
Formal Puiseux Series

Manuel Eberl

March 17, 2025

Abstract

Formal Puiseux series are generalisations of formal power series and
formal Laurent series that also allow for fractional exponents. They
have the following general form:

∞∑
i=N

ai/dX
i/d

where N is an integer and d is a positive integer.
This entry defines these series including their basic algebraic prop-

erties. Furthermore, it proves the Newton–Puiseux Theorem, namely
that the Puiseux series over an algebraically closed field of character-
istic 0 are also algebraically closed.

1

Contents
1 Auxiliary material 3

1.1 Facts about polynomials . 3
1.2 A typeclass for algebraically closed fields 3

2 Hensel’s lemma for formal power series 10

3 Formal Puiseux Series 19
3.1 Auxiliary facts and definitions 19
3.2 Definition . 21
3.3 Basic algebraic typeclass instances 23
3.4 The substitution X 7→ Xr . 27
3.5 Mutiplication and ring properties 32
3.6 Constant Puiseux series and the series X 36
3.7 More algebraic typeclass instances 37
3.8 Valuation . 38
3.9 Powers of X and shifting . 43
3.10 The n-th root of a Puiseux series 46
3.11 Algebraic closedness . 48
3.12 Metric and topology . 56

2

1 Auxiliary material
1.1 Facts about polynomials
theory Puiseux-Polynomial-Library
imports HOL−Computational-Algebra.Computational-Algebra Polynomial-Interpolation.Ring-Hom-Poly

begin

lemma inj-idom-hom-compose [intro]:
assumes inj-idom-hom f inj-idom-hom g
shows inj-idom-hom (f ◦ g)

proof −
interpret f : inj-idom-hom f by fact
interpret g: inj-idom-hom g by fact
show ?thesis

by unfold-locales (auto simp: f .hom-add g.hom-add f .hom-mult g.hom-mult)
qed

lemma (in inj-idom-hom) inj-idom-hom-map-poly [intro]: inj-idom-hom (map-poly
hom)
proof −

interpret map-poly-inj-idom-hom hom by unfold-locales
show ?thesis

by (simp add: inj-idom-hom-axioms)
qed

lemma inj-idom-hom-pcompose [intro]:
assumes [simp]: degree (p :: ′a :: idom poly) 6= 0
shows inj-idom-hom (λq. pcompose q p)

proof
show

∧
x. x ◦p p = 0 =⇒ x = 0

using pcompose-eq-0 assms by blast
qed

1.2 A typeclass for algebraically closed fields

Since the required sort constraints are not available inside the class, we
have to resort to a somewhat awkward way of writing the definition of
algebraically closed fields:
class alg-closed-field = field +

assumes alg-closed: n > 0 =⇒ f n 6= 0 =⇒ ∃ x. (
∑

k≤n. f k ∗ x ^ k) = 0

We can then however easily show the equivalence to the proper definition:
lemma alg-closed-imp-poly-has-root:

assumes degree (p :: ′a :: alg-closed-field poly) > 0
shows ∃ x. poly p x = 0

proof −
have ∃ x. (

∑
k≤degree p. coeff p k ∗ x ^ k) = 0

using assms by (intro alg-closed) auto

3

thus ?thesis
by (simp add: poly-altdef)

qed

lemma alg-closedI [Pure.intro]:
assumes

∧
p :: ′a poly. degree p > 0 =⇒ lead-coeff p = 1 =⇒ ∃ x. poly p x = 0

shows OFCLASS(′a :: field, alg-closed-field-class)
proof

fix n :: nat and f :: nat ⇒ ′a
assume n: n > 0 f n 6= 0
define p where p = Abs-poly (λk. if k ≤ n then f k else 0)
have coeff-p: coeff p k = (if k ≤ n then f k else 0) for k
proof −

have eventually (λk. k > n) cofinite
by (auto simp: MOST-nat)

hence eventually (λk. (if k ≤ n then f k else 0) = 0) cofinite
by eventually-elim auto

thus ?thesis
unfolding p-def by (subst Abs-poly-inverse) auto

qed

from n have degree p ≥ n
by (intro le-degree) (auto simp: coeff-p)

moreover have degree p ≤ n
by (intro degree-le) (auto simp: coeff-p)

ultimately have deg-p: degree p = n
by linarith

from deg-p and n have [simp]: p 6= 0
by auto

define p ′ where p ′ = smult (inverse (lead-coeff p)) p
have deg-p ′: degree p ′ = degree p

by (auto simp: p ′-def)
have lead-coeff-p ′ [simp]: lead-coeff p ′ = 1

by (auto simp: p ′-def)

from deg-p and deg-p ′ and n have degree p ′ > 0
by simp

from assms[OF this] obtain x where poly p ′ x = 0
by auto

hence poly p x = 0
by (simp add: p ′-def)

also have poly p x = (
∑

k≤n. f k ∗ x ^ k)
unfolding poly-altdef by (intro sum.cong) (auto simp: deg-p coeff-p)

finally show ∃ x. (
∑

k≤n. f k ∗ x ^ k) = 0 ..
qed

We can now prove by induction that every polynomial of degree n splits into
a product of n linear factors:

4

lemma alg-closed-imp-factorization:
fixes p :: ′a :: alg-closed-field poly
assumes p 6= 0
shows ∃A. size A = degree p ∧ p = smult (lead-coeff p) (

∏
x∈#A. [:−x, 1 :])

using assms
proof (induction degree p arbitrary: p rule: less-induct)

case (less p)
show ?case
proof (cases degree p = 0)

case True
thus ?thesis

by (intro exI [of - {#}]) (auto elim!: degree-eq-zeroE)
next

case False
then obtain x where x: poly p x = 0

using alg-closed-imp-poly-has-root by blast
hence [:−x, 1 :] dvd p

using poly-eq-0-iff-dvd by blast
then obtain q where p-eq: p = [:−x, 1 :] ∗ q

by (elim dvdE)
have q 6= 0

using less.prems p-eq by auto
moreover from this have deg: degree p = Suc (degree q)

unfolding p-eq by (subst degree-mult-eq) auto
ultimately obtain A where A: size A = degree q q = smult (lead-coeff q)

(
∏

x∈#A. [:−x, 1 :])
using less.hyps[of q] by auto

have smult (lead-coeff p) (
∏

y∈#add-mset x A. [:− y, 1 :]) =
[:− x, 1 :] ∗ smult (lead-coeff q) (

∏
y∈#A. [:− y, 1 :])

unfolding p-eq lead-coeff-mult by simp
also note A(2) [symmetric]
also note p-eq [symmetric]
finally show ?thesis using A(1)

by (intro exI [of - add-mset x A]) (auto simp: deg)
qed

qed

As an alternative characterisation of algebraic closure, one can also say that
any polynomial of degree at least 2 splits into non-constant factors:
lemma alg-closed-imp-reducible:

assumes degree (p :: ′a :: alg-closed-field poly) > 1
shows ¬irreducible p

proof −
have degree p > 0

using assms by auto
then obtain z where z: poly p z = 0

using alg-closed-imp-poly-has-root[of p] by blast
then have dvd: [:−z, 1 :] dvd p

by (subst dvd-iff-poly-eq-0) auto

5

then obtain q where q: p = [:−z, 1 :] ∗ q
by (erule dvdE)

have [simp]: q 6= 0
using assms q by auto

show ?thesis
proof (rule reducible-polyI)

show p = [:−z, 1 :] ∗ q
by fact

next
have degree p = degree ([:−z, 1 :] ∗ q)

by (simp only: q)
also have . . . = degree q + 1

by (subst degree-mult-eq) auto
finally show degree q > 0

using assms by linarith
qed auto

qed

When proving algebraic closure through reducibility, we can assume w.l.o.g.
that the polynomial is monic and has a non-zero constant coefficient:
lemma alg-closedI-reducible:

assumes
∧

p :: ′a poly. degree p > 1 =⇒ lead-coeff p = 1 =⇒ coeff p 0 6= 0 =⇒
¬irreducible p

shows OFCLASS(′a :: field, alg-closed-field-class)
proof

fix p :: ′a poly assume p: degree p > 0 lead-coeff p = 1
show ∃ x. poly p x = 0
proof (cases coeff p 0 = 0)

case True
hence poly p 0 = 0

by (simp add: poly-0-coeff-0)
thus ?thesis by blast

next
case False
from p and this show ?thesis
proof (induction degree p arbitrary: p rule: less-induct)

case (less p)
show ?case
proof (cases degree p = 1)

case True
then obtain a b where p: p = [:a, b:]

by (cases p) (auto split: if-splits elim!: degree-eq-zeroE)
from True have [simp]: b 6= 0

by (auto simp: p)
have poly p (−a/b) = 0

by (auto simp: p)
thus ?thesis by blast

next

6

case False
hence degree p > 1

using less.prems by auto
from assms[OF ‹degree p > 1 › ‹lead-coeff p = 1 › ‹coeff p 0 6= 0 ›]
have ¬irreducible p by auto
then obtain r s where rs: degree r > 0 degree s > 0 p = r ∗ s

using less.prems by (auto simp: irreducible-def)
hence coeff r 0 6= 0

using ‹coeff p 0 6= 0 › by (auto simp: coeff-mult-0)

define r ′ where r ′ = smult (inverse (lead-coeff r)) r
have [simp]: degree r ′ = degree r

by (simp add: r ′-def)
have lc: lead-coeff r ′ = 1

using rs by (auto simp: r ′-def)
have nz: coeff r ′ 0 6= 0

using ‹coeff r 0 6= 0 › by (auto simp: r ′-def)

have degree r < degree r + degree s
using rs by linarith

also have . . . = degree (r ∗ s)
using rs(3) less.prems by (subst degree-mult-eq) auto

also have r ∗ s = p
using rs(3) by simp

finally have ∃ x. poly r ′ x = 0
by (intro less) (use lc rs nz in auto)

thus ?thesis
using rs(3) by (auto simp: r ′-def)

qed
qed

qed
qed

Using a clever Tschirnhausen transformation mentioned e.g. in the article
by Nowak [2], we can also assume w.l.o.g. that the coefficient an−1 is zero.
lemma alg-closedI-reducible-coeff-deg-minus-one-eq-0 :

assumes
∧

p :: ′a poly. degree p > 1 =⇒ lead-coeff p = 1 =⇒ coeff p (degree p
− 1) = 0 =⇒

coeff p 0 6= 0 =⇒ ¬irreducible p
shows OFCLASS(′a :: field-char-0 , alg-closed-field-class)

proof (rule alg-closedI-reducible, goal-cases)
case (1 p)
define n where [simp]: n = degree p
define a where a = coeff p (n − 1)
define r where r = [: −a / of-nat n, 1 :]
define s where s = [: a / of-nat n, 1 :]
define q where q = pcompose p r

have n > 0

7

using 1 by simp
have r-altdef : r = monom 1 1 + [:−a / of-nat n:]

by (simp add: r-def monom-altdef)
have deg-q: degree q = n

by (simp add: q-def r-def)
have lc-q: lead-coeff q = 1

unfolding q-def using 1 by (subst lead-coeff-comp) (simp-all add: r-def)
have q 6= 0

using 1 deg-q by auto

have coeff q (n − 1) =
(
∑

i≤n.
∑

k≤i. coeff p i ∗ (of-nat (i choose k) ∗
((−a / of-nat n) ^ (i − k) ∗ (if k = n − 1 then 1 else 0))))

unfolding q-def pcompose-altdef poly-altdef r-altdef
by (simp-all add: degree-map-poly coeff-map-poly coeff-sum binomial-ring sum-distrib-left

poly-const-pow
sum-distrib-right mult-ac monom-power coeff-monom-mult of-nat-poly

cong: if-cong)
also have . . . = (

∑
i≤n.

∑
k∈(if i ≥ n − 1 then {n−1} else {}).

coeff p i ∗ (of-nat (i choose k) ∗ (−a / of-nat n) ^ (i − k)))
by (rule sum.cong [OF refl], rule sum.mono-neutral-cong-right) (auto split:

if-splits)
also have . . . = (

∑
i∈{n−1 ,n}.

∑
k∈(if i ≥ n − 1 then {n−1} else {}).

coeff p i ∗ (of-nat (i choose k) ∗ (−a / of-nat n) ^ (i − k)))
by (rule sum.mono-neutral-right) auto

also have . . . = a − of-nat (n choose (n − 1)) ∗ a / of-nat n
using 1 by (simp add: a-def)

also have n choose (n − 1) = n
using ‹n > 0 › by (subst binomial-symmetric) auto

also have a − of-nat n ∗ a / of-nat n = 0
using ‹n > 0 › by simp

finally have coeff q (n − 1) = 0 .

show ?case
proof (cases coeff q 0 = 0)

case True
hence poly p (− (a / of-nat (degree p))) = 0

by (auto simp: q-def r-def)
thus ?thesis

by (rule root-imp-reducible-poly) (use 1 in auto)
next

case False
hence ¬irreducible q

using assms[of q] and lc-q and 1 and ‹coeff q (n − 1) = 0 ›
by (auto simp: deg-q)

then obtain u v where uv: degree u > 0 degree v > 0 q = u ∗ v
using ‹q 6= 0 › 1 deg-q by (auto simp: irreducible-def)

have p = pcompose q s

8

by (simp add: q-def r-def s-def flip: pcompose-assoc)
also have q = u ∗ v

by fact
finally have p = pcompose u s ∗ pcompose v s

by (simp add: pcompose-mult)
moreover have degree (pcompose u s) > 0 degree (pcompose v s) > 0

using uv by (simp-all add: s-def)
ultimately show ¬irreducible p

using 1 by (intro reducible-polyI)
qed

qed

As a consequence of the full factorisation lemma proven above, we can also
show that any polynomial with at least two different roots splits into two
non-constant coprime factors:
lemma alg-closed-imp-poly-splits-coprime:

assumes degree (p :: ′a :: {alg-closed-field} poly) > 1
assumes poly p x = 0 poly p y = 0 x 6= y
obtains r s where degree r > 0 degree s > 0 coprime r s p = r ∗ s

proof −
define n where n = order x p
have n > 0

using assms by (metis degree-0 gr0I n-def not-one-less-zero order-root)
have [:−x, 1 :] ^ n dvd p

unfolding n-def by (simp add: order-1)
then obtain q where p-eq: p = [:−x, 1 :] ^ n ∗ q

by (elim dvdE)
from assms have [simp]: q 6= 0

by (auto simp: p-eq)
have order x p = n + Polynomial.order x q

unfolding p-eq by (subst order-mult) (auto simp: order-power-n-n)
hence Polynomial.order x q = 0

by (simp add: n-def)
hence poly q x 6= 0

by (simp add: order-root)

show ?thesis
proof (rule that)

show coprime ([:−x, 1 :] ^ n) q
proof (rule coprimeI)

fix d
assume d: d dvd [:−x, 1 :] ^ n d dvd q
have degree d = 0
proof (rule ccontr)

assume ¬(degree d = 0)
then obtain z where z: poly d z = 0

using alg-closed-imp-poly-has-root by blast
moreover from this and d(1) have poly ([:−x, 1 :] ^ n) z = 0

using dvd-trans poly-eq-0-iff-dvd by blast

9

ultimately have poly d x = 0
by auto

with d(2) have poly q x = 0
using dvd-trans poly-eq-0-iff-dvd by blast

with ‹poly q x 6= 0 › show False by contradiction
qed
thus is-unit d using d

by auto
qed

next
have poly q y = 0

using ‹poly p y = 0 › ‹x 6= y› by (auto simp: p-eq)
with ‹q 6= 0 › show degree q > 0

using poly-zero by blast
qed (use ‹n > 0 › in ‹simp-all add: p-eq degree-power-eq›)

qed

instance complex :: alg-closed-field
by standard (use constant-degree fundamental-theorem-of-algebra neq0-conv in

blast)

end

2 Hensel’s lemma for formal power series
theory FPS-Hensel
imports HOL−Computational-Algebra.Computational-Algebra Puiseux-Polynomial-Library

begin

The following proof of Hensel’s lemma for formal power series follows the
book “Algebraic Geometry for Scientists and Engineers” by Abhyankar [1,
p. 90–92].
definition fps-poly-swap1 :: ′a :: zero fps poly ⇒ ′a poly fps where

fps-poly-swap1 p = Abs-fps (λm. Abs-poly (λn. fps-nth (coeff p n) m))

lemma coeff-fps-nth-fps-poly-swap1 [simp]:
coeff (fps-nth (fps-poly-swap1 p) m) n = fps-nth (coeff p n) m

proof −
have ∀∞n. poly.coeff p n = 0

using MOST-coeff-eq-0 by blast
hence ∀∞n. poly.coeff p n $ m = 0

by eventually-elim auto
thus ?thesis

by (simp add: fps-poly-swap1-def poly.Abs-poly-inverse)
qed

definition fps-poly-swap2 :: ′a :: zero poly fps ⇒ ′a fps poly where
fps-poly-swap2 p = Abs-poly (λm. Abs-fps (λn. coeff (fps-nth p n) m))

10

lemma fps-nth-coeff-fps-poly-swap2 :
assumes

∧
n. degree (fps-nth p n) ≤ d

shows fps-nth (coeff (fps-poly-swap2 p) m) n = coeff (fps-nth p n) m
proof −

have ∀∞n. n > d
using MOST-nat by blast

hence ∀∞n. (λm. poly.coeff (p $ m) n) = (λ-. 0)
by eventually-elim (auto simp: fun-eq-iff intro!: coeff-eq-0 le-less-trans[OF

assms(1)])
hence ev: ∀∞n. Abs-fps (λm. poly.coeff (p $ m) n) = 0

by eventually-elim (simp add: fps-zero-def)

have fps-nth (coeff (fps-poly-swap2 p) m) n =
poly.coeff (Abs-poly (λm. Abs-fps (λn. poly.coeff (p $ n) m))) m $ n

by (simp add: fps-poly-swap2-def)
also have . . . = Abs-fps (λn. poly.coeff (p $ n) m) $ n

using ev by (subst poly.Abs-poly-inverse) auto
finally show fps-nth (coeff (fps-poly-swap2 p) m) n = coeff (fps-nth p n) m

by simp
qed

lemma degree-fps-poly-swap2-le:
assumes

∧
n. degree (fps-nth p n) ≤ d

shows degree (fps-poly-swap2 p) ≤ d
proof (safe intro!: degree-le)

fix n assume n > d
show poly.coeff (fps-poly-swap2 p) n = 0
proof (rule fps-ext)

fix m
have poly.coeff (fps-poly-swap2 p) n $ m = poly.coeff (p $ m) n

by (subst fps-nth-coeff-fps-poly-swap2 [OF assms]) auto
also have . . . = 0

by (intro coeff-eq-0 le-less-trans[OF assms ‹n > d›])
finally show poly.coeff (fps-poly-swap2 p) n $ m = 0 $ m

by simp
qed

qed

lemma degree-fps-poly-swap2-eq:
assumes

∧
n. degree (fps-nth p n) ≤ d

assumes d > 0 ∨ fps-nth p n 6= 0
assumes degree (fps-nth p n) = d
shows degree (fps-poly-swap2 p) = d

proof (rule antisym)
have fps-nth (coeff (fps-poly-swap2 p) d) n = poly.coeff (fps-nth p n) d

by (subst fps-nth-coeff-fps-poly-swap2 [OF assms(1)]) auto
also have . . . 6= 0

using assms(2 ,3) by force

11

finally have coeff (fps-poly-swap2 p) d 6= 0
by force

thus degree (fps-poly-swap2 p) ≥ d
using le-degree by blast

next
show degree (fps-poly-swap2 p) ≤ d

by (intro degree-fps-poly-swap2-le) fact
qed

definition reduce-fps-poly :: ′a :: zero fps poly ⇒ ′a poly where
reduce-fps-poly F = fps-nth (fps-poly-swap1 F) 0

lemma
fixes F :: ′a :: field fps poly
assumes lead-coeff F = 1
shows degree-reduce-fps-poly-monic: degree (reduce-fps-poly F) = degree F

and reduce-fps-poly-monic: lead-coeff (reduce-fps-poly F) = 1
proof −

have eq1 : coeff (reduce-fps-poly F) (degree F) = 1
unfolding reduce-fps-poly-def by (simp add: assms)

have eq2 : coeff (reduce-fps-poly F) n = 0 if n > degree F for n
unfolding reduce-fps-poly-def using that by (simp add: coeff-eq-0)

have degree (reduce-fps-poly F) ≤ degree F
by (rule degree-le) (auto simp: eq2)

moreover have degree (reduce-fps-poly F) ≥ degree F
by (rule le-degree) (simp add: eq1)

from eq1 eq2 show degree (reduce-fps-poly F) = degree F
by (intro antisym le-degree degree-le) auto

with eq1 show lead-coeff (reduce-fps-poly F) = 1
by simp

qed

locale fps-hensel-aux =
fixes F :: ′a :: field-gcd poly fps
fixes g h :: ′a poly
assumes coprime: coprime g h and deg-g: degree g > 0 and deg-h: degree h > 0

begin

context
fixes g ′ h ′ :: ′a poly
defines h ′ ≡ fst (bezout-coefficients g h) and g ′ ≡ snd (bezout-coefficients g h)

begin

fun hensel-fpxs-aux :: nat ⇒ ′a poly × ′a poly where
hensel-fpxs-aux n = (if n = 0 then (g, h) else

(let
U = fps-nth F n −

(
∑

(i,j) | i < n ∧ j < n ∧ i + j = n. fst (hensel-fpxs-aux i) ∗ snd

12

(hensel-fpxs-aux j))
in (U ∗ g ′ + g ∗ ((U ∗ h ′) div h), (U ∗ h ′) mod h)))

lemmas [simp del] = hensel-fpxs-aux.simps

lemma hensel-fpxs-aux-0 [simp]: hensel-fpxs-aux 0 = (g, h)
by (subst hensel-fpxs-aux.simps) auto

definition hensel-fpxs1 :: ′a poly fps
where hensel-fpxs1 = Abs-fps (fst ◦ hensel-fpxs-aux)

definition hensel-fpxs2 :: ′a poly fps
where hensel-fpxs2 = Abs-fps (snd ◦ hensel-fpxs-aux)

lemma hensel-fpxs1-0 [simp]: hensel-fpxs1 $ 0 = g
by (simp add: hensel-fpxs1-def)

lemma hensel-fpxs2-0 [simp]: hensel-fpxs2 $ 0 = h
by (simp add: hensel-fpxs2-def)

theorem fps-hensel-aux:
defines f ≡ fps-nth F 0
assumes f = g ∗ h
assumes ∀n>0 . degree (fps-nth F n) < degree f
defines G ≡ hensel-fpxs1 and H ≡ hensel-fpxs2
shows F = G ∗ H fps-nth G 0 = g fps-nth H 0 = h

∀n>0 . degree (fps-nth G n) < degree g
∀n>0 . degree (fps-nth H n) < degree h

proof −
show fps-nth G 0 = g fps-nth H 0 = h

by (simp-all add: G-def H-def hensel-fpxs1-def hensel-fpxs2-def)

have deg-f : degree f = degree g + degree h
unfolding ‹f = g ∗ h› using assms by (intro degree-mult-eq) auto

have deg-H : degree (fps-nth H n) < degree h if ‹n > 0 › for n
proof (cases snd (hensel-fpxs-aux n) = 0)

case False
thus ?thesis

using deg-h ‹n > 0 ›
by (auto simp: hensel-fpxs-aux.simps[of n] hensel-fpxs2-def H-def intro: de-

gree-mod-less ′)
qed (use assms deg-h in ‹auto simp: hensel-fpxs2-def ›)
thus ∀n>0 . degree (fps-nth H n) < degree h

by blast

have ∗: fps-nth F n = fps-nth (G ∗ H) n ∧ (n > 0 −→ degree (fps-nth G n) <
degree g) for n

proof (induction n rule: less-induct)

13

case (less n)
have fin: finite {p. fst p < n ∧ snd p < n ∧ fst p + snd p = n}

by (rule finite-subset[of - {..n} × {..n}]) auto
show ?case
proof (cases n = 0)

case True
thus ?thesis using assms

by (auto simp: hensel-fpxs1-def hensel-fpxs2-def)
next

case False
define U where U = fps-nth F n −

(
∑

(i,j) | i < n ∧ j < n ∧ i + j = n. fst (hensel-fpxs-aux i) ∗ snd
(hensel-fpxs-aux j))

define g ′′ h ′′ where g ′′ = U ∗ g ′ and h ′′ = U ∗ h ′

have fps-nth (G ∗ H) n =
(
∑

i=0 ..n. fst (hensel-fpxs-aux i) ∗ snd (hensel-fpxs-aux (n − i)))
using assms by (auto simp: hensel-fpxs1-def hensel-fpxs2-def fps-mult-nth)

also have . . . = (
∑

(i,j) | i + j = n. fst (hensel-fpxs-aux i) ∗ snd (hensel-fpxs-aux
j))

by (rule sum.reindex-bij-witness[of - fst λi. (i, n − i)]) auto
also have {(i,j). i + j = n} = {(i,j). i < n ∧ j < n ∧ i + j = n} ∪ {(n,0),

(0 ,n)}
by auto

also have (
∑

(i,j)∈. . . . fst (hensel-fpxs-aux i) ∗ snd (hensel-fpxs-aux j)) =
fps-nth F n − U + (fst (hensel-fpxs-aux n) ∗ h + g ∗ snd (hensel-fpxs-aux

n))
using False fin by (subst sum.union-disjoint) (auto simp: case-prod-unfold

U-def)
also have eq: fst (hensel-fpxs-aux n) ∗ h + g ∗ snd (hensel-fpxs-aux n) = U
proof −

have fst (hensel-fpxs-aux n) ∗ h + g ∗ snd (hensel-fpxs-aux n) =
(g ′′ + g ∗ (h ′′ div h)) ∗ h + g ∗ (h ′′ mod h)

using False by (simp add: hensel-fpxs-aux.simps[of n] U-def g ′′-def h ′′-def)
also have h ′′ mod h = h ′′ − (h ′′ div h) ∗ h

by (simp add: minus-div-mult-eq-mod)
also have (g ′′ + g ∗ (h ′′ div h)) ∗ h + g ∗ (h ′′ − h ′′ div h ∗ h) = g ∗ h ′′

+ g ′′ ∗ h
by (simp add: algebra-simps)

also have . . . = U ∗ (h ′ ∗ g + g ′ ∗ h)
by (simp add: algebra-simps g ′′-def h ′′-def)

also have h ′ ∗ g + g ′ ∗ h = gcd g h
unfolding g ′-def h ′-def by (rule bezout-coefficients-fst-snd)

also have gcd g h = 1
using coprime by simp

finally show ?thesis by simp
qed
finally have fps-nth F n = fps-nth (G ∗ H) n by simp

14

have degree (G $ n) < degree g
proof (cases G $ n = 0)

case False
have degree (G $ n) + degree h = degree (G $ n ∗ h)

using False assms by (intro degree-mult-eq [symmetric]) auto
also from eq have fps-nth G n ∗ h = U − g ∗ snd (hensel-fpxs-aux n)

by (simp add: algebra-simps G-def hensel-fpxs1-def)
hence degree (fps-nth G n ∗ h) = degree (U − g ∗ snd (hensel-fpxs-aux n))

by (simp only:)
also have . . . < degree f
proof (intro degree-diff-less)

have degree (g ∗ snd (local.hensel-fpxs-aux n)) ≤
degree g + degree (snd (local.hensel-fpxs-aux n))

by (intro degree-mult-le)
also have degree (snd (local.hensel-fpxs-aux n)) < degree h

using deg-H [of n] ‹n 6= 0 › by (auto simp: H-def hensel-fpxs2-def)
also have degree g + degree h = degree f

by (subst deg-f) auto
finally show degree (g ∗ snd (local.hensel-fpxs-aux n)) < degree f

by simp
next

show degree U < degree f
unfolding U-def

proof (intro degree-diff-less degree-sum-less)
show degree (F $ n) < degree f

using ‹n 6= 0 › assms by auto
next

show degree f > 0
unfolding deg-f using deg-g by simp

next
fix z assume z: z ∈ {(i, j). i < n ∧ j < n ∧ i + j = n}

have degree (case z of (i, j)⇒ fst (hensel-fpxs-aux i) ∗ snd (hensel-fpxs-aux
j)) =

degree (fps-nth G (fst z) ∗ fps-nth H (snd z)) (is ?lhs = -)
by (simp add: case-prod-unfold G-def H-def hensel-fpxs1-def hensel-fpxs2-def)

also have . . . ≤ degree (fps-nth G (fst z)) + degree (fps-nth H (snd z))
by (intro degree-mult-le)

also have . . . < degree g + degree h
using z less.IH [of fst z]
by (intro add-strict-mono deg-H) (simp-all add: case-prod-unfold)

finally show ?lhs < degree f
by (simp add: deg-f)

qed
qed
finally show ?thesis

by (simp add: deg-f)
qed (use deg-g in auto)

with ‹fps-nth F n = fps-nth (G ∗ H) n› show ?thesis

15

by blast
qed

qed

from ∗ show F = G ∗ H and ∀n>0 . degree (fps-nth G n) < degree g
by (auto simp: fps-eq-iff)

qed

end

end

locale fps-hensel =
fixes F :: ′a :: field-gcd fps poly and f g h :: ′a poly
assumes monic: lead-coeff F = 1
defines f ≡ reduce-fps-poly F
assumes f-splits: f = g ∗ h
assumes coprime: coprime g h and deg-g: degree g > 0 and deg-h: degree h > 0

begin

definition F ′ where F ′ = fps-poly-swap1 F

sublocale fps-hensel-aux F ′ g h
by unfold-locales (fact deg-g deg-h coprime)+

definition G where
G = fps-poly-swap2 hensel-fpxs1

definition H where
H = fps-poly-swap2 hensel-fpxs2

lemma deg-f : degree f = degree F
proof (intro antisym)

have coeff f (degree F) 6= 0
using monic by (simp add: f-def reduce-fps-poly-def)

thus degree f ≥ (degree F)
by (rule le-degree)

next
have coeff f n = 0 if n > degree F for n

using that by (simp add: f-def reduce-fps-poly-def coeff-eq-0)
thus degree f ≤ degree F

using degree-le by blast
qed

lemma
F-splits: F = G ∗ H and
reduce-G: reduce-fps-poly G = g and

16

reduce-H : reduce-fps-poly H = h and
deg-G: degree G = degree g and
deg-H : degree H = degree h and
lead-coeff-G: lead-coeff G = fps-const (lead-coeff g) and
lead-coeff-H : lead-coeff H = fps-const (lead-coeff h)

proof −
from deg-g deg-h have [simp]: g 6= 0 h 6= 0

by auto
define N where N = degree F

have deg-f : degree f = N
proof (intro antisym)

have coeff f N 6= 0
using monic by (simp add: f-def reduce-fps-poly-def N-def)

thus degree f ≥ N
by (rule le-degree)

next
have coeff f n = 0 if n > N for n

using that by (simp add: f-def reduce-fps-poly-def N-def coeff-eq-0)
thus degree f ≤ N

using degree-le by blast
qed

have F ′ $ 0 = f
unfolding F ′-def f-def reduce-fps-poly-def ..

have F ′0 : F ′ $ 0 = g ∗ h
using f-splits by (simp add: F ′-def f-def reduce-fps-poly-def)

have ∀n>0 . degree (F ′ $ n) < N
proof (subst F ′-def , intro allI impI degree-lessI)

fix n :: nat
assume n: n > 0
show fps-poly-swap1 F $ n 6= 0 ∨ 0 < N

using n deg-g deg-h f-splits deg-f by (auto simp: F ′0 degree-mult-eq)
fix k
assume k: k ≥ N
have coeff (F ′ $ n) k = coeff F k $ n

unfolding F ′-def by simp
also have . . .= 0

using monic ‹n > 0 › k by (cases k > N) (auto simp: N-def coeff-eq-0)
finally show coeff (fps-poly-swap1 F $ n) k = 0

by (simp add: F ′-def)
qed
hence degs-less: ∀n>0 . degree (F ′ $ n) < degree (F ′ $ 0)

by (simp add: ‹F ′ $ 0 = f › deg-f)
note hensel = fps-hensel-aux[OF F ′0 degs-less]

have deg-less1 : degree (hensel-fpxs1 $ n) < degree g if n > 0 for n
using hensel(4) that by (simp add: F ′-def)

17

have deg-le1 : degree (hensel-fpxs1 $ n) ≤ degree g for n
proof (cases n = 0)

case True
hence hensel-fpxs1 $ n = g

by (simp add: hensel-fpxs1-def)
thus ?thesis by simp

qed (auto intro: less-imp-le deg-less1 simp: f-def)

have deg-less2 : degree (hensel-fpxs2 $ n) < degree h if n > 0 for n
using hensel(5) that by (simp add: F ′-def)

have deg-le2 : degree (hensel-fpxs2 $ n) ≤ degree h for n
proof (cases n = 0)

case True
hence hensel-fpxs2 $ n = h

by (simp add: hensel-fpxs2-def)
thus ?thesis by simp

qed (auto intro: less-imp-le deg-less2 simp: f-def)

show F = G ∗ H
unfolding poly-eq-iff fps-eq-iff

proof safe
fix n k
have poly.coeff F n $ k = poly.coeff (F ′ $ k) n

unfolding F ′-def by simp
also have F ′ = hensel-fpxs1 ∗ hensel-fpxs2

by (rule hensel)
also have . . . $ k = (

∑
i=0 ..k. hensel-fpxs1 $ i ∗ hensel-fpxs2 $ (k − i))

unfolding fps-mult-nth ..
also have poly.coeff . . . n =

(
∑

i=0 ..k.
∑

j≤n. coeff (hensel-fpxs1 $ i) j ∗ coeff (hensel-fpxs2 $
(k − i)) (n − j))

by (simp add: coeff-sum coeff-mult)
also have (λi j. coeff (hensel-fpxs1 $ i) j) = (λi j. coeff G j $ i)

unfolding G-def
by (subst fps-nth-coeff-fps-poly-swap2 [OF deg-le1]) (auto simp: F ′-def)

also have (λi j. coeff (hensel-fpxs2 $ i) j) = (λi j. coeff H j $ i)
unfolding H-def
by (subst fps-nth-coeff-fps-poly-swap2 [OF deg-le2]) (auto simp: F ′-def)

also have (
∑

i=0 ..k.
∑

j≤n. poly.coeff G j $ i ∗ poly.coeff H (n − j) $ (k −
i)) =

(
∑

j≤n.
∑

i=0 ..k. poly.coeff G j $ i ∗ poly.coeff H (n − j) $ (k − i))
by (rule sum.swap)

also have . . . = poly.coeff (G ∗ H) n $ k
by (simp add: coeff-mult fps-mult-nth fps-sum-nth)

finally show poly.coeff F n $ k = poly.coeff (G ∗ H) n $ k .
qed

show reduce-fps-poly G = g unfolding G-def reduce-fps-poly-def poly-eq-iff
by (auto simp: fps-nth-coeff-fps-poly-swap2 [OF deg-le1])

18

show reduce-fps-poly H = h unfolding H-def reduce-fps-poly-def poly-eq-iff
by (auto simp: fps-nth-coeff-fps-poly-swap2 [OF deg-le2])

show degree G = degree g unfolding G-def
by (rule degree-fps-poly-swap2-eq[where n = 0] deg-le1 disjI1 deg-g deg-le2)+

simp-all
show degree H = degree h unfolding H-def

by (rule degree-fps-poly-swap2-eq[where n = 0] deg-le1 disjI1 deg-h deg-le2)+
simp-all

show lead-coeff G = fps-const (lead-coeff g)
proof (rule fps-ext)

fix n ::nat
have lead-coeff G $ n = coeff (hensel-fpxs1 $ n) (degree G)

by (subst G-def , subst fps-nth-coeff-fps-poly-swap2 [OF deg-le1]) auto
also have . . . = (if n = 0 then lead-coeff g else 0)

by (auto simp: ‹degree G = degree g› intro: coeff-eq-0 deg-less1)
finally show lead-coeff G $ n = fps-const (lead-coeff g) $ n

by simp
qed

show lead-coeff H = fps-const (lead-coeff h)
proof (rule fps-ext)

fix n ::nat
have lead-coeff H $ n = coeff (hensel-fpxs2 $ n) (degree H)

by (subst H-def , subst fps-nth-coeff-fps-poly-swap2 [OF deg-le2]) auto
also have . . . = (if n = 0 then lead-coeff h else 0)

by (auto simp: ‹degree H = degree h› intro: coeff-eq-0 deg-less2)
finally show lead-coeff H $ n = fps-const (lead-coeff h) $ n

by simp
qed

qed

end

end

3 Formal Puiseux Series
theory Formal-Puiseux-Series

imports FPS-Hensel
begin

3.1 Auxiliary facts and definitions
lemma div-dvd-self :

fixes a b :: ′a :: {semidom-divide}
shows b dvd a =⇒ a div b dvd a
by (elim dvdE ; cases b = 0) simp-all

19

lemma quotient-of-int [simp]: quotient-of (of-int n) = (n, 1)
using Rat.of-int-def quotient-of-int by auto

lemma of-int-div-of-int-in-Ints-iff :
(of-int n / of-int m :: ′a :: field-char-0) ∈ � ←→ m = 0 ∨ m dvd n

proof
assume ∗: (of-int n / of-int m :: ′a) ∈ �
{

assume m 6= 0
from ∗ obtain k where k: (of-int n / of-int m :: ′a) = of-int k

by (auto elim!: Ints-cases)
hence of-int n = (of-int k ∗ of-int m :: ′a)

using ‹m 6= 0 › by (simp add: field-simps)
also have . . . = of-int (k ∗ m)

by simp
finally have n = k ∗ m

by (subst (asm) of-int-eq-iff)
hence m dvd n by auto

}
thus m = 0 ∨ m dvd n by blast

qed auto

lemma rat-eq-quotientD:
assumes r = rat-of-int a / rat-of-int b b 6= 0
shows fst (quotient-of r) dvd a snd (quotient-of r) dvd b

proof −
define a ′ b ′ where a ′ = fst (quotient-of r) and b ′ = snd (quotient-of r)
define d where d = gcd a b
have b ′ > 0

by (auto simp: b ′-def quotient-of-denom-pos ′)

have coprime a ′ b ′

by (rule quotient-of-coprime[of r]) (simp add: a ′-def b ′-def)
have r : r = rat-of-int a ′ / rat-of-int b ′

by (simp add: a ′-def b ′-def quotient-of-div)
from assms ‹b ′ > 0 › have rat-of-int (a ′ ∗ b) = rat-of-int (a ∗ b ′)

unfolding of-int-mult by (simp add: field-simps r)
hence eq: a ′ ∗ b = a ∗ b ′

by (subst (asm) of-int-eq-iff)

have a ′ dvd a ∗ b ′

by (simp flip: eq)
hence a ′ dvd a

by (subst (asm) coprime-dvd-mult-left-iff) fact
moreover have b ′ dvd a ′ ∗ b

by (simp add: eq)
hence b ′ dvd b

by (subst (asm) coprime-dvd-mult-right-iff) (use ‹coprime a ′ b ′› in ‹simp add:
coprime-commute›)

20

ultimately show fst (quotient-of r) dvd a snd (quotient-of r) dvd b
unfolding a ′-def b ′-def by blast+

qed

lemma quotient-of-denom-add-dvd:
snd (quotient-of (x + y)) dvd snd (quotient-of x) ∗ snd (quotient-of y)

proof −
define a b where a = fst (quotient-of x) and b = snd (quotient-of x)
define c d where c = fst (quotient-of y) and d = snd (quotient-of y)
have b > 0 d > 0

by (auto simp: b-def d-def quotient-of-denom-pos ′)
have xy: x = rat-of-int a / rat-of-int b y = rat-of-int c / rat-of-int d

unfolding a-def b-def c-def d-def by (simp-all add: quotient-of-div)

show snd (quotient-of (x + y)) dvd b ∗ d
proof (rule rat-eq-quotientD)

show x + y = rat-of-int (a ∗ d + c ∗ b) / rat-of-int (b ∗ d)
using ‹b > 0 › ‹d > 0 › by (simp add: field-simps xy)

qed (use ‹b > 0 › ‹d > 0 › in auto)
qed

lemma quotient-of-denom-diff-dvd:
snd (quotient-of (x − y)) dvd snd (quotient-of x) ∗ snd (quotient-of y)
using quotient-of-denom-add-dvd[of x −y]
by (simp add: rat-uminus-code Let-def case-prod-unfold)

definition supp :: (′a ⇒ (′b :: zero)) ⇒ ′a set where
supp f = f −‘ (−{0})

lemma supp-0 [simp]: supp (λ-. 0) = {}
and supp-const: supp (λ-. c) = (if c = 0 then {} else UNIV)
and supp-singleton [simp]: c 6= 0 =⇒ supp (λx. if x = d then c else 0) = {d}
by (auto simp: supp-def)

lemma supp-uminus [simp]: supp (λx. −f x :: ′a :: group-add) = supp f
by (auto simp: supp-def)

3.2 Definition

Similarly to formal power series R[[X]] and formal Laurent series R((X)),
we define the ring of formal Puiseux series R{{X}} as functions from the
rationals into a ring such that

1. the support is bounded from below, and

2. the denominators of the numbers in the support have a common mul-
tiple other than 0

21

One can also think of a formal Puiseux series in the paramter X as a formal
Laurent series in the parameter X1/d for some positive integer d. This is
often written in the following suggestive notation:

R{{X}} =
⋃
d≥1

R((X1/d))

Many operations will be defined in terms of this correspondence between
Puiseux and Laurent series, and many of the simple properties proven that
way.
definition is-fpxs :: (rat ⇒ ′a :: zero) ⇒ bool where

is-fpxs f ←→ bdd-below (supp f) ∧ (LCM r∈supp f . snd (quotient-of r)) 6= 0

typedef (overloaded) ′a fpxs = {f ::rat ⇒ ′a :: zero. is-fpxs f }
morphisms fpxs-nth Abs-fpxs
by (rule exI [of - λ-. 0]) (auto simp: is-fpxs-def supp-def)

setup-lifting type-definition-fpxs

lemma fpxs-ext: (
∧

r . fpxs-nth f r = fpxs-nth g r) =⇒ f = g
by transfer auto

lemma fpxs-eq-iff : f = g ←→ (∀ r . fpxs-nth f r = fpxs-nth g r)
by transfer auto

lift-definition fpxs-supp :: ′a :: zero fpxs ⇒ rat set is supp .

lemma fpxs-supp-altdef : fpxs-supp f = {x. fpxs-nth f x 6= 0}
by transfer (auto simp: supp-def)

The following gives us the “root order” of f i, i.e. the smallest positive integer
d such that f is in R((X1/p)).
lift-definition fpxs-root-order :: ′a :: zero fpxs ⇒ nat is
λf . nat (LCM r∈supp f . snd (quotient-of r)) .

lemma fpxs-root-order-pos [simp]: fpxs-root-order f > 0
proof transfer

fix f :: rat ⇒ ′a assume f : is-fpxs f
hence (LCM r∈supp f . snd (quotient-of r)) 6= 0

by (auto simp: is-fpxs-def)
moreover have (LCM r∈supp f . snd (quotient-of r)) ≥ 0

by simp
ultimately show nat (LCM r∈supp f . snd (quotient-of r)) > 0

by linarith
qed

lemma fpxs-root-order-nonzero [simp]: fpxs-root-order f 6= 0
using fpxs-root-order-pos[of f] by linarith

22

Let d denote the root order of a Puiseux series f, i.e. the smallest number d
such that all monomials with non-zero coefficients can be written in the form
Xn/d for some n. Then f can be written as a Laurent series in X^{1/d}.
The following operation gives us this Laurent series.
lift-definition fls-of-fpxs :: ′a :: zero fpxs ⇒ ′a fls is
λf n. f (of-int n / of-int (LCM r∈supp f . snd (quotient-of r)))

proof −
fix f :: rat ⇒ ′a
assume f : is-fpxs f
hence bdd-below (supp f)

by (auto simp: is-fpxs-def)
then obtain r0 where ∀ x∈supp f . r0 ≤ x

by (auto simp: bdd-below-def)
hence r0 : f x = 0 if x < r0 for x

using that by (auto simp: supp-def vimage-def)
define d :: int where d = (LCM r∈supp f . snd (quotient-of r))
have d ≥ 0 by (simp add: d-def)
moreover have d 6= 0

using f by (auto simp: d-def is-fpxs-def)
ultimately have d > 0 by linarith

have ∗: f (of-int n / of-int d) = 0 if n < br0 ∗ of-int dc for n
proof −

have rat-of-int n < r0 ∗ rat-of-int d
using that by linarith

thus ?thesis
using ‹d > 0 › by (intro r0) (auto simp: field-simps)

qed
have eventually (λn. n > −br0 ∗ of-int dc) at-top

by (rule eventually-gt-at-top)
hence eventually (λn. f (of-int (−n) / of-int d) = 0) at-top

by (eventually-elim) (rule ∗, auto)
hence eventually (λn. f (of-int (−int n) / of-int d) = 0) at-top

by (rule eventually-compose-filterlim) (rule filterlim-int-sequentially)
thus eventually (λn. f (of-int (−int n) / of-int d) = 0) cofinite

by (simp add: cofinite-eq-sequentially)
qed

lemma fls-nth-of-fpxs:
fls-nth (fls-of-fpxs f) n = fpxs-nth f (of-int n / of-nat (fpxs-root-order f))
by transfer simp

3.3 Basic algebraic typeclass instances
instantiation fpxs :: (zero) zero
begin

lift-definition zero-fpxs :: ′a fpxs is λr ::rat. 0 :: ′a
by (auto simp: is-fpxs-def supp-def)

23

instance ..

end

instantiation fpxs :: ({one, zero}) one
begin

lift-definition one-fpxs :: ′a fpxs is λr ::rat. if r = 0 then 1 else 0 :: ′a
by (cases (1 :: ′a) = 0) (auto simp: is-fpxs-def cong: if-cong)

instance ..

end

lemma fls-of-fpxs-0 [simp]: fls-of-fpxs 0 = 0
by transfer auto

lemma fpxs-nth-0 [simp]: fpxs-nth 0 r = 0
by transfer auto

lemma fpxs-nth-1 : fpxs-nth 1 r = (if r = 0 then 1 else 0)
by transfer auto

lemma fpxs-nth-1 ′: fpxs-nth 1 0 = 1 r 6= 0 =⇒ fpxs-nth 1 r = 0
by (auto simp: fpxs-nth-1)

instantiation fpxs :: (monoid-add) monoid-add
begin

lift-definition plus-fpxs :: ′a fpxs ⇒ ′a fpxs ⇒ ′a fpxs is
λf g x. f x + g x

proof −
fix f g :: rat ⇒ ′a
assume fg: is-fpxs f is-fpxs g
show is-fpxs (λx. f x + g x)

unfolding is-fpxs-def
proof

have supp: supp (λx. f x + g x) ⊆ supp f ∪ supp g
by (auto simp: supp-def)

show bdd-below (supp (λx. f x + g x))
by (rule bdd-below-mono[OF - supp]) (use fg in ‹auto simp: is-fpxs-def ›)

have (LCM r∈supp (λx. f x + g x). snd (quotient-of r)) dvd
(LCM r∈supp f ∪ supp g. snd (quotient-of r))

by (intro Lcm-subset image-mono supp)
also have . . . = lcm (LCM r∈supp f . snd (quotient-of r)) (LCM r∈supp g.

snd (quotient-of r))
unfolding image-Un Lcm-Un ..

finally have (LCM r∈supp (λx. f x + g x). snd (quotient-of r)) dvd

24

lcm (LCM r∈supp f . snd (quotient-of r)) (LCM r∈supp g. snd
(quotient-of r)) .

moreover have lcm (LCM r∈supp f . snd (quotient-of r)) (LCM r∈supp g. snd
(quotient-of r)) 6= 0

using fg by (auto simp: is-fpxs-def)
ultimately show (LCM r∈supp (λx. f x + g x). snd (quotient-of r)) 6= 0

by auto
qed

qed

instance
by standard (transfer ; simp add: algebra-simps fun-eq-iff)+

end

instance fpxs :: (comm-monoid-add) comm-monoid-add
proof

fix f g :: ′a fpxs
show f + g = g + f

by transfer (auto simp: add-ac)
qed simp-all

lemma fpxs-nth-add [simp]: fpxs-nth (f + g) r = fpxs-nth f r + fpxs-nth g r
by transfer auto

lift-definition fpxs-of-fls :: ′a :: zero fls ⇒ ′a fpxs is
λf r . if r ∈ � then f brc else 0

proof −
fix f :: int ⇒ ′a
assume eventually (λn. f (−int n) = 0) cofinite
hence eventually (λn. f (−int n) = 0) at-top

by (simp add: cofinite-eq-sequentially)
then obtain N where N : f (−int n) = 0 if n ≥ N for n

by (auto simp: eventually-at-top-linorder)

show is-fpxs (λr . if r ∈ � then f brc else 0)
unfolding is-fpxs-def

proof
have bdd-below {−(of-nat N ::rat)..}

by simp
moreover have supp (λr ::rat. if r ∈ � then f brc else 0) ⊆ {−of-nat N ..}
proof

fix r :: rat assume r ∈ supp (λr . if r ∈ � then f brc else 0)
then obtain m where [simp]: r = of-int m f m 6= 0

by (auto simp: supp-def elim!: Ints-cases split: if-splits)
have m ≥ −int N

using N [of nat (−m)] by (cases m ≥ 0 ; cases −int N ≤ m) (auto simp:
le-nat-iff)

thus r ∈ {−of-nat N ..} by simp

25

qed
ultimately show bdd-below (supp (λr ::rat. if r ∈ � then f brc else 0))

by (rule bdd-below-mono)
next

have (LCM r∈supp (λr . if r ∈ � then f brc else 0). snd (quotient-of r)) dvd 1
by (intro Lcm-least) (auto simp: supp-def elim!: Ints-cases split: if-splits)

thus (LCM r∈supp (λr . if r ∈ � then f brc else 0). snd (quotient-of r)) 6= 0
by (intro notI) simp

qed
qed

instantiation fpxs :: (group-add) group-add
begin

lift-definition uminus-fpxs :: ′a fpxs ⇒ ′a fpxs is λf x. −f x
by (auto simp: is-fpxs-def)

definition minus-fpxs :: ′a fpxs ⇒ ′a fpxs ⇒ ′a fpxs where
minus-fpxs f g = f + (−g)

instance proof
fix f :: ′a fpxs
show −f + f = 0

by transfer auto
qed (auto simp: minus-fpxs-def)

end

lemma fpxs-nth-uminus [simp]: fpxs-nth (−f) r = −fpxs-nth f r
by transfer auto

lemma fpxs-nth-minus [simp]: fpxs-nth (f − g) r = fpxs-nth f r − fpxs-nth g r
unfolding minus-fpxs-def fpxs-nth-add fpxs-nth-uminus by simp

lemma fpxs-of-fls-eq-iff [simp]: fpxs-of-fls f = fpxs-of-fls g ←→ f = g
by transfer (force simp: fun-eq-iff Ints-def)

lemma fpxs-of-fls-0 [simp]: fpxs-of-fls 0 = 0
by transfer auto

lemma fpxs-of-fls-1 [simp]: fpxs-of-fls 1 = 1
by transfer (auto simp: fun-eq-iff elim!: Ints-cases)

lemma fpxs-of-fls-add [simp]: fpxs-of-fls (f + g) = fpxs-of-fls f + fpxs-of-fls g
by transfer (auto simp: fun-eq-iff elim!: Ints-cases)

lemma fps-to-fls-sum [simp]: fps-to-fls (sum f A) = (
∑

x∈A. fps-to-fls (f x))
by (induction A rule: infinite-finite-induct) auto

26

lemma fpxs-of-fls-sum [simp]: fpxs-of-fls (sum f A) = (
∑

x∈A. fpxs-of-fls (f x))
by (induction A rule: infinite-finite-induct) auto

lemma fpxs-nth-of-fls:
fpxs-nth (fpxs-of-fls f) r = (if r ∈ � then fls-nth f brc else 0)
by transfer auto

lemma fpxs-of-fls-eq-0-iff [simp]: fpxs-of-fls f = 0 ←→ f = 0
using fpxs-of-fls-eq-iff [of f 0] by (simp del: fpxs-of-fls-eq-iff)

lemma fpxs-of-fls-eq-1-iff [simp]: fpxs-of-fls f = 1 ←→ f = 1
using fpxs-of-fls-eq-iff [of f 1] by (simp del: fpxs-of-fls-eq-iff)

lemma fpxs-root-order-of-fls [simp]: fpxs-root-order (fpxs-of-fls f) = 1
proof (transfer , goal-cases)

case (1 f)
have supp (λr . if r ∈ � then f brc else 0) = rat-of-int ‘ {n. f n 6= 0}

by (force simp: supp-def Ints-def)
also have (LCM r∈. . . . snd (quotient-of r)) = nat (LCM x∈{n. f n 6= 0}. 1)

by (simp add: image-image)
also have . . . = 1

by simp
also have nat 1 = 1

by simp
finally show ?case .

qed

3.4 The substitution X 7→ Xr

This operation turns a formal Puiseux series f(X) into f(Xr), where r can
be any positive rational number:
lift-definition fpxs-compose-power :: ′a :: zero fpxs ⇒ rat ⇒ ′a fpxs is
λf r x. if r > 0 then f (x / r) else 0

proof −
fix f :: rat ⇒ ′a and r :: rat
assume f : is-fpxs f
have is-fpxs (λx. f (x / r)) if r > 0

unfolding is-fpxs-def
proof

define r ′ where r ′ = inverse r
have r ′ > 0

using ‹r > 0 › by (auto simp: r ′-def)
have (λx. x / r ′) ‘ supp f = supp (λx. f (x ∗ r ′))

using ‹r ′ > 0 › by (auto simp: supp-def image-iff vimage-def field-simps)
hence eq: (λx. x ∗ r) ‘ supp f = supp (λx. f (x / r))

using ‹r > 0 › by (simp add: r ′-def field-simps)

from f have bdd-below (supp f)
by (auto simp: is-fpxs-def)

27

hence bdd-below ((λx. x ∗ r) ‘ supp f)
using ‹r > 0 › by (intro bdd-below-image-mono) (auto simp: mono-def di-

vide-right-mono)
also note eq
finally show bdd-below (supp (λx. f (x / r))) .

define a b where a = fst (quotient-of r) and b = snd (quotient-of r)
have b > 0 by (simp add: b-def quotient-of-denom-pos ′)
have [simp]: quotient-of r = (a, b)

by (simp add: a-def b-def)
have r = of-int a / of-int b

by (simp add: quotient-of-div)
with ‹r > 0 › and ‹b > 0 › have ‹a > 0 ›

by (simp add: field-simps)

have (LCM r∈supp (λx. f (x / r)). snd (quotient-of r)) =
(LCM x∈supp f . snd (quotient-of (x ∗ r)))

by (simp add: eq [symmetric] image-image)
also have . . . dvd (LCM x∈supp f . snd (quotient-of x) ∗ b)

using ‹a > 0 › ‹b > 0 ›
by (intro Lcm-mono)

(simp add: rat-times-code case-prod-unfold Let-def Rat.normalize-def
quotient-of-denom-pos ′ div-dvd-self)

also have . . . dvd normalize (b ∗ (LCM x∈supp f . snd (quotient-of x)))
proof (cases supp f = {})

case False
thus ?thesis using Lcm-mult[of (λx. snd (quotient-of x)) ‘ supp f b]

by (simp add: mult-ac image-image)
qed auto
hence (LCM x∈supp f . snd (quotient-of x) ∗ b) dvd

b ∗ (LCM x∈supp f . snd (quotient-of x)) by simp
finally show (LCM r∈supp (λx. f (x / r)). snd (quotient-of r)) 6= 0

using ‹b > 0 › f by (auto simp: is-fpxs-def)
qed
thus is-fpxs (λx. if r > 0 then f (x / r) else 0)

by (cases r > 0) (auto simp: is-fpxs-def supp-def)
qed

lemma fpxs-as-fls:
fpxs-compose-power (fpxs-of-fls (fls-of-fpxs f)) (1 / of-nat (fpxs-root-order f)) =

f
proof (transfer , goal-cases)

case (1 f)
define d where d = (LCM r∈supp f . snd (quotient-of r))
have d ≥ 0 by (simp add: d-def)
moreover have d 6= 0 using 1 by (simp add: is-fpxs-def d-def)
ultimately have d > 0 by linarith

have (if rat-of-int d ∗ x ∈ � then f (rat-of-int brat-of-int d ∗ xc / rat-of-int d)

28

else 0) = f x for x
proof (cases rat-of-int d ∗ x ∈ �)

case True
then obtain n where n: rat-of-int d ∗ x = of-int n

by (auto elim!: Ints-cases)
have f (rat-of-int brat-of-int d ∗ xc / rat-of-int d) = f (rat-of-int n / rat-of-int

d)
by (simp add: n)

also have rat-of-int n / rat-of-int d = x
using n ‹d > 0 › by (simp add: field-simps)

finally show ?thesis
using True by simp

next
case False
have x /∈ supp f
proof

assume x ∈ supp f
hence snd (quotient-of x) dvd d

by (simp add: d-def)
hence rat-of-int (fst (quotient-of x) ∗ d) / rat-of-int (snd (quotient-of x)) ∈

�

by (intro of-int-divide-in-Ints) auto
also have rat-of-int (fst (quotient-of x) ∗ d) / rat-of-int (snd (quotient-of x))

=
rat-of-int d ∗ (rat-of-int (fst (quotient-of x)) / rat-of-int (snd

(quotient-of x)))
by (simp only: of-int-mult mult-ac times-divide-eq-right)

also have . . . = rat-of-int d ∗ x
by (metis Fract-of-int-quotient Rat-cases normalize-stable prod.sel(1) prod.sel(2)

quotient-of-Fract)
finally have rat-of-int d ∗ x ∈ � .
with False show False by contradiction

qed
thus ?thesis using False by (simp add: supp-def)

qed
thus ?case

using ‹d > 0 › by (simp add: is-fpxs-def d-def mult-ac fun-eq-iff cong: if-cong)
qed

lemma fpxs-compose-power-0 [simp]: fpxs-compose-power 0 r = 0
by transfer simp

lemma fpxs-compose-power-1 [simp]: r > 0 =⇒ fpxs-compose-power 1 r = 1
by transfer (auto simp: fun-eq-iff)

lemma fls-of-fpxs-eq-0-iff [simp]: fls-of-fpxs x = 0 ←→ x = 0
by (metis fls-of-fpxs-0 fpxs-as-fls fpxs-compose-power-0 fpxs-of-fls-0)

lemma fpxs-of-fls-compose-power [simp]:

29

fpxs-of-fls (fls-compose-power f d) = fpxs-compose-power (fpxs-of-fls f) (of-nat d)
proof (transfer , goal-cases)

case (1 f d)
show ?case
proof (cases d = 0)

case False
show ?thesis
proof (intro ext, goal-cases)

case (1 r)
show ?case
proof (cases r ∈ �)

case True
then obtain n where [simp]: r = of-int n

by (cases r rule: Ints-cases)
show ?thesis
proof (cases d dvd n)

case True
thus ?thesis by (auto elim!: Ints-cases)

next
case False
hence rat-of-int n / rat-of-int (int d) /∈ �

using ‹d 6= 0 › by (subst of-int-div-of-int-in-Ints-iff) auto
thus ?thesis using False by auto

qed
next

case False
hence r / rat-of-nat d /∈ �

using ‹d 6= 0 › by (auto elim!: Ints-cases simp: field-simps)
thus ?thesis using False by auto

qed
qed

qed auto
qed

lemma fpxs-compose-power-add [simp]:
fpxs-compose-power (f + g) r = fpxs-compose-power f r + fpxs-compose-power g

r
by transfer (auto simp: fun-eq-iff)

lemma fpxs-compose-power-distrib:
r1 > 0 ∨ r2 > 0 =⇒

fpxs-compose-power (fpxs-compose-power f r1) r2 = fpxs-compose-power f (r1
∗ r2)

by transfer (auto simp: fun-eq-iff algebra-simps zero-less-mult-iff)

lemma fpxs-compose-power-divide-right:
r1 > 0 =⇒ r2 > 0 =⇒

fpxs-compose-power f (r1 / r2) = fpxs-compose-power (fpxs-compose-power f
r1) (inverse r2)

30

by (simp add: fpxs-compose-power-distrib field-simps)

lemma fpxs-compose-power-1-right [simp]: fpxs-compose-power f 1 = f
by transfer auto

lemma fpxs-compose-power-eq-iff [simp]:
assumes r > 0
shows fpxs-compose-power f r = fpxs-compose-power g r ←→ f = g
using assms

proof (transfer , goal-cases)
case (1 r f g)
have f x = g x if

∧
x. f (x / r) = g (x / r) for x

using that[of x ∗ r] ‹r > 0 › by auto
thus ?case using ‹r > 0 › by (auto simp: fun-eq-iff)

qed

lemma fpxs-compose-power-eq-1-iff [simp]:
assumes l > 0
shows fpxs-compose-power p l = 1 ←→ p = 1

proof −
have fpxs-compose-power p l = 1 ←→ fpxs-compose-power p l = fpxs-compose-power

1 l
by (subst fpxs-compose-power-1) (use assms in auto)

also have . . . ←→ p = 1
using assms by (subst fpxs-compose-power-eq-iff) auto

finally show ?thesis .
qed

lemma fpxs-compose-power-eq-0-iff [simp]:
assumes r > 0
shows fpxs-compose-power f r = 0 ←→ f = 0
using fpxs-compose-power-eq-iff [of r f 0] assms by (simp del: fpxs-compose-power-eq-iff)

lemma fls-of-fpxs-of-fls [simp]: fls-of-fpxs (fpxs-of-fls f) = f
using fpxs-as-fls[of fpxs-of-fls f] by simp

lemma fpxs-as-fls ′:
assumes fpxs-root-order f dvd d d > 0
obtains f ′ where f = fpxs-compose-power (fpxs-of-fls f ′) (1 / of-nat d)

proof −
define D where D = fpxs-root-order f
have D > 0

by (auto simp: D-def)
define f ′ where f ′ = fls-of-fpxs f
from assms obtain d ′ where d ′: d = D ∗ d ′

by (auto simp: D-def)
have d ′ > 0

using assms by (auto intro!: Nat.gr0I simp: d ′)
define f ′′ where f ′′ = fls-compose-power f ′ d ′

31

have fpxs-compose-power (fpxs-of-fls f ′′) (1 / of-nat d) = f
using ‹D > 0 › ‹d ′ > 0 ›
by (simp add: d ′ D-def f ′′-def f ′-def fpxs-as-fls fpxs-compose-power-distrib)

thus ?thesis using that[of f ′′] by blast
qed

3.5 Mutiplication and ring properties
instantiation fpxs :: (comm-semiring-1) comm-semiring-1
begin

lift-definition times-fpxs :: ′a fpxs ⇒ ′a fpxs ⇒ ′a fpxs is
λf g x. (

∑
(y,z) | y ∈ supp f ∧ z ∈ supp g ∧ x = y + z. f y ∗ g z)

proof −
fix f g :: rat ⇒ ′a
assume fg: is-fpxs f is-fpxs g
show is-fpxs (λx.

∑
(y,z) | y ∈ supp f ∧ z ∈ supp g ∧ x = y + z. f y ∗ g z)

(is is-fpxs ?h) unfolding is-fpxs-def
proof

from fg obtain bnd1 bnd2 where bnds: ∀ x∈supp f . x ≥ bnd1 ∀ x∈supp g. x
≥ bnd2

by (auto simp: is-fpxs-def bdd-below-def)
have supp ?h ⊆ (λ(x,y). x + y) ‘ (supp f × supp g)
proof

fix x :: rat
assume x ∈ supp ?h
have {(y,z). y ∈ supp f ∧ z ∈ supp g ∧ x = y + z} 6= {}
proof

assume eq: {(y,z). y ∈ supp f ∧ z ∈ supp g ∧ x = y + z} = {}
hence ?h x = 0

by (simp only:) auto
with ‹x ∈ supp ?h› show False by (auto simp: supp-def)

qed
thus x ∈ (λ(x,y). x + y) ‘ (supp f × supp g)

by auto
qed
also have . . . ⊆ {bnd1 + bnd2 ..}

using bnds by (auto intro: add-mono)
finally show bdd-below (supp ?h)

by auto
next

define d1 where d1 = (LCM r∈supp f . snd (quotient-of r))
define d2 where d2 = (LCM r∈supp g. snd (quotient-of r))
have (LCM r∈supp ?h. snd (quotient-of r)) dvd (d1 ∗ d2)
proof (intro Lcm-least, safe)

fix r :: rat
assume r ∈ supp ?h
hence (

∑
(y, z) | y ∈ supp f ∧ z ∈ supp g ∧ r = y + z. f y ∗ g z) 6= 0

by (auto simp: supp-def)

32

hence {(y, z). y ∈ supp f ∧ z ∈ supp g ∧ r = y + z} 6= {}
by (intro notI) simp-all

then obtain y z where yz: y ∈ supp f z ∈ supp g r = y + z
by auto

have snd (quotient-of r) = snd (quotient-of y) ∗ snd (quotient-of z) div
gcd (fst (quotient-of y) ∗ snd (quotient-of z) +

fst (quotient-of z) ∗ snd (quotient-of y))
(snd (quotient-of y) ∗ snd (quotient-of z))

by (simp add: ‹r = -› rat-plus-code case-prod-unfold Let-def
Rat.normalize-def quotient-of-denom-pos ′)

also have . . . dvd snd (quotient-of y) ∗ snd (quotient-of z)
by (metis dvd-def dvd-div-mult-self gcd-dvd2)

also have . . . dvd d1 ∗ d2
using yz by (auto simp: d1-def d2-def intro!: mult-dvd-mono)

finally show snd (quotient-of r) dvd d1 ∗ d2
by (simp add: d1-def d2-def)

qed
moreover have d1 ∗ d2 6= 0

using fg by (auto simp: d1-def d2-def is-fpxs-def)
ultimately show (LCM r∈supp ?h. snd (quotient-of r)) 6= 0

by auto
qed

qed

lemma fpxs-nth-mult:
fpxs-nth (f ∗ g) r =

(
∑

(y,z) | y ∈ fpxs-supp f ∧ z ∈ fpxs-supp g ∧ r = y + z. fpxs-nth f y ∗
fpxs-nth g z)

by transfer simp

lemma fpxs-compose-power-mult [simp]:
fpxs-compose-power (f ∗ g) r = fpxs-compose-power f r ∗ fpxs-compose-power g r

proof (transfer , rule ext, goal-cases)
case (1 f g r x)
show ?case
proof (cases r > 0)

case True
have (

∑
x∈{(y, z). y ∈ supp f ∧ z ∈ supp g ∧ x / r = y + z}.

case x of (y, z) ⇒ f y ∗ g z) =
(
∑

x∈{(y, z). y ∈ supp (λx. f (x / r)) ∧ z ∈ supp (λx. g (x / r)) ∧ x =
y + z}.

case x of (y, z) ⇒ f (y / r) ∗ g (z / r))
by (rule sum.reindex-bij-witness[of - λ(x,y). (x/r ,y/r) λ(x,y). (x∗r ,y∗r)])

(use ‹r > 0 › in ‹auto simp: supp-def field-simps›)
thus ?thesis

by (auto simp: fun-eq-iff)
qed auto

qed

33

lemma fpxs-supp-of-fls: fpxs-supp (fpxs-of-fls f) = of-int ‘ supp (fls-nth f)
by (force simp: fpxs-supp-def fpxs-nth-of-fls supp-def elim!: Ints-cases)

lemma fpxs-of-fls-mult [simp]: fpxs-of-fls (f ∗ g) = fpxs-of-fls f ∗ fpxs-of-fls g
proof (rule fpxs-ext)

fix r :: rat
show fpxs-nth (fpxs-of-fls (f ∗ g)) r = fpxs-nth (fpxs-of-fls f ∗ fpxs-of-fls g) r
proof (cases r ∈ �)

case True
define h1 where h1 = (λ(x, y). (bx::ratc, by::ratc))
define h2 where h2 = (λ(x, y). (of-int x :: rat, of-int y :: rat))
define df dg where [simp]: df = fls-subdegree f dg = fls-subdegree g
from True obtain n where [simp]: r = of-int n

by (cases rule: Ints-cases)
have fpxs-nth (fpxs-of-fls f ∗ fpxs-of-fls g) r =

(
∑

(y,z) | y ∈ fpxs-supp (fpxs-of-fls f) ∧ z ∈ fpxs-supp (fpxs-of-fls g) ∧
rat-of-int n = y + z.

(if y ∈ � then fls-nth f byc else 0) ∗ (if z ∈ � then fls-nth g bzc else 0))
by (auto simp: fpxs-nth-mult fpxs-nth-of-fls)

also have . . . = (
∑

(y,z) | y ∈ supp (fls-nth f) ∧ z ∈ supp (fls-nth g) ∧ n =
y + z.

fls-nth f y ∗ fls-nth g z)
by (rule sum.reindex-bij-witness[of - h2 h1]) (auto simp: h1-def h2-def fpxs-supp-of-fls)
also have . . . = (

∑
y | y − fls-subdegree g ∈ supp (fls-nth f) ∧ fls-subdegree g

+ n − y ∈ supp (fls-nth g).
fls-nth f (y − fls-subdegree g) ∗ fls-nth g (fls-subdegree g + n −

y))
by (rule sum.reindex-bij-witness[of - λy. (y − fls-subdegree g, fls-subdegree g

+ n − y) λz. fst z + fls-subdegree g])
auto

also have . . . = (
∑

i = fls-subdegree f + fls-subdegree g..n.
fls-nth f (i − fls-subdegree g) ∗ fls-nth g (fls-subdegree g + n − i))

using fls-subdegree-leI [of f] fls-subdegree-leI [of g]
by (intro sum.mono-neutral-left; force simp: supp-def)

also have . . . = fpxs-nth (fpxs-of-fls (f ∗ g)) r
by (auto simp: fls-times-nth fpxs-nth-of-fls)

finally show ?thesis ..
next

case False
have fpxs-nth (fpxs-of-fls f ∗ fpxs-of-fls g) r =

(
∑

(y,z) | y ∈ fpxs-supp (fpxs-of-fls f) ∧ z ∈ fpxs-supp (fpxs-of-fls g) ∧
r = y + z.

(if y ∈ � then fls-nth f byc else 0) ∗ (if z ∈ � then fls-nth g bzc else 0))
by (simp add: fpxs-nth-mult fpxs-nth-of-fls)

also have . . . = 0
using False by (intro sum.neutral ballI) auto

also have 0 = fpxs-nth (fpxs-of-fls (f ∗ g)) r
using False by (simp add: fpxs-nth-of-fls)

finally show ?thesis ..

34

qed
qed

instance proof
show 0 6= (1 :: ′a fpxs)

by transfer (auto simp: fun-eq-iff)
next

fix f :: ′a fpxs
show 1 ∗ f = f
proof (transfer , goal-cases)

case (1 f)
have {(y, z). y ∈ supp (λr . if r = 0 then (1 :: ′a) else 0) ∧ z ∈ supp f ∧ x = y

+ z} =
(if x ∈ supp f then {(0 , x)} else {}) for x

by (auto simp: supp-def split: if-splits)
thus ?case

by (auto simp: fun-eq-iff supp-def)
qed

next
fix f :: ′a fpxs
show 0 ∗ f = 0

by transfer (auto simp: fun-eq-iff supp-def)
show f ∗ 0 = 0

by transfer (auto simp: fun-eq-iff supp-def)
next

fix f g :: ′a fpxs
show f ∗ g = g ∗ f
proof (transfer , rule ext, goal-cases)

case (1 f g x)
show (

∑
(y, z)∈{(y, z). y ∈ supp f ∧ z ∈ supp g ∧ x = y + z}. f y ∗ g z) =

(
∑

(y, z)∈{(y, z). y ∈ supp g ∧ z ∈ supp f ∧ x = y + z}. g y ∗ f z)
by (rule sum.reindex-bij-witness[of - λ(x,y). (y,x) λ(x,y). (y,x)])

(auto simp: mult-ac)
qed

next
fix f g h :: ′a fpxs
define d where d = (LCM F∈{f ,g,h}. fpxs-root-order F)
have d > 0

by (auto simp: d-def intro!: Nat.gr0I)
obtain f ′ where f : f = fpxs-compose-power (fpxs-of-fls f ′) (1 / of-nat d)

using fpxs-as-fls ′[of f d] ‹d > 0 › by (auto simp: d-def)
obtain g ′ where g: g = fpxs-compose-power (fpxs-of-fls g ′) (1 / of-nat d)

using fpxs-as-fls ′[of g d] ‹d > 0 › by (auto simp: d-def)
obtain h ′ where h: h = fpxs-compose-power (fpxs-of-fls h ′) (1 / of-nat d)

using fpxs-as-fls ′[of h d] ‹d > 0 › by (auto simp: d-def)
show (f ∗ g) ∗ h = f ∗ (g ∗ h)

by (simp add: f g h mult-ac
flip: fpxs-compose-power-mult fpxs-compose-power-add fpxs-of-fls-mult)

show (f + g) ∗ h = f ∗ h + g ∗ h

35

by (simp add: f g h ring-distribs
flip: fpxs-compose-power-mult fpxs-compose-power-add fpxs-of-fls-mult

fpxs-of-fls-add)
qed

end

instance fpxs :: (comm-ring-1) comm-ring-1
by intro-classes auto

instance fpxs :: ({comm-semiring-1 ,semiring-no-zero-divisors}) semiring-no-zero-divisors
proof

fix f g :: ′a fpxs
assume fg: f 6= 0 g 6= 0
define d where d = lcm (fpxs-root-order f) (fpxs-root-order g)
have d > 0

by (auto simp: d-def intro!: lcm-pos-nat)
obtain f ′ where f : f = fpxs-compose-power (fpxs-of-fls f ′) (1 / of-nat d)

using fpxs-as-fls ′[of f d] ‹d > 0 › by (auto simp: d-def)
obtain g ′ where g: g = fpxs-compose-power (fpxs-of-fls g ′) (1 / of-nat d)

using fpxs-as-fls ′[of g d] ‹d > 0 › by (auto simp: d-def)
show f ∗ g 6= 0

using ‹d > 0 › fg
by (simp add: f g flip: fpxs-compose-power-mult fpxs-of-fls-mult)

qed

lemma fpxs-of-fls-power [simp]: fpxs-of-fls (f ^ n) = fpxs-of-fls f ^ n
by (induction n) auto

lemma fpxs-compose-power-power [simp]:
r > 0 =⇒ fpxs-compose-power (f ^ n) r = fpxs-compose-power f r ^ n
by (induction n) simp-all

3.6 Constant Puiseux series and the series X
lift-definition fpxs-const :: ′a :: zero ⇒ ′a fpxs is
λc n. if n = 0 then c else 0

proof −
fix c :: ′a
have supp (λn::rat. if n = 0 then c else 0) = (if c = 0 then {} else {0})

by auto
thus is-fpxs (λn::rat. if n = 0 then c else 0)

unfolding is-fpxs-def by auto
qed

lemma fpxs-const-0 [simp]: fpxs-const 0 = 0
by transfer auto

lemma fpxs-const-1 [simp]: fpxs-const 1 = 1

36

by transfer auto

lemma fpxs-of-fls-const [simp]: fpxs-of-fls (fls-const c) = fpxs-const c
by transfer (auto simp: fun-eq-iff Ints-def)

lemma fls-of-fpxs-const [simp]: fls-of-fpxs (fpxs-const c) = fls-const c
by (metis fls-of-fpxs-of-fls fpxs-of-fls-const)

lemma fls-of-fpxs-1 [simp]: fls-of-fpxs 1 = 1
using fls-of-fpxs-const[of 1] by (simp del: fls-of-fpxs-const)

lift-definition fpxs-X :: ′a :: {one, zero} fpxs is
λx. if x = 1 then (1 :: ′a) else 0
by (cases 1 = (0 :: ′a)) (auto simp: is-fpxs-def cong: if-cong)

lemma fpxs-const-altdef : fpxs-const x = fpxs-of-fls (fls-const x)
by transfer auto

lemma fpxs-const-add [simp]: fpxs-const (x + y) = fpxs-const x + fpxs-const y
by transfer auto

lemma fpxs-const-mult [simp]:
fixes x y :: ′a::{comm-semiring-1}
shows fpxs-const (x ∗ y) = fpxs-const x ∗ fpxs-const y
unfolding fpxs-const-altdef fls-const-mult-const[symmetric] fpxs-of-fls-mult ..

lemma fpxs-const-eq-iff [simp]:
fpxs-const x = fpxs-const y ←→ x = y
by transfer (auto simp: fun-eq-iff)

lemma of-nat-fpxs-eq: of-nat n = fpxs-const (of-nat n)
by (induction n) auto

lemma fpxs-const-uminus [simp]: fpxs-const (−x) = −fpxs-const x
by transfer auto

lemma fpxs-const-diff [simp]: fpxs-const (x − y) = fpxs-const x − fpxs-const y
unfolding minus-fpxs-def by transfer auto

lemma of-int-fpxs-eq: of-int n = fpxs-const (of-int n)
by (induction n) (auto simp: of-nat-fpxs-eq)

3.7 More algebraic typeclass instances
instance fpxs :: ({comm-semiring-1 ,semiring-char-0}) semiring-char-0
proof

show inj (of-nat :: nat ⇒ ′a fpxs)
by (intro injI) (auto simp: of-nat-fpxs-eq)

qed

37

instance fpxs :: ({comm-ring-1 ,ring-char-0}) ring-char-0 ..

instance fpxs :: (idom) idom ..

instantiation fpxs :: (field) field
begin

definition inverse-fpxs :: ′a fpxs ⇒ ′a fpxs where
inverse-fpxs f =

fpxs-compose-power (fpxs-of-fls (inverse (fls-of-fpxs f))) (1 / of-nat (fpxs-root-order
f))

definition divide-fpxs :: ′a fpxs ⇒ ′a fpxs ⇒ ′a fpxs where
divide-fpxs f g = f ∗ inverse g

instance proof
fix f :: ′a fpxs
assume f 6= 0
define f ′ where f ′ = fls-of-fpxs f
define d where d = fpxs-root-order f
have d > 0 by (auto simp: d-def)
have f : f = fpxs-compose-power (fpxs-of-fls f ′) (1 / of-nat d)

by (simp add: f ′-def d-def fpxs-as-fls)

have inverse f ∗ f = fpxs-compose-power (fpxs-of-fls (inverse f ′)) (1 / of-nat d)
∗ f

by (simp add: inverse-fpxs-def f ′-def d-def)
also have fpxs-compose-power (fpxs-of-fls (inverse f ′)) (1 / of-nat d) ∗ f =

fpxs-compose-power (fpxs-of-fls (inverse f ′ ∗ f ′)) (1 / of-nat d)
by (simp add: f)

also have inverse f ′ ∗ f ′ = 1
using ‹f 6= 0 › ‹d > 0 › by (simp add: f field-simps)

finally show inverse f ∗ f = 1
using ‹d > 0 › by simp

qed (auto simp: divide-fpxs-def inverse-fpxs-def)

end

instance fpxs :: (field-char-0) field-char-0 ..

3.8 Valuation
definition fpxs-val :: ′a :: zero fpxs ⇒ rat where

fpxs-val f =
of-int (fls-subdegree (fls-of-fpxs f)) / rat-of-nat (fpxs-root-order f)

lemma fpxs-val-of-fls [simp]: fpxs-val (fpxs-of-fls f) = of-int (fls-subdegree f)
by (simp add: fpxs-val-def)

38

lemma fpxs-nth-compose-power [simp]:
assumes r > 0
shows fpxs-nth (fpxs-compose-power f r) n = fpxs-nth f (n / r)
using assms by transfer auto

lemma fls-of-fpxs-uminus [simp]: fls-of-fpxs (−f) = −fls-of-fpxs f
by transfer auto

lemma fpxs-root-order-uminus [simp]: fpxs-root-order (−f) = fpxs-root-order f
by transfer auto

lemma fpxs-val-uminus [simp]: fpxs-val (−f) = fpxs-val f
unfolding fpxs-val-def by simp

lemma fpxs-val-minus-commute: fpxs-val (f − g) = fpxs-val (g − f)
by (subst fpxs-val-uminus [symmetric]) (simp del: fpxs-val-uminus)

lemma fpxs-val-const [simp]: fpxs-val (fpxs-const c) = 0
by (simp add: fpxs-val-def)

lemma fpxs-val-1 [simp]: fpxs-val 1 = 0
by (simp add: fpxs-val-def)

lemma of-int-fls-subdegree-of-fpxs:
rat-of-int (fls-subdegree (fls-of-fpxs f)) = fpxs-val f ∗ of-nat (fpxs-root-order f)
by (simp add: fpxs-val-def)

lemma fpxs-nth-val-nonzero:
assumes f 6= 0
shows fpxs-nth f (fpxs-val f) 6= 0

proof −
define N where N = fpxs-root-order f
define f ′ where f ′ = fls-of-fpxs f
define M where M = fls-subdegree f ′

have val: fpxs-val f = of-int M / of-nat N
by (simp add: M-def fpxs-val-def N-def f ′-def)

have ∗: f = fpxs-compose-power (fpxs-of-fls f ′) (1 / rat-of-nat N)
by (simp add: fpxs-as-fls N-def f ′-def)

also have fpxs-nth . . . (fpxs-val f) =
fpxs-nth (fpxs-of-fls f ′) (fpxs-val f ∗ rat-of-nat (fpxs-root-order f))

by (subst fpxs-nth-compose-power) (auto simp: N-def)
also have . . . = fls-nth f ′ M

by (subst fpxs-nth-of-fls) (auto simp: val N-def)
also have f ′ 6= 0

using ∗ assms by auto
hence fls-nth f ′ M 6= 0

unfolding M-def by simp
finally show fpxs-nth f (fpxs-val f) 6= 0 .

39

qed

lemma fpxs-nth-below-val:
assumes n: n < fpxs-val f
shows fpxs-nth f n = 0

proof (cases f = 0)
case False
define N where N = fpxs-root-order f
define f ′ where f ′ = fls-of-fpxs f
define M where M = fls-subdegree f ′

have val: fpxs-val f = of-int M / of-nat N
by (simp add: M-def fpxs-val-def N-def f ′-def)

have ∗: f = fpxs-compose-power (fpxs-of-fls f ′) (1 / rat-of-nat N)
by (simp add: fpxs-as-fls N-def f ′-def)

have fpxs-nth f n = fpxs-nth (fpxs-of-fls f ′) (n ∗ rat-of-nat N)
by (subst ∗, subst fpxs-nth-compose-power) (auto simp: N-def)

also have . . . = 0
proof (cases rat-of-nat N ∗ n ∈ �)

case True
then obtain n ′ where n ′: of-int n ′ = rat-of-nat N ∗ n

by (elim Ints-cases) auto
have of-int n ′ < rat-of-nat N ∗ fpxs-val f

unfolding n ′ using n by (intro mult-strict-left-mono) (auto simp: N-def)
also have . . . = of-int M

by (simp add: val N-def)
finally have n ′ < M by linarith

have fpxs-nth (fpxs-of-fls f ′) (rat-of-nat N ∗ n) = fls-nth f ′ n ′

unfolding n ′[symmetric] by (subst fpxs-nth-of-fls) (auto simp: N-def)
also from ‹n ′ < M › have . . . = 0

unfolding M-def by simp
finally show ?thesis by (simp add: mult-ac)

qed (auto simp: fpxs-nth-of-fls mult-ac)
finally show fpxs-nth f n = 0 .

qed auto

lemma fpxs-val-leI : fpxs-nth f r 6= 0 =⇒ fpxs-val f ≤ r
using fpxs-nth-below-val[of r f]
by (cases f = 0 ; cases fpxs-val f r rule: linorder-cases) auto

lemma fpxs-val-0 [simp]: fpxs-val 0 = 0
by (simp add: fpxs-val-def)

lemma fpxs-val-geI :
assumes f 6= 0

∧
r . r < r ′ =⇒ fpxs-nth f r = 0

shows fpxs-val f ≥ r ′

using fpxs-nth-val-nonzero[of f] assms by force

lemma fpxs-val-compose-power [simp]:

40

assumes r > 0
shows fpxs-val (fpxs-compose-power f r) = fpxs-val f ∗ r

proof (cases f = 0)
case [simp]: False
show ?thesis
proof (intro antisym)

show fpxs-val (fpxs-compose-power f r) ≤ fpxs-val f ∗ r
using assms by (intro fpxs-val-leI) (simp add: fpxs-nth-val-nonzero)

next
show fpxs-val f ∗ r ≤ fpxs-val (fpxs-compose-power f r)
proof (intro fpxs-val-geI)

show fpxs-nth (fpxs-compose-power f r) r ′ = 0 if r ′ < fpxs-val f ∗ r for r ′

unfolding fpxs-nth-compose-power [OF assms]
by (rule fpxs-nth-below-val) (use that assms in ‹auto simp: field-simps›)

qed (use assms in auto)
qed

qed auto

lemma fpxs-val-add-ge:
assumes f + g 6= 0
shows fpxs-val (f + g) ≥ min (fpxs-val f) (fpxs-val g)

proof (rule ccontr)
assume ¬(fpxs-val (f + g) ≥ min (fpxs-val f) (fpxs-val g)) (is ¬(?n ≥ -))
hence ?n < fpxs-val f ?n < fpxs-val g

by auto
hence fpxs-nth f ?n = 0 fpxs-nth g ?n = 0

by (intro fpxs-nth-below-val; simp; fail)+
hence fpxs-nth (f + g) ?n = 0

by simp
moreover have fpxs-nth (f + g) ?n 6= 0

by (intro fpxs-nth-val-nonzero assms)
ultimately show False by contradiction

qed

lemma fpxs-val-diff-ge:
assumes f 6= g
shows fpxs-val (f − g) ≥ min (fpxs-val f) (fpxs-val g)
using fpxs-val-add-ge[of f −g] assms by simp

lemma fpxs-nth-mult-val:
fpxs-nth (f ∗ g) (fpxs-val f + fpxs-val g) = fpxs-nth f (fpxs-val f) ∗ fpxs-nth g

(fpxs-val g)
proof (cases f = 0 ∨ g = 0)

case False
have {(y, z). y ∈ fpxs-supp f ∧ z ∈ fpxs-supp g ∧ fpxs-val f + fpxs-val g = y +

z} ⊆
{(fpxs-val f , fpxs-val g)}

using False fpxs-val-leI [of f] fpxs-val-leI [of g] by (force simp: fpxs-supp-def
supp-def)

41

hence fpxs-nth (f ∗ g) (fpxs-val f + fpxs-val g) =
(
∑

(y, z)∈{(fpxs-val f , fpxs-val g)}. fpxs-nth f y ∗ fpxs-nth g z)
unfolding fpxs-nth-mult
by (intro sum.mono-neutral-left) (auto simp: fpxs-supp-def supp-def)

thus ?thesis by simp
qed auto

lemma fpxs-val-mult [simp]:
fixes f g :: ′a :: {comm-semiring-1 , semiring-no-zero-divisors} fpxs
assumes f 6= 0 g 6= 0
shows fpxs-val (f ∗ g) = fpxs-val f + fpxs-val g

proof (intro antisym fpxs-val-leI fpxs-val-geI)
fix r :: rat
assume r : r < fpxs-val f + fpxs-val g
show fpxs-nth (f ∗ g) r = 0

unfolding fpxs-nth-mult using assms fpxs-val-leI [of f] fpxs-val-leI [of g] r
by (intro sum.neutral; force)

qed (use assms in ‹auto simp: fpxs-nth-mult-val fpxs-nth-val-nonzero›)

lemma fpxs-val-power [simp]:
fixes f :: ′a :: {comm-semiring-1 , semiring-no-zero-divisors} fpxs
assumes f 6= 0 ∨ n > 0
shows fpxs-val (f ^ n) = of-nat n ∗ fpxs-val f

proof (cases f = 0)
case False
have [simp]: f ^ n 6= 0 for n

using False by (induction n) auto
thus ?thesis using False

by (induction n) (auto simp: algebra-simps)
qed (use assms in ‹auto simp: power-0-left›)

lemma fpxs-nth-power-val [simp]:
fixes f :: ′a :: {comm-semiring-1 , semiring-no-zero-divisors} fpxs
shows fpxs-nth (f ^ r) (rat-of-nat r ∗ fpxs-val f) = fpxs-nth f (fpxs-val f) ^ r

proof (cases f 6= 0)
case True
show ?thesis
proof (induction r)

case (Suc r)
have fpxs-nth (f ^ Suc r) (rat-of-nat (Suc r) ∗ fpxs-val f) =

fpxs-nth (f ∗ f ^ r) (fpxs-val f + fpxs-val (f ^ r))
using True by (simp add: fpxs-nth-mult-val ring-distribs)

also have . . . = fpxs-nth f (fpxs-val f) ^ Suc r
using Suc True by (subst fpxs-nth-mult-val) auto

finally show ?case .
qed (auto simp: fpxs-nth-1 ′)

next
case False
thus ?thesis

42

by (cases r) (auto simp: fpxs-nth-1 ′)
qed

3.9 Powers of X and shifting
lift-definition fpxs-X-power :: rat ⇒ ′a :: {zero, one} fpxs is
λr n :: rat. if n = r then 1 else (0 :: ′a)

proof −
fix r :: rat
have supp (λn. if n = r then 1 else (0 :: ′a)) = (if (1 :: ′a) = 0 then {} else
{r})

by (auto simp: supp-def)
thus is-fpxs (λn. if n = r then 1 else (0 :: ′a))

using quotient-of-denom-pos ′[of r] by (auto simp: is-fpxs-def)
qed

lemma fpxs-X-power-0 [simp]: fpxs-X-power 0 = 1
by transfer auto

lemma fpxs-X-power-add: fpxs-X-power (a + b) = fpxs-X-power a ∗ fpxs-X-power
b
proof (transfer , goal-cases)

case (1 a b)
have ∗: {(y,z). y ∈ supp (λn. if n=a then (1 :: ′a) else 0) ∧

z ∈ supp (λn. if n=b then (1 :: ′a) else 0) ∧ x=y+z} =
(if x = a + b then {(a, b)} else {}) for x

by (auto simp: supp-def fun-eq-iff)
show ?case

unfolding ∗ by (auto simp: fun-eq-iff case-prod-unfold)
qed

lemma fpxs-X-power-mult: fpxs-X-power (rat-of-nat n ∗ m) = fpxs-X-power m ^
n

by (induction n) (auto simp: ring-distribs fpxs-X-power-add)

lemma fpxs-of-fls-X-power [simp]: fpxs-of-fls (fls-shift n 1) = fpxs-X-power (−rat-of-int
n)

by transfer (auto simp: fun-eq-iff Ints-def simp flip: of-int-minus)

lemma fpxs-X-power-neq-0 [simp]: fpxs-X-power r 6= (0 :: ′a :: zero-neq-one fpxs)
by transfer (auto simp: fun-eq-iff)

lemma fpxs-X-power-eq-1-iff [simp]: fpxs-X-power r = (1 :: ′a :: zero-neq-one fpxs)
←→ r = 0

by transfer (auto simp: fun-eq-iff)

lift-definition fpxs-shift :: rat ⇒ ′a :: zero fpxs ⇒ ′a fpxs is
λr f n. f (n + r)

43

proof −
fix r :: rat and f :: rat ⇒ ′a
assume f : is-fpxs f
have subset: supp (λn. f (n + r)) ⊆ (λn. n + r) −‘ supp f

by (auto simp: supp-def)
have eq: (λn. n + r) −‘ supp f = (λn. n − r) ‘ supp f

by (auto simp: image-iff algebra-simps)

show is-fpxs (λn. f (n + r))
unfolding is-fpxs-def

proof
have bdd-below ((λn. n + r) −‘ supp f)
unfolding eq by (rule bdd-below-image-mono) (use f in ‹auto simp: is-fpxs-def

mono-def ›)
thus bdd-below (supp (λn. f (n + r)))

by (rule bdd-below-mono[OF - subset])
next

have (LCM r∈supp (λn. f (n + r)). snd (quotient-of r)) dvd
(LCM r∈(λn. n + r) −‘ supp f . snd (quotient-of r))

by (intro Lcm-subset image-mono subset)
also have . . . = (LCM x∈supp f . snd (quotient-of (x − r)))

by (simp only: eq image-image o-def)
also have . . . dvd (LCM x∈supp f . snd (quotient-of r) ∗ snd (quotient-of x))

by (subst mult.commute, intro Lcm-mono quotient-of-denom-diff-dvd)
also have . . . = Lcm ((λx. snd (quotient-of r) ∗ x) ‘ (λx. snd (quotient-of x))

‘ supp f)
by (simp add: image-image o-def)
also have . . . dvd normalize (snd (quotient-of r) ∗ (LCM x∈supp f . snd

(quotient-of x)))
proof (cases supp f = {})

case False
thus ?thesis by (subst Lcm-mult) auto

qed auto
finally show (LCM r∈supp (λn. f (n + r)). snd (quotient-of r)) 6= 0

using quotient-of-denom-pos ′[of r] f by (auto simp: is-fpxs-def)
qed

qed

lemma fpxs-nth-shift [simp]: fpxs-nth (fpxs-shift r f) n = fpxs-nth f (n + r)
by transfer simp-all

lemma fpxs-shift-0-left [simp]: fpxs-shift 0 f = f
by transfer auto

lemma fpxs-shift-add-left: fpxs-shift (m + n) f = fpxs-shift m (fpxs-shift n f)
by transfer (simp-all add: add-ac)

lemma fpxs-shift-diff-left: fpxs-shift (m − n) f = fpxs-shift m (fpxs-shift (−n) f)
by (subst fpxs-shift-add-left [symmetric]) auto

44

lemma fpxs-shift-0 [simp]: fpxs-shift r 0 = 0
by transfer simp-all

lemma fpxs-shift-add [simp]: fpxs-shift r (f + g) = fpxs-shift r f + fpxs-shift r g
by transfer auto

lemma fpxs-shift-uminus [simp]: fpxs-shift r (−f) = −fpxs-shift r f
by transfer auto

lemma fpxs-shift-shift-uminus [simp]: fpxs-shift r (fpxs-shift (−r) f) = f
by (simp flip: fpxs-shift-add-left)

lemma fpxs-shift-shift-uminus ′ [simp]: fpxs-shift (−r) (fpxs-shift r f) = f
by (simp flip: fpxs-shift-add-left)

lemma fpxs-shift-diff [simp]: fpxs-shift r (f − g) = fpxs-shift r f − fpxs-shift r g
unfolding minus-fpxs-def by (subst fpxs-shift-add) auto

lemma fpxs-shift-compose-power [simp]:
fpxs-shift r (fpxs-compose-power f s) = fpxs-compose-power (fpxs-shift (r / s) f)

s
by transfer (simp-all add: add-divide-distrib add-ac cong: if-cong)

lemma rat-of-int-div-dvd: d dvd n =⇒ rat-of-int (n div d) = rat-of-int n / rat-of-int
d

by auto

lemma fpxs-of-fls-shift [simp]:
fpxs-of-fls (fls-shift n f) = fpxs-shift (of-int n) (fpxs-of-fls f)

proof (transfer , goal-cases)
case (1 n f)
show ?case
proof

fix r :: rat
have eq: r + rat-of-int n ∈ � ←→ r ∈ �

by (metis Ints-add Ints-diff Ints-of-int add-diff-cancel-right ′)
show (if r ∈ � then f (brc + n) else 0) =

(if r + rat-of-int n ∈ � then f br + rat-of-int nc else 0)
unfolding eq by auto

qed
qed

lemma fpxs-shift-mult: f ∗ fpxs-shift r g = fpxs-shift r (f ∗ g)
fpxs-shift r f ∗ g = fpxs-shift r (f ∗ g)

proof −
obtain a b where ab: r = of-int a / of-nat b and b > 0
by (metis Fract-of-int-quotient of-int-of-nat-eq quotient-of-unique zero-less-imp-eq-int)

45

define s where s = lcm b (lcm (fpxs-root-order f) (fpxs-root-order g))
have s > 0 using ‹b > 0 ›

by (auto simp: s-def intro!: Nat.gr0I)
obtain f ′ where f : f = fpxs-compose-power (fpxs-of-fls f ′) (1 / rat-of-nat s)

using fpxs-as-fls ′[of f s] ‹s > 0 › by (auto simp: s-def)
obtain g ′ where g: g = fpxs-compose-power (fpxs-of-fls g ′) (1 / rat-of-nat s)

using fpxs-as-fls ′[of g s] ‹s > 0 › by (auto simp: s-def)

define n where n = (a ∗ s) div b
have b dvd s

by (auto simp: s-def)
have sr-eq: r ∗ rat-of-nat s = rat-of-int n

using ‹b > 0 › ‹b dvd s›
by (simp add: ab field-simps of-rat-divide of-rat-mult n-def rat-of-int-div-dvd)

show f ∗ fpxs-shift r g = fpxs-shift r (f ∗ g) fpxs-shift r f ∗ g = fpxs-shift r (f ∗
g)

unfolding f g using ‹s > 0 ›
by (simp-all flip: fpxs-compose-power-mult fpxs-of-fls-mult fpxs-of-fls-shift

add: sr-eq fls-shifted-times-simps mult-ac)
qed

lemma fpxs-shift-1 : fpxs-shift r 1 = fpxs-X-power (−r)
by transfer (auto simp: fun-eq-iff)

lemma fpxs-X-power-conv-shift: fpxs-X-power r = fpxs-shift (−r) 1
by (simp add: fpxs-shift-1)

lemma fpxs-shift-power [simp]: fpxs-shift n x ^ m = fpxs-shift (of-nat m ∗ n) (x ^
m)
by (induction m) (simp-all add: algebra-simps fpxs-shift-mult flip: fpxs-shift-add-left)

lemma fpxs-compose-power-X-power [simp]:
s > 0 =⇒ fpxs-compose-power (fpxs-X-power r) s = fpxs-X-power (r ∗ s)
by transfer (simp add: field-simps)

3.10 The n-th root of a Puiseux series

In this section, we define the formal root of a Puiseux series. This is done
using the same concept for formal power series. There is still one interesting
theorems that is missing here, e.g. the uniqueness (which could probably be
lifted over from FPSs) somehow.
definition fpxs-radical :: (nat ⇒ ′a :: field-char-0 ⇒ ′a) ⇒ nat ⇒ ′a fpxs ⇒ ′a
fpxs where

fpxs-radical rt r f = (if f = 0 then 0 else
(let f ′ = fls-base-factor-to-fps (fls-of-fpxs f);

f ′′ = fpxs-of-fls (fps-to-fls (fps-radical rt r f ′))
in fpxs-shift (−fpxs-val f / rat-of-nat r)

46

(fpxs-compose-power f ′′ (1 / rat-of-nat (fpxs-root-order f)))))

lemma fpxs-radical-0 [simp]: fpxs-radical rt r 0 = 0
by (simp add: fpxs-radical-def)

lemma
fixes r :: nat
assumes r : r > 0
shows fpxs-power-radical:

rt r (fpxs-nth f (fpxs-val f)) ^ r = fpxs-nth f (fpxs-val f) =⇒ fpxs-radical rt
r f ^ r = f

and fpxs-radical-lead-coeff :
f 6= 0 =⇒ fpxs-nth (fpxs-radical rt r f) (fpxs-val f / rat-of-nat r) =

rt r (fpxs-nth f (fpxs-val f))
proof −

define q where q = fpxs-root-order f
define f ′ where f ′ = fls-base-factor-to-fps (fls-of-fpxs f)
have [simp]: fps-nth f ′ 0 = fpxs-nth f (fpxs-val f)

by (simp add: f ′-def fls-nth-of-fpxs of-int-fls-subdegree-of-fpxs)
define f ′′ where f ′′ = fpxs-of-fls (fps-to-fls (fps-radical rt r f ′))
have eq1 : fls-of-fpxs f = fls-shift (−fls-subdegree (fls-of-fpxs f)) (fps-to-fls f ′)

by (subst fls-conv-base-factor-to-fps-shift-subdegree) (simp add: f ′-def)
have eq2 : fpxs-compose-power (fpxs-of-fls (fls-of-fpxs f)) (1 / of-nat q) = f

unfolding q-def by (rule fpxs-as-fls)
also note eq1
also have fpxs-of-fls (fls-shift (− fls-subdegree (fls-of-fpxs f)) (fps-to-fls f ′)) =

fpxs-shift (− (fpxs-val f ∗ rat-of-nat q)) (fpxs-of-fls (fps-to-fls f ′))
by (simp add: of-int-fls-subdegree-of-fpxs q-def)

finally have eq3 : fpxs-compose-power (fpxs-shift (− (fpxs-val f ∗ rat-of-nat q))
(fpxs-of-fls (fps-to-fls f ′))) (1 / rat-of-nat q) = f .

{
assume rt: rt r (fpxs-nth f (fpxs-val f)) ^ r = fpxs-nth f (fpxs-val f)
show fpxs-radical rt r f ^ r = f
proof (cases f = 0)

case [simp]: False
have f ′′ ^ r = fpxs-of-fls (fps-to-fls (fps-radical rt r f ′ ^ r))

by (simp add: fps-to-fls-power f ′′-def)
also have fps-radical rt r f ′ ^ r = f ′

using power-radical[of f ′ rt r − 1] r rt by (simp add: fpxs-nth-val-nonzero)
finally have f ′′ ^ r = fpxs-of-fls (fps-to-fls f ′) .

have fpxs-shift (−fpxs-val f / rat-of-nat r) (fpxs-compose-power f ′′ (1 / of-nat
q)) ^ r =

fpxs-shift (−fpxs-val f) (fpxs-compose-power (f ′′ ^ r) (1 / of-nat q))
unfolding q-def using r

by (subst fpxs-shift-power , subst fpxs-compose-power-power [symmetric])
simp-all

also have f ′′ ^ r = fpxs-of-fls (fps-to-fls f ′)

47

by fact
also have fpxs-shift (−fpxs-val f) (fpxs-compose-power

(fpxs-of-fls (fps-to-fls f ′)) (1 / of-nat q)) = f
using r eq3 by simp

finally show fpxs-radical rt r f ^ r = f
by (simp add: fpxs-radical-def f ′-def f ′′-def q-def)

qed (use r in auto)
}

assume [simp]: f 6= 0
have fpxs-nth (fpxs-shift (−fpxs-val f / of-nat r) (fpxs-compose-power f ′′ (1 /

of-nat q)))
(fpxs-val f / of-nat r) = fpxs-nth f ′′ 0

using r by (simp add: q-def)
also have fpxs-shift (−fpxs-val f / of-nat r) (fpxs-compose-power f ′′ (1 / of-nat

q)) =
fpxs-radical rt r f

by (simp add: fpxs-radical-def q-def f ′-def f ′′-def)
also have fpxs-nth f ′′ 0 = rt r (fpxs-nth f (fpxs-val f))

using r by (simp add: f ′′-def fpxs-nth-of-fls)
finally show fpxs-nth (fpxs-radical rt r f) (fpxs-val f / rat-of-nat r) =

rt r (fpxs-nth f (fpxs-val f)) .
qed

lemma fls-base-factor-power :
fixes f :: ′a::{semiring-1 , semiring-no-zero-divisors} fls
shows fls-base-factor (f ^ n) = fls-base-factor f ^ n

proof (cases f = 0)
case False
have [simp]: f ^ n 6= 0 for n

by (induction n) (use False in auto)
show ?thesis using False
by (induction n) (auto simp: fls-base-factor-mult simp flip: fls-times-both-shifted-simp)

qed (cases n; simp)

hide-const (open) supp

3.11 Algebraic closedness

We will now show that the field of formal Puiseux series over an algebraically
closed field of characteristic 0 is again algebraically closed.
The typeclass constraint field-gcd is a technical constraint that mandates
that the field has a (trivial) GCD operation defined on it. It comes from
some peculiarities of Isabelle’s typeclass system and can be considered unim-
portant, since any concrete type of class field can easily be made an instance
of field-gcd.

48

It would be possible to get rid of this constraint entirely here, but it is not
worth the effort.
The proof is a fairly standard one that uses Hensel’s lemma. Some prelim-
inary tricks are required to be able to use it, however, namely a number of
non-obvious changes of variables to turn the polynomial with Puiseux coef-
ficients into one with formal power series coefficients. The overall approach
was taken from an article by Nowak [2].
Basically, what we need to show is this: Let

p(X,Z) = an(Z)Xn + an−1(Z)Xn−1 + . . .+ a0(Z)

be a polynomial in X of degree at least 2 with coefficients that are formal
Puiseux series in Z. Then p is reducible, i.e. it splits into two non-constant
factors.
Due to work we have already done elsewhere, we may assume here that
an = 1, an−1 = 0, and a0 6= 0, all of which will come in very useful.
instance fpxs :: ({alg-closed-field, field-char-0 , field-gcd}) alg-closed-field
proof (rule alg-closedI-reducible-coeff-deg-minus-one-eq-0)

fix p :: ′a fpxs poly
assume deg-p: degree p > 1 and lc-p: lead-coeff p = 1
assume coeff-deg-minus-1 : coeff p (degree p − 1) = 0
assume coeff p 0 6= 0
define N where N = degree p

Let a0, . . . , an be the coefficients of p with an = 1. Now let r be the maxi-
mum of −val(ai)

n−i ranging over all i < n such that ai 6= 0.
define r :: rat

where r = (MAX i∈{i∈{..<N}. coeff p i 6= 0}.
−fpxs-val (poly.coeff p i) / (rat-of-nat N − rat-of-nat i))

We write r = a/b such that all the ai can be written as Laurent series in
X1/b, i.e. the root orders of all the ai divide b:

obtain a b where ab: b > 0 r = of-int a / of-nat b ∀ i≤N . fpxs-root-order (coeff
p i) dvd b

proof −
define b where b = lcm (nat (snd (quotient-of r))) (LCM i∈{..N}. fpxs-root-order

(coeff p i))
define x where x = b div nat (snd (quotient-of r))
define a where a = fst (quotient-of r) ∗ int x

show ?thesis
proof (rule that)

show b > 0
using quotient-of-denom-pos ′[of r] by (auto simp: b-def intro!: Nat.gr0I)

have b-eq: b = nat (snd (quotient-of r)) ∗ x
by (simp add: x-def b-def)

49

have x > 0
using b-eq ‹b > 0 › by (auto intro!: Nat.gr0I)

have r = rat-of-int (fst (quotient-of r)) / rat-of-int (int (nat (snd (quotient-of
r))))

using quotient-of-denom-pos ′[of r] quotient-of-div[of r] by simp
also have . . . = rat-of-int a / rat-of-nat b

using ‹x > 0 › by (simp add: a-def b-eq)
finally show r = rat-of-int a / rat-of-nat b .
show ∀ i≤N . fpxs-root-order (poly.coeff p i) dvd b

by (auto simp: b-def)
qed

qed

We write all the coefficients of p as Laurent series in X1/b:
have ∃ c. coeff p i = fpxs-compose-power (fpxs-of-fls c) (1 / rat-of-nat b) if i: i
≤ N for i

proof −
have fpxs-root-order (coeff p i) dvd b

using ab(3) i by auto
from fpxs-as-fls ′[OF this ‹b > 0 ›] show ?thesis by metis

qed
then obtain c-aux where c-aux:

coeff p i = fpxs-compose-power (fpxs-of-fls (c-aux i)) (1 / rat-of-nat b) if i ≤
N for i

by metis
define c where c = (λi. if i ≤ N then c-aux i else 0)
have c: coeff p i = fpxs-compose-power (fpxs-of-fls (c i)) (1 / rat-of-nat b) for i

using c-aux[of i] by (auto simp: c-def N-def coeff-eq-0)
have c-eq-0 [simp]: c i = 0 if i > N for i

using that by (auto simp: c-def)
have c-eq: fpxs-of-fls (c i) = fpxs-compose-power (coeff p i) (rat-of-nat b) for i

using c[of i] ‹b > 0 › by (simp add: fpxs-compose-power-distrib)

We perform another change of variables and multiply with a suitable power
of X to turn our Laurent coefficients into FPS coefficients:

define c ′ where c ′ = (λi. fls-X-intpow ((int N − int i) ∗ a) ∗ c i)
have c ′ N = 1

using c[of N] ‹lead-coeff p = 1 › ‹b > 0 › by (simp add: c ′-def N-def)

have subdegree-c: of-int (fls-subdegree (c i)) = fpxs-val (coeff p i) ∗ rat-of-nat b
if i: i ≤ N for i

proof −
have rat-of-int (fls-subdegree (c i)) = fpxs-val (fpxs-of-fls (c i))

by simp
also have fpxs-of-fls (c i) = fpxs-compose-power (poly.coeff p i) (rat-of-nat b)

by (subst c-eq) auto
also have fpxs-val . . . = fpxs-val (coeff p i) ∗ rat-of-nat b

using ‹b > 0 › by simp
finally show ?thesis .

50

qed

We now write all the coefficients as FPSs:
have ∃ c ′′. c ′ i = fps-to-fls c ′′ if i ≤ N for i
proof (cases i = N)

case True
hence c ′ i = fps-to-fls 1

using ‹c ′ N = 1 › by simp
thus ?thesis by metis

next
case i: False
show ?thesis
proof (cases c i = 0)

case True
hence c ′ i = 0 by (auto simp: c ′-def)
thus ?thesis

by (metis fps-zero-to-fls)
next

case False
hence coeff p i 6= 0

using c-eq[of i] by auto
hence r-ge: r ≥ −fpxs-val (poly.coeff p i) / (rat-of-nat N − rat-of-nat i)

unfolding r-def using i that False by (intro Max.coboundedI) auto

have fls-subdegree (c ′ i) = fls-subdegree (c i) + (int N − int i) ∗ a
using i that False by (simp add: c ′-def fls-X-intpow-times-conv-shift subde-

gree-c)
also have rat-of-int . . . =

fpxs-val (poly.coeff p i) ∗ of-nat b + (of-nat N − of-nat i) ∗ of-int a
using i that False by (simp add: subdegree-c)

also have . . . = of-nat b ∗ (of-nat N − of-nat i) ∗
(fpxs-val (poly.coeff p i) / (of-nat N − of-nat i) + r)

using ‹b > 0 › i by (auto simp: field-simps ab(2))
also have . . . ≥ 0

using r-ge that by (intro mult-nonneg-nonneg) auto
finally have fls-subdegree (c ′ i) ≥ 0 by simp
hence ∃ c ′′. c ′ i = fls-shift 0 (fps-to-fls c ′′)

by (intro fls-as-fps ′) (auto simp: algebra-simps)
thus ?thesis by simp

qed
qed
then obtain c ′′-aux where c ′′-aux: c ′ i = fps-to-fls (c ′′-aux i) if i ≤ N for i

by metis
define c ′′ where c ′′ = (λi. if i ≤ N then c ′′-aux i else 0)
have c ′: c ′ i = fps-to-fls (c ′′ i) for i
proof (cases i ≤ N)

case False
thus ?thesis by (auto simp: c ′-def c ′′-def)

qed (auto simp: c ′′-def c ′′-aux)

51

have c ′′-eq: fps-to-fls (c ′′ i) = c ′ i for i
using c ′[of i] by simp

define p ′ where p ′ = Abs-poly c ′′

have coeff-p ′: coeff p ′ = c ′′

unfolding p ′-def
proof (rule coeff-Abs-poly)

fix i assume i > N
hence coeff p i = 0

by (simp add: N-def coeff-eq-0)
thus c ′′ i = 0 using c ′[of i] c[of i] ‹b > 0 › ‹N < i› c ′′-def by auto

qed

We set up some homomorphisms to convert between the two polynomials:
interpret comppow: map-poly-inj-idom-hom (λx:: ′a fpxs. fpxs-compose-power x

(1/rat-of-nat b))
by unfold-locales (use ‹b > 0 › in simp-all)

define lift-poly :: ′a fps poly ⇒ ′a fpxs poly where
lift-poly = (λp. pcompose p [:0 , fpxs-X-power r :]) ◦

(map-poly ((λx. fpxs-compose-power x (1/rat-of-nat b)) ◦ fpxs-of-fls
◦ fps-to-fls))

have [simp]: degree (lift-poly q) = degree q for q
unfolding lift-poly-def by (simp add: degree-map-poly)

interpret fps-to-fls: map-poly-inj-idom-hom fps-to-fls
by unfold-locales (simp-all add: fls-times-fps-to-fls)

interpret fpxs-of-fls: map-poly-inj-idom-hom fpxs-of-fls
by unfold-locales simp-all

interpret lift-poly: inj-idom-hom lift-poly
unfolding lift-poly-def

by (intro inj-idom-hom-compose inj-idom-hom-pcompose inj-idom-hom.inj-idom-hom-map-poly
fps-to-fls.base.inj-idom-hom-axioms fpxs-of-fls.base.inj-idom-hom-axioms

comppow.base.inj-idom-hom-axioms) simp-all
interpret lift-poly: map-poly-inj-idom-hom lift-poly

by unfold-locales

define C :: ′a fpxs where C = fpxs-X-power (− (rat-of-nat N ∗ r))
have [simp]: C 6= 0

by (auto simp: C-def)

Now, finally: the original polynomial and the new polynomial are related
through the lift-poly homomorphism:

have p-eq: p = smult C (lift-poly p ′)
using ‹b > 0 ›
by (intro poly-eqI)

(simp-all add: coeff-map-poly coeff-pcompose-linear coeff-p ′ c c ′′-eq c ′-def
C-def

ring-distribs fpxs-X-power-conv-shift fpxs-shift-mult lift-poly-def
ab(2)

52

flip: fpxs-X-power-add fpxs-X-power-mult fpxs-shift-add-left)
have [simp]: degree p ′ = N

unfolding N-def using ‹b > 0 › by (simp add: p-eq)
have lc-p ′: lead-coeff p ′ = 1

using c ′′-eq[of N] by (simp add: coeff-p ′ ‹c ′ N = 1 ›)
have coeff p ′ (N − 1) = 0

using coeff-deg-minus-1 ‹b > 0 › unfolding N-def [symmetric]
by (simp add: p-eq lift-poly-def coeff-map-poly coeff-pcompose-linear)

We reduce p′(X,Z) to p′(X, 0):
define p ′-proj where p ′-proj = reduce-fps-poly p ′

have [simp]: degree p ′-proj = N
unfolding p ′-proj-def using lc-p ′ by (subst degree-reduce-fps-poly-monic) simp-all

have lc-p ′-proj: lead-coeff p ′-proj = 1
unfolding p ′-proj-def using lc-p ′ by (subst reduce-fps-poly-monic) simp-all

hence [simp]: p ′-proj 6= 0
by auto

have coeff p ′-proj (N − 1) = 0
using ‹coeff p ′ (N − 1) = 0 › by (simp add: p ′-proj-def reduce-fps-poly-def)

We now show that p ′-proj splits into non-trivial coprime factors. To do this,
we have to show that it has two distinct roots, i.e. that it is not of the form
(X − c)n.

obtain g h where gh: degree g > 0 degree h > 0 coprime g h p ′-proj = g ∗ h
proof −

have degree p ′-proj > 1
using deg-p by (auto simp: N-def)

Let x be an arbitrary root of p ′-proj:
then obtain x where x: poly p ′-proj x = 0

using alg-closed-imp-poly-has-root[of p ′-proj] by force

Assume for the sake of contradiction that p ′-proj were equal to (1− x)n:
have not-only-one-root: p ′-proj 6= [:−x, 1 :] ^ N
proof safe

assume ∗: p ′-proj = [:−x, 1 :] ^ N

If x were non-zero, all the coefficients of p ′-proj would also be non-zero by
the Binomial Theorem. Since we know that the coefficient of n − 1 is zero,
this means that x must be zero:

have coeff p ′-proj (N − 1) = 0 by fact
hence x = 0

by (subst (asm) ∗, subst (asm) coeff-linear-poly-power) auto

However, by our choice of r, we know that there is an index i such that c ′ i
has is non-zero and has valuation (i.e. subdegree) 0, which means that the
i-th coefficient of p ′-proj must also be non-zero.

53

have 0 < N ∧ coeff p 0 6= 0
using deg-p ‹coeff p 0 6= 0 › by (auto simp: N-def)

hence {i∈{..<N}. coeff p i 6= 0} 6= {}
by blast

hence r ∈ (λi. −fpxs-val (poly.coeff p i) / (rat-of-nat N − rat-of-nat i)) ‘
{i∈{..<N}. coeff p i 6= 0}

unfolding r-def using deg-p by (intro Max-in) (auto simp: N-def)
then obtain i where i: i < N coeff p i 6= 0

−fpxs-val (coeff p i) / (rat-of-nat N − rat-of-nat i) = r
by blast

hence [simp]: c ′ i 6= 0
using i c[of i] by (auto simp: c ′-def)

have fpxs-val (poly.coeff p i) = rat-of-int (fls-subdegree (c i)) / rat-of-nat b
using subdegree-c[of i] i ‹b > 0 › by (simp add: field-simps)

also have fpxs-val (coeff p i) = −r ∗ (rat-of-nat N − rat-of-nat i)
using i by (simp add: field-simps)

finally have rat-of-int (fls-subdegree (c i)) = − r ∗ (of-nat N − of-nat i) ∗
of-nat b

using ‹b > 0 › by (simp add: field-simps)
also have c i = fls-shift ((int N − int i) ∗ a) (c ′ i)

using i by (simp add: c ′-def ring-distribs fls-X-intpow-times-conv-shift
flip: fls-shifted-times-simps(2))

also have fls-subdegree . . . = fls-subdegree (c ′ i) − (int N − int i) ∗ a
by (subst fls-shift-subdegree) auto

finally have fls-subdegree (c ′ i) = 0
using ‹b > 0 › by (simp add: ab(2))

hence subdegree (coeff p ′ i) = 0
by (simp flip: c ′′-eq add: fls-subdegree-fls-to-fps coeff-p ′)

moreover have coeff p ′ i 6= 0
using ‹c ′ i 6= 0 › c ′ coeff-p ′ by auto

ultimately have coeff p ′ i $ 0 6= 0
using subdegree-eq-0-iff by blast

also have coeff p ′ i $ 0 = coeff p ′-proj i
by (simp add: p ′-proj-def reduce-fps-poly-def)

also have . . . = 0
by (subst ∗, subst coeff-linear-poly-power) (use i ‹x = 0 › in auto)

finally show False by simp
qed

We can thus obtain our second root y from the factorisation:
have ∃ y. x 6= y ∧ poly p ′-proj y = 0
proof (rule ccontr)

assume ∗: ¬(∃ y. x 6= y ∧ poly p ′-proj y = 0)
have p ′-proj 6= 0 by simp
then obtain A where A: size A = degree p ′-proj

p ′-proj = smult (lead-coeff p ′-proj) (
∏

x∈#A. [:−x, 1 :])
using alg-closed-imp-factorization[of p ′-proj] by blast

have set-mset A = {x. poly p ′-proj x = 0}

54

using lc-p ′-proj by (subst A) (auto simp: poly-prod-mset)
also have . . . = {x}

using x ∗ by auto
finally have A = replicate-mset N x

using set-mset-subset-singletonD[of A x] A(1) by simp
with A(2) have p ′-proj = [:− x, 1 :] ^ N

using lc-p ′-proj by simp
with not-only-one-root show False

by contradiction
qed
then obtain y where x 6= y poly p ′-proj y = 0

by blast

It now follows easily that p ′-proj splits into non-trivial and coprime factors:
show ?thesis
proof (rule alg-closed-imp-poly-splits-coprime)

show degree p ′-proj > 1
using deg-p by (simp add: N-def)

show x 6= y poly p ′-proj x = 0 poly p ′-proj y = 0
by fact+

qed (use that in metis)
qed

By Hensel’s lemma, these factors give rise to corresponding factors of p ′:
interpret hensel: fps-hensel p ′ p ′-proj g h
proof unfold-locales

show lead-coeff p ′ = 1
using lc-p ′ by simp

qed (use gh ‹coprime g h› in ‹simp-all add: p ′-proj-def ›)

All that remains now is to undo the variable substitutions we did above:
have p = [:C :] ∗ lift-poly hensel.G ∗ lift-poly hensel.H

unfolding p-eq by (subst hensel.F-splits) (simp add: hom-distribs)
thus ¬irreducible p

by (rule reducible-polyI) (use hensel.deg-G hensel.deg-H gh in simp-all)
qed

We do not actually show that this is the algebraic closure since this cannot
be stated idiomatically in the typeclass setting and is probably not very
useful either, but it can be motivated like this:
Suppose we have an algebraically closed extension L of the field of Laurent
series. Clearly, Xa/b ∈ L for any integer a and any positive integer b since
(Xa/b)b −Xa = 0. But any Puiseux series F (X) with root order b can be
written as

F (X) =
b−1∑
k=0

Xk/bFk(X)

55

where the Laurent series Fk(X) are defined as follows:

Fk(X) :=

∞∑
n=n0,k

[Xn+k/b]F (X)Xn

Thus, F (X) can be written as a finite sum of products of elements in L and
must therefore also be in L. Thus, the Puiseux series are all contained in L.

3.12 Metric and topology

Formal Puiseux series form a metric space with the usual metric for for-
mal series: Two series are “close” to one another if they have many initial
coefficients in common.
instantiation fpxs :: (zero) norm
begin

definition norm-fpxs :: ′a fpxs ⇒ real where
norm f = (if f = 0 then 0 else 2 powr (−of-rat (fpxs-val f)))

instance ..

end

instantiation fpxs :: (group-add) dist
begin

definition dist-fpxs :: ′a fpxs ⇒ ′a fpxs ⇒ real where
dist f g = (if f = g then 0 else 2 powr (−of-rat (fpxs-val (f − g))))

instance ..

end

instantiation fpxs :: (group-add) metric-space
begin

definition uniformity-fpxs-def [code del]:
(uniformity :: (′a fpxs × ′a fpxs) filter) = (INF e∈{0 <..}. principal {(x, y). dist

x y < e})

definition open-fpxs-def [code del]:
open (U :: ′a fpxs set) ←→ (∀ x∈U . eventually (λ(x ′, y). x ′ = x −→ y ∈ U)

uniformity)

instance proof

56

fix f g h :: ′a fpxs
show dist f g ≤ dist f h + dist g h
proof (cases f 6= g ∧ f 6= h ∧ g 6= h)

case True
have dist f g ≤ 2 powr −real-of-rat (min (fpxs-val (f − h)) (fpxs-val (g − h)))

using fpxs-val-add-ge[of f − h h − g] True
by (auto simp: algebra-simps fpxs-val-minus-commute dist-fpxs-def of-rat-less-eq)
also have . . . ≤ dist f h + dist g h

using True by (simp add: dist-fpxs-def min-def)
finally show ?thesis .

qed (auto simp: dist-fpxs-def fpxs-val-minus-commute)
qed (simp-all add: uniformity-fpxs-def open-fpxs-def dist-fpxs-def)

end

instance fpxs :: (group-add) dist-norm
by standard (auto simp: dist-fpxs-def norm-fpxs-def)

lemma fpxs-const-eq-0-iff [simp]: fpxs-const x = 0 ←→ x = 0
by (metis fpxs-const-0 fpxs-const-eq-iff)

lemma semiring-char-fpxs [simp]: CHAR(′a :: comm-semiring-1 fpxs) = CHAR(′a)
by (rule CHAR-eqI ; unfold of-nat-fpxs-eq) (auto simp: of-nat-eq-0-iff-char-dvd)

instance fpxs :: ({semiring-prime-char ,comm-semiring-1}) semiring-prime-char
by (rule semiring-prime-charI) auto

instance fpxs :: ({comm-semiring-prime-char ,comm-semiring-1}) comm-semiring-prime-char
by standard

instance fpxs :: ({comm-ring-prime-char ,comm-semiring-1}) comm-ring-prime-char
by standard

instance fpxs :: ({idom-prime-char ,comm-semiring-1}) idom-prime-char
by standard

instance fpxs :: (field-prime-char) field-prime-char
by standard auto

end

References

[1] S. S. Abhyankar. Algebraic Geometry for Scientists and Engineers.
Mathematical surveys and monographs. American Mathematical Soci-
ety, 1990.

[2] K. J. Nowak. Some elementary proofs of Puiseuxs theorems. Univ. Iagel.
Acta Math, 38:279–282, 2000.

57

	Auxiliary material
	Facts about polynomials
	A typeclass for algebraically closed fields

	Hensel's lemma for formal power series
	Formal Puiseux Series
	Auxiliary facts and definitions
	Definition
	Basic algebraic typeclass instances
	The substitution X Xr
	Mutiplication and ring properties
	Constant Puiseux series and the series 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 X
	More algebraic typeclass instances
	Valuation
	Powers of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 X and shifting
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 n-th root of a Puiseux series
	Algebraic closedness
	Metric and topology

