
The Floyd-Warshall Algorithm for Shortest Paths

Simon Wimmer and Peter Lammich

September 13, 2023

Abstract

The Floyd-Warshall algorithm [Flo62, Roy59, War62] is a classic
dynamic programming algorithm to compute the length of all shortest
paths between any two vertices in a graph (i.e. to solve the all-pairs
shortest path problem, or APSP for short). Given a representation
of the graph as a matrix of weights M , it computes another matrix
M ′ which represents a graph with the same path lengths and con-
tains the length of the shortest path between any two vertices i and j.
This is only possible if the graph does not contain any negative cycles.
However, in this case the Floyd-Warshall algorithm will detect the sit-
uation by calculating a negative diagonal entry. This entry includes a
formalization of the algorithm and of these key properties. The algo-
rithm is refined to an efficient imperative version using the Imperative
Refinement Framework.

Contents
1 Floyd-Warshall Algorithm for the All-Pairs Shortest Paths

Problem 2
1.1 Introduction . 2
1.2 Preliminaries . 3
1.3 Definition of the Algorithm 6
1.4 Result Under The Absence of Negative Cycles 9
1.5 Definition of Shortest Paths 12
1.6 Intermezzo: Equivalent Characterizations of Cycle-Freeness . 15
1.7 Result Under the Presence of Negative Cycles 17
1.8 More on Canonical Matrices 18
1.9 Additional Theorems . 19
1.10 Refinement to Efficient Imperative Code 23

1

theory Floyd-Warshall
imports Main

begin

1 Floyd-Warshall Algorithm for the All-Pairs Short-
est Paths Problem

1.1 Introduction

The Floyd-Warshall algorithm [Flo62, Roy59, War62] is a classic dynamic
programming algorithm to compute the length of all shortest paths between
any two vertices in a graph (i.e. to solve the all-pairs shortest path problem,
or APSP for short). Given a representation of the graph as a matrix of
weights M, it computes another matrix M ′ which represents a graph with the
same path lengths and contains the length of the shortest path between any
two vertices i and j. This is only possible if the graph does not contain any
negative cycles (then the length of the shortest path is−∞). However, in this
case the Floyd-Warshall algorithm will detect the situation by calculating a
negative diagonal entry corresponding to the negative cycle. In the following,
we present a formalization of the algorithm and of the aforementioned key
properties.
Abstractly, the algorithm corresponds to the following imperative pseudo-
code:

for k = 1 .. n do
for i = 1 .. n do

for j = 1 .. n do
m[i, j] := min(m[i, j], m[i, k] + m[k, j])

However, we will carry out the whole formalization on a recursive version of
the algorithm, and refine it to an efficient imperative version corresponding
to the above pseudo-code in the end. The main observation underlying the
algorithm is that the shortest path from i to j which only uses intermediate
vertices from the set {0 . . .k+1}, is: either the shortest path from i to j using
intermediate vertices from the set {0 . . .k}; or a combination of the shortest
path from i to k and the shortest path from k to j, each of them only using
intermediate vertices from {0 . . .k}. Our presentation we be slightly more
general than the typical textbook version, in that we will factor our the inner
two loops as a separate algorithm and show that it has similar properties as
the full algorithm for a single intermediate vertex k.

2

1.2 Preliminaries

1.2.1 Cycles in Lists

abbreviation cnt x xs ≡ length (filter (λy. x = y) xs)

fun remove-cycles :: ′a list ⇒ ′a ⇒ ′a list ⇒ ′a list
where

remove-cycles [] - acc = rev acc |
remove-cycles (x#xs) y acc =
(if x = y then remove-cycles xs y [x] else remove-cycles xs y (x#acc))

lemma cnt-rev: cnt x (rev xs) = cnt x xs 〈proof 〉

value as @ [x] @ bs @ [x] @ cs @ [x] @ ds

lemma remove-cycles-removes: cnt x (remove-cycles xs x ys) ≤ max 1 (cnt
x ys)
〈proof 〉

lemma remove-cycles-id: x /∈ set xs =⇒ remove-cycles xs x ys = rev ys @
xs
〈proof 〉

lemma remove-cycles-cnt-id:
x 6= y =⇒ cnt y (remove-cycles xs x ys) ≤ cnt y ys + cnt y xs
〈proof 〉

lemma remove-cycles-ends-cycle: remove-cycles xs x ys 6= rev ys @ xs =⇒
x ∈ set xs
〈proof 〉

lemma remove-cycles-begins-with: x ∈ set xs =⇒ ∃ zs. remove-cycles xs x
ys = x # zs ∧ x /∈ set zs
〈proof 〉

lemma remove-cycles-self :
x ∈ set xs =⇒ remove-cycles (remove-cycles xs x ys) x zs = remove-cycles

xs x ys
〈proof 〉

lemma remove-cycles-one: remove-cycles (as @ x # xs) x ys = remove-cycles
(x#xs) x ys
〈proof 〉

3

lemma remove-cycles-cycles:
∃ xxs as. as @ concat (map (λ xs. x # xs) xxs) @ remove-cycles xs x ys

= xs ∧ x /∈ set as
if x ∈ set xs
〈proof 〉

fun start-remove :: ′a list ⇒ ′a ⇒ ′a list ⇒ ′a list
where

start-remove [] - acc = rev acc |
start-remove (x#xs) y acc =
(if x = y then rev acc @ remove-cycles xs y [y] else start-remove xs y (x

acc))

lemma start-remove-decomp:
x ∈ set xs =⇒ ∃ as bs. xs = as @ x # bs ∧ start-remove xs x ys = rev ys

@ as @ remove-cycles bs x [x]
〈proof 〉

lemma start-remove-removes: cnt x (start-remove xs x ys) ≤ Suc (cnt x ys)
〈proof 〉

lemma start-remove-id[simp]: x /∈ set xs =⇒ start-remove xs x ys = rev ys
@ xs
〈proof 〉

lemma start-remove-cnt-id:
x 6= y =⇒ cnt y (start-remove xs x ys) ≤ cnt y ys + cnt y xs
〈proof 〉

fun remove-all-cycles :: ′a list ⇒ ′a list ⇒ ′a list
where

remove-all-cycles [] xs = xs |
remove-all-cycles (x # xs) ys = remove-all-cycles xs (start-remove ys x [])

lemma cnt-remove-all-mono:cnt y (remove-all-cycles xs ys) ≤ max 1 (cnt
y ys)
〈proof 〉

lemma cnt-remove-all-cycles: x ∈ set xs =⇒ cnt x (remove-all-cycles xs ys)
≤ 1
〈proof 〉

4

lemma cnt-mono:
cnt a (b # xs) ≤ cnt a (b # c # xs)
〈proof 〉

lemma cnt-distinct-intro: ∀ x ∈ set xs. cnt x xs ≤ 1 =⇒ distinct xs
〈proof 〉

lemma remove-cycles-subs:
set (remove-cycles xs x ys) ⊆ set xs ∪ set ys
〈proof 〉

lemma start-remove-subs:
set (start-remove xs x ys) ⊆ set xs ∪ set ys
〈proof 〉

lemma remove-all-cycles-subs:
set (remove-all-cycles xs ys) ⊆ set ys
〈proof 〉

lemma remove-all-cycles-distinct: set ys ⊆ set xs =⇒ distinct (remove-all-cycles
xs ys)
〈proof 〉

lemma distinct-remove-cycles-inv: distinct (xs @ ys) =⇒ distinct (remove-cycles
xs x ys)
〈proof 〉

definition
remove-all x xs = (if x ∈ set xs then tl (remove-cycles xs x []) else xs)

definition
remove-all-rev x xs = (if x ∈ set xs then rev (tl (remove-cycles (rev xs) x

[])) else xs)

lemma remove-all-distinct:
distinct xs =⇒ distinct (x # remove-all x xs)
〈proof 〉

lemma remove-all-removes:
x /∈ set (remove-all x xs)
〈proof 〉

lemma remove-all-subs:
set (remove-all x xs) ⊆ set xs

5

〈proof 〉

lemma remove-all-rev-distinct: distinct xs =⇒ distinct (x # remove-all-rev
x xs)
〈proof 〉

lemma remove-all-rev-removes: x /∈ set (remove-all-rev x xs)
〈proof 〉

lemma remove-all-rev-subs: set (remove-all-rev x xs) ⊆ set xs
〈proof 〉

abbreviation rem-cycles i j xs ≡ remove-all i (remove-all-rev j (remove-all-cycles
xs xs))

lemma rem-cycles-distinct ′: i 6= j =⇒ distinct (i # j # rem-cycles i j xs)
〈proof 〉

lemma rem-cycles-removes-last: j /∈ set (rem-cycles i j xs)
〈proof 〉

lemma rem-cycles-distinct: distinct (rem-cycles i j xs)
〈proof 〉

lemma rem-cycles-subs: set (rem-cycles i j xs) ⊆ set xs
〈proof 〉

1.3 Definition of the Algorithm

1.3.1 Definitions

In our formalization of the Floyd-Warshall algorithm, edge weights are from
a linearly ordered abelian monoid.

class linordered-ab-monoid-add = linorder + ordered-comm-monoid-add
begin

subclass linordered-ab-semigroup-add 〈proof 〉

end

subclass (in linordered-ab-group-add) linordered-ab-monoid-add 〈proof 〉

context linordered-ab-monoid-add

6

begin

type-synonym ′c mat = nat ⇒ nat ⇒ ′c

definition upd :: ′c mat ⇒ nat ⇒ nat ⇒ ′c ⇒ ′c mat
where

upd m x y v = m (x := (m x) (y := v))

definition fw-upd :: ′a mat ⇒ nat ⇒ nat ⇒ nat ⇒ ′a mat where
fw-upd m k i j ≡ upd m i j (min (m i j) (m i k + m k j))

Recursive version of the two inner loops.

fun fwi :: ′a mat ⇒ nat ⇒ nat ⇒ nat ⇒ nat ⇒ ′a mat where
fwi m n k 0 0 = fw-upd m k 0 0 |
fwi m n k (Suc i) 0 = fw-upd (fwi m n k i n) k (Suc i) 0 |
fwi m n k i (Suc j) = fw-upd (fwi m n k i j) k i (Suc j)

Recursive version of the full algorithm.

fun fw :: ′a mat ⇒ nat ⇒ nat ⇒ ′a mat where
fw m n 0 = fwi m n 0 n n |
fw m n (Suc k) = fwi (fw m n k) n (Suc k) n n

1.3.2 Elementary Properties

lemma fw-upd-mono:
fw-upd m k i j i ′ j ′ ≤ m i ′ j ′
〈proof 〉

lemma fw-upd-out-of-bounds1 :
assumes i ′ > i
shows (fw-upd M k i j) i ′ j ′ = M i ′ j ′
〈proof 〉

lemma fw-upd-out-of-bounds2 :
assumes j ′ > j
shows (fw-upd M k i j) i ′ j ′ = M i ′ j ′
〈proof 〉

lemma fwi-out-of-bounds1 :
assumes i ′ > n i ≤ n
shows (fwi M n k i j) i ′ j ′ = M i ′ j ′
〈proof 〉

lemma fw-out-of-bounds1 :

7

assumes i ′ > n
shows (fw M n k) i ′ j ′ = M i ′ j ′
〈proof 〉

lemma fwi-out-of-bounds2 :
assumes j ′ > n j ≤ n
shows (fwi M n k i j) i ′ j ′ = M i ′ j ′
〈proof 〉

lemma fw-out-of-bounds2 :
assumes j ′ > n
shows (fw M n k) i ′ j ′ = M i ′ j ′
〈proof 〉

lemma fwi-invariant-aux-1 :
j ′′ ≤ j =⇒ fwi m n k i j i ′ j ′ ≤ fwi m n k i j ′′ i ′ j ′
〈proof 〉

lemma fwi-invariant:
j ≤ n =⇒ i ′′ ≤ i =⇒ j ′′ ≤ j
=⇒ fwi m n k i j i ′ j ′ ≤ fwi m n k i ′′ j ′′ i ′ j ′

〈proof 〉

lemma single-row-inv:
j ′ < j =⇒ fwi m n k i ′ j i ′ j ′ = fwi m n k i ′ j ′ i ′ j ′
〈proof 〉

lemma single-iteration-inv ′:
i ′ < i =⇒ j ′ ≤ n =⇒ fwi m n k i j i ′ j ′ = fwi m n k i ′ j ′ i ′ j ′
〈proof 〉

lemma single-iteration-inv:
i ′ ≤ i =⇒ j ′ ≤ j =⇒ j ≤ n =⇒ fwi m n k i j i ′ j ′ = fwi m n k i ′ j ′ i ′ j ′
〈proof 〉

lemma fwi-innermost-id:
i ′ < i =⇒ fwi m n k i ′ j ′ i j = m i j
〈proof 〉

lemma fwi-middle-id:
j ′ < j =⇒ i ′ ≤ i =⇒ fwi m n k i ′ j ′ i j = m i j
〈proof 〉

lemma fwi-outermost-mono:

8

i ≤ n =⇒ j ≤ n =⇒ fwi m n k i j i j ≤ m i j
〈proof 〉

lemma fwi-mono:
fwi m n k i ′ j ′ i j ≤ m i j if i ≤ n j ≤ n
〈proof 〉

lemma Suc-innermost-mono:
i ≤ n =⇒ j ≤ n =⇒ fw m n (Suc k) i j ≤ fw m n k i j
〈proof 〉

lemma fw-mono:
i ≤ n =⇒ j ≤ n =⇒ fw m n k i j ≤ m i j
〈proof 〉

Justifies the use of destructive updates in the case that there is no negative
cycle for k.

lemma fwi-step:
m k k ≥ 0 =⇒ i ≤ n =⇒ j ≤ n =⇒ k ≤ n =⇒ fwi m n k i j i j = min

(m i j) (m i k + m k j)
〈proof 〉

1.4 Result Under The Absence of Negative Cycles

If the given input graph does not contain any negative cycles, the Floyd-
Warshall algorithm computes the unique shortest paths matrix correspond-
ing to the graph. It contains the shortest path between any two nodes i, j
≤ n.

1.4.1 Length of Paths

fun len :: ′a mat ⇒ nat ⇒ nat ⇒ nat list ⇒ ′a where
len m u v [] = m u v |
len m u v (w#ws) = m u w + len m w v ws

lemma len-decomp: xs = ys @ y # zs =⇒ len m x z xs = len m x y ys +
len m y z zs
〈proof 〉

lemma len-comp: len m a c (xs @ b # ys) = len m a b xs + len m b c ys
〈proof 〉

9

1.4.2 Canonicality

The unique shortest path matrices are in a so-called canonical form. We
will say that a matrix m is in canonical form for a set of indices I if the
following holds:

definition canonical-subs :: nat ⇒ nat set ⇒ ′a mat ⇒ bool where
canonical-subs n I m = (∀ i j k. i ≤ n ∧ k ≤ n ∧ j ∈ I −→ m i k ≤ m i

j + m j k)

Similarly we express that m does not contain a negative cycle which only
uses intermediate vertices from the set I as follows:

abbreviation cyc-free-subs :: nat ⇒ nat set ⇒ ′a mat ⇒ bool where
cyc-free-subs n I m ≡ ∀ i xs. i ≤ n ∧ set xs ⊆ I −→ len m i i xs ≥ 0

To prove the main result under the absence of negative cycles, we will proceed
as follows:

• we show that an invocation of fwi m n k n n extends canonicality to
index k,

• we show that an invocation of fw m n n computes a matrix in canonical
form,

• and finally we show that canonical forms specify the lengths of shortest
paths, provided that there are no negative cycles.

Canonical forms specify lower bounds for the length of any path.

lemma canonical-subs-len:
M i j ≤ len M i j xs if canonical-subs n I M i ≤ n j ≤ n set xs ⊆ I I ⊆
{0 ..n}
〈proof 〉

This lemma justifies the use of destructive updates under the absence of
negative cycles.

lemma fwi-step ′:
fwi m n k i ′ j ′ i j = min (m i j) (m i k + m k j) if
m k k ≥ 0 i ′ ≤ n j ′ ≤ n k ≤ n i ≤ i ′ j ≤ j ′
〈proof 〉

An invocation of fwi extends canonical forms.

lemma fwi-canonical-extend:
canonical-subs n (I ∪ {k}) (fwi m n k n n) if
canonical-subs n I m I ⊆ {0 ..n} 0 ≤ m k k k ≤ n
〈proof 〉

10

An invocation of fwi will not produce a negative diagonal entry if there is
no negative cycle.
lemma fwi-cyc-free-diag:

fwi m n k n n i i ≥ 0 if
cyc-free-subs n I m 0 ≤ m k k k ≤ n k ∈ I i ≤ n
〈proof 〉

lemma cyc-free-subs-diag:
m i i ≥ 0 if cyc-free-subs n I m i ≤ n
〈proof 〉

lemma fwi-cyc-free-subs ′:
cyc-free-subs n (I ∪ {k}) (fwi m n k n n) if
cyc-free-subs n I m canonical-subs n I m I ⊆ {0 ..n} k ≤ n
∀ i ≤ n. fwi m n k n n i i ≥ 0
〈proof 〉

lemma fwi-cyc-free-subs:
cyc-free-subs n (I ∪ {k}) (fwi m n k n n) if
cyc-free-subs n (I ∪ {k}) m canonical-subs n I m I ⊆ {0 ..n} k ≤ n
〈proof 〉

lemma canonical-subs-empty [simp]:
canonical-subs n {} m
〈proof 〉

lemma fwi-neg-diag-neg-cycle:
∃ i ≤ n. ∃ xs. set xs ⊆ {0 ..k} ∧ len m i i xs < 0 if fwi m n k n n i i <

0 i ≤ n k ≤ n
〈proof 〉

fwi preserves the length of paths.
lemma fwi-len:
∃ ys. set ys ⊆ set xs ∪ {k} ∧ len (fwi m n k n n) i j xs = len m i j ys
if i ≤ n j ≤ n k ≤ n m k k ≥ 0 set xs ⊆ {0 ..n}
〈proof 〉

lemma fwi-neg-cycle-neg-cycle:
∃ i ≤ n. ∃ ys. set ys ⊆ set xs ∪ {k} ∧ len m i i ys < 0 if
len (fwi m n k n n) i i xs < 0 i ≤ n k ≤ n set xs ⊆ {0 ..n}
〈proof 〉

If the Floyd-Warshall algorithm produces a negative diagonal entry, then
there is a negative cycle.

11

lemma fw-neg-diag-neg-cycle:
∃ i ≤ n. ∃ ys. set ys ⊆ set xs ∪ {0 ..k} ∧ len m i i ys < 0 if
len (fw m n k) i i xs < 0 i ≤ n k ≤ n set xs ⊆ {0 ..n}
〈proof 〉

Main theorem under the absence of negative cycles.
theorem fw-correct:

canonical-subs n {0 ..k} (fw m n k) ∧ cyc-free-subs n {0 ..k} (fw m n k)
if cyc-free-subs n {0 ..k} m k ≤ n
〈proof 〉

lemmas fw-canonical-subs = fw-correct[THEN conjunct1]
lemmas fw-cyc-free-subs = fw-correct[THEN conjunct2]
lemmas cyc-free-diag = cyc-free-subs-diag

1.5 Definition of Shortest Paths

We define the notion of the length of the shortest simple path between two
vertices, using only intermediate vertices from the set {0 . . .k}.
definition D :: ′a mat ⇒ nat ⇒ nat ⇒ nat ⇒ ′a where

D m i j k ≡ Min {len m i j xs | xs. set xs ⊆ {0 ..k} ∧ i /∈ set xs ∧ j /∈ set
xs ∧ distinct xs}

lemma distinct-length-le:finite s =⇒ set xs ⊆ s =⇒ distinct xs =⇒ length
xs ≤ card s
〈proof 〉

lemma finite-distinct: finite s =⇒ finite {xs . set xs ⊆ s ∧ distinct xs}
〈proof 〉

lemma D-base-finite:
finite {len m i j xs | xs. set xs ⊆ {0 ..k} ∧ distinct xs}
〈proof 〉

lemma D-base-finite ′:
finite {len m i j xs | xs. set xs ⊆ {0 ..k} ∧ distinct (i # j # xs)}
〈proof 〉

lemma D-base-finite ′′:
finite {len m i j xs |xs. set xs ⊆ {0 ..k} ∧ i /∈ set xs ∧ j /∈ set xs ∧ distinct

xs}
〈proof 〉

definition cycle-free :: ′a mat ⇒ nat ⇒ bool where

12

cycle-free m n ≡ ∀ i xs. i ≤ n ∧ set xs ⊆ {0 ..n} −→
(∀ j. j ≤ n −→ len m i j (rem-cycles i j xs) ≤ len m i j xs) ∧ len m i i

xs ≥ 0

lemma D-eqI :
fixes m n i j k
defines A ≡ {len m i j xs | xs. set xs ⊆ {0 ..k}}
defines A-distinct ≡ {len m i j xs |xs. set xs ⊆ {0 ..k} ∧ i /∈ set xs ∧ j /∈

set xs ∧ distinct xs}
assumes cycle-free m n i ≤ n j ≤ n k ≤ n (

∧
y. y ∈ A-distinct =⇒ x ≤

y) x ∈ A
shows D m i j k = x 〈proof 〉

lemma D-base-not-empty:
{len m i j xs |xs. set xs ⊆ {0 ..k} ∧ i /∈ set xs ∧ j /∈ set xs ∧ distinct xs}

6= {}
〈proof 〉

lemma Min-elem-dest: finite A =⇒ A 6= {} =⇒ x = Min A =⇒ x ∈ A
〈proof 〉

lemma D-dest: x = D m i j k =⇒
x ∈ {len m i j xs |xs. set xs ⊆ {0 ..Suc k} ∧ i /∈ set xs ∧ j /∈ set xs ∧

distinct xs}
〈proof 〉

lemma D-dest ′: x = D m i j k =⇒ x ∈ {len m i j xs |xs. set xs ⊆ {0 ..Suc
k}}
〈proof 〉

lemma D-dest ′′: x = D m i j k =⇒ x ∈ {len m i j xs |xs. set xs ⊆ {0 ..k}}
〈proof 〉

lemma cycle-free-loop-dest: i ≤ n =⇒ set xs ⊆ {0 ..n} =⇒ cycle-free m n
=⇒ len m i i xs ≥ 0
〈proof 〉

lemma cycle-free-dest:
cycle-free m n =⇒ i ≤ n =⇒ j ≤ n =⇒ set xs ⊆ {0 ..n}
=⇒ len m i j (rem-cycles i j xs) ≤ len m i j xs

〈proof 〉

definition cycle-free-up-to :: ′a mat ⇒ nat ⇒ nat ⇒ bool where
cycle-free-up-to m k n ≡ ∀ i xs. i ≤ n ∧ set xs ⊆ {0 ..k} −→

13

(∀ j. j ≤ n −→ len m i j (rem-cycles i j xs) ≤ len m i j xs) ∧ len m i i
xs ≥ 0

lemma cycle-free-up-to-loop-dest:
i ≤ n =⇒ set xs ⊆ {0 ..k} =⇒ cycle-free-up-to m k n =⇒ len m i i xs ≥ 0
〈proof 〉

lemma cycle-free-up-to-diag:
assumes cycle-free-up-to m k n i ≤ n
shows m i i ≥ 0
〈proof 〉

lemma D-eqI2 :
fixes m n i j k
defines A ≡ {len m i j xs | xs. set xs ⊆ {0 ..k}}
defines A-distinct ≡ {len m i j xs | xs. set xs ⊆ {0 ..k} ∧ i /∈ set xs ∧ j

/∈ set xs ∧ distinct xs}
assumes cycle-free-up-to m k n i ≤ n j ≤ n k ≤ n

(
∧

y. y ∈ A-distinct =⇒ x ≤ y) x ∈ A
shows D m i j k = x 〈proof 〉

1.5.1 Connecting the Algorithm to the Notion of Shortest Paths

Under the absence of negative cycles, the Floyd-Warshall algorithm correctly
computes the length of the shortest path between any pair of vertices i, j.

lemma canonical-D:
assumes

cycle-free-up-to m k n canonical-subs n {0 ..k} m i ≤ n j ≤ n k ≤ n
shows D m i j k = m i j
〈proof 〉

theorem fw-subs-len:
(fw m n k) i j ≤ len m i j xs if
cyc-free-subs n {0 ..k} m k ≤ n i ≤ n j ≤ n set xs ⊆ I I ⊆ {0 ..k}
〈proof 〉

This shows that the value calculated by fwi for a pair i, j always corresponds
to the length of an actual path between i and j.

lemma fwi-len ′:
∃ xs. set xs ⊆ {k} ∧ fwi m n k i ′ j ′ i j = len m i j xs if
m k k ≥ 0 i ′ ≤ n j ′ ≤ n k ≤ n i ≤ i ′ j ≤ j ′
〈proof 〉

14

The same result for fw.

lemma fw-len:
∃ xs. set xs ⊆ {0 ..k} ∧ fw m n k i j = len m i j xs if
cyc-free-subs n {0 ..k} m i ≤ n j ≤ n k ≤ n
〈proof 〉

1.6 Intermezzo: Equivalent Characterizations of Cycle-Freeness

1.6.1 Shortening Negative Cycles

lemma remove-cycles-neg-cycles-aux:
fixes i xs ys
defines xs ′ ≡ i # ys
assumes i /∈ set ys
assumes i ∈ set xs
assumes xs = as @ concat (map ((#) i) xss) @ xs ′

assumes len m i j ys > len m i j xs
shows ∃ ys. set ys ⊆ set xs ∧ len m i i ys < 0 〈proof 〉

lemma add-lt-neutral: a + b < b =⇒ a < 0
〈proof 〉

lemma remove-cycles-neg-cycles-aux ′:
fixes j xs ys
assumes j /∈ set ys
assumes j ∈ set xs
assumes xs = ys @ j # concat (map (λ xs. xs @ [j]) xss) @ as
assumes len m i j ys > len m i j xs
shows ∃ ys. set ys ⊆ set xs ∧ len m j j ys < 0 〈proof 〉

lemma add-le-impl: a + b < a + c =⇒ b < c
〈proof 〉

lemma start-remove-neg-cycles:
len m i j (start-remove xs k []) > len m i j xs =⇒ ∃ ys. set ys ⊆ set xs ∧

len m k k ys < 0
〈proof 〉

lemma remove-all-cycles-neg-cycles:
len m i j (remove-all-cycles ys xs) > len m i j xs
=⇒ ∃ ys k. set ys ⊆ set xs ∧ k ∈ set xs ∧ len m k k ys < 0
〈proof 〉

lemma concat-map-cons-rev:

15

rev (concat (map ((#) j) xss)) = concat (map (λ xs. xs @ [j]) (rev (map
rev xss)))
〈proof 〉

lemma negative-cycle-dest: len m i j (rem-cycles i j xs) > len m i j xs
=⇒ ∃ i ′ ys. len m i ′ i ′ ys < 0 ∧ set ys ⊆ set xs ∧ i ′ ∈ set (i # j #

xs)
〈proof 〉

1.6.2 Cycle-Freeness

lemma cycle-free-alt-def :
cycle-free M n ←→ cycle-free-up-to M n n
〈proof 〉

lemma negative-cycle-dest-diag:
¬ cycle-free-up-to m k n =⇒ k ≤ n =⇒ ∃ i xs. i ≤ n ∧ set xs ⊆ {0 ..k}
∧ len m i i xs < 0
〈proof 〉

lemma negative-cycle-dest-diag ′:
¬ cycle-free m n =⇒ ∃ i xs. i ≤ n ∧ set xs ⊆ {0 ..n} ∧ len m i i xs < 0
〈proof 〉

abbreviation cyc-free :: ′a mat ⇒ nat ⇒ bool where
cyc-free m n ≡ ∀ i xs. i ≤ n ∧ set xs ⊆ {0 ..n} −→ len m i i xs ≥ 0

lemma cycle-free-diag-intro:
cyc-free m n =⇒ cycle-free m n
〈proof 〉

lemma cycle-free-diag-equiv:
cyc-free m n ←→ cycle-free m n 〈proof 〉

lemma cycle-free-diag-dest:
cycle-free m n =⇒ cyc-free m n
〈proof 〉

lemma cycle-free-upto-diag-equiv:
cycle-free-up-to m k n ←→ cyc-free-subs n {0 ..k} m if k ≤ n
〈proof 〉

theorem fw-shortest-path-up-to:
D m i j k = fw m n k i j if cyc-free-subs n {0 ..k} m i ≤ n j ≤ n k ≤ n

16

〈proof 〉

We do not need to prove this because the definitions match.
lemma

cyc-free m n ←→ cyc-free-subs n {0 ..n} m 〈proof 〉

lemma cycle-free-cycle-free-up-to:
cycle-free m n =⇒ k ≤ n =⇒ cycle-free-up-to m k n
〈proof 〉

lemma cycle-free-diag:
cycle-free m n =⇒ i ≤ n =⇒ 0 ≤ m i i
〈proof 〉

corollary fw-shortest-path:
cyc-free m n =⇒ i ≤ n =⇒ j ≤ n =⇒ k ≤ n =⇒ D m i j k = fw m n k i

j
〈proof 〉

corollary fw-shortest:
assumes cyc-free m n i ≤ n j ≤ n k ≤ n
shows fw m n n i j ≤ fw m n n i k + fw m n n k j
〈proof 〉

1.7 Result Under the Presence of Negative Cycles

Under the presence of negative cycles, the Floyd-Warshall algorithm will
detect the situation by computing a negative diagonal entry.
lemma not-cylce-free-dest: ¬ cycle-free m n =⇒ ∃ k ≤ n. ¬ cycle-free-up-to
m k n
〈proof 〉

lemma D-not-diag-le:
(x :: ′a) ∈ {len m i j xs |xs. set xs ⊆ {0 ..k} ∧ i /∈ set xs ∧ j /∈ set xs ∧

distinct xs}
=⇒ D m i j k ≤ x 〈proof 〉

lemma D-not-diag-le ′: set xs ⊆ {0 ..k} =⇒ i /∈ set xs =⇒ j /∈ set xs =⇒
distinct xs
=⇒ D m i j k ≤ len m i j xs 〈proof 〉

lemma nat-upto-subs-top-removal ′:
S ⊆ {0 ..Suc n} =⇒ Suc n /∈ S =⇒ S ⊆ {0 ..n}
〈proof 〉

17

lemma nat-upto-subs-top-removal:
S ⊆ {0 ..n::nat} =⇒ n /∈ S =⇒ S ⊆ {0 ..n − 1}
〈proof 〉

Monotonicity with respect to k.

lemma fw-invariant:
k ′ ≤ k =⇒ i ≤ n =⇒ j ≤ n =⇒ k ≤ n =⇒ fw m n k i j ≤ fw m n k ′ i j
〈proof 〉

lemma negative-len-shortest:
length xs = n =⇒ len m i i xs < 0
=⇒ ∃ j ys. distinct (j # ys) ∧ len m j j ys < 0 ∧ j ∈ set (i # xs) ∧ set

ys ⊆ set xs
〈proof 〉

lemma fw-upd-leI :
fw-upd m ′ k i j i j ≤ fw-upd m k i j i j if
m ′ i k ≤ m i k m ′ k j ≤ m k j m ′ i j ≤ m i j
〈proof 〉

lemma fwi-fw-upd-mono:
fwi m n k i j i j ≤ fw-upd m k i j i j if k ≤ n i ≤ n j ≤ n
〈proof 〉

The Floyd-Warshall algorithm will always detect negative cycles. The ar-
gument goes as follows: In case there is a negative cycle, then we know that
there is some smallest k for which there is a negative cycle containing only
intermediate vertices from the set {0 . . .k}. We will show that then fwi m n
k computes a negative entry on the diagonal, and thus, by monotonicity, fw
m n n will compute a negative entry on the diagonal.

theorem FW-neg-cycle-detect:
¬ cyc-free m n =⇒ ∃ i ≤ n. fw m n n i i < 0
〈proof 〉

end

1.8 More on Canonical Matrices

abbreviation
canonical M n ≡ ∀ i j k. i ≤ n ∧ j ≤ n ∧ k ≤ n −→ M i k ≤ M i j + M

j k

lemma canonical-alt-def :

18

canonical M n ←→ canonical-subs n {0 ..n} M
〈proof 〉

lemma fw-canonical:
canonical (fw m n n) n if cyc-free m n
〈proof 〉

lemma canonical-len:
canonical M n =⇒ i ≤ n =⇒ j ≤ n =⇒ set xs ⊆ {0 ..n} =⇒ M i j ≤ len

M i j xs
〈proof 〉

1.9 Additional Theorems

lemma D-cycle-free-len-dest:
cycle-free m n
=⇒ ∀ i ≤ n. ∀ j ≤ n. D m i j n = m ′ i j =⇒ i ≤ n =⇒ j ≤ n =⇒ set

xs ⊆ {0 ..n}
=⇒ ∃ ys. set ys ⊆ {0 ..n} ∧ len m ′ i j xs = len m i j ys

〈proof 〉

lemma D-cyc-free-preservation:
cyc-free m n =⇒ ∀ i ≤ n. ∀ j ≤ n. D m i j n = m ′ i j =⇒ cyc-free m ′ n
〈proof 〉

abbreviation FW m n ≡ fw m n n

lemma FW-out-of-bounds1 :
assumes i > n
shows (FW M n) i j = M i j
〈proof 〉

lemma FW-out-of-bounds2 :
assumes j > n
shows (FW M n) i j = M i j
〈proof 〉

lemma FW-cyc-free-preservation:
cyc-free m n =⇒ cyc-free (FW m n) n
〈proof 〉

lemma cyc-free-diag-dest ′:
cyc-free m n =⇒ i ≤ n =⇒ m i i ≥ 0
〈proof 〉

19

lemma FW-diag-neutral-preservation:
∀ i ≤ n. M i i = 0 =⇒ cyc-free M n =⇒ ∀ i≤n. (FW M n) i i = 0
〈proof 〉

lemma FW-fixed-preservation:
fixes M :: (′a::linordered-ab-monoid-add) mat
assumes A: i ≤ n M 0 i + M i 0 = 0 canonical (FW M n) n cyc-free

(FW M n) n
shows FW M n 0 i + FW M n i 0 = 0 〈proof 〉

lemma diag-cyc-free-neutral:
cyc-free M n =⇒ ∀ k≤n. M k k ≤ 0 =⇒ ∀ i≤n. M i i = 0
〈proof 〉

lemma fw-upd-canonical-subs-id:
canonical-subs n {k} M =⇒ i ≤ n =⇒ j ≤ n =⇒ fw-upd M k i j = M
〈proof 〉

lemma fw-upd-canonical-id:
canonical M n =⇒ i ≤ n =⇒ j ≤ n =⇒ k ≤ n =⇒ fw-upd M k i j = M
〈proof 〉

lemma fwi-canonical-id:
fwi M n k i j = M if canonical-subs n {k} M i ≤ n j ≤ n k ≤ n
〈proof 〉

lemma fw-canonical-id:
fw M n k = M if canonical-subs n {0 ..k} M k ≤ n
〈proof 〉

lemmas FW-canonical-id = fw-canonical-id[OF - order .refl, unfolded canon-
ical-alt-def [symmetric]]

definition FWI M n k ≡ fwi M n k n n

The characteristic property of fwi.
theorem fwi-characteristic:

canonical-subs n (I ∪ {k::nat}) (FWI M n k) ∨ (∃ i ≤ n. FWI M n k i i
< 0) if

canonical-subs n I M I ⊆ {0 ..n} k ≤ n
〈proof 〉

end

20

theory Recursion-Combinators
imports Refine-Imperative-HOL.IICF

begin

context
begin

private definition for-comb where
for-comb f a0 n = nfoldli [0 ..<n + 1] (λ x. True) (λ k a. (f a k)) a0

fun for-rec :: (′a ⇒ nat ⇒ ′a nres) ⇒ ′a ⇒ nat ⇒ ′a nres where
for-rec f a 0 = f a 0 |
for-rec f a (Suc n) = for-rec f a n >>= (λ x. f x (Suc n))

private lemma for-comb-for-rec: for-comb f a n = for-rec f a n
〈proof 〉 definition for-rec2 ′ where

for-rec2 ′ f a n i j =
(if i = 0 then RETURN a else for-rec (λa i. for-rec (λ a. f a i) a n) a

(i − 1))
>>= (λ a. for-rec (λ a. f a i) a j)

fun for-rec2 :: (′a ⇒ nat ⇒ nat ⇒ ′a nres) ⇒ ′a ⇒ nat ⇒ nat ⇒ nat ⇒
′a nres where

for-rec2 f a n 0 0 = f a 0 0 |
for-rec2 f a n (Suc i) 0 = for-rec2 f a n i n >>= (λ a. f a (Suc i) 0) |
for-rec2 f a n i (Suc j) = for-rec2 f a n i j >>= (λ a. f a i (Suc j))

private lemma for-rec2-for-rec2 ′:
for-rec2 f a n i j = for-rec2 ′ f a n i j
〈proof 〉

fun for-rec3 :: (′a ⇒ nat ⇒ nat ⇒ nat ⇒ ′a nres) ⇒ ′a ⇒ nat ⇒ nat ⇒
nat ⇒ nat ⇒ ′a nres
where

for-rec3 f m n 0 0 0 = f m 0 0 0 |
for-rec3 f m n (Suc k) 0 0 = for-rec3 f m n k n n >>= (λ a. f a

(Suc k) 0 0) |
for-rec3 f m n k (Suc i) 0 = for-rec3 f m n k i n >>= (λ a. f a k

(Suc i) 0) |
for-rec3 f m n k i (Suc j) = for-rec3 f m n k i j >>= (λ a. f a k

i (Suc j))

private definition for-rec3 ′ where

21

for-rec3 ′ f a n k i j =
(if k = 0 then RETURN a else for-rec (λa k. for-rec2 ′ (λ a. f a k) a n

n n) a (k − 1))
>>= (λ a. for-rec2 ′ (λ a. f a k) a n i j)

private lemma for-rec3-for-rec3 ′:
for-rec3 f a n k i j = for-rec3 ′ f a n k i j
〈proof 〉 lemma for-rec2 ′-for-rec:

for-rec2 ′ f a n n n =
for-rec (λa i. for-rec (λ a. f a i) a n) a n

〈proof 〉 lemma for-rec3 ′-for-rec:
for-rec3 ′ f a n n n n =

for-rec (λ a k. for-rec (λa i. for-rec (λ a. f a k i) a n) a n) a n
〈proof 〉

theorem for-rec-eq:
for-rec f a n = nfoldli [0 ..<n + 1] (λx. True) (λk a. f a k) a
〈proof 〉

theorem for-rec2-eq:
for-rec2 f a n n n =

nfoldli [0 ..<n + 1] (λx. True)
(λi. nfoldli [0 ..<n + 1] (λx. True) (λj a. f a i j)) a

〈proof 〉

theorem for-rec3-eq:
for-rec3 f a n n n n =

nfoldli [0 ..<n + 1] (λx. True)
(λk. nfoldli [0 ..<n + 1] (λx. True)

(λi. nfoldli [0 ..<n + 1] (λx. True) (λj a. f a k i j)))
a

〈proof 〉

end

lemmas [intf-of-assn] = intf-of-assnI [where R= is-mtx n and ′a= ′b i-mtx
for n]

declare param-upt[sepref-import-param]

end
theory FW-Code

imports

22

Recursion-Combinators
Floyd-Warshall

begin

1.10 Refinement to Efficient Imperative Code

We will now refine the recursive version of the Floyd-Warshall algorithm to
an efficient imperative version. To this end, we use the Sepref framework,
yielding an implementation in Imperative HOL.

definition fw-upd ′ :: (′a::linordered-ab-monoid-add) mtx ⇒ nat ⇒ nat ⇒
nat ⇒ ′a mtx nres where

fw-upd ′ m k i j =
RETURN (

op-mtx-set m (i, j) (min (op-mtx-get m (i, j)) (op-mtx-get m (i, k) +
op-mtx-get m (k, j)))
)

lemma fw-upd ′-alt-def :
fw-upd ′ m k i j =
RETURN (

let
e = op-mtx-get m (i, k) + op-mtx-get m (k, j)

in if e < op-mtx-get m (i, j) then op-mtx-set m (i, j) e else m
)
〈proof 〉

definition fwi ′ :: (′a::linordered-ab-monoid-add) mtx ⇒ nat ⇒ nat ⇒ nat
⇒ nat ⇒ ′a mtx nres
where

fwi ′ m n k i j = RECT (λ fw (m, k, i, j).
case (i, j) of
(0 , 0) ⇒ fw-upd ′ m k 0 0 |
(Suc i, 0) ⇒ do {m ′← fw (m, k, i, n); fw-upd ′ m ′ k (Suc i) 0} |
(i, Suc j) ⇒ do {m ′← fw (m, k, i, j); fw-upd ′ m ′ k i (Suc j)}

) (m, k, i, j)

lemma fwi ′-simps:
fwi ′ m n k 0 0 = fw-upd ′ m k 0 0
fwi ′ m n k (Suc i) 0 = do {m ′← fwi ′ m n k i n; fw-upd ′ m ′ k (Suc

i) 0}
fwi ′ m n k i (Suc j) = do {m ′← fwi ′ m n k i j; fw-upd ′ m ′ k i (Suc

j)}
〈proof 〉

23

lemma
fwi ′ m n k i j ≤ SPEC (λ r . r = uncurry (fwi (curry m) n k i j))
〈proof 〉

lemma fw-upd ′-spec:
fw-upd ′ M k i j ≤ SPEC (λ M ′. M ′ = uncurry (fw-upd (curry M) k i j))
〈proof 〉

lemma for-rec2-fwi:
for-rec2 (λ M . fw-upd ′ M k) M n i j ≤ SPEC (λ M ′. M ′ = uncurry (fwi

(curry M) n k i j))
〈proof 〉

definition fw ′ :: (′a::linordered-ab-monoid-add) mtx ⇒ nat ⇒ nat ⇒ ′a
mtx nres where

fw ′ m n k = nfoldli [0 ..<k + 1] (λ -. True) (λ k M . for-rec2 (λ M . fw-upd ′

M k) M n n n) m

lemma fw ′-spec:
fw ′ m n k ≤ SPEC (λ M ′. M ′ = uncurry (fw (curry m) n k))
〈proof 〉

context
fixes n :: nat
fixes dummy :: ′a::{linordered-ab-monoid-add,zero,heap}

begin

lemma [sepref-import-param]: ((+),(+):: ′a⇒-) ∈ Id → Id → Id 〈proof 〉
lemma [sepref-import-param]: (min,min:: ′a⇒-) ∈ Id → Id → Id 〈proof 〉

abbreviation node-assn ≡ nat-assn
abbreviation mtx-assn ≡ asmtx-assn (Suc n) id-assn::(′a mtx ⇒-)

sepref-definition fw-upd-impl1 is
uncurry2 (uncurry fw-upd ′) ::
[λ (((-,k),i),j). k ≤ n ∧ i ≤ n ∧ j ≤ n]a mtx-assnd ∗a node-assnk ∗a

node-assnk ∗a node-assnk

→ mtx-assn
〈proof 〉

sepref-definition fw-upd-impl is
uncurry2 (uncurry fw-upd ′) ::

24

[λ (((-,k),i),j). k ≤ n ∧ i ≤ n ∧ j ≤ n]a mtx-assnd ∗a node-assnk ∗a
node-assnk ∗a node-assnk

→ mtx-assn
〈proof 〉

sepref-register fw-upd ′ :: ′a i-mtx ⇒ nat ⇒ nat ⇒ nat ⇒ ′a i-mtx nres

definition
fwi-impl ′ (M :: ′a mtx) k = for-rec2 (λ M . fw-upd ′ M k) M n n n

definition
fw-impl ′ (M :: ′a mtx) = fw ′ M n n

context
notes [id-rules] = itypeI [of n TYPE (nat)]

and [sepref-import-param] = IdI [of n]
begin

sepref-definition fw-impl is
fw-impl ′ :: mtx-assnd →a mtx-assn
〈proof 〉

sepref-definition fw-impl1 is
fw-impl ′ :: mtx-assnd →a mtx-assn
〈proof 〉

sepref-definition fwi-impl is
uncurry fwi-impl ′ :: [λ (-,k). k ≤ n]a mtx-assnd ∗a node-assnk → mtx-assn
〈proof 〉

sepref-definition fwi-impl1 is
uncurry fwi-impl ′ :: [λ (-,k). k ≤ n]a mtx-assnd ∗a node-assnk → mtx-assn
〈proof 〉

end

end

export-code fw-impl in SML-imp

A compact specification for the characteristic property of the Floyd-Warshall
algorithm.
definition fw-spec where

25

fw-spec n M ≡ SPEC (λ M ′.
if (∃ i ≤ n. M ′ i i < 0)
then ¬ cyc-free M n
else ∀ i ≤ n. ∀ j ≤ n. M ′ i j = D M i j n ∧ cyc-free M n)

lemma D-diag-nonnegI :
assumes cycle-free M n i ≤ n
shows D M i i n ≥ 0
〈proof 〉

lemma fw-fw-spec:
RETURN (FW M n) ≤ fw-spec n M
〈proof 〉

definition
mat-curry-rel = {(Mu, Mc). curry Mu = Mc}

definition
mtx-curry-assn n = hr-comp (mtx-assn n) (br curry (λ-. True))

declare mtx-curry-assn-def [symmetric, fcomp-norm-unfold]

lemma fw-impl ′-correct:
(fw-impl ′, fw-spec) ∈ Id → br curry (λ -. True) → 〈br curry (λ -. True)〉

nres-rel
〈proof 〉

1.10.1 Main Result

This is one way to state that the fw-impl fulfills the specification fw-spec.

theorem fw-impl-correct:
(fw-impl n, fw-spec n) ∈ (mtx-curry-assn n)d →a mtx-curry-assn n
〈proof 〉

An alternative version: a Hoare triple for total correctness.

corollary
<mtx-curry-assn n M Mi> fw-impl n Mi <λ Mi ′. ∃A M ′. mtx-curry-assn

n M ′ Mi ′ ∗ ↑
(if (∃ i ≤ n. M ′ i i < 0)
then ¬ cyc-free M n
else ∀ i ≤ n. ∀ j ≤ n. M ′ i j = D M i j n ∧ cyc-free M n)>t

〈proof 〉

26

1.10.2 Alternative versions for Uncurried Matrices.

definition FWI ′ = uncurry ooo FWI o curry

lemma fwi-impl ′-refine-FWI ′:
(fwi-impl ′ n, RETURN oo PR-CONST (λ M . FWI ′ M n)) ∈ Id → Id →
〈Id〉 nres-rel
〈proof 〉

lemmas fwi-impl-refine-FWI ′= fwi-impl.refine[FCOMP fwi-impl ′-refine-FWI ′]

definition FW ′ = uncurry oo FW o curry

definition FW ′′ n M = FW ′ M n

lemma fw-impl ′-refine-FW ′′:
(fw-impl ′ n, RETURN o PR-CONST (FW ′′ n)) ∈ Id → 〈Id〉 nres-rel
〈proof 〉

lemmas fw-impl-refine-FW ′′= fw-impl.refine[FCOMP fw-impl ′-refine-FW ′′]
lemmas fw-impl1-refine-FW ′′= fw-impl1 .refine[FCOMP fw-impl ′-refine-FW ′′]

end

References

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM,
5(6):345–, June 1962.

[Roy59] Bernard Roy. Transitivité et connexité. In Extrait des comptes
rendus des séances de lAcadémie des Sciences, pages 216–218.
Gauthier-Villars, July 1959. http://gallica.bnf.fr/ark:/12148/
bpt6k3201c/f222.image.langFR.

[War62] Stephen Warshall. A theorem on boolean matrices. J. ACM,
9(1):11–12, January 1962.

27

http://gallica.bnf.fr/ark:/12148/bpt6k3201c/f222.image.langFR
http://gallica.bnf.fr/ark:/12148/bpt6k3201c/f222.image.langFR

	Floyd-Warshall Algorithm for the All-Pairs Shortest Paths Problem
	Introduction
	Preliminaries
	Definition of the Algorithm
	Result Under The Absence of Negative Cycles
	Definition of Shortest Paths
	Intermezzo: Equivalent Characterizations of Cycle-Freeness
	Result Under the Presence of Negative Cycles
	More on Canonical Matrices
	Additional Theorems
	Refinement to Efficient Imperative Code

