
The Fisher–Yates shuffle

Manuel Eberl

March 17, 2025

Abstract

This work defines and proves the correctness of the Fisher–Yates
shuffle [1, 2, 3] for shuffling – i. e. producing a random permutation –
of a list. The algorithm proceeds by traversing the list and in each
step swapping the current element with a random element from the
remaining list.

Contents
1 Fisher–Yates shuffle 2

1.1 Swapping elements in a list 2
1.2 Random Permutations . 3
1.3 Shuffling Lists . 4
1.4 Forward Fisher-Yates Shuffle 5
1.5 Backwards Fisher-Yates Shuffle 7
1.6 Code generation test . 8

1

1 Fisher–Yates shuffle
theory Fisher-Yates

imports HOL−Probability.Probability
begin

lemma integral-pmf-of-multiset:
A 6= {#} =⇒ (

∫
x. (f x :: real) ∂measure-pmf (pmf-of-multiset A)) =

(
∑

x∈set-mset A. of-nat (count A x) ∗ f x) / of-nat (size A)
by (subst integral-measure-pmf [where A = set-mset A])

(simp-all add: sum-divide-distrib mult-ac)

lemma pmf-bind-pmf-of-multiset:
A 6= {#} =⇒ pmf (pmf-of-multiset A >>= f) y =

(
∑

x∈set-mset A. real (count A x) ∗ pmf (f x) y) / real (size A)
by (simp add: pmf-bind integral-pmf-of-multiset)

lemma pmf-map-inj-inv:
assumes inj-on f (set-pmf p)
assumes

∧
x. f ′ (f x) = x

shows pmf (map-pmf f p) x = (if x ∈ range f then pmf p (f ′ x) else 0)
proof (cases x ∈ f ‘ set-pmf p)

case True
from this obtain y where y: y ∈ set-pmf p x = f y by blast
with assms(1) have pmf (map-pmf f p) x = pmf p y

by (simp add: pmf-map-inj)
also from y assms(2)[of y] have y = f ′ x by simp
finally show ?thesis using y by simp

next
case False
hence x /∈ set-pmf (map-pmf f p) by simp
hence pmf (map-pmf f p) x = 0 by (simp add: set-pmf-eq)
also from False have 0 = (if x ∈ range f then pmf p (f ′ x) else 0)

by (auto simp: assms(2) set-pmf-eq)
finally show ?thesis .

qed

1.1 Swapping elements in a list
definition swap where swap xs i j = xs[i := xs!j, j := xs ! i]

lemma length-swap [simp]: length (swap xs i j) = length xs
by (simp add: swap-def)

lemma swap-eq-Nil-iff [simp]: swap xs i j = [] ←→ xs = []
by (simp add: swap-def)

lemma nth-swap: i < length xs =⇒ j < length xs =⇒

2

swap xs i j ! k = (if k = i then xs ! j else if k = j then xs ! i else xs ! k)
by (auto simp: swap-def nth-list-update)

lemma map-swap: i < length xs =⇒ j < length xs =⇒ map f (swap xs i j) = swap
(map f xs) i j

by (simp add: swap-def map-update map-nth)

lemma swap-swap: i < length xs =⇒ j < length xs =⇒ swap (swap xs i j) j i =
xs

by (intro nth-equalityI) (auto simp: nth-swap nth-list-update)

lemma mset-swap: i < length xs =⇒ j < length xs =⇒ mset (swap xs i j) = mset
xs

by (simp add: mset-update swap-def nth-list-update)

lemma hd-swap-0 : i < length xs =⇒ hd (swap xs 0 i) = xs ! i
unfolding swap-def by (subst hd-conv-nth) (subst nth-list-update | force)+

1.2 Random Permutations

First, we prove the intuitively obvious fact that choosing a random permu-
tation of a multiset can be done by first randomly choosing the first element
and then randomly choosing the rest of the list.
lemma pmf-of-set-permutations-of-multiset-nonempty:

assumes (A :: ′a multiset) 6= {#}
shows pmf-of-set (permutations-of-multiset A) =

do {x ← pmf-of-multiset A;
xs ← pmf-of-set (permutations-of-multiset (A − {#x#}));
return-pmf (x#xs)
} (is ?lhs = ?rhs)

proof (rule pmf-eqI)
fix xs :: ′a list
show pmf ?lhs xs = pmf ?rhs xs
proof (cases xs ∈ permutations-of-multiset A)

case False
with assms have xs /∈ set-pmf ?lhs by simp
moreover from assms False have xs /∈ set-pmf ?rhs

by (auto simp: permutations-of-multiset-Cons-iff)
ultimately show ?thesis by (simp add: set-pmf-eq)

next
case True
with assms have nonempty: xs 6= [] by (auto dest: permutations-of-multisetD)
hence range-Cons: xs ∈ range ((#) x) ←→ hd xs = x for x

by (cases xs) auto
from True nonempty

have hd-tl: hd xs ∈# A ∧ tl xs ∈ permutations-of-multiset (A − {#hd xs#})
by (cases xs) (auto simp: permutations-of-multiset-Cons-iff)

from assms have pmf ?rhs xs =

3

(
∑

x∈set-mset A. real (count A x) ∗ pmf (map-pmf ((#) x)
(pmf-of-set (permutations-of-multiset (A − {#x#})))) xs) / real (size A)

(is - = ?S / -)
unfolding map-pmf-def [symmetric] by (simp add: pmf-bind-pmf-of-multiset)

also have ?S =
(
∑

x∈set-mset A. if x = hd xs then real (count A (hd xs)) /
real (card (permutations-of-multiset (A − {#hd xs#}))) else 0)

using range-Cons hd-tl
by (intro sum.cong refl, subst pmf-map-inj-inv[where f ′ = tl]) auto

also have . . . = real (count A (hd xs)) /
real (card (permutations-of-multiset (A − {#hd xs#})))

using hd-tl by (simp add: sum.delta)
also from hd-tl have . . . = real (size A) / real (card (permutations-of-multiset

A))
by (simp add: divide-simps real-card-permutations-of-multiset-remove[of hd

xs])
also have . . . / real (size A) = pmf (pmf-of-set (permutations-of-multiset A))

xs
using assms True by simp

finally show ?thesis ..
qed

qed

1.3 Shuffling Lists

We define shuffling of a list as choosing from the set of all lists that corre-
spond to the same multiset uniformly at random.
definition shuffle :: ′a list ⇒ ′a list pmf where

shuffle xs = pmf-of-set (permutations-of-multiset (mset xs))

lemma shuffle-empty [simp]: shuffle [] = return-pmf []
by (simp add: shuffle-def pmf-of-set-singleton)

lemma shuffle-singleton [simp]: shuffle [x] = return-pmf [x]
by (simp add: shuffle-def pmf-of-set-singleton)

The crucial ingredient of the Fisher–Yates shuffle is the following lemma,
which decomposes a shuffle into swapping the first element of the list with a
random element of the remaining list and shuffling the new remaining list.
With a random-access implementation of a list – such as an array – all of
the required operations are cheap and the resulting algorithm runs in linear
time.
lemma shuffle-fisher-yates-step:

assumes xs-nonempty [simp]: xs 6= []
shows shuffle xs =

do {i ← pmf-of-set {..<length xs};
let ys = swap xs 0 i;
zs ← shuffle (tl ys);

4

return-pmf (hd ys # zs)
}

proof −
have shuffle xs = do {x ← pmf-of-multiset (mset xs);

xs ← pmf-of-set (permutations-of-multiset (mset xs − {#x#}));
return-pmf (x#xs)
} unfolding shuffle-def

by (simp add: pmf-of-set-permutations-of-multiset-nonempty)
also have pmf-of-multiset (mset xs) =

pmf-of-multiset (image-mset ((!) xs) (mset (upt 0 (length xs))))
by (subst mset-map [symmetric]) (simp add: map-nth)

also have . . . = map-pmf ((!) xs) (pmf-of-set {..<length xs})
by (subst map-pmf-of-set) (auto simp add: map-pmf-of-set atLeast0LessThan

lessThan-empty-iff)
also have do {x ← map-pmf ((!) xs) (pmf-of-set {..<length xs});

ys ← pmf-of-set (permutations-of-multiset (mset xs − {#x#}));
return-pmf (x # ys)
} =

do {i ← pmf-of-set {..<length xs};
ys ← pmf-of-set (permutations-of-multiset (mset xs − {#xs ! i#}));
return-pmf (xs ! i # ys)
}

by (simp add: map-pmf-def bind-assoc-pmf bind-return-pmf)
also have . . . = do {i ← pmf-of-set {..<length xs};

let ys = swap xs 0 i;
zs ← shuffle (tl (swap xs 0 i));
return-pmf (hd ys # zs)
} unfolding Let-def shuffle-def

by (intro bind-pmf-cong refl, subst (asm) set-pmf-of-set)
(auto simp: lessThan-empty-iff mset-tl mset-swap hd-swap-0)

finally show ?thesis by (simp add: Let-def)
qed

1.4 Forward Fisher-Yates Shuffle

The actual Fisher–Yates shuffle is now merely a kind of tail-recursive version
of decomposition described above. Note that unlike the traditional Fisher–
Yates shuffle, we shuffle the list from front to back, which is the more natural
way to do it when working with linked lists.
function fisher-yates-aux where

fisher-yates-aux i xs = (if i + 1 ≥ length xs then return-pmf xs else
do {j ← pmf-of-set {i..<length xs};

fisher-yates-aux (i + 1) (swap xs i j)})
by auto
termination by (relation Wellfounded.measure (λ(i,xs). length xs − i)) simp-all

declare fisher-yates-aux.simps [simp del]

5

lemma fisher-yates-aux-correct:
fisher-yates-aux i xs = map-pmf (λys. take i xs @ ys) (shuffle (drop i xs))

proof (induction i xs rule: fisher-yates-aux.induct)
case (1 i xs)
show ?case
proof (cases i + 1 ≥ length xs)

case True
show ?thesis
proof (cases i ≥ length xs)

case False
with True have length xs = Suc i and i: i = length xs − 1 by simp-all
hence xs 6= [] by auto
hence xs = butlast xs @ [last xs] by (rule append-butlast-last-id [symmetric])
also have butlast xs = take i xs by (simp add: butlast-conv-take i)
finally have eq: take i xs @ [last xs] = xs ..
moreover have xs = take i xs @ drop i xs by simp
ultimately have take i xs @ [last xs] = take i xs @ drop i xs by (rule trans)
hence drop i xs = [last xs] by (subst (asm) same-append-eq) simp-all
with True show ?thesis by (simp add: eq fisher-yates-aux.simps)

qed (simp-all add: fisher-yates-aux.simps)
next

case False
from False have xs-nonempty [simp]: xs 6= [] by auto
have fisher-yates-aux i xs =

pmf-of-set {i..<length xs} >>= (λj. fisher-yates-aux (i+1) (swap xs i j))
using False by (subst fisher-yates-aux.simps) simp

also have {i..<length xs} = ((λj. j + i) ‘ {..<length xs − i})
using False by (simp add: lessThan-atLeast0)
also from False have pmf-of-set . . . = map-pmf (λj. j + i) (pmf-of-set

{..<length xs − i})
by (subst map-pmf-of-set-inj) (simp-all add: lessThan-empty-iff)

also from False have length xs − i = length (drop i xs) by simp
also have map-pmf (λj. j + i) (pmf-of-set {..<length (drop i xs)}) >>=

(λj. fisher-yates-aux (i + 1) (swap xs i j)) =
pmf-of-set {..<length (drop i xs)} >>= (λj. fisher-yates-aux (i + 1)

(swap xs i (j+i)))
by (simp add: map-pmf-def bind-return-pmf bind-assoc-pmf)

also have . . . = do {j ← pmf-of-set {..<length (drop i xs)};
let ys = swap (drop i xs) 0 j;
zs ← shuffle (tl ys);
return-pmf (take i xs @ hd ys # zs)} (is - = bind-pmf - ?T)

proof (intro bind-pmf-cong refl)
fix j assume j ∈ set-pmf (pmf-of-set {..<length (drop i xs)})

with False have j: j < length (drop i xs) by (simp-all add: lessThan-empty-iff)
define ys where ys = swap xs i (j + i)
have fisher-yates-aux (i + 1) ys = map-pmf ((@) (take (i+1) ys)) (shuffle

(drop (i+1) ys))
using False j unfolding ys-def by (intro 1 .IH) simp-all

also from False have take (i+1) ys = take i ys @ [hd (drop i ys)]

6

by (simp add: ys-def take-hd-drop)
also have drop (i+1) ys = tl (drop i ys) by (simp add: ys-def tl-drop drop-Suc)
also from False j have drop i ys = swap (drop i xs) 0 j

by (simp add: ys-def swap-def drop-update-swap add-ac)
also from False j have take i ys = take i xs

by (simp add: ys-def swap-def)
finally show fisher-yates-aux (i + 1) ys = ?T j

by (simp add: ys-def map-pmf-def Let-def bind-assoc-pmf bind-return-pmf)
qed
also from False have . . . = map-pmf (λzs. take i xs @ zs) (shuffle (drop i xs))

by (subst shuffle-fisher-yates-step[of drop i xs])
(simp-all add: map-pmf-def Let-def bind-return-pmf bind-assoc-pmf)

finally show ?thesis .
qed

qed

definition fisher-yates where
fisher-yates = fisher-yates-aux 0

lemma fisher-yates-correct: fisher-yates xs = shuffle xs
unfolding fisher-yates-def
by (subst fisher-yates-aux-correct) (simp-all add: map-pmf-def bind-return-pmf ′)

1.5 Backwards Fisher-Yates Shuffle

We can now easily derive the classical Fisher–Yates shuffle, which goes
through the list from back to front and show its equivalence to the forward
Fisher–Yates shuffle.
fun fisher-yates-alt-aux where

fisher-yates-alt-aux i xs = (if i = 0 then return-pmf xs else
do {j ← pmf-of-set {..i};

fisher-yates-alt-aux (i − 1) (swap xs i j)})

declare fisher-yates-alt-aux.simps [simp del]

lemma fisher-yates-alt-aux-altdef :
i < length xs =⇒ fisher-yates-alt-aux i xs =

map-pmf rev (fisher-yates-aux (length xs − i − 1) (rev xs))
proof (induction i xs rule: fisher-yates-alt-aux.induct)

case (1 i xs)
show ?case
proof (cases i = 0)

case False
with 1 .prems have map-pmf rev (fisher-yates-aux (length xs − i − 1) (rev xs))

=
pmf-of-set {length xs − Suc i..<length xs} >>=
(λx. fisher-yates-aux (Suc (length xs − Suc i))
(swap (rev xs) (length xs − Suc i) x) >>=
(λx. return-pmf (rev x)))

7

by (subst fisher-yates-aux.simps) (auto simp: map-pmf-def bind-return-pmf
bind-assoc-pmf)

also from 1 .prems False
have bij: bij-betw (λj. length xs − Suc j) {..i} {length xs − Suc i..<length xs}
by (intro bij-betwI [where g = λj. length xs − Suc j]) auto

from bij have {length xs − Suc i..<length xs} = (λj. length xs − Suc j) ‘ {..i}
by (simp add: bij-betw-def)

also from bij have pmf-of-set . . . = map-pmf (λj. length xs − Suc j) (pmf-of-set
{..i})

by (subst map-pmf-of-set-inj) (auto simp: bij-betw-def)
also have map-pmf (λj. length xs − Suc j) (pmf-of-set {..i}) >>=

(λx. fisher-yates-aux (Suc (length xs − Suc i))
(swap (rev xs) (length xs − Suc i) x) >>= (λx. return-pmf (rev x)))

=
pmf-of-set {..i} >>= (λx. map-pmf rev (

fisher-yates-aux (length xs − i) (rev (swap xs i x))))
using 1 .prems False
by (auto simp add: map-pmf-def bind-assoc-pmf bind-return-pmf Suc-diff-Suc

swap-def rev-update rev-nth intro!: bind-pmf-cong)
also have . . . = pmf-of-set {..i} >>= (λj. fisher-yates-alt-aux (i − 1) (swap xs

i j))
using 1 .prems False 1 .IH [symmetric] by (auto intro!: bind-pmf-cong)

also from 1 .prems False have . . . = fisher-yates-alt-aux i xs
by (subst fisher-yates-alt-aux.simps[of i]) simp-all

finally show ?thesis ..
qed (insert 1 .prems, simp-all add: fisher-yates-aux.simps fisher-yates-alt-aux.simps)

qed

definition fisher-yates-alt where
fisher-yates-alt xs = fisher-yates-alt-aux (length xs − 1) xs

lemma fisher-yates-alt-aux-correct:
fisher-yates-alt xs = shuffle xs

proof (cases xs = [])
case True
thus ?thesis

by (simp add: fisher-yates-alt-def fisher-yates-alt-aux.simps)
next

case False
thus ?thesis unfolding fisher-yates-alt-def

by (subst fisher-yates-alt-aux-altdef)
(simp-all add: fisher-yates-aux-correct shuffle-def map-pmf-of-set-inj)

qed

1.6 Code generation test

Isabelle’s code generator allows us to produce executable code both for shuf-
fle and for fisher-yates and fisher-yates-alt. However, this code does not
produce a random sample (i.e. a single randomly permuted list) – which

8

is, in fact, the only purpose of the Fisher–Yates algorithm – but the entire
probability distribution consisting of n! lists, each with probability 1/n!.
In the future, it would be nice if Isabelle also had some code generation
facility that supports generating sampling code.
value [code] shuffle ′′abcd ′′

value [code] fisher-yates ′′abcd ′′

value [code] fisher-yates-alt ′′abcd ′′

end

References

[1] R. A. Fisher and F. Yates. Statistical tables for biological, agricultural
and medical research, pages 26–27. Oliver & Boyd, Third edition, 1948.

[2] D. E. Knuth. In The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co.,
Inc., Third edition, 1997.

[3] Wikipedia. Fisher–Yates shuffle – Wikipedia, the free encyclopedia, 2016.
[Online; accessed 5 October 2016].

9

	Fisher–Yates shuffle
	Swapping elements in a list
	Random Permutations
	Shuffling Lists
	Forward Fisher-Yates Shuffle
	Backwards Fisher-Yates Shuffle
	Code generation test

