
Flow Networks and the Min-Cut-Max-Flow
Theorem

Peter Lammich and S. Reza Sefidgar

March 17, 2025

Abstract

We present a formalization of flow networks and the Min-Cut-
Max-Flow theorem. Our formal proof closely follows a standard text-
book proof, and is accessible even without being an expert in Is-
abelle/HOL— the interactive theorem prover used for the formaliza-
tion.

1

Contents
1 Introduction 3

2 Flows, Cuts, and Networks 3
2.1 Definitions . 3

2.1.1 Flows . 3
2.1.2 Cuts . 4
2.1.3 Networks . 4
2.1.4 Networks with Flows and Cuts 6

2.2 Properties . 7
2.2.1 Flows . 7
2.2.2 Networks . 9
2.2.3 Networks with Flow 9

3 Residual Graph 11
3.1 Definition . 11
3.2 Properties . 12

4 Augmenting Flows 18
4.1 Augmentation of a Flow . 18
4.2 Augmentation yields Valid Flow 19

4.2.1 Capacity Constraint 19
4.2.2 Conservation Constraint 20

4.3 Value of the Augmented Flow 22

5 Augmenting Paths 24
5.1 Definitions . 24
5.2 Augmenting Flow is Valid Flow 25
5.3 Value of Augmenting Flow is Residual Capacity 27

6 The Ford-Fulkerson Theorem 27
6.1 Net Flow . 28
6.2 Ford-Fulkerson Theorem . 29
6.3 Corollaries . 32

2

1 Introduction

Computing the maximum flow of a network is an important problem in
graph theory. Many other problems, like maximum-bipartite-matching,
edge-disjoint-paths, circulation-demand, as well as various scheduling and
resource allocating problems can be reduced to it. The Ford-Fulkerson
method [3] describes a class of algorithms to solve the maximum flow prob-
lem. It is based on a corollary of the Min-Cut-Max-Flow theorem [3, 2],
which states that a flow is maximal iff there exists no augmenting path.
In this chapter, we present a formalization of flow networks and prove the
Min-Cut-Max-Flow theorem, closely following the textbook presentation of
Cormen et al. [1]. We have used the Isar [4] proof language to develop
human-readable proofs that are accessible even to non-Isabelle experts.

2 Flows, Cuts, and Networks
theory Network
imports Graph
begin

In this theory, we define the basic concepts of flows, cuts, and (flow) net-
works.

2.1 Definitions
2.1.1 Flows

An s-t preflow on a graph is a labeling of the edges with values from a
linearly ordered integral domain, such that:

capacity constraint the flow on each edge is non-negative and does not
exceed the edge’s capacity;

non-deficiency constraint for all nodes except s and t, the incoming flow
greater or equal to the outgoing flow.

type-synonym ′capacity flow = edge ⇒ ′capacity

locale Preflow = Graph c for c :: ′capacity::linordered-idom graph +
fixes s t :: node
fixes f :: ′capacity flow

assumes capacity-const: ∀ e. 0 ≤ f e ∧ f e ≤ c e
assumes no-deficient-nodes: ∀ v ∈ V−{s,t}.
(
∑

e∈outgoing v. f e) ≤ (
∑

e∈incoming v. f e)
begin

3

end

An s-t flow on a graph is a preflow that has no active nodes except source
and sink, where a node is active iff it has more incoming flow than outgoing
flow.
locale Flow = Preflow c s t f

for c :: ′capacity::linordered-idom graph
and s t :: node
and f +
assumes no-active-nodes:
∀ v ∈ V − {s,t}. (

∑
e∈outgoing v. f e) ≥ (

∑
e∈incoming v. f e)

begin

For a flow, inflow equals outflow for all nodes except sink and source. This
is called conservation.

lemma conservation-const:
∀ v ∈ V − {s, t}. (

∑
e ∈ incoming v. f e) = (

∑
e ∈ outgoing v. f e)

using no-deficient-nodes no-active-nodes
by force

The value of a flow is the flow that leaves s and does not return.
definition val :: ′capacity

where val ≡ (
∑

e ∈ outgoing s. f e) − (
∑

e ∈ incoming s. f e)
end

locale Finite-Preflow = Preflow c s t f + Finite-Graph c
for c :: ′capacity::linordered-idom graph and s t f

locale Finite-Flow = Flow c s t f + Finite-Preflow c s t f
for c :: ′capacity::linordered-idom graph and s t f

2.1.2 Cuts

A cut is a partitioning of the nodes into two sets. We define it by just
specifying one of the partitions. The other partition is implicitly given by
the remaining nodes.
type-synonym cut = node set

locale Cut = Graph +
fixes k :: cut
assumes cut-ss-V : k ⊆ V

2.1.3 Networks

A network is a finite graph with two distinct nodes, source and sink, such
that all edges are labeled with positive capacities. Moreover, we assume that

4

• The source has no incoming edges, and the sink has no outgoing edges.

• There are no parallel edges, i.e., for any edge, the reverse edge must
not be in the network.

• Every node must lay on a path from the source to the sink.
Notes on the formalization

• We encode the graph by a mapping c, such that c (u,v) is the capacity
of edge (u,v), or 0, if there is no edge from u to v. Thus, in the
formalization below, we only demand that c (u,v) ≥ 0 for all u and v.

• We only demand the set of nodes reachable from the source to be
finite. Together with the constraint that all nodes lay on a path from
the source, this implies that the graph is finite.

locale Network = Graph c for c :: ′capacity::linordered-idom graph +
fixes s t :: node
assumes s-node[simp, intro!]: s ∈ V
assumes t-node[simp, intro!]: t ∈ V
assumes s-not-t[simp, intro!]: s 6= t

assumes cap-non-negative: ∀ u v. c (u, v) ≥ 0
assumes no-incoming-s: ∀ u. (u, s) /∈ E
assumes no-outgoing-t: ∀ u. (t, u) /∈ E
assumes no-parallel-edge: ∀ u v. (u, v) ∈ E −→ (v, u) /∈ E
assumes nodes-on-st-path: ∀ v ∈ V . connected s v ∧ connected v t
assumes finite-reachable: finite (reachableNodes s)

begin

Edges have positive capacity
lemma edge-cap-positive: (u,v)∈E =⇒ c (u,v) > 0

unfolding E-def using cap-non-negative[THEN spec2 , of u v] by simp

The network constraints implies that all nodes are reachable from the source
node

lemma reachable-is-V [simp]: reachableNodes s = V
proof

show V ⊆ reachableNodes s
unfolding reachableNodes-def using s-node nodes-on-st-path

by auto
qed (simp add: reachable-ss-V)

Thus, the network is actually a finite graph.
sublocale Finite-Graph

apply unfold-locales
using reachable-is-V finite-reachable by auto

5

Our assumptions imply that there are no self loops
lemma no-self-loop: ∀ u. (u, u) /∈ E

using no-parallel-edge by auto

lemma adjacent-not-self [simp, intro!]: v /∈ adjacent-nodes v
unfolding adjacent-nodes-def using no-self-loop
by auto

A flow is maximal, if it has a maximal value
definition isMaxFlow :: - flow ⇒ bool
where isMaxFlow f ≡ Flow c s t f ∧
(∀ f ′. Flow c s t f ′ −→ Flow.val c s f ′ ≤ Flow.val c s f)

definition is-max-flow-val fv ≡ ∃ f . isMaxFlow f ∧ fv=Flow.val c s f

lemma t-not-s[simp]: t 6= s using s-not-t by blast

The excess of a node is the difference between incoming and outgoing flow.
definition excess :: ′capacity flow ⇒ node ⇒ ′capacity where

excess f v ≡ (
∑

e∈incoming v. f e) − (
∑

e∈outgoing v. f e)

end

2.1.4 Networks with Flows and Cuts

For convenience, we define locales for a network with a fixed flow, and a
network with a fixed cut
locale NPreflow = Network c s t + Preflow c s t f

for c :: ′capacity::linordered-idom graph and s t f
begin

end

locale NFlow = NPreflow c s t f + Flow c s t f
for c :: ′capacity::linordered-idom graph and s t f

lemma (in Network) isMaxFlow-alt:
isMaxFlow f ←→ NFlow c s t f ∧
(∀ f ′. NFlow c s t f ′ −→ Flow.val c s f ′ ≤ Flow.val c s f)

unfolding isMaxFlow-def
by (auto simp: NFlow-def Flow-def NPreflow-def) intro-locales

A cut in a network separates the source from the sink
locale NCut = Network c s t + Cut c k

for c :: ′capacity::linordered-idom graph and s t k +

6

assumes s-in-cut: s ∈ k
assumes t-ni-cut: t /∈ k

begin

The capacity of the cut is the capacity of all edges going from the source’s
side to the sink’s side.

definition cap :: ′capacity
where cap ≡ (

∑
e ∈ outgoing ′ k. c e)

end

A minimum cut is a cut with minimum capacity.
definition isMinCut :: - graph ⇒ nat ⇒ nat ⇒ cut ⇒ bool
where isMinCut c s t k ≡ NCut c s t k ∧
(∀ k ′. NCut c s t k ′ −→ NCut.cap c k ≤ NCut.cap c k ′)

2.2 Properties
2.2.1 Flows
context Preflow
begin

Only edges are labeled with non-zero flows
lemma zero-flow-simp[simp]:
(u,v)/∈E =⇒ f (u,v) = 0
by (metis capacity-const eq-iff zero-cap-simp)

lemma f-non-negative: 0 ≤ f e
using capacity-const by (cases e) auto

lemma sum-f-non-negative: sum f X ≥ 0 using capacity-const
by (auto simp: sum-nonneg f-non-negative)

end — Preflow

context Flow
begin

We provide a useful equivalent formulation of the conservation constraint.
lemma conservation-const-pointwise:

assumes u∈V − {s,t}
shows (

∑
v∈E‘‘{u}. f (u,v)) = (

∑
v∈E−1‘‘{u}. f (v,u))

using conservation-const assms
by (auto simp: sum-incoming-pointwise sum-outgoing-pointwise)

The value of the flow is bounded by the capacity of the outgoing edges of
the source node
lemma val-bounded:

7

−(
∑

e∈incoming s. c e) ≤ val
val ≤ (

∑
e∈outgoing s. c e)

proof −
have

sum f (outgoing s) ≤ sum c (outgoing s)
sum f (incoming s) ≤ sum c (incoming s)
using capacity-const by (auto intro!: sum-mono)

thus −(
∑

e∈incoming s. c e) ≤ val val ≤ (
∑

e∈outgoing s. c e)
using sum-f-non-negative[of incoming s]
using sum-f-non-negative[of outgoing s]
unfolding val-def by auto

qed

end — Flow

Introduce a flow via the conservation constraint
lemma (in Graph) intro-Flow:

assumes cap: ∀ e. 0 ≤ f e ∧ f e ≤ c e
assumes cons: ∀ v ∈ V − {s, t}.
(
∑

e ∈ incoming v. f e) = (
∑

e ∈ outgoing v. f e)
shows Flow c s t f
using assms by unfold-locales auto

context Finite-Preflow
begin

The summation of flows over incoming/outgoing edges can be extended to a
summation over all possible predecessor/successor nodes, as the additional
flows are all zero.
lemma sum-outgoing-alt-flow:

fixes g :: edge ⇒ ′capacity
assumes u∈V
shows (

∑
e∈outgoing u. f e) = (

∑
v∈V . f (u,v))

apply (subst sum-outgoing-alt)
using assms capacity-const
by auto

lemma sum-incoming-alt-flow:
fixes g :: edge ⇒ ′capacity
assumes u∈V
shows (

∑
e∈incoming u. f e) = (

∑
v∈V . f (v,u))

apply (subst sum-incoming-alt)
using assms capacity-const
by auto

end — Finite Preflow

8

2.2.2 Networks
context Network
begin

lemmas [simp] = no-incoming-s no-outgoing-t

lemma incoming-s-empty[simp]: incoming s = {}
unfolding incoming-def using no-incoming-s by auto

lemma outgoing-t-empty[simp]: outgoing t = {}
unfolding outgoing-def using no-outgoing-t by auto

lemma cap-positive: e ∈ E =⇒ c e > 0
unfolding E-def using cap-non-negative le-neq-trans by fastforce

lemma V-not-empty: V 6={} using s-node by auto
lemma E-not-empty: E 6={} using V-not-empty by (auto simp: V-def)

lemma card-V-ge2 : card V ≥ 2
proof −

have 2 = card {s,t} by auto
also have {s,t} ⊆ V by auto
hence card {s,t} ≤ card V by (rule-tac card-mono) auto
finally show ?thesis .

qed

lemma zero-is-flow: Flow c s t (λ-. 0)
using cap-non-negative by unfold-locales auto

lemma max-flow-val-unique:
[[is-max-flow-val fv1 ; is-max-flow-val fv2]] =⇒ fv1=fv2
unfolding is-max-flow-val-def isMaxFlow-def
by (auto simp: antisym)

end — Network

2.2.3 Networks with Flow
context NPreflow
begin

sublocale Finite-Preflow by unfold-locales

As there are no edges entering the source/leaving the sink, also the corre-
sponding flow values are zero:
lemma no-inflow-s: ∀ e ∈ incoming s. f e = 0 (is ?thesis)
proof (rule ccontr)

assume ¬(∀ e ∈ incoming s. f e = 0)

9

then obtain e where obt1 : e ∈ incoming s ∧ f e 6= 0 by blast
then have e ∈ E using incoming-def by auto
thus False using obt1 no-incoming-s incoming-def by auto

qed

lemma no-outflow-t: ∀ e ∈ outgoing t. f e = 0
proof (rule ccontr)

assume ¬(∀ e ∈ outgoing t. f e = 0)
then obtain e where obt1 : e ∈ outgoing t ∧ f e 6= 0 by blast
then have e ∈ E using outgoing-def by auto
thus False using obt1 no-outgoing-t outgoing-def by auto

qed

For an edge, there is no reverse edge, and thus, no flow in the reverse direc-
tion:
lemma zero-rev-flow-simp[simp]: (u,v)∈E =⇒ f (v,u) = 0

using no-parallel-edge by auto

lemma excess-non-negative: ∀ v∈V−{s,t}. excess f v ≥ 0
unfolding excess-def using no-deficient-nodes by auto

lemma excess-nodes-only: excess f v > 0 =⇒ v ∈ V
unfolding excess-def incoming-def outgoing-def V-def
using sum.not-neutral-contains-not-neutral by fastforce

lemma excess-non-negative ′: ∀ v ∈ V − {s}. excess f v ≥ 0
proof −

have excess f t ≥ 0 unfolding excess-def outgoing-def
by (auto simp: capacity-const sum-nonneg)

thus ?thesis using excess-non-negative by blast
qed

lemma excess-s-non-pos: excess f s ≤ 0
unfolding excess-def
by (simp add: capacity-const sum-nonneg)

end — Network with preflow

context NFlow begin
sublocale Finite-Preflow by unfold-locales

There is no outflow from the sink in a network. Thus, we can simplify the
definition of the value:

corollary val-alt: val = (
∑

e ∈ outgoing s. f e)
unfolding val-def by (auto simp: no-inflow-s)

end

10

end — Theory

3 Residual Graph
theory Residual-Graph
imports Network
begin

In this theory, we define the residual graph.

3.1 Definition

The residual graph of a network and a flow indicates how much flow can
be effectively pushed along or reverse to a network edge, by increasing or
decreasing the flow on that edge:
definition residualGraph :: - graph ⇒ - flow ⇒ - graph
where residualGraph c f ≡ λ(u, v).

if (u, v) ∈ Graph.E c then
c (u, v) − f (u, v)

else if (v, u) ∈ Graph.E c then
f (v, u)

else
0

context Network begin

abbreviation cf-of ≡ residualGraph c
abbreviation cfE-of f ≡ Graph.E (cf-of f)

The edges of the residual graph are either parallel or reverse to the edges of
the network.
lemma cfE-of-ss-invE : cfE-of cf ⊆ E ∪ E−1

unfolding residualGraph-def Graph.E-def
by auto

lemma cfE-of-ss-VxV : cfE-of f ⊆ V×V
unfolding V-def
unfolding residualGraph-def Graph.E-def
by auto

lemma cfE-of-finite[simp, intro!]: finite (cfE-of f)
using finite-subset[OF cfE-of-ss-VxV] by auto

lemma cf-no-self-loop: (u,u)/∈cfE-of f
proof

assume a1 : (u, u) ∈ cfE-of f
have (u, u) /∈ E

11

using no-parallel-edge by blast
then show False

using a1 unfolding Graph.E-def residualGraph-def by fastforce
qed

end

Let’s fix a network with a preflow f on it
context NPreflow
begin

We abbreviate the residual graph by cf.
abbreviation cf ≡ residualGraph c f
sublocale cf : Graph cf .
lemmas cf-def = residualGraph-def [of c f]

3.2 Properties
lemmas cfE-ss-invE = cfE-of-ss-invE [of f]

The nodes of the residual graph are exactly the nodes of the network.
lemma resV-netV [simp]: cf .V = V
proof

show V ⊆ Graph.V cf
proof

fix u
assume u ∈ V
then obtain v where (u, v) ∈ E ∨ (v, u) ∈ E unfolding V-def by auto

moreover {
assume (u, v) ∈ E
then have (u, v) ∈ Graph.E cf ∨ (v, u) ∈ Graph.E cf
proof (cases)

assume f (u, v) = 0
then have cf (u, v) = c (u, v)

unfolding residualGraph-def using ‹(u, v) ∈ E› by (auto simp:)
then have cf (u, v) 6= 0 using ‹(u, v) ∈ E› unfolding E-def by auto
thus ?thesis unfolding Graph.E-def by auto

next
assume f (u, v) 6= 0
then have cf (v, u) = f (u, v) unfolding residualGraph-def

using ‹(u, v) ∈ E› no-parallel-edge by auto
then have cf (v, u) 6= 0 using ‹f (u, v) 6= 0 › by auto
thus ?thesis unfolding Graph.E-def by auto

qed
} moreover {

assume (v, u) ∈ E
then have (v, u) ∈ Graph.E cf ∨ (u, v) ∈ Graph.E cf
proof (cases)

12

assume f (v, u) = 0
then have cf (v, u) = c (v, u)

unfolding residualGraph-def using ‹(v, u) ∈ E› by (auto)
then have cf (v, u) 6= 0 using ‹(v, u) ∈ E› unfolding E-def by auto
thus ?thesis unfolding Graph.E-def by auto

next
assume f (v, u) 6= 0
then have cf (u, v) = f (v, u) unfolding residualGraph-def

using ‹(v, u) ∈ E› no-parallel-edge by auto
then have cf (u, v) 6= 0 using ‹f (v, u) 6= 0 › by auto
thus ?thesis unfolding Graph.E-def by auto

qed
} ultimately show u∈cf .V unfolding cf .V-def by auto

qed
next

show Graph.V cf ⊆ V using cfE-ss-invE unfolding Graph.V-def by auto
qed

Note, that Isabelle is powerful enough to prove the above case distinctions
completely automatically, although it takes some time:
lemma cf .V = V

unfolding residualGraph-def Graph.E-def Graph.V-def
using no-parallel-edge[unfolded E-def]
by auto

As the residual graph has the same nodes as the network, it is also finite:
sublocale cf : Finite-Graph cf

by unfold-locales auto

The capacities on the edges of the residual graph are non-negative
lemma resE-nonNegative: cf e ≥ 0
proof (cases e; simp)

fix u v
{

assume (u, v) ∈ E
then have cf (u, v) = c (u, v) − f (u, v) unfolding cf-def by auto
hence cf (u,v) ≥ 0

using capacity-const cap-non-negative by auto
} moreover {

assume (v, u) ∈ E
then have cf (u,v) = f (v, u)

using no-parallel-edge unfolding cf-def by auto
hence cf (u,v) ≥ 0

using capacity-const by auto
} moreover {

assume (u, v) /∈ E (v, u) /∈ E
hence cf (u,v) ≥ 0 unfolding residualGraph-def by simp

} ultimately show cf (u,v) ≥ 0 by blast
qed

13

Again, there is an automatic proof
lemma cf e ≥ 0

apply (cases e)
unfolding residualGraph-def
using no-parallel-edge capacity-const cap-positive
by auto

All edges of the residual graph are labeled with positive capacities:
corollary resE-positive: e ∈ cf .E =⇒ cf e > 0
proof −

assume e ∈ cf .E
hence cf e 6= 0 unfolding cf .E-def by auto
thus ?thesis using resE-nonNegative by (meson eq-iff not-le)

qed

lemma reverse-flow: Preflow cf s t f ′ =⇒ ∀ (u, v) ∈ E . f ′ (v, u) ≤ f (u, v)
proof −

assume asm: Preflow cf s t f ′

then interpret f ′: Preflow cf s t f ′ .

{
fix u v
assume (u, v) ∈ E

then have cf (v, u) = f (u, v)
unfolding residualGraph-def using no-parallel-edge by auto

moreover have f ′ (v, u) ≤ cf (v, u) using f ′.capacity-const by auto
ultimately have f ′ (v, u) ≤ f (u, v) by metis

}
thus ?thesis by auto

qed

definition (in Network) flow-of-cf cf e ≡ (if (e∈E) then c e − cf e else 0)

lemma (in NPreflow) E-ss-cfinvE : E ⊆ Graph.E cf ∪ (Graph.E cf)−1

unfolding residualGraph-def Graph.E-def
apply (clarsimp)
using no-parallel-edge
unfolding E-def
apply simp
done

Nodes with positive excess must have an outgoing edge in the residual graph.
Intuitively: The excess flow must come from somewhere.
lemma active-has-cf-outgoing: excess f u > 0 =⇒ cf .outgoing u 6= {}

14

unfolding excess-def
proof −

assume 0 < sum f (incoming u) − sum f (outgoing u)
hence 0 < sum f (incoming u)

by (metis diff-gt-0-iff-gt linorder-neqE-linordered-idom linorder-not-le
sum-f-non-negative)

with f-non-negative obtain e where e∈incoming u f e > 0
by (meson not-le sum-nonpos)

then obtain v where (v,u)∈E f (v,u) > 0 unfolding incoming-def by auto
hence cf (u,v) > 0 unfolding residualGraph-def by auto
thus ?thesis unfolding cf .outgoing-def cf .E-def by fastforce

qed

end — Network with preflow

locale RPreGraph — Locale that characterizes a residual graph of a network
= Network +

fixes cf
assumes EX-RPG: ∃ f . NPreflow c s t f ∧ cf = residualGraph c f

begin

lemma this-loc-rpg: RPreGraph c s t cf
by unfold-locales

definition f ≡ flow-of-cf cf

lemma f-unique:
assumes NPreflow c s t f ′

assumes A: cf = residualGraph c f ′

shows f ′ = f
proof −

interpret f ′: NPreflow c s t f ′ by fact

show ?thesis
unfolding f-def [abs-def] flow-of-cf-def [abs-def]
unfolding A residualGraph-def
apply (rule ext)
using f ′.capacity-const unfolding E-def
apply (auto split: prod.split)
by (metis antisym)

qed

lemma is-NPreflow: NPreflow c s t (flow-of-cf cf)
apply (fold f-def)
using EX-RPG f-unique by metis

15

sublocale f : NPreflow c s t f unfolding f-def by (rule is-NPreflow)

lemma rg-is-cf [simp]: residualGraph c f = cf
using EX-RPG f-unique by auto

lemma rg-fo-inv[simp]: residualGraph c (flow-of-cf cf) = cf
using rg-is-cf
unfolding f-def
.

sublocale cf : Graph cf .

lemma resV-netV [simp]: cf .V = V
using f .resV-netV by simp

sublocale cf : Finite-Graph cf
apply unfold-locales
apply simp
done

lemma E-ss-cfinvE : E ⊆ cf .E ∪ cf .E−1

using f .E-ss-cfinvE by simp

lemma cfE-ss-invE : cf .E ⊆ E ∪ E−1

using f .cfE-ss-invE by simp

lemma resE-nonNegative: cf e ≥ 0
using f .resE-nonNegative by auto

end

context NPreflow begin
lemma is-RPreGraph: RPreGraph c s t cf

apply unfold-locales
apply (rule exI [where x=f])
apply (safe; unfold-locales)
done

lemma fo-rg-inv: flow-of-cf cf = f
unfolding flow-of-cf-def [abs-def]
unfolding residualGraph-def
apply (rule ext)
using capacity-const unfolding E-def
apply (clarsimp split: prod.split)
by (metis antisym)

end

16

lemma (in NPreflow)
flow-of-cf (residualGraph c f) = f
by (rule fo-rg-inv)

locale RGraph — Locale that characterizes a residual graph of a network
= Network +

fixes cf
assumes EX-RG: ∃ f . NFlow c s t f ∧ cf = residualGraph c f

begin
sublocale RPreGraph
proof

from EX-RG obtain f where
NFlow c s t f and [simp]: cf = residualGraph c f by auto

then interpret NFlow c s t f by simp

show ∃ f . NPreflow c s t f ∧ cf = residualGraph c f
apply (rule exI [where x=f])
apply simp
by unfold-locales

qed

lemma this-loc: RGraph c s t cf
by unfold-locales

lemma this-loc-rpg: RPreGraph c s t cf
by unfold-locales

lemma is-NFlow: NFlow c s t (flow-of-cf cf)
using EX-RG f-unique is-NPreflow NFlow.axioms(1)
apply (fold f-def) by force

sublocale f : NFlow c s t f unfolding f-def by (rule is-NFlow)
end

context NFlow begin

lemma is-RGraph: RGraph c s t cf
apply unfold-locales
apply (rule exI [where x=f])
apply (safe; unfold-locales)
done

The value of the flow can be computed from the residual graph.
lemma val-by-cf : val = (

∑
(u,v)∈outgoing s. cf (v,u))

proof −
have f (s,v) = cf (v,s) for v

unfolding cf-def by auto
thus ?thesis

17

unfolding val-alt outgoing-def
by (auto intro!: sum.cong)

qed

end — Network with Flow

lemma (in RPreGraph) maxflow-imp-rgraph:
assumes isMaxFlow (flow-of-cf cf)
shows RGraph c s t cf

proof −
from assms interpret Flow c s t f

unfolding isMaxFlow-def by (simp add: f-def)

interpret NFlow c s t f by unfold-locales

show ?thesis
apply unfold-locales
apply (rule exI [of - f])
apply (simp add: NFlow-axioms)
done

qed

end — Theory

4 Augmenting Flows
theory Augmenting-Flow
imports Residual-Graph
begin

In this theory, we define the concept of an augmenting flow, augmentation
with a flow, and show that augmentation of a flow with an augmenting flow
yields a valid flow again.

We assume that there is a network with a flow f on it
context NFlow
begin

4.1 Augmentation of a Flow

The flow can be augmented by another flow, by adding the flows of edges
parallel to edges in the network, and subtracting the edges reverse to edges
in the network.
definition augment :: ′capacity flow ⇒ ′capacity flow
where augment f ′ ≡ λ(u, v).

if (u, v) ∈ E then
f (u, v) + f ′ (u, v) − f ′ (v, u)

else

18

0

We define a syntax similar to Cormen et el.:
abbreviation (input) augment-syntax (infix ‹↑› 55)

where
∧

f f ′. f ↑f ′ ≡ NFlow.augment c f f ′

such that we can write f ↑f ′ for the flow f augmented by f ′.

4.2 Augmentation yields Valid Flow

We show that, if we augment the flow with a valid flow of the residual graph,
the augmented flow is a valid flow again, i.e. it satisfies the capacity and
conservation constraints:
context

— Let the residual flow f ′ be a flow in the residual graph
fixes f ′ :: ′capacity flow
assumes f ′-flow: Flow cf s t f ′

begin

interpretation f ′: Flow cf s t f ′ by (rule f ′-flow)

4.2.1 Capacity Constraint

First, we have to show that the new flow satisfies the capacity constraint:
lemma augment-flow-presv-cap:

shows 0 ≤ (f ↑f ′)(u,v) ∧ (f ↑f ′)(u,v) ≤ c(u,v)
proof (cases (u,v)∈E ; rule conjI)

assume [simp]: (u,v)∈E
hence f (u,v) = cf (v,u)

using no-parallel-edge by (auto simp: residualGraph-def)
also have cf (v,u) ≥ f ′(v,u) using f ′.capacity-const by auto
finally have f ′(v,u) ≤ f (u,v) .

have (f ↑f ′)(u,v) = f (u,v) + f ′(u,v) − f ′(v,u)
by (auto simp: augment-def)

also have . . . ≥ f (u,v) + f ′(u,v) − f (u,v)
using ‹f ′(v,u) ≤ f (u,v)› by auto

also have . . . = f ′(u,v) by auto
also have . . . ≥ 0 using f ′.capacity-const by auto
finally show (f ↑f ′)(u,v) ≥ 0 .

have (f ↑f ′)(u,v) = f (u,v) + f ′(u,v) − f ′(v,u)
by (auto simp: augment-def)

also have . . . ≤ f (u,v) + f ′(u,v) using f ′.capacity-const by auto
also have . . . ≤ f (u,v) + cf (u,v) using f ′.capacity-const by auto
also have . . . = f (u,v) + c(u,v) − f (u,v)

by (auto simp: residualGraph-def)

19

also have . . . = c(u,v) by auto
finally show (f ↑f ′)(u, v) ≤ c(u, v) .

qed (auto simp: augment-def cap-positive)

4.2.2 Conservation Constraint

In order to show the conservation constraint, we need some auxiliary lemmas
first.

As there are no parallel edges in the network, and all edges in the residual
graph are either parallel or reverse to a network edge, we can split summa-
tions of the residual flow over outgoing/incoming edges in the residual graph
to summations over outgoing/incoming edges in the network.
Note that the term E ‘‘ {u} characterizes the successor nodes of u, and E−1

‘‘ {u} characterizes the predecessor nodes of u.
private lemma split-rflow-outgoing:
(
∑

v∈cf .E‘‘{u}. f ′ (u,v)) = (
∑

v∈E‘‘{u}. f ′(u,v)) + (
∑

v∈E−1‘‘{u}. f ′(u,v))
(is ?LHS = ?RHS)

proof −
from no-parallel-edge have DJ : E‘‘{u} ∩ E−1‘‘{u} = {} by auto

have ?LHS = (
∑

v∈E‘‘{u} ∪ E−1‘‘{u}. f ′ (u,v))
apply (rule sum.mono-neutral-left)
using cfE-ss-invE
by (auto intro: finite-Image)

also have . . . = ?RHS
apply (subst sum.union-disjoint[OF - - DJ])
by (auto intro: finite-Image)

finally show ?LHS = ?RHS .
qed

private lemma split-rflow-incoming:
(
∑

v∈cf .E−1‘‘{u}. f ′ (v,u)) = (
∑

v∈E‘‘{u}. f ′(v,u)) + (
∑

v∈E−1‘‘{u}. f ′(v,u))
(is ?LHS = ?RHS)

proof −
from no-parallel-edge have DJ : E‘‘{u} ∩ E−1‘‘{u} = {} by auto

have ?LHS = (
∑

v∈E‘‘{u} ∪ E−1‘‘{u}. f ′ (v,u))
apply (rule sum.mono-neutral-left)
using cfE-ss-invE
by (auto intro: finite-Image)

also have . . . = ?RHS
apply (subst sum.union-disjoint[OF - - DJ])
by (auto intro: finite-Image)

finally show ?LHS = ?RHS .
qed

For proving the conservation constraint, let’s fix a node u, which is neither

20

the source nor the sink:
context

fixes u :: node
assumes U-ASM : u∈V − {s,t}

begin

We first show an auxiliary lemma to compare the effective residual flow on
incoming network edges to the effective residual flow on outgoing network
edges.
Intuitively, this lemma shows that the effective residual flow added to the
network edges satisfies the conservation constraint.
private lemma flow-summation-aux:

shows (
∑

v∈E‘‘{u}. f ′ (u,v)) − (
∑

v∈E‘‘{u}. f ′ (v,u))
= (

∑
v∈E−1‘‘{u}. f ′ (v,u)) − (

∑
v∈E−1‘‘{u}. f ′ (u,v))

(is ?LHS = ?RHS is ?A − ?B = ?RHS)
proof −

The proof is by splitting the flows, and careful cancellation of the summands.
have ?A = (

∑
v∈cf .E‘‘{u}. f ′ (u, v)) − (

∑
v∈E−1‘‘{u}. f ′ (u, v))

by (simp add: split-rflow-outgoing)
also have (

∑
v∈cf .E‘‘{u}. f ′ (u, v)) = (

∑
v∈cf .E−1‘‘{u}. f ′ (v, u))

using U-ASM
by (simp add: f ′.conservation-const-pointwise)

finally have ?A = (
∑

v∈cf .E−1‘‘{u}. f ′ (v, u)) − (
∑

v∈E−1‘‘{u}. f ′ (u, v))
by simp

moreover
have ?B = (

∑
v∈cf .E−1‘‘{u}. f ′ (v, u)) − (

∑
v∈E−1‘‘{u}. f ′ (v, u))

by (simp add: split-rflow-incoming)
ultimately show ?A − ?B = ?RHS by simp

qed

Finally, we are ready to prove that the augmented flow satisfies the conser-
vation constraint:
lemma augment-flow-presv-con:

shows (
∑

e ∈ outgoing u. augment f ′ e) = (
∑

e ∈ incoming u. augment f ′ e)
(is ?LHS = ?RHS)

proof −

We define shortcuts for the successor and predecessor nodes of u in the
network:

let ?Vo = E‘‘{u} let ?Vi = E−1‘‘{u}

Using the auxiliary lemma for the effective residual flow, the proof is straight-
forward:

have ?LHS = (
∑

v∈?Vo. augment f ′ (u,v))
by (auto simp: sum-outgoing-pointwise)

21

also have . . .
= (

∑
v∈?Vo. f (u,v) + f ′(u,v) − f ′(v,u))

by (auto simp: augment-def)
also have . . .
= (

∑
v∈?Vo. f (u,v)) + (

∑
v∈?Vo. f ′ (u,v)) − (

∑
v∈?Vo. f ′ (v,u))

by (auto simp: sum-subtractf sum.distrib)
also have . . .
= (

∑
v∈?Vi. f (v,u)) + (

∑
v∈?Vi. f ′ (v,u)) − (

∑
v∈?Vi. f ′ (u,v))

by (auto simp: conservation-const-pointwise[OF U-ASM] flow-summation-aux)
also have . . .
= (

∑
v∈?Vi. f (v,u) + f ′ (v,u) − f ′ (u,v))

by (auto simp: sum-subtractf sum.distrib)
also have . . .
= (

∑
v∈?Vi. augment f ′ (v,u))

by (auto simp: augment-def)
also have . . .
= ?RHS
by (auto simp: sum-incoming-pointwise)

finally show ?LHS = ?RHS .
qed

Note that we tried to follow the proof presented by Cormen et al. [1] as
closely as possible. Unfortunately, this proof generalizes the summation to
all nodes immediately, rendering the first equation invalid. Trying to fix this
error, we encountered that the step that uses the conservation constraints
on the augmenting flow is more subtle as indicated in the original proof.
Thus, we moved this argument to an auxiliary lemma.
end — u is node

As main result, we get that the augmented flow is again a valid flow.
corollary augment-flow-presv: Flow c s t (f ↑f ′)

using augment-flow-presv-cap augment-flow-presv-con
by (rule-tac intro-Flow) auto

4.3 Value of the Augmented Flow

Next, we show that the value of the augmented flow is the sum of the values
of the original flow and the augmenting flow.
lemma augment-flow-value: Flow.val c s (f ↑f ′) = val + Flow.val cf s f ′

proof −
interpret f ′′: Flow c s t f ↑f ′ using augment-flow-presv .

For this proof, we set up Isabelle’s rewriting engine for rewriting of sums. In
particular, we add lemmas to convert sums over incoming or outgoing edges to sums
over all vertices. This allows us to write the summations from Cormen et al. a bit
more concise, leaving some of the tedious calculation work to the computer.

note sum-simp-setup[simp] =

22

sum-outgoing-alt[OF capacity-const] s-node
sum-incoming-alt[OF capacity-const]
cf .sum-outgoing-alt[OF f ′.capacity-const]
cf .sum-incoming-alt[OF f ′.capacity-const]
sum-outgoing-alt[OF f ′′.capacity-const]
sum-incoming-alt[OF f ′′.capacity-const]
sum-subtractf sum.distrib

Note that, if neither an edge nor its reverse is in the graph, there is also no edge in
the residual graph, and thus the flow value is zero.

have aux1 : f ′(u,v) = 0 if (u,v)/∈E (v,u)/∈E for u v
proof −

from that cfE-ss-invE have (u,v)/∈cf .E by auto
thus f ′(u,v) = 0 by auto

qed

Now, the proposition follows by straightforward rewriting of the summations:

have f ′′.val = (
∑

u∈V . augment f ′ (s, u) − augment f ′ (u, s))
unfolding f ′′.val-def by simp

also have . . . = (
∑

u∈V . f (s, u) − f (u, s) + (f ′ (s, u) − f ′ (u, s)))
— Note that this is the crucial step of the proof, which Cormen et al. leave as

an exercise.
by (rule sum.cong) (auto simp: augment-def no-parallel-edge aux1)

also have . . . = val + Flow.val cf s f ′

unfolding val-def f ′.val-def by simp
finally show f ′′.val = val + f ′.val .

qed

Note, there is also an automatic proof. When creating the above explicit proof, this
automatic one has been used to extract meaningful subgoals, abusing Isabelle as a
term rewriter.

lemma Flow.val c s (f ↑f ′) = val + Flow.val cf s f ′

proof −
interpret f ′′: Flow c s t f ↑f ′ using augment-flow-presv .

have aux1 : f ′(u,v) = 0 if A: (u,v)/∈E (v,u)/∈E for u v
proof −

from A cfE-ss-invE have (u,v)/∈cf .E by auto
thus f ′(u,v) = 0 by auto

qed

show ?thesis
unfolding val-def f ′.val-def f ′′.val-def
apply (simp del:

add:
sum-outgoing-alt[OF capacity-const] s-node
sum-incoming-alt[OF capacity-const]
sum-outgoing-alt[OF f ′′.capacity-const]
sum-incoming-alt[OF f ′′.capacity-const]

23

cf .sum-outgoing-alt[OF f ′.capacity-const]
cf .sum-incoming-alt[OF f ′.capacity-const]
sum-subtractf [symmetric] sum.distrib[symmetric]
)

apply (rule sum.cong)
apply (auto simp: augment-def no-parallel-edge aux1)
done

qed

end — Augmenting flow
end — Network flow

end — Theory

5 Augmenting Paths
theory Augmenting-Path
imports Residual-Graph
begin

We define the concept of an augmenting path in the residual graph, and the
residual flow induced by an augmenting path.

We fix a network with a preflow f on it.
context NPreflow
begin

5.1 Definitions

An augmenting path is a simple path from the source to the sink in the
residual graph:
definition isAugmentingPath :: path ⇒ bool
where isAugmentingPath p ≡ cf .isSimplePath s p t

The residual capacity of an augmenting path is the smallest capacity anno-
tated to its edges:
definition resCap :: path ⇒ ′capacity
where resCap p ≡ Min {cf e | e. e ∈ set p}

lemma resCap-alt: resCap p = Min (cf‘set p)
— Useful characterization for finiteness arguments
unfolding resCap-def apply (rule arg-cong[where f=Min]) by auto

An augmenting path induces an augmenting flow, which pushes as much
flow as possible along the path:
definition augmentingFlow :: path ⇒ ′capacity flow

24

where augmentingFlow p ≡ λ(u, v).
if (u, v) ∈ (set p) then

resCap p
else

0

5.2 Augmenting Flow is Valid Flow

In this section, we show that the augmenting flow induced by an augmenting
path is a valid flow in the residual graph.
We start with some auxiliary lemmas.

The residual capacity of an augmenting path is always positive.
lemma resCap-gzero-aux: cf .isPath s p t =⇒ 0<resCap p
proof −

assume PATH : cf .isPath s p t
hence set p 6={} using s-not-t by (auto)
moreover have ∀ e∈set p. cf e > 0

using cf .isPath-edgeset[OF PATH] resE-positive by (auto)
ultimately show ?thesis unfolding resCap-alt by (auto)

qed

lemma resCap-gzero: isAugmentingPath p =⇒ 0<resCap p
using resCap-gzero-aux[of p]
by (auto simp: isAugmentingPath-def cf .isSimplePath-def)

As all edges of the augmenting flow have the same value, we can factor this
out from a summation:
lemma sum-augmenting-alt:

assumes finite A
shows (

∑
e ∈ A. (augmentingFlow p) e)

= resCap p ∗ of-nat (card (A∩set p))
proof −

have (
∑

e ∈ A. (augmentingFlow p) e) = sum (λ-. resCap p) (A∩set p)
apply (subst sum.inter-restrict)
apply (auto simp: augmentingFlow-def assms)
done

thus ?thesis by auto
qed

lemma augFlow-resFlow: isAugmentingPath p =⇒ Flow cf s t (augmentingFlow
p)
proof (rule cf .intro-Flow; intro allI ballI)

assume AUG: isAugmentingPath p
hence SPATH : cf .isSimplePath s p t by (simp add: isAugmentingPath-def)
hence PATH : cf .isPath s p t by (simp add: cf .isSimplePath-def)

{

25

We first show the capacity constraint
fix e
show 0 ≤ (augmentingFlow p) e ∧ (augmentingFlow p) e ≤ cf e
proof cases

assume e ∈ set p
hence resCap p ≤ cf e unfolding resCap-alt by auto
moreover have (augmentingFlow p) e = resCap p

unfolding augmentingFlow-def using ‹e ∈ set p› by auto
moreover have 0 < resCap p using resCap-gzero[OF AUG] by simp
ultimately show ?thesis by auto

next
assume e /∈ set p
hence (augmentingFlow p) e = 0 unfolding augmentingFlow-def by auto
thus ?thesis using resE-nonNegative by auto

qed
}

{

Next, we show the conservation constraint
fix v
assume asm-s: v ∈ Graph.V cf − {s, t}

have card (Graph.incoming cf v ∩ set p) = card (Graph.outgoing cf v ∩ set p)
proof (cases)

assume v∈set (cf .pathVertices-fwd s p)
from cf .split-path-at-vertex[OF this PATH] obtain p1 p2 where

P-FMT : p=p1@p2
and 1 : cf .isPath s p1 v
and 2 : cf .isPath v p2 t
.

from 1 obtain p1 ′ u1 where [simp]: p1=p1 ′@[(u1 ,v)]
using asm-s by (cases p1 rule: rev-cases) (auto simp: split-path-simps)

from 2 obtain p2 ′ u2 where [simp]: p2=(v,u2)#p2 ′

using asm-s by (cases p2) (auto)
from

cf .isSPath-sg-outgoing[OF SPATH , of v u2]
cf .isSPath-sg-incoming[OF SPATH , of u1 v]
cf .isPath-edgeset[OF PATH]

have cf .outgoing v ∩ set p = {(v,u2)} cf .incoming v ∩ set p = {(u1 ,v)}
by (fastforce simp: P-FMT cf .outgoing-def cf .incoming-def)+

thus ?thesis by auto
next

assume v /∈set (cf .pathVertices-fwd s p)
then have ∀ u. (u,v)/∈set p ∧ (v,u)/∈set p

by (auto dest: cf .pathVertices-edge[OF PATH])
hence cf .incoming v ∩ set p = {} cf .outgoing v ∩ set p = {}

by (auto simp: cf .incoming-def cf .outgoing-def)
thus ?thesis by auto

26

qed
thus (

∑
e ∈ Graph.incoming cf v. (augmentingFlow p) e) =

(
∑

e ∈ Graph.outgoing cf v. (augmentingFlow p) e)
by (auto simp: sum-augmenting-alt)

}
qed

5.3 Value of Augmenting Flow is Residual Capacity

Finally, we show that the value of the augmenting flow is the residual ca-
pacity of the augmenting path
lemma augFlow-val:

isAugmentingPath p =⇒ Flow.val cf s (augmentingFlow p) = resCap p
proof −

assume AUG: isAugmentingPath p
with augFlow-resFlow interpret f : Flow cf s t augmentingFlow p .

note AUG
hence SPATH : cf .isSimplePath s p t by (simp add: isAugmentingPath-def)
hence PATH : cf .isPath s p t by (simp add: cf .isSimplePath-def)
then obtain v p ′ where p=(s,v)#p ′ (s,v)∈cf .E

using s-not-t by (cases p) auto
hence cf .outgoing s ∩ set p = {(s,v)}

using cf .isSPath-sg-outgoing[OF SPATH , of s v]
using cf .isPath-edgeset[OF PATH]
by (fastforce simp: cf .outgoing-def)

moreover have cf .incoming s ∩ set p = {} using SPATH no-incoming-s
by (auto

simp: cf .incoming-def ‹p=(s,v)#p ′› in-set-conv-decomp[where xs=p ′]
simp: cf .isSimplePath-append cf .isSimplePath-cons)

ultimately show ?thesis
unfolding f .val-def
by (auto simp: sum-augmenting-alt)

qed

end — Network with flow
end — Theory

6 The Ford-Fulkerson Theorem
theory Ford-Fulkerson
imports Augmenting-Flow Augmenting-Path
begin

In this theory, we prove the Ford-Fulkerson theorem, and its well-known
corollary, the min-cut max-flow theorem.

We fix a network with a flow and a cut

27

locale NFlowCut = NFlow c s t f + NCut c s t k
for c :: ′capacity::linordered-idom graph and s t f k

begin

lemma finite-k[simp, intro!]: finite k
using cut-ss-V finite-V finite-subset[of k V] by blast

6.1 Net Flow

We define the net flow to be the amount of flow effectively passed over the
cut from the source to the sink:
definition netFlow :: ′capacity

where netFlow ≡ (
∑

e ∈ outgoing ′ k. f e) − (
∑

e ∈ incoming ′ k. f e)

We can show that the net flow equals the value of the flow. Note: Cormen
et al. [1] present a whole page full of summation calculations for this proof,
and our formal proof also looks quite complicated.
lemma flow-value: netFlow = val
proof −

let ?LCL = {(u, v). u ∈ k ∧ v ∈ k ∧ (u, v) ∈ E}
let ?AOG = {(u, v). u ∈ k ∧ (u, v) ∈ E}
let ?AIN = {(v, u) | u v. u ∈ k ∧ (v, u) ∈ E}
let ?SOG = λu. (

∑
e ∈ outgoing u. f e)

let ?SIN = λu. (
∑

e ∈ incoming u. f e)
let ?SOG ′ = (

∑
e ∈ outgoing ′ k. f e)

let ?SIN ′ = (
∑

e ∈ incoming ′ k. f e)

Some setup to make finiteness reasoning implicit
note [[simproc finite-Collect]]

have
netFlow = ?SOG ′ + (

∑
e ∈ ?LCL. f e) − (?SIN ′ + (

∑
e ∈ ?LCL. f e))

(is - = ?SAOG − ?SAIN)
using netFlow-def by auto

also have ?SAOG = (
∑

y ∈ k − {s}. ?SOG y) + ?SOG s
proof −

have ?SAOG = (
∑

e∈(outgoing ′ k ∪ ?LCL). f e)
by (rule sum.union-disjoint[symmetric]) (auto simp: outgoing ′-def)

also have outgoing ′ k ∪ ?LCL = (
⋃

y∈k−{s}. outgoing y) ∪ outgoing s
by (auto simp: outgoing-def outgoing ′-def s-in-cut)

also have (
∑

e∈(
⋃

(outgoing ‘ (k − {s})) ∪ outgoing s). f e)
= (

∑
e∈(

⋃
(outgoing ‘ (k − {s}))). f e) + (

∑
e∈outgoing s. f e)

by (rule sum.union-disjoint)
(auto simp: outgoing-def intro: finite-Image)

also have (
∑

e∈(
⋃

(outgoing ‘ (k − {s}))). f e)
= (

∑
y ∈ k − {s}. ?SOG y)

by (rule sum.UNION-disjoint)
(auto simp: outgoing-def intro: finite-Image)

28

finally show ?thesis .
qed
also have ?SAIN = (

∑
y ∈ k − {s}. ?SIN y) + ?SIN s

proof −
have ?SAIN = (

∑
e∈(incoming ′ k ∪ ?LCL). f e)

by (rule sum.union-disjoint[symmetric]) (auto simp: incoming ′-def)
also have incoming ′ k ∪ ?LCL = (

⋃
y∈k−{s}. incoming y) ∪ incoming s

by (auto simp: incoming-def incoming ′-def s-in-cut)
also have (

∑
e∈(

⋃
(incoming ‘ (k − {s})) ∪ incoming s). f e)

= (
∑

e∈(
⋃
(incoming ‘ (k − {s}))). f e) + (

∑
e∈incoming s. f e)

by (rule sum.union-disjoint)
(auto simp: incoming-def intro: finite-Image)

also have (
∑

e∈(
⋃

(incoming ‘ (k − {s}))). f e)
= (

∑
y ∈ k − {s}. ?SIN y)

by (rule sum.UNION-disjoint)
(auto simp: incoming-def intro: finite-Image)

finally show ?thesis .
qed
finally have netFlow =

((
∑

y ∈ k − {s}. ?SOG y) + ?SOG s)
− ((

∑
y ∈ k − {s}. ?SIN y) + ?SIN s)

(is netFlow = ?R) .
also have ?R = ?SOG s − ?SIN s
proof −

have (
∧

u. u ∈ k − {s} =⇒ ?SOG u = ?SIN u)
using conservation-const cut-ss-V t-ni-cut by force

thus ?thesis by auto
qed
finally show ?thesis unfolding val-def by simp

qed

The value of any flow is bounded by the capacity of any cut. This is in-
tuitively clear, as all flow from the source to the sink has to go over the
cut.
corollary weak-duality: val ≤ cap
proof −

have (
∑

e ∈ outgoing ′ k. f e) ≤ (
∑

e ∈ outgoing ′ k. c e) (is ?L ≤ ?R)
using capacity-const by (metis sum-mono)

then have (
∑

e ∈ outgoing ′ k. f e) ≤ cap unfolding cap-def by simp
moreover have val ≤ (

∑
e ∈ outgoing ′ k. f e) using netFlow-def

by (simp add: capacity-const flow-value sum-nonneg)
ultimately show ?thesis by simp

qed

end — Cut

6.2 Ford-Fulkerson Theorem
context NFlow begin

29

We prove three auxiliary lemmas first, and the state the theorem as a corol-
lary
lemma fofu-I-II : isMaxFlow f =⇒ ¬ (∃ p. isAugmentingPath p)
unfolding isMaxFlow-alt
proof (rule ccontr)

assume asm: NFlow c s t f
∧ (∀ f ′. NFlow c s t f ′ −→ Flow.val c s f ′ ≤ Flow.val c s f)

assume asm-c: ¬ ¬ (∃ p. isAugmentingPath p)
then obtain p where obt: isAugmentingPath p by blast
have fct1 : Flow cf s t (augmentingFlow p) using obt augFlow-resFlow by auto
have fct2 : Flow.val cf s (augmentingFlow p) > 0 using obt augFlow-val

resCap-gzero isAugmentingPath-def cf .isSimplePath-def by auto
have NFlow c s t (augment (augmentingFlow p))

using fct1 augment-flow-presv Network-axioms
unfolding Flow-def NFlow-def NPreflow-def
by auto

moreover have Flow.val c s (augment (augmentingFlow p)) > val
using fct1 fct2 augment-flow-value by auto

ultimately show False using asm by auto
qed

lemma fofu-II-III :
¬ (∃ p. isAugmentingPath p) =⇒ ∃ k ′. NCut c s t k ′ ∧ val = NCut.cap c k ′

proof (intro exI conjI)
let ?S = cf .reachableNodes s
assume asm: ¬ (∃ p. isAugmentingPath p)
hence t /∈?S

unfolding isAugmentingPath-def cf .reachableNodes-def cf .connected-def
by (auto dest: cf .isSPath-pathLE)

then show CUT : NCut c s t ?S
proof unfold-locales

show Graph.reachableNodes cf s ⊆ V
using cf .reachable-ss-V s-node resV-netV by auto

show s ∈ Graph.reachableNodes cf s
unfolding Graph.reachableNodes-def Graph.connected-def
by (metis Graph.isPath.simps(1) mem-Collect-eq)

qed
then interpret NCut c s t ?S .
interpret NFlowCut c s t f ?S by intro-locales

have ∀ (u,v)∈outgoing ′ ?S . f (u,v) = c (u,v)
proof (rule ballI , rule ccontr , clarify) — Proof by contradiction

fix u v
assume (u,v)∈outgoing ′ ?S
hence (u,v)∈E u∈?S v /∈?S

by (auto simp: outgoing ′-def)
assume f (u,v) 6= c (u,v)
hence f (u,v) < c (u,v)

using capacity-const by (metis (no-types) eq-iff not-le)

30

hence cf (u, v) 6= 0
unfolding residualGraph-def using ‹(u,v)∈E› by auto

hence (u, v) ∈ cf .E unfolding cf .E-def by simp
hence v∈?S using ‹u∈?S› by (auto intro: cf .reachableNodes-append-edge)
thus False using ‹v /∈?S› by auto

qed
hence (

∑
e ∈ outgoing ′ ?S . f e) = cap

unfolding cap-def by auto
moreover
have ∀ (u,v)∈incoming ′ ?S . f (u,v) = 0
proof (rule ballI , rule ccontr , clarify) — Proof by contradiction

fix u v
assume (u,v)∈incoming ′ ?S
hence (u,v)∈E u /∈?S v∈?S by (auto simp: incoming ′-def)
hence (v,u)/∈E using no-parallel-edge by auto

assume f (u,v) 6= 0
hence cf (v, u) 6= 0

unfolding residualGraph-def using ‹(u,v)∈E› ‹(v,u)/∈E› by auto
hence (v, u) ∈ cf .E unfolding cf .E-def by simp
hence u∈?S using ‹v∈?S› cf .reachableNodes-append-edge by auto
thus False using ‹u /∈?S› by auto

qed
hence (

∑
e ∈ incoming ′ ?S . f e) = 0

unfolding cap-def by auto
ultimately show val = cap

unfolding flow-value[symmetric] netFlow-def by simp
qed

lemma fofu-III-I :
∃ k. NCut c s t k ∧ val = NCut.cap c k =⇒ isMaxFlow f

proof clarify
fix k
assume NCut c s t k
then interpret NCut c s t k .
interpret NFlowCut c s t f k by intro-locales

assume val = cap
{

fix f ′

assume Flow c s t f ′

then interpret fc ′: Flow c s t f ′ .
interpret fc ′: NFlowCut c s t f ′ k by intro-locales

have fc ′.val ≤ cap using fc ′.weak-duality .
also note ‹val = cap›[symmetric]
finally have fc ′.val ≤ val .

}
thus isMaxFlow f unfolding isMaxFlow-def

31

by simp unfold-locales
qed

Finally we can state the Ford-Fulkerson theorem:
theorem ford-fulkerson: shows

isMaxFlow f ←→
¬ Ex isAugmentingPath and ¬ Ex isAugmentingPath ←→
(∃ k. NCut c s t k ∧ val = NCut.cap c k)
using fofu-I-II fofu-II-III fofu-III-I by auto

6.3 Corollaries

In this subsection we present a few corollaries of the flow-cut relation and
the Ford-Fulkerson theorem.

The outgoing flow of the source is the same as the incoming flow of the
sink. Intuitively, this means that no flow is generated or lost in the network,
except at the source and sink.
corollary inflow-t-outflow-s:
(
∑

e ∈ incoming t. f e) = (
∑

e ∈ outgoing s. f e)
proof −

We choose a cut between the sink and all other nodes

let ?K = V − {t}
interpret NFlowCut c s t f ?K

using s-node s-not-t by unfold-locales auto

The cut is chosen such that its outgoing edges are the incoming edges to the sink,
and its incoming edges are the outgoing edges from the sink. Note that the sink
has no outgoing edges.

have outgoing ′ ?K = incoming t
and incoming ′ ?K = {}
using no-self-loop no-outgoing-t
unfolding outgoing ′-def incoming-def incoming ′-def outgoing-def V-def
by auto

hence (
∑

e ∈ incoming t. f e) = netFlow unfolding netFlow-def by auto
also have netFlow = val by (rule flow-value)
also have val = (

∑
e ∈ outgoing s. f e) by (auto simp: val-alt)

finally show ?thesis .
qed

As an immediate consequence of the Ford-Fulkerson theorem, we get that
there is no augmenting path if and only if the flow is maximal.
corollary noAugPath-iff-maxFlow: (@ p. isAugmentingPath p) ←→ isMaxFlow f

using ford-fulkerson by blast

end — Network with flow

32

The value of the maximum flow equals the capacity of the minimum cut
corollary (in Network) maxFlow-minCut: [[isMaxFlow f ; isMinCut c s t k]]
=⇒ Flow.val c s f = NCut.cap c k

proof −
assume isMaxFlow f isMinCut c s t k
then interpret Flow c s t f + NCut c s t k

unfolding isMaxFlow-def isMinCut-def by simp-all
interpret NFlowCut c s t f k by intro-locales

from ford-fulkerson ‹isMaxFlow f ›
obtain k ′ where NCut c s t k ′ and val = NCut.cap c k ′

by blast
thus val = cap

using ‹isMinCut c s t k› weak-duality
unfolding isMinCut-def by auto

qed

end — Theory

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[2] P. Elias, A. Feinstein, and C. Shannon. A note on the maximum
flow through a network. IEEE Transactions on Information Theory,
2(4):117–119, dec 1956.

[3] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Cana-
dian journal of Mathematics, 8(3):399–404, 1956.

[4] M. Wenzel. Isar - A generic interpretative approach to readable formal
proof documents. In TPHOLs’99, volume 1690 of LNCS, pages 167–184.
Springer, 1999.

33

	Introduction
	Flows, Cuts, and Networks
	Definitions
	Flows
	Cuts
	Networks
	Networks with Flows and Cuts

	Properties
	Flows
	Networks
	Networks with Flow

	Residual Graph
	Definition
	Properties

	Augmenting Flows
	Augmentation of a Flow
	Augmentation yields Valid Flow
	Capacity Constraint
	Conservation Constraint

	Value of the Augmented Flow

	Augmenting Paths
	Definitions
	Augmenting Flow is Valid Flow
	Value of Augmenting Flow is Residual Capacity

	The Ford-Fulkerson Theorem
	Net Flow
	Ford-Fulkerson Theorem
	Corollaries

