
Flow Networks and the Min-Cut-Max-Flow
Theorem

Peter Lammich and S. Reza Sefidgar

March 17, 2025

Abstract

We present a formalization of flow networks and the Min-Cut-
Max-Flow theorem. Our formal proof closely follows a standard text-
book proof, and is accessible even without being an expert in Is-
abelle/HOL— the interactive theorem prover used for the formaliza-
tion.

1

Contents
1 Introduction 3

2 Flows, Cuts, and Networks 3
2.1 Definitions . 3

2.1.1 Flows . 3
2.1.2 Cuts . 4
2.1.3 Networks . 4
2.1.4 Networks with Flows and Cuts 6

2.2 Properties . 7
2.2.1 Flows . 7
2.2.2 Networks . 8
2.2.3 Networks with Flow 9

3 Residual Graph 10
3.1 Definition . 10
3.2 Properties . 11

4 Augmenting Flows 14
4.1 Augmentation of a Flow . 14
4.2 Augmentation yields Valid Flow 14

4.2.1 Capacity Constraint 15
4.3 Value of the Augmented Flow 16

5 Augmenting Paths 16
5.1 Definitions . 16
5.2 Augmenting Flow is Valid Flow 17
5.3 Value of Augmenting Flow is Residual Capacity 18

6 The Ford-Fulkerson Theorem 18
6.1 Net Flow . 18
6.2 Ford-Fulkerson Theorem . 19
6.3 Corollaries . 19

2

1 Introduction

Computing the maximum flow of a network is an important problem in
graph theory. Many other problems, like maximum-bipartite-matching,
edge-disjoint-paths, circulation-demand, as well as various scheduling and
resource allocating problems can be reduced to it. The Ford-Fulkerson
method [3] describes a class of algorithms to solve the maximum flow prob-
lem. It is based on a corollary of the Min-Cut-Max-Flow theorem [3, 2],
which states that a flow is maximal iff there exists no augmenting path.
In this chapter, we present a formalization of flow networks and prove the
Min-Cut-Max-Flow theorem, closely following the textbook presentation of
Cormen et al. [1]. We have used the Isar [4] proof language to develop
human-readable proofs that are accessible even to non-Isabelle experts.

2 Flows, Cuts, and Networks
theory Network
imports Graph
begin

In this theory, we define the basic concepts of flows, cuts, and (flow) net-
works.

2.1 Definitions
2.1.1 Flows

An s-t preflow on a graph is a labeling of the edges with values from a
linearly ordered integral domain, such that:

capacity constraint the flow on each edge is non-negative and does not
exceed the edge’s capacity;

non-deficiency constraint for all nodes except s and t, the incoming flow
greater or equal to the outgoing flow.

type-synonym ′capacity flow = edge ⇒ ′capacity

locale Preflow = Graph c for c :: ′capacity::linordered-idom graph +
fixes s t :: node
fixes f :: ′capacity flow

assumes capacity-const: ∀ e. 0 ≤ f e ∧ f e ≤ c e
assumes no-deficient-nodes: ∀ v ∈ V−{s,t}.
(
∑

e∈outgoing v. f e) ≤ (
∑

e∈incoming v. f e)
begin

3

end

An s-t flow on a graph is a preflow that has no active nodes except source
and sink, where a node is active iff it has more incoming flow than outgoing
flow.
locale Flow = Preflow c s t f

for c :: ′capacity::linordered-idom graph
and s t :: node
and f +
assumes no-active-nodes:
∀ v ∈ V − {s,t}. (

∑
e∈outgoing v. f e) ≥ (

∑
e∈incoming v. f e)

begin

For a flow, inflow equals outflow for all nodes except sink and source. This
is called conservation.

lemma conservation-const:
∀ v ∈ V − {s, t}. (

∑
e ∈ incoming v. f e) = (

∑
e ∈ outgoing v. f e)

〈proof 〉

The value of a flow is the flow that leaves s and does not return.
definition val :: ′capacity

where val ≡ (
∑

e ∈ outgoing s. f e) − (
∑

e ∈ incoming s. f e)
end

locale Finite-Preflow = Preflow c s t f + Finite-Graph c
for c :: ′capacity::linordered-idom graph and s t f

locale Finite-Flow = Flow c s t f + Finite-Preflow c s t f
for c :: ′capacity::linordered-idom graph and s t f

2.1.2 Cuts

A cut is a partitioning of the nodes into two sets. We define it by just
specifying one of the partitions. The other partition is implicitly given by
the remaining nodes.
type-synonym cut = node set

locale Cut = Graph +
fixes k :: cut
assumes cut-ss-V : k ⊆ V

2.1.3 Networks

A network is a finite graph with two distinct nodes, source and sink, such
that all edges are labeled with positive capacities. Moreover, we assume that

• The source has no incoming edges, and the sink has no outgoing edges.

4

• There are no parallel edges, i.e., for any edge, the reverse edge must
not be in the network.

• Every node must lay on a path from the source to the sink.
Notes on the formalization

• We encode the graph by a mapping c, such that c (u,v) is the capacity
of edge (u,v), or 0, if there is no edge from u to v. Thus, in the
formalization below, we only demand that c (u,v) ≥ 0 for all u and v.

• We only demand the set of nodes reachable from the source to be
finite. Together with the constraint that all nodes lay on a path from
the source, this implies that the graph is finite.

locale Network = Graph c for c :: ′capacity::linordered-idom graph +
fixes s t :: node
assumes s-node[simp, intro!]: s ∈ V
assumes t-node[simp, intro!]: t ∈ V
assumes s-not-t[simp, intro!]: s 6= t

assumes cap-non-negative: ∀ u v. c (u, v) ≥ 0
assumes no-incoming-s: ∀ u. (u, s) /∈ E
assumes no-outgoing-t: ∀ u. (t, u) /∈ E
assumes no-parallel-edge: ∀ u v. (u, v) ∈ E −→ (v, u) /∈ E
assumes nodes-on-st-path: ∀ v ∈ V . connected s v ∧ connected v t
assumes finite-reachable: finite (reachableNodes s)

begin

Edges have positive capacity
lemma edge-cap-positive: (u,v)∈E =⇒ c (u,v) > 0
〈proof 〉

The network constraints implies that all nodes are reachable from the source
node

lemma reachable-is-V [simp]: reachableNodes s = V
〈proof 〉

Thus, the network is actually a finite graph.
sublocale Finite-Graph
〈proof 〉

Our assumptions imply that there are no self loops
lemma no-self-loop: ∀ u. (u, u) /∈ E
〈proof 〉

lemma adjacent-not-self [simp, intro!]: v /∈ adjacent-nodes v
〈proof 〉

5

A flow is maximal, if it has a maximal value
definition isMaxFlow :: - flow ⇒ bool
where isMaxFlow f ≡ Flow c s t f ∧
(∀ f ′. Flow c s t f ′ −→ Flow.val c s f ′ ≤ Flow.val c s f)

definition is-max-flow-val fv ≡ ∃ f . isMaxFlow f ∧ fv=Flow.val c s f

lemma t-not-s[simp]: t 6= s 〈proof 〉

The excess of a node is the difference between incoming and outgoing flow.
definition excess :: ′capacity flow ⇒ node ⇒ ′capacity where

excess f v ≡ (
∑

e∈incoming v. f e) − (
∑

e∈outgoing v. f e)

end

2.1.4 Networks with Flows and Cuts

For convenience, we define locales for a network with a fixed flow, and a
network with a fixed cut
locale NPreflow = Network c s t + Preflow c s t f

for c :: ′capacity::linordered-idom graph and s t f
begin

end

locale NFlow = NPreflow c s t f + Flow c s t f
for c :: ′capacity::linordered-idom graph and s t f

lemma (in Network) isMaxFlow-alt:
isMaxFlow f ←→ NFlow c s t f ∧
(∀ f ′. NFlow c s t f ′ −→ Flow.val c s f ′ ≤ Flow.val c s f)
〈proof 〉

A cut in a network separates the source from the sink
locale NCut = Network c s t + Cut c k

for c :: ′capacity::linordered-idom graph and s t k +
assumes s-in-cut: s ∈ k
assumes t-ni-cut: t /∈ k

begin

The capacity of the cut is the capacity of all edges going from the source’s
side to the sink’s side.

definition cap :: ′capacity
where cap ≡ (

∑
e ∈ outgoing ′ k. c e)

end

6

A minimum cut is a cut with minimum capacity.
definition isMinCut :: - graph ⇒ nat ⇒ nat ⇒ cut ⇒ bool
where isMinCut c s t k ≡ NCut c s t k ∧
(∀ k ′. NCut c s t k ′ −→ NCut.cap c k ≤ NCut.cap c k ′)

2.2 Properties
2.2.1 Flows
context Preflow
begin

Only edges are labeled with non-zero flows
lemma zero-flow-simp[simp]:
(u,v)/∈E =⇒ f (u,v) = 0
〈proof 〉

lemma f-non-negative: 0 ≤ f e
〈proof 〉

lemma sum-f-non-negative: sum f X ≥ 0 〈proof 〉

end — Preflow

context Flow
begin

We provide a useful equivalent formulation of the conservation constraint.
lemma conservation-const-pointwise:

assumes u∈V − {s,t}
shows (

∑
v∈E‘‘{u}. f (u,v)) = (

∑
v∈E−1‘‘{u}. f (v,u))

〈proof 〉

The value of the flow is bounded by the capacity of the outgoing edges of
the source node
lemma val-bounded:
−(

∑
e∈incoming s. c e) ≤ val

val ≤ (
∑

e∈outgoing s. c e)
〈proof 〉

end — Flow

Introduce a flow via the conservation constraint
lemma (in Graph) intro-Flow:

assumes cap: ∀ e. 0 ≤ f e ∧ f e ≤ c e
assumes cons: ∀ v ∈ V − {s, t}.
(
∑

e ∈ incoming v. f e) = (
∑

e ∈ outgoing v. f e)

7

shows Flow c s t f
〈proof 〉

context Finite-Preflow
begin

The summation of flows over incoming/outgoing edges can be extended to a
summation over all possible predecessor/successor nodes, as the additional
flows are all zero.
lemma sum-outgoing-alt-flow:

fixes g :: edge ⇒ ′capacity
assumes u∈V
shows (

∑
e∈outgoing u. f e) = (

∑
v∈V . f (u,v))

〈proof 〉

lemma sum-incoming-alt-flow:
fixes g :: edge ⇒ ′capacity
assumes u∈V
shows (

∑
e∈incoming u. f e) = (

∑
v∈V . f (v,u))

〈proof 〉
end — Finite Preflow

2.2.2 Networks
context Network
begin

lemmas [simp] = no-incoming-s no-outgoing-t

lemma incoming-s-empty[simp]: incoming s = {}
〈proof 〉

lemma outgoing-t-empty[simp]: outgoing t = {}
〈proof 〉

lemma cap-positive: e ∈ E =⇒ c e > 0
〈proof 〉

lemma V-not-empty: V 6={} 〈proof 〉
lemma E-not-empty: E 6={} 〈proof 〉

lemma card-V-ge2 : card V ≥ 2
〈proof 〉

lemma zero-is-flow: Flow c s t (λ-. 0)
〈proof 〉

lemma max-flow-val-unique:

8

[[is-max-flow-val fv1 ; is-max-flow-val fv2]] =⇒ fv1=fv2
〈proof 〉

end — Network

2.2.3 Networks with Flow
context NPreflow
begin

sublocale Finite-Preflow 〈proof 〉

As there are no edges entering the source/leaving the sink, also the corre-
sponding flow values are zero:
lemma no-inflow-s: ∀ e ∈ incoming s. f e = 0 (is ?thesis)
〈proof 〉

lemma no-outflow-t: ∀ e ∈ outgoing t. f e = 0
〈proof 〉

For an edge, there is no reverse edge, and thus, no flow in the reverse direc-
tion:
lemma zero-rev-flow-simp[simp]: (u,v)∈E =⇒ f (v,u) = 0
〈proof 〉

lemma excess-non-negative: ∀ v∈V−{s,t}. excess f v ≥ 0
〈proof 〉

lemma excess-nodes-only: excess f v > 0 =⇒ v ∈ V
〈proof 〉

lemma excess-non-negative ′: ∀ v ∈ V − {s}. excess f v ≥ 0
〈proof 〉

lemma excess-s-non-pos: excess f s ≤ 0
〈proof 〉

end — Network with preflow

context NFlow begin
sublocale Finite-Preflow 〈proof 〉

There is no outflow from the sink in a network. Thus, we can simplify the
definition of the value:

corollary val-alt: val = (
∑

e ∈ outgoing s. f e)
〈proof 〉

9

end

end — Theory

3 Residual Graph
theory Residual-Graph
imports Network
begin

In this theory, we define the residual graph.

3.1 Definition

The residual graph of a network and a flow indicates how much flow can
be effectively pushed along or reverse to a network edge, by increasing or
decreasing the flow on that edge:
definition residualGraph :: - graph ⇒ - flow ⇒ - graph
where residualGraph c f ≡ λ(u, v).

if (u, v) ∈ Graph.E c then
c (u, v) − f (u, v)

else if (v, u) ∈ Graph.E c then
f (v, u)

else
0

context Network begin

abbreviation cf-of ≡ residualGraph c
abbreviation cfE-of f ≡ Graph.E (cf-of f)

The edges of the residual graph are either parallel or reverse to the edges of
the network.
lemma cfE-of-ss-invE : cfE-of cf ⊆ E ∪ E−1

〈proof 〉

lemma cfE-of-ss-VxV : cfE-of f ⊆ V×V
〈proof 〉

lemma cfE-of-finite[simp, intro!]: finite (cfE-of f)
〈proof 〉

lemma cf-no-self-loop: (u,u)/∈cfE-of f
〈proof 〉

end

Let’s fix a network with a preflow f on it

10

context NPreflow
begin

We abbreviate the residual graph by cf.
abbreviation cf ≡ residualGraph c f
sublocale cf : Graph cf 〈proof 〉
lemmas cf-def = residualGraph-def [of c f]

3.2 Properties
lemmas cfE-ss-invE = cfE-of-ss-invE [of f]

The nodes of the residual graph are exactly the nodes of the network.
lemma resV-netV [simp]: cf .V = V
〈proof 〉

Note, that Isabelle is powerful enough to prove the above case distinctions
completely automatically, although it takes some time:
lemma cf .V = V
〈proof 〉

As the residual graph has the same nodes as the network, it is also finite:
sublocale cf : Finite-Graph cf
〈proof 〉

The capacities on the edges of the residual graph are non-negative
lemma resE-nonNegative: cf e ≥ 0
〈proof 〉

Again, there is an automatic proof
lemma cf e ≥ 0
〈proof 〉

All edges of the residual graph are labeled with positive capacities:
corollary resE-positive: e ∈ cf .E =⇒ cf e > 0
〈proof 〉

lemma reverse-flow: Preflow cf s t f ′ =⇒ ∀ (u, v) ∈ E . f ′ (v, u) ≤ f (u, v)
〈proof 〉

definition (in Network) flow-of-cf cf e ≡ (if (e∈E) then c e − cf e else 0)

lemma (in NPreflow) E-ss-cfinvE : E ⊆ Graph.E cf ∪ (Graph.E cf)−1

〈proof 〉

11

Nodes with positive excess must have an outgoing edge in the residual graph.
Intuitively: The excess flow must come from somewhere.
lemma active-has-cf-outgoing: excess f u > 0 =⇒ cf .outgoing u 6= {}
〈proof 〉

end — Network with preflow

locale RPreGraph — Locale that characterizes a residual graph of a network
= Network +

fixes cf
assumes EX-RPG: ∃ f . NPreflow c s t f ∧ cf = residualGraph c f

begin

lemma this-loc-rpg: RPreGraph c s t cf
〈proof 〉

definition f ≡ flow-of-cf cf

lemma f-unique:
assumes NPreflow c s t f ′

assumes A: cf = residualGraph c f ′

shows f ′ = f
〈proof 〉

lemma is-NPreflow: NPreflow c s t (flow-of-cf cf)
〈proof 〉

sublocale f : NPreflow c s t f 〈proof 〉

lemma rg-is-cf [simp]: residualGraph c f = cf
〈proof 〉

lemma rg-fo-inv[simp]: residualGraph c (flow-of-cf cf) = cf
〈proof 〉

sublocale cf : Graph cf 〈proof 〉

lemma resV-netV [simp]: cf .V = V
〈proof 〉

sublocale cf : Finite-Graph cf
〈proof 〉

lemma E-ss-cfinvE : E ⊆ cf .E ∪ cf .E−1

〈proof 〉

12

lemma cfE-ss-invE : cf .E ⊆ E ∪ E−1

〈proof 〉

lemma resE-nonNegative: cf e ≥ 0
〈proof 〉

end

context NPreflow begin
lemma is-RPreGraph: RPreGraph c s t cf
〈proof 〉

lemma fo-rg-inv: flow-of-cf cf = f
〈proof 〉

end

lemma (in NPreflow)
flow-of-cf (residualGraph c f) = f
〈proof 〉

locale RGraph — Locale that characterizes a residual graph of a network
= Network +

fixes cf
assumes EX-RG: ∃ f . NFlow c s t f ∧ cf = residualGraph c f

begin
sublocale RPreGraph
〈proof 〉

lemma this-loc: RGraph c s t cf
〈proof 〉

lemma this-loc-rpg: RPreGraph c s t cf
〈proof 〉

lemma is-NFlow: NFlow c s t (flow-of-cf cf)
〈proof 〉

sublocale f : NFlow c s t f 〈proof 〉
end

context NFlow begin

lemma is-RGraph: RGraph c s t cf
〈proof 〉

The value of the flow can be computed from the residual graph.

13

lemma val-by-cf : val = (
∑

(u,v)∈outgoing s. cf (v,u))
〈proof 〉

end — Network with Flow

lemma (in RPreGraph) maxflow-imp-rgraph:
assumes isMaxFlow (flow-of-cf cf)
shows RGraph c s t cf
〈proof 〉

end — Theory

4 Augmenting Flows
theory Augmenting-Flow
imports Residual-Graph
begin

In this theory, we define the concept of an augmenting flow, augmentation
with a flow, and show that augmentation of a flow with an augmenting flow
yields a valid flow again.

We assume that there is a network with a flow f on it
context NFlow
begin

4.1 Augmentation of a Flow

The flow can be augmented by another flow, by adding the flows of edges
parallel to edges in the network, and subtracting the edges reverse to edges
in the network.
definition augment :: ′capacity flow ⇒ ′capacity flow
where augment f ′ ≡ λ(u, v).

if (u, v) ∈ E then
f (u, v) + f ′ (u, v) − f ′ (v, u)

else
0

We define a syntax similar to Cormen et el.:
abbreviation (input) augment-syntax (infix ‹↑› 55)

where
∧

f f ′. f ↑f ′ ≡ NFlow.augment c f f ′

such that we can write f ↑f ′ for the flow f augmented by f ′.

4.2 Augmentation yields Valid Flow

We show that, if we augment the flow with a valid flow of the residual graph,
the augmented flow is a valid flow again, i.e. it satisfies the capacity and

14

conservation constraints:
context

— Let the residual flow f ′ be a flow in the residual graph
fixes f ′ :: ′capacity flow
assumes f ′-flow: Flow cf s t f ′

begin

interpretation f ′: Flow cf s t f ′ 〈proof 〉

4.2.1 Capacity Constraint

First, we have to show that the new flow satisfies the capacity constraint:
lemma augment-flow-presv-cap:

shows 0 ≤ (f ↑f ′)(u,v) ∧ (f ↑f ′)(u,v) ≤ c(u,v)
〈proof 〉 lemma split-rflow-incoming:
(
∑

v∈cf .E−1‘‘{u}. f ′ (v,u)) = (
∑

v∈E‘‘{u}. f ′(v,u)) + (
∑

v∈E−1‘‘{u}. f ′(v,u))
(is ?LHS = ?RHS)
〈proof 〉

For proving the conservation constraint, let’s fix a node u, which is neither
the source nor the sink:
context

fixes u :: node
assumes U-ASM : u∈V − {s,t}

begin

We first show an auxiliary lemma to compare the effective residual flow on
incoming network edges to the effective residual flow on outgoing network
edges.
Intuitively, this lemma shows that the effective residual flow added to the
network edges satisfies the conservation constraint.
private lemma flow-summation-aux:

shows (
∑

v∈E‘‘{u}. f ′ (u,v)) − (
∑

v∈E‘‘{u}. f ′ (v,u))
= (

∑
v∈E−1‘‘{u}. f ′ (v,u)) − (

∑
v∈E−1‘‘{u}. f ′ (u,v))

(is ?LHS = ?RHS is ?A − ?B = ?RHS)
〈proof 〉

Finally, we are ready to prove that the augmented flow satisfies the conser-
vation constraint:
lemma augment-flow-presv-con:

shows (
∑

e ∈ outgoing u. augment f ′ e) = (
∑

e ∈ incoming u. augment f ′ e)
(is ?LHS = ?RHS)

〈proof 〉

Note that we tried to follow the proof presented by Cormen et al. [1] as
closely as possible. Unfortunately, this proof generalizes the summation to
all nodes immediately, rendering the first equation invalid. Trying to fix this

15

error, we encountered that the step that uses the conservation constraints
on the augmenting flow is more subtle as indicated in the original proof.
Thus, we moved this argument to an auxiliary lemma.
end — u is node

As main result, we get that the augmented flow is again a valid flow.
corollary augment-flow-presv: Flow c s t (f ↑f ′)
〈proof 〉

4.3 Value of the Augmented Flow

Next, we show that the value of the augmented flow is the sum of the values
of the original flow and the augmenting flow.
lemma augment-flow-value: Flow.val c s (f ↑f ′) = val + Flow.val cf s f ′

〈proof 〉

Note, there is also an automatic proof. When creating the above explicit proof, this
automatic one has been used to extract meaningful subgoals, abusing Isabelle as a
term rewriter.

lemma Flow.val c s (f ↑f ′) = val + Flow.val cf s f ′

〈proof 〉

end — Augmenting flow
end — Network flow

end — Theory

5 Augmenting Paths
theory Augmenting-Path
imports Residual-Graph
begin

We define the concept of an augmenting path in the residual graph, and the
residual flow induced by an augmenting path.

We fix a network with a preflow f on it.
context NPreflow
begin

5.1 Definitions

An augmenting path is a simple path from the source to the sink in the
residual graph:
definition isAugmentingPath :: path ⇒ bool

16

where isAugmentingPath p ≡ cf .isSimplePath s p t

The residual capacity of an augmenting path is the smallest capacity anno-
tated to its edges:
definition resCap :: path ⇒ ′capacity
where resCap p ≡ Min {cf e | e. e ∈ set p}

lemma resCap-alt: resCap p = Min (cf‘set p)
— Useful characterization for finiteness arguments
〈proof 〉

An augmenting path induces an augmenting flow, which pushes as much
flow as possible along the path:
definition augmentingFlow :: path ⇒ ′capacity flow
where augmentingFlow p ≡ λ(u, v).

if (u, v) ∈ (set p) then
resCap p

else
0

5.2 Augmenting Flow is Valid Flow

In this section, we show that the augmenting flow induced by an augmenting
path is a valid flow in the residual graph.
We start with some auxiliary lemmas.

The residual capacity of an augmenting path is always positive.
lemma resCap-gzero-aux: cf .isPath s p t =⇒ 0<resCap p
〈proof 〉

lemma resCap-gzero: isAugmentingPath p =⇒ 0<resCap p
〈proof 〉

As all edges of the augmenting flow have the same value, we can factor this
out from a summation:
lemma sum-augmenting-alt:

assumes finite A
shows (

∑
e ∈ A. (augmentingFlow p) e)

= resCap p ∗ of-nat (card (A∩set p))
〈proof 〉

lemma augFlow-resFlow: isAugmentingPath p =⇒ Flow cf s t (augmentingFlow
p)
〈proof 〉

17

5.3 Value of Augmenting Flow is Residual Capacity

Finally, we show that the value of the augmenting flow is the residual ca-
pacity of the augmenting path
lemma augFlow-val:

isAugmentingPath p =⇒ Flow.val cf s (augmentingFlow p) = resCap p
〈proof 〉

end — Network with flow
end — Theory

6 The Ford-Fulkerson Theorem
theory Ford-Fulkerson
imports Augmenting-Flow Augmenting-Path
begin

In this theory, we prove the Ford-Fulkerson theorem, and its well-known
corollary, the min-cut max-flow theorem.

We fix a network with a flow and a cut
locale NFlowCut = NFlow c s t f + NCut c s t k

for c :: ′capacity::linordered-idom graph and s t f k
begin

lemma finite-k[simp, intro!]: finite k
〈proof 〉

6.1 Net Flow

We define the net flow to be the amount of flow effectively passed over the
cut from the source to the sink:
definition netFlow :: ′capacity

where netFlow ≡ (
∑

e ∈ outgoing ′ k. f e) − (
∑

e ∈ incoming ′ k. f e)

We can show that the net flow equals the value of the flow. Note: Cormen
et al. [1] present a whole page full of summation calculations for this proof,
and our formal proof also looks quite complicated.
lemma flow-value: netFlow = val
〈proof 〉

The value of any flow is bounded by the capacity of any cut. This is in-
tuitively clear, as all flow from the source to the sink has to go over the
cut.
corollary weak-duality: val ≤ cap
〈proof 〉

18

end — Cut

6.2 Ford-Fulkerson Theorem
context NFlow begin

We prove three auxiliary lemmas first, and the state the theorem as a corol-
lary
lemma fofu-I-II : isMaxFlow f =⇒ ¬ (∃ p. isAugmentingPath p)
〈proof 〉

lemma fofu-II-III :
¬ (∃ p. isAugmentingPath p) =⇒ ∃ k ′. NCut c s t k ′ ∧ val = NCut.cap c k ′

〈proof 〉

lemma fofu-III-I :
∃ k. NCut c s t k ∧ val = NCut.cap c k =⇒ isMaxFlow f
〈proof 〉

Finally we can state the Ford-Fulkerson theorem:
theorem ford-fulkerson: shows

isMaxFlow f ←→
¬ Ex isAugmentingPath and ¬ Ex isAugmentingPath ←→
(∃ k. NCut c s t k ∧ val = NCut.cap c k)
〈proof 〉

6.3 Corollaries

In this subsection we present a few corollaries of the flow-cut relation and
the Ford-Fulkerson theorem.

The outgoing flow of the source is the same as the incoming flow of the
sink. Intuitively, this means that no flow is generated or lost in the network,
except at the source and sink.
corollary inflow-t-outflow-s:
(
∑

e ∈ incoming t. f e) = (
∑

e ∈ outgoing s. f e)
〈proof 〉

As an immediate consequence of the Ford-Fulkerson theorem, we get that
there is no augmenting path if and only if the flow is maximal.
corollary noAugPath-iff-maxFlow: (@ p. isAugmentingPath p) ←→ isMaxFlow f
〈proof 〉

end — Network with flow

The value of the maximum flow equals the capacity of the minimum cut
corollary (in Network) maxFlow-minCut: [[isMaxFlow f ; isMinCut c s t k]]

19

=⇒ Flow.val c s f = NCut.cap c k
〈proof 〉

end — Theory

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[2] P. Elias, A. Feinstein, and C. Shannon. A note on the maximum
flow through a network. IEEE Transactions on Information Theory,
2(4):117–119, dec 1956.

[3] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Cana-
dian journal of Mathematics, 8(3):399–404, 1956.

[4] M. Wenzel. Isar - A generic interpretative approach to readable formal
proof documents. In TPHOLs’99, volume 1690 of LNCS, pages 167–184.
Springer, 1999.

20

	Introduction
	Flows, Cuts, and Networks
	Definitions
	Flows
	Cuts
	Networks
	Networks with Flows and Cuts

	Properties
	Flows
	Networks
	Networks with Flow

	Residual Graph
	Definition
	Properties

	Augmenting Flows
	Augmentation of a Flow
	Augmentation yields Valid Flow
	Capacity Constraint

	Value of the Augmented Flow

	Augmenting Paths
	Definitions
	Augmenting Flow is Valid Flow
	Value of Augmenting Flow is Residual Capacity

	The Ford-Fulkerson Theorem
	Net Flow
	Ford-Fulkerson Theorem
	Corollaries

