
Fundamental Theorem of Finitely Generated
Abelian Groups

Joseph Thommes, Manuel Eberl

March 17, 2025

Abstract

This article deals with the formalisation of some group-theoretic re-
sults including the fundamental theorem of finitely generated abelian
groups characterising the structure of these groups as a uniquely de-
termined product of cyclic groups. Both the invariant factor decom-
position and the primary decomposition are covered.

Additional work includes results about the direct product, the in-
ternal direct product and more group-theoretic lemmas.

Contents
1 Set Multiplication 2

2 Miscellaneous group facts 7

3 Generated Groups 12

4 Auxiliary lemmas 17

5 Internal direct product 23
5.1 Complementarity . 23
5.2 IDirProd - binary internal direct product 27
5.3 IDirProds - indexed internal direct product 29
5.4 Complementary family of subgroups 32
5.5 is_idirprod . 33

6 Finite Product 35

7 Group Homomorphisms 52

8 Finite and cyclic groups 57
8.1 Finite groups . 57
8.2 Finite abelian groups . 60

1

8.3 Cyclic groups . 61
8.4 Finite cyclic groups . 64
8.5 get_exp - discrete logarithm 65
8.6 Integer modular groups . 69

9 Direct group product 70

10 Group relations 86

11 Fundamental Theorem of Finitely Generated Abelian Groups 91

1 Set Multiplication
theory Set_Multiplication

imports "HOL-Algebra.Multiplicative_Group"
begin

This theory/section is of auxiliary nature and is mainly used to establish
a connection between the set multiplication and the multiplication of sub-
groups via the IDirProd (although this particular notion is introduced later).
However, as in every section of this entry, there are some lemmas that do not
have any further usage in this entry, but are of interest just by themselves.
lemma (in group) set_mult_union:

"A <#> (B ∪ C) = (A <#> B) ∪ (A <#> C)"
unfolding set_mult_def by auto

lemma (in group) set_mult_card_single_el_eq:
assumes "J ⊆ carrier G" "x ∈ carrier G"
shows "card (l_coset G x J) = card J" unfolding l_coset_def

proof -
have "card ((⊗) x ‘ J) = card J"

using inj_on_cmult[of x] card_image[of "(⊗) x" J] assms inj_on_subset[of
"(⊗) x" "carrier G" J]

by blast
moreover have "(

⋃
y∈J. {x ⊗ y}) = (⊗) x ‘ J" using image_def[of "(⊗)

x" J] by blast
ultimately show "card (

⋃
h∈J. {x ⊗ h}) = card J" by presburger

qed

We find an upper bound for the cardinality of a set product.
lemma (in group) set_mult_card_le:

assumes "finite H" "H ⊆ carrier G" "J ⊆ carrier G"
shows "card (H <#> J) ≤ card H * card J"
using assms

proof (induction "card H" arbitrary: H)
case 0
then have "H = {}" by force

2

then show ?case using set_mult_def[of G H J] by simp
next

case (Suc n)
then obtain a where a_def: "a ∈ H" by fastforce
then have c_n: "card (H - {a}) = n" using Suc by force
then have "card ((H - {a}) <#> J) ≤ card (H - {a}) * card J" using

Suc by blast
moreover have "card ({a} <#> J) = card J"

using Suc(4, 5) a_def set_mult_card_single_el_eq[of J a] l_coset_eq_set_mult[of
G a J] by auto

moreover have "H <#> J = (H - {a} <#> J) ∪ ({a} <#> J)" using set_mult_def[of
G _ J] a_def by auto

moreover have "card (H - {a}) * card J + card J = Suc n * card J" us-
ing c_n mult_Suc by presburger

ultimately show ?case using card_Un_le[of "H - {a} <#> J" "{a} <#>
J"] c_n ‹Suc n = card H› by auto
qed

lemma (in group) set_mult_finite:
assumes "finite H" "finite J" "H ⊆ carrier G" "J ⊆ carrier G"
shows "finite (H <#> J)"
using assms set_mult_def[of G H J] by auto

The next lemma allows us to later to derive that two finite subgroups J
and H are complementary if and only if their product has the cardinality
|J | · |H|.
lemma (in group) set_mult_card_eq_impl_empty_inter:

assumes "finite H" "finite J" "H ⊆ carrier G" "J ⊆ carrier G" "card
(H <#> J) = card H * card J"

shows "
∧

a b. [[a ∈ H; b ∈ H; a 6= b]] =⇒ ((⊗) a ‘ J) ∩ ((⊗) b ‘ J)
= {}"

using assms
proof (induction H rule: finite_induct)

case empty
then show ?case by fast

next
case step: (insert x H)
from step have x_c: "x ∈ carrier G" by simp
from step have H_c: "H ⊆ carrier G" by simp
from set_mult_card_single_el_eq[of J x] have card_x: "card ({x} <#>

J) = card J"
using ‹J ⊆ carrier G› x_c l_coset_eq_set_mult by metis

moreover have ins: "(insert x H) <#> J = (H <#> J) ∪ ({x} <#> J)"
using set_mult_def[of G _ J] by auto

ultimately have "card (H <#> J) ≥ card H * card J"
using card_Un_le[of "H <#> J" "{x} <#> J"] ‹card (insert x H <#> J)

= card (insert x H) * card J›
by (simp add: step.hyps(1) step.hyps(2))

then have card_eq:"card (H <#> J) = card H * card J"

3

using set_mult_card_le[of H J] step H_c by linarith
then have ih: "

∧
a b. [[a ∈ H; b ∈ H; a 6= b]] =⇒ ((⊗) a ‘ J) ∩ ((⊗)

b ‘ J) = {}"
using step H_c by presburger

have "card (insert x H) * card J = card H * card J + card J" using ‹x
/∈ H› using step by simp

then have "({x} <#> J) ∩ (H <#> J) = {}"
using card_eq card_x ins card_Un_Int[of "H <#> J" "{x} <#> J"] step

set_mult_finite by auto
then have "

∧
a. a ∈ H =⇒ (

⋃
y∈J. {a ⊗ y}) ∩ (

⋃
y∈J. {x ⊗ y}) =

{}"
using set_mult_def[of G _ J] by blast

then have "
∧

a b. [[a ∈ (insert x H); b ∈ (insert x H); a 6= b]] =⇒
((⊗) a ‘ J) ∩ ((⊗) b ‘ J) = {}"

using ‹x /∈ H› ih by blast
then show ?case using step by presburger

qed

lemma (in group) set_mult_card_eq_impl_empty_inter’:
assumes "finite H" "finite J" "H ⊆ carrier G" "J ⊆ carrier G" "card

(H <#> J) = card H * card J"
shows "

∧
a b. [[a ∈ H; b ∈ H; a 6= b]] =⇒ (l_coset G a J) ∩ (l_coset

G b J) = {}"
unfolding l_coset_def
using set_mult_card_eq_impl_empty_inter image_def[of "(⊗) _" J] assms

by blast

lemma (in comm_group) set_mult_comm:
assumes "H ⊆ carrier G" "J ⊆ carrier G"
shows "(H <#> J) = (J <#> H)"
unfolding set_mult_def

proof -
have 1: "

∧
a b. [[a ∈ carrier G; b ∈ carrier G]] =⇒ {a ⊗ b} = {b ⊗

a}" using m_comm by simp
then have "

∧
a b.[[a ∈ H; b ∈ J]] =⇒ {a ⊗ b} = {b ⊗ a}" using assms

by auto
moreover have "

∧
a b.[[b ∈ H; a ∈ J]] =⇒ {a ⊗ b} = {b ⊗ a}" using

assms 1 by auto
ultimately show "(

⋃
h∈H.

⋃
k∈J. {h ⊗ k}) = (

⋃
k∈J.

⋃
h∈H. {k ⊗ h})"

by fast
qed

lemma (in group) set_mult_one_imp_inc:
assumes "1 ∈ A" "A ⊆ carrier G" "B ⊆ carrier G"
shows "B ⊆ (B <#> A)"

proof
fix x
assume "x ∈ B"

4

thus "x ∈ (B <#> A)" using assms unfolding set_mult_def by force
qed

In all cases, we know that the product of two sets is always contained in the
subgroup generated by them.
lemma (in group) set_mult_subset_generate:

assumes "A ⊆ carrier G" "B ⊆ carrier G"
shows "A <#> B ⊆ generate G (A ∪ B)"

proof
fix x
assume "x ∈ A <#> B"
then obtain a b where ab: "a ∈ A" "b ∈ B" "x = a ⊗ b" unfolding set_mult_def

by blast
then have "a ∈ generate G (A ∪ B)" "b ∈ generate G (A ∪ B)"

using generate.incl[of _ "A ∪ B" G] by simp+
thus "x ∈ generate G (A ∪ B)" using ab generate.eng by metis

qed

In the case of subgroups, the set product is just the subgroup generated by
both of the subgroups.
lemma (in comm_group) set_mult_eq_generate_subgroup:

assumes "subgroup H G" "subgroup J G"
shows "generate G (H ∪ J) = H <#> J" (is "?L = ?R")

proof
show "?L ⊆ ?R"
proof

fix x
assume "x ∈ ?L"
then show "x ∈ ?R"
proof(induction rule: generate.induct)

case one
have "1 ⊗ 1 = 1" using nat_pow_one[of 2] by simp
thus ?case

using assms subgroup.one_closed[OF assms(1)]
subgroup.one_closed[OF assms(2)] set_mult_def[of G H J]

by fastforce
next

case (incl x)
have H1: "1 ∈ H" using assms subgroup.one_closed by auto
have J1: "1 ∈ J" using assms subgroup.one_closed by auto
have lx: "x ⊗ 1 = x" using r_one[of x] incl subgroup.subset assms

by blast
have rx: "1 ⊗ x = x" using l_one[of x] incl subgroup.subset assms

by blast
show ?case
proof (cases "x ∈ H")

case True
then show ?thesis using set_mult_def J1 lx by fastforce

next

5

case False
then show ?thesis using set_mult_def H1 rx incl by fastforce

qed
next

case (inv h)
then have inv_in:"(inv h) ∈ H ∪ J" (is "?iv ∈ H ∪ J")

using assms subgroup.m_inv_closed[of _ G h] by (cases "h ∈ H";
blast)

have H1: "1 ∈ H" using assms subgroup.one_closed by auto
have J1: "1 ∈ J" using assms subgroup.one_closed by auto
have lx: "?iv ⊗ 1 = ?iv" using r_one[of "?iv"] subgroup.subset

inv_in assms by blast
have rx: "1 ⊗ ?iv = ?iv" using l_one[of "?iv"] incl subgroup.subset

inv_in assms by blast
show ?case
proof (cases "?iv ∈ H")

case True
then show ?thesis using set_mult_def[of G H J] J1 lx by fastforce

next
case False
then show ?thesis using set_mult_def[of G H J] H1 rx inv_in by

fastforce
qed

next
case (eng h g)
from eng(3) obtain a b where aH: "a ∈ H" and bJ: "b ∈ J" and

h_def: "h = a ⊗ b"
using set_mult_def[of G H J] by fast

have a_carr: "a ∈ carrier G" by (metis subgroup.mem_carrier assms(1)
aH)

have b_carr: "b ∈ carrier G" by (metis subgroup.mem_carrier assms(2)
bJ)

from eng(4) obtain c d where cH: "c ∈ H" and dJ: "d ∈ J" and
g_def: "g = c ⊗ d"

using set_mult_def[of G H J] by fast
have c_carr: "c ∈ carrier G" by (metis subgroup.mem_carrier assms(1)

cH)
have d_carr: "d ∈ carrier G" by (metis subgroup.mem_carrier assms(2)

dJ)
then have "h ⊗ g = (a ⊗ c) ⊗ (b ⊗ d)"

using a_carr b_carr c_carr d_carr g_def h_def m_assoc m_comm by
force

moreover have "a ⊗ c ∈ H" using assms(1) aH cH subgroup.m_closed
by fast

moreover have "b ⊗ d ∈ J" using assms(2) bJ dJ subgroup.m_closed
by fast

ultimately show ?case using set_mult_def by fast
qed

qed

6

next
show "?R ⊆ ?L" using set_mult_subset_generate[of H J] subgroup.subset

assms by blast
qed

end

2 Miscellaneous group facts
theory Miscellaneous_Groups

imports Set_Multiplication
begin

As the name suggests, this section contains several smaller lemmas about
groups.
lemma (in subgroup) nat_pow_closed [simp,intro]: "a ∈ H =⇒ pow G a
(n::nat) ∈ H"

by (induction n) (auto simp: nat_pow_def)

lemma nat_pow_modify_carrier: "a [^]G(|carrier := H |) b = a [^]G (b::nat)"
by (simp add: nat_pow_def)

lemma (in group) subgroup_card_dvd_group_ord:
assumes "subgroup H G"
shows "card H dvd order G"
using Coset.group.lagrange[of G H] assms group_axioms by (metis dvd_triv_right)

lemma (in group) subgroup_card_eq_order:
assumes "subgroup H G"
shows "card H = order (G(|carrier := H |))"
unfolding order_def by simp

lemma (in group) finite_subgroup_card_neq_0:
assumes "subgroup H G" "finite H"
shows "card H 6= 0"
using subgroup_nonempty assms by auto

lemma (in group) subgroup_order_dvd_group_order:
assumes "subgroup H G"
shows "order (G(|carrier := H |)) dvd order G"
by (metis subgroup_card_dvd_group_ord[of H] assms subgroup_card_eq_order)

lemma (in group) sub_subgroup_dvd_card:
assumes "subgroup H G" "subgroup J G" "J ⊆ H"
shows "card J dvd card H"
by (metis subgroup_incl[of J H] subgroup_card_eq_order[of H]

group.subgroup_card_dvd_group_ord[of "(G (|carrier := H |))" J]

7

assms
subgroup.subgroup_is_group[of H G] group_axioms)

lemma (in group) inter_subgroup_dvd_card:
assumes "subgroup H G" "subgroup J G"
shows "card (H ∩ J) dvd card H"
using subgroups_Inter_pair[of H J] assms sub_subgroup_dvd_card[of H

"H ∩ J"] by blast

lemma (in group) subgroups_card_coprime_inter_card_one:
assumes "subgroup H G" "subgroup J G" "coprime (card H) (card J)"
shows "card (H ∩ J) = 1"

proof -
from assms inter_subgroup_dvd_card have "is_unit (card (H ∩ J))" un-

folding coprime_def
by (metis assms(3) coprime_common_divisor inf_commute)

then show ?thesis by simp
qed

lemma (in group) coset_neq_imp_empty_inter:
assumes "subgroup H G" "a ∈ carrier G" "b ∈ carrier G"
shows "H #> a 6= H #> b =⇒ (H #> a) ∩ (H #> b) = {}"
by (metis Int_emptyI assms repr_independence)

lemma (in comm_group) subgroup_is_comm_group:
assumes "subgroup H G"
shows "comm_group (G(|carrier := H |))" unfolding comm_group_def

proof
interpret H: subgroup H G by fact
interpret H: submonoid H G using H.subgroup_is_submonoid .
show "Group.group (G(|carrier := H |))" by blast
show "comm_monoid (G(|carrier := H |))" using submonoid_is_comm_monoid

H.submonoid_axioms by blast
qed

lemma (in group) pow_int_mod_ord:
assumes [simp]:"a ∈ carrier G" "ord a 6= 0"
shows "a [^] (n::int) = a [^] (n mod ord a)"

proof -
obtain q r where d: "q = n div ord a" "r = n mod ord a" "n = q * ord

a + r"
using mod_div_decomp by blast

hence "a [^] n = (a [^] int (ord a)) [^] q ⊗ a [^] r"
using assms(1) int_pow_mult int_pow_pow
by (metis mult_of_nat_commute)

also have " . . . = 1 [^] q ⊗ a [^] r"
by (simp add: int_pow_int)

also have " . . . = a [^] r" by simp
finally show ?thesis using d(2) by blast

8

qed

lemma (in group) pow_nat_mod_ord:
assumes [simp]:"a ∈ carrier G" "ord a 6= 0"
shows "a [^] (n::nat) = a [^] (n mod ord a)"

proof -
obtain q r where d: "q = n div ord a" "r = n mod ord a" "n = q * ord

a + r"
using mod_div_decomp by blast

hence "a [^] n = (a [^] ord a) [^] q ⊗ a [^] r"
using assms(1) nat_pow_mult nat_pow_pow by presburger

also have " . . . = 1 [^] q ⊗ a [^] r" by auto
also have " . . . = a [^] r" by simp
finally show ?thesis using d(2) by blast

qed

lemma (in group) ord_min:
assumes "m ≥ 1" "x ∈ carrier G" "x [^] m = 1"
shows "ord x ≤ m"
using assms pow_eq_id by auto

lemma (in group) bij_betw_mult_left[intro]:
assumes [simp]: "x ∈ carrier G"
shows "bij_betw (λy. x ⊗ y) (carrier G) (carrier G)"
by (intro bij_betwI[where ?g = "λy. inv x ⊗ y"])

(auto simp: m_assoc [symmetric])

lemma (in subgroup) inv_in_iff:
assumes "x ∈ carrier G" "group G"
shows "inv x ∈ H ←→ x ∈ H"

proof safe
assume "inv x ∈ H"
hence "inv (inv x) ∈ H" by blast
also have "inv (inv x) = x"

by (intro group.inv_inv) (use assms in auto)
finally show "x ∈ H" .

qed auto

lemma (in subgroup) mult_in_cancel_left:
assumes "y ∈ carrier G" "x ∈ H" "group G"
shows "x ⊗ y ∈ H ←→ y ∈ H"

proof safe
assume "x ⊗ y ∈ H"
hence "inv x ⊗ (x ⊗ y) ∈ H"

using assms by blast
also have "inv x ⊗ (x ⊗ y) = y"

9

using assms by (simp add: ‹x ⊗ y ∈ H› group.inv_solve_left’)
finally show "y ∈ H" .

qed (use assms in auto)

lemma (in subgroup) mult_in_cancel_right:
assumes "x ∈ carrier G" "y ∈ H" "group G"
shows "x ⊗ y ∈ H ←→ x ∈ H"

proof safe
assume "x ⊗ y ∈ H"
hence "(x ⊗ y) ⊗ inv y ∈ H"

using assms by blast
also have "(x ⊗ y) ⊗ inv y = x"

using assms by (simp add: ‹x ⊗ y ∈ H› group.inv_solve_right’)
finally show "x ∈ H" .

qed (use assms in auto)

lemma (in group)
assumes "x ∈ carrier G" and "x [^] n = 1" and "n > 0"
shows ord_le: "ord x ≤ n" and ord_pos: "ord x > 0"

proof -
have "ord x dvd n"

using pow_eq_id[of x n] assms by auto
thus "ord x ≤ n" "ord x > 0"

using assms by (auto intro: dvd_imp_le)
qed

lemma (in group) ord_conv_Least:
assumes "x ∈ carrier G" "∃ n::nat > 0. x [^] n = 1"
shows "ord x = (LEAST n::nat. 0 < n ∧ x [^] n = 1)"

proof (rule antisym)
show "ord x ≤ (LEAST n::nat. 0 < n ∧ x [^] n = 1)"

using assms LeastI_ex[OF assms(2)] by (intro ord_le) auto
show "ord x ≥ (LEAST n::nat. 0 < n ∧ x [^] n = 1)"

using assms by (intro Least_le) (auto intro: pow_ord_eq_1 ord_pos)
qed

lemma (in group) ord_conv_Gcd:
assumes "x ∈ carrier G"
shows "ord x = Gcd {n. x [^] n = 1}"
by (rule sym, rule Gcd_eqI) (use assms in ‹auto simp: pow_eq_id›)

lemma (in group) subgroup_ord_eq:
assumes "subgroup H G" "x ∈ H"
shows "group.ord (G(|carrier := H |)) x = ord x"
using nat_pow_consistent ord_def group.ord_def[of "(G(|carrier := H |))"

x]
subgroup.subgroup_is_group[of H G] assms by simp

10

lemma (in group) ord_FactGroup:
assumes "subgroup P G" "group (G Mod P)"
shows "order (G Mod P) * card P = order G"
using lagrange[of P] FactGroup_def[of G P] assms order_def[of "(G Mod

P)"] by fastforce

lemma (in group) one_is_same:
assumes "subgroup H G"
shows "1G(|carrier := H |) = 1"
by simp

lemma (in group) kernel_FactGroup:
assumes "P C G"
shows "kernel G (G Mod P) (λx. P #> x) = P"

proof(rule equalityI; rule subsetI)
fix x
assume "x ∈ kernel G (G Mod P) ((#>) P)"
then have "P #> x = 1G Mod P" "x ∈ carrier G" unfolding kernel_def

by simp+
with coset_join1[of P x] show "x ∈ P" using assms unfolding normal_def

by simp
next

fix x
assume x:"x ∈ P"
then have xc: "x ∈ carrier G" using assms subgroup.subset unfolding

normal_def by fast
from x have "P #> x = P" using assms

by (simp add: normal_imp_subgroup subgroup.rcos_const)
thus "x ∈ kernel G (G Mod P) ((#>) P)" unfolding kernel_def using xc

by simp
qed

lemma (in group) sub_subgroup_coprime:
assumes "subgroup H G" "subgroup J G" "coprime (card H) (card J)"
and "subgroup sH G" "subgroup sJ G" "sH ⊆ H" "sJ ⊆ J"

shows "coprime (card sH) (card sJ)"
using assms by (meson coprime_divisors sub_subgroup_dvd_card)

lemma (in group) pow_eq_nat_mod:
assumes "a ∈ carrier G" "a [^] n = a [^] m"
shows "n mod (ord a) = m mod (ord a)"

proof -
from assms have "a [^] (n - m) = 1" using pow_eq_div2 by blast
hence "ord a dvd n - m" using assms(1) pow_eq_id by blast
thus ?thesis

by (metis assms mod_eq_dvd_iff_nat nat_le_linear pow_eq_div2 pow_eq_id)
qed

lemma (in group) pow_eq_int_mod:

11

fixes n m::int
assumes "a ∈ carrier G" "a [^] n = a [^] m"
shows "n mod (ord a) = m mod (ord a)"

proof -
from assms have "a [^] (n - m) = 1" using int_pow_closed int_pow_diff

r_inv by presburger
hence "ord a dvd n - m" using assms(1) int_pow_eq_id by blast
thus ?thesis by (meson mod_eq_dvd_iff)

qed

end

3 Generated Groups
theory Generated_Groups_Extend

imports Miscellaneous_Groups
begin

This section extends the lemmas and facts about generate. Starting with a
basic fact.
lemma (in group) generate_sincl:

"A ⊆ generate G A"
using generate.incl by fast

The following lemmas reflect some of the idempotence characteristics of
generate and have proved useful at several occasions.
lemma (in group) generate_idem:

assumes "A ⊆ carrier G"
shows "generate G (generate G A) = generate G A"
using assms generateI group.generate_is_subgroup by blast

lemma (in group) generate_idem’:
assumes "A ⊆ carrier G" "B ⊆ carrier G"
shows "generate G (generate G A ∪ B) = generate G (A ∪ B)"

proof
show "generate G (generate G A ∪ B) ⊆ generate G (A ∪ B)"
proof -

have "generate G A ∪ B ⊆ generate G (A ∪ B)"
proof -

have "generate G A ⊆ generate G (A ∪ B)" using mono_generate by
simp

moreover have "B ⊆ generate G (A ∪ B)" by (simp add: generate.incl
subset_iff)

ultimately show ?thesis by simp
qed
then have "generate G (generate G A ∪ B) ⊆ generate G (generate

G (A ∪ B))"
using mono_generate by auto

12

with generate_idem[of "A ∪ B"] show ?thesis using assms by simp
qed
show "generate G (A ∪ B) ⊆ generate G (generate G A ∪ B)"
proof -

have "A ⊆ generate G A" using generate.incl by fast
thus ?thesis using mono_generate[of "A ∪ B" "generate G A ∪ B"] by

blast
qed

qed

lemma (in group) generate_idem’_right:
assumes "A ⊆ carrier G" "B ⊆ carrier G"
shows "generate G (A ∪ generate G B) = generate G (A ∪ B)"
using generate_idem’[OF assms(2) assms(1)] by (simp add: sup_commute)

lemma (in group) generate_idem_Un:
assumes "A ⊆ carrier G"
shows "generate G (

⋃
x∈A. generate G {x}) = generate G A"

proof
have "A ⊆ (

⋃
x∈A. generate G {x})" using generate.incl by force

thus "generate G A ⊆ generate G (
⋃

x∈A. generate G {x})" using mono_generate
by presburger

have "
∧

x. x ∈ A =⇒ generate G {x} ⊆ generate G A" using mono_generate
by auto

hence "(
⋃

x∈A. generate G {x}) ⊆ generate G A" by blast
thus "generate G (

⋃
x∈A. generate G {x}) ⊆ generate G A"

using generate_idem[OF assms] mono_generate by blast
qed

lemma (in group) generate_idem_fUn:
assumes "f A ⊆ carrier G"
shows "generate G (

⋃
{generate G {x} |x. x ∈ f A}) = generate G (f

A)"
proof

have "f A ⊆
⋃

{generate G {x} |x. x ∈ f A}"
proof

fix x
assume x: "x ∈ f A"
have "x ∈ generate G {x}" using generate.incl by fast
thus "x ∈

⋃
{generate G {x} |x. x ∈ f A}" using x by blast

qed
thus "generate G (f A) ⊆ generate G (

⋃
{generate G {x} |x. x ∈ f A})"

using mono_generate by auto
have "

∧
x. x ∈ f A =⇒ generate G {x} ⊆ generate G (f A)" using mono_generate

by simp
hence "(

⋃
{generate G {x} |x. x ∈ f A}) ⊆ generate G (f A)" by blast

with mono_generate[OF this] show "generate G (
⋃

{generate G {x} |x.
x ∈ f A}) ⊆ generate G (f A)"

using generate_idem[OF assms] by simp

13

qed

lemma (in group) generate_idem_fim_Un:
assumes "

⋃
(f ‘ A) ⊆ carrier G"

shows "generate G (
⋃

S ∈ A. generate G (f S)) = generate G (
⋃

{generate
G {x} |x. x ∈

⋃
(f ‘ A)})"

proof

have "
∧

S. S ∈ A =⇒ generate G (f S) = generate G (
⋃

{generate G
{x} |x. x ∈ f S})"

using generate_idem_fUn[of f] assms by blast
then have "generate G (

⋃
S ∈ A. generate G (f S))

= generate G (
⋃

S ∈ A. generate G (
⋃

{generate G {x} |x. x
∈ f S}))" by simp

have "
⋃

{generate G {x} |x. x ∈
⋃

(f ‘ A)} ⊆ (
⋃

S∈A. generate G
(f S))"

proof
fix x
assume x: "x ∈

⋃
{generate G {x} |x. x ∈

⋃
(f ‘ A)}"

then obtain a where a: "x ∈ generate G {a}" "a ∈
⋃

(f ‘ A)" by
blast

then obtain M where M: "a ∈ f M" "M ∈ A" by blast
then have "generate G {a} ⊆ generate G (f M)"

using generate.incl[OF M(1), of G] mono_generate[of "{a}" "generate
G (f M)"]

generate_idem assms by auto
then have "x ∈ generate G (f M)" using a by blast
thus "x ∈ (

⋃
S∈A. generate G (f S))" using M by blast

qed
thus "generate G (

⋃
{generate G {x} |x. x ∈

⋃
(f ‘ A)}) ⊆ generate

G (
⋃

S∈A. generate G (f S))"
using mono_generate by simp

have a: "generate G (
⋃

S∈A. generate G (f S)) ⊆ generate G (
⋃

(f ‘
A))"

proof -
have "

∧
S. S ∈ A =⇒ generate G (f S) ⊆ generate G (

⋃
(f ‘ A))"

using mono_generate[of _ "
⋃

(f ‘ A)"] by blast
then have "(

⋃
S∈A. generate G (f S)) ⊆ generate G (

⋃
(f ‘ A))" by

blast
then have "generate G (

⋃
S∈A. generate G (f S)) ⊆ generate G (generate

G (
⋃

(f ‘ A)))"
using mono_generate by meson

thus "generate G (
⋃

S∈A. generate G (f S)) ⊆ generate G (
⋃

(f ‘
A))"

using generate_idem assms by blast
qed
have "

⋃
{generate G {x} |x. x ∈

⋃
(f ‘ A)} = (

⋃
x∈

⋃
(f ‘ A). generate

G {x})" by blast

14

with generate_idem_Un[OF assms]
have "generate G (

⋃
{generate G {x} |x. x ∈

⋃
(f ‘ A)}) = generate

G (
⋃

(f ‘ A))" by simp
with a show "generate G (

⋃
S∈A. generate G (f S))

⊆ generate G (
⋃

{generate G {x} |x. x ∈
⋃

(f ‘ A)})" by
blast
qed

The following two rules allow for convenient proving of the equality of two
generated sets.
lemma (in group) generate_eqI:

assumes "A ⊆ carrier G" "B ⊆ carrier G" "A ⊆ generate G B" "B ⊆ generate
G A"

shows "generate G A = generate G B"
using assms generate_idem by (metis generate_idem’ inf_sup_aci(5) sup.absorb2)

lemma (in group) generate_one_switched_eqI:
assumes "A ⊆ carrier G" "a ∈ A" "B = (A - {a}) ∪ {b}"
and "b ∈ generate G A" "a ∈ generate G B"
shows "generate G A = generate G B"

proof(intro generate_eqI)
show "A ⊆ carrier G" by fact
show "B ⊆ carrier G" using assms generate_incl by blast
show "A ⊆ generate G B" using assms generate_sincl[of B] by blast
show "B ⊆ generate G A" using assms generate_sincl[of A] by blast

qed

lemma (in group) generate_subset_eqI:
assumes "A ⊆ carrier G" "B ⊆ A" "A - B ⊆ generate G B"
shows "generate G A = generate G B"

proof
show "generate G B ⊆ generate G A" by (intro mono_generate, fact)
show "generate G A ⊆ generate G B"
proof(subst generate_idem[of "B", symmetric])

show "generate G A ⊆ generate G (generate G B)"
by (intro mono_generate, use assms generate_sincl[of B] in auto)

qed (use assms in blast)
qed

Some smaller lemmas about generate.
lemma (in group) generate_subset_change_eqI:

assumes "A ⊆ carrier G" "B ⊆ carrier G" "C ⊆ carrier G" "generate
G A = generate G B"

shows "generate G (A ∪ C) = generate G (B ∪ C)"
by (metis assms generate_idem’)

lemma (in group) generate_subgroup_id:
assumes "subgroup H G"
shows "generate G H = H"

15

using assms generateI by auto

lemma (in group) generate_consistent’:
assumes "subgroup H G" "A ⊆ H"
shows "∀ x ∈ A. generate G {x} = generate (G(|carrier := H |)) {x}"
using generate_consistent assms by auto

lemma (in group) generate_singleton_one:
assumes "generate G {a} = {1}"
shows "a = 1"
using generate.incl[of a "{a}" G] assms by auto

lemma (in group) generate_inv_eq:
assumes "a ∈ carrier G"
shows "generate G {a} = generate G {inv a}"
by (intro generate_eqI;

use assms generate.inv[of a] generate.inv[of "inv a" "{inv a}" G]
inv_inv[OF assms] in auto)

lemma (in group) generate_eq_imp_subset:
assumes "generate G A = generate G B"
shows "A ⊆ generate G B"
using generate.incl assms by fast

The neutral element does not play a role when generating a subgroup.
lemma (in group) generate_one_irrel:

"generate G A = generate G (A ∪ {1})"
proof

show "generate G A ⊆ generate G (A ∪ {1})" by (intro mono_generate,
blast)

show "generate G (A ∪ {1}) ⊆ generate G A"
proof(rule subsetI)

show "x ∈ generate G A" if "x ∈ generate G (A ∪ {1})" for x us-
ing that

by (induction rule: generate.induct;
use generate.one generate.incl generate.inv generate.eng in

auto)
qed

qed

lemma (in group) generate_one_irrel’:
"generate G A = generate G (A - {1})"
using generate_one_irrel by (metis Un_Diff_cancel2)

Also, we can express the subgroup generated by a singleton with finite order
using just its powers up to its order.
lemma (in group) generate_nat_pow:

assumes "ord a 6= 0" "a ∈ carrier G"
shows "generate G {a} = {a [^] k |k. k ∈ {0..ord a - 1}}"

16

using assms generate_pow_nat ord_elems_inf_carrier by auto

lemma (in group) generate_nat_pow’:
assumes "ord a 6= 0" "a ∈ carrier G"
shows "generate G {a} = {a [^] k |k. k ∈ {1..ord a}}"

proof -
have "{a [^] k |k. k ∈ {1..ord a}} = {a [^] k |k. k ∈ {0..ord a - 1}}"
proof -

have "a [^] k ∈ {a [^] k |k. k ∈ {0..ord a - 1}}" if "k ∈ {1..ord
a}" for k

using that pow_nat_mod_ord[OF assms(2, 1), of "ord a"] assms by
(cases "k = ord a"; force)

moreover have "a [^] k ∈ {a [^] k |k. k ∈ {1..ord a}}" if "k ∈ {0..ord
a - 1}" for k

proof(cases "k = 0")
case True
hence "a [^] k = a [^] ord a" using pow_ord_eq_1[OF assms(2)] by

auto
moreover have "ord a ∈ {1..ord a}"

using assms unfolding atLeastAtMost_def atLeast_def atMost_def
by auto

ultimately show ?thesis by blast
next

case False
then show ?thesis using that by auto

qed
ultimately show ?thesis by blast

qed
with generate_nat_pow[OF assms] show ?thesis by simp

qed

end

4 Auxiliary lemmas
theory General_Auxiliary

imports Complex_Main
"HOL-Algebra.IntRing"
"HOL.Rings"

begin

lemma inter_imp_subset: "A ∩ B = A =⇒ A ⊆ B"
by blast

lemma card_inter_eq:
assumes "finite A" "card (A ∩ B) = card A"
shows "A ⊆ B"

proof -
have "A ∩ B ⊆ A" by blast

17

with assms have "A ∩ B = A" using card_subset_eq by blast
thus ?thesis by blast

qed

lemma coprime_eq_empty_prime_inter:
assumes "(n::nat) 6= 0" "m 6= 0"
shows "coprime n m ←→ (prime_factors n) ∩ (prime_factors m) = {}"

proof
show "coprime n m =⇒ prime_factors n ∩ prime_factors m = {}"
proof (rule ccontr)

assume cp: "coprime n m"
assume pf: "prime_factors n ∩ prime_factors m 6= {}"
then obtain p where p: "p ∈ prime_factors n" "p ∈ prime_factors

m" by blast
then have p_dvd: "p dvd n" "p dvd m" by blast+
moreover have "¬is_unit p" using p using not_prime_unit by blast
ultimately show "False" using cp unfolding coprime_def by simp

qed
assume assm: "prime_factors n ∩ prime_factors m = {}"
show "coprime n m" unfolding coprime_def
proof

fix c
show "c dvd n −→ c dvd m −→ is_unit c"
proof(rule; rule)

assume c: "c dvd n" "c dvd m"
then have "prime_factors c ⊆ prime_factors n" "prime_factors c

⊆ prime_factors m"
using assms dvd_prime_factors by blast+

then have "prime_factors c = {}" using assm by blast
thus "is_unit c" using assms c

by (metis dvd_0_left_iff prime_factorization_empty_iff set_mset_eq_empty_iff)
qed

qed
qed

lemma prime_factors_Prod:
assumes "finite S" "

∧
a. a ∈ S =⇒ f a 6= 0"

shows "prime_factors (prod f S) =
⋃

(prime_factors ‘ f ‘ S)"
using assms

proof(induction S rule: finite_induct)
case empty
then show ?case by simp

next
case i: (insert x F)
from i have x: "f x 6= 0" by blast
from i have F: "prod f F 6= 0" by simp
from i have "prime_factors(prod f F) =

⋃
(prime_factors ‘ f ‘ F)"

by blast
moreover have "prod f (insert x F) = (prod f F) * f x" using i mult.commute

18

by force
ultimately
have "prime_factors (prod f (insert x F)) = (

⋃
(prime_factors ‘ f ‘

F)) ∪ prime_factors (f x)"
using prime_factors_product[OF F x] by argo

thus ?case by force
qed

lemma lcm_is_Min_multiple_nat:
assumes "c 6= 0" "(a::nat) dvd c" "(b::nat) dvd c"
shows "c ≥ lcm a b"
using lcm_least[of a c b] assms by fastforce

lemma diff_prime_power_imp_coprime:
assumes "p 6= q" "Factorial_Ring.prime (p::nat)" "Factorial_Ring.prime

q"
shows "coprime (p ^ (n::nat)) (q ^ m)"
using assms
by (metis power_0 power_one_right prime_dvd_power prime_imp_power_coprime_nat

prime_nat_iff prime_power_inj’’)

lemma "finite (prime_factors x)"
using finite_set_mset by blast

lemma card_ge_1_two_diff:
assumes "card A > 1"
obtains x y where "x ∈ A" "y ∈ A" "x 6= y"

proof -
have fA: "finite A" using assms by (metis card.infinite not_one_less_zero)
from assms obtain x where x: "x ∈ A" by fastforce
with assms fA have "card (A - {x}) > 0" by simp
then obtain y where y: "y ∈ (A - {x})" by (metis card_gt_0_iff ex_in_conv)
thus ?thesis using that[of x y] x by blast

qed

lemma infinite_two_diff:
assumes "infinite A"
obtains x y where "x ∈ A" "y ∈ A" "x 6= y"

proof -
from assms obtain x where x: "x ∈ A" by fastforce
from assms have "infinite (A - {x})" by simp
then obtain y where y: "y ∈ (A - {x})"

by (metis ex_in_conv finite.emptyI)
show ?thesis using that[of x y] using x y by blast

qed

lemma Inf_le:
"Inf A ≤ x" if "x ∈ (A::nat set)" for x

proof (cases "A = {}")

19

case True
then show ?thesis using that by simp

next
case False
hence "Inf A ≤ Inf {x}" using that by (simp add: cInf_lower)
also have " . . . = x" by simp
finally show "Inf A ≤ x" by blast

qed

lemma switch_elem_card_le:
assumes "a ∈ A"
shows "card (A - {a} ∪ {b}) ≤ card A"
using assms
by (metis Diff_insert_absorb Set.set_insert Un_commute card.infinite

card_insert_disjoint
card_mono finite_insert insert_is_Un insert_subset order_refl)

lemma pairwise_coprime_dvd:
assumes "finite A" "pairwise coprime A" "(n::nat) = prod id A" "∀ a∈A.

a dvd j"
shows "n dvd j"
using assms

proof (induction A arbitrary: n)
case i: (insert x F)
have "prod id F dvd j" "x dvd j" using i unfolding pairwise_def by

auto
moreover have "coprime (prod id F) x"

by (metis i(2, 4) id_apply pairwise_insert prod_coprime_left)
ultimately show ?case using i(1, 2, 5) by (simp add: coprime_commute

divides_mult)
qed simp

lemma pairwise_coprime_dvd’:
assumes "finite A" "

∧
i j. [[i ∈ A; j ∈ A; i 6= j]] =⇒ coprime (f i)

(f j)"
"(n::nat) = prod f A" "∀ a∈A. f a dvd j"

shows "n dvd j"
using assms

proof (induction A arbitrary: n)
case i: (insert x F)
have "prod f F dvd j" "f x dvd j" using i unfolding pairwise_def by

auto
moreover have "coprime (prod f F) (f x)" by(intro prod_coprime_left,

use i in blast)
ultimately show ?case using i by (simp add: coprime_commute divides_mult)

qed simp

lemma transp_successively_remove1:
assumes "transp f" "successively f l"

20

shows "successively f (remove1 a l)" using assms(2)
proof(induction l rule: induct_list012)

case (3 x y zs)
from 3(3)[unfolded successively.simps] have fs: "f x y" "successively

f (y # zs)" by auto
moreover from this(2) successively.simps have s: "successively f zs"

by(cases zs, auto)
ultimately have s2: "successively f (remove1 a zs)" "successively f

(remove1 a (y # zs))"
using 3 by auto

consider (x) "x = a" | (y) "y = a ∧ x 6= a" | (zs) "a 6= x ∧ a 6= y"
by blast

thus ?case
proof (cases)

case x
then show ?thesis using 3 by simp

next
case y
then show ?thesis
proof (cases zs)

case Nil
then show ?thesis using fs by simp

next
case (Cons a list)
hence "f y a" using fs by simp
hence "f x a" using fs(1) assms(1)[unfolded transp_def] by blast
then show ?thesis using Cons y s by auto

qed
next

case zs
then show ?thesis using s2 fs by auto

qed
qed auto

lemma exp_one_2pi_iff:
fixes x::real shows "exp (2 * of_real pi * i * x) = 1 ←→ x ∈ �"

proof -
have c: "cis (2 * x * pi) = 1 ←→ x ∈ �"

by (auto simp: complex_eq_iff sin_times_pi_eq_0 cos_one_2pi_int, meson
Ints_cases)

have "exp (2 * of_real pi * i * x) = exp (i * complex_of_real (2 * x
* pi))"

proof -
have "2 * of_real pi * i * x = i * complex_of_real (2 * x * pi)" by

simp
thus ?thesis by argo

qed
also from cis_conv_exp have " . . . = cis (2 * x * pi)" by simp

21

finally show ?thesis using c by simp
qed

lemma of_int_divide_in_Ints_iff:
assumes "b 6= 0"
shows "(of_int a / of_int b :: ’a :: field_char_0) ∈ � ←→ b dvd

a"
proof

assume *: "(of_int a / of_int b :: ’a :: field_char_0) ∈ �"
from * obtain n where "of_int a / of_int b = (of_int n :: ’a)"

by (elim Ints_cases)
hence "of_int (b * n) = (of_int a :: ’a)"

using assms by (subst of_int_mult) (auto simp: field_simps)
hence "b * n = a"

by (subst (asm) of_int_eq_iff)
thus "b dvd a" by auto

qed auto

lemma of_nat_divide_in_Ints_iff:
assumes "b 6= 0"
shows "(of_nat a / of_nat b :: ’a :: field_char_0) ∈ � ←→ b dvd

a"
using of_int_divide_in_Ints_iff[of "int b" "int a"] assms by simp

lemma true_nth_unity_root:
fixes n::nat
obtains x::complex where "x ^ n = 1" "

∧
m. [[0<m; m<n]] =⇒ x ^ m 6= 1"

proof(cases "n = 0")
case False
show ?thesis
proof (rule that)

show "cis (2 * pi / n) ^ n = 1"
by (simp add: DeMoivre)

next
fix m assume m: "m > 0" "m < n"
have "cis (2 * pi / n) ^ m = cis (2 * pi * m / n)"

by (simp add: DeMoivre algebra_simps)
also have " . . . = 1 ←→ real m / real n ∈ �"

using exp_one_2pi_iff[of "m / n"] by (simp add: cis_conv_exp algebra_simps)
also have " . . . ←→ n dvd m"

using m by (subst of_nat_divide_in_Ints_iff) auto
also have "¬n dvd m"

using m by auto
finally show "cis (2 * pi / real n) ^ m 6= 1" .

qed
qed simp

22

lemma finite_bij_betwI:
assumes "finite A" "finite B" "inj_on f A" "f ∈ A → B" "card A = card

B"
shows "bij_betw f A B"

proof (intro bij_betw_imageI)
show "inj_on f A" by fact
show "f ‘ A = B"
proof -

have "card (f ‘ A) = card B" using assms by (simp add: card_image)
moreover have "f ‘ A ⊆ B" using assms by blast
ultimately show ?thesis using assms by (meson card_subset_eq)

qed
qed

lemma powi_mod:
"x powi m = x powi (m mod n)" if "x ^ n = 1" "n > 0" for x::complex and

m::int
proof -

have xnz: "x 6= 0" using that by (metis zero_neq_one zero_power)
obtain k::int where k: "m = k*n + (m mod n)" using div_mod_decomp_int

by blast
have "x powi m = x powi (k*n) * x powi (m mod n)" by (subst k, intro

power_int_add, use xnz in auto)
moreover have "x powi (k*n) = 1" using that

by (metis mult.commute power_int_1_left power_int_mult power_int_of_nat)
ultimately show ?thesis by force

qed

lemma Sigma_insert: "Sigma (insert x A) B = (λy. (x, y)) ‘ B x ∪ Sigma
A B"

by auto

end

5 Internal direct product
theory IDirProds

imports Generated_Groups_Extend General_Auxiliary
begin

5.1 Complementarity

We introduce the notion of complementarity, that plays a central role in the
internal direct group product and prove some basic properties about it.
definition (in group) complementary :: "’a set ⇒ ’a set ⇒ bool" where

"complementary H1 H2 ←→ H1 ∩ H2 = {1}"

23

lemma (in group) complementary_symm: "complementary A B ←→ complementary
B A"

unfolding complementary_def by blast

lemma (in group) subgroup_carrier_complementary:
assumes "complementary H J" "subgroup I (G(|carrier := H |))" "subgroup

K (G(|carrier := J |))"
shows "complementary I K"

proof -
have "1 ∈ I" "1 ∈ K" using subgroup.one_closed assms by fastforce+
moreover have "I ∩ K ⊆ H ∩ J" using subgroup.subset assms by force
ultimately show ?thesis using assms unfolding complementary_def by

blast
qed

lemma (in group) subgroup_subset_complementary:
assumes "subgroup H G" "subgroup J G" "subgroup I G"
and "I ⊆ J" "complementary H J"

shows "complementary H I"
by (intro subgroup_carrier_complementary[OF assms(5), of H I] subgroup_incl,

use assms in auto)

lemma (in group) complementary_subgroup_iff:
assumes "subgroup H G"
shows "complementary A B ←→ group.complementary (G(|carrier := H |))

A B"
proof -

interpret H: group "G (|carrier := H |)" using subgroup.subgroup_is_group
assms by blast

have "1G = 1G(|carrier := H |)" by simp
then show ?thesis unfolding complementary_def H.complementary_def by

simp
qed

lemma (in group) subgroups_card_coprime_imp_compl:
assumes "subgroup H G" "subgroup J G" "coprime (card H) (card J)"
shows "complementary H J" unfolding complementary_def

proof -
interpret JH: subgroup "(H ∩ J)" G using assms subgroups_Inter_pair

by blast
from subgroups_card_coprime_inter_card_one[OF assms] show "H ∩ J =

{1}" using JH.one_closed
by (metis card_1_singletonE singletonD)

qed

lemma (in group) prime_power_complementary_groups:
assumes "Factorial_Ring.prime p" "Factorial_Ring.prime q" "p 6= q"
and "subgroup P G" "card P = p ^ x"
and "subgroup Q G" "card Q = q ^ y"

24

shows "complementary P Q"
proof -

from assms have "coprime (card P) (card Q)"
by (metis coprime_power_right_iff primes_coprime coprime_def)

then show ?thesis using subgroups_card_coprime_imp_compl assms complementary_def
by blast
qed

With the previous work from the theory about set multiplication we can
characterize complementarity of two subgroups in abelian groups by the
cardinality of their product.
lemma (in comm_group) compl_imp_diff_cosets:

assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
and "complementary H J"
shows "

∧
a b. [[a ∈ J; b ∈ J; a 6= b]] =⇒ (H #> a) 6= (H #> b)"

proof (rule ccontr; safe)
fix a b
assume ab: "a ∈ J" "b ∈ J" "a 6= b"
then have [simp]: "a ∈ carrier G" "b ∈ carrier G" using assms subgroup.subset

by auto
assume "H #> a = H #> b"
then have "a ⊗ inv b ∈ H" using assms(1, 2) ab

by (metis comm_group_axioms comm_group_def rcos_self
subgroup.mem_carrier subgroup.rcos_module_imp)

moreover have "a ⊗ inv b ∈ J"
by (rule subgroup.m_closed[OF assms(2) ab(1) subgroup.m_inv_closed[OF

assms(2) ab(2)]])
moreover have "a ⊗ inv b 6= 1" using ab inv_equality by fastforce
ultimately have "H ∩ J 6= {1}" by blast
thus False using assms(5) unfolding complementary_def by blast

qed

lemma (in comm_group) finite_sub_card_eq_mult_imp_comp:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
and "card (H <#> J) = (card J * card H)"
shows "complementary H J"
unfolding complementary_def

proof (rule ccontr)
assume "H ∩ J 6= {1}"
have "1 ∈ H" using subgroup.one_closed assms(1) by blast
moreover have "1 ∈ J" using subgroup.one_closed assms(2) by blast
ultimately have "1 ∈ (H ∩ J)" by blast

then obtain a where a_def: "a ∈ (H ∩ J) ∧ a 6= 1" using ‹H ∩ J 6=
{1}› by blast

then have aH: "a ∈ H" by blast
then have a_inv_H: "inv a ∈ H ∧ inv a 6= 1" using assms(1)

by (meson a_def inv_eq_1_iff subgroup.mem_carrier subgroupE(3))
from a_def have aJ: "a ∈ J" by blast

25

then have a_inv_J: "inv a ∈ J ∧ inv a 6= 1" using assms(2)
by (meson a_def inv_eq_1_iff subgroup.mem_carrier subgroupE(3))

from a_def have a_c: "a ∈ carrier G" using subgroup.subset[of J G]
assms(2) by blast

from set_mult_card_eq_impl_empty_inter’[of H J]
have empty: "

∧
a b. [[a ∈ H; b ∈ H; a 6= b]] =⇒ (l_coset G a J) ∩ (l_coset

G b J) = {}"
using assms subgroup.subset[of _ G] by simp

have "1 ∈ 1 <# J" using ‹1 ∈ J› unfolding l_coset_def by force
moreover have "1 ∈ a <# J" using a_inv_J aJ a_c assms ‹1 ∈ J› coset_join3

by blast
ultimately have "(l_coset G 1 J) ∩ (l_coset G a J) 6= {}" by blast

then show "False" using empty[of "1" a] a_def aH ‹1 ∈ H› by blast
qed

lemma (in comm_group) finite_sub_comp_imp_card_eq_mult:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
and "complementary H J"

shows "card (H <#> J) = card J * card H"
proof -

have carr: "H ⊆ carrier G" "J ⊆ carrier G" using assms subgroup.subset
by auto

from coset_neq_imp_empty_inter[OF assms(1)] compl_imp_diff_cosets[OF
assms(1,2)]

have em_inter: "
∧

a b. [[a ∈ J; b ∈ J; a 6= b]] =⇒ (H #> a) ∩ (H #>
b) = {}"

by (meson assms subgroup.mem_carrier)

have "card (
⋃

a∈J. (H #> a)) = card J * card H" using assms(4) carr(2)
em_inter

proof (induction J rule: finite_induct)
case empty
then show ?case by auto

next
case i: (insert x F)
then have cF:"card (

⋃
((#>) H ‘ F)) = card F * card H" by blast

have xc[simp]: "x ∈ carrier G" using i(4) by simp
let ?J = "insert x F"
from i(2, 4, 5) have em:"(H #> x) ∩ (

⋃
y∈F. (H #> y)) = {}" by auto

have "finite (H #> x)"
by (meson carr(1) rcosetsI rcosets_finite assms(3) xc)

moreover have "finite (H <#> F)" using set_mult_finite[OF assms(3)
i(1) carr(1)] i(4) by blast

moreover have "H <#> F = (
⋃

a∈F. (H #> a))"
unfolding set_mult_def using r_coset_def[of G H] by auto

26

ultimately have "card(H #> x) + card(
⋃

y∈F. (H #> y))
= card((H #> x) ∪ (

⋃
y∈F. (H #> y))) + card((H #>

x) ∩ (
⋃

y∈F. (H #> y)))"
using card_Un_Int by auto

then have "card(H #> x) + card(
⋃

y∈F. (H #> y)) = card((H #> x) ∪
(
⋃

y∈F. (H #> y)))"
using i(5) em by simp

moreover have "card (H #> x) = card H"
using card_rcosets_equal[of _ H] rcosetsI[of H] carr(1) xc by metis

moreover have "card (insert x F) * card H = card F * card H + card
H"

by (simp add: i)
ultimately show ?case using cF by simp

qed
moreover have "H <#> J = (

⋃
a∈J. (H #> a))"

unfolding set_mult_def using r_coset_def[of G H] by auto
ultimately show "card (H <#> J) = card J * card H" by argo

qed

lemma (in comm_group) finite_sub_comp_iff_card_eq_mult:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
shows "card (H <#> J) = card J * card H ←→ complementary H J"
using finite_sub_comp_imp_card_eq_mult[OF assms] finite_sub_card_eq_mult_imp_comp[OF

assms]
by blast

5.2 IDirProd - binary internal direct product

We introduce the internal direct product formed by two subgroups (so in its
binary form).
definition IDirProd :: "(’a, ’b) monoid_scheme ⇒ ’a set ⇒ ’a set ⇒ ’a
set" where

"IDirProd G Y Z = generate G (Y ∪ Z)"

Some trivial lemmas about the binary internal direct product.
lemma (in group) IDirProd_comm:

"IDirProd G A B = IDirProd G B A"
unfolding IDirProd_def by (simp add: sup_commute)

lemma (in group) IDirProd_empty_right:
assumes "A ⊆ carrier G"
shows "IDirProd G A {} = generate G A"
unfolding IDirProd_def by simp

lemma (in group) IDirProd_empty_left:
assumes "A ⊆ carrier G"
shows "IDirProd G {} A = generate G A"
unfolding IDirProd_def by simp

27

lemma (in group) IDirProd_one_right:
assumes "A ⊆ carrier G"
shows "IDirProd G A {1} = generate G A"
unfolding IDirProd_def

proof
interpret sA: subgroup "(generate G A)" G using assms generate_is_subgroup

by simp
interpret sAone: subgroup "(generate G (A ∪ {1}))" G using assms generate_is_subgroup

by simp
show "generate G (A ∪ {1}) ⊆ generate G A"

using generate_subgroup_incl[of "A ∪ {1}" "generate G A"]
generate.incl assms sA.one_closed sA.subgroup_axioms by fast

show "generate G A ⊆ generate G (A ∪ {1})"
using mono_generate[of A "A ∪ {1}"] by blast

qed

lemma (in group) IDirProd_one_left:
assumes "A ⊆ carrier G"
shows "IDirProd G {1} A = generate G A"
using IDirProd_one_right[of A] assms unfolding IDirProd_def by force

lemma (in group) IDirProd_is_subgroup:
assumes "Y ⊆ carrier G" "Z ⊆ carrier G"
shows "subgroup (IDirProd G Y Z) G"
unfolding IDirProd_def using generate_is_subgroup[of "Y ∪ Z"] assms

by simp

Using the theory about set multiplication we can also show the connection of
the underlying set in the internal direct product with the set multiplication
in the case of an abelian group. Together with the facts about complemen-
tarity and the set multiplication we can characterize complementarity by
the cardinality of the internal direct product and vice versa.
lemma (in comm_group) IDirProd_eq_subgroup_mult:

assumes "subgroup H G" "subgroup J G"
shows "IDirProd G H J = H <#> J"
unfolding IDirProd_def
by (rule set_mult_eq_generate_subgroup[OF assms])

lemma (in comm_group) finite_sub_comp_iff_card_eq_IDirProd:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
shows "card (IDirProd G H J) = card J * card H ←→ complementary H

J"
using finite_sub_comp_iff_card_eq_mult IDirProd_eq_subgroup_mult assms

by presburger

28

5.3 IDirProds - indexed internal direct product

The indexed version of the internal direct product acting on a family of
subgroups.
definition IDirProds :: "(’a, ’b) monoid_scheme ⇒ (’c ⇒ ’a set) ⇒ ’c
set ⇒ ’a set" where

"IDirProds G S I = generate G (
⋃

(S ‘ I))"

Lemmas about the indexed internal direct product.
lemma (in group) IDirProds_incl:

assumes "i ∈ I"
shows "S i ⊆ IDirProds G S I"
unfolding IDirProds_def using assms generate.incl[of _ "

⋃
(S ‘ I)" G]

by blast

lemma (in group) IDirProds_empty:
"IDirProds G S {} = {1}"
unfolding IDirProds_def using generate_empty by simp

lemma (in group) IDirProds_is_subgroup:
assumes "

⋃
(S ‘ I) ⊆ (carrier G)"

shows "subgroup (IDirProds G S I) G"
unfolding IDirProds_def using generate_is_subgroup[of "

⋃
(S ‘ I)"] assms

by auto

lemma (in group) IDirProds_subgroup_id: "subgroup (S i) G =⇒ IDirProds
G S {i} = S i"

by (simp add: generate_subgroup_id IDirProds_def)

lemma (in comm_group) IDirProds_Un:
assumes "∀ i∈A. subgroup (S i) G" "∀ j∈B. subgroup (S j) G"
shows "IDirProds G S (A ∪ B) = IDirProds G S A <#> IDirProds G S

B"
proof -

have subset: "
⋃

(S ‘ A) ⊆ carrier G" "
⋃

(S ‘ B) ⊆ carrier G"
using subgroup.subset assms(1, 2) by blast+

have "IDirProds G S A <#> IDirProds G S B = IDirProd G (IDirProds G
S A) (IDirProds G S B)"

using assms by (intro IDirProd_eq_subgroup_mult [symmetric] IDirProds_is_subgroup
subset)

also have " . . . = generate G (
⋃

(S ‘ A) ∪ IDirProds G S B)"
unfolding IDirProds_def IDirProd_def by (intro generate_idem’ generate_incl

subset)
also have " . . . = generate G (

⋃
(S ‘ A) ∪

⋃
(S ‘ B))"

unfolding IDirProds_def IDirProd_def
by (intro generate_idem’_right generate_incl subset)

also have "
⋃

(S ‘ A) ∪
⋃

(S ‘ B) =
⋃

(S ‘ (A ∪ B))"
by blast

also have "generate G . . . = IDirProds G S (A ∪ B)"

29

unfolding IDirProds_def ..
finally show ?thesis ..

qed

lemma (in comm_group) IDirProds_finite:
assumes "finite I" "∀ i∈I. subgroup (S i) G" "∀ i∈I. finite (S i)"
shows "finite (IDirProds G S I)" using assms

proof (induction I rule: finite_induct)
case empty
thus ?case using IDirProds_empty[of S] by simp

next
case i: (insert x I)
interpret Sx: subgroup "S x" G using i by blast
have cx: "(S x) ⊆ carrier G" by force
have cI: "

⋃
(S ‘ I) ⊆ carrier G" using i subgroup.subset by blast

interpret subgroup "IDirProds G S I" G using IDirProds_is_subgroup[OF
cI] .

have cIP: "(IDirProds G S I) ⊆ carrier G" by force
from i have f: "finite (S x)" "finite (IDirProds G S I)" "finite {x}"

by blast+
from IDirProds_Un[of "{x}" S I]
have "IDirProds G S ({x} ∪ I) = IDirProds G S {x} <#> IDirProds G S

I" using i by blast
also have " . . . = S x <#> IDirProds G S I"

using IDirProds_subgroup_id[of S x] Sx.subgroup_axioms by force
also have "finite (. . .)" using set_mult_finite[OF f(1, 2) cx cIP] .
finally show ?case unfolding insert_def by simp

qed

lemma (in comm_group) IDirProds_compl_imp_compl:
assumes "∀ i ∈ I. subgroup (S i) G" and "subgroup H G"
assumes "complementary H (IDirProds G S I)" "i ∈ I"
shows "complementary H (S i)"

proof -
have "S i ⊆ IDirProds G S I" using assms IDirProds_incl by fast
then have "H ∩ (S i) ⊆ H ∩ IDirProds G S I" by blast
moreover have "1 ∈ H ∩ (S i)" using subgroup.one_closed assms by

auto
ultimately show "complementary H (S i)" using assms(3) unfolding complementary_def

by blast
qed

Using the knowledge about the binary internal direct product, we can - in
case that all subgroups in the family have coprime orders - also derive the
cardinality of the indexed internal direct product.
lemma (in comm_group) IDirProds_card:

assumes "finite I" "∀ i∈I. subgroup (S i) G"
"∀ i∈I. finite (S i)" "pairwise (λx y. coprime (card (S x))

(card (S y))) I"

30

shows "card (IDirProds G S I) = (
∏

i ∈ I. card (S i))" using assms
proof (induction I rule: finite_induct)

case empty
then show ?case using IDirProds_empty[of S] by simp

next
case i: (insert x I)
have sx: "subgroup (S x) G" using i(4) by blast
have cx: "(S x) ⊆ carrier G" using subgroup.subset[OF sx] .
have fx: "finite (S x)" using i by blast
have cI: "

⋃
(S ‘ I) ⊆ carrier G" using subgroup.subset[of _ G] i(4)

by blast
from generate_is_subgroup[OF this] have sIP: "subgroup (IDirProds G

S I) G"
unfolding IDirProds_def .

then have cIP: "(IDirProds G S I) ⊆ carrier G" using subgroup.subset
by blast

have fIP: "finite (IDirProds G S I)" using IDirProds_finite[OF i(1)]
i by blast

from i have ih: "card (IDirProds G S I) = (
∏

i∈I. card (S i))" un-
folding pairwise_def by blast

hence cop: "coprime (card (IDirProds G S I)) (card (S x))"
proof -

have cFI0: "card (IDirProds G S I) 6= 0" using finite_subgroup_card_neq_0[OF
sIP fIP] .

moreover have cx0: "card (S x) 6= 0" using finite_subgroup_card_neq_0[OF
sx fx] .

moreover have "prime_factors (card (IDirProds G S I)) ∩ prime_factors
(card (S x)) = {}"

proof (rule ccontr)
have n0: "

∧
i. i ∈ I =⇒ card (S i) 6= 0" using finite_subgroup_card_neq_0

i(4, 5) by blast
assume "prime_factors (card (IDirProds G S I)) ∩ prime_factors

(card (S x)) 6= {}"
moreover have "prime_factors (card (IDirProds G S I)) =

⋃
(prime_factors

‘ (card ◦ S) ‘ I)"
using n0 prime_factors_Prod[OF i(1), of "card ◦ S"] by (subst

ih; simp)
moreover have "

∧
i. i ∈ I =⇒ prime_factors (card (S i)) ∩ prime_factors

(card (S x)) = {}"
proof -

fix i
assume ind: "i ∈ I"
then have coPx: "coprime (card (S i)) (card (S x))"

using i(2, 6) unfolding pairwise_def by auto
have "card (S i) 6= 0" using n0 ind by blast
from coprime_eq_empty_prime_inter[OF this cx0]
show "prime_factors (card (S i)) ∩ prime_factors (card (S x))

= {}" using coPx by blast

31

qed
ultimately show "False" by auto

qed
ultimately show ?thesis using coprime_eq_empty_prime_inter by blast

qed
have "card (IDirProds G S (insert x I)) = card (S x) * card (IDirProds

G S I)"
proof -

from finite_sub_comp_iff_card_eq_IDirProd[OF sIP sx fIP fx]
subgroups_card_coprime_imp_compl[OF sIP sx cop]

have "card (IDirProd G (IDirProds G S I) (S x)) = card (S x) * card
(IDirProds G S I)" by blast

moreover have "generate G (
⋃

(S ‘ insert x I)) = generate G (generate
G (

⋃
(S ‘ I)) ∪ S x)"
by (simp add: Un_commute cI cx generate_idem’_right)

ultimately show ?thesis unfolding IDirProds_def IDirProd_def by argo
qed
also have " . . . = card (S x) * prod (card ◦ S) I" using ih by simp
also have " . . . = prod (card ◦ S) ({x} ∪ I)" using i.hyps by auto
finally show ?case by simp

qed

5.4 Complementary family of subgroups

The notion of a complementary family is introduced. Note that the sub-
groups are complementary not only to the other subgroups but to the prod-
uct of the other subgroups.
definition (in group) compl_fam :: "(’c ⇒ ’a set) ⇒ ’c set ⇒ bool" where

"compl_fam S I = (∀ i ∈ I. complementary (S i) (IDirProds G S (I - {i})))"

Some lemmas about compl_fam.
lemma (in group) compl_fam_empty[simp]: "compl_fam S {}"

unfolding compl_fam_def by simp

lemma (in group) compl_fam_cong:
assumes "compl_fam (f ◦ g) A" "inj_on g A"
shows "compl_fam f (g ‘ A)"

proof -
have "((f ◦ g) ‘ (A - {i})) = (f ‘ (g ‘ A - {g i}))" if "i ∈ A" for

i
using assms that unfolding inj_on_def comp_def by blast

thus ?thesis using assms unfolding compl_fam_def IDirProds_def complementary_def
by simp
qed

We now connect compl_fam with generate as this will be its main applica-
tion.
lemma (in comm_group) compl_fam_imp_generate_inj:

32

assumes "gs ⊆ carrier G" "compl_fam (λg. generate G {g}) gs"
shows "inj_on (λg. generate G {g}) gs"

proof(rule, rule ccontr)
fix x y
assume xy: "x ∈ gs" "y ∈ gs" "x 6= y"
have gen: "generate G (

⋃
g∈gs - {y}. generate G {g}) = generate G (gs

- {y})"
by (intro generate_idem_Un, use assms in blast)

assume g: "generate G {x} = generate G {y}"
with xy have "generate G {y} ⊆ generate G (gs - {y})" using mono_generate[of

"{x}" "gs - {y}"] by auto
with xy have gyo: "generate G {y} = {1}" using assms(2) generate.one

gen
unfolding compl_fam_def complementary_def IDirProds_def by blast

hence yo: "y = 1" using generate_singleton_one by simp
from gyo g generate_singleton_one have xo: "x = 1" by simp
from xy yo xo show False by blast

qed

lemma (in comm_group) compl_fam_generate_subset:
assumes "compl_fam (λg. generate G {g}) gs"

"gs ⊆ carrier G" "A ⊆ gs"
shows "compl_fam (λg. generate G {g}) A"

proof(unfold compl_fam_def complementary_def IDirProds_def, subst generate_idem_Un)
show "

∧
i. A - {i} ⊆ carrier G" using assms by blast

have "generate G {i} ∩ generate G (A - {i}) = {1}" if "i ∈ A" for i
proof -

have "1 ∈ generate G {i} ∩ generate G (A - {i})" using generate.one
by blast

moreover have "generate G (A - {i}) ⊆ generate G (gs - {i})"
by (intro mono_generate, use assms in fast)

moreover have "generate G {i} ∩ generate G (gs - {i}) = {1}"
using assms that generate_idem_Un[of "gs - {i}"]
unfolding compl_fam_def IDirProds_def complementary_def by blast

ultimately show ?thesis by blast
qed
thus "∀ i∈A. generate G {i} ∩ generate G (A - {i}) = {1}" by auto

qed

5.5 is_idirprod

In order to identify a group as the internal direct product of a family of
subgroups, they all have to be normal subgroups, complementary to the
product of the rest of the subgroups and generate all of the group - this is
captured in the definition of is_idirprod.
definition (in group) is_idirprod :: "’a set ⇒ (’c ⇒ ’a set) ⇒ ’c set
⇒ bool" where

"is_idirprod A S I = ((∀ i ∈ I. S i C G) ∧ A = IDirProds G S I ∧ compl_fam

33

S I)"

Very basic lemmas about is_idirprod.
lemma (in comm_group) is_idirprod_subgroup_suffices:

assumes "A = IDirProds G S I" "∀ i∈I. subgroup (S i) G" "compl_fam
S I"

shows "is_idirprod A S I"
unfolding is_idirprod_def using assms subgroup_imp_normal by blast

lemma (in comm_group) is_idirprod_generate:
assumes "A = generate G gs" "gs ⊆ carrier G" "compl_fam (λg. generate

G {g}) gs"
shows "is_idirprod A (λg. generate G {g}) gs"

proof(intro is_idirprod_subgroup_suffices)
show "A = IDirProds G (λg. generate G {g}) gs"

using assms generate_idem_Un[OF assms(2)] unfolding IDirProds_def
by argo

show "∀ i∈gs. subgroup (generate G {i}) G" using assms generate_is_subgroup
by auto

show "compl_fam (λg. generate G {g}) gs" by fact
qed

lemma (in comm_group) is_idirprod_imp_compl_fam[simp]:
assumes "is_idirprod A S I"
shows "compl_fam S I"
using assms unfolding is_idirprod_def by blast

lemma (in comm_group) is_idirprod_generate_imp_generate[simp]:
assumes "is_idirprod A (λg. generate G {g}) gs"
shows "A = generate G gs"

proof -
have "gs ⊆ carrier G"
proof

show "g ∈ carrier G" if "g ∈ gs" for g
proof -

interpret g: subgroup "generate G {g}" G
using assms that normal_imp_subgroup unfolding is_idirprod_def

by blast
show ?thesis using g.subset generate.incl by fast

qed
qed
thus ?thesis using assms generate_idem_Un unfolding is_idirprod_def

IDirProds_def by presburger
qed

end

34

6 Finite Product
theory Finite_Product_Extend

imports IDirProds
begin

In this section, some general facts about finprod as well as some tailored
for the rest of this entry are proven.

It is often needed to split a product in a single factor and the rest. Thus
these two lemmas.
lemma (in comm_group) finprod_minus:

assumes "a ∈ A" "f ∈ A → carrier G" "finite A"
shows "finprod G f A = f a ⊗ finprod G f (A - {a})"

proof -
from assms have "A = insert a (A - {a})" by blast
then have "finprod G f A = finprod G f (insert a (A - {a}))" by simp
also have " . . . = f a ⊗ finprod G f (A - {a})" using assms by (intro

finprod_insert, auto)
finally show ?thesis .

qed

lemma (in comm_group) finprod_minus_symm:
assumes "a ∈ A" "f ∈ A → carrier G" "finite A"
shows "finprod G f A = finprod G f (A - {a}) ⊗ f a"

proof -
from assms have "A = insert a (A - {a})" by blast
then have "finprod G f A = finprod G f (insert a (A - {a}))" by simp
also have " . . . = f a ⊗ finprod G f (A - {a})" using assms by (intro

finprod_insert, auto)
also have " . . . = finprod G f (A - {a}) ⊗ f a"

by (intro m_comm, use assms in blast, intro finprod_closed, use assms
in blast)

finally show ?thesis .
qed

This makes it very easy to show the following trivial fact.
lemma (in comm_group) finprod_singleton:

assumes "f x ∈ carrier G" "finprod G f {x} = a"
shows "f x = a"

proof -
have "finprod G f {x} = f x ⊗ finprod G f {}" using finprod_minus[of

x "{x}" f] assms by auto
thus ?thesis using assms by simp

qed

The finite product is consistent and closed concerning subgroups.
lemma (in comm_group) finprod_subgroup:

assumes "f ∈ S → H" "subgroup H G"

35

shows "finprod G f S = finprod (G (|carrier := H |)) f S"
proof (cases "finite S")

case True
interpret H: comm_group "G (|carrier := H |)" using subgroup_is_comm_group[OF

assms(2)] .
show ?thesis using True assms
proof (induction S rule: finite_induct)

case empty
then show ?case using finprod_empty H.finprod_empty by simp

next
case i: (insert x F)
then have "finprod G f F = finprod (G (|carrier := H |)) f F" by blast
moreover have "finprod G f (insert x F) = f x ⊗ finprod G f F"
proof(intro finprod_insert[OF i(1, 2), of f])

show "f ∈ F → carrier G" "f x ∈ carrier G" using i(4) subgroup.subset[OF
i(5)] by blast+

qed
ultimately have "finprod G f (insert x F) = f x ⊗G(|carrier := H |) finprod

(G(|carrier := H |)) f F"
by auto

moreover have "finprod (G(|carrier := H |)) f (insert x F) = . . . "
proof(intro H.finprod_insert[OF i(1, 2)])

show "f ∈ F → carrier (G(|carrier := H |))" "f x ∈ carrier (G(|carrier
:= H |))" using i(4) by auto

qed
ultimately show ?case by simp

qed
next

case False
then show ?thesis unfolding finprod_def by simp

qed

lemma (in comm_group) finprod_closed_subgroup:
assumes "subgroup H G" "f ∈ A → H"
shows "finprod G f A ∈ H"
using assms(2)

proof (induct A rule: infinite_finite_induct)
case (infinite A)
then show ?case using subgroup.one_closed[OF assms(1)] by auto
next

case empty
then show ?case using subgroup.one_closed[OF assms(1)] by auto

next
case i: (insert x F)
from finprod_insert[OF i(1, 2), of f] i have fi: "finprod G f (insert

x F) = f x ⊗ finprod G f F"
using subgroup.subset[OF assms(1)] by blast

from i have "finprod G f F ∈ H" "f x ∈ H" by blast+
with fi show ?case using subgroup.m_closed[OF assms(1)] by presburger

36

qed

It also does not matter if we exponentiate all elements taking part in the
product or the result of the product.
lemma (in comm_group) finprod_exp:

assumes "A ⊆ carrier G" "f ∈ A → carrier G"
shows "(finprod G f A) [^] (k::int) = finprod G ((λa. a [^] k) ◦ f)

A"
using assms

proof(induction A rule: infinite_finite_induct)
case i: (insert x F)
hence ih: "finprod G f F [^] k = finprod G ((λa. a [^] k) ◦ f) F" by

blast
have fpc: "finprod G f F ∈ carrier G" by (intro finprod_closed, use

i in auto)
have fxc: "f x ∈ carrier G" using i by auto
have "finprod G f (insert x F) = f x ⊗ finprod G f F" by (intro finprod_insert,

use i in auto)
hence "finprod G f (insert x F) [^] k = (f x ⊗ finprod G f F) [^] k"

by simp
also have " . . . = f x [^] k ⊗ finprod G f F [^] k" using fpc fxc int_pow_distrib

by blast
also have " . . . = ((λa. a [^] k) ◦ f) x ⊗ finprod G ((λa. a [^] k) ◦

f) F" using ih by simp
also have " . . . = finprod G ((λa. a [^] k) ◦ f) (insert x F)"

by (intro finprod_insert[symmetric], use i in auto)
finally show ?case .

qed auto

Some lemmas concerning different combinations of functions in the usage of
finprod.
lemma (in comm_group) finprod_cong_split:

assumes "
∧

a. a ∈ A =⇒ f a ⊗ g a = h a"
and "f ∈ A → carrier G" "g ∈ A → carrier G" "h ∈ A → carrier G"
shows "finprod G h A = finprod G f A ⊗ finprod G g A" using assms

proof(induct A rule: infinite_finite_induct)
case (infinite A)
then show ?case by simp

next
case empty
then show ?case by simp

next
case i: (insert x F)
then have iH: "finprod G h F = finprod G f F ⊗ finprod G g F" by fast
have f: "finprod G f (insert x F) = f x ⊗ finprod G f F"

by (intro finprod_insert[OF i(1, 2), of f]; use i(5) in simp)
have g: "finprod G g (insert x F) = g x ⊗ finprod G g F"

by (intro finprod_insert[OF i(1, 2), of g]; use i(6) in simp)

37

have h: "finprod G h (insert x F) = h x ⊗ finprod G h F"
by (intro finprod_insert[OF i(1, 2), of h]; use i(7) in simp)

also have " . . . = h x ⊗ (finprod G f F ⊗ finprod G g F)" using iH by
argo

also have " . . . = f x ⊗ g x ⊗ (finprod G f F ⊗ finprod G g F)" us-
ing i(4) by simp

also have " . . . = f x ⊗ finprod G f F ⊗ (g x ⊗ finprod G g F)" us-
ing m_comm m_assoc i(5-7) by simp

also have " . . . = finprod G f (insert x F) ⊗ finprod G g (insert x F)"
using f g by argo

finally show ?case .
qed

lemma (in comm_group) finprod_comp:
assumes "inj_on g A" "(f ◦ g) ‘ A ⊆ carrier G"
shows "finprod G f (g ‘ A) = finprod G (f ◦ g) A"
using finprod_reindex[OF _ assms(1), of f] using assms(2) unfolding

comp_def by blast

The subgroup generated by a set of generators (in an abelian group) is
exactly the set of elements that can be written as a finite product using
only powers of these elements.
lemma (in comm_group) generate_eq_finprod_PiE_image:

assumes "finite gs" "gs ⊆ carrier G"
shows "generate G gs = (λx. finprod G x gs) ‘ PiE gs (λa. generate

G {a})" (is "?g = ?fp")
proof

show "?g ⊆ ?fp"
proof

fix x
assume x: "x ∈ ?g"
thus "x ∈ ?fp"
proof (induction rule: generate.induct)

case one
show ?case
proof

let ?r = "restrict (λ_. 1) gs"
show "?r ∈ (ΠE a∈gs. generate G {a})" using generate.one by

auto
show "1 = finprod G ?r gs" by(intro finprod_one_eqI[symmetric],

simp)
qed

next
case g: (incl g)
show ?case
proof

let ?r = "restrict ((λ_. 1)(g := g)) gs"
show "?r ∈ (ΠE a∈gs. generate G {a})" using generate.one generate.incl[of

g "{g}" G]

38

by fastforce
show "g = finprod G ?r gs"
proof -

have "finprod G ?r gs = ?r g ⊗ finprod G ?r (gs - {g})"
by (intro finprod_minus, use assms g in auto)

moreover have "?r g = g" using g by simp
moreover have "finprod G ?r (gs - {g}) = 1" by(rule finprod_one_eqI;

use g in simp)
ultimately show ?thesis using assms g by auto

qed
qed

next
case g: (inv g)
show ?case
proof

let ?r = "restrict ((λ_. 1)(g := inv g)) gs"
show "?r ∈ (ΠE a∈gs. generate G {a})" using generate.one generate.inv[of

g "{g}" G]
by fastforce

show "inv g = finprod G ?r gs"
proof -

have "finprod G ?r gs = ?r g ⊗ finprod G ?r (gs - {g})"
by (intro finprod_minus, use assms g in auto)

moreover have "?r g = inv g" using g by simp
moreover have "finprod G ?r (gs - {g}) = 1" by(rule finprod_one_eqI;

use g in simp)
ultimately show ?thesis using assms g by auto

qed
qed

next
case gh: (eng g h)
from gh obtain i where i: "i ∈ (ΠE a∈gs. generate G {a})" "g

= finprod G i gs" by blast
from gh obtain j where j: "j ∈ (ΠE a∈gs. generate G {a})" "h

= finprod G j gs" by blast
from i j have "g ⊗ h = finprod G i gs ⊗ finprod G j gs" by blast
also have " . . . = finprod G (λa. i a ⊗ j a) gs"
proof(intro finprod_multf[symmetric]; rule)

fix x
assume x: "x ∈ gs"
have "i x ∈ generate G {x}" "j x ∈ generate G {x}"using i(1)

j(1) x by blast+
thus "i x ∈ carrier G" "j x ∈ carrier G" using generate_incl[of

"{x}"] x assms(2) by blast+
qed
also have " . . . = finprod G (restrict (λa. i a ⊗ j a) gs) gs"
proof(intro finprod_cong)

have ip: "i g ∈ generate G {g}" if "g ∈ gs" for g using i that
by auto

39

have jp: "j g ∈ generate G {g}" if "g ∈ gs" for g using j that
by auto

have "i g ⊗ j g ∈ generate G {g}" if "g ∈ gs" for g
using generate.eng[OF ip[OF that] jp[OF that]] .

thus "((λa. i a ⊗ j a) ∈ gs → carrier G) = True" using generate_incl
assms(2) by blast

qed auto
finally have "g ⊗ h = finprod G (restrict (λa. i a ⊗ j a) gs) gs"

.
moreover have "(restrict (λa. i a ⊗ j a) gs) ∈ (ΠE a∈gs. generate

G {a})"
proof -

have ip: "i g ∈ generate G {g}" if "g ∈ gs" for g using i that
by auto

have jp: "j g ∈ generate G {g}" if "g ∈ gs" for g using j that
by auto

have "i g ⊗ j g ∈ generate G {g}" if "g ∈ gs" for g
using generate.eng[OF ip[OF that] jp[OF that]] .

thus ?thesis by auto
qed
ultimately show ?case using i j by blast

qed
qed
show "?fp ⊆ ?g"
proof

fix x
assume x: "x ∈ ?fp"
then obtain f where f: "f ∈ (PiE gs (λa. generate G {a}))" "x =

finprod G f gs" by blast
have sg: "subgroup ?g G" by(intro generate_is_subgroup, fact)
have "finprod G f gs ∈ ?g"
proof(intro finprod_closed_subgroup[OF sg])

have "f g ∈ generate G gs" if "g ∈ gs" for g
proof -

have "f g ∈ generate G {g}" using f(1) that by auto
moreover have "generate G {g} ⊆ generate G gs" by(intro mono_generate,

use that in simp)
ultimately show ?thesis by fast

qed
thus "f ∈ gs → generate G gs" by simp

qed
thus "x ∈ ?g" using f by blast

qed
qed

lemma (in comm_group) generate_eq_finprod_Pi_image:
assumes "finite gs" "gs ⊆ carrier G"
shows "generate G gs = (λx. finprod G x gs) ‘ Pi gs (λa. generate G

{a})" (is "?g = ?fp")

40

proof -
have "(λx. finprod G x gs) ‘ PiE gs (λa. generate G {a})

= (λx. finprod G x gs) ‘ Pi gs (λa. generate G {a})"
proof

have "PiE gs (λa. generate G {a}) ⊆ Pi gs (λa. generate G {a})" by
blast

thus "(λx. finprod G x gs) ‘ PiE gs (λa. generate G {a})
⊆ (λx. finprod G x gs) ‘ Pi gs (λa. generate G {a})" by blast

show "(λx. finprod G x gs) ‘ Pi gs (λa. generate G {a})
⊆ (λx. finprod G x gs) ‘ PiE gs (λa. generate G {a})"

proof
fix x
assume x: "x ∈ (λx. finprod G x gs) ‘ Pi gs (λa. generate G {a})"
then obtain f where f: "x = finprod G f gs" "f ∈ Pi gs (λa. generate

G {a})" by blast
moreover have "finprod G f gs = finprod G (restrict f gs) gs"
proof(intro finprod_cong)

have "f g ∈ carrier G" if "g ∈ gs" for g
using that f(2) mono_generate[of "{g}" gs] generate_incl[OF

assms(2)] by fast
thus "(f ∈ gs → carrier G) = True" by blast

qed auto
moreover have "restrict f gs ∈ PiE gs (λa. generate G {a})" us-

ing f(2) by simp
ultimately show "x ∈ (λx. finprod G x gs) ‘ PiE gs (λa. generate

G {a})" by blast
qed

qed
with generate_eq_finprod_PiE_image[OF assms] show ?thesis by auto

qed

lemma (in comm_group) generate_eq_finprod_Pi_int_image:
assumes "finite gs" "gs ⊆ carrier G"
shows "generate G gs = (λx. finprod G (λg. g [^] x g) gs) ‘ Pi gs (λ_.

(UNIV::int set))"
proof -

from generate_eq_finprod_Pi_image[OF assms]
have "generate G gs = (λx. finprod G x gs) ‘ (Π a∈gs. generate G {a})"

.
also have " . . . = (λx. finprod G (λg. g [^] x g) gs) ‘ Pi gs (λ_. (UNIV::int

set))"
proof(rule; rule)

fix x
assume x: "x ∈ (λx. finprod G x gs) ‘ (Π a∈gs. generate G {a})"
then obtain f where f: "f ∈ (Π a∈gs. generate G {a})" "x = finprod

G f gs" by blast
hence "∃ k::int. f a = a [^] k" if "a ∈ gs" for a using generate_pow[of

a] that assms(2) by blast
hence "∃ (h::’a ⇒ int). ∀ a∈gs. f a = a [^] h a" by meson

41

then obtain h where h: "∀ a∈gs. f a = a [^] h a" "h ∈ gs → (UNIV
:: int set)" by auto

have "finprod G (λg. g [^] h g) gs = finprod G f gs"
by (intro finprod_cong, use int_pow_closed h assms(2) in auto)

with f have "x = finprod G (λg. g [^] h g) gs" by argo
with h(2) show "x ∈ (λx. finprod G (λg. g [^] x g) gs) ‘ (gs →

(UNIV::int set))" by auto
next

fix x
assume x: "x ∈ (λx. finprod G (λg. g [^] x g) gs) ‘ (gs → (UNIV::int

set))"
then obtain h where h: "x = finprod G (λg. g [^] h g) gs" "h ∈ gs

→ (UNIV :: int set)" by blast
hence "∃ k∈generate G {a}. a [^] h a = k" if "a ∈ gs" for a

using generate_pow[of a] that assms(2) by blast
then obtain f where f: "∀ a∈gs. a [^] h a = f a" "f ∈ (Π a∈gs.

generate G {a})" by fast
have "finprod G f gs = finprod G (λg. g [^] h g) gs"
proof(intro finprod_cong)

have "f a ∈ carrier G" if "a ∈ gs" for a
using generate_incl[of "{a}"] assms(2) that f(2) by fast

thus "(f ∈ gs → carrier G) = True" by blast
qed (use f in auto)
with h have "x = finprod G f gs" by argo
with f(2) show "x ∈ (λx. finprod G x gs) ‘ (Π a∈gs. generate G {a})"

by blast
qed
finally show ?thesis .

qed

lemma (in comm_group) IDirProds_eq_finprod_PiE:
assumes "finite I" "

∧
i. i ∈ I =⇒ subgroup (S i) G"

shows "IDirProds G S I = (λx. finprod G x I) ‘ (PiE I S)" (is "?DP
= ?fp")
proof

show "?fp ⊆ ?DP"
proof

fix x
assume x: "x ∈ ?fp"
then obtain f where f: "f ∈ (PiE I S)" "x = finprod G f I" by blast
have sDP: "subgroup ?DP G"

by (intro IDirProds_is_subgroup; use subgroup.subset[OF assms(2)]
in blast)

have "finprod G f I ∈ ?DP"
proof(intro finprod_closed_subgroup[OF sDP])

have "f i ∈ IDirProds G S I" if "i ∈ I" for i
proof

show "f i ∈ (S i)" using f(1) that by auto

42

show "(S i) ⊆ IDirProds G S I" by (intro IDirProds_incl[OF that])
qed
thus "f ∈ I → IDirProds G S I" by simp

qed
thus "x ∈ ?DP" using f by blast

qed
show "?DP ⊆ ?fp"
proof(unfold IDirProds_def; rule subsetI)

fix x
assume x: "x ∈ generate G (

⋃
(S ‘ I))"

thus "x ∈ ?fp" using assms
proof (induction rule: generate.induct)

case one
define g where g: "g = (λx. if x ∈ I then 1 else undefined)"
then have "g ∈ PiE I S"

using subgroup.one_closed[OF one(2)] by auto
moreover have "finprod G g I = 1" by (intro finprod_one_eqI; use

g in simp)
ultimately show ?case unfolding image_def by (auto; metis)

next
case i: (incl h)
from i obtain j where j: "j ∈ I" "h ∈ (S j)" by blast
define hf where "hf = (λx. (if x ∈ I then 1 else undefined))(j

:= h)"
with j have "hf ∈ PiE I S"

using subgroup.one_closed[OF i(3)] by force
moreover have "finprod G hf I = h"
proof -

have "finprod G hf I = hf j ⊗ finprod G hf (I - {j})"
by (intro finprod_minus, use assms hf_def subgroup.subset[OF

i(3)[OF j(1)]] j in auto)
moreover have "hf j = h" using hf_def by simp
moreover have "finprod G hf (I - {j}) = 1" by (rule finprod_one_eqI;

use hf_def in simp)
ultimately show ?thesis using subgroup.subset[OF i(3)[OF j(1)]]

j(2) by auto
qed
ultimately show ?case unfolding image_def by (auto; metis)

next
case i: (inv h)
from i obtain j where j: "j ∈ I" "h ∈ (S j)" by blast
have ih: "inv h ∈ (S j)" using subgroup.m_inv_closed[OF i(3)[OF

j(1)] j(2)] .
define hf where "hf = (λx. (if x ∈ I then 1 else undefined))(j

:= inv h)"
with j ih have "hf ∈ PiE I S"

using subgroup.one_closed[OF i(3)] by force
moreover have "finprod G hf I = inv h"
proof -

43

have "finprod G hf I = hf j ⊗ finprod G hf (I - {j})"
by (intro finprod_minus, use assms hf_def subgroup.subset[OF

i(3)[OF j(1)]] j in auto)
moreover have "hf j = inv h" using hf_def by simp
moreover have "finprod G hf (I - {j}) = 1" by (rule finprod_one_eqI;

use hf_def in simp)
ultimately show ?thesis using subgroup.subset[OF i(3)[OF j(1)]]

j(2) by auto
qed
ultimately show ?case unfolding image_def by (auto; metis)

next
case e: (eng a b)
from e obtain f where f: "f ∈ PiE I S" "a = finprod G f I" by

blast
from e obtain g where g: "g ∈ PiE I S" "b = finprod G g I" by

blast
from f g have "a ⊗ b = finprod G f I ⊗ finprod G g I" by blast
also have " . . . = finprod G (λa. f a ⊗ g a) I"
proof(intro finprod_multf[symmetric])

have "
⋃

(S ‘ I) ⊆ carrier G" using subgroup.subset[OF e(6)] by
blast

thus "f ∈ I → carrier G" "g ∈ I → carrier G"
using f(1) g(1) unfolding PiE_def Pi_def by auto

qed
also have " . . . = finprod G (restrict (λa. f a ⊗ g a) I) I"
proof(intro finprod_cong)

show "I = I" by simp
show "

∧
i. i ∈ I =simp=> f i ⊗ g i = (λa∈I. f a ⊗ g a) i" by

simp
have fp: "f i ∈ (S i)" if "i ∈ I" for i using f that by auto
have gp: "g i ∈ (S i)" if "i ∈ I" for i using g that by auto
have "f i ⊗ g i ∈ (S i)" if "i ∈ I" for i

using subgroup.m_closed[OF e(6)[OF that] fp[OF that] gp[OF that]]
.

thus "((λa. f a ⊗ g a) ∈ I → carrier G) = True" using subgroup.subset[OF
e(6)] by auto

qed
finally have "a ⊗ b = finprod G (restrict (λa. f a ⊗ g a) I) I"

.
moreover have "(restrict (λa. f a ⊗ g a) I) ∈ PiE I S"
proof -

have fp: "f i ∈ (S i)" if "i ∈ I" for i using f that by auto
have gp: "g i ∈ (S i)" if "i ∈ I" for i using g that by auto
have "f i ⊗ g i ∈ (S i)" if "i ∈ I" for i

using subgroup.m_closed[OF e(6)[OF that] fp[OF that] gp[OF that]]
.

thus ?thesis by auto
qed
ultimately show ?case using f g by blast

44

qed
qed

qed

lemma (in comm_group) IDirProds_eq_finprod_Pi:
assumes "finite I" "

∧
i. i ∈ I =⇒ subgroup (S i) G"

shows "IDirProds G S I = (λx. finprod G x I) ‘ (Pi I S)" (is "?DP =
?fp")
proof -

have "(λx. finprod G x I) ‘ (Pi I S) = (λx. finprod G x I) ‘ (PiE I
S)"

proof
have "PiE I S ⊆ Pi I S" by blast
thus "(λx. finprod G x I) ‘ PiE I S ⊆ (λx. finprod G x I) ‘ Pi I

S" by blast
show "(λx. finprod G x I) ‘ Pi I S ⊆ (λx. finprod G x I) ‘ PiE I

S"
proof

fix x
assume x: "x ∈ (λx. finprod G x I) ‘ Pi I S"
then obtain f where f: "x = finprod G f I" "f ∈ Pi I S" by blast
moreover have "finprod G f I = finprod G (restrict f I) I"

by (intro finprod_cong; use f(2) subgroup.subset[OF assms(2)]
in fastforce)

moreover have "restrict f I ∈ PiE I S" using f(2) by simp
ultimately show "x ∈ (λx. finprod G x I) ‘ PiE I S" by blast

qed
qed
with IDirProds_eq_finprod_PiE[OF assms] show ?thesis by auto

qed

If we switch one element from a set of generators, the generated set stays
the same if both elements can be generated from the others together with
the switched element respectively.
lemma (in comm_group) generate_one_switched_exp_eqI:

assumes "A ⊆ carrier G" "a ∈ A" "B = (A - {a}) ∪ {b}"
and "f ∈ A → (UNIV::int set)" "g ∈ B → (UNIV::int set)"
and "a = finprod G (λx. x [^] g x) B" "b = finprod G (λx. x [^] f x)

A"
shows "generate G A = generate G B"

proof(intro generate_one_switched_eqI[OF assms(1, 2, 3)]; cases "finite
A")

case True
hence fB: "finite B" using assms(3) by blast
have cB: "B ⊆ carrier G"
proof -

have "b ∈ carrier G"
by (subst assms(7), intro finprod_closed, use assms(1, 4) int_pow_closed

in fast)

45

thus ?thesis using assms(1, 3) by blast
qed
show "a ∈ generate G B"
proof(subst generate_eq_finprod_Pi_image[OF fB cB], rule)

show "a = finprod G (λx. x [^] g x) B" by fact
have "x [^] g x ∈ generate G {x}" if "x ∈ B" for x using generate_pow[of

x] cB that by blast
thus "(λx. x [^] g x) ∈ (Π a∈B. generate G {a})" unfolding Pi_def

by blast
qed
show "b ∈ generate G A"
proof(subst generate_eq_finprod_Pi_image[OF True assms(1)], rule)

show "b = finprod G (λx. x [^] f x) A" by fact
have "x [^] f x ∈ generate G {x}" if "x ∈ A" for x

using generate_pow[of x] assms(1) that by blast
thus "(λx. x [^] f x) ∈ (Π a∈A. generate G {a})" unfolding Pi_def

by blast
qed

next
case False
hence b: "b = 1" using assms(7) unfolding finprod_def by simp
from False assms(3) have "infinite B" by simp
hence a: "a = 1" using assms(6) unfolding finprod_def by simp
show "a ∈ generate G B" using generate.one a by blast
show "b ∈ generate G A" using generate.one b by blast

qed

We can characterize a complementary family of subgroups when the only
way to form the neutral element as a product of picked elements from each
subgroup is to pick the neutral element from each subgroup.
lemma (in comm_group) compl_fam_imp_triv_finprod:

assumes "compl_fam S I" "finite I" "
∧

i. i ∈ I =⇒ subgroup (S i) G"
and "finprod G f I = 1" "f ∈ Pi I S"
shows "∀ i∈I. f i = 1"

proof (rule ccontr; clarify)
from assms(5) have f: "f i ∈ (S i)" if "i ∈ I" for i using that by

fastforce
fix i
assume i: "i ∈ I"
have si: "subgroup (S i) G" using assms(3)[OF i] .
consider (triv) "(S i) = {1}" | (not_triv) "(S i) 6= {1}" by blast
thus "f i = 1"
proof (cases)

case triv
then show ?thesis using f[OF i] by blast

next
case not_triv
show ?thesis
proof (rule ccontr)

46

have fc: "f i ∈ carrier G" using f[OF i] subgroup.subset[OF si]
by blast

assume no: "f i 6= 1"
have fH: "f i ∈ (S i)" using f[OF i] .
from subgroup.m_inv_closed[OF si this] have ifi: "inv (f i) ∈ (S

i)" .
moreover have "inv (f i) 6= 1" using no fc by simp
moreover have "inv (f i) = finprod G f (I - {i})"
proof -

have "1 = finprod G f I" using assms(4) by simp
also have " . . . = finprod G f (insert i (I - {i}))"
proof -

have "I = insert i (I - {i})" using i by fast
thus ?thesis by simp

qed
also have " . . . = f i ⊗ finprod G f (I - {i})"
proof(intro finprod_insert)

show "finite (I - {i})" using assms(2) by blast
show "i /∈ I - {i}" by blast
show "f ∈ I - {i} → carrier G" using assms(3) f subgroup.subset

by blast
show "f i ∈ carrier G" by fact

qed
finally have o: "1 = f i ⊗ finprod G f (I - {i})" .
show ?thesis
proof(intro inv_equality)

show "f i ∈ carrier G" by fact
show "finprod G f (I - {i}) ∈ carrier G"

by (intro finprod_closed; use assms(3) f subgroup.subset in
blast)

from m_comm[OF this fc] o show "finprod G f (I - {i}) ⊗ f
i = 1" by simp

qed
qed
moreover have "finprod G f (I - {i}) ∈ IDirProds G S (I - {i})"
proof (intro finprod_closed_subgroup IDirProds_is_subgroup)

show "
⋃

(S ‘ (I - {i})) ⊆ carrier G" using assms(3) subgroup.subset
by auto

have "f j ∈ (IDirProds G S (I - {i}))" if "j ∈ (I - {i})" for
j

using IDirProds_incl[OF that] f that by blast
thus "f ∈ I - {i} → IDirProds G S (I - {i})" by blast

qed
ultimately have "¬complementary (S i) (IDirProds G S (I - {i}))"

unfolding complementary_def by auto
thus False using assms(1) i unfolding compl_fam_def by blast

qed
qed

qed

47

lemma (in comm_group) triv_finprod_imp_compl_fam:
assumes "finite I" "

∧
i. i ∈ I =⇒ subgroup (S i) G"

and "∀ f ∈ Pi I S. finprod G f I = 1 −→ (∀ i∈I. f i = 1)"
shows "compl_fam S I"

proof (unfold compl_fam_def; rule)
fix k
assume k: "k ∈ I"
let ?DP = "IDirProds G S (I - {k})"
show "complementary (S k) ?DP"
proof (rule ccontr; unfold complementary_def)

have sk: "subgroup (S k) G" using assms(2)[OF k] .
have sDP: "subgroup ?DP G"

by (intro IDirProds_is_subgroup; use subgroup.subset[OF assms(2)]
in blast)

assume a: "(S k) ∩ IDirProds G S (I - {k}) 6= {1}"
then obtain x where x: "x ∈ (S k)" "x ∈ IDirProds G S (I - {k})"

"x 6= 1"
using subgroup.one_closed sk sDP by blast

then have "x ∈ (λx. finprod G x (I - {k})) ‘ (Pi (I - {k}) S)"
using IDirProds_eq_finprod_Pi[of "(I - {k})"] assms(1, 2) by blast

then obtain ht where ht: "finprod G ht (I - {k}) = x" "ht ∈ Pi (I
- {k}) S" by blast

define h where h: "h = (ht(k := inv x))"
then have hPi: "h ∈ Pi I S" using ht subgroup.m_inv_closed[OF assms(2)[OF

k] x(1)] by auto
have "finprod G h (I - {k}) = x"
proof (subst ht(1)[symmetric], intro finprod_cong)

show "I - {k} = I - {k}" by simp
show "(h ∈ I - {k} → carrier G) = True" using h ht(2) subgroup.subset[OF

assms(2)]
unfolding Pi_def id_def by auto

show "
∧

i. i ∈ I - {k} =simp=> h i = ht i" using ht(2) h by simp
qed
moreover have "finprod G h I = h k ⊗ finprod G h (I - {k})"

by (intro finprod_minus; use k assms hPi subgroup.subset[OF assms(2)]
Pi_def in blast)

ultimately have "finprod G h I = inv x ⊗ x" using h by simp
then have "finprod G h I = 1" using subgroup.subset[OF sk] x(1) by

auto
moreover have "h k 6= 1" using h x(3) subgroup.subset[OF sk] x(1)

by force
ultimately show False using assms(3) k hPi by blast

qed
qed

lemma (in comm_group) triv_finprod_iff_compl_fam_Pi:
assumes "finite I" "

∧
i. i ∈ I =⇒ subgroup (S i) G"

shows "compl_fam S I ←→ (∀ f ∈ Pi I S. finprod G f I = 1 −→ (∀ i∈I.

48

f i = 1))"
using compl_fam_imp_triv_finprod triv_finprod_imp_compl_fam assms by

blast

lemma (in comm_group) triv_finprod_iff_compl_fam_PiE:
assumes "finite I" "

∧
i. i ∈ I =⇒ subgroup (S i) G"

shows "compl_fam S I ←→ (∀ f ∈ PiE I S. finprod G f I = 1 −→ (∀ i∈I.
f i = 1))"
proof

show "compl_fam S I =⇒ ∀ f∈PiE I S. finprod G f I = 1 −→ (∀ i∈I.
f i = 1)"

using triv_finprod_iff_compl_fam_Pi[OF assms] by auto
have "∀ f∈PiE I S. finprod G f I = 1 −→ (∀ i∈I. f i = 1)

=⇒ ∀ f∈Pi I S. finprod G f I = 1 −→ (∀ i∈I. f i = 1)"
proof(rule+)

fix f i
assume f: "f ∈ Pi I S" "finprod G f I = 1" and i: "i ∈ I"
assume allf: "∀ f∈PiE I S. finprod G f I = 1 −→ (∀ i∈I. f i = 1)"
have "f i = restrict f I i" using i by simp
moreover have "finprod G (restrict f I) I = finprod G f I"

using f subgroup.subset[OF assms(2)] unfolding Pi_def by (intro
finprod_cong; auto)

moreover have "restrict f I ∈ PiE I S" using f by simp
ultimately show "f i = 1" using allf f i by metis

qed
thus "∀ f∈PiE I S. finprod G f I = 1 −→ (∀ i∈I. f i = 1) =⇒ compl_fam

S I"
using triv_finprod_iff_compl_fam_Pi[OF assms] by presburger

qed

The finite product also distributes when nested.
lemma (in comm_monoid) finprod_Sigma:

assumes "finite A" "
∧

x. x ∈ A =⇒ finite (B x)"
assumes "

∧
x y. x ∈ A =⇒ y ∈ B x =⇒ g x y ∈ carrier G"

shows "(
⊗

x∈A.
⊗

y∈B x. g x y) = (
⊗

z∈Sigma A B. case z of (x,
y) ⇒ g x y)"

using assms
proof (induction A rule: finite_induct)

case (insert x A)
have "(

⊗
z∈Sigma (insert x A) B. case z of (x, y) ⇒ g x y) =

(
⊗

z∈Pair x ‘ B x. case z of (x, y) ⇒ g x y) ⊗ (
⊗

z∈Sigma
A B. case z of (x, y) ⇒ g x y)"

unfolding Sigma_insert using insert.prems insert.hyps
by (subst finprod_Un_disjoint) auto

also have "(
⊗

z∈Sigma A B. case z of (x, y) ⇒ g x y) = (
⊗

x∈A.
⊗

y∈B
x. g x y)"

using insert.prems insert.hyps by (subst insert.IH [symmetric]) auto
also have "(

⊗
z∈Pair x ‘ B x. case z of (x, y) ⇒ g x y) = (

⊗
y∈B

x. g x y)"

49

using insert.prems insert.hyps by (subst finprod_reindex) (auto intro:
inj_onI)

finally show ?case
using insert.hyps insert.prems by simp

qed auto

With the now proven facts, we are able to provide criterias to inductively
construct a group that is the internal direct product of a set of generators.
lemma (in comm_group) idirprod_generate_ind:

assumes "finite gs" "gs ⊆ carrier G" "g ∈ carrier G"
"is_idirprod (generate G gs) (λg. generate G {g}) gs"
"complementary (generate G {g}) (generate G gs)"

shows "is_idirprod (generate G (gs ∪ {g})) (λg. generate G {g}) (gs
∪ {g})"
proof(cases "g ∈ gs")

case True
hence "gs = (gs ∪ {g})" by blast
thus ?thesis using assms(4) by auto

next
case gngs: False
show ?thesis
proof (intro is_idirprod_subgroup_suffices)

have gsgc: "gs ∪ {g} ⊆ carrier G" using assms(2, 3) by blast
thus "generate G (gs ∪ {g}) = IDirProds G (λg. generate G {g}) (gs

∪ {g})"
unfolding IDirProds_def using generate_idem_Un by presburger

show "∀ i∈gs ∪ {g}. subgroup (generate G {i}) G" using generate_is_subgroup
gsgc by auto

have sg: "subgroup (generate G {g}) G" by (intro generate_is_subgroup,
use assms(3) in blast)

from assms(4) is_idirprod_def have ih: "∀ x. x ∈ gs −→ generate
G {x} C G"

"compl_fam (λg. generate G
{g}) gs"

by fastforce+
hence ca: "complementary (generate G {a}) (generate G (gs - {a}))"

if "a ∈ gs" for a
unfolding compl_fam_def IDirProds_def
using gsgc generate_idem_Un[of "gs - {a}"] that by fastforce

have aux: "gs ∪ {g} - {i} ⊆ carrier G" for i using gsgc by blast
show "compl_fam (λg. generate G {g}) (gs ∪ {g})"
proof(unfold compl_fam_def IDirProds_def, subst generate_idem_Un[OF

aux],
rule, rule ccontr)

fix h
assume h: "h ∈ gs ∪ {g}"
assume c: "¬ complementary (generate G {h}) (generate G (gs ∪

{g} - {h}))"
show "False"

50

proof (cases "h = g")
case True
with c have "¬ complementary (generate G {g}) (generate G (gs

- {g}))" by auto
moreover have "complementary (generate G {g}) (generate G (gs

- {g}))"
by (rule subgroup_subset_complementary[OF generate_is_subgroup

generate_is_subgroup[of gs]
generate_is_subgroup mono_generate], use assms(2, 3,

5) in auto)
ultimately show False by blast

next
case hng: False
hence h: "h ∈ gs" "h 6= g" using h by blast+
hence "gs ∪ {g} - {h} = gs - {h} ∪ {g}" by blast
with c have c: "¬ complementary (generate G {h}) (generate G

(gs - {h} ∪ {g}))" by argo
then obtain k where k: "k ∈ generate G {h}" "k ∈ generate G

(gs - {h} ∪ {g})" "k 6= 1"
unfolding complementary_def using generate.one by blast

with ca have kngh: "k /∈ generate G (gs - {h})" using h unfold-
ing complementary_def by blast

from k(2) generate_eq_finprod_PiE_image[of "gs - {h} ∪ {g}"]
assms(1) gsgc

obtain f where f:
"k = finprod G f (gs - {h} ∪ {g})" "f ∈ (ΠE a∈gs - {h} ∪ {g}.

generate G {a})"
by blast

have fg: "f a ∈ generate G {a}" if "a ∈ (gs - {h} ∪ {g})" for
a using that f(2) by blast

have fc: "f a ∈ carrier G" if "a ∈ (gs - {h} ∪ {g})" for a
proof -

have "generate G {a} ⊆ carrier G" if "a ∈ (gs - {h} ∪ {g})"
for a

using that generate_incl[of "{a}"] gsgc by blast
thus "f a ∈ carrier G" using that fg by auto

qed
have kp: "k = f g ⊗ finprod G f (gs - {h})"
proof -

have "(gs - {h} ∪ {g}) = insert g (gs - {h})" by fast
moreover have "finprod G f (insert g (gs - {h})) = f g ⊗ finprod

G f (gs - {h})"
by (intro finprod_insert, use fc assms(1) gngs in auto)

ultimately show ?thesis using f(1) by argo
qed
have fgsh: "finprod G f (gs - {h}) ∈ generate G (gs - {h})"
proof(intro finprod_closed_subgroup[OF generate_is_subgroup])

show "gs - {h} ⊆ carrier G" using gsgc by blast
have "f a ∈ generate G (gs - {h})" if "a ∈ (gs - {h})" for

51

a
using mono_generate[of "{a}" "gs - {h}"] fg that by blast

thus "f ∈ gs - {h} → generate G (gs - {h})" by blast
qed
have "f g ⊗ finprod G f (gs - {h}) /∈ generate G gs"
proof

assume fpgs: "f g ⊗ finprod G f (gs - {h}) ∈ generate G gs"
from fgsh have fgsgs: "finprod G f (gs - {h}) ∈ generate G

gs"
using mono_generate[of "gs - {h}" gs] by blast

have fPi: "f ∈ (Π a∈(gs - {h}). generate G {a})" using f by
blast

have gI: "generate G (gs - {h})
= (λx. finprod G x (gs - {h})) ‘ (Π a∈gs - {h}. generate

G {a})"
using generate_eq_finprod_Pi_image[of "gs - {h}"] assms(1,

2) by blast
have fgno: "f g 6= 1"
proof (rule ccontr)

assume o: "¬ f g 6= 1"
hence kf: "k = finprod G f (gs - {h})" using kp finprod_closed

fc by auto
hence "k ∈ generate G (gs - {h})" using fPi gI by blast
thus False using k ca h unfolding complementary_def by blast

qed
from fpgs have "f g ∈ generate G gs"

using subgroup.mult_in_cancel_right[OF generate_is_subgroup[OF
assms(2)] fc[of g] fgsgs]

by blast
with fgno assms(5) fg[of g] show "False" unfolding complementary_def

by blast
qed
moreover have "k ∈ generate G gs" using k(1) mono_generate[of

"{h}" gs] h(1) by blast
ultimately show False using kp by blast

qed
qed

qed
qed

end

7 Group Homomorphisms
theory Group_Hom

imports Set_Multiplication
begin

This section extends the already existing library about group homomor-

52

phisms in HOL-Algebra by some useful lemmas. These were mainly inspired
by the needs that arised throughout the other proofs.
lemma (in group_hom) generate_hom:

assumes "A ⊆ carrier G"
shows "h ‘ (generate G A) = generate H (h ‘ A)"
using assms group_hom.generate_img group_hom_axioms by blast

For two elements with the same image we can find an element in the kernel
that maps one of the two elements on the other by multiplication.
lemma (in group_hom) kernel_assoc_elem:

assumes "x ∈ carrier G" "y ∈ carrier G" "h x = h y"
obtains z where "x = y ⊗G z" "z ∈ kernel G H h"

proof -
have c: "inv y ⊗G x ∈ carrier G" using assms by simp
then have e: "x = y ⊗G (inv y ⊗G x)" using assms G.m_assoc

using G.inv_solve_left by blast
then have "h x = h (y ⊗G (inv y ⊗G x))" by simp
then have "h x = h y ⊗H h (inv y ⊗G x)" using c assms by simp
then have "1H = h (inv y ⊗G x)" using assms by simp
then have "(inv y ⊗G x) ∈ kernel G H h" unfolding kernel_def using

c by simp
thus ?thesis using e that by blast

qed

This can then be used to characterize the pre-image of a set A under homo-
morphism as a product of A itself with the kernel of the homomorphism.
lemma (in group_hom) vimage_eq_set_mult_kern_right:

assumes "A ⊆ carrier G"
shows "{x ∈ carrier G. h x ∈ h ‘ A} = A <#> kernel G H h"

proof(intro equalityI subsetI)
fix x
assume assm: "x ∈ A <#> kernel G H h"
then have xc: "x ∈ carrier G" unfolding kernel_def set_mult_def us-

ing assms by blast
from assm obtain a b where ab: "a ∈ A" "b ∈ kernel G H h" "x = a

⊗G b"
unfolding set_mult_def by blast

then have abc: "a ∈ carrier G" "b ∈ carrier G" unfolding kernel_def
using assms by auto

from ab have "h x = h (a ⊗G b)" by blast
also have " . . . = h a ⊗H h b" using abc by simp
also have " . . . = h a ⊗H 1H" using ab(2) unfolding kernel_def by simp
also have " . . . = h a" using abc by simp
also have " . . . ∈ h ‘ A" using ab by blast
finally have "h x ∈ h ‘ A" .
thus "x ∈ {x ∈ carrier G. h x ∈ h ‘ A}" using xc by blast

next
fix x

53

assume "x ∈ {x ∈ carrier G. h x ∈ h ‘ A}"
then have x: "x ∈ carrier G" "h x ∈ h ‘ A" by simp+
then obtain y where y: "y ∈ A" "h x = h y" "y ∈ carrier G" using assms

by auto
with kernel_assoc_elem obtain z where "x = y ⊗G z" "z ∈ kernel G

H h" using x by metis
thus "x ∈ A <#> kernel G H h" unfolding set_mult_def using y by blast

qed

lemma (in group_hom) vimage_subset_generate_kern:
assumes "A ⊆ carrier G"
shows "{x ∈ carrier G. h x ∈ h ‘ A} ⊆ generate G (A ∪ kernel G H h)"
using vimage_eq_set_mult_kern_right[of A] G.set_mult_subset_generate[of

"A" "kernel G H h"] assms
unfolding kernel_def by blast

The preimage of a subgroup under a homomorphism is also a subgroup.
lemma (in group_hom) subgroup_vimage_is_subgroup:

assumes "subgroup I H"
shows "subgroup {x ∈ carrier G. h x ∈ I} G" (is "subgroup ?J G")

proof
show "?J ⊆ carrier G" by blast
show "1 ∈ ?J" using subgroup.one_closed[of I H] assms by simp
fix x
assume x: "x ∈ ?J"
then have hx: "h x ∈ I" by blast
show "inv x ∈ ?J"
proof -

from hx have "invH (h x) ∈ I" using subgroup.m_inv_closed assms
by fast

moreover have "inv x ∈ carrier G" using x by simp
moreover have "invH (h x) = h (inv x)" using x by auto
ultimately show "inv x ∈ ?J" by simp

qed
fix y
assume y: "y ∈ ?J"
then have hy: "h y ∈ I" by blast
show "x ⊗ y ∈ {x ∈ carrier G. h x ∈ I}"
proof -

have "h (x ⊗ y) = h x ⊗H h y" using x y by simp
also have " . . . ∈ I" using hx hy assms subgroup.m_closed by fast
finally have "h (x ⊗ y) ∈ I" .
moreover have "x ⊗ y ∈ carrier G" using x y by simp
ultimately show ?thesis by blast

qed
qed

lemma (in group_hom) iso_kernel:
assumes "h ∈ iso G H"

54

shows "kernel G H h = {1G}"
unfolding kernel_def using assms
using hom_one iso_iff by blast

lemma (in group_hom) induced_group_hom_same_group:
assumes "subgroup I G"
shows "group_hom (G (| carrier := I |)) H h"

proof -
have "h ∈ hom (G (| carrier := I |)) H"

using homh subgroup.mem_carrier[OF assms] unfolding hom_def by auto
thus ?thesis

unfolding group_hom_def group_hom_axioms_def
using subgroup.subgroup_is_group[OF assms G.is_group] by simp

qed

The order of an element under a homomorphism divides the order of the
element.
lemma (in group_hom) hom_ord_dvd_ord:

assumes "a ∈ carrier G"
shows "H.ord (h a) dvd G.ord a"

proof -
have "h a [^]H (G.ord a) = h (a [^]G G.ord a)"

using assms local.hom_nat_pow by presburger
also have " . . . = h (1G)" using G.pow_ord_eq_1 assms by simp
also have " . . . = 1H" by simp
finally have "h a [^]H G.ord a = 1H" .
then show ?thesis using pow_eq_id assms by simp

qed

In particular, this implies that the image of an element with a finite order
also will have a finite order.
lemma (in group_hom) finite_ord_stays_finite:

assumes "a ∈ carrier G" "G.ord a 6= 0"
shows "H.ord (h a) 6= 0"
using hom_ord_dvd_ord assms by fastforce

For injective homomorphisms, the order stays the same.
lemma (in group_hom) inj_imp_ord_eq:

assumes "a ∈ carrier G" "inj_on h (carrier G)" "G.ord a 6= 0"
shows "H.ord (h a) = G.ord a"

proof (rule antisym)
show "H.ord (h a) ≤ G.ord a" using hom_ord_dvd_ord assms by force
show "G.ord a ≤ H.ord (h a)"
proof -

have "1H = h (a [^]G H.ord(h a))" using H.pow_ord_eq_1 assms
by (simp add: local.hom_nat_pow)

then have "a [^]G H.ord (h a) = 1G" using assms inj_on_one_iff by
simp

55

then have "G.ord a dvd H.ord (h a)" using G.pow_eq_id assms(1) by
blast

thus ?thesis using assms finite_ord_stays_finite by fastforce
qed

qed

lemma (in group_hom) one_in_kernel:
"1 ∈ kernel G H h"
using subgroup.one_closed subgroup_kernel by blast

lemma hom_in_carr:
assumes "f ∈ hom G H"
shows "

∧
x. x ∈ carrier G =⇒ f x ∈ carrier H"

using assms unfolding hom_def bij_betw_def by blast

lemma iso_in_carr:
assumes "f ∈ iso G H"
shows "

∧
x. x ∈ carrier G =⇒ f x ∈ carrier H"

using assms unfolding iso_def bij_betw_def by blast

lemma triv_iso:
assumes "group G" "group H" "carrier G = {1G}" "carrier H = {1H}"
shows "G ∼= H"

proof(unfold is_iso_def iso_def)
interpret G: group G by fact
interpret H: group H by fact
let ?f = "λ_. 1H"
have "?f ∈ hom G H" by (intro homI, auto)
moreover have "bij_betw ?f (carrier G) (carrier H)" unfolding bij_betw_def

using assms(3, 4) by auto
ultimately show "{h ∈ hom G H. bij_betw h (carrier G) (carrier H)}

6= {}" by blast
qed

The cardinality of the image of a group homomorphism times the cardinality
of its kernel is equal to the group order. This is basically another form of
Lagrange’s theorem.
lemma (in group_hom) image_kernel_product: "card (h ‘ (carrier G)) *
card (kernel G H h) = order G"
proof -

interpret G: group G by simp
interpret H: group H by simp
interpret ih: subgroup "h ‘ (carrier G)" H using img_is_subgroup by

blast
interpret ih: group "H(|carrier := h ‘ (carrier G)|)" using subgroup.subgroup_is_group

by blast
interpret h: group_hom G "H(|carrier := h ‘ (carrier G)|)"

by (unfold_locales, unfold hom_def, auto)
interpret k: subgroup "kernel G (H (|carrier := h ‘ carrier G |)) h" G us-

56

ing h.subgroup_kernel by blast
from h.FactGroup_iso
have "G Mod kernel G (H(|carrier := h ‘ carrier G |)) h ∼= H(|carrier :=

h ‘ carrier G |)" by auto
hence "card (h ‘ (carrier G)) = order (G Mod kernel G (H (|carrier :=

h ‘ carrier G |)) h)"
using iso_same_card unfolding order_def by fastforce

moreover have "order (G Mod kernel G (H(|carrier := h ‘ carrier G |))
h)

* card (kernel G (H(|carrier := h ‘ carrier G |)) h) = order
G"

using G.lagrange[OF k.subgroup_axioms] unfolding order_def FactGroup_def
by force

moreover have "kernel G (H(|carrier := h ‘ carrier G |)) h = kernel G
H h"

unfolding kernel_def by auto
ultimately show ?thesis by argo

qed

end

8 Finite and cyclic groups
theory Finite_And_Cyclic_Groups

imports Group_Hom Generated_Groups_Extend General_Auxiliary
begin

8.1 Finite groups

We define the notion of finite groups and prove some trivial facts about
them.
locale finite_group = group +

assumes fin[simp]: "finite (carrier G)"

lemma (in finite_group) ord_pos:
assumes "x ∈ carrier G"
shows "ord x > 0"
using ord_ge_1[of x] assms by auto

lemma (in finite_group) order_gt_0 [simp,intro]: "order G > 0"
by (subst order_gt_0_iff_finite) auto

lemma (in finite_group) finite_ord_conv_Least:
assumes "x ∈ carrier G"
shows "ord x = (LEAST n::nat. 0 < n ∧ x [^] n = 1)"
using pow_order_eq_1 order_gt_0_iff_finite ord_conv_Least assms by auto

57

lemma (in finite_group) non_trivial_group_ord_gr_1:
assumes "carrier G 6= {1}"
shows "∃ e ∈ carrier G. ord e > 1"

proof -
from one_closed obtain e where e: "e 6= 1" "e ∈ carrier G" using assms

carrier_not_empty by blast
thus ?thesis using ord_eq_1[of e] le_neq_implies_less ord_ge_1 by fastforce

qed

lemma (in finite_group) max_order_elem:
obtains a where "a ∈ carrier G" "∀ x ∈ carrier G. ord x ≤ ord a"

proof -
have "∃ x. x ∈ carrier G ∧ (∀ y. y ∈ carrier G −→ ord y ≤ ord x)"
proof (rule ex_has_greatest_nat[of _ 1 _ "order G + 1"], safe)

show "1 ∈ carrier G"
by auto

next
fix x assume "x ∈ carrier G"
hence "ord x ≤ order G"

by (intro ord_le_group_order fin)
also have " . . . < order G + 1"

by simp
finally show "ord x < order G + 1" .

qed
thus ?thesis using that by blast

qed

lemma (in finite_group) iso_imp_finite:
assumes "G ∼= H" "group H"
shows "finite_group H"

proof -
interpret H: group H by fact
show ?thesis
proof(unfold_locales)

show "finite (carrier H)" using iso_same_card[OF assms(1)]
by (metis card_gt_0_iff order_def order_gt_0)

qed
qed

lemma (in finite_group) finite_FactGroup:
assumes "H C G"
shows "finite_group (G Mod H)"

proof -
interpret H: normal H G by fact
interpret Mod: group "G Mod H" using H.factorgroup_is_group .
show ?thesis

by (unfold_locales, unfold FactGroup_def RCOSETS_def, simp)
qed

58

lemma (in finite_group) bigger_subgroup_is_group:
assumes "subgroup H G" "card H ≥ order G"
shows "H = carrier G"
using subgroup.subset fin assms by (metis card_seteq order_def)

All generated subgroups of a finite group are obviously also finite.
lemma (in finite_group) finite_generate:

assumes "A ⊆ carrier G"
shows "finite (generate G A)"
using generate_incl[of A] rev_finite_subset[of "carrier G" "generate

G A"] assms by simp

We also provide an induction rule for finite groups inspired by Manuel
Eberl’s AFP entry "Dirichlet L-Functions and Dirichlet’s Theorem" and the
contained theory "Group_Adjoin". A property that is true for a subgroup
generated by some set and stays true when adjoining an element, is also true
for the whole group.
lemma (in finite_group) generate_induct[consumes 1, case_names base adjoin]:

assumes "A0 ⊆ carrier G"
assumes "A0 ⊆ carrier G =⇒ P (G(|carrier := generate G A0|))"
assumes "

∧
a A. [[A ⊆ carrier G; a ∈ carrier G - generate G A; A0 ⊆

A;
P (G(|carrier := generate G A |))]] =⇒ P (G(|carrier := generate

G (A ∪ {a})|))"
shows "P G"

proof -
define A where A: "A = carrier G"
hence gA: "generate G A = carrier G"

using generate_incl[of "carrier G"] generate_sincl[of "carrier G"]
by simp

hence "finite A" using fin A by argo
moreover have "A0 ⊆ A" using assms(1) A by argo
moreover have "A ⊆ carrier G" using A by simp
moreover have "generate G A0 ⊆ generate G A" using gA generate_incl[OF

assms(1)] by argo
ultimately have "P (G(|carrier := generate G A |))" using assms(2, 3)
proof (induction "A" taking: card rule: measure_induct_rule)

case (less A)
then show ?case
proof(cases "generate G A0 = generate G A")

case True
thus ?thesis using less by force

next
case gA0: False
with less(3) have s: "A0 ⊂ A" by blast
then obtain a where a: "a ∈ A - A0" by blast
have P1: "P (G(|carrier := generate G (A - {a})|))"
proof(rule less(1))

59

show "card (A - {a}) < card A" using a less(2) by (meson DiffD1
card_Diff1_less)

show "A0 ⊆ A - {a}" using a s by blast
thus "generate G A0 ⊆ generate G (A - {a})" using mono_generate

by presburger
qed (use less a s in auto)
show ?thesis
proof (cases "generate G A = generate G (A - {a})")

case True
then show ?thesis using P1 by simp

next
case False
have "a ∈ carrier G - generate G (A - {a})"
proof -

have "a /∈ generate G (A - {a})"
proof

assume a2: "a ∈ generate G (A - {a})"
have "generate G (A - {a}) = generate G A"
proof (rule equalityI)

show "generate G (A - {a}) ⊆ generate G A" using mono_generate
by auto

show "generate G A ⊆ generate G (A - {a})"
proof(subst (2) generate_idem[symmetric])

show "generate G A ⊆ generate G (generate G (A - {a}))"
by (intro mono_generate, use generate_sincl[of "A -

{a}"] a2 in blast)
qed (use less in auto)

qed
with False show False by argo

qed
with a less show ?thesis by fast

qed
from less(7)[OF _ this _ P1] less(4) s a have "P (G(|carrier :=

generate G (A - {a} ∪ {a})|))"
by blast

moreover have "A - {a} ∪ {a} = A" using a by blast
ultimately show ?thesis by auto

qed
qed

qed
with gA show ?thesis by simp

qed

8.2 Finite abelian groups

Another trivial locale: the finite abelian group with some trivial facts.
locale finite_comm_group = finite_group + comm_group

lemma (in finite_comm_group) iso_imp_finite_comm:

60

assumes "G ∼= H" "group H"
shows "finite_comm_group H"

proof -
interpret H: group H by fact
interpret H: comm_group H by (intro iso_imp_comm_group[OF assms(1)],

unfold_locales)
interpret H: finite_group H by (intro iso_imp_finite[OF assms(1)], unfold_locales)
show ?thesis by unfold_locales

qed

lemma (in finite_comm_group) finite_comm_FactGroup:
assumes "subgroup H G"
shows "finite_comm_group (G Mod H)"
unfolding finite_comm_group_def

proof(safe)
show "finite_group (G Mod H)" using finite_FactGroup[OF subgroup_imp_normal[OF

assms]] .
show "comm_group (G Mod H)" by (simp add: abelian_FactGroup assms)

qed

lemma (in finite_comm_group) subgroup_imp_finite_comm_group:
assumes "subgroup H G"
shows "finite_comm_group (G(|carrier := H |))"

proof -
interpret G’: group "G(|carrier := H |)" by (intro subgroup_imp_group)

fact+
interpret H: subgroup H G by fact
show ?thesis by standard (use finite_subset[OF H.subset] in ‹auto simp:

m_comm›)
qed

8.3 Cyclic groups

Now, the central notion of a cyclic group is introduced: a group generated
by a single element.
locale cyclic_group = group +

fixes gen :: "’a"
assumes gen_closed[intro, simp]: "gen ∈ carrier G"
assumes generator: "carrier G = generate G {gen}"

lemma (in cyclic_group) elem_is_gen_pow:
assumes "x ∈ carrier G"
shows "∃ n :: int. x = gen [^] n"

proof -
from generator have x_g:"x ∈ generate G {gen}" using assms by fast
with generate_pow[of gen] show ?thesis using gen_closed by blast

qed

61

Every cyclic group is commutative/abelian.
sublocale cyclic_group ⊆ comm_group
proof(unfold_locales)

fix x y
assume "x ∈ carrier G" "y ∈ carrier G"
then obtain a b where ab:"x = gen [^] (a::int)" "y = gen [^] (b::int)"

using elem_is_gen_pow by presburger
then have "x ⊗ y = gen [^] (a + b)" by (simp add: int_pow_mult)
also have " . . . = y ⊗ x" using ab int_pow_mult

by (metis add.commute gen_closed)
finally show "x ⊗ y = y ⊗ x" .

qed

Some trivial intro rules for showing that a group is cyclic.
lemma (in group) cyclic_groupI0:

assumes "a ∈ carrier G" "carrier G = generate G {a}"
shows "cyclic_group G a"
using assms by (unfold_locales; auto)

lemma (in group) cyclic_groupI1:
assumes "a ∈ carrier G" "carrier G ⊆ generate G {a}"
shows "cyclic_group G a"
using assms by (unfold_locales, use generate_incl[of "{a}"] in auto)

lemma (in group) cyclic_groupI2:
assumes "a ∈ carrier G"
shows "cyclic_group (G (|carrier := generate G {a}|)) a"

proof (intro group.cyclic_groupI0)
show "group (G(|carrier := generate G {a}|))"

by (intro subgroup.subgroup_is_group group.generate_is_subgroup, use
assms in simp_all)

show "a ∈ carrier (G(|carrier := generate G {a}|))" using generate.incl[of
a "{a}"] by auto

show "carrier (G(|carrier := generate G {a}|)) = generate (G(|carrier
:= generate G {a}|)) {a}"

using assms
by (simp add: generate_consistent generate.incl group.generate_is_subgroup)

qed

The order of the generating element is always the same as the group order.
lemma (in cyclic_group) ord_gen_is_group_order:

shows "ord gen = order G"
proof (cases "finite (carrier G)")

case True
with generator show "ord gen = order G"

using generate_pow_card[of gen] order_def[of G] gen_closed by simp
next

case False
thus ?thesis

62

using generate_pow_card generator order_def[of G] card_eq_0_iff[of
"carrier G"] by force
qed

In the case of a finite group, it is sufficient to have one element of group
order to know that the group is cyclic.
lemma (in finite_group) element_ord_generates_cyclic:

assumes "a ∈ carrier G" "ord a = order G"
shows "cyclic_group G a"

proof (unfold_locales)
show "a ∈ carrier G" using assms(1) by simp
show "carrier G = generate G {a}"

using assms bigger_subgroup_is_group[OF generate_is_subgroup]
by (metis empty_subsetI fin generate_pow_card insert_subset ord_le_group_order)

qed

Another useful fact is that a group of prime order is also cyclic.
lemma (in group) prime_order_group_is_cyc:

assumes "Factorial_Ring.prime (order G)"
obtains g where "cyclic_group G g"

proof (unfold_locales)
obtain p where order_p: "order G = p" and p_prime: "Factorial_Ring.prime

p" using assms by blast
then have "card (carrier G) ≥ 2" by (simp add: order_def prime_ge_2_nat)
then obtain a where a_in: "a ∈ carrier G" and a_not_one: "a 6= 1"

using one_unique
by (metis (no_types, lifting) card_2_iff’ obtain_subset_with_card_n

subset_iff)
interpret fin: finite_group G

using assms order_gt_0_iff_finite unfolding order_def by unfold_locales
auto

have "ord a dvd p" using a_in order_p ord_dvd_group_order by blast
hence "ord a = p" using prime_nat_iff[of p] p_prime ord_eq_1 a_in a_not_one

by blast
then interpret cyclic_group G a

using fin.element_ord_generates_cyclic order_p a_in by simp
show ?thesis using that cyclic_group_axioms .

qed

What follows is an induction principle for cyclic groups: a predicate is true
for all elements of the group if it is true for all elements that can be formed
by the generating element by just multiplication and if it also holds under
the forming of the inverse (as we by this cover all elements of the group),
lemma (in cyclic_group) generator_induct [consumes 1, case_names generate
inv]:

assumes x: "x ∈ carrier G"
assumes IH1: "

∧
n::nat. P (gen [^] n)"

assumes IH2: "
∧

x. x ∈ carrier G =⇒ P x =⇒ P (inv x)"

63

shows "P x"
proof -

from x obtain n :: int where n: "x = gen [^] n"
using elem_is_gen_pow[of x] by auto

show ?thesis
proof (cases "n ≥ 0")

case True
have "P (gen [^] nat n)"

by (rule IH1)
with True n show ?thesis by simp

next
case False
have "P (inv (gen [^] nat (-n)))"

by (intro IH1 IH2) auto
also have "gen [^] nat (-n) = gen [^] (-n)"

using False by simp
also have "inv . . . = x"

using n by (simp add: int_pow_neg)
finally show ?thesis .

qed
qed

8.4 Finite cyclic groups

Additionally, the notion of the finite cyclic group is introduced.
locale finite_cyclic_group = finite_group + cyclic_group

sublocale finite_cyclic_group ⊆ finite_comm_group
by unfold_locales

lemma (in finite_cyclic_group) ord_gen_gt_zero:
"ord gen > 0"
using ord_ge_1[OF fin gen_closed] by simp

In order to prove something about an element in a finite abelian group, it
is possible to show this property for the neutral element or the generating
element and inductively for the elements that are formed by multiplying
with the generator.
lemma (in finite_cyclic_group) generator_induct0 [consumes 1, case_names
one step]:

assumes x: "x ∈ carrier G"
assumes IH1: "P 1"
assumes IH2: "

∧
x. [[x ∈ carrier G; P x]] =⇒ P (x ⊗ gen)"

shows "P x"
proof -

from ord_gen_gt_zero generate_nat_pow[OF _ gen_closed] obtain n::nat
where n: "x = gen [^] n"

using generator x by blast

64

thus ?thesis by (induction n arbitrary: x, use assms in auto)
qed

lemma (in finite_cyclic_group) generator_induct1 [consumes 1, case_names
gen step]:

assumes x: "x ∈ carrier G"
assumes IH1: "P gen"
assumes IH2: "

∧
x. [[x ∈ carrier G; P x]] =⇒ P (x ⊗ gen)"

shows "P x"
proof(rule generator_induct0[OF x])

show "
∧

x. [[x ∈ carrier G; P x]] =⇒ P (x ⊗ gen)" using IH2 by blast
have "P x" if "n > 0" "x = gen [^] n" for n::nat and x using that

by (induction n arbitrary: x; use assms in fastforce)
from this[OF ord_pos[OF gen_closed] pow_ord_eq_1[OF gen_closed, symmetric]]

show "P 1" .
qed

8.5 get_exp - discrete logarithm

What now follows is the discrete logarithm for groups. It is used at several
times througout this entry and is initially used to show that two cyclic
groups of the same order are isomorphic.
definition (in group) get_exp where

"get_exp g = (λa. SOME k::int. a = g [^] k)"

For each element with itself as the basis the discrete logarithm indeed does
what expected. This is not the strongest possible statement, but sufficient
for our needs.
lemma (in group) get_exp_self_fulfills:

assumes "a ∈ carrier G"
shows "a = a [^] get_exp a a"

proof -
have "a = a [^] (1::int)" using assms by auto
moreover have "a [^] (1::int) = a [^] (SOME x::int. a [^] (1::int)

= a [^] x)"
by (intro someI_ex[of "λx::int. a [^] (1::int) = a [^] x"]; blast)

ultimately show ?thesis unfolding get_exp_def by simp
qed

lemma (in group) get_exp_self:
assumes "a ∈ carrier G"
shows "get_exp a a mod ord a = (1::int) mod ord a"
by (intro pow_eq_int_mod[OF assms], use get_exp_self_fulfills[OF assms]

assms in auto)

For cyclic groups, the discrete logarithm "works" for every element.
lemma (in cyclic_group) get_exp_fulfills:

assumes "a ∈ carrier G"

65

shows "a = gen [^] get_exp gen a"
proof -

from elem_is_gen_pow[OF assms] obtain k::int where k: "a = gen [^]
k" by blast

moreover have "gen [^] k = gen [^] (SOME x::int. gen [^] k = gen [^]
x)"

by(intro someI_ex[of "λx::int. gen [^] k = gen [^] x"]; blast)
ultimately show ?thesis unfolding get_exp_def by blast

qed

lemma (in cyclic_group) get_exp_non_zero:
assumes"b ∈ carrier G" "b 6= 1"
shows "get_exp gen b 6= 0"
using assms get_exp_fulfills[OF assms(1)] by auto

One well-known logarithmic identity.
lemma (in cyclic_group) get_exp_mult_mod:

assumes "a ∈ carrier G" "b ∈ carrier G"
shows "get_exp gen (a ⊗ b) mod (ord gen) = (get_exp gen a + get_exp

gen b) mod (ord gen)"
proof (intro pow_eq_int_mod[OF gen_closed])

from get_exp_fulfills[of "a ⊗ b"] have "gen [^] get_exp gen (a ⊗ b)
= a ⊗ b" using assms by simp

moreover have "gen [^] (get_exp gen a + get_exp gen b) = a ⊗ b"
proof -

have "gen [^] (get_exp gen a + get_exp gen b) = gen [^] (get_exp gen
a) ⊗ gen [^] (get_exp gen b)"

using int_pow_mult by blast
with get_exp_fulfills assms show ?thesis by simp

qed
ultimately show "gen [^] get_exp gen (a ⊗ b) = gen [^] (get_exp gen

a + get_exp gen b)" by simp
qed

We now show that all functions from a group generated by ’a’ to a group
generated by ’b’ that map elements from ak to bk in the other group are in
fact isomorphisms between these two groups.
lemma (in group) iso_cyclic_groups_generate:

assumes "a ∈ carrier G" "b ∈ carrier H" "group.ord G a = group.ord
H b" "group H"

shows "{f. ∀ k ∈ (UNIV::int set). f (a [^] k) = b [^]H k}
⊆ iso (G(|carrier := generate G {a}|)) (H(|carrier := generate

H {b}|))"
proof

interpret H: group H by fact
let ?A = "G(|carrier := generate G {a}|)"
let ?B = "H(|carrier := generate H {b}|)"
interpret A: cyclic_group ?A a by (intro group.cyclic_groupI2; use assms(1)

in simp)

66

interpret B: cyclic_group ?B b by (intro group.cyclic_groupI2; use assms(2)
in simp)

have sA: "subgroup (generate G {a}) G" by (intro generate_is_subgroup,
use assms(1) in simp)

have sB: "subgroup (generate H {b}) H" by (intro H.generate_is_subgroup,
use assms(2) in simp)

fix x
assume x: "x ∈ {f. ∀ k∈(UNIV::int set). f (a [^] k) = b [^]H k}"
have hom: "x ∈ hom ?A ?B"
proof (intro homI)

fix c
assume c: "c ∈ carrier ?A"
from A.elem_is_gen_pow[OF this] obtain k::int where k: "c = a [^]

k"
using int_pow_consistent[OF sA generate.incl[of a]] by auto

with x have "x c = b [^]H k" by blast
thus "x c ∈ carrier ?B"

using B.int_pow_closed H.int_pow_consistent[OF sB] generate.incl[of
b "{b}" H] by simp

fix d
assume d: "d ∈ carrier ?A"
from A.elem_is_gen_pow[OF this] obtain l::int where l: "d = a [^]

l"
using int_pow_consistent[OF sA generate.incl[of a]] by auto

with k have "c ⊗ d = a [^] (k + l)" by (simp add: int_pow_mult assms(1))
with x have "x (c ⊗?A d) = b [^]H (k + l)" by simp
also have " . . . = b [^]H k ⊗H b [^]H l" by (simp add: H.int_pow_mult

assms(2))
finally show "x (c ⊗?A d) = x c ⊗?B x d" using x k l by simp

qed
then interpret xgh: group_hom ?A ?B x unfolding group_hom_def group_hom_axioms_def

by blast
have "kernel ?A ?B x = {1}"
proof(intro equalityI)

show "{1} ⊆ kernel ?A ?B x" using xgh.one_in_kernel by auto
have "c = 1" if "c ∈ kernel ?A ?B x" for c
proof -

from that have c: "c ∈ carrier ?A" unfolding kernel_def by blast
from A.elem_is_gen_pow[OF this] obtain k::int where k: "c = a [^]

k"
using int_pow_consistent[OF sA generate.incl[of a]] by auto

moreover have "x c = 1H" using that x unfolding kernel_def by
auto

ultimately have "1H = b [^]H k" using x by simp
with assms(3) have "a [^] k = 1"

using int_pow_eq_id[OF assms(1), of k] H.int_pow_eq_id[OF assms(2),
of k] by simp

thus "c = 1" using k by blast
qed

67

thus "kernel ?A ?B x ⊆ {1}" by blast
qed
moreover have "carrier ?B ⊆ x ‘ carrier ?A"
proof

fix c
assume c: "c ∈ carrier ?B"
from B.elem_is_gen_pow[OF this] obtain k::int where k: "c = b [^]H

k"
using H.int_pow_consistent[OF sB generate.incl[of b]] by auto

then have "x (a [^] k) = c" using x by blast
moreover have "a [^] k ∈ carrier ?A"

using int_pow_consistent[OF sA generate.incl[of a]] A.int_pow_closed
generate.incl[of a]

by fastforce
ultimately show "c ∈ x ‘ carrier ?A" by blast

qed
ultimately show "x ∈ iso ?A ?B" using hom xgh.iso_iff unfolding kernel_def

by auto
qed

This is then used to derive the isomorphism of two cyclic groups of the same
order as a direct consequence.
lemma (in cyclic_group) iso_cyclic_groups_same_order:

assumes "cyclic_group H h" "order G = order H"
shows "G ∼= H"

proof(intro is_isoI)
interpret H: cyclic_group H h by fact
define f where "f = (λa. h [^]H get_exp gen a)"
from assms(2) have o: "ord gen = H.ord h" using ord_gen_is_group_order

H.ord_gen_is_group_order
by simp

have "∀ k ∈ (UNIV::int set). f (gen [^] k) = h [^]H k"
proof

fix k
assume k: "k ∈ (UNIV::int set)"
have "gen [^] k = gen [^] (SOME x::int. gen [^] k = gen [^] x)"

by(intro someI_ex[of "λx::int. gen [^] k = gen [^] x"]; blast)
moreover have "(SOME x::int. gen [^] k = gen [^] x) = (SOME x::int.

h [^]H k = h [^]H x)"
proof -

have "gen [^] k = gen [^] x ←→ h [^]H k = h [^]H x" for x::int
by (simp add: o group.int_pow_eq)

thus ?thesis by simp
qed
moreover have "h [^]H k = h [^]H (SOME x::int. h [^]H k = h [^]H

x)"
by(intro someI_ex[of "λx::int. h [^]H k = h [^]H x"]; blast)

ultimately show "f (gen [^] k) = h [^]H k" unfolding f_def get_exp_def
by metis

68

qed
thus "f ∈ iso G H"

using iso_cyclic_groups_generate[OF gen_closed H.gen_closed o H.is_group]
by (auto simp flip: generator H.generator)

qed

8.6 Integer modular groups

We show that integer_mod_group (written as Z n) is in fact a cyclic group.
For n 6= 1 it is generated by 1 and in the other case by 0.
notation integer_mod_group (‹Z›)

lemma Zn_neq1_cyclic_group:
assumes "n 6= 1"
shows "cyclic_group (Z n) 1"

proof(unfold cyclic_group_def cyclic_group_axioms_def, safe)
show "group (Z n)" using group_integer_mod_group .
then interpret group "Z n" .
show oc: "1 ∈ carrier (Z n)"

unfolding integer_mod_group_def integer_group_def using assms by
force

show "x ∈ generate (Z n) {1}" if "x ∈ carrier (Z n)" for x
using generate_pow[OF oc] that int_pow_integer_mod_group solve_equation

subgroup_self
by fastforce

show "x ∈ carrier (Z n)" if "x ∈ generate (Z n) {1}" for x using generate_incl[of
"{1}"] that oc

by fast
qed

lemma Z1_cyclic_group: "cyclic_group (Z 1) 0"
proof(unfold cyclic_group_def cyclic_group_axioms_def, safe)

show "group (Z 1)" using group_integer_mod_group .
then interpret group "Z 1" .
show "0 ∈ carrier (Z 1)" unfolding integer_mod_group_def by simp
thus "x ∈ carrier (Z 1)" if "x ∈ generate (Z 1) {0}" for x using generate_incl[of

"{0}"] that
by fast

show "x ∈ generate (Z 1) {0}" if "x ∈ carrier (Z 1)" for x
proof -

from that have "x = 0" unfolding integer_mod_group_def by auto
with generate.one[of "Z 1" "{0}"] show "x ∈ generate (Z 1) {0}" un-

folding integer_mod_group_def
by simp

qed
qed

lemma Zn_cyclic_group:
obtains x where "cyclic_group (Z n) x"

69

using Z1_cyclic_group Zn_neq1_cyclic_group by metis

Moreover, its order is just n.
lemma Zn_order: "order (Z n) = n"

by (unfold integer_mod_group_def integer_group_def order_def, auto)

Consequently, Z n is isomorphic to any cyclic group of order n.
lemma (in cyclic_group) Zn_iso:

assumes "order G = n"
shows "G ∼= Z n"
using Zn_order Zn_cyclic_group iso_cyclic_groups_same_order assms by

metis

no_notation integer_mod_group (‹Z›)
end

9 Direct group product
theory DirProds

imports Finite_Product_Extend Group_Hom Finite_And_Cyclic_Groups
begin

notation integer_mod_group (‹Z›)

The direct group product is defined component-wise and provided in an
indexed way.
definition DirProds :: "(’a ⇒ (’b, ’c) monoid_scheme) ⇒ ’a set ⇒ (’a
⇒ ’b) monoid" where

"DirProds G I = (| carrier = PiE I (carrier ◦ G),
monoid.mult = (λx y. restrict (λi. x i ⊗G i y i) I),
one = restrict (λi. 1G i) I |)"

Basic lemmas about DirProds.
lemma DirProds_empty:

"carrier (DirProds f {}) = {1DirProds f {}}"
unfolding DirProds_def by auto

lemma DirProds_order:
assumes "finite I"
shows "order (DirProds G I) = prod (order ◦ G) I"
unfolding order_def DirProds_def using assms by (simp add: card_PiE)

lemma DirProds_in_carrI:
assumes "

∧
i. i ∈ I =⇒ x i ∈ carrier (G i)" "

∧
i. i /∈ I =⇒ x i =

undefined"
shows "x ∈ carrier (DirProds G I)"
unfolding DirProds_def using assms by auto

70

lemma comp_in_carr:
assumes "x ∈ carrier (DirProds G I)" "i ∈ I"
shows "x i ∈ carrier (G i)"
using assms unfolding DirProds_def by auto

lemma comp_mult:
assumes "i ∈ I"
shows "(x ⊗DirProds G I y) i = (x i ⊗G i y i)"
using assms unfolding DirProds_def by simp

lemma comp_exp_nat:
fixes k::nat
assumes "i ∈ I"
shows "(x [^]DirProds G I k) i = x i [^]G i k"

proof (induction k)
case 0
then show ?case using assms unfolding DirProds_def by simp

next
case i: (Suc k)
have "(x [^]DirProds G I k ⊗DirProds G I x) i = (x [^]DirProds G I k)

i ⊗G i x i"
by(rule comp_mult[OF assms])

also from i have " . . . = x i [^]G i k ⊗G i x i" by simp
also have " . . . = x i [^]G i Suc k" by simp
finally show ?case by simp

qed

lemma DirProds_m_closed:
assumes "x ∈ carrier (DirProds G I)" "y ∈ carrier (DirProds G I)"

"
∧

i. i ∈ I =⇒ group (G i)"
shows "x ⊗DirProds G I y ∈ carrier (DirProds G I)"
using assms monoid.m_closed[OF group.is_monoid[OF assms(3)]] unfold-

ing DirProds_def by fastforce

lemma partial_restr:
assumes "a ∈ carrier (DirProds G I)" "J ⊆ I"
shows "restrict a J ∈ carrier (DirProds G J)"
using assms unfolding DirProds_def by auto

lemma eq_parts_imp_eq:
assumes "a ∈ carrier (DirProds G I)" "b ∈ carrier (DirProds G I)"

"
∧

i. i ∈ I =⇒ a i = b i"
shows "a = b"
using assms unfolding DirProds_def by fastforce

lemma mult_restr:
assumes "a ∈ carrier (DirProds G I)" "b ∈ carrier (DirProds G I)"

"J ⊆ I"
shows "a ⊗DirProds G J b = restrict (a ⊗DirProds G I b) J"

71

using assms unfolding DirProds_def by force

lemma DirProds_one:
assumes "x ∈ carrier (DirProds G I)"
shows "(∀ i ∈ I. x i = 1G i) ←→ x = 1DirProds G I"
using assms unfolding DirProds_def by fastforce

lemma DirProds_one’:
"i∈I =⇒ 1DirProds G I i = 1G i"
unfolding DirProds_def by simp

lemma DirProds_one’’:
"1DirProds G I = restrict (λi. 1G i) I"
by (unfold DirProds_def, simp)

lemma DirProds_mult:
"(⊗DirProds G I) = (λx y. restrict (λi. x i ⊗G i y i) I)"
unfolding DirProds_def by simp

lemma DirProds_one_iso: "(λx. x G) ∈ iso (DirProds f {G}) (f G)"
proof (intro isoI homI)

show "bij_betw (λx. x G) (carrier (DirProds f {G})) (carrier (f G))"
proof (unfold bij_betw_def, rule)

show "inj_on (λx. x G) (carrier (DirProds f {G}))"
by (intro inj_onI, unfold DirProds_def PiE_def Pi_def extensional_def,

fastforce)
show "(λx. x G) ‘ carrier (DirProds f {G}) = carrier (f G)"
proof(intro equalityI subsetI)

show "x ∈ carrier (f G)" if "x ∈ (λx. x G) ‘ carrier (DirProds
f {G})" for x

using that unfolding DirProds_def by auto
show "x ∈ (λx. x G) ‘ carrier (DirProds f {G})" if xc: "x ∈ carrier

(f G)" for x
proof

show "(λk∈{G}. x) ∈ carrier (DirProds f {G})" unfolding DirProds_def
using xc by auto

moreover show "x = (λk∈{G}. x) G" by simp
qed

qed
qed

qed (unfold DirProds_def PiE_def Pi_def extensional_def, auto)

lemma DirProds_one_cong: "(DirProds f {G}) ∼= (f G)"
using DirProds_one_iso is_isoI by fast

lemma DirProds_one_iso_sym: "(λx. (λ_∈{G}. x)) ∈ iso (f G) (DirProds
f {G})"
proof (intro isoI homI)

show "bij_betw (λx. λ_∈{G}. x) (carrier (f G)) (carrier (DirProds f

72

{G}))"
proof (unfold bij_betw_def, rule)

show "inj_on (λx. (λ_∈{G}. x)) (carrier (f G))"
by (intro inj_onI, metis imageI image_constant image_restrict_eq

member_remove remove_def)
show "(λx. (λ_∈{G}. x)) ‘ carrier (f G) = carrier (DirProds f {G})"

unfolding DirProds_def by fastforce
qed

qed (unfold DirProds_def, auto)

lemma DirProds_one_cong_sym: "(f G) ∼= (DirProds f {G})"
using DirProds_one_iso_sym is_isoI by fast

The direct product is a group iff all factors are groups.
lemma DirProds_is_group:

assumes "
∧

i. i ∈ I =⇒ group (G i)"
shows "group (DirProds G I)"

proof(rule groupI)
show one_closed: "1DirProds G I ∈ carrier (DirProds G I)" unfolding

DirProds_def
by (simp add: assms group.is_monoid)

fix x
assume x: "x ∈ carrier (DirProds G I)"
have one_: "

∧
i. i ∈ I =⇒ 1G i = 1DirProds G I i" unfolding DirProds_def

by simp
have "

∧
i. i ∈ I =⇒ 1DirProds G I i ⊗G i x i = x i"

proof -
fix i
assume i: "i ∈ I"
interpret group "G i" using assms[OF i] .
have "x i ∈ carrier (G i)" using x i comp_in_carr by fast
thus "1DirProds G I i ⊗G i x i = x i" by(subst one_[OF i, symmetric];

simp)
qed
with one_ x show "1DirProds G I ⊗DirProds G I x = x" unfolding DirProds_def

by force
have "restrict (λi. invG i (x i)) I ∈ carrier (DirProds G I)" using

x group.inv_closed[OF assms]
unfolding DirProds_def by fastforce

moreover have "restrict (λi. invG i (x i)) I ⊗DirProds G I x = 1DirProds G I"
using x group.l_inv[OF assms] unfolding DirProds_def by fastforce

ultimately show "∃ y∈carrier (DirProds G I). y ⊗DirProds G I x = 1DirProds G I"
by blast

fix y
assume y: "y ∈ carrier (DirProds G I)"
from DirProds_m_closed[OF x y assms] show m_closed: "x ⊗DirProds G I

y ∈ carrier (DirProds G I)"
by blast

fix z

73

assume z: "z ∈ carrier (DirProds G I)"
have "

∧
i. i ∈ I =⇒ (x ⊗DirProds G I y ⊗DirProds G I z) i

= (x ⊗DirProds G I (y ⊗DirProds G I z)) i"
proof -

fix i
assume i: "i ∈ I"
have "(x ⊗DirProds G I y ⊗DirProds G I z) i = (x ⊗DirProds G I y) i

⊗G i z i"
using assms by (simp add: comp_mult i m_closed z)

also have " . . . = x i ⊗G i y i ⊗G i z i" by (simp add: assms comp_mult
i x y)

also have " . . . = x i ⊗G i (y i ⊗G i z i)" using i assms x y z
by (meson Group.group_def comp_in_carr monoid.m_assoc)

also have " . . . = (x ⊗DirProds G I (y ⊗DirProds G I z)) i" by (simp
add: DirProds_def i)

finally show "(x ⊗DirProds G I y ⊗DirProds G I z) i
= (x ⊗DirProds G I (y ⊗DirProds G I z)) i" .

qed
thus "x ⊗DirProds G I y ⊗DirProds G I z = x ⊗DirProds G I (y ⊗DirProds G I

z)"
unfolding DirProds_def by auto

qed

lemma DirProds_obtain_elem_carr:
assumes "group (DirProds G I)" "i ∈ I" "x ∈ carrier (G i)"
obtains k where "k ∈ carrier (DirProds G I)" "k i = x"

proof -
interpret DP: group "DirProds G I" by fact
from comp_in_carr[OF DP.one_closed] DirProds_one’ have ao: "∀ j∈I.

1G j ∈ carrier (G j)" by metis
let ?r = "restrict ((λj. 1G j)(i := x)) I"
have "?r ∈ carrier (DirProds G I)"

unfolding DirProds_def PiE_def Pi_def using assms(2, 3) ao by auto
moreover have "?r i = x" using assms(2) by simp
ultimately show "(

∧
k. [[k ∈ carrier (DirProds G I); k i = x]] =⇒ thesis)

=⇒ thesis" by blast
qed

lemma DirProds_group_imp_groups:
assumes "group (DirProds G I)" and i: "i ∈ I"
shows "group (G i)"

proof (intro groupI)
let ?DP = "DirProds G I"
interpret DP: group ?DP by fact
show "1G i ∈ carrier (G i)" using DirProds_one’ comp_in_carr[OF DP.one_closed

i] i by metis
show "x ⊗G i y ∈ carrier (G i)" if "x ∈ carrier (G i)" "y ∈ carrier

(G i)" for x y
proof -

74

from DirProds_obtain_elem_carr[OF assms that(1)] obtain k where k:
"k ∈ carrier ?DP" "k i = x" .

from DirProds_obtain_elem_carr[OF assms that(2)] obtain l where l:
"l ∈ carrier ?DP" "l i = y" .

have "k ⊗?DP l ∈ carrier ?DP" using k l by fast
from comp_in_carr[OF this i] comp_mult[OF i] show ?thesis using k

l by metis
qed
show "x ⊗G i y ⊗G i z = x ⊗G i (y ⊗G i z)"

if x: "x ∈ carrier (G i)" and y: "y ∈ carrier (G i)" and z: "z ∈
carrier (G i)" for x y z

proof -
from DirProds_obtain_elem_carr[OF assms x] obtain k where k: "k ∈

carrier ?DP" "k i = x" .
from DirProds_obtain_elem_carr[OF assms y] obtain l where l: "l ∈

carrier ?DP" "l i = y" .
from DirProds_obtain_elem_carr[OF assms z] obtain m where m: "m ∈

carrier ?DP" "m i = z" .
have "x ⊗G i y ⊗G i z = (k i) ⊗G i (l i) ⊗G i (m i)" using k l m

by argo
also have " . . . = (k ⊗?DP l ⊗?DP m) i" using comp_mult[OF i] k l m

by metis
also have " . . . = (k ⊗?DP (l ⊗?DP m)) i"
proof -

have "k ⊗?DP l ⊗?DP m = k ⊗?DP (l ⊗?DP m)" using DP.m_assoc[OF
k(1) l(1) m(1)] .

thus ?thesis by simp
qed
also have " . . . = (k i) ⊗G i ((l i) ⊗G i (m i))" using comp_mult[OF

i] k l m by metis
finally show ?thesis using k l m by blast

qed
show "1G i ⊗G i x = x" if "x ∈ carrier (G i)" for x
proof -

from DirProds_obtain_elem_carr[OF assms that(1)] obtain k where k:
"k ∈ carrier ?DP" "k i = x" .

hence "1?DP ⊗?DP k = k" by simp
with comp_mult k DirProds_one[OF DP.one_closed] that i show ?thesis

by metis
qed
show "∃ y∈carrier (G i). y ⊗G i x = 1G i" if "x ∈ carrier (G i)" for

x
proof -

from DirProds_obtain_elem_carr[OF assms that(1)] obtain k where k:
"k ∈ carrier ?DP" "k i = x" .

hence ic: "inv?DP k ∈ carrier ?DP" by simp
have "inv?DP k ⊗?DP k = 1?DP" using k by simp
hence "(inv?DP k) i ⊗G i k i= 1G i" using comp_mult[OF i] DirProds_one’[OF

i] by metis

75

with k(2) comp_in_carr[OF ic i] show ?thesis by blast
qed

qed

lemma DirProds_group_iff: "group (DirProds G I) ←→ (∀ i∈I. group (G
i))"

using DirProds_is_group DirProds_group_imp_groups by metis

lemma comp_inv:
assumes "group (DirProds G I)" and x: "x ∈ carrier (DirProds G I)"

and i: "i ∈ I"
shows "(inv(DirProds G I) x) i = inv(G i) (x i)"

proof -
interpret DP: group "DirProds G I" by fact
interpret Gi: group "G i" using DirProds_group_imp_groups[OF DP.is_group

i] .
have ixc: "inv(DirProds G I) x ∈ carrier (DirProds G I)" using x by

blast
hence "inv(DirProds G I) x ⊗DirProds G I x = 1DirProds G I" using x by

simp
hence "(inv(DirProds G I) x ⊗DirProds G I x) i = 1G i" by (simp add:

DirProds_one’ i)
moreover from comp_mult[OF i]
have "(inv(DirProds G I) x ⊗DirProds G I x) i = ((inv(DirProds G I) x)

i) ⊗G i (x i)"
by blast

ultimately show ?thesis using x ixc by (simp add: comp_in_carr[OF _
i] group.inv_equality)
qed

The same is true for abelian groups.
lemma DirProds_is_comm_group:

assumes "
∧

i. i ∈ I =⇒ comm_group (G i)"
shows "comm_group (DirProds G I)" (is "comm_group ?DP")

proof
interpret group ?DP using assms DirProds_is_group unfolding comm_group_def

by metis
show "carrier ?DP ⊆ Units ?DP" "1?DP ∈ carrier ?DP" by simp_all
fix x
assume x[simp]: "x ∈ carrier ?DP"
show "1?DP ⊗?DP x = x" "x ⊗?DP 1?DP = x" by simp_all
fix y
assume y[simp]: "y ∈ carrier ?DP"
show "x ⊗?DP y ∈ carrier ?DP" by simp
show "x ⊗DirProds G I y = y ⊗DirProds G I x"
proof (rule eq_parts_imp_eq[of _ G I])

show "x ⊗?DP y ∈ carrier ?DP" by simp
show "y ⊗?DP x ∈ carrier ?DP" by simp
show "

∧
i. i∈I =⇒ (x ⊗DirProds G I y) i = (y ⊗DirProds G I x) i"

76

proof -
fix i
assume i: "i ∈ I"
interpret gi: comm_group "(G i)" using assms(1)[OF i] .
have "(x ⊗?DP y) i = x i ⊗G i y i"

by (intro comp_mult[OF i])
also have " . . . = y i ⊗G i x i" using comp_in_carr[OF _ i] x y gi.m_comm

by metis
also have " . . . = (y ⊗?DP x) i" by (intro comp_mult[symmetric, OF

i])
finally show "(x ⊗DirProds G I y) i = (y ⊗DirProds G I x) i" .

qed
qed
fix z
assume z[simp]: "z ∈ carrier ?DP"
show "x ⊗?DP y ⊗?DP z = x ⊗?DP (y ⊗?DP z)" using m_assoc by simp

qed

lemma DirProds_comm_group_imp_comm_groups:
assumes "comm_group (DirProds G I)" and i: "i ∈ I"
shows "comm_group (G i)"

proof -
interpret DP: comm_group "DirProds G I" by fact
interpret Gi: group "G i" using DirProds_group_imp_groups[OF DP.is_group

i] .
show "comm_group (G i)"
proof

show "x ⊗G i y = y ⊗G i x" if x: "x ∈ carrier (G i)" and y: "y ∈
carrier (G i)" for x y

proof -
obtain a where a[simp]: "a ∈ carrier (DirProds G I)" "a i = x"

using DirProds_obtain_elem_carr[OF DP.is_group i x] .
obtain b where b[simp]: "b ∈ carrier (DirProds G I)" "b i = y"

using DirProds_obtain_elem_carr[OF DP.is_group i y] .
have "a ⊗DirProds G I b = b ⊗DirProds G I a" using DP.m_comm by

simp
hence "(a ⊗DirProds G I b) i = (b ⊗DirProds G I a) i" by argo
with comp_mult[OF i] have "a i ⊗G i b i = b i ⊗G i a i" by metis
with a b show "x ⊗G i y = y ⊗G i x" by blast

qed
qed

qed

lemma DirProds_comm_group_iff: "comm_group (DirProds G I) ←→ (∀ i∈I.
comm_group (G i))"

using DirProds_is_comm_group DirProds_comm_group_imp_comm_groups by
metis

And also for finite groups.

77

lemma DirProds_is_finite_group:
assumes "

∧
i. i∈I =⇒ finite_group (G i)" "finite I"

shows "finite_group (DirProds G I)"
proof -

have "group (G i)" if "i∈I" for i using assms(1)[OF that] unfolding
finite_group_def by blast

from DirProds_is_group[OF this] interpret DP: group "DirProds G I" by
fast

show ?thesis
proof(unfold_locales)

have "order (DirProds G I) 6= 0"
proof(unfold DirProds_order[OF assms(2)])

have "(order ◦ G) i 6= 0" if "i∈I" for i
using assms(1)[OF that] by (simp add: finite_group.order_gt_0)

thus "prod (order ◦ G) I 6= 0" by (simp add: assms(2))
qed
thus "finite (carrier (DirProds G I))" unfolding order_def by (meson

card.infinite)
qed

qed

lemma DirProds_finite_imp_finite_groups:
assumes "finite_group (DirProds G I)" "finite I"
shows "

∧
i. i∈I =⇒ finite_group (G i)"

proof -
fix i assume i: "i ∈ I"
interpret DP: finite_group "DirProds G I" by fact
interpret group "G i" by (rule DirProds_group_imp_groups[OF DP.is_group

i])
show "finite_group (G i)"
proof(unfold_locales)

have oDP: "order (DirProds G I) 6= 0" by blast
with DirProds_order[OF assms(2), of G] have "order (G i) 6= 0" us-

ing i assms(2) by force
thus "finite (carrier (G i))" unfolding order_def by (meson card_eq_0_iff)

qed
qed

lemma DirProds_finite_group_iff:
assumes "finite I"
shows "finite_group (DirProds G I) ←→ (∀ i∈I. finite_group (G i))"
using DirProds_is_finite_group DirProds_finite_imp_finite_groups assms

by metis

lemma DirProds_finite_comm_group_iff:
assumes "finite I"
shows "finite_comm_group (DirProds G I) ←→ (∀ i∈I. finite_comm_group

(G i))"
using DirProds_finite_group_iff[OF assms] DirProds_comm_group_iff un-

78

folding finite_comm_group_def by fast

If a group is an internal direct product of a family of subgroups, it is iso-
morphic to the direct product of these subgroups.
lemma (in comm_group) subgroup_iso_DirProds_IDirProds:

assumes "subgroup J G" "is_idirprod J S I" "finite I"
shows "(λx.

⊗
Gi∈I. x i) ∈ iso (DirProds (λi. G(|carrier := (S i)|))

I) (G(|carrier := J |))"
(is "?fp ∈ iso ?DP ?J")
proof -

from assms(2) have assm: "J = IDirProds G S I"
"compl_fam S I"

unfolding is_idirprod_def by auto
from assms(1, 2) have assm’: "

∧
i. i ∈ I =⇒ subgroup (S i) (G(|carrier

:= J |))"
using normal_imp_subgroup subgroup_incl by (metis IDirProds_incl assms(2)

is_idirprod_def)
interpret J: comm_group ?J using subgroup_is_comm_group[OF assms(1)]

.
interpret DP: comm_group ?DP

by (intro DirProds_is_comm_group; use J.subgroup_is_comm_group[OF
assm’] in simp)

have inJ: "S i ⊆ J" if "i ∈ I" for i using subgroup.subset[OF assm’[OF
that]] by simp

have hom: "?fp ∈ hom ?DP ?J"
proof (rule homI)

fix x
assume x[simp]: "x ∈ carrier ?DP"
show "finprod G x I ∈ carrier ?J"
proof (subst finprod_subgroup[OF _ assms(1)])

show "x ∈ I → J" using inJ comp_in_carr[OF x] by auto
thus "finprod ?J x I ∈ carrier ?J" by (intro J.finprod_closed;

simp)
qed
fix y
assume y[simp]: "y ∈ carrier ?DP"
show "finprod G (x ⊗?DP y) I = finprod G x I ⊗?J finprod G y I"
proof(subst (1 2 3) finprod_subgroup[of _ _ J])

show xyJ: "x ∈ I → J" "y ∈ I → J" using x y inJ comp_in_carr[OF
x] comp_in_carr[OF y]

by auto
show xyJ1: "x ⊗?DP y ∈ I → J" using inJ x y comp_in_carr[of "x

⊗?DP y"] by fastforce
show "subgroup J G" using assms(1) .
show "finprod ?J (x ⊗?DP y) I = finprod ?J x I ⊗?J finprod ?J

y I"
proof (rule J.finprod_cong_split)

show "x ∈ I → carrier ?J" "y ∈ I → carrier ?J" using xyJ by
simp_all

79

show "x ⊗?DP y ∈ I → carrier ?J" using xyJ1 by simp
fix i
assume i: "i ∈ I"
then have "x i ⊗G(|carrier := (S i) |) y i = (x ⊗?DP y) i"

by (intro comp_mult[symmetric])
thus "x i ⊗?J y i = (x ⊗?DP y) i" by simp

qed
qed

qed
then interpret fp: group_hom ?DP ?J ?fp unfolding group_hom_def group_hom_axioms_def

by blast
have s: "subgroup (S i) G" if "i ∈ I" for i using incl_subgroup[OF assms(1)

assm’[OF that]] .
have "kernel ?DP ?J ?fp = {1?DP}"
proof -

have "a = 1?DP" if "a ∈ kernel ?DP ?J ?fp" for a
proof -

from that have a: "finprod G a I = 1" "a ∈ carrier ?DP" unfold-
ing kernel_def by simp_all

from compl_fam_imp_triv_finprod[OF assm(2) assms(3) s a(1)] comp_in_carr[OF
a(2)]

have "∀ i∈I. a i = 1" by simp
then show ?thesis using DirProds_one[OF a(2)] by fastforce

qed
thus ?thesis using fp.one_in_kernel by blast

qed
moreover have "J ⊆ ?fp ‘ carrier ?DP"

using assm(1) IDirProds_eq_finprod_PiE[OF assms(3) incl_subgroup[OF
assms(1) assm’]]

unfolding DirProds_def PiE_def Pi_def by simp
ultimately show ?thesis using hom fp.iso_iff unfolding kernel_def by

auto
qed

lemma (in comm_group) iso_DirProds_IDirProds:
assumes "is_idirprod (carrier G) S I" "finite I"
shows "(λx.

⊗
Gi∈I. x i) ∈ iso (DirProds (λi. G(|carrier := (S i)|))

I) G"
using subgroup_iso_DirProds_IDirProds[OF subgroup_self assms(1, 2)]

by auto

lemma (in comm_group) cong_DirProds_IDirProds:
assumes "is_idirprod (carrier G) S I" "finite I"
shows "DirProds (λi. G(|carrier := (S i)|)) I ∼= G"
by (intro is_isoI, use iso_DirProds_IDirProds[OF assms] in blast)

In order to prove the isomorphism between two direct products, the following
lemmas provide some criterias.
lemma DirProds_iso:

80

assumes "bij_betw f I J" "
∧

i. i∈I =⇒ Gs i ∼= Hs (f i)"
"
∧

i. i∈I =⇒ group (Gs i)" "
∧

j. j∈J =⇒ group (Hs j)"
shows "DirProds Gs I ∼= DirProds Hs J"

proof -
interpret DG: group "DirProds Gs I" using DirProds_is_group assms(3)

by blast
interpret DH: group "DirProds Hs J" using DirProds_is_group assms(4)

by blast
from assms(1) obtain g where g: "g = inv_into I f" "bij_betw g J I"

by (meson bij_betw_inv_into)
hence fgi: "

∧
i. i ∈ I =⇒ g (f i) = i" "

∧
j. j ∈ J =⇒ f (g j) =

j"
using assms(1) bij_betw_inv_into_left[OF assms(1)] bij_betw_inv_into_right[OF

assms(1)] by auto
from assms(2) have "

∧
i. i ∈ I =⇒ (∃ h. h ∈ iso (Gs i) (Hs (f i)))"

unfolding is_iso_def by blast
then obtain h where h: "

∧
i. i ∈ I =⇒ h i ∈ iso (Gs i) (Hs (f i))"

by metis
let ?h = "(λx. (λj. if j∈J then (h (g j)) (x (g j)) else undefined))"
have hc: "?h x ∈ carrier (DirProds Hs J)" if "x ∈ carrier (DirProds

Gs I)" for x
proof -

have xc: "x ∈ carrier (DirProds Gs I)" by fact
have "h (g j) (x (g j)) ∈ carrier (Hs j)" if "j ∈ J" for j
proof(intro iso_in_carr[OF _ comp_in_carr[OF xc], of "h (g j)" "g

j" "Hs j"])
show "g j ∈ I" using g(2)[unfolded bij_betw_def] that by blast
from h[OF this] show "h (g j) ∈ Group.iso (Gs (g j)) (Hs j)" us-

ing fgi(2)[OF that] by simp
qed
thus ?thesis using xc unfolding DirProds_def PiE_def extensional_def

by auto
qed
moreover have "?h (x ⊗DirProds Gs I y)= ?h x ⊗DirProds Hs J ?h y"

if "x ∈ carrier (DirProds Gs I)" "y ∈ carrier (DirProds Gs I)" for
x y

proof(intro eq_parts_imp_eq[OF hc[OF DG.m_closed[OF that]] DH.m_closed[OF
hc[OF that(1)] hc[OF that(2)]]])

fix j
assume j: "j ∈ J"
hence gj: "g j ∈ I" using g unfolding bij_betw_def by blast
from assms(3)[OF gj] assms(4)[OF j] have g: "group (Gs (g j))" "Group.group

(Hs j)" .
from iso_imp_homomorphism[OF h[OF gj]] fgi(2)[OF j] g
interpret hjh: group_hom "Gs (g j)" "Hs j" "h (g j)"

unfolding group_hom_def group_hom_axioms_def by simp
show "(?h (x ⊗DirProds Gs I y)) j = (?h x ⊗DirProds Hs J ?h y) j"
proof(subst comp_mult)

show "(if j ∈ J then h (g j) (x (g j) ⊗Gs (g j) y (g j)) else undefined)

81

= (?h x ⊗DirProds Hs J ?h y) j"
proof(subst comp_mult)

have "h (g j) (x (g j) ⊗Gs (g j) y (g j)) = h (g j) (x (g j))
⊗Hs j h (g j) (y (g j))"

using comp_in_carr[OF that(1) gj] comp_in_carr[OF that(2) gj]
by simp

thus "(if j ∈ J then h (g j) (x (g j) ⊗Gs (g j) y (g j)) else
undefined) =

(if j ∈ J then h (g j) (x (g j)) else undefined)
⊗Hs j (if j ∈ J then h (g j) (y (g j)) else undefined)"

using j by simp
qed (use j g that hc in auto)

qed (use gj g that in auto)
qed
ultimately interpret hgh: group_hom "DirProds Gs I" "DirProds Hs J" ?h

unfolding group_hom_def group_hom_axioms_def by (auto intro: homI)
have "carrier (DirProds Hs J) ⊆ ?h ‘ carrier (DirProds Gs I)"
proof

show "x ∈ ?h ‘ carrier (DirProds Gs I)" if xc: "x ∈ carrier (DirProds
Hs J)" for x

proof -
from h obtain k where k: "

∧
i. i∈I =⇒ k i = inv_into (carrier

(Gs i)) (h i)" by fast
hence kiso: "

∧
i. i∈I =⇒ k i ∈ iso (Hs (f i)) (Gs i)"

using h by (simp add: assms(3) group.iso_set_sym)
hence hk: "y = (h (g j) ◦ (k (g j))) y" if "j ∈ J" "y ∈ carrier

(Hs j)" for j y
proof -

have gj: "g j ∈ I" using that g[unfolded bij_betw_def] by blast
thus ?thesis

using h[OF gj, unfolded iso_def] k[OF gj] that fgi(2)[OF that(1)]
bij_betw_inv_into_right

unfolding comp_def by fastforce
qed
let ?k = "(λi. if i∈I then k i else (λ_. undefined))"
let ?y = "(λi. (?k i) (x (f i)))"
have "x j = (λj. if j ∈ J then h (g j) (?y (g j)) else undefined)

j" for j
proof (cases "j ∈ J")

case True
thus ?thesis using hk[OF True comp_in_carr[OF that True]]

fgi(2)[OF True] g[unfolded bij_betw_def] by
auto

next
case False
thus ?thesis using that[unfolded DirProds_def] by auto

qed
moreover have "?y ∈ carrier (DirProds Gs I)"
proof -

82

have "?y i ∈ carrier (Gs i)" if i: "i ∈ I" for i
using k[OF i] h[OF i] comp_in_carr[OF xc] assms(1) bij_betwE

iso_in_carr kiso that
by fastforce

moreover have "?y i = undefined" if i: "i /∈ I" for i using i
by simp

ultimately show ?thesis unfolding DirProds_def PiE_def Pi_def
extensional_def by simp

qed
ultimately show ?thesis by fast

qed
qed
moreover have "x = 1DirProds Gs I"

if "x ∈ carrier (DirProds Gs I)" "?h x = 1DirProds Hs J" for x
proof -

have "∀ i∈I. x i = 1Gs i"
proof

fix i
assume i: "i ∈ I"
interpret gi: group "Gs i" using assms(3)[OF i] .
interpret hfi: group "Hs (f i)" using assms(4) i assms(1)[unfolded

bij_betw_def] by blast
from h[OF i] interpret hi: group_hom "(Gs i)" "Hs (f i)" "h i"

unfolding group_hom_def group_hom_axioms_def iso_def by blast
from that have hx: "?h x ∈ carrier (DirProds Hs J)" by simp
from DirProds_one[OF this] that(2)
have "(if j ∈ J then h (g j) (x (g j)) else undefined) = 1Hs j"

if "j ∈ J" for j
using that by blast

hence "h (g (f i)) (x (g (f i))) = 1Hs (f i)" using i assms(1)[unfolded
bij_betw_def] by auto

hence "h i (x i) = 1Hs (f i)" using fgi(1)[OF i] by simp
with hi.iso_iff h[OF i] comp_in_carr[OF that(1) i] show "x i =

1Gs i" by fast
qed
with DirProds_one that show ?thesis using assms(3) by blast

qed
ultimately show ?thesis unfolding is_iso_def using hgh.iso_iff by blast

qed

lemma DirProds_iso1:
assumes "

∧
i. i∈I =⇒ Gs i ∼= (f ◦ Gs) i" "

∧
i. i∈I =⇒ group (Gs

i)" "
∧

i. i∈I =⇒ group ((f ◦ Gs) i)"
shows "DirProds Gs I ∼= DirProds (f ◦ Gs) I"

proof -
interpret DP: group "DirProds Gs I" using DirProds_is_group assms by

metis
interpret fDP: group "DirProds (f ◦ Gs) I" using DirProds_is_group assms

by metis

83

from assms have "∀ i∈I. (∃ g. g ∈ iso (Gs i) ((f ◦ Gs) i))" unfold-
ing is_iso_def by blast

then obtain J where J: "∀ i∈I. J i ∈ iso (Gs i) ((f ◦ Gs) i)" by metis
let ?J = "(λi. if i∈I then J i else (λ_. undefined))"
from J obtain K where K: "∀ i∈I. K i = inv_into (carrier (Gs i)) (J

i)" by fast
hence K_iso: "∀ i∈I. K i ∈ iso ((f ◦ Gs) i) (Gs i)" using group.iso_set_sym

assms J by metis
let ?K = "(λi. if i∈I then K i else (λ_. undefined))"
have JKi: "(?J i) ((?K i) (x i)) = x i" if "x ∈ carrier (DirProds (f

◦ Gs) I)" for i x
proof -

have "(J i) ((K i) (x i)) = x i" if "x ∈ carrier (DirProds (f ◦ Gs)
I)" "i ∈ I" for i x

proof -
from J that have "(J i) ‘ (carrier (Gs i)) = carrier ((f ◦ Gs)

i)"
unfolding iso_def bij_betw_def by blast

hence "∃ y. y ∈ carrier (Gs i) ∧ (J i) y = x i" using that by (metis
comp_in_carr imageE)

with someI_ex[OF this] that show "(J i) ((K i) (x i)) = x i"
using K J K_iso unfolding inv_into_def by auto

qed
moreover have "(?J i) ((K i) (x i)) = x i" if "x ∈ carrier (DirProds

(f ◦ Gs) I)" "i /∈ I" for i x
using that unfolding DirProds_def PiE_def extensional_def by force

ultimately show ?thesis using that by simp
qed
let ?r = "(λe. restrict (λi. ?J i (e i)) I)"
have hom: "?r ∈ hom (DirProds Gs I) (DirProds (f ◦ Gs) I)"
proof (intro homI)

show "?r x ∈ carrier (DirProds (f ◦ Gs) I)" if "x ∈ carrier (DirProds
Gs I)" for x

using that J comp_in_carr[OF that] unfolding DirProds_def iso_def
bij_betw_def by fastforce

show "?r (x ⊗DirProds Gs I y) = ?r x ⊗DirProds (f ◦ Gs) I ?r y"
if "x ∈ carrier (DirProds Gs I)" "y ∈ carrier (DirProds Gs I)" for

x y
using that J comp_in_carr[OF that(1)] comp_in_carr[OF that(2)]
unfolding DirProds_def iso_def hom_def by force

qed
then interpret r: group_hom "(DirProds Gs I)" "(DirProds (f ◦ Gs) I)"

?r
unfolding group_hom_def group_hom_axioms_def by blast

have "carrier (DirProds (f ◦ Gs) I) ⊆ ?r ‘ carrier (DirProds Gs I)"
proof

show "x ∈ ?r ‘ carrier (DirProds Gs I)" if "x ∈ carrier (DirProds
(f ◦ Gs) I)" for x

proof

84

show "x = (λi∈I. ?J i ((?K i) (x i)))"
using JKi[OF that] that unfolding DirProds_def PiE_def by (simp

add: extensional_restrict)
show "(λi. ?K i (x i)) ∈ carrier (DirProds Gs I)" using K_iso iso_in_carr

that
unfolding DirProds_def PiE_def Pi_def extensional_def by fastforce

qed
qed
moreover have "x = 1DirProds Gs I"

if "x ∈ carrier (DirProds Gs I)" "?r x = 1DirProds (f ◦ Gs) I" for x
proof -

have "∀ i∈I. x i = 1Gs i"
proof

fix i
assume i: "i ∈ I"
with J assms interpret Ji: group_hom "(Gs i)" "(f ◦ Gs) i" "J i"

unfolding group_hom_def group_hom_axioms_def iso_def by blast
from that have rx: "?r x ∈ carrier (DirProds (f ◦ Gs) I)" by simp
from i DirProds_one[OF this] that
have "(λi∈I. (if i ∈ I then J i else (λ_. undefined)) (x i)) i

= 1(f ◦ Gs) i" by blast
hence "(J i) (x i) = 1(f ◦ Gs) i" using i by simp
with Ji.iso_iff mp[OF spec[OF J[unfolded Ball_def]] i] comp_in_carr[OF

that(1) i]
show "x i = 1Gs i" by fast

qed
with DirProds_one[OF that(1)] show ?thesis by blast

qed
ultimately show ?thesis unfolding is_iso_def using r.iso_iff by blast

qed

lemma DirProds_iso2:
assumes "inj_on f A" "group (DirProds g (f ‘ A))"
shows "DirProds (g ◦ f) A ∼= DirProds g (f ‘ A)"

proof (intro DirProds_iso[of f])
show "bij_betw f A (f ‘ A)" using assms(1) unfolding bij_betw_def by

blast
show "

∧
i. i ∈ A =⇒ (g ◦ f) i ∼= g (f i)" unfolding comp_def using

iso_refl by simp
from assms(2) show "

∧
i. i ∈ (f ‘ A) =⇒ group (g i)" using DirProds_group_imp_groups

by fast
with assms(1) show "

∧
i. i ∈ A =⇒ group ((g ◦ f) i)" by auto

qed

The direct group product distributes when nested.
lemma DirProds_Sigma:

"DirProds (λi. DirProds (G i) (J i)) I ∼= DirProds (λ(i,j). G i j) (Sigma
I J)" (is "?L ∼= ?R")
proof (intro is_isoI isoI)

85

let ?f = "λx. restrict (case_prod x) (Sigma I J)"
show hom: "?f ∈ hom ?L ?R"
proof(intro homI)

show "?f a ∈ carrier ?R" if "a ∈ carrier ?L" for a
using that unfolding DirProds_def PiE_def Pi_def extensional_def

by auto
show "?f (a ⊗?L b) = ?f a ⊗?R ?f b" if "a ∈ carrier ?L" and "b

∈ carrier ?L" for a b
using that unfolding DirProds_def PiE_def Pi_def extensional_def

by auto
qed
show "bij_betw ?f (carrier ?L) (carrier ?R)"
proof (intro bij_betwI)

let ?g = "λx. (λi. if i∈I then (λj. if j∈(J i) then x(i, j) else
undefined) else undefined)"

show "?f ∈ carrier ?L → carrier ?R" unfolding DirProds_def by fastforce
show "?g ∈ carrier ?R → carrier ?L" unfolding DirProds_def by fastforce
show "?f (?g x) = x" if "x ∈ carrier ?R" for x

using that unfolding DirProds_def PiE_def Pi_def extensional_def
by auto

show "?g (?f x) = x" if "x ∈ carrier ?L" for x
using that unfolding DirProds_def PiE_def Pi_def extensional_def

by force
qed

qed

no_notation integer_mod_group (‹Z›)

end

10 Group relations
theory Group_Relations

imports Finite_Product_Extend
begin

We introduce the notion of a relation of a set of elements: a way to express
the neutral element by using only powers of said elements. The following
predicate describes the set of all the relations that one can construct from
a set of elements.
definition (in comm_group) relations :: "’a set ⇒ (’a ⇒ int) set" where

"relations A = {f. finprod G (λa. a [^] f a) A = 1} ∩ extensional A"

Now some basic lemmas about relations.
lemma (in comm_group) in_relationsI[intro]:

assumes "finprod G (λa. a [^] f a) A = 1" "f ∈ extensional A"
shows "f ∈ relations A"
unfolding relations_def using assms by blast

86

lemma (in comm_group) triv_rel:
"restrict (λ_. 0::int) A ∈ relations A"

proof
show "(

⊗
a∈A. a [^] (λ_∈A. 0::int) a) = 1" by (intro finprod_one_eqI,

simp)
qed simp

lemma (in comm_group) not_triv_relI:
assumes "a ∈ A" "f a 6= (0::int)"
shows "f 6= (λ_∈A. 0::int)"
using assms by auto

lemma (in comm_group) rel_in_carr:
assumes "A ⊆ carrier G" "r ∈ relations A"
shows "(λa. a [^] r a) ∈ A → carrier G"
by (meson Pi_I assms(1) int_pow_closed subsetD)

The following lemmas are of importance when proving the fundamental the-
orem of finitely generated abelian groups in the case that there is just the
trivial relation between a set of generators. They all build up to the last
lemma that then is actually used in the proof.
lemma (in comm_group) relations_zero_imp_pow_not_one:

assumes "a ∈ A" "∀ f∈(relations A). f a = 0"
shows "∀ z::int 6= 0. a [^] z 6= 1"

proof (rule ccontr; safe)
fix z::int
assume z: "z 6= 0" "a [^] z = 1"
have "restrict ((λx. 0)(a := z)) A ∈ relations A"

by (intro in_relationsI finprod_one_eqI, use z in auto)
thus False using z assms by auto

qed

lemma (in comm_group) relations_zero_imp_ord_zero:
assumes "a ∈ A" "∀ f∈(relations A). f a = 0"
and "a ∈ carrier G"
shows "ord a = 0"
using assms relations_zero_imp_pow_not_one[OF assms(1, 2)]
by (meson finite_cyclic_subgroup_int infinite_cyclic_subgroup_order)

lemma (in comm_group) finprod_relations_triv_harder_better_stronger:
assumes "A ⊆ carrier G" "relations A = {(λ_∈A. 0::int)}"
shows "∀ f ∈ PiE A (λa. generate G {a}). finprod G f A = 1 −→ (∀ a∈A.

f a = 1)"
proof(rule, rule)

fix f
assume f: "f ∈ (ΠE a∈A. generate G {a})" "finprod G f A = 1"
with generate_pow assms(1) have "∀ a∈A. ∃ k::int. f a = a [^] k" by

blast

87

then obtain r::"’a ⇒ int" where r: "∀ a∈A. f a = a [^] r a" by metis
have "restrict r A ∈ relations A"
proof(intro in_relationsI)

have "(
⊗

a∈A. a [^] restrict r A a) = finprod G f A"
by (intro finprod_cong, use assms r in auto)

thus "(
⊗

a∈A. a [^] restrict r A a) = 1" using f by simp
qed simp
with assms(2) have z: "restrict r A = (λ_∈A. 0)" by blast
have "(restrict r A) a = r a" if "a ∈ A" for a using that by auto
with r z show "∀ a∈A. f a = 1" by auto

qed

lemma (in comm_group) stronger_PiE_finprod_imp:
assumes "A ⊆ carrier G" "∀ f ∈ PiE A (λa. generate G {a}). finprod

G f A = 1 −→ (∀ a∈A. f a = 1)"
shows "∀ f ∈ PiE ((λa. generate G {a}) ‘ A) id.

finprod G f ((λa. generate G {a}) ‘ A) = 1 −→ (∀ H∈ (λa. generate
G {a}) ‘ A. f H = 1)"
proof(rule, rule)

fix f
assume f: "f ∈ PiE ((λa. generate G {a}) ‘ A) id" "finprod G f ((λa.

generate G {a}) ‘ A) = 1"
define B where "B = inv_into A (λa. generate G {a}) ‘ ((λa. generate

G {a}) ‘ A)"
have Bs: "B ⊆ A"
proof

fix x
assume x: "x ∈ B"
then obtain C where C: "C ∈ ((λa. generate G {a}) ‘ A)" "x = inv_into

A (λa. generate G {a}) C"
unfolding B_def by blast

then obtain c where c: "C = generate G {c}" "c ∈ A" by blast
with C someI_ex[of "λy. y ∈ A ∧ generate G {y} = C"] show "x ∈

A"
unfolding inv_into_def by blast

qed
have sI: "(λx. generate G {x}) ‘ B = (λx. generate G {x}) ‘ A"
proof

show "(λx. generate G {x}) ‘ B ⊆ (λx. generate G {x}) ‘ A" using
Bs by blast

show "(λx. generate G {x}) ‘ A ⊆ (λx. generate G {x}) ‘ B"
proof

fix C
assume C: "C ∈ (λx. generate G {x}) ‘ A"
then obtain x where x: "x = inv_into A (λa. generate G {a}) C"

unfolding B_def by blast
then obtain c where c: "C = generate G {c}" "c ∈ A" using C by

blast
with C x someI_ex[of "λy. y ∈ A ∧ generate G {y} = C"] have "generate

88

G {x} = C"
unfolding inv_into_def by blast

with x C show "C ∈ (λx. generate G {x}) ‘ B" unfolding B_def by
blast

qed
qed
have fBc: "f (generate G {b}) ∈ carrier G" if "b ∈ B" for b
proof -

have "f (generate G {b}) ∈ generate G {b}" using f(1)
by (subst (asm) sI[symmetric], use that in fastforce)

moreover have "generate G {b} ⊆ carrier G" using assms(1) that Bs
generate_incl by blast

ultimately show ?thesis by blast
qed
let ?r = "restrict (λa. if a∈B then f (generate G {a}) else 1) A"
have "?r ∈ PiE A (λa. generate G {a})"
proof

show "?r x = undefined" if "x /∈ A" for x using that by simp
show "?r x ∈ generate G {x}" if "x ∈ A" for x using that generate.one

B_def f(1) by auto
qed
moreover have "finprod G ?r A = 1"
proof (cases "finite A")

case True
have "A = B ∪ (A - B)" using Bs by auto
then have "finprod G ?r A = finprod G ?r (B∪(A-B))" by auto
moreover have " . . . = finprod G ?r B ⊗ finprod G ?r (A - B)"
proof(intro finprod_Un_disjoint)

from True Bs finite_subset show "finite B" "finite (A - B)" "B
∩ (A - B) = {}" by auto

show "(λa∈A. if a ∈ B then f (generate G {a}) else 1) ∈ A - B
→ carrier G" using Bs by simp

from fBc show "(λa∈A. if a ∈ B then f (generate G {a}) else 1)
∈ B → carrier G"

using Bs by auto
qed
moreover have "finprod G ?r B = 1"
proof -

have "finprod G ?r B = finprod G (f ◦ (λa. generate G {a})) B"
proof(intro finprod_cong’)

show "?r b = (f ◦ (λa. generate G {a})) b" if "b ∈ B" for b us-
ing that Bs by auto

show "f ◦ (λa. generate G {a}) ∈ B → carrier G" using fBc by
simp

qed simp
also have " . . . = finprod G f ((λa. generate G {a}) ‘ B)"
proof(intro finprod_comp[symmetric])

show "(f ◦ (λa. generate G {a})) ‘ B ⊆ carrier G" using fBc
by auto

89

show "inj_on (λa. generate G {a}) B"
by (intro inj_onI, unfold B_def, metis (no_types, lifting) f_inv_into_f

inv_into_into)
qed
also have " . . . = finprod G f ((λa. generate G {a}) ‘ A)" using sI

by argo
finally show ?thesis using f(2) by argo

qed
moreover have "finprod G ?r (A - B) = 1" by(intro finprod_one_eqI,

simp)
ultimately show ?thesis by fastforce

next
case False
then show ?thesis unfolding finprod_def by simp

qed
ultimately have a: "∀ a∈A. ?r a = 1" using assms(2) by blast
then have BA: "∀ a∈B∩A. ?r a = 1" by blast
from Bs sI have "∀ a∈A. (generate G {a}) ∈ ((λx. generate G {x}) ‘

B)" by simp
then have "∀ a∈A. ∃ b∈B. f (generate G {a}) = f (generate G {b})" by

force
thus "∀ H∈(λa. generate G {a}) ‘ A. f H = 1" using a BA Bs by fastforce

qed

lemma (in comm_group) finprod_relations_triv:
assumes "A ⊆ carrier G" "relations A = {(λ_∈A. 0::int)}"
shows "∀ f ∈ PiE ((λa. generate G {a}) ‘ A) id.

finprod G f ((λa. generate G {a}) ‘ A) = 1 −→ (∀ H∈ (λa. generate
G {a}) ‘ A. f H = 1)"

using assms finprod_relations_triv_harder_better_stronger stronger_PiE_finprod_imp
by presburger

lemma (in comm_group) ord_zero_strong_imp_rel_triv:
assumes "A ⊆ carrier G" "∀ a ∈ A. ord a = 0"
and "∀ f ∈ PiE A (λa. generate G {a}). finprod G f A = 1 −→ (∀ a∈A.

f a = 1)"
shows "relations A = {(λ_∈A. 0::int)}"

proof -
have "

∧
r. r ∈ relations A =⇒ r = (λ_∈A. 0::int)"

proof
fix r x
assume r: "r ∈ relations A"
show "r x = (λ_∈A. 0::int) x"
proof (cases "x ∈ A")

case True
let ?r = "restrict (λa. a [^] r a) A"
have rp: "?r ∈ PiE A (λa. generate G {a})"
proof -

have "?r ∈ extensional A" by blast

90

moreover have "?r ∈ Pi A (λa. generate G {a})"
proof

fix a
assume a: "a ∈ A"
then have sga: "subgroup (generate G {a}) G" using generate_is_subgroup

assms(1) by auto
show "a [^] r a ∈ generate G {a}"

using generate.incl[of a "{a}" G] subgroup_int_pow_closed[OF
sga] by simp

qed
ultimately show ?thesis unfolding PiE_def by blast

qed
have "finprod G ?r A = (

⊗
a∈A. a [^] r a)" by(intro finprod_cong,

use assms(1) in auto)
with r have "finprod G ?r A = 1" unfolding relations_def by simp
with assms(3) rp have "∀ a∈A. ?r a = 1" by fast
then have "∀ a∈A. a [^] r a = 1" by simp
with assms(1, 2) True have "r x = 0"

using finite_cyclic_subgroup_int infinite_cyclic_subgroup_order
by blast

thus ?thesis using True by simp
next

case False
thus ?thesis using r unfolding relations_def extensional_def by

simp
qed

qed
thus ?thesis using triv_rel by blast

qed

lemma (in comm_group) compl_fam_iff_relations_triv:
assumes "finite gs" "gs ⊆ carrier G" "∀ g∈gs. ord g = 0"
shows "relations gs = {(λ_∈gs. 0::int)} ←→ compl_fam (λg. generate

G {g}) gs"
using triv_finprod_iff_compl_fam_PiE[of _ "λg. generate G {g}", OF assms(1)

generate_is_subgroup]
ord_zero_strong_imp_rel_triv[OF assms(2, 3)]
finprod_relations_triv_harder_better_stronger[OF assms(2)] assms

by blast

end

11 Fundamental Theorem of Finitely Generated
Abelian Groups

theory Finitely_Generated_Abelian_Groups
imports DirProds Group_Relations

begin

91

notation integer_mod_group (‹Z›)

locale fin_gen_comm_group = comm_group +
fixes gen :: "’a set"
assumes gens_closed: "gen ⊆ carrier G"
and fin_gen: "finite gen"
and generators: "carrier G = generate G gen"

Every finite abelian group is also finitely generated.
sublocale finite_comm_group ⊆ fin_gen_comm_group G "carrier G"

using generate_incl generate_sincl by (unfold_locales, auto)

This lemma contains the proof of Kemper from his lecture notes on alge-
bra [1]. However, the proof is not done in the context of a finitely generated
group but for a finitely generated subgroup in a commutative group.
lemma (in comm_group) ex_idirgen:

fixes A :: "’a set"
assumes "finite A" "A ⊆ carrier G"
shows "∃ gs. set gs ⊆ generate G A ∧ distinct gs ∧ is_idirprod (generate

G A) (λg. generate G {g}) (set gs)
∧ successively (dvd) (map ord gs) ∧ card (set gs) ≤ card

A"
(is "?t A")
using assms

proof (induction "card A" arbitrary: A rule: nat_less_induct)
case i: 1
show ?case
proof (cases "relations A = {restrict (λ_. 0::int) A}")

case True
have fi: "finite A" by fact
then obtain gs where gs: "set gs = A" "distinct gs" by (meson finite_distinct_list)
have o: "ord g = 0" if "g ∈ set gs" for g

by (intro relations_zero_imp_ord_zero[OF that], use i(3) that True
gs in auto)

have m: "map ord gs = replicate (length gs) 0" using o
by (induction gs; auto)

show ?thesis
proof(rule, safe)

show "
∧

x. x ∈ set gs =⇒ x ∈ generate G A" using gs generate.incl[of
_ A G] by blast

show "distinct gs" by fact
show "is_idirprod (generate G A) (λg. generate G {g}) (set gs)"
proof(unfold is_idirprod_def, intro conjI, rule)

show "generate G {g} C G" if "g ∈ set gs" for g
by (intro subgroup_imp_normal, use that generate_is_subgroup

i(3) gs in auto)
show "generate G A = IDirProds G (λg. generate G {g}) (set gs)"

unfolding IDirProds_def

92

by (subst gs(1), use generate_idem_Un i(3) in blast)
show "compl_fam (λg. generate G {g}) (set gs)" using compl_fam_iff_relations_triv[OF

i(2, 3)] o gs(1) True
by blast

qed
show "successively (dvd) (map ord gs)" using m
proof (induction gs)

case c: (Cons a gs)
thus ?case by(cases gs; simp)

qed simp
show "card (set gs) ≤ card A" using gs by blast

qed
next

case ntrel: False
then have Ane: "A 6= {}"

using i(2) triv_rel[of A] unfolding relations_def extensional_def
by fastforce

from ntrel obtain a where a: "a ∈ A" "∃ r ∈relations A. r a 6= 0"
using i(2) triv_rel[of A]

unfolding relations_def extensional_def by fastforce
hence ac: "a ∈ carrier G" using i(3) by blast
have iH: "

∧
B.[[card B < card A; finite B; B ⊆ carrier G]] =⇒ ?t B"

using i(1) by blast
have iH2: "

∧
B. [[?t B; generate G A = generate G B; card B < card

A]] =⇒ ?t A"
by fastforce

show ?thesis
proof(cases "inv a ∈ (A - {a})")

case True
have "generate G A = generate G (A - {a})"
proof(intro generate_subset_eqI[OF i(3)])

show "A - (A - {a}) ⊆ generate G (A - {a})"
proof -

have "A - (A - {a}) = {a}" using a True by auto
also have " . . . ⊆ generate G {inv a}" using generate.inv[of "inv

a" "{inv a}" G] ac by simp
also have " . . . ⊆ generate G (A - {a})" by (intro mono_generate,

use True in simp)
finally show ?thesis .

qed
qed simp
moreover have "?t (A - {a})"

by (intro iH[of "A - {a}"], use i(2, 3) a(1) in auto, meson Ane
card_gt_0_iff diff_Suc_less)

ultimately show ?thesis using card.remove[OF i(2) a(1)] by fastforce
next

case inv: False
define n where n: "n = card A"
define all_gens where

93

"all_gens = {gs∈Pow (generate G A). finite gs ∧ card gs ≤ n
∧ generate G gs = generate G A}"

define exps where "exps = (
⋃

gs’∈all_gens.
⋃

rel∈relations gs’.
nat ‘ {e∈rel‘gs’. e > 0})"

define min_exp where "min_exp = Inf exps"

have "exps 6= {}"
proof -

let ?B = "A - {a} ∪ {inv a}"
have "A ∈ all_gens" unfolding all_gens_def using generate.incl

n i(2) by fast
moreover have "?B ∈ all_gens"
proof -

have "card (A - {a}) = n - 1" using a n by (meson card_Diff_singleton_if
i(2))

hence "card ?B = n" using inv i(2, 3) n a(1)
by (metis Un_empty_right Un_insert_right card.remove card_insert_disjoint

finite_Diff)
moreover have "generate G A = generate G ?B"
proof(intro generate_one_switched_eqI[OF i(3) a(1), of _ "inv

a"])
show "inv a ∈ generate G A" using generate.inv[OF a(1), of

G] .
show "a ∈ generate G ?B"
proof -

have "a ∈ generate G {inv a}" using generate.inv[of "inv
a" "{inv a}" G] ac by simp

also have " . . . ⊆ generate G ?B" by (intro mono_generate,
blast)

finally show ?thesis .
qed

qed simp
moreover hence "?B ⊆ generate G A" using generate_sincl by

simp
ultimately show ?thesis unfolding all_gens_def using i(2) by

blast
qed
moreover have "(∃ r ∈ relations A. r a > 0) ∨ (∃ r ∈ relations

?B. r (inv a) > 0)"
proof(cases "∃ r ∈ relations A. r a > 0")

case True
then show ?thesis by blast

next
case False
with a obtain r where r: "r ∈ relations A" "r a < 0" by force
have rc: "(λx. x [^] r x) ∈ A → carrier G" using i(3) int_pow_closed

by fast
let ?r = "restrict (r(inv a := - r a)) ?B"

94

have "?r ∈ relations ?B"
proof

have "finprod G (λx. x [^] ?r x) ?B = finprod G (λx. x [^]
r x) A"

proof -
have "finprod G (λx. x [^] ?r x) ?B

= finprod G (λx. x [^] ?r x) (insert (inv a) (A - {a}))"
by simp

also have " . . . = (inv a) [^] ?r (inv a) ⊗ finprod G (λx.
x [^] ?r x) (A - {a})"

proof(intro finprod_insert[OF _ inv])
show "finite (A - {a})" using i(2) by fast
show "inv a [^] ?r (inv a) ∈ carrier G"

using int_pow_closed[OF inv_closed[OF ac]] by fast
show "(λx. x [^] ?r x) ∈ A - {a} → carrier G" using

int_pow_closed i(3) by fast
qed
also have " . . . = a [^] r a ⊗ finprod G (λx. x [^] r x) (A

- {a})"
proof -

have "(inv a) [^] ?r (inv a) = a [^] r a"
by (simp add: int_pow_inv int_pow_neg ac)

moreover have "finprod G (λx. x [^] r x) (A - {a})
= finprod G (λx. x [^] ?r x) (A - {a})"

proof(intro finprod_cong)
show "((λx. x [^] r x) ∈ A - {a} → carrier G) = True"

using rc by blast
have "i [^] r i = i [^] ?r i" if "i ∈ A - {a}" for i

using that inv by auto
thus "

∧
i. i ∈ A - {a} =simp=> i [^] r i = i [^] restrict

(r(inv a := - r a)) (A - {a} ∪ {inv a}) i"
by algebra

qed simp
ultimately show ?thesis by argo

qed
also have " . . . = finprod G (λx. x [^] r x) A"

by (intro finprod_minus[symmetric, OF a(1) rc i(2)])
finally show ?thesis .

qed
also have " . . . = 1" using r unfolding relations_def by fast
finally show "finprod G (λx. x [^] ?r x) ?B = 1" .

qed simp
then show ?thesis using r by fastforce

qed
ultimately show ?thesis unfolding exps_def using a by blast

qed
hence me: "min_exp ∈ exps"

unfolding min_exp_def using Inf_nat_def1 by force
from cInf_lower min_exp_def have le: "

∧
x. x ∈ exps =⇒ min_exp

95

≤ x" by blast
from me obtain gs rel g

where gr: "gs ∈ all_gens" "rel ∈ relations gs" "g ∈ gs" "rel
g = min_exp" "min_exp > 0"

unfolding exps_def by auto
from gr(1) have cgs: "card gs ≤ card A" unfolding all_gens_def

n by blast
with gr(3) have cgsg: "card (gs - {g}) < card A"

by (metis Ane card.infinite card_Diff1_less card_gt_0_iff finite.emptyI
finite.insertI finite_Diff2 i.prems(1) le_neq_implies_less

less_trans)
from gr(1) have fgs: "finite gs" and gsg: "generate G gs = generate

G A"
unfolding all_gens_def n using i(2) card.infinite Ane by force+

from gsg have gsc: "gs ⊆ carrier G" unfolding all_gens_def
using generate_incl[OF i(3)] generate_sincl[of gs] by simp

hence gc: "g ∈ carrier G" using gr(3) by blast
have ihgsg: "?t (gs - {g})"

by (intro iH, use cgs fgs gsc gr(3) cgsg in auto)
then obtain hs where

hs: "set hs ⊆ generate G (gs - {g})" "distinct hs"
"is_idirprod (generate G (gs - {g})) (λg. generate G {g})

(set hs)"
"successively (dvd) (map ord hs)" "card (set hs) ≤ card (gs

- {g})" by blast
hence hsc: "set hs ⊆ carrier G"

using generate_sincl[of "set hs"] generate_incl[of "gs - {g}"]
gsc by blast

from hs(3) have ghs: "generate G (gs - {g}) = generate G (set hs)"
unfolding is_idirprod_def IDirProds_def using generate_idem_Un[OF

hsc] by argo
have dvot: "?t A ∨ (∀ e∈rel‘gs. rel g dvd e)"
proof(intro disjCI)

assume na: "¬ (∀ e∈rel ‘ gs. rel g dvd e)"
have "

∧
x. [[x ∈ gs; ¬rel g dvd rel x]] =⇒ ?t A"

proof -
fix x
assume x: "x ∈ gs" "¬ rel g dvd rel x"
hence xng: "x 6= g" by auto
from x have xc: "x ∈ carrier G" using gsc by blast
have rg: "rel g > 0" using gr by simp
define r::int where r: "r = rel x mod rel g"
define q::int where q: "q = rel x div rel g"
from r rg x have "r > 0"

using mod_int_pos_iff[of "rel x" "rel g"] mod_eq_0_iff_dvd
by force

moreover have "r < rel g" using r rg by simp
moreover have "rel x = q * rel g + r" using r q by presburger
ultimately have rq: "rel x = q * (rel g) + r" "0 < r" "r < rel

96

g" by auto
define t where t: "t = g ⊗ x [^] q"
hence tc: "t ∈ carrier G" using gsc gr(3) x by fast
define s where s: "s = gs - {g} ∪ {t}"
hence fs: "finite s" using fgs by blast
have sc: "s ⊆ carrier G" using s tc gsc by blast
have g: "generate G gs = generate G s"
proof(unfold s, intro generate_one_switched_eqI[OF gsc gr(3),

of _ t])
show "t ∈ generate G gs"
proof(unfold t, intro generate.eng)

show "g ∈ generate G gs" using gr(3) generate.incl by
fast

show "x [^] q ∈ generate G gs"
using x generate_pow[OF xc] generate_sincl[of "{x}"] mono_generate[of

"{x}" gs]
by fast

qed
show "g ∈ generate G (gs - {g} ∪ {t})"
proof -

have gti: "g = t ⊗ inv (x [^] q)"
using inv_solve_right[OF gc tc int_pow_closed[OF xc, of

q]] t by blast
moreover have "t ∈ generate G (gs - {g} ∪ {t})" by (intro

generate.incl[of t], simp)
moreover have "inv (x [^] q) ∈ generate G (gs - {g})"
proof -

have "x [^] q ∈ generate G {x}" using generate_pow[OF
xc] by blast

from generate_m_inv_closed[OF _ this] xc
have "inv (x [^] q) ∈ generate G {x}" by blast
moreover have "generate G {x} ⊆ generate G (gs - {g})"

by (intro mono_generate, use x a in force)
finally show ?thesis .

qed
ultimately show ?thesis

using generate.eng mono_generate[of "gs - {g}" "gs - {g}
∪ {t}"] by fast

qed
qed simp
show " [[x ∈ gs; ¬ rel g dvd rel x]] =⇒ ?t A"
proof (cases "t ∈ gs - {g}")

case xt: True
from xt have gts: "s = gs - {g}" using x s by auto
moreover have "card (gs - {g}) < card gs" using fgs gr(3)

by (meson card_Diff1_less)
ultimately have "card (set hs) < card A" using hs(5) cgs by

simp
moreover have "set hs ⊆ generate G (set hs)" using generate_sincl

97

by simp
moreover have "distinct hs" by fact
moreover have "is_idirprod (generate G (set hs)) (λg. generate

G {g}) (set hs)"
using hs ghs unfolding is_idirprod_def by blast

moreover have "generate G A = generate G (set hs)" using
g gts ghs gsg by argo

moreover have "successively (dvd) (map ord hs)" by fact
ultimately show "?t A" using iH2 by blast

next
case tngsg: False
hence xnt: "x 6= t" using x xng by blast
have "rel g dvd rel x"
proof (rule ccontr)

have "nat r ∈ exps" unfolding exps_def
proof

show "s ∈ all_gens" unfolding all_gens_def
using gsg g fgs generate_sincl[of s] switch_elem_card_le[OF

gr(3), of t] cgs n s
by auto

have xs: "x ∈ s" using s xng x(1) by blast
have ts: "t ∈ s" using s by fast
show "nat r ∈ (

⋃
rel∈relations s. nat ‘ {e ∈ rel ‘ s.

0 < e})"
proof

let ?r = "restrict (rel(x := r, t := rel g)) s"
show "?r ∈ relations s"
proof

have "finprod G (λx. x [^] ?r x) s = finprod G (λx.
x [^] rel x) gs"

proof -
have "finprod G (λx. x [^] ?r x) s = x [^] r ⊗

(t [^] rel g ⊗ finprod G (λx. x [^] rel x) (gs - {g} - {x}))"
proof -

have "finprod G (λx. x [^] ?r x) s = x [^] ?r
x ⊗ finprod G (λx. x [^] ?r x) (s - {x})"

by (intro finprod_minus[OF xs _ fs], use sc
in auto)

moreover have "finprod G (λx. x [^] ?r x) (s
- {x}) = t [^] ?r t ⊗ finprod G (λx. x [^] ?r x) (s - {x} - {t})"

by (intro finprod_minus, use ts xnt fs sc in
auto)

moreover have "finprod G (λx. x [^] ?r x) (s
- {x} - {t}) = finprod G (λx. x [^] rel x) (s - {x} - {t})"

unfolding s by (intro finprod_cong’, use gsc
in auto)

moreover have "s - {x} - {t} = gs - {g} - {x}"
unfolding s using tngsg by blast

moreover hence "finprod G (λx. x [^] rel x) (s

98

- {x} - {t}) = finprod G (λx. x [^] rel x) (gs - {g} - {x})" by simp
moreover have "x [^] ?r x = x [^] r" using xs

xnt by auto
moreover have "t [^] ?r t = t [^] rel g" us-

ing ts by simp
ultimately show ?thesis by argo

qed
also have " . . . = x [^] r ⊗ t [^] rel g ⊗ finprod

G (λx. x [^] rel x) (gs - {g} - {x})"
by (intro m_assoc[symmetric], use xc tc in simp_all,

intro finprod_closed, use gsc in fast)
also have " . . . = g [^] rel g ⊗ x [^] rel x ⊗ finprod

G (λx. x [^] rel x) (gs - {g} - {x})"
proof -

have "x [^] r ⊗ t [^] rel g = g [^] rel g ⊗
x [^] rel x"

proof -
have "x [^] r ⊗ t [^] rel g = x [^] r ⊗ (g

⊗ x [^] q) [^] rel g" using t by blast
also have " . . . = x [^] r ⊗ x [^] (q * rel g)

⊗ g [^] rel g"
proof -

have "(g ⊗ x [^] q) [^] rel g = g [^] rel
g ⊗ (x [^] q) [^] rel g"

using gc xc int_pow_distrib by auto
moreover have "(x [^] q) [^] rel g = x [^]

(q * rel g)" using xc int_pow_pow by auto
moreover have "g [^] rel g ⊗ x [^] (q *

rel g) = x [^] (q * rel g) ⊗ g [^] rel g"
using m_comm[OF int_pow_closed[OF xc] int_pow_closed[OF

gc]] by simp
ultimately have "(g ⊗ x [^] q) [^] rel g

= x [^] (q * rel g) ⊗ g [^] rel g" by argo
thus ?thesis by (simp add: gc m_assoc xc)

qed
also have " . . . = x [^] rel x ⊗ g [^] rel g"
proof -

have "x [^] r ⊗ x [^] (q * rel g) = x [^]
(q * rel g + r)"

by (simp add: add.commute int_pow_mult xc)
also have " . . . = x [^] rel x" using rq by

argo
finally show ?thesis by argo

qed
finally show ?thesis by (simp add: gc m_comm

xc)
qed
thus ?thesis by simp

qed

99

also have " . . . = g [^] rel g ⊗ (x [^] rel x ⊗ finprod
G (λx. x [^] rel x) (gs - {g} - {x}))"

by (intro m_assoc, use xc gc in simp_all, intro
finprod_closed, use gsc in fast)

also have " . . . = g [^] rel g ⊗ finprod G (λx. x
[^] rel x) (gs - {g})"

proof -
have "finprod G (λx. x [^] rel x) (gs - {g}) =

x [^] rel x ⊗ finprod G (λx. x [^] rel x) (gs - {g} - {x})"
by (intro finprod_minus, use xng x(1) fgs gsc

in auto)
thus ?thesis by argo

qed
also have " . . . = finprod G (λx. x [^] rel x) gs"

by (intro finprod_minus[symmetric, OF gr(3) _ fgs], use gsc in auto)
finally show ?thesis .

qed
thus "finprod G (λx. x [^] ?r x) s = 1" using gr(2)

unfolding relations_def by simp
qed auto
show "nat r ∈ nat ‘ {e ∈ ?r ‘ s. 0 < e}" using xs

xnt rq(2) by fastforce
qed

qed
from le[OF this] rq(3) gr(4, 5) show False by linarith

qed
thus " [[x ∈ gs; ¬ rel g dvd rel x]] =⇒ ?t A" by blast

qed
qed
thus "?t A" using na by blast

qed
show "?t A"
proof (cases "∀ e∈rel‘gs. rel g dvd e")

case dv: True
define tau where "tau = finprod G (λx. x [^] ((rel x) div rel

g)) gs"
have tc: "tau ∈ carrier G"

by (subst tau_def, intro finprod_closed[of "(λx. x [^] ((rel
x) div rel g))" gs], use gsc in fast)

have gts: "generate G gs = generate G (gs - {g} ∪ {tau})"
proof(intro generate_one_switched_eqI[OF gsc gr(3), of _ tau])

show "tau ∈ generate G gs" by (subst generate_eq_finprod_Pi_int_image[OF
fgs gsc], unfold tau_def, fast)

show "g ∈ generate G (gs - {g} ∪ {tau})"
proof -

have "tau = g ⊗ finprod G (λx. x [^] ((rel x) div rel g))
(gs - {g})"

proof -
have "finprod G (λx. x [^] ((rel x) div rel g)) gs = g [^]

100

(rel g div rel g) ⊗ finprod G (λx. x [^] ((rel x) div rel g)) (gs - {g})"
by (intro finprod_minus[OF gr(3) _ fgs], use gsc in fast)

moreover have "g [^] (rel g div rel g) = g" using gr gsc
by auto

ultimately show ?thesis unfolding tau_def by argo
qed
hence gti: "g = tau ⊗ inv finprod G (λx. x [^] ((rel x) div

rel g)) (gs - {g})"
using inv_solve_right[OF gc tc finprod_closed[of "(λx. x

[^] ((rel x) div rel g))" "gs - {g}"]] gsc
by fast

have "tau ∈ generate G (gs - {g} ∪ {tau})" by (intro generate.incl[of
tau], simp)

moreover have "inv finprod G (λx. x [^] ((rel x) div rel
g)) (gs - {g}) ∈ generate G (gs - {g})"

proof -
have "finprod G (λx. x [^] ((rel x) div rel g)) (gs - {g})

∈ generate G (gs - {g})"
using generate_eq_finprod_Pi_int_image[of "gs - {g}"]

fgs gsc by fast
from generate_m_inv_closed[OF _ this] gsc show ?thesis

by blast
qed
ultimately show ?thesis by (subst gti, intro generate.eng,

use mono_generate[of "gs - {g}"] in auto)
qed

qed simp
with gr(1) have gt: "generate G (gs - {g} ∪ {tau}) = generate

G A" unfolding all_gens_def by blast
have trgo: "tau [^] rel g = 1"
proof -

have "tau [^] rel g = finprod G (λx. x [^] ((rel x) div rel
g)) gs [^] rel g" unfolding tau_def by blast

also have " . . . = finprod G ((λx. x [^] rel g) ◦ (λx. x [^] ((rel
x) div rel g))) gs"

by (intro finprod_exp, use gsc in auto)
also have " . . . = finprod G (λa. a [^] rel a) gs"
proof(intro finprod_cong’)

show "((λx. x [^] rel g) ◦ (λx. x [^] ((rel x) div rel g)))
x = x [^] rel x" if "x ∈ gs" for x

proof -
have "((λx. x [^] rel g) ◦ (λx. x [^] ((rel x) div rel g)))

x = x [^] (((rel x) div rel g) * rel g)"
using that gsc int_pow_pow by auto

also have " . . . = x [^] rel x" using dv that by auto
finally show ?thesis .

qed
qed (use gsc in auto)
also have " . . . = 1" using gr(2) unfolding relations_def by blast

101

finally show ?thesis .
qed
hence otdrg: "ord tau dvd rel g" using tc int_pow_eq_id by force
have ot: "ord tau = rel g"
proof -

from gr(4, 5) have "rel g > 0" by simp
with otdrg have "ord tau ≤ rel g" by (meson zdvd_imp_le)
moreover have "¬ord tau < rel g"
proof

assume a: "int (ord tau) < rel g"
define T where T: "T = gs - {g} ∪ {tau}"
hence tT: "tau ∈ T" by blast
let ?r = "restrict ((λ_.(0::int))(tau := int(ord tau))) T"
from T have "T ∈ all_gens"

using gt generate_sincl[of "gs - {g} ∪ {tau}"] switch_elem_card_le[OF
gr(3), of tau] fgs cgs n

unfolding all_gens_def by auto
moreover have "?r ∈ relations T"
proof(intro in_relationsI finprod_one_eqI)

have "tau [^] int (ord tau) = 1" using tc pow_ord_eq_1[OF
tc] int_pow_int by metis

thus "x [^] ?r x = 1" if "x ∈ T" for x using tT that by(cases
"¬x = tau", auto)

qed auto
moreover have "?r tau = ord tau" using tT by auto
moreover have "ord tau > 0" using dvd_nat_bounds gr(4) gr(5)

int_dvd_int_iff otdrg by presburger
ultimately have "ord tau ∈ exps" unfolding exps_def using

tT by (auto, force)
with le a gr(4) show False by force

qed
ultimately show ?thesis by auto

qed
hence otnz: "ord tau 6= 0" using gr me exps_def by linarith
define l where l: "l = tau#hs"
hence ls: "set l = set hs ∪ {tau}" by auto
with hsc tc have slc: "set l ⊆ carrier G" by auto
have gAhst: "generate G A = generate G (set hs ∪ {tau})"
proof -

have "generate G A = generate G (gs - {g} ∪ {tau})" using gt
by simp

also have " . . . = generate G (set hs ∪ {tau})"
by (rule generate_subset_change_eqI, use hsc gsc tc ghs in

auto)
finally show ?thesis .

qed
have glgA: "generate G (set l) = generate G A" using gAhst ls

by simp
have lgA: "set l ⊆ generate G A"

102

using ls gt gts hs(1)
mono_generate[of "gs - {g}" gs] generate.incl[of tau "gs

- {g} ∪ {tau}"]
by fast

show ?thesis
proof (cases "ord tau = 1")

case True
hence "tau = 1" using ord_eq_1 tc by blast
hence "generate G A = generate G (gs - {g})"

using gAhst generate_one_irrel hs(3) ghs by auto
from iH2[OF ihgsg this cgsg] show ?thesis .

next
case otau: False
consider (nd) "¬distinct l" | (ltn) "length l < n ∧ distinct

l" | (dn) "length l = n ∧ distinct l"
proof -

have "length l ≤ n"
proof -

have "length l = length hs + 1" using l by simp
moreover have "length hs ≤ card (gs - {g})" using hs(2,

5) by (metis distinct_card)
moreover have "card (gs - {g}) + 1 ≤ n"

using n cgsg gr(3) fgs Ane i(2) by (simp add: card_gt_0_iff)
ultimately show ?thesis by linarith

qed
thus " [[¬ distinct l =⇒ thesis; length l < n ∧ distinct l

=⇒ thesis; length l = n ∧ distinct l =⇒ thesis]] =⇒ thesis"
by linarith

qed
thus ?thesis
proof(cases)

case nd
with hs(2) l have ths: "set hs = set hs ∪ {tau}" by auto
hence "set l = set hs" using l by auto
hence "generate G (gs - {g}) = generate G A" using gAhst

ths ghs by argo
moreover have "card (set hs) ≤ card A"

by (metis Diff_iff card_mono cgs dual_order.trans fgs hs(5)
subsetI)

ultimately show ?thesis using hs by auto
next

case ltn
then have cl: "card (set l) < card A" using n by (metis distinct_card)
from iH[OF this] hsc tc ls have "?t (set l)" by blast
thus ?thesis by (subst (1 2) gAhst, use cl ls in fastforce)

next
case dn
hence ln: "length l = n" and dl: "distinct l" by auto
have c: "complementary (generate G {tau}) (generate G (gs

103

- {g}))"
proof -

have "x = 1" if "x ∈ generate G {tau} ∩ generate G (set
hs)" for x

proof -
from that generate_incl[OF hsc] have xc: "x ∈ carrier

G" by blast
from that have xgt: "x ∈ generate G {tau}" and xgs:

"x ∈ generate G (set hs)"
by auto

from generate_nat_pow[OF otnz tc] xgt have "∃ a. a ≥
0 ∧ a < ord tau ∧ x = tau [^] a"

unfolding atLeastAtMost_def atLeast_def atMost_def
by (auto, metis Suc_pred less_Suc_eq_le neq0_conv otnz)

then obtain a where a: "0 ≤ a" "a < ord tau" "x = tau
[^] a" by blast

then have ix: "inv x ∈ generate G (set hs)"
using xgs generate_m_inv_closed ghs hsc by blast

with generate_eq_finprod_Pi_int_image[OF _ hsc] obtain
f where

f: "f ∈ Pi (set hs) (λ_. (UNIV::int set))" "inv x =
finprod G (λg. g [^] f g) (set hs)"

by blast
let ?f = "restrict (f(tau := a)) (set l)"
have fr: "?f ∈ relations (set l)"
proof(intro in_relationsI)

from ls dl l have sh: "set hs = set l - {tau}" by auto
have "finprod G (λa. a [^] ?f a) (set l) = tau [^] ?f

tau ⊗ finprod G (λa. a [^] ?f a) (set hs)"
by (subst sh, intro finprod_minus, use l slc in auto)

moreover have "tau [^] ?f tau = x" using a l int_pow_int
by fastforce

moreover have "finprod G (λa. a [^] ?f a) (set hs)
= finprod G (λg. g [^] f g) (set hs)"

by (intro finprod_cong’, use slc dl l in auto)
ultimately have "finprod G (λa. a [^] ?f a) (set l)

= x ⊗ inv x" using f by argo
thus "finprod G (λa. a [^] ?f a) (set l) = 1" using

xc by auto
qed blast
have "¬a > 0"
proof

assume ag: "0 < a"
have "set l ∈ all_gens" unfolding all_gens_def us-

ing glgA lgA dn distinct_card
by fastforce

moreover have "int a = ?f tau" using l by auto
moreover have "tau ∈ set l" using l by simp
ultimately have "a ∈ exps" using fr ag unfolding exps_def

104

by (auto, force)
from le[OF this] a(2) ot gr(4) show False by simp

qed
hence "a = 0" using a by blast
thus "x = 1" using tc a by force

qed
thus ?thesis unfolding complementary_def using generate.one

ghs by blast
qed
moreover have idl: "is_idirprod (generate G A) (λg. generate

G {g}) (set l)"
proof -

have "is_idirprod (generate G (set hs ∪ {tau})) (λg. generate
G {g}) (set hs ∪ {tau})"

by (intro idirprod_generate_ind, use tc hsc hs(3) ghs
c in auto)

thus ?thesis using ls gAhst by auto
qed
moreover have "¬?t A =⇒ successively (dvd) (map ord l)"
proof (cases hs)

case Nil
thus ?thesis using l by simp

next
case (Cons a list)
hence ac: "a ∈ carrier G" using hsc by auto
assume nA: "¬?t A"
have "ord tau dvd ord a"
proof (rule ccontr)

assume nd: "¬ ord tau dvd ord a"
then have ‹0 < ord a mod ord tau›

using mod_eq_0_iff_dvd by auto
have "int (ord tau) > 0" using otnz by simp
obtain r q :: int where rq: "ord a = q * (ord tau) +

r" "0 < r" "r < ord tau"
by (rule that [of ‹ord a div ord tau› ‹ord a mod ord

tau›])
(use otnz ‹0 < ord a mod ord tau› in ‹simp_all add:

div_mult_mod_eq flip: of_nat_mult of_nat_add›)
define b where b: "b = tau ⊗ a [^] q"
hence bc: "b ∈ carrier G" using hsc tc Cons by auto
have g: "generate G (set (b#hs)) = generate G (set l)"
proof -

have se: "set (b#hs) = set l - {tau} ∪ {b}" using l
Cons dl by auto

show ?thesis
proof(subst se, intro generate_one_switched_eqI[symmetric,

of _ tau _ b])
show "b ∈ generate G (set l)"
proof -

105

have "tau ∈ generate G (set l)" using l generate.incl[of
tau "set l"] by auto

moreover have "a [^] q ∈ generate G (set l)"
using mono_generate[of "{a}" "set l"] generate_pow[OF

ac] Cons l by auto
ultimately show ?thesis using b generate.eng by

fast
qed
show "tau ∈ generate G (set l - {tau} ∪ {b})"
proof -

have "tau = b ⊗ inv(a [^] q)" by (simp add: ac
b m_assoc tc)

moreover have "b ∈ generate G (set l - {tau} ∪
{b})"

using generate.incl[of b "set l - {tau} ∪ {b}"]
by blast

moreover have "inv(a [^] q) ∈ generate G (set l
- {tau} ∪ {b})"

proof -
have "generate G {a} ⊆ generate G (set l - {tau}

∪ {b})"
using mono_generate[of "{a}" "set l - {tau}

∪ {b}"] dl Cons l by auto
moreover have "inv(a [^] q) ∈ generate G {a}"

by (subst generate_pow[OF ac], subst int_pow_neg[OF
ac, of q, symmetric], blast)

ultimately show ?thesis by fast
qed
ultimately show ?thesis using generate.eng by fast

qed
qed (use bc tc hsc dl Cons l in auto)

qed
show False
proof (cases "card (set (b#hs)) 6= n")

case True
hence cln: "card (set (b#hs)) < n"

using l Cons ln by (metis card_length list.size(4)
nat_less_le)

hence seq: "set (b#hs) = set hs"
proof -

from dn l Cons True have "b ∈ set hs"
by (metis distinct.simps(2) distinct_card list.size(4))

thus ?thesis by auto
qed
with cln have clA: "card (set hs) < card A" using n

by auto
moreover have "set hs ⊆ generate G (set hs)" using

generate_sincl by simp
moreover have "distinct hs" by fact

106

moreover have "is_idirprod (generate G (set hs)) (λg.
generate G {g}) (set hs)"

by (intro is_idirprod_generate, use hs[unfolded is_idirprod_def]
hsc in auto)

moreover have "generate G A = generate G (set hs)"
using glgA g seq by argo

moreover have "successively (dvd) (map ord hs)" by
fact

ultimately show False using iH2 nA by blast
next

case False
hence anb: "a 6= b"

by (metis card_distinct distinct_length_2_or_more
l list.size(4) ln local.Cons)

have "nat r ∈ exps" unfolding exps_def
proof(rule)

show "set (b#hs) ∈ all_gens" unfolding all_gens_def
using gAhst g ls generate_sincl[of "set (b#hs)"]

False by simp
let ?r = "restrict ((λ_. 0::int)(b := ord tau, a :=

r)) (set (b#hs))"
have "?r ∈ relations (set (b#hs))"
proof(intro in_relationsI)

show "finprod G (λx. x [^] ?r x) (set (b#hs)) =
1"

proof -
have "finprod G (λx. x [^] ?r x) (set (b#hs))

= b [^] ?r b ⊗ finprod G (λx. x[^] ?r x) (set (b#hs) - {b})"
by (intro finprod_minus, use hsc Cons bc in

auto)
moreover have "finprod G (λx. x[^] ?r x) (set

(b#hs) - {b}) = a [^] ?r a ⊗ finprod G (λx. x[^] ?r x) (set (b#hs) -
{b} - {a})"

by (intro finprod_minus, use hsc Cons False
n anb in auto)

moreover have "finprod G (λx. x[^] ?r x) (set
(b#hs) - {b} - {a}) = 1"

by (intro finprod_one_eqI, simp)
ultimately have "finprod G (λx. x [^] ?r x) (set

(b#hs)) = b [^] ?r b ⊗ (a [^] ?r a ⊗ 1)"
by argo

also have " . . . = b [^] ?r b ⊗ a [^] ?r a" us-
ing Cons hsc by simp

also have " . . . = b [^] int(ord tau) ⊗ a [^] r"
using anb Cons by simp

also have " . . . = 1"
proof -

have "b [^] int (ord tau) = tau [^] int (ord
tau) ⊗ (a [^] q) [^] int (ord tau)"

107

using b bc hsc int_pow_distrib local.Cons
tc by force

also have " . . . = (a [^] q) [^] int (ord tau)"
using trgo hsc local.Cons ot by force

finally have "b [^] int (ord tau) ⊗ a [^] r
= (a [^] q) [^] int (ord tau) ⊗ a [^] r"

by argo
also have " . . . = a [^] (q * int (ord tau) +

r)" using Cons hsc
by (metis comm_group_axioms comm_group_def

group.int_pow_pow
int_pow_mult list.set_intros(1)

subsetD)
also have " . . . = a [^] int (ord a)" using rq

by argo
finally show ?thesis using Cons hsc int_pow_eq_id

by simp
qed
finally show ?thesis .

qed
qed simp
moreover have "r ∈ {e ∈ ?r ‘ set (b # hs). 0 < e}"
proof (rule, rule, rule)

show "0 < r" by fact
show "a ∈ set (b#hs)" using Cons by simp
thus "r = ?r a" by auto

qed
ultimately show "nat r ∈ (

⋃
rel∈relations (set (b

hs)). nat ‘ {e ∈ rel ‘ set (b # hs). 0 < e})"
by fast

qed
moreover have "nat r < min_exp" using ot rq(2, 3) gr(4)

by linarith
ultimately show False using le by fastforce

qed
qed
thus ?thesis using hs(4) Cons l by simp

qed
ultimately show ?thesis using lgA n dn by (metis card_length)

qed
qed

qed (use dvot in blast)
qed

qed
qed

lemma (in comm_group) fundamental_subgr:
fixes A :: "’a set"
assumes "finite A" "A ⊆ carrier G"

108

obtains gs where
"set gs ⊆ generate G A" "distinct gs" "is_idirprod (generate G A)

(λg. generate G {g}) (set gs)"
"successively (dvd) (map ord gs)" "card (set gs) ≤ card A"

using assms ex_idirgen by meson

As every group is a subgroup of itself, the theorem follows directly. However,
for reasons of convenience and uniqueness (although not completely proved),
we strengthen the result by proving that the decomposition can be done
without having the trivial factor in the product. We formulate the theorem
in various ways: firstly, the invariant factor decomposition.
theorem (in fin_gen_comm_group) invariant_factor_decomposition_idirprod:

obtains gs where
"set gs ⊆ carrier G" "distinct gs" "is_idirprod (carrier G) (λg.

generate G {g}) (set gs)"
"successively (dvd) (map ord gs)" "card (set gs) ≤ card gen" "1 /∈

set gs"
proof -

from fundamental_subgr[OF fin_gen gens_closed] obtain gs where
gs: "set gs ⊆ carrier G" "distinct gs" "is_idirprod (carrier G) (λg.

generate G {g}) (set gs)"
"successively (dvd) (map ord gs)" "card (set gs) ≤ card gen" using

generators by auto
hence cf: "compl_fam (λg. generate G {g}) (set gs)" by simp
let ?r = "remove1 1 gs"
have r: "set ?r = set gs - {1}" using gs by auto
have "set ?r ⊆ carrier G" using gs by auto
moreover have "distinct ?r" using gs by auto
moreover have "is_idirprod (carrier G) (λg. generate G {g}) (set ?r)"
proof (intro is_idirprod_generate)

show "set ?r ⊆ carrier G" using gs by auto
show "compl_fam (λg. generate G {g}) (set (remove1 1 gs))"

by (rule compl_fam_generate_subset[OF cf gs(1)], use set_remove1_subset
in fastforce)

show "carrier G = generate G (set ?r)"
proof -

have "generate G (set ?r) = generate G (set gs)" using generate_one_irrel’
r by simp

with gs(3) show ?thesis by simp
qed

qed
moreover have "successively (dvd) (map ord ?r)"
proof (cases gs)

case (Cons a list)
have r: "(map ord (remove1 1 gs)) = remove1 1 (map ord gs)" using

gs(1)
proof(induction gs)

case (Cons a gs)
hence "a ∈ carrier G" by simp

109

with Cons ord_eq_1[OF this] show ?case by auto
qed simp
show ?thesis by (unfold r,

rule transp_successively_remove1[OF _ gs(4), unfolded
transp_def],

auto)
qed simp
moreover have "card (set ?r) ≤ card gen" using gs(5) r

by (metis List.finite_set card_Diff1_le dual_order.trans)
moreover have "1 /∈ set ?r" using gs(2) by auto
ultimately show ?thesis using that by blast

qed

corollary (in fin_gen_comm_group) invariant_factor_decomposition_dirprod:
obtains gs where

"set gs ⊆ carrier G" "distinct gs"
"DirProds (λg. G(|carrier := generate G {g}|)) (set gs) ∼= G"
"successively (dvd) (map ord gs)" "card (set gs) ≤ card gen"
"compl_fam (λg. generate G {g}) (set gs)" "1 /∈ set gs"

proof -
from invariant_factor_decomposition_idirprod obtain gs where

gs: "set gs ⊆ carrier G" "distinct gs" "is_idirprod (carrier G) (λg.
generate G {g}) (set gs)"

"successively (dvd) (map ord gs)" "card (set gs) ≤ card gen" "1
/∈ set gs" by blast

with cong_DirProds_IDirProds[OF gs(3)] gs
have "DirProds (λg. G(|carrier := generate G {g}|)) (set gs) ∼= G" by

blast
with gs that show ?thesis by auto

qed

corollary (in fin_gen_comm_group) invariant_factor_decomposition_dirprod_fam:
obtains Hs where

"
∧

H. H ∈ set Hs =⇒ subgroup H G" "distinct Hs"
"DirProds (λH. G(|carrier := H |)) (set Hs) ∼= G" "successively (dvd)

(map card Hs)"
"card (set Hs) ≤ card gen" "compl_fam id (set Hs)" "{1} /∈ set Hs"

proof -
from invariant_factor_decomposition_dirprod obtain gs where
gs: "set gs ⊆ carrier G" "distinct gs"

"DirProds (λg. G(|carrier := generate G {g}|)) (set gs) ∼= G"
"successively (dvd) (map ord gs)" "card (set gs) ≤ card gen"
"compl_fam (λg. generate G {g}) (set gs)" "1 /∈ set gs" by blast

let ?gen = "(λg. generate G {g})"
let ?Hs = "map (λg. ?gen g) gs"
have "subgroup H G" if "H ∈ set ?Hs" for H using that gs by (auto intro:

generate_is_subgroup)
moreover have "distinct ?Hs"

using compl_fam_imp_generate_inj[OF gs(1)] gs distinct_map by blast

110

moreover have "DirProds (λH. G(|carrier := H |)) (set ?Hs) ∼= G"
proof -

have gg: "group (G(|carrier := ?gen g |))" if "g ∈ set gs" for g
by (use gs that in ‹auto intro: subgroup.subgroup_is_group generate_is_subgroup›)

then interpret og: group "DirProds (λg. G(|carrier := ?gen g |)) (set
gs)"

using DirProds_group_iff by blast
have "DirProds (λg. G (|carrier := ?gen g |)) (set gs) ∼= DirProds (λH.

G(|carrier := H |)) (set ?Hs)"
proof (intro DirProds_iso[of ?gen])

show "bij_betw ?gen (set gs) (set ?Hs)"
using ‹distinct ?Hs› gs(2) compl_fam_imp_generate_inj[OF gs(1,

6)]
by (simp add: bij_betw_def)

show "G(|carrier := ?gen g |) ∼= G(|carrier := ?gen g |)" if "g ∈ set
gs" for g by simp

show "group (G(|carrier := ?gen g |))" if "g ∈ set gs" for g using
that by fact

show "Group.group (G(|carrier := H |))" if "H ∈ set ?Hs" for H
by (use gs that in ‹auto intro: subgroup.subgroup_is_group generate_is_subgroup›)

qed
from group.iso_sym[OF og.is_group this] show ?thesis using gs iso_trans

by blast
qed
moreover have "successively (dvd) (map card ?Hs)"
proof -

have "card (generate G {g}) = ord g" if "g ∈ set gs" for g
using generate_pow_card that gs(1) by auto

hence "map card ?Hs = map ord gs" by simp
thus ?thesis using gs(4) by argo

qed
moreover have "card (set ?Hs) ≤ card gen" using gs

by (metis ‹distinct ?Hs› distinct_card length_map)
moreover have "compl_fam id (set ?Hs)"

using compl_fam_cong[OF _ compl_fam_imp_generate_inj[OF gs(1, 6)],
of id] using gs by auto

moreover have "{1} /∈ set ?Hs" using generate_singleton_one gs by auto
ultimately show ?thesis using that by blast

qed

Here, the invariant factor decomposition in its classical form.
corollary (in fin_gen_comm_group) invariant_factor_decomposition_Zn:

obtains ns where
"DirProds (λn. Z (ns!n)) {..<length ns} ∼= G" "successively (dvd)

ns" "length ns ≤ card gen"
proof -

from invariant_factor_decomposition_dirprod obtain gs where
gs: "set gs ⊆ carrier G" "distinct gs"

"DirProds (λg. G(|carrier := generate G {g}|)) (set gs) ∼= G"

111

"successively (dvd) (map ord gs)" "card (set gs) ≤ card gen"
"compl_fam (λg. generate G {g}) (set gs)" "1 /∈ set gs" by blast

let ?DP = "DirProds (λg. G(|carrier := generate G {g}|)) (set gs)"
have "∃ ns. DirProds (λn. Z (ns!n)) {..<length ns} ∼= G

∧ successively (dvd) ns ∧ length ns ≤ card gen"
proof (cases gs, rule)

case Nil
from gs(3) Nil have co: "carrier ?DP = {1?DP}" unfolding DirProds_def

by auto
let ?ns = "[]"
have "DirProds (λn. Z ([] ! n)) {} ∼= ?DP"
proof(intro triv_iso DirProds_is_group)

show "carrier (DirProds (λn. Z ([] ! n)) {}) = {1DirProds (λn. Z ([] ! n)) {}}"
using DirProds_empty by blast

qed (use co group_integer_mod_group Nil in auto)
from that[of ?ns] gs co iso_trans[OF this gs(3)]
show "DirProds (λn. Z (?ns ! n)) {..<length ?ns} ∼= G

∧ successively (dvd) ?ns ∧ length ?ns ≤ card gen"
unfolding lessThan_def by simp

next
case c: (Cons a list)
let ?l = "map ord gs"
from c have l: "length ?l > 0" by auto
have "DirProds (λn. Z (?l ! n)) {..<length ?l} ∼= G"
proof -

have "DirProds (λn. Z (?l ! n)) {..<length ?l} ∼= ?DP"
proof(intro DirProds_iso[where ?f = "λn. gs!n"])

show "bij_betw ((!) gs) {..<length ?l} (set gs)" using gs
by (simp add: bij_betw_nth)

show "Z (map ord gs ! i) ∼= G(|carrier := generate G {gs ! i}|)"
if "i ∈ {..<length ?l}" for i

proof(rule group.iso_sym[OF subgroup.subgroup_is_group[OF generate_is_subgroup]
cyclic_group.Zn_iso[OF cyclic_groupI2]])

show "order (G (|carrier := generate G {gs ! i}|)) = map ord gs
! i"

unfolding order_def using that generate_pow_card[of "gs !
i"] gs(1) by force

qed (use gs(1) that in auto)
show "Group.group (Z (map ord gs ! i))" if "i ∈ {..<length (map

ord gs)}" for i
using group_integer_mod_group by blast

show "Group.group (G(|carrier := generate G {g}|))" if "g ∈ set
gs" for g

using that gs(1) subgroup.subgroup_is_group[OF generate_is_subgroup]
by auto

qed
from iso_trans[OF this gs(3)] show ?thesis .

qed
moreover have "length ?l ≤ card gen" using gs by (metis distinct_card

112

length_map)
ultimately show ?thesis using gs c by fastforce

qed
thus ?thesis using that by blast

qed

As every integer_mod_group can be decomposed into a product of prime
power groups, we obtain (by using the fact that the direct product does not
care about nestedness) the primary decomposition.
lemma Zn_iso_DirProds_prime_powers:

assumes "n 6= 0"
shows "Z n ∼= DirProds (λp. Z (p ^ multiplicity p n)) (prime_factors

n)" (is "Z n ∼= ?DP")
proof (cases "n = 1")

case True
show ?thesis by (intro triv_iso[OF group_integer_mod_group DirProds_is_group],

use DirProds_empty carrier_integer_mod_group True in
auto)
next

case nno: False
interpret DP: group ?DP by (intro DirProds_is_group, use group_integer_mod_group

in blast)
have "order ?DP = prod (order ◦ (λp. Z (p ^ multiplicity p n))) (prime_factors

n)"
by (intro DirProds_order, blast)

also have " . . . = prod (λp. p ^ multiplicity p n) (prime_factors n)"
using Zn_order by simp

also have n: " . . . = n" using prod_prime_factors[OF assms] by simp
finally have oDP: "order ?DP = n" .
then interpret DP: finite_group ?DP

by (unfold_locales, unfold order_def, metis assms card.infinite)
let ?f = "λp∈(prime_factors n). 1"
have fc: "?f ∈ carrier ?DP"
proof -

have p: "0 < multiplicity p n" if "p ∈ prime_factors n" for p
using prime_factors_multiplicity that by auto

have pk: "1 < p ^ k" if "Factorial_Ring.prime p" "0 < k" for p k::nat
using that one_less_power prime_gt_1_nat by blast

show ?thesis unfolding DirProds_def PiE_def
by(use carrier_integer_mod_group assms nno pk p in auto,

metis in_prime_factors_iff nat_int of_nat_power one_less_nat_eq)
qed
have of: "DP.ord ?f = n"
proof -

have "n dvd j" if j: "?f [^]?DP j = 1?DP" for j
proof (intro pairwise_coprime_dvd’[OF _ _ n[symmetric]])

show "finite (prime_factors n)" by simp
show "∀ a∈#prime_factorization n. a ^ multiplicity a n dvd j"
proof

113

show "p ^ multiplicity p n dvd j" if "p ∈ prime_factors n" for
p

proof -
from j have "(?f [^]?DP j) p = 0"

using that unfolding DirProds_def one_integer_mod_group by
auto

hence "?f p [^]Z (p ^ multiplicity p n) j = 0" using comp_exp_nat[OF
that] by metis

hence "group.ord (Z (p ^ multiplicity p n)) (?f p) dvd j" us-
ing comp_in_carr[OF fc that]

by (metis group.pow_eq_id group_integer_mod_group one_integer_mod_group)
moreover have "group.ord (Z (p ^ multiplicity p n)) (?f p)

= p ^ multiplicity p n"
by (metis (no_types, lifting) Zn_neq1_cyclic_group Zn_order

comp_in_carr
cyclic_group.ord_gen_is_group_order

fc integer_mod_group_1
restrict_apply’ that)

ultimately show ?thesis by simp
qed

qed
show "coprime (i ^ multiplicity i n) (j ^ multiplicity j n)"

if "i ∈# prime_factorization n" "j ∈# prime_factorization n" "i
6= j" for i j

using that diff_prime_power_imp_coprime by blast
qed
thus ?thesis using fc DP.ord_dvd_group_order gcd_nat.asym oDP by

force
qed
interpret DP: cyclic_group ?DP ?f by (intro DP.element_ord_generates_cyclic,

use of oDP fc in auto)
show ?thesis using DP.iso_sym[OF DP.Zn_iso[OF oDP]] .

qed

lemma Zn_iso_DirProds_prime_powers’:
assumes "n 6= 0"
shows "Z n ∼= DirProds (λp. Z p) ((λp. p ^ multiplicity p n) ‘ (prime_factors

n))" (is "Z n ∼= ?DP")
proof -

have cp: "(λp. Z (p ^ multiplicity p n)) = (λp. Z p) ◦ (λp. p ^ multiplicity
p n)" by auto

have "DirProds (λp. Z (p ^ multiplicity p n)) (prime_factors n) ∼= ?DP"
proof(subst cp, intro DirProds_iso2)

show "inj_on (λp. p ^ multiplicity p n) (prime_factors n)"
by (intro inj_onI; simp add: prime_factors_multiplicity prime_power_inj’’)

show "group (DirProds Z ((λp. p ^ multiplicity p n) ‘ prime_factors
n))"

by (intro DirProds_is_group, use group_integer_mod_group in auto)
qed

114

with Zn_iso_DirProds_prime_powers[OF assms] show ?thesis using Group.iso_trans
by blast
qed

corollary (in fin_gen_comm_group) primary_decomposition_Zn:
obtains ns where

"DirProds (λn. Z (ns!n)) {..<length ns} ∼= G"
"∀ n∈set ns. n = 0 ∨ (∃ p k. Factorial_Ring.prime p ∧ k > 0 ∧ n =

p ^ k)"
proof -

from invariant_factor_decomposition_Zn obtain ms where
ms: "DirProds (λm. Z (ms!m)) {..<length ms} ∼= G" "successively (dvd)

ms" "length ms ≤ card gen"
by blast

let ?I = "{..<length ms}"
let ?J = "λi. if ms!i = 0 then {0} else (λp. p ^ multiplicity p (ms!i))

‘ (prime_factors (ms!i))"
let ?G = "λi. Z"
let ?f = "λi. DirProds (?G i) (?J i)"
have "DirProds (λm. Z (ms!m)) {..<length ms} ∼= DirProds ?f {..<length

ms}"
proof (intro DirProds_iso[of id])

show "bij_betw id {..<length ms} {..<length ms}" by blast
show "Z (ms ! i) ∼= ?f (id i)" if "i ∈ {..<length ms}" for i

by (cases "ms!i = 0",
simp add: DirProds_one_cong_sym,
auto intro: Zn_iso_DirProds_prime_powers’)

show "
∧

i. i ∈ {..<length ms} =⇒ group (Z (ms ! i))" by auto
show "group (?f j)" if "j ∈ {..<length ms}" for j by (auto intro:

DirProds_is_group)
qed
also have " . . . ∼= DirProds (λ(i,j). ?G i j) (Sigma ?I ?J)"

by(rule DirProds_Sigma)
finally have G1: "G ∼= DirProds (λ(i,j). ?G i j) (Sigma ?I ?J)" using

ms(1)
by (metis (no_types, lifting) DirProds_is_group Group.iso_trans group.iso_sym

group_integer_mod_group)
have "∃ ps. set ps = Sigma ?I ?J ∧ distinct ps" by(intro finite_distinct_list,

auto)
then obtain ps where ps: "set ps = Sigma ?I ?J" "distinct ps" by blast
define ns where ns: "ns = map snd ps"
have "DirProds (λn. Z (ns!n)) {..<length ns} ∼= DirProds (λ(i,j). ?G

i j) (Sigma ?I ?J)"
proof -

obtain b::"nat ⇒ (nat × nat)"
where b: "∀ i<length ns. ns!i = snd (b i)" "bij_betw b {..<length

ns} (Sigma ?I ?J)"
using ns ps bij_betw_nth by fastforce

moreover have "Z (ns ! i) ∼= (case b i of (i, x) ⇒ Z x)" if "i ∈

115

{..<length ns}" for i
proof -

have "ns ! i = snd (b i)" using b that by blast
thus ?thesis by (simp add: case_prod_beta)

qed
ultimately show ?thesis by (auto intro: DirProds_iso)

qed
with G1 have "DirProds (λn. Z (ns!n)) {..<length ns} ∼= G" using Group.iso_trans

iso_sym by blast
moreover have "n = 0 ∨ (∃ p k. Factorial_Ring.prime p ∧ k > 0 ∧ n

= p ^ k)" if "n∈set ns" for n
proof -

have "k = 0 ∨ (∃ p∈prime_factors (ms!i). k = p ^ multiplicity p (ms!i))"
if "k ∈ ?J i" for k i

by (cases "ms!i = 0", use that in auto)
with that ns ps show ?thesis

by (auto, metis (no_types, lifting) mem_Collect_eq neq0_conv prime_factors_multiplicity)
qed
ultimately show
"(

∧
ns. [[DirProds (λn. Z (ns ! n)) {..<length ns} ∼= G;

∀ n∈set ns. n = 0 ∨ (∃ p k. Factorial_Ring.prime p ∧ k > 0 ∧
n = p ^ k)]] =⇒ thesis)

=⇒ thesis" by blast
qed

As every finite group is also finitely generated, it follows that a finite group
can be decomposed in a product of finite cyclic groups.
lemma (in finite_comm_group) cyclic_product:

obtains ns where "DirProds (λn. Z (ns!n)) {..<length ns} ∼= G" "∀ n∈set
ns. n 6=0"
proof -

from primary_decomposition_Zn obtain ns where
ns: "DirProds (λn. Z (ns ! n)) {..<length ns} ∼= G"

"∀ n∈set ns. n = 0 ∨ (∃ p k. normalization_semidom_class.prime
p ∧ 0 < k ∧ n = p ^ k)"

by blast
have "False" if "n ∈ {..<length ns}" "ns!n = 0" for n
proof -

from that have "order (DirProds (λn. Z (ns ! n)) {..<length ns})
= 0"

using DirProds_order[of "{..<length ns}" "λn. Z (ns!n)"] Zn_order
by auto

with fin iso_same_card[OF ns(1)] show False unfolding order_def by
auto

qed
hence "∀ n∈set ns. n 6=0"

by (metis in_set_conv_nth lessThan_iff)
with ns show ?thesis using that by blast

qed

116

no_notation integer_mod_group (‹Z›)

end

References

[1] G. Kemper. Lecture notes of algebra. https://www.groups.ma.tum.de/
fileadmin/w00ccg/algebra/people/kemper/lectureNotes/Algebra.pdf,
04 2020.

117

https://www.groups.ma.tum.de/fileadmin/w00ccg/algebra/people/kemper/lectureNotes/Algebra.pdf
https://www.groups.ma.tum.de/fileadmin/w00ccg/algebra/people/kemper/lectureNotes/Algebra.pdf

	Set Multiplication
	Miscellaneous group facts
	Generated Groups
	Auxiliary lemmas
	Internal direct product
	Complementarity
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IDirProd - binary internal direct product
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IDirProds - indexed internal direct product
	Complementary family of subgroups
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 isidirprod

	Finite Product
	Group Homomorphisms
	Finite and cyclic groups
	Finite groups
	Finite abelian groups
	Cyclic groups
	Finite cyclic groups
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 getexp - discrete logarithm
	Integer modular groups

	Direct group product
	Group relations
	Fundamental Theorem of Finitely Generated Abelian Groups

