Fundamental Theorem of Finitely Generated
Abelian Groups

Joseph Thommes, Manuel Eberl

March 17, 2025

Abstract

This article deals with the formalisation of some group-theoretic re-
sults including the fundamental theorem of finitely generated abelian
groups characterising the structure of these groups as a uniquely de-
termined product of cyclic groups. Both the invariant factor decom-
position and the primary decomposition are covered.

Additional work includes results about the direct product, the in-
ternal direct product and more group-theoretic lemmas.

Contents

1 Set Multiplication

2 Miscellaneous group facts
3 Generated Groups

4 Auxiliary lemmas

5 Internal direct product
5.1 Complementarity Lo
5.2 IDirProd - binary internal direct product
5.3 IDirProds - indexed internal direct product
5.4 Complementary family of subgroups
5.0 dis_idirprodo e e e

6 Finite Product
7 Group Homomorphisms

8 Finite and cyclic groups
8.1 Finite groups L Lo
8.2 Finite abelian groups L Lo oL

11
11
13
14
15
16

16

20

8.3 Cyclicgroups L 24

8.4 Finite cyclicgroups Lo Lo 25
8.5 get_exp - discrete logarithm 26
8.6 Integer modular groups L. 27
9 Direct group product 27
10 Group relations 32

11 Fundamental Theorem of Finitely Generated Abelian Groups 34

1 Set Multiplication

theory Set_Multiplication
imports "HOL-Algebra.Multiplicative_Group"
begin

This theory/section is of auxiliary nature and is mainly used to establish
a connection between the set multiplication and the multiplication of sub-
groups via the IDirProd (although this particular notion is introduced later).
However, as in every section of this entry, there are some lemmas that do not
have any further usage in this entry, but are of interest just by themselves.

lemma (in group) set_mult_union:
"A<#> (BUC) = (A<#>B) U (A<#>0)"
{proof)

lemma (in group) set_mult_card_single_el_eq:
assumes "J C carrier G" "x € carrier G"
shows "card (1_coset G x J) = card J" (proof)

We find an upper bound for the cardinality of a set product.

lemma (in group) set_mult_card_le:
assumes "finite H" "H C carrier G" "J C carrier G"
shows "card (H <#> J) < card H * card J"

(proof)

lemma (in group) set_mult_finite:
assumes "finite H" "finite J" "H C carrier G" "J C carrier G"
shows "finite (H <#> J)"
(proof)

The next lemma allows us to later to derive that two finite subgroups J
and H are complementary if and only if their product has the cardinality
| J| - [H].

lemma (in group) set_mult_card_eq_impl_empty_inter:

assumes "finite H" "finite J" "H C carrier G" "J C carrier G" "card

(H <#> J) = card H * card J"

shows "Aa b. [a € H; b € H; a #b] = ((®) a “J) N ((®) b “J)

lemma (in group) set_mult_card_eq_impl_empty_inter’:

assumes "finite H" "finite J" "H C carrier G" "J C carrier G" "card
(H <#> J) = card H * card J"

shows "Aa b. [a € H; b € H; a # b] = (1_coset G a J) N (1_coset
GbJ =A{}'

(proof)

lemma (in comm_group) set_mult_comm:
assumes "H C carrier G" "J C carrier G"
shows "(H <#> J) = (J <#> H)"
(proof)

lemma (in group) set_mult_one_imp_inc:
assumes "1 € A" "A C carrier G" "B C carrier G"
shows "B C (B <#> A)"

(proof)

In all cases, we know that the product of two sets is always contained in the
subgroup generated by them.
lemma (in group) set_mult_subset_generate:

assumes "A C carrier G" "B C carrier G"
shows "A <#> B C generate G (A U B)"

(proof)

In the case of subgroups, the set product is just the subgroup generated by
both of the subgroups.
lemma (in comm_group) set_mult_eq_generate_subgroup:

assumes "subgroup H G" "subgroup J G"
shows '"generate G (H U J) = H <#> J" (is "?L = 7R")

(proof)

end

2 Miscellaneous group facts

theory Miscellaneous_Groups
imports Set_Multiplication
begin

As the name suggests, this section contains several smaller lemmas about
groups.

lemma (in subgroup) nat_pow_closed [simp,intro]: "a € H = pow G a
(n::nat) € H"
(proof)

lemma nat_pow_modify_carrier: "a FJGQcarrier ‘= H) b=a ["]g (b::nat)"
(proof)

lemma (in group) subgroup_card_dvd_group_ord:
assumes "subgroup H G"
shows "card H dvd order G"

(proof)

lemma (in group) subgroup_card_eq_order:
assumes "subgroup H G"
shows "card H = order (G(carrier := H|))"

(proof)

lemma (in group) finite_subgroup_card_neq O:
assumes "subgroup H G" "finite H"
shows "card H # 0"

(proof)

lemma (in group) subgroup_order_dvd_group_order:
assumes "subgroup H G"
shows "order (G(carrier := H|)) dvd order G"

(proof)

lemma (in group) sub_subgroup_dvd_card:
assumes "subgroup H G" "subgroup J G" "J C H"
shows "card J dvd card H"

(proof)

lemma (in group) inter_subgroup_dvd_card:
assumes "subgroup H G" "subgroup J G"
shows '"card (H N J) dvd card H"

(proof)

lemma (in group) subgroups_card_coprime_inter_card_one:
assumes "subgroup H G" "subgroup J G" "coprime (card H) (card J)"
shows "card (H N J) = 1"

(proof)

lemma (in group) coset_neq_imp_empty_inter:
assumes "subgroup H G" "a € carrier G" "b € carrier G"
shows "H #> a # H#> b = (H #> a) N (H # b) = {}"
{proof)

lemma (in comm_group) subgroup_is_comm_group:
assumes "subgroup H G"
shows "comm_group (G(carrier := H))" (proof)

lemma (in group) pow_int_mod_ord:
assumes [simp]:"a € carrier G" "ord a # 0"
shows "a ["] (n::int) = a ["] (n mod ord a)"
(proof)

lemma (in group) pow_nat_mod_ord:
assumes [simp]:"a € carrier G" "ord a # 0"
shows "a ["] (n::nat) = a ["] (n mod ord a)"
(proof)

lemma (in group) ord_min:
assumes "m > 1" "x € carrier G" "x [l m = 1"
shows "ord x < m"

{proof)

lemma (in group) bij_betw_mult_left[intro]:
assumes [simp]: "x € carrier G"
shows "bij_betw (A\y. x ® y) (carrier G) (carrier G)"

{proof)

lemma (in subgroup) inv_in_iff:
assumes "x € carrier G" "group G"
shows '"inv x € H +— x € H"

(proof)

lemma (in subgroup) mult_in_cancel_left:
assumes "y € carrier G" "x € H" '"group G"
shows "x ® y € H +— y € H"

(proof)

lemma (in subgroup) mult_in_cancel_right:
assumes "x € carrier G" "y € H" '"group G"
shows '"x ® y € H +— x € H"

(proof)

lemma (in group)
assumes "x € carrier G" and "x ["] n =1" and "n > 0"
shows ord_le: "ord x < n" and ord_pos: "ord x > 0"

(proof)

lemma (in group) ord_conv_Least:
assumes "x € carrier G" "dn::nat > 0. x ["] n = 1"
shows "ord x = (LEAST n::nat. 0 <n A x ["] n=1)"

(proof)

lemma (in group) ord_conv_Gcd:
assumes "x € carrier G"
shows "ord x = Ged {n. x [] n = 1}"
(proof)

lemma (in group) subgroup_ord_eq:
assumes "subgroup H G" "x € H"
shows "group.ord (G(carrier := H|)) x = ord x"

{proof)

lemma (in group) ord_FactGroup:
assumes '"subgroup P G" "group (G Mod P)"
shows "order (G Mod P) * card P = order G"

{proof)

lemma (in group) one_is_same:
assumes "subgroup H G"
shows HlG(Icarrier :=H) < 1"

(proof)

lemma (in group) kernel_FactGroup:
assumes "P < G"
shows "kernel G (G Mod P) (A\x. P #> x) = P"

(proof)

lemma (in group) sub_subgroup_coprime:
assumes "subgroup H G" "subgroup J G" "coprime (card H) (card J)"
and "subgroup sH G" "subgroup sJ G" "sH C H" "sJ C J"

shows "coprime (card sH) (card sJ)"

(proof)

lemma (in group) pow_eq_nat_mod:
assumes "a € carrier G" "a ["] n =a [T] m"
shows "n mod (ord a) = m mod (ord a)"

(proof)

lemma (in group) pow_eq_int_mod:
fixes n m::int
assumes "a € carrier G" "a ["] n =a ["] m"
shows "n mod (ord a) = m mod (ord a)"

(proof)

end

3 Generated Groups

theory Generated_Groups_Extend
imports Miscellaneous_Groups
begin

This section extends the lemmas and facts about generate. Starting with a
basic fact.

lemma (in group) generate_sincl:
"A C generate G A"

(proof)

The following lemmas reflect some of the idempotence characteristics of
generate and have proved useful at several occasions.

lemma (in group) generate_idem:
assumes "A C carrier G"
shows "generate G (generate G A) = generate G A"

(proof)

lemma (in group) generate_idem’:
assumes "A C carrier G" "B C carrier G"
shows '"generate G (generate G A U B) = generate G (A U B)"

(proof)

lemma (in group) generate_idem’_right:
assumes "A C carrier G" "B C carrier G"
shows '"generate G (A U generate G B) = generate G (A U B)"

(proof)

lemma (in group) generate_idem_Un:
assumes "A C carrier G"
shows "generate G (| Jx€A. generate G {x}) = generate G A"

(proof)

lemma (in group) generate_idem_fUn:

assumes "f A C carrier G"

shows "generate G (|J {generate G {x} [x. x € f A}) = generate G (f
A
(proof)

lemma (in group) generate_idem_fim Un:

assumes "|J (f ¢ 4) C carrier G"

shows "generate G (|JS € A. generate G (f S)) = generate G (|J {generate
G{x} Ix. x e Y (£ < DP"
(proof)

The following two rules allow for convenient proving of the equality of two
generated sets.

lemma (in group) generate_eqI:

assumes "A C carrier G" "B C carrier G" "A C generate G B" "B C generate
G A”

shows '"generate G A = generate G B"

(proof)

lemma (in group) generate_one_switched_eqlI:
assumes "A C carrier G" "a € A" "B = (A - {a}) U {b}"
and "b € generate G A" "a € generate G B"
shows "generate G A = generate G B"

(proof)

lemma (in group) generate_subset_eql:
assumes "A C carrier G" "B C A" "A - B C generate G B"
shows "generate G A = generate G B"

{(proof)

Some smaller lemmas about generate.

lemma (in group) generate_subset_change_eqI:

assumes "A C carrier G" "B C carrier G" "C C carrier G" '"generate
G A = generate G B"

shows "generate G (A U C) = generate G (B U C)"

{proof)

lemma (in group) generate_subgroup_id:
assumes "subgroup H G"
shows "generate G H = H"

{proof)

lemma (in group) generate_consistent’:
assumes "subgroup H G" "A C H"
shows "Vx € A. generate G {x} = generate (G(carrier := H|)) {x}"

{proof)

lemma (in group) generate_singleton_one:
assumes '"generate G {a} = {1}"
shows "a = 1"

(proof)

lemma (in group) generate_inv_eq:
assumes "a € carrier G"
shows "generate G {a} = generate G {inv a}"

(proof)

lemma (in group) generate_eq_imp_subset:
assumes "generate G A = generate G B"
shows "A C generate G B"

(proof)

The neutral element does not play a role when generating a subgroup.

lemma (in group) generate_one_irrel:
"generate G A = generate G (A U {1})"

{(proof)

lemma (in group) generate_one_irrel’:

"generate G A = generate G (A - {1})"
{proof)

Also, we can express the subgroup generated by a singleton with finite order

using just its powers up to its order.

lemma (in group) generate_nat_pow:
assumes "ord a # 0" "a € carrier G"
shows '"generate G {a} = {a ["] k |k. k € {0..ord a - 1}}"

(proof)

lemma (in group) generate_nat_pow’:
assumes "ord a # 0" "a € carrier G"
shows "generate G {a} = {a ["] k |k. k € {1..ord a}}"

(proof)

end

4 Auxiliary lemmas

theory General_Auxiliary
imports Complex_Main
"HOL-Algebra.IntRing"
"HOL.Rings"
begin

lemma inter_imp_subset: "A N B =A =— A C B"
(proof)

lemma card_inter_eq:
assumes "finite A" "card (A N B) = card A"
shows "4 C B"

(proof)

lemma coprime_eq_empty_prime_inter:
assumes "(n::nat) # 0" "m # 0"

shows "coprime n m <— (prime_factors n) N (prime_factors m) =

(proof)

lemma prime_factors_Prod:
assumes "finite S" "Aa. a € S = f a # 0"
shows "prime_factors (prod f S) = |J (prime_factors ¢ f ¢ S)"

(proof)

lemma lcm_is_Min_multiple_nat:
assumes "¢ # 0" "(a::nat) dvd c" "(b::nat) dvd c"
shows "¢ > lcm a b"

(proof)

lemma diff_prime_power_imp_coprime:

assumes "p # q" "Factorial_Ring.prime (p::nat)" "Factorial_Ring.prime

n

q
shows "coprime (p ~ (n::nat)) (q ~ m)"

{proof)

lemma "finite (prime_factors x)"

(proof)

lemma card_ge_1_two_diff:

assumes "card A > 1"

obtains x y where "x € A" "y € A" "x # y"
(proof)

lemma infinite_two_diff:

assumes "infinite A"

obtains x y where "x € A" "y € A" "x # y"
(proof)

lemma Inf_le:
"Inf A < x" if "x € (A::nat set)" for x

(proof)

lemma switch_elem_card_le:
assumes "a € A"
shows "card (A - {a} U {b}) < card A"
(proof)

lemma pairwise_coprime_dvd:

assumes "finite A" "pairwise coprime A" "(n::nat) = prod id A" "VacA.
a dvd j"

shows "n dvd j"

(proof)

lemma pairwise_coprime_dvd’:
assumes "finite A" "Ai j. [i € A; j € A; i # j] = coprime (f i)
(£ j)"
"(n::nat) = prod f A" "Va€cA. f a dvd j"
shows "n dvd j"

(proof)

lemma transp_successively_removel:
assumes "transp f" "successively f 1"
shows "successively f (removel a 1)" (proof)

lemma exp_one_2pi_iff:
fixes x::real shows "exp (2 * of_real pi 1 * x) =1 +— x € Z"

(proof)

10

lemma of_int_divide_in_Ints_iff:

assumes "b # 0"

shows "(of_int a / of_int b :: ’a :: field char 0) € Z +— b dvd
a"

(proof)

lemma of_nat_divide_in_Ints_iff:
assumes "b #* 0"
shows "(of_nat a / of_nat b :: ’a :: field _char 0) € Z <— b dvd

n

(proof)

a

lemma true_nth_unity_root:

fixes n::nat

obtains x::complex where "x ~n = 1" "Am. [0<m; m<n] = x "~ m # 1"
(proo)

lemma finite_bij_betwI:

assumes "finite A" "finite B" "inj_on f A" "f € A — B" "card A = card
BH

shows "bij_betw f A B"
(proof)

lemma powi_mod:

"x powi m = x powi (m mod n)" if "x ~n = 1" "n > 0" for x::complex and
m::int
(proof)

lemma Sigma_insert: "Sigma (insert x A) B = (A\y. (x, y)) ¢ B x U Sigma
A B’l
{proof)

end

5 Internal direct product

theory IDirProds
imports Generated_Groups_Extend General_Auxiliary
begin

5.1 Complementarity

We introduce the notion of complementarity, that plays a central role in the
internal direct group product and prove some basic properties about it.

definition (in group) complementary :: "’a set = ’a set = bool" where

11

"complementary H1 H2 <— H1 N H2 = {1}"

lemma (in group) complementary_symm: "complementary A B <— complementary
B A”

(proof)

lemma (in group) subgroup_carrier_complementary:

assumes "complementary H J" "subgroup I (G(carrier := H|))" "subgroup
K (G(carrier := J))"

shows "complementary I K"

(proof)

lemma (in group) subgroup_subset_complementary:
assumes "subgroup H G" "subgroup J G" "subgroup I G"
and "I C J" "complementary H J"

shows "complementary H I"

(proof)

lemma (in group) complementary_subgroup_iff:

assumes "subgroup H G"

shows "complementary A B <— group.complementary (G(carrier := H|))
A B’I

(proof)

lemma (in group) subgroups_card_coprime_imp_compl:
assumes "subgroup H G" "subgroup J G" "coprime (card H) (card J)"
shows "complementary H J" (proof)

lemma (in group) prime_power_complementary_groups:
assumes "Factorial Ring.prime p" "Factorial Ring.prime q" "p # q"
and "subgroup P G" "card P = p ~ x"
and "subgroup G" "card § = q ~ y"
shows "complementary P Q"

(proof)

With the previous work from the theory about set multiplication we can
characterize complementarity of two subgroups in abelian groups by the
cardinality of their product.

lemma (in comm_group) compl_imp_diff_cosets:
assumes "subgroup H G" '"subgroup J G" "finite H" "finite J"
and "complementary H J"
shows "Aa b. [a € J; b € J; a # b] = (H #> a) # (H #> b)"
(proof)

lemma (in comm_group) finite_sub_card_eq_mult_imp_comp:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
and "card (H <#> J) = (card J * card H)"
shows "complementary H J"

(proof)

12

lemma (in comm_group) finite_sub_comp_imp_card_eq_mult:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
and "complementary H J"

shows "card (H <#> J) = card J * card H"

(proof)

lemma (in comm_group) finite_sub_comp_iff_ card_eq_mult:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
shows "card (H <#> J) = card J * card H <— complementary H J"

(proof)

5.2 IDirProd - binary internal direct product

We introduce the internal direct product formed by two subgroups (so in its
binary form).

definition IDirProd :: "(’a, ’b) monoid_scheme = ’a set = ’a set = ’a
set" where
"IDirProd G Y Z = generate G (Y U 2)"

Some trivial lemmas about the binary internal direct product.

lemma (in group) IDirProd_comm:
"IDirProd G A B = IDirProd G B A"

(proof)

lemma (in group) IDirProd_empty_right:
assumes "A C carrier G"
shows "IDirProd G A {} = generate G A"

(proof)

lemma (in group) IDirProd_empty_left:
assumes "A C carrier G"
shows "IDirProd G {} A = generate G A"

{proof)

lemma (in group) IDirProd_one_right:
assumes "A C carrier G"
shows "IDirProd G A {1} = generate G A"

(proof)

lemma (in group) IDirProd_one_left:
assumes "A C carrier G"
shows "IDirProd G {1} A = generate G A"

(proof)

lemma (in group) IDirProd_is_subgroup:
assumes "Y C carrier G" "Z C carrier G"
shows "subgroup (IDirProd G Y Z) G"

13

(proof)

Using the theory about set multiplication we can also show the connection of
the underlying set in the internal direct product with the set multiplication
in the case of an abelian group. Together with the facts about complemen-
tarity and the set multiplication we can characterize complementarity by
the cardinality of the internal direct product and vice versa.

lemma (in comm_group) IDirProd_eq_subgroup_mult:
assumes "subgroup H G" "subgroup J G"
shows "IDirProd G H J = H <#> J"

(proof)

lemma (in comm_group) finite_sub_comp_iff_card_eq_IDirProd:

assumes "subgroup H G" "subgroup J G" "finite H" "finite J"

shows "card (IDirProd G H J) = card J * card H <— complementary H
JI!

(proof)

5.3 IDirProds - indexed internal direct product

The indexed version of the internal direct product acting on a family of
subgroups.

definition IDirProds :: "(’a, ’b) monoid_scheme = (’c = ’a set) = ’c
set = ’a set" where
"IDirProds G S I = generate G (I (S < D))"

Lemmas about the indexed internal direct product.

lemma (in group) IDirProds_incl:
assumes "i € I"
shows "S i C IDirProds G S I"

(proof)

lemma (in group) IDirProds_empty:
"IDirProds G S {} = {1}"
{proof)

lemma (in group) IDirProds_is_subgroup:
assumes "|J (S ¢ I) C (carrier G)"
shows "subgroup (IDirProds G S I) G"

(proof)

lemma (in group) IDirProds_subgroup_id: "subgroup (S i) G = IDirProds
GS {i} =85 i"
(proof)

lemma (in comm_group) IDirProds_Un:
assumes "VicA. subgroup (S i) G" "V j€B. subgroup (S j) G"

14

shows "IDirProds G S (A U B) = IDirProds G S A <#> IDirProds G S
Bll
(proof)

lemma (in comm_group) IDirProds_finite:
assumes "finite I" "Vie€I. subgroup (S i) G" "Vie€I. finite (S i)"
shows "finite (IDirProds G S I)" (proof)

lemma (in comm_group) IDirProds_compl_imp_compl:
assumes "Vi € I. subgroup (S i) G" and "subgroup H G"
assumes "complementary H (IDirProds G S I)" "i € I"
shows "complementary H (S i)"

(proof)

Using the knowledge about the binary internal direct product, we can - in
case that all subgroups in the family have coprime orders - also derive the
cardinality of the indexed internal direct product.

lemma (in comm_group) IDirProds_card:
assumes "finite I" "Vi€I. subgroup (S i) G"
"WielI. finite (S i)" "pairwise (Ax y. coprime (card (S x))
(card (S y))) I"
shows "card (IDirProds G S I) = ([[i € I. card (S i))" (proof)

5.4 Complementary family of subgroups

The notion of a complementary family is introduced. Note that the sub-
groups are complementary not only to the other subgroups but to the prod-
uct of the other subgroups.

definition (in group) compl_fam :: "(’c = ’a set) = ’c set = bool" where
"compl_fam S I = (Vi € I. complementary (S i) (IDirProds G S (I - {i})))"

Some lemmas about compl_fam.

lemma (in group) compl_fam_empty[simp]: "compl_fam S {}"

(proof)

lemma (in group) compl_fam_cong:
assumes "compl_fam (f o g) A" "inj_on g A"
shows "compl_fam f (g ‘< A)"

(proof)

We now connect compl_fam with generate as this will be its main applica-
tion.
lemma (in comm_group) compl_fam_imp_generate_inj:

assumes "gs C carrier G" "compl_fam (\g. generate G {g}) gs"

shows "inj_on (\g. generate G {g}) gs"
(proof)

15

lemma (in comm_group) compl_fam_generate_subset:
assumes "compl_fam (\g. generate G {g}) gs"
"gs C carrier G" "A C gs"
shows "compl_fam (\g. generate G {g}) A"
{proof)

5.5 is_idirprod

In order to identify a group as the internal direct product of a family of
subgroups, they all have to be normal subgroups, complementary to the
product of the rest of the subgroups and generate all of the group - this is
captured in the definition of is_idirprod.

definition (in group) is_idirprod :: "’a set = (’c = ’a set) = ’c set
= bool" where

"is_idirprod A S I = ((Vi € I. Si < G) AN A = IDirProds G S I A compl_fam
S I) "

Very basic lemmas about is_idirprod.

lemma (in comm_group) is_idirprod_subgroup_suffices:

assumes "A = IDirProds G S I" "Vie€I. subgroup (S i) G" "compl_fam
S I"

shows "is_idirprod A S I"

{proof)

lemma (in comm_group) is_idirprod_generate:

assumes "A = generate G gs" "gs C carrier G" "compl_fam (\g. generate
G {g}) gs"

shows "is_idirprod A (\g. generate G {g}) gs"
(proof)

lemma (in comm_group) is_idirprod_imp_compl_fam[simp] :
assumes "is_idirprod A S I"
shows "compl_fam S I"

{proof)
lemma (in comm_group) is_idirprod_generate_imp_generate[simp]:
assumes "is_idirprod A (\g. generate G {g}) gs"

shows "A = generate G gs"

(proof)

end

6 Finite Product

theory Finite_Product_Extend
imports IDirProds
begin

16

In this section, some general facts about finprod as well as some tailored
for the rest of this entry are proven.

It is often needed to split a product in a single factor and the rest. Thus
these two lemmas.

lemma (in comm_group) finprod_minus:
assumes "a € A" "f € A — carrier G" "finite A"
shows "finprod G f A = f a ® finprod G £ (A - {ap)"
(proof)

lemma (in comm_group) finprod_minus_symm:
assumes "a € A" "f € A — carrier G" "finite A"
shows "finprod G f A = finprod G £ (A - {a}) ® f a"
(proof)

This makes it very easy to show the following trivial fact.

lemma (in comm_group) finprod_singleton:
assumes "f x € carrier G" "finprod G f {x} = a"
shows "f x = a"

(proof)

The finite product is consistent and closed concerning subgroups.

lemma (in comm_group) finprod_subgroup:

assumes "f € S — H" "subgroup H G"

shows "finprod G f S = finprod (G(carrier := H|)) f S"
(proof)

lemma (in comm_group) finprod_closed_subgroup:
assumes "subgroup H G" "f € A — H"
shows "finprod G £ A € H"

{proof)

It also does not matter if we exponentiate all elements taking part in the
product or the result of the product.
lemma (in comm_group) finprod_exp:

assumes "A C carrier G" "f € A — carrier G"

shows "(finprod G f A) [~] (k::int) = finprod G ((\a. a ["] k) o f)
All

(proof)

Some lemmas concerning different combinations of functions in the usage of
finprod.

lemma (in comm_group) finprod_cong_split:
assumes "Na. a € A = fa ® ga=~h a"
and "f € A — carrier G" "g € A — carrier G" "h € A — carrier G"
shows "finprod G h A = finprod G f A ® finprod G g A" (proof)

lemma (in comm_group) finprod_comp:

17

assumes "inj_on g A" "(f o g) ¢ A C carrier G"
shows "finprod G £ (g ¢ A) = finprod G (f o g) A"
{proof)

The subgroup generated by a set of generators (in an abelian group) is
exactly the set of elements that can be written as a finite product using
only powers of these elements.

lemma (in comm_group) generate_eq_finprod_PiE_image:

assumes "finite gs" '"gs C carrier G"

shows "generate G gs = (M\x. finprod G x gs) ‘ Pip gs (la. generate
G {ap)" (is "?7g = ?fp")
(proof)

lemma (in comm_group) generate_eq_finprod_Pi_image:

assumes "finite gs" '"gs C carrier G"

shows "generate G gs = (Ax. finprod G x gs) ¢ Pi gs (\a. generate G
{ap)" (is "7g = ?fp")
(proof)

lemma (in comm_group) generate_eq_finprod_Pi_int_image:

assumes "finite gs" "gs C carrier G"

shows "generate G gs = (Ax. finprod G (\g. g ["] x g) gs) ¢ Pi gs (A_.
(UNIV::int set))"
(proof)

lemma (in comm_group) IDirProds_eq_finprod_PiE:

assumes "finite I" "Ai. i € I = subgroup (S i) G"

shows "IDirProds G S I = (Ax. finprod G x I) ¢ (Pig I S)" (is "7DP
= ?fp")
(proof)

lemma (in comm_group) IDirProds_eq_finprod_Pi:

assumes "finite I" "Ai. i € I = subgroup (S i) G"

shows "IDirProds G S I = (A\x. finprod G x I) ¢ (Pi I S)" (is "7DP
?fp")
(proof)

If we switch one element from a set of generators, the generated set stays
the same if both elements can be generated from the others together with
the switched element respectively.

lemma (in comm_group) generate_one_switched_exp_eql:

assumes "A C carrier G" "a € A" "B = (A - {a}) U {b}"

and "f € A — (UNIV::int set)" "g € B — (UNIV::int set)"

and "a = finprod G (Ax. x ["] g x) B" "b = finprod G (A\x. x ["] f x)
AH

shows "generate G A = generate G B"
(proof)

18

We can characterize a complementary family of subgroups when the only
way to form the neutral element as a product of picked elements from each
subgroup is to pick the neutral element from each subgroup.

lemma (in comm_group) compl_fam_imp_triv_finprod:
assumes "compl_fam S I" "finite I" "Ai. i € I = subgroup (S i) G"
and "finprod G £ I = 1" "f € Pi I S"
shows "VieI. f i =1"

(proof)

lemma (in comm_group) triv_finprod_imp_compl_fam:
assumes "finite I" "Ai. i € I — subgroup (S i) G"
and "Vf € Pi I S. finprod G f I =1 — (Vi€I. f i =1)"
shows "compl_fam S I"

(proof)

lemma (in comm_group) triv_finprod_iff_compl_fam_Pi:

assumes "finite I" "Ai. i € I = subgroup (S i) G"

shows "compl_fam S I <— (Vf € Pi I S. finprod G f I =1 — (Viel.
fi=1)"

(proof)

lemma (in comm_group) triv_finprod_iff_compl_fam_PiE:

assumes "finite I" "Ai. i € I = subgroup (S i) G"

shows "compl_fam S I <— (Vf € Pig I S. finprod G f I =1 — (Vi€el.
fi=1)"
(proof)

The finite product also distributes when nested.

lemma (in comm_monoid) finprod_Sigma:

assumes "finite A" "Ax. x € A = finite (B x)"

assumes "Ax y. x € A = y € Bx = g x y € carrier G"

shows "(Q@xcA. QyeB x. g x y) = (QzcSigma A B. case z of (x,
y) = gxy)"

{proof)

With the now proven facts, we are able to provide criterias to inductively
construct a group that is the internal direct product of a set of generators.

lemma (in comm_group) idirprod_generate_ind:
assumes "finite gs" '"gs C carrier G" "g € carrier G"
"is_idirprod (generate G gs) (\g. generate G {g}) gs"
"complementary (generate G {g}) (generate G gs)"
shows "is_idirprod (generate G (gs U {g})) (\g. generate G {g}) (gs
U {gh"
(proof)

end

19

7 Group Homomorphisms

theory Group_Hom
imports Set_Multiplication
begin

This section extends the already existing library about group homomor-
phisms in HOL-Algebra by some useful lemmas. These were mainly inspired
by the needs that arised throughout the other proofs.

lemma (in group_hom) generate_hom:
assumes "A C carrier G"
shows "h ¢ (generate G A) = generate H (h ¢ A)"

(proof)

For two elements with the same image we can find an element in the kernel
that maps one of the two elements on the other by multiplication.

lemma (in group_hom) kernel_assoc_elem:
assumes "x € carrier G" "y € carrier G" "h x = h y"
obtains z where "x = y ®¢ z" "z € kernel G H h"

(proof)

This can then be used to characterize the pre-image of a set A under homo-
morphism as a product of A itself with the kernel of the homomorphism.

lemma (in group_hom) vimage_eq_set_mult_kern_right:
assumes "A C carrier G"
shows "{x € carrier G. h x € h * A} = A <#> kernel G H h"

(proof)

lemma (in group_hom) vimage_subset_generate_kern:
assumes "A C carrier G"
shows "{x € carrier G. h x € h * A} C generate G (A U kernel G H h)"

(proof)

The preimage of a subgroup under a homomorphism is also a subgroup.

lemma (in group_hom) subgroup_vimage_is_subgroup:
assumes "subgroup I H"
shows "subgroup {x € carrier G. h x € I} G" (is "subgroup ?7J G")

(proof)

lemma (in group_hom) iso_kernel:
assumes "h € iso G H"
shows "kernel G H h = {1g}"
(proof)
lemma (in group_hom) induced_group_hom_same_group:
assumes "subgroup I G"
shows "group_hom (G (carrier := I |)) H h"
(proof)

20

The order of an element under a homomorphism divides the order of the
element.

lemma (in group_hom) hom_ord_dvd_ord:
assumes "a € carrier G"
shows "H.ord (h a) dvd G.ord a"

(proof)

In particular, this implies that the image of an element with a finite order
also will have a finite order.

lemma (in group_hom) finite_ord_stays_finite:
assumes "a € carrier G" "G.ord a # 0"
shows "H.ord (h a) # 0"

(proof)

For injective homomorphisms, the order stays the same.

lemma (in group_hom) inj_imp_ord_eq:
assumes "a € carrier G" "inj_on h (carrier G)" "G.ord a # 0"
shows "H.ord (h a) = G.ord a"

(proof)

lemma (in group_hom) one_in_kernel:
"1l € kernel G H h"

(proof)

lemma hom_in_carr:
assumes "f € hom G H"
shows "Ax. x € carrier G = f x € carrier H"

(proof)

lemma iso_in_carr:
assumes "f € iso G H"
shows "/\X. X € carrier G —> f x € carrier H"

(proof)

lemma triv_iso:
assumes '"group G" "group H" "carrier G = {lg}" "carrier H = {lyx}"
shows "G = H"

(proof)

The cardinality of the image of a group homomorphism times the cardinality
of its kernel is equal to the group order. This is basically another form of
Lagrange’s theorem.

lemma (in group_hom) image_kernel_product: "card (h ¢ (carrier G)) *
card (kernel G H h) = order G"

(proof)

end

21

8 Finite and cyclic groups

theory Finite_And_Cyclic_Groups
imports Group_Hom Generated_Groups_Extend General_Auxiliary
begin

8.1 Finite groups

We define the notion of finite groups and prove some trivial facts about
them.

locale finite_group = group +
assumes fin[simp]: "finite (carrier G)"

lemma (in finite_group) ord_pos:
assumes "x € carrier G"
shows '"ord x > 0"

(proof)

lemma (in finite_group) order_gt_O [simp,intro]: "order G > 0"

(proof)

lemma (in finite_group) finite_ord_conv_Least:
assumes "x € carrier G"
shows "ord x = (LEAST n::nat. 0 < n A x [*] n=1)"

(proof)

lemma (in finite_group) non_trivial_group_ord_gr 1:
assumes '"carrier G # {1}"
shows "de € carrier G. ord e > 1"

(proof)

lemma (in finite_group) max_order_elem:
obtains a where "a € carrier G" "Vx € carrier G. ord x < ord a"

(proof)

lemma (in finite_group) iso_imp_finite:
assumes "G = H" "group H"
shows "finite_group H"

(proof)

lemma (in finite_group) finite_FactGroup:
assumes "H < G"
shows "finite_group (G Mod H)"

(proof)

lemma (in finite_group) bigger_subgroup_is_group:
assumes "subgroup H G" "card H > order G"

22

shows "H = carrier G"

(proof)

All generated subgroups of a finite group are obviously also finite.

lemma (in finite_group) finite_generate:
assumes "A C carrier G"
shows "finite (generate G A)"

(proof)

We also provide an induction rule for finite groups inspired by Manuel
Eberl’s AFP entry "Dirichlet L-Functions and Dirichlet’s Theorem" and the
contained theory "Group_ Adjoin". A property that is true for a subgroup
generated by some set and stays true when adjoining an element, is also true
for the whole group.

lemma (in finite_group) generate_induct[consumes 1, case_names base adjoin]:
assumes "A0 C carrier G"
assumes "A0 C carrier G —> P (G(carrier := generate G A0|))"
assumes "/\a A. [[A C carrier G; a € carrier G - generate G A; A0 C
A;
P (G(carrier := generate G A)))] = P (G(carrier := generate
G (A U {ap)"

shows "P G"

(proof)

8.2 Finite abelian groups

Another trivial locale: the finite abelian group with some trivial facts.

locale finite_comm_group = finite_group + comm_group

lemma (in finite_comm_group) iso_imp_finite_comm:
assumes "G = H" "group H"
shows "finite_comm_group H"

(proof)

lemma (in finite_comm_group) finite_comm_FactGroup:
assumes "subgroup H G"
shows "finite_comm_group (G Mod H)"

(proof)

lemma (in finite_comm_group) subgroup_imp_finite_comm_group:
assumes "subgroup H G"
shows "finite_comm_group (G(carrier := H|))"

(proof)

23

8.3 Cyclic groups

Now, the central notion of a cyclic group is introduced: a group generated
by a single element.
locale cyclic_group = group +

fixes gen :: "’a"

assumes gen_closed[intro, simp]: "gen € carrier G"
assumes generator: "carrier G = generate G {gen}"

lemma (in cyclic_group) elem_is_gen_pow:
assumes "x € carrier G"
shows "dn :: int. x = gen ["] n"

(proof)

Every cyclic group is commutative/abelian.

sublocale cyclic_group C comm_group

(proof)

Some trivial intro rules for showing that a group is cyclic.

lemma (in group) cyclic_groupIO:
assumes "a € carrier G" "carrier G = generate G {a}"
shows "cyclic_group G a"

(proof)

lemma (in group) cyclic_groupIl:
assumes "a € carrier G" "carrier G C generate G {a}"
shows "cyclic_group G a"

(proof)

lemma (in group) cyclic_groupI2:
assumes "a € carrier G"
shows "cyclic_group (G(carrier := generate G {a}|)) a"

{proof)
The order of the generating element is always the same as the group order.

lemma (in cyclic_group) ord_gen_is_group_order:
shows "ord gen = order G"

(proof)

In the case of a finite group, it is sufficient to have one element of group
order to know that the group is cyclic.

lemma (in finite_group) element_ord_generates_cyclic:
assumes "a € carrier G" "ord a = order G"
shows "cyclic_group G a"

(proof)
Another useful fact is that a group of prime order is also cyclic.

lemma (in group) prime_order_group_is_cyc:

24

assumes "Factorial_Ring.prime (order G)"
obtains g where "cyclic_group G g"
(proof)

What follows is an induction principle for cyclic groups: a predicate is true
for all elements of the group if it is true for all elements that can be formed
by the generating element by just multiplication and if it also holds under
the forming of the inverse (as we by this cover all elements of the group),

lemma (in cyclic_group) generator_induct [consumes 1, case_names generate
inv]:

assumes x: "x € carrier G"

assumes IH1: "An::nat. P (gen ["] n)"

assumes IH2: "A\x. x € carrier G = P x = P (inv x)"

shows "P x"

(proof)

8.4 Finite cyclic groups

Additionally, the notion of the finite cyclic group is introduced.

locale finite_cyclic_group = finite_group + cyclic_group

sublocale finite_cyclic_group C finite_comm_group

(proof)

lemma (in finite_cyclic_group) ord_gen_gt_zero:
"ord gen > 0"

(proof)

In order to prove something about an element in a finite abelian group, it
is possible to show this property for the neutral element or the generating
element and inductively for the elements that are formed by multiplying
with the generator.

lemma (in finite_cyclic_group) generator_inductO [consumes 1, case_names
one step]:

assumes x: "x € carrier G"

assumes IH1: "P 1"

assumes IH2: "Ax. [x € carrier G; P x] = P (x ® gen)"

shows "P x"

(proof)

lemma (in finite_cyclic_group) generator_inductl [consumes 1, case_names
gen step]:

assumes x: "x € carrier G"

assumes IH1: "P gen"

assumes IH2: "Ax. [x € carrier G; P x] = P (x ® gen)"

shows "p x"

(proof)

25

8.5 get_exp - discrete logarithm

What now follows is the discrete logarithm for groups. It is used at several
times througout this entry and is initially used to show that two cyclic
groups of the same order are isomorphic.

definition (in group) get_exp where
"get_exp g = (A\a. SOME k::int. a =g ["] k)"

For each element with itself as the basis the discrete logarithm indeed does
what expected. This is not the strongest possible statement, but sufficient
for our needs.

lemma (in group) get_exp_self_ fulfills:
assumes "a € carrier G"
shows "a = a ["] get_exp a a"

(proof)

lemma (in group) get_exp_self:
assumes "a € carrier G"
shows '"get_exp a a mod ord a = (1::int) mod ord a"

(proof)

For cyclic groups, the discrete logarithm "works" for every element.

lemma (in cyclic_group) get_exp_fulfills:
assumes "a € carrier G"
shows "a = gen ["] get_exp gen a"

(proof)

lemma (in cyclic_group) get_exp_non_zero:
assumes"b € carrier G" "b # 1"
shows "get_exp gen b # 0"

(proof)

One well-known logarithmic identity.

lemma (in cyclic_group) get_exp_mult_mod:

assumes "a € carrier G" "b € carrier G"

shows "get_exp gen (a2 ® b) mod (ord gen) = (get_exp gen a + get_exp
gen b) mod (ord gen)"
(proof)

We now show that all functions from a group generated by ’a’ to a group
generated by ’b’ that map elements from a”* to b* in the other group are in
fact isomorphisms between these two groups.

lemma (in group) iso_cyclic_groups_generate:
assumes "a € carrier G" "b € carrier H" '"group.ord G a = group.ord
H b" "group H"
shows "{f. Vk € (UNIV::int set). f (a ["] k) = b ["]g k}
C iso (G(carrier := generate G {a})) (H(carrier := generate

H {b}))"

26

(proof)

This is then used to derive the isomorphism of two cyclic groups of the same
order as a direct consequence.
lemma (in cyclic_group) iso_cyclic_groups_same_order:

assumes "cyclic_group H h" "order G = order H"
shows "G = H"

(proof)

8.6 Integer modular groups

We show that integer_mod_group (written as Z n) is in fact a cyclic group.
For n # 1 it is generated by 1 and in the other case by 0.

notation integer_mod_group (<Z>)

lemma Zn_neql_cyclic_group:

assumes '"n # 1"
shows "cyclic_group (Z n) 1"

(proof)

lemma Z1_cyclic_group: "cyclic_group (Z 1) 0"
(proof)

lemma Zn_cyclic_group:
obtains x where "cyclic_group (Z n) x"

(proof)

Moreover, its order is just n.

lemma Zn_order: "order (Z n) = n"
(proof)

Consequently, Z n is isomorphic to any cyclic group of order n.

lemma (in cyclic_group) Zn_iso:
assumes "order G = n"
shows "G = Z n"

(proof)

no_ notation integer_mod_group (<Z>)
end

9 Direct group product

theory DirProds
imports Finite_Product_Extend Group_Hom Finite_And_Cyclic_Groups
begin

notation integer_mod_group (<Z>)

27

The direct group product is defined component-wise and provided in an

indexed way.

definition DirProds :: "(’a = (’b, ’c) monoid_scheme) = ’a set = (’a

= ’b) monoid" where
"DirProds G I = (carrier = Pigp I (carrier o G),

monoid.mult = (Ax y. restrict (\i.

one = restrict (A\i. 1g ;) I)"

Basic lemmas about DirProds.

lemma DirProds_empty:
"carrier (DirProds f {}) = {lpjrprods £ {}}"

{proof)

lemma DirProds_order:
assumes "finite I"
shows "order (DirProds G I) = prod (order o G) I"

{proof)

lemma DirProds_in_carrl:

assumes "Ai. i € I = x i € carrier (G i)" "Ai.

undefined"
shows "x € carrier (DirProds G I)"

(proof)

lemma comp_in_carr:
assumes "x € carrier (DirProds G I)" "i € I"
shows "x i € carrier (G i)"

{proof)

lemma comp_mult:
assumes "i € I"
shows "(x ®pirprods ¢ 1 y) 1 = (x 1 ®g ;i y 1)"

{proof)

lemma comp_exp_nat:
fixes k::nat
assumes "i € I"
shows "(x ["]pirprods ¢ 1 k) i =x 1 ["]g i k'

(proof)

lemma DirProds_m_closed:

assumes "x € carrier (DirProds G I)" "y € carrier
"Ai. i € I = group (G i)"

shows "x ®pirprods ¢ T ¥ € carrier (DirProds G I)"

(proof)

lemma partial_restr:
assumes "a € carrier (DirProds G I)" "J C I"
shows "restrict a J € carrier (DirProds G J)"

28

xi®giyi) I,

i ¢l —x1i-=

(DirProds G I)"

(proof)

lemma eq_parts_imp_eq:

assumes "a € carrier (DirProds G I)" "b € carrier (DirProds G I)"
"Ni. i € T = ai="»bi"

shows "a = b"

(proof)

lemma mult_restr:

assumes "a € carrier (DirProds G I)" "b € carrier (DirProds G I)"
IIJ C Il’

shows "a ®pirprods ¢ J b = restrict (a ®pirProds ¢ I b) J"

(proof)

lemma DirProds_one:
assumes "x € carrier (DirProds G I)"
shows "(Vi € I. x i =1¢g i) «— x = 1pirProds ¢ I"
(proof)

lemma DirProds_one’:
"i€I = lpirprods ¢ 1 1 = 1g i"

(proof)

lemma DirProds_one’’:
"1pirProds ¢ I = restrict (Ai. 1lg ;) I"

(proof)

lemma DirProds_mult:
"(®pirProds ¢ 1) = (Ax y. restrict (A\i. x i ®¢g 5 y i) I)"

{proof)

lemma DirProds_one_iso: "(MAx. x G) € iso (DirProds f {G}) (f G)"

(proof)

lemma DirProds_one_cong: "(DirProds f {G}) =2 (f G)"
(proof)

lemma DirProds_one_iso_sym: "(Ax. (A_€{G}. x)) € iso (f G) (DirProds
£ {GH"
(proof)

lemma DirProds_one_cong_sym: "(f G) = (DirProds f {G})"

(proof)

The direct product is a group iff all factors are groups.

lemma DirProds_is_group:
assumes "Ai. i € I = group (G i)"
shows "group (DirProds G I)"

(proof)

29

lemma DirProds_obtain_elem_carr:
assumes "group (DirProds G I)" "i € I" "x € carrier (G i)"
obtains k where "k € carrier (DirProds G I)" "k i = x"

(proof)

lemma DirProds_group_imp_groups:
assumes "group (DirProds G I)" and i: "i € I"
shows "group (G i)"

{(proof)

lemma DirProds_group_iff: "group (DirProds G I) <— (Vi€I. group (G
i))u
{proof)

lemma comp_inv:

assumes "group (DirProds G I)" and x: "x € carrier (DirProds G I)"
and i: "i € I"

ShOWS "(inV(DiI‘PI‘OdS G I) X) i = inv (G i) (X i)”
(proof)

The same is true for abelian groups.

lemma DirProds_is_comm_group:
assumes "Ai. i € T = comm_group (G i)"
shows "comm_group (DirProds G I)" (is "comm_group ?DP")

(proof)

lemma DirProds_comm_group_imp_comm_groups:
assumes "comm_group (DirProds G I)" and i: "i € I"
shows "comm_group (G i)"

(proof)

lemma DirProds_comm_group_iff: "comm_group (DirProds G I) <— (Vi€lI.
comm_group (G i))"
(proof)

And also for finite groups.

lemma DirProds_is_finite_group:
assumes "A\i. i€I — finite_group (G i)" "finite I"
shows "finite_group (DirProds G I)"

(proof)

lemma DirProds_finite_imp_finite_groups:
assumes "finite_group (DirProds G I)" "finite I"
shows "Ai. i€l = finite_group (G i)"

(proof)

lemma DirProds_finite_group_iff:
assumes "finite I"

30

shows "finite_group (DirProds G I) <— (Vi€I. finite_group (G i))"
{proof)

lemma DirProds_finite_comm_group_iff:

assumes "finite I"

shows "finite_comm_group (DirProds G I) +— (Vi€I. finite_comm_group
(G i))"

(proof)

If a group is an internal direct product of a family of subgroups, it is iso-
morphic to the direct product of these subgroups.

lemma (in comm_group) subgroup_iso_DirProds_IDirProds:
assumes "subgroup J G" "is_idirprod J S I" "finite I"

shows "(\x. @ gi€I. x i) € iso (DirProds (\i. G(carrier := (S i)|)
I) (G(carrier := J))"
(is "?fp € iso 7DP ?7J")
(proof)
lemma (in comm_group) iso_DirProds_IDirProds:
assumes "is_idirprod (carrier G) S I" "finite I"
shows "(\x. Q¢i€Il. x i) € iso (DirProds (Ai. G(carrier := (S i)|)

I) G"
(proof)

lemma (in comm_group) cong_DirProds_IDirProds:
assumes "is_idirprod (carrier G) S I" "finite I"
shows "DirProds (\i. G(carrier := (S i))) I = G"
(proof)

In order to prove the isomorphism between two direct products, the following
lemmas provide some criterias.

lemma DirProds_iso:
assumes "bij_betw f I J" ”/\i. i€l = Gs i = Hs (f i)"
"Ai. i€l = group (Gs i)" "Aj. j€J = group (Hs j)"
shows "DirProds Gs I = DirProds Hs J"
(proof)

lemma DirProds_isol:

assumes "Ai. i€l = Gs i = (f o Gs) i" "Ai. i€I = group (Gs
i)m "Ai. i€I = group ((f o Gs) i)"

shows "DirProds Gs I = DirProds (f o Gs) I"
(proof)

lemma DirProds_iso2:
assumes "inj_on f A" "group (DirProds g (f ¢ A))"
shows "DirProds (g o f) A = DirProds g (f ¢ A)"
(proof)

The direct group product distributes when nested.

31

lemma DirProds_Sigma:

"DirProds (Ai. DirProds (G i) (J i)) I = DirProds (A(i,j). G i j) (Sigma
I " (s "7L = 7R")
(proof)

no__notation integer_mod_group (<Z>)

end

10 Group relations

theory Group_Relations
imports Finite_Product_Extend
begin

We introduce the notion of a relation of a set of elements: a way to express
the neutral element by using only powers of said elements. The following
predicate describes the set of all the relations that one can construct from
a set of elements.

definition (in comm_group) relations :: "’a set = (’a = int) set" where
"relations A = {f. finprod G (Aa. a ["] f a) A = 1} N extensional A"

Now some basic lemmas about relations.

lemma (in comm_group) in_relationsI[intro]:
assumes "finprod G (Aa. a [7] f a) A = 1" "f € extensional A"
shows "f € relations A"

(proof)

lemma (in comm_group) triv_rel:
"restrict (A_. 0::int) A € relations A"

(proof)

lemma (in comm_group) not_triv_rell:
assumes "a € A" "f a # (0::int)"
shows "f % (A_€A. 0::int)"

(proof)

lemma (in comm_group) rel_in_carr:
assumes "A C carrier G" "r € relations A"
shows "(\a. a ["] r a) € A — carrier G"

(proof)

The following lemmas are of importance when proving the fundamental the-
orem of finitely generated abelian groups in the case that there is just the
trivial relation between a set of generators. They all build up to the last
lemma that then is actually used in the proof.

lemma (in comm_group) relations_zero_imp_pow_not_one:

32

assumes "a € A" "Vfe(relations A). f a = 0"
shows "Vz::int # 0. a [7] z # 1"
(proof)

lemma (in comm_group) relations_zero_imp_ord_zero:
assumes "a € A" "Vfe(relations A). f a = 0"
and "a € carrier G"
shows "ord a = 0"

{proof)

lemma (in comm_group) finprod_relations_triv_harder_better_stronger:
assumes "A C carrier G" "relations A = {(A_€A. 0::int)}"
shows "Vf € Pip A (\a. generate G {a}). finprod G £ A =1 — (Va€cA.
fa=1)"
{proof)

lemma (in comm_group) stronger_PiE_finprod_imp:
assumes "A C carrier G" "Vf € Pip A (\a. generate G {a}). finprod
GfA=1-— (Vacd. f a=1D"
shows "Vf € Pip ((\a. generate G {a}) ¢ A) id.
finprod G £ ((\a. generate G {a}) ¢ A) =1 — (VHe (l\a. generate
G {a}) “A. £fH=1)"
(proof)

lemma (in comm_group) finprod_relations_triv:
assumes "A C carrier G" "relations A = {(A_€A. 0::int)}"
shows "Vf € Pip ((\a. generate G {a}) ¢ A) id.
finprod G £ ((\a. generate G {a}) ¢ A) =1 — (VHe (\a. generate
G {a}) “A. fH=1D"
{proof)

lemma (in comm_group) ord_zero_strong_imp_rel_triv:

assumes "A C carrier G" "Va € A. ord a = 0"

and "Vf € Pip A (\a. generate G {a}). finprod G f A =1 — (VacA.
fa=1)"

shows "relations A = {(A_€A. O::int)}"

(proof)

lemma (in comm_group) compl_fam_iff relations_triv:

assumes "finite gs" "gs C carrier G" "Vgegs. ord g = 0"

shows "relations gs = {(A_€gs. 0::int)} <— compl_fam (\g. generate
G {g}) gs"

{proof)

end

33

11 Fundamental Theorem of Finitely Generated
Abelian Groups

theory Finitely_Generated_Abelian_Groups
imports DirProds Group_Relations
begin

notation integer_mod_group (<Z>)

locale fin_gen_comm_group = comm_group +

fixes gen :: "’a set"

assumes gens_closed: '"gen C carrier G"

and fin_gen: "finite gen"

and generators: '"carrier G = generate G gen"

Every finite abelian group is also finitely generated.

sublocale finite_comm_group C fin_gen_comm_group G "carrier G"

(proof)

This lemma contains the proof of Kemper from his lecture notes on alge-
bra [1]. However, the proof is not done in the context of a finitely generated
group but for a finitely generated subgroup in a commutative group.

lemma (in comm_group) ex_idirgen:

fixes A :: "’a set"

assumes "finite A" "A C carrier G"

shows "dgs. set gs C generate G A A distinct gs A is_idirprod (generate
G A) (\g. generate G {g}) (set gs)

A successively (dvd) (map ord gs) A card (set gs) < card

AH

(is "7t A")

(proof)

lemma (in comm_group) fundamental_subgr:
fixes A :: "’a set"
assumes "finite A" "A C carrier G"
obtains gs where
"set gs C generate G A" "distinct gs" "is_idirprod (generate G A)
(\g. generate G {g}) (set gs)"
"successively (dvd) (map ord gs)" "card (set gs) < card A"

(proof)

As every group is a subgroup of itself, the theorem follows directly. However,
for reasons of convenience and uniqueness (although not completely proved),
we strengthen the result by proving that the decomposition can be done
without having the trivial factor in the product. We formulate the theorem
in various ways: firstly, the invariant factor decomposition.

theorem (in fin_gen_comm_group) invariant_factor_decomposition_idirprod:
obtains gs where

34

"set gs C carrier G" "distinct gs" "is_idirprod (carrier G) (Ag.
generate G {g}) (set gs)"

"successively (dvd) (map ord gs)" "card (set gs) < card gen" "1 ¢
set gs"

(proof)

corollary (in fin_gen_comm_group) invariant_factor_decomposition_dirprod:
obtains gs where
"set gs C carrier G" "distinct gs"
"DirProds (\g. G(carrier := generate G {g})) (set gs) = G"
"successively (dvd) (map ord gs)" "card (set gs) < card gen"
"compl_fam (\g. generate G {g}) (set gs)" "1 ¢ set gs"

(proof)

corollary (in fin_gen_comm_group) invariant_factor_decomposition_dirprod_fam:
obtains Hs where
"AH. H € set Hs = subgroup H G" "distinct Hs"
"DirProds (AH. G(carrier := H|)) (set Hs) = G" "successively (dvd)

(map card Hs)"
"card (set Hs) < card gen" "compl_fam id (set Hs)" "{1} ¢ set Hs"

(proof)

Here, the invariant factor decomposition in its classical form.

corollary (in fin_gen_comm_group) invariant_factor_decomposition_Zn:
obtains ns where
"DirProds (An. Z (us!n)) {..<length ns} = G" "successively (dvd)
ns" "length ns < card gen"

(proof)

As every integer_mod_group can be decomposed into a product of prime
power groups, we obtain (by using the fact that the direct product does not
care about nestedness) the primary decomposition.

lemma Zn_iso_DirProds_prime_powers:

assumes '"n # 0"

shows "Z n = DirProds (Ap. Z (p ~ multiplicity p n)) (prime_factors
n)" (is "Z n = ?7DP")
(proof)

lemma Zn_iso_DirProds_prime_powers’:

assumes '"n # 0"

shows "Z n = DirProds (Ap. Z p) ((Ap. p ~ multiplicity p n)
n))" (is "Z n = 7DP")
(proof)

¢ (prime_factors

corollary (in fin_gen_comm_group) primary_decomposition_Zn:
obtains ns where
"DirProds (An. Z (us!n)) {..<length ns} = G"
"Vneset ns. n = 0 V (dp k. Factorial_Ring.prime p AN k > 0 A n =
p -~ k) n

35

(proof)

As every finite group is also finitely generated, it follows that a finite group
can be decomposed in a product of finite cyclic groups.

lemma (in finite_comm_group) cyclic_product:
obtains ns where "DirProds (An. Z (ns!n)) {..<length ns} = G" "Vn€set
ns. n#0"

(proof)

no_ notation integer_mod_group (<Z>)

end

References

[1] G. Kemper. Lecture notes of algebra. https://www.groups.ma.tum.de/
fileadmin/w00ccg/algebra/people/kemper/lectureNotes/Algebra.pdf,
04 2020.

36

https://www.groups.ma.tum.de/fileadmin/w00ccg/algebra/people/kemper/lectureNotes/Algebra.pdf
https://www.groups.ma.tum.de/fileadmin/w00ccg/algebra/people/kemper/lectureNotes/Algebra.pdf

	Set Multiplication
	Miscellaneous group facts
	Generated Groups
	Auxiliary lemmas
	Internal direct product
	Complementarity
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IDirProd - binary internal direct product
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IDirProds - indexed internal direct product
	Complementary family of subgroups
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 isidirprod

	Finite Product
	Group Homomorphisms
	Finite and cyclic groups
	Finite groups
	Finite abelian groups
	Cyclic groups
	Finite cyclic groups
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 getexp - discrete logarithm
	Integer modular groups

	Direct group product
	Group relations
	Fundamental Theorem of Finitely Generated Abelian Groups

