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Abstract

This entry, derived from the Isabelle Formalization of Rewriting
(IsaFoR) [3], provides a formalized foundation for first-order term rewrit-
ing. This serves as the basis for the certifier CeTA, which is generated
from IsaFoR and verifies termination, confluence, and complexity proofs
for term rewrite systems (TRSs).

This formalization covers fundamental results for term rewriting,
as presented in the foundational textbooks by Baader and Nipkow [1]
and TeReSe [2]. These include:

Various types of rewrite steps, such as root, ground, parallel, and
multi-steps.

Special cases of TRSs, such as linear and left-linear TRSs.

A definition of critical pairs and key results, including the critical
pair lemma.

Orthogonality, notably that weak orthogonality implies conflu-
ence.

Executable versions of relevant definitions, such as parallel and
multi-step rewriting.
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1 Introduction

A TRS, as formalized here, is defined as a binary relation over first-order
terms. Given a TRS R, a rule (¢,7) € R is typically written as ¢ — r. The
rewrite relation induced by R, denoted —x, is defined as follows: a term s
rewrites to a term t using the TRS R (i.e, s —x t) if there are a context C,
a substitution o, and a rule (¢,r) € R such that s = C[lo] and t = C[ro].

The literature typically assumes two restrictions on the variables in a
rule £ — r of a TRS: £ must not be a variable, and all variables in 7 must
appear in £. However, many results in term rewriting do not depend on
these conditions. In this entry, such constraints are enforced only where
necessary. A TRS that meets these criteria is called a well-formed TRSs
(wf-trs) in the formalization.

2 Preliminaries

This theory contains some auxiliary results previously located in Auxx.Util
of IsaFoR.

theory FOR-Preliminaries
imports
Polynomial-Factorization. Missing-List
begin



lemma in-set-idr: a € set as = Ji. i < length as AN a = as ! i
unfolding set-conv-nth by auto

lemma finite-card-eq-imp-bij-betw:
assumes finite A
and card (f * A) = card A
shows bij-betw f A (f ¢ A)
using <card (f * A) = card 4>
unfolding inj-on-iff-eq-card [OF «finite A>, symmetric]
by (rule inj-on-imp-bij-betw)

Every bijective function between two finite subsets of a set S can be turned
into a compatible renaming (with finite domain) on S.

lemma bij-betw-extend:
assumes *: bij-betw f A B
and AC S
and BC S
and finite A
shows Jg. finite {z. g z # z} A
(VzeUNIV — (AU B). gz =1z) A
(Vzed. gz = fx) A
bij-betw g S S
proof —
have finite B using assms by (metis bij-betw-finite)
have [simp]: card A = card B by (metis = bij-betw-same-card)
have card (A — B) = card (B — A)
proof —
have card (A — B) = card A — card (A N B)
by (metis <finite Ay card-Diff-subset-Int finite-Int)
moreover have card (B — A) = card B — card (A N B)
by (metis <finite A> card-Diff-subset-Int finite-Int inf-commute)
ultimately show ?thesis by simp
qed
then obtain g where xx: bij-betw g (B — A) (A — B)
by (metis <finite A> <finite By bij-betw-iff-card finite-Diff)
define h where h = (\z. if x € A then fz else if v € B — A then g x else x)
have bij-betw h A B
by (metis (full-types) * bij-betw-cong h-def)
moreover have bij-betw h (S — (AU B)) (S — (AU B))
by (auto simp: bij-betw-def h-def inj-on-def)
moreover have BN (S — (A U B)) = {} by blast
ultimately have bij-betw h (AU (S — (AU B))) (BU (S — (AU B)))
by (rule bij-betw-combine)
moreover have A U (S — (AU B)) =5 — (B — A)
and BU(S - (AUB))=S—- (4 - B)
using <A C S» and «B C S) by blast+
ultimately have bij-betw h (S — (B — A)) (S — (A — B)) by simp
moreover have bij-betw h (B — A) (A — B)



using *x by (auto simp: bij-betw-def h-def inj-on-def)
moreover have (S — (A — B)) N (A — B) = {} by blast
ultimately have bij-betw h ((S — (B — A)) U (B —A)) (S —(A—-B)) U (4
~B)
by (rule bij-betw-combine)
moreover have (S — (B - A)U(B—-A) =28
and (S— (A—B)UA-B) =S8
using <A C S» and «B C S) by auto
ultimately have bij-betw h S S by simp
moreover have Vz€A. h z = fz by (auto simp: h-def)
moreover have finite {z. h © # z}
proof —
have finite (A U (B — A)) using «finite A> and «finite B> by auto
moreover have {z. hz # z} C (A U (B — A)) by (auto simp: h-def)
ultimately show ?thesis by (metis finite-subset)
qged
moreover have VzcUNIV — (A U B). h z = z by (simp add: h-def)
ultimately show ?thesis by blast
qed

lemma concat-nth:
assumes m < length zs and n < length (zs! m)
and i = sum-list (map length (take m xs)) + n
shows concat zs ! i = xs ! m ! n
using assms
proof (induct zs arbitrary: m n i)
case (Cons z zs)
show ?Zcase
proof (cases m)
case (
then show ?thesis using Cons by (simp add: nth-append)
next
case (Suc k)
with Cons(1) [of k n i — length z] and Cons(2—)
show ?thesis by (simp-all add: nth-append)
qed
qed simp

lemma concat-nth-length:
i < length uss = j < length (uss ! i) =
sum-list (map length (take i uss)) + j < length (concat uss)
proof (induct uss arbitrary: i j)
case (Cons u uss i j)
thus ?case by (cases i, auto)
qed auto

lemma less-length-concat:
assumes i < length (concat xs)
shows Im n.



i = sum-list (map length (take m xs)) + n A
m < length xs A n < length (zs ! m) A concat xs ! i =azs! m!n
using assms
proof (induct zs arbitrary: i rule: length-induct)
case (1 zs)
then show ?case
proof (cases xs)
case (Cons y ys)
note [simp] = this
{ assume x: i < length y
with 7 obtain n where ¢ = n and n < length y
and y ! i = y ! n by simp
then have i = sum-list (map length (take 0 zs)) + n
and 0 < length zs and n < length (zs ! 0)
and concatzs ! i =zs! 0! n
using * by (auto simp: nth-append)
then have ?thesis by blast }
moreover
{ assume *: i > length y
define j where j = i — length y
then have length ys < length xs j < length (concat ys)
using * and 1.prems by auto
with 1 obtain m n where j = sum-list (map length (take m ys)) + n
and m < length ys and n < length (ys ! m)
and concat ys ! j = ys! m ! n by blast
then have i = sum-list (map length (take (Suc m) zs)) + n
and Suc m < length xs and n < length (zs ! Suc m)
and concat zs ! i = zs ! Suc m ! n
using * by (simp-all add: j-def nth-append)
then have ?thesis by blast }
ultimately show ?thesis by force
qged simp
qed

lemma concat-remove-nth:
assumes i < length sss
and j < length (sss! i)
defines k = sum-list (map length (take i sss)) + j
shows concat (take i sss @ remove-nth j (sss ! i) # drop (Suc 7) sss) = remove-nth
k (concat sss)
using assms
unfolding remove-nth-def
proof (induct sss rule: List.rev-induct)
case Nil then show Zcase by auto
next
case (snoc ss sss)
then have i = length sss V i < length sss by auto
then show ?case
proof



assume i:i = length sss
have sum-list (map length sss) = length (concat sss) by (simp add: length-concat)
with snoc i show ?thesis by simp
next
assume i:7 < length sss
then have nth:(sss Q [ss]) | { = sss ! i by (simp add: nth-append)
from ¢ have drop:drop (Suc ©) (sss Q [ss]) = drop (Suc i) sss @ [ss] by auto
from ¢ have take:take i (sss @ [ss]) = take i sss by auto
from snoc(1)[OF i] snoc(2—) have I:concat (take i (sss @ [ss]) @
(take j ((sss Q [ss]) ! ) @ drop (Suc j) ((sss @Q [ss]) ! 7)) # drop (Suc i) (sss
Q [ss])) =
take k (concat sss) @Q drop (Suc k) (concat sss) @ ss unfolding take nth drop
by simp
from snoc(4) take have k:k = sum-list (map length (take i sss)) + j by auto
from nth snoc(3) have j: j < length (sss ! i) by auto
have takek:take (sum-list (map length (take i sss)) + j) (concat (sss @ [ss])) =

take (sum-list (map length (take i sss)) + j) (concat sss)
using concat-nth-length|OF i j] by auto
have dropk:drop (Suc (sum-list (map length (take i sss)) + j)) (concat sss) Q

ss =
drop (Suc (sum-list (map length (take i sss)) + j)) (concat (sss @ [ss]))
using concat-nth-length[OF i j| by auto
have take k (concat sss) @ drop (Suc k) (concat sss) Q ss =
take k (concat (sss @Q [ss])) @ drop (Suc k) (concat (sss @ [ss]))
unfolding k takek dropk ..
with 1 show ?thesis by auto
qed
qed

lemma nth-append-Cons: (xs Q y # zs) ! i =
(if © < length xzs then zs ! i else if i = length s then y else zs | (i — Suc (length

2s)))

by (cases i length xs rule: linorder-cases, auto simp: nth-append)

lemma finite-imp-eq [simp:
finite {x. P x — Q z} +— finite {z. = P x} A finite {z. Q x}
by (auto simp: Collect-imp-eq Collect-neg-eq)

lemma sum-list-take-eq:
fixes xs :: nat list
shows k < { = i < length xs = sum-list (take i zs) =
sum-list (take k xs) + xzs ! k + sum-list (take (i — Suc k) (drop (Suc k) zs))
by (subst id-take-nth-drop [of k]) (auto simp: min-def drop-take)

lemma nth-equalityE:

zs = ys = (length xs = length ys = (\i. i < length s = xs ! i = ys ! Q)
— P)=— P

by simp



fun fold-map :: ('a = 'b = 'c X 'b) = 'a list = 'b = 'c list x 'b where
fold-map f [] y = ([I, v)
| fold-map f (x#xs) y = (case fz y of
(z', y") = case fold-map f xs y' of
(zs', y") = (2’ # 2, y""))

lemma fold-map-cong [fundef-cong]:
assumes o = b and zs = ys
and \z.z € setas = fzx =gz
shows fold-map f xs a = fold-map g ys b
using assms by (induct ys arbitrary: a b zs) simp-all

lemma fold-map-map-conv:
assumes Az ys. x € set s = f (g z) (¢’ = Q ys) = (h z, ys)
shows fold-map f (map g xs) (concat (map g’ xs) Q ys) = (map h s, ys)
using assms by (induct zs) simp-all

lemma map-fst-fold-map:

map | (fst (fold-map g xs y)) = fst (fold-map (Aa b. apfst f (g a b)) zs y)
by (induct zs arbitrary: y) (auto split: prod.splits, metis fst-conv)

lemma not-Nil-imp-last: xs # [| = Jys y. zs = ysQly]
proof (induct xs)
case Nil then show ?Zcase by simp
next
case (Cons z zs) show ?case
proof (cases xs)
assume zs = [| with Cons show ?thesis by simp
next
fix 2/ zs’ assume zs = z'#zs’
then have zs # [| by simp
with Cons obtain ys y where xs = ysQ[y] by auto
then have z#zs = a#(ysQ[y]) by simp
then have z#xs = (a#ys)Q[y] by simp
then show %thesis by auto
qged
qged

lemma Nil-or-last: zs = [| V (3ys y. zs = ysQy])
using not-Nil-imp-last by blast

2.1 Combinators

definition const :: 'a = 'b = 'a where

const = (A\r y. x)

definition flip :: (‘a = b = '¢) = ('b = 'a = 'c¢) where
fip f=Qzy. fya)



declare flip-def[simp]

lemma const-apply[simp: const zy = x
by (simp add: const-def)

lemma foldr-Cons-append-conv [simpl:
foldr (#) zs ys = zs Q ys
by (induct zs) simp-all

lemma foldi-flip-Cons[simp]:

foldl (flip (#)) zs ys = rev ys Q xs
by (induct ys arbitrary: xs) simp-all

already present as foldr-conv-foldl, but direction seems odd

lemma foldr-flip-rev[simp]:
foldr (flip f) (rev xs) a = foldl f a xs
by (simp add: foldr-conv-foldl)

already present as foldl-conv-foldr, but direction seems odd

lemma foldl-flip-rev[simp]:

foldl (flip f) a (rev zs) = foldr f xs a
by (simp add: foldl-conv-foldr)

fun debug :: (String.literal = String.literal) = String.literal = 'a = 'a where
debug i tr ==z

2.2 Distinct Lists and Partitions

This theory provides some auxiliary lemmas related to lists with distinct
elements and partitions. This is mainly used for dealing with linear terms.

lemma distinct-alt:
assumes V z. length (filter ((=) z) xs) < 1
shows distinct s
using assms proof (induct s)
case (Cons z zs)
then have [H:distinct xs
by (metis dual-order.trans filter.simps(2) impossible-Cons nle-le)
from Cons(2) have length (filter ((=) z) zs) = 0
by (metis (mono-tags) One-nat-def add.right-neutral add-Suc-right filter.simps(2)
le-less length-0-conv less-SucO list.simps(3) list.size(4) nat.inject)
then have = ¢ set (xs)
by (metis (full-types) filter-empty-conv length-0-conv)
with IH show ?case
by simp
qed simp

lemma distinct-filter2:
assumes Vi < size 5. V j < size xs. © # j N f (wsli) A f (xslj) — asli # aslj



shows distinct (filter f zs)
using assms proof (induct zs)
case (Cons z zs)
{fix i j assume i < length zs j < length xs i # j f (xzsli) f (xslj)
with Cons(2) have zsli # zslj
by (metis not-less-eq nth-Cons-Suc Suc-inject length-Cons)

with Cons(1) have IH:distinct (filter f xs)
by presburger
show ?case proof(cases f x)
case True
with Cons(2) have Vj<length zs. f (zs ! j) — x # xs ! j by fastforce
then have z ¢ set (filter f xs) by (metis filter-set in-set-conv-nth member-filter)
then show ?thesis unfolding filter.simps using True IH by simp
next
case Fulse
then show ?thesis unfolding filter.simps using IH by presburger
qed
qed simp

lemma distinct-is-partition:

assumes distinct s

shows is-partition (map (Az. {z}) zs)

using assms proof (induct zs)

case (Cons z zs)

then show ?case unfolding list.map(2) is-partition-Cons by force
qed (simp add: is-partition-Nil)

lemma is-partition-append:
assumes is-partition s and is-partition zs
and Vi < length zs. zsli N |J (set zs) = {}
shows is-partition (zsQzs)
by (smt (verit, del-insts) add-diff-inverse-nat assms(1) assms(2) assms(3) dis-
joint-iff is-partition-alt is-partition-alt-def length-append mem-simps(9) nat-add-left-cancel-less
nth-append nth-mem)

lemma distinct-is-partitition-sets:
assumes distinct s
and zs = concat ys
shows is-partition (map set ys)
using assms proof (induct ys arbitrary:zs)
case (Cons y ys)
have is-partition (map set ys) proof—
from Cons(2,3) have distinct (concat ys)
unfolding concat.simps by simp
with Cons(1) show ?thesis by simp
qed
moreover from Cons(2,3) have set y N |J (set (map set ys)) = {}
using distinct-append|of y concat ys|by simp
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ultimately show ?case
unfolding is-partition-Cons list.map by simp
qed (simp add: is-partition-Nil)

end

2.3 Option Type

theory Option-Util
imports Main
begin

primrec option-to-list :: 'a option = 'a list
where
option-to-list (Some a) = [a] |
option-to-list None = |

lemma set-option-to-list-sound [simp]:
set (option-to-list t) = set-option t
by (induct t) auto

fun fun-of-map :: ('a = 'b option) = 'b = (‘a = 'b) where
fun-of-map m d a = (case m a of Some b = b | None = d)

end

2.4 Sublists

theory SubList
imports
HOL— Library.Sublist
HOL— Library. Multiset
begin

lemmas subseq-trans = subseq-order.order-trans

lemma subseq-Cons-Cons:
assumes subseq (a # as) (b # bs)
shows subseq as bs
using assms by (cases a = b) (auto intro: subseg-Cons’)

lemma subseg-induct2:

[ subseq xs ys;

N bs. P[] bs;

N a as bs. | subseq as bs; P as bs | = P (a # as) (a # bs);

N aas b bs. [ a # b; subseq as bs; subseq (a # as) bs; P as bs; P (a # as) bs |
= P (a # as) (b # bs) ]

= P s ys
proof (induct ys arbitrary: xs)

case Nil then show ?case by (metis list-emb-Nil2)

11



next
case (Cons y ys’)
note Cons-ys = Cons
note sl = Cons(2)
note step-eq = Cons(4)
note step-neq = Cons(5)
show ?case proof (cases xs)
case Nil show ?thesis unfolding Nil using Cons.prems(2) by auto
next
case (Cons z zs’)
have sl subseq zs’ ys’ by (metis Cons sl subseq-Cons-Cons)
from sl’ have P’ P xs’ ys’ using Cons-ys by auto
show ?thesis proof (cases © = y)
case Fulse
have sl’": subseq (z # zs') ys' using sl unfolding Cons using False by auto
then have P": P (z # xzs’) ys' by (metis Cons.hyps Cons-ys(8) step-eq
step-neq)
show ?thesis using step-neq(OF False sl’ s’ P’ P"] unfolding Cons by
auto

next
case True
show ?thesis using step-eq[OF sl’ P’ unfolding Cons True[symmetric] by
auto
qed
qed
qged

lemma subseq-submultiset:
subseq xs ys = mset xs CH# mset ys
by (induct rule: list-emb.induct) (auto intro: subset-mset.order-trans)

lemma subseq-subset:
subseq xs ys => set xs C set ys
by (induct rule: list-emb.induct) auto

lemma removel-subseq:
subseq (removel T xs) xs
by (induct zs) auto

lemma subseg-concat:
assumes Az. z € set s = subseq (f z) (g z)
shows subseq (concat (map f xzs)) (concat (map g xs))

using assms by (induct zs) (auto intro: list-emb-append-mono)

end

12



3 Extensions for Existing AFP Entries

3.1 PFirst Order Terms

theory Term-Impl
imports

First-Order-Terms. Term-More
Certification-Monads. Check-Monad
Deriving. Compare-Order-Instances
Show.Shows-Literal
FOR-Preliminaries

begin

derive compare-order term

3.1.1 Positions

fun poss-list :: ('f, 'v) term = pos list
where
poss-list (Var z) = [[]] |
poss-list (Fun [ ss) = ([] # concat (map (X (i, ps).
map ((#) ) ps) (zip [0 ..< length ss] (map poss-list ss))))

lemma poss-list-sound [simp]:
set (poss-list s) = poss s
proof (induct s)
case (Fun f ss)
let %z = zip [0..<length ss] (map poss-list ss)
have (|J a€set ?z. set (case-prod (Ai. map ((#) ©)) a)) =
{i # plip. i <length ss N p € poss (ss! i)} (is ?l = ?r)
proof (rule set-eql)
fix ip
show (ip € ?1) = (ip € ?r)
proof
assume ip € ¢l
from this obtain ip/ where
z: ipl € set 7z and
ip: ip € set (case-prod (A i. map ((#) 1)) ipl)
by auto

from z obtain ¢ where i: { < length ?z and zi: 7z ! i = ipl

by (force simp: set-conv-nth)
with ip Fun show ip € ?r by auto
next
assume ip € Ir

from this obtain ¢ p where i: i < length ss and p € poss (ss ! i)

and ip: ip = i # p by auto

with Fun have p: p € set (poss-list (ss! i) and iz: i < length ?z by auto
from ¢ have id: 2z | i = (i, poss-list (ss! 7)) (is - = ?%ipl) by auto

from iz have ?z! i € set 2z by (rule nth-mem)
with id have inZ: %ipl € set ?z by auto
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from p have i # p € set (case-prod (X i. map ((#) ©)) ?ipI) by auto
with inZ ip show ip € ¢l by force
qed
qed
with Fun show ?case by simp
qed simp

declare poss-list.simps [simp del]

fun var-poss-list :: ('f, "v) term = pos list
where
var-poss-list (Var z) = [[]] |
var-poss-list (Fun f ss) = (concat (map (X (%, ps).
map ((#) ) ps) (zip [0 ..< length ss| (map var-poss-list ss))))

lemma var-poss-list-sound [simp]:
set (var-poss-list s) = var-poss s
proof (induct s)
case (Fun f ss)
let %z = zip [0..<length ss] (map var-poss-list ss)
have (|J a€set ?z. set (case-prod (Ni. map ((#) 7)) a)) =
(Ui<length ss. {i # p |p. p € var-poss (ss!9)}) (is 2l = %r)
proof (rule set-eql)
fix p
show (ip € ?1) = (ip € ?r)
proof
assume ip € ?[
from this obtain ip/ where
z: ipl € set 7z and
ip: ip € set (case-prod (X i. map ((#) ©)) ipI)
by auto
from z obtain ¢ where i: ¢ < length ?z and zi: %z | i = ipl
by (force simp: set-conv-nth)
with ip Fun show ip € ?r by auto
next
assume ip € r
from this obtain i p where i: i < length ss and p € var-poss (ss ! )
and ip: ip = i # p by auto
with Fun have p: p € set (var-poss-list (ss! 1)) and iz: { < length ?z by
auto
from ¢ have id: 7z ! i = (4, var-poss-list (ss! 7)) (is - = %ipI) by auto
from iz have ?z !¢ € set 2z by (rule nth-mem)
with id have inZ: ?%ipl € set %z by auto
from p have i # p € set (case-prod (X i. map ((#) ©)) ?%ipI) by auto
with inZ ip show ip € ?l by force
qed
qged
with Fun show ?case unfolding var-poss-list.simps by simp

14



qed simp

lemma length-var-poss-list: length (var-poss-list t) = length (vars-term-list t)
proof (induct t)
case (Var z)
then show ?case unfolding var-poss-list.simps vars-term-list.simps by simp
next
case (Fun fts)
let 2zs=map2 (Az. map ((#) z)) [0..<length ts] (map var-poss-list ts)
let ?ys=map vars-term-list ts
have [1:length ?zs = length ts
by simp
have [2:length ?ys = length ts
by simp
{fix { assume i:7 < length ts
then have (zip [0..<length ts] (map var-poss-list ts)) | i = (i, var-poss-list
(ts!9)) by simp
with ¢ have ?zsli = (map ((#) ©)) (var-poss-list (tsli)) by simp
then have length (7zsli) = length (var-poss-list (tsli)) by simp
with ¢ have length (%zsli) = length (?ys!i) using Fun.hyps by simp
}
then show ?case
unfolding var-poss-list.simps vars-term-list.simps using eq-length-concat-nth|of
?xs ?ys] 11 12 by presburger
qed

lemma vars-term-list-var-poss-list:
assumes i < length (vars-term-list t)
shows Var ((vars-term-list t)!i) = t|-((var-poss-list t)!7)
using assms proof (induct t arbitrary:i)
case (Var z)
then have i:i = 0
unfolding vars-term-list.simps by simp
then show ?case unfolding i vars-term-list.simps poss-list.simps var-poss.simps
by simp
next
case (Fun [ ts)
let Zzs=(map vars-term-list ts)
let 2ys=(map2 (\i. map ((#) 7)) [0..<length ts] (map var-poss-list ts))
from Fun(2) have 1:i < length (concat ?zs) unfolding vars-term-list.simps by
stmp
have 2:length ?ys = length ?zs unfolding length-map by simp
{fix 7 assume i:i < length %zs
then have x:(map2 (Az. map ((#) z)) [0..<length ts| (map var-poss-list ts) !
1) = map ((#) i) (var-poss-list (tsi))
unfolding length-map by simp
with ¢ have length (?ys | i) = length (%zs ! @)
unfolding * length-map length-var-poss-list by simp
}note [=this
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then obtain j k where j:j < length ?zs and k:k < length (%zs ! j)
and concat:concat ?zs ! i = %xs ! j ! k concat Pys! i = Pys!j k
using nth-concat-two-lists|OF 1 2] by blast
from Fun(1) jk have Var (vars-term-list (tslj) ! k) = (¢s'j) |- var-poss-list (¢s'j)
Mk
unfolding length-map by force
then have Var (vars-term-list (Fun fts) ! {) = (Fun f ts)|-(j# (var-poss-list (ts!§)
LK)
unfolding vars-term-list.simps concat(1) using j by auto
moreover have j#(var-poss-list (ts\j) | k) = ((var-poss-list (Fun f ts))!i) proof —
from k have k < length (map2 (Ai. map ((#) 7)) [0..<length ts] (map
var-poss-list ts) ! j)
using [ j by presburger
then show ?thesis
unfolding var-poss-list.simps concat(2) using j unfolding length-map by
stmp
qed
ultimately show ?case
by presburger
qed

lemma var-poss-list-map-vars-term:
shows var-poss-list (map-vars-term f t) = var-poss-list t
proof (induct t)
case (Fun g ts)
then have IH:map var-poss-list ts = map var-poss-list (map (map-vars-term f)
ts)
by fastforce
then show ?case unfolding map-vars-term-eq eval-term.simps IH var-poss-list.simps
by force
qed simp

lemma distinct-var-poss-list:
shows distinct (var-poss-list t)
proof (induct t)
case (Fun f ts)
let 2zs=(map2 (Ai. map ((#) ©)) [0..<length ts] (map var-poss-list ts))
have l:length ?xs = length ts
by force
have d1:distinct (removeAll || ?zs) proof—
have zs":removeAll || %zs = filter (\z. x # []) %xs
by (metis (mono-tags, lifting) filter-cong removeAll-filter-not-eq)
{fix i j assume i:i < length ?xs ?zsli # || and j:j < length ?xs ?zslj # || and
ijii £ §
from ¢ [ obtain p where p:i#p € set (?zsli) using nth-mem
by (smt (28) add.left-neutral diff-zero length-greater-0-conv length-map
length-upt nth-map nth-upt nth-zip prod.simps(2))
from [ j(1) have ?xzs ! j = map ((#) j7) ((map var-poss-list ts)!5)
by simp
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with p have ?zsli # ?zs!j using ij by force
}
then show ?Zthesis using distinct-filter2 xs' by (smt (verit))
qed
{fix r assume z € set ?zs
with [ obtain i where i:i < length ts and x = %zs!i by (metis in-set-idz)
then have z:2 = map ((#) @) (var-poss-list (tsli)) by simp
from Fun i have distinct (var-poss-list (tsli)) by auto
then have distinct x
unfolding z by (simp add: distinct-map)
}note d2=this
{fix = y assume z € set 2xs y € set asx # y
then obtain ¢ j where i:i < length %zs © = %xsli and j:j < length ?zs y =
?zs!j and i1 # j
by (metis in-set-idx)
from ¢ have x:x = map ((#) @) (var-poss-list (ts!i)) by simp
from j have y:y = map ((#) j) (var-poss-list (ts'j)) by simp
{fix p ¢ assume p:p € set z and ¢:q € set y
from z p obtain p’ where p":p = i#p’ and p’ € set (var-poss-list (ts!i))
by auto
from y ¢q obtain ¢’ where ¢’:q = j#q¢' and ¢’ € set (var-poss-list (ts'j))
by auto
from ¢’ p’ have p # ¢ by (simp add: i)
}
then have set x N set y = {} by auto
}Inote d3=this
from d1 d2 d3 show ?case unfolding var-poss-list.simps using distinct-concat-iff
by blast
qed simp

fun fun-poss-list :: ('f, 'v) term = pos list
where
fun-poss-list (Var z) =] |
fun-poss-list (Fun f ss) = ([| # concat (map (X (i, ps).
map ((#) ) ps) (zip [0 ..< length ss| (map fun-poss-list ss))))

lemma set-fun-poss-list [simp]:
set (fun-poss-list t) = fun-poss t
by (induct t; auto simp: UNION-set-zip)

context
begin
private fun in-poss :: pos = ('f, "v) term = bool
where
in-poss [| - +— True |
in-poss (Cons i p) (Fun fts) <— i < length ts A in-poss p (ts ! i) |
in-poss (Cons i p) (Var -) +— False

lemma poss-code|code-unfold):
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p € poss t = in-poss p t by (induct rule: in-poss.induct) auto
end

3.1.2 List of Distinct Variables

We introduce a duplicate free version of vars-term-list that preserves order
of appearance of variables. This is used for the theory on proof terms.

abbreviation vars-distinct :: ('f, 'v) term = v list where vars-distinct t = (rev
o remdups o rev) (vars-term-list t)

lemma single-var[simp|: vars-distinct (Var x) = [z]
by (simp add: vars-term-list.simps(1))

lemma vars-term-list-vars-distinct:
assumes i < length (vars-term-list t)
shows 3j < length (vars-distinct t). (vars-term-list t)Vi = (vars-distinct t)!j
by (metis assms in-set-idz nth-mem o-apply set-remdups set-rev)

3.1.3 Useful abstractions

Given that we perform the same operations on terms in order to get a list of
the variables and a list of the functions, we define functions that run through
the term and perform these actions.

context

begin

private fun contains-var-term :: 'v = (’f, 'v) term = bool where
contains-var-term x (Var y) = (z = y)

| contains-var-term x (Fun - ts) = Bex (set ts) (contains-var-term x)

lemma contains-var-term-sound[simp):
contains-var-term v t <— z € vars-term t
by (induct t) auto

lemma in-vars-term-code[code-unfold]: = € wvars-term t = contains-var-term z t
by simp
end

3.1.4 Linear Terms

lemma distinct-vars-linear-term:
assumes distinct (vars-term-list t)
shows linear-term t
using assms proof (induct t)
case (Fun fts)
{fix ¢’ assume t":t’ € set ts
with Fun(2) have distinct (vars-term-list t')
unfolding vars-term-list.simps by (simp add: distinct-concat-iff)
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with Fun(1) t’' have linear-term t’ by auto
Inote IH=this
have is-partition (map (set o vars-term-list) ts)
using distinct-is-partitition-sets vars-term-list.simps(2) Fun(2) by force
then have is-partition (map vars-term ts) by (simp add: comp-def)
with IH show ?case by simp
qed simp

fun

linear-term-impl :: 'v set = ('f, 'v) term = (‘v set) option

where
linear-term-impl xs (Var x) = (if ¢ € xs then None else Some (insert © zs)) |
linear-term-impl xs (Fun - [|) = Some s |
linear-term-impl xs (Fun f (t # ¢s)) = (case linear-term-impl xs t of
None = None

| Some ys = linear-term-impl ys (Fun f ts))

lemma linear-term-code|code]: linear-term t = (linear-term-impl {} t # None)
proof —
{
note [simp| = is-partition-Nil is-partition-Cons
fix zs ys
let 2P = X\ ys zs t. (linear-term-impl zs t = None — (zs N vars-term t # {}
V = linear-term t)) A
(linear-term-impl xzs t = Some ys — (ys = (xs U vars-term t)) A zs N
vars-term t = {} A linear-term t)
have ?P ys xs t
proof (induct rule: linear-term-impl.induct[of A zs t. ¥ ys. ¢P ys xs t, rule-format])
case (3 zs ftts zs)
show Zcase
proof (cases linear-term-impl s t)
case None
with & show ?Zthesis by auto
next
case (Some ys)
note some = this
with % have recl: ys = zs U vars-term t A xs N vars-term t = {} A
linear-term t by auto
show ?thesis
proof (cases linear-term-impl ys (Fun f ts))
case None
with rec! Some have res: linear-term-impl xs (Fun f (t # ts)) = None
by simp
from None 3(2) Some have rec2: ys N vars-term (Fun f ts) # {} V =
linear-term (Fun f ts) by simp
then have zs N vars-term (Fun f (¢t # ts)) # {} V = linear-term (Fun f
(t # ts))
proof
assume ys N vars-term (Fun [ ts) # {}
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then obtain = where z1: z € ys and x2: = € vars-term (Fun f ts) by
auto
show ?thesis
proof (cases x € xs)
case True
with 22 show ?thesis by auto
next
case Fulse
with z1 rec! have z € vars-term t by auto
with 2 have - linear-term (Fun f (t # ts)) by auto
then show ?thesis ..
qed
next
assume - linear-term (Fun f ts) then have — linear-term (Fun f (t #
ts)) by auto
then show ?thesis ..
qed
with res show ?thesis by auto
next
case (Some us)
with some have res: linear-term-impl xs (Fun f (¢t # ts)) = Some us by

{

assume us: us = zs
from Some[simplified us] 3(2) some
have rec2: zs = ys U vars-term (Fun f ts) A ys N vars-term (Fun f ts)
= {} A linear-term (Fun f ts) by auto
from recl rec?
have partl: zs = xs U vars-term (Fun f (t # ts)) A xs N vars-term (Fun
I (t # ts)) = {} (is ?partl) by auto
from rec! rec2 have vars-term t N vars-term (Fun f ts) = {} and
linear-term t and linear-term (Fun f ts) by auto
then have linear-term (Fun f (t # ts)) (is ?part2) by auto
with part! have ?partl A ?part2 ..
}
with res show ?thesis by auto
qged
qed
qed auto
} note main = this
from mainfof {}] show ?thesis by (cases linear-term-impl {} t, auto)
qged

auto

definition check-linear-term :: ('f :: showl, 'v :: showl) term = showsl check
where

check-linear-term s = check (linear-term s)
(showsl (STR "the term ") o showsl s o showsl (STR " is not linear{ <]""))

lemma check-linear-term [simp]:
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isOK (check-linear-term s) = linear-term s
by (simp add: check-linear-term-def)

3.1.5 Subterms

fun supteq-list :: ('f, 'v) term = ('f, 'v) term list
where
supteg-list (Var z) = [Var z] |
supteq-list (Fun fts) = Fun fts # concat (map supteq-list ts)

fun supt-list == ('f, 'v) term = (’f, 'v) term list
where
supt-list (Var z) =[] |
supt-list (Fun fts) = concat (map supteq-list ts)

lemma supteq-list [simp]:
set (supteg-list t) = {s. t > s}
proof (rule set-eql, unfold mem-Collect-eq)
fix s
show s € set(supteg-list t) = (¢t > s)
proof (induct t)
case (Fun f ss)
show ?case
proof (cases Fun f ss = s)
case Fulse
show ?Zthesis
proof
assume Fun fss > s
with False have sup: Fun f ss > s using supteg-supt-conv by auto
obtain C where C # O and Fun f ss = C(s) using sup by auto
then obtain b D a where Fun f ss = Fun f (b @ D(s) # a) by (cases C,
auto)
then have D: D(s) € set ss by auto
with Fun[OF D] ctat-imp-supteq[of D s] obtain ¢ where t € set ss and s
€ set (supteg-list t) by auto
then show s € set (supteg-list (Fun f ss)) by auto
next
assume s € set (supteg-list (Fun f ss))
with Fulse obtain ¢ where ¢: t € set ss and s € set (supteg-list t) by auto
with Fun[OF t] have t > s by auto
with ¢t show Fun f ss > s by auto
qed
qed auto
qed (simp add: supteg-var-imp-eq)
qed

lemma supt-list-sound [simp]:

set (supt-list t) = {s. t > s}
by (cases t) auto
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fun supt-impl :: ('f, 'v) term = ('f, 'v) term = bool
where
supt-impl (Var z) t +— False |
supt-impl (Fun f ss) t «— t € set ss V Bex (set ss) (As. supt-impl s t)

lemma supt-impl [code-unfold):
s>t +— supt-impl st
proof
assume s > t then show supt-impl s t
proof (induct s)
case (Var z) then show Zcase by auto
next
case (Fun f ss) then show ?case
proof (cases t € set ss)
case True then show ?thesis by (simp)
next
case Fulse
assume As. [s € set ss; s > t] = supt-impl s t
and Fun fsst> tand t ¢ set ss
moreover from «Fun f ss > t» obtain s where s € set ss and s > t
by (cases rule: supt.cases) (simp-all add: <t ¢ set ss»)
ultimately have supt-impl s t by simp
with «s € set ss» show ?thesis by auto
qed
qged
next
assume supt-impl s t
then show s > ¢
proof (induct s)
case (Var z) then show Zcase by simp
next
case (Fun f ss)
then have t € set ss V (Js€set ss. supt-impl s t) by simp
then show ?case
proof
assume ¢ € set ss then show ?Zcase by auto
next
assume 3 scset ss. supt-impl s t
then obtain s where s € set ss and supt-impl s t by auto
with Fun have s > t by auto
with <s € set ss) show ?thesis by auto
qed
qed
qed

lemma supteg-impl[code-unfold]: s > t +— s =t V supt-impl s t

unfolding supteq-supt-set-conv
by (auto simp: supt-impl)
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definition check-no-var :: ('f::showl, "v::showl) term = showsl check where
check-no-var t = check (is-Fun t) (showsl (STR "'variable found[<]"))

lemma check-no-var-sound[simp):
isOK (check-no-var t) <— is-Fun t
unfolding check-no-var-def by simp

definition
check-supt =2 ('f:showl, "v::showl) term = ('f, 'v) term = showsl check
where
check-supt s t = check (s > t) (showsl t o showsl (STR " is not a proper subterm
of ") o showsl s)

definition
check-supteq :: ('f::showl, "vi:showl) term = ('f, 'v) term = showsl check
where
check-supteq s t = check (s > t) (showsl t o showsl (STR ' is not a subterm of
"y o showsl s)

lemma isOK-check-supt [simp]:
isOK (check-supt s t) «— s> t
by (auto simp: check-supt-def)

lemma isOK-check-supteq [simp]:
isOK (check-supteq s t) «+— s > ¢
by (auto simp: check-supteg-def)

3.1.6 Additional Functions on Terms

fun with-arity :: ('f, 'v) term = ('f X nat, 'v) term where
with-arity (Var z) = Var x
| with-arity (Fun f ts) = Fun (f, length ts) (map with-arity ts)

fun add-vars-term :: ('f, 'v) term = v list = v list
where
add-vars-term (Var z) s = © # xs |
add-vars-term (Fun - ts) xs = foldr add-vars-term ts xs

fun add-funs-term :: ('f, 'v) term = 'f list = 'f list
where
add-funs-term (Var -) fs = fs |
add-funs-term (Fun f ts) fs = f # foldr add-funs-term ts fs

fun add-funas-term :: ('f, 'v) term = (’f x nat) list = ('f x nat) list
where
add-funas-term (Var -) fs = fs |
add-funas-term (Fun f ts) fs = (f, length ts) # foldr add-funas-term ts fs
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definition add-funas-args-term :: ('f, 'v) term = ('f x nat) list = ('f x nat) list
where
add-funas-args-term t fs = foldr add-funas-term (args t) fs

lemma add-vars-term-vars-term-list-conv [simpl:

add-vars-term t xs = vars-term-list t Q zs
proof (induct t arbitrary: xs)

case (Fun fts)

then show ?Zcase by (induct ts) (simp-all add: vars-term-list.simps)
qed (simp add: vars-term-list.simps)

lemma add-funs-term-funs-term-list-conv [simp]:

add-funs-term t fs = funs-term-list t Q fs
proof (induct t arbitrary: fs)

case (Fun fts)

then show ?case by (induct ts) (simp-all add: funs-term-list.simps)
qed (simp add: funs-term-list.simps)

lemma add-funas-term-funas-term-list-conv [simp):

add-funas-term t fs = funas-term-list t Q fs
proof (induct t arbitrary: fs)

case (Fun f ts)

then show ?case by (induct ts) (simp-all add: funas-term-list.simps)
qed (simp add: funas-term-list.simps)

lemma add-vars-term-vars-term-list-abs-conv [simp]:
add-vars-term = (Q) o vars-term-list
by (intro ext) simp

lemma add-funs-term-funs-term-list-abs-conv [simp):
add-funs-term = (@) o funs-term-list
by (intro ext) simp

lemma add-funas-term-funas-term-list-abs-conv [simp]:
add-funas-term = (Q) o funas-term-list
by (intro ext) simp

lemma add-funas-args-term-funas-args-term-list-conv [simp]:

add-funas-args-term t fs = funas-args-term-list t Q fs

by (simp add: add-funas-args-term-def funas-args-term-list-def concat-conv-foldr
foldr-map)

fun insert-vars-term :: ('f, 'v) term = ‘v list = 'v list
where
insert-vars-term (Var z) zs = List.insert © s |

insert-vars-term (Fun f ts) xs = foldr insert-vars-term ts xs

fun insert-funs-term :: ('f, 'v) term = 'f list = 'f list
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where
insert-funs-term (Var z) fs =
insert-funs-term (Fun f ts) fs

Js |
=L

ist.insert f (foldr insert-funs-term ts fs)

fun insert-funas-term :: ('f, 'v) term = ('f x nat) list = ('f x nat) list
where
insert-funas-term (Var z) fs = fs |
insert-funas-term (Fun fts) fs = List.insert (f, length ts) (foldr insert-funas-term

ts fs)

definition insert-funas-args-term :: ('f, 'v) term = ('f x nat) list = ('f X nat)
list
where
insert-funas-args-term t fs = foldr insert-funas-term (args t) fs

lemma set-insert-vars-term-vars-term [simp):

set (insert-vars-term t xs) = vars-term t U set s
proof (induct t arbitrary: xs)

case (Fun fts)

then show Zcase by (induct ts) auto
qed simp

lemma set-insert-funs-term-funs-term [simp]:

set (insert-funs-term t fs) = funs-term t U set fs
proof (induct t arbitrary: fs)

case (Fun [ ts)

then show ?case by (induct ts) auto
qed simp

lemma set-insert-funas-term-funas-term [simp):
set (insert-funas-term t fs) = funas-term t U set fs
proof (induct t arbitrary: fs)
case (Fun fts)
then have set (foldr insert-funas-term ts fs) = J (funas-term ‘ set ts) U set fs
by (induct ts) auto
then show ?case by simp
qed simp

pl:

lemma set-insert-funas-args-term [sim,
={J (funas-term ‘ set (args t)) U set fs

set (insert-funas-args-term t fs)
proof (induct t arbitrary: fs)

case (Fun fts)

then show Zcase by (induct ts) (auto simp: insert-funas-args-term-def)
qed (simp add: insert-funas-args-term-def)

Implementations of corresponding set-based functions.

abbreviation vars-term-impl t = insert-vars-term t [|
abbreviation funs-term-impl t = insert-funs-term t ||
abbreviation funas-term-impl t = insert-funas-term t ||
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lemma vars-funs-term-list-code|code]:
vars-term-list t = add-vars-term t []
funs-term-list t = add-funs-term t []
by simp-all

lemma with-arity-term-fold [code]:
with-arity = Term-More.fold Var (Af ts. Fun (f, length ts) ts)
proof
fix ¢t ('f, 'v) term
show with-arity t = Term-More.fold Var (Af ts. Fun (f, length ts) ts) t
by (induct t) simp-all
qed

fun flatten-term-enum :: ('f list, 'v) term = ('f, 'v) term list
where
flatten-term-enum (Var z) = [Var z] |
flatten-term-enum (Fun fs ts) =
(let
lts = map flatten-term-enum ts;
ss = concat-lists lts
in concat (map (X f. map (Fun f) ss) fs))

lemma flatten-term-enum:
set (flatten-term-enum t) = {u. instance-term u (map-funs-term set t)}
proof (induct t)
case (Var z)
show ?case (is - = ?R)
proof —
{
fix t
assume ¢t € 7R
then have ¢ = Var z by (cases t, auto)
}
then show %thesis by auto
qed
next
case (Fun fs ts)
show ?case (is ?L = ?R)
proof —
{
fix ¢
assume 1 < length ts
then have ts ! i € set ts by auto
note Fun|OF this]
} note ind = this
have idL: ?L = {Fun g ss | g ss. g € set fs A length ss = length ts A (V i<length
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ts. ss ! i € set (flatten-term-enum (ts ! 7))} (is - = ¢M1) by auto
let PRI = {Fun fss| fss. [ € set fs A length ss = length ts A (V i<length ss.
instance-term (ss ! i) (map-funs-term set (ts ! i)))}
{
fix u
assume u € ?R
then have v € ?R1 by (cases u, auto)

then have idR: 7R = ?R1 by auto
show ?case unfolding idL idR using ind by auto
qed
qed

definition check-ground-term :: ('f :: showl, 'v :: showl) term = showsl check
where
check-ground-term s = check (ground s)
(showsl (STR "'the term ') o showsl s o showsl (STR ' is not a ground

term[ <1""))

lemma check-ground-term [simpl:
isOK (check-ground-term s) «— ground s
by (simp add: check-ground-term-def)

type-synonym 'f sig-list = ('f x nat)list

fun check-funas-term :: 'f :: showl sig = ('f,’v :: showl)term = showsl check where
check-funas-term F (Fun f ts) = do {
check ((f, length ts) € F) (showsl (Fun f ts)
o showsl-lit (STR ""problem: root of subterm ') o showsl f o showsl-lit (STR

" not in signaturd <""));

check-allm (check-funas-term F) ts

}

| check-funas-term F (Var -) = return ()

lemma check-funas-term[simp|: isOK (check-funas-term F t) = (funas-term t C
F)
by (induct t, auto)

3.1.7 Substitutions

definition mk-subst-domain :: ('f, 'v) substL = ("v x ('f, 'v) term) list where
mk-subst-domain o =

let T = mk-subst Var o in
(filter (A(z, t). Var z # t) (map (A z. (z, 7 z)) (remdups (map fst 0))))

lemma mk-subst-domain:

set (mk-subst-domain o) = (X z. (z, mk-subst Var o x)) ‘ subst-domain (mk-subst
Var o)

(is I = ?R)
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proof —
have ?I C ?R unfolding mk-subst-domain-def Let-def subst-domain-def by auto
moreover
{
fix xt
assume mem: xt € 7R
obtain z t where zt: zt = (z, t) by force
from mem [unfolded xt]
have z: © € subst-domain (mk-subst Var o) and ¢: t = mk-subst Var o x by
auto
then have mk-subst Var o x # Var x unfolding subst-domain-def by simp
with ¢t have [: map-of 0 x = Some t and tx: t # Var z
unfolding mk-subst-def by (cases map-of o x, auto)
from map-of-SomeD[OF 1] I t tz have (z,t) € ?I unfolding mk-subst-domain-def
Let-def
by force
then have 2t € 2] unfolding zt .
}
ultimately show ?thesis by blast
qed

lemma finite-mk-subst: finite (subst-domain (mk-subst Var o))
proof —
have subst-domain (mk-subst Var o) = fst ‘ set (mk-subst-domain o)
unfolding mk-subst-domain Let-def by force
moreover have finite ...
using finite-set by auto
ultimately show ?thesis by simp
qed

definition subst-eq :: ('f, 'v) substL = ('f, "v) substL = bool where
subst-eq o T = (let ¢’ = mk-subst-domain o; 7' = mk-subst-domain T in set o’
= set )

lemma subst-eq [simp]:

subst-eq o T = (mk-subst Var o = mk-subst Var T)
proof —

let %0 = mk-subst Var o

let 7 = mk-subst Var 7

{
assume id: (A z. (z, %0 z)) ‘ subst-domain %0) = ((A z. (z, 7 z)) *
subst-domain ?7) (is 21 = ?r)
from arg-cong|OF id, of (*) fst] have idd: subst-domain ?0 = subst-domain 21
by force
have %0 = 77
proof (rule ext)
fix »
show %0 z = 7z
proof (cases x € subst-domain %0)
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case Fulse
then show ?thesis using ¢dd unfolding subst-domain-def by auto
next
case True
with idd have z: (z,% z) € 2l (z,%T x) € ?r by auto
with id have z: (2,77 z) € ¢l (z,% z) € %] by auto
then show ?thesis by auto
qed
qed
}
then show ?thesis
unfolding subst-eq-def Let-def
unfolding mk-subst-domain by auto
qed

definition range-vars-impl :: ('f, 'v) substL = 'v list
where
range-vars-impl o =
(let o' = mk-subst-domain o in
concat (map (vars-term-list o snd) o))

definition vars-subst-impl :: ('f, 'v) substL = v list
where
vars-subst-impl o =
(let o' = mk-subst-domain o in
map fst o' @Q concat (map (vars-term-list o snd) o))

lemma vars-subst-impl [simp]:
set (vars-subst-impl o) = vars-subst (mk-subst Var o)
unfolding vars-subst-def vars-subst-impl-def Let-def
by (auto simp: mk-subst-domain, force)

lemma range-vars-impl [simp]:
set (range-vars-impl o) = range-vars (mk-subst Var o)
unfolding range-vars-def range-vars-impl-def Let-def
by (auto simp: mk-subst-domain)

lemma mk-subst-one [simp]: mk-subst Var [(z, t)] = subst x ¢
unfolding mk-subst-def subst-def by auto

lemma fst-image [simp]: fst < (A z. (2,9 2)) ‘ a = a by force

definition
subst-compose-impl :: ('f, 'v) substL = ('f, 'v) substL = ('f, 'v) substL
where
subst-compose-impl o T =
let
o’ = mk-subst-domain o;
7! = mk-subst-domain T;
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do = map fst o’

in map (A (z, t). (z, t - mk-subst Var 7')) o' Q filter (A (z, t). x ¢ set do) T’

lemma mk-subst-mk-subst-domain [simp]:
mk-subst Var (mk-subst-domain o) = mk-subst Var o
proof (intro ext)
fix z
{
assume z: © ¢ subst-domain (mk-subst Var o)
then have o: mk-subst Var o © = Var x unfolding subst-domain-def by auto
from z have = ¢ fst ‘ set (mk-subst-domain o) unfolding mk-subst-domain
by auto
then have look: map-of (mk-subst-domain o) © = None by (cases map-of
(mk-subst-domain o) x, insert map-of-SomeD|of mk-subst-domain o x|, force+)
then have mk-subst Var (mk-subst-domain o) & = mk-subst Var o z unfolding
o
unfolding mk-subst-def by auto
} note ndom = this
{
assume z € subst-domain (mk-subst Var o)
then have = € fst ‘ set (mk-subst-domain o) unfolding mk-subst-domain by
auto
then obtain ¢ where look: map-of (mk-subst-domain o) = Some t by (cases
map-of (mk-subst-domain o) z, (force simp: map-of-eq-None-iff )+)
from map-of-SomeD[OF look, unfolded mk-subst-domain] have t: t = mk-subst
Var o x by auto
from look ¢t have res: mk-subst Var (mk-subst-domain o) © = mk-subst Var o
z unfolding mk-subst-def by auto
} note dom = this
from ndom dom
show mk-subst Var (mk-subst-domain o) x = mk-subst Var o = by auto
qed

lemma subst-compose-impl [simp]:
mk-subst Var (subst-compose-impl o ) = mk-subst Var o oy mk-subst Var 7 (is
2l = ?r)
proof (rule ext)
fix z
let %0 = mk-subst Var o
let 27 = mk-subst Var
let 2s = map (X (z, t). (z, t - mk-subst Var (mk-subst-domain 7))) (mk-subst-domain
o)
let 2t = [(z,t) < mk-subst-domain 7. x ¢ set (map fst (mk-subst-domain o))]
note d = subst-compose-impl-def [unfolded Let-def]
show ?lz = rx
proof (cases © € subst-domain (mk-subst Var o))
case True
then have %0 z # Var x unfolding subst-domain-def by auto
then obtain ¢ where look: map-of 0 © = Some t and o: %0 z =t
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unfolding mk-subst-def by (cases map-of o x, auto)
from o have r: ?r x = ¢ - 27 unfolding subst-compose-def by simp
from True have = € subst-domain (mk-subst Var (mk-subst-domain o))
by simp
from o True have mem: (z,t - ?7) € set ?s by (auto simp: mk-subst-domain)
with map-of-eq-None-iff [of ?s x]
obtain u where look2: map-of ?s x = Some u
by (cases map-of ?s z, force+)
from map-of-SomeD|[OF this] o have u: u =t - 1
by (auto simp: mk-subst-domain)
note look2 = map-of-append-Some|OF look2, of ?t]
have I: 2l x = t - 7 unfolding d mk-subst-def[of Var ?s @ ?2t] look2 u
by simp
from [ r show ?thesis by simp
next
case Fulse
then have o: %0 x = Var z unfolding subst-domain-def by auto
from o have r: ?r x = ?7 z unfolding subst-compose-def by simp
from Fualse have z ¢ subst-domain (mk-subst Var (mk-subst-domain o))
by simp
from False have mem: \ y. (z,y) ¢ set ?s by (auto simp: mk-subst-domain)
with map-of-SomeD[of ?s z] have look2: map-of ?s x = None
by (cases map-of ?s x, auto)
note look2 = map-of-append-None|OF look2, of ?t]
have I: 21 © = (case map-of ?t x of None = Var z | Some t = t) unfolding d
mk-subst-def [of Var ?s @Q ?t] look2 by simp

also have ... = 77 2
proof (cases z € subst-domain 1)
case True

then have ?r x # Var z unfolding subst-domain-def by auto
then obtain ¢t where look: map-of 7 x = Some tand 7: 97 z = ¢
unfolding mk-subst-def by (cases map-of T x, auto)
from True have = € subst-domain (mk-subst Var (mk-subst-domain 7))
by simp
from 7 True have mem: (z,97 z) € set 7t using False by (auto simp:
mk-subst-domain)
with map-of-eq-None-iff [of ?t z] obtain u where look2: map-of ?t x = Some
U
by (cases map-of ?t z, force+)
from map-of-SomeD[OF this] T have u: v = 71 x
by (auto simp: mk-subst-domain)
show ?thesis using look2 u by simp
next
case Fulse
then have 7: %7 z = Var z unfolding subst-domain-def by auto
from Fualse have x ¢ subst-domain (mk-subst Var (mk-subst-domain 7))
by simp
from Fulse have mem: \ y. (z,y) ¢ set ?t by (auto simp: mk-subst-domain)
with map-of-SomeD[of ?t ] have look2: map-of ?t © = None
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by (cases map-of ?t x, auto)
show ?thesis unfolding 7 look2 by simp
qed
finally show ?thesis unfolding r by simp
qed
qed

fun subst-power-impl :: ('f, 'v) substL = nat = ('f, 'v) substL where
subst-power-impl o 0 = ||
| subst-power-impl o (Suc n) = subst-compose-impl o (subst-power-impl o n)

lemma subst-power-impl [simpl:
mk-subst Var (subst-power-impl o n) = (mk-subst Var o) ™ n
by (induct n, auto)

definition commutes-impl :: ('f, 'v) substL = ('f, 'v) substL = bool where
commutes-impl o p = subst-eq (subst-compose-impl o ) (subst-compose-impl
o)

lemma commutes-impl [simpl:

commutes-impl o p = ((mk-subst Var o o; mk-subst Var u) = (mk-subst Var p
o5 mk-subst Var o))

unfolding commutes-impl-def by simp

definition
subst-compose’-impl :: ('f, 'v) substL = ('f, 'v) subst = ('f, 'v) substL
where
subst-compose’-impl o o = map (A (z, s). (z, s - 0)) (mk-subst-domain o)

lemma subst-compose’-impl [simp]:
mk-subst Var (subst-compose’-impl o 9) = subst-compose’ (mk-subst Var o) o (is
2l = ?r)
proof (rule ext)
fix z
note d = subst-compose’-def subst-compose’-impl-def
let %0 = mk-subst Var o
let ?s = subst-compose’-impl o o
show 2l z = %rz
proof (cases x € subst-domain (mk-subst Var o))
case True
then have r: 9r z = %0 z - o unfolding d by simp
from True have (z, %0 z) € set (mk-subst-domain o) unfolding mk-subst-domain
by auto
then have (z, %0 = - ¢) € set ?s unfolding d by auto
with map-of-eq-None-iff[of ?s z] obtain u where look: map-of ?s x = Some u
by (cases map-of ?s z, force+)
from map-of-SomeD[OF this] have u: u = %0 x - ¢ unfolding d using
mk-subst-domain[of o] by auto
then have I: 2l x = %0 z - p using look u unfolding mk-subst-def by auto
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from [ r show ?thesis by simp
next
case Fulse
then have r: 9r £ = Var x unfolding d by simp
from False have A y. (z,y) ¢ set ?s unfolding d
by (auto simp: mk-subst-domain)
with map-of-SomeD[of ?s x] have look: map-of ?s x = None
by (cases map-of ?s x, auto)
then have I: 9] x = Var z unfolding mk-subst-def by simp
from [ r show ?thesis by simp
qed
qed

definition
subst-replace-impl :: ('f, "v) substL = v = ('f, 'v) term = ('f, 'v) substL
where
subst-replace-impl o x t = (z, t) # filter (A (y, ). y £ ) o

lemma subst-replace-impl [simp]:
mk-subst Var (subst-replace-impl o x t) = (X y. if x = y then t else mk-subst Var
oy) (is 7l = ?7r)
proof (rule ext)
fix y
note d = subst-replace-impl-def
show 21y = 2ry
proof (cases y = x)
case True
then show ?thesis unfolding d mk-subst-def by auto
next
case Fulse
let %0 = mk-subst Var o
from False have r: ?r y = %0 y by auto
from Fulse have I: 2l y = mk-subst Var ([(y, t)<—0o . y # z]) y unfolding
mk-subst-def d
by simp
also have ... = %0 y unfolding mk-subst-def
using map-of-filter[of X\ y. y # x y o, OF False] by simp
finally show ?thesis using r by simp
qed
qed

lemma mk-subst-domain-distinct: distinct (map fst (mk-subst-domain o))
unfolding mk-subst-domain-def Let-def distinct-map
by (rule conjI[OF distinct-filter], auto simp: distinct-map inj-on-def)

definition is-renaming-impl :: ('f,'v) substL = bool where
is-renaming-impl o =
let 0’ = map snd (mk-subst-domain o) in
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(V t € set o’ is-Var t) A distinct o’

lemma is-renaming-impl [simp]:
is-renaming-impl o = is-renaming (mk-subst Var o) (is 7l = ?r)
proof —
let %0 = mk-subst Var o
let d = mk-subst-domain o
let ?m = map snd ?d
let 2k = map fst ?d
have 2l = ((V t € set ?m. is-Var t) A distinct ?m) unfolding is-renaming-impl-def
Let-def by auto
also have (V ¢ € set ?m. is-Var t) = (¥ z. is-Var (%0 x))
by (force simp: mk-subst-domain subst-domain-def)
also have distinct ?m = inj-on %0 (subst-domain %0)
proof
assume inj: inj-on %o (subst-domain o)
show distinct ?m unfolding distinct-conv-nth
proof (intro alll impl)
fix ij
assume i: 1 < length ?m and j: j < length ?m and 7j: i # j
obtain z t where di: ?d ! i = (z,t) by (cases ?d ! i, auto)
obtain y s where dj: ?d ! j = (y,s) by (cases ?d ! j, auto)
from di i have mi: ?m ! i =t and ki: ?k ! i = x by auto
from dj j have mj: ?m ! j = s and kj: %k ! j = y by auto
from di i have 1t: (2,t) € set ?d unfolding set-conv-nth by force
from dj j have ys: (y,s) € set ?d unfolding set-conv-nth by force
from zt ys have d: x € subst-domain %0 y € subst-domain ?0 unfolding
mk-subst-domain by auto
have dist: distinct ?k by (rule mk-subst-domain-distinct)
from ij i j have zy:  # y unfolding ki[symmetric| kj[symmetric]
using dist[unfolded distinct-conv-nth] by auto
from zt ys have m: %0 x = t %0 y = s unfolding mk-subst-domain by auto
from injlunfolded inj-on-def, rule-format, OF d|
show ?m ! i # ?m ! j unfolding m mi mj using zy by auto
qed
next
assume dist: distinct ?m
show inj-on %0 (subst-domain %0) unfolding inj-on-def
proof (intro balll impI)
fixzy
assume z: ¢ € subst-domain %0 and y: y € subst-domain %o
and id: %0 x = % y
from z y have z: (z,% z) € set ?d and y: (y,%0 y) € set ?d
unfolding mk-subst-domain by auto
from z obtain ¢ where di: ?d ! i = (z,%0 z) and @: ¢ < length ?d unfolding
set-conv-nth by auto
from y obtain j where dj: 7d ! j = (y,% y) and j: j < length ?d unfolding
set-conv-nth by auto
from di i have mi: ?m ! { = %0 z by simp
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from dj j have mj: ?m ! j = %0 x unfolding id by simp
from mi mj have id: ?m ! i = ?m ! j by simp
from dist[unfolded distinct-conv-nth] i j id have id: i = j by auto
with di dj
show z = y by auto
qed

qed

finally

show ?thesis unfolding is-renaming-def by simp

qed

definition is-inverse-renaming-impl :: ('f, "v) substL = ('f, 'v) substL where
is-inverse-renaming-impl o =
let o’ = mk-subst-domain o in
map (A (z, y). (the-Var y, Var z)) o’

lemma is-inverse-renaming-impl [simpl:
fixes o :: ('f, 'v) substL
assumes var: is-renaming (mk-subst Var o)
shows mk-subst Var (is-inverse-renaming-impl o) = is-inverse-renaming (mk-subst
Var o) (is 21 = ?r)
proof (rule ext)
fix z
let %0 = mk-subst Var o
let %0’ = mk-subst-domain o
let #m = map (A (z, y). (the-Var y, Var z :: ('f, 'v) term)) %0’
let ?ran = subst-range %o
note d = is-inverse-renaming-impl-def is-inverse-renaming-def
{
fix t
assume (z,t) € set m
then obtain u z where id: (z,t) = (the-Var u,Var z) and mem: (z,u) € set
%0’ by auto
from wvar[unfolded is-renaming-def] mem obtain zz where u: v = Var zz
unfolding mk-subst-domain by auto
from id[unfolded u] have id: zz = z t = Var z by auto
with mem v have (z,Var z) € set %0’ by auto
then have %0 z = Var x z € subst-domain ?0 unfolding mk-subst-domain by
auto
with id have 3 z. t = Var z A %0 z = Var x A\ z € subst-domain %0 by auto
} note one = this
have ?] x = mk-subst Var ?m = unfolding d by simp

also have ... = 7r
proof (cases Var z € ?ran)
case Fulse
{
fix ¢

assume (z,t) € set m
from one[OF this] obtain z where ¢: t = Var z and z: %0 z = Var z
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and dom: z € subst-domain %0 by auto
from z dom Fualse have Fualse by force

from this[OF map-of-SomeD]of ?m z]] have look: map-of ?m x = None
by (cases map-of ?m z, auto)
then have mk-subst Var ?m z = Var x unfolding mk-subst-def by auto

also have ... = ?r z using Fulse unfolding d by simp
finally show ?thesis .

next
case True

then obtain y where y: y € subst-domain %0 and z: %0 y = Var x by auto

then have (y,Var z) € set %0’ unfolding mk-subst-domain by auto

then have (z,Var y) € set ?m by force

then obtain u where look: map-of #m © = Some u using map-of-eq-None-iff [of
?m z]

by (cases map-of ?m x, force+)

from map-of-SomeD[OF this] have zu: (z,u) € set ?m by auto

from one[OF this| obtain z where u: u = Var z and z: %0 z = Var z and
dom: z € subst-domain %0 by auto

have mk-subst Var ?m x = Var z unfolding mk-subst-def look u by simp

also have ... = ?r z using is-renaming-inverse-domain|[OF var dom] z by auto
finally show ?%thesis .
qed
finally show ?lz = %rz .
qed
definition

mk-subst-case :: 'v list = ('f, 'v) subst = ('f, 'v) substL = ('f, 'v) substL
where
mk-subst-case xs o T = subst-compose-impl (map (X z. (z, o z)) xs) T

lemma mk-subst-case [simp]:
mk-subst Var (mk-subst-case zs o T) =
(N z. if x € set xs then o © - mk-subst Var T else mk-subst Var T x)
proof —
let #m = map (A z. (z, 0 z)) xs
have id: mk-subst Var m = (X z. if ¢ € set zs then o z else Var ) (is 2l = ?r)
proof (rule ext)
fix z
show ?lz = rx
proof (cases © € set xs)
case True
then have (z,0 z) € set ?m by auto
with map-of-eq-None-iff [of ?m z] obtain u where look: map-of ?m z = Some
u by auto
from map-of-SomeD|[OF look] have u: v = o x by auto
show ?thesis unfolding mk-subst-def look u using True by auto
next
case Fulse
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with map-of-SomeD[of ?m z]
have look: map-of #m © = None by (cases map-of ¢m x, auto)
show ?thesis unfolding mk-subst-def look using False by auto
qed
qed
show ?thesis unfolding mk-subst-case-def subst-compose-impl id
unfolding subst-compose-def by auto
qed

end

3.1.8 A Concrete Unification Algorithm

theory Unification-More
imports
First-Order-Terms. Unification
First-Order-Rewriting. Term-Impl
begin

lemma set-subst-list [simp]:
set (subst-list o F) = subst-set o (set E)
by (simp add: subst-list-def subst-set-def)

lemma mgu-var-disjoint-right:
fixes st :: ('f, 'v) term and o 7 :: (’f, 'v) subst and T
assumes s: vars-term s C S
and inj: inj T
and ST: S N range T = {}
and id: s-o=1¢t-T
shows 3 p 0. mgu s (map-vars-term T t) = Some p A
sro=8-pu-0A
(Vt:(’f, ') term. t - T = map-vars-term Tt - p - §) A
(VzeS. oz =px-9)
proof —
let 20 = X\ z. if x € S then o x else 7 ((the-inv T') x)
let ¢t = map-vars-term T t
have ids: s -0 =s- %0
by (rule term-subst-eq, insert s, auto)
have t - 7 = map-vars-term (the-inv T) %t - 7
unfolding map-vars-term-compose o-def using the-inv-f-f[OF inj] by (auto
simp: term.map-ident)

also have ... = ?t - (7 o the-inv T) unfolding apply-subst-map-vars-term ..
also have ... = %t - %0
proof (rule term-subst-eq)

fix x

assume z € vars-term 7t

then have z € T ¢ UNIV unfolding term.set-map by auto
then have z ¢ S using ST by auto

then show (7 o the-inv T) © = %0 = by simp
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qed

finally have idt: t - 7 = ¢t - 20 by simp

from id[unfolded ids idt]| have id: s - %0 = 2t - %0 .

with mgu-complete[of s ?t] id obtain p where p: mgu s 2t = Some p
unfolding unifiers-def by (cases mgu s ?t, auto)

from the-mgu[OF id] have id: s - p = map-vars-term T t - p and o: %0 = p o

%o

unfolding the-mgu-def p by auto

have s - 0 = 5 - (u o5 %0) unfolding ids using o by simp

also have ... = s - u - %0 by simp

finally have ids: s -0 =s-pu- %0 .

{

fix z

have 7 2 = %0 (T z) using ST unfolding the-inv-f-f[OF inj] by auto
also have ... = (u os %0) (T z) using o by simp

also have ... = p (T z) - %0 unfolding subst-compose-def by simp

finally have 7 z = pu (T z) - %0 .
} note 7 = this
{
fix t 2 ('f,"v)term
have t -7 =1t - (A z. p (T z) - %0) unfolding 7[symmetric| ..
also have ... = map-vars-term Tt - i - %0 unfolding apply-subst-map-vars-term

subst-subst by (rule term-subst-eq, simp add: subst-compose-def)
finally have t - 7 = map-vars-term Tt - u - %0 .
} note idt = this
{
fix z
assume z € §
then have o z = %0 z by simp
also have ... = (u os %0) x using o by simp
also have ... = i z - %0 unfolding subst-compose-def ..
finally have c z = p z - %0 .
} note o = this
show ?thesis
by (rule exI[of - p], rule exI[of - %0], insert p ids idt o, auto)
qed

abbreviation (input) z-var :: string = string where z-var = Cons (CHR "'z")
abbreviation (input) y-var :: string = string where y-var = Cons (CHR "y"’)
abbreviation (input) z-var :: string = string where z-var = Cons (CHR "'z"')

lemma mgu-var-disjoint-right-string:
fixes s t :: ('f, string) term and o 7 :: ('f, string) subst
assumes s: vars-term s C range z-var U range z-var
and id: s-oc=1¢t-T
shows 3 p 6. mgu s (map-vars-term y-var t) = Some p A
s-o=s-pu-0NNt:('f, string) term. t - T = map-vars-term y-var t - p - §)
N
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(Vz € range z-var U range z-var. o © = 4 x - §)
proof —
have inj: inj y-var unfolding inj-on-def by simp
show ?thesis
by (rule mgu-var-disjoint-right|OF s inj - id], auto)
qed

lemma not-elem-subst-of:

assumes z ¢ set (map fst xs)

shows (subst-of zs) x = Var z

using assms proof (induct xs)

case (Cons y xs)

then show ?case unfolding subst-of-simps

by (metis Term.term.simps(17) insert-iff list.simps(15) list.simps(9) singletonD
subst-compose subst-ident)
qed simp

lemma subst-of-id:
assumes As. s € (set ss) — (Fzt. s = (z, t) ANt = Varz)
shows subst-of ss = Var
using assms proof (induct ss)
case (Cons s ss)
then obtain y ¢ where s:s = (y, t) and t:t = Vary
by (metis list.set-intros(1))
from Cons have subst-of ss = Var
by simp
then show ?case
unfolding subst-of-def foldr.simps o-apply s t by simp
qed simp

lemma subst-of-apply:
assumes (z, t) € set ss
and V(y,s) € set ss. (y=a2 — s=1)
and set (map fst ss) N vars-term t = {}
shows subst-of ss ¢ =t
using assms proof (induct ss)
case (Cons a ss)
show ?case proof(cases (z,t) € set ss)
case True
from Cons(1)[OF True] Cons(3,4) have sub:subst-of ss x = ¢
by (simp add: disjoint-iff)
from Cons(2,4) have fst a ¢ vars-term t
by fastforce
then show ?thesis
unfolding subst-of-simps subst-compose sub by simp
next
case Fulse
then have z ¢ set (map fst ss)
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using Cons(3) by auto

then have sub:subst-of ss x = Var x
by (meson not-elem-subst-of)

from Cons(2) False have a = (z, t)
by simp

then show ?thesis
unfolding subst-of-simps subst-compose sub by simp

qed
qed simp

lemma unify-equation-same:
assumes fst e = snd e
shows unify (E1Qe#E2) ys = unify (E1QFE2) ys
using assms proof (induction E1Qe# E2 ys arbitrary: E1 E2 e ys rule: unify.induct)
case (2 fss gts E bs)
show ?case proof(cases E1)
case Nil
with 2(3) show ?thesis
by (simp add: unify-Cons-same)
next
case (Cons el esl)
then have el:el = (Fun f ss, Fun g ts)
using 2(2) by simp
show ?thesis proof(cases decompose (Fun f ss) (Fun g ts))
case None
then show ?thesis unfolding Cons el by simp
next
case (Some us)
have usius @ E = (us Q esl) Q e # E2
using 2(2) Cons el by simp
from 2(1)[OF Some us 2(3)] show ?thesis unfolding Cons el append-Cons
unify.simps Some by simp
qed
qed
next
case (8 z t F bs)
show ?case proof (cases E1)
case Nil
with 3(4) show ?thesis
by (simp add: unify-Cons-same)
next
case (Cons el esl)
with 3(3) have el:el = (Var z, t)

by simp

with 3(3) Cons have E:F = esl Q e # E2
by simp

show ?thesis proof (cases t = Var z)
case True

from 3(1)[OF True E 3(4)] show ?thesis
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unfolding Cons el True by simp
next
case Fulse
then show ?thesis proof(cases © ¢ vars-term t)
case True
let Zo=(subst x t)
have substs:subst-list %0 E = (subst-list %0 es1) Q (fst e - %0, snd e - %0)
# (subst-list 70 E2)
unfolding E by (simp add: subst-list-def)
from 3(2)[OF False True substs] 3(4) show ?thesis
unfolding Cons el append-Cons unify.simps using Fulse True
by (smt (verit, ccfo-SIG) E fst-eqD snd-eqD subst-list-append substs)
next
case Fulse
then show ?thesis
unfolding Cons el append-Cons unify.simps using 3 Cons by auto
qed
qed
qed
next
case (4 fts z E bs)
show ?Zcase proof(cases E1)
case Nil
with 4(3) show ?thesis
by (simp add: unify-Cons-same)
next
case (Cons el esl)
with 4(2) have el:el = (Fun fts, Var z)

by simp

with 4(2) Cons have F:E = es] Q ¢ # E2
by simp

show ?thesis proof(cases © ¢ vars-term (Fun f ts))
case True

let o=(subst © (Fun fts))
have substs:subst-list %0 E = (subst-list %0 es1) Q (fst e - %0, snd e - %0) #
(subst-list %0 E2)
unfolding FE by (simp add: subst-list-def)
from 4(1)[OF True substs] 4(3) show %thesis
unfolding Cons el append-Cons unify.simps using True
by (metis E fst-conv snd-conv subst-list-append substs)
next
case False
then show ?thesis
unfolding Cons el append-Cons unify.simps using 4 Cons by auto
qed
qed
qed simp

lemma unify-filter-same:
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shows unify (filter (Xe. fst e # snd e) E) ys = unify E ys
proof (induction length E arbitrary: E rule:full-nat-induct)
case I
show ?case proof (cases E)
case (Cons e es)
then show ?thesis proof(cases filter (\e. fst e # snd e) E = E)
case Fulse
then obtain F1 e E2 where E:E = E1 Q e # FE2 and eq:fst e = snd e
by (meson filter-True split-list)
with unify-equation-same have unify E ys = unify (E1 Q E2) ys
by blast
moreover from ! E have unify (filter (\e. fst e # snd e) (E1 Q@ E2)) ys =
unify (E1 @ E2) ys
by (metis (no-types, lifting) add-Suc-right length-append length-nth-simps(2)
order-refl)
moreover have filter (Ae. fst e # snd e) E = filter (\e. fst e # snd e) (F1
@ E2)
unfolding E using eq by auto
ultimately show ?thesis
by presburger
qed simp
qed simp
qed

lemma unify-ctzt-same:
shows unify ((C(s), C(t))#xs) ys = unify ((s, t)#xs) ys
proof (induct C)
case (More f ss1 C ss2)
let Zus=zip (ss1 @ C(s) # ss2) (ss1 @ C(t) # ss2)
have decomp:decompose (Fun f (ss1 @ C(s) # ss2)) (Fun f (ss1 @ C(t) # ss2))
= Some ?us
unfolding decompose-def by (simp add: zip-option-zip-conv)
have unif:unify ((More f ss1 C ss2)(s), (More f ss1 C ss2)(t)) # xs) ys = unify
(us @ zs) ys
unfolding intp-actzt.simps unify.simps decomp by simp
have «:?us = (zip ss1 ss1) @Q (C(s), C(t)) # (zip ss2 s52)
by simp
have filter-us:filter (Xe. fst e # snd e) ?us = filter (Xe. fst e # snd e) [(C(s),
o)
unfolding * filter-append filter.simps by (smt (verit, ccfvo-SIG) filter-False
in-set-zip self-append-conv2)
have filter (\e. fst e # snd e) (PusQus) = filter (Me. fst e # snd e) ((C(s),
C(t))#ws)
unfolding filter-append filter-us filter.simps by simp
with More have unify (fus @ xs) ys = unify ((s, t)#xs) ys
using unify-filter-same by (smt (verit, ccfo-threshold))
with unif show Zcase by simp
qed simp
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3.1.9 Unification of Linear and variable disjoint terms

definition left-substs :: ('f, "v) term = ('f, 'w) term = ("v x ('f, 'w) term) list
where left-substs s t = (let filtered-vars = filter (A(-, p). p € poss t) (zip
(vars-term-list s)(var-poss-list s))
in map (A(z, p). (z, t|-p)) filtered-vars)

definition right-substs :: ('f, 'v) term = (’f, 'w) term = (‘w x ('f, 'v) term) list
where right-substs s t = (let filtered-vars = filter (A(-, q). q¢ € fun-poss s) (zip
(vars-term-list t)(var-poss-list t))
in map (A (y, q). (y, s|-q)) filtered-vars)

abbreviation linear-unifier s t = subst-of ((left-substs s t) Q (right-substs s t))

lemma left-substs-imp-props:
assumes (z, u) € set (left-substs s t)
shows JIp. p € poss s A s|-p = Varx A p € posst A t|-p = u
proof—
from assms obtain p where 1:(z, p) € set (zip (vars-term-list s)(var-poss-list
s)) and 2:p € poss t t|-p = u
unfolding left-substs-def Let-def using Pair-inject case-prodFE filter-set in-set-idz
length-map map-nth-eq-conv member-filter nth-mem old.prod.case by auto
from 1 have p:p € poss s
by (metis set-zip-rightD var-poss-imp-poss var-poss-list-sound)
from I obtain ¢ where i < length (zip (vars-term-list s)(var-poss-list s)) and
(vars-term-list s)!i = x and (var-poss-list s)!i = p
by (smt (23) Pair-inject length-zip mem-Collect-eq set-zip)
then have s|-p = Var x
by (metis length-zip min-less-iff-conj vars-term-list-var-poss-list)
with 2 p show ?thesis
by blast
qed

lemma props-imp-left-substs:
assumes p € poss s and s|-p = Var z and p € poss ¢t and t|-p = u
shows (z, u) € set (left-substs s t)
proof—
from assms obtain ¢ where (var-poss-list s)!i = p and (vars-term-list s)li = x
by (metis in-set-conv-nth length-var-poss-list term.inject(1) var-poss-iff var-poss-list-sound
vars-term-list-var-poss-list)
then have (z, p) € set (zip (vars-term-list s)(var-poss-list s))
by (metis assms(1) assms(2) in-set-idz in-set-zip length-var-poss-list prod.sel(1)
prod.sel(2) term.inject(1) var-poss-iff var-poss-list-sound vars-term-list-var-poss-list)
with assms(3) have (z, p) € set (filter (A(-, p). p € poss t) (zip (vars-term-list
s) (var-poss-list s)))
by simp
then show ?thesis unfolding left-substs-def Let-def assms(4)[symmetric]
by (smt (28) case-prod-conv in-set-conv-nth length-map map-nth-eq-conv)
qed
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lemma right-substs-imp-props:
assumes (z, u) € set (right-substs s t)
shows Jq. g € fun-poss s A s|-¢ = u A q € poss t A t|-g = Varz
proof—
from assms obtain ¢ where 1:(z, q) € set (zip (vars-term-list t)(var-poss-list
t)) and 2:q € fun-poss s s|-¢ = u
unfolding right-substs-def Let-def using Pair-inject case-prodFE filter-set in-set-idx
length-map map-nth-eq-conv member-filter nth-mem old.prod.case by auto
from 1 have q:q € poss t
by (metis set-zip-rightD var-poss-imp-poss var-poss-list-sound)
from ! obtain ¢ where i < length (zip (vars-term-list t)(var-poss-list t)) and
(vars-term-list t)!i = z and (var-poss-list t)!i = ¢
by (smt (23) Pair-inject length-zip mem-Collect-eq set-zip)
then have t|-¢ = Var z
by (metis length-zip min-less-iff-conj vars-term-list-var-poss-list)
with 2 ¢ show ?thesis
by blast
qed

lemma props-imp-right-substs:
assumes ¢ € fun-poss s and s|-¢ = u and ¢ € poss t and t|-¢ = Var z
shows (z, u) € set (right-substs s t)
proof—
from assms obtain ¢ where (var-poss-list t)!i = q and (vars-term-list t)!i =
by (metis in-set-conv-nth length-var-poss-list term.inject(1) var-poss-iff var-poss-list-sound
vars-term-list-var-poss-list)
then have (z, q) € set (zip (vars-term-list t)(var-poss-list t))
by (metis assms(3) assms(4) in-set-conv-nth in-set-zip length-var-poss-list
prod.sel(1) prod.sel(2) term.inject(1) var-poss-iff var-poss-list-sound vars-term-list-var-poss-list)
with assms(1) have (z, q) € set (filter (A(-, p). p € fun-poss s) (zip (vars-term-list
t) (var-poss-list t)))
by simp
then show %thesis unfolding right-substs-def Let-def assms(2)[symmetric]
by (smt (283) case-prod-conv in-set-conv-nth length-map map-nth-eq-conv)
qed

lemma map-fst-left-substs:
set (map fst (left-substs s t)) C vars-term s
unfolding left-substs-def using zip-fst by fastforce

lemma map-snd-left-substs:
assumes t’' € set (map snd (left-substs s t))
shows vars-term t’ C vars-term t
proof—
from assms obtain x where (z, t’) € set (left-substs s t)
by force
then show ?%thesis
using left-substs-imp-props by (metis vars-term-subt-at)
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qed

lemma map-fst-right-substs:
set (map fst (right-substs s t)) C vars-term t
unfolding right-substs-def using zip-fst by fastforce

lemma map-snd-right-substs:
assumes t’' € set (map snd (right-substs s t))
shows vars-term t' C vars-term s
proof—
from assms obtain  where (z, t') € set (right-substs s t)
by force
then show ?thesis
using right-substs-imp-props by (metis fun-poss-imp-poss vars-term-subt-at)
qed

lemma distinct-map-fst-left-substs:
assumes linear-term t
shows distinct (map fst (left-substs t s))
proof—
from linear-term-distinct-vars|OF assms| have dist:distinct (map fst (filter (A(z,
p). p € poss s) (zip (vars-term-list t) (var-poss-list t))))
by (simp add: distinct-map-filter length-var-poss-list)
have map fst (left-substs t s) = (map fst (filter (M(z, p). p € poss s) (zip
(vars-term-list t) (var-poss-list t))))
unfolding left-substs-def Let-def by auto
with dist show ?thesis
by presburger
qed

lemma distinct-map-fst-right-substs:
assumes linear-term t
shows distinct (map fst (right-substs s t))
proof—
from linear-term-distinct-vars|OF assms] have dist:distinct (map fst (filter (\(z,
p). D € fun-poss s) (zip (vars-term-list t) (var-poss-list t))))
by (simp add: distinct-map-filter length-var-poss-list)
have map fst (right-substs s t) = (map fst (filter (A(z, p). p € fun-poss s) (zip
(vars-term-list t) (var-poss-list t))))
unfolding right-substs-def Let-def by auto
with dist show ?thesis
by presburger
qed

lemma is-partition-map-snd-left-substs:

assumes linear-term s linear-term t

shows is-partition (map (vars-term o snd) (left-substs t s))
proof—

{fix i j assume j:j < length (left-substs t s) and i:i < j
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from i j obtain z u where zu:(z, u) = (left-substs t s)!i
by (metis surj-pair)
from ¢ j obtain y v where yv:(y, v) = (left-substs t s)!j
by (metis surj-pair)
from zu ¢ j obtain p where p:p € posst t|-p = Varax p € poss s s|-p = u
using left-substs-imp-props by (metis Suc-lessD less-trans-Suc nth-mem)
from yv i j obtain ¢ where ¢q:q € posst t|-¢ = Vary q € poss s s|-g =v
using left-substs-imp-props by (metis nth-mem)
from assms(2) have distinct (map fst (left-substs t s))
using distinct-map-fst-left-substs by blast
with zu yv i j have = # y
by (metis (mono-tags, lifting) Suc-lessD distinct-map eq-key-imp-eg-value
less-trans-Suc nat-neg-iff nth-eq-iff-index-eq nth-mem)
with p(1,2) ¢(1,2) have p L ¢
by (metis term.inject(1) var-poss-iff var-poss-parallel)
with assms(1) p(3,4) q(3,4) have vars-term (snd ((left-substs t s)!i)) N
vars-term (snd ((left-substs t s)!j)) = {}
by (metis linear-subterms-disjoint-vars snd-eqD zu yv)

then show ?thesis unfolding is-partition-def map-map[symmetric] by auto
qed

lemma is-partition-map-snd-right-substs:
assumes linear-term s linear-term t
shows is-partition (map (vars-term o snd) (right-substs t s))
proof—
{fix ¢ j assume j:j < length (right-substs t s) and :{ < j
from i j obtain z v where zu:(z, u) = (right-substs t s)!i
by (metis surj-pair)
from 7 j obtain y v where yv:(y, v) = (right-substs t s)!j
by (metis surj-pair)
from zu 7 j obtain p where p:p € poss s s|-p = Var z p € fun-poss t t|-p
=u
using right-substs-imp-props by (metis Suc-lessD less-trans-Suc nth-mem)
from yv i j obtain ¢ where q:q € poss s s|-¢ = Vary q € fun-poss t t|-q¢ =

using right-substs-imp-props by (metis nth-mem)
from assms(1) have distinct (map fst (right-substs t s))
using distinct-map-fst-right-substs by blast
with zu yv ¢ j have z # y
by (metis (mono-tags, lifting) Suc-lessD distinct-map eg-key-imp-eq-value
less-trans-Suc nat-neq-iff nth-eq-iff-index-eq nth-mem)
with p(1,2) ¢(1,2) have p 1 ¢
by (metis term.inject(1) var-poss-iff var-poss-parallel)
with assms(2) p(3.,4) q(3,4) have vars-term (snd ((right-substs t s)14)) N
vars-term (snd ((right-substs t s)!j)) = {}
by (metis fun-poss-imp-poss linear-subterms-disjoint-vars snd-eqD xu yv)
}

then show ?thesis unfolding is-partition-def map-map[symmetric] by auto
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qed

lemma distinct-fst-lsubsts-snd-rsubsts:
assumes linear-term s
shows (set (map fst (left-substs s t))) NJ (set (map (vars-term o snd) (right-substs
s b)) = {}
proof—
{fix z u assume (z,u) € set (left-substs s t)
then obtain p where p:p € poss s s|-p = Varz p € posst t|-p = u
by (meson left-substs-imp-props)
{fix y v assume (y,v) € set (right-substs s t)
then obtain ¢ where ¢:q € poss t t|-¢ = Var y ¢ € fun-poss s s|-¢ = v
by (meson right-substs-imp-props)
with p have p 1 ¢
by (metis Term.term.simps(4) append.right-neutral fun-poss-fun-conv fun-poss-imp-poss
parallel-pos prefix-pos-diff var-pos-maximal)
with assms p(1,2) q(3,4) have z ¢ vars-term v
using fun-poss-imp-poss linear-subterms-disjoint-vars by fastforce
}

then have z ¢ |J (set (map (vars-term o snd) (right-substs s t)))
by fastforce

then show ?thesis by fastforce
qed

lemma distinct-fst-rsubsts-snd-lsubsts:
assumes linear-term t
shows (set (map fst (right-substs s t))) N |J (set (map (vars-term o snd)
(left-substs s t))) = {}
proof—
{fix = u assume (z,u) € set (right-substs s t)
then obtain p where p:p € poss t t|-p = Var z p € fun-poss s s|-p = u
by (meson right-substs-imp-props)
{fix y v assume (y,v) € set (left-substs s t)
then obtain ¢ where ¢:q € poss s s|-¢q = Vary q € posst t|-g =v
by (meson left-substs-imp-props)
with p have p 1 ¢
by (metis Term.term.simps(4) append.right-neutral fun-poss-fun-conv fun-poss-imp-poss
parallel-pos prefiz-pos-diff var-pos-maximal)
with assms p(1,2) q(3,4) have z ¢ vars-term v
using fun-poss-imp-poss linear-subterms-disjoint-vars by fastforce
}

then have z ¢ |J (set (map (vars-term o snd) (left-substs s t)))
by fastforce

then show ?thesis by fastforce
qed

lemma linear-unifier-same:
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shows (linear-unifier t t) = Var
proof—
let Zvars-left=filter (A(-, p). p € poss t) (zip (vars-term-list t)(var-poss-list t))
have left: 2vars-left = zip (vars-term-list t)(var-poss-list t)
by (metis (no-types, lifting) filter-True split-beta var-poss-imp-poss var-poss-list-sound
zip-snd)
let Pvars-right=filter (A(-, q). q¢ € fun-poss t) (zip (vars-term-list t)(var-poss-list
)
have right: 2vars-right = ||
by (metis (mono-tags, lifting) DiffE filter-False poss-simps(4) split-beta var-poss-list-sound
zip-snd)
{fix ¢ assume i:i < length (left-substs t t)
let 2xi=vars-term-list t ! {
from ¢ have i < length (vars-term-list t)
unfolding left-substs-def Let-def length-map left by simp
then have left-substs t t | i = (%xi, Var 2xi)
unfolding left-substs-def left Let-def nth-map[OF i[unfolded left-substs-def
Let-def length-map left]]
by (simp add: length-var-poss-list vars-term-list-var-poss-list)
Inote left-subst=this
{fix z
from left-subst have subst-of (left-substs t t) x = Var z
using subst-of-id by (metis left-substs-imp-props prod.collapse)
}

then show ?thesis
unfolding right-substs-def right left-substs-def left by auto
qged

lemma linear-unifier-vari:
shows linear-unifier (Var z) t = subst x ¢
proof—
have left-substs (Var z) t = [(z, t)]
unfolding left-substs-def Let-def vars-term-list.simps var-poss-list.simps by
stmp
moreover have right-substs (Var z) t = ||
unfolding right-substs-def by simp
ultimately show ?thesis
by simp
qed

lemma linear-unifier-var2:
shows linear-unifier (Fun f ts) (Var x) = subst  (Fun f ts)
proof—
have left-substs (Fun f ts) (Var z) = ||
unfolding left-substs-def Let-def poss.simps
by (metis (no-types, lifting) case-prodFE filter-False map-is-Nil-conv set-zip-rightD
singletonD subt-at.simps(1) term.distinct(1) var-poss-iff var-poss-list-sound)
moreover have right-substs (Fun f ts) (Var x) = [(z, Fun f ts)]
unfolding right-substs-def by (simp add: vars-term-list.simps(1))

48



ultimately show ?thesis
by simp
qed

lemma linear-unifier-id:

assumes z ¢ vars-term s and z ¢ vars-term t

shows (linear-unifier s t) x = Var

using assms by (metis (no-types, lifting) Set.basic-monos(7) eval-term.simps(1)
map-fst-left-substs map-fst-right-substs not-elem-subst-of subst-compose subst-of-append)

lemma vars-subst-of:
vars-subst (subst-of ts) C set (map fst ts) U |J (set (map (vars-term o snd) ts))
proof (induct ts)
case Nil
show ?Zcase unfolding subst-of-simps list.map vars-subst-def by simp
next
case (Cons t ts)
have vars-subst (subst (fst t) (snd t)) C {fst t} U (vars-term (snd t))
unfolding vars-subst-def by auto
with Cons show ?case unfolding subst-of-simps using vars-subst-compose
by (smt (verit, del-insts) Un-iff Unionl Union-mono comp-apply empty-iff in-
sert-iff list.set-intros(1) list.simps(9) set-subset-Cons subset-iff)
qed

lemma wvars-subst-linear-unifier: vars-subst (linear-unifier s t) C wvars-term s U
vars-term t
proof—
have vars-subst (linear-unifier s t) C (vars-subst (subst-of (left-substs s t))) U
(vars-subst (subst-of (right-substs s t)))
unfolding subst-of-append using vars-subst-compose by force
moreover have vars-subst (subst-of (left-substs s t)) C vars-term s U vars-term
t
proof—
{fix i assume i < length (left-substs s t)
then have map (vars-term o snd) (left-substs s t) | i C vars-term ¢
using map-snd-left-substs nth-mem by fastforce

then have |J (set (map (vars-term o snd) (left-substs s t))) C vars-term t
by (metis Union-least in-set-conv-nth length-map)
then show ?thesis
using vars-subst-of [of left-substs s t] map-fst-left-substs
by (metis (no-types, lifting) subset-trans sup.mono)
qed
moreover have vars-subst (subst-of (right-substs s t)) C vars-term s U vars-term
t
proof—
{fix ¢ assume i < length (right-substs s t)
then have map (vars-term o snd) (right-substs s t) ! i C vars-term s
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using map-snd-right-substs nth-mem by fastforce
}
then have |J (set (map (vars-term o snd) (right-substs s t))) C vars-term s
by (metis Union-least in-set-conv-nth length-map)
then show ?thesis
using vars-subst-of [of right-substs s t| map-fst-right-substs by fastforce
qed
ultimately show ?thesis by blast
qed

lemma decompose-is-partition-vars-subst:
assumes lin:linear-term (Fun f ss) linear-term (Fun g ts)
and disj:vars-term (Fun f ss) N vars-term (Fun g ts) = {}
and ds:decompose (Fun f ss) (Fun g ts) = Some ds
shows is-partition (map vars-subst (map (A(s,t). linear-unifier s t) ds))
proof—
from assms have zip:ds = zip ss ts and [:length ss = length ts
using decompose-Some by blast+
{fix i j assume j:j < length ss and :i < j
from ¢ j obtain si ti where s-t-i:(si, ti) = ds ! issli=sits! i =t
using [ zip by force
from j obtain sj tj where s-t-j:(sj, tj) = ds ! jss!j=sjts! j=1tj
using [ zip by force
have vars-term si N vars-term tj = {}
using i j s-t-i s-t-j disj | by fastforce
moreover have vars-term si N vars-term sj = {}
using lin(1) s-t-i s-t-j i j var-in-linear-args by fastforce
moreover have vars-term ti N vars-term tj = {}
using lin(2) s-t-i s-t-j i j | var-in-linear-args by fastforce
moreover have vars-term ti N vars-term sj = {}
using 7 j s-t-i s-t-j disj | by fastforce
ultimately have vars-subst (linear-unifier si ti) N vars-subst (linear-unifier sj
b) = {}
using vars-subst-linear-unifier by (smt (verit, ccfu-threshold) Un-iff disjoint-iff
in-mono)
then have vars-subst (map (A(s,t). linear-unifier s t) ds ! i) N vars-subst (map
(A(s,t). linear-unifier s t) ds! j) = {}
using 7 j s-t-j s-t-i | zip by auto
}

then show ?thesis unfolding is-partition-def map-map[symmetric] length-map
zip using [ by auto
qged

lemma compose-exists-subst:
assumes compose os ¢ # Var
shows 37 < length os. (Vj < i. (0slj) ¢ = Var z) A (osli) x # Var x
using assms proof (induct os)
case (Cons o o)
then show ?case proof(cases o x = Var z)
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case True
from Cons(2) have compose s © # Var x
unfolding compose-simps subst-compose True by simp
with Cons(1) obtain ¢ where i:i<length os Vj<i. (cs!j) x = Var z (os! i)
z # Var z by blast
with True have Vj < Suc i. ((c#0s) ! j) v = Var x
by (metis less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc)
with ¢ show ?thesis by auto
qed auto
qed simp

lemma subst-of-exists-binding:
assumes subst-of xs y # Var y
shows 37 < length xs. fst (zsli) = y A (Y € set (drop (i+1) zs). fst x # y)
using assms proof (induct xs rule:rev-induct)
case (snoc z zs)
then show ?case proof(cases fst x = y)
case Fulse
with snoc(2) have subst-of zs y # Var y
unfolding subst-of-append subst-compose
by (metis (no-types, lifting) empty-iff eval-term.simps(1) insert-iff subst-compose
subst-ident subst-of-simps(1,3) term.set(3))
with snoc(1) obtain i where i:i < length zs fst (zsli) = y Yz € set (drop
(i4+1) zs). fst z # y by blast
from (1) have drop (i+1) (zsQ[z]) = drop (i+1) zs @ [z] by auto
with i(8) False have ¥z € set (drop (i+1) (zsQ[z])). fst z # y by simp
with (1,2) show ?thesis
by (metis append-Cons-nth-left length-append-singleton less-Suc-eg-le less-imp-le-nat)
qged auto
qed simp

lemma linear-unifier-obtain-binding:
assumes disj:vars-term s N vars-term t = {} and lin-s:linear-term s and lin-t:linear-term
t
and u:(linear-unifier s t) x = v u # Var x
shows (z € vars-term s A (z,u) € set (left-substs s t)) V (z € vars-term t A
(z,u) € set (right-substs s t))
proof—
consider = € vars-term s | © € vars-term t | © ¢ vars-term s A x ¢ vars-term t
by fastforce
then show ?thesis proof(cases)
case I
with disj have = ¢ vars-term ¢ by blast
then have right:subst-of (right-substs s t) © = Var x
by (meson in-mono map-fst-right-substs not-elem-subst-of)
with u have subst-of (left-substs s t) x # Var z
by (simp add: subst-compose)
then obtain ¢ u’ where i:i < length (left-substs s t) (left-substs s t)li = (x,
u’) ¥ subst € set (drop (i+1) (left-substs s t)). fst subst # x
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using subst-of-exists-binding by (metis (mono-tags, opaque-lifting) eq-fst-iff)

then obtain 1 [2 where [1:l1 = take i (left-substs s t) and [2:12 = drop
(i4+1) (left-substs s t)

and [112:left-substs s t = 11 Q [(z,u”)] @ [2 using id-take-nth-drop by fastforce

from (%) have [2-subst:subst-of 12 © = Var z unfolding 12 by (meson nth-mem
subst-of-exists-binding)
then have 1:subst-of (left-substs s t) x = u’ - (subst-of I1)
unfolding 1112 subst-of-append subst-compose 12-subst eval-term.simps by
simp
from i(1,2) obtain p where p:p € poss t t|-p = u’ using left-substs-imp-props
by (metis nth-mem)
from disj p have set (map fst (left-substs s t)) N (vars-term v') = {}
by (meson disjoint-iff map-fst-left-substs subsetD vars-term-subt-at)
then have 2:u’ - (subst-of l1) = u’
unfolding 11 by (smt (verit, best) disjoint-iff in-set-takeD not-elem-subst-of
subst-apply-term-empty take-map term-subst-eq)
then have u’:subst-of (left-substs s t) z = u’
using 1 2 by simp
from i(1,2) have u'-elem:(z, u’) € set (left-substs s t) by (metis nth-mem)
with v’ u show ?thesis
unfolding subst-of-append subst-compose right eval-term.simps
by (meson map-fst-left-substs not-elem-subst-of subset-iff)
next
case 2
with disj have z ¢ vars-term s by blast
then have subst-of (left-substs s t) x = Var x
by (meson in-mono map-fst-left-substs not-elem-subst-of)
with v have subst-of (right-substs s t) x # Var
by (metis subst-compose subst-monoid-mult.mult.left-neutral subst-of-append)
then obtain i ' where i:i < length (right-substs s t) (right-substs s t)!i = (z,
u’) V subst € set (drop (i+1) (right-substs s t)). fst subst # x
using subst-of-exists-binding by (metis (mono-tags, opaque-lifting) eq-fst-iff)
then obtain [ 12 where 11:11 = take i (right-substs s t) and [2:12 = drop
(i4+1) (right-substs s t)
and [112:right-substs s t = 11 @ [(z,u’)] Q [2 using id-take-nth-drop by
fastforce
from (%) have [2-subst:subst-of 12 © = Var z unfolding 12 by (meson nth-mem
subst-of-exists-binding)
then have 1:subst-of (right-substs s t) x = u’ - (subst-of I1)
unfolding 1112 subst-of-append subst-compose 12-subst eval-term.simps by
simp
from i(1,2) obtain p where p:p € poss s s|-p = u’
using right-substs-imp-props by (metis fun-poss-imp-poss nth-mem)
from disj p have set (map fst (right-substs s t)) N (vars-term u’) = {}
by (meson disjoint-iff map-fst-right-substs subsetD vars-term-subt-at)
then have 2:u’ - (subst-of l1) = u’
unfolding /1 by (smt (verit, best) disjoint-iff in-set-takeD not-elem-subst-of
subst-apply-term-empty take-map term-subst-eq)
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then have u’:subst-of (right-substs s t) z = u’

using 1 2 by simp
from i(1,2) have u'-elem:(z, u’) € set (right-substs s t) by (metis nth-mem)
then have set (map fst (left-substs s t)) N (vars-term u') = {}

using distinct-fst-lsubsts-snd-rsubsts|OF lin-s] by (smt (verit, ccfv-SIG)
Union-iff comp-apply disjoint-iff in-set-conv-nth length-map nth-map snd-conv)

then have u’ - (subst-of (left-substs s t)) = u’

by (metis disjoint-iff not-elem-subst-of subst-apply-term-empty term-subst-eq)

with u u’-elem show ?thesis
unfolding subst-of-append subst-compose u’ by (metis map-fst-right-substs
not-elem-subst-of subset-eq u’)
next
case 3
then have z ¢ set (map fst ((left-substs s t) @ (right-substs s t)))
using map-fst-left-substs map-fst-right-substs by fastforce
then have (linear-unifier s t) © = Var z
by (meson not-elem-subst-of)
with u show ?thesis by simp
qed
qed

connection between left-substs and right-substs and decomposition of func-
tions

lemma decompose-left-substs:
assumes decompose (Fun f ss) (Fun g ts) = Some ds
shows set (left-substs (Fun f ss) (Fun g ts)) = (| e€set ds. set (left-substs (fst
e) (snd ¢€))) (is ?left = %right)
proof
from assms have ds:ds = zip ss ts
using decompose-Some by auto
show ?left C ?right proof
fix z t assume (z,t) € set (left-substs (Fun f ss) (Fun g ts))
then obtain p where 1:p € poss (Fun f ss) and 2:(Fun f ss)|-p = Var z and
3:p € poss (Fun g ts) and 4:(Fun g ts)|-p =t
by (meson left-substs-imp-props)
from 1 2 obtain j p’ where j1:j < length ss and p = j#p’ and p’ € poss
(sslj) and (sslj)|-p’ = Var z
by auto
moreover with 3 / have j2:j < length ts and p’ € poss (ts!j) and (¢s!f)|-p’
=1
by auto
ultimately have (z,t) € set (left-substs (ss!j) (ts!j))
by (meson props-imp-left-substs)
moreover have ((sslf),(tslf)) € set ds
unfolding ds using jI j2 by (metis length-zip min-less-iff-conj nth-mem
nth-zip)
ultimately show (z,t) € (| e€set ds. set (left-substs (fst e) (snd e€)))
by force
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qed
show ?right C ?left proof
fix z t assume (z,t) € (|Je€set ds. set (left-substs (fst e) (snd €)))
then obtain j where jI:j < length ss and j2:j < length ts and (x,t) € set
(left-substs (sslj) (ts!4))
unfolding ds by (metis (no-types, lifting) UN-E in-set-zip)
then obtain p where 1:p € poss (ss!j) and 2:(sslj)|-p = Var z and 3:p €
poss (tslf) and 4:(tslf)|-p = ¢
by (meson left-substs-imp-props)
then have j#p € poss (Fun f ss) and (Fun f ss)|-(j#p) = Var x and (j#p) €
poss (Fun g ts) and (Fun g ts)|-(j#p) = t
using jI j2 by auto
then show (z,t) € set (left-substs (Fun f ss) (Fun g ts))
by (meson props-imp-left-substs)
qed
qed

lemma decompose-right-substs:
assumes decompose (Fun f ss) (Fun g ts) = Some ds
shows set (right-substs (Fun f ss) (Fun g ts)) = (U e€set ds. set (right-substs
(fst e) (snd e))) (is ?left = ?right)
proof
from assms have ds:ds = zip ss ts
using decompose-Some by auto
show ?left C ?right proof
fix = t assume (z,t) € set (right-substs (Fun f ss) (Fun g ts))
then obtain ¢ where 1:q € fun-poss (Fun f ss) and 2:(Fun f ss)|-¢ = t and
3:q € poss (Fun g ts) and /:(Fun g ts)|-¢ = Var z
by (meson right-substs-imp-props)
from 3 4 obtain j ¢’ where j1:j < length ts and ¢ = j#¢’ and ¢’ € poss
(ts!j) and (ts!j)|-¢' = Var
by auto
moreover with 1 2 have j2:j < length ss and ¢’ € fun-poss (ss!j) and
(sstj)|-q’ = ¢
by auto
ultimately have (z,t) € set (right-substs (sslj) (ts!4))
by (meson props-imp-right-substs)
moreover have ((sslj),(ts!j)) € set ds
unfolding ds using jI j2 by (metis length-zip min-less-iff-conj nth-mem
nth-zip)
ultimately show (z,t) € (| e€set ds. set (right-substs (fst e) (snd e)))
by force
qed
show ?right C ?left proof
fix z t assume (z,t) € (|J e€set ds. set (right-substs (fst e) (snd €)))
then obtain j where jI:j < length ss and j2:j < length ts and (z,t) € set
(right-substs (sslj) (tsl4))
unfolding ds by (metis (no-types, lifting) UN-E in-set-zip)
then obtain ¢ where 1:q € fun-poss (sslj) and 2:(sslj)|-¢ = ¢t and 3:¢q €
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poss (tslj) and 4:(tslj)|-¢ = Var
by (meson right-substs-imp-props)
then have j#q € fun-poss (Fun f ss) and (Fun f ss)|-(j#q) = t and (j#q) €
poss (Fun g ts) and (Fun g ts)|-(j#q) = Var x
using jI j2 by auto
then show (z,t) € set (right-substs (Fun f ss) (Fun g ts))
by (meson props-imp-right-substs)
qed
qed

lemma subst-compose-id:
assumes A\7. T € set Ts =t - T =1
shows ¢ - (compose Ts) = ¢
using assms by (induct Ts) simp-all

lemma subst-compose-distinct-vars:
assumes o = compose Ts and part:is-partition (map vars-subst Ts)
and 7i:7i € set Tsand sitiz = s s # Varz
shows o z = s
proof—
from 77 obtain i where i:¢ < length 7s 7s! i = 74
by (metis in-set-idz)
then have 7s:7s = (take i 7s) Q 7i # (drop (Suc i ) 7s)
using id-take-nth-drop by blast
from s have z-vars-subst:z € vars-subst Ti
by (metis fun-upd-same fun-upd-triv subst-apply-term-empty subst-compose
vars-subst-compose-update)
{fix j assume j < ¢
with part { z-vars-subst have = ¢ vars-subst (7s! j)
unfolding is-partition-alt is-partition-alt-def
by (metis (no-types, lifting) Int-iff dual-order.strict-trans equalsOD is-partition-def
length-map nth-map part)
then have (7s!j) ¢ = Varz
unfolding vars-subst-def by (meson Unll notin-subst-domain-imp-Var)
}

then have take-i-Ts:compose (take i 78) © = Var x
using subst-compose-id|of take i Ts Var z] using in-set-idz by force
{fix y assume y € vars-term s
with s have y-vars-subst:y € vars-subst Ti
unfolding vars-subst-def by (metis UnI2 Union-iff image-eql notin-subst-domain-imp- Var
subst-range.simps)
{fix j assume i < jj < length s
with part ¢ y-vars-subst have y ¢ vars-subst (rs ! j)
unfolding is-partition-alt is-partition-alt-def
by (metis (no-types, lifting) Int-iff equalsOD is-partition-def length-map
nth-map part)
then have (rs!j) y = Vary
unfolding vars-subst-def by (meson Unll notin-subst-domain-imp-Var)
}
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then have compose (drop (Suc i) 7s) y = Vary
using subst-compose-id[of drop (Suc i) 7s Var y] using in-set-idx by force
}

then have s - (compose (drop (Suc i) 75)) = s
by (simp add: term-subst-eq)
with take-i-ts s(1) i show %thesis
by (metis s assms(1) compose-append compose-simps(3) eval-term.simps(1)
subst-compose)
qed

lemma subst-id-compose:
assumes o = compose Ts and part:is-partition (map vars-subst Ts)
andt-o =1
and 7 € set Ts
shows t -7 =1
using assms subst-compose-distinct-vars by (metis (full-types) subst-apply-term-empty
term-subst-eq-conv)

lemma compose-subst-of:
assumes set ss = | (set  set ss’)
and is-partition (map (vars-term o snd) ss) and distinct (map fst ss)
and set (map fst ss) N |J (set (map (vars-term o snd) ss)) = {}
and is-partition (map vars-subst (map subst-of ss’))
shows subst-of ss = compose (map subst-of ss’) (is %0 = 1)
proof
fix z
show %0 z = %7 x proof(cases z € set (map fst ss))
case True
then obtain s where s:(z, s) € set ss
by fastforce
then have o-2:%0 = = s
using assms(3) by (smt (verit) UN-I assms(4) case-prodl2 disjoint-iff
eq-key-imp-eq-value list.set-map o-apply prod.sel(2) subst-of-apply)
from s have s-z:s # Var x
using assms(4) by fastforce
from s obtain ssi where ssi:(x, s) € set ssi ssi € set ss’
using assms(1) by auto
then have subst-of ssi x = s
using assms(1,3,4) by (smt (verit, ccfo-threshold) UN-I case-prodI2 disjoint-iff
eq-key-imp-eq-value image-iff list.set-map o-apply snd-conv subst-of-apply)
with assms(5) have 77 z = s
using subst-compose-distinct-vars ssi(2) s-x by (smt (verit, del-insts) in-set-idx
length-map nth-map nth-mem)
with o-z show ?thesis by simp
next
case Fulse
then have o-2:%0 © = Var x
by (simp add: not-elem-subst-of )
{fix ssi assume ssi € set ss’
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with Fulse assms(1) have x ¢ set (map fst ssi)
by auto
then have (subst-of ssi) v = Var z
by (simp add: not-elem-subst-of)
}
then have 27 2 = Var z
using subst-compose-id by (smt (verit, ccfv-SIG) eval-term.simps(1) image-iff
list.set-map)
with o-z show ?thesis by simp
qged
qged

lemma linear-term-decompose-subst-id:
assumes lin:linear-term (Fun f ss) linear-term (Fun g ts)
and disj:vars-term (Fun f ss) N vars-term (Fun g ts) = {}
and decompose (Fun f ss) (Fun g ts) = Some ds
and 7:¢ < length ds and o:0 = linear-unifier (fst (dsli)) (snd (ds!i))
and j:j < length dsj # i
shows fst (dslj) - o = fst (dslj) A snd (dslj) - 0 = snd (ds!j)
proof—
from assms have zip:ds = zip ss ts and [:length ss = length ts
using decompose-Some by blast+
from i j obtain si ti where s-t-i:ds | i = (si, ti) ss ! i =sits! i =1ti
using [ zip by force
from j obtain sj tj where s-t-j:ds | j = (sf, tj) ss!j=sjts! j=1tj
using [ zip by force
have vars-term sj N vars-term ti = {}
using i j s-t-i s-t-j disj | zip by fastforce
moreover have vars-term sj N vars-term si = {}
using lin(1) s-t-i s-t-j i j var-in-linear-args
by (metis Int-emptyl | length-map map-fst-zip zip)
moreover have vars-term tj N vars-term ti = {}
using lin(2) s-t-i s-t-j i j | var-in-linear-args
by (metis Int-emptyl | length-map map-fst-zip zip)
moreover have vars-term tj N vars-term si = {}
using ¢ j s-t-i s-t-j disj | zip by fastforce
moreover from o s-t-¢ have vars-subst o C vars-term si U vars-term ti
by (metis fst-conv snd-conv vars-subst-linear-unifier)
ultimately show ?thesis
unfolding s-t-i s-t-j fst-conv snd-conv
by (metis inf-sup-distrib1 subst-apply-term-ident sup.absorb-iff2 sup-bot.neutr-eq-iff
vars-subst-def)
qed

lemma linear-unifier-decompose:
assumes linear-term (Fun f ss) linear-term (Fun g ts)
and disj:vars-term (Fun f ss) N vars-term (Fun g ts) = {}
and ds:decompose (Fun f ss) (Fun g ts) = Some ds
shows linear-unifier (Fun f ss) (Fun g ts) = compose (map (A(s,t). linear-unifier
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st) ds)
proof—
let ?ls=left-substs (Fun f ss) (Fun g ts) and ?rs=right-substs (Fun f ss) (Fun g
ts)
have left:set ?ls = (|J (s, t)€set ds. set (left-substs s t))
using decompose-left-substs|OF ds| by auto
have right:set ?rs = (|J (s, t)€set ds. set (right-substs s t))
using decompose-right-substs|OF ds] by auto
from left right have sets:set (?ls @Q ?rs) = |J (set  set (map (A\(s, t). left-substs
st @Q right-substs s t) ds))
by auto
{fix [ assume [ € (set (map (vars-term o snd) ?Is))
then obtain ¢’ where ¢’ € set (map snd ?ls) and vars-term t' = |
by auto
then have [ C vars-term (Fun g ts)
using map-snd-left-substs by blast
}

then have 1:\J (set (map (vars-term o snd) ?ls)) C vars-term (Fun g ts)
using Union-least by blast
{fix r assume r € (set (map (vars-term o snd) ?rs))
then obtain ¢’ where ¢’ € set (map snd ?rs) and vars-term t' = r
by auto
then have r C vars-term (Fun f ss)
using map-snd-right-substs by blast

then have 2:\J (set (map (vars-term o snd) %rs)) C vars-term (Fun f ss)
using Union-least by blast
have snd-disj:\J (set (map (vars-term o snd) ?ls)) N J (set (map (vars-term o
snd) ?rs)) = {}
using 1 2 assms(3) by blast
then have part:is-partition (map (vars-term o snd) (?ls Q ?rs))
using is-partition-append[OF is-partition-map-snd-left-substs|OF assms(2,1)]
is-partition-map-snd-right-substs| OF assms(2,1)]]
unfolding length-map map-append by (simp add: Union-disjoint)
have dist:distinct (map fst (?ls Q ?rs))
using distinct-append distinct-map-fst-left-substs| OF assms(1)] distinct-map-fst-right-substs| OF
assms(2)] map-fst-left-substs map-fst-right-substs
by (smt (verit, del-insts) disj inf.orderE inf-assoc inf-bot-right inf-left-commute
map-append)
have set (map fst ?ls) N |J (set (map (vars-term o snd) ?ls)) = {}
by (meson 1 disj disjoint-iff map-fst-left-substs subsetD)
moreover have set (map fst ?ls) N |J (set (map (vars-term o snd) ?rs)) = {}
using assms(1) distinct-fst-lsubsts-snd-rsubsts by blast
moreover have set (map fst ?rs) N |J (set (map (vars-term o snd) ?rs)) = {}
by (meson 2 disj disjoint-iff map-fst-right-substs subsetD)
moreover have set (map fst ?rs) N |J (set (map (vars-term o snd) ?s)) = {}
using assms(2) distinct-fst-rsubsts-snd-lsubsts by blast
ultimately have disj:set (map fst (?ls Q@ ?rs)) N |J (set (map (vars-term o snd)

(?ls @ ?rs))) = {}
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unfolding map-append set-append by (simp add: boolean-algebra.conj-disj-distrib
boolean-algebra.conj-disj-distrib2)
have part2:is-partition (map vars-subst (map subst-of (map (A(s, t). left-substs
s t @Q right-substs s t) ds)))
using decompose-is-partition-vars-subst|OF assms(1,2,3,4)]
by (metis (mono-tags, lifting) case-prod-beta length-map map-nth-eg-conv)
show ?thesis using compose-subst-of [OF sets part dist disj part2]
by (smt (verit, del-insts) case-prod-unfold length-map map-nth-eq-conv)
qed

Main lemma: for a list of unifiable terms that are linear and have distinct
variables, the unification algorithm yields the same result as composing the
list of substitutions obtained by linear-unifier.

lemma unify-linear-terms:
assumes unify es substs = Some res
and compose (subst-of substs # (map (A(s,t). linear-unifier s t) es)) = 7
and V¢ € set (map fst es) U set (map snd es). linear-term t
and \ijo. i < j= j < length es = o = linear-unifier (fst (esli)) (snd
(esli)) =
(fst (esly)) - o = fst (eslj) A (snd (esf)) - o = snd (es!j)
and Ai. ¢ < length es => vars-term (fst (es!?)) N vars-term (snd (esli)) = {}
shows subst-of res = 7
using assms proof (induct arbitrary: res substs T rule:unify.induct)
case (2fssgtsE)
from 2(2) obtain ds where ds’:decompose (Fun f ss) (Fun g ts) = Some ds
unfolding unify.simps by fastforce
then have ds:ds = zip ss ts and [:length ss = length ts
by fastforce+
with 2(4) have Vit € set (map fst ds). linear-term ¢
using map-fst-zip by (metis (no-types, lifting) UnCI fst-conv linear-term.simps(2)
list.set-intros(1) list.simps(9))
moreover from 2(4) ds | have Vit € set (map snd ds). linear-term t
using map-snd-zip by (metis (no-types, lifting) UnCI linear-term.simps(2)
list.set-intros(1) list.simps(9) snd-conv)
ultimately have lin:V acset (map fst (ds Q@ E)) U set (map snd (ds Q@ E)).
linear-term a
using 2(4) by (metis UnE Unll Unl2 list.set-intros(2) list.simps(9) map-append
set-append)
have lin-f-g:linear-term (Fun f ss) linear-term (Fun g ts)
using 2(4) by auto
from 2(6) have vars:vars-term (Fun f ss) N vars-term (Fun g ts) = {}
by fastforce
from ds’ 2(2) have unif:unify (ds Q@ E) substs = Some res
by auto
have compose (map (Aa. case a of (s, t) = linear-unifier s t) ds) = linear-unifier
(Fun f ss) (Fun g ts)
using linear-unifier-decompose| OF lin-f-g vars ds’] by fastforce
then have 72:compose (subst-of substs # map (Aa. case a of (s, t) = lin-
ear-unifier s t) (ds @ F)) =1
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using 2(8) compose-append by simp
{fix i j 0 assume i:i < j and j:j < length (ds @ E) and o:0 = linear-unifier
(fst ((ds @ E) ! 1)) (snd ((ds @ E) ! 7))
have fst ((ds @ E) 1 j) -0 = fst (ds@Q E) ! j) A snd ((ds Q@ E) ! j) - 0 = snd
((ds @ E) 1 j)
proof(cases i < length ds)
case True
then have o:0 = linear-unifier (fst (ds! 7)) (snd (ds ! i))
by (simp add: o dual-order.strict-trans i nth-append)
show ?thesis proof(cases j < length ds)
case True
have lin:linear-term (Fun f ss) linear-term (Fun g ts)
using 2(4) by simp+
show ?thesis
using linear-term-decompose-subst-id[OF lin vars ds’ <i < length ds) o
True] i True
by (simp add: j nat-neg-iff nth-append)
next
case Fulse
let ?j'=j — length ds
let ?r=linear-unifier (Fun f ss) (Fun g ts)
from Fulse j have ?j’ < length F
by fastforce
then have fst:fst (E! 2j') - 27 = fst (E! %j') and snd:snd (E ! %j) - 21
=snd (E! %)
using 2(5) by force+
have fst (E! %)) - 0 = fst (E| %j')
using subst-id-compose[OF linear-unifier-decompose[OF lin-f-g vars ds’|
decompose-is-partition-vars-subst| OF lin-f-g vars ds']]
by (smt (verit, best) True o ds fst in-set-conv-nth | length-map map2-map-map
map-fst-zip map-snd-zip nth-map)
moreover have snd (E! %j') - 0 = snd (E ! %j')
using subst-id-compose|OF linear-unifier-decompose[OF lin-f-g vars ds’]
decompose-is-partition-vars-subst| OF lin-f-g vars ds']]
by (smt (verit, best) True o ds snd in-set-conv-nth [ length-map map2-map-map
map-fst-zip map-snd-zip nth-map)
ultimately show ?thesis
by (simp add: False nth-append)
qed
next
case Fulse
let ?i'=i — length ds
have i": %’ < length E
using Fualse i j by force
from o have o’.c = linear-unifier (fst (E'! %)) (snd (E ! ?i'))
by (simp add: False nth-append)
let ?j'=j — length ds
from Fulse i j have ?i’ < %2}’
by simp
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moreover with j have ?j' < length E
by fastforce
ultimately show ?thesis
using 2(5) i’ o’ by (smt (verit, best) length-nth-simps(2) nat-diff-split
not-less-eq not-less-zero nth-Cons-Suc nth-append)
qed
}
moreover
{ fix i assume 7:i < length (ds Q E)
have vars-term (fst ((ds Q@ E) ! ©)) N vars-term (snd ((ds @ E) ! 7)) = {}
proof(cases i < length ds)
case True
with ds have vars-term (fst (ds!i)) C vars-term (Fun f ss)
using nth-mem by auto
moreover from True ds have vars-term (snd (dsli)) C vars-term (Fun g ts)
using nth-mem by auto
ultimately show ?thesis
using 2(6) True by (metis Int-mono bot.extremum-uniquel nth-append vars)
next
case Fulse
let ?i'=i — length ds
have i":%i’ < length E
using Fualse i by force
with 2(6) have vars-term (fst (E! 2i)) N vars-term (snd (E! %)) = {}
by force
then show ?thesis
by (simp add: False nth-append)
qed
}
ultimately show Zcase
using 2(1)[OF ds’ unif 72 lin] by blast
next
case (3ztE)
show ?Zcase proof(cases t = Var z)
case True
from 3(3) have unif:unify E substs = Some res
unfolding True unify.simps by simp
from 3(4) have 72:compose (subst-of substs # map (Aa. case a of (s, t) =
linear-unifier s t) E) = 1
unfolding True append-Cons list.map compose-simps using linear-unifier-same
by (metis Var-subst-compose old.prod.case)
from 3(5) have lin:V acset (map fst E) U set (map snd E). linear-term a

by simp
from 3(6) have A\i 0. i < length E = o = linear-unifier (fst (E ! 7)) (snd
(Eli) =
(Vj<length E. i < j—> fst (E'j)-c=fst (E!j)Asnd (E!j) 0=
snd (E 7))

by (metis length-nth-simps(2) not-less-eq nth-Cons-Suc)
moreover have (Ai. i < length E = vars-term (fst (E ! i)) N vars-term (snd
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(B 1) = {})
using 3(7) by fastforce
ultimately show ?thesis using 3(1)[OF True unif 72 lin] by simp
next
case Fulse
with 3(3) have z:z ¢ vars-term ¢
by fastforce
with 3(3) False have unif:unify (subst-list (subst x t) E) ((x, t) # substs) =
Some res
by simp
let %o0=(subst x t)
have o:linear-unifier (Var z) t = %o
using linear-unifier-varl by simp
from 3(7) have subst-list:subst-list (subst x t) E = E
proof—
{fix j assume j < length E
then have j:Suc j < length ((Var z, t) # E)
by simp
with 3(6)[of 0 Suc j ?0] o have fst (E ! j) - %0 = fst (E ! j) A snd (E!j)
- %0 = snd (E!j)
by (metis fst-conv length-nth-simps(2) nth-Cons-0 nth-Cons-Suc snd-conv
zero-less-Suc)
}
then show ?thesis
unfolding subst-list-def by (simp add: map-nth-eg-conv)
qged
have 72:compose (subst-of ((x, t) # substs) # map (Aa. case a of (s, t) =
linear-unifier s t) (subst-list (subst z t) E)) = 7
using 3(4) unfolding subst-list list.map prod.case o subst-of-simps(3) com-
pose-append fst-conv snd-conv compose-simps(1,3)
using subst-compose-assoc by blast
from 3(5) have lin:V a€set (map fst (subst-list (subst x t) E)) U set (map snd
(subst-list (subst z t) E)). linear-term a
unfolding subst-list by simp
{fix i j 0 assume i:i < j and j:j < length E and ¢'":c = linear-unifier (fst
(E!9) (snd (E i)
with 3(6) have 1: fst (Ej)-o=fst (E!j) Asnd (E!j) -0 =snd (E!}j)
by (metis length-nth-simps(2) not-less-eq nth-Cons-Suc)
}

moreover have (Ai. i < length E = vars-term (fst (E'! ¢)) N vars-term (snd
(E17) ={})
using 3(7) by fastforce
ultimately show Zthesis
using 3(2)[OF False x unif 72 lin] 3(7) unfolding subst-list subst-of-simps(3)
by simp
qed
next
case (4 ftsx E)
from 4(2) have z:x ¢ vars-term (Fun f ts)

62



by fastforce
with 4(2) have unif:unify (subst-list (subst x (Fun f ts)) E) ((z, Fun f ts) #
substs) = Some res
by auto
let %o=(subst z (Fun [ ts))
have o:linear-unifier (Fun fts) (Var z) = %
using linear-unifier-var2 by simp
have subst-list:subst-list (subst z (Fun fts)) E = F
proof—
{fix j assume j < length E
then have Suc j < length ((Fun fts, Var x) # E)
by simp
with 4(5) o have fst (E!j) - %0 = fst (E!j) A snd (E!j)- %0 = snd (E
1))
by (metis fst-conv length-nth-simps(2) nth-Cons-0 nth-Cons-Suc snd-conv
zero-less-Suc)
}
then show ?thesis
unfolding subst-list-def by (simp add: map-nth-eg-conv)
qed
have 72:compose (subst-of ((z, Fun f ts) # substs) # map (Aa. case a of (s, t)
= linear-unifier s t) (subst-list (subst x (Fun fts)) E)) =7
using 4(3) unfolding subst-list list.map prod.case o subst-of-simps(8) com-
pose-append fst-conv snd-conv compose-simps(1,3) by (simp add: subst-compose-assoc)
from 4(4) have lin:V acset (map fst (subst-list (subst x (Fun f ts)) E)) U set
(map snd (subst-list (subst x (Fun fts)) E)). linear-term a
unfolding subst-list by simp
{fix i j 0 assume i:i < j and j:j < length E and o':0 = linear-unifier (fst (E
14)) (snd (E ! 7))
with 4(5) have 1:fst (E!j)-oc=fst (E!j) Asnd (E!j) -0 =snd (E!})
by (metis length-nth-simps(2) not-less-eq nth-Cons-Suc)
}

moreover have (Ai. i < length E = vars-term (fst (E ! 7)) N vars-term (snd
(B 1) = {})
using 4 (6) by fastforce
ultimately show ?case
using 4 (1)[OF z unif 72 lin] 4(6) unfolding subst-list by simp
qed auto

lemma mgu-distinct-vars-term-list:
assumes unif:unifiers {(s, t)} # {}
and distinct:distinct ((vars-term-list s) Q (vars-term-list t))
shows mgu s t = Some (linear-unifier s t)
proof—
let ?tau=linear-unifier s t
from unif have mgu s t # None
by (meson mgu-complete)
then obtain us where us:unify [(s, t)] [| = Some us
unfolding mgu-def by fastforce
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have tau:compose (subst-of [| # map (A(s, t). linear-unifier s t) [(s, t)]) = %tau
by simp

have [lin:V teset (map fst [(s, t)]) U set (map snd [(s, t)]). linear-term t
using distinct distinct-vars-linear-term by auto

have vars-term s N vars-term t = {}
using distinct by simp

then have subst-of us = ?tau
using unify-linear-terms[OF us tau lin] by simp

then show ?thesis
using us by (simp add: mgu-def)

qged

end

3.1.10 Sets of Unifiers

theory Unifiers-More
imports
First-Order-Terms. Term-More
First-Order-Terms. Unifiers
begin

lemma is-mgul:
fixes o :: ('f, 'v) subst
assumes V(s,t) € E.s-o=t-o0
and A7 ('f, 'v) subst. V(s,t) € E.s- 7=t 7= Fv: ('f, v) subst. 7 =
0 0s Y
shows is-mgu 0 £
using assms by (fastforce simp: is-mgu-def unifiers-def)

lemma subst-set-insert [simpl:
subst-set o (insert e E) = insert (fst e - o, snd e - o) (subst-set o E)
by (auto simp: subst-set-def)

lemma unifiable-UnD [dest]:
unifiable (M U N) = unifiable M A unifiable N
by (auto simp: unifiable-def)

lemma supt-imp-not-unifiable:
assumes s > ¢
shows — unifiable {(t, s)}
proof
assume unifiable {(t, s)}
then obtain o where o € unifiers {(, s)}
by (auto simp: unifiable-def)
then have ¢ - ¢ = s - ¢ by (auto)
moreover have s - o >t -0
using assms by (metis instance-no-supt-imp-no-supt)
ultimately show Fulse by auto
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qed

lemma unifiable-insert- Var-swap [simp]:
unifiable (insert (t, Var z) E) +— unifiable (insert (Var z, t) E)
by (rule unifiable-insert-swap)

lemma unifiers-Int1 [simp]:
(s, t) € E = unifiers {(s, t)} N unifiers E = unifiers E
by (auto simp: unifiers-def)

lemma imgu-linear-var-disjoint:
assumes is-imgu o {(I12 |- p, 1)}
and p € poss 12
and linear-term 12
and vars-term 11 N vars-term 12 = {}
and ¢ € poss 12
and parallel-pos p q
shows 2 |-¢q=12]-q-0
using assms
proof (induct p arbitrary: q 12)
case (Cons i p)
from this(3) obtain fls where
12]simp]: 12 = Fun fls and
i: 1 < length ls and
p: p € poss (Is ! i)
by (cases 12) (auto)
then have 12i: 12 |- ((i # p)) = ls! i |- p by auto
have linear-term (Is ! i) using Cons(4) 12 i by simp
moreover have vars-term 11 N vars-term (Is | i) = {} using Cons(5) 12 i by
force
ultimately have [H: Aq. ¢ € poss (Is!i) = p Lqg=1Is!i|-q=1Is!i]|-¢
-0
using Cons(1)[OF Cons(2)[unfolded 12i] p] by blast
from Cons(7) obtain j ¢’ where q: ¢ = j # ¢’ by (cases q) auto
show ?Zcase
proof (cases j = 1)
case True with Cons(6,7) IH q show ?thesis by simp
next
case Fulse
from Cons(6) g have j: j < length ls by simp
{fixy
assume y: y € vars-term (12 |- q)
let 27 = Ax. if x = y then Var y else o x
from y Cons(6) ¢ j have yj:y € vars-term (Is ! j)
by simp (meson subt-at-imp-supteq subteg- Var-imp-in-vars-term supteq-Var
supteg-trans)
{fixij
assume j:j < length Is and i:7 < length ls and neq: i # j
from j Cons(4) have Vi < j. vars-term (Is ! i) N vars-term (Is ! j) = {}
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by (auto simp : is-partition-def)
moreover from i Cons(4) have Vj < i. vars-term (Is ! i) N vars-term (s
Vi) =1{}
by (auto simp : is-partition-def)
ultimately have vars-term (Is ! i) N vars-term (Is ! j) = {}
using neq by (cases i < j) auto
}

from this|OF i j False] have y ¢ vars-term (ls | i) using yj by auto
then have y ¢ vars-term (12 |- ((i # p)))
by (metis 12{ p subt-at-imp-supteq subteq- Var-imp-in-vars-term supteg-Var
supteq-trans)
then have Vz € vars-term (12 |- (i # p))). %7 © = o z by auto
then have i270: 12 |- (i # p)) - o7 =12 |- (( # p)) - 0 using term-subst-eq|of
- o ?7] by simp
from Cons(5) have y ¢ vars-term 11 using y Cons(6) vars-term-subt-at by
fastforce
then have Vz € vars-term l1. 7 © = o = by auto
then have l170:l1 - 97 = l1 - 0 using term-subst-eq[of - o ?7] by simp
have I1 - 0 =12 |- ({ # p) - o using Cons(2) unfolding is-imgu-def by
auto
then have I1 - 27 =12 |- (i # p) - %7 using 70 (270 by simp
then have 27 € unifiers {(I2 |- (i # p), 1)} unfolding unifiers-def by simp
with Cons(2) have 70:97 = 0 oy %7 unfolding is-imgu-def by blast
have Vary = Vary - o
proof (rule ccontr)
let 20 = Vary - o
assume x:Var y # %z
have Var y = Var y - 27 by auto
also have ... = (Var y - o) - 7 using 70 subst-subst by metis
finally have zy: %z - 0 = Var y using * by (cases o y) auto
have o o; 0 = o using Cons(2) unfolding is-imgu-def by auto
then have %z - (0 o5 0) = Var y using zy by auto
moreover have ?z - 0 - 0 = %z using zy by auto
ultimately show Fulse using * by auto
qed
}
then show ?thesis by (simp add: term-subst-eq)
qed
qged auto

end

3.2 Abstract Rewriting

theory Abstract-Rewriting-Impl
imports
Abstract— Rewriting. Abstract- Rewriting
begin
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partial-function (option) compute-NF :: ('a = 'a option) = 'a = 'a option
where [simp,code]: compute-NF f a = (case f a of None = Some a | Some b =
compute-NF [ b)

lemma compute-NF-sound: assumes res: compute-NF fa = Some b
and f-sound: \ a b. fa = Some b = (a,b) € r
shows (a,b) € 7%
proof (induct rule: compute-NF.raw-induct|OF - res, of X gab. g = f — (a,b)
€ r, THEN mp[OF - refl]])
case (1 ¢nf g ab)
show Zcase
proof
assume g = f
note 1 = 1[unfolded this
show (a,b) € r™*
proof (cases f a)
case None
with 1(2) show ?thesis by simp
next
case (Some c)
from 1(2)[unfolded this] have cnf f ¢ = Some b by simp
from 1(1)[OF this] have (c,b) € r"* by auto
with f-sound[OF Some] show ?thesis by auto
qed
qed
qged

lemma compute-NF-complete: assumes res: compute-NF f a = Some b
and f-complete: \ a. f a = None = a € NF r
shows b € NF r
proof (induct rule: compute-NF.raw-induct[OF - res, of X gab. g=f — b€
NF r, THEN mp|OF - refi]])
case (I cnf g ab)
show ?Zcase
proof
assume g = f
note ! = 1[unfolded this
show b € NF r
proof (cases f a)
case None
with f-complete] OF None] 1(2)
show ?thesis by simp
next
case (Some c)
from 1(2)[unfolded this] have cnf f ¢ = Some b by simp
from 1(1)[OF this] show ?thesis by simp
qed
qged
qed
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lemma compute-NF-SN: assumes SN: SN r
and f-sound: A\ a b. fa = Some b = (a,b) € r
shows 3 b. compute-NF f a = Some b (is 7P a)
proof —
let ?r = {(a,b). f a = Some b}
have ?r C r using f-sound by auto
from SN-subset[OF SN this] have SNr: SN ?7r .
show ?thesis
proof (induct rule: SN-induct|OF SNr, of X a. ?P a])
case (1 a)
show ?Zcase
proof (cases f a)
case None then show ?thesis by auto
next
case (Some b)
then have (a,b) € ?r by simp
from 1[OF this] f-sound[OF Some] show ?Zthesis
using Some by auto
qed
qged
qed

definition compute-trancl A R = R™+ “ A
lemma compute-trancl-rtrancl[code-unfold]: {b. (a,b) € R} = insert a (compute-trancl
{a} R)
proof —
have id: R = (Id U R™+) by regexp
show ?thesis unfolding id compute-trancl-def by auto
qed

lemma compute-trancl-code[code]: compute-trancl A R = (let B= R “ A in
if B C {} then {} else B U compute-trancl B { ab € R . fst ab ¢ A A snd ab ¢
B})
proof —
have R: R+ = R O R™x by regexp
define B where B=R “ A
define R’ where R’ = {ab € R. fst ab ¢ A A snd ab ¢ B}
note d = compute-trancl-def
show ?thesis unfolding Let-def B-def[symmetric] R'-def[symmetric] d
proof (cases B C {})
case True
then show Rt “ A = (if B C {} then {} else BU R+ “ B) unfolding
B-def R by auto
next
case Fulse
have R’ C R unfolding R’-def by auto
then have R"™+ C R™+ by (rule trancl-mono-set)
also have ... C R™x by auto
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finally have mono: R'™+ C R ™% .
have BUR'™ “B=R" “A
proof
show BU R'"™ “ B C R™+ “ A unfolding B-def R using mono
by blast
next
show R"+ “ACBUR ™+ “B
proof
fix z
assume z € R+ “ A
then obtain ¢ where a: ¢ € A and az: (a,z) € R™+ by auto
from az a show z € BU R+ “B
proof (induct)
case base
then show ?case unfolding B-def by auto
next
case (step = y)
from step(3)[OF step(4)] have z: x € BU R"™+ “B.
show ?Zcase
proof (cases y € B)
case Fulse note y = this
show ?thesis
proof (cases z € A)
case True
with y step(2) show ?thesis unfolding B-def by auto
next
case Fulse
with y step(2) have (z,y) € R’ unfolding R’-def by auto
with z have y € (R'U (R"™+ O R')) “ B by blast
also have R'U (R"™+ O R’) = R'™+ by regexp
finally show ?thesis by blast
qed
qed auto
qed
qed
qed
with False show RT “ A = (if B C {} then {} else BU R'™+ “ B) by auto
qed
qed

lemma trancl-image-code[code-unfold): R™+ ““ A = compute-trancl A R unfolding
compute-trancl-def by auto
lemma compute-rtrancl[code-unfold]: R ““ A = A U compute-trancl A R
proof —

have id: R = (Id U R™+) by regexp

show ?thesis unfolding id compute-trancl-def by auto
qed
lemma trancl-image-code’[code-unfold]: (a,b) € R™+ <— b € compute-trancl {a}
R unfolding compute-trancl-def by auto
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lemma rtrancl-image-code|code-unfold]: (a,b) € R™* — b= a V b € compute-trancl

{a} R

using compute-rtrancl[of R {a}] by auto

end

3.2.1 Closure-Operations on Relations

theory Relation-Closure
imports Abstract— Rewriting. Relative- Rewriting
begin

locale rel-closure =
fixes cop :: 'b = 'a = 'a — closure operator
and nil :: 'b
and add :: 'b = b ="b
assumes cop-nil: cop nil t = x
assumes cop-add: cop (add a b) x = cop a (cop b x)
begin

inductive-set closure for r :: 'a rel
where

[intro]: (z, y) € r = (cop a x, cop a y) € closure T

lemma closurel2: (z, y) € r = u = cop ax = v = cop a y = (u, v) € closure
r by auto

lemma closure-mono: r C s = closure r C closure s by (auto elim: closure.cases)

lemma subset-closure: r C closure r
using closure.intros [where a = nil] by (auto simp: cop-nil)

definition closed r <— closure r C r

lemma closure-subset: closed r =—> closure r C r
by (auto simp: closed-def)

lemma closedl [Pure.intro, introl: (Az y a. (z, y) € r = (cop a z, cop a y) € 1)
= closed r

by (auto simp: closed-def elim: closure.cases)

lemma closedD [dest]: closed r = (z, y) € 7 = (cop a x, cop a y) € T
by (auto simp: closed-def)

lemma closed-closure [intro]: closed (closure r)
using closure.intros [where a = add a b for a b]

by (auto simp: closed-def cop-add elim!: closure.cases)

lemma subset-closure-Un:
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closure r C closure (r U s)
closure s C closure (r U s)
by (auto elim!: closure.cases)

lemma closure-Un: closure (r U s) = closure r U closure s
using subset-closure-Un by (auto elim: closure.cases)

lemma closure-id [simp]: closed r => closure r = r
using subset-closure and closure-subset by blast

lemma closed-Un [intro]: closed r = closed s = closed (r U s) by blast
lemma closed-Inr [intro]: closed r = closed s = closed (r N s) by blast

lemma closed-rtrancl [intro]: closed r = closed (r*)
by (best intro: rtrancl-into-rtrancl elim: rtrancl.induct)

lemma closed-trancl [intro): closed r = closed (r)
by (best intro: trancl-into-trancl elim: trancl.induct)

lemma closed-converse [intro]: closed r = closed (r=') by blast

lemma closed-comp [intro]: closed r => closed s = closed (r O s) by blast

A~

lemma closed-relpow [intro]: closed r = closed (r
by (auto intro: relpow-image [OF closedD])

n)
lemma closed-conversion [intro]: closed r = closed (r<*)
by (auto simp: conversion-def)
lemma closed-relto [intro]: closed r = closed s = closed (relto r s) by blast

lemma closure-diff-subset: closure r — closure s C closure (r — s) by (auto elim:
closure. cases)

end

end

4 Term Rewrite Systems

theory Trs
imports
Relation-Closure
First-Order-Terms. Term-More
Abstract— Rewriting. Relative- Rewriting
begin

A rewrite rule is a pair of terms. A term rewrite system (TRS) is a set of

71



rewrite rules.

type-synonym ('f, 'v) rule = ('f, 'v) term x (’f, 'v) term
type-synonym ('f, "v) trs = ('f, 'v) rule set

inductive-set rstep :: - = ('f, 'v) term rel for R :: ('f, 'v) trs
where
rstep: N\Colr.(l,r)eR=s=C{l-0) = t=C(r o) = (s, t) €
rstep R

lemma rstep-induct-rule [case-names IH, induct set: rstepl:
assumes (s, t) € rstep R
and AColr.(Il,7) € R= P (C{l-0a)) (C{r - o))
shows P st
using assms by (induct) simp

An alternative induction scheme that treats the rule-case, the substition-
case, and the context-case separately.

lemma rstep-induct [consumes 1, case-names rule subst ctat]:
assumes (s, t) € rstep R
and rule: ANlr. (I, 7)€ R= Plr
and subst: Asto. Pst= P (s-0) (t-0)
and ctet: Ast C. Pst = P (C(s)) (C(t))

shows P st
using assms by (induct) auto
lemmas rstepl = rstep.intros [intro]

lemmas rstepE = rstep.cases [elim]

lemma rstep-ctat [intro]: (s, t) € rstep R = (C(s), C(t)) € rstep R
by (force simp flip: ctat-ctat-compose)

lemma rstep-rule [intro]: (I, r) € R = (I, r) € rstep R
using rstep.rstep [where ¢ = 0 and 0 = Var and R = R] by simp

lemma rstep-subst [intro]: (s, t) € rstep R = (s - 0, t - o) € rstep R
by (force simp flip: subst-subst-compose)

lemma rstep-empty [simp]: rstep {} = {}
by auto

lemma rstep-mono: R C S = rstep R C rstep S
by force

lemma rstep-union: rstep (R U S) = rstep R U rstep S
by auto

lemma rstep-converse [simp|: rstep (R™1) = (rstep R)~!
by auto
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interpretation subst: rel-closure Ao t. t - o Var Az y. y os z by (standard) auto
declare subst.closure.induct [consumes 1, case-names subst, induct pred: subst.closure]
declare subst.closure.cases [consumes 1, case-names subst, cases pred: subst.closure]

interpretation ctzt: rel-closure ctat-apply-term O (o.) by (standard) auto
declare ctat.closure.induct [consumes 1, case-names ctzt, induct pred: ctzt.closure]
declare ctat.closure.cases [consumes 1, case-names ctxt, cases pred: ctat.closure]

lemma rstep-eq-closure: rstep R = ctat.closure (subst.closure R)
by (force elim: ctxt.closure.cases subst.closure.cases)

lemma ctzt-closed-rstep [intro]: ctat.closed (rstep R)
by (simp add: rstep-eq-closure ctzt.closed-closure)

lemma ctzt-closed-one:
ctat.closed r = (s, t) € 7 = (Fun f (ss Q s # ts), Fun f (ss Q@ ¢t # ts)) € r
using ctzt.closedD [of r s t More f ss O ts] by auto

4.1 Well-formed TRSs

definition
wf-trs :: ('f, 'v) trs = bool
where
wf-trs R = (Vlr. (l,r) € R — (3fts. l = Fun fts) A vars-term r C vars-term
1)

lemma wf-trs-imp-lhs-Fun:
wf-trs R = (I,r) € R = 3fts. l = Fun fts
unfolding wf-trs-def by blast

lemma rstep-imp-Fun:
assumes wf-trs R
shows (s, t) € rstep R = 3fss. s = Fun f ss
proof —
assume (s, t) € rstep R
then obtain C [ r ¢ where Ir: (I,r) € Rand s: s = C (-0 ) by auto
with wf-trs-imp-lhs-Fun[OF assms Ir] show ?Zthesis by (cases C, auto)
qed

lemma SN-Var:
assumes wf-trs R shows SN-on (rstep R) { Var z}
proof (rule ccontr)
assume — ?thesis
then obtain S where [symmetric]: S 0 = Var z
and chain: chain (rstep R) S by auto
then have (Var z, S (Suc 0)) € rstep R by force
then obtain C I r ¢ where (I, r) € R and Var z = C(l - o) by best
then have Var x = [ - o by (induct C) simp-all
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then obtain y where | = Var y by (induct l) simp-all
with assms and (I, ) € R» show Fulse unfolding wf-trs-def by blast
qed

4.2 Function Symbols and Variables of Rules and TRSs

definition
vars-rule :: ('f, 'v) rule = v set
where
vars-rule v = vars-term (fst r) U vars-term (snd r)

lemma finite-vars-rule:
finite (vars-rule r)
by (auto simp: vars-rule-def)

definition vars-trs :: ('f, 'v) trs = 'v set where
vars-trs R = (J reR. vars-rule r)

lemma vars-trs-union: vars-trs (R U S) = vars-trs R U vars-trs S
unfolding vars-trs-def by auto

lemma finite-trs-has-finite-vars:
assumes finite R shows finite (vars-trs R)
using assms unfolding vars-trs-def vars-rule-def [abs-def] by simp

lemmas vars-defs = vars-trs-def vars-rule-def

definition funs-rule :: ('f, 'v) rule = 'f set where
funs-rule r = funs-term (fst r) U funs-term (snd r)

The same including arities.
definition funas-rule :: ('f, 'v) rule = 'f sig where

funas-rule v = funas-term (fst r) U funas-term (snd r)

definition funs-trs :: ('f, 'v) trs = 'f set where
funs-trs R = (UreR. funs-rule )

definition funas-trs :: ('f, 'v) trs = 'f sig where
funas-trs R = (|Jre€R. funas-rule r)

lemma funs-rule-funas-rule: funs-rule vl = fst ‘ funas-rule vl

using funs-term-funas-term unfolding funs-rule-def funas-rule-def image-Un by
metis
lemma funs-trs-funas-trs: funs-trs R = fst ‘ funas-trs R

unfolding funs-trs-def funas-trs-def image-UN using funs-rule-funas-rule by

metis

lemma finite-funas-rule: finite (funas-rule Ir)
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unfolding funas-rule-def
using finite-funas-term by auto

lemma finite-funas-trs:
assumes finite R
shows finite (funas-trs R)
unfolding funas-trs-def
using assms finite-funas-rule by auto

lemma funas-empty[simp]: funas-trs {} = {} unfolding funas-trs-def by simp

lemma funas-trs-union[simpl: funas-trs (R U S) = funas-trs R U funas-trs S
unfolding funas-trs-def by blast

definition funas-args-rule :: ('f, 'v) rule = 'f sig where
funas-args-rule r = funas-args-term (fst r) U funas-args-term (snd r)

definition funas-args-trs :: ('f, 'v) trs = 'f sig where
funas-args-trs R = (|J r€R. funas-args-rule r)

lemmas funas-args-defs =
funas-args-trs-def funas-args-rule-def funas-args-term-def

definition roots-rule :: ('f, 'v) rule = 'f sig
where
roots-rule r = set-option (root (fst r)) U set-option (root (snd r))

definition roots-trs :: (’f, 'v) trs = 'f sig where
roots-trs R = (|J r€R. roots-rule 1)

lemmas roots-defs =
roots-trs-def roots-rule-def

definition funas-head :: ('f, 'v) trs = ('f, 'v) trs = 'f sig where
funas-head P R = funas-trs P — (funas-trs R U funas-args-trs P)

lemmas funs-defs = funs-trs-def funs-rule-def
lemmas funas-defs =

funas-trs-def funas-rule-def

funas-args-defs

funas-head-def

roots-defs

A function symbol is said to be defined (w.r.t. to a given TRS) if it occurs
as root of some left-hand side.

definition
defined :: ('f, 'v) trs = ('f x nat) = bool
where
defined R fn <— (31 r. (I, r) € R A root | = Some fn)
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lemma defined-funas-trs: assumes d: defined R fn shows fn € funas-trs R
proof —
from d [unfolded defined-def] obtain [ r
where (I, r) € R and root | = Some fn by auto
then show ?thesis
unfolding funas-trs-def funas-rule-def [abs-def] by (cases 1) force+
qed

fun root-list :: ('f, 'v) term = ('f x nat) list
where
root-list (Var z) =] |
root-list (Fun f ts) = [(f, length ts)]

definition vars-rule-list :: ('f, "v) rule = v list
where
vars-rule-list r = vars-term-list (fst r) Q vars-term-list (snd )

definition funs-rule-list :: ('f, 'v) rule = 'f list
where
funs-rule-list r = funs-term-list (fst r) Q funs-term-list (snd r)

definition funas-rule-list = ('f, 'v) rule = ('f x nat) list
where
funas-rule-list r = funas-term-list (fst r) Q funas-term-list (snd r)

definition roots-rule-list :: ('f, "v) rule = (’f x nat) list
where
roots-rule-list r = root-list (fst r) Q root-list (snd )

definition funas-args-rule-list :: ('f, 'v) rule = (’f x nat) list
where
funas-args-rule-list r = funas-args-term-list (fst r) @ funas-args-term-list (snd
r)

lemma set-vars-rule-list [simp]:
set (vars-rule-list r) = vars-rule r
by (simp add: vars-rule-list-def vars-rule-def)

lemma set-funs-rule-list [simp]:
set (funs-rule-list r) = funs-rule r
by (simp add: funs-rule-list-def funs-rule-def)

lemma set-funas-rule-list [simpl:
set (funas-rule-list r) = funas-rule r

by (simp add: funas-rule-list-def funas-rule-def)

lemma set-roots-rule-list [simp]:
set (roots-rule-list r) = roots-rule r
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by (cases fst v snd r rule: term.exhaust [case-product term.exhaust])
(auto simp: roots-rule-list-def roots-rule-def ac-simps)

lemma set-funas-args-rule-list [simpl:
set (funas-args-rule-list r) = funas-args-rule r
by (simp add: funas-args-rule-list-def funas-args-rule-def)

definition vars-trs-list :: ('f, 'v) rule list = v list
where
vars-trs-list trs = concat (map vars-rule-list trs)

definition funs-trs-list :: ('f, 'v) rule list = 'f list
where
funs-trs-list trs = concat (map funs-rule-list trs)

definition funas-trs-list :: ('f, 'v) rule list = ('f x nat) list
where
funas-trs-list trs = concat (map funas-rule-list trs)

definition roots-trs-list :: ('f, 'v) rule list = ('f x nat) list
where
roots-trs-list trs = remdups (concat (map roots-rule-list trs))

definition funas-args-trs-list :: ('f, "v) rule list = ('f x nat) list
where
funas-args-trs-list trs = concat (map funas-args-rule-list trs)

lemma set-vars-trs-list [simp]:
set (vars-trs-list trs) = vars-trs (set trs)
by (simp add: vars-trs-def vars-trs-list-def)

lemma set-funs-trs-list [simp]:
set (funs-trs-list R) = funs-trs (set R)
by (simp add: funs-trs-def funs-trs-list-def)

lemma set-funas-trs-list [simp]:
set (funas-trs-list R) = funas-trs (set R)
by (simp add: funas-trs-def funas-trs-list-def)

lemma set-roots-trs-list [simp):
set (roots-trs-list R) = roots-trs (set R)
by (simp add: roots-trs-def roots-trs-list-def)

lemma set-funas-args-trs-list [simp]:

set (funas-args-trs-list R) = funas-args-trs (set R)

by (simp add: funas-args-trs-def funas-args-trs-list-def)
lemmas vars-list-defs = vars-trs-list-def vars-rule-list-def

lemmas funs-list-defs = funs-trs-list-def funs-rule-list-def
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lemmas funas-list-defs = funas-trs-list-def funas-rule-list-def
lemmas roots-list-defs = roots-trs-list-def roots-rule-list-def
lemmas funas-args-list-defs = funas-args-trs-list-def funas-args-rule-list-def

lemma vars-trs-list-Nil [simp]:
vars-trs-list [| = [| unfolding vars-trs-list-def by simp

context
fixes R :: ('f, 'v) trs
assumes wf-trs R
begin

lemma funas-term-subst-rhs:
assumes funas-trs R C F and (I, r) € R and funas-term (I - o) C F
shows funas-term (r - o) C F
proof —
have vars-term r C vars-term | using «wf-trs B> and «(I, ) € R) by (auto
sitmp: wf-trs-def)
moreover have funas-term | C F and funas-term r C F
using <funas-trs R C F» and (I, r) € R» by (auto simp: funas-defs) force+
ultimately show ?thesis
using <funas-term (I - o) C F» by (force simp: funas-term-subst)
qed

lemma vars-rule-lhs:
r € R = vars-rule r = vars-term (fst r)
using «wf-trs Ry by (cases r) (auto simp: wf-trs-def vars-rule-def)

end

4.3 Closure Properties

lemma ctzt-closed- R-imp-supt-R-distr:

assumes ctrt.closed R and s > t and (¢, u) € R shows 3¢t. (s, t) € RAt D> u
proof —

from s > ¢» obtain C where C' # 0O and C(t) = s by auto

from «ctat.closed Ry and «(t,u) € R»

have RCtCu: (C(t),C{u)) € R by (rule ctat.closedD)

from <C # ) have C(u) > u by auto

from RCtCu have (s,C(u)) € R unfolding <C(t) = s .

from this and <C(u) > u» show ?thesis by auto
qed

lemma ctat-closed-imp-qge-supt: ctzt.closed R = {>>} O R C R O (R U {>})*
by blast

Let R be a relation on terms that is closed under contexts. If R is well-
founded then R U > is well-founed.

lemma SN-imp-SN-union-supt:
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assumes SN R and ctzt.closed R
shows SN (R U {>})
proof —
from «<ctat.closed Ry have quasi-commute R {>}
unfolding quasi-commute-def by (rule ctzt-closed-imp-qc-supt)
have SN {>} by (rule SN-supt)
from (SN R» and «SN {>}» and <quasi-commute R {t>}»
show ?thesis by (rule quasi-commute-imp-SN)
qed

lemma stable-loop-imp-not-SN:
assumes stable: subst.closed r and steps: (s, s - o) € 1T
shows = SN-on r {s}
proof —
let ?f = X\ i. s - (power.power Var (o5) o 1)
have main: A i. (?f i, ?f (Suc i)) € r*
proof —
fix ¢
show (7f i, ?f (Suc i)) € r*
proof (induct 7)
case (Suc 1)
from Suc subst.closed-trancl|OF stable] have step: (¢f i - o, ?f (Suc i) - o)
€ r™ by auto
let %09 = power.power Var (o4) o i
let %ogs = power.power Var (og) o (Suc 1)
have idi: 0g oy 0 = 0 o4 %0g by (rule subst-monoid-mult.power-commutes)
have idsi: %0gs os 0 = 0 o5 2ogs by (rule subst-monoid-mult.power-commutes)
have ?fi -0 = s - %09 os o by simp
also have ... = ?f (Suc i) unfolding idi by simp
finally have one: ?fi -0 = 2f (Suc i) .
have ?f (Suc i) -0 = s+ %0gs o5 o by simp
also have ... = ?f (Suc (Suc 7)) unfolding idsi by simp
finally have two: ?f (Suc i) - o = ?f (Suc (Suc 7)) by simp
show ?case using one two step by simp
qed (auto simp: steps)
qed
then have — SN-on (r*) {?f 0} unfolding SN-on-def by best
then show ?thesis using SN-on-trancl by force
qed

lemma subst-closed-supteq: subst.closed {&>} by blast
lemma subst-closed-supt: subst.closed {>} by blast

lemma ctzt-closed-supt-subset: ctat.closed R = {>>} O R C R O {>} by blast

4.4 Properties of Rewrite Steps

lemma rstep-relcomp-idempl [simpl:
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rstep (rstep R O rstep S) = rstep R O rstep S
proof —
{ fix st
assume (s, t) € rstep (rstep R O rstep S)
then have (s, t) € rstep R O rstep S
by (induct) blast+ }
then show ?thesis by auto
qed

lemma rstep-relcomp-idemp2 [simp]:
rstep (rstep R O rstep S O rstep T) = rstep R O rstep S O rstep T
proof —
{fixst
assume (s, t) € rstep (rstep R O rstep S O rstep T')
then have (s, t) € rstep R O rstep S O rstep T
by (induct) blast+ }
then show ?thesis by auto
qed

lemma ctzt-closed-rsteps [intro|: ctat.closed ((rstep R)*) by blast
lemma subset-rstep: R C rstep R by auto

lemma subst-closure-rstep-subset: subst.closure (rstep R) C rstep R
by (auto elim: subst.closure.cases)

lemma subst-closed-rstep [intro]: subst.closed (rstep R) by blast
lemma subst-closed-rsteps: subst.closed ((rstep R)*) by blast
lemmas supt-rsteps-subset = ctxt-closed-supt-subset [OF ctat-closed-rsteps]

lemma supteq-rsteps-subset:

{>} O (rstep R)* C (rstep R)* O {>} (is 25 C ¢T)

using supt-rsteps-subset [of R] by (auto simp: supt-supteg-set-conv)

lemma quasi-commute-rsteps-supt:
quasi-commute ((rstep R)*) {>}
unfolding quasi-commute-def using supt-rsteps-subset [of R] by auto

lemma rstep-UN:
rstep (Ji€A. R i) = (|Ji€A. rstep (R 1))
by (force)

definition

rstep-r-p-s = ('f, 'v) trs = (’f, 'v) rule = pos = ('f, 'v) subst = ('f, "v) trs

where
rstep-r-p-s R rp o = {(s, t).
let C = ctat-of-pos-term p s inp € poss s N\ € RN (C{fstr - o) =
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(C{snd r-o)=1)}

lemma rstep-r-p-s-def .
rstep-r-p-s R rp o = {(s, t).
pEpPosssNrE€RANs|-p=fstr-oAt=replace-at sp (sndr - o)} (is
= 9r)
proof —
{ fix st
have ((s,t) € 71) = ((s,t) € ?r)
unfolding rstep-r-p-s-def Let-def
using ctat-supt-id [of p s| and subt-at-ctat-of-pos-term [of p s fst r - o] by
auto }
then show ?thesis by auto
qed

lemma parallel-steps:
fixes p; :: pos
assumes (s, t) € rstep-r-p-s Ry (l1, r1) p1 01
and (s, u) € rstep-r-p-s Ra (la, 72) p2 02
and par: p1 L ps
shows (¢, (ctxt-of-pos-term py w){ry - o1)) € rstep-r-p-s Ra (la, 12) p2 02 A
(u, (ctzt-of-pos-term py u){ry - 1)) € rstep-r-p-s Ry (l1, r1) p1 01
proof —
have p1: p; € poss sand Irl: (1, r1) € Ryand ol: s |-p1 =11 - 01
and ¢: ¢t = replace-at s p1 (r1 - 01)
and p2: py € poss s and Ir2: (la, r2) € Ry and 02: s |- pa = Iz - 09
and u: u = replace-at s ps (ro - 03) using assms by (auto simp: rstep-r-p-s-def”)

have replace-at t py (ro - 02) = replace-at v py (r1 - 01)
using t and u and parallel-replace-at [OF <p1 L poy pl p2] by auto
moreover
have (t, (ctat-of-pos-term pa t){(ry - 03)) € rstep-r-p-s Ra (l2, r2) p2 02
proof —
have t |- po = Iy - 02 using 02 and parallel-replace-at-subt-at [OF par pl p2]
and t by auto
moreover have ps € poss t using parallel-poss-replace-at [OF par p1] and t
and p2 by auto
ultimately show ?thesis using Ir2 and ctzt-supt-id [of p2 t] by (simp add:
rstep-r-p-s-def)
qed
moreover
have (u, (ctat-of-pos-term py u)(ry - 1)) € rstep-r-p-s Ry (l1, r1) p1 01
proof —
have par” ps L p; using parallel-pos-sym [OF par] .
have u |- py = I - 01 using o1 and parallel-replace-at-subt-at [OF par’ p2
pl] and u by auto
moreover have p; € poss u using parallel-poss-replace-at [OF par’ p2] and
v and p! by auto
ultimately show ?thesis using Ir! and ctat-supt-id [of p1 u] by (simp add:
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rstep-r-p-s-def)

qed

ultimately show #¢thesis by auto
qed

lemma rstep-iff-rstep-r-p-s:
(s, t) € rstep R «— (3lrpo. (s, t) € rstep-r-p-s R (I, r) p o) (is ?lhs = ?rhs)
proof
assume (s, t) € rstep R
then obtain C o | r where s: s = C{l - o) and t: t = C(r - o) and (I, r) €
R by auto
let ?p = hole-pos C
let ?C' = ctat-of-pos-term p s
have C: ctzt-of-pos-term ?p s = C unfolding s by (induct C) simp-all
have ?p € poss s unfolding s by simp
moreover have (I, ) € R by fact
moreover have ?C(l - ¢) = s unfolding C by (simp add: s)
moreover have ?C(r - o) = ¢t unfolding C by (simp add: t)
ultimately show ¢rhs unfolding rstep-r-p-s-def Let-def by auto
next
assume ?rhs
then obtain [ r p 0 where p € poss s
and (I, r) € R
and s[symmetric]: (ctzt-of-pos-term p s){l - o) = s
and t[symmetric|: (ctat-of-pos-term p s){r - o) =t
unfolding rstep-r-p-s-def Let-def by auto
then show ?lhs by auto
qed

lemma rstep-r-p-s-imp-rstep:
assumes (s, t) € rstep-r-p-s Rrpo
shows (s, t) € rstep R
using assms by (cases 1) (auto simp: rstep-iff-rstep-r-p-s)

Rewriting steps below the root position.

definition
nrrstep = ('f, 'v) trs = ('f, v) trs
where
nrrstep R = {(s,t). 37 i ps 0. (s,t) € rstep-r-p-s R r (i#ps) o}

An alternative characterisation of non-root rewrite steps.

lemma nrrstep-def”:
nrrstep R = {(s, t). 3lr Co. (,r) e RANCA0OANs=C{lo)y Nt=C(ro)}
(is ?lhs = %rhs)
proof
show ?lhs C ?rhs
proof (rule subrell)
fix s t assume (s, t) € nrrstep R
then obtain [ r i ps o where step: (s, t) € rstep-r-p-s R (I, v) (i # ps) o
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unfolding nrrstep-def by best
let ?C = ctzt-of-pos-term (i # ps) s
from step havei # ps € poss s and (I, r) € R and s = ?C(l-0) and ¢t =
?C(r-o)
unfolding rstep-r-p-s-def Let-def by auto
moreover from i # ps € poss s» have ?C # O by (induct s) auto
ultimately show (s, t) € ?rhs by auto
qed
next
show ?rhs C ?lhs
proof (rule subrell)
fix s t assume (s, t) € ?rhs
then obtain [ r C' ¢ where in-R: (I, r) € R and C # O
and s: s = C(l-o) and t: t = C{r-c) by auto
from «C # ) obtain i p where ip: hole-pos C' = i # p by (induct C) auto
have i # p € poss s using hole-pos-poss[of C] unfolding s ip by simp
then have C: C = ctaxt-of-pos-term (i # p) s
unfolding s ip[symmetric] by simp
from i # p € poss sy in-R s t have (s, t) € rstep-r-p-s R (I, r) (i # p) o
unfolding rstep-r-p-s-def C' by simp
then show (s, t) € nrrstep R unfolding nrrstep-def by best
qed
qed

lemma nrrstepl: (I,r) € R= s= C({lo) = t=C(r-o) = C#0 = (s,t)
€ nrrstep R unfolding nrrstep-def’ by auto

lemma nrrstep-union: nrrstep (R U S) = nrrstep R U nrrstep S
unfolding nrrstep-def’ by blast

lemma nrrstep-empty[simp): nrrstep {} = {} unfolding nrrstep-def’ by blast

Rewriting step at the root position.

definition
rrstep == ('f, 'v) trs = ('f, ') trs
where

rrstep R = {(s,t). 37 0. (s,t) € rstep-r-p-s R r || o}

An alternative characterisation of root rewrite steps.

lemma rrstep-def’: rrstep R = {(s, t). 3lro. (I, r) € RANs=1lo ANt=ro}
(is - = ?rhs)
by (auto simp: rrstep-def rstep-r-p-s-def)

lemma rules-subset-rrstep [simp]: R C rrstep R
by (force simp: rrstep-def’ intro: exl [of - Var])

lemma rrstep-union: rrstep (R U S) = rrstep R U rrstep S unfolding rrstep-def’
by blast
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lemma rrstep-empty[simpl: rrstep {} = {}
unfolding rrstep-def’ by auto

lemma subst-closed-rrstep: subst.closed (rrstep R)
unfolding subst.closed-def
proof
fix ss ts
assume (ss,ts) € subst.closure (rrstep R)
then show (ss,ts) € rrstep R
proof
fixsto
assume ss: ss = s - 0 and ts: ts = t - o and step: (s,t) € rrstep R
from step obtain [ r § where Ir: (I;r) ¢ Rand s: s=1-dand t: t =1 -0¢
unfolding rrstep-def’ by auto
obtain sig where sig = § os o by auto
with ss s ts t have ss = [ - sig and ts = r - sig by simp+
with Ir show (ss,ts) € rrstep R unfolding rrstep-def’ by (auto simp: Let-def)
qed
qed

lemma rstep-iff-rrstep-or-nrrstep: rstep R = (rrstep R U nrrstep R)
proof
show rstep R C rrstep R U nrrstep R
proof (rule subrell)
fix s ¢t assume (s,t) € rstep R
then obtain [ r p ¢ where rstep-rps: (s,t) € rstep-r-p-s R (I,r) p o
by (auto simp: rstep-iff-rstep-r-p-s)
then show (s,t) € rrstep R U nrrstep R unfolding rrstep-def nrrstep-def by
(cases p) auto
qed
next
show rrstep R U nrrstep R C rstep R
proof (rule subrell)
fix s t assume (s,t) € rrstep R U nrrstep R
then show (s,t) € rstep R by (auto simp: rrstep-def nrrstep-def rstep-iff-rstep-r-p-s)
qed
qed

lemma rstep-i-pos-imp-rstep-arg-i-pos:
assumes nrrstep: (Fun f ss,t) € rstep-r-p-s R (I,r) (i#ps) o
shows (ssli,t|-[7]) € rstep-r-p-s R (I,r) ps o
proof —
from nrrstep obtain C' where C:C = ctxt-of-pos-term (i#ps) (Fun f ss)
and pos: (i#ps) € poss (Fun f ss)
and Rir: (I,r) € R
and Fun: C(l-0) = Fun f ss
and t: C(r-o) = t unfolding rstep-r-p-s-def Let-def by auto
then obtain D where C":C = More f (take i ss) D (drop (Suc i) ss) by auto
then have CFun: C(l-o) = Fun [ (take i ss @ (D(l-0)) # drop (Suc i) ss) by
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auto

from pos have len: i < length ss by auto

from len

have (take i ss @ (D(l-o)) # drop (Suc i) ss)li = D{l-c) by (auto simp:
nth-append)

with C Fun CFun have ssi: ssli = D(l-0) by auto

from C’ t have t": t = Fun f (take i ss @ (D(r-0)) # drop (Suc i) ss) by auto

from len

have (take i ss Q@ (D{(r-o)) # drop (Suc i) ss)li = D(r-o) by (auto simp:
nth-append)

with ¢’ have t|-[i] = (D(r-0))|-[] by auto

then have subt-at: t|-[i] = D(r-c) by simp

from C C' have D = ctzt-of-pos-term ps (ssli) by auto

with pos Rlr ssi[symmetric] subt-at[symmetric]

show ?thesis unfolding rstep-r-p-s-def Let-def by auto
qed

lemma ctzt-closure-rstep-eq [simpl: ctat.closure (rstep R) = rstep R
by (rule ctzt.closure-id) blast

lemma subst-closure-rstep-eq [simp]: subst.closure (rstep R) = rstep R
by (rule subst.closure-id) blast

lemma supt-rstep-subset:
{>} O rstep R C rstep R O {>}
proof (rule subrell)
fix s ¢t assume (s,t) € {i>} O rstep R then show (s,t) € rstep R O {>}
proof (induct s)
case (Var z)
then have Ju. Var z > u A (u,t) € rstep R by auto
then obtain u where Var z > u and (u,t) € rstep R by auto
from < Var z > u» show ?case by (cases rule: supt.cases)
next
case (Fun f ss)
then obtain u where Fun f ss > u and (u,t) € rstep R by auto
from <«Fun f ss > u> obtain C
where C # O and C(u) = Fun f ss by auto
from «C # > have C(t) > t by (rule nectrt-imp-supt-ctat)
from «(u,t) € rstep R» have (C(u),C(t)) € rstep R ..
then have (Fun f ss,C(t)) € rstep R unfolding <C(u) = Fun f ss» .
with <C(t) > t» show Zcase by auto
qed
qed

lemma ne-rstep-seq-imp-list-of-terms:
assumes (s,t) € (rstep R)™
shows Jts. length ts > 1 A ts10 = s A ts!(length ts — 1) =t A
(Vi<length ts — 1. (tsli,ts!(Suc ©)) € (rstep R)) (is Its. - A - A - A 2P ts)
using assms
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proof (induct rule: trancl.induct)
case (r-into-trancl z y)
let ?ts = [z,y]
have length ?ts > 1 by simp
moreover have ?ts!0 = z by simp
moreover have ?ts!(length %ts — 1) = y by simp
moreover from r-into-rtrancl r-into-trancl have ¢P ?ts by auto
ultimately show ?case by fast
next
case (trancl-into-trancl ¢ y z)
then obtain ts where length ts > 1 and ts!0 = =
and last1: ts!(length ts — 1) = y and ?P ts by auto
let %ts = tsQl[z]
have len: length ?ts = length ts + 1 by simp
from <length ts > 1> have length ?ts > 1 by auto
moreover with <ts!l0 = x> have ?ts!0 = z by (induct ts) auto
moreover have last2: ?tsl(length ?ts — 1) = z by simp
moreover have ?P %ts
proof (intro alll impl)
fix ¢ assume A: ¢ < length ?ts — 1
show (%tsli, ?ts!(Suc ©)) € rstep R
proof (cases i < length ts — 1)
case True with <?P tsy A show ?thesis unfolding len unfolding nth-append
by auto
next
case Fulse with A have i = length ts — 1 by simp
with last! <length ts > 1> have %ts!i = y unfolding nth-append by auto
have Suc i = length ?ts — 1 using i = length ts — 1> using <length ts >
1) by auto
with last2 have ?ts!(Suc ©) = z by auto
from «((y,z) € rstep R)» show ?thesis unfolding «?ts!(Suc i) = z» «%tsli =

qed
qed
ultimately show ?case by fast
qed

locale E-compatible =
fixes R :: ('f,'v)trs and E :: ('f,"v)trs
assumes F: FOR=RIdCFE
begin

definition restrict-SN-supt-E :: ('f, 'v) trs where
restrict-SN-supt-E = restrict-SN R R U restrict-SN (E O {>} O E) R

lemma ctxt-closed-R-imp-supt-restrict-SN-E-distr:

assumes ctzt.closed R
and (s,t) € (restrict-SN (E O {r>}) R)
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and (t,u) € restrict-SN R R
shows (31. (s,t) € restrict-SN R R A (t,u) € restrict-SN (E O {>}) R) (is 3 t.
- A (t,u) € ?snSub)
proof —
from «(s,t) € ?snSub> obtain v where SN-on R {s} and ac: (s,v) € E and v
> t unfolding restrict-SN-def supt-def by auto
from v > t» obtain C where C # Hole and v: C(t) = v by best
from «(t,u) € restrict-SN R R» have (t,u) € R unfolding restrict-SN-def by
auto
from «(ctzt.closed Ry and this have RCtCu: (C(t),C{(u)) € R by (rule ctxt.closedD)
with v ac have (s,C{u)) € E O R by auto
then have sCu: (s,C(u)) € R using E by simp
with «SN-on R {s}» have one: SN-on R {C(u)}
using step-preserves-SN-on[of s C(u) R] by blast
from <C # ) have C(u) > u by auto
with one E have (C(u),u) € ?snSub unfolding restrict-SN-def supt-def by auto
from sCu and «SN-on R {s}» and «(C(u),u) € ?snSuby show ?thesis unfolding
restrict-SN-def by auto
qed

lemma ctzt-closed-R-imp-restrict-SN-qc-E-supt:
assumes ctzt: ctt.closed R
shows quasi-commute (restrict-SN R R) (restrict-SN (E O {>} O E) R) (is
quasi-commute ?r ?2s)
proof —
have %5 O 2r C 2r O (9r U 2s)*
proof (rule subrell)
fix x y
assume (z,y) € %s O r
from this obtain z where (z,z) € ?s and (z,y) € ?r by best
then obtain v w where ac: (2,0) € E and vw: v > w and wz: (w,z) € F and
zy: (z,y) € R and SN-on R {z} unfolding restrict-SN-def supt-def
using F(2) by auto
from wz zy have (w,y) € E O R by auto
with F have wy: (w,y) € R by auto
from ctzt-closed-R-imp-supt-R-distr|OF ctat vw wy] obtain w where (v,w) €
R and w > y using ctxt-closed-R-imp-supt-R-distrjwhere R = R and s = v and
t = z and u = y] by auto
with ac E have (z,w) € R and w > y by auto
from this and «SN-on R {z}» have SN-on R {w} using step-preserves-SN-on
unfolding supt-supteq-conv by auto
with <w > 3 E have (w,y) € ?s unfolding restrict-SN-def supt-def by force
with «(z,w) € R» «SN-on R {z}» show (z,y) € ?r O (9r U %s)* unfolding
restrict-SN-def by auto
qed
then show f?thesis unfolding quasi-commute-def .
qed

lemma ctzt-closed-imp-SN-restrict-SN-E-supt:
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assumes ctzt.closed R
and SN: SN (E O {>} O E)
shows SN restrict-SN-supt-FE
proof —
let ?r = restrict-SN R R
let ?s = restrict-SN (E O {r-} O F) R
from «(ctzt.closed Ry have quasi-commute ?r ?s
by (rule ctzt-closed-R-imp-restrict-SN-qc-E-supt)
from SN have SN ?s by (rule SN-subset, auto simp: restrict-SN-def)
have SN ?r by (rule SN-restrict-SN-idemp)
from «SN ?ry and (SN ?s» and <quasi-commute ?r ?s)
show ?thesis unfolding restrict-SN-supt-E-def by (rule quasi-commute-imp-SN)
qed
end

lemma FE-compatible-1d: E-compatible R Id
by standard auto

definition restrict-SN-supt :: ('f, "v) trs = ('f, 'v) trs where
restrict-SN-supt R = restrict-SN R R U restrict-SN {>} R

lemma ctzt-closed-SN-on-subt:
assumes ctzt.closed R and SN-on R {s} and s > ¢
shows SN-on R {t}
proof (rule ccontr)
assume — SN-on R {t}
then obtain A where A 0 = t and Vi. (A i,A (Suci)) € R
unfolding SN-on-def by best
from «s > ¢» obtain C where s = C(t) by auto
let 7B = \i. C(A 1)
have Vi. (¢B i,?B(Suc 7)) € R
proof
fix i
from «Vi. (A i,A(Suc i)) € R> have (?B i,?B(Suc i)) € ctat.closure(R) by
fast
then show (?B i,?B(Suc 7)) € R using <ctzt.closed Ry by auto
qged
with <A 0 = t» have ?B 0 = s A (Vi. (?B {,?B(Suc 7)) € R) unfolding s =
C(t)> by auto
then have — SN-on R {s} unfolding SN-on-def by auto
with assms show Fualse by simp
qed

lemma ctzt-closed-R-imp-supt-restrict-SN-distr:
assumes R: ctat.closed R
and st: (s,t) € (restrict-SN {>} R)
and tu: (t,u) € restrict-SN R R
shows (3t. (s,t) € restrict-SN R R A (t,u) € restrict-SN {>} R) (is 3 t. - A
(t,u) € ?snSub)
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using E-compatible. ctat-closed- R-imp-supt-restrict-SN-E-distr| OF E-compatible-1d
R - tu, of §
st by auto

lemma ctzt-closed-R-imp-restrict-SN-qc-supt:

assumes ctzt.closed R

shows quasi-commute (restrict-SN R R) (restrict-SN supt R) (is quasi-commute
or 9s)

using E-compatible.ctat-closed-R-imp-restrict-SN-qc-E-supt|OF E-compatible-1d
assms] by auto

lemma ctzt-closed-imp-SN-restrict-SN-supt:
assumes ctzt.closed R
shows SN (restrict-SN-supt R)
using E-compatible. ctat-closed-imp-SN-restrict-SN-E-supt[ OF E-compatible-I1d assms]
unfolding E-compatible.restrict-SN-supt-E-def[OF E-compatible-1d) restrict-SN-supt-def
using SN-supt by auto

lemma SN-restrict-SN-supt-rstep:

shows SN (restrict-SN-supt (rstep R))
proof —

have ctxt.closed (rstep R) by (rule ctat-closed-rstep)

then show %thesis by (rule ctxt-closed-imp-SN-restrict-SN-supt)
qed

lemma nrrstep-imp-pos-term:
(Fun f ss,t) € nrrstep R =
Jis. t = Fun f (ss[iz=s]) A (ssli,s) € rstep R A i < length ss
proof —
assume (Fun f ss,t) € nrrstep R
then obtain [ r ¢ ps o where rstep-rps:(Fun f ss,t) € rstep-r-p-s R (I,r) (i#ps)
o
unfolding nrrstep-def by auto
then obtain C
where (I,r) € R
and pos: (i#ps) € poss (Fun f ss)
and C: C = ctat-of-pos-term (i#ps) (Fun f ss)
and C(l-o) = Fun f ss
and t: C(r-o) =t
unfolding rstep-r-p-s-def Let-def by auto
then obtain D where C' = More f (take i ss) D (drop (Suc i) ss) by auto
with t have t: t = Fun f (take i ss Q (D(r-o)) # drop (Suc i) ss) by auto
from rstep-rps have (ssli,t|-[i]) € rstep-r-p-s R (I,r) ps o
by (rule rstep-i-pos-imp-rstep-arg-i-pos)
then have rstep:(ss!i,t|-[i]) € rstep R by (auto simp: rstep-iff-rstep-r-p-s)
then have (C(ssli),C(t|-[i])) € rstep R ..
from pos have len: i < length ss by auto

from len
have (take i ss @ (D(r-o)) # drop (Suc i) ss)li = D(r-o) by (auto simp:
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nth-append)
with C t’ have t|-[i| = D(r-o) by auto
with ¢’ have ¢t = Fun f (take i ss @ (¢|-[i]) # drop (Suc i) ss) by auto
with len have t = Fun f (ss[i:=t|-[]]]) by (auto simp: upd-conv-take-nth-drop)
with rstep len show 3is. t = Fun f (ss[i:z=s]) A (ssli,s) € rstep R A i < length
ss by auto
qed

lemma rstep-cases[consumes 1, case-names root nonroot:
[(s,t) € rstep R; (s,t) € rrstep R = P; (s,t) € nrrstep R — P] = P
by (auto simp: rstep-iff-rrstep-or-nrrstep)

lemma nrrstep-imp-rstep: (s,t) € nrrstep R = (s,t) € rstep R
by (auto simp: rstep-iff-rrstep-or-nrrstep)

lemma nrrstep-imp-Fun: (s,t) € nrrstep R = 3f ss. s = Fun f ss
proof —
assume (s,t) € nrrstep R
then obtain ¢ ps where i#ps € poss s
unfolding nrrstep-def rstep-r-p-s-def Let-def by auto
then show 3f ss. s = Fun f ss by (cases s) auto
qed

lemma nrrstep-imp-subt-rstep:
assumes (s,t) € nrrstep R
shows 314. i < num-args s A num-args s = num-args t A (s|-[7],t|-[7]) € rstep R
NG i # G — ] = 0]
proof —
from «(s,t) € nrrstep R> obtain f ss where s = Fun f ss using nrrstep-imp-Fun
by blast
with «(s,t) € nrrstep R> have (Fun f ss,t) € nrrstep R by simp
then obtain { v where ¢ = Fun f (ss[i := u]) and (ssli,u) € rstep R and i <
length ss
using nrrstep-imp-pos-term by best
from «s = Fun f ss» and <t = Fun f (ss[i := u])» have num-args s = num-args
t by auto
from i < length ss» and <s = Fun f ss» have i < num-args s by auto
from <s = Fun f ss» have s|-[i] = (ssli) by auto
from <t = Fun f (ss[i :== u])» and «i < length ss» have t|-[i] = u by auto
from «s = Fun f ss» and <t = Fun f (ss[i :== u])
have Vj. j# i — s|-[j] = t|-[j] by auto
with <(ssli,u) € rstep R»
and i < num-args s
and (num-args s = num-args t)
and «s|-[i] = (ssli)y[symmetric] and <t|-[i]] = w[symmetric]
show ?thesis by (auto)
qed
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lemma nrrstep-subt: assumes (s, t) € nrrstep R shows Ju<s. Jv<t. (u, v) €
rstep R
proof —

from assms obtain [ r C' ¢ where (I, r) € R and C # O

and s: s = C(l-o) and t: t = C(r-c) unfolding nrrstep-def’ by best

from «C # [ s have s > l-0 by auto

moreover from <C # [ ¢ have ¢ > 70 by auto

moreover from (I, ) € R have (l-0, r-0) € rstep R by auto

ultimately show #¢thesis by auto
qed

lemma nrrstep-args:
assumes (s, t) € nrrstep R
shows 3 f ssts. s = Fun fss At = Fun f ts A length ss = length ts
A (Fj<length ss. (sslf, tslj) € rstep R A (Vi<length ss. i # j — ssli = tsli))
proof —
from assms obtain | r C o where (I, r) € R and C # O
and s: s = C(l-o) and t: t = C(r-o) unfolding nrrstep-def’ by best
from «C # O obtain f ss! D ss2 where C: C = More f ss1 D ss2 by (induct
C) auto
have s = Fun f (ss1 @Q D(l-0) # ss2) (is - = Fun f ?ss) by (simp add: s C)
moreover have ¢t = Fun f (ss1 @Q D{(r-c) # ss2) (is - = Fun f ?ts) by (simp
add: t C)
moreover have length ?ss = length ?ts by simp
moreover have Jj<length ?ss.
(2sslj, ?tslj) € rstep R A (Vi<length ?ss. i # j — %ssli = ?tsli)
proof —
let ?j = length ssl
have ?j < length ?ss by simp
moreover have (%ss!?j, ?ts!?j) € rstep R
proof —
from «(I, r) € R> have (D(l-0), D(r-c)) € rstep R by auto
then show ?thesis by auto
qed
moreover have Vi<length ?ss. i # ?j — ?ssli = %tsli (is Vi<length ?ss. -
— 9P %)
proof (intro alll impl)
fix ¢ assume 7 < length ?ss and i # ?j
then have i < length ss1 V length ss1 < i by auto
then show ?P i
proof
assume i < length ss! then show 7P i by (auto simp: nth-append)
next
assume 7 > length ss1 then show ?P ¢
using (i < length ?ss» by (auto simp: nth-Cons’ nth-append)
qed
qed
ultimately show ?thesis by best
qed
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ultimately show ?thesis by auto
qed

lemma nrrstep-iff-arg-rstep:
(s,t) € nrrstep R +—
(3fssit. s = Fun fss Ni<length ss ANt = Fun f (ss[i:z=t]) A (ssli,t) €
rstep R)
(is 7L «— ?R)
proof
assume L: 7L
from nrrstep-args|OF this]
obtain f ss ts where s = Fun f sst = Fun f ts by auto
with nrrstep-imp-pos-term|[OF Llunfolded this]]
show ?R by auto
next assume R: 7R
then obtain fi ss t’
where s: s = Fun f ss and ¢: t = Fun f (ss[i:=t'])
and i: i < length ss and st”: (ss ! i, t’) € rstep R by auto
from st’ obtain C[r o where Ir: (I, r) € R and s”: ssli = C({l - o) and ¢": ¢’
= C(r - o) by auto
let ?D = More f (take i ss) C (drop (Suc i) ss)
have s = ?D(l - o) t = ?D(r - o) unfolding s ¢
using id-take-nth-drop| OF i| upd-conv-take-nth-drop[OF i] s’ t’ by auto
with Ir show ?L apply(rule nrrstepl) using t’ by auto
qed

lemma subterms-NF-imp-SN-on-nrrstep:
assumes V s<t. s € NF' (rstep R) shows SN-on (nrrstep R) {t}
proof
fix S assume S 0 € {t} and Vi. (S i, S (Suc i)) € nrrstep R
then have (¢, S (Suc 0)) € nrrstep R by auto
then obtain [ r C' o0 where ([, r) € Rand C # O and ¢: t = C(l-0) unfolding
nrrstep-def’ by auto
then obtain f ss! D ss2 where C: C = More f ss1 D ss2 by (induct C) auto
have ¢ > D(l-c) unfolding t C by auto
moreover have D(l-c) ¢ NF (rstep R)
proof —
from «(I, ) € Ry have (D{(l-0), D(r-0)) € rstep R by auto
then show ?thesis by auto
qed
ultimately show Fulse using assms by simp
qed

lemma args-NF-imp-SN-on-nrrstep:
assumes Vt€set ts. t € NF (rstep R) shows SN-on (nrrstep R) {Fun f ts}
proof
fix S assume S 0 € {Fun fts} and Vi. (S 4, S (Suc i)) € nrrstep R
then have (Fun fts, S (Suc 0)) € nrrstep R

92



unfolding singletonD[OF S 0 € {Fun f ts}>, symmetric] by simp
then obtain [ r C' 0 where (I, r) € R and C # O and Fun fts = C(l-0)
unfolding nrrstep-def’ by auto
then obtain ss! D ss2 where C: C = More f ssl D ss2 by (induct C) auto
with «Fun f ts = C(l-0)» have D(l-c) € set ts by auto
moreover have D(l-c) ¢ NF (rstep R)
proof —
from «({, ) € Ry have (D(l-0), D(r-0)) € rstep R by auto
then show ?thesis by auto
qged
ultimately show Fulse using assms by simp
qed

lemma rrstep-imp-rule-subst:

assumes (s,t) € rrstep R

shows 3iro. (I,r) € RA (l.o) =s A (ro)=t
proof —

have ctzt-of-pos-term [ s = Hole by auto

obtain [ r ¢ where (s,t) € rstep-r-p-s R (l,r) [] o using assms unfolding
rrstep-def by best

then have let C = ctazt-of-pos-term [| s in [| € poss s A (I,r) € R A C(l-0)
A C(r-o) = t unfolding rstep-r-p-s-def by simp

with <ctzt-of-pos-term [] s = Holey have (I,r) € R and l.0 = s and ro =t
unfolding Let-def by auto

then show “thesis by auto
qed

Il
Vo)

lemma nrrstep-preserves-root:

assumes (Fun f ss,t) € nrrstep R (is (?s,t) € nrrstep R) shows Jts. t = (Fun
7t

using assms unfolding nrrstep-def rstep-r-p-s-def Let-def by auto

lemma nrrstep-equiv-root: assumes (s,t) € nrrstep R shows 3 f ss ts. s = Fun f

ss ANt = Fun fts

proof —
from assms obtain f ss where s = Fun f ss using nrrstep-imp-Fun by best
with assms obtain ts where ¢ = Fun f ts using nrrstep-preserves-root by best
from <s = Fun f ss» and «t = Fun f ts) show ?thesis by best

qed

lemma nrrstep-reflects-root:

assumes (s,Fun g ts) € nrrstep R (is (s,?t) € nrrstep R)

shows Jss. s = (Fun g ss)
proof —

from assms obtain f ss ts’ where s = Fun f ss and Fun g ts = Fun f ts’ using
nrrstep-equiv-root by best

then have f = g by simp

with <s = Fun f ss» have s = Fun g ss by simp

then show ?thesis by auto
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qed

lemma nrrsteps-preserve-root:
assumes (Fun f ss,t) € (nrrstep R)*
shows Jts. t = (Fun f ts)
using assms by induct (auto simp: nrrstep-preserves-root)

lemma nrrstep-Fun-imp-arg-rsteps:
assumes (Fun f ss,Fun fts) € nrrstep R (is (%s,7t) € nrrstep R) and i < length
ss
shows (ssli,tsli) € (rstep R)*
proof —
from assms have [i| € poss ?s using empty-pos-in-poss by simp
from «(%s,?t) € nrrstep R»
obtain [ rjps o
where A: let C = ctxt-of-pos-term (j#ps) ?s in (j#ps) € poss ?s A (I,r) € R
A C{l-o) = 2s A C{r-o) = ?¢t unfolding nrrstep-def rstep-r-p-s-def by force
let ?C = ctxt-of-pos-term (j#ps) %s
from A have (j#ps) € poss ?s and (I,r) € R and ?C(l-0) = %s and ?C(r-o)
= %t using Let-def by auto
have C: ?C = More f (take j ss) (ctzt-of-pos-term ps (sslj)) (drop (Suc j) ss)
(is 2C' = More f ?ss1 ¢D %ss2) by auto
from «?C(l-0) = ?s» have ?D(l-0) = (ss!j) by (auto simp: take-drop-imp-nth)
from «(I,r) € R» have (l-0,r-0) € (subst.closure R) by auto
then have (2D(l-0),?D(r-0)) € (ctat.closure(subst.closure R))
and (?2C(l-0),?C(r-0)) € (ctat.closure(subst.closure R)) by (auto simp only:
ctzt. closure.intros)
then have D-rstep: (?D(l-0),?D(r-0)) € rstep R and (¢C(l-0),?C(r-o)) € rstep
R
unfolding rstep-eq-closure by auto
from ?C(r-o) = ?t» and C have ?t = Fun f (take j ss Q@ ?D(r-c) # drop (Suc
j) ss) by auto
then have ts: ts = (take j ss @ ?D(r-c) # drop (Suc j) ss) by auto
have j = i V j # i by simp
from j#ps € poss ?s) have j < length ss by simp
then have (take j ss @ ?D{r-c) # drop (Suc j) ss) ! j = ?D{r-0) by (auto simp:
nth-append-take)
with ¢s have ts!j = ?D(r-o) by auto
have j =iV j # i by simp
then show (ssli,ts!i) € (rstep R)*
proof
assume j = ¢
with <tslj = ?D(r-o)> and «?D(l-0) = sslj» and D-rstep show ?thesis by auto
next
assume j # ¢
with <i < length ss» and <j < length ss» have (take j ss @ ?D(r-c) # drop
(Suc j) ss) ! i = ssli by (auto simp: nth-append-take-drop-is-nth-conv)
with ts have tsli = ssli by auto
then show ?thesis by auto
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qed
qed

lemma nrrstep-imp-arg-rsteps:

assumes (s,t) € nrrstep R and i < num-args s shows (args s'i,args tli) € (rstep
R)*
proof (cases s)

fix © assume s = Var x then show ?thesis using assms by auto
next

fix f ss assume s = Fun f ss

then have (Fun f ss,t) € nrrstep R using assms by simp

then obtain ts where t = Fun f ts using nrrstep-preserves-root by best

with «(s,t) € nrrstep R» and <s = Fun f ss» have (Fun f ss,Fun f ts) € nrrstep
R by simp

from «s = Fun f ss» and i < num-args s» have i < length ss by simp

with «(Fun f ss,Fun f ts) € nrrstep R»

have (ssli,tsli) € (rstep R)* by (rule nrrstep-Fun-imp-arg-rsteps)

with <s = Fun f ss» and <t = Fun f ts» show ?thesis by simp
qed

lemma nrrsteps-imp-rsteps: (s,t) € (nrrstep R)* = (s,t) € (rstep R)*
proof (induct rule: rtrancl.induct)
case (rtrancl-refl a) then show Zcase by simp
next
case (rtrancl-into-rtrancl a b c)
then have IH: (a,b) € (rstep R)* and nrrstep: (b,c) € nrrstep R by auto
from nrrstep have (b,c) € rstep R using nrrstep-imp-rstep by auto
with IH show ?case by auto
qed

lemma nrrstep-Fun-preserves-num-args:
assumes (Fun f ss,Fun f ts) € nrrstep R (is (?s,?t) € nrrstep R)
shows length ss = length ts
proof —
from assms obtain [ r i ps o
where let C = ctat-of-pos-term (i#ps) ?s in (i#ps) € poss ?s A (I,r) € R A
C(lo) = ?2s N C{r-o) = 2t (is let C = ?2Cin -)
unfolding nrrstep-def rstep-r-p-s-def by force
then have (I,r) € R and Cl: ?C(l.0) = ?s and Cr: ?C(r-o) = ?t unfolding
Let-def by auto
have C: ?C = More [ (take i ss) (ctzt-of-pos-term ps (ssli)) (drop (Suc i) ss)
(is 2C = More f ?ss1 2D ?ss2) by simp
from C and Cl have s: s = Fun [ (take i ss Q@ ?D{l-c) # drop (Suc i) ss) (is
%s = Fun f ?ss) by simp
from C and Cr have t: 2t = Fun f (take i ss @ ?D(r-o) # drop (Suc i) ss) (is
7t = Fun f ?ts) by simp
from s and ¢ have ss: ss = %ss and ts: ts = ?ts by auto
have length ?ss = length ?ts by auto
with ss and ts show ?thesis by simp
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qed

lemma nrrstep-equiv-num-args:
assumes (s,t) € nrrstep R shows num-args s = num-args t
proof —
from assms obtain f ss ts where s:s = Fun f ss and t:t = Fun f ts using
nrrstep-equiv-root by best
with assms have (Fun f ss,Fun f ts) € nrrstep R by simp
then have length ss = length ts by (rule nrrstep-Fun-preserves-num-args)
with s and t show ?thesis by auto
qed

lemma nrrsteps-equiv-num-args:
assumes (s,t) € (nrrstep R)* shows num-args s = num-args t
using assms by (induct, auto simp: nrrstep-equiv-num-args)

lemma nrrstep-preserves-num-args:
assumes (s,t) € nrrstep R and i < num-args s shows i < num-args t
proof (cases s)
fix z assume s = Var z then show ?thesis using assms by auto
next
fix f ss assume s = Fun f ss
with assms obtain ts where t = Fun f ts using nrrstep-preserves-root by best
from «(s,t) € nrrstep R> have length ss = length ts unfolding «s = Fun f ss»
and <t = Fun f ts» by (rule nrrstep-Fun-preserves-num-args)
with assms and «s = Fun f ss» and <t = Fun f ts) show ?thesis by auto
qed

lemma nrrstep-reflects-num-args:
assumes (s,t) € nrrstep R and © < num-args t shows i < num-args s
proof (cases t)
fix £ assume t = Var z then show ?thesis using assms by auto
next
fix g ts assume t = Fun g ts
with assms obtain ss where s = Fun g ss using nrrstep-reflects-root by best
from <(s,t) € nrrstep R» have length ss = length ts unfolding «s = Fun g ss
and <t = Fun g ts> by (rule nrrstep-Fun-preserves-num-args)
with assms and <s = Fun g ss» and <t = Fun g ts» show ?thesis by auto
qed

lemma nrrsteps-imp-arg-rsteps:
assumes (s,t) € (nrrstep R)* and ¢ < num-args s
shows (args sli,args ti) € (rstep R)*
using assms
proof (induct rule: rtrancl.induct)
case (rtrancl-refl a) then show Zcase by auto
next
case (rtrancl-into-rtrancl a b ¢)
then have IH: (args ali,args bli) € (rstep R)* by auto
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from «(a,b) € (nrrstep R)*» and <i < num-args a> have ¢ < num-args b by
induct (auto simp: nrrstep-preserves-num-args)

with «(b,c) € nrrstep R»

have (args bli,args cli) € (rstep R)* by (rule nrrstep-imp-arg-rsteps)

with [H show ?case by simp
qed

lemma nrrsteps-imp-eq-root-arg-rsteps:
assumes steps: (s,t) € (nrrstep R)*
shows root s = root t A (Vi<num-args s. (s |- [i], ¢t |- [i] ) € (rstep R)*)
proof (cases s)
case (Var z)
have s = t using steps unfolding Var
proof (induct)
case (step y 2)
from nrrstep-imp-Fun[OF step(2)] step(3) have False by auto
then show ?case ..
qed simp
then show ?thesis by auto
next
case (Fun f ss)
from nrrsteps-equiv-num-args| OF steps)
nrrsteps-imp-arg-rsteps| OF steps]
nrrsteps-preserve-root| OF steps|unfolded Funl]
show ?thesis unfolding Fun by auto
qed

lemma SN-on-imp-SN-on-subt:
assumes SN-on (rstep R) {t} shows V s<t. SN-on (rstep R) {s}
proof (rule ccontr)
assume —(V s<d¢t. SN-on (rstep R) {s})
then obtain s where t > s and — SN-on (rstep R) {s} by auto
then obtain S where S 0 = s and chain: chain (rstep R) S by auto
from <t > s» obtain C where ¢: t = C(s) by auto
let 25 = Xi. C(S i)
from «S 0 = s have 25 0 = t by (simp add: t)
moreover from chain have chain (rstep R) 25 by blast
ultimately have — SN-on (rstep R) {t} by best
with assms show Fualse by simp
qed

lemma not-SN-on-subt-imp-not-SN-on:
assumes — SN-on (rstep R) {t} and s > ¢
shows = SN-on (rstep R) {s}
using assms SN-on-imp-SN-on-subt by blast

lemma SN-on-instance-imp-SN-on-var:

assumes SN-on (rstep R) {t - o} and = € vars-term t
shows SN-on (rstep R) {Varz - o}
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proof —

from assms have ¢t > Var x by auto

then have t-0 > (Var z)-0 by (rule supteg-subst)

with SN-on-imp-SN-on-subt and assms show ?thesis by best
qed

lemma var-imp-var-of-arg:
assumes z € vars-term (Fun f ss) (is © € vars-term 2s)
shows 37 < num-args (Fun f ss). x € vars-term (ss!i)

proof —
from assms have = € |J (set (map vars-term ss)) by simp
then have z € (|Ji<length ss. vars-term(ss!i)) unfolding set-conv-nth by auto
then have Ji<length ss. € vars-term(ssli) using UN-iff by best
then obtain ¢ where ¢ < length ss and z € vars-term(ssli) by auto
then have { < num-args ?s by simp
with <z € vars-term(ss!i)» show ?thesis by auto

qed

lemma subt-instance-and-not-subst-imp-subt:
so >t =V € vars-term s. 7((Var z)-c > t) = Ju. s> u At = uo
proof (induct s arbitrary: ¢ rule: term.induct)
case (Var z) then show ?case by auto
next
case (Fun f ss)
from «Fun f ss-oc > t» have (Fun f ss:0c = t) V (Fun f ss:c > t) by auto
then show ?Zcase
proof
assume Fun f ss:oc = t with Fun show ?thesis by auto
next
assume Fun f ss-o >t
then have Fun f (map (At. t-0) ss) > ¢ by simp
then have 3s € set (map (At. t-0) ss). s>t (is Is € set ?ss’. s > t) by (rule
supt-Fun-imp-arg-supteq)
then obtain s’ where s’ € set ?ss’ and s’ > ¢ by best
then have 37 < length %ss’. ?ssli = s’ using in-set-conv-nth[where 2z = s’
by best
then obtain i where i < length ?ss’ and ?ss’li = s’ by best
then have %ss’li = (ssli)-0 by auto
from <(%ssli = sy have s’ = (ssli)-0 unfolding «?ss'li = (ssli)-0» by simp
from «s’ > ¢ have (ss!i)-oc > ¢ unfolding s’ = (ssli)-0» by simp
with «i < length ?ss’» have (ssli) € set ss by auto
with <(sslé)-c > t» have Is € set ss. s-0 > ¢ by best
then obtain s where s € set ss and s-o > t by best
with Fun have Vz € vars-term s. =((Var z)-0 > t) by force
from Fun
have IH: s € set ss — (Yv. s:0 > v — (Vo € vars-term s. = Var z-0 > v)
— (Fu. s> u A v=uo))
by auto
with <s € set ss» have lv. s.0 > v = (Vz € vars-term s. = Var z-.0 > v)
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— (Fu. s> u A v=uo)

by simp
with <s.o > ) have (Vz € vars-term s. = Var z:0 > t) — (Qu. s> u At =
u-0) by simp
with <V z € vars-term s. = Var z-c > ¢» obtain v where s > v and { = u-o
by best

with <s € set ss) have Fun f ss > u by auto
with <t = u-0y show ?thesis by best
qed
qed

lemma SN-imp-SN-subt:
SN-on (rstep R) {s} = s > t = SN-on (rstep R) {t}
by (rule ctxt-closed-SN-on-subt[OF ctat-closed-rstep))

lemma subterm-preserves-SN-gen:

assumes ctzt: ctzt.closed R

and SN: SN-on R {t} and supt: t > s

shows SN-on R {s}
proof —

from supt have ¢t > s by auto

then show %thesis using ctat-closed-SN-on-subt[OF ctat SN, of s| by simp
qed

context FE-compatible
begin

lemma SN-on-step-E-imp-SN-on: assumes SN-on R {s}

and (s,t) € F
shows SN-on R {t}

using assms E(1) unfolding SN-on-all-reducts-SN-on-conv|of - t] SN-on-all-reducts-SN-on-conv|of
- 8]

by blast

lemma SN-on-step-REs-imp-SN-on:
assumes R: ctxt.closed R
and st: (s,t) € (RUE O {>} OE)
and SN: SN-on R {s}
shows SN-on R {t}
proof (cases (s,t) € R)
case True
from step-preserves-SN-on|OF this SN| show ?thesis .
next
case Fulse
with st obtain u v where su: (s,u) € E and wv: u > v and vt: (v,t) € E by
auto
have u: SN-on R {u} by (rule SN-on-step-E-imp-SN-on[OF SN su])
with wv R have SN-on R {v} by (metis subterm-preserves-SN-gen)
then show ?thesis by (rule SN-on-step-E-imp-SN-on[OF - vt])
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qed

lemma restrict-SN-supt-E-I:

ctat.closed R = SN-on R {s} = (s,t) € RU E O {>} O E = (s,t) €
restrict-SN-supt-E

unfolding restrict-SN-supt-FE-def restrict-SN-def

using SN-on-step-REs-imp-SN-on[of s t| E(2) by auto

lemma ctzt-closed-imp-SN-on-E-supt:
assumes R: ctat.closed R
and SN: SN (E O {} O E)
shows SN-on (RU E O {>} O E) {t. SN-on R {t}}
proof —
{
fix f
assume f0: SN-on R {f 0} and f: A\ i. (fi, f (Suci)) €e RUEO{>} OFE
from ctat-closed-imp-SN-restrict-SN-E-supt[OF assms]
have SN: SN restrict-SN-supt-FE .
{
fix ¢
have SN-on R {f i}
by (induct i, rule f0, rule SN-on-step-REs-imp-SN-on|OF R f])
} note fi = this
{
fix ¢
from f[of 1] filof 1]
have (f i, f (Suc 7)) € restrict-SN-supt-E by (metis restrict-SN-supt-E-I[OF
R])
}
with SN have Fulse by auto
}
then show ?thesis unfolding SN-on-def by blast
qed
end

lemma subterm-preserves-SN:
SN-on (rstep R) {t} = t > s = SN-on (rstep R) {s}
by (rule subterm-preserves-SN-gen|OF ctxt-closed-rstep])

lemma SN-on-r-imp-SN-on-supt-union-r:
assumes ctat: ctrt.closed R
and SN-on R T
shows SN-on (supt U R) T (is SN-on 25 T)
proof (rule ccontr)
assume — SN-on 25 T
then obtain s where ini: s 0 : T and chain: chain 2S5 s
unfolding SN-on-def by auto
have SN: Vi. SN-on R {s i}
proof
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fix i show SN-on R {s i}
proof (induct 7)
case ( show fZcase using assms using <s 0 € T and SN-on-subset2|of {s
0} T R] by simp
next
case (Suc 17)
from chain have (s 4, s (Suc 7)) € ¢S by simp
then show ?case
proof
assume (s i, s (Suc 7)) € supt
from subterm-preserves-SN-gen|OF ctxt Suc this] show ?Zthesis .
next
assume (s i, s (Suc 7)) € R
from step-preserves-SN-on|OF this Suc] show ?thesis .
qed
qed
qed
have = (35. Vi. (S 4, S (Suc 7)) € restrict-SN-supt R)
using ctat-closed-imp-SN-restrict-SN-supt| OF ctat] unfolding SN-defs by auto
moreover have Vi. (s i, s (Suc 7)) € restrict-SN-supt R
proof
fix i
from SN have SN: SN-on R {s i} by simp
from chain have (s 4, s (Suc i) € supt U R by simp
then show (s i, s (Suc 7)) € restrict-SN-supt R
unfolding restrict-SN-supt-def restrict-SN-def using SN by auto
qed
ultimately show Fulse by auto
qed

lemma SN-on-rstep-imp-SN-on-supt-union-rstep:
SN-on (rstep R) T => SN-on (supt U rstep R) T
by (rule SN-on-r-imp-SN-on-supt-union-r[OF ctxt-closed-rstep))

lemma SN-supt-r-trancl:
assumes ctzt: ctzt.closed R
and a: SN R
shows SN ((supt U R)™)
proof —
have SN (supt U R)
using SN-on-r-imp-SN-on-supt-union-r[OF ctat, of UNIV]
and a by force
then show SN ((supt U R)™) by (rule SN-imp-SN-trancl)
qed

lemma SN-supt-rstep-trancl:

SN (rstep R) = SN ((supt U rstep R)™)
by (rule SN-supt-r-trancl[OF ctxt-closed-rstep))
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lemma SN-imp-SN-arg-gen:
assumes ctzt: ctzt.closed R
and SN: SN-on R {Fun f ts} and arg: t € set ts shows SN-on R {t}
proof —
from arg have Fun f ts > t by auto
with SN show ?thesis by (rule ctat-closed-SN-on-subt[OF ctat])
qed

lemma SN-imp-SN-arg:
SN-on (rstep R) {Fun fts} = t € set ts => SN-on (rstep R) {t}
by (rule SN-imp-SN-arg-gen[OF ctxt-closed-rstep))

lemma SNinstance-imp-SN:
assumes SN-on (rstep R) {t - o}
shows SN-on (rstep R) {t}
proof
fix f
assume prem: f 0 € {t} Vi. (fi, f (Suc i)) € rstep R
let 2g=MXi. (fi) o
from prem have 29 0 =t - o A (V i. (?9 4, ?g (Suc ©)) € rstep R) using
subst-closed-rstep
by auto
then have - SN-on (rstep R) {t - o} by auto
with assms show Fualse by blast
qed

lemma rstep-imp-C-s-r:
assumes (s,t) € rstep R
shows 3C o lr. (I,r) € RAs= C{lo) Nt = C(ro)
proof —
from assms obtain [ r p o where step:(s,t) € rstep-r-p-s R (I,r) p o
unfolding rstep-iff-rstep-r-p-s by best
let ?C = ctat-of-pos-term p s
from step have p € poss s and (I,r) € R and ?C(l-0) = s and ?C(r-o) =t
unfolding rstep-r-p-s-def Let-def by auto
then have (I,r) € R A s = ?C{l-:o) At = ?C{(r-c) by auto
then show ?thesis by force
qged

fun map-funs-rule :: ('f = 'q) = ('f, 'v) rule = ('g, 'v) rule
where
map-funs-rule fg Ir = (map-funs-term fg (fst ir), map-funs-term fg (snd Ir))

fun map-funs-trs :: ('f = '9) = ('f, ") trs = ('g, "v) trs
where

map-funs-trs fg R = map-funs-rule fg ‘ R

lemma map-funs-trs-union: map-funs-trs fg (R U S) = map-funs-trs fg R U map-funs-trs

fg S
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unfolding map-funs-trs.simps by auto

lemma rstep-map-funs-term: assumes R: A f. f € funs-trs R = h f = f and
step: (s,t) € rstep R
shows (map-funs-term h s, map-funs-term h t) € rstep R
proof —
from step obtain Clr o where s: s = C(l - o) and t: t = C(r - o) and rule:
(I,r) € R by auto
let %0 = map-funs-subst h o
let ?h = map-funs-term h
note funs-defs = funs-rule-def|abs-def] funs-trs-def
from rule have Ir: funs-term [ U funs-term r C funs-trs R unfolding funs-defs
by auto
have hl: ?h 1 =1
by (rule funs-term-map-funs-term-id[OF R, insert lr, auto)
have hr: ¢hr =r
by (rule funs-term-map-funs-term-id[OF R, insert lr, auto)
show ?thesis unfolding s t
unfolding map-funs-subst-distrib map-funs-term-ctxt-distrib hl hr
by (rule rstepI[OF rule refl refl])
qed

lemma wf-trs-map-funs-trs[simp|: wf-trs (map-funs-trs f R) = wf-trs R
unfolding wf-trs-def
proof (rule iffI, intro alll impI)
fix I r
assume VI r. (I, r) € map-funs-trs f R — (3 f ts. | = Fun f ts) A vars-term r
C vars-term l and (I, r) € R
then show (3 fts. | = Fun fts) A vars-term r C vars-term | by (cases [, force+)
next
assume ass: VIr. (I, r) € R — (3fts. | = Fun fts) A\ vars-term r C vars-term
l
show VI r. (I, r) € map-funs-trs f R — (3 f ts. l = Fun f ts) A\ vars-term r C
vars-term |
proof (intro alll impl)
fix I r
assume (I, r) € map-funs-trs f R
with ass
show (3 fts. | = Fun fts) A vars-term r C vars-term 1
by (cases , force+)
qed
qged

lemma map-funs-trs-comp: map-funs-trs fg (map-funs-trs gh R) = map-funs-trs
(fg 0 gh) R
proof —
have mr: map-funs-rule (fg o gh) = map-funs-rule fg o map-funs-rule gh
by (rule ext, auto simp: map-funs-term-comp)
then show ?thesis
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by (auto simp: map-funs-term-comp image-comp mr)
qed

lemma map-funs-trs-mono: assumes R C R’ shows map-funs-trs fg R C map-funs-trs

fg R
using assms by auto

lemma map-funs-trs-power-mono:
fixes R R':: ('f,’v)trs and fg : 'f = 'f
assumes R C R’ shows ((map-funs-trs fg) " n) R C ((map-funs-trs fg) " n) R’
using assms by (induct n, simp, auto)

declare map-funs-trs.simps[simp del]

lemma rstep-imp-map-rstep:
assumes (s, t) € rstep R
shows (map-funs-term fg s, map-funs-term fg t) € rstep (map-funs-trs fg R)
using assms
proof (induct)
case (IHC o lr)
then have (map-funs-term fg I, map-funs-term fg r) € map-funs-trs fg R (is (21,
?r) € ?R)
unfolding map-funs-trs.simps by force
then have (2, ?r) € rstep 7R ..
then have (2] - map-funs-subst fg o, ?r - map-funs-subst fg o) € rstep ?R ..
then show ?case by auto
qged

lemma rsteps-imp-map-rsteps: assumes (s,t) € (rstep R)*
shows (map-funs-term fg s, map-funs-term fg t) € (rstep (map-funs-trs fg R))*
using assms
proof (induct, clarify)
case (step y 2)
then have (map-funs-term fg y, map-funs-term fg z) € rstep (map-funs-trs fg R)
using rstep-imp-map-rstep
by (auto simp: map-funs-trs.simps)
with step show ?case by auto
qged

lemma SN-map-imp-SN:

assumes SN: SN-on (rstep (map-funs-trs fg R)) {map-funs-term fg t}

shows SN-on (rstep R) {t}
proof (rule ccontr)

assume — SN-on (rstep R) {t}

from this obtain f where cond: f0 =t A (V i. (fi, f (Suc 7)) € rstep R)

unfolding SN-on-def by auto

obtain g where g: ¢ = () 7. map-funs-term fg (f {)) by auto

with cond have cond2: g 0 = map-funs-term fgt A (¥ i. (g 4, g (Suc i)) € rstep
(map-funs-trs fg R))
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using rstep-imp-map-rstep[where fg = fg] by blast
from SN
have = (3 ¢. (¢ 0 = map-funs-term fg t N (V i. (g i, g (Suc 7)) € rstep
(map-funs-trs fg R))))
unfolding SN-on-def by auto
with cond2 show Fulse by auto
qed

lemma rstep-iff-map-rstep:
assumes nj fg
shows (s, t) € rstep R +— (map-funs-term fg s, map-funs-term fq t) € rstep
(map-funs-trs fg R)
proof
assume (s,t) € rstep R
then show (map-funs-term fg s, map-funs-term fg t) € rstep(map-funs-trs fg R)
by (rule rstep-imp-map-rstep)
next
assume (map-funs-term fg s, map-funs-term fg t) € rstep (map-funs-trs fg R)
then have (map-funs-term fg s, map-funs-term fg t) € ctat.closure(subst.closure(map-funs-trs
fg R))
by (simp add: rstep-eq-closure)
then obtain C u v where (u,v) € subst.closure(map-funs-trs fg R) and C{u)
= map-funs-term fg s
and C(v) = map-funs-term fqg t
by (cases rule: ctzt.closure.cases) force
then obtain ¢ w z where (w,z) € map-funs-trs fg R and w-o = v and z-0 =
v
by (cases rule: subst.closure.cases) force
then obtain [ » where w = map-funs-term fg | and © = map-funs-term fg r
and (I,r) € R by (auto simp: map-funs-trs.simps)
have ps: C(map-funs-term fgl - o) = map-funs-term fg s and pt: C{map-funs-term
fg r - o) = map-funs-term fg ¢
unfolding <w = map-funs-term fg I>[symmetric] <x = map-funs-term fg r)[symmetric]
(WO = uy (L0 = v
«C{u) = map-funs-term fg s» «C(v) = map-funs-term fg t> by auto
let ?gf = the-inv fg
let ?C = map-funs-ctzt ?gf C
let %0 = map-funs-subst ?gf o
have gffg: ?9f o fg = id using the-inv-f~f[OF assms] by (intro ext, auto)
from ps and pt have s = map-funs-term ?gf (C{map-funs-term fg 1 - o))
and t = map-funs-term ?gf (C{(map-funs-term fg r - o)) by (auto simp:
map-funs-term-comp gffq)
then have s: s = 2C(map-funs-term ?gf (map-funs-term fgl - o))
and t: t = 2C(map-funs-term ?gf (map-funs-term fgr - o)) using map-funs-term-ctat-distrid
by auto
from s have s = ?C(l-%0) by (simp add: map-funs-term-comp gffq)
from ¢ have t = ?C{r-%c) by (simp add: map-funs-term-comp gffq)
from «(I, ) € R> have (I- %0, r-%0) € subst.closure R by blast
then have (?C(l-%0),?C(r-%0)) € ctat.closure(subst.closure R) by blast
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then show (s,t) € rstep R unfolding «s = ?C(l-%0)» «t = 2C(r-%0)> by (simp
add: rstep-eq-closure)
qed

lemma rstep-map-funs-trs-power-mono:

fixes R R':: ('f,’v)trs and fg :: 'f = 'f

assumes subset: R C R’'shows rstep (((map-funs-trs fg) " n) R) C rstep (((map-funs-trs
fg) "n) R)

by (rule rstep-mono, rule map-funs-trs-power-mono, rule subset)
lemma subsetls: (ANzy z. (z, y, 2) € A = (z, y, 2) € B) = A C B by auto

lemma auz: (|Ja€P. {(2,y,2). . =fstaANy=sndaA Qaz})={(zy2). (2,9)
€ PAQ (z,y) z} (is 2P = 2Q)
proof
show 2P C 2(Q)
proof
fix z assume z € ?P
then obtain ¢ where a € P and z € {(z,y,2). z = fsta Ay=snda A Qa
z} by auto
then obtain b where Q (fst z, fst (snd z)) (snd (snd z)) and (fst =, fst (snd
z)) = a and snd (snd z) = b by force
from <a € P> have (fst a,snd a) € P unfolding split-def by simp
from «Q (fst z, fst (snd z)) (snd (snd z))> have @ a b unfolding «(fst z, fst
(snd x)) = ay <snd (snd z) = b .
from «(fst a,snd a) € Py and <Q a b> show z € ?Q unfolding split-def «(fst
z, fst (snd z)) = ar[symmetric] <snd (snd ) = b [symmetric] by simp
qed
next
show 70Q C ¢P
proof (rule subsetl3)
fix z y z assume (z,y,2) € ?Q
then have (z,y) € P and Q (z,y) z by auto
then have z = fst(z,y) A y = snd(z,y) A @ (z,y) z by auto
then have (z,y,2) € {(z,y,2). z = fst(z,y) A y = snd(z,y) A Q (z,y) z} by
auto
then have IpeP. (z,y,2) € {(z,y,2). x = fst p Ay = snd p A Q p z} using
(z,y) € P> by blast
then show (z,y,z) € ?P unfolding UN-iff [symmetric] by simp
qed
qed

lemma finite-imp-finite-DP-on’:
assumes finite R
shows finite {(l, r, u).
Jhus.u=Funhus A, 7)€ RAT>uA(h, length us) € F A= (1> u)}
proof —
have Al r. (I, r) € R = finite {u. r > u}
proof —
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fix I r
assume (I, r) € R
show finite {u. r > u} by (rule finite-subterms)
qed
with «finite R> have finite(|J (I, ) € R. {u. 7 > u}) by auto
have finite(lJlreR. {(I, r, u). I = fstIr A v = snd Ir A snd Ir > u})
proof (rule finite-UN-I)
show finite R by (rule «finite R»)
next
fix Ir
assume Ir € R
have finite {u. snd lr > u} by (rule finite-subterms)
then show finite {(I,r,u). | = fst Ir A r = snd Ir A snd Ir > u} by auto
qed
then have finite {(I,r,u). (I,r) € R A r > u} unfolding auz by auto
have {(l,r,u). (I,r) € RAr > u} D {(I,r,u). (Shus. u= Fun husA (l,r) € R
AT > u A (h length us) € F A =(l > u))} by auto
with <finite {(I,r,u). (I,r) € R A r > u}> show %thesis using finite-subset by
fast
qed

lemma card-image-le’:

assumes finite S

shows card (JyeSA{z. z = fy}) < card S
proof —

have A:(JyeS. {z. z = fy}) = f*S by auto

from assms show ?thesis unfolding A using card-image-le by auto
qed

lemma subteq-of-map-imp-map: map-funs-term g s > t = Ju. t = map-funs-term
gu
proof (induct s arbitrary: t)

case (Var z)

then have map-funs-term g (Var z) > t V map-funs-term g (Var x) = t by auto

then show ?case

proof

assume map-funs-term g (Var z) > t then show ?thesis by (cases rule:

supt.cases) auto

next

assume map-funs-term g (Var z) = t then show %thesis by best

qed
next

case (Fun f ss)

then have map-funs-term g (Fun f ss) > t V map-funs-term g (Fun f ss) = t by
auto

then show ?case

proof

assume map-funs-term g (Fun f ss) > ¢
then show ?case using Fun by (cases rule: supt.cases) (auto simp: supt-supteq-conv)
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next
assume map-funs-term g (Fun f ss) = ¢t then show ?thesis by best
qed
qed

lemma map-funs-term-inj:
assumes inj (fg :: ('f = 'g))
shows inj (map-funs-term fg)
proof —

fix st ('f,’v)term
assume map-funs-term fg s = map-funs-term fqg t
then have s = ¢
proof (induct s arbitrary: t)
case (Var z) with assms show ?case by (induct t) auto
next
case (Fun f ss) then show Zcase
proof (induct t)
case (Var y) then show ?case by auto
next
case (Fun g ts)
then have A: map (map-funs-term fg) ss = map (map-funs-term fg) ts by
stmp
then have len-eq:length ss = length ts by (rule map-eq-imp-length-eq)
from A have !li. i < length ss = (map (map-funs-term fg) ss)li = (map
(map-funs-term fg) ts)!i by auto
with len-eq have eq: i. i < length ss = map-funs-term fg (ssli) =
map-funs-term fg (ts!é) using nth-map by auto
have in-set: li. i < length ss = (ss!i) € set ss by auto
from Fun have Vi < length ss. (ssli) = (tsli) using in-set eq by auto
with len-eq have ss = ts using nth-equalityl [where zs = ss and ys = ts
by simp
have f = g using Fun <inj fg» unfolding inj-on-def by auto
with <ss = ts» show Zcase by simp
qed
qed
}
then show ?thesis unfolding inj-on-def by auto
qed

lemma rsteps-closed-ctxt:
assumes (s, t) € (rstep R)*
shows (C(s), C(t)) € (rstep R)*
proof —
from assms obtain n where (s,t) € (rstep R) ™ n
using rtrancl-is- UN-relpow by auto
then show ?thesis
proof (induct n arbitrary: s)
case 0 then show ?case by auto
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next
case (Suc n)
from relpow-Suc-D2[OF «(s, ) € (rstep R) ™" Suc n»] obtain u

where (s,u) € (rstep R) and (u,t) € (rstep R)" n by auto

from «(s,u) € (rstep R)» hav (c¢ ( ) C(uy) € (rstep R) ..
from Suc and «(u,t) € (rstep R)™ n» have (C{u),C(t)) € (rstep R)* by simp
with «((C(s),C(u)) € (rstep R)> show ?case by auto

qed

qed

lemma one-imp-ctzt-closed: assumes one: N\ f bef s t aft. (s,;t) € r = (Fun f
(bef Q s # aft), Fun f (bef Q t # aft)) € 7
shows ctzt.closed r
proof
fix st C
assume st: (s,t) € r
show (C(s), C(t)) € r
proof (induct C)
case (More f bef C aft)
from one[OF More] show ?case by auto
qed (insert st, auto)
qged

lemma ctzt-closed-nrrstep [intro]: ctat.closed (nrrstep R)
proof (rule one-imp-ctat-closed)
fix f bef st aft
assume (s,t) € nrrstep R
from this[unfolded nrrstep-def’] obtain [ r C' o
where [r: (I,r) € Rand C: C # O
and s: s = C(l-o) and t: t = C(r - o) by auto
show (Fun f (bef @ s # aft), Fun f (bef Q t # aft)) € nrrstep R
proof (rule nrrstepI[OF lIr])
show More f bef C aft # O by simp
qed (insert s t, auto)
qed

definition all-ctxt-closed :: 'f sig = ('f, 'v) trs = bool where
all-ctxt-closed F r «— (¥ f ts ss. (f, length ss) € F — length ts = length ss —
(Vi. i < lengthts — (ts! i, ssl i) € r) — (V i. i < length ts — funas-term
(ts ! i) U funas-term (ss ! i) C F) — (Fun fts, Fun fss) € r) A (V z. (Var ,
Var z) € r)

lemma all-ctzt-closedD: all-ctxt-closed F r = (f,length ss) € F = length ts =
length ss
= [\ i. i < length ts = (ts !4, ss 1 i) € r ]
= [ i. i < length ts = funas-term (ts! i) C
= [\ i. i < length ts = funas-term (ss! i) C
= (Fun fts, Fun [ ss) € r
unfolding all-ctzt-closed-def by auto
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lemma all-ctzt-closed-sig-reflE: assumes all: all-ctxt-closed F' r
shows funas-term t C F = (t,t) € r
proof (induct t)
case (Var z)
from all[unfolded all-ctxt-closed-def] show ?case by auto
next
case (Fun fts)
show Zcase
by (rule all-ctxt-closedD[OF all - - Fun(1)], insert Fun(2), force+)
qged

lemma all-ctat-closed-reflE: assumes all: all-ctxt-closed UNIV r
shows (t,t) € r
by (rule all-ctxt-closed-sig-reflE[OF all], auto)

lemma all-ctzt-closed-relcomp: assumes all-ctzt-closed UNIV R all-ctzt-closed UNIV
S

shows all-ctat-closed UNIV (R O S)

unfolding all-ctzt-closed-def
proof (intro alll impl conjl)

show (Var z, Var ) € R O S for z using assms unfolding all-ctzt-closed-def
by auto

fix f ts ss

assume len: length ts = length ss

and steps: Vi<length ts. (ts!1i,ss!i) e RO S

hence V i. 3 us. i < length ts — (ts ! i, us) € R A (us, ss! i) € S by blast

from choice[OF this] obtain us where steps: \ i. i<length ts = (ts ! i, us 7)
€RAN(usi,ssli)ed

by blast

let ?us = map us [0..<length ss]

from all-ctzt-closedD[OF assms(2)] steps len have us: (Fun f ?us, Fun f ss) €
S by auto

from all-ctxt-closedD[OF assms(1)] steps len have tu: (Fun fts, Fun f %us) € R
by force

from tu us

show (Fun f ts, Fun f ss) € R O § by auto
qged

lemma all-ctxt-closed-relpow:

assumes acc:all-ctxt-closed UNIV Q)

shows all-ctxt-closed UNIV (Q ~ " n)
proof (induct n)

case ()

thus ?case by (auto simp: all-ctzt-closed-def nth-equalityl)
next

case (Suc n)

from all-ctzt-closed-relcomp| OF this acc)

show ?Zcase by simp
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qed

lemma all-ctxt-closed-subst-step-sig:
fixes r :: ('f, 'v) trs and ¢ :: ('f, 'v) term
assumes all: all-ctxt-closed F r
and sig: funas-term t C F
and steps: \ z. © € vars-term t = (0 z, T x) € 1
and sig-subst: \ z. x € vars-term t = funas-term (o x) U funas-term (T )
CF
shows (t -0, t-7) €r
using sig steps sig-subst
proof (induct t)
case (Var z)
then show ?Zcase by auto
next
case (Fun fts)
{
fix t
assume t: t € set ls
with Fun(2—3) have funas-term t C F \ z. x € vars-term t = (o z, T )
€ r by auto
from Fun(1)[OF t this Fun(4)] t have step: (t - o, t - T) € r by auto
from Fun(4) t have A\ z. x € vars-term t = funas-term (o z) U funas-term
(t ) C F by auto
with <funas-term t C F» have funas-term (t - o) U funas-term (¢t - 7) C F
unfolding funas-term-subst by auto
note step this
}
then have steps: A\ i. i < length ts = (ts! i -0, ts!i-7) € r A funas-term
(ts ! i - o) U funas-term (ts! i - 7) C F unfolding set-conv-nth by auto
with all-ctzt-closedD[OF all, of f map (A t. t - 7) ts map (A t. t - o) ts] Fun(2)
show ?case by auto
qed

lemma all-ctat-closed-subst-step:
fixes r :: ('f, 'v) trs and ¢ :: ('f, 'v) term
assumes all: all-ctxt-closed UNIV r
and steps: A\ z. © € vars-term t = (0 z, T x) € 1
shows (t - o, t-7) €r
by (rule all-ctxt-closed-subst-step-sig| OF all - steps|, auto)

lemma all-ctat-closed-ctztE: assumes all: all-ctzt-closed F' R
and Fs: funas-term s C F
and Ft: funas-term t C F
and step: (s,t) € R
shows funas-ctzt C CF = (C (s), C (t)) €R
proof (induct C)
case Hole
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from step show ?case by auto
next
case (More f bef C aft)
let ?n = length bef
let ?m = Suc (9n + length aft)
show ?case unfolding intp-actzt.simps
proof (rule all-ctzt-closedD[OF all])
fix ¢
let 2t =X s (bef Q C (s) # aft) !4
assume | < length (bef Q@ C(s) # aft)
then have i: i < ?m by auto
then have mem: A\ s. 2t s € set (bef @ C ( s ) # aft) unfolding set-conv-nth
by auto
from mem|of s] More Fs show funas-term (%t s) C F by auto
from mem|of t] More Ft show funas-term (?¢t t) C F by auto
from More have step: (C (s ), C {t)) € R by auto
{
fix s
assume s € set bef U set aft
with More have funas-term s C F by auto
from all-ctat-closed-sig-reflE[OF all this] have (s,s) € R by auto
} note steps = this
show (%t s, ?tt) € R
proof (cases i = n)
case True
then show ?thesis using step by auto
next
case Fulse
show ?thesis
proof (cases i < 7n)
case True
then show ?thesis unfolding append-Cons-nth-left{OF True] using steps
by auto
next
case Fulse
with < # ?n) ¢ have 3 k. k < length aft A i = Suc ?n + k by presburger
then obtain k where k: k < length aft and i: i = Suc ?n + k by auto
from k show ?thesis using steps unfolding i by (auto simp: nth-append)
qed
qed
qed (insert More, auto)
qed

lemma trans-ctxt-sig-imp-all-ctrt-closed: assumes tran: trans r

and refl: A\ t. funas-term t C F = (t,t) € r

and ctzt: A\ C s t. funas-ctet C C F = funas-term s C F = funas-term t C
F= (st)er=(C(s),C(t)) er
shows all-ctxt-closed F r

unfolding all-ctzt-closed-def
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proof (intro conjl, intro alll impl)
fix f ts ss
assume f: (f,length ss) € F and
l: length ts = length ss and
steps: ¥V i < length ts. (ts ! i, ss ! i) € r and
sig: ¥V i < length ts. funas-term (ts! i) U funas-term (ss! i) C F
from sig have sig-ts: \ t. t € set ts = funas-term t C F' unfolding set-conv-nth
by auto
let ?p = X ss. (Fun fts, Fun f ss) € r A funas-term (Fun f ss) C F
let 2r = X zsi ysi. (wsi, ysi) € r A funas-term ysi C F
have init: ?p ts by (rule conjI[OF refl], insert f sig-ts I, auto)
have ?7p ss
proof (rule parallel-list-update[where p = ?p and r = ?r, OF - HOL.refl init
I[symmetric]])
fix zs iy
assume len: length xs = length ts
and i: ¢ < length ts
and 7: 2r (zs! i)y
and p: ?p xs
let ?C' = More f (take i xs) Hole (drop (Suc i) xs)
have id1: Fun fazs = ?C ( zs ! i) using id-take-nth-drop|OF i[folded len]] by
stmp
have id2: Fun f (zs[i :== y]) = ?2C ( y ) using upd-conv-take-nth-drop| OF
i[folded len]] by simp
from plunfolded id1] have C: funas-ctat ?C C F and xzi: funas-term (zs ! i)
C F by auto
from r have funas-term y C F (zs! i, y) € r by auto
with ctat[OF C i this] C have r: (Fun f zs, Fun f (zs[i := y])) € r
and f: funas-term (Fun f (zs[i := y])) C F unfolding id! id2 by auto
from p r tran have (Fun f ts, Fun f (zs[i :== y])) € r unfolding trans-def by
auto
with f
show ?p (xs[i := y]) by auto
qed (insert sig steps, auto)
then show (Fun fts, Fun fss) € r ..
qed (insert refl, auto)

lemma trans-ctxt-imp-all-ctxt-closed: assumes tran: trans r

and refi: refl r

and ctzt: ctat.closed r
shows all-ctxt-closed F r

by (rule trans-ctat-sig-imp-all-ctat-closed[ OF tran - ctxt.closedD[OF ctxt]], insert
refllunfolded refl-on-def], auto)

lemma all-ctat-closed-rsteps[intro]: all-ctxt-closed F ((rstep r)*)
by (blast intro: trans-ctzt-imp-all-ctzt-closed trans-rtrancl refl-rtrancl)

lemma subst-rsteps-imp-rsteps:
fixes o :: ('f, 'v) subst
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assumes A z. z€vars-term t = (o z, 7 ©) € (rstep R)*
shows (¢t - o, t - 7) € (rstep R)*
by (rule all-ctzt-closed-subst-step)

(insert assms, auto)

lemma rtrancl-trancl-into-trancl:
assumes len: length ts = length ss
and steps: V i < length ts. (ts !4, ss! i) € R*
and i: ¢ < length ts
and step: (ts! i, ss! i) € RT
and ctxt: ctxt.closed R
shows (Fun fts, Fun f ss) € RT
proof —
from ctzt have ctat-rt: ctzt.closed (R*) by blast
from ctzt have ctat-t: ctzt.closed (RT) by blast
from id-take-nth-drop| OF i] have ts: ts = take i ts Q ts | i # drop (Suc i) ts (is
- = 2ts) by auto
from id-take-nth-drop| OF i[simplified len]] have ss: ss = take i ss @ ss | i #
drop (Suc 1) ss (is - = ?ss) by auto
let ?mid = take i ss @ ts | ¢ # drop (Suc 7) ss
from trans-ctrt-imp-all-ctzt-closed| OF trans-rtrancl refl-rtrancl ctzt-rt] have all:
all-ctzt-closed UNIV (R*) .
from ctzt-closed-one|OF ctxt-t step| have (Fun f ?mid, Fun f ?ss) € R .
then have partl: (Fun f ?mid, Fun f ss) € RT unfolding ss[symmetric] .
from ts have lents: length ts = length ?ts by simp
have (Fun f ts, Fun f ?mid) € R*
proof (rule all-ctzt-closedD[OF all])
fix j
assume jts: j < length ts
from i len have i: i < length ss by auto
show (ts ! j, ?mid ! j) € R*
proof (cases j < i)
case True
with ¢ have j: j < length ss by auto
with True have id: ?mid ! j = ss ! j by (simp add: nth-append)
from steps len j have (ts ! j, ss ! j) € R* by auto
then show ?thesis using id by simp
next
case Fulse
show ?thesis
proof (cases j = 1)
case True
then have ?mid ! j = ts ! j using i by (simp add: nth-append)
then show ?thesis by simp
next
case Fulse
from ¢ have min: min (length ss) i = i by simp
from Fulse <= j < 0> have j > i by arith
then obtain k£ where k: j — i = Suc k by (cases j — 4, auto)
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then have j: j = Suc (i+k) by auto
with jts len have ss: Suc i + k < length ss and jlen: j < length ts by auto
then have ?mid | j = ss ! j using j ¢ by (simp add: nth-append min - j
< i» nth-drop[OF ss])
with steps jlen show ?thesis by auto
qed
qed
qed (insert lents[symmetric] len, auto)
with part! show ?thesis by auto
qed

lemma SN-ctzt-apply-imp-SN-ctat-to-term-list-gen:
assumes ctzt: ctxt.closed r
assumes SN: SN-on r {C(t)}
shows SN-on r (set (ctat-to-term-list C))
proof —
{
fix u
assume u € set (ctxt-to-term-list C)
from ctat-to-term-list-supt|OF this, of t] have C(t) > u
by (rule supt-imp-supteq)
from ctzt-closed-SN-on-subt[OF ctat, OF SN this]
have SN-on r {u} by auto
}
then show ?thesis
unfolding SN-on-def by auto
qged

lemma rstep-subset: ctxt.closed R’ = subst.closed R’ = R C R’ = rstep R C
R’ by fast

lemma trancl-rstep-ctxt:
(s,t) € (rstep R)T = (C(s), C(t)) € (rstep R)*"
by (rule ctxt.closedD, blast)

lemma args-steps-imp-steps-gen:
assumes ctzt: \ bef s t aft. (s, t) € r (length bef) =
length ts = Suc (length bef + length aft) =
(Fun f (bef @ (s :: ('f, 'v) term) # aft), Fun f (bef Q t # aft)) € R*
and len: length ss = length ts
and args: N\ i. i < length ts = (ss ! 4, ts | i) € (r i)*
shows (Fun f ss, Fun f ts) € R*
proof —
let ?tss = Ai. take i ts Q drop i ss

fix bef 2 ('f,/v)term list and s t and aft :: ('f,’v)term list

assume (s,t) € (r (length bef))* and len: length ts = Suc (length bef + length
aft)

then have (Fun f (bef Q s # aft), Fun f (bef Q t # aft)) € R*
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proof (induct)
case (step t u)
from step(3)[OF len] ctat[OF step(2) len] show ?case by auto
qed simp
}
note one = this
have a:Vi < length ts. (Fun f ss,Fun f (?tss 7)) € R*
proof (intro alll impl)
fix i assume i < length ts then show (Fun f ss,Fun f (?tss i)) € R*
proof (induct 7)
case (
then show ?Zcase by simp
next
case (Suc 1)
then have IH: (Fun f ss,Fun f (%tss i)) € R*
and i: i < length ts by auto
have si: ?tss (Suc ) = take i ts Q ts | i # drop (Suc i) ss
unfolding take-Suc-conv-app-nth[OF i] by simp
have 4 ?tss i = take i ts Q ss ! i # drop (Suc i) ss
unfolding Cons-nth-drop-Suc[OF i[unfolded len[symmetric]]] ..
from 7 have i": length (take i ts) < length ts and len” length (take i ts) = i
by auto
from len i have len’: length ts = Suc (length (take i ts) + length (drop (Suc
i) ss)) by simp
from one[OF args|OF i'| len”] IH
show ?case unfolding si 77 len’ by auto
qed
qed
from this[THEN spec, THEN mp|OF - le-refl]]
show ?thesis using len by auto
qed

lemma args-steps-imp-steps:

assumes ctzt: ctzt.closed R

and len: length ss = length ts and args: Vi<length ss. (ssli, tsli) € R*

shows (Fun f ss, Fun fts) € R*
proof (rule args-steps-imp-steps-gen[OF - len])

fix ¢

assume i < length ts then show (ss ! i, ts ! i) € R* using args len by auto
qed (insert ctat-closed-one| OF ctat], auto)

lemmas args-rsteps-imp-rsteps = args-steps-imp-steps [OF ctat-closed-rstep]

lemma replace-at-subst-steps:
fixes o 7 :: ('f, 'v) subst
assumes acc: all-ctzt-closed UNIV r
and refl: refl r
and x: Az. (c z, 7 x) € r
and p € poss t
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and ¢t |-p = Varz
shows (replace-at (t - o) p (1 z),t-7) €T
using assms(4—)
proof (induction t arbitrary: p)
case (Var z)
then show ?case using refl by (simp add: refl-on-def)
next
case (Fun fts)
then obtain ¢ ¢ where [simp]: p = ¢ # ¢ and @: i < length ts
and ¢: ¢ € poss (ts! i) and [simp]: ts | i |- ¢ = Var z by (cases p) auto
let ?C = ctxt-of-pos-term q (ts i - o)
let %ts = map (\t. t - 7) ts
let ?ss = take i (map (A\t. t - o) ts) @ 2C(r x) # drop (Suc i) (map (At. t - o)
ts)
have Vj<length ts. (?ss ! j, ?ts!j) e r
proof (intro alll impl)
fix j
assume j: j < length ts
moreover
{ assume [simp]: j = @
have ?ss | j = ?C(r z) using i by (simp add: nth-append-take)
with Fun.TH [of ts ! i q]
have (%ss ! j, ?ts ! j) € r using ¢ and ¢ by simp }
moreover
{ assume j < i
with ¢ have %ss ! j=ts!j- o
and %s!j = ts!j- 7 by (simp-all add: nth-append-take-is-nth-conv)
then have (%ss ! j, %ts!j) € r by (auto simp: x all-ctat-closed-subst-step [OF
acc)) }
moreover
{ assume j > i
with ¢ and j have %ss!j=ts!j-o
and %s!j=ts!j- 7 by (simp-all add: nth-append-drop-is-nth-conv)
then have (%ss ! j, %ts ! j) € r by (auto simp: x all-ctat-closed-subst-step [OF
accl) }
ultimately show (%ss ! j, ?ts | j) € r by arith
qged
moreover have i < length ts by fact
ultimately show ?case
by (auto intro: all-ctzt-closedD [OF acc])
qed

lemma replace-at-subst-rsteps:
fixes o 7 :: (f, 'v) subst
assumes x: A\z. (o z, 7 z) € (rstep R)*
and p € poss t
and ¢ |- p = Varz
shows (replace-at (t - o) p (t z), t - 7) € (rstep R)*
by (intro replace-at-subst-steps|OF - - assms|, auto simp: refl-on-def)
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lemma substs-rsteps:
assumes Az. (o z, 7 ) € (rstep R)*
shows (t - o, t - 7) € (rstep R)*
proof (induct t)
case (Var y)
show ?case using assms by simp-all
next
case (Fun fts)
then have Vi<length (map (At. t - o) ts).
(map (Mt. t -0 ) ts! i, map (At. t - 7) ts ! i) € (rstep R)* by auto
from args-rsteps-imp-rsteps [OF - this| show Zcase by simp
qed

lemma nrrstep-Fun-imp-arg-rstep:

fixes ss :: ('f,’v)term list

assumes (Fun f ss,Fun f ts) € nrrstep R (is (?s,?t) € nrrstep R)

shows 3 C' 7. i < length ss A (ssli,tsli) € rstep R A C(ssli) = Fun fss A C(tsli)
= Fun fts
proof —

from «(?s,%t) € nrrstep R»

obtain | r j ps 0 where A: let C = ctat-of-pos-term (j#ps) ?s in (j#ps) € poss
s N\ (I,r) € RA C{l.o) = 2s A C(r-o) = ¢t unfolding nrrstep-def rstep-r-p-s-def
by force

let ?C' = ctat-of-pos-term (j#ps) ?s

from A have (j#ps) € poss ?s and (I,r) € R and ?C(l-0) = ?s and ?C(r-o)
= %t using Let-def by auto

have C: ?C = More f (take j ss) (ctzt-of-pos-term ps (sslf)) (drop (Suc j) ss)
(is ?C = More f ?ss1 ?D ?ss2) by auto

from «?C(l-0) = ?s» have ?D(l-0) = (ss!j) by (auto simp: take-drop-imp-nth)

from «(l,r) € R> have (l-0,r-0) € (subst.closure R) by auto

then have (?D(l-0),?D(r-0)) € (ctat.closure(subst.closure R)) and (?C(l-0),?C{r-c))
€ (ctat.closure(subst.closure R)) by (auto simp only: ctat.closure.intros)

then have D-rstep: (?D(l-0),?D(r-0)) € rstep R and (¢C(l-0),?C(r-0)) € rstep
R

by (auto simp: rstep-eg-closure)

from < ?C(r-o) = ?t» and C have ?t = Fun f (take j ss @ ?D(r-c) # drop (Suc
j) ss) by auto

then have ts: ts = (take j ss Q ?D(r-c) # drop (Suc j) ss) by auto

from j#ps € poss ?s) have r0: j < length ss by simp

then have (take j ss @ ?D{r-c) # drop (Suc j) ss) ! j = ?D{r-o) by (auto simp:
nth-append-take)

with ¢s have ts!j = ?D(r-o) by auto

let ?C" = More f (take j ss) O (drop (Suc j) ss)

from D-rstep have r1: (sslj,tslj) € rstep R unfolding <tslj = ?D(r-o)> <?D(l-0)
= sslj» by simp

have ?s = ?C(l-c) unfolding «?C(l-c) = ?s)> by simp

also have ... = ?C’(?D(l-0)) unfolding C by simp

finally have r2:2C'(sslj) = ?s unfolding <?D(l-0) = sslj» by simp
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have ?t = ?C(r-o) unfolding «?C(r-o) = ?t» by simp
also have ... = 2C'(?D(r-0)) unfolding C by simp
finally have r3:2C’(ts!j) = ?¢t unfolding «tslj = ?D{(r-c)» by simp
from r0 r1 r2 r3 show ?thesis by best
qed

lemma pair-fun-eq[simpl:
fixesf::'a='band g :: ‘b= "a
S)hows ((Mz,y)- (@.f ) o (A(=@,y). (2,9 9)) = (A@y). (z,(f o g) y) (is 7f =
Zg
proof (rule ext)
fix ab:: 'cx b
obtain a b where ab = (a,b) by force
have (\z.0). (2.f 1)e(Mz.0). (2.0 ) (a.0) = (Aw). (2.(fo0) 1)) (a.8) by
simp
then show ¢f ab = ?¢ ab unfolding <ab = (a,b)) by simp
qed

lemma restrict-singleton:
assumes z € subst-domain o shows 3t. o |s {z} = (\y. if y = x then t else Var
y)
proof —
have o |s {z} = (\y. if y = x then o y else Var y) by (simp add: subst-restrict-def)
then have o |s {z} = (\y. if y = z then o z else Var y) by (simp cong: if-cong)
then show ?thesis by (rule exI|of - o x])
qed

definition rstep-r-c-s :: ('f,"v)rule = ('f,’v)ctat = ('f,’v)subst = ('f,’v)term rel
where rstep-r-c-s r C o = {(s,t) | st. s= C{fstr - oy Nt = C(sndr - 0)}

lemma rstep-iff-rstep-r-c-s: ((s,t) € rstep R) = (3 Il r C o. (L,r) € R A (s,t) €
rstep-r-c-s (I,r) C o) (is ?left = ?right)
proof
assume ?left
then obtain [ r p 0 where step: (s,t) € rstep-r-p-s R (I,r) p o
unfolding rstep-iff-rstep-r-p-s by blast
obtain D where D: D = ctzt-of-pos-term p s by auto
with step have Rrule: (I,r) € Rand s: s = D{l - o) and t: t = D(r - o)
unfolding rstep-r-p-s-def by (force simp: Let-def)+
then show ?right unfolding rstep-r-c-s-def by auto
next
assume ?right
from this obtain [ r C' o where (I,r) € R A (s,t) € rstep-r-c-s (I,r) C o by
auto
then have rule: (I,r) € Rand s: s = C(l - o) and t: t = C(r - o)
unfolding rstep-r-c-s-def by auto
show ?left unfolding rstep-eq-closure by (auto simp: s t intro: rule)
qed
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lemma rstep-subset-characterization:
(rstep R Crstep S) = (VY lr.(lr)e R— 3 U'r'"Co.(U';r)e SANL=C(l
co) Ar=C(r'- o)) (is ?eft = ?right)
proof
assume ?right
show ?left
proof
fix st
assume (s,t) € rstep R
then obtain [ r C' ¢ where step: (I,r) € R A (s,t) € rstep-r-c-s (I,r) C o
unfolding rstep-iff-rstep-r-c-s by best
then have Rrule: (I,r) € Rand s: s = C(l - o) and t: t = C(r - o)
unfolding rstep-r-c-s-def by (force)+
from Rrule < ?right> obtain !’ r’ C’ ¢’ where Srule: (I';r') € S and I: | =
Cl'-o'yand r: r = C{r'- o)
by (force simp: Let-def)+
let 2D = C o, (C' . 0)
let ?sig = 0’ o4 o
have s2: s = ?D(l’ - %sig) by (simp add: s 1)
have t2: t = ?D(r’ - ?sig) by (simp add: t r)
from s2 t2 have sStep: (s,t) € rstep-r-c-s (I',r’) 2D ?sig unfolding rstep-r-c-s-def
by force
with Srule show (s,t) € rstep S by (simp only: rstep-iff-rstep-r-c-s, blast)
qed
next
assume ?left
show ?right
proof (rule ccontr)
assume — right
from this obtain ! r where (I,r) € R and cond: ¥V I'r' C 0. (I';r) € S —
(I1#£C{' o) Vr#Cr'- o)) by blast
then have (I,r) € rstep R by blast
with «%lefty have (I,r) € rstep S by auto
with cond show False by (simp only: rstep-iff-rstep-r-c-s, unfold rstep-r-c-s-def,
force)
qed
qed

lemma rstep-preserves-funas-terms-var-cond:
assumes funas-trs R C F and funas-term s C F and (s,t) € rstep R
and wf: A I r. (I,r) € R = vars-term v C vars-term |
shows funas-term t C F
proof —
from «(s,t) € rstep R» obtain [ r C o0 where R: (I,r) € R
and s: s = C(l-.0) and t: t = C(r-o) by auto
from <funas-trs R C F> and R have funas-term r C F
unfolding funas-defs [abs-def] by force
with wf[OF R] «funas-term s C F> show ?thesis unfolding s t by (force simp:
funas-term-subst)
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qed

lemma rstep-preserves-funas-terms:
assumes funas-trs R C F and funas-term s C F and (s,t) € rstep R
and wf: wf-trs R
shows funas-term t C F
by (rule rstep-preserves-funas-terms-var-cond| OF assms(1—3)], insert wf [unfolded
wf-trs-def], auto)

lemma rsteps-preserve-funas-terms-var-cond:

assumes F: funas-trs R C F and s: funas-term s C F and steps: (s,t) € (rstep
R)*

and wf: A\ I r. (I,r) € R = vars-term r C vars-term |

shows funas-term t C F

using steps
proof (induct)

case base then show ?case by (rule s)
next

case (step t u)

show ?case by (rule rstep-preserves-funas-terms-var-cond[OF F step(3) step(2)

wf])
qged

lemma rsteps-preserve-funas-terms:
assumes F: funas-trs R C F and s: funas-term s C F
and steps: (s,t) € (rstep R)* and wf: wf-trs R
shows funas-term t C F
by (rule rsteps-preserve-funas-terms-var-cond|[ OF assms(1—38)], insert wf [unfolded
wf-trs-def], auto)

lemma no-Var-rstep [simpl:
assumes wf-trs R and (Var z, t) € rstep R shows False
using rstep-imp-Fun[OF assms] by auto

lemma lhs-wf:
assumes R: (I, ) € R and funas-trs R C F
shows funas-term | C F
using assms by (force simp: funas-trs-def funas-rule-def)

lemma rhs-wf:
assumes R: (I, r) € R and funas-trs R C F
shows funas-term r C F
using assms by (force simp: funas-trs-def funas-rule-def)

lemma supt-map-funs-term [introl:
assumes ¢ > s
shows map-funs-term fg t > map-funs-term fg s
using assms

proof (induct)
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case (arg s ss f)
then have map-funs-term fg s € set(map (map-funs-term fg) ss) by simp
then show ?case unfolding term.map by (rule supt.arg)
next
case (subt s ss u f)
then have map-funs-term fg s € set(map (map-funs-term fg) ss) by simp
with (map-funs-term fg s > map-funs-term fg u» show ?case
unfolding term.map by (metis supt.subt)
qed

lemma nondef-root-imp-arg-step:
assumes (Fun f ss, t) € rstep R
and wf: V (I, r)€R. is-Fun |
and ndef: — defined R (f, length ss)
shows Ji<length ss. (ss! i, t |- [i]) € rstep R
At = Fun f (take i ss @Q (¢t |- [i]) # drop (Suc i) ss)
proof —
from assms obtain [ r p o
where rstep-r-p-s: (Fun f ss, t) € rstep-r-p-s R (I, r) p o
unfolding rstep-iff-rstep-r-p-s by auto
let ?C' = ctat-of-pos-term p (Fun f ss)
from rstep-r-p-s have p € poss (Fun f ss) and (I, r) € R
and ?C(l - o) = Fun f ss and ?C(r - o) = t unfolding rstep-r-p-s-def Let-def
by auto
have J7 q. p = i#q
proof (cases p)
case Cons then show ?thesis by auto
next
case Nil
have ?C = OO unfolding Nil by simp
with «?C(l-0) = Fun f ss» have l-c = Fun f ss by simp
have V (I,r)eR. 3f ss. | = Fun f ss
proof (intro balll impI)
fix Ir assume Ir € R
with wf have Vz. fst Ir # Var z by auto
then have 3 f ss. (fst Ir) = Fun f ss by (cases fst Ir) auto
then show (A(I,r). 3f ss. | = Fun f ss) Ir by auto
qed
with «(l,r) € R» obtain ¢ ts where | = Fun g ts unfolding wf-trs-def by best
with <l-0 = Fun f ssy <l = Fun g ts» and «(l, r) € R ndef
show ?thesis unfolding defined-def by auto
qed
then obtain i ¢ where p = i#q by auto
from «p € poss(Fun f ss)» have i < length ss and ¢ € poss(ss!i) unfolding <p
= i#q> by auto
let YD = ctat-of-pos-term q (ssli)
have C: ?C = More f (take i ss) ?D (drop (Suc i) ss) unfolding <p = i#¢> by
auto
from «?C(l-0) = Fun f ss» have take i ssQ?2D(l-o)#drop (Suc i) ss = ss un-
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folding C by auto

then have (take ¢ ssQ?D(l-0)#drop (Suc i) ss)li = ssli by simp

with (i < length ss» have ?D(l-c) = ssli using nth-append-take[where zs = ss
and i = {] by auto

have ¢: t = Fun f (take i ssQ?D{r-c)#drop (Suc i) ss) unfolding <?C(r-o) =
b [symmetric] C by simp

from «i < length ss» have t|-[i] = ?D(r-o) unfolding ¢ unfolding subt-at.simps
using nth-append-take[where zs = ss and i = i] by auto

from «q € poss(ssli)» and «(l,r) € R

and «?D(l-0) = ssli» and <t|-[i]| = ?D(r-o)»[symmetric]

have (ssli,t|-[i]) € rstep-r-p-s R (l,r) q o unfolding rstep-r-p-s-def Let-def by
auto

then have (ssli,t|-[i]) € rstep R unfolding rstep-iff-rstep-r-p-s by auto

from (i < length ss» and this and t show ?thesis unfolding «t|-[i] = ?D(r-o)»[symmetric|
by auto
qed

lemma nondef-root-imp-arg-steps:
assumes (Fun f ss,t) € (rstep R)*
and wf: V (I, r)€R. is-Fun |
and — defined R (f,length ss)
shows Jts. length ts = length ss A t = Fun fts N (Vi<length ss. (ssli,tsli) €
(rstep R)*)
proof —
from assms obtain n where (Fun f ss,t) € (rstep R) " n
using rtrancl-imp-relpow by best
then show ?thesis
proof (induct n arbitrary: t)
case ( then show ?case by auto
next
case (Suc n)
then obtain « where (Fun f ss,u) € (rstep R)” n and (u,t) € rstep R by
auto
with Suc obtain ts where IHI1: length ts = length ss and IH2: uw = Fun f ts
and [H3: Vi<length ss. (ssli,tsli) € (rstep R)* by auto
from ¢(u,t) € rstep R» have (Fun f ts,t) € rstep R unfolding <u = Fun f ts) .
from nondef-root-imp-arg-step| OF this wf <— defined R (f,length ss)s[simplified
IH1[symmetric]]]
obtain j where j < length ts
and (tslj,t|-[j]) € rstep R
and B: t = Fun f (take j tsQ(t|-[j])#drop (Suc j) ts) (is t = Fun f ?ts) by
auto
from <j < length ts» have length ?ts = length ts by auto
then have A: length ?ts = length ss unfolding <length ts = length ss» .
have C: Vi<length ss. (ssli,?tsli) € (rstep R)*
proof (intro alll, intro impl)
fix 7 assume ¢ < length ss
from i < length ss» and IH3 have (sslits!i) € (rstep R)* by auto
have ¢ = j V i # j by auto
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then show (ssli,?ts!i) € (rstep R)*
proof
assume i = j
from <j < length ts» have j < length ts by simp
from nth-append-take[ OF this] have ?tslj = t|-[j] by simp
from «(¢slf,t|-[j]) € rstep R> have (ts!i,t|-[i]) € rstep R unfolding i = j .
with «(ssli tsli) € (rstep R)*» show ?thesis unfolding i = j)> unfolding
«?tslj = t|-[j]» by auto
next
assume i # j
from i < length ss» have i < length ts unfolding <length ts = length ss»
by simp
from ¢j < length ts» have j < length ts by simp
from nth-append-take-drop-is-nth-conv[OF «i < length ts» <j < length ts) <i
7]
have ?tsli = tsli by simp
with «(ssli,tsli) € (rstep R)*» show ?thesis by auto
qed
qed
from A and B and C show ?case by blast
qged
qed

lemma rstep-imp-nrrstep:
assumes is-Fun s and — defined R (the (root s)) and V (I,r)€R. is-Fun |
and (s, t) € rstep R
shows (s, t) € nrrstep R
proof —
from <is-Fun s) obtain f ss where s: s = Fun f ss by (cases s) auto
with assms have undef: — defined R (f, length ss) by simp
from assms have non-var: ¥V (I, r)€R. is-Fun | by auto
from nondef-root-imp-arg-step|OF (s, t) € rstep Ry[unfolded s| non-var undef]
obtain ¢ where i < length ss and step: (ss! i, ¢ |- [i]) € rstep R
and t: t = Fun f (take i ss Q (t |- [i]) # drop (Suc i) ss) by auto
from step obtain C'[r o where (I, ) € R and lhs: ss! i = C(l - o)
and rhs: t |- [i] = C{r - o) by auto
let ?C' = More f (take i ss) C (drop (Suc i) ss)
have (I, r) € R by fact
moreover have ?C # [0 by simp
moreover have s = ?C(l - o)
proof —
have s = Fun f (take i ss Q ssli # drop (Suc i) ss)
using id-take-nth-drop|OF «i < length ss»] unfolding s by simp

also have ... = ?C(l - o) by (simp add: lhs)
finally show ?thesis .

qed

moreover have t = ?C{(r - o)

proof —

have t = Fun f (take i ss Q t |- [{] # drop (Suc i) ss) by fact
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also have ... = Fun f (take i ss @ C(r - o) # drop (Suc i) ss) by (simp add:
rhs)
finally show ?thesis by simp
qed
ultimately show (s, t) € nrrstep R unfolding nrrstep-def’ by blast
qed

lemma rsteps-imp-nrrsteps:
assumes is-Fun s and — defined R (the (root s))
and no-vars: ¥ (I, r)€R. is-Fun |
and (s, t) € (rstep R)*
shows (s, t) € (nrrstep R)*
using «(s, t) € (rstep R)™
proof (induct)
case base show ?case by simp
next
case (step u v)
from assms obtain f ss where s: s = Fun f ss by (induct s) auto
from nrrsteps-preserve-root|OF (s, u) € (nrrstep R)*»[unfolded s|]
obtain ts where u: v = Fun f ts by auto
from nrrsteps-equiv-num-args|OF «(s, u) € (nrrstep R)*»[unfolded s]]
have len: length ss = length ts unfolding u by simp
have is-Fun u by (simp add: u)
have undef: — defined R (the (root u))
using «— defined R (the (root s))»
unfolding s u by (simp add: len)
have (u, v) € nrrstep R
using rstep-imp-nrrstep|OF <is-Fun wy undef no-vars] step
by simp
with step show ?case by auto
qed

lemma left-var-imp-not-SN:

fixes R :: ('f,'v)trs and ¢ :: ('f, 'v) term

assumes (Vary, r) € R (is (%y, -) € -)

shows — (SN-on (rstep R) {t})
proof (rule steps-imp-not-SN-on)

fix ¢t ('f,'v)term

let 2yt = subst y t

show (t, r - %yt) € rstep R

by (rule rstepI[OF assms, where C = O and o = ?yt], auto simp: subst-def)

qed

lemma not-SN-subt-imp-not-SN:
assumes ctzt: ctrt.closed R and SN: = SN-on R {t} and sub: s > ¢
shows — SN-on R {s}
using ctrt-closed-SN-on-subt[OF ctxzt - sub] SN
by auto
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lemma root-Some:
assumes root t = Some fn
obtains ss where length ss = snd fn and t = Fun (fst fn) ss
using assms by (induct t) auto

lemma map-funs-rule-power:
fixes f:: 'f = 'f
shows ((map-funs-rule f) =" n) = map-funs-rule (f = n)
proof (rule sym, intro ext, clarify)
fix 17 (f,v)term
show map-funs-rule (f =" n) (I,r) = (map-funs-rule f =" n) (I,r)
proof (induct n)
case (
show ?case by (simp add: term.map-ident)
next
case (Suc n)
have map-funs-rule (f =~ Suc n) (I,r) = map-funs-rule f (map-funs-rule (f =
w) (1))

by (simp add: map-funs-term-comp)

also have ... = map-funs-rule f ((map-funs-rule f =~ n) (I,r)) unfolding Suc
also have ... = (map-funs-rule f =~ (Suc n)) (I,r) by simp
finally show ?case .
qed
qed

lemma map-funs-trs-power:
fixes f :: 'f = 'f
shows map-funs-trs f =~ n = map-funs-trs (f = n)
proof
fix R :: ('f, 'v) trs
have map-funs-rule (f =~ n) ‘* R = (map-funs-rule f =~ n) ‘ R unfolding
map-funs-rule-power ..
also have ... = ((A R. map-funs-trs f R) =~ n) R unfolding map-funs-trs.simps
apply (induct n)
apply simp
by (metis comp-apply funpow.simps(2) image-comp)
finally have map-funs-rule (f =" n) ‘ R = (map-funs-trs f ~ " n) R .
then show (map-funs-trs f =~ n) R = map-funs-trs (f " n) R
by (simp add: map-funs-trs.simps)
qed

The set of minimally nonterminating terms with respect to a relation R.

definition Tinf :: ('f, 'v) trs = ('f, 'v) terms
where

Tinf R = {t. = SN-on R {t} A (Vs < t. SN-on R {s})}

lemma not-SN-imp-subt-Tinf:
assumes - SN-on R {s} shows 3tls. ¢t € Tinf R
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proof —
let S ={t|t s>t A - SN-on R {t}}
from assms have s: s € 25 by auto
from mp|[OF spec[OF spec|OF SN-imp-minimal| OF SN-supt]]] s
obtain ¢ where st: s > ¢t and nSN: = SN-on R {t}
and min: V u. (t,u) € supt — u ¢ 2S5 by auto
have t € Tinf R unfolding Tinf-def
proof (intro Collect] alll impl conjl nSN)
fix u
assume u: ¢t > u
from u st have s > u using supteg-supt-trans by auto
with min v show SN-on R {u} by auto
qed
with st show ?thesis by auto
qed

lemma not-SN-imp-Tinf:
assumes = SN R shows Jt¢. t € Tinf R
using assms not-SN-imp-subt-Tinf unfolding SN-on-def by blast

lemma ctzt-of-pos-term-map-funs-term-conv [iff]:
assumes p € poss §
shows map-funs-ctzt fg (ctzt-of-pos-term p s) = (ctzt-of-pos-term p (map-funs-term
fg9))
using assms
proof (induct s arbitrary: p)
case (Var z) then show Zcase by simp
next
case (Fun f ss) then show ?case
proof (cases p)
case Nil then show ?thesis by simp
next
case (Cons i q)
with «p € poss(Fun f ss)) have i < length ss and ¢ € poss(ssli) unfolding
Cons poss.simps by auto
then have ssli € set ss by simp
with Fun and <q € poss(ssli)»
have IH: map-funs-ctzt fg(ctzt-of-pos-term q (ssli)) = ctxt-of-pos-term q (map-funs-term
fg (ssl%)) by simp
have map-funs-ctat fg( ctat-of-pos-term p (Fun f ss)) = map-funs-ctat fg( ctat-of-pos-term
(i#q) (Fun f ss)) unfolding Cons by simp
also have ... = map-funs-ctat fg(More f (take i ss) (ctzt-of-pos-term q (ssli))
(drop (Suc ©) ss)) by simp
also have ... = More (fg f) (map (map-funs-term fq) (take i ss)) (map-funs-ctxt
fo(ctzt-of-pos-term q (ss'i))) (map (map-funs-term fg) (drop (Suc i) ss)) by simp
also have ... = More (fg f) (map (map-funs-term fq) (take i ss)) (ctzt-of-pos-term
q (map-funs-term fg (ssli))) (map (map-funs-term fg) (drop (Suc i) ss)) unfolding
IH by simp
also have ... = More (fg f) (take i (map (map-funs-term fg) ss)) (ctzt-of-pos-term
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q (map (map-funs-term fg) ssli)) (drop (Suc 7) (map (map-funs-term fg) ss)) un-
folding nth-map[OF <i < length ss),symmetric] take-map drop-map nth-map by
stmp
finally show ?thesis unfolding Cons by simp
qed
qed

lemma var-rewrite-imp-not-SN:

assumes sn: SN-on (rstep R) {u} and step: (¢, s) € rstep R

shows is-Fun t

using assms
proof (cases t)

case (Fun f ts) then show ?thesis by simp
next

case (Var z)

from step obtain [ r p o where (Var x, s) € rstep-r-p-s R (I,r) p o unfolding
Var rstep-iff-rstep-r-p-s by best

then have [ - ¢ = Var z and rule: (I,r) € R unfolding rstep-r-p-s-def by (auto
stmp: Let-def)

from this obtain y where [ = Var y (is - = ?y) by (cases [, auto)

with rule have (?y, r) € R by auto

then have - (SN-on (rstep R) {u}) by (rule left-var-imp-not-SN)

with sn show ?thesis by blast
qed

lemma rstep-id: rstep Id = Id by auto

lemma map-funs-rule-id [simp]: map-funs-rule id = id
by (intro ext, auto)

lemma map-funs-trs-id [simp]: map-funs-trs id = id
by (intro ext, auto simp: map-funs-trs.simps)

definition sig-step :: 'f sig = ('f, "v) trs = ('f, 'v) trs where
sig-step F R = {(a, b). (a, b) € R A funas-term a C F A funas-term b C F'}

lemma sig-step-union: sig-step F (R U S) = sig-step F R U sig-step F' S
unfolding sig-step-def by auto

lemma sig-step-UNIV: sig-step UNIV R = R unfolding sig-step-def by simp

lemma sig-stepl[intro]: (a,b) € R = funas-term a C F = funas-term b C F
= (a,b) € sig-step F' R unfolding sig-step-def by auto

lemma sig-stepE|[elim,consumes 1]: (a,b) € sig-step F R = [(a,b) € R = fu-
nas-term a C F = funas-term b C F = P] = P unfolding sig-step-def by

auto

lemma ali-ctat-closed-sig-rsteps [intro]:
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fixes R :: ('f, 'v) trs
shows all-ctxt-closed F ((sig-step F (rstep R))*) (is all-ctat-closed - (?R*))
proof (rule trans-ctzt-sig-imp-all-ctzt-closed)
fix C :: ('f,/v)ctat and s t :: ('f,'v)term
assume C: funas-ctzt C C F
and s: funas-term s C F
and t: funas-term t C F
and steps: (s,t) € YR*
from steps
show (C' (s), C (t)) € ?R*
proof (induct)
case (step t u)
from step(2) have tu: (t,u) € rstep R and t: funas-term ¢t C F and w:

funas-term u C F by auto
have (C (t), C (u)) € ?R by (rule sig-stepI[OF rstep-ctzt|OF tu)], insert
C't u, auto)
with step(3) show ?Zcase by auto
qged auto
qed (auto intro: trans-rtrancl)

lemma wf-loop-imp-sig-ctxt-rel-not-SN:
assumes R: (I,C(l)) € R and wf-I: funas-term I C F
and wf-C: funas-ctzt C C F
and ctat: ctxt.closed R
shows — SN-on (sig-step F' R) {I}
proof —
let 2t = X i. (CT0){)
have Vi. funas-term (¢t i) C F
proof
fix i show funas-term (¢t i) C F unfolding funas-term-ctzt-apply
by (rule Un-least[OF - wf-l|, induct i, insert wf-C, auto)
qed
moreover have Vi. (2t ¢,7t(Suc i)) € R
proof
fix ¢
show (2t 4, 2t (Suc i)) € R
proof (induct 7)
case () with R show ?case by auto
next
case (Suc 17)
from ctzt.closedD[OF ctat Suc, of C]
show ?case by simp
qed
qed
ultimately have steps: Vi. (9t ¢, 7t(Suc 7)) € sig-step F' R unfolding sig-step-def
by blast
show ?thesis unfolding SN-defs
by (simp, intro exI[of - ?t], simp only: steps, simp)
qed
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lemma lhs-var-imp-sig-step-not-SN-on:
assumes z: (Var z, r) € R and F: funas-trs R C F
shows — SN-on (sig-step F (rstep R)) { Var z}
proof —
let %0 = (Az. 1)
let %t = \i. (%0 " "4) x
obtain ¢t where t: t = 7t by auto
from rhs-wf[OF z F] have wf-r: funas-term r C F .
{
fix ¢
have funas-term (9t i) C F
proof (induct 7)
case ( show ?case using wf-r by auto
next
case (Suc 1)
have ¢t (Suc i) = %t i - %0 unfolding subst-power-Suc subst-compose-def by
stmp
also have funas-term ... C F unfolding funas-term-subst[of 7t i]
using Suc wf-r by auto
finally show ?Zcase .
qed
} note wf-t = this
{
fix i
have (t i, t (Suc ©)) € (sig-step F (rstep R)) unfolding ¢
by (rule sig-stepI[OF rstepI[OF z, of - O %0 ~ ] wf-t wf-t], auto simp:
subst-compose-def)
} note steps = this
have z: t 0 = Var z unfolding t by simp
with steps show ?thesis unfolding SN-defs not-not
by (intro exI[of - t], auto)
qed

lemma rhs-free-vars-imp-sig-step-not-SN:
assumes R: (I,r) € R and free: = vars-term r C vars-term [
and F: funas-trs R C F
shows — SN-on (sig-step F (rstep R)) {l}
proof —
from free obtain x where z: = € vars-term r — vars-term | by auto
then have z € vars-term r by simp
from supteq-Var[OF this] have r > Var z .
then obtain C where r: C{Var ) = r by auto
let %0 = A\y. if y = x then [ else Var y
let 7t = Ai. ((C - %0)7%)()
from rhs-wf[OF R] F have wf-r: funas-term r C F by fast
from lhs-wf[OF R] F have wf-l: funas-term | C F by fast
from wf-r{unfolded r[symmetric]]
have wf-C: funas-ctzt C' C F by simp
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from z have neq: V y€vars-term l. y # = by auto
have - %0 =1 - Var
by (rule term-subst-eq, insert neq, auto)
then have I: [ - %0 = [ by simp
have wf-C: funas-ctzt (C -. %0) C F using wf-C wf-
by simp
have rsigma: r-%0 = (C - %0)(l) unfolding r[symmetric|] by simp
from R have Ir: (I - %0, r - %0) € rstep R by auto
then have Ir: (I,(C -, %0)(l)) € rstep R unfolding ! unfolding rsigma .
show ?thesis
by (rule wf-loop-imp-sig-ctat-rel-not-SN[OF' Ir wf-l wf-C' ctxt-closed-rstep])
qed

lemma lhs-var-imp-rstep-not-SN: assumes (Var z,r) € R shows = SN(rstep R)
using lhs-var-imp-sig-step-not-SN-on| OF assms subset-refl] unfolding sig-step-def
SN-defs by blast

lemma rhs-free-vars-imp-rstep-not-SN:

assumes (/,r) € R and — vars-term r C vars-term |

shows — SN-on (rstep R) {I}

using rhs-free-vars-imp-sig-step-not-SN[OF assms subset-refl] unfolding sig-step-def
SN-defs by blast

lemma free-right-rewrite-imp-not-SN:
assumes step: (t,s) € rstep-r-p-s R (I,r) p o
and vars: — vars-term | O vars-term r
shows — SN-on (rstep R) {t}
proof
assume SN: SN-on (rstep R) {t}
let ?C' = ctat-of-pos-term p t
from step have left: ?C(l - o) = t (is 7t = t) and right: ?C(r - o) = s and
pos: p € poss t
and rule: (I,r) € R
unfolding rstep-r-p-s-def by (auto simp: Let-def)
from rhs-free-vars-imp-rstep-not-SN|[OF rule vars| have nSN:— SN-on (rstep R)
{1} by simp
from SN-imp-SN-subt|OF SN ctat-imp-supteq[of ?C' 1 - o, simplified left]]
have SN: SN-on (rstep R) {l - o} .
from SNinstance-imp-SN[OF SN| nSN show Fulse by simp
qed

lemma not-SN-on-rstep-subst-apply-term[intro]:
assumes — SN-on (rstep R) {t} shows = SN-on (rstep R) {t - o}
using assms unfolding SN-on-def by best

lemma SN-rstep-imp-wf-trs: assumes SN (rstep R) shows wf-trs R
proof (rule ccontr)

assume - wf-trs R

then obtain [ r where R: (I,r) € R
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and not-wf: (Vfts. |l # Fun fts) V =(vars-term r C vars-term [) unfolding
wf-trs-def
by auto
from not-wf have = SN (rstep R)
proof
assume free: - vars-term r C vars-term [
from rhs-free-vars-imp-rstep-not-SN|OF R free] show ?thesis unfolding SN-defs
by auto
next
assume VY fts. [ # Fun fts
then obtain z where I:] = Var xz by (cases l) auto
with R have (Var z,r) € R unfolding [ by simp
from [hs-var-imp-rstep-not-SN|[OF this| show ?thesis by simp
qed
with assms show Fualse by blast
qed

lemma SN-sig-step-imp-wf-trs: assumes SN: SN (sig-step F (rstep R)) and F:
funas-trs R C F shows wf-trs R
proof (rule ccontr)
assume - wf-trs R
then obtain [ » where R: (I,r) € R
and not-wf: (Vfts. | # Fun fts) V =(vars-term r C vars-term [) unfolding
wf-trs-def
by auto
from not-wf have — SN (sig-step F (rstep R))
proof
assume free: = vars-term r C vars-term |
from rhs-free-vars-imp-sig-step-not-SN[OF R free F'] show ?thesis unfolding
SN-on-def by auto
next
assume VY fts. [ # Fun fts
then obtain z where I:l = Var z by (cases [) auto
with R have (Var z,r) € R unfolding [ by simp
from lhs-var-imp-sig-step-not-SN-on[OF this F| show ?thesis
unfolding SN-on-def by auto
qged
with assms show Fualse by blast
qed

lemma rhs-free-vars-imp-rstep-not-SN':
assumes (I, ) € R and — vars-term r C vars-term |
shows — SN (rstep R)
using rhs-free-vars-imp-rstep-not-SN [OF assms| by (auto simp: SN-defs)

lemma SN-imp-variable-condition:
assumes SN (rstep R)
shows V (I, r) € R. vars-term r C vars-term |
using assms and rhs-free-vars-imp-rstep-not-SN' [of - - R] by blast
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lemma rstep-cases’[consumes 1, case-names root nonroot):
assumes rstep: (s, t) € rstep R
and root: ANlro. (,r)eR—1l-0=s=r-c=t=— P
and nonroot: N\f ss1 u ss2 v. s = Fun f (ssl Q u # ss2) = t = Fun f (ss1
Q@ v # ss2) = (u, v) € rstep R =— P
shows P
proof —
from rstep-imp-C-s-r[OF rstep] obtain C o I r
where R: (I,r) € R and s: C{l-0) = s and t: C(r-o) = t by fast
show ?thesis proof (cases C)
case Hole
from s ¢t have l-0c = s and r-0 = ¢ by (auto simp: Hole)
with R show %thesis by (rule root)
next
case (More f ss1 D ss2)
let 2u = D{l-0)
let v = D(r-o)
have s = Fun f (ss1 Q %u # ss2) by (simp add: More s[symmetric])
moreover have t = Fun f (ss] @ 2v # ss2) by (simp add: More t[symmetric])
moreover have (?u,?v) € rstep R using R by auto
ultimately show ?thesis by (rule nonroot)
qed
qed

lemma NF-Var: assumes wf: wf-trs R shows (Var z, t) ¢ rstep R
proof
assume (Var z, t) € rstep R
from rstep-imp-C-s-r[OF this] obtain C'lr o
where R: (I,r) € R and lhs: Var x = C(l-0) by fast
from lhs have Var z = l-0 by (induct C) auto
then obtain y where I: | = Var y by (induct 1) auto
from wf R obtain f ss where | = Fun f ss unfolding wf-trs-def by best
with [ show Fualse by simp
qed

lemma rstep-cases-Fun'[consumes 2, case-names root nonroot]:
assumes wf: wf-trs R
and rstep: (Fun f ss,t) € rstep R
and root”: Nls r o. (Fun fls,r) € R = map (A\t. t-0) ls=ss = ro =t =
P
and nonroot”: Ni u. i < length ss = t = Fun [ (take i ssQu#drop (Suc 7) ss)
= (ssli,u) € rstep R = P
shows P
using rstep proof (cases rule: rstep-cases’)
case (root 1 o)
with wf obtain ¢ Is where [: | = Fun g ls unfolding wf-trs-def by best
from root have [simp]: ¢ = f unfolding [ by simp
from root have (Fun fls,r) € R and map (At. t-0) Is = ss and -0 = ¢t unfolding
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[ by auto

then show ?thesis by (rule root’)
next

case (nonroot g ss1 u $s2 v)

then have [simp]: ¢ = f and args: ss = ss1 Q u # ss2 by auto

let ?i = length ssl

from args have ssi: take ?i ss = ss1 by simp

from args have drop ?i ss = u # ss2 by simp

then have drop (Suc 0) (drop ?i ss) = ss2 by simp

then have ss2: drop (Suc ?i) ss = ss2 by simp

from args have len: ?i < length ss by simp

from id-take-nth-drop[OF len] have ss = take ?i ss Q ss!%i # drop (Suc %) ss
by simp

then have u: ss!? = v unfolding args unfolding ss! [unfolded args] ss2[unfolded
args] by simp

from nonroot have t = Fun [ (take ?i ssQuftdrop (Suc 2i) ss) unfolding ssiI
ss2 by simp

moreover from nonroot have (ss!?i,v) € rstep R unfolding u by simp

ultimately show ?Zthesis by (rule nonroot'|OF len])
qed

lemma rstep-preserves-undefined-root:
assumes wf-trs R and — defined R (f, length ss) and (Fun f ss, t) € rstep R
shows Jts. length ts = length ss AN t = Fun f ts
proof —
from «wf-trs R» and «(Fun f ss, t) € rstep Ry show ?thesis
proof (cases rule: rstep-cases-Fun')
case (root ls r o)
then have defined R (f, length ss) by (auto simp: defined-def)
with < defined R (f, length ss)» show ?thesis by simp
next
case (nonroot i u) then show ?thesis by simp
qed
qed

lemma rstep-ctrt-imp-nrrstep: assumes step: (s,t) € rstep R and C: C # O
shows (C(s),C(t)) € nrrstep R
proof —

from step obtain [ r D ¢ where (I,r) € R s = D(l - o) t = D(r - o) by auto

thus ?thesis unfolding nrrstep-def’ using C

by (intro Collectl, unfold split, intro exI[of - C o, D] exl conjl, auto) (cases

C, auto)
qed

lemma rsteps-ctazt-imp-nrrsteps: assumes steps: (s,t) € (rstep R)* and C: C #
O shows (C(s),C(t)) € (nrrstep R)*

using steps
proof (induct)

case (step t u)
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from rstep-ctat-imp-nrrstep[OF step(2) C| step(3) show Zcase by simp
qed simp

lemma nrrstep-mono:
assumes R C R’
shows nrrstep R C nrrstep R’
using assms by (force simp: nrrstep-def rstep-r-p-s-def Let-def)

lemma rrstepFE:
assumes (s, t) € rrstep R
obtains / and r and o where (I, r) € Rand s=1-candt=71 -0
using assms by (auto simp: rrstep-def rstep-r-p-s-def)

lemma nrrstepE:
assumes (s, t) € nrrstep R
obtains C and | and r and ¢ where C # Oand (I, r) € R
and s = C(l - o) and t = C(r - o)
using assms by (auto simp: nrrstep-def rstep-r-p-s-def Let-def)
(metis ctxt.cop-nil list.discl poss-Cons-poss replace-at-subt-at subt-at-id-imp-eps)

lemma singleton-subst-restrict [simp]:
subst x s |s {z} = subst x s
unfolding subst-def subst-restrict-def by (rule ext) simp

lemma singleton-subst-map [simp):
f o subst zs = (f o Var)(z := [ s) by (intro ext, auto simp: subst-def)

lemma subst-restrict-vars [simp):
(MAz. if z€ Vihenfzelsegz) |sV =f|sV
unfolding subst-restrict-def
proof (intro ext)
fix z
show (if x € V then if x € V then f x else g z else Var x)
= (if z € V then fz else Var z) by simp
qed

lemma subst-restrict-restrict [simp]:
assumes VN W = {}
shows ((A\z. if z € Vthen fzelse gz) |s W) =g |s W
unfolding subst-restrict-def
proof (intro ext)
fix z
show (if x € W then if z € V then f x else g x else Var x)
= (if x € W then g z else Var z) using assms by auto
qed

lemma rstep-rstep: rstep (rstep R) = rstep R
proof —
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have ctzt.closure (subst.closure (rstep R)) = rstep R by (simp only: subst-closure-rstep-eq
ctzt-closure-rstep-eq)

then show ?thesis unfolding rstep-eq-closure .
qed

lemma rstep-trancl-distrib: rstep (RT) C (rstep R)T
proof
fix st
assume (s,t) € rstep (RT)
then show (s,t) € (rstep R)™
proof
fixlrCo
presume [r: (I,r) € RT and s: s = C(l - o) and ¢: t = C(r - o)
from Ir have (C(l - o), C(r - o)) € (rstep R)™
proof (induct)
case (base 1)
then show ?case by auto
next
case (step r 17)
from step(2) have (C(r - o), C{rr - o)) € (rstep R) by auto
with step(3) show ?2case by auto
qed
then show (s,t) € (rstep R)™ unfolding s ¢ .
qged auto
qed

lemma rsteps-closed-subst:

assumes (s, t) € (rstep R)*

shows (s - o0, t- o) € (rstep R)*

using assms and subst.closed-rtrancl [OF subst-closed-rstep] by (auto simp:
subst.closed-def)

lemma join-subst:
subst.closed 7 = (s, t) € ¥ = (s -0, t-0) € r
by (simp add: join-def subst.closedD subst.closed-comp subst.closed-converse subst.closed-rtrancl)

lemma join-subst-rstep [intro]:
(s, t) € (rstep R)Y = (s - 0, t - o) € (rstep R)*
by (intro join-subst, auto)

lemma join-ctzt [introl:

assumes (s, t) € (rstep R)*

shows (C(s), C(t)) € (rstep R)*
proof —

from assms obtain u where (s, u) € (rstep R)* and (¢, u) € (rstep R)* by
auto

then have (C(s), C(u)) € (rstep R)* and (C(t), C(u)) € (rstep R)* by (auto

intro: rsteps-closed-ctat)
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then show ?thesis by blast
qed

lemma rstep-simps:
rstep (R=) = (rstep R)~
rstep (rstep R) = rstep R
rstep (R U S) = rstep R U rstep S
rstep Id = Id
rstep (R) = (rstep R)®
by auto

lemma rstep-rtrancl-idemp [simp):
rstep ((rstep R)*) = (rstep R)*
proof —
{ fix st
assume (s, t) € rstep ((rstep R)*)
then have (s, t) € (rstep R)*
by (induct) (metis rsteps-closed-ctxt rsteps-closed-subst) }
then show ?thesis by auto
qed

lemma all-ctxt-closed-rstep-conversion:
all-ctxt-closed UNIV ((rstep R)<™*)
unfolding conversion-def rstep-simps(5)[symmetric] by blast

definition instance-rule :: ('f, 'v) rule = (’f, 'w) rule = bool where
[code del): instance-rule Ir st «— (3 o. fstlr = fst st - o A snd Ir = snd st - o)

definition eg-rule-mod-vars :: ('f, 'v) rule = ('f, "v) rule = bool where
eq-rule-mod-vars Ir st «— instance-rule Ir st A instance-rule st Ir

notation eq-rule-mod-vars ((-/ =, -) [51,51] 50)

lemma instance-rule-var-cond: assumes eq: instance-rule (s,t) (I,r)
and wvars: vars-term r C vars-term [
shows vars-term t C vars-term s
proof —
from eqlunfolded instance-rule-def]
obtain 7 where s: s =1-7and t: t = r - 7 by auto
show ?thesis
proof
fix z
assume z € vars-term t
from this[unfolded t] have z € wars-term (I - 7) using vars unfolding
vars-term-subst by auto
then show z € vars-term s unfolding s by auto
qed
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qed

lemma instance-rule-rstep: assumes step: (s,t) € rstep {ir}
and bezx: Bex R (instance-rule Ir)
shows (s,t) € rstep R
proof —
from bex obtain Ir’ where inst: instance-rule Ir Ir’ and R: Ir’ € R by auto
obtain [ r where Ir: Ir = (I,r) by force
obtain !’ v’ where Ir”: Ir’ = (I',r) by force
note inst = inst[unfolded Ir Ir']
note R = R[unfolded Ir’]
from inst[unfolded instance-rule-def] obtain ¢ where I: | =1’ - 0 and r: r =
r’ . o by auto
from step[unfolded lr] obtain C 7 where s = C (I - 1) t = C (r - 7) by auto
with [ r have s: s = C(l’- (0 o5 7)) and t: t = C(r’'- (o o5 7)) by auto
from rstepI[OF R s t] show ?thesis .
qed

lemma eg-rule-mod-vars-var-cond: assumes eq: (I,r) =, (s,t)

and wvars: vars-term r C wvars-term [
shows vars-term t C vars-term s

by (rule instance-rule-var-cond[OF - vars], insert eq[unfolded eq-rule-mod-vars-def],
auto)

lemma eg-rule-mod-varsE[elim]: fixes I :: ('f,’v)term
assumes (I,r) =, (s,t)
showsd or.l=s-cANr=t-cANs=1-7TANt=r- -7 A range o C range
Var A range T C range Var
proof —
from assms[unfolded eq-rule-mod-vars-def instance-rule-def fst-conv snd-conv]
obtainoc 7 wherel: [ =s-candrmr=t-cands:s=1[0-7and t: t =1r -
7 by blast+
obtain f :: ’f where True by auto
let Zust = vars-term (Fun f [s,t])
let ?vlr = vars-term (Fun f [I,r])
define ¢’ where ¢’ = \ z. if ¢ € ?vst then o z else Var z
define 7’/ where 7/ = X 1. if z € %vlr then T x else Var x
show ?thesis
proof (intro exI conjI)
show [: | = s - ¢’ unfolding [ o’-def
by (rule term-subst-eq, auto)
show r: 7 = t - ¢/ unfolding r o’-def
by (rule term-subst-eq, auto)
show s: s = | - 7/ unfolding s 7’-def
by (rule term-subst-eq, auto)
show t: t = r - 7/ unfolding ¢ 7'-def
by (rule term-subst-eq, auto)
have Fun f [s,t] - Var = Fun f [, r] - 7/ unfolding s t by simp
also have ... = Fun f [s,t] - (¢/ o5 77) unfolding [ r by simp
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finally have Fun f [s,t] - (¢' o5 7') = Fun f [s,t] - Var by simp
from term-subst-eq-rev[OF this| have vst: \ z. © € %vst = o'z - 7' = Var
z unfolding subst-compose-def by auto
have Fun f [l,r] - Var = Fun f [s, t] - o' unfolding [ r by simp
also have ... = Fun f [l,r] - (7' o5 ¢') unfolding s t by simp
finally have Fun f [l,r] - (' o5 ¢/) = Fun f [l,r] - Var by simp
from term-subst-eqg-rev|OF this| have vlr: \ z. ¢ € %lr = 7"z -0’ = Varz
unfolding subst-compose-def by auto
{
fix z
have o’ © € range Var
proof (cases © € Pvst)
case True
from vst[OF this| show %thesis by (cases o’ x, auto)
next
case Fulse
then show ?thesis unfolding o’-def by auto
qed
}
then show range o’ C range Var by auto
{
fix z
have 7/ z € range Var
proof (cases x € ?vir)
case True
from ovlr[OF this] show ?thesis by (cases 7" x, auto)
next
case Fulse
then show ?thesis unfolding 7’'-def by auto
qed
}
then show range 7’ C range Var by auto
qed
qed

4.5 Linear and Left-Linear TRSs

definition
linear-trs :: ('f, 'v) trs = bool
where
linear-trs R =V (I, r)€R. linear-term | A linear-term r

lemma linear-trsE[elim,consumes 1]: linear-trs R = (l,r) € R = linear-term |
A linear-term r
unfolding linear-trs-def by auto

lemma linear-trsi[intro]: [ A\ lr. (I,r) € R = linear-term | A linear-term r] =

linear-trs R
unfolding linear-trs-def by auto
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definition
left-linear-trs :: ('f, 'v) trs = bool
where
left-linear-trs R «— (¥ (I, r)€R. linear-term 1)

lemma left-linear-trs-union: left-linear-trs (R U S) = (left-linear-trs R A left-linear-trs
S)
unfolding left-linear-trs-def by auto

lemma left-linear-mono: assumes left-linear-trs S and R C S shows left-linear-trs
R
using assms unfolding left-linear-trs-def by auto

lemma left-linear-map-funs-trs[simpl: left-linear-trs (map-funs-trs f R) = left-linear-trs
R
unfolding left-linear-trs-def by (auto simp: map-funs-trs.simps)

lemma left-linear-weak-match-rstep:
assumes rstep: (u, v) € rstep R
and weak-match: weak-match s u
and Il: left-linear-trs R
shows 3t. (s, t) € rstep R A weak-match t v
using weak-match
proof (induct rule: rstep-induct-rule [OF rstep])
case (1 Csiglr)
from 1(2) show Zcase
proof (induct C arbitrary: s)
case (More f bef C aft s)
let ?n = Suc (length bef + length aft)
let ?m = length bef
from More(2) obtain ss where s: s = Fun f ss and Iss: ?n = length ss and
wm: (Vi<length ss. weak-match (ss ! i) ((bef @ C(I - sig) # aft) ! i)) by (cases
s, auto)
from lss wm[THEN spec, of ?m] have weak-match (ss! ?m) C(l - sig) by auto
from More(1)[OF this| obtain t where wmt: weak-match t C(r - sig) and
step: (ss!| ?m,t) € rstep R by auto
from Iss have mss: ?m < length ss by simp
let ?tsi = X t. take ?m ss Q t # drop (Suc ?m) ss
let 2ts = ?tsi t
let ?ss = ?tsi (ss! ?m)
from id-take-nth-drop[OF mss]
have lts: length ?ts = ?n using Ilss by auto
show ?Zcase
proof (rule exI[of - Fun f %ts], intro conjl)
have weak-match (Fun f ?ts) (More f bef C aft)(r - sig) =
weak-match (Fun f ?ts) (Fun f (bef @ C(r - sig) # aft)) by simp
also have ... proof (unfold weak-match.simps lts, intro congl refl alll impl)
fix ¢
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assume i: i < ?n
show weak-match (2ts ! 7) ((bef @ C(r - sig) # aft) ! 7)
proof (cases i = ?m)
case True
have weak-match (?ts | i) ((bef @ C(r - sig) # aft) | i) = weak-match t
C(r - sig)
using True mss by (simp add: nth-append)
then show ?thesis using wmt by simp
next
case Fulse
have eq: ?ts i =ss! i A (bef @ C(r - sig) # aft) ! i = (bef @Q C(l - sig)
4 aft) i
proof (cases i < ?m)
case True
then show ?thesis by (simp add: nth-append lss[symmetric])
next
case Fulse
with < # ?m> ¢ have 3 j. i = Suc (m + j) A j < length aft by
presburger
then obtain j where i: i = Suc (?m + j) and j: j < length aft by auto
then have id: (Suc (length bef 4+ j) — min (Suc (length bef + length
aft)) (length bef)) = Suc j by simp
from j show ?thesis by (simp add: nth-append i id lss[symmetric])

qed
then show ?thesis using wm[THEN spec, of i| i[unfolded lss] by (simp)
qged
qed simp
finally show weak-match (Fun f ?ts) (More f bef C aft){r - sig) by simp
next
have s = Fun f ?ss unfolding s using id-take-nth-drop|OF mss, symmetric]
by simp
also have ... = (More f (take ?m ss) O (drop (Suc ?m) ss)){(ss ! ?m)) (is -

= ?2C(-)) by simp
finally have s: s = ?C(ss | ?m) .
have t: Fun f %ts = ?C(t) by simp
from rstep-ctzt| OF step)
show (s, Fun f %ts) € rstep R
unfolding s t .
qed
next
case (Hole s)
from [l 1(1) have linear-term | unfolding left-linear-trs-def by auto
from linear-weak-match[OF this Hole[simplified] refl] obtain 7 where
s=1-7and (V z € vars-term | . weak-match (Var z - 7) (Var z - sig))
by auto
then obtain tau where s: s = - tauw and wm: (V = € vars-term | . weak-match
(tau z) (Var x - sig))
by (auto)
let ?delta = (X z. if x € vars-term [ then tau x else Var z - sig)
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show “case
proof (rule exI[of - r - %delta], rule conjI)
have s = | - (tau |s (vars-term 1)) unfolding s by (rule coincidence-lemma)
also have ... = [ - (?delta |s (vars-term l)) by simp
also have ... = [ - ?delta by (rule coincidence-lemmalsymmetric])
finally have s: s = [ - ?delta .
from 1(1) have step: (I - %delta, r - ?delta) € rstep R by auto
then show (s, r - ?delta) € rstep R unfolding s .
next
have weak-match (r - ?delta) (r - sig)
proof (induct r)
case (Fun f ss)
from this[unfolded set-conv-nith)
show ?case by (force)
next
case (Var x)
show ?case
proof (cases © € vars-term 1)

case True
with wm Var show %thesis by simp
next
case Fulse
show ?thesis by (simp add: Var False weak-match-refl)
qed
qed

then show weak-match (r - ?delta) (O {(r - sig))) by simp
qed
qed
qed

context
begin

private fun S where
SRst0=s
| SR st (Suci) = (SOME u. (S R sti,u) € rstep R N\ weak-match u (¢(Suc ©)))

lemma weak-match-SN:
assumes wm: weak-match s t
and [I: left-linear-trs R
and SN: SN-on (rstep R) {s}
shows SN-on (rstep R) {t}
proof
fix f
assume t0: f 0 € {t} and chain: chain (rstep R) f
let %s=SRsf
let 2P = Xiu. (%s i, u) € rstep R N\ weak-match u (f (Suc 7))
have Vi. (?s 4, %s (Suc ©)) € rstep R A weak-match (?s (Suc 7)) (f (Suc 1))
proof
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fix i show (%s 4, ?s (Suc 7)) € rstep R N\ weak-match (?s (Suc 7)) (f (Suc 7))
proof (induct 7)

case (

from chain have ini: (f 0, f (Suc 0)) € rstep R by simp

then have (¢, f (Suc 0)) € rstep R unfolding singletonD][OF t0, symmetric]

from somel-ex|OF left-linear-weak-match-rstep| OF this wm 11]]
show ?case by simp
next
case (Suc 1)
then have IHI: (%s i, %s (Suc 7)) € rstep R
and TH2: weak-match (?s (Suc 7)) (f (Suc i)) by auto
from chain have nat: (f (Suc i), f (Suc (Suc 7))) € rstep R by simp
from somel-ex|OF left-linear-weak-match-rstep| OF this TH2 1l]]
have Ju. ?P (Suc i) u by auto
from somel-ex|OF this]
show ?case by simp
qed
qed
moreover have ?s 0 = s by simp
ultimately have — SN-on (rstep R) {s} by best
with SN show Fualse by simp
qed
end

lemma (hs-notin-NF-rstep: (I, r) € R = | ¢ NF (rstep R) by auto

lemma NF-instance:
assumes (t - 0) € NF (rstep R) shows t € NF (rstep R)
using assms by auto

lemma NF-subterm:
assumes t € NF (rstep R) and ¢ I> s
shows s € NF (rstep R)

proof (rule ccontr)
assume — “thesis
then obtain u where (s, u) € rstep R by auto
from <t > s obtain C where ¢ = C(s) by auto
with «(s, u) € rstep Ry have (t, C(u)) € rstep R by auto
then have ¢ ¢ NF (rstep R) by auto
with assms show Fualse by simp

qed

abbreviation
lhss == ('f, 'v) trs = (’f, 'v) terms
where

lhss R = fst ‘R

abbreviation
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rhss = ('f, ") trs = ('f, 'v) terms
where
rhss R = snd ‘ R

definition map-funs-trs-wa = ('f x nat = 'g) = (’f, 'v) trs = ('g, 'v) trs where
map-funs-trs-wa fg R = (A(l, ). (map-funs-term-wa fg 1, map-funs-term-wa fq
r)) ‘R

lemma map-funs-trs-wa-union: map-funs-trs-wa fg (R U S) = map-funs-trs-wa fg
R U map-funs-trs-wa fg S
unfolding map-funs-trs-wa-def by auto

lemma map-funs-term-wa-compose: map-funs-term-wa gh (map-funs-term-wa fg t)

= map-funs-term-wa (A (f,n). gh (fg (f,n), n)) t
by (induct t, auto)

lemma map-funs-trs-wa-compose: map-funs-trs-wa gh (map-funs-trs-wa fg R) =
map-funs-trs-wa (A (f,n). gh (fg (f,n), n)) R (is L = map-funs-trs-wa ?fgh R)
proof —

have map-funs-trs-wa ?fgh R = {(map-funs-term-wa ?fgh 1, map-funs-term-wa
2fgh )| L r. (I,r) € R} unfolding map-funs-trs-wa-def by auto

also have ... = {(map-funs-term-wa gh (map-funs-term-wa fg 1), map-funs-term-wa
gh (map-funs-term-wa fg r)) | Lr. (I,r) € R} unfolding map-funs-term-wa-compose

finally show ?thesis unfolding map-funs-trs-wa-def by force
qged

lemma map-funs-trs-wa-funas-trs-id: assumes R: funas-trs R C F
and id: A gn. (gn) € F = f (g,n) =g
shows map-funs-trs-wa f R = R
proof —
{
fix I r
assume ([,r) € R
with R have [: funas-term | C F and r: funas-term r C F unfolding fu-
nas-trs-def
by (force simp: funas-rule-def)+
from map-funs-term-wa-funas-term-id| OF | id] map-funs-term-wa-funas-term-id| OF
7 id)
have map-funs-term-wa f 1 = | map-funs-term-wa f r = r by auto
} note main = this
have map-funs-trs-wa f R = {(map-funs-term-wa f I, map-funs-term-wa fr) | 1
r. (l,r) € R}
unfolding map-funs-trs-wa-def by force

also have ... = R using main by force
finally show ?thesis .
qed
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lemma map-funs-trs-wa-rstep: assumes step:(s,t) € rstep R

shows (map-funs-term-wa fg s,map-funs-term-wa fg t) € rstep (map-funs-trs-wa
fa R)

using step
proof (induct)

case (IHC o lr)

show ?case unfolding map-funs-trs-wa-def

by (rule rstepI[where | = map-funs-term-wa fg | and r = map-funs-term-wa

fg r and C = map-funs-ctat-wa fg C|, auto simp: IH)
qed

lemma map-funs-trs-wa-rsteps: assumes step:(s,t) € (rstep R)*

shows (map-funs-term-wa fg s,map-funs-term-wa fg t) € (rstep (map-funs-trs-wa
fg R))”

using step
proof (induct)

case (step a b)

from map-funs-trs-wa-rstep|OF step(2), of fg] step(3) show ?case by auto
qed auto

lemma rstep-ground:
assumes wf-trs: Al r. (I, r) € R = vars-term r C vars-term |
and ground: ground s
and step: (s, t) € rstep R
shows ground t
using step ground
proof (induct)
case (IHC o lr)
from wf-trs|OF IH(1)] IH(2)
show ?case by auto
qed

lemma rsteps-ground:
assumes wf-trs: Al r. (I, r) € R = vars-term r C vars-term [
and ground: ground s
and steps: (s, t) € (rstep R)*
shows ground t
using steps ground
by (induct, insert rstep-ground[OF wf-trs], auto)

definition locally-terminating :: ('f,’v)trs = bool
where locally-terminating R =V F. finite F — SN (sig-step F (rstep R))

definition non-collapsing R <— (¥ Ir € R. is-Fun (snd Ir))
lemma supt-rstep-stable:
assumes (s, t) € {>} U rstep R

shows (s - o, t-0) € {>} U rstep R
using assms proof
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assume s > ¢t show %thesis
proof (rule Unll)
from «s > ¢ show s - 0 > t - 0 by (rule supt-subst)
qed
next
assume (s, t) € rstep R show ?thesis
proof (rule Unl2)
from «(s, t) € rstep R» show (s - o, t- o) € rstep R ..
qed
qed

lemma supt-rstep-trancl-stable:
assumes (s, t) € ({>} U rstep R)T
shows (s - o, t-0) € ({>} U rstep R)*
using assms proof (induct)
case (base u)
then have (s - o, u - 0) € {>} U rstep R by (rule supt-rstep-stable)
then show ?case ..
next
case (step u v)
from «(s - o, u - o) € ({>} U rstep R)™»
and supt-rstep-stable[OF «(u, v) € {>} U rstep R», of o]
show Zcase ..
qed

lemma supt-rsteps-stable:
assumes (s, t) € ({>} U rstep R)*
shows (s - o, t-0) € ({>} U rstep R)*
using assms

proof (induct)
case base then show Zcase ..

next
case (step u v)
from «(s, u) € ({>} U rstep R)*» and <(u, v) € {>} U rstep R»
have (s, v) € ({>} U rstep R)™ by (rule rtrancl-into-trancll)
from trancl-into-rtrancl|OF supt-rstep-trancl-stable[OF this]]
show ?case .

qed

lemma eg-rule-mod-vars-refl[simp|: r =,
proof (cases r)
case (Pair 1 r)

have fst (I, ) = fst (I, ) - Var A snd (I, r) = snd (I, r) - Var by auto
}

then show ?thesis unfolding Pair eq-rule-mod-vars-def instance-rule-def by
best
qed
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lemma instance-rule-refl[simp): instance-rule r r
using eg-rule-mod-vars-refl[of r] unfolding eg-rule-mod-vars-def by simp

lemma is-Fun-Fun-conv: is-Fun t = (3f ts. t = Fun f ts) by auto

lemma wf-trs-def":
wf-trs R = (V (I, r)€R. is-Fun | A vars-term r C vars-term l)
by (rule iffI) (auto simp: wf-trs-def is-Fun-Fun-conv)

definition wf-rule :: ('f, 'v) rule = bool where
wf-rule r +— is-Fun (fst r) A vars-term (snd r) C vars-term (fst r)

definition wf-rules :: ('f, "v) trs = ('f, 'v) trs where
wf-rules R = {r. r € R A wf-rule r}

lemma wf-trs-wf-rules[simp|: wf-trs (wf-rules R)
unfolding wf-trs-def’ wf-rules-def wf-rule-def split-def by simp

lemma wf-rules-subset[simp|: wf-rules R C R
unfolding wf-rules-def by auto

fun wf-reltrs :: ('f, 'v) trs = ('f, 'v) trs = bool where
wf-reltrs R S = (
wftrs RN (R #{} — (VIr. (I, r) € S — wvars-term r C vars-term 1)))

lemma SN-rel-imp-wf-reltrs:
assumes SN-rel: SN-rel (rstep R) (rstep S)
shows wf-reltrs R S
proof (rule ccontr)
assume — ?thesis
then obtain [ r where = wf-trs RV R # {} A (I,r) € S A = vars-term r C
vars-term 1 (is - V 2two) by auto
then show Fulse
proof
assume - wf-trs R
with SN-rstep-imp-wf-trs|OF SN-rel-imp-SN[OF assms]
show Fulse by simp
next
assume ?two
then obtain !/ rr  where Ir: (I,r) € S and lrr: (ll,rr) € R and z: z €
vars-term r and nx: x & vars-term | by auto
obtain f and o
where sigma: 0 = (Ay. if © = y then Fun f [ll,l] else Var y) by auto
have id: o |s (vars-term l) = Var unfolding sigma
by (simp add: subst-restrict-def, rule ext, auto simp: nz)
have I: [ =1 - o by (simp add: coincidence-lemmalof | o] id)
have (I - o, r - o) € rstep S using Ir by auto
with [ have sstep: (I, r - o) € rstep S by simp
from supteq-subst[OF supteq-Var[OF z], of o] have
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r - o > Fun f [Il,]] unfolding sigma by auto
then obtain C where C(Fun f [ll, l]) = r - o by auto
with sstep have sstep: (I,C(Fun f [Il, 1])) € rstep S by simp
obtain r where r: r = relto (rstep R) (rstep S) U {>} by auto
have (C(Fun f [IL]]), C{Fun f [rr,l])) € rstep R

by (intro rstepI[OF llrr, of - C o, More f [] O [I] Var], auto)
with sstep have relto: (I,C(Fun f [rr,)l])) € r unfolding r by auto
have C(Fun f [rrl]) &> Fun f [rr,l] using ctzt-imp-supteq by auto
also have Fun f [rr,l]] &> | by auto
finally have supt: C(Fun f [rr,l]) > | unfolding supt-def by simp
then have (C(Fun f [rr,l]), I) € r unfolding r by auto
with relto have loop: (I, 1) € r™ by auto
have SN r unfolding r

by (rule SN-imp-SN-union-supt|OF SN-rel[unfolded SN-rel-defs]], blast)
then have SN (r*) by (rule SN-imp-SN-trancl)
with loop show Fualse unfolding SN-on-def by auto

qed
qed

lemmas rstep-wf-rules-subset = rstep-mono| OF wf-rules-subset]

definition map-vars-trs :: ("v = 'w) = (’f, 'v) trs = ('f, 'w) trs where
map-vars-trs f B = (A (I, r). (map-vars-term f I, map-vars-term fr)) ‘R

lemma map-vars-trs-rstep:
assumes (s, t) € rstep (map-vars-trs f R) (is - € rstep ?R)
shows (s - 7,t-7T) € rstep R
using assms
proof
fix ml mr C o
presume mem: (ml,mr) € YR and s: s = C(ml - o) and t: t = C{mr - o)
let ?m = map-vars-term f
from mem obtain [ r where mem: (I,r) € R and id: ml = ?m I mr = ?m r
unfolding map-vars-trs-def by auto
have id: s - 7= (C -c7)(?ml-cosT)t-7T=(C-c7)(mr-0o0s7) by (auto
stmp: s t id)
then show (s - 7, ¢ - 7) € rstep R
unfolding id apply-subst-map-vars-term
using mem by auto
qed auto

lemma map-vars-rsteps:
assumes (s,t) € (rstep (map-vars-trs f R))* (is - € (rstep ?R)*)
shows (s - 7, t- 1) € (rstep R)*
using assms
proof (induct)
case base then show ?case by simp
next
case (step t u)
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from map-vars-trs-rstep|OF step(2), of 7] step(3) show ?case by auto
qed

lemma rsteps-subst-closed: (s,t) € (rstep R)t = (s - o, t - o) € (rstep R)™"
proof —
let ?R = rstep R
assume steps: (s,t) € ?RT
have subst: subst.closed (?R") by (rule subst.closed-trancl| OF subst-closed-rstep|)
from this[unfolded subst.closed-def] steps show ?thesis by auto
qed

lemma supteq-rtrancl-supt:
(Rt O {>}) C {>}UR)T (is 21 C 2r)
proof
fix z 2z
assume (z,z) € 71
then obtain y where zy: (z,y) € R and yz: y > 2 by auto
from zy have zy: (z,y) € ?r by (rule trancl-mono, simp)
show (z,z) € #r
proof (cases y = z)
case True
with zy show ?thesis by simp
next
case Fulse
with yz have yz: (y,2) € {>} U R by auto
with zy have zz: (z,2) € ?r O ({>} U R) by auto
then show %thesis by (metis UnCI trancl-unfold)
qed
qed

lemma rrstepl[intro]: (I, r) e R=s=1-0 = t=1r-0=> (s, 1) € rrstep R
unfolding rrstep-def’ by auto

lemma CS-rrstep-conv: subst.closure = rrstep
apply (intro ext)
apply (unfold rrstep-def”)
apply (intro subset-antisym)
by (insert subst.closure.cases, blast, auto)

Rewrite steps at a fixed position

inductive-set rstep-pos :: ('f, 'v) trs = pos = ('f, 'v) term rel for R and p
where
rule [intro]:(l, r) € R=p € poss s = s|-p=1 -0 =
(s, replace-at s p (r - 0)) € rstep-pos R p

lemma rstep-pos-subst:
assumes (s, t) € rstep-pos R p
shows (s - 0, t - 0) € rstep-pos R p
using assms
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proof (cases)
case (rule I v o)
with rstep-pos.intros [OF this(2), of p s - 0 o' o5 0]
show ?thesis by (auto simp: ctat-of-pos-term-subst)
qed

lemma rstep-pos-rule:
assumes (I, 1) € R
shows (I, r) € rstep-pos R |]
using rstep-pos.intros [OF assms, of [| | Var] by simp

lemma rstep-pos-rstep-r-p-s-conv:
rstep-pos Rp = {(s, t) | stro. (s, t) € rstep-r-p-s Rrp o}
by (auto simp: rstep-r-p-s-def Let-def subt-at-ctzt-of-pos-term
intro: replace-at-ident
elim!: rstep-pos.cases)

lemma rstep-rstep-pos-conuv:
rstep R = {(s, t) | s t p. (s, t) € rstep-pos R p}
by (force simp: rstep-pos-rstep-r-p-s-conv rstep-iff-rstep-r-p-s)

lemma rstep-pos-supt:
assumes (s, t) € rstep-pos R p
and ¢: ¢ € poss u and u: u |- ¢ =s
shows (u, (ctzt-of-pos-term q u)(t)) € rstep-pos R (¢ @ p)
using assms
proof (cases)
case (rule [ r o)
with ¢ and v have (¢ @ p) € poss u and u |- (¢ @ p) = [ - o by auto
with rstep-pos.rule [OF rule(2) this] show ?thesis
unfolding rule by (auto simp: ctzt-of-pos-term-append u)
qed

lemma rrstep-rstep-pos-conv:
rrstep R = rstep-pos R ||
by (auto simp: rrstep-def rstep-pos-rstep-r-p-s-conv)

lemma rrstep-imp-rstep:
assumes (s, t) € rrstep R
shows (s, t) € rstep R
using assms by (auto simp: rrstep-def rstep-iff-rstep-r-p-s)

lemma not-NF-rstep-imp-subteq-not-NF-rrstep:
assumes s ¢ NF (rstep R)
shows 3t < s. t ¢ NF (rrstep R)
proof —
from assms obtain u where (s, u) € rstep R by auto
then obtain [ r C o where (I, ) € Rand s: s = C(l - o) and w: u = C(r -
o) by auto
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then have (I - 0, r - o) € rrstep R and [ - ¢ < s by auto
then show ?thesis by blast
qed

lemma all-subt- NF-rrstep-iff-all-subt-NF-rstep:
(Vs < t. s € NF (rrstep R)) «— (Vs < t. s € NF (rstep R))
by (auto dest: rrstep-imp-rstep supt-supteg-trans not-NF-rstep-imp-subteq-not-NF-rrstep)

lemma not-in-poss-imp-NF-rstep-pos [simp):
assumes p ¢ poss s
shows s € NF (rstep-pos R p)
using assms by (auto simp: NF-def elim: rstep-pos.cases)

lemma Var-rstep-imp-rstep-pos-Empty:
assumes (Var z, t) € rstep R
shows (Var z, t) € rstep-pos R |]
using assms by (metis Var-supt nrrstep-subt rrstep-rstep-pos-conv rstep-cases)

lemma rstep-args-NF-imp-rrstep:
assumes (s, t) € rstep R
and Vu < s. u € NF (rstep R)
shows (s, t) € rrstep R
using assms by (metis NF-iff-no-step nrrstep-subt rstep-cases)

lemma rstep-pos-imp-rstep-pos-Empty:
assumes (s, t) € rstep-pos R p
shows (s |- p, t |- p) € rstep-pos R ||
using assms by (cases) (auto simp: replace-at-subt-at intro: rstep-pos-rule rstep-pos-subst)

lemma rstep-pos-arg:
assumes (s, t) € rstep-pos R p
and 7 < length ssand ss! i =s
shows (Fun f ss, (ctxt-of-pos-term [i] (Fun f s5))(t)) € rstep-pos R (i # p)
using assms
by cases (auto simp: rstep-pos.simps)

lemma rstep-imp-maz-pos:
assumes (s, t) € rstep R
shows Ju. IpEposs s. (s, u) € rstep-pos R p A (Vv < s |- p. v € NF (rstep R))
using assms
proof (induction s arbitrary: t)
case (Var z)
from Var-rstep-imp-rstep-pos-Empty [OF this| show ?case by auto
next
case (Fun f ss)
show ?Zcase
proof (cases Vv < Fun f ss |- []. v € NF (rstep R))
case True
moreover with Fun.prems
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have (Fun f ss, t) € rstep-pos R ||

by (auto dest: rstep-args-NF-imp-rrstep simp: rrstep-rstep-pos-conv)
ultimately show ?thesis by auto

next

case False
then obtain v where v < Fun f ss and v ¢ NF (rstep R) by auto
then obtain s and w where s € set ss and s > v and (s, w) € rstep R
by (auto simp: NF-def) (metis NF-iff-no-step NF-subterm supt-Fun-imp-arg-supteq)
from Fun.IH [OF this(1, 3)] obtain u and p

where p € poss s and *: (s, u) € rstep-pos R p

and xx: Vv < s |- p. v € NF (rstep R) by blast

from <s € set ss) obtain i

where i < length ss and [simp]:ss ! i = s by (auto simp: in-set-conv-nth)
with «p € poss s» have i # p € poss (Fun f ss) by auto
moreover with xx have Vv < Fun f ss |- (i # p). v € NF (rstep R) by auto
moreover from rstep-pos-arg [OF x i < length ss» <ss! i = ]
have (Fun f ss, (ctzt-of-pos-term [i] (Fun f ss)){(u)) € rstep-pos R (i # p) .
ultimately show ¢thesis by blast

qed
qed

4.6 Normal Forms

abbreviation NF-trs :: ('f, 'v) trs = ('f, 'v) terms where
NF-trs R = NF (rstep R)

lemma NF-trs-mono: v C s = NF-trs s C NF-trs r
by (rule NF-anti-mono[OF rstep-mono))

lemma NF-trs-union: NF-trs (R U S) = NF-trs R N NF-trs S
unfolding rstep-union using NF-anti-mono[of - rstep R U rstep S| by auto

abbreviation NF-terms :: ('f, 'v) terms = ('f, 'v) terms where
NF-terms Q = NF (rstep (Id-on Q))

lemma NF-terms-anti-mono:
Q C Q' = NF-terms Q' C NF-terms Q
by (rule NF-trs-mono, auto)

lemma lhs-var-not-NF':
assumes [ € T and is-Var [ shows t ¢ NF-terms T
proof —
from assms obtain z where I: | = Var z by (cases I, auto)
let %0 = subst x t
from assms have [ ¢ NF-terms T by auto
with NF-instance[of | %0 Id-on T
have [ - %0 ¢ NF-terms T by auto
then show %thesis by (simp add: | subst-def)
qed
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lemma not-NF-termsE[elim]:

assumes s ¢ NF-terms @

obtains | C 0 where [ € Q and s = C(l - o)
proof —

from assms obtain t where (s, t) € rstep (Id-on Q) by auto

with <Al C o. [l € Q; s = C(l - 0)] = thesis» show ?thesis by auto
qed

lemma notin-NF-E [elim]:
fixes R :: ('f, 'v) trs
assumes t ¢ NF-trs R
obtains C' [/ and o :: ('f, 'v) subst where [ € lhss R and ¢t = C(l - o)
proof —
assume 1: Al C (o:('f, 'v) subst). l € lhss R = t = C(l - 0) = thesis
from assms obtain u where (¢, u) € rstep R by (auto simp: NF-def)
then obtain C o | r where (I, r) € Rand t = C(l - o) by blast
with 1 show ?thesis by force
qed

lemma NF-ctat-subst: NF-terms Q = {t. = (3 Cqo.t = Cl{qgo) A ¢ € Q)} (is
- = ?R)
proof —
{

fix ¢

assume t ¢ ?R

then obtain C ¢ o where t: t = C{¢-c) and ¢: ¢ € @ by auto

have (t,t) € rstep (Id-on Q)

unfolding ¢ using ¢ by auto
then have ¢ ¢ NF-terms Q by auto

}

moreover

{
fix ¢
assume ¢ ¢ NF-terms Q
then obtain C q o where t: t = C(g-0) and ¢: ¢ € Q by auto
then have t ¢ 7R by auto

}

ultimately show ?thesis by auto

qed

lemma some-NF-imp-no-Var:
assumes t € NF-terms @
shows Var z ¢ Q
proof
assume Var z € @
with assms[unfolded NF-ctxzt-subst] have \ o C. t # C (o z ) by force
from this[of Hole X -. t] show False by simp
qed
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lemma NF-map-vars-term-ing:

assumes inj: A\ z. n (m z) = z and NF: t € NF-terms Q

shows (map-vars-term m t) € NF-terms (map-vars-term m ‘ Q)
proof (rule ccontr)

assume — “thesis

then obtain u where (map-vars-term m t, u) € rstep (Id-on (map-vars-term m
“@)) by blast

then obtain ml mr C o where in-mR: (ml, mr) € Id-on (map-vars-term m
Q)

and mt: map-vars-term m t = C(ml - o) by best

let ?m =n

from in-mR obtain [ r where (I, r) € Id-on @ and ml: ml = map-vars-term
m | by auto

have t = map-vars-term ?m (map-vars-term m t) by (simp add: map-vars-term-ing-compose|of

¢

n m, OF inj])
also have ... = map-vars-term ?m (C(ml - o)) by (simp add: mt)
also have ... = (map-vars-ctzt ?m C){map-vars-term ?m (map-vars-term m 1 -

o))
by (simp add: map-vars-term-ctat-commute ml)
also have ... = (map-vars-ctzt ?m C){l - (map-vars-subst-ran ?m (o o m)))
by (simp add: apply-subst-map-vars-term map-vars-subst-ran)
finally show Fualse using NF and (I, r) € Id-on @ by auto
qed

lemma notin-NF-terms: t € Q = t ¢ NF-terms Q
using lhs-notin-NF-rstep|of t t Id-on Q] by (simp add: Id-on-iff)

lemma NF-termsl [intro]:
assumes NF: A\ Clo.t=C(l-0) = |l € Q = Fulse
shows t € NF-terms @
by (rule ccontr, rule not-NF-termsE [OF - NF])

lemma NF-args-imp-NF:
assumes ss: A\ s. s € set ss = s € NF-terms Q
and someNF: t € NF-terms @
and root: Some (f,length ss) ¢ root * Q
shows (Fun f ss) € NF-terms @
proof
fix Clo
assume id: Fun fss=C (l-o)and l: [ € Q
show Fulse
proof (cases C)
case Hole
with id have id: Fun fss = [ - o by simp
show Fulse
proof (cases l)
case (Fun g ls)
with id have fg: f = g and ss: ss = map (A s. s - o) ls by auto
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from arg-cong[OF ss, of length] have len: length ss = length ls by simp
from [[unfolded Fun] root[unfolded fg len] show False by force
next
case (Var z)
from some-NF-imp-no-Var[|OF someNF] Var | show False by auto
qed
next
case (More g bef D aft)
note id = id[unfolded More]
from id have NF: ss ! length bef = D (I - o) by auto
from id have mem: ss ! length bef € set ss by auto
from ss|OF mem, unfolded NF-ctxt-subst NF| | show Fualse by auto
qed
qed

lemma NF-Var-is-Fun:
assumes Q: Ball Q is-Fun
shows Var z € NF-terms @
proof
fix Clo
assume z: Varz=C (l-o)and l: 1 € Q
from [ @ obtain f s where I: | = Fun f ls by (cases 1, auto)
then show Fulse using = by (cases C, auto)
qed

lemma NF-terms-lhss [simp]: NF-terms (lhss R) = NF (rstep R)
proof
show NF (rstep R) C NF-terms (lhss R) by force
next
show NF-terms (lhss R) C NF (rstep R)
proof
fix s assume NF: s € NF-terms (lhss R)
show s € NF (rstep R)
proof (rule ccontr)
assume s ¢ NF' (rstep R)
then obtain ¢t where (s, t) € rstep R by auto
then obtain ! r C o where (I, r) € R and s: s = C(l - o) by auto
then have (I, [) € Id-on (lhss R) by force
then have (s, s) € rstep (Id-on (lhss R)) unfolding s by auto
with NF show Fualse by auto
qed
qed
qed

4.7 Relative Rewrite Steps
abbreviation relstep R E = relto (rstep R) (rstep E)

lemma args-SN-on-relstep-nrrstep-imp-args-SN-on:
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assumes SN: A u. s > u = SN-on (relstep R F) {u}
and st: (s,t) € nrrstep (R U E)
and supt: t > u
shows SN-on (relstep R E) {u}
proof —
from nrrstepE[OF st] obtain C [ r o where C # O and Ir: (I,r) € RU E
and s: s = C(l - o) and t: t = C(r - o) by blast
then obtain f bef C aft where s: s = Fun f (bef @ C(l - o) # aft) and t: t =
Fun f (bef @ C(r - o) # aft)
by (cases C, auto)
let %ts = bef Q@ C{r - o) # aft
let %ss = bef @ C(l - o) # aft
from supt obtain D where ¢t = D(u) and D # O by auto
then obtain bef’ aft’ D where t": t = Fun f (bef’ @ D{u) # aft’) unfolding ¢
by (cases D, auto)
have D{(u) > u by auto
then have supt: A\ s. s > D(u) = s > u by (metis supt-supteq-trans)
show SN-on (relstep R E) {u}
proof (cases D{(u) € set ?ss)
case True
then have s > D(u) unfolding s by auto
then have s > u by (rule supt)
with SN show ?thesis by auto
next
case Fulse
have D{(u) € set ?ts using arg-cong[OF t'[unfolded t], of args| by auto
with False have Du: D{u) = C(r - o) by auto
have s > C(l - o) unfolding s by auto
with SN have SN-on (relstep R E) {C(l - o)} by auto
from step-preserves-SN-on-relto[OF - this, of C(r - )] Ir
have SN: SN-on (relstep R E) {D{u)} using Du by auto
show ?thesis
by (rule ctzt-closed-SN-on-subt[OF ctxt.closed-relto SN|, auto)
qed
qed

lemma Tinf-nrrstep:
assumes tinf: s € Tinf (relstep R E) and st: (s,t) € nrrstep (R U E)
and t: = SN-on (relstep R E) {t}
shows t € Tinf (relstep R E)
unfolding Tinf-def
by (intro Collect] conjI[OF t]| alll impl)
(rule args-SN-on-relstep-nrrstep-imp-args-SN-on[OF - st],
insert tinflunfolded Tinf-def], auto)

lemma subterm-preserves-SN-on-relstep:
SN-on (relstep R E) {s} = s > t => SN-on (relstep R E) {t}
using SN-imp-SN-subt [of rstep (rstep ((rstep E)*) O rstep R O rstep ((rstep

E)))
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by (simp only: rstep-relcomp-idemp2) (simp only: rstep-rtrancl-idemp)

inductive-set rstep-rule :: ('f, 'v) rule = ('f, 'v) term rel for o
where
rule: s = C{fst o - o) = t = C(snd ¢ - 0) = (s, t) € rstep-rule o

lemma rstep-rulel [intro]:
s=C(l-0)=1t=C(r-o) = (s, t) € rstep-rule (I, r)
by (auto simp: rstep-rule.simps)

lemma rstep-rule-ctxt:
(s, t) € rstep-rule p = (C(s), C(t)) € rstep-rule o
using rstep-rule.rule [of C(s) C o. D ¢ - C(t) for D]
by (auto elim: rstep-rule.cases simp: ctxt-of-pos-term-append)

lemma rstep-rule-subst:
assumes (s, t) € rstep-rule o
shows (s - 0, t - 0) € rstep-rule o
using assms
proof (cases)
case (rule C' )
then show ?thesis
using rstep-rule.rule [of s - 0 - 0 T o5 0]
by (auto elim!: rstep-rule.cases simp: ctxt-of-pos-term-subst)
qed

lemma rstep-rule-imp-rstep:
0 € R = (s, t) € rstep-rule p = (s, t) € rstep R
by (force elim: rstep-rule.cases)

lemma rstep-imp-rstep-rule:
assumes (s, t) € rstep R
obtains [ r where (I, ) € R and (s, t) € rstep-rule (I, r)
using assms by blast

lemma term-subst-rstep:
assumes Az. © € vars-term t => (0 x, T ) € rstep R
shows (¢t - o, t - 7) € (rstep R)*
using assms
proof (induct t)
case (Fun fts)
{ fix f,i
assume t;: t; € set ts
with Fun(2) have Az. z € vars-term t; = (0 x, T ©) € rstep R by auto
from Fun(1) [OF t; this| have (t; - o, t; - ) € (rstep R)* by blast
}
then show ?Zcase by (simp add: args-rsteps-imp-rsteps)
qed (auto)
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lemma term-subst-rsteps:
assumes Az. x € vars-term t = (o z, T x) € (rstep R)*
shows (¢t - o, t - 7) € (rstep R)*
by (metis assms rstep-rtrancl-idemp rtrancl-idemp term-subst-rstep)

lemma term-subst-rsteps-join:

assumes \y. y € vars-term u = (o1 y, 02 y) € (rstep R)*

shows (u - 01, u - 03) € (rstep R)*

using assms
proof —

{fix z

assume r € vars-term u
from assms [OF this] have Jo. (01 %, 0 z) € (rstep R)* A (02 z, 0 ) € (rstep

R)* by auto

}

then have Vz € vars-term u. 0. (01 z, 0 x) € (rstep R)* A (03 z, 0 ) €
(rstep R)* by blast

then obtain s where V1 € vars-term u. (01 %, (s z) z) € (rstep R)* A (02 z,
(s z) x) € (rstep R)* by metis

then obtain o where YV € vars-term u. (01 z, 0 z) € (rstep R)* A (o2 z, ¢
z) € (rstep R)* by fast

then have (u - o1, u - o) € (rstep R)* A (u - 02, u - 0) € (rstep R)* using
term-subst-rsteps by metis

then show ?thesis by blast
qed

lemma funas-trs-converse [simp]: funas-trs (R~') = funas-trs R
by (auto simp: funas-defs)

lemma rstep-rev: assumes (s, t) € rstep-pos {(I,r)} p shows ((¢, s) € rstep-pos
{(r.D} p)
proof—
from assms obtain o where step:t = (ctzt-of-pos-term p s){r - o) p € poss s s
-p=1l-0
unfolding rstep-pos.simps by auto
with replace-at-below-poss[of p s p] have pt:p € poss t by auto
with step ctat-supt-id[OF step(2)] have s = (ctxt-of-pos-term p t)(l - o)
by (simp add: ctxt-of-pos-term-replace-at-below)
with step ctzt-supt-id[OF pt] show ?thesis unfolding rstep-pos.simps
by (metis pt replace-at-subt-at singletonl)
qed

lemma conversion-ctzt-closed: (s, t) € (rstep R)“* = (C{(s), C(t)) € (rstep
R)<—>*

using rsteps-closed-ctzt unfolding conversion-def

by (simp only: rstep-simps(5)[symmetric])

lemma conversion-subst-closed:
(s, t) € (rstep R)¥* = (s -0, t- o) € (rstep R)*
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using rsteps-closed-subst unfolding conversion-def
by (simp only: rstep-simps(5)[symmetric))

lemma rstep-simulate-conv:

assumes A\ lr. (I, r) € S = (I, r) € (rstep R)**

shows (rstep S) C (rstep R)<*
proof

fix st

assume (s, t) € rstep S

then obtain [ r C' o where s: s = C(l - o) and t:t = C(r - o) and Ir: (I, )
s

unfolding rstep-iff-rstep-r-c-s rstep-r-c-s-def by auto

with assms have (I, r) € (rstep R)<* by auto

then show (s, t) € (rstep R)* using conversion-ctxt-closed conversion-subst-closed
s t by metis
qed

lemma symcl-simulate-conv:
assumes A\ I r. (I, r) € S = (I, r) € (rstep R)**
shows (rstep S) C (rstep R)<*
using rstep-simulate-conv| OF assms]
by auto (metis conversion-inv subset-iff)

lemma conv-union-simulate:
assumes A\ I r. (I, r) € S = (I, r) € (rstep R)**
shows (rstep (R U S))<* = (rstep R)<*
proof
show (rstep (R U S))* C (rstep R)<*
unfolding conversion-def
proof
fix st
assume (s, t) € ((rstep (R U S))7)*
then show (s, t) € ((rstep R)*7)*
proof (induct rule: rtrancl-induct)
case (step u t)
then have (u, t) € (rstep R)* V (u, t) € (rstep S)* by auto
then show ?case
proof
assume (u, t) € (rstep R)*
with step show ?thesis using rtrancl-into-rtrancl by metis
next
assume (u, t) € (rstep S)©
with symcl-simulate-conv|OF assms] have (u, t) € (rstep R)** by auto
with step show ?thesis by auto
qed
qed simp
qed
next
show (rstep R)<* C (rstep (R U S))<*
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unfolding conversion-def
using rstep-union rtrancl-mono sup.coboundedl symcl-Un
by metis

qed

definition suptrel R = (relto {>} (rstep R))™
end

5 Critical Pairs

theory Critical-Pairs
imports
Trs
First-Order-Terms. Unification
begin

We also consider overlaps between the same rule at top level, in this way we
are not restricted to wf-trs.

context
fixes ren :: 'v i infinite renaming2
begin

definition
critical-Peaks :: ('f, "v) trs = ('f, 'v) trs = ((('f, "v)term x ('f,'v)term x
('f,’v)term)) set
where
critical-Peaks PR = { (C -c o){r'-7), -0, r-0)|lrl' 1" CorT.
(ILLryePAl,rYe RAL=C{") Nis-Funl" A
mgu-vd ren I"" I = Some (o, T) }

definition
critical-pairs = ('f, 'v) trs = (’f, 'v) trs = (bool x ('f, 'v) rule) set
where
eritical-pairs PR ={ (C =0, (C -co){r'-7),r o) | lrl' """ CorT.
(LLrye PAU,r)ye RAL=C{") Ais-Funl” A
mgu-vd ren 1" I = Some (o, T) }

lemma critical-pairsl:
assumes (I, r) € Pand (I, r') € Rand | = C(I")
and is-Fun I and mgu-vd ren 1" I’ = Some (o, 7)and t =71 - ¢
and s = (C . o)(r’-7)and b= (C =0)
shows (b, s, t) € critical-pairs P R
using assms unfolding critical-pairs-def by blast

lemma critical-pairs-mono:

assumes S; C Ry and Sy C Ry shows critical-pairs S1 So C critical-pairs Ry
Ry

unfolding critical-pairs-def using assms by blast
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lemma critical-Peaks-main:
fixes P R :: ('f, ") trs
assumes tu: (¢, u) € rrstep P and ts: (t, s) € rstep R
shows (s, u) € (rstep R) ™ O rrstep P O ((rstep R) ) ™—1 V
FClmro s=C{l-o)ANt=C(m-0)ANu=C(r- o)A
(I, m, r) € critical-Peaks P R)
proof —
let R = rstep R
let ?CP = critical-Peaks P R
from rrstepE[OF tu] obtain 11 r1 o1 where Irl: (11, r1) € P and t1: t = I
-0l and u: u =71l - 01 by auto
from t¢s obtain C 12 r2 02 where Ir2: (12, r2) € R and t2: t = C(I2 - 02)
and s: s = C(r2 - 02) by auto
from t1 t2 have id: I1 - 01 = C(I2 - 02) by auto
let ?p = hole-pos C
show ?thesis
proof (cases ?p € poss l1 N is-Fun (11 |- ?p))
case True
then have p: ?p € poss l1 by auto
from ctat-supt-id [OF p] obtain D where DI1: D(l1 |- ?p) = l1
and D: D = ctat-of-pos-term (hole-pos C) l1 by blast
from arg-cong [OF DI1, of A t. t - o]
have (D .. 01){(l1 |- %p) - 01) = C(I2 - 02) unfolding id by simp
from arg-cong [OF this, of A t. t |- ?p]
have 12 - 02 = (D - o1){(l1 |- ?p) - o1) |- ?p by simp

also have ... = (D -, 01){(l1 |- %p) - 01) |- (hole-pos (D -, o1))
using hole-pos-ctxzt-of-pos-term [OF p| unfolding D by simp
also have ... = (I1 |- %p) - o1 by (rule subt-at-hole-pos)

finally have ident: 12 - 02 =11 |- ?p - 01 by auto
from mgu-vd-complete [OF ident [symmetric]]
obtain 1 pu2 o where mgu: mgu-vd ren (11 |- ?p) 12 = Some (1, pu2) and

pl:ol = pl og 0

and p2: 02 = p2 o, o

and ident” 11 |- %p - p1 =12 - p2 by blast
have in-cp: (D -c p1){(r2 - p2), 11 - p1,r1 - pl) € 2CP

unfolding critical-Peaks-def

apply clarify

apply (intro exI conjI)

apply (rule refl)
apply (rule Ir1)
apply (rule Ir2)
apply (rule Di1[symmetric])

apply (rule True[THEN conjunct2])

apply (rule mgu)

done
from hole-pos-ctat-of-pos-term [OF p] D have pD: ?p = hole-pos D by simp
from id have C: C = ctzt-of-pos-term ?p (11 - o1) by simp
have C(r2 - 02) = (ctzt-of-pos-term ?p (i1 - 01)){r2 - 02) using C by simp
also have ... = (ctzt-of-pos-term ?p Il - 01)(r2 - 02) unfolding ctzt-of-pos-term-subst
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[OF p] ..
also have ... = (D -, 01)(r2 - ¢2) unfolding D ..
finally have Cro: C(r2 - 62) = (D - 01){(12 - 02) .
show ?thesis unfolding Cro s u t1 unfolding pu1 p2
proof (rule disjI2, intro exl, intro conjl)
show r1 - ul oy o = rl - pul - o) by simp
qed (insert in-cp, auto)
next
case Fulse
from pos-into-subst [OF id - False]
obtain ¢ ¢’ z where p: %p = ¢ Q ¢’ and ¢: ¢ € poss l1 and l1g: I |- ¢ = Var
z by auto
have 2 - 02 = C(I2 - 02) |- (¢ @ ¢’) unfolding p [symmetric] by simp

also have ... = I - o1 |- (¢ @ ¢’) unfolding id ..
also have ... =11 |- ¢ - o1 |- ¢’ using ¢ by simp
also have ... = 01 z |- ¢/ unfolding [1q by simp

finally have [22: 12 - 02 = 01 z |- ¢/ by simp
have pp: ?p € poss (11 - 01) unfolding id by simp
then have ¢ @ ¢’ € poss (11 - 01) unfolding p .
then have ¢’ € poss (i1 - o1 |- ¢q) unfolding poss-append-poss ..
with ¢ have ¢’ € poss (I1 |- ¢ - 01) by auto
then have ¢'z: ¢’ € poss (o1 z) unfolding [1q by simp
from ctat-supt-id [OF q'z] obtain E where olz: E(I2 - 02) =0l z
and E: E = ctzt-of-pos-term ¢' (o1 x)
unfolding 2z by blast
let e = E(r2 - 02)
from hole-pos-ctat-of-pos-term [OF q'z] E have q": ¢’ = hole-pos E by simp
from o1z have o1z" 01 x = E(I2 - 02) by simp
let 20 = A\ y. if y = x then ?e else o1 y
have (u, 71 - %0) € (rstep R) * unfolding u
proof (rule subst-rsteps-imp-rsteps)
fix y
show (o1 y, %0 y) € (rstep R)
proof (cases y = )
case True
show ?thesis unfolding True o1z’ using Ir2 by auto
qed simp
qed
hence riu: (r1 - %0, u) € ((rstep R) %) —1 by auto
show ?thesis
proof (rule disjI1, intro relcompl)
show (r1 - %0, u) € ((rstep R) *)"—1 by fact
show (1 - %0, r1 - %0) € rrstep P using Irl by auto
from ¢ have ¢l1: ¢ € poss (i1 - o1) by simp
have s = replace-at (C(I2 - 02)) ?p (r2 - 02) unfolding s by simp

also have ... = replace-at (i1 - 01) ?p (r2 - 02) unfolding id ..
also have ... = replace-at (11 - o1) q %e
proof —

have E = ctzt-of-pos-term ¢’ (11 - o1 |- q)
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unfolding subt-at-subst [OF ¢q| l1qg E by simp
then show ?thesis
unfolding p
unfolding ctat-of-pos-term-append [OF ql1]
by simp
qed
finally have s: s = replace-at (I1 - 01) q %e .
from q l1q have (replace-at (I1 - c1) q ?e, 11 - %0) € ?R %
proof (induct I1 arbitrary: q)
case (Fun fls)
from Fun(2, 3) obtain i p where ¢: ¢ = ¢ # p and i: i < length ls and
p: p € poss (Is! i) and px: Is ! i |- p = Var z by (cases g, auto)
from i have ls ! i € set s by auto
from Fun(1) [OF this p px] have rec: (replace-at (Is'i - o1) p ?e, Is! i -
%0) € ?R7x .
let ?lsc = map (A t. t-0o1) s
let ?lsc’ = map (A t. t - %0) s
have id: replace-at (Fun fls - 01) q ?e = Fun f (take i ?lsc @ replace-at
(Is'i-01)p % # drop (Suc i) ?lso) (is - = Fun f ?r)
unfolding ¢ using i by simp
show ?case unfolding id unfolding eval-term.simps
proof (rule all-ctxt-closedD [of UNIV])
fix j
assume j: j < length ?r
show (?r ! j, ?lsc’! j) € ?R™%
proof (cases j = i)
case True
show %thesis using i True using rec by (auto simp: nth-append)
next
case Fulse
have 7r! j= %lso ! j
by (rule nth-append-take-drop-is-nth-conv, insert False i j, auto)
also have ... = Is ! j - 01 using j 7 by auto
finally have idr: 9r ! j=1Is!j-0o1 .
from j i have idl: ?lsoc’! j =1Is!j - %0 by auto
show ?thesis unfolding idr idl
proof (rule subst-rsteps-imp-rsteps)
fix y
show (01 y, %0 y) € ?R™*
proof (cases y = x)
case True then show ?thesis using o1z’ Ir2 by auto

qged simp
qed
qed
qed (insert i, auto)
qed simp
then show (s, I1 - %0) € 7R unfolding s .
qed
qed
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qed

lemma critical-Peaks-main-rrstep:
fixes R :: ('f, 'v) trs
assumes tu: (¢, u) € rrstep R and ts: (t, s) € rstep R
shows (s, u) € join (rstep R) V
FCimro s=C{l-o)ANt=C(m-o0)ANu=C(r-o) A
(I, m, r) € critical-Peaks R R)
using critical-Peaks-main[OF assms]
proof
assume (s, u) € (rstep R)* O rrstep R O ((rstep R)*)~!
also have ... C (rstep R)* O ((rstep R)*)~!
unfolding rstep-iff-rrstep-or-nrrstep by regexp
finally have (s, u) € join (rstep R) by blast
thus “thesis by auto
qed auto

lemma parallel-rstep:
fixes p1 :: pos
assumes pi2: pl 1 p2
and pl: pl € poss t
and p2: p2 € poss t
and step2: t |- p2 =12 - 02 (I12,r2) € R
shows (replace-at t p1 v, replace-at (replace-at t p1 v) p2 (r2 - 02)) € rstep R
(is (Pone, ?two) € -)
proof —
show ?thesis unfolding rstep-iff-rstep-r-p-s
proof (intro exl)
show (?one,?two) € rstep-r-p-s R (12,r2) p2 o2
unfolding rstep-r-p-s-def Let-def
apply (intro Collectl, unfold split fst-conv snd-conv)
using pl pi12 p2 step?2
by (metis ctaxt-supt-id parallel-poss-replace-at parallel-replace-at-subt-at)
qed
qed

lemma critical- Peaks-main-rstep:
fixes R :: ('f, 'v) trs
assumes tu: (¢, u) € rstep R and ts: (t, s) € rstep R
shows (s, u) € join (rstep R) V
FClmro s=C{l-o)ANt=C(m-o0)ANu=C(r-o)A
((I, m, r) € critical-Peaks R RV (r, m, 1) € critical-Peaks R R))
proof —
let R = rstep R
let ?CP = critical-Peaks R R
from tu obtain CI 11 r1 o1 where Irl: (I1,r1) € Rand ¢t1: t = CI1(ll - o1)
and u: u = CI1(rl - 1) by auto
from ts obtain C2 12 r2 02 where Ir2: (12, r2) € R and t2: t = C2(I2 - 02)
and s: s = C2(r2 - 02) by auto
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define n where n = size C1 + size C2
from t1 t2 u s n-def show ?thesis
proof (induct n arbitrary: C1 C2 st u rule: less-induct)
case (lessn C1 C2 st u)
show ?case
proof (cases C1)
case Hole
with less(2,4) Irl have tu: (¢, u) € rrstep R by auto
from less(3,5) Ir2 have ts: (¢, s) € rstep R by auto
from critical-Peaks-main-rrstep[OF tu ts| show ?thesis by auto
next
case (More f1 befl DI aftl) note C1 = this
show ?thesis
proof (cases C2)
case Hole
with less(3,5) Ir2 have ts: (¢, s) € rrstep R by auto
from less(2,4) Irl have tu: (t, u) € rstep R by auto
from critical-Peaks-main-rrstep[OF ts tu] show ?thesis by auto
next
case (More f2 bef2 D2 aft2) note C2 = this
from less(2—3) C1 C2

have id: (More f1 befl DI aft1){l1 - o1) = (More f2 bef2 D2 aft2){(I2 -

by auto
let ?n1 = length befl
let ?n2 = length bef2
from id have f: f1 = f2 by simp
show ?thesis
proof (cases ?nl = ?n2)
case True
with id have idb: befl = bef2 and ida: aft] = aft2
and idD: DI(l1 - o1) = D2(I2 - 02) by auto
let 2C = More f2 bef2 O aft2
have id1: C1 = ?C o, D1 unfolding C1 fida idb by simp
have id2: C2 = ?C o, D2 unfolding C2 by simp
define m where m = size D1 + size D2
have mn: m < n unfolding less m-def C1 C2 by auto
note IH = less(1)[OF mn refl idD refl refl m-def]
then show ?thesis
proof
assume ( D2(r2 - 02), D1(rl - 01)) € join ?R
then obtain s’ where seql: (D1(rl - o1), s’) € ?R 7
and seq2: (D2(r2 - 02), s') € ?R™x by auto
from rsteps-closed-ctzt [OF seql, of ?C)|
have seql: (C1(rl - o1), ?C(s’)) € ?R™* using id! by auto
from rsteps-closed-ctzt [OF seq2, of ?2C]
have seq2: (C2(r2 - 02), ?C(s")) € ?R™* using id2 by auto
from seql seq?2 show ?thesis using less by auto
next

assume 3C Imro. D2(r2 - 02) = C{l - o) AN DI(ll -01) =
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o) ANDI(rl -o1) = C(r-o) A((l, m, r) € 2CP V (r, m, ) € ?2CP)
then obtain C' [ m r o where idD: D2(r2 - 02) = C(l - o) D1(l1 -
cl)=C(m-o) Di(rl - o1y = C(r - o) and mem: ((I, m, r) € 2CP V (r, m, 1)
€ ?CP) by blast
show ?thesis
apply (intro disjI2)
apply (unfold less id1 id2)
apply (intro exl [of - 2C o, C] exI)
by (rule conjI [OF - conjl [OF - conjI[OF - meml]]], insert idD, auto)
qged
next
case Fulse
let ?p1 = %n1 # hole-pos D1
let ?p2 = %n2 # hole-pos D2
have 12: C1(l1 - o1) |- ?p2 = 12 - 02 unfolding C1 id by simp
have pi12: %p1 1 %p2 using False by simp
have p1: ?p1 € poss (C1(l1 - o1)) unfolding CI by simp
have p2: ?p2 € poss (C1{l1 - 01)) unfolding C1 unfolding id by simp
let %one = replace-at (CI1(l1 - o1)) ?p1 (rl - o1)
have one: C1(rl1 - 1) = %one unfolding CI by simp
from parallel-rstep [OF p12 p1 p2 12 1r2, of r1 - o1]
have (%one, replace-at fone ?p2 (r2 - 02)) € rstep R by auto
then have one: (CI(rl - o1), replace-at ?one ?p2 (r2 - c2)) € (rstep
R) " unfolding one by simp
have [1: C2(12 - ¢2) |- ?p1 = 1 - o1 unfolding C2 id [symmetric] by
stmp
have p21: %p2 1 %pl using False by simp
have p1”: ?p1 € poss (C2(I12 - 02)) unfolding C2 id [symmetric] by simp
have p2” ?p2 € poss (C2{(I2 - ¢2)) unfolding C2 by simp
let ?two = replace-at (C2(12 - 02)) ?p2 (r2 - 02)
have two: C2(r2 - 02) = ?two unfolding C2 by simp
from parallel-rstep [OF p21 p2' p1'111lrl, of r2 - 02]
have (%two, replace-at ?two ?p1 (r1 - 01)) € rstep R by auto
then have two: (C2(r2 - 02), replace-at ?two ?p1 (r1 - ol1)) € (rstep
R) " unfolding two by simp
have replace-at ?one ?p2 (r2 - 02) = replace-at (replace-at (C1{l1 - o 1))
2 (r2 - 02)) ?p1 (r1 - ol)
by (rule parallel-replace-at [OF p12 pl1 p2])

also have ... = replace-at ?two ?p1 (r1 - o1) unfolding C1 C2id ..
finally have one-two: replace-at ?one ?p2 (r2 - 02) = replace-at ?two ?pl1
(r1 -ol).

show ?thesis unfolding less
by (rule disjl1, insert one one-two two, auto)
qed
qed
qed
qed
qed
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lemma critical-Peak-steps:
fixes R :: ('f, 'v) trs and S
assumes cp: (I, m, r) € critical-Peaks R S
shows (m, I) € rstep S (m,r) € rstep R (m,r) € rrstep R
proof —
from cp [unfolded critical-Peaks-def]
obtain o1 ¢21112r1 12 C whereid: r =11 -01l=(C-c01){r2 -c2) m=
(C-col)(ll -ol)
and r1: (C(l1), r1) € R and r2: (12, r2) € S and mgu: mgu-vd ren 11 12 =
Some (01, 02) by auto
have (C(l1) - o1, r) € rrstep R unfolding id
by (rule rrstepl [of C(l1) r1 - - o1] rl, insert r1, auto)
thus (m,r) € rrstep R unfolding id by auto
thus (m,r) € rstep R by (rule rrstep-imp-rstep)
from mgu-vd-sound [OF mgu] have change: C(l1) - 01 = (C -« 01){I12 - 02)
by simp
have (C(l1) - 01, 1) € rstep S unfolding change id
by (rule rstepl [OF 12, of - - 02], auto)
thus (m, ) € rstep S unfolding id by auto
qed

lemma critical-Peak-to-pair: assumes (I, m, r) € critical-Peaks R R
shows 3 b. (b, I, r) € critical-pairs R R
using assms unfolding critical-Peaks-def critical-pairs-def by blast

lemma critical-pairs-main:
fixes R :: ('f, 'v) trs
assumes stl: (s, t1) € rstep R and st2: (s, t2) € rstep R
shows (t1, t2) € join (rstep R) V
FCblro.t1 =C{l-o) ANt2=C(r-o) A
((b, I, r) € critical-pairs R RV (b, r, 1) € critical-pairs R R))
using critical-Peaks-main-rstep| OF st2 st1]
proof
assume 3CImr o.
t1 =C{l-oyANs=C{m-o)ANt2=C(r-o)A((l, m, r) € critical-Peaks
R RV (r, m, l) € critical-Peaks R R)
then obtain C | m r o where id: t1 = C(l - o) t2 = C{r - o) and disj: ((I,
m, ) € critical-Peaks R R V (r, m, l) € critical-Peaks R R)
by blast
from critical-Peak-to-pair disj obtain b where (b,l,r) € critical-pairs R R V
(b,r,l) € critical-pairs R R by blast
with id show ?thesis by blast
qed auto

lemma critical-pairs:
fixes R :: ('f, 'v) trs
assumes cp: \ I rb. (b, 1, r) € critical-pairs RR = | # r =
3 U r’ s instance-rule (I, r) (I', r') A (I, s) € (rstep R)* A (r', s) € (rstep R)*
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shows WCR (rstep R)
proof
let R = rstep R
let ?CP = critical-pairs R R
fix s t1t2
assume steps: (s, t1) € 7R (s, t2) € ?R
let 2p = X s’ (11, s') € ?R™* A (2, s') € PR
from critical-pairs-main [OF steps]
have 3 5. 7p s’
proof
assume 3 Cblro. t1 = C{l-o) ANt2=C(r-o) A ((b, 1, r) € 2CP V (b,
r, 1) € ?CP)
then obtain C b [ r o where id: t1 = C(l - o) t2 = C(r - o)
and mem: (b, I, r) € 2CP V (b, r, I) € ?CP by blast
show ?thesis
proof (cases | = r)
case True
then show ?thesis unfolding id by auto
next
case Fulse
note sub-ctzt = rsteps-closed-ctat [OF rsteps-closed-subst [OF rsteps-closed-subst]]
from mem show %thesis
proof
assume mem: (b, [, r) € ?CP
from cp [OF mem False] obtain I’ ' s’ 7 where id2: | =1'-7r=1r' -7
and steps: (I, s’) € ?R™x (r', s") € ?R™%
unfolding instance-rule-def by auto
show 3 s’. ?p s’ unfolding id id2
by (rule exI [of - C(s' - T - 0)], rule conjl, rule sub-ctzt [OF steps(1)],
rule sub-ctzt [OF steps(2)])
next
assume mem: (b, r, l) € ?CP
from cp [OF mem]| False obtain [’ v’ s’ 7 where id2: r=1'"-7l=1"-71
and steps: (I, s') € 2R (r', s') € 2R
unfolding instance-rule-def by auto
show 3 s’. ?p s’ unfolding id id2
by (rule exI [of - C(s" - T - 0)], rule conjl, rule sub-ctzt [OF steps(2)],
rule sub-ctzt [OF steps(1)])
qed
qed
qed auto
then show (t1, t2) € join ?R by auto
qed

lemma critical-pairs-fork:
fixes R :: ('f, 'v) trs and S
assumes cp: (b, I, r) € critical-pairs R S
shows (r, 1) € (rstep R)™! O rstep S
proof —
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from cp obtain m where (I,m,r) € critical-Peaks R S
unfolding critical-pairs-def critical-Peaks-def by blast
from critical-Peak-steps(1—2)[OF this] show ?thesis by auto
qed

lemma critical-pairs-fork’. assumes (b,l,r) € critical-pairs R S
shows (I,r) € (rstep S)™—1 O rstep R
using critical-pairs-fork|OF assms] by auto

lemma critical-pairs-complete:

fixes R :: ('f, 'v) trs

assumes cp: (b, I, r) € critical-pairs R R

and no-join: (I, r) & (rstep R)*

shows - WCR (rstep R)
proof

from critical-pairs-fork [OF cp] obtain v where ul: (u, [) € rstep R and ur:
(u, r) € rstep R by force

assume wcr: WCR (rstep R)

with ul ur no-join show False unfolding WCR-on-def by auto
qed

lemma critical-pair-lemma:
fixes R :: ('f, ") trs
shows WCR (rstep R) «—
(V (b, s, t) € critical-pairs R R. (s, t) € (rstep R)})
(is 7l = ?r)
proof
assume 7]
with critical-pairs-complete [where R = R] show ?r by auto
next
assume 7r
show 7¢I
proof (rule critical-pairs)
fix bst
assume (b, s, t) € critical-pairs R R
with <?r» have (s, t) € join (rstep R) by auto
then obtain u where s: (s, u) € (rstep R) x
and t: (¢, u) € (rstep R) * by auto
show 3 s’ t’ u. instance-rule (s, t) (s', t') A (s', u) € (rstep R) * A (1, u) €
(rstep R)
proof (intro exI congl)
show instance-rule (s, t) (s, t) by simp
qed (insert s t, auto)
qed
qed

lemma critical-pairs-exl:
fixes o :: ('f, 'v) subst
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assumes P: (I, r) € Pand R: (I',r') € Rand I: | = C(l")
and " is-Fun I’ and unif: I"” -o=1"-71
and b: b= (C =0)
shows 3 s t. (b, s, t) € critical-pairs P R
proof —
from mgu-vd-complete [OF unif]
obtain u! p2 where mgu: mgu-vd ren I’ I’ = Some (u1, u2) by blast
show ?thesis
by (intro exl, rule critical-pairsl [OF P R 11" mgu refl refl b))
qed

end
end

6 Parallel Rewriting

6.1 Multihole Contexts

theory Multihole-Context
imports
Trs
FOR-Preliminaries
SubList
begin

unbundle lattice-syntax

6.1.1 Partitioning lists into chunks of given length

fun partition-by
where
partition-by xs [| =[] |
partition-by xs (y#ys) = take y xs # partition-by (drop y xs) ys

lemma partition-by-map0-append [simpl:

partition-by xs (map (Az. 0) ys Q zs) = replicate (length ys) [| @Q partition-by xs
28

by (induct ys) simp-all

lemma concat-partition-by [simp]:
sum-list ys = length s = concat (partition-by s ys) = xs
by (induct ys arbitrary: zs) simp-all

definition partition-by-idx where
partition-by-idz | ys i j = partition-by [0..<I] ys ! i ! j

lemma partition-by-nth-nth-old:

assumes i < length (partition-by xs ys)
and j < length (partition-by xs ys ! 1)
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and sum-list ys = length zs
shows partition-by xs ys ! i | j = zs | (sum-list (map length (take i (partition-by
75 45))) + )
using concat-nth [OF assms(1, 2) refl]
unfolding concat-partition-by [OF assms(3)] by simp

lemma map-map-partition-by:
map (map f) (partition-by xs ys) = partition-by (map f xs) ys
by (induct ys arbitrary: zs) (auto simp: take-map drop-map)

lemma length-partition-by [simpl:
length (partition-by zs ys) = length ys
by (induct ys arbitrary: xs) simp-all

lemma partition-by-Nil [simp]:
partition-by [ ys = replicate (length ys) ]
by (induct ys) simp-all

lemma partition-by-concat-id [simp]:
assumes length rss = length ys
and Ai. i < length ys = length (zss! i) = ys i
shows partition-by (concat xss) ys = xss
using assms
proof (induct ys arbitrary: xss)
case (Cons y ys xss)
then show ?Zcase by (cases xss; fastforce)
qed simp

lemma partition-by-nth:
i < length ys = partition-by xs ys | i = take (ys ! ¢) (drop (sum-list (take i ys))
xs)
proof (induct ys arbitrary: s i)
case (Cons z zs )
thus ?case by (cases i, auto simp: ac-simps)
qed simp

lemma partition-by-nth-less:
assumes k < i and i < length zs
and length s = sum-list (take i zs) + j
shows partition-by (zs Q y # ys) zs | k = take (zs | k) (drop (sum-list (take k
proof —
have partition-by (s @ y # ys) zs | k =
take (zs ! k) (drop (sum-list (take k zs)) (zs @ y # ys))
using assms by (auto simp: partition-by-nth)
moreover have zs | k + sum-list (take k zs) < length xs
using assms by (simp add: sum-list-take-eq)
ultimately show ¢thesis by simp
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qed

lemma partition-by-nth-greater:
assumes i < k and k < length zs and j < zs ! {
and length s = sum-list (take i zs) + j
shows partition-by (xs Q y # ys) zs | k =
take (zs ! k) (drop (sum-list (take k zs) — 1) (zs @ ys))
proof —
have partition-by (zs @ y # ys) zs | k =
take (zs ! k) (drop (sum-list (take k zs)) (zs Q y # ys))
using assms by (auto simp: partition-by-nth)
moreover have sum-list (take k zs) > length zs
using assms by (auto simp: sum-list-take-eq)
ultimately show ?thesis by (auto) (metis Suc-diff-Suc drop-Suc-Cons)
qed

lemma length-partition-by-nth:
sum-list ys = length xs = i < length ys = length (partition-by xs ys ! i) = ys
)
proof (induct ys arbitrary: xs i)
case (Cons y ys xs 1)
thus ?case by (cases i, auto)
qed simp

lemma partition-by-nth-nth-elem:
assumes sum-list ys = length xs i < length ys j < ys! i
shows partition-by zs ys ! i | j € set xs
proof —
from assms have j < length (partition-by zs ys | i) by (simp only: length-partition-by-nth)
then have partition-by zs ys ! i | j € set (partition-by xs ys | ©) by auto
with assms(2) have partition-by xs ys | i | j € set (concat (partition-by xs ys))
by auto
then show ?thesis using assms by simp
qed

lemma partition-by-nth-nth:
assumes sum-list ys = length xs i < length ys j < ys! i
shows partition-by zs ys | i | j = zs | partition-by-idx (length xs) ys i j
partition-by-idz (length zs) ys i j < length xs
unfolding partition-by-idz-def
proof —
let ?n = partition-by [0..<length zs] ys ! i ! j
show ?n < length xs
using partition-by-nth-nth-elem[OF - assms(2,3), of [0..<length zs]] assms(1)
by simp
have li: i < length (partition-by [0..<length zs] ys) using assms(2) by simp
have [j: j < length (partition-by [0..<length xs] ys ! i)
using assms by (simp add: length-partition-by-nth)
have partition-by (map ((!) zs) [0..<length xs]) ys ! i!j=xs! ?n
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by (simp only: map-map-partition-by[symmetric] nth-map[OF li] nth-map|OF
iy
then show partition-by zs ys ! i | j = zs ! ?n by (simp add: map-nth)
qed

lemma map-length-partition-by [simp]:
sum-list ys = length s = map length (partition-by xs ys) = ys
by (intro nth-equalityl, auto simp: length-partition-by-nth)

lemma map-partition-by-nth [simp]:

i < length ys = map [ (partition-by zs ys | ©) = partition-by (map f xs) ys ! i
proof (induct ys arbitrary: i zs)

case (Cons y ys i xs)

thus ?case by (cases i, simp-all add: take-map drop-map)
qed simp

lemma sum-list-partition-by [simp):
sum-list ys = length s —
sum-list (map (Az. sum-list (map f z)) (partition-by zs ys)) = sum-list (map f
xs)
by (induct ys arbitrary: xs) (simp-all, metis append-take-drop-id sum-list-append
map-append)

lemma partition-by-map-conv:

partition-by xs ys = map (Ni. take (ys ! i) (drop (sum-list (take i ys)) xs)) [0 ..<
length ys]

by (rule nth-equalityl) (simp-all add: partition-by-nth)

lemma UN-set-partition-by-map:

sum-list ys = length xs = (|J z€set (partition-by (map f xs) ys). U (set z)) =
U (set (map f xs))

by (induct ys arbitrary: xs)

(simp-all add: drop-map take-map, metis UN-Un append-take-drop-id set-append)

lemma UN-set-partition-by:

sum-list ys = length s = (|J zs € set (partition-by zs ys). Uz € set zs. fz) =
(Uz € set xs. fx)

by (induct ys arbitrary: xs) (simp-all, metis UN-Un append-take-drop-id set-append)

lemma Ball-atLeast0Less Than-partition-by-conv:
(Vie{0..<length ys}. V z€set (partition-by zs ys ! 7). P z) =
(Vz € U (set (map set (partition-by xs ys))). P x)
by auto (metis atLeastOLess Than in-set-conv-nth length-partition-by less Than-iff)

lemma Ball-set-partition-by:

sum-list ys = length s —

(Vz € set (partition-by zs ys). Yy € set z. Py) = (Vzx € set zs. P x)
proof (induct ys arbitrary: xs)

case (Cons y ys)
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then show ?case
apply (subst (2) append-take-drop-id [of y xs, symmetric])
apply (simp only: set-append)
apply auto
done
qed simp

lemma partition-by-append?2:

partition-by xs (ys Q zs) = partition-by (take (sum-list ys) zs) ys Q partition-by
(drop (sum-list ys) xs) zs

by (induct ys arbitrary: xs) (auto simp: drop-take ac-simps split: split-min)

lemma partition-by-concat2:
partition-by xs (concat ys) =
concat (map (Mi . partition-by (partition-by xs (map sum-list ys) ! i) (ys ! 7))
[0..<length ys])
proof —
have *: map (\i . partition-by (partition-by xzs (map sum-list ys) ! i) (ys ! 7))
[0..<length ys| =
map (A(z,y). partition-by x y) (zip (partition-by zs (map sum-list ys)) ys)
using zip-nth-conv|of partition-by xs (map sum-list ys) ys] by auto
show ?thesis unfolding x by (induct ys arbitrary: zs) (auto simp: partition-by-append2)
qed

lemma partition-by-partition-by:
length zs = sum-list (map sum-list ys) =
partition-by (partition-by xs (concat ys)) (map length ys) =
map (Ai. partition-by (partition-by xs (map sum-list ys) ! ©) (ys ! i)) [0..<length
ys]
by (auto simp: partition-by-concat2 intro: partition-by-concat-id)

datatype ('f, vars-mctzt : 'v) mctzt = MVar v | MHole | MFun 'f ('f, 'v) mctat
list

6.1.2 Conversions from and to multihole contexts

primrec mctat-of-term :: ('f, "v) term = ('f, 'v) mctxt
where
mctzt-of-term (Var ) = MVar z |
metxt-of-term (Fun f ts) = MFun f (map mctzt-of-term ts)

primrec term-of-mctat :: ('f, 'v) mctzt = ('f, 'v) term
where
term-of-mctat (MVar z) = Var z |
term-of-mctxt (MFun f Cs) = Fun f (map term-of-mctat Cs)

lemma term-of-mctat-mctzt-of-term-id [simp:

term-of-mctat (mctrt-of-term t) =t
by (induct t) (simp-all add: map-idI)
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fun num-holes :: ('f, 'v) mctat = nat
where
num-holes (MVar -) = 0 |
num-holes MHole = 1 |
num-holes (MFun - ctxts) = sum-list (map num-holes ctxts)

lemma num-holes-o-mctzt-of-term [simpl:
num-holes o mctat-of-term = (Az. 0)
apply (intro ext)
subgoal for z by (induct z, auto)
done

lemma mctzt-of-term-term-of-metat-id [simp:
num-holes C = 0 = mctzt-of-term (term-of-mctzt C) = C
by (induct C) (simp-all add: map-idI)

lemma vars-mctat-of-term[simpl: vars-mctat (mctat-of-term t) = vars-term t
by (induct t, auto)

lemma num-holes-mctat-of-term [simpl:
num-holes (mctzt-of-term t) = 0
by (induct t) simp-all

fun funas-mctat :: ('f, 'v) metat = 'f sig
where
funas-mctzt (MFun f Cs) = {(f, length Cs)} U U (funas-mctzt * set Cs) |
funas-mctzt - = {}

fun funas-mctazt-list :: ('f, 'v) mctet = ('f x nat) list
where
funas-mctat-list (MFun f Cs) = (f, length Cs) # concat (map funas-mctzt-list
Cs) |

funas-mctat-list - = |]

lemma funas-mctat-list [simp]:
set (funas-mctzt-list C) = funas-mctzt C
by (induct C) simp-all

fun split-term :: (('f, 'v) term = bool) = ('f, 'v) term = ('f, 'v) mctzt x ('f, "v)
term list
where
split-term P (Var z) = (if P (Var z) then (MHole, [Var z]) else (MVar z, [])) |
split-term P (Fun f ts) =
(if P (Fun fts) then (MHole, [Fun f ts])
else let us = map (split-term P) ts in (MFun f (map fst us), concat (map snd

us)))
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fun cap-til = (('f, 'v) term = bool) = ('f, 'v) term = ('f, 'v) mctat
where
cap-till P (Var z) = (if P (Var z) then MHole else MVar z) |
cap-till P (Fun f ts) = (if P (Fun f ts) then MHole else MFun f (map (cap-till
P) ts))

fun uncap-til :: (('f, 'v) term = bool) = ('f, 'v) term = ('f, 'v) term list
where
uncap-till P (Var z) = (if P (Var x) then [Var z] else []) |
uncap-till P (Fun f ts) = (if P (Fun f ts) then [Fun f ts] else concat (map
(uncap-till P) ts))

lemma split-term [simp):
split-term P t = (cap-till P t, uncap-till P t)
by (induct t) (simp-all cong: map-cong)

definition if-Fun-in-set F' = (At. is-Var ¢t V the (root t) € F)

lemma if-Fun-in-set-simps [simp):
if-Fun-in-set F (Var x)
if-Fun-in-set F (Fun f ts) <— (f, length ts) € F
is-Var t = if-Fun-in-set F t
is-Fun t = if-Fun-in-set F t <— the (root t) € F
by (simp-all add: if-Fun-in-set-def)

lemma if-Fun-in-set-mono:
F C G = if-Fun-in-set F t = if-Fun-in-set G t
by (auto simp: if-Fun-in-set-def)

abbreviation split-term-funas F = split-term (if-Fun-in-set F')
abbreviation cap-till-funas F = cap-till (if-Fun-in-set F')
abbreviation uncap-till-funas F = uncap-till (if-Fun-in-set F)

lemma if-Fun-in-set-uncap-till-funas:
A C B = if-Fun-in-set A t = uncap-till-funas B t = [t
by (cases t) auto

lemma cap-till-funasD [dest]:

fn € funas-mctxt (cap-till-funas F t) = fn € F = False
proof (induct t)

case (Fun fts)

then show ?Zcase by (cases (f, length ts) € F) auto
qed simp

lemma cap-till-funas:
Y fn € funas-mctat (cap-till-funas F t). fn ¢ F
by auto

lemma uncap-till:
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Vs € set (uncap-till P t). P s
by (induct t) simp-all

lemma uncap-till-singleton:

assumes s € set (uncap-till P t)

shows uncap-till P s = [s]

using assms
proof (induct t)

case (Fun [ ts)

then show Zcase by (cases P (Fun f ts)) auto
qed simp

lemma uncap-till-idemp [simp]:
map (uncap-till P) (uncap-till P t) = map (As. [s]) (uncap-till P t)
by (intro map-cong [OF refl] uncap-till-singleton) simp-all

lemma uncap-till-Fun [simp]:
P (Fun f ts) = uncap-till P (Fun f ts) = [Fun f ts]
by simp

abbreviation partition-holes xs Cs = partition-by xs (map num-holes Cs)
abbreviation partition-holes-idz | Cs = partition-by-idz | (map num-holes Cs)

fun fill-holes :: ('f, 'v) metat = ('f, 'v) term list = ('f, 'v) term
where
fill-holes (MVar z) - = Var z |
fill-holes MHole [t] = t |
fill-holes (MFun f cs) ts = Fun f (map (X i. fill-holes (cs ! 7)
(partition-holes ts cs | 7)) [0 ..< length cs])

The following induction scheme provides the MFun case with the list argu-
ment split according to the argument contexts. This feature is quite delicate:
its benefit can be destroyed by premature simplification using the sum-list
?ys = length ?xs = concat (partition-by ?xs ?ys) = ?xs simplification rule.

lemma fill-holes-induct2[consumes 2, case-names MHole MVar MFun):
fixes P :: ('f,'v) mctzt = 'a list = 'b list = bool
assumes lenl: num-holes C = length s and len2: num-holes C = length ys
and Hole: Az y. P MHole [z] [y]
and Var: Av. P (MVar v) [] ]
and Fun: A\f Cs xs ys. sum-list (map num-holes Cs) = length xs —>
sum-list (map num-holes Cs) = length ys =
(A\i. i < length Cs = P (Cs ! i) (partition-holes xs Cs ! i) (partition-holes ys
Cs!i) =
P (MPFun f Cs) (concat (partition-holes zs Cs)) (concat (partition-holes ys Cs))
shows P C zs ys
proof (insert lenl len2, induct C arbitrary: zs ys)
case MHole then show ?case using Hole by (cases zs; cases ys) auto
next
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case (MVar v) then show ?case using Var by auto
next

case (MFun f Cs) then show ?case using Fun[of Cs xs ys f] by (auto simp:
length-partition-by-nth)
qed

lemma fill-holes-induct[consumes 1, case-names MHole MVar MFun]:

fixes P :: ('f,'v) mctzt = 'a list = bool

assumes len: num-holes C' = length xs
and Hole: Axz. P MHole |x]
and Var: Av. P (MVar v) ||
and Fun: A\f Cs zs. sum-list (map num-holes Cs) = length xs =
(A\i. i < length Cs = P (Cs ! i) (partition-holes xs Cs ! i)) =
P (MFun f Cs) (concat (partition-holes zs Cs))

shows P C zs

using fill-holes-induct2[of C zs zs A C zs -. P C zs] assms by simp

lemma funas-term-fill-holes-iff: num-holes C = length ts =
g € funas-term (fill-holes C ts) «— ¢ € funas-mctzt C VvV (It € set ts. g €
funas-term t)
proof (induct C ts rule: fill-holes-induct)
case (MFun f Cs ts)
have (37 < length Cs. g € funas-term (fill-holes (Cs ! ©) (partition-holes (concat
(partition-holes ts Cs)) Cs ! 7)))
+— (3C € set Cs. g € funas-mctzt C) V (3us € set (partition-holes ts Cs).
It € set us. g € funas-term t)
using MFun by (auto simp: ex-set-conv-ex-nth)
then show ?case by auto
qed auto

lemma fill-holes-MHole:
length ts = 1 = ts ! 0 = u = fill-holes MHole ts = u
by (cases ts) simp-all

lemmas
map-partition-holes-nth [simp] =
map-partition-by-nth [of - map num-holes Cs for Cs, unfolded length-map] and
length-partition-holes [simp] =
length-partition-by [of - map num-holes Cs for Cs, unfolded length-map]

lemma length-partition-holes-nth [simp]:
assumes sum-list (map num-holes cs) = length ts
and 7 < length cs
shows length (partition-holes ts cs | i) = num-holes (cs ! 1)
using assms by (simp add: length-partition-by-nth)
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lemma concat-partition-holes-upt:
assumes i < length cs
shows concat [partition-holes ts c¢s | j. j < [0 ..< i]] =
take (sum-list [num-holes (¢s ! j). j < [0 ..< i]]) ts
using assms
proof (induct i arbitrary: ts)
case (Suc 17)
then have i i < length cs by (metis less-eq-Suc-le)
then have *: i < length (map num-holes cs) by simp
then have i’: ¢ < length cs by auto
show ?Zcase
unfolding upt-Suc-append[OF le0] map-append concat-append Suc(1)[OF i”
concat.simps append-Nil2
unfolding sum-list-append take-add
unfolding list.map(2)
unfolding partition-by-nth [OF %]
unfolding take-map nth-map [OF i)
unfolding take-upt-idz[OF i’
unfolding map-map o-def by auto
qed (auto)

lemma partition-holes-step:

partition-holes ts (C # Cs) = take (num-holes C) ts # partition-holes (drop
(num-holes C) ts) Cs

by simp

lemma partition-holes-map-ctxt:
assumes length cs = length ds
and A i. ¢ < length cs = num-holes (cs | ©) = num-holes (ds ! 7)
shows partition-holes ts cs = partition-holes ts ds
using assms by (metis nth-map-conv)

lemma partition-holes-concat-id:
assumes length sss = length cs
and A i. ¢ < length cs = num-holes (cs | ©) = length (sss ! i)
shows partition-holes (concat sss) cs = sss
using assms by (intro partition-by-concat-id) auto

lemma partition-holes-fill-holes-conv:
fill-holes (MFun f cs) ts =
Fun f [fill-holes (cs ! ©) (partition-holes ts cs | ). i < [0 ..< length cs]]
by (simp add: partition-by-nth take-map)

lemma fill-holes-arbitrary:

assumes [Cs: length Cs = length ts
and Iss: length ss = length ts
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and rec: A\ i. i < length ts = num-holes (Cs ! i) = length (ss! i) A f (Cs !
i) (ssli)=ts!i
shows map (Ai. f (Cs ! i) (partition-holes (concat ss) Cs ! i)) [0 ..< length Cs]
= s
proof —
have sum-list (map num-holes Cs) = length (concat ss) using assms
by (auto simp: length-concat map-nth-eq-conv intro: arg-conglof - - sum-list])
moreover have partition-holes (concat ss) Cs = ss
using assms by (auto intro: partition-by-concat-id)
ultimately show ?thesis using assms by (auto intro: nth-equalityl)
qged

lemma fill-holes-MFun;:
assumes [Cs: length Cs = length ts
and Iss: length ss = length ts
and rec: A i. i < length ts => num-holes (Cs | i) = length (ss ! i) A fill-holes
(Cs i) (ssti)=ts!li
shows fill-holes (MFun f Cs) (concat ss) = Fun f ts
unfolding fill-holes.simps term.simps
by (rule confI[OF refl], rule fill-holes-arbitrary[OF ICs lss rec])

inductive
eq-fill ::
('f, 'v) term = ('f, 'v) mctat x (’f, 'v) term list = bool ((-/ =y -) [51, 51] 50)
where
egfI [intro]: t = fill-holes D ss = num-holes D = length ss = t =; (D, ss)

lemma fill-holes-inj:
assumes num-holes C = length ss
and num-holes C' = length ts
and fill-holes C ss = fill-holes C' ts
shows ss = ts
using assms
proof (induct C ss ts rule: fill-holes-induct2)
case (MFun f Cs ss ts)
then show ?case by (intro arg-cong|of - - concat] nth-equalityl) auto
qed auto

lemma eqf-refl [intro]:
num-holes C' = length ts = fill-holes C'ts =5 (C, ts)
by (auto)

lemma eqfE:
assumes t =; (D, ss) shows ¢ = fill-holes D ss num-holes D = length ss
using assms[unfolded eq-fill.simps] by auto

lemma eqf-MFunl:

assumes length sss = length Cs
and length ts = length Cs
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and) i. ¢ < length Cs => ts ! i =¢ (Cs ! ¢, sss ! q)
shows Fun fts = (MFun f Cs, concat sss)
proof
have num-holes (MFun f Cs) = sum-list (map num-holes Cs) by simp
also have map num-holes Cs = map length sss
by (rule nth-equalityl, insert assms eqfE[OF assms(3)], auto)
also have sum-list (...) = length (concat sss) unfolding length-concat ..
finally show num-holes (MFun f Cs) = length (concat sss) .
show Fun f ts = fill-holes (MFun f Cs) (concat sss)
by (rule fill-holes-MFun[symmetric], insert assms(1,2) eqfE[OF assms(3)],
auto)
qed

lemma eqf-MFunFE:
assumes s =¢ (MFun f Cs,ss)
obtains ts sss where s = Fun f ts length ts = length Cs length sss = length Cs
N i i <length Cs = ts! i =5 (Cs! i, sss!i)
88 = concat 8ss
proof —
from eqfE[OF assms] have fh: s = fill-holes (MFun f Cs) ss
and nh: sum-list (map num-holes Cs) = length ss by auto
from fh obtain ¢s where s: s = Fun f ts by (cases s, auto)
from fhlunfolded s
have ts: ts = map (Ai. fill-holes (Cs ! i) (partition-holes ss Cs ! 7)) [0..<length
Cs]
(is - = map (?f Cs ss) -)
by auto
let ?sss = partition-holes ss Cs
from nh
have x: length ?sss = length Cs \i. i < length Cs = ts ! i =4 (Cs ! i, ?sss !
i) ss = concat ?7sss
by (auto simp: ts)
have len: length ts = length Cs unfolding ts by auto
assume ass: \its sss. s = Fun fts =
length ts = length Cs =
length sss = length Cs = (\i. i < length Cs = ts ! i =5 (Cs ! i, sss
'{)) = ss = concat sss = thesis
show thesis
by (rule ass|OF s len %|)
qed

lemma eqf-MHoleE:

assumes s =; (MHole, ss)

shows ss = [g]

using assms
proof (cases ss)

case (Cons z zs) with assms show ?thesis by (cases zs) (auto dest: eqfE)
qed (auto dest: eqfE)
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fun mctzt-of-ctzt = ('f, "v) ctat = ('f, 'v) mctat
where
metat-of-ctzt Hole = MHole |
mctzt-of-ctzt (More f ssy C ss2) =
MFun f (map mctat-of-term ss; Q mctat-of-ctat C # map mctrt-of-term ss3)

lemma num-holes-mctat-of-ctat [simp]:
num-holes (mctat-of-ctet C) = 1
by (induct C) simp-all

lemma mctzt-of-term: t = (mctat-of-term t, [])
proof (induct t)
case (Var z)
show ?case by auto
next
case (Fun fts)
let ?ss = map (A -. []) ts
have id: concat ?ss = [| by simp
have ?case = (Fun fts =¢ (MFun f (map mctzt-of-term ts), concat ?ss)) un-
folding id by simp
also have ...
by (rule eqf-MFunl, insert Fun[unfolded set-conv-nth], auto)
finally show ?Zcase .
qed

lemma mctrt-of-ctzt [simp):
C(t) =5 (mctzt-of-ctzt C, [t])
proof (induct C)
case (More f bef C aft)
let ?sss = map (A -. []) bef Q [¢] # map (X -. []) aft
let ?ts = map mctzt-of-term bef Q mctxt-of-ctzt C # map mctxt-of-term aft
have id: concat ?sss = [t] by (induct bef, auto)
have ?case =
(Fun f (bef Q@ C(t) # aft) =5 (MFun f ?ts, concat ?sss))
unfolding id by simp
also have ...
proof (rule eqf-MFunl)
fix ¢
assume i: 1 < length ?ts
show (bef @ C(t) # aft) ! i =¢ (%ts! ¢, Psss ! i)
using More i
by (cases i < length bef, simp add: nth-append mctxt-of-term,
cases i = length bef, auto simp: nth-append mctt-of-term)
qged auto
finally show ?Zcase .
qed auto

lemma fill-holes-ctxt-main’:
assumes num-holes C = Suc (length bef + length aft)

182



shows 3 D. (V s. fill-holes C (bef @Q s # aft) = D (s)) A (C = MFun f cs —
D #0)
using assms
proof (induct C arbitrary: bef aft)
case MHole
show Zcase
by (rule exI[of - O], insert MHole, auto)
next
case (MFun f cs)
note ITH = MFun(1)
note holes = MFun(2)
let %p = X\ bef aft b a D cs s. map (Ai. fill-holes (cs ! 7)
(partition-holes (bef @ s # aft) cs! 7)) [0..<length cs] =
b@Q D(s) # a
from holes IH
have 3 b D a. Vs. ?p bef aft b a D cs s
proof (induct cs arbitrary: bef)
case (Cons c ccs)
have len: length (¢ # ccs) = Suc (length ccs) by simp
show ?Zcase
proof (cases num-holes ¢ < length bef)
case True
then have bef = take (num-holes ¢) bef @ drop (num-holes c) bef
A length (take (num-holes ¢) bef) = num-holes ¢ by auto
then obtain bc ba where bef: bef = bc @Q ba and lbc: length bc = num-holes
¢ by blast
from Cons(2) have nh: num-holes (MFun f ccs) = Suc (length ba + length
aft) unfolding bef
by (simp add: lbc)
from Cons(1)[OF nh Cons(3)] obtain b D a where IH: A\ s. ?p ba aft b a
D ccs s by auto
show ?thesis unfolding len map-upt-Suc bef
by (intro exI[of - fill-holes ¢ be # b] exI[of - D] exI[of - a|, insert IH lbc,
auto)
next
case Fulse
then have 3 la. num-holes ¢ = Suc (length bef + la) by arith
then obtain la where nhc: num-holes ¢ = Suc (length bef + la) ..
from Cons(2) nhc have length (take la aft) = la by auto
from Cons(3)[of ¢ bef take la aft, unfolded this, OF - nhc]
obtain D where D: Vs. fill-holes ¢ (bef @ s # take la aft) = D(s) by auto
show ?thesis unfolding len map-upt-Suc
by (rule exI[of - Nil], rule exI[of - D], simp add: nhc D)
qed
qged auto
then obtain b D a where main: /\ s. ?p bef aft b a D cs s by blast
show ?case by (rule exI[of - More f b D a), insert main, auto)
qed simp
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lemma fill-holes-ctrt-main:
assumes num-holes C = Suc (length bef + length aft)
shows 3 D.V s. fill-holes C (bef Q s # aft) = D ( s)
using assms fill-holes-ctzt-main’ by fast

lemma fill-holes-ctxt:
assumes nh: num-holes C' = length ss
and i: ¢ < length ss
obtains D where A s. fill-holes C (ss[i :== s]) = D ( s)
proof —
from id-take-nth-drop[OF i] obtain bef aft where ss: ss = bef Q ss ! i # aft
and bef: bef = take i ss by blast
from bef i have bef: length bef = i by auto
note len = arg-cong[OF ss, of length]
from len nh
have num-holes C = Suc (length bef + length aft) by simp
from fill-holes-ctat-main|OF this] obtain D where id: A s. fill-holes C (bef @
s # aft) = D ( s ) by blast

fix s
have ss[i := s] = bef Q s # aft unfolding arg-cong[OF ss, of X ss. ss[i := ]
using 7 bef by auto
with id[of s] have fill-holes C (ss[i :== s]) = D (s ) by simp
}
then have main: 3 D.V s. fill-holes C (ss[i := s]) = D (s ) by blast
assume A D. [As. fill-holes C (ss|i := s]) = D(s)] = thesis
with main show thesis by blast
qed

fun map-vars-mctzt 2 ('v = "w) = ('f, v) mctet = (’f, 'w) metxt
where
map-vars-mctzt vw MHole = MHole |
map-vars-mctet vw (MVar v) = (MVar (vw v)) |
map-vars-mctzt vw (MFun f Cs) = MFun f (map (map-vars-mctzt vw) Cs)

lemma map-vars-mctat-id [simp:
map-vars-mctet (A z. z) C = C
by (induct C, auto intro: nth-equalityl)

lemma num-holes-map-vars-mctzt [simp):
num-holes (map-vars-mctat vw C) = num-holes C
proof (induct C)
case (MFun f Cs)
then show Zcase by (induct Cs, auto)
qed auto

lemma map-vars-term-eq-fill:

t =5 (C,ss) = map-vars-term vw t =y (map-vars-mctzt vw C, map (map-vars-term
vw) $8)
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proof (induct C arbitrary: t ss)
case (MFun f Cs s ss)
from eqf-MFunE[OF MFun(2)] obtain ts sss where s: s = Fun f ts and len:
length ts = length Cs length sss = length Cs
and IH: A\ i. i < length Cs = ts ! i =; (Cs! i, sss! i) and ss: ss = concat
sss by metis
{
fix i
assume i: i < length Cs
then have Cs! i € set Cs by auto
from MPFun(1)[OF this IH[OF i]] have map-vars-term vw (ts! ) =5 (map-vars-mctzt
vw (Cs ! 7), map (map-vars-term vw) (sss! 7)) .
} note IH = this
show ?case unfolding map-vars-mctzt.simps ss map-concat s term.map
by (rule eqf-MFunl, insert IH len, auto)
next
case (MHole t ss)
from eqfE[OF this]
show ?case by (cases ss, auto)
next
case (MVar v t ss)
from eqfE[OF this]
show ?case by (cases ss, auto)
qed

lemma map-vars-term-fill-holes:

assumes nh: num-holes C' = length ss

shows map-vars-term vw (fill-holes C ss) =

fill-holes (map-vars-mctzt vw C) (map (map-vars-term vw) ss)

proof —

from eqfE[OF map-vars-term-eq-fill]OF eqfI[OF refl nhl]]

show ?thesis by simp
qed

lemma split-term-eqf:
t =¢ (cap-till P t, uncap-till P t)
proof (induct t)
case (Fun fts)
show Zcase
proof (cases P (Fun f ts))
case Fulse
then have ?thesis = (Fun f ts = (MFun f (map (cap-till P) ts), concat (map
(uncap-till P) ts)))
by simp
also have ...
proof (rule eqf-MFunl)
fix ¢
presume ¢ < length ts
moreover then have ts! i € set ts by auto

185



ultimately show ts ! ¢ =; (map (cap-till P) ts ! i, map (uncap-till P) ts ! 7)
using Fun by auto
qed simp-all
finally show ?thesis .
ged auto
qed auto

lemma fill-holes-cap-till-uncap-till-id [simp]:
fill-holes (cap-till P t) (uncap-till P t) =t

proof —
have t =¢ (cap-till P t, uncap-till P t) by (metis split-term-eqgf)
from eqfE [OF this| show ?thesis by simp

qed

lemma num-holes-cap-till [simp]:
num-holes (cap-till P t) = length (uncap-till P t)
using eqfE [OF split-term-eqf] by auto

fun split-vars = ('f, 'v) term = (('f, "v) mctzt x v list)
where
split-vars (Var ) = (MHole, [z]) |
split-vars (Fun f ts) = (MFun f (map (fst o split-vars) ts), concat (map (snd o
split-vars) ts))

lemma split-vars-num-holes: num-holes (fst (split-vars t)) = length (snd (split-vars
t)
proof (induct t)
case (Fun f ts)
then show ?case by (induct ts, auto)
qed simp

lemma split-vars-vars-term-list: snd (split-vars t) = vars-term-list t
proof (induct t)

case (Fun f ts)

then show ?case by (auto simp: vars-term-list.simps o-def, induct ts, auto)
qed (auto simp: vars-term-list.simps)

lemma split-vars-vars-term: set (snd (split-vars t)) = vars-term t
using arg-cong[OF split-vars-vars-term-list[of t|, of set] by auto

lemma split-vars-eqf-subst-map-vars-term:
t - o =y (map-vars-mctzt vw (fst (split-vars t)), map o (snd (split-vars t)))
proof (induct t)
case (Fun f ts)
have ?case = (Fun f (map (A\t. t - o) ts)
=¢ (MFun f (map (map-vars-mctat vw o (fst o split-vars)) ts), concat (map
(map o o (snd o split-vars)) ts)))
by (simp add: map-concat)
also have ...
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proof (rule eqf-MFunl, unfold length-map)
fix ¢
assume i: 1 < length ts
then have mem: ts ! i € set ts by auto
show map (M\t. t - o) ts! i =5 (map (map-vars-mectxt vw o (fst o split-vars))
ts ! i, map (map o o (snd o split-vars)) ts ! i)
using Fun[OF mem] i by auto
qged auto
finally show ?Zcase by simp
qed auto

lemma split-vars-eqf-subst: ¢t - o = (fst (split-vars t), (map o (snd (split-vars

t)))

using split-vars-eqf-subst-map-vars-term[of t ¢ X z. z] by simp

lemma split-vars-into-subst-map-vars-term:
assumes split: split-vars | = (C,xs)
and len: length ts = length xs
and id: A\ i. i < length xs = o (xzs! i) =ts !4
shows [ - 0 =¢ (map-vars-mctat vw Cts)
proof —
from split-vars-eqf-subst-map-vars-term[of | o vw, unfolded split]
have [ - 0 =; (map-vars-mctet vw C, map o zs) by simp
also have map o xs = ts
by (rule nth-equalityl, insert len id, auto)
finally show ?thesis .
qged

lemma split-vars-into-subst:
assumes split: split-vars | = (C,zs)
and len: length ts = length xs
and id: A\ i. i < length s = o (xs 1 i) = ts | ¢
shows | - 0 =; (C,ts)
using split-vars-into-subst-map-vars-term|[OF' split len id, of \ z. x] by simp

lemma eqf-funas-term:
t =; (C,s8) = funas-term t = funas-mctzt C U | (funas-term * set ss)
proof (induct C arbitrary: t ss)
case (MFun f Cs t ss)
from eqf-MFunE[OF MFun(2)] obtain ts sss where
t: t = Fun fts and len: length ts = length Cs length sss = length Cs
and args: \ i. i < length Cs = ts ! i =5 (Cs ! i, sss ! i)
and ss: ss = concat sss by auto
let ?lhs = |J {funas-term (ts! i) | i. i < length Cs}
let ?2f1 = X 4. funas-mctat (Cs ! )
let 2f2 = X\ i. | (funas-term * set (sss! i)
let 2f = \i. f1iU 2f2i
{
fix ¢
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assume i: 7 < length Cs
then have mem: Cs! i € set Cs by auto
note MFun(1)[OF mem args|OF 1]
} note IH = this
have funas-term t = insert (f,length Cs) ?lhs
unfolding ¢ using len by (auto simp: set-conv-nth)
also have ?lhs = |J {?f i | i. i < length Cs} using IH by blast

also have ... =J {914 ] i <length Cs} U {921 | 4. 7 < length Cs} by
auto
also have insert (f,length Cs) ... = (insert (f,length Cs) (U {9f1 4] i i<

length Cs})) U lJ {224 | i. i < length Cs} by auto
also have insert (f,length Cs) (U {?f1 i | i. i < length Cs}) = funas-mctxt
(MPun f Cs)
by (auto simp: set-conv-nth)
also have | {7214 | i. i < length Cs} = |J (funas-term * set ss) unfolding ss
len(2)[symmetric]
using set-conv-nthlof sss| by auto
finally show ?Zcase .
next
case MVar
from eqfE[OF this]
show ?case by auto
next
case MHole
from eqfE[OF this] show Zcase by (cases ss, auto)
qged

lemma eqf-all-ctxt-closed-step:
assumes ctzt: all-ctat-closed F' R
and ass: t = (D,ss) N\ i. i < length ts = (ss ! i, ts | i) € R length ss =
length ts funas-term t C F
U (funas-term * set ts) C F
shows (t, fill-holes D ts) € R A fill-holes D ts =5 (D, ts)
using ass
proof (induct t (D,ss) rule: eg-fill.induct)
case (eqfl t)
from eqfI(2) eqfI(4)[unfolded eqfI(2)[symmetric]] eqfI(3,5,6)
show ?Zcase unfolding eqfI(1)
proof (induct D ss ts rule: fill-holes-induct2)
case (MVar v) then show ?case using all-ctzt-closed-sig-refIE[OF ctxzt] by
auto
next
case (MHole s’ t’) then show ?case by auto
next
case (MFun f Cs ss ts)
let ?ss = (map (Ai. fill-holes (Cs ! i) (partition-holes ss Cs | i)) [0..<length
Cs])
let ?ts = (map (Ai. fill-holes (Cs ! i) (partition-holes ts Cs ! i)) [0..<length
)
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note x = all-ctat-closedD[OF ctxt, of f ?ts ?ss, unfolded length-map length-upt
minus-nat. diff-0]
show ?case unfolding fill-holes.simps MFun(4) concat-partition-by|OF MFun(1)]
concat-partition-by[ OF MFun(2)]
proof (intro conjl eqfI x)
fix ¢ assume i: i < length Cs
then have x: ¢ < length ?ss i < length ?ts by auto
from (1) MFun(1,5) have g1: funas-term (fill-holes (Cs ! ©) (partition-holes
ss Cs i) CF
by (auto simp: subset-eq)
with (1) show funas-term (%ss ! i) C F by auto
from %(2) MFun(2,6) have g2: (|J a€set (partition-holes ts Cs ! 7). funas-term
a) CF
unfolding set-concat
by (auto simp: subset-eq all-set-conv-all-nth[of partition-holes ts Cs])
with %(2) MFun(1,2,5) show funas-term (?ts! i) C F
by (auto simp: funas-term-fill-holes-iff subset-eq)
{
fix j assume j: j < length (partition-holes ts Cs ! 1)
from partition-by-nth-nth[of map num-holes Cs ss i j]
partition-by-nth-nthof map num-holes Cs ts i j]
ij MPun(1,2,4)
have (partition-holes ss Cs ! i ! j, partition-holes ts Cs ! i ! j) € R by simp

with ¢ show (%ss ! i, ?ts ! {) € R by (auto intro!: conjunctl [OF MFun(8)[OF
i- g1 92]))
next
show (f, length Cs) € F using MFun(5) by auto
next
show Fun f ?ts =y (MFun f Cs, ts) using MFun(2) by (intro eg-fill.intros)
auto
qed simp
qed
qed

fun map-mctat 2 ('f = '9) = (’f, 'v) mctzt = (g, "v) mctt
where
map-mctzt - (MVar z) = (MVar z) |
map-mctzt - (MHole) = MHole |
map-mctzt fg (MFun f Cs) = MFun (fg f) (map (map-mctzt fg) Cs)

fun ground-mctzt :: ('f, 'v) metat = bool
where
ground-mctzt (MVar -) = False |
ground-mctzt MHole = True |
ground-mctzt (MFun f Cs) = Ball (set Cs) ground-mctxt

lemma ground-cap-till-funas [intro]:
ground-mctzt (cap-till-funas F' t)
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by (induct t) simp-all

lemma ground-eg-fill: t =5 (C,ss) = ground t = (ground-mctat C N (V s € set
ss. ground s))
proof (induct C arbitrary: t ss)
case (MVar z)
from eqfE[OF this] show ?case by simp
next
case (MHole t ss)
from eqfE[OF this] show Zcase by (cases ss, auto)
next
case (MFun f Cs s ss)
from eqf-MFunE[OF MFun(2)] obtain ts sss where s: s = Fun f ts and len:
length ts = length Cs length sss = length Cs
and IH: \ i. i < length Cs = ts ! i =; (Cs! i, sss! i) and ss: ss = concat
sss by metis
{
fix i
assume i: i < length Cs
then have Cs! ¢ € set Cs by simp
from MFun(1)[OF this IH[OF 1]
have ground (ts! i) = (ground-mctzt (Cs ! i) A (Va€set (sss! i). ground a)) .
} note IH = this
note conv = set-conv-nth
have ?case = ((Vz€set ts. ground z) = ((Vz€set Cs. ground-mctat x) A (¥ a€set
sss. Y xz€set a. ground x)))
unfolding s ss by simp
also have ... unfolding conv[of ts| conv|of Cs| conv|of sss] len using IH by
auto
finally show ?Zcase by simp
qed

lemma ground-fill-holes:
assumes nh: num-holes C' = length ss
shows ground (fill-holes C ss) = (ground-mctat C N (¥ s € set ss. ground s))
by (rule ground-eq-fill|OF eqfI|OF refl nh]])

lemma split-vars-ground: split-vars t = (C,zs) => ground-mctat C
proof (induct t arbitrary: C xs)
case (Fun fts C zs)
from Fun(2)[simplified] obtain Cs where C: C = MFun f Cs and Cs: Cs =
map (fst o split-vars) ts by auto
show ?case unfolding C ground-mctxt.simps
proof
fix C
assume C' € set Cs
from this[unfolded Cs] obtain t where t: t € set ts and C: C = fst (split-vars
t) unfolding o-def by auto
from C obtain zs where split: split-vars t = (C,zs) by (cases split-vars t,
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auto)
show ground-mctxt C
by (rule Fun(1)[OF t split])
qed
qed auto

lemma split-vars-ground-vars:
assumes ground-mctxt C and num-holes C' = length xs
shows split-vars (fill-holes C (map Var zs)) = (C, xs)
using assms
proof (induct C arbitrary: xs)
case (MHole zs)
then show ?case by (cases xs, auto)
next
case (MFun f Cs xs)
have fill-holes (MFun f Cs) (map Var zs) =; (MFun f Cs, map Var zs)
by (rule eqfI, insert MFun(3), auto)
from eqf-MFunE[OF this)
obtain ts zss where fh: fill-holes (MFun f Cs) (map Var xs) = Fun f ts
and lent: length ts = length Cs
and lenx: length xss = length Cs
and args: Ni. i < length Cs = ts! i =5 (Cs ! i, xss ! q)
and id: map Var xs = concat zss by auto
from arg-cong[OF id, of map the-Var] have id2: xs = concat (map (map the-Var)
xs8)
by (metis map-concat length-map map-nth-eq-conv term.sel(1))
{
fix i
assume i: i < length Cs
then have mem: Cs ! i € set Cs by auto
with MFun(2) have ground: ground-mctzt (Cs ! i) by auto
have map Var (map the-Var (xss! 7)) = map id (zss ! i) unfolding map-map
o-def map-eq-conv
proof
fix z
assume z € set (zss ! 0)
with lenz { have z € set (concat zss) by auto
from this[unfolded id[symmetric]] show Var (the-Var x) = id x by auto
qed
then have idzss: map Var (map the-Var (xzss! i) = zss | ¢ by auto
note rec = eqfE[OF args[OF )]
note IH = MFun(1)[OF mem ground, of map the-Var (zss! i), unfolded rec(2)
idzss rec(1)[symmetric]]
from IH have split-vars (ts ! i) = (Cs | i, map the-Var (zss ! i)) by auto
note this idzss

note IH = this

have ?case = (map fst (map split-vars ts) = Cs A concat (map snd (map split-vars
ts)) = concat (map (map the-Var) xss))
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unfolding fh unfolding id2 by auto
also have ...
proof (rule conjI[OF nth-equalityl arg-conglof - - concat, OF nth-equalityl,
rule-format]], unfold length-map lent lenx)
fix ¢
assume i: i < length Cs
with arg-cong|OF IH(2)[OF this], of map the-Var]
IH[OF this] show map snd (map split-vars ts) | i = map (map the-Var) zss
! ¢ using lent lenx by auto
qed (insert IH lent, auto)
finally show ?case .
qed auto

lemma ground-map-mctzt[simp): ground-mctzt (map-mctzt fg C) = ground-mctat

c
by (induct C, auto)

lemma num-holes-map-mctxt[simp|: num-holes (map-mctat fg C') = num-holes C
proof (induct C)

case (MFun f Cs)

then show ?Zcase by (induct Cs, auto)
qed auto

lemma split-vars-map-mctxt:

assumes split: split-vars t = (map-mctzt fg C, xs)

shows split-vars (fill-holes C' (map Var zs)) = (C, xs)
proof —

from split-vars-ground|[OF split] have ground: ground-mctazt C by simp

from split-vars-num-holes[of t, unfolded split] have nh: num-holes C' = length xs
by auto

show ?thesis

by (rule split-vars-ground-vars[OF ground nh])

qed

lemma subst-eq-map-decomp:
assumes t - 0 = map-funs-term fg s
shows 3 C s ds. s =5 (C,0s) A split-vars t = (map-mctzt fg C, zs) N (V i <
length zs.
o (zs ! i) = map-funs-term fg (§s ! 7))
using assms
proof (induct t arbitrary: s)
case (Var z s)
show ?case
by (intro exI[of - MHole] exI|of - [z]] exI[of - [s]], insert Var, auto)
next
case (Fun g ts s)
from Fun(2) obtain f ss where s: s = Fun f ss and ¢: ¢ = fg f by (cases s,
auto)
from Fun(2)[unfolded s] have id: map (A t. t - o) ts = map (map-funs-term fg)
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ss by auto
from arg-cong|OF this, of length] have len: length ts = length ss by auto
from map-nth-conv[OF id] have args: \ i. i < length ts = ts ! i - 0 =
map-funs-term fg (ss ! i) by auto
let 2P =X Cuasdsi.ss!i=; (C,ds) A
split-vars (ts ! i) = (map-mctzt fg C, xs) A
(Vi<length zs. o (xs ! i) = map-funs-term fg (ds! 7))
{
fix i
assume i: 7 < length ts
then have mem: ts ! i € set ts by auto
note IH = Fun(1)[OF this args|OF i]]

then have V i. 3 C zs d§s. i < length ts — ?P C xs §s i by blast

from choice[OF this| obtain Cs where V i. 3 zs ds. i < length ts — ?P (Cs
i) xs ds i by blast

from choice[OF this| obtain xzss where V i. 3 ds. i < length ts — 7P (Cs i)
(zss ©) ds i by blast

from choice[OF this] obtain dss where IH: A i. i < length ts = ?P (Cs 1)
(zss i) (dss i) i by blast

let ?n = [0 ..< length ts]

let 2Cs = map Cs ?n

let ?C = MFun f ?Cs

let %zs = concat (map zss ?n)

let %0s = concat (map dss n)

let 79 = fg f

show ?case unfolding s g

proof (rule exI[of - ?C], rule exI[of - ?xs], rule exI[of - 20s], intro conjl)

show Fun fss =5 (¢C, 2s)
by (rule eqf-MFunl, insert IH len, auto)
next
have
(split-vars (Fun ?g ts) = (map-mctzt fg ?C, ?xs))
= (map (fst o split-vars) ts = map (map-mctzt fg o Cs) [0..<length ss]
Nconcat (map (snd o split-vars) ts) = ?xs)

(is ?goal = -)
using len by auto
also have ...

by (rule conjI[OF nth-map-conv arg-conglof - - concat, OF nth-equalityl]],
insert IH len, auto)
finally show ?goal .
next
show V i < length %xs. o (%zs ! i) = map-funs-term fg (25s ! 7)
proof (rule concat-all-nth, unfold length-map length-upt)
fix ¢
assume i < length ts — 0
then have i: ¢ < length ts by auto
from IH[OF i] have split-vars (ts ! i) = (map-mctat fg (Cs i), zss i) by blast
from split-vars-map-mctat[OF this] split-vars-num-holes|of fill-holes (Cs 1)
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(map Var (zss i))]
have len: length (zss i) = num-holes (Cs i) by simp
also have ... = length (dss 7) by (rule eqfE(2), insert IH[OF i], auto)
finally
show length (map xss [0..<length ts] | ©) = length (map dss [0..<length ts] !
i) using ¢ by auto
qed (insert IH, auto)
qed
qed

lemma map-funs-term-fill-holes:
num-holes C = length ss =—
map-funs-term fg (fill-holes C ss) =y (map-mctat fg C, map (map-funs-term fg)
ss)
proof (induct C arbitrary: ss)
case (MHole ss)
then show ?case by (cases ss, auto)
next
case MVar then show ?case by auto
next
case (MFun f Cs ss)
from MPFun(2) have fill-holes (MFun f Cs) ss =y (MFun f Cs, ss) by auto
from eqf-MFunE[OF this] obtain ts sss where fh: fill-holes (MFun f Cs) ss =
Fun fts
and lts: length ts = length Cs
and Isss: length sss = length Cs
and args: Ni. i < length Cs => ts! i =5 (Cs ! 4, sss ! 1)
and sss: ss = concat sss by auto
{
fix i
assume i: 7 < length Cs
then have mem: Cs! i € set Cs by auto
from MFun(1)[OF mem| eqfE[OF args|OF i]] have
map-funs-term fg (ts ! i) =5 (map-mctat fg (Cs ! i), map (map-funs-term fg)
(sss ! 4)) by auto
} note IH = this
show ?case unfolding fh
unfolding map-mctzt.simps sss map-concat term.simps
proof (rule eqf-MFunl, unfold length-map)
fix ¢
assume i: i < length Cs
have (map (map-funs-term fg) ts ! i =¢ (map (map-metat fg) Cs ! i, map (map
(map-funs-term fq)) sss ! 1)) =
(map-funs-term fg (ts ! ©) =¢ (map-mctat fg (Cs! i), map (map-funs-term fg)
(sss!14))) (is 2goal = -)
using ¢ lts lsss by auto
also have ... by (rule IH[OF i])
finally show ?goal .
qed (auto simp: lsss Its)
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qed

lemma eqf-MVarE:
assumes s =¢ (MVar z,ss)
shows s = Var z ss = [
by (insert eqfE[OF assms|, cases s; cases ss, auto)+

lemma eqf-imp-subt:
assumes s: s =; (C,ts)
and t: t € set s
shows s > ¢
proof —
from ¢ obtain bef aft where ts: ts = bef Q t # aft
by (metis split-list)
note s = eqfE[OF s[unfolded ts], simplified]
from fill-holes-ctrt-main[OF s(2)] obtain D where fill-holes C (bef Q t # aft)
= D(t) by auto
from this[folded s(1)] show ?thesis by auto
qed

lemma eqf-MFun-imp-strict-subt:
assumes s:s =5 (MFun f cs, ts)
and t:t € set ts
shows s > ¢
proof —
from t obtain bef aft where ts: ts = bef Q t # aft
by (metis split-list)
from eqfE[OF s[unfolded ts|| have s: s = fill-holes (MFun f cs) (bef Q t # aft)
num-holes (MFun f cs) = Suc (length bef + length aft) by auto
from fill-holes-ctat-main’|OF s(2)] obtain D
where D:fill-holes (MFun f cs) (bef @ t # aft) = D(t) and D # O by blast
from this[folded s(1)] show ?thesis by auto
qed

fun poss-metat :: ('f, 'v) mctzt = pos set
where
poss-mctrt (MVar z) = {[]} |
poss-mctzt MHole = {} |
poss-metzt (MFun fcs) = {[]} U U (set (map (A 7. (A p. i # p) ‘ poss-mctat (cs
14)) [0 ..< length cs]))

lemma poss-mctat-simp [simp]:

poss-metzt (MFun fcs) = {[|} U{i # p | ip. i < length cs A p € poss-mctzt (cs
i)}

by auto
declare poss-mctat.simps(3)[simp del]

lemma poss-mctzt-map-vars-metat [simp):
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poss-mctzt (map-vars-mctzt f C) = poss-mctat C
by (induct C) auto

fun hole-poss :: ('f, 'v) mctzt = pos set
where
hole-poss (MVar z) = {} |
hole-poss MHole = {[|} |
hole-poss (MFun f cs) = | (set (map (A i. (A p. © # p) * hole-poss (es ! 7)) [0
< length cs]))

lemma hole-poss-simp [simp]:
hole-poss (MFun fcs) = {i # p | i p. i < length cs A p € hole-poss (cs ! i)}
by auto

declare hole-poss.simps(3)[simp del]

lemma hole-poss-empty-iff-num-holes-0: hole-poss C = {} +— num-holes C = 0
by (induct C; fastforce simp: set-conv-nth)

lemma mctzt-of-term-fill-holes [simp]:

fill-holes (mctxt-of-term t) [| = t
proof (induct t)

case (Fun fts)

then have fill-holes (mctat-of-term (Fun f ts)) [| = Fun f (map (Ai. (ts!i))
[0..<length ts))

unfolding mctzt-of-term.simps partition-holes-fill-holes-conv partition-by-Nil

map-map by auto

also have ... = Fun f ts using map-nth by auto
ultimately show ?case by auto
qed (auto)

lemma hole-pos-not-in-poss-mctat:
assumes p € hole-poss C
shows p ¢ poss-mctat C
using assms
by (induct C arbitrary: p) auto

lemma hole-pos-in-filled-fun-poss:
assumes is-Fun ¢
shows hole-pos E € fun-poss ((E - o)(t - 7))
using assms
by (induct E) (auto simp: append-Cons-nth-middle)

fun
subst-apply-mctat = ('f, "v) mctat = ('f, v, 'w) gsubst = ('f, 'w) mctat (infixl
-mc 67)
where
MHole -mc - = MHole |
(MVar z) -mc o = mctat-of-term (o x) |
(MFun f cs) -mc o = MFun f [¢ -mc o . ¢ + cs]
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lemma subst-apply-mctzt-compose: C -mc o -mc 6 = C -mc 0 o5 §
proof (induct C)

case (MVar z)

define ¢ where t = o =

show ?case by (simp add: t-def [symmetric] subst-compose-def, induct t, auto)
qed auto

lemma subst-apply-mctzt-cong: (N z. x € vars-mctat C = oz =7 ) = C
mco=C -mcT
by (induct C, auto)

lemma vars-mctat-subst: vars-mctat (C -me o) = |J (vars-term ‘o * vars-mctat
)
by (induct C, auto)

lemma subst-apply-mctxt-numholes:

shows num-holes (¢ mc o) = num-holes ¢
proof (induct ¢ arbitrary: o)

case (MFun f cs)

have num-holes (MFun f cs -mc o) = sum-list [num-holes (¢ -mc o) . ¢ + cs]

unfolding subst-apply-mctzt.simps num-holes.simps map-map comp-def by

auto

also have ... = sum-list [num-holes ¢ . ¢ + cs] using MFun(1)

by (metis (lifting, no-types) map-cong)

ultimately show ?case by auto

qed (auto)

lemma subst-apply-mctat-fill-holes:

assumes nh: num-holes ¢ = length ts

shows (fill-holes ¢ ts) - o = fill-holes (¢ -mc o) [ ti - 0 . ti + t5]

using nh
proof (induct ¢ arbitrary: ts)

case MHole

then obtain ¢ where ts: ts = [

unfolding num-holes.simps unfolding One-nat-def using Suc-length-conv

length-0-conv by metis

show ?case unfolding ts by simp

next
case (MVar z)
then have ts: ts = [| using length-0-conv by auto
show ?case unfolding ts by auto

next

case (MFun f cs)

note IH = MPFun(1)

note nh = MFun(2)[unfolded num-holes.simps)
let ?c = MFun f cs

let ?cso = map (Ac. ¢ -mc o) ¢s
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fix 7

assume i: ¢ < length cs

have nh-map: \ j. j < length cs = num-holes (cs!j) = num-holes (?cso ! j)
using nth-map subst-apply-mctzt-numholes by metis

have fill-holes (cs ! ©) (partition-holes ts cs | i) - 0 =
fill-holes ((¢s ! i) -mc o) (partition-holes [ ti - o . ti + ts] cs ! 9)
using IH [OF nth-mem [OF i]] and nh and i by auto
also have ... = fill-holes (%cso | i) (partition-holes [ti - o . ti < ts] ?cso ! Q)
unfolding nth-map[OF i] using partition-holes-map-ctzt[OF - nh-map]
length-map by metis
ultimately have fill-holes (cs | i) (partition-holes ts cs | i) - o = fill-holes
(Zeso ! i) (partition-holes [ti - o . ti « ts] Zcso ! i)
by auto
} note ith = this

have fill-holes ?c ts - ¢ = Fun f [fill-holes (?cso | i) (partition-holes [ ti - o . ti
— ts] Zeso i) . i« [0..<length cs]|
unfolding partition-holes-fill-holes-conv map-map using ith using comp-def
by auto
also have ... = fill-holes (¢c -mc o) [ ti - o . ti « ts]
unfolding subst-apply-mctat.simps partition-holes-fill-holes-conv length-map ..
ultimately show ?case by auto
qged

lemma subst-apply-mctrt-sound:

assumes t =y (c,ts)

shows t - 0 =5 (¢ -mc o, [ ti - o . ti < ts])
proof (rule eqfI, insert subst-apply-mctzt-numholes subst-apply-mctzt-fill-holes| OF
eqf E(2)[OF assms]] eqfE[OF assms] eqfE(2)[OF assms, symmetric], auto) qed

fun fill-holes-mctat = ('f, "v) mctat = ('f, 'v) metat list = ('f, "v) mctat
where
fill-holes-mctzt (MVar z) - = MVar x|
fill-holes-mctxt MHole [| = MHole |
fill-holes-mctxzt MHole [t] = t |
fill-holes-mctat (MFun f cs) ts = (MFun f (map (X i. fill-holes-mctzt (cs ! ©)
(partition-holes ts cs | 7)) [0 ..< length cs]))

lemma fill-holes-mctzt-Nil [simp]:
fill-holes-mctzt C' [| = C
by (induct C) (auto intro: nth-equalityl)

lemma map-fill-holes-mctazt-zip [simp]:
assumes length ts = n
shows map (A(z, y). fill-holes-mctat z y) (zip (map mctzt-of-term ts) (replicate

n () =
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map mctat-of-term ts
using assms by (induct ts arbitrary: n) auto

lemma fill-holes-mctzt-MHole [simpl:
length ts = Suc 0 = fill-holes-mctxt MHole ts = hd ts
by (cases ts) simp-all

lemma partition-holes-fill-holes-mctxzt-conv:
fill-holes-mctzt (MFun f Cs) ts =
MFun | [fill-holes-mctzt (Cs ! i) (partition-holes ts Cs | i). i « [0 ..< length

Cs]]
by (simp add: partition-by-nth take-map)

lemma partition-holes-fill-holes-mctzt-conv”:
fill-holes-mctzt (MFun f Cs) ts =
MPFun f (map (case-prod fill-holes-mctat) (zip Cs (partition-holes ts Cs)))
unfolding zip-nth-conv [of Cs partition-holes ts Cs, simplified]
and partition-holes-fill-holes-mctxt-conv by simp

lemma fill-holes-mctzt-metat-of-ctat-metat-of-term [simp):
fill-holes-mctzt (mctzt-of-ctxt C) [metxt-of-term t] = mctat-of-term (C(t))
by (induct C arbitrary: t)
(simp-all del: fill-holes-mctxt.simps add: partition-holes-fill-holes-mctat-conv’)

lemma fill-holes-mctzt-metat-of-ctat-MHole [simp]:
fill-holes-mctxzt (mctzt-of-ctxt C') [MHole] = mctat-of-ctat C
by (induct C) (simp-all del: fill-holes-mctat.simps add: partition-holes-fill-holes-mctxt-conv’)

lemma partition-holes-fill-holes-conv':
fill-holes (MFun f Cs) ts =
Fun f (map (case-prod fill-holes) (zip Cs (partition-holes ts Cs)))
unfolding zip-nth-conv [of Cs partition-holes ts Cs, simplified]
and partition-holes-fill-holes-conv by simp

lemma fill-holes-mctzt-MFun-replicate-length [simp):
fill-holes-mctzt (MFun ¢ (replicate (length Cs) MHole)) Cs = MFun ¢ Cs
unfolding partition-holes-fill-holes-mctzt-conv’
by (induct Cs) simp-all

lemma fill-holes-MFun-replicate-length [simp]:
fill-holes (MFun ¢ (replicate (length ts) MHole)) ts = Fun c ts
unfolding partition-holes-fill-holes-conv’
by (induct ts) simp-all

lemma funas-mctat-fill-holes-mctxt [simp]:
assumes num-holes C = length Ds
shows funas-mctat (fill-holes-mctzt C' Ds) = funas-mctat C U | (set (map fu-
nas-mctzt Ds))
(is ?f C Ds = 29 C Ds)
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using assms
proof (induct C arbitrary: Ds)
case MHole
then show ?Zcase by (cases Ds) simp-all
next
case (MFun f Cs)
then have num-holes: sum-list (map num-holes Cs) = length Ds by simp
let ?ys = partition-holes Ds Cs
have Ai. i < length Cs = 2f (Cs ! i) (Pys ! i) = 29 (Cs ! %) (?ys ! i)
using MFun by (metis nth-mem num-holes.simps(3) length-partition-holes-nth)
then have (|Ji € {0 ..< length Cs}. 2f (Cs i) (2ys ! i) =
(Ui € {0 ..< length Cs}. 29 (Cs ! i) (2ys ! 7)) by simp
then show ?case
using num-holes
unfolding partition-holes-fill-holes-mctzt-conv
by (simp add: UN-Un-distrib UN-upt-len-conv [of - - Az. | (set z)] UN-set-partition-by-map)
qed simp

lemma fill-holes-mctxt-MFun:

assumes [Cs: length Cs = length ts

and Iss: length ss = length ts
and rec: \ i. { < length ts = num-holes (Cs ! i) = length (ss ! i) A

fill-holes-mctzt (Cs ! 4) (ss! i) =ts!i

shows fill-holes-mctzt (MFun f Cs) (concat ss) = MFun f ts

unfolding fill-holes-mctxt.simps mctxt.simps

by (rule confI[OF refl], rule fill-holes-arbitrary[OF ICs lss rec])

lemma num-holes-fill-holes-mctxt:
assumes num-holes C = length Ds
shows num-holes (fill-holes-mctzt C Ds) = sum-list (map num-holes Ds)
using assms
proof (induct C arbitrary: Ds)
case MHole
then show ?case by (cases Ds) simp-all
next
case (MFun f Cs)
then have *: map (num-holes o (Ai. fill-holes-mctzt (Cs | i) (partition-holes Ds
Cs 114))) [0..<length Cs] =
map (Ai. sum-list (map num-holes (partition-holes Ds Cs ! ©))) [0 ..< length
Cs)
and sum-list (map num-holes Cs) = length Ds
by simp-all
then show Zcase
using map-upt-len-conv [of Ax. sum-list (map num-holes x) partition-holes Ds
Cs]
unfolding partition-holes-fill-holes-mctzt-conv by (simp add: *)
qed simp

lemma fill-holes-mctzt-fill-holes:
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assumes len-ds: length ds = num-holes c
and nh: num-holes (fill-holes-mctzt ¢ ds) = length ss
shows fill-holes (fill-holes-mctzt ¢ ds) ss =
fill-holes ¢ [fill-holes (ds ! ©) (partition-holes ss ds | 7). i + [0 ..< num-holes c||
using assms(1)[symmetric] assms(2)
proof (induct ¢ ds arbitrary: ss rule: fill-holes-induct)
case (MFun f Cs ds ss)
define ¢gs where ¢s = map (\i. fill-holes-mctat (Cs | i) (partition-holes ds Cs !
i)) [0..<length Cs]
then have ¢s: \i. i < length Cs = fill-holes-mctxt (Cs ! i) (partition-holes ds
Cs!li)y=gqs!i
length gs = length Cs by auto
define zs where zs = map (Ai. fill-holes (ds ! i) (partition-holes ss ds ! 7))
[0..<length ds]
{
fix ¢ assume i: i < length Cs
from MPFun(1) have *: map length (partition-holes ds Cs) = map num-holes
Cs by auto
have sx: length ss = sum-list (map sum-list (partition-holes (map num-holes
ds) Cs))
using MFun(1) MFun(3)[symmetric] num-holes-fill-holes-mctzt[of MFun f Cs
ds]
by (auto simp: comp-def map-map-partition-by[symmetric])
have partition-by (partition-by ss
(map (Mi. num-holes (fill-holes-mctzt (Cs | i) (partition-holes ds Cs ! i)))
[0..<length Cs]) ! i)
(partition-holes (map num-holes ds) Cs ! i) = partition-holes (partition-holes
ss ds) Cs!i
using ¢ MFPun(1) MFun(3) partition-by-partition-by[OF *x]
by (auto simp: comp-def num-holes-fill-holes-mctxt
introl: arg-cong|of - - Ax. partition-by (partition-by ss x| -) -] nth-equalityl)
then have map (\j. fill-holes (partition-holes ds Cs ! i ! j)
(partition-holes (partition-holes ss qs ! 1)
(partition-holes ds Cs ! ©) ! j)) [0..<num-holes (Cs ! i)] =
partition-holes zs Cs | i
using MFun(1,3)
by (auto simp: zs-def gs-def i comp-def partition-by-nth-nth intro: nth-equalityl)
}
then show ?Zcase using MFun by (simp add: gs-def [symmetric] gs zs-def
[symmetric])
qed auto

lemma fill-holes-mctxt-sound:
assumes len-ds: length ds = num-holes c
and len-sss: length sss = num-holes c
and len-ts: length ts = num-holes c
and insts: A\ i. i < length ds = tsli =5 (ds!i, sssli)
shows fill-holes c ts =y (fill-holes-mctxt ¢ ds, concat sss)
proof (rule egfT)
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note [-nh-i = eqfE(2)[OF insts]

from partition-holes-concat-id[OF - I-nh-i] len-ds len-sss
have concat-sss: partition-holes (concat sss) ds = sss by auto

then show nh: num-holes (fill-holes-mctxt ¢ ds) = length (concat sss)
unfolding num-holes-fill-holes-mctat [OF len-ds [symmetric]] length-concat
by (metis l-nh-i len-ds len-sss nth-map-conv)

have ts: ts = [fill-holes (ds ! i) (partition-holes (concat sss) ds | i) . i +
[0..<num-holes c]] (is - = ?2fhs)
proof (rule nth-equalityl)
show [-fhs: length ts = length ?fhs unfolding length-map
by (metis diff-zero len-ts length-upt)
fix ¢
assume i: 7 < length ts
then have i i < length [0..<num-holes c]
by (metis diff-zero len-ts length-upt)
show tsli = ?fhs ! i
unfolding nth-map[OF i’
using eqfE(1)[OF insts[unfolded len-ds, OF i[unfolded len-ts]]]
by (metis concat-sss i’ len-ds len-sss map-nth nth-map)
qed
note ts = this

show fill-holes ¢ ts = fill-holes (fill-holes-mctxt ¢ ds) (concat sss)
unfolding fill-holes-mctxt-fill-holes|OF len-ds nh] ts ..
qed

lemma poss-mctxzt-fill-holes-mctxt:
assumes p € poss-mctzt C
shows p € poss-mctat (fill-holes-mctzt C Cs)
using assms
proof (induct p arbitrary: C Cs)
case (Cons a p C Cs)
thus ?case by (cases C, auto)
next
case (Nil C Cs)
thus Zcase by (cases C, auto)
qed

fun compose-mctat :: ('f, 'v) metet = nat = ('f, 'v) metat = ('f, 'v) metat
where
compose-mctzt C i Ci =

fill-holes-mctxt C [(if i = j then Ci else MHole). j < [0 ..< num-holes C]]
lemma funas-mctat-compose-metat [simpl:

assumes i < num-holes C
shows funas-mctzt (compose-mctzt C i D) = funas-mctzt C U funas-mctzt D
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proof —
let ?Ds = [(if ¢ = j then D else MHole). j < [0 ..< num-holes C]]
have num-holes C = length ?Ds by simp
then show ?thesis using assms by (auto split: if-splits)

qed

lemma compose-mctzt-sound:
assumes s: s =¢ (C, bef Q si # aft)
and si: st =5 (C4, ts)
and i: 7 = length bef
shows s =; (compose-mctzt C i Ci, bef Q ts Q aft)
proof —
let ?Cs = [ if i = j then Ci else MHole . j < [0..<num-holes C]]
let ?ts = bef Q si # aft
let %sss = [ [b]. b« bef ] @Q (ts # [ [a]. a < aft])

have
[-Cs : length ?Cs = num-holes C' and
l-ts : length ?ts = num-holes C and
l-sss : length ?sss = num-holes C
unfolding length-append length-map list.size(4) using eqfE(2)[OF s] by auto

have i-le-nh: i < num-holes C unfolding i eqfE(2)[OF s| length-append by
(auto iff: trans-less-add1)
have concat-sss: concat ?sss = bef Q ts Q aft by auto

{
fix j
assume j: j < i
then have j": j < length [0..<num-holes C] using i-le-nh length-upt by auto
have ?ssslj = [bef!j] by (metis append-Cons-nth-left i j length-map nth-map)
moreover have ?ts!j = bef!j by (metis append-Cons-nth-left i j)
moreover from nth-map[OF j'| j' j have ¢Cslj = MHole by force
ultimately have ?tslj =5 (?Cslj, ?sss!j) using eqfl by auto

} note j-le-i = this

from i-le-nh have ?Cs!i = Ci by auto

moreover from i-le-nh have ?sss!i = ts by (metis i length-map nth-append-length)
moreover have ?ts!i = si using nth-append-length i by auto

ultimately have j-eg-i: ?tsli =; (?Cs!4,?sssli) using si by auto

{
fix j
assume j: 7 > 7 and j": j < num-holes C
then have j'": j < length [0..<num-holes C| by auto
have j': (j — i) — 1 < length aft using
J'lunfolded eqfE(2)[OF s] length-append|of bef] list.size(4)] j
unfolding i by auto
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from nth-append[of [ [b]. b < bef | - 4, unfolded length-map[of - bef] i[symmetric]]

have ?ssslj = (ts # [ [a]. a < aft]) ! (j — ©) using j by auto

moreover have ... = [ [a]. a < aft] ! ((j — ©) — 1) using nth-Cons-pos j by
stmp
moreover have ... = [aft | ((j — ©) — 1)] using j'" length-map nth-map by
auto

ultimately have sssj: ?ssslj = [aft | ((j — {) — 1)] by auto
have Csj: ?Cslj = MHole using nth-map[OF j"]| "' j by force

have ?tslj = (si # aft) ! (j — i) unfolding nth-append|of bef] i[symmetric]|
using j by simp

moreover have ... =

aft ! ((j — ©) — 1) by (metis j neq0-conv nth-Cons’
zero-less-diff)

ultimately have ¢tslj = aft ! ((j — i) — 1) by auto

then have ?tslj =5 (?Cslj, ?sss!j) using sssj Csj by auto
} note j-gr-i = this

from j-le-i j-eq-i j-gr-i have A j. j < length ?Cs = 2tslj =; (?Cslj, ?ssslj)
using [-Cs linorder-neqE-nat by metis

from fill-holes-mctzt-sound[OF 1-Cs l-sss l-ts this, unfolded concat-sss, folded
compose-mctrt. simps]

show ?thesis unfolding eqfE(1)[OF s] by simp
qged

fun mctzt-fill-partially-metzts = ('f, 'v) term list = ('f, 'v) term list = ('f, 'v)
mctat list

where
mctzt-fill-partially-mctzts [| ts = map metat-of-term ts |
mctat-fill-partially-mctzts (s # ss) (t # ts) =
(if s = t then (MHole # mctzt-fill-partially-mctzts ss ts)
else (mctxt-of-term t # mctat-fill-partially-mctzts (s # ss) ts))

fun
mctzt-fill-partially-fills ::
("f, 'v) term list = ('f, 'v) term list = ('f, 'v) term list list
where
metzt-fill-partially-fills || ts = map (const []) ts |
metzt-fill-partially-fills (s # ss) (t # ts) =
(if s = t then ([s] # mectat-fill-partially-fills ss ts)
else ([| # mctat-fill-partially-fills (s # ss) ts))

lemma mctzt-fill-partially-mctzts-length [simp]:
assumes subseq ss ts

shows length (mctat-fill-partially-mctats ss ts) = length ts
using assms by (induct rule: subseg-induct2, auto)
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lemma mctzt-fill-partially-fills-length [simp]:
assumes subseq ss ts
shows length (mctxt-fill-partially-fills ss ts) = length ts
using assms by (induct rule: subseg-induct2, auto)

lemma mctxt-fill-partially-numholes:
assumes subseq ss ts
shows sum-list [num-holes ci . c¢i + mctat-fill-partially-mctzts ss ts| = length ss
proof (induct ss ts rule: subseg-induct2, goal-cases)
case (3 s ss ts)
have Is-one: A\ as. sum-list (1 # as) = sum-list as + Suc 0
by (metis One-nat-def Suc-eq-plusl Suc-eq-plusi-left sum-list-simps(2))
from & show ?case
unfolding mctzt-fill-partially-mctxts.simps list.size
by (metis (full-types) One-nat-def Suc-eq-plust ls-one list.map(2) num-holes.simps(2))
next
case (4 s ss t ts)
have Is-zero: N\ as. sum-list (0 # as) = sum-list as by (metis sum-list-simps(2)
monoid-add-class.add.left-neutral)
have else:
metat-fill-partially-mctzts (s # ss) (t # ts) = mctzt-of-term t # mctzt-fill-partially-metats
(s # ss) ts
using 4 (1) by auto
show ?Zcase
unfolding else list.map(2) num-holes-mctat-of-term ls-zero 4(5) ..
qed (auto iff: assms)

lemma mctzt-fill-partially-sound:

assumes sl: subseq ss ts

shows A i. i < length ts = tsli =; (mctat-fill-partially-mctats ss ts ! i, mc-
txt-fill-partially-fills ss ts ! ©)
proof (rule eqfI, goal-cases)

let Zzipped= zip (mctat-fill-partially-mctats ss ts) (mctzt-fill-partially-fills ss ts)

have [: length ?zipped = length ts
unfolding length-zip mctat-fill-partially-mctats-length| OF sl mctat-fill-partially-fills-length| OF
sl] by auto

have fh: ts = map (A (ci,tsi) . fill-holes ci tsi) ?zipped
proof (induct ss ts rule: subseg-induct2, goal-cases)
case (2 ts) then show ?case
by (induct ts, insert mctzt-of-term-fill-holes, auto)
qed (insert sl, auto)

have nh: list-all (X (ci,tsi) . num-holes ci = length tsi) ?zipped
proof (induct ss ts rule: subseg-induct2, goal-cases)
case (2 ts) then show ?case
by (induct ts, insert num-holes-mctzt-of-term, auto)
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qed (insert sl, auto)

{
fix ¢

assume i < length ts
then have
il: i < length (mctzt-fill-partially-mctats ss ts) and
i2: 1 < length (mctzt-fill-partially-fills ss ts)
unfolding mctat-fill-partially-mctats-length| OF sl| mctat-fill-partially-fills-length[ OF
sl] by auto
} note i = this

case 1
then show ?case using fh nth-zip[OF i(1) i(2)]
by (metis (lifting, no-types) 1 list-update-id list-update-same-conv map-update
split-conw)
case 2 then show ?case using nhlunfolded list-all-length] nth-zip[OF i(1) i(2)]
by (auto simp: i(1) i(2))
qed

lemma mctzt-fill-partially:
assumes ss: subseq ss ts
and t: t =¢ (c,ts)
shows 3 d. t =5 (d,ss)
proof —
let ?ds = mctzt-fill-partially-mctats ss ts
let ?sss = mctat-fill-partially-fills ss ts

have fill-holes ¢ ts =5 (fill-holes-mctzt ¢ ?ds, concat ?sss)
using
fill-holes-mctzt-sound eqfE(2)[OF t,symmetric] mctzt-fill-partially-sound|OF
s8]
mctzt-fill-partially-mctzts-length| OF ss| mctxt-fill-partially-fills-length| OF ss]
by metis
also have concat ?sss = ss by (induct ss ts rule: subseg-induct2, insert ss, auto)
ultimately show ?thesis by (metis eqfE(1) t)
qed

lemma fill-holes-mctzt-map-mctat-of-term-conv [simpl:
assumes num-holes C = length ts
shows fill-holes-mctazt C' (map mctat-of-term ts) = mctat-of-term (fill-holes C'ts)
using assms
by (induct C ts rule: fill-holes-induct) (auto)

lemma fill-holes-mctzt-of-ctat [simp:
fill-holes (mctzt-of-ctat C) [t] = C(t)

proof —
have C(t) =; (mctzt-of-ctat C, [t]) by (metis mctzt-of-ctat)
from eqfE [OF this| show ?thesis by simp
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qed

definition
compose-cap-till P t i C =
fill-holes-mctxt (cap-till P t) (map mctat-of-term (take i (uncap-till P t)) Q
C # map mctat-of-term (drop (Suc ) (uncap-till P t)))

abbreviation compose-cap-till-funas F = compose-cap-till (if-Fun-in-set F')

lemma fill-holes-compose-cap-till:
assumes i < num-holes (cap-till P s) and num-holes C = length ts
shows fill-holes (compose-cap-till P s i C) ts =
fill-holes (cap-till P s) (take i (uncap-till P s) @Q fill-holes C ts # drop (Suc i)
(uncap-till P s))
(is - = fill-holes - ?ss)
proof —
have fill-holes (cap-till P s) %ss =g
(fill-holes-mctxt (cap-till P s) (map mctzt-of-term (take ¢ (uncap-till P s)) @
C # map mctzt-of-term (drop (Suc i) (uncap-till P s))),
concat (map (A-. []) (take i (uncap-till P s)) Q ts #
map (A-. []) (drop (Suc i) (uncap-till P s))))
(is - =y (fill-holes-mctat - ?ts, concat ?us))
proof (rule fill-holes-mctxt-sound)
show length ?ss = num-holes (cap-till P s)
using assms by simp
next
show length ?ts = num-holes (cap-till P s)
using assms by simp
next
show length ?us = num-holes (cap-till P s)
using assms by simp
next
fix j
assume j < length ?ts
with assms have j: j < length (uncap-till P s) by simp
show %ss ! j=; (%s!j, %us! j)
using assms and j by (cases j = i) (auto simp: nth-append)
qed
note x = eqfE(1) [OF this)
show ?thesis by (simp add: compose-cap-till-def *)
qed

lemma in-uncap-till-funas:
assumes root: root u = Some fn fn € F
and t = C(u)
shows 3¢ < length (uncap-till-funas F t). 3 D. uncap-till-funas F t ! i = D(u) A
mctzt-of-ctrt C = compose-cap-till-funas F t i (metat-of-ctat D)
using <t = C(u)»
proof (induct t arbitrary: C)
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case (Var z)
then show ?case using root by (cases C) (auto simp: wf-trs-def)
next
case (Fun f ts)
define ¢ where [simp]: t = Fun f ts
show Zcase
proof (cases (f, length ts) € F)
case True
then show ?thesis using Fun.prems by (auto simp: compose-cap-till-def)
next
case Fulse
show ?thesis
proof (cases C)
case Hole
then show ?thesis using Fun.prems and False and root by auto
next
case (More - ss; D -)
moreover define j where j = length ss;
ultimately have j: j < length ts ts ! j = D{(u)
and C: C = More f (take j ts) D (drop (Suc j) ts)
using Fun.prems by (auto)
then have D(u) € set ts by (auto simp: in-set-conv-nth)
then obtain ¢ and FE
where i: i < length (uncap-till-funas F (D(u))) uncap-till-funas F' (D{u)) !
i = E{u)
and D: mctat-of-ctat D = compose-cap-till-funas F (D{u)) i (mctzt-of-ctxt
B)
using Fun by blast
obtain k where k: take k (uncap-till-funas F t) =
concat (map (uncap-till-funas F) (take j ts)) Q take i (uncap-till-funas F
(D(w))
k < length (uncap-till-funas F t) uncap-till-funas F t | k = E{u)
drop (Suc k) ((uncap-till-funas F) t) = drop (Suc i) ((uncap-till-funas F')
(D(u))) @ concat (map (uncap-till-funas F') (drop (Suc j) ts))
using Fualse and i and j and take-nth-drop-concat [of j map (uncap-till-funas
F) ts (uncap-till-funas F) (D{w)) i E{u)]
by (auto simp: take-map drop-map)
moreover have mctat-of-ctat C' = compose-cap-till-funas F t k (mctat-of-ctat
B)
proof —
have x: compose-cap-till-funas F t k (mctzt-of-ctzt E) =
fill-holes-mctxt (MFun f (map (cap-till-funas F) ts)) (concat (
map (map mctxt-of-term o uncap-till-funas F) (take j ts) Q
(map mctat-of-term (take i (uncap-till-funas F D{u))) @
mctzt-of-ctat E #
map mctzt-of-term (drop (Suc i) (uncap-till-funas F D(u)))) #
map (map mctzt-of-term o uncap-till-funas F) (drop (Suc j) ts)))
(is - = fill-holes-mctxt - (concat ?ss))
using Fulse and k
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by (simp del: fill-holes-mctat.simps add: compose-cap-till-def map-concat)
also have ... = MFun f (map mctat-of-term (take j ts) @ mectat-of-ctat D

map mctzt-of-term (drop (Suc j) ts)) (is - = MFun f ?ts)
proof (rule fill-holes-mctxt-MFun)
show length (map (cap-till-funas F) ts) = length ?ts using j by simp
next
show length ?ss = length ?ts by simp
next
fix n
assume n < length %ts
then have n: n < length ts using j by simp
show num-holes (map (cap-till-funas F) ts ! n) = length (?ss! n) A
fill-holes-mctxt (map (cap-till-funas F) ts ! n) (?ss!n) = %ts ! n
proof (cases n = j)
case Fulse
then have *: %ss ! n = map mctat-of-term (uncap-till-funas F (ts ! n))
?ts | n = mctazt-of-term (ts ! n)
using n and j by (auto simp: nth-append min-def)
have num-holes (map (cap-till-funas F) ts ! n) = length (?ss ! n)
using n by (simp add: x )
moreover have fill-holes-mctzt (map (cap-till-funas F) ts! n) (9ss ! n)
=%s!ln
using n by (auto simp: * )
ultimately show ?thesis by blast
next
case True
then have *: %ss ! n =
map mctat-of-term (take ¢ (uncap-till-funas F D{u))) @Q mctat-of-ctzt E

map mctzt-of-term (drop (Suc i) (uncap-till-funas F D{u)))
?ts | n = mctat-of-ctxt D
using n and j by (auto simp: nth-append)
have fill-holes-mctat (map (cap-till-funas F) ts ! n) (9ss!n) = %ts ! n
unfolding * by (simp add: D compose-cap-till-def True j)
moreover have num-holes (map (cap-till-funas F) ts! n) = length (?ss
I'n)
unfolding * using ¢ by (simp add: j True)
ultimately show ?thesis by blast

qed

qed
finally show ?thesis by (simp add: C)

qed

ultimately show ?thesis unfolding ¢-def by blast

qed
qed
qed

lemma uncap-till-funas-fill-holes-cancel [simp]:
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assumes num-holes C = length ts and ground-mctat C
and funas-mctzt C C — F
shows uncap-till-funas F (fill-holes C ts) = concat (map (uncap-till-funas F) ts)
using assms
proof (induct C arbitrary: ts)
case MHole
then show ?case by (cases ts) simp-all
next
case (MFun f Cs)
let “ts = partition-holes ts Cs
let %us = partition-holes (map (uncap-till-funas F) ts) Cs
have x: fill-holes (MFun f Cs) ts =
Fun f (map (Ai. fill-holes (Cs ! i) (?ts ! 0)) [0 ..< length Cs))
unfolding partition-holes-fill-holes-conv ..
have Vi < length Cs. uncap-till-funas F (fill-holes (Cs ! ©) (?ts | i)) = concat
(Pus ! 1)
proof (intro alll impl)
fix i
assume i < length Cs
then have Cs! ¢ € set Cs by simp
from MFun.hyps [OF this, of ?ts | i| and MFun.prems and <i < length Cs»
show uncap-till-funas F (fill-holes (Cs ! i) (2ts ! ©)) = concat (Pus ! i)
by (auto iff: UN-subset-iff)
qed
then have xx: map (uncap-till-funas F o (\i. fill-holes (Cs ! i) (%ts ! i)))
[0..<length Cs] =
map (concat o (Ni. (Zus ! 7))) [0 ..<length Cs] by simp
have sxx: sum-list (map num-holes Cs) = length (map (uncap-till-funas F) ts)
using MFun.prems by simp
show Zcase
using MFun.prems
apply (simp add: = xx del: fill-holes.simps)
by (auto simp: o-def map-upt-len-same-len-conv [OF length-partition-holes])
qed simp

lemma uncap-till-funas-fill-holes-cap-till-funas [simp):
assumes num-holes (cap-till-funas F' s) = length ts
shows uncap-till-funas F (fill-holes (cap-till-funas F s) ts) =
concat (map (uncap-till-funas F) ts)
by (rule uncap-till-funas-fill-holes-cancel [OF assms ground-cap-till-funas, of FY)
auto

lemma Ball-atLeast0Less Than-partition-holes-conv [simp]:
(Vi€ {0 ..< length Cs}. Vx € set (partition-holes xs Cs ! 7). P z) =
(Vz € U (set (map set (partition-holes zs Cs))). P x)
using Ball-atLeast0Less Than-partition-by-conv [of map num-holes Cs xs| by simp

lemma ground-fill-holes-mctzt [simp):
num-holes C = length Ds —>
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ground-mctat (fill-holes-mctaxt C' Ds) <— ground-mctzt C N (VD € set Ds.
ground-mctat D)
proof (induct C arbitrary: Ds)
case MHole
then show ?case by (cases Ds) simp-all
next
case (MFun f Cs)
then have *: (Vie{0..<length Cs}.
ground-mctzt (fill-holes-mctat (Cs ! i) (partition-holes Ds Cs | 7))) =
(Vie{0..<length Cs}.
ground-metzt (Cs ! i) A (¥ a€set (partition-holes Ds Cs | 7). ground-mctat a))
and xx: sum-list (map num-holes Cs) = length Ds
by simp-all
show Zcase
unfolding partition-holes-fill-holes-mctzt-conv
by (simp add: x ball-conj-distrib Ball-set-partition-by [OF *x))
qed simp

lemma concat-map-uncap-till-funas-map-subst-apply-uncap-till-funas [simpl:
concat (map (uncap-till-funas F) (map (As. s - o) (uncap-till-funas F t))) =
uncap-till-funas F (t - o)
proof (induct t)
case (Fun f ts)
then have x: map (uncap-till-funas F o (A\t. t - 0)) ts =
map concat (map (map (uncap-till-funas F) o map (As. s - o) o uncap-till-funas
F) ts) by simp
show ?Zcase
by (simp add: * map-concat concat-map-concat [symmetricl)
qed simp

lemma concat-uncap-till-subst-conv:
concat (map (Ni. uncap-till-funas F ((uncap-till-funas F t 1 %) - o)) [0 ..< length
(uncap-till-funas F t)]) =
uncap-till-funas F (t - o)
proof —
have concat (map (uncap-till-funas F) (map (\i.
(uncap-till-funas F t ! ©) - o) [0 ..< length (uncap-till-funas F t)])) = un-
cap-till-funas F (t - o)
unfolding map-upt-len-conv [of As. s - o uncap-till-funas F t]
unfolding concat-map-uncap-till-funas-map-subst-apply-uncap-till-funas ..
then show ?thesis by (simp add: o-def)
qged

lemma the-root-uncap-till-funas:
is-Fun t = the (root t) € F = uncap-till-funas F t = [t]
by (cases t) simp-all

lemma funas-cap-till-subset:
funas-mctxt (cap-till P t) C funas-term t
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by (induct t) auto

lemma funas-uncap-till-subset:

s € set (uncap-till P t) = funas-term s C funas-term ¢
proof (induct t arbitrary: s)

case (Fun fts)

then show ?case by (cases P (Fun f ts)) auto
qed simp

lemma ground-mctzt-subst-apply-context [simp:
ground-mctzt C = C -mc o = C
by (induct C) (simp-all add: map-idI)

lemma vars-term-fill-holes [simp]:
num-holes C = length ts = ground-mctzt C =
vars-term (fill-holes C'ts) = | (vars-term * set ts)
proof (induct C arbitrary: ts)
case MHole
then show ?case by (cases ts) simp-all
next
case (MFun f Cs)
then have *: length (partition-holes ts Cs) = length Cs by simp
let 2f = Az. Jy € set z. vars-term y
show ?Zcase
using MFun
unfolding partition-holes-fill-holes-conv
by (simp add: UN-upt-len-conv [OF %, of ?f] UN-set-partition-by)
qed simp

6.1.3 Semilattice Structures

instantiation mctat :: (type, type) inf
begin

fun inf-mectat :: (‘a, 'b) metat = (‘a, 'b) metat = (‘a, 'b) mctat
where
MHole M D = MHole |
C N MHole = MHole |
MVar x 1 MVar y = (if © = y then MVar x else MHole) |
MFun f Cs 1 MFun g Ds =
(if f = g A length Cs = length Ds then MFun f (map (case-prod (M)) (zip Cs
Ds))
else MHole) |
C' N D = MHole

instance ..

end
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lemma inf-mctat-idem [simp]:
fixes C = ('f, 'v) metat
shows C M C =C
by (induct C) (auto simp: zip-same-conv-map intro: map-idl)

lemma inf-mctzt-MHole2 [simp]:
C' M MHole = MHole
by (induct C) simp-all

lemma inf-mctzt-comm [ac-simps]:

(C::('f,v) metat)y N D=DnNC

by (induct C D rule: inf-mctzt.induct) (fastforce simp: in-set-conv-nth introl:
nth-equalityl )+

lemma inf-mctat-assoc [ac-simps:

fixes C :: ('f, 'v) mctat

shows CMDMNE=CN(DNE)
proof (induction C' D arbitrary: E rule: inf-mctzt.induct)

case (I D E)

then show ?case by (cases E, auto)
next

case (2-1 v E)

then show ?case by (cases E, auto)
next

case (2-2 v va E)

then show ?Zcase by (cases E, auto)
next

case (3zy E)

then show ?case by (cases E, auto)
next

case (4 f Cs g Ds E)

then show Zcase

by (cases E; fastforce simp: in-set-conv-nth introl: nth-equalityl)

next

case (-1 v va vb E)

then show ?case by (cases E, auto)
next

case (5-2 v va vb E)

then show ?case by (cases E, auto)
qed

instantiation mctzt :: (type, type) order
begin

definition (C :: (‘a, 'b) mctxt)

<
definition (C :: (‘a, 'b) mctat) <

D+«—CnD=2C
D+«— C<DAN-DLC(C

instance
by (standard, simp-all add: less-eq-mctat-def less-mctzt-def ac-simps, metis inf-mctzt-assoc)
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end

inductive less-eq-mctzt’ :: ('f, 'v) mctzt = ('f,"v) metat = bool where
less-eq-mctxt’ MHole u

| less-eqg-mctxt’ (MVar v) (MVar v)

| length cs = length ds = (\i. i < length cs = less-eg-mctzt’ (¢s! i) (ds! 7))

= less-eq-mctat’ (MFun f c¢s) (MFun f ds)

lemma less-eq-mctzt-prime: C < D < less-eq-mctzt’ C D
proof
assume less-eq-mctzt’ C D then show C < D
by (induct C D rule: less-eq-mctzt’.induct) (auto simp: less-eq-mctzt-def intro:
nth-equalityl )
next
assume C' < D then show less-eqg-mctxt’ C' D unfolding less-eq-mctzi-def
by (induct C D rule: inf-mctzt.induct)
(auto split: if-splits simp: set-zip intro!: less-eq-mctzt’.intros nth-equalityl elim!:
nth-equalityE, metis)
qed

lemmas less-eq-metat-induct = less-eq-metat’ . induct|folded less-eq-mctzt-prime, con-
sumes 1]
lemmas less-eq-mctat-intros = less-eq-mctat’.intros[folded less-eq-mctzt-prime]

lemma less-eq-mctrti2:

C = MHole = C < MHole

C = MHolev C = MVar v =— C < MVar v

C = MHole vV C = MFun f cs A length cs = length ds A (Vi. i < length cs —
csli<ds!i)= C < MFun f ds

unfolding less-eq-mctzt-prime by (cases C) (auto intro: less-eq-mctat’.intros)

lemma less-eq-mctxt-MHoleE2:
assumes C < MHole
obtains (MHole) C = MHole
using assms unfolding less-eq-mctzt-prime by (cases C, auto)

lemma less-eq-mctzt-MVarE2:
assumes C < MVar v
obtains (MHole) C = MHole | (MVar) C = MVar v
using assms unfolding less-eg-mctzt-prime by (cases C) auto

lemma less-eq-mctrt-MFunFE2:

assumes C < MFun f ds

obtains (MHole) C = MHole

| (MFun) cs where C' = MFun f cs length c¢s = length ds \i. i < length c¢s =
csli<ds!i

using assms unfolding less-eq-mctzt-prime by (cases C) auto
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lemmas less-eq-mctxtE2 = less-eq-mctxt-MHoleE2 less-eq-mctzt-M VarE2 less-eq-mctat-MFunE2

lemma less-eq-mctxtil:

MHole < D

D= MVar v= MVarv <D

D = MPFun f ds = length cs = length ds = (\i. © < length ¢s => ¢s 1 i < ds
14) = MFun fcs < D

by (cases D) (auto intro: less-eq-mctatl2)

lemma less-eq-mctzt-MVarE1:
assumes MVar v < D
obtains (MVar) D = MVar v
using assms by (cases D) (auto elim: less-eq-mctrtE2)

lemma less-eq-mctzt-MFunFE1:

assumes MFun fecs < D

obtains (MFun) ds where D = MFun f ds length cs = length ds \i. i < length
cs=—=cs!i<ds!i

using assms by (cases D) (auto elim: less-eq-mctstE2)

lemmas less-eq-mctrtE1 = less-eq-mctxt-MVarE1 less-eq-mctzt-MFunE1

instance mctzt :: (type, type) semilattice-inf
apply (intro-classes)
by (auto simp: less-eq-mctat-def inf-mctat-assoc [symmetric])
(metis inf-mctxt-comm inf-mctat-assoc inf-metat-idem)+

fun inf-mctat-args :: ('f, "v) metat = (’f, 'v) metat = (’f, 'v) metat list
where
inf-mctxt-args MHole D = [MHole] |
inf-mctzt-args C MHole = [C] |
inf-mctzt-args (MVar z) (MVar y) = (if x = y then || else [MVar z]) |
inf-mctzt-args (MFun f Cs) (MFun g Ds) =
(if f = g A length Cs = length Ds then concat (map (case-prod inf-mctat-args)
(zip Cs Ds))
else [MFun f Cs]) |
inf-mctzt-args C D = [C]

lemma inf-mctzt-args-MHole2 [simp]:
inf-metat-args C MHole = [C)
by (cases C) simp-all

lemma fill-holes-mctzt-replicate-MHole [simp]:
fill-holes-mctzt C (replicate (num-holes C') MHole) = C
proof (induct C)
case (MFun f Cs)
{ fix { assume ¢ < length Cs
then have partition-holes (replicate (sum-list (map num-holes Cs)) MHole) Cs
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li=
replicate (num-holes (Cs ! i)) MHole
using partition-by-nth-nth[of map num-holes Cs replicate (sum-list (map
num-holes Cs)) MHole)
by (auto intro!: nth-equalityl)
} note x = this
show ?case using MFun[OF nth-mem] by (auto simp: * intro!: nth-equalityl)
qed auto

lemma num-holes-inf-mctxt:
num-holes (C M D) = length (inf-mctxt-args C D)
by (induct C D rule: inf-mctzt.induct)
(auto simp: in-set-zip length-concat intro: arg-cong [of - - sum-list])

lemma length-inf-mctxt-args:
length (inf-mctrt-args D C) = length (inf-mctat-args C D)
by (metis inf.commute num-holes-inf-mctxt)

lemma inf-mctzt-args-same [simp]:
inf-mctat-args C' C = replicate (num-holes C)) MHole
proof (induct C)
case (MFun f Cs)
have x: AC. num-holes C = length (inf-mctzt-args C C)
using num-holes-inf-mctzt [of C C for C] by auto
let ?zs = map (case-prod inf-mctat-args) (zip Cs Cs)
have Vi < length Cs.
inf-mctzt-args (Cs ! i) (Cs ! i) = replicate (num-holes (Cs ! ©)) MHole using
MFun by auto
then have Vi < length %xs. Vj < length (%zs ! 4). %zs! i ! j = MHole by auto
then have Vi < length (concat ?xs). concat ?xs ! i = MHole by (metis nth-concat-two-lists)

then show Zcase by (auto simp: x introl: nth-equalityl)
qed simp-all

lemma inf-mctat-inf-mctzt-args:
fill-holes-mctzt (C M D) (inf-mctzt-args C D) = C
proof (induct C D rule: inf-mctat.induct)
case (4 f Cs g Ds)
then show ?case
proof (cases f = g A length Cs = length Ds)
case True
with 4 have Vi < length Cs.
fill-holes-mctat (Cs ! i M Ds ! i) (inf-mctat-args (Cs ! i) (Ds! i) = Cs!i
by (force simp: set-zip)
moreover have partition-holes (concat (map (case-prod inf-mctat-args) (zip Cs
Ds))
(map (case-prod (M)) (zip Cs Ds)) = map (case-prod inf-mctat-args) (zip Cs
Ds)
by (rule partition-by-concat-id) (simp-all add: num-holes-inf-mctxt)
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ultimately show ¢thesis
using fill-holes-mctzt.simps [simp del)]
by (auto simp: partition-holes-fill-holes-mctzt-conv intro!: nth-equalityl)
qed auto
qed auto

lemma inf-mctxt-inf-mctat-args2:
fill-holes-mctzt (C M D) (inf-mctzt-args D C) = D
unfolding inf-mctzt-comm [of C' D] by (rule inf-mctzt-inf-mctat-args)

instantiation mctzt :: (type, type) sup
begin

fun sup-mctzt = (“a, 'b) mctat = (‘a, 'b) mctat = (‘a, 'b) metat
where
MHole U D = D |
C U MHole = C |
MVar z U MVar y = (if x = y then MVar x else undefined) |
MFun f Cs U MFun g Ds =
(if f = g A length Cs = length Ds then MFun f (map (case-prod (U)) (zip Cs
Ds))
else undefined) |
(C :: ("a, 'b) mctat) U D = undefined

instance ..
end

lemma sup-mctat-idem [simp]:
fixes C = ('f, 'v) metat
shows C U C=C
by (induct C) (auto simp: zip-same-conv-map intro: map-idl)

lemma sup-mctzt-MHole [simp]: C U MHole = C
by (induct C) simp-all

lemma sup-mctrt-comm [ac-simps]:

fixes C :: ('f, 'v) mctat

shows CUD=DUC

by (induct C D rule: sup-mctat.induct) (fastforce simp: in-set-conv-nth introl:
nth-equalityl )+

(L) is defined on compatible multihole-contexts. Note that compatibility is
not transitive.

inductive-set comp-mctzt :: (('a, 'b) mctat x (‘a, 'b) mctxt) set
where
MHolel1: (MHole, D) € comp-mctat |
MHole2: (C, MHole) € comp-mctat |
MVar: ¢ = y = (MVar z, MVar y) € comp-mctat |
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MFun: f = g = length Cs = length Ds = Vi < length Ds. (Cs ! i, Ds ! 1)
€ comp-mctat =
(MFun f Cs, MFun g Ds) € comp-mctxt

lemma comp-mctxt-refi:
(C, C) € comp-mctat
by (induct C) (auto intro: comp-mctzt.intros)

lemma comp-mctrt-sym:
assumes (C, D) € comp-mctat
shows (D, C) € comp-mctat
using assms by (induct) (auto intro: comp-mctzt.intros)

lemma sup-mctzt-assoc [ac-simps]:

assumes (C, D) € comp-mctat and (D, E) € comp-mctzt

shows CUDUFE=CU(DUE)

using assms by (induct C D arbitrary: E) (auto elim!: comp-mctzt.cases intro!l:
nth-equalityl )

No instantiation to semilattice-sup possible, since (L) is only partially de-
fined on terms (e.g., it is not associative in general).

interpretation mctat-order-bot: order-bot MHole (<) (<)
by (standard) (simp add: less-eq-mctxt-def)

lemma sup-mctzt-gel [simpl:
assumes (C, D) € comp-mctat
shows C < C U D
using assms by (induct C D) (auto simp: less-eqg-mctxt-def intro: nth-equalityl)

lemma sup-mctzt-ge2 [simpl:
assumes (C, D) € comp-mctat
shows D < C U D
using assms by (induct) (auto simp: less-eq-mctxt-def intro: nth-equalityl)

lemma sup-mctxt-least:
assumes (D, E) € comp-mctzt
and D < Cand £ < C
shows D U F < (C
using assms
proof (induct arbitrary: C)
case (MFun f g Cs Ds)
then show ?Zcase
apply (auto simp: less-eq-mctzt-def elim!: inf-mctzt. elims intro!: nth-equalityl)[1]
apply (metis (erased, lifting) length-map nth-map nth-zip split-conv)
by (metis mctat.distinet(5))+
qed auto

lemma inf-mctxt-args-MHole:
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assumes (C, D) € comp-mctzt and ¢ < length (inf-mctat-args C D)
shows inf-mctzt-args C D! i = MHole V inf-mctat-args D C ! i = MHole
using assms
proof (induct C D arbitrary: 1)
case (MHole2 C)
then show ?case by (cases C) simp-all
next
case (MFun f g Cs Ds)
then have [simp]: f = g length Ds = length Cs by auto
let ?zs = map (case-prod inf-mctat-args) (zip Cs Ds)
let ?ys = map (case-prod inf-mctzt-args) (zip Ds Cs)
obtain m and n where x: i = sum-list (map length (take m %xs)) + n
m < length Cs n < length (inf-mctat-args (Cs ! m) (Ds ! m))
and inf-mctat-args (MFun f Cs) (MFun g Ds) ! i = inf-mctzt-args (Cs ! m) (Ds
Im)!n
using MFun.prems by (auto dest: less-length-concat)
moreover have concat ?ys | i = (map (case-prod inf-mctzt-args) (zip Ds Cs)) !
m!n
by (rule concat-nth)
(insert *, auto intro: arg-cong [of - - sum-list]
simp: map-nth-eq-conv length-inf-mctzt-args)
ultimately show ?case using MFun(3) by simp
qged auto

lemma rsteps-mctat:
assumes s =; (C, ss) and ¢t =; (C, ts)
and Vi<length ss. (ss! i, ts! i) € (rstep R)*
shows (s, t) € (rstep R)*
proof —
have [simp]: length ss = length ts using assms by (auto dest!: eqfE)
have [simp]: t = fill-holes C ts using assms by (auto dest: eqfE)
have (s, fill-holes C ts) € (rstep R)*
using assms by (intro eqf-all-ctxt-closed-step [of UNIV - s C ss, THEN con-
junct1]) auto
then show ?thesis by simp
qed

fun sup-mctat-args :: ('f, 'v) metat = ('f, ') mctzt = ('f, 'v) metat list
where
sup-metat-args MHole D = [D] |
sup-mctzt-args C MHole = replicate (num-holes C') MHole |
sup-metxt-args (MVar x) (MVar y) = (if x = y then || else undefined) |
sup-mctxt-args (MFun f Cs) (MFun g Ds) =
(if f = g A length Cs = length Ds then concat (map (case-prod sup-mctzt-args)
(zip Cs Ds))
else undefined) |
sup-mctxt-args C D = undefined

lemma sup-mctzt-args-MHole2 [simp):
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sup-mctzt-args C MHole = replicate (num-holes C') MHole
by (cases C) simp-all

lemma num-holes-sup-mctxt-args:

assumes (C, D) € comp-mctat

shows num-holes C = length (sup-mctat-args C D)

using assms by (induct) (auto simp: length-concat intro!: arg-cong [of - - sum-list]
nth-equalityl )

lemma sup-mctxt-sup-mctrt-args:
assumes (C, D) € comp-mctxt
shows fill-holes-mctzt C' (sup-mctat-args C D) = C U D
using assms
proof (induct)
note fill-holes-mctat.simps [simp del]
case (MFun f g Cs Ds)
then show ?case
proof (cases f = g A length Cs = length Ds)
case True
with MFun have Vi < length Cs.
fill-holes-mctxt (Cs ! ©) (sup-mctzt-args (Cs ! i) (Ds!i)) = Cs! iU Ds!i
and x: Vi < length Cs. (Cs ! i, Ds ! i) € comp-mctzt by (force simp: set-zip)+
moreover have partition-holes (concat (map (case-prod sup-mctxt-args) (zip
Cs Ds)))
Cs = map (case-prod sup-mctzt-args) (zip Cs Ds)
using True and x by (intro partition-by-concat-id) (auto simp: num-holes-sup-mctat-args)
ultimately show #thesis
using * and True by (auto simp: partition-holes-fill-holes-mctxt-conv intro!:
nth-equalityl )
qed auto
qed auto

lemma sup-mctxt-args:
assumes (C, D) € comp-mctat
shows sup-mctat-args C D = inf-mctzt-args (C U D) C
using assms by (induct) (auto introl: arg-cong [of - - concat] nth-equalityl)

lemma term-for-mctzt:
fixes C :: ('f, 'v) mctat
obtains t and ts where t =; (C, ts)
proof —
obtain ts :: ('f, 'v) term list where num-holes C = length ts by (metis Ex-list-of-length)
then have fill-holes C'ts =; (C, ts) by blast
show ?thesis by (standard) fact
qed

lemma comp-mctxt-eqfE:

assumes (C, D) € comp-mctxt
obtains s and ss and ts where s =; (C, ss) and s =; (D, ts)
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proof (goal-cases)
case I
obtain v and us where v =; (C U D, us) by (metis term-for-mctat)
then have u: v = fill-holes (C' U D) us
and x: length us = num-holes (C' U D) by (auto dest: eqfFE)
define Cs Ds where Cs = sup-mctzt-args C D
and Ds = sup-mctzt-args D C
then have sup?: C U D = fill-holes-mctat C Cs and sup2: C U D = fill-holes-mctuzt
D Ds
using assms by (auto simp: sup-mctat-sup-mctrt-args comp-metat-sym ac-simps)
then have ul: u = fill-holes (fill-holes-mctzt C Cs) us
and u2: u = fill-holes (fill-holes-mctxt D Ds) us by (simp-all add: u)
define ss ts where ss = map (A\i. fill-holes (Cs | i) (partition-holes us Cs ! 1))
[0 ..< num-holes C]
and ts = map (Ai. fill-holes (Ds ! i) (partition-holes us Ds ! )) [0 ..< num-holes
)
have u = fill-holes C ss
using assms
by (simp add: * ul supl ss-def fill-holes-mctzt-fill-holes Cs-def num-holes-sup-mctat-args)
moreover have u = fill-holes D ts
using assms [THEN comp-mctat-sym)
by (simp add: * u2 sup2 ts-def fill-holes-mctxt-fill-holes Ds-def num-holes-sup-mctzt-args)
ultimately have v =; (C, ss) and u =y (D, ts) by (auto simp: ss-def ts-def)
from 1[OF this] show thesis .
qed

lemma egf-comp-mctzt:
assumes s =5 (C, ss) and s =; (D, ts)
shows (C, D) € comp-mctat
using assms
proof (induct s arbitrary: C D ss ts)
case (Var z C D)
then show ?case
by (cases C D rule: mctat.exhaust [case-product mctxt.exhaust))
(auto simp: eq-fill.simps intro: comp-mctat.intros)
next
case (Fun f ss C D us vs)
{ fix Cs and Ds
assume x: C = MFun f Cs D = MFun f Ds and #*x: length Cs = length Ds
have ?case
proof (unfold x, intro comp-mctzt. MFun [OF refl x| alll impl)
fix ¢
assume 7 < length Ds
then show (Cs ! i, Ds! i) € comp-mctat
using Fun by (auto simp: x xx elim!: eqf-MFunFE) (metis nth-mem)
qed }
with Fun.prems show ?Zcase
by (cases C D rule: mctat.exhaust [case-product mctxt.exhaust))
(auto simp: eq-fill.simps dest: map-eq-imp-length-eq intro: comp-mctxzt.intros)
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qed

lemma comp-mctzt-iff:
(C, D) € comp-mctat «— (Is ssts. s =¢ (C, ss) N s =5 (D, ts))
by (blast elim!: comp-mctat-eqfE intro: eqf-comp-mctzt)

lemma hole-poss-parallel-pos [simp]:
assumes p € hole-poss C and q € hole-poss C and p # ¢
shows parallel-pos p q
using assms by (induct C arbitrary: p q) (fastforce dest!: nth-mem)+

lemma eq-fill-induct [consumes 1, case-names MHole MVar MFun]:
assumes t = (C, ts)
and A\t. Pt MHole [t
and Az. P (Var z) (MVar z) |]
and Af ss Cs ts. [length Cs = length ss; sum-list (map num-holes Cs) = length
ts;
Vi < length ss. ss ! i =y (Cs ! 4, partition-holes ts Cs ! i) A
P (ss!14) (Cs! %) (partition-holes ts Cs | i)]
= P (Fun f ss) (MFun f Cs) ts
shows Pt Cts
using assms(1)
proof (induct t arbitrary: C ts)
case (Var z)
then show ?case
using assms(2, 3) by (cases C; cases ts) (auto elim: eq-fill.cases)
next
case (Fun f ss C ts)
{ assume C' = MHole and ts = [Fun f ss]
with Fun.hyps have ?case using assms(2) by auto }
moreover
{ fix Cs
assume C: C = MFun f Cs and sum-list (map num-holes Cs) = length ts
and length Cs = length ss
and Fun f ss = fill-holes (MFun f Cs) ts
moreover then have Vi < length ss. ss | i =5 (Cs ! i, partition-holes ts Cs !
i)
by (auto simp del: fill-holes.simps
simp: partition-holes-fill-holes-conv intro!: eq-fill.intros)
(metis (no-types, lifting) add.left-neutral length-map length-upt nth-map-upt)
moreover with Fun.hyps(1) have Vi < length ss.
P (ss!14) (Cs ! i) (partition-holes ts Cs | i) by auto
ultimately have ?case using assms(4) [of Cs ss ts f] by auto }
ultimately show ?case
using Fun.prems by (elim eq-fill.cases) (auto, cases C; cases ts, auto)
qed

lemma hole-poss-subset-poss:
assumes s =5 (C, ss)
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shows hole-poss C' C poss s
using assms by (induct rule: eq-fill-induct) auto

fun hole-num
where
hole-num [| MHole = 0 |
hole-num (i # q) (MFun f Cs) = sum-list (map num-holes (take i Cs)) +
hole-num ¢q (Cs ! 7)

lemma hole-poss-nth-subt-at:
assumes t =; (C, ts) and p € hole-poss C
shows hole-num p C < length ts A t |- p = ts | hole-num p C
using assms
proof (induct arbitrary: p rule: eg-fill-induct)
case (MFun f ss Cs ts)
let ?ts = partition-holes ts Cs
from MFun obtain i and ¢ where [simp]: p = i # ¢
and i < length ss and ¢ € hole-poss (Cs ! ©) by auto
with MFun.hyps have ss ! i =¢ (Cs !4, ?ts | q)
and j: hole-num q (Cs ! i) < length (?¢s ! i) (is 2§ < length -)
and x: ?ts ! ¢! hole-num q (Cs i) =ssli|-gq
by auto
let %k = sum-list (map length (take i %ts)) + %j
have i < length ?ts using «i < length ss» and MFun by auto
with partition-by-nth-nth-old [OF this j) and MFun and concat-nth-length [OF
this j]
have ?ts!i! ?2j = ts! %k and 2k < length ts by (auto)
moreover with x have ts ! 2k = Fun f ss |- p using «i < length ss) by simp
ultimately show ?case using MFun.hyps(2) by (auto simp: take-map [symmetric])
qed auto

lemma eqf-Fun-MFun:
assumes Fun f ss =¢ (MFun g Cs, ts)
shows g = f A length Cs = length ss A\ sum-list (map num-holes Cs) = length
ts A\
(Vi < length ss. ss ! i =¢ (Cs ! i, partition-holes ts Cs ! 7))
using assms by (induct Fun f ss MFun g Cs ts rule: eq-fill-induct) auto

lemma fill-holes-eq- Var-cases:
assumes num-holes C = length ts
and fill-holes C' ts = Var z
obtains C = MHole A ts = [Var z] | C = MVar z A ts = ||
using assms by (induct C; cases ts) auto

lemma num-holes-inf-mctxt-le:
assumes s =5 (C, ts) and s = (D, us)
shows num-holes (C M D) < num-holes C + num-holes D
using assms

proof (induct C D arbitrary: s ts us rule: inf-mctzt.induct)
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case (4 f Cs g Ds)
show ?Zcase
proof (cases f = g A length Cs = length Ds)
case Fualse
with / show ?thesis by (auto elim!: eq-fill.cases dest!: map-eq-imp-length-eq)
next
case True
then have [simp]: g = f length Ds = length Cs by simp-all
have IH: V(C, D) € set (zip Cs Ds). num-holes (C M D) < num-holes C +
num-holes D
proof
fix C' D assume *: (C, D) € set (zip Cs Ds)
then obtain i where i < length Cs and zip Cs Ds ! i = (C, D) by (auto
sitmp: in-set-zip)
with /.prems
have fill-holes (Cs ! i) (partition-holes ts Cs ! i) =y (C, partition-holes ts Cs

14)
and fill-holes (Cs ! ©) (partition-holes ts Cs ! i) =5 (D, partition-holes us
Ds ! i)
by (auto elim!: eq-fill.cases)
from 4.hyps [OF True + HOL.refl this]
show num-holes (C M D) < num-holes C + num-holes D .
qed
have num-holes (MFun f Cs M MFun g Ds) = sum-list (map (num-holes o
case-prod (M)) (zip Cs Ds))
using 4.prems by (auto elim!: eq-fill.cases dest!: map-eq-imp-length-eq)
moreover have num-holes (MFun f Cs) + num-holes (MFun g Ds) =
sum-list (map (A(C, D). num-holes C' + num-holes D) (zip Cs Ds))
using <length Ds = length Csy by (induct rule: list-induct2) simp-all
ultimately show ?thesis using IH by (auto introl: sum-list-mono)
qed
qed (auto elim!: eq-fill.cases)

lemma map-inf-mctxt-zip-mctat-of-term [simp):

map (A(z, y). x N y) (zip (map mctat-of-term ts) (map mctat-of-term ts)) = map
mctxt-of-term ts

by (induct ts) simp-all

lemma inf-mctat-ctat-apply-term [simp):
mctzt-of-term (C(t)) M mctat-of-ctat C = mctat-of-ctat C
mctzt-of-ctzt C' T mcetazt-of-term (C(t)) = mctzt-of-ctat C
by (induct C) simp-all

lemma inf-fill-holes-mctxt-MHoles:
num-holes C = length Cs = length Ds = length Cs —
Vi<length Cs. Cs! i = MHole V Ds ! i = MHole =
fill-holes-mctxt C Cs 1M fill-holes-mctxt C' Ds = C

proof (induct C arbitrary: Cs Ds)
case (MHole Cs Ds)
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then show ?case by (cases Cs; cases Ds; force)
next
case (MFun f Bs Cs Ds)
then show ?Zcase
unfolding partition-holes-fill-holes-mctzt-conv’
apply simp
apply (rule nth-equalityl)
by (auto simp: partition-by-nth-nth)
qed auto

lemma inf-fill-holes-mctzt-two-MHoles [simp]: num-holes C = 2 =
fill-holes-mctzt C [MHole, D] M fill-holes-mctzt C [E, MHole] = C
by (simp add: inf-fill-holes-mctzt-MHoles nth-Cons')

lemma two-subterms-cases:
assumes s = C(t) and s = D{u)
obtains (e¢) C = Dand t = u
| (nestedl) C' where C'# O and C = D o, C’
| (nested2) D’ where D' # 0 and D = C o, D’
| (parallell) E where num-holes E = 2
and mctat-of-ctat C = fill-holes-mctat E [MHole, mctxt-of-term u]
and mctat-of-ctzt D = fill-holes-mctat E [mctxt-of-term t, MHole]
| (parallel2) E where num-holes E = 2
and mectat-of-ctat C = fill-holes-mctat E [mctzt-of-term u, MHole]
and mectat-of-ctat D = fill-holes-mctzt E [MHole, mctxzt-of-term t]
proof (atomize-elim, insert assms, induct s arbitrary: C t D u)
case (Var z)
then show ?case by (cases C; cases D; cases t; cases u) auto
next
case (Fun f ss)
{ fix ts; C' tsy and us; D’ uss
assume [simp]: C = More ftsy C' tss D = More fusy D' usy
then have len: length (ts1 Q ts2) + 1 = length ss length (usy Q usy) + 1 =
length ss
using Fun.prems by (auto) (metis add-Suc-right length-Cons length-append
nat.inject)
{ assume length ts; = length us;
with Fun have [simp]: take (length tsi) ss = ts1 drop (Suc (length ts1)) ss =
tSQ
and [simp]: us; = take (length ts1) ss uss = drop (length tsy + 1) ss
and nth: C'(t) = ss ! length ts; and mem: C'(t) € set ss
and eq: C'(t) = D'(u) by auto
{ assume C'=D’'and t = u
then have C' = D and ¢t = u by simp-all
then have ?case by blast }
moreover
{ fix C" assume C" # O and C'= D’o. C"
then have C''# O and C = D o, C'" by auto
then have ?Zcase by blast }
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moreover
{ fix D" assume D" # O and D' = C'o. D"
then have D" #4 O and D = C o. D" by auto
then have ?case by blast }
moreover
{ fix E' assume [simp]: mctzt-of-ctzt C' = fill-holes-mctat E' [MHole, mc-
tzt-of-term u]
mctzt-of-ctzt D' = fill-holes-mctat E' [mctat-of-term ¢, MHole]
num-holes E' = 2
define F where E = MFun f (map mctat-of-term ts; @ E' # map
mectat-of-term tsy)
then have num-holes E = 2 by simp
moreover have mctzt-of-ctat C = fill-holes-mctat E [MHole, mctzt-of-term
u]
unfolding FE-def and partition-holes-fill-holes-mctxt-conv’ by simp
moreover have mctzt-of-ctzt D = fill-holes-mctxt E [mctat-of-term t, MHole]
unfolding FE-def and partition-holes-fill-holes-mctxt-conv’ by simp
ultimately have ?case by blast }
moreover
{ fix F' assume [simp]: mctat-of-ctat C' = fill-holes-mctat E' [mctat-of-term
u, MHole]
metat-of-ctzt D' = fill-holes-mctzt E' [MHole, mctat-of-term t)
num-holes B’ = 2
define F where F = MFun f (map mctat-of-term tsy Q E’ # map
mctzt-of-term tsg)
then have num-holes E = 2 by simp
moreover have mctzt-of-ctzt C' = fill-holes-mctat E [mctzt-of-term u,
MHole)
unfolding E-def and partition-holes-fill-holes-mctxt-conv’ by simp
moreover have mctzt-of-ctzt D = fill-holes-mctat E [MHole, mctxzt-of-term
t]
unfolding F-def and partition-holes-fill-holes-mctat-conv’ by simp
ultimately have ?case by blast }
ultimately have ?case using Fun.hyps [OF mem HOL.refl eq] by blast }
moreover
{ assume x: length ts; < length us
moreover then have us;: usy = tsy @ C'(t) # drop (length ts; + 1) us;
using Fun.prems [simplified)
apply (subst append-take-drop-id [symmetric, of - length ts1])
apply (rule arg-cong2 [where f = (Q)])
apply (force simp: append-eg-append-conv-if)
apply (simp add: append-eq-append-conv-if)
apply (cases usy)
by auto
(metis Cons-eg-appendl Cons-nth-drop-Suc calculation drop-Suc-Cons
nth-append-length)
ultimately have ss: ss = ts; @ C'(t) # drop (length tsy + 1) us; @ D'{u)
# usy
using Fun.prems(2, 1) by auto
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have tso: tso = drop (length tsy + 1) usy @ D'(u) # usq
using Fun.prems (2, 1) [simplified] and
apply (subst append-take-drop-id [symmetric, of - length (drop (length tsy
+ 1) us1)))
apply (rule arg-cong2 [where f = (@)])
by auto (metis Suc-eg-plusl append-eq-conv-conj length-drop list.inject ss)+
define F where E = MFun f (map mctat-of-term tsy @ metat-of-ctat C' #
map mctzt-of-term (drop (length ts; + 1) us1) Q mctat-of-ctat D' # map
mctat-of-term uss)
then have num-holes E = 2 by simp
moreover have mctzt-of-ctet C' = fill-holes-mctat E [MHole, mctzt-of-term
U
]
unfolding E-def and partition-holes-fill-holes-mctat-conv’ by (simp add: *
tSQ)
moreover have mctat-of-ctet D = fill-holes-mctat E [mctat-of-term t, MHole]
unfolding E-def and partition-holes-fill-holes-mctzt-conv’ by (simp, subst
us1, Simp)
ultimately have ?case by blast }
moreover
{ assume x: length us; < length ts;
moreover then have ts;: tsy = usy @ D'(u) # drop (length usy + 1) tsy
using Fun.prems [simplified]
apply (subst append-take-drop-id [symmetric, of - length us1])
apply (rule arg-cong2 [where f = (Q)])
apply (force simp: append-eg-append-conv-if)
apply (simp add: append-eq-append-conv-if)
apply (cases ts1)
by auto (metis Cons-eq-appendl Cons-nth-drop-Suc calculation drop-Suc-Cons
nth-append-length)
ultimately have ss: ss = usy @ D'(u) # drop (length us; + 1) ts; @ C'(t)
# ls2
using Fun.prems by auto
have uss: uss = drop (length usy + 1) tsy @ C'(t) # tso
using Fun.prems (2, 1) [simplified] and
apply (subst append-take-drop-id [symmetric, of - length (drop (length usy
+ 1) ts1)])
apply (rule arg-cong2 [where f = (@)])
by auto (metis Suc-eg-plusl append-eq-conv-conj length-drop list.inject ss)+
define F where E = MFun f (map mctat-of-term usy Q metat-of-ctat D' #
map mectat-of-term (drop (length usy + 1) ts1) @ metat-of-ctat C' # map
mctzt-of-term tso)
then have num-holes E = 2 by simp
moreover have mctzt-of-ctzt C = fill-holes-mctzt E [mctat-of-term u, MHole]
unfolding E-def and partition-holes-fill-holes-mctzt-conv’ by (simp, subst
ts1, simp)
moreover have mctzt-of-ctzt D = fill-holes-mctzt E [MHole, mctat-of-term
t]
unfolding E-def and partition-holes-fill-holes-mctzt-conv’ by (simp add: *
USQ)
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ultimately have ?case by blast }
moreover
have length ts; = length usy V length tsy < length us; V length us; < length
ts1 by arith
ultimately have ?case by blast }

moreover
{ assume C' = 0 and D # [ then have ?case by auto }
moreover
{ assume C # [0 and D = O then have ?case by auto }
moreover

{ assume C' = [0 and D = [ then have ?case using Fun by simp }
ultimately show ?case using Fun by (cases C; cases D) simp-all
qed

lemma two-hole-ctzt-inf-conv:
num-holes E = 2 —
mctat-of-ctzt C = fill-holes-mctxt E [MHole, mctzt-of-term u] =
metat-of-ctzt D = fill-holes-mctat E [mctat-of-term t, MHole] —
mctat-of-ctat C M metxt-of-ctat D = FE
by simp

lemma map-length-take-partition-by:
i < length ys = sum-list ys = length ts —
map length (take i (partition-by zs ys)) = take i ys
by (metis map-length-partition-by take-map)

Closure under contexts can be lifted to multihole contexts.

lemma ctxt-imp-mctat:
assumes Vst C. (s, t) € R — (C(s), C(t)) € R
and (t, u) € R
and num-holes C = length ss; + length sso + 1
shows (fill-holes C' (ss1 @Q t # ss3), fill-holes C (ss1 @ u # ss3)) € R
using assms
proof (induct C arbitrary: ss; ssz)
case (MFun f Cs)
let 2f = Az. partition-holes (ss; @ x # ss2) Cs
let ?ts = ?ft and %us = ?f u
have *: Az. concat (?f ) = ss; Q z # ss9
using MFun.prems by (intro concat-partition-by) simp
with less-length-concat [of length ssi ?ts]
obtain i j where ij: sum-list (map length (take i ?ts)) + j = length ss;
i < length Cs j < length (?ts ! 7)
and [simp]: ?ts ! i ! j = t by auto
have length ss; = sum-list (map length (take i ?us)) + j
using ij using MFun.prems(3) by (auto simp: take-map [symmetric])
from concat-nth [OF - - this]
have [simp]: ?us ! i!j = u using 4j and MFun.prems(3) by auto
have [simp]: length ?us = length ?ts by simp
have [simp]: take j (Pus | i) = take j (?ts ! Q)
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drop (Suc j) (?us ! i) = drop (Suc j) (%ts ! 7)
using ij and MFun.prems(3)
by (auto intro: nth-equalityl simp: nth-append concat-nth [symmetric| take-map
[symmetric])
from MFun.hyps [of Cs ! i, OF - MFun.prems(1, 2), of take j (?ts ! i) drop (Suc
J) (#ts 1 )]
have step: (fill-holes (Cs ! i) (%ts ! 4), fill-holes (Cs ! %) (?us!i)) € R
using ij and MFun.prems
apply simp
apply (subst id-take-nth-drop [of j ?ts ! i])
apply simp
apply (subst id-take-nth-drop [of j %us ! i])
apply auto
done

let ?Cs = map (case-prod fill-holes) (zip Cs ?ts)
let ?C' = More f (take ¢ ?Cs) O (drop (Suc i) ?Cs)
have [simp]:
take i (map (case-prod fill-holes) (zip Cs ?us)) = take i (map (case-prod fill-holes)
(zip Cs ?ts))
drop (Suc ©) (map (case-prod fill-holes) (zip Cs ?us)) = drop (Suc i) (map
(case-prod fill-holes) (zip Cs ?ts))
using ij and MFun.prems(3)
apply (auto introl: nth-equalityl)[2]
subgoal
using partition-by-nth-less [of - { map num-holes Cs ss1 j - $2]
by (simp add: map-length-take-partition-by)
subgoal using partition-by-nth-greater [of i Suc (i + k) for k, of - map
num-holes Cs j ss1 - $s2]
by (simp add: map-length-take-partition-by)
done
show ?Zcase
using MFun.prems(1) [rule-format, OF step, of ?C] and 4j
apply (clarsimp simp del: fill-holes.simps simp: partition-holes-fill-holes-conv’)
apply (subst id-take-nth-drop [of i map (case-prod fill-holes) (zip Cs ?ts)], simp)
apply (subst id-take-nth-drop [of i map (case-prod fill-holes) (zip Cs ?us)], simp)
by auto
qed auto

lemma mctat-of-term-fill-holes':

num-holes C' = length ts = mctat-of-term (fill-holes C ts) = fill-holes-mctzt C
(map metat-of-term ts)

by (induct C ts rule: fill-holes-induct) auto

lemma vars-term-fill-holes’:

num-holes C' = length ts = vars-term (fill-holes C ts) = |J (vars-term * set ts)
U vars-mctzt C
proof (induct C ts rule: fill-holes-induct)

case (MFun f Cs ts) then show ?case
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using UN-upt-len-conv|of partition-holes ts Cs length Cs At. (|J z€set t. vars-term
)]

by (simp add: UN-Un-distrib UN-set-partition-by)
qed auto

lemma vars-mctzt-linear: assumes t =; (C, ts)
linear-term t
shows vars-mctzt C N |J (vars-term © set ts) = {}
using assms
proof (induct C arbitrary: t ts)
case (MVar z)
from eqf-MVarE[OF MVar(1)]
show ?case by auto
next
case MHole
from eqf-MHoleE[OF MHole(1)]
show ?case by auto
next
case (MFun f Cs t ss)
from eqf-MFunE[OF MFun(2)] obtain ts sss where
x: t = Fun f ts length ts = length Cs length sss = length Cs
N i i <length Cs = ts! i =5 (Cs! i, sss!i)
ss = concat sss by blast
{
fix ¢
assume i: i < length Cs
hence mem: Cs ! i € set Cs by auto
from x ¢ MFun(3) have lin: linear-term (ts ! 7) by auto
from MFun(1)[OF mem x(4)[OF 1] lin]
have vars-mctzt (Cs ! i) N |J (vars-term * set (sss ! i)) = {} by auto
} note IH = this
show ?case
proof (rule ccontr)
assume — ?Zthesis
then obtain z where zC: z € vars-mctzt (MFun f Cs) and zss: z €
(vars-term * set ss)
by auto
from zC obtain ¢ where i: i < length Cs and z: © € vars-mctat (Cs ! i)
by (auto simp: set-conv-nth)
from IH[OF i] z have zni: © ¢ |J (vars-term * set (sss ! i)) by auto
from x(4)[OF i] have ts ! i =5 (Cs ! i, sss! i) .
from eqfE[OF this| « have zi: x € vars-term (ts ! i)
by (simp add: vars-term-fill-holes”)
from zss[unfolded x set-concat] * obtain j where
ji j < length Cs and zsj: © € |J (vars-term * set (sss! j))
unfolding set-conv-nth by auto
from x(4)[OF j] have ts | j = (Cs ! j, sss! j) by auto
from eqfE[OF this] xzsj j have xj: x € vars-term (ts ! j)
by (simp add: vars-term-fill-holes’)
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from i xj i j <linear-term t)[unfolded (1))
have ¢ = j unfolding (length ts = length Cs)[symmetric]
by (auto simp: is-partition-alt is-partition-alt-def)
with zni xsj show Fualse by auto
qed
qed

lemma mctzt-of-term-var-subst:
mctzt-of-term (t - (Var o f)) = map-vars-mctzt f (mctzt-of-term t)
by (induct t) auto

lemma subst-apply-mctrt-map-vars-mctzt-conv:
C -mc (Var o f) = map-vars-mctat f C
by (induct C) auto

lemma map-vars-mctxt-mono:
C < D = map-vars-mctzt f C < map-vars-mctzt f D
by (induct C D rule: less-eq-mctat-induct) (auto intro: less-eq-mctztll)

lemma map-vars-mctat-less-eq-decomp:
assumes C < map-vars-mctxt f D
obtains C’ where map-vars-mctzt f C'= C C' < D
using assms
proof (induct D arbitrary: C thesis)
case (MVar z) show ?case using MVar(1)[of MHole] MVar(1)[of MVar -]
MVar(2)
by (auto elim: less-eq-mctrtE2 intro: less-eq-mctztll)
next
case MHole show ?case using MHole(1)[of MHole] MHole(2) by (auto elim:
less-eq-mctatE2)
next
case (MFun g Ds) note MFun' = MFun
show ?case using MFun(3) unfolding map-vars-mctxt.simps
proof (cases rule: less-eq-mctatE2(3))
case MHole then show ?thesis using MFun(2)[of MHole] by auto
next
case (MFun Cs)
define Cs’ where Cs’ = map (\i. SOME Ci’. map-vars-mctzt f Ci' = Cs | i
A Ci' < Ds 1 i) [0..<length Cs]
{ fix 7 assume 7 < length Cs
obtain Ci’ where map-vars-mctat f Ci’ = Cs ! i Ci’ < Ds ! i
using i < length Csy MFun MFun'(1)[OF nth-mem, of i) MFun'(3) by
(auto elim!: less-eq-mctztE2)
then have 3 Ci’. map-vars-mctzt f Ci’ = Cs ! i A Ci’ < Ds ! i by blast
}
from somel-ex|OF this] have
length Cs = length Cs’ and i < length Cs = map-vars-mctat f (Cs’ ! i) =
Cs!i
i < length Cs = Cs’ ! i < Ds! i for i by (auto simp: Cs’-def)
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then show ?2thesis using MFun(1,2) MFun'(3)
by (auto intro!: MFun'(2)[of MFun g Cs’'| nth-equalityl less-eq-mctztI2 elim!:
less-eq-mctatE2)
qed
qed

6.1.4 All positions of a multi-hole context

fun all-poss-mctzt :: ('f, 'v) metat = pos set
where
all-poss-mctzt (MVar z) = {[}
| all-poss-mctzt MHole = {[|}
| all-poss-mctat (MFun fcs) = {[|} U (set (map (A i. (A p. i # p)  all-poss-mctxt
(es14)) [0 ..< length cs]))

lemma all-poss-mctzt-simp [simp]:
all-poss-mctet (MFun fcs) = {[]} U {i # p| ip. i < length cs A p € all-poss-mctzt

(es! i)}

by auto
declare all-poss-mctzt.simps(3)[simp del]

lemma all-poss-mctat-conv:
all-poss-mctxt C' = poss-mctzt C U hole-poss C
by (induct C) auto

lemma root-in-all-poss-mctzt[simp):
[] € all-poss-mctat C
by (cases C) auto

lemma hole-poss-mctxt-of-term[simp):
hole-poss (mctat-of-term t) = {}
by (induct t) auto

lemma poss-mctat-mctzt-of-term[simp):
poss-mctrt (mctzt-of-term t) = poss t
by (induct t) auto

lemma hole-poss-subst: hole-poss (C -mc o) = hole-poss C
by (induct C, auto)

lemma all-poss-mctzt-metat-of-term|[simp):
all-poss-mctat (metat-of-term t) = poss t
by (induct t) auto

lemma mctzt-of-term-leg-imp-eq:

mctzt-of-term t < C +— mctxt-of-term t = C
by (induct t arbitrary: C) (auto elim!: less-eqg-mctxtE1 simp: map-nth-eq-conv)
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lemma mctat-of-term-ing:
mctzt-of-term s = mctxt-of-term t «— s =t
proof (induct s arbitrary: t)
case (Var z t)
show ?case by (cases t, auto)
next
case (Fun f ss t)
thus ?case by (cases t, auto simp: map-eg-conv’ intro: nth-equalityl)
qed

lemma all-poss-mctzt-map-vars-mctxt [simp):
all-poss-mctxt (map-vars-mctzt f C) = all-poss-mctzt C
by (induct C) auto

lemma fill-holes-mctxt-extends-all-poss:

assumes length Ds = num-holes C' shows all-poss-mctzt C C all-poss-mctzt
(fill-holes-mctxt C Ds)

using assms[symmetric] by (induct C Ds rule: fill-holes-induct) force+

lemma egF-substD:
assumes t - 0 =5 (C, ss)
hole-poss C C poss t
shows 3 D ts. t =5 (D, ts) AN C =D -mco A ss=map (X ti. ti - o) ts
using assms
proof (induct C arbitrary: t ss)
case (MVar z t ss)
from eqfE[OF MVar(1)] obtain y where t = Var y 0 y = Var z ss = [| by
(cases t, auto)
thus ?case using MVar by (auto introl: exI[of - MVar y])
next
case (MHole t ss)
from eqfE[OF MHole(1)]
show ?Zcase by (cases ss, auto introl: exI|of - MHole] exl|of - [t]])
next
case (MFun f Cs t ss)
show ?case
proof (cases is-Fun t)
case True
from eqf-MFunE[OF MFun(2)] obtain tss sss where
tsigma: t - 0 = Fun f tss and len: length tss = length Cs length sss = length
Cs
and args: \ 1. ¢ < length Cs => tss ! i =¢ (Cs ! i, sss ! q)
and ss: ss = concat sss by auto
from True tsigma obtain ts where t: ¢t = Fun f ts by (cases t, auto)
from tsigma[unfolded t] have ts: tss = map (X t. t - o) ts by auto
from len ts have length ts = length Cs by auto
note len = this len
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fix ¢
assume i: i < length Cs
hence Cs ! i € set Cs by auto
note IH = MFun(1)[OF this]
from ts len i have ts ! i - o0 = tss | i by auto
also have ... =; (Cs! ¢, sss ! {) using args|OF 1] .
finally have ts! ¢ - o =5 (Cs! i, sss! i) .
note IH = IH[OF this]
from MFun(3)[unfolded t] i len
have hole-poss (Cs ! i) C poss (ts ! i) by auto
note IH = IH[OF this]
}
hence V 4. 3 D tsi. i < length Cs — ts ! i =5 (D, tsi) N Cs!i=D -mco
A sss 'l i = map (Mti. ti - o) tsi by blast
from choice[OF this] obtain D where
V 4.3 tsi. ¢ < length Cs —> ts! i =5 (D i, tsi) A Cs ! i =D i -mco A sss
14 = map (Ati. ti - o) tsi ..
from choice[OF this] obtain tsi where
IH: i < length Cs = ts | i =y (D i, tsii) N Cs!i=Di-mco Asss!i=
map (Ati. ti - o) (tsi ©) for i
by auto
let ?n = [0 ..< length Cs]
show ?thesis
proof (rule exl[of - MFun [ (map D ?n)], rule exI[of - concat (map tsi ?n)],
intro congl)
show MFun f Cs = MFun f (map D %n) -mc o using IH by (auto intro:
nth-equalityl )
show ss = map (Ati. ti - o) (concat (map tsi ¥n)) unfolding ss
using len(3) IH unfolding map-concat map-map o-def
by (intro arg-conglof - - concat], intro nth-equalityl, auto)
show ¢ =; (MFun f (map D ?n), concat (map tsi ?n)) unfolding ¢
by (intro eqf-MFunl, insert len IH, auto)
qed
next
case Fulse
then obtain z where ¢: t = Var z by auto
with MFun(3) have hole-poss (MFun f Cs) = {} by auto
hence num: num-holes (MFun f Cs) = 0 using hole-poss-empty-iff-num-holes-0
by blast
with eqfE[OF MFun(2)] t have ss: ss = [| o = = fill-holes (MFun f Cs) [| by
auto
show ?thesis unfolding t ss
proof (intro exI[of - MVar x| exI[of - Nil] conjI)
have MVar z -mc o = mctat-of-term (fill-holes (MFun f Cs) []) using ss by
stmp
also have ... = MFun f Cs using num
by (metis mctzt-of-term-fill-holes mctat-of-term-term-of-mctzt-id)
finally show MFun f Cs = MVar x -mc o ..
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qed auto
qed
qed

6.1.5 More operations on multi-hole contexts

fun root-mctzt = ('f, 'v) metxt = ('f x nat) option where
root-mctat MHole = None

| root-mctzt (MVar z) = None

| root-mctzt (MFun f Cs) = Some (f, length Cs)

fun mreplace-at :: ('f, 'v) mctzt = pos = ('f, 'v) mctat = ('f, 'v) mctzt where
mreplace-at C [| D = D

| mreplace-at (MFun f Cs) (i # p) D = MFun f (take i Cs @ mreplace-at (Cs ! 7)

p D # drop (i+1) Cs)

fun subm-at :: (’f, 'v) metat = pos = ('f, 'v) mctat where
subm-at C'[| = C
| subm-at (MFun f Cs) (i # p) = subm-at (Cs ! i) p

lemma subm-at-hole-poss[simpl:
p € hole-poss C = subm-at C p = MHole
by (induct C arbitrary: p) auto

lemma subm-at-mctzt-of-term:
p € poss t = subm-at (mctat-of-term t) p = mctzt-of-term (subt-at t p)
by (induct t arbitrary: p) auto

lemma subm-at-mreplace-at[simp):
p € all-poss-mctat C = subm-at (mreplace-at C p D) p = D
by (induct C arbitrary: p) (auto simp: nth-append-take)

lemma replace-at-subm-at[simpl:
p € all-poss-mctzt C = mreplace-at C p (subm-at C p) = C
by (induct C arbitrary: p) (auto simp: id-take-nth-drop[symmetric])

lemma all-poss-mctxt-mreplace-atll:

p € all-poss-mctzt C = ¢ € all-poss-mctat C = — (p <, q) = q € all-poss-mctat
(mreplace-at C p D)
proof (induct C arbitrary: p q)

let ?hd = Ap. (case p :: pos of i # - = 1)

case (MFun f Cs) then show ?case

by (cases ?hd p = ?hd q) (auto simp: nth-append-take less-pos-def nth-append-drop-is-nth-conv
nth-append-take-drop-is-nth-conv)
qed auto

lemma funas-mctt-sup-mctat:
(C, D) € comp-mctat = funas-mctat (C U D) = funas-mctzt C U funas-mctat
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D
by (induct C D rule: comp-mctat.induct) (auto simp: zip-nth-conv Un-Union-image)

lemma mctzt-of-term-not-hole [simp]:
mctzt-of-term t #= MHole
by (cases t) auto

lemma funas-mctzt-mctzt-of-term [simpl:
funas-mctzt (mctat-of-term t) = funas-term t
by (induct t) auto

lemma funas-mctrt-mreplace-at:
assumes p € all-poss-mctzt C
shows funas-mctat (mreplace-at C p D) C funas-mctzt C U funas-mctzt D
using assms
proof (induct C p D rule: mreplace-at.induct)
case (2 f Cs i p D) then have Cs: Cs = take i Cs @ Cs ! { # drop (Suc i) Cs
by (auto simp: id-take-nth-drop)
show ?case using 2 by (subst (2) Cs) auto
qed auto

lemma funas-mctzt-mreplace-at-hole:
assumes p € hole-poss C
shows funas-mctzt (mreplace-at C p D) = funas-mctat C U funas-mctzt D (is
?L = ?R)
proof
show ?R C ?L using assms
proof (induct C p D rule: mreplace-at.induct)
case (1 C D) then show ?case by (cases C) auto
next
case (2 f Cs i p D) then have Cs: Cs = take i Cs @ Cs ! ¢ # drop (Suc i) Cs
by (auto simp: id-take-nth-drop)
show ?case using 2 by (subst (1) Cs) auto
qged auto
next
show 7L C ?R using assms by (auto simp: all-poss-mctzt-conv funas-mctzt-mreplace-at)
qed

lemma map-vars-mctxt-fill-holes-mctxt:

assumes num-holes C = length Cs

shows map-vars-mctat f (fill-holes-mctzt C Cs) = fill-holes-mctat (map-vars-mctzt
f C) (map (map-vars-mctat f) Cs)

using assms by (induct C Cs rule: fill-holes-induct) (auto simp: comp-def)

lemma map-vars-mctxt-map-vars-metat[simp):
shows map-vars-mctat f (map-vars-mctat g C) = map-vars-mctzt (f o g) C

by (induct C) auto

lemma funas-mctzt-fill-holes:
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assumes num-holes C = length ts
shows funas-term (fill-holes C ts) = funas-mctat C U | (set (map funas-term

ts))

using funas-term-fill-holes-iff [OF assms] by auto

lemma mctrt-neq-mholeF:

r # MHole = (A\v. x = MVar v = P) = (\f Cs. x = MFun f Cs = P)
= P

by (cases x) auto

lemma prefiz-comp-mctxt:
C<E= D<FE= (C, D) € comp-mctxt
proof (induct E arbitrary: C D)
case (MFun f Es C D)
then show ?case
proof (elim less-eq-mctatE2)
fix Cs Ds
assume C: C = MFun f Cs and D: D = MFun f Ds
and [C: length Cs = length Es and [D: length Ds = length Es
and Ci: N\i. i < length Cs = Cs ! i < Es ! ¢ and Di: \i. i < length Ds
= Ds! i< Es!q
and IH: N\E' C' D' E'€ set Bs = C'< F'= D' < E' = (C', D’) €
comp-mctat
show (C, D) € comp-mctzt
by (auto simp: C D IC ID introl: comp-mctzt.intros IH[OF - Ci Di])
qged (auto intro: comp-mctat.intros)
qed (auto elim: less-eq-mctztE2(1,2) intro: comp-mctat.intros)

lemma less-eq-mctrt-sup-convl:

(C, D) € comp-mctst = C < D<+— CUD=D

by (induct C D rule: comp-mctat.induct) (auto elim!: less-eq-mctat E2 nth-equalityF
intro: nth-equalityl less-eq-mctztI2(3))

lemma less-eq-mctxt-sup-conv2:
(C, D) € comp-mctst = D < C+— CUD=C
using less-eg-mctat-sup-convl [OF comp-mctzt-sym] by (auto simp: ac-simps)

lemma comp-mctrt-metat-of-term1|[dest!]:
(C, mctzt-of-term t) € comp-mctzt = C < mctat-of-term t
proof (induct C mctzt-of-term t arbitrary: ¢ rule: comp-mctat.induct)
case (MHole2 C't)
then show ?Zcase by (cases t, auto)
next
case (MFun f g Cs Ds)
then show Zcase by (cases t, auto intro: less-eq-mctatl2)
qed auto

lemmas comp-mctat-mctzt-of-term2|dest!] = comp-mctzt-metat-of-term1[OF comp-metat-sym]
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lemma mfun-leg-mfunli:

f = g = length Cs = length Ds = (\i. i < length Ds = Cs ! i < Ds ! 1)
= MPFun f Cs < MFun g Ds

by (auto simp: less-eq-mctat-def list-eq-iff-nth-eq)

lemma prefiz-mctat-sup:
assumes C < (E :: ('f, 'v) mctat) D < E shows C U D < FE
using assms
by (induct E arbitrary: C D) (auto elim!: less-eq-mctatE2 introl: mfun-leg-mfunl)

lemma mreplace-at-legl:

p € all-poss-mctat C — C < E = D < subm-at E p = mreplace-at C p D
<F

by (induct C p D arbitrary: E rule: mreplace-at.induct)

(auto elim!: less-eq-mctxtE1 introl: less-eq-mctatll simp: upd-conv-take-nth-drop[symmetric)
nth-list-update)

lemma prefiz-and-fewer-holes-implies-equal-mctxt:
C < D = hole-poss C C hole-poss D = C = D
proof (induct C D rule: less-eq-mctzt-induct)
case (1 D) then show ?Zcase by (cases D) auto
next
case (3 Cs Ds f)
have ¢ < length Ds = hole-poss (Cs ! i) C hole-poss (Ds ! i) for i using 3(1,4)
by auto
then show Zcase using 3 by (auto intro!: nth-equalityl)
qged auto

lemma compare-mreplace-at:

p € poss-mctrt C = mreplace-at C'p D < mreplace-at Cp E +— D < FE
proof (induct C arbitrary: p)

case (MFun f Cs p)

then show ?case

by (cases p, auto elim!: less-eq-mctxtE2(3) introl: less-eq-mctzt-intros(8) simp:
nth-append nth-Cons’
split: if-splits) auto

qed auto

lemma merge-mreplace-at:
p € poss-mctrt C = mreplace-at C p (D U E) = mreplace-at C p D U mre-
place-at C'p E
proof (induct C arbitrary: p)
case (MFun f Cs p)
then show ?case by (cases p, auto intro: nth-equalityl)
qed auto

lemma compare-mreplace-atl”:
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C <D= C'"< D = p € all-poss-mctzt C = mreplace-at C p C' <
mreplace-at D p D'
proof (induct C D arbitrary: p rule: less-eq-mctzt-induct)
case (8 cs ds fp)
then show ?case by (cases p, auto intro!: less-eq-metat-intros(3) simp: nth-append
nth-Cons’)
qed auto

lemma compare-mreplace-atl:
C <D= C'<D'= p € poss-mctzt C = mreplace-at C p C' < mreplace-at
DpD’

using compare-mreplace-atl’ all-poss-mctxt-conv by blast

lemma all-poss-mctat-mono:
C < D = all-poss-mctzt C C all-poss-mctxt D
by (induct C' D rule: less-eq-mctat-induct) force+

lemma all-poss-mctat-inf-mctxt:

(C, D) € comp-mctat = all-poss-mctat (C T D) = all-poss-mctat C N all-poss-mctat
D

by (induct C' D rule: comp-mctat.induct) auto

lemma less-eq-subm-at:
p € all-poss-mctat C = C < D = subm-at C p < subm-at D p
by (induct C arbitrary: p D) (auto elim: less-eq-mctztE1)

lemma inf-subm-at:
p € all-poss-mctzt (C M D) = subm-at (C 1 D) p = subm-at C p N subm-at
Dp
proof (induct C D arbitrary: p rule: inf-mctzt.induct)
case (4 f Cs g Ds p) show ?case using 4(1) 4(2)
by (auto 4 4 introl: 4(1)[of (Cs ! i, Ds! i) Cs! i Ds! i for i] simp: set-zip)
qed auto

lemma less-eq-fill-holesI:
assumes length Ds = num-holes C length Es = num-holes C
Ni. @ < num-holes C = Ds! i < Es!i
shows fill-holes-mctxzt C Ds < fill-holes-mctxt C Es
using assms(1,2)[symmetric] assms(3)
by (induct C Ds Es rule: fill-holes-induct2) (auto introl: less-eqg-mctztll simp:
partition-by-nth-nth)

lemma less-eq-fill-holesD:
assumes length Ds = num-holes C length Es = num-holes C
fill-holes-mctzt C Ds < fill-holes-mctxt C Es i < num-holes C
shows Ds! i < Es! g
using assms(1,2)[symmetric] assms(3,4)
proof (induct C Ds Es arbitrary: i rule: fill-holes-induct2)
case (MFun f Cs Ds Es)
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obtain j k where j < length Cs k < num-holes (Cs ! j)
zip Ds Es | i = partition-holes (zip Ds Es) Cs ! j ! k
using nth-concat-split[of i partition-holes (zip Ds Es) Cs| MFun(1,2,5) by auto
moreover then have f (zip Ds Es | i) = partition-holes (map f (zip Ds Es))
Cs!j!kfor f
using nth-map|of k partition-holes (zip Ds Es) Cs ! j f] MFun(1,2)
length-partition-by-nth[of map num-holes Cs zip Ds Es] by simp
from this|of fst] this[of snd] map-fst-zip[of Ds Es| map-snd-zip|of Ds Es|
have Ds ! ¢ = partition-holes Ds Cs ! j | k Es | i = partition-holes Es Cs ! j | k
using MFun(1,2,5) by simp-all
ultimately show ?case using MFun(3)[of j k] MFun(1,2,4) by (auto elim:
less-eq-mctztE1)
qed auto

lemma less-eq-fill-holes-iff

assumes length Ds = num-holes C length Es = num-holes C

shows fill-holes-mctxt C' Ds < fill-holes-mctat C Es <— (¥ i < num-holes C. Ds
¢ < Es!i)

using assms by (auto intro: less-eq-fill-holesI dest: less-eq-fill-holesD)

lemma fill-holes-mctxt-suffiz]simp]:
assumes length Ds = num-holes C shows C < fill-holes-mctzt C' Ds
using assms(1)[symmetric]
by (induct C Ds rule: fill-holes-induct) (auto simp: less-eq-mctat-def intro: nth-equalityl)

lemma fill-holes-mctxt-id:

assumes length Ds = num-holes C' C = fill-holes-mctzt C' Ds shows set Ds C
{MHole}

using assms(1)[symmetric] assms(2)

apply (induct C Ds rule: fill-holes-induct)

unfolding set-concat

by (auto simp: set-conv-nth|of partition-holes - -] list-eq-iff-nth-eq[of - map - -])

lemma fill-holes-suffiz[simp]:
num-holes C' = length ts = C < mctat-of-term (fill-holes C ts)
by (induct C ts rule: fill-holes-induct) (auto intro: less-eq-mctatll)

6.1.6 An inverse of fill-holes

fun unfill-holes :: ('f, 'v) metzt = ('f, 'v) term = (’f, 'v) term list where
unfill-holes MHole t = [t
| unfill-holes (MVar w) (Var v) = (if v = w then || else undefined)
| unfill-holes (MFun g Cs) (Fun fts) = (if f = g N length ts = length Cs then
concat (map (Ni. unfill-holes (Cs ! ©) (ts ! 7)) [0..<length ts]) else undefined)

lemma length-unfill-holes[simp]:
assumes C < mctzt-of-term t
shows length (unfill-holes C't) = num-holes C
using assms
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proof (induct C t rule: unfill-holes.induct)
case (3 f Cs g ts) with 3(1)[OF - nth-mem| 3(2) show ?case
by (auto simp: less-eq-mctzt-def length-concat
introl: conglof sum-list, OF refl] nth-equalityl elim!: nth-equalityF)
qed (auto simp: less-eq-mctat-def)

lemma fill-unfill-holes:

assumes C < mctazt-of-term t

shows fill-holes C' (unfill-holes C't) =t

using assms
proof (induct C t rule: unfill-holes.induct)

case (3 f Cs g ts) with 3(1)[OF - nth-mem| 3(2) show ?case

by (auto simp: less-eq-mctat-def intro!: fill-holes-arbitrary elim!: nth-equalityE)

qed (auto simp: less-eq-mctxt-def split: if-splits)

lemma unfill-fill-holes:
assumes length ts = num-holes C
shows unfill-holes C (fill-holes C ts) = ts
using assms[symmetric]
proof (induct C ts rule: fill-holes-induct)
case (MFun f Cs ts) then show ?case
by (auto intro!: arg-cong|of - - concat] nth-equalityl|of - partition-holes ts Cs]
stmp del: concat-partition-by) auto
qed auto

lemma unfill-holes-subt:
assumes C < mctat-of-term t and t’' € set (unfill-holes C't)
shows t' < ¢t
using assms
proof (induct C t rule: unfill-holes.induct)
case (3 f Cs g ts)
obtain ¢ where i < length Cs and t’ € set (unfill-holes (Cs ! i) (ts ! 7))
using 3 by (auto dest!: in-set-idx split: if-splits simp: less-eq-mctat-def)
then show ?case
using 3(1)[OF - nth-mem]of i]] 3(2,3) supteq.subtof ts! i tst’ g
by (auto simp: less-eq-mctat-def elim!: nth-equalityE split: if-splits)
qed (auto simp: less-eq-mctat-def split: if-splits)

lemma factor-hole-pos-by-prefix:
assumes C' < D p € hole-poss D
obtains ¢ where ¢ <, p ¢ € hole-poss C
using assms
by (induct C' D arbitrary: p thesis rule: less-eq-mctat-induct)
(auto, metis less-eq-pos-simps(4))

lemma concat-map-zip-upt: assumes Ai. i < n = length (f i) = length (g i)
shows concat (map (M\i. zip (f4) (g ©)) [0..<n]) = zip (concat (map f [0..<n]))
(concat (map g [0..<n]))
using assms by (induct n arbitrary: f g) (auto simp: map-upt-Suc simp del:
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upt.simps)

lemma unfill-holes-by-prefiz':
assumes num-holes C' = length Ds fill-holes-mctzt C' Ds < mctxt-of-term t
shows unfill-holes (fill-holes-mctaxt C Ds) t = concat (map (AN(D, t). unfill-holes
D t) (zip Ds (unfill-holes C't)))
using assms
proof (induct C Ds arbitrary: t rule: fill-holes-induct)
case (MVar v) then show ?case by (cases t) (auto elim: less-eq-mctztE1)
next
case (MFun f Cs Ds)
have [simp]: length ts = length Cs => map (\i. unfill-holes (map (\i. fill-holes-mctat
(Cs ' i) (partition-holes Ds Cs ! 1))
[0..<length Cs] ! i) (ts! 7)) [0..<length Cs]
= map (Mi. unfill-holes (fill-holes-mctxt (Cs ! i) (partition-holes Ds Cs | 7)) (ts
14)) [0..<length Cs] for ts
by (auto intro: nth-equalityl)
obtain ts where lts: length ts = length Cs t = Fun f ts and
pre: i < length Cs = fill-holes-mctzt (Cs ! i) (partition-holes Ds Cs | i) <
mctxt-of-term (ts ! i) for i
using MFun(1,3) by (cases t) (auto elim!: less-eqg-mctatE2)
have x: ¢ € set [0..<n] = i < n for i n by auto
have #xx: i < length Cs = Cs | i < mctat-of-term (ts ! i) for ¢
using fill-holes-mctzt-suffiz|of partition-holes Ds Cs ! i Cs ! i, OF length-partition-holes-nth]
MFun(1) pre|of i]
by (auto simp del: fill-holes-mctat-suffiz)
have [simp]: concat (map (Ni. concat (map f (zip (partition-holes Ds Cs ! i)
(unfill-holes (Cs ! i) (ts ! 0)))))
[0..<length Cs]) = concat (map f (zip Ds (concat (map (Mi. unfill-holes (Cs !
i) (ts ! 7)) [0..<length Cs]))))
for f
unfolding concat-map-concat[of map - -, unfolded map-map comp-def]
unfolding map-map|of map f Ai. zip (- ©) (- ©), symmetric, unfolded comp-def]
map-concat|symmetric|
using MFun(1) map-nth|of partition-holes Ds Cs] by (auto simp: length-unfill-holes| OF
k] concat-map-zip-upt)
from lts pre show ?Zcase using MFun(1) map-cong[OF refl MFun(2)[OF x|, of
[0..<length Cs| id \i. ts! {]
by (auto simp del: map-eq-conv)
qed auto

lemma unfill-holes-var-subst:
C < metat-of-term t = unfill-holes (map-vars-mctxt f C) (t - (Var o f)) = map
(At. t - (Var o f)) (unfill-holes C't)
by (induct C t rule: unfill-holes.induct; (simp only: mctzt-of-term.simps; elim
less-eq-mctztE2) ?)
(auto simp: map-concat introl: arg-cong|of - - concat])
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6.1.7 Ditto for fill-holes-mctxt

fun unfill-holes-mctat == ('f, 'v) metzt = ('f, 'v) metat = (’f, 'v) metat list where
unfill-holes-mctzt MHole D = [D]
| unfill-holes-mctzt (MVar w) (MVar v) = (if v = w then || else undefined)
| unfill-holes-mctzt (MFun g Cs) (MFun f Ds) = (if f = g A length Ds = length Cs
then
concat (map (Ai. unfill-holes-mctzt (Cs ! ©) (Ds ! 7)) [0..<length Ds]) else
undefined)

lemma length-unfill-holes-mctxzt [simp]:

assumes C < D

shows length (unfill-holes-mctat C D) = num-holes C

using assms
proof (induct C D rule: unfill-holes-mctzt.induct)

case (3 f Cs g Ds) with 3(1)[OF - nth-mem] 3(2) show ?case

by (auto simp: less-eq-mctxt-def length-concat introl: cong[of sum-list, OF refl]

nth-equalityl elim!: nth-equalityE)
qed (auto simp: less-eq-mctxt-def)

lemma fill-unfill-holes-mctxt:

assumes C < D

shows fill-holes-mctzt C' (unfill-holes-mctat C D) = D

using assms
proof (induct C D rule: unfill-holes-mctzt.induct)

case (3 f Cs g Ds) with 3(1)[OF - nth-mem] 3(2) show ?case

by (auto simp: less-eq-mctat-def intro!: fill-holes-arbitrary elim!: nth-equalityE)

qed (auto simp: less-eq-mctat-def split: if-splits)

lemma unfill-fill-holes-mctxt:
assumes length Ds = num-holes C
shows unfill-holes-mctxzt C (fill-holes-mctat C Ds) = Ds
using assms[symmetric]
proof (induct C Ds rule: fill-holes-induct)
case (MFun f Cs ts) then show ?case
by (auto intro!: arg-cong|of - - concat] nth-equalityl[of - partition-holes ts Cs]
simp del: concat-partition-by) auto
qed auto

lemma unfill-holes-mctxt-mctxt-of-term:

assumes C < mctzt-of-term t

shows unfill-holes-mctaxt C (mctzt-of-term t) = map mctat-of-term (unfill-holes
Ct)

using assms
proof (induct C arbitrary: t)

case (MVar z) then show ?case by (cases t) (auto elim: less-eq-mctatEl)
next

case MHole then show ?case by (cases t) (auto elim: less-eq-mctztE1)
next

case (MFun zla z2) then show ?Zcase
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by (cases t) (auto elim: less-eqg-mctxtE1 simp: map-concat introl: arg-cong|of -
- concat))
qed

6.1.8 Function symbols of prefixes

lemma funas-prefix[simp]:
C <D= fn € funas-mctat C = fn € funas-mctzt D
unfolding less-eq-mctzt-def
proof (induct C D rule: inf-mctat.induct)
case (4 f Cs g Ds)
from 4(3) obtain ¢ where i < length Cs A fn € funas-mctat (Cs! i) V fn =
(f, length Cs)
by (auto dest!: in-set-idz)
moreover {
assume i < length Cs A fn € funas-mctzt (Cs ! ©)
then have ¢ < length Ds A fn € funas-mctzt (Ds ! i) using 4(2)
by (auto introl: 4(1)[of - Cs ! i Ds ! i] split: if-splits elim!: nth-equalityE simp:
in-set-conv-nth)
then have ?case by (auto)
}
ultimately show ?case using 4 (2) by auto
qged auto

end

6.2 The Parallel Rewrite Relation

theory Parallel-Rewriting
imports
Trs
Multihole-Context
begin

The parallel rewrite relation as inductive definition

inductive-set par-rstep :: ('f,'v)trs = ('f,’v)trs for R :: ('f,'v)trs
where root-step[intro]: (s,t) € R = (s - o,t - 0) € par-rstep R
| par-step-funlintro]: [\ 4. i < length ts = (ss ! i,ts | i) € par-rstep R] =
length ss = length ts
= (Fun f ss, Fun [ ts) € par-rstep R
| par-step-var(intro]: (Var x, Var z) € par-rstep R

lemma par-rstep-refl[intro]: (¢,t) € par-rstep R
by (induct t, auto)

lemma all-ctat-closed-par-rsteplintro): all-ctzt-closed F (par-rstep R)

unfolding all-ctzt-closed-def
by auto
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lemma args-par-rstep-pow-imp-par-rstep-pow:
length xs = length ys = Vi<length zs. (zs ! i, ys ! i) € par-rstep R ~ " n =
(Fun f xs, Fun fys) € par-rstep R ~ " n
proof (induct n arbitrary:ys)
case (
then have Vi<length zs. (zs ! i = ys ! i) by simp
with 0 show ?Zcase using relpow-0-1 list-eq-iff-nth-eq by metis
next
case (Suc n)
let 2c = X z 4. (zs !4, z) € par-rstep R " n A (2, ys ! i) € par-rstep R
{ fix { assume i < length s
from relpow-Suc-E[OF Suc(3)[rule-format, OF this]]
have 3 2. (?c z i) by metis
}
with choice have 3 zf. V i < length xzs. (?c (2f i) i) by meson
then obtain zf where a:V i < length zs. (?c (zf ©) i) by auto
let 225 = map zf [0..<length zs]
have len:length xs = length ?zs by simp
from a map-nth have Vi<length xs. (zs! i, %zs | i) € par-rstep R ~ n by
auto
from Suc(1)[OF len this] have n:(Fun f zs, Fun f ?zs) € par-rstep R ~ " n by
auto
from a map-nth have Vi<length xs. (%zs! i, ys! i) € par-rstep R by auto
with par-step-fun len Suc(2) have (Fun f ?zs, Fun f ys) € par-rstep R by auto
with n show ?case by auto
qged

lemma ctzt-closed-par-rstep|intro]: ctzt.closed (par-rstep R)
proof (rule one-imp-ctat-closed)
fix fbef st aft
assume st: (s,t) € par-rstep R
let %ss = bef Q s # aft
let ?ts = bef Q t # aft
show (Fun f ?ss, Fun f ?ts) € par-rstep R
proof (rule par-step-fun)
fix ¢
assume i < length ?ts
show (%ss ! i, %ts | i) € par-rstep R
using par-rstep-refifof ?ts | i R] st by (cases i = length bef, auto simp:
nth-append)
qed simp
qged

lemma subst-closed-par-rstep: (s,t) € par-rstep R => (s - o, t - 0) € par-rstep R
proof (induct rule: par-rstep.induct)
case (root-step s t T)
show ?case
using par-rstep.root-step| OF root-step, of T og o] by auto
next
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case (par-step-var z)
show ?case by auto
next
case (par-step-fun ss ts f)
show ?case unfolding eval-term.simps
by (rule par-rstep.par-step-fun, insert par-step-fun(2—3), auto)
qed

lemma R-par-rstep: R C par-rstep R
using root-step|of - - R Var] by auto

lemma par-rstep-rsteps: par-rstep R C (rstep R)*
proof
fix st
assume (s,t) € par-rstep R
then show (s,t) € (rstep R)*
proof (induct rule: par-rstep.induct)
case (root-step s t sigma)
then show ?case by auto
next
case (par-step-var x)
then show ?case by auto
next
case (par-step-fun ts ss f)
from all-ctazt-closedD[of UNIV, OF all-ctat-closed-rsteps - par-step-fun(3)
par-step-fun(2)]
show ?case unfolding par-step-fun(8) by simp
qed
qed

lemma rstep-par-rstep: rstep R C par-rstep R
by (rule rstep-subset|OF ctxt-closed-par-rstep subst.closedI R-par-rstep),
insert subst-closed-par-rstep, auto)

lemma par-rsteps-rsteps: (par-rstep R)* = (rstep R)* (is ?P = ?R)
proof
from rtrancl-mono|OF par-rstep-rsteps[of R]] show ?P C ?R by simp
from rtrancl-mono[OF rstep-par-rstep] show ?R C 7P .
qed

lemma par-rsteps-union: (par-rstep A U par-rstep B)* =
(rstep (A U B))*
proof
show (par-rstep A U par-rstep B)* C (rstep (A U B))*
by (metis par-rsteps-rsteps rstep-union rtrancl-Un-rtrancl set-eq-subset)
show (rstep (A U B))* C (par-rstep A U par-rstep B)* unfolding rstep-union
by (meson rstep-par-rstep rtrancl-mono sup-mono)
qed
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lemma par-rstep-inverse: par-rstep (R"—1) = (par-rstep R) —1
proof —

fix st :: (‘a,’b)term and R
assume (s,t) € par-rstep (R™—1)
hence (t,s) € par-rstep R

by (induct s t, auto)

from this[of - - R] this[of - - R™—1]
show ?thesis by auto
qged

lemma par-rstep-conversion: (rstep R
unfolding conversion-def
by (metis par-rsteps-rsteps rtrancl-Un-rtrancl rtrancl-converse)

)(—)*

= (par-rstep R

)(—)*

lemma par-rstep-mono: assumes R C §
shows par-rstep R C par-rstep S
proof
fix st
show (s, t) € par-rstep R = (s, t) € par-rstep S
by (induct s t rule: par-rstep.induct, insert assms, auto)
qed

lemma wf-trs-par-rstep: assumes wf: A I r. (I,r) € R = is-Fun |
and step: (Var x, t) € par-rstep R
shows t = Var x
using step
proof (cases rule: par-rstep.cases)
case (root-step L r o)
from root-step(1) wf[OF root-step(3)] show ?thesis by (cases I, auto)
qed auto

main lemma which tells us, that either a parallel rewrite step of [ - o is
inside [, or we can do the step completely inside o

lemma par-rstep-linear-subst: assumes lin: linear-term [

and step: (I - o, t) € par-rstep R
shows (3 7.t =1-7 A (¥ z € vars-term l. (o x, T x) € par-rstep R) V

@ UV L= Ais-Pun 1" AUy e RA(I" o =1"-7) A

((C-co){r'-71),1) € par-rstep R))

using lin step
proof (induction | arbitrary: t)

case (Var z t)

let ?tau = A y. t

show Zcase

by (rule exI[of - ?tau], rule disjl1, insert Var(2), auto)

next

case (Fun f ss)

let %ss = map (A s. s o) ss
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let YR = par-rstep R
from Fun(3)
show ?Zcase
proof (cases rule: par-rstep.cases)
case (root-step 1 r T)
show ?thesis
proof (rule exI, rule disjI2, intro exl conjI)
show (I,r) € R by (rule root-step(3))
show Fun f ss = O(Fun f ss) by simp
show (Fun f ss) - o =1 - 7 by (rule root-step(1))
show (O . o){ r -7 ), t) € ?R unfolding root-step(2) using par-rstep-refl
by simp
qed simp
next
case (par-step-var x)
then show ?thesis by simp
next
case (par-step-fun ts ssl g)
then have id: ssI = ?ss ¢ = f and len: length ts = length ss by auto
let p1 = A7 ts!i=ssli-7 ANV € vars-term (ss!i). (o z, T z) € ?R)
let p2 =X74 (3 CU" U r ssli=C{l"yNis-Funl”" AN (l';rye RAT-
o=l 7AN{(C-co)r'-7) (ts!i)) € ?R)
let 9p=A14d %l 70V %2 71
{
fix ¢
assume i: i < length ss
with par-step-fun(4) id have i2: i < length ts by auto
from par-step-fun(3)[OF i2] have step: (ss ! i - o, ts | i) € par-rstep R
unfolding id nth-map[OF i] .
from ¢ have mem: ss! i € set ss by auto
from Fun.prems(1) mem have linear-term (ss ! i) by auto
from Fun.ITH[OF mem this step] have 3 7. ?p 7 i .

then have V i. 3 tau. ¢ < length ss — ?p tau i by blast
from choice|OF this] obtain taus where taus: A i. i < length ss = ?p (taus
1) © by blast
show ?thesis
proof (cases 3 i. i < length ss \ ?p2 (taus i) 1)
case True
then obtain ¢ where i: { < length ss and p2: ?p2 (taus i) ¢ by blast+
from par-step-fun(2)[unfolded id) have t: t = Fun f ts .
from ¢ have i i < length ts unfolding len .
from p2 obtain C 1" I’ r’ where ssi: ss ! i = C (I"”"y and is-Fun I (I',r)
eRI'-oc=1"tausi
and tsi: ((C -c o) (r'- tausi), ts! i) € R by blast
from id-take-nth-drop|OF i, unfolded ssi] obtain bef aft where ss: ss = bef
Q@ C (") # aft
and bef: bef = take i ss
and aft: aft = drop (Suc 7) ss by blast
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let 2C = More f bef C aft
let 2r = (C . o) (r'- tausi)
let ?sig = map (A s. s - o)
let ?bra = %sig bef Q 2r # %sig aft
have C: (¢C .. o) (r' - taus i ) = Fun f ?bra by simp
show ?thesis unfolding ss
proof (rule exI[of - taus i], rule disjI2, rule exI[of - ?C], intro exI conjI)
show is-Fun 1" by fact
show (I,;r') € R by fact
show " - ¢ =1’ - taus i by fact
show ((?C -c o) (' taus i), t) € ?R unfolding C't
proof (rule par-rstep.par-step-fun)
show length ?bra = length ts
unfolding len unfolding ss by simp
next
fix j
assume j: j < length ts
show (?bra ! j, ts! j) € ?R
proof (cases j = 1)
case True
then have ?bra ! j = ?r using bef i by (simp add: nth-append)
then show ?thesis using tsi True by simp
next
case Fulse
from bef i have min (length ss) i = i by simp
then have ?bra ! j = (%sig bef @ (C (1") - o) # %sig aft) ! j using
False bef i by (simp add: nth-append)
also have ... = %sig ss | j unfolding ss by simp
also have ... = ss1 ! j unfolding id ..
finally show ?thesis
using par-step-fun(3)[OF j] by auto
qed
qed
qed simp
next
case Fulse
with taus have taus: \ i. i < length ss = ?p1 (taus i) i by blast
from Fun(2) have is-partition (map vars-term ss) by simp
from subst-merge[OF this, of taus] obtain 7 where tau: A\ i z. i < length ss
= © € vars-term (ss ! i) = 7 x = taus ¢ by auto
let %tau = 7
{
fix ¢
assume i: i < length ss
then have mem: ss ! i € set ss by auto
from taus[OF i] have pI: ?p1 (taus i) 7 .
have id: ss! i - (taus i) =ss!i -1
by (rule term-subst-eq, rule tau[OF i, symmetric])
have ?p1 ?tau i
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proof (rule conjI[OF - balll])
fix z
assume z: ¢ € vars-term (ss ! i)
with p! have step: (0 z, taus i x) € par-rstep R by auto
with tau[OF i 1]
show (o z, ?tau z) € par-rstep R by simp
qed (insert p1[unfolded id], auto)
} note p1 = this
have p1: A i. i < length ss = ?p1 7 i by (rule p1)
let ?ss = map (A s. s-7T) ss
show ?thesis unfolding par-step-fun(2) id
proof (rule exI[of - 7], rule disjl1, rule conjI[OF - balll])
have ts = map (A i. ts ! ©) [0 ..< (length ts)] by (rule map-nth[symmetric])

also have ... = map (A 4. %ss ! i) [0 ..< length ?ss] unfolding len using
pl by auto
also have ... = %ss by (rule map-nth)

finally have ts: ts = ?ss .
show Fun fts = Fun f ss - 7 unfolding ts by auto
next
fix z
assume z € vars-term (Fun f ss)
then obtain s where s: s € set ss and z: € vars-term s by auto
from s[unfolded set-conv-nth] obtain ¢ where i: i < length ss and s: s =
ss ! i by auto
from p1[OF i z[unfolded s|
show (o z, 7 z) € par-rstep R by blast
qed
qed
qed
qed

lemma par-rstep-id:
(s, t) € R = (s, t) € par-rstep R
using par-rstep.root-step [of s t R Var] by simp

6.3 Parallel Rewriting using Multihole Contexts

datatype ('f,’v)par-info = Par-Info
(par-left: ('f,'v)term)
(par-right: ('f,'v)term)
(par-rule: ('f,"v)rule)

abbreviation par-lefts where par-lefts = map par-left
abbreviation par-rights where par-rights = map par-right
abbreviation par-rules where par-rules = (A info. par-rule  set info)

definition par-cond :: ('f,'v)trs = (’f,’v)par-info = bool where

par-cond R info = (par-rule info € R A (par-left info, par-right info) € rrstep
{par-rule info})
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abbreviation par-conds where par-conds R = X infos. Ball (set infos) (par-cond

R)

lemma par-cond-imp-rrstep: assumes par-cond R info
shows (par-left info, par-right info) € rrstep R
using assms unfolding par-cond-def
by (metis rrstepE rrstepl singletonD)

lemma par-conds-imp-rrstep: assumes par-conds R infos

and s = par-lefts infos ! i t = par-rights infos | i

and i < length infos
shows (s, t) € rrstep R
proof —

from assms have eq: s = par-left (infos | ©) t = par-right (infos ! i) and pc:
par-cond R (infos ! 1)

by auto

show ?thesis unfolding eq using par-cond-imp-rrstep[OF pc]| .

qed

definition par-rstep-mctzt where
par-rstep-mctet R Cinfos = {(s, t). s =5 (C, par-lefts infos) A\ t =5 (C, par-rights
infos) A par-conds R infos}

lemma par-rstep-mctatl: assumes s =¢ (C, par-lefts infos) t =; (C, par-rights
infos) par-conds R infos

shows (s,t) € par-rstep-mctzt R C infos

unfolding par-rstep-mctzt-def using assms by auto

lemma par-rstep-mctat-refil: (s,s) € par-rstep-mctat R (mctzt-of-term s) ||
by (intro par-rstep-mctatl, auto)

lemma par-rstep-mctat-varl: (Var x, Var z) € par-rstep-mctat R (MVar z) |]
by (intro par-rstep-mctatl, auto)

lemma par-rstep-mctat-MHolel: (I,r) € R = s=1-0 =t =1r -0 = infos
= [Par-Info s t (I,r)]

= (s,t) € par-rstep-mctzt R MHole infos

by (intro par-rstep-mctatl, auto simp: par-cond-def)

lemma par-rstep-mctt-funl:
assumes rec: \ i. i < length ts = (ss | 4, ts | i) € par-rstep-mctzt R (Cs ! i)
(infos ! 7)
and len: length ss = length ts length Cs = length ts length infos = length ts
shows (Fun f ss, Fun f ts) € par-rstep-mctazt R (MFun f Cs) (concat infos)
unfolding par-rstep-mctzt-def
proof (standard, unfold split, intro congl)

{
fix 7
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assume ¢ < length ts
from rec[OF this, unfolded par-rstep-mctat-def]
have ss ! i =; (Cs ! 4, par-lefts (infos ! 1)) ts | i =5 (Cs ! i, par-rights (infos !
)
par-conds R (infos ! 7) by auto
} note x = this
from x(38)[folded len(3)] show par-conds R (concat infos)
by (metis in-set-conv-nth nth-concat-split)
show Fun f ss =¢ (MFun f Cs, par-lefts (concat infos)) unfolding map-concat
by (intro eqf-MFunl, insert (1) len, auto)
show Fun fts =y (MFun f Cs, par-rights (concat infos)) unfolding map-concat
by (intro eqf-MFunl, insert x(2) len, auto)
qed

lemma par-rstep-mctzt-funl-ex:
assumes A i. { < length ts = 3 C infos. (ss ! i, ts | i) € par-rstep-mctzt R C
infos
and length ss = length ts
shows 3 C infos. (Fun f ss, Fun f ts) € par-rstep-mctzt R C infos N C # MHole

proof —
let %n = length ts
from assms(1) have V . 3 Cinfos. i < %n — (ss ! i, ts | i) € par-rstep-mctat
R C infos by auto
from choice[OF this] obtain C where V i. 3 infos. i < n — (ss ! i, ts ! q)
€ par-rstep-mctat R (C ©) infos by auto
from choice[OF this] obtain infos where steps: \ i. i < %n = (ss ! i, ts ! i)
€ par-rstep-mctxt R (C 1) (infos i) by auto
let Cs = map C [0 ..< %n]
let ?Is = map infos [0 ..< 7n]
show ?thesis
proof (intro exl conjl, rule par-rstep-mctxt-funl)
show length ?Cs = ?n by simp
show length ?Is = ?n by simp
qed (insert assms(2) steps, auto)
qed

Parallel rewriting is closed under multihole-contexts.

lemma par-rstep-mctxt:
assumes s =; (C, ss) and ¢t =; (C, ts)
and Vi<length ss. (ss! i, ts! i) € par-rstep R
shows (s, t) € par-rstep R
proof —
have [simp]: length ss = length ts using assms by (auto dest!: eqfE)
have [simp]: t = fill-holes C ts using assms by (auto dest: eqfE)
have (s, fill-holes C ts) € par-rstep R
using assms by (intro eqf-all-ctxt-closed-step [of UNIV - s C ss, THEN con-
junct1]) auto
then show ?thesis by simp
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qed

lemma par-rstep-mctat-rrstepl :
assumes s =¢ (C, ss) and t =5 (C, ts)
and Vi<length ss. (ss !4, ts ! i) € rrstep R
shows (s, t) € par-rstep R
by (meson assms contra-subsetD par-rstep-mctat rrstep-imp-rstep rstep-par-rstep)

lemma par-rstep-mctxtD:
assumes (s, t) € par-rstep R
shows 3 C ss ts. s =5 (C, ss) At =5 (C, ts) A (Vi<length ss. (ss! 4, ts! i) €
rrstep R)
(is3Cssts. 2P st C ssts)
using assms
proof (induct)
case (root-step s t o)
then have (s - o, t - 0) € rrstep R by auto
moreover have s - 0 =; (MHole, [s - o]) and t - 0 =; (MHole, [t - ¢]) by auto
ultimately show “case by force
next
case (par-step-var x)
have Var z =; (MVar z, []) by auto
then show ?case by force
next
case (par-step-fun ts ss f)
then have Vi<length ts. 3z. P (ss ! i) (ts ! i) (fst ) (fst (snd z)) (snd (snd
x)) by force
then obtain g where Vi<length ts. ?P (ss ! i) (¢ts! @) (fst (g 7)) (fst (snd (g
))) (snd (snd (g 1))
unfolding choice-iff ' by blast
moreover
define Cs us vs where Cs = map (\i. fst (g 7)) [0 ..< length ts]
and us = map (Ai. fst (snd (g 7)) [0 ..< length ts]
and vs = map (Ai. snd (snd (g 7))) [0 ..< length ts]
ultimately have [simp]: length Cs = length ts
length us = length ts length vs = length ts
and *: Vi<length us. ss! i =5 (Cs i, us' i) Ats!i=5 (Cs!i, vs!i)A
(Vji<length (us!i). (us!i!j, vs!ilj) € rrstep R)
by simp-all
define C where C = MFun f Cs
have Fun f ss =; (C, concat us) and Fun fts =¢ (C, concat vs)
using * by (auto simp: C-def <length ss = length tss intro: eqf-MFunl)
moreover have Vi<length (concat us). (concat us ! i, concat vs ! i) € rrstep R
using * by (intro concat-all-nth) (auto dest!: eqfE)
ultimately show ?case by blast
qed

lemma par-rstep-mctrt-mono: assumes R C S
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shows par-rstep-mctxt R C infos C par-rstep-mctat S C infos
using assms unfolding par-rstep-mctzt-def par-cond-def by auto

lemma par-rstep-mctrtE:
assumes (s, t) € par-rstep R
obtains C infos where s =; (C, par-lefts infos) and t =5 (C, par-rights infos)
and par-conds R infos
proof —
have 3 Cinfos. s =5 (C, par-lefts infos) A t =7 (C, par-rights infos) A par-conds
R infos (is 3 C infos. 2P s t C infos)
using assms
proof (induct)
case (root-step s t o)
thus ?case by (intro exI[of - MHole] exI[of - [Par-Info (s - o) (t - o) (s,t)]],
auto simp: par-cond-def)
next
case (par-step-var x)
show ?case by (intro exl[of - MVar z] exl[of - Nil], auto)
next
case (par-step-fun ts ss f)
have 3 C infos. (Fun f ss, Fun f ts) € par-rstep-mctzt R C infos N C # MHole
by (intro par-rstep-mctat-funl-ex, insert par-step-fun, auto simp: par-rstep-mctat-def)
then obtain C infos where (Fun f ss, Fun f ts) € par-rstep-mctat R C infos
by auto
hence ?P (Fun f ss) (Fun f ts) C infos
by (auto simp: par-rstep-mctzt-def)
thus ?case by blast
qed
with that show ?thesis by blast
qed

lemma par-rstep-par-rstep-mctxt-conv:
(s, t) € par-rstep R «— (3 Cinfos. (s, t) € par-rstep-mctat R C infos)
proof
assume (s, t) € par-rstep R
from par-rstep-mctetE|OF this] obtain C infos
where s =; (C, par-lefts infos) and t =; (C, par-rights infos) and par-conds
R infos
by metis
then show 3 C'infos. (s, t) € par-rstep-mctat R Cinfos by (auto simp: par-rstep-mctat-def)
next
assume 3 C infos. (s, t) € par-rstep-mctzt R C infos
then show (s, t) € par-rstep R
by (force simp: par-rstep-mctzt-def par-cond-def rrstep-def’ set-conv-nth intro!:
par-rstep-mctzt-rrstepl)
qed

fun subst-apply-par-info :: ('f,'v)par-info = ('f,’v)subst = ('f,’v)par-info (infixl
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-pi 67) where
Par-Info s t v -pi 0 = Par-Info (s - o) (t - o) r

lemma subst-apply-par-info-simps|simpl:
par-left (info -pi o) = par-left info - o
par-right (info -pi o) = par-right info - o
par-rule (info -pi o) = par-rule info
par-cond R info = par-cond R (info -pi o)
unfolding par-cond-def
by (cases info; force simp: subst.closedD subst-closed-rrstep)+

lemma par-rstep-mctat-subst: assumes (s,t) € par-rstep-mctzt R C infos
shows (s - 0, t - 0) € par-rstep-mctat R (C -mc o) (map (X i. ¢ -pi o) infos)
using assms unfolding par-rstep-mctzt-def by (auto simp: o-def dest!: subst-apply-mctat-sound|of

-C-a))

lemma par-rstep-mctzt-MVarE:
assumes (s,t) € par-rstep-mctazt R (MVar ) infos
shows s = Var z t = Var z infos = ||
using assms[unfolded par-rstep-mctat-def)
by (auto dest: eqf-MVarFE)

lemma par-rstep-mctat-MHoleE:
assumes (s,t) € par-rstep-mctzt R MHole infos
obtains info where
par-left info = s
par-right info = t
infos = [info]
(s, t) € rrstep R
par-cond R info
proof —
from assms|unfolded par-rstep-mctxzt-def, simplified)
have s =; (MHole, par-lefts infos) t =y (MHole, par-rights infos) and par-conds
R infos by auto
from eqf-MHoleE[OF this(1)] eqf-MHoleE[OF this(2)] this(3)
obtain info where *: infos = [info] s = par-left info t = par-right info par-cond
R info
by (cases infos, auto)
from par-cond-imp-rrstep|OF %(4)] *
have (s,t) € rrstep R by auto
with x have 3 info. par-left info = s A par-right info = ¢t A infos = [info] A (s,
t) € rrstep R A
par-cond R info by auto
thus (Ainfo.
par-left info = s =
par-right info = t —
infos = [info] =
(s, t) € rrstep R = par-cond R info = thesis) =
thesis by blast
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qed

lemma par-rstep-mctat-MFunD:
assumes (s,t) € par-rstep-mctzt R (MFun f Cs) infos
shows 3 ss ts Infos.
s = Fun fss A
t = Fun fits A
length ss = length Cs A
length ts = length Cs N
length Infos = length Cs A
infos = concat Infos N\
(V @ < length Cs. (ss !, ts! ©) € par-rstep-mctat R (Cs ! i) (Infos ! 7))
proof —
from assms[unfolded par-rstep-mctzt-def]
have eq: s =5 (MFun f Cs, par-lefts infos) t =5 (MFun f Cs, par-rights infos)
and pc: par-conds R infos
by auto
define Infos where Infos = partition-holes infos Cs
let ?sss = map par-lefts Infos
let ?tss = map par-rights Infos
let ?n = length Cs
let %is = [0..<?n]
from eqfE[OF eq(1)]
have s: s = Fun f (map (M. fill-holes (Cs ! i) (%sss | %)) %is)
and num: num-holes (MFun f Cs) = length infos
and len: length Infos = %n
and infos: infos = concat Infos
and lens: A i. i < n = num-holes (Cs ! ©) = length (Infos ! 7)
by (auto simp: Infos-def)
note pc = pclunfolded infos set-concat]
from eqfE[OF eq(2)] num
have t: ¢t = Fun f (map (\i. fill-holes (Cs ! i) (2tss | i)) %is)
by (auto simp: Infos-def)
show ?thesis
apply (intro exI|of - Infos] exI conjl infos len alll implI)
apply (rule s)
apply (rule t)
apply force
apply force
apply (intro par-rstep-mctatl, insert lens len pc, auto)
done
qged

6.4 Variable Restricted Parallel Rewriting

fun vars-below-hole :: ('f,"v)term = ('f,"v)mctzt = 'v set where
vars-below-hole t MHole = vars-term t

| vars-below-hole t (MVar y) = {}
| vars-below-hole (Fun - ts) (MFun - Cs) =
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U (set (map (A (¢,C). vars-below-hole t C) (zip ts Cs)))
| vars-below-hole (Var -) (MFun - -) = Code.abort (STR "assumption in vars-below-hole
violated") (A -. {})

lemma vars-below-hole-no-hole: hole-poss C = {} = wvars-below-hole t C = {}
by (induct t C rule: vars-below-hole.induct, auto simp: set-zip, blast)

lemma vars-below-hole-mctat-of-term[simp|: vars-below-hole t (mctzt-of-term u) =

{

by (rule vars-below-hole-no-hole, auto)

lemma vars-below-hole-vars-term: vars-below-hole t C' C wvars-term t
by (induct t C rule: vars-below-hole.induct; force simp: set-zip set-conv-nth)

lemma vars-below-hole-subst[simp]: vars-below-hole t (C -mc o) = vars-below-hole
t C
by (induct t C rule: vars-below-hole.induct; fastforce simp: set-zip)

lemma vars-below-hole-Fun: assumes length ls = length Cs

shows vars-below-hole (Fun fls) (MFun f Cs) = |J {vars-below-hole (Is ! i) (Cs
14) | i. i < length Cs}

using assms by (auto simp: set-zip)

lemma vars-below-hole-term-subst:

hole-poss D C poss t = wars-below-hole (¢t - o) D = |J (vars-term ‘o °
vars-below-hole t D)
proof (induct t D rule: vars-below-hole.induct)

case (1t)

then show ?case by (auto simp: vars-term-subst)
next

case (3 fts g Cs)

then show Zcase by (fastforce simp: set-zip)
next

case (4 z f Cs)

hence hp: hole-poss (MFun f Cs) = {} by auto

show ?Zcase unfolding vars-below-hole-no-hole[OF hp| by auto
qed auto

lemma vars-below-hole-eqf: assumes t = (C, ts)
shows vars-below-hole t C = |J (vars-term ¢ set ts)
using assms
proof (induct C arbitrary: t ts)
case (MVar z)
from eqf-MVarE[OF MVar(1)]
show ?case by auto
next
case MHole
from eqf-MHoleE[OF MHole(1)]
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show ?case by auto
next
case (MFun f Cs t ss)
from eqf-MFunE[OF MFun(2)] obtain ts sss where
x: t = Fun f ts length ts = length Cs length sss = length Cs
N i i <length Cs = ts! i =5 (Cs! i, sss!i)
ss = concat sss by blast
{
fix ¢
assume i: i < length Cs
hence mem: Cs ! i € set Cs by auto
from MFun(1)[OF mem *(4)[OF i)
have vars-below-hole (ts ! i) (Cs i) = J (vars-term  set (sss! 7)) .
} note IH = this
show ?case unfolding (1) x(5) set-concat set-conv-nth|of sss] using IH %(2,3)
by (auto simp: set-zip)
qed

definition par-rstep-var-restr R V.= {(s,t) | s t C infos.
(s, t) € par-rstep-mctat R C infos A vars-below-hole t C NV = {}}

lemma par-rstep-var-restr-mono: assumes R C S W C V
shows par-rstep-var-restr R 'V C par-rstep-var-restr S W
unfolding par-rstep-var-restr-def using par-rstep-mctzt-mono[OF assms(1)] assms(2)
by blast

lemma par-rstep-var-restr-refl[simp|: (t, t) € par-rstep-var-restr R 'V
unfolding par-rstep-var-restr-def
by (intro Collect] exI conjI refl, force, rule par-rstep-mctat-refll, auto)

the most important property: a substitution step and a parallel step can be
merged into a single parallel step

lemma merge-par-rstep-var-restr:
assumes subst-R: A\ z. (0 z, v x) € par-rstep R
and st: (s, t) € par-rstep-var-restr R 'V
and subst-eq: Nz. 2 ¢ V=35z =~z
shows (s - 0, t - v) € par-rstep R
proof —
from st[unfolded par-rstep-var-restr-def] subst-eq
obtain C infos where st: (s, t) € par-rstep-mctat R C infos
and subst-eq: \ z. © € vars-below-hole t C = § © =~y =
by auto
thus ?thesis
proof (induct C arbitrary: s t infos)
case (MVar z)
from par-rstep-mctzt-MVarE[OF this(1)]
show ?case using subst-R by auto
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next
case (MHole s t)
have (s,t) € par-rstep R
using MHole.prems(1) par-rstep-par-rstep-mctzt-conv by blast
hence step: (s - 6, t - §) € par-rstep R
by (rule subst-closed-par-rstep)
have vars-below-hole t MHole = vars-term t by simp
with MHole(2) have t: ¢t - 6 = t - v by (auto intro: term-subst-eq)
thus ?case using step by auto
next
case (MFun f Cs s t infos)
let ?n = length Cs
let %is = [0..<?n]

from par-rstep-mctet-MFunD]OF MFun(2))
obtain ss ts Infos
where s: s = Fun f ss
and t: t = Fun fts
and len: length ss = length Cs
length ts = length Cs
length Infos = length Cs
and infos: infos = concat Infos
and steps: A i. i<length Cs = (ss ! i, ts | i) € par-rstep-mctat R (Cs ! 9)
(Infos ! 1)
by blast
{
fix ¢
assume i: i < ?n
hence mem: Cs! i € set Cs by auto
have IH: (ss! i -9, ts!i-y) € par-rstep R
proof (rule MFun(1)[OF mem steps|OF i]])
fix z
assume z € vars-below-hole (ts ! i) (Cs ! i)
hence = € vars-below-hole t (MFun f Cs) unfolding ¢ using i len(2)
by (auto simp: set-zip)
from MFun(8)[OF this] show 6 z =~ z .
qed
}
thus ?case unfolding s ¢ using len(1—2) MFun(1—2) by auto
qed
qed

the variable restricted parallel rewrite relation is closed under variable re-
namings, provided that the set of forbidden variables is also renamed (in the
inverse way)

lemma par-rstep-var-restr-subst:
assumes (s,t) € par-rstep-var-restr R (v V)
and A z.oz- (Varoy) = Varz
shows (s - o, t - 0) € par-rstep-var-restr R 'V
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proof —
from assms(1)[unfolded par-rstep-var-restr-def, simplified)
obtain C infos where step: (s, t) € par-rstep-mctzt R C infos and wvars:
vars-below-hole t C N~y * V = {}
by auto
from stepunfolded par-rstep-mctat-def, simplified)
have t =; (C, par-rights infos) by auto
hence hole-poss C C poss t by (metis hole-poss-subset-poss)
hence hp: hole-poss (C' -mc o) C poss t
using hole-poss-subst by auto
from par-rstep-mctat-subst|OF step, of o]
have step: (s - o, t - 0) € par-rstep-mctzt R (C -mc o) (map (Ai. i -pi o) infos)

show (s - o, t - 0) € par-rstep-var-restr R 'V
unfolding par-rstep-var-restr-def
proof (standard, intro exI conjl, rule refl, rule step)
show vars-below-hole (¢t - o) (C -mc o) NV = {}
unfolding vars-below-hole-term-subst[ OF hp]
unfolding vars-below-hole-subst
proof (intro equalsOI, elim IntE)
fix z
assume z € |J (vars-term ‘o ¢ vars-below-hole t C)
then obtain y where y: y € vars-below-hole t C and x: © € vars-term (o
y) by auto
from y vars have y: y ¢ v * V by auto
assume z € V
with assms(2)[of y] y © show Fualse unfolding o-def by (cases o y, auto)
qed
qed
qed

end

7 Orthogonality

theory Orthogonality
imports
Critical-Pairs
Parallel- Rewriting
begin

This theory contains the result, that weak orthogonality implies confluence.

We prove the diamond property of par-rstep for weakly orthogonal systems.

context
fixes ren :: 'v :: infinite renaming?2
begin
lemma weakly-orthogonal-main: fixes R :: ('f,'v)trs
assumes st1: (s,t1) € par-rstep R and st2: (s,t2) € par-rstep R and weak-ortho:
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left-linear-trs R N\ bl r. (bl,r) € critical-pairs ren R R =l = r
and wf: A lr. (I,r) € R = is-Fun |
shows 3 w. (t1,u) € par-rstep R A (t2,u) € par-rstep R
proof —
let ?R = par-rstep R
let ?CP = critical-pairs ren R R
{
fixIlstso fr
assume below: \ 4. i < length ls = ((map AN 1. 1 -0)ls) ! i, ts! i) € ?R
and rule: (Fun fls, r) € R
and len: length ts = length ls
let 2ls = map (A 1. 1-0)ls
from weak-ortho(1) rule have lin: linear-term (Fun fls) unfolding left-linear-trs-def
by auto
let %p1t =A7d ts!i=1Is!i-7 AN x € varsterm (Is! 7). (0 z, T z) €
par-rstep R)
let 2p2 =X74 (3 CU"UrIs!i=CU") Nis-Funl”" N (I';r))y € R A (1" -
c=U"1)AN{(C -co){r'-7), ts!i)€ par-rstep R)

fix ¢
assume i: 1 < length Is
then have i2: i < length ts using len by simp
from below|[OF i] have step: (Is! i - o, ts ! i) € ?R using i by auto
from ¢ have mem: Is | i € set Is by auto
from lin ¢ have lin: linear-term (Is ! i) by auto
from par-rstep-linear-subst| OF lin step] have 3 7. ?pl 74V ?p2 7 i .
} note p12 = this
have 3 w. (r - 0, u) € ?R A (Fun fts, u) € ?R
proof (cases 3 i 7. i < length Is A ?p2 T 1)
case True
then obtain i 7 where i: i < length Is and p2: ?p2 T i by blast
from p2 obtain C "' I’ v’ where Isi: Is ! i = C (") and 1" is-Fun (I")
and Ir: (I'r') € R
and unif: " - o =1"-7and tsi: (C -co) (r'-7),ts!4) € ?R by blast
from id-take-nth-drop|OF i] obtain bef aft where Is: Is = bef @ C (1" ) #
aft and bef: bef = take i Is unfolding Isi by auto
from ¢ bef have bef: length bef = i by auto
let ?C = More f bef C aft
from bef have hp: hole-pos ?C = i # hole-pos C by simp
have fls: Fun fls = ?C (1) unfolding Is by simp
from mgu-vd-complete[OF unif] obtain p1 p2 § where
mgu: mgu-vd ren 1" I = Some (1, p2) and id: 1" - pl = 1" p2
and sigma: 0 = pul og 0 and tau: 7 = p2 oz § by blast
let ?sig = map (A s. s - o)
let 2r = (C o) (r'-71)
let ?bra = %sig bef Q 2r # %sig aft
from weak-ortho(2)[OF critical-pairsI[OF rule Ir’ fls 1" mgu refl refl refl]]

have id: r - 0 = (?C -, o) (r' - 7 ) unfolding sigma tau by simp
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also have ... = Fun f ?bra by simp
also have (..., Fun f ts) € ?R
proof (rule par-rstep.par-step-fun)
show length ?bra = length ts unfolding len unfolding Is by simp
next
fix j
assume j: j < length ts
show (?bra ! j, ts ! j) € 7R
proof (cases j = 1)
case True
then have %bra ! j = ?r using bef i by (simp add: nth-append)
then show ?thesis using tsi True by simp
next
case Fulse
then have ?%bra | j = (?sig bef @ (C (1") - o) # %sig aft) ! j using False
bef i by (simp add: nth-append)
also have ... = %sig Is ! j unfolding [s by simp
finally show ?thesis
using below|OF j[unfolded len]] by auto
qed
qed
finally have step: (r - o, Fun f ts) € ?R .
show 3 w. (r - o, u) € R A (Fun fts, u) € ?R
by (rule exl, rule conjI[OF step par-rstep-refl])
next
case Fulse
with p12
have V i. (3 7. i < length Ils — ?p1 7 i) by blast
from choice[OF this] obtain tau where tau: A i. i < length Is = ?p1 (tau
i) © by blast
from lin have is-partition (map vars-term ls) by auto
from subst-merge|OF this, of tau] obtain 7 where 7: A i z. i < length Is
= z € vars-term (Is i) = 7z =tau iz
by blast
obtain ¢ where delta: § = (A z. if © € vars-term (Fun fls) then T z else o
z) by auto
{
fix ¢
assume i: i < length ls
from tau[OF i] have p: ?p1 (tau 7) 7 .
have id1: Is! i -taui=1Is!i- T
by (rule term-subst-eqOF T[OF i, symmetric]])
have id2: ... =1Is!{-0
by (rule term-subst-eq, unfold delta, insert i, auto)
have p: ?p! ¢ i using p using 7[OF i| unfolding id! id2 using id2
unfolding delta by auto
} note delt = this
have r-delt: (r - o, r-9) € ?R
proof (rule all-ctzt-closed-subst-step)
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fix z
assume z: ¢ € vars-term r
show (o z, 6 ) € 7R
proof (cases x € vars-term (Fun f ls))
case True
then obtain [ where [: | € set Is and z: © € vars-term | by auto
from l[unfolded set-conv-nth] obtain ¢ where i: ¢ < length Is and [: | =
Is! i by auto
from delt|OF i] z | show ?thesis by auto
next
case False
then have § © = ¢ z unfolding delta by auto
then show f?thesis by auto
qed
qed auto
{
let 2ls = map (A 1. 1-9) Is
have ts = map (A i. ts! i) [0 ..< length ts] by (rule map-nth[symmetric))

also have ... = map (X i. ts | ©) [0 ..< length Is] unfolding len by simp
also have ... = map (A i. ?ls ! i) [0 ..< length ?ls]

by (rule nth-map-conv, insert delt{f THEN conjunctl], auto)
also have ... = ?Is

by (rule map-nth)
finally have Fun fts = Fun fls - § by simp
} note id = this
have I-delt: (Fun fts, r - §) € ?R unfolding id
by (rule par-rstep.root-step| OF rule])
show 3 w. (r - o, u) € R A (Fun fts, u) € ?R
by (intro exl conjl, rule r-delt, rule I-delt)
qed
} note root-arg = this
from st1 st2 show %thesis
proof (induct arbitrary: t2 rule: par-rstep.induct)
case (par-step-var  t2)
have t2: t2 = Var z
by (rule wf-trs-par-rstep|OF wf par-step-var])
show 3 w. (Var z,u) € ?R A (12, u) € ?R unfolding ¢2
by (intro conjl exl par-rstep.par-step-var, auto)
next
case (par-step-fun ts1 ss f t2)
note IH = this
show ?case using IH(4)
proof (cases rule: par-rstep.cases)
case (par-step-fun ts2)
from IH(3) par-step-fun(3) have len: length ts2 = length ts1 by simp
{
fix ¢
assume i: i < length ts1
then have i2: i < length ts2 using len by simp
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from par-step-fun(2)[OF i2] have step2: (ss ! i, ts2 i) € ?R .
from [H(2)|OF i step2] have 3 w. (tsl ! i, u) € 2R A (ts2 ! 4, u) € 7R .

then have V i. 3 u. (i < length ts1 — (ts1 !4, u) € 2R A (ts2 ! i, u) €
?R) by blast
from choice[OF this] obtain us where join: A i. i < length ts1 = (ts1 !
i, us i) € R A (ts2 ! 4, us i) € 7R by blast
let ?us = map us [0 ..< length ts]
{
fix ¢
assume i: i < length ts1
from join[OF this| i have (ts1 !4, 2us! i) € 2R (¢ts2 !4, %us! i) € R by
auto
} note join = this
let ?u = Fun f %us
have step!: (Fun f ts1, ?u) € ?R
by (rule par-rstep.par-step-fun|OF join(1)], auto)
have step2: (Fun f ts2, ?u) € ?R
by (rule par-rstep.par-step-fun|OF join(2)], insert len, auto)
show ?thesis unfolding par-step-fun(1) using stepl step2 by blast
next
case (root-step I r o)
from wf[OF root-step(3)] root-step(1) obtain Is where [: | = Fun fls
by auto
from root-step(1) | have ss: ss = map (A 1. 1 - o) Is (is - = ?ls) by simp
from root-step(3) | have rule: (Fun fls, r) € R by simp
from root-step(2) have t2: 12 =r - o .
from par-step-fun(3) ss have len: length ts1 = length ls by simp
from root-arg[OF par-step-fun(1)[unfolded ss len] rule len]
show ?thesis unfolding t2 by blast
qed
next
case (root-step L r o)
note [H = this
from wf[OF IH(1)] IH(1) obtain f s where [: | = Fun fls and rule: (Fun f
Is,r) € R
by (cases I, auto)
from IH(2)[unfolded ] show ?case
proof (cases rule: par-rstep.cases)
case (par-step-var x)
then show ?thesis by simp
next
case (root-step I’ v/ T)
then have t2: t2 = r’ - 7 by auto
have id: Fun fls = O(Fun f Is) by simp
from mgu-vd-complete| OF root-step(1), of ren] obtain mul mu2 delta where

mgu: mgu-vd ren (Fun fls) I’ = Some (mul, mu2) and sigma: o = mul oy
delta
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and tau: T = mu2 oy delta by auto
from weak-ortho(2)[OF critical-pairsI[OF rule root-step(3) id - mgu refl refl]]
have r - mul = r’- mu2 by simp
then have id: r - 0 = r’ - 7 unfolding sigma tau by simp
show ?thesis unfolding t2 id by auto
next
case (par-step-fun ts ls’ g)
then have Is”: Is’ = map (A . | - o) Is and ¢: g = f and len: length ts =
length ls by auto
note par-step-fun = par-step-fun|unfolded ls’ g len]
from root-arg[OF par-step-fun(3) rule len]
show ?thesis unfolding par-step-fun(2) .
qed
qed
qed

lemma weakly-orthogonal-par-rstep-CR:
assumes weak-ortho: left-linear-trs R \ b 1 r. (b,l,r) € critical-pairs ren R R
= l=r
and wf: A lr. (I,r) € R = is-Fun |
shows CR (par-rstep R)
proof —
let YR = par-rstep R
from weakly-orthogonal-main[OF - - weak-ortho wf]
have diamond: \ s t1 t2. (s,t1) € R = (s,t2) € R = J w. (t1,u) € ?R A
(t2,u) € R .
show ?thesis
by (rule diamond-imp-CR, rule diamond-1, insert diamond, blast)
qed

lemma weakly-orthogonal-rstep-CR:

assumes weak-ortho: left-linear-trs R \ b 1 r. (b,l,r) € critical-pairs ren R R
= l=r

and wf: Alr. (I,r) € R = is-Fun |

shows CR (rstep R)
proof —

from weakly-orthogonal-par-rstep-CR[OF assms] have CR (par-rstep R) .

then show ?thesis unfolding CR-on-def join-def rtrancl-converse par-rsteps-rsteps

qed
end
end

8 Multi-Step Rewriting

theory Multistep
imports Trs
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begin

Multi-step rewriting (without proof terms).

inductive-set

mstep : ('f, ') trs = ('f, "v) term rel

for R

where
Var: (Var z, Var z) € mstep R |
args: \f n ss ts. [length ss = n; length ts = n;
Vi<n. (ss! i, ts ! i) € mstep R] =
(Fun f ss, Fun f ts) € mstep R |
rule: Nl r o 7. [(I, r) € R; Vz€vars-term . (o z, T z) € mstep R] =
(I-o,r 7)€ mstep R

lemma mstep-refl [simpl:
(t, t) € mstep R
by (induct t) (auto intro: mstep.intros)

lemma mstep-ctuxt:
assumes (s, t) € mstep R
shows (C(s), C(t)) € mstep R
proof (induction C')
case Hole with assms show ?case by simp
next
case (More f ss C'ts)
let ?ss = ss @ C{(s) # ts
let %ts = ss @ C(t) # ts
{ fix { assume i = length ss
then have (%ss !, ?ts! i) € mstep R
using More.IH by simp }
moreover
{ fix ¢ assume i < length ss
then have (%ss ! ¢, ?ts ! i) € mstep R
by (simp add: nth-append) }
moreover
{ fix i assume i < length ?ss and i > length ss
then have (%ss ! i, ?ts | i) € mstep R
by (simp add: nth-append) }
ultimately
have Vi<length ?ss. (%?ss! i, ?ts! i) € mstep R
by (metis linorder-neqE-nat)
from mstep.args [OF - - this, simplified]
show ?case by simp
qed

lemma rstep-imp-mstep:
assumes (s, t) € rstep R
shows (s, t) € mstep R
using assms
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proof (induct)
case (IHC o lr)
have V zcvars-term [. (o z, 0 =) € mstep R by simp
from mstep.rule [OF (1, r) € Ry this]
have (I - o, r - o) € mstep R by simp
from mstep-ctzt [OF this| show ?case by blast
qed

lemma rstep-mstep-subset:
rstep R C mstep R
by (auto simp: rstep-imp-mstep)

lemma subst-rsteps-imp-rule-rsteps:
assumes Y x€vars-term . (o x, 7 z) € (rstep R)

*

and (I, r) € R
shows (I - o, r - 1) € (rstep R)*
proof —

let o=MAz. (if x € vars-term | then o z else T x)
have -0 =1- %
by (simp add: term-subst-eg-conv)
with «({, r) € R» have (I - o, r - %0) € rstep R
by auto
moreover have (r - %0, r - 7) € (rstep R)*
by (rule subst-rsteps-imp-rsteps) (insert assms, auto)
ultimately show #¢thesis by auto
qged

lemma mstep-imp-rsteps:

assumes (s, t) € mstep R

shows (s, t) € (rstep R)*

using assms
proof (induct)

case (args f n ss ts)

then show ?case by (metis args-rsteps-imp-rsteps)
next

case (rule lr o T)

then show ?case using (I, r) € R» by (metis subst-rsteps-imp-rule-rsteps)
qed simp

lemma mstep-rsteps-subset:
shows mstep R C (rstep R)*
by (auto simp: mstep-imp-rsteps)

lemma mstep-mono: R C S = mstep R C mstep S
proof —
have (s,t) € mstep R = R C S = (s,t) € mstep S for s ¢
by (induct rule: mstep.induct, auto intro: mstep.intros)
thus R C S = mstep R C mstep S by auto
qed
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Thus if mstep R has the diamond property, then rstep R is confluent.

lemma Var-mstep:

assumes x: Alr. (I, r) € R = - is-Varl

and (Var z, t) € mstep R

shows t = Var z

using assms(2—)
proof cases

case (rule lr o 7)

then show ?thesis using * by (cases I, auto)
qed auto

8.1 Maximal multi-step rewriting.

inductive-set

mmstep = ('f, "v) trs = (’f, 'v) term rel

for R

where
Var: (Var z, Var ) € mmstep R |
args: \f n ss ts. [length ss = n; length ts = n;
- (3, r)eR. Jo. Fun fss =1 o);
Vi<n. (ss!i, ts! i) € mmstep R] =
(Fun f ss, Fun fts) € mmstep R |
rule: Nl r o 7. [(I, r) € R; Vz€vars-term . (o z, T ) € mmstep R] =
(I-o,r 7)€ mmstep R

lemma mmstep-imp-mstep:
assumes (s, t) € mmstep R
shows (s, t) € mstep R
using assms by (induct) (auto intro: mstep.intros)

lemma mmstep-mstep-subset:
mmstep R C mstep R
by (auto simp: mmstep-imp-mstep)

end

9 Implementation of First Order Rewriting

theory Trs-Impl
imports

Trs
First-Order-Rewriting. Term-Impl
First-Order-Terms. Matching
First-Order-Rewriting. Abstract- Rewriting-Impl
Option-Util
Transitive— Closure. RBT-Map-Set- Extension

begin
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9.1 Implementation of the Rewrite Relation

9.1.1 Generate All Rewrites
type-synonym ('f, 'v) rules = ('f, 'v) rule list

context fixes R :: ('f,"v)rules

begin
definition rrewrite :: ('f, 'v) term = ('f, 'v) term list
where
rrewrite s = List.maps (A (I, r) . case match s | of
None = |]

| Some o = [r-o]) R

lemma rrewrite-sound: t € set (rrewrite s) = (s,t) € rrstep (set R)
unfolding rrewrite-def List.maps-def using match-matches|of s
by force

lemma rrewrite-complete: assumes (s,t) € rrstep (set R)
shows 3 u. u € set (rrewrite s)
proof —
from assms obtain [ r ¢ where Ir: (I,r) € set Rand s: s=1-ocand t: t =71
o
by (rule rrstepE)
from match-complete’|OF s[symmetric]] obtain 7 where match: match s | =
Some T
by auto
with Ir match have r - 7 € set (rrewrite s) unfolding rrewrite-def List.maps-def
by force
thus %thesis ..
qed

lemma rrewrite: assumes A I r. (I,r) € set R = vars-term | O vars-term r
shows set (rrewrite s) = {t. (s,t) € rrstep (set R)}
proof (standard; clarify)
fix t
assume (s,t) € rrstep (set R)
then obtain [ r o where Ir: (I,r) € set Rand s: s=1-cand t:t=71" 0
by (rule rrstepE)
from match-complete’|OF s[symmetric]] obtain 7 where match: match s | =
Some T
and vars: \ ©. ¢ € vars-term | = o = 7 z by auto
have vars”. \ z. © € vars-term r = o = = 7 x using assms[OF Ir| vars by
auto
have t: ¢ = r - 7 unfolding ¢ using vars’ by (intro term-subst-eq, auto)
with Ir match show t € set (rrewrite s) unfolding rrewrite-def List.maps-def
by force
qed (rule rrewrite-sound)
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fun rewrite :: ('f, 'v) term = ('f, 'v) term list where
rewrite s = (rrewrite s Q (case s of Var - =[] | Fun f ss =
concat (map (A (i, si). map (X ti. Fun [ (ss[i := ti])) (rewrite si))
(zip [0..< length ss] ss))))

declare rewrite.simps[simp del]

lemma rewrite-sound: t € set (rewrite s) = (s,t) € rstep (set R)
proof (induct s arbitrary: t rule: rewrite.induct)
case (1 s t)
note [simp] = rewrite.simps|of s]
from 1(2) consider (root) t € set (rrewrite s) |
(arg) fss ti i where s = Fun f ss i < length ss ti € set (rewrite (ss! 1)) t =
Fun f (ss[i := ti])
by (auto simp: set-zip)
thus “case
proof cases
case root
with rrewrite-sound|of ¢ s| have (s,t) € rrstep (set R) by auto
thus ?thesis by (rule rrstep-imp-rstep)
next
case (arg f ss ti i)
from arg(2) have mem: (i, ss ! i) € set (zip [0..<length ss] ss) by (force simp:
set-zip)
from 1(1)[OF arg(1) mem refl arg(3)]
have IH: (ss ! i, ti) € rstep (set R) .
with arg have (s,t) € nrrstep (set R)
unfolding nrrstep-iff-arg-rstep by blast
thus ?thesis by (rule nrrstep-imp-rstep)
qed
qed

lemma rewrite: assumes A\ I r. (I,r) € set R = vars-term | O vars-term r
shows set (rewrite s) = {¢. (s,t) € rstep (set R)}
proof (standard; clarify)
fix t
assume (s,t) € rstep (set R)
then obtain C u v where s: s = C(u) and t: t = C(v) and step: (u,v) € rrstep
(set R)
by blast
from rrewrite[OF assms, of u] step have step: v € set (rrewrite u) by auto
show t € set (rewrite s) unfolding s ¢
proof (induct C)
case Hole
then show ?case using step by (auto simp: rewrite.simps|of u))
next
case (More f bef C aft)
show ?case
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apply (simp add: rewrite.simps|of Fun f -] set-zip)
apply (intro disjI2)
apply (intro exl[of - C{u)] exI)
apply (intro conjl exI[of - length bef])
using More by (auto simp: nth-append)
qed
qed (rule rewrite-sound)

lemma rewrite-complete: assumes (s,t) € rstep (set R)
shows 3 w. w € set (rewrite s)
proof —
from assms obtain C u v where s: s = C(u) and ¢: t = C(v) and step: (u,v)
€ rrstep (set R)
by blast
from rrewrite-complete[OF step] obtain v where step: v € set (rrewrite u) by
auto
have C(v) € set (rewrite s) unfolding s
proof (induct C)
case Hole
then show ?case using step by (auto simp: rewrite.simps[of u))
next
case (More f bef C aft)
show ?case
apply (simp add: rewrite.simps|of Fun f -] set-zip)
apply (intro disjI2)
apply (intro exI[of - C{u)] exI)
apply (intro conjl exI[of - length bef])
using More by (auto simp: nth-append)
qed
thus ?thesis by blast
qed
end

lemma rrewrite-mono: set R C set S = set (rrewrite R s) C set (rrewrite S s)
unfolding rrewrite-def List.maps-def by auto

lemma Union-image-mono: (N z. 2 € A= faCgz)= U (f*A) U (¢g°
4)
by blast

lemma rewrite-mono: assumes set R C set S
shows set (rewrite R s) C set (rewrite S s)
proof —
note rrewrite = rrewrite-mono[OF assms]
show ?thesis
proof (induct s)
case (Var z)
thus ?case using rrewrite unfolding rewrite.simps[of - Var z] by auto
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next
case (Fun f ss)
show ?case unfolding rewrite.simps|of - Fun f ss)
set-append term.simps set-concat set-map image-comp set-zip o-def
apply (intro Un-mono, rule rrewrite)
by (intro Union-image-mono, insert Fun, force simp: set-conv-nth[of ss])
qed
qed

definition first-rewrite :: ('f,'v)rules = ('f,’v)term = ('f,’v)term option
where first-rewrite R s = case rewrite R s of Nil = None | Cons t - = Some t

9.1.2 Checking a Single Rewrite Step

definition is-root-step :: ('f, 'v)trs = ('f, 'v) term = ('f, 'v) term = bool
where
is-root-step R s t = (3 (I, ) € R. case match-list Var [(l,s),(r,t)] of
None = False
| Some - = True)

lemma rrstep-code[code-unfold]: (s,t) € rrstep R «+— is-root-step R st
proof
show is-root-step R s t = (s, t) € rrstep R
unfolding is-root-step-def rrstep-def rstep-r-p-s-def’
by (auto split: option.splits) (force dest: match-list-matches)
assume (s, t) € rrstep R
then obtain o [ where Ir: (I,r) € Rand id: s=1-0ct=71-0
by (metis rrstepE)
show is-root-step R s t unfolding id
unfolding is-root-step-def
by (cases match-list Var [(I, 1 - o), (v, r - 0)],
auto introl: bexI[OF - Ir] dest!: match-list-complete)
qed

lemma is-root-step: is-root-step R s t = (s, t) € rrstep R
unfolding rrstep-code .

fun is-rstep = ('f,'v)trs = ('f,'v)term = ('f,"v)term = bool where
is-rstep R (Fun fts) (Fun g ss) = (
f = g A length ts = length ss A (3 @ € set [0..<length ss].
ss = ts[i := ss 1 i] A is-rstep R (ts! i) (ss! 1))
V (Fun f ts, Fun g ss) € rrstep R)
| is-rstep R st = ((s,t) € rrstep R)

lemma is-rstep-sound: is-rstep R s t = (s,t) € rstep R
proof (induct R s t rule: is-rstep.induct)

case (I R fts g ss)

show ?Zcase
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proof (cases (Fun f ts, Fun g ss) € rrstep R)
case True
thus ?thesis using rrstep-imp-rstep by auto
next
case Fulse
with 1(2) obtain ¢ where
i 1 < length ss and
af: g = f and len: length ts = length ss and id: ss = ts[i := ss ! i]
and rec: is-rstep R (ts ! 4) (ss! i)
by auto
from 1(1)[OF - rec] i have (ts! i, ss! i) € rstep R by auto
thus ?thesis unfolding ¢f using id ¢ len
by (metis nrrstep-iff-arg-rstep nrrstep-imp-rstep)
qed
qed (insert rrstep-imp-rstep, auto)

lemma is-rstep-complete: assumes (s,t) € rstep R
shows is-rstep R s t
proof —
from rstepE[OF assms] obtain C s’ t’ where
id: s = C (s"y t = C(t’) and step: (s',t") € rrstep R
using rrstepl by metis
show ?thesis unfolding id
proof (induct C)
case Hole
then show Zcase using step by (cases s'; cases t', auto)
next
case (More f bef C aft)
show ?case unfolding intp-actzt.simps is-rstep.simps
by (intro disjl1 conjl bexlI|of - length bef], insert More, auto)
qed
qed

lemma is-rstep[simp): is-rstep R s t «— (s,t) € rstep R
using is-rstep-sound is-rstep-complete by auto

lemma in-rstep-code[code-unfold):
st € rstep R +— (case st of (s,t) = is-rstep R s t)
by (cases st, auto)

9.2 Computation of a Normal Form

definition compute-rstep-NF :: ('f,"v)rules = ('f,'v)term = ('f,’v)term option
where compute-rstep-NF R s = compute-NF (first-rewrite R) s

lemma compute-rstep-NF-sound:

assumes res: compute-rstep-NF R s = Some t

shows (s, t) € (rstep (set R)) x using res[unfolded compute-rstep-NF-def)
proof (rule compute-NF-sound)
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fix st
assume first-rewrite R s = Some t
from this[unfolded first-rewrite-def] obtain ts where rewrite R s = t # ts
by (cases rewrite R s, auto)
then have ¢: ¢t € set (rewrite R s) by simp
from rewrite-sound[OF this] show (s,t) € rstep (set R) .
qed

lemma compute-rstep-NF-complete: assumes res: compute-rstep-NF R s = Some
t
shows t € NF (rstep (set R)) using res[unfolded compute-rstep-NF-def]
proof (rule compute-NF-complete)
fix s
assume first-rewrite R s = None
from this[unfolded first-rewrite-def] have empty: rewrite R s = ||
by (cases rewrite R s, auto)
have Fulse if (s,t) € rstep (set R) for ¢
using rewrite-complete[ OF that] arg-cong[OF empty, of set] by auto
thus s € NF (rstep (set R)) by blast
qed

lemma compute-rstep-NF-SN: assumes SN: SN (rstep (set R))
shows 3 t. compute-rstep-NF R s = Some t
proof —
have 3 t. compute-NF (first-rewrite R) s = Some t
proof (rule compute-NF-SN[OF SN])
fix st
assume first-rewrite R s = Some t
from this[unfolded first-rewrite-def] have
rewrite: t € set (rewrite R s) by (auto split: list.splits)
from rewrite-sound[OF this)
show (s,t) € rstep (set R) .
qed
then show ?thesis unfolding compute-rstep-NF-def .
qed

9.2.1 Computing Reachable Terms with Limit on Derivation Length

fun reachable-terms ::
("f, "v) rules = ('f, 'v) term = nat = ('f, "v) term list
where
reachable-terms R s 0 = [s]
| reachable-terms R s (Suc n) = (
let ts = (reachable-terms R s n) in
remdups (tsQ(concat (map (A t. rewrite R t) ts)))

)

lemma reachable-terms-nat:
assumes t € set (reachable-terms R s )
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shows 3 j. j < i A (s,t) € (rstep (set R)) ™ j
using assms
proof (induct i arbitrary: t)
case (
then show ?case by auto
next
case (Suc 17)
let ?R = X j. (rstep (set R)) " j
from Suc(2)
have t € set (reachable-terms R s 1)
V (3 u € set (reachable-terms R s i). t € set (rewrite R u)) by (simp add:
Let-def)
then show ?case
proof
assume t € set (reachable-terms R s 1)
from Suc(1)[OF this] obtain j where j < i and (s,t) € ?R j by auto
then show ?%thesis by (intro exI[of - j], auto)
next
assume 3 u € set (reachable-terms R s i). t € set (rewrite R u)
then obtain u where u: u € set (reachable-terms R s i)
and 1: t € set (rewrite R u) by auto
from rewrite-sound[OF 1] have ut: (u,t) € rstep (set R) .
from Suc(1)[OF u] obtain j where j: j < i and su: (s,u) € ?R j by auto
from su ut have (s,t) € ?R (Suc j) by auto
with j show ?thesis by (intro exlI[of - Suc j], auto)
qged
qed

lemma reachable-terms:
assumes t € set (reachable-terms R s 7)
shows (s,t) € (rstep (set R))
using reachable-terms-nat|OF assms] by (metis relpow-imp-rtrancl)

lemma reachable-terms-one:
assumes t € set (reachable-terms R s (Suc 0))
shows (s,t) € (rstep (set R)) =
proof —
from reachable-terms-nat]|OF assms] obtain j where j < 1
and (s,t) € (rstep (set R)) ™ j by auto
then show %thesis by (cases j, auto)
qed

9.2.2 Algorithms to Ensure Joinability

definition
check-join-NF ::
('f = showl, v :: showl) rules =
('f, ") term = ('f, 'v) term = showsl check
where
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check-join-NF R s t = case (compute-rstep-NF' R s, compute-rstep-NF R t) of
(Some s', Some t') =
check (s' = t’) (
showsl (STR "'the normal form ') o showsl s’ o showsl (STR " of ') o showsl
s
o showsl (STR " differs from| <= |the normal form ') o showsl t' o showsl (STR
""of ) o showsl t)
| - = error (showsl (STR "strange error in normal form computation'’))

lemma check-join-NF-sound:
assumes ok: isOK (check-join-NF R s t)
shows (s, t) € join (rstep (set R))
proof —
note ok = ok[unfolded check-join-NF-def)
from ok obtain s’ where s: compute-rstep-NF R s = Some s’ by force
note ok = ok[unfolded s]
from ok obtain t’ where ¢: compute-rstep-NF R t = Some t' by force
from ok[unfolded t] have id: s’ = t’ by simp
note seq = compute-rstep-NF-sound
from seq[OF s| seq[OF t]
show ?thesis unfolding id by auto
qged

function iterative-join-search-main ::
('f,'v) rules = ('f,'v) term = ('f,’v) term = nat = nat = bool
where
iterative-join-search-main R s t i n = (if i < n then
(((list-inter (reachable-terms R s i) (reachable-terms R t ©)) # []) V (iterative-join-search-main
R st (Suc i) n)) else False)
by pat-completeness auto

termination by (relation measure ( A (R,s,t,i,n). Suc n — ©)) auto

lemma iterative-join-search-main:
iterative-join-search-main R s t i n = (s,t) € join (rstep (set R))
proof (induction rule: iterative-join-search-main.induct)
case (1 Rstin)
from 1(2) have i-n: i < n by (simp split: if-splits)
note IH = 1(1)[OF i-n]
let ?I = list-inter (reachable-terms R s i) (reachable-terms R t 7)
from 1(2) i-n have ?I # [ V iterative-join-search-main R s t (Suc i) n by auto
then show Zcase
proof
assume a: 7] # ||
then obtain u us where u: 21 = u # us by (cases ?I, auto)
then have d: u € set ?I by auto
from this[simplified] reachable-terms[of u - - 7] have c: (s, u) € (rstep (set R))*
by auto
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from d[simplified] reachable-terms[of u - - i| have e: (t,u) € (rstep (set R))
by auto
from c¢ e show ?Zthesis by auto
next
assume b: iterative-join-search-main R s t (Suc i) n
from IH|[OF this] show ?thesis .
qed
qed

definition iterative-join-search where
iterative-join-search R s t n = iterative-join-search-main R st 0 n

lemma iterative-join-search: iterative-join-search R s t n = (s,t) € join (rstep
(set R))
by (rule iterative-join-search-main, unfold iterative-join-search-def)

definition

check-join-BFS-limit ::

nat = ('f :: showl, "v :: showl) rules =
('f, 'v) term = ('f, 'v) term = showsl check

where
check-join-BFS-limit n R s t = check (iterative-join-search R s t n)
(showsl (STR "'could not find a joining sequence of length at most ') o
showsl n o showsl (STR "' for the terms ') o showsl s o
showsl (STR " and ") o showsl t o showsl-nl)

lemma check-join-BFS-limit-sound:
assumes ok: isOK (check-join-BFS-limit n R s t)
shows (s, t) € join (rstep (set R))
by (rule iterative-join-search, insert ok[unfolded check-join-BFS-limit-def], simp)

definition map-funs-rules :: ('f = '9) = ('f, 'v) rules = (g, 'v) rules where
map-funs-rules fg R = map (map-funs-rule fg) R

lemma map-funs-rules-sound|simp|:
set (map-funs-rules fg R) = map-funs-trs fg (set R)
unfolding map-funs-rules-def map-funs-trs.simps by simp

9.2.3 Displaying TRSs as Strings

fun showsl-rule’ :: ('f = showsl) = (‘v = showsl) = String.literal = ('f, "v) rule
= showsl
where
showsl-rule’ fun var arr (I, r) =
showsl-term’ fun var | o showsl arr o showsl-term’ fun var r

definition showsl-rule = showsl-rule’ showsl showsl (STR ' —> ")
definition showsl-weak-rule = showsl-rule’ showsl showsl (STR ' —>="')
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definition
showsl-rules’ :: ('f = showsl) = ('v = showsl) = String.literal = ('f, 'v) rules
= showsl
where
showsl-rules’ fun var arr trs =
showsl-list-gen (showsl-rule’ fun var arr) (STR """) (STR ") (STR '"1<]")
(STR ") trs o showsl-nl

definition showsl-rules = showsl-rules’ showsl showsl (STR "' —> ")
definition showsl-weak-rules = showsl-rules’ showsl showsl (STR "' —>="')

definition
showsl-trs’ :: ('f = showsl) = ('v = showsl) = String.literal = String.literal =
("f, "v) rules = showsl
where
showsl-trs’ fun var name arr R = showsl name o showsl (STR '[<[«]") o

showsl-rules’ fun var arr R

definition showsl-trs = showsl-trs’ showsl showsl (STR ''rewrite system:") (STR
"_- //)

9.2.4 Computing Syntactic Properties of TRSs

definition add-vars-rule :: ('f, 'v) rule = "v list = v list
where
add-vars-rule r xs = add-vars-term (fst r) (add-vars-term (snd r) xs)

definition add-funs-rule :: ('f, "v) rule = 'f list = 'f list
where
add-funs-rule r fs = add-funs-term (fst r) (add-funs-term (snd r) fs)

definition add-funas-rule :: ('f, 'v) rule = ('f x nat) list = ('f x nat) list
where
add-funas-rule r fs = add-funas-term (fst r) (add-funas-term (snd r) fs)

definition add-roots-rule :: ('f, 'v) rule = ('f x nat) list = ('f x nat) list
where
add-roots-rule r fs = root-list (fst ) @ root-list (snd r) Q fs

definition add-funas-args-rule :: ('f, 'v) rule = ('f x nat) list = ('f x nat) list
where
add-funas-args-rule r fs = add-funas-args-term (fst r) (add-funas-args-term (snd
r) fs)
lemma add-vars-rule-vars-rule-list-conv [simp]:
add-vars-rule r rs = vars-rule-list r Q zs

by (simp add: add-vars-rule-def vars-rule-list-def)

lemma add-funs-rule-funs-rule-list-conv [simp]:
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add-funs-rule v fs = funs-rule-list r Q fs
by (simp add: add-funs-rule-def funs-rule-list-def)

lemma add-funas-rule-funas-rule-list-conv [simp]:
add-funas-rule r fs = funas-rule-list r Q fs
by (simp add: add-funas-rule-def funas-rule-list-def)

lemma add-roots-rule-roots-rule-list-conv [simp):
add-roots-rule 1 fs = roots-rule-list r Q fs
by (simp add: add-roots-rule-def roots-rule-list-def)

lemma add-funas-args-rule-funas-args-rule-list-conv [simp):
add-funas-args-rule r fs = funas-args-rule-list r Q fs
by (simp add: add-funas-args-rule-def funas-args-rule-list-def)

definition insert-vars-rule :: ('f, 'v) rule = "v list = 'v list
where
insert-vars-rule r xs = insert-vars-term (fst r) (insert-vars-term (snd r) xs)

definition insert-funs-rule :: ('f, 'v) rule = 'f list = 'f list
where
insert-funs-rule r fs = insert-funs-term (fst r) (insert-funs-term (snd r) fs)

definition insert-funas-rule :: ('f, 'v) rule = ('f x nat) list = ('f x nat) list
where
insert-funas-rule r fs = insert-funas-term (fst r) (insert-funas-term (snd r) fs)

definition insert-roots-rule :: ('f, 'v) rule = ('f x nat) list = ('f x nat) list
where
insert-roots-rule r fs =
foldr List.insert (option-to-list (root (fst r)) @Q option-to-list (root (snd r))) fs

definition insert-funas-args-rule :: ('f, 'v) rule = ('f x nat) list = ('f x nat) list
where
insert-funas-args-rule r fs = insert-funas-args-term (fst r) (insert-funas-args-term

(snd ) fs)

lemma set-insert-vars-rule [simp]:
set (insert-vars-rule r xs) = vars-term (fst r) U vars-term (snd r) U set zs
by (simp add: insert-vars-rule-def ac-simps)

lemma set-insert-funs-rule [simp):
set (insert-funs-rule r xs) = funs-term (fst r) U funs-term (snd r) U set xs
by (simp add: insert-funs-rule-def ac-simps)

lemma set-insert-funas-rule [simp):

set (insert-funas-rule r xs) = funas-term (fst r) U funas-term (snd r) U set xs
by (simp add: insert-funas-rule-def ac-simps)
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lemma set-insert-roots-rule [simp):
set (insert-roots-rule r xs) = root-set (fst r) U root-set (snd r) U set xs
by (cases fst r snd r rule: term.ezhaust [case-product term.ezhaust])
(auto simp: insert-roots-rule-def ac-simps)

lemma set-insert-funas-args-rule [simp):

set (insert-funas-args-rule r zs) = funas-args-term (fst r) U funas-args-term (snd
r) U set xs

by (simp add: insert-funas-args-rule-def ac-simps funas-args-term-def)

abbreviation vars-rule-impl r = insert-vars-rule r ]
abbreviation funs-rule-impl r = insert-funs-rule r ||
abbreviation funas-rule-impl r = insert-funas-rule r [|
abbreviation roots-rule-impl r = insert-roots-rule r ||
abbreviation funas-args-rule-impl r = insert-funas-args-rule r [|

lemma set-vars-rule-impl:
set (vars-rule-impl r) = vars-rule r
by (simp add: vars-rule-def)

lemma zzz-rule-list-code|code):
vars-rule-list r = add-vars-rule r ||
funs-rule-list r = add-funs-rule r ||
funas-rule-list r = add-funas-rule r ||
roots-rule-list r = add-roots-rule r ||
funas-args-rule-list r = add-funas-args-rule r ||
by (simp-all add: vars-rule-list-def funs-rule-list-def funas-rule-list-def
roots-rule-list-def funas-args-rule-list-def)

lemma zzz-trs-list-code|code]:
vars-trs-list trs = foldr add-vars-rule trs ||
funs-trs-list trs = foldr add-funs-rule trs ||
funas-trs-list trs = foldr add-funas-rule trs ||
funas-args-trs-list trs = foldr add-funas-args-rule trs ||
by (induct trs)
(simp-all add: vars-trs-list-def funs-trs-list-def funas-trs-list-def
roots-trs-list-def funas-args-trs-list-def)

definition insert-vars-trs :: ('f, 'v) rule list = 'v list = "v list
where
insert-vars-trs trs = foldr insert-vars-rule trs

definition insert-funs-trs :: ('f, 'v) rule list = 'f list = 'f list
where
insert-funs-trs trs = foldr insert-funs-rule trs

definition insert-funas-trs :: ('f, 'v) rule list = ('f x nat) list = ('f x nat) list

where
insert-funas-trs trs = foldr insert-funas-rule trs
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definition insert-roots-trs :: ('f, 'v) rule list = ('f x nat) list = ('f x nat) list
where
insert-roots-trs trs = foldr insert-roots-rule trs

definition insert-funas-args-trs :: ('f, "v) rule list = ('f x nat) list = ('f X nat)
list
where
insert-funas-args-trs trs = foldr insert-funas-args-rule trs

lemma set-insert-vars-trs [simp]:
set (insert-vars-trs trs xs) = ((Jr € set trs. vars-rule ) U set zs
by (induct trs arbitrary: zs) (simp-all add: insert-vars-trs-def ac-simps vars-rule-def)

lemma set-insert-funs-trs [simp):
set (insert-funs-trs trs fs) = (Jr € set trs. funs-rule r) U set fs
by (induct trs arbitrary: fs) (simp-all add: insert-funs-trs-def ac-simps funs-rule-def)

lemma set-insert-funas-trs [simp):
set (insert-funas-trs trs fs) = (Ur € set trs. funas-rule r) U set fs
by (induct trs arbitrary: fs) (simp-all add: insert-funas-trs-def ac-simps funas-rule-def)

lemma set-insert-roots-trs [simpl:
set (insert-roots-trs trs fs) = (| r € set trs. roots-rule r) U set fs
by (induct trs arbitrary: fs) (simp-all add: insert-roots-trs-def ac-simps roots-rule-def)

lemma set-insert-funas-args-trs [simp):
set (insert-funas-args-trs trs fs) = ((Jr € set trs. funas-args-rule r) U set fs
by (induct trs arbitrary: fs)
(simp-all add: insert-funas-args-trs-def ac-simps funas-args-rule-def)

abbreviation vars-trs-impl trs = insert-vars-trs trs ||
abbreviation funs-trs-impl trs = insert-funs-trs trs [|
abbreviation funas-trs-impl trs = insert-funas-trs trs ||
abbreviation roots-trs-impl trs = insert-roots-trs trs ||
abbreviation funas-args-trs-impl trs = insert-funas-args-trs trs ||

definition defined-list :: ('f, 'v) rule list = ('f x nat) list
where
defined-list R = [the (root l). (I, r) < R, is-Fun l]

lemma set-defined-list [simp]:
set (defined-list R) = {fn. defined (set R) fn}
by (force simp: defined-list-def defined-def elim!: root-Some)

definition check-left-linear-trs :: ('f :: showl, v :: showl) rules = showsl check
where
check-left-linear-trs trs =
check-all (Ar. linear-term (fst r)) trs
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<47 (X - showsl-trs trs o showsl (STR ' <= |is not left—linear] < ]"))

lemma check-left-linear-trs [simp):
isOK (check-left-linear-trs R) = left-linear-trs (set R)
unfolding check-left-linear-trs-def left-linear-trs-def
by auto

definition check-varcond-subset :: (-,-) rules = showsl check
where

check-varcond-subset R =

check-allm (Arule.
check-subseteq (vars-term-impl (snd rule)) (vars-term-impl (fst rule))
<+7? (Az. showsl (STR "'free variable ") o showsl x
o showsl (STR "' in right—hand side of rule ”’) o showsl-rule rule o showsl-nl)

) R

lemma check-varcond-subset [simp]:
isOK (check-varcond-subset R) = (¥ (I, r) € set R. vars-term r C vars-term [)
unfolding check-varcond-subset-def by force+

definition check-varcond-no-Var-lhs =
check-allm (Arule.
check (is-Fun (fst rule))
(showsl (STR "'variable left—hand side in rule ') o showsl-rule rule o showsl-nl))

lemma check-varcond-no-Var-lhs [simp:
isOK (check-varcond-no-Var-lhs R) «— (¥ (I, r) € set R. is-Fun l)
by (auto simp: check-varcond-no-Var-lhs-def)

definition check-wf-trs :: (-,-) rules = showsl check
where
check-wf-trs R = do {
check-varcond-no-Var-lhs R;
check-varcond-subset R
} <47 (Xe. showsl (STR "'the TRS is not well—formed/ < ") o e)

lemma check-wf-trs-conf [simp]:
isOK (check-wf-trs R) = wf-trs (set R)
by (force simp: check-wf-trs-def wf-trs-def)

definition check-not-wf-trs :: (-,-) rules = showsl check where
check-not-wf-trs R = check (— isOK (check-wf-trs R)) (showsl (STR ""The TRS

is well formed[<]"))

lemma check-not-wf-trs:
assumes isOK (check-not-wf-trs R)
shows — SN (rstep (set R))
proof —
from assms have — wf-irs (set R) unfolding check-not-wf-trs-def by auto
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with SN-rstep-imp-wf-trs show ?thesis by auto
qed

lemma instance-rule-code[code]:
instance-rule Ir st «— match-list (X -. fst Ir) [(fst st, fst Ir), (snd st, snd Ir)] #
None
(is 2l = (match-list ?d ?list # None))
proof
assume 7]
then obtain ¢ where fst Ir = fst st - o
and snd Ir = snd st - o by (auto simp: instance-rule-def)
then have Alt. (I, t) € set ?list =1 - 0 = t by (auto)
then have matchers (set ?list) # {} by (auto simp: matchers-def)
with match-list-complete
show match-list ?d ?list # None by blast
next
assume match-list ?d ?list # None
then obtain 7 where match-list ?d ?list = Some T by auto
from match-list-sound [OF this]
have fst Ir = fst st - 7 and snd Ir = snd st - T by auto
then show ?¢] by (auto simp: instance-rule-def)
qged

definition
check-CS-subseteq :: ('f, 'v) rules = ('f, "v) rules = ('f, "v) rule check
where
check-CS-subseteq R S = check-allm (A (I,r). check (Bex (set S) (instance-rule

(L)) (Lr)) R

lemma check-CS-subseteq [simp]:
isOK (check-CS-subseteq R S) +— subst.closure (set R) C subst.closure (set S)
(is 2l = ?r)
proof
assume 7]
show 7r
proof
fix z y
assume (z,y) € subst.closure (set R)
then show (z,y) € subst.closure (set S)
proof (induct)
case (subst st o)
with «?ly[unfolded check-CS-subseteq-def]
obtain [ r 6 where Ir: (I,r) € set Sand s: s=1-dand t: t =71 -0
by (auto simp add: instance-rule-def)
show ?case unfolding s t
using subst.closure.intros|OF Ir, of § o5 o]
by auto
qed
qed
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next
assume ?r
{
fix Ir
assume mem: Ir € set R
obtain | r where Ir: Ir = (I,r) by (cases Ir, auto)
with mem have (I,r) € subst.closure (set R) using subst.subset-closure by
auto
with «?ry have (I,r) € subst.closure (set S) by auto
then have Bex (set S) (instance-rule Ir) unfolding ir
proof (induct)
case (subst st o)
then show ?case unfolding instance-rule-def by force
qed

thus ?] unfolding check-CS-subseteq-def by auto
qed

definition reverse-rules :: ('f, 'v) rules = ('f, 'v) rules where
reverse-rules rs = map prod.swap rs

lemma reverse-rules[simp]: set (reverse-rules R) = (set R) —1 unfolding re-
verse-rules-def by force

definition

map-funs-rules-wa :: ('f X nat = 'g) = ('f, 'v) rules = ('g, 'v) rules

where

map-funs-rules-wa fg R = map (A(l, r). (map-funs-term-wa fg I, map-funs-term-wa
fgr)) R

lemma map-funs-rules-wa: set (map-funs-rules-wa fg R) = map-funs-trs-wa fg (set
R)
unfolding map-funs-rules-wa-def map-funs-trs-wa-def by auto

lemma wf-rule [code]:
wf-rule 7 +—
is-Fun (fst ) A (VY = € set (vars-term-impl (snd r)). © € set (vars-term-impl
(st 1)
unfolding wf-rule-def by auto

definition wf-rules-impl :: ('f, "v) rules = ('f, 'v) rules
where
wf-rules-impl R = filter wf-rule R

lemma wf-rules-impl [simp]:

set (wf-rules-impl R) = wf-rules (set R)
unfolding wf-rules-impl-def wf-rules-def by auto
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fun check-wf-reltrs :: (-,-) rules x (-,-) rules = showsl check where
check-wf-reltrs (R, S) = (do {
check-wf-trs R;
if R =[] then succeed
else check-varcond-subset S

H

lemma check-wf-reltrs[simp]:
isOK (check-wf-reltrs (R, S)) = wf-reltrs (set R) (set S)
by (cases R) auto

declare check-wf-reltrs.simps[simp del]

definition check-linear-trs :: (-,-) rules = showsl check where
check-linear-trs R =
check-all (X (1,r). (linear-term 1) A (linear-term r)) R
<472 (X - showsl-trs R o showsl (STR "= lis not linear] "))

lemma check-linear-trs [simp):
isOK (check-linear-trs R) «— linear-trs (set R)
unfolding check-linear-trs-def linear-trs-def by auto

definition non-collapsing-impl R = list-all (is-Fun o snd) R

lemma non-collapsing-impl[simp|: non-collapsing-impl R = non-collapsing (set R)
unfolding non-collapsing-impl-def non-collapsing-def list-all-iff by auto

type-synonym ('f, "v) term-map = 'f X nat = ('f, 'v) term list

definition term-map :: ('f::compare-order, 'v) term list = ('f, 'v) term-map where
term-map ts = fun-of-map (rm.a (elem-list-to-rm (the o root) ts)) []

definition
is-NF-main :: bool = bool = ('f::compare-order, "v) term-map = ('f, 'v) term
= bool
where
is-NF-main var-cond R-empty m = (if var-cond then (\-. False)
else if R-empty then (\-. True)
else (At. Y ueset (supteg-list t).
if is-Fun u then
Vieset (m (the (root u))). - matches u 1
else True))

lemma neg-root-no-match:
assumes is-Fun [ and the (root ) # the (root t)
shows — matches t 1
using assms by (cases t) (force iff: matches-iff )+
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lemma all-not-conv: (Vz € A. = Pz) = (- (3z € A. P z)) by auto

lemma efficient-supteq-list-do-not-match:
assumes VI€set ls. Vu€set (supteg-list t). the (root l) # the (root u) — -
matches u |
shows
(Vieset Is. Y ueset (supteg-list t). - matches u 1) <—
(Vueset (supteg-list t). Vieset (term-map ls (the (root u))).
— matches u 1)
(is ?lhs «+— ?rhs is - «— (Vu€set ?subs. Vi€set (?ls u). - matches u l))
proof (intro iffI balll)
fix u | assume Vicset Is. Vucset ?subs. = matches u | and u € set ?subs
and | € set (%ls u)
then show — matches u [
using elem-list-to-rm.rm-set-lookup|of the o root ls the (root u)]
by (auto simp: o-def term-map-def rm-set-lookup-def)
next
fix | u assume 1: Y ucset ?subs. Vieset (?ls u). - matches u
and ! € set Is and u € set ?subs
with assms have the (root 1) # the (root u) — — matches u |
and Vieset (?ls u). - matches u |l by simp+
with elem-list-to-rm.rm-set-lookup|of the o root ls the (root u))
and <[ € set Is)
show — matches u I by (auto simp: o-def term-map-def rm-set-lookup-def)
qed

lemma supteq-list-ex:
(Fueset (supteg-list1). Jo. t -0 =u) +— (3o. 1>t 0)
unfolding supteq-list by auto

definition is-NF-trs R = is-NF-main (3 reset R. is-Var (fstr)) (R =) (term-map
(map fst R))

definition is-NF-terms Q = is-NF-main (3 g€set Q. is-Var q) (Q = []) (term-map
Q)

lemma is-NF-main-NF-trs-conv:
is-NF-main (Ireset R. is-Var (fst r)) (R = []) (term-map (map fst R)) t +—
t € NF-trs (set R)
(is is-NF-main ?var R ?map t <— -)
proof (intro iffI alll)
assume is-NF-main: is-NF-main ?var ?R ?map t
show t € NF-trs (set R)
proof (cases Ireset R. is-Var (fst r))
case True with is-NF-main|unfolded is-NF-main-def] show ?thesis by simp
next
case Fulse
let ?ts = map fst R
from False have allfun: V s€set ?ts. is-Fun s by simp
with neg-root-no-match
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have no-match: ¥ s€set ?ts. Y u€set (supteg-list t). the (root s) # the (root u)
— — matches u s by blast
note is-NF-main = is-NF-main[unfolded is-NF-main-def if-not-P[OF False|
show ?thesis
proof (cases R = [])
case Fulse
then have False: (R = [|) = Fualse by simp
have YV ueset (supteq-list t). VIeset (term-map ?ts (the (root u))). = matches
ul
proof
fix u
assume mem: u € set (supteg-list t)
show V leset (term-map ?ts (the (root w))). = matches u |
proof (cases u)
case (Var z)
show ?thesis
proof
fix [
assume [ € set (term-map ?ts (the (root u)))
with elem-list-to-rm.rm-set-lookup|of the o root ?ts the (root u)]
have | € set ?ts by (auto simp: o-def term-map-def rm-set-lookup-def)
then have is-Fun [ using allfun by auto
then have (Vo. [ - o # u) using Var by auto
then show — matches u | using matches-iff by blast
qed
next
case (Fun f us)
with mem is-NF-main[unfolded False] show ?thesis by auto
qed
qed
then show %thesis
unfolding efficient-supteq-list-do-not-match|OF no-match, symmetric]
unfolding all-not-conv matches-iff
unfolding supteq-list-ex by auto
qed auto
qed
next
assume NF-trs: t € NF-trs (set R)
show is-NF-main (3r€set R. is-Var (fst r)) (R = []) (term-map (map fst R)) t
proof (cases Ireset R. is-Var (fst r))
case True
then obtain [ where [ € lhss (set R) and is-Var | by auto
from lhs-var-not-NF[OF this] and NF-trs show ?thesis by simp
next
case Fulse note oFulse = this
let ?ts = map fst R
from Fulse have VY s€set ?ts. is-Fun s by auto
with neg-root-no-match
have

287



no-match: ¥ s€set ?ts. Y ucset (supteg-list t). the (root s) # the (root u)
— — matches u s by blast
show ?thesis
proof (cases R = [])
case True then show ?thesis unfolding is-NF-main-def by auto
next
case Fulse
then have Fulse: (R = []) = False by simp
from NF-trs
show ?thesis
unfolding is-NF-main-def Fulse if-False if-not-P[OF oFalse]
using efficient-supteq-list-do-not-match[OF no-match, symmetric]
unfolding all-not-conv matches-iff
unfolding supteg-list-ex set-map by fastforce
qed
qged
qed

lemma is-NF-trs [simp]:
is-NF-trs R = (A t. t € NF-trs (set R))
by (rule ext, unfold is-NF-trs-def is-NF-main-NF-trs-conv, simp)

lemma is-NF-terms [simp]:
is-NF-terms Q = (X t. t € NF-terms (set Q))
proof (rule ext)
fix t
let 2Q = map (At. (¢, 1)) Q
have 1: (Ft€set Q. is-Var t) = (Fteset 2Q. is-Var (fst t))
by (induct Q) (auto simp: o-def)
have 2: map fst 7Q = Q by (induct Q) simp-all
have 3: term-map Q = term-map (map fst Q) unfolding 2 ..
have 4: set 2Q) = Id-on (set Q) by (induct Q) (auto simp: o-def)
from is-NF-main-NF-trs-conv[of ?Q t]
show is-NF-terms Q t = (t € NF-terms (set Q))
unfolding is-NF-terms-def 1 3 / unfolding 2 by auto
qed

9.2.5 Grouping TRS-Rules by Function Symbols

type-synonym ('f,’v)rule-map = (('f x nat) = ('f,’v)rules)option

fun computeRuleMapH :: ('f,'v)rules = (('f x nat) x ('f,"v)rules)list option
where computeRuleMapH [| = Some |]
| computeRuleMapH ((Fun f ts,r) # rules) = (let n = length ts in case com-
puteRuleMapH rules of None = None | Some rm =
(case List.extract (A (fa,rls). fa = (f,n)) rm of
None = Some (((f,n), [(Fun f ts,r)]) # rm)
| Some (bef,(fa,rls),aft) = Some ((fa,(Fun f ts,r) # rls) # bef @Q
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aft)))
| computeRuleMapH ((Var -, -) # rules) = None

definition computeRuleMap :: ('f, 'v) rules = ('f, 'v) rule-map where
computeRuleMap rls =
(case computeRuleMapH rls of
None = None
| Some rm = Some (Af.
(case map-of rm f of
None =[]
| Some rls = rls)))

lemma computeRuleMapHSound2: (computeRuleMapH R = None) = (3 (I, 1) €
set R. root | = None)
proof (induct R)
case (Cons rule rules)
obtain | r where rule: rule = (I,r) by force
show Zcase
proof (cases )
case (Fun f ts)
show ?thesis
using rule Cons
proof (cases computeRuleMapH rules)
case (Some rm) note oSome = this
let %e = List.extract (A (fa,rls). fa = (f,length ts)) rm
from Some Fun rule Cons show ?thesis
proof (cases %e)
case (Some res)
then obtain bef aft g rls where ?e = Some (bef, (g,rls), aft) by (cases res,
force)
with extract-SomeE|[OF this] have rm: rm = bef Q ((f, length ts),rls) #
aft and e: %e = Some (bef, ((f,length ts),rls), aft)
by auto
show ?thesis using Cons
by (simp add: rule Fun Let-def oSome e)
qed auto
qed (insert, auto simp: rule Fun)
qed (auto simp: rule)
qed (auto simp: rule)

lemma computeRuleMapSound2: (computeRuleMap R = None) = (3 (I, r) € set
R. root | = None)

unfolding computeRuleMap-def

by (simp only: computeRuleMapHSound2[symmetric], cases computeRuleMapH
R, auto)

lemma computeRuleMapHSound: assumes computeRuleMapH R = Some rm
shows (A (f,rls). (f,set rls)) “set rm = {((f,n),{(L,r) | L r. (I,r) € set R A root
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= Some (f, n)}) | fn. {(L,r) | lr. (I,r) € set R A root | = Some (f, n)} # {}} A
distinct-eq (A (f,rls) (g,rls’). f = g) rm
using assms
proof (induct R arbitrary: rm)
case (Cons rule rules)
let Zsetl = X rm. (A (f,rls). (f,set rls))  set rm
let ?setr = A R. {((f,n),{(l,r) | I 7. (I,r) € set R A root | = Some (f, n)}) | f n.
{(L,r) | L r. (I,r) € set R A root | = Some (f, n)} # {}}
obtain [ r where Pair: rule = (I,r) by force
show Zcase
proof (cases )
case (Var v)
with Cons Pair show ?thesis by simp
next
case (Fun f ts)
with Cons Pair show ?thesis
proof (cases computeRuleMapH rules)
case (Some rrm) note oSome = this
let ?dis = distinct-eq (X (f,rls) (g,rls”). f = g)
from Cons(1)[OF Some] have drrm: ?dis rrm and srrm: ?setl rrm = ?setr
rules by auto
show ?thesis
proof (cases List.extract (A (fa,rls). fa = (f,length ts)) rrm)
case None
let %e = ((f,length ts), [(Fun f ts,r)])
let e’ = ((f,length ts), {(Fun fts,r)})
from None Cons(2) have rm: rm = ?2e # rrm by (simp add: Fun Pair
Some None)
from Nonelunfolded extract-None-iff] have rrm: A\ g n rl. ((g,n),rl) € set
rrm = (f,length ts) # (g,n) by auto
then have rrm” A g n rl. ((g,n),rl) € ?setr rules = (f,length ts) # (g,n)
by (simp only: srrm[symmetric], auto)
then have id: {(Fun fts, r)} = {(l, ra). (I = Fun fts A ra =1 V (I, ra)
€ set rules) A root | = Some (f, length ts)} by force
from rrm have dis: ?dis rm
by (simp add: rm drrm, auto)
have ?setl rm = insert ?e’ (?setl rrm) by (simp add: rm)

also have ... = insert ?e’ (?setr rules) by (simp add: srrm)
also have ... = %setr ( (Fun f ts,r) # rules)
proof (rule set-eql, clarify)

fix g n ris

show (((g,n),rls) € insert ?e’ (?setr rules)) = (((g,n),rls) € ?setr ((Fun f
ts,r) # rules))
proof (cases (g,n) = (f,length ts))
case Fulse
then have (((g,n),rls) € insert ?e’ (?setr rules)) = (((g,n),rls) € ?setr
rules) by auto
also have ... = (((g,n),rls) € ?setr ((Fun f ts,r) # rules)) using False
by auto
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finally show ¢thesis .
next
case True note oTrue = this
show ?thesis
proof (cases rls = {(Fun f ts, r)})
case True
with oTrue show ?thesis by (simp add: id, force)
next
case Fulse
show ?thesis using rrm’[of g n rls] True False by (simp add: False
True id, auto)
qed
qed
qed
finally show ?thesis
by (simp only: dis drrm, simp add: Pair Fun)
next
case (Some res)
obtain bef fg rls aft where res = (bef,(fg,rls),aft) by (cases res, force)
from extract-SomeE[OF Some[simplified this]] Some[simplified this] have
rrm: rrm = bef Q ((f,length ts), rls) # aft
and e: List.extract (A (fa, rls). fa = (f,length ts)) rrm = Some (bef,
((f,length ts),rls),aft) by auto
let %e = ((f,length ts), (Fun f ts,r) # rls)
let e’ = ((f,length ts), insert (Fun f ts,r) (set rls))
have ((f,length ts),set rls) € ?setl rrm unfolding rrm by auto
then have ris: set ris = {(I, r) |l r. (I, r) € set rules A root | = Some (f,
length ts)} using Cons(1)[OF oSome] by auto
obtain ba where ba: ba = bef Q aft by auto
from Cons(2) e ba have rm: rm = ?e # ba by (simp add: Fun Pair oSome

€)

from drrm[simplified rrm] have dis: ?dis ba unfolding distinct-eq-append
ba by auto

from drrm[simplified rrm] have dis: ?dis rm unfolding rm distinct-eg-append

ba by (auto simp: dis[simplified ba))

from drrm|[simplified rrm distinct-eq-append)

have diff: (Vxz€set ba. = (A(g, rls). (f,length ts) = g) x) by (auto simp: ba)

have ?setl [((f, length ts),rls)] U ?setl ba = ?setl rrm using rrm ba by auto

also have ... = %setr rules by (rule srrm)

finally have id: ?setl [((f, length ts),rls)] U 2setl ba = ?setr rules .

have ?setl rm = insert ?e’ (?setl ba) by (simp add: rm)

also have ... = Zsetr ((Fun f ts,r) # rules)
proof (rule set-eql, clarify)
fix g n 7l
show (((g,n),rl) € insert ?e’ (?setl ba)) = (((g,n),rl) € ?setr ((Fun f ts,r)
# rules))
proof (cases (g,n) = (f,length ts))
case Fulse

then have (((g,n),rl) € insert ?e’ (?setl ba)) = (((g,n),rl) € ?setl ba)
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by auto

also have ... = (((g,n),rl) € ?setr rules) using False by (simp only:
id[symmetric], auto)
also have ... = (((g,n),r1) € ?setr ((Fun f ts,r) # rules)) using False

by auto
finally show ?thesis .
next
case True note oTrue = this
show ?thesis
proof (cases 1l = insert (Fun f ts, r) (set rls))
case True
then have (((g,n),rl) € insert ?e’ (?setl ba)) = True using oTrue by
auto
also have ... = (((g,n),rl) € ?setr ((Fun f ts,r) # rules)) unfolding
True rls using oTrue by force
finally show ?thesis .
next
case Fulse
then have (((g,n),rl) € insert ?e’ (?setl ba)) = Fulse using diff by
(simp add: True, auto)
also have ... = (((g,n),rl) € ?setr ((Fun f ts,r) # rules))
proof (rule ccontr)
assume — ?thesis
with True have ((f,length ts),rl) € ?setr ((Fun fts,r) # rules) by
stmp
then have i = {(I, ra) |l ra. (I, ra) € set ((Fun fts, r) # rules) A
root | = Some (f, length ts)} by simp
with False rls show Fualse by auto
qed
finally show ?thesis .
qed
qed
qed
also have ... = %setr (rule # rules) by (simp add: Pair Fun)
finally show ?thesis by (simp add: dis)
qed
qed simp
qed
qed force

lemma computeRuleMapSound:

assumes computeRuleMap R = Some rm

shows (set (rm (f,n))) = {(l,r) | L r. (I,r) € set R A root I = Some (f, n)}
proof (cases computeRuleMapH R)

case None

then show ?thesis using assms unfolding computeRuleMap-def by auto
next

case (Some rrm)

note rrm = computeRuleMapHSound|[OF this]
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note rm = assms[unfolded computeRuleMap-def, simplified Some, simplified,
symmetric]
show ?thesis
proof (cases map-of rrm (f, n))
case (Some rls)
from map-of-SomeD[OF this| have ((f,n),set ris) € (A (f,rls). (f, set rls)) *
set rrm
by auto
then have set rls = {(I,r) | I r. (I,r) € set R A root | = Some (f, n)}
by (simp only: rrm, simp)
then show %thesis by (simp add: rm Some)
next
case None
have id: {({, ) |l 7. (I, 7) € set R A root | = Some (f, n)} = {} (is ?set = {})
proof (rule ccontr)
assume — ?thesis
then obtain [ r where (I, 7) € set R A root | = Some (f, n) by auto
with rrm have (((f,n), ?set)) € (A (f,rls). (f, set rls)) ¢ set rrm by auto
with None[unfolded map-of-eq-None-iff] show False by force
qed
then show ?thesis by (simp only: rm None id, auto)
qed
qed

lemma compute RuleMap-left-vars:

shows (computeRuleMap R # None) = (¥ Ir € set R. ¥V x. fst lr # Var z)
proof (cases computeRuleMap R)

case None

from None computeRuleMapSound2 have 3 (I,r) € set R. root | = None by
auto

from this obtain [ r where (I,r) € set R A root | = None by auto

from this have (I,r) € set R A = (V¥ x. fst (I,r) # Var z) by (cases I, auto)

with None show ?thesis by blast
next

case (Some rm)

then have left: computeRuleMap R # None by auto

from Some computeRuleMapSound2 have V (l,r) € set R. root | # None by
force

then have V Ir € set R. V x. fst Ir # Var x by auto

with left show ?thesis by blast
qed

lemma computeRuleMap-defined: fixes R :: ('f,'v)rules
assumes computeRuleMap R = Some rm
shows (rm (f,n) = []) = (— defined (set R) (f,n))
proof —
from assms computeRuleMapSound have rm: \(f::'f) n. set (rm (f,n)) = {(1,r)

)
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| Ir. (I, r) € set R A root | = Some (f, n)} by force
show ?thesis
proof (cases rm (f,n))
case Nil
with rm have - defined (set R) (f,n) unfolding defined-def by force
with Nil show ?thesis by blast
next
case (Cons Ir RR)
then have left: rm (f,n) # [| by auto
from Cons rm|where f = f and n = n| have defined (set R) (f,n) unfolding
defined-def by (cases Ir, force)
with left show ?thesis by blast
qed
qed

lemma computeRuleMap-None-not-SN:
assumes computeRuleMap R = None
shows — SN-on (rstep (set R)) {t}
proof —
from assms computeRuleMap-left-vars[of R] obtain z r where (Var z,r) € set
R by auto
from left-var-imp-not-SN|OF this] show ?Zthesis .
qed

end

9.3 Implementation of Parallel Rewriting With Variable Re-
striction

theory Rewrite-Relations-Impl
imports
Trs-Impl
Parallel- Rewriting
Multistep
begin

9.3.1 Checking a Single Parallel Rewrite Step with Variable Re-

striction
context
fixes R :: ('f,'v)rules and V :: 'v set
begin

fun is-par-rstep-var-restr :: ('f, 'v) term = (’f, 'v) term = bool
where
is-par-rstep-var-restr (Fun f ss) (Fun g ts) =
(Fun f ss = Fun g ts V
vars-term (Fun g ts) NV = {} A (Fun f ss, Fun g ts) € rrstep (set R) V
(f = g A length ss = length ts A list-all2 is-par-rstep-var-restr ss ts))
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| is-par-rstep-var-restr s t = (s = t V vars-term t N 'V = {} A (s,t) € rrstep (set
R))

lemma is-par-rstep-code-helper: vars-term t NV = {} +—
(V x € set (vars-term-list t). © ¢ V)
by auto

lemmas is-par-rstep-var-restr-code|code] = is-par-rstep-var-restr.simps[unfolded is-par-rstep-code-helper]

lemma is-par-rstep-var-restr[simp):
is-par-rstep-var-restr s t +— (s, t) € par-rstep-var-restr (set R) V
proof
let ?Prop = A st. s =1tV vars-term t NV = {} A (s,t) € rrstep (set R)
{
fix st
assume ?Prop s t
hence 3 C infos. (s, t) € par-rstep-mctxt (set R) C infos N vars-below-hole t
cnvV={}
proof
assume s = ¢
thus ?thesis by (intro exI[of - mctat-of-term s| exI[of - Nil], auto simp:
par-rstep-mctzt-refll)
next
assume vars-term t NV = {} A (s,t) € rrstep (set R)
then obtain [ r 0 where id: s=1-0t=1r-0 and
Ir: (I,r) € set R and
vars: vars-term t NV = {}
by (metis rrstepE)
thus ?thesis by (intro exl|of - MHole] exI[of - [Par-Info s t (1,1)]], auto intro:
par-rstep-mctzt-MHolel)
qed
} note Prop = this
{
assume is-par-rstep-var-restr s t
hence 3 C infos. (s, t) € par-rstep-mctat (set R) C infos A vars-below-hole t
cCnvVv={}
proof (induct rule: is-par-rstep-var-restr.induct]])
case 2-1
thus ?case by (intro Prop, auto)
next
case 2-2
thus ?case by (intro Prop, auto)
next
case (1 fss g ts)
show ?Zcase
proof (cases ?Prop (Fun f ss) (Fun g ts))
case True
thus ?thesis using Prop by auto
next
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case Fulse
with 7 have args: f = g length ss = length ts list-all2 is-par-rstep-var-restr
8s s
by (auto split: if-splits)
let P = X\ i C infos. (ss! i, ts ! i) € par-rstep-mctat (set R) C infos A
vars-below-hole (ts ! i) C C (UNIV — V)
{ fix ¢
assume i:1 < length ss
then have si:ss ! i € set ss by auto
from ¢ args(2) have ti:ts | i € set ts by auto
from args(3) have iprv:is-par-rstep-var-restr (ss ! i) (ts ! i) using i
list-all2-nthD by blast
with 1(1)[of ssli tsli] have pp:3 C infos. ¢P i C infos
using local.args(1) local.args(2) using si ti by blast
}
hence V i. 3 Cinfos. i < length ss — ?P i C infos by blast
from choice[OF this] obtain C' where V i. 3 infos. i < length ss — ¢P
i (C i) infos by blast
from choice|OF this] obtain infos where IH: \ i. i < length ss = 2P i
(C' i) (infos i) by blast
let ?C' = MFun f (map C [0..<length ss])
let %infos = concat (map infos [0..<length ss])
show ?thesis
proof (intro exl[of - ?C] exlI[of - Zinfos| congl)
show wvars-below-hole (Fun g ts) ?C NV = {} using IH args(2) unfolding
args(1)
by (subst vars-below-hole-Fun; force)
show (Fun f ss, Fun g ts) € par-rstep-mctat (set R) ?C 2infos unfolding
args(1) using args(2) IH
by (intro par-rstep-mctxt-funl, auto)
qed
qed
qed
thus (s, t) € par-rstep-var-restr (set R) V unfolding par-rstep-var-restr-def
by auto

}
{
assume (s, t) € par-rstep-var-restr (set R) V
from this[unfolded par-rstep-var-restr-def] obtain C infos where
st: (s, t) € par-rstep-mctzt (set R) C infos and vars: vars-below-hole t C' N
V = {} by auto
thus is-par-rstep-var-restr s t
proof (induct C arbitrary: s t infos)
case (MVar z)
from par-rstep-mctat-MVarE[OF MVar(1)]
have s = Var z t = Var x by auto
thus “case by simp
next
case MHole
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from par-rstep-mctxt-MHole E[OF MHole(1)]
have (s,t) € rrstep (set R) by auto
then show ?Zcase using MHole(2) by (cases s; cases t; auto)
next
case (MFun f Cs)
from par-rstep-mctat-MFunD[OF MFun(2))
obtain ss ts Infos
where s: s = Fun f ss and
t: t = Fun f ts and
len: length ss = length Cs
length ts = length Cs
length Infos = length Cs and
infos: infos = concat Infos and
steps: N\ 4. © < length Cs =>(ss ! i, ts | i) € par-rstep-mctzt (set R) (Cs |
i) (Infos ! ©)
by auto
show ?case unfolding s t is-par-rstep-var-restr.simps
proof (intro disjI2 conjl refl list-all2-all-nthI, unfold len)
fix ¢
assume i: i < length Cs
hence mem: Cs ! i € set Cs by auto
show is-par-rstep-var-restr (ss ! i) (ts ! i)
proof (rule MFun(1)[OF mem steps[OF i]])
have vars-below-hole (ts ! i) (Cs ! i) C vars-below-hole t (MFun f Cs)
unfolding t using ¢ len
by (subst vars-below-hole-Fun, auto)
with MFun(3) show vars-below-hole (ts! i) (Cs ! i) NV = {} by auto
qed
qed auto
qed
}
qed
end

lemma par-rstep-var-restr-code|code-unfold):
(s, t) € par-rstep-var-restr (set R) V <— is-par-rstep-var-restr R 'V s t
by simp

9.4 Implementation of Parallel Rewriting

9.4.1 Checking a Single Parallel Rewrite Step

fun is-par-rstep = ('f, "v) rules = (’f, 'v) term = (’f, 'v) term = bool
where
is-par-rstep R (Fun f ss) (Fun g ts) =
(Fun f ss = Fun g ts V (Fun f ss, Fun g ts) € rrstep (set R) V
(f = g A length ss = length ts A list-all2 (is-par-rstep R) ss ts))
| is-par-rstep R st = (s =t V (s,t) € rrstep (set R))

lemma is-par-rstep[simp):
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is-par-rstep R s t «— (s, t) € par-rstep (set R)
proof —
have is-par-rstep R s t = is-par-rstep-var-restr R {} st
by (induct R s t rule: is-par-rstep.induct, auto simp del: is-par-rstep-var-restr
simp: list-all2-conv-all-nth)
also have ... «— (s, t) € par-rstep-var-restr (set R) {} by simp
also have ... «— (s, t) € par-rstep (set R)
unfolding par-rstep-var-restr-def par-rstep-par-rstep-mctzt-conv by auto
finally show ?thesis .
qed

lemma par-rstep-code|code-unfold]: (s, t) € par-rstep (set R) <— is-par-rstep R s
t by simp

9.4.2 Generate All Parallel Rewrite Steps

fun root-rewrite :: ('f, 'v) rules = (’f, 'v) term = (’f, 'v) term list
where
root-rewrite R s = concat (map (A (I, r).
(case match s 1 of
None = |]
| Some o = [(r - 0)])) R)

lemma root-rewrite-sound:
assumes t € set (root-rewrite R s)
shows (s, t) € rrstep (set R)
proof —
from assms
have 3 I r. (I,r) € set R At € set (case match s | of None = [] | Some o = [r
- 0])
by auto
from this obtain [ r where one:
(I,r) € set R At € set (case match s 1 of None = [ | Some 0 = [r - 0])
by auto
from this obtain o where two: match s | = Some o At € {r - o} by (cases
match s 1, auto)
then have maitch: | - 0 = s using match-sound by auto
with one match one two have (s,t) € rstep-r-p-s (set R) (I,r) [] o unfolding
rstep-r-p-s-def by (simp add: Let-def ctzt-supt-id)
then show (s,t) € rrstep (set R) unfolding rstep-iff-rstep-r-p-s rrstep-def by
blast
qed

Generate all possible parallel rewrite steps for a given term, assuming that
the underlying TRS is well-formed.
fun parallel-rewrite :: ('f, 'v) rules = ('f, 'v) term = ('f, 'v) term list

where

parallel-rewrite R (Var z) = [Var z)
| parallel-rewrite R (Fun f ss) = remdups
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(root-rewrite R (Fun f ss) @ map (Ass. Fun f ss) (product-lists (map (parallel-rewrite

R) ss)))

lemma parallel-rewrite-par-step:
assumes t € set (parallel-rewrite R s)
shows (s, t) € par-rstep (set R)
using assms
proof (induct s arbitrary: t)
case (Fun f ss)
then consider (root) t € set (root-rewrite R (Fun f ss))
| (args) t € set (map (Ass. Fun f ss) (product-lists (map (parallel-rewrite R)
)
by force
then show ?case
proof (cases)
case root
from root-rewrite-sound[OF' this] obtain | r o where (I, ) € set R
and [ -0 =Fun fssandr o =1
unfolding rrstep-def rstep-r-p-s-def by auto
then show ?thesis using par-rstep.intros(1) by metis
next
case args
then obtain ¢s where t:t = Fun f ts and ts:ts € set (product-lists (map
(parallel-rewrite R) ss))
by auto
then have len:length ss = length ts using in-set-product-lists-length by force
{ fix ¢
assume i:i < length ts
have ts | i € set (parallel-rewrite R (ss ! i))
using ts[unfolded product-lists-set[of - ss]]
by (auto simp: list-all2-map2[of (A\x ys. x € set ys)] intro: list-all2-nthD[OF

- i)
with Fun(1) len ¢ have (ss ! 4, ts! i) € par-rstep (set R) by auto
}
from par-rstep.intros(2)[OF this len] show ?thesis using ¢ by auto
qed
qed auto

9.5 Implementation of Multi-Step Rewriting
9.5.1 Checking a Single Multi-Step Rewrite

fun root-steps-substs :: ('f, 'v) rules = ('f, 'v) term = ('f, 'v) term = (('f, 'v)
term list x ('f, 'v) term list) list
where
root-steps-substs R s t = concat (map (A (I, 7).
(case match s | of
None = |]
| Some o = (case match t r of
None =[]
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| Some T = (let var-list = filter (Az. x € vars-term r) (vars-distinct 1) in
[(map o var-list, map T var-list)]))))

R)

lemma root-steps-substs-exists:
assumes (ss, ts) € set (root-steps-substs R s t)
shows 3 Ir o 7ol (I, r) € set R A vl = filter (A\z. x € vars-term r) (vars-distinct

A
l-o=sANr-17=1tA (ss, ts) = (map o vl, map T vl)
proof—
from assms obtain [ r where Ir:(I,r) € set R (ss, ts) € set (case match s 1 of
None =[]
| Some o = (case match t r of
None =[]

| Some T = [(map o (filter (Az. © € vars-term r) (vars-distinct 1)), map T
(filter (Az. z € vars-term r) (vars-distinct 1)))]))
unfolding root-steps-substs.simps Let-def by auto
let Zvar-list=filter (Az. © € vars-term r) (vars-distinct [)
from Ir obtain o where o:match s | = Some o
by fastforce
from Ir obtain 7 where T:match t r = Some T
by fastforce
from Ir o 7 have (ss, ts) = (map o var-list, map ™ Zvar-list)
by simp
with Ir(1) o 7 show ?thesis
using match-matches by blast
qged

lemma size-match-subst-Fun:
assumes is-Fun [ and z € vars-term [
and match:match s | = Some T
shows size (T z) < size s
proof—
from assms(1) obtain fts where [:l = Fun f ts
by blast
from match have x:[ - 7 = s
by (simp add: match-matches)
then obtain ss where s:s = Fun f ss
unfolding [ by force
from assms(2) obtain ¢ where i:i < length ts and z:z € vars-term (tsl7)
unfolding [ by (metis term.sel(4) var-imp-var-of-arg)
from * have le:length ts = length ss
unfolding s | by auto
moreover from x i [ s have tsli - 7 = ssli
by fastforce
then have size (7 z) < size (ssli)
using vars-term-size x by metis
with ¢ show %thesis unfolding s term.size le
by (metis add.commute add-0 add-Suc in-set-conv-nth less-Suc-eg-le size-list-estimation’)
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qed

abbreviation remove-trivial-rules R = filter (A (I, r). = (is-Var 1) vV = (is-Var
r)) R

lemma trivial-rrstep:
assumes 3 zy. (Varz, Vary) E RNz #£ y
shows (s, t) € rrstep R
proof—
from assms obtain = y where zy:(Var z, Var y) € R x© # y by blast
let %o=(subst z s) (y := t)
from zy have (%0 z, %0 y) € rrstep R
by (metis eval-term.simps(1) rrstepl)
then show ?thesis
by (simp add: xzy(2))
qed

lemma size-root-steps-substs:
assumes (ss, ts) € set (root-steps-substs (remove-trivial-rules R) s t)
and s’ € set ss t’ € set ts
shows size s’ + size t' < size s + size t
proof—
let ?R=remove-trivial-rules R
from assms(1) obtain [ r vl o 7 where Ir:(I, r) € set ?R and vl:vl = filter (A\x.
z € vars-term r) (vars-distinct I)
and s:s =1 -0 and t:t = r - 7 and ss-ts:(ss, ts) = (map o vl, map T vl)
using root-steps-substs-exists by blast
from ss-ts assms(2) obtain z where ss’ = o z and z:z € set vl
by auto
with s have s1:size s’ < size s
unfolding vl by (simp add: vars-term-size)
from ss-ts assms(3) obtain y where t:t' = 7 y and y:y € set vl
by auto
with ¢ have s2:size t' < size t
unfolding vl by (simp add: vars-term-size)
from Ir consider — is-Var 1 | = is-Var r
by force
then show ?thesis proof(cases)
case I
then obtain fIs where [:l = Fun f s
by blast
from z obtain { where ¢ < length Is and = € vars-term (Is!7)
unfolding vl [ by (metis comp-apply filter-is-subset set-remdups set-rev
set-vars-term-list subsetD term.sel(4) var-imp-var-of-arg)
then have s’ < s
unfolding s s’ | by (meson nth-mem subst-image-subterm term.set-intros(4))
then have size s’ < size s
by (simp add: supt-size)
then show ?thesis using s2 by simp
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next
case 2
then obtain f rs where r:r = Fun frs
by blast
from y obtain ¢ where i < length rs and y € vars-term (rsli)
unfolding vl r using var-imp-var-of-arg by force
then have t' < ¢
unfolding t ¢’ r by (meson nth-mem subst-image-subterm term.set-intros(4))
then have size t' < size t
by (simp add: supt-size)
then show ?thesis using s1 by simp
qed
qed

function (sequential) is-mstep :: ('f, "v) rules = ('f, 'v) term = ('f, "v) term =
bool
where
is-mstep R (Fun f ss) (Fun g ts) =
(Fun f ss = Fun g ts V (Fun f ss, Fun g ts) € rrstep (set R) V
list-ex (X (ss, ts). list-all2 (is-mstep R) ss ts) (root-steps-substs (remove-trivial-rules
R) (Fun f ss) (Fun g ts)) V
(f = g A length ss = length ts A list-all2 (is-mstep R) ss ts))
| is-mstep R st = (s =1V (s, t) € rrstep (set R) V
list-ex (A (ss, ts). list-all2 (is-mstep R) ss ts) (root-steps-substs (remove-trivial-rules
R) s 1))
by pat-completeness auto

termination proof (relation measure (A (R, s, t). size s + size t), goal-cases)
case (2R fssgtsxzlsrsir)
then show ?case using size-root-steps-substs
unfolding in-measure by (metis case-prod-conv)
next
case (3R fssgtsst)
then have size s < size (Fun f ss) and size t < size (Fun g ts)
by (simp add: elem-size-size-list-size less-Suc-eq)+
then show ?case by simp
next
case (4{ Rvtxzazay zyb)
then show ?case using size-root-steps-substs
unfolding in-measure by (metis case-prod-conv)
next
case (5 Rsvzzavyzyb)
then show ?case using size-root-steps-substs
unfolding in-measure by (metis case-prod-conv)
qed auto

Show that all multi-steps are covered by the definition above.

lemma mstep-is-mstep:
assumes (s, t) € mstep (set R)
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shows is-mstep R s t
using assms proof (induct)
case (args f n ss ts)
then have list-all2 (is-mstep R) ss ts
by (simp add: list-all2-all-nthl)
with args show ?case
by simp
next
case (rule lr o T)
show ?Zcase proof(cases (I - o, r - T) € rrstep (set R))
case True
then show ?thesis using is-mstep.simps by (metis (no-types, opaque-lifting)
funas-term.cases)
next
case False
then show ?thesis proof(cases is-Var I A is-Var r)
case True
with False have —= (3z y. (Var z, Var y) € set R A\ © # y)
using trivial-rrstep by metis
with True obtain z where [:l = Var x and r:r = Varz
using rule.hyps(1) by blast
show ?thesis
unfolding [ r using rule(2) [ by simp
next
case Fulse
let ?R=remove-trivial-rules R
let 2vi=filter (\z. x € vars-term r) (vars-distinct l)
from rule(1) False obtain i where i:i < length R ?Rli = (I, r)
by (metis (no-types, lifting) case-prodI2 fst-conv in-set-conv-nth mem-Collect-eq
prod.sel(2) set-filter)
obtain ¢’ where sigma:match (I - o) | = Some o’ (VY x€vars-term l. o x =
o' )
by (meson match-complete’)
obtain 7/ where tau:match (r - 7) r = Some 7' (Vz€vars-term r. 7 z = 7/
)
by (meson match-complete’)
let ?matches=(map (A, ). case
match (I - o) I’ of None = [| | Some o = (case match (r - 7) ' of None
=
| Some T = (let var-list = filter (Az. z € vars-term r') (vars-distinct 1)
in [(map o var-list, map 7 var-list)]))) ¢?R)
have i < length ?matches
using i(1) by auto
moreover have (map o’ 2vl, map 7' 2vl) € set (?matches ! 7)
using sigma(1) tau(1) ¢ unfolding Let-def by simp
ultimately have (map o’ 2vl, map 7’ %vl) € set (root-steps-substs ?R (l-0)
(r-7))
unfolding root-steps-substs.simps by (metis (no-types, lifting) concat-nth
concat-nth-length in-set-conv-nth)
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then obtain j where j:j < length (root-steps-substs ?R (l-0) (r-T)) root-steps-substs
?R (I-o) (r1) ! j = (map o’ 2vl, map 7' 2vl)
by (metis in-set-idx)
have (\ (ss, ts). list-all2 (is-mstep R) ss ts) ((root-steps-substs ?R (I-0)
(r))
proof—
{fix ¢ assume i:i < length ?vl
from ¢ have vr: 2vlli € vars-term r
using nth-mem by force
from ¢ have ol: 2vlli € vars-term [
using nth-mem by force
moreover have o' (%0l ! i) = o (%0l ! i)
using sigma(2) vr vl by simp
moreover have 7/ (vl ! i) = 7 (%0l ! 7)
using vl vr tau(2) by simp
ultimately have is-mstep R (o’ (20l 7)) (77 (%0l 7))
using rule(2) by force

then have list-all2 (is-mstep R) (map o’ 2vl) (map 7' 2vl)
by (simp add: list-all2-conv-all-nth)
then show ?thesis
unfolding j(2) by fastforce
qed
then have x:list-ex (A (ss, ts). list-all2 (is-mstep R) ss ts) (root-steps-substs
?R (l.0) (r-7))
using j by (meson list-ex-length)
then show %thesis
by (smt (verit) is-mstep.elims(3))
qed
qed
qed simp

lemma mstep-root-helper:
assumes list-ex (A (ss, ts). list-all2 (is-mstep R) ss ts) (root-steps-substs (remove-trivial-rules
R) s t)
and A ss ts s’ t'. (ss, ts) € set (root-steps-substs (remove-trivial-rules R) s t)
= s’ € set ss = t’ € set ts = is-mstep R s’ t' = (s/, t') € mstep (set R)
shows (s, t) € mstep (set R)
proof—
let ?R=(remove-trivial-rules R)
from assms obtain i where i < length (root-steps-substs ?R s t) (A (ss, ts).
list-all2 (is-mstep R) ss ts) ((root-steps-substs 7R s t)!7)
using list-ez-length by blast
then obtain ss’ ts’ where ss'ts”:(ss’, ts’) € set (root-steps-substs 7R s t) list-all2
(is-mstep R) ss’ ts’
using nth-mem by fastforce
with root-steps-substs-ezists obtain [ r vl o 7 where Ir:(I, r) € set R
and vl:vl = filter (Az. x € vars-term r) (vars-distinct 1)
and l:!l-oc=sand rir -7 =1
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and o7:(ss’, ts") = (map o vl, map T vl)
by (smt (verit, best) mem-Collect-eq set-filter)
let ?r=M\z. (if © € vars-term r then T x else o )
from r have r'ir - 1 = ¢
by (smt (verit, del-insts) term-subst-eq)
{ fix z assume z:z € vars-term |
then have (0 z, 7 z) € mstep (set R) proof(cases x € set vl)
case True
then obtain 7 where i:¢ < length vl vl ! i = x
using in-set-idz by force
then have i1:i < length ss’
using o7 by simp
from i have i2:i < length ts’
using o7 by simp
from ss’ts’(2) i1 i2 have is-mstep R (ss’!7) (ts'! 1)
using list-all2-nthD by blast
with assms(2)[OF ss'ts’(1)] i1 i2 have (ss’! i, ts' ! i) € mstep (set R)
by auto
then show ?thesis
using ¢ o7 by auto
next
case Fulse
with vl z show ?thesis by simp
qed
}
then show %thesis
using mstep.rule[OF Ir] 1 r' by force
qed

lemma is-mstep-mstep:
assumes is-mstep R s t
shows (s, t) € mstep (set R)
using assms proof (induct rule: is-mstep.induct)
case (I R fss gts)
from I consider Fun f ss = Fun g ts
| (rrstep) (Fun f ss, Fun g ts) € rrstep (set R)
| (root) list-ex (X (ss, ts). list-all2 (is-mstep R) ss ts) (root-steps-substs (remove-trivial-rules
R) (Fun f ss) (Fun g ts))
| (args) f = g and length ss = length ts and list-all2 (is-mstep R) ss ts
by (auto split: if-splits)
then show ?case proof(cases)
case root
show ?thesis using mstep-root-helper|OF root] 1(1) by simp
next
case args
{ fix i
assume i:¢ < length ss
then have si:ss ! i € set ss by auto
from ¢ args(2) have ti:ts | i € set ts by auto
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from args(3) have is-mstep R (ss! i) (ts ! i) using 7 list-ali2-nthD by blast
with 1(2)[of ss ! its!i] args(1,2) si ti have (ss ! i, ts | i) € mstep (set R)
by auto
}

then show ?thesis using args(1,2)
by (simp add: mstep.args)
qed (simp-all add: rrstep-imp-rstep rstep-imp-mstep)
next
case (2-1 R v t)
from 2-1 consider Var v =1
| (Var v, t) € rrstep (set R)
| (root) list-ex (A (ss, ts). list-all2 (is-mstep R) ss ts) (root-steps-substs (remove-trivial-rules
R) (Var v) t)
by auto
then show ?Zcase proof(cases)
case root
show ?thesis using mstep-root-helper[OF root] 2-1(1) by simp
qed (simp-all add: rrstep-imp-rstep rstep-imp-mstep)
next
case (2-2 R s v)
from 2-2 consider s = Var v
| (s, Var v) € rrstep (set R)
| (root) list-ex (A (ss, ts). list-all2 (is-mstep R) ss ts) (root-steps-substs (remove-trivial-rules
R) s (Var v))
by auto
then show ?Zcase proof(cases)
case root
show ?thesis using mstep-root-helper[OF root] 2-2(1) by simp
qed (simp-all add:rrstep-imp-rstep rstep-imp-mstep)
qed

lemma is-mstep[simp]:
is-mstep R s t <— (s, t) € mstep (set R)
using is-mstep-mstep mstep-is-mstep by blast

lemma mstep-code|code-unfold): (s, t) € mstep (set R) «— is-mstep R s t by simp

9.5.2 Generate All Multi-Step Rewrites

fun root-subst-with-rhs :: ('f, 'v) rules = ('f, "v) term = ((’f, 'v) term x ('f, "v)
term list) list
where
root-subst-with-rhs R s = concat (map (A (I, 7).
(case match s 1 of
None = |]
| Some o = [(r, map o (vars-distinct r))]))
R)

lemma root-steps-subst-rhs-exists:
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assumes (r, ss) € set (root-subst-with-rhs R s)
shows 3 lo. (I, ) € set RNl -0 =s A ss=map o (vars-distinct r)
proof—
from assms obtain [ where Ir:(I,r) € set R (r, ss) € set (case match s 1 of
None = |]
| Some o = [(r, map o (vars-distinct r))])
by auto
then obtain o where o:match s | = Some o
by fastforce
with Ir show ?thesis
using match-matches by force
qed

context
fixes R :: ('f, 'v) rules
assumes wf-trs (set R)
begin

private lemma x: list-all (A(I, r). is-Fun I A (vars-term r C vars-term 1)) R
using (wf-trs (set R)» unfolding wf-trs-def by (auto simp: list-all-iff)

lemma varcond:
Nlr. (I, r) € set R = is-Fun | A vars-term r C vars-term |
using * Ball-set-list-all case-prodD by (metis (no-types, lifting))

lemma [termination-simp]:
assumes (I, r) € set R
and Some o = match (Fun g ts)
and z € vars-term r
shows size (0 z) < Suc (size-list size ts)
using assms size-match-subst-Fun varcond
by (metis (no-types, lifting) add.right-neutral add-Suc-right subsetD term.size(4))

Compute the list of terms reachable in multi-step from a given term.

fun mstep-rewrite-main :: ('f, 'v) term = ('f, 'v) term list
where
mstep-rewrite-main (Var x) = [Var z]
| mstep-rewrite-main (Fun f ss) = remdups (
(concat (map (A(r, ts).
(map (Margs. v - (mk-subst Var (zip (vars-distinct ) args))) (product-lists
(map mstep-rewrite-main ts))))
(root-subst-with-rhs R (Fun f ss))))
Q(map (Ass. Fun f ss) (product-lists (map mstep-rewrite-main ss))))

lemma mstep-rewrite-main-mstep:
assumes t € set (mstep-rewrite-main s)
shows (s, t) € mstep (set R)
using assms

proof (induct s arbitrary: t rule:subterm-induct)
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case (subterm s)
then show ?case proof(cases s)
case (Var z)
with subterm(2) show ?thesis by simp
next
case (Fun f ss)
with subterm consider (root) t € set (concat (map (A(r,ts).(map (Aargs. r -
(mk-subst Var (zip (vars-distinct r) args)))
(product-lists (map mstep-rewrite-main ts)))) (root-subst-with-rhs R (Fun
f55))))

| (args) t € set (map (Ass. Fun [ ss) (product-lists (map mstep-rewrite-main
)
by force
then show ?thesis
proof (cases)
case root
then obtain r ts where rhs-subst:(r,ts) € set (root-subst-with-rhs R (Fun f
59))
t € set (map (Aargs. v - (mk-subst Var (zip (vars-distinct r) args)))
(product-lists (map mstep-rewrite-main ts)))
by force
from root-steps-subst-rhs-exists|OF rhs-subst(1)] obtain [ o where Ir:(I, r)
€ set R
and sigma:l - 0 = Fun f ss ts = map o (vars-distinct r) by auto
from rhs-subst(2) obtain args where args:t = r - (mk-subst Var (zip
(vars-distinct 1) args))
args € set (product-lists (map mstep-rewrite-main ts))
by auto
then have len:length args = length ts
using in-set-product-lists-length by fastforce
then have len’.length args = length (vars-distinct r)
by (simp add: sigma(2))
let ?r=MAz. if x € vars-term r then (mk-subst Var (zip (vars-distinct r) args))
z else o x
from args(1) have t:t = r - 21
by (simp add: term-subst-eg-conv)
{ fixz
assume z:z € vars-term |
have (o z, %7 z) € mstep (set R) proof(cases © € vars-term r)
case True
then obtain i where i:i < length (vars-distinct r) © = vars-distinct r ! 4
by (metis in-set-idx set-vars-term-list vars-term-list-vars-distinct)
with True len’ have tau-z: 97 © = args!i
by (simp add: mk-subst-distinct)
from 7 sigma(2) have sigma-z:0 © = tsli
by simp
have o © < Fun f ss
by (metis is-Varl Ir sigma(1) subst-image-subterm term.set-cases(2)
varcond x)
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with sigma-z have ts!i << Fun f ss by simp
moreover have argsli € set (mstep-rewrite-main (tsli)) using args(2)
i(1) len’ len
unfolding product-lists-set list-all2-conv-all-nth by force
ultimately show ?thesis using subterm(1) sigma-z tau-z unfolding Fun
by presburger
next
case Fulse
then show ?thesis by simp
qged
}
then show ?thesis using mstep.intros(3)[OF Ir] sigma(1) unfolding Fun t
by fastforce
next
case args
then obtain ¢s where t:t = Fun f ts and ts:ts € set (product-lists (map
mstep-rewrite-main ss))
by auto
then have len:length ss = length ts using in-set-product-lists-length by force
{ fix i
assume 7:7 < length ts
have ts | i € set (mstep-rewrite-main (ss ! 7))
using ts[unfolded product-lists-set[of - ss]]
by (auto simp: list-all2-map2[of (A\z ys. © € set ys)] intro: list-ali2-nthD[OF
- 1])
with subterm len i have (ss! i, ts! () € mstep (set R)
unfolding Fun by auto
}
with mstep.intros(2) len t Fun show ?Zthesis
by metis
qed
qed
qed

end

We need to be able to export code for mstep-rewrite-main, hence the follow-
ing definitions.

typedef ('f, v) wfTRS = {R :: ('f, 'v) rules. wf-trs (set R)}
by (intro exl[of - Nil], auto simp: wf-trs-def)

setup-lifting type-definition-wfTRS
lift-definition get-TRS :: ('f, 'v) wfTRS = ('f, 'v) rulesis A R. R .

lemma is-wf-get-TRS: wf-trs (set (get-TRS R'))
by (transfer, auto)

definition mstep-rewrite-wf R = mstep-rewrite-main (get-TRS R)
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lemmas mstep-rewrite-wf-simps = mstep-rewrite-main.simps|OF is-wf-get-TRS,
folded mstep-rewrite-wf-def)
declare mstep-rewrite-wf-simps|code]

lift-definition (code-dt) get-wfTRS :: ('f :: showl, v :: showl) rules = ('f, 'v)
wfTRS option is

A R. if isOK (check-wf-trs R) then Some R else None

by (force simp: wf-trs-def list.pred-set split: prod.splits)

definition err-wf where err-wf = STR ""TRS is not well—formed’’

definition mstep-dummy-impl R s t = ((s,t) € mstep (set R))
lemma mstep-dummy-impl[code]: mstep-dummy-impl R = Code.abort (STR "'mstep-dummy’’)
(A -. mstep-dummy-impl R)

by simp

lift-definition (code-dt) get-wfTRS-sub :: ('f :: showl, 'v :: showl) rules = ('f, 'v)
wfTRS is

A R. if isOK (check-wf-trs R) then R else Code.abort err-wf (A -. [])

by (auto simp: wf-trs-def)

definition mstep-rewrite R = mstep-rewrite-wf (get-wfTRS-sub R)

lemma mstep-rewrite-mstep:
assumes t € set (mstep-rewrite R s)
shows (s, t) € mstep (set R)
proof —
define R’ where R’ = get-wfTRS-sub R
have wf: wf-trs (set (get-TRS R'))
by (transfer, auto)
have sub: set (get-TRS R’) C set R unfolding R’-def by (transfer, auto)
from mstep-rewrite-main-mstep| OF wf, folded mstep-rewrite-wf-def, OF assms(1)[unfolded
mstep-rewrite-def, folded R’-def]]
have (s, t) € mstep (set (get-TRS R')) .
with mstep-mono[OF sub] show ?thesis by auto
qed

end
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