First-Order Rewriting

René Thiemann, Christian Sternagel, Christina Kirk (Kohl), Martin Avanzini, Bertram Felgenhauer, Julian Nagele, Thomas Sternagel, Sarah Winkler, and Akihisa Yamada

University of Innsbruck, Austria

April 13, 2025

Abstract

This entry, derived from the *Isabelle Formalization of Rewriting* (IsaFoR) [3], provides a formalized foundation for first-order term rewriting. This serves as the basis for the certifier CeTA, which is generated from IsaFoR and verifies termination, confluence, and complexity proofs for term rewrite systems (TRSs).

This formalization covers fundamental results for term rewriting, as presented in the foundational textbooks by Baader and Nipkow [1] and TeReSe [2]. These include:

- Various types of rewrite steps, such as root, ground, parallel, and multi-steps.
- Special cases of TRSs, such as linear and left-linear TRSs.
- A definition of critical pairs and key results, including the critical pair lemma.
- Orthogonality, notably that weak orthogonality implies confluence.
- Executable versions of relevant definitions, such as parallel and multi-step rewriting.

Contents

1	Intr	roduction	3			
2 Preliminaries						
	2.1	Combinators	8			
	2.2	Distinct Lists and Partitions	9			
	2.3	Option Type	11			
	2.4	Sublists	11			

3	Ext	ensions for Existing AFP Entries	13		
	3.1	First Order Terms	13		
		3.1.1 Positions	13		
		3.1.2 List of Distinct Variables	18		
		3.1.3 Useful abstractions	18		
		3.1.4 Linear Terms	18		
		3.1.5 Subterms	21		
		3.1.6 Additional Functions on Terms	23		
		3.1.7 Substitutions	27		
		3.1.8 A Concrete Unification Algorithm	37		
		3.1.9 Unification of Linear and variable disjoint terms	43		
		3.1.10 Sets of Unifiers	64		
	3.2	Abstract Rewriting	66		
		3.2.1 Closure-Operations on Relations	70		
4	Term Rewrite Systems				
	4.1	Well-formed TRSs	73		
	4.2	Function Symbols and Variables of Rules and TRSs	74		
	4.3	Closure Properties	78		
	4.4	Properties of Rewrite Steps	79		
	4.5	Linear and Left-Linear TRSs			
	4.6	Normal Forms			
	4.7	Relative Rewrite Steps	155		
5	Cri	tical Pairs 1	L 6 0		
6	Par	allel Rewriting 1	170		
	6.1	Multihole Contexts	170		
		6.1.1 Partitioning lists into chunks of given length	170		
		6.1.2 Conversions from and to multihole contexts	174		
		6.1.3 Semilattice Structures	212		
		6.1.4 All positions of a multi-hole context	232		
		6.1.5 More operations on multi-hole contexts	235		
		6.1.6 An inverse of fill-holes	240		
		6.1.7 Ditto for $fill$ -holes- $mctxt$	243		
		6.1.8 Function symbols of prefixes	244		
	6.2		244		
	6.3	Parallel Rewriting using Multihole Contexts			
	6.4	Variable Restricted Parallel Rewriting	256		
7	Ort	hogonality	260		
8	$\mathbf{M}\mathbf{u}$	lti-Step Rewriting 2	265		

9	Imp	olemen	tation of First Order Rewriting 268			
	9.1	Imple	mentation of the Rewrite Relation			
		9.1.1	Generate All Rewrites			
		9.1.2	Checking a Single Rewrite Step			
	9.2	Comp	outation of a Normal Form			
		9.2.1	Computing Reachable Terms with Limit on Deriva-			
			tion Length			
		9.2.2	Algorithms to Ensure Joinability 275			
		9.2.3	Displaying TRSs as Strings			
		9.2.4	Computing Syntactic Properties of TRSs 278			
		9.2.5	Grouping TRS-Rules by Function Symbols 288			
	9.3	3 Implementation of Parallel Rewriting With Variable Restriction				
		9.3.1	Checking a Single Parallel Rewrite Step with Variable			
			Restriction			
	9.4	Imple	mentation of Parallel Rewriting			
		9.4.1	Checking a Single Parallel Rewrite Step 297			
		9.4.2	Generate All Parallel Rewrite Steps 298			
	9.5	Imple	mentation of Multi-Step Rewriting 299			
		9.5.1	Checking a Single Multi-Step Rewrite 299			
		9.5.2	Generate All Multi-Step Rewrites			

1 Introduction

A TRS, as formalized here, is defined as a binary relation over first-order terms. Given a TRS \mathcal{R} , a rule $(\ell, r) \in \mathcal{R}$ is typically written as $\ell \to r$. The rewrite relation induced by \mathcal{R} , denoted $\to_{\mathcal{R}}$, is defined as follows: a term s rewrites to a term t using the TRS \mathcal{R} (i.e, $s \to_{\mathcal{R}} t$) if there are a context C, a substitution σ , and a rule $(\ell, r) \in \mathcal{R}$ such that $s = C[\ell\sigma]$ and $t = C[r\sigma]$.

The literature typically assumes two restrictions on the variables in a rule $\ell \to r$ of a TRS: ℓ must not be a variable, and all variables in r must appear in ℓ . However, many results in term rewriting do not depend on these conditions. In this entry, such constraints are enforced only where necessary. A TRS that meets these criteria is called a well-formed TRSs (wf-trs) in the formalization.

2 Preliminaries

This theory contains some auxiliary results previously located in Auxx.Util of IsaFoR.

 $\begin{array}{c} \textbf{theory} \ FOR\text{-}Preliminaries\\ \textbf{imports}\\ Polynomial\text{-}Factorization. \textit{Missing-List}\\ \textbf{begin} \end{array}$

```
lemma in-set-idx: a \in set \ as \Longrightarrow \exists i. \ i < length \ as \land a = as ! i
 unfolding set-conv-nth by auto
lemma finite-card-eq-imp-bij-betw:
 assumes finite A
   and card (f ' A) = card A
 shows bij-betw\ f\ A\ (f\ `A)
  using \langle card (f 'A) = card A \rangle
  unfolding inj-on-iff-eq-card [OF \land finite A \land, symmetric]
 by (rule inj-on-imp-bij-betw)
Every bijective function between two finite subsets of a set S can be turned
into a compatible renaming (with finite domain) on S.
lemma bij-betw-extend:
  assumes *: bij-betw f A B
   and A \subseteq S
   and B \subseteq S
   and finite A
 shows \exists g. finite \{x. g x \neq x\} \land
   (\forall x \in UNIV - (A \cup B). \ q \ x = x) \land
   (\forall x \in A. \ g \ x = f \ x) \land
   bij-betw g S S
proof -
 have finite B using assms by (metis bij-betw-finite)
 have [simp]: card\ A = card\ B by (metis * bij-betw-same-card)
 have card (A - B) = card (B - A)
   have card (A - B) = card A - card (A \cap B)
     by (metis \( finite A \) \( card-Diff-subset-Int \) finite-Int)
   moreover have card (B - A) = card B - card (A \cap B)
     bv (metis \(\finite A\) \(\cap \) card-Diff-subset-Int finite-Int inf-commute)
   ultimately show ?thesis by simp
  qed
  then obtain g where **: bij-betw g(B-A)(A-B)
   by (metis <finite A> <finite B> bij-betw-iff-card finite-Diff)
  define h where h = (\lambda x. \text{ if } x \in A \text{ then } f x \text{ else if } x \in B - A \text{ then } g x \text{ else } x)
 have bij-betw \ h \ A \ B
   by (metis\ (full-types) * bij-betw-cong\ h-def)
 moreover have bij-betw h(S - (A \cup B))(S - (A \cup B))
   by (auto simp: bij-betw-def h-def inj-on-def)
 moreover have B \cap (S - (A \cup B)) = \{\} by blast
  ultimately have bij-betw h (A \cup (S - (A \cup B))) (B \cup (S - (A \cup B)))
   by (rule bij-betw-combine)
 moreover have A \cup (S - (A \cup B)) = S - (B - A)
   and B \cup (S - (A \cup B)) = S - (A - B)
   using \langle A \subseteq S \rangle and \langle B \subseteq S \rangle by blast+
```

ultimately have bij-betw h(S - (B - A))(S - (A - B)) by simp

moreover have bij- $betw \ h \ (B - A) \ (A - B)$

```
using ** by (auto simp: bij-betw-def h-def inj-on-def)
  moreover have (S - (A - B)) \cap (A - B) = \{\} by blast
 ultimately have bij-betw h ((S-(B-A))\cup(B-A)) ((S-(A-B))\cup(A-B))
-B)
   by (rule bij-betw-combine)
 moreover have (S - (B - A)) \cup (B - A) = S
   and (S - (A - B)) \cup (A - B) = S
   \mathbf{using} \ \langle A \subseteq S \rangle \ \mathbf{and} \ \langle B \subseteq S \rangle \ \mathbf{by} \ \mathit{auto}
  ultimately have bij-betw h S S by simp
 moreover have \forall x \in A. h x = f x by (auto simp: h-def)
 moreover have finite \{x. h x \neq x\}
 proof -
   have finite (A \cup (B - A)) using \langle finite A \rangle and \langle finite B \rangle by auto
   moreover have \{x. \ h \ x \neq x\} \subseteq (A \cup (B - A)) by (auto simp: h-def)
   ultimately show ?thesis by (metis finite-subset)
 moreover have \forall x \in UNIV - (A \cup B). h \ x = x \ \text{by} \ (simp \ add: \ h\text{-}def)
 ultimately show ?thesis by blast
qed
lemma concat-nth:
 assumes m < length xs and n < length (xs! m)
   and i = sum\text{-}list (map \ length (take \ m \ xs)) + n
 shows concat xs ! i = xs ! m ! n
 using assms
proof (induct xs arbitrary: m n i)
 case (Cons \ x \ xs)
 show ?case
 proof (cases m)
   case \theta
   then show ?thesis using Cons by (simp add: nth-append)
   case (Suc\ k)
   with Cons(1) [of k n i – length x] and Cons(2-)
   show ?thesis by (simp-all add: nth-append)
 qed
qed simp
lemma concat-nth-length:
 i < length \ uss \Longrightarrow j < length \ (uss ! i) \Longrightarrow
   sum-list (map\ length\ (take\ i\ uss)) + j < length\ (concat\ uss)
proof (induct uss arbitrary: i j)
 case (Cons\ u\ uss\ i\ j)
 thus ?case by (cases i, auto)
qed auto
lemma less-length-concat:
 assumes i < length (concat xs)
 shows \exists m \ n.
```

```
i = sum\text{-}list (map \ length (take \ m \ xs)) + n \land
   m < length \ xs \land n < length \ (xs ! m) \land concat \ xs ! \ i = xs ! \ m ! \ n
 using assms
proof (induct xs arbitrary: i rule: length-induct)
 case (1 xs)
 then show ?case
 proof (cases xs)
   case (Cons \ y \ ys)
   note [simp] = this
   { assume *: i < length y
     with 1 obtain n where i = n and n < length y
      and y ! i = y ! n  by simp
     then have i = sum\text{-}list (map \ length \ (take \ 0 \ xs)) + n
      and \theta < length xs and n < length (xs ! \theta)
      and concat xs ! i = xs ! \theta ! n
      using * by (auto simp: nth-append)
     then have ?thesis by blast }
   moreover
   { assume *: i \ge length y
     define j where j = i - length y
     then have length ys < length xs j < length (concat ys)
      using * and 1.prems by auto
     with 1 obtain m n where j = sum-list (map length (take m ys)) + n
      and m < length ys and n < length (ys ! m)
      and concat ys ! j = ys ! m ! n by blast
     then have i = sum-list (map length (take (Suc m) xs)) + n
      and Suc \ m < length \ xs and n < length \ (xs \ ! \ Suc \ m)
      and concat xs ! i = xs ! Suc m ! n
      using * by (simp-all add: j-def nth-append)
     then have ?thesis by blast }
   ultimately show ?thesis by force
 qed simp
qed
lemma concat-remove-nth:
 assumes i < length sss
   and j < length (sss ! i)
 defines k \equiv sum\text{-}list (map \ length \ (take \ i \ sss)) + j
 shows concat (take i sss @ remove-nth j (sss! i) # drop (Suc i) sss) = remove-nth
k (concat sss)
 using assms
 unfolding remove-nth-def
proof (induct sss rule: List.rev-induct)
 case Nil then show ?case by auto
\mathbf{next}
 case (snoc \ ss \ sss)
 then have i = length sss \lor i < length sss by auto
 then show ?case
 proof
```

```
assume i:i = length sss
    have sum-list (map\ length\ sss) = length\ (concat\ sss) by (simp\ add:\ length\text{-}concat)
      with snoc i show ?thesis by simp
      assume i:i < length sss
      then have nth:(sss @ [ss]) ! i = sss ! i by (simp add: nth-append)
      from i have drop:drop\ (Suc\ i)\ (sss\ @\ [ss])=drop\ (Suc\ i)\ sss\ @\ [ss] by auto
      from i have take:take \ i \ (sss \ @ \ [ss]) = take \ i \ sss \ by \ auto
      from snoc(1)[OF\ i]\ snoc(2-) have 1:concat (take i (sss @ [ss]) @
          (take\ j\ ((sss\ @\ [ss])\ !\ i)\ @\ drop\ (Suc\ j)\ ((sss\ @\ [ss])\ !\ i))\ \#\ drop\ (Suc\ i)\ (sss\ grade for the end of the en
@[ss])) =
         take k (concat sss) @ drop (Suc k) (concat sss) @ ss unfolding take nth drop
by simp
      from snoc(4) take have k:k = sum-list (map \ length \ (take \ i \ sss)) + j by auto
      from nth snoc(3) have j: j < length (sss! i) by auto
      have takek:take (sum-list (map length (take i sss)) + j) (concat (sss @ [ss])) =
          take (sum-list (map length (take i sss)) + j) (concat sss)
          using concat-nth-length[OF i j] by auto
       have dropk:drop\ (Suc\ (sum-list\ (map\ length\ (take\ i\ sss))\ +\ j))\ (concat\ sss)\ @
ss =
          drop \ (Suc \ (sum\text{-}list \ (map \ length \ (take \ i \ sss)) + j)) \ (concat \ (sss @ [ss]))
          using concat-nth-length[OF\ i\ j] by auto
      have take k (concat sss) @ drop (Suc k) (concat sss) @ ss =
          take \ k \ (concat \ (sss @ [ss])) @ \ drop \ (Suc \ k) \ (concat \ (sss @ [ss]))
          unfolding k takek dropk ...
      with 1 show ?thesis by auto
   qed
qed
lemma nth-append-Cons: (xs @ y \# zs) ! i =
   (if i < length xs then xs! i else if i = length xs then y else zs! (i - Suc (length xs then y else zs!))
xs)))
   by (cases i length xs rule: linorder-cases, auto simp: nth-append)
lemma finite-imp-eq [simp]:
   finite \{x. \ P \ x \longrightarrow Q \ x\} \longleftrightarrow finite \{x. \ \neg P \ x\} \land finite \{x. \ Q \ x\}
   by (auto simp: Collect-imp-eq Collect-neg-eq)
lemma sum-list-take-eq:
    \mathbf{fixes} \ xs :: nat \ list
   shows k < i \Longrightarrow i < length \ xs \Longrightarrow sum-list \ (take \ i \ xs) =
      sum-list (take\ k\ xs) + xs!\ k + sum-list (take\ (i-Suc\ k)\ (drop\ (Suc\ k)\ xs))
   by (subst\ id\text{-}take\text{-}nth\text{-}drop\ [of\ k])\ (auto\ simp:\ min\text{-}def\ drop\text{-}take)
lemma nth-equalityE:
    xs = ys \Longrightarrow (length \ xs = length \ ys \Longrightarrow (\bigwedge i. \ i < length \ xs \Longrightarrow xs \ ! \ i = ys \ ! \ i)
\Longrightarrow P) \Longrightarrow P
   by simp
```

```
fun fold-map :: ('a \Rightarrow 'b \Rightarrow 'c \times 'b) \Rightarrow 'a \ list \Rightarrow 'b \Rightarrow 'c \ list \times 'b \ where
  fold-map f [] y = ([], y)
| fold\text{-}map f (x\#xs) y = (case f x y of f s) |
      (x', y') \Rightarrow case fold-map f xs y' of
      (xs', y'') \Rightarrow (x' \# xs', y'')
lemma fold-map-cong [fundef-cong]:
  assumes a = b and xs = ys
   and \bigwedge x. \ x \in set \ xs \Longrightarrow f \ x = g \ x
 shows fold-map \ f \ xs \ a = fold-map \ g \ ys \ b
 using assms by (induct ys arbitrary: a b xs) simp-all
lemma fold-map-map-conv:
  assumes \bigwedge x \ ys. \ x \in set \ xs \Longrightarrow f \ (g \ x) \ (g' \ x @ \ ys) = (h \ x, \ ys)
  shows fold-map f (map g xs) (concat (map g' xs) @ ys) = (map h xs, ys)
  using assms by (induct xs) simp-all
lemma map-fst-fold-map:
  map \ f \ (fst \ (fold-map \ q \ xs \ y)) = fst \ (fold-map \ (\lambda a \ b. \ apfst \ f \ (q \ a \ b)) \ xs \ y)
 by (induct xs arbitrary: y) (auto split: prod.splits, metis fst-conv)
lemma not-Nil-imp-last: xs \neq [] \Longrightarrow \exists ys \ y. \ xs = ys@[y]
proof (induct xs)
  case Nil then show ?case by simp
next
  case (Cons \ x \ xs) show ?case
  proof (cases xs)
   assume xs = [] with Cons show ?thesis by simp
  next
   fix x' xs' assume xs = x' \# xs'
   then have xs \neq [] by simp
   with Cons obtain ys y where xs = ys@[y] by auto
   then have x\#xs = x\#(ys@[y]) by simp
   then have x\#xs = (x\#ys)@[y] by simp
   then show ?thesis by auto
  qed
qed
lemma Nil-or-last: xs = [] \lor (\exists ys \ y. \ xs = ys@[y])
  using not-Nil-imp-last by blast
2.1
        Combinators
definition const :: 'a \Rightarrow 'b \Rightarrow 'a where
  const \equiv (\lambda x \ y. \ x)
definition flip :: ('a \Rightarrow 'b \Rightarrow 'c) \Rightarrow ('b \Rightarrow 'a \Rightarrow 'c) where
 flip f \equiv (\lambda x \ y. \ f \ y \ x)
```

```
declare flip-def[simp]
lemma const-apply[simp]: const x y = x
 by (simp add: const-def)
lemma foldr-Cons-append-conv [simp]:
 foldr (#) xs ys = xs @ ys
 by (induct xs) simp-all
lemma foldl-flip-Cons[simp]:
 foldl (flip (\#)) xs ys = rev ys @ xs
 by (induct ys arbitrary: xs) simp-all
already present as foldr-conv-foldl, but direction seems odd
lemma foldr-flip-rev[simp]:
 foldr (flip f) (rev xs) a = foldl f a xs
 by (simp add: foldr-conv-foldl)
already present as foldl-conv-foldr, but direction seems odd
lemma foldl-flip-rev[simp]:
 foldl (flip f) a (rev xs) = foldr f xs a
 by (simp add: foldl-conv-foldr)
fun debug :: (String.literal \Rightarrow String.literal) \Rightarrow String.literal \Rightarrow 'a \Rightarrow 'a where
debug\ i\ t\ x=x
```

2.2 Distinct Lists and Partitions

This theory provides some auxiliary lemmas related to lists with distinct elements and partitions. This is mainly used for dealing with *linear* terms.

```
lemma distinct-alt:
 assumes \forall x. length (filter ((=) x) xs) \leq 1
 shows distinct xs
 using assms proof(induct xs)
 case (Cons \ x \ xs)
 then have IH:distinct xs
   by (metis dual-order.trans filter.simps(2) impossible-Cons nle-le)
  from Cons(2) have length (filter ((=) x) xs) = 0
  by (metis (mono-tags) One-nat-def add.right-neutral add-Suc-right filter.simps(2)
le-less length-0-conv less-Suc0 list.simps(3) list.size(4) nat.inject)
 then have x \notin set(xs)
   by (metis (full-types) filter-empty-conv length-0-conv)
  with IH show ?case
   by simp
qed simp
lemma distinct-filter2:
 assumes \forall i < size \ xs. \ \forall \ j < size \ xs. \ i \neq j \land f \ (xs!i) \land f \ (xs!j) \longrightarrow xs!i \neq xs!j
```

```
shows distinct (filter f xs)
  using assms proof(induct xs)
  case (Cons \ x \ xs)
  {fix i j assume i < length xs j < length xs i \neq j f (xs!i) f (xs!j)
   with Cons(2) have xs!i \neq xs!j
     by (metis not-less-eq nth-Cons-Suc Suc-inject length-Cons)
  with Cons(1) have IH:distinct (filter f xs)
   by presburger
 show ?case proof(cases f x)
   case True
   with Cons(2) have \forall j < length \ xs. \ f \ (xs!j) \longrightarrow x \neq xs!j by fastforce
  then have x \notin set (filter f xs) by (metis filter-set in-set-conv-nth member-filter)
   then show ?thesis unfolding filter.simps using True IH by simp
 next
   case False
   then show ?thesis unfolding filter.simps using IH by presburger
 qed
qed simp
lemma distinct-is-partition:
 assumes distinct xs
 shows is-partition (map (\lambda x. \{x\}) xs)
 using assms proof(induct xs)
 case (Cons \ x \ xs)
  then show ?case unfolding list.map(2) is-partition-Cons by force
qed (simp add: is-partition-Nil)
lemma is-partition-append:
 assumes is-partition xs and is-partition zs
   and \forall i < length \ xs. \ xs! i \cap \bigcup (set \ zs) = \{\}
 shows is-partition (xs@zs)
  by (smt\ (verit,\ del\text{-}insts)\ add\text{-}diff\text{-}inverse\text{-}nat\ assms(1)\ assms(2)\ assms(3)\ dis-
joint-iff is-partition-alt is-partition-alt-def length-append mem-simps (9) nat-add-left-cancel-less
nth-append nth-mem)
\mathbf{lemma}\ \textit{distinct-is-partitition-sets}:
  assumes distinct xs
   and xs = concat ys
 shows is-partition (map set ys)
  using assms proof(induct ys arbitrary:xs)
  case (Cons \ y \ ys)
 have is-partition (map set ys) proof—
   from Cons(2,3) have distinct (concat ys)
     unfolding concat.simps by simp
   with Cons(1) show ?thesis by simp
  moreover from Cons(2,3) have set y \cap \bigcup (set (map set ys)) = \{\}
   using distinct-append[of y concat ys]by simp
```

```
ultimately show ?case
    unfolding is-partition-Cons list.map by simp
qed (simp add: is-partition-Nil)
end
2.3
        Option Type
theory Option-Util
 imports Main
begin
primrec option-to-list :: 'a option \Rightarrow 'a list
    option-to-list (Some \ a) = [a] \mid
    option-to-list\ None = []
lemma set-option-to-list-sound [simp]:
  set (option-to-list t) = set-option t
  by (induct t) auto
fun fun-of-map :: ('a \Rightarrow 'b \ option) \Rightarrow 'b \Rightarrow ('a \Rightarrow 'b) where
 fun-of-map m d a = (case m a of Some b <math>\Rightarrow b \mid None \Rightarrow d)
end
        Sublists
2.4
theory SubList
 imports
    HOL-Library.Sublist
    HOL-Library.Multiset
begin
lemmas subseq-trans = subseq-order.order-trans
\mathbf{lemma}\ \mathit{subseq-Cons-Cons} :
 \mathbf{assumes}\ \mathit{subseq}\ (\mathit{a}\ \#\ \mathit{as})\ (\mathit{b}\ \#\ \mathit{bs})
 shows subseq as bs
  using assms by (cases a = b) (auto intro: subseq-Cons')
lemma subseq-induct2:
  \llbracket subseq xs ys; \rrbracket
 \bigwedge bs. P [] bs;
 \bigwedge a as bs. \llbracket subseq as bs; P as bs \rrbracket \Longrightarrow P (a \# as) (a \# bs);
 \bigwedge a as b bs. \llbracket a \neq b; subseq as bs; subseq (a \# as) bs; P as bs; P (a \# as) bs \rrbracket
\implies P (a \# as) (b \# bs) 
 \implies P xs ys
proof (induct ys arbitrary: xs)
```

case Nil then show ?case by (metis list-emb-Nil2)

```
next
 case (Cons y ys')
 note Cons-ys = Cons
 note sl = Cons(2)
 note step\text{-}eq = Cons(4)
 note step-neq = Cons(5)
 show ?case proof (cases xs)
   case Nil show ?thesis unfolding Nil using Cons.prems(2) by auto
  next
   case (Cons \ x \ xs')
   have sl': subseq xs' ys' by (metis Cons sl subseq-Cons-Cons)
   from sl' have P': P xs' ys' using Cons-ys by auto
   show ?thesis proof (cases x = y)
     {\bf case}\ \mathit{False}
    have sl'': subseq (x \# xs') ys' using sl unfolding Cons using False by auto
      then have P'': P(x \# xs') ys' by (metis\ Cons.hyps\ Cons-ys(3)\ step-eq
step-neq)
      show ?thesis using step-neq[OF False sl' sl" P' P"] unfolding Cons by
auto
   \mathbf{next}
     case True
     show ?thesis using step-eq[OF sl' P'] unfolding Cons True[symmetric] by
auto
   qed
 \mathbf{qed}
qed
\mathbf{lemma}\ subseq\text{-}submultiset:
  subseq xs ys \Longrightarrow mset xs \subseteq \# mset ys
 by (induct rule: list-emb.induct) (auto intro: subset-mset.order-trans)
\mathbf{lemma}\ subseq\text{-}subset:
  subseq xs ys \Longrightarrow set xs \subseteq set ys
 by (induct rule: list-emb.induct) auto
lemma remove1-subseq:
  subseq (remove1 x xs) xs
 by (induct xs) auto
lemma subseq-concat:
 assumes \bigwedge x. \ x \in set \ xs \Longrightarrow subseq \ (f \ x) \ (g \ x)
 shows subseq (concat (map f xs)) (concat (map g xs))
 using assms by (induct xs) (auto intro: list-emb-append-mono)
end
```

3 Extensions for Existing AFP Entries

3.1 First Order Terms

```
theory Term-Impl
 imports
   First-Order-Terms. Term-More
   Certification-Monads. Check-Monad
   Deriving. Compare-Order-Instances
   Show.Shows-Literal
   FOR-Preliminaries
begin
{\bf derive}\ compare-order\ term
3.1.1 Positions
fun poss-list :: ('f, 'v) term \Rightarrow pos list
  where
   poss-list (Var x) = []] |
   poss-list (Fun f ss) = ([] \# concat (map (\lambda (i, ps).
   map ((\#) i) ps) (zip [0 ... < length ss] (map poss-list ss))))
lemma poss-list-sound [simp]:
  set (poss-list s) = poss s
proof (induct s)
 case (Fun f ss)
 let ?z = zip [0.. < length ss] (map poss-list ss)
 have (\bigcup a \in set ?z. set (case-prod (\lambda i. map ((\#) i)) a)) =
      \{i \# p \mid i p. \ i < length \ ss \land p \in poss \ (ss ! i)\}\ (is \ ?l = ?r)
 proof (rule set-eqI)
   \mathbf{fix} \ ip
   show (ip \in ?l) = (ip \in ?r)
   proof
     assume ip \in ?l
     from this obtain ipI where
       z: ipI \in set ?z  and
       ip: ip \in set \ (case-prod \ (\lambda \ i. \ map \ ((\#) \ i)) \ ipI)
      by auto
     from z obtain i where i: i < length ?z and zi: ?z ! i = ipI
      by (force simp: set-conv-nth)
     with ip Fun \text{ show } ip \in ?r \text{ by } auto
   next
     assume ip \in ?r
     from this obtain i p where i: i < length ss  and p \in poss  (ss ! i)
       and ip: ip = i \# p by auto
     with Fun have p: p \in set (poss-list (ss!i)) and iz: i < length ?z by auto
     from i have id: ?z ! i = (i, poss-list (ss ! i)) (is -= ?ipI) by auto
     from iz have ?z ! i \in set ?z by (rule nth-mem)
     with id have inZ: ?ipI \in set ?z by auto
```

```
from p have i \# p \in set (case-prod (\lambda i. map ((\#) i)) ?ipI) by auto
     with inZ ip show ip \in ?l by force
   qed
 qed
  with Fun show ?case by simp
qed simp
declare poss-list.simps [simp del]
fun var-poss-list :: ('f, 'v) term \Rightarrow pos list
 where
   var\text{-}poss\text{-}list (Var x) = [[]]
   var\text{-}poss\text{-}list\ (Fun\ f\ ss) = (concat\ (map\ (\lambda\ (i,\ ps).
   map((\#) i) ps)(zip[0 ... < length ss](map var-poss-list ss))))
lemma var-poss-list-sound [simp]:
  set (var-poss-list s) = var-poss s
proof (induct s)
 case (Fun f ss)
 let ?z = zip [0..< length ss] (map var-poss-list ss)
 have (\bigcup a \in set ?z. set (case-prod (\lambda i. map ((\#) i)) a)) =
       (\bigcup i < length \ ss. \ \{i \ \# \ p \ | p. \ p \in var-poss \ (ss \ ! \ i)\}) \ (\mathbf{is} \ ?l = ?r)
  proof (rule set-eqI)
   \mathbf{fix} ip
   show (ip \in ?l) = (ip \in ?r)
   proof
     assume ip \in ?l
     from this obtain ipI where
       z: ipI \in set ?z  and
       ip: ip \in set \ (case-prod \ (\lambda \ i. \ map \ ((\#) \ i)) \ ipI)
       by auto
     from z obtain i where i: i < length ?z and zi: ?z ! i = ipI
       by (force simp: set-conv-nth)
     with ip Fun \text{ show } ip \in ?r \text{ by } auto
     assume ip \in ?r
     from this obtain i p where i: i < length ss and p \in var\text{-}poss (ss ! i)
       and ip: ip = i \# p by auto
      with Fun have p: p \in set (var\text{-}poss\text{-}list (ss ! i)) and iz: i < length ?z by
auto
     from i have id: 2z! i = (i, var-poss-list (ss!i)) (is -= 2ipI) by auto
     from iz have ?z ! i \in set ?z by (rule \ nth-mem)
     with id have inZ: ?ipI \in set ?z by auto
     from p have i \# p \in set (case-prod (<math>\lambda i. map ((\#) i)) ?ipI) by auto
     with inZ ip show ip \in ?l by force
   qed
 qed
 with Fun show ?case unfolding var-poss-list.simps by simp
```

```
qed simp
lemma length-var-poss-list: length (var-poss-list t) = length (vars-term-list t)
\mathbf{proof}(induct\ t)
 case (Var x)
 then show ?case unfolding var-poss-list.simps vars-term-list.simps by simp
next
 case (Fun f ts)
 let ?xs=map2 (\lambda x. map ((#) x)) [0..<length ts] (map var-poss-list ts)
 let ?ys=map vars-term-list ts
 have l1:length ?xs = length ts
   by simp
 have l2:length ?ys = length ts
   by simp
 {fix i assume i:i < length ts
    then have (zip [0..< length ts] (map var-poss-list ts)) ! i = (i, var-poss-list
(ts!i)) by simp
   with i have ?xs!i = (map ((\#) i)) (var-poss-list (ts!i)) by simp
   then have length (?xs!i) = length (var-poss-list (ts!i)) by simp
   with i have length (?xs!i) = length (?ys!i) using Fun.hyps by simp
 then show ?case
  {f unfolding}\ var-poss-list.simps\ vars-term-list.simps\ {f using}\ eq-length-concat-nth[of]
?xs ?ys l1 l2 by presburger
qed
lemma vars-term-list-var-poss-list:
 assumes i < length (vars-term-list t)
 shows Var\left((vars\text{-}term\text{-}list\ t)!i\right) = t|\text{-}((var\text{-}poss\text{-}list\ t)!i)
 using assms proof(induct t arbitrary:i)
 case (Var x)
 then have i:i=0
   unfolding vars-term-list.simps by simp
 then show ?case unfolding i vars-term-list.simps poss-list.simps var-poss.simps
by simp
\mathbf{next}
 case (Fun f ts)
 let ?xs = (map \ vars - term - list \ ts)
 let ?ys=(map2\ (\lambda i.\ map\ ((\#)\ i))\ [0..< length\ ts]\ (map\ var-poss-list\ ts))
 from Fun(2) have 1:i < length (concat ?xs) unfolding vars-term-list.simps by
simp
 have 2:length ?ys = length ?xs unfolding length-map by simp
 {fix i assume i:i < length ?xs
   then have *:(map2\ (\lambda x.\ map\ ((\#)\ x))\ [0..< length\ ts]\ (map\ var-poss-list\ ts)!
i) = map ((\#) i) (var-poss-list (ts!i))
     unfolding length-map by simp
   with i have length (?ys ! i) = length (?xs ! i)
     unfolding * length-map length-var-poss-list by simp
 note l=this
```

```
then obtain j k where j:j < length ?xs and k:k < length (?xs ! j)
       and concat:concat ?xs ! i = ?xs ! j ! k concat ?ys ! i = ?ys ! j ! k
       using nth-concat-two-lists[OF 1 2] by blast
   from Fun(1) j k have Var(vars-term-list(ts!j)!k) = (ts!j) | -var-poss-list(ts!j)
       unfolding length-map by force
   then have Var (vars-term-list (Fun f ts) ! i) = (Fun f ts) | -(j\#(var-poss-list (ts!j)) | -(j\#(var-po
        unfolding vars-term-list.simps\ concat(1) using j by auto
  moreover have j\#(var\text{-}poss\text{-}list\ (ts!j)\ !\ k) = ((var\text{-}poss\text{-}list\ (Fun\ f\ ts))!i)\ \mathbf{proof} -
           from k have k < length (map2 (\lambda i. map ((#) i)) [0..< length ts] (map)
var-poss-list ts) ! j)
          using l j by presburger
       then show ?thesis
            unfolding var-poss-list.simps\ concat(2) using j unfolding length-map by
simp
   qed
   ultimately show ?case
       by presburger
qed
lemma var-poss-list-map-vars-term:
   shows var\text{-}poss\text{-}list \ (map\text{-}vars\text{-}term \ f \ t) = var\text{-}poss\text{-}list \ t
proof(induct \ t)
   case (Fun \ g \ ts)
    then have IH:map\ var-poss-list\ ts=map\ var-poss-list\ (map\ (map-vars-term\ f)
ts
       bv fastforce
  then show ?case unfolding map-vars-term-eq eval-term.simps IH var-poss-list.simps
       by force
qed simp
{f lemma}\ distinct	ext{-}var	ext{-}poss	ext{-}list:
   shows distinct (var-poss-list t)
\mathbf{proof}(induct\ t)
   case (Fun f ts)
   let ?xs=(map2\ (\lambda i.\ map\ ((\#)\ i))\ [0..< length\ ts]\ (map\ var-poss-list\ ts))
   have l:length ?xs = length ts
       by force
   have d1:distinct (removeAll [] ?xs) proof—
       have xs':removeAll \mid ?xs = filter (\lambda x. \ x \neq \mid) ?xs
           \mathbf{by}\ (\mathit{metis}\ (\mathit{mono-tags},\ \mathit{lifting})\ \mathit{filter-cong}\ \mathit{removeAll-filter-not-eq})
       {fix i j assume i:i < length ?xs ?xs!i \neq [] and j:j < length ?xs ?xs!j \neq [] and
ij:i \neq j
          from i l obtain p where p:i\#p \in set (?xs!i) using nth-mem
                    by (smt (z3) add.left-neutral diff-zero length-greater-0-conv length-map
length-upt nth-map nth-upt nth-zip prod.simps(2))
           from l j(1) have ?xs ! j = map((\#) j)((map \ var-poss-list \ ts)!j)
              by simp
```

```
with p have ?xs!i \neq ?xs!j using ij by force
   then show ?thesis using distinct-filter2 xs' by (smt (verit))
  \{ \text{fix } x \text{ assume } x \in set ?xs \}
   with l obtain i where i:i < length ts and x = ?xs!i by (metis\ in\text{-}set\text{-}idx)
   then have x:x = map((\#) i) (var-poss-list (ts!i)) by simp
   from Fun i have distinct (var-poss-list (ts!i)) by auto
   then have distinct x
      unfolding x by (simp \ add: \ distinct-map)
  note d2 = this
  \{ \text{fix } x \text{ } y \text{ assume } x \in \text{set } ?xs \text{ } y \in \text{set } ?xs \text{ } x \neq y \} 
    then obtain i j where i:i < length ?xs x = ?xs!i and j:j < length ?xs y =
?xs!j and ij:i \neq j
     by (metis\ in\text{-}set\text{-}idx)
   from i have x:x = map((\#) i) (var\text{-}poss\text{-}list(ts!i)) by simp
   from j have y:y = map((\#) j) (var-poss-list (ts!j)) by simp
    {fix p \neq assume p: p \in set x \text{ and } q: q \in set y
      from x p obtain p' where p': p = i \# p' and p' \in set (var\text{-}poss\text{-}list (ts!i))
      from y \neq a obtain q' where q':q = j\#q' and q' \in set (var\text{-}poss\text{-}list (ts!j))
       by auto
      from q' p' have p \neq q by (simp \ add: ij)
   then have set x \cap set y = \{\} by auto
  note d\beta = this
 from d1 d2 d3 show ?case unfolding var-poss-list.simps using distinct-concat-iff
by blast
qed simp
fun fun-poss-list :: ('f, 'v) term \Rightarrow pos list
   fun-poss-list (Var x) = [] |
   fun-poss-list (Fun f ss) = ([] \# concat (map (<math>\lambda (i, ps)).
   map((\#) i) ps)(zip[0 ... < length ss](map fun-poss-list ss))))
lemma set-fun-poss-list [simp]:
  set (fun-poss-list t) = fun-poss t
  by (induct t; auto simp: UNION-set-zip)
context
begin
private fun in\text{-}poss :: pos \Rightarrow ('f, 'v) term \Rightarrow bool
  where
    in\text{-}poss \ [] \ \text{-} \longleftrightarrow True \ []
   in\text{-}poss\ (Cons\ i\ p)\ (Fun\ f\ ts) \longleftrightarrow i < length\ ts \land in\text{-}poss\ p\ (ts\ !\ i)\ |
    in\text{-}poss\ (Cons\ i\ p)\ (Var\ \text{-})\longleftrightarrow False
lemma poss-code[code-unfold]:
```

```
p \in poss \ t = in\text{-}poss \ p \ t \ \mathbf{by} \ (induct \ rule: in\text{-}poss.induct) \ autoend
```

3.1.2 List of Distinct Variables

We introduce a duplicate free version of *vars-term-list* that preserves order of appearance of variables. This is used for the theory on proof terms.

```
abbreviation vars-distinct :: ('f, 'v) term \Rightarrow 'v list where vars-distinct t \equiv (rev \circ remdups \circ rev) (vars-term-list t)
```

```
lemma single-var[simp]: vars-distinct (Var \ x) = [x]
by (simp \ add: \ vars-term-list.simps(1))
lemma vars-term-list-vars-distinct:
assumes i < length (vars-term-list\ t)
shows \exists \ j < length (vars-distinct\ t). (vars-term-list\ t)!i = (vars-distinct\ t)!j
by (metis\ assms\ in-set-idx\ nth-mem\ o-apply\ set-remdups\ set-rev)
```

3.1.3 Useful abstractions

Given that we perform the same operations on terms in order to get a list of the variables and a list of the functions, we define functions that run through the term and perform these actions.

```
context begin private fun contains-var-term :: 'v \Rightarrow ('f, \ 'v) \ term \Rightarrow bool \ \mathbf{where} contains-var-term x \ (Var \ y) = (x = y) | contains-var-term x \ (Fun - ts) = Bex \ (set \ ts) \ (contains-var-term \ x) | lemma contains-var-term-sound[simp]: contains-var-term x \ t \longleftrightarrow x \in vars-term t | by (induct \ t) \ auto
```

lemma in-vars-term-code [code-unfold]: $x \in vars$ -term t = contains-var-term x t by simpend

3.1.4 Linear Terms

```
lemma distinct-vars-linear-term:
assumes distinct (vars-term-list t)
shows linear-term t
using assms proof(induct t)
case (Fun f ts)
{fix t' assume t':t' \in set ts
with Fun(2) have distinct (vars-term-list t')
unfolding vars-term-list.simps by (simp add: distinct-concat-iff)
```

```
with Fun(1) t' have linear-term t' by auto
    }note IH=this
    have is-partition (map (set \circ vars-term-list) ts)
       using distinct-is-partitition-sets vars-term-list.simps(2) Fun(2) by force
    then have is-partition (map vars-term ts) by (simp add: comp-def)
    with IH show ?case by simp
qed simp
fun
    linear-term-impl :: v \text{ set} \Rightarrow (f, v) \text{ term} \Rightarrow (v \text{ set}) \text{ option}
    where
        linear-term-impl xs (Var x) = (if x \in xs then None else Some (insert x xs))
       linear-term-impl\ xs\ (Fun\ -\ [])=Some\ xs\ |
       linear-term-impl\ xs\ (Fun\ f\ (t\ \#\ ts)) = (case\ linear-term-impl\ xs\ t\ of
        None \Rightarrow None
    | Some \ ys \Rightarrow linear\text{-}term\text{-}impl\ ys\ (Fun\ f\ ts))|
lemma linear-term-code[code]: linear-term t = (linear-term-impl \{\} t \neq None)
proof -
    {
       note [simp] = is-partition-Nil is-partition-Cons
       \mathbf{fix} \ xs \ ys
       let P = \lambda ys xs t. (linear-term-impl xs t = None \longrightarrow (xs \cap vars-term \ t \neq \{\})
\vee \neg linear\text{-}term\ t)) \wedge
               (\textit{linear-term-impl} \ \textit{xs} \ t = \textit{Some} \ \textit{ys} \ \longrightarrow \ (\textit{ys} = (\textit{xs} \ \cup \ \textit{vars-term} \ t)) \ \land \ \textit{xs} \ \cap
vars-term t = \{\} \land linear-term t)
       have ?P \ ys \ xs \ t
     proof (induct rule: linear-term-impl.induct[of \lambda xs t. \forall ys. ?P ys xs t, rule-format])
           case (3 xs f t ts zs)
           show ?case
           proof (cases linear-term-impl xs t)
               case None
               with 3 show ?thesis by auto
           next
               case (Some ys)
               note some = this
                    with 3 have rec1: ys = xs \cup vars\text{-}term\ t \wedge xs \cap vars\text{-}term\ t = \{\} \wedge
linear-term t by auto
               show ?thesis
               proof (cases linear-term-impl ys (Fun f ts))
                   case None
                     with rec1 Some have res: linear-term-impl xs (Fun f (t \# ts)) = None
\mathbf{by} \ simp
                     from None 3(2) Some have rec2: ys \cap vars\text{-}term (Fun f ts) \neq \{\} \lor \neg
linear-term (Fun f ts) by simp
                   then have xs \cap vars\text{-}term (Fun f (t \# ts)) \neq \{\} \lor \neg linear\text{-}term (Fun f f term f ter
(t \# ts))
                   proof
                       assume ys \cap vars\text{-}term (Fun f ts) \neq \{\}
```

```
then obtain x where x1: x \in ys and x2: x \in vars\text{-}term (Fun f ts) by
auto
          \mathbf{show} \ ?thesis
          proof (cases \ x \in xs)
            {f case} True
            with x2 show ?thesis by auto
          next
            case False
            with x1 \ rec1 have x \in vars\text{-}term \ t by auto
            with x2 have \neg linear-term (Fun f (t \# ts)) by auto
            then show ?thesis ..
          qed
        next
          assume \neg linear-term (Fun f ts) then have \neg linear-term (Fun f (t #
ts)) by auto
          then show ?thesis ..
        qed
        with res show ?thesis by auto
        case (Some us)
        with some have res: linear-term-impl xs (Fun f (t \# ts)) = Some us by
auto
          assume us: us = zs
          from Some[simplified us] 3(2) some
          have rec2: zs = ys \cup vars\text{-}term (Fun f ts) \land ys \cap vars\text{-}term (Fun f ts)
= \{\} \land linear\text{-}term (Fun f ts) by auto
          from rec1 rec2
         have part1: zs = xs \cup vars\text{-}term (Fun f (t \# ts)) \land xs \cap vars\text{-}term (Fun
f(t \# ts) = \{\} (is ?part1) by auto
            from rec1 rec2 have vars-term t \cap vars-term (Fun f ts) = {} and
linear-term t and linear-term (Fun f ts) by auto
          then have linear-term (Fun f (t \# ts)) (is ?part2) by auto
          with part1 have ?part1 \( \cdot ?part2 \).
        with res show ?thesis by auto
      qed
     qed
   qed auto
  } note main = this
 from main[of {}] show ?thesis by (cases linear-term-impl {} t, auto)
definition check-linear-term :: ('f :: showl, 'v :: showl) term \Rightarrow showsl check
   check-linear-term s = check (linear-term s)
   (showsl\ (STR\ "the\ term\ ")\circ showsl\ s\circ showsl\ (STR\ "is\ not\ linear \leftarrow ""))
lemma check-linear-term [simp]:
```

```
isOK (check-linear-term s) = linear-term s
by (simp add: check-linear-term-def)
```

3.1.5 Subterms

```
fun supteq-list :: ('f, 'v) term \Rightarrow ('f, 'v) term list
 where
   supteq-list (Var x) = [Var x]
   supteq-list (Fun f ts) = Fun f ts \# concat (map supteq-list ts)
fun supt-list :: ('f, 'v) term \Rightarrow ('f, 'v) term list
  where
   supt-list (Var x) = [] |
   supt-list (Fun f ts) = concat (map supteq-list ts)
lemma supteq-list [simp]:
 set (supteq-list t) = \{s. t \ge s\}
proof (rule set-eqI, unfold mem-Collect-eq)
 show s \in set(supteq-list\ t) = (t \ge s)
 proof (induct t)
   case (Fun f ss)
   show ?case
   proof (cases Fun f ss = s)
     case False
     show ?thesis
     proof
       assume Fun f ss \ge s
       with False have sup: Fun f ss \triangleright s using supteq-supt-conv by auto
       obtain C where C \neq \square and Fun f ss = C\langle s \rangle using sup by auto
       then obtain b D a where Fun f ss = Fun f (b @ D(s) \# a) by (cases C,
auto)
       then have D: D\langle s \rangle \in set \ ss \ by \ auto
       with Fun[OF\ D]\ ctxt-imp-supteq[of\ D\ s] obtain t where t\in set\ ss and s
\in set (supteq-list t) by auto
       then show s \in set (supteq-list (Fun f ss)) by auto
      assume s \in set (supteg-list (Fun f ss))
      with False obtain t where t: t \in set ss and s \in set (supteg-list t) by auto
      with Fun[OF\ t] have t \ge s by auto
       with t show Fun f ss \supseteq s by auto
     qed
   qed auto
 qed (simp add: supteq-var-imp-eq)
lemma supt-list-sound [simp]:
  set (supt-list t) = \{s. t \triangleright s\}
 by (cases t) auto
```

```
fun supt\text{-}impl :: ('f, 'v) \ term \Rightarrow ('f, 'v) \ term \Rightarrow bool
  where
    supt\text{-}impl\ (Var\ x)\ t\longleftrightarrow False\ |
    supt\text{-}impl\ (Fun\ f\ ss)\ t\longleftrightarrow t\in set\ ss\ \lor\ Bex\ (set\ ss)\ (\lambda s.\ supt\text{-}impl\ s\ t)
lemma supt-impl [code-unfold]:
  s \rhd t \longleftrightarrow supt\text{-}impl\ s\ t
proof
  assume s > t then show supt-impl \ s \ t
 proof (induct s)
    case (Var x) then show ?case by auto
  next
    case (Fun f ss) then show ?case
    proof (cases t \in set ss)
      case True then show ?thesis by (simp)
    next
      case False
      assume \bigwedge s. \llbracket s \in set \ ss; \ s \rhd t \rrbracket \implies supt\text{-}impl \ s \ t
        and Fun f ss > t and t \notin set ss
      moreover from \langle Fun \ f \ ss \ \triangleright \ t \rangle obtain s where s \in set \ ss and s \triangleright t
        by (cases rule: supt.cases) (simp-all add: \langle t \notin set ss \rangle)
      ultimately have supt-impl s t by simp
      with \langle s \in set \ ss \rangle show ?thesis by auto
    qed
  qed
next
  assume supt-impl s t
  then show s > t
  proof (induct s)
    case (Var x) then show ?case by simp
    case (Fun f ss)
    then have t \in set \ ss \ \lor \ (\exists \ s \in set \ ss. \ supt\text{-}impl \ s \ t) by simp
    then show ?case
    proof
      assume t \in set ss then show ?case by auto
      assume \exists s \in set \ ss. \ supt-impl \ s \ t
      then obtain s where s \in set ss and supt-impl s t by auto
      with Fun have s > t by auto
      with \langle s \in set \ ss \rangle show ?thesis by auto
    qed
 qed
qed
lemma supteq-impl[code-unfold]: s \geq t \longleftrightarrow s = t \vee supt-impl s t
  unfolding supteq-supt-set-conv
  by (auto simp: supt-impl)
```

```
definition check-no-var :: ('f::showl, 'v::showl) term \Rightarrow showsl check where
  check-no-var\ t \equiv check\ (is-Fun\ t)\ (showsl\ (STR\ ''variable\ found \leftarrow ''))
lemma check-no-var-sound[simp]:
  isOK (check-no-var\ t) \longleftrightarrow is-Fun\ t
  unfolding check-no-var-def by simp
definition
  check-supt :: ('f::showl, 'v::showl) term <math>\Rightarrow ('f, 'v) term \Rightarrow showsl check
   check-supt s \ t \equiv check \ (s \rhd t) \ (showsl \ t \circ showsl \ (STR '' \ is \ not \ a \ proper \ subterm
of '') \circ shows l s)
definition
  check-supteq :: ('f::showl, 'v::showl) term \Rightarrow ('f, 'v) term \Rightarrow showsl check
   check-supteq s \ t \equiv check \ (s \geq t) \ (showsl \ t \circ showsl \ (STR '' \ is \ not \ a \ subterm \ of
'') \circ shows ls)
lemma isOK-check-supt [simp]:
  isOK (check\text{-}supt \ s \ t) \longleftrightarrow s \rhd t
 by (auto simp: check-supt-def)
lemma isOK-check-supteq [simp]:
  isOK \ (check\text{-supteq } s \ t) \longleftrightarrow s \trianglerighteq t
  by (auto simp: check-supteq-def)
3.1.6
          Additional Functions on Terms
fun with-arity :: ('f, 'v) term \Rightarrow ('f \times nat, 'v) term where
  with-arity (Var x) = Var x
| with-arity (Fun f ts) = Fun (f, length ts) (map with-arity ts)
fun add-vars-term :: ('f, 'v) term <math>\Rightarrow 'v list \Rightarrow 'v list
  where
    add-vars-term (Var\ x) xs = x \# xs
   add-vars-term (Fun - ts) xs = foldr add-vars-term ts xs
fun add-funs-term :: ('f, 'v) term \Rightarrow 'f list \Rightarrow 'f list
    add-funs-term (Var -) fs = fs |
   add-funs-term (Fun f ts) fs = f \# foldr \ add-funs-term ts \ fs
fun add-funas-term :: ('f, 'v) term \Rightarrow ('f \times nat) list \Rightarrow ('f \times nat) list
  where
    add-funas-term (Var -) fs = fs |
   add-funas-term (Fun f ts) fs = (f, length ts) # foldr add-funas-term ts fs
```

```
definition add-funas-args-term :: (f, v) term \Rightarrow (f \times nat) list \Rightarrow (f \times nat) list
 where
   add-funas-args-term t fs = foldr add-funas-term (args \ t) fs
lemma add-vars-term-vars-term-list-conv [simp]:
 add-vars-term t xs = vars-term-list t @ xs
proof (induct t arbitrary: xs)
 case (Fun f ts)
 then show ?case by (induct ts) (simp-all add: vars-term-list.simps)
qed (simp add: vars-term-list.simps)
lemma add-funs-term-funs-term-list-conv [simp]:
 add-funs-term t fs = funs-term-list t @ fs
proof (induct t arbitrary: fs)
 case (Fun f ts)
 then show ?case by (induct ts) (simp-all add: funs-term-list.simps)
qed (simp add: funs-term-list.simps)
lemma add-funas-term-funas-term-list-conv [simp]:
 add-funas-term t fs = funas-term-list t @ fs
{f proof}\ (induct\ t\ arbitrary:\ fs)
 case (Fun f ts)
 then show ?case by (induct ts) (simp-all add: funas-term-list.simps)
qed (simp add: funas-term-list.simps)
lemma add-vars-term-vars-term-list-abs-conv [simp]:
 add-vars-term = (@) \circ vars-term-list
 by (intro ext) simp
lemma add-funs-term-funs-term-list-abs-conv [simp]:
 add-funs-term = (@) \circ funs-term-list
 by (intro ext) simp
lemma add-funas-term-funas-term-list-abs-conv [simp]:
 add-funas-term = (@) \circ funas-term-list
 by (intro ext) simp
lemma add-funas-args-term-funas-args-term-list-conv [simp]:
 add-funas-args-term t fs = funas-args-term-list t @ fs
 by (simp add: add-funas-args-term-def funas-args-term-list-def concat-conv-foldr
foldr-map)
fun insert-vars-term :: ('f, 'v) term \Rightarrow 'v list \Rightarrow 'v list
 where
   insert-vars-term (Var x) xs = List.insert x xs
   insert-vars-term (Fun f ts) xs = foldr insert-vars-term ts xs
fun insert-funs-term :: ('f, 'v) term \Rightarrow 'f list \Rightarrow 'f list
```

```
where
   insert-funs-term (Var\ x) fs = fs
   insert-funs-term (Fun f ts) fs = List.insert f (foldr insert-funs-term ts fs)
fun insert-funas-term :: ('f, 'v) term \Rightarrow ('f \times nat) list \Rightarrow ('f \times nat) list
  where
   insert-funas-term (Var\ x) fs = fs
  insert-funas-term (Fun f ts) fs = List.insert (f, length ts) (foldr insert-funas-term
ts fs)
definition insert-funas-args-term :: ('f, 'v) term \Rightarrow ('f \times nat) list \Rightarrow ('f \times nat)
list
  where
    insert-funas-args-term\ t\ fs = foldr\ insert-funas-term\ (args\ t)\ fs
lemma set-insert-vars-term-vars-term [simp]:
  set\ (insert\text{-}vars\text{-}term\ t\ xs) = vars\text{-}term\ t\ \cup\ set\ xs
proof (induct t arbitrary: xs)
 case (Fun f ts)
  then show ?case by (induct ts) auto
qed simp
lemma set-insert-funs-term-funs-term [simp]:
  set (insert-funs-term \ t \ fs) = funs-term \ t \ \cup \ set \ fs
proof (induct t arbitrary: fs)
 case (Fun f ts)
 then show ?case by (induct ts) auto
qed simp
lemma set-insert-funas-term-funas-term [simp]:
  set\ (insert\text{-}funas\text{-}term\ t\ fs) = funas\text{-}term\ t\ \cup\ set\ fs
proof (induct t arbitrary: fs)
 case (Fun f ts)
 then have set (foldr insert-funas-term ts fs) = \bigcup (funas-term 'set ts) \cup set fs
   by (induct ts) auto
 then show ?case by simp
qed simp
lemma set-insert-funas-args-term [simp]:
  set\ (insert\text{-}funas\text{-}args\text{-}term\ t\ fs) = \bigcup\ (funas\text{-}term\ `set\ (args\ t)) \cup set\ fs
proof (induct t arbitrary: fs)
 case (Fun f ts)
 then show ?case by (induct ts) (auto simp: insert-funas-args-term-def)
qed (simp add: insert-funas-args-term-def)
Implementations of corresponding set-based functions.
abbreviation vars-term-impl t \equiv insert-vars-term t \parallel
abbreviation funs-term-impl t \equiv insert-funs-term t \parallel
abbreviation funas-term-impl t \equiv insert-funas-term t \mid \mid
```

```
lemma \ vars-funs-term-list-code[code]:
      vars-term-list\ t = add-vars-term\ t\ []
     funs-term-list \ t = add-funs-term \ t \ []
     by simp-all
lemma with-arity-term-fold [code]:
      with-arity = Term-More.fold\ Var\ (\lambda f\ ts.\ Fun\ (f,\ length\ ts)\ ts)
proof
     fix t :: ('f, 'v) term
     show with-arity t = Term-More.fold Var (\lambda f ts. Fun (f, length ts) ts) t
          by (induct\ t)\ simp-all
qed
fun flatten-term-enum :: ('f list, 'v) term \Rightarrow ('f, 'v) term list
     where
          flatten-term-enum (Var x) = [Var x]
          flatten-term-enum (Fun fs ts) =
               lts = map flatten-term-enum ts;
                ss = concat-lists lts
          in concat (map (\lambda f. map (Fun f) ss) fs))
lemma flatten-term-enum:
      set (flatten-term-enum \ t) = \{u. \ instance-term \ u \ (map-funs-term \ set \ t)\}
proof (induct t)
     case (Var x)
     show ?case (is - = ?R)
     proof -
               \mathbf{fix} \ t
               assume t \in ?R
               then have t = Var x by (cases t, auto)
          then show ?thesis by auto
     \mathbf{qed}
\mathbf{next}
     case (Fun fs ts)
     show ?case (is ?L = ?R)
     proof -
          {
               \mathbf{fix} i
               \mathbf{assume}\ i < \mathit{length}\ \mathit{ts}
               then have ts ! i \in set ts by auto
               note Fun[OF this]
           } note ind = this
        have idL: ?L = \{Fun \ g \ ss \ | \ g \ ss. \ g \in set \ fs \ \land \ length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ ss = \ length \ ts \ \land \ (\forall \ i < length \ ss = \ length \ s
```

```
ts. \ ss! \ i \in set \ (flatten-term-enum \ (ts! \ i))) \} \ (is -= ?M1) \ by \ auto
        let ?R1 = \{Fun \ f \ ss \mid f \ ss. \ f \in set \ fs \land length \ ss = length \ ts \land (\forall \ i < length \ ss.
instance-term (ss!i) (map-funs-term set (ts!i)))}
           \mathbf{fix} \ u
           assume u \in ?R
            then have u \in ?R1 by (cases u, auto)
        then have idR: ?R = ?R1 by auto
        show ?case unfolding idL idR using ind by auto
    qed
qed
definition check-ground-term :: ('f :: showl, 'v :: showl) term \Rightarrow showsl check
        check-ground-term s = check (ground s)
            (shows! (STR "the term") \circ shows! \circ shows! (STR " is not a ground
term \hookleftarrow ))
lemma check-ground-term [simp]:
    isOK \ (check\text{-}ground\text{-}term \ s) \longleftrightarrow ground \ s
   by (simp add: check-ground-term-def)
type-synonym 'f sig-list = ('f \times nat)list
fun check-funas-term :: 'f :: showl sig \Rightarrow ('f,'v :: showl) term \Rightarrow showsl check where
    check-funas-term F (Fun f ts) = do {
            check\ ((f,\ length\ ts)\in F)\ (showsl\ (Fun\ f\ ts)
                o showsl-lit (STR "problem: root of subterm") o showsl f o showsl-lit (STR
" not in signature \leftarrow");
            check-allm (check-funas-term F) ts
| check-funas-term F (Var -) = return ()
lemma check-funas-term[simp]: isOK(check-funas-term F(t) = (funas-term t \subseteq funas-term t \in funas-t
   by (induct t, auto)
                     Substitutions
definition mk-subst-domain :: ('f, 'v) substL \Rightarrow ('v \times ('f, 'v) \ term) list where
    mk-subst-domain \sigma \equiv
        let \tau = mk-subst Var \sigma in
        (filter (\lambda(x, t). \ Var \ x \neq t) \ (map \ (\lambda \ x. \ (x, \tau \ x)) \ (remdups \ (map \ fst \ \sigma))))
lemma mk-subst-domain:
   set\ (mk\text{-}subst\text{-}domain\ \sigma) = (\lambda\ x.\ (x,\ mk\text{-}subst\ Var\ \sigma\ x)) 'subst-domain (mk-subst
 Var \sigma)
    (is ?I = ?R)
```

```
proof -
 have ?I \subseteq ?R unfolding mk-subst-domain-def Let-def subst-domain-def by auto
 moreover
   \mathbf{fix} \ xt
   assume mem: xt \in ?R
   obtain x t where xt: xt = (x, t) by force
   from mem [unfolded xt]
   have x: x \in subst-domain (mk-subst Var \sigma) and t: t = mk-subst Var \sigma x by
auto
   then have mk-subst Var \sigma x \neq Var x unfolding subst-domain-def by simp
   with t have l: map-of \sigma x = Some t and tx: t \neq Var x
     unfolding mk-subst-def by (cases map-of \sigma x, auto)
  from map-of-SomeD[OF l] l t tx have (x,t) \in ?I unfolding mk-subst-domain-def
Let-def
     by force
   then have xt \in ?I unfolding xt.
 ultimately show ?thesis by blast
qed
lemma finite-mk-subst: finite (subst-domain (mk-subst Var \sigma))
proof -
 have subst-domain (mk-subst Var \sigma) = fst 'set (mk-subst-domain \sigma)
   unfolding mk-subst-domain Let-def by force
 moreover have finite ...
   using finite-set by auto
 ultimately show ?thesis by simp
qed
definition subst-eq :: ('f, 'v) \ substL \Rightarrow ('f, 'v) \ substL \Rightarrow bool \ \mathbf{where}
 subst-eq \sigma \tau = (let \ \sigma' = mk-subst-domain \sigma; \ \tau' = mk-subst-domain \tau in set \sigma'
= set \tau'
lemma subst-eq [simp]:
  subst-eq \ \sigma \ \tau = (mk-subst \ Var \ \sigma = mk-subst \ Var \ \tau)
proof -
 let ?\sigma = mk-subst Var \sigma
 let ?\tau = mk\text{-}subst \ Var \ \tau
     assume id: ((\lambda \ x. \ (x, \ ?\sigma \ x)) \ `subst-domain \ ?\sigma) = \ ((\lambda \ x. \ (x, \ ?\tau \ x)) \ `
subst-domain ?\tau) (is ?l = ?r)
   from arg-cong[OF id, of (') fst] have idd: subst-domain ?\sigma = subst-domain ?\tau
by force
   have ?\sigma = ?\tau
   proof (rule ext)
     \mathbf{fix} \ x
     show ?\sigma x = ?\tau x
     proof (cases \ x \in subst-domain \ ?\sigma)
```

```
case False
       then show ?thesis using idd unfolding subst-domain-def by auto
     next
       case True
       with idd have x: (x, ?\sigma x) \in ?l (x, ?\tau x) \in ?r by auto
       with id have x: (x, ?\tau x) \in ?l (x, ?\sigma x) \in ?l by auto
       then show ?thesis by auto
     qed
   qed
 then show ?thesis
   unfolding subst-eq-def Let-def
   unfolding mk-subst-domain by auto
qed
definition range-vars-impl :: ('f, 'v) substL \Rightarrow 'v list
 where
   range-vars-impl \sigma =
   (let \sigma' = mk-subst-domain \sigma in
   concat (map (vars-term-list o snd) \sigma'))
definition vars-subst-impl :: ('f, 'v) substL <math>\Rightarrow 'v list
  where
    vars-subst-impl \sigma =
   (let \sigma' = mk-subst-domain \sigma in
   map fst \sigma' @ concat (map (vars-term-list o snd) \sigma'))
lemma vars-subst-impl [simp]:
  set\ (vars\text{-}subst\text{-}impl\ \sigma) = vars\text{-}subst\ (mk\text{-}subst\ Var\ \sigma)
 unfolding vars-subst-def vars-subst-impl-def Let-def
 by (auto simp: mk-subst-domain, force)
lemma range-vars-impl [simp]:
  set\ (range-vars-impl\ \sigma) = range-vars\ (mk-subst\ Var\ \sigma)
 unfolding range-vars-def range-vars-impl-def Let-def
 by (auto simp: mk-subst-domain)
lemma mk-subst-one [simp]: mk-subst Var[(x, t)] = subst x t
  unfolding mk-subst-def subst-def by auto
lemma fst-image [simp]: fst '(\lambda x. (x,g x)) 'a = a by force
definition
  subst-compose-impl::('f, 'v) \ substL \Rightarrow ('f, 'v) \ substL \Rightarrow ('f, 'v) \ substL
   subst\text{-}compose\text{-}impl\ \sigma\ \tau \equiv
   \sigma' = mk-subst-domain \sigma;
   \tau' = mk-subst-domain \tau;
```

```
d\sigma = map fst \sigma'
  in map (\lambda(x, t). (x, t \cdot mk\text{-subst } Var \tau')) \sigma' @ filter (\lambda(x, t). x \notin set d\sigma) \tau'
lemma mk-subst-mk-subst-domain [simp]:
  mk-subst Var (mk-subst-domain \sigma) = mk-subst Var \sigma
proof (intro ext)
  \mathbf{fix} \ x
  {
   assume x: x \notin subst-domain (mk-subst Var \sigma)
   then have \sigma: mk-subst Var \sigma x = Var x unfolding subst-domain-def by auto
    from x have x \notin fst 'set (mk-subst-domain \sigma) unfolding mk-subst-domain
    then have look: map-of (mk-subst-domain \sigma) x = None by (cases map-of
(mk\text{-}subst\text{-}domain\ \sigma)\ x,\ insert\ map\text{-}of\text{-}SomeD[of\ mk\text{-}subst\text{-}domain\ }\sigma\ x],\ force+)
   then have mk-subst Var (mk-subst-domain \sigma) x = mk-subst Var \sigma x unfolding
     unfolding mk-subst-def by auto
  } note ndom = this
   assume x \in subst-domain (mk-subst Var \sigma)
    then have x \in fst 'set (mk-subst-domain \sigma) unfolding mk-subst-domain by
auto
   then obtain t where look: map-of (mk-subst-domain \sigma) x = Some \ t by (cases
map-of \ (mk\text{-}subst\text{-}domain \ \sigma) \ x, \ (force \ simp: \ map-of-eq\text{-}None-iff)+)
   from map-of-SomeD[OF\ look,\ unfolded\ mk-subst-domain] have t:\ t=mk-subst
Var \sigma x \mathbf{by} auto
   from look t have res: mk-subst Var (mk-subst-domain \sigma) x = mk-subst Var \sigma
x unfolding mk-subst-def by auto
  } note dom = this
 \mathbf{from}\ ndom\ dom
 show mk-subst Var (mk-subst-domain \sigma) x = mk-subst Var \sigma x by auto
lemma subst-compose-impl [simp]:
  mk-subst Var (subst-compose-impl \sigma \tau) = mk-subst Var \sigma \circ_s mk-subst Var \tau (is
?l = ?r)
proof (rule ext)
  \mathbf{fix} \ x
  let ?\sigma = mk\text{-}subst \ Var \ \sigma
 let ?\tau = mk-subst Var \tau
 let ?s = map(\lambda(x, t).(x, t \cdot mk\text{-subst-domain }\tau))) (mk\text{-subst-domain})
  let ?t = [(x,t) \leftarrow mk\text{-subst-domain }\tau. \ x \notin set \ (map \ fst \ (mk\text{-subst-domain }\sigma))]
  note d = subst-compose-impl-def[unfolded Let-def]
  \mathbf{show} \ ?l \ x = \ ?r \ x
  proof (cases \ x \in subst-domain \ (mk-subst \ Var \ \sigma))
   then have ?\sigma x \neq Var x unfolding subst-domain-def by auto
   then obtain t where look: map-of \sigma x = Some t and \sigma: ?\sigma x = t
```

```
from \sigma have r: ?r x = t \cdot ?\tau unfolding subst-compose-def by simp
   from True have x \in subst-domain (mk-subst Var (mk-subst-domain \sigma))
     by simp
   from \sigma True have mem: (x,t\cdot ?\tau) \in set ?s by (auto simp: mk-subst-domain)
   with map-of-eq-None-iff[of ?s x]
   obtain u where look2: map-of ?s x = Some \ u
     by (cases map-of ?s x, force+)
   from map-of-SomeD[OF this] \sigma have u: u = t \cdot ?\tau
     by (auto simp: mk-subst-domain)
   note look2 = map-of-append-Some[OF look2, of ?t]
   have l: ?l x = t \cdot ?\tau unfolding d mk-subst-def[of Var ?s \otimes ?t] look2 u
     by simp
   from l r show ?thesis by simp
 next
   case False
   then have \sigma: ?\sigma x = Var x unfolding subst-domain-def by auto
   from \sigma have r: ?r x = ?\tau x unfolding subst-compose-def by simp
   from False have x \notin subst-domain (mk-subst Var (mk-subst-domain \sigma))
   from False have mem: \bigwedge y. (x,y) \notin set ?s by (auto simp: mk-subst-domain)
   with map-of-SomeD[of ?s x] have look2: map-of ?s x = None
     by (cases map-of ?s x, auto)
   note look2 = map-of-append-None[OF look2, of ?t]
   have l: ?l x = (case \ map-of \ ?t \ x \ of \ None \Rightarrow Var \ x \mid Some \ t \Rightarrow t) unfolding d
mk-subst-def[of Var ?s @ ?t] look2 by simp
   also have ... = ?\tau x
   proof (cases \ x \in subst-domain \ ?\tau)
     case True
     then have ?\tau x \neq Var x unfolding subst-domain-def by auto
     then obtain t where look: map-of \tau x = Some t and \tau: ?\tau x = t
      unfolding mk-subst-def by (cases map-of \tau x, auto)
     from True have x \in subst-domain (mk-subst Var (mk-subst-domain <math>\tau))
      by simp
      from \tau True have mem: (x,?\tau x) \in set ?t using False by (auto simp:
mk-subst-domain)
    with map-of-eq-None-iff[of?tx] obtain u where look2: map-of?tx = Some
      by (cases map-of ?t \ x, force+)
     from map-of-SomeD[OF this] \tau have u: u = ?\tau x
      by (auto simp: mk-subst-domain)
     show ?thesis using look2 u by simp
   next
     then have \tau: ?\tau x = Var x unfolding subst-domain-def by auto
     from False have x \notin subst-domain (mk-subst Var (mk-subst-domain \tau))
    from False have mem: \bigwedge y. (x,y) \notin set ?t by (auto simp: mk-subst-domain)
     with map-of-SomeD[of ?t x] have look2: map-of ?t x = None
```

unfolding mk-subst-def by (cases map-of σ x, auto)

```
by (cases map-of ?t x, auto)
      show ?thesis unfolding \tau look2 by simp
    qed
    finally show ?thesis unfolding r by simp
  ged
\mathbf{qed}
fun subst-power-impl :: ('f, 'v) substL <math>\Rightarrow nat \Rightarrow ('f, 'v) substL where
  subst-power-impl \sigma \theta = []
| subst-power-impl \sigma (Suc n) = subst-compose-impl \sigma (subst-power-impl \sigma n)
lemma subst-power-impl [simp]:
  mk-subst Var (subst-power-impl \sigma n) = (mk-subst Var \sigma) \cap n
  by (induct \ n, \ auto)
definition commutes-impl :: ('f, 'v) substL \Rightarrow ('f, 'v) substL \Rightarrow bool where
  commutes-impl \sigma \mu \equiv subst-eq (subst-compose-impl \sigma \mu) (subst-compose-impl \mu
\sigma)
lemma commutes-impl [simp]:
  commutes-impl \sigma \mu = ((mk\text{-subst Var }\sigma \circ_s mk\text{-subst Var }\mu) = (mk\text{-subst Var }\mu)
\circ_s mk-subst Var \sigma)
  unfolding commutes-impl-def by simp
definition
  subst-compose'-impl :: ('f, 'v) \ substL \Rightarrow ('f, 'v) \ subst \Rightarrow ('f, 'v) \ substL
  where
    subst-compose'-impl\ \sigma\ \rho \equiv map\ (\lambda\ (x,\ s).\ (x,\ s\cdot \rho))\ (mk-subst-domain\ \sigma)
lemma subst-compose'-impl [simp]:
 mk-subst Var (subst-compose'-impl \sigma \varrho) = subst-compose' (mk-subst Var \sigma) \varrho (is
?l = ?r)
proof (rule ext)
  \mathbf{fix} \ x
 note d = subst\text{-}compose'\text{-}def subst\text{-}compose'\text{-}impl\text{-}}def
 let ?\sigma = mk\text{-}subst \ Var \ \sigma
 let ?s = subst\text{-}compose'\text{-}impl\ \sigma\ \rho
  \mathbf{show} ?l x = ?r x
  proof (cases \ x \in subst-domain \ (mk-subst \ Var \ \sigma))
    case True
    then have r: ?r x = ?\sigma x \cdot \varrho  unfolding d by simp
  from True have (x, ?\sigma x) \in set (mk\text{-}subst\text{-}domain }\sigma) unfolding mk\text{-}subst\text{-}domain
by auto
    then have (x, ?\sigma x \cdot \varrho) \in set ?s unfolding d by auto
    with map-of-eq-None-iff of ?s \ x obtain u where look: map-of ?s \ x = Some \ u
      by (cases map-of ?s x, force+)
     from map-of-SomeD[OF this] have u: u = ?\sigma x \cdot \rho unfolding d using
mk-subst-domain[of \sigma] by auto
    then have l: ?l x = ?\sigma x \cdot \varrho using look u unfolding mk-subst-def by auto
```

```
from l r show ?thesis by simp
  \mathbf{next}
   {\bf case}\ \mathit{False}
   then have r: ?r x = Var x unfolding d by simp
   from False have \bigwedge y. (x,y) \notin set ?s unfolding d
     by (auto simp: mk-subst-domain)
   with map-of-SomeD[of ?s x] have look: map-of ?s x = None
     by (cases map-of ?s x, auto)
   then have l: ?l x = Var x unfolding mk-subst-def by simp
   from l r show ?thesis by simp
 qed
qed
definition
  subst-replace-impl :: ('f, 'v) \ substL \Rightarrow 'v \Rightarrow ('f, 'v) \ term \Rightarrow ('f, 'v) \ substL
   subst-replace-impl \sigma x t \equiv (x, t) \# filter (\lambda (y, t), y \neq x) \sigma
lemma subst-replace-impl [simp]:
 mk-subst Var (subst-replace-impl \sigma x t) = (\lambda y) if x = y then t else mk-subst Var
\sigma y) (is ?l = ?r)
proof (rule ext)
 \mathbf{fix} \ y
 note d = subst-replace-impl-def
 show ?l \ y = ?r \ y
 proof (cases y = x)
   case True
   then show ?thesis unfolding d mk-subst-def by auto
 next
   case False
   let ?\sigma = mk-subst Var \sigma
   from False have r: ?r y = ?\sigma y by auto
    from False have l: ?l y = mk-subst Var([(y, t) \leftarrow \sigma : y \neq x]) y unfolding
mk-subst-def d
     by simp
   also have ... = ?\sigma y unfolding mk-subst-def
     using map-of-filter[of \lambda y. y \neq x y \sigma, OF False] by simp
   finally show ?thesis using r by simp
 qed
qed
lemma mk-subst-domain-distinct: distinct (map fst (mk-subst-domain \sigma))
 unfolding mk-subst-domain-def Let-def distinct-map
 by (rule conjI[OF distinct-filter], auto simp: distinct-map inj-on-def)
definition is-renaming-impl :: ('f,'v) substL \Rightarrow bool where
  is-renaming-impl \sigma \equiv
   let \sigma' = map \ snd \ (mk\text{-subst-domain} \ \sigma) \ in
```

```
(\forall t \in set \ \sigma'. \ is\ Var\ t) \land distinct \ \sigma'
lemma is-renaming-impl [simp]:
  is-renaming-impl \sigma = is-renaming (mk-subst Var \sigma) (is ?l = ?r)
proof -
 let ?\sigma = mk-subst Var \sigma
 let ?d = mk-subst-domain \sigma
 \mathbf{let}\ ?m = \mathit{map}\ \mathit{snd}\ ?d
 let ?k = map fst ?d
 have ?l = ((\forall t \in set ?m. is-Var t) \land distinct ?m) unfolding is-renaming-impl-def
Let-def by auto
  also have (\forall t \in set ?m. is-Var t) = (\forall x. is-Var (?\sigma x))
   by (force simp: mk-subst-domain subst-domain-def)
 also have distinct ?m = inj\text{-}on ?\sigma (subst\text{-}domain ?\sigma)
  proof
   assume inj: inj-on ?\sigma (subst-domain ?\sigma)
   show distinct ?m unfolding distinct-conv-nth
   proof (intro allI impI)
     fix i j
     assume i: i < length ?m and j: j < length ?m and ij: i \neq j
     obtain x t where di: ?d! i = (x,t) by (cases ?d! i, auto)
     obtain y s where dj: ?d! j = (y,s) by (cases ?d! j, auto)
     from di\ i have mi: ?m! i = t and ki: ?k! i = x by auto
     from dj j have mj: ?m! j = s and kj: ?k! j = y by auto
     from di i have xt: (x,t) \in set ?d unfolding set-conv-nth by force
     from dj j have ys: (y,s) \in set ?d unfolding set-conv-nth by force
      from xt ys have d: x \in subst-domain ?\sigma y \in subst-domain ?\sigma unfolding
mk-subst-domain by auto
     have dist: distinct ?k by (rule mk-subst-domain-distinct)
     from ij i j have xy: x \neq y unfolding ki[symmetric] kj[symmetric]
       using dist[unfolded distinct-conv-nth] by auto
     from xt ys have m: ?\sigma x = t ?\sigma y = s unfolding mk-subst-domain by auto
     from inj[unfolded inj-on-def, rule-format, OF d]
     show ?m! i \neq ?m! j unfolding m \ mi \ mj using xy by auto
   qed
  next
   assume dist: distinct ?m
   show inj-on ?\sigma (subst-domain ?\sigma) unfolding inj-on-def
   proof (intro ballI impI)
     \mathbf{fix} \ x \ y
     assume x: x \in subst-domain ?\sigma and y: y \in subst-domain ?\sigma
       and id: ?\sigma x = ?\sigma y
     from x y have x: (x, ?\sigma x) \in set ?d and y: (y, ?\sigma y) \in set ?d
       unfolding mk-subst-domain by auto
    from x obtain i where di: ?d! i = (x,?\sigma x) and i: i < length ?d unfolding
set-conv-nth by auto
    from y obtain j where dj: ?d \mid j = (y, ?\sigma y) and j: j < length ?d unfolding
set-conv-nth by auto
     from di\ i have mi: ?m! i = ?\sigma\ x by simp
```

```
from dj j have mj: ?m ! j = ?\sigma x unfolding id by simp
     from mi \ mj have id: ?m ! i = ?m ! j by simp
     from dist[unfolded\ distinct-conv-nth]\ i\ j\ id\ {\bf have}\ id:\ i=j\ {\bf by}\ auto
     with di dj
     show x = y by auto
   qed
 \mathbf{qed}
 finally
 show ?thesis unfolding is-renaming-def by simp
qed
definition is-inverse-renaming-impl :: ('f, 'v) substL \Rightarrow ('f, 'v) substL where
  is-inverse-renaming-impl \sigma \equiv
   let \ \sigma' = mk\text{-subst-domain} \ \sigma \ in
   map (\lambda (x, y). (the - Var y, Var x)) \sigma'
lemma is-inverse-renaming-impl [simp]:
 fixes \sigma :: ('f, 'v) \ substL
 assumes var: is\text{-}renaming (mk\text{-}subst Var \sigma)
 shows mk-subst Var (is-inverse-renaming-impl \sigma) = is-inverse-renaming (mk-subst
Var \sigma) (is ?l = ?r)
proof (rule ext)
 \mathbf{fix} \ x
 let ?\sigma = mk-subst Var \sigma
 let ?\sigma' = mk-subst-domain \sigma
 let ?m = map(\lambda(x, y). (the-Var y, Var x :: ('f, 'v) term)) ?\sigma'
 let ?ran = subst-range ?\sigma
 note d = is-inverse-renaming-impl-def is-inverse-renaming-def
  {
   \mathbf{fix}\ t
   assume (x,t) \in set ?m
    then obtain u z where id: (x,t) = (the - Var u, Var z) and mem: (z,u) \in set
?\sigma' by auto
   from var[unfolded\ is-renaming-def]\ mem\ obtain\ zz\ where\ u:\ u=\ Var\ zz
     unfolding mk-subst-domain by auto
   from id[unfolded\ u] have id: zz = x\ t = Var\ z by auto
   with mem u have (z, Var x) \in set ?\sigma' by auto
   then have ?\sigma z = Var \ x \ z \in subst-domain \ ?\sigma  unfolding mk-subst-domain by
auto
   with id have \exists z. t = Var z \land ?\sigma z = Var x \land z \in subst-domain ?\sigma by auto
  } note one = this
  have ?l \ x = mk\text{-}subst \ Var \ ?m \ x \ unfolding \ d \ by \ simp
 also have \dots = ?r x
 proof (cases Var x \in ?ran)
   {f case} False
    {
     \mathbf{fix} \ t
     assume (x,t) \in set ?m
     from one[OF\ this] obtain z where t: t = Var\ z and z: ?\sigma\ z = Var\ x
```

```
and dom: z \in subst-domain ?\sigma by auto
     from z dom False have False by force
   from this [OF map-of-SomeD[of ?m x]] have look: map-of ?m x = None
     by (cases map-of ?m \ x, auto)
   then have mk-subst Var ?m x = Var x unfolding mk-subst-def by auto
   also have ... = ?r x using False unfolding d by simp
   finally show ?thesis.
  next
   case True
   then obtain y where y: y \in subst-domain ?\sigma and x: ?\sigma y = Var x by auto
   then have (y, Var x) \in set ?\sigma' unfolding mk-subst-domain by auto
   then have (x, Var y) \in set ?m by force
  then obtain u where look: map-of ?m x = Some u using map-of-eq-None-iff [of]
?m x
     by (cases map-of ?m \ x, force+)
   from map\text{-}of\text{-}SomeD[OF\ this] have xu:(x,u)\in set\ ?m by auto
    from one[OF\ this] obtain z where u: u = Var\ z and z: ?\sigma\ z = Var\ x and
dom: z \in subst-domain ?\sigma  by auto
   have mk-subst Var ?m x = Var z unfolding mk-subst-def look u by simp
   also have ... = ?r x using is-renaming-inverse-domain [OF var dom] z by auto
   finally show ?thesis.
  qed
  finally show ?l \ x = ?r \ x.
qed
definition
  mk-subst-case :: 'v \ list \Rightarrow ('f, 'v) \ subst \Rightarrow ('f, 'v) \ substL \Rightarrow ('f, 'v) \ substL
   mk-subst-case xs \ \sigma \ \tau = subst-compose-impl (map \ (\lambda \ x. \ (x, \sigma \ x)) \ xs) \ \tau
lemma mk-subst-case [simp]:
  mk-subst Var (mk-subst-case xs \sigma \tau) =
   (\lambda \ x. \ if \ x \in set \ xs \ then \ \sigma \ x \cdot mk\text{-subst} \ Var \ \tau \ else \ mk\text{-subst} \ Var \ \tau \ x)
proof -
 let ?m = map(\lambda x. (x, \sigma x)) xs
 have id: mk-subst Var ? m = (\lambda \ x. \ if \ x \in set \ xs \ then \ \sigma \ x \ else \ Var \ x) (is ?l = ?r)
 proof (rule ext)
   \mathbf{fix} \ x
   show ?l \ x = ?r \ x
   proof (cases x \in set xs)
     case True
     then have (x,\sigma x) \in set ?m by auto
    with map-of-eq-None-iff [of ?m \ x] obtain u where look: map-of ?m \ x = Some
u by auto
     from map\text{-}of\text{-}SomeD[OF\ look] have u: u = \sigma\ x by auto
     show ?thesis unfolding mk-subst-def look u using True by auto
   next
     case False
```

```
with map-of-SomeD[of ?m x]
      have look: map-of ?m \ x = None \ by \ (cases \ map-of \ ?m \ x, \ auto)
      show ?thesis unfolding mk-subst-def look using False by auto
   qed
  ged
  show ?thesis unfolding mk-subst-case-def subst-compose-impl id
   unfolding subst-compose-def by auto
qed
end
3.1.8
          A Concrete Unification Algorithm
theory Unification-More
 imports
    First-Order-Terms. Unification
    First-Order-Rewriting. Term-Impl
begin
lemma set-subst-list [simp]:
  set (subst-list \sigma E) = subst-set \sigma (set E)
 by (simp add: subst-list-def subst-set-def)
lemma mgu-var-disjoint-right:
  fixes s \ t :: ('f, \ 'v) \ term \ {\bf and} \ \sigma \ \tau :: ('f, \ 'v) \ subst \ {\bf and} \ T
  assumes s: vars-term s \subseteq S
   and inj: inj T
   and ST: S \cap range T = \{\}
   and id: s \cdot \sigma = t \cdot \tau
  shows \exists \mu \delta. mgu s (map-vars-term T t) = Some \mu \land
   s \cdot \sigma = s \cdot \mu \cdot \delta \wedge
   (\forall t :: ('f, 'v) \ term. \ t \cdot \tau = map-vars-term \ T \ t \cdot \mu \cdot \delta) \land
   (\forall x \in S. \ \sigma \ x = \mu \ x \cdot \delta)
proof -
 let ?\sigma = \lambda \ x. if x \in S then \sigma \ x else \tau \ ((the\text{-inv } T) \ x)
 let ?t = map\text{-}vars\text{-}term \ T \ t
 have ids: s \cdot \sigma = s \cdot ?\sigma
   by (rule term-subst-eq, insert s, auto)
 have t \cdot \tau = map\text{-}vars\text{-}term \ (the\text{-}inv \ T) \ ?t \cdot \tau
     unfolding map-vars-term-compose o-def using the-inv-f-f[OF inj] by (auto
simp: term.map-ident)
  also have ... = ?t \cdot (\tau \circ the\text{-}inv T) unfolding apply-subst-map-vars-term ...
  also have ... = ?t \cdot ?\sigma
  proof (rule term-subst-eq)
   \mathbf{fix} \ x
   assume x \in vars\text{-}term ?t
   then have x \in T 'UNIV unfolding term.set-map by auto
   then have x \notin S using ST by auto
```

then show $(\tau \circ the\text{-}inv \ T) \ x = ?\sigma \ x \ \text{by } simp$

```
qed
  finally have idt: t \cdot \tau = ?t \cdot ?\sigma by simp
  from id[unfolded\ ids\ idt] have id: s\cdot ?\sigma = ?t\cdot ?\sigma.
  with mgu\text{-}complete[of\ s\ ?t]\ id\ \mathbf{obtain}\ \mu\ \mathbf{where}\ \mu\colon mgu\ s\ ?t=Some\ \mu
    unfolding unifiers-def by (cases mgu s ?t, auto)
  from the-mgu[OF id] have id: s \cdot \mu = map-vars-term T t \cdot \mu and \sigma: {}^{\circ}\!\sigma = \mu \circ_{s}
?\sigma
    unfolding the-mgu-def \mu by auto
  have s \cdot \sigma = s \cdot (\mu \circ_s ?\sigma) unfolding ids using \sigma by simp
  also have ... = s \cdot \mu \cdot ?\sigma by simp
  finally have ids: s \cdot \sigma = s \cdot \mu \cdot ?\sigma.
  {
    \mathbf{fix} \ x
    have \tau x = ?\sigma (T x) using ST unfolding the-inv-f-f[OF inj] by auto
    also have ... = (\mu \circ_s ?\sigma) (T x) using \sigma by simp
    also have ... = \mu (Tx) · ?\sigma unfolding subst-compose-def by simp
    finally have \tau x = \mu (T x) \cdot ?\sigma.
  } note \tau = this
    fix t :: ('f, 'v) term
    have t \cdot \tau = t \cdot (\lambda \ x. \ \mu \ (T \ x) \cdot ?\sigma) unfolding \tau[symmetric] ...
   also have ... = map-vars-term T t \cdot \mu \cdot ?\sigma unfolding apply-subst-map-vars-term
        subst-subst by (rule term-subst-eq, simp add: subst-compose-def)
    finally have t \cdot \tau = map\text{-}vars\text{-}term \ T \ t \cdot \mu \cdot ?\sigma.
  } note idt = this
  {
    \mathbf{fix} \ x
    assume x \in S
    then have \sigma x = ?\sigma x by simp
    also have ... = (\mu \circ_s ? \sigma) x using \sigma by simp
    also have ... = \mu x \cdot ?\sigma unfolding subst-compose-def ...
    finally have \sigma x = \mu x \cdot ?\sigma.
  } note \sigma = this
  show ?thesis
    by (rule exI[of - \mu], rule exI[of - ?\sigma], insert \mu ids idt \sigma, auto)
qed
abbreviation (input) x-var :: strinq \Rightarrow strinq where x-var \equiv Cons (CHR "x")
abbreviation (input) y-var :: string \Rightarrow string where y-var \equiv Cons (CHR "y")
abbreviation (input) z-var :: string \Rightarrow string where z-var \equiv Cons (CHR "z")
lemma mgu-var-disjoint-right-string:
  fixes s t :: (f, string) term and \sigma \tau :: (f, string) subst
 assumes s: vars-term s \subseteq range x-var \cup range z-var
    and id: s \cdot \sigma = t \cdot \tau
 shows \exists \mu \delta. mgu s (map-vars-term y-var t) = Some <math>\mu \land
    s \cdot \sigma = s \cdot \mu \cdot \delta \wedge (\forall t :: (f, string) term. \ t \cdot \tau = map-vars-term \ y - var \ t \cdot \mu \cdot \delta)
```

```
(\forall x \in range \ x\text{-}var \cup range \ z\text{-}var. \ \sigma \ x = \mu \ x \cdot \delta)
proof -
 have inj: inj y-var unfolding inj-on-def by simp
 show ?thesis
   by (rule mgu-var-disjoint-right[OF s inj - id], auto)
\mathbf{qed}
lemma not-elem-subst-of:
 assumes x \notin set (map fst xs)
 shows (subst-of xs) x = Var x
 using assms proof (induct xs)
 case (Cons \ y \ xs)
 then show ?case unfolding subst-of-simps
  by (metis Term.term.simps(17) insert-iff list.simps(15) list.simps(9) singletonD
subst-compose subst-ident)
qed simp
lemma subst-of-id:
 assumes \bigwedge s. \ s \in (set \ ss) \longrightarrow (\exists \ x \ t. \ s = (x, \ t) \land t = Var \ x)
 shows subst-of ss = Var
 using assms proof(induct ss)
 case (Cons \ s \ ss)
  then obtain y t where s:s = (y, t) and t:t = Var y
   by (metis\ list.set-intros(1))
  from Cons have subst-of ss = Var
   by simp
  then show ?case
   unfolding subst-of-def foldr.simps o-apply s t by simp
\mathbf{qed}\ simp
lemma subst-of-apply:
 assumes (x, t) \in set ss
   and \forall (y,s) \in set \ ss. \ (y = x \longrightarrow s = t)
   and set (map\ fst\ ss) \cap vars\text{-}term\ t = \{\}
 shows subst-of ss x = t
 using assms proof(induct ss)
 case (Cons a ss)
 show ?case proof(cases (x,t) \in set ss)
   case True
   from Cons(1)[OF\ True]\ Cons(3,4) have sub:subst-of\ ss\ x=t
     by (simp add: disjoint-iff)
   from Cons(2,4) have fst \ a \notin vars\text{-}term \ t
     by fastforce
   then show ?thesis
     unfolding subst-of-simps subst-compose sub by simp
   case False
   then have x \notin set (map fst ss)
```

```
using Cons(3) by auto
   then have sub:subst-of\ ss\ x=\ Var\ x
    by (meson not-elem-subst-of)
   from Cons(2) False have a = (x, t)
    by simp
   then show ?thesis
    {\bf unfolding} \ subst-of\text{-}simps \ subst-compose \ sub \ {\bf by} \ simp
\mathbf{qed}\ simp
lemma unify-equation-same:
 assumes fst \ e = snd \ e
 shows unify (E1@e\#E2) ys = unify (E1@E2) ys
 using assms proof (induction E1@e#E2 ys arbitrary: E1 E2 e ys rule: unify.induct)
 case (2 f ss g ts E bs)
 show ?case proof(cases E1)
   case Nil
   with 2(3) show ?thesis
    by (simp add: unify-Cons-same)
   case (Cons e1 es1)
   then have e1:e1 = (Fun f ss, Fun g ts)
    using 2(2) by simp
   show ?thesis proof(cases decompose (Fun f ss) (Fun g ts))
    case None
    then show ?thesis unfolding Cons e1 by simp
   next
    case (Some us)
    have us:us @ E = (us @ es1) @ e \# E2
      using 2(2) Cons e1 by simp
    from 2(1)[OF\ Some\ us\ 2(3)] show ?thesis unfolding Cons e1 append-Cons
unify.simps\ Some\ \mathbf{by}\ simp
   qed
 qed
next
 case (3 \ x \ t \ E \ bs)
 show ?case proof(cases E1)
   case Nil
   with 3(4) show ?thesis
    by (simp add: unify-Cons-same)
 next
   case (Cons e1 es1)
   with 3(3) have e1:e1 = (Var x, t)
    by simp
   with 3(3) Cons have E:E = es1 @ e \# E2
    by simp
   show ?thesis proof(cases t = Var x)
    case True
    from 3(1)[OF True E 3(4)] show ?thesis
```

```
unfolding Cons e1 True by simp
   next
     {f case}\ {\it False}
     then show ?thesis proof(cases x \notin vars\text{-}term\ t)
      case True
      let ?\sigma = (subst \ x \ t)
      have substs:subst-list ?\sigma E = (subst-list ?\sigma es1) @ (fst e \cdot ?\sigma, snd e \cdot ?\sigma)
# (subst-list ?\sigma E2)
        unfolding E by (simp add: subst-list-def)
      from 3(2)[OF\ False\ True\ substs]\ 3(4) show ?thesis
        unfolding Cons e1 append-Cons unify.simps using False True
        by (smt (verit, ccfv-SIG) E fst-eqD snd-eqD subst-list-append substs)
     next
      case False
      then show ?thesis
        unfolding Cons e1 append-Cons unify.simps using 3 Cons by auto
     qed
   qed
 qed
\mathbf{next}
 case (4 f ts x E bs)
 show ?case proof(cases E1)
   case Nil
   with 4(3) show ?thesis
     by (simp add: unify-Cons-same)
 next
   case (Cons e1 es1)
   with 4(2) have e1:e1 = (Fun f ts, Var x)
     by simp
   with 4(2) Cons have E:E = es1 @ e \# E2
     by simp
   show ?thesis proof(cases x \notin vars-term (Fun f ts))
     case True
     let ?\sigma = (subst\ x\ (Fun\ f\ ts))
    have substs:subst-list ?\sigma E = (subst-list ?\sigma es1) @ (fst e \cdot ?\sigma, snd e \cdot ?\sigma) #
(subst-list ?\sigma E2)
      unfolding E by (simp add: subst-list-def)
     from 4(1)[OF True substs] 4(3) show ?thesis
      unfolding Cons e1 append-Cons unify.simps using True
      by (metis E fst-conv snd-conv subst-list-append substs)
   \mathbf{next}
     case False
     then show ?thesis
       unfolding Cons e1 append-Cons unify.simps using 4 Cons by auto
   qed
 qed
qed simp
lemma unify-filter-same:
```

```
shows unify (filter (\lambda e. fst e \neq snd e) E) ys = unify E ys
\mathbf{proof}(induction\ length\ E\ arbitrary:E\ rule:full-nat-induct)
 case 1
 show ?case proof(cases E)
   case (Cons e es)
   then show ?thesis proof(cases filter (\lambda e. fst e \neq snd e) E = E)
     case False
     then obtain E1 e E2 where E:E=E1 @ e \# E2 and eq:fst e=snd e
       by (meson filter-True split-list)
     with unify-equation-same have unify E ys = unify (E1 @ E2) ys
       by blast
     moreover from 1 E have unify (filter (\lambda e. fst e \neq snd e) (E1 @ E2)) ys =
unify (E1 @ E2) ys
      by (metis (no-types, lifting) add-Suc-right length-append length-nth-simps(2)
order-refl)
     moreover have filter (\lambda e. fst e \neq snd e) E = filter (\lambda e. fst e \neq snd e) (E1
@ E2)
       unfolding E using eq by auto
     ultimately show ?thesis
       by presburger
   qed simp
  qed simp
qed
lemma unify-ctxt-same:
 shows unify ((C\langle s\rangle, C\langle t\rangle) \# xs) ys = unify ((s, t) \# xs) ys
proof(induct \ C)
 case (More f ss1 C ss2)
 let ?us=zip (ss1 @ C\langle s\rangle \# ss2) (ss1 @ C\langle t\rangle \# ss2)
 have decomp: decompose (Fun f (ss1 @ C(s) # ss2)) (Fun f (ss1 @ C(t) # ss2))
= Some ?us
   unfolding decompose-def by (simp add: zip-option-zip-conv)
 have unif:unify (((More f ss1 C ss2)\langle s \rangle, (More f ss1 C ss2)\langle t \rangle) # xs) ys = unify
(?us @ xs) ys
   unfolding intp-actxt.simps unify.simps decomp by simp
 have *: ?us = (zip \ ss1 \ ss1) \ @ (C\langle s\rangle, C\langle t\rangle) \ \# (zip \ ss2 \ ss2)
   by simp
  have filter-us:filter (\lambda e. fst e \neq snd e) ?us = filter (\lambda e. fst e \neq snd e) [(C\langle s \rangle,
C\langle t\rangle)]
     unfolding * filter-append filter.simps by (smt (verit, ccfv-SIG) filter-False
in\text{-}set\text{-}zip\ self\text{-}append\text{-}conv2)
  have filter (\lambda e. fst e \neq snd e) (?us@xs) = filter (\lambda e. fst e \neq snd e) ((C\langle s \rangle,
C\langle t\rangle)\#xs
   unfolding filter-append filter-us filter.simps by simp
  with More have unify (?us @ xs) ys = unify((s, t)\#xs) ys
   using unify-filter-same by (smt (verit, ccfv-threshold))
  with unif show ?case by simp
qed simp
```

3.1.9 Unification of Linear and variable disjoint terms

```
definition left-substs :: ('f, 'v) term \Rightarrow ('f, 'w) term \Rightarrow ('v \times ('f, 'w) \text{ term}) list
  where left-substs s t = (let filtered-vars = filter (\lambda(-, p). p \in poss t) (zip
(vars-term-list\ s)(var-poss-list\ s))
         in map (\lambda(x, p), (x, t|-p)) filtered-vars)
definition right-substs :: ('f, 'v) term \Rightarrow ('f, 'w) term \Rightarrow ('w \times ('f, 'v) term) list
  where right-substs s t = (let filtered-vars = filter (\lambda(-, q). q \in fun-poss s) (zip
(vars-term-list\ t)(var-poss-list\ t))
         in map (\lambda(y, q), (y, s|-q)) filtered-vars)
abbreviation linear-unifier s \ t \equiv subst-of ((left-substs s \ t) @ (right-substs s \ t))
lemma left-substs-imp-props:
 assumes (x, u) \in set (left\text{-}substs s t)
 shows \exists p. p \in poss \ s \land s | -p = Var \ x \land p \in poss \ t \land t | -p = u
proof-
  from assms obtain p where 1:(x, p) \in set (zip (vars-term-list s)(var-poss-list
s)) and 2:p \in poss \ t \ t|-p = u
  unfolding left-substs-def Let-def using Pair-inject case-prodE filter-set in-set-idx
length-map map-nth-eq-conv member-filter nth-mem old.prod.case by auto
 from 1 have p:p \in poss s
   by (metis set-zip-rightD var-poss-imp-poss var-poss-list-sound)
  from 1 obtain i where i < length (zip (vars-term-list s)(var-poss-list s)) and
(vars-term-list\ s)!i=x\ and\ (var-poss-list\ s)!i=p
   by (smt (z3) Pair-inject length-zip mem-Collect-eq set-zip)
  then have s|-p = Var x
   by (metis length-zip min-less-iff-conj vars-term-list-var-poss-list)
  with 2 p show ?thesis
   by blast
qed
lemma props-imp-left-substs:
 assumes p \in poss \ s and s|-p = Var \ x and p \in poss \ t and t|-p = u
 shows (x, u) \in set (left-substs s t)
proof-
  from assms obtain i where (var\text{-}poss\text{-}list\ s)!i = p and (vars\text{-}term\text{-}list\ s)!i = x
  \textbf{by} \ (\textit{metis in-set-conv-nth length-var-poss-list term.} inject (\textit{1}) \ \textit{var-poss-iff var-poss-list-sound}
vars-term-list-var-poss-list)
 then have (x, p) \in set (zip (vars-term-list s)(var-poss-list s))
  by (metis assms(1) assms(2) in-set-idx in-set-zip length-var-poss-list prod.sel(1)
prod.sel(2) term.inject(1) var-poss-iff var-poss-list-sound vars-term-list-var-poss-list)
  with assms(3) have (x, p) \in set (filter (\lambda(-, p), p \in poss\ t) (zip (vars-term-list
s) (var-poss-list s)))
   by simp
  then show ?thesis unfolding left-substs-def Let-def assms(4)[symmetric]
   by (smt (z3) case-prod-conv in-set-conv-nth length-map map-nth-eq-conv)
qed
```

```
lemma right-substs-imp-props:
 assumes (x, u) \in set (right\text{-}substs s t)
 shows \exists q. q \in fun\text{-}poss \ s \land s| -q = u \land q \in poss \ t \land t| -q = Var \ x
proof-
  from assms obtain q where 1:(x, q) \in set (zip (vars-term-list t)(var-poss-list
t)) and 2:q \in fun\text{-}poss\ s\ s|-q = u
  unfolding right-substs-def Let-def using Pair-inject case-prodE filter-set in-set-idx
length-map map-nth-eq-conv member-filter nth-mem old.prod.case by auto
  from 1 have q:q \in poss t
   by (metis set-zip-rightD var-poss-imp-poss var-poss-list-sound)
  from 1 obtain i where i < length (zip (vars-term-list t)(var-poss-list t)) and
(vars-term-list\ t)!i = x\ and\ (var-poss-list\ t)!i = q
   \mathbf{by}\ (smt\ (z3)\ Pair\text{-}inject\ length\text{-}zip\ mem\text{-}Collect\text{-}eq\ set\text{-}zip)
  then have t \mid -q = Var x
   by (metis length-zip min-less-iff-conj vars-term-list-var-poss-list)
  with 2 q show ?thesis
   \mathbf{by} blast
qed
lemma props-imp-right-substs:
 assumes q \in fun\text{-}poss \ s \ \text{and} \ s|-q = u \ \text{and} \ q \in poss \ t \ \text{and} \ t|-q = Var \ x
 shows (x, u) \in set (right-substs s t)
proof-
  from assms obtain i where (var-poss-list t)!i = q and (vars-term-list t)!i = x
  by (metis in-set-conv-nth length-var-poss-list term.inject(1) var-poss-iff var-poss-list-sound
vars-term-list-var-poss-list)
  then have (x, q) \in set (zip (vars-term-list t)(var-poss-list t))
     by (metis\ assms(3)\ assms(4)\ in-set-conv-nth\ in-set-zip\ length-var-poss-list
prod.sel(1) \ prod.sel(2) \ term.inject(1) \ var-poss-iff \ var-poss-list-sound \ vars-term-list-var-poss-list)
 with assms(1) have (x, q) \in set (filter (\lambda(-, p), p \in fun\text{-}poss\ s) (zip (vars\text{-}term\text{-}list
t) (var-poss-list t)))
   by simp
  then show ?thesis unfolding right-substs-def Let-def assms(2)[symmetric]
   by (smt (z3) case-prod-conv in-set-conv-nth length-map map-nth-eq-conv)
qed
lemma map-fst-left-substs:
  set (map fst (left-substs s t)) \subseteq vars-term s
 unfolding left-substs-def using zip-fst by fastforce
lemma map-snd-left-substs:
 assumes t' \in set \ (map \ snd \ (left\text{-}substs \ s \ t))
 shows vars-term t' \subseteq vars-term t
proof-
  from assms obtain x where (x, t') \in set (left\text{-substs } s t)
   bv force
  then show ?thesis
   using left-substs-imp-props by (metis vars-term-subt-at)
```

```
qed
```

```
{f lemma}\ map	ext{-}fst	ext{-}right	ext{-}substs:
 set (map fst (right-substs s t)) \subseteq vars-term t
 unfolding right-substs-def using zip-fst by fastforce
lemma map-snd-right-substs:
 assumes t' \in set \ (map \ snd \ (right-substs \ s \ t))
 shows vars-term t' \subseteq vars-term s
proof-
 from assms obtain x where (x, t') \in set (right-substs s t)
   by force
 then show ?thesis
   using right-substs-imp-props by (metis fun-poss-imp-poss vars-term-subt-at)
{f lemma}\ distinct-map-fst-left-substs:
 assumes linear-term t
 shows distinct (map\ fst\ (left\text{-}substs\ t\ s))
proof-
 from linear-term-distinct-vars OF assms have distinct (map fst (filter (\lambda(x)))
p). p \in poss\ s) (zip\ (vars-term-list\ t)\ (var-poss-list\ t))))
   by (simp add: distinct-map-filter length-var-poss-list)
  have map fst (left-substs t s) = (map fst (filter (\lambda(x, p)). p \in poss s) (zip
(vars-term-list\ t)\ (var-poss-list\ t))))
   unfolding left-substs-def Let-def by auto
  with dist show ?thesis
   by presburger
qed
lemma distinct-map-fst-right-substs:
 assumes linear-term t
 shows distinct (map\ fst\ (right-substs\ s\ t))
proof-
 from linear-term-distinct-vars OF assms have distinct (map fst (filter (\lambda(x)))
p). p \in fun\text{-}poss\ s) (zip\ (vars\text{-}term\text{-}list\ t)\ (var\text{-}poss\text{-}list\ t))))
   by (simp add: distinct-map-filter length-var-poss-list)
  have map fst (right-substs s t) = (map fst (filter (\lambda(x, p)). p \in fun-poss s) (zip
(vars-term-list\ t)\ (var-poss-list\ t))))
   unfolding right-substs-def Let-def by auto
  with dist show ?thesis
   by presburger
qed
{\bf lemma}\ is\mbox{-}partition\mbox{-}map\mbox{-}snd\mbox{-}left\mbox{-}substs:
 assumes linear-term s linear-term t
 shows is-partition (map (vars-term \circ snd) (left-substs t s))
proof-
  {fix i j assume j:j < length (left-substs t s) and i:i < j
```

```
from i j obtain x u where xu:(x, u) = (left\text{-}substs\ t\ s)!i
     by (metis surj-pair)
   from i j obtain y v where yv:(y, v) = (left\text{-substs } t s)!j
     by (metis surj-pair)
   from xu \ i \ j obtain p where p:p \in poss \ t \ t|-p = Var \ x \ p \in poss \ s \ s|-p = u
     using left-substs-imp-props by (metis Suc-lessD less-trans-Suc nth-mem)
   from yv \ i \ j obtain q where q:q \in poss \ t \ t|-q = Var \ y \ q \in poss \ s \ |-q = v
     using left-substs-imp-props by (metis nth-mem)
   from assms(2) have distinct (map fst (left-substs t s))
     using distinct-map-fst-left-substs by blast
   with xu \ yv \ i \ j have x \neq y
       by (metis (mono-tags, lifting) Suc-lessD distinct-map eq-key-imp-eq-value
less-trans-Suc nat-neq-iff nth-eq-iff-index-eq nth-mem)
   with p(1,2) q(1,2) have p \perp q
     by (metis\ term.inject(1)\ var-poss-iff\ var-poss-parallel)
     with assms(1) p(3,4) q(3,4) have vars-term (snd ((left-substs t s)!i)) \cap
vars-term (snd ((left-substs \ t \ s)!j)) = \{\}
     by (metis linear-subterms-disjoint-vars snd-eqD xu yv)
 then show ?thesis unfolding is-partition-def map-map[symmetric] by auto
qed
{f lemma}\ is\mbox{-}partition\mbox{-}map\mbox{-}snd\mbox{-}right\mbox{-}substs:
  assumes linear-term s linear-term t
 shows is-partition (map (vars-term \circ snd) (right-substs t s))
proof-
  {fix i j assume j:j < length (right-substs\ t\ s) and i:i < j
   from i j obtain x u where xu:(x, u) = (right\text{-}substs\ t\ s)!i
     by (metis surj-pair)
   from i j obtain y v where yv:(y, v) = (right\text{-}substs\ t\ s)!j
     by (metis surj-pair)
   from xu \ i \ j obtain p where p:p \in poss \ s \ |p| = Var \ x \ p \in fun-poss \ t \ t|-p
     using right-substs-imp-props by (metis Suc-lessD less-trans-Suc nth-mem)
   from yv \ i \ j obtain q where q:q \in poss \ s \ | -q = Var \ y \ q \in fun-poss \ t \ t | -q =
     using right-substs-imp-props by (metis nth-mem)
   from assms(1) have distinct (map fst (right-substs t s))
     using distinct-map-fst-right-substs by blast
   with xu\ yv\ i\ j have x \neq y
       by (metis (mono-tags, lifting) Suc-lessD distinct-map eq-key-imp-eq-value
less-trans-Suc nat-neq-iff nth-eq-iff-index-eq nth-mem)
   with p(1,2) q(1,2) have p \perp q
     by (metis term.inject(1) var-poss-iff var-poss-parallel)
    with assms(2) p(3,4) q(3,4) have vars-term (snd\ ((right-substs t\ s)!i)) \cap
vars-term (snd ((right-substs \ t \ s)!j)) = \{\}
     by (metis fun-poss-imp-poss linear-subterms-disjoint-vars snd-eqD xu yv)
 then show ?thesis unfolding is-partition-def map-map[symmetric] by auto
```

```
qed
```

```
\mathbf{lemma}\ \textit{distinct-fst-lsubsts-snd-rsubsts}:
 assumes linear-term s
 shows (set (map fst (left-substs s t))) \cap () (set (map (vars-term \circ snd) (right-substs s t)))) \cap ()
(s \ t))) = \{\}
proof-
  \{ \text{fix } x \text{ } u \text{ assume } (x,u) \in set \text{ } (left\text{-}substs s t) \}
   then obtain p where p:p \in poss \ s \ | -p = Var \ x \ p \in poss \ t \ t | -p = u
      by (meson left-substs-imp-props)
    \{ \text{fix } y \text{ } v \text{ } \text{assume } (y,v) \in set \text{ } (right\text{-}substs \text{ } s \text{ } t) \}
      then obtain q where q:q \in poss\ t\ t \mid -q = Var\ y\ q \in fun-poss\ s\ s \mid -q = v
       by (meson right-substs-imp-props)
      with p have p \perp q
     by (metis Term.term.simps(4) append.right-neutral fun-poss-fun-conv fun-poss-imp-poss
parallel-pos prefix-pos-diff var-pos-maximal)
      with assms p(1,2) q(3,4) have x \notin vars\text{-}term \ v
       using fun-poss-imp-poss linear-subterms-disjoint-vars by fastforce
   then have x \notin \bigcup (set (map (vars-term \circ snd) (right-substs s t)))
      by fastforce
  then show ?thesis by fastforce
qed
{f lemma} distinct-fst-rsubsts-snd-lsubsts:
  assumes linear-term t
  shows (set (map fst (right-substs s t))) \cap \bigcup (set (map (vars-term \circ snd)
(left\text{-}substs\ s\ t))) = \{\}
proof-
  {fix x \ u \text{ assume} (x,u) \in set (right-substs \ s \ t)
   then obtain p where p:p \in poss\ t\ t| -p = Var\ x\ p \in fun-poss\ s\ s| -p = u
      by (meson right-substs-imp-props)
    \{ \text{fix } y \text{ } v \text{ } \text{assume } (y,v) \in set \text{ } (left\text{-substs } s \text{ } t) \}
      then obtain q where q:q \in poss \ s \ | -q = Var \ y \ q \in poss \ t \ t | -q = v
       by (meson left-substs-imp-props)
      with p have p \perp q
     by (metis Term.term.simps(4) append.right-neutral fun-poss-fun-conv fun-poss-imp-poss
parallel-pos prefix-pos-diff var-pos-maximal)
      with assms p(1,2) q(3,4) have x \notin vars\text{-}term \ v
        using fun-poss-imp-poss linear-subterms-disjoint-vars by fastforce
   then have x \notin \bigcup (set (map (vars-term \circ snd) (left-substs s t)))
      by fastforce
  then show ?thesis by fastforce
lemma linear-unifier-same:
```

```
shows (linear-unifier\ t\ t) = Var
proof-
 let ?vars-left=filter (\lambda(-, p). p \in poss\ t) (zip (vars-term-list t)(var-poss-list t))
 have left: ?vars-left = zip (vars-term-list t)(var-poss-list t)
  by (metis (no-types, lifting) filter-True split-beta var-poss-imp-poss var-poss-list-sound
zip-snd)
 let ?vars-right=filter (\lambda(\cdot, q). q \in fun\text{-}poss\ t) (zip (vars-term-list t)(var-poss-list
  have right: ?vars-right = []
  by (metis (mono-tags, lifting) DiffE filter-False poss-simps(4) split-beta var-poss-list-sound
zip-snd)
  \{ \text{fix } i \text{ assume } i:i < length (left-substs t t) \}
   let ?xi=vars-term-list\ t\ !\ i
   from i have i < length (vars-term-list <math>t)
     unfolding left-substs-def Let-def length-map left by simp
   then have left-substs t t ! i = (?xi, Var ?xi)
      unfolding left-substs-def left Let-def nth-map[OF i[unfolded left-substs-def
Let-def length-map left]]
     by (simp add: length-var-poss-list vars-term-list-var-poss-list)
  \mathbf{note}\ left-subst=this
  \{ \mathbf{fix} \ x \}
   from left-subst have subst-of (left-substs t t) x = Var x
     using subst-of-id by (metis left-substs-imp-props prod.collapse)
  then show ?thesis
   unfolding right-substs-def right left-substs-def left by auto
qed
lemma linear-unifier-var1:
 shows linear-unifier (Var x) t = subst x t
proof-
 have left-substs (Var x) t = [(x, t)]
    unfolding left-substs-def Let-def vars-term-list.simps var-poss-list.simps by
 moreover have right-substs (Var x) t = []
   unfolding right-substs-def by simp
 ultimately show ?thesis
   by simp
qed
lemma linear-unifier-var2:
 shows linear-unifier (Fun f ts) (Var x) = subst x (Fun f ts)
proof-
 have left-substs (Fun f ts) (Var x) = []
   {\bf unfolding}\ \textit{left-substs-def}\ \textit{Let-def}\ poss.\textit{simps}
  by (metis (no-types, lifting) case-prodE filter-False map-is-Nil-conv set-zip-rightD
singletonD subt-at.simps(1) term.distinct(1) var-poss-iff var-poss-list-sound)
  moreover have right-substs (Fun f ts) (Var x) = [(x, Fun f ts)]
   unfolding right-substs-def by (simp add: vars-term-list.simps(1))
```

```
ultimately show ?thesis
   by simp
qed
lemma linear-unifier-id:
 assumes x \notin vars\text{-}term \ s \ \text{and} \ x \notin vars\text{-}term \ t
 shows (linear-unifier s t) x = Var x
 using assms by (metis (no-types, lifting) Set.basic-monos(7) eval-term.simps(1)
map-fst-left-substs map-fst-right-substs not-elem-subst-of subst-compose subst-of-append)
lemma vars-subst-of:
 vars-subst (subst-of ts) \subseteq set (map fst ts) \cup \bigcup (set (map (vars-term \circ snd) ts))
proof(induct ts)
 case Nil
 show ?case unfolding subst-of-simps list.map vars-subst-def by simp
next
 case (Cons t ts)
 have vars-subst (subst (fst t) (snd t)) \subseteq {fst t} \cup (vars-term (snd t))
   unfolding vars-subst-def by auto
  with Cons show ?case unfolding subst-of-simps using vars-subst-compose
   by (smt (verit, del-insts) Un-iff UnionI Union-mono comp-apply empty-iff in-
sert-iff list.set-intros(1) list.simps(9) set-subset-Cons subset-iff)
qed
lemma vars-subst-linear-unifier: vars-subst (linear-unifier s t) \subseteq vars-term s \cup
vars-term t
proof-
  have vars-subst (linear-unifier s t) \subseteq (vars-subst (subst-of (left-substs s t))) \cup
(vars-subst\ (subst-of\ (right-substs\ s\ t)))
   unfolding subst-of-append using vars-subst-compose by force
 moreover have vars-subst (subst-of (left-substs s t)) \subseteq vars-term s \cup vars-term
t
 proof-
   {fix i assume i < length (left-substs <math>s t)
     then have map (vars-term \circ snd) (left-substs s t) ! i \subseteq vars-term t
       using map-snd-left-substs nth-mem by fastforce
   then have [\ ] (set (map (vars-term \circ snd) (left-substs s t))) \subseteq vars-term t
     by (metis Union-least in-set-conv-nth length-map)
   then show ?thesis
     using vars-subst-of[of left-substs s t] map-fst-left-substs
     by (metis (no-types, lifting) subset-trans sup.mono)
 moreover have vars-subst (subst-of (right-substs s t)) \subseteq vars-term s \cup vars-term
t
  proof-
   {fix i assume i < length (right-substs s t)
     then have map (vars-term \circ snd) (right-substs s t)! i \subseteq vars-term s
```

```
using map-snd-right-substs nth-mem by fastforce
   }
   then have \bigcup (set (map (vars-term \circ snd) (right-substs s t))) \subseteq vars-term s
     by (metis Union-least in-set-conv-nth length-map)
   then show ?thesis
     using vars-subst-of [of right-substs s t] map-fst-right-substs by fastforce
  qed
  ultimately show ?thesis by blast
qed
lemma decompose-is-partition-vars-subst:
 assumes lin:linear-term (Fun f ss) linear-term (Fun g ts)
   and disj:vars-term\ (Fun\ f\ ss)\cap vars-term\ (Fun\ g\ ts)=\{\}
   and ds:decompose (Fun f ss) (Fun g ts) = Some ds
 shows is-partition (map vars-subst (map (\lambda(s,t)). linear-unifier s(t))
proof-
  from assms have zip:ds = zip ss ts and l:length ss = length ts
   using decompose-Some by blast+
  {fix i j assume j:j < length ss and i:i < j
   from i j obtain si ti where s-t-i:(si, ti) = ds ! i ss ! i = si ts ! i = ti
     using l zip by force
   from j obtain sj tj where s-t-j:(sj, tj) = ds ! j ss ! j = sj ts ! j = tj
     using l zip by force
   have vars-term si \cap vars-term tj = \{\}
     using i j s-t-i s-t-j disj l by fastforce
   moreover have vars-term si \cap vars-term sj = \{\}
     using lin(1) s-t-i s-t-j i j var-in-linear-args by fastforce
   moreover have vars-term ti \cap vars-term tj = \{\}
     using lin(2) s-t-i s-t-j i j l var-in-linear-args by fastforce
   moreover have vars-term ti \cap vars-term sj = \{\}
     using i j s-t-i s-t-j disj l by fastforce
   ultimately have vars-subst (linear-unifier si ti) \cap vars-subst (linear-unifier sj
tj) = \{\}
   using vars-subst-linear-unifier by (smt (verit, ccfv-threshold) Un-iff disjoint-iff
in-mono)
   then have vars-subst (map (\lambda(s,t)). linear-unifier s t) ds! i) \cap vars-subst (map
(\lambda(s,t). linear-unifier s t) ds ! j) = \{\}
     using i j s-t-j s-t-i l zip by auto
  then show ?thesis unfolding is-partition-def map-map[symmetric] length-map
zip using l by auto
qed
lemma compose-exists-subst:
 assumes compose \sigma s \ x \neq Var \ x
 shows \exists i < length \ \sigma s. \ (\forall j < i. \ (\sigma s!j) \ x = Var \ x) \land (\sigma s!i) \ x \neq Var \ x
  using assms proof(induct \sigma s)
  case (Cons \sigma \sigma s)
 then show ?case proof(cases \sigma x = Var x)
```

```
case True
       from Cons(2) have compose \sigma s \ x \neq Var \ x
          unfolding compose-simps subst-compose True by simp
       with Cons(1) obtain i where i:i<length \sigma s \forall j < i. (\sigma s ! j) x = Var x (\sigma s ! i)
x \neq Var x  by blast
       with True have \forall j < Suc \ i. \ ((\sigma \# \sigma s) ! j) \ x = Var \ x
          by (metis less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc)
       with i show ?thesis by auto
   qed auto
\mathbf{qed}\ simp
lemma subst-of-exists-binding:
   assumes subst-of xs \ y \neq Var \ y
   shows \exists i < length \ xs. \ fst \ (xs!i) = y \land (\forall x \in set \ (drop \ (i+1) \ xs). \ fst \ x \neq y)
   using assms proof(induct xs rule:rev-induct)
    case (snoc \ x \ xs)
    then show ?case proof(cases fst x = y)
       case False
       with snoc(2) have subst-of xs \ y \neq Var \ y
          unfolding subst-of-append subst-compose
       by (metis\ (no\text{-}types,\ lifting)\ empty\text{-}iff\ eval\text{-}term.simps(1)\ insert\text{-}iff\ subst\text{-}compose
subst-ident\ subst-of-simps(1,3)\ term.set(3))
        with snoc(1) obtain i where i:i < length xs fst (xs!i) = y \forall z \in set (drop is suppressed in the supersection of the supersection is suppressed in the supersection of the supersection
(i+1) xs). fst z \neq y by blast
       from i(1) have drop\ (i+1)\ (xs@[x])=drop\ (i+1)\ xs\ @\ [x] by auto
       with i(3) False have \forall z \in set (drop (i+1) (xs@[x])). fst z \neq y by simp
       with i(1,2) show ?thesis
       by (metis append-Cons-nth-left length-append-singleton less-Suc-eq-le less-imp-le-nat)
   qed auto
qed simp
lemma linear-unifier-obtain-binding:
  assumes disj:vars-term\ s\cap vars-term\ t=\{\} and lin-s:linear-term\ s and lin-t:linear-term
       and u:(linear-unifier s t) x = u u \neq Var x
    shows (x \in vars\text{-}term\ s \land (x,u) \in set\ (left\text{-}substs\ s\ t)) \lor (x \in vars\text{-}term\ t \land s \land (x,u) \in set\ (left\text{-}substs\ s\ t))
(x,u) \in set (right-substs s t))
proof-
   consider x \in vars\text{-}term \ s \mid x \in vars\text{-}term \ t \mid x \notin vars\text{-}term \ s \land x \notin vars\text{-}term \ t
       by fastforce
    then show ?thesis proof(cases)
       case 1
       with disj have x \notin vars\text{-}term\ t by blast
       then have right:subst-of\ (right-substs\ s\ t)\ x=Var\ x
          by (meson in-mono map-fst-right-substs not-elem-subst-of)
       with u have subst-of (left-substs s t) x \neq Var x
          by (simp add: subst-compose)
        then obtain i u' where i:i < length (left-substs s t) (left-substs s t)!i = (x, t)
u') \forall subst \in set (drop (i+1) (left-substs s t)). fst subst <math>\neq x
```

```
using subst-of-exists-binding by (metis (mono-tags, opaque-lifting) eq-fst-iff)
    then obtain l1 l2 where l1:l1 = take i (left-substs s t) and l2:l2 = drop
(i+1) (left-substs s t)
   and l1l2:left-substs s t = l1 \otimes [(x,u')] \otimes l2 using id-take-nth-drop by fastforce
  from i(3) have l2-subst-subst-of l2 x = Var x unfolding l2 by (meson nth-mem
subst-of-exists-binding)
   then have 1:subst-of (left-substs s t) x = u' \cdot (subst-of l1)
      unfolding l1l2 subst-of-append subst-compose l2-subst eval-term.simps by
simp
  from i(1,2) obtain p where p:p \in poss\ t\ t| -p = u' using left-substs-imp-props
by (metis nth-mem)
   from disj p have set (map fst (left-substs s t)) \cap (vars-term u') = {}
    by (meson disjoint-iff map-fst-left-substs subsetD vars-term-subt-at)
   then have 2:u' \cdot (subst-of l1) = u'
     unfolding 11 by (smt (verit, best) disjoint-iff in-set-takeD not-elem-subst-of
subst-apply-term-empty take-map term-subst-eq)
   then have u':subst-of (left-substs s t) x = u'
    using 1 2 by simp
   from i(1,2) have u'-elem:(x, u') \in set (left-substs s t) by (metis nth-mem)
   with u' u show ?thesis
    unfolding subst-of-append subst-compose right eval-term.simps
    by (meson map-fst-left-substs not-elem-subst-of subset-iff)
 next
   case 2
   with disj have x \notin vars\text{-}term \ s \ by \ blast
   then have subst-of (left-substs s t) x = Var x
    by (meson in-mono map-fst-left-substs not-elem-subst-of)
   with u have subst-of (right-substs s t) x \neq Var x
    by (metis subst-compose subst-monoid-mult.mult.left-neutral subst-of-append)
   u') \forall subst \in set (drop (i+1) (right-substs s t)). fst subst \neq x
    using subst-of-exists-binding by (metis (mono-tags, opaque-lifting) eq-fst-iff)
   then obtain l1 l2 where l1:l1 = take i (right-substs s t) and l2:l2 = drop
(i+1) (right-substs s t)
      and l1l2:right-substs\ s\ t\ =\ l1\ @\ [(x,u')]\ @\ l2\ using\ id-take-nth-drop\ by
fast force
  from i(3) have l2-subst-subst-of l2 x = Var x unfolding l2 by (meson nth-mem
subst-of-exists-binding
   then have 1:subst-of (right-substs s t) x = u' \cdot (subst-of l1)
      unfolding l1l2 subst-of-append subst-compose l2-subst eval-term.simps by
simp
   from i(1,2) obtain p where p:p \in poss \ s \ | -p = u'
    using right-substs-imp-props by (metis fun-poss-imp-poss nth-mem)
   from disj p have set (map fst (right-substs s t)) \cap (vars-term u') = {}
    by (meson disjoint-iff map-fst-right-substs subsetD vars-term-subt-at)
   then have 2:u' \cdot (subst-of l1) = u'
     unfolding l1 by (smt (verit, best) disjoint-iff in-set-takeD not-elem-subst-of
```

subst-apply-term-empty take-map term-subst-eq)

```
then have u':subst-of (right-substs s t) x = u'
     using 1 2 by simp
   from i(1,2) have u'-elem:(x, u') \in set (right-substs s t) by (metis \ nth-mem)
   then have set (map fst (left-substs s t)) \cap (vars-term u') = {}
       using distinct-fst-lsubsts-snd-rsubsts[OF lin-s] by (smt (verit, ccfv-SIG)
Union-iff comp-apply disjoint-iff in-set-conv-nth length-map nth-map snd-conv)
   then have u' \cdot (subst-of (left-substs \ s \ t)) = u'
    by (metis disjoint-iff not-elem-subst-of subst-apply-term-empty term-subst-eq)
   with u u'-elem show ?thesis
      unfolding subst-of-append subst-compose u' by (metis map-fst-right-substs
not-elem-subst-of subset-eq u')
 next
   case 3
   then have x \notin set \ (map \ fst \ ((left-substs \ s \ t) \ @ \ (right-substs \ s \ t)))
     using map-fst-left-substs map-fst-right-substs by fastforce
   then have (linear-unifier s t) x = Var x
     by (meson not-elem-subst-of)
   with u show ?thesis by simp
 qed
qed
connection between left-substs and right-substs and decomposition of func-
tions
lemma decompose-left-substs:
 assumes decompose (Fun f ss) (Fun g ts) = Some ds
 shows set (left-substs (Fun f ss) (Fun g ts)) = (\bigcup e \in set ds. set (left-substs (fst
e) (snd e))) (is ?left = ?right)
proof
 from assms have ds:ds = zip ss ts
   using decompose-Some by auto
 show ?left \subseteq ?right proof
   fix x t assume (x,t) \in set (left-substs (Fun f ss) (Fun g ts))
   then obtain p where 1:p \in poss (Fun f ss) and 2:(Fun f ss)|-p = Var x and
3:p \in poss (Fun \ g \ ts) \ and \ 4:(Fun \ g \ ts)|-p = t
     by (meson left-substs-imp-props)
   from 1 2 obtain j p' where j1:j < length ss and p = j \# p' and p' \in poss
(ss!j) and (ss!j)|-p' = Var x
     by auto
   moreover with 3 4 have j2:j < length ts and p' \in poss(ts!j) and (ts!j)|-p'
     by auto
   ultimately have (x,t) \in set (left\text{-}substs (ss!j) (ts!j))
     by (meson props-imp-left-substs)
   moreover have ((ss!j),(ts!j)) \in set ds
      unfolding ds using j1 j2 by (metis length-zip min-less-iff-conj nth-mem
   ultimately show (x,t) \in (\bigcup e \in set \ ds. \ set \ (left\text{-substs} \ (fst \ e) \ (snd \ e)))
     by force
```

```
qed
  \mathbf{show} ? right \subseteq ? left \mathbf{proof}
   fix x t assume (x,t) \in (\bigcup e \in set ds. set (left-substs (fst <math>e) (snd e)))
    then obtain j where j1:j < length ss and j2:j < length ts and (x,t) \in set
(left\text{-}substs\ (ss!j)\ (ts!j))
     unfolding ds by (metis (no-types, lifting) UN-E in-set-zip)
    then obtain p where 1:p \in poss (ss!j) and 2:(ss!j)|-p = Var x and 3:p \in poss (ss!j)|-p = Var x
poss (ts!j) and 4:(ts!j)|-p = t
     by (meson left-substs-imp-props)
   then have j\#p \in poss (Fun f ss) and (Fun f ss)|-(j\#p) = Var x and (j\#p) \in
poss (Fun \ g \ ts) \ \mathbf{and} \ (Fun \ g \ ts) | -(j \# p) = t
     using j1 j2 by auto
   then show (x,t) \in set (left\text{-}substs (Fun f ss) (Fun g ts))
     by (meson props-imp-left-substs)
 qed
qed
lemma decompose-right-substs:
 assumes decompose (Fun f ss) (Fun g ts) = Some ds
  shows set (right-substs (Fun f ss) (Fun g ts)) = ([] e \in set ds. set (right-substs
(fst \ e) \ (snd \ e))) \ (\mathbf{is} \ ?left = ?right)
proof
  from assms have ds:ds = zip ss ts
    using decompose-Some by auto
 show ?left \subseteq ?right proof
   fix x t assume (x,t) \in set (right-substs (Fun f ss) (Fun g ts))
   then obtain q where 1:q \in fun\text{-}poss\ (Fun\ f\ ss)\ \text{and}\ 2:(Fun\ f\ ss)|-q=t\ \text{and}
3:q \in poss (Fun \ g \ ts)  and 4:(Fun \ g \ ts)|-q = Var \ x
     by (meson right-substs-imp-props)
    from 3 4 obtain j q' where j1:j < length ts and q = j\#q' and q' \in poss
(ts!j) and (ts!j)|-q' = Var x
     by auto
    moreover with 1 2 have j2:j < length ss and q' \in fun\text{-}poss (ss!j) and
(ss!j)|-q'=t
     by auto
   ultimately have (x,t) \in set (right-substs (ss!j) (ts!j))
     by (meson props-imp-right-substs)
   moreover have ((ss!j),(ts!j)) \in set ds
       unfolding ds using j1 j2 by (metis length-zip min-less-iff-conj nth-mem
   ultimately show (x,t) \in (\bigcup e \in set \ ds. \ set \ (right-substs \ (fst \ e) \ (snd \ e)))
     by force
 qed
 show ?right \subseteq ?left proof
   fix x \ t assume (x,t) \in (\bigcup e \in set \ ds. \ set \ (right-substs \ (fst \ e) \ (snd \ e)))
    then obtain j where j1:j < length ss and j2:j < length ts and (x,t) \in set
(right-substs\ (ss!j)\ (ts!j))
     unfolding ds by (metis (no-types, lifting) UN-E in-set-zip)
    then obtain q where 1:q \in fun\text{-}poss\ (ss!j) and 2:(ss!j)|-q = t and 3:q \in fun
```

```
poss (ts!j) and 4:(ts!j)|-q = Var x
     by (meson right-substs-imp-props)
   then have j\#q \in fun\text{-}poss\ (Fun\ f\ ss) and (Fun\ f\ ss)|\text{-}(j\#q) = t and (j\#q) \in
poss (Fun g ts) and (Fun g ts)|-(j\#q) = Var x
     using j1 j2 by auto
   then show (x,t) \in set (right-substs (Fun f ss) (Fun g ts))
     by (meson props-imp-right-substs)
qed
lemma subst-compose-id:
 assumes \wedge \tau. \tau \in set \ \tau s \Longrightarrow t \cdot \tau = t
 shows t \cdot (compose \ \tau s) = t
 using assms by (induct \tau s) simp-all
lemma subst-compose-distinct-vars:
  assumes \sigma = compose \ \tau s and part:is-partition (map \ vars-subst \ \tau s)
   and \tau i:\tau i\in set\ \tau s and s:\tau i\ x=s\ s\neq\ Var\ x
 shows \sigma x = s
proof-
  from \tau i obtain i where i:i < length \ \tau s \ \tau s \ ! \ i = \tau i
   by (metis\ in\text{-}set\text{-}idx)
  then have \tau s:\tau s=(take\ i\ \tau s)\ @\ \tau i\ \#\ (drop\ (Suc\ i\ )\ \tau s)
    using id-take-nth-drop by blast
  from s have x-vars-subst:x \in vars-subst \tau i
     by (metis fun-upd-same fun-upd-triv subst-apply-term-empty subst-compose
vars-subst-compose-update)
  {fix j assume j < i
   with part i x-vars-subst have x \notin vars-subst (\tau s ! j)
     unfolding is-partition-alt is-partition-alt-def
    by (metis (no-types, lifting) Int-iff dual-order.strict-trans equals 0D is-partition-def
length-map nth-map part)
   then have (\tau s \mid j) x = Var x
     unfolding vars-subst-def by (meson UnI1 notin-subst-domain-imp-Var)
 then have take-i-\tau s:compose (take i \tau s) x = Var x
   using subst-compose-id[of take i \tau s Var x] using in-set-idx by force
  \{ \text{fix } y \text{ assume } y \in vars\text{-}term \ s \} 
    with s have y-vars-subst:y \in vars-subst \tau i
    unfolding vars-subst-def by (metis UnI2 Union-iff image-eqI notin-subst-domain-imp-Var
subst-range.simps)
   {fix j assume i < j j < length <math>\tau s
     with part i y-vars-subst have y \notin vars-subst (\tau s \mid j)
       unfolding is-partition-alt is-partition-alt-def
         by (metis (no-types, lifting) Int-iff equals0D is-partition-def length-map
nth-map part)
     then have (\tau s ! j) y = Var y
       unfolding vars-subst-def by (meson UnI1 notin-subst-domain-imp-Var)
   }
```

```
then have compose (drop (Suc i) \tau s) y = Var y
     using subst-compose-id[of drop (Suc i) \tau s Var y] using in-set-idx by force
  then have s \cdot (compose (drop (Suc i) \tau s)) = s
   by (simp add: term-subst-eq)
 with take-i-\tau s s(1) i show ?thesis
    by (metis \ \tau s \ assms(1) \ compose-append \ compose-simps(3) \ eval-term.simps(1)
subst-compose)
qed
lemma subst-id-compose:
 assumes \sigma = compose \ \tau s and part:is-partition \ (map \ vars-subst \ \tau s)
   and t \cdot \sigma = t
   and \tau \in set \ \tau s
 shows t \cdot \tau = t
 using assms subst-compose-distinct-vars by (metis (full-types) subst-apply-term-empty
term-subst-eq-conv)
\mathbf{lemma}\ compose\text{-}subst\text{-}of\text{:}
 assumes set ss = [\ ] (set `set ss')
   and is-partition (map (vars-term \circ snd) ss) and distinct (map fst ss)
   and set (map\ fst\ ss)\cap\bigcup\ (set\ (map\ (vars\text{-}term\ \circ\ snd)\ ss))=\{\}
   and is-partition (map vars-subst (map subst-of ss'))
  shows subst-of ss = compose \ (map \ subst-of \ ss') \ (is \ ?\sigma = ?\tau)
proof
 \mathbf{fix} \ x
 show ?\sigma x = ?\tau x \operatorname{proof}(cases x \in set (map fst ss))
   case True
   then obtain s where s:(x, s) \in set ss
     by fastforce
   then have \sigma-x:?\sigma x = s
        using assms(3) by (smt\ (verit)\ UN-I\ assms(4)\ case-prodI2\ disjoint-iff
eq-key-imp-eq-value list.set-map o-apply prod.sel(2) subst-of-apply)
   from s have s-x:s \neq Var x
     using assms(4) by fastforce
   from s obtain ssi where ssi:(x, s) \in set ssi ssi \in set ss'
     using assms(1) by auto
   then have subst-of ssi x = s
    using assms(1,3,4) by (smt\ (verit,\ ccfv-threshold)\ UN-I\ case-prodI2\ disjoint-iff
eq-key-imp-eq-value image-iff list.set-map o-apply snd-conv subst-of-apply)
   with assms(5) have ?\tau x = s
    using subst-compose-distinct-vars ssi(2) s-x by (smt\ (verit,\ del\text{-}insts)\ in-set-idx
length-map nth-map nth-mem)
   with \sigma-x show ?thesis by simp
 next
   case False
   then have \sigma-x: ?\sigma x = Var x
     by (simp add: not-elem-subst-of)
    \{ \text{fix } ssi \text{ assume } ssi \in set \ ss' \}
```

```
with False assms(1) have x \notin set (map \ fst \ ssi)
      by auto
     then have (subst-of ssi) x = Var x
      by (simp add: not-elem-subst-of)
   then have ?\tau x = Var x
    using subst-compose-id by (smt (verit, ccfv-SIG) eval-term.simps(1) image-iff
list.set-map)
   with \sigma-x show ?thesis by simp
  qed
qed
lemma linear-term-decompose-subst-id:
 assumes lin:linear-term (Fun f ss) linear-term (Fun g ts)
   and disj:vars-term\ (Fun\ f\ ss)\cap vars-term\ (Fun\ g\ ts)=\{\}
   and decompose (Fun f ss) (Fun g ts) = Some ds
   and i:i < length ds and \sigma:\sigma = linear-unifier (fst (ds!i)) (snd (ds!i))
   and j:j < length ds j \neq i
  shows fst(ds!j) \cdot \sigma = fst(ds!j) \wedge snd(ds!j) \cdot \sigma = snd(ds!j)
proof-
  from assms have zip:ds = zip ss ts and l:length ss = length ts
   using decompose-Some by blast+
  from i j obtain si ti where s-t-i:ds ! i = (si, ti) ss ! i = si ts ! i = ti
   using l zip by force
  from j obtain sj\ tj where s-t-j:ds\ !\ j = (sj,\ tj)\ ss\ !\ j = sj\ ts\ !\ j = tj
   using l zip by force
 have vars-term sj \cap vars-term ti = \{\}
   using i j s-t-i s-t-j disj l zip by fastforce
  moreover have vars-term sj \cap vars-term si = \{\}
   using lin(1) s-t-i s-t-j i j var-in-linear-args
   by (metis Int-emptyI l length-map map-fst-zip zip)
  moreover have vars-term ti \cap vars-term ti = \{\}
   using lin(2) s-t-i s-t-j i j l var-in-linear-args
   by (metis Int-emptyI l length-map map-fst-zip zip)
 moreover have vars-term tj \cap vars-term si = \{\}
   using i j s-t-i s-t-j disj l zip by fastforce
 moreover from \sigma s-t-i have vars-subst \sigma \subseteq vars-term si \cup vars-term ti
   by (metis fst-conv snd-conv vars-subst-linear-unifier)
  ultimately show ?thesis
   unfolding s-t-i s-t-j fst-conv snd-conv
  \textbf{by} \ (\textit{metis inf-sup-distrib1 subst-apply-term-ident sup.absorb-iff2 sup-bot.neutr-eq-iff})
vars-subst-def)
qed
{\bf lemma}\ \textit{linear-unifier-decompose}:
 assumes linear-term (Fun f ss) linear-term (Fun g ts)
   and disj:vars-term\ (Fun\ f\ ss)\cap vars-term\ (Fun\ g\ ts)=\{\}
   and ds:decompose (Fun f ss) (Fun g ts) = Some ds
 shows linear-unifier (Fun f ss) (Fun g ts) = compose (map (\lambda(s,t)). linear-unifier
```

```
s t) ds
proof-
  let ?ls=left-substs (Fun f ss) (Fun g ts) and ?rs=right-substs (Fun f ss) (Fun g
   have left:set ?ls = (\bigcup (s, t) \in set ds. set (left-substs s t))
      using decompose-left-substs[OF ds] by auto
   have right:set ?rs = (\bigcup (s, t) \in set ds. set (right-substs s t))
      using decompose-right-substs[OF ds] by auto
   from left right have sets:set (?ls @ ?rs) = \bigcup (set 'set (map (\lambda(s, t)). left-substs
s t @ right-substs s t) ds))
      by auto
   {fix l assume l \in (set (map (vars-term \circ snd) ?ls))
      then obtain t' where t' \in set \ (map \ snd \ ?ls) and vars\text{-}term \ t' = l
         by auto
      then have l \subseteq vars\text{-}term (Fun \ q \ ts)
         using map-snd-left-substs by blast
   then have 1: \bigcup (set (map (vars-term \circ snd) ? ls)) \subseteq vars-term (Fun g ts)
      using Union-least by blast
   {fix r assume r \in (set (map (vars-term \circ snd) ?rs))
      then obtain t' where t' \in set \ (map \ snd \ ?rs) and vars\text{-}term \ t' = r
         by auto
      then have r \subseteq vars\text{-}term (Fun f ss)
         using map-snd-right-substs by blast
   then have 2: (set (map (vars-term \circ snd) ?rs)) \subseteq vars-term (Fun f ss)
      using Union-least by blast
   have snd-disj:\bigcup (set (map (vars-term \circ snd) ?ls)) \cap \bigcup (set (map (vars-term \circ
snd) ?rs)) = \{\}
      using 1 \ 2 \ assms(3) by blast
   then have part:is-partition (map (vars-term \circ snd) (?ls @ ?rs))
       using is-partition-append [OF is-partition-map-snd-left-substs [OF assms(2,1)]
is-partition-map-snd-right-substs[OF\ assms(2,1)]]
      unfolding length-map map-append by (simp add: Union-disjoint)
   have dist:distinct (map fst (?ls @ ?rs))
    using distinct-append distinct-map-fst-left-substs[OF\ assms(1)]\ distinct-map-fst-right-substs[OF\ assms(1)]\ distinct-
assms(2)] map-fst-left-substs map-fst-right-substs
     by (smt (verit, del-insts) disj inf.orderE inf-assoc inf-bot-right inf-left-commute
map-append)
   have set (map\ fst\ ?ls) \cap \bigcup \ (set\ (map\ (vars-term\ \circ\ snd)\ ?ls)) = \{\}
      by (meson 1 disj disjoint-iff map-fst-left-substs subsetD)
   moreover have set (map\ fst\ ?ls) \cap \bigcup (set\ (map\ (vars-term\ \circ\ snd)\ ?rs)) = \{\}
      using assms(1) distinct-fst-lsubsts-snd-rsubsts by blast
   moreover have set (map\ fst\ ?rs) \cap \bigcup \ (set\ (map\ (vars-term\ \circ\ snd)\ ?rs)) = \{\}
      by (meson 2 disj disjoint-iff map-fst-right-substs subsetD)
   moreover have set (map\ fst\ ?rs) \cap \bigcup (set\ (map\ (vars-term\ \circ\ snd)\ ?ls)) = \{\}
      using assms(2) distinct-fst-rsubsts-snd-lsubsts by blast
  ultimately have disj:set\ (map\ fst\ (?ls\ @\ ?rs))\cap [\ ]\ (set\ (map\ (vars-term\ \circ\ snd))
(?ls @ ?rs)) = \{\}
```

```
unfolding map-append set-append by (simp add: boolean-algebra.conj-disj-distrib boolean-algebra.conj-disj-distrib2)
```

```
have part2:is-partition (map vars-subst (map subst-of (map (\lambda(s, t)). left-substs s t \oplus right-substs s t) ds)))
```

using $decompose-is-partition-vars-subst[OF\ assms(1,2,3,4)]$

by (metis (mono-tags, lifting) case-prod-beta length-map map-nth-eq-conv)

show ?thesis using compose-subst-of[OF sets part dist disj part2]

 $\mathbf{by}\ (smt\ (verit,\ del\text{-}insts)\ case\text{-}prod\text{-}unfold\ length\text{-}map\ map\text{-}nth\text{-}eq\text{-}conv)}$ \mathbf{qed}

Main lemma: for a list of unifiable terms that are linear and have distinct variables, the unification algorithm yields the same result as composing the list of substitutions obtained by *linear-unifier*.

```
lemma unify-linear-terms:
  assumes unify \ es \ substs = Some \ res
   and compose (subst-of substs # (map (\lambda(s,t)). linear-unifier s t) es)) = \tau
   and \forall t \in set \ (map \ fst \ es) \cup set \ (map \ snd \ es). linear-term t
    and \bigwedge i \ j \ \sigma. i < j \Longrightarrow j < length \ es \Longrightarrow \sigma = linear-unifier \ (fst \ (es!i)) \ (snd
(es!i)) =
         (fst\ (es!j)) \cdot \sigma = fst\ (es!j) \wedge (snd\ (es!j)) \cdot \sigma = snd\ (es!j)
   and \bigwedge i.\ i < length\ es \Longrightarrow vars-term\ (fst\ (es!i)) \cap vars-term\ (snd\ (es!i)) = \{\}
  shows subst-of res = \tau
  using assms proof(induct arbitrary: res substs \tau rule:unify.induct)
  case (2 f ss g ts E)
  from 2(2) obtain ds where ds':decompose (Fun f ss) (Fun g ts) = Some ds
   unfolding unify.simps by fastforce
  then have ds:ds = zip \ ss \ ts and l:length \ ss = length \ ts
   by fastforce+
  with 2(4) have \forall t \in set \ (map \ fst \ ds). linear-term t
  using map-fst-zip by (metis (no-types, lifting) UnCI fst-conv linear-term.simps(2)
list.set-intros(1) \ list.simps(9))
  moreover from 2(4) ds l have \forall t \in set \ (map \ snd \ ds). linear-term t
     using map-snd-zip by (metis (no-types, lifting) UnCI linear-term.simps(2)
list.set-intros(1) \ list.simps(9) \ snd-conv)
  ultimately have lin: \forall a \in set \ (map \ fst \ (ds @ E)) \cup set \ (map \ snd \ (ds @ E)).
linear-term a
  using 2(4) by (metis UnE UnI1 UnI2 list.set-intros(2) list.simps(9) map-append
set-append)
 have lin-f-g:linear-term (Fun f ss) linear-term (Fun g ts)
   using 2(4) by auto
 from 2(6) have vars:vars-term (Fun f ss) \cap vars-term (Fun g ts) = {}
   by fastforce
 from ds' 2(2) have unif:unify (ds @ E) substs = Some res
   by auto
 have compose (map (\lambda a. case a of (s, t) \Rightarrow linear-unifier s t) ds) = linear-unifier
(Fun f ss) (Fun g ts)
   using linear-unifier-decompose [OF lin-f-g vars ds'] by fastforce
  then have \tau 2:compose (subst-of substs # map (\lambda a. case a of (s, t) \Rightarrow lin-
ear-unifier s\ t)\ (ds\ @\ E)) = \tau
```

```
using 2(3) compose-append by simp
   \{ \text{fix } i \ j \ \sigma \ \text{assume} \ i{:}i < j \ \text{and} \ j{:}j < \textit{length} \ (\textit{ds} \ @ \ E) \ \text{and} \ \sigma{:}\sigma = \textit{linear-unifier} 
(fst\ ((ds\ @\ E)\ !\ i))\ (snd\ ((ds\ @\ E)\ !\ i))
   have fst ((ds @ E) ! j) \cdot \sigma = fst ((ds @ E) ! j) \wedge snd ((ds @ E) ! j) \cdot \sigma = snd
((ds @ E) ! j)
   proof(cases i < length ds)
     case True
     then have \sigma:\sigma = linear-unifier (fst (ds!i)) (snd (ds!i))
       by (simp add: \sigma dual-order.strict-trans i nth-append)
     show ?thesis proof(cases j < length ds)
       case True
       have lin:linear-term (Fun f ss) linear-term (Fun g ts)
         using 2(4) by simp+
       \mathbf{show}~? the sis
           using linear-term-decompose-subst-id[OF lin vars ds' \langle i \rangle length ds \sigma
True i True
         by (simp add: j nat-neg-iff nth-append)
     next
       case False
       let ?j'=j - length ds
       let ?\tau = linear-unifier (Fun f ss) (Fun g ts)
       from False j have ?j' < length E
         by fastforce
       then have fst:fst (E ! ?j') \cdot ?\tau = fst (E ! ?j') and snd:snd (E ! ?j') \cdot ?\tau
= snd (E ! ?j')
         using 2(5) by force+
       have fst (E ! ?j') \cdot \sigma = fst (E ! ?j')
           using subst-id-compose[OF linear-unifier-decompose[OF lin-f-g vars ds']
decompose-is-partition-vars-subst[OF lin-f-g vars ds']]
      by (smt\ (verit,\ best)\ True\ \sigma\ ds\ fst\ in-set-conv-nth\ l\ length-map\ map2-map-map
map-fst-zip \ map-snd-zip \ nth-map)
       moreover have snd (E ! ?j') \cdot \sigma = snd (E ! ?j')
           using subst-id-compose[OF linear-unifier-decompose[OF lin-f-g vars ds']
decompose-is-partition-vars-subst[OF lin-f-g vars ds']]
      by (smt\ (verit,\ best)\ True\ \sigma\ ds\ snd\ in-set-conv-nth\ l\ length-map\ map2-map-map
map-fst-zip map-snd-zip nth-map)
       ultimately show ?thesis
         by (simp add: False nth-append)
     qed
   next
     {f case}\ {\it False}
     let ?i'=i - length ds
     have i':?i' < length E
       using False i j by force
     from \sigma have \sigma':\sigma = linear-unifier (fst <math>(E ! ?i')) (snd (E ! ?i'))
       by (simp add: False nth-append)
     let ?j'=j - length ds
     from False i j have ?i' < ?j'
       \mathbf{by} \ simp
```

```
moreover with j have ?j' < length E
       by fastforce
     ultimately show ?thesis
         using 2(5) i' \sigma' by (smt (verit, best) length-nth-simps(2) nat-diff-split
not-less-eq not-less-zero nth-Cons-Suc nth-append)
   qed
  }
 moreover
  { fix i assume i:i < length (ds @ E)
   have vars-term (fst ((ds @ E) ! i)) \cap vars-term (snd ((ds @ E) ! i)) = \{\}
   \mathbf{proof}(cases\ i < length\ ds)
     case True
     with ds have vars-term (fst (ds!i)) \subseteq vars-term (Fun f ss)
       using nth-mem by auto
    moreover from True ds have vars-term (snd (ds!i)) \subseteq vars-term (Fun g ts)
       using nth-mem by auto
     ultimately show ?thesis
      using 2(6) True by (metis Int-mono bot.extremum-uniqueI nth-append vars)
     case False
     let ?i'=i - length ds
     have i':?i' < length E
       using False i by force
     with 2(6) have vars-term (fst (E ! ?i')) \cap vars-term (snd (E ! ?i')) = \{\}
       by force
     then show ?thesis
       by (simp add: False nth-append)
   \mathbf{qed}
  ultimately show ?case
   using 2(1)[OF ds' unif \tau 2 lin] by blast
 case (3 \ x \ t \ E)
 show ?case proof(cases t = Var x)
   case True
   from \Im(\Im) have unif:unify E substs = Some res
     unfolding True unify.simps by simp
    from 3(4) have \tau 2:compose (subst-of substs # map (\lambda a. case a of (s, t) \Rightarrow
linear-unifier\ s\ t)\ E) = \tau
    unfolding True append-Cons list.map compose-simps using linear-unifier-same
by (metis Var-subst-compose old.prod.case)
   from 3(5) have lin: \forall a \in set \ (map \ fst \ E) \cup set \ (map \ snd \ E). linear-term \ a
     by simp
    from 3(6) have \bigwedge i \sigma. i < length E \Longrightarrow \sigma = linear-unifier (fst <math>(E ! i)) (snd
(E ! i)) \Longrightarrow
          (\forall j < length \ E. \ i < j \longrightarrow fst \ (E \ ! \ j) \cdot \sigma = fst \ (E \ ! \ j) \wedge snd \ (E \ ! \ j) \cdot \sigma =
snd(E!i)
     by (metis length-nth-simps(2) not-less-eq nth-Cons-Suc)
   moreover have (\bigwedge i. \ i < length \ E \Longrightarrow vars-term \ (fst \ (E!i)) \cap vars-term \ (snd
```

```
(E ! i)) = \{\})
     using \Im(7) by fastforce
   ultimately show ?thesis using 3(1)[OF True unif \tau 2 lin] by simp
   case False
   with \Im(\Im) have x:x \notin vars\text{-}term\ t
     by fastforce
    with 3(3) False have unif:unify (subst-list (subst x t) E) ((x, t) # substs) =
Some res
     by simp
   let ?\sigma = (subst \ x \ t)
   have \sigma: linear-unifier (Var x) t = ?\sigma
     using linear-unifier-var1 by simp
   from 3(7) have subst-list:subst-list (subst x t) E = E
   proof-
     {fix j assume j < length E
       then have j:Suc j < length ((Var x, t) \# E)
         by simp
       with 3(6)[of\ 0\ Suc\ j\ ?\sigma]\ \sigma have fst\ (E\ !\ j)\cdot ?\sigma = fst\ (E\ !\ j)\wedge snd\ (E\ !\ j)
\cdot ?\sigma = snd (E!j)
        by (metis fst-conv length-nth-simps(2) nth-Cons-0 nth-Cons-Suc snd-conv
zero-less-Suc)
     then show ?thesis
       unfolding subst-list-def by (simp add: map-nth-eq-conv)
   qed
    have \tau 2: compose (subst-of ((x, t) # substs) # map (\lambda a. case a of (s, t) \Rightarrow
linear-unifier s t) (subst-list (subst x t) E)) = \tau
     using 3(4) unfolding subst-list list.map prod.case \sigma subst-of-simps(3) com-
pose-append\ fst-conv\ snd-conv\ compose-simps(1,3)
     using subst-compose-assoc by blast
   from \Im(5) have lin: \forall a \in set (map fst (subst-list (subst x t) E)) <math>\cup set (map snd)
(subst-list\ (subst\ x\ t)\ E)).\ linear-term\ a
     unfolding subst-list by simp
    {fix i j \sigma assume i:i < j and j:j < length E and \sigma'':\sigma = linear-unifier (fst
(E ! i)) (snd (E ! i))
    with 3(6) have 1: fst(E!j) \cdot \sigma = fst(E!j) \wedge snd(E!j) \cdot \sigma = snd(E!j)
       by (metis length-nth-simps(2) not-less-eq nth-Cons-Suc)
   moreover have (\bigwedge i. \ i < length \ E \Longrightarrow vars-term \ (fst \ (E!i)) \cap vars-term \ (snd
(E ! i)) = \{\})
     using \Im(7) by fastforce
   ultimately show ?thesis
    using 3(2)[OF\ False\ x\ unif\ \tau 2\ lin]\ 3(7) unfolding subst-list subst-of-simps(3)
by simp
 qed
next
 case (4 f ts x E)
 from 4(2) have x:x \notin vars\text{-}term (Fun f ts)
```

```
by fastforce
  with 4(2) have unif:unify (subst-list (subst x (Fun f ts)) E) ((x, Fun f ts) #
substs) = Some res
   by auto
  let ?\sigma = (subst\ x\ (Fun\ f\ ts))
 have \sigma: linear-unifier (Fun f ts) (Var x) = ?\sigma
   using linear-unifier-var2 by simp
  have subst-list:subst-list (subst\ x\ (Fun\ f\ ts)) E=E
 proof-
    \{ fix \ j \ assume \ j < length \ E \}
     then have Suc \ j < length \ ((Fun \ f \ ts, \ Var \ x) \ \# \ E)
     with 4(5) \sigma have fst (E!j) \cdot ?\sigma = fst (E!j) \wedge snd (E!j) \cdot ?\sigma = snd (E!j)
! j)
        by (metis fst-conv length-nth-simps(2) nth-Cons-0 nth-Cons-Suc snd-conv
zero-less-Suc)
   then show ?thesis
     unfolding subst-list-def by (simp add: map-nth-eq-conv)
 qed
 have \tau 2:compose (subst-of ((x, Fun f ts) # substs) # map (\lambda a. case a of (s, t)
\Rightarrow linear-unifier s t) (subst-list (subst x (Fun f ts)) E)) = \tau
    using 4(3) unfolding subst-list list.map prod.case \sigma subst-of-simps(3) com-
pose-append\ fst-conv\ snd-conv\ compose-simps(1,3)\ \mathbf{by}\ (simp\ add:\ subst-compose-assoc)
  from 4(4) have lin: \forall a \in set \ (map \ fst \ (subst-list \ (subst \ x \ (Fun \ f \ ts)) \ E)) \cup set
(map\ snd\ (subst-list\ (subst\ x\ (Fun\ f\ ts))\ E)).\ linear-term\ a
   unfolding subst-list by simp
  {fix i j \sigma assume i:i < j and j:j < length E and \sigma'':\sigma = linear-unifier (fst (E
! \ i)) \ (snd \ (E \ ! \ i))
   with 4(5) have 1: fst (E ! j) \cdot \sigma = fst (E ! j) \wedge snd (E ! j) \cdot \sigma = snd (E ! j)
     by (metis\ length-nth-simps(2)\ not-less-eq\ nth-Cons-Suc)
 moreover have (\land i. i < length \ E \Longrightarrow vars-term \ (fst \ (E!i)) \cap vars-term \ (snd
(E ! i)) = \{\})
   using 4(6) by fastforce
 ultimately show ?case
   using 4(1)[OF \ x \ unif \ \tau 2 \ lin] \ 4(6) unfolding subst-list by simp
qed auto
lemma mgu-distinct-vars-term-list:
 assumes unif:unifiers \{(s, t)\} \neq \{\}
   and distinct: distinct ((vars-term-list s) @ (vars-term-list t))
 shows mgu \ s \ t = Some \ (linear-unifier \ s \ t)
proof-
 let ?tau=linear-unifier\ s\ t
  from unif have mgu \ s \ t \neq None
   by (meson mgu-complete)
  then obtain us where us:unify [(s, t)] [] = Some us
   unfolding mgu-def by fastforce
```

```
have tau:compose (subst-of [] # map (\lambda(s, t). linear-unifier s t) [(s, t)]) = ?tau
             by simp
       have lin: \forall t \in set \ (map \ fst \ [(s, \ t)]) \cup set \ (map \ snd \ [(s, \ t)]). linear-term t
             using distinct distinct-vars-linear-term by auto
       have vars-term s \cap vars-term t = \{\}
             using distinct by simp
       then have subst-of\ us=\ ?tau
              using unify-linear-terms[OF us tau lin] by simp
       then show ?thesis
             using us by (simp add: mgu-def)
qed
end
3.1.10
                                         Sets of Unifiers
theory Unifiers-More
      imports
              First-Order-Terms. Term-More
              First-Order-Terms. Unifiers
begin
lemma is-mquI:
      fixes \sigma :: ('f, 'v) \ subst
      assumes \forall (s, t) \in E. \ s \cdot \sigma = t \cdot \sigma
             and \bigwedge \tau :: (f, v) \text{ subst. } \forall (s, t) \in E. \text{ } s \cdot \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma :: (f, v) \text{ subst. } \tau = t \cdot \tau \Longrightarrow \exists \gamma
\sigma \circ_s \gamma
       shows is-mgu \sigma E
      using assms by (fastforce simp: is-mgu-def unifiers-def)
lemma subst-set-insert [simp]:
       subst-set \sigma (insert e E) = insert (fst e \cdot \sigma, snd e \cdot \sigma) (subst-set \sigma E)
       by (auto simp: subst-set-def)
lemma unifiable-UnD [dest]:
       unifiable (M \cup N) \Longrightarrow unifiable M \land unifiable N
       by (auto simp: unifiable-def)
lemma supt-imp-not-unifiable:
       assumes s > t
       shows \neg unifiable \{(t, s)\}
proof
       assume unifiable \{(t, s)\}
       then obtain \sigma where \sigma \in unifiers \{(t, s)\}
             by (auto simp: unifiable-def)
       then have t \cdot \sigma = s \cdot \sigma by (auto)
       moreover have s \cdot \sigma \rhd t \cdot \sigma
             using assms by (metis instance-no-supt-imp-no-supt)
       ultimately show False by auto
```

```
qed
```

```
lemma unifiable-insert-Var-swap [simp]:
  unifiable (insert (t, Var x) E) \longleftrightarrow unifiable (insert (Var x, t) E)
 by (rule unifiable-insert-swap)
lemma unifiers-Int1 [simp]:
  (s, t) \in E \Longrightarrow unifiers \{(s, t)\} \cap unifiers E = unifiers E
 by (auto simp: unifiers-def)
lemma imgu-linear-var-disjoint:
  assumes is-imgu \sigma \{(l2 \mid -p, l1)\}
    and p \in poss \ l2
    and linear-term l2
    and vars-term l1 \cap vars-term l2 = \{\}
    and q \in poss \ l2
    and parallel-pos p q
  shows l2 \mid -q = l2 \mid -q \cdot \sigma
  \mathbf{using}\ \mathit{assms}
proof (induct p arbitrary: q l2)
  case (Cons \ i \ p)
  from this(3) obtain f ls where
    l2[simp]: l2 = Fun f ls and
    i: i < length ls and
    p: p \in poss (ls ! i)
    by (cases l2) (auto)
  then have l2i: l2 \mid -((i \# p)) = ls ! i \mid -p by auto
  have linear-term (ls ! i) using Cons(4) l2 i by simp
  moreover have vars-term l1 \cap vars-term (ls ! i) = \{\} using Cons(5) l2 i by
force
 ultimately have IH: \bigwedge q. q \in poss (ls ! i) \Longrightarrow p \perp q \Longrightarrow ls ! i | -q = ls ! i | -q
    \mathbf{using}\ \mathit{Cons}(1)[\mathit{OF}\ \mathit{Cons}(2)[\mathit{unfolded}\ \mathit{l2i}]\ \mathit{p}]\ \mathbf{by}\ \mathit{blast}
  from Cons(7) obtain j \ q' where q: q = j \# q' by (cases \ q) auto
  show ?case
  proof (cases j = i)
    case True with Cons(6,7) IH q show ?thesis by simp
  next
    case False
    from Cons(6) q have j: j < length ls by simp
    { fix y
     assume y: y \in vars\text{-}term (l2 \mid -q)
     let ?\tau = \lambda x. if x = y then Var y else \sigma x
      from y \ Cons(6) \ q \ j \ have \ yj:y \in vars-term \ (ls \ ! \ j)
       by simp (meson subt-at-imp-supteq subteq-Var-imp-in-vars-term supteq-Var
supteq-trans)
      \{ \text{ fix } i j \}
        assume j:j < length ls and i:i < length ls and neq: i \neq j
        \mathbf{from} \ j \ \mathit{Cons}(4) \ \mathbf{have} \ \forall \ i < j. \ \mathit{vars-term} \ (\mathit{ls} \ ! \ i) \ \cap \ \mathit{vars-term} \ (\mathit{ls} \ ! \ j) = \{\}
```

```
by (auto simp: is-partition-def)
        moreover from i \ Cons(4) have \forall j < i. \ vars-term \ (ls ! i) \cap vars-term \ (ls
! \ j) = \{\}
          by (auto simp: is-partition-def)
        ultimately have vars-term (ls ! i) \cap vars\text{-}term (ls ! j) = \{\}
          using neg by (cases i < j) auto
      from this [OF i j False] have y \notin vars\text{-}term (ls ! i) using yj by auto
      then have y \notin vars\text{-}term (l2 \mid -((i \# p)))
        by (metis l2i p subt-at-imp-supteq subteq-Var-imp-in-vars-term supteq-Var
supteq-trans)
     then have \forall x \in vars\text{-}term\ (l2 \mid -((i \# p))). ?\tau x = \sigma x \text{ by } auto
    then have l2\tau\sigma: l2 \mid -((i \# p)) \cdot ?\tau = l2 \mid -((i \# p)) \cdot \sigma using term\text{-subst-eq}[of]
- \sigma ?\tau] by simp
     from Cons(5) have y \notin vars\text{-}term \ l1 \ using \ y \ Cons(6) \ vars\text{-}term\text{-}subt\text{-}at \ by
fast force
      then have \forall x \in vars\text{-}term \ l1. \ ?\tau \ x = \sigma \ x \ by \ auto
      then have l1\tau\sigma:l1\cdot ?\tau=l1\cdot \sigma using term-subst-eq[of - \sigma ?\tau] by simp
      have l1 \cdot \sigma = l2 \mid -(i \# p) \cdot \sigma using Cons(2) unfolding is-imgu-def by
auto
      then have l1 \cdot ?\tau = l2 \mid -(i \# p) \cdot ?\tau using l1\tau\sigma l2\tau\sigma by simp
     then have ?\tau \in unifiers \{(l2 \mid -(i \# p), l1)\} unfolding unifiers-def by simp
      with Cons(2) have \tau \sigma: ?\tau = \sigma \circ_s ?\tau unfolding is-imgu-def by blast
      have Var y = Var y \cdot \sigma
      proof (rule ccontr)
       let ?x = Var y \cdot \sigma
        assume *: Var y \neq ?x
       have Var y = Var y \cdot ?\tau by auto
        also have ... = (Var \ y \cdot \sigma) \cdot ?\tau using \tau \sigma subst-subst by metis
        finally have xy: ?x \cdot \sigma = Var y \text{ using } * \text{ by } (cases \sigma y) \text{ auto}
        have \sigma \circ_s \sigma = \sigma using Cons(2) unfolding is-imgu-def by auto
        then have ?x \cdot (\sigma \circ_s \sigma) = Var y using xy by auto
        moreover have ?x \cdot \sigma \cdot \sigma = ?x using xy by auto
        ultimately show False using * by auto
     qed
    }
    then show ?thesis by (simp add: term-subst-eq)
  qed
qed auto
end
3.2
        Abstract Rewriting
theory Abstract-Rewriting-Impl
  imports
    Abstract-Rewriting. Abstract-Rewriting
begin
```

```
partial-function (option) compute-NF :: ('a \Rightarrow 'a \ option) \Rightarrow 'a \Rightarrow 'a \ option
  where [simp,code]: compute-NF f a = (case f a of None <math>\Rightarrow Some \ a \mid Some \ b \Rightarrow
compute-NF f b)
lemma compute-NF-sound: assumes res: compute-NF f a = Some b
 and f-sound: \bigwedge a \ b. f \ a = Some \ b \Longrightarrow (a,b) \in r
shows (a,b) \in r^*
proof (induct rule: compute-NF.raw-induct[OF - res, of \lambda g a b. g = f \longrightarrow (a,b)
\in r^*, THEN mp[OF - refl])
 case (1 \ cnf \ g \ a \ b)
 show ?case
 proof
   assume g = f
   note 1 = 1[unfolded\ this]
   show (a,b) \in r^*
   proof (cases f a)
     {f case} None
     with 1(2) show ?thesis by simp
   next
     case (Some \ c)
     from 1(2) [unfolded this] have cnf f c = Some b by simp
     from 1(1)[OF this] have (c,b) \in r^* by auto
     with f-sound[OF Some] show ?thesis by auto
   qed
 qed
qed
lemma compute-NF-complete: assumes res: compute-NF f a = Some b
 and f-complete: \bigwedge a. f a = None \implies a \in NF r
shows b \in NF r
proof (induct rule: compute-NF.raw-induct[OF - res, of \lambda g a b. g = f \longrightarrow b \in
NF r, THEN mp[OF - refl])
 case (1 \ cnf \ g \ a \ b)
 show ?case
 proof
   assume q = f
   note 1 = 1[unfolded this]
   show b \in NF r
   proof (cases f a)
     \mathbf{case}\ \mathit{None}
     with f-complete[OF None] 1(2)
     show ?thesis by simp
   \mathbf{next}
     case (Some \ c)
     from 1(2) [unfolded this] have cnf f c = Some b by simp
     from 1(1)[OF\ this] show ?thesis by simp
   qed
 qed
qed
```

```
lemma compute-NF-SN: assumes SN: SN r
    and f-sound: \bigwedge a \ b. f \ a = Some \ b \Longrightarrow (a,b) \in r
shows \exists b. compute-NF f a = Some b (is ?P a)
proof -
    let ?r = \{(a,b). f \ a = Some \ b\}
    have ?r \subseteq r using f-sound by auto
    from SN-subset [OF\ SN\ this] have SNr:\ SN\ ?r.
    show ?thesis
    proof (induct rule: SN-induct[OF\ SNr, of \lambda\ a. ?P\ a])
       case (1 a)
       show ?case
       proof (cases f a)
           case None then show ?thesis by auto
       next
           case (Some \ b)
           then have (a,b) \in ?r by simp
           from 1[OF this] f-sound[OF Some] show ?thesis
               using Some by auto
       qed
    qed
qed
definition compute-trancl A R = R^+  " A
lemma compute-trancl-rtrancl[code-unfold]: \{b.\ (a,b)\in R^*\}=insert\ a\ (compute-trancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtrancl-rtr
\{a\} R)
proof -
   have id: R^* = (Id \cup R^+) by regexp
   show ?thesis unfolding id compute-trancl-def by auto
lemma compute-trancl-code[code]: compute-trancl A R = (let B = R " A in
    if B \subseteq \{\} then \{\} else B \cup compute-trancl B \in A. fst ab \notin A \land snd ab \notin A
B
proof -
   have R: R^+ = R O R^*  by regexp
   define B where B = R " A
    define R' where R' = \{ab \in R. \text{ fst } ab \notin A \land \text{ snd } ab \notin B\}
    note d = compute-trancl-def
    show ?thesis unfolding Let-def B-def[symmetric] R'-def[symmetric] d
   proof (cases B \subseteq \{\})
       case True
        then show R^+ " A = (if B \subseteq \{\} then \{\} else B \cup R' + "B) unfolding
B-def R by auto
    next
        case False
       have R' \subseteq R unfolding R'-def by auto
       then have R' \hat{} + \subseteq R \hat{} + by (rule trancl-mono-set)
       also have \ldots \subseteq R * by auto
```

```
finally have mono: R' \hat{} + \subseteq R \hat{} *.
   have B \cup R'^+ " B = R^+ " A
     show B \cup R'^+ " B \subseteq R^+ " A unfolding B-def R using mono
      by blast
   \mathbf{next}
     show R^+ "A \subseteq B \cup R'^+ "B
     proof
      \mathbf{fix} \ x
      assume x \in R^+ ``A
      then obtain a where a: a \in A and ax: (a,x) \in R^+ by auto
      from ax \ a \ \text{show} \ x \in B \cup R' + "B
      proof (induct)
        {f case}\ base
        then show ?case unfolding B-def by auto
        case (step \ x \ y)
        from step(3)[OF\ step(4)] have x: x \in B \cup R' + "B.
        show ?case
        proof (cases \ y \in B)
          case False note y = this
          \mathbf{show}~? the sis
          proof (cases x \in A)
           case True
            with y \ step(2) show ?thesis unfolding B-def by auto
          next
            with y \ step(2) have (x,y) \in R' unfolding R'-def by auto
           with x have y \in (R' \cup (R' + OR')) "B by blast
           also have R' \cup (R' + OR') = R' + by regexp
           finally show ?thesis by blast
          qed
        \mathbf{qed} auto
      qed
     qed
   qed
   with False show R^+ "A = (if B \subseteq \{\} then \{\} else B \cup R' + "B) by auto
 qed
qed
lemma trancl-image-code[code-unfold]: R ^+ ^{\prime\prime} A = compute-trancl A R unfolding
compute-trancl-def by auto
lemma compute-r<br/>trancl[code-unfold]: R^* "A = A \cup compute-trancl A R
proof -
 have id: R^* = (Id \cup R^+) by regexp
 show ?thesis unfolding id compute-trancl-def by auto
lemma trancl-image-code'[code-unfold]: (a,b) \in R^+ \longleftrightarrow b \in compute-trancl \{a\}
R unfolding compute-trancl-def by auto
```

```
lemma rtrancl-image-code[code-unfold]: (a,b) \in R * \longleftrightarrow b = a \lor b \in compute-trancl {a} R using compute-rtrancl[of R {<math>a}] by auto end

3.2.1 Closure-Operations on Relations theory Relation-Closure imports Abstract-Rewriting. Relative-Rewriting
```

```
begin
locale rel-closure =
  fixes cop :: 'b \Rightarrow 'a \Rightarrow 'a — closure operator
    and nil :: 'b
   and add :: 'b \Rightarrow 'b \Rightarrow 'b
 assumes cop-nil: cop nil x = x
 assumes cop\text{-}add: cop\ (add\ a\ b)\ x = cop\ a\ (cop\ b\ x)
inductive-set closure for r::'a rel
  where
    [intro]: (x, y) \in r \Longrightarrow (cop \ a \ x, cop \ a \ y) \in closure \ r
lemma closureI2: (x, y) \in r \Longrightarrow u = cop \ a \ x \Longrightarrow v = cop \ a \ y \Longrightarrow (u, v) \in closure
r by auto
lemma closure-mono: r \subseteq s \Longrightarrow closure \ r \subseteq closure \ s by (auto elim: closure.cases)
lemma subset-closure: r \subseteq closure \ r
  using closure.intros [where a = nil] by (auto simp: cop-nil)
definition closed r \longleftrightarrow closure \ r \subseteq r
lemma closure-subset: closed r \Longrightarrow closure \ r \subseteq r
 by (auto simp: closed-def)
lemma closedI [Pure.intro, intro]: (\bigwedge x \ y \ a. \ (x, y) \in r \Longrightarrow (cop \ a \ x, cop \ a \ y) \in r)
\implies closed \ r
 by (auto simp: closed-def elim: closure.cases)
lemma closedD [dest]: closed r \Longrightarrow (x, y) \in r \Longrightarrow (cop \ a \ x, cop \ a \ y) \in r
 by (auto simp: closed-def)
lemma closed-closure [intro]: closed (closure r)
  using closure.intros [where a = add \ a \ b for a \ b]
 by (auto simp: closed-def cop-add elim!: closure.cases)
```

 ${f lemma}$ subset-closure-Un:

```
closure \ r \subseteq closure \ (r \cup s)
  closure \ s \subseteq closure \ (r \cup s)
  by (auto elim!: closure.cases)
lemma closure-Un: closure (r \cup s) = closure \ r \cup closure \ s
  using subset-closure-Un by (auto elim: closure.cases)
lemma closure-id [simp]: closed r \Longrightarrow closure \ r = r
  using subset-closure and closure-subset by blast
lemma closed-Un [intro]: closed r \Longrightarrow closed \ s \Longrightarrow closed \ (r \cup s) by blast
lemma closed-Inr [intro]: closed r \Longrightarrow closed \ s \Longrightarrow closed \ (r \cap s) by blast
lemma closed-rtrancl [intro]: closed r \Longrightarrow closed (r^*)
  by (best intro: rtrancl-into-rtrancl elim: rtrancl.induct)
lemma closed-trancl [intro]: closed r \Longrightarrow closed (r^+)
 by (best intro: trancl-into-trancl elim: trancl.induct)
lemma closed-converse [intro]: closed r \Longrightarrow closed (r^{-1}) by blast
lemma closed-comp [intro]: closed r \Longrightarrow closed \ s \Longrightarrow closed \ (r \ O \ s) by blast
lemma closed-relpow [intro]: closed r \Longrightarrow closed \ (r \curvearrowright n)
  by (auto intro: relpow-image [OF closedD])
lemma closed-conversion [intro]: closed r \Longrightarrow closed\ (r^{\leftrightarrow *})
 by (auto simp: conversion-def)
lemma closed-relto [intro]: closed r \Longrightarrow closed \ s \Longrightarrow closed \ (relto \ r \ s) by blast
lemma closure-diff-subset: closure r - closure \ s \subseteq closure \ (r - s) by (auto elim:
closure.cases)
end
end
```

4 Term Rewrite Systems

```
 \begin{array}{c} \textbf{theory } \textit{Trs} \\ \textbf{imports} \\ \textit{Relation-Closure} \\ \textit{First-Order-Terms.Term-More} \\ \textit{Abstract-Rewriting.Relative-Rewriting} \\ \textbf{begin} \end{array}
```

A rewrite rule is a pair of terms. A term rewrite system (TRS) is a set of

```
rewrite rules.
type-synonym ('f, 'v) rule = ('f, 'v) term \times ('f, 'v) term
type-synonym ('f, 'v) trs = ('f, 'v) rule set
inductive-set rstep :: - \Rightarrow ('f, 'v) \ term \ rel \ for \ R :: ('f, 'v) \ trs
    rstep: \bigwedge C \sigma \ l \ r. \ (l, \ r) \in R \Longrightarrow s = C \langle l \cdot \sigma \rangle \Longrightarrow t = C \langle r \cdot \sigma \rangle \Longrightarrow (s, \ t) \in R
rstep R
lemma rstep-induct-rule [case-names IH, induct set: rstep]:
  assumes (s, t) \in rstep R
    and \bigwedge C \sigma l r. (l, r) \in R \Longrightarrow P(C\langle l \cdot \sigma \rangle) (C\langle r \cdot \sigma \rangle)
  shows P s t
  using assms by (induct) simp
An alternative induction scheme that treats the rule-case, the substition-
case, and the context-case separately.
lemma rstep-induct [consumes 1, case-names rule subst ctxt]:
  assumes (s, t) \in rstep R
    and rule: \bigwedge l \ r. \ (l, \ r) \in R \Longrightarrow P \ l \ r
    and subst: \bigwedge s \ t \ \sigma. P \ s \ t \Longrightarrow P \ (s \cdot \sigma) \ (t \cdot \sigma)
    and ctxt: \bigwedge s \ t \ C. P \ s \ t \Longrightarrow P \ (C\langle s \rangle) \ (C\langle t \rangle)
  shows P s t
  using assms by (induct) auto
lemmas rstepI = rstep.intros [intro]
lemmas rstepE = rstep.cases [elim]
lemma rstep-ctxt [intro]: (s, t) \in rstep R \Longrightarrow (C\langle s \rangle, C\langle t \rangle) \in rstep R
  by (force simp flip: ctxt-ctxt-compose)
lemma rstep-rule [intro]: (l, r) \in R \Longrightarrow (l, r) \in rstep R
  using rstep.rstep [where C = \square and \sigma = Var and R = R] by simp
lemma rstep-subst [intro]: (s, t) \in rstep R \Longrightarrow (s \cdot \sigma, t \cdot \sigma) \in rstep R
  by (force simp flip: subst-subst-compose)
lemma rstep\text{-}empty [simp]: rstep {} = {} 
  by auto
lemma rstep-mono: R \subseteq S \Longrightarrow rstep R \subseteq rstep S
  by force
lemma rstep-union: rstep (R \cup S) = rstep R \cup rstep S
```

lemma rstep-converse [simp]: rstep $(R^{-1}) = (rstep R)^{-1}$

by auto

```
interpretation subst: rel-closure \lambda \sigma t. t \cdot \sigma Var \lambda x y. y \circ_s x by (standard) auto
declare subst.closure.induct [consumes 1, case-names subst, induct pred: subst.closure]
declare subst.closure.cases [consumes 1, case-names subst, cases pred: subst.closure]
interpretation ctxt: rel-closure ctxt-apply-term \square (\circ_c) by (standard) auto
declare ctxt.closure.induct [consumes 1, case-names ctxt, induct pred: ctxt.closure]
declare ctxt.closure.cases [consumes 1, case-names ctxt, cases pred: ctxt.closure]
lemma rstep-eq-closure: rstep R = ctxt.closure (subst.closure R)
  by (force elim: ctxt.closure.cases subst.closure.cases)
lemma ctxt-closed-rstep [intro]: ctxt.closed (rstep R)
  by (simp add: rstep-eq-closure ctxt.closed-closure)
lemma ctxt-closed-one:
  ctxt.closed \ r \Longrightarrow (s, t) \in r \Longrightarrow (Fun \ f \ (ss @ s \# ts), Fun \ f \ (ss @ t \# ts)) \in r
  using ctxt.closedD [of r s t More f ss \square ts] by auto
4.1
        Well-formed TRSs
definition
  wf-trs :: ('f, 'v) trs <math>\Rightarrow bool
   wf-trs R = (\forall l \ r. \ (l,r) \in R \longrightarrow (\exists f \ ts. \ l = Fun \ f \ ts) \land vars-term \ r \subseteq vars-term
lemma wf-trs-imp-lhs-Fun:
  wf-trs R \Longrightarrow (l,r) \in R \Longrightarrow \exists f \text{ ts. } l = Fun f \text{ ts}
  unfolding wf-trs-def by blast
lemma rstep-imp-Fun:
  assumes wf-trs R
  shows (s, t) \in rstep \ R \Longrightarrow \exists f \ ss. \ s = Fun \ f \ ss
proof -
  assume (s, t) \in rstep R
 then obtain C \ l \ r \ \sigma where lr: (l,r) \in R and s: s = C \ \langle \ l \cdot \sigma \ \rangle by auto
  with wf-trs-imp-lhs-Fun[OF assms lr] show ?thesis by (cases C, auto)
qed
lemma SN-Var:
  assumes wf-trs R shows SN-on (rstep R) \{ Var x \}
proof (rule ccontr)
  assume ¬ ?thesis
  then obtain S where [symmetric]: S \theta = Var x
   and chain: chain (rstep R) S by auto
  then have (Var x, S (Suc \theta)) \in rstep R by force
  then obtain C l r \sigma where (l, r) \in R and Var x = C \langle l \cdot \sigma \rangle by best
  then have Var x = l \cdot \sigma by (induct \ C) \ simp-all
```

```
then obtain y where l = Var \ y by (induct \ l) simp-all with assms and (l, \ r) \in R show False unfolding wf-trs-def by blast \mathbf{qed}
```

4.2 Function Symbols and Variables of Rules and TRSs

```
definition
  vars-rule :: ('f, 'v) rule \Rightarrow 'v set
 where
   vars-rule r = vars-term (fst r) \cup vars-term (snd r)
lemma finite-vars-rule:
 finite\ (vars-rule\ r)
 by (auto simp: vars-rule-def)
definition vars-trs :: ('f, 'v) trs \Rightarrow 'v set where
  vars-trs R = (\bigcup r \in R. \ vars-rule \ r)
lemma vars-trs-union: vars-trs (R \cup S) = vars-trs R \cup vars-trs S
 unfolding vars-trs-def by auto
lemma finite-trs-has-finite-vars:
 assumes finite R shows finite (vars-trs R)
 using assms unfolding vars-trs-def vars-rule-def [abs-def] by simp
lemmas \ vars-defs = vars-trs-def \ vars-rule-def
definition funs-rule :: ('f, 'v) rule \Rightarrow 'f set where
 funs-rule \ r = funs-term \ (fst \ r) \cup funs-term \ (snd \ r)
The same including arities.
definition funas-rule :: ('f, 'v) rule \Rightarrow 'f sig where
 funas-rule \ r = funas-term \ (fst \ r) \cup funas-term \ (snd \ r)
definition funs-trs :: ('f, 'v) trs \Rightarrow 'f set where
 funs-trs R = (\bigcup r \in R. \text{ funs-rule } r)
definition funas-trs :: ('f, 'v) trs \Rightarrow 'f sig where
 funas-trs R = (\bigcup r \in R. funas-rule r)
lemma funs-rule-funas-rule: funs-rule rl = fst 'funas-rule rl
 using funs-term-funas-term unfolding funs-rule-def funas-rule-def image-Un by
metis
lemma funs-trs-funas-trs:funs-trs R = fst ' funas-trs R
  unfolding funs-trs-def funas-trs-def image-UN using funs-rule-funas-rule by
lemma finite-funas-rule: finite (funas-rule lr)
```

```
unfolding funas-rule-def
  using finite-funas-term by auto
lemma finite-funas-trs:
 assumes finite R
 shows finite (funas-trs R)
 unfolding funas-trs-def
 using assms finite-funas-rule by auto
lemma funas-empty[simp]: funas-trs \{\} = \{\} unfolding funas-trs-def by simp
lemma funas-trs-union[simp]: funas-trs (R \cup S) = \text{funas-trs } R \cup \text{funas-trs } S
 unfolding funas-trs-def by blast
definition funas-args-rule :: ('f, 'v) rule \Rightarrow 'f sig where
 funas-args-rule \ r = funas-args-term \ (fst \ r) \cup funas-args-term \ (snd \ r)
definition funas-args-trs :: ('f, 'v) trs \Rightarrow 'f sig where
 funas-args-trs R = (\bigcup r \in R. funas-args-rule r)
lemmas funas-args-defs =
 funas-args-trs-def\ funas-args-rule-def\ funas-args-term-def
definition roots-rule :: ('f, 'v) rule \Rightarrow 'f sig
  where
   roots-rule r = set-option (root (fst r)) \cup set-option (root (snd r))
definition roots-trs :: ('f, 'v) trs \Rightarrow 'f sig where
  roots-trs R = (\bigcup r \in R. roots-rule r)
{f lemmas}\ roots	ext{-}defs =
  roots-trs-def roots-rule-def
definition funas-head :: ('f, 'v) trs \Rightarrow ('f, 'v) trs \Rightarrow 'f sig where
 funas-head\ P\ R = funas-trs\ P - (funas-trs\ R \cup funas-args-trs\ P)
lemmas funs-defs = funs-trs-def funs-rule-def
lemmas funas-defs =
 funas-trs-def funas-rule-def
 funas-args-defs
 funas-head-def
 roots-defs
A function symbol is said to be defined (w.r.t. to a given TRS) if it occurs
as root of some left-hand side.
definition
  defined :: ('f, 'v) trs \Rightarrow ('f \times nat) \Rightarrow bool
   defined R fn \longleftrightarrow (\exists l \ r. \ (l, \ r) \in R \land root \ l = Some \ fn)
```

```
lemma defined-funas-trs: assumes d: defined R fn shows fn \in funas-trs R
proof -
 from d [unfolded defined-def] obtain l r
    where (l, r) \in R and root l = Some fn by auto
 then show ?thesis
   unfolding funas-trs-def funas-rule-def [abs-def] by (cases l) force+
fun root-list :: ('f, 'v) term \Rightarrow ('f \times nat) list
  where
   root-list (Var x) = [] |
   root-list (Fun f ts) = [(f, length ts)]
definition vars-rule-list :: ('f, 'v) rule \Rightarrow 'v list
  where
   vars-rule-list r = vars-term-list (fst \ r) \otimes vars-term-list (snd \ r)
definition funs-rule-list :: ('f, 'v) rule \Rightarrow 'f list
  where
   funs-rule-list \ r = funs-term-list \ (fst \ r) \ @ funs-term-list \ (snd \ r)
definition funas-rule-list :: ('f, 'v) rule \Rightarrow ('f \times nat) list
  where
   funas-rule-list \ r = funas-term-list \ (fst \ r) \ @ funas-term-list \ (snd \ r)
definition roots-rule-list :: ('f, 'v) rule \Rightarrow ('f \times nat) list
   roots-rule-list r = root-list (fst r) @ root-list (snd r)
definition funas-args-rule-list :: (f, v) rule \Rightarrow (f \times nat) list
    funas-args-rule-list r = funas-args-term-list (fst \ r) @ funas-args-term-list (snd)
r)
lemma set-vars-rule-list [simp]:
  set (vars-rule-list r) = vars-rule r
 by (simp add: vars-rule-list-def vars-rule-def)
lemma set-funs-rule-list [simp]:
  set (funs-rule-list r) = funs-rule r
 by (simp add: funs-rule-list-def funs-rule-def)
lemma set-funas-rule-list [simp]:
  set (funas-rule-list r) = funas-rule r
 by (simp add: funas-rule-list-def funas-rule-def)
lemma set-roots-rule-list [simp]:
  set (roots-rule-list r) = roots-rule r
```

```
by (cases fst r snd r rule: term.exhaust [case-product term.exhaust])
   (auto simp: roots-rule-list-def roots-rule-def ac-simps)
lemma set-funas-args-rule-list [simp]:
  set (funas-args-rule-list r) = funas-args-rule r
  by (simp add: funas-args-rule-list-def funas-args-rule-def)
\textbf{definition} \ \textit{vars-trs-list} :: (\textit{'f}, \ \textit{'v}) \ \textit{rule list} \Rightarrow \textit{'v list}
  where
    vars-trs-list trs = concat (map vars-rule-list trs)
definition funs-trs-list :: ('f, 'v) rule list \Rightarrow 'f list
  where
   funs-trs-list \ trs = concat \ (map \ funs-rule-list \ trs)
definition funas-trs-list :: ('f, 'v) rule list \Rightarrow ('f \times nat) list
   funas-trs-list \ trs = concat \ (map \ funas-rule-list \ trs)
definition roots-trs-list :: ('f, 'v) rule list \Rightarrow ('f \times nat) list
    roots-trs-list \ trs = remdups \ (concat \ (map \ roots-rule-list \ trs))
definition funas-args-trs-list :: ('f, 'v) rule list \Rightarrow ('f \times nat) list
   funas-args-trs-list \ trs = concat \ (map \ funas-args-rule-list \ trs)
lemma set-vars-trs-list [simp]:
  set (vars-trs-list trs) = vars-trs (set trs)
  by (simp add: vars-trs-def vars-trs-list-def)
lemma set-funs-trs-list [simp]:
  set (funs-trs-list R) = funs-trs (set R)
  \mathbf{by}\ (simp\ add: funs-trs-def\ funs-trs-list-def)
lemma set-funas-trs-list [simp]:
  set (funas-trs-list R) = funas-trs (set R)
 by (simp add: funas-trs-def funas-trs-list-def)
lemma set-roots-trs-list [simp]:
  set (roots-trs-list R) = roots-trs (set R)
  by (simp add: roots-trs-def roots-trs-list-def)
lemma set-funas-args-trs-list [simp]:
  set (funas-args-trs-list R) = funas-args-trs (set R)
  by (simp add: funas-args-trs-def funas-args-trs-list-def)
lemmas \ vars-list-defs = vars-trs-list-def \ vars-rule-list-def
lemmas funs-list-defs = funs-trs-list-def funs-rule-list-def
```

```
lemmas funas-list-defs = funas-trs-list-def funas-rule-list-def
\mathbf{lemmas}\ roots\text{-}list\text{-}defs = roots\text{-}trs\text{-}list\text{-}def\ roots\text{-}rule\text{-}list\text{-}def
\mathbf{lemmas}\ \mathit{funas-args-list-defs} = \mathit{funas-args-trs-list-def}\ \mathit{funas-args-rule-list-def}
lemma vars-trs-list-Nil [simp]:
  vars-trs-list = []  unfolding vars-trs-list-def by simp
context
  fixes R :: ('f, 'v) trs
  assumes wf-trs\ R
begin
lemma funas-term-subst-rhs:
  assumes funas-trs R \subseteq F and (l, r) \in R and funas-term (l \cdot \sigma) \subseteq F
  shows funas-term (r \cdot \sigma) \subseteq F
proof -
  have vars-term r \subseteq vars-term l using \langle wf-trs R \rangle and \langle (l, r) \in R \rangle by (auto
simp: wf-trs-def)
  moreover have funas-term l \subseteq F and funas-term r \subseteq F
    using \langle funas-trs \ R \subseteq F \rangle and \langle (l, r) \in R \rangle by (auto simp: funas-defs) force+
  ultimately show ?thesis
    using \langle funas\text{-}term\ (l \cdot \sigma) \subseteq F \rangle by (force\ simp:\ funas\text{-}term\text{-}subst)
qed
lemma \ vars-rule-lhs:
  r \in R \Longrightarrow vars\text{-rule } r = vars\text{-term } (fst \ r)
  using \langle wf\text{-}trs R \rangle by (cases r) (auto simp: wf-trs-def vars-rule-def)
end
4.3
         Closure Properties
\mathbf{lemma}\ ctxt\text{-}closed\text{-}R\text{-}imp\text{-}supt\text{-}R\text{-}distr:
  assumes ctxt.closed\ R and s > t and (t, u) \in R shows \exists\ t.\ (s, t) \in R \land t > u
proof -
  from \langle s \rangle t \rangle obtain C where C \neq \Box and C \langle t \rangle = s by auto
  from \langle ctxt.closed R \rangle and \langle (t,u) \in R \rangle
  have RCtCu: (C\langle t\rangle, C\langle u\rangle) \in R by (rule\ ctxt.closedD)
  from \langle C \neq \Box \rangle have C\langle u \rangle \rhd u by auto
  from RCtCu have (s, C\langle u \rangle) \in R unfolding \langle C\langle t \rangle = s \rangle.
  from this and \langle C\langle u\rangle > u\rangle show ?thesis by auto
qed
lemma ctxt-closed-imp-qc-supt: ctxt.closed R \Longrightarrow \{ \triangleright \} O R \subseteq R O (R \cup \{ \triangleright \})^*
Let R be a relation on terms that is closed under contexts. If R is well-
founded then R \cup \triangleright is well-founed.
```

 $\mathbf{lemma}\ SN\text{-}imp\text{-}SN\text{-}union\text{-}supt$:

```
assumes SN R and ctxt.closed R
  shows SN (R \cup \{\triangleright\})
proof -
  from \langle ctxt.closed \ R \rangle have quasi-commute R \ \{ \triangleright \}
    unfolding quasi-commute-def by (rule ctxt-closed-imp-qc-supt)
  have SN \{ \triangleright \} by (rule SN\text{-}supt)
  from \langle SN R \rangle and \langle SN \{ \triangleright \} \rangle and \langle quasi-commute R \{ \triangleright \} \rangle
  show ?thesis by (rule quasi-commute-imp-SN)
qed
lemma stable-loop-imp-not-SN:
  assumes stable: subst.closed r and steps: (s, s \cdot \sigma) \in r^+
  shows \neg SN-on r \{s\}
proof -
  let ?f = \lambda \ i. \ s \cdot (power.power \ Var \ (\circ_s) \ \sigma \ i)
  have main: \bigwedge i. (?f i, ?f (Suc i)) \in r^+
  proof -
    \mathbf{fix} i
    show (?f i, ?f (Suc i)) \in r^+
    proof (induct i)
      case (Suc\ i)
      from Suc subst.closed-trancl[OF stable] have step: (?f \ i \cdot \sigma, ?f \ (Suc \ i) \cdot \sigma)
\in r^+ by auto
      let ?\sigma g = power.power\ Var\ (\circ_s)\ \sigma\ i
      let ?\sigma gs = power.power\ Var\ (\circ_s)\ \sigma\ (Suc\ i)
      have idi: ?\sigma g \circ_s \sigma = \sigma \circ_s ?\sigma g by (rule subst-monoid-mult.power-commutes)
    have idsi: ?\sigma gs \circ_s \sigma = \sigma \circ_s ?\sigma gs by (rule subst-monoid-mult.power-commutes)
      have ?f i \cdot \sigma = s \cdot ?\sigma g \circ_s \sigma by simp
      also have \dots = ?f (Suc \ i) unfolding idi by simp
      finally have one: ?f i \cdot \sigma = ?f (Suc i).
      have ?f(Suc\ i) \cdot \sigma = s \cdot ?\sigma gs \circ_s \sigma by simp
      also have ... = ?f (Suc (Suc i)) unfolding idsi by simp
      finally have two: ?f(Suc\ i) \cdot \sigma = ?f(Suc\ (Suc\ i)) by simp
      show ?case using one two step by simp
    qed (auto simp: steps)
  then have \neg SN\text{-}on\ (r^+)\ \{?f\ \theta\} unfolding SN\text{-}on\text{-}def by best
  then show ?thesis using SN-on-trancl by force
qed
lemma subst-closed-supteq: subst.closed \{ \trianglerighteq \} by blast
lemma subst-closed-supt: subst.closed \{\triangleright\} by blast
lemma ctxt-closed-supt-subset: ctxt.closed R \Longrightarrow \{ \triangleright \} O R \subseteq R O \{ \triangleright \} by blast
```

4.4 Properties of Rewrite Steps

lemma rstep-relcomp-idemp1 [simp]:

```
rstep (rstep R \ O \ rstep \ S) = rstep R \ O \ rstep \ S
proof -
  \{ \mathbf{fix} \ s \ t \}
    assume (s, t) \in rstep (rstep R \ O \ rstep \ S)
    then have (s, t) \in rstep R \ O \ rstep S
      by (induct) blast+ }
  then show ?thesis by auto
qed
lemma rstep-relcomp-idemp2 [simp]:
  rstep \ (rstep \ R \ O \ rstep \ S \ O \ rstep \ T) = rstep \ R \ O \ rstep \ S \ O \ rstep \ T
proof -
  \{ \mathbf{fix} \ s \ t \}
    assume (s, t) \in rstep \ (rstep \ R \ O \ rstep \ S \ O \ rstep \ T)
    then have (s, t) \in rstep \ R \ O \ rstep \ S \ O \ rstep \ T
      by (induct) blast+ }
 then show ?thesis by auto
qed
lemma ctxt-closed-rsteps [intro]: ctxt.closed ((rstep R)*) by blast
lemma subset-rstep: R \subseteq rstep R by auto
lemma subst-closure-rstep-subset: subst.closure (rstep R) \subseteq rstep R
 by (auto elim: subst.closure.cases)
lemma subst-closed-rstep [intro]: subst.closed (rstep R) by blast
lemma subst-closed-rsteps: subst.closed ((rstep R)*) by blast
lemmas \ supt-rsteps-subset = ctxt-closed-supt-subset [OF \ ctxt-closed-rsteps]
\mathbf{lemma}\ supteq\text{-}rsteps\text{-}subset\text{:}
  \{ \trianglerighteq \} \ O \ (rstep \ R)^* \subseteq (rstep \ R)^* \ O \ \{ \trianglerighteq \} \ (\mathbf{is} \ ?S \subseteq ?T)
 using supt-rsteps-subset [of R] by (auto simp: supt-supteq-set-conv)
\mathbf{lemma}\ \mathit{quasi-commute-rsteps-supt}\colon
  quasi-commute ((rstep\ R)^*)\ \{\triangleright\}
  unfolding quasi-commute-def using supt-rsteps-subset [of R] by auto
lemma rstep-UN:
  rstep (\bigcup i \in A. R i) = (\bigcup i \in A. rstep (R i))
  by (force)
definition
  rstep-r-p-s :: ('f, 'v) \ trs \Rightarrow ('f, 'v) \ rule \Rightarrow pos \Rightarrow ('f, 'v) \ subst \Rightarrow ('f, 'v) \ trs
    rstep-r-p-s R r p \sigma = {(s, t).
    let C = ctxt-of-pos-term p \ s \ in \ p \in poss \ s \land r \in R \land (C\langle fst \ r \cdot \sigma \rangle = s) \land
```

```
(C\langle snd \ r \cdot \sigma \rangle = t)
lemma rstep-r-p-s-def':
  rstep-r-p-s R r p <math>\sigma = \{(s, t).
    p \in poss \ s \land r \in R \land s \mid p = fst \ r \cdot \sigma \land t = replace-at \ s \ p \ (snd \ r \cdot \sigma) \} (is ?!
= ?r
proof -
  { fix s t
    have ((s,t) \in ?l) = ((s,t) \in ?r)
      unfolding rstep-r-p-s-def Let-def
       using ctxt-supt-id [of p s] and subt-at-ctxt-of-pos-term [of p s fst r \cdot \sigma] by
auto }
  then show ?thesis by auto
qed
lemma parallel-steps:
  fixes p_1 :: pos
  assumes (s, t) \in rstep-r-p-s R_1 (l_1, r_1) p_1 \sigma_1
    and (s, u) \in rstep-r-p-s R_2 (l_2, r_2) p_2 \sigma_2
    and par: p_1 \perp p_2
  shows (t, (ctxt\text{-}of\text{-}pos\text{-}term \ p_1 \ u)\langle r_1 \cdot \sigma_1 \rangle) \in rstep\text{-}r\text{-}p\text{-}s \ R_2 \ (l_2, \ r_2) \ p_2 \ \sigma_2 \ \land
          (u, (ctxt\text{-}of\text{-}pos\text{-}term\ p_1\ u)\langle r_1\cdot\sigma_1\rangle)\in rstep\text{-}r\text{-}p\text{-}s\ R_1\ (l_1,\ r_1)\ p_1\ \sigma_1
proof
  have p1: p_1 \in poss \ s \ \text{and} \ lr1: (l_1, r_1) \in R_1 \ \text{and} \ \sigma1: s \mid -p_1 = l_1 \cdot \sigma_1
    and t: t = replace-at s p_1 (r_1 \cdot \sigma_1)
    and p2: p_2 \in poss \ s and lr2: (l_2, r_2) \in R_2 and \sigma2: s \mid -p_2 = l_2 \cdot \sigma_2
   and u: u = replace-at \ s \ p_2 \ (r_2 \cdot \sigma_2) using assms by (auto simp: rstep-r-p-s-def')
  have replace-at t p_2 (r_2 \cdot \sigma_2) = replace-at u p_1 (r_1 \cdot \sigma_1)
    using t and u and parallel-replace-at [OF \langle p_1 \perp p_2 \rangle p1 p2] by auto
  moreover
  have (t, (ctxt\text{-}of\text{-}pos\text{-}term \ p_2 \ t)\langle r_2 \cdot \sigma_2 \rangle) \in rstep\text{-}r\text{-}p\text{-}s \ R_2 \ (l_2, \ r_2) \ p_2 \ \sigma_2
  proof -
    have t \mid p_2 = l_2 \cdot \sigma_2 using \sigma 2 and parallel-replace-at-subt-at [OF par p1 p2]
and t by auto
    moreover have p_2 \in poss\ t using parallel-poss-replace-at [OF\ par\ p1] and t
and p2 by auto
    ultimately show ?thesis using lr2 and ctxt-supt-id [of p_2 t] by (simp add:
rstep-r-p-s-def)
  qed
  moreover
  have (u, (ctxt\text{-}of\text{-}pos\text{-}term\ p_1\ u)\langle r_1\cdot\sigma_1\rangle)\in rstep\text{-}r\text{-}p\text{-}s\ R_1\ (l_1,\ r_1)\ p_1\ \sigma_1
    have par': p_2 \perp p_1 using parallel-pos-sym [OF par].
    have u \mid p_1 = l_1 \cdot \sigma_1 using \sigma 1 and parallel-replace-at-subt-at [OF par' p2
p1 and u by auto
    moreover have p_1 \in poss \ u \text{ using } parallel-poss-replace-at [OF par' p2] \text{ and }
u and p1 by auto
    ultimately show ?thesis using lr1 and ctxt-supt-id [of p_1 u] by (simp add:
```

```
rstep-r-p-s-def)
 qed
  ultimately show ?thesis by auto
lemma rstep-iff-rstep-r-p-s:
  (s, t) \in rstep \ R \longleftrightarrow (\exists \ l \ r \ p \ \sigma. \ (s, t) \in rstep \ r-p - s \ R \ (l, r) \ p \ \sigma) \ (is \ ?lhs = ?rhs)
proof
  assume (s, t) \in rstep R
  then obtain C \sigma l r where s: s = C\langle l \cdot \sigma \rangle and t: t = C\langle r \cdot \sigma \rangle and (l, r) \in
R by auto
  let ?p = hole-pos C
 let ?C = ctxt\text{-}of\text{-}pos\text{-}term ?p s
 have C: ctxt-of-pos-term ?p s = C unfolding s by (induct \ C) simp-all
 have ?p \in poss \ s \ unfolding \ s \ by \ simp
 moreover have (l, r) \in R by fact
  moreover have ?C\langle l \cdot \sigma \rangle = s unfolding C by (simp\ add:\ s)
 moreover have ?C\langle r \cdot \sigma \rangle = t unfolding C by (simp\ add:\ t)
  ultimately show ?rhs unfolding rstep-r-p-s-def Let-def by auto
next
  assume ?rhs
  then obtain l \ r \ p \ \sigma where p \in poss \ s
    and (l, r) \in R
    and s[symmetric]: (ctxt\text{-}of\text{-}pos\text{-}term\ p\ s)\langle l\cdot\sigma\rangle=s
    and t[symmetric]: (ctxt\text{-}of\text{-}pos\text{-}term\ p\ s)\langle r\cdot\sigma\rangle=t
    unfolding rstep-r-p-s-def Let-def by auto
  then show ?lhs by auto
qed
lemma rstep-r-p-s-imp-rstep:
  assumes (s, t) \in rstep-r-p-s R r p \sigma
 shows (s, t) \in rstep R
 using assms by (cases r) (auto simp: rstep-iff-rstep-r-p-s)
Rewriting steps below the root position.
definition
  nrrstep :: ('f, 'v) trs \Rightarrow ('f, 'v) trs
    nrrstep \ R = \{(s,t). \ \exists \ r \ i \ ps \ \sigma. \ (s,t) \in rstep-r-p-s \ R \ r \ (i\#ps) \ \sigma\}
An alternative characterisation of non-root rewrite steps.
lemma nrrstep-def':
  nrrstep R = \{(s, t). \exists l \ r \ C \ \sigma. \ (l, r) \in R \land C \neq \Box \land s = C \langle l \cdot \sigma \rangle \land t = C \langle r \cdot \sigma \rangle \}
  (is ?lhs = ?rhs)
proof
  show ?lhs \subseteq ?rhs
  proof (rule subrelI)
    fix s t assume (s, t) \in nrrstep R
   then obtain l\ r\ i\ ps\ \sigma where step:\ (s,\ t)\in rstep-r-p-s R\ (l,\ r)\ (i\ \#\ ps)\ \sigma
```

```
unfolding nrrstep-def by best
    let ?C = ctxt\text{-}of\text{-}pos\text{-}term (i \# ps) s
    from step have i \# ps \in poss \ s and (l, \ r) \in R and s = ?C\langle l \cdot \sigma \rangle and t =
?C\langle r\cdot\sigma\rangle
      unfolding rstep-r-p-s-def Let-def by auto
    moreover from \langle i \# ps \in poss \ s \rangle have ?C \neq \square by (induct s) auto
    ultimately show (s, t) \in ?rhs by auto
  qed
next
  show ?rhs \subseteq ?lhs
  proof (rule subrelI)
    fix s t assume (s, t) \in ?rhs
    then obtain l \ r \ C \ \sigma where in-R: (l, \ r) \in R and C \neq \square
      and s: s = C\langle l \cdot \sigma \rangle and t: t = C\langle r \cdot \sigma \rangle by auto
    from \langle C \neq \Box \rangle obtain i p where ip: hole-pos C = i \# p by (induct C) auto
    have i \# p \in poss \ s \ using \ hole-pos-poss[of C] \ unfolding \ s \ ip \ by \ simp
    then have C: C = ctxt\text{-}of\text{-}pos\text{-}term (i \# p) s
      unfolding s ip[symmetric] by simp
    from \langle i \# p \in poss \ s \rangle \ in-R \ s \ t \ have \ (s, t) \in rstep-r-p-s \ R \ (l, r) \ (i \# p) \ \sigma
      unfolding rstep-r-p-s-def C by simp
    then show (s, t) \in nrrstep R unfolding nrrstep-def by best
  qed
qed
lemma nrrstepI: (l,r) \in R \Longrightarrow s = C\langle l \cdot \sigma \rangle \Longrightarrow t = C\langle r \cdot \sigma \rangle \Longrightarrow C \neq \square \Longrightarrow (s,t)
\in nrrstep R  unfolding nrrstep-def' by auto
lemma nrrstep-union: nrrstep (R \cup S) = nrrstep R \cup nrrstep S
  unfolding nrrstep-def' by blast
lemma nrrstep-empty[simp]: nrrstep {} = {} unfolding nrrstep-def' by blast
Rewriting step at the root position.
definition
  rrstep :: ('f, 'v) trs \Rightarrow ('f, 'v) trs
  where
    rrstep \ R = \{(s,t). \ \exists \ r \ \sigma. \ (s,t) \in rstep-r-p-s \ R \ r \ [] \ \sigma\}
An alternative characterisation of root rewrite steps.
lemma rrstep-def': rrstep R = \{(s, t), \exists l \ r \ \sigma. \ (l, r) \in R \land s = l \cdot \sigma \land t = r \cdot \sigma \}
  (is - ?rhs)
 by (auto simp: rrstep-def rstep-r-p-s-def)
lemma rules-subset-rrstep [simp]: R \subseteq rrstep R
  by (force simp: rrstep-def' intro: exI [of - Var])
lemma rrstep-union: rrstep (R \cup S) = rrstep R \cup rrstep S unfolding rrstep-def'
by blast
```

```
lemma rrstep\text{-}empty[simp]: rrstep \{\} = \{\}
  unfolding rrstep-def' by auto
lemma subst-closed-rrstep: subst.closed (rrstep <math>R)
  unfolding subst.closed-def
proof
  \mathbf{fix} \ ss \ ts
  assume (ss,ts) \in subst.closure (rrstep R)
  then show (ss,ts) \in rrstep R
  proof
   fix s t \sigma
   assume ss: ss = s \cdot \sigma and ts: ts = t \cdot \sigma and step: (s,t) \in rrstep R
   from step obtain l \ r \ \delta where lr: (l,r) \in R and s: s = l \cdot \delta and t: t = r \cdot \delta
unfolding rrstep-def' by auto
   obtain sig where sig = \delta \circ_s \sigma by auto
   with ss s ts t have ss = l \cdot siq and ts = r \cdot siq by simp+
   with lr show (ss,ts) \in rrstep R unfolding rrstep-def' by (auto \ simp: \ Let-def)
  qed
qed
lemma rstep-iff-rrstep-or-nrrstep: <math>rstep \ R = (rrstep \ R \cup nrrstep \ R)
proof
  show rstep R \subseteq rrstep R \cup nrrstep R
  proof (rule subrelI)
   fix s t assume (s,t) \in rstep R
   then obtain l r p \sigma where rstep-rps: (s,t) \in rstep-r-p-s R (l,r) p \sigma
     by (auto simp: rstep-iff-rstep-r-p-s)
   then show (s,t) \in rrstep \ R \cup nrrstep \ R unfolding rrstep-def \ nrrstep-def by
(cases p) auto
 qed
next
  show rrstep R \cup nrrstep R \subseteq rstep R
 proof (rule subrelI)
   fix s t assume (s,t) \in rrstep R \cup nrrstep R
  then show (s,t) \in rstep\ R by (auto simp: rrstep-def nrstep-def rstep-iff-rstep-r-r-r-s)
  qed
\mathbf{qed}
lemma rstep-i-pos-imp-rstep-arg-i-pos:
  assumes nrrstep: (Fun f ss,t) \in rstep-r-p-s R (l,r) (i # ps) \sigma
  shows (ss!i,t|-[i]) \in rstep-r-p-s \ R \ (l,r) \ ps \ \sigma
proof -
  from nrrstep obtain C where C:C = ctxt-of-pos-term (i \# ps) (Fun f ss)
   and pos: (i\#ps) \in poss (Fun f ss)
   and Rlr: (l,r) \in R
   and Fun: C\langle l \cdot \sigma \rangle = Fun f ss
   and t: C\langle r \cdot \sigma \rangle = t unfolding rstep-r-p-s-def Let-def by auto
  then obtain D where C': C = More f (take i ss) D (drop (Suc i) ss) by auto
  then have CFun: C\langle l \cdot \sigma \rangle = Fun \ f \ (take \ i \ ss \ @ \ (D\langle l \cdot \sigma \rangle) \ \# \ drop \ (Suc \ i) \ ss) by
```

```
auto
  from pos have len: i < length ss by auto
  \mathbf{from}\ len
   have (take i ss @ (D\langle l \cdot \sigma \rangle) # drop (Suc i) ss)!i = D\langle l \cdot \sigma \rangle by (auto simp:
nth-append)
  with C Fun CFun have ssi: ss!i = D\langle l \cdot \sigma \rangle by auto
  from C' t have t': t = Fun f (take i ss @ (D\langle r \cdot \sigma \rangle) # drop (Suc i) ss) by auto
   have (take\ i\ ss\ @\ (D\langle r\cdot\sigma\rangle)\ \#\ drop\ (Suc\ i)\ ss)!i=D\langle r\cdot\sigma\rangle by (auto\ simp:
nth-append)
  with t' have t[-[i] = (D\langle r \cdot \sigma \rangle)[-[] by auto
  then have subt-at: t | -[i] = D\langle r \cdot \sigma \rangle by simp
  \mathbf{from}\ C\ C'\ \mathbf{have}\ D=\mathit{ctxt-of-pos-term}\ \mathit{ps}\ (\mathit{ss}!i)\ \mathbf{by}\ \mathit{auto}
  with pos Rlr ssi[symmetric] subt-at[symmetric]
  show ?thesis unfolding rstep-r-p-s-def Let-def by auto
qed
lemma ctxt-closure-rstep-eq [simp]: ctxt.closure (rstep R) = rstep R
  by (rule ctxt.closure-id) blast
lemma subst-closure-rstep-eq [simp]: subst.closure (rstep R) = rstep R
  by (rule subst.closure-id) blast
\mathbf{lemma}\ supt\mbox{-}rstep\mbox{-}subset:
  \{\rhd\}\ O\ rstep\ R\subseteq rstep\ R\ O\ \{\rhd\}
proof (rule subrelI)
  fix s t assume (s,t) \in \{ \triangleright \} O rstep R then show (s,t) \in rstep \ R \ O \{ \triangleright \}
  proof (induct s)
    case (Var x)
    then have \exists u. \ Var \ x \rhd u \land (u,t) \in rstep \ R by auto
    then obtain u where Var x > u and (u,t) \in rstep R by auto
    from \langle Var \ x \rhd u \rangle show ?case by (cases rule: supt.cases)
  next
    case (Fun f ss)
    then obtain u where Fun f ss > u and (u,t) \in rstep R by auto
    from \langle Fun \ f \ ss \rhd u \rangle obtain C
      where C \neq \square and C\langle u \rangle = Fun \ f \ ss \ by \ auto
    from \langle C \neq \Box \rangle have C \langle t \rangle \triangleright t by (rule nectxt-imp-supt-ctxt)
    from \langle (u,t) \in rstep \ R \rangle have (C\langle u \rangle, C\langle t \rangle) \in rstep \ R..
    then have (\mathit{Fun}\,f\,\mathit{ss}, C\langle t\rangle) \in \mathit{rstep}\,\,R unfolding \langle C\langle u\rangle = \mathit{Fun}\,f\,\mathit{ss}\rangle .
    with \langle C\langle t\rangle > t\rangle show ?case by auto
  qed
qed
lemma ne-rstep-seq-imp-list-of-terms:
  assumes (s,t) \in (rstep\ R)^+
  shows \exists ts. length ts > 1 \land ts! 0 = s \land ts! (length ts - 1) = t \land
         (\forall i < length \ ts - 1. \ (ts!i, ts!(Suc \ i)) \in (rstep \ R)) \ (\mathbf{is} \ \exists \ ts. \ - \land \ - \land \ ?P \ ts)
  using assms
```

```
proof (induct rule: trancl.induct)
 case (r\text{-}into\text{-}trancl\ x\ y)
 let ?ts = [x,y]
 have length ?ts > 1 by simp
 moreover have ?ts!\theta = x by simp
 moreover have ?ts!(length ?ts - 1) = y by simp
 moreover from r-into-rtrancl r-into-trancl have ?P ?ts by auto
  ultimately show ?case by fast
next
  case (trancl-into-trancl\ x\ y\ z)
 then obtain ts where length ts > 1 and ts!\theta = x
   and last1: ts!(length\ ts-1) = y and ?P ts by auto
 let ?ts = ts@[z]
 have len: length ?ts = length \ ts + 1 \ by \ simp
 from \langle length \ ts > 1 \rangle have length \ ?ts > 1 by auto
 moreover with \langle ts|\theta = x \rangle have f(s) = x by (induct ts) auto
 moreover have last2: ?ts!(length ?ts - 1) = z by simp
 moreover have ?P ?ts
 proof (intro allI impI)
   fix i assume A: i < length ?ts - 1
   show (?ts!i,?ts!(Suc\ i)) \in rstep\ R
   proof (cases i < length ts - 1)
    case True with (?P ts) A show ?thesis unfolding len unfolding nth-append
by auto
   next
     case False with A have i = length ts - 1 by simp
     with last1 \langle length \ ts > 1 \rangle have ?ts!i = y unfolding nth-append by auto
     have Suc i = length ?ts - 1 using \langle i = length ts - 1 \rangle using \langle length ts \rangle
1 \rightarrow by auto
     with last2 have ?ts!(Suc\ i) = z by auto
     from \langle (y,z) \in rstep \ R \rangle show ?thesis unfolding \langle ?ts!(Suc \ i) = z \rangle \langle ?ts!i = y \rangle
   qed
 qed
 ultimately show ?case by fast
qed
locale E-compatible =
  fixes R :: (f, v)trs and E :: (f, v)trs
 assumes E: E O R = R Id \subseteq E
begin
definition restrict-SN-supt-E :: ('f, 'v) trs where
  restrict-SN-supt-E = restrict-SN R R \cup restrict-SN (E O {\triangleright} O E) R
\mathbf{lemma}\ ctxt\text{-}closed\text{-}R\text{-}imp\text{-}supt\text{-}restrict\text{-}SN\text{-}E\text{-}distr:
 assumes ctxt.closed R
   and (s,t) \in (restrict-SN \ (E \ O \ \{\triangleright\}) \ R)
```

```
and (t,u) \in restrict-SN R R
 shows (\exists t. (s,t) \in restrict\text{-}SN \ R \ R \land (t,u) \in restrict\text{-}SN \ (E \ O \ \{\triangleright\}) \ R) (is \exists t.
- \wedge (t,u) \in ?snSub)
proof -
  from \langle (s,t) \in ?snSub \rangle obtain v where SN-on R \{s\} and ac: (s,v) \in E and v
\triangleright t unfolding restrict-SN-def supt-def by auto
  from \langle v \rangle t obtain C where C \neq Hole and v: C\langle t \rangle = v by best
  from \langle (t,u) \in restrict-SN \ R \ R \rangle have (t,u) \in R unfolding restrict-SN-def by
auto
 from \langle ctxt.closed R \rangle and this have RCtCu: (C\langle t \rangle, C\langle u \rangle) \in R by (rule\ ctxt.closedD)
  with v ac have (s, C\langle u \rangle) \in E \ O \ R by auto
  then have sCu: (s, C\langle u \rangle) \in R using E by simp
  with \langle SN\text{-}on \ R \ \{s\} \rangle have one: SN\text{-}on \ R \ \{C\langle u\rangle\}
    using step-preserves-SN-on[of s C\langle u \rangle R] by blast
 from \langle C \neq \Box \rangle have C\langle u \rangle \rhd u by auto
 with one E have (C\langle u \rangle, u) \in ?snSub unfolding restrict-SN-def supt-def by auto
 from sCu and \langle SN\text{-}on\ R\ \{s\}\rangle and \langle (C\langle u\rangle, u)\in ?snSub\rangle show ?thesis unfolding
restrict-SN-def by auto
qed
lemma ctxt-closed-R-imp-restrict-SN-qc-E-supt:
  assumes ctxt: ctxt. closed R
  shows quasi-commute (restrict-SN R R) (restrict-SN (E O \{ \triangleright \} O E) R) (is
quasi-commute ?r ?s)
proof -
  have ?s \ O \ ?r \subseteq ?r \ O \ (?r \cup ?s)^*
  proof (rule subrelI)
    \mathbf{fix} \ x \ y
    assume (x,y) \in ?s \ O \ ?r
    from this obtain z where (x,z) \in ?s and (z,y) \in ?r by best
   then obtain v w where ac: (x,v) \in E and vw: v \triangleright w and wz: (w,z) \in E and
zy: (z,y) \in R and SN-on R \{x\} unfolding restrict-SN-def supt-def
      using E(2) by auto
    from wz zy have (w,y) \in E O R by auto
    with E have wy: (w,y) \in R by auto
    from ctxt-closed-R-imp-supt-R-distr[OF ctxt vw wy] obtain w where (v,w) \in
R and w > y using ctxt-closed-R-imp-supt-R-distr[where R = R and s = v and
t = z and u = y] by auto
    with ac E have (x,w) \in R and w \triangleright y by auto
    from this and \langle SN\text{-}on\ R\ \{x\}\rangle have SN\text{-}on\ R\ \{w\} using step\text{-}preserves\text{-}SN\text{-}on
      unfolding supt-supteq-conv by auto
    with \langle w \rhd y \rangle E have (w,y) \in ?s unfolding restrict-SN-def supt-def by force
    with \langle (x,w) \in R \rangle \langle SN\text{-}on \ R \ \{x\} \rangle show (x,y) \in ?r \ O \ (?r \cup ?s)^* unfolding
restrict-SN-def by auto
  qed
  then show ?thesis unfolding quasi-commute-def.
```

lemma ctxt-closed-imp-SN-restrict-SN-E-supt:

```
assumes ctxt.closed\ R
    and SN: SN \ (E \ O \ \{ \rhd \} \ O \ E)
  \mathbf{shows}\ SN\ restrict\text{-}SN\text{-}supt\text{-}E
proof -
  let ?r = restrict\text{-}SN R R
 let ?s = restrict-SN \ (E \ O \ \{ \triangleright \} \ O \ E) \ R
  from \langle ctxt.closed \ R \rangle have quasi-commute ?r \ ?s
    by (rule ctxt-closed-R-imp-restrict-SN-qc-E-supt)
  from SN have SN ?s by (rule SN-subset, auto simp: restrict-SN-def)
 have SN ?r by (rule SN-restrict-SN-idemp)
 from \langle SN ? r \rangle and \langle SN ? s \rangle and \langle quasi\text{-}commute ? r ? s \rangle
 show ?thesis unfolding restrict-SN-supt-E-def by (rule quasi-commute-imp-SN)
qed
end
lemma E-compatible-Id: E-compatible R Id
 by standard auto
definition restrict-SN-supt :: ('f, 'v) trs \Rightarrow ('f, 'v) trs where
  restrict-SN-supt R = restrict-SN R R \cup restrict-SN \{ \triangleright \} R
lemma ctxt-closed-SN-on-subt:
  assumes ctxt.closed\ R and SN-on\ R\ \{s\} and s \ge t
  shows SN-on R \{t\}
proof (rule ccontr)
  assume \neg SN-on R \{t\}
  then obtain A where A \theta = t and \forall i. (A i, A (Suc i)) \in R
    unfolding SN-on-def by best
  from \langle s \geq t \rangle obtain C where s = C \langle t \rangle by auto
  let ?B = \lambda i. C\langle A i \rangle
  have \forall i. (?B i,?B(Suc i)) \in R
  proof
    \mathbf{fix} i
    from \forall i. (A i, A(Suc i)) \in R \land have (?B i, ?B(Suc i)) \in ctxt.closure(R) by
    then show (?B \ i,?B(Suc \ i)) \in R \ using \langle ctxt.closed \ R \rangle  by auto
  qed
  with \langle A | \theta = t \rangle have ?B | \theta = s \land (\forall i. (?B i,?B(Suc i)) \in R) unfolding \langle s = t \rangle
C\langle t\rangle by auto
  then have \neg SN\text{-}on R \{s\} unfolding SN\text{-}on\text{-}def by auto
  with assms show False by simp
qed
lemma ctxt-closed-R-imp-supt-restrict-SN-distr:
  assumes R: ctxt.closed R
    and st: (s,t) \in (restrict-SN \{ \triangleright \} R)
    and tu: (t,u) \in restrict-SNRR
  shows (\exists t. (s,t) \in restrict\text{-}SN \ R \ R \land (t,u) \in restrict\text{-}SN \ \{ \triangleright \} \ R) (is \exists t. - \land
(t,u) \in ?snSub)
```

```
\textbf{using $E$-compatible.} ctxt-closed-R-imp-supt-restrict-SN-E-distr[OF\ E-compatible-Id]
R - tu, of s
   st by auto
\mathbf{lemma}\ ctxt\text{-}closed\text{-}R\text{-}imp\text{-}restrict\text{-}SN\text{-}qc\text{-}supt:
  assumes ctxt.closed\ R
  shows quasi-commute (restrict-SN R R) (restrict-SN supt R) (is quasi-commute
?r ?s)
  {f using}\ E{\it -compatible}.ctxt{\it -closed-R-imp-restrict-SN-qc-E-supt}[OF\ E{\it -compatible}.Id]
assms] by auto
lemma ctxt-closed-imp-SN-restrict-SN-supt:
  assumes ctxt.closed R
 shows SN (restrict-SN-supt R)
 using E-compatible.ctxt-closed-imp-SN-restrict-SN-E-supt[OF E-compatible-Id assms]
 unfolding E-compatible.restrict-SN-supt-E-def[OF E-compatible-Id] restrict-SN-supt-def
 using SN-supt by auto
lemma SN-restrict-SN-supt-rstep:
  shows SN (restrict-SN-supt (rstep R))
proof -
  have ctxt.closed (rstep R) by (rule ctxt-closed-rstep)
  then show ?thesis by (rule ctxt-closed-imp-SN-restrict-SN-supt)
qed
lemma nrrstep-imp-pos-term:
  (Fun \ f \ ss,t) \in nrrstep \ R \Longrightarrow
   \exists i \ s. \ t = Fun \ f \ (ss[i:=s]) \land (ss!i,s) \in rstep \ R \land i < length \ ss
proof -
  assume (Fun f ss, t) \in nrrstep R
 then obtain l \ r \ i \ ps \ \sigma where rstep-rps:(Fun \ f \ ss,t) \in rstep-r-p-s \ R \ (l,r) \ (i\#ps)
    unfolding nrrstep-def by auto
  then obtain C
   where (l,r) \in R
     and pos: (i \# ps) \in poss (Fun f ss)
     and C: C = ctxt\text{-}of\text{-}pos\text{-}term \ (i\#ps) \ (Fun \ f \ ss)
     and C\langle l \cdot \sigma \rangle = Fun \ f \ ss
     and t: C\langle r \cdot \sigma \rangle = t
   unfolding rstep-r-p-s-def Let-def by auto
  then obtain D where C = More f (take i ss) D (drop (Suc i) ss) by auto
  with t have t': t = Fun f (take i ss @ (D\langle r \cdot \sigma \rangle) \# drop (Suc i) ss) by auto
  from rstep-rps have (ss!i,t|-[i]) \in rstep-r-p-s \ R \ (l,r) \ ps \ \sigma
   by (rule rstep-i-pos-imp-rstep-arg-i-pos)
  then have rstep:(ss!i,t|-[i]) \in rstep R by (auto simp: rstep-iff-rstep-r-p-s)
  then have (C\langle ss!i\rangle, C\langle t|-[i]\rangle) \in rstep \ R..
  from pos have len: i < length ss by auto
  from len
  have (take i ss @ (D\langle r \cdot \sigma \rangle) # drop (Suc i) ss)!i = D\langle r \cdot \sigma \rangle by (auto simp:
```

```
nth-append)
  with C t' have t[-i] = D\langle r \cdot \sigma \rangle by auto
  with t' have t = Fun \ f (take i \ ss \ @ (t|-[i]) \ \# \ drop \ (Suc \ i) \ ss) by auto
  with len have t = Fun f (ss[i:=t|-[i]]) by (auto simp: upd-conv-take-nth-drop)
  with rstep len show \exists i \text{ s. } t = Fun \text{ } f \text{ } (ss[i:=s]) \land (ss!i,s) \in rstep \text{ } R \land i < length
ss by auto
qed
lemma rstep-cases[consumes 1, case-names root nonroot]:
  \llbracket (s,t) \in rstep \ R; \ (s,t) \in rrstep \ R \Longrightarrow P; \ (s,t) \in nrrstep \ R \Longrightarrow P \rrbracket \Longrightarrow P
  by (auto simp: rstep-iff-rrstep-or-nrrstep)
lemma nrrstep-imp-rstep: (s,t) \in nrrstep R \Longrightarrow (s,t) \in rstep R
  by (auto simp: rstep-iff-rrstep-or-nrrstep)
lemma nrrstep-imp-Fun: (s,t) \in nrrstep R \Longrightarrow \exists f \ ss. \ s = Fun \ f \ ss
proof -
  assume (s,t) \in nrrstep R
  then obtain i ps where i \# ps \in poss s
    unfolding nrrstep-def rstep-r-p-s-def Let-def by auto
  then show \exists f ss. \ s = Fun \ f ss \ by \ (cases \ s) \ auto
qed
lemma nrrstep-imp-subt-rstep:
  assumes (s,t) \in nrrstep R
  shows \exists i. i < num\text{-}args \ s \land num\text{-}args \ s = num\text{-}args \ t \land (s|-[i],t|-[i]) \in rstep \ R
\land (\forall j. \ i \neq j \longrightarrow s|-[j] = t|-[j])
proof -
 from \langle (s,t) \in nrrstep \ R \rangle obtain f ss where s = Fun \ f ss using nrrstep-imp-Fun
by blast
  with \langle (s,t) \in nrrstep \ R \rangle have (Fun \ f \ ss,t) \in nrrstep \ R by simp
  then obtain i u where t = Fun f (ss[i := u]) and (ss!i,u) \in rstep R and i < i
length ss
    using nrrstep-imp-pos-term by best
  from \langle s = Fun \ f \ ss \rangle and \langle t = Fun \ f \ (ss[i := u]) \rangle have num-args s = num-args
t by auto
  from \langle i < length \ ss \rangle and \langle s = Fun \ f \ ss \rangle have i < num-args s by auto
  from \langle s = Fun \ f \ ss \rangle have s[-[i] = (ss!i) by auto
  from \langle t = Fun \ f \ (ss[i := u]) \rangle and \langle i < length \ ss \rangle have t[-[i] = u by auto
  from \langle s = Fun \ f \ ss \rangle and \langle t = Fun \ f \ (ss[i := u]) \rangle
  have \forall j. j \neq i \longrightarrow s[-[j] = t[-[j]] by auto
  with \langle (ss!i,u) \in rstep \ R \rangle
    and \langle i < num\text{-}args \ s \rangle
    and \langle num\text{-}args \ s = num\text{-}args \ t \rangle
    and \langle s|-[i] = (ss!i)\rangle[symmetric] and \langle t|-[i] = u\rangle[symmetric]
  show ?thesis by (auto)
qed
```

```
lemma nrrstep-subt: assumes (s, t) \in nrrstep R shows \exists u \triangleleft s. \exists v \triangleleft t. (u, v) \in
rstep R
proof -
  from assms obtain l \ r \ C \ \sigma where (l, \ r) \in R and C \neq \square
    and s: s = C\langle l \cdot \sigma \rangle and t: t = C\langle r \cdot \sigma \rangle unfolding nrrstep-def' by best
  from \langle C \neq \Box \rangle s have s \triangleright l \cdot \sigma by auto
  moreover from \langle C \neq \Box \rangle t have t \triangleright r \cdot \sigma by auto
  moreover from \langle (l, r) \in R \rangle have (l \cdot \sigma, r \cdot \sigma) \in rstep R by auto
  ultimately show ?thesis by auto
\mathbf{qed}
lemma nrrstep-args:
  assumes (s, t) \in nrrstep R
  shows \exists f \ ss \ ts. \ s = Fun \ f \ ss \land t = Fun \ f \ ts \land length \ ss = length \ ts
    \land (\exists j < length \ ss. \ (ss!j, \ ts!j) \in rstep \ R \land (\forall i < length \ ss. \ i \neq j \longrightarrow ss!i = ts!i))
proof -
  from assms obtain l \ r \ C \ \sigma where (l, \ r) \in R and C \neq \square
    and s: s = C\langle l \cdot \sigma \rangle and t: t = C\langle r \cdot \sigma \rangle unfolding nrrstep-def' by best
  from \langle C \neq \Box \rangle obtain f ss1 \ D ss2 where C: C = More \ f ss1 \ D ss2 by (induct
  have s = Fun \ f \ (ss1 \ @ \ D\langle l \cdot \sigma \rangle \ \# \ ss2) \ (is - = Fun \ f \ ?ss) by (simp \ add: s \ C)
  moreover have t = Fun \ f \ (ss1 @ D\langle r \cdot \sigma \rangle \# ss2) \ (is -= Fun \ f \ ?ts) \ by \ (simp
add: t C
  moreover have length ?ss = length ?ts by simp
  moreover have \exists j < length ?ss.
    (?ss!j, ?ts!j) \in rstep \ R \land (\forall i < length ?ss. \ i \neq j \longrightarrow ?ss!i = ?ts!i)
  proof -
    let ?j = length ss1
    have ?j < length ?ss by simp
    moreover have (?ss!?j, ?ts!?j) \in rstep R
    proof -
      from \langle (l, r) \in R \rangle have (D\langle l \cdot \sigma \rangle, D\langle r \cdot \sigma \rangle) \in rstep R by auto
      then show ?thesis by auto
    moreover have \forall i < length ?ss. i \neq ?j \longrightarrow ?ss!i = ?ts!i (is \forall i < length ?ss. -
\longrightarrow ?P i
    proof (intro allI impI)
      fix i assume i < length ?ss and i \neq ?i
      then have i < length ss1 \lor length ss1 < i by auto
      then show P i
      proof
        assume i < length ss1 then show ?P i by (auto simp: nth-append)
        assume i > length ss1 then show ?P i
          using \langle i < length ?ss \rangle by (auto simp: nth-Cons' nth-append)
      qed
    ged
    ultimately show ?thesis by best
  qed
```

```
ultimately show ?thesis by auto
qed
lemma nrrstep-iff-arg-rstep:
  (s,t) \in nrrstep \ R \longleftrightarrow
   (\exists f \ ss \ i \ t'. \ s = Fun \ f \ ss \land i < length \ ss \land t = Fun \ f \ (ss[i:=t']) \land (ss!i,t') \in
rstep R)
  (is ?L \longleftrightarrow ?R)
proof
  assume L: ?L
  from nrrstep-args[OF this]
  obtain f ss ts where s = Fun f ss t = Fun f ts by auto
  with nrrstep-imp-pos-term[OF L[unfolded this]]
 show ?R by auto
next assume R: ?R
  then obtain f i ss t'
    where s: s = Fun f ss and t: t = Fun f (ss[i:=t'])
     and i: i < length ss and st': (ss ! i, t') \in rstep R by auto
 from st' obtain C l r \sigma where lr: (l, r) \in R and s': ss!i = C\langle l \cdot \sigma \rangle and t': t'
= C\langle r \cdot \sigma \rangle by auto
 let ?D = More f (take i ss) C (drop (Suc i) ss)
 have s = ?D\langle l \cdot \sigma \rangle \ t = ?D\langle r \cdot \sigma \rangle unfolding s \ t
    using id-take-nth-drop[OF i] upd-conv-take-nth-drop[OF i] s' t' by auto
  with lr show ?L apply(rule \ nrrstepI) using t' by auto
qed
lemma subterms-NF-imp-SN-on-nrrstep:
  assumes \forall s \triangleleft t. \ s \in NF \ (rstep \ R) shows SN-on (nrrstep \ R) \ \{t\}
proof
  fix S assume S \theta \in \{t\} and \forall i. (S i, S (Suc i)) \in nrrstep R
  then have (t, S(Suc \theta)) \in nrrstep R by auto
 then obtain l \ r \ C \ \sigma where (l, \ r) \in R and C \neq \square and t : t = C \langle l \cdot \sigma \rangle unfolding
nrrstep-def' by auto
  then obtain f ss1 D ss2 where C: C = More f ss1 D ss2 by (induct C) auto
  have t \triangleright D\langle l \cdot \sigma \rangle unfolding t \in C by auto
 moreover have D\langle l \cdot \sigma \rangle \notin NF \ (rstep \ R)
  proof -
    from \langle (l, r) \in R \rangle have (D\langle l \cdot \sigma \rangle, D\langle r \cdot \sigma \rangle) \in rstep R by auto
    then show ?thesis by auto
  qed
  ultimately show False using assms by simp
\mathbf{lemma} \ \mathit{args-NF-imp-SN-on-nrrstep} :
 assumes \forall t \in set \ ts. \ t \in NF \ (rstep \ R) shows SN-on (nrrstep \ R) \ \{Fun \ f \ ts\}
  fix S assume S \ \theta \in \{Fun \ f \ ts\} and \forall i. (S \ i, S \ (Suc \ i)) \in nrrstep \ R
  then have (Fun f ts, S (Suc \theta)) \in nrrstep R
```

```
unfolding singletonD[OF \langle S | 0 \in \{Fun | f | ts\} \rangle, symmetric] by simp
  then obtain l \ r \ C \ \sigma where (l, \ r) \in R and C \neq \square and Fun \ f \ ts = C \langle l \cdot \sigma \rangle
    unfolding nrrstep-def' by auto
  then obtain ss1 \ D \ ss2 where C: C = More \ f \ ss1 \ D \ ss2 by (induct C) auto
  with \langle Fun\ f\ ts = C\langle l\cdot\sigma\rangle\rangle have D\langle l\cdot\sigma\rangle\in set\ ts by auto
  moreover have D\langle l \cdot \sigma \rangle \notin NF \ (rstep \ R)
  proof -
    from \langle (l, r) \in R \rangle have (D\langle l \cdot \sigma \rangle, D\langle r \cdot \sigma \rangle) \in rstep R by auto
    then show ?thesis by auto
  qed
  ultimately show False using assms by simp
qed
lemma rrstep-imp-rule-subst:
  assumes (s,t) \in rrstep R
 shows \exists l \ r \ \sigma. \ (l,r) \in R \land (l \cdot \sigma) = s \land (r \cdot \sigma) = t
proof -
  have ctxt-of-pos-term [] s = Hole by auto
  obtain l \ r \ \sigma where (s,t) \in rstep-r-p-s R \ (l,r) \ || \ \sigma using assms unfolding
rrstep-def by best
  then have let C = ctxt-of-pos-term [s in ] \in poss \ s \land (l,r) \in R \land C\langle l \cdot \sigma \rangle = s
\wedge C\langle r \cdot \sigma \rangle = t \text{ unfolding } rstep-r-p-s-def \text{ by } simp
  with \langle ctxt\text{-}of\text{-}pos\text{-}term \mid s = Hole \rangle have (l,r) \in R and l \cdot \sigma = s and r \cdot \sigma = t
unfolding Let-def by auto
  then show ?thesis by auto
qed
lemma nrrstep-preserves-root:
  assumes (Fun \ f \ ss,t) \in nrrstep \ R \ (is \ (?s,t) \in nrrstep \ R) shows \exists \ ts. \ t = (Fun \ f \ ss,t)
f(ts)
 using assms unfolding nrrstep-def rstep-r-p-s-def Let-def by auto
lemma nrrstep-equiv-root: assumes (s,t) \in nrrstep R shows \exists f ss ts. s = Fun f
ss \wedge t = Fun f ts
proof -
 from assms obtain f ss where s = Fun f ss using nrrstep-imp-Fun by best
 with assms obtain to where t = Fun f to using nrrstep-preserves-root by best
  from \langle s = Fun \ f \ ss \rangle and \langle t = Fun \ f \ ts \rangle show ?thesis by best
qed
lemma nrrstep-reflects-root:
  assumes (s, Fun \ g \ ts) \in nrrstep \ R \ (is \ (s, ?t) \in nrrstep \ R)
  shows \exists ss. \ s = (Fun \ g \ ss)
proof -
 from assms obtain f ss ts' where s = Fun f ss and Fun g ts = Fun f ts' using
nrrstep-equiv-root by best
  then have f = g by simp
  with \langle s = Fun \ f \ ss \rangle have s = Fun \ g \ ss by simp
  then show ?thesis by auto
```

```
qed
```

```
lemma nrrsteps-preserve-root:
  assumes (Fun f ss, t) \in (nrrstep R)^*
  shows \exists ts. \ t = (Fun \ f \ ts)
  using assms by induct (auto simp: nrrstep-preserves-root)
lemma nrrstep-Fun-imp-arg-rsteps:
  assumes (Fun f ss, Fun f ts) \in nrrstep R (is (?s,?t) \in nrrstep R) and i < length
ss
  shows (ss!i,ts!i) \in (rstep\ R)^*
proof -
  from assms have [i] \in poss ?s using empty-pos-in-poss by simp
  from \langle (?s,?t) \in nrrstep \ R \rangle
  obtain l r j ps \sigma
    where A: let C = ctxt-of-pos-term (j\#ps) ?s in (j\#ps) \in poss ?s \land (l,r) \in R
\wedge C\langle l \cdot \sigma \rangle = ?s \wedge C\langle r \cdot \sigma \rangle = ?t unfolding nrrstep-def rstep-r-p-s-def by force
  let ?C = ctxt\text{-}of\text{-}pos\text{-}term (j\#ps) ?s
  from A have (j\#ps) \in poss ?s and (l,r) \in R and ?C\langle l \cdot \sigma \rangle = ?s and ?C\langle r \cdot \sigma \rangle
= ?t using Let-def by auto
  have C: ?C = More \ f \ (take \ j \ ss) \ (ctxt-of-pos-term \ ps \ (ss!j)) \ (drop \ (Suc \ j) \ ss)
(is ?C = More f ?ss1 ?D ?ss2) by auto
  from \langle ?C\langle l \cdot \sigma \rangle = ?s \rangle have ?D\langle l \cdot \sigma \rangle = (ss!j) by (auto simp: take-drop-imp-nth)
  from \langle (l,r) \in R \rangle have (l \cdot \sigma, r \cdot \sigma) \in (subst.closure R) by auto
  then have (?D\langle l \cdot \sigma \rangle, ?D\langle r \cdot \sigma \rangle) \in (ctxt.closure(subst.closure R))
     and (?C\langle l \cdot \sigma \rangle, ?C\langle r \cdot \sigma \rangle) \in (ctxt.closure(subst.closure R)) by (auto simp only:
ctxt.closure.intros)
  then have D-rstep: (?D\langle l \cdot \sigma \rangle, ?D\langle r \cdot \sigma \rangle) \in rstep \ R \ and <math>(?C\langle l \cdot \sigma \rangle, ?C\langle r \cdot \sigma \rangle) \in rstep
R
    unfolding rstep-eq-closure by auto
  from \langle ?C\langle r \cdot \sigma \rangle = ?t \rangle and C have ?t = Fun f (take j ss @ ?D\langle r \cdot \sigma \rangle \# drop (Suc
j) ss) by auto
  then have ts: ts = (take \ j \ ss \ @ \ ?D\langle r \cdot \sigma \rangle \ \# \ drop \ (Suc \ j) \ ss) by auto
  have j = i \lor j \neq i by simp
  from \langle j \# ps \in poss ?s \rangle have j < length ss by simp
  then have (take j ss @ ?D(r \cdot \sigma) \# drop (Suc j) ss)! j = ?D(r \cdot \sigma) by (auto simp):
nth-append-take)
  with ts have ts!j = ?D\langle r \cdot \sigma \rangle by auto
  have j = i \lor j \neq i by simp
  then show (ss!i, ts!i) \in (rstep R)^*
  proof
    with \langle ts|j = ?D\langle r \cdot \sigma \rangle and \langle ?D\langle l \cdot \sigma \rangle = ss!j \rangle and D-rstep show ?thesis by auto
  next
    assume j \neq i
     with \langle i < length \ ss \rangle and \langle j < length \ ss \rangle have (take \ j \ ss \ @ ?D\langle r \cdot \sigma \rangle \ \# \ drop)
(Suc\ j)\ ss)\ !\ i=ss!i\ \mathbf{by}\ (auto\ simp:\ nth-append-take-drop-is-nth-conv)
    with ts have ts!i = ss!i by auto
    then show ?thesis by auto
```

```
qed
qed
lemma nrrstep-imp-arg-rsteps:
 assumes (s,t) \in nrrstep \ R and i < num-args \ s shows (args \ s!i, args \ t!i) \in (rstep \ R)
R)^*
proof (cases s)
  fix x assume s = Var x then show ?thesis using assms by auto
next
  \mathbf{fix} \ f \ ss \ \mathbf{assume} \ s = Fun \ f \ ss
  then have (Fun f ss, t) \in nrrstep R using assms by simp
  then obtain ts where t = Fun f ts using nrrstep-preserves-root by best
  with \langle (s,t) \in nrrstep \ R \rangle and \langle s = Fun \ f \ ss \rangle have (Fun \ f \ ss, Fun \ f \ ts) \in nrrstep
R by simp
  from \langle s = Fun \ f \ ss \rangle and \langle i < num\text{-}args \ s \rangle have i < length \ ss \ by \ simp
  with \langle (Fun \ f \ ss, Fun \ f \ ts) \in nrrstep \ R \rangle
 have (ss!i,ts!i) \in (rstep\ R)^* by (rule\ nrrstep-Fun-imp-arg-rsteps)
  with \langle s = Fun \ f \ ss \rangle and \langle t = Fun \ f \ ts \rangle show ?thesis by simp
lemma nrrsteps-imp-rsteps: (s,t) \in (nrrstep \ R)^* \Longrightarrow (s,t) \in (rstep \ R)^*
proof (induct rule: rtrancl.induct)
  case (rtrancl-refl a) then show ?case by simp
next
  case (rtrancl-into-rtrancl\ a\ b\ c)
  then have IH: (a,b) \in (rstep \ R)^* and nrrstep: (b,c) \in nrrstep \ R by auto
  from nrrstep have (b,c) \in rstep R using nrrstep-imp-rstep by auto
  with IH show ?case by auto
\mathbf{qed}
lemma nrrstep-Fun-preserves-num-args:
  assumes (Fun f ss, Fun f ts) \in nrrstep R (is (?s,?t) \in nrrstep R)
  shows length ss = length ts
proof -
  from assms obtain l \ r \ i \ ps \ \sigma
    where let C = ctxt-of-pos-term (i\#ps) ?s in (i\#ps) \in poss ?s \land (l,r) \in R \land
C\langle l \cdot \sigma \rangle = ?s \wedge C\langle r \cdot \sigma \rangle = ?t \text{ (is let } C = ?C \text{ in -)}
   unfolding nrrstep-def rstep-r-p-s-def by force
  then have (l,r) \in R and Cl: C(l \cdot \sigma) = S and Cr: C(r \cdot \sigma) = t unfolding
Let-def by auto
  have C: ?C = More \ f \ (take \ i \ ss) \ (ctxt-of-pos-term \ ps \ (ss!i)) \ (drop \ (Suc \ i) \ ss)
(is ?C = More \ f ?ss1 ?D ?ss2) by simp
 from C and Cl have s: ?s = Fun f (take i ss @ ?D\langle l \cdot \sigma \rangle \# drop (Suc i) ss) (is
?s = Fun \ f \ ?ss) by simp
 from C and Cr have t: ?t = Fun f (take i ss @ ?D(r \cdot \sigma) \# drop (Suc i) ss) (is
?t = Fun f ?ts) by simp
  from s and t have ss: ss = ?ss and ts: ts = ?ts by auto
  have length ?ss = length ?ts by auto
  with ss and ts show ?thesis by simp
```

```
qed
lemma nrrstep-equiv-num-args:
 assumes (s,t) \in nrrstep R shows num-args s = num-args t
proof -
  from assms obtain f ss ts where s:s = Fun f ss and t:t = Fun f ts using
nrrstep-equiv-root by best
  with assms have (Fun f ss, Fun f ts) \in nrrstep R by simp
  then have length ss = length \ ts \ by \ (rule \ nrrstep-Fun-preserves-num-args)
  with s and t show ?thesis by auto
qed
\mathbf{lemma}\ nrrsteps-equiv-num-args:
 assumes (s,t) \in (nrrstep \ R)^* shows num-args s = num-args t
 using assms by (induct, auto simp: nrrstep-equiv-num-args)
lemma nrrstep-preserves-num-args:
 assumes (s,t) \in nrrstep R and i < num-args s shows i < num-args t
proof (cases s)
 fix x assume s = Var x then show ?thesis using assms by auto
 \mathbf{fix} \ f \ ss \ \mathbf{assume} \ s = Fun \ f \ ss
 with assms obtain to where t = Fun f to using nrrstep-preserves-root by best
  from \langle (s,t) \in nrrstep \ R \rangle have length ss = length \ ts \ unfolding \langle s = Fun \ f \ ss \rangle
and \langle t = Fun \ f \ ts \rangle by (rule nrrstep-Fun-preserves-num-args)
  with assms and \langle s = Fun \ f \ ss \rangle and \langle t = Fun \ f \ ts \rangle show ?thesis by auto
qed
lemma nrrstep-reflects-num-args:
 \mathbf{assumes}\ (s,t) \in \mathit{nrrstep}\ R\ \mathbf{and}\ i < \mathit{num-args}\ t\ \mathbf{shows}\ i < \mathit{num-args}\ s
proof (cases \ t)
 fix x assume t = Var x then show ?thesis using assms by auto
next
 fix g ts assume t = Fun g ts
 with assms obtain ss where s = Fun \ g \ ss \ using \ nrrstep-reflects-root by best
 from \langle (s,t) \in nrrstep \ R \rangle have length ss = length \ ts \ unfolding \langle s = Fun \ q \ ss \rangle
and \langle t = Fun \ g \ ts \rangle by (rule nrrstep-Fun-preserves-num-args)
  with assms and \langle s = Fun \ g \ ss \rangle and \langle t = Fun \ g \ ts \rangle show ?thesis by auto
qed
lemma nrrsteps-imp-arg-rsteps:
 assumes (s,t) \in (nrrstep \ R)^* and i < num-args \ s
```

```
lemma nrrsteps-imp-arg-rsteps:
  assumes (s,t) \in (nrrstep\ R)^* and i < num-args\ s
  shows (args\ s!i,args\ t!i) \in (rstep\ R)^*
  using assms
  proof (induct\ rule:\ rtrancl.induct)
  case (rtrancl-refl\ a) then show ?case by auto
  next
  case (rtrancl-into-rtrancl\ a\ b\ c)
  then have IH:\ (args\ a!i,args\ b!i) \in (rstep\ R)^* by auto
```

```
from \langle (a,b) \in (nrrstep \ R)^* \rangle and \langle i < num-args a \rangle have i < num-args b by
induct (auto simp: nrrstep-preserves-num-args)
 with \langle (b,c) \in nrrstep \ R \rangle
 have (args\ b!i, args\ c!i) \in (rstep\ R)^* by (rule\ nrrstep-imp-arg-rsteps)
  with IH show ?case by simp
qed
lemma nrrsteps-imp-eq-root-arg-rsteps:
 assumes steps: (s,t) \in (nrrstep \ R)^*
 shows root s = root \ t \land (\forall i < num-args \ s. \ (s \mid -[i], \ t \mid -[i]) \in (rstep \ R)^*)
proof (cases s)
 case (Var x)
 have s = t using steps unfolding Var
 proof (induct)
   case (step \ y \ z)
   from nrrstep-imp-Fun[OF\ step(2)]\ step(3) have False\ by\ auto
   then show ?case ..
  qed simp
  then show ?thesis by auto
next
  case (Fun \ f \ ss)
 from nrrsteps-equiv-num-args[OF steps]
   nrrsteps-imp-arg-rsteps[OF\ steps]
   nrrsteps-preserve-root[OF steps[unfolded Fun]]
 show ?thesis unfolding Fun by auto
qed
\mathbf{lemma}\ SN\text{-}on\text{-}imp\text{-}SN\text{-}on\text{-}subt:
 assumes SN-on (rstep R) \{t\} shows \forall s \leq t. SN-on (rstep R) \{s\}
proof (rule ccontr)
 assume \neg(\forall s \leq t. SN\text{-}on (rstep R) \{s\})
 then obtain s where t \geq s and \neg SN-on (rstep R) \{s\} by auto
 then obtain S where S \theta = s and chain: chain (rstep R) S by auto
 from \langle t \geq s \rangle obtain C where t: t = C \langle s \rangle by auto
 let ?S = \lambda i. C\langle S i \rangle
 from \langle S | \theta = s \rangle have ?S | \theta = t by (simp \ add: \ t)
 moreover from chain have chain (rstep R) ?S by blast
 ultimately have \neg SN-on (rstep R) \{t\} by best
  with assms show False by simp
qed
lemma not-SN-on-subt-imp-not-SN-on:
 assumes \neg SN-on (rstep R) {t} and s \trianglerighteq t
 shows \neg SN-on (rstep R) \{s\}
 using assms SN-on-imp-SN-on-subt by blast
lemma SN-on-instance-imp-SN-on-var:
 assumes SN-on (rstep R) \{t \cdot \sigma\} and x \in vars\text{-}term\ t
 shows SN-on (rstep R) { Var x \cdot \sigma }
```

```
proof -
  from assms have t \ge Var x by auto
  then have t \cdot \sigma \trianglerighteq (Var \ x) \cdot \sigma by (rule \ supteq-subst)
  with SN-on-imp-SN-on-subt and assms show ?thesis by best
ged
lemma var-imp-var-of-arg:
  assumes x \in vars\text{-}term (Fun f ss) (is <math>x \in vars\text{-}term ?s)
  shows \exists i < num\text{-}args (Fun f ss). x \in vars\text{-}term (ss!i)
proof -
  from assms have x \in \bigcup (set (map \ vars-term \ ss)) by simp
  then have x \in (\bigcup i < length \ ss. \ vars-term(ss!i)) unfolding set-conv-nth by auto
  then have \exists i < length \ ss. \ x \in vars-term(ss!i) using UN-iff by best
  then obtain i where i < length ss and x \in vars\text{-}term(ss!i) by auto
  then have i < num-args ?s by simp
  with \langle x \in vars\text{-}term(ss!i) \rangle show ?thesis by auto
qed
lemma subt-instance-and-not-subst-imp-subt:
  s \cdot \sigma \trianglerighteq t \Longrightarrow \forall x \in vars\text{-}term \ s. \ \neg((Var \ x) \cdot \sigma \trianglerighteq t) \Longrightarrow \exists \ u. \ s \trianglerighteq u \land t = u \cdot \sigma
proof (induct s arbitrary: t rule: term.induct)
  case (Var \ x) then show ?case by auto
next
  case (Fun \ f \ ss)
  from \langle Fun\ f\ ss\cdot\sigma \trianglerighteq t\rangle have (Fun\ f\ ss\cdot\sigma = t) \lor (Fun\ f\ ss\cdot\sigma \trianglerighteq t) by auto
  then show ?case
  proof
    assume Fun f ss \cdot \sigma = t with Fun show ? thesis by auto
  next
    assume Fun f ss \cdot \sigma > t
    then have Fun f (map (\lambda t. t \cdot \sigma) ss) \triangleright t by simp
    then have \exists s \in set \ (map \ (\lambda t. \ t \cdot \sigma) \ ss). \ s \succeq t \ (is \ \exists s \in set \ ?ss'. \ s \succeq t) \ by \ (rule
supt-Fun-imp-arg-supteq)
    then obtain s' where s' \in set ?ss' and s' \trianglerighteq t by best
    then have \exists i < length ?ss'. ?ss'! i = s' using in-set-conv-nth[where ?x = s']
    then obtain i where i < length ?ss' and ?ss'!i = s' by best
    then have ?ss'!i = (ss!i) \cdot \sigma by auto
    from \langle ?ss'!i = s' \rangle have s' = (ss!i) \cdot \sigma unfolding \langle ?ss'!i = (ss!i) \cdot \sigma \rangle by simp
    from \langle s' \geq t \rangle have (ss!i) \cdot \sigma \geq t unfolding \langle s' = (ss!i) \cdot \sigma \rangle by simp
    with \langle i < length ?ss' \rangle have (ss!i) \in set ss by auto
    with \langle (ss!i) \cdot \sigma \supseteq t \rangle have \exists s \in set \ ss. \ s \cdot \sigma \supseteq t \ by \ best
    then obtain s where s \in set ss and s \cdot \sigma \supseteq t by best
    with Fun have \forall x \in vars\text{-}term \ s. \ \neg((Var \ x) \cdot \sigma \geq t) by force
    from Fun
    have IH: s \in set \ ss \longrightarrow (\forall \ v. \ s \cdot \sigma \trianglerighteq v \longrightarrow (\forall \ x \in vars\text{-}term \ s. \ \neg \ Var \ x \cdot \sigma \trianglerighteq v)
   \rightarrow (\exists u. \ s \trianglerighteq u \land v = u \cdot \sigma))
       by auto
     with \langle s \in set \ ss \rangle have !!v. \ s \cdot \sigma \trianglerighteq v \Longrightarrow (\forall x \in vars\text{-}term \ s. \neg \ Var \ x \cdot \sigma \trianglerighteq v)
```

```
\longrightarrow (\exists u. \ s \trianglerighteq u \land v = u \cdot \sigma)
     by simp
    with \langle s \cdot \sigma \trianglerighteq t \rangle have (\forall x \in vars\text{-}term \ s. \ \neg \ Var \ x \cdot \sigma \trianglerighteq t) \longrightarrow (\exists \ u. \ s \trianglerighteq u \land t =
u \cdot \sigma) by simp
    with \forall x \in vars\text{-}term \ s. \ \neg \ Var \ x \cdot \sigma \supseteq t  obtain u where s \trianglerighteq u and t = u \cdot \sigma
by best
    with \langle s \in set \ ss \rangle have Fun \ f \ ss \geq u by auto
    with \langle t = u \cdot \sigma \rangle show ?thesis by best
  qed
qed
lemma SN-imp-SN-subt:
  SN-on (rstep\ R)\ \{s\} \Longrightarrow s \trianglerighteq t \Longrightarrow SN-on (rstep\ R)\ \{t\}
  by (rule ctxt-closed-SN-on-subt[OF ctxt-closed-rstep])
lemma subterm-preserves-SN-qen:
  assumes ctxt: ctxt. closed R
   and SN: SN-on R \{t\} and supt: t > s
  shows SN-on R \{s\}
proof -
  from supt have t \ge s by auto
  then show ?thesis using ctxt-closed-SN-on-subt[OF ctxt SN, of s] by simp
qed
{f context} E-compatible
begin
lemma SN-on-step-E-imp-SN-on: assumes SN-on R \{s\}
 and (s,t) \in E
shows SN-on R \{t\}
 using assms E(1) unfolding SN-on-all-reducts-SN-on-conv[of - t] SN-on-all-reducts-SN-on-conv[of
 by blast
lemma SN-on-step-REs-imp-SN-on:
  assumes R: ctxt.closed R
    and st: (s,t) \in (R \cup E \ O \ \{ \triangleright \} \ O \ E)
    and SN: SN-on R \{s\}
  shows SN-on R \{t\}
proof (cases\ (s,t) \in R)
  case True
  from step-preserves-SN-on [OF\ this\ SN]\ {\bf show}\ ?thesis .
  case False
  with st obtain u v where su: (s,u) \in E and uv: u \triangleright v and vt: (v,t) \in E by
  have u: SN-on R \{u\} by (rule\ SN-on-step-E-imp-SN-on [OF\ SN\ su])
  with uv R have SN-on R \{v\} by (metis subterm-preserves-SN-gen)
  then show ?thesis by (rule SN-on-step-E-imp-SN-on[OF - vt])
```

```
qed
```

```
lemma restrict-SN-supt-E-I:
       ctxt.closed \ R \implies SN-on \ R \ \{s\} \implies (s,t) \in R \cup E \ O \ \{\triangleright\} \ O \ E \implies (s,t) \in R \cup E \ O \ \{\triangleright\} \ O \ E \implies (s,t) \in R \cup E \ O \ \{\triangleright\} \ O \ E \implies (s,t) \in R \cup E \ O \ \{\triangleright\} \ O \ E \implies (s,t) \in R \cup E \ O \ \{\triangleright\} \ O \ E \implies (s,t) \in R \cup E \ O \ \{\triangleright\} \ O \ E \implies (s,t) \in R \cup E \ O \ \{\triangleright\} \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \implies (s,t) \in R \cup E \ O \ E \ O \ E \implies (s,t) \in R \cup E \ O \ E \ O \ E \ O \ E \ O \ E \ O \ E \ O 
restrict	ext{-}SN	ext{-}supt	ext{-}E
     unfolding restrict-SN-supt-E-def restrict-SN-def
     using SN-on-step-REs-imp-SN-on[of s t] E(2) by auto
lemma ctxt-closed-imp-SN-on-E-supt:
     assumes R: ctxt.closed R
           and SN: SN \ (E \ O \ \{ \triangleright \} \ O \ E)
     shows SN-on (R \cup E \ O \ \{ \triangleright \} \ O \ E) \ \{t. \ SN-on \ R \ \{t\}\}
proof -
      {
           \mathbf{fix} f
           assume f0: SN-on R \{f \ 0\} and f: \land i. (f \ i, f \ (Suc \ i)) \in R \cup E \ O \{\triangleright\} \ O \ E
           from ctxt-closed-imp-SN-restrict-SN-E-supt[OF assms]
           have SN: SN \ restrict-SN-supt-E.
                \mathbf{fix} \ i
                have SN-on R \{f i\}
                     by (induct i, rule f0, rule SN-on-step-REs-imp-SN-on[OF R f])
           \} note fi = this
            {
                \mathbf{fix} i
                from f[of i] fi[of i]
                have (f i, f (Suc i)) \in restrict-SN-supt-E  by (metis \ restrict-SN-supt-E-I[OF
R])
           with SN have False by auto
     then show ?thesis unfolding SN-on-def by blast
qed
end
\mathbf{lemma}\ subterm\text{-}preserves\text{-}SN:
      SN-on (rstep\ R)\ \{t\} \Longrightarrow t \rhd s \Longrightarrow SN-on (rstep\ R)\ \{s\}
     by (rule subterm-preserves-SN-gen[OF ctxt-closed-rstep])
\mathbf{lemma}\ SN\text{-}on\text{-}r\text{-}imp\text{-}SN\text{-}on\text{-}supt\text{-}union\text{-}r:
     assumes ctxt: ctxt.closed R
           and SN-on R T
     shows SN-on (supt \cup R) T (is SN-on ?S T)
proof (rule ccontr)
     assume \neg SN-on ?S T
     then obtain s where ini: s \ \theta : T and chain: chain \ ?S \ s
           unfolding SN-on-def by auto
     have SN: \forall i. SN-on R \{s i\}
     proof
```

```
fix i show SN-on R \{s \ i\}
   proof (induct i)
     case \theta show ?case using assms using \langle s | \theta \in T \rangle and SN-on-subset2[of \{s | \theta \in T \}]
\theta} T R] by simp
   next
     case (Suc\ i)
     from chain have (s i, s (Suc i)) \in ?S by simp
     then show ?case
     proof
       assume (s i, s (Suc i)) \in supt
       from subterm-preserves-SN-gen[OF ctxt Suc this] show ?thesis.
       assume (s i, s (Suc i)) \in R
       from step-preserves-SN-on [OF\ this\ Suc]\ {\bf show}\ ?thesis .
   qed
  qed
  have \neg (\exists S. \forall i. (S i, S (Suc i)) \in restrict\text{-}SN\text{-}supt R)
   using ctxt-closed-imp-SN-restrict-SN-supt[OF ctxt] unfolding SN-defs by auto
  moreover have \forall i. (s i, s (Suc i)) \in restrict-SN-supt R
  proof
   \mathbf{fix} i
   from SN have SN: SN-on R \{s \ i\} by simp
   from chain have (s \ i, \ s \ (Suc \ i)) \in supt \cup R by simp
   then show (s \ i, s \ (Suc \ i)) \in restrict\text{-}SN\text{-}supt \ R
     unfolding restrict-SN-supt-def restrict-SN-def using SN by auto
  ultimately show False by auto
\mathbf{qed}
\mathbf{lemma} \ SN\text{-}on\text{-}rstep\text{-}imp\text{-}SN\text{-}on\text{-}supt\text{-}union\text{-}rstep\text{:}
  SN-on (rstep\ R)\ T \Longrightarrow SN-on (supt\ \cup\ rstep\ R)\ T
 by (rule\ SN-on-r-imp-SN-on-supt-union-r[OF\ ctxt-closed-rstep])
lemma SN-supt-r-trancl:
  assumes ctxt: ctxt.closed R
   and a: SNR
  shows SN ((supt \cup R)^+)
proof -
  have SN (supt \cup R)
   using SN-on-r-imp-SN-on-supt-union-r[OF ctxt, of UNIV]
     and a by force
 then show SN ((supt \cup R)^+) by (rule SN-imp-SN-trancl)
qed
\mathbf{lemma}\ \mathit{SN-supt-rstep-trancl}\colon
  SN (rstep R) \Longrightarrow SN ((supt \cup rstep R)^+)
 by (rule SN-supt-r-trancl[OF ctxt-closed-rstep])
```

```
lemma SN-imp-SN-arg-gen:
    assumes ctxt: ctxt. closed R
        and SN: SN-on R {Fun f ts} and arg: t \in set ts shows SN-on R {t}
proof -
    from arg have Fun f ts \triangleright t by auto
    with SN show ?thesis by (rule ctxt-closed-SN-on-subt[OF ctxt])
\mathbf{qed}
lemma SN-imp-SN-arg:
    SN-on (rstep\ R)\ \{Fun\ f\ ts\} \Longrightarrow t \in set\ ts \Longrightarrow SN-on (rstep\ R)\ \{t\}
    \mathbf{by}\ (\mathit{rule}\ \mathit{SN-imp-SN-arg-gen}[\mathit{OF}\ \mathit{ctxt-closed-rstep}])
lemma SNinstance-imp-SN:
    assumes SN-on (rstep R) \{t \cdot \sigma\}
   shows SN-on (rstep R) \{t\}
proof
    \mathbf{fix} f
    assume prem: f \ 0 \in \{t\} \ \forall i. \ (f \ i, f \ (Suc \ i)) \in rstep \ R
   let ?g = \lambda i. (f i) \cdot \sigma
     from prem have ?g \ \theta = t \cdot \sigma \land (\forall i. (?g \ i, ?g \ (Suc \ i)) \in rstep \ R) using
subst-closed-rstep
        by auto
    then have \neg SN-on (rstep R) \{t \cdot \sigma\} by auto
    with assms show False by blast
\mathbf{qed}
lemma rstep-imp-C-s-r:
    assumes (s,t) \in rstep R
   shows \exists C \sigma l r. (l,r) \in R \wedge s = C\langle l \cdot \sigma \rangle \wedge t = C\langle r \cdot \sigma \rangle
proof -
    from assms obtain l \ r \ p \ \sigma where step:(s,t) \in rstep-r-p-s \ R \ (l,r) \ p \ \sigma
        unfolding rstep-iff-rstep-r-p-s by best
   let ?C = ctxt\text{-}of\text{-}pos\text{-}term\ p\ s
   from step have p \in poss \ s and (l,r) \in R and (l,r) \in R
        unfolding rstep-r-p-s-def Let-def by auto
    then have (l,r) \in R \land s = ?C\langle l \cdot \sigma \rangle \land t = ?C\langle r \cdot \sigma \rangle by auto
    then show ?thesis by force
qed
fun map-funs-rule :: ('f \Rightarrow 'g) \Rightarrow ('f, 'v) rule \Rightarrow ('g, 'v) rule
    where
        map-funs-rule fg\ lr = (map-funs-term fg\ (fst\ lr),\ map-funs-term fg\ (snd\ lr))
fun map-funs-trs :: ('f \Rightarrow 'g) \Rightarrow ('f, 'v) trs \Rightarrow ('g, 'v) trs
    where
        map-funs-trs\ fg\ R=map-funs-rule\ fg\ `R
\mathbf{lemma}\ \mathit{map-funs-trs-union:}\ \mathit{map-funs-trs}\ \mathit{fg}\ (R\cup S) = \mathit{map-funs-trs}\ \mathit{fg}\ R\cup \mathit{map-funs-trs}
fg S
```

unfolding map-funs-trs.simps by auto

```
lemma rstep-map-funs-term: assumes R: \bigwedge f. f \in funs-trs R \Longrightarrow h f = f and
step: (s,t) \in rstep R
  shows (map-funs-term\ h\ s,\ map-funs-term\ h\ t) \in rstep\ R
proof -
  from step obtain C \ l \ r \ \sigma where s: s = C \langle l \cdot \sigma \rangle and t: t = C \langle r \cdot \sigma \rangle and rule:
(l,r) \in R by auto
  let ?\sigma = map\text{-}funs\text{-}subst h \sigma
 let ?h = map\text{-}funs\text{-}term h
  note funs-defs = funs-rule-def[abs-def] funs-trs-def
 from rule have lr: funs-term \ l \cup funs-term \ r \subseteq funs-trs \ R unfolding funs-defs
   by auto
  have hl: ?h l = l
    by (rule funs-term-map-funs-term-id[OF R], insert lr, auto)
  have hr: ?h r = r
    by (rule funs-term-map-funs-term-id[OF R], insert lr, auto)
  show ?thesis unfolding s t
    unfolding map-funs-subst-distrib map-funs-term-ctxt-distrib hl hr
    by (rule rstepI[OF rule refl refl])
\mathbf{qed}
lemma wf-trs-map-funs-trs[simp]: wf-trs (map-funs-trs f R) = wf-trs R
  unfolding wf-trs-def
proof (rule iffI, intro allI impI)
  \mathbf{fix} \ l \ r
 assume \forall l \ r. \ (l, \ r) \in map\text{-}funs\text{-}trs \ f \ R \longrightarrow (\exists f \ ts. \ l = Fun \ f \ ts) \land vars\text{-}term \ r
\subseteq vars\text{-}term\ l\ \mathbf{and}\ (l,\ r)\in R
 then show (\exists f \ ts. \ l = Fun \ f \ ts) \land vars\text{-}term \ r \subseteq vars\text{-}term \ l \ by \ (cases \ l, force+)
 assume ass: \forall l \ r. \ (l, r) \in R \longrightarrow (\exists f \ ts. \ l = Fun \ f \ ts) \land vars-term \ r \subseteq vars-term
 show \forall l \ r. \ (l, \ r) \in map-funs-trs \ f \ R \longrightarrow (\exists f \ ts. \ l = Fun \ f \ ts) \land vars-term \ r \subseteq
vars-term\ l
  proof (intro allI impI)
    fix l r
    assume (l, r) \in map\text{-}funs\text{-}trs f R
    show (\exists f \ ts. \ l = Fun \ f \ ts) \land vars-term \ r \subseteq vars-term \ l
      by (cases l, force+)
  qed
qed
lemma map-funs-trs-comp: map-funs-trs fg (map-funs-trs gh R) = map-funs-trs
(fg \ o \ gh) \ R
proof -
  have mr: map-funs-rule (fg o gh) = map-funs-rule fg o map-funs-rule gh
    by (rule ext, auto simp: map-funs-term-comp)
  then show ?thesis
```

```
by (auto simp: map-funs-term-comp image-comp mr)
\mathbf{qed}
lemma map-funs-trs-mono: assumes R \subseteq R' shows map-funs-trs fq R \subseteq map-funs-trs
fg R'
 using assms by auto
lemma map-funs-trs-power-mono:
  fixes R R' :: (f, v) trs and fg :: f \Rightarrow f
 assumes R \subseteq R' shows ((map-funs-trs fg)^{n}) R \subseteq ((map-funs-trs fg)^{n}) R'
 using assms by (induct \ n, \ simp, \ auto)
declare map-funs-trs.simps[simp del]
lemma rstep-imp-map-rstep:
 assumes (s, t) \in rstep R
 shows (map-funs-term fg s, map-funs-term fg t) \in rstep <math>(map-funs-trs fg R)
 using assms
proof (induct)
 case (IH C \sigma l r)
 then have (map-funs-term\ fg\ l,\ map-funs-term\ fg\ r)\in map-funs-trs\ fg\ R (is (?l,
?r) \in ?R)
   unfolding map-funs-trs.simps by force
  then have (?l, ?r) \in rstep ?R..
  then have (?l \cdot map\text{-}funs\text{-}subst\ fg\ \sigma,\ ?r \cdot map\text{-}funs\text{-}subst\ fg\ \sigma) \in rstep\ ?R..
 then show ?case by auto
qed
lemma rsteps-imp-map-rsteps: assumes (s,t) \in (rstep \ R)^*
 shows (map-funs-term fg s, map-funs-term fg t) \in (rstep (map-funs-trs fg R))^*
 using assms
proof (induct, clarify)
 case (step \ y \ z)
 then have (map\text{-}funs\text{-}term fg \ y, map\text{-}funs\text{-}term fg \ z) \in rstep \ (map\text{-}funs\text{-}trs fg \ R)
using rstep-imp-map-rstep
   by (auto simp: map-funs-trs.simps)
 with step show ?case by auto
qed
lemma SN-map-imp-SN:
 assumes SN: SN-on (rstep\ (map-funs-trs\ fg\ R))\ \{map-funs-term\ fg\ t\}
 shows SN-on (rstep R) \{t\}
proof (rule ccontr)
 assume \neg SN-on (rstep R) \{t\}
 from this obtain f where cond: f \theta = t \land (\forall i. (f i, f (Suc i)) \in rstep R)
   unfolding SN-on-def by auto
 obtain g where g: g = (\lambda \ i. \ map-funs-term \ fg \ (f \ i)) by auto
 with cond have cond2: g \ 0 = map-funs-term fg \ t \land (\forall i. (g \ i, g \ (Suc \ i)) \in rstep
(map-funs-trs\ fg\ R))
```

```
using rstep-imp-map-rstep[where fg = fg] by blast
  from SN
   have \neg (\exists g. (g \ 0 = map\text{-}funs\text{-}term \ fg \ t \land (\forall i. (g \ i, \ g \ (Suc \ i)) \in rstep))
(map-funs-trs\ fg\ R))))
    unfolding SN-on-def by auto
  with cond2 show False by auto
qed
lemma rstep-iff-map-rstep:
  assumes inj fg
  shows (s, t) \in rstep \ R \longleftrightarrow (map-funs-term \ fg \ s, map-funs-term \ fg \ t) \in rstep
(map-funs-trs\ fg\ R)
proof
  assume (s,t) \in rstep R
  then show (map-funs-term fg s, map-funs-term fg t) \in rstep(map-funs-trs fg R)
    by (rule rstep-imp-map-rstep)
  assume (map-funs-term fg s, map-funs-term fg t) \in rstep (map-funs-trs fg R)
 then have (map\text{-}funs\text{-}term fg s, map\text{-}funs\text{-}term fg t) \in ctxt.closure(subst.closure(map\text{-}funs\text{-}trs
fg(R)
    by (simp add: rstep-eq-closure)
  then obtain C \ u \ v \ \text{where} \ (u,v) \in subst.closure(map-funs-trs \ fg \ R) and C\langle u \rangle
= map-funs-term fg s
    and C\langle v\rangle = map\text{-}funs\text{-}term fg t
    by (cases rule: ctxt.closure.cases) force
  then obtain \sigma w x where (w,x) \in map-funs-trs fg R and w \cdot \sigma = u and x \cdot \sigma = u
    by (cases rule: subst.closure.cases) force
  then obtain l r where w = map-funs-term fg l and x = map-funs-term fg r
    and (l,r) \in R by (auto simp: map-funs-trs.simps)
 have ps: C\langle map-funs-term fg \ l \cdot \sigma \rangle = map-funs-term fg \ s and pt: C\langle map-funs-term
fg \ r \cdot \sigma \rangle = map-funs-term \ fg \ t
   unfolding \langle w = map\text{-}funs\text{-}term fg \ l \rangle [symmetric] \langle x = map\text{-}funs\text{-}term fg \ r \rangle [symmetric]
\langle w \cdot \sigma = u \rangle \langle x \cdot \sigma = v \rangle
      \langle C\langle u\rangle = map\text{-}funs\text{-}term\ fg\ s\rangle\ \langle C\langle v\rangle = map\text{-}funs\text{-}term\ fg\ t\rangle\ \mathbf{by}\ auto
  let ?gf = the\text{-}inv fg
  let ?C = map\text{-}funs\text{-}ctxt ?gf C
  let ?\sigma = map\text{-}funs\text{-}subst ?gf \sigma
  have gffg: ?gf \circ fg = id using the-inv-f-f[OF assms] by (intro\ ext,\ auto)
  from ps and pt have s = map-funs-term ?gf (C \langle map-funs-term fg \mid l \cdot \sigma \rangle)
      and t = map-funs-term ?gf (C\langle map-funs-term fg \ r \cdot \sigma \rangle) by (auto simp:
map-funs-term-comp\ gffg)
  then have s: s = ?C\langle map\text{-}funs\text{-}term ?gf \ (map\text{-}funs\text{-}term fg \ l \cdot \sigma) \rangle
   and t: t = ?C\langle map\text{-}funs\text{-}term ?gf \ (map\text{-}funs\text{-}term fg \ r \cdot \sigma) \rangle using map\text{-}funs\text{-}term\text{-}ctxt\text{-}distrib
by auto
  from s have s = ?C\langle l \cdot ?\sigma \rangle by (simp add: map-funs-term-comp gffg)
  from t have t = ?C\langle r \cdot ?\sigma \rangle by (simp add: map-funs-term-comp gffg)
  from \langle (l, r) \in R \rangle have (l \cdot ?\sigma, r \cdot ?\sigma) \in subst.closure R by blast
  then have (?C\langle l\cdot?\sigma\rangle,?C\langle r\cdot?\sigma\rangle) \in ctxt.closure(subst.closure\ R) by blast
```

```
then show (s,t) \in rstep \ R unfolding \langle s = ?C\langle l \cdot ?\sigma \rangle \rangle \langle t = ?C\langle r \cdot ?\sigma \rangle \rangle by (simp)
add: rstep-eq-closure)
qed
lemma rstep-map-funs-trs-power-mono:
  fixes R R' :: (f, v) trs and fg :: f \Rightarrow f
 by (rule rstep-mono, rule map-funs-trs-power-mono, rule subset)
lemma subsetI3: (\bigwedge x \ y \ z. \ (x, \ y, \ z) \in A \Longrightarrow (x, \ y, \ z) \in B) \Longrightarrow A \subseteq B by auto
lemma aux: (\bigcup a \in P. \{(x,y,z). \ x = fst \ a \land y = snd \ a \land Q \ a \ z\}) = \{(x,y,z). \ (x,y)\}
\in P \land Q(x,y) z (is ?P = ?Q)
proof
  show ?P \subseteq ?Q
 proof
   fix x assume x \in P
   then obtain a where a \in P and x \in \{(x,y,z).\ x = fst\ a \land y = snd\ a \land Q\ a\}
z} by auto
   then obtain b where Q (fst x, fst (snd x)) (snd (snd x)) and (fst x, fst (snd
(x) = a and (snd x) = b by force
   from \langle a \in P \rangle have (fst \ a, snd \ a) \in P unfolding split\text{-}def by simp
    from \langle Q (fst \ x, fst \ (snd \ x)) \rangle (snd (snd \ x) \rangle) have Q \ a \ b unfolding \langle (fst \ x, fst \ (snd \ x)) \rangle
(snd x)) = a \land (snd x) = b \land .
    from \langle (fst \ a, snd \ a) \in P \rangle and \langle Q \ a \ b \rangle show x \in ?Q unfolding split-def \langle (fst \ a, snd \ a) \rangle
x, fst (snd x) = a [symmetric] (snd (snd x) = b) [symmetric] by simp
 ged
\mathbf{next}
 show ?Q \subseteq ?P
  proof (rule subsetI3)
   fix x y z assume (x,y,z) \in ?Q
   then have (x,y) \in P and Q(x,y) z by auto
   then have x = fst(x,y) \land y = snd(x,y) \land Q(x,y) z by auto
    then have (x,y,z) \in \{(x,y,z), x = fst(x,y) \land y = snd(x,y) \land Q(x,y) z\} by
    then have \exists p \in P. (x,y,z) \in \{(x,y,z). \ x = fst \ p \land y = snd \ p \land Q \ p \ z\} using
\langle (x,y) \in P \rangle by blast
   then show (x,y,z) \in P unfolding UN-iff[symmetric] by simp
  qed
qed
lemma finite-imp-finite-DP-on':
 assumes finite R
 shows finite \{(l, r, u).
   \exists h \ us. \ u = Fun \ h \ us \land (l, r) \in R \land r \trianglerighteq u \land (h, length \ us) \in F \land \neg (l \trianglerighteq u) \}
proof -
  have \bigwedge l \ r. \ (l, \ r) \in R \Longrightarrow finite \{u. \ r \succeq u\}
 proof -
```

```
fix l r
   assume (l, r) \in R
    show finite \{u. \ r \trianglerighteq u\} by (rule finite-subterms)
  with \langle finite R \rangle have finite(\bigcup (l, r) \in R. \{u. r \geq u\}) by auto
  have finite(\bigcup lr \in R. \{(l, r, u). l = fst lr \land r = snd lr \land snd lr \supseteq u\})
  proof (rule finite-UN-I)
    show finite R by (rule \langle finite R \rangle)
  next
    \mathbf{fix} \ lr
    assume lr \in R
    have finite \{u. \ snd \ lr \ge u\} by (rule finite-subterms)
    then show finite \{(l,r,u).\ l=fst\ lr\wedge r=snd\ lr\wedge snd\ lr\trianglerighteq u\} by auto
  qed
  then have finite \{(l,r,u).\ (l,r)\in R\wedge r\trianglerighteq u\} unfolding aux by auto
 have \{(l,r,u).\ (l,r)\in R\land r\trianglerighteq u\}\supseteq\{(l,r,u).\ (\exists\ h\ us.\ u=Fun\ h\ us\land (l,r)\in R
\land r \trianglerighteq u \land (h, length \ us) \in F \land \neg(l \rhd u)) by auto
  with \langle finite \ \{(l,r,u), \ (l,r) \in R \land r \trianglerighteq u \} \rangle show ?thesis using finite-subset by
qed
lemma card-image-le':
  assumes finite S
  shows card (\bigcup y \in S.\{x. \ x = f \ y\}) \le card \ S
proof -
  have A:(\bigcup y \in S. \{x. \ x = f \ y\}) = f \ `S \ \mathbf{by} \ auto
  from assms show ?thesis unfolding A using card-image-le by auto
qed
lemma subteq-of-map-imp-map: map-funs-term g s \trianglerighteq t \Longrightarrow \exists u. t = map\text{-funs-term}
proof (induct s arbitrary: t)
 \mathbf{case}\ (\mathit{Var}\ x)
 then have map-funs-term g(Var x) \triangleright t \vee map-funs-term g(Var x) = t by auto
 then show ?case
 proof
     assume map-funs-term g (Var x) \triangleright t then show ?thesis by (cases rule:
supt.cases) auto
  next
    assume map-funs-term g(Var x) = t then show ?thesis by best
  qed
next
  case (Fun f ss)
 then have map-funs-term g (Fun f ss) \triangleright t \vee map-funs-term g (Fun f ss) = t by
  then show ?case
  proof
    assume map-funs-term g (Fun f ss) \triangleright t
  then show ?case using Fun by (cases rule: supt.cases) (auto simp: supt-supteq-conv)
```

```
next
   assume map-funs-term g (Fun f ss) = t then show ?thesis by best
 qed
qed
lemma map-funs-term-inj:
 assumes inj (fg :: ('f \Rightarrow 'g))
 shows inj (map-funs-term fg)
proof -
   fix s t :: ('f, 'v) term
   assume map-funs-term fg \ s = map-funs-term fg \ t
   then have s = t
   proof (induct s arbitrary: t)
     case (Var x) with assms show ?case by (induct t) auto
     case (Fun f ss) then show ?case
     proof (induct t)
      case (Var y) then show ?case by auto
      case (Fun \ g \ ts)
      then have A: map (map-funs-term fg) ss = map (map-funs-term fg) ts by
simp
      then have len-eq:length\ ss=length\ ts\ by\ (rule\ map-eq-imp-length-eq)
       from A have !!i. i < length \ ss \Longrightarrow (map \ (map-funs-term \ fg) \ ss)!i = (map
(map-funs-term fg) ts)!i by auto
        with len-eq have eq: !!i. i < length ss \implies map-funs-term fg (ss!i) =
map-funs-term fg (ts!i) using nth-map by auto
      have in-set: !!i. i < length \ ss \Longrightarrow (ss!i) \in set \ ss \ by \ auto
      from Fun have \forall i < length \ ss. \ (ss!i) = (ts!i) using in-set eq by auto
      with len-eq have ss = ts using nth-equality I[ where xs = ss and ys = ts]
by simp
      have f = g using Fun \langle inj fg \rangle unfolding inj-on-def by auto
      with \langle ss = ts \rangle show ?case by simp
     qed
   qed
 then show ?thesis unfolding inj-on-def by auto
qed
{f lemma} rsteps-closed-ctxt:
 assumes (s, t) \in (rstep R)^*
 shows (C\langle s \rangle, C\langle t \rangle) \in (rstep R)^*
proof -
 from assms obtain n where (s,t) \in (rstep R)^{n}
   using rtrancl-is-UN-relpow by auto
 then show ?thesis
 proof (induct n arbitrary: s)
   case \theta then show ?case by auto
```

```
next
    case (Suc \ n)
    from relpow-Suc-D2[OF \langle (s,t) \in (rstep R) \widehat{\ \ } Suc \ n \rangle] obtain u
       where (s,u) \in (rstep \ R) and (u,t) \in (rstep \ R) by auto
    from \langle (s,u) \in (rstep \ R) \rangle have (C\langle s \rangle, C\langle u \rangle) \in (rstep \ R) ..
    from Suc and \langle (u,t) \in (rstep \ R)^{n}  have (C\langle u \rangle, C\langle t \rangle) \in (rstep \ R)^* by simp
    with \langle (C\langle s\rangle, C\langle u\rangle) \in (rstep\ R) \rangle show ?case by auto
  qed
qed
lemma one-imp-ctxt-closed: assumes one: \bigwedge f bef s t aft. (s,t) \in r \Longrightarrow (Fun f)
(bef @ s \# aft), Fun f (bef @ t \# aft)) \in r
  shows ctxt.closed r
proof
  \mathbf{fix} \ s \ t \ C
  assume st:(s,t) \in r
  show (C\langle s\rangle, C\langle t\rangle) \in r
  proof (induct C)
    case (More f bef C aft)
    from one [OF More] show ?case by auto
  qed (insert st, auto)
qed
lemma ctxt-closed-nrrstep [intro]: ctxt.closed (nrrstep R)
proof (rule one-imp-ctxt-closed)
  fix f bef s t aft
  assume (s,t) \in nrrstep R
  from this [unfolded nrrstep-def'] obtain l r C \sigma
    where lr:(l,r) \in R and C: C \neq \square
      and s: s = C\langle l \cdot \sigma \rangle and t: t = C\langle r \cdot \sigma \rangle by auto
  show (Fun f (bef @ s \# aft), Fun f (bef @ t \# aft)) \in nrrstep R
  proof (rule nrrstepI[OF lr])
    show More f bef C aft \neq \square by simp
  qed (insert s t, auto)
qed
definition all-ctxt-closed :: 'f sig \Rightarrow ('f, 'v) trs \Rightarrow bool where
  all\text{-}ctxt\text{-}closed\ F\ r\longleftrightarrow (\forall f\ ts\ ss.\ (f,\ length\ ss)\in F\longrightarrow length\ ts=length\ ss\longrightarrow
    (\forall i. \ i < length \ ts \longrightarrow (ts \ ! \ i, ss \ ! \ i) \in r) \longrightarrow (\forall \ i. \ i < length \ ts \longrightarrow funas-term)
(ts ! i) \cup funas\text{-}term (ss ! i) \subseteq F) \longrightarrow (Fun f ts, Fun f ss) \in r) \land (\forall x. (Var x, fun f ss)) \cap (\forall x. (Var x, fun f ss))
Var(x) \in r
lemma all-ctxt-closedD: all-ctxt-closed F r \Longrightarrow (f, length \ ss) \in F \Longrightarrow length \ ts =
length ss
  \implies \llbracket \bigwedge i. \ i < length \ ts \implies (ts ! \ i, ss ! \ i) \in r \rrbracket
  \Longrightarrow \llbracket \bigwedge i. \ i < length \ ts \Longrightarrow funas-term \ (ts!i) \subseteq F \rrbracket
  \implies \llbracket \bigwedge \ i. \ i < length \ ts \implies funas-term \ (ss!i) \subseteq F \rrbracket
  \implies (Fun f ts, Fun f ss) \in r
  unfolding all-ctxt-closed-def by auto
```

```
lemma all-ctxt-closed-sig-reflE: assumes all: all-ctxt-closed F r
 shows funas-term t \subseteq F \Longrightarrow (t,t) \in r
proof (induct t)
 case (Var x)
 from all[unfolded all-ctxt-closed-def] show ?case by auto
\mathbf{next}
  case (Fun f ts)
 show ?case
   by (rule\ all\ -ctxt\ -closedD[OF\ all\ -\ -\ Fun(1)],\ insert\ Fun(2),\ force+)
lemma all-ctxt-closed-reflE: assumes all: all-ctxt-closed UNIV r
 shows (t,t) \in r
 by (rule all-ctxt-closed-sig-reflE[OF all], auto)
lemma all-ctxt-closed-relcomp: assumes all-ctxt-closed UNIV R all-ctxt-closed UNIV
 shows all-ctxt-closed UNIV (R O S)
 unfolding all-ctxt-closed-def
proof (intro allI impI conjI)
  show (Var x, Var x) \in R \ O \ S \ for \ x \ using \ assms \ unfolding \ all-ctxt-closed-def
by auto
 \mathbf{fix} \ f \ ts \ ss
 assume len: length ts = length ss
   and steps: \forall i < length \ ts. \ (ts ! i, ss ! i) \in R \ O \ S
 hence \forall i. \exists us. i < length ts \longrightarrow (ts! i, us) \in R \land (us, ss! i) \in S by blast
 from choice OF this obtain us where steps: \land i. i<length ts \Longrightarrow (ts! i, us i)
\in R \land (us\ i,\ ss\ !\ i) \in S
   \mathbf{by} blast
 let ?us = map \ us \ [0.. < length \ ss]
  from all-ctxt-closedD[OF assms(2)] steps len have us: (Fun f ?us, Fun f ss) \in
S by auto
 from all-ctxt-closedD[OF assms(1)] steps len have tu: (Fun f ts, Fun f ?us) \in R
by force
 from tu us
 show (Fun f ts, Fun f ss) \in R O S by auto
qed
lemma all-ctxt-closed-relpow:
 assumes acc:all-ctxt-closed\ UNIV\ Q
 shows all-ctxt-closed UNIV (Q \cap n)
proof (induct \ n)
 case \theta
 thus ?case by (auto simp: all-ctxt-closed-def nth-equalityI)
\mathbf{next}
 case (Suc \ n)
 from all-ctxt-closed-relcomp[OF this acc]
 show ?case by simp
```

```
lemma all-ctxt-closed-subst-step-sig:
  fixes r :: ('f, 'v) \ trs \ and \ t :: ('f, 'v) \ term
  assumes all: all-ctxt-closed F r
    and sig: funas-term\ t\subseteq F
    and steps: \bigwedge x. x \in vars-term t \Longrightarrow (\sigma x, \tau x) \in r
    and sig-subst: \bigwedge x. x \in vars\text{-}term\ t \Longrightarrow funas\text{-}term\ (\sigma\ x) \cup funas\text{-}term\ (\tau\ x)
\subseteq F
  shows (t \cdot \sigma, t \cdot \tau) \in r
  using sig steps sig-subst
proof (induct t)
  case (Var x)
  then show ?case by auto
  case (Fun \ f \ ts)
    \mathbf{fix} \ t
    assume t: t \in set ts
     with Fun(2-3) have funas-term t \subseteq F \land x. x \in vars-term t \Longrightarrow (\sigma x, \tau x)
\in r by auto
    from Fun(1)[OF\ t\ this\ Fun(4)]\ t have step:\ (t\cdot\sigma,\ t\cdot\tau)\in r by auto
    from Fun(4) t have \bigwedge x. x \in vars\text{-}term\ t \Longrightarrow funas\text{-}term\ (\sigma\ x) \cup funas\text{-}term
(\tau x) \subseteq F by auto
     \mathbf{with} \ \langle \mathit{funas-term} \ t \subseteq \mathit{F} \rangle \ \mathbf{have} \ \mathit{funas-term} \ (t \cdot \sigma) \ \cup \ \mathit{funas-term} \ (t \cdot \tau) \subseteq \mathit{F}
unfolding funas-term-subst by auto
    note step this
  then have steps: \bigwedge i. i < length ts \Longrightarrow (ts ! i \cdot \sigma, ts ! i \cdot \tau) \in r \wedge funas-term
(ts ! i \cdot \sigma) \cup funas\text{-}term \ (ts ! i \cdot \tau) \subseteq F \ \textbf{unfolding} \ set\text{-}conv\text{-}nth \ \textbf{by} \ auto
  with all-ctxt-closedD[OF all, of f map (\lambda \ t. \ t \cdot \tau) ts map (\lambda \ t. \ t \cdot \sigma) ts] Fun(2)
  show ?case by auto
qed
lemma all-ctxt-closed-subst-step:
  fixes r :: ('f, 'v) \ trs \ and \ t :: ('f, 'v) \ term
  assumes all: all-ctxt-closed UNIV r
    and steps: \bigwedge x. x \in vars\text{-}term\ t \Longrightarrow (\sigma\ x, \tau\ x) \in r
  shows (t \cdot \sigma, t \cdot \tau) \in r
  by (rule all-ctxt-closed-subst-step-sig[OF all - steps], auto)
lemma all-ctxt-closed-ctxtE: assumes all: all-ctxt-closed F R
  and Fs: funas-term s \subseteq F
  and Ft: funas-term\ t\subseteq F
  and step: (s,t) \in R
shows funas-ctxt C \subseteq F \Longrightarrow (C \langle s \rangle, C \langle t \rangle) \in R
proof(induct C)
  case Hole
```

```
from step show ?case by auto
next
  case (More f bef C aft)
  let ?n = length bef
  let ?m = Suc (?n + length aft)
  show ?case unfolding intp-actxt.simps
  proof (rule all-ctxt-closedD[OF all])
   let ?t = \lambda \ s. \ (bef @ C \langle s \rangle \# aft) ! i
   assume i < length (bef @ C\langle s \rangle \# aft)
   then have i: i < ?m by auto
   then have mem: \bigwedge s. ?t s \in set (bef @ C \langle s \rangle \# aft) unfolding set-conv-nth
by auto
   from mem[of s] More Fs show funas-term (?t s) \subseteq F by auto
   from mem[of t] More Ft show funas-term (?t t) \subseteq F by auto
   from More have step: (C \langle s \rangle, C \langle t \rangle) \in R by auto
     \mathbf{fix} \ s
     assume s \in set \ bef \cup set \ aft
     with More have funas-term s \subseteq F by auto
     from all-ctxt-closed-sig-reflE[OF \ all \ this] have (s,s) \in R by auto
    } note steps = this
   show (?t \ s, \ ?t \ t) \in R
   proof (cases i = ?n)
     {f case}\ True
     then show ?thesis using step by auto
   next
     {f case} False
     show ?thesis
     proof (cases i < ?n)
       case True
        then show ?thesis unfolding append-Cons-nth-left[OF True] using steps
by auto
     next
       case False
       with \langle i \neq ?n \rangle i have \exists k. k < length aft \wedge i = Suc ?n + k by presburger
       then obtain k where k: k < length \ aft \ and \ i: i = Suc \ ?n + k \ by \ auto
       from k show ?thesis using steps unfolding i by (auto simp: nth-append)
     qed
   qed
  qed (insert More, auto)
qed
lemma trans-ctxt-sig-imp-all-ctxt-closed: assumes tran: trans r
  and refl: \bigwedge t. funas-term t \subseteq F \Longrightarrow (t,t) \in r
 and ctxt: \bigwedge C s \ t. funas-ctxt C \subseteq F \Longrightarrow funas-term s \subseteq F \Longrightarrow funas-term t \subseteq
F \Longrightarrow (s,t) \in r \Longrightarrow (C \langle s \rangle, C \langle t \rangle) \in r
shows all-ctxt-closed F r
  unfolding all-ctxt-closed-def
```

```
proof (intro conjI, intro allI impI)
  \mathbf{fix} \ f \ ts \ ss
 assume f: (f, length \ ss) \in F and
   l: length \ ts = length \ ss \ and
   steps: \forall i < length \ ts. \ (ts ! i, ss ! i) \in r \ and
   sig: \forall i < length \ ts. \ funas-term \ (ts!i) \cup funas-term \ (ss!i) \subseteq F
 from sig have sig-ts: \bigwedge t. t \in set \ ts \Longrightarrow funas-term \ t \subseteq F unfolding set\text{-}conv\text{-}nth
 let ?p = \lambda ss. (Fun f ts, Fun f ss) \in r \land funas\text{-}term (Fun f ss) \subseteq F
 let ?r = \lambda \ xsi \ ysi. \ (xsi, \ ysi) \in r \land funas\text{-}term \ ysi \subseteq F
 have init: ?p ts by (rule conjI[OF refl], insert f sig-ts l, auto)
  proof (rule parallel-list-update[where p = ?p and r = ?r, OF - HOL.refl init
l[symmetric]])
   \mathbf{fix} \ xs \ i \ y
   assume len: length xs = length ts
     and i: i < length ts
     and r: ?r (xs ! i) y
     and p: ?p xs
   let ?C = More f (take i xs) Hole (drop (Suc i) xs)
   have id1: Fun f xs = ?C \langle xs ! i \rangle using id-take-nth-drop[OF i[folded len]] by
simp
    have id2: Fun f(xs[i:=y]) = ?C \langle y \rangle using upd-conv-take-nth-drop[OF]
i[folded\ len]] by simp
    from p[unfolded\ id1] have C: funas-ctxt\ ?C \subseteq F and xi: funas-term\ (xs\ !\ i)
\subseteq F by auto
   from r have funas-term y \subseteq F (xs! i, y) \in r by auto
   with ctxt[OF\ C\ xi\ this]\ C have r:(Fun\ f\ xs,\ Fun\ f\ (xs[i:=y]))\in r
     and f: funas-term\ (Fun\ f\ (xs[i:=y])) \subseteq F\ unfolding\ id1\ id2\ by\ auto
   from p r tran have (Fun f ts, Fun f (xs[i := y])) \in r unfolding trans\text{-}def by
auto
   with f
   show ?p (xs[i := y]) by auto
 qed (insert sig steps, auto)
 then show (Fun f ts, Fun f ss) \in r...
qed (insert refl, auto)
lemma trans-ctxt-imp-all-ctxt-closed: assumes tran: trans r
 and refl: refl r
 and ctxt: ctxt.closed r
shows all-ctxt-closed F r
 by (rule\ trans-ctxt-sig-imp-all-ctxt-closed[OF\ tran-ctxt.closedD[OF\ ctxt]],\ insert
refl[unfolded refl-on-def], auto)
lemma all-ctxt-closed-rsteps[intro]: all-ctxt-closed F ((rstep r)*)
 by (blast intro: trans-ctxt-imp-all-ctxt-closed trans-rtrancl refl-rtrancl)
{f lemma}\ subst-rsteps-imp-rsteps:
 fixes \sigma :: ('f, 'v) \ subst
```

```
assumes \bigwedge x. \ x \in vars\text{-}term \ t \Longrightarrow (\sigma \ x, \ \tau \ x) \in (rstep \ R)^*
 shows (t \cdot \sigma, t \cdot \tau) \in (rstep \ R)^*
 by (rule all-ctxt-closed-subst-step)
   (insert assms, auto)
\mathbf{lemma}\ \mathit{rtrancl-trancl-into-trancl}:
  assumes len: length ts = length ss
   and steps: \forall i < length \ ts. \ (ts ! i, ss ! i) \in R^*
   and i: i < length ts
   and step: (ts ! i, ss ! i) \in R^+
   and ctxt: ctxt.closed R
 shows (Fun f ts, Fun f ss) \in R^+
proof -
 from ctxt have ctxt-rt: ctxt.closed (R^*) by blast
 from ctxt have ctxt-t: ctxt.closed (R^+) by blast
 from id-take-nth-drop[OF i] have ts: ts = take i ts @ ts! i # <math>drop(Suc i) ts (is
-= ?ts) by auto
  from id-take-nth-drop[OF\ i[simplified\ len]] have ss: ss=take\ i\ ss\ @\ ss\ !\ i\ \#
drop (Suc i) ss (is -= ?ss) by auto
 let ?mid = take \ i \ ss \ @ \ ts \ ! \ i \ \# \ drop \ (Suc \ i) \ ss
 from trans-ctxt-imp-all-ctxt-closed[OF trans-rtrancl refl-rtrancl ctxt-rt] have all:
all-ctxt-closed UNIV (R^*).
  from ctxt-closed-one[OF\ ctxt-t step] have (Fun\ f\ ?mid,\ Fun\ f\ ?ss)\in R^+.
  then have part1: (Fun \ f \ ?mid, Fun \ f \ ss) \in R^+ \ unfolding \ ss[symmetric].
  from ts have lents: length ts = length ?ts by simp
 have (Fun f ts, Fun f ?mid) \in R^*
  proof (rule all-ctxt-closedD[OF all])
   fix i
   assume jts: j < length ts
   from i len have i: i < length ss by auto
   show (ts ! j, ?mid ! j) \in R^*
   proof (cases j < i)
     case True
     with i have j: j < length ss by auto
     with True have id: ?mid ! j = ss ! j by (simp add: nth-append)
     from steps len j have (ts ! j, ss ! j) \in R^* by auto
     then show ?thesis using id by simp
   next
     case False
     show ?thesis
     proof (cases j = i)
       case True
       then have ?mid ! j = ts ! j using i by (simp \ add: nth-append)
       then show ?thesis by simp
     next
       case False
       from i have min: min (length ss) i = i by simp
       from False \langle \neg j < i \rangle have j > i by arith
       then obtain k where k: j - i = Suc k by (cases j - i, auto)
```

```
then have j: j = Suc (i+k) by auto
       with jts len have ss: Suc i + k \le length ss and jlen: j < length ts by auto
       then have ?mid! j = ss!j using j i by (simp add: nth-append min \langle \neg j \rangle
\langle i \rangle nth-drop[OF ss])
       with steps jlen show ?thesis by auto
     qed
   qed
  qed (insert lents[symmetric] len, auto)
  with part1 show ?thesis by auto
qed
lemma SN-ctxt-apply-imp-SN-ctxt-to-term-list-gen:
  assumes ctxt: ctxt.closed r
 assumes SN: SN-on \ r \ \{C\langle t\rangle\}
 shows SN-on r (set (ctxt-to-term-list C))
proof -
  {
   \mathbf{fix} \ u
   assume u \in set (ctxt-to-term-list C)
   from ctxt-to-term-list-supt[OF this, of t] have C\langle t \rangle \geq u
     by (rule supt-imp-supteq)
   from ctxt-closed-SN-on-subt[OF ctxt, OF SN this]
   have SN-on r \{u\} by auto
  then show ?thesis
   unfolding SN-on-def by auto
lemma rstep-subset: ctxt.closed\ R' \Longrightarrow subst.closed\ R' \Longrightarrow R \subseteq R' \Longrightarrow rstep\ R \subseteq
R' by fast
lemma trancl-rstep-ctxt:
  (s,t) \in (rstep\ R)^+ \Longrightarrow (C\langle s \rangle,\ C\langle t \rangle) \in (rstep\ R)^+
  by (rule ctxt.closedD, blast)
lemma args-steps-imp-steps-qen:
  assumes ctxt: \bigwedge bef s t aft. (s, t) \in r (length bef) \Longrightarrow
   length \ ts = Suc \ (length \ bef + length \ aft) \Longrightarrow
   (Fun \ f \ (bef @ (s :: ('f, 'v) \ term) \# aft), Fun \ f \ (bef @ t \# aft)) \in R^*
   and len: length ss = length ts
   and args: \bigwedge i. i < length \ ts \Longrightarrow (ss \ ! \ i, \ ts \ ! \ i) \in (r \ i)^*
 shows (Fun f ss, Fun f ts) \in R^*
proof -
 let ?tss = \lambda i. take i ts @ drop i ss
   fix bef :: ('f,'v)term list and s t and aft :: ('f,'v)term list
   assume (s,t) \in (r \ (length \ bef))^* and len: length \ ts = Suc \ (length \ bef + length
aft)
   then have (Fun f (bef @ s \# aft), Fun f (bef @ t \# aft)) \in R^*
```

```
proof (induct)
     case (step \ t \ u)
     from step(3)[OF\ len]\ ctxt[OF\ step(2)\ len] show ?case by auto
 note one = this
 have a: \forall i \leq length \ ts. \ (Fun \ f \ ss, Fun \ f \ (?tss \ i)) \in R^*
  proof (intro allI impI)
   fix i assume i \leq length \ ts \ then \ show \ (Fun \ f \ ss,Fun \ f \ (?tss \ i)) \in R^*
   proof (induct i)
     case \theta
     then show ?case by simp
   next
     case (Suc\ i)
     then have IH: (Fun f ss, Fun f (?tss i)) \in R^*
      and i: i < length ts by auto
     have si: ?tss (Suc i) = take i ts @ ts ! i \# drop (Suc i) ss
      unfolding take-Suc-conv-app-nth[OF\ i] by simp
     have ii: ?tss\ i = take\ i\ ts\ @\ ss\ !\ i\ \#\ drop\ (Suc\ i)\ ss
       unfolding Cons-nth-drop-Suc[OF i[unfolded len[symmetric]]] ...
     from i have i': length (take i ts) < length ts and len': length (take i ts) = i
by auto
     from len i have len'': length ts = Suc (length (take i ts) + length (drop (Suc
i) ss)) by simp
     from one[OF args[OF i'] len''] IH
     show ?case unfolding si ii len' by auto
   qed
 ged
 from this [THEN spec, THEN mp[OF - le-refl]]
 show ?thesis using len by auto
qed
lemma args-steps-imp-steps:
 assumes ctxt: ctxt.closed R
   and len: length ss = length \ ts and args: \forall i < length \ ss. \ (ss!i, ts!i) \in R^*
 shows (Fun f ss, Fun f ts) \in R^*
proof (rule args-steps-imp-steps-gen[OF - len])
  assume i < length ts then show (ss ! i, ts ! i) \in R^* using args len by auto
qed (insert ctxt-closed-one[OF ctxt], auto)
lemmas args-rsteps-imp-rsteps = args-steps-imp-steps [OF ctxt-closed-rstep]
lemma replace-at-subst-steps:
 fixes \sigma \tau :: (f, v) subst
 assumes acc: all-ctxt-closed UNIV r
   and refl: refl r
   and *: \bigwedge x. (\sigma x, \tau x) \in r
   and p \in poss t
```

```
and t \mid p = Var x
 shows (replace-at (t \cdot \sigma) p (\tau x), t \cdot \tau) \in r
 using assms(4-)
proof (induction t arbitrary: p)
 case (Var x)
  then show ?case using refl by (simp add: refl-on-def)
next
  case (Fun f ts)
 then obtain i \ q where [simp]: p = i \# q and i: i < length ts
   and q: q \in poss \ (ts \mid i) and [simp]: ts \mid i \mid -q = Var \ x \ by \ (cases \ p) auto
 let ?C = ctxt\text{-}of\text{-}pos\text{-}term\ q\ (ts ! i \cdot \sigma)
 let ?ts = map(\lambda t. t \cdot \tau) ts
 let ?ss = take i (map (\lambda t. \ t \cdot \sigma) ts) @ ?C\langle \tau \ x \rangle \# drop (Suc i) (map (\lambda t. \ t \cdot \sigma)
ts)
 have \forall j < length \ ts. \ (?ss ! j, ?ts ! j) \in r
 proof (intro allI impI)
   fix j
   assume j: j < length ts
   moreover
    { assume [simp]: j = i
     have ?ss! j = ?C\langle \tau | x \rangle using i by (simp add: nth-append-take)
     with Fun.IH [of ts! i q]
     have (?ss ! j, ?ts ! j) \in r using q and i by simp \}
   moreover
   \{ assume j < i \}
     with i have ?ss! j = ts! j \cdot \sigma
       and ?ts! j = ts! j \cdot \tau by (simp-all add: nth-append-take-is-nth-conv)
    then have (?ss ! j, ?ts ! j) \in r by (auto simp: * all-ctxt-closed-subst-step [OF])
acc])
   moreover
    { assume j > i
     with i and j have ?ss! j = ts! j \cdot \sigma
       and ?ts! j = ts! j \cdot \tau by (simp-all add: nth-append-drop-is-nth-conv)
     then have (?ss ! j, ?ts ! j) \in r by (auto simp: * all-ctxt-closed-subst-step [OF])
acc])
   ultimately show (?ss! j, ?ts! j) \in r by arith
 qed
 moreover have i < length ts by fact
 ultimately show ?case
   by (auto intro: all-ctxt-closedD [OF acc])
\mathbf{qed}
lemma replace-at-subst-rsteps:
 fixes \sigma \tau :: (f, v) subst
 assumes *: \bigwedge x. (\sigma \ x, \ \tau \ x) \in (rstep \ R)^*
   and p \in poss t
   and t \mid p = Var x
 shows (replace-at (t \cdot \sigma) p(\tau x), t \cdot \tau) \in (rstep R)^*
  by (intro replace-at-subst-steps[OF - - assms], auto simp: refl-on-def)
```

```
\mathbf{lemma}\ substs-rsteps:
  assumes \bigwedge x. (\sigma \ x, \tau \ x) \in (rstep \ R)^*
  shows (t \cdot \sigma, t \cdot \tau) \in (rstep \ R)^*
proof (induct t)
  case (Var\ y)
  show ?case using assms by simp-all
next
  case (Fun f ts)
  then have \forall i < length (map (\lambda t. \ t \cdot \sigma) \ ts).
     (map (\lambda t. \ t \cdot \sigma) \ ts! \ i, \ map (\lambda t. \ t \cdot \tau) \ ts! \ i) \in (rstep \ R)^* \ by \ auto
  from args-rsteps-imp-rsteps [OF - this] show ?case by simp
qed
lemma nrrstep-Fun-imp-arg-rstep:
  fixes ss :: ('f, 'v) term \ list
  assumes (Fun f ss, Fun f ts) \in nrrstep R  (is (?s,?t) \in nrrstep R)
  shows \exists C i. i < length ss \land (ss!i,ts!i) \in rstep R \land C\langle ss!i \rangle = Fun f ss \land C\langle ts!i \rangle
= Fun f ts
proof -
  from \langle (?s,?t) \in nrrstep \ R \rangle
  obtain l \ r \ j \ ps \ \sigma where A: let \ C = ctxt-of-pos-term (j\#ps) \ ?s \ in \ (j\#ps) \in poss
?s \wedge (l,r) \in R \wedge C\langle l \cdot \sigma \rangle = ?s \wedge C\langle r \cdot \sigma \rangle = ?t unfolding nrrstep-def rstep-r-p-s-def
by force
  let ?C = ctxt\text{-}of\text{-}pos\text{-}term (j\#ps) ?s
  from A have (j\#ps) \in poss ?s and (l,r) \in R and ?C\langle l \cdot \sigma \rangle = ?s and ?C\langle r \cdot \sigma \rangle
= ?t using Let-def by auto
  have C: ?C = More \ f \ (take \ j \ ss) \ (ctxt-of-pos-term \ ps \ (ss!j)) \ (drop \ (Suc \ j) \ ss)
(is ?C = More \ f ?ss1 ?D ?ss2) by auto
  from \langle ?C\langle l \cdot \sigma \rangle = ?s \rangle have ?D\langle l \cdot \sigma \rangle = (ss!j) by (auto simp: take-drop-imp-nth)
  from \langle (l,r) \in R \rangle have (l \cdot \sigma, r \cdot \sigma) \in (subst.closure\ R) by auto
 then have (?D\langle l \cdot \sigma \rangle, ?D\langle r \cdot \sigma \rangle) \in (ctxt.closure(subst.closure R)) and (?C\langle l \cdot \sigma \rangle, ?C\langle r \cdot \sigma \rangle)
\in (ctxt.closure(subst.closure R)) by (auto simp only: ctxt.closure.intros)
  then have D-rstep: (?D\langle l \cdot \sigma \rangle, ?D\langle r \cdot \sigma \rangle) \in rstep \ R \ and <math>(?C\langle l \cdot \sigma \rangle, ?C\langle r \cdot \sigma \rangle) \in rstep
R
    by (auto simp: rstep-eq-closure)
  from \langle ?C\langle r \cdot \sigma \rangle = ?t \rangle and C have ?t = Fun f (take j ss @ ?D\langle r \cdot \sigma \rangle \# drop (Suc
j) ss) by auto
  then have ts: ts = (take \ j \ ss \ @ \ ?D\langle r \cdot \sigma \rangle \ \# \ drop \ (Suc \ j) \ ss) by auto
  from \langle j \# ps \in poss ?s \rangle have r\theta: j < length ss by <math>simp
  then have (take\ j\ ss\ @\ ?D\langle r\cdot\sigma\rangle\ \#\ drop\ (Suc\ j)\ ss)\ !\ j=\ ?D\langle r\cdot\sigma\rangle\ \mathbf{by}\ (auto\ simp:
nth-append-take)
  with ts have ts!j = ?D\langle r \cdot \sigma \rangle by auto
  let ?C' = More f (take j ss) \square (drop (Suc j) ss)
  from D-rstep have r1: (ss!j, ts!j) \in rstep R unfolding \langle ts!j = ?D\langle r \cdot \sigma \rangle \rangle \langle ?D\langle l \cdot \sigma \rangle
= ss!j \mapsto \mathbf{by} \ simp
  have ?s = ?C\langle l \cdot \sigma \rangle unfolding \langle ?C\langle l \cdot \sigma \rangle = ?s \rangle by simp
  also have ... = ?C'\langle ?D\langle l \cdot \sigma \rangle \rangle unfolding C by simp
  finally have r2:?C'\langle ss!j\rangle = ?s unfolding \langle ?D\langle l\cdot\sigma\rangle = ss!j\rangle by simp
```

```
have ?t = ?C\langle r \cdot \sigma \rangle unfolding \langle ?C\langle r \cdot \sigma \rangle = ?t \rangle by simp
  also have ... = ?C'\langle ?D\langle r \cdot \sigma \rangle \rangle unfolding C by simp
  finally have r3:?C'\langle ts!j\rangle = ?t unfolding \langle ts!j = ?D\langle r\cdot\sigma\rangle\rangle by simp
  from r0 r1 r2 r3 show ?thesis by best
ged
lemma pair-fun-eq[simp]:
  fixes f :: 'a \Rightarrow 'b and g :: 'b \Rightarrow 'a
  \mathbf{shows}\ ((\lambda(x,y).\ (x,f\ y))\ \circ\ (\lambda(x,y).\ (x,g\ y)))\ =\ (\lambda(x,y).\ (x,(f\ \circ\ g)\ y))\ (\mathbf{is}\ ?f\ =\ (x,y).\ (x,(f\ \circ\ g)\ y))
?g)
proof (rule ext)
  \mathbf{fix} \ ab :: \ 'c * \ 'b
  obtain a b where ab = (a,b) by force
  have ((\lambda(x,y), (x,f,y)) \circ (\lambda(x,y), (x,g,y))) (a,b) = (\lambda(x,y), (x,(f \circ g),y)) (a,b) by
  then show ?f ab = ?q ab unfolding \langle ab = (a,b) \rangle by simp
qed
lemma restrict-singleton:
 assumes x \in subst-domain \ \sigma \text{ shows } \exists \ t. \ \sigma \ | s \ \{x\} = (\lambda y. \ if \ y = x \ then \ t \ else \ Var
proof -
 have \sigma \mid s \mid x \mid = (\lambda y. \ if \ y = x \ then \ \sigma \ y \ else \ Var \ y) by (simp add: subst-restrict-def)
 then have \sigma \mid s \{x\} = (\lambda y. \ if \ y = x \ then \ \sigma \ x \ else \ Var \ y) by (simp \ cong. \ if-cong)
  then show ?thesis by (rule exI[of - \sigma x])
qed
definition rstep-r-c-s :: ('f,'v)rule \Rightarrow ('f,'v)ctxt \Rightarrow ('f,'v)subst \Rightarrow ('f,'v)term rel
  where rstep-r-c-s r C \sigma = \{(s,t) \mid s \ t. \ s = C \langle fst \ r \cdot \sigma \rangle \land t = C \langle snd \ r \cdot \sigma \rangle \}
lemma rstep-iff-rstep-r-c-s: ((s,t) \in rstep R) = (\exists l \ r \ C \ \sigma. \ (l,r) \in R \land (s,t) \in R)
rstep-r-c-s (l,r) C \sigma) (is ?left = ?right)
proof
  assume ?left
  then obtain l \ r \ p \ \sigma where step: (s,t) \in rstep-r-p-s \ R \ (l,r) \ p \ \sigma
    unfolding rstep-iff-rstep-r-p-s by blast
  obtain D where D: D = ctxt-of-pos-term p s by auto
  with step have Rrule: (l,r) \in R and s: s = D\langle l \cdot \sigma \rangle and t: t = D\langle r \cdot \sigma \rangle
    unfolding rstep-r-p-s-def by (force simp: Let-def)+
  then show ?right unfolding rstep-r-c-s-def by auto
\mathbf{next}
  assume ?right
  from this obtain l \ r \ C \ \sigma where (l,r) \in R \land (s,t) \in rstep\text{-}r\text{-}c\text{-}s \ (l,r) \ C \ \sigma by
auto
  then have rule: (l,r) \in R and s: s = C\langle l \cdot \sigma \rangle and t: t = C\langle r \cdot \sigma \rangle
    unfolding rstep-r-c-s-def by auto
  show ?left unfolding rstep-eq-closure by (auto simp: s t intro: rule)
qed
```

```
lemma rstep-subset-characterization:
  (\textit{rstep } R \subseteq \textit{rstep } S) = (\forall \ \textit{l } r. \ (\textit{l},r) \in R \longrightarrow (\exists \ \textit{l' } r' \ \textit{C } \sigma \ . \ (\textit{l'},r') \in S \land \textit{l} = \textit{C} \backslash \textit{l'}
|\cdot|\sigma\rangle \wedge r = C\langle r'\cdot \sigma\rangle) (is ?left = ?right)
proof
  assume ?right
  show ?left
  proof
    \mathbf{fix} \ s \ t
    assume (s,t) \in rstep R
    then obtain l \ r \ C \ \sigma where step: (l,r) \in R \land (s,t) \in rstep\text{-}r\text{-}c\text{-}s \ (l,r) \ C \ \sigma
       unfolding rstep-iff-rstep-r-c-s by best
    then have Rrule: (l,r) \in R and s: s = C\langle l \cdot \sigma \rangle and t: t = C\langle r \cdot \sigma \rangle
       unfolding rstep-r-c-s-def by (force)+
     from Rrule \langle ?right \rangle obtain l' r' C' \sigma' where Srule: (l',r') \in S and l: l
C'\langle l' \cdot \sigma' \rangle and r: r = C'\langle r' \cdot \sigma' \rangle
      by (force simp: Let-def)+
    let ?D = C \circ_c (C' \cdot_c \sigma)
    let ?sig = \sigma' \circ_s \sigma
    have s2: s = ?D\langle l' \cdot ?sig \rangle by (simp \ add: s \ l)
    have t2: t = ?D\langle r' \cdot ?sig \rangle by (simp \ add: \ t \ r)
   from s2\ t2 have sStep: (s,t) \in rstep-r-c-s\ (l',r')\ ?D\ ?sig\ unfolding\ rstep-r-c-s-def
by force
    with Srule show (s,t) \in rstep \ S by (simp \ only: rstep-iff-rstep-r-c-s, \ blast)
  qed
\mathbf{next}
  assume ?left
  show ?right
  proof (rule ccontr)
    assume ¬ ?right
    from this obtain l \ r where (l,r) \in R and cond: \forall \ l' \ r' \ C \ \sigma. \ (l',r') \in S \longrightarrow
(l \neq C\langle l' \cdot \sigma \rangle \vee r \neq C\langle r' \cdot \sigma \rangle) by blast
    then have (l,r) \in rstep R by blast
    with \langle ?left \rangle have (l,r) \in rstep \ S by auto
   with cond show False by (simp only: rstep-iff-rstep-r-c-s, unfold rstep-r-c-s-def,
force)
  qed
\mathbf{qed}
lemma rstep-preserves-funas-terms-var-cond:
  assumes funas-trs R \subseteq F and funas-term s \subseteq F and (s,t) \in rstep R
    and wf: \bigwedge l \ r. \ (l,r) \in R \Longrightarrow vars\text{-}term \ r \subseteq vars\text{-}term \ l
  shows funas-term t \subseteq F
proof -
  from \langle (s,t) \in rstep \ R \rangle obtain l \ r \ C \ \sigma where R: (l,r) \in R
    and s: s = C\langle l \cdot \sigma \rangle and t: t = C\langle r \cdot \sigma \rangle by auto
  from \langle funas-trs \ R \subseteq F \rangle and R have funas-term \ r \subseteq F
    unfolding funas-defs [abs-def] by force
  with wf[OF R] \land funas\text{-}term \ s \subseteq F \land show \ ?thesis unfolding \ s \ t \ by \ (force \ simp:
funas-term-subst)
```

```
qed
```

```
\mathbf{lemma}\ rstep\text{-}preserves\text{-}funas\text{-}terms\text{:}
 assumes funas-trs R \subseteq F and funas-term s \subseteq F and (s,t) \in rstep R
   and wf: wf-trs R
 shows funas-term t \subseteq F
 by (rule rstep-preserves-funas-terms-var-cond [OF\ assms(1-3)], insert wf [unfolded\ assms(1-3)]), insert wf [unfolded\ assms(1-3)]
wf-trs-def, auto)
lemma rsteps-preserve-funas-terms-var-cond:
 assumes F: funas-trs R \subseteq F and s: funas-term s \subseteq F and steps: (s,t) \in (rstep)
R)^*
   and wf: \bigwedge l \ r. \ (l,r) \in R \Longrightarrow vars-term \ r \subseteq vars-term \ l
 \mathbf{shows}\;\mathit{funas}\text{-}\mathit{term}\;t\subseteq\mathit{F}
 using steps
proof (induct)
  case base then show ?case by (rule s)
next
  case (step \ t \ u)
 show ?case by (rule rstep-preserves-funas-terms-var-cond[OF F step(3) step(2)
wf])
qed
lemma rsteps-preserve-funas-terms:
  assumes F: funas-trs R \subseteq F and s: funas-term s \subseteq F
   and steps: (s,t) \in (rstep \ R)^* and wf: wf-trs R
 shows funas-term t \subseteq F
 \mathbf{by} \; (\textit{rule rsteps-preserve-funas-terms-var-cond}[\textit{OF assms}(\textit{1}-\textit{3})], \; \textit{insert wf}[\textit{unfolded} \;
wf-trs-def], auto)
lemma no-Var-rstep [simp]:
  assumes wf-trs R and (Var x, t) \in rstep R shows False
 using rstep-imp-Fun[OF assms] by auto
lemma lhs-wf:
  assumes R: (l, r) \in R and funas-trs R \subseteq F
 shows funas-term l \subseteq F
 using assms by (force simp: funas-trs-def funas-rule-def)
lemma rhs-wf:
  assumes R: (l, r) \in R and funas-trs R \subseteq F
  shows funas-term \ r \subseteq F
  using assms by (force simp: funas-trs-def funas-rule-def)
lemma supt-map-funs-term [intro]:
  assumes t \triangleright s
  shows map-funs-term fg t > map-funs-term fg s
  using assms
proof (induct)
```

```
case (arg \ s \ ss \ f)
  then have map-funs-term fg \ s \in set(map \ (map-funs-term \ fg) \ ss) by simp
  then show ?case unfolding term.map by (rule supt.arg)
  case (subt\ s\ ss\ u\ f)
  then have map-funs-term fg \ s \in set(map \ (map-funs-term \ fg) \ ss) by simp
  with \langle map\text{-}funs\text{-}term\ fg\ s \rhd map\text{-}funs\text{-}term\ fg\ u \rangle\ \mathbf{show}\ ?case
    unfolding term.map by (metis supt.subt)
qed
lemma nondef-root-imp-arg-step:
  assumes (Fun f ss, t) \in rstep R
    and wf: \forall (l, r) \in R. is-Fun l
    and ndef: \neg defined R (f, length ss)
  shows \exists i < length \ ss. \ (ss ! i, t | - [i]) \in rstep \ R
    \wedge t = Fun \ f \ (take \ i \ ss \ @ \ (t \ | - \ [i]) \ \# \ drop \ (Suc \ i) \ ss)
proof -
  from assms obtain l r p \sigma
    where rstep-r-p-s: (Fun f ss, t) \in rstep-r-p-s R (l, r) p <math>\sigma
    unfolding rstep-iff-rstep-r-p-s by auto
  let ?C = ctxt\text{-}of\text{-}pos\text{-}term\ p\ (Fun\ f\ ss)
  from rstep-r-p-s have p \in poss (Fun f ss) and (l, r) \in R
    and ?C\langle l \cdot \sigma \rangle = Fun f ss and ?C\langle r \cdot \sigma \rangle = t unfolding rstep-r-p-s-def Let-def
by auto
  have \exists i \ q. \ p = i \# q
  proof (cases p)
    case Cons then show ?thesis by auto
  next
    case Nil
    have ?C = \square unfolding Nil by simp
    with \langle ?C\langle l \cdot \sigma \rangle = Fun \ f \ ss \rangle have l \cdot \sigma = Fun \ f \ ss by simp
    have \forall (l,r) \in R. \exists f \text{ ss. } l = Fun f \text{ ss}
    proof (intro ballI impI)
      fix lr assume lr \in R
      with wf have \forall x. fst lr \neq Var x by auto
      then have \exists f ss. (fst lr) = Fun f ss by (cases fst lr) auto
      then show (\lambda(l,r). \exists f \ ss. \ l = Fun \ f \ ss) \ lr by auto
    with \langle (l,r) \in R \rangle obtain g ts where l = Fun \ g ts unfolding wf-trs-def by best
    with \langle l \cdot \sigma = Fun \ f \ ss \rangle \ \langle l = Fun \ g \ ts \rangle \ \mathbf{and} \ \langle (l, \ r) \in R \rangle \ ndef
    show ?thesis unfolding defined-def by auto
  then obtain i q where p = i \# q by auto
  from \langle p \in poss(Fun \ f \ ss) \rangle have i < length \ ss \ and \ q \in poss(ss!i) unfolding \langle p \rangle
= i \# q  by auto
  let ?D = ctxt\text{-}of\text{-}pos\text{-}term\ q\ (ss!i)
  have C: ?C = More \ f \ (take \ i \ ss) \ ?D \ (drop \ (Suc \ i) \ ss) \ unfolding \ \langle p = i \# q \rangle \ by
auto
  from \langle ?C\langle l \cdot \sigma \rangle = Fun \ f \ ss \rangle have take i \ ss@?D\langle l \cdot \sigma \rangle \# drop \ (Suc \ i) \ ss = ss \ un-
```

```
folding C by auto
  then have (take\ i\ ss@?D\langle l\cdot\sigma\rangle\#drop\ (Suc\ i)\ ss)!i = ss!i\ by\ simp
  with \langle i < length \ ss \rangle have ?D\langle l \cdot \sigma \rangle = ss!i using nth-append-take[where xs = ss]
and i = i] by auto
  have t: t = Fun \ f \ (take \ i \ ss@?D\langle r \cdot \sigma \rangle \# drop \ (Suc \ i) \ ss) \ unfolding \ \langle ?C\langle r \cdot \sigma \rangle =
t > [symmetric] \ C \ \mathbf{by} \ simp
 from \langle i < length \ ss \rangle have t | -[i] = ?D\langle r \cdot \sigma \rangle unfolding t unfolding subt-at.simps
using nth-append-take[where xs = ss and i = i] by auto
  from \langle q \in poss(ss!i) \rangle and \langle (l,r) \in R \rangle
    and \langle ?D\langle l \cdot \sigma \rangle = ss!i \rangle and \langle t| - [i] = ?D\langle r \cdot \sigma \rangle \rangle [symmetric]
  have (ss!i,t|-[i]) \in rstep-r-p-s \ R \ (l,r) \ q \ \sigma  unfolding rstep-r-p-s-def \ Let-def by
  then have (ss!i,t|-[i]) \in rstep R unfolding rstep-iff-rstep-r-p-s by auto
 from \langle i < length \, ss \rangle and this and t show ?thesis unfolding \langle t| - [i] = ?D\langle r \cdot \sigma \rangle \rangle [symmetric]
by auto
qed
lemma nondef-root-imp-arg-steps:
  assumes (Fun f ss, t) \in (rstep R)^*
    and wf: \forall (l, r) \in R. is-Fun l
    and \neg defined R (f,length ss)
  shows \exists ts. length ts = length ss \land t = Fun f ts \land (\forall i < length ss. (ss!i,ts!i) \in
(rstep R)^*
proof -
  from assms obtain n where (Fun f ss,t) \in (rstep R)^{n}
    using rtrancl-imp-relpow by best
  then show ?thesis
  proof (induct n arbitrary: t)
    case 0 then show ?case by auto
  next
    case (Suc \ n)
    then obtain u where (Fun \ f \ ss, u) \in (rstep \ R)^{n} and (u,t) \in rstep \ R by
auto
    with Suc obtain ts where IH1: length ts = length ss and IH2: u = Fun f ts
and IH3: \forall i < length \ ss. \ (ss!i,ts!i) \in (rstep \ R)^* by auto
   from \langle (u,t) \in rstep \ R \rangle have (Fun \ f \ ts,t) \in rstep \ R unfolding \langle u = Fun \ f \ ts \rangle.
   from nondef-root-imp-arg-step[OF this wf \langle \neg defined R (f, length ss) \rangle[simplified
IH1[symmetric]]]
    obtain j where j < length ts
      and (ts!j,t|-[j]) \in rstep R
      and B: t = Fun f (take j ts@(t|-[j]) # drop (Suc j) ts) (is t = Fun f ? ts) by
auto
    from \langle j \rangle = length \ ts \rangle have length \ ?ts = length \ ts  by auto
    then have A: length ?ts = length \ ss \ unfolding \ (length \ ts = length \ ss).
    have C: \forall i < length \ ss. \ (ss!i, ?ts!i) \in (rstep \ R)^*
    proof (intro allI, intro impI)
      fix i assume i < length ss
      from \langle i < length \ ss \rangle and IH3 have (ss!i,ts!i) \in (rstep \ R)^* by auto
      have i = j \lor i \neq j by auto
```

```
then show (ss!i,?ts!i) \in (rstep R)^*
      proof
        assume i = j
        from \langle j < length \ ts \rangle have j \leq length \ ts by simp
        from nth-append-take [OF this] have ?ts!j = t|-[j] by simp
       from \langle (ts!j,t|-[j]) \in rstep \ R \rangle have (ts!i,t|-[i]) \in rstep \ R unfolding \langle i=j \rangle.
        with \langle (ss!i,ts!i) \in (rstep \ R)^* \rangle show ?thesis unfolding \langle i=j \rangle unfolding
\langle ?ts!j = t| - [j] \rangle by auto
     next
        assume i \neq j
        from \langle i < length \ ss \rangle have i \leq length \ ts unfolding \langle length \ ts = length \ ss \rangle
        from \langle j < length \ ts \rangle have j \leq length \ ts \ by \ simp
       from nth-append-take-drop-is-nth-conv[OF \langle i \leq length \ ts \rangle \ \langle j \leq length \ ts \rangle \ \langle i
\neq j
       have ?ts!i = ts!i by simp
        with \langle (ss!i, ts!i) \in (rstep R)^* \rangle show ?thesis by auto
      qed
    qed
    from A and B and C show ?case by blast
  qed
qed
lemma rstep-imp-nrrstep:
  assumes is-Fun s and \neg defined R (the (root s)) and \forall (l,r) \in R. is-Fun l
    and (s, t) \in rstep R
 shows (s, t) \in nrrstep R
proof -
  from \langle is\text{-}Fun \ s \rangle obtain f \ ss where s: s = Fun \ f \ ss by (cases \ s) auto
  with assms have undef: \neg defined R (f, length ss) by simp
  from assms have non-var: \forall (l, r) \in R. is-Fun l by auto
  from nondef-root-imp-arg-step[OF \lor (s, t) \in rstep \ R \lor [unfolded \ s] \ non-var \ undef]
  obtain i where i < length ss and step: (ss ! i, t | - [i]) \in rstep R
    and t: t = Fun f (take i ss @ (t |- [i]) # drop (Suc i) ss) by auto
  from step obtain C \mid r \mid \sigma where (l, r) \in R and lhs: ss! i = C \langle l \cdot \sigma \rangle
    and rhs: t \mid -[i] = C \langle r \cdot \sigma \rangle by auto
  let ?C = More f (take i ss) C (drop (Suc i) ss)
  have (l, r) \in R by fact
  moreover have ?C \neq \square by simp
  moreover have s = ?C\langle l \cdot \sigma \rangle
  proof -
    have s = Fun f (take i ss @ ss!i \# drop (Suc i) ss)
      using id-take-nth-drop[OF \ \langle i < length \ ss \rangle] unfolding s by simp
    also have ... = ?C\langle l \cdot \sigma \rangle by (simp add: lhs)
    finally show ?thesis.
  qed
  moreover have t = ?C\langle r \cdot \sigma \rangle
  proof -
    have t = Fun f (take i \ ss @ t | - [i] \# drop (Suc \ i) \ ss) by fact
```

```
also have ... = Fun f (take i ss @ C\langle r \cdot \sigma \rangle \# drop (Suc i) ss) by (simp add:
rhs)
   finally show ?thesis by simp
 ultimately show (s, t) \in nrrstep R unfolding nrrstep-def' by blast
qed
lemma rsteps-imp-nrrsteps:
 assumes is-Fun s and \neg defined R (the (root s))
   and no-vars: \forall (l, r) \in R. is-Fun l
   and (s, t) \in (rstep R)^*
 shows (s, t) \in (nrrstep \ R)^*
 using \langle (s, t) \in (rstep \ R)^* \rangle
proof (induct)
 case base show ?case by simp
next
 case (step \ u \ v)
 from assms obtain f ss where s: s = Fun f ss by (induct s) auto
 from nrrsteps-preserve-root[OF (s, u) \in (nrrstep R)^* \cap [unfolded s]]
 obtain ts where u: u = Fun f ts by auto
 from nrrsteps-equiv-num-args[OF \langle (s, u) \in (nrrstep \ R)^* \rangle [unfolded \ s]]
 have len: length ss = length ts unfolding u by simp
 have is-Fun u by (simp \ add: \ u)
 have undef: \neg defined R (the (root u))
   using \langle \neg defined R (the (root s)) \rangle
   unfolding s u by (simp \ add: \ len)
 have (u, v) \in nrrstep R
   using rstep-imp-nrrstep[OF \(\dis\)-Fun u\) undef no-vars] step
   by simp
 with step show ?case by auto
qed
lemma left-var-imp-not-SN:
 fixes R :: (f, v)trs and t :: (f, v) term
 assumes (Var y, r) \in R (is (?y, -) \in -)
 shows \neg (SN-on (rstep R) \{t\})
proof (rule steps-imp-not-SN-on)
 fix t :: ('f, 'v) term
 let ?yt = subst y t
 show (t, r \cdot ?yt) \in rstep R
   by (rule rstepI[OF assms, where C = \square and \sigma = ?yt], auto simp: subst-def)
qed
lemma not-SN-subt-imp-not-SN:
 assumes ctxt: ctxt.closed R and SN: \neg SN-on R \{t\} and sub: s \trianglerighteq t
 shows \neg SN-on R \{s\}
 using ctxt-closed-SN-on-subt[OF ctxt - sub] SN
 by auto
```

```
lemma root-Some:
 assumes root t = Some fn
 obtains ss where length ss = snd fn and t = Fun (fst fn) ss
 using assms by (induct t) auto
lemma map-funs-rule-power:
 fixes f :: 'f \Rightarrow 'f
 shows ((map-funs-rule\ f) \cap n) = map-funs-rule\ (f \cap n)
proof (rule sym, intro ext, clarify)
  fix l r :: ('f, 'v) term
 show map-funs-rule (f \cap n) (l,r) = (map-funs-rule f \cap n) (l,r)
 proof (induct \ n)
   case \theta
   show ?case by (simp add: term.map-ident)
 next
   case (Suc\ n)
   have map-funs-rule (f ^{\sim} Suc n) (l,r) = map-funs-rule f (map-funs-rule (f ^{\sim}
n) (l,r)
     by (simp add: map-funs-term-comp)
   also have ... = map-funs-rule f ((map-funs-rule f ^{\frown} n) (l,r)) unfolding Suc
   also have ... = (map-funs-rule\ f \cap (Suc\ n))\ (l,r) by simp
   finally show ?case.
 qed
qed
lemma map-funs-trs-power:
 fixes f :: 'f \Rightarrow 'f
 shows map-funs-trs f \curvearrowright n = map-funs-trs (f \curvearrowright n)
proof
 fix R :: ('f, 'v) trs
  have map-funs-rule (f \cap n) ' R = (map-funs-rule f \cap n) ' R unfolding
map-funs-rule-power ..
 also have ... = ((\lambda R. map-funs-trs f R) \cap R unfolding map-funs-trs.simps
   apply (induct \ n)
    apply simp
   by (metis comp-apply funpow.simps(2) image-comp)
 finally have map-funs-rule (f ^ n) ' R=(map\text{-}funs\text{-}trs\ f ^ n) R . then show (map\text{-}funs\text{-}trs\ f ^ n) R=map\text{-}funs\text{-}trs\ (f ^ n) R
   by (simp add: map-funs-trs.simps)
\mathbf{qed}
The set of minimally nonterminating terms with respect to a relation R.
definition Tinf :: ('f, 'v) trs \Rightarrow ('f, 'v) terms
    Tinf R = \{t. \neg SN\text{-on } R \ \{t\} \land (\forall s \lhd t. SN\text{-on } R \ \{s\})\}
lemma not-SN-imp-subt-Tinf:
 assumes \neg SN-on R \{s\} shows \exists t \leq s. \ t \in Tinf R
```

```
proof -
   let ?S = \{t \mid t. \ s \succeq t \land \neg SN\text{-}on \ R \ \{t\}\}\
   from assms have s: s \in ?S by auto
   from mp[OF spec[OF spec[OF SN-imp-minimal[OF SN-supt]]] s]
   obtain t where st: s \triangleright t and nSN: \neg SN-on \ R \{t\}
      and min: \forall u. (t,u) \in supt \longrightarrow u \notin ?S by auto
    have t \in Tinf R unfolding Tinf-def
    proof (intro CollectI allI impI conjI nSN)
      \mathbf{fix} \ u
      assume u: t \triangleright u
      from u st have s \triangleright u using supteq-supt-trans by auto
      with min \ u \text{ show } SN\text{-}on \ R \ \{u\} \text{ by } auto
   qed
   with st show ?thesis by auto
qed
lemma not-SN-imp-Tinf:
   assumes \neg SN R shows \exists t. t \in Tinf R
   using assms not-SN-imp-subt-Tinf unfolding SN-on-def by blast
lemma ctxt-of-pos-term-map-funs-term-conv [iff]:
   assumes p \in poss s
  shows map-funs-ctxt fg (ctxt-of-pos-term p s) = (ctxt-of-pos-term p (map-funs-term p s) = (ctxt-of-pos-term p s) = (c
fg(s)
   using assms
proof (induct s arbitrary: p)
   case (Var x) then show ?case by simp
next
   case (Fun f ss) then show ?case
   proof (cases p)
      case Nil then show ?thesis by simp
      case (Cons\ i\ q)
       with \langle p \in poss(Fun \ f \ ss) \rangle have i < length \ ss \ and \ q \in poss(ss!i) unfolding
 Cons poss.simps by auto
      then have ss!i \in set \ ss \ by \ simp
      with Fun and \langle q \in poss(ss!i) \rangle
    have IH: map-funs-ctxt fg(ctxt-of-pos-term g(ss!i)) = ctxt-of-pos-term g(map-funs-term
fg (ss!i) by simp
     have map-funs-ctxt fq(ctxt-of-pos-term p(Fun f ss)) = map-funs-ctxt fq(ctxt-of-pos-term
(i\#q) (Fun f ss)) unfolding Cons by simp
      also have ... = map-funs-ctxt fg(More\ f\ (take\ i\ ss)\ (ctxt-of-pos-term\ q\ (ss!i))
(drop\ (Suc\ i)\ ss))\ \mathbf{by}\ simp
     also have ... = More (fg f) (map (map-funs-term fg) (take i ss)) (map-funs-ctxt)
fg(ctxt\text{-}of\text{-}pos\text{-}term\ q\ (ss!i)))\ (map\ (map\text{-}funs\text{-}term\ fg)\ (drop\ (Suc\ i)\ ss))\ \mathbf{by}\ simp
    also have ... = More(fg f)(map(map-funs-term fg)(take i ss))(ctxt-of-pos-term
q (map-funs-term fq (ss!i))) (map (map-funs-term fq) (drop (Suc i) ss)) unfolding
IH by simp
    also have ... = More(fg f)(take\ i\ (map\ (map\ -funs\ -term\ fg)\ ss))(ctxt\ -of\ -pos\ -term
```

```
q (map (map-funs-term fg) ss!i)) (drop (Suc i) (map (map-funs-term fg) ss)) un-
folding nth-map[OF \langle i < length \ ss \rangle, symmetric] take-map drop-map nth-map by
       finally show ?thesis unfolding Cons by simp
   ged
\mathbf{qed}
lemma var-rewrite-imp-not-SN:
    assumes sn: SN-on (rstep R) \{u\} and step: (t, s) \in rstep R
   shows is-Fun t
   using assms
proof (cases \ t)
    case (Fun f ts) then show ?thesis by simp
next
    case (Var x)
   from step obtain l r p \sigma where (Var x, s) \in rstep-r-p-s R(l, r) p \sigma unfolding
 Var rstep-iff-rstep-r-p-s by best
   then have l \cdot \sigma = Var x and rule: (l,r) \in R unfolding rstep-r-p-s-def by (auto
simp: Let-def)
    from this obtain y where l = Var y (is - = ?y) by (cases l, auto)
    with rule have (?y, r) \in R by auto
    then have \neg (SN\text{-}on (rstep R) \{u\}) by (rule left\text{-}var\text{-}imp\text{-}not\text{-}SN)
    with sn show ?thesis by blast
qed
lemma rstep-id: rstep Id = Id by auto
lemma map-funs-rule-id [simp]: map-funs-rule id = id
   by (intro ext, auto)
lemma map-funs-trs-id [simp]: map-funs-trs id = id
   by (intro ext, auto simp: map-funs-trs.simps)
definition sig\text{-}step :: 'f sig \Rightarrow ('f, 'v) trs \Rightarrow ('f, 'v) trs  where
    sig\text{-step }F R = \{(a, b). (a, b) \in R \land funas\text{-term } a \subseteq F \land funas\text{-term } b \subseteq F\}
lemma sig-step-union: sig-step F(R \cup S) = sig-step F(R \cup sig-step F(S \cup S) = sig
    unfolding sig-step-def by auto
lemma sig-step-UNIV: sig-step UNIV R = R unfolding sig-step-def by simp
lemma sig\text{-}stepI[intro]: (a,b) \in R \Longrightarrow funas\text{-}term\ a \subseteq F \Longrightarrow funas\text{-}term\ b \subseteq F
\implies (a,b) \in sig\text{-step } F R \text{ unfolding } sig\text{-step-def by } auto
lemma sig\text{-}stepE[elim,consumes 1]: (a,b) \in sig\text{-}step F R \Longrightarrow \llbracket (a,b) \in R \Longrightarrow fu
nas\text{-}term\ a\subseteq F\Longrightarrow funas\text{-}term\ b\subseteq F\Longrightarrow P] \Longrightarrow P unfolding sig\text{-}step\text{-}def by
```

lemma all-ctxt-closed-sig-rsteps [intro]:

```
fixes R :: ('f, 'v) trs
  shows all-ctxt-closed F ((sig-step F (rstep R))*) (is all-ctxt-closed - (?R*))
proof (rule trans-ctxt-sig-imp-all-ctxt-closed)
  fix C :: (f,v)ctxt and s t :: (f,v)term
  assume C: funas-ctxt C \subseteq F
   and s: funas-term \ s \subseteq F
   and t: funas-term \ t \subseteq F
   and steps: (s,t) \in ?R^*
  from steps
  show (C \langle s \rangle, C \langle t \rangle) \in ?R^*
 proof (induct)
   case (step \ t \ u)
     from step(2) have tu: (t,u) \in rstep R and t: funas-term t \subseteq F and u:
funas-term \ u \subseteq F \ \mathbf{by} \ auto
    have (C \langle t \rangle, C \langle u \rangle) \in ?R by (rule\ sig\ step I[OF\ rstep\ ctxt[OF\ tu]],\ insert
C t u, auto)
   with step(3) show ?case by auto
  qed auto
qed (auto intro: trans-rtrancl)
lemma wf-loop-imp-sig-ctxt-rel-not-SN:
  assumes R: (l, C\langle l \rangle) \in R and wf-l: funas-term l \subseteq F
   and wf-C: funas-ctxt C \subseteq F
   and ctxt: ctxt.closed R
  shows \neg SN-on (sig-step F R) \{l\}
proof -
  let ?t = \lambda i. (C^{\hat{i}})\langle l \rangle
  have \forall i. funas-term (?t i) \subseteq F
 proof
   fix i show funas-term (?t i) \subseteq F unfolding funas-term-ctxt-apply
     by (rule Un-least[OF - wf-l], induct i, insert wf-C, auto)
  qed
  moreover have \forall i. (?t \ i,?t(Suc \ i)) \in R
  proof
   fix i
   show (?t \ i, ?t \ (Suc \ i)) \in R
   proof (induct i)
     case \theta with R show ?case by auto
   next
     case (Suc\ i)
     from ctxt.closedD[OF\ ctxt\ Suc,\ of\ C]
     show ?case by simp
   qed
 qed
 ultimately have steps: \forall i. (?t i, ?t(Suc i)) \in sig\text{-}step F R unfolding } sig\text{-}step\text{-}def
by blast
 show ?thesis unfolding SN-defs
   by (simp, intro exI[of - ?t], simp only: steps, simp)
qed
```

```
\mathbf{lemma}\ \mathit{lhs-var-imp-sig-step-not-SN-on}:
  assumes x: (Var x, r) \in R and F: funas-trs R \subseteq F
  shows \neg SN-on (sig-step F (rstep R)) { Var x}
proof -
  let ?\sigma = (\lambda x. \ r)
 let ?t = \lambda i. (?\sigma ^{\frown} i) x
  obtain t where t: t = ?t by auto
  from rhs-wf[OF \ x \ F] have wf-r: funas-term \ r \subseteq F.
  {
   \mathbf{fix} i
   have funas-term (?t \ i) \subseteq F
   proof (induct i)
     case 0 show ?case using wf-r by auto
   next
     case (Suc\ i)
     have ?t (Suc i) = ?t i \cdot ?\sigma unfolding subst-power-Suc subst-compose-def by
simp
     also have funas-term ... \subseteq F unfolding funas-term-subst[of ?t i]
       using Suc wf-r by auto
     finally show ?case.
   qed
  \} note wf-t = this
  {
   fix i
   have (t \ i, \ t \ (Suc \ i)) \in (sig\text{-step } F \ (rstep \ R)) unfolding t
       by (rule sig-stepI[OF rstepI[OF x, of - \square ?\sigma \sim i) wf-t wf-t], auto simp:
subst-compose-def)
  } note steps = this
  have x: t \theta = Var x unfolding t by simp
  with steps show ?thesis unfolding SN-defs not-not
   by (intro\ exI[of\ -\ t],\ auto)
qed
lemma rhs-free-vars-imp-sig-step-not-SN:
  assumes R: (l,r) \in R and free: \neg vars-term \ r \subseteq vars-term \ l
   and F: funas-trs R \subseteq F
  shows \neg SN-on (sig-step F (rstep R)) {l}
proof -
  from free obtain x where x: x \in vars\text{-}term \ r - vars\text{-}term \ l \ by \ auto
  then have x \in vars\text{-}term\ r\ \mathbf{by}\ simp
  from supteq-Var[OF this] have r \supseteq Var x.
  then obtain C where r: C\langle Var x \rangle = r by auto
  let ?\sigma = \lambda y. if y = x then l else Var y
  let ?t = \lambda i. ((C \cdot_c ?\sigma) \hat{i}) \langle l \rangle
  from rhs-wf [OF R] F have wf-r: funas-term r \subseteq F by fast
  from lhs\text{-}wf[OF\ R]\ F have wf\text{-}l: funas\text{-}term\ l\subseteq F by fast
  from wf-r[unfolded\ r[symmetric]]
  have wf-C: funas-ctxt C \subseteq F by simp
```

```
from x have neq: \forall y \in vars\text{-}term \ l. \ y \neq x \ by \ auto
  have l \cdot ?\sigma = l \cdot Var
   by (rule term-subst-eq, insert neq, auto)
  then have l: l \cdot ?\sigma = l by simp
  have wf-C: funas-ctxt (C \cdot_c ? \sigma) \subseteq F using wf-C wf-l
  have rsigma: r \cdot ?\sigma = (C \cdot_c ?\sigma)\langle l \rangle unfolding r[symmetric] by simp
  from R have lr: (l \cdot ?\sigma, r \cdot ?\sigma) \in rstep R by auto
  then have lr: (l, (C \cdot_c ?\sigma)\langle l \rangle) \in rstep \ R \ unfolding \ l \ unfolding \ rsigma.
 show ?thesis
   by (rule wf-loop-imp-sig-ctxt-rel-not-SN[OF lr wf-l wf-C ctxt-closed-rstep])
qed
lemma lhs-var-imp-rstep-not-SN: assumes (Var x,r) \in R shows \neg SN(rstep R)
 using lhs-var-imp-sig-step-not-SN-on[OF assms subset-reft] unfolding sig-step-def
SN-defs by blast
lemma rhs-free-vars-imp-rstep-not-SN:
 assumes (l,r) \in R and \neg vars\text{-}term \ r \subseteq vars\text{-}term \ l
 shows \neg SN-on (rstep R) \{l\}
 using rhs-free-vars-imp-siq-step-not-SN[OF\ assms\ subset-reft] unfolding siq-step-def
SN-defs by blast
lemma free-right-rewrite-imp-not-SN:
 assumes step: (t,s) \in rstep-r-p-s R(l,r) p \sigma
   and vars: \neg vars\text{-}term\ l \supseteq vars\text{-}term\ r
 shows \neg SN-on (rstep R) \{t\}
proof
 assume SN: SN-on (rstep R) \{t\}
 let ?C = ctxt\text{-}of\text{-}pos\text{-}term\ p\ t
  from step have left: ?C\langle l \cdot \sigma \rangle = t (is ?t = t) and right: ?C\langle r \cdot \sigma \rangle = s and
pos: p \in poss t
   and rule: (l,r) \in R
   unfolding rstep-r-p-s-def by (auto simp: Let-def)
 from rhs-free-vars-imp-rstep-not-SN[OF\ rule\ vars] have nSN:\neg\ SN-on (rstep\ R)
\{l\} by simp
 from SN-imp-SN-subt[OF\ SN\ ctxt-imp-supteq[of\ ?C\ l\cdot\sigma,\ simplified\ left]]
 have SN: SN-on (rstep R) \{l \cdot \sigma\}.
  from SNinstance-imp-SN[OF SN] nSN show False by simp
qed
lemma not-SN-on-rstep-subst-apply-term[intro]:
 assumes \neg SN-on (rstep R) \{t\} shows \neg SN-on (rstep R) \{t \cdot \sigma\}
 using assms unfolding SN-on-def by best
lemma SN-rstep-imp-wf-trs: assumes SN (rstep R) shows wf-trs R
proof (rule ccontr)
 assume \neg wf-trs R
 then obtain l r where R: (l,r) \in R
```

```
and not-wf: (\forall f \ ts. \ l \neq Fun \ f \ ts) \lor \neg (vars-term \ r \subseteq vars-term \ l) unfolding
wf-trs-def
   by auto
  from not-wf have \neg SN (rstep R)
 proof
   assume free: \neg vars-term r \subseteq vars-term l
  from rhs-free-vars-imp-rstep-not-SN[OF R free] show ?thesis unfolding SN-defs
by auto
 next
   assume \forall f \ ts. \ l \neq Fun \ f \ ts
   then obtain x where l:l = Var x by (cases \ l) auto
   with R have (Var x,r) \in R unfolding l by simp
   from lhs-var-imp-rstep-not-SN[OF this] show ?thesis by simp
 qed
 with assms show False by blast
qed
lemma SN-sig-step-imp-wf-trs: assumes SN: SN (sig-step F (rstep R)) and F:
funas-trs R \subseteq F shows wf-trs R
proof (rule ccontr)
 assume \neg wf-trs R
 then obtain l r where R: (l,r) \in R
   and not-wf: (\forall f \ ts. \ l \neq Fun \ f \ ts) \lor \neg (vars-term \ r \subseteq vars-term \ l) unfolding
wf-trs-def
   by auto
 from not-wf have \neg SN \ (sig\text{-step } F \ (rstep \ R))
   assume free: \neg vars-term r \subseteq vars-term l
   from rhs-free-vars-imp-sig-step-not-SN[OF R free F] show ?thesis unfolding
SN-on-def by auto
 next
   assume \forall f \ ts. \ l \neq Fun \ f \ ts
   then obtain x where l:l = Var x by (cases \ l) auto
   with R have (Var x,r) \in R unfolding l by simp
   from lhs-var-imp-sig-step-not-SN-on[OF this F] show ?thesis
     unfolding SN-on-def by auto
 \mathbf{qed}
  with assms show False by blast
\mathbf{lemma}\ rhs-free-vars-imp-rstep-not-SN':
  assumes (l, r) \in R and \neg vars-term r \subseteq vars-term l
 shows \neg SN \ (rstep \ R)
 using rhs-free-vars-imp-rstep-not-SN [OF assms] by (auto simp: SN-defs)
lemma SN-imp-variable-condition:
  assumes SN (rstep R)
 shows \forall (l, r) \in R. vars-term r \subseteq vars-term l
 using assms and rhs-free-vars-imp-rstep-not-SN' [of - - R] by blast
```

```
lemma rstep-cases'[consumes 1, case-names root nonroot]:
  assumes rstep: (s, t) \in rstep R
    and root: \bigwedge l \ r \ \sigma. (l, \ r) \in R \Longrightarrow l \cdot \sigma = s \Longrightarrow r \cdot \sigma = t \Longrightarrow P
    and nonroot: \bigwedge f ss1 \ u \ ss2 \ v. \ s = Fun \ f \ (ss1 @ u \# ss2) \Longrightarrow t = Fun \ f \ (ss1
@v \# ss2) \Longrightarrow (u, v) \in rstep R \Longrightarrow P
  shows P
proof -
  from rstep-imp-C-s-r[OF\ rstep] obtain C\ \sigma\ l\ r
    where R: (l,r) \in R and s: C\langle l \cdot \sigma \rangle = s and t: C\langle r \cdot \sigma \rangle = t by fast
  show ?thesis proof (cases C)
    from s t have l \cdot \sigma = s and r \cdot \sigma = t by (auto simp: Hole)
    with R show ?thesis by (rule root)
  next
    case (More f ss1 D ss2)
    let ?u = D\langle l \cdot \sigma \rangle
    let ?v = D\langle r \cdot \sigma \rangle
    have s = Fun \ f \ (ss1 \ @ \ ?u \ \# \ ss2) by (simp \ add: More \ s[symmetric])
   moreover have t = Fun f (ss1 @ ?v \# ss2) by (simp \ add: More \ t[symmetric])
    moreover have (?u,?v) \in rstep R using R by auto
    ultimately show ?thesis by (rule nonroot)
  qed
qed
lemma NF-Var: assumes wf: wf-trs R shows (Var x, t) \notin rstep R
proof
 assume (Var x, t) \in rstep R
  from rstep-imp-C-s-r[OF\ this] obtain C\ l\ r\ \sigma
    where R: (l,r) \in R and lhs: Var x = C\langle l \cdot \sigma \rangle by fast
  from lhs have Var x = l \cdot \sigma by (induct C) auto
  then obtain y where l: l = Var y by (induct \ l) auto
  from wf R obtain f ss where l = Fun f ss unfolding wf-trs-def by best
  with l show False by simp
qed
lemma rstep-cases-Fun'[consumes 2, case-names root nonroot]:
  assumes wf: wf-trs R
    and rstep: (Fun f ss,t) \in rstep R
    and root': \bigwedge ls \ r \ \sigma. (Fun f \ ls, r) \in R \Longrightarrow map \ (\lambda t. \ t \cdot \sigma) \ ls = ss \Longrightarrow r \cdot \sigma = t \Longrightarrow
   and nonroot': \bigwedge i \ u. \ i < length \ ss \Longrightarrow t = Fun \ f \ (take \ i \ ss@u\#drop \ (Suc \ i) \ ss)
\implies (ss!i,u) \in rstep \ R \implies P
 shows P
  using rstep proof (cases rule: rstep-cases')
  case (root l r \sigma)
  with wf obtain g ls where l: l = Fun g ls unfolding wf-trs-def by best
  from root have [simp]: g = f unfolding l by simp
 from root have (Fun f ls, r) \in R and map(\lambda t. t \cdot \sigma) ls = ss and r \cdot \sigma = t unfolding
```

```
l by auto
 then show ?thesis by (rule root')
next
  case (nonroot \ g \ ss1 \ u \ ss2 \ v)
  then have [simp]: g = f and args: ss = ss1 @ u \# ss2 by auto
 let ?i = length ss1
 from args have ss1: take ?i ss = ss1 by simp
  from args have drop ?i ss = u \# ss2 by simp
  then have drop (Suc \ \theta) (drop \ ?i \ ss) = ss2 by simp
 then have ss2: drop (Suc ?i) ss = ss2 by simp
 from args have len: ?i < length ss by simp
  from id-take-nth-drop[OF\ len] have ss = take\ ?i\ ss\ @\ ss!\ ?i\ \#\ drop\ (Suc\ ?i)\ ss
by simp
 then have u: ss!?i = u unfolding args unfolding ss1[unfolded args] <math>ss2[unfolded
args by simp
  from nonroot have t = Fun \ f \ (take ?i \ ss@v \# drop \ (Suc ?i) \ ss) unfolding ss1
ss2 by simp
 moreover from nonroot have (ss!?i,v) \in rstep R unfolding u by simp
 ultimately show ?thesis by (rule nonroot'[OF len])
qed
lemma rstep-preserves-undefined-root:
 assumes wf-trs R and \neg defined R (f, length ss) and (Fun f ss, t) \in rstep R
 shows \exists ts. length ts = length ss \land t = Fun f ts
proof -
  from \langle wf\text{-}trs R \rangle and \langle (Fun f ss, t) \in rstep R \rangle show ?thesis
 proof (cases rule: rstep-cases-Fun')
   case (root ls r \sigma)
   then have defined R (f, length ss) by (auto simp: defined-def)
   with \langle \neg defined R (f, length ss) \rangle show ?thesis by simp
   case (nonroot i u) then show ?thesis by simp
 qed
qed
lemma rstep-ctxt-imp-nrrstep: assumes step: (s,t) \in rstep R and C: C \neq \square
shows (C\langle s\rangle, C\langle t\rangle) \in nrrstep R
proof -
 from step obtain l \ r \ D \ \sigma where (l,r) \in R \ s = D\langle l \cdot \sigma \rangle \ t = D\langle r \cdot \sigma \rangle by auto
  thus ?thesis unfolding nrrstep-def' using C
    by (intro CollectI, unfold split, intro exI[of - C \circ_c D] exI conjI, auto) (cases
C, auto)
qed
lemma rsteps-ctxt-imp-nrrsteps: assumes steps: (s,t) \in (rstep\ R)^* and C: C \neq
\square shows (C\langle s\rangle, C\langle t\rangle) \in (nrrstep \ R)^*
 using steps
proof (induct)
 case (step \ t \ u)
```

```
from rstep-ctxt-imp-nrrstep[OF\ step(2)\ C]\ step(3)\ show\ ?case\ by\ simp
qed simp
lemma nrrstep-mono:
  assumes R \subseteq R'
 shows nrrstep R \subseteq nrrstep R'
 using assms by (force simp: nrrstep-def rstep-r-p-s-def Let-def)
lemma rrstepE:
  assumes (s, t) \in rrstep R
  obtains l and r and \sigma where (l, r) \in R and s = l \cdot \sigma and t = r \cdot \sigma
 using assms by (auto simp: rrstep-def rstep-r-p-s-def)
lemma nrrstepE:
  assumes (s, t) \in nrrstep R
  obtains C and l and r and \sigma where C \neq \square and (l, r) \in R
   and s = C\langle l \cdot \sigma \rangle and t = C\langle r \cdot \sigma \rangle
  using assms by (auto simp: nrrstep-def rstep-r-p-s-def Let-def)
   (metis ctxt.cop-nil list.discI poss-Cons-poss replace-at-subt-at subt-at-id-imp-eps)
lemma singleton-subst-restrict [simp]:
  subst \ x \ s \ |s \ \{x\} = subst \ x \ s
  unfolding subst-def subst-restrict-def by (rule ext) simp
lemma singleton-subst-map [simp]:
 f \circ subst \ x \ s = (f \circ Var)(x := f \ s) by (intro ext, auto simp: subst-def)
lemma subst-restrict-vars [simp]:
  (\lambda z. \ if \ z \in V \ then \ f \ z \ else \ g \ z) \ |s \ V = f \ |s \ V
 unfolding subst-restrict-def
proof (intro ext)
 \mathbf{fix} \ x
 show (if x \in V then if x \in V then f x else g x else V V
    = (if \ x \in V \ then \ f \ x \ else \ Var \ x) \ \mathbf{by} \ simp
qed
lemma subst-restrict-restrict [simp]:
 assumes V \cap W = \{\}
 shows ((\lambda z. \ if \ z \in V \ then \ f \ z \ else \ g \ z) \ |s \ W) = g \ |s \ W
  \mathbf{unfolding}\ \mathit{subst-restrict-def}
proof (intro ext)
 \mathbf{fix} \ x
 show (if x \in W then if x \in V then f x else g x else Var x)
   = (if \ x \in W \ then \ g \ x \ else \ Var \ x) \ using \ assms \ by \ auto
qed
lemma rstep-rstep: rstep (rstep R) = rstep R
proof -
```

```
have ctxt.closure (subst.closure (rstep R)) = rstep R by (simp only: subst-closure-rstep-eq
ctxt-closure-rstep-eq)
  then show ?thesis unfolding rstep-eq-closure.
lemma rstep-trancl-distrib: rstep (R^+) \subseteq (rstep R)^+
proof
  fix s t
  assume (s,t) \in rstep(R^+)
  then show (s,t) \in (rstep \ R)^+
  proof
    fix l r C \sigma
    presume lr: (l,r) \in R^+ and s: s = C\langle l \cdot \sigma \rangle and t: t = C\langle r \cdot \sigma \rangle
    from lr have (C\langle l \cdot \sigma \rangle, C\langle r \cdot \sigma \rangle) \in (rstep R)^+
    proof(induct)
      case (base r)
      then show ?case by auto
    next
      case (step \ r \ rr)
      from step(2) have (C\langle r \cdot \sigma \rangle, C\langle rr \cdot \sigma \rangle) \in (rstep R) by auto
      with step(3) show ?case by auto
    then show (s,t) \in (rstep R)^+ unfolding s t.
  qed auto
qed
lemma rsteps-closed-subst:
  assumes (s, t) \in (rstep R)^*
  shows (s \cdot \sigma, t \cdot \sigma) \in (rstep \ R)^*
  using assms and subst.closed-rtrancl [OF subst-closed-rstep] by (auto simp:
subst.closed-def)
lemma join-subst:
  subst.closed r \Longrightarrow (s, t) \in r^{\downarrow} \Longrightarrow (s \cdot \sigma, t \cdot \sigma) \in r^{\downarrow}
 by (simp add: join-def subst.closedD subst.closed-comp subst.closed-converse subst.closed-rtrancl)
lemma join-subst-rstep [intro]:
  (s, t) \in (rstep R)^{\downarrow} \Longrightarrow (s \cdot \sigma, t \cdot \sigma) \in (rstep R)^{\downarrow}
  by (intro join-subst, auto)
lemma join-ctxt [intro]:
  assumes (s, t) \in (rstep R)^{\downarrow}
  shows (C\langle s\rangle, C\langle t\rangle) \in (rstep R)^{\downarrow}
proof -
  from assms obtain u where (s, u) \in (rstep R)^* and (t, u) \in (rstep R)^* by
  then have (C\langle s\rangle, C\langle u\rangle) \in (rstep \ R)^* and (C\langle t\rangle, C\langle u\rangle) \in (rstep \ R)^* by (auto
intro: rsteps-closed-ctxt)
```

```
then show ?thesis by blast
qed
lemma rstep-simps:
  rstep (R^{=}) = (rstep R)^{=}
  rstep (rstep R) = rstep R
  rstep (R \cup S) = rstep R \cup rstep S
  rstep\ Id = Id
  rstep (R^{\leftrightarrow}) = (rstep R)^{\leftrightarrow}
  \mathbf{by} auto
lemma rstep-rtrancl-idemp [simp]:
  rstep ((rstep R)^*) = (rstep R)^*
proof -
  \{ \mathbf{fix} \ s \ t \}
   assume (s, t) \in rstep ((rstep R)^*)
   then have (s, t) \in (rstep R)^*
     by (induct) (metis rsteps-closed-ctxt rsteps-closed-subst) }
  then show ?thesis by auto
qed
lemma all-ctxt-closed-rstep-conversion:
  all-ctxt-closed UNIV ((rstep R)\leftrightarrow*)
  unfolding conversion-def rstep-simps(5)[symmetric] by blast
definition instance-rule :: ('f, 'v) rule \Rightarrow ('f, 'w) rule \Rightarrow bool where
  [code del]: instance-rule lr\ st \longleftrightarrow (\exists \ \sigma.\ fst\ lr = fst\ st \cdot \sigma \land snd\ lr = snd\ st \cdot \sigma)
definition eq-rule-mod-vars :: ('f, 'v) rule \Rightarrow ('f, 'v) rule \Rightarrow bool where
  eq-rule-mod-vars lr st \longleftrightarrow instance-rule lr st \land instance-rule st lr
notation eq-rule-mod-vars ((-/=_v -) [51,51] 50)
lemma instance-rule-var-cond: assumes eq: instance-rule (s,t) (l,r)
 and vars: vars-term r \subseteq vars-term l
shows vars-term t \subseteq vars-term s
proof -
  from eq[unfolded\ instance-rule-def]
  obtain \tau where s: s = l \cdot \tau and t: t = r \cdot \tau by auto
 show ?thesis
  proof
   \mathbf{fix} \ x
   \mathbf{assume}\ x \in \mathit{vars-term}\ t
     from this [unfolded t] have x \in vars\text{-}term (l \cdot \tau) using vars unfolding
vars-term-subst by auto
   then show x \in vars\text{-}term\ s unfolding s by auto
  qed
```

```
qed
```

```
lemma instance-rule-rstep: assumes step: (s,t) \in rstep \{lr\}
 and bex: Bex R (instance-rule lr)
shows (s,t) \in rstep R
proof -
  from bex obtain lr' where inst: instance-rule lr lr' and R: lr' \in R by auto
  obtain l r where lr: lr = (l,r) by force
 obtain l' r' where lr': lr' = (l',r') by force
 note inst = inst[unfolded lr lr']
 note R = R[unfolded lr']
  from inst[unfolded\ instance-rule-def] obtain \sigma where l: l = l' \cdot \sigma and r: r =
r' \cdot \sigma by auto
 from step[unfolded lr] obtain C \tau where s = C \langle l \cdot \tau \rangle t = C \langle r \cdot \tau \rangle by auto
  with l r have s: s = C\langle l' \cdot (\sigma \circ_s \tau) \rangle and t: t = C\langle r' \cdot (\sigma \circ_s \tau) \rangle by auto
 from rstepI[OF R s t] show ?thesis.
qed
lemma eq-rule-mod-vars-var-cond: assumes eq: (l,r) =_v (s,t)
 and vars: vars-term r \subseteq vars-term l
shows vars-term t \subseteq vars-term s
 by (rule instance-rule-var-cond[OF - vars], insert eq[unfolded eq-rule-mod-vars-def],
auto)
lemma eq-rule-mod-varsE[elim]: fixes l :: ('f,'v)term
  assumes (l,r) =_v (s,t)
  shows \exists \sigma \tau. l = s \cdot \sigma \wedge r = t \cdot \sigma \wedge s = l \cdot \tau \wedge t = r \cdot \tau \wedge range \sigma \subseteq range
Var \wedge range \ \tau \subseteq range \ Var
proof -
  from assms[unfolded eq-rule-mod-vars-def instance-rule-def fst-conv snd-conv]
  obtain \sigma \tau where l: l = s \cdot \sigma and r: r = t \cdot \sigma and s: s = l \cdot \tau and t: t = r \cdot \sigma
\tau by blast+
  obtain f :: 'f where True by auto
  let ?vst = vars\text{-}term (Fun f [s,t])
 let ?vlr = vars\text{-}term (Fun f [l,r])
  define \sigma' where \sigma' \equiv \lambda x. if x \in ?vst then \sigma x else Var x
  define \tau' where \tau' \equiv \lambda \ x. if x \in ?vlr \ then \ \tau \ x \ else \ Var \ x
  show ?thesis
  proof (intro\ exI\ conjI)
   show l: l = s \cdot \sigma' unfolding l \sigma'-def
      by (rule term-subst-eq, auto)
   show r: r = t \cdot \sigma' unfolding r \sigma'-def
     by (rule term-subst-eq, auto)
   show s: s = l \cdot \tau' unfolding s \tau'-def
     by (rule term-subst-eq, auto)
   show t: t = r \cdot \tau' unfolding t \tau'-def
     by (rule term-subst-eq, auto)
   have Fun f [s,t] \cdot Var = Fun f [l, r] \cdot \tau' unfolding s t by simp
   also have ... = Fun f[s,t] \cdot (\sigma' \circ_s \tau') unfolding l \ r by simp
```

```
finally have Fun f [s,t] \cdot (\sigma' \circ_s \tau') = Fun f [s,t] \cdot Var by simp
    from term-subst-eq-rev[OF this] have vst: \bigwedge x. x \in ?vst \Longrightarrow \sigma' x \cdot \tau' = Var
x unfolding subst-compose-def by auto
    have Fun f [l,r] \cdot Var = Fun f [s, t] \cdot \sigma' unfolding l r by simp
    also have ... = Fun f[l,r] \cdot (\tau' \circ_s \sigma') unfolding s \ t by simp
    finally have Fun f[l,r] \cdot (\tau' \circ_s \sigma') = Fun f[l,r] \cdot Var by simp
    from term-subst-eq-rev[OF this] have vlr: \bigwedge x. x \in ?vlr \Longrightarrow \tau' x \cdot \sigma' = Var x
unfolding subst-compose-def by auto
    {
     \mathbf{fix} \ x
     have \sigma' x \in range \ Var
     proof (cases x \in ?vst)
       case True
       from vst[OF\ this] show ?thesis by (cases \sigma' x, auto)
      next
        then show ?thesis unfolding \sigma'-def by auto
     qed
    then show range \sigma' \subseteq range \ Var \ by \ auto
     \mathbf{fix} \ x
     have \tau' x \in range \ Var
      proof (cases x \in ?vlr)
        {\bf case}\  \, True
        from vlr[OF\ this] show ?thesis by (cases \tau' x, auto)
      next
        case False
        then show ?thesis unfolding \tau'-def by auto
    then show range \tau' \subseteq range \ Var \ \mathbf{by} \ auto
  qed
qed
        Linear and Left-Linear TRSs
4.5
definition
  linear-trs :: ('f, 'v) trs \Rightarrow bool
  where
    linear-trs R \equiv \forall (l, r) \in R. linear-term l \wedge linear-term r
lemma linear-trsE[elim, consumes \ 1]: linear-trs R \Longrightarrow (l,r) \in R \Longrightarrow linear-term l
\land linear-term r
  unfolding linear-trs-def by auto
lemma linear-trsI[intro]: \llbracket \bigwedge l \ r. \ (l,r) \in R \Longrightarrow linear-term \ l \wedge linear-term \ r \rrbracket \Longrightarrow
linear-trs R
  unfolding linear-trs-def by auto
```

```
definition
  left-linear-trs :: ('f, 'v) trs \Rightarrow bool
 where
   left-linear-trs R \longleftrightarrow (\forall (l, r) \in R. \ linear-term \ l)
lemma left-linear-trs-union: left-linear-trs (R \cup S) = (left-linear-trs R \land left-linear-trs
 unfolding left-linear-trs-def by auto
lemma left-linear-mono: assumes left-linear-trs S and R \subseteq S shows left-linear-trs
 using assms unfolding left-linear-trs-def by auto
lemma left-linear-map-funs-trs[simp]: left-linear-trs (map-funs-trs fR) = left-linear-trs
 unfolding left-linear-trs-def by (auto simp: map-funs-trs.simps)
lemma left-linear-weak-match-rstep:
 assumes rstep: (u, v) \in rstep R
   and weak-match: weak-match s u
   and ll: left-linear-trs R
 shows \exists t. (s, t) \in rstep \ R \land weak-match \ t \ v
  using weak-match
proof (induct rule: rstep-induct-rule [OF rstep])
  case (1 \ C \ sig \ l \ r)
  from 1(2) show ?case
  proof (induct\ C\ arbitrary:\ s)
   case (More f bef C aft s)
   let ?n = Suc (length bef + length aft)
   let ?m = length bef
   from More(2) obtain ss where s: s = Fun f ss and lss: ?n = length ss and
wm: (\forall i < length \ ss. \ weak-match \ (ss!i) \ ((bef @ C\langle l \cdot sig \rangle \# aft)!i)) by (cases
s, auto)
   from lss wm[THEN spec, of ?m] have weak-match (ss!?m) C\langle l \cdot sig \rangle by auto
   from More(1)[OF\ this] obtain t where wmt: weak-match t C\langle r \cdot siq \rangle and
step: (ss ! ?m,t) \in rstep R by auto
   from lss have mss: ?m < length ss by simp
   let ?tsi = \lambda t. take ?m ss @ t \# drop (Suc ?m) ss
   let ?ts = ?tsi t
   let ?ss = ?tsi (ss ! ?m)
   from id-take-nth-drop[OF\ mss]
   have lts: length ?ts = ?n using lss by auto
   show ?case
   proof (rule\ exI[of\ -\ Fun\ f\ ?ts], intro\ conjI)
     have weak-match (Fun f ?ts) (More f bef C aft)\langle r \cdot sig \rangle =
       weak-match (Fun f ?ts) (Fun f (bef @ C(r \cdot sig) \# aft)) by simp
     also have ... proof (unfold weak-match.simps lts, intro conjI refl allI impI)
      \mathbf{fix} i
```

```
assume i: i < ?n
       show weak-match (?ts! i) ((bef @ C\langle r \cdot sig \rangle \# aft)! i)
       proof (cases i = ?m)
         {f case}\ True
         have weak-match (?ts!i) ((bef @ C\langle r \cdot sig \rangle \# aft)!i) = weak-match t
C\langle r\,\cdot\,sig\rangle
           using True mss by (simp add: nth-append)
         then show ?thesis using wmt by simp
       next
         case False
         have eq: ?ts! i = ss! i \land (bef @ C \langle r \cdot sig \rangle \# aft)! i = (bef @ C \langle l \cdot sig \rangle)
\# aft)! i
         proof (cases i < ?m)
           case True
           then show ?thesis by (simp add: nth-append lss[symmetric])
         next
           case False
             with \langle i \neq ?m \rangle i have \exists j. i = Suc (?m + j) \land j < length aft by
presburger
          then obtain j where i: i = Suc \ (?m + j) and j: j < length \ aft by auto
            then have id: (Suc\ (length\ bef\ +\ j)\ -\ min\ (Suc\ (length\ bef\ +\ length
aft) (length bef)) = Suc\ j\ \mathbf{by}\ simp
           from j show ?thesis by (simp add: nth-append i id lss[symmetric])
         then show ?thesis using wm[THEN spec, of i] i[unfolded lss] by (simp)
       qed
     qed simp
     finally show weak-match (Fun f ?ts) (More f bef C aft)\langle r \cdot siq \rangle by simp
     have s = Fun \ f \ ?ss \ unfolding \ s \ using \ id-take-nth-drop[OF \ mss, \ symmetric]
     also have ... = (More\ f\ (take\ ?m\ ss)\ \Box\ (drop\ (Suc\ ?m)\ ss))\langle (ss\ !\ ?m)\rangle\ (is\ -
= ?C\langle - \rangle) by simp
     finally have s: s = ?C\langle ss ! ?m \rangle.
     have t: Fun f ?ts = ?C\langle t \rangle by simp
     from rstep-ctxt[OF step]
     show (s, Fun f ?ts) \in rstep R
       unfolding s t.
   qed
  next
   case (Hole\ s)
   from ll 1(1) have linear-term l unfolding left-linear-trs-def by auto
   from linear-weak-match[OF this Hole[simplified] refl] obtain \tau where
     s = l \cdot \tau and (\forall x \in vars\text{-}term\ l\ .\ weak\text{-}match\ (Var\ x \cdot \tau)\ (Var\ x \cdot sig))
     by auto
   then obtain tau where s: s = l \cdot tau and wm: (\forall x \in vars\text{-}term \ l \ . weak\text{-}match)
(tau\ x)\ (Var\ x\cdot sig))
     by (auto)
   let ?delta = (\lambda \ x. \ if \ x \in vars-term \ l \ then \ tau \ x \ else \ Var \ x \cdot sig)
```

```
show ?case
   proof (rule exI[of - r \cdot ?delta], rule conjI)
     have s = l \cdot (tau \mid s \ (vars\text{-}term \ l)) unfolding s by (rule \ coincidence\text{-}lemma)
     also have ... = l \cdot (?delta \mid s (vars-term \mid l)) by simp
     also have ... = l \cdot ?delta by (rule coincidence-lemma[symmetric])
     finally have s: s = l \cdot ?delta.
     from 1(1) have step: (l \cdot ?delta, r \cdot ?delta) \in rstep R by auto
     then show (s, r \cdot ?delta) \in rstep R unfolding s.
   next
     have weak-match (r \cdot ?delta) (r \cdot sig)
     proof (induct \ r)
       case (Fun f ss)
       from this[unfolded set-conv-nth]
       show ?case by (force)
     next
       case (Var x)
       show ?case
       proof (cases x \in vars\text{-}term \ l)
         case True
         with wm Var show ?thesis by simp
       next
         {\bf case}\ \mathit{False}
         show ?thesis by (simp add: Var False weak-match-refl)
       qed
     qed
     then show weak-match (r \cdot ?delta) (\Box \langle (r \cdot sig) \rangle) by simp
   qed
 qed
qed
context
begin
private fun S where
 S R s t \theta = s
|SRst(Suci)| = (SOME\ u.\ (SRs\ t\ i.u) \in rstep\ R \land weak-match\ u\ (t(Suc\ i)))
lemma weak-match-SN:
 assumes wm: weak-match s t
   and ll: left-linear-trs R
   and SN: SN-on (rstep R) \{s\}
 shows SN-on (rstep R) \{t\}
proof
 \mathbf{fix} f
 assume t\theta: f \theta \in \{t\} and chain: chain (rstep R) f
 let ?s = S R s f
 let ?P = \lambda i \ u. \ (?s \ i, \ u) \in rstep \ R \land weak-match \ u \ (f \ (Suc \ i))
 have \forall i. (?s \ i, ?s \ (Suc \ i)) \in rstep \ R \land weak-match (?s \ (Suc \ i)) \ (f \ (Suc \ i))
 proof
```

```
fix i show (?s \ i, ?s \ (Suc \ i)) \in rstep \ R \land weak-match \ (?s \ (Suc \ i)) \ (f \ (Suc \ i))
   proof (induct i)
     case \theta
     from chain have ini: (f \ \theta, f \ (Suc \ \theta)) \in rstep \ R by simp
    then have (t, f(Suc \theta)) \in rstep \ R \ unfolding \ singletonD[OF t0, symmetric]
     from some I-ex[OF left-linear-weak-match-rstep[OF this wm ll]]
     show ?case by simp
   next
     case (Suc\ i)
     then have IH1: (?s \ i, ?s \ (Suc \ i)) \in rstep \ R
       and IH2: weak-match (?s (Suc i)) (f (Suc i)) by auto
     from chain have nxt: (f(Suc\ i), f(Suc\ (Suc\ i))) \in rstep\ R by simp
     from some I-ex[OF left-linear-weak-match-rstep[OF this IH2 ll]]
     have \exists u. ?P (Suc i) u by auto
     from some I-ex[OF this]
     show ?case by simp
   qed
 qed
 moreover have ?s \theta = s by simp
 ultimately have \neg SN-on (rstep R) \{s\} by best
  with SN show False by simp
qed
end
lemma lhs-notin-NF-rstep: (l, r) \in R \Longrightarrow l \notin NF (rstep R) by auto
lemma NF-instance:
 assumes (t \cdot \sigma) \in NF \ (rstep \ R) shows t \in NF \ (rstep \ R)
 using assms by auto
lemma NF-subterm:
 assumes t \in NF (rstep R) and t \trianglerighteq s
 shows s \in NF \ (rstep \ R)
proof (rule ccontr)
 assume ¬ ?thesis
 then obtain u where (s, u) \in rstep R by auto
 from \langle t \geq s \rangle obtain C where t = C \langle s \rangle by auto
 with \langle (s, u) \in rstep \ R \rangle have (t, C\langle u \rangle) \in rstep \ R by auto
  then have t \notin NF (rstep R) by auto
  with assms show False by simp
qed
abbreviation
  lhss :: ('f, 'v) \ trs \Rightarrow ('f, 'v) \ terms
  where
   lhss R \equiv fst 'R
abbreviation
```

```
rhss :: ('f, 'v) \ trs \Rightarrow ('f, 'v) \ terms
    where
       \mathit{rhss}\ R \equiv \mathit{snd}\ `R
definition map-funs-trs-wa :: ('f \times nat \Rightarrow 'g) \Rightarrow ('f, 'v) \ trs \Rightarrow ('g, 'v) \ trs \ \textbf{where}
    map-funs-trs-wa fg R = (\lambda(l, r)). (map-funs-term-wa fg l, map-funs-term-wa fg
r)) ' R
lemma map-funs-trs-wa-union: map-funs-trs-wa fg (R \cup S) = map-funs-trs-wa fg
R \cup map-funs-trs-wa fg S
   unfolding map-funs-trs-wa-def by auto
lemma map-funs-term-wa-compose: map-funs-term-wa gh (map-funs-term-wa fg t)
= map-funs-term-wa (\lambda (f,n). gh (fg (f,n), n)) t
   by (induct\ t,\ auto)
lemma map-funs-trs-wa-compose: map-funs-trs-wa gh (map-funs-trs-wa fg R) =
map-funs-trs-wa \ (\lambda \ (f,n). \ gh \ (fg \ (f,n), \ n)) \ R \ (is \ ?L = map-funs-trs-wa \ ?fgh \ R)
proof -
    have map-funs-trs-wa ?fgh R = \{(map-funs-term-wa ?fgh l, map-funs-term-wa ?fgh l, map-funs-ter
 ?fgh r) | l r. (l,r) \in R} unfolding map-funs-trs-wa-def by auto
  also have \dots = \{(map\text{-}funs\text{-}term\text{-}wa\ gh\ (map\text{-}funs\text{-}term\text{-}wa\ fg\ l),\ map\text{-}funs\text{-}term\text{-}wa\ fg\ l)\}
gh(map-funs-term-wafgr)) \mid lr.(l,r) \in R\} unfolding map-funs-term-wa-compose
   finally show ?thesis unfolding map-funs-trs-wa-def by force
qed
lemma map-funs-trs-wa-funas-trs-id: assumes R: funas-trs R \subseteq F
   and id: \bigwedge g \ n. \ (g,n) \in F \Longrightarrow f \ (g,n) = g
shows map-funs-trs-wa\ f\ R=R
proof -
    {
       fix l r
       assume (l,r) \in R
        with R have l: funas-term l \subseteq F and r: funas-term r \subseteq F unfolding fu-
nas-trs-def
           by (force simp: funas-rule-def)+
     from map-funs-term-wa-funas-term-id[OF\ l\ id]\ map-funs-term-wa-funas-term-id[OF\ l\ id]
r id
       have map-funs-term-wa f l = l map-funs-term-wa f r = r by auto
    \} note main = this
   have map-funs-trs-wa f R = \{(map-funs-term-wa f l, map-funs-term-wa f r) | l
r. (l,r) \in R
       unfolding map-funs-trs-wa-def by force
   also have \dots = R using main by force
   finally show ?thesis.
qed
```

```
lemma map-funs-trs-wa-rstep: assumes step:(s,t) \in rstep R
 shows (map-funs-term-wa\ fg\ s, map-funs-term-wa\ fg\ t) \in rstep\ (map-funs-trs-wa
fg R
  using step
proof (induct)
  case (IH C \sigma l r)
 \mathbf{show} \ ? case \ \mathbf{unfolding} \ map\textit{-}funs\textit{-}trs\textit{-}wa\textit{-}def
    by (rule\ rstep I] where l=map-funs-term-wa fq l and r=map-funs-term-wa
fg \ r \ and \ C = map-funs-ctxt-wa \ fg \ C, auto simp: IH)
qed
lemma map-funs-trs-wa-rsteps: assumes step:(s,t) \in (rstep \ R)^*
 shows (map-funs-term-wa\ fg\ s, map-funs-term-wa\ fg\ t) \in (rstep\ (map-funs-trs-wa\ fg\ t))
fg(R))^*
 using step
proof (induct)
 case (step \ a \ b)
 from map-funs-trs-wa-rstep[OF step(2), of fg] step(3) show ?case by auto
qed auto
lemma rstep-ground:
  assumes wf-trs: \bigwedge l r. (l, r) \in R \Longrightarrow vars\text{-}term \ r \subseteq vars\text{-}term \ l
   and ground: ground s
   and step: (s, t) \in rstep R
  shows ground t
  using step ground
proof (induct)
  case (IH C \sigma l r)
  from wf-trs[OF\ IH(1)]\ IH(2)
 show ?case by auto
qed
lemma rsteps-ground:
 assumes wf-trs: \bigwedge l \ r. \ (l, \ r) \in R \Longrightarrow vars-term \ r \subseteq vars-term \ l
   and ground: ground s
   and steps: (s, t) \in (rstep R)^*
  shows ground t
  using steps ground
  by (induct, insert rstep-ground[OF wf-trs], auto)
definition locally-terminating :: ('f,'v)trs \Rightarrow bool
  where locally-terminating R \equiv \forall F. finite F \longrightarrow SN (sig-step F (rstep R))
definition non-collapsing R \longleftrightarrow (\forall lr \in R. is\text{-}Fun (snd lr))
lemma supt-rstep-stable:
  assumes (s, t) \in \{ \triangleright \} \cup rstep R
 shows (s \cdot \sigma, t \cdot \sigma) \in \{ \triangleright \} \cup rstep R
 using assms proof
```

```
assume s \triangleright t show ?thesis
  proof (rule UnI1)
    from \langle s \rhd t \rangle show s \cdot \sigma \rhd t \cdot \sigma by (rule supt-subst)
  qed
next
  assume (s, t) \in rstep R show ?thesis
  proof (rule UnI2)
    from \langle (s, t) \in rstep \ R \rangle show (s \cdot \sigma, t \cdot \sigma) \in rstep \ R ..
  qed
\mathbf{qed}
lemma supt-rstep-trancl-stable:
  assumes (s, t) \in (\{ \triangleright \} \cup rstep \ R)^+
  shows (s \cdot \sigma, t \cdot \sigma) \in (\{\triangleright\} \cup rstep\ R)^+
  using assms proof (induct)
  case (base u)
  then have (s \cdot \sigma, u \cdot \sigma) \in \{\triangleright\} \cup rstep \ R  by (rule \ supt-rstep-stable)
  then show ?case ..
next
  case (step \ u \ v)
  from \langle (s \cdot \sigma, u \cdot \sigma) \in (\{ \triangleright \} \cup rstep \ R)^+ \rangle
    and supt-rstep-stable [OF \langle (u, v) \in \{ \triangleright \} \cup rstep \ R \rangle, \ of \ \sigma]
  show ?case ..
qed
\mathbf{lemma}\ supt-rsteps-stable:
  assumes (s, t) \in (\{ \triangleright \} \cup rstep \ R)^*
  shows (s \cdot \sigma, t \cdot \sigma) \in (\{\triangleright\} \cup rstep \ R)^*
  using assms
proof (induct)
  case base then show ?case ..
next
  case (step \ u \ v)
  from \langle (s, u) \in (\{ \triangleright \} \cup rstep \ R)^* \rangle and \langle (u, v) \in \{ \triangleright \} \cup rstep \ R \rangle
  have (s, v) \in (\{\triangleright\} \cup rstep\ R)^+ by (rule rtrancl-into-trancl1)
  from trancl-into-rtrancl[OF supt-rstep-trancl-stable[OF this]]
  show ?case.
qed
lemma eq-rule-mod-vars-refl[simp]: r =_v r
proof (cases r)
  case (Pair \ l \ r)
  {
    have fst(l, r) = fst(l, r) \cdot Var \wedge snd(l, r) = snd(l, r) \cdot Var by auto
  }
  then show ?thesis unfolding Pair eq-rule-mod-vars-def instance-rule-def by
best
qed
```

```
lemma instance-rule-refl[simp]: instance-rule r r
  using eq-rule-mod-vars-refl[of r] unfolding eq-rule-mod-vars-def by simp
lemma is-Fun-Fun-conv: is-Fun t = (\exists f \text{ ts. } t = Fun f \text{ ts}) by auto
lemma wf-trs-def':
  wf-trs R = (\forall (l, r) \in R. \text{ is-Fun } l \land \text{vars-term } r \subseteq \text{vars-term } l)
 by (rule iffI) (auto simp: wf-trs-def is-Fun-Fun-conv)
definition wf-rule :: ('f, 'v) rule \Rightarrow bool where
  wf-rule r \longleftrightarrow is-Fun (fst \ r) \land vars-term (snd \ r) \subseteq vars-term (fst \ r)
definition wf-rules :: ('f, 'v) trs \Rightarrow ('f, 'v) trs where
  wf-rules R = \{r. \ r \in R \land wf-rule r\}
lemma wf-trs-wf-rules[simp]: wf-trs (wf-rules R)
  unfolding wf-trs-def' wf-rules-def wf-rule-def split-def by simp
lemma wf-rules-subset[simp]: wf-rules R \subseteq R
  unfolding wf-rules-def by auto
fun wf-reltrs :: ('f, 'v) \ trs \Rightarrow ('f, 'v) \ trs \Rightarrow bool \ \mathbf{where}
  wf-reltrs R S = (
   \textit{wf-trs} \ R \land (R \neq \{\} \longrightarrow (\forall \ l \ r. \ (l, \ r) \in S \longrightarrow \textit{vars-term} \ r \subseteq \textit{vars-term} \ l)))
lemma SN-rel-imp-wf-reltrs:
  assumes SN-rel: SN-rel (rstep R) (rstep S)
 shows wf-reltrs R S
proof (rule ccontr)
  assume ¬ ?thesis
  then obtain l\ r where \neg\ wf-trs R\ \lor\ R\ \neq\ \{\}\ \land\ (l,r)\in S\ \land\ \neg\ vars-term r\subseteq
vars-term l (is - \vee ?two) by auto
  then show False
  proof
   assume \neg wf-trs R
   with SN-rstep-imp-wf-trs[OF SN-rel-imp-SN[OF assms]]
   show False by simp
  next
   assume ?two
    then obtain ll \ rr \ x where lr: (l,r) \in S and llrr: (ll,rr) \in R and x: x \in R
vars-term r and nx: x \notin vars-term l by auto
   obtain f and \sigma
      where sigma: \sigma = (\lambda y) if x = y then Fun f [ll,l] else Var y by auto
   have id: \sigma \mid s \text{ (vars-term } l) = Var \text{ unfolding } sigma
     by (simp add: subst-restrict-def, rule ext, auto simp: nx)
   have l: l = l \cdot \sigma by (simp add: coincidence-lemma[of l \sigma] id)
   have (l \cdot \sigma, r \cdot \sigma) \in rstep \ S  using lr  by auto
   with l have sstep: (l, r \cdot \sigma) \in rstep \ S by simp
   from supteq-subst[OF\ supteq-Var[OF\ x],\ of\ \sigma] have
```

```
r \cdot \sigma \triangleright Fun \ f \ [ll,l] \ \mathbf{unfolding} \ sigma \ \mathbf{by} \ auto
    then obtain C where C\langle Fun f [ll, l] \rangle = r \cdot \sigma by auto
    with sstep have sstep: (l, C\langle Fun \ f \ [ll, \ l] \rangle) \in rstep \ S by simp
    obtain r where r: r = relto(rstep R)(rstep S) \cup \{\triangleright\} by auto
    have (C\langle Fun\ f\ [ll,l]\rangle,\ C\langle Fun\ f\ [rr,l]\rangle) \in rstep\ R
      by (intro rstepI[OF llrr, of - C \circ_c More f \parallel \Box \lfloor l \rfloor Var \rfloor, auto)
    with sstep have relto: (l, C\langle Fun \ f \ [rr, l] \rangle) \in r unfolding r by auto
    have C\langle Fun\ f\ [rr,l]\rangle \geq Fun\ f\ [rr,l] using ctxt-imp-supted by auto
    also have Fun f [rr, l] > l by auto
    finally have supt: C\langle Fun\ f\ [rr,l]\rangle \rhd l unfolding supt-def by simp
   then have (C\langle Fun\ f\ [rr,l]\rangle,\ l)\in r unfolding r by auto
    with relto have loop: (l, l) \in r^+ by auto
    have SN r unfolding r
      by (rule SN-imp-SN-union-supt[OF SN-rel[unfolded SN-rel-defs]], blast)
    then have SN (r^+) by (rule\ SN-imp-SN-trancl)
    with loop show False unfolding SN-on-def by auto
  qed
qed
lemmas rstep-wf-rules-subset = rstep-mono[OF wf-rules-subset]
definition map-vars-trs :: ('v \Rightarrow 'w) \Rightarrow ('f, 'v) \ trs \Rightarrow ('f, 'w) \ trs \ where
  map-vars-trs f R = (\lambda (l, r). (map-vars-term f l, map-vars-term f r)) ' R
\mathbf{lemma}\ \mathit{map-vars-trs-rstep} \colon
  assumes (s, t) \in rstep \ (map-vars-trs \ f \ R) \ (is \ - \in rstep \ ?R)
  shows (s \cdot \tau, t \cdot \tau) \in rstep R
  using assms
proof
  fix ml \ mr \ C \ \sigma
  presume mem: (ml, mr) \in R and s: s = C\langle ml \cdot \sigma \rangle and t: t = C\langle mr \cdot \sigma \rangle
  let ?m = map\text{-}vars\text{-}term f
  from mem obtain l r where mem: (l,r) \in R and id: ml = ?m \ l \ mr = ?m \ r
    unfolding map-vars-trs-def by auto
 have id: s \cdot \tau = (C \cdot_c \tau) \langle ?m \ l \cdot \sigma \circ_s \tau \rangle \ t \cdot \tau = (C \cdot_c \tau) \langle ?m \ r \cdot \sigma \circ_s \tau \rangle by (auto
simp: s \ t \ id)
  then show (s \cdot \tau, t \cdot \tau) \in rstep R
    unfolding id apply-subst-map-vars-term
    using mem by auto
qed auto
lemma map-vars-rsteps:
  assumes (s,t) \in (rstep \ (map-vars-trs \ f \ R))^* \ (is \ - \in (rstep \ ?R)^*)
  shows (s \cdot \tau, t \cdot \tau) \in (rstep \ R)^*
  using assms
proof (induct)
  case base then show ?case by simp
next
  case (step \ t \ u)
```

```
from map-vars-trs-rstep[OF step(2), of \tau] step(3) show ?case by auto
lemma rsteps-subst-closed: (s,t) \in (rstep\ R)^+ \Longrightarrow (s \cdot \sigma,\ t \cdot \sigma) \in (rstep\ R)^+
proof -
 let ?R = rstep R
 assume steps: (s,t) \in ?R^+
 have subst. subst. closed (?R^+) by (rule subst.closed-trancl[OF subst-closed-rstep])
 from this[unfolded subst.closed-def] steps show ?thesis by auto
qed
lemma supteq-rtrancl-supt:
 (R^+ \ O \ \{\succeq\}) \subseteq (\{\rhd\} \cup R)^+ \ (\mathbf{is} \ ?l \subseteq ?r)
proof
  \mathbf{fix} \ x \ z
 assume (x,z) \in ?l
  then obtain y where xy: (x,y) \in R^+ and yz: y \ge z by auto
  from xy have xy: (x,y) \in ?r by (rule\ trancl-mono,\ simp)
  show (x,z) \in ?r
  proof (cases \ y = z)
   {\bf case}\ {\it True}
   with xy show ?thesis by simp
  next
   case False
   with yz have yz: (y,z) \in \{\triangleright\} \cup R by auto
   with xy have xz: (x,z) \in ?r \ O \ (\{\rhd\} \cup R) by auto
   then show ?thesis by (metis UnCI trancl-unfold)
 qed
qed
lemma rrstepI[intro]: (l, r) \in R \Longrightarrow s = l \cdot \sigma \Longrightarrow t = r \cdot \sigma \Longrightarrow (s, t) \in rrstep R
  unfolding rrstep-def' by auto
lemma CS-rrstep-conv: subst.closure = rrstep
 apply (intro ext)
 apply (unfold rrstep-def')
 apply (intro subset-antisym)
 by (insert subst.closure.cases, blast, auto)
Rewrite steps at a fixed position
inductive-set rstep-pos :: ('f, 'v) trs \Rightarrow pos \Rightarrow ('f, 'v) term rel for R and p
  where
   rule\ [intro]:(l,\ r)\in R \Longrightarrow p\in poss\ s\Longrightarrow s\mid -p=l\cdot\sigma\Longrightarrow
   (s, replace-at \ s \ p \ (r \cdot \sigma)) \in rstep-pos \ R \ p
lemma rstep-pos-subst:
  assumes (s, t) \in rstep\text{-}pos R p
  shows (s \cdot \sigma, t \cdot \sigma) \in rstep\text{-}pos R p
  using assms
```

```
proof (cases)
  case (rule l r \sigma')
  with rstep-pos.intros [OF this(2), of p \ s \cdot \sigma \ \sigma' \circ_s \sigma]
 show ?thesis by (auto simp: ctxt-of-pos-term-subst)
qed
lemma rstep-pos-rule:
  assumes (l, r) \in R
 shows (l, r) \in rstep\text{-}pos R
 using rstep-pos.intros [OF assms, of [] l Var] by simp
lemma rstep-pos-rstep-r-p-s-conv:
  rstep-pos\ R\ p = \{(s,\ t)\ |\ s\ t\ r\ \sigma.\ (s,\ t) \in rstep-r-p-s\ R\ r\ p\ \sigma\}
  by (auto simp: rstep-r-p-s-def Let-def subt-at-ctxt-of-pos-term
     intro: replace-at-ident
     elim!: rstep-pos.cases)
lemma rstep-rstep-pos-conv:
  rstep R = \{(s, t) \mid s \ t \ p. \ (s, t) \in rstep-pos \ R \ p\}
  by (force simp: rstep-pos-rstep-r-p-s-conv rstep-iff-rstep-r-p-s)
lemma rstep-pos-supt:
  assumes (s, t) \in rstep\text{-}pos R p
   and q: q \in poss \ u and u: u \mid -q = s
 shows (u, (ctxt-of-pos-term\ q\ u)\langle t\rangle) \in rstep-pos\ R\ (q\ @\ p)
  using assms
proof (cases)
  case (rule l r \sigma)
  with q and u have (q @ p) \in poss \ u \text{ and } u \mid - (q @ p) = l \cdot \sigma \text{ by } auto
  with rstep-pos.rule [OF rule(2) this] show ?thesis
   unfolding rule by (auto simp: ctxt-of-pos-term-append u)
qed
\mathbf{lemma}\ rrstep\text{-}rstep\text{-}pos\text{-}conv:
  rrstep R = rstep-pos R []
 by (auto simp: rrstep-def rstep-pos-rstep-r-p-s-conv)
lemma rrstep-imp-rstep:
  assumes (s, t) \in rrstep R
  shows (s, t) \in rstep R
 using assms by (auto simp: rrstep-def rstep-iff-rstep-r-p-s)
lemma not-NF-rstep-imp-subteq-not-NF-rrstep:
  assumes s \notin NF \ (rstep \ R)
 shows \exists t \leq s. \ t \notin NF \ (rrstep \ R)
proof -
  from assms obtain u where (s, u) \in rstep R by auto
  then obtain l \ r \ C \ \sigma where (l, \ r) \in R and s: s = C\langle l \cdot \sigma \rangle and u: u = C\langle r \cdot \sigma \rangle
\sigma by auto
```

```
then have (l \cdot \sigma, r \cdot \sigma) \in rrstep \ R and l \cdot \sigma \leq s by auto
  then show ?thesis by blast
qed
\mathbf{lemma} \ \mathit{all-subt-NF-rrstep-iff-all-subt-NF-rstep} :
  (\forall s \lhd t. \ s \in NF \ (rrstep \ R)) \longleftrightarrow (\forall s \lhd t. \ s \in NF \ (rstep \ R))
 by (auto dest: rrstep-imp-rstep supt-supteq-trans not-NF-rstep-imp-subteq-not-NF-rrstep)
lemma not-in-poss-imp-NF-rstep-pos [simp]:
  assumes p \notin poss s
  shows s \in NF (rstep\text{-}pos R p)
 using assms by (auto simp: NF-def elim: rstep-pos.cases)
lemma Var-rstep-imp-rstep-pos-Empty:
  assumes (Var x, t) \in rstep R
  shows (Var x, t) \in rstep\text{-}pos R 
  using assms by (metis Var-supt nrrstep-subt rrstep-rstep-pos-conv rstep-cases)
lemma rstep-args-NF-imp-rrstep:
  assumes (s, t) \in rstep R
   and \forall u \triangleleft s. \ u \in NF \ (rstep \ R)
 shows (s, t) \in rrstep R
  using assms by (metis NF-iff-no-step nrrstep-subt rstep-cases)
lemma rstep-pos-imp-rstep-pos-Empty:
  assumes (s, t) \in rstep\text{-}pos R p
  shows (s \mid p, t \mid p) \in rstep-pos R
 using assms by (cases) (auto simp: replace-at-subt-at intro: rstep-pos-rule rstep-pos-subst)
lemma rstep-pos-arg:
  assumes (s, t) \in rstep\text{-}pos R p
   and i < length ss and ss ! i = s
  shows (Fun f ss, (ctxt\text{-}of\text{-}pos\text{-}term\ [i]\ (Fun f ss))\langle t \rangle) \in rstep\text{-}pos\ R\ (i\ \#\ p)
  using assms
  by cases (auto simp: rstep-pos.simps)
lemma rstep-imp-max-pos:
  assumes (s, t) \in rstep R
 shows \exists u. \exists p \in poss \ s. \ (s, u) \in rstep-pos \ R \ p \land (\forall v \lhd s \mid -p. \ v \in NF \ (rstep \ R))
  using assms
proof (induction s arbitrary: t)
  case (Var x)
  from Var-rstep-imp-rstep-pos-Empty [OF this] show ?case by auto
\mathbf{next}
  case (Fun f ss)
  show ?case
  proof (cases \ \forall \ v \ \triangleleft \ Fun \ f \ ss \ | - \ []. \ v \in NF \ (rstep \ R))
   \mathbf{case} \ \mathit{True}
   moreover with Fun.prems
```

```
have (Fun f ss, t) \in rstep\text{-}pos R
     by (auto dest: rstep-args-NF-imp-rrstep simp: rrstep-rstep-pos-conv)
   ultimately show ?thesis by auto
  next
   case False
   then obtain v where v \triangleleft Fun f ss and v \notin NF (rstep R) by auto
   then obtain s and w where s \in set ss and s \geq v and (s, w) \in rstep R
    by (auto simp: NF-def) (metis NF-iff-no-step NF-subterm supt-Fun-imp-arg-supteq)
   from Fun.IH [OF this(1, 3)] obtain u and p
     where p \in poss \ s \ and *: (s, u) \in rstep-pos \ R \ p
       and **: \forall v \triangleleft s \mid- p. v \in NF \ (rstep \ R) by blast
   from \langle s \in set \ ss \rangle obtain i
     where i < length ss  and [simp]:ss ! i = s  by (auto simp: in-set-conv-nth)
   with \langle p \in poss \ s \rangle have i \# p \in poss \ (Fun \ f \ ss) by auto
   moreover with ** have \forall v \triangleleft Fun f ss \mid -(i \# p). v \in NF (rstep R) by auto
   moreover from rstep-pos-arg [OF * \langle i < length ss \rangle \langle ss ! i = s \rangle]
   have (Fun f ss, (ctxt-of-pos-term [i] (Fun f ss))\langle u \rangle) \in rstep-pos R (i \# p).
   ultimately show ?thesis by blast
 qed
qed
       Normal Forms
4.6
abbreviation NF-trs :: ('f, 'v) trs \Rightarrow ('f, 'v) terms where
  NF-trs R \equiv NF (rstep R)
lemma NF-trs-mono: r \subseteq s \Longrightarrow NF-trs s \subseteq NF-trs r
 by (rule NF-anti-mono[OF rstep-mono])
lemma NF-trs-union: NF-trs (R \cup S) = NF-trs R \cap NF-trs S
 unfolding rstep-union using NF-anti-mono[of - rstep R \cup rstep S] by auto
abbreviation NF-terms :: ('f, 'v) \ terms \Rightarrow ('f, 'v) \ terms where
  NF-terms Q \equiv NF \ (rstep \ (Id-on Q))
\mathbf{lemma}\ NF-terms-anti-mono:
  Q \subseteq Q' \Longrightarrow NF\text{-}terms \ Q' \subseteq NF\text{-}terms \ Q
 by (rule NF-trs-mono, auto)
lemma lhs-var-not-NF:
  assumes l \in T and is-Var l shows t \notin NF-terms T
proof -
 from assms obtain x where l: l = Var x by (cases l, auto)
 let ?\sigma = subst\ x\ t
 from assms have l \notin NF-terms T by auto
 with NF-instance[of l ? \sigma Id-on T]
 have l \cdot ?\sigma \notin NF-terms T by auto
 then show ?thesis by (simp add: l subst-def)
qed
```

```
lemma not-NF-termsE[elim]:
  assumes s \notin NF-terms Q
  obtains l \ C \ \sigma where l \in Q and s = C \langle l \cdot \sigma \rangle
proof -
  from assms obtain t where (s, t) \in rstep (Id\text{-}on Q) by auto
  with \langle \bigwedge l \ C \ \sigma . \ [[l \in Q; s = C \langle l \cdot \sigma \rangle]] \implies thesis \ show \ ?thesis \ by \ auto
lemma notin-NF-E [elim]:
  fixes R :: ('f, 'v) trs
  assumes t \notin NF-trs R
  obtains C \ l and \sigma :: ('f, 'v) \ subst where l \in lhss \ R and t = C \langle l \cdot \sigma \rangle
proof -
  assume 1: \bigwedge l\ C\ (\sigma::(f,\ 'v)\ subst).\ l\in lhss\ R\Longrightarrow t=C\langle l\cdot\sigma\rangle\Longrightarrow thesis
  from assms obtain u where (t, u) \in rstep R by (auto simp: NF-def)
  then obtain C \sigma l r where (l, r) \in R and t = C\langle l \cdot \sigma \rangle by blast
  with 1 show ?thesis by force
lemma NF-ctxt-subst: NF-terms Q = \{t. \neg (\exists \ C \ q \ \sigma. \ t = C \langle q \cdot \sigma \rangle \land q \in Q)\} (is
- = ?R
proof -
  {
    \mathbf{fix}\ t
    assume t \notin ?R
    then obtain C \ q \ \sigma where t: t = C\langle q \cdot \sigma \rangle and q: q \in Q by auto
    have (t,t) \in rstep (Id\text{-}on Q)
      unfolding t using q by auto
    then have t \notin NF-terms Q by auto
  }
  moreover
  {
    \mathbf{fix} \ t
    assume t \notin NF-terms Q
    then obtain C \ q \ \sigma where t: t = C \langle q \cdot \sigma \rangle and q: q \in Q by auto
    then have t \notin ?R by auto
  ultimately show ?thesis by auto
qed
\mathbf{lemma}\ some\text{-}NF\text{-}imp\text{-}no\text{-}Var:
  assumes t \in NF-terms Q
  shows Var x \notin Q
proof
  assume Var x \in Q
  with assms[unfolded NF-ctxt-subst] have \bigwedge \sigma C. t \neq C \langle \sigma x \rangle by force
  from this[of\ Hole\ \lambda\ -.\ t] show False by simp
qed
```

```
\mathbf{lemma}\ NF-map-vars-term-inj:
  assumes inj: \bigwedge x. n (m x) = x and NF: t \in NF-terms Q
  shows (map\text{-}vars\text{-}term\ m\ t) \in NF\text{-}terms\ (map\text{-}vars\text{-}term\ m\ '\ Q)
proof (rule ccontr)
  assume ¬ ?thesis
 then obtain u where (map\text{-}vars\text{-}term\ m\ t,\ u) \in rstep\ (Id\text{-}on\ (map\text{-}vars\text{-}term\ m\ t))
'(Q)) by blast
  then obtain ml \ mr \ C \ \sigma where in\text{-}mR: (ml, \ mr) \in Id\text{-}on \ (map\text{-}vars\text{-}term \ m \ '
    and mt: map-vars-term m t = C\langle ml \cdot \sigma \rangle by best
 let ?m = n
  from in-mR obtain l r where (l, r) \in Id-on Q and ml: ml = map-vars-term
m l \mathbf{by} auto
 have t = map\text{-}vars\text{-}term ?m (map\text{-}vars\text{-}term m t) by (simp \ add: map\text{-}vars\text{-}term\text{-}inj\text{-}compose}[of
n m, OF inj
  also have ... = map-vars-term ?m (C\langle ml \cdot \sigma \rangle) by (simp \ add: \ mt)
 also have ... = (map\text{-}vars\text{-}ctxt ? m \ C) \langle map\text{-}vars\text{-}term ? m \ (map\text{-}vars\text{-}term \ m \ l \cdot
    by (simp add: map-vars-term-ctxt-commute ml)
  also have ... = (map\text{-}vars\text{-}ctxt ? m \ C)(l \cdot (map\text{-}vars\text{-}subst\text{-}ran ? m \ (\sigma \circ m)))
    by (simp add: apply-subst-map-vars-term map-vars-subst-ran)
  finally show False using NF and \langle (l, r) \in Id\text{-}on \ Q \rangle by auto
qed
lemma notin-NF-terms: t \in Q \Longrightarrow t \notin NF-terms Q
  using lhs-notin-NF-rstep[of t t Id-on Q] by (simp add: Id-on-iff)
lemma NF-termsI [intro]:
  assumes NF: \bigwedge C l \sigma. t = C \langle l \cdot \sigma \rangle \Longrightarrow l \in Q \Longrightarrow False
  shows t \in NF-terms Q
  by (rule ccontr, rule not-NF-termsE [OF - NF])
lemma NF-args-imp-NF:
  assumes ss: \bigwedge s. s \in set ss \Longrightarrow s \in NF-terms Q
    and someNF: t \in NF-terms Q
    and root: Some (f, length \ ss) \notin root \ `Q
  shows (Fun f ss) \in NF-terms Q
proof
  fix C l \sigma
  assume id: Fun f ss = C \langle l \cdot \sigma \rangle and l: l \in Q
  show False
  proof (cases C)
    case Hole
    with id have id: Fun f ss = l \cdot \sigma by simp
    show False
    proof (cases l)
      case (Fun q ls)
      with id have fg: f = g and ss: ss = map(\lambda s. s \cdot \sigma) ls by auto
```

```
from arg\text{-}cong[OF\ ss,\ of\ length] have len:\ length\ ss=\ length\ ls\ by\ simp
     from l[unfolded Fun] root[unfolded fg len] show False by force
   \mathbf{next}
     case (Var x)
     from some-NF-imp-no-Var[OF someNF] Var l show False by auto
   qed
 next
   case (More g bef D aft)
   note id = id[unfolded\ More]
   from id have NF: ss! length bef = D \langle l \cdot \sigma \rangle by auto
   from id have mem: ss! length bef \in set ss by auto
   from ss[OF mem, unfolded NF-ctxt-subst NF] l show False by auto
 qed
qed
lemma NF-Var-is-Fun:
 assumes Q: Ball Q is-Fun
 shows Var x \in NF-terms Q
proof
 fix C l \sigma
 assume x: Var x = C \langle l \cdot \sigma \rangle and l: l \in Q
 from l Q obtain f ls where l: l = Fun f ls by (cases l, auto)
 then show False using x by (cases C, auto)
qed
lemma NF-terms-lhss [simp]: NF-terms (lhss R) = NF (rstep R)
 show NF (rstep R) \subseteq NF-terms (lhss R) by force
\mathbf{next}
 show NF-terms (lhss R) \subseteq NF (rstep R)
 proof
   fix s assume NF: s \in NF-terms (lhss R)
   show s \in NF (rstep R)
   proof (rule ccontr)
     assume s \notin NF (rstep R)
     then obtain t where (s, t) \in rstep R by auto
     then obtain l \ r \ C \ \sigma where (l, \ r) \in R and s: s = C\langle l \cdot \sigma \rangle by auto
     then have (l, l) \in Id\text{-}on (lhss R) by force
     then have (s, s) \in rstep (Id\text{-}on (lhss R)) unfolding s by auto
     with NF show False by auto
   qed
 qed
qed
4.7
       Relative Rewrite Steps
abbreviation relstep R E \equiv relto (rstep R) (rstep E)
lemma args-SN-on-relstep-nrrstep-imp-args-SN-on:
```

```
assumes SN: \land u. s \triangleright u \Longrightarrow SN\text{-}on \ (relstep \ R \ E) \ \{u\}
    and st: (s,t) \in nrrstep (R \cup E)
    and supt: t > u
  shows SN-on (relstep \ R \ E) \ \{u\}
proof -
  from nrrstepE[OF st] obtain C \ l \ r \ \sigma where C \neq \square and lr: (l,r) \in R \cup E
    and s: s = C\langle l \cdot \sigma \rangle and t: t = C\langle r \cdot \sigma \rangle by blast
  then obtain f bef C aft where s: s = Fun f (bef @ C(l \cdot \sigma) \# aft) and t: t =
Fun f (bef @ C\langle r \cdot \sigma \rangle \# aft)
    by (cases C, auto)
  let ?ts = bef @ C\langle r \cdot \sigma \rangle \# aft
 let ?ss = bef @ C\langle l \cdot \sigma \rangle \# aft
 from supt obtain D where t = D\langle u \rangle and D \neq \square by auto
 then obtain bef' aft' D where t': t = Fun f (bef' @ D\langle u \rangle \# aft') unfolding t
by (cases D, auto)
  have D\langle u \rangle \triangleright u by auto
  then have supt: \bigwedge s. \ s \triangleright D\langle u \rangle \Longrightarrow s \triangleright u by (metis\ supt-supteq-trans)
  show SN-on (relstep \ R \ E) \{u\}
  proof (cases D\langle u \rangle \in set ?ss)
    case True
    then have s \triangleright D\langle u \rangle unfolding s by auto
    then have s > u by (rule \ supt)
    with SN show ?thesis by auto
  next
    {f case} False
   have D\langle u \rangle \in set \ ?ts using arg\text{-}cong[OF\ t'[unfolded\ t],\ of\ args]} by auto
    with False have Du: D\langle u \rangle = C\langle r \cdot \sigma \rangle by auto
    have s \triangleright C\langle l \cdot \sigma \rangle unfolding s by auto
    with SN have SN-on (relstep R E) \{C\langle l \cdot \sigma \rangle\} by auto
    from step-preserves-SN-on-relto[OF - this, of C\langle r \cdot \sigma \rangle] lr
    have SN: SN-on (relstep R E) \{D\langle u\rangle\} using Du by auto
    show ?thesis
      by (rule ctxt-closed-SN-on-subt[OF ctxt.closed-relto SN], auto)
  qed
qed
lemma Tinf-nrrstep:
  assumes tinf: s \in Tinf (relstep R E) and st: (s,t) \in nrrstep (R \cup E)
    and t: \neg SN\text{-}on \ (relstep \ R \ E) \ \{t\}
  shows t \in Tinf (relstep R E)
  unfolding Tinf-def
  by (intro CollectI conjI[OF t] allI impI)
    (rule\ args-SN-on-relstep-nrrstep-imp-args-SN-on[OF-st],
      insert tinf[unfolded Tinf-def], auto)
\mathbf{lemma}\ \mathit{subterm-preserves-SN-on-relstep} :
  SN-on (relstep R E) \{s\} \Longrightarrow s \succeq t \Longrightarrow SN-on (relstep R E) \{t\}
  using SN-imp-SN-subt [of rstep (rstep ((rstep E)*) O rstep R O rstep ((rstep
(E)^*))]
```

```
by (simp only: rstep-relcomp-idemp2) (simp only: rstep-rtrancl-idemp)
inductive-set rstep-rule :: ('f, 'v) rule \Rightarrow ('f, 'v) term rel for \varrho
    rule: s = C\langle fst \ \rho \cdot \sigma \rangle \Longrightarrow t = C\langle snd \ \rho \cdot \sigma \rangle \Longrightarrow (s, t) \in rstep-rule \ \rho
lemma rstep-ruleI [intro]:
  s = C\langle l \cdot \sigma \rangle \Longrightarrow t = C\langle r \cdot \sigma \rangle \Longrightarrow (s, t) \in rstep\text{-rule } (l, r)
  by (auto simp: rstep-rule.simps)
lemma rstep-rule-ctxt:
  (s, t) \in rstep\text{-rule } \varrho \Longrightarrow (C\langle s \rangle, C\langle t \rangle) \in rstep\text{-rule } \varrho
  using rstep-rule.rule [of C\langle s \rangle C \circ_c D \varrho - C\langle t \rangle for D]
  by (auto elim: rstep-rule.cases simp: ctxt-of-pos-term-append)
lemma rstep-rule-subst:
  assumes (s, t) \in rstep\text{-}rule \ \rho
  shows (s \cdot \sigma, t \cdot \sigma) \in rstep\text{-}rule \ \varrho
  using assms
proof (cases)
  case (rule C \tau)
  then show ?thesis
    using rstep-rule.rule [of s \cdot \sigma - \varrho \tau \circ_s \sigma]
    by (auto elim!: rstep-rule.cases simp: ctxt-of-pos-term-subst)
qed
lemma rstep-rule-imp-rstep:
  \varrho \in R \Longrightarrow (s, t) \in rstep\text{-rule } \varrho \Longrightarrow (s, t) \in rstep R
  by (force elim: rstep-rule.cases)
lemma rstep-imp-rstep-rule:
  assumes (s, t) \in rstep R
  obtains l r where (l, r) \in R and (s, t) \in rstep-rule (l, r)
  using assms by blast
lemma term-subst-rstep:
  assumes \bigwedge x. x \in vars\text{-}term\ t \Longrightarrow (\sigma\ x, \tau\ x) \in rstep\ R
  shows (t \cdot \sigma, t \cdot \tau) \in (rstep \ R)^*
  using assms
proof (induct t)
  case (Fun f ts)
  \{ \mathbf{fix} \ t_i \}
    assume t_i: t_i \in set ts
    with Fun(2) have \bigwedge x. \ x \in vars\text{-}term \ t_i \Longrightarrow (\sigma \ x, \ \tau \ x) \in rstep \ R by auto
    from Fun(1) [OF t_i this] have (t_i \cdot \sigma, t_i \cdot \tau) \in (rstep \ R)^* by blast
  then show ?case by (simp add: args-rsteps-imp-rsteps)
qed (auto)
```

```
lemma term-subst-rsteps:
  assumes \bigwedge x. \ x \in vars\text{-}term \ t \Longrightarrow (\sigma \ x, \tau \ x) \in (rstep \ R)^*
  shows (t \cdot \sigma, t \cdot \tau) \in (rstep \ R)^*
  by (metis assms rstep-rtrancl-idemp rtrancl-idemp term-subst-rstep)
lemma term-subst-rsteps-join:
  assumes \bigwedge y. y \in vars\text{-}term \ u \Longrightarrow (\sigma_1 \ y, \ \sigma_2 \ y) \in (rstep \ R)^{\downarrow}
  shows (u \cdot \sigma_1, u \cdot \sigma_2) \in (rstep \ R)^{\downarrow}
  using assms
proof -
  { fix x
    assume x \in vars\text{-}term \ u
    from assms [OF this] have \exists \sigma. (\sigma_1 x, \sigma x) \in (rstep R)^* \land (\sigma_2 x, \sigma x) \in (rstep R)^*
R)^* by auto
  then have \forall x \in vars\text{-}term \ u. \ \exists \sigma. \ (\sigma_1 \ x, \ \sigma \ x) \in (rstep \ R)^* \land (\sigma_2 \ x, \ \sigma \ x) \in
(rstep R)^* by blast
  then obtain s where \forall x \in vars\text{-}term \ u. \ (\sigma_1 \ x, \ (s \ x) \ x) \in (rstep \ R)^* \land (\sigma_2 \ x, \ x)
(s x) x) \in (rstep R)^* by metis
  then obtain \sigma where \forall x \in vars\text{-}term \ u. \ (\sigma_1 \ x, \ \sigma \ x) \in (rstep \ R)^* \land (\sigma_2 \ x, \ \sigma \ x)
x) \in (rstep R)^* by fast
  then have (u \cdot \sigma_1, u \cdot \sigma) \in (rstep \ R)^* \wedge (u \cdot \sigma_2, u \cdot \sigma) \in (rstep \ R)^* using
term-subst-rsteps by metis
  then show ?thesis by blast
qed
lemma funas-trs-converse [simp]: funas-trs (R^{-1}) = funas-trs R
  by (auto simp: funas-defs)
lemma rstep-rev: assumes (s, t) \in rstep-pos \{(l,r)\} p shows ((t, s) \in rstep-pos
\{(r,l)\}\ p
proof-
  from assms obtain \sigma where step:t = (ctxt-of-pos-term\ p\ s)\langle r\cdot\sigma\rangle\ p\in poss\ s\ s
|-p| = l \cdot \sigma
    unfolding rstep-pos.simps by auto
  with replace-at-below-poss[of p s p] have pt:p \in poss\ t by auto
  with step ctxt-supt-id[OF step(2)] have s = (ctxt\text{-of-pos-term } p\ t)\langle l\cdot\sigma\rangle
    by (simp add: ctxt-of-pos-term-replace-at-below)
  with step ctxt-supt-id[OF pt] show ?thesis unfolding rstep-pos.simps
    by (metis pt replace-at-subt-at singletonI)
\mathbf{qed}
lemma conversion-ctxt-closed: (s, t) \in (rstep \ R)^{\leftrightarrow *} \Longrightarrow (C\langle s \rangle, C\langle t \rangle) \in (rstep \ R)^{\leftrightarrow *}
R)^{\leftrightarrow *}
  using rsteps-closed-ctxt unfolding conversion-def
  by (simp\ only:\ rstep-simps(5)[symmetric])
\mathbf{lemma}\ conversion\text{-}subst\text{-}closed:
  (s, t) \in (rstep \ R)^{\leftrightarrow *} \Longrightarrow (s \cdot \sigma, \ t \cdot \sigma) \in (rstep \ R)^{\leftrightarrow *}
```

```
using rsteps-closed-subst unfolding conversion-def
  by (simp\ only:\ rstep-simps(5)[symmetric])
lemma rstep-simulate-conv:
  assumes \bigwedge l \ r. \ (l, \ r) \in S \Longrightarrow (l, \ r) \in (rstep \ R)^{\leftrightarrow *}
  shows (rstep\ S) \subseteq (rstep\ R)^{\leftrightarrow *}
proof
  \mathbf{fix} \ s \ t
  assume (s, t) \in rstep S
  then obtain l \ r \ C \ \sigma where s: s = C\langle l \cdot \sigma \rangle and t:t = C\langle r \cdot \sigma \rangle and lr: (l, r)
\in S
    unfolding rstep-iff-rstep-r-c-s rstep-r-c-s-def by auto
  with assms have (l, r) \in (rstep \ R)^{\leftrightarrow *} by auto
 then show (s, t) \in (rstep R)^{\leftrightarrow *} using conversion-ctxt-closed conversion-subst-closed
s t by metis
qed
\mathbf{lemma}\ symcl\text{-}simulate\text{-}conv:
  assumes \bigwedge l \ r. \ (l, \ r) \in S \Longrightarrow (l, \ r) \in (rstep \ R)^{\leftrightarrow *}
  shows (rstep\ S)^{\leftrightarrow} \subseteq (rstep\ R)^{\leftrightarrow*}
  using rstep-simulate-conv[OF assms]
  by auto (metis conversion-inv subset-iff)
\mathbf{lemma}\ conv\text{-}union\text{-}simulate:
  assumes \bigwedge l r. (l, r) \in S \Longrightarrow (l, r) \in (rstep R)^{\leftrightarrow *}
  shows (rstep (R \cup S))^{\leftrightarrow *} = (rstep R)^{\leftrightarrow *}
  show (rstep\ (R \cup S))^{\leftrightarrow *} \subseteq (rstep\ R)^{\leftrightarrow *}
    unfolding conversion-def
  proof
    \mathbf{fix} \ s \ t
    assume (s, t) \in ((rstep (R \cup S))^{\leftrightarrow})^*
    then show (s, t) \in ((rstep \ R)^{\leftrightarrow})^*
    proof (induct rule: rtrancl-induct)
       case (step \ u \ t)
       then have (u, t) \in (rstep \ R)^{\leftrightarrow} \lor (u, t) \in (rstep \ S)^{\leftrightarrow} by auto
       then show ?case
       proof
         assume (u, t) \in (rstep \ R)^{\leftrightarrow}
         with step show ?thesis using rtrancl-into-rtrancl by metis
       next
         assume (u, t) \in (rstep \ S)^{\leftrightarrow}
         with symcl-simulate-conv[OF assms] have (u, t) \in (rstep \ R)^{\leftrightarrow *} by auto
         with step show ?thesis by auto
       qed
    qed simp
  ged
next
  show (rstep\ R)^{\leftrightarrow *} \subseteq (rstep\ (R \cup S))^{\leftrightarrow *}
```

5 Critical Pairs

```
theory Critical-Pairs imports Trs First-Order-Terms. Unification begin

We also consider overlaps between the same rule at top level, in this way we are not restricted to wf-trs.

context fixes ren :: 'v :: infinite \ renaming2 begin

definition critical-Peaks :: ('f, 'v) \ trs \Rightarrow ('f, 'v) \ trs \Rightarrow ((('f, 'v)term \times ('f, 'v)term)) \ set where critical-Peaks \ P \ R = \{ \ ((C \cdot_c \ \sigma)\langle r' \cdot \tau \rangle, \ l \cdot \sigma, \ r \cdot \sigma) \ | \ l \ r \ l' \ r' \ l'' \ C \ \sigma \ \tau.
```

 $(l, r) \in P \land (l', r') \in R \land l = C\langle l'' \rangle \land is\text{-Fun } l'' \land l'$

 $mgu\text{-}vd \ ren \ l'' \ l' = Some \ (\sigma, \tau) \ \}$

definition

```
critical-pairs :: ('f, 'v) trs \Rightarrow ('f, 'v) trs \Rightarrow (bool \times ('f, 'v) rule) set where critical-pairs P R = { (C = \square, (C \cdot_c \sigma)\langle r' \cdot \tau \rangle, r \cdot \sigma) | l r l' r' l'' C \sigma \tau. (l, r) \in P \wedge (l', r') \in R \wedge l = C\langle l'' \rangle \wedge is-Fun l'' \wedge mgu-vd ren l'' l' = Some (\sigma, \tau) }
```

lemma critical-pairsI:

```
assumes (l, r) \in P and (l', r') \in R and l = C\langle l'' \rangle
and is-Fun l'' and mgu-vd ren l'' l' = Some (\sigma, \tau) and t = r \cdot \sigma
and s = (C \cdot_c \sigma)\langle r' \cdot \tau \rangle and b = (C = \Box)
shows (b, s, t) \in critical-pairs P R
using assms unfolding critical-pairs-def by blast
```

lemma critical-pairs-mono:

```
assumes S_1 \subseteq R_1 and S_2 \subseteq R_2 shows critical-pairs S_1 S_2 \subseteq critical-pairs R_1 R_2
```

unfolding critical-pairs-def using assms by blast

```
lemma critical-Peaks-main:
      fixes P R :: ('f, 'v) trs
      assumes tu: (t, u) \in rrstep \ P \ and \ ts: (t, s) \in rstep \ R
      shows (s, u) \in (rstep \ R) \hat{\ } O \ rrstep \ P \ O \ ((rstep \ R) \hat{\ } ) \hat{\ } -1 \ \lor
           (\exists C \ l \ m \ r \ \sigma. \ s = C \langle l \cdot \sigma \rangle \land t = C \langle m \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land u = 
           (l, m, r) \in critical\text{-}Peaks\ P\ R)
proof -
      let ?R = rstep R
      let ?CP = critical\text{-}Peaks P R
      from rrstepE[OF\ tu] obtain l1\ r1\ \sigma1 where lr1:(l1,\ r1)\in P and t1:\ t=l1
\cdot \sigma 1 and u: u = r1 \cdot \sigma 1 by auto
      from ts obtain C l2 r2 \sigma2 where lr2: (l2, r2) \in R and t2: t = C\langle l2 \cdot \sigma2 \rangle
and s: s = C\langle r2 \cdot \sigma 2 \rangle by auto
      from t1 t2 have id: l1 \cdot \sigma 1 = C\langle l2 \cdot \sigma 2 \rangle by auto
     let ?p = hole - pos C
      show ?thesis
      proof (cases ?p \in poss \ l1 \land is\text{-}Fun \ (l1 \mid -?p))
           case True
           then have p: ?p \in poss \ l1 by auto
           from ctxt-supt-id [OF p] obtain D where Dl1: D\langle l1 \mid -?p \rangle = l1
                 and D: D = ctxt-of-pos-term (hole-pos C) l1 by blast
           from arg-cong [OF Dl1, of \lambda t. t \cdot \sigma 1]
           have (D \cdot_c \sigma 1)\langle (l1 \mid -?p) \cdot \sigma 1 \rangle = C\langle l2 \cdot \sigma 2 \rangle unfolding id by simp
           from arg-cong [OF this, of \lambda t. t |- ?p]
           have l2 \cdot \sigma 2 = (D \cdot_c \sigma 1) \langle (l1 \mid -?p) \cdot \sigma 1 \rangle \mid -?p \text{ by } simp
           also have ... = (D \cdot_c \sigma 1)\langle (l1 \mid -?p) \cdot \sigma 1 \rangle \mid -(hole-pos (D \cdot_c \sigma 1))
                  using hole-pos-ctxt-of-pos-term [OF p] unfolding D by simp
           also have ... = (l1 \mid -?p) \cdot \sigma 1 by (rule\ subt-at-hole-pos)
           finally have ident: l2 \cdot \sigma 2 = l1 \mid -?p \cdot \sigma 1 by auto
           from mgu-vd-complete [OF ident [symmetric]]
           obtain \mu 1 \ \mu 2 \ \varrho where mgu: mgu-vd ren (l1 \mid -?p) l2 = Some (\mu 1, \mu 2) and
                  \mu 1: \sigma 1 = \mu 1 \circ_s \varrho
                 and \mu 2: \sigma 2 = \mu 2 \circ_s \varrho
                  and ident': l1 \mid -?p \cdot \mu 1 = l2 \cdot \mu 2 by blast
           have in-cp: ((D \cdot_c \mu 1)\langle r2 \cdot \mu 2 \rangle, l1 \cdot \mu 1, r1 \cdot \mu 1) \in ?CP
                  unfolding critical-Peaks-def
                 apply clarify
                  apply (intro\ exI\ conjI)
                                apply (rule refl)
                             apply (rule lr1)
                          apply (rule lr2)
                       apply (rule Dl1[symmetric])
                    apply (rule True[THEN conjunct2])
                  apply (rule \ mgu)
                  done
           from hole-pos-ctxt-of-pos-term [OF p] D have pD: ?p = hole-pos D by simp
           from id have C: C = ctxt-of-pos-term ?p(l1 \cdot \sigma 1) by simp
           have C\langle r2 \cdot \sigma 2 \rangle = (ctxt\text{-}of\text{-}pos\text{-}term ?p (l1 \cdot \sigma 1))\langle r2 \cdot \sigma 2 \rangle using C by simp
        also have ... = (ctxt\text{-}of\text{-}pos\text{-}term ?p l1 \cdot_c \sigma1)\langle r2 \cdot \sigma2 \rangle unfolding ctxt\text{-}of\text{-}pos\text{-}term\text{-}subst
```

```
[OF p] ..
   also have ... = (D \cdot_c \sigma 1) \langle r2 \cdot \sigma 2 \rangle unfolding D ..
    finally have Cr\sigma: C\langle r2 \cdot \sigma2 \rangle = (D \cdot_c \sigma1)\langle r2 \cdot \sigma2 \rangle.
    show ?thesis unfolding Cr\sigma s u t1 unfolding \mu1 \mu2
    proof (rule disjI2, intro exI, intro conjI)
      show r1 \cdot \mu 1 \circ_s \varrho = \Box \langle r1 \cdot \mu 1 \cdot \varrho \rangle by simp
    qed (insert in-cp, auto)
  next
    case False
    from pos-into-subst [OF id - False]
    obtain q q' x where p: ?p = q @ q' and q: q \in poss l1 and l1q: l1 \mid -q = Var
    have l2 \cdot \sigma 2 = C\langle l2 \cdot \sigma 2 \rangle \mid - (q @ q') unfolding p [symmetric] by simp
    also have ... = l1 \cdot \sigma 1 |- (q @ q') unfolding id ...
    also have ... = l1 \mid -q \cdot \sigma 1 \mid -q' using q by simp
    also have ... = \sigma 1 x \mid -q' unfolding l1q by simp
    finally have l2x: l2 \cdot \sigma 2 = \sigma 1 x \mid - q' by simp
    have pp: ?p \in poss (l1 \cdot \sigma 1) unfolding id by simp
    then have q @ q' \in poss (l1 \cdot \sigma 1) unfolding p.
    then have q' \in poss (l1 \cdot \sigma 1 \mid -q) unfolding poss-append-poss...
    with q have q' \in poss (l1 \mid -q \cdot \sigma 1) by auto
    then have q'x: q' \in poss (\sigma 1 x) unfolding l1q by simp
    from ctxt-supt-id [OF q'x] obtain E where \sigma 1x: E\langle l2 \cdot \sigma 2 \rangle = \sigma 1 x
      and E: E = ctxt-of-pos-term q'(\sigma 1 x)
      unfolding l2x by blast
    let ?e = E\langle r2 \cdot \sigma 2 \rangle
    from hole-pos-ctxt-of-pos-term [OF q'x] E have q': q' = hole-pos E by simp
    from \sigma 1x have \sigma 1x': \sigma 1 x = E\langle l2 \cdot \sigma 2 \rangle by simp
    let ?\sigma = \lambda y. if y = x then ?e else \sigma 1 y
    have (u, r1 \cdot ?\sigma) \in (rstep R) \hat{} * unfolding u
    proof (rule subst-rsteps-imp-rsteps)
      \mathbf{fix} \ y
      show (\sigma 1 \ y, ?\sigma \ y) \in (rstep \ R) \hat{*}
      proof (cases \ y = x)
        case True
        show ?thesis unfolding True \sigma 1x' using lr2 by auto
      qed simp
    qed
    hence r1u: (r1 \cdot ?\sigma, u) \in ((rstep R)^*)^-1 by auto
    show ?thesis
    proof (rule disjI1, intro relcompI)
      show (r1 \cdot ?\sigma, u) \in ((rstep R)^*)^-1 by fact
      show (l1 \cdot ?\sigma, r1 \cdot ?\sigma) \in rrstep \ P  using lr1 by auto
      from q have ql1: q \in poss(l1 \cdot \sigma 1) by simp
      have s = replace-at (C\langle l2 \cdot \sigma 2 \rangle) ?p(r2 \cdot \sigma 2) unfolding s by simp
      also have ... = replace-at (l1 \cdot \sigma 1) ?p (r2 \cdot \sigma 2) unfolding id ...
      also have ... = replace-at (l1 \cdot \sigma 1) q ?e
      proof -
        have E = ctxt\text{-}of\text{-}pos\text{-}term\ q'\ (l1 \cdot \sigma 1 \mid - q)
```

```
unfolding subt-at-subst [OF q] l1q E by simp
       then show ?thesis
         unfolding p
         unfolding ctxt-of-pos-term-append [OF ql1]
         \mathbf{bv} simp
     \mathbf{qed}
     finally have s: s = replace-at (l1 \cdot \sigma 1) q ? e.
     from q l1q have (replace-at (l1 · \sigma1) q ?e, l1 · ?\sigma) \in ?R \hat{}*
     proof (induct l1 arbitrary: q)
       case (Fun f ls)
       from Fun(2, 3) obtain i p where q: q = i \# p and i: i < length ls and
p: p \in poss (ls ! i) \text{ and } px: ls ! i | -p = Var x \text{ by } (cases q, auto)
       from i have ls ! i \in set ls by auto
       from Fun(1) [OF this p px] have rec: (replace-at (ls! i \cdot \sigma 1) p ?e, ls! i \cdot \sigma 1
?\sigma) \in ?R^*.
       let ?ls\sigma = map(\lambda t. t \cdot \sigma 1) ls
       let ?ls\sigma' = map(\lambda t. t \cdot ?\sigma) ls
       have id: replace-at (Fun f ls \cdot \sigma 1) q ?e = Fun f (take i ?ls\sigma @ replace-at
(ls ! i \cdot \sigma 1) p ?e \# drop (Suc i) ?ls\sigma) (is -= Fun f ?r)
         unfolding q using i by simp
       show ?case unfolding id unfolding eval-term.simps
       proof (rule all-ctxt-closedD [of UNIV])
         assume j: j < length ?r
         show (?r!j, ?ls\sigma'!j) \in ?R^*
         proof (cases j = i)
           case True
           show ?thesis using i True using rec by (auto simp: nth-append)
         \mathbf{next}
           case False
           have ?r!j = ?ls\sigma!j
             by (rule nth-append-take-drop-is-nth-conv, insert False i j, auto)
           also have ... = ls ! j \cdot \sigma 1 using j i by auto
           finally have idr: ?r ! j = ls ! j \cdot \sigma 1.
           from j i have idl: ?ls\sigma' ! j = ls ! j \cdot ?\sigma by auto
           show ?thesis unfolding idr idl
           proof (rule subst-rsteps-imp-rsteps)
             \mathbf{fix} \ y
             show (\sigma 1 \ y, \ ?\sigma \ y) \in ?R^*
             proof (cases \ y = x)
               case True then show ?thesis using \sigma 1x' lr2 by auto
             \mathbf{qed} simp
           qed
         qed
       qed (insert i, auto)
     qed simp
     then show (s, l1 \cdot ?\sigma) \in ?R^* unfolding s.
   qed
 qed
```

```
qed
```

```
\mathbf{lemma}\ \mathit{critical-Peaks-main-rrstep} :
  fixes R :: ('f, 'v) trs
  assumes tu: (t, u) \in rrstep \ R and ts: (t, s) \in rstep \ R
  shows (s, u) \in join (rstep R) \lor
    (\exists \ C \ l \ m \ r \ \sigma. \ s = C \langle l \cdot \sigma \rangle \land t = C \langle m \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land
    (l, m, r) \in critical\text{-}Peaks R R)
  using critical-Peaks-main[OF assms]
  assume (s, u) \in (rstep \ R)^* \ O \ rrstep \ R \ O \ ((rstep \ R)^*)^{-1}
  also have ... \subseteq (rstep\ R)^*\ O\ ((rstep\ R)^*)^{-1}
    unfolding rstep-iff-rrstep-or-nrrstep by regexp
  finally have (s, u) \in join (rstep R) by blast
  thus ?thesis by auto
ged auto
lemma parallel-rstep:
  fixes p1 :: pos
  assumes p12: p1 \perp p2
    and p1: p1 \in poss t
    and p2: p2 \in poss t
    and step2: t \mid -p2 = l2 \cdot \sigma 2 \ (l2,r2) \in R
  shows (replace-at t p1 v, replace-at (replace-at t p1 v) p2 (r2 \cdot \sigma2)) \in rstep R
(is (?one,?two) \in -)
proof -
  show ?thesis unfolding rstep-iff-rstep-r-p-s
  proof (intro exI)
    show (?one,?two) \in rstep-r-p-s \ R \ (l2,r2) \ p2 \ \sigma2
      unfolding rstep-r-p-s-def Let-def
      apply (intro CollectI, unfold split fst-conv snd-conv)
      using p1 p12 p2 step2
      by (metis ctxt-supt-id parallel-poss-replace-at parallel-replace-at-subt-at)
  qed
qed
\mathbf{lemma}\ \mathit{critical}\text{-}\mathit{Peaks-main-rstep}\text{:}
  fixes R :: ('f, 'v) trs
  assumes tu: (t, u) \in rstep R and ts: (t, s) \in rstep R
  shows (s, u) \in join (rstep R) \lor
    (\exists C \ l \ m \ r \ \sigma. \ s = C \langle l \cdot \sigma \rangle \land t = C \langle m \cdot \sigma \rangle \land u = C \langle r \cdot \sigma \rangle \land
    ((l, m, r) \in critical\text{-}Peaks \ R \ R \lor (r, m, l) \in critical\text{-}Peaks \ R \ R))
proof -
  let ?R = rstep R
  let ?CP = critical\text{-}Peaks R R
  from tu obtain C1\ l1\ r1\ \sigma1 where lr1:(l1, r1) \in R and t1: t = C1\langle l1 \cdot \sigma1 \rangle
and u: u = C1\langle r1 \cdot \sigma 1 \rangle by auto
  from ts obtain C2 l2 r2 \sigma2 where lr2: (l2, r2) \in R and t2: t = C2\langle l2 \cdot \sigma2 \rangle
and s: s = C2\langle r2 \cdot \sigma 2 \rangle by auto
```

```
define n where n = size C1 + size C2
  from t1 t2 u s n-def show ?thesis
  proof (induct n arbitrary: C1 C2 s t u rule: less-induct)
   case (less \ n \ C1 \ C2 \ s \ t \ u)
   show ?case
   proof (cases C1)
      case Hole
      with less(2,4) lr1 have tu: (t, u) \in rrstep R by auto
      from less(3,5) lr2 have ts: (t, s) \in rstep R by auto
      from critical-Peaks-main-rrstep[OF tu ts] show ?thesis by auto
   \mathbf{next}
      case (More f1 bef1 D1 aft1) note C1 = this
      show ?thesis
      proof (cases C2)
        case Hole
       with less(3,5) lr2 have ts: (t, s) \in rrstep R by auto
       from less(2,4) lr1 have tu: (t, u) \in rstep R by auto
       from critical-Peaks-main-rrstep[OF ts tu] show ?thesis by auto
       case (More f2 bef2 D2 aft2) note C2 = this
       from less(2-3) C1 C2
       have id: (More f1 bef1 D1 aft1)\langle l1 \cdot \sigma 1 \rangle = (More f2 bef2 D2 aft2)\langle l2 \cdot \sigma 2 \rangle
by auto
       let ?n1 = length bef1
       let ?n2 = length bef2
       from id have f: f1 = f2 by simp
       show ?thesis
       proof (cases ?n1 = ?n2)
         case True
         with id have idb: bef1 = bef2 and ida: aft1 = aft2
            and idD: D1\langle l1 \cdot \sigma 1 \rangle = D2\langle l2 \cdot \sigma 2 \rangle by auto
         let ?C = More f2 bef2 \square aft2
         have id1: C1 = ?C \circ_c D1 unfolding C1 f ida idb by simp
         have id2: C2 = ?C \circ_c D2 unfolding C2 by simp
         define m where m = size D1 + size D2
         have mn: m < n unfolding less m-def C1 C2 by auto
         note IH = less(1)[OF \ mn \ refl \ idD \ refl \ refl \ m-def]
         then show ?thesis
         proof
            assume (D2\langle r2 \cdot \sigma 2 \rangle, D1\langle r1 \cdot \sigma 1 \rangle) \in join ?R
           then obtain s' where seq1: (D1\langle r1 \cdot \sigma 1 \rangle, s') \in ?R^*
             and seq2: (D2\langle r2 \cdot \sigma 2 \rangle, s') \in ?R^* by auto
            from rsteps-closed-ctxt [OF seq1, of ?C]
           have seq1: (C1\langle r1 \cdot \sigma 1 \rangle, ?C\langle s' \rangle) \in ?R^* \text{ using } id1 \text{ by } auto
            from rsteps-closed-ctxt [OF seq2, of ?C]
           have seq2: (C2\langle r2 \cdot \sigma 2 \rangle, ?C\langle s' \rangle) \in ?R^* \text{ using } id2 \text{ by } auto
            from seq1 seq2 show ?thesis using less by auto
         next
            assume \exists C \mid m \mid r \mid \sigma. D2\langle r2 \cdot \sigma 2 \rangle = C\langle l \cdot \sigma \rangle \wedge D1\langle l1 \cdot \sigma 1 \rangle = C\langle m \cdot \sigma \rangle
```

```
|\sigma\rangle \wedge D1\langle r1 \cdot \sigma1\rangle = C\langle r \cdot \sigma\rangle \wedge ((l, m, r) \in ?CP \vee (r, m, l) \in ?CP)
              then obtain C \ l \ m \ r \ \sigma where idD: D2\langle r2 \cdot \sigma 2 \rangle = C\langle l \cdot \sigma \rangle \ D1\langle l1 \cdot \sigma \rangle
\langle \sigma 1 \rangle = C \langle m \cdot \sigma \rangle \ D1 \langle r1 \cdot \sigma 1 \rangle = C \langle r \cdot \sigma \rangle \ \text{and} \ mem: ((l, m, r) \in ?CP \lor (r, m, l))
\in ?CP) by blast
             show ?thesis
               apply (intro disjI2)
               apply (unfold less id1 id2)
               apply (intro exI [of - ?C \circ_c C] exI)
               by (rule conjI [OF - conjI [OF - conjI [OF - mem]]], insert idD, auto)
          qed
        next
          case False
          let ?p1 = ?n1 \# hole\text{-}pos D1
          let ?p2 = ?n2 \# hole\text{-pos } D2
          have l2: C1\langle l1 \cdot \sigma 1 \rangle |- ?p2 = l2 \cdot \sigma 2 unfolding C1 \ id by simp
          have p12: ?p1 \perp ?p2 using False by simp
          have p1: ?p1 \in poss (C1\langle l1 \cdot \sigma 1 \rangle) unfolding C1 by simp
          have p2: ?p2 \in poss (C1\langle l1 \cdot \sigma 1 \rangle) unfolding C1 unfolding id by simp
          let ?one = replace-at (C1\langle l1 \cdot \sigma 1 \rangle) ?p1 (r1 \cdot \sigma 1)
          have one: C1\langle r1 \cdot \sigma 1 \rangle = ?one unfolding C1 by simp
          from parallel-rstep [OF p12 p1 p2 l2 lr2, of r1 \cdot \sigma1]
          have (?one, replace-at ?one ?p2 (r2 \cdot \sigma 2)) \in rstep R by auto
            then have one: (C1\langle r1 \cdot \sigma 1 \rangle, replace-at ?one ?p2 (r2 \cdot \sigma 2)) \in (rstep)
R) * unfolding one by simp
           have l1: C2\langle l2 \cdot \sigma 2 \rangle \mid -?p1 = l1 \cdot \sigma 1 unfolding C2 \ id \ [symmetric] by
simp
          have p21: ?p2 \perp ?p1 using False by simp
         have p1': ?p1 \in poss (C2\langle l2 \cdot \sigma2 \rangle) unfolding C2 id [symmetric] by simp
          have p2': ?p2 \in poss (C2\langle l2 \cdot \sigma 2 \rangle) unfolding C2 by simp
          let ?two = replace-at (C2\langle l2 \cdot \sigma 2\rangle) ?p2 (r2 \cdot \sigma 2)
          have two: C2\langle r2 \cdot \sigma 2 \rangle = ?two unfolding C2 by simp
          from parallel-rstep [OF p21 p2' p1' l1 lr1, of r2 \cdot \sigma2]
          have (?two, replace-at ?two ?p1 (r1 \cdot \sigma1)) \in rstep R by auto
            then have two: (C2\langle r2 \cdot \sigma 2 \rangle, replace-at ?two ?p1 (r1 \cdot \sigma 1)) \in (rstep)
R) * unfolding two by simp
          have replace-at ?one ?p2 (r2 \cdot \sigma 2) = replace-at (replace-at (C1\langle l1 \cdot \sigma 1 \rangle)
?p2 (r2 \cdot \sigma2)) ?p1 (r1 \cdot \sigma1)
             by (rule parallel-replace-at [OF p12 p1 p2])
          also have ... = replace-at ?two ?p1 (r1 \cdot \sigma 1) unfolding C1 C2 id ...
          finally have one-two: replace-at ?one ?p2 (r2 \cdot \sigma 2) = replace-at ?two ?p1
(r1 \cdot \sigma 1).
          show ?thesis unfolding less
             by (rule disjI1, insert one one-two two, auto)
        qed
      qed
    qed
  ged
qed
```

```
lemma critical-Peak-steps:
  fixes R :: ('f, 'v) \ trs \ {\bf and} \ S
  assumes cp: (l, m, r) \in critical\text{-}Peaks R S
  shows (m, l) \in rstep \ S \ (m,r) \in rstep \ R \ (m,r) \in rrstep \ R
proof -
  from cp [unfolded critical-Peaks-def]
  obtain \sigma 1 \sigma 2 l1 l2 r1 r2 C where id: r = r1 \cdot \sigma 1 l = (C \cdot_c \sigma 1)\langle r2 \cdot \sigma 2 \rangle m =
(C \cdot_c \sigma 1)\langle l1 \cdot \sigma 1 \rangle
    and r1: (C\langle l1 \rangle, r1) \in R and r2: (l2, r2) \in S and mgu: mgu-vd ren l1 l2 =
Some (\sigma 1, \sigma 2) by auto
  have (C\langle l1 \rangle \cdot \sigma 1, r) \in rrstep R unfolding id
    by (rule rrstepI [of C\langle l1 \rangle r1 - - \sigma 1] r1, insert r1, auto)
  thus (m,r) \in rrstep R unfolding id by auto
  thus (m,r) \in rstep \ R by (rule \ rrstep-imp-rstep)
  from mgu-vd-sound [OF mgu] have change: C\langle l1 \rangle \cdot \sigma 1 = (C \cdot_c \sigma 1)\langle l2 \cdot \sigma 2 \rangle
by simp
  have (C\langle l1 \rangle \cdot \sigma 1, l) \in rstep \ S unfolding change id
    by (rule rstepI [OF r2, of - - \sigma2], auto)
  thus (m, l) \in rstep \ S unfolding id by auto
qed
lemma critical-Peak-to-pair: assumes (l, m, r) \in critical-Peaks R
  shows \exists b. (b, l, r) \in critical\text{-pairs } R R
  using assms unfolding critical-Peaks-def critical-pairs-def by blast
lemma critical-pairs-main:
  fixes R :: ('f, 'v) trs
  assumes st1: (s, t1) \in rstep \ R and st2: (s, t2) \in rstep \ R
  shows (t1, t2) \in join (rstep R) \vee
    (\exists C b l r \sigma. t1 = C\langle l \cdot \sigma \rangle \wedge t2 = C\langle r \cdot \sigma \rangle \wedge
    ((b, l, r) \in critical\text{-pairs } R \ R \lor (b, r, l) \in critical\text{-pairs } R \ R))
  using critical-Peaks-main-rstep[OF st2 st1]
proof
  assume \exists C \ l \ m \ r \ \sigma.
       t1 = C\langle l \cdot \sigma \rangle \land s = C\langle m \cdot \sigma \rangle \land t2 = C\langle r \cdot \sigma \rangle \land ((l, m, r) \in critical-Peaks)
R R \lor (r, m, l) \in critical\text{-}Peaks R R)
  then obtain C \ l \ m \ r \ \sigma where id: t1 = C \langle l \cdot \sigma \rangle \ t2 = C \langle r \cdot \sigma \rangle and disj: ((l, l))
m, r \in critical-Peaks R R \vee (r, m, l) \in critical-Peaks R R 
    by blast
  from critical-Peak-to-pair disj obtain b where (b,l,r) \in critical-pairs R R \lor
(b,r,l) \in critical-pairs R R by blast
  with id show ?thesis by blast
qed auto
lemma critical-pairs:
  fixes R :: ('f, 'v) trs
  assumes cp: \land l \ r \ b. \ (b, l, r) \in critical\text{-pairs} \ R \ R \Longrightarrow l \neq r \Longrightarrow
   \exists l' r' s. instance-rule (l, r) (l', r') \land (l', s) \in (rstep R)^* \land (r', s) \in (rstep R)^*
```

```
shows WCR (rstep R)
proof
  let ?R = rstep R
  let ?CP = critical\text{-}pairs R R
  fix s t1 t2
  assume steps: (s, t1) \in ?R (s, t2) \in ?R
  let ?p = \lambda s'. (t1, s') \in ?R^* \wedge (t2, s') \in ?R^*
  from critical-pairs-main [OF steps]
  have \exists s'. ?p s'
 proof
   assume \exists C b l r \sigma. t1 = C\langle l \cdot \sigma \rangle \wedge t2 = C\langle r \cdot \sigma \rangle \wedge ((b, l, r) \in ?CP \vee (b, l, r))
r, l) \in ?CP
   then obtain C \ b \ l \ r \ \sigma where id: t1 = C\langle l \cdot \sigma \rangle \ t2 = C\langle r \cdot \sigma \rangle
     and mem: (b, l, r) \in ?CP \lor (b, r, l) \in ?CP by blast
   show ?thesis
   proof (cases \ l = r)
     {f case} True
      then show ?thesis unfolding id by auto
      case False
    \mathbf{note}\ sub\text{-}ctxt = rsteps\text{-}closed\text{-}ctxt\ [OF\ rsteps\text{-}closed\text{-}subst\ ]]
      from mem show ?thesis
      proof
       assume mem: (b, l, r) \in ?CP
       from cp [OF mem False] obtain l' r' s' \tau where id2: l = l' \cdot \tau r = r' \cdot \tau
and steps: (l', s') \in ?R^* (r', s') \in ?R^*
         unfolding instance-rule-def by auto
       show \exists s'. ?p s' unfolding id id?
          by (rule exI [of - C\langle s' \cdot \tau \cdot \sigma \rangle], rule conjI, rule sub-ctxt [OF steps(1)],
rule\ sub-ctxt\ [OF\ steps(2)])
     next
       assume mem: (b, r, l) \in ?CP
       from cp [OF mem] False obtain l' r' s' \tau where id2: r = l' \cdot \tau l = r' \cdot \tau
and steps: (l', s') \in ?R^* (r', s') \in ?R^*
         unfolding instance-rule-def by auto
       show \exists s'. ?p s' unfolding id id?
          by (rule exI [of - C\langle s' \cdot \tau \cdot \sigma \rangle], rule conjI, rule sub-ctxt [OF steps(2)],
rule\ sub\text{-}ctxt\ [OF\ steps(1)])
      qed
   qed
  qed auto
  then show (t1, t2) \in join ?R by auto
lemma critical-pairs-fork:
  fixes R :: ('f, 'v) \ trs \ and \ S
 assumes cp:(b, l, r) \in critical-pairs R S
  shows (r, l) \in (rstep R)^{-1} O rstep S
proof -
```

```
from cp obtain m where (l,m,r) \in critical-Peaks R S
   unfolding critical-pairs-def critical-Peaks-def by blast
 from critical-Peak-steps(1-2)[OF\ this] show ?thesis by auto
lemma critical-pairs-fork': assumes (b,l,r) \in critical-pairs R S
 shows (l,r) \in (rstep\ S) \hat{} - 1\ O\ rstep\ R
 using critical-pairs-fork[OF assms] by auto
\mathbf{lemma}\ \mathit{critical-pairs-complete} :
 fixes R :: ('f, 'v) trs
 assumes cp:(b, l, r) \in critical-pairs R
   and no-join: (l, r) \notin (rstep R)^{\downarrow}
 shows \neg WCR (rstep R)
proof
  from critical-pairs-fork [OF cp] obtain u where ul: (u, l) \in rstep \ R and ur:
(u, r) \in rstep R by force
 assume wcr: WCR (rstep R)
 with ul ur no-join show False unfolding WCR-on-def by auto
qed
lemma critical-pair-lemma:
 fixes R :: ('f, 'v) trs
 shows WCR (rstep R) \longleftrightarrow
   (\forall (b, s, t) \in critical\text{-pairs } R \ R. \ (s, t) \in (rstep \ R)^{\downarrow})
   (is ?l = ?r)
proof
 assume ?l
 with critical-pairs-complete [where R = R] show ?r by auto
next
 assume ?r
 show ?l
 proof (rule critical-pairs)
   fix b s t
   assume (b, s, t) \in critical-pairs R
   with \langle ?r \rangle have (s, t) \in join (rstep R) by auto
   then obtain u where s: (s, u) \in (rstep R)^*
     and t: (t, u) \in (rstep R) \hat{} * by auto
   show \exists s' t' u. instance-rule <math>(s, t) (s', t') \land (s', u) \in (rstep R) \hat{*} \land (t', u) \in
(rstep R)^*
   proof (intro exI conjI)
     show instance-rule (s, t) (s, t) by simp
   qed (insert s t, auto)
 qed
qed
lemma critical-pairs-exI:
 fixes \sigma :: ('f, 'v) \ subst
```

```
assumes P: (l, r) \in P and R: (l', r') \in R and l: l = C\langle l'' \rangle and l'': is-Fun l'' and unif: l'' \cdot \sigma = l' \cdot \tau and b: b = (C = \square) shows \exists \ s \ t. \ (b, s, t) \in critical-pairs PR proof — from mgu-vd-complete [OF unif] obtain \mu 1 \ \mu 2 where mgu: mgu-vd ren \ l'' \ l' = Some \ (\mu 1, \mu 2) by blast show ?thesis by (intro\ exI,\ rule\ critical-pairsI [OF\ PR\ l\ l'' mgu\ refl\ refl\ b]) qed end end
```

6 Parallel Rewriting

6.1 Multihole Contexts

```
theory Multihole-Context
imports
Trs
FOR-Preliminaries
SubList
begin
unbundle lattice-syntax
```

6.1.1 Partitioning lists into chunks of given length

```
fun partition-by where

partition-by xs \ [] = [] \ []

partition-by xs \ (y\#ys) = take \ y \ xs \ \# \ partition-by \ (drop \ y \ xs) \ ys

lemma partition-by-map0-append [simp]:

partition-by xs \ (map \ (\lambda x. \ 0) \ ys \ @ zs) = replicate \ (length \ ys) \ [] \ @ \ partition-by \ xs \ zs

by (induct ys) simp-all

lemma concat-partition-by [simp]:

sum-list ys = length \ xs \implies concat \ (partition-by \ xs \ ys) = xs

by (induct ys \ arbitrary: xs) simp-all

definition partition-by-idx where

partition-by-idx l \ ys \ i \ j = partition-by \ [0..< l] \ ys \ ! \ i \ ! \ j

lemma partition-by-nth-nth-old:

assumes i < length \ (partition-by \ xs \ ys)

and j < length \ (partition-by \ xs \ ys \ ! \ i)
```

```
and sum-list ys = length xs
 shows partition-by xs ys! i! j = xs! (sum-list (map length (take i (partition-by
xs ys))) + j)
 using concat-nth [OF assms(1, 2) refl]
 unfolding concat-partition-by [OF\ assms(3)] by simp
lemma map-map-partition-by:
 map\ (map\ f)\ (partition-by\ xs\ ys) = partition-by\ (map\ f\ xs)\ ys
 by (induct ys arbitrary: xs) (auto simp: take-map drop-map)
lemma length-partition-by [simp]:
 length (partition-by xs ys) = length ys
 by (induct ys arbitrary: xs) simp-all
lemma partition-by-Nil [simp]:
 partition-by [] ys = replicate (length ys) []
 by (induct ys) simp-all
lemma partition-by-concat-id [simp]:
 assumes length xss = length ys
   and \bigwedge i. i < length \ ys \Longrightarrow length \ (xss ! i) = ys ! i
 shows partition-by (concat xss) ys = xss
 using assms
proof (induct ys arbitrary: xss)
 case (Cons y ys xss)
 then show ?case by (cases xss; fastforce)
qed simp
lemma partition-by-nth:
 i < length \ ys \Longrightarrow partition-by \ xs \ ys \ ! \ i = take \ (ys \ ! \ i) \ (drop \ (sum-list \ (take \ i \ ys))
proof (induct ys arbitrary: xs i)
 case (Cons \ x \ xs \ i)
 thus ?case by (cases i, auto simp: ac-simps)
qed simp
lemma partition-by-nth-less:
 assumes k < i and i < length zs
   and length xs = sum-list (take i zs) + j
 shows partition-by (xs @ y \# ys) zs ! k = take (zs ! k) (drop (sum-list (take k)))
zs)) xs)
proof -
 have partition-by (xs @ y \# ys) zs! k =
   take (zs ! k) (drop (sum-list (take k zs)) (xs @ y # ys))
   using assms by (auto simp: partition-by-nth)
 moreover have zs ! k + sum\text{-}list (take k zs) \leq length xs
   using assms by (simp add: sum-list-take-eq)
 ultimately show ?thesis by simp
```

```
qed
```

```
lemma partition-by-nth-greater:
 assumes i < k and k < length zs and j < zs ! i
   and length xs = sum-list (take i zs) + j
 shows partition-by (xs @ y \# ys) zs! k =
   take (zs ! k) (drop (sum-list (take k zs) - 1) (xs @ ys))
proof -
 have partition-by (xs @ y # ys) zs! k =
   take (zs ! k) (drop (sum-list (take k zs)) (xs @ y # ys))
   using assms by (auto simp: partition-by-nth)
 moreover have sum-list (take \ k \ zs) > length \ xs
   using assms by (auto simp: sum-list-take-eq)
 ultimately show ?thesis by (auto) (metis Suc-diff-Suc drop-Suc-Cons)
qed
lemma length-partition-by-nth:
 sum-list ys = length \ xs \implies i < length \ ys \implies length \ (partition-by \ xs \ ys \ ! \ i) = ys
proof (induct ys arbitrary: xs i)
 case (Cons \ y \ ys \ xs \ i)
 thus ?case by (cases i, auto)
qed simp
lemma partition-by-nth-nth-elem:
 assumes sum-list ys = length \ xs \ i < length \ ys \ j < ys \ ! \ i
 shows partition-by xs \ ys \ ! \ i \ ! \ j \in set \ xs
proof -
 from assms have j < length (partition-by xs ys! i) by (simp only: length-partition-by-nth)
 then have partition-by xs \ ys \ ! \ i \ ! \ j \in set \ (partition-by \ xs \ ys \ ! \ i) by auto
 with assms(2) have partition-by xs ys! i! j \in set (concat (partition-by xs ys))
by auto
 then show ?thesis using assms by simp
qed
lemma partition-by-nth-nth:
 assumes sum-list ys = length \ xs \ i < length \ ys \ j < ys \ ! \ i
 shows partition-by xs \ ys \ ! \ i \ ! \ j = xs \ ! \ partition-by-idx (length <math>xs) ys \ i \ j
   partition-by-idx (length xs) ys i j < length xs
  unfolding partition-by-idx-def
proof -
 let ?n = partition-by [0..< length xs] ys ! i ! j
 show ?n < length xs
   using partition-by-nth-nth-elem [OF - assms(2,3), of [0...< length xs]] assms(1)
\mathbf{by} \ simp
 have li: i < length (partition-by [0..< length xs] ys) using assms(2) by simp
 have lj: j < length (partition-by [0..< length xs] ys! i)
   using assms by (simp add: length-partition-by-nth)
 have partition-by (map ((!) xs) [0..<length xs]) ys! i! j = xs! ?n
```

```
by (simp only: map-map-partition-by[symmetric] nth-map[OF li] nth-map[OF
lj])
 then show partition-by xs \ ys \ ! \ i \ ! \ j = xs \ ! \ ?n \ by \ (simp \ add: map-nth)
qed
lemma map-length-partition-by [simp]:
  sum-list ys = length \ xs \Longrightarrow map \ length \ (partition-by \ xs \ ys) = ys
 by (intro nth-equalityI, auto simp: length-partition-by-nth)
lemma map-partition-by-nth [simp]:
  i < length \ ys \Longrightarrow map \ f \ (partition-by \ xs \ ys \ ! \ i) = partition-by \ (map \ f \ xs) \ ys \ ! \ i
proof (induct ys arbitrary: i xs)
  case (Cons y ys i xs)
 thus ?case by (cases i, simp-all add: take-map drop-map)
qed simp
lemma sum-list-partition-by [simp]:
  sum-list ys = length xs \Longrightarrow
    sum-list (map (\lambda x. sum-list (map f x)) (partition-by xs ys)) = sum-list (map f x)
 \mathbf{by}\ (\mathit{induct}\ \mathit{ys}\ \mathit{arbitrary:}\ \mathit{xs})\ (\mathit{simp-all},\ \mathit{metis}\ \mathit{append-take-drop-id}\ \mathit{sum-list-append}
map-append)
lemma partition-by-map-conv:
 partition-by xs \ ys = map \ (\lambda i. \ take \ (ys \ ! \ i) \ (drop \ (sum-list \ (take \ i \ ys)) \ xs)) \ [0 \ .. <
length ys]
 by (rule nth-equalityI) (simp-all add: partition-by-nth)
lemma UN-set-partition-by-map:
  sum-list ys = length \ xs \Longrightarrow (\bigcup x \in set \ (partition-by \ (map \ f \ xs) \ ys). \bigcup (set \ x)) =
\bigcup (set (map f xs))
 by (induct ys arbitrary: xs)
  (simp-all add: drop-map take-map, metis UN-Un append-take-drop-id set-append)
lemma UN-set-partition-by:
  sum-list ys = length \ xs \Longrightarrow (\bigcup zs \in set \ (partition-by \ xs \ ys). \ \bigcup x \in set \ zs. \ f \ x) =
(\bigcup x \in set \ xs. \ f \ x)
 by (induct ys arbitrary: xs) (simp-all, metis UN-Un append-take-drop-id set-append)
\mathbf{lemma} \ \textit{Ball-atLeast0LessThan-partition-by-conv}:
  (\forall i \in \{0.. < length\ ys\}.\ \forall\ x \in set\ (partition-by\ xs\ ys\ !\ i).\ P\ x) =
    (\forall x \in \bigcup (set (map \ set (partition-by \ xs \ ys))). \ P \ x)
 by auto (metis at Least 0 Less Than in-set-conv-nth length-partition-by less Than-iff)
lemma Ball-set-partition-by:
  sum-list ys = length xs \Longrightarrow
  (\forall x \in set \ (partition-by \ xs \ ys). \ \forall y \in set \ x. \ P \ y) = (\forall x \in set \ xs. \ P \ x)
proof (induct ys arbitrary: xs)
  case (Cons\ y\ ys)
```

```
then show ?case
   apply (subst (2) append-take-drop-id [of y xs, symmetric])
   apply (simp only: set-append)
   apply auto
   done
qed simp
lemma partition-by-append2:
  partition-by \ xs \ (ys @ zs) = partition-by \ (take \ (sum-list \ ys) \ xs) \ ys @ partition-by
(drop\ (sum\text{-}list\ ys)\ xs)\ zs
 by (induct ys arbitrary: xs) (auto simp: drop-take ac-simps split: split-min)
lemma partition-by-concat2:
  partition-by \ xs \ (concat \ ys) =
   concat (map (\lambda i . partition-by (partition-by xs (map sum-list ys) ! i) (ys ! i))
[0..< length ys])
proof -
  have *: map (\lambda i \cdot partition-by \cdot (partition-by \cdot xs \cdot (map \cdot sum-list \cdot ys) \cdot ! \cdot i) \cdot (ys \cdot ! \cdot i))
[0..< length\ ys] =
   map(\lambda(x,y), partition-by x y) (zip(partition-by xs(map sum-list ys)) ys)
   using zip-nth-conv[of partition-by xs (map sum-list ys) ys] by auto
 show ?thesis unfolding * by (induct ys arbitrary: xs) (auto simp: partition-by-append2)
qed
lemma partition-by-partition-by:
  length \ xs = sum\text{-}list \ (map \ sum\text{-}list \ ys) \Longrightarrow
  partition-by (partition-by xs (concat ys)) (map length ys) =
  map (\lambda i. partition-by (partition-by xs (map sum-list ys)! i) (ys! i)) [0..< length
ys
 by (auto simp: partition-by-concat2 intro: partition-by-concat-id)
datatype (f, vars-metxt : v) metxt = MVar v \mid MHole \mid MFun f (f, v) metxt
list
         Conversions from and to multihole contexts
primrec mctxt-of-term :: ('f, 'v) term \Rightarrow ('f, 'v) mctxt
 where
   mctxt-of-term (Var \ x) = MVar \ x \mid
   mctxt-of-term (Fun f ts) = MFun f (map mctxt-of-term ts)
primrec term-of-mctxt :: ('f, 'v) mctxt \Rightarrow ('f, 'v) term
  where
    term\text{-}of\text{-}mctxt \ (MVar \ x) = Var \ x \mid
   term-of-mctxt (MFun f Cs) = Fun f (map term-of-mctxt Cs)
\mathbf{lemma} \ \textit{term-of-mctxt-mctxt-of-term-id} \ [\textit{simp}] :
  term-of-mctxt (mctxt-of-term t) = t
 by (induct\ t)\ (simp-all\ add:\ map-idI)
```

```
fun num-holes :: ('f, 'v) mctxt \Rightarrow nat
  where
   num-holes (MVar -) = 0
   num-holes MHole = 1
   num-holes (MFun - ctxts) = sum-list (map num-holes ctxts)
lemma num-holes-o-mctxt-of-term [simp]:
  num-holes \circ mctxt-of-term = (\lambda x. \ \theta)
 apply (intro ext)
 subgoal for x by (induct x, auto)
 done
lemma mctxt-of-term-term-of-mctxt-id [simp]:
  num-holes C = 0 \Longrightarrow mctxt-of-term (term-of-mctxt C) = C
 by (induct\ C)\ (simp-all\ add:\ map-idI)
lemma vars-mctxt-of-term[simp]: vars-mctxt (mctxt-of-term t) = vars-term t
 by (induct\ t,\ auto)
lemma num-holes-mctxt-of-term [simp]:
  num-holes (mctxt-of-term t) = 0
 by (induct\ t)\ simp-all
fun funas-mctxt :: ('f, 'v) mctxt \Rightarrow 'f sig
   funas-mctxt \ (MFun \ f \ Cs) = \{(f, length \ Cs)\} \cup \bigcup (funas-mctxt \ `set \ Cs) \mid
   funas-mctxt - = \{\}
fun funas-mctxt-list :: (f, v) mctxt \Rightarrow (f \times nat) list
   funas-mctxt-list (MFun f Cs) = (f, length Cs) \# concat (map funas-mctxt-list
Cs)
   funas-mctxt-list - = []
lemma funas-mctxt-list [simp]:
  set (funas-mctxt-list C) = funas-mctxt C
 by (induct\ C)\ simp-all
fun split-term :: (('f, 'v) \ term \Rightarrow bool) \Rightarrow ('f, 'v) \ term \Rightarrow ('f, 'v) \ mctxt \times ('f, 'v)
term list
 where
   split-term\ P\ (Var\ x) = (if\ P\ (Var\ x)\ then\ (MHole,\ [Var\ x])\ else\ (MVar\ x,\ []))\ |
   split-term P (Fun f ts) =
   (if P (Fun f ts) then (MHole, [Fun f ts])
   else let us = map (split-term P) ts in (MFun f (map fst us), concat (map snd
us)))
```

```
fun cap-till :: (('f, 'v) \ term \Rightarrow bool) \Rightarrow ('f, 'v) \ term \Rightarrow ('f, 'v) \ mctxt
  where
    cap\text{-}till\ P\ (Var\ x) = (if\ P\ (Var\ x)\ then\ MHole\ else\ MVar\ x)\ |
    cap-till\ P\ (Fun\ f\ ts) = (if\ P\ (Fun\ f\ ts)\ then\ MHole\ else\ MFun\ f\ (map\ (cap-till\ f\ ts))
P(ts)
fun uncap-till :: (('f, 'v) \ term \Rightarrow bool) \Rightarrow ('f, 'v) \ term \Rightarrow ('f, 'v) \ term \ list
    uncap-till\ P\ (Var\ x) = (if\ P\ (Var\ x)\ then\ [Var\ x]\ else\ [])
     uncap-till\ P\ (Fun\ f\ ts) = (if\ P\ (Fun\ f\ ts)\ then\ [Fun\ f\ ts]\ else\ concat\ (map
(uncap-till\ P)\ ts))
lemma split-term [simp]:
  split-term P t = (cap-till P t, uncap-till P t)
  by (induct\ t) (simp-all\ cong:\ map-cong)
definition if-Fun-in-set F = (\lambda t. \text{ is-Var } t \vee \text{ the (root } t) \in F)
lemma if-Fun-in-set-simps [simp]:
  if-Fun-in-set F (Var x)
  if-Fun-in-set F (Fun f ts) \longleftrightarrow (f, length ts) \in F
  is-Var\ t \Longrightarrow if-Fun-in-set\ F\ t
  is-Fun t \Longrightarrow if-Fun-in-set F \ t \longleftrightarrow the \ (root \ t) \in F
  by (simp-all add: if-Fun-in-set-def)
lemma if-Fun-in-set-mono:
  F \subseteq G \Longrightarrow if\text{-Fun-in-set } F \ t \Longrightarrow if\text{-Fun-in-set } G \ t
  by (auto simp: if-Fun-in-set-def)
abbreviation split-term-funas F \equiv split-term (if-Fun-in-set F)
abbreviation cap-till-funas F \equiv cap-till (if-Fun-in-set F)
abbreviation uncap-till-funas F \equiv uncap-till (if-Fun-in-set F)
lemma if-Fun-in-set-uncap-till-funas:
  A \subseteq B \Longrightarrow if\text{-Fun-in-set } A \ t \Longrightarrow uncap\text{-till-funas } B \ t = [t]
  by (cases t) auto
lemma cap-till-funasD [dest]:
  fn \in funas\text{-}mctxt \ (cap\text{-}till\text{-}funas \ F\ t) \Longrightarrow fn \in F \Longrightarrow False
proof (induct\ t)
  case (Fun f ts)
  then show ?case by (cases (f, length \ ts) \in F) auto
qed simp
\mathbf{lemma}\ \mathit{cap-till-funas}:
  \forall fn \in funas\text{-}mctxt \ (cap\text{-}till\text{-}funas \ F \ t). \ fn \notin F
  by auto
```

lemma uncap-till:

```
\forall s \in set (uncap-till P t). P s
 by (induct\ t) simp-all
lemma uncap-till-singleton:
 assumes s \in set (uncap-till P t)
 shows uncap\text{-}till\ P\ s = [s]
  using assms
proof (induct t)
  case (Fun f ts)
  then show ?case by (cases \ P \ (Fun \ f \ ts)) auto
qed simp
lemma uncap-till-idemp [simp]:
  map (uncap-till P) (uncap-till P t) = map (\lambda s. [s]) (uncap-till P t)
 by (intro map-cong [OF refl] uncap-till-singleton) simp-all
lemma uncap-till-Fun [simp]:
  P(Fun f ts) \Longrightarrow uncap-till P(Fun f ts) = [Fun f ts]
 by simp
abbreviation partition-holes xs Cs \equiv partition-by xs (map num-holes Cs)
abbreviation partition-holes-idx l Cs \equiv partition-by-idx l (map num-holes Cs)
fun fill-holes :: ('f, 'v) mctxt \Rightarrow ('f, 'v) term list \Rightarrow ('f, 'v) term
  where
   fill-holes (MVar\ x) - = Var\ x
   fill-holes MHole [t] = t
   fill-holes (MFun f cs) ts = Fun f (map (\lambda i. fill-holes (cs! i)
   (partition-holes\ ts\ cs\ !\ i))\ [0\ ..< length\ cs])
The following induction scheme provides the MFun case with the list argu-
ment split according to the argument contexts. This feature is quite delicate:
its benefit can be destroyed by premature simplification using the sum-list
?ys = length ?xs \Longrightarrow concat (partition-by ?xs ?ys) = ?xs simplification rule.
lemma fill-holes-induct2[consumes 2, case-names MHole MVar MFun]:
  fixes P :: ('f, 'v) \ mctxt \Rightarrow 'a \ list \Rightarrow 'b \ list \Rightarrow bool
  assumes len1: num-holes C = length \ xs \ and \ len2: num-holes \ C = length \ ys
   and Hole: \bigwedge x \ y. P MHole [x] [y]
   and Var: \bigwedge v. \ P \ (MVar \ v) \ || \ ||
   and Fun: \bigwedge f Cs xs ys. sum-list (map num-holes Cs) = length xs \Longrightarrow
   sum-list (map num-holes Cs) = length ys \Longrightarrow
   (\land i. i < length \ Cs \Longrightarrow P \ (Cs \ ! \ i) \ (partition-holes \ xs \ Cs \ ! \ i) \ (partition-holes \ ys \ Cs \ ! \ i))
Cs ! i)) \Longrightarrow
   P (MFun f Cs) (concat (partition-holes xs Cs)) (concat (partition-holes ys Cs))
 shows P \ C \ xs \ ys
proof (insert len1 len2, induct C arbitrary: xs ys)
 case MHole then show ?case using Hole by (cases xs; cases ys) auto
next
```

```
case (MVar v) then show ?case using Var by auto
next
  case (MFun f Cs) then show ?case using Fun[of Cs xs ys f] by (auto simp:
length-partition-by-nth)
qed
lemma fill-holes-induct[consumes 1, case-names MHole MVar MFun]:
  fixes P :: ('f, 'v) \ mctxt \Rightarrow 'a \ list \Rightarrow bool
 assumes len: num-holes C = length xs
   and Hole: \bigwedge x. P MHole [x]
   and Var: \bigwedge v. \ P \ (MVar \ v) \ []
   and Fun: \bigwedge f Cs xs. sum-list (map num-holes Cs) = length xs \Longrightarrow
   (\land i. i < length \ Cs \Longrightarrow P \ (Cs ! i) \ (partition-holes \ xs \ Cs ! i)) \Longrightarrow
    P(MFun f Cs) (concat (partition-holes xs Cs))
 shows P \ C \ xs
 using fill-holes-induct2[of C xs xs \lambda C xs -. P C xs] assms by simp
lemma funas-term-fill-holes-iff: num-holes C = length \ ts \Longrightarrow
   g \in funas\text{-}term \ (fill\text{-}holes \ C \ ts) \longleftrightarrow g \in funas\text{-}mctxt \ C \lor (\exists \ t \in set \ ts. \ g \in funas\text{-}term)
funas-term t
proof (induct C ts rule: fill-holes-induct)
 case (MFun \ f \ Cs \ ts)
 have (\exists i < length \ Cs. \ g \in funas-term \ (fill-holes \ (Cs!i) \ (partition-holes \ (concat
(partition-holes ts Cs)) Cs! i)))
    \longleftrightarrow (\exists \ C \in set \ Cs. \ g \in funas-mctxt \ C) \lor (\exists \ us \in set \ (partition-holes \ ts \ Cs).
\exists t \in set \ us. \ g \in funas-term \ t
   using MFun by (auto simp: ex-set-conv-ex-nth)
 then show ?case by auto
qed auto
lemma fill-holes-MHole:
  length ts = 1 \implies ts ! 0 = u \implies fill-holes MHole ts = u
 by (cases ts) simp-all
lemmas
  map-partition-holes-nth [simp] =
  map-partition-by-nth [of - map num-holes Cs for Cs, unfolded length-map] and
  length-partition-holes [simp] =
  length-partition-by [of - map num-holes Cs for Cs, unfolded length-map]
lemma length-partition-holes-nth [simp]:
 assumes sum-list (map num-holes cs) = length ts
   and i < length cs
 shows length (partition-holes ts cs ! i) = num-holes (cs ! i)
  using assms by (simp add: length-partition-by-nth)
```

```
\mathbf{lemma}\ concat\text{-}partition\text{-}holes\text{-}upt\text{:}
 assumes i \leq length \ cs
 shows concat [partition-holes ts cs ! j. j \leftarrow [0 ... < i]] =
   take (sum-list [num-holes (cs ! j). j \leftarrow [0 ... < i]]) ts
  using assms
proof (induct i arbitrary: ts)
 case (Suc\ i)
  then have i': i < length cs by (metis less-eq-Suc-le)
 then have *: i < length (map num-holes cs) by simp
 then have i'': i \leq length \ cs \ by \ auto
 show ?case
   unfolding upt-Suc-append[OF le0] map-append concat-append Suc(1)[OF i'']
concat.simps append-Nil2
   unfolding sum-list-append take-add
   unfolding list.map(2)
   unfolding partition-by-nth [OF *]
   unfolding take-map nth-map [OF i']
   unfolding take-upt-idx[OF i']
   unfolding map-map o-def by auto
qed (auto)
lemma partition-holes-step:
  partition-holes ts (C \# Cs) = take (num-holes C) ts \# partition-holes (drop
(num-holes C) ts) Cs
 by simp
lemma partition-holes-map-ctxt:
  assumes length \ cs = length \ ds
   and \bigwedge i. i < length \ cs \implies num-holes \ (cs ! i) = num-holes \ (ds ! i)
 shows partition-holes ts cs = partition-holes ts ds
 using assms by (metis nth-map-conv)
lemma partition-holes-concat-id:
 assumes length sss = length cs
   and \bigwedge i. i < length \ cs \implies num-holes \ (cs ! i) = length \ (sss ! i)
 shows partition-holes (concat sss) cs = sss
 using assms by (intro partition-by-concat-id) auto
lemma partition-holes-fill-holes-conv:
 fill-holes (MFun f cs) ts =
   Fun f [fill-holes (cs! i) (partition-holes ts cs! i). i \leftarrow [0 ..< length cs]]
 by (simp add: partition-by-nth take-map)
lemma fill-holes-arbitrary:
 assumes lCs: length Cs = length ts
   and lss: length ss = length ts
```

```
and rec: \bigwedge i. i < length ts \implies num-holes (Cs!i) = length (ss!i) <math>\land f (Cs!
i) (ss ! i) = ts ! i
 shows map (\lambda i. f (Cs! i) (partition-holes (concat ss) Cs! i)) [0 ... < length Cs]
= ts
proof -
 have sum-list (map num-holes Cs) = length (concat ss) using assms
   by (auto simp: length-concat map-nth-eq-conv intro: arg-cong[of - - sum-list])
 moreover have partition-holes (concat ss) Cs = ss
   using assms by (auto intro: partition-by-concat-id)
  ultimately show ?thesis using assms by (auto intro: nth-equalityI)
qed
lemma fill-holes-MFun:
 assumes lCs: length Cs = length ts
   and lss: length ss = length ts
   and rec: \bigwedge i, i < length ts \Longrightarrow num-holes (Cs!i) = length (ss!i) <math>\land fill-holes
(Cs ! i) (ss ! i) = ts ! i
 shows fill-holes (MFun f Cs) (concat ss) = Fun f ts
 unfolding fill-holes.simps term.simps
 by (rule conjI[OF refl], rule fill-holes-arbitrary[OF lCs lss rec])
inductive
  eq-fill ::
 (f, v) term \Rightarrow (f, v) mctxt \times (f, v) term list \Rightarrow bool ((-/-f) [51, 51] 50)
  where
   eqfI [intro]: t = fill-holes D ss \Longrightarrow num-holes D = length ss \Longrightarrow t =_f (D, ss)
lemma fill-holes-inj:
 assumes num-holes C = length ss
   and num-holes C = length ts
   and fill-holes C ss = fill-holes C ts
 shows ss = ts
 using assms
proof (induct C ss ts rule: fill-holes-induct2)
 case (MFun \ f \ Cs \ ss \ ts)
 then show ?case by (intro arg-cong[of - - concat] nth-equalityI) auto
ged auto
lemma eqf-refl [intro]:
  num-holes C = length \ ts \Longrightarrow fill-holes \ C \ ts =_f \ (C, \ ts)
 by (auto)
lemma eqfE:
 assumes t = f(D, ss) shows t = fill-holes D ss num-holes D = length ss
 using assms[unfolded eq-fill.simps] by auto
lemma eqf-MFunI:
 assumes length sss = length Cs
   and length ts = length Cs
```

```
and \wedge i. i < length \ Cs \Longrightarrow ts \ ! \ i =_f \ (Cs \ ! \ i, sss \ ! \ i)
 shows Fun f ts =_f (MFun f Cs, concat sss)
proof
  have num-holes (MFun f Cs) = sum-list (map num-holes Cs) by simp
 also have map num-holes Cs = map \ length \ sss
   by (rule nth-equalityI, insert assms eqfE[OF assms(3)], auto)
 also have sum-list (...) = length (concat sss) unfolding length-concat ...
 finally show num-holes (MFun f Cs) = length (concat sss).
 show Fun f ts = fill-holes (MFun f Cs) (concat sss)
     by (rule\ fill-holes-MFun[symmetric],\ insert\ assms(1,2)\ eqfE[OF\ assms(3)],
auto)
qed
lemma eqf-MFunE:
 assumes s = f (MFun f Cs,ss)
 obtains to so where s = Fun f to length ts = length Cs length so = length Cs
   \bigwedge i. \ i < length \ Cs \Longrightarrow ts \ ! \ i =_f \ (Cs \ ! \ i, \ sss \ ! \ i)
   ss = concat \ sss
proof -
  from eqfE[OF \ assms] have fh: s = fill-holes (MFun f Cs) ss
   and nh: sum-list (map num-holes Cs) = length ss by auto
  from fh obtain ts where s: s = Fun f ts by (cases s, auto)
 from fh[unfolded s]
  have ts: ts = map \ (\lambda i. \ fill-holes \ (Cs!i) \ (partition-holes \ ss \ Cs!i)) \ [0..< length]
Cs
    (\mathbf{is} - map \ (?f \ Cs \ ss) -)
   by auto
 let ?sss = partition-holes ss Cs
 from nh
 \mathbf{have} \ *: \ length \ ?sss = \ length \ Cs \ \bigwedge i. \ i < \ length \ Cs \Longrightarrow \ ts \ ! \ i =_f \ (Cs \ ! \ i, \ ?sss \ !
i) ss = concat ?sss
   by (auto simp: ts)
 have len: length ts = length Cs unfolding ts by auto
 assume ass: \bigwedge ts sss. s = Fun f ts \Longrightarrow
            length \ ts = length \ Cs \Longrightarrow
            length sss = length \ Cs \Longrightarrow (\bigwedge i. \ i < length \ Cs \Longrightarrow ts \ ! \ i =_f (Cs \ ! \ i, sss)
! i)) \Longrightarrow ss = concat sss \Longrightarrow thesis
 show thesis
   by (rule ass[OF s len *])
qed
lemma eqf-MHoleE:
 assumes s =_f (MHole, ss)
 shows ss = [s]
 using assms
proof (cases ss)
 case (Cons x xs) with assms show ?thesis by (cases xs) (auto dest: eqfE)
qed (auto dest: eqfE)
```

```
fun mctxt-of-ctxt :: ('f, 'v) ctxt \Rightarrow ('f, 'v) mctxt
 where
   mctxt-of-ctxt Hole = MHole
   mctxt-of-ctxt (More f ss_1 C ss_2) =
   MFun f (map mctxt-of-term ss_1 @ mctxt-of-ctxt C \# map mctxt-of-term ss_2)
lemma num-holes-mctxt-of-ctxt [simp]:
 num-holes (mctxt-of-ctxt C) = 1
 by (induct C) simp-all
lemma mctxt-of-term: t =_f (mctxt-of-term t, [])
proof (induct t)
 case (Var x)
 show ?case by auto
next
 case (Fun f ts)
 let ?ss = map(\lambda - . []) ts
 have id: concat ?ss = [] by simp
 have ?case = (Fun \ f \ ts =_f (MFun \ f \ (map \ mctxt-of-term \ ts), \ concat \ ?ss)) un-
folding id by simp
 also have ...
   by (rule eqf-MFunI, insert Fun[unfolded set-conv-nth], auto)
 finally show ?case.
qed
lemma mctxt-of-ctxt [simp]:
 C\langle t\rangle =_f (mctxt-of-ctxt\ C, [t])
proof (induct C)
 case (More f bef C aft)
 let ?sss = map (\lambda -. []) bef @ [t] # map (\lambda -. []) aft
 let ?ts = map\ mctxt-of-term bef @ mctxt-of-ctxt C \# map\ mctxt-of-term aft
 have id: concat ?sss = [t] by (induct bef, auto)
 have ?case =
   (Fun f (bef @ C\langle t \rangle \# aft) = f (MFun f ?ts, concat ?sss))
   unfolding id by simp
 also have ...
 proof (rule eqf-MFunI)
   \mathbf{fix} i
   assume i: i < length ?ts
   show (bef @ C\langle t\rangle \# aft) ! i =_f (?ts ! i, ?sss ! i)
     using More i
     by (cases i < length bef, simp add: nth-append mctxt-of-term,
        cases i = length \ bef, auto simp: nth-append \ mctxt-of-term)
 qed auto
 finally show ?case.
qed auto
lemma fill-holes-ctxt-main':
 assumes num-holes C = Suc (length bef + length aft)
```

```
shows \exists D. (\forall s. fill-holes C (bef @ s \# aft) = D \langle s \rangle) \land (C = MFun f cs \longrightarrow
D \neq \square
 using assms
proof (induct C arbitrary: bef aft)
 case MHole
 show ?case
   by (rule exI[of - \Box], insert MHole, auto)
next
  case (MFun \ f \ cs)
 note IH = MFun(1)
 note holes = MFun(2)
 let ?p = \lambda bef aft b a D cs s. map (\lambda i. fill-holes (cs! i))
             (partition-holes\ (bef\ @\ s\ \#\ aft)\ cs\ !\ i))\ [0..< length\ cs] =
            b\ @\ D\langle s\rangle\ \#\ a
 from holes IH
 have \exists b D a. \forall s. ?p bef aft b a D cs s
 proof (induct cs arbitrary: bef)
   case (Cons c ccs)
   have len: length (c \# ccs) = Suc (length ccs) by simp
   proof (cases num-holes c \leq length \ bef)
     case True
     then have bef = take (num-holes c) bef @ drop (num-holes c) bef
       \land length (take (num-holes c) bef) = num-holes c by auto
     then obtain be by where bef: bef = be @ by and lbe: length be = num-holes
c by blast
     from Cons(2) have nh: num-holes (MFun\ f\ ccs) = Suc\ (length\ ba + length
aft) unfolding bef
       \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{lbc})
     from Cons(1)[OF \ nh \ Cons(3)] obtain b \ D \ a where IH: \bigwedge s. \ ?p \ ba \ aft \ b \ a
D ccs s by auto
     show ?thesis unfolding len map-upt-Suc bef
        by (intro exI[of - fill-holes\ c\ bc\ \#\ b]\ exI[of -\ D]\ exI[of -\ a], insert IH lbc,
auto)
   \mathbf{next}
     case False
     then have \exists la. num-holes c = Suc (length bef + la) by arith
     then obtain la where nhc: num-holes c = Suc (length bef + la) ...
     from Cons(2) nhc have length (take la aft) = la by auto
     from Cons(3)[of c bef take la aft, unfolded this, OF - nhc]
     obtain D where D: \forall s. fill-holes c (bef @ s # take la aft) = D\langle s \rangle by auto
     show ?thesis unfolding len map-upt-Suc
       by (rule\ exI[of\ -\ Nil],\ rule\ exI[of\ -\ D],\ simp\ add:\ nhc\ D)
   qed
  qed auto
  then obtain b D a where main: \bigwedge s. ?p bef aft b a D cs s by blast
  show ?case by (rule exI[of - More f b D a], insert main, auto)
\mathbf{qed} \ simp
```

```
lemma fill-holes-ctxt-main:
  assumes num-holes C = Suc (length bef + length aft)
 shows \exists D. \forall s. fill-holes C (bef @ s # aft) = D \langle s \rangle
  using assms fill-holes-ctxt-main' by fast
lemma fill-holes-ctxt:
  assumes nh: num-holes C = length ss
   and i: i < length ss
  obtains D where \bigwedge s. fill-holes C (ss[i:=s]) = D \langle s \rangle
proof -
  from id-take-nth-drop[OF\ i] obtain bef\ aft where ss:\ ss=\ bef\ @\ ss!\ i\ \#\ aft
   and bef: bef = take \ i \ ss \ by \ blast
  from bef i have bef: length bef = i by auto
 note len = arg\text{-}cong[OF\ ss,\ of\ length]
 from len nh
 have num-holes C = Suc (length bef + length aft) by simp
  from fill-holes-ctxt-main[OF this] obtain D where id: \bigwedge s. fill-holes C (bef @
s \# aft = D \langle s \rangle by blast
   \mathbf{fix} \ s
   have ss[i := s] = bef @ s \# aft unfolding arg-cong[OF ss, of \lambda ss. <math>ss[i := s]]
     using i bef by auto
    with id[of s] have fill-holes C(ss[i := s]) = D(s) by simp
  then have main: \exists D. \forall s. \text{ fill-holes } C (ss[i := s]) = D \langle s \rangle \text{ by } blast
  assume \bigwedge D. \llbracket \bigwedge s. fill-holes C (ss[i:=s]) = D\langle s \rangle \rrbracket \implies thesis
  with main show thesis by blast
qed
fun map-vars-mctxt :: ('v \Rightarrow 'w) \Rightarrow ('f, 'v) mctxt \Rightarrow ('f, 'w) mctxt
  where
   map\text{-}vars\text{-}mctxt\ vw\ MHole = MHole
   map\text{-}vars\text{-}mctxt\ vw\ (MVar\ v) = (MVar\ (vw\ v))
   map-vars-mctxt\ vw\ (MFun\ f\ Cs)=MFun\ f\ (map\ (map-vars-mctxt\ vw)\ Cs)
lemma map-vars-mctxt-id [simp]:
  map\text{-}vars\text{-}mctxt \ (\lambda \ x. \ x) \ C = C
 by (induct C, auto intro: nth-equalityI)
lemma num-holes-map-vars-mctxt [simp]:
  num-holes (map-vars-mctxt \ vw \ C) = num-holes C
proof (induct C)
  case (MFun \ f \ Cs)
  then show ?case by (induct Cs, auto)
qed auto
lemma map-vars-term-eq-fill:
 t = f(C,ss) \Longrightarrow map\text{-}vars\text{-}term \ vw \ t = f(map\text{-}vars\text{-}mctxt \ vw \ C, map \ (map\text{-}vars\text{-}term
vw) ss)
```

```
proof (induct C arbitrary: t ss)
 case (MFun f Cs s ss)
  from eqf-MFunE[OF\ MFun(2)] obtain ts\ sss\ where s:\ s=\ Fun\ f\ ts and len:
length ts = length Cs length sss = length Cs
   and IH: \bigwedge i, i < length \ Cs \Longrightarrow ts \mid i =_f (Cs \mid i, sss \mid i) and ss : ss = concat
sss by metis
  {
   fix i
   assume i: i < length Cs
   then have Cs ! i \in set Cs by auto
  from MFun(1)[OF\ this\ IH[OF\ i]] have map\ vars\ term\ vw\ (ts\ !\ i) =_f (map\ vars\ mctxt)
vw (Cs!i), map (map-vars-term vw) (sss!i).
  } note IH = this
 \mathbf{show} \ ? case \ \mathbf{unfolding} \ map\text{-}vars\text{-}mctxt.simps \ ss \ map\text{-}concat \ s \ term.map
   by (rule eqf-MFunI, insert IH len, auto)
 case (MHole t ss)
 from eqfE[OF this]
 show ?case by (cases ss, auto)
 case (MVar\ v\ t\ ss)
 from eqfE[OF this]
 show ?case by (cases ss, auto)
qed
lemma map-vars-term-fill-holes:
 assumes nh: num-holes C = length ss
 shows map-vars-term vw (fill-holes C ss) =
   fill-holes\ (map-vars-mctxt\ vw\ C)\ (map\ (map-vars-term\ vw)\ ss)
proof -
 from eqfE[OF map-vars-term-eq-fill[OF eqfI[OF refl nh]]]
 show ?thesis by simp
qed
lemma split-term-eqf:
  t =_f (cap\text{-}till\ P\ t,\ uncap\text{-}till\ P\ t)
proof (induct t)
 case (Fun f ts)
 show ?case
 proof (cases P (Fun f ts))
   case False
   then have ?thesis = (Fun f ts =_f (MFun f (map (cap-till P) ts), concat (map
(uncap-till\ P)\ ts)))
     by simp
   also have \dots
   proof (rule eqf-MFunI)
     presume i < length ts
     moreover then have ts ! i \in set ts by auto
```

```
ultimately show ts ! i =_f (map (cap-till P) ts ! i, map (uncap-till P) ts ! i)
       using Fun by auto
   \mathbf{qed}\ simp\mbox{-}all
   finally show ?thesis.
 ged auto
qed auto
lemma fill-holes-cap-till-uncap-till-id [simp]:
 fill-holes (cap-till P(t)) (uncap-till P(t) = t
proof -
 have t = f(cap-till\ P\ t, uncap-till\ P\ t) by (metis\ split-term-eqf)
 from eqfE [OF this] show ?thesis by simp
qed
lemma num-holes-cap-till [simp]:
  num-holes (cap-till P(t) = length (uncap-till P(t))
 using eqfE [OF split-term-eqf] by auto
fun split-vars :: ('f, 'v) term \Rightarrow (('f, 'v) mctxt \times 'v list)
  where
   split-vars\ (Var\ x) = (MHole,\ [x])\ |
   split-vars (Fun f ts) = (MFun f (map (fst \circ split-vars) ts), concat (map (snd \circ split-vars) ts)
split-vars) ts))
lemma\ split-vars-num-holes:\ num-holes\ (fst\ (split-vars\ t)) = length\ (snd\ (split-vars\ t))
t))
proof (induct t)
 case (Fun f ts)
 then show ?case by (induct ts, auto)
qed simp
lemma split-vars-vars-term-list: snd (split-vars t) = vars-term-list t
proof (induct\ t)
 case (Fun f ts)
 then show ?case by (auto simp: vars-term-list.simps o-def, induct ts, auto)
qed (auto simp: vars-term-list.simps)
lemma split-vars-vars-term: set (snd (split-vars t)) = vars-term t
 using arg-cong[OF split-vars-vars-term-list[of t], of set] by auto
\mathbf{lemma} \ \mathit{split-vars-eqf-subst-map-vars-term} :
  t \cdot \sigma =_f (map\text{-}vars\text{-}mctxt \ vw \ (fst \ (split\text{-}vars \ t)), \ map \ \sigma \ (snd \ (split\text{-}vars \ t)))
proof (induct t)
 case (Fun f ts)
 have ?case = (Fun \ f \ (map \ (\lambda t. \ t \cdot \sigma) \ ts)
    =_f (MFun \ f \ (map \ (map-vars-mctxt \ vw \circ (fst \circ split-vars)) \ ts), \ concat \ (map
(map \ \sigma \circ (snd \circ split-vars)) \ ts)))
   by (simp add: map-concat)
 also have ...
```

```
proof (rule eqf-MFunI, unfold length-map)
   \mathbf{fix} i
   assume i: i < length ts
   then have mem: ts ! i \in set ts by auto
    show map (\lambda t. \ t \cdot \sigma) ts! i = f(map(map-vars-mctxt \ vw \circ (fst \circ split-vars)))
ts ! i, map (map \sigma \circ (snd \circ split-vars)) ts ! i)
      using Fun[OF\ mem]\ i by auto
  qed auto
  finally show ?case by simp
qed auto
lemma split-vars-eqf-subst: t \cdot \sigma =_f (fst (split-vars t), (map \sigma (snd (split-vars
 using split-vars-eqf-subst-map-vars-term[of t \sigma \lambda x. x] by simp
lemma split-vars-into-subst-map-vars-term:
  assumes split: split-vars l = (C,xs)
   and len: length ts = length xs
   and id: \bigwedge i. i < length xs \Longrightarrow \sigma (xs ! i) = ts ! i
  shows l \cdot \sigma =_f (map\text{-}vars\text{-}mctxt \ vw \ C,ts)
proof -
  from split-vars-eqf-subst-map-vars-term[of l \sigma vw, unfolded <math>split]
  have l \cdot \sigma =_f (map\text{-}vars\text{-}mctxt \ vw \ C, \ map \ \sigma \ xs) by simp
 also have map \ \sigma \ xs = ts
   by (rule nth-equalityI, insert len id, auto)
  finally show ?thesis.
qed
\mathbf{lemma}\ \mathit{split-vars-into-subst}\colon
 assumes split: split-vars l = (C,xs)
   and len: length ts = length xs
   and id: \bigwedge i. i < length xs \Longrightarrow \sigma (xs ! i) = ts ! i
  shows l \cdot \sigma =_f (C, ts)
  using split-vars-into-subst-map-vars-term [OF split len id, of \lambda x. x] by simp
lemma eqf-funas-term:
  t =_f (C,ss) \Longrightarrow funas\text{-}term \ t = funas\text{-}mctxt \ C \cup \bigcup (funas\text{-}term \ 'set \ ss)
proof (induct C arbitrary: t ss)
  case (MFun \ f \ Cs \ t \ ss)
  from eqf-MFunE[OF\ MFun(2)] obtain ts\ sss\ where
    t: t = Fun \ f \ ts \ and \ len: length \ ts = length \ Cs \ length \ sss = length \ Cs
   and args: \bigwedge i. i < length Cs \Longrightarrow ts ! i =_f (Cs ! i, sss ! i)
   and ss: ss = concat sss by auto
  let ?lhs = \bigcup \{funas-term (ts ! i) | i. i < length Cs\}
 let ?f1 = \lambda i. funas-mctxt (Cs!i)
 let ?f2 = \lambda i. \bigcup (funas-term 'set (sss!i))
  let ?f = \lambda i. ?f1 i \cup ?f2 i
   \mathbf{fix} i
```

```
assume i: i < length Cs
   then have mem: Cs ! i \in set \ Cs \ by \ auto
   note MFun(1)[OF\ mem\ args[OF\ i]]
  \} note IH = this
  have funas-term t = insert (f, length Cs) ? lhs
   unfolding t using len by (auto simp: set-conv-nth)
 also have ?lhs = \bigcup \{?f \ i \mid i. \ i < length \ Cs\}  using IH by blast
 also have ... = \bigcup {?f1 i | i. i < length Cs} \cup \bigcup {?f2 i | i. i < length Cs} by
auto
  also have insert (f, length \ Cs) \ldots = (insert \ (f, length \ Cs) \ (\bigcup \ \{?f1 \ i \mid i. \ i < i\})
length (Cs\})) \cup \bigcup \{?f2 \ i \mid i. \ i < length (Cs\})  by auto
  also have insert (f, length \ Cs) (\bigcup \{?f1 \ i \mid i. \ i < length \ Cs\}) = funas-metxt
(MFun f Cs)
   by (auto simp: set-conv-nth)
 also have \bigcup \{?f2 \ i \mid i. \ i < length \ Cs\} = \bigcup (funas-term 'set \ ss) unfolding ss
len(2)[symmetric]
   using set-conv-nth[of sss] by auto
 finally show ?case.
next
 case MVar
 from eqfE[OF this]
 show ?case by auto
 {f case} MHole
 from eqfE[OF this] show ?case by (cases ss, auto)
lemma eqf-all-ctxt-closed-step:
 assumes ctxt: all-ctxt-closed FR
   and ass: t = (D,ss) \land i. i < length ts \Longrightarrow (ss ! i, ts ! i) \in R length ss =
length ts funas-term t \subseteq F
   \bigcup (funas-term 'set ts) \subseteq F
 shows (t, fill-holes D ts) \in R \land fill-holes D ts =_f (D, ts)
 using ass
proof (induct t (D,ss) rule: eq-fill.induct)
 case (eqfI\ t)
 from eqfI(2) eqfI(4)[unfolded\ eqfI(2)[symmetric]] eqfI(3,5,6)
 show ?case unfolding eqfI(1)
 proof (induct D ss ts rule: fill-holes-induct2)
    case (MVar v) then show ?case using all-ctxt-closed-sig-reflE[OF ctxt] by
auto
 next
   case (MHole s' t') then show ?case by auto
 next
   case (MFun f Cs ss ts)
   let ?ss = (map \ (\lambda i. \ fill-holes \ (Cs!i) \ (partition-holes \ ss \ Cs!i)) \ [0..< length]
    let ?ts = (map (\lambda i. fill-holes (Cs!i) (partition-holes ts Cs!i)) [0..<length]
Cs])
```

```
\mathbf{note} * = all\text{-}ctxt\text{-}closedD[OF\ ctxt,\ of\ f\ ?ts\ ?ss,\ unfolded\ length\text{-}map\ length\text{-}upt]
minus-nat.diff-0
  show ?case unfolding fill-holes.simps MFun(4) concat-partition-by[OF MFun(1)]
concat-partition-by [OF\ MFun(2)]
   proof (intro conjI eqfI *)
     fix i assume i: i < length Cs
     then have *: i < length ?ss i < length ?ts by auto
     from *(1) MFun(1,5) have q1: funas-term (fill-holes (Cs!i) (partition-holes
ss \ Cs \ ! \ i)) \subseteq F
       \mathbf{by}\ (\mathit{auto}\ \mathit{simp} \colon \mathit{subset-eq})
     with *(1) show funas-term (?ss! i) \subseteq F by auto
    from *(2) MFun(2,6) have g2: (\bigcup a \in set (partition-holes ts Cs! i). funas-term
a) \subseteq F
       \mathbf{unfolding}\ \mathit{set-concat}
       by (auto simp: subset-eq all-set-conv-all-nth[of partition-holes ts Cs])
     with *(2) MFun(1,2,5) show funas-term (?ts! i) \subseteq F
       by (auto simp: funas-term-fill-holes-iff subset-eq)
       fix j assume j: j < length (partition-holes ts Cs ! i)
       from partition-by-nth-nth[of map num-holes Cs ss i j]
         partition-by-nth-nth[of map num-holes Cs ts i j]
         i j MFun(1,2,4)
       have (partition-holes ss Cs ! i ! j, partition-holes ts Cs ! i ! j) \in R by simp
     with i show (?ss! i, ?ts! i) \in R by (auto intro!: conjunct1[OF MFun(3)[OF
i - g1 \ g2]])
   next
     show (f, length Cs) \in F using MFun(5) by auto
     show Fun f?ts =_f (MFun f Cs, ts) using MFun(2) by (intro\ eq-fill.intros)
   qed simp
 qed
qed
fun map-metxt :: ('f \Rightarrow 'g) \Rightarrow ('f, 'v) metxt \Rightarrow ('g, 'v) metxt
 where
   map\text{-}mctxt - (MVar \ x) = (MVar \ x) \mid
   map\text{-}mctxt - (MHole) = MHole
   map\text{-}mctxt\ fg\ (MFun\ f\ Cs) = MFun\ (fg\ f)\ (map\ (map\text{-}mctxt\ fg)\ Cs)
fun ground-mctxt :: ('f, 'v) mctxt \Rightarrow bool
  where
   ground\text{-}mctxt \ (MVar -) = False \ |
   \textit{ground-mctxt MHole} = \textit{True} \mid
   ground\text{-}mctxt \ (MFun \ f \ Cs) = Ball \ (set \ Cs) \ ground\text{-}mctxt
lemma ground-cap-till-funas [intro]:
  ground-mctxt (cap-till-funas F t)
```

```
by (induct\ t) simp-all
lemma ground-eq-fill: t = f(C,ss) \Longrightarrow \text{ground } t = (\text{ground-mctxt } C \land (\forall s \in \text{set}))
ss. ground s)
proof (induct C arbitrary: t ss)
 case (MVar x)
 from eqfE[OF this] show ?case by simp
 case (MHole\ t\ ss)
 from eqfE[OF this] show ?case by (cases ss, auto)
next
  case (MFun \ f \ Cs \ s \ ss)
  from eqf-MFunE[OF\ MFun(2)] obtain ts\ sss\ where s:\ s=Fun\ f\ ts and len:
length\ ts = length\ Cs\ length\ sss = length\ Cs
   and IH: \bigwedge i. i < length \ Cs \implies ts \mid i =_f (Cs \mid i, sss \mid i) and ss: ss = concat
sss by metis
  {
   \mathbf{fix} i
   assume i: i < length Cs
   then have Cs ! i \in set Cs by simp
   from MFun(1)[OF this IH[OF i]]
   have ground (ts!i) = (ground-mctxt (Cs!i) \land (\forall a \in set (sss!i). ground a)).
  } note IH = this
 note \ conv = set\text{-}conv\text{-}nth
 have ?case = ((\forall x \in set \ ts. \ ground \ x) = ((\forall x \in set \ Cs. \ ground - mctxt \ x) \land (\forall a \in set \ ts. \ ground - mctxt \ x))
sss. \forall x \in set \ a. \ ground \ x)))
   unfolding s ss by simp
  also have ... unfolding conv[of ts] conv[of Cs] conv[of sss] len using IH by
 finally show ?case by simp
qed
lemma ground-fill-holes:
 assumes nh: num-holes C = length ss
 shows ground (fill-holes C ss) = (ground-mctxt C \land (\forall s \in set ss. ground s))
 by (rule ground-eq-fill[OF eqfI[OF refl nh]])
lemma split-vars-ground: split-vars t = (C,xs) \Longrightarrow ground-mctxt \ C
proof (induct t arbitrary: C xs)
 case (Fun f ts C xs)
  from Fun(2)[simplified] obtain Cs where C: C = MFun \ f \ Cs and Cs: \ Cs =
map (fst \circ split\text{-}vars) ts \mathbf{by} auto
 show ?case unfolding C ground-mctxt.simps
 proof
   \mathbf{fix} \ C
   assume C \in set \ Cs
   from this [unfolded Cs] obtain t where t: t \in set ts and C: C = fst (split-vars
t) unfolding o-def by auto
    from C obtain xs where split: split-vars t = (C,xs) by (cases split-vars t,
```

```
auto)
   show ground-mctxt C
     by (rule\ Fun(1)[OF\ t\ split])
ged auto
lemma split-vars-ground-vars:
 assumes ground-metxt C and num-holes C = length xs
 shows split-vars (fill-holes C (map Var xs)) = (C, xs)
 using assms
proof (induct C arbitrary: xs)
 case (MHole xs)
 then show ?case by (cases xs, auto)
next
 case (MFun \ f \ Cs \ xs)
 have fill-holes (MFun f Cs) (map Var xs) = f (MFun f Cs, map Var xs)
   by (rule eqf1, insert MFun(3), auto)
 from eqf-MFunE[OF this]
 obtain ts xss where fh: fill-holes (MFun f Cs) (map Var xs) = Fun f ts
   and lent: length ts = length Cs
   and lenx: length xss = length Cs
   and args: \bigwedge i. i < length \ Cs \Longrightarrow ts \ ! \ i =_f (Cs \ ! \ i, \ xss \ ! \ i)
   and id: map \ Var \ xs = concat \ xss \ by \ auto
 from arg\text{-}cong[OF\ id,\ of\ map\ the\text{-}Var] have id2: xs = concat\ (map\ (map\ the\text{-}Var)
xss
   by (metis map-concat length-map map-nth-eq-conv term.sel(1))
 {
   \mathbf{fix} i
   assume i: i < length Cs
   then have mem: Cs ! i \in set Cs by auto
   with MFun(2) have ground: ground-mctxt (Cs!i) by auto
   have map Var\ (map\ the\ Var\ (xss\ !\ i)) = map\ id\ (xss\ !\ i) unfolding map\ map
o\text{-}def\ map\text{-}eq\text{-}conv
   proof
     \mathbf{fix} \ x
     assume x \in set (xss ! i)
     with lenx i have x \in set (concat xss) by auto
     from this[unfolded id[symmetric]] show Var (the-Var x) = id x by auto
   qed
   then have idxss: map Var (map the-Var (xss! i)) = xss! i by auto
   note rec = eqfE[OF \ args[OF \ i]]
   note IH = MFun(1)[OF mem ground, of map the-Var (xss!i), unfolded rec(2)
idxss\ rec(1)[symmetric]]
   from IH have split-vars (ts ! i) = (Cs ! i, map the-Var (xss ! i)) by auto
   note this idxss
 note IH = this
 have ?case = (map\ fst\ (map\ split-vars\ ts) = Cs \land concat\ (map\ snd\ (map\ split-vars\ ts))
(ts) = concat (map (map the-Var) xss))
```

```
unfolding fh unfolding id2 by auto
  also have ...
  proof (rule conjI[OF nth-equalityI arg-cong[of - - concat, OF nth-equalityI,
rule-format]], unfold length-map lent lenx)
   \mathbf{fix} i
   assume i: i < length Cs
   with arg\text{-}cong[OF\ IH(2)[OF\ this],\ of\ map\ the\text{-}Var]
     IH[OF\ this]\ {\bf show}\ map\ snd\ (map\ split-vars\ ts)\ !\ i=map\ (map\ the-Var)\ xss
! i using lent lenx by auto
  qed (insert IH lent, auto)
 finally show ?case.
qed auto
lemma ground-map-mctxt[simp]: ground-mctxt (map-mctxt fg C) = ground-mctxt
 by (induct C, auto)
lemma num-holes-map-mctxt[simp]: num-holes (map-mctxt\ fg\ C)=num-holes C
proof (induct C)
 case (MFun \ f \ Cs)
  then show ?case by (induct Cs, auto)
qed auto
lemma split-vars-map-mctxt:
 assumes split: split-vars t = (map\text{-}mctxt fg C, xs)
 shows split-vars (fill-holes C (map Var xs)) = (C, xs)
 from split-vars-ground[OF split] have ground: ground-mctxt C by simp
 from split-vars-num-holes[of t, unfolded split] have nh: num-holes C = length xs
by auto
 show ?thesis
   by (rule split-vars-ground-vars[OF ground nh])
qed
lemma  subst-eq-map-decomp:
 assumes t \cdot \sigma = map-funs-term fg s
  shows \exists C xs \delta s. s =_f (C, \delta s) \land split-vars t = (map-mctxt fg C, xs) \land (\forall i <
length xs.
   \sigma (xs ! i) = map-funs-term fg (\delta s ! i)
 using assms
proof (induct\ t\ arbitrary:\ s)
 \mathbf{case}\ (\mathit{Var}\ x\ s)
 show ?case
   by (intro\ exI[of\ -\ MHole]\ exI[of\ -\ [x]]\ exI[of\ -\ [s]],\ insert\ Var,\ auto)
\mathbf{next}
  case (Fun g ts s)
  from Fun(2) obtain f ss where s: s = Fun f ss and g: g = fg f by (cases s,
 from Fun(2)[unfolded\ s] have id: map\ (\lambda\ t.\ t\cdot\sigma)\ ts = map\ (map-funs-term\ fg)
```

```
ss by auto
  from arg\text{-}cong[OF\ this,\ of\ length] have len:\ length\ ts = \ length\ ss\ \mathbf{by}\ auto
  from map-nth-conv[OF id] have args: \bigwedge i. i < length ts \Longrightarrow ts! i · \sigma =
map-funs-term fg (ss! i) by auto
 let P = \lambda C xs \delta s i. ss! i =_f (C, \delta s) \wedge
          split-vars\ (ts\ !\ i) = (map-mctxt\ fg\ C,\ xs)\ \land
          (\forall i < length \ xs. \ \sigma \ (xs ! \ i) = map-funs-term \ fg \ (\delta s ! \ i))
  {
    \mathbf{fix} \ i
    assume i: i < length ts
    then have mem: ts ! i \in set \ ts \ by \ auto
    note IH = Fun(1)[OF this args[OF i]]
  then have \forall i. \exists C xs \delta s. i < length ts \longrightarrow ?P C xs \delta s i by blast
 from choice [OF this] obtain Cs where \forall i. \exists xs \ \delta s. \ i < length \ ts \longrightarrow ?P (Cs
i) xs \delta s i  by blast
  from choice[OF\ this] obtain xss where \forall i. \exists \delta s. i < length\ ts \longrightarrow ?P\ (Cs\ i)
(xss\ i)\ \delta s\ i\ \mathbf{by}\ blast
  from choice[OF\ this] obtain \delta ss where IH: \land i.\ i < length\ ts \Longrightarrow ?P\ (Cs\ i)
(xss\ i)\ (\delta ss\ i)\ i\ \mathbf{by}\ blast
  let ?n = [0 ... < length ts]
 \mathbf{let}~?\mathit{Cs} = \mathit{map}~\mathit{Cs}~?\mathit{n}
 let ?C = MFun f ?Cs
  let ?xs = concat (map xss ?n)
  let ?\delta s = concat \ (map \ \delta ss \ ?n)
  let ?g = fg f
  show ?case unfolding s q
  proof (rule exI[of - ?C], rule exI[of - ?xs], rule exI[of - ?\delta s], intro conjI)
    show Fun f ss =_f (?C, ?\delta s)
      by (rule eqf-MFunI, insert IH len, auto)
  next
    have
      (split-vars\ (Fun\ ?g\ ts) = (map-mctxt\ fg\ ?C,\ ?xs))
        = (map (fst \circ split\text{-}vars) \ ts = map (map\text{-}mctxt \ fg \circ Cs) \ [0..< length \ ss]
          \land concat \ (map \ (snd \circ split\text{-}vars) \ ts) = ?xs)
      (is ?qoal = -)
      using len by auto
    also have ...
       by (rule conjI[OF nth-map-conv arg-cong[of - - concat, OF nth-equalityI]],
insert IH len, auto)
    finally show ?goal.
    show \forall i < length ?xs. \sigma (?xs! i) = map-funs-term fg (?\delta s! i)
    proof (rule concat-all-nth, unfold length-map length-upt)
      \mathbf{fix} i
      assume i < length ts - 0
      then have i: i < length ts by auto
     from IH[OF\ i] have split-vars (ts!i) = (map-mctxt fg (Cs i), xss i) by blast
       from split-vars-map-mctxt[OF this] split-vars-num-holes[of fill-holes (Cs i)
```

```
(map\ Var\ (xss\ i))]
     have len: length (xss\ i) = num-holes (Cs\ i) by simp
     also have ... = length (\delta ss\ i) by (rule eqfE(2), insert IH[OF i], auto)
     show length (map sss [0... < length ts] ! i) = length (map <math>sss [0... < length ts] !
i) using i by auto
   qed (insert IH, auto)
qed
lemma map-funs-term-fill-holes:
  num-holes C = length \ ss \Longrightarrow
   map-funs-term fg (fill-holes C ss) = _f (map-mctxt fg C, map (map-funs-term fg)
ss)
proof (induct C arbitrary: ss)
 case (MHole ss)
 then show ?case by (cases ss, auto)
next
  case MVar then show ?case by auto
next
 case (MFun \ f \ Cs \ ss)
 from MFun(2) have fill-holes (MFun f Cs) ss =_f (MFun f Cs, ss) by auto
  from eqf-MFunE[OF this] obtain to see where the fill-holes (MFun f Cs) as =
Fun f ts
   and lts: length ts = length Cs
   and lsss: length sss = length Cs
   and args: \bigwedge i. i < length \ Cs \Longrightarrow ts ! \ i =_f (Cs ! \ i, sss ! \ i)
   and sss: ss = concat sss by auto
   \mathbf{fix}\ i
   assume i: i < length Cs
   then have mem: Cs ! i \in set Cs by auto
   from MFun(1)[OF\ mem]\ eqfE[OF\ args[OF\ i]] have
     map-funs-term fg (ts ! i) =_f (map-mctxt fg (Cs ! i), map (map-funs-term fg)
(sss ! i)) by auto
  } note IH = this
 {f show} ?case unfolding fh
   {\bf unfolding} \ map\text{-}mctxt.simps \ sss \ map\text{-}concat \ term.simps
  proof (rule eqf-MFunI, unfold length-map)
   \mathbf{fix} i
   assume i: i < length Cs
   have (map \cdot (map \cdot funs \cdot term \cdot fg) \cdot ts ! i =_f (map \cdot (map \cdot mctxt \cdot fg) \cdot Cs ! i, map \cdot (map \cdot funs \cdot fg))
(map-funs-term fg)) sss!i) =
     (map\text{-}funs\text{-}term\ fg\ (ts\ !\ i) =_f (map\text{-}mctxt\ fg\ (Cs\ !\ i),\ map\ (map\text{-}funs\text{-}term\ fg)
(sss ! i))) (is ?goal = -)
     using i lts lsss by auto
   also have ... by (rule\ IH[OF\ i])
   finally show ?goal.
  qed (auto simp: lsss lts)
```

```
qed
lemma eqf-MVarE:
 assumes s =_f (MVar \ x, ss)
 shows s = Var x ss = []
 \mathbf{by}\ (\mathit{insert\ eqfE}[\mathit{OF\ assms}],\ \mathit{cases\ ss},\ \mathit{cases\ ss},\ \mathit{auto}) +
lemma eqf-imp-subt:
 assumes s: s =_f (C, ts)
   and t: t \in set ts
 shows s \ge t
proof -
 from t obtain bef aft where ts: ts = bef @ t \# aft
   by (metis split-list)
 note s = eqfE[OF\ s[unfolded\ ts],\ simplified]
 from fill-holes-ctxt-main[OF s(2)] obtain D where fill-holes C (bef @ t # aft)
= D\langle t \rangle by auto
 from this[folded s(1)] show ?thesis by auto
qed
lemma eqf-MFun-imp-strict-subt:
 assumes s:s =_f (MFun \ f \ cs, \ ts)
   and t:t \in set\ ts
 shows s > t
proof -
 from t obtain bef aft where ts: ts = bef @ t \# aft
   by (metis split-list)
 from eqfE[OF\ s[unfolded\ ts]] have s:\ s=fill-holes\ (MFun\ f\ cs)\ (bef\ @\ t\ \#\ aft)
   num-holes (MFun f cs) = Suc (length bef + length aft) by auto
 from fill-holes-ctxt-main'[OF s(2)] obtain D
   where D:fill-holes (MFun f cs) (bef @ t # aft) = D\langle t \rangle and D \neq \Box by blast
 from this[folded\ s(1)] show ?thesis by auto
fun poss-mctxt :: ('f, 'v) mctxt \Rightarrow pos set
 where
   poss-mctxt (MVar x) = \{[]\} \mid
   poss-mctxt\ MHole = \{\}\ |
   poss-mctxt \; (MFun \; f \; cs) = \{ [] \} \cup \bigcup (set \; (map \; (\lambda \; i. \; (\lambda \; p. \; i \; \# \; p) \; `poss-mctxt \; (cs) \} 
! i)) [0 ..< length cs]))
lemma poss-mctxt-simp [simp]:
 poss-mctxt \ (MFun \ f \ cs) = \{[]\} \cup \{i \ \# \ p \mid i \ p. \ i < length \ cs \land p \in poss-mctxt \ (cs) \}
! \ i)
 by auto
declare poss-mctxt.simps(3)[simp del]
```

lemma poss-mctxt-map-vars-mctxt [simp]:

```
poss-mctxt \ (map-vars-mctxt \ f \ C) = poss-mctxt \ C
  by (induct C) auto
fun hole-poss :: ('f, 'v) mctxt \Rightarrow pos set
  where
   hole\text{-}poss\ (MVar\ x) = \{\}\ |
   hole\text{-}poss\ MHole = \{[]\}\ |
    hole\text{-}poss\ (MFun\ f\ cs) = \bigcup (set\ (map\ (\lambda\ i.\ (\lambda\ p.\ i\ \#\ p)\ `hole\text{-}poss\ (cs\ !\ i))\ [0]
.. < length | cs]))
lemma hole-poss-simp [simp]:
  hole\text{-}poss\ (MFun\ f\ cs) = \{i\ \#\ p\ |\ i\ p.\ i < length\ cs \land p \in hole\text{-}poss\ (cs\ !\ i)\}
  by auto
declare hole\text{-}poss.simps(3)[simp\ del]
lemma hole-poss-empty-iff-num-holes-0: hole-poss C = \{\} \longleftrightarrow num-holes C = \emptyset
 by (induct C; fastforce simp: set-conv-nth)
lemma mctxt-of-term-fill-holes [simp]:
 fill-holes (mctxt-of-term t) [] = t
proof (induct t)
  case (Fun f ts)
  then have fill-holes (mctxt-of-term (Fun f ts)) [ = Fun f (map (\lambda i. (ts!i))
[0..< length ts])
     unfolding mctxt-of-term.simps partition-holes-fill-holes-conv partition-by-Nil
map-map by auto
  also have \dots = Fun f ts using map-nth by auto
 ultimately show ?case by auto
qed (auto)
lemma hole-pos-not-in-poss-mctxt:
  assumes p \in hole\text{-}poss C
 shows p \notin poss-mctxt C
  using assms
  by (induct C arbitrary: p) auto
lemma hole-pos-in-filled-fun-poss:
  assumes is-Fun t
  shows hole-pos E \in fun-poss ((E \cdot_c \sigma)\langle t \cdot \sigma \rangle)
  using assms
  \mathbf{by}\ (induct\ E)\ (auto\ simp:\ append-Cons-nth-middle)
fun
  subst-apply-mctxt :: ('f, 'v) \ mctxt \Rightarrow ('f, 'v, 'w) \ gsubst \Rightarrow ('f, 'w) \ mctxt \ (infix)
·mc 67)
  where
    MHole \cdot mc - = MHole
   (MVar\ x) \cdot mc\ \sigma = mctxt\text{-}of\text{-}term\ (\sigma\ x)
   (MFun \ f \ cs) \cdot mc \ \sigma = MFun \ f \ [c \cdot mc \ \sigma \ . \ c \leftarrow cs]
```

```
lemma subst-apply-mctxt-compose: C \cdot mc \ \sigma \cdot mc \ \delta = C \cdot mc \ \sigma \circ_s \delta
proof (induct C)
 case (MVar x)
 define t where t = \sigma x
 show ?case by (simp add: t-def[symmetric] subst-compose-def, induct t, auto)
qed auto
lemma subst-apply-mctxt-cong: (\bigwedge x. \ x \in vars\text{-mctxt} \ C \Longrightarrow \sigma \ x = \tau \ x) \Longrightarrow C
\cdot mc \ \sigma = C \cdot mc \ \tau
 by (induct\ C,\ auto)
lemma vars-mctxt-subst: vars-mctxt (C \cdot mc \ \sigma) = \bigcup (vars-term \ '\sigma \ 'vars-mctxt
 by (induct C, auto)
\mathbf{lemma}\ subst-apply-mctxt-numholes:
 shows num-holes (c \cdot mc \ \sigma) = num-holes c
proof (induct c arbitrary: \sigma)
 case (MFun f cs)
 have num-holes (MFun f cs \cdot mc \sigma) = sum-list [num-holes (c \cdot mc \sigma) . c \leftarrow cs]
     unfolding subst-apply-mctxt.simps num-holes.simps map-map comp-def by
auto
 also have ... = sum-list [num-holes c \cdot c \leftarrow cs] using MFun(1)
   by (metis (lifting, no-types) map-cong)
 ultimately show ?case by auto
qed (auto)
\mathbf{lemma}\ subst-apply-mctxt-fill-holes:
 assumes nh: num-holes c = length ts
 shows (fill-holes c ts) \cdot \sigma = \text{fill-holes} (c \cdot mc \sigma) [ti \cdot \sigma \cdot ti \leftarrow ts]
 using nh
proof (induct c arbitrary: ts)
 {f case} MHole
 then obtain t where ts: ts = [t]
     unfolding num-holes.simps unfolding One-nat-def using Suc-length-conv
length-0-conv by metis
  show ?case unfolding ts by simp
next
 case (MVar\ x)
 then have ts: ts = [] using length-0-conv by auto
 show ?case unfolding ts by auto
next
 case (MFun f cs)
 note IH = MFun(1)
 note nh = MFun(2)[unfolded\ num-holes.simps]
 let ?c = MFun f cs
 let ?cs\sigma = map(\lambda c. c \cdot mc \sigma) cs
```

```
{
   \mathbf{fix} i
   assume i: i < length cs
   have nh-map: \bigwedge j, j < length \ cs \implies num-holes (cs!j) = num-holes (?cs\sigma ! j)
     using nth-map subst-apply-mctxt-numholes by metis
   have fill-holes (cs ! i) (partition-holes ts cs ! i) \cdot \sigma =
     fill-holes ((cs! i) ·mc \sigma) (partition-holes [ ti \cdot \sigma . ti \leftarrow ts] cs! i)
     using IH [OF nth-mem [OF i]] and nh and i by auto
   also have ... = fill-holes (?cs\sigma ! i) (partition-holes [ti \cdot \sigma . ti \leftarrow ts] ?cs\sigma ! i)
        unfolding nth-map[OF i] using partition-holes-map-ctxt[OF - nh-map]
length-map by metis
    ultimately have fill-holes (cs ! i) (partition-holes ts cs ! i) \cdot \sigma = \text{fill-holes}
(?cs\sigma ! i) (partition-holes [ti \cdot \sigma . ti \leftarrow ts] ?cs\sigma ! i)
     by auto
  } note ith = this
 have fill-holes ?c ts \cdot \sigma = Fun f [fill-holes (?cs\sigma! i) (partition-holes [ ti \cdot \sigma . ti
\leftarrow ts] ?cs\sigma! i) . i \leftarrow [0..< length cs]]
    unfolding partition-holes-fill-holes-conv map-map using ith using comp-def
by auto
  also have ... = fill-holes (?c \cdot mc \sigma) [ ti \cdot \sigma \cdot ti \leftarrow ts]
    unfolding \ \textit{subst-apply-mctxt.simps partition-holes-fill-holes-conv length-map} \ \dots
  ultimately show ?case by auto
qed
lemma subst-apply-mctxt-sound:
  assumes t =_f (c, ts)
 shows t \cdot \sigma =_f (c \cdot mc \ \sigma, [ti \cdot \sigma \cdot ti \leftarrow ts])
proof (rule eqfI, insert subst-apply-mctxt-numholes subst-apply-mctxt-fill-holes[OF]
eqfE(2)[OF\ assms]\ eqfE[OF\ assms]\ eqfE(2)[OF\ assms,\ symmetric],\ auto)\ \mathbf{qed}
fun fill-holes-metxt :: ('f, 'v) metxt \Rightarrow ('f, 'v) metxt list \Rightarrow ('f, 'v) metxt
  where
   fill-holes-mctxt (MVar x) -= MVar x
   fill-holes-mctxt\ MHole\ []=MHole\ []
   fill-holes-mctxt\ MHole\ [t]=t
   fill-holes-mctxt (MFun f cs) ts = (MFun f (map (\lambda i. fill-holes-mctxt (cs! i)
   (partition-holes\ ts\ cs\ !\ i))\ [0\ ..< length\ cs]))
lemma fill-holes-mctxt-Nil [simp]:
  fill-holes-mctxt \ C \ [] = C
  by (induct C) (auto intro: nth-equalityI)
lemma map-fill-holes-mctxt-zip [simp]:
  assumes length ts = n
  shows map (\lambda(x, y)). fill-holes-mctxt x y (zip (map mctxt-of-term ts) (replicate
n \, [])) =
```

```
map mctxt-of-term ts
 using assms by (induct ts arbitrary: n) auto
lemma fill-holes-mctxt-MHole [simp]:
 length ts = Suc \ 0 \Longrightarrow fill-holes-mctxt \ MHole \ ts = hd \ ts
 by (cases ts) simp-all
lemma partition-holes-fill-holes-mctxt-conv:
 fill-holes-mctxt (MFun f Cs) ts =
   MFun f [fill-holes-mctxt (Cs! i) (partition-holes ts Cs! i). i \leftarrow [0 ... < length
Cs]]
 by (simp add: partition-by-nth take-map)
lemma partition-holes-fill-holes-mctxt-conv':
 fill-holes-mctxt (MFun f Cs) ts =
   MFun f (map (case-prod fill-holes-mctxt) (zip Cs (partition-holes ts Cs)))
 unfolding zip-nth-conv [of Cs partition-holes ts Cs, simplified]
   and partition-holes-fill-holes-mctxt-conv by simp
lemma fill-holes-mctxt-mctxt-of-ctxt-mctxt-of-term [simp]:
 fill-holes-mctxt \ (mctxt-of-ctxt \ C) \ [mctxt-of-term \ t] = mctxt-of-term \ (C\langle t \rangle)
 by (induct C arbitrary: t)
   (simp-all del: fill-holes-mctxt.simps add: partition-holes-fill-holes-mctxt-conv')
lemma fill-holes-mctxt-mctxt-of-ctxt-MHole [simp]:
 fill-holes-mctxt (mctxt-of-ctxt C) [MHole] = mctxt-of-ctxt C
 by (induct C) (simp-all del: fill-holes-mctxt.simps add: partition-holes-fill-holes-mctxt-conv')
lemma partition-holes-fill-holes-conv':
 fill-holes (MFun f Cs) ts =
   Fun f (map (case-prod fill-holes) (zip Cs (partition-holes ts Cs)))
 unfolding zip-nth-conv [of Cs partition-holes ts Cs, simplified]
   and partition-holes-fill-holes-conv by simp
lemma fill-holes-mctxt-MFun-replicate-length [simp]:
 fill-holes-mctxt (MFun c (replicate (length Cs) MHole)) Cs = MFun \ c \ Cs
 \mathbf{unfolding} \ \mathit{partition-holes-fill-holes-mctxt-conv'}
 by (induct Cs) simp-all
lemma fill-holes-MFun-replicate-length [simp]:
 fill-holes (MFun c (replicate (length ts) MHole)) ts = Fun c ts
 unfolding partition-holes-fill-holes-conv'
 by (induct ts) simp-all
lemma funas-mctxt-fill-holes-mctxt [simp]:
 assumes num-holes C = length Ds
 shows funas-mctxt (fill-holes-mctxt C Ds) = funas-mctxt C \cup \{ \} (set (map fu-
nas-mctxt Ds))
   (is ?f \ C \ Ds = ?g \ C \ Ds)
```

```
using assms
proof (induct C arbitrary: Ds)
 case MHole
 then show ?case by (cases Ds) simp-all
next
 case (MFun f Cs)
 then have num-holes: sum-list (map num-holes Cs) = length Ds by simp
 let ?ys = partition-holes Ds Cs
 have \bigwedge i. i < length \ Cs \Longrightarrow ?f \ (Cs ! i) \ (?ys ! i) = ?g \ (Cs ! i) \ (?ys ! i)
  using MFun by (metis nth-mem num-holes.simps(3) length-partition-holes-nth)
 then have (\bigcup i \in \{0 : < length \ Cs\}. \ ?f \ (Cs!i) \ (?ys!i)) =
   (\bigcup i \in \{0 : < length \ Cs\}. \ ?g \ (Cs ! i) \ (?ys ! i)) by simp
 then show ?case
   using num-holes
   unfolding partition-holes-fill-holes-mctxt-conv
  by (simp\ add:\ UN-Un-distrib\ UN-upt-len-conv\ [of --\lambda x.\ ]\ [(set\ x)]\ UN-set-partition-by-map)
qed simp
lemma fill-holes-mctxt-MFun:
 assumes lCs: length Cs = length ts
   and lss: length ss = length ts
     and rec: \land i. i < length ts \implies num-holes (Cs! i) = length (ss! i) \land
fill-holes-mctxt (Cs!i) (ss!i) = ts!i
 shows fill-holes-mctxt (MFun f Cs) (concat ss) = MFun f ts
 unfolding fill-holes-mctxt.simps mctxt.simps
 by (rule conjI[OF refl], rule fill-holes-arbitrary[OF lCs lss rec])
lemma num-holes-fill-holes-mctxt:
 assumes num-holes C = length Ds
 shows num-holes (fill-holes-mctxt CDs) = sum-list (map num-holes Ds)
 using assms
proof (induct C arbitrary: Ds)
 case MHole
 then show ?case by (cases Ds) simp-all
next
 case (MFun \ f \ Cs)
 then have *: map (num-holes \circ (\lambda i. fill-holes-mctxt (Cs! i) (partition-holes Ds
Cs ! i))) [0..< length Cs] =
    map (\lambda i. sum-list (map num-holes (partition-holes Ds Cs! i))) [0 ..< length
Cs
   and sum-list (map num-holes Cs) = length Ds
   by simp-all
 then show ?case
   using map-upt-len-conv [of \lambda x. sum-list (map num-holes x) partition-holes Ds
Cs
   unfolding partition-holes-fill-holes-mctxt-conv by (simp add: *)
qed simp
\mathbf{lemma}\ \mathit{fill-holes-mctxt-fill-holes} \colon
```

```
assumes len-ds: length ds = num-holes c
      and nh: num-holes (fill-holes-mctxt c ds) = length ss
   shows fill-holes (fill-holes-mctxt c ds) ss =
      fill-holes c [fill-holes (ds!i) (partition-holes ss ds!i). i \leftarrow [0 ... < num-holes c]
   using assms(1)[symmetric] assms(2)
proof (induct c ds arbitrary: ss rule: fill-holes-induct)
   case (MFun \ f \ Cs \ ds \ ss)
   define qs where qs = map (\lambda i. fill-holes-mctxt (Cs!i) (partition-holes ds Cs!
i)) [0..< length Cs]
   then have qs: \bigwedge i. i < length \ Cs \Longrightarrow fill-holes-mctxt \ (Cs ! i) \ (partition-holes \ ds
Cs ! i) = qs ! i
      length qs = length Cs  by auto
    define zs where zs = map (\lambda i. fill-holes (ds! i) (partition-holes ss ds! i))
[0..< length ds]
   {
      fix i assume i: i < length Cs
       from MFun(1) have *: map length (partition-holes ds Cs) = map num-holes
Cs by auto
       have **: length ss = sum-list (map sum-list (partition-holes (map num-holes
         using MFun(1) MFun(3)[symmetric] num-holes-fill-holes-mctxt[of MFun f Cs
ds
          by (auto simp: comp-def map-map-partition-by[symmetric])
      have partition-by (partition-by ss
               (map\ (\lambda i.\ num-holes\ (fill-holes-mctxt\ (Cs\ !\ i)\ (partition-holes\ ds\ Cs\ !\ i)))
[\theta..< length \ Cs]) \ ! \ i)
            (partition-holes\ (map\ num-holes\ ds)\ Cs\ !\ i) = partition-holes\ (partition-holes\ (partition-ho
ss\ ds)\ Cs\ !\ i
          using i MFun(1) MFun(3) partition-by-partition-by[OF **]
          by (auto simp: comp-def num-holes-fill-holes-mctxt
              intro!: arg\text{-}cong[of - - \lambda x. partition\text{-}by (partition\text{-}by ss x ! -) -] nth\text{-}equalityI)
      then have map (\lambda j. fill-holes (partition-holes ds Cs ! i ! j)
             (partition-holes (partition-holes ss qs!i)
             (partition-holes\ ds\ Cs\ !\ i)\ !\ j))\ [0..< num-holes\ (Cs\ !\ i)] =
             partition-holes zs Cs! i
         using MFun(1,3)
       \mathbf{by}\ (auto\ simp:\ zs\text{-}def\ qs\text{-}def\ i\ comp\text{-}def\ partition\text{-}by\text{-}nth\text{-}nth\ intro:\ nth\text{-}equality}I)
     then show ?case using MFun by (simp add: qs-def [symmetric] qs zs-def
[symmetric]
qed auto
lemma fill-holes-mctxt-sound:
   assumes len-ds: length ds = num-holes c
      and len-sss: length sss = num-holes c
      and len-ts: length ts = num-holes c
      and insts: \bigwedge i. i < length ds \Longrightarrow ts!i =_f (ds!i, sss!i)
   shows fill-holes c ts = f (fill-holes-mctxt c ds, concat sss)
proof (rule eqfI)
```

```
note l-nh-i = eqfE(2)[OF\ insts]
 \mathbf{from} \ \ partition\text{-}holes\text{-}concat\text{-}id[\mathit{OF}\text{-}l\text{-}nh\text{-}i]\ len\text{-}ds\ len\text{-}sss}
 have concat-sss: partition-holes (concat sss) ds = sss by auto
  then show nh: num-holes (fill-holes-mctxt \ c \ ds) = length \ (concat \ sss)
    {\bf unfolding} \ num-holes-fill-holes-mctxt \ [OF \ len-ds \ [symmetric]] \ length-concat \\
   by (metis l-nh-i len-ds len-sss nth-map-conv)
  have ts: ts = [fill-holes (ds ! i) (partition-holes (concat sss) ds ! i) . i \leftarrow
[0..< num-holes c]] (is - = ?fhs)
 proof (rule\ nth\text{-}equalityI)
   show l-fhs: length ts = length ?fhs unfolding length-map
     by (metis diff-zero len-ts length-upt)
   fix i
   assume i: i < length ts
   then have i': i < length [0..< num-holes c]
     by (metis diff-zero len-ts length-upt)
   show ts!i = ?fhs!i
     unfolding nth-map[OF i']
     using eqfE(1)[OF insts[unfolded len-ds, OF i[unfolded len-ts]]]
     by (metis concat-sss i' len-ds len-sss map-nth nth-map)
  qed
 note ts = this
 show fill-holes c ts = fill-holes (fill-holes-metxt c ds) (concat sss)
   unfolding fill-holes-mctxt-fill-holes[OF len-ds nh] ts ...
qed
lemma poss-mctxt-fill-holes-mctxt:
 assumes p \in poss-mctxt \ C
 shows p \in poss\text{-}mctxt \ (fill\text{-}holes\text{-}mctxt \ C \ Cs)
 \mathbf{using}\ \mathit{assms}
proof (induct p arbitrary: C Cs)
 case (Cons a p C Cs)
 thus ?case by (cases C, auto)
next
  case (Nil C Cs)
  thus ?case by (cases C, auto)
qed
fun compose-mctxt :: ('f, 'v) mctxt \Rightarrow nat \Rightarrow ('f, 'v) mctxt \Rightarrow ('f, 'v) mctxt
   compose-mctxt \ C \ i \ Ci =
   fill-holes-mctxt C [(if i = j then Ci else MHole). j \leftarrow [0 ..< num-holes <math>C]]
lemma funas-mctxt-compose-mctxt [simp]:
 assumes i < num-holes C
 shows funas-mctxt (compose-mctxt \ C \ i \ D) = funas-mctxt \ C \cup funas-mctxt \ D
```

```
proof -
 let ?Ds = [(if \ i = j \ then \ D \ else \ MHole). \ j \leftarrow [0 \ .. < num-holes \ C]]
 have num-holes C = length ?Ds by simp
 then show ?thesis using assms by (auto split: if-splits)
ged
lemma compose-mctxt-sound:
 assumes s: s =_f (C, bef @ si \# aft)
   and si: si =_f (Ci, ts)
   and i: i = length bef
 shows s =_f (compose\text{-}mctxt\ C\ i\ Ci,\ bef\ @\ ts\ @\ aft)
 let ?Cs = [if \ i = j \ then \ Ci \ else \ MHole \ . \ j \leftarrow [0.. < num-holes \ C]]
 let ?ts = bef @ si \# aft
 let ?sss = [b]. b \leftarrow bef @ (ts # [a]. a \leftarrow aft]
 have
   l\text{-}Cs: length ?Cs = num\text{-}holes C \text{ and }
   l-ts: length ?ts = num-holes C and
   l-sss: length ?sss = num-holes C
   unfolding length-append length-map list.size(4) using eqfE(2)[OF\ s] by auto
  have i-le-nh: i < num-holes C unfolding i eqfE(2)[OF s] length-append by
(auto iff: trans-less-add1)
 have concat-sss: concat ?sss = bef @ ts @ aft by auto
 {
   \mathbf{fix} \ j
   assume j: j < i
   then have j': j < length [0..< num-holes C] using i-le-nh length-upt by auto
   have ?sss!j = [bef!j] by (metis\ append-Cons-nth-left\ i\ j\ length-map\ nth-map)
   moreover have ?ts!j = bef!j by (metis append-Cons-nth-left i j)
   moreover from nth-map[OF j'] j' j have ?Cs!j = MHole by force
   ultimately have ?ts!j =_f (?Cs!j,?sss!j) using eqfI by auto
 } note j-le-i = this
 from i-le-nh have ?Cs!i = Ci by auto
 moreover from i-le-nh have ?sss!i = ts by (metis i length-map nth-append-length)
 moreover have ?ts!i = si using nth-append-length i by auto
 ultimately have j-eq-i: ?ts!i =_f (?Cs!i,?sss!i) using si by auto
 {
   \mathbf{fix} \ j
   assume j: j > i and j': j < num-holes C
   then have j'': j < length [0..< num-holes C] by auto
   have i''': (i - i) - 1 < length aft using
      j'[unfolded\ eqfE(2)[OF\ s]\ length-append[of\ bef]\ list.size(4)]\ j
     unfolding i by auto
```

```
from nth-append[of [ [b]. b \leftarrow bef ] - j, unfolded\ length-map[of - bef] i[symmetric]]
   have ?sss!j = (ts \# [a]. a \leftarrow aft])! (j - i) using j by auto
   moreover have ... = [a]. a \leftarrow aft! ((j - i) - 1) using nth-Cons-pos j by
simp
    moreover have ... = [aft ! ((j - i) - 1)] using j''' length-map nth-map by
   ultimately have sssj: ?sss!j = [aft ! ((j - i) - 1)] by auto
   have Csj: ?Cs!j = MHole using nth-map[OF j''] j'' j by force
    have ?ts!j = (si \# aft) ! (j - i) unfolding nth-append[of bef] i[symmetric]
using j by simp
    moreover have ... = aft ! ((j - i) - 1) by (metis \ j \ neq \theta - conv \ nth - Cons')
zero-less-diff)
   ultimately have ?ts!j = aft ! ((j - i) - 1) by auto
   then have ?ts!j =_f (?Cs!j,?sss!j) using sssj Csj by auto
  } note j-gr-i = this
  from j-le-i j-eq-i j-gr-i have \bigwedge j. j < length ?Cs \Longrightarrow ?ts!j =_f (?Cs!j,?sss!j)
   \mathbf{using}\ \mathit{l-Cs}\ \mathit{linorder-neqE-nat}\ \mathbf{by}\ \mathit{metis}
  from fill-holes-mctxt-sound[OF l-Cs l-sss l-ts this, unfolded concat-sss, folded
compose-mctxt.simps
 show ?thesis unfolding eqfE(1)[OF \ s] by simp
fun mctxt-fill-partially-mctxts :: ('f, 'v) term list \Rightarrow ('f, 'v) term list \Rightarrow ('f, 'v)
mctxt list
 where
   mctxt-fill-partially-mctxts [] ts = map \ mctxt-of-term ts ]
   mctxt-fill-partially-mctxts (s \# ss) (t \# ts) =
   (if \ s = t \ then \ (MHole \ \# \ mctxt-fill-partially-mctxts \ ss \ ts)
   else (mctxt-of-term t \# mctxt-fill-partially-mctxts (s \# ss) ts))
fun
  mctxt-fill-partially-fills ::
  ('f, 'v) \ term \ list \Rightarrow ('f, 'v) \ term \ list \Rightarrow ('f, 'v) \ term \ list \ list
  where
    mctxt-fill-partially-fills [] ts = map (const []) ts |
   mctxt-fill-partially-fills (s \# ss) (t \# ts) =
   (if \ s = t \ then \ ([s] \# mctxt-fill-partially-fills \ ss \ ts)
   else ([] \# mctxt-fill-partially-fills (s \# ss) ts))
lemma mctxt-fill-partially-mctxts-length [simp]:
  assumes subseq ss ts
 shows length (mctxt-fill-partially-mctxts ss ts) = length ts
 using assms by (induct rule: subseq-induct2, auto)
```

```
lemma mctxt-fill-partially-fills-length [simp]:
   assumes subseq ss ts
   shows length (mctxt-fill-partially-fills ss ts) = length ts
   using assms by (induct rule: subseq-induct2, auto)
lemma mctxt-fill-partially-numholes:
   assumes subseq ss ts
   shows sum-list [num-holes\ ci\ .\ ci \leftarrow mctxt-fill-partially-mctxts\ ss\ ts] = length\ ss
proof (induct ss ts rule: subseq-induct2, goal-cases)
   case (3 s s s ts)
   have ls-one: \bigwedge as. sum-list (1 \# as) = sum-list as + Suc \ \theta
      \textbf{by} \ (\textit{metis One-nat-def Suc-eq-plus1-left sum-list-simps} \ (\textit{2}))
   from 3 show ?case
      unfolding mctxt-fill-partially-mctxts.simps list.size
     by (metis (full-types) One-nat-def Suc-eq-plus 1 ls-one list.map(2) num-holes.simps(2))
next
   case (4 s ss t ts)
   have ls-zero: \land as. sum-list (0 # as) = sum-list as by (metis sum-list-simps(2))
monoid-add-class.add.left-neutral)
   have else:
     mctxt-fill-partially-mctxts (s \# ss) (t \# ts) = mctxt-of-term t \# mctxt-fill-partially-mctxts
(s \# ss) ts
       using 4(1) by auto
   show ?case
      unfolding else list.map(2) num-holes-mctxt-of-term ls-zero 4(5) ...
qed (auto iff: assms)
lemma mctxt-fill-partially-sound:
   assumes sl: subseq ss ts
   shows \bigwedge i. i < length ts \implies ts!i = f (metxt-fill-partially-metxts ss ts!i, me-
txt-fill-partially-fills ss ts! i)
proof (rule eqfI, goal-cases)
   let ?zipped= zip (mctxt-fill-partially-mctxts ss ts) (mctxt-fill-partially-fills ss ts)
   have l: length ?zipped = length ts
    \textbf{unfolding} \ length-zip \ mctxt-fill-partially-mctxts-length [OF\ sl] \ mctxt-fill-partially-fills-length [
sl] by auto
   have fh: ts = map \ (\lambda \ (ci,tsi) \ . fill-holes \ ci \ tsi) \ ?zipped
   proof (induct ss ts rule: subseq-induct2, goal-cases)
      case (2 ts) then show ?case
          by (induct ts, insert mctxt-of-term-fill-holes, auto)
   qed (insert sl, auto)
   have nh: list-all (\lambda (ci,tsi) . num-holes ci = length tsi) ?zipped
   proof (induct ss ts rule: subseq-induct2, qoal-cases)
      case (2 ts) then show ?case
          by (induct ts, insert num-holes-mctxt-of-term, auto)
```

```
qed (insert sl, auto)
   fix i
   assume i < length ts
   then have
     i1: i < length (mctxt-fill-partially-mctxts \ ss \ ts) and
     i2: i < length (mctxt-fill-partially-fills ss ts)
   unfolding mctxt-fill-partially-mctxts-length[OF sl] mctxt-fill-partially-fills-length[OF
sl] by auto
  } note i = this
 case 1
 then show ?case using fh nth-zip[OF i(1) i(2)]
   by (metis (lifting, no-types) 1 list-update-id list-update-same-conv map-update
split-conv)
 case 2 then show ?case using nh[unfolded\ list-all-length]\ nth-zip[OF\ i(1)\ i(2)]
   by (auto simp: i(1) i(2))
lemma mctxt-fill-partially:
 assumes ss: subseq ss ts
   and t: t =_f (c,ts)
 shows \exists d. t =_f (d,ss)
proof -
 let ?ds = mctxt-fill-partially-mctxts ss ts
 let ?sss = mctxt-fill-partially-fills ss ts
 have fill-holes c ts = f (fill-holes-metxt c ?ds, concat ?sss)
   using
     fill-holes-mctxt-sound\ eqfE(2)[OF\ t, symmetric]\ mctxt-fill-partially-sound[OF\ t]
ss
     mctxt-fill-partially-mctxts-length [OF ss] mctxt-fill-partially-fills-length [OF ss]
   by metis
 also have concat ?sss = ss by (induct ss ts rule: subseq-induct2, insert ss, auto)
 ultimately show ?thesis by (metis\ eqfE(1)\ t)
qed
lemma fill-holes-mctxt-map-mctxt-of-term-conv [simp]:
 assumes num-holes C = length ts
 shows fill-holes-mctxt C (map mctxt-of-term ts) = mctxt-of-term (fill-holes C ts)
 using assms
 by (induct C ts rule: fill-holes-induct) (auto)
lemma fill-holes-mctxt-of-ctxt [simp]:
 fill-holes (mctxt-of-ctxt C) [t] = C\langle t \rangle
proof -
 have C\langle t \rangle =_f (mctxt\text{-}of\text{-}ctxt\ C, [t]) by (metis\ mctxt\text{-}of\text{-}ctxt)
 from eqfE [OF this] show ?thesis by simp
```

```
qed
```

```
definition
  compose-cap-till P t i C =
   fill-holes-mctxt (cap-till P t) (map mctxt-of-term (take i (uncap-till P t)) @
     C \# map \ mctxt-of-term (drop \ (Suc \ i) \ (uncap-till \ P \ t)))
abbreviation compose-cap-till-funas F \equiv compose-cap-till (if-Fun-in-set F)
lemma fill-holes-compose-cap-till:
 assumes i < num-holes (cap-till P s) and num-holes C = length ts
 shows fill-holes (compose-cap-till P \ s \ i \ C) ts =
   fill-holes (cap-till P s) (take i (uncap-till P s) @ fill-holes C ts \# drop (Suc i)
(uncap-till P s))
   (is - fill-holes - ?ss)
proof -
 have fill-holes (cap-till P s) ?ss =_f
   (fill-holes-mctxt (cap-till P s) (map mctxt-of-term (take i (uncap-till P s)) @
     C \# map \ mctxt-of-term (drop \ (Suc \ i) \ (uncap-till \ P \ s))),
     concat (map (\lambda-. []) (take i (uncap-till P s)) @ ts #
            map \ (\lambda -. \ []) \ (drop \ (Suc \ i) \ (uncap-till \ P \ s))))
   (\mathbf{is} - =_f (fill-holes-mctxt - ?ts, concat ?us))
  proof (rule fill-holes-mctxt-sound)
   show length ?ss = num-holes (cap-till P s)
     using assms by simp
 next
   show length ?ts = num\text{-}holes (cap-till P s)
     using assms by simp
 \mathbf{next}
   show length ?us = num-holes (cap-till P s)
     using assms by simp
 next
   fix j
   assume j < length ?ts
   with assms have j: j < length (uncap-till P s) by simp
   show ?ss ! j =_f (?ts ! j, ?us ! j)
     using assms and j by (cases j = i) (auto simp: nth-append)
 note * = eqfE(1) [OF this]
 show ?thesis by (simp add: compose-cap-till-def *)
qed
lemma in-uncap-till-funas:
 assumes root: root u = Some \ fn \ fn \in F
   and t = C\langle u \rangle
 shows \exists i < length (uncap-till-funas F t). \exists D. uncap-till-funas F t! <math>i = D\langle u \rangle \land
   mctxt-of-ctxt C = compose-cap-till-funas F t i (mctxt-of-ctxt D)
  \mathbf{using} \ \langle t = C \langle u \rangle \rangle
proof (induct t arbitrary: C)
```

```
case (Var x)
  then show ?case using root by (cases C) (auto simp: wf-trs-def)
next
 case (Fun f ts)
 define t where [simp]: t = Fun f ts
 show ?case
 proof (cases (f, length ts) \in F)
   case True
   then show ?thesis using Fun.prems by (auto simp: compose-cap-till-def)
 next
   case False
   show ?thesis
   proof (cases C)
     case Hole
     then show ?thesis using Fun.prems and False and root by auto
     case (More - ss_1 D -)
     moreover define j where j = length ss_1
     ultimately have j: j < length ts ts ! j = D\langle u \rangle
       and C: C = More f (take j ts) D (drop (Suc j) ts)
       using Fun. prems by (auto)
     then have D\langle u\rangle \in set\ ts\ by\ (auto\ simp:\ in-set-conv-nth)
     then obtain i and E
       where i: i < length (uncap-till-funas F (D\langle u \rangle)) uncap-till-funas F (D\langle u \rangle)!
i = E\langle u \rangle
        and D: mctxt-of-ctxt D = compose-cap-till-funas F(D\langle u \rangle) i(mctxt-of-ctxt
E
       using Fun by blast
     obtain k where k: take k (uncap-till-funas F t) =
        concat (map (uncap-till-funas F) (take j ts)) @ take i (uncap-till-funas F
(D\langle u\rangle))
       k < length (uncap-till-funas F t) uncap-till-funas F t ! k = E\langle u \rangle
       drop (Suc k) ((uncap-till-funas F) t) = drop (Suc i) ((uncap-till-funas F)
(D\langle u\rangle)) @ concat (map (uncap-till-funas F) (drop (Suc j) ts))
     using False and i and j and take-nth-drop-concat [of j map (uncap-till-funas
F) ts (uncap-till-funas F) (D\langle u \rangle) i E\langle u \rangle]
       by (auto simp: take-map drop-map)
    E
     proof -
       have *: compose-cap-till-funas\ F\ t\ k\ (mctxt-of-ctxt\ E) =
         fill-holes-mctxt (MFun f (map (cap-till-funas F) ts)) (concat (
           map\ (map\ mctxt-of\text{-}term\ \circ\ uncap\text{-}till\text{-}funas\ F)\ (take\ j\ ts)\ @
           (map\ mctxt\text{-}of\text{-}term\ (take\ i\ (uncap\text{-}till\text{-}funas\ F\ D\langle u\rangle))\ @
           mctxt	ext{-}of	ext{-}ctxt \ E \ \#
           map mctxt-of-term (drop\ (Suc\ i)\ (uncap-till-funas F\ D\langle u\rangle)))\ \#
           map\ (map\ mctxt\text{-}of\text{-}term\ \circ\ uncap\text{-}till\text{-}funas\ F)\ (drop\ (Suc\ j)\ ts)))
         (is - fill-holes-mctxt - (concat ?ss))
         using False and k
```

```
by (simp del: fill-holes-mctxt.simps add: compose-cap-till-def map-concat)
       also have ... = MFun \ f \ (map \ mctxt-of-term \ (take \ j \ ts) \ @ \ mctxt-of-ctxt \ D
#
        map mctxt-of-term (drop (Suc j) ts)) (is - = MFun f ?ts)
       proof (rule fill-holes-mctxt-MFun)
        show length (map (cap-till-funas F) ts) = length ?ts using j by simp
        show length ?ss = length ?ts by simp
       next
        \mathbf{fix} \ n
        assume n < length ?ts
        then have n: n < length ts using j by simp
        show num-holes (map (cap-till-funas F) ts! n) = length (?ss! n) \wedge
          fill-holes-mctxt \ (map \ (cap-till-funas \ F) \ ts \ ! \ n) \ (?ss \ ! \ n) = ?ts \ ! \ n
        proof (cases n = j)
          case False
          then have *: ?ss! n = map \ mctxt-of-term \ (uncap-till-funas \ F \ (ts! n))
            ?ts! n = mctxt-of-term (ts! n)
            using n and j by (auto simp: nth-append min-def)
          have num-holes (map (cap-till-funas F) ts! n) = length (?ss! n)
            using n by (simp \ add: *)
          moreover have fill-holes-mctxt (map (cap-till-funas F) ts!n) (?ss!n)
= ?ts! n
            using n by (auto simp: *)
          ultimately show ?thesis by blast
        next
          case True
          then have *: ?ss! n =
           map mctxt-of-term (take i (uncap-till-funas F D\langle u \rangle)) @ mctxt-of-ctxt E
#
              map mctxt-of-term (drop\ (Suc\ i)\ (uncap-till-funas F\ D\langle u\rangle))
            ?ts ! n = mctxt-of-ctxt D
            using n and j by (auto simp: nth-append)
          have fill-holes-mctxt (map (cap-till-funas F) ts! n) (?ss! n) = ?ts! n
            unfolding * by (simp add: D compose-cap-till-def True j)
          moreover have num-holes (map (cap-till-funas F) ts! n) = length (?ss
! n)
            unfolding * using i by (simp add: j True)
          ultimately show ?thesis by blast
        qed
       qed
       finally show ?thesis by (simp add: C)
     ultimately show ?thesis unfolding t-def by blast
   qed
 qed
qed
\mathbf{lemma}\ uncap\text{-}till\text{-}funas\text{-}fill\text{-}holes\text{-}cancel\ [simp]:}
```

```
assumes num-holes C = length \ ts \ and \ ground-metxt \ C
   and funas-mctxt C \subseteq -F
 shows uncap-till-funas F (fill-holes C ts) = concat (map (uncap-till-funas F) ts)
  using assms
proof (induct C arbitrary: ts)
  case MHole
  then show ?case by (cases ts) simp-all
next
  case (MFun \ f \ Cs)
 let ?ts = partition-holes ts Cs
 let ?us = partition-holes (map (uncap-till-funas F) ts) Cs
 have *: fill-holes (MFun f Cs) ts =
   Fun f (map (\lambda i. fill-holes (Cs ! i) (?ts ! i)) [0 ..< length Cs])
   unfolding partition-holes-fill-holes-conv ..
  have \forall i < length \ Cs. \ uncap-till-funas \ F \ (fill-holes \ (Cs!i) \ (?ts!i)) = concat
(?us!i)
 proof (intro allI impI)
   \mathbf{fix} i
   assume i < length Cs
   then have Cs ! i \in set Cs by simp
   from MFun.hyps [OF this, of ?ts! i] and MFun.prems and \langle i \rangle length Cs\rangle
   show uncap-till-funas\ F\ (fill-holes\ (Cs\ !\ i)\ (?ts\ !\ i)) = concat\ (?us\ !\ i)
     by (auto iff: UN-subset-iff)
 qed
  then have **: map (uncap-till-funas F \circ (\lambda i. fill-holes (Cs ! i) (?ts ! i)))
[0..< length \ Cs] =
   map (concat \circ (\lambda i. (?us!i))) [0 ... < length Cs] by simp
 have ***: sum-list (map num-holes Cs) = length (map (uncap-till-funas F) ts)
   using MFun.prems by simp
 show ?case
   using MFun.prems
   apply (simp add: * ** del: fill-holes.simps)
   by (auto simp: o-def map-upt-len-same-len-conv [OF length-partition-holes])
qed simp
lemma uncap-till-funas-fill-holes-cap-till-funas [simp]:
 assumes num-holes (cap-till-funas F(s) = length(ts)
 shows uncap-till-funas F (fill-holes (cap-till-funas F s) ts) =
   concat \ (map \ (uncap-till-funas \ F) \ ts)
 by (rule uncap-till-funas-fill-holes-cancel [OF assms ground-cap-till-funas, of F])
auto
lemma Ball-atLeast0LessThan-partition-holes-conv [simp]:
  (\forall i \in \{0 ... < length Cs\}. \ \forall x \in set \ (partition-holes \ xs \ Cs \ ! \ i). \ P \ x) =
   (\forall x \in \bigcup (set (map \ set (partition-holes \ xs \ Cs))). \ P \ x)
 using Ball-atLeast0LessThan-partition-by-conv [of map num-holes Cs xs] by simp
lemma ground-fill-holes-mctxt [simp]:
  num-holes C = length Ds \Longrightarrow
```

```
ground\text{-}mctxt \ (fill\text{-}holes\text{-}mctxt \ C \ Ds) \longleftrightarrow ground\text{-}mctxt \ C \ \land \ (\forall D \in set \ Ds.
ground-mctxt D)
proof (induct C arbitrary: Ds)
  {f case} MHole
  then show ?case by (cases Ds) simp-all
next
  case (MFun f Cs)
  then have *: (\forall i \in \{0... < length \ Cs\}.
    ground-mctxt (fill-holes-mctxt (Cs!i) (partition-holes Ds Cs!i))) =
   (\forall i \in \{0..< length\ Cs\}.
     ground\text{-}mctxt\ (Cs ! i) \land (\forall a \in set\ (partition\text{-}holes\ Ds\ Cs ! i).\ ground\text{-}mctxt\ a))
   and **: sum-list (map num-holes Cs) = length Ds
   by simp-all
  show ?case
   unfolding partition-holes-fill-holes-mctxt-conv
   by (simp add: * ball-conj-distrib Ball-set-partition-by [OF **])
qed simp
lemma concat-map-uncap-till-funas-map-subst-apply-uncap-till-funas [simp]:
  concat \ (map \ (uncap-till-funas \ F) \ (map \ (\lambda s. \ s \cdot \sigma) \ (uncap-till-funas \ F \ t))) =
uncap-till-funas F(t \cdot \sigma)
proof (induct\ t)
  case (Fun f ts)
  then have *: map (uncap-till-funas F \circ (\lambda t. \ t \cdot \sigma)) ts =
   map concat (map (map (uncap-till-funas F) \circ map (\lambda s. s. \sigma) \circ uncap-till-funas
F) ts) by simp
  show ?case
   by (simp add: * map-concat concat-map-concat [symmetric])
\mathbf{qed}\ simp
lemma concat-uncap-till-subst-conv:
  concat (map (\lambda i. uncap-till-funas F ((uncap-till-funas F t! i) \cdot \sigma)) [0 ..< length
(uncap-till-funas F t)]) =
   uncap-till-funas F(t \cdot \sigma)
proof -
  have concat (map (uncap-till-funas F) (map (\lambda i).
     (uncap-till-funas \ F \ t \ ! \ i) \cdot \sigma) \ [0 \ .. < length \ (uncap-till-funas \ F \ t)])) = un-till-funas \ F \ t)
cap-till-funas F(t \cdot \sigma)
   unfolding map-upt-len-conv [of \lambda s. \ s \cdot \sigma \ uncap-till-funas F \ t]
    unfolding concat-map-uncap-till-funas-map-subst-apply-uncap-till-funas...
  then show ?thesis by (simp add: o-def)
qed
lemma the-root-uncap-till-funas:
  is-Fun t \Longrightarrow the \ (root \ t) \in F \Longrightarrow uncap-till-funas \ F \ t = [t]
 by (cases\ t)\ simp-all
lemma funas-cap-till-subset:
 funas-mctxt (cap-till P t) \subseteq funas-term t
```

```
by (induct t) auto
\mathbf{lemma}\ \mathit{funas-uncap-till-subset}\colon
  s \in set (uncap-till \ P \ t) \Longrightarrow funas-term \ s \subseteq funas-term \ t
proof (induct t arbitrary: s)
 case (Fun f ts)
 then show ?case by (cases P (Fun f ts)) auto
qed simp
lemma ground-mctxt-subst-apply-context [simp]:
  ground\text{-}mctxt \ C \Longrightarrow C \cdot mc \ \sigma = C
 by (induct\ C)\ (simp-all\ add:\ map-idI)
lemma vars-term-fill-holes [simp]:
  num-holes C = length \ ts \Longrightarrow ground-mctxt \ C \Longrightarrow
   vars-term (fill-holes C ts) = \bigcup (vars-term 'set ts)
proof (induct C arbitrary: ts)
 case MHole
 then show ?case by (cases ts) simp-all
next
 case (MFun \ f \ Cs)
 then have *: length (partition-holes ts Cs) = length Cs by simp
 let ?f = \lambda x. \bigcup y \in set x. vars-term y
 show ?case
   using MFun
   unfolding partition-holes-fill-holes-conv
   by (simp add: UN-upt-len-conv [OF *, of ?f] UN-set-partition-by)
qed simp
6.1.3
         Semilattice Structures
instantiation mctxt :: (type, type) inf
begin
fun inf-mctxt :: ('a, 'b) mctxt \Rightarrow ('a, 'b) mctxt \Rightarrow ('a, 'b) mctxt
 where
   MHole \sqcap D = MHole
   C \sqcap MHole = MHole
   MVar \ x \sqcap MVar \ y = (if \ x = y \ then \ MVar \ x \ else \ MHole) \mid
   MFun\ f\ Cs\ \sqcap\ MFun\ g\ Ds =
    (if f = g \land length \ Cs = length \ Ds \ then \ MFun \ f \ (map \ (case-prod \ (\sqcap))) (zip Cs
Ds))
    else MHole)
    C \sqcap D = MHole
instance ..
end
```

```
lemma inf-mctxt-idem [simp]:
 fixes C :: ('f, 'v) mctxt
 \mathbf{shows}\ C\ \sqcap\ C = \ C
 by (induct C) (auto simp: zip-same-conv-map intro: map-idI)
lemma inf-mctxt-MHole2 [simp]:
  C \sqcap \mathit{MHole} = \mathit{MHole}
 by (induct C) simp-all
lemma inf-mctxt-comm [ac-simps]:
  (C :: ('f, 'v) \ mctxt) \sqcap D = D \sqcap C
  by (induct C D rule: inf-mctxt.induct) (fastforce simp: in-set-conv-nth intro!:
nth-equalityI)+
lemma inf-mctxt-assoc [ac-simps]:
 fixes C :: ('f, 'v) mctxt
 shows C \sqcap D \sqcap E = C \sqcap (D \sqcap E)
proof (induction C D arbitrary: E rule: inf-mctxt.induct)
 case (1 D E)
 then show ?case by (cases E, auto)
next
  case (2-1 v E)
 then show ?case by (cases E, auto)
next
 case (2-2 v va E)
 then show ?case by (cases E, auto)
\mathbf{next}
 case (3 x y E)
 then show ?case by (cases E, auto)
next
 case (4 f Cs g Ds E)
 then show ?case
   by (cases E; fastforce simp: in-set-conv-nth intro!: nth-equalityI)
 case (5-1 \ v \ va \ vb \ E)
 then show ?case by (cases E, auto)
next
 case (5-2 v va vb E)
 then show ?case by (cases E, auto)
qed
instantiation mctxt :: (type, type) \ order
begin
definition (C :: ('a, 'b) \ mctxt) \leq D \longleftrightarrow C \sqcap D = C
definition (C :: ('a, 'b) \ mctxt) < D \longleftrightarrow C \le D \land \neg D \le C
instance
 by (standard, simp-all add: less-eq-mctxt-def less-mctxt-def ac-simps, metis inf-mctxt-assoc)
```

```
end
```

```
inductive less-eq-mctxt' :: ('f, 'v) mctxt \Rightarrow ('f, 'v) mctxt \Rightarrow bool where
  less-eq-mctxt' MHole u
 less-eq-mctxt' (MVar v) (MVar v)
| \ length \ cs = \ length \ ds \Longrightarrow (\bigwedge i. \ i < \ length \ cs \Longrightarrow \ less-eq-mctxt' \ (cs \ ! \ i) \ (ds \ ! \ i))
\implies less-eq\text{-}mctxt' (MFun f cs) (MFun f ds)
lemma less-eq-mctxt-prime: C \leq D \longleftrightarrow less-eq-mctxt' C D
proof
 assume less-eq-mctxt' C D then show C \leq D
   by (induct C D rule: less-eq-mctxt'.induct) (auto simp: less-eq-mctxt-def intro:
nth-equalityI)
next
  assume C \leq D then show less-eq-mctxt' C D unfolding less-eq-mctxt-def
   by (induct C D rule: inf-mctxt.induct)
    (auto split: if-splits simp: set-zip intro!: less-eq-mctxt'.intros nth-equalityI elim!:
nth-equalityE, metis)
qed
lemmas\ less-eq-mctxt-induct=less-eq-mctxt'.induct[folded\ less-eq-mctxt-prime,\ con-lemmas\ less-eq-mctxt-prime]
lemmas\ less-eq-mctxt-intros = less-eq-mctxt'.intros[folded\ less-eq-mctxt-prime]
lemma less-eq-mctxtI2:
  C = MHole \Longrightarrow C \leq MHole
  C = MHole \lor C = MVar v \Longrightarrow C < MVar v
  C = MHole \lor C = MFun \ f \ cs \land length \ cs = length \ ds \land (\forall i. \ i < length \ cs \longrightarrow i)
cs ! i \leq ds ! i) \Longrightarrow C \leq MFun f ds
 unfolding less-eq-mctxt-prime by (cases C) (auto intro: less-eq-mctxt'.intros)
lemma less-eq-mctxt-MHoleE2:
 assumes C \leq MHole
 obtains (MHole) C = MHole
 using assms unfolding less-eq-mctxt-prime by (cases C, auto)
lemma less-eq-mctxt-MVarE2:
  assumes C \leq MVar v
 obtains (MHole) C = MHole \mid (MVar) \mid C = MVar \mid v
 using assms unfolding less-eq-mctxt-prime by (cases C) auto
lemma less-eq-mctxt-MFunE2:
 assumes C \leq MFun f ds
 obtains (MHole) C = MHole
  | (MFun) \ cs \ where \ C = MFun \ f \ cs \ length \ cs = length \ ds \ \land i. \ i < length \ cs \Longrightarrow
cs ! i < ds ! i
 using assms unfolding less-eq-mctxt-prime by (cases C) auto
```

```
\mathbf{lemmas}\ less-eq-mctxtE2 = less-eq-mctxt-MHoleE2\ less-eq-mctxt-MVarE2\ less-eq-mctxt-MFunE2
```

```
lemma less-eq-mctxtI1:
  MHole \leq D
  D = MVar \ v \Longrightarrow MVar \ v < D
 D = MFun \ f \ ds \Longrightarrow length \ cs = length \ ds \Longrightarrow (\bigwedge i. \ i < length \ cs \Longrightarrow cs \ ! \ i \leq ds
!\ i) \Longrightarrow MFun\ f\ cs \leq D
 by (cases D) (auto intro: less-eq-mctxtI2)
lemma less-eq-mctxt-MVarE1:
 assumes MVar \ v \leq D
 obtains (MVar) D = MVar v
 using assms by (cases D) (auto elim: less-eq-mctxtE2)
lemma less-eq-mctxt-MFunE1:
 assumes MFun \ f \ cs < D
 obtains (MFun) ds where D = MFun f ds length cs = length ds <math>hi. i < length
cs \Longrightarrow cs \mid i \leq ds \mid i
 using assms by (cases D) (auto elim: less-eq-mctxtE2)
lemmas\ less-eq-mctxtE1\ =\ less-eq-mctxt-MVarE1\ less-eq-mctxt-MFunE1
instance mctxt :: (type, type) semilattice-inf
 apply (intro-classes)
 by (auto simp: less-eq-mctxt-def inf-mctxt-assoc [symmetric])
   (metis\ inf-mctxt-comm\ inf-mctxt-assoc\ inf-mctxt-idem)+
fun inf-mctxt-args :: ('f, 'v) mctxt \Rightarrow ('f, 'v) mctxt \Rightarrow ('f, 'v) mctxt list
  where
   inf-mctxt-args MHole D = [MHole]
   inf-mctxt-args C MHole = [C]
   inf-mctxt-args (MVar x) (MVar y) = (if x = y then [] else [MVar x]) |
   inf-mctxt-args (MFun f Cs) (MFun g Ds) =
   (if f = g \land length \ Cs = length \ Ds \ then \ concat \ (map \ (case-prod \ inf-mctxt-args)
(zip\ Cs\ Ds))
   else [MFun f Cs]) |
   inf-mctxt-args <math>C D = [C]
lemma inf-mctxt-args-MHole2 [simp]:
  inf-mctxt-args\ C\ MHole = [C]
 by (cases\ C)\ simp-all
lemma fill-holes-mctxt-replicate-MHole [simp]:
 fill-holes-mctxt \ C \ (replicate \ (num-holes \ C) \ MHole) = C
proof (induct C)
 case (MFun f Cs)
  { fix i assume i < length Cs
   then have partition-holes (replicate (sum-list (map num-holes Cs)) MHole) Cs
```

```
! i =
      replicate (num-holes (Cs!i)) MHole
       using partition-by-nth-nth[of map num-holes Cs replicate (sum-list (map
num-holes Cs)) MHole]
     by (auto intro!: nth-equalityI)
 } note * = this
 show ?case using MFun[OF nth-mem] by (auto simp: * intro!: nth-equalityI)
qed auto
lemma num-holes-inf-mctxt:
 num-holes (C \sqcap D) = length (inf-mctxt-args C D)
 by (induct C D rule: inf-mctxt.induct)
   (auto simp: in-set-zip length-concat intro!: arg-cong [of - - sum-list])
lemma length-inf-mctxt-args:
 length (inf-mctxt-args D C) = length (inf-mctxt-args C D)
 by (metis inf.commute num-holes-inf-mctxt)
lemma inf-mctxt-args-same [simp]:
 inf-mctxt-args C C = replicate (num-holes C) MHole
proof (induct C)
 case (MFun f Cs)
 have *: \bigwedge C. num-holes C = length \ (inf-mctxt-args \ C \ C)
   using num-holes-inf-mctxt [of C C for C] by auto
 let ?xs = map (case-prod inf-mctxt-args) (zip Cs Cs)
 have \forall i < length Cs.
   inf-mctxt-args (Cs ! i) (Cs ! i) = replicate (num-holes <math>(Cs ! i)) MHole using
MFun by auto
 then have \forall i < length ?xs. \forall j < length (?xs!i). ?xs!i!j = MHole by auto
 then have \forall i < length (concat ?xs). concat ?xs! i = MHole by (metis nth-concat-two-lists)
 then show ?case by (auto simp: * intro!: nth-equalityI)
qed simp-all
lemma inf-mctxt-inf-mctxt-args:
 fill-holes-mctxt (C \sqcap D) (inf-mctxt-args CD) = C
proof (induct C D rule: inf-mctxt.induct)
 case (4 f Cs g Ds)
 then show ?case
 proof (cases f = g \land length \ Cs = length \ Ds)
   case True
   with 4 have \forall i < length Cs.
    fill-holes-metric (Cs! i \sqcap Ds!i) (inf-metric args (Cs! i) (Ds! i)) = Cs! i
    by (force simp: set-zip)
  moreover have partition-holes (concat (map (case-prod inf-mctxt-args) (zip Cs
Ds)))
     (map\ (case-prod\ (\sqcap))\ (zip\ Cs\ Ds)) = map\ (case-prod\ inf-mctxt-args)\ (zip\ Cs\ Ds)
Ds)
     by (rule partition-by-concat-id) (simp-all add: num-holes-inf-mctxt)
```

```
ultimately show ?thesis
     using fill-holes-mctxt.simps [simp del]
     by (auto simp: partition-holes-fill-holes-mctxt-conv intro!: nth-equalityI)
 qed auto
ged auto
\mathbf{lemma} \ \textit{inf-mctxt-inf-mctxt-args2} :
 fill-holes-mctxt (C \sqcap D) (inf-mctxt-args D C) = D
 unfolding inf-mctxt-comm [of C D] by (rule inf-mctxt-inf-mctxt-args)
instantiation mctxt :: (type, type) sup
begin
fun sup\text{-}mctxt :: ('a, 'b) mctxt \Rightarrow ('a, 'b) mctxt \Rightarrow ('a, 'b) mctxt
 where
   MHole \sqcup D = D \mid
   C \sqcup MHole = C \mid
   MVar \ x \sqcup MVar \ y = (if \ x = y \ then \ MVar \ x \ else \ undefined) \mid
   MFun \ f \ Cs \sqcup MFun \ g \ Ds =
    (if f = g \land length \ Cs = length \ Ds \ then \ MFun \ f \ (map \ (case-prod \ (\sqcup)) \ (zip \ Cs
Ds))
    else undefined) |
   (C :: ('a, 'b) \ mctxt) \sqcup D = undefined
instance ..
end
lemma sup-mctxt-idem [simp]:
 fixes C :: ('f, 'v) mctxt
 shows C \sqcup C = C
 by (induct C) (auto simp: zip-same-conv-map intro: map-idI)
lemma sup\text{-}mctxt\text{-}MHole \ [simp]: C \sqcup MHole = C
 by (induct\ C)\ simp-all
lemma sup\text{-}mctxt\text{-}comm [ac\text{-}simps]:
 fixes C :: ('f, 'v) mctxt
 shows C \sqcup D = D \sqcup C
  by (induct C D rule: sup-mctxt.induct) (fastforce simp: in-set-conv-nth intro!:
nth-equalityI)+
(\sqcup) is defined on compatible multihole-contexts. Note that compatibility is
not transitive.
inductive-set comp-mctxt :: (('a, 'b) mctxt \times ('a, 'b) mctxt) set
  where
    MHole1: (MHole, D) \in comp\text{-}mctxt \mid
   MHole2: (C, MHole) \in comp\text{-}mctxt
   MVar: x = y \Longrightarrow (MVar \ x, \ MVar \ y) \in comp\text{-}mctxt \mid
```

```
MFun: f = g \Longrightarrow length \ Cs = length \ Ds \Longrightarrow \forall i < length \ Ds. \ (Cs!i, Ds!i)
\in comp\text{-}mctxt \Longrightarrow
   (MFun \ f \ Cs, \ MFun \ g \ Ds) \in comp\text{-}mctxt
lemma comp-mctxt-reft:
  (C, C) \in comp\text{-}mctxt
 by (induct C) (auto intro: comp-mctxt.intros)
lemma comp-mctxt-sym:
 assumes (C, D) \in comp\text{-}mctxt
 shows (D, C) \in comp\text{-}mctxt
 using assms by (induct) (auto intro: comp-mctxt.intros)
lemma sup\text{-}mctxt\text{-}assoc [ac\text{-}simps]:
 assumes (C, D) \in comp\text{-}mctxt and (D, E) \in comp\text{-}mctxt
 shows C \sqcup D \sqcup E = C \sqcup (D \sqcup E)
 using assms by (induct C D arbitrary: E) (auto elim!: comp-mctxt.cases intro!:
nth-equalityI)
No instantiation to semilattice-sup possible, since (\sqcup) is only partially de-
fined on terms (e.g., it is not associative in general).
interpretation mctxt-order-bot: order-bot MHole (\leq) (<)
 by (standard) (simp add: less-eq-mctxt-def)
lemma sup\text{-}mctxt\text{-}ge1 [simp]:
 assumes (C, D) \in comp\text{-}mctxt
 shows C \leq C \sqcup D
 using assms by (induct C D) (auto simp: less-eq-mctxt-def intro: nth-equalityI)
lemma sup\text{-}mctxt\text{-}ge2 [simp]:
 assumes (C, D) \in comp\text{-}mctxt
 shows D < C \sqcup D
 using assms by (induct) (auto simp: less-eq-mctxt-def intro: nth-equalityI)
lemma sup-mctxt-least:
 assumes (D, E) \in comp\text{-}mctxt
   and D \leq C and E \leq C
 shows D \sqcup E \leq C
 using assms
proof (induct arbitrary: C)
 case (MFun f g Cs Ds)
 then show ?case
  apply (auto simp: less-eq-mctxt-def elim!: inf-mctxt.elims intro!: nth-equalityI)[1]
     apply (metis (erased, lifting) length-map nth-map nth-zip split-conv)
   by (metis\ mctxt.distinct(5))+
qed auto
```

lemma inf-mctxt-args-MHole:

```
assumes (C, D) \in comp\text{-}mctxt and i < length (inf\text{-}mctxt\text{-}args C D)
 shows inf-mctxt-args C D ! i = MHole \lor inf-mctxt-args D C ! i = MHole
  using assms
proof (induct C D arbitrary: i)
  case (MHole2 C)
  then show ?case by (cases C) simp-all
\mathbf{next}
  case (MFun f g Cs Ds)
  then have [simp]: f = g length Ds = length Cs by auto
 let ?xs = map (case-prod inf-mctxt-args) (zip Cs Ds)
 let ?ys = map \ (case-prod \ inf-mctxt-args) \ (zip \ Ds \ Cs)
 obtain m and n where *: i = sum-list (map length (take m ?xs)) + n
   m < length \ Cs \ n < length \ (inf-mctxt-args \ (Cs \ ! \ m) \ (Ds \ ! \ m))
   and inf-mctxt-args (MFun f Cs) (MFun g Ds)! i = inf-mctxt-args (Cs! m) (Ds
! m) ! n
   using MFun.prems by (auto dest: less-length-concat)
 moreover have concat ?ys! i = (map (case-prod inf-mctxt-args) (zip Ds Cs))!
m ! n
   by (rule concat-nth)
     (insert *, auto intro: arg-cong [of - - sum-list]
       simp: map-nth-eq-conv length-inf-mctxt-args)
 ultimately show ?case using MFun(3) by simp
qed auto
lemma rsteps-mctxt:
 assumes s =_f (C, ss) and t =_f (C, ts)
   and \forall i < length \ ss. \ (ss ! i, ts ! i) \in (rstep \ R)^*
 shows (s, t) \in (rstep R)^*
proof -
 have [simp]: length ss = length ts using assms by (auto dest!: eqfE)
 have [simp]: t = fill-holes\ C\ ts\ using\ assms\ by\ (auto\ dest:\ eqfE)
 have (s, fill-holes\ C\ ts) \in (rstep\ R)^*
   using assms by (intro eqf-all-ctxt-closed-step [of UNIV - s C ss, THEN con-
junct1]) auto
 then show ?thesis by simp
qed
fun sup-mctxt-args :: ('f, 'v) mctxt \Rightarrow ('f, 'v) mctxt \Rightarrow ('f, 'v) mctxt list
 where
   sup\text{-}mctxt\text{-}args\ MHole\ D=[D]
   sup\text{-}mctxt\text{-}args\ C\ MHole = replicate\ (num\text{-}holes\ C)\ MHole\ |
   sup\text{-}mctxt\text{-}args\ (MVar\ x)\ (MVar\ y) = (if\ x = y\ then\ []\ else\ undefined)
   sup\text{-}mctxt\text{-}args (MFun f Cs) (MFun g Ds) =
   (if f = g \land length \ Cs = length \ Ds \ then \ concat \ (map \ (case-prod \ sup-mctxt-args))
(zip \ Cs \ Ds))
   else undefined) |
   sup-mctxt-args C D = undefined
lemma sup-mctxt-args-MHole2 [simp]:
```

```
sup\text{-}mctxt\text{-}args\ C\ MHole = replicate\ (num\text{-}holes\ C)\ MHole
 by (cases\ C)\ simp-all
lemma num-holes-sup-mctxt-args:
 assumes (C, D) \in comp\text{-}mctxt
 shows num-holes C = length (sup-mctxt-args C D)
 using assms by (induct) (auto simp: length-concat intro!: arg-cong [of - - sum-list]
nth-equalityI)
lemma sup-mctxt-sup-mctxt-args:
 assumes (C, D) \in comp\text{-}mctxt
 shows fill-holes-mctxt C (sup-mctxt-args C D) = C \sqcup D
 using assms
proof (induct)
  note fill-holes-mctxt.simps [simp del]
 case (MFun f \ q \ Cs \ Ds)
  then show ?case
 proof (cases f = g \land length \ Cs = length \ Ds)
   case True
   with MFun have \forall i < length Cs.
     fill-holes-mctxt (Cs! i) (sup-mctxt-args (Cs! i) (Ds! i)) = Cs! i \sqcup Ds! i
    and *: \forall i < length \ Cs. \ (Cs ! i, Ds ! i) \in comp\text{-}mctxt \ by \ (force \ simp: \ set\text{-}zip) +
    moreover have partition-holes (concat (map (case-prod sup-mctxt-args) (zip
Cs Ds)))
     Cs = map (case-prod sup-mctxt-args) (zip Cs Ds)
   using True and * by (intro partition-by-concat-id) (auto simp: num-holes-sup-mctxt-args)
   ultimately show ?thesis
     using * and True by (auto simp: partition-holes-fill-holes-mctxt-conv intro!:
nth-equalityI)
 qed auto
qed auto
lemma sup-mctxt-args:
 assumes (C, D) \in comp\text{-}mctxt
 shows sup\text{-}mctxt\text{-}args\ C\ D=inf\text{-}mctxt\text{-}args\ (C\ \sqcup\ D)\ C
 using assms by (induct) (auto intro!: arg-cong [of - - concat] nth-equalityI)
lemma term-for-mctxt:
 fixes C :: ('f, 'v) mctxt
 obtains t and ts where t =_f (C, ts)
proof -
 obtain ts :: (f, v) term list where num-holes C = length ts by (metis Ex-list-of-length)
 then have fill-holes C ts = _f (C, ts) by blast
 show ?thesis by (standard) fact
qed
lemma comp-mctxt-eqfE:
 assumes (C, D) \in comp\text{-}mctxt
 obtains s and ss and ts where s =_f (C, ss) and s =_f (D, ts)
```

```
proof (goal-cases)
 case 1
 obtain u and us where u = f(C \sqcup D, us) by (metis term-for-metxt)
 then have u: u = fill\text{-}holes (C \sqcup D) us
   and *: length us = num-holes (C \sqcup D) by (auto\ dest:\ eqfE)
 define Cs Ds where Cs = sup\text{-}mctxt\text{-}args C D
   and Ds = sup\text{-}mctxt\text{-}args\ D\ C
 then have sup 1: C \sqcup D = fill\text{-}holes\text{-}mctxt \ C\ cs \ and \ sup 2: \ C \sqcup D = fill\text{-}holes\text{-}mctxt
D Ds
  using assms by (auto simp: sup-mctxt-sup-mctxt-args comp-mctxt-sym ac-simps)
 then have u1: u = fill-holes (fill-holes-mctxt C Cs) us
   and u2: u = fill-holes (fill-holes-metxt D Ds) us by (simp-all add: u)
 define ss ts where ss = map (\lambda i. fill-holes (Cs!i) (partition-holes us Cs!i))
[0 ..< num-holes C]
  and ts = map(\lambda i. fill-holes(Ds!i)) (partition-holes us Ds!i)) [0 ..< num-holes
 have u = fill-holes C ss
   using assms
  by (simp add: * u1 sup1 ss-def fill-holes-mctxt-fill-holes Cs-def num-holes-sup-mctxt-args)
 moreover have u = fill-holes D ts
   using assms [THEN comp-mctxt-sym]
  by (simp add: * u2 sup2 ts-def fill-holes-mctxt-fill-holes Ds-def num-holes-sup-mctxt-args)
 ultimately have u = f(C, ss) and u = f(D, ts) by (auto simp: ss-def ts-def)
 from 1 [OF this] show thesis.
qed
lemma eqf-comp-mctxt:
 assumes s =_f (C, ss) and s =_f (D, ts)
 shows (C, D) \in comp\text{-}mctxt
 using assms
proof (induct s arbitrary: C D ss ts)
 case (Var \ x \ C \ D)
 then show ?case
   by (cases C D rule: mctxt.exhaust [case-product mctxt.exhaust])
     (auto simp: eq-fill.simps intro: comp-mctxt.intros)
next
 case (Fun \ f \ ss \ C \ D \ us \ vs)
 \{  fix Cs  and Ds 
   assume *: C = MFun f Cs D = MFun f Ds and **: length Cs = length Ds
   have ?case
   proof (unfold *, intro comp-mctxt.MFun [OF refl **] allI impI)
     \mathbf{fix} \ i
     assume i < length Ds
     then show (Cs ! i, Ds ! i) \in comp\text{-}mctxt
       using Fun by (auto simp: * ** elim!: eqf-MFunE) (metis nth-mem)
   qed }
 with Fun.prems show ?case
   by (cases C D rule: mctxt.exhaust [case-product mctxt.exhaust])
     (auto simp: eq-fill.simps dest: map-eq-imp-length-eq intro: comp-mctxt.intros)
```

```
qed
```

```
lemma comp-mctxt-iff:
 (C, D) \in comp\text{-}mctxt \longleftrightarrow (\exists s \text{ ss ts. } s =_f (C, ss) \land s =_f (D, ts))
 by (blast elim!: comp-mctxt-eqfE intro: eqf-comp-mctxt)
lemma hole-poss-parallel-pos [simp]:
  assumes p \in hole\text{-}poss\ C and q \in hole\text{-}poss\ C and p \neq q
 shows parallel-pos p q
 using assms by (induct C arbitrary: p q) (fastforce dest!: nth-mem)+
lemma eq-fill-induct [consumes 1, case-names MHole MVar MFun]:
 assumes t =_f (C, ts)
   and \bigwedge t. P t MHole [t]
   and \bigwedge x. P(Var x)(MVar x)
   and \bigwedge f ss Cs ts. \lceil length \ Cs = length \ ss; sum-list (map num-holes \ Cs) = length
ts;
     \forall \, i < \textit{length ss. ss} \; ! \; i =_f (\textit{Cs} \; ! \; i, \; \textit{partition-holes ts} \; \textit{Cs} \; ! \; i) \; \land \\
       P(ss!i)(Cs!i)(partition-holes\ ts\ Cs!i)
     \implies P (Fun f ss) (MFun f Cs) ts
 shows P \ t \ C \ ts
 using assms(1)
proof (induct t arbitrary: C ts)
 case (Var x)
  then show ?case
   using assms(2, 3) by (cases C; cases ts) (auto elim: eq-fill.cases)
next
 case (Fun f ss C ts)
  { assume C = MHole and ts = [Fun f ss]
   with Fun.hyps have ?case using assms(2) by auto }
 moreover
 { fix Cs
   assume C: C = MFun \ f \ Cs and sum-list (map \ num-holes Cs) = length \ ts
     and length Cs = length ss
     and Fun f ss = fill-holes (MFun f Cs) ts
   moreover then have \forall i < length \ ss. \ ss \ ! \ i =_f (Cs \ ! \ i, \ partition-holes \ ts \ Cs \ !
i
     by (auto simp del: fill-holes.simps
         simp: partition-holes-fill-holes-conv intro!: eq-fill.intros)
      (metis (no-types, lifting) add.left-neutral length-map length-upt nth-map-upt)
   moreover with Fun.hyps(1) have \forall i < length ss.
     P(ss!i)(Cs!i) (partition-holes ts Cs!i) by auto
   ultimately have ?case using assms(4) [of Cs ss ts f] by auto }
  ultimately show ?case
   using Fun.prems by (elim eq-fill.cases) (auto, cases C; cases ts, auto)
qed
lemma hole-poss-subset-poss:
 assumes s =_f (C, ss)
```

```
shows hole\text{-}poss\ C\subseteq poss\ s
  using assms by (induct rule: eq-fill-induct) auto
fun hole-num
  where
   hole-num [] MHole = 0 |
    hole-num \ (i \# q) \ (MFun \ f \ Cs) = sum-list \ (map \ num-holes \ (take \ i \ Cs)) +
hole-num \ q \ (Cs \ ! \ i)
lemma hole-poss-nth-subt-at:
 assumes t =_f (C, ts) and p \in hole\text{-}poss C
 shows hole-num p C < length ts \land t \mid -p = ts ! hole-num <math>p C
 using assms
proof (induct arbitrary: p rule: eq-fill-induct)
  case (MFun \ f \ ss \ Cs \ ts)
 let ?ts = partition-holes ts Cs
 from MFun obtain i and q where [simp]: p = i \# q
   and i < length ss  and q \in hole\text{-}poss  (Cs! i) by auto
  with MFun.hyps have ss ! i =_f (Cs ! i, ?ts ! i)
   and j: hole-num q (Cs!i) < length (?ts!i) (is ?j < length -)
   and *: ?ts ! i ! hole-num \ q \ (Cs ! i) = ss ! i | -q
   by auto
 let ?k = sum\text{-}list (map \ length \ (take \ i \ ?ts)) + ?j
 have i < length ?ts using \langle i < length ss \rangle and MFun by auto
  with partition-by-nth-nth-old [OF this j] and MFun and concat-nth-length [OF
this j
 have ?ts ! i ! ?j = ts ! ?k and ?k < length ts by (auto)
 moreover with * have ts ! ?k = Fun f ss | -p using \langle i < length ss \rangle by simp
 ultimately show ?case using MFun.hyps(2) by (auto simp: take-map [symmetric])
qed auto
lemma eqf-Fun-MFun:
 assumes Fun f ss =_f (MFun \ g \ Cs, \ ts)
  shows g = f \land length \ Cs = length \ ss \land sum-list \ (map \ num-holes \ Cs) = length
   (\forall i < length \ ss. \ ss \ ! \ i =_f (Cs \ ! \ i, \ partition-holes \ ts \ Cs \ ! \ i))
 using assms by (induct Fun f ss MFun g Cs ts rule: eq-fill-induct) auto
lemma fill-holes-eq-Var-cases:
 assumes num-holes C = length ts
   \mathbf{and}\ \mathit{fill-holes}\ C\ \mathit{ts} = \ \mathit{Var}\ \mathit{x}
 obtains C = MHole \wedge ts = [Var \ x] \mid C = MVar \ x \wedge ts = []
  using assms by (induct C; cases ts) auto
\mathbf{lemma} \ \mathit{num-holes-inf-mctxt-le} :
  assumes s =_f (C, ts) and s =_f (D, us)
 shows num-holes (C \sqcap D) \leq num-holes C + num-holes D
  using assms
proof (induct C D arbitrary: s ts us rule: inf-mctxt.induct)
```

```
case (4 f Cs g Ds)
  show ?case
 proof (cases f = g \land length \ Cs = length \ Ds)
   case False
   with 4 show ?thesis by (auto elim!: eq-fill.cases dest!: map-eq-imp-length-eq)
  next
   case True
   then have [simp]: g = f length Ds = length Cs by simp-all
   have IH: \forall (C, D) \in set (zip \ Cs \ Ds). num-holes (C \sqcap D) \leq num-holes C +
num-holes D
   proof
     fix C D assume *: (C, D) \in set (zip Cs Ds)
     then obtain i where i < length Cs and zip Cs Ds ! i = (C, D) by (auto
simp: in-set-zip)
     with 4.prems
     have fill-holes (Cs! i) (partition-holes ts Cs! i) = _f (C, partition-holes ts Cs
! i)
       and fill-holes (Cs! i) (partition-holes ts Cs! i) =_f (D, partition-holes us
Ds ! i
       by (auto elim!: eq-fill.cases)
     from 4.hyps [OF True * HOL.refl this]
     show num-holes (C \sqcap D) \leq num-holes C + num-holes D.
    have num-holes (MFun f Cs \sqcap MFun g Ds) = sum-list (map (num-holes \circ
case-prod (\Box)) (zip \ Cs \ Ds))
     using 4.prems by (auto elim!: eq-fill.cases dest!: map-eq-imp-length-eq)
   moreover have num-holes (MFun \ f \ Cs) + num-holes (MFun \ g \ Ds) =
     sum-list (map (\lambda(C, D), num-holes C + num-holes D) (zip Cs Ds))
     using \langle length \ Ds = length \ Cs \rangle by (induct \ rule: \ list-induct2) \ simp-all
   ultimately show ?thesis using IH by (auto intro!: sum-list-mono)
  qed
qed (auto elim!: eq-fill.cases)
lemma map-inf-mctxt-zip-mctxt-of-term [simp]:
 map\ (\lambda(x, y).\ x \sqcap y)\ (zip\ (map\ mctxt-of-term\ ts)\ (map\ mctxt-of-term\ ts)) = map
mctxt-of-term ts
 by (induct ts) simp-all
lemma inf-mctxt-ctxt-apply-term [simp]:
  mctxt-of-term (C\langle t\rangle) \cap mctxt-of-ctxt C = mctxt-of-ctxt C
  mctxt-of-ctxt C \sqcap mctxt-of-term (C\langle t \rangle) = mctxt-of-ctxt C
 by (induct\ C)\ simp-all
lemma inf-fill-holes-mctxt-MHoles:
  num-holes C = length \ Cs \Longrightarrow length \ Ds = length \ Cs \Longrightarrow
 \forall i < length \ Cs. \ Cs \ ! \ i = MHole \lor Ds \ ! \ i = MHole \Longrightarrow
 fill-holes-mctxt \ C \ Cs \ \sqcap \ fill-holes-mctxt \ C \ Ds = \ C
proof (induct C arbitrary: Cs Ds)
 case (MHole Cs Ds)
```

```
then show ?case by (cases Cs; cases Ds; force)
next
  case (MFun f Bs Cs Ds)
  then show ?case
   unfolding partition-holes-fill-holes-mctxt-conv'
   apply simp
   apply (rule nth-equalityI)
   by (auto simp: partition-by-nth-nth)
qed auto
lemma inf-fill-holes-mctxt-two-MHoles [simp]: num-holes C = 2 \Longrightarrow
 fill-holes-mctxt \ C \ [MHole, \ D] \ \sqcap \ fill-holes-mctxt \ C \ [E, \ MHole] = C
 by (simp add: inf-fill-holes-mctxt-MHoles nth-Cons')
lemma two-subterms-cases:
  assumes s = C\langle t \rangle and s = D\langle u \rangle
 obtains (eq) C = D and t = u
  | (nested1) C' where C' \neq \square and C = D \circ_c C'
   (nested2) D' where D' \neq \square and D = C \circ_c D'
  | (parallel1) E  where num-holes E = 2
   and mctxt-of-ctxt C = fill-holes-mctxt E [MHole, mctxt-of-term u]
   and mctxt-of-ctxt D = fill-holes-mctxt E [mctxt-of-term t, MHole]
  | (parallel2) E  where num-holes E = 2
   and mctxt-of-ctxt C = fill-holes-mctxt \ E \ [mctxt-of-term u, \ MHole]
   and mctxt-of-ctxt D = fill-holes-mctxt E [MHole, mctxt-of-term t]
proof (atomize-elim, insert assms, induct s arbitrary: C t D u)
  case (Var x)
  then show ?case by (cases C; cases D; cases t; cases u) auto
next
 case (Fun f ss)
  { fix ts_1 C' ts_2 and us_1 D' us_2
   assume [simp]: C = More f ts_1 C' ts_2 D = More f us_1 D' us_2
   then have len: length (ts_1 @ ts_2) + 1 = length \ ss \ length \ (us_1 @ us_2) + 1 =
length ss
     using Fun. prems by (auto) (metis add-Suc-right length-Cons length-append
nat.inject)
   { assume length \ ts_1 = length \ us_1
     with Fun have [simp]: take (length ts_1) ss = ts_1 drop (Suc (length ts_1)) ss =
ts_2
      and [simp]: us_1 = take (length ts_1) ss us_2 = drop (length ts_1 + 1) ss
      and nth: C'\langle t \rangle = ss ! length ts_1 and mem: C'\langle t \rangle \in set ss
      and eq: C'\langle t \rangle = D'\langle u \rangle by auto
     { assume C' = D' and t = u
       then have C = D and t = u by simp-all
      then have ?case by blast }
     moreover
     { fix C'' assume C'' \neq \square and C' = D' \circ_c C''
      then have C'' \neq \square and C = D \circ_c C'' by auto
      then have ?case by blast }
```

```
moreover
     { fix D'' assume D'' \neq \square and D' = C' \circ_c D''
      then have D'' \neq \square and D = C \circ_c D'' by auto
      then have ?case by blast }
    moreover
     { fix E' assume [simp]: mctxt-of-ctxt C' = fill-holes-mctxt E' [MHole, mc-
txt-of-term u]
        mctxt-of-ctxt D' = fill-holes-mctxt E' [mctxt-of-term t, MHole]
        num-holes E' = 2
         define E where E = MFun f (map mctxt-of-term ts_1 @ E' \# map
mctxt-of-term ts_2)
      then have num-holes E = 2 by simp
     moreover have mctxt-of-ctxt C = fill-holes-mctxt E [MHole, mctxt-of-term
u
        unfolding E-def and partition-holes-fill-holes-mctxt-conv' by simp
    moreover have mctxt-of-ctxt D = fill-holes-mctxt E [mctxt-of-term t, MHole]
        unfolding E-def and partition-holes-fill-holes-mctxt-conv' by simp
      ultimately have ?case by blast }
    moreover
    { fix E' assume [simp]: mctxt-of-ctxt C' = fill-holes-mctxt E' [mctxt-of-term
u, MHole
        mctxt-of-ctxt D' = fill-holes-mctxt E' [MHole, mctxt-of-term t]
        num-holes E' = 2
         define E where E = MFun f (map mctxt-of-term ts_1 @ E' \# map
mctxt-of-term ts_2)
      then have num-holes E = 2 by simp
        moreover have mctxt-of-ctxt C = fill-holes-mctxt E [mctxt-of-term u,
MHole
        unfolding E-def and partition-holes-fill-holes-mctxt-conv' by simp
      moreover have mctxt-of-ctxt D = fill-holes-mctxt E [MHole, mctxt-of-term
t
        unfolding E-def and partition-holes-fill-holes-mctxt-conv' by simp
      ultimately have ?case by blast }
    ultimately have ?case using Fun.hyps [OF mem HOL.refl eq] by blast }
   moreover
   { assume *: length ts_1 < length us_1
    moreover then have us_1: us_1 = ts_1 @ C'\langle t \rangle \# drop (length ts_1 + 1) us_1
      using Fun.prems [simplified]
      apply (subst append-take-drop-id [symmetric, of - length ts_1])
      apply (rule arg-cong2 [where f = (@)])
       apply (force simp: append-eq-append-conv-if)
      apply (simp add: append-eq-append-conv-if)
      apply (cases us_1)
      by auto
           (metis\ Cons-eq-appendI\ Cons-nth-drop-Suc\ calculation\ drop-Suc-Cons
nth-append-length)
     ultimately have ss: ss = ts_1 @ C'\langle t \rangle \# drop (length ts_1 + 1) us_1 @ D'\langle u \rangle
\# us_2
      using Fun.prems(2, 1) by auto
```

```
have ts_2: ts_2 = drop \ (length \ ts_1 + 1) \ us_1 @ D'\langle u \rangle \# us_2
      using Fun.prems (2, 1) [simplified] and *
       apply (subst append-take-drop-id [symmetric, of - length (drop (length ts_1
+ 1) us_1)])
      apply (rule arg-cong2 [where f = (@)])
      by auto (metis Suc-eq-plus1 append-eq-conv-conj length-drop list.inject ss)+
     define E where E = MFun f (map mctxt-of-term ts_1 @ mctxt-of-ctxt C' \#
       map mctxt-of-term (drop (length ts_1 + 1) us_1) @ mctxt-of-ctxt D' \# map
mctxt-of-term us_2)
     then have num-holes E = 2 by simp
     moreover have mctxt-of-ctxt C = fill-holes-mctxt E [MHole, mctxt-of-term
u
      unfolding E-def and partition-holes-fill-holes-mctxt-conv' by (simp add: *
ts_2
    moreover have mctxt-of-ctxt D = fill-holes-mctxt E [mctxt-of-term t, MHole]
       unfolding E-def and partition-holes-fill-holes-mctxt-conv' by (simp, subst
us_1, simp)
     ultimately have ?case by blast }
   moreover
   { assume *: length us_1 < length \ ts_1
     moreover then have ts_1: ts_1 = us_1 @ D'\langle u \rangle \# drop (length us_1 + 1) ts_1
       using Fun.prems [simplified]
      apply (subst append-take-drop-id [symmetric, of - length us_1])
      apply (rule arg-cong2 [where f = (@)])
       apply (force simp: append-eq-append-conv-if)
      apply (simp add: append-eq-append-conv-if)
      apply (cases ts_1)
     by auto (metis Cons-eq-appendI Cons-nth-drop-Suc calculation drop-Suc-Cons
nth-append-length)
     ultimately have ss: ss = us_1 @ D'\langle u \rangle \# drop (length us_1 + 1) ts_1 @ C'\langle t \rangle
\# ts_2
       using Fun. prems by auto
     have us_2: us_2 = drop \ (length \ us_1 + 1) \ ts_1 @ C'\langle t \rangle \# ts_2
       using Fun.prems (2, 1) [simplified] and *
       apply (subst append-take-drop-id [symmetric, of - length (drop (length us<sub>1</sub>
+ 1) ts_1)
      \mathbf{apply} \ (\mathit{rule} \ \mathit{arg\text{-}cong2} \ [\mathbf{where} \ f = (@)])
      by auto (metis Suc-eq-plus1 append-eq-conv-conj length-drop list.inject ss)+
     define E where E = MFun f (map mctxt-of-term us<sub>1</sub> @ mctxt-of-ctxt D' #
       map mctxt-of-term (drop (length us_1 + 1) ts_1) @ mctxt-of-ctxt C' \# map
mctxt-of-term ts_2)
     then have num-holes E = 2 by simp
    moreover have mctxt-of-ctxt C = fill-holes-mctxt E [mctxt-of-term u, MHole]
       unfolding E-def and partition-holes-fill-holes-mctxt-conv' by (simp, subst
ts_1, simp)
     moreover have mctxt-of-ctxt D = fill-holes-mctxt E [MHole, mctxt-of-term
t
      unfolding E-def and partition-holes-fill-holes-mctxt-conv' by (simp add: *
us_2)
```

```
ultimately have ?case by blast }
   moreover
   have length ts_1 = length \ us_1 \lor length \ ts_1 < length \ us_1 \lor length \ us_1 < length
ts_1 by arith
   ultimately have ?case by blast }
  moreover
  { assume C = \square and D \neq \square then have ?case by auto }
 moreover
  { assume C \neq \square and D = \square then have ?case by auto }
 moreover
  { assume C = \square and D = \square then have ?case using Fun by simp }
 ultimately show ?case using Fun by (cases C; cases D) simp-all
qed
lemma two-hole-ctxt-inf-conv:
  num-holes E = 2 \Longrightarrow
  mctxt-of-ctxt C = fill-holes-mctxt E [MHole, mctxt-of-term u] \Longrightarrow
  mctxt-of-ctxt D = fill-holes-mctxt E [mctxt-of-term t, MHole] \Longrightarrow
  mctxt	ext{-}of	ext{-}ctxt C \sqcap mctxt	ext{-}of	ext{-}ctxt D = E
 by simp
lemma map-length-take-partition-by:
  i < length \ ys \Longrightarrow sum\ list \ ys = length \ xs \Longrightarrow
   map\ length\ (take\ i\ (partition-by\ xs\ ys)) = take\ i\ ys
 by (metis map-length-partition-by take-map)
Closure under contexts can be lifted to multihole contexts.
lemma ctxt-imp-mctxt:
 assumes \forall s \ t \ C. \ (s, \ t) \in R \longrightarrow (C\langle s \rangle, \ C\langle t \rangle) \in R
   and (t, u) \in R
   and num-holes C = length \ ss_1 + length \ ss_2 + 1
 shows (fill-holes C (ss_1 @ t \# ss_2), fill-holes C (ss_1 @ u \# ss_2)) \in R
  using assms
proof (induct C arbitrary: ss_1 ss_2)
  case (MFun \ f \ Cs)
 let ?f = \lambda x. partition-holes (ss_1 @ x \# ss_2) Cs
 let ?ts = ?f t and ?us = ?f u
 have *: \bigwedge x. concat (?f x) = ss_1 @ x \# ss_2
   using MFun.prems by (intro concat-partition-by) simp
  with less-length-concat [of length ss_1 ?ts]
  obtain i j where ij: sum-list (map length (take i ?ts)) + j = length ss_1
   i < length \ Cs \ j < length \ (?ts ! i)
   and [simp]: ?ts! i ! j = t by auto
  have length ss_1 = sum-list (map length (take i ?us)) + j
   using ij using MFun.prems(3) by (auto simp: take-map [symmetric])
  from concat-nth [OF - - this]
 have [simp]: ?us! i ! j = u using ij and MFun.prems(3) by auto
 have [simp]: length ?us = length ?ts by simp
 have [simp]: take j (?us! i) = take j (?ts! i)
```

```
drop (Suc j) (?us ! i) = drop (Suc j) (?ts ! i)
   using ij and MFun.prems(3)
   by (auto intro: nth-equalityI simp: nth-append concat-nth [symmetric] take-map
[symmetric]
 from MFun.hyps [of Cs! i, OF - MFun.prems(1, 2), of take j (?ts! i) drop (Suc
j) (?ts!i)
 have step: (fill-holes (Cs!i) (?ts!i), fill-holes (Cs!i) (?us!i)) \in R
   using ij and MFun.prems
   apply simp
   apply (subst id-take-nth-drop [of j?ts! i])
   apply simp
   apply (subst id-take-nth-drop [of j ?us! i])
   apply auto
   done
 let ?Cs = map (case-prod fill-holes) (zip Cs ?ts)
 let ?C = More f (take i ?Cs) \square (drop (Suc i) ?Cs)
 have [simp]:
  take\ i\ (map\ (case-prod\ fill-holes)\ (zip\ Cs\ ?us)) = take\ i\ (map\ (case-prod\ fill-holes)
(zip \ Cs \ ?ts))
    drop \ (Suc \ i) \ (map \ (case-prod \ fill-holes) \ (zip \ Cs \ ?us)) = drop \ (Suc \ i) \ (map
(case-prod fill-holes) (zip Cs ?ts))
   using ij and MFun.prems(3)
    apply (auto intro!: nth-equalityI)[2]
   \mathbf{subgoal}
     using partition-by-nth-less [of - i map num-holes Cs ss_1 j - ss_2]
     by (simp add: map-length-take-partition-by)
    subgoal using partition-by-nth-greater [of i Suc (i + k) for k, of - map
num-holes Cs j ss_1 - ss_2
     by (simp add: map-length-take-partition-by)
   done
 show ?case
   using MFun.prems(1) [rule-format, OF step, of ?C] and ij
   apply (clarsimp simp del: fill-holes.simps simp: partition-holes-fill-holes-conv')
   apply (subst id-take-nth-drop [of i map (case-prod fill-holes) (zip Cs ?ts)], simp)
  apply (subst id-take-nth-drop [of i map (case-prod fill-holes) (zip Cs ?us)], simp)
   by auto
qed auto
lemma mctxt-of-term-fill-holes':
 num-holes C = length \ ts \Longrightarrow mctxt-of-term (fill-holes C \ ts) = fill-holes-mctxt C
(map \ mctxt-of-term \ ts)
 by (induct C ts rule: fill-holes-induct) auto
lemma vars-term-fill-holes':
 num-holes C = length \ ts \implies vars-term (fill-holes C \ ts) = \bigcup (vars-term 'set ts)
\cup vars-mctxt C
proof (induct C ts rule: fill-holes-induct)
 case (MFun f Cs ts) then show ?case
```

```
using UN-upt-len-conv of partition-holes to Cs length Cs \lambda t. ( ) x \in set t. vars-term
x)]
   by (simp add: UN-Un-distrib UN-set-partition-by)
qed auto
lemma vars-mctxt-linear: assumes t =_f (C, ts)
  linear-term t
shows vars-mctxt C \cap \{\} (vars-term 'set ts) = \{\}
  using assms
proof (induct C arbitrary: t ts)
 case (MVar x)
 from eqf-MVarE[OF\ MVar(1)]
 show ?case by auto
\mathbf{next}
  case MHole
 from eqf-MHoleE[OF\ MHole(1)]
 show ?case by auto
next
  case (MFun \ f \ Cs \ t \ ss)
  from eqf-MFunE[OF\ MFun(2)] obtain ts\ sss\ where
   *: t = Fun \ f \ ts \ length \ ts = length \ Cs \ length \ sss = length \ Cs
   \bigwedge i. \ i < length \ Cs \Longrightarrow ts \ ! \ i =_f (Cs \ ! \ i, \ sss \ ! \ i)
   ss = concat sss  by blast
   fix i
   assume i: i < length Cs
   hence mem: Cs ! i \in set \ Cs \ by \ auto
   from *i MFun(3) have lin: linear-term (ts!i) by auto
   from MFun(1)[OF\ mem\ *(4)[OF\ i]\ lin]
   have vars-mctxt (Cs ! i) \cap \bigcup (vars-term 'set (sss ! i)) = \{\} by auto
  \} note IH = this
  show ?case
 proof (rule ccontr)
   \mathbf{assume} \ \neg \ ?thesis
    then obtain x where xC: x \in vars\text{-}mctxt (MFun f Cs) and xss: x \in \bigcup
(vars-term 'set ss)
     by auto
   from xC obtain i where i: i < length Cs and x: x \in vars-metxt (Cs ! i)
     by (auto simp: set-conv-nth)
   from IH[OF\ i]\ x have xni:\ x\notin\bigcup\ (vars\text{-}term\ `set\ (sss\ !\ i)) by auto
   from *(4)[OF\ i] have ts!\ i =_f (Cs!\ i,\ sss!\ i).
   from eqfE[OF\ this]\ x\ \mathbf{have}\ xi:\ x\in vars\text{-}term\ (ts\ !\ i)
     by (simp add: vars-term-fill-holes')
   from xss[unfolded * set-concat] * obtain j where
     j: j < length \ Cs \ and \ xsj: x \in \bigcup \ (vars-term \ `set \ (sss \ ! \ j))
     unfolding set-conv-nth by auto
   from *(4)[OF j] have ts ! j =_f (Cs ! j, sss ! j) by auto
   from eqfE[OF\ this]\ xsj\ j have xj:\ x\in vars\text{-}term\ (ts\ !\ j)
     by (simp add: vars-term-fill-holes')
```

```
from xi \ xj \ i \ j \ \langle linear-term \ t \rangle [unfolded \ *(1)]
   have i = j unfolding \langle length \ ts = length \ Cs \rangle [symmetric]
     by (auto simp: is-partition-alt is-partition-alt-def)
   with xni xsj show False by auto
 ged
\mathbf{qed}
lemma mctxt-of-term-var-subst:
  mctxt-of-term (t \cdot (Var \circ f)) = map-vars-mctxt f (mctxt-of-term t)
 by (induct t) auto
lemma \ subst-apply-mctxt-map-vars-mctxt-conv:
  C \cdot mc \ (Var \circ f) = map\text{-}vars\text{-}mctxt \ f \ C
 by (induct C) auto
lemma map-vars-mctxt-mono:
  C \leq D \Longrightarrow map\text{-}vars\text{-}mctxt \ f \ C \leq map\text{-}vars\text{-}mctxt \ f \ D
 by (induct C D rule: less-eq-mctxt-induct) (auto intro: less-eq-mctxtI1)
lemma map-vars-mctxt-less-eq-decomp:
 assumes C \leq map\text{-}vars\text{-}mctxt \ f \ D
 obtains C' where map-vars-metxt f C' = C C' \leq D
  using assms
proof (induct D arbitrary: C thesis)
  case (MVar x) show ?case using MVar(1)[of MHole] MVar(1)[of MVar -]
MVar(2)
   by (auto elim: less-eq-mctxtE2 intro: less-eq-mctxtI1)
next
  case MHole show ?case using MHole(1)[of MHole] MHole(2) by (auto elim:
less-eq-mctxtE2)
next
 case (MFun \ q \ Ds) note MFun' = MFun
 show ?case using MFun(3) unfolding map-vars-mctxt.simps
 proof (cases rule: less-eq-mctxtE2(3))
   case MHole then show ?thesis using MFun(2)[of MHole] by auto
 next
   case (MFun Cs)
   define Cs' where Cs' = map (\lambda i. SOME Ci'. map-vars-mctxt f Ci' = Cs ! i
\land Ci' \leq Ds ! i) [0..< length Cs]
   { fix i assume i < length Cs
     obtain Ci' where map-vars-mctxt f Ci' = Cs ! i Ci' \le Ds ! i
        using \langle i < length \ Cs \rangle \ MFun \ MFun'(1)[OF \ nth-mem, \ of \ i] \ MFun'(3) by
(auto elim!: less-eq-mctxtE2)
     then have \exists Ci'. map-vars-mctxt f Ci' = Cs ! i \land Ci' \leq Ds ! i by blast
   from some I-ex[OF this] have
     length Cs = length \ Cs' and i < length \ Cs \implies map-vars-mctxt \ f \ (Cs'! \ i) =
Cs ! i
     i < length \ Cs \Longrightarrow Cs' \,! \ i \leq Ds \,! \ i \ for \ i \ by \ (auto \ simp: \ Cs'-def)
```

```
then show ?thesis using MFun(1,2) MFun'(3)
     by (auto intro!: MFun'(2)[of\ MFun\ g\ Cs'] nth-equality I\ less-eq-mctxtI2\ elim!:
less-eq-mctxtE2)
 qed
qed
          All positions of a multi-hole context
fun all-poss-metxt :: ('f, 'v) metxt \Rightarrow pos set
  where
    all\text{-}poss\text{-}mctxt\ (MVar\ x) = \{[]\}
  | all-poss-mctxt \ MHole = \{[]\}
 | all-poss-mctxt \ (MFun \ f \ cs) = \{[]\} \cup \bigcup (set \ (map \ (\lambda \ i. \ (\lambda \ p. \ i \ \# \ p) \ `all-poss-mctxt \ )
(cs ! i)) [0 ..< length cs])
lemma all-poss-mctxt-simp [simp]:
 all\text{-}poss\text{-}mctxt \ (MFun \ f \ cs) = \{[]\} \cup \{i \ \# \ p \mid i \ p. \ i < length \ cs \land p \in all\text{-}poss\text{-}mctxt
(cs ! i)
 by auto
declare all-poss-mctxt.simps(3)[simp\ del]
lemma all-poss-mctxt-conv:
  all-poss-mctxt C = poss-mctxt C \cup hole-poss C
 by (induct C) auto
lemma root-in-all-poss-mctxt[simp]:
  [] \in all\text{-}poss\text{-}mctxt \ C
 by (cases C) auto
lemma hole-poss-mctxt-of-term[simp]:
  hole\text{-}poss\ (mctxt\text{-}of\text{-}term\ t) = \{\}
  by (induct t) auto
lemma poss-mctxt-mctxt-of-term[simp]:
  poss-mctxt (mctxt-of-term \ t) = poss \ t
  by (induct t) auto
lemma hole-poss-subst: hole-poss (C \cdot mc \ \sigma) = hole-poss \ C
  by (induct C, auto)
lemma all-poss-mctxt-mctxt-of-term[simp]:
  all-poss-mctxt \ (mctxt-of-term \ t) = poss \ t
  by (induct t) auto
\mathbf{lemma}\ mctxt	ext{-}of	ext{-}term	ext{-}leq	ext{-}imp	ext{-}eq:
  mctxt-of-term t \leq C \longleftrightarrow mctxt-of-term t = C
  by (induct t arbitrary: C) (auto elim!: less-eq-mctxtE1 simp: map-nth-eq-conv)
```

```
lemma mctxt-of-term-inj:
  mctxt-of-term s = mctxt-of-term t \longleftrightarrow s = t
proof (induct s arbitrary: t)
 case (Var x t)
 show ?case by (cases t, auto)
\mathbf{next}
 case (Fun f ss t)
  thus ?case by (cases t, auto simp: map-eq-conv' intro: nth-equalityI)
\mathbf{qed}
lemma all-poss-mctxt-map-vars-mctxt [simp]:
  all-poss-mctxt (map-vars-mctxt f(C) = all-poss-mctxt C
 by (induct C) auto
lemma fill-holes-mctxt-extends-all-poss:
  assumes length Ds = num-holes C shows all-poss-metxt C \subseteq all-poss-metxt
(fill-holes-mctxt\ C\ Ds)
 using assms[symmetric] by (induct C Ds rule: fill-holes-induct) force+
lemma eqF-substD:
  assumes t \cdot \sigma =_f (C, ss)
   hole\text{-}poss\ C\subseteq poss\ t
 shows \exists D \ ts. \ t =_f (D, \ ts) \land C = D \cdot mc \ \sigma \land ss = map \ (\lambda \ ti. \ ti \cdot \sigma) \ ts
 using assms
proof (induct C arbitrary: t ss)
 case (MVar \ x \ t \ ss)
  from eqfE[OF\ MVar(1)] obtain y where t = Var\ y\ \sigma\ y = Var\ x\ ss = [] by
(cases t, auto)
 thus ?case using MVar by (auto intro!: exI[of - MVar y])
 case (MHole\ t\ ss)
 from eqfE[OF\ MHole(1)]
 show ?case by (cases ss, auto intro!: exI[of - MHole] exI[of - [t]])
 case (MFun \ f \ Cs \ t \ ss)
 show ?case
 proof (cases is-Fun t)
   case True
   from eqf-MFunE[OF\ MFun(2)] obtain tss\ sss\ where
     tsigma: t \cdot \sigma = Fun \ f \ tss \ and \ len: length \ tss = length \ Cs \ length \ sss = length
Cs
     and args: \bigwedge i. i < length Cs \Longrightarrow tss ! i =_f (Cs ! i, sss ! i)
     and ss: ss = concat sss by auto
   from True tsigma obtain ts where t: t = Fun f ts by (cases t, auto)
   from tsigma[unfolded\ t] have ts:\ tss=map\ (\lambda\ t.\ t\cdot\sigma)\ ts by auto
   from len ts have length ts = length Cs by auto
   note len = this len
```

```
{
     \mathbf{fix} i
     assume i: i < length Cs
     hence Cs ! i \in set Cs by auto
     note IH = MFun(1)[OF this]
     from ts len i have ts! i \cdot \sigma = tss! i by auto
     also have \dots =_f (Cs ! i, sss ! i) using args[OF i].
     finally have ts ! i \cdot \sigma =_f (Cs ! i, sss ! i).
     note IH = IH[OF this]
     from MFun(3)[unfolded\ t]\ i\ len
     have hole\text{-}poss\ (Cs\ !\ i)\subseteq poss\ (ts\ !\ i) by auto
     note IH = IH[OF this]
   hence \forall i. \exists D \ tsi. \ i < length \ Cs \longrightarrow ts! \ i =_f (D, \ tsi) \land Cs! \ i = D \cdot mc \ \sigma
\wedge sss! i = map (\lambda ti. ti \cdot \sigma) tsi by blast
   from choice[OF this] obtain D where
     \forall i. \exists tsi. i < length Cs \longrightarrow ts ! i =_f (D i, tsi) \land Cs ! i = D i \cdot mc \sigma \land sss
! i = map(\lambda ti. \ ti \cdot \sigma) \ tsi..
   from choice[OF this] obtain tsi where
     IH: i < length \ Cs \implies ts \mid i =_f (D \ i, \ tsi \ i) \land Cs \mid i = D \ i \cdot mc \ \sigma \land sss \mid i = I
map \ (\lambda ti. \ ti \cdot \sigma) \ (tsi \ i) \ \mathbf{for} \ i
     by auto
   let ?n = [0 ..< length Cs]
   show ?thesis
    proof (rule exI[of - MFun \ f \ (map \ D \ ?n)], rule exI[of - concat \ (map \ tsi \ ?n)],
intro\ conjI)
      show MFun f Cs = MFun f (map D ?n) \cdot mc \sigma using IH by (auto intro:
nth-equalityI)
     show ss = map \ (\lambda ti. \ ti \cdot \sigma) \ (concat \ (map \ tsi \ ?n)) \ \mathbf{unfolding} \ ss
       using len(3) IH unfolding map-concat map-map o-def
       by (intro arg-cong[of - - concat], intro nth-equalityI, auto)
     show t = f(MFun \ f(map \ D?n), concat (map \ tsi?n)) unfolding t
       by (intro eqf-MFunI, insert len IH, auto)
   qed
  next
   case False
   then obtain x where t: t = Var x by auto
   with MFun(3) have hole\text{-}poss\ (MFun\ f\ Cs) = \{\} by auto
   hence num: num-holes (MFun f Cs) = 0 using hole-poss-empty-iff-num-holes-0
by blast
    with eqfE[OF\ MFun(2)]\ t have ss:\ ss=[]\ \sigma\ x=fill-holes\ (MFun\ f\ Cs)\ [] by
auto
   show ?thesis unfolding t ss
   proof (intro\ exI[of - MVar\ x]\ exI[of - Nil]\ conjI)
     have MVar x \cdot mc \ \sigma = mctxt-of-term (fill-holes (MFun f Cs) []) using ss by
simp
     also have \dots = MFun \ f \ Cs \ using \ num
       by (metis mctxt-of-term-fill-holes mctxt-of-term-term-of-mctxt-id)
     finally show MFun f Cs = MVar x \cdot mc \sigma..
```

```
ged auto
  qed
qed
6.1.5
          More operations on multi-hole contexts
fun root-mctxt :: ('f, 'v) mctxt \Rightarrow ('f \times nat) option where
  root-mctxt MHole = None
| root\text{-}mctxt (MVar x) = None
| root\text{-}mctxt (MFun f Cs) = Some (f, length Cs)
fun mreplace-at :: ('f, 'v) mctxt \Rightarrow pos \Rightarrow ('f, 'v) mctxt \Rightarrow ('f, 'v) mctxt where
  mreplace-at C \mid D = D
\mid mreplace-at (MFun f Cs) (i \# p) D = MFun f (take i \ Cs @ mreplace-at (Cs! i)
p D \# drop (i+1) Cs
fun subm-at :: ('f, 'v) \ mctxt \Rightarrow pos \Rightarrow ('f, 'v) \ mctxt \ \mathbf{where}
  subm-at \ C \ [] = C
| subm-at (MFun f Cs) (i \# p) = subm-at (Cs ! i) p
lemma subm-at-hole-poss[simp]:
  p \in hole\text{-}poss \ C \Longrightarrow subm\text{-}at \ C \ p = MHole
 by (induct C arbitrary: p) auto
lemma subm-at-mctxt-of-term:
  p \in poss \ t \Longrightarrow subm-at \ (mctxt-of-term \ t) \ p = mctxt-of-term \ (subt-at \ t \ p)
 by (induct t arbitrary: p) auto
lemma subm-at-mreplace-at[simp]:
  p \in all\text{-}poss\text{-}mctxt \ C \Longrightarrow subm\text{-}at \ (mreplace\text{-}at \ C \ p \ D) \ p = D
  by (induct C arbitrary: p) (auto simp: nth-append-take)
lemma replace-at-subm-at[simp]:
  p \in all\text{-}poss\text{-}mctxt \ C \Longrightarrow mreplace\text{-}at \ C \ p \ (subm\text{-}at \ C \ p) = C
 by (induct C arbitrary: p) (auto simp: id-take-nth-drop[symmetric])
lemma all-poss-mctxt-mreplace-atI1:
 p \in all\text{-}poss\text{-}mctxt \ C \Longrightarrow q \in all\text{-}poss\text{-}mctxt \ C \Longrightarrow \neg \ (p <_p q) \Longrightarrow q \in all\text{-}poss\text{-}mctxt
(mreplace-at \ C \ p \ D)
```

lemma funas-mctxt-sup-mctxt:

qed auto

nth-append-take-drop-is-nth-conv)

proof (induct C arbitrary: p q)

let ?hd = λp . (case p :: pos of $i \# - \Rightarrow i$) case (MFun f Cs) then show ?case

```
(C, D) \in comp\text{-}mctxt \Longrightarrow funas\text{-}mctxt \ (C \sqcup D) = funas\text{-}mctxt \ C \cup funas\text{-}mctxt
```

by (cases?hd p = ?hd q) (auto simp: nth-append-take less-pos-def nth-append-drop-is-nth-conv

```
by (induct CD rule: comp-mctxt.induct) (auto simp: zip-nth-conv Un-Union-image)
lemma mctxt-of-term-not-hole [simp]:
 mctxt-of-term t \neq MHole
 by (cases t) auto
lemma funas-mctxt-mctxt-of-term [simp]:
 funas-mctxt (mctxt-of-term t) = funas-term t
 by (induct t) auto
lemma funas-mctxt-mreplace-at:
 assumes p \in all-poss-mctxt C
 shows funas-mctxt (mreplace-at C p D) \subseteq funas-mctxt C \cup funas-mctxt D
 using assms
proof (induct C p D rule: mreplace-at.induct)
 case (2 f Cs i p D) then have Cs: Cs = take i Cs @ Cs ! i # drop (Suc i) Cs
   by (auto simp: id-take-nth-drop)
 show ?case using 2 by (subst (2) Cs) auto
qed auto
lemma funas-mctxt-mreplace-at-hole:
 assumes p \in hole\text{-}poss C
 shows funas-mctxt (mreplace-at C p D) = funas-mctxt C \cup funas-mctxt D (is
?L = ?R)
proof
 show ?R \subseteq ?L using assms
 proof (induct C p D rule: mreplace-at.induct)
   case (1 C D) then show ?case by (cases C) auto
 next
   case (2 f Cs i p D) then have Cs: Cs = take i Cs @ Cs ! i # drop (Suc i) Cs
     by (auto simp: id-take-nth-drop)
   show ?case using 2 by (subst (1) Cs) auto
 qed auto
next
 show ?L \subseteq ?R using assms by (auto simp: all-poss-mctxt-conv funas-mctxt-mreplace-at)
qed
lemma map-vars-mctxt-fill-holes-mctxt:
 assumes num-holes C = length Cs
 shows map\text{-}vars\text{-}mctxt \ f \ (fill\text{-}holes\text{-}mctxt \ C \ Cs) = fill\text{-}holes\text{-}mctxt \ (map\text{-}vars\text{-}mctxt)
f(C) (map (map-vars-mctxt f) Cs)
 using assms by (induct C Cs rule: fill-holes-induct) (auto simp: comp-def)
lemma map-vars-mctxt-map-vars-mctxt[simp]:
 shows map-vars-mctxt f (map-vars-mctxt g C) = map-vars-mctxt (f \circ g) C
 by (induct C) auto
lemma funas-mctxt-fill-holes:
```

```
assumes num-holes C = length ts
  shows funas-term (fill-holes C ts) = funas-metxt C \cup \bigcup (set (map funas-term
ts))
 using funas-term-fill-holes-iff[OF assms] by auto
lemma mctxt-neg-mholeE:
  x \neq MHole \Longrightarrow (\bigwedge v. \ x = MVar \ v \Longrightarrow P) \Longrightarrow (\bigwedge f \ Cs. \ x = MFun \ f \ Cs \Longrightarrow P)
\Longrightarrow P
 by (cases \ x) auto
lemma prefix-comp-mctxt:
  C \leq E \Longrightarrow D \leq E \Longrightarrow (C, D) \in comp\text{-}mctxt
proof (induct E arbitrary: C D)
 case (MFun f Es C D)
 then show ?case
 proof (elim less-eq-mctxtE2)
   fix Cs Ds
   assume C: C = MFun f Cs and D: D = MFun f Ds
     and lC: length Cs = length Es and lD: length Ds = length Es
      and Ci: \land i. i < length \ Cs \implies Cs \mid i \leq Es \mid i \ and \ Di: \land i. i < length \ Ds
\implies Ds ! i \leq Es ! i
     and IH: \bigwedge E' \ C' \ D'. \ E' \in set \ Es \Longrightarrow C' \leq E' \Longrightarrow D' \leq E' \Longrightarrow (C', D') \in
comp-mctxt
   show (C, D) \in comp\text{-}mctxt
     by (auto simp: C D lC lD intro!: comp-mctxt.intros IH[OF - Ci Di])
 qed (auto intro: comp-mctxt.intros)
qed (auto elim: less-eq-mctxtE2(1,2) intro: comp-mctxt.intros)
lemma less-eq-mctxt-sup-conv1:
  (C, D) \in comp\text{-}mctxt \Longrightarrow C \leq D \longleftrightarrow C \sqcup D = D
 by (induct CD rule: comp\text{-}mctxt.induct) (auto elim!: less\text{-}eq\text{-}mctxtE2 nth\text{-}equalityE
intro: nth-equality I less-eq-mctxI2(3))
lemma less-eq-mctxt-sup-conv2:
 (C, D) \in comp\text{-}mctxt \Longrightarrow D \leq C \longleftrightarrow C \sqcup D = C
 using less-eq-mctxt-sup-conv1 [OF comp-mctxt-sym] by (auto simp: ac-simps)
lemma comp-mctxt-mctxt-of-term1 [dest!]:
  (C, mctxt-of-term\ t) \in comp-mctxt \Longrightarrow C \leq mctxt-of-term\ t
proof (induct C mctxt-of-term t arbitrary: t rule: comp-mctxt.induct)
 case (MHole2 C t)
  then show ?case by (cases t, auto)
  case (MFun f g Cs Ds)
 then show ?case by (cases t, auto intro: less-eq-mctxtI2)
qed auto
[dest] = comp-mctxt-mctxt-of-term2[dest] = comp-mctxt-mctxt-of-term1[OF comp-mctxt-sym]
```

```
lemma mfun-leg-mfunI:
 f = g \Longrightarrow length \ Cs = length \ Ds \Longrightarrow (\land i. \ i < length \ Ds \Longrightarrow Cs \ ! \ i \leq Ds \ ! \ i)
\implies MFun \ f \ Cs \leq MFun \ g \ Ds
 by (auto simp: less-eq-mctxt-def list-eq-iff-nth-eq)
lemma prefix-mctxt-sup:
  assumes C \leq (E :: (f, v) mctxt) D \leq E \text{ shows } C \sqcup D \leq E
  using assms
 by (induct E arbitrary: C D) (auto elim!: less-eq-mctxtE2 intro!: mfun-leq-mfunI)
lemma mreplace-at-leq I:
 p \in all\text{-poss-mctxt} \ C \Longrightarrow C \leq E \Longrightarrow D \leq subm\text{-at} \ E \ p \Longrightarrow mreplace\text{-at} \ C \ p \ D
< E
 by (induct C p D arbitrary: E rule: mreplace-at.induct)
  (auto elim!: less-eq-mctxtE1 intro!: less-eq-mctxtI1 simp: upd-conv-take-nth-drop[symmetric]
nth-list-update)
lemma prefix-and-fewer-holes-implies-equal-mctxt:
  C \leq D \Longrightarrow hole\text{-poss } C \subseteq hole\text{-poss } D \Longrightarrow C = D
proof (induct C D rule: less-eq-mctxt-induct)
  case (1 D) then show ?case by (cases D) auto
next
  case (3 \ Cs \ Ds \ f)
 have i < length Ds \Longrightarrow hole\text{-}poss (Cs!i) \subseteq hole\text{-}poss (Ds!i) for i using 3(1,4)
  then show ?case using 3 by (auto intro!: nth-equalityI)
qed auto
lemma compare-mreplace-at:
 p \in poss\text{-}mctxt \ C \Longrightarrow mreplace\text{-}at \ C \ p \ D \le mreplace\text{-}at \ C \ p \ E \longleftrightarrow D \le E
proof (induct C arbitrary: p)
 case (MFun f Cs p)
  then show ?case
   by (cases p, auto elim!: less-eq-mctxtE2(3) intro!: less-eq-mctxt-intros(3) simp:
nth-append nth-Cons'
       split: if-splits) auto
qed auto
lemma merge-mreplace-at:
  p \in poss\text{-}mctxt \ C \Longrightarrow mreplace\text{-}at \ C \ p \ (D \sqcup E) = mreplace\text{-}at \ C \ p \ D \sqcup mre
place-at \ C \ p \ E
proof (induct C arbitrary: p)
  case (MFun \ f \ Cs \ p)
  then show ?case by (cases p, auto intro: nth-equalityI)
qed auto
```

lemma compare-mreplace-atI':

```
C \leq D \implies C' \leq D' \implies p \in all\text{-poss-metxt} \ C \implies mreplace\text{-at} \ C \ p \ C' \leq C' \implies mreplace
mreplace-at D p D'
proof (induct C D arbitrary: p rule: less-eq-mctxt-induct)
  case (3 \ cs \ ds \ f \ p)
 then show ?case by (cases p, auto intro!: less-eq-mctxt-intros(3) simp: nth-append
nth-Cons')
qed auto
lemma compare-mreplace-atI:
 C \leq D \Longrightarrow C' \leq D' \Longrightarrow p \in poss\text{-}mctxt \ C \Longrightarrow mreplace\text{-}at \ C \ p \ C' \leq mreplace\text{-}at
D p D'
 using compare-mreplace-atI' all-poss-mctxt-conv by blast
lemma all-poss-mctxt-mono:
  C < D \Longrightarrow all\text{-poss-mctxt} \ C \subseteq all\text{-poss-mctxt} \ D
  by (induct C D rule: less-eq-mctxt-induct) force+
lemma all-poss-mctxt-inf-mctxt:
 (C, D) \in comp\text{-}metxt \Longrightarrow all\text{-}poss\text{-}metxt \ (C \sqcap D) = all\text{-}poss\text{-}metxt \ C \cap all\text{-}poss\text{-}metxt
 by (induct C D rule: comp-mctxt.induct) auto
lemma less-eq-subm-at:
  p \in all\text{-}poss\text{-}mctxt \ C \Longrightarrow C \leq D \Longrightarrow subm\text{-}at \ C \ p \leq subm\text{-}at \ D \ p
 by (induct C arbitrary: p D) (auto elim: less-eq-mctxtE1)
lemma inf-subm-at:
  p \in all	ext{-poss-mctxt}\ (C \sqcap D) \Longrightarrow subm	ext{-at}\ (C \sqcap D)\ p = subm	ext{-at}\ C\ p\ \sqcap\ subm	ext{-at}
D p
proof (induct C D arbitrary: p rule: inf-mctxt.induct)
  case (4 f Cs g Ds p) show ?case using 4(1) 4(2)
   by (auto 4 4 intro!: 4(1)[of (Cs! i, Ds! i) Cs! i Ds! i for i] simp: set-zip)
qed auto
lemma less-eq-fill-holesI:
  assumes length Ds = num-holes C length Es = num-holes C
    \bigwedge i. \ i < num-holes \ C \Longrightarrow Ds \ ! \ i \leq Es \ ! \ i
  shows fill-holes-mctxt C Ds \leq fill-holes-mctxt C Es
  using assms(1,2)[symmetric] assms(3)
  by (induct C Ds Es rule: fill-holes-induct2) (auto intro!: less-eq-mctxtI1 simp:
partition-by-nth-nth)
lemma less-eq-fill-holesD:
  assumes length Ds = num-holes C length Es = num-holes C
   fill-holes-mctxt C Ds \leq fill-holes-mctxt C Es i < num-holes C
  shows Ds ! i \leq Es ! i
  using assms(1,2)[symmetric] assms(3,4)
proof (induct C Ds Es arbitrary: i rule: fill-holes-induct2)
  case (MFun \ f \ Cs \ Ds \ Es)
```

```
obtain j \ k where j < length \ Cs \ k < num-holes (Cs ! <math>j)
   zip \ Ds \ Es \ ! \ i = partition-holes (zip \ Ds \ Es) \ Cs \ ! \ j \ ! \ k
  using nth-concat-split[of i partition-holes (zip Ds Es) Cs] MFun(1,2,5) by auto
  moreover then have f(zip Ds Es! i) = partition-holes (map f(zip Ds Es))
Cs ! j ! k  for f
   using nth-map[of k partition-holes (zip Ds Es) Cs ! j f] <math>MFun(1,2)
     length-partition-by-nth[of map num-holes Cs zip Ds Es] by simp
 from this[of fst] this[of snd] map-fst-zip[of Ds Es] map-snd-zip[of Ds Es]
 have Ds!i = partition-holes Ds Cs!j!k Es!i = partition-holes Es Cs!j!k
   using MFun(1,2,5) by simp-all
  ultimately show ?case using MFun(3)[of j \ k] MFun(1,2,4) by (auto elim:
less-eq-mctxtE1)
qed auto
lemma less-eq-fill-holes-iff:
 assumes length Ds = num-holes C length Es = num-holes C
 shows fill-holes-metxt C Ds \leq fill-holes-metxt C Es \longleftrightarrow (\forall i < num-holes C. Ds
! i \leq Es ! i)
 using assms by (auto intro: less-eq-fill-holesI dest: less-eq-fill-holesD)
lemma fill-holes-mctxt-suffix[simp]:
 assumes length Ds = num-holes C shows C \le fill-holes-mctxt C Ds
 using assms(1)[symmetric]
 by (induct C Ds rule: fill-holes-induct) (auto simp: less-eq-mctxt-def intro: nth-equalityI)
lemma fill-holes-mctxt-id:
 assumes length Ds = num-holes C C = fill-holes-mctxt C Ds shows set Ds \subseteq
\{MHole\}
 using assms(1)[symmetric] assms(2)
 apply (induct C Ds rule: fill-holes-induct)
 unfolding set-concat
 by (auto simp: set-conv-nth[of partition-holes - -] list-eq-iff-nth-eq[of - map - -])
lemma fill-holes-suffix[simp]:
 num-holes C = length \ ts \Longrightarrow C \leq mctxt-of-term (fill-holes C \ ts)
 by (induct C ts rule: fill-holes-induct) (auto intro: less-eq-mctxtI1)
        An inverse of fill-holes
fun unfill-holes :: ('f, 'v) mctxt \Rightarrow ('f, 'v) term \Rightarrow ('f, 'v) term list where
 unfill-holes MHole\ t = [t]
 unfill-holes (MVar\ w)\ (Var\ v) = (if\ v = w\ then\ []\ else\ undefined)
| unfill-holes (MFun g Cs) (Fun f ts) = (if f = g \land length ts = length Cs then
   concat (map (\lambda i. unfill-holes (Cs ! i) (ts ! i)) [0..<length ts]) else undefined)
lemma length-unfill-holes[simp]:
 assumes C \leq mctxt-of-term t
 shows length (unfill-holes C t) = num-holes C
 using assms
```

```
proof (induct C t rule: unfill-holes.induct)
 case (3 f Cs g ts) with 3(1)[OF - nth-mem] 3(2) show ?case
   by (auto simp: less-eq-mctxt-def length-concat
       intro!: cong[of sum-list, OF reft] nth-equalityI elim!: nth-equalityE)
ged (auto simp: less-eq-mctxt-def)
lemma fill-unfill-holes:
 assumes C \leq mctxt-of-term t
 shows fill-holes C (unfill-holes C t) = t
 using assms
proof (induct C t rule: unfill-holes.induct)
 case (3 f Cs g ts) with 3(1)[OF - nth-mem] 3(2) show ?case
   by (auto simp: less-eq-mctxt-def intro!: fill-holes-arbitrary elim!: nth-equalityE)
qed (auto simp: less-eq-mctxt-def split: if-splits)
lemma unfill-fill-holes:
 assumes length ts = num-holes C
 shows unfill-holes C (fill-holes C ts) = ts
 using assms[symmetric]
proof (induct C ts rule: fill-holes-induct)
 case (MFun f Cs ts) then show ?case
   by (auto intro!: arg-cong[of - - concat] nth-equalityI[of - partition-holes ts Cs]
       simp del: concat-partition-by) auto
qed auto
lemma unfill-holes-subt:
 assumes C \leq mctxt-of-term t and t' \in set (unfill-holes C t)
 shows t' \triangleleft t
 using assms
proof (induct C t rule: unfill-holes.induct)
 case (3 f Cs g ts)
 obtain i where i < length Cs and t' \in set (unfill-holes (Cs!i) (ts!i))
   using 3 by (auto dest!: in-set-idx split: if-splits simp: less-eq-mctxt-def)
 then show ?case
   using 3(1)[OF - nth-mem[of i]] 3(2,3) supteq.subt[of ts! i ts t'g]
   by (auto simp: less-eq-mctxt-def elim!: nth-equalityE split: if-splits)
qed (auto simp: less-eq-mctxt-def split: if-splits)
lemma factor-hole-pos-by-prefix:
 assumes C \leq D p \in hole\text{-}poss D
 obtains q where q \leq_p p \ q \in hole\text{-}poss \ C
 using assms
 by (induct C D arbitrary: p thesis rule: less-eq-mctxt-induct)
   (auto, metis less-eq-pos-simps(4))
lemma concat-map-zip-upt: assumes \bigwedge i. i < n \Longrightarrow length (f i) = length (g i)
 shows concat (map \ (\lambda i. \ zip \ (f \ i) \ (g \ i)) \ [\theta... < n]) = zip \ (concat \ (map \ f \ [\theta... < n]))
(concat (map g [0..< n]))
  using assms by (induct n arbitrary: f g) (auto simp: map-upt-Suc simp del:
```

```
lemma unfill-holes-by-prefix':
 assumes num-holes C = length \ Ds \ fill-holes-mctxt \ C \ Ds \leq mctxt-of-term \ t
 shows unfill-holes (fill-holes-metxt C Ds) t = concat (map (\lambda(D, t), unfill-holes)
D t) (zip Ds (unfill-holes C t)))
  using assms
proof (induct C Ds arbitrary: t rule: fill-holes-induct)
  case (MVar v) then show ?case by (cases t) (auto elim: less-eq-mctxtE1)
next
 case (MFun \ f \ Cs \ Ds)
 have [simp]: length\ ts = length\ Cs \Longrightarrow map\ (\lambda i.\ unfill-holes\ (map\ (\lambda i.\ fill-holes-mctxt))
(Cs!i) (partition-holes Ds Cs!i))
   [0..< length \ Cs] \ ! \ i) \ (ts \ ! \ i)) \ [0..< length \ Cs]
   = map(\lambda i. unfill-holes(fill-holes-mctxt(Cs!i)(partition-holesDsCs!i))(ts
! i)) [0..< length Cs] for ts
   by (auto intro: nth-equalityI)
  obtain ts where lts: length ts = length Cs t = Fun f ts and
    pre: i < length \ Cs \implies fill-holes-mctxt \ (Cs ! i) \ (partition-holes \ Ds \ Cs ! i) \le
mctxt-of-term (ts! i) for i
   using MFun(1,3) by (cases t) (auto elim!: less-eq-mctxtE2)
 have *: i \in set [0..< n] \Longrightarrow i < n \text{ for } i \text{ n by } auto
 have ***: i < length \ Cs \Longrightarrow Cs \ ! \ i \leq mctxt-of-term \ (ts \ ! \ i) \ \mathbf{for} \ i
  using fill-holes-mctxt-suffix[of partition-holes Ds Cs! i Cs! i, OF length-partition-holes-nth]
MFun(1) pre[of i]
   by (auto simp del: fill-holes-mctxt-suffix)
  have [simp]: concat (map (\lambda i. concat (map f (zip (partition-holes Ds Cs! i)
(unfill-holes (Cs!i) (ts!i))))
    [0..< length \ Cs]) = concat \ (map \ f \ (zip \ Ds \ (concat \ (map \ (\lambda i. \ unfill-holes \ (Cs \ !))))
i) (ts ! i)) [0..< length Cs])))
   for f
   unfolding concat-map-concat[of map - -, unfolded map-map comp-def]
   unfolding map-map[of \ map \ f \ \lambda i. \ zip \ (-i) \ (-i), \ symmetric, \ unfolded \ comp-def]
map-concat[symmetric]
  using MFun(1) map-nth of partition-holes Ds Cs by (auto simp: length-unfill-holes OF
***] concat-map-zip-upt)
 from lts pre show ?case using MFun(1) map-cong[OF reft MFun(2)[OF *], of
[0..< length \ Cs] \ id \ \lambda i. \ ts \ ! \ i]
   by (auto simp del: map-eq-conv)
qed auto
lemma unfill-holes-var-subst:
 C \leq mctxt-of-term t \Longrightarrow unfill-holes (map-vars-mctxt \ f \ C) \ (t \cdot (Var \circ f)) = map
(\lambda t. \ t \cdot (Var \circ f)) \ (unfill-holes \ C \ t)
  by (induct C t rule: unfill-holes.induct; (simp only: mctxt-of-term.simps; elim
less-eq-mctxtE2)?
   (auto simp: map-concat intro!: arg-cong[of - - concat])
```

upt.simps)

6.1.7 Ditto for fill-holes-mctxt

```
fun unfill-holes-mctxt :: ('f, 'v) mctxt \Rightarrow ('f, 'v) mctxt \Rightarrow ('f, 'v) mctxt list where
 unfill-holes-mctxt\ MHole\ D=[D]
 unfill-holes-mctxt \ (MVar \ w) \ (MVar \ v) = (if \ v = w \ then \ [] \ else \ undefined)
| unfill-holes-mctxt (MFun \ g \ Cs) (MFun \ f \ Ds) = (if \ f = g \land length \ Ds = length \ Cs)
then
    concat (map (\lambda i. unfill-holes-mctxt (Cs ! i) (Ds ! i)) [0..<length Ds]) else
undefined)
lemma length-unfill-holes-mctxt [simp]:
 assumes C \leq D
 shows length (unfill-holes-mctxt CD) = num-holes C
 using assms
proof (induct C D rule: unfill-holes-mctxt.induct)
 case (3 f Cs g Ds) with 3(1)[OF - nth-mem] 3(2) show ?case
   by (auto simp: less-eq-mctxt-def length-concat intro!: cong[of sum-list, OF refl]
nth-equality I elim!: nth-equality E)
qed (auto simp: less-eq-mctxt-def)
lemma fill-unfill-holes-mctxt:
 assumes C \leq D
 shows fill-holes-mctxt C (unfill-holes-mctxt C D) = D
 using assms
proof (induct C D rule: unfill-holes-mctxt.induct)
 case (3 f Cs g Ds) with 3(1)[OF - nth-mem] 3(2) show ?case
   by (auto simp: less-eq-mctxt-def intro!: fill-holes-arbitrary elim!: nth-equalityE)
\mathbf{qed}\ (\mathit{auto\ simp:\ less-eq-mctxt-def\ split:\ if\text{-}splits})
lemma unfill-fill-holes-mctxt:
 assumes length Ds = num-holes C
 shows unfill-holes-mctxt \ C \ (fill-holes-mctxt \ C \ Ds) = Ds
 using assms[symmetric]
proof (induct C Ds rule: fill-holes-induct)
 case (MFun f Cs ts) then show ?case
   by (auto intro!: arg-cong[of - - concat] nth-equalityI[of - partition-holes ts Cs]
      simp del: concat-partition-by) auto
qed auto
lemma unfill-holes-mctxt-mctxt-of-term:
 assumes C \leq mctxt-of-term t
 shows unfill-holes-mctxt C (mctxt-of-term\ t) = map\ mctxt-of-term\ (unfill-holes-mctxt)
C(t)
 using assms
proof (induct C arbitrary: t)
 case (MVar x) then show ?case by (cases t) (auto elim: less-eq-mctxtE1)
next
 case MHole then show ?case by (cases t) (auto elim: less-eq-mctxtE1)
next
 case (MFun x1a x2) then show ?case
```

```
- concat])
qed
         Function symbols of prefixes
lemma funas-prefix[simp]:
  C \leq D \Longrightarrow fn \in funas\text{-}mctxt \ C \Longrightarrow fn \in funas\text{-}mctxt \ D
 unfolding less-eq-mctxt-def
proof (induct C D rule: inf-mctxt.induct)
 case (4 f Cs q Ds)
  from 4(3) obtain i where i < length Cs \land fn \in funas-mctxt (Cs!i) \lor fn =
(f, length Cs)
   by (auto dest!: in-set-idx)
 moreover {
   assume i < length \ Cs \land fn \in funas-mctxt \ (Cs ! i)
   then have i < length Ds \land fn \in funas\text{-}mctxt (Ds ! i) using 4(2)
    by (auto intro!: 4(1)[of - Cs! i Ds! i] split: if-splits elim!: nth-equalityE simp:
in\text{-}set\text{-}conv\text{-}nth)
   then have ?case by (auto)
 ultimately show ?case using 4(2) by auto
ged auto
end
6.2
        The Parallel Rewrite Relation
theory Parallel-Rewriting
 imports
    Trs
    Multihole-Context
begin
The parallel rewrite relation as inductive definition
inductive-set par-rstep :: ('f,'v)trs \Rightarrow ('f,'v)trs for R :: ('f,'v)trs
 where root-step[intro]: (s,t) \in R \Longrightarrow (s \cdot \sigma, t \cdot \sigma) \in par-rstep R
  | par-step-fun[intro]: [\![ \land i. i < length \ ts \Longrightarrow (ss! \ i,ts! \ i) \in par-rstep \ R]\!] \Longrightarrow
length ss = length ts
            \implies (Fun f ss, Fun f ts) \in par-rstep R
 par-step-var[intro]: (Var x, Var x) \in par-rstep R
lemma par-rstep-refl[intro]: (t,t) \in par-rstep R
 by (induct\ t,\ auto)
lemma all-ctxt-closed-par-rstep[intro]: all-ctxt-closed F (par-rstep R)
 unfolding all-ctxt-closed-def
 by auto
```

by (cases t) (auto elim: less-eq-mctxtE1 simp: map-concat introl: arg-cong[of -

```
lemma args-par-rstep-pow-imp-par-rstep-pow:
  length \ xs = length \ ys \Longrightarrow \forall i < length \ xs. \ (xs ! i, ys ! i) \in par-rstep \ R \curvearrowright n \Longrightarrow
  (Fun f xs, Fun f ys) \in par-rstep R ^ n
proof(induct n arbitrary:ys)
 case \theta
 then have \forall i < length \ xs. \ (xs ! i = ys ! i) by simp
  with 0 show ?case using relpow-0-I list-eq-iff-nth-eq by metis
  case (Suc\ n)
 let ?c = \lambda \ z \ i. \ (xs ! \ i, \ z) \in par\mbox{-}rstep \ R \ \widehat{\ } n \land (z, \ ys \ ! \ i) \in par\mbox{-}rstep \ R
  { fix i assume i < length xs
   from relpow-Suc-E[OF\ Suc(3)[rule-format,\ OF\ this]]
   have \exists z. (?c z i) by metis
  with choice have \exists zf. \forall i < length xs. (?c (zf i) i) by meson
 then obtain zf where a:\forall i < length xs. (?c (zf i) i) by auto
 let ?zs = map \ zf \ [0.. < length \ xs]
 have len:length xs = length ?zs by simp
  from a map-nth have \forall i < length \ xs. \ (xs ! i, ?zs ! i) \in par-rstep \ R \curvearrowright n by
  from Suc(1)[OF len this] have n:(Fun f xs, Fun f ?zs) \in par-rstep R ^n by
auto
  from a map-nth have \forall i < length \ xs. \ (?zs ! i, ys ! i) \in par-rstep \ R \ by \ auto
  with par-step-fun len Suc(2) have (Fun \ f \ ?zs, Fun \ f \ ys) \in par-rstep \ R by auto
  with n show ?case by auto
qed
lemma ctxt-closed-par-rstep[intro]: ctxt.closed (par-rstep R)
proof (rule one-imp-ctxt-closed)
 fix f bef s t aft
 assume st: (s,t) \in par\text{-}rstep R
 let ?ss = bef @ s \# aft
 let ?ts = bef @ t \# aft
 show (Fun f ?ss, Fun f ?ts) \in par-rstep R
 proof (rule par-step-fun)
   \mathbf{fix} i
   assume i < length ?ts
   show (?ss! i, ?ts! i) \in par-rstep R
       using par-rstep-refl[of ?ts! i R] st by (cases i = length bef, auto simp:
nth-append)
 \mathbf{qed}\ simp
qed
lemma subst-closed-par-rstep: (s,t) \in par-rstep R \Longrightarrow (s \cdot \sigma, t \cdot \sigma) \in par-rstep R
proof (induct rule: par-rstep.induct)
 case (root-step s t \tau)
 show ?case
   using par-rstep.root-step[OF root-step, of \tau \circ_s \sigma] by auto
next
```

```
case (par-step-var x)
 show ?case by auto
\mathbf{next}
  case (par-step-fun \ ss \ ts \ f)
 \mathbf{show}~? case~\mathbf{unfolding}~eval\text{-}term.simps
   by (rule par-rstep.par-step-fun, insert par-step-fun(2-3), auto)
qed
lemma R-par-rstep: R \subseteq par-rstep R
 using root-step[of - - R \ Var] by auto
lemma par-rstep-rsteps: par-rstep R \subseteq (rstep \ R)^*
proof
 \mathbf{fix} \ s \ t
 assume (s,t) \in par\text{-}rstep R
 then show (s,t) \in (rstep \ R)^*
 proof (induct rule: par-rstep.induct)
   case (root-step s t sigma)
   then show ?case by auto
 next
   case (par-step-var x)
   then show ?case by auto
   case (par-step-fun \ ts \ ss \ f)
     from all-ctxt-closedD[of UNIV, OF all-ctxt-closed-rsteps - par-step-fun(3)
par-step-fun(2)
   show ?case unfolding par-step-fun(3) by simp
 ged
\mathbf{qed}
lemma rstep-par-rstep: rstep R \subseteq par-rstep R
 by (rule rstep-subset[OF ctxt-closed-par-rstep subst.closedI R-par-rstep],
     insert subst-closed-par-rstep, auto)
lemma par-rsteps-rsteps: (par-rstep R)^* = (rstep R)^* (is ?P = ?R)
 from rtrancl-mono[OF\ par-rstep-rsteps[of\ R]] show ?P \subseteq ?R by simp
 from rtrancl-mono[OF\ rstep-par-rstep] show ?R \subseteq ?P.
qed
lemma par-rsteps-union: (par-rstep A \cup par-rstep B)^* =
   (rstep (A \cup B))^*
proof
 show (par\text{-}rstep\ A \cup par\text{-}rstep\ B)^* \subseteq (rstep\ (A \cup B))^*
   by (metis par-rsteps-rsteps rstep-union rtrancl-Un-rtrancl set-eq-subset)
 show (rstep \ (A \cup B))^* \subseteq (par-rstep \ A \cup par-rstep \ B)^* unfolding rstep-union
   by (meson rstep-par-rstep rtrancl-mono sup-mono)
qed
```

```
lemma par-rstep-inverse: par-rstep (R^-1) = (par-rstep R)^-1
proof -
           fix s t :: ('a, 'b) term and R
           assume (s,t) \in par\text{-}rstep \ (R^-1)
           hence (t,s) \in par\text{-}rstep R
                by (induct\ s\ t,\ auto)
     from this[of - R] this[of - R^-1]
     show ?thesis by auto
qed
lemma par-rstep-conversion: (rstep\ R)^{\leftrightarrow *} = (par-rstep\ R)^{\leftrightarrow *}
     unfolding conversion-def
     by (metis par-rsteps-rsteps rtrancl-Un-rtrancl rtrancl-converse)
lemma par-rstep-mono: assumes R \subseteq S
     shows par-rstep R \subseteq par-rstep S
proof
     \mathbf{fix} \ s \ t
     show (s, t) \in par\text{-}rstep \ R \Longrightarrow (s, t) \in par\text{-}rstep \ S
           by (induct s t rule: par-rstep.induct, insert assms, auto)
qed
lemma wf-trs-par-rstep: assumes wf: \bigwedge l \ r. \ (l,r) \in R \Longrightarrow is-Fun l
     and step: (Var x, t) \in par\text{-}rstep R
\mathbf{shows}\ t = \mathit{Var}\ x
     using step
proof (cases rule: par-rstep.cases)
     case (root-step l r \sigma)
     from root-step(1) wf[OF\ root-step(3)] show ?thesis by (cases l, auto)
qed auto
main lemma which tells us, that either a parallel rewrite step of l \cdot \sigma is
inside l, or we can do the step completely inside \sigma
lemma par-rstep-linear-subst: assumes lin: linear-term l
     and step: (l \cdot \sigma, t) \in par\text{-}rstep R
shows (\exists \ \tau. \ t = l \cdot \tau \land (\forall \ x \in vars\text{-}term \ l. \ (\sigma \ x, \tau \ x) \in par\text{-}rstep \ R) \lor
                                       (\exists C l'' l' r'. l = C\langle l'' \rangle \land is\text{-Fun } l'' \land (l',r') \in R \land (l'' \cdot \sigma = l' \cdot \tau) \land l'' \land l' \land l'' \land l' \land l'
((C \cdot_c \sigma) \langle r' \cdot \tau \rangle, t) \in par\text{-rstep } R))
     using lin step
proof (induction l arbitrary: t)
     case (Var x t)
     let ?tau = \lambda y. t
     show ?case
           by (rule\ ext[of - ?tau],\ rule\ disjI1,\ insert\ Var(2),\ auto)
next
     case (Fun f ss)
     let ?ss = map (\lambda \ s. \ s \cdot \sigma) \ ss
```

```
let ?R = par\text{-}rstep R
  from Fun(3)
  show ?case
  proof (cases rule: par-rstep.cases)
    case (root-step l r \tau)
    show ?thesis
    proof (rule exI, rule disjI2, intro exI conjI)
      show (l,r) \in R by (rule\ root\text{-}step(3))
     show Fun f ss = \Box \langle Fun \ f \ ss \rangle by simp
     show (Fun f ss) \cdot \sigma = l \cdot \tau by (rule root-step(1))
     \mathbf{show}\ ((\Box \cdot_c \sigma) \langle\ r \cdot \tau\ \rangle,\ t) \in \ ?R\ \mathbf{unfolding}\ \mathit{root-step}(2)\ \mathbf{using}\ \mathit{par-rstep-refl}
by simp
    qed simp
 next
    case (par-step-var x)
    then show ?thesis by simp
    case (par-step-fun\ ts\ ss1\ g)
    then have id: ss1 = ?ss g = f and len: length ts = length ss by auto
   let ?p1 = \lambda \tau i. ts! i = ss! i \cdot \tau \land (\forall x \in vars-term (ss! i). (\sigma x, \tau x) \in ?R)
    let ?p2 = \lambda \tau i. (\exists C l'' l' r'. ss! i = C \langle l'' \rangle \land is-Fun l'' \land (l',r') \in R \land l''.
\sigma = l' \cdot \tau \wedge ((C \cdot_c \sigma) \langle r' \cdot \tau \rangle, (\textit{ts} ! \textit{i})) \in ?R)
    let ?p = \lambda \tau i. ?p1 \tau i \lor ?p2 \tau i
    {
     \mathbf{fix} i
     assume i: i < length ss
      with par-step-fun(4) id have i2: i < length ts by auto
       from par-step-fun(3)[OF i2] have step: (ss!i \cdot \sigma, ts!i) \in par-rstep R
unfolding id \ nth-map[OF \ i].
      from i have mem: ss! i \in set ss by auto
      from Fun.prems(1) mem have linear-term (ss! i) by auto
      from Fun.IH[OF mem this step] have \exists \tau. ?p \tau i.
    then have \forall i. \exists tau. i < length ss \longrightarrow ?p tau i by blast
    from choice [OF this] obtain taus where taus: \bigwedge i. i < length ss \implies ?p (taus
i) i by blast
    show ?thesis
    proof (cases \exists i. i < length ss \land ?p2 (taus i) i)
      case True
      then obtain i where i: i < length ss and p2: p2 (taus i) i by blast+
      from par-step-fun(2)[unfolded\ id] have t: t = Fun\ f\ ts.
      from i have i': i < length ts unfolding len.
      from p2 obtain C l'' l' r' where ssi: ss! i = C \langle l'' \rangle and is-Fun l'' (l',r')
\in R \ l'' \cdot \sigma = l' \cdot taus \ i
       and tsi: ((C \cdot_c \sigma) \langle r' \cdot taus i \rangle, ts! i) \in ?R by blast
      from id-take-nth-drop[OF\ i,\ unfolded\ ssi] obtain bef\ aft\ where\ ss:\ ss=bef
@ C \langle l'' \rangle \# aft
        and bef: bef = take \ i \ ss
        and aft: aft = drop (Suc \ i) \ ss \ by \ blast
```

```
let ?C = More \ f \ bef \ C \ aft
      let ?r = (C \cdot_c \sigma) \langle r' \cdot taus i \rangle
      let ?sig = map (\lambda \ s. \ s \cdot \sigma)
      let ?bra = ?sig\ bef @ ?r # ?sig\ aft
      have C: (?C \cdot_c \sigma) \langle r' \cdot taus i \rangle = Fun f ?bra by simp
      show ?thesis unfolding ss
      \mathbf{proof} \ (\mathit{rule} \ \mathit{exI}[\mathit{of} \ \textit{-} \ \mathit{taus} \ \mathit{i}], \ \mathit{rule} \ \mathit{disjI2}, \ \mathit{rule} \ \mathit{exI}[\mathit{of} \ \textit{-} \ ?C], \ \mathit{intro} \ \mathit{exI} \ \mathit{conjI})
        show is-Fun l'' by fact
        show (l',r') \in R by fact
        show l'' \cdot \sigma = l' \cdot taus \ i \ by \ fact
        show ((?C \cdot_c \sigma) \langle r' \cdot taus i \rangle, t) \in ?R unfolding C t
        proof (rule par-rstep.par-step-fun)
          show length ?bra = length ts
            unfolding len unfolding ss by simp
        next
          \mathbf{fix} j
          assume j: j < length ts
          show (?bra!j, ts!j) \in ?R
          proof (cases j = i)
            case True
            then have ?bra ! j = ?r using bef i by (simp \ add: nth-append)
            then show ?thesis using tsi True by simp
          next
            case False
            from bef i have min (length ss) i = i by simp
            then have ?bra! j = (?sig\ bef\ @\ (C\ \langle\ l''\ \rangle \cdot \sigma)\ \#\ ?sig\ aft)! j using
False bef i by (simp add: nth-append)
            also have ... = ?sig ss ! j unfolding ss by simp
            also have ... = ss1 ! j unfolding id ...
           finally show ?thesis
              using par-step-fun(3)[OF j] by auto
          qed
        qed
      qed simp
   next
      {\bf case}\ \mathit{False}
      with taus have taus: \bigwedge i. i < length ss \implies ?p1 \ (taus \ i) \ i by blast
      from Fun(2) have is-partition (map vars-term ss) by simp
     from subst-merge[OF this, of taus] obtain \tau where tau: \bigwedge i x. i < length ss
\implies x \in vars\text{-}term \ (ss ! i) \implies \tau \ x = taus \ i \ x \ by \ auto
      let ?tau = \tau
      {
        \mathbf{fix} i
        assume i: i < length ss
        then have mem: ss ! i \in set ss by auto
        from taus[OF i] have p1: ?p1 (taus i) i.
        have id: ss ! i \cdot (taus \ i) = ss ! i \cdot \tau
          by (rule term-subst-eq, rule tau[OF i, symmetric])
        have ?p1 ?tau i
```

```
proof (rule conjI[OF - ballI])
         \mathbf{fix} \ x
         assume x: x \in vars\text{-}term (ss!i)
         with p1 have step: (\sigma x, taus i x) \in par\text{-rstep } R by auto
         with tau[OF \ i \ x]
         show (\sigma x, ?tau x) \in par-rstep R by simp
       qed (insert p1[unfolded id], auto)
     } note p1 = this
     have p1: \bigwedge i. i < length ss \Longrightarrow ?p1 \tau i by (rule p1)
     let ?ss = map (\lambda \ s. \ s \cdot \tau) \ ss
     \mathbf{show} \ ?thesis \ \mathbf{unfolding} \ par\text{-}step\text{-}fun(2) \ id
     proof (rule exI[of - \tau], rule disjI1, rule conjI[OF - ballI])
       have ts = map \ (\lambda \ i. \ ts \ ! \ i) \ [0 \ .. < (length \ ts)] by (rule \ map-nth[symmetric])
       also have ... = map (\lambda i. ?ss! i) [0 ..< length ?ss] unfolding len using
p1 by auto
       also have \dots = ?ss by (rule map-nth)
       finally have ts: ts = ?ss.
       show Fun f ts = Fun f ss \cdot \tau unfolding ts by auto
       \mathbf{fix} \ x
       assume x \in vars\text{-}term (Fun f ss)
       then obtain s where s: s \in set ss and x: x \in vars\text{-}term s by auto
       from s[unfolded set-conv-nth] obtain i where i: i < length ss and s: s =
ss! i by auto
       from p1[OF\ i]\ x[unfolded\ s]
       show (\sigma x, \tau x) \in par\text{-}rstep R by blast
     qed
   qed
 qed
qed
lemma par-rstep-id:
 (s, t) \in R \Longrightarrow (s, t) \in par\text{-}rstep R
 using par-rstep.root-step [of s t R Var] by simp
       Parallel Rewriting using Multihole Contexts
datatype ('f,'v) par-info = Par-Info
  (par-left: ('f,'v)term)
  (par-right: ('f,'v)term)
  (par-rule: ('f,'v)rule)
abbreviation par-lefts where par-lefts \equiv map par-left
abbreviation par-rights where par-rights \equiv map par-right
abbreviation par-rules where par-rules \equiv (\lambda info. par-rule 'set info)
definition par\text{-}cond :: ('f,'v)trs \Rightarrow ('f,'v)par\text{-}info \Rightarrow bool where
  par-cond R info = (par-rule info \in R \land (par-left info, par-right info) \in rrstep
{ par-rule info})
```

```
abbreviation par-conds where par-conds R \equiv \lambda infos. Ball (set infos) (par-cond
R
lemma par-cond-imp-rrstep: assumes par-cond R info
 shows (par-left info, par-right info) \in rrstep R
 using assms unfolding par-cond-def
 by (metis rrstepE rrstepI singletonD)
lemma par-conds-imp-rrstep: assumes par-conds R infos
 and s = par-lefts infos! it = par-rights infos! it
 and i < length infos
shows (s, t) \in rrstep R
proof -
  from assms have eq: s = par-left (infos! i) t = par-right (infos! i) and pc:
par-cond R (infos ! i)
   by auto
 show ?thesis unfolding eq using par-cond-imp-rrstep[OF pc].
qed
definition par-rstep-mctxt where
 par-rstep-mctxt \ R \ C \ infos = \{(s, t). \ s =_f \ (C, par-lefts \ infos) \land t =_f \ (C, par-rights) \}
infos) \land par-conds \ R \ infos\}
lemma par-rstep-mctxtI: assumes s =_f (C, par-lefts infos) t =_f (C, par-rights)
infos) par-conds R infos
 shows (s,t) \in par\text{-}rstep\text{-}mctxt \ R \ C \ infos
 unfolding par-rstep-mctxt-def using assms by auto
lemma par-rstep-mctxt-reflI: (s,s) \in par-rstep-mctxt R (mctxt-of-term s) []
 by (intro par-rstep-mctxtI, auto)
lemma par-rstep-mctxt-varI: (Var x, Var x) \in par-rstep-mctxt R (MVar x) []
 by (intro par-rstep-mctxtI, auto)
lemma par-rstep-mctxt-MHoleI: (l,r) \in R \Longrightarrow s = l \cdot \sigma \Longrightarrow t = r \cdot \sigma \Longrightarrow infos
= [Par-Info\ s\ t\ (l,r)]
  \implies (s,t) \in par\text{-}rstep\text{-}mctxt \ R \ MHole infos
 by (intro par-rstep-mctxtI, auto simp: par-cond-def)
lemma par-rstep-mctxt-funI:
 assumes rec: \bigwedge i. \ i < length \ ts \Longrightarrow (ss ! i, ts ! i) \in par-rstep-mctxt \ R \ (Cs ! i)
(infos!i)
   and len: length ss = length ts length ts length ts length infos = length ts
 shows (Fun f ss, Fun f ts) \in par-rstep-metxt R (MFun f Cs) (concat infos)
 unfolding par-rstep-mctxt-def
proof (standard, unfold split, intro conjI)
   \mathbf{fix} i
```

```
assume i < length ts
   from rec[OF this, unfolded par-rstep-mctxt-def]
   have ss! i =_f (Cs! i, par-lefts (infos! i)) ts! i =_f (Cs! i, par-rights (infos! i))
i))
     par-conds R (infos! i) by auto
  } note * = this
  from *(3)[folded\ len(3)] show par-conds R (concat infos)
   by (metis in-set-conv-nth nth-concat-split)
 show Fun f ss =_f (MFun \ f \ Cs, par-lefts (concat infos)) unfolding map-concat
   by (intro eqf-MFunI, insert *(1) len, auto)
 show Fun f ts = f (MFun f Cs, par-rights (concat infos)) unfolding map-concat
   by (intro eqf-MFunI, insert *(2) len, auto)
qed
\mathbf{lemma}\ par-rstep-mctxt-funI-ex:
 assumes \bigwedge i. i < length ts \Longrightarrow \exists C infos. (ss!i, ts!i) \in par-rstep-mctxt R C
   and length ss = length ts
 shows \exists C \text{ infos. } (Fun f ss, Fun f ts) \in par\text{-}rstep\text{-}mctxt } R C \text{ infos } \land C \neq MHole
proof -
 let ?n = length ts
 from assms(1) have \forall i. \exists C infos. i < ?n \longrightarrow (ss!i, ts!i) \in par-rstep-metxt
R C infos by auto
  from choice [OF this] obtain C where \forall i. \exists infos. i < ?n \longrightarrow (ss!i, ts!i)
\in par-rstep-mctxt R (C i) infos by auto
 from choice[OF\ this]\ obtain infos\ where steps: \bigwedge\ i.\ i<\ ?n \Longrightarrow (ss\ !\ i,\ ts\ !\ i)
\in par-rstep-mctxt \ R \ (C \ i) \ (infos \ i) \ \mathbf{by} \ auto
 let ?Cs = map \ C \ [0 \ .. < ?n]
 let ?Is = map infos [0 ..< ?n]
 show ?thesis
 proof (intro exI conjI, rule par-rstep-mctxt-funI)
   show length ?Cs = ?n by simp
   show length ?Is = ?n by simp
 qed (insert assms(2) steps, auto)
qed
Parallel rewriting is closed under multihole-contexts.
lemma par-rstep-mctxt:
 assumes s =_f (C, ss) and t =_f (C, ts)
   and \forall i < length \ ss. \ (ss!i, \ ts!i) \in par-rstep \ R
 shows (s, t) \in par\text{-}rstep R
proof -
 have [simp]: length ss = length ts using assms by (auto dest!: eqfE)
 have [simp]: t = fill-holes\ C\ ts\ using\ assms\ by\ (auto\ dest:\ eqfE)
 have (s, fill-holes\ C\ ts) \in par-rstep\ R
    using assms by (intro eqf-all-ctxt-closed-step [of UNIV - s C ss, THEN con-
junct1]) auto
  then show ?thesis by simp
```

```
qed
```

```
\mathbf{lemma}\ par-rstep-mctxt-rrstepI:
   assumes s =_f (C, ss) and t =_f (C, ts)
       and \forall i < length \ ss. \ (ss ! i, ts ! i) \in rrstep \ R
   shows (s, t) \in par\text{-}rstep R
   by (meson\ assms\ contra-subset D\ par-rstep-mctxt\ rrstep-imp-rstep\ rstep-par-rstep)
lemma par-rstep-mctxtD:
    assumes (s, t) \in par\text{-}rstep R
    shows \exists C \text{ ss ts. } s =_f (C, \text{ ss}) \land t =_f (C, \text{ ts}) \land (\forall i < \text{length ss. } (\text{ss ! } i, \text{ ts ! } i) \in
rrstep R)
       (is \exists C ss ts. ?P s t C ss ts)
    using assms
proof (induct)
    case (root-step s t \sigma)
    then have (s \cdot \sigma, t \cdot \sigma) \in rrstep R by auto
   moreover have s \cdot \sigma =_f (MHole, [s \cdot \sigma]) and t \cdot \sigma =_f (MHole, [t \cdot \sigma]) by auto
    ultimately show ?case by force
next
    case (par-step-var x)
    have Var x =_f (MVar x, []) by auto
    then show ?case by force
\mathbf{next}
    case (par-step-fun\ ts\ ss\ f)
    then have \forall i < length \ ts. \ \exists \ x. \ ?P \ (ss!i) \ (ts!i) \ (fst \ x) \ (fst \ (snd \ x)) \ (snd \ (sn
x)) by force
    then obtain g where \forall i < length \ ts. \ ?P \ (ss ! i) \ (ts ! i) \ (fst \ (g \ i)) \ (fst \ (snd \ (g \ i)))
i))) (snd (snd (g i)))
       unfolding choice-iff' by blast
    moreover
    define Cs us vs where Cs = map (\lambda i. fst (g i)) [0 ... < length ts]
       and us = map (\lambda i. fst (snd (g i))) [0 ... < length ts]
       and vs = map (\lambda i. snd (snd (g i))) [0 ... < length ts]
    ultimately have [simp]: length Cs = length ts
       length \ us = length \ ts \ length \ vs = length \ ts
       and *: \forall i < length \ us. \ ss \mid i =_f (Cs \mid i, \ us \mid i) \land ts \mid i =_f (Cs \mid i, \ vs \mid i) \land
           (\forall j < length (us ! i). (us ! i ! j, vs ! i ! j) \in rrstep R)
       bv simp-all
    define C where C = MFun f Cs
    have Fun f ss = _f (C, concat us) and Fun f ts = _f (C, concat vs)
       using * by (auto simp: C-def \langle length \ ss = length \ ts \rangle intro: eqf-MFunI)
    moreover have \forall i < length (concat us). (concat us ! i, concat vs ! i) \in rrstep R
       using * by (intro concat-all-nth) (auto dest!: eqfE)
    ultimately show ?case by blast
```

```
shows par-rstep-mctxt \ R \ C \ infos \subseteq par-rstep-mctxt \ S \ C \ infos using assms unfolding par-rstep-mctxt-def \ par-cond-def by auto
```

```
lemma par-rstep-mctxtE:
  assumes (s, t) \in par\text{-}rstep R
 obtains C infos where s = f(C, par-lefts infos) and t = f(C, par-rights infos)
   and par-conds R infos
proof -
 have \exists C infos. s = f(C, par-lefts infos) \land t = f(C, par-rights infos) \land par-conds
R \ infos \ (\mathbf{is} \ \exists \ C \ infos. \ ?P \ s \ t \ C \ infos)
   using assms
 proof (induct)
   case (root-step s t \sigma)
    thus ?case by (intro exI[of - MHole] exI[of - [Par-Info (s \cdot \sigma) (t \cdot \sigma) (s,t)]],
auto simp: par-cond-def)
  next
   case (par-step-var x)
   show ?case by (intro exI[of - MVar x] exI[of - Nil], auto)
   case (par-step-fun\ ts\ ss\ f)
   have \exists C \text{ infos. } (Fun f ss, Fun f ts) \in par\text{-}rstep\text{-}mctxt } R C \text{ infos } \land C \neq MHole
    by (intro par-rstep-mctxt-funI-ex, insert par-step-fun, auto simp: par-rstep-mctxt-def)
    then obtain C infos where (Fun f ss, Fun f ts) \in par-rstep-mctxt R C infos
by auto
   hence ?P (Fun f ss) (Fun f ts) C infos
      by (auto simp: par-rstep-mctxt-def)
   thus ?case by blast
  qed
  with that show ?thesis by blast
qed
lemma par-rstep-par-rstep-mctxt-conv:
  (s, t) \in par\text{-}rstep \ R \longleftrightarrow (\exists \ C \ infos. \ (s, t) \in par\text{-}rstep\text{-}mctxt \ R \ C \ infos)
proof
  assume (s, t) \in par\text{-}rstep R
 from par-rstep-mctxtE[OF this] obtain C infos
   where s = f(C, par-lefts infos) and t = f(C, par-rights infos) and par-conds
R infos
   by metis
 then show \exists C \text{ infos. } (s, t) \in par\text{-}rstep\text{-}mctxt R C \text{ infos by (auto simp: }par\text{-}rstep\text{-}mctxt\text{-}def)
  assume \exists C \text{ infos. } (s, t) \in par\text{-}rstep\text{-}mctxt \ R \ C \text{ infos}
  then show (s, t) \in par\text{-}rstep R
   \mathbf{by}\ (\textit{force simp: par-rstep-mctxt-def par-cond-def rrstep-def' set-conv-nth\ intro!}:
par-rstep-mctxt-rrstepI)
ged
fun subst-apply-par-info :: ('f,'v)par-info <math>\Rightarrow ('f,'v)subst \Rightarrow ('f,'v)par-info (infixl
```

```
\cdot pi 67) where
  Par-Info\ s\ t\ r\ \cdot pi\ \sigma = Par-Info\ (s\cdot \sigma)\ (t\cdot \sigma)\ r
lemma subst-apply-par-info-simps[simp]:
  par-left\ (info\ \cdot pi\ \sigma) = par-left\ info\ \cdot \ \sigma
  par-right \ (info \cdot pi \ \sigma) = par-right \ info \cdot \sigma
  par-rule\ (info\ \cdot pi\ \sigma)=par-rule\ info
  par-cond R info \Longrightarrow par-cond R (info \cdot pi \sigma)
  unfolding par-cond-def
  by (cases info; force simp: subst.closedD subst-closed-rrstep)+
lemma par-rstep-mctxt-subst: assumes (s,t) \in par-rstep-mctxt \ R \ C \ infos
  shows (s \cdot \sigma, t \cdot \sigma) \in par\text{-}rstep\text{-}mctxt \ R \ (C \cdot mc \ \sigma) \ (map \ (\lambda \ i. \ i \cdot pi \ \sigma) \ infos)
 using assms unfolding par-rstep-mctxt-def by (auto simp: o-def dest!: subst-apply-mctxt-sound|of
-C-\sigma
lemma par-rstep-mctxt-MVarE:
 assumes (s,t) \in par\text{-}rstep\text{-}mctxt \ R \ (MVar \ x) \ infos
 shows s = Var x t = Var x infos = []
  using assms[unfolded par-rstep-mctxt-def]
  by (auto dest: eqf-MVarE)
lemma par-rstep-mctxt-MHoleE:
  assumes (s,t) \in par\text{-}rstep\text{-}mctxt \ R \ MHole \ infos
  obtains info where
   par-left info = s
   par-right info = t
   infos = [info]
   (s, t) \in rrstep R
   par-cond R info
proof -
  from assms[unfolded par-rstep-mctxt-def, simplified]
 have s =_f (MHole, par-lefts infos) t =_f (MHole, par-rights infos) and par-conds
R infos by auto
 from eqf-MHoleE[OF this(1)] eqf-MHoleE[OF this(2)] this(3)
 obtain info where *: infos = [info] s = par-left info t = par-right info par-cond
R info
   by (cases infos, auto)
  from par-cond-imp-rrstep[OF *(4)] *
  have (s,t) \in rrstep R by auto
  with * have \exists info. par-left info = s \land par-right info = t \land infos = [info] \land (s, t)
t) \in rrstep R \wedge
   par-cond R info by auto
  thus (\wedge info.)
       par-left info = s \Longrightarrow
       par-right info = t \Longrightarrow
       infos = [info] \Longrightarrow
        (s, t) \in rrstep \ R \Longrightarrow par-cond \ R \ info \Longrightarrow thesis) \Longrightarrow
    thesis by blast
```

```
qed
```

```
\mathbf{lemma} \ par\text{-}rstep\text{-}mctxt\text{-}MFunD\text{:}
 assumes (s,t) \in par\text{-}rstep\text{-}mctxt \ R \ (MFun \ f \ Cs) \ infos
 shows \exists ss ts Infos.
   s = Fun f ss \wedge
   t = Fun f ts \wedge
   length ss = length Cs \land
   length ts = length Cs \land
   length\ Infos = length\ Cs \land
   infos = concat \ Infos \land
   (\forall i < length \ Cs. \ (ss!i, ts!i) \in par-rstep-mctxt \ R \ (Cs!i) \ (Infos!i))
proof -
 from assms[unfolded par-rstep-mctxt-def]
 have eq: s = f (MFun f Cs, par-lefts infos) t = f (MFun f Cs, par-rights infos)
   and pc: par-conds R infos
   by auto
 define Infos where Infos = partition-holes infos Cs
 let ?sss = map par-lefts Infos
 let ?tss = map par-rights Infos
 let ?n = length Cs
 let ?is = [0..<?n]
 from eqfE[OF \ eq(1)]
  have s: s = Fun \ f \ (map \ (\lambda i. \ fill-holes \ (Cs!i) \ (?sss!i)) \ ?is)
   and num: num-holes (MFun f Cs) = length infos
   and len: length Infos = ?n
   and infos: infos = concat Infos
   and lens: \land i. i < ?n \Longrightarrow num\text{-holes}(Cs!i) = length(Infos!i)
   by (auto simp: Infos-def)
 note pc = pc[unfolded infos set-concat]
 from eqfE[OF\ eq(2)]\ num
 have t: t = Fun \ f \ (map \ (\lambda i. \ fill-holes \ (Cs!i) \ (?tss!i)) \ ?is)
   by (auto simp: Infos-def)
 show ?thesis
   apply (intro exI[of - Infos] exI conjI infos len allI impI)
       apply (rule\ s)
      apply (rule\ t)
     apply force
    apply force
   apply (intro par-rstep-mctxtI, insert lens len pc, auto)
   done
qed
```

6.4 Variable Restricted Parallel Rewriting

```
fun vars-below-hole :: ('f,'v)term \Rightarrow ('f,'v)mctxt \Rightarrow 'v set where vars-below-hole t MHole = vars-term t | vars-below-hole t (MVar y) = {} | vars-below-hole (Fun - ts) (MFun - Cs) =
```

```
\bigcup (set (map (\lambda (t,C). vars-below-hole t C) (zip ts Cs)))
| vars-below-hole (Var-) (MFun--) = Code.abort (STR "assumption in vars-below-hole")
violated'') (\lambda -. \{\})
lemma vars-below-hole-no-hole: hole-poss C = \{\} \implies vars-below-hole t C = \{\}
 by (induct t C rule: vars-below-hole.induct, auto simp: set-zip, blast)
lemma vars-below-hole-mctxt-of-term[simp]: vars-below-hole t (mctxt-of-term u) =
{}
 by (rule vars-below-hole-no-hole, auto)
lemma vars-below-hole-vars-term: vars-below-hole t C \subseteq vars-term t
 by (induct t C rule: vars-below-hole.induct; force simp: set-zip set-conv-nth)
lemma vars-below-hole-subst[simp]: vars-below-hole t (C \cdot mc \ \sigma) = vars-below-hole
 by (induct t C rule: vars-below-hole.induct; fastforce simp: set-zip)
lemma vars-below-hole-Fun: assumes length ls = length Cs
 shows vars-below-hole (Fun f ls) (MFun f Cs) = [] {vars-below-hole (ls! i) (Cs
! i) \mid i. i < length Cs \}
 using assms by (auto simp: set-zip)
\mathbf{lemma}\ \textit{vars-below-hole-term-subst}:
  \textit{hole-poss} \ D \subseteq \textit{poss} \ t \implies \textit{vars-below-hole} \ (t \cdot \sigma) \ D = \bigcup \ (\textit{vars-term} \ `\sigma \ `
vars-below-hole t D)
proof (induct t D rule: vars-below-hole.induct)
 case (1 t)
 then show ?case by (auto simp: vars-term-subst)
\mathbf{next}
 case (3 f ts g Cs)
 then show ?case by (fastforce simp: set-zip)
next
  case (4 x f Cs)
 hence hp: hole-poss (MFun f Cs) = {} by auto
 show ?case unfolding vars-below-hole-no-hole[OF hp] by auto
ged auto
lemma vars-below-hole-eqf: assumes t =_f (C, ts)
 shows vars-below-hole t C = \bigcup (vars-term 'set ts)
 using assms
proof (induct C arbitrary: t ts)
 case (MVar x)
 from eqf-MVarE[OF\ MVar(1)]
 show ?case by auto
  case MHole
 from eqf-MHoleE[OF MHole(1)]
```

```
show ?case by auto
next
  case (MFun \ f \ Cs \ t \ ss)
  from eqf-MFunE[OF\ MFun(2)] obtain ts\ sss where
   *: t = Fun f ts length ts = length Cs length sss = length Cs
   \bigwedge i. \ i < length \ Cs \Longrightarrow ts \ ! \ i =_f (Cs \ ! \ i, \ sss \ ! \ i)
   ss = concat \ sss \ \mathbf{by} \ blast
   \mathbf{fix} i
   assume i: i < length Cs
   hence mem: Cs ! i \in set Cs by auto
   from MFun(1)[OF\ mem\ *(4)[OF\ i]]
   have vars-below-hole (ts!i) (Cs!i) = \bigcup (vars-term 'set (sss!i)).
  \} note IH = this
 show ?case unfolding *(1) *(5) set-concat set-conv-nth[of sss] using IH *(2,3)
   by (auto simp: set-zip)
qed
definition par-rstep-var-restr R V = \{(s,t) \mid s \ t \ C \ infos.
  (s, t) \in par\text{-}rstep\text{-}mctxt \ R \ C \ infos \land vars\text{-}below\text{-}hole \ t \ C \cap V = \{\}\}
lemma par-rstep-var-restr-mono: assumes R \subseteq S W \subseteq V
 shows par-rstep-var-restr R V \subseteq par-rstep-var-restr S W
 unfolding par-rstep-var-restr-def using par-rstep-mctxt-mono[OF assms(1)] assms(2)
 by blast
lemma par-rstep-var-restr-refl[simp]: (t, t) \in par-rstep-var-restr R V
 unfolding par-rstep-var-restr-def
 by (intro CollectI exI conjI refl, force, rule par-rstep-mctxt-reflI, auto)
the most important property: a substitution step and a parallel step can be
merged into a single parallel step
lemma merge-par-rstep-var-restr:
 assumes subst-R: \bigwedge x. (\delta x, \gamma x) \in par-rstep R
   and st: (s, t) \in par\text{-}rstep\text{-}var\text{-}restr R V
   and subst-eq: \bigwedge x. x \notin V \Longrightarrow \delta x = \gamma x
 shows (s \cdot \delta, t \cdot \gamma) \in par\text{-}rstep R
proof -
 from st[unfolded\ par-rstep-var-restr-def]\ subst-eq
 obtain C infos where st: (s, t) \in par\text{-}rstep\text{-}mctxt \ R \ C infos
   and subst-eq: \bigwedge x. x \in vars-below-hole t \subset A \Rightarrow \delta x = \gamma x
   by auto
  thus ?thesis
  proof (induct C arbitrary: s t infos)
   case (MVar x)
   from par-rstep-mctxt-MVarE[OF this(1)]
   show ?case using subst-R by auto
```

```
next
   case (MHole\ s\ t)
   have (s,t) \in par\text{-}rstep R
     using MHole.prems(1) par-rstep-par-rstep-mctxt-conv by blast
   hence step: (s \cdot \delta, t \cdot \delta) \in par\text{-rstep } R
     by (rule subst-closed-par-rstep)
   have vars-below-hole t MHole = vars-term t by simp
   with MHole(2) have t: t \cdot \delta = t \cdot \gamma by (auto intro: term-subst-eq)
   thus ?case using step by auto
  next
   \mathbf{case}\ (\mathit{MFun}\ f\ \mathit{Cs}\ s\ t\ \mathit{infos})
   let ?n = length \ Cs
   let ?is = [0..<?n]
   from par-rstep-mctxt-MFunD[OF\ MFun(2)]
   obtain ss ts Infos
     where s: s = Fun f ss
       and t: t = Fun f ts
       and len: length ss = length Cs
       length ts = length Cs
       length Infos = length Cs
       and infos: infos = concat Infos
       and steps: \bigwedge i. i < length Cs \Longrightarrow (ss ! i, ts ! i) \in par-rstep-mctxt R (Cs ! i)
(Infos!i)
     by blast
     \mathbf{fix} i
     assume i: i < ?n
     hence mem: Cs ! i \in set Cs by auto
     have IH: (ss ! i \cdot \delta, ts ! i \cdot \gamma) \in par-rstep R
     proof (rule\ MFun(1)[OF\ mem\ steps[OF\ i]])
       assume x \in vars\text{-}below\text{-}hole (ts ! i) (Cs ! i)
       hence x \in vars\text{-}below\text{-}hole\ t\ (MFun\ f\ Cs) unfolding t using i\ len(2)
         by (auto simp: set-zip)
       from MFun(3)[OF this] show \delta x = \gamma x.
     \mathbf{qed}
   thus ?case unfolding s t using len(1-2) MFun(1-2) by auto
  qed
qed
the variable restricted parallel rewrite relation is closed under variable re-
namings, provided that the set of forbidden variables is also renamed (in the
inverse way)
\mathbf{lemma}\ par-rstep-var-restr-subst:
  assumes (s,t) \in par\text{-}rstep\text{-}var\text{-}restr \ R \ (\gamma \ `V)
   and \bigwedge x. \sigma x \cdot (Var \circ \gamma) = Var x
  shows (s \cdot \sigma, t \cdot \sigma) \in par\text{-}rstep\text{-}var\text{-}restr R V
```

```
proof -
  from assms(1)[unfolded par-rstep-var-restr-def, simplified]
  obtain C infos where step: (s, t) \in par-rstep-mctxt R C infos and vars:
vars-below-hole t \ C \cap \gamma ' V = \{\}
   by auto
  from step[unfolded par-rstep-mctxt-def, simplified]
  have t = f(C, par-rights infos) by auto
  hence hole-poss C \subseteq poss\ t by (metis hole-poss-subset-poss)
  hence hp: hole-poss (C \cdot mc \ \sigma) \subseteq poss \ t
   using hole-poss-subst by auto
  from par-rstep-mctxt-subst[OF step, of <math>\sigma]
 have step: (s \cdot \sigma, t \cdot \sigma) \in par\text{-}rstep\text{-}mctxt \ R \ (C \cdot mc \ \sigma) \ (map \ (\lambda i. \ i \cdot pi \ \sigma) \ infos)
  show (s \cdot \sigma, t \cdot \sigma) \in par\text{-}rstep\text{-}var\text{-}restr R V
   unfolding par-rstep-var-restr-def
  proof (standard, intro exI conjI, rule refl, rule step)
   show vars-below-hole (t \cdot \sigma) (C \cdot mc \ \sigma) \cap V = \{\}
     unfolding vars-below-hole-term-subst[OF hp]
     unfolding vars-below-hole-subst
   proof (intro equals0I, elim IntE)
     assume x \in \bigcup (vars\text{-}term '\sigma 'vars\text{-}below\text{-}hole t C)
      then obtain y where y: y \in vars\text{-}below\text{-}hole\ t\ C\ and\ x: } x \in vars\text{-}term\ (\sigma
y) by auto
     from y vars have y: y \notin \gamma ' V by auto
     assume x \in V
     with assms(2)[of y] y x show False unfolding o-def by (cases \sigma y, auto)
   qed
 qed
qed
end
7
      Orthogonality
theory Orthogonality
 imports
    Critical	ext{-}Pairs
    Parallel-Rewriting
```

```
begin
```

This theory contains the result, that weak orthogonality implies confluence.

We prove the diamond property of par-rstep for weakly orthogonal systems.

```
context
 fixes ren :: 'v :: infinite renaming2
lemma weakly-orthogonal-main: fixes R :: (f, v)trs
 assumes st1:(s,t1) \in par\text{-}rstep\ R and st2:(s,t2) \in par\text{-}rstep\ R and weak\text{-}ortho:
```

```
left-linear-trs R \land b l r. (b,l,r) \in critical-pairs ren R R \Longrightarrow l = r
    and wf: \bigwedge l r. (l,r) \in R \Longrightarrow is\text{-}Fun \ l
  shows \exists u. (t1,u) \in par\text{-}rstep \ R \land (t2,u) \in par\text{-}rstep \ R
proof -
  let ?R = par\text{-}rstep R
  let ?CP = critical-pairs ren R R
  {
    fix ls ts \sigma f r
    assume below: \bigwedge i. i < length ls \Longrightarrow ((map (\lambda l. l \cdot \sigma) ls) ! i, ts ! i) \in ?R
      and rule: (Fun f ls, r) \in R
      and len: length ts = length ls
    let ?ls = map(\lambda l. l \cdot \sigma) ls
  from weak-ortho(1) rule have lin: linear-term (Funfls) unfolding left-linear-trs-def
by auto
    let ?p1 = \lambda \ \tau \ i. \ ts \ ! \ i = ls \ ! \ i \cdot \tau \ \land \ (\forall \ x \in \textit{vars-term} \ (ls \ ! \ i). \ (\sigma \ x, \ \tau \ x) \in \ (ls \ ! \ i)
par-rstep R
    let p2 = \lambda \tau i. (\exists C l'' l' r'. ls ! i = C \langle l'' \rangle \wedge is-Fun l'' \wedge (l', r') \in R \wedge (l'' \cdot l')
\sigma = l' \cdot \tau \wedge ((C \cdot_c \sigma) \langle r' \cdot \tau \rangle, ts! i) \in par-rstep R)
      \mathbf{fix} \ i
      assume i: i < length ls
      then have i2: i < length ts using len by simp
      from below[OF\ i] have step: (ls\ !\ i\cdot\sigma,\ ts\ !\ i)\in ?R using i by auto
      from i have mem: ls! i \in set ls by auto
      from lin i have lin: linear-term (ls!i) by auto
      from par-rstep-linear-subst[OF lin step] have \exists \tau. ?p1 \tau i \lor ?p2 \tau i.
    } note p12 = this
    have \exists u. (r \cdot \sigma, u) \in ?R \land (Fun f ts, u) \in ?R
    proof (cases \exists i \tau. i < length ls \land ?p2 \tau i)
      case True
      then obtain i \tau where i: i < length ls and p2: p2 \tau i by blast
      from p2 obtain C l'' l' r' where lsi: ls! i = C \langle l'' \rangle and l'': is-Fun (l'')
and lr': (l',r') \in R
        and unif: l'' \cdot \sigma = l' \cdot \tau and tsi: ((C \cdot_c \sigma) \langle r' \cdot \tau \rangle, ts! i) \in ?R by blast
      from id-take-nth-drop[OF\ i] obtain bef\ aft where ls:\ ls=bef\ @\ C\ \langle\ l''\ \rangle\ \#
aft and bef: bef = take \ i \ ls \ unfolding \ lsi \ by \ auto
      from i bef have bef: length bef = i by auto
      let ?C = More f bef C aft
      from bef have hp: hole-pos ?C = i \# hole-pos C by simp
      have fls: Fun f ls = ?C \langle l'' \rangle unfolding ls by simp
      from mgu\text{-}vd\text{-}complete[OF\ unif]\ \mathbf{obtain}\ \mu1\ \mu2\ \delta\ \mathbf{where}
        mgu: mgu-vd ren l'' l' = Some (\mu 1, \mu 2) and id: l'' \cdot \mu 1 = l' \cdot \mu 2
        and sigma: \sigma = \mu 1 \circ_s \delta and tau: \tau = \mu 2 \circ_s \delta by blast
      let ?sig = map (\lambda \ s. \ s \cdot \sigma)
      let ?r = (C \cdot_c \sigma) \langle r' \cdot \tau \rangle
      let ?bra = ?sig\ bef @ ?r \# ?sig\ aft
       from weak-ortho(2)[OF critical-pairsI[OF rule lr' fls l" mgu refl refl refl]]
      have id: r \cdot \sigma = (?C \cdot_c \sigma) \langle r' \cdot \tau \rangle unfolding sigma tau by simp
```

```
also have \dots = Fun \ f ?bra \ by \ simp
     also have (..., Fun f ts) \in ?R
     proof (rule par-rstep.par-step-fun)
       show length ?bra = length ts unfolding len unfolding ls by simp
     next
       \mathbf{fix} j
       assume j: j < length ts
       show (?bra!j, ts!j) \in ?R
       proof (cases j = i)
         case True
         then have ?bra ! j = ?r using bef i by (simp add: nth-append)
         then show ?thesis using tsi True by simp
       next
         case False
        then have ?bra! j = (?sig\ bef\ @\ (C\ \langle\ l''\ \rangle \cdot \sigma)\ \#\ ?sig\ aft)! j using False
bef i by (simp add: nth-append)
         also have ... = ?siq ls ! j unfolding ls by simp
         finally show ?thesis
           using below[OF j[unfolded len]] by auto
       qed
     qed
     finally have step: (r \cdot \sigma, Fun f ts) \in ?R.
     show \exists u. (r \cdot \sigma, u) \in ?R \land (Fun f ts, u) \in ?R
       by (rule exI, rule conjI[OF step par-rstep-refl])
   \mathbf{next}
     {f case}\ {\it False}
     with p12
     have \forall i. (\exists \ \tau. \ i < length \ ls \longrightarrow ?p1 \ \tau \ i) by blast
     from choice[OF\ this] obtain tau where tau: \bigwedge i. i < length\ ls \Longrightarrow ?p1\ (tau
i) i by blast
     from lin have is-partition (map vars-term ls) by auto
      from subst-merge[OF this, of tau] obtain \tau where \tau: \bigwedge i x. i < length ls
\implies x \in vars\text{-}term \ (ls ! i) \implies \tau \ x = tau \ i \ x
       by blast
      obtain \delta where delta: \delta = (\lambda \ x. \ if \ x \in vars-term \ (Fun \ f \ ls) \ then \ \tau \ x \ else \ \sigma
x) by auto
     {
       \mathbf{fix} i
       assume i: i < length ls
       from tau[OF\ i] have p:\ ?p1\ (tau\ i)\ i .
       have id1: ls ! i \cdot tau i = ls ! i \cdot \tau
         by (rule term-subst-eq[OF \tau[OF i, symmetric]])
       have id2: ... = ls ! i \cdot \delta
         by (rule term-subst-eq, unfold delta, insert i, auto)
         have p: ?p1 \delta i using p using \tau[OF i] unfolding id1 id2 using id2
unfolding delta by auto
     } note delt = this
     have r-delt: (r \cdot \sigma, r \cdot \delta) \in ?R
     proof (rule all-ctxt-closed-subst-step)
```

```
\mathbf{fix} \ x
       assume x: x \in vars\text{-}term \ r
       show (\sigma x, \delta x) \in ?R
       proof (cases x \in vars\text{-}term (Fun f ls))
         case True
         then obtain l where l: l \in set ls and x: x \in vars\text{-}term l by auto
         from l[unfolded\ set\text{-}conv\text{-}nth] obtain i where i: i < length\ ls and l: l =
ls! i by auto
         from delt[OF\ i]\ x\ l\ show\ ?thesis\ by\ auto
       next
         {\bf case}\ \mathit{False}
         then have \delta x = \sigma x unfolding delta by auto
         then show ?thesis by auto
       qed
     qed auto
       let ?ls = map (\lambda l. l \cdot \delta) ls
       have ts = map \ (\lambda \ i. \ ts \ ! \ i) \ [0 \ .. < length \ ts] by (rule map-nth[symmetric])
       also have ... = map (\lambda i. ts! i) [0 ..< length ls] unfolding len by simp
       also have ... = map (\lambda i. ?ls! i) [0 .. < length ?ls]
         by (rule nth-map-conv, insert delt[THEN conjunct1], auto)
       also have \dots = ?ls
         by (rule map-nth)
       finally have Fun f ts = Fun f ls \cdot \delta by simp
     } note id = this
     have l-delt: (Fun f ts, r \cdot \delta) \in ?R unfolding id
       by (rule par-rstep.root-step[OF rule])
     show \exists u. (r \cdot \sigma, u) \in ?R \land (Fun f ts, u) \in ?R
       by (intro exI conjI, rule r-delt, rule l-delt)
   \mathbf{qed}
  } note root-arg = this
  from st1 st2 show ?thesis
 proof (induct arbitrary: t2 rule: par-rstep.induct)
   case (par-step-var x t2)
   have t2: t2 = Var x
     by (rule wf-trs-par-rstep[OF wf par-step-var])
   show \exists u. (Var x, u) \in ?R \land (t2, u) \in ?R unfolding t2
     by (intro conjI exI par-rstep.par-step-var, auto)
  next
   case (par-step-fun ts1 ss f t2)
   \mathbf{note}\ \mathit{IH} = \mathit{this}
   show ?case using IH(4)
   proof (cases rule: par-rstep.cases)
     case (par-step-fun ts2)
     from IH(3) par-step-fun(3) have len: length ts2 = length \ ts1 by simp
     {
       \mathbf{fix} i
       assume i: i < length ts1
       then have i2: i < length \ ts2 \ using \ len \ by \ simp
```

```
from par-step-fun(2)[OF i2] have step2: (ss! i, ts2! i) \in ?R.
               from IH(2)[OF \ i \ step2] have \exists \ u. \ (ts1 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R.
            then have \forall i. \exists u. (i < length \ ts1 \longrightarrow (ts1 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \in ?R \land (ts2 \ ! \ i, \ u) \cap (ts2 \ ! \ i, \ u) \cap
 ?R) by blast
            from choice[OF\ this] obtain us where join: \land i.\ i < length\ ts1 \Longrightarrow (ts1\ !
i, us i) \in R \land (ts2!i, us i) \in R  by blast
            let ?us = map \ us \ [0 ... < length \ ts1]
            {
               \mathbf{fix} i
               assume i: i < length ts1
              from join[OF\ this]\ i have (ts1!\ i,\ ?us!\ i)\in ?R\ (ts2!\ i,\ ?us!\ i)\in ?R by
auto
            } note join = this
            let ?u = Fun \ f ?us
            have step1: (Fun f ts1, ?u) \in ?R
               by (rule par-rstep.par-step-fun[OF join(1)], auto)
            have step2: (Fun f ts2, ?u) \in ?R
               by (rule par-rstep.par-step-fun[OF join(2)], insert len, auto)
            show ?thesis unfolding par-step-fun(1) using step1 step2 by blast
            case (root-step l r \sigma)
            from wf[OF\ root\text{-}step(3)]\ root\text{-}step(1) obtain ls\ where\ l:\ l=Fun\ f\ ls
               by auto
            from root-step(1) l have ss: ss = map(\lambda l. l \cdot \sigma) ls (is - = ?ls) by simp
            from root-step(3) l have rule: (Fun f ls, r) \in R by simp
            from root-step(2) have t2: t2 = r \cdot \sigma.
            from par-step-fun(3) ss have len: length ts1 = length ls by simp
            from root-arg[OF par-step-fun(1)[unfolded ss len] rule len]
            show ?thesis unfolding t2 by blast
       qed
    next
       case (root-step l r \sigma)
       \mathbf{note}\ \mathit{IH} = \mathit{this}
       from wf[OF\ IH(1)]\ IH(1) obtain f\ ls where l:\ l=Fun\ f\ ls and rule:\ (Fun\ f
ls,r) \in R
           by (cases l, auto)
       from IH(2)[unfolded\ l] show ?case
       proof (cases rule: par-rstep.cases)
            case (par-step-var x)
            then show ?thesis by simp
       \mathbf{next}
            case (root-step l' r' \tau)
            then have t2: t2 = r' \cdot \tau by auto
           have id: Fun f ls = \Box \langle Fun f ls \rangle by simp
          from mgu-vd-complete[OF root-step(1), of ren] obtain mu1 mu2 delta where
              mgu: mgu-vd ren (Fun f ls) l' = Some (mu1, mu2) and sigma: \sigma = mu1 \circ_s
delta
```

```
and tau: \tau = mu2 \circ_s delta by auto
     \mathbf{from}\ \textit{weak-ortho}(2)[\textit{OF}\ \textit{critical-pairs}I[\textit{OF}\ \textit{rule}\ \textit{root-step}(3)\ \textit{id}\ \textit{-}\ \textit{mgu}\ \textit{refl}\ \textit{refl}]]
     have r \cdot mu1 = r' \cdot mu2 by simp
     then have id: r \cdot \sigma = r' \cdot \tau unfolding sigma tau by simp
     show ?thesis unfolding t2 id by auto
     case (par-step-fun \ ts \ ls' \ g)
      then have ls': ls' = map (\lambda l. l \cdot \sigma) ls and g: g = f and len: length ts =
length ls by auto
     note par-step-fun = par-step-fun[unfolded ls' g len]
     from root-arg[OF\ par-step-fun(3)\ rule\ len]
     show ?thesis unfolding par-step-fun(2).
   qed
 qed
qed
lemma weakly-orthogonal-par-rstep-CR:
  assumes weak-ortho: left-linear-trs R \wedge b l r. (b,l,r) \in critical-pairs ren R R
\implies l = r
   and wf: \bigwedge l \ r. \ (l,r) \in R \Longrightarrow is\text{-}Fun \ l
  shows CR (par-rstep R)
proof -
  let ?R = par\text{-}rstep R
  from weakly-orthogonal-main[OF - - weak-ortho wf]
  have diamond: \bigwedge s \ t1 \ t2. \ (s,t1) \in ?R \Longrightarrow (s,t2) \in ?R \Longrightarrow \exists \ u. \ (t1,u) \in ?R \land
(t2,u) \in ?R.
  show ?thesis
   by (rule diamond-imp-CR, rule diamond-I, insert diamond, blast)
lemma weakly-orthogonal-rstep-CR:
  assumes weak-ortho: left-linear-trs R \land b l r. (b,l,r) \in critical-pairs ren R R
   and wf: \bigwedge l \ r. \ (l,r) \in R \Longrightarrow is\text{-}Fun \ l
 shows CR (rstep R)
proof -
  from weakly-orthogonal-par-rstep-CR[OF\ assms] have CR\ (par-rstep\ R).
 then show ?thesis unfolding CR-on-def join-def rtrancl-converse par-rsteps-rsteps
qed
end
end
      Multi-Step Rewriting
```

8

```
theory Multistep
 imports Trs
```

begin

```
Multi-step rewriting (without proof terms).
inductive-set
  mstep :: ('f, 'v) trs \Rightarrow ('f, 'v) term rel
  for R
  where
    Var: (Var x, Var x) \in mstep R
   args: \bigwedge f \ n \ ss \ ts. \lceil length \ ss = n; \ length \ ts = n;
   \forall i < n. \ (ss ! i, ts ! i) \in mstep \ R \rrbracket \Longrightarrow
   (Fun f ss, Fun f ts) \in mstep R
   rule: \bigwedge l \ r \ \sigma \ \tau. \llbracket (l, \ r) \in R; \ \forall \ x \in vars-term \ l. \ (\sigma \ x, \ \tau \ x) \in mstep \ R \rrbracket \Longrightarrow
   (l \cdot \sigma, r \cdot \tau) \in mstep R
lemma mstep-refl [simp]:
  (t, t) \in mstep R
 by (induct t) (auto intro: mstep.intros)
lemma mstep-ctxt:
  assumes (s, t) \in mstep R
  shows (C\langle s\rangle, C\langle t\rangle) \in mstep R
proof (induction C)
  case Hole with assms show ?case by simp
next
  case (More f ss C ts)
  let ?ss = ss @ C\langle s \rangle \# ts
  let ?ts = ss @ C\langle t\rangle \# ts
  { fix i assume i = length ss
   then have (?ss!i, ?ts!i) \in mstep R
     using More.IH by simp }
  moreover
  { fix i assume i < length ss
   then have (?ss!i, ?ts!i) \in mstep R
     by (simp add: nth-append) }
  moreover
  { fix i assume i < length ?ss and i > length ss
   then have (?ss!i, ?ts!i) \in mstep R
     by (simp add: nth-append) }
  ultimately
  have \forall i < length ?ss. (?ss!i, ?ts!i) \in mstep R
   by (metis linorder-neqE-nat)
  from mstep.args [OF - - this, simplified]
  show ?case by simp
qed
lemma rstep-imp-mstep:
  assumes (s, t) \in rstep R
  shows (s, t) \in mstep R
  using assms
```

```
proof (induct)
  case (IH C \sigma l r)
  have \forall x \in vars\text{-}term \ l. \ (\sigma \ x, \ \sigma \ x) \in mstep \ R \ by \ simp
  from mstep.rule [OF \langle (l, r) \in R \rangle \ this]
  have (l \cdot \sigma, r \cdot \sigma) \in mstep R by simp
  from mstep-ctxt [OF this] show ?case by blast
qed
\mathbf{lemma}\ rstep	ext{-}mstep	ext{-}subset:
  rstep R \subseteq mstep R
  by (auto simp: rstep-imp-mstep)
\mathbf{lemma}\ \mathit{subst-rsteps-imp-rule-rsteps} :
  assumes \forall x \in vars\text{-}term \ l. \ (\sigma \ x, \ \tau \ x) \in (rstep \ R)^*
    and (l, r) \in R
  shows (l \cdot \sigma, r \cdot \tau) \in (rstep \ R)^*
proof -
  let ?\sigma = \lambda x. (if x \in vars\text{-}term\ l\ then\ \sigma\ x\ else\ \tau\ x)
  have l \cdot \sigma = l \cdot ?\sigma
    by (simp add: term-subst-eq-conv)
  with \langle (l, r) \in R \rangle have (l \cdot \sigma, r \cdot ?\sigma) \in rstep R
    by auto
  moreover have (r \cdot ?\sigma, r \cdot \tau) \in (rstep R)^*
    by (rule subst-rsteps-imp-rsteps) (insert assms, auto)
  ultimately show ?thesis by auto
qed
lemma mstep-imp-rsteps:
  assumes (s, t) \in mstep R
  shows (s, t) \in (rstep R)^*
  using assms
proof (induct)
  case (args f n ss ts)
  then show ?case by (metis args-rsteps-imp-rsteps)
next
  case (rule l r \sigma \tau)
  then show ?case using \langle (l, r) \in R \rangle by (metis subst-rsteps-imp-rule-rsteps)
qed simp
lemma mstep-rsteps-subset:
  shows mstep R \subseteq (rstep R)^*
  by (auto simp: mstep-imp-rsteps)
lemma mstep-mono: R \subseteq S \Longrightarrow mstep R \subseteq mstep S
proof -
  have (s,t) \in mstep \ R \Longrightarrow R \subseteq S \Longrightarrow (s,t) \in mstep \ S \ {\bf for} \ s \ t
    by (induct rule: mstep.induct, auto intro: mstep.intros)
  thus R \subseteq S \Longrightarrow mstep \ R \subseteq mstep \ S by auto
qed
```

```
Thus if mstep R has the diamond property, then rstep R is confluent.
```

```
lemma Var\text{-}mstep:

assumes *: \bigwedge l \ r. \ (l, \ r) \in R \Longrightarrow \neg \ is \ Var \ l

and (Var \ x, \ t) \in mstep \ R

shows t = Var \ x

using assms(2-)

proof cases

case (rule \ l \ r \ \sigma \ \tau)

then show ?thesis using * by (cases \ l, \ auto)

qed auto
```

8.1 Maximal multi-step rewriting.

```
inductive-set
  mmstep :: ('f, 'v) trs \Rightarrow ('f, 'v) term rel
  for R
  where
    Var: (Var x, Var x) \in mmstep R \mid
    args: \bigwedge f n ss ts. [length ss = n; length ts = n;
    \neg (\exists (l, r) \in R. \exists \sigma. Fun f ss = l \cdot \sigma);
    \forall i < n. \ (ss ! i, ts ! i) \in mmstep \ R \rrbracket \Longrightarrow
    (Fun f ss, Fun f ts) \in mmstep R \mid
    rule: \bigwedge l \ r \ \sigma \ \tau. \llbracket (l, \ r) \in R; \ \forall \ x \in vars-term \ l. \ (\sigma \ x, \ \tau \ x) \in mmstep \ R \rrbracket \Longrightarrow
    (l \cdot \sigma, r \cdot \tau) \in mmstep R
lemma mmstep-imp-mstep:
  assumes (s, t) \in mmstep R
  shows (s, t) \in mstep R
  using assms by (induct) (auto intro: mstep.intros)
\mathbf{lemma}\ mmstep\text{-}mstep\text{-}subset:
  mmstep R \subseteq mstep R
  by (auto simp: mmstep-imp-mstep)
```

 \mathbf{end}

9 Implementation of First Order Rewriting

```
\begin{tabular}{ll} \textbf{theory} & \textit{Trs-Impl} \\ \textbf{imports} \\ & \textit{Trs} \\ & \textit{First-Order-Rewriting.Term-Impl} \\ & \textit{First-Order-Terms.Matching} \\ & \textit{First-Order-Rewriting.Abstract-Rewriting-Impl} \\ & \textit{Option-Util} \\ & \textit{Transitive-Closure.RBT-Map-Set-Extension} \\ \textbf{begin} \\ \end{tabular}
```

9.1 Implementation of the Rewrite Relation

9.1.1 Generate All Rewrites

```
type-synonym ('f, 'v) rules = ('f, 'v) rule list
context fixes R :: ('f, 'v) rules
begin
definition rrewrite :: ('f, 'v) term \Rightarrow ('f, 'v) term list
    rrewrite s = List.maps (\lambda (l, r) . case match s l of
      None \Rightarrow []
    | Some \ \sigma \Rightarrow [r \cdot \sigma]) \ R
lemma rrewrite-sound: t \in set (rrewrite s) \Longrightarrow (s,t) \in rrstep (set R)
  unfolding rrewrite-def List.maps-def using match-matches[of s]
  by force
lemma rrewrite-complete: assumes (s,t) \in rrstep \ (set \ R)
  shows \exists u. u \in set (rrewrite s)
 from assms obtain l \ r \ \sigma where lr: (l,r) \in set \ R and s: s = l \cdot \sigma and t: t = r
   by (rule \ rrstep E)
  from match-complete'[OF s[symmetric]] obtain \tau where match: match s l =
Some \tau
   by auto
 with lr\ match\ \mathbf{have}\ r\cdot\tau\in set\ (rrewrite\ s)\ \mathbf{unfolding}\ rrewrite-def\ List.maps-def
by force
 thus ?thesis ..
qed
lemma rrewrite: assumes \bigwedge l r. (l,r) \in set R \Longrightarrow vars\text{-}term l \supseteq vars\text{-}term r
  shows set (rrewrite\ s) = \{t.\ (s,t) \in rrstep\ (set\ R)\}
proof (standard; clarify)
  \mathbf{fix} \ t
  assume (s,t) \in rrstep (set R)
  then obtain l \ r \ \sigma where lr: (l,r) \in set \ R and s: s = l \cdot \sigma and t: t = r \cdot \sigma
   by (rule \ rrstepE)
  from match-complete'[OF s[symmetric]] obtain \tau where match: match s l =
Some \tau
   and vars: \bigwedge x. x \in vars\text{-}term \ l \Longrightarrow \sigma \ x = \tau \ x \ \text{by} \ auto
  have vars': \bigwedge x. x \in vars-term r \Longrightarrow \sigma \ x = \tau \ x \ using \ assms[OF \ lr] \ vars \ by
  have t: t = r \cdot \tau unfolding t using vars' by (intro term-subst-eq, auto)
  with lr \ match \ show \ t \in set \ (rrewrite \ s) \ unfolding \ rrewrite-def \ List.maps-def
bv force
qed (rule rrewrite-sound)
```

```
fun rewrite :: ('f, 'v) term \Rightarrow ('f, 'v) term list where
  rewrite s = (rrewrite \ s \ @ (case \ s \ of \ Var \ - \Rightarrow [] \ | \ Fun \ f \ ss \Rightarrow
   concat (map (\lambda (i, si). map (\lambda ti. Fun f (ss[i := ti])) (rewrite si))
    (zip [0.. < length ss] ss))))
declare rewrite.simps[simp del]
lemma rewrite-sound: t \in set (rewrite s) \Longrightarrow (s,t) \in rstep (set R)
proof (induct s arbitrary: t rule: rewrite.induct)
 case (1 \ s \ t)
 note [simp] = rewrite.simps[of s]
 from 1(2) consider (root) t \in set (rrewrite s)
    (arg) f ss ti i where s = Fun f ss i < length ss ti \in set (rewrite (ss! i)) t =
Fun f (ss[i := ti])
   by (auto simp: set-zip)
  thus ?case
 proof cases
   case root
   with rrewrite-sound[of t s] have (s,t) \in rrstep (set R) by auto
   thus ?thesis by (rule rrstep-imp-rstep)
   case (arg f ss ti i)
   from arg(2) have mem: (i, ss!i) \in set (zip [0..< length ss] ss) by (force simp:
set-zip)
   from 1(1)[OF \ arg(1) \ mem \ refl \ arg(3)]
   have IH: (ss! i, ti) \in rstep (set R).
   with arg have (s,t) \in nrrstep (set R)
     unfolding nrrstep-iff-arg-rstep by blast
   thus ?thesis by (rule nrrstep-imp-rstep)
 qed
qed
lemma rewrite: assumes \bigwedge l \ r. \ (l,r) \in set \ R \Longrightarrow vars-term \ l \supseteq vars-term \ r
 shows set (rewrite s) = \{t. (s,t) \in rstep (set R)\}
proof (standard; clarify)
 \mathbf{fix} \ t
 assume (s,t) \in rstep (set R)
 then obtain C u v where s: s = C\langle u \rangle and t: t = C\langle v \rangle and step: (u,v) \in rrstep
(set R)
   by blast
  from rrewrite[OF \ assms, \ of \ u] \ step \ \mathbf{have} \ step: \ v \in set \ (rrewrite \ u) \ \mathbf{by} \ auto
 show t \in set (rewrite s) unfolding s t
 proof (induct C)
   {\bf case}\ {\it Hole}
   then show ?case using step by (auto simp: rewrite.simps[of u])
   case (More f bef C aft)
   show ?case
```

```
apply (simp\ add: rewrite.simps[of\ Fun\ f\ -]\ set\ -zip)
     apply (intro disjI2)
     apply (intro exI[of - C\langle u \rangle] exI)
     apply (intro conjI exI[of - length bef])
     using More by (auto simp: nth-append)
 qed
qed (rule rewrite-sound)
lemma rewrite-complete: assumes (s,t) \in rstep (set R)
 shows \exists w. w \in set (rewrite s)
proof -
 from assms obtain C u v where s: s = C\langle u \rangle and t: t = C\langle v \rangle and step: (u,v)
\in rrstep (set R)
   by blast
 from rrewrite-complete[OF\ step]\ obtain v where step: v \in set\ (rrewrite\ u) by
 have C\langle v\rangle \in set \ (rewrite \ s) unfolding s
 proof (induct C)
   case Hole
   then show ?case using step by (auto simp: rewrite.simps[of u])
  next
   case (More f bef C aft)
   \mathbf{show}~? case
     apply (simp add: rewrite.simps[of Fun f -] set-zip)
     apply (intro disjI2)
     apply (intro exI[of - C\langle u \rangle] exI)
     apply (intro\ conjI\ exI[of\ -\ length\ bef])
     using More by (auto simp: nth-append)
 qed
 thus ?thesis by blast
qed
end
lemma rrewrite-mono: set R \subseteq set S \Longrightarrow set (rrewrite R s) \subseteq set (rrewrite S s)
 unfolding rrewrite-def List.maps-def by auto
lemma Union-image-mono: (\bigwedge x. \ x \in A \Longrightarrow f \ x \subseteq g \ x) \Longrightarrow \bigcup (f \ `A) \subseteq \bigcup (g \ `
A)
 by blast
lemma rewrite-mono: assumes set R \subseteq set S
 shows set (rewrite R s) \subseteq set (rewrite S s)
proof -
 note rrewrite = rrewrite - mono[OF assms]
 show ?thesis
 proof (induct s)
   case (Var x)
   thus ?case using rrewrite unfolding rewrite.simps[of - Var x] by auto
```

```
next
   case (Fun f ss)
   show ?case unfolding rewrite.simps[of - Fun f ss]
       set-append term.simps set-concat set-map image-comp set-zip o-def
     apply (intro Un-mono, rule rrewrite)
      by (intro Union-image-mono, insert Fun, force simp: set-conv-nth[of ss])
  qed
qed
definition first-rewrite :: ('f,'v)rules \Rightarrow ('f,'v)term \Rightarrow ('f,'v)term option
  where first-rewrite R s \equiv case \ rewrite \ R \ s \ of \ Nil \Rightarrow None \mid Cons \ t \ - \Rightarrow Some \ t
          Checking a Single Rewrite Step
9.1.2
definition is-root-step :: ('f, 'v)trs \Rightarrow ('f, 'v) term \Rightarrow ('f, 'v) term \Rightarrow bool
  where
    is-root-step R s t = (\exists (l, r) \in R. case match-list Var[(l,s),(r,t)] of
      None \Rightarrow False
   | Some \rightarrow True \rangle
lemma rrstep-code[code-unfold]: <math>(s,t) \in rrstep \ R \longleftrightarrow is-root-step \ R \ s \ t
proof
  show is-root-step R s t \Longrightarrow (s, t) \in rrstep R
   unfolding is-root-step-def rrstep-def rstep-r-p-s-def'
   by (auto split: option.splits) (force dest: match-list-matches)
  assume (s, t) \in rrstep R
  then obtain \sigma l r where lr:(l,r) \in R and id: s = l \cdot \sigma t = r \cdot \sigma
   by (metis\ rrstepE)
  show is-root-step R s t unfolding id
   unfolding is-root-step-def
   by (cases match-list Var [(l, l \cdot \sigma), (r, r \cdot \sigma)],
        auto intro!: bexI[OF - lr] dest!: match-list-complete)
qed
lemma is-root-step: is-root-step R \ s \ t \Longrightarrow (s, t) \in rrstep \ R
  unfolding rrstep-code.
fun is-rstep :: ('f,'v)trs \Rightarrow ('f,'v)term \Rightarrow ('f,'v)term \Rightarrow bool where
  is-rstep R (Fun f ts) (Fun g ss) = (
    f = g \land length \ ts = length \ ss \land (\exists \ i \in set \ [0..< length \ ss].
       ss = ts[i := ss ! i] \wedge is\text{-}rstep R (ts ! i) (ss ! i))
    \vee (Fun \ f \ ts, \ Fun \ g \ ss) \in rrstep \ R)
| is\text{-rstep } R \ s \ t = ((s,t) \in rrstep \ R)
lemma is-rstep-sound: is-rstep R s t \Longrightarrow (s,t) \in rstep R
proof (induct R s t rule: is-rstep.induct)
  case (1 R f ts g ss)
  show ?case
```

```
proof (cases (Fun f ts, Fun g ss) \in rrstep R)
   case True
   thus ?thesis using rrstep-imp-rstep by auto
  next
   case False
   with 1(2) obtain i where
     i: i < length ss  and
     gf: g = f and len: length ts = length ss and id: ss = ts[i := ss ! i]
     and rec: is-rstep R (ts ! i) (ss ! i)
     by auto
   from 1(1)[OF - rec] i have (ts ! i, ss ! i) \in rstep R by auto
   thus ?thesis unfolding gf using id i len
     by (metis nrrstep-iff-arg-rstep nrrstep-imp-rstep)
 qed
qed (insert rrstep-imp-rstep, auto)
lemma is-rstep-complete: assumes (s,t) \in rstep R
 shows is-rstep R s t
proof -
 from rstepE[OF \ assms] obtain C \ s' \ t' where
   id: s = C \langle s' \rangle \ t = C \langle t' \rangle and step: (s',t') \in rrstep \ R
   using rrstepI by metis
  show ?thesis unfolding id
  proof (induct C)
   \mathbf{case}\ \mathit{Hole}
   then show ?case using step by (cases s'; cases t', auto)
 next
   case (More f bef C aft)
   \mathbf{show} \ ? case \ \mathbf{unfolding} \ intp-actxt.simps \ is\text{-}rstep.simps
     by (intro disjI1 conjI bexI[of - length bef], insert More, auto)
 qed
qed
lemma is-rstep[simp]: is-rstep R s t \longleftrightarrow (s,t) \in rstep R
 using is-rstep-sound is-rstep-complete by auto
lemma in-rstep-code[code-unfold]:
  st \in rstep \ R \longleftrightarrow (case \ st \ of \ (s,t) \Rightarrow is - rstep \ R \ s \ t)
 by (cases st, auto)
9.2
       Computation of a Normal Form
definition compute-rstep-NF :: (f,v)rules \Rightarrow (f,v)term \Rightarrow (f,v)term option
  where compute-rstep-NF R s \equiv compute-NF (first-rewrite R) s
\mathbf{lemma}\ \textit{compute-rstep-NF-sound}\colon
 assumes res: compute-rstep-NF R s = Some t
 shows (s, t) \in (rstep (set R)) * using res[unfolded compute-rstep-NF-def]
proof (rule compute-NF-sound)
```

```
\mathbf{fix} \ s \ t
 assume first-rewrite R s = Some t
 from this[unfolded first-rewrite-def] obtain to where rewrite R s = t \# ts
   by (cases rewrite R s, auto)
 then have t: t \in set (rewrite R s) by simp
 from rewrite-sound[OF this] show (s,t) \in rstep (set R).
\mathbf{qed}
lemma compute-rstep-NF-complete: assumes res: compute-rstep-NF R s = Some
 shows t \in NF (rstep (set R)) using res[unfolded compute-rstep-NF-def]
proof (rule compute-NF-complete)
 \mathbf{fix} \ s
 assume first-rewrite R s = None
 from this[unfolded first-rewrite-def] have empty: rewrite R s = []
   by (cases rewrite R s, auto)
 have False if (s,t) \in rstep (set R) for t
   using rewrite-complete[OF that] arg-cong[OF empty, of set] by auto
 thus s \in NF (rstep (set R)) by blast
qed
lemma compute-rstep-NF-SN: assumes SN: SN (rstep (set R))
 shows \exists t. compute-rstep-NF R s = Some t
proof -
 have \exists t. compute-NF (first-rewrite R) s = Some t
 proof (rule compute-NF-SN[OF SN])
   \mathbf{fix} \ s \ t
   assume first-rewrite R s = Some t
   from this[unfolded first-rewrite-def] have
     rewrite: t \in set (rewrite R s) by (auto split: list.splits)
   from rewrite-sound[OF this]
   show (s,t) \in rstep (set R).
 qed
 then show ?thesis unfolding compute-rstep-NF-def.
qed
9.2.1
         Computing Reachable Terms with Limit on Derivation Length
fun reachable-terms ::
 ('f, 'v) rules \Rightarrow ('f, 'v) term \Rightarrow nat \Rightarrow ('f, 'v) term list
 where
   reachable-terms R \ s \ \theta = [s]
 | reachable-terms R s (Suc n) = (
 let ts = (reachable-terms R s n) in
   remdups (ts@(concat (map (\lambda t. rewrite R t) ts)))
{f lemma} reachable-terms-nat:
 assumes t \in set (reachable-terms R s i)
```

```
shows \exists j. j \leq i \land (s,t) \in (rstep (set R))^{\widehat{j}}
 using assms
proof (induct i arbitrary: t)
 case \theta
  then show ?case by auto
next
  case (Suc\ i)
 let ?R = \lambda j. (rstep (set R))^{\sim} j
 from Suc(2)
 have t \in set (reachable-terms R s i)
    \vee (\exists u \in set (reachable-terms R s i). <math>t \in set (rewrite R u)) by (simp add: x \in set (rewrite R u))
Let-def
  then show ?case
 proof
   assume t \in set (reachable-terms R s i)
   from Suc(1)[OF\ this] obtain j where j < i and (s,t) \in ?R\ j by auto
   then show ?thesis by (intro exI[of - j], auto)
 next
   assume \exists u \in set (reachable-terms R s i). t \in set (rewrite R u)
   then obtain u where u: u \in set (reachable-terms R s i)
     and 1: t \in set (rewrite R u) by auto
   from rewrite-sound[OF 1] have ut: (u,t) \in rstep (set R).
   from Suc(1)[OF\ u] obtain j where j: j \leq i and su: (s,u) \in ?R\ j by auto
   from su\ ut\ \mathbf{have}\ (s,t)\in ?R\ (Suc\ j)\ \mathbf{by}\ auto
   with j show ?thesis by (intro exI[of - Suc j], auto)
 qed
qed
lemma reachable-terms:
 assumes t \in set (reachable-terms R s i)
 shows (s,t) \in (rstep\ (set\ R)) *
 using reachable-terms-nat[OF assms] by (metis relpow-imp-rtrancl)
lemma reachable-terms-one:
 assumes t \in set (reachable-terms R s (Suc 0))
 shows (s,t) \in (rstep\ (set\ R)) \hat{} =
proof -
 from reachable-terms-nat[OF assms] obtain j where j \leq 1
   and (s,t) \in (rstep\ (set\ R))^{\widehat{}}  by auto
  then show ?thesis by (cases j, auto)
qed
9.2.2
         Algorithms to Ensure Joinability
definition
  check-join-NF ::
 ('f :: showl, 'v :: showl) rules \Rightarrow
    ('f, 'v) term \Rightarrow ('f, 'v) term \Rightarrow showsl check
  where
```

```
check-join-NF R s t \equiv case (compute-rstep-NF R s, compute-rstep-NF R t) of
     (Some \ s', Some \ t') \Rightarrow
    check (s' = t') (
    shows! (STR "the normal form") \circ shows! s' \circ shows! (STR "of") \circ shows!
    \circ showsl (STR "differs from \leftarrow the normal form") \circ showsl t' \circ showsl (STR
'' of '') \circ showsl t)
      -\Rightarrow error (showsl (STR "strange error in normal form computation"))
\mathbf{lemma}\ \mathit{check-join-NF-sound}\colon
 assumes ok: isOK (check-join-NF R s t)
 shows (s, t) \in join (rstep (set R))
proof -
 note ok = ok[unfolded check-join-NF-def]
 from ok obtain s' where s: compute-rstep-NF R s = Some s' by force
 note ok = ok[unfolded s]
 from ok obtain t' where t: compute-rstep-NF R t = Some \ t' by force
 from ok[unfolded\ t] have id: s' = t' by simp
 note \ seq = compute-rstep-NF-sound
 from seq[OF s] seq[OF t]
 show ?thesis unfolding id by auto
\mathbf{qed}
\mathbf{function}\ \mathit{iterative-join-search-main}\ ::
  (f,v) rules \Rightarrow (f,v) term \Rightarrow (f,v) term \Rightarrow nat \Rightarrow nat \Rightarrow bool
  where
    iterative-join-search-main R s t i n = (if i \leq n then
 (((list\text{-}inter\ (reachable\text{-}terms\ R\ s\ i)\ (reachable\text{-}terms\ R\ t\ i)) \neq []) \lor (iterative\text{-}join\text{-}search\text{-}main}
R \ s \ t \ (Suc \ i) \ n)) \ else \ False)
 by pat-completeness auto
termination by (relation measure (\lambda (R,s,t,i,n). Suc n-i)) auto
lemma iterative-join-search-main:
  iterative-join-search-main R s t i n \Longrightarrow (s,t) \in join (rstep (set <math>R))
proof (induction rule: iterative-join-search-main.induct)
  case (1 R s t i n)
  from 1(2) have i-n: i \le n by (simp \ split: if-splits)
 note IH = 1(1)[OF i-n]
 let ?I = list\text{-}inter (reachable\text{-}terms R s i) (reachable\text{-}terms R t i)
 from 1(2) i-n have ?I \neq [] \lor iterative-join-search-main R \ s \ t \ (Suc \ i) \ n \ by \ auto
 then show ?case
 proof
   assume a: ?I \neq []
   then obtain u us where u: ?I = u \# us by (cases ?I, auto)
   then have d: u \in set ?I by auto
   from this[simplified] reachable-terms[of u - - i] have c: (s, u) \in (rstep (set R))^*
by auto
```

```
from d[simplified] reachable-terms[of u - i] have e: (t,u) \in (rstep (set R))^*
by auto
   from c e show ?thesis by auto
  next
   assume b: iterative-join-search-main R s t (Suc i) n
   from IH[OF this] show ?thesis.
  qed
qed
definition iterative-join-search where
  iterative-join-search R s t n \equiv iterative-join-search-main R s t 0 n
lemma iterative-join-search: iterative-join-search R \ s \ t \ n \Longrightarrow (s,t) \in join \ (rstep
 by (rule iterative-join-search-main, unfold iterative-join-search-def)
definition
  check	ext{-}join	ext{-}BFS	ext{-}limit::
  nat \Rightarrow ('f :: showl, 'v :: showl) \ rules \Rightarrow
    ('f, 'v) \ term \Rightarrow ('f, 'v) \ term \Rightarrow showsl \ check
    check-join-BFS-limit n R s t \equiv check (iterative-join-search R s t n)
   (showsl (STR "could not find a joining sequence of length at most ") o
    shows l \ n \circ shows \ (STR " for the terms") \circ shows \ s \circ
    showsl (STR '' and '') \circ showsl t \circ showsl-nl)
lemma check-join-BFS-limit-sound:
 assumes ok: isOK (check-join-BFS-limit \ n \ R \ s \ t)
 shows (s, t) \in join (rstep (set R))
 by (rule iterative-join-search, insert ok[unfolded check-join-BFS-limit-def], simp)
definition map-funs-rules :: ('f \Rightarrow 'g) \Rightarrow ('f, 'v) rules \Rightarrow ('g, 'v) rules where
  map-funs-rules fg R = map (map-funs-rule fg) R
lemma map-funs-rules-sound[simp]:
  set (map-funs-rules fg R) = map-funs-trs fg (set R)
 unfolding map-funs-rules-def map-funs-trs.simps by simp
9.2.3
         Displaying TRSs as Strings
fun showsl-rule' :: ('f \Rightarrow showsl) \Rightarrow ('v \Rightarrow showsl) \Rightarrow String.literal \Rightarrow ('f, 'v) rule
\Rightarrow showsl
 where
   showsl-rule' fun var arr (l, r) =
   showsl-term' fun var l \circ showsl arr \circ showsl-term' fun var r
definition showsl-rule \equiv showsl-rule' showsl (STR ^{\prime\prime} -> ^{\prime\prime})
definition showsl-weak-rule \equiv showsl-rule' showsl showsl (STR "->=")
```

```
definition
\Rightarrow showsl
  where
```

showsl-rules' :: $('f \Rightarrow showsl) \Rightarrow ('v \Rightarrow showsl) \Rightarrow String.literal \Rightarrow ('f, 'v)$ rules

showsl-rules' fun var arr trs = showsl-list-gen (showsl-rule' fun var arr) (STR '''') (STR '''') (STR '''') (STR'''') $trs \circ showsl-nl$

definition showsl-rules \equiv showsl-rules' showsl (STR " \rightarrow ") **definition** showsl-weak-rules \equiv showsl-rules' showsl (STR "->=")

definition

showsl-trs':: $('f \Rightarrow showsl) \Rightarrow ('v \Rightarrow showsl) \Rightarrow String.literal \Rightarrow String.literal \Rightarrow$ $('f, 'v) rules \Rightarrow showsl$

where

showsl-trs' fun var name arr $R = \text{showsl name} \circ \text{showsl } (STR \ ' \leftarrow \leftarrow)'') \circ$ showsl-rules' fun var arr R

definition showsl-trs \equiv showsl-trs' showsl showsl (STR "rewrite system:") (STR " -> ")

Computing Syntactic Properties of TRSs

definition $add\text{-}vars\text{-}rule :: ('f, 'v) \ rule \Rightarrow 'v \ list \Rightarrow 'v \ list$

add-vars-rule r xs = add-vars-term (fst r) (add-vars-term (snd r) xs)

definition add-funs-rule :: ('f, 'v) rule \Rightarrow 'f list \Rightarrow 'f list

add-funs-rule r fs = add-funs-term $(fst \ r)$ (add-funs-term $(snd \ r)$ fs)

definition add-funas-rule :: ('f, 'v) rule $\Rightarrow ('f \times nat)$ list $\Rightarrow ('f \times nat)$ list where

add-funas-rule r fs = add-funas-term (fst r) (add-funas-term (snd r) fs)

definition add-roots-rule :: ('f, 'v) rule $\Rightarrow ('f \times nat)$ list $\Rightarrow ('f \times nat)$ list where

add-roots-rule r fs = root-list $(fst \ r) @ root$ -list $(snd \ r) @ fs$

definition add-funas-args-rule :: (f, v) rule $\Rightarrow (f \times nat)$ list $\Rightarrow (f \times nat)$ list

add-funas-args-rule r fs = add-funas-args-term (fst r) (add-funas-args-term (sndr) fs)

lemma add-vars-rule-vars-rule-list-conv [simp]:

add-vars-rule r xs = vars-rule-list r @ xs

by (simp add: add-vars-rule-def vars-rule-list-def)

lemma add-funs-rule-funs-rule-list-conv [simp]:

```
add-funs-rule r fs = funs-rule-list r @ fs
  by (simp add: add-funs-rule-def funs-rule-list-def)
lemma add-funas-rule-funas-rule-list-conv [simp]:
  add-funas-rule r fs = funas-rule-list r @ fs
  by (simp add: add-funas-rule-def funas-rule-list-def)
lemma add-roots-rule-roots-rule-list-conv [simp]:
  add-roots-rule r fs = roots-rule-list r @ fs
  by (simp add: add-roots-rule-def roots-rule-list-def)
lemma add-funas-args-rule-funas-args-rule-list-conv [simp]:
  add-funas-args-rule r fs = funas-args-rule-list r @ fs
  by (simp add: add-funas-args-rule-def funas-args-rule-list-def)
definition insert-vars-rule :: ('f, 'v) rule \Rightarrow 'v list \Rightarrow 'v list
  where
    insert-vars-rule r xs = insert-vars-term (fst r) (insert-vars-term (snd r) xs)
definition insert-funs-rule :: ('f, 'v) rule \Rightarrow 'f list \Rightarrow 'f list
    insert-funs-rule r fs = insert-funs-term (fst \ r) (insert-funs-term (snd \ r) fs)
definition insert-funas-rule :: (f, v) rule \Rightarrow (f \times nat) list \Rightarrow (f \times nat) list
   insert-funas-rule\ r\ fs = insert-funas-term\ (fst\ r)\ (insert-funas-term\ (snd\ r)\ fs)
definition insert-roots-rule :: (f, v) rule \Rightarrow (f \times nat) list \Rightarrow (f \times nat) list
  where
    insert-roots-rule r fs =
   foldr List.insert (option-to-list (root (fst r)) @ option-to-list (root (snd r))) fs
definition insert-funas-args-rule :: ('f, 'v) rule \Rightarrow ('f \times nat) list \Rightarrow ('f \times nat) list
  where
   insert-funas-args-rule r fs = insert-funas-args-term (fst r) (insert-funas-args-term
(snd \ r) \ fs)
lemma set-insert-vars-rule [simp]:
  set\ (insert\text{-}vars\text{-}rule\ r\ xs) = vars\text{-}term\ (fst\ r) \cup vars\text{-}term\ (snd\ r) \cup set\ xs
 by (simp add: insert-vars-rule-def ac-simps)
lemma set-insert-funs-rule [simp]:
  set\ (insert\text{-}funs\text{-}rule\ r\ xs) = funs\text{-}term\ (fst\ r) \cup funs\text{-}term\ (snd\ r) \cup set\ xs
  by (simp add: insert-funs-rule-def ac-simps)
lemma set-insert-funas-rule [simp]:
  set\ (insert\text{-}funas\text{-}rule\ r\ xs) = funas\text{-}term\ (fst\ r) \cup funas\text{-}term\ (snd\ r) \cup set\ xs
  by (simp add: insert-funas-rule-def ac-simps)
```

```
lemma set-insert-roots-rule [simp]:
  set\ (insert\text{-}roots\text{-}rule\ r\ xs) = root\text{-}set\ (fst\ r) \cup root\text{-}set\ (snd\ r) \cup set\ xs
  by (cases fst r snd r rule: term.exhaust [case-product term.exhaust])
   (auto simp: insert-roots-rule-def ac-simps)
lemma set-insert-funas-args-rule [simp]:
  set\ (insert\text{-}funas\text{-}args\text{-}rule\ r\ xs) = funas\text{-}args\text{-}term\ (fst\ r) \ \cup\ funas\text{-}args\text{-}term\ (snd)
 by (simp add: insert-funas-args-rule-def ac-simps funas-args-term-def)
abbreviation vars-rule-impl r \equiv insert-vars-rule r \mid 
abbreviation funs-rule-impl r \equiv insert-funs-rule r \mid 
abbreviation funas-rule-impl r \equiv insert-funas-rule r \parallel
abbreviation roots-rule-impl r \equiv insert-roots-rule r \parallel
abbreviation funas-args-rule-impl r \equiv insert-funas-args-rule r \parallel
lemma set-vars-rule-impl:
  set (vars-rule-impl r) = vars-rule r
 by (simp add: vars-rule-def)
lemma xxx-rule-list-code[code]:
  vars-rule-list r = add-vars-rule r
  funs-rule-list \ r = add-funs-rule \ r \ []
 funas-rule-list \ r = add-funas-rule \ r \ []
  roots-rule-list r = add-roots-rule r
 funas-args-rule-list \ r = add-funas-args-rule \ r \ []
  by (simp-all add: vars-rule-list-def funs-rule-list-def funas-rule-list-def
      roots-rule-list-def funas-args-rule-list-def)
lemma xxx-trs-list-code[code]:
  vars-trs-list trs = foldr add-vars-rule trs
 funs-trs-list \ trs = foldr \ add-funs-rule \ trs \ []
 funas-trs-list \ trs = foldr \ add-funas-rule \ trs \ []
  funas-args-trs-list \ trs = foldr \ add-funas-args-rule \ trs \ []
  by (induct trs)
   (simp-all add: vars-trs-list-def funs-trs-list-def funas-trs-list-def
      roots-trs-list-def funas-args-trs-list-def)
definition insert-vars-trs :: ('f, 'v) rule list \Rightarrow 'v list \Rightarrow 'v list
    insert\text{-}vars\text{-}trs\ trs = foldr\ insert\text{-}vars\text{-}rule\ trs
definition insert-funs-trs :: ('f, 'v) rule list \Rightarrow 'f list \Rightarrow 'f list
  where
    insert-funs-trs trs = foldr insert-funs-rule trs
definition insert-funas-trs :: ('f, 'v) rule list \Rightarrow ('f \times nat) list \Rightarrow ('f \times nat) list
  where
    insert-funas-trs\ trs = foldr\ insert-funas-rule\ trs
```

```
definition insert-roots-trs :: ('f, 'v) rule list \Rightarrow ('f \times nat) list \Rightarrow ('f \times nat) list
  where
    insert-roots-trs trs = foldr insert-roots-rule trs
definition insert-funas-args-trs :: ('f, 'v) rule list \Rightarrow ('f \times nat) list \Rightarrow ('f \times nat)
list
  where
    insert-funas-args-trs trs = foldr insert-funas-args-rule trs
lemma set-insert-vars-trs [simp]:
  set\ (insert\text{-}vars\text{-}trs\ trs\ xs) = (\bigcup r \in set\ trs.\ vars\text{-}rule\ r) \cup set\ xs
 by (induct trs arbitrary: xs) (simp-all add: insert-vars-trs-def ac-simps vars-rule-def)
lemma set-insert-funs-trs [simp]:
  set\ (insert\text{-}funs\text{-}trs\ trs\ fs) = (\bigcup r \in set\ trs.\ funs\text{-}rule\ r) \cup set\ fs
 by (induct trs arbitrary: fs) (simp-all add: insert-funs-trs-def ac-simps funs-rule-def)
lemma set-insert-funas-trs [simp]:
  set\ (insert\text{-}funas\text{-}trs\ trs\ fs) = (\bigcup r \in set\ trs.\ funas\text{-}rule\ r) \cup set\ fs
 by (induct trs arbitrary: fs) (simp-all add: insert-funas-trs-def ac-simps funas-rule-def)
lemma set-insert-roots-trs [simp]:
  set\ (insert\text{-}roots\text{-}trs\ trs\ fs) = (\bigcup r \in set\ trs.\ roots\text{-}rule\ r) \cup set\ fs
 by (induct trs arbitrary: fs) (simp-all add: insert-roots-trs-def ac-simps roots-rule-def)
lemma set-insert-funas-args-trs [simp]:
  set\ (insert\text{-}funas\text{-}args\text{-}trs\ trs\ fs) = (\bigcup r \in set\ trs.\ funas\text{-}args\text{-}rule\ r) \cup set\ fs
  by (induct trs arbitrary: fs)
    (simp-all add: insert-funas-args-trs-def ac-simps funas-args-rule-def)
abbreviation vars-trs-impl trs \equiv insert-vars-trs \ []
\textbf{abbreviation} \ \textit{funs-trs-impl} \ \textit{trs} \equiv \textit{insert-funs-trs} \ \textit{trs} \ []
abbreviation funas-trs-impl trs \equiv insert-funas-trs trs \parallel
abbreviation roots-trs-impl trs \equiv insert-roots-trs trs \mid
abbreviation funas-args-trs-impl trs \equiv insert-funas-args-trs trs \parallel
definition defined-list :: ('f, 'v) rule list \Rightarrow ('f \times nat) list
  where
    defined-list R = [the (root \ l), (l, r) \leftarrow R, is\text{-}Fun \ l]
lemma set-defined-list [simp]:
  set (defined-list R) = \{fn. defined (set R) fn\}
  by (force simp: defined-list-def defined-def elim!: root-Some)
definition check-left-linear-trs :: ('f :: showl, 'v :: showl) rules \Rightarrow showsl check
  where
    check-left-linear-trs trs =
     check-all (\lambda r. linear-term (fst r)) trs
```

```
<+? (\lambda -. showsl-trs trs \circ showsl (STR ' \leftarrow is not left-linear \leftarrow '))
lemma check-left-linear-trs [simp]:
  isOK (check-left-linear-trs R) = left-linear-trs (set R)
  unfolding check-left-linear-trs-def left-linear-trs-def
 by auto
definition check-varcond-subset :: (-,-) rules \Rightarrow showsl check
  where
    check-varcond-subset R =
    check-allm (\lambda rule.
     check-subseteq (vars-term-impl (snd rule)) (vars-term-impl (fst rule))
     <+? (\lambda x. showsl (STR "free variable") \circ showsl x
      ∘ showsl (STR " in right—hand side of rule") ∘ showsl-rule rule ∘ showsl-nl)
   R
lemma check-varcond-subset [simp]:
  isOK \ (check\text{-}varcond\text{-}subset \ R) = (\forall \ (l, \ r) \in set \ R. \ vars\text{-}term \ r \subseteq vars\text{-}term \ l)
 unfolding check-varcond-subset-def by force+
definition \ check-var cond-no-Var-lhs =
  check-allm (\lambda rule.
    check (is-Fun (fst rule))
    (showsl (STR "variable left-hand side in rule") \circ showsl-rule rule \circ showsl-nl))
lemma check-varcond-no-Var-lhs [simp]:
  isOK \ (check\text{-}varcond\text{-}no\text{-}Var\text{-}lhs\ R) \longleftrightarrow (\forall (l,\ r) \in set\ R.\ is\text{-}Fun\ l)
 by (auto simp: check-varcond-no-Var-lhs-def)
definition check-wf-trs :: (-,-) rules \Rightarrow showsl check
  where
   check-wf-trs R = do \{
    check-varcond-no-Var-lhs R;
    check\text{-}varcond\text{-}subset\ R
  \} <+? (\lambda e. showsl (STR "the TRS is not well-formed \leftarrow ") \circ e)
lemma check-wf-trs-conf [simp]:
  isOK (check-wf-trs R) = wf-trs (set R)
 by (force simp: check-wf-trs-def wf-trs-def)
definition check-not-wf-trs :: (-,-) rules \Rightarrow showsl check where
  check-not-wf-trs R = check (\neg isOK (check-wf-trs R)) (showsl (STR "The TRS
is well formed \leftarrow '')
{f lemma} {\it check-not-wf-trs}:
 assumes isOK(check-not-wf-trs\ R)
 shows \neg SN (rstep (set R))
proof -
 from assms have \neg wf-trs (set R) unfolding check-not-wf-trs-def by auto
```

```
with SN-rstep-imp-wf-trs show ?thesis by auto
qed
lemma instance-rule-code[code]:
  instance-rule lr st \longleftrightarrow match-list (\lambda -. fst lr) [(fst st, fst lr), (snd st, snd lr)] <math>\neq
  (is ?l = (match-list ?d ?list \neq None))
proof
  assume ?l
  then obtain \sigma where fst\ lr = fst\ st \cdot \sigma
   and snd\ lr = snd\ st \cdot \sigma by (auto simp: instance-rule-def)
  then have \bigwedge l \ t. \ (l, \ t) \in set \ ?list \Longrightarrow l \cdot \sigma = t \ by \ (auto)
  then have matchers (set ?list) \neq {} by (auto simp: matchers-def)
  \mathbf{with}\ \mathit{match-list-complete}
  show match-list ?d ?list \neq None by blast
  assume match-list ?d ?list \neq None
  then obtain \tau where match-list ?d ?list = Some \tau by auto
  from match-list-sound [OF this]
  have fst lr = fst \ st \cdot \tau and snd \ lr = snd \ st \cdot \tau by auto
  then show ?l by (auto simp: instance-rule-def)
\mathbf{qed}
definition
  check-CS-subseteq :: ('f, 'v) rules \Rightarrow ('f, 'v) rules \Rightarrow ('f, 'v) rule check
    check-CS-subseteq R S \equiv check-allm (\lambda (l,r). check (Bex (set S) (instance-rule
(l,r))) (l,r)) R
lemma check-CS-subseteq [simp]:
  isOK (check-CS-subseteq R S) \longleftrightarrow subst.closure (set R) \subseteq subst.closure (set S)
(is ? l = ? r)
proof
  assume ?l
 show ?r
  proof
   \mathbf{fix} \ x \ y
   assume (x,y) \in subst.closure (set R)
   then show (x,y) \in subst.closure (set S)
   proof (induct)
     case (subst s t \sigma)
     with \langle ?l \rangle [unfolded check-CS-subseteq-def]
     obtain l \ r \ \delta where lr: (l,r) \in set \ S and s: s = l \cdot \delta and t: t = r \cdot \delta
       by (auto simp add: instance-rule-def)
     show ?case unfolding s t
       using subst.closure.intros[OF\ lr,\ of\ \delta\circ_s\sigma]
       by auto
   qed
  qed
```

```
next
 assume ?r
   \mathbf{fix} \ lr
   assume mem: lr \in set R
   obtain l r where lr: lr = (l,r) by (cases lr, auto)
    with mem have (l,r) \in subst.closure (set R) using subst.subset-closure by
   with \langle ?r \rangle have (l,r) \in subst.closure (set S) by auto
   then have Bex (set S) (instance-rule lr) unfolding lr
   proof (induct)
     case (subst s t \sigma)
     then show ?case unfolding instance-rule-def by force
   qed
 thus ?l unfolding check-CS-subseteq-def by auto
qed
definition reverse-rules :: ('f, 'v) rules \Rightarrow ('f, 'v) rules where
  reverse-rules rs \equiv map \ prod.swap \ rs
lemma reverse-rules [simp]: set (reverse-rules R) = (set R)^-1 unfolding re-
verse-rules-def by force
definition
  map-funs-rules-wa :: ('f \times nat \Rightarrow 'g) \Rightarrow ('f, 'v) \text{ rules} \Rightarrow ('g, 'v) \text{ rules}
  map-funs-rules-wa fg R = map \ (\lambda(l, r). \ (map-funs-term-wa fg l, map-funs-term-wa
fg(r))R
lemma map-funs-rules-wa: set (map-funs-rules-wa fg R) = map-funs-trs-wa fg (set
 unfolding map-funs-rules-wa-def map-funs-trs-wa-def by auto
lemma wf-rule [code]:
  wf-rule r \longleftrightarrow
   is-Fun (fst r) \land (\forall x \in set (vars-term-impl (snd r)). x \in set (vars-term-impl
 unfolding wf-rule-def by auto
definition wf-rules-impl :: ('f, 'v) rules \Rightarrow ('f, 'v) rules
   wf-rules-impl\ R = filter\ wf-rule R
lemma wf-rules-impl [simp]:
  set (wf-rules-impl R) = wf-rules (set R)
  unfolding wf-rules-impl-def wf-rules-def by auto
```

```
fun check-wf-reltrs :: (-,-) rules \times (-,-) rules \Rightarrow shows check where
  check\text{-}wf\text{-}reltrs\ (R,\ S)=(do\ \{
    check-wf-trs R;
    if R = [] then succeed
    else\ check	ext{-}varcond	ext{-}subset\ S
   })
lemma check-wf-reltrs[simp]:
  isOK (check-wf-reltrs (R, S)) = wf-reltrs (set R) (set S)
  by (cases R) auto
declare check-wf-reltrs.simps[simp del]
definition check-linear-trs :: (-,-) rules \Rightarrow showsl check where
  check-linear-trs R \equiv
    check-all (\lambda (l,r). (linear-term l) \wedge (linear-term r)) R
      <+? (\lambda -. showsl-trs R \circ showsl (STR ' \leftarrow is not linear \leftarrow '))
lemma check-linear-trs [simp]:
  isOK \ (check-linear-trs \ R) \longleftrightarrow linear-trs \ (set \ R)
  unfolding check-linear-trs-def linear-trs-def by auto
definition non-collapsing-impl R = list-all (is-Fun o snd) R
lemma non-collapsing-impl[simp]: non-collapsing-impl R = non-collapsing (set R)
  unfolding non-collapsing-impl-def non-collapsing-def list-all-iff by auto
type-synonym ('f, 'v) term-map = 'f \times nat \Rightarrow ('f, 'v) term list
definition term-map :: ('f::compare-order, 'v) term list \Rightarrow ('f, 'v) term-map where
  term-map ts = fun-of-map (rm.\alpha \ (elem-list-to-rm (the \circ root) \ ts))
definition
  is-NF-main :: bool \Rightarrow bool \Rightarrow ('f::compare-order, 'v) term-map \Rightarrow ('f, 'v) term
\Rightarrow bool
  where
    is-NF-main var-cond R-empty m = (if \ var\text{-}cond \ then \ (\lambda -. \ False))
    else if R-empty then (\lambda-. True)
    else (\lambda t. \ \forall u \in set \ (supteq-list \ t).
      if is-Fun u then
        \forall l \in set \ (m \ (the \ (root \ u))). \ \neg \ matches \ u \ l
      else True))
\mathbf{lemma} neq-root-no-match:
  assumes is-Fun l and the (root l) \neq the (root t)
  shows \neg matches t l
  using assms by (cases t) (force iff: matches-iff)+
```

```
lemma all-not-conv: (\forall x \in A. \neg P x) = (\neg (\exists x \in A. P x)) by auto
\mathbf{lemma} \ \textit{efficient-supteq-list-do-not-match}:
   assumes \forall l \in set \ ls. \ \forall u \in set \ (supteq-list \ t). \ the \ (root \ l) \neq the \ (root \ u) \longrightarrow \neg
matches u l
  shows
    (\forall l \in set \ ls. \ \forall u \in set \ (supteq-list \ t). \ \neg \ matches \ u \ l) \longleftrightarrow
     (\forall u \in set \ (supteq-list \ t). \ \forall \ l \in set \ (term-map \ ls \ (the \ (root \ u))).
        \neg matches u l)
    (is ?lhs \longleftrightarrow ?rhs is - \longleftrightarrow (\forall u \in set ?subs. \forall l \in set (?<math>ls u). \neg matches u l))
proof (intro iffI ballI)
  fix u l assume \forall l \in set ls. \forall u \in set ?subs. \neg matches u l and u \in set ?subs
    and l \in set (?ls \ u)
  then show \neg matches u \ l
    using elem-list-to-rm.rm-set-lookup[of the <math>\circ root ls the (root u)]
    by (auto simp: o-def term-map-def rm-set-lookup-def)
next
  fix l u assume 1: \forall u \in set ?subs. <math>\forall l \in set (?ls \ u). \neg matches u \ l
    and l \in set \ ls \ and \ u \in set \ ?subs
  with assms have the (root l) \neq the (root u) \longrightarrow \neg matches u l
    and \forall l \in set \ (?ls \ u). \neg matches \ u \ l \ by \ simp +
  with elem-list-to-rm.rm-set-lookup[of the \circ root is the (root u)]
    and \langle l \in set \ ls \rangle
  show \neg matches u l by (auto simp: o-def term-map-def rm-set-lookup-def)
qed
lemma supteq-list-ex:
  (\exists u \in set \ (supteq-list \ l). \ \exists \sigma. \ t \cdot \sigma = u) \longleftrightarrow (\exists \sigma. \ l \trianglerighteq t \cdot \sigma)
  \mathbf{unfolding} \ \mathit{supteq-list} \ \mathbf{by} \ \mathit{auto}
definition is-NF-trs R = is-NF-main (\exists r \in set R. is-Var (fst r)) (R = []) (term-map)
(map\ fst\ R))
definition is-NF-terms Q = is-NF-main (\exists q \in set \ Q. \ is-Var q) \ (Q = []) \ (term-map)
lemma is-NF-main-NF-trs-conv:
  is-NF-main (\exists r \in set \ R. \ is-Var \ (fst \ r)) \ (R = []) \ (term-map \ (map \ fst \ R)) \ t \longleftrightarrow
    t \in NF-trs (set R)
  (is is-NF-main ?var ?R ?map t \longleftrightarrow -)
proof (intro iffI allI)
  assume is-NF-main: is-NF-main ?var ?R ?map t
  show t \in NF-trs (set R)
  proof (cases \exists r \in set R. is Var (fst r))
    {\bf case} \  \, \textit{True with is-NF-main}[\textit{unfolded is-NF-main-def}] \  \, {\bf show} \  \, \textit{?thesis by simp}
  next
    {\bf case}\ \mathit{False}
    let ?ts = map fst R
    from False have allfun: \forall s \in set ?ts. is-Fun s by simp
    with neq-root-no-match
```

```
have no-match: \forall s \in set ?ts. \ \forall u \in set \ (supteq-list \ t). \ the \ (root \ s) \neq the \ (root \ u)
         \rightarrow \neg matches \ u \ s \ \mathbf{by} \ blast
   {f note}\ is\mbox{-}NF\mbox{-}main=is\mbox{-}NF\mbox{-}main[unfolded\ is\mbox{-}NF\mbox{-}main\mbox{-}def\ if\mbox{-}not\mbox{-}P[OF\ False]]
   show ?thesis
   proof (cases R = [])
     case False
     then have False: (R = []) = False by simp
     have \forall u \in set (supteq-list t). \forall l \in set (term-map ?ts (the (root u))). \neg matches
u l
     proof
       \mathbf{fix} \ u
       assume mem: u \in set (supteq-list t)
       show \forall l \in set (term-map ?ts (the (root u))). \neg matches u l
       proof (cases \ u)
         case (Var x)
         show ?thesis
         proof
           \mathbf{fix} l
           assume l \in set (term-map ?ts (the (root u)))
           with elem-list-to-rm.rm-set-lookup[of the \circ root ?ts the (root u)]
           have l \in set ?ts by (auto simp: o-def term-map-def rm-set-lookup-def)
           then have is-Fun l using allfun by auto
           then have (\forall \sigma. \ l \cdot \sigma \neq u) using Var by auto
           then show \neg matches u l using matches-iff by blast
         qed
       next
         case (Fun f us)
         with mem is-NF-main[unfolded False] show ?thesis by auto
       qed
     qed
     then show ?thesis
       unfolding efficient-supteq-list-do-not-match[OF no-match, symmetric]
       unfolding all-not-conv matches-iff
       unfolding supteq-list-ex by auto
   qed auto
 qed
next
  assume NF-trs: t \in NF-trs (set R)
 show is-NF-main (\exists r \in set R. is-Var (fst r)) (R = []) (term-map (map fst R)) t
  proof (cases \exists r \in set R. is - Var (fst r))
   case True
   then obtain l where l \in lhss (set R) and is-Var l by auto
   from lhs-var-not-NF[OF this] and NF-trs show ?thesis by simp
  next
   {f case}\ {\it False}\ {f note}\ {\it oFalse}={\it this}
   let ?ts = map fst R
   from False have \forall s \in set ?ts. is-Fun s by auto
   with neg-root-no-match
   have
```

```
no-match: \forall s \in set ?ts. \ \forall u \in set \ (supteq-list \ t). \ the \ (root \ s) \neq the \ (root \ u)
      \longrightarrow \neg matches \ u \ s \ \mathbf{by} \ blast
   \mathbf{show} \ ?thesis
   proof (cases R = [])
     case True then show ?thesis unfolding is-NF-main-def by auto
     case False
     then have False: (R = []) = False by simp
     from NF-trs
     show ?thesis
       unfolding is-NF-main-def False if-False if-not-P[OF oFalse]
       using efficient-supteq-list-do-not-match[OF no-match, symmetric]
       unfolding all-not-conv matches-iff
       unfolding supteq-list-ex set-map by fastforce
   qed
 qed
qed
lemma is-NF-trs [simp]:
  is-NF-trs R = (\lambda t. t \in NF-trs (set R))
 by (rule ext, unfold is-NF-trs-def is-NF-main-NF-trs-conv, simp)
lemma is-NF-terms [simp]:
  is-NF-terms Q = (\lambda \ t. \ t \in NF-terms (set \ Q))
proof (rule ext)
 \mathbf{fix} \ t
 let ?Q = map(\lambda t. (t, t)) Q
 have 1: (\exists t \in set \ Q. \ is \ Var \ t) = (\exists t \in set \ ?Q. \ is \ Var \ (fst \ t))
   by (induct Q) (auto simp: o-def)
 have 2: map fst ?Q = Q by (induct Q) simp-all
 have 3: term-map Q = term-map (map fst ?Q) unfolding 2...
 have 4: set ?Q = Id\text{-}on \ (set \ Q) by (induct \ Q) \ (auto \ simp: \ o\text{-}def)
 from is-NF-main-NF-trs-conv[of ?Q t]
 show is-NF-terms Q \ t = (t \in NF\text{-terms } (set \ Q))
   unfolding is-NF-terms-def 1 3 4 unfolding 2 by auto
qed
9.2.5
         Grouping TRS-Rules by Function Symbols
type-synonym (f,v) rule-map = ((f \times nat) \Rightarrow (f,v) rules) option
fun computeRuleMapH :: ('f,'v)rules \Rightarrow (('f \times nat) \times ('f,'v)rules)list option
  where computeRuleMapH [] = Some []
  | computeRuleMapH ((Fun f ts,r) \# rules) = (let n = length ts in case com-
puteRuleMapH\ rules\ of\ None \Rightarrow None \mid Some\ rm \Rightarrow
           (case List.extract (\lambda (fa,rls). fa = (f,n)) rm of
              None \Rightarrow Some (((f,n), [(Fun f ts,r)]) \# rm)
              |Some\ (bef,(fa,rls),aft)| \Rightarrow Some\ ((fa,(Fun\ f\ ts,r)\ \#\ rls)\ \#\ bef\ @
```

```
aft)))
 | computeRuleMapH ((Var -, -) \# rules) = None
definition computeRuleMap :: ('f, 'v) rules \Rightarrow ('f, 'v) rule-map where
 computeRuleMap\ rls \equiv
   (case computeRuleMapH rls of
     None \Rightarrow None
   | Some rm \Rightarrow Some (\lambda f.
     (case map-of rm f of
      None \Rightarrow []
     | Some \ rls \Rightarrow rls)))
lemma computeRuleMapHSound2: (computeRuleMapH R = None) = (\exists (l, r) \in
set R. root l = None
proof (induct R)
 case (Cons rule rules)
 obtain l r where rule: rule = (l,r) by force
 show ?case
 proof (cases l)
   case (Fun f ts)
   show ?thesis
     using rule Cons
   proof (cases computeRuleMapH rules)
     case (Some \ rm) note oSome = this
     let ?e = List.extract (\lambda (fa,rls). fa = (f,length ts)) rm
     from Some Fun rule Cons show ?thesis
     proof (cases ?e)
      case (Some res)
     then obtain bef aft g rls where ?e = Some (bef, (g,rls), aft) by (cases res,
force)
       with extract-Some E[OF\ this] have rm: rm = bef @ ((f, length\ ts), rls) #
aft and e: ?e = Some (bef, ((f, length ts), rls), aft)
        by auto
      show ?thesis using Cons
        by (simp add: rule Fun Let-def oSome e)
     qed auto
   qed (insert, auto simp: rule Fun)
 qed (auto simp: rule)
qed (auto simp: rule)
lemma computeRuleMapSound2: (computeRuleMap R = None) = (\exists (l, r) \in set
R. \ root \ l = None
 unfolding computeRuleMap-def
 by (simp only: computeRuleMapHSound2[symmetric], cases computeRuleMapH
R, auto)
lemma\ computeRuleMapHSound:\ assumes\ computeRuleMapH\ R=Some\ rm
```

shows $(\lambda (f,rls), (f,set rls))$ 'set $rm = \{((f,n),\{(l,r) \mid l \ r, (l,r) \in set \ R \land root \ l \}\}$

```
= Some (f, n) \}) \mid f n. \{(l,r) \mid l r. (l,r) \in set R \land root l = Some (f, n) \} \neq \{\} \} \land
distinct-eq (\lambda (f,rls) (g,rls'). f = g) rm
 using assms
proof (induct R arbitrary: rm)
 case (Cons rule rules)
 let ?setl = \lambda \ rm. \ (\lambda \ (f,rls). \ (f,set \ rls)) ' set \ rm
 let ?setr = \lambda R. \{((f,n),\{(l,r) \mid l \ r. \ (l,r) \in set \ R \land root \ l = Some \ (f, \ n)\}) \mid f \ n.
\{(l,r) \mid l \ r. \ (l,r) \in set \ R \land root \ l = Some \ (f, \ n)\} \neq \{\}\}
  obtain l r where Pair: rule = (l,r) by force
 show ?case
 proof (cases \ l)
   case (Var\ v)
   with Cons Pair show ?thesis by simp
 next
   case (Fun f ts)
   with Cons Pair show ?thesis
   proof (cases computeRuleMapH rules)
     case (Some \ rrm) note oSome = this
     let ?dis = distinct-eq (\lambda (f,rls) (g,rls'), f = g)
     from Cons(1)[OF\ Some] have drrm: ?dis rrm and srrm: ?setl rrm = ?setr
rules by auto
     show ?thesis
     proof (cases List.extract (\lambda (fa,rls). fa = (f,length ts)) rrm)
       {f case}\ None
       let ?e = ((f, length\ ts), [(Fun\ f\ ts, r)])
       let ?e' = ((f, length\ ts), \{(Fun\ f\ ts, r)\})
        from None Cons(2) have rm: rm = ?e \# rrm by (simp \ add: Fun \ Pair
Some None)
       from None[unfolded extract-None-iff] have rrm: \bigwedge g \ n \ rl. \ ((g,n),rl) \in set
rrm \Longrightarrow (f, length \ ts) \neq (g, n) \ \mathbf{by} \ auto
      then have rrm': \bigwedge g \ n \ rl. \ ((g,n),rl) \in ?setr \ rules \Longrightarrow (f,length \ ts) \neq (g,n)
by (simp only: srrm[symmetric], auto)
       then have id: \{(Fun f ts, r)\} = \{(l, ra), (l = Fun f ts \land ra = r \lor (l, ra)\}
\in set\ rules) \land root\ l = Some\ (f,\ length\ ts)\} by force
       from rrm have dis: ?dis rm
         by (simp add: rm drrm, auto)
       have ?setl \ rm = insert \ ?e' \ (?setl \ rrm) by (simp \ add: \ rm)
       also have ... = insert ?e' (?setr rules) by (simp add: srrm)
       also have ... = ?setr ( (Fun f ts, r) # rules)
       proof (rule set-eqI, clarify)
         fix g \ n \ rls
        ts,r) \# rules))
         proof (cases (g,n) = (f, length ts))
          case False
          then have (((g,n),rls) \in insert ?e' (?setr rules)) = (((g,n),rls) \in ?setr
rules) by auto
          also have ... = (((g,n),rls) \in ?setr ((Fun f ts,r) \# rules)) using False
by auto
```

```
finally show ?thesis.
         next
          case True note oTrue = this
          show ?thesis
          proof (cases \ rls = \{(Fun \ f \ ts, \ r)\})
            {f case} True
            with oTrue show ?thesis by (simp add: id, force)
            case False
             show ?thesis using rrm'[of g n rls] True False by (simp add: False
True id, auto)
          qed
         qed
       qed
       finally show ?thesis
         by (simp only: dis drrm, simp add: Pair Fun)
       case (Some res)
       obtain bef fg rls aft where res = (bef, (fg, rls), aft) by (cases res, force)
        from extract-Some [OF Some [simplified this]] Some [simplified this] have
rrm: rrm = bef @ ((f, length \ ts), \ rls) \# aft
           and e: List.extract (\lambda (fa, rls). fa = (f,length ts)) rrm = Some (bef,
((f, length\ ts), rls), aft) by auto
       let ?e = ((f, length\ ts), (Fun\ f\ ts, r) \# rls)
      let ?e' = ((f, length\ ts), insert\ (Fun\ f\ ts, r)\ (set\ rls))
      have ((f, length\ ts), set\ rls) \in ?setl\ rrm\ unfolding\ rrm\ by\ auto
       then have rls: set rls = \{(l, r) | l \ r. \ (l, r) \in set \ rules \land root \ l = Some \ (f, r) \}
length \ ts) using Cons(1)[OF \ oSome] by auto
       obtain ba where ba: ba = bef @ aft by auto
      from Cons(2) e ba have rm: rm = ?e \# ba by (simp add: Fun Pair oSome
e)
       from drrm[simplified rrm] have dis: ?dis ba unfolding distinct-eq-append
ba by auto
     from drrm[simplified rrm] have dis: ?dis rm unfolding rm distinct-eq-append
ba by (auto simp: dis[simplified ba])
       from drrm[simplified rrm distinct-eq-append]
      have diff: (\forall x \in set \ ba. \ \neg (\lambda(g, \ rls). \ (f, length \ ts) = g) \ x) by (auto simp: ba)
      have ?setl [((f, length \ ts), rls)] \cup ?setl \ ba = ?setl \ rrm \ using \ rrm \ ba \ by \ auto
       also have \dots = ?setr rules by (rule srrm)
      finally have id: ?setl [((f, length\ ts), rls)] \cup ?setl\ ba = ?setr\ rules.
       have ?setl \ rm = insert \ ?e' \ (?setl \ ba) by (simp \ add: \ rm)
       also have \dots = ?setr ((Fun f ts, r) \# rules)
       proof (rule set-eqI, clarify)
         \mathbf{fix} \ g \ n \ rl
        show (((g,n),rl) \in insert ?e' (?setl ba)) = (((g,n),rl) \in ?setr ((Fun f ts,r)))
\# rules))
         proof (cases (g,n) = (f, length ts))
          case False
           then have (((g,n),rl) \in insert ?e'(?setl ba)) = (((g,n),rl) \in ?setl ba)
```

```
by auto
           also have \dots = (((g,n),rl) \in ?setr rules) using False by (simp \ only:
id[symmetric], auto)
          also have ... = (((g,n),rl) \in ?setr ((Fun f ts,r) \# rules)) using False
by auto
          finally show ?thesis.
        \mathbf{next}
          case True note oTrue = this
          show ?thesis
          proof (cases rl = insert (Fun f ts, r) (set rls))
           {\bf case}\ {\it True}
           then have (((g,n),rl) \in insert ?e'(?setl ba)) = True using oTrue by
auto
            also have \dots = (((g,n),rl) \in ?setr ((Fun f ts,r) \# rules)) unfolding
True rls using oTrue by force
           finally show ?thesis.
          next
            case False
            then have (((g,n),rl) \in insert ?e'(?setl ba)) = False using diff by
(simp add: True, auto)
           also have \dots = (((g,n),rl) \in ?setr ((Fun f ts,r) \# rules))
           proof (rule ccontr)
             assume ¬ ?thesis
              with True have ((f, length\ ts), rl) \in ?setr\ ((Fun\ f\ ts, r)\ \#\ rules) by
simp
             then have rl = \{(l, ra) | l \ ra. \ (l, ra) \in set \ ((Fun \ f \ ts, r) \ \# \ rules) \land \}
root \ l = Some \ (f, \ length \ ts) \} by simp
             with False rls show False by auto
            qed
           finally show ?thesis.
          qed
        qed
      qed
      also have ... = ?setr (rule # rules) by (simp add: Pair Fun)
      finally show ?thesis by (simp add: dis)
     qed
   qed simp
 qed
qed force
{\bf lemma}\ compute Rule Map Sound:
 assumes computeRuleMap R = Some rm
 shows (set (rm (f,n))) = \{(l,r) \mid l \ r. (l,r) \in set \ R \land root \ l = Some (f, n)\}
proof (cases computeRuleMapH R)
 {f case}\ None
 then show ?thesis using assms unfolding computeRuleMap-def by auto
 case (Some rrm)
 note \ rrm = computeRuleMapHSound[OF \ this]
```

```
symmetric]
 show ?thesis
 proof (cases map-of rrm (f, n))
   case (Some rls)
    from map-of-SomeD[OF this] have ((f,n),set\ rls)\in(\lambda\ (f,rls).\ (f,\ set\ rls)) '
set rrm
   then have set rls = \{(l,r) \mid l \ r. \ (l,r) \in set \ R \land root \ l = Some \ (f, \ n)\}
     by (simp only: rrm, simp)
   then show ?thesis by (simp add: rm Some)
  next
   case None
   have id: \{(l, r) | l r. (l, r) \in set R \land root l = Some (f, n)\} = \{\} (is ?set = \{\})
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain l r where (l, r) \in set R \wedge root l = Some (f, n) by auto
     with rrm have (((f,n), ?set)) \in (\lambda (f,rls), (f, set rls)) 'set rrm by auto
     with None[unfolded map-of-eq-None-iff] show False by force
   qed
   then show ?thesis by (simp only: rm None id, auto)
  qed
qed
lemma computeRuleMap-left-vars:
 shows (computeRuleMap\ R \neq None) = (\forall lr \in set\ R.\ \forall\ x.\ fst\ lr \neq Var\ x)
\mathbf{proof}\ (\mathit{cases}\ \mathit{computeRuleMap}\ R)
 case None
  from None computeRuleMapSound2 have \exists (l,r) \in set R. root l = None by
 from this obtain l r where (l,r) \in set R \wedge root l = None by auto
 from this have (l,r) \in set \ R \land \neg (\forall x. \ fst \ (l,r) \neq Var \ x) by (cases \ l, \ auto)
  with None show ?thesis by blast
next
  case (Some \ rm)
 then have left: computeRuleMap R \neq None by auto
  from Some computeRuleMapSound2 have \forall (l,r) \in set R. root l \neq None by
  then have \forall lr \in set R. \forall x. fst lr \neq Var x by auto
  with left show ?thesis by blast
qed
lemma computeRuleMap-defined: fixes R :: ('f,'v)rules
 assumes computeRuleMap\ R = Some\ rm
 shows (rm (f,n) = []) = (\neg defined (set R) (f,n))
proof -
 from assms computeRuleMapSound have rm: \bigwedge(f::'f) n. set (rm\ (f,n)) = \{(l,r)\}
```

note rm = assms[unfolded computeRuleMap-def, simplified Some, simplified,

```
| l r. (l, r) \in set R \wedge root l = Some (f, n) \} by force
 show ?thesis
 proof (cases \ rm \ (f,n))
   {\bf case}\ Nil
   with rm have \neg defined (set R) (f,n) unfolding defined-def by force
   with Nil show ?thesis by blast
 next
   case (Cons lr RR)
   then have left: rm(f,n) \neq [] by auto
  from Cons \ rm[where f = f and n = n] have defined \ (set \ R) \ (f,n) unfolding
defined-def by (cases lr, force)
   with left show ?thesis by blast
 qed
qed
lemma computeRuleMap-None-not-SN:
 assumes computeRuleMap R = None
 shows \neg SN-on (rstep (set R)) \{t\}
proof -
 from assms computeRuleMap-left-vars[of R] obtain x r where (Var x,r) \in set
R by auto
 from left-var-imp-not-SN[OF this] show ?thesis.
qed
end
```

9.3 Implementation of Parallel Rewriting With Variable Restriction

```
theory Rewrite-Relations-Impl
imports
Trs-Impl
Parallel-Rewriting
Multistep
begin
```

9.3.1 Checking a Single Parallel Rewrite Step with Variable Restriction

```
context
fixes R: ('f,'v) rules and V: 'v set
begin
fun is-par-rstep-var-restr :: ('f, 'v) term \Rightarrow ('f, 'v) term \Rightarrow bool
where
is-par-rstep-var-restr (Fun f ss) (Fun g ts) =
(Fun f ss = Fun g ts \lor
vars-term (Fun g ts) \cap V = {} \land (Fun f ss, Fun g ts) \in rrstep (set R) \lor
(f = g \land length ss = length ts \land list-all2 is-par-rstep-var-restr ss ts))
```

```
| is-par-rstep-var-restr s t = (s = t \lor vars-term \ t \cap V = \{\} \land (s,t) \in rrstep \ (set
R))
lemma is-par-rstep-code-helper: vars-term t \cap V = \{\} \longleftrightarrow
  (\forall x \in set (vars-term-list t). x \notin V)
 by auto
\mathbf{lemmas}\ is\ -par\ -rstep\ -var\ -restr\ -code[code] = is\ -par\ -rstep\ -var\ -restr\ . simps[unfolded\ is\ -par\ -rstep\ -code\ -helper]
lemma is-par-rstep-var-restr[simp]:
  is-par-rstep-var-restr s \ t \longleftrightarrow (s, \ t) \in par-rstep-var-restr (set \ R) \ V
 let ?Prop = \lambda \ s \ t. \ s = t \lor vars-term \ t \cap V = \{\} \land (s,t) \in rrstep \ (set \ R)
  {
   \mathbf{fix} \ s \ t
   assume ?Prop s t
    hence \exists C infos. (s, t) \in par\text{-rstep-mctxt} (set R) C infos \land vars-below-hole t
C \cap V = \{\}
   proof
     assume s = t
       thus ?thesis by (intro exI[of - mctxt-of-term s] exI[of - Nil], auto simp:
par-rstep-mctxt-reflI)
     assume vars-term t \cap V = \{\} \land (s,t) \in rrstep (set R)
     then obtain l \ r \ \sigma where id: s = l \cdot \sigma \ t = r \cdot \sigma and
       lr: (l,r) \in set R and
       vars: vars-term t \cap V = \{\}
       by (metis\ rrstepE)
     thus ?thesis by (intro exI[of - MHole] exI[of - [Par-Info s t (l,r)]], auto intro:
par-rstep-mctxt-MHoleI)
   qed
  } note Prop = this
   assume is-par-rstep-var-restr s t
    hence \exists C infos. (s, t) \in par\text{-rstep-mctxt} (set R) C infos \land vars-below-hole t
C \cap V = \{\}
   proof (induct rule: is-par-rstep-var-restr.induct[])
     case 2-1
     thus ?case by (intro Prop, auto)
   next
     case 2-2
     thus ?case by (intro Prop, auto)
     case (1 f ss g ts)
     \mathbf{show}~? case
     proof (cases ?Prop (Fun f ss) (Fun g ts))
       case True
       thus ?thesis using Prop by auto
```

next

```
case False
       with 1 have args: f = g length ss = length ts list-all2 is-par-rstep-var-restr
ss ts
         by (auto split: if-splits)
        let ?P = \lambda \ i \ C \ infos. \ (ss ! i, ts ! i) \in par-rstep-mctxt \ (set R) \ C \ infos \land
vars-below-hole (ts! i) C \subseteq (UNIV - V)
       \{ \text{ fix } i \}
         assume i:i < length ss
         then have si:ss ! i \in set ss by auto
         from i \ args(2) have ti:ts \ ! \ i \in set \ ts by auto
           from args(3) have iprv:is-par-rstep-var-restr (ss! i) (ts! i) using i
list-all2-nthD by blast
         with 1(1)[of ss!i ts!i] have pp:\exists C infos. ?P i C infos
           using local.args(1) local.args(2) using si ti by blast
       hence \forall i. \exists C infos. i < length ss \longrightarrow ?P i C infos by blast
       from choice[OF\ this] obtain C where \forall\ i.\ \exists\ infos.\ i < length\ ss \longrightarrow ?P
i (C i) infos by blast
       from choice[OF\ this] obtain infos\ where IH: \land\ i.\ i < length\ ss \Longrightarrow ?P\ i
(C\ i)\ (infos\ i)\ \mathbf{by}\ blast
       let ?C = MFun \ f \ (map \ C \ [0..< length \ ss])
       let ?infos = concat (map infos [0..< length ss])
       show ?thesis
       proof (intro exI[of - ?C] exI[of - ?infos] conjI)
       show vars-below-hole (Fun q ts) ?C \cap V = \{\} using IH args(2) unfolding
args(1)
          by (subst vars-below-hole-Fun; force)
        show (Fun f ss, Fun g ts) \in par-rstep-mctxt (set R) ?C ?infos unfolding
args(1) using args(2) IH
          by (intro par-rstep-mctxt-funI, auto)
       qed
     qed
   qed
   thus (s, t) \in par\text{-}rstep\text{-}var\text{-}restr (set R) V unfolding par\text{-}rstep\text{-}var\text{-}restr\text{-}def
by auto
   assume (s, t) \in par-rstep-var-restr (set R) V
   from this[unfolded par-rstep-var-restr-def] obtain C infos where
     st: (s, t) \in par-rstep-mctxt (set R) C infos and vars: vars-below-hole <math>t C \cap
V = \{\} by auto
   thus is-par-rstep-var-restr s t
   proof (induct C arbitrary: s t infos)
     case (MVar x)
     from par-rstep-mctxt-MVarE[OF\ MVar(1)]
     have s = Var x t = Var x by auto
     thus ?case by simp
   next
     case MHole
```

```
from par-rstep-mctxt-MHoleE[OF MHole(1)]
     have (s,t) \in rrstep (set R) by auto
     then show ?case using MHole(2) by (cases s; cases t; auto)
     case (MFun f Cs)
     from par-rstep-mctxt-MFunD[OF\ MFun(2)]
     obtain ss ts Infos
       where s: s = Fun f ss and
         t: t = Fun f ts and
         len: length \ ss = length \ Cs
         length ts = length Cs
         length \ Infos = length \ Cs \ and
         infos: infos = concat Infos and
        steps: \land i. i < length \ Cs \Longrightarrow (ss ! i, ts ! i) \in par-rstep-mctxt (set R) (Cs ! i)
i) (Infos ! i)
       by auto
     show ?case unfolding s t is-par-rstep-var-restr.simps
     proof (intro disjI2 conjI refl list-all2-all-nthI, unfold len)
       assume i: i < length Cs
       hence mem: Cs ! i \in set Cs by auto
       show is-par-rstep-var-restr (ss ! i) (ts ! i)
       proof (rule\ MFun(1)[OF\ mem\ steps[OF\ i]])
         have vars-below-hole (ts!i) (Cs!i) \subseteq vars-below-hole t (MFun f Cs)
           unfolding t using i len
           by (subst vars-below-hole-Fun, auto)
         with MFun(3) show vars-below-hole (ts!i) (Cs!i) \cap V = {} by auto
       ged
     qed auto
   qed
 }
qed
end
lemma par-rstep-var-restr-code[code-unfold]:
 (s, t) \in par\text{-}rstep\text{-}var\text{-}restr (set R) \ V \longleftrightarrow is\text{-}par\text{-}rstep\text{-}var\text{-}restr R \ V s \ t
 \mathbf{by} \ simp
       Implementation of Parallel Rewriting
         Checking a Single Parallel Rewrite Step
fun is-par-rstep :: ('f, 'v) rules \Rightarrow ('f, 'v) term \Rightarrow ('f, 'v) term \Rightarrow bool
    is-par-rstep R (Fun f ss) (Fun g ts) =
   (Fun \ f \ ss = Fun \ g \ ts \lor (Fun \ f \ ss, Fun \ g \ ts) \in rrstep \ (set \ R) \lor
   (f = g \land length \ ss = length \ ts \land list-all2 \ (is-par-rstep \ R) \ ss \ ts))
 | is\text{-par-rstep } R \ s \ t = (s = t \lor (s,t) \in rrstep \ (set \ R))
```

lemma is-par-rstep[simp]:

```
is-par-rstep R \ s \ t \longleftrightarrow (s, \ t) \in par-rstep (set \ R)
proof -
  have is-par-rstep R s t = is-par-rstep-var-restr R \{\} s t
    by (induct R s t rule: is-par-rstep.induct, auto simp del: is-par-rstep-var-restr
simp: list-all2-conv-all-nth)
  also have \ldots \longleftrightarrow (s, t) \in par\text{-}rstep\text{-}var\text{-}restr (set R) \{\}  by simp
 also have \ldots \longleftrightarrow (s, t) \in par\text{-}rstep (set R)
   unfolding par-rstep-var-restr-def par-rstep-par-rstep-mctxt-conv by auto
  finally show ?thesis.
qed
lemma par-rstep-code[code-unfold]: (s, t) \in par-rstep (set R) \longleftrightarrow is-par-rstep R s
t by simp
          Generate All Parallel Rewrite Steps
9.4.2
fun root-rewrite :: ('f, 'v) rules \Rightarrow ('f, 'v) term \Rightarrow ('f, 'v) term list
  where
    root-rewrite R s = concat (map (\lambda (l, r)).
   (case match s l of
      None \Rightarrow []
   | Some \ \sigma \Rightarrow [(r \cdot \sigma)]) \ R)
lemma root-rewrite-sound:
  assumes t \in set (root\text{-}rewrite R s)
  shows (s, t) \in rrstep (set R)
proof -
  from assms
 have \exists l r. (l,r) \in set R \land t \in set (case match s l of None <math>\Rightarrow [] \mid Some \sigma \Rightarrow [r]
\cdot \sigma
   by auto
  from this obtain l r where one:
   (l,r) \in set \ R \land t \in set \ (case \ match \ s \ l \ of \ None \Rightarrow [] \ | \ Some \ \sigma \Rightarrow [r \cdot \sigma])
  from this obtain \sigma where two: match s \mid l = Some \ \sigma \land t \in \{r \cdot \sigma\} by (cases
match \ s \ l, \ auto)
  then have match: l \cdot \sigma = s using match-sound by auto
  with one match one two have (s,t) \in rstep-r-p-s (set R) (l,r) \mid \sigma unfolding
rstep-r-p-s-def by (simp add: Let-def ctxt-supt-id)
  then show (s,t) \in rrstep \ (set \ R) unfolding rstep-iff-rstep-r-p-s \ rrstep-def by
blast
qed
Generate all possible parallel rewrite steps for a given term, assuming that
the underlying TRS is well-formed.
fun parallel-rewrite :: ('f, 'v) rules \Rightarrow ('f, 'v) term \Rightarrow ('f, 'v) term list
    parallel-rewrite R(Var x) = [Var x]
  | parallel-rewrite R (Fun f ss) = remdups
```

```
R) ss)))
lemma parallel-rewrite-par-step:
 assumes t \in set (parallel-rewrite R s)
 shows (s, t) \in par\text{-}rstep (set R)
 using assms
proof (induct s arbitrary: t)
 case (Fun f ss)
  then consider (root) t \in set (root\text{-}rewrite R (Fun f ss))
    | (args) \ t \in set \ (map \ (\lambda ss. \ Fun \ f \ ss) \ (product\ -lists \ (map \ (parallel\ -rewrite \ R)
ss)))
   by force
 then show ?case
 proof (cases)
   case root
   from root-rewrite-sound[OF this] obtain l \ r \ \sigma where (l, \ r) \in set \ R
     and l \cdot \sigma = Fun f ss and r \cdot \sigma = t
     unfolding rrstep-def rstep-r-p-s-def by auto
   then show ?thesis using par-rstep.intros(1) by metis
  next
   case args
    then obtain ts where t:t = Fun f ts and ts:ts \in set (product-lists (map))
(parallel-rewrite R) ss))
     by auto
   then have len:length ss = length ts using in-set-product-lists-length by force
    { fix i
     assume i:i < length ts
     have ts ! i \in set (parallel-rewrite R (ss ! i))
       using ts[unfolded product-lists-set[of - ss]]
      by (auto simp: list-all2-map2[of (\lambda x \ ys. \ x \in set \ ys)] intro: list-all2-nthD[OF]
- i])
     with Fun(1) len i have (ss ! i, ts ! i) \in par-rstep (set R) by auto
   from par-rstep.intros(2)[OF\ this\ len]\ show\ ?thesis\ using\ t\ by\ auto
 qed
\mathbf{qed} auto
9.5
       Implementation of Multi-Step Rewriting
         Checking a Single Multi-Step Rewrite
9.5.1
fun root-steps-substs :: ('f, 'v) rules \Rightarrow ('f, 'v) term \Rightarrow ('f, 'v) term \Rightarrow (('f, 'v)
term\ list\ \times\ ('f,\ 'v)\ term\ list)\ list
 where
    root-steps-substs R s t = concat (map (\lambda (l, r)).
   (case match s l of
     None \Rightarrow []
   | Some \sigma \Rightarrow (case match t r of
       None \Rightarrow []
```

 $(root\text{-}rewrite\ R\ (Fun\ f\ ss)\ @\ map\ (\lambda ss.\ Fun\ f\ ss)\ (product\text{-}lists\ (map\ (parallel\text{-}rewrite\ ss))))$

```
| Some \tau \Rightarrow (let var-list = filter (\lambda x. \ x \in vars-term \ r) (vars-distinct l) in
[(map \ \sigma \ var\text{-}list, \ map \ \tau \ var\text{-}list)])))
  R
lemma root-steps-substs-exists:
  assumes (ss, ts) \in set (root\text{-}steps\text{-}substs R s t)
 shows \exists l \ r \ \sigma \ \tau \ vl. \ (l, \ r) \in set \ R \land vl = filter \ (\lambda x. \ x \in vars-term \ r) \ (vars-distinct
l) \wedge
       l \cdot \sigma = s \wedge r \cdot \tau = t \wedge (ss, ts) = (map \ \sigma \ vl, map \ \tau \ vl)
proof-
  from assms obtain l r where lr:(l,r) \in set R (ss, ts) \in set (case match s l of l)
        None \Rightarrow []
      | Some \sigma \Rightarrow (case match t r of
          None \Rightarrow []
        | Some \tau \Rightarrow [(map \ \sigma \ (filter \ (\lambda x. \ x \in vars-term \ r) \ (vars-distinct \ l)), \ map \ \tau
(filter (\lambda x. \ x \in vars\text{-}term \ r) \ (vars\text{-}distinct \ l)))))
    unfolding root-steps-substs.simps Let-def by auto
  let ?var-list=filter (\lambda x. \ x \in vars-term r) (vars-distinct l)
  from lr obtain \sigma where \sigma: match s l = Some \sigma
   by fastforce
  from lr obtain \tau where \tau:match t r = Some \tau
   by fastforce
  from lr \sigma \tau have (ss, ts) = (map \sigma ?var-list, map \tau ?var-list)
   by simp
  with lr(1) \sigma \tau show ?thesis
   using match-matches by blast
qed
lemma size-match-subst-Fun:
 assumes is-Fun l and x \in vars\text{-}term\ l
   and match:match s l = Some \ \tau
  shows size (\tau x) < size s
proof-
  from assms(1) obtain f ts where l:l = Fun f ts
   by blast
  from match have *:l \cdot \tau = s
   \mathbf{by}\ (simp\ add:\ match-matches)
  then obtain ss where s:s = Fun f ss
    unfolding l by force
  from assms(2) obtain i where i:i < length ts and x:x \in vars\text{-}term \ (ts!i)
    unfolding l by (metis\ term.sel(4)\ var-imp-var-of-arg)
  from * have le:length ts = length ss
   unfolding s l by auto
  moreover from * i l s have ts!i \cdot \tau = ss!i
   by fastforce
  then have size (\tau x) \leq size (ss!i)
   using vars-term-size x by metis
  with i show ?thesis unfolding s term.size le
  by (metis add.commute add-0 add-Suc in-set-conv-nth less-Suc-eq-le size-list-estimation')
```

```
qed
abbreviation remove-trivial-rules R \equiv filter \ (\lambda \ (l, r). \ \neg \ (is-Var \ l) \ \lor \ \neg \ (is-Var \ l)
r)) R
lemma trivial-rrstep:
 assumes \exists x y. (Var x, Var y) \in R \land x \neq y
  shows (s, t) \in rrstep R
proof-
  from assms obtain x y where xy:(Var x, Var y) \in R x \neq y by blast
  let ?\sigma = (subst\ x\ s)\ (y := t)
  from xy have (?\sigma x, ?\sigma y) \in rrstep R
   by (metis\ eval\text{-}term.simps(1)\ rrstepI)
  then show ?thesis
   by (simp\ add:\ xy(2))
qed
\mathbf{lemma}\ size\text{-}root\text{-}steps\text{-}substs:
  assumes (ss, ts) \in set (root\text{-}steps\text{-}substs (remove\text{-}trivial\text{-}rules } R) \ s \ t)
   and s' \in set \ ss \ t' \in set \ ts
  shows size s' + size t' < size s + size t
proof-
  let ?R = remove - trivial - rules R
 from assms(1) obtain l \ r \ vl \ \sigma \ \tau where lr:(l, \ r) \in set \ ?R and vl:vl = filter \ (\lambda x.
x \in vars\text{-}term\ r)\ (vars\text{-}distinct\ l)
   and s:s = l \cdot \sigma and t:t = r \cdot \tau and ss-ts:(ss, ts) = (map \ \sigma \ vl, map \ \tau \ vl)
   using root-steps-substs-exists by blast
  from ss-ts assms(2) obtain x where s':s' = \sigma x and x:x \in set vl
   by auto
  with s have s1:size \ s' \le size \ s
   unfolding vl by (simp add: vars-term-size)
  from ss\text{-}ts assms(3) obtain y where t':t' = \tau y and y:y \in set vl
   by auto
  with t have s2:size \ t' \leq size \ t
   unfolding vl by (simp add: vars-term-size)
  from lr consider \neg is-Var l \mid \neg is-Var r
   by force
  then show ?thesis proof(cases)
   case 1
   then obtain f ls where l:l = Fun f ls
     by blast
   from x obtain i where i < length ls and x \in vars\text{-}term (ls!i)
        unfolding vl l by (metis comp-apply filter-is-subset set-remdups set-rev
set-vars-term-list subsetD term.sel(4) var-imp-var-of-arg)
   then have s' \triangleleft s
     unfolding s s' l by (meson nth-mem subst-image-subterm term.set-intros(4))
```

then have $size \ s' < size \ s$ by $(simp \ add: \ supt-size)$

then show ?thesis using s2 by simp

```
next
   case 2
   then obtain f rs where r:r = Fun f rs
     by blast
   from y obtain i where i < length rs and y \in vars\text{-}term (rs!i)
     unfolding vl r using var-imp-var-of-arg by force
   then have t' \triangleleft t
     unfolding t t' r by (meson nth-mem subst-image-subterm term.set-intros(4))
   then have size t' < size t
     by (simp add: supt-size)
   then show ?thesis using s1 by simp
 qed
qed
\textbf{function} \ (\textit{sequential}) \ \textit{is-mstep} :: (\textit{'f}, \ \textit{'v}) \ \textit{rules} \Rightarrow (\textit{'f}, \ \textit{'v}) \ \textit{term} \Rightarrow (\textit{'f}, \ \textit{'v}) \ \textit{term} \Rightarrow
bool
  where
    is\text{-}mstep\ R\ (Fun\ f\ ss)\ (Fun\ g\ ts) =
   (Fun \ f \ ss = Fun \ g \ ts \lor (Fun \ f \ ss, Fun \ g \ ts) \in rrstep \ (set \ R) \lor
   list-ex (\lambda (ss, ts). list-all2 (is-mstep R) ss ts) (root-steps-substs (remove-trivial-rules
R) (Fun f ss) (Fun g ts)) \vee
   (f = g \land length \ ss = length \ ts \land list-all2 \ (is-mstep \ R) \ ss \ ts))
  | is-mstep R s t = (s = t \lor (s, t) \in rrstep (set <math>R) \lor
  list-ex\ (\lambda\ (ss,\ ts).\ list-all 2\ (is-mstep\ R)\ ss\ ts)\ (root-steps-substs\ (remove-trivial-rules
R(s,t)
  by pat-completeness auto
termination proof (relation measure (\lambda (R, s, t). size s + size t), goal-cases)
  case (2 R f ss g ts x ls rs l r)
  then show ?case using size-root-steps-substs
   unfolding in-measure by (metis case-prod-conv)
next
  case (3 R f ss g ts s t)
  then have size s < size (Fun f ss) and size t < size (Fun g ts)
   by (simp add: elem-size-size-list-size less-Suc-eq)+
  then show ?case by simp
next
  case (4 R v t x xa y z yb)
  then show ?case using size-root-steps-substs
    unfolding in-measure by (metis case-prod-conv)
\mathbf{next}
  case (5 R s v x xa y z yb)
  then show ?case using size-root-steps-substs
   unfolding in-measure by (metis case-prod-conv)
qed auto
Show that all multi-steps are covered by the definition above.
lemma mstep-is-mstep:
  assumes (s, t) \in mstep (set R)
```

```
shows is-mstep R s t
  using assms proof(induct)
  case (args f n ss ts)
  then have list-all2 (is-mstep R) ss ts
   by (simp add: list-all2-all-nthI)
  with args show ?case
   by simp
\mathbf{next}
  case (rule l \ r \ \sigma \ \tau)
  show ?case proof(cases (l \cdot \sigma, r \cdot \tau) \in rrstep (set R))
   case True
    then show ?thesis using is-mstep.simps by (metis (no-types, opaque-lifting)
funas-term.cases)
  next
    case False
   then show ?thesis proof(cases is-Var l \wedge is-Var r)
      case True
      with False have \neg (\exists x \ y. \ (Var \ x, \ Var \ y) \in set \ R \land x \neq y)
       using trivial-rrstep by metis
      with True obtain x where l:l = Var x and r:r = Var x
        using rule.hyps(1) by blast
      show ?thesis
        unfolding l r using rule(2) l by simp
   next
      {f case}\ {\it False}
      let ?R = remove - trivial - rules R
      let ?vl=filter (\lambda x. \ x \in vars\text{-}term \ r) (vars-distinct l)
      from rule(1) False obtain i where i:i < length ?R ?R!i = (l, r)
     by (metis (no-types, lifting) case-prodI2 fst-conv in-set-conv-nth mem-Collect-eq
prod.sel(2) set-filter)
      obtain \sigma' where sigma:match\ (l \cdot \sigma)\ l = Some\ \sigma'\ (\forall\ x \in vars-term\ l.\ \sigma\ x =
\sigma'(x)
       by (meson match-complete')
      obtain \tau' where tau:match (r \cdot \tau) r = Some \ \tau' (\forall x \in vars\text{-}term \ r. \ \tau \ x = \tau')
x)
       by (meson match-complete')
      let ?matches=(map (\lambda(l', r')). case
         match\ (l \cdot \sigma)\ l'\ of\ None \Rightarrow []\ |\ Some\ \sigma \Rightarrow (case\ match\ (r \cdot \tau)\ r'\ of\ None
\Rightarrow []
       | Some \tau \Rightarrow (let var-list = filter (\lambda x. \ x \in vars\text{-term } r') (vars-distinct l')
                   in [(map \ \sigma \ var\text{-}list, map \ \tau \ var\text{-}list)]))) \ ?R)
      have i < length ?matches
       using i(1) by auto
      moreover have (map \ \sigma' ?vl, map \ \tau' ?vl) \in set (?matches ! i)
       using sigma(1) tau(1) i unfolding Let-def by simp
      ultimately have (map \ \sigma' ?vl, map \ \tau' ?vl) \in set \ (root\text{-}steps\text{-}substs ?R \ (l\cdot\sigma)
(r \cdot \tau)
         unfolding root-steps-substs.simps by (metis (no-types, lifting) concat-nth
concat-nth-length in-set-conv-nth)
```

```
then obtain j where j:j < length (root-steps-substs ?R (l \cdot \sigma) (r \cdot \tau)) root-steps-substs
?R (l \cdot \sigma) (r \cdot \tau) ! j = (map \sigma' ?vl, map \tau' ?vl)
       by (metis in-set-idx)
       have (\lambda \ (ss, \ ts). \ list-all2 \ (is-mstep \ R) \ ss \ ts) \ ((root-steps-substs \ ?R \ (l\cdot\sigma)
(r \cdot \tau))!j)
     proof-
        {fix i assume i:i < length ?vl
         from i have vr:?vl!i \in vars\text{-}term\ r
           using nth-mem by force
         from i have vl: ?vl!i \in vars-term l
           using nth-mem by force
         moreover have \sigma'(?vl!i) = \sigma(?vl!i)
           using sigma(2) vr vl by simp
         moreover have \tau'(?vl!i) = \tau(?vl!i)
           using vl\ vr\ tau(2) by simp
         ultimately have is-mstep R (\sigma' (?vl !i)) (\tau' (?vl !i))
           using rule(2) by force
       then have list-all2 (is-mstep R) (map \sigma' ?vl) (map \tau' ?vl)
         by (simp add: list-all2-conv-all-nth)
       then show ?thesis
         unfolding j(2) by fastforce
     qed
     then have *: list-ex (\lambda (ss, ts). list-all2 (is-mstep R) ss ts) (root-steps-substs
?R(l \cdot \sigma)(r \cdot \tau)
       using j by (meson\ list-ex-length)
     then show ?thesis
       by (smt\ (verit)\ is\text{-}mstep.elims(3))
   qed
  qed
qed simp
lemma mstep-root-helper:
 assumes list-ex (\lambda (ss, ts). list-all2 (is-mstep R) ss ts) (root-steps-substs (remove-trivial-rules
R) s t
    and \land ss ts s' t'. (ss, ts) \in set (root-steps-substs (remove-trivial-rules R) s t)
\implies s' \in set \ ss \implies t' \in set \ ts \implies is\text{-mstep} \ R \ s' \ t' \implies (s', \ t') \in mstep \ (set \ R)
 shows (s, t) \in mstep (set R)
proof-
  let ?R = (remove-trivial-rules R)
  from assms obtain i where i < length (root-steps-substs ?R s t) (\lambda (ss, ts).
list-all2 (is-mstep R) ss ts) ((root-steps-substs ?R s t)!i)
   using list-ex-length by blast
 then obtain ss' ts' where ss'ts':(ss', ts') \in set (root\text{-}steps\text{-}substs ?R s t) list\text{-}all2
(is-mstep R) ss' ts'
   using nth-mem by fastforce
  with root-steps-substs-exists obtain l r v l \sigma \tau where lr:(l, r) \in set R
   and vl:vl = filter (\lambda x. \ x \in vars-term \ r) (vars-distinct \ l)
   and l:l \cdot \sigma = s and r:r \cdot \tau = t
```

```
and \sigma \tau: (ss', ts') = (map \sigma vl, map \tau vl)
   by (smt (verit, best) mem-Collect-eq set-filter)
  let ?\tau = \lambda x. (if x \in vars\text{-}term\ r\ then\ \tau\ x\ else\ \sigma\ x)
  from r have r':r \cdot ?\tau = t
   by (smt (verit, del-insts) term-subst-eq)
  { fix x assume x:x \in vars\text{-}term\ l
   then have (\sigma x, ?\tau x) \in mstep (set R) \operatorname{proof}(cases x \in set vl)
     case True
     then obtain i where i:i < length vl vl ! i = x
       using in-set-idx by force
     then have i1:i < length ss'
       using \sigma \tau by sim p
     from i have i2:i < length ts'
       using \sigma \tau by simp
     from ss'ts'(2) i1 i2 have is-mstep R (ss' ! i) (ts' ! i)
       using list-all2-nthD by blast
     with assms(2)[OF\ ss'ts'(1)]\ i1\ i2\ have\ (ss'!\ i,\ ts'!\ i)\in mstep\ (set\ R)
       by auto
     then show ?thesis
       using i \sigma \tau by auto
   next
     case False
     with vl x show ?thesis by simp
   qed
 then show ?thesis
   using mstep.rule[OF lr] l r' by force
qed
lemma is-mstep-mstep:
 assumes is-mstep R s t
 shows (s, t) \in mstep (set R)
 using assms proof (induct rule: is-mstep.induct)
 case (1 R f ss g ts)
 from 1 consider Fun f ss = Fun g ts
   | (rrstep) (Fun f ss, Fun q ts) \in rrstep (set R)
  |(root)| list-ex (\lambda(ss, ts), list-all2(is-mstep R) ss ts)(root-steps-substs(remove-trivial-rules))
R) (Fun f ss) (Fun g ts))
     (args) f = g and length ss = length ts and list-all2 (is-mstep R) ss ts
   \mathbf{by} \ (\mathit{auto} \ \mathit{split} \colon \mathit{if}\text{-}\mathit{splits})
  then show ?case proof(cases)
   show ?thesis using mstep-root-helper[OF root] 1(1) by simp
 next
   case args
    { fix i
     assume i:i < length ss
     then have si:ss ! i \in set ss by auto
     from i \ args(2) have ti:ts \ ! \ i \in set \ ts by auto
```

```
from args(3) have is-mstep R (ss! i) (ts! i) using i list-all2-nthD by blast
     with 1(2)[of ss ! i ts ! i] args(1,2) si ti have (ss ! i, ts ! i) \in mstep (set R)
       by auto
   then show ?thesis using args(1,2)
     by (simp add: mstep.args)
  qed (simp-all add: rrstep-imp-rstep rstep-imp-mstep)
next
 case (2-1 R v t)
 from 2-1 consider Var v = t
   | (Var \ v, \ t) \in rrstep \ (set \ R)
  | (root) | list-ex (\lambda (ss, ts). list-all2 (is-mstep R) ss ts) (root-steps-substs (remove-trivial-rules
R) (Var v) t)
   by auto
 then show ?case proof(cases)
   case root
   show ?thesis using mstep-root-helper[OF root] 2-1(1) by simp
 qed (simp-all add: rrstep-imp-rstep rstep-imp-mstep)
 case (2-2 R s v)
 from 2-2 consider s = Var v
   | (s, Var v) \in rrstep (set R) |
  | (root) \ list-ex \ (\lambda \ (ss,\ ts).\ list-all2 \ (is-mstep\ R)\ ss\ ts) \ (root-steps-substs \ (remove-trivial-rules
R) \ s \ (Var \ v))
   by auto
 then show ?case proof(cases)
   show ?thesis using mstep-root-helper[OF root] 2-2(1) by simp
 qed (simp-all add:rrstep-imp-rstep rstep-imp-mstep)
qed
lemma is-mstep[simp]:
 is\text{-}mstep\ R\ s\ t\longleftrightarrow (s,\ t)\in mstep\ (set\ R)
 using is-mstep-mstep mstep-is-mstep by blast
lemma mstep-code[code-unfold]: (s, t) \in mstep (set R) \longleftrightarrow is-mstep R s t by <math>simp
         Generate All Multi-Step Rewrites
fun root-subst-with-rhs :: ('f, 'v) rules \Rightarrow ('f, 'v) term \Rightarrow (('f, 'v) term \times ('f, 'v)
term list) list
  where
    root-subst-with-rhs R s = concat (map (\lambda (l, r)).
   (case match s l of
     None \Rightarrow []
   | Some \sigma \Rightarrow [(r, map \ \sigma \ (vars-distinct \ r))])
  R
```

lemma root-steps-subst-rhs-exists:

```
assumes (r, ss) \in set (root\text{-}subst\text{-}with\text{-}rhs R s)
  shows \exists l \sigma. (l, r) \in set R \land l \cdot \sigma = s \land ss = map \sigma (vars-distinct r)
proof-
  from assms obtain l where lr:(l,r) \in set \ R \ (r, ss) \in set \ (case \ match \ s \ l \ of
      None \Rightarrow []
    | Some \sigma \Rightarrow [(r, map \sigma (vars-distinct r))])
    by auto
  then obtain \sigma where \sigma:match s \ l = Some \ \sigma
    by fastforce
  with lr show ?thesis
    using match-matches by force
qed
context
 fixes R :: ('f, 'v) rules
 assumes wf-trs (set R)
begin
private lemma *: list-all (\lambda(l, r). is-Fun l \wedge (vars-term \ r \subseteq vars-term \ l)) R
  using \langle wf\text{-}trs\ (set\ R)\rangle unfolding wf\text{-}trs\text{-}def by (auto simp: list\text{-}all\text{-}iff)
lemma varcond:
  \bigwedge l \ r. \ (l, \ r) \in set \ R \Longrightarrow is\text{-}Fun \ l \land vars\text{-}term \ r \subseteq vars\text{-}term \ l
  using * Ball-set-list-all case-prodD by (metis (no-types, lifting))
lemma [termination-simp]:
  assumes (l, r) \in set R
    and Some \sigma = match (Fun \ g \ ts) \ l
    and x \in vars\text{-}term \ r
 shows size (\sigma x) < Suc (size-list size ts)
  using assms size-match-subst-Fun varcond
 by (metis (no-types, lifting) add.right-neutral add-Suc-right subsetD term.size(4))
Compute the list of terms reachable in multi-step from a given term.
fun mstep-rewrite-main :: ('f, 'v) term \Rightarrow ('f, 'v) term list
  where
    mstep-rewrite-main (Var x) = [Var x]
  | mstep-rewrite-main (Fun f ss) = remdups (
     (concat (map (\lambda(r, ts)).
        (map\ (\lambda args.\ r\cdot (mk\text{-}subst\ Var\ (zip\ (vars\text{-}distinct\ r)\ args)))\ (product\text{-}lists
(map \ mstep-rewrite-main \ ts))))
      (root\text{-}subst\text{-}with\text{-}rhs\ R\ (Fun\ f\ ss))))
    @(map\ (\lambda ss.\ Fun\ f\ ss)\ (product\ -lists\ (map\ mstep\ -rewrite\ -main\ ss))))
lemma mstep-rewrite-main-mstep:
  assumes t \in set \ (mstep\text{-}rewrite\text{-}main \ s)
 shows (s, t) \in mstep (set R)
  using assms
proof (induct s arbitrary: t rule:subterm-induct)
```

```
case (subterm s)
    then show ?case proof(cases s)
       case (Var x)
       with subterm(2) show ?thesis by simp
   next
       case (Fun f ss)
        with subterm consider (root) t \in set (concat (map (\lambda(r,ts).(map (\lambda args. r \cdot
(mk\text{-}subst\ Var\ (zip\ (vars\text{-}distinct\ r)\ args)))
                   (product-lists (map mstep-rewrite-main ts)))) (root-subst-with-rhs R (Fun
f(ss))))
            | (args) t \in set (map (\lambda ss. Fun f ss) (product-lists (map mstep-rewrite-main step)) | (args) t \in set (map (\lambda ss. Fun f ss) (product-lists (map mstep-rewrite-main step)) | (args) t \in set (map (\lambda ss. Fun f ss) (product-lists (map mstep-rewrite-main step)) | (args) t \in set (map (\lambda ss. Fun f ss) (product-lists (map mstep-rewrite-main step)) | (args) t \in set (map (\lambda ss. Fun f ss) (product-lists (map mstep-rewrite-main step)) | (args) t \in set (map (\lambda ss. Fun f ss) (product-lists (map mstep-rewrite-main step)) | (args) t \in set (map (\lambda ss. Fun f ss) (product-lists (map mstep-rewrite-main step)) | (args) t \in set (map (\lambda ss. Fun f ss) (product-lists (map mstep-rewrite-main step)) | (args) t \in set (map (\lambda ss. Fun f ss) (product-lists (map mstep-rewrite-main step)) | (args) t \in set (map (\lambda ss. Fun f ss) (product-lists (map mstep-rewrite-main step)) | (args) t \in set (map (\lambda ss. Fun f ss) (product-lists (map mstep)) | (args) t \in set (map (\lambda ss) (product-lists (map mstep)) | (args) (map mstep) (product-lists (map mstep)) | (args) (product-lists (map mstep)) | (args) (map mstep) | (args) 
ss)))
           by force
       then show ?thesis
       proof (cases)
           case root
           then obtain r ts where rhs-subst:(r,ts) \in set (root\text{-subst-with-rhs } R (Fun f
ss))
                     t \in set \ (map \ (\lambda args. \ r \cdot (mk\text{-}subst \ Var \ (zip \ (vars\text{-}distinct \ r) \ args)))
(product-lists (map mstep-rewrite-main ts)))
              by force
           from root-steps-subst-rhs-exists[OF rhs-subst(1)] obtain l \sigma where lr:(l, r)
\in set R
               and sigma: l \cdot \sigma = Fun \ f \ ss \ ts = map \ \sigma \ (vars-distinct \ r) by auto
               from rhs-subst(2) obtain args where args:t = r \cdot (mk-subst Var (zip)
(vars-distinct \ r) \ args))
              args \in set (product-lists (map mstep-rewrite-main ts))
              by auto
           then have len:length \ args = length \ ts
              using in-set-product-lists-length by fastforce
           then have len': length \ args = length \ (vars-distinct \ r)
              by (simp\ add:\ sigma(2))
          let ?\tau = \lambda x. if x \in vars\text{-}term\ r\ then\ (mk\text{-}subst\ Var\ (zip\ (vars\text{-}distinct\ r)\ args))
x else \sigma x
           from args(1) have t:t = r \cdot ?\tau
               by (simp add: term-subst-eq-conv)
           { fix x
               assume x:x \in vars\text{-}term\ l
              have (\sigma x, ?\tau x) \in mstep (set R) \operatorname{proof}(cases x \in vars-term r)
                  case True
                  then obtain i where i:i < length (vars-distinct r) x = vars-distinct r! i
                      by (metis in-set-idx set-vars-term-list vars-term-list-vars-distinct)
                  with True len' have tau-x: ?\tau x = args!i
                     by (simp add: mk-subst-distinct)
                  from i \ sigma(2) have sigma-x:\sigma \ x = ts!i
                      by simp
                  have \sigma x \triangleleft Fun fss
                           by (metis is-VarI lr sigma(1) subst-image-subterm term.set-cases(2)
varcond x)
```

```
with sigma-x have ts!i \triangleleft Fun f ss by simp
         moreover have args!i \in set \ (mstep-rewrite-main \ (ts!i)) \ using \ args(2)
i(1) len' len
          unfolding product-lists-set list-all2-conv-all-nth by force
       ultimately show ?thesis using subterm(1) sigma-x tau-x unfolding Fun
by presburger
      next
        case False
        then show ?thesis by simp
      qed
     then show ?thesis using mstep.intros(3)[OF lr] sigma(1) unfolding Fun t
      by fastforce
   \mathbf{next}
     case args
      then obtain ts where t:t = Fun \ f \ ts and ts:ts \in set \ (product-lists \ (map
mstep-rewrite-main ss))
      by auto
    then have len:length ss = length ts using in-set-product-lists-length by force
     \{ \text{ fix } i \}
      assume i:i < length ts
      have ts ! i \in set (mstep-rewrite-main (ss ! i))
        using ts[unfolded\ product-lists-set[of\ -\ ss]]
       by (auto simp: list-all2-map2[of (\lambda x \ ys. \ x \in set \ ys)] intro: list-all2-nthD[OF
-i
      with subterm len i have (ss ! i, ts ! i) \in mstep (set R)
        unfolding Fun by auto
     with mstep.intros(2) len t Fun show ?thesis
      by metis
   qed
 qed
qed
end
We need to be able to export code for mstep-rewrite-main, hence the follow-
ing definitions.
typedef ('f, 'v) wfTRS = \{R :: ('f, 'v) \text{ rules. } wf\text{-}trs \text{ (set } R)\}
 by (intro exI[of - Nil], auto simp: wf-trs-def)
setup-lifting type-definition-wfTRS
lift-definition get-TRS :: ('f, 'v) wfTRS \Rightarrow ('f, 'v) rules is \lambda R. R.
lemma is-wf-get-TRS: wf-trs (set (get-TRS R'))
 by (transfer, auto)
definition mstep-rewrite-wf R = mstep-rewrite-main (get-TRS R)
```

```
lemmas mstep-rewrite-wf-simps = mstep-rewrite-main.simps[OF\ is-wf-qet-TRS,
folded mstep-rewrite-wf-def]
declare mstep-rewrite-wf-simps[code]
lift-definition (code-dt) get-wfTRS :: ('f :: showl, 'v :: showl) rules \Rightarrow ('f, 'v)
wfTRS option is
    \lambda R. if isOK (check-wf-trs R) then Some R else None
   by (force simp: wf-trs-def list.pred-set split: prod.splits)
definition err-wf where err-wf = STR "TRS is not well-formed"
definition mstep-dummy-impl R s t = ((s,t) \in mstep (set R))
lemma mstep-dummy-impl[code]: mstep-dummy-impl <math>R = Code.abort (STR "mstep-dummy")
(\lambda - mstep-dummy-impl R)
   by simp
lift-definition (code-dt) qet-wfTRS-sub :: ('f :: showl, 'v :: showl) rules \Rightarrow ('f, 'v)
wfTRS is
   \lambda R. if isOK (check-wf-trs R) then R else Code.abort err-wf (\lambda -. [])
   by (auto simp: wf-trs-def)
definition mstep-rewrite R = mstep-rewrite-wf (get-wfTRS-sub R)
lemma mstep-rewrite-mstep:
    assumes t \in set \ (mstep\text{-}rewrite \ R \ s)
   shows (s, t) \in mstep (set R)
proof -
    define R' where R' = get-wfTRS-sub R
    have wf: wf-trs (set (get-TRS R'))
       by (transfer, auto)
   have sub: set (get-TRS R') \subseteq set R unfolding R'-def by (transfer, auto)
  {f from}\ mstep\mbox{-}rewrite\mbox{-}main\mbox{-}mstep[OF\ wf,\ folded\ mstep\mbox{-}rewrite\mbox{-}wf\mbox{-}def,\ OF\ assms(1)[unfolded\ mstep\mbox{-}def,\ OF\ assms(1)
mstep-rewrite-def, folded R'-def]]
   have (s, t) \in mstep (set (get-TRS R')).
    with mstep-mono[OF sub] show ?thesis by auto
qed
end
```

References

- [1] F. Baader and T. Nipkow. *Term Rewriting and All That*. Cambridge University Press, 1998.
- [2] TeReSe, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts

- $in\ Theoretical\ Computer\ Science.\ Cambridge\ University\ Press,\ 2003.$
- [3] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In *Proceedings of the 22nd International Conference on Theorem Proving in Higher-Order Logics*, volume 5674 of *Lecture Notes in Computer Science*, pages 452–468. Springer, 2009.