @ l2 ′) (normalize (l1 ′ @ l2 ′)) by (rule normalized-cancels-to)
finally
show cancels-to (l1 @ l2) (normalize (l1 ′ @ l2 ′)).

qed

12

1.5 Normalization preserves generators
Somewhat obvious, but still required to formalize Free Groups, is the fact
that canceling a word of generators of a specific set (and their inverses)
results in a word in generators from that set.
lemma cancels-to-1-preserves-generators:

assumes cancels-to-1 l l ′
and l ∈ lists (UNIV × gens)

shows l ′ ∈ lists (UNIV × gens)
proof−

from assms obtain i where l ′ = cancel-at i l
unfolding cancels-to-1-def and cancels-to-1-at-def by auto

hence l ′ = take i l @ drop (2 + i) l unfolding cancel-at-def .
hence set l ′ = set (take i l @ drop (2 + i) l) by simp
moreover
have . . . = set (take i l @ drop (2 + i) l) by auto
moreover
have . . . ⊆ set (take i l) ∪ set (drop (2 + i) l) by auto
moreover
have . . . ⊆ set l by (auto dest: in-set-takeD in-set-dropD)
ultimately
have set l ′ ⊆ set l by simp
thus ?thesis using assms(2) by auto

qed

lemma cancels-to-preserves-generators:
assumes cancels-to l l ′

and l ∈ lists (UNIV × gens)
shows l ′ ∈ lists (UNIV × gens)

using assms unfolding cancels-to-def by (induct, auto dest:cancels-to-1-preserves-generators)

lemma normalize-preserves-generators:
assumes l ∈ lists (UNIV × gens)

shows normalize l ∈ lists (UNIV × gens)
proof−

have cancels-to l (normalize l) by simp
thus ?thesis using assms by(rule cancels-to-preserves-generators)

qed

Two simplification lemmas about lists.
lemma empty-in-lists[simp]:
[] ∈ lists A by auto

lemma lists-empty[simp]: lists {} = {[]}
by auto

13

1.6 Normalization and renaming generators
Renaming the generators, i.e. mapping them through an injective function,
commutes with normalization. Similarly, replacing generators by their in-
verses and vica-versa commutes with normalization. Both operations are
similar enough to be handled at once here.
lemma rename-gens-cancel-at: cancel-at i (map f l) = map f (cancel-at i l)
unfolding cancel-at-def by (auto simp add:take-map drop-map)

lemma rename-gens-cancels-to-1 :
assumes inj f

and cancels-to-1 l l ′
shows cancels-to-1 (map (map-prod f g) l) (map (map-prod f g) l ′)

proof−
from ‹cancels-to-1 l l ′›
obtain ls1 l1 l2 ls2

where l = ls1 @ l1 # l2 # ls2
and l ′ = ls1 @ ls2
and canceling l1 l2

by (rule cancels-to-1-unfold)

from ‹canceling l1 l2 ›
have fst l1 6= fst l2 and snd l1 = snd l2

unfolding canceling-def by auto
from ‹fst l1 6= fst l2 › and ‹inj f ›
have f (fst l1) 6= f (fst l2) by(auto dest!:inj-on-contraD)
hence fst (map-prod f g l1) 6= fst (map-prod f g l2) by auto
moreover
from ‹snd l1 = snd l2 ›
have snd (map-prod f g l1) = snd (map-prod f g l2) by auto
ultimately
have canceling (map-prod f g (l1)) (map-prod f g (l2))

unfolding canceling-def by auto
hence cancels-to-1 (map (map-prod f g) ls1 @ map-prod f g l1 # map-prod f g

l2 # map (map-prod f g) ls2) (map (map-prod f g) ls1 @ map (map-prod f g) ls2)
by(rule cancels-to-1-fold)

with ‹l = ls1 @ l1 # l2 # ls2 › and ‹l ′ = ls1 @ ls2 ›
show cancels-to-1 (map (map-prod f g) l) (map (map-prod f g) l ′)
by simp

qed

lemma rename-gens-cancels-to:
assumes inj f

and cancels-to l l ′
shows cancels-to (map (map-prod f g) l) (map (map-prod f g) l ′)

using ‹cancels-to l l ′›
unfolding cancels-to-def
proof(induct rule:rtranclp-induct)

case (step x z)

14

from ‹cancels-to-1 x z› and ‹inj f ›
have cancels-to-1 (map (map-prod f g) x) (map (map-prod f g) z)

by −(rule rename-gens-cancels-to-1)
with ‹cancels-to-1^∗∗ (map (map-prod f g) l) (map (map-prod f g) x)›
show cancels-to-1^∗∗ (map (map-prod f g) l) (map (map-prod f g) z) by auto

qed(auto)

lemma rename-gens-canceled:
assumes inj-on g (snd‘set l)

and canceled l
shows canceled (map (map-prod f g) l)

unfolding canceled-def
proof

have different-images:
∧

f a b. f a 6= f b =⇒ a 6= b by auto

assume Domainp cancels-to-1 (map (map-prod f g) l)
then obtain l ′ where cancels-to-1 (map (map-prod f g) l) l ′ by auto
then obtain i where Suc i < length l

and canceling (map (map-prod f g) l ! i) (map (map-prod f g) l ! Suc i)
by(auto simp add:cancels-to-1-def cancels-to-1-at-def)

hence f (fst (l ! i)) 6= f (fst (l ! Suc i))
and g (snd (l ! i)) = g (snd (l ! Suc i))
by(auto simp add:canceling-def)

from ‹f (fst (l ! i)) 6= f (fst (l ! Suc i))›
have fst (l ! i) 6= fst (l ! Suc i) by −(erule different-images)
moreover
from ‹Suc i < length l›
have snd (l ! i) ∈ snd ‘ set l and snd (l ! Suc i) ∈ snd ‘ set l by auto
with ‹g (snd (l ! i)) = g (snd (l ! Suc i))›
have snd (l ! i) = snd (l ! Suc i)

using ‹inj-on g (image snd (set l))›
by (auto dest: inj-onD)

ultimately
have canceling (l ! i) (l ! Suc i) unfolding canceling-def by simp
with ‹Suc i < length l›
have cancels-to-1-at i l (cancel-at i l)

unfolding cancels-to-1-at-def by auto
hence cancels-to-1 l (cancel-at i l)

unfolding cancels-to-1-def by auto
hence ¬canceled l

unfolding canceled-def by auto
with ‹canceled l› show False by contradiction

qed

lemma rename-gens-normalize:
assumes inj f
and inj-on g (snd ‘ set l)

15

shows normalize (map (map-prod f g) l) = map (map-prod f g) (normalize l)
proof(rule normalize-discover)

from ‹inj-on g (image snd (set l))›
have inj-on g (image snd (set (normalize l)))
proof (rule subset-inj-on)

have UNIV-snd:
∧

A. A ⊆ UNIV × snd ‘ A
proof fix A and x:: ′c× ′d assume x∈A

hence (fst x,snd x)∈ (UNIV × snd ‘ A)
by −(rule, auto)

thus x∈ (UNIV × snd ‘ A) by simp
qed

have l ∈ lists (set l) by auto
hence l ∈ lists (UNIV × snd ‘ set l)

by (rule subsetD[OF lists-mono[OF UNIV-snd], of l set l])
hence normalize l ∈ lists (UNIV × snd ‘ set l)

by (rule normalize-preserves-generators[of - snd ‘ set l])
thus snd ‘ set (normalize l) ⊆ snd ‘ set l

by (auto simp add: lists-eq-set)
qed

thus canceled (map (map-prod f g) (normalize l)) by(rule rename-gens-canceled,simp)
next

from ‹inj f ›
show cancels-to (map (map-prod f g) l) (map (map-prod f g) (normalize l))

by (rule rename-gens-cancels-to, simp)
qed

end

2 Generators
theory Generators
imports

HOL−Algebra.Group
HOL−Algebra.Lattice

begin

This theory is not specific to Free Groups and could be moved to a more
general place. It defines the subgroup generated by a set of generators and
that homomorphisms agree on the generated subgroup if they agree on the
generators.
notation subgroup (infix ‹≤› 80)

2.1 The subgroup generated by a set
The span of a set of subgroup generators, i.e. the generated subgroup, can
be defined inductively or as the intersection of all subgroups containing the

16

generators. Here, we define it inductively and proof the equivalence
inductive-set gen-span :: (′a, ′b) monoid-scheme ⇒ ′a set ⇒ ′a set (‹〈-〉ı›)

for G and gens
where gen-one [intro!, simp]: 1G ∈ 〈gens〉G

| gen-gens: x ∈ gens =⇒ x ∈ 〈gens〉G
| gen-inv: x ∈ 〈gens〉G =⇒ invG x ∈ 〈gens〉G
| gen-mult: [[x ∈ 〈gens〉G; y ∈ 〈gens〉G]] =⇒ x ⊗G y ∈ 〈gens〉G

lemma (in group) gen-span-closed:
assumes gens ⊆ carrier G
shows 〈gens〉G ⊆ carrier G

proof
fix x
from assms show x ∈ 〈gens〉G =⇒ x ∈ carrier G

by −(induct rule:gen-span.induct, auto)
qed

lemma (in group) gen-subgroup-is-subgroup:
gens ⊆ carrier G =⇒ 〈gens〉G ≤ G

by(rule subgroupI)(auto intro:gen-span.intros simp add:gen-span-closed)

lemma (in group) gen-subgroup-is-smallest-containing:
assumes gens ⊆ carrier G

shows
⋂
{H . H ≤ G ∧ gens ⊆ H} = 〈gens〉G

proof
show 〈gens〉G ⊆

⋂
{H . H ≤ G ∧ gens ⊆ H}

proof(rule Inf-greatest)
fix H
assume H ∈ {H . H ≤ G ∧ gens ⊆ H}
hence H ≤ G and gens ⊆ H by auto
show 〈gens〉G ⊆ H
proof

fix x
from ‹H ≤ G› and ‹gens ⊆ H ›
show x ∈ 〈gens〉G =⇒ x ∈ H
unfolding subgroup-def
by −(induct rule:gen-span.induct, auto)

qed
qed

next
from ‹gens ⊆ carrier G›
have 〈gens〉G ≤ G by (rule gen-subgroup-is-subgroup)
moreover
have gens ⊆ 〈gens〉G by (auto intro:gen-span.intros)
ultimately
show

⋂
{H . H ≤ G ∧ gens ⊆ H} ⊆ 〈gens〉G

by(auto intro:Inter-lower)
qed

17

2.2 Generators and homomorphisms
Two homorphisms agreeing on some elements agree on the span of those
elements.
lemma hom-unique-on-span:

assumes group G
and group H
and gens ⊆ carrier G
and h ∈ hom G H
and h ′ ∈ hom G H
and ∀ g ∈ gens. h g = h ′ g

shows ∀ x ∈ 〈gens〉G. h x = h ′ x
proof

interpret G: group G by fact
interpret H : group H by fact
interpret h: group-hom G H h by unfold-locales fact
interpret h ′: group-hom G H h ′ by unfold-locales fact

fix x
from ‹gens ⊆ carrier G› have 〈gens〉G ⊆ carrier G by (rule G.gen-span-closed)
with assms show x ∈ 〈gens〉G =⇒ h x = h ′ x apply −
proof(induct rule:gen-span.induct)

case (gen-mult x y)
hence x: x ∈ carrier G and y: y ∈ carrier G and

hx: h x = h ′ x and hy: h y = h ′ y by auto
thus h (x ⊗G y) = h ′ (x ⊗G y) by simp

qed auto
qed

2.3 Sets of generators
There is no definition for “gens is a generating set of G”. This is easily
expressed by 〈gens〉 = carrier G.

The following is an application of hom-unique-on-span on a generating
set of the whole group.
lemma (in group) hom-unique-by-gens:

assumes group H
and gens: 〈gens〉G = carrier G
and h ∈ hom G H
and h ′ ∈ hom G H
and ∀ g ∈ gens. h g = h ′ g

shows ∀ x ∈ carrier G. h x = h ′ x
proof

fix x

from gens have gens ⊆ carrier G by (auto intro:gen-span.gen-gens)
with assms and group-axioms have r : ∀ x ∈ 〈gens〉G. h x = h ′ x

by −(erule hom-unique-on-span, auto)

18

with gens show x ∈ carrier G =⇒ h x = h ′ x by auto
qed

lemma (in group-hom) hom-span:
assumes gens ⊆ carrier G
shows h ‘ (〈gens〉G) = 〈h ‘ gens〉H

proof(rule Set.set-eqI , rule iffI)
from ‹gens ⊆ carrier G›
have 〈gens〉G ⊆ carrier G by (rule G.gen-span-closed)

fix y
assume y ∈ h ‘ 〈gens〉G
then obtain x where x ∈ 〈gens〉G and y = h x by auto
from ‹x ∈ 〈gens〉G›
have h x ∈ 〈h ‘ gens〉H
proof(induct x)

case (gen-inv x)
hence x ∈ carrier G and h x ∈ 〈h ‘ gens〉H

using ‹〈gens〉G ⊆ carrier G›
by auto

thus ?case by (auto intro:gen-span.intros)
next

case (gen-mult x y)
hence x ∈ carrier G and h x ∈ 〈h ‘ gens〉H
and y ∈ carrier G and h y ∈ 〈h ‘ gens〉H

using ‹〈gens〉G ⊆ carrier G›
by auto

thus ?case by (auto intro:gen-span.intros)
qed(auto intro: gen-span.intros)
with ‹y = h x›
show y ∈ 〈h ‘ gens〉H by simp

next
fix x
show x ∈ 〈h ‘ gens〉H =⇒ x ∈ h ‘ 〈gens〉
proof(induct x rule:gen-span.induct)

case (gen-inv y)
then obtain x where y = h x and x ∈ 〈gens〉 by auto
moreover
hence x ∈ carrier G using ‹gens ⊆ carrier G›

by (auto dest:G.gen-span-closed)
ultimately show ?case

by (auto intro:hom-inv[THEN sym] rev-image-eqI gen-span.gen-inv simp
del:group-hom.hom-inv hom-inv)

next
case (gen-mult y y ′)

then obtain x and x ′

where y = h x and x ∈ 〈gens〉
and y ′ = h x ′ and x ′ ∈ 〈gens〉 by auto

moreover

19

hence x ∈ carrier G and x ′ ∈ carrier G using ‹gens ⊆ carrier G›
by (auto dest:G.gen-span-closed)

ultimately show ?case
by (auto intro:hom-mult[THEN sym] rev-image-eqI gen-span.gen-mult simp

del:group-hom.hom-mult hom-mult)
qed(auto intro:rev-image-eqI intro:gen-span.intros)

qed

2.4 Product of a list of group elements
Not strictly related to generators of groups, this is still a general group
concept and not related to Free Groups.
abbreviation (in monoid) m-concat

where m-concat l ≡ foldr (⊗) l 1

lemma (in monoid) m-concat-closed[simp]:
set l ⊆ carrier G =⇒ m-concat l ∈ carrier G
by (induct l, auto)

lemma (in monoid) m-concat-append[simp]:
assumes set a ⊆ carrier G

and set b ⊆ carrier G
shows m-concat (a@b) = m-concat a ⊗ m-concat b

using assms
by(induct a)(auto simp add: m-assoc)

lemma (in monoid) m-concat-cons[simp]:
[[x ∈ carrier G ; set xs ⊆ carrier G]] =⇒ m-concat (x#xs) = x ⊗ m-concat xs

by(induct xs)(auto simp add: m-assoc)

lemma (in monoid) nat-pow-mult1l:
assumes x: x ∈ carrier G
shows x ⊗ x [^] n = x [^] Suc n

proof−
have x ⊗ x [^] n = x [^] (1 ::nat) ⊗ x [^] n using x by auto
also have . . . = x [^] (1 + n) using x

by (auto dest:nat-pow-mult simp del:One-nat-def)
also have . . . = x [^] Suc n by simp
finally show x ⊗ x [^] n = x [^] Suc n .

qed

lemma (in monoid) m-concat-power [simp]: x ∈ carrier G =⇒ m-concat (replicate
n x) = x [^] n
by(induct n, auto simp add:nat-pow-mult1l)

20

2.5 Isomorphisms
A nicer way of proving that something is a group homomorphism or isomor-
phism.
lemma group-homI [intro]:

assumes range: h ‘ (carrier g1) ⊆ carrier g2
and hom: ∀ x∈carrier g1 . ∀ y∈carrier g1 . h (x ⊗g1 y) = h x ⊗g2 h y

shows h ∈ hom g1 g2
proof−

have h ∈ carrier g1 → carrier g2 using range by auto
thus h ∈ hom g1 g2 using hom unfolding hom-def by auto

qed

lemma (in group-hom) hom-injI :
assumes ∀ x∈carrier G. h x = 1H −→ x = 1G
shows inj-on h (carrier G)

unfolding inj-on-def
proof(rule ballI , rule ballI , rule impI)

fix x
fix y
assume x: x∈carrier G

and y: y∈carrier G
and h x = h y

hence h (x ⊗ inv y) = 1H and x ⊗ inv y ∈ carrier G
by auto

with assms
have x ⊗ inv y = 1 by auto
thus x = y using x and y

by(auto dest: G.inv-equality)
qed

lemma (in group-hom) group-hom-isoI :
assumes inj1 : ∀ x∈carrier G. h x = 1H −→ x = 1G

and surj: h ‘ (carrier G) = carrier H
shows h ∈ iso G H

proof−
from inj1
have inj-on h (carrier G)

by(auto intro: hom-injI)
hence bij: bij-betw h (carrier G) (carrier H)

using surj unfolding bij-betw-def by auto
thus ?thesis

unfolding iso-def by auto
qed

lemma group-isoI [intro]:
assumes G: group G

and H : group H
and inj1 : ∀ x∈carrier G. h x = 1H −→ x = 1G

21

and surj: h ‘ (carrier G) = carrier H
and hom: ∀ x∈carrier G. ∀ y∈carrier G. h (x ⊗G y) = h x ⊗H h y

shows h ∈ iso G H
proof−

from surj
have h ∈ carrier G → carrier H

by auto
then interpret group-hom G H h using G and H and hom

by (auto intro!: group-hom.intro group-hom-axioms.intro)
show ?thesis
using assms unfolding hom-def by (auto intro: group-hom-isoI)

qed
end

3 The Free Group
theory FreeGroups
imports

HOL−Algebra.Group
Cancelation
Generators

begin

Based on the work in Free−Groups.Cancelation, the free group is now
easily defined over the set of fully canceled words with the corresponding
operations.

3.1 Inversion
To define the inverse of a word, we first create a helper function that inverts
a single generator, and show that it is self-inverse.
definition inv1 :: ′a g-i ⇒ ′a g-i
where inv1 = apfst Not

lemma inv1-inv1 : inv1 ◦ inv1 = id
by (simp add: fun-eq-iff comp-def inv1-def)

lemmas inv1-inv1-simp [simp] = inv1-inv1 [unfolded id-def]

lemma snd-inv1 : snd ◦ inv1 = snd
by(simp add: fun-eq-iff comp-def inv1-def)

The inverse of a word is obtained by reversing the order of the generators
and inverting each generator using inv1. Some properties of inv-fg are noted.
definition inv-fg :: ′a word-g-i ⇒ ′a word-g-i
where inv-fg l = rev (map inv1 l)

lemma cancelling-inf [simp]: canceling (inv1 a) (inv1 b) = canceling a b

22

by(simp add: canceling-def inv1-def)

lemma inv-idemp: inv-fg (inv-fg l) = l
by (auto simp add:inv-fg-def rev-map)

lemma inv-fg-cancel: normalize (l @ inv-fg l) = []
proof(induct l rule:rev-induct)

case Nil thus ?case
by (auto simp add: inv-fg-def)

next
case (snoc x xs)
have canceling x (inv1 x) by (simp add:inv1-def canceling-def)
moreover
let ?i = length xs
have Suc ?i < length xs + 1 + 1 + length xs

by auto
moreover
have inv-fg (xs @ [x]) = [inv1 x] @ inv-fg xs

by (auto simp add:inv-fg-def)
ultimately
have cancels-to-1-at ?i (xs @ [x] @ (inv-fg (xs @ [x]))) (xs @ inv-fg xs)

by (auto simp add:cancels-to-1-at-def cancel-at-def nth-append)
hence cancels-to-1 (xs @ [x] @ (inv-fg (xs @ [x]))) (xs @ inv-fg xs)

by (auto simp add: cancels-to-1-def)
hence cancels-to (xs @ [x] @ (inv-fg (xs @ [x]))) (xs @ inv-fg xs)

by (auto simp add:cancels-to-def)
with ‹normalize (xs @ (inv-fg xs)) = []›
show normalize ((xs @ [x]) @ (inv-fg (xs @ [x]))) = []

by auto
qed

lemma inv-fg-cancel2 : normalize (inv-fg l @ l) = []
proof−

have normalize (inv-fg l @ inv-fg (inv-fg l)) = [] by (rule inv-fg-cancel)
thus normalize (inv-fg l @ l) = [] by (simp add: inv-idemp)

qed

lemma canceled-rev:
assumes canceled l
shows canceled (rev l)

proof(rule ccontr)
assume ¬canceled (rev l)
hence Domainp cancels-to-1 (rev l) by (simp add: canceled-def)
then obtain l ′ where cancels-to-1 (rev l) l ′ by auto
then obtain i where cancels-to-1-at i (rev l) l ′ by (auto simp add:cancels-to-1-def)
hence Suc i < length (rev l)

and canceling (rev l ! i) (rev l ! Suc i)
by (auto simp add:cancels-to-1-at-def)

let ?x = length l − i − 2

23

from ‹Suc i < length (rev l)›
have Suc ?x < length l by auto
moreover
from ‹Suc i < length (rev l)›
have i < length l and length l − Suc i = Suc(length l − Suc (Suc i)) by auto
hence rev l ! i = l ! Suc ?x and rev l ! Suc i = l ! ?x

by (auto simp add: rev-nth map-nth)
with ‹canceling (rev l ! i) (rev l ! Suc i)›
have canceling (l ! Suc ?x) (l ! ?x) by auto
hence canceling (l ! ?x) (l ! Suc ?x) by (rule cancel-sym)
hence canceling (l ! ?x) (l ! Suc ?x) by simp
ultimately
have cancels-to-1-at ?x l (cancel-at ?x l)

by (auto simp add:cancels-to-1-at-def)
hence cancels-to-1 l (cancel-at ?x l)

by (auto simp add:cancels-to-1-def)
hence ¬canceled l

by (auto simp add:canceled-def)
with ‹canceled l› show False by contradiction

qed

lemma inv-fg-closure1 :
assumes canceled l
shows canceled (inv-fg l)

unfolding inv-fg-def and inv1-def and apfst-def
proof−

have inj Not by (auto intro:injI)
moreover
have inj-on id (snd ‘ set l) by auto
ultimately
have canceled (map (map-prod Not id) l)

using ‹canceled l›
by −(rule rename-gens-canceled)

thus canceled (rev (map (map-prod Not id) l)) by (rule canceled-rev)
qed

lemma inv-fg-closure2 :
l ∈ lists (UNIV × gens) =⇒ inv-fg l ∈ lists (UNIV × gens)
by (auto iff :lists-eq-set simp add:inv1-def inv-fg-def)

3.2 The definition
Finally, we can define the Free Group over a set of generators, and show
that it is indeed a group.
definition free-group :: ′a set => ((bool ∗ ′a) list) monoid (‹F ı›)
where
Fgens ≡ (|

carrier = {l∈lists (UNIV × gens). canceled l },
mult = λ x y. normalize (x @ y),

24

one = []
|)

lemma occuring-gens-in-element:
x ∈ carrier Fgens =⇒ x ∈ lists (UNIV × gens)

by(auto simp add:free-group-def)

theorem free-group-is-group: group Fgens
proof

fix x y
assume x ∈ carrier Fgens hence x: x ∈ lists (UNIV × gens) by
(rule occuring-gens-in-element)

assume y ∈ carrier Fgens hence y: y ∈ lists (UNIV × gens) by
(rule occuring-gens-in-element)

from x and y
have x ⊗Fgens y ∈ lists (UNIV × gens)

by (auto intro!: normalize-preserves-generators simp add:free-group-def ap-
pend-in-lists-conv)

thus x ⊗Fgens y ∈ carrier Fgens
by (auto simp add:free-group-def)

next
fix x y z
have cancels-to (x @ y) (normalize (x @ (y:: ′a word-g-i)))
and cancels-to z (z:: ′a word-g-i)
by auto

hence normalize (normalize (x @ y) @ z) = normalize ((x @ y) @ z)
by (rule normalize-append-cancel-to[THEN sym])

also
have . . . = normalize (x @ (y @ z)) by auto
also
have cancels-to (y @ z) (normalize (y @ (z:: ′a word-g-i)))
and cancels-to x (x:: ′a word-g-i)
by auto

hence normalize (x @ (y @ z)) = normalize (x @ normalize (y @ z))
by −(rule normalize-append-cancel-to)

finally
show x ⊗Fgens y ⊗Fgens z =

x ⊗Fgens (y ⊗Fgens z)
by (auto simp add:free-group-def)

next
show 1Fgens ∈ carrier Fgens

by (auto simp add:free-group-def)
next

fix x
assume x ∈ carrier Fgens
thus 1Fgens ⊗Fgens x = x

by (auto simp add:free-group-def)

25

next
fix x
assume x ∈ carrier Fgens
thus x ⊗Fgens 1Fgens = x

by (auto simp add:free-group-def)
next

show carrier Fgens ⊆ Units Fgens
proof (simp add:free-group-def Units-def , rule subsetI)

fix x :: ′a word-g-i
let ?x ′ = inv-fg x
assume x ∈ {y∈lists(UNIV×gens). canceled y}
hence ?x ′ ∈ lists(UNIV×gens) ∧ canceled ?x ′

by (auto elim:inv-fg-closure1 simp add:inv-fg-closure2)
moreover
have normalize (?x ′ @ x) = []
and normalize (x @ ?x ′) = []
by (auto simp add:inv-fg-cancel inv-fg-cancel2)

ultimately
have ∃ y. y ∈ lists (UNIV × gens) ∧

canceled y ∧
normalize (y @ x) = [] ∧ normalize (x @ y) = []

by auto
with ‹x ∈ {y∈lists(UNIV×gens). canceled y}›
show x ∈ {y ∈ lists (UNIV × gens). canceled y ∧

(∃ x. x ∈ lists (UNIV × gens) ∧
canceled x ∧
normalize (x @ y) = [] ∧ normalize (y @ x) = [])}

by auto
qed

qed

lemma inv-is-inv-fg[simp]:
x ∈ carrier Fgens =⇒ invFgens x = inv-fg x

by (rule group.inv-equality,auto simp add:free-group-is-group,auto simp add: free-group-def
inv-fg-cancel inv-fg-cancel2 inv-fg-closure1 inv-fg-closure2)

3.3 The universal property
Free Groups are important due to their universal property: Every map of
the set of generators to another group can be extended uniquely to an ho-
momorphism from the Free Group.
definition insert (‹ι›)

where ι g = [(False, g)]

lemma insert-closed:
g ∈ gens =⇒ ι g ∈ carrier Fgens
by (auto simp add:insert-def free-group-def)

26

definition (in group) lift-gi
where lift-gi f gi = (if fst gi then inv (f (snd gi)) else f (snd gi))

lemma (in group) lift-gi-closed:
assumes cl: f ∈ gens → carrier G

and snd gi ∈ gens
shows lift-gi f gi ∈ carrier G

using assms by (auto simp add:lift-gi-def)

definition (in group) lift
where lift f w = m-concat (map (lift-gi f) w)

lemma (in group) lift-nil[simp]: lift f [] = 1
by (auto simp add:lift-def)

lemma (in group) lift-closed[simp]:
assumes cl: f ∈ gens → carrier G

and x ∈ lists (UNIV × gens)
shows lift f x ∈ carrier G

proof−
have set (map (lift-gi f) x) ⊆ carrier G

using ‹x ∈ lists (UNIV × gens)›
by (auto simp add:lift-gi-closed[OF cl])

thus lift f x ∈ carrier G
by (auto simp add:lift-def)

qed

lemma (in group) lift-append[simp]:
assumes cl: f ∈ gens → carrier G

and x ∈ lists (UNIV × gens)
and y ∈ lists (UNIV × gens)

shows lift f (x @ y) = lift f x ⊗ lift f y
proof−

from ‹x ∈ lists (UNIV × gens)›
have set (map snd x) ⊆ gens by auto
hence set (map (lift-gi f) x) ⊆ carrier G

by (induct x)(auto simp add:lift-gi-closed[OF cl])
moreover
from ‹y ∈ lists (UNIV × gens)›
have set (map snd y) ⊆ gens by auto
hence set (map (lift-gi f) y) ⊆ carrier G

by (induct y)(auto simp add:lift-gi-closed[OF cl])
ultimately
show lift f (x @ y) = lift f x ⊗ lift f y

by (auto simp add:lift-def m-assoc simp del:set-map foldr-append)
qed

lemma (in group) lift-cancels-to:
assumes cancels-to x y

27

and x ∈ lists (UNIV × gens)
and cl: f ∈ gens → carrier G

shows lift f x = lift f y
using assms
unfolding cancels-to-def
proof(induct rule:rtranclp-induct)

case (step y z)
from ‹cancels-to-1 ∗∗ x y›
and ‹x ∈ lists (UNIV × gens)›
have y ∈ lists (UNIV × gens)

by −(rule cancels-to-preserves-generators, simp add:cancels-to-def)
hence lift f x = lift f y

using step by auto
also
from ‹cancels-to-1 y z›
obtain ys1 y1 y2 ys2

where y: y = ys1 @ y1 # y2 # ys2
and z = ys1 @ ys2
and canceling y1 y2

by (rule cancels-to-1-unfold)
have lift f y = lift f (ys1 @ [y1] @ [y2] @ ys2)

using y by simp
also
from y and cl and ‹y ∈ lists (UNIV × gens)›
have lift f (ys1 @ [y1] @ [y2] @ ys2)

= lift f ys1 ⊗ (lift f [y1] ⊗ lift f [y2]) ⊗ lift f ys2
by (auto intro:lift-append[OF cl] simp del: append-Cons simp add:m-assoc

iff :lists-eq-set)
also
from cl[THEN funcset-image]
and y and ‹y ∈ lists (UNIV × gens)›
and ‹canceling y1 y2 ›

have (lift f [y1] ⊗ lift f [y2]) = 1
by (auto simp add:lift-def lift-gi-def canceling-def iff :lists-eq-set)

hence lift f ys1 ⊗ (lift f [y1] ⊗ lift f [y2]) ⊗ lift f ys2
= lift f ys1 ⊗ 1 ⊗ lift f ys2

by simp
also
from y and ‹y ∈ lists (UNIV × gens)›
and cl
have lift f ys1 ⊗ 1 ⊗ lift f ys2 = lift f (ys1 @ ys2)
by (auto intro:lift-append iff :lists-eq-set)

also
from ‹z = ys1 @ ys2 ›
have lift f (ys1 @ ys2) = lift f z by simp
finally show lift f x = lift f z .

qed auto

lemma (in group) lift-is-hom:

28

assumes cl: f ∈ gens → carrier G
shows lift f ∈ hom Fgens G

proof−
{

fix x
assume x ∈ carrier Fgens
hence x ∈ lists (UNIV × gens)

unfolding free-group-def by simp
hence lift f x ∈ carrier G
by (induct x, auto simp add:lift-def lift-gi-closed[OF cl])

}
moreover
{ fix x

assume x ∈ carrier Fgens
fix y
assume y ∈ carrier Fgens

from ‹x ∈ carrier Fgens› and ‹y ∈ carrier Fgens›
have x ∈ lists (UNIV × gens) and y ∈ lists (UNIV × gens)

by (auto simp add:free-group-def)

have cancels-to (x @ y) (normalize (x @ y)) by simp
from ‹x ∈ lists (UNIV × gens)› and ‹y ∈ lists (UNIV × gens)›
and lift-cancels-to[THEN sym, OF ‹cancels-to (x @ y) (normalize (x @ y))›]

and cl
have lift f (x ⊗Fgens y) = lift f (x @ y)

by (auto simp add:free-group-def iff :lists-eq-set)
also
from ‹x ∈ lists (UNIV × gens)› and ‹y ∈ lists (UNIV × gens)› and cl
have lift f (x @ y) = lift f x ⊗ lift f y

by simp
finally
have lift f (x ⊗Fgens y) = lift f x ⊗ lift f y .

}
ultimately
show lift f ∈ hom Fgens G

by auto
qed

lemma gens-span-free-group:
shows 〈ι ‘ gens〉Fgens = carrier Fgens
proof

interpret group Fgens by (rule free-group-is-group)
show 〈ι ‘ gens〉Fgens ⊆ carrier Fgens
by(rule gen-span-closed, auto simp add:insert-def free-group-def)

show carrier Fgens ⊆ 〈ι ‘ gens〉Fgens
proof

fix x

29

show x ∈ carrier Fgens =⇒ x ∈ 〈ι ‘ gens〉Fgens
proof(induct x)
case Nil

have one Fgens ∈ 〈ι ‘ gens〉Fgens
by simp

thus [] ∈ 〈ι ‘ gens〉Fgens
by (simp add:free-group-def)

next
case (Cons a x)

from ‹a # x ∈ carrier Fgens›
have x ∈ carrier Fgens

by (auto intro:cons-canceled simp add:free-group-def)
hence x ∈ 〈ι ‘ gens〉Fgens

using Cons by simp
moreover

from ‹a # x ∈ carrier Fgens›
have snd a ∈ gens

by (auto simp add:free-group-def)
hence isa: ι (snd a) ∈ 〈ι ‘ gens〉Fgens

by (auto simp add:insert-def intro:gen-gens)
have [a] ∈ 〈ι ‘ gens〉Fgens
proof(cases fst a)

case False
hence [a] = ι (snd a) by (cases a, auto simp add:insert-def)
with isa show [a] ∈ 〈ι ‘ gens〉Fgens by simp

next
case True

from ‹snd a ∈ gens›
have ι (snd a) ∈ carrier Fgens

by (auto simp add:free-group-def insert-def)
with True
have [a] = invFgens (ι (snd a))

by (cases a, auto simp add:insert-def inv-fg-def inv1-def)
moreover
from isa
have invFgens (ι (snd a)) ∈ 〈ι ‘ gens〉Fgens

by (auto intro:gen-inv)
ultimately
show [a] ∈ 〈ι ‘ gens〉Fgens

by simp
qed
ultimately
have mult Fgens [a] x ∈ 〈ι ‘ gens〉Fgens

by (auto intro:gen-mult)
with
‹a # x ∈ carrier Fgens›
show a # x ∈ 〈ι ‘ gens〉Fgens by (simp add:free-group-def)

30

qed
qed

qed

lemma (in group) lift-is-unique:
assumes group G
and cl: f ∈ gens → carrier G
and h ∈ hom Fgens G
and ∀ g ∈ gens. h (ι g) = f g
shows ∀ x ∈ carrier Fgens. h x = lift f x

unfolding gens-span-free-group[THEN sym]
proof(rule hom-unique-on-span[of Fgens G])

show group Fgens by (rule free-group-is-group)
next

show group G by fact
next

show ι ‘ gens ⊆ carrier Fgens
by(auto intro:insert-closed)

next
show h ∈ hom Fgens G by fact

next
show lift f ∈ hom Fgens G by (rule lift-is-hom[OF cl])

next
from ‹∀ g∈ gens. h (ι g) = f g› and cl[THEN funcset-image]
show ∀ g∈ ι ‘ gens. h g = lift f g

by(auto simp add:insert-def lift-def lift-gi-def)
qed

end

4 The Unit Group
theory UnitGroup
imports

HOL−Algebra.Group
Generators

begin

There is, up to isomorphisms, only one group with one element.
definition unit-group :: unit monoid
where

unit-group ≡ (|
carrier = UNIV ,
mult = λ x y. (),
one = ()

|)

theorem unit-group-is-group: group unit-group
by (rule groupI , auto simp add:unit-group-def)

31

theorem (in group) unit-group-unique:
assumes card (carrier G) = 1
shows ∃ h. h ∈ iso G unit-group

proof−
from assms obtain x where carrier G = {x} by (auto dest: card-eq-SucD)
hence (λ x. ()) ∈ iso G unit-group
by −(rule group-isoI , auto simp add:unit-group-is-group is-group, simp add:unit-group-def)

thus ?thesis by auto
qed

end
theory C2
imports HOL−Algebra.Group
begin

5 The group C2
The two-element group is defined over the set of boolean values. This allows
to use the equality of boolean values as the group operation.
definition C2

where C2 = (| carrier = UNIV , mult = (=), one = True |)

lemma [simp]: (⊗C2) = (=)
unfolding C2-def by simp

lemma [simp]: 1C2 = True
unfolding C2-def by simp

lemma [simp]: carrier C2 = UNIV
unfolding C2-def by simp

lemma C2-is-group: group C2
unfolding C2-def
by (rule groupI , auto simp add:Units-def)

end

6 Isomorphisms of Free Groups
theory Isomorphisms
imports

UnitGroup
HOL−Algebra.IntRing
FreeGroups
C2
HOL−Cardinals.Cardinal-Order-Relation

begin

32

6.1 The Free Group over the empty set
The Free Group over an empty set of generators is isomorphic to the trivial
group.
lemma free-group-over-empty-set: ∃ h. h ∈ iso F{} unit-group
proof(rule group.unit-group-unique)

show group F{} by (rule free-group-is-group)
next

have carrier F{}:: ′a set = {[]}
by (auto simp add:free-group-def)

thus card (carrier F{}:: ′a set) = 1
by simp

qed

6.2 The Free Group over one generator
The Free Group over one generator is isomorphic to the free abelian group
over one element, also known as the integers.
abbreviation int-group

where int-group ≡ (| carrier = carrier Z, monoid.mult = (+), one = 0 ::int |)

lemma replicate-set-eq[simp]: ∀ x ∈ set xs. x = y =⇒ xs = replicate (length xs) y
by(induct xs)auto

lemma int-group-gen-by-one: 〈{1}〉int-group = carrier int-group
proof

show 〈{1}〉int-group ⊆ carrier int-group
by auto

show carrier int-group ⊆ 〈{1}〉int-group
proof

interpret int: group int-group
using int.a-group by auto

fix x
have plus1 : 1 ∈ 〈{1}〉int-group

by (auto intro:gen-span.gen-gens)
hence invint-group 1 ∈ 〈{1}〉int-group

by (auto intro:gen-span.gen-inv)
moreover
have −1 = invint-group 1

by (rule sym, rule int.inv-equality) simp-all
ultimately
have minus1 : −1 ∈ 〈{1}〉int-group

by (simp)

show x ∈ 〈{1 ::int}〉int-group
proof(induct x rule:int-induct[of - 0 ::int])
case base

have 1int-group ∈ 〈{1 ::int}〉int-group

33

by (rule gen-span.gen-one)
thus0 ∈ 〈{1}〉int-group

by simp
next
case (step1 i)

from ‹i ∈ 〈{1}〉int-group› and plus1
have i ⊗int-group 1 ∈ 〈{1}〉int-group

by (rule gen-span.gen-mult)
thus i + 1 ∈ 〈{1}〉int-group by simp

next
case (step2 i)

from ‹i ∈ 〈{1}〉int-group› and minus1
have i ⊗int-group −1 ∈ 〈{1}〉int-group

by (rule gen-span.gen-mult)
thus i − 1 ∈ 〈{1}〉int-group

by simp
qed

qed
qed

lemma free-group-over-one-gen: ∃ h. h ∈ iso F{()} int-group
proof−

interpret int: group int-group
using int.a-group by auto

define f :: unit ⇒ int where f x = 1 for x
have f ∈ {()} → carrier int-group

by auto
hence int.lift f ∈ hom F{()} int-group

by (rule int.lift-is-hom)
then
interpret hom: group-hom F{()} int-group int.lift f

unfolding group-hom-def group-hom-axioms-def
using int.a-group by(auto intro: free-group-is-group)

{
fix x
assume x ∈ carrier F{()}
hence canceled x by (auto simp add:free-group-def)
assume int.lift f x = (0 ::int)
have x = []
proof(rule ccontr)

assume x 6= []
then obtain a and xs where x = a # xs by (cases x, auto)
hence length (takeWhile (λy. y = a) x) > 0 by auto
then obtain i where i: length (takeWhile (λy. y = a) x) = Suc i

by (cases length (takeWhile (λy. y = a) x), auto)
have Suc i ≥ length x
proof(rule ccontr)

assume ¬ length x ≤ Suc i

34

hence length (takeWhile (λy. y = a) x) < length x using i by simp
hence ¬ (λy. y = a) (x ! length (takeWhile (λy. y = a) x))

by (rule nth-length-takeWhile)
hence ¬ (λy. y = a) (x ! Suc i) using i by simp
hence fst (x ! Suc i) 6= fst a by (cases x ! Suc i, cases a, auto)
moreover
{

have takeWhile (λy. y = a) x ! i = x ! i
using i by (auto intro: takeWhile-nth)

moreover
have (takeWhile (λy. y = a) x) ! i ∈ set (takeWhile (λy. y = a) x)

using i by auto
ultimately
have (λy. y = a) (x ! i)

by (auto dest:set-takeWhileD)
}
hence fst (x ! i) = fst a by auto
moreover
have snd (x ! i) = snd (x ! Suc i) by simp
ultimately
have canceling (x ! i) (x ! Suc i) unfolding canceling-def by auto
hence cancels-to-1-at i x (cancel-at i x)

using ‹¬ length x ≤ Suc i› unfolding cancels-to-1-at-def
by (auto simp add:length-takeWhile-le)

hence cancels-to-1 x (cancel-at i x) unfolding cancels-to-1-def by auto
hence ¬ canceled x unfolding canceled-def by auto
thus False using ‹canceled x› by contradiction

qed
hence length (takeWhile (λy. y = a) x) = length x
using i[THEN sym] by (auto dest:le-antisym simp add:length-takeWhile-le)

hence takeWhile (λy. y = a) x = x
by (subst takeWhile-eq-take, simp)

moreover
have ∀ y ∈ set (takeWhile (λy. y = a) x). y = a

by (auto dest: set-takeWhileD)
ultimately
have ∀ y ∈ set x. y = a by auto
hence x = replicate (length x) a by simp
hence int.lift f x = int.lift f (replicate (length x) a) by simp
also have ... = pow int-group (int.lift-gi f a) (length x)

apply (induct x)
using local.int.nat-pow-Suc local.int.nat-pow-0
apply (auto simp: int.lift-def [simplified])

done
also have ... = (int.lift-gi f a) ∗ int (length x)

apply (induct x)
using local.int.nat-pow-Suc local.int.nat-pow-0
by (auto simp: int-distrib)

finally have . . . = 0 using ‹int.lift f x = 0 › by simp

35

hence nat (abs (group.lift-gi int-group f a ∗ int (length x))) = 0 by simp
hence nat (abs (group.lift-gi int-group f a)) ∗ length x = 0 by simp
hence nat (abs (group.lift-gi int-group f a)) = 0

using ‹x 6= []› by auto
moreover
have invint-group 1 = −1

using int.inv-equality by auto
hence abs (group.lift-gi int-group f a) = 1
using int.is-group

by(auto simp add: group.lift-gi-def f-def)
ultimately
show False by simp

qed
}
hence ∀ x∈carrier F{()}. int.lift f x = 1int-group −→ x = 1F{()}

by (auto simp add:free-group-def)
moreover
{

have carrier F{()} = 〈insert‘{()}〉F{()}
by (rule gens-span-free-group[THEN sym])

moreover
have carrier int-group = 〈{1}〉int-group

by (rule int-group-gen-by-one[THEN sym])
moreover
have int.lift f ‘ insert ‘ {()} = {1}

by (auto simp add: int.lift-def [simplified] insert-def f-def int.lift-gi-def
[simplified])

moreover
have int.lift f ‘ 〈insert‘{()}〉F{()}

= 〈int.lift f ‘ (insert ‘{()})〉int-group
by (rule hom.hom-span, auto intro:insert-closed)

ultimately
have int.lift f ‘ carrier F{()} = carrier int-group

by simp
}
ultimately
have int.lift f ∈ iso F{()} int-group

using ‹int.lift f ∈ hom F{()} int-group›
using hom.hom-mult int.is-group
by (auto intro:group-isoI simp add: free-group-is-group)

thus ?thesis by auto
qed

6.3 Free Groups over isomorphic sets of generators
Free Groups are isomorphic if their set of generators are isomorphic.
definition lift-generator-function :: (′a ⇒ ′b) ⇒ (bool × ′a) list ⇒ (bool × ′b) list
where lift-generator-function f = map (map-prod id f)

36

theorem isomorphic-free-groups:
assumes bij-betw f gens1 gens2
shows lift-generator-function f ∈ iso Fgens1 Fgens2

unfolding lift-generator-function-def
proof(rule group-isoI)

show ∀ x∈carrier Fgens1.
map (map-prod id f) x = 1Fgens2 −→ x = 1Fgens1

by(auto simp add:free-group-def)
next

from ‹bij-betw f gens1 gens2 › have inj-on f gens1 by (auto simp:bij-betw-def)
show map (map-prod id f) ‘ carrier Fgens1 = carrier Fgens2
proof(rule Set.set-eqI ,rule iffI)
from ‹bij-betw f gens1 gens2 › have f ‘ gens1 = gens2 by (auto simp:bij-betw-def)
fix x :: (bool × ′b) list
assume x ∈ image (map (map-prod id f)) (carrier Fgens1)
then obtain y :: (bool × ′a) list where x = map (map-prod id f) y

and y ∈ carrier Fgens1 by auto
from ‹y ∈ carrier Fgens1›
have canceled y and y ∈ lists(UNIV×gens1) by (auto simp add:free-group-def)

from ‹y ∈ lists (UNIV×gens1)›
and ‹x = map (map-prod id f) y›
and ‹image f gens1 = gens2 ›

have x ∈ lists (UNIV×gens2)
by (auto iff :lists-eq-set)

moreover

from ‹x = map (map-prod id f) y›
and ‹y ∈ lists (UNIV×gens1)›
and ‹canceled y›
and ‹inj-on f gens1 ›

have canceled x
by (auto intro!:rename-gens-canceled subset-inj-on[OF ‹inj-on f gens1 ›]

iff :lists-eq-set)
ultimately
show x ∈ carrier Fgens2 by (simp add:free-group-def)

next
fix x
assume x ∈ carrier Fgens2
hence canceled x and x ∈ lists (UNIV×gens2)

unfolding free-group-def by auto
define y where y = map (map-prod id (the-inv-into gens1 f)) x
have map (map-prod id f) y =

map (map-prod id f) (map (map-prod id (the-inv-into gens1 f)) x)
by (simp add:y-def)

also have . . . = map (map-prod id f ◦ map-prod id (the-inv-into gens1 f)) x
by simp

also have . . . = map (map-prod id (f ◦ the-inv-into gens1 f)) x

37

by auto
also have . . . = map id x
proof(rule map-ext, rule impI)

fix xa :: bool × ′b
assume xa ∈ set x
from ‹x ∈ lists (UNIV×gens2)›
have set (map snd x) ⊆ gens2 by auto
hence snd ‘ set x ⊆ gens2 by (simp add: set-map)
with ‹xa ∈ set x› have snd xa ∈ gens2 by auto
with ‹bij-betw f gens1 gens2 › have snd xa ∈ f‘gens1

by (auto simp add: bij-betw-def)

have map-prod id (f ◦ the-inv-into gens1 f) xa
= map-prod id (f ◦ the-inv-into gens1 f) (fst xa, snd xa) by simp

also have . . . = (fst xa, f (the-inv-into gens1 f (snd xa)))
by (auto simp del:prod.collapse)

also
from ‹snd xa ∈ image f gens1 › and ‹inj-on f gens1 ›
have . . . = (fst xa, snd xa)

by (auto elim:f-the-inv-into-f simp del:prod.collapse)
also have . . . = id xa by simp
finally show map-prod id (f ◦ the-inv-into gens1 f) xa = id xa.

qed
also have . . . = x unfolding id-def by auto
finally have map (map-prod id f) y = x.
moreover
{

from ‹bij-betw f gens1 gens2 ›
have bij-betw (the-inv-into gens1 f) gens2 gens1 by (rule bij-betw-the-inv-into)
hence inj-on (the-inv-into gens1 f) gens2 by (rule bij-betw-imp-inj-on)

with ‹canceled x›
and ‹x ∈ lists (UNIV×gens2)›

have canceled y
by (auto intro!:rename-gens-canceled[OF subset-inj-on] simp add:y-def)

moreover
{

from ‹bij-betw (the-inv-into gens1 f) gens2 gens1 ›
and ‹x∈lists(UNIV×gens2)›

have y ∈ lists(UNIV×gens1)
unfolding y-def and bij-betw-def
by (auto iff :lists-eq-set dest!:subsetD)

}
ultimately
have y ∈ carrier Fgens1 by (simp add:free-group-def)

}
ultimately
show x ∈ map (map-prod id f) ‘ carrier Fgens1 by auto

qed

38

next
from ‹bij-betw f gens1 gens2 › have inj-on f gens1 by (auto simp:bij-betw-def)
{
fix x
assume x ∈ carrier Fgens1
fix y
assume y ∈ carrier Fgens1

from ‹x ∈ carrier Fgens1› and ‹y ∈ carrier Fgens1›
have x ∈ lists(UNIV×gens1) and y ∈ lists(UNIV×gens1)

by (auto simp add:occuring-gens-in-element)

have map (map-prod id f) (x ⊗Fgens1 y)
= map (map-prod id f) (normalize (x@y)) by (simp add:free-group-def)

also
from ‹x ∈ lists(UNIV×gens1)› and ‹y ∈ lists(UNIV×gens1)›
and ‹inj-on f gens1 ›

have . . . = normalize (map (map-prod id f) (x@y))
by −(rule rename-gens-normalize[THEN sym],

auto intro!: subset-inj-on[OF ‹inj-on f gens1 ›] iff :lists-eq-set)
also have . . . = normalize (map (map-prod id f) x @ map (map-prod id f) y)

by (auto)
also have . . . = map (map-prod id f) x ⊗Fgens2 map (map-prod id f) y

by (simp add:free-group-def)
finally have map (map-prod id f) (x ⊗Fgens1 y) =

map (map-prod id f) x ⊗Fgens2 map (map-prod id f) y.
}
thus ∀ x∈carrier Fgens1.

∀ y∈carrier Fgens1.
map (map-prod id f) (x ⊗Fgens1 y) =
map (map-prod id f) x ⊗Fgens2 map (map-prod id f) y

by auto
qed (auto intro: free-group-is-group)

6.4 Bases of isomorphic free groups
Isomorphic free groups have bases of same cardinality. The proof is very
different for infinite bases and for finite bases.

The proof for the finite case uses the set of of homomorphisms from the
free group to the group with two elements, as suggested by Christian Sievers.
The definition of hom is not suitable for proofs about the cardinality of that
set, as its definition does not require extensionality. This is amended by the
following definition:
definition homr

where homr G H = {h. h ∈ hom G H ∧ h ∈ extensional (carrier G)}

39

lemma (in group-hom) restrict-hom[intro!]:
shows restrict h (carrier G) ∈ homr G H
unfolding homr-def and hom-def
by (auto)

lemma hom-F-C2-Powerset:
∃ f . bij-betw f (Pow X) (homr (FX) C2)

proof
interpret F : group FX by (rule free-group-is-group)
interpret C2 : group C2 by (rule C2-is-group)
let ?f = λS . restrict (C2 .lift (λx. x ∈ S)) (carrier FX)
let ?f ′ = λh . X ∩ Collect(h ◦ insert)
show bij-betw ?f (Pow X) (homr (FX) C2)
proof(induct rule: bij-betwI [of ?f - - ?f ′])
case 1 show ?case

proof
fix S assume S ∈ Pow X
interpret h: group-hom FX C2 C2 .lift (λx. x ∈ S)

by unfold-locales (auto intro: C2 .lift-is-hom)
show ?f S ∈ homr FX C2

by (rule h.restrict-hom)
qed

next
case 2 show ?case by auto next
case (3 S) show ?case

proof (induct rule: Set.set-eqI)
case (1 x) show ?case
proof(cases x ∈ X)
case True thus ?thesis using insert-closed[of x X]

by (auto simp add:insert-def C2 .lift-def C2 .lift-gi-def)
next case False thus ?thesis using 3 by auto

qed
qed
next
case (4 h)

hence hom: h ∈ hom FX C2
and extn: h ∈ extensional (carrier FX)
unfolding homr-def by auto

have ∀ x ∈ carrier FX . h x = group.lift C2 (λz. z ∈ X & (h ◦ FreeGroups.insert)
z) x

by (rule C2 .lift-is-unique[OF C2-is-group - hom, of (λz. z ∈ X & (h ◦ Free-
Groups.insert) z)],

auto)
thus ?case
by −(rule extensionalityI [OF restrict-extensional extn], auto)

qed
qed

40

lemma group-iso-betw-hom:
assumes group G1 and group G2

and iso: i ∈ iso G1 G2
shows ∃ f . bij-betw f (homr G2 H) (homr G1 H)

proof−
interpret G2 : group G2 by (rule ‹group G2 ›)
let ?i ′ = restrict (inv-into (carrier G1) i) (carrier G2)
have inv-into (carrier G1) i ∈ iso G2 G1

by (simp add: ‹group G1 › group.iso-set-sym iso)
hence iso ′: ?i ′ ∈ iso G2 G1

by (auto simp add:Group.iso-def hom-def G2 .m-closed)
show ?thesis
proof(rule, induct rule: bij-betwI [of (λh. compose (carrier G1) h i) - - (λh.

compose (carrier G2) h ?i ′)])
case 1

show ?case
proof

fix h assume h ∈ homr G2 H
hence compose (carrier G1) h i ∈ hom G1 H

using iso
by (auto intro: group.hom-compose[OF ‹group G1 ›, of - G2] simp add:Group.iso-def

homr-def)
thus compose (carrier G1) h i ∈ homr G1 H

unfolding homr-def by simp
qed

next
case 2

show ?case
proof

fix h assume h ∈ homr G1 H
hence compose (carrier G2) h ?i ′ ∈ hom G2 H

using iso ′

by (auto intro: group.hom-compose[OF ‹group G2 ›, of - G1] simp add:Group.iso-def
homr-def)

thus compose (carrier G2) h ?i ′ ∈ homr G2 H
unfolding homr-def by simp

qed
next
case (3 x)

hence compose (carrier G2) (compose (carrier G1) x i) ?i ′
= compose (carrier G2) x (compose (carrier G2) i ?i ′)

using iso iso ′

by (auto intro: compose-assoc[THEN sym] simp add:Group.iso-def hom-def
homr-def)

also have . . . = compose (carrier G2) x (λy∈carrier G2 . y)
using iso

by (subst compose-id-inv-into, auto simp add:Group.iso-def hom-def bij-betw-def)
also have . . . = x

using 3

41

by (auto intro:compose-Id simp add:homr-def)
finally
show ?case .

next
case (4 y)

hence compose (carrier G1) (compose (carrier G2) y ?i ′) i
= compose (carrier G1) y (compose (carrier G1) ?i ′ i)

using iso iso ′

by (auto intro: compose-assoc[THEN sym] simp add:Group.iso-def hom-def
homr-def)

also have . . . = compose (carrier G1) y (λx∈carrier G1 . x)
using iso

by (subst compose-inv-into-id, auto simp add:Group.iso-def hom-def bij-betw-def)
also have . . . = y

using 4
by (auto intro:compose-Id simp add:homr-def)

finally
show ?case .

qed
qed

lemma isomorphic-free-groups-bases-finite:
assumes iso: i ∈ iso FX FY

and finite: finite X
shows ∃ f . bij-betw f X Y

proof−
obtain f

where bij-betw f (homr FY C2) (homr FX C2)
using group-iso-betw-hom[OF free-group-is-group free-group-is-group iso]
by auto

moreover
obtain g ′

where bij-betw g ′ (Pow X) (homr (FX) C2)
using hom-F-C2-Powerset by auto

then obtain g
where bij-betw g (homr (FX) C2) (Pow X)
by (auto intro: bij-betw-inv-into)

moreover
obtain h

where bij-betw h (Pow Y) (homr (FY) C2)
using hom-F-C2-Powerset by auto

ultimately
have bij-betw (g ◦ f ◦ h) (Pow Y) (Pow X)

by (auto intro: bij-betw-trans)
hence eq-card: card (Pow Y) = card (Pow X)

by (rule bij-betw-same-card)
with finite
have finite (Pow Y)
by −(rule card-ge-0-finite, auto simp add:card-Pow)

42

hence finite ′: finite Y by simp

with eq-card finite
have card X = card Y
by (auto simp add:card-Pow)

with finite finite ′

show ?thesis
by (rule finite-same-card-bij)

qed

The proof for the infinite case is trivial once the fact that the free group
over an infinite set has the same cardinality is established.
lemma free-group-card-infinite:

assumes ¬ finite X
shows |X | =o |carrier FX|

proof−
have inj-on insert X

by (rule inj-onI) (auto simp add: insert-def)
moreover have insert ‘ X ⊆ carrier FX

by (auto intro: insert-closed)
ultimately have ∃ f . inj-on f X ∧ f ‘ X ⊆ carrier FX

by auto
then have |X | ≤o |carrier FX|

by (simp add: card-of-ordLeq)
moreover
have |carrier FX| ≤o |lists ((UNIV ::bool set)×X)|

by (auto intro!:card-of-mono1 simp add:free-group-def)
moreover
have |lists ((UNIV ::bool set)×X)| =o |(UNIV ::bool set)×X |

using ‹¬ finite X›
by (auto intro:card-of-lists-infinite dest!:finite-cartesian-productD2)

moreover
have |(UNIV ::bool set)×X | =o |X |

using ‹¬ finite X›
by (auto intro: card-of-Times-infinite[OF - - ordLess-imp-ordLeq[OF finite-ordLess-infinite2],

THEN conjunct2])
ultimately
show |X | =o |carrier FX|

by (subst ordIso-iff-ordLeq, auto intro: ord-trans)
qed

theorem isomorphic-free-groups-bases:
assumes iso: i ∈ iso FX FY
shows ∃ f . bij-betw f X Y

proof(cases finite X)
case True

thus ?thesis using iso by −(rule isomorphic-free-groups-bases-finite)
next
case False show ?thesis

43

proof(cases finite Y)
case True
from iso obtain i ′ where i ′ ∈ iso FY FX

using free-group-is-group group.iso-set-sym by blast
with ‹finite Y ›
have ∃ f . bij-betw f Y X by −(rule isomorphic-free-groups-bases-finite)
thus ∃ f . bij-betw f X Y by (auto intro: bij-betw-the-inv-into) next

case False
from ‹¬ finite X› have |X | =o |carrier FX|

by (rule free-group-card-infinite)
moreover
from ‹¬ finite Y › have |Y | =o |carrier FY|

by (rule free-group-card-infinite)
moreover
from iso have |carrier FX| =o |carrier FY|

by (auto simp add:Group.iso-def iff :card-of-ordIso[THEN sym])
ultimately
have |X | =o |Y | by (auto intro: ordIso-equivalence)
thus ?thesis by (subst card-of-ordIso)

qed
qed

end

7 The Ping Pong lemma
theory PingPongLemma
imports

HOL−Algebra.Bij
FreeGroups

begin

The Ping Pong Lemma is a way to recognice a Free Group by its action
on a set (often a topological space or a graph). The name stems from the
way that elements of the set are passed forth and back between the subsets
given there.

We start with two auxiliary lemmas, one about the identity of the group
of bijections, and one about sets of cardinality larger than one.
lemma Bij-one[simp]:

assumes x ∈ X
shows 1BijGroup X x = x

using assms by (auto simp add: BijGroup-def)

lemma other-member :
assumes I 6= {} and i ∈ I and card I 6= 1
obtains j where j∈I and j 6=i

proof(cases finite I)
case True

44

hence I − {i} 6= {} using ‹card I 6= 1 › and ‹i∈I › by (metis Suc-eq-plus1-left
card-Diff-subset-Int card-Suc-Diff1 diff-add-inverse2 diff-self-eq-0 empty-Diff finite.emptyI
inf-bot-left minus-nat.diff-0)

thus ?thesis using that by auto
next

case False
hence I − {i} 6= {} by (metis Diff-empty finite.emptyI finite-Diff-insert)
thus ?thesis using that by auto

qed

And now we can attempt the lemma. The gencount condition is a weaker
variant of “x has to lie outside all subsets” that is only required if the set
of generators is one. Otherwise, we will be able to find a suitable x to start
with in the proof.
lemma ping-pong-lemma:

assumes group G
and act ∈ hom G (BijGroup X)
and g ∈ (I → carrier G)
and 〈g ‘ I 〉G = carrier G
and sub1 : ∀ i∈I . Xout i ⊆ X
and sub2 : ∀ i∈I . Xin i ⊆ X
and disj1 : ∀ i∈I . ∀ j∈I . i 6= j −→ Xout i ∩ Xout j = {}
and disj2 : ∀ i∈I . ∀ j∈I . i 6= j −→ Xin i ∩ Xin j = {}
and disj3 : ∀ i∈I . ∀ j∈I . Xin i ∩ Xout j = {}
and x ∈ X
and gencount: ∀ i . I = {i} −→ (x /∈ Xout i ∧ x /∈ Xin i)
and ping: ∀ i∈I . act (g i) ‘ (X − Xout i) ⊆ Xin i
and pong: ∀ i∈I . act (invG (g i)) ‘ (X − Xin i) ⊆ Xout i
shows group.lift G g ∈ iso (FI) G

proof−
interpret F : group FI

using assms by (auto simp add: free-group-is-group)
interpret G: group G by fact
interpret B: group BijGroup X using group-BijGroup by auto
interpret act: group-hom G BijGroup X act by (unfold-locales) fact
interpret h: group-hom FI G G.lift g

using F .is-group G.is-group G.lift-is-hom assms
by (auto intro!: group-hom.intro group-hom-axioms.intro)

show ?thesis
proof(rule h.group-hom-isoI)

Injectivity is the hard part of the proof.

show ∀ x∈carrier FI. G.lift g x = 1G −→ x = 1FI
proof(rule+)

We lift the Xout and Xin sets to generators and their inveres, and create variants
of the disj-conditions:

define Xout ′ where Xout ′ = (λ(b,i:: ′d). if b then Xin i else Xout i)

45

define Xin ′ where Xin ′ = (λ(b,i:: ′d). if b then Xout i else Xin i)

have disj1 ′: ∀ i∈(UNIV × I). ∀ j∈(UNIV × I). i 6= j −→ Xout ′ i ∩ Xout ′

j = {}
using disj1 [rule-format] disj2 [rule-format] disj3 [rule-format]
by (auto simp add:Xout ′-def Xin ′-def split:if-splits, blast+)

have disj2 ′: ∀ i∈(UNIV × I). ∀ j∈(UNIV × I). i 6= j −→ Xin ′ i ∩ Xin ′ j
= {}

using disj1 [rule-format] disj2 [rule-format] disj3 [rule-format]
by (auto simp add:Xout ′-def Xin ′-def split:if-splits, blast+)

have disj3 ′: ∀ i∈(UNIV × I). ∀ j∈(UNIV × I). ¬ canceling i j −→ Xin ′ i
∩ Xout ′ j = {}

using disj1 [rule-format] disj2 [rule-format] disj3 [rule-format]
by (auto simp add:canceling-def Xout ′-def Xin ′-def split:if-splits, blast)

We need to pick a suitable element of the set to play ping pong with. In
particular, it needs to be outside of the Xout-set of the last generator in the list,
and outside the in-set of the first element. This part of the proof is surprisingly
tedious, because there are several cases, some similar but not the same.

fix w
assume w: w ∈ carrier FI

obtain x where x ∈ X
and x1 : w = [] ∨ x /∈ Xout ′ (last w)
and x2 : w = [] ∨ x /∈ Xin ′ (hd w)

proof−
{ assume I = {}

hence w = [] using w by (auto simp add:free-group-def)
hence ?thesis using that ‹x∈X› by auto

}
moreover
{ assume card I = 1

then obtain i where I={i} by (auto dest: card-eq-SucD)
assume w 6=[]
hence snd (hd w) = i and snd (last w) = i

using w ‹I={i}›
apply (cases w, auto simp add:free-group-def)
apply (cases w rule:rev-exhaust, auto simp add:free-group-def)
done

hence ?thesis using gencount[rule-format, OF ‹I={i}›] that[OF ‹x∈X›]
‹w 6=[]›

by (cases last w, cases hd w, auto simp add:Xout ′-def Xin ′-def split:if-splits)
}
moreover
{ assume I 6= {} and card I 6= 1 and w 6= []

from ‹w 6= []› and w
obtain b i where hd: hd w = (b,i) and i∈I

by (cases w, auto simp add:free-group-def)
from ‹w 6= []› and w

46

obtain b ′ i ′ where last: last w = (b ′,i ′) and i ′∈I
by (cases w rule: rev-exhaust, auto simp add:free-group-def)

What follows are two very similar cases, but the correct choice of variables
depends on where we find x.

{
obtain b ′′ i ′′ where
(b ′′,i ′′) 6= (b,i) and
(b ′′,i ′′) 6= (b ′,i ′) and
¬ canceling (b ′′, i ′′) (b ′,i ′) and
i ′′∈I

proof(cases i=i ′)
case True
obtain j where j∈I and j 6=i using ‹card I 6= 1 › and ‹i∈I ›

by −(rule other-member , auto)
with True show ?thesis using that by (auto simp add:canceling-def)

next
case False thus ?thesis using that ‹i∈I › ‹i ′ ∈ I ›
by (simp add:canceling-def , metis)

qed
let ?g = (b ′′,i ′′)

assume x ∈ Xout ′ (last w)
hence x /∈ Xout ′ ?g

using disj1 ′[rule-format, OF - - ‹?g 6= (b ′,i ′)›]
‹i ∈ I › ‹i ′∈I › ‹i ′′∈I › hd last

by auto
hence act (G.lift-gi g ?g) x ∈ Xin ′ ?g (is ?x ∈ -) using ‹i ′′ ∈ I › ‹x ∈

X›
ping[rule-format, OF ‹i ′′ ∈ I ›, THEN subsetD]
pong[rule-format, OF ‹i ′′ ∈ I ›, THEN subsetD]
by (auto simp add:G.lift-def G.lift-gi-def Xout ′-def Xin ′-def)

hence ?x /∈ Xout ′ (last w) ∧ ?x /∈ Xin ′ (hd w)
using

disj3 ′[rule-format, OF - - ‹¬ canceling (b ′′, i ′′) (b ′,i ′)›]
disj2 ′[rule-format, OF - - ‹?g 6= (b,i)›]
‹i ∈ I › ‹i ′∈I › ‹i ′′∈I › hd last

by (auto simp add: canceling-def)
moreover
note ‹i ′′ ∈ I ›
hence g i ′′ ∈ carrier G using ‹g ∈ (I → carrier G)› by auto
hence G.lift-gi g ?g ∈ carrier G

by (auto simp add:G.lift-gi-def inv1-def)
hence act (G.lift-gi g ?g) ∈ carrier (BijGroup X)

using ‹act ∈ hom G (BijGroup X)› by auto
hence ?x ∈ X using ‹x∈X›

by (auto simp add:BijGroup-def Bij-def bij-betw-def)
ultimately have ?thesis using that[of ?x] by auto
}
moreover

47

{
obtain b ′′ i ′′ where
¬ canceling (b ′′,i ′′) (b,i) and
¬ canceling (b ′′,i ′′) (b ′,i ′) and
(b,i) 6= (b ′′,i ′′) and
i ′′∈I

proof(cases i=i ′)
case True
obtain j where j∈I and j 6=i using ‹card I 6= 1 › and ‹i∈I ›

by −(rule other-member , auto)
with True show ?thesis using that by (auto simp add:canceling-def)

next
case False thus ?thesis using that ‹i∈I › ‹i ′ ∈ I ›
by (simp add:canceling-def , metis)

qed
let ?g = (b ′′,i ′′)
note cancel-sym-neg[OF ‹¬ canceling (b ′′,i ′′) (b,i)›]
note cancel-sym-neg[OF ‹¬ canceling (b ′′,i ′′) (b ′,i ′)›]

assume x ∈ Xin ′ (hd w)
hence x /∈ Xout ′ ?g

using disj3 ′[rule-format, OF - - ‹¬ canceling (b,i) ?g›]
‹i ∈ I › ‹i ′∈I › ‹i ′′∈I › hd last

by auto
hence act (G.lift-gi g ?g) x ∈ Xin ′ ?g (is ?x ∈ -) using ‹i ′′ ∈ I › ‹x ∈

X›
ping[rule-format, OF ‹i ′′ ∈ I ›, THEN subsetD]
pong[rule-format, OF ‹i ′′ ∈ I ›, THEN subsetD]
by (auto simp add:G.lift-def G.lift-gi-def Xout ′-def Xin ′-def)

hence ?x /∈ Xout ′ (last w) ∧ ?x /∈ Xin ′ (hd w)
using

disj3 ′[rule-format, OF - - ‹¬ canceling ?g (b ′,i ′)›]
disj2 ′[rule-format, OF - - ‹(b,i) 6= ?g›]
‹i ∈ I › ‹i ′∈I › ‹i ′′∈I › hd last

by (auto simp add: canceling-def)
moreover
note ‹i ′′ ∈ I ›
hence g i ′′ ∈ carrier G using ‹g ∈ (I → carrier G)› by auto
hence G.lift-gi g ?g ∈ carrier G

by (auto simp add:G.lift-gi-def)
hence act (G.lift-gi g ?g) ∈ carrier (BijGroup X)

using ‹act ∈ hom G (BijGroup X)› by auto
hence ?x ∈ X using ‹x∈X›

by (auto simp add:BijGroup-def Bij-def bij-betw-def)
ultimately have ?thesis using that[of ?x] by auto
}
moreover note calculation

}
ultimately show ?thesis using ‹x∈ X› that by auto

48

qed
The proof works by induction over the length of the word. Each inductive step

is one ping as in ping pong. At the end, we land in one of the subsets of X, so the
word cannot be the identity.

from x1 and w
have w = [] ∨ act (G.lift g w) x ∈ Xin ′ (hd w)
proof(induct w)

case Nil show ?case by simp
next case (Cons w ws)

note C = Cons
The following lemmas establish all “obvious” element relations that will be

required during the proof.
note calculation = Cons(3)
moreover have x∈X by fact

moreover have snd w ∈ I using calculation by (auto simp add:free-group-def)

moreover have g ∈ (I → carrier G) by fact
moreover have g (snd w) ∈ carrier G using calculation by auto
moreover have ws ∈ carrier FI

using calculation by (auto intro:cons-canceled simp add:free-group-def)
moreover have G.lift g ws ∈ carrier G and G.lift g [w] ∈ carrier G

using calculation by (auto simp add: free-group-def)
moreover have act (G.lift g ws) ∈ carrier (BijGroup X)

and act (G.lift g [w]) ∈ carrier (BijGroup X)
and act (G.lift g (w#ws)) ∈ carrier (BijGroup X)
and act (g (snd w)) ∈ carrier (BijGroup X)

using calculation by auto
moreover have act (g (snd w)) ∈ Bij X

using calculation by (auto simp add:BijGroup-def)
moreover have act (G.lift g ws) x ∈ X (is ?x2 ∈ X)

using calculation by (auto simp add:BijGroup-def Bij-def bij-betw-def)
moreover have act (G.lift g [w]) ?x2 ∈ X

using calculation by (auto simp add:BijGroup-def Bij-def bij-betw-def)
moreover have act (G.lift g (w#ws)) x ∈ X

using calculation by (auto simp add:BijGroup-def Bij-def bij-betw-def)
moreover note mems = calculation

have act (G.lift g ws) x /∈ Xout ′ w
proof(cases ws)

case Nil
moreover have x /∈ Xout ′ w using Cons(2) Nil

unfolding Xout ′-def using mems
by (auto split:if-splits)

ultimately show act (G.lift g ws) x /∈ Xout ′ w
using mems by auto

next case (Cons ww wws)
hence act (G.lift g ws) x ∈ Xin ′ (hd ws)

using C mems by simp

49

moreover have Xin ′ (hd ws) ∩ Xout ′ w = {}
proof−

have ¬ canceling (hd ws) w
proof

assume canceling (hd ws) w
hence cancels-to-1 (w#ws) wws using Cons

by(auto simp add:cancel-sym cancels-to-1-def cancels-to-1-at-def
cancel-at-def)

thus False using ‹w#ws ∈ carrier FI›
by(auto simp add:free-group-def canceled-def)

qed

have w ∈ UNIV × I hd ws ∈ UNIV × I
using ‹snd w ∈ I › mems Cons
by (cases w, auto, cases hd ws, auto simp add:free-group-def)

thus ?thesis
by− (rule disj3 ′[rule-format, OF - - ‹¬ canceling (hd ws) w›], auto)

qed
ultimately show act (G.lift g ws) x /∈ Xout ′ w using Cons by auto

qed
show ?case
proof−

have act (G.lift g (w # ws)) x = act (G.lift g ([w] @ ws)) x by simp
also have . . . = act (G.lift g [w] ⊗G G.lift g ws) x

using mems by (subst G.lift-append, auto simp add:free-group-def)
also have . . . = (act (G.lift g [w]) ⊗BijGroup X act (G.lift g ws)) x

using mems by (auto simp add:act.hom-mult free-group-def in-
tro!:G.lift-closed)

also have . . . = act (G.lift g [w]) (act (G.lift g ws) x)
using mems by (auto simp add:BijGroup-def compose-def)

also have . . . /∈ act (G.lift g [w]) ‘ Xout ′ w
apply(rule ccontr)
apply simp
apply (erule imageE)
apply (subst (asm) inj-on-eq-iff [of act (G.lift g [w]) X])

using mems ‹act (G.lift g ws) x /∈ Xout ′ w› ‹∀ i∈I . Xout i ⊆ X›
‹∀ i∈I . Xin i ⊆ X›

apply (auto simp add:BijGroup-def Bij-def bij-betw-def free-group-def
Xout ′-def split:if-splits)

apply blast+
done

finally
have act (G.lift g (w # ws)) x ∈ Xin ′ w
proof−

assume act (G.lift g (w # ws)) x /∈ act (G.lift g [w]) ‘ Xout ′ w
hence act (G.lift g (w # ws)) x ∈ (X − act (G.lift g [w]) ‘ Xout ′ w)

using mems by auto
also have . . . ⊆ act (G.lift g [w]) ‘ X − act (G.lift g [w]) ‘ Xout ′ w

using ‹act (G.lift g [w]) ∈ carrier (BijGroup X)›

50

by (auto simp add:BijGroup-def Bij-def bij-betw-def)
also have . . . ⊆ act (G.lift g [w]) ‘ (X − Xout ′ w)

by (rule image-diff-subset)
also have ... ⊆ Xin ′ w
proof(cases fst w)

assume ¬ fst w
thus ?thesis

using mems
by (auto intro!: ping[rule-format, THEN subsetD] simp add:

Xout ′-def Xin ′-def G.lift-def G.lift-gi-def free-group-def)
next assume fst w

thus ?thesis
using mems

by (auto intro!: pong[rule-format, THEN subsetD] simp add:
restrict-def inv-BijGroup Xout ′-def Xin ′-def G.lift-def G.lift-gi-def free-group-def)

qed
finally show ?thesis .

qed
thus ?thesis by simp

qed
qed

moreover assume G.lift g w = 1G
ultimately show w = 1FI

using ‹x∈X› Cons(1) x2 ‹w ∈ carrier FI›
by (cases w, auto simp add:free-group-def Xin ′-def split:if-splits)

qed
next

Surjectivity is relatively simple, and often not even mentioned in human proofs.

have G.lift g ‘ carrier FI =
G.lift g ‘ 〈ι ‘ I 〉FI

by (metis gens-span-free-group)
also have ... = 〈G.lift g ‘ (ι ‘ I) 〉G

by (auto intro!:h.hom-span simp add: insert-closed)
also have . . . = 〈g ‘ I 〉G

proof−
have ∀ i ∈ I . G.lift g (ι i) = g i

using ‹g ∈ (I → carrier G)›
by (auto simp add:insert-def G.lift-def G.lift-gi-def intro:G.r-one)

then have G.lift g ‘ (ι ‘ I) = g ‘ I
by (auto intro!: image-cong simp add: image-comp [symmetric, THEN

sym])
thus ?thesis by simp

qed
also have . . . = carrier G using assms by simp
finally show G.lift g ‘ carrier FI = carrier G.

qed
qed

51

end

52

	Cancelation of words of generators and their inverses
	Auxiliary results
	Auxiliary results about relations

	Definition of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 canceling relation
	Simple results about canceling

	Definition of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cancels-to relation
	Existence of the normal form
	Some properties of cancelation

	Definition of normalization
	Normalization preserves generators
	Normalization and renaming generators

	Generators
	The subgroup generated by a set
	Generators and homomorphisms
	Sets of generators
	Product of a list of group elements
	Isomorphisms

	The Free Group
	Inversion
	The definition
	The universal property

	The Unit Group
	The group C2
	Isomorphisms of Free Groups
	The Free Group over the empty set
	The Free Group over one generator
	Free Groups over isomorphic sets of generators
	Bases of isomorphic free groups

	The Ping Pong lemma

